xref: /openbmc/linux/mm/slub.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/stackdepot.h>
30 #include <linux/debugobjects.h>
31 #include <linux/kallsyms.h>
32 #include <linux/kfence.h>
33 #include <linux/memory.h>
34 #include <linux/math64.h>
35 #include <linux/fault-inject.h>
36 #include <linux/stacktrace.h>
37 #include <linux/prefetch.h>
38 #include <linux/memcontrol.h>
39 #include <linux/random.h>
40 #include <kunit/test.h>
41 
42 #include <linux/debugfs.h>
43 #include <trace/events/kmem.h>
44 
45 #include "internal.h"
46 
47 /*
48  * Lock order:
49  *   1. slab_mutex (Global Mutex)
50  *   2. node->list_lock
51  *   3. slab_lock(page) (Only on some arches and for debugging)
52  *
53  *   slab_mutex
54  *
55  *   The role of the slab_mutex is to protect the list of all the slabs
56  *   and to synchronize major metadata changes to slab cache structures.
57  *
58  *   The slab_lock is only used for debugging and on arches that do not
59  *   have the ability to do a cmpxchg_double. It only protects:
60  *	A. page->freelist	-> List of object free in a page
61  *	B. page->inuse		-> Number of objects in use
62  *	C. page->objects	-> Number of objects in page
63  *	D. page->frozen		-> frozen state
64  *
65  *   If a slab is frozen then it is exempt from list management. It is not
66  *   on any list except per cpu partial list. The processor that froze the
67  *   slab is the one who can perform list operations on the page. Other
68  *   processors may put objects onto the freelist but the processor that
69  *   froze the slab is the only one that can retrieve the objects from the
70  *   page's freelist.
71  *
72  *   The list_lock protects the partial and full list on each node and
73  *   the partial slab counter. If taken then no new slabs may be added or
74  *   removed from the lists nor make the number of partial slabs be modified.
75  *   (Note that the total number of slabs is an atomic value that may be
76  *   modified without taking the list lock).
77  *
78  *   The list_lock is a centralized lock and thus we avoid taking it as
79  *   much as possible. As long as SLUB does not have to handle partial
80  *   slabs, operations can continue without any centralized lock. F.e.
81  *   allocating a long series of objects that fill up slabs does not require
82  *   the list lock.
83  *   Interrupts are disabled during allocation and deallocation in order to
84  *   make the slab allocator safe to use in the context of an irq. In addition
85  *   interrupts are disabled to ensure that the processor does not change
86  *   while handling per_cpu slabs, due to kernel preemption.
87  *
88  * SLUB assigns one slab for allocation to each processor.
89  * Allocations only occur from these slabs called cpu slabs.
90  *
91  * Slabs with free elements are kept on a partial list and during regular
92  * operations no list for full slabs is used. If an object in a full slab is
93  * freed then the slab will show up again on the partial lists.
94  * We track full slabs for debugging purposes though because otherwise we
95  * cannot scan all objects.
96  *
97  * Slabs are freed when they become empty. Teardown and setup is
98  * minimal so we rely on the page allocators per cpu caches for
99  * fast frees and allocs.
100  *
101  * page->frozen		The slab is frozen and exempt from list processing.
102  * 			This means that the slab is dedicated to a purpose
103  * 			such as satisfying allocations for a specific
104  * 			processor. Objects may be freed in the slab while
105  * 			it is frozen but slab_free will then skip the usual
106  * 			list operations. It is up to the processor holding
107  * 			the slab to integrate the slab into the slab lists
108  * 			when the slab is no longer needed.
109  *
110  * 			One use of this flag is to mark slabs that are
111  * 			used for allocations. Then such a slab becomes a cpu
112  * 			slab. The cpu slab may be equipped with an additional
113  * 			freelist that allows lockless access to
114  * 			free objects in addition to the regular freelist
115  * 			that requires the slab lock.
116  *
117  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
118  * 			options set. This moves	slab handling out of
119  * 			the fast path and disables lockless freelists.
120  */
121 
122 #ifdef CONFIG_SLUB_DEBUG
123 
124 #ifdef CONFIG_SLUB_DEBUG_ON
125 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
126 #else
127 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
128 #endif
129 
130 static inline bool __slub_debug_enabled(void)
131 {
132 	return static_branch_unlikely(&slub_debug_enabled);
133 }
134 
135 #else		/* CONFIG_SLUB_DEBUG */
136 
137 static inline bool __slub_debug_enabled(void)
138 {
139 	return false;
140 }
141 
142 #endif		/* CONFIG_SLUB_DEBUG */
143 
144 static inline bool kmem_cache_debug(struct kmem_cache *s)
145 {
146 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
147 }
148 
149 void *fixup_red_left(struct kmem_cache *s, void *p)
150 {
151 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
152 		p += s->red_left_pad;
153 
154 	return p;
155 }
156 
157 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
158 {
159 #ifdef CONFIG_SLUB_CPU_PARTIAL
160 	return !kmem_cache_debug(s);
161 #else
162 	return false;
163 #endif
164 }
165 
166 /*
167  * Issues still to be resolved:
168  *
169  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
170  *
171  * - Variable sizing of the per node arrays
172  */
173 
174 /* Enable to log cmpxchg failures */
175 #undef SLUB_DEBUG_CMPXCHG
176 
177 /*
178  * Minimum number of partial slabs. These will be left on the partial
179  * lists even if they are empty. kmem_cache_shrink may reclaim them.
180  */
181 #define MIN_PARTIAL 5
182 
183 /*
184  * Maximum number of desirable partial slabs.
185  * The existence of more partial slabs makes kmem_cache_shrink
186  * sort the partial list by the number of objects in use.
187  */
188 #define MAX_PARTIAL 10
189 
190 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
191 				SLAB_POISON | SLAB_STORE_USER)
192 
193 /*
194  * These debug flags cannot use CMPXCHG because there might be consistency
195  * issues when checking or reading debug information
196  */
197 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
198 				SLAB_TRACE)
199 
200 
201 /*
202  * Debugging flags that require metadata to be stored in the slab.  These get
203  * disabled when slub_debug=O is used and a cache's min order increases with
204  * metadata.
205  */
206 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
207 
208 #define OO_SHIFT	16
209 #define OO_MASK		((1 << OO_SHIFT) - 1)
210 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
211 
212 /* Internal SLUB flags */
213 /* Poison object */
214 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
215 /* Use cmpxchg_double */
216 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
217 
218 /*
219  * Tracking user of a slab.
220  */
221 #define TRACK_ADDRS_COUNT 16
222 struct track {
223 	unsigned long addr;	/* Called from address */
224 #ifdef CONFIG_STACKDEPOT
225 	depot_stack_handle_t handle;
226 #endif
227 	int cpu;		/* Was running on cpu */
228 	int pid;		/* Pid context */
229 	unsigned long when;	/* When did the operation occur */
230 };
231 
232 enum track_item { TRACK_ALLOC, TRACK_FREE };
233 
234 #ifdef CONFIG_SYSFS
235 static int sysfs_slab_add(struct kmem_cache *);
236 static int sysfs_slab_alias(struct kmem_cache *, const char *);
237 #else
238 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
239 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
240 							{ return 0; }
241 #endif
242 
243 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
244 static void debugfs_slab_add(struct kmem_cache *);
245 #else
246 static inline void debugfs_slab_add(struct kmem_cache *s) { }
247 #endif
248 
249 static inline void stat(const struct kmem_cache *s, enum stat_item si)
250 {
251 #ifdef CONFIG_SLUB_STATS
252 	/*
253 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
254 	 * avoid this_cpu_add()'s irq-disable overhead.
255 	 */
256 	raw_cpu_inc(s->cpu_slab->stat[si]);
257 #endif
258 }
259 
260 /*
261  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
262  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
263  * differ during memory hotplug/hotremove operations.
264  * Protected by slab_mutex.
265  */
266 static nodemask_t slab_nodes;
267 
268 /********************************************************************
269  * 			Core slab cache functions
270  *******************************************************************/
271 
272 /*
273  * Returns freelist pointer (ptr). With hardening, this is obfuscated
274  * with an XOR of the address where the pointer is held and a per-cache
275  * random number.
276  */
277 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
278 				 unsigned long ptr_addr)
279 {
280 #ifdef CONFIG_SLAB_FREELIST_HARDENED
281 	/*
282 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
283 	 * Normally, this doesn't cause any issues, as both set_freepointer()
284 	 * and get_freepointer() are called with a pointer with the same tag.
285 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
286 	 * example, when __free_slub() iterates over objects in a cache, it
287 	 * passes untagged pointers to check_object(). check_object() in turns
288 	 * calls get_freepointer() with an untagged pointer, which causes the
289 	 * freepointer to be restored incorrectly.
290 	 */
291 	return (void *)((unsigned long)ptr ^ s->random ^
292 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
293 #else
294 	return ptr;
295 #endif
296 }
297 
298 /* Returns the freelist pointer recorded at location ptr_addr. */
299 static inline void *freelist_dereference(const struct kmem_cache *s,
300 					 void *ptr_addr)
301 {
302 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
303 			    (unsigned long)ptr_addr);
304 }
305 
306 static inline void *get_freepointer(struct kmem_cache *s, void *object)
307 {
308 	object = kasan_reset_tag(object);
309 	return freelist_dereference(s, object + s->offset);
310 }
311 
312 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
313 {
314 	prefetch(object + s->offset);
315 }
316 
317 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
318 {
319 	unsigned long freepointer_addr;
320 	void *p;
321 
322 	if (!debug_pagealloc_enabled_static())
323 		return get_freepointer(s, object);
324 
325 	object = kasan_reset_tag(object);
326 	freepointer_addr = (unsigned long)object + s->offset;
327 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
328 	return freelist_ptr(s, p, freepointer_addr);
329 }
330 
331 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
332 {
333 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
334 
335 #ifdef CONFIG_SLAB_FREELIST_HARDENED
336 	BUG_ON(object == fp); /* naive detection of double free or corruption */
337 #endif
338 
339 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
340 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
341 }
342 
343 /* Loop over all objects in a slab */
344 #define for_each_object(__p, __s, __addr, __objects) \
345 	for (__p = fixup_red_left(__s, __addr); \
346 		__p < (__addr) + (__objects) * (__s)->size; \
347 		__p += (__s)->size)
348 
349 static inline unsigned int order_objects(unsigned int order, unsigned int size)
350 {
351 	return ((unsigned int)PAGE_SIZE << order) / size;
352 }
353 
354 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
355 		unsigned int size)
356 {
357 	struct kmem_cache_order_objects x = {
358 		(order << OO_SHIFT) + order_objects(order, size)
359 	};
360 
361 	return x;
362 }
363 
364 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
365 {
366 	return x.x >> OO_SHIFT;
367 }
368 
369 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
370 {
371 	return x.x & OO_MASK;
372 }
373 
374 /*
375  * Per slab locking using the pagelock
376  */
377 static __always_inline void slab_lock(struct page *page)
378 {
379 	VM_BUG_ON_PAGE(PageTail(page), page);
380 	bit_spin_lock(PG_locked, &page->flags);
381 }
382 
383 static __always_inline void slab_unlock(struct page *page)
384 {
385 	VM_BUG_ON_PAGE(PageTail(page), page);
386 	__bit_spin_unlock(PG_locked, &page->flags);
387 }
388 
389 /* Interrupts must be disabled (for the fallback code to work right) */
390 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
391 		void *freelist_old, unsigned long counters_old,
392 		void *freelist_new, unsigned long counters_new,
393 		const char *n)
394 {
395 	VM_BUG_ON(!irqs_disabled());
396 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
397     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
398 	if (s->flags & __CMPXCHG_DOUBLE) {
399 		if (cmpxchg_double(&page->freelist, &page->counters,
400 				   freelist_old, counters_old,
401 				   freelist_new, counters_new))
402 			return true;
403 	} else
404 #endif
405 	{
406 		slab_lock(page);
407 		if (page->freelist == freelist_old &&
408 					page->counters == counters_old) {
409 			page->freelist = freelist_new;
410 			page->counters = counters_new;
411 			slab_unlock(page);
412 			return true;
413 		}
414 		slab_unlock(page);
415 	}
416 
417 	cpu_relax();
418 	stat(s, CMPXCHG_DOUBLE_FAIL);
419 
420 #ifdef SLUB_DEBUG_CMPXCHG
421 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
422 #endif
423 
424 	return false;
425 }
426 
427 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
428 		void *freelist_old, unsigned long counters_old,
429 		void *freelist_new, unsigned long counters_new,
430 		const char *n)
431 {
432 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
433     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
434 	if (s->flags & __CMPXCHG_DOUBLE) {
435 		if (cmpxchg_double(&page->freelist, &page->counters,
436 				   freelist_old, counters_old,
437 				   freelist_new, counters_new))
438 			return true;
439 	} else
440 #endif
441 	{
442 		unsigned long flags;
443 
444 		local_irq_save(flags);
445 		slab_lock(page);
446 		if (page->freelist == freelist_old &&
447 					page->counters == counters_old) {
448 			page->freelist = freelist_new;
449 			page->counters = counters_new;
450 			slab_unlock(page);
451 			local_irq_restore(flags);
452 			return true;
453 		}
454 		slab_unlock(page);
455 		local_irq_restore(flags);
456 	}
457 
458 	cpu_relax();
459 	stat(s, CMPXCHG_DOUBLE_FAIL);
460 
461 #ifdef SLUB_DEBUG_CMPXCHG
462 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
463 #endif
464 
465 	return false;
466 }
467 
468 #ifdef CONFIG_SLUB_DEBUG
469 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
470 static DEFINE_SPINLOCK(object_map_lock);
471 
472 #if IS_ENABLED(CONFIG_KUNIT)
473 static bool slab_add_kunit_errors(void)
474 {
475 	struct kunit_resource *resource;
476 
477 	if (likely(!current->kunit_test))
478 		return false;
479 
480 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
481 	if (!resource)
482 		return false;
483 
484 	(*(int *)resource->data)++;
485 	kunit_put_resource(resource);
486 	return true;
487 }
488 #else
489 static inline bool slab_add_kunit_errors(void) { return false; }
490 #endif
491 
492 /*
493  * Determine a map of object in use on a page.
494  *
495  * Node listlock must be held to guarantee that the page does
496  * not vanish from under us.
497  */
498 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
499 	__acquires(&object_map_lock)
500 {
501 	void *p;
502 	void *addr = page_address(page);
503 
504 	VM_BUG_ON(!irqs_disabled());
505 
506 	spin_lock(&object_map_lock);
507 
508 	bitmap_zero(object_map, page->objects);
509 
510 	for (p = page->freelist; p; p = get_freepointer(s, p))
511 		set_bit(__obj_to_index(s, addr, p), object_map);
512 
513 	return object_map;
514 }
515 
516 static void put_map(unsigned long *map) __releases(&object_map_lock)
517 {
518 	VM_BUG_ON(map != object_map);
519 	spin_unlock(&object_map_lock);
520 }
521 
522 static inline unsigned int size_from_object(struct kmem_cache *s)
523 {
524 	if (s->flags & SLAB_RED_ZONE)
525 		return s->size - s->red_left_pad;
526 
527 	return s->size;
528 }
529 
530 static inline void *restore_red_left(struct kmem_cache *s, void *p)
531 {
532 	if (s->flags & SLAB_RED_ZONE)
533 		p -= s->red_left_pad;
534 
535 	return p;
536 }
537 
538 /*
539  * Debug settings:
540  */
541 #if defined(CONFIG_SLUB_DEBUG_ON)
542 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
543 #else
544 static slab_flags_t slub_debug;
545 #endif
546 
547 static char *slub_debug_string;
548 static int disable_higher_order_debug;
549 
550 /*
551  * slub is about to manipulate internal object metadata.  This memory lies
552  * outside the range of the allocated object, so accessing it would normally
553  * be reported by kasan as a bounds error.  metadata_access_enable() is used
554  * to tell kasan that these accesses are OK.
555  */
556 static inline void metadata_access_enable(void)
557 {
558 	kasan_disable_current();
559 }
560 
561 static inline void metadata_access_disable(void)
562 {
563 	kasan_enable_current();
564 }
565 
566 /*
567  * Object debugging
568  */
569 
570 /* Verify that a pointer has an address that is valid within a slab page */
571 static inline int check_valid_pointer(struct kmem_cache *s,
572 				struct page *page, void *object)
573 {
574 	void *base;
575 
576 	if (!object)
577 		return 1;
578 
579 	base = page_address(page);
580 	object = kasan_reset_tag(object);
581 	object = restore_red_left(s, object);
582 	if (object < base || object >= base + page->objects * s->size ||
583 		(object - base) % s->size) {
584 		return 0;
585 	}
586 
587 	return 1;
588 }
589 
590 static void print_section(char *level, char *text, u8 *addr,
591 			  unsigned int length)
592 {
593 	metadata_access_enable();
594 	print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
595 			16, 1, addr, length, 1);
596 	metadata_access_disable();
597 }
598 
599 /*
600  * See comment in calculate_sizes().
601  */
602 static inline bool freeptr_outside_object(struct kmem_cache *s)
603 {
604 	return s->offset >= s->inuse;
605 }
606 
607 /*
608  * Return offset of the end of info block which is inuse + free pointer if
609  * not overlapping with object.
610  */
611 static inline unsigned int get_info_end(struct kmem_cache *s)
612 {
613 	if (freeptr_outside_object(s))
614 		return s->inuse + sizeof(void *);
615 	else
616 		return s->inuse;
617 }
618 
619 static struct track *get_track(struct kmem_cache *s, void *object,
620 	enum track_item alloc)
621 {
622 	struct track *p;
623 
624 	p = object + get_info_end(s);
625 
626 	return kasan_reset_tag(p + alloc);
627 }
628 
629 #ifdef CONFIG_STACKDEPOT
630 static depot_stack_handle_t save_stack_depot_trace(gfp_t flags)
631 {
632 	unsigned long entries[TRACK_ADDRS_COUNT];
633 	depot_stack_handle_t handle;
634 	unsigned int nr_entries;
635 
636 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 4);
637 	handle = stack_depot_save(entries, nr_entries, flags);
638 	return handle;
639 }
640 #endif
641 
642 static void set_track(struct kmem_cache *s, void *object,
643 			enum track_item alloc, unsigned long addr)
644 {
645 	struct track *p = get_track(s, object, alloc);
646 
647 	if (addr) {
648 #ifdef CONFIG_STACKDEPOT
649 		p->handle = save_stack_depot_trace(GFP_NOWAIT);
650 #endif
651 		p->addr = addr;
652 		p->cpu = smp_processor_id();
653 		p->pid = current->pid;
654 		p->when = jiffies;
655 	} else {
656 		memset(p, 0, sizeof(struct track));
657 	}
658 }
659 
660 static void init_tracking(struct kmem_cache *s, void *object)
661 {
662 	if (!(s->flags & SLAB_STORE_USER))
663 		return;
664 
665 	set_track(s, object, TRACK_FREE, 0UL);
666 	set_track(s, object, TRACK_ALLOC, 0UL);
667 }
668 
669 static void print_track(const char *s, struct track *t, unsigned long pr_time)
670 {
671 	if (!t->addr)
672 		return;
673 
674 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
675 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
676 #ifdef CONFIG_STACKDEPOT
677 	{
678 		depot_stack_handle_t handle;
679 		unsigned long *entries;
680 		unsigned int nr_entries;
681 
682 		handle = READ_ONCE(t->handle);
683 		if (!handle) {
684 			pr_err("object allocation/free stack trace missing\n");
685 		} else {
686 			nr_entries = stack_depot_fetch(handle, &entries);
687 			stack_trace_print(entries, nr_entries, 0);
688 		}
689 	}
690 #endif
691 }
692 
693 void print_tracking(struct kmem_cache *s, void *object)
694 {
695 	unsigned long pr_time = jiffies;
696 	if (!(s->flags & SLAB_STORE_USER))
697 		return;
698 
699 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
700 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
701 }
702 
703 static void print_page_info(struct page *page)
704 {
705 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
706 	       page, page->objects, page->inuse, page->freelist,
707 	       page->flags, &page->flags);
708 
709 }
710 
711 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
712 {
713 	struct va_format vaf;
714 	va_list args;
715 
716 	va_start(args, fmt);
717 	vaf.fmt = fmt;
718 	vaf.va = &args;
719 	pr_err("=============================================================================\n");
720 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
721 	pr_err("-----------------------------------------------------------------------------\n\n");
722 	va_end(args);
723 }
724 
725 __printf(2, 3)
726 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
727 {
728 	struct va_format vaf;
729 	va_list args;
730 
731 	if (slab_add_kunit_errors())
732 		return;
733 
734 	va_start(args, fmt);
735 	vaf.fmt = fmt;
736 	vaf.va = &args;
737 	pr_err("FIX %s: %pV\n", s->name, &vaf);
738 	va_end(args);
739 }
740 
741 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
742 			       void **freelist, void *nextfree)
743 {
744 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
745 	    !check_valid_pointer(s, page, nextfree) && freelist) {
746 		object_err(s, page, *freelist, "Freechain corrupt");
747 		*freelist = NULL;
748 		slab_fix(s, "Isolate corrupted freechain");
749 		return true;
750 	}
751 
752 	return false;
753 }
754 
755 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
756 {
757 	unsigned int off;	/* Offset of last byte */
758 	u8 *addr = page_address(page);
759 
760 	print_tracking(s, p);
761 
762 	print_page_info(page);
763 
764 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
765 	       p, p - addr, get_freepointer(s, p));
766 
767 	if (s->flags & SLAB_RED_ZONE)
768 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
769 			      s->red_left_pad);
770 	else if (p > addr + 16)
771 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
772 
773 	print_section(KERN_ERR,         "Object   ", p,
774 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
775 	if (s->flags & SLAB_RED_ZONE)
776 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
777 			s->inuse - s->object_size);
778 
779 	off = get_info_end(s);
780 
781 	if (s->flags & SLAB_STORE_USER)
782 		off += 2 * sizeof(struct track);
783 
784 	off += kasan_metadata_size(s);
785 
786 	if (off != size_from_object(s))
787 		/* Beginning of the filler is the free pointer */
788 		print_section(KERN_ERR, "Padding  ", p + off,
789 			      size_from_object(s) - off);
790 
791 	dump_stack();
792 }
793 
794 void object_err(struct kmem_cache *s, struct page *page,
795 			u8 *object, char *reason)
796 {
797 	if (slab_add_kunit_errors())
798 		return;
799 
800 	slab_bug(s, "%s", reason);
801 	print_trailer(s, page, object);
802 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
803 }
804 
805 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
806 			const char *fmt, ...)
807 {
808 	va_list args;
809 	char buf[100];
810 
811 	if (slab_add_kunit_errors())
812 		return;
813 
814 	va_start(args, fmt);
815 	vsnprintf(buf, sizeof(buf), fmt, args);
816 	va_end(args);
817 	slab_bug(s, "%s", buf);
818 	print_page_info(page);
819 	dump_stack();
820 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
821 }
822 
823 static void init_object(struct kmem_cache *s, void *object, u8 val)
824 {
825 	u8 *p = kasan_reset_tag(object);
826 
827 	if (s->flags & SLAB_RED_ZONE)
828 		memset(p - s->red_left_pad, val, s->red_left_pad);
829 
830 	if (s->flags & __OBJECT_POISON) {
831 		memset(p, POISON_FREE, s->object_size - 1);
832 		p[s->object_size - 1] = POISON_END;
833 	}
834 
835 	if (s->flags & SLAB_RED_ZONE)
836 		memset(p + s->object_size, val, s->inuse - s->object_size);
837 }
838 
839 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
840 						void *from, void *to)
841 {
842 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
843 	memset(from, data, to - from);
844 }
845 
846 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
847 			u8 *object, char *what,
848 			u8 *start, unsigned int value, unsigned int bytes)
849 {
850 	u8 *fault;
851 	u8 *end;
852 	u8 *addr = page_address(page);
853 
854 	metadata_access_enable();
855 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
856 	metadata_access_disable();
857 	if (!fault)
858 		return 1;
859 
860 	end = start + bytes;
861 	while (end > fault && end[-1] == value)
862 		end--;
863 
864 	if (slab_add_kunit_errors())
865 		goto skip_bug_print;
866 
867 	slab_bug(s, "%s overwritten", what);
868 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
869 					fault, end - 1, fault - addr,
870 					fault[0], value);
871 	print_trailer(s, page, object);
872 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
873 
874 skip_bug_print:
875 	restore_bytes(s, what, value, fault, end);
876 	return 0;
877 }
878 
879 /*
880  * Object layout:
881  *
882  * object address
883  * 	Bytes of the object to be managed.
884  * 	If the freepointer may overlay the object then the free
885  *	pointer is at the middle of the object.
886  *
887  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
888  * 	0xa5 (POISON_END)
889  *
890  * object + s->object_size
891  * 	Padding to reach word boundary. This is also used for Redzoning.
892  * 	Padding is extended by another word if Redzoning is enabled and
893  * 	object_size == inuse.
894  *
895  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
896  * 	0xcc (RED_ACTIVE) for objects in use.
897  *
898  * object + s->inuse
899  * 	Meta data starts here.
900  *
901  * 	A. Free pointer (if we cannot overwrite object on free)
902  * 	B. Tracking data for SLAB_STORE_USER
903  *	C. Padding to reach required alignment boundary or at minimum
904  * 		one word if debugging is on to be able to detect writes
905  * 		before the word boundary.
906  *
907  *	Padding is done using 0x5a (POISON_INUSE)
908  *
909  * object + s->size
910  * 	Nothing is used beyond s->size.
911  *
912  * If slabcaches are merged then the object_size and inuse boundaries are mostly
913  * ignored. And therefore no slab options that rely on these boundaries
914  * may be used with merged slabcaches.
915  */
916 
917 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
918 {
919 	unsigned long off = get_info_end(s);	/* The end of info */
920 
921 	if (s->flags & SLAB_STORE_USER)
922 		/* We also have user information there */
923 		off += 2 * sizeof(struct track);
924 
925 	off += kasan_metadata_size(s);
926 
927 	if (size_from_object(s) == off)
928 		return 1;
929 
930 	return check_bytes_and_report(s, page, p, "Object padding",
931 			p + off, POISON_INUSE, size_from_object(s) - off);
932 }
933 
934 /* Check the pad bytes at the end of a slab page */
935 static int slab_pad_check(struct kmem_cache *s, struct page *page)
936 {
937 	u8 *start;
938 	u8 *fault;
939 	u8 *end;
940 	u8 *pad;
941 	int length;
942 	int remainder;
943 
944 	if (!(s->flags & SLAB_POISON))
945 		return 1;
946 
947 	start = page_address(page);
948 	length = page_size(page);
949 	end = start + length;
950 	remainder = length % s->size;
951 	if (!remainder)
952 		return 1;
953 
954 	pad = end - remainder;
955 	metadata_access_enable();
956 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
957 	metadata_access_disable();
958 	if (!fault)
959 		return 1;
960 	while (end > fault && end[-1] == POISON_INUSE)
961 		end--;
962 
963 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
964 			fault, end - 1, fault - start);
965 	print_section(KERN_ERR, "Padding ", pad, remainder);
966 
967 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
968 	return 0;
969 }
970 
971 static int check_object(struct kmem_cache *s, struct page *page,
972 					void *object, u8 val)
973 {
974 	u8 *p = object;
975 	u8 *endobject = object + s->object_size;
976 
977 	if (s->flags & SLAB_RED_ZONE) {
978 		if (!check_bytes_and_report(s, page, object, "Left Redzone",
979 			object - s->red_left_pad, val, s->red_left_pad))
980 			return 0;
981 
982 		if (!check_bytes_and_report(s, page, object, "Right Redzone",
983 			endobject, val, s->inuse - s->object_size))
984 			return 0;
985 	} else {
986 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
987 			check_bytes_and_report(s, page, p, "Alignment padding",
988 				endobject, POISON_INUSE,
989 				s->inuse - s->object_size);
990 		}
991 	}
992 
993 	if (s->flags & SLAB_POISON) {
994 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
995 			(!check_bytes_and_report(s, page, p, "Poison", p,
996 					POISON_FREE, s->object_size - 1) ||
997 			 !check_bytes_and_report(s, page, p, "End Poison",
998 				p + s->object_size - 1, POISON_END, 1)))
999 			return 0;
1000 		/*
1001 		 * check_pad_bytes cleans up on its own.
1002 		 */
1003 		check_pad_bytes(s, page, p);
1004 	}
1005 
1006 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1007 		/*
1008 		 * Object and freepointer overlap. Cannot check
1009 		 * freepointer while object is allocated.
1010 		 */
1011 		return 1;
1012 
1013 	/* Check free pointer validity */
1014 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
1015 		object_err(s, page, p, "Freepointer corrupt");
1016 		/*
1017 		 * No choice but to zap it and thus lose the remainder
1018 		 * of the free objects in this slab. May cause
1019 		 * another error because the object count is now wrong.
1020 		 */
1021 		set_freepointer(s, p, NULL);
1022 		return 0;
1023 	}
1024 	return 1;
1025 }
1026 
1027 static int check_slab(struct kmem_cache *s, struct page *page)
1028 {
1029 	int maxobj;
1030 
1031 	VM_BUG_ON(!irqs_disabled());
1032 
1033 	if (!PageSlab(page)) {
1034 		slab_err(s, page, "Not a valid slab page");
1035 		return 0;
1036 	}
1037 
1038 	maxobj = order_objects(compound_order(page), s->size);
1039 	if (page->objects > maxobj) {
1040 		slab_err(s, page, "objects %u > max %u",
1041 			page->objects, maxobj);
1042 		return 0;
1043 	}
1044 	if (page->inuse > page->objects) {
1045 		slab_err(s, page, "inuse %u > max %u",
1046 			page->inuse, page->objects);
1047 		return 0;
1048 	}
1049 	/* Slab_pad_check fixes things up after itself */
1050 	slab_pad_check(s, page);
1051 	return 1;
1052 }
1053 
1054 /*
1055  * Determine if a certain object on a page is on the freelist. Must hold the
1056  * slab lock to guarantee that the chains are in a consistent state.
1057  */
1058 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1059 {
1060 	int nr = 0;
1061 	void *fp;
1062 	void *object = NULL;
1063 	int max_objects;
1064 
1065 	fp = page->freelist;
1066 	while (fp && nr <= page->objects) {
1067 		if (fp == search)
1068 			return 1;
1069 		if (!check_valid_pointer(s, page, fp)) {
1070 			if (object) {
1071 				object_err(s, page, object,
1072 					"Freechain corrupt");
1073 				set_freepointer(s, object, NULL);
1074 			} else {
1075 				slab_err(s, page, "Freepointer corrupt");
1076 				page->freelist = NULL;
1077 				page->inuse = page->objects;
1078 				slab_fix(s, "Freelist cleared");
1079 				return 0;
1080 			}
1081 			break;
1082 		}
1083 		object = fp;
1084 		fp = get_freepointer(s, object);
1085 		nr++;
1086 	}
1087 
1088 	max_objects = order_objects(compound_order(page), s->size);
1089 	if (max_objects > MAX_OBJS_PER_PAGE)
1090 		max_objects = MAX_OBJS_PER_PAGE;
1091 
1092 	if (page->objects != max_objects) {
1093 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1094 			 page->objects, max_objects);
1095 		page->objects = max_objects;
1096 		slab_fix(s, "Number of objects adjusted");
1097 	}
1098 	if (page->inuse != page->objects - nr) {
1099 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1100 			 page->inuse, page->objects - nr);
1101 		page->inuse = page->objects - nr;
1102 		slab_fix(s, "Object count adjusted");
1103 	}
1104 	return search == NULL;
1105 }
1106 
1107 static void trace(struct kmem_cache *s, struct page *page, void *object,
1108 								int alloc)
1109 {
1110 	if (s->flags & SLAB_TRACE) {
1111 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1112 			s->name,
1113 			alloc ? "alloc" : "free",
1114 			object, page->inuse,
1115 			page->freelist);
1116 
1117 		if (!alloc)
1118 			print_section(KERN_INFO, "Object ", (void *)object,
1119 					s->object_size);
1120 
1121 		dump_stack();
1122 	}
1123 }
1124 
1125 /*
1126  * Tracking of fully allocated slabs for debugging purposes.
1127  */
1128 static void add_full(struct kmem_cache *s,
1129 	struct kmem_cache_node *n, struct page *page)
1130 {
1131 	if (!(s->flags & SLAB_STORE_USER))
1132 		return;
1133 
1134 	lockdep_assert_held(&n->list_lock);
1135 	list_add(&page->slab_list, &n->full);
1136 }
1137 
1138 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1139 {
1140 	if (!(s->flags & SLAB_STORE_USER))
1141 		return;
1142 
1143 	lockdep_assert_held(&n->list_lock);
1144 	list_del(&page->slab_list);
1145 }
1146 
1147 /* Tracking of the number of slabs for debugging purposes */
1148 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1149 {
1150 	struct kmem_cache_node *n = get_node(s, node);
1151 
1152 	return atomic_long_read(&n->nr_slabs);
1153 }
1154 
1155 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1156 {
1157 	return atomic_long_read(&n->nr_slabs);
1158 }
1159 
1160 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1161 {
1162 	struct kmem_cache_node *n = get_node(s, node);
1163 
1164 	/*
1165 	 * May be called early in order to allocate a slab for the
1166 	 * kmem_cache_node structure. Solve the chicken-egg
1167 	 * dilemma by deferring the increment of the count during
1168 	 * bootstrap (see early_kmem_cache_node_alloc).
1169 	 */
1170 	if (likely(n)) {
1171 		atomic_long_inc(&n->nr_slabs);
1172 		atomic_long_add(objects, &n->total_objects);
1173 	}
1174 }
1175 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1176 {
1177 	struct kmem_cache_node *n = get_node(s, node);
1178 
1179 	atomic_long_dec(&n->nr_slabs);
1180 	atomic_long_sub(objects, &n->total_objects);
1181 }
1182 
1183 /* Object debug checks for alloc/free paths */
1184 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1185 								void *object)
1186 {
1187 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1188 		return;
1189 
1190 	init_object(s, object, SLUB_RED_INACTIVE);
1191 	init_tracking(s, object);
1192 }
1193 
1194 static
1195 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1196 {
1197 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1198 		return;
1199 
1200 	metadata_access_enable();
1201 	memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1202 	metadata_access_disable();
1203 }
1204 
1205 static inline int alloc_consistency_checks(struct kmem_cache *s,
1206 					struct page *page, void *object)
1207 {
1208 	if (!check_slab(s, page))
1209 		return 0;
1210 
1211 	if (!check_valid_pointer(s, page, object)) {
1212 		object_err(s, page, object, "Freelist Pointer check fails");
1213 		return 0;
1214 	}
1215 
1216 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1217 		return 0;
1218 
1219 	return 1;
1220 }
1221 
1222 static noinline int alloc_debug_processing(struct kmem_cache *s,
1223 					struct page *page,
1224 					void *object, unsigned long addr)
1225 {
1226 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1227 		if (!alloc_consistency_checks(s, page, object))
1228 			goto bad;
1229 	}
1230 
1231 	/* Success perform special debug activities for allocs */
1232 	if (s->flags & SLAB_STORE_USER)
1233 		set_track(s, object, TRACK_ALLOC, addr);
1234 	trace(s, page, object, 1);
1235 	init_object(s, object, SLUB_RED_ACTIVE);
1236 	return 1;
1237 
1238 bad:
1239 	if (PageSlab(page)) {
1240 		/*
1241 		 * If this is a slab page then lets do the best we can
1242 		 * to avoid issues in the future. Marking all objects
1243 		 * as used avoids touching the remaining objects.
1244 		 */
1245 		slab_fix(s, "Marking all objects used");
1246 		page->inuse = page->objects;
1247 		page->freelist = NULL;
1248 	}
1249 	return 0;
1250 }
1251 
1252 static inline int free_consistency_checks(struct kmem_cache *s,
1253 		struct page *page, void *object, unsigned long addr)
1254 {
1255 	if (!check_valid_pointer(s, page, object)) {
1256 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1257 		return 0;
1258 	}
1259 
1260 	if (on_freelist(s, page, object)) {
1261 		object_err(s, page, object, "Object already free");
1262 		return 0;
1263 	}
1264 
1265 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1266 		return 0;
1267 
1268 	if (unlikely(s != page->slab_cache)) {
1269 		if (!PageSlab(page)) {
1270 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1271 				 object);
1272 		} else if (!page->slab_cache) {
1273 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1274 			       object);
1275 			dump_stack();
1276 		} else
1277 			object_err(s, page, object,
1278 					"page slab pointer corrupt.");
1279 		return 0;
1280 	}
1281 	return 1;
1282 }
1283 
1284 /* Supports checking bulk free of a constructed freelist */
1285 static noinline int free_debug_processing(
1286 	struct kmem_cache *s, struct page *page,
1287 	void *head, void *tail, int bulk_cnt,
1288 	unsigned long addr)
1289 {
1290 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1291 	void *object = head;
1292 	int cnt = 0;
1293 	unsigned long flags;
1294 	int ret = 0;
1295 
1296 	spin_lock_irqsave(&n->list_lock, flags);
1297 	slab_lock(page);
1298 
1299 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1300 		if (!check_slab(s, page))
1301 			goto out;
1302 	}
1303 
1304 next_object:
1305 	cnt++;
1306 
1307 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1308 		if (!free_consistency_checks(s, page, object, addr))
1309 			goto out;
1310 	}
1311 
1312 	if (s->flags & SLAB_STORE_USER)
1313 		set_track(s, object, TRACK_FREE, addr);
1314 	trace(s, page, object, 0);
1315 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1316 	init_object(s, object, SLUB_RED_INACTIVE);
1317 
1318 	/* Reached end of constructed freelist yet? */
1319 	if (object != tail) {
1320 		object = get_freepointer(s, object);
1321 		goto next_object;
1322 	}
1323 	ret = 1;
1324 
1325 out:
1326 	if (cnt != bulk_cnt)
1327 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1328 			 bulk_cnt, cnt);
1329 
1330 	slab_unlock(page);
1331 	spin_unlock_irqrestore(&n->list_lock, flags);
1332 	if (!ret)
1333 		slab_fix(s, "Object at 0x%p not freed", object);
1334 	return ret;
1335 }
1336 
1337 /*
1338  * Parse a block of slub_debug options. Blocks are delimited by ';'
1339  *
1340  * @str:    start of block
1341  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1342  * @slabs:  return start of list of slabs, or NULL when there's no list
1343  * @init:   assume this is initial parsing and not per-kmem-create parsing
1344  *
1345  * returns the start of next block if there's any, or NULL
1346  */
1347 static char *
1348 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1349 {
1350 	bool higher_order_disable = false;
1351 
1352 	/* Skip any completely empty blocks */
1353 	while (*str && *str == ';')
1354 		str++;
1355 
1356 	if (*str == ',') {
1357 		/*
1358 		 * No options but restriction on slabs. This means full
1359 		 * debugging for slabs matching a pattern.
1360 		 */
1361 		*flags = DEBUG_DEFAULT_FLAGS;
1362 		goto check_slabs;
1363 	}
1364 	*flags = 0;
1365 
1366 	/* Determine which debug features should be switched on */
1367 	for (; *str && *str != ',' && *str != ';'; str++) {
1368 		switch (tolower(*str)) {
1369 		case '-':
1370 			*flags = 0;
1371 			break;
1372 		case 'f':
1373 			*flags |= SLAB_CONSISTENCY_CHECKS;
1374 			break;
1375 		case 'z':
1376 			*flags |= SLAB_RED_ZONE;
1377 			break;
1378 		case 'p':
1379 			*flags |= SLAB_POISON;
1380 			break;
1381 		case 'u':
1382 			*flags |= SLAB_STORE_USER;
1383 			break;
1384 		case 't':
1385 			*flags |= SLAB_TRACE;
1386 			break;
1387 		case 'a':
1388 			*flags |= SLAB_FAILSLAB;
1389 			break;
1390 		case 'o':
1391 			/*
1392 			 * Avoid enabling debugging on caches if its minimum
1393 			 * order would increase as a result.
1394 			 */
1395 			higher_order_disable = true;
1396 			break;
1397 		default:
1398 			if (init)
1399 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1400 		}
1401 	}
1402 check_slabs:
1403 	if (*str == ',')
1404 		*slabs = ++str;
1405 	else
1406 		*slabs = NULL;
1407 
1408 	/* Skip over the slab list */
1409 	while (*str && *str != ';')
1410 		str++;
1411 
1412 	/* Skip any completely empty blocks */
1413 	while (*str && *str == ';')
1414 		str++;
1415 
1416 	if (init && higher_order_disable)
1417 		disable_higher_order_debug = 1;
1418 
1419 	if (*str)
1420 		return str;
1421 	else
1422 		return NULL;
1423 }
1424 
1425 static int __init setup_slub_debug(char *str)
1426 {
1427 	slab_flags_t flags;
1428 	char *saved_str;
1429 	char *slab_list;
1430 	bool global_slub_debug_changed = false;
1431 	bool slab_list_specified = false;
1432 
1433 	slub_debug = DEBUG_DEFAULT_FLAGS;
1434 	if (*str++ != '=' || !*str)
1435 		/*
1436 		 * No options specified. Switch on full debugging.
1437 		 */
1438 		goto out;
1439 
1440 	saved_str = str;
1441 	while (str) {
1442 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1443 
1444 		if (!slab_list) {
1445 			slub_debug = flags;
1446 			global_slub_debug_changed = true;
1447 		} else {
1448 			slab_list_specified = true;
1449 		}
1450 	}
1451 
1452 	/*
1453 	 * For backwards compatibility, a single list of flags with list of
1454 	 * slabs means debugging is only enabled for those slabs, so the global
1455 	 * slub_debug should be 0. We can extended that to multiple lists as
1456 	 * long as there is no option specifying flags without a slab list.
1457 	 */
1458 	if (slab_list_specified) {
1459 		if (!global_slub_debug_changed)
1460 			slub_debug = 0;
1461 		slub_debug_string = saved_str;
1462 	}
1463 out:
1464 	if (slub_debug != 0 || slub_debug_string)
1465 		static_branch_enable(&slub_debug_enabled);
1466 	else
1467 		static_branch_disable(&slub_debug_enabled);
1468 	if ((static_branch_unlikely(&init_on_alloc) ||
1469 	     static_branch_unlikely(&init_on_free)) &&
1470 	    (slub_debug & SLAB_POISON))
1471 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1472 	return 1;
1473 }
1474 
1475 __setup("slub_debug", setup_slub_debug);
1476 
1477 /*
1478  * kmem_cache_flags - apply debugging options to the cache
1479  * @object_size:	the size of an object without meta data
1480  * @flags:		flags to set
1481  * @name:		name of the cache
1482  *
1483  * Debug option(s) are applied to @flags. In addition to the debug
1484  * option(s), if a slab name (or multiple) is specified i.e.
1485  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1486  * then only the select slabs will receive the debug option(s).
1487  */
1488 slab_flags_t kmem_cache_flags(unsigned int object_size,
1489 	slab_flags_t flags, const char *name)
1490 {
1491 	char *iter;
1492 	size_t len;
1493 	char *next_block;
1494 	slab_flags_t block_flags;
1495 	slab_flags_t slub_debug_local = slub_debug;
1496 
1497 	/*
1498 	 * If the slab cache is for debugging (e.g. kmemleak) then
1499 	 * don't store user (stack trace) information by default,
1500 	 * but let the user enable it via the command line below.
1501 	 */
1502 	if (flags & SLAB_NOLEAKTRACE)
1503 		slub_debug_local &= ~SLAB_STORE_USER;
1504 
1505 	len = strlen(name);
1506 	next_block = slub_debug_string;
1507 	/* Go through all blocks of debug options, see if any matches our slab's name */
1508 	while (next_block) {
1509 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1510 		if (!iter)
1511 			continue;
1512 		/* Found a block that has a slab list, search it */
1513 		while (*iter) {
1514 			char *end, *glob;
1515 			size_t cmplen;
1516 
1517 			end = strchrnul(iter, ',');
1518 			if (next_block && next_block < end)
1519 				end = next_block - 1;
1520 
1521 			glob = strnchr(iter, end - iter, '*');
1522 			if (glob)
1523 				cmplen = glob - iter;
1524 			else
1525 				cmplen = max_t(size_t, len, (end - iter));
1526 
1527 			if (!strncmp(name, iter, cmplen)) {
1528 				flags |= block_flags;
1529 				return flags;
1530 			}
1531 
1532 			if (!*end || *end == ';')
1533 				break;
1534 			iter = end + 1;
1535 		}
1536 	}
1537 
1538 	return flags | slub_debug_local;
1539 }
1540 #else /* !CONFIG_SLUB_DEBUG */
1541 static inline void setup_object_debug(struct kmem_cache *s,
1542 			struct page *page, void *object) {}
1543 static inline
1544 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1545 
1546 static inline int alloc_debug_processing(struct kmem_cache *s,
1547 	struct page *page, void *object, unsigned long addr) { return 0; }
1548 
1549 static inline int free_debug_processing(
1550 	struct kmem_cache *s, struct page *page,
1551 	void *head, void *tail, int bulk_cnt,
1552 	unsigned long addr) { return 0; }
1553 
1554 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1555 			{ return 1; }
1556 static inline int check_object(struct kmem_cache *s, struct page *page,
1557 			void *object, u8 val) { return 1; }
1558 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1559 					struct page *page) {}
1560 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1561 					struct page *page) {}
1562 slab_flags_t kmem_cache_flags(unsigned int object_size,
1563 	slab_flags_t flags, const char *name)
1564 {
1565 	return flags;
1566 }
1567 #define slub_debug 0
1568 
1569 #define disable_higher_order_debug 0
1570 
1571 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1572 							{ return 0; }
1573 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1574 							{ return 0; }
1575 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1576 							int objects) {}
1577 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1578 							int objects) {}
1579 
1580 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1581 			       void **freelist, void *nextfree)
1582 {
1583 	return false;
1584 }
1585 #endif /* CONFIG_SLUB_DEBUG */
1586 
1587 /*
1588  * Hooks for other subsystems that check memory allocations. In a typical
1589  * production configuration these hooks all should produce no code at all.
1590  */
1591 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1592 {
1593 	ptr = kasan_kmalloc_large(ptr, size, flags);
1594 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1595 	kmemleak_alloc(ptr, size, 1, flags);
1596 	return ptr;
1597 }
1598 
1599 static __always_inline void kfree_hook(void *x)
1600 {
1601 	kmemleak_free(x);
1602 	kasan_kfree_large(x);
1603 }
1604 
1605 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1606 						void *x, bool init)
1607 {
1608 	kmemleak_free_recursive(x, s->flags);
1609 
1610 	/*
1611 	 * Trouble is that we may no longer disable interrupts in the fast path
1612 	 * So in order to make the debug calls that expect irqs to be
1613 	 * disabled we need to disable interrupts temporarily.
1614 	 */
1615 #ifdef CONFIG_LOCKDEP
1616 	{
1617 		unsigned long flags;
1618 
1619 		local_irq_save(flags);
1620 		debug_check_no_locks_freed(x, s->object_size);
1621 		local_irq_restore(flags);
1622 	}
1623 #endif
1624 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1625 		debug_check_no_obj_freed(x, s->object_size);
1626 
1627 	/* Use KCSAN to help debug racy use-after-free. */
1628 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1629 		__kcsan_check_access(x, s->object_size,
1630 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1631 
1632 	/*
1633 	 * As memory initialization might be integrated into KASAN,
1634 	 * kasan_slab_free and initialization memset's must be
1635 	 * kept together to avoid discrepancies in behavior.
1636 	 *
1637 	 * The initialization memset's clear the object and the metadata,
1638 	 * but don't touch the SLAB redzone.
1639 	 */
1640 	if (init) {
1641 		int rsize;
1642 
1643 		if (!kasan_has_integrated_init())
1644 			memset(kasan_reset_tag(x), 0, s->object_size);
1645 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1646 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1647 		       s->size - s->inuse - rsize);
1648 	}
1649 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1650 	return kasan_slab_free(s, x, init);
1651 }
1652 
1653 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1654 					   void **head, void **tail)
1655 {
1656 
1657 	void *object;
1658 	void *next = *head;
1659 	void *old_tail = *tail ? *tail : *head;
1660 
1661 	if (is_kfence_address(next)) {
1662 		slab_free_hook(s, next, false);
1663 		return true;
1664 	}
1665 
1666 	/* Head and tail of the reconstructed freelist */
1667 	*head = NULL;
1668 	*tail = NULL;
1669 
1670 	do {
1671 		object = next;
1672 		next = get_freepointer(s, object);
1673 
1674 		/* If object's reuse doesn't have to be delayed */
1675 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1676 			/* Move object to the new freelist */
1677 			set_freepointer(s, object, *head);
1678 			*head = object;
1679 			if (!*tail)
1680 				*tail = object;
1681 		}
1682 	} while (object != old_tail);
1683 
1684 	if (*head == *tail)
1685 		*tail = NULL;
1686 
1687 	return *head != NULL;
1688 }
1689 
1690 static void *setup_object(struct kmem_cache *s, struct page *page,
1691 				void *object)
1692 {
1693 	setup_object_debug(s, page, object);
1694 	object = kasan_init_slab_obj(s, object);
1695 	if (unlikely(s->ctor)) {
1696 		kasan_unpoison_object_data(s, object);
1697 		s->ctor(object);
1698 		kasan_poison_object_data(s, object);
1699 	}
1700 	return object;
1701 }
1702 
1703 /*
1704  * Slab allocation and freeing
1705  */
1706 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1707 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1708 {
1709 	struct page *page;
1710 	unsigned int order = oo_order(oo);
1711 
1712 	if (node == NUMA_NO_NODE)
1713 		page = alloc_pages(flags, order);
1714 	else
1715 		page = __alloc_pages_node(node, flags, order);
1716 
1717 	return page;
1718 }
1719 
1720 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1721 /* Pre-initialize the random sequence cache */
1722 static int init_cache_random_seq(struct kmem_cache *s)
1723 {
1724 	unsigned int count = oo_objects(s->oo);
1725 	int err;
1726 
1727 	/* Bailout if already initialised */
1728 	if (s->random_seq)
1729 		return 0;
1730 
1731 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1732 	if (err) {
1733 		pr_err("SLUB: Unable to initialize free list for %s\n",
1734 			s->name);
1735 		return err;
1736 	}
1737 
1738 	/* Transform to an offset on the set of pages */
1739 	if (s->random_seq) {
1740 		unsigned int i;
1741 
1742 		for (i = 0; i < count; i++)
1743 			s->random_seq[i] *= s->size;
1744 	}
1745 	return 0;
1746 }
1747 
1748 /* Initialize each random sequence freelist per cache */
1749 static void __init init_freelist_randomization(void)
1750 {
1751 	struct kmem_cache *s;
1752 
1753 	mutex_lock(&slab_mutex);
1754 
1755 	list_for_each_entry(s, &slab_caches, list)
1756 		init_cache_random_seq(s);
1757 
1758 	mutex_unlock(&slab_mutex);
1759 }
1760 
1761 /* Get the next entry on the pre-computed freelist randomized */
1762 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1763 				unsigned long *pos, void *start,
1764 				unsigned long page_limit,
1765 				unsigned long freelist_count)
1766 {
1767 	unsigned int idx;
1768 
1769 	/*
1770 	 * If the target page allocation failed, the number of objects on the
1771 	 * page might be smaller than the usual size defined by the cache.
1772 	 */
1773 	do {
1774 		idx = s->random_seq[*pos];
1775 		*pos += 1;
1776 		if (*pos >= freelist_count)
1777 			*pos = 0;
1778 	} while (unlikely(idx >= page_limit));
1779 
1780 	return (char *)start + idx;
1781 }
1782 
1783 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1784 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1785 {
1786 	void *start;
1787 	void *cur;
1788 	void *next;
1789 	unsigned long idx, pos, page_limit, freelist_count;
1790 
1791 	if (page->objects < 2 || !s->random_seq)
1792 		return false;
1793 
1794 	freelist_count = oo_objects(s->oo);
1795 	pos = get_random_int() % freelist_count;
1796 
1797 	page_limit = page->objects * s->size;
1798 	start = fixup_red_left(s, page_address(page));
1799 
1800 	/* First entry is used as the base of the freelist */
1801 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1802 				freelist_count);
1803 	cur = setup_object(s, page, cur);
1804 	page->freelist = cur;
1805 
1806 	for (idx = 1; idx < page->objects; idx++) {
1807 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1808 			freelist_count);
1809 		next = setup_object(s, page, next);
1810 		set_freepointer(s, cur, next);
1811 		cur = next;
1812 	}
1813 	set_freepointer(s, cur, NULL);
1814 
1815 	return true;
1816 }
1817 #else
1818 static inline int init_cache_random_seq(struct kmem_cache *s)
1819 {
1820 	return 0;
1821 }
1822 static inline void init_freelist_randomization(void) { }
1823 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1824 {
1825 	return false;
1826 }
1827 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1828 
1829 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1830 {
1831 	struct page *page;
1832 	struct kmem_cache_order_objects oo = s->oo;
1833 	gfp_t alloc_gfp;
1834 	void *start, *p, *next;
1835 	int idx;
1836 	bool shuffle;
1837 
1838 	flags &= gfp_allowed_mask;
1839 
1840 	if (gfpflags_allow_blocking(flags))
1841 		local_irq_enable();
1842 
1843 	flags |= s->allocflags;
1844 
1845 	/*
1846 	 * Let the initial higher-order allocation fail under memory pressure
1847 	 * so we fall-back to the minimum order allocation.
1848 	 */
1849 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1850 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1851 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1852 
1853 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1854 	if (unlikely(!page)) {
1855 		oo = s->min;
1856 		alloc_gfp = flags;
1857 		/*
1858 		 * Allocation may have failed due to fragmentation.
1859 		 * Try a lower order alloc if possible
1860 		 */
1861 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1862 		if (unlikely(!page))
1863 			goto out;
1864 		stat(s, ORDER_FALLBACK);
1865 	}
1866 
1867 	page->objects = oo_objects(oo);
1868 
1869 	account_slab_page(page, oo_order(oo), s, flags);
1870 
1871 	page->slab_cache = s;
1872 	__SetPageSlab(page);
1873 	if (page_is_pfmemalloc(page))
1874 		SetPageSlabPfmemalloc(page);
1875 
1876 	kasan_poison_slab(page);
1877 
1878 	start = page_address(page);
1879 
1880 	setup_page_debug(s, page, start);
1881 
1882 	shuffle = shuffle_freelist(s, page);
1883 
1884 	if (!shuffle) {
1885 		start = fixup_red_left(s, start);
1886 		start = setup_object(s, page, start);
1887 		page->freelist = start;
1888 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1889 			next = p + s->size;
1890 			next = setup_object(s, page, next);
1891 			set_freepointer(s, p, next);
1892 			p = next;
1893 		}
1894 		set_freepointer(s, p, NULL);
1895 	}
1896 
1897 	page->inuse = page->objects;
1898 	page->frozen = 1;
1899 
1900 out:
1901 	if (gfpflags_allow_blocking(flags))
1902 		local_irq_disable();
1903 	if (!page)
1904 		return NULL;
1905 
1906 	inc_slabs_node(s, page_to_nid(page), page->objects);
1907 
1908 	return page;
1909 }
1910 
1911 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1912 {
1913 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1914 		flags = kmalloc_fix_flags(flags);
1915 
1916 	return allocate_slab(s,
1917 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1918 }
1919 
1920 static void __free_slab(struct kmem_cache *s, struct page *page)
1921 {
1922 	int order = compound_order(page);
1923 	int pages = 1 << order;
1924 
1925 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1926 		void *p;
1927 
1928 		slab_pad_check(s, page);
1929 		for_each_object(p, s, page_address(page),
1930 						page->objects)
1931 			check_object(s, page, p, SLUB_RED_INACTIVE);
1932 	}
1933 
1934 	__ClearPageSlabPfmemalloc(page);
1935 	__ClearPageSlab(page);
1936 	/* In union with page->mapping where page allocator expects NULL */
1937 	page->slab_cache = NULL;
1938 	if (current->reclaim_state)
1939 		current->reclaim_state->reclaimed_slab += pages;
1940 	unaccount_slab_page(page, order, s);
1941 	__free_pages(page, order);
1942 }
1943 
1944 static void rcu_free_slab(struct rcu_head *h)
1945 {
1946 	struct page *page = container_of(h, struct page, rcu_head);
1947 
1948 	__free_slab(page->slab_cache, page);
1949 }
1950 
1951 static void free_slab(struct kmem_cache *s, struct page *page)
1952 {
1953 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1954 		call_rcu(&page->rcu_head, rcu_free_slab);
1955 	} else
1956 		__free_slab(s, page);
1957 }
1958 
1959 static void discard_slab(struct kmem_cache *s, struct page *page)
1960 {
1961 	dec_slabs_node(s, page_to_nid(page), page->objects);
1962 	free_slab(s, page);
1963 }
1964 
1965 /*
1966  * Management of partially allocated slabs.
1967  */
1968 static inline void
1969 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1970 {
1971 	n->nr_partial++;
1972 	if (tail == DEACTIVATE_TO_TAIL)
1973 		list_add_tail(&page->slab_list, &n->partial);
1974 	else
1975 		list_add(&page->slab_list, &n->partial);
1976 }
1977 
1978 static inline void add_partial(struct kmem_cache_node *n,
1979 				struct page *page, int tail)
1980 {
1981 	lockdep_assert_held(&n->list_lock);
1982 	__add_partial(n, page, tail);
1983 }
1984 
1985 static inline void remove_partial(struct kmem_cache_node *n,
1986 					struct page *page)
1987 {
1988 	lockdep_assert_held(&n->list_lock);
1989 	list_del(&page->slab_list);
1990 	n->nr_partial--;
1991 }
1992 
1993 /*
1994  * Remove slab from the partial list, freeze it and
1995  * return the pointer to the freelist.
1996  *
1997  * Returns a list of objects or NULL if it fails.
1998  */
1999 static inline void *acquire_slab(struct kmem_cache *s,
2000 		struct kmem_cache_node *n, struct page *page,
2001 		int mode, int *objects)
2002 {
2003 	void *freelist;
2004 	unsigned long counters;
2005 	struct page new;
2006 
2007 	lockdep_assert_held(&n->list_lock);
2008 
2009 	/*
2010 	 * Zap the freelist and set the frozen bit.
2011 	 * The old freelist is the list of objects for the
2012 	 * per cpu allocation list.
2013 	 */
2014 	freelist = page->freelist;
2015 	counters = page->counters;
2016 	new.counters = counters;
2017 	*objects = new.objects - new.inuse;
2018 	if (mode) {
2019 		new.inuse = page->objects;
2020 		new.freelist = NULL;
2021 	} else {
2022 		new.freelist = freelist;
2023 	}
2024 
2025 	VM_BUG_ON(new.frozen);
2026 	new.frozen = 1;
2027 
2028 	if (!__cmpxchg_double_slab(s, page,
2029 			freelist, counters,
2030 			new.freelist, new.counters,
2031 			"acquire_slab"))
2032 		return NULL;
2033 
2034 	remove_partial(n, page);
2035 	WARN_ON(!freelist);
2036 	return freelist;
2037 }
2038 
2039 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
2040 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
2041 
2042 /*
2043  * Try to allocate a partial slab from a specific node.
2044  */
2045 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2046 				struct kmem_cache_cpu *c, gfp_t flags)
2047 {
2048 	struct page *page, *page2;
2049 	void *object = NULL;
2050 	unsigned int available = 0;
2051 	int objects;
2052 
2053 	/*
2054 	 * Racy check. If we mistakenly see no partial slabs then we
2055 	 * just allocate an empty slab. If we mistakenly try to get a
2056 	 * partial slab and there is none available then get_partial()
2057 	 * will return NULL.
2058 	 */
2059 	if (!n || !n->nr_partial)
2060 		return NULL;
2061 
2062 	spin_lock(&n->list_lock);
2063 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
2064 		void *t;
2065 
2066 		if (!pfmemalloc_match(page, flags))
2067 			continue;
2068 
2069 		t = acquire_slab(s, n, page, object == NULL, &objects);
2070 		if (!t)
2071 			break;
2072 
2073 		available += objects;
2074 		if (!object) {
2075 			c->page = page;
2076 			stat(s, ALLOC_FROM_PARTIAL);
2077 			object = t;
2078 		} else {
2079 			put_cpu_partial(s, page, 0);
2080 			stat(s, CPU_PARTIAL_NODE);
2081 		}
2082 		if (!kmem_cache_has_cpu_partial(s)
2083 			|| available > slub_cpu_partial(s) / 2)
2084 			break;
2085 
2086 	}
2087 	spin_unlock(&n->list_lock);
2088 	return object;
2089 }
2090 
2091 /*
2092  * Get a page from somewhere. Search in increasing NUMA distances.
2093  */
2094 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2095 		struct kmem_cache_cpu *c)
2096 {
2097 #ifdef CONFIG_NUMA
2098 	struct zonelist *zonelist;
2099 	struct zoneref *z;
2100 	struct zone *zone;
2101 	enum zone_type highest_zoneidx = gfp_zone(flags);
2102 	void *object;
2103 	unsigned int cpuset_mems_cookie;
2104 
2105 	/*
2106 	 * The defrag ratio allows a configuration of the tradeoffs between
2107 	 * inter node defragmentation and node local allocations. A lower
2108 	 * defrag_ratio increases the tendency to do local allocations
2109 	 * instead of attempting to obtain partial slabs from other nodes.
2110 	 *
2111 	 * If the defrag_ratio is set to 0 then kmalloc() always
2112 	 * returns node local objects. If the ratio is higher then kmalloc()
2113 	 * may return off node objects because partial slabs are obtained
2114 	 * from other nodes and filled up.
2115 	 *
2116 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2117 	 * (which makes defrag_ratio = 1000) then every (well almost)
2118 	 * allocation will first attempt to defrag slab caches on other nodes.
2119 	 * This means scanning over all nodes to look for partial slabs which
2120 	 * may be expensive if we do it every time we are trying to find a slab
2121 	 * with available objects.
2122 	 */
2123 	if (!s->remote_node_defrag_ratio ||
2124 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2125 		return NULL;
2126 
2127 	do {
2128 		cpuset_mems_cookie = read_mems_allowed_begin();
2129 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2130 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2131 			struct kmem_cache_node *n;
2132 
2133 			n = get_node(s, zone_to_nid(zone));
2134 
2135 			if (n && cpuset_zone_allowed(zone, flags) &&
2136 					n->nr_partial > s->min_partial) {
2137 				object = get_partial_node(s, n, c, flags);
2138 				if (object) {
2139 					/*
2140 					 * Don't check read_mems_allowed_retry()
2141 					 * here - if mems_allowed was updated in
2142 					 * parallel, that was a harmless race
2143 					 * between allocation and the cpuset
2144 					 * update
2145 					 */
2146 					return object;
2147 				}
2148 			}
2149 		}
2150 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2151 #endif	/* CONFIG_NUMA */
2152 	return NULL;
2153 }
2154 
2155 /*
2156  * Get a partial page, lock it and return it.
2157  */
2158 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2159 		struct kmem_cache_cpu *c)
2160 {
2161 	void *object;
2162 	int searchnode = node;
2163 
2164 	if (node == NUMA_NO_NODE)
2165 		searchnode = numa_mem_id();
2166 
2167 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
2168 	if (object || node != NUMA_NO_NODE)
2169 		return object;
2170 
2171 	return get_any_partial(s, flags, c);
2172 }
2173 
2174 #ifdef CONFIG_PREEMPTION
2175 /*
2176  * Calculate the next globally unique transaction for disambiguation
2177  * during cmpxchg. The transactions start with the cpu number and are then
2178  * incremented by CONFIG_NR_CPUS.
2179  */
2180 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2181 #else
2182 /*
2183  * No preemption supported therefore also no need to check for
2184  * different cpus.
2185  */
2186 #define TID_STEP 1
2187 #endif
2188 
2189 static inline unsigned long next_tid(unsigned long tid)
2190 {
2191 	return tid + TID_STEP;
2192 }
2193 
2194 #ifdef SLUB_DEBUG_CMPXCHG
2195 static inline unsigned int tid_to_cpu(unsigned long tid)
2196 {
2197 	return tid % TID_STEP;
2198 }
2199 
2200 static inline unsigned long tid_to_event(unsigned long tid)
2201 {
2202 	return tid / TID_STEP;
2203 }
2204 #endif
2205 
2206 static inline unsigned int init_tid(int cpu)
2207 {
2208 	return cpu;
2209 }
2210 
2211 static inline void note_cmpxchg_failure(const char *n,
2212 		const struct kmem_cache *s, unsigned long tid)
2213 {
2214 #ifdef SLUB_DEBUG_CMPXCHG
2215 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2216 
2217 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2218 
2219 #ifdef CONFIG_PREEMPTION
2220 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2221 		pr_warn("due to cpu change %d -> %d\n",
2222 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2223 	else
2224 #endif
2225 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2226 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2227 			tid_to_event(tid), tid_to_event(actual_tid));
2228 	else
2229 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2230 			actual_tid, tid, next_tid(tid));
2231 #endif
2232 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2233 }
2234 
2235 static void init_kmem_cache_cpus(struct kmem_cache *s)
2236 {
2237 	int cpu;
2238 
2239 	for_each_possible_cpu(cpu)
2240 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2241 }
2242 
2243 /*
2244  * Remove the cpu slab
2245  */
2246 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2247 				void *freelist, struct kmem_cache_cpu *c)
2248 {
2249 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2250 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2251 	int lock = 0, free_delta = 0;
2252 	enum slab_modes l = M_NONE, m = M_NONE;
2253 	void *nextfree, *freelist_iter, *freelist_tail;
2254 	int tail = DEACTIVATE_TO_HEAD;
2255 	struct page new;
2256 	struct page old;
2257 
2258 	if (page->freelist) {
2259 		stat(s, DEACTIVATE_REMOTE_FREES);
2260 		tail = DEACTIVATE_TO_TAIL;
2261 	}
2262 
2263 	/*
2264 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2265 	 * remember the last object in freelist_tail for later splicing.
2266 	 */
2267 	freelist_tail = NULL;
2268 	freelist_iter = freelist;
2269 	while (freelist_iter) {
2270 		nextfree = get_freepointer(s, freelist_iter);
2271 
2272 		/*
2273 		 * If 'nextfree' is invalid, it is possible that the object at
2274 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2275 		 * starting at 'freelist_iter' by skipping them.
2276 		 */
2277 		if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2278 			break;
2279 
2280 		freelist_tail = freelist_iter;
2281 		free_delta++;
2282 
2283 		freelist_iter = nextfree;
2284 	}
2285 
2286 	/*
2287 	 * Stage two: Unfreeze the page while splicing the per-cpu
2288 	 * freelist to the head of page's freelist.
2289 	 *
2290 	 * Ensure that the page is unfrozen while the list presence
2291 	 * reflects the actual number of objects during unfreeze.
2292 	 *
2293 	 * We setup the list membership and then perform a cmpxchg
2294 	 * with the count. If there is a mismatch then the page
2295 	 * is not unfrozen but the page is on the wrong list.
2296 	 *
2297 	 * Then we restart the process which may have to remove
2298 	 * the page from the list that we just put it on again
2299 	 * because the number of objects in the slab may have
2300 	 * changed.
2301 	 */
2302 redo:
2303 
2304 	old.freelist = READ_ONCE(page->freelist);
2305 	old.counters = READ_ONCE(page->counters);
2306 	VM_BUG_ON(!old.frozen);
2307 
2308 	/* Determine target state of the slab */
2309 	new.counters = old.counters;
2310 	if (freelist_tail) {
2311 		new.inuse -= free_delta;
2312 		set_freepointer(s, freelist_tail, old.freelist);
2313 		new.freelist = freelist;
2314 	} else
2315 		new.freelist = old.freelist;
2316 
2317 	new.frozen = 0;
2318 
2319 	if (!new.inuse && n->nr_partial >= s->min_partial)
2320 		m = M_FREE;
2321 	else if (new.freelist) {
2322 		m = M_PARTIAL;
2323 		if (!lock) {
2324 			lock = 1;
2325 			/*
2326 			 * Taking the spinlock removes the possibility
2327 			 * that acquire_slab() will see a slab page that
2328 			 * is frozen
2329 			 */
2330 			spin_lock(&n->list_lock);
2331 		}
2332 	} else {
2333 		m = M_FULL;
2334 		if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2335 			lock = 1;
2336 			/*
2337 			 * This also ensures that the scanning of full
2338 			 * slabs from diagnostic functions will not see
2339 			 * any frozen slabs.
2340 			 */
2341 			spin_lock(&n->list_lock);
2342 		}
2343 	}
2344 
2345 	if (l != m) {
2346 		if (l == M_PARTIAL)
2347 			remove_partial(n, page);
2348 		else if (l == M_FULL)
2349 			remove_full(s, n, page);
2350 
2351 		if (m == M_PARTIAL)
2352 			add_partial(n, page, tail);
2353 		else if (m == M_FULL)
2354 			add_full(s, n, page);
2355 	}
2356 
2357 	l = m;
2358 	if (!__cmpxchg_double_slab(s, page,
2359 				old.freelist, old.counters,
2360 				new.freelist, new.counters,
2361 				"unfreezing slab"))
2362 		goto redo;
2363 
2364 	if (lock)
2365 		spin_unlock(&n->list_lock);
2366 
2367 	if (m == M_PARTIAL)
2368 		stat(s, tail);
2369 	else if (m == M_FULL)
2370 		stat(s, DEACTIVATE_FULL);
2371 	else if (m == M_FREE) {
2372 		stat(s, DEACTIVATE_EMPTY);
2373 		discard_slab(s, page);
2374 		stat(s, FREE_SLAB);
2375 	}
2376 
2377 	c->page = NULL;
2378 	c->freelist = NULL;
2379 }
2380 
2381 /*
2382  * Unfreeze all the cpu partial slabs.
2383  *
2384  * This function must be called with interrupts disabled
2385  * for the cpu using c (or some other guarantee must be there
2386  * to guarantee no concurrent accesses).
2387  */
2388 static void unfreeze_partials(struct kmem_cache *s,
2389 		struct kmem_cache_cpu *c)
2390 {
2391 #ifdef CONFIG_SLUB_CPU_PARTIAL
2392 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2393 	struct page *page, *discard_page = NULL;
2394 
2395 	while ((page = slub_percpu_partial(c))) {
2396 		struct page new;
2397 		struct page old;
2398 
2399 		slub_set_percpu_partial(c, page);
2400 
2401 		n2 = get_node(s, page_to_nid(page));
2402 		if (n != n2) {
2403 			if (n)
2404 				spin_unlock(&n->list_lock);
2405 
2406 			n = n2;
2407 			spin_lock(&n->list_lock);
2408 		}
2409 
2410 		do {
2411 
2412 			old.freelist = page->freelist;
2413 			old.counters = page->counters;
2414 			VM_BUG_ON(!old.frozen);
2415 
2416 			new.counters = old.counters;
2417 			new.freelist = old.freelist;
2418 
2419 			new.frozen = 0;
2420 
2421 		} while (!__cmpxchg_double_slab(s, page,
2422 				old.freelist, old.counters,
2423 				new.freelist, new.counters,
2424 				"unfreezing slab"));
2425 
2426 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2427 			page->next = discard_page;
2428 			discard_page = page;
2429 		} else {
2430 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2431 			stat(s, FREE_ADD_PARTIAL);
2432 		}
2433 	}
2434 
2435 	if (n)
2436 		spin_unlock(&n->list_lock);
2437 
2438 	while (discard_page) {
2439 		page = discard_page;
2440 		discard_page = discard_page->next;
2441 
2442 		stat(s, DEACTIVATE_EMPTY);
2443 		discard_slab(s, page);
2444 		stat(s, FREE_SLAB);
2445 	}
2446 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2447 }
2448 
2449 /*
2450  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2451  * partial page slot if available.
2452  *
2453  * If we did not find a slot then simply move all the partials to the
2454  * per node partial list.
2455  */
2456 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2457 {
2458 #ifdef CONFIG_SLUB_CPU_PARTIAL
2459 	struct page *oldpage;
2460 	int pages;
2461 	int pobjects;
2462 
2463 	preempt_disable();
2464 	do {
2465 		pages = 0;
2466 		pobjects = 0;
2467 		oldpage = this_cpu_read(s->cpu_slab->partial);
2468 
2469 		if (oldpage) {
2470 			pobjects = oldpage->pobjects;
2471 			pages = oldpage->pages;
2472 			if (drain && pobjects > slub_cpu_partial(s)) {
2473 				unsigned long flags;
2474 				/*
2475 				 * partial array is full. Move the existing
2476 				 * set to the per node partial list.
2477 				 */
2478 				local_irq_save(flags);
2479 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2480 				local_irq_restore(flags);
2481 				oldpage = NULL;
2482 				pobjects = 0;
2483 				pages = 0;
2484 				stat(s, CPU_PARTIAL_DRAIN);
2485 			}
2486 		}
2487 
2488 		pages++;
2489 		pobjects += page->objects - page->inuse;
2490 
2491 		page->pages = pages;
2492 		page->pobjects = pobjects;
2493 		page->next = oldpage;
2494 
2495 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2496 								!= oldpage);
2497 	if (unlikely(!slub_cpu_partial(s))) {
2498 		unsigned long flags;
2499 
2500 		local_irq_save(flags);
2501 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2502 		local_irq_restore(flags);
2503 	}
2504 	preempt_enable();
2505 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2506 }
2507 
2508 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2509 {
2510 	stat(s, CPUSLAB_FLUSH);
2511 	deactivate_slab(s, c->page, c->freelist, c);
2512 
2513 	c->tid = next_tid(c->tid);
2514 }
2515 
2516 /*
2517  * Flush cpu slab.
2518  *
2519  * Called from IPI handler with interrupts disabled.
2520  */
2521 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2522 {
2523 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2524 
2525 	if (c->page)
2526 		flush_slab(s, c);
2527 
2528 	unfreeze_partials(s, c);
2529 }
2530 
2531 static void flush_cpu_slab(void *d)
2532 {
2533 	struct kmem_cache *s = d;
2534 
2535 	__flush_cpu_slab(s, smp_processor_id());
2536 }
2537 
2538 static bool has_cpu_slab(int cpu, void *info)
2539 {
2540 	struct kmem_cache *s = info;
2541 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2542 
2543 	return c->page || slub_percpu_partial(c);
2544 }
2545 
2546 static void flush_all(struct kmem_cache *s)
2547 {
2548 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2549 }
2550 
2551 /*
2552  * Use the cpu notifier to insure that the cpu slabs are flushed when
2553  * necessary.
2554  */
2555 static int slub_cpu_dead(unsigned int cpu)
2556 {
2557 	struct kmem_cache *s;
2558 	unsigned long flags;
2559 
2560 	mutex_lock(&slab_mutex);
2561 	list_for_each_entry(s, &slab_caches, list) {
2562 		local_irq_save(flags);
2563 		__flush_cpu_slab(s, cpu);
2564 		local_irq_restore(flags);
2565 	}
2566 	mutex_unlock(&slab_mutex);
2567 	return 0;
2568 }
2569 
2570 /*
2571  * Check if the objects in a per cpu structure fit numa
2572  * locality expectations.
2573  */
2574 static inline int node_match(struct page *page, int node)
2575 {
2576 #ifdef CONFIG_NUMA
2577 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2578 		return 0;
2579 #endif
2580 	return 1;
2581 }
2582 
2583 #ifdef CONFIG_SLUB_DEBUG
2584 static int count_free(struct page *page)
2585 {
2586 	return page->objects - page->inuse;
2587 }
2588 
2589 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2590 {
2591 	return atomic_long_read(&n->total_objects);
2592 }
2593 #endif /* CONFIG_SLUB_DEBUG */
2594 
2595 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2596 static unsigned long count_partial(struct kmem_cache_node *n,
2597 					int (*get_count)(struct page *))
2598 {
2599 	unsigned long flags;
2600 	unsigned long x = 0;
2601 	struct page *page;
2602 
2603 	spin_lock_irqsave(&n->list_lock, flags);
2604 	list_for_each_entry(page, &n->partial, slab_list)
2605 		x += get_count(page);
2606 	spin_unlock_irqrestore(&n->list_lock, flags);
2607 	return x;
2608 }
2609 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2610 
2611 static noinline void
2612 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2613 {
2614 #ifdef CONFIG_SLUB_DEBUG
2615 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2616 				      DEFAULT_RATELIMIT_BURST);
2617 	int node;
2618 	struct kmem_cache_node *n;
2619 
2620 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2621 		return;
2622 
2623 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2624 		nid, gfpflags, &gfpflags);
2625 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2626 		s->name, s->object_size, s->size, oo_order(s->oo),
2627 		oo_order(s->min));
2628 
2629 	if (oo_order(s->min) > get_order(s->object_size))
2630 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2631 			s->name);
2632 
2633 	for_each_kmem_cache_node(s, node, n) {
2634 		unsigned long nr_slabs;
2635 		unsigned long nr_objs;
2636 		unsigned long nr_free;
2637 
2638 		nr_free  = count_partial(n, count_free);
2639 		nr_slabs = node_nr_slabs(n);
2640 		nr_objs  = node_nr_objs(n);
2641 
2642 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2643 			node, nr_slabs, nr_objs, nr_free);
2644 	}
2645 #endif
2646 }
2647 
2648 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2649 			int node, struct kmem_cache_cpu **pc)
2650 {
2651 	void *freelist;
2652 	struct kmem_cache_cpu *c = *pc;
2653 	struct page *page;
2654 
2655 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2656 
2657 	freelist = get_partial(s, flags, node, c);
2658 
2659 	if (freelist)
2660 		return freelist;
2661 
2662 	page = new_slab(s, flags, node);
2663 	if (page) {
2664 		c = raw_cpu_ptr(s->cpu_slab);
2665 		if (c->page)
2666 			flush_slab(s, c);
2667 
2668 		/*
2669 		 * No other reference to the page yet so we can
2670 		 * muck around with it freely without cmpxchg
2671 		 */
2672 		freelist = page->freelist;
2673 		page->freelist = NULL;
2674 
2675 		stat(s, ALLOC_SLAB);
2676 		c->page = page;
2677 		*pc = c;
2678 	}
2679 
2680 	return freelist;
2681 }
2682 
2683 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2684 {
2685 	if (unlikely(PageSlabPfmemalloc(page)))
2686 		return gfp_pfmemalloc_allowed(gfpflags);
2687 
2688 	return true;
2689 }
2690 
2691 /*
2692  * Check the page->freelist of a page and either transfer the freelist to the
2693  * per cpu freelist or deactivate the page.
2694  *
2695  * The page is still frozen if the return value is not NULL.
2696  *
2697  * If this function returns NULL then the page has been unfrozen.
2698  *
2699  * This function must be called with interrupt disabled.
2700  */
2701 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2702 {
2703 	struct page new;
2704 	unsigned long counters;
2705 	void *freelist;
2706 
2707 	do {
2708 		freelist = page->freelist;
2709 		counters = page->counters;
2710 
2711 		new.counters = counters;
2712 		VM_BUG_ON(!new.frozen);
2713 
2714 		new.inuse = page->objects;
2715 		new.frozen = freelist != NULL;
2716 
2717 	} while (!__cmpxchg_double_slab(s, page,
2718 		freelist, counters,
2719 		NULL, new.counters,
2720 		"get_freelist"));
2721 
2722 	return freelist;
2723 }
2724 
2725 /*
2726  * Slow path. The lockless freelist is empty or we need to perform
2727  * debugging duties.
2728  *
2729  * Processing is still very fast if new objects have been freed to the
2730  * regular freelist. In that case we simply take over the regular freelist
2731  * as the lockless freelist and zap the regular freelist.
2732  *
2733  * If that is not working then we fall back to the partial lists. We take the
2734  * first element of the freelist as the object to allocate now and move the
2735  * rest of the freelist to the lockless freelist.
2736  *
2737  * And if we were unable to get a new slab from the partial slab lists then
2738  * we need to allocate a new slab. This is the slowest path since it involves
2739  * a call to the page allocator and the setup of a new slab.
2740  *
2741  * Version of __slab_alloc to use when we know that interrupts are
2742  * already disabled (which is the case for bulk allocation).
2743  */
2744 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2745 			  unsigned long addr, struct kmem_cache_cpu *c)
2746 {
2747 	void *freelist;
2748 	struct page *page;
2749 
2750 	stat(s, ALLOC_SLOWPATH);
2751 
2752 	page = c->page;
2753 	if (!page) {
2754 		/*
2755 		 * if the node is not online or has no normal memory, just
2756 		 * ignore the node constraint
2757 		 */
2758 		if (unlikely(node != NUMA_NO_NODE &&
2759 			     !node_isset(node, slab_nodes)))
2760 			node = NUMA_NO_NODE;
2761 		goto new_slab;
2762 	}
2763 redo:
2764 
2765 	if (unlikely(!node_match(page, node))) {
2766 		/*
2767 		 * same as above but node_match() being false already
2768 		 * implies node != NUMA_NO_NODE
2769 		 */
2770 		if (!node_isset(node, slab_nodes)) {
2771 			node = NUMA_NO_NODE;
2772 			goto redo;
2773 		} else {
2774 			stat(s, ALLOC_NODE_MISMATCH);
2775 			deactivate_slab(s, page, c->freelist, c);
2776 			goto new_slab;
2777 		}
2778 	}
2779 
2780 	/*
2781 	 * By rights, we should be searching for a slab page that was
2782 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2783 	 * information when the page leaves the per-cpu allocator
2784 	 */
2785 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2786 		deactivate_slab(s, page, c->freelist, c);
2787 		goto new_slab;
2788 	}
2789 
2790 	/* must check again c->freelist in case of cpu migration or IRQ */
2791 	freelist = c->freelist;
2792 	if (freelist)
2793 		goto load_freelist;
2794 
2795 	freelist = get_freelist(s, page);
2796 
2797 	if (!freelist) {
2798 		c->page = NULL;
2799 		stat(s, DEACTIVATE_BYPASS);
2800 		goto new_slab;
2801 	}
2802 
2803 	stat(s, ALLOC_REFILL);
2804 
2805 load_freelist:
2806 	/*
2807 	 * freelist is pointing to the list of objects to be used.
2808 	 * page is pointing to the page from which the objects are obtained.
2809 	 * That page must be frozen for per cpu allocations to work.
2810 	 */
2811 	VM_BUG_ON(!c->page->frozen);
2812 	c->freelist = get_freepointer(s, freelist);
2813 	c->tid = next_tid(c->tid);
2814 	return freelist;
2815 
2816 new_slab:
2817 
2818 	if (slub_percpu_partial(c)) {
2819 		page = c->page = slub_percpu_partial(c);
2820 		slub_set_percpu_partial(c, page);
2821 		stat(s, CPU_PARTIAL_ALLOC);
2822 		goto redo;
2823 	}
2824 
2825 	freelist = new_slab_objects(s, gfpflags, node, &c);
2826 
2827 	if (unlikely(!freelist)) {
2828 		slab_out_of_memory(s, gfpflags, node);
2829 		return NULL;
2830 	}
2831 
2832 	page = c->page;
2833 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2834 		goto load_freelist;
2835 
2836 	/* Only entered in the debug case */
2837 	if (kmem_cache_debug(s) &&
2838 			!alloc_debug_processing(s, page, freelist, addr))
2839 		goto new_slab;	/* Slab failed checks. Next slab needed */
2840 
2841 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2842 	return freelist;
2843 }
2844 
2845 /*
2846  * Another one that disabled interrupt and compensates for possible
2847  * cpu changes by refetching the per cpu area pointer.
2848  */
2849 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2850 			  unsigned long addr, struct kmem_cache_cpu *c)
2851 {
2852 	void *p;
2853 	unsigned long flags;
2854 
2855 	local_irq_save(flags);
2856 #ifdef CONFIG_PREEMPTION
2857 	/*
2858 	 * We may have been preempted and rescheduled on a different
2859 	 * cpu before disabling interrupts. Need to reload cpu area
2860 	 * pointer.
2861 	 */
2862 	c = this_cpu_ptr(s->cpu_slab);
2863 #endif
2864 
2865 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2866 	local_irq_restore(flags);
2867 	return p;
2868 }
2869 
2870 /*
2871  * If the object has been wiped upon free, make sure it's fully initialized by
2872  * zeroing out freelist pointer.
2873  */
2874 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2875 						   void *obj)
2876 {
2877 	if (unlikely(slab_want_init_on_free(s)) && obj)
2878 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2879 			0, sizeof(void *));
2880 }
2881 
2882 /*
2883  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2884  * have the fastpath folded into their functions. So no function call
2885  * overhead for requests that can be satisfied on the fastpath.
2886  *
2887  * The fastpath works by first checking if the lockless freelist can be used.
2888  * If not then __slab_alloc is called for slow processing.
2889  *
2890  * Otherwise we can simply pick the next object from the lockless free list.
2891  */
2892 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2893 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
2894 {
2895 	void *object;
2896 	struct kmem_cache_cpu *c;
2897 	struct page *page;
2898 	unsigned long tid;
2899 	struct obj_cgroup *objcg = NULL;
2900 	bool init = false;
2901 
2902 	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2903 	if (!s)
2904 		return NULL;
2905 
2906 	object = kfence_alloc(s, orig_size, gfpflags);
2907 	if (unlikely(object))
2908 		goto out;
2909 
2910 redo:
2911 	/*
2912 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2913 	 * enabled. We may switch back and forth between cpus while
2914 	 * reading from one cpu area. That does not matter as long
2915 	 * as we end up on the original cpu again when doing the cmpxchg.
2916 	 *
2917 	 * We should guarantee that tid and kmem_cache are retrieved on
2918 	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2919 	 * to check if it is matched or not.
2920 	 */
2921 	do {
2922 		tid = this_cpu_read(s->cpu_slab->tid);
2923 		c = raw_cpu_ptr(s->cpu_slab);
2924 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2925 		 unlikely(tid != READ_ONCE(c->tid)));
2926 
2927 	/*
2928 	 * Irqless object alloc/free algorithm used here depends on sequence
2929 	 * of fetching cpu_slab's data. tid should be fetched before anything
2930 	 * on c to guarantee that object and page associated with previous tid
2931 	 * won't be used with current tid. If we fetch tid first, object and
2932 	 * page could be one associated with next tid and our alloc/free
2933 	 * request will be failed. In this case, we will retry. So, no problem.
2934 	 */
2935 	barrier();
2936 
2937 	/*
2938 	 * The transaction ids are globally unique per cpu and per operation on
2939 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2940 	 * occurs on the right processor and that there was no operation on the
2941 	 * linked list in between.
2942 	 */
2943 
2944 	object = c->freelist;
2945 	page = c->page;
2946 	if (unlikely(!object || !page || !node_match(page, node))) {
2947 		object = __slab_alloc(s, gfpflags, node, addr, c);
2948 	} else {
2949 		void *next_object = get_freepointer_safe(s, object);
2950 
2951 		/*
2952 		 * The cmpxchg will only match if there was no additional
2953 		 * operation and if we are on the right processor.
2954 		 *
2955 		 * The cmpxchg does the following atomically (without lock
2956 		 * semantics!)
2957 		 * 1. Relocate first pointer to the current per cpu area.
2958 		 * 2. Verify that tid and freelist have not been changed
2959 		 * 3. If they were not changed replace tid and freelist
2960 		 *
2961 		 * Since this is without lock semantics the protection is only
2962 		 * against code executing on this cpu *not* from access by
2963 		 * other cpus.
2964 		 */
2965 		if (unlikely(!this_cpu_cmpxchg_double(
2966 				s->cpu_slab->freelist, s->cpu_slab->tid,
2967 				object, tid,
2968 				next_object, next_tid(tid)))) {
2969 
2970 			note_cmpxchg_failure("slab_alloc", s, tid);
2971 			goto redo;
2972 		}
2973 		prefetch_freepointer(s, next_object);
2974 		stat(s, ALLOC_FASTPATH);
2975 	}
2976 
2977 	maybe_wipe_obj_freeptr(s, object);
2978 	init = slab_want_init_on_alloc(gfpflags, s);
2979 
2980 out:
2981 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
2982 
2983 	return object;
2984 }
2985 
2986 static __always_inline void *slab_alloc(struct kmem_cache *s,
2987 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
2988 {
2989 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2990 }
2991 
2992 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2993 {
2994 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
2995 
2996 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2997 				s->size, gfpflags);
2998 
2999 	return ret;
3000 }
3001 EXPORT_SYMBOL(kmem_cache_alloc);
3002 
3003 #ifdef CONFIG_TRACING
3004 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3005 {
3006 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
3007 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
3008 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3009 	return ret;
3010 }
3011 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3012 #endif
3013 
3014 #ifdef CONFIG_NUMA
3015 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3016 {
3017 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
3018 
3019 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3020 				    s->object_size, s->size, gfpflags, node);
3021 
3022 	return ret;
3023 }
3024 EXPORT_SYMBOL(kmem_cache_alloc_node);
3025 
3026 #ifdef CONFIG_TRACING
3027 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3028 				    gfp_t gfpflags,
3029 				    int node, size_t size)
3030 {
3031 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
3032 
3033 	trace_kmalloc_node(_RET_IP_, ret,
3034 			   size, s->size, gfpflags, node);
3035 
3036 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3037 	return ret;
3038 }
3039 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3040 #endif
3041 #endif	/* CONFIG_NUMA */
3042 
3043 /*
3044  * Slow path handling. This may still be called frequently since objects
3045  * have a longer lifetime than the cpu slabs in most processing loads.
3046  *
3047  * So we still attempt to reduce cache line usage. Just take the slab
3048  * lock and free the item. If there is no additional partial page
3049  * handling required then we can return immediately.
3050  */
3051 static void __slab_free(struct kmem_cache *s, struct page *page,
3052 			void *head, void *tail, int cnt,
3053 			unsigned long addr)
3054 
3055 {
3056 	void *prior;
3057 	int was_frozen;
3058 	struct page new;
3059 	unsigned long counters;
3060 	struct kmem_cache_node *n = NULL;
3061 	unsigned long flags;
3062 
3063 	stat(s, FREE_SLOWPATH);
3064 
3065 	if (kfence_free(head))
3066 		return;
3067 
3068 	if (kmem_cache_debug(s) &&
3069 	    !free_debug_processing(s, page, head, tail, cnt, addr))
3070 		return;
3071 
3072 	do {
3073 		if (unlikely(n)) {
3074 			spin_unlock_irqrestore(&n->list_lock, flags);
3075 			n = NULL;
3076 		}
3077 		prior = page->freelist;
3078 		counters = page->counters;
3079 		set_freepointer(s, tail, prior);
3080 		new.counters = counters;
3081 		was_frozen = new.frozen;
3082 		new.inuse -= cnt;
3083 		if ((!new.inuse || !prior) && !was_frozen) {
3084 
3085 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3086 
3087 				/*
3088 				 * Slab was on no list before and will be
3089 				 * partially empty
3090 				 * We can defer the list move and instead
3091 				 * freeze it.
3092 				 */
3093 				new.frozen = 1;
3094 
3095 			} else { /* Needs to be taken off a list */
3096 
3097 				n = get_node(s, page_to_nid(page));
3098 				/*
3099 				 * Speculatively acquire the list_lock.
3100 				 * If the cmpxchg does not succeed then we may
3101 				 * drop the list_lock without any processing.
3102 				 *
3103 				 * Otherwise the list_lock will synchronize with
3104 				 * other processors updating the list of slabs.
3105 				 */
3106 				spin_lock_irqsave(&n->list_lock, flags);
3107 
3108 			}
3109 		}
3110 
3111 	} while (!cmpxchg_double_slab(s, page,
3112 		prior, counters,
3113 		head, new.counters,
3114 		"__slab_free"));
3115 
3116 	if (likely(!n)) {
3117 
3118 		if (likely(was_frozen)) {
3119 			/*
3120 			 * The list lock was not taken therefore no list
3121 			 * activity can be necessary.
3122 			 */
3123 			stat(s, FREE_FROZEN);
3124 		} else if (new.frozen) {
3125 			/*
3126 			 * If we just froze the page then put it onto the
3127 			 * per cpu partial list.
3128 			 */
3129 			put_cpu_partial(s, page, 1);
3130 			stat(s, CPU_PARTIAL_FREE);
3131 		}
3132 
3133 		return;
3134 	}
3135 
3136 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3137 		goto slab_empty;
3138 
3139 	/*
3140 	 * Objects left in the slab. If it was not on the partial list before
3141 	 * then add it.
3142 	 */
3143 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3144 		remove_full(s, n, page);
3145 		add_partial(n, page, DEACTIVATE_TO_TAIL);
3146 		stat(s, FREE_ADD_PARTIAL);
3147 	}
3148 	spin_unlock_irqrestore(&n->list_lock, flags);
3149 	return;
3150 
3151 slab_empty:
3152 	if (prior) {
3153 		/*
3154 		 * Slab on the partial list.
3155 		 */
3156 		remove_partial(n, page);
3157 		stat(s, FREE_REMOVE_PARTIAL);
3158 	} else {
3159 		/* Slab must be on the full list */
3160 		remove_full(s, n, page);
3161 	}
3162 
3163 	spin_unlock_irqrestore(&n->list_lock, flags);
3164 	stat(s, FREE_SLAB);
3165 	discard_slab(s, page);
3166 }
3167 
3168 /*
3169  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3170  * can perform fastpath freeing without additional function calls.
3171  *
3172  * The fastpath is only possible if we are freeing to the current cpu slab
3173  * of this processor. This typically the case if we have just allocated
3174  * the item before.
3175  *
3176  * If fastpath is not possible then fall back to __slab_free where we deal
3177  * with all sorts of special processing.
3178  *
3179  * Bulk free of a freelist with several objects (all pointing to the
3180  * same page) possible by specifying head and tail ptr, plus objects
3181  * count (cnt). Bulk free indicated by tail pointer being set.
3182  */
3183 static __always_inline void do_slab_free(struct kmem_cache *s,
3184 				struct page *page, void *head, void *tail,
3185 				int cnt, unsigned long addr)
3186 {
3187 	void *tail_obj = tail ? : head;
3188 	struct kmem_cache_cpu *c;
3189 	unsigned long tid;
3190 
3191 	memcg_slab_free_hook(s, &head, 1);
3192 redo:
3193 	/*
3194 	 * Determine the currently cpus per cpu slab.
3195 	 * The cpu may change afterward. However that does not matter since
3196 	 * data is retrieved via this pointer. If we are on the same cpu
3197 	 * during the cmpxchg then the free will succeed.
3198 	 */
3199 	do {
3200 		tid = this_cpu_read(s->cpu_slab->tid);
3201 		c = raw_cpu_ptr(s->cpu_slab);
3202 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3203 		 unlikely(tid != READ_ONCE(c->tid)));
3204 
3205 	/* Same with comment on barrier() in slab_alloc_node() */
3206 	barrier();
3207 
3208 	if (likely(page == c->page)) {
3209 		void **freelist = READ_ONCE(c->freelist);
3210 
3211 		set_freepointer(s, tail_obj, freelist);
3212 
3213 		if (unlikely(!this_cpu_cmpxchg_double(
3214 				s->cpu_slab->freelist, s->cpu_slab->tid,
3215 				freelist, tid,
3216 				head, next_tid(tid)))) {
3217 
3218 			note_cmpxchg_failure("slab_free", s, tid);
3219 			goto redo;
3220 		}
3221 		stat(s, FREE_FASTPATH);
3222 	} else
3223 		__slab_free(s, page, head, tail_obj, cnt, addr);
3224 
3225 }
3226 
3227 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3228 				      void *head, void *tail, int cnt,
3229 				      unsigned long addr)
3230 {
3231 	/*
3232 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3233 	 * to remove objects, whose reuse must be delayed.
3234 	 */
3235 	if (slab_free_freelist_hook(s, &head, &tail))
3236 		do_slab_free(s, page, head, tail, cnt, addr);
3237 }
3238 
3239 #ifdef CONFIG_KASAN_GENERIC
3240 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3241 {
3242 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3243 }
3244 #endif
3245 
3246 void kmem_cache_free(struct kmem_cache *s, void *x)
3247 {
3248 	s = cache_from_obj(s, x);
3249 	if (!s)
3250 		return;
3251 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3252 	trace_kmem_cache_free(_RET_IP_, x, s->name);
3253 }
3254 EXPORT_SYMBOL(kmem_cache_free);
3255 
3256 struct detached_freelist {
3257 	struct page *page;
3258 	void *tail;
3259 	void *freelist;
3260 	int cnt;
3261 	struct kmem_cache *s;
3262 };
3263 
3264 /*
3265  * This function progressively scans the array with free objects (with
3266  * a limited look ahead) and extract objects belonging to the same
3267  * page.  It builds a detached freelist directly within the given
3268  * page/objects.  This can happen without any need for
3269  * synchronization, because the objects are owned by running process.
3270  * The freelist is build up as a single linked list in the objects.
3271  * The idea is, that this detached freelist can then be bulk
3272  * transferred to the real freelist(s), but only requiring a single
3273  * synchronization primitive.  Look ahead in the array is limited due
3274  * to performance reasons.
3275  */
3276 static inline
3277 int build_detached_freelist(struct kmem_cache *s, size_t size,
3278 			    void **p, struct detached_freelist *df)
3279 {
3280 	size_t first_skipped_index = 0;
3281 	int lookahead = 3;
3282 	void *object;
3283 	struct page *page;
3284 
3285 	/* Always re-init detached_freelist */
3286 	df->page = NULL;
3287 
3288 	do {
3289 		object = p[--size];
3290 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3291 	} while (!object && size);
3292 
3293 	if (!object)
3294 		return 0;
3295 
3296 	page = virt_to_head_page(object);
3297 	if (!s) {
3298 		/* Handle kalloc'ed objects */
3299 		if (unlikely(!PageSlab(page))) {
3300 			BUG_ON(!PageCompound(page));
3301 			kfree_hook(object);
3302 			__free_pages(page, compound_order(page));
3303 			p[size] = NULL; /* mark object processed */
3304 			return size;
3305 		}
3306 		/* Derive kmem_cache from object */
3307 		df->s = page->slab_cache;
3308 	} else {
3309 		df->s = cache_from_obj(s, object); /* Support for memcg */
3310 	}
3311 
3312 	if (is_kfence_address(object)) {
3313 		slab_free_hook(df->s, object, false);
3314 		__kfence_free(object);
3315 		p[size] = NULL; /* mark object processed */
3316 		return size;
3317 	}
3318 
3319 	/* Start new detached freelist */
3320 	df->page = page;
3321 	set_freepointer(df->s, object, NULL);
3322 	df->tail = object;
3323 	df->freelist = object;
3324 	p[size] = NULL; /* mark object processed */
3325 	df->cnt = 1;
3326 
3327 	while (size) {
3328 		object = p[--size];
3329 		if (!object)
3330 			continue; /* Skip processed objects */
3331 
3332 		/* df->page is always set at this point */
3333 		if (df->page == virt_to_head_page(object)) {
3334 			/* Opportunity build freelist */
3335 			set_freepointer(df->s, object, df->freelist);
3336 			df->freelist = object;
3337 			df->cnt++;
3338 			p[size] = NULL; /* mark object processed */
3339 
3340 			continue;
3341 		}
3342 
3343 		/* Limit look ahead search */
3344 		if (!--lookahead)
3345 			break;
3346 
3347 		if (!first_skipped_index)
3348 			first_skipped_index = size + 1;
3349 	}
3350 
3351 	return first_skipped_index;
3352 }
3353 
3354 /* Note that interrupts must be enabled when calling this function. */
3355 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3356 {
3357 	if (WARN_ON(!size))
3358 		return;
3359 
3360 	memcg_slab_free_hook(s, p, size);
3361 	do {
3362 		struct detached_freelist df;
3363 
3364 		size = build_detached_freelist(s, size, p, &df);
3365 		if (!df.page)
3366 			continue;
3367 
3368 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3369 	} while (likely(size));
3370 }
3371 EXPORT_SYMBOL(kmem_cache_free_bulk);
3372 
3373 /* Note that interrupts must be enabled when calling this function. */
3374 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3375 			  void **p)
3376 {
3377 	struct kmem_cache_cpu *c;
3378 	int i;
3379 	struct obj_cgroup *objcg = NULL;
3380 
3381 	/* memcg and kmem_cache debug support */
3382 	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3383 	if (unlikely(!s))
3384 		return false;
3385 	/*
3386 	 * Drain objects in the per cpu slab, while disabling local
3387 	 * IRQs, which protects against PREEMPT and interrupts
3388 	 * handlers invoking normal fastpath.
3389 	 */
3390 	local_irq_disable();
3391 	c = this_cpu_ptr(s->cpu_slab);
3392 
3393 	for (i = 0; i < size; i++) {
3394 		void *object = kfence_alloc(s, s->object_size, flags);
3395 
3396 		if (unlikely(object)) {
3397 			p[i] = object;
3398 			continue;
3399 		}
3400 
3401 		object = c->freelist;
3402 		if (unlikely(!object)) {
3403 			/*
3404 			 * We may have removed an object from c->freelist using
3405 			 * the fastpath in the previous iteration; in that case,
3406 			 * c->tid has not been bumped yet.
3407 			 * Since ___slab_alloc() may reenable interrupts while
3408 			 * allocating memory, we should bump c->tid now.
3409 			 */
3410 			c->tid = next_tid(c->tid);
3411 
3412 			/*
3413 			 * Invoking slow path likely have side-effect
3414 			 * of re-populating per CPU c->freelist
3415 			 */
3416 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3417 					    _RET_IP_, c);
3418 			if (unlikely(!p[i]))
3419 				goto error;
3420 
3421 			c = this_cpu_ptr(s->cpu_slab);
3422 			maybe_wipe_obj_freeptr(s, p[i]);
3423 
3424 			continue; /* goto for-loop */
3425 		}
3426 		c->freelist = get_freepointer(s, object);
3427 		p[i] = object;
3428 		maybe_wipe_obj_freeptr(s, p[i]);
3429 	}
3430 	c->tid = next_tid(c->tid);
3431 	local_irq_enable();
3432 
3433 	/*
3434 	 * memcg and kmem_cache debug support and memory initialization.
3435 	 * Done outside of the IRQ disabled fastpath loop.
3436 	 */
3437 	slab_post_alloc_hook(s, objcg, flags, size, p,
3438 				slab_want_init_on_alloc(flags, s));
3439 	return i;
3440 error:
3441 	local_irq_enable();
3442 	slab_post_alloc_hook(s, objcg, flags, i, p, false);
3443 	__kmem_cache_free_bulk(s, i, p);
3444 	return 0;
3445 }
3446 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3447 
3448 
3449 /*
3450  * Object placement in a slab is made very easy because we always start at
3451  * offset 0. If we tune the size of the object to the alignment then we can
3452  * get the required alignment by putting one properly sized object after
3453  * another.
3454  *
3455  * Notice that the allocation order determines the sizes of the per cpu
3456  * caches. Each processor has always one slab available for allocations.
3457  * Increasing the allocation order reduces the number of times that slabs
3458  * must be moved on and off the partial lists and is therefore a factor in
3459  * locking overhead.
3460  */
3461 
3462 /*
3463  * Minimum / Maximum order of slab pages. This influences locking overhead
3464  * and slab fragmentation. A higher order reduces the number of partial slabs
3465  * and increases the number of allocations possible without having to
3466  * take the list_lock.
3467  */
3468 static unsigned int slub_min_order;
3469 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3470 static unsigned int slub_min_objects;
3471 
3472 /*
3473  * Calculate the order of allocation given an slab object size.
3474  *
3475  * The order of allocation has significant impact on performance and other
3476  * system components. Generally order 0 allocations should be preferred since
3477  * order 0 does not cause fragmentation in the page allocator. Larger objects
3478  * be problematic to put into order 0 slabs because there may be too much
3479  * unused space left. We go to a higher order if more than 1/16th of the slab
3480  * would be wasted.
3481  *
3482  * In order to reach satisfactory performance we must ensure that a minimum
3483  * number of objects is in one slab. Otherwise we may generate too much
3484  * activity on the partial lists which requires taking the list_lock. This is
3485  * less a concern for large slabs though which are rarely used.
3486  *
3487  * slub_max_order specifies the order where we begin to stop considering the
3488  * number of objects in a slab as critical. If we reach slub_max_order then
3489  * we try to keep the page order as low as possible. So we accept more waste
3490  * of space in favor of a small page order.
3491  *
3492  * Higher order allocations also allow the placement of more objects in a
3493  * slab and thereby reduce object handling overhead. If the user has
3494  * requested a higher minimum order then we start with that one instead of
3495  * the smallest order which will fit the object.
3496  */
3497 static inline unsigned int slab_order(unsigned int size,
3498 		unsigned int min_objects, unsigned int max_order,
3499 		unsigned int fract_leftover)
3500 {
3501 	unsigned int min_order = slub_min_order;
3502 	unsigned int order;
3503 
3504 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3505 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3506 
3507 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3508 			order <= max_order; order++) {
3509 
3510 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3511 		unsigned int rem;
3512 
3513 		rem = slab_size % size;
3514 
3515 		if (rem <= slab_size / fract_leftover)
3516 			break;
3517 	}
3518 
3519 	return order;
3520 }
3521 
3522 static inline int calculate_order(unsigned int size)
3523 {
3524 	unsigned int order;
3525 	unsigned int min_objects;
3526 	unsigned int max_objects;
3527 	unsigned int nr_cpus;
3528 
3529 	/*
3530 	 * Attempt to find best configuration for a slab. This
3531 	 * works by first attempting to generate a layout with
3532 	 * the best configuration and backing off gradually.
3533 	 *
3534 	 * First we increase the acceptable waste in a slab. Then
3535 	 * we reduce the minimum objects required in a slab.
3536 	 */
3537 	min_objects = slub_min_objects;
3538 	if (!min_objects) {
3539 		/*
3540 		 * Some architectures will only update present cpus when
3541 		 * onlining them, so don't trust the number if it's just 1. But
3542 		 * we also don't want to use nr_cpu_ids always, as on some other
3543 		 * architectures, there can be many possible cpus, but never
3544 		 * onlined. Here we compromise between trying to avoid too high
3545 		 * order on systems that appear larger than they are, and too
3546 		 * low order on systems that appear smaller than they are.
3547 		 */
3548 		nr_cpus = num_present_cpus();
3549 		if (nr_cpus <= 1)
3550 			nr_cpus = nr_cpu_ids;
3551 		min_objects = 4 * (fls(nr_cpus) + 1);
3552 	}
3553 	max_objects = order_objects(slub_max_order, size);
3554 	min_objects = min(min_objects, max_objects);
3555 
3556 	while (min_objects > 1) {
3557 		unsigned int fraction;
3558 
3559 		fraction = 16;
3560 		while (fraction >= 4) {
3561 			order = slab_order(size, min_objects,
3562 					slub_max_order, fraction);
3563 			if (order <= slub_max_order)
3564 				return order;
3565 			fraction /= 2;
3566 		}
3567 		min_objects--;
3568 	}
3569 
3570 	/*
3571 	 * We were unable to place multiple objects in a slab. Now
3572 	 * lets see if we can place a single object there.
3573 	 */
3574 	order = slab_order(size, 1, slub_max_order, 1);
3575 	if (order <= slub_max_order)
3576 		return order;
3577 
3578 	/*
3579 	 * Doh this slab cannot be placed using slub_max_order.
3580 	 */
3581 	order = slab_order(size, 1, MAX_ORDER, 1);
3582 	if (order < MAX_ORDER)
3583 		return order;
3584 	return -ENOSYS;
3585 }
3586 
3587 static void
3588 init_kmem_cache_node(struct kmem_cache_node *n)
3589 {
3590 	n->nr_partial = 0;
3591 	spin_lock_init(&n->list_lock);
3592 	INIT_LIST_HEAD(&n->partial);
3593 #ifdef CONFIG_SLUB_DEBUG
3594 	atomic_long_set(&n->nr_slabs, 0);
3595 	atomic_long_set(&n->total_objects, 0);
3596 	INIT_LIST_HEAD(&n->full);
3597 #endif
3598 }
3599 
3600 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3601 {
3602 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3603 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3604 
3605 	/*
3606 	 * Must align to double word boundary for the double cmpxchg
3607 	 * instructions to work; see __pcpu_double_call_return_bool().
3608 	 */
3609 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3610 				     2 * sizeof(void *));
3611 
3612 	if (!s->cpu_slab)
3613 		return 0;
3614 
3615 	init_kmem_cache_cpus(s);
3616 
3617 	return 1;
3618 }
3619 
3620 static struct kmem_cache *kmem_cache_node;
3621 
3622 /*
3623  * No kmalloc_node yet so do it by hand. We know that this is the first
3624  * slab on the node for this slabcache. There are no concurrent accesses
3625  * possible.
3626  *
3627  * Note that this function only works on the kmem_cache_node
3628  * when allocating for the kmem_cache_node. This is used for bootstrapping
3629  * memory on a fresh node that has no slab structures yet.
3630  */
3631 static void early_kmem_cache_node_alloc(int node)
3632 {
3633 	struct page *page;
3634 	struct kmem_cache_node *n;
3635 
3636 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3637 
3638 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3639 
3640 	BUG_ON(!page);
3641 	if (page_to_nid(page) != node) {
3642 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3643 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3644 	}
3645 
3646 	n = page->freelist;
3647 	BUG_ON(!n);
3648 #ifdef CONFIG_SLUB_DEBUG
3649 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3650 	init_tracking(kmem_cache_node, n);
3651 #endif
3652 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3653 	page->freelist = get_freepointer(kmem_cache_node, n);
3654 	page->inuse = 1;
3655 	page->frozen = 0;
3656 	kmem_cache_node->node[node] = n;
3657 	init_kmem_cache_node(n);
3658 	inc_slabs_node(kmem_cache_node, node, page->objects);
3659 
3660 	/*
3661 	 * No locks need to be taken here as it has just been
3662 	 * initialized and there is no concurrent access.
3663 	 */
3664 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3665 }
3666 
3667 static void free_kmem_cache_nodes(struct kmem_cache *s)
3668 {
3669 	int node;
3670 	struct kmem_cache_node *n;
3671 
3672 	for_each_kmem_cache_node(s, node, n) {
3673 		s->node[node] = NULL;
3674 		kmem_cache_free(kmem_cache_node, n);
3675 	}
3676 }
3677 
3678 void __kmem_cache_release(struct kmem_cache *s)
3679 {
3680 	cache_random_seq_destroy(s);
3681 	free_percpu(s->cpu_slab);
3682 	free_kmem_cache_nodes(s);
3683 }
3684 
3685 static int init_kmem_cache_nodes(struct kmem_cache *s)
3686 {
3687 	int node;
3688 
3689 	for_each_node_mask(node, slab_nodes) {
3690 		struct kmem_cache_node *n;
3691 
3692 		if (slab_state == DOWN) {
3693 			early_kmem_cache_node_alloc(node);
3694 			continue;
3695 		}
3696 		n = kmem_cache_alloc_node(kmem_cache_node,
3697 						GFP_KERNEL, node);
3698 
3699 		if (!n) {
3700 			free_kmem_cache_nodes(s);
3701 			return 0;
3702 		}
3703 
3704 		init_kmem_cache_node(n);
3705 		s->node[node] = n;
3706 	}
3707 	return 1;
3708 }
3709 
3710 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3711 {
3712 	if (min < MIN_PARTIAL)
3713 		min = MIN_PARTIAL;
3714 	else if (min > MAX_PARTIAL)
3715 		min = MAX_PARTIAL;
3716 	s->min_partial = min;
3717 }
3718 
3719 static void set_cpu_partial(struct kmem_cache *s)
3720 {
3721 #ifdef CONFIG_SLUB_CPU_PARTIAL
3722 	/*
3723 	 * cpu_partial determined the maximum number of objects kept in the
3724 	 * per cpu partial lists of a processor.
3725 	 *
3726 	 * Per cpu partial lists mainly contain slabs that just have one
3727 	 * object freed. If they are used for allocation then they can be
3728 	 * filled up again with minimal effort. The slab will never hit the
3729 	 * per node partial lists and therefore no locking will be required.
3730 	 *
3731 	 * This setting also determines
3732 	 *
3733 	 * A) The number of objects from per cpu partial slabs dumped to the
3734 	 *    per node list when we reach the limit.
3735 	 * B) The number of objects in cpu partial slabs to extract from the
3736 	 *    per node list when we run out of per cpu objects. We only fetch
3737 	 *    50% to keep some capacity around for frees.
3738 	 */
3739 	if (!kmem_cache_has_cpu_partial(s))
3740 		slub_set_cpu_partial(s, 0);
3741 	else if (s->size >= PAGE_SIZE)
3742 		slub_set_cpu_partial(s, 2);
3743 	else if (s->size >= 1024)
3744 		slub_set_cpu_partial(s, 6);
3745 	else if (s->size >= 256)
3746 		slub_set_cpu_partial(s, 13);
3747 	else
3748 		slub_set_cpu_partial(s, 30);
3749 #endif
3750 }
3751 
3752 /*
3753  * calculate_sizes() determines the order and the distribution of data within
3754  * a slab object.
3755  */
3756 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3757 {
3758 	slab_flags_t flags = s->flags;
3759 	unsigned int size = s->object_size;
3760 	unsigned int order;
3761 
3762 	/*
3763 	 * Round up object size to the next word boundary. We can only
3764 	 * place the free pointer at word boundaries and this determines
3765 	 * the possible location of the free pointer.
3766 	 */
3767 	size = ALIGN(size, sizeof(void *));
3768 
3769 #ifdef CONFIG_SLUB_DEBUG
3770 	/*
3771 	 * Determine if we can poison the object itself. If the user of
3772 	 * the slab may touch the object after free or before allocation
3773 	 * then we should never poison the object itself.
3774 	 */
3775 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3776 			!s->ctor)
3777 		s->flags |= __OBJECT_POISON;
3778 	else
3779 		s->flags &= ~__OBJECT_POISON;
3780 
3781 
3782 	/*
3783 	 * If we are Redzoning then check if there is some space between the
3784 	 * end of the object and the free pointer. If not then add an
3785 	 * additional word to have some bytes to store Redzone information.
3786 	 */
3787 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3788 		size += sizeof(void *);
3789 #endif
3790 
3791 	/*
3792 	 * With that we have determined the number of bytes in actual use
3793 	 * by the object and redzoning.
3794 	 */
3795 	s->inuse = size;
3796 
3797 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3798 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3799 	    s->ctor) {
3800 		/*
3801 		 * Relocate free pointer after the object if it is not
3802 		 * permitted to overwrite the first word of the object on
3803 		 * kmem_cache_free.
3804 		 *
3805 		 * This is the case if we do RCU, have a constructor or
3806 		 * destructor, are poisoning the objects, or are
3807 		 * redzoning an object smaller than sizeof(void *).
3808 		 *
3809 		 * The assumption that s->offset >= s->inuse means free
3810 		 * pointer is outside of the object is used in the
3811 		 * freeptr_outside_object() function. If that is no
3812 		 * longer true, the function needs to be modified.
3813 		 */
3814 		s->offset = size;
3815 		size += sizeof(void *);
3816 	} else {
3817 		/*
3818 		 * Store freelist pointer near middle of object to keep
3819 		 * it away from the edges of the object to avoid small
3820 		 * sized over/underflows from neighboring allocations.
3821 		 */
3822 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
3823 	}
3824 
3825 #ifdef CONFIG_SLUB_DEBUG
3826 	if (flags & SLAB_STORE_USER)
3827 		/*
3828 		 * Need to store information about allocs and frees after
3829 		 * the object.
3830 		 */
3831 		size += 2 * sizeof(struct track);
3832 #endif
3833 
3834 	kasan_cache_create(s, &size, &s->flags);
3835 #ifdef CONFIG_SLUB_DEBUG
3836 	if (flags & SLAB_RED_ZONE) {
3837 		/*
3838 		 * Add some empty padding so that we can catch
3839 		 * overwrites from earlier objects rather than let
3840 		 * tracking information or the free pointer be
3841 		 * corrupted if a user writes before the start
3842 		 * of the object.
3843 		 */
3844 		size += sizeof(void *);
3845 
3846 		s->red_left_pad = sizeof(void *);
3847 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3848 		size += s->red_left_pad;
3849 	}
3850 #endif
3851 
3852 	/*
3853 	 * SLUB stores one object immediately after another beginning from
3854 	 * offset 0. In order to align the objects we have to simply size
3855 	 * each object to conform to the alignment.
3856 	 */
3857 	size = ALIGN(size, s->align);
3858 	s->size = size;
3859 	s->reciprocal_size = reciprocal_value(size);
3860 	if (forced_order >= 0)
3861 		order = forced_order;
3862 	else
3863 		order = calculate_order(size);
3864 
3865 	if ((int)order < 0)
3866 		return 0;
3867 
3868 	s->allocflags = 0;
3869 	if (order)
3870 		s->allocflags |= __GFP_COMP;
3871 
3872 	if (s->flags & SLAB_CACHE_DMA)
3873 		s->allocflags |= GFP_DMA;
3874 
3875 	if (s->flags & SLAB_CACHE_DMA32)
3876 		s->allocflags |= GFP_DMA32;
3877 
3878 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3879 		s->allocflags |= __GFP_RECLAIMABLE;
3880 
3881 	/*
3882 	 * Determine the number of objects per slab
3883 	 */
3884 	s->oo = oo_make(order, size);
3885 	s->min = oo_make(get_order(size), size);
3886 	if (oo_objects(s->oo) > oo_objects(s->max))
3887 		s->max = s->oo;
3888 
3889 	return !!oo_objects(s->oo);
3890 }
3891 
3892 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3893 {
3894 	s->flags = kmem_cache_flags(s->size, flags, s->name);
3895 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3896 	s->random = get_random_long();
3897 #endif
3898 
3899 	if (!calculate_sizes(s, -1))
3900 		goto error;
3901 	if (disable_higher_order_debug) {
3902 		/*
3903 		 * Disable debugging flags that store metadata if the min slab
3904 		 * order increased.
3905 		 */
3906 		if (get_order(s->size) > get_order(s->object_size)) {
3907 			s->flags &= ~DEBUG_METADATA_FLAGS;
3908 			s->offset = 0;
3909 			if (!calculate_sizes(s, -1))
3910 				goto error;
3911 		}
3912 	}
3913 
3914 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3915     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3916 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3917 		/* Enable fast mode */
3918 		s->flags |= __CMPXCHG_DOUBLE;
3919 #endif
3920 
3921 	/*
3922 	 * The larger the object size is, the more pages we want on the partial
3923 	 * list to avoid pounding the page allocator excessively.
3924 	 */
3925 	set_min_partial(s, ilog2(s->size) / 2);
3926 
3927 	set_cpu_partial(s);
3928 
3929 #ifdef CONFIG_NUMA
3930 	s->remote_node_defrag_ratio = 1000;
3931 #endif
3932 
3933 	/* Initialize the pre-computed randomized freelist if slab is up */
3934 	if (slab_state >= UP) {
3935 		if (init_cache_random_seq(s))
3936 			goto error;
3937 	}
3938 
3939 	if (!init_kmem_cache_nodes(s))
3940 		goto error;
3941 
3942 	if (alloc_kmem_cache_cpus(s))
3943 		return 0;
3944 
3945 	free_kmem_cache_nodes(s);
3946 error:
3947 	return -EINVAL;
3948 }
3949 
3950 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3951 			      const char *text)
3952 {
3953 #ifdef CONFIG_SLUB_DEBUG
3954 	void *addr = page_address(page);
3955 	unsigned long *map;
3956 	void *p;
3957 
3958 	slab_err(s, page, text, s->name);
3959 	slab_lock(page);
3960 
3961 	map = get_map(s, page);
3962 	for_each_object(p, s, addr, page->objects) {
3963 
3964 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
3965 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
3966 			print_tracking(s, p);
3967 		}
3968 	}
3969 	put_map(map);
3970 	slab_unlock(page);
3971 #endif
3972 }
3973 
3974 /*
3975  * Attempt to free all partial slabs on a node.
3976  * This is called from __kmem_cache_shutdown(). We must take list_lock
3977  * because sysfs file might still access partial list after the shutdowning.
3978  */
3979 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3980 {
3981 	LIST_HEAD(discard);
3982 	struct page *page, *h;
3983 
3984 	BUG_ON(irqs_disabled());
3985 	spin_lock_irq(&n->list_lock);
3986 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3987 		if (!page->inuse) {
3988 			remove_partial(n, page);
3989 			list_add(&page->slab_list, &discard);
3990 		} else {
3991 			list_slab_objects(s, page,
3992 			  "Objects remaining in %s on __kmem_cache_shutdown()");
3993 		}
3994 	}
3995 	spin_unlock_irq(&n->list_lock);
3996 
3997 	list_for_each_entry_safe(page, h, &discard, slab_list)
3998 		discard_slab(s, page);
3999 }
4000 
4001 bool __kmem_cache_empty(struct kmem_cache *s)
4002 {
4003 	int node;
4004 	struct kmem_cache_node *n;
4005 
4006 	for_each_kmem_cache_node(s, node, n)
4007 		if (n->nr_partial || slabs_node(s, node))
4008 			return false;
4009 	return true;
4010 }
4011 
4012 /*
4013  * Release all resources used by a slab cache.
4014  */
4015 int __kmem_cache_shutdown(struct kmem_cache *s)
4016 {
4017 	int node;
4018 	struct kmem_cache_node *n;
4019 
4020 	flush_all(s);
4021 	/* Attempt to free all objects */
4022 	for_each_kmem_cache_node(s, node, n) {
4023 		free_partial(s, n);
4024 		if (n->nr_partial || slabs_node(s, node))
4025 			return 1;
4026 	}
4027 	return 0;
4028 }
4029 
4030 #ifdef CONFIG_PRINTK
4031 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4032 {
4033 	void *base;
4034 	int __maybe_unused i;
4035 	unsigned int objnr;
4036 	void *objp;
4037 	void *objp0;
4038 	struct kmem_cache *s = page->slab_cache;
4039 	struct track __maybe_unused *trackp;
4040 
4041 	kpp->kp_ptr = object;
4042 	kpp->kp_page = page;
4043 	kpp->kp_slab_cache = s;
4044 	base = page_address(page);
4045 	objp0 = kasan_reset_tag(object);
4046 #ifdef CONFIG_SLUB_DEBUG
4047 	objp = restore_red_left(s, objp0);
4048 #else
4049 	objp = objp0;
4050 #endif
4051 	objnr = obj_to_index(s, page, objp);
4052 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4053 	objp = base + s->size * objnr;
4054 	kpp->kp_objp = objp;
4055 	if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4056 	    !(s->flags & SLAB_STORE_USER))
4057 		return;
4058 #ifdef CONFIG_SLUB_DEBUG
4059 	objp = fixup_red_left(s, objp);
4060 	trackp = get_track(s, objp, TRACK_ALLOC);
4061 	kpp->kp_ret = (void *)trackp->addr;
4062 #ifdef CONFIG_STACKDEPOT
4063 	{
4064 		depot_stack_handle_t handle;
4065 		unsigned long *entries;
4066 		unsigned int nr_entries;
4067 
4068 		handle = READ_ONCE(trackp->handle);
4069 		if (handle) {
4070 			nr_entries = stack_depot_fetch(handle, &entries);
4071 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4072 				kpp->kp_stack[i] = (void *)entries[i];
4073 		}
4074 
4075 		trackp = get_track(s, objp, TRACK_FREE);
4076 		handle = READ_ONCE(trackp->handle);
4077 		if (handle) {
4078 			nr_entries = stack_depot_fetch(handle, &entries);
4079 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4080 				kpp->kp_free_stack[i] = (void *)entries[i];
4081 		}
4082 	}
4083 #endif
4084 #endif
4085 }
4086 #endif
4087 
4088 /********************************************************************
4089  *		Kmalloc subsystem
4090  *******************************************************************/
4091 
4092 static int __init setup_slub_min_order(char *str)
4093 {
4094 	get_option(&str, (int *)&slub_min_order);
4095 
4096 	return 1;
4097 }
4098 
4099 __setup("slub_min_order=", setup_slub_min_order);
4100 
4101 static int __init setup_slub_max_order(char *str)
4102 {
4103 	get_option(&str, (int *)&slub_max_order);
4104 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4105 
4106 	return 1;
4107 }
4108 
4109 __setup("slub_max_order=", setup_slub_max_order);
4110 
4111 static int __init setup_slub_min_objects(char *str)
4112 {
4113 	get_option(&str, (int *)&slub_min_objects);
4114 
4115 	return 1;
4116 }
4117 
4118 __setup("slub_min_objects=", setup_slub_min_objects);
4119 
4120 void *__kmalloc(size_t size, gfp_t flags)
4121 {
4122 	struct kmem_cache *s;
4123 	void *ret;
4124 
4125 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4126 		return kmalloc_large(size, flags);
4127 
4128 	s = kmalloc_slab(size, flags);
4129 
4130 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4131 		return s;
4132 
4133 	ret = slab_alloc(s, flags, _RET_IP_, size);
4134 
4135 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4136 
4137 	ret = kasan_kmalloc(s, ret, size, flags);
4138 
4139 	return ret;
4140 }
4141 EXPORT_SYMBOL(__kmalloc);
4142 
4143 #ifdef CONFIG_NUMA
4144 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4145 {
4146 	struct page *page;
4147 	void *ptr = NULL;
4148 	unsigned int order = get_order(size);
4149 
4150 	flags |= __GFP_COMP;
4151 	page = alloc_pages_node(node, flags, order);
4152 	if (page) {
4153 		ptr = page_address(page);
4154 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4155 				      PAGE_SIZE << order);
4156 	}
4157 
4158 	return kmalloc_large_node_hook(ptr, size, flags);
4159 }
4160 
4161 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4162 {
4163 	struct kmem_cache *s;
4164 	void *ret;
4165 
4166 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4167 		ret = kmalloc_large_node(size, flags, node);
4168 
4169 		trace_kmalloc_node(_RET_IP_, ret,
4170 				   size, PAGE_SIZE << get_order(size),
4171 				   flags, node);
4172 
4173 		return ret;
4174 	}
4175 
4176 	s = kmalloc_slab(size, flags);
4177 
4178 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4179 		return s;
4180 
4181 	ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4182 
4183 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4184 
4185 	ret = kasan_kmalloc(s, ret, size, flags);
4186 
4187 	return ret;
4188 }
4189 EXPORT_SYMBOL(__kmalloc_node);
4190 #endif	/* CONFIG_NUMA */
4191 
4192 #ifdef CONFIG_HARDENED_USERCOPY
4193 /*
4194  * Rejects incorrectly sized objects and objects that are to be copied
4195  * to/from userspace but do not fall entirely within the containing slab
4196  * cache's usercopy region.
4197  *
4198  * Returns NULL if check passes, otherwise const char * to name of cache
4199  * to indicate an error.
4200  */
4201 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4202 			 bool to_user)
4203 {
4204 	struct kmem_cache *s;
4205 	unsigned int offset;
4206 	size_t object_size;
4207 	bool is_kfence = is_kfence_address(ptr);
4208 
4209 	ptr = kasan_reset_tag(ptr);
4210 
4211 	/* Find object and usable object size. */
4212 	s = page->slab_cache;
4213 
4214 	/* Reject impossible pointers. */
4215 	if (ptr < page_address(page))
4216 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4217 			       to_user, 0, n);
4218 
4219 	/* Find offset within object. */
4220 	if (is_kfence)
4221 		offset = ptr - kfence_object_start(ptr);
4222 	else
4223 		offset = (ptr - page_address(page)) % s->size;
4224 
4225 	/* Adjust for redzone and reject if within the redzone. */
4226 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4227 		if (offset < s->red_left_pad)
4228 			usercopy_abort("SLUB object in left red zone",
4229 				       s->name, to_user, offset, n);
4230 		offset -= s->red_left_pad;
4231 	}
4232 
4233 	/* Allow address range falling entirely within usercopy region. */
4234 	if (offset >= s->useroffset &&
4235 	    offset - s->useroffset <= s->usersize &&
4236 	    n <= s->useroffset - offset + s->usersize)
4237 		return;
4238 
4239 	/*
4240 	 * If the copy is still within the allocated object, produce
4241 	 * a warning instead of rejecting the copy. This is intended
4242 	 * to be a temporary method to find any missing usercopy
4243 	 * whitelists.
4244 	 */
4245 	object_size = slab_ksize(s);
4246 	if (usercopy_fallback &&
4247 	    offset <= object_size && n <= object_size - offset) {
4248 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
4249 		return;
4250 	}
4251 
4252 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4253 }
4254 #endif /* CONFIG_HARDENED_USERCOPY */
4255 
4256 size_t __ksize(const void *object)
4257 {
4258 	struct page *page;
4259 
4260 	if (unlikely(object == ZERO_SIZE_PTR))
4261 		return 0;
4262 
4263 	page = virt_to_head_page(object);
4264 
4265 	if (unlikely(!PageSlab(page))) {
4266 		WARN_ON(!PageCompound(page));
4267 		return page_size(page);
4268 	}
4269 
4270 	return slab_ksize(page->slab_cache);
4271 }
4272 EXPORT_SYMBOL(__ksize);
4273 
4274 void kfree(const void *x)
4275 {
4276 	struct page *page;
4277 	void *object = (void *)x;
4278 
4279 	trace_kfree(_RET_IP_, x);
4280 
4281 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4282 		return;
4283 
4284 	page = virt_to_head_page(x);
4285 	if (unlikely(!PageSlab(page))) {
4286 		unsigned int order = compound_order(page);
4287 
4288 		BUG_ON(!PageCompound(page));
4289 		kfree_hook(object);
4290 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4291 				      -(PAGE_SIZE << order));
4292 		__free_pages(page, order);
4293 		return;
4294 	}
4295 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4296 }
4297 EXPORT_SYMBOL(kfree);
4298 
4299 #define SHRINK_PROMOTE_MAX 32
4300 
4301 /*
4302  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4303  * up most to the head of the partial lists. New allocations will then
4304  * fill those up and thus they can be removed from the partial lists.
4305  *
4306  * The slabs with the least items are placed last. This results in them
4307  * being allocated from last increasing the chance that the last objects
4308  * are freed in them.
4309  */
4310 int __kmem_cache_shrink(struct kmem_cache *s)
4311 {
4312 	int node;
4313 	int i;
4314 	struct kmem_cache_node *n;
4315 	struct page *page;
4316 	struct page *t;
4317 	struct list_head discard;
4318 	struct list_head promote[SHRINK_PROMOTE_MAX];
4319 	unsigned long flags;
4320 	int ret = 0;
4321 
4322 	flush_all(s);
4323 	for_each_kmem_cache_node(s, node, n) {
4324 		INIT_LIST_HEAD(&discard);
4325 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4326 			INIT_LIST_HEAD(promote + i);
4327 
4328 		spin_lock_irqsave(&n->list_lock, flags);
4329 
4330 		/*
4331 		 * Build lists of slabs to discard or promote.
4332 		 *
4333 		 * Note that concurrent frees may occur while we hold the
4334 		 * list_lock. page->inuse here is the upper limit.
4335 		 */
4336 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4337 			int free = page->objects - page->inuse;
4338 
4339 			/* Do not reread page->inuse */
4340 			barrier();
4341 
4342 			/* We do not keep full slabs on the list */
4343 			BUG_ON(free <= 0);
4344 
4345 			if (free == page->objects) {
4346 				list_move(&page->slab_list, &discard);
4347 				n->nr_partial--;
4348 			} else if (free <= SHRINK_PROMOTE_MAX)
4349 				list_move(&page->slab_list, promote + free - 1);
4350 		}
4351 
4352 		/*
4353 		 * Promote the slabs filled up most to the head of the
4354 		 * partial list.
4355 		 */
4356 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4357 			list_splice(promote + i, &n->partial);
4358 
4359 		spin_unlock_irqrestore(&n->list_lock, flags);
4360 
4361 		/* Release empty slabs */
4362 		list_for_each_entry_safe(page, t, &discard, slab_list)
4363 			discard_slab(s, page);
4364 
4365 		if (slabs_node(s, node))
4366 			ret = 1;
4367 	}
4368 
4369 	return ret;
4370 }
4371 
4372 static int slab_mem_going_offline_callback(void *arg)
4373 {
4374 	struct kmem_cache *s;
4375 
4376 	mutex_lock(&slab_mutex);
4377 	list_for_each_entry(s, &slab_caches, list)
4378 		__kmem_cache_shrink(s);
4379 	mutex_unlock(&slab_mutex);
4380 
4381 	return 0;
4382 }
4383 
4384 static void slab_mem_offline_callback(void *arg)
4385 {
4386 	struct memory_notify *marg = arg;
4387 	int offline_node;
4388 
4389 	offline_node = marg->status_change_nid_normal;
4390 
4391 	/*
4392 	 * If the node still has available memory. we need kmem_cache_node
4393 	 * for it yet.
4394 	 */
4395 	if (offline_node < 0)
4396 		return;
4397 
4398 	mutex_lock(&slab_mutex);
4399 	node_clear(offline_node, slab_nodes);
4400 	/*
4401 	 * We no longer free kmem_cache_node structures here, as it would be
4402 	 * racy with all get_node() users, and infeasible to protect them with
4403 	 * slab_mutex.
4404 	 */
4405 	mutex_unlock(&slab_mutex);
4406 }
4407 
4408 static int slab_mem_going_online_callback(void *arg)
4409 {
4410 	struct kmem_cache_node *n;
4411 	struct kmem_cache *s;
4412 	struct memory_notify *marg = arg;
4413 	int nid = marg->status_change_nid_normal;
4414 	int ret = 0;
4415 
4416 	/*
4417 	 * If the node's memory is already available, then kmem_cache_node is
4418 	 * already created. Nothing to do.
4419 	 */
4420 	if (nid < 0)
4421 		return 0;
4422 
4423 	/*
4424 	 * We are bringing a node online. No memory is available yet. We must
4425 	 * allocate a kmem_cache_node structure in order to bring the node
4426 	 * online.
4427 	 */
4428 	mutex_lock(&slab_mutex);
4429 	list_for_each_entry(s, &slab_caches, list) {
4430 		/*
4431 		 * The structure may already exist if the node was previously
4432 		 * onlined and offlined.
4433 		 */
4434 		if (get_node(s, nid))
4435 			continue;
4436 		/*
4437 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4438 		 *      since memory is not yet available from the node that
4439 		 *      is brought up.
4440 		 */
4441 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4442 		if (!n) {
4443 			ret = -ENOMEM;
4444 			goto out;
4445 		}
4446 		init_kmem_cache_node(n);
4447 		s->node[nid] = n;
4448 	}
4449 	/*
4450 	 * Any cache created after this point will also have kmem_cache_node
4451 	 * initialized for the new node.
4452 	 */
4453 	node_set(nid, slab_nodes);
4454 out:
4455 	mutex_unlock(&slab_mutex);
4456 	return ret;
4457 }
4458 
4459 static int slab_memory_callback(struct notifier_block *self,
4460 				unsigned long action, void *arg)
4461 {
4462 	int ret = 0;
4463 
4464 	switch (action) {
4465 	case MEM_GOING_ONLINE:
4466 		ret = slab_mem_going_online_callback(arg);
4467 		break;
4468 	case MEM_GOING_OFFLINE:
4469 		ret = slab_mem_going_offline_callback(arg);
4470 		break;
4471 	case MEM_OFFLINE:
4472 	case MEM_CANCEL_ONLINE:
4473 		slab_mem_offline_callback(arg);
4474 		break;
4475 	case MEM_ONLINE:
4476 	case MEM_CANCEL_OFFLINE:
4477 		break;
4478 	}
4479 	if (ret)
4480 		ret = notifier_from_errno(ret);
4481 	else
4482 		ret = NOTIFY_OK;
4483 	return ret;
4484 }
4485 
4486 static struct notifier_block slab_memory_callback_nb = {
4487 	.notifier_call = slab_memory_callback,
4488 	.priority = SLAB_CALLBACK_PRI,
4489 };
4490 
4491 /********************************************************************
4492  *			Basic setup of slabs
4493  *******************************************************************/
4494 
4495 /*
4496  * Used for early kmem_cache structures that were allocated using
4497  * the page allocator. Allocate them properly then fix up the pointers
4498  * that may be pointing to the wrong kmem_cache structure.
4499  */
4500 
4501 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4502 {
4503 	int node;
4504 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4505 	struct kmem_cache_node *n;
4506 
4507 	memcpy(s, static_cache, kmem_cache->object_size);
4508 
4509 	/*
4510 	 * This runs very early, and only the boot processor is supposed to be
4511 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4512 	 * IPIs around.
4513 	 */
4514 	__flush_cpu_slab(s, smp_processor_id());
4515 	for_each_kmem_cache_node(s, node, n) {
4516 		struct page *p;
4517 
4518 		list_for_each_entry(p, &n->partial, slab_list)
4519 			p->slab_cache = s;
4520 
4521 #ifdef CONFIG_SLUB_DEBUG
4522 		list_for_each_entry(p, &n->full, slab_list)
4523 			p->slab_cache = s;
4524 #endif
4525 	}
4526 	list_add(&s->list, &slab_caches);
4527 	return s;
4528 }
4529 
4530 void __init kmem_cache_init(void)
4531 {
4532 	static __initdata struct kmem_cache boot_kmem_cache,
4533 		boot_kmem_cache_node;
4534 	int node;
4535 
4536 	if (debug_guardpage_minorder())
4537 		slub_max_order = 0;
4538 
4539 	/* Print slub debugging pointers without hashing */
4540 	if (__slub_debug_enabled())
4541 		no_hash_pointers_enable(NULL);
4542 
4543 	kmem_cache_node = &boot_kmem_cache_node;
4544 	kmem_cache = &boot_kmem_cache;
4545 
4546 	/*
4547 	 * Initialize the nodemask for which we will allocate per node
4548 	 * structures. Here we don't need taking slab_mutex yet.
4549 	 */
4550 	for_each_node_state(node, N_NORMAL_MEMORY)
4551 		node_set(node, slab_nodes);
4552 
4553 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4554 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4555 
4556 	register_hotmemory_notifier(&slab_memory_callback_nb);
4557 
4558 	/* Able to allocate the per node structures */
4559 	slab_state = PARTIAL;
4560 
4561 	create_boot_cache(kmem_cache, "kmem_cache",
4562 			offsetof(struct kmem_cache, node) +
4563 				nr_node_ids * sizeof(struct kmem_cache_node *),
4564 		       SLAB_HWCACHE_ALIGN, 0, 0);
4565 
4566 	kmem_cache = bootstrap(&boot_kmem_cache);
4567 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4568 
4569 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4570 	setup_kmalloc_cache_index_table();
4571 	create_kmalloc_caches(0);
4572 
4573 	/* Setup random freelists for each cache */
4574 	init_freelist_randomization();
4575 
4576 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4577 				  slub_cpu_dead);
4578 
4579 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4580 		cache_line_size(),
4581 		slub_min_order, slub_max_order, slub_min_objects,
4582 		nr_cpu_ids, nr_node_ids);
4583 }
4584 
4585 void __init kmem_cache_init_late(void)
4586 {
4587 }
4588 
4589 struct kmem_cache *
4590 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4591 		   slab_flags_t flags, void (*ctor)(void *))
4592 {
4593 	struct kmem_cache *s;
4594 
4595 	s = find_mergeable(size, align, flags, name, ctor);
4596 	if (s) {
4597 		s->refcount++;
4598 
4599 		/*
4600 		 * Adjust the object sizes so that we clear
4601 		 * the complete object on kzalloc.
4602 		 */
4603 		s->object_size = max(s->object_size, size);
4604 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4605 
4606 		if (sysfs_slab_alias(s, name)) {
4607 			s->refcount--;
4608 			s = NULL;
4609 		}
4610 	}
4611 
4612 	return s;
4613 }
4614 
4615 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4616 {
4617 	int err;
4618 
4619 	err = kmem_cache_open(s, flags);
4620 	if (err)
4621 		return err;
4622 
4623 	/* Mutex is not taken during early boot */
4624 	if (slab_state <= UP)
4625 		return 0;
4626 
4627 	err = sysfs_slab_add(s);
4628 	if (err)
4629 		__kmem_cache_release(s);
4630 
4631 	if (s->flags & SLAB_STORE_USER)
4632 		debugfs_slab_add(s);
4633 
4634 	return err;
4635 }
4636 
4637 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4638 {
4639 	struct kmem_cache *s;
4640 	void *ret;
4641 
4642 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4643 		return kmalloc_large(size, gfpflags);
4644 
4645 	s = kmalloc_slab(size, gfpflags);
4646 
4647 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4648 		return s;
4649 
4650 	ret = slab_alloc(s, gfpflags, caller, size);
4651 
4652 	/* Honor the call site pointer we received. */
4653 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4654 
4655 	return ret;
4656 }
4657 EXPORT_SYMBOL(__kmalloc_track_caller);
4658 
4659 #ifdef CONFIG_NUMA
4660 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4661 					int node, unsigned long caller)
4662 {
4663 	struct kmem_cache *s;
4664 	void *ret;
4665 
4666 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4667 		ret = kmalloc_large_node(size, gfpflags, node);
4668 
4669 		trace_kmalloc_node(caller, ret,
4670 				   size, PAGE_SIZE << get_order(size),
4671 				   gfpflags, node);
4672 
4673 		return ret;
4674 	}
4675 
4676 	s = kmalloc_slab(size, gfpflags);
4677 
4678 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4679 		return s;
4680 
4681 	ret = slab_alloc_node(s, gfpflags, node, caller, size);
4682 
4683 	/* Honor the call site pointer we received. */
4684 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4685 
4686 	return ret;
4687 }
4688 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4689 #endif
4690 
4691 #ifdef CONFIG_SYSFS
4692 static int count_inuse(struct page *page)
4693 {
4694 	return page->inuse;
4695 }
4696 
4697 static int count_total(struct page *page)
4698 {
4699 	return page->objects;
4700 }
4701 #endif
4702 
4703 #ifdef CONFIG_SLUB_DEBUG
4704 static void validate_slab(struct kmem_cache *s, struct page *page)
4705 {
4706 	void *p;
4707 	void *addr = page_address(page);
4708 	unsigned long *map;
4709 
4710 	slab_lock(page);
4711 
4712 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4713 		goto unlock;
4714 
4715 	/* Now we know that a valid freelist exists */
4716 	map = get_map(s, page);
4717 	for_each_object(p, s, addr, page->objects) {
4718 		u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4719 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4720 
4721 		if (!check_object(s, page, p, val))
4722 			break;
4723 	}
4724 	put_map(map);
4725 unlock:
4726 	slab_unlock(page);
4727 }
4728 
4729 static int validate_slab_node(struct kmem_cache *s,
4730 		struct kmem_cache_node *n)
4731 {
4732 	unsigned long count = 0;
4733 	struct page *page;
4734 	unsigned long flags;
4735 
4736 	spin_lock_irqsave(&n->list_lock, flags);
4737 
4738 	list_for_each_entry(page, &n->partial, slab_list) {
4739 		validate_slab(s, page);
4740 		count++;
4741 	}
4742 	if (count != n->nr_partial) {
4743 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4744 		       s->name, count, n->nr_partial);
4745 		slab_add_kunit_errors();
4746 	}
4747 
4748 	if (!(s->flags & SLAB_STORE_USER))
4749 		goto out;
4750 
4751 	list_for_each_entry(page, &n->full, slab_list) {
4752 		validate_slab(s, page);
4753 		count++;
4754 	}
4755 	if (count != atomic_long_read(&n->nr_slabs)) {
4756 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4757 		       s->name, count, atomic_long_read(&n->nr_slabs));
4758 		slab_add_kunit_errors();
4759 	}
4760 
4761 out:
4762 	spin_unlock_irqrestore(&n->list_lock, flags);
4763 	return count;
4764 }
4765 
4766 long validate_slab_cache(struct kmem_cache *s)
4767 {
4768 	int node;
4769 	unsigned long count = 0;
4770 	struct kmem_cache_node *n;
4771 
4772 	flush_all(s);
4773 	for_each_kmem_cache_node(s, node, n)
4774 		count += validate_slab_node(s, n);
4775 
4776 	return count;
4777 }
4778 EXPORT_SYMBOL(validate_slab_cache);
4779 
4780 #ifdef CONFIG_DEBUG_FS
4781 /*
4782  * Generate lists of code addresses where slabcache objects are allocated
4783  * and freed.
4784  */
4785 
4786 struct location {
4787 	unsigned long count;
4788 	unsigned long addr;
4789 	long long sum_time;
4790 	long min_time;
4791 	long max_time;
4792 	long min_pid;
4793 	long max_pid;
4794 	DECLARE_BITMAP(cpus, NR_CPUS);
4795 	nodemask_t nodes;
4796 };
4797 
4798 struct loc_track {
4799 	unsigned long max;
4800 	unsigned long count;
4801 	struct location *loc;
4802 };
4803 
4804 static struct dentry *slab_debugfs_root;
4805 
4806 static void free_loc_track(struct loc_track *t)
4807 {
4808 	if (t->max)
4809 		free_pages((unsigned long)t->loc,
4810 			get_order(sizeof(struct location) * t->max));
4811 }
4812 
4813 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4814 {
4815 	struct location *l;
4816 	int order;
4817 
4818 	order = get_order(sizeof(struct location) * max);
4819 
4820 	l = (void *)__get_free_pages(flags, order);
4821 	if (!l)
4822 		return 0;
4823 
4824 	if (t->count) {
4825 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4826 		free_loc_track(t);
4827 	}
4828 	t->max = max;
4829 	t->loc = l;
4830 	return 1;
4831 }
4832 
4833 static int add_location(struct loc_track *t, struct kmem_cache *s,
4834 				const struct track *track)
4835 {
4836 	long start, end, pos;
4837 	struct location *l;
4838 	unsigned long caddr;
4839 	unsigned long age = jiffies - track->when;
4840 
4841 	start = -1;
4842 	end = t->count;
4843 
4844 	for ( ; ; ) {
4845 		pos = start + (end - start + 1) / 2;
4846 
4847 		/*
4848 		 * There is nothing at "end". If we end up there
4849 		 * we need to add something to before end.
4850 		 */
4851 		if (pos == end)
4852 			break;
4853 
4854 		caddr = t->loc[pos].addr;
4855 		if (track->addr == caddr) {
4856 
4857 			l = &t->loc[pos];
4858 			l->count++;
4859 			if (track->when) {
4860 				l->sum_time += age;
4861 				if (age < l->min_time)
4862 					l->min_time = age;
4863 				if (age > l->max_time)
4864 					l->max_time = age;
4865 
4866 				if (track->pid < l->min_pid)
4867 					l->min_pid = track->pid;
4868 				if (track->pid > l->max_pid)
4869 					l->max_pid = track->pid;
4870 
4871 				cpumask_set_cpu(track->cpu,
4872 						to_cpumask(l->cpus));
4873 			}
4874 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4875 			return 1;
4876 		}
4877 
4878 		if (track->addr < caddr)
4879 			end = pos;
4880 		else
4881 			start = pos;
4882 	}
4883 
4884 	/*
4885 	 * Not found. Insert new tracking element.
4886 	 */
4887 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4888 		return 0;
4889 
4890 	l = t->loc + pos;
4891 	if (pos < t->count)
4892 		memmove(l + 1, l,
4893 			(t->count - pos) * sizeof(struct location));
4894 	t->count++;
4895 	l->count = 1;
4896 	l->addr = track->addr;
4897 	l->sum_time = age;
4898 	l->min_time = age;
4899 	l->max_time = age;
4900 	l->min_pid = track->pid;
4901 	l->max_pid = track->pid;
4902 	cpumask_clear(to_cpumask(l->cpus));
4903 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4904 	nodes_clear(l->nodes);
4905 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4906 	return 1;
4907 }
4908 
4909 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4910 		struct page *page, enum track_item alloc)
4911 {
4912 	void *addr = page_address(page);
4913 	void *p;
4914 	unsigned long *map;
4915 
4916 	map = get_map(s, page);
4917 	for_each_object(p, s, addr, page->objects)
4918 		if (!test_bit(__obj_to_index(s, addr, p), map))
4919 			add_location(t, s, get_track(s, p, alloc));
4920 	put_map(map);
4921 }
4922 #endif  /* CONFIG_DEBUG_FS   */
4923 #endif	/* CONFIG_SLUB_DEBUG */
4924 
4925 #ifdef CONFIG_SYSFS
4926 enum slab_stat_type {
4927 	SL_ALL,			/* All slabs */
4928 	SL_PARTIAL,		/* Only partially allocated slabs */
4929 	SL_CPU,			/* Only slabs used for cpu caches */
4930 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4931 	SL_TOTAL		/* Determine object capacity not slabs */
4932 };
4933 
4934 #define SO_ALL		(1 << SL_ALL)
4935 #define SO_PARTIAL	(1 << SL_PARTIAL)
4936 #define SO_CPU		(1 << SL_CPU)
4937 #define SO_OBJECTS	(1 << SL_OBJECTS)
4938 #define SO_TOTAL	(1 << SL_TOTAL)
4939 
4940 static ssize_t show_slab_objects(struct kmem_cache *s,
4941 				 char *buf, unsigned long flags)
4942 {
4943 	unsigned long total = 0;
4944 	int node;
4945 	int x;
4946 	unsigned long *nodes;
4947 	int len = 0;
4948 
4949 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4950 	if (!nodes)
4951 		return -ENOMEM;
4952 
4953 	if (flags & SO_CPU) {
4954 		int cpu;
4955 
4956 		for_each_possible_cpu(cpu) {
4957 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4958 							       cpu);
4959 			int node;
4960 			struct page *page;
4961 
4962 			page = READ_ONCE(c->page);
4963 			if (!page)
4964 				continue;
4965 
4966 			node = page_to_nid(page);
4967 			if (flags & SO_TOTAL)
4968 				x = page->objects;
4969 			else if (flags & SO_OBJECTS)
4970 				x = page->inuse;
4971 			else
4972 				x = 1;
4973 
4974 			total += x;
4975 			nodes[node] += x;
4976 
4977 			page = slub_percpu_partial_read_once(c);
4978 			if (page) {
4979 				node = page_to_nid(page);
4980 				if (flags & SO_TOTAL)
4981 					WARN_ON_ONCE(1);
4982 				else if (flags & SO_OBJECTS)
4983 					WARN_ON_ONCE(1);
4984 				else
4985 					x = page->pages;
4986 				total += x;
4987 				nodes[node] += x;
4988 			}
4989 		}
4990 	}
4991 
4992 	/*
4993 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4994 	 * already held which will conflict with an existing lock order:
4995 	 *
4996 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4997 	 *
4998 	 * We don't really need mem_hotplug_lock (to hold off
4999 	 * slab_mem_going_offline_callback) here because slab's memory hot
5000 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5001 	 */
5002 
5003 #ifdef CONFIG_SLUB_DEBUG
5004 	if (flags & SO_ALL) {
5005 		struct kmem_cache_node *n;
5006 
5007 		for_each_kmem_cache_node(s, node, n) {
5008 
5009 			if (flags & SO_TOTAL)
5010 				x = atomic_long_read(&n->total_objects);
5011 			else if (flags & SO_OBJECTS)
5012 				x = atomic_long_read(&n->total_objects) -
5013 					count_partial(n, count_free);
5014 			else
5015 				x = atomic_long_read(&n->nr_slabs);
5016 			total += x;
5017 			nodes[node] += x;
5018 		}
5019 
5020 	} else
5021 #endif
5022 	if (flags & SO_PARTIAL) {
5023 		struct kmem_cache_node *n;
5024 
5025 		for_each_kmem_cache_node(s, node, n) {
5026 			if (flags & SO_TOTAL)
5027 				x = count_partial(n, count_total);
5028 			else if (flags & SO_OBJECTS)
5029 				x = count_partial(n, count_inuse);
5030 			else
5031 				x = n->nr_partial;
5032 			total += x;
5033 			nodes[node] += x;
5034 		}
5035 	}
5036 
5037 	len += sysfs_emit_at(buf, len, "%lu", total);
5038 #ifdef CONFIG_NUMA
5039 	for (node = 0; node < nr_node_ids; node++) {
5040 		if (nodes[node])
5041 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5042 					     node, nodes[node]);
5043 	}
5044 #endif
5045 	len += sysfs_emit_at(buf, len, "\n");
5046 	kfree(nodes);
5047 
5048 	return len;
5049 }
5050 
5051 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5052 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5053 
5054 struct slab_attribute {
5055 	struct attribute attr;
5056 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5057 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5058 };
5059 
5060 #define SLAB_ATTR_RO(_name) \
5061 	static struct slab_attribute _name##_attr = \
5062 	__ATTR(_name, 0400, _name##_show, NULL)
5063 
5064 #define SLAB_ATTR(_name) \
5065 	static struct slab_attribute _name##_attr =  \
5066 	__ATTR(_name, 0600, _name##_show, _name##_store)
5067 
5068 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5069 {
5070 	return sysfs_emit(buf, "%u\n", s->size);
5071 }
5072 SLAB_ATTR_RO(slab_size);
5073 
5074 static ssize_t align_show(struct kmem_cache *s, char *buf)
5075 {
5076 	return sysfs_emit(buf, "%u\n", s->align);
5077 }
5078 SLAB_ATTR_RO(align);
5079 
5080 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5081 {
5082 	return sysfs_emit(buf, "%u\n", s->object_size);
5083 }
5084 SLAB_ATTR_RO(object_size);
5085 
5086 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5087 {
5088 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5089 }
5090 SLAB_ATTR_RO(objs_per_slab);
5091 
5092 static ssize_t order_show(struct kmem_cache *s, char *buf)
5093 {
5094 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5095 }
5096 SLAB_ATTR_RO(order);
5097 
5098 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5099 {
5100 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5101 }
5102 
5103 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5104 				 size_t length)
5105 {
5106 	unsigned long min;
5107 	int err;
5108 
5109 	err = kstrtoul(buf, 10, &min);
5110 	if (err)
5111 		return err;
5112 
5113 	set_min_partial(s, min);
5114 	return length;
5115 }
5116 SLAB_ATTR(min_partial);
5117 
5118 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5119 {
5120 	return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5121 }
5122 
5123 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5124 				 size_t length)
5125 {
5126 	unsigned int objects;
5127 	int err;
5128 
5129 	err = kstrtouint(buf, 10, &objects);
5130 	if (err)
5131 		return err;
5132 	if (objects && !kmem_cache_has_cpu_partial(s))
5133 		return -EINVAL;
5134 
5135 	slub_set_cpu_partial(s, objects);
5136 	flush_all(s);
5137 	return length;
5138 }
5139 SLAB_ATTR(cpu_partial);
5140 
5141 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5142 {
5143 	if (!s->ctor)
5144 		return 0;
5145 	return sysfs_emit(buf, "%pS\n", s->ctor);
5146 }
5147 SLAB_ATTR_RO(ctor);
5148 
5149 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5150 {
5151 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5152 }
5153 SLAB_ATTR_RO(aliases);
5154 
5155 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5156 {
5157 	return show_slab_objects(s, buf, SO_PARTIAL);
5158 }
5159 SLAB_ATTR_RO(partial);
5160 
5161 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5162 {
5163 	return show_slab_objects(s, buf, SO_CPU);
5164 }
5165 SLAB_ATTR_RO(cpu_slabs);
5166 
5167 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5168 {
5169 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5170 }
5171 SLAB_ATTR_RO(objects);
5172 
5173 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5174 {
5175 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5176 }
5177 SLAB_ATTR_RO(objects_partial);
5178 
5179 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5180 {
5181 	int objects = 0;
5182 	int pages = 0;
5183 	int cpu;
5184 	int len = 0;
5185 
5186 	for_each_online_cpu(cpu) {
5187 		struct page *page;
5188 
5189 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5190 
5191 		if (page) {
5192 			pages += page->pages;
5193 			objects += page->pobjects;
5194 		}
5195 	}
5196 
5197 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5198 
5199 #ifdef CONFIG_SMP
5200 	for_each_online_cpu(cpu) {
5201 		struct page *page;
5202 
5203 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5204 		if (page)
5205 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5206 					     cpu, page->pobjects, page->pages);
5207 	}
5208 #endif
5209 	len += sysfs_emit_at(buf, len, "\n");
5210 
5211 	return len;
5212 }
5213 SLAB_ATTR_RO(slabs_cpu_partial);
5214 
5215 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5216 {
5217 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5218 }
5219 SLAB_ATTR_RO(reclaim_account);
5220 
5221 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5222 {
5223 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5224 }
5225 SLAB_ATTR_RO(hwcache_align);
5226 
5227 #ifdef CONFIG_ZONE_DMA
5228 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5229 {
5230 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5231 }
5232 SLAB_ATTR_RO(cache_dma);
5233 #endif
5234 
5235 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5236 {
5237 	return sysfs_emit(buf, "%u\n", s->usersize);
5238 }
5239 SLAB_ATTR_RO(usersize);
5240 
5241 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5242 {
5243 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5244 }
5245 SLAB_ATTR_RO(destroy_by_rcu);
5246 
5247 #ifdef CONFIG_SLUB_DEBUG
5248 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5249 {
5250 	return show_slab_objects(s, buf, SO_ALL);
5251 }
5252 SLAB_ATTR_RO(slabs);
5253 
5254 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5255 {
5256 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5257 }
5258 SLAB_ATTR_RO(total_objects);
5259 
5260 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5261 {
5262 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5263 }
5264 SLAB_ATTR_RO(sanity_checks);
5265 
5266 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5267 {
5268 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5269 }
5270 SLAB_ATTR_RO(trace);
5271 
5272 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5273 {
5274 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5275 }
5276 
5277 SLAB_ATTR_RO(red_zone);
5278 
5279 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5280 {
5281 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5282 }
5283 
5284 SLAB_ATTR_RO(poison);
5285 
5286 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5287 {
5288 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5289 }
5290 
5291 SLAB_ATTR_RO(store_user);
5292 
5293 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5294 {
5295 	return 0;
5296 }
5297 
5298 static ssize_t validate_store(struct kmem_cache *s,
5299 			const char *buf, size_t length)
5300 {
5301 	int ret = -EINVAL;
5302 
5303 	if (buf[0] == '1') {
5304 		ret = validate_slab_cache(s);
5305 		if (ret >= 0)
5306 			ret = length;
5307 	}
5308 	return ret;
5309 }
5310 SLAB_ATTR(validate);
5311 
5312 #endif /* CONFIG_SLUB_DEBUG */
5313 
5314 #ifdef CONFIG_FAILSLAB
5315 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5316 {
5317 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5318 }
5319 SLAB_ATTR_RO(failslab);
5320 #endif
5321 
5322 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5323 {
5324 	return 0;
5325 }
5326 
5327 static ssize_t shrink_store(struct kmem_cache *s,
5328 			const char *buf, size_t length)
5329 {
5330 	if (buf[0] == '1')
5331 		kmem_cache_shrink(s);
5332 	else
5333 		return -EINVAL;
5334 	return length;
5335 }
5336 SLAB_ATTR(shrink);
5337 
5338 #ifdef CONFIG_NUMA
5339 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5340 {
5341 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5342 }
5343 
5344 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5345 				const char *buf, size_t length)
5346 {
5347 	unsigned int ratio;
5348 	int err;
5349 
5350 	err = kstrtouint(buf, 10, &ratio);
5351 	if (err)
5352 		return err;
5353 	if (ratio > 100)
5354 		return -ERANGE;
5355 
5356 	s->remote_node_defrag_ratio = ratio * 10;
5357 
5358 	return length;
5359 }
5360 SLAB_ATTR(remote_node_defrag_ratio);
5361 #endif
5362 
5363 #ifdef CONFIG_SLUB_STATS
5364 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5365 {
5366 	unsigned long sum  = 0;
5367 	int cpu;
5368 	int len = 0;
5369 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5370 
5371 	if (!data)
5372 		return -ENOMEM;
5373 
5374 	for_each_online_cpu(cpu) {
5375 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5376 
5377 		data[cpu] = x;
5378 		sum += x;
5379 	}
5380 
5381 	len += sysfs_emit_at(buf, len, "%lu", sum);
5382 
5383 #ifdef CONFIG_SMP
5384 	for_each_online_cpu(cpu) {
5385 		if (data[cpu])
5386 			len += sysfs_emit_at(buf, len, " C%d=%u",
5387 					     cpu, data[cpu]);
5388 	}
5389 #endif
5390 	kfree(data);
5391 	len += sysfs_emit_at(buf, len, "\n");
5392 
5393 	return len;
5394 }
5395 
5396 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5397 {
5398 	int cpu;
5399 
5400 	for_each_online_cpu(cpu)
5401 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5402 }
5403 
5404 #define STAT_ATTR(si, text) 					\
5405 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5406 {								\
5407 	return show_stat(s, buf, si);				\
5408 }								\
5409 static ssize_t text##_store(struct kmem_cache *s,		\
5410 				const char *buf, size_t length)	\
5411 {								\
5412 	if (buf[0] != '0')					\
5413 		return -EINVAL;					\
5414 	clear_stat(s, si);					\
5415 	return length;						\
5416 }								\
5417 SLAB_ATTR(text);						\
5418 
5419 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5420 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5421 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5422 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5423 STAT_ATTR(FREE_FROZEN, free_frozen);
5424 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5425 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5426 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5427 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5428 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5429 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5430 STAT_ATTR(FREE_SLAB, free_slab);
5431 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5432 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5433 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5434 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5435 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5436 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5437 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5438 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5439 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5440 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5441 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5442 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5443 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5444 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5445 #endif	/* CONFIG_SLUB_STATS */
5446 
5447 static struct attribute *slab_attrs[] = {
5448 	&slab_size_attr.attr,
5449 	&object_size_attr.attr,
5450 	&objs_per_slab_attr.attr,
5451 	&order_attr.attr,
5452 	&min_partial_attr.attr,
5453 	&cpu_partial_attr.attr,
5454 	&objects_attr.attr,
5455 	&objects_partial_attr.attr,
5456 	&partial_attr.attr,
5457 	&cpu_slabs_attr.attr,
5458 	&ctor_attr.attr,
5459 	&aliases_attr.attr,
5460 	&align_attr.attr,
5461 	&hwcache_align_attr.attr,
5462 	&reclaim_account_attr.attr,
5463 	&destroy_by_rcu_attr.attr,
5464 	&shrink_attr.attr,
5465 	&slabs_cpu_partial_attr.attr,
5466 #ifdef CONFIG_SLUB_DEBUG
5467 	&total_objects_attr.attr,
5468 	&slabs_attr.attr,
5469 	&sanity_checks_attr.attr,
5470 	&trace_attr.attr,
5471 	&red_zone_attr.attr,
5472 	&poison_attr.attr,
5473 	&store_user_attr.attr,
5474 	&validate_attr.attr,
5475 #endif
5476 #ifdef CONFIG_ZONE_DMA
5477 	&cache_dma_attr.attr,
5478 #endif
5479 #ifdef CONFIG_NUMA
5480 	&remote_node_defrag_ratio_attr.attr,
5481 #endif
5482 #ifdef CONFIG_SLUB_STATS
5483 	&alloc_fastpath_attr.attr,
5484 	&alloc_slowpath_attr.attr,
5485 	&free_fastpath_attr.attr,
5486 	&free_slowpath_attr.attr,
5487 	&free_frozen_attr.attr,
5488 	&free_add_partial_attr.attr,
5489 	&free_remove_partial_attr.attr,
5490 	&alloc_from_partial_attr.attr,
5491 	&alloc_slab_attr.attr,
5492 	&alloc_refill_attr.attr,
5493 	&alloc_node_mismatch_attr.attr,
5494 	&free_slab_attr.attr,
5495 	&cpuslab_flush_attr.attr,
5496 	&deactivate_full_attr.attr,
5497 	&deactivate_empty_attr.attr,
5498 	&deactivate_to_head_attr.attr,
5499 	&deactivate_to_tail_attr.attr,
5500 	&deactivate_remote_frees_attr.attr,
5501 	&deactivate_bypass_attr.attr,
5502 	&order_fallback_attr.attr,
5503 	&cmpxchg_double_fail_attr.attr,
5504 	&cmpxchg_double_cpu_fail_attr.attr,
5505 	&cpu_partial_alloc_attr.attr,
5506 	&cpu_partial_free_attr.attr,
5507 	&cpu_partial_node_attr.attr,
5508 	&cpu_partial_drain_attr.attr,
5509 #endif
5510 #ifdef CONFIG_FAILSLAB
5511 	&failslab_attr.attr,
5512 #endif
5513 	&usersize_attr.attr,
5514 
5515 	NULL
5516 };
5517 
5518 static const struct attribute_group slab_attr_group = {
5519 	.attrs = slab_attrs,
5520 };
5521 
5522 static ssize_t slab_attr_show(struct kobject *kobj,
5523 				struct attribute *attr,
5524 				char *buf)
5525 {
5526 	struct slab_attribute *attribute;
5527 	struct kmem_cache *s;
5528 	int err;
5529 
5530 	attribute = to_slab_attr(attr);
5531 	s = to_slab(kobj);
5532 
5533 	if (!attribute->show)
5534 		return -EIO;
5535 
5536 	err = attribute->show(s, buf);
5537 
5538 	return err;
5539 }
5540 
5541 static ssize_t slab_attr_store(struct kobject *kobj,
5542 				struct attribute *attr,
5543 				const char *buf, size_t len)
5544 {
5545 	struct slab_attribute *attribute;
5546 	struct kmem_cache *s;
5547 	int err;
5548 
5549 	attribute = to_slab_attr(attr);
5550 	s = to_slab(kobj);
5551 
5552 	if (!attribute->store)
5553 		return -EIO;
5554 
5555 	err = attribute->store(s, buf, len);
5556 	return err;
5557 }
5558 
5559 static void kmem_cache_release(struct kobject *k)
5560 {
5561 	slab_kmem_cache_release(to_slab(k));
5562 }
5563 
5564 static const struct sysfs_ops slab_sysfs_ops = {
5565 	.show = slab_attr_show,
5566 	.store = slab_attr_store,
5567 };
5568 
5569 static struct kobj_type slab_ktype = {
5570 	.sysfs_ops = &slab_sysfs_ops,
5571 	.release = kmem_cache_release,
5572 };
5573 
5574 static struct kset *slab_kset;
5575 
5576 static inline struct kset *cache_kset(struct kmem_cache *s)
5577 {
5578 	return slab_kset;
5579 }
5580 
5581 #define ID_STR_LENGTH 64
5582 
5583 /* Create a unique string id for a slab cache:
5584  *
5585  * Format	:[flags-]size
5586  */
5587 static char *create_unique_id(struct kmem_cache *s)
5588 {
5589 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5590 	char *p = name;
5591 
5592 	BUG_ON(!name);
5593 
5594 	*p++ = ':';
5595 	/*
5596 	 * First flags affecting slabcache operations. We will only
5597 	 * get here for aliasable slabs so we do not need to support
5598 	 * too many flags. The flags here must cover all flags that
5599 	 * are matched during merging to guarantee that the id is
5600 	 * unique.
5601 	 */
5602 	if (s->flags & SLAB_CACHE_DMA)
5603 		*p++ = 'd';
5604 	if (s->flags & SLAB_CACHE_DMA32)
5605 		*p++ = 'D';
5606 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5607 		*p++ = 'a';
5608 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5609 		*p++ = 'F';
5610 	if (s->flags & SLAB_ACCOUNT)
5611 		*p++ = 'A';
5612 	if (p != name + 1)
5613 		*p++ = '-';
5614 	p += sprintf(p, "%07u", s->size);
5615 
5616 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5617 	return name;
5618 }
5619 
5620 static int sysfs_slab_add(struct kmem_cache *s)
5621 {
5622 	int err;
5623 	const char *name;
5624 	struct kset *kset = cache_kset(s);
5625 	int unmergeable = slab_unmergeable(s);
5626 
5627 	if (!kset) {
5628 		kobject_init(&s->kobj, &slab_ktype);
5629 		return 0;
5630 	}
5631 
5632 	if (!unmergeable && disable_higher_order_debug &&
5633 			(slub_debug & DEBUG_METADATA_FLAGS))
5634 		unmergeable = 1;
5635 
5636 	if (unmergeable) {
5637 		/*
5638 		 * Slabcache can never be merged so we can use the name proper.
5639 		 * This is typically the case for debug situations. In that
5640 		 * case we can catch duplicate names easily.
5641 		 */
5642 		sysfs_remove_link(&slab_kset->kobj, s->name);
5643 		name = s->name;
5644 	} else {
5645 		/*
5646 		 * Create a unique name for the slab as a target
5647 		 * for the symlinks.
5648 		 */
5649 		name = create_unique_id(s);
5650 	}
5651 
5652 	s->kobj.kset = kset;
5653 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5654 	if (err)
5655 		goto out;
5656 
5657 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5658 	if (err)
5659 		goto out_del_kobj;
5660 
5661 	if (!unmergeable) {
5662 		/* Setup first alias */
5663 		sysfs_slab_alias(s, s->name);
5664 	}
5665 out:
5666 	if (!unmergeable)
5667 		kfree(name);
5668 	return err;
5669 out_del_kobj:
5670 	kobject_del(&s->kobj);
5671 	goto out;
5672 }
5673 
5674 void sysfs_slab_unlink(struct kmem_cache *s)
5675 {
5676 	if (slab_state >= FULL)
5677 		kobject_del(&s->kobj);
5678 }
5679 
5680 void sysfs_slab_release(struct kmem_cache *s)
5681 {
5682 	if (slab_state >= FULL)
5683 		kobject_put(&s->kobj);
5684 }
5685 
5686 /*
5687  * Need to buffer aliases during bootup until sysfs becomes
5688  * available lest we lose that information.
5689  */
5690 struct saved_alias {
5691 	struct kmem_cache *s;
5692 	const char *name;
5693 	struct saved_alias *next;
5694 };
5695 
5696 static struct saved_alias *alias_list;
5697 
5698 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5699 {
5700 	struct saved_alias *al;
5701 
5702 	if (slab_state == FULL) {
5703 		/*
5704 		 * If we have a leftover link then remove it.
5705 		 */
5706 		sysfs_remove_link(&slab_kset->kobj, name);
5707 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5708 	}
5709 
5710 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5711 	if (!al)
5712 		return -ENOMEM;
5713 
5714 	al->s = s;
5715 	al->name = name;
5716 	al->next = alias_list;
5717 	alias_list = al;
5718 	return 0;
5719 }
5720 
5721 static int __init slab_sysfs_init(void)
5722 {
5723 	struct kmem_cache *s;
5724 	int err;
5725 
5726 	mutex_lock(&slab_mutex);
5727 
5728 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5729 	if (!slab_kset) {
5730 		mutex_unlock(&slab_mutex);
5731 		pr_err("Cannot register slab subsystem.\n");
5732 		return -ENOSYS;
5733 	}
5734 
5735 	slab_state = FULL;
5736 
5737 	list_for_each_entry(s, &slab_caches, list) {
5738 		err = sysfs_slab_add(s);
5739 		if (err)
5740 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5741 			       s->name);
5742 	}
5743 
5744 	while (alias_list) {
5745 		struct saved_alias *al = alias_list;
5746 
5747 		alias_list = alias_list->next;
5748 		err = sysfs_slab_alias(al->s, al->name);
5749 		if (err)
5750 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5751 			       al->name);
5752 		kfree(al);
5753 	}
5754 
5755 	mutex_unlock(&slab_mutex);
5756 	return 0;
5757 }
5758 
5759 __initcall(slab_sysfs_init);
5760 #endif /* CONFIG_SYSFS */
5761 
5762 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
5763 static int slab_debugfs_show(struct seq_file *seq, void *v)
5764 {
5765 
5766 	struct location *l;
5767 	unsigned int idx = *(unsigned int *)v;
5768 	struct loc_track *t = seq->private;
5769 
5770 	if (idx < t->count) {
5771 		l = &t->loc[idx];
5772 
5773 		seq_printf(seq, "%7ld ", l->count);
5774 
5775 		if (l->addr)
5776 			seq_printf(seq, "%pS", (void *)l->addr);
5777 		else
5778 			seq_puts(seq, "<not-available>");
5779 
5780 		if (l->sum_time != l->min_time) {
5781 			seq_printf(seq, " age=%ld/%llu/%ld",
5782 				l->min_time, div_u64(l->sum_time, l->count),
5783 				l->max_time);
5784 		} else
5785 			seq_printf(seq, " age=%ld", l->min_time);
5786 
5787 		if (l->min_pid != l->max_pid)
5788 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
5789 		else
5790 			seq_printf(seq, " pid=%ld",
5791 				l->min_pid);
5792 
5793 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
5794 			seq_printf(seq, " cpus=%*pbl",
5795 				 cpumask_pr_args(to_cpumask(l->cpus)));
5796 
5797 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
5798 			seq_printf(seq, " nodes=%*pbl",
5799 				 nodemask_pr_args(&l->nodes));
5800 
5801 		seq_puts(seq, "\n");
5802 	}
5803 
5804 	if (!idx && !t->count)
5805 		seq_puts(seq, "No data\n");
5806 
5807 	return 0;
5808 }
5809 
5810 static void slab_debugfs_stop(struct seq_file *seq, void *v)
5811 {
5812 }
5813 
5814 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
5815 {
5816 	struct loc_track *t = seq->private;
5817 
5818 	v = ppos;
5819 	++*ppos;
5820 	if (*ppos <= t->count)
5821 		return v;
5822 
5823 	return NULL;
5824 }
5825 
5826 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
5827 {
5828 	return ppos;
5829 }
5830 
5831 static const struct seq_operations slab_debugfs_sops = {
5832 	.start  = slab_debugfs_start,
5833 	.next   = slab_debugfs_next,
5834 	.stop   = slab_debugfs_stop,
5835 	.show   = slab_debugfs_show,
5836 };
5837 
5838 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
5839 {
5840 
5841 	struct kmem_cache_node *n;
5842 	enum track_item alloc;
5843 	int node;
5844 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
5845 						sizeof(struct loc_track));
5846 	struct kmem_cache *s = file_inode(filep)->i_private;
5847 
5848 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
5849 		alloc = TRACK_ALLOC;
5850 	else
5851 		alloc = TRACK_FREE;
5852 
5853 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL))
5854 		return -ENOMEM;
5855 
5856 	/* Push back cpu slabs */
5857 	flush_all(s);
5858 
5859 	for_each_kmem_cache_node(s, node, n) {
5860 		unsigned long flags;
5861 		struct page *page;
5862 
5863 		if (!atomic_long_read(&n->nr_slabs))
5864 			continue;
5865 
5866 		spin_lock_irqsave(&n->list_lock, flags);
5867 		list_for_each_entry(page, &n->partial, slab_list)
5868 			process_slab(t, s, page, alloc);
5869 		list_for_each_entry(page, &n->full, slab_list)
5870 			process_slab(t, s, page, alloc);
5871 		spin_unlock_irqrestore(&n->list_lock, flags);
5872 	}
5873 
5874 	return 0;
5875 }
5876 
5877 static int slab_debug_trace_release(struct inode *inode, struct file *file)
5878 {
5879 	struct seq_file *seq = file->private_data;
5880 	struct loc_track *t = seq->private;
5881 
5882 	free_loc_track(t);
5883 	return seq_release_private(inode, file);
5884 }
5885 
5886 static const struct file_operations slab_debugfs_fops = {
5887 	.open    = slab_debug_trace_open,
5888 	.read    = seq_read,
5889 	.llseek  = seq_lseek,
5890 	.release = slab_debug_trace_release,
5891 };
5892 
5893 static void debugfs_slab_add(struct kmem_cache *s)
5894 {
5895 	struct dentry *slab_cache_dir;
5896 
5897 	if (unlikely(!slab_debugfs_root))
5898 		return;
5899 
5900 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
5901 
5902 	debugfs_create_file("alloc_traces", 0400,
5903 		slab_cache_dir, s, &slab_debugfs_fops);
5904 
5905 	debugfs_create_file("free_traces", 0400,
5906 		slab_cache_dir, s, &slab_debugfs_fops);
5907 }
5908 
5909 void debugfs_slab_release(struct kmem_cache *s)
5910 {
5911 	debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
5912 }
5913 
5914 static int __init slab_debugfs_init(void)
5915 {
5916 	struct kmem_cache *s;
5917 
5918 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
5919 
5920 	list_for_each_entry(s, &slab_caches, list)
5921 		if (s->flags & SLAB_STORE_USER)
5922 			debugfs_slab_add(s);
5923 
5924 	return 0;
5925 
5926 }
5927 __initcall(slab_debugfs_init);
5928 #endif
5929 /*
5930  * The /proc/slabinfo ABI
5931  */
5932 #ifdef CONFIG_SLUB_DEBUG
5933 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5934 {
5935 	unsigned long nr_slabs = 0;
5936 	unsigned long nr_objs = 0;
5937 	unsigned long nr_free = 0;
5938 	int node;
5939 	struct kmem_cache_node *n;
5940 
5941 	for_each_kmem_cache_node(s, node, n) {
5942 		nr_slabs += node_nr_slabs(n);
5943 		nr_objs += node_nr_objs(n);
5944 		nr_free += count_partial(n, count_free);
5945 	}
5946 
5947 	sinfo->active_objs = nr_objs - nr_free;
5948 	sinfo->num_objs = nr_objs;
5949 	sinfo->active_slabs = nr_slabs;
5950 	sinfo->num_slabs = nr_slabs;
5951 	sinfo->objects_per_slab = oo_objects(s->oo);
5952 	sinfo->cache_order = oo_order(s->oo);
5953 }
5954 
5955 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5956 {
5957 }
5958 
5959 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5960 		       size_t count, loff_t *ppos)
5961 {
5962 	return -EIO;
5963 }
5964 #endif /* CONFIG_SLUB_DEBUG */
5965