xref: /openbmc/linux/mm/slub.c (revision a13f2ef1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list except per cpu partial list. The processor that froze the
62  *   slab is the one who can perform list operations on the page. Other
63  *   processors may put objects onto the freelist but the processor that
64  *   froze the slab is the only one that can retrieve the objects from the
65  *   page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * page->frozen		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 	return 0;
123 #endif
124 }
125 
126 void *fixup_red_left(struct kmem_cache *s, void *p)
127 {
128 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
129 		p += s->red_left_pad;
130 
131 	return p;
132 }
133 
134 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
135 {
136 #ifdef CONFIG_SLUB_CPU_PARTIAL
137 	return !kmem_cache_debug(s);
138 #else
139 	return false;
140 #endif
141 }
142 
143 /*
144  * Issues still to be resolved:
145  *
146  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147  *
148  * - Variable sizing of the per node arrays
149  */
150 
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
153 
154 /* Enable to log cmpxchg failures */
155 #undef SLUB_DEBUG_CMPXCHG
156 
157 /*
158  * Mininum number of partial slabs. These will be left on the partial
159  * lists even if they are empty. kmem_cache_shrink may reclaim them.
160  */
161 #define MIN_PARTIAL 5
162 
163 /*
164  * Maximum number of desirable partial slabs.
165  * The existence of more partial slabs makes kmem_cache_shrink
166  * sort the partial list by the number of objects in use.
167  */
168 #define MAX_PARTIAL 10
169 
170 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
171 				SLAB_POISON | SLAB_STORE_USER)
172 
173 /*
174  * These debug flags cannot use CMPXCHG because there might be consistency
175  * issues when checking or reading debug information
176  */
177 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
178 				SLAB_TRACE)
179 
180 
181 /*
182  * Debugging flags that require metadata to be stored in the slab.  These get
183  * disabled when slub_debug=O is used and a cache's min order increases with
184  * metadata.
185  */
186 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
187 
188 #define OO_SHIFT	16
189 #define OO_MASK		((1 << OO_SHIFT) - 1)
190 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
191 
192 /* Internal SLUB flags */
193 /* Poison object */
194 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
195 /* Use cmpxchg_double */
196 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
197 
198 /*
199  * Tracking user of a slab.
200  */
201 #define TRACK_ADDRS_COUNT 16
202 struct track {
203 	unsigned long addr;	/* Called from address */
204 #ifdef CONFIG_STACKTRACE
205 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
206 #endif
207 	int cpu;		/* Was running on cpu */
208 	int pid;		/* Pid context */
209 	unsigned long when;	/* When did the operation occur */
210 };
211 
212 enum track_item { TRACK_ALLOC, TRACK_FREE };
213 
214 #ifdef CONFIG_SYSFS
215 static int sysfs_slab_add(struct kmem_cache *);
216 static int sysfs_slab_alias(struct kmem_cache *, const char *);
217 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
218 static void sysfs_slab_remove(struct kmem_cache *s);
219 #else
220 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 							{ return 0; }
223 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
224 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
225 #endif
226 
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 {
229 #ifdef CONFIG_SLUB_STATS
230 	/*
231 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 	 * avoid this_cpu_add()'s irq-disable overhead.
233 	 */
234 	raw_cpu_inc(s->cpu_slab->stat[si]);
235 #endif
236 }
237 
238 /********************************************************************
239  * 			Core slab cache functions
240  *******************************************************************/
241 
242 /*
243  * Returns freelist pointer (ptr). With hardening, this is obfuscated
244  * with an XOR of the address where the pointer is held and a per-cache
245  * random number.
246  */
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 				 unsigned long ptr_addr)
249 {
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
251 	/*
252 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 	 * Normally, this doesn't cause any issues, as both set_freepointer()
254 	 * and get_freepointer() are called with a pointer with the same tag.
255 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 	 * example, when __free_slub() iterates over objects in a cache, it
257 	 * passes untagged pointers to check_object(). check_object() in turns
258 	 * calls get_freepointer() with an untagged pointer, which causes the
259 	 * freepointer to be restored incorrectly.
260 	 */
261 	return (void *)((unsigned long)ptr ^ s->random ^
262 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
263 #else
264 	return ptr;
265 #endif
266 }
267 
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache *s,
270 					 void *ptr_addr)
271 {
272 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 			    (unsigned long)ptr_addr);
274 }
275 
276 static inline void *get_freepointer(struct kmem_cache *s, void *object)
277 {
278 	return freelist_dereference(s, object + s->offset);
279 }
280 
281 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282 {
283 	prefetch(object + s->offset);
284 }
285 
286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287 {
288 	unsigned long freepointer_addr;
289 	void *p;
290 
291 	if (!debug_pagealloc_enabled_static())
292 		return get_freepointer(s, object);
293 
294 	freepointer_addr = (unsigned long)object + s->offset;
295 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
296 	return freelist_ptr(s, p, freepointer_addr);
297 }
298 
299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300 {
301 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
302 
303 #ifdef CONFIG_SLAB_FREELIST_HARDENED
304 	BUG_ON(object == fp); /* naive detection of double free or corruption */
305 #endif
306 
307 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
308 }
309 
310 /* Loop over all objects in a slab */
311 #define for_each_object(__p, __s, __addr, __objects) \
312 	for (__p = fixup_red_left(__s, __addr); \
313 		__p < (__addr) + (__objects) * (__s)->size; \
314 		__p += (__s)->size)
315 
316 /* Determine object index from a given position */
317 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
318 {
319 	return (kasan_reset_tag(p) - addr) / s->size;
320 }
321 
322 static inline unsigned int order_objects(unsigned int order, unsigned int size)
323 {
324 	return ((unsigned int)PAGE_SIZE << order) / size;
325 }
326 
327 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
328 		unsigned int size)
329 {
330 	struct kmem_cache_order_objects x = {
331 		(order << OO_SHIFT) + order_objects(order, size)
332 	};
333 
334 	return x;
335 }
336 
337 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
338 {
339 	return x.x >> OO_SHIFT;
340 }
341 
342 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
343 {
344 	return x.x & OO_MASK;
345 }
346 
347 /*
348  * Per slab locking using the pagelock
349  */
350 static __always_inline void slab_lock(struct page *page)
351 {
352 	VM_BUG_ON_PAGE(PageTail(page), page);
353 	bit_spin_lock(PG_locked, &page->flags);
354 }
355 
356 static __always_inline void slab_unlock(struct page *page)
357 {
358 	VM_BUG_ON_PAGE(PageTail(page), page);
359 	__bit_spin_unlock(PG_locked, &page->flags);
360 }
361 
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 		void *freelist_old, unsigned long counters_old,
365 		void *freelist_new, unsigned long counters_new,
366 		const char *n)
367 {
368 	VM_BUG_ON(!irqs_disabled());
369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371 	if (s->flags & __CMPXCHG_DOUBLE) {
372 		if (cmpxchg_double(&page->freelist, &page->counters,
373 				   freelist_old, counters_old,
374 				   freelist_new, counters_new))
375 			return true;
376 	} else
377 #endif
378 	{
379 		slab_lock(page);
380 		if (page->freelist == freelist_old &&
381 					page->counters == counters_old) {
382 			page->freelist = freelist_new;
383 			page->counters = counters_new;
384 			slab_unlock(page);
385 			return true;
386 		}
387 		slab_unlock(page);
388 	}
389 
390 	cpu_relax();
391 	stat(s, CMPXCHG_DOUBLE_FAIL);
392 
393 #ifdef SLUB_DEBUG_CMPXCHG
394 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
395 #endif
396 
397 	return false;
398 }
399 
400 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
401 		void *freelist_old, unsigned long counters_old,
402 		void *freelist_new, unsigned long counters_new,
403 		const char *n)
404 {
405 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
407 	if (s->flags & __CMPXCHG_DOUBLE) {
408 		if (cmpxchg_double(&page->freelist, &page->counters,
409 				   freelist_old, counters_old,
410 				   freelist_new, counters_new))
411 			return true;
412 	} else
413 #endif
414 	{
415 		unsigned long flags;
416 
417 		local_irq_save(flags);
418 		slab_lock(page);
419 		if (page->freelist == freelist_old &&
420 					page->counters == counters_old) {
421 			page->freelist = freelist_new;
422 			page->counters = counters_new;
423 			slab_unlock(page);
424 			local_irq_restore(flags);
425 			return true;
426 		}
427 		slab_unlock(page);
428 		local_irq_restore(flags);
429 	}
430 
431 	cpu_relax();
432 	stat(s, CMPXCHG_DOUBLE_FAIL);
433 
434 #ifdef SLUB_DEBUG_CMPXCHG
435 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
436 #endif
437 
438 	return false;
439 }
440 
441 #ifdef CONFIG_SLUB_DEBUG
442 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
443 static DEFINE_SPINLOCK(object_map_lock);
444 
445 /*
446  * Determine a map of object in use on a page.
447  *
448  * Node listlock must be held to guarantee that the page does
449  * not vanish from under us.
450  */
451 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
452 	__acquires(&object_map_lock)
453 {
454 	void *p;
455 	void *addr = page_address(page);
456 
457 	VM_BUG_ON(!irqs_disabled());
458 
459 	spin_lock(&object_map_lock);
460 
461 	bitmap_zero(object_map, page->objects);
462 
463 	for (p = page->freelist; p; p = get_freepointer(s, p))
464 		set_bit(slab_index(p, s, addr), object_map);
465 
466 	return object_map;
467 }
468 
469 static void put_map(unsigned long *map) __releases(&object_map_lock)
470 {
471 	VM_BUG_ON(map != object_map);
472 	lockdep_assert_held(&object_map_lock);
473 
474 	spin_unlock(&object_map_lock);
475 }
476 
477 static inline unsigned int size_from_object(struct kmem_cache *s)
478 {
479 	if (s->flags & SLAB_RED_ZONE)
480 		return s->size - s->red_left_pad;
481 
482 	return s->size;
483 }
484 
485 static inline void *restore_red_left(struct kmem_cache *s, void *p)
486 {
487 	if (s->flags & SLAB_RED_ZONE)
488 		p -= s->red_left_pad;
489 
490 	return p;
491 }
492 
493 /*
494  * Debug settings:
495  */
496 #if defined(CONFIG_SLUB_DEBUG_ON)
497 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
498 #else
499 static slab_flags_t slub_debug;
500 #endif
501 
502 static char *slub_debug_slabs;
503 static int disable_higher_order_debug;
504 
505 /*
506  * slub is about to manipulate internal object metadata.  This memory lies
507  * outside the range of the allocated object, so accessing it would normally
508  * be reported by kasan as a bounds error.  metadata_access_enable() is used
509  * to tell kasan that these accesses are OK.
510  */
511 static inline void metadata_access_enable(void)
512 {
513 	kasan_disable_current();
514 }
515 
516 static inline void metadata_access_disable(void)
517 {
518 	kasan_enable_current();
519 }
520 
521 /*
522  * Object debugging
523  */
524 
525 /* Verify that a pointer has an address that is valid within a slab page */
526 static inline int check_valid_pointer(struct kmem_cache *s,
527 				struct page *page, void *object)
528 {
529 	void *base;
530 
531 	if (!object)
532 		return 1;
533 
534 	base = page_address(page);
535 	object = kasan_reset_tag(object);
536 	object = restore_red_left(s, object);
537 	if (object < base || object >= base + page->objects * s->size ||
538 		(object - base) % s->size) {
539 		return 0;
540 	}
541 
542 	return 1;
543 }
544 
545 static void print_section(char *level, char *text, u8 *addr,
546 			  unsigned int length)
547 {
548 	metadata_access_enable();
549 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
550 			length, 1);
551 	metadata_access_disable();
552 }
553 
554 /*
555  * See comment in calculate_sizes().
556  */
557 static inline bool freeptr_outside_object(struct kmem_cache *s)
558 {
559 	return s->offset >= s->inuse;
560 }
561 
562 /*
563  * Return offset of the end of info block which is inuse + free pointer if
564  * not overlapping with object.
565  */
566 static inline unsigned int get_info_end(struct kmem_cache *s)
567 {
568 	if (freeptr_outside_object(s))
569 		return s->inuse + sizeof(void *);
570 	else
571 		return s->inuse;
572 }
573 
574 static struct track *get_track(struct kmem_cache *s, void *object,
575 	enum track_item alloc)
576 {
577 	struct track *p;
578 
579 	p = object + get_info_end(s);
580 
581 	return p + alloc;
582 }
583 
584 static void set_track(struct kmem_cache *s, void *object,
585 			enum track_item alloc, unsigned long addr)
586 {
587 	struct track *p = get_track(s, object, alloc);
588 
589 	if (addr) {
590 #ifdef CONFIG_STACKTRACE
591 		unsigned int nr_entries;
592 
593 		metadata_access_enable();
594 		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
595 		metadata_access_disable();
596 
597 		if (nr_entries < TRACK_ADDRS_COUNT)
598 			p->addrs[nr_entries] = 0;
599 #endif
600 		p->addr = addr;
601 		p->cpu = smp_processor_id();
602 		p->pid = current->pid;
603 		p->when = jiffies;
604 	} else {
605 		memset(p, 0, sizeof(struct track));
606 	}
607 }
608 
609 static void init_tracking(struct kmem_cache *s, void *object)
610 {
611 	if (!(s->flags & SLAB_STORE_USER))
612 		return;
613 
614 	set_track(s, object, TRACK_FREE, 0UL);
615 	set_track(s, object, TRACK_ALLOC, 0UL);
616 }
617 
618 static void print_track(const char *s, struct track *t, unsigned long pr_time)
619 {
620 	if (!t->addr)
621 		return;
622 
623 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
624 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
625 #ifdef CONFIG_STACKTRACE
626 	{
627 		int i;
628 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
629 			if (t->addrs[i])
630 				pr_err("\t%pS\n", (void *)t->addrs[i]);
631 			else
632 				break;
633 	}
634 #endif
635 }
636 
637 static void print_tracking(struct kmem_cache *s, void *object)
638 {
639 	unsigned long pr_time = jiffies;
640 	if (!(s->flags & SLAB_STORE_USER))
641 		return;
642 
643 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
644 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
645 }
646 
647 static void print_page_info(struct page *page)
648 {
649 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
650 	       page, page->objects, page->inuse, page->freelist, page->flags);
651 
652 }
653 
654 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
655 {
656 	struct va_format vaf;
657 	va_list args;
658 
659 	va_start(args, fmt);
660 	vaf.fmt = fmt;
661 	vaf.va = &args;
662 	pr_err("=============================================================================\n");
663 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
664 	pr_err("-----------------------------------------------------------------------------\n\n");
665 
666 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
667 	va_end(args);
668 }
669 
670 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
671 {
672 	struct va_format vaf;
673 	va_list args;
674 
675 	va_start(args, fmt);
676 	vaf.fmt = fmt;
677 	vaf.va = &args;
678 	pr_err("FIX %s: %pV\n", s->name, &vaf);
679 	va_end(args);
680 }
681 
682 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
683 			       void *freelist, void *nextfree)
684 {
685 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
686 	    !check_valid_pointer(s, page, nextfree)) {
687 		object_err(s, page, freelist, "Freechain corrupt");
688 		freelist = NULL;
689 		slab_fix(s, "Isolate corrupted freechain");
690 		return true;
691 	}
692 
693 	return false;
694 }
695 
696 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
697 {
698 	unsigned int off;	/* Offset of last byte */
699 	u8 *addr = page_address(page);
700 
701 	print_tracking(s, p);
702 
703 	print_page_info(page);
704 
705 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
706 	       p, p - addr, get_freepointer(s, p));
707 
708 	if (s->flags & SLAB_RED_ZONE)
709 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
710 			      s->red_left_pad);
711 	else if (p > addr + 16)
712 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
713 
714 	print_section(KERN_ERR, "Object ", p,
715 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
716 	if (s->flags & SLAB_RED_ZONE)
717 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
718 			s->inuse - s->object_size);
719 
720 	off = get_info_end(s);
721 
722 	if (s->flags & SLAB_STORE_USER)
723 		off += 2 * sizeof(struct track);
724 
725 	off += kasan_metadata_size(s);
726 
727 	if (off != size_from_object(s))
728 		/* Beginning of the filler is the free pointer */
729 		print_section(KERN_ERR, "Padding ", p + off,
730 			      size_from_object(s) - off);
731 
732 	dump_stack();
733 }
734 
735 void object_err(struct kmem_cache *s, struct page *page,
736 			u8 *object, char *reason)
737 {
738 	slab_bug(s, "%s", reason);
739 	print_trailer(s, page, object);
740 }
741 
742 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
743 			const char *fmt, ...)
744 {
745 	va_list args;
746 	char buf[100];
747 
748 	va_start(args, fmt);
749 	vsnprintf(buf, sizeof(buf), fmt, args);
750 	va_end(args);
751 	slab_bug(s, "%s", buf);
752 	print_page_info(page);
753 	dump_stack();
754 }
755 
756 static void init_object(struct kmem_cache *s, void *object, u8 val)
757 {
758 	u8 *p = object;
759 
760 	if (s->flags & SLAB_RED_ZONE)
761 		memset(p - s->red_left_pad, val, s->red_left_pad);
762 
763 	if (s->flags & __OBJECT_POISON) {
764 		memset(p, POISON_FREE, s->object_size - 1);
765 		p[s->object_size - 1] = POISON_END;
766 	}
767 
768 	if (s->flags & SLAB_RED_ZONE)
769 		memset(p + s->object_size, val, s->inuse - s->object_size);
770 }
771 
772 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
773 						void *from, void *to)
774 {
775 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
776 	memset(from, data, to - from);
777 }
778 
779 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
780 			u8 *object, char *what,
781 			u8 *start, unsigned int value, unsigned int bytes)
782 {
783 	u8 *fault;
784 	u8 *end;
785 	u8 *addr = page_address(page);
786 
787 	metadata_access_enable();
788 	fault = memchr_inv(start, value, bytes);
789 	metadata_access_disable();
790 	if (!fault)
791 		return 1;
792 
793 	end = start + bytes;
794 	while (end > fault && end[-1] == value)
795 		end--;
796 
797 	slab_bug(s, "%s overwritten", what);
798 	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
799 					fault, end - 1, fault - addr,
800 					fault[0], value);
801 	print_trailer(s, page, object);
802 
803 	restore_bytes(s, what, value, fault, end);
804 	return 0;
805 }
806 
807 /*
808  * Object layout:
809  *
810  * object address
811  * 	Bytes of the object to be managed.
812  * 	If the freepointer may overlay the object then the free
813  *	pointer is at the middle of the object.
814  *
815  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
816  * 	0xa5 (POISON_END)
817  *
818  * object + s->object_size
819  * 	Padding to reach word boundary. This is also used for Redzoning.
820  * 	Padding is extended by another word if Redzoning is enabled and
821  * 	object_size == inuse.
822  *
823  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
824  * 	0xcc (RED_ACTIVE) for objects in use.
825  *
826  * object + s->inuse
827  * 	Meta data starts here.
828  *
829  * 	A. Free pointer (if we cannot overwrite object on free)
830  * 	B. Tracking data for SLAB_STORE_USER
831  * 	C. Padding to reach required alignment boundary or at mininum
832  * 		one word if debugging is on to be able to detect writes
833  * 		before the word boundary.
834  *
835  *	Padding is done using 0x5a (POISON_INUSE)
836  *
837  * object + s->size
838  * 	Nothing is used beyond s->size.
839  *
840  * If slabcaches are merged then the object_size and inuse boundaries are mostly
841  * ignored. And therefore no slab options that rely on these boundaries
842  * may be used with merged slabcaches.
843  */
844 
845 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
846 {
847 	unsigned long off = get_info_end(s);	/* The end of info */
848 
849 	if (s->flags & SLAB_STORE_USER)
850 		/* We also have user information there */
851 		off += 2 * sizeof(struct track);
852 
853 	off += kasan_metadata_size(s);
854 
855 	if (size_from_object(s) == off)
856 		return 1;
857 
858 	return check_bytes_and_report(s, page, p, "Object padding",
859 			p + off, POISON_INUSE, size_from_object(s) - off);
860 }
861 
862 /* Check the pad bytes at the end of a slab page */
863 static int slab_pad_check(struct kmem_cache *s, struct page *page)
864 {
865 	u8 *start;
866 	u8 *fault;
867 	u8 *end;
868 	u8 *pad;
869 	int length;
870 	int remainder;
871 
872 	if (!(s->flags & SLAB_POISON))
873 		return 1;
874 
875 	start = page_address(page);
876 	length = page_size(page);
877 	end = start + length;
878 	remainder = length % s->size;
879 	if (!remainder)
880 		return 1;
881 
882 	pad = end - remainder;
883 	metadata_access_enable();
884 	fault = memchr_inv(pad, POISON_INUSE, remainder);
885 	metadata_access_disable();
886 	if (!fault)
887 		return 1;
888 	while (end > fault && end[-1] == POISON_INUSE)
889 		end--;
890 
891 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
892 			fault, end - 1, fault - start);
893 	print_section(KERN_ERR, "Padding ", pad, remainder);
894 
895 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
896 	return 0;
897 }
898 
899 static int check_object(struct kmem_cache *s, struct page *page,
900 					void *object, u8 val)
901 {
902 	u8 *p = object;
903 	u8 *endobject = object + s->object_size;
904 
905 	if (s->flags & SLAB_RED_ZONE) {
906 		if (!check_bytes_and_report(s, page, object, "Redzone",
907 			object - s->red_left_pad, val, s->red_left_pad))
908 			return 0;
909 
910 		if (!check_bytes_and_report(s, page, object, "Redzone",
911 			endobject, val, s->inuse - s->object_size))
912 			return 0;
913 	} else {
914 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
915 			check_bytes_and_report(s, page, p, "Alignment padding",
916 				endobject, POISON_INUSE,
917 				s->inuse - s->object_size);
918 		}
919 	}
920 
921 	if (s->flags & SLAB_POISON) {
922 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
923 			(!check_bytes_and_report(s, page, p, "Poison", p,
924 					POISON_FREE, s->object_size - 1) ||
925 			 !check_bytes_and_report(s, page, p, "Poison",
926 				p + s->object_size - 1, POISON_END, 1)))
927 			return 0;
928 		/*
929 		 * check_pad_bytes cleans up on its own.
930 		 */
931 		check_pad_bytes(s, page, p);
932 	}
933 
934 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
935 		/*
936 		 * Object and freepointer overlap. Cannot check
937 		 * freepointer while object is allocated.
938 		 */
939 		return 1;
940 
941 	/* Check free pointer validity */
942 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
943 		object_err(s, page, p, "Freepointer corrupt");
944 		/*
945 		 * No choice but to zap it and thus lose the remainder
946 		 * of the free objects in this slab. May cause
947 		 * another error because the object count is now wrong.
948 		 */
949 		set_freepointer(s, p, NULL);
950 		return 0;
951 	}
952 	return 1;
953 }
954 
955 static int check_slab(struct kmem_cache *s, struct page *page)
956 {
957 	int maxobj;
958 
959 	VM_BUG_ON(!irqs_disabled());
960 
961 	if (!PageSlab(page)) {
962 		slab_err(s, page, "Not a valid slab page");
963 		return 0;
964 	}
965 
966 	maxobj = order_objects(compound_order(page), s->size);
967 	if (page->objects > maxobj) {
968 		slab_err(s, page, "objects %u > max %u",
969 			page->objects, maxobj);
970 		return 0;
971 	}
972 	if (page->inuse > page->objects) {
973 		slab_err(s, page, "inuse %u > max %u",
974 			page->inuse, page->objects);
975 		return 0;
976 	}
977 	/* Slab_pad_check fixes things up after itself */
978 	slab_pad_check(s, page);
979 	return 1;
980 }
981 
982 /*
983  * Determine if a certain object on a page is on the freelist. Must hold the
984  * slab lock to guarantee that the chains are in a consistent state.
985  */
986 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
987 {
988 	int nr = 0;
989 	void *fp;
990 	void *object = NULL;
991 	int max_objects;
992 
993 	fp = page->freelist;
994 	while (fp && nr <= page->objects) {
995 		if (fp == search)
996 			return 1;
997 		if (!check_valid_pointer(s, page, fp)) {
998 			if (object) {
999 				object_err(s, page, object,
1000 					"Freechain corrupt");
1001 				set_freepointer(s, object, NULL);
1002 			} else {
1003 				slab_err(s, page, "Freepointer corrupt");
1004 				page->freelist = NULL;
1005 				page->inuse = page->objects;
1006 				slab_fix(s, "Freelist cleared");
1007 				return 0;
1008 			}
1009 			break;
1010 		}
1011 		object = fp;
1012 		fp = get_freepointer(s, object);
1013 		nr++;
1014 	}
1015 
1016 	max_objects = order_objects(compound_order(page), s->size);
1017 	if (max_objects > MAX_OBJS_PER_PAGE)
1018 		max_objects = MAX_OBJS_PER_PAGE;
1019 
1020 	if (page->objects != max_objects) {
1021 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1022 			 page->objects, max_objects);
1023 		page->objects = max_objects;
1024 		slab_fix(s, "Number of objects adjusted.");
1025 	}
1026 	if (page->inuse != page->objects - nr) {
1027 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1028 			 page->inuse, page->objects - nr);
1029 		page->inuse = page->objects - nr;
1030 		slab_fix(s, "Object count adjusted.");
1031 	}
1032 	return search == NULL;
1033 }
1034 
1035 static void trace(struct kmem_cache *s, struct page *page, void *object,
1036 								int alloc)
1037 {
1038 	if (s->flags & SLAB_TRACE) {
1039 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1040 			s->name,
1041 			alloc ? "alloc" : "free",
1042 			object, page->inuse,
1043 			page->freelist);
1044 
1045 		if (!alloc)
1046 			print_section(KERN_INFO, "Object ", (void *)object,
1047 					s->object_size);
1048 
1049 		dump_stack();
1050 	}
1051 }
1052 
1053 /*
1054  * Tracking of fully allocated slabs for debugging purposes.
1055  */
1056 static void add_full(struct kmem_cache *s,
1057 	struct kmem_cache_node *n, struct page *page)
1058 {
1059 	if (!(s->flags & SLAB_STORE_USER))
1060 		return;
1061 
1062 	lockdep_assert_held(&n->list_lock);
1063 	list_add(&page->slab_list, &n->full);
1064 }
1065 
1066 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1067 {
1068 	if (!(s->flags & SLAB_STORE_USER))
1069 		return;
1070 
1071 	lockdep_assert_held(&n->list_lock);
1072 	list_del(&page->slab_list);
1073 }
1074 
1075 /* Tracking of the number of slabs for debugging purposes */
1076 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1077 {
1078 	struct kmem_cache_node *n = get_node(s, node);
1079 
1080 	return atomic_long_read(&n->nr_slabs);
1081 }
1082 
1083 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1084 {
1085 	return atomic_long_read(&n->nr_slabs);
1086 }
1087 
1088 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1089 {
1090 	struct kmem_cache_node *n = get_node(s, node);
1091 
1092 	/*
1093 	 * May be called early in order to allocate a slab for the
1094 	 * kmem_cache_node structure. Solve the chicken-egg
1095 	 * dilemma by deferring the increment of the count during
1096 	 * bootstrap (see early_kmem_cache_node_alloc).
1097 	 */
1098 	if (likely(n)) {
1099 		atomic_long_inc(&n->nr_slabs);
1100 		atomic_long_add(objects, &n->total_objects);
1101 	}
1102 }
1103 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1104 {
1105 	struct kmem_cache_node *n = get_node(s, node);
1106 
1107 	atomic_long_dec(&n->nr_slabs);
1108 	atomic_long_sub(objects, &n->total_objects);
1109 }
1110 
1111 /* Object debug checks for alloc/free paths */
1112 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1113 								void *object)
1114 {
1115 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1116 		return;
1117 
1118 	init_object(s, object, SLUB_RED_INACTIVE);
1119 	init_tracking(s, object);
1120 }
1121 
1122 static
1123 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1124 {
1125 	if (!(s->flags & SLAB_POISON))
1126 		return;
1127 
1128 	metadata_access_enable();
1129 	memset(addr, POISON_INUSE, page_size(page));
1130 	metadata_access_disable();
1131 }
1132 
1133 static inline int alloc_consistency_checks(struct kmem_cache *s,
1134 					struct page *page, void *object)
1135 {
1136 	if (!check_slab(s, page))
1137 		return 0;
1138 
1139 	if (!check_valid_pointer(s, page, object)) {
1140 		object_err(s, page, object, "Freelist Pointer check fails");
1141 		return 0;
1142 	}
1143 
1144 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1145 		return 0;
1146 
1147 	return 1;
1148 }
1149 
1150 static noinline int alloc_debug_processing(struct kmem_cache *s,
1151 					struct page *page,
1152 					void *object, unsigned long addr)
1153 {
1154 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1155 		if (!alloc_consistency_checks(s, page, object))
1156 			goto bad;
1157 	}
1158 
1159 	/* Success perform special debug activities for allocs */
1160 	if (s->flags & SLAB_STORE_USER)
1161 		set_track(s, object, TRACK_ALLOC, addr);
1162 	trace(s, page, object, 1);
1163 	init_object(s, object, SLUB_RED_ACTIVE);
1164 	return 1;
1165 
1166 bad:
1167 	if (PageSlab(page)) {
1168 		/*
1169 		 * If this is a slab page then lets do the best we can
1170 		 * to avoid issues in the future. Marking all objects
1171 		 * as used avoids touching the remaining objects.
1172 		 */
1173 		slab_fix(s, "Marking all objects used");
1174 		page->inuse = page->objects;
1175 		page->freelist = NULL;
1176 	}
1177 	return 0;
1178 }
1179 
1180 static inline int free_consistency_checks(struct kmem_cache *s,
1181 		struct page *page, void *object, unsigned long addr)
1182 {
1183 	if (!check_valid_pointer(s, page, object)) {
1184 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1185 		return 0;
1186 	}
1187 
1188 	if (on_freelist(s, page, object)) {
1189 		object_err(s, page, object, "Object already free");
1190 		return 0;
1191 	}
1192 
1193 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1194 		return 0;
1195 
1196 	if (unlikely(s != page->slab_cache)) {
1197 		if (!PageSlab(page)) {
1198 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1199 				 object);
1200 		} else if (!page->slab_cache) {
1201 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1202 			       object);
1203 			dump_stack();
1204 		} else
1205 			object_err(s, page, object,
1206 					"page slab pointer corrupt.");
1207 		return 0;
1208 	}
1209 	return 1;
1210 }
1211 
1212 /* Supports checking bulk free of a constructed freelist */
1213 static noinline int free_debug_processing(
1214 	struct kmem_cache *s, struct page *page,
1215 	void *head, void *tail, int bulk_cnt,
1216 	unsigned long addr)
1217 {
1218 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1219 	void *object = head;
1220 	int cnt = 0;
1221 	unsigned long uninitialized_var(flags);
1222 	int ret = 0;
1223 
1224 	spin_lock_irqsave(&n->list_lock, flags);
1225 	slab_lock(page);
1226 
1227 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1228 		if (!check_slab(s, page))
1229 			goto out;
1230 	}
1231 
1232 next_object:
1233 	cnt++;
1234 
1235 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1236 		if (!free_consistency_checks(s, page, object, addr))
1237 			goto out;
1238 	}
1239 
1240 	if (s->flags & SLAB_STORE_USER)
1241 		set_track(s, object, TRACK_FREE, addr);
1242 	trace(s, page, object, 0);
1243 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1244 	init_object(s, object, SLUB_RED_INACTIVE);
1245 
1246 	/* Reached end of constructed freelist yet? */
1247 	if (object != tail) {
1248 		object = get_freepointer(s, object);
1249 		goto next_object;
1250 	}
1251 	ret = 1;
1252 
1253 out:
1254 	if (cnt != bulk_cnt)
1255 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1256 			 bulk_cnt, cnt);
1257 
1258 	slab_unlock(page);
1259 	spin_unlock_irqrestore(&n->list_lock, flags);
1260 	if (!ret)
1261 		slab_fix(s, "Object at 0x%p not freed", object);
1262 	return ret;
1263 }
1264 
1265 static int __init setup_slub_debug(char *str)
1266 {
1267 	slub_debug = DEBUG_DEFAULT_FLAGS;
1268 	if (*str++ != '=' || !*str)
1269 		/*
1270 		 * No options specified. Switch on full debugging.
1271 		 */
1272 		goto out;
1273 
1274 	if (*str == ',')
1275 		/*
1276 		 * No options but restriction on slabs. This means full
1277 		 * debugging for slabs matching a pattern.
1278 		 */
1279 		goto check_slabs;
1280 
1281 	slub_debug = 0;
1282 	if (*str == '-')
1283 		/*
1284 		 * Switch off all debugging measures.
1285 		 */
1286 		goto out;
1287 
1288 	/*
1289 	 * Determine which debug features should be switched on
1290 	 */
1291 	for (; *str && *str != ','; str++) {
1292 		switch (tolower(*str)) {
1293 		case 'f':
1294 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1295 			break;
1296 		case 'z':
1297 			slub_debug |= SLAB_RED_ZONE;
1298 			break;
1299 		case 'p':
1300 			slub_debug |= SLAB_POISON;
1301 			break;
1302 		case 'u':
1303 			slub_debug |= SLAB_STORE_USER;
1304 			break;
1305 		case 't':
1306 			slub_debug |= SLAB_TRACE;
1307 			break;
1308 		case 'a':
1309 			slub_debug |= SLAB_FAILSLAB;
1310 			break;
1311 		case 'o':
1312 			/*
1313 			 * Avoid enabling debugging on caches if its minimum
1314 			 * order would increase as a result.
1315 			 */
1316 			disable_higher_order_debug = 1;
1317 			break;
1318 		default:
1319 			pr_err("slub_debug option '%c' unknown. skipped\n",
1320 			       *str);
1321 		}
1322 	}
1323 
1324 check_slabs:
1325 	if (*str == ',')
1326 		slub_debug_slabs = str + 1;
1327 out:
1328 	if ((static_branch_unlikely(&init_on_alloc) ||
1329 	     static_branch_unlikely(&init_on_free)) &&
1330 	    (slub_debug & SLAB_POISON))
1331 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1332 	return 1;
1333 }
1334 
1335 __setup("slub_debug", setup_slub_debug);
1336 
1337 /*
1338  * kmem_cache_flags - apply debugging options to the cache
1339  * @object_size:	the size of an object without meta data
1340  * @flags:		flags to set
1341  * @name:		name of the cache
1342  * @ctor:		constructor function
1343  *
1344  * Debug option(s) are applied to @flags. In addition to the debug
1345  * option(s), if a slab name (or multiple) is specified i.e.
1346  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1347  * then only the select slabs will receive the debug option(s).
1348  */
1349 slab_flags_t kmem_cache_flags(unsigned int object_size,
1350 	slab_flags_t flags, const char *name,
1351 	void (*ctor)(void *))
1352 {
1353 	char *iter;
1354 	size_t len;
1355 
1356 	/* If slub_debug = 0, it folds into the if conditional. */
1357 	if (!slub_debug_slabs)
1358 		return flags | slub_debug;
1359 
1360 	len = strlen(name);
1361 	iter = slub_debug_slabs;
1362 	while (*iter) {
1363 		char *end, *glob;
1364 		size_t cmplen;
1365 
1366 		end = strchrnul(iter, ',');
1367 
1368 		glob = strnchr(iter, end - iter, '*');
1369 		if (glob)
1370 			cmplen = glob - iter;
1371 		else
1372 			cmplen = max_t(size_t, len, (end - iter));
1373 
1374 		if (!strncmp(name, iter, cmplen)) {
1375 			flags |= slub_debug;
1376 			break;
1377 		}
1378 
1379 		if (!*end)
1380 			break;
1381 		iter = end + 1;
1382 	}
1383 
1384 	return flags;
1385 }
1386 #else /* !CONFIG_SLUB_DEBUG */
1387 static inline void setup_object_debug(struct kmem_cache *s,
1388 			struct page *page, void *object) {}
1389 static inline
1390 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1391 
1392 static inline int alloc_debug_processing(struct kmem_cache *s,
1393 	struct page *page, void *object, unsigned long addr) { return 0; }
1394 
1395 static inline int free_debug_processing(
1396 	struct kmem_cache *s, struct page *page,
1397 	void *head, void *tail, int bulk_cnt,
1398 	unsigned long addr) { return 0; }
1399 
1400 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1401 			{ return 1; }
1402 static inline int check_object(struct kmem_cache *s, struct page *page,
1403 			void *object, u8 val) { return 1; }
1404 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1405 					struct page *page) {}
1406 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1407 					struct page *page) {}
1408 slab_flags_t kmem_cache_flags(unsigned int object_size,
1409 	slab_flags_t flags, const char *name,
1410 	void (*ctor)(void *))
1411 {
1412 	return flags;
1413 }
1414 #define slub_debug 0
1415 
1416 #define disable_higher_order_debug 0
1417 
1418 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1419 							{ return 0; }
1420 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1421 							{ return 0; }
1422 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1423 							int objects) {}
1424 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1425 							int objects) {}
1426 
1427 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1428 			       void *freelist, void *nextfree)
1429 {
1430 	return false;
1431 }
1432 #endif /* CONFIG_SLUB_DEBUG */
1433 
1434 /*
1435  * Hooks for other subsystems that check memory allocations. In a typical
1436  * production configuration these hooks all should produce no code at all.
1437  */
1438 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1439 {
1440 	ptr = kasan_kmalloc_large(ptr, size, flags);
1441 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1442 	kmemleak_alloc(ptr, size, 1, flags);
1443 	return ptr;
1444 }
1445 
1446 static __always_inline void kfree_hook(void *x)
1447 {
1448 	kmemleak_free(x);
1449 	kasan_kfree_large(x, _RET_IP_);
1450 }
1451 
1452 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1453 {
1454 	kmemleak_free_recursive(x, s->flags);
1455 
1456 	/*
1457 	 * Trouble is that we may no longer disable interrupts in the fast path
1458 	 * So in order to make the debug calls that expect irqs to be
1459 	 * disabled we need to disable interrupts temporarily.
1460 	 */
1461 #ifdef CONFIG_LOCKDEP
1462 	{
1463 		unsigned long flags;
1464 
1465 		local_irq_save(flags);
1466 		debug_check_no_locks_freed(x, s->object_size);
1467 		local_irq_restore(flags);
1468 	}
1469 #endif
1470 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1471 		debug_check_no_obj_freed(x, s->object_size);
1472 
1473 	/* KASAN might put x into memory quarantine, delaying its reuse */
1474 	return kasan_slab_free(s, x, _RET_IP_);
1475 }
1476 
1477 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1478 					   void **head, void **tail)
1479 {
1480 
1481 	void *object;
1482 	void *next = *head;
1483 	void *old_tail = *tail ? *tail : *head;
1484 	int rsize;
1485 
1486 	/* Head and tail of the reconstructed freelist */
1487 	*head = NULL;
1488 	*tail = NULL;
1489 
1490 	do {
1491 		object = next;
1492 		next = get_freepointer(s, object);
1493 
1494 		if (slab_want_init_on_free(s)) {
1495 			/*
1496 			 * Clear the object and the metadata, but don't touch
1497 			 * the redzone.
1498 			 */
1499 			memset(object, 0, s->object_size);
1500 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1501 							   : 0;
1502 			memset((char *)object + s->inuse, 0,
1503 			       s->size - s->inuse - rsize);
1504 
1505 		}
1506 		/* If object's reuse doesn't have to be delayed */
1507 		if (!slab_free_hook(s, object)) {
1508 			/* Move object to the new freelist */
1509 			set_freepointer(s, object, *head);
1510 			*head = object;
1511 			if (!*tail)
1512 				*tail = object;
1513 		}
1514 	} while (object != old_tail);
1515 
1516 	if (*head == *tail)
1517 		*tail = NULL;
1518 
1519 	return *head != NULL;
1520 }
1521 
1522 static void *setup_object(struct kmem_cache *s, struct page *page,
1523 				void *object)
1524 {
1525 	setup_object_debug(s, page, object);
1526 	object = kasan_init_slab_obj(s, object);
1527 	if (unlikely(s->ctor)) {
1528 		kasan_unpoison_object_data(s, object);
1529 		s->ctor(object);
1530 		kasan_poison_object_data(s, object);
1531 	}
1532 	return object;
1533 }
1534 
1535 /*
1536  * Slab allocation and freeing
1537  */
1538 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1539 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1540 {
1541 	struct page *page;
1542 	unsigned int order = oo_order(oo);
1543 
1544 	if (node == NUMA_NO_NODE)
1545 		page = alloc_pages(flags, order);
1546 	else
1547 		page = __alloc_pages_node(node, flags, order);
1548 
1549 	if (page && charge_slab_page(page, flags, order, s)) {
1550 		__free_pages(page, order);
1551 		page = NULL;
1552 	}
1553 
1554 	return page;
1555 }
1556 
1557 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1558 /* Pre-initialize the random sequence cache */
1559 static int init_cache_random_seq(struct kmem_cache *s)
1560 {
1561 	unsigned int count = oo_objects(s->oo);
1562 	int err;
1563 
1564 	/* Bailout if already initialised */
1565 	if (s->random_seq)
1566 		return 0;
1567 
1568 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1569 	if (err) {
1570 		pr_err("SLUB: Unable to initialize free list for %s\n",
1571 			s->name);
1572 		return err;
1573 	}
1574 
1575 	/* Transform to an offset on the set of pages */
1576 	if (s->random_seq) {
1577 		unsigned int i;
1578 
1579 		for (i = 0; i < count; i++)
1580 			s->random_seq[i] *= s->size;
1581 	}
1582 	return 0;
1583 }
1584 
1585 /* Initialize each random sequence freelist per cache */
1586 static void __init init_freelist_randomization(void)
1587 {
1588 	struct kmem_cache *s;
1589 
1590 	mutex_lock(&slab_mutex);
1591 
1592 	list_for_each_entry(s, &slab_caches, list)
1593 		init_cache_random_seq(s);
1594 
1595 	mutex_unlock(&slab_mutex);
1596 }
1597 
1598 /* Get the next entry on the pre-computed freelist randomized */
1599 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1600 				unsigned long *pos, void *start,
1601 				unsigned long page_limit,
1602 				unsigned long freelist_count)
1603 {
1604 	unsigned int idx;
1605 
1606 	/*
1607 	 * If the target page allocation failed, the number of objects on the
1608 	 * page might be smaller than the usual size defined by the cache.
1609 	 */
1610 	do {
1611 		idx = s->random_seq[*pos];
1612 		*pos += 1;
1613 		if (*pos >= freelist_count)
1614 			*pos = 0;
1615 	} while (unlikely(idx >= page_limit));
1616 
1617 	return (char *)start + idx;
1618 }
1619 
1620 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1621 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1622 {
1623 	void *start;
1624 	void *cur;
1625 	void *next;
1626 	unsigned long idx, pos, page_limit, freelist_count;
1627 
1628 	if (page->objects < 2 || !s->random_seq)
1629 		return false;
1630 
1631 	freelist_count = oo_objects(s->oo);
1632 	pos = get_random_int() % freelist_count;
1633 
1634 	page_limit = page->objects * s->size;
1635 	start = fixup_red_left(s, page_address(page));
1636 
1637 	/* First entry is used as the base of the freelist */
1638 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1639 				freelist_count);
1640 	cur = setup_object(s, page, cur);
1641 	page->freelist = cur;
1642 
1643 	for (idx = 1; idx < page->objects; idx++) {
1644 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1645 			freelist_count);
1646 		next = setup_object(s, page, next);
1647 		set_freepointer(s, cur, next);
1648 		cur = next;
1649 	}
1650 	set_freepointer(s, cur, NULL);
1651 
1652 	return true;
1653 }
1654 #else
1655 static inline int init_cache_random_seq(struct kmem_cache *s)
1656 {
1657 	return 0;
1658 }
1659 static inline void init_freelist_randomization(void) { }
1660 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1661 {
1662 	return false;
1663 }
1664 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1665 
1666 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1667 {
1668 	struct page *page;
1669 	struct kmem_cache_order_objects oo = s->oo;
1670 	gfp_t alloc_gfp;
1671 	void *start, *p, *next;
1672 	int idx;
1673 	bool shuffle;
1674 
1675 	flags &= gfp_allowed_mask;
1676 
1677 	if (gfpflags_allow_blocking(flags))
1678 		local_irq_enable();
1679 
1680 	flags |= s->allocflags;
1681 
1682 	/*
1683 	 * Let the initial higher-order allocation fail under memory pressure
1684 	 * so we fall-back to the minimum order allocation.
1685 	 */
1686 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1687 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1688 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1689 
1690 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1691 	if (unlikely(!page)) {
1692 		oo = s->min;
1693 		alloc_gfp = flags;
1694 		/*
1695 		 * Allocation may have failed due to fragmentation.
1696 		 * Try a lower order alloc if possible
1697 		 */
1698 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1699 		if (unlikely(!page))
1700 			goto out;
1701 		stat(s, ORDER_FALLBACK);
1702 	}
1703 
1704 	page->objects = oo_objects(oo);
1705 
1706 	page->slab_cache = s;
1707 	__SetPageSlab(page);
1708 	if (page_is_pfmemalloc(page))
1709 		SetPageSlabPfmemalloc(page);
1710 
1711 	kasan_poison_slab(page);
1712 
1713 	start = page_address(page);
1714 
1715 	setup_page_debug(s, page, start);
1716 
1717 	shuffle = shuffle_freelist(s, page);
1718 
1719 	if (!shuffle) {
1720 		start = fixup_red_left(s, start);
1721 		start = setup_object(s, page, start);
1722 		page->freelist = start;
1723 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1724 			next = p + s->size;
1725 			next = setup_object(s, page, next);
1726 			set_freepointer(s, p, next);
1727 			p = next;
1728 		}
1729 		set_freepointer(s, p, NULL);
1730 	}
1731 
1732 	page->inuse = page->objects;
1733 	page->frozen = 1;
1734 
1735 out:
1736 	if (gfpflags_allow_blocking(flags))
1737 		local_irq_disable();
1738 	if (!page)
1739 		return NULL;
1740 
1741 	inc_slabs_node(s, page_to_nid(page), page->objects);
1742 
1743 	return page;
1744 }
1745 
1746 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1747 {
1748 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1749 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1750 		flags &= ~GFP_SLAB_BUG_MASK;
1751 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1752 				invalid_mask, &invalid_mask, flags, &flags);
1753 		dump_stack();
1754 	}
1755 
1756 	return allocate_slab(s,
1757 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1758 }
1759 
1760 static void __free_slab(struct kmem_cache *s, struct page *page)
1761 {
1762 	int order = compound_order(page);
1763 	int pages = 1 << order;
1764 
1765 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1766 		void *p;
1767 
1768 		slab_pad_check(s, page);
1769 		for_each_object(p, s, page_address(page),
1770 						page->objects)
1771 			check_object(s, page, p, SLUB_RED_INACTIVE);
1772 	}
1773 
1774 	__ClearPageSlabPfmemalloc(page);
1775 	__ClearPageSlab(page);
1776 
1777 	page->mapping = NULL;
1778 	if (current->reclaim_state)
1779 		current->reclaim_state->reclaimed_slab += pages;
1780 	uncharge_slab_page(page, order, s);
1781 	__free_pages(page, order);
1782 }
1783 
1784 static void rcu_free_slab(struct rcu_head *h)
1785 {
1786 	struct page *page = container_of(h, struct page, rcu_head);
1787 
1788 	__free_slab(page->slab_cache, page);
1789 }
1790 
1791 static void free_slab(struct kmem_cache *s, struct page *page)
1792 {
1793 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1794 		call_rcu(&page->rcu_head, rcu_free_slab);
1795 	} else
1796 		__free_slab(s, page);
1797 }
1798 
1799 static void discard_slab(struct kmem_cache *s, struct page *page)
1800 {
1801 	dec_slabs_node(s, page_to_nid(page), page->objects);
1802 	free_slab(s, page);
1803 }
1804 
1805 /*
1806  * Management of partially allocated slabs.
1807  */
1808 static inline void
1809 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1810 {
1811 	n->nr_partial++;
1812 	if (tail == DEACTIVATE_TO_TAIL)
1813 		list_add_tail(&page->slab_list, &n->partial);
1814 	else
1815 		list_add(&page->slab_list, &n->partial);
1816 }
1817 
1818 static inline void add_partial(struct kmem_cache_node *n,
1819 				struct page *page, int tail)
1820 {
1821 	lockdep_assert_held(&n->list_lock);
1822 	__add_partial(n, page, tail);
1823 }
1824 
1825 static inline void remove_partial(struct kmem_cache_node *n,
1826 					struct page *page)
1827 {
1828 	lockdep_assert_held(&n->list_lock);
1829 	list_del(&page->slab_list);
1830 	n->nr_partial--;
1831 }
1832 
1833 /*
1834  * Remove slab from the partial list, freeze it and
1835  * return the pointer to the freelist.
1836  *
1837  * Returns a list of objects or NULL if it fails.
1838  */
1839 static inline void *acquire_slab(struct kmem_cache *s,
1840 		struct kmem_cache_node *n, struct page *page,
1841 		int mode, int *objects)
1842 {
1843 	void *freelist;
1844 	unsigned long counters;
1845 	struct page new;
1846 
1847 	lockdep_assert_held(&n->list_lock);
1848 
1849 	/*
1850 	 * Zap the freelist and set the frozen bit.
1851 	 * The old freelist is the list of objects for the
1852 	 * per cpu allocation list.
1853 	 */
1854 	freelist = page->freelist;
1855 	counters = page->counters;
1856 	new.counters = counters;
1857 	*objects = new.objects - new.inuse;
1858 	if (mode) {
1859 		new.inuse = page->objects;
1860 		new.freelist = NULL;
1861 	} else {
1862 		new.freelist = freelist;
1863 	}
1864 
1865 	VM_BUG_ON(new.frozen);
1866 	new.frozen = 1;
1867 
1868 	if (!__cmpxchg_double_slab(s, page,
1869 			freelist, counters,
1870 			new.freelist, new.counters,
1871 			"acquire_slab"))
1872 		return NULL;
1873 
1874 	remove_partial(n, page);
1875 	WARN_ON(!freelist);
1876 	return freelist;
1877 }
1878 
1879 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1880 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1881 
1882 /*
1883  * Try to allocate a partial slab from a specific node.
1884  */
1885 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1886 				struct kmem_cache_cpu *c, gfp_t flags)
1887 {
1888 	struct page *page, *page2;
1889 	void *object = NULL;
1890 	unsigned int available = 0;
1891 	int objects;
1892 
1893 	/*
1894 	 * Racy check. If we mistakenly see no partial slabs then we
1895 	 * just allocate an empty slab. If we mistakenly try to get a
1896 	 * partial slab and there is none available then get_partials()
1897 	 * will return NULL.
1898 	 */
1899 	if (!n || !n->nr_partial)
1900 		return NULL;
1901 
1902 	spin_lock(&n->list_lock);
1903 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1904 		void *t;
1905 
1906 		if (!pfmemalloc_match(page, flags))
1907 			continue;
1908 
1909 		t = acquire_slab(s, n, page, object == NULL, &objects);
1910 		if (!t)
1911 			break;
1912 
1913 		available += objects;
1914 		if (!object) {
1915 			c->page = page;
1916 			stat(s, ALLOC_FROM_PARTIAL);
1917 			object = t;
1918 		} else {
1919 			put_cpu_partial(s, page, 0);
1920 			stat(s, CPU_PARTIAL_NODE);
1921 		}
1922 		if (!kmem_cache_has_cpu_partial(s)
1923 			|| available > slub_cpu_partial(s) / 2)
1924 			break;
1925 
1926 	}
1927 	spin_unlock(&n->list_lock);
1928 	return object;
1929 }
1930 
1931 /*
1932  * Get a page from somewhere. Search in increasing NUMA distances.
1933  */
1934 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1935 		struct kmem_cache_cpu *c)
1936 {
1937 #ifdef CONFIG_NUMA
1938 	struct zonelist *zonelist;
1939 	struct zoneref *z;
1940 	struct zone *zone;
1941 	enum zone_type highest_zoneidx = gfp_zone(flags);
1942 	void *object;
1943 	unsigned int cpuset_mems_cookie;
1944 
1945 	/*
1946 	 * The defrag ratio allows a configuration of the tradeoffs between
1947 	 * inter node defragmentation and node local allocations. A lower
1948 	 * defrag_ratio increases the tendency to do local allocations
1949 	 * instead of attempting to obtain partial slabs from other nodes.
1950 	 *
1951 	 * If the defrag_ratio is set to 0 then kmalloc() always
1952 	 * returns node local objects. If the ratio is higher then kmalloc()
1953 	 * may return off node objects because partial slabs are obtained
1954 	 * from other nodes and filled up.
1955 	 *
1956 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1957 	 * (which makes defrag_ratio = 1000) then every (well almost)
1958 	 * allocation will first attempt to defrag slab caches on other nodes.
1959 	 * This means scanning over all nodes to look for partial slabs which
1960 	 * may be expensive if we do it every time we are trying to find a slab
1961 	 * with available objects.
1962 	 */
1963 	if (!s->remote_node_defrag_ratio ||
1964 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1965 		return NULL;
1966 
1967 	do {
1968 		cpuset_mems_cookie = read_mems_allowed_begin();
1969 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1970 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
1971 			struct kmem_cache_node *n;
1972 
1973 			n = get_node(s, zone_to_nid(zone));
1974 
1975 			if (n && cpuset_zone_allowed(zone, flags) &&
1976 					n->nr_partial > s->min_partial) {
1977 				object = get_partial_node(s, n, c, flags);
1978 				if (object) {
1979 					/*
1980 					 * Don't check read_mems_allowed_retry()
1981 					 * here - if mems_allowed was updated in
1982 					 * parallel, that was a harmless race
1983 					 * between allocation and the cpuset
1984 					 * update
1985 					 */
1986 					return object;
1987 				}
1988 			}
1989 		}
1990 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1991 #endif	/* CONFIG_NUMA */
1992 	return NULL;
1993 }
1994 
1995 /*
1996  * Get a partial page, lock it and return it.
1997  */
1998 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1999 		struct kmem_cache_cpu *c)
2000 {
2001 	void *object;
2002 	int searchnode = node;
2003 
2004 	if (node == NUMA_NO_NODE)
2005 		searchnode = numa_mem_id();
2006 
2007 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
2008 	if (object || node != NUMA_NO_NODE)
2009 		return object;
2010 
2011 	return get_any_partial(s, flags, c);
2012 }
2013 
2014 #ifdef CONFIG_PREEMPTION
2015 /*
2016  * Calculate the next globally unique transaction for disambiguation
2017  * during cmpxchg. The transactions start with the cpu number and are then
2018  * incremented by CONFIG_NR_CPUS.
2019  */
2020 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2021 #else
2022 /*
2023  * No preemption supported therefore also no need to check for
2024  * different cpus.
2025  */
2026 #define TID_STEP 1
2027 #endif
2028 
2029 static inline unsigned long next_tid(unsigned long tid)
2030 {
2031 	return tid + TID_STEP;
2032 }
2033 
2034 #ifdef SLUB_DEBUG_CMPXCHG
2035 static inline unsigned int tid_to_cpu(unsigned long tid)
2036 {
2037 	return tid % TID_STEP;
2038 }
2039 
2040 static inline unsigned long tid_to_event(unsigned long tid)
2041 {
2042 	return tid / TID_STEP;
2043 }
2044 #endif
2045 
2046 static inline unsigned int init_tid(int cpu)
2047 {
2048 	return cpu;
2049 }
2050 
2051 static inline void note_cmpxchg_failure(const char *n,
2052 		const struct kmem_cache *s, unsigned long tid)
2053 {
2054 #ifdef SLUB_DEBUG_CMPXCHG
2055 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2056 
2057 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2058 
2059 #ifdef CONFIG_PREEMPTION
2060 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2061 		pr_warn("due to cpu change %d -> %d\n",
2062 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2063 	else
2064 #endif
2065 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2066 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2067 			tid_to_event(tid), tid_to_event(actual_tid));
2068 	else
2069 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2070 			actual_tid, tid, next_tid(tid));
2071 #endif
2072 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2073 }
2074 
2075 static void init_kmem_cache_cpus(struct kmem_cache *s)
2076 {
2077 	int cpu;
2078 
2079 	for_each_possible_cpu(cpu)
2080 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2081 }
2082 
2083 /*
2084  * Remove the cpu slab
2085  */
2086 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2087 				void *freelist, struct kmem_cache_cpu *c)
2088 {
2089 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2090 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2091 	int lock = 0;
2092 	enum slab_modes l = M_NONE, m = M_NONE;
2093 	void *nextfree;
2094 	int tail = DEACTIVATE_TO_HEAD;
2095 	struct page new;
2096 	struct page old;
2097 
2098 	if (page->freelist) {
2099 		stat(s, DEACTIVATE_REMOTE_FREES);
2100 		tail = DEACTIVATE_TO_TAIL;
2101 	}
2102 
2103 	/*
2104 	 * Stage one: Free all available per cpu objects back
2105 	 * to the page freelist while it is still frozen. Leave the
2106 	 * last one.
2107 	 *
2108 	 * There is no need to take the list->lock because the page
2109 	 * is still frozen.
2110 	 */
2111 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2112 		void *prior;
2113 		unsigned long counters;
2114 
2115 		/*
2116 		 * If 'nextfree' is invalid, it is possible that the object at
2117 		 * 'freelist' is already corrupted.  So isolate all objects
2118 		 * starting at 'freelist'.
2119 		 */
2120 		if (freelist_corrupted(s, page, freelist, nextfree))
2121 			break;
2122 
2123 		do {
2124 			prior = page->freelist;
2125 			counters = page->counters;
2126 			set_freepointer(s, freelist, prior);
2127 			new.counters = counters;
2128 			new.inuse--;
2129 			VM_BUG_ON(!new.frozen);
2130 
2131 		} while (!__cmpxchg_double_slab(s, page,
2132 			prior, counters,
2133 			freelist, new.counters,
2134 			"drain percpu freelist"));
2135 
2136 		freelist = nextfree;
2137 	}
2138 
2139 	/*
2140 	 * Stage two: Ensure that the page is unfrozen while the
2141 	 * list presence reflects the actual number of objects
2142 	 * during unfreeze.
2143 	 *
2144 	 * We setup the list membership and then perform a cmpxchg
2145 	 * with the count. If there is a mismatch then the page
2146 	 * is not unfrozen but the page is on the wrong list.
2147 	 *
2148 	 * Then we restart the process which may have to remove
2149 	 * the page from the list that we just put it on again
2150 	 * because the number of objects in the slab may have
2151 	 * changed.
2152 	 */
2153 redo:
2154 
2155 	old.freelist = page->freelist;
2156 	old.counters = page->counters;
2157 	VM_BUG_ON(!old.frozen);
2158 
2159 	/* Determine target state of the slab */
2160 	new.counters = old.counters;
2161 	if (freelist) {
2162 		new.inuse--;
2163 		set_freepointer(s, freelist, old.freelist);
2164 		new.freelist = freelist;
2165 	} else
2166 		new.freelist = old.freelist;
2167 
2168 	new.frozen = 0;
2169 
2170 	if (!new.inuse && n->nr_partial >= s->min_partial)
2171 		m = M_FREE;
2172 	else if (new.freelist) {
2173 		m = M_PARTIAL;
2174 		if (!lock) {
2175 			lock = 1;
2176 			/*
2177 			 * Taking the spinlock removes the possibility
2178 			 * that acquire_slab() will see a slab page that
2179 			 * is frozen
2180 			 */
2181 			spin_lock(&n->list_lock);
2182 		}
2183 	} else {
2184 		m = M_FULL;
2185 		if (kmem_cache_debug(s) && !lock) {
2186 			lock = 1;
2187 			/*
2188 			 * This also ensures that the scanning of full
2189 			 * slabs from diagnostic functions will not see
2190 			 * any frozen slabs.
2191 			 */
2192 			spin_lock(&n->list_lock);
2193 		}
2194 	}
2195 
2196 	if (l != m) {
2197 		if (l == M_PARTIAL)
2198 			remove_partial(n, page);
2199 		else if (l == M_FULL)
2200 			remove_full(s, n, page);
2201 
2202 		if (m == M_PARTIAL)
2203 			add_partial(n, page, tail);
2204 		else if (m == M_FULL)
2205 			add_full(s, n, page);
2206 	}
2207 
2208 	l = m;
2209 	if (!__cmpxchg_double_slab(s, page,
2210 				old.freelist, old.counters,
2211 				new.freelist, new.counters,
2212 				"unfreezing slab"))
2213 		goto redo;
2214 
2215 	if (lock)
2216 		spin_unlock(&n->list_lock);
2217 
2218 	if (m == M_PARTIAL)
2219 		stat(s, tail);
2220 	else if (m == M_FULL)
2221 		stat(s, DEACTIVATE_FULL);
2222 	else if (m == M_FREE) {
2223 		stat(s, DEACTIVATE_EMPTY);
2224 		discard_slab(s, page);
2225 		stat(s, FREE_SLAB);
2226 	}
2227 
2228 	c->page = NULL;
2229 	c->freelist = NULL;
2230 }
2231 
2232 /*
2233  * Unfreeze all the cpu partial slabs.
2234  *
2235  * This function must be called with interrupts disabled
2236  * for the cpu using c (or some other guarantee must be there
2237  * to guarantee no concurrent accesses).
2238  */
2239 static void unfreeze_partials(struct kmem_cache *s,
2240 		struct kmem_cache_cpu *c)
2241 {
2242 #ifdef CONFIG_SLUB_CPU_PARTIAL
2243 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2244 	struct page *page, *discard_page = NULL;
2245 
2246 	while ((page = slub_percpu_partial(c))) {
2247 		struct page new;
2248 		struct page old;
2249 
2250 		slub_set_percpu_partial(c, page);
2251 
2252 		n2 = get_node(s, page_to_nid(page));
2253 		if (n != n2) {
2254 			if (n)
2255 				spin_unlock(&n->list_lock);
2256 
2257 			n = n2;
2258 			spin_lock(&n->list_lock);
2259 		}
2260 
2261 		do {
2262 
2263 			old.freelist = page->freelist;
2264 			old.counters = page->counters;
2265 			VM_BUG_ON(!old.frozen);
2266 
2267 			new.counters = old.counters;
2268 			new.freelist = old.freelist;
2269 
2270 			new.frozen = 0;
2271 
2272 		} while (!__cmpxchg_double_slab(s, page,
2273 				old.freelist, old.counters,
2274 				new.freelist, new.counters,
2275 				"unfreezing slab"));
2276 
2277 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2278 			page->next = discard_page;
2279 			discard_page = page;
2280 		} else {
2281 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2282 			stat(s, FREE_ADD_PARTIAL);
2283 		}
2284 	}
2285 
2286 	if (n)
2287 		spin_unlock(&n->list_lock);
2288 
2289 	while (discard_page) {
2290 		page = discard_page;
2291 		discard_page = discard_page->next;
2292 
2293 		stat(s, DEACTIVATE_EMPTY);
2294 		discard_slab(s, page);
2295 		stat(s, FREE_SLAB);
2296 	}
2297 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2298 }
2299 
2300 /*
2301  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2302  * partial page slot if available.
2303  *
2304  * If we did not find a slot then simply move all the partials to the
2305  * per node partial list.
2306  */
2307 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2308 {
2309 #ifdef CONFIG_SLUB_CPU_PARTIAL
2310 	struct page *oldpage;
2311 	int pages;
2312 	int pobjects;
2313 
2314 	preempt_disable();
2315 	do {
2316 		pages = 0;
2317 		pobjects = 0;
2318 		oldpage = this_cpu_read(s->cpu_slab->partial);
2319 
2320 		if (oldpage) {
2321 			pobjects = oldpage->pobjects;
2322 			pages = oldpage->pages;
2323 			if (drain && pobjects > slub_cpu_partial(s)) {
2324 				unsigned long flags;
2325 				/*
2326 				 * partial array is full. Move the existing
2327 				 * set to the per node partial list.
2328 				 */
2329 				local_irq_save(flags);
2330 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2331 				local_irq_restore(flags);
2332 				oldpage = NULL;
2333 				pobjects = 0;
2334 				pages = 0;
2335 				stat(s, CPU_PARTIAL_DRAIN);
2336 			}
2337 		}
2338 
2339 		pages++;
2340 		pobjects += page->objects - page->inuse;
2341 
2342 		page->pages = pages;
2343 		page->pobjects = pobjects;
2344 		page->next = oldpage;
2345 
2346 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2347 								!= oldpage);
2348 	if (unlikely(!slub_cpu_partial(s))) {
2349 		unsigned long flags;
2350 
2351 		local_irq_save(flags);
2352 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2353 		local_irq_restore(flags);
2354 	}
2355 	preempt_enable();
2356 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2357 }
2358 
2359 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2360 {
2361 	stat(s, CPUSLAB_FLUSH);
2362 	deactivate_slab(s, c->page, c->freelist, c);
2363 
2364 	c->tid = next_tid(c->tid);
2365 }
2366 
2367 /*
2368  * Flush cpu slab.
2369  *
2370  * Called from IPI handler with interrupts disabled.
2371  */
2372 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2373 {
2374 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2375 
2376 	if (c->page)
2377 		flush_slab(s, c);
2378 
2379 	unfreeze_partials(s, c);
2380 }
2381 
2382 static void flush_cpu_slab(void *d)
2383 {
2384 	struct kmem_cache *s = d;
2385 
2386 	__flush_cpu_slab(s, smp_processor_id());
2387 }
2388 
2389 static bool has_cpu_slab(int cpu, void *info)
2390 {
2391 	struct kmem_cache *s = info;
2392 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2393 
2394 	return c->page || slub_percpu_partial(c);
2395 }
2396 
2397 static void flush_all(struct kmem_cache *s)
2398 {
2399 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2400 }
2401 
2402 /*
2403  * Use the cpu notifier to insure that the cpu slabs are flushed when
2404  * necessary.
2405  */
2406 static int slub_cpu_dead(unsigned int cpu)
2407 {
2408 	struct kmem_cache *s;
2409 	unsigned long flags;
2410 
2411 	mutex_lock(&slab_mutex);
2412 	list_for_each_entry(s, &slab_caches, list) {
2413 		local_irq_save(flags);
2414 		__flush_cpu_slab(s, cpu);
2415 		local_irq_restore(flags);
2416 	}
2417 	mutex_unlock(&slab_mutex);
2418 	return 0;
2419 }
2420 
2421 /*
2422  * Check if the objects in a per cpu structure fit numa
2423  * locality expectations.
2424  */
2425 static inline int node_match(struct page *page, int node)
2426 {
2427 #ifdef CONFIG_NUMA
2428 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2429 		return 0;
2430 #endif
2431 	return 1;
2432 }
2433 
2434 #ifdef CONFIG_SLUB_DEBUG
2435 static int count_free(struct page *page)
2436 {
2437 	return page->objects - page->inuse;
2438 }
2439 
2440 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2441 {
2442 	return atomic_long_read(&n->total_objects);
2443 }
2444 #endif /* CONFIG_SLUB_DEBUG */
2445 
2446 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2447 static unsigned long count_partial(struct kmem_cache_node *n,
2448 					int (*get_count)(struct page *))
2449 {
2450 	unsigned long flags;
2451 	unsigned long x = 0;
2452 	struct page *page;
2453 
2454 	spin_lock_irqsave(&n->list_lock, flags);
2455 	list_for_each_entry(page, &n->partial, slab_list)
2456 		x += get_count(page);
2457 	spin_unlock_irqrestore(&n->list_lock, flags);
2458 	return x;
2459 }
2460 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2461 
2462 static noinline void
2463 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2464 {
2465 #ifdef CONFIG_SLUB_DEBUG
2466 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2467 				      DEFAULT_RATELIMIT_BURST);
2468 	int node;
2469 	struct kmem_cache_node *n;
2470 
2471 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2472 		return;
2473 
2474 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2475 		nid, gfpflags, &gfpflags);
2476 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2477 		s->name, s->object_size, s->size, oo_order(s->oo),
2478 		oo_order(s->min));
2479 
2480 	if (oo_order(s->min) > get_order(s->object_size))
2481 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2482 			s->name);
2483 
2484 	for_each_kmem_cache_node(s, node, n) {
2485 		unsigned long nr_slabs;
2486 		unsigned long nr_objs;
2487 		unsigned long nr_free;
2488 
2489 		nr_free  = count_partial(n, count_free);
2490 		nr_slabs = node_nr_slabs(n);
2491 		nr_objs  = node_nr_objs(n);
2492 
2493 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2494 			node, nr_slabs, nr_objs, nr_free);
2495 	}
2496 #endif
2497 }
2498 
2499 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2500 			int node, struct kmem_cache_cpu **pc)
2501 {
2502 	void *freelist;
2503 	struct kmem_cache_cpu *c = *pc;
2504 	struct page *page;
2505 
2506 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2507 
2508 	freelist = get_partial(s, flags, node, c);
2509 
2510 	if (freelist)
2511 		return freelist;
2512 
2513 	page = new_slab(s, flags, node);
2514 	if (page) {
2515 		c = raw_cpu_ptr(s->cpu_slab);
2516 		if (c->page)
2517 			flush_slab(s, c);
2518 
2519 		/*
2520 		 * No other reference to the page yet so we can
2521 		 * muck around with it freely without cmpxchg
2522 		 */
2523 		freelist = page->freelist;
2524 		page->freelist = NULL;
2525 
2526 		stat(s, ALLOC_SLAB);
2527 		c->page = page;
2528 		*pc = c;
2529 	}
2530 
2531 	return freelist;
2532 }
2533 
2534 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2535 {
2536 	if (unlikely(PageSlabPfmemalloc(page)))
2537 		return gfp_pfmemalloc_allowed(gfpflags);
2538 
2539 	return true;
2540 }
2541 
2542 /*
2543  * Check the page->freelist of a page and either transfer the freelist to the
2544  * per cpu freelist or deactivate the page.
2545  *
2546  * The page is still frozen if the return value is not NULL.
2547  *
2548  * If this function returns NULL then the page has been unfrozen.
2549  *
2550  * This function must be called with interrupt disabled.
2551  */
2552 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2553 {
2554 	struct page new;
2555 	unsigned long counters;
2556 	void *freelist;
2557 
2558 	do {
2559 		freelist = page->freelist;
2560 		counters = page->counters;
2561 
2562 		new.counters = counters;
2563 		VM_BUG_ON(!new.frozen);
2564 
2565 		new.inuse = page->objects;
2566 		new.frozen = freelist != NULL;
2567 
2568 	} while (!__cmpxchg_double_slab(s, page,
2569 		freelist, counters,
2570 		NULL, new.counters,
2571 		"get_freelist"));
2572 
2573 	return freelist;
2574 }
2575 
2576 /*
2577  * Slow path. The lockless freelist is empty or we need to perform
2578  * debugging duties.
2579  *
2580  * Processing is still very fast if new objects have been freed to the
2581  * regular freelist. In that case we simply take over the regular freelist
2582  * as the lockless freelist and zap the regular freelist.
2583  *
2584  * If that is not working then we fall back to the partial lists. We take the
2585  * first element of the freelist as the object to allocate now and move the
2586  * rest of the freelist to the lockless freelist.
2587  *
2588  * And if we were unable to get a new slab from the partial slab lists then
2589  * we need to allocate a new slab. This is the slowest path since it involves
2590  * a call to the page allocator and the setup of a new slab.
2591  *
2592  * Version of __slab_alloc to use when we know that interrupts are
2593  * already disabled (which is the case for bulk allocation).
2594  */
2595 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2596 			  unsigned long addr, struct kmem_cache_cpu *c)
2597 {
2598 	void *freelist;
2599 	struct page *page;
2600 
2601 	page = c->page;
2602 	if (!page) {
2603 		/*
2604 		 * if the node is not online or has no normal memory, just
2605 		 * ignore the node constraint
2606 		 */
2607 		if (unlikely(node != NUMA_NO_NODE &&
2608 			     !node_state(node, N_NORMAL_MEMORY)))
2609 			node = NUMA_NO_NODE;
2610 		goto new_slab;
2611 	}
2612 redo:
2613 
2614 	if (unlikely(!node_match(page, node))) {
2615 		/*
2616 		 * same as above but node_match() being false already
2617 		 * implies node != NUMA_NO_NODE
2618 		 */
2619 		if (!node_state(node, N_NORMAL_MEMORY)) {
2620 			node = NUMA_NO_NODE;
2621 			goto redo;
2622 		} else {
2623 			stat(s, ALLOC_NODE_MISMATCH);
2624 			deactivate_slab(s, page, c->freelist, c);
2625 			goto new_slab;
2626 		}
2627 	}
2628 
2629 	/*
2630 	 * By rights, we should be searching for a slab page that was
2631 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2632 	 * information when the page leaves the per-cpu allocator
2633 	 */
2634 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2635 		deactivate_slab(s, page, c->freelist, c);
2636 		goto new_slab;
2637 	}
2638 
2639 	/* must check again c->freelist in case of cpu migration or IRQ */
2640 	freelist = c->freelist;
2641 	if (freelist)
2642 		goto load_freelist;
2643 
2644 	freelist = get_freelist(s, page);
2645 
2646 	if (!freelist) {
2647 		c->page = NULL;
2648 		stat(s, DEACTIVATE_BYPASS);
2649 		goto new_slab;
2650 	}
2651 
2652 	stat(s, ALLOC_REFILL);
2653 
2654 load_freelist:
2655 	/*
2656 	 * freelist is pointing to the list of objects to be used.
2657 	 * page is pointing to the page from which the objects are obtained.
2658 	 * That page must be frozen for per cpu allocations to work.
2659 	 */
2660 	VM_BUG_ON(!c->page->frozen);
2661 	c->freelist = get_freepointer(s, freelist);
2662 	c->tid = next_tid(c->tid);
2663 	return freelist;
2664 
2665 new_slab:
2666 
2667 	if (slub_percpu_partial(c)) {
2668 		page = c->page = slub_percpu_partial(c);
2669 		slub_set_percpu_partial(c, page);
2670 		stat(s, CPU_PARTIAL_ALLOC);
2671 		goto redo;
2672 	}
2673 
2674 	freelist = new_slab_objects(s, gfpflags, node, &c);
2675 
2676 	if (unlikely(!freelist)) {
2677 		slab_out_of_memory(s, gfpflags, node);
2678 		return NULL;
2679 	}
2680 
2681 	page = c->page;
2682 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2683 		goto load_freelist;
2684 
2685 	/* Only entered in the debug case */
2686 	if (kmem_cache_debug(s) &&
2687 			!alloc_debug_processing(s, page, freelist, addr))
2688 		goto new_slab;	/* Slab failed checks. Next slab needed */
2689 
2690 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2691 	return freelist;
2692 }
2693 
2694 /*
2695  * Another one that disabled interrupt and compensates for possible
2696  * cpu changes by refetching the per cpu area pointer.
2697  */
2698 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2699 			  unsigned long addr, struct kmem_cache_cpu *c)
2700 {
2701 	void *p;
2702 	unsigned long flags;
2703 
2704 	local_irq_save(flags);
2705 #ifdef CONFIG_PREEMPTION
2706 	/*
2707 	 * We may have been preempted and rescheduled on a different
2708 	 * cpu before disabling interrupts. Need to reload cpu area
2709 	 * pointer.
2710 	 */
2711 	c = this_cpu_ptr(s->cpu_slab);
2712 #endif
2713 
2714 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2715 	local_irq_restore(flags);
2716 	return p;
2717 }
2718 
2719 /*
2720  * If the object has been wiped upon free, make sure it's fully initialized by
2721  * zeroing out freelist pointer.
2722  */
2723 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2724 						   void *obj)
2725 {
2726 	if (unlikely(slab_want_init_on_free(s)) && obj)
2727 		memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2728 }
2729 
2730 /*
2731  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2732  * have the fastpath folded into their functions. So no function call
2733  * overhead for requests that can be satisfied on the fastpath.
2734  *
2735  * The fastpath works by first checking if the lockless freelist can be used.
2736  * If not then __slab_alloc is called for slow processing.
2737  *
2738  * Otherwise we can simply pick the next object from the lockless free list.
2739  */
2740 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2741 		gfp_t gfpflags, int node, unsigned long addr)
2742 {
2743 	void *object;
2744 	struct kmem_cache_cpu *c;
2745 	struct page *page;
2746 	unsigned long tid;
2747 
2748 	s = slab_pre_alloc_hook(s, gfpflags);
2749 	if (!s)
2750 		return NULL;
2751 redo:
2752 	/*
2753 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2754 	 * enabled. We may switch back and forth between cpus while
2755 	 * reading from one cpu area. That does not matter as long
2756 	 * as we end up on the original cpu again when doing the cmpxchg.
2757 	 *
2758 	 * We should guarantee that tid and kmem_cache are retrieved on
2759 	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2760 	 * to check if it is matched or not.
2761 	 */
2762 	do {
2763 		tid = this_cpu_read(s->cpu_slab->tid);
2764 		c = raw_cpu_ptr(s->cpu_slab);
2765 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2766 		 unlikely(tid != READ_ONCE(c->tid)));
2767 
2768 	/*
2769 	 * Irqless object alloc/free algorithm used here depends on sequence
2770 	 * of fetching cpu_slab's data. tid should be fetched before anything
2771 	 * on c to guarantee that object and page associated with previous tid
2772 	 * won't be used with current tid. If we fetch tid first, object and
2773 	 * page could be one associated with next tid and our alloc/free
2774 	 * request will be failed. In this case, we will retry. So, no problem.
2775 	 */
2776 	barrier();
2777 
2778 	/*
2779 	 * The transaction ids are globally unique per cpu and per operation on
2780 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2781 	 * occurs on the right processor and that there was no operation on the
2782 	 * linked list in between.
2783 	 */
2784 
2785 	object = c->freelist;
2786 	page = c->page;
2787 	if (unlikely(!object || !node_match(page, node))) {
2788 		object = __slab_alloc(s, gfpflags, node, addr, c);
2789 		stat(s, ALLOC_SLOWPATH);
2790 	} else {
2791 		void *next_object = get_freepointer_safe(s, object);
2792 
2793 		/*
2794 		 * The cmpxchg will only match if there was no additional
2795 		 * operation and if we are on the right processor.
2796 		 *
2797 		 * The cmpxchg does the following atomically (without lock
2798 		 * semantics!)
2799 		 * 1. Relocate first pointer to the current per cpu area.
2800 		 * 2. Verify that tid and freelist have not been changed
2801 		 * 3. If they were not changed replace tid and freelist
2802 		 *
2803 		 * Since this is without lock semantics the protection is only
2804 		 * against code executing on this cpu *not* from access by
2805 		 * other cpus.
2806 		 */
2807 		if (unlikely(!this_cpu_cmpxchg_double(
2808 				s->cpu_slab->freelist, s->cpu_slab->tid,
2809 				object, tid,
2810 				next_object, next_tid(tid)))) {
2811 
2812 			note_cmpxchg_failure("slab_alloc", s, tid);
2813 			goto redo;
2814 		}
2815 		prefetch_freepointer(s, next_object);
2816 		stat(s, ALLOC_FASTPATH);
2817 	}
2818 
2819 	maybe_wipe_obj_freeptr(s, object);
2820 
2821 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2822 		memset(object, 0, s->object_size);
2823 
2824 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2825 
2826 	return object;
2827 }
2828 
2829 static __always_inline void *slab_alloc(struct kmem_cache *s,
2830 		gfp_t gfpflags, unsigned long addr)
2831 {
2832 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2833 }
2834 
2835 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2836 {
2837 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2838 
2839 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2840 				s->size, gfpflags);
2841 
2842 	return ret;
2843 }
2844 EXPORT_SYMBOL(kmem_cache_alloc);
2845 
2846 #ifdef CONFIG_TRACING
2847 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2848 {
2849 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2850 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2851 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2852 	return ret;
2853 }
2854 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2855 #endif
2856 
2857 #ifdef CONFIG_NUMA
2858 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2859 {
2860 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2861 
2862 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2863 				    s->object_size, s->size, gfpflags, node);
2864 
2865 	return ret;
2866 }
2867 EXPORT_SYMBOL(kmem_cache_alloc_node);
2868 
2869 #ifdef CONFIG_TRACING
2870 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2871 				    gfp_t gfpflags,
2872 				    int node, size_t size)
2873 {
2874 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2875 
2876 	trace_kmalloc_node(_RET_IP_, ret,
2877 			   size, s->size, gfpflags, node);
2878 
2879 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2880 	return ret;
2881 }
2882 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2883 #endif
2884 #endif	/* CONFIG_NUMA */
2885 
2886 /*
2887  * Slow path handling. This may still be called frequently since objects
2888  * have a longer lifetime than the cpu slabs in most processing loads.
2889  *
2890  * So we still attempt to reduce cache line usage. Just take the slab
2891  * lock and free the item. If there is no additional partial page
2892  * handling required then we can return immediately.
2893  */
2894 static void __slab_free(struct kmem_cache *s, struct page *page,
2895 			void *head, void *tail, int cnt,
2896 			unsigned long addr)
2897 
2898 {
2899 	void *prior;
2900 	int was_frozen;
2901 	struct page new;
2902 	unsigned long counters;
2903 	struct kmem_cache_node *n = NULL;
2904 	unsigned long uninitialized_var(flags);
2905 
2906 	stat(s, FREE_SLOWPATH);
2907 
2908 	if (kmem_cache_debug(s) &&
2909 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2910 		return;
2911 
2912 	do {
2913 		if (unlikely(n)) {
2914 			spin_unlock_irqrestore(&n->list_lock, flags);
2915 			n = NULL;
2916 		}
2917 		prior = page->freelist;
2918 		counters = page->counters;
2919 		set_freepointer(s, tail, prior);
2920 		new.counters = counters;
2921 		was_frozen = new.frozen;
2922 		new.inuse -= cnt;
2923 		if ((!new.inuse || !prior) && !was_frozen) {
2924 
2925 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2926 
2927 				/*
2928 				 * Slab was on no list before and will be
2929 				 * partially empty
2930 				 * We can defer the list move and instead
2931 				 * freeze it.
2932 				 */
2933 				new.frozen = 1;
2934 
2935 			} else { /* Needs to be taken off a list */
2936 
2937 				n = get_node(s, page_to_nid(page));
2938 				/*
2939 				 * Speculatively acquire the list_lock.
2940 				 * If the cmpxchg does not succeed then we may
2941 				 * drop the list_lock without any processing.
2942 				 *
2943 				 * Otherwise the list_lock will synchronize with
2944 				 * other processors updating the list of slabs.
2945 				 */
2946 				spin_lock_irqsave(&n->list_lock, flags);
2947 
2948 			}
2949 		}
2950 
2951 	} while (!cmpxchg_double_slab(s, page,
2952 		prior, counters,
2953 		head, new.counters,
2954 		"__slab_free"));
2955 
2956 	if (likely(!n)) {
2957 
2958 		/*
2959 		 * If we just froze the page then put it onto the
2960 		 * per cpu partial list.
2961 		 */
2962 		if (new.frozen && !was_frozen) {
2963 			put_cpu_partial(s, page, 1);
2964 			stat(s, CPU_PARTIAL_FREE);
2965 		}
2966 		/*
2967 		 * The list lock was not taken therefore no list
2968 		 * activity can be necessary.
2969 		 */
2970 		if (was_frozen)
2971 			stat(s, FREE_FROZEN);
2972 		return;
2973 	}
2974 
2975 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2976 		goto slab_empty;
2977 
2978 	/*
2979 	 * Objects left in the slab. If it was not on the partial list before
2980 	 * then add it.
2981 	 */
2982 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2983 		remove_full(s, n, page);
2984 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2985 		stat(s, FREE_ADD_PARTIAL);
2986 	}
2987 	spin_unlock_irqrestore(&n->list_lock, flags);
2988 	return;
2989 
2990 slab_empty:
2991 	if (prior) {
2992 		/*
2993 		 * Slab on the partial list.
2994 		 */
2995 		remove_partial(n, page);
2996 		stat(s, FREE_REMOVE_PARTIAL);
2997 	} else {
2998 		/* Slab must be on the full list */
2999 		remove_full(s, n, page);
3000 	}
3001 
3002 	spin_unlock_irqrestore(&n->list_lock, flags);
3003 	stat(s, FREE_SLAB);
3004 	discard_slab(s, page);
3005 }
3006 
3007 /*
3008  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3009  * can perform fastpath freeing without additional function calls.
3010  *
3011  * The fastpath is only possible if we are freeing to the current cpu slab
3012  * of this processor. This typically the case if we have just allocated
3013  * the item before.
3014  *
3015  * If fastpath is not possible then fall back to __slab_free where we deal
3016  * with all sorts of special processing.
3017  *
3018  * Bulk free of a freelist with several objects (all pointing to the
3019  * same page) possible by specifying head and tail ptr, plus objects
3020  * count (cnt). Bulk free indicated by tail pointer being set.
3021  */
3022 static __always_inline void do_slab_free(struct kmem_cache *s,
3023 				struct page *page, void *head, void *tail,
3024 				int cnt, unsigned long addr)
3025 {
3026 	void *tail_obj = tail ? : head;
3027 	struct kmem_cache_cpu *c;
3028 	unsigned long tid;
3029 redo:
3030 	/*
3031 	 * Determine the currently cpus per cpu slab.
3032 	 * The cpu may change afterward. However that does not matter since
3033 	 * data is retrieved via this pointer. If we are on the same cpu
3034 	 * during the cmpxchg then the free will succeed.
3035 	 */
3036 	do {
3037 		tid = this_cpu_read(s->cpu_slab->tid);
3038 		c = raw_cpu_ptr(s->cpu_slab);
3039 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3040 		 unlikely(tid != READ_ONCE(c->tid)));
3041 
3042 	/* Same with comment on barrier() in slab_alloc_node() */
3043 	barrier();
3044 
3045 	if (likely(page == c->page)) {
3046 		void **freelist = READ_ONCE(c->freelist);
3047 
3048 		set_freepointer(s, tail_obj, freelist);
3049 
3050 		if (unlikely(!this_cpu_cmpxchg_double(
3051 				s->cpu_slab->freelist, s->cpu_slab->tid,
3052 				freelist, tid,
3053 				head, next_tid(tid)))) {
3054 
3055 			note_cmpxchg_failure("slab_free", s, tid);
3056 			goto redo;
3057 		}
3058 		stat(s, FREE_FASTPATH);
3059 	} else
3060 		__slab_free(s, page, head, tail_obj, cnt, addr);
3061 
3062 }
3063 
3064 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3065 				      void *head, void *tail, int cnt,
3066 				      unsigned long addr)
3067 {
3068 	/*
3069 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3070 	 * to remove objects, whose reuse must be delayed.
3071 	 */
3072 	if (slab_free_freelist_hook(s, &head, &tail))
3073 		do_slab_free(s, page, head, tail, cnt, addr);
3074 }
3075 
3076 #ifdef CONFIG_KASAN_GENERIC
3077 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3078 {
3079 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3080 }
3081 #endif
3082 
3083 void kmem_cache_free(struct kmem_cache *s, void *x)
3084 {
3085 	s = cache_from_obj(s, x);
3086 	if (!s)
3087 		return;
3088 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3089 	trace_kmem_cache_free(_RET_IP_, x);
3090 }
3091 EXPORT_SYMBOL(kmem_cache_free);
3092 
3093 struct detached_freelist {
3094 	struct page *page;
3095 	void *tail;
3096 	void *freelist;
3097 	int cnt;
3098 	struct kmem_cache *s;
3099 };
3100 
3101 /*
3102  * This function progressively scans the array with free objects (with
3103  * a limited look ahead) and extract objects belonging to the same
3104  * page.  It builds a detached freelist directly within the given
3105  * page/objects.  This can happen without any need for
3106  * synchronization, because the objects are owned by running process.
3107  * The freelist is build up as a single linked list in the objects.
3108  * The idea is, that this detached freelist can then be bulk
3109  * transferred to the real freelist(s), but only requiring a single
3110  * synchronization primitive.  Look ahead in the array is limited due
3111  * to performance reasons.
3112  */
3113 static inline
3114 int build_detached_freelist(struct kmem_cache *s, size_t size,
3115 			    void **p, struct detached_freelist *df)
3116 {
3117 	size_t first_skipped_index = 0;
3118 	int lookahead = 3;
3119 	void *object;
3120 	struct page *page;
3121 
3122 	/* Always re-init detached_freelist */
3123 	df->page = NULL;
3124 
3125 	do {
3126 		object = p[--size];
3127 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3128 	} while (!object && size);
3129 
3130 	if (!object)
3131 		return 0;
3132 
3133 	page = virt_to_head_page(object);
3134 	if (!s) {
3135 		/* Handle kalloc'ed objects */
3136 		if (unlikely(!PageSlab(page))) {
3137 			BUG_ON(!PageCompound(page));
3138 			kfree_hook(object);
3139 			__free_pages(page, compound_order(page));
3140 			p[size] = NULL; /* mark object processed */
3141 			return size;
3142 		}
3143 		/* Derive kmem_cache from object */
3144 		df->s = page->slab_cache;
3145 	} else {
3146 		df->s = cache_from_obj(s, object); /* Support for memcg */
3147 	}
3148 
3149 	/* Start new detached freelist */
3150 	df->page = page;
3151 	set_freepointer(df->s, object, NULL);
3152 	df->tail = object;
3153 	df->freelist = object;
3154 	p[size] = NULL; /* mark object processed */
3155 	df->cnt = 1;
3156 
3157 	while (size) {
3158 		object = p[--size];
3159 		if (!object)
3160 			continue; /* Skip processed objects */
3161 
3162 		/* df->page is always set at this point */
3163 		if (df->page == virt_to_head_page(object)) {
3164 			/* Opportunity build freelist */
3165 			set_freepointer(df->s, object, df->freelist);
3166 			df->freelist = object;
3167 			df->cnt++;
3168 			p[size] = NULL; /* mark object processed */
3169 
3170 			continue;
3171 		}
3172 
3173 		/* Limit look ahead search */
3174 		if (!--lookahead)
3175 			break;
3176 
3177 		if (!first_skipped_index)
3178 			first_skipped_index = size + 1;
3179 	}
3180 
3181 	return first_skipped_index;
3182 }
3183 
3184 /* Note that interrupts must be enabled when calling this function. */
3185 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3186 {
3187 	if (WARN_ON(!size))
3188 		return;
3189 
3190 	do {
3191 		struct detached_freelist df;
3192 
3193 		size = build_detached_freelist(s, size, p, &df);
3194 		if (!df.page)
3195 			continue;
3196 
3197 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3198 	} while (likely(size));
3199 }
3200 EXPORT_SYMBOL(kmem_cache_free_bulk);
3201 
3202 /* Note that interrupts must be enabled when calling this function. */
3203 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3204 			  void **p)
3205 {
3206 	struct kmem_cache_cpu *c;
3207 	int i;
3208 
3209 	/* memcg and kmem_cache debug support */
3210 	s = slab_pre_alloc_hook(s, flags);
3211 	if (unlikely(!s))
3212 		return false;
3213 	/*
3214 	 * Drain objects in the per cpu slab, while disabling local
3215 	 * IRQs, which protects against PREEMPT and interrupts
3216 	 * handlers invoking normal fastpath.
3217 	 */
3218 	local_irq_disable();
3219 	c = this_cpu_ptr(s->cpu_slab);
3220 
3221 	for (i = 0; i < size; i++) {
3222 		void *object = c->freelist;
3223 
3224 		if (unlikely(!object)) {
3225 			/*
3226 			 * We may have removed an object from c->freelist using
3227 			 * the fastpath in the previous iteration; in that case,
3228 			 * c->tid has not been bumped yet.
3229 			 * Since ___slab_alloc() may reenable interrupts while
3230 			 * allocating memory, we should bump c->tid now.
3231 			 */
3232 			c->tid = next_tid(c->tid);
3233 
3234 			/*
3235 			 * Invoking slow path likely have side-effect
3236 			 * of re-populating per CPU c->freelist
3237 			 */
3238 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3239 					    _RET_IP_, c);
3240 			if (unlikely(!p[i]))
3241 				goto error;
3242 
3243 			c = this_cpu_ptr(s->cpu_slab);
3244 			maybe_wipe_obj_freeptr(s, p[i]);
3245 
3246 			continue; /* goto for-loop */
3247 		}
3248 		c->freelist = get_freepointer(s, object);
3249 		p[i] = object;
3250 		maybe_wipe_obj_freeptr(s, p[i]);
3251 	}
3252 	c->tid = next_tid(c->tid);
3253 	local_irq_enable();
3254 
3255 	/* Clear memory outside IRQ disabled fastpath loop */
3256 	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3257 		int j;
3258 
3259 		for (j = 0; j < i; j++)
3260 			memset(p[j], 0, s->object_size);
3261 	}
3262 
3263 	/* memcg and kmem_cache debug support */
3264 	slab_post_alloc_hook(s, flags, size, p);
3265 	return i;
3266 error:
3267 	local_irq_enable();
3268 	slab_post_alloc_hook(s, flags, i, p);
3269 	__kmem_cache_free_bulk(s, i, p);
3270 	return 0;
3271 }
3272 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3273 
3274 
3275 /*
3276  * Object placement in a slab is made very easy because we always start at
3277  * offset 0. If we tune the size of the object to the alignment then we can
3278  * get the required alignment by putting one properly sized object after
3279  * another.
3280  *
3281  * Notice that the allocation order determines the sizes of the per cpu
3282  * caches. Each processor has always one slab available for allocations.
3283  * Increasing the allocation order reduces the number of times that slabs
3284  * must be moved on and off the partial lists and is therefore a factor in
3285  * locking overhead.
3286  */
3287 
3288 /*
3289  * Mininum / Maximum order of slab pages. This influences locking overhead
3290  * and slab fragmentation. A higher order reduces the number of partial slabs
3291  * and increases the number of allocations possible without having to
3292  * take the list_lock.
3293  */
3294 static unsigned int slub_min_order;
3295 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3296 static unsigned int slub_min_objects;
3297 
3298 /*
3299  * Calculate the order of allocation given an slab object size.
3300  *
3301  * The order of allocation has significant impact on performance and other
3302  * system components. Generally order 0 allocations should be preferred since
3303  * order 0 does not cause fragmentation in the page allocator. Larger objects
3304  * be problematic to put into order 0 slabs because there may be too much
3305  * unused space left. We go to a higher order if more than 1/16th of the slab
3306  * would be wasted.
3307  *
3308  * In order to reach satisfactory performance we must ensure that a minimum
3309  * number of objects is in one slab. Otherwise we may generate too much
3310  * activity on the partial lists which requires taking the list_lock. This is
3311  * less a concern for large slabs though which are rarely used.
3312  *
3313  * slub_max_order specifies the order where we begin to stop considering the
3314  * number of objects in a slab as critical. If we reach slub_max_order then
3315  * we try to keep the page order as low as possible. So we accept more waste
3316  * of space in favor of a small page order.
3317  *
3318  * Higher order allocations also allow the placement of more objects in a
3319  * slab and thereby reduce object handling overhead. If the user has
3320  * requested a higher mininum order then we start with that one instead of
3321  * the smallest order which will fit the object.
3322  */
3323 static inline unsigned int slab_order(unsigned int size,
3324 		unsigned int min_objects, unsigned int max_order,
3325 		unsigned int fract_leftover)
3326 {
3327 	unsigned int min_order = slub_min_order;
3328 	unsigned int order;
3329 
3330 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3331 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3332 
3333 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3334 			order <= max_order; order++) {
3335 
3336 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3337 		unsigned int rem;
3338 
3339 		rem = slab_size % size;
3340 
3341 		if (rem <= slab_size / fract_leftover)
3342 			break;
3343 	}
3344 
3345 	return order;
3346 }
3347 
3348 static inline int calculate_order(unsigned int size)
3349 {
3350 	unsigned int order;
3351 	unsigned int min_objects;
3352 	unsigned int max_objects;
3353 
3354 	/*
3355 	 * Attempt to find best configuration for a slab. This
3356 	 * works by first attempting to generate a layout with
3357 	 * the best configuration and backing off gradually.
3358 	 *
3359 	 * First we increase the acceptable waste in a slab. Then
3360 	 * we reduce the minimum objects required in a slab.
3361 	 */
3362 	min_objects = slub_min_objects;
3363 	if (!min_objects)
3364 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3365 	max_objects = order_objects(slub_max_order, size);
3366 	min_objects = min(min_objects, max_objects);
3367 
3368 	while (min_objects > 1) {
3369 		unsigned int fraction;
3370 
3371 		fraction = 16;
3372 		while (fraction >= 4) {
3373 			order = slab_order(size, min_objects,
3374 					slub_max_order, fraction);
3375 			if (order <= slub_max_order)
3376 				return order;
3377 			fraction /= 2;
3378 		}
3379 		min_objects--;
3380 	}
3381 
3382 	/*
3383 	 * We were unable to place multiple objects in a slab. Now
3384 	 * lets see if we can place a single object there.
3385 	 */
3386 	order = slab_order(size, 1, slub_max_order, 1);
3387 	if (order <= slub_max_order)
3388 		return order;
3389 
3390 	/*
3391 	 * Doh this slab cannot be placed using slub_max_order.
3392 	 */
3393 	order = slab_order(size, 1, MAX_ORDER, 1);
3394 	if (order < MAX_ORDER)
3395 		return order;
3396 	return -ENOSYS;
3397 }
3398 
3399 static void
3400 init_kmem_cache_node(struct kmem_cache_node *n)
3401 {
3402 	n->nr_partial = 0;
3403 	spin_lock_init(&n->list_lock);
3404 	INIT_LIST_HEAD(&n->partial);
3405 #ifdef CONFIG_SLUB_DEBUG
3406 	atomic_long_set(&n->nr_slabs, 0);
3407 	atomic_long_set(&n->total_objects, 0);
3408 	INIT_LIST_HEAD(&n->full);
3409 #endif
3410 }
3411 
3412 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3413 {
3414 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3415 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3416 
3417 	/*
3418 	 * Must align to double word boundary for the double cmpxchg
3419 	 * instructions to work; see __pcpu_double_call_return_bool().
3420 	 */
3421 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3422 				     2 * sizeof(void *));
3423 
3424 	if (!s->cpu_slab)
3425 		return 0;
3426 
3427 	init_kmem_cache_cpus(s);
3428 
3429 	return 1;
3430 }
3431 
3432 static struct kmem_cache *kmem_cache_node;
3433 
3434 /*
3435  * No kmalloc_node yet so do it by hand. We know that this is the first
3436  * slab on the node for this slabcache. There are no concurrent accesses
3437  * possible.
3438  *
3439  * Note that this function only works on the kmem_cache_node
3440  * when allocating for the kmem_cache_node. This is used for bootstrapping
3441  * memory on a fresh node that has no slab structures yet.
3442  */
3443 static void early_kmem_cache_node_alloc(int node)
3444 {
3445 	struct page *page;
3446 	struct kmem_cache_node *n;
3447 
3448 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3449 
3450 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3451 
3452 	BUG_ON(!page);
3453 	if (page_to_nid(page) != node) {
3454 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3455 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3456 	}
3457 
3458 	n = page->freelist;
3459 	BUG_ON(!n);
3460 #ifdef CONFIG_SLUB_DEBUG
3461 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3462 	init_tracking(kmem_cache_node, n);
3463 #endif
3464 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3465 		      GFP_KERNEL);
3466 	page->freelist = get_freepointer(kmem_cache_node, n);
3467 	page->inuse = 1;
3468 	page->frozen = 0;
3469 	kmem_cache_node->node[node] = n;
3470 	init_kmem_cache_node(n);
3471 	inc_slabs_node(kmem_cache_node, node, page->objects);
3472 
3473 	/*
3474 	 * No locks need to be taken here as it has just been
3475 	 * initialized and there is no concurrent access.
3476 	 */
3477 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3478 }
3479 
3480 static void free_kmem_cache_nodes(struct kmem_cache *s)
3481 {
3482 	int node;
3483 	struct kmem_cache_node *n;
3484 
3485 	for_each_kmem_cache_node(s, node, n) {
3486 		s->node[node] = NULL;
3487 		kmem_cache_free(kmem_cache_node, n);
3488 	}
3489 }
3490 
3491 void __kmem_cache_release(struct kmem_cache *s)
3492 {
3493 	cache_random_seq_destroy(s);
3494 	free_percpu(s->cpu_slab);
3495 	free_kmem_cache_nodes(s);
3496 }
3497 
3498 static int init_kmem_cache_nodes(struct kmem_cache *s)
3499 {
3500 	int node;
3501 
3502 	for_each_node_state(node, N_NORMAL_MEMORY) {
3503 		struct kmem_cache_node *n;
3504 
3505 		if (slab_state == DOWN) {
3506 			early_kmem_cache_node_alloc(node);
3507 			continue;
3508 		}
3509 		n = kmem_cache_alloc_node(kmem_cache_node,
3510 						GFP_KERNEL, node);
3511 
3512 		if (!n) {
3513 			free_kmem_cache_nodes(s);
3514 			return 0;
3515 		}
3516 
3517 		init_kmem_cache_node(n);
3518 		s->node[node] = n;
3519 	}
3520 	return 1;
3521 }
3522 
3523 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3524 {
3525 	if (min < MIN_PARTIAL)
3526 		min = MIN_PARTIAL;
3527 	else if (min > MAX_PARTIAL)
3528 		min = MAX_PARTIAL;
3529 	s->min_partial = min;
3530 }
3531 
3532 static void set_cpu_partial(struct kmem_cache *s)
3533 {
3534 #ifdef CONFIG_SLUB_CPU_PARTIAL
3535 	/*
3536 	 * cpu_partial determined the maximum number of objects kept in the
3537 	 * per cpu partial lists of a processor.
3538 	 *
3539 	 * Per cpu partial lists mainly contain slabs that just have one
3540 	 * object freed. If they are used for allocation then they can be
3541 	 * filled up again with minimal effort. The slab will never hit the
3542 	 * per node partial lists and therefore no locking will be required.
3543 	 *
3544 	 * This setting also determines
3545 	 *
3546 	 * A) The number of objects from per cpu partial slabs dumped to the
3547 	 *    per node list when we reach the limit.
3548 	 * B) The number of objects in cpu partial slabs to extract from the
3549 	 *    per node list when we run out of per cpu objects. We only fetch
3550 	 *    50% to keep some capacity around for frees.
3551 	 */
3552 	if (!kmem_cache_has_cpu_partial(s))
3553 		slub_set_cpu_partial(s, 0);
3554 	else if (s->size >= PAGE_SIZE)
3555 		slub_set_cpu_partial(s, 2);
3556 	else if (s->size >= 1024)
3557 		slub_set_cpu_partial(s, 6);
3558 	else if (s->size >= 256)
3559 		slub_set_cpu_partial(s, 13);
3560 	else
3561 		slub_set_cpu_partial(s, 30);
3562 #endif
3563 }
3564 
3565 /*
3566  * calculate_sizes() determines the order and the distribution of data within
3567  * a slab object.
3568  */
3569 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3570 {
3571 	slab_flags_t flags = s->flags;
3572 	unsigned int size = s->object_size;
3573 	unsigned int freepointer_area;
3574 	unsigned int order;
3575 
3576 	/*
3577 	 * Round up object size to the next word boundary. We can only
3578 	 * place the free pointer at word boundaries and this determines
3579 	 * the possible location of the free pointer.
3580 	 */
3581 	size = ALIGN(size, sizeof(void *));
3582 	/*
3583 	 * This is the area of the object where a freepointer can be
3584 	 * safely written. If redzoning adds more to the inuse size, we
3585 	 * can't use that portion for writing the freepointer, so
3586 	 * s->offset must be limited within this for the general case.
3587 	 */
3588 	freepointer_area = size;
3589 
3590 #ifdef CONFIG_SLUB_DEBUG
3591 	/*
3592 	 * Determine if we can poison the object itself. If the user of
3593 	 * the slab may touch the object after free or before allocation
3594 	 * then we should never poison the object itself.
3595 	 */
3596 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3597 			!s->ctor)
3598 		s->flags |= __OBJECT_POISON;
3599 	else
3600 		s->flags &= ~__OBJECT_POISON;
3601 
3602 
3603 	/*
3604 	 * If we are Redzoning then check if there is some space between the
3605 	 * end of the object and the free pointer. If not then add an
3606 	 * additional word to have some bytes to store Redzone information.
3607 	 */
3608 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3609 		size += sizeof(void *);
3610 #endif
3611 
3612 	/*
3613 	 * With that we have determined the number of bytes in actual use
3614 	 * by the object. This is the potential offset to the free pointer.
3615 	 */
3616 	s->inuse = size;
3617 
3618 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3619 		s->ctor)) {
3620 		/*
3621 		 * Relocate free pointer after the object if it is not
3622 		 * permitted to overwrite the first word of the object on
3623 		 * kmem_cache_free.
3624 		 *
3625 		 * This is the case if we do RCU, have a constructor or
3626 		 * destructor or are poisoning the objects.
3627 		 *
3628 		 * The assumption that s->offset >= s->inuse means free
3629 		 * pointer is outside of the object is used in the
3630 		 * freeptr_outside_object() function. If that is no
3631 		 * longer true, the function needs to be modified.
3632 		 */
3633 		s->offset = size;
3634 		size += sizeof(void *);
3635 	} else if (freepointer_area > sizeof(void *)) {
3636 		/*
3637 		 * Store freelist pointer near middle of object to keep
3638 		 * it away from the edges of the object to avoid small
3639 		 * sized over/underflows from neighboring allocations.
3640 		 */
3641 		s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
3642 	}
3643 
3644 #ifdef CONFIG_SLUB_DEBUG
3645 	if (flags & SLAB_STORE_USER)
3646 		/*
3647 		 * Need to store information about allocs and frees after
3648 		 * the object.
3649 		 */
3650 		size += 2 * sizeof(struct track);
3651 #endif
3652 
3653 	kasan_cache_create(s, &size, &s->flags);
3654 #ifdef CONFIG_SLUB_DEBUG
3655 	if (flags & SLAB_RED_ZONE) {
3656 		/*
3657 		 * Add some empty padding so that we can catch
3658 		 * overwrites from earlier objects rather than let
3659 		 * tracking information or the free pointer be
3660 		 * corrupted if a user writes before the start
3661 		 * of the object.
3662 		 */
3663 		size += sizeof(void *);
3664 
3665 		s->red_left_pad = sizeof(void *);
3666 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3667 		size += s->red_left_pad;
3668 	}
3669 #endif
3670 
3671 	/*
3672 	 * SLUB stores one object immediately after another beginning from
3673 	 * offset 0. In order to align the objects we have to simply size
3674 	 * each object to conform to the alignment.
3675 	 */
3676 	size = ALIGN(size, s->align);
3677 	s->size = size;
3678 	if (forced_order >= 0)
3679 		order = forced_order;
3680 	else
3681 		order = calculate_order(size);
3682 
3683 	if ((int)order < 0)
3684 		return 0;
3685 
3686 	s->allocflags = 0;
3687 	if (order)
3688 		s->allocflags |= __GFP_COMP;
3689 
3690 	if (s->flags & SLAB_CACHE_DMA)
3691 		s->allocflags |= GFP_DMA;
3692 
3693 	if (s->flags & SLAB_CACHE_DMA32)
3694 		s->allocflags |= GFP_DMA32;
3695 
3696 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3697 		s->allocflags |= __GFP_RECLAIMABLE;
3698 
3699 	/*
3700 	 * Determine the number of objects per slab
3701 	 */
3702 	s->oo = oo_make(order, size);
3703 	s->min = oo_make(get_order(size), size);
3704 	if (oo_objects(s->oo) > oo_objects(s->max))
3705 		s->max = s->oo;
3706 
3707 	return !!oo_objects(s->oo);
3708 }
3709 
3710 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3711 {
3712 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3713 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3714 	s->random = get_random_long();
3715 #endif
3716 
3717 	if (!calculate_sizes(s, -1))
3718 		goto error;
3719 	if (disable_higher_order_debug) {
3720 		/*
3721 		 * Disable debugging flags that store metadata if the min slab
3722 		 * order increased.
3723 		 */
3724 		if (get_order(s->size) > get_order(s->object_size)) {
3725 			s->flags &= ~DEBUG_METADATA_FLAGS;
3726 			s->offset = 0;
3727 			if (!calculate_sizes(s, -1))
3728 				goto error;
3729 		}
3730 	}
3731 
3732 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3733     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3734 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3735 		/* Enable fast mode */
3736 		s->flags |= __CMPXCHG_DOUBLE;
3737 #endif
3738 
3739 	/*
3740 	 * The larger the object size is, the more pages we want on the partial
3741 	 * list to avoid pounding the page allocator excessively.
3742 	 */
3743 	set_min_partial(s, ilog2(s->size) / 2);
3744 
3745 	set_cpu_partial(s);
3746 
3747 #ifdef CONFIG_NUMA
3748 	s->remote_node_defrag_ratio = 1000;
3749 #endif
3750 
3751 	/* Initialize the pre-computed randomized freelist if slab is up */
3752 	if (slab_state >= UP) {
3753 		if (init_cache_random_seq(s))
3754 			goto error;
3755 	}
3756 
3757 	if (!init_kmem_cache_nodes(s))
3758 		goto error;
3759 
3760 	if (alloc_kmem_cache_cpus(s))
3761 		return 0;
3762 
3763 	free_kmem_cache_nodes(s);
3764 error:
3765 	return -EINVAL;
3766 }
3767 
3768 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3769 			      const char *text)
3770 {
3771 #ifdef CONFIG_SLUB_DEBUG
3772 	void *addr = page_address(page);
3773 	unsigned long *map;
3774 	void *p;
3775 
3776 	slab_err(s, page, text, s->name);
3777 	slab_lock(page);
3778 
3779 	map = get_map(s, page);
3780 	for_each_object(p, s, addr, page->objects) {
3781 
3782 		if (!test_bit(slab_index(p, s, addr), map)) {
3783 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3784 			print_tracking(s, p);
3785 		}
3786 	}
3787 	put_map(map);
3788 	slab_unlock(page);
3789 #endif
3790 }
3791 
3792 /*
3793  * Attempt to free all partial slabs on a node.
3794  * This is called from __kmem_cache_shutdown(). We must take list_lock
3795  * because sysfs file might still access partial list after the shutdowning.
3796  */
3797 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3798 {
3799 	LIST_HEAD(discard);
3800 	struct page *page, *h;
3801 
3802 	BUG_ON(irqs_disabled());
3803 	spin_lock_irq(&n->list_lock);
3804 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3805 		if (!page->inuse) {
3806 			remove_partial(n, page);
3807 			list_add(&page->slab_list, &discard);
3808 		} else {
3809 			list_slab_objects(s, page,
3810 			  "Objects remaining in %s on __kmem_cache_shutdown()");
3811 		}
3812 	}
3813 	spin_unlock_irq(&n->list_lock);
3814 
3815 	list_for_each_entry_safe(page, h, &discard, slab_list)
3816 		discard_slab(s, page);
3817 }
3818 
3819 bool __kmem_cache_empty(struct kmem_cache *s)
3820 {
3821 	int node;
3822 	struct kmem_cache_node *n;
3823 
3824 	for_each_kmem_cache_node(s, node, n)
3825 		if (n->nr_partial || slabs_node(s, node))
3826 			return false;
3827 	return true;
3828 }
3829 
3830 /*
3831  * Release all resources used by a slab cache.
3832  */
3833 int __kmem_cache_shutdown(struct kmem_cache *s)
3834 {
3835 	int node;
3836 	struct kmem_cache_node *n;
3837 
3838 	flush_all(s);
3839 	/* Attempt to free all objects */
3840 	for_each_kmem_cache_node(s, node, n) {
3841 		free_partial(s, n);
3842 		if (n->nr_partial || slabs_node(s, node))
3843 			return 1;
3844 	}
3845 	sysfs_slab_remove(s);
3846 	return 0;
3847 }
3848 
3849 /********************************************************************
3850  *		Kmalloc subsystem
3851  *******************************************************************/
3852 
3853 static int __init setup_slub_min_order(char *str)
3854 {
3855 	get_option(&str, (int *)&slub_min_order);
3856 
3857 	return 1;
3858 }
3859 
3860 __setup("slub_min_order=", setup_slub_min_order);
3861 
3862 static int __init setup_slub_max_order(char *str)
3863 {
3864 	get_option(&str, (int *)&slub_max_order);
3865 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3866 
3867 	return 1;
3868 }
3869 
3870 __setup("slub_max_order=", setup_slub_max_order);
3871 
3872 static int __init setup_slub_min_objects(char *str)
3873 {
3874 	get_option(&str, (int *)&slub_min_objects);
3875 
3876 	return 1;
3877 }
3878 
3879 __setup("slub_min_objects=", setup_slub_min_objects);
3880 
3881 void *__kmalloc(size_t size, gfp_t flags)
3882 {
3883 	struct kmem_cache *s;
3884 	void *ret;
3885 
3886 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3887 		return kmalloc_large(size, flags);
3888 
3889 	s = kmalloc_slab(size, flags);
3890 
3891 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3892 		return s;
3893 
3894 	ret = slab_alloc(s, flags, _RET_IP_);
3895 
3896 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3897 
3898 	ret = kasan_kmalloc(s, ret, size, flags);
3899 
3900 	return ret;
3901 }
3902 EXPORT_SYMBOL(__kmalloc);
3903 
3904 #ifdef CONFIG_NUMA
3905 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3906 {
3907 	struct page *page;
3908 	void *ptr = NULL;
3909 	unsigned int order = get_order(size);
3910 
3911 	flags |= __GFP_COMP;
3912 	page = alloc_pages_node(node, flags, order);
3913 	if (page) {
3914 		ptr = page_address(page);
3915 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3916 				    1 << order);
3917 	}
3918 
3919 	return kmalloc_large_node_hook(ptr, size, flags);
3920 }
3921 
3922 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3923 {
3924 	struct kmem_cache *s;
3925 	void *ret;
3926 
3927 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3928 		ret = kmalloc_large_node(size, flags, node);
3929 
3930 		trace_kmalloc_node(_RET_IP_, ret,
3931 				   size, PAGE_SIZE << get_order(size),
3932 				   flags, node);
3933 
3934 		return ret;
3935 	}
3936 
3937 	s = kmalloc_slab(size, flags);
3938 
3939 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3940 		return s;
3941 
3942 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3943 
3944 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3945 
3946 	ret = kasan_kmalloc(s, ret, size, flags);
3947 
3948 	return ret;
3949 }
3950 EXPORT_SYMBOL(__kmalloc_node);
3951 #endif	/* CONFIG_NUMA */
3952 
3953 #ifdef CONFIG_HARDENED_USERCOPY
3954 /*
3955  * Rejects incorrectly sized objects and objects that are to be copied
3956  * to/from userspace but do not fall entirely within the containing slab
3957  * cache's usercopy region.
3958  *
3959  * Returns NULL if check passes, otherwise const char * to name of cache
3960  * to indicate an error.
3961  */
3962 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3963 			 bool to_user)
3964 {
3965 	struct kmem_cache *s;
3966 	unsigned int offset;
3967 	size_t object_size;
3968 
3969 	ptr = kasan_reset_tag(ptr);
3970 
3971 	/* Find object and usable object size. */
3972 	s = page->slab_cache;
3973 
3974 	/* Reject impossible pointers. */
3975 	if (ptr < page_address(page))
3976 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3977 			       to_user, 0, n);
3978 
3979 	/* Find offset within object. */
3980 	offset = (ptr - page_address(page)) % s->size;
3981 
3982 	/* Adjust for redzone and reject if within the redzone. */
3983 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3984 		if (offset < s->red_left_pad)
3985 			usercopy_abort("SLUB object in left red zone",
3986 				       s->name, to_user, offset, n);
3987 		offset -= s->red_left_pad;
3988 	}
3989 
3990 	/* Allow address range falling entirely within usercopy region. */
3991 	if (offset >= s->useroffset &&
3992 	    offset - s->useroffset <= s->usersize &&
3993 	    n <= s->useroffset - offset + s->usersize)
3994 		return;
3995 
3996 	/*
3997 	 * If the copy is still within the allocated object, produce
3998 	 * a warning instead of rejecting the copy. This is intended
3999 	 * to be a temporary method to find any missing usercopy
4000 	 * whitelists.
4001 	 */
4002 	object_size = slab_ksize(s);
4003 	if (usercopy_fallback &&
4004 	    offset <= object_size && n <= object_size - offset) {
4005 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
4006 		return;
4007 	}
4008 
4009 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4010 }
4011 #endif /* CONFIG_HARDENED_USERCOPY */
4012 
4013 size_t __ksize(const void *object)
4014 {
4015 	struct page *page;
4016 
4017 	if (unlikely(object == ZERO_SIZE_PTR))
4018 		return 0;
4019 
4020 	page = virt_to_head_page(object);
4021 
4022 	if (unlikely(!PageSlab(page))) {
4023 		WARN_ON(!PageCompound(page));
4024 		return page_size(page);
4025 	}
4026 
4027 	return slab_ksize(page->slab_cache);
4028 }
4029 EXPORT_SYMBOL(__ksize);
4030 
4031 void kfree(const void *x)
4032 {
4033 	struct page *page;
4034 	void *object = (void *)x;
4035 
4036 	trace_kfree(_RET_IP_, x);
4037 
4038 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4039 		return;
4040 
4041 	page = virt_to_head_page(x);
4042 	if (unlikely(!PageSlab(page))) {
4043 		unsigned int order = compound_order(page);
4044 
4045 		BUG_ON(!PageCompound(page));
4046 		kfree_hook(object);
4047 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
4048 				    -(1 << order));
4049 		__free_pages(page, order);
4050 		return;
4051 	}
4052 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4053 }
4054 EXPORT_SYMBOL(kfree);
4055 
4056 #define SHRINK_PROMOTE_MAX 32
4057 
4058 /*
4059  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4060  * up most to the head of the partial lists. New allocations will then
4061  * fill those up and thus they can be removed from the partial lists.
4062  *
4063  * The slabs with the least items are placed last. This results in them
4064  * being allocated from last increasing the chance that the last objects
4065  * are freed in them.
4066  */
4067 int __kmem_cache_shrink(struct kmem_cache *s)
4068 {
4069 	int node;
4070 	int i;
4071 	struct kmem_cache_node *n;
4072 	struct page *page;
4073 	struct page *t;
4074 	struct list_head discard;
4075 	struct list_head promote[SHRINK_PROMOTE_MAX];
4076 	unsigned long flags;
4077 	int ret = 0;
4078 
4079 	flush_all(s);
4080 	for_each_kmem_cache_node(s, node, n) {
4081 		INIT_LIST_HEAD(&discard);
4082 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4083 			INIT_LIST_HEAD(promote + i);
4084 
4085 		spin_lock_irqsave(&n->list_lock, flags);
4086 
4087 		/*
4088 		 * Build lists of slabs to discard or promote.
4089 		 *
4090 		 * Note that concurrent frees may occur while we hold the
4091 		 * list_lock. page->inuse here is the upper limit.
4092 		 */
4093 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4094 			int free = page->objects - page->inuse;
4095 
4096 			/* Do not reread page->inuse */
4097 			barrier();
4098 
4099 			/* We do not keep full slabs on the list */
4100 			BUG_ON(free <= 0);
4101 
4102 			if (free == page->objects) {
4103 				list_move(&page->slab_list, &discard);
4104 				n->nr_partial--;
4105 			} else if (free <= SHRINK_PROMOTE_MAX)
4106 				list_move(&page->slab_list, promote + free - 1);
4107 		}
4108 
4109 		/*
4110 		 * Promote the slabs filled up most to the head of the
4111 		 * partial list.
4112 		 */
4113 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4114 			list_splice(promote + i, &n->partial);
4115 
4116 		spin_unlock_irqrestore(&n->list_lock, flags);
4117 
4118 		/* Release empty slabs */
4119 		list_for_each_entry_safe(page, t, &discard, slab_list)
4120 			discard_slab(s, page);
4121 
4122 		if (slabs_node(s, node))
4123 			ret = 1;
4124 	}
4125 
4126 	return ret;
4127 }
4128 
4129 #ifdef CONFIG_MEMCG
4130 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4131 {
4132 	/*
4133 	 * Called with all the locks held after a sched RCU grace period.
4134 	 * Even if @s becomes empty after shrinking, we can't know that @s
4135 	 * doesn't have allocations already in-flight and thus can't
4136 	 * destroy @s until the associated memcg is released.
4137 	 *
4138 	 * However, let's remove the sysfs files for empty caches here.
4139 	 * Each cache has a lot of interface files which aren't
4140 	 * particularly useful for empty draining caches; otherwise, we can
4141 	 * easily end up with millions of unnecessary sysfs files on
4142 	 * systems which have a lot of memory and transient cgroups.
4143 	 */
4144 	if (!__kmem_cache_shrink(s))
4145 		sysfs_slab_remove(s);
4146 }
4147 
4148 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4149 {
4150 	/*
4151 	 * Disable empty slabs caching. Used to avoid pinning offline
4152 	 * memory cgroups by kmem pages that can be freed.
4153 	 */
4154 	slub_set_cpu_partial(s, 0);
4155 	s->min_partial = 0;
4156 }
4157 #endif	/* CONFIG_MEMCG */
4158 
4159 static int slab_mem_going_offline_callback(void *arg)
4160 {
4161 	struct kmem_cache *s;
4162 
4163 	mutex_lock(&slab_mutex);
4164 	list_for_each_entry(s, &slab_caches, list)
4165 		__kmem_cache_shrink(s);
4166 	mutex_unlock(&slab_mutex);
4167 
4168 	return 0;
4169 }
4170 
4171 static void slab_mem_offline_callback(void *arg)
4172 {
4173 	struct kmem_cache_node *n;
4174 	struct kmem_cache *s;
4175 	struct memory_notify *marg = arg;
4176 	int offline_node;
4177 
4178 	offline_node = marg->status_change_nid_normal;
4179 
4180 	/*
4181 	 * If the node still has available memory. we need kmem_cache_node
4182 	 * for it yet.
4183 	 */
4184 	if (offline_node < 0)
4185 		return;
4186 
4187 	mutex_lock(&slab_mutex);
4188 	list_for_each_entry(s, &slab_caches, list) {
4189 		n = get_node(s, offline_node);
4190 		if (n) {
4191 			/*
4192 			 * if n->nr_slabs > 0, slabs still exist on the node
4193 			 * that is going down. We were unable to free them,
4194 			 * and offline_pages() function shouldn't call this
4195 			 * callback. So, we must fail.
4196 			 */
4197 			BUG_ON(slabs_node(s, offline_node));
4198 
4199 			s->node[offline_node] = NULL;
4200 			kmem_cache_free(kmem_cache_node, n);
4201 		}
4202 	}
4203 	mutex_unlock(&slab_mutex);
4204 }
4205 
4206 static int slab_mem_going_online_callback(void *arg)
4207 {
4208 	struct kmem_cache_node *n;
4209 	struct kmem_cache *s;
4210 	struct memory_notify *marg = arg;
4211 	int nid = marg->status_change_nid_normal;
4212 	int ret = 0;
4213 
4214 	/*
4215 	 * If the node's memory is already available, then kmem_cache_node is
4216 	 * already created. Nothing to do.
4217 	 */
4218 	if (nid < 0)
4219 		return 0;
4220 
4221 	/*
4222 	 * We are bringing a node online. No memory is available yet. We must
4223 	 * allocate a kmem_cache_node structure in order to bring the node
4224 	 * online.
4225 	 */
4226 	mutex_lock(&slab_mutex);
4227 	list_for_each_entry(s, &slab_caches, list) {
4228 		/*
4229 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4230 		 *      since memory is not yet available from the node that
4231 		 *      is brought up.
4232 		 */
4233 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4234 		if (!n) {
4235 			ret = -ENOMEM;
4236 			goto out;
4237 		}
4238 		init_kmem_cache_node(n);
4239 		s->node[nid] = n;
4240 	}
4241 out:
4242 	mutex_unlock(&slab_mutex);
4243 	return ret;
4244 }
4245 
4246 static int slab_memory_callback(struct notifier_block *self,
4247 				unsigned long action, void *arg)
4248 {
4249 	int ret = 0;
4250 
4251 	switch (action) {
4252 	case MEM_GOING_ONLINE:
4253 		ret = slab_mem_going_online_callback(arg);
4254 		break;
4255 	case MEM_GOING_OFFLINE:
4256 		ret = slab_mem_going_offline_callback(arg);
4257 		break;
4258 	case MEM_OFFLINE:
4259 	case MEM_CANCEL_ONLINE:
4260 		slab_mem_offline_callback(arg);
4261 		break;
4262 	case MEM_ONLINE:
4263 	case MEM_CANCEL_OFFLINE:
4264 		break;
4265 	}
4266 	if (ret)
4267 		ret = notifier_from_errno(ret);
4268 	else
4269 		ret = NOTIFY_OK;
4270 	return ret;
4271 }
4272 
4273 static struct notifier_block slab_memory_callback_nb = {
4274 	.notifier_call = slab_memory_callback,
4275 	.priority = SLAB_CALLBACK_PRI,
4276 };
4277 
4278 /********************************************************************
4279  *			Basic setup of slabs
4280  *******************************************************************/
4281 
4282 /*
4283  * Used for early kmem_cache structures that were allocated using
4284  * the page allocator. Allocate them properly then fix up the pointers
4285  * that may be pointing to the wrong kmem_cache structure.
4286  */
4287 
4288 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4289 {
4290 	int node;
4291 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4292 	struct kmem_cache_node *n;
4293 
4294 	memcpy(s, static_cache, kmem_cache->object_size);
4295 
4296 	/*
4297 	 * This runs very early, and only the boot processor is supposed to be
4298 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4299 	 * IPIs around.
4300 	 */
4301 	__flush_cpu_slab(s, smp_processor_id());
4302 	for_each_kmem_cache_node(s, node, n) {
4303 		struct page *p;
4304 
4305 		list_for_each_entry(p, &n->partial, slab_list)
4306 			p->slab_cache = s;
4307 
4308 #ifdef CONFIG_SLUB_DEBUG
4309 		list_for_each_entry(p, &n->full, slab_list)
4310 			p->slab_cache = s;
4311 #endif
4312 	}
4313 	slab_init_memcg_params(s);
4314 	list_add(&s->list, &slab_caches);
4315 	memcg_link_cache(s, NULL);
4316 	return s;
4317 }
4318 
4319 void __init kmem_cache_init(void)
4320 {
4321 	static __initdata struct kmem_cache boot_kmem_cache,
4322 		boot_kmem_cache_node;
4323 
4324 	if (debug_guardpage_minorder())
4325 		slub_max_order = 0;
4326 
4327 	kmem_cache_node = &boot_kmem_cache_node;
4328 	kmem_cache = &boot_kmem_cache;
4329 
4330 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4331 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4332 
4333 	register_hotmemory_notifier(&slab_memory_callback_nb);
4334 
4335 	/* Able to allocate the per node structures */
4336 	slab_state = PARTIAL;
4337 
4338 	create_boot_cache(kmem_cache, "kmem_cache",
4339 			offsetof(struct kmem_cache, node) +
4340 				nr_node_ids * sizeof(struct kmem_cache_node *),
4341 		       SLAB_HWCACHE_ALIGN, 0, 0);
4342 
4343 	kmem_cache = bootstrap(&boot_kmem_cache);
4344 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4345 
4346 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4347 	setup_kmalloc_cache_index_table();
4348 	create_kmalloc_caches(0);
4349 
4350 	/* Setup random freelists for each cache */
4351 	init_freelist_randomization();
4352 
4353 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4354 				  slub_cpu_dead);
4355 
4356 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4357 		cache_line_size(),
4358 		slub_min_order, slub_max_order, slub_min_objects,
4359 		nr_cpu_ids, nr_node_ids);
4360 }
4361 
4362 void __init kmem_cache_init_late(void)
4363 {
4364 }
4365 
4366 struct kmem_cache *
4367 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4368 		   slab_flags_t flags, void (*ctor)(void *))
4369 {
4370 	struct kmem_cache *s, *c;
4371 
4372 	s = find_mergeable(size, align, flags, name, ctor);
4373 	if (s) {
4374 		s->refcount++;
4375 
4376 		/*
4377 		 * Adjust the object sizes so that we clear
4378 		 * the complete object on kzalloc.
4379 		 */
4380 		s->object_size = max(s->object_size, size);
4381 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4382 
4383 		for_each_memcg_cache(c, s) {
4384 			c->object_size = s->object_size;
4385 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4386 		}
4387 
4388 		if (sysfs_slab_alias(s, name)) {
4389 			s->refcount--;
4390 			s = NULL;
4391 		}
4392 	}
4393 
4394 	return s;
4395 }
4396 
4397 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4398 {
4399 	int err;
4400 
4401 	err = kmem_cache_open(s, flags);
4402 	if (err)
4403 		return err;
4404 
4405 	/* Mutex is not taken during early boot */
4406 	if (slab_state <= UP)
4407 		return 0;
4408 
4409 	memcg_propagate_slab_attrs(s);
4410 	err = sysfs_slab_add(s);
4411 	if (err)
4412 		__kmem_cache_release(s);
4413 
4414 	return err;
4415 }
4416 
4417 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4418 {
4419 	struct kmem_cache *s;
4420 	void *ret;
4421 
4422 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4423 		return kmalloc_large(size, gfpflags);
4424 
4425 	s = kmalloc_slab(size, gfpflags);
4426 
4427 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4428 		return s;
4429 
4430 	ret = slab_alloc(s, gfpflags, caller);
4431 
4432 	/* Honor the call site pointer we received. */
4433 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4434 
4435 	return ret;
4436 }
4437 EXPORT_SYMBOL(__kmalloc_track_caller);
4438 
4439 #ifdef CONFIG_NUMA
4440 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4441 					int node, unsigned long caller)
4442 {
4443 	struct kmem_cache *s;
4444 	void *ret;
4445 
4446 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4447 		ret = kmalloc_large_node(size, gfpflags, node);
4448 
4449 		trace_kmalloc_node(caller, ret,
4450 				   size, PAGE_SIZE << get_order(size),
4451 				   gfpflags, node);
4452 
4453 		return ret;
4454 	}
4455 
4456 	s = kmalloc_slab(size, gfpflags);
4457 
4458 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4459 		return s;
4460 
4461 	ret = slab_alloc_node(s, gfpflags, node, caller);
4462 
4463 	/* Honor the call site pointer we received. */
4464 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4465 
4466 	return ret;
4467 }
4468 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4469 #endif
4470 
4471 #ifdef CONFIG_SYSFS
4472 static int count_inuse(struct page *page)
4473 {
4474 	return page->inuse;
4475 }
4476 
4477 static int count_total(struct page *page)
4478 {
4479 	return page->objects;
4480 }
4481 #endif
4482 
4483 #ifdef CONFIG_SLUB_DEBUG
4484 static void validate_slab(struct kmem_cache *s, struct page *page)
4485 {
4486 	void *p;
4487 	void *addr = page_address(page);
4488 	unsigned long *map;
4489 
4490 	slab_lock(page);
4491 
4492 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4493 		goto unlock;
4494 
4495 	/* Now we know that a valid freelist exists */
4496 	map = get_map(s, page);
4497 	for_each_object(p, s, addr, page->objects) {
4498 		u8 val = test_bit(slab_index(p, s, addr), map) ?
4499 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4500 
4501 		if (!check_object(s, page, p, val))
4502 			break;
4503 	}
4504 	put_map(map);
4505 unlock:
4506 	slab_unlock(page);
4507 }
4508 
4509 static int validate_slab_node(struct kmem_cache *s,
4510 		struct kmem_cache_node *n)
4511 {
4512 	unsigned long count = 0;
4513 	struct page *page;
4514 	unsigned long flags;
4515 
4516 	spin_lock_irqsave(&n->list_lock, flags);
4517 
4518 	list_for_each_entry(page, &n->partial, slab_list) {
4519 		validate_slab(s, page);
4520 		count++;
4521 	}
4522 	if (count != n->nr_partial)
4523 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4524 		       s->name, count, n->nr_partial);
4525 
4526 	if (!(s->flags & SLAB_STORE_USER))
4527 		goto out;
4528 
4529 	list_for_each_entry(page, &n->full, slab_list) {
4530 		validate_slab(s, page);
4531 		count++;
4532 	}
4533 	if (count != atomic_long_read(&n->nr_slabs))
4534 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4535 		       s->name, count, atomic_long_read(&n->nr_slabs));
4536 
4537 out:
4538 	spin_unlock_irqrestore(&n->list_lock, flags);
4539 	return count;
4540 }
4541 
4542 static long validate_slab_cache(struct kmem_cache *s)
4543 {
4544 	int node;
4545 	unsigned long count = 0;
4546 	struct kmem_cache_node *n;
4547 
4548 	flush_all(s);
4549 	for_each_kmem_cache_node(s, node, n)
4550 		count += validate_slab_node(s, n);
4551 
4552 	return count;
4553 }
4554 /*
4555  * Generate lists of code addresses where slabcache objects are allocated
4556  * and freed.
4557  */
4558 
4559 struct location {
4560 	unsigned long count;
4561 	unsigned long addr;
4562 	long long sum_time;
4563 	long min_time;
4564 	long max_time;
4565 	long min_pid;
4566 	long max_pid;
4567 	DECLARE_BITMAP(cpus, NR_CPUS);
4568 	nodemask_t nodes;
4569 };
4570 
4571 struct loc_track {
4572 	unsigned long max;
4573 	unsigned long count;
4574 	struct location *loc;
4575 };
4576 
4577 static void free_loc_track(struct loc_track *t)
4578 {
4579 	if (t->max)
4580 		free_pages((unsigned long)t->loc,
4581 			get_order(sizeof(struct location) * t->max));
4582 }
4583 
4584 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4585 {
4586 	struct location *l;
4587 	int order;
4588 
4589 	order = get_order(sizeof(struct location) * max);
4590 
4591 	l = (void *)__get_free_pages(flags, order);
4592 	if (!l)
4593 		return 0;
4594 
4595 	if (t->count) {
4596 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4597 		free_loc_track(t);
4598 	}
4599 	t->max = max;
4600 	t->loc = l;
4601 	return 1;
4602 }
4603 
4604 static int add_location(struct loc_track *t, struct kmem_cache *s,
4605 				const struct track *track)
4606 {
4607 	long start, end, pos;
4608 	struct location *l;
4609 	unsigned long caddr;
4610 	unsigned long age = jiffies - track->when;
4611 
4612 	start = -1;
4613 	end = t->count;
4614 
4615 	for ( ; ; ) {
4616 		pos = start + (end - start + 1) / 2;
4617 
4618 		/*
4619 		 * There is nothing at "end". If we end up there
4620 		 * we need to add something to before end.
4621 		 */
4622 		if (pos == end)
4623 			break;
4624 
4625 		caddr = t->loc[pos].addr;
4626 		if (track->addr == caddr) {
4627 
4628 			l = &t->loc[pos];
4629 			l->count++;
4630 			if (track->when) {
4631 				l->sum_time += age;
4632 				if (age < l->min_time)
4633 					l->min_time = age;
4634 				if (age > l->max_time)
4635 					l->max_time = age;
4636 
4637 				if (track->pid < l->min_pid)
4638 					l->min_pid = track->pid;
4639 				if (track->pid > l->max_pid)
4640 					l->max_pid = track->pid;
4641 
4642 				cpumask_set_cpu(track->cpu,
4643 						to_cpumask(l->cpus));
4644 			}
4645 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4646 			return 1;
4647 		}
4648 
4649 		if (track->addr < caddr)
4650 			end = pos;
4651 		else
4652 			start = pos;
4653 	}
4654 
4655 	/*
4656 	 * Not found. Insert new tracking element.
4657 	 */
4658 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4659 		return 0;
4660 
4661 	l = t->loc + pos;
4662 	if (pos < t->count)
4663 		memmove(l + 1, l,
4664 			(t->count - pos) * sizeof(struct location));
4665 	t->count++;
4666 	l->count = 1;
4667 	l->addr = track->addr;
4668 	l->sum_time = age;
4669 	l->min_time = age;
4670 	l->max_time = age;
4671 	l->min_pid = track->pid;
4672 	l->max_pid = track->pid;
4673 	cpumask_clear(to_cpumask(l->cpus));
4674 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4675 	nodes_clear(l->nodes);
4676 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4677 	return 1;
4678 }
4679 
4680 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4681 		struct page *page, enum track_item alloc)
4682 {
4683 	void *addr = page_address(page);
4684 	void *p;
4685 	unsigned long *map;
4686 
4687 	map = get_map(s, page);
4688 	for_each_object(p, s, addr, page->objects)
4689 		if (!test_bit(slab_index(p, s, addr), map))
4690 			add_location(t, s, get_track(s, p, alloc));
4691 	put_map(map);
4692 }
4693 
4694 static int list_locations(struct kmem_cache *s, char *buf,
4695 					enum track_item alloc)
4696 {
4697 	int len = 0;
4698 	unsigned long i;
4699 	struct loc_track t = { 0, 0, NULL };
4700 	int node;
4701 	struct kmem_cache_node *n;
4702 
4703 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4704 			     GFP_KERNEL)) {
4705 		return sprintf(buf, "Out of memory\n");
4706 	}
4707 	/* Push back cpu slabs */
4708 	flush_all(s);
4709 
4710 	for_each_kmem_cache_node(s, node, n) {
4711 		unsigned long flags;
4712 		struct page *page;
4713 
4714 		if (!atomic_long_read(&n->nr_slabs))
4715 			continue;
4716 
4717 		spin_lock_irqsave(&n->list_lock, flags);
4718 		list_for_each_entry(page, &n->partial, slab_list)
4719 			process_slab(&t, s, page, alloc);
4720 		list_for_each_entry(page, &n->full, slab_list)
4721 			process_slab(&t, s, page, alloc);
4722 		spin_unlock_irqrestore(&n->list_lock, flags);
4723 	}
4724 
4725 	for (i = 0; i < t.count; i++) {
4726 		struct location *l = &t.loc[i];
4727 
4728 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4729 			break;
4730 		len += sprintf(buf + len, "%7ld ", l->count);
4731 
4732 		if (l->addr)
4733 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4734 		else
4735 			len += sprintf(buf + len, "<not-available>");
4736 
4737 		if (l->sum_time != l->min_time) {
4738 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4739 				l->min_time,
4740 				(long)div_u64(l->sum_time, l->count),
4741 				l->max_time);
4742 		} else
4743 			len += sprintf(buf + len, " age=%ld",
4744 				l->min_time);
4745 
4746 		if (l->min_pid != l->max_pid)
4747 			len += sprintf(buf + len, " pid=%ld-%ld",
4748 				l->min_pid, l->max_pid);
4749 		else
4750 			len += sprintf(buf + len, " pid=%ld",
4751 				l->min_pid);
4752 
4753 		if (num_online_cpus() > 1 &&
4754 				!cpumask_empty(to_cpumask(l->cpus)) &&
4755 				len < PAGE_SIZE - 60)
4756 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4757 					 " cpus=%*pbl",
4758 					 cpumask_pr_args(to_cpumask(l->cpus)));
4759 
4760 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4761 				len < PAGE_SIZE - 60)
4762 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4763 					 " nodes=%*pbl",
4764 					 nodemask_pr_args(&l->nodes));
4765 
4766 		len += sprintf(buf + len, "\n");
4767 	}
4768 
4769 	free_loc_track(&t);
4770 	if (!t.count)
4771 		len += sprintf(buf, "No data\n");
4772 	return len;
4773 }
4774 #endif	/* CONFIG_SLUB_DEBUG */
4775 
4776 #ifdef SLUB_RESILIENCY_TEST
4777 static void __init resiliency_test(void)
4778 {
4779 	u8 *p;
4780 	int type = KMALLOC_NORMAL;
4781 
4782 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4783 
4784 	pr_err("SLUB resiliency testing\n");
4785 	pr_err("-----------------------\n");
4786 	pr_err("A. Corruption after allocation\n");
4787 
4788 	p = kzalloc(16, GFP_KERNEL);
4789 	p[16] = 0x12;
4790 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4791 	       p + 16);
4792 
4793 	validate_slab_cache(kmalloc_caches[type][4]);
4794 
4795 	/* Hmmm... The next two are dangerous */
4796 	p = kzalloc(32, GFP_KERNEL);
4797 	p[32 + sizeof(void *)] = 0x34;
4798 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4799 	       p);
4800 	pr_err("If allocated object is overwritten then not detectable\n\n");
4801 
4802 	validate_slab_cache(kmalloc_caches[type][5]);
4803 	p = kzalloc(64, GFP_KERNEL);
4804 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4805 	*p = 0x56;
4806 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4807 	       p);
4808 	pr_err("If allocated object is overwritten then not detectable\n\n");
4809 	validate_slab_cache(kmalloc_caches[type][6]);
4810 
4811 	pr_err("\nB. Corruption after free\n");
4812 	p = kzalloc(128, GFP_KERNEL);
4813 	kfree(p);
4814 	*p = 0x78;
4815 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4816 	validate_slab_cache(kmalloc_caches[type][7]);
4817 
4818 	p = kzalloc(256, GFP_KERNEL);
4819 	kfree(p);
4820 	p[50] = 0x9a;
4821 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4822 	validate_slab_cache(kmalloc_caches[type][8]);
4823 
4824 	p = kzalloc(512, GFP_KERNEL);
4825 	kfree(p);
4826 	p[512] = 0xab;
4827 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4828 	validate_slab_cache(kmalloc_caches[type][9]);
4829 }
4830 #else
4831 #ifdef CONFIG_SYSFS
4832 static void resiliency_test(void) {};
4833 #endif
4834 #endif	/* SLUB_RESILIENCY_TEST */
4835 
4836 #ifdef CONFIG_SYSFS
4837 enum slab_stat_type {
4838 	SL_ALL,			/* All slabs */
4839 	SL_PARTIAL,		/* Only partially allocated slabs */
4840 	SL_CPU,			/* Only slabs used for cpu caches */
4841 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4842 	SL_TOTAL		/* Determine object capacity not slabs */
4843 };
4844 
4845 #define SO_ALL		(1 << SL_ALL)
4846 #define SO_PARTIAL	(1 << SL_PARTIAL)
4847 #define SO_CPU		(1 << SL_CPU)
4848 #define SO_OBJECTS	(1 << SL_OBJECTS)
4849 #define SO_TOTAL	(1 << SL_TOTAL)
4850 
4851 #ifdef CONFIG_MEMCG
4852 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4853 
4854 static int __init setup_slub_memcg_sysfs(char *str)
4855 {
4856 	int v;
4857 
4858 	if (get_option(&str, &v) > 0)
4859 		memcg_sysfs_enabled = v;
4860 
4861 	return 1;
4862 }
4863 
4864 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4865 #endif
4866 
4867 static ssize_t show_slab_objects(struct kmem_cache *s,
4868 			    char *buf, unsigned long flags)
4869 {
4870 	unsigned long total = 0;
4871 	int node;
4872 	int x;
4873 	unsigned long *nodes;
4874 
4875 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4876 	if (!nodes)
4877 		return -ENOMEM;
4878 
4879 	if (flags & SO_CPU) {
4880 		int cpu;
4881 
4882 		for_each_possible_cpu(cpu) {
4883 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4884 							       cpu);
4885 			int node;
4886 			struct page *page;
4887 
4888 			page = READ_ONCE(c->page);
4889 			if (!page)
4890 				continue;
4891 
4892 			node = page_to_nid(page);
4893 			if (flags & SO_TOTAL)
4894 				x = page->objects;
4895 			else if (flags & SO_OBJECTS)
4896 				x = page->inuse;
4897 			else
4898 				x = 1;
4899 
4900 			total += x;
4901 			nodes[node] += x;
4902 
4903 			page = slub_percpu_partial_read_once(c);
4904 			if (page) {
4905 				node = page_to_nid(page);
4906 				if (flags & SO_TOTAL)
4907 					WARN_ON_ONCE(1);
4908 				else if (flags & SO_OBJECTS)
4909 					WARN_ON_ONCE(1);
4910 				else
4911 					x = page->pages;
4912 				total += x;
4913 				nodes[node] += x;
4914 			}
4915 		}
4916 	}
4917 
4918 	/*
4919 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4920 	 * already held which will conflict with an existing lock order:
4921 	 *
4922 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4923 	 *
4924 	 * We don't really need mem_hotplug_lock (to hold off
4925 	 * slab_mem_going_offline_callback) here because slab's memory hot
4926 	 * unplug code doesn't destroy the kmem_cache->node[] data.
4927 	 */
4928 
4929 #ifdef CONFIG_SLUB_DEBUG
4930 	if (flags & SO_ALL) {
4931 		struct kmem_cache_node *n;
4932 
4933 		for_each_kmem_cache_node(s, node, n) {
4934 
4935 			if (flags & SO_TOTAL)
4936 				x = atomic_long_read(&n->total_objects);
4937 			else if (flags & SO_OBJECTS)
4938 				x = atomic_long_read(&n->total_objects) -
4939 					count_partial(n, count_free);
4940 			else
4941 				x = atomic_long_read(&n->nr_slabs);
4942 			total += x;
4943 			nodes[node] += x;
4944 		}
4945 
4946 	} else
4947 #endif
4948 	if (flags & SO_PARTIAL) {
4949 		struct kmem_cache_node *n;
4950 
4951 		for_each_kmem_cache_node(s, node, n) {
4952 			if (flags & SO_TOTAL)
4953 				x = count_partial(n, count_total);
4954 			else if (flags & SO_OBJECTS)
4955 				x = count_partial(n, count_inuse);
4956 			else
4957 				x = n->nr_partial;
4958 			total += x;
4959 			nodes[node] += x;
4960 		}
4961 	}
4962 	x = sprintf(buf, "%lu", total);
4963 #ifdef CONFIG_NUMA
4964 	for (node = 0; node < nr_node_ids; node++)
4965 		if (nodes[node])
4966 			x += sprintf(buf + x, " N%d=%lu",
4967 					node, nodes[node]);
4968 #endif
4969 	kfree(nodes);
4970 	return x + sprintf(buf + x, "\n");
4971 }
4972 
4973 #ifdef CONFIG_SLUB_DEBUG
4974 static int any_slab_objects(struct kmem_cache *s)
4975 {
4976 	int node;
4977 	struct kmem_cache_node *n;
4978 
4979 	for_each_kmem_cache_node(s, node, n)
4980 		if (atomic_long_read(&n->total_objects))
4981 			return 1;
4982 
4983 	return 0;
4984 }
4985 #endif
4986 
4987 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4988 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4989 
4990 struct slab_attribute {
4991 	struct attribute attr;
4992 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4993 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4994 };
4995 
4996 #define SLAB_ATTR_RO(_name) \
4997 	static struct slab_attribute _name##_attr = \
4998 	__ATTR(_name, 0400, _name##_show, NULL)
4999 
5000 #define SLAB_ATTR(_name) \
5001 	static struct slab_attribute _name##_attr =  \
5002 	__ATTR(_name, 0600, _name##_show, _name##_store)
5003 
5004 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5005 {
5006 	return sprintf(buf, "%u\n", s->size);
5007 }
5008 SLAB_ATTR_RO(slab_size);
5009 
5010 static ssize_t align_show(struct kmem_cache *s, char *buf)
5011 {
5012 	return sprintf(buf, "%u\n", s->align);
5013 }
5014 SLAB_ATTR_RO(align);
5015 
5016 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5017 {
5018 	return sprintf(buf, "%u\n", s->object_size);
5019 }
5020 SLAB_ATTR_RO(object_size);
5021 
5022 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5023 {
5024 	return sprintf(buf, "%u\n", oo_objects(s->oo));
5025 }
5026 SLAB_ATTR_RO(objs_per_slab);
5027 
5028 static ssize_t order_store(struct kmem_cache *s,
5029 				const char *buf, size_t length)
5030 {
5031 	unsigned int order;
5032 	int err;
5033 
5034 	err = kstrtouint(buf, 10, &order);
5035 	if (err)
5036 		return err;
5037 
5038 	if (order > slub_max_order || order < slub_min_order)
5039 		return -EINVAL;
5040 
5041 	calculate_sizes(s, order);
5042 	return length;
5043 }
5044 
5045 static ssize_t order_show(struct kmem_cache *s, char *buf)
5046 {
5047 	return sprintf(buf, "%u\n", oo_order(s->oo));
5048 }
5049 SLAB_ATTR(order);
5050 
5051 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5052 {
5053 	return sprintf(buf, "%lu\n", s->min_partial);
5054 }
5055 
5056 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5057 				 size_t length)
5058 {
5059 	unsigned long min;
5060 	int err;
5061 
5062 	err = kstrtoul(buf, 10, &min);
5063 	if (err)
5064 		return err;
5065 
5066 	set_min_partial(s, min);
5067 	return length;
5068 }
5069 SLAB_ATTR(min_partial);
5070 
5071 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5072 {
5073 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
5074 }
5075 
5076 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5077 				 size_t length)
5078 {
5079 	unsigned int objects;
5080 	int err;
5081 
5082 	err = kstrtouint(buf, 10, &objects);
5083 	if (err)
5084 		return err;
5085 	if (objects && !kmem_cache_has_cpu_partial(s))
5086 		return -EINVAL;
5087 
5088 	slub_set_cpu_partial(s, objects);
5089 	flush_all(s);
5090 	return length;
5091 }
5092 SLAB_ATTR(cpu_partial);
5093 
5094 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5095 {
5096 	if (!s->ctor)
5097 		return 0;
5098 	return sprintf(buf, "%pS\n", s->ctor);
5099 }
5100 SLAB_ATTR_RO(ctor);
5101 
5102 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5103 {
5104 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5105 }
5106 SLAB_ATTR_RO(aliases);
5107 
5108 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5109 {
5110 	return show_slab_objects(s, buf, SO_PARTIAL);
5111 }
5112 SLAB_ATTR_RO(partial);
5113 
5114 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5115 {
5116 	return show_slab_objects(s, buf, SO_CPU);
5117 }
5118 SLAB_ATTR_RO(cpu_slabs);
5119 
5120 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5121 {
5122 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5123 }
5124 SLAB_ATTR_RO(objects);
5125 
5126 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5127 {
5128 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5129 }
5130 SLAB_ATTR_RO(objects_partial);
5131 
5132 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5133 {
5134 	int objects = 0;
5135 	int pages = 0;
5136 	int cpu;
5137 	int len;
5138 
5139 	for_each_online_cpu(cpu) {
5140 		struct page *page;
5141 
5142 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5143 
5144 		if (page) {
5145 			pages += page->pages;
5146 			objects += page->pobjects;
5147 		}
5148 	}
5149 
5150 	len = sprintf(buf, "%d(%d)", objects, pages);
5151 
5152 #ifdef CONFIG_SMP
5153 	for_each_online_cpu(cpu) {
5154 		struct page *page;
5155 
5156 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5157 
5158 		if (page && len < PAGE_SIZE - 20)
5159 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5160 				page->pobjects, page->pages);
5161 	}
5162 #endif
5163 	return len + sprintf(buf + len, "\n");
5164 }
5165 SLAB_ATTR_RO(slabs_cpu_partial);
5166 
5167 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5168 {
5169 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5170 }
5171 
5172 static ssize_t reclaim_account_store(struct kmem_cache *s,
5173 				const char *buf, size_t length)
5174 {
5175 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5176 	if (buf[0] == '1')
5177 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5178 	return length;
5179 }
5180 SLAB_ATTR(reclaim_account);
5181 
5182 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5183 {
5184 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5185 }
5186 SLAB_ATTR_RO(hwcache_align);
5187 
5188 #ifdef CONFIG_ZONE_DMA
5189 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5190 {
5191 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5192 }
5193 SLAB_ATTR_RO(cache_dma);
5194 #endif
5195 
5196 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5197 {
5198 	return sprintf(buf, "%u\n", s->usersize);
5199 }
5200 SLAB_ATTR_RO(usersize);
5201 
5202 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5203 {
5204 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5205 }
5206 SLAB_ATTR_RO(destroy_by_rcu);
5207 
5208 #ifdef CONFIG_SLUB_DEBUG
5209 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5210 {
5211 	return show_slab_objects(s, buf, SO_ALL);
5212 }
5213 SLAB_ATTR_RO(slabs);
5214 
5215 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5216 {
5217 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5218 }
5219 SLAB_ATTR_RO(total_objects);
5220 
5221 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5222 {
5223 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5224 }
5225 
5226 static ssize_t sanity_checks_store(struct kmem_cache *s,
5227 				const char *buf, size_t length)
5228 {
5229 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5230 	if (buf[0] == '1') {
5231 		s->flags &= ~__CMPXCHG_DOUBLE;
5232 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5233 	}
5234 	return length;
5235 }
5236 SLAB_ATTR(sanity_checks);
5237 
5238 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5239 {
5240 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5241 }
5242 
5243 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5244 							size_t length)
5245 {
5246 	/*
5247 	 * Tracing a merged cache is going to give confusing results
5248 	 * as well as cause other issues like converting a mergeable
5249 	 * cache into an umergeable one.
5250 	 */
5251 	if (s->refcount > 1)
5252 		return -EINVAL;
5253 
5254 	s->flags &= ~SLAB_TRACE;
5255 	if (buf[0] == '1') {
5256 		s->flags &= ~__CMPXCHG_DOUBLE;
5257 		s->flags |= SLAB_TRACE;
5258 	}
5259 	return length;
5260 }
5261 SLAB_ATTR(trace);
5262 
5263 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5264 {
5265 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5266 }
5267 
5268 static ssize_t red_zone_store(struct kmem_cache *s,
5269 				const char *buf, size_t length)
5270 {
5271 	if (any_slab_objects(s))
5272 		return -EBUSY;
5273 
5274 	s->flags &= ~SLAB_RED_ZONE;
5275 	if (buf[0] == '1') {
5276 		s->flags |= SLAB_RED_ZONE;
5277 	}
5278 	calculate_sizes(s, -1);
5279 	return length;
5280 }
5281 SLAB_ATTR(red_zone);
5282 
5283 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5284 {
5285 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5286 }
5287 
5288 static ssize_t poison_store(struct kmem_cache *s,
5289 				const char *buf, size_t length)
5290 {
5291 	if (any_slab_objects(s))
5292 		return -EBUSY;
5293 
5294 	s->flags &= ~SLAB_POISON;
5295 	if (buf[0] == '1') {
5296 		s->flags |= SLAB_POISON;
5297 	}
5298 	calculate_sizes(s, -1);
5299 	return length;
5300 }
5301 SLAB_ATTR(poison);
5302 
5303 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5304 {
5305 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5306 }
5307 
5308 static ssize_t store_user_store(struct kmem_cache *s,
5309 				const char *buf, size_t length)
5310 {
5311 	if (any_slab_objects(s))
5312 		return -EBUSY;
5313 
5314 	s->flags &= ~SLAB_STORE_USER;
5315 	if (buf[0] == '1') {
5316 		s->flags &= ~__CMPXCHG_DOUBLE;
5317 		s->flags |= SLAB_STORE_USER;
5318 	}
5319 	calculate_sizes(s, -1);
5320 	return length;
5321 }
5322 SLAB_ATTR(store_user);
5323 
5324 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5325 {
5326 	return 0;
5327 }
5328 
5329 static ssize_t validate_store(struct kmem_cache *s,
5330 			const char *buf, size_t length)
5331 {
5332 	int ret = -EINVAL;
5333 
5334 	if (buf[0] == '1') {
5335 		ret = validate_slab_cache(s);
5336 		if (ret >= 0)
5337 			ret = length;
5338 	}
5339 	return ret;
5340 }
5341 SLAB_ATTR(validate);
5342 
5343 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5344 {
5345 	if (!(s->flags & SLAB_STORE_USER))
5346 		return -ENOSYS;
5347 	return list_locations(s, buf, TRACK_ALLOC);
5348 }
5349 SLAB_ATTR_RO(alloc_calls);
5350 
5351 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5352 {
5353 	if (!(s->flags & SLAB_STORE_USER))
5354 		return -ENOSYS;
5355 	return list_locations(s, buf, TRACK_FREE);
5356 }
5357 SLAB_ATTR_RO(free_calls);
5358 #endif /* CONFIG_SLUB_DEBUG */
5359 
5360 #ifdef CONFIG_FAILSLAB
5361 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5362 {
5363 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5364 }
5365 
5366 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5367 							size_t length)
5368 {
5369 	if (s->refcount > 1)
5370 		return -EINVAL;
5371 
5372 	s->flags &= ~SLAB_FAILSLAB;
5373 	if (buf[0] == '1')
5374 		s->flags |= SLAB_FAILSLAB;
5375 	return length;
5376 }
5377 SLAB_ATTR(failslab);
5378 #endif
5379 
5380 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5381 {
5382 	return 0;
5383 }
5384 
5385 static ssize_t shrink_store(struct kmem_cache *s,
5386 			const char *buf, size_t length)
5387 {
5388 	if (buf[0] == '1')
5389 		kmem_cache_shrink_all(s);
5390 	else
5391 		return -EINVAL;
5392 	return length;
5393 }
5394 SLAB_ATTR(shrink);
5395 
5396 #ifdef CONFIG_NUMA
5397 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5398 {
5399 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5400 }
5401 
5402 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5403 				const char *buf, size_t length)
5404 {
5405 	unsigned int ratio;
5406 	int err;
5407 
5408 	err = kstrtouint(buf, 10, &ratio);
5409 	if (err)
5410 		return err;
5411 	if (ratio > 100)
5412 		return -ERANGE;
5413 
5414 	s->remote_node_defrag_ratio = ratio * 10;
5415 
5416 	return length;
5417 }
5418 SLAB_ATTR(remote_node_defrag_ratio);
5419 #endif
5420 
5421 #ifdef CONFIG_SLUB_STATS
5422 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5423 {
5424 	unsigned long sum  = 0;
5425 	int cpu;
5426 	int len;
5427 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5428 
5429 	if (!data)
5430 		return -ENOMEM;
5431 
5432 	for_each_online_cpu(cpu) {
5433 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5434 
5435 		data[cpu] = x;
5436 		sum += x;
5437 	}
5438 
5439 	len = sprintf(buf, "%lu", sum);
5440 
5441 #ifdef CONFIG_SMP
5442 	for_each_online_cpu(cpu) {
5443 		if (data[cpu] && len < PAGE_SIZE - 20)
5444 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5445 	}
5446 #endif
5447 	kfree(data);
5448 	return len + sprintf(buf + len, "\n");
5449 }
5450 
5451 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5452 {
5453 	int cpu;
5454 
5455 	for_each_online_cpu(cpu)
5456 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5457 }
5458 
5459 #define STAT_ATTR(si, text) 					\
5460 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5461 {								\
5462 	return show_stat(s, buf, si);				\
5463 }								\
5464 static ssize_t text##_store(struct kmem_cache *s,		\
5465 				const char *buf, size_t length)	\
5466 {								\
5467 	if (buf[0] != '0')					\
5468 		return -EINVAL;					\
5469 	clear_stat(s, si);					\
5470 	return length;						\
5471 }								\
5472 SLAB_ATTR(text);						\
5473 
5474 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5475 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5476 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5477 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5478 STAT_ATTR(FREE_FROZEN, free_frozen);
5479 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5480 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5481 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5482 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5483 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5484 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5485 STAT_ATTR(FREE_SLAB, free_slab);
5486 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5487 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5488 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5489 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5490 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5491 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5492 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5493 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5494 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5495 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5496 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5497 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5498 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5499 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5500 #endif	/* CONFIG_SLUB_STATS */
5501 
5502 static struct attribute *slab_attrs[] = {
5503 	&slab_size_attr.attr,
5504 	&object_size_attr.attr,
5505 	&objs_per_slab_attr.attr,
5506 	&order_attr.attr,
5507 	&min_partial_attr.attr,
5508 	&cpu_partial_attr.attr,
5509 	&objects_attr.attr,
5510 	&objects_partial_attr.attr,
5511 	&partial_attr.attr,
5512 	&cpu_slabs_attr.attr,
5513 	&ctor_attr.attr,
5514 	&aliases_attr.attr,
5515 	&align_attr.attr,
5516 	&hwcache_align_attr.attr,
5517 	&reclaim_account_attr.attr,
5518 	&destroy_by_rcu_attr.attr,
5519 	&shrink_attr.attr,
5520 	&slabs_cpu_partial_attr.attr,
5521 #ifdef CONFIG_SLUB_DEBUG
5522 	&total_objects_attr.attr,
5523 	&slabs_attr.attr,
5524 	&sanity_checks_attr.attr,
5525 	&trace_attr.attr,
5526 	&red_zone_attr.attr,
5527 	&poison_attr.attr,
5528 	&store_user_attr.attr,
5529 	&validate_attr.attr,
5530 	&alloc_calls_attr.attr,
5531 	&free_calls_attr.attr,
5532 #endif
5533 #ifdef CONFIG_ZONE_DMA
5534 	&cache_dma_attr.attr,
5535 #endif
5536 #ifdef CONFIG_NUMA
5537 	&remote_node_defrag_ratio_attr.attr,
5538 #endif
5539 #ifdef CONFIG_SLUB_STATS
5540 	&alloc_fastpath_attr.attr,
5541 	&alloc_slowpath_attr.attr,
5542 	&free_fastpath_attr.attr,
5543 	&free_slowpath_attr.attr,
5544 	&free_frozen_attr.attr,
5545 	&free_add_partial_attr.attr,
5546 	&free_remove_partial_attr.attr,
5547 	&alloc_from_partial_attr.attr,
5548 	&alloc_slab_attr.attr,
5549 	&alloc_refill_attr.attr,
5550 	&alloc_node_mismatch_attr.attr,
5551 	&free_slab_attr.attr,
5552 	&cpuslab_flush_attr.attr,
5553 	&deactivate_full_attr.attr,
5554 	&deactivate_empty_attr.attr,
5555 	&deactivate_to_head_attr.attr,
5556 	&deactivate_to_tail_attr.attr,
5557 	&deactivate_remote_frees_attr.attr,
5558 	&deactivate_bypass_attr.attr,
5559 	&order_fallback_attr.attr,
5560 	&cmpxchg_double_fail_attr.attr,
5561 	&cmpxchg_double_cpu_fail_attr.attr,
5562 	&cpu_partial_alloc_attr.attr,
5563 	&cpu_partial_free_attr.attr,
5564 	&cpu_partial_node_attr.attr,
5565 	&cpu_partial_drain_attr.attr,
5566 #endif
5567 #ifdef CONFIG_FAILSLAB
5568 	&failslab_attr.attr,
5569 #endif
5570 	&usersize_attr.attr,
5571 
5572 	NULL
5573 };
5574 
5575 static const struct attribute_group slab_attr_group = {
5576 	.attrs = slab_attrs,
5577 };
5578 
5579 static ssize_t slab_attr_show(struct kobject *kobj,
5580 				struct attribute *attr,
5581 				char *buf)
5582 {
5583 	struct slab_attribute *attribute;
5584 	struct kmem_cache *s;
5585 	int err;
5586 
5587 	attribute = to_slab_attr(attr);
5588 	s = to_slab(kobj);
5589 
5590 	if (!attribute->show)
5591 		return -EIO;
5592 
5593 	err = attribute->show(s, buf);
5594 
5595 	return err;
5596 }
5597 
5598 static ssize_t slab_attr_store(struct kobject *kobj,
5599 				struct attribute *attr,
5600 				const char *buf, size_t len)
5601 {
5602 	struct slab_attribute *attribute;
5603 	struct kmem_cache *s;
5604 	int err;
5605 
5606 	attribute = to_slab_attr(attr);
5607 	s = to_slab(kobj);
5608 
5609 	if (!attribute->store)
5610 		return -EIO;
5611 
5612 	err = attribute->store(s, buf, len);
5613 #ifdef CONFIG_MEMCG
5614 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5615 		struct kmem_cache *c;
5616 
5617 		mutex_lock(&slab_mutex);
5618 		if (s->max_attr_size < len)
5619 			s->max_attr_size = len;
5620 
5621 		/*
5622 		 * This is a best effort propagation, so this function's return
5623 		 * value will be determined by the parent cache only. This is
5624 		 * basically because not all attributes will have a well
5625 		 * defined semantics for rollbacks - most of the actions will
5626 		 * have permanent effects.
5627 		 *
5628 		 * Returning the error value of any of the children that fail
5629 		 * is not 100 % defined, in the sense that users seeing the
5630 		 * error code won't be able to know anything about the state of
5631 		 * the cache.
5632 		 *
5633 		 * Only returning the error code for the parent cache at least
5634 		 * has well defined semantics. The cache being written to
5635 		 * directly either failed or succeeded, in which case we loop
5636 		 * through the descendants with best-effort propagation.
5637 		 */
5638 		for_each_memcg_cache(c, s)
5639 			attribute->store(c, buf, len);
5640 		mutex_unlock(&slab_mutex);
5641 	}
5642 #endif
5643 	return err;
5644 }
5645 
5646 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5647 {
5648 #ifdef CONFIG_MEMCG
5649 	int i;
5650 	char *buffer = NULL;
5651 	struct kmem_cache *root_cache;
5652 
5653 	if (is_root_cache(s))
5654 		return;
5655 
5656 	root_cache = s->memcg_params.root_cache;
5657 
5658 	/*
5659 	 * This mean this cache had no attribute written. Therefore, no point
5660 	 * in copying default values around
5661 	 */
5662 	if (!root_cache->max_attr_size)
5663 		return;
5664 
5665 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5666 		char mbuf[64];
5667 		char *buf;
5668 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5669 		ssize_t len;
5670 
5671 		if (!attr || !attr->store || !attr->show)
5672 			continue;
5673 
5674 		/*
5675 		 * It is really bad that we have to allocate here, so we will
5676 		 * do it only as a fallback. If we actually allocate, though,
5677 		 * we can just use the allocated buffer until the end.
5678 		 *
5679 		 * Most of the slub attributes will tend to be very small in
5680 		 * size, but sysfs allows buffers up to a page, so they can
5681 		 * theoretically happen.
5682 		 */
5683 		if (buffer)
5684 			buf = buffer;
5685 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf) &&
5686 			 !IS_ENABLED(CONFIG_SLUB_STATS))
5687 			buf = mbuf;
5688 		else {
5689 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5690 			if (WARN_ON(!buffer))
5691 				continue;
5692 			buf = buffer;
5693 		}
5694 
5695 		len = attr->show(root_cache, buf);
5696 		if (len > 0)
5697 			attr->store(s, buf, len);
5698 	}
5699 
5700 	if (buffer)
5701 		free_page((unsigned long)buffer);
5702 #endif	/* CONFIG_MEMCG */
5703 }
5704 
5705 static void kmem_cache_release(struct kobject *k)
5706 {
5707 	slab_kmem_cache_release(to_slab(k));
5708 }
5709 
5710 static const struct sysfs_ops slab_sysfs_ops = {
5711 	.show = slab_attr_show,
5712 	.store = slab_attr_store,
5713 };
5714 
5715 static struct kobj_type slab_ktype = {
5716 	.sysfs_ops = &slab_sysfs_ops,
5717 	.release = kmem_cache_release,
5718 };
5719 
5720 static struct kset *slab_kset;
5721 
5722 static inline struct kset *cache_kset(struct kmem_cache *s)
5723 {
5724 #ifdef CONFIG_MEMCG
5725 	if (!is_root_cache(s))
5726 		return s->memcg_params.root_cache->memcg_kset;
5727 #endif
5728 	return slab_kset;
5729 }
5730 
5731 #define ID_STR_LENGTH 64
5732 
5733 /* Create a unique string id for a slab cache:
5734  *
5735  * Format	:[flags-]size
5736  */
5737 static char *create_unique_id(struct kmem_cache *s)
5738 {
5739 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5740 	char *p = name;
5741 
5742 	BUG_ON(!name);
5743 
5744 	*p++ = ':';
5745 	/*
5746 	 * First flags affecting slabcache operations. We will only
5747 	 * get here for aliasable slabs so we do not need to support
5748 	 * too many flags. The flags here must cover all flags that
5749 	 * are matched during merging to guarantee that the id is
5750 	 * unique.
5751 	 */
5752 	if (s->flags & SLAB_CACHE_DMA)
5753 		*p++ = 'd';
5754 	if (s->flags & SLAB_CACHE_DMA32)
5755 		*p++ = 'D';
5756 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5757 		*p++ = 'a';
5758 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5759 		*p++ = 'F';
5760 	if (s->flags & SLAB_ACCOUNT)
5761 		*p++ = 'A';
5762 	if (p != name + 1)
5763 		*p++ = '-';
5764 	p += sprintf(p, "%07u", s->size);
5765 
5766 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5767 	return name;
5768 }
5769 
5770 static void sysfs_slab_remove_workfn(struct work_struct *work)
5771 {
5772 	struct kmem_cache *s =
5773 		container_of(work, struct kmem_cache, kobj_remove_work);
5774 
5775 	if (!s->kobj.state_in_sysfs)
5776 		/*
5777 		 * For a memcg cache, this may be called during
5778 		 * deactivation and again on shutdown.  Remove only once.
5779 		 * A cache is never shut down before deactivation is
5780 		 * complete, so no need to worry about synchronization.
5781 		 */
5782 		goto out;
5783 
5784 #ifdef CONFIG_MEMCG
5785 	kset_unregister(s->memcg_kset);
5786 #endif
5787 out:
5788 	kobject_put(&s->kobj);
5789 }
5790 
5791 static int sysfs_slab_add(struct kmem_cache *s)
5792 {
5793 	int err;
5794 	const char *name;
5795 	struct kset *kset = cache_kset(s);
5796 	int unmergeable = slab_unmergeable(s);
5797 
5798 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5799 
5800 	if (!kset) {
5801 		kobject_init(&s->kobj, &slab_ktype);
5802 		return 0;
5803 	}
5804 
5805 	if (!unmergeable && disable_higher_order_debug &&
5806 			(slub_debug & DEBUG_METADATA_FLAGS))
5807 		unmergeable = 1;
5808 
5809 	if (unmergeable) {
5810 		/*
5811 		 * Slabcache can never be merged so we can use the name proper.
5812 		 * This is typically the case for debug situations. In that
5813 		 * case we can catch duplicate names easily.
5814 		 */
5815 		sysfs_remove_link(&slab_kset->kobj, s->name);
5816 		name = s->name;
5817 	} else {
5818 		/*
5819 		 * Create a unique name for the slab as a target
5820 		 * for the symlinks.
5821 		 */
5822 		name = create_unique_id(s);
5823 	}
5824 
5825 	s->kobj.kset = kset;
5826 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5827 	if (err) {
5828 		kobject_put(&s->kobj);
5829 		goto out;
5830 	}
5831 
5832 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5833 	if (err)
5834 		goto out_del_kobj;
5835 
5836 #ifdef CONFIG_MEMCG
5837 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5838 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5839 		if (!s->memcg_kset) {
5840 			err = -ENOMEM;
5841 			goto out_del_kobj;
5842 		}
5843 	}
5844 #endif
5845 
5846 	if (!unmergeable) {
5847 		/* Setup first alias */
5848 		sysfs_slab_alias(s, s->name);
5849 	}
5850 out:
5851 	if (!unmergeable)
5852 		kfree(name);
5853 	return err;
5854 out_del_kobj:
5855 	kobject_del(&s->kobj);
5856 	goto out;
5857 }
5858 
5859 static void sysfs_slab_remove(struct kmem_cache *s)
5860 {
5861 	if (slab_state < FULL)
5862 		/*
5863 		 * Sysfs has not been setup yet so no need to remove the
5864 		 * cache from sysfs.
5865 		 */
5866 		return;
5867 
5868 	kobject_get(&s->kobj);
5869 	schedule_work(&s->kobj_remove_work);
5870 }
5871 
5872 void sysfs_slab_unlink(struct kmem_cache *s)
5873 {
5874 	if (slab_state >= FULL)
5875 		kobject_del(&s->kobj);
5876 }
5877 
5878 void sysfs_slab_release(struct kmem_cache *s)
5879 {
5880 	if (slab_state >= FULL)
5881 		kobject_put(&s->kobj);
5882 }
5883 
5884 /*
5885  * Need to buffer aliases during bootup until sysfs becomes
5886  * available lest we lose that information.
5887  */
5888 struct saved_alias {
5889 	struct kmem_cache *s;
5890 	const char *name;
5891 	struct saved_alias *next;
5892 };
5893 
5894 static struct saved_alias *alias_list;
5895 
5896 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5897 {
5898 	struct saved_alias *al;
5899 
5900 	if (slab_state == FULL) {
5901 		/*
5902 		 * If we have a leftover link then remove it.
5903 		 */
5904 		sysfs_remove_link(&slab_kset->kobj, name);
5905 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5906 	}
5907 
5908 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5909 	if (!al)
5910 		return -ENOMEM;
5911 
5912 	al->s = s;
5913 	al->name = name;
5914 	al->next = alias_list;
5915 	alias_list = al;
5916 	return 0;
5917 }
5918 
5919 static int __init slab_sysfs_init(void)
5920 {
5921 	struct kmem_cache *s;
5922 	int err;
5923 
5924 	mutex_lock(&slab_mutex);
5925 
5926 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5927 	if (!slab_kset) {
5928 		mutex_unlock(&slab_mutex);
5929 		pr_err("Cannot register slab subsystem.\n");
5930 		return -ENOSYS;
5931 	}
5932 
5933 	slab_state = FULL;
5934 
5935 	list_for_each_entry(s, &slab_caches, list) {
5936 		err = sysfs_slab_add(s);
5937 		if (err)
5938 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5939 			       s->name);
5940 	}
5941 
5942 	while (alias_list) {
5943 		struct saved_alias *al = alias_list;
5944 
5945 		alias_list = alias_list->next;
5946 		err = sysfs_slab_alias(al->s, al->name);
5947 		if (err)
5948 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5949 			       al->name);
5950 		kfree(al);
5951 	}
5952 
5953 	mutex_unlock(&slab_mutex);
5954 	resiliency_test();
5955 	return 0;
5956 }
5957 
5958 __initcall(slab_sysfs_init);
5959 #endif /* CONFIG_SYSFS */
5960 
5961 /*
5962  * The /proc/slabinfo ABI
5963  */
5964 #ifdef CONFIG_SLUB_DEBUG
5965 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5966 {
5967 	unsigned long nr_slabs = 0;
5968 	unsigned long nr_objs = 0;
5969 	unsigned long nr_free = 0;
5970 	int node;
5971 	struct kmem_cache_node *n;
5972 
5973 	for_each_kmem_cache_node(s, node, n) {
5974 		nr_slabs += node_nr_slabs(n);
5975 		nr_objs += node_nr_objs(n);
5976 		nr_free += count_partial(n, count_free);
5977 	}
5978 
5979 	sinfo->active_objs = nr_objs - nr_free;
5980 	sinfo->num_objs = nr_objs;
5981 	sinfo->active_slabs = nr_slabs;
5982 	sinfo->num_slabs = nr_slabs;
5983 	sinfo->objects_per_slab = oo_objects(s->oo);
5984 	sinfo->cache_order = oo_order(s->oo);
5985 }
5986 
5987 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5988 {
5989 }
5990 
5991 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5992 		       size_t count, loff_t *ppos)
5993 {
5994 	return -EIO;
5995 }
5996 #endif /* CONFIG_SLUB_DEBUG */
5997