xref: /openbmc/linux/mm/slub.c (revision 9f6d3c4b76314c40c866a935d78c80fd284768bd)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 
32 /*
33  * Lock order:
34  *   1. slab_lock(page)
35  *   2. slab->list_lock
36  *
37  *   The slab_lock protects operations on the object of a particular
38  *   slab and its metadata in the page struct. If the slab lock
39  *   has been taken then no allocations nor frees can be performed
40  *   on the objects in the slab nor can the slab be added or removed
41  *   from the partial or full lists since this would mean modifying
42  *   the page_struct of the slab.
43  *
44  *   The list_lock protects the partial and full list on each node and
45  *   the partial slab counter. If taken then no new slabs may be added or
46  *   removed from the lists nor make the number of partial slabs be modified.
47  *   (Note that the total number of slabs is an atomic value that may be
48  *   modified without taking the list lock).
49  *
50  *   The list_lock is a centralized lock and thus we avoid taking it as
51  *   much as possible. As long as SLUB does not have to handle partial
52  *   slabs, operations can continue without any centralized lock. F.e.
53  *   allocating a long series of objects that fill up slabs does not require
54  *   the list lock.
55  *
56  *   The lock order is sometimes inverted when we are trying to get a slab
57  *   off a list. We take the list_lock and then look for a page on the list
58  *   to use. While we do that objects in the slabs may be freed. We can
59  *   only operate on the slab if we have also taken the slab_lock. So we use
60  *   a slab_trylock() on the slab. If trylock was successful then no frees
61  *   can occur anymore and we can use the slab for allocations etc. If the
62  *   slab_trylock() does not succeed then frees are in progress in the slab and
63  *   we must stay away from it for a while since we may cause a bouncing
64  *   cacheline if we try to acquire the lock. So go onto the next slab.
65  *   If all pages are busy then we may allocate a new slab instead of reusing
66  *   a partial slab. A new slab has noone operating on it and thus there is
67  *   no danger of cacheline contention.
68  *
69  *   Interrupts are disabled during allocation and deallocation in order to
70  *   make the slab allocator safe to use in the context of an irq. In addition
71  *   interrupts are disabled to ensure that the processor does not change
72  *   while handling per_cpu slabs, due to kernel preemption.
73  *
74  * SLUB assigns one slab for allocation to each processor.
75  * Allocations only occur from these slabs called cpu slabs.
76  *
77  * Slabs with free elements are kept on a partial list and during regular
78  * operations no list for full slabs is used. If an object in a full slab is
79  * freed then the slab will show up again on the partial lists.
80  * We track full slabs for debugging purposes though because otherwise we
81  * cannot scan all objects.
82  *
83  * Slabs are freed when they become empty. Teardown and setup is
84  * minimal so we rely on the page allocators per cpu caches for
85  * fast frees and allocs.
86  *
87  * Overloading of page flags that are otherwise used for LRU management.
88  *
89  * PageActive 		The slab is frozen and exempt from list processing.
90  * 			This means that the slab is dedicated to a purpose
91  * 			such as satisfying allocations for a specific
92  * 			processor. Objects may be freed in the slab while
93  * 			it is frozen but slab_free will then skip the usual
94  * 			list operations. It is up to the processor holding
95  * 			the slab to integrate the slab into the slab lists
96  * 			when the slab is no longer needed.
97  *
98  * 			One use of this flag is to mark slabs that are
99  * 			used for allocations. Then such a slab becomes a cpu
100  * 			slab. The cpu slab may be equipped with an additional
101  * 			freelist that allows lockless access to
102  * 			free objects in addition to the regular freelist
103  * 			that requires the slab lock.
104  *
105  * PageError		Slab requires special handling due to debug
106  * 			options set. This moves	slab handling out of
107  * 			the fast path and disables lockless freelists.
108  */
109 
110 #ifdef CONFIG_SLUB_DEBUG
111 #define SLABDEBUG 1
112 #else
113 #define SLABDEBUG 0
114 #endif
115 
116 /*
117  * Issues still to be resolved:
118  *
119  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120  *
121  * - Variable sizing of the per node arrays
122  */
123 
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
126 
127 /*
128  * Mininum number of partial slabs. These will be left on the partial
129  * lists even if they are empty. kmem_cache_shrink may reclaim them.
130  */
131 #define MIN_PARTIAL 5
132 
133 /*
134  * Maximum number of desirable partial slabs.
135  * The existence of more partial slabs makes kmem_cache_shrink
136  * sort the partial list by the number of objects in the.
137  */
138 #define MAX_PARTIAL 10
139 
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 				SLAB_POISON | SLAB_STORE_USER)
142 
143 /*
144  * Debugging flags that require metadata to be stored in the slab.  These get
145  * disabled when slub_debug=O is used and a cache's min order increases with
146  * metadata.
147  */
148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
149 
150 /*
151  * Set of flags that will prevent slab merging
152  */
153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
154 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
155 		SLAB_FAILSLAB)
156 
157 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
158 		SLAB_CACHE_DMA | SLAB_NOTRACK)
159 
160 #ifndef ARCH_KMALLOC_MINALIGN
161 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
162 #endif
163 
164 #ifndef ARCH_SLAB_MINALIGN
165 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
166 #endif
167 
168 #define OO_SHIFT	16
169 #define OO_MASK		((1 << OO_SHIFT) - 1)
170 #define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
171 
172 /* Internal SLUB flags */
173 #define __OBJECT_POISON		0x80000000 /* Poison object */
174 #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
175 
176 static int kmem_size = sizeof(struct kmem_cache);
177 
178 #ifdef CONFIG_SMP
179 static struct notifier_block slab_notifier;
180 #endif
181 
182 static enum {
183 	DOWN,		/* No slab functionality available */
184 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
185 	UP,		/* Everything works but does not show up in sysfs */
186 	SYSFS		/* Sysfs up */
187 } slab_state = DOWN;
188 
189 /* A list of all slab caches on the system */
190 static DECLARE_RWSEM(slub_lock);
191 static LIST_HEAD(slab_caches);
192 
193 /*
194  * Tracking user of a slab.
195  */
196 struct track {
197 	unsigned long addr;	/* Called from address */
198 	int cpu;		/* Was running on cpu */
199 	int pid;		/* Pid context */
200 	unsigned long when;	/* When did the operation occur */
201 };
202 
203 enum track_item { TRACK_ALLOC, TRACK_FREE };
204 
205 #ifdef CONFIG_SLUB_DEBUG
206 static int sysfs_slab_add(struct kmem_cache *);
207 static int sysfs_slab_alias(struct kmem_cache *, const char *);
208 static void sysfs_slab_remove(struct kmem_cache *);
209 
210 #else
211 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
212 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
213 							{ return 0; }
214 static inline void sysfs_slab_remove(struct kmem_cache *s)
215 {
216 	kfree(s);
217 }
218 
219 #endif
220 
221 static inline void stat(struct kmem_cache *s, enum stat_item si)
222 {
223 #ifdef CONFIG_SLUB_STATS
224 	__this_cpu_inc(s->cpu_slab->stat[si]);
225 #endif
226 }
227 
228 /********************************************************************
229  * 			Core slab cache functions
230  *******************************************************************/
231 
232 int slab_is_available(void)
233 {
234 	return slab_state >= UP;
235 }
236 
237 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
238 {
239 #ifdef CONFIG_NUMA
240 	return s->node[node];
241 #else
242 	return &s->local_node;
243 #endif
244 }
245 
246 /* Verify that a pointer has an address that is valid within a slab page */
247 static inline int check_valid_pointer(struct kmem_cache *s,
248 				struct page *page, const void *object)
249 {
250 	void *base;
251 
252 	if (!object)
253 		return 1;
254 
255 	base = page_address(page);
256 	if (object < base || object >= base + page->objects * s->size ||
257 		(object - base) % s->size) {
258 		return 0;
259 	}
260 
261 	return 1;
262 }
263 
264 static inline void *get_freepointer(struct kmem_cache *s, void *object)
265 {
266 	return *(void **)(object + s->offset);
267 }
268 
269 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
270 {
271 	*(void **)(object + s->offset) = fp;
272 }
273 
274 /* Loop over all objects in a slab */
275 #define for_each_object(__p, __s, __addr, __objects) \
276 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
277 			__p += (__s)->size)
278 
279 /* Scan freelist */
280 #define for_each_free_object(__p, __s, __free) \
281 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
282 
283 /* Determine object index from a given position */
284 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
285 {
286 	return (p - addr) / s->size;
287 }
288 
289 static inline struct kmem_cache_order_objects oo_make(int order,
290 						unsigned long size)
291 {
292 	struct kmem_cache_order_objects x = {
293 		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
294 	};
295 
296 	return x;
297 }
298 
299 static inline int oo_order(struct kmem_cache_order_objects x)
300 {
301 	return x.x >> OO_SHIFT;
302 }
303 
304 static inline int oo_objects(struct kmem_cache_order_objects x)
305 {
306 	return x.x & OO_MASK;
307 }
308 
309 #ifdef CONFIG_SLUB_DEBUG
310 /*
311  * Debug settings:
312  */
313 #ifdef CONFIG_SLUB_DEBUG_ON
314 static int slub_debug = DEBUG_DEFAULT_FLAGS;
315 #else
316 static int slub_debug;
317 #endif
318 
319 static char *slub_debug_slabs;
320 static int disable_higher_order_debug;
321 
322 /*
323  * Object debugging
324  */
325 static void print_section(char *text, u8 *addr, unsigned int length)
326 {
327 	int i, offset;
328 	int newline = 1;
329 	char ascii[17];
330 
331 	ascii[16] = 0;
332 
333 	for (i = 0; i < length; i++) {
334 		if (newline) {
335 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
336 			newline = 0;
337 		}
338 		printk(KERN_CONT " %02x", addr[i]);
339 		offset = i % 16;
340 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
341 		if (offset == 15) {
342 			printk(KERN_CONT " %s\n", ascii);
343 			newline = 1;
344 		}
345 	}
346 	if (!newline) {
347 		i %= 16;
348 		while (i < 16) {
349 			printk(KERN_CONT "   ");
350 			ascii[i] = ' ';
351 			i++;
352 		}
353 		printk(KERN_CONT " %s\n", ascii);
354 	}
355 }
356 
357 static struct track *get_track(struct kmem_cache *s, void *object,
358 	enum track_item alloc)
359 {
360 	struct track *p;
361 
362 	if (s->offset)
363 		p = object + s->offset + sizeof(void *);
364 	else
365 		p = object + s->inuse;
366 
367 	return p + alloc;
368 }
369 
370 static void set_track(struct kmem_cache *s, void *object,
371 			enum track_item alloc, unsigned long addr)
372 {
373 	struct track *p = get_track(s, object, alloc);
374 
375 	if (addr) {
376 		p->addr = addr;
377 		p->cpu = smp_processor_id();
378 		p->pid = current->pid;
379 		p->when = jiffies;
380 	} else
381 		memset(p, 0, sizeof(struct track));
382 }
383 
384 static void init_tracking(struct kmem_cache *s, void *object)
385 {
386 	if (!(s->flags & SLAB_STORE_USER))
387 		return;
388 
389 	set_track(s, object, TRACK_FREE, 0UL);
390 	set_track(s, object, TRACK_ALLOC, 0UL);
391 }
392 
393 static void print_track(const char *s, struct track *t)
394 {
395 	if (!t->addr)
396 		return;
397 
398 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
399 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
400 }
401 
402 static void print_tracking(struct kmem_cache *s, void *object)
403 {
404 	if (!(s->flags & SLAB_STORE_USER))
405 		return;
406 
407 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
408 	print_track("Freed", get_track(s, object, TRACK_FREE));
409 }
410 
411 static void print_page_info(struct page *page)
412 {
413 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
414 		page, page->objects, page->inuse, page->freelist, page->flags);
415 
416 }
417 
418 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
419 {
420 	va_list args;
421 	char buf[100];
422 
423 	va_start(args, fmt);
424 	vsnprintf(buf, sizeof(buf), fmt, args);
425 	va_end(args);
426 	printk(KERN_ERR "========================================"
427 			"=====================================\n");
428 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
429 	printk(KERN_ERR "----------------------------------------"
430 			"-------------------------------------\n\n");
431 }
432 
433 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
434 {
435 	va_list args;
436 	char buf[100];
437 
438 	va_start(args, fmt);
439 	vsnprintf(buf, sizeof(buf), fmt, args);
440 	va_end(args);
441 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
442 }
443 
444 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
445 {
446 	unsigned int off;	/* Offset of last byte */
447 	u8 *addr = page_address(page);
448 
449 	print_tracking(s, p);
450 
451 	print_page_info(page);
452 
453 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
454 			p, p - addr, get_freepointer(s, p));
455 
456 	if (p > addr + 16)
457 		print_section("Bytes b4", p - 16, 16);
458 
459 	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
460 
461 	if (s->flags & SLAB_RED_ZONE)
462 		print_section("Redzone", p + s->objsize,
463 			s->inuse - s->objsize);
464 
465 	if (s->offset)
466 		off = s->offset + sizeof(void *);
467 	else
468 		off = s->inuse;
469 
470 	if (s->flags & SLAB_STORE_USER)
471 		off += 2 * sizeof(struct track);
472 
473 	if (off != s->size)
474 		/* Beginning of the filler is the free pointer */
475 		print_section("Padding", p + off, s->size - off);
476 
477 	dump_stack();
478 }
479 
480 static void object_err(struct kmem_cache *s, struct page *page,
481 			u8 *object, char *reason)
482 {
483 	slab_bug(s, "%s", reason);
484 	print_trailer(s, page, object);
485 }
486 
487 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
488 {
489 	va_list args;
490 	char buf[100];
491 
492 	va_start(args, fmt);
493 	vsnprintf(buf, sizeof(buf), fmt, args);
494 	va_end(args);
495 	slab_bug(s, "%s", buf);
496 	print_page_info(page);
497 	dump_stack();
498 }
499 
500 static void init_object(struct kmem_cache *s, void *object, int active)
501 {
502 	u8 *p = object;
503 
504 	if (s->flags & __OBJECT_POISON) {
505 		memset(p, POISON_FREE, s->objsize - 1);
506 		p[s->objsize - 1] = POISON_END;
507 	}
508 
509 	if (s->flags & SLAB_RED_ZONE)
510 		memset(p + s->objsize,
511 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
512 			s->inuse - s->objsize);
513 }
514 
515 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
516 {
517 	while (bytes) {
518 		if (*start != (u8)value)
519 			return start;
520 		start++;
521 		bytes--;
522 	}
523 	return NULL;
524 }
525 
526 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
527 						void *from, void *to)
528 {
529 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
530 	memset(from, data, to - from);
531 }
532 
533 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
534 			u8 *object, char *what,
535 			u8 *start, unsigned int value, unsigned int bytes)
536 {
537 	u8 *fault;
538 	u8 *end;
539 
540 	fault = check_bytes(start, value, bytes);
541 	if (!fault)
542 		return 1;
543 
544 	end = start + bytes;
545 	while (end > fault && end[-1] == value)
546 		end--;
547 
548 	slab_bug(s, "%s overwritten", what);
549 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
550 					fault, end - 1, fault[0], value);
551 	print_trailer(s, page, object);
552 
553 	restore_bytes(s, what, value, fault, end);
554 	return 0;
555 }
556 
557 /*
558  * Object layout:
559  *
560  * object address
561  * 	Bytes of the object to be managed.
562  * 	If the freepointer may overlay the object then the free
563  * 	pointer is the first word of the object.
564  *
565  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
566  * 	0xa5 (POISON_END)
567  *
568  * object + s->objsize
569  * 	Padding to reach word boundary. This is also used for Redzoning.
570  * 	Padding is extended by another word if Redzoning is enabled and
571  * 	objsize == inuse.
572  *
573  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
574  * 	0xcc (RED_ACTIVE) for objects in use.
575  *
576  * object + s->inuse
577  * 	Meta data starts here.
578  *
579  * 	A. Free pointer (if we cannot overwrite object on free)
580  * 	B. Tracking data for SLAB_STORE_USER
581  * 	C. Padding to reach required alignment boundary or at mininum
582  * 		one word if debugging is on to be able to detect writes
583  * 		before the word boundary.
584  *
585  *	Padding is done using 0x5a (POISON_INUSE)
586  *
587  * object + s->size
588  * 	Nothing is used beyond s->size.
589  *
590  * If slabcaches are merged then the objsize and inuse boundaries are mostly
591  * ignored. And therefore no slab options that rely on these boundaries
592  * may be used with merged slabcaches.
593  */
594 
595 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
596 {
597 	unsigned long off = s->inuse;	/* The end of info */
598 
599 	if (s->offset)
600 		/* Freepointer is placed after the object. */
601 		off += sizeof(void *);
602 
603 	if (s->flags & SLAB_STORE_USER)
604 		/* We also have user information there */
605 		off += 2 * sizeof(struct track);
606 
607 	if (s->size == off)
608 		return 1;
609 
610 	return check_bytes_and_report(s, page, p, "Object padding",
611 				p + off, POISON_INUSE, s->size - off);
612 }
613 
614 /* Check the pad bytes at the end of a slab page */
615 static int slab_pad_check(struct kmem_cache *s, struct page *page)
616 {
617 	u8 *start;
618 	u8 *fault;
619 	u8 *end;
620 	int length;
621 	int remainder;
622 
623 	if (!(s->flags & SLAB_POISON))
624 		return 1;
625 
626 	start = page_address(page);
627 	length = (PAGE_SIZE << compound_order(page));
628 	end = start + length;
629 	remainder = length % s->size;
630 	if (!remainder)
631 		return 1;
632 
633 	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
634 	if (!fault)
635 		return 1;
636 	while (end > fault && end[-1] == POISON_INUSE)
637 		end--;
638 
639 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
640 	print_section("Padding", end - remainder, remainder);
641 
642 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
643 	return 0;
644 }
645 
646 static int check_object(struct kmem_cache *s, struct page *page,
647 					void *object, int active)
648 {
649 	u8 *p = object;
650 	u8 *endobject = object + s->objsize;
651 
652 	if (s->flags & SLAB_RED_ZONE) {
653 		unsigned int red =
654 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
655 
656 		if (!check_bytes_and_report(s, page, object, "Redzone",
657 			endobject, red, s->inuse - s->objsize))
658 			return 0;
659 	} else {
660 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
661 			check_bytes_and_report(s, page, p, "Alignment padding",
662 				endobject, POISON_INUSE, s->inuse - s->objsize);
663 		}
664 	}
665 
666 	if (s->flags & SLAB_POISON) {
667 		if (!active && (s->flags & __OBJECT_POISON) &&
668 			(!check_bytes_and_report(s, page, p, "Poison", p,
669 					POISON_FREE, s->objsize - 1) ||
670 			 !check_bytes_and_report(s, page, p, "Poison",
671 				p + s->objsize - 1, POISON_END, 1)))
672 			return 0;
673 		/*
674 		 * check_pad_bytes cleans up on its own.
675 		 */
676 		check_pad_bytes(s, page, p);
677 	}
678 
679 	if (!s->offset && active)
680 		/*
681 		 * Object and freepointer overlap. Cannot check
682 		 * freepointer while object is allocated.
683 		 */
684 		return 1;
685 
686 	/* Check free pointer validity */
687 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
688 		object_err(s, page, p, "Freepointer corrupt");
689 		/*
690 		 * No choice but to zap it and thus lose the remainder
691 		 * of the free objects in this slab. May cause
692 		 * another error because the object count is now wrong.
693 		 */
694 		set_freepointer(s, p, NULL);
695 		return 0;
696 	}
697 	return 1;
698 }
699 
700 static int check_slab(struct kmem_cache *s, struct page *page)
701 {
702 	int maxobj;
703 
704 	VM_BUG_ON(!irqs_disabled());
705 
706 	if (!PageSlab(page)) {
707 		slab_err(s, page, "Not a valid slab page");
708 		return 0;
709 	}
710 
711 	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
712 	if (page->objects > maxobj) {
713 		slab_err(s, page, "objects %u > max %u",
714 			s->name, page->objects, maxobj);
715 		return 0;
716 	}
717 	if (page->inuse > page->objects) {
718 		slab_err(s, page, "inuse %u > max %u",
719 			s->name, page->inuse, page->objects);
720 		return 0;
721 	}
722 	/* Slab_pad_check fixes things up after itself */
723 	slab_pad_check(s, page);
724 	return 1;
725 }
726 
727 /*
728  * Determine if a certain object on a page is on the freelist. Must hold the
729  * slab lock to guarantee that the chains are in a consistent state.
730  */
731 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
732 {
733 	int nr = 0;
734 	void *fp = page->freelist;
735 	void *object = NULL;
736 	unsigned long max_objects;
737 
738 	while (fp && nr <= page->objects) {
739 		if (fp == search)
740 			return 1;
741 		if (!check_valid_pointer(s, page, fp)) {
742 			if (object) {
743 				object_err(s, page, object,
744 					"Freechain corrupt");
745 				set_freepointer(s, object, NULL);
746 				break;
747 			} else {
748 				slab_err(s, page, "Freepointer corrupt");
749 				page->freelist = NULL;
750 				page->inuse = page->objects;
751 				slab_fix(s, "Freelist cleared");
752 				return 0;
753 			}
754 			break;
755 		}
756 		object = fp;
757 		fp = get_freepointer(s, object);
758 		nr++;
759 	}
760 
761 	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
762 	if (max_objects > MAX_OBJS_PER_PAGE)
763 		max_objects = MAX_OBJS_PER_PAGE;
764 
765 	if (page->objects != max_objects) {
766 		slab_err(s, page, "Wrong number of objects. Found %d but "
767 			"should be %d", page->objects, max_objects);
768 		page->objects = max_objects;
769 		slab_fix(s, "Number of objects adjusted.");
770 	}
771 	if (page->inuse != page->objects - nr) {
772 		slab_err(s, page, "Wrong object count. Counter is %d but "
773 			"counted were %d", page->inuse, page->objects - nr);
774 		page->inuse = page->objects - nr;
775 		slab_fix(s, "Object count adjusted.");
776 	}
777 	return search == NULL;
778 }
779 
780 static void trace(struct kmem_cache *s, struct page *page, void *object,
781 								int alloc)
782 {
783 	if (s->flags & SLAB_TRACE) {
784 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
785 			s->name,
786 			alloc ? "alloc" : "free",
787 			object, page->inuse,
788 			page->freelist);
789 
790 		if (!alloc)
791 			print_section("Object", (void *)object, s->objsize);
792 
793 		dump_stack();
794 	}
795 }
796 
797 /*
798  * Tracking of fully allocated slabs for debugging purposes.
799  */
800 static void add_full(struct kmem_cache_node *n, struct page *page)
801 {
802 	spin_lock(&n->list_lock);
803 	list_add(&page->lru, &n->full);
804 	spin_unlock(&n->list_lock);
805 }
806 
807 static void remove_full(struct kmem_cache *s, struct page *page)
808 {
809 	struct kmem_cache_node *n;
810 
811 	if (!(s->flags & SLAB_STORE_USER))
812 		return;
813 
814 	n = get_node(s, page_to_nid(page));
815 
816 	spin_lock(&n->list_lock);
817 	list_del(&page->lru);
818 	spin_unlock(&n->list_lock);
819 }
820 
821 /* Tracking of the number of slabs for debugging purposes */
822 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
823 {
824 	struct kmem_cache_node *n = get_node(s, node);
825 
826 	return atomic_long_read(&n->nr_slabs);
827 }
828 
829 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
830 {
831 	return atomic_long_read(&n->nr_slabs);
832 }
833 
834 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
835 {
836 	struct kmem_cache_node *n = get_node(s, node);
837 
838 	/*
839 	 * May be called early in order to allocate a slab for the
840 	 * kmem_cache_node structure. Solve the chicken-egg
841 	 * dilemma by deferring the increment of the count during
842 	 * bootstrap (see early_kmem_cache_node_alloc).
843 	 */
844 	if (!NUMA_BUILD || n) {
845 		atomic_long_inc(&n->nr_slabs);
846 		atomic_long_add(objects, &n->total_objects);
847 	}
848 }
849 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
850 {
851 	struct kmem_cache_node *n = get_node(s, node);
852 
853 	atomic_long_dec(&n->nr_slabs);
854 	atomic_long_sub(objects, &n->total_objects);
855 }
856 
857 /* Object debug checks for alloc/free paths */
858 static void setup_object_debug(struct kmem_cache *s, struct page *page,
859 								void *object)
860 {
861 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
862 		return;
863 
864 	init_object(s, object, 0);
865 	init_tracking(s, object);
866 }
867 
868 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
869 					void *object, unsigned long addr)
870 {
871 	if (!check_slab(s, page))
872 		goto bad;
873 
874 	if (!on_freelist(s, page, object)) {
875 		object_err(s, page, object, "Object already allocated");
876 		goto bad;
877 	}
878 
879 	if (!check_valid_pointer(s, page, object)) {
880 		object_err(s, page, object, "Freelist Pointer check fails");
881 		goto bad;
882 	}
883 
884 	if (!check_object(s, page, object, 0))
885 		goto bad;
886 
887 	/* Success perform special debug activities for allocs */
888 	if (s->flags & SLAB_STORE_USER)
889 		set_track(s, object, TRACK_ALLOC, addr);
890 	trace(s, page, object, 1);
891 	init_object(s, object, 1);
892 	return 1;
893 
894 bad:
895 	if (PageSlab(page)) {
896 		/*
897 		 * If this is a slab page then lets do the best we can
898 		 * to avoid issues in the future. Marking all objects
899 		 * as used avoids touching the remaining objects.
900 		 */
901 		slab_fix(s, "Marking all objects used");
902 		page->inuse = page->objects;
903 		page->freelist = NULL;
904 	}
905 	return 0;
906 }
907 
908 static int free_debug_processing(struct kmem_cache *s, struct page *page,
909 					void *object, unsigned long addr)
910 {
911 	if (!check_slab(s, page))
912 		goto fail;
913 
914 	if (!check_valid_pointer(s, page, object)) {
915 		slab_err(s, page, "Invalid object pointer 0x%p", object);
916 		goto fail;
917 	}
918 
919 	if (on_freelist(s, page, object)) {
920 		object_err(s, page, object, "Object already free");
921 		goto fail;
922 	}
923 
924 	if (!check_object(s, page, object, 1))
925 		return 0;
926 
927 	if (unlikely(s != page->slab)) {
928 		if (!PageSlab(page)) {
929 			slab_err(s, page, "Attempt to free object(0x%p) "
930 				"outside of slab", object);
931 		} else if (!page->slab) {
932 			printk(KERN_ERR
933 				"SLUB <none>: no slab for object 0x%p.\n",
934 						object);
935 			dump_stack();
936 		} else
937 			object_err(s, page, object,
938 					"page slab pointer corrupt.");
939 		goto fail;
940 	}
941 
942 	/* Special debug activities for freeing objects */
943 	if (!PageSlubFrozen(page) && !page->freelist)
944 		remove_full(s, page);
945 	if (s->flags & SLAB_STORE_USER)
946 		set_track(s, object, TRACK_FREE, addr);
947 	trace(s, page, object, 0);
948 	init_object(s, object, 0);
949 	return 1;
950 
951 fail:
952 	slab_fix(s, "Object at 0x%p not freed", object);
953 	return 0;
954 }
955 
956 static int __init setup_slub_debug(char *str)
957 {
958 	slub_debug = DEBUG_DEFAULT_FLAGS;
959 	if (*str++ != '=' || !*str)
960 		/*
961 		 * No options specified. Switch on full debugging.
962 		 */
963 		goto out;
964 
965 	if (*str == ',')
966 		/*
967 		 * No options but restriction on slabs. This means full
968 		 * debugging for slabs matching a pattern.
969 		 */
970 		goto check_slabs;
971 
972 	if (tolower(*str) == 'o') {
973 		/*
974 		 * Avoid enabling debugging on caches if its minimum order
975 		 * would increase as a result.
976 		 */
977 		disable_higher_order_debug = 1;
978 		goto out;
979 	}
980 
981 	slub_debug = 0;
982 	if (*str == '-')
983 		/*
984 		 * Switch off all debugging measures.
985 		 */
986 		goto out;
987 
988 	/*
989 	 * Determine which debug features should be switched on
990 	 */
991 	for (; *str && *str != ','; str++) {
992 		switch (tolower(*str)) {
993 		case 'f':
994 			slub_debug |= SLAB_DEBUG_FREE;
995 			break;
996 		case 'z':
997 			slub_debug |= SLAB_RED_ZONE;
998 			break;
999 		case 'p':
1000 			slub_debug |= SLAB_POISON;
1001 			break;
1002 		case 'u':
1003 			slub_debug |= SLAB_STORE_USER;
1004 			break;
1005 		case 't':
1006 			slub_debug |= SLAB_TRACE;
1007 			break;
1008 		case 'a':
1009 			slub_debug |= SLAB_FAILSLAB;
1010 			break;
1011 		default:
1012 			printk(KERN_ERR "slub_debug option '%c' "
1013 				"unknown. skipped\n", *str);
1014 		}
1015 	}
1016 
1017 check_slabs:
1018 	if (*str == ',')
1019 		slub_debug_slabs = str + 1;
1020 out:
1021 	return 1;
1022 }
1023 
1024 __setup("slub_debug", setup_slub_debug);
1025 
1026 static unsigned long kmem_cache_flags(unsigned long objsize,
1027 	unsigned long flags, const char *name,
1028 	void (*ctor)(void *))
1029 {
1030 	/*
1031 	 * Enable debugging if selected on the kernel commandline.
1032 	 */
1033 	if (slub_debug && (!slub_debug_slabs ||
1034 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1035 		flags |= slub_debug;
1036 
1037 	return flags;
1038 }
1039 #else
1040 static inline void setup_object_debug(struct kmem_cache *s,
1041 			struct page *page, void *object) {}
1042 
1043 static inline int alloc_debug_processing(struct kmem_cache *s,
1044 	struct page *page, void *object, unsigned long addr) { return 0; }
1045 
1046 static inline int free_debug_processing(struct kmem_cache *s,
1047 	struct page *page, void *object, unsigned long addr) { return 0; }
1048 
1049 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1050 			{ return 1; }
1051 static inline int check_object(struct kmem_cache *s, struct page *page,
1052 			void *object, int active) { return 1; }
1053 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1054 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1055 	unsigned long flags, const char *name,
1056 	void (*ctor)(void *))
1057 {
1058 	return flags;
1059 }
1060 #define slub_debug 0
1061 
1062 #define disable_higher_order_debug 0
1063 
1064 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1065 							{ return 0; }
1066 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1067 							{ return 0; }
1068 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1069 							int objects) {}
1070 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1071 							int objects) {}
1072 #endif
1073 
1074 /*
1075  * Slab allocation and freeing
1076  */
1077 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1078 					struct kmem_cache_order_objects oo)
1079 {
1080 	int order = oo_order(oo);
1081 
1082 	flags |= __GFP_NOTRACK;
1083 
1084 	if (node == -1)
1085 		return alloc_pages(flags, order);
1086 	else
1087 		return alloc_pages_node(node, flags, order);
1088 }
1089 
1090 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1091 {
1092 	struct page *page;
1093 	struct kmem_cache_order_objects oo = s->oo;
1094 	gfp_t alloc_gfp;
1095 
1096 	flags |= s->allocflags;
1097 
1098 	/*
1099 	 * Let the initial higher-order allocation fail under memory pressure
1100 	 * so we fall-back to the minimum order allocation.
1101 	 */
1102 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1103 
1104 	page = alloc_slab_page(alloc_gfp, node, oo);
1105 	if (unlikely(!page)) {
1106 		oo = s->min;
1107 		/*
1108 		 * Allocation may have failed due to fragmentation.
1109 		 * Try a lower order alloc if possible
1110 		 */
1111 		page = alloc_slab_page(flags, node, oo);
1112 		if (!page)
1113 			return NULL;
1114 
1115 		stat(s, ORDER_FALLBACK);
1116 	}
1117 
1118 	if (kmemcheck_enabled
1119 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1120 		int pages = 1 << oo_order(oo);
1121 
1122 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1123 
1124 		/*
1125 		 * Objects from caches that have a constructor don't get
1126 		 * cleared when they're allocated, so we need to do it here.
1127 		 */
1128 		if (s->ctor)
1129 			kmemcheck_mark_uninitialized_pages(page, pages);
1130 		else
1131 			kmemcheck_mark_unallocated_pages(page, pages);
1132 	}
1133 
1134 	page->objects = oo_objects(oo);
1135 	mod_zone_page_state(page_zone(page),
1136 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1137 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1138 		1 << oo_order(oo));
1139 
1140 	return page;
1141 }
1142 
1143 static void setup_object(struct kmem_cache *s, struct page *page,
1144 				void *object)
1145 {
1146 	setup_object_debug(s, page, object);
1147 	if (unlikely(s->ctor))
1148 		s->ctor(object);
1149 }
1150 
1151 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1152 {
1153 	struct page *page;
1154 	void *start;
1155 	void *last;
1156 	void *p;
1157 
1158 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1159 
1160 	page = allocate_slab(s,
1161 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1162 	if (!page)
1163 		goto out;
1164 
1165 	inc_slabs_node(s, page_to_nid(page), page->objects);
1166 	page->slab = s;
1167 	page->flags |= 1 << PG_slab;
1168 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1169 			SLAB_STORE_USER | SLAB_TRACE))
1170 		__SetPageSlubDebug(page);
1171 
1172 	start = page_address(page);
1173 
1174 	if (unlikely(s->flags & SLAB_POISON))
1175 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1176 
1177 	last = start;
1178 	for_each_object(p, s, start, page->objects) {
1179 		setup_object(s, page, last);
1180 		set_freepointer(s, last, p);
1181 		last = p;
1182 	}
1183 	setup_object(s, page, last);
1184 	set_freepointer(s, last, NULL);
1185 
1186 	page->freelist = start;
1187 	page->inuse = 0;
1188 out:
1189 	return page;
1190 }
1191 
1192 static void __free_slab(struct kmem_cache *s, struct page *page)
1193 {
1194 	int order = compound_order(page);
1195 	int pages = 1 << order;
1196 
1197 	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1198 		void *p;
1199 
1200 		slab_pad_check(s, page);
1201 		for_each_object(p, s, page_address(page),
1202 						page->objects)
1203 			check_object(s, page, p, 0);
1204 		__ClearPageSlubDebug(page);
1205 	}
1206 
1207 	kmemcheck_free_shadow(page, compound_order(page));
1208 
1209 	mod_zone_page_state(page_zone(page),
1210 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1211 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1212 		-pages);
1213 
1214 	__ClearPageSlab(page);
1215 	reset_page_mapcount(page);
1216 	if (current->reclaim_state)
1217 		current->reclaim_state->reclaimed_slab += pages;
1218 	__free_pages(page, order);
1219 }
1220 
1221 static void rcu_free_slab(struct rcu_head *h)
1222 {
1223 	struct page *page;
1224 
1225 	page = container_of((struct list_head *)h, struct page, lru);
1226 	__free_slab(page->slab, page);
1227 }
1228 
1229 static void free_slab(struct kmem_cache *s, struct page *page)
1230 {
1231 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1232 		/*
1233 		 * RCU free overloads the RCU head over the LRU
1234 		 */
1235 		struct rcu_head *head = (void *)&page->lru;
1236 
1237 		call_rcu(head, rcu_free_slab);
1238 	} else
1239 		__free_slab(s, page);
1240 }
1241 
1242 static void discard_slab(struct kmem_cache *s, struct page *page)
1243 {
1244 	dec_slabs_node(s, page_to_nid(page), page->objects);
1245 	free_slab(s, page);
1246 }
1247 
1248 /*
1249  * Per slab locking using the pagelock
1250  */
1251 static __always_inline void slab_lock(struct page *page)
1252 {
1253 	bit_spin_lock(PG_locked, &page->flags);
1254 }
1255 
1256 static __always_inline void slab_unlock(struct page *page)
1257 {
1258 	__bit_spin_unlock(PG_locked, &page->flags);
1259 }
1260 
1261 static __always_inline int slab_trylock(struct page *page)
1262 {
1263 	int rc = 1;
1264 
1265 	rc = bit_spin_trylock(PG_locked, &page->flags);
1266 	return rc;
1267 }
1268 
1269 /*
1270  * Management of partially allocated slabs
1271  */
1272 static void add_partial(struct kmem_cache_node *n,
1273 				struct page *page, int tail)
1274 {
1275 	spin_lock(&n->list_lock);
1276 	n->nr_partial++;
1277 	if (tail)
1278 		list_add_tail(&page->lru, &n->partial);
1279 	else
1280 		list_add(&page->lru, &n->partial);
1281 	spin_unlock(&n->list_lock);
1282 }
1283 
1284 static void remove_partial(struct kmem_cache *s, struct page *page)
1285 {
1286 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1287 
1288 	spin_lock(&n->list_lock);
1289 	list_del(&page->lru);
1290 	n->nr_partial--;
1291 	spin_unlock(&n->list_lock);
1292 }
1293 
1294 /*
1295  * Lock slab and remove from the partial list.
1296  *
1297  * Must hold list_lock.
1298  */
1299 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1300 							struct page *page)
1301 {
1302 	if (slab_trylock(page)) {
1303 		list_del(&page->lru);
1304 		n->nr_partial--;
1305 		__SetPageSlubFrozen(page);
1306 		return 1;
1307 	}
1308 	return 0;
1309 }
1310 
1311 /*
1312  * Try to allocate a partial slab from a specific node.
1313  */
1314 static struct page *get_partial_node(struct kmem_cache_node *n)
1315 {
1316 	struct page *page;
1317 
1318 	/*
1319 	 * Racy check. If we mistakenly see no partial slabs then we
1320 	 * just allocate an empty slab. If we mistakenly try to get a
1321 	 * partial slab and there is none available then get_partials()
1322 	 * will return NULL.
1323 	 */
1324 	if (!n || !n->nr_partial)
1325 		return NULL;
1326 
1327 	spin_lock(&n->list_lock);
1328 	list_for_each_entry(page, &n->partial, lru)
1329 		if (lock_and_freeze_slab(n, page))
1330 			goto out;
1331 	page = NULL;
1332 out:
1333 	spin_unlock(&n->list_lock);
1334 	return page;
1335 }
1336 
1337 /*
1338  * Get a page from somewhere. Search in increasing NUMA distances.
1339  */
1340 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1341 {
1342 #ifdef CONFIG_NUMA
1343 	struct zonelist *zonelist;
1344 	struct zoneref *z;
1345 	struct zone *zone;
1346 	enum zone_type high_zoneidx = gfp_zone(flags);
1347 	struct page *page;
1348 
1349 	/*
1350 	 * The defrag ratio allows a configuration of the tradeoffs between
1351 	 * inter node defragmentation and node local allocations. A lower
1352 	 * defrag_ratio increases the tendency to do local allocations
1353 	 * instead of attempting to obtain partial slabs from other nodes.
1354 	 *
1355 	 * If the defrag_ratio is set to 0 then kmalloc() always
1356 	 * returns node local objects. If the ratio is higher then kmalloc()
1357 	 * may return off node objects because partial slabs are obtained
1358 	 * from other nodes and filled up.
1359 	 *
1360 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1361 	 * defrag_ratio = 1000) then every (well almost) allocation will
1362 	 * first attempt to defrag slab caches on other nodes. This means
1363 	 * scanning over all nodes to look for partial slabs which may be
1364 	 * expensive if we do it every time we are trying to find a slab
1365 	 * with available objects.
1366 	 */
1367 	if (!s->remote_node_defrag_ratio ||
1368 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1369 		return NULL;
1370 
1371 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1372 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1373 		struct kmem_cache_node *n;
1374 
1375 		n = get_node(s, zone_to_nid(zone));
1376 
1377 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1378 				n->nr_partial > s->min_partial) {
1379 			page = get_partial_node(n);
1380 			if (page)
1381 				return page;
1382 		}
1383 	}
1384 #endif
1385 	return NULL;
1386 }
1387 
1388 /*
1389  * Get a partial page, lock it and return it.
1390  */
1391 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1392 {
1393 	struct page *page;
1394 	int searchnode = (node == -1) ? numa_node_id() : node;
1395 
1396 	page = get_partial_node(get_node(s, searchnode));
1397 	if (page || (flags & __GFP_THISNODE))
1398 		return page;
1399 
1400 	return get_any_partial(s, flags);
1401 }
1402 
1403 /*
1404  * Move a page back to the lists.
1405  *
1406  * Must be called with the slab lock held.
1407  *
1408  * On exit the slab lock will have been dropped.
1409  */
1410 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1411 {
1412 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1413 
1414 	__ClearPageSlubFrozen(page);
1415 	if (page->inuse) {
1416 
1417 		if (page->freelist) {
1418 			add_partial(n, page, tail);
1419 			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1420 		} else {
1421 			stat(s, DEACTIVATE_FULL);
1422 			if (SLABDEBUG && PageSlubDebug(page) &&
1423 						(s->flags & SLAB_STORE_USER))
1424 				add_full(n, page);
1425 		}
1426 		slab_unlock(page);
1427 	} else {
1428 		stat(s, DEACTIVATE_EMPTY);
1429 		if (n->nr_partial < s->min_partial) {
1430 			/*
1431 			 * Adding an empty slab to the partial slabs in order
1432 			 * to avoid page allocator overhead. This slab needs
1433 			 * to come after the other slabs with objects in
1434 			 * so that the others get filled first. That way the
1435 			 * size of the partial list stays small.
1436 			 *
1437 			 * kmem_cache_shrink can reclaim any empty slabs from
1438 			 * the partial list.
1439 			 */
1440 			add_partial(n, page, 1);
1441 			slab_unlock(page);
1442 		} else {
1443 			slab_unlock(page);
1444 			stat(s, FREE_SLAB);
1445 			discard_slab(s, page);
1446 		}
1447 	}
1448 }
1449 
1450 /*
1451  * Remove the cpu slab
1452  */
1453 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1454 {
1455 	struct page *page = c->page;
1456 	int tail = 1;
1457 
1458 	if (page->freelist)
1459 		stat(s, DEACTIVATE_REMOTE_FREES);
1460 	/*
1461 	 * Merge cpu freelist into slab freelist. Typically we get here
1462 	 * because both freelists are empty. So this is unlikely
1463 	 * to occur.
1464 	 */
1465 	while (unlikely(c->freelist)) {
1466 		void **object;
1467 
1468 		tail = 0;	/* Hot objects. Put the slab first */
1469 
1470 		/* Retrieve object from cpu_freelist */
1471 		object = c->freelist;
1472 		c->freelist = get_freepointer(s, c->freelist);
1473 
1474 		/* And put onto the regular freelist */
1475 		set_freepointer(s, object, page->freelist);
1476 		page->freelist = object;
1477 		page->inuse--;
1478 	}
1479 	c->page = NULL;
1480 	unfreeze_slab(s, page, tail);
1481 }
1482 
1483 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1484 {
1485 	stat(s, CPUSLAB_FLUSH);
1486 	slab_lock(c->page);
1487 	deactivate_slab(s, c);
1488 }
1489 
1490 /*
1491  * Flush cpu slab.
1492  *
1493  * Called from IPI handler with interrupts disabled.
1494  */
1495 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1496 {
1497 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1498 
1499 	if (likely(c && c->page))
1500 		flush_slab(s, c);
1501 }
1502 
1503 static void flush_cpu_slab(void *d)
1504 {
1505 	struct kmem_cache *s = d;
1506 
1507 	__flush_cpu_slab(s, smp_processor_id());
1508 }
1509 
1510 static void flush_all(struct kmem_cache *s)
1511 {
1512 	on_each_cpu(flush_cpu_slab, s, 1);
1513 }
1514 
1515 /*
1516  * Check if the objects in a per cpu structure fit numa
1517  * locality expectations.
1518  */
1519 static inline int node_match(struct kmem_cache_cpu *c, int node)
1520 {
1521 #ifdef CONFIG_NUMA
1522 	if (node != -1 && c->node != node)
1523 		return 0;
1524 #endif
1525 	return 1;
1526 }
1527 
1528 static int count_free(struct page *page)
1529 {
1530 	return page->objects - page->inuse;
1531 }
1532 
1533 static unsigned long count_partial(struct kmem_cache_node *n,
1534 					int (*get_count)(struct page *))
1535 {
1536 	unsigned long flags;
1537 	unsigned long x = 0;
1538 	struct page *page;
1539 
1540 	spin_lock_irqsave(&n->list_lock, flags);
1541 	list_for_each_entry(page, &n->partial, lru)
1542 		x += get_count(page);
1543 	spin_unlock_irqrestore(&n->list_lock, flags);
1544 	return x;
1545 }
1546 
1547 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1548 {
1549 #ifdef CONFIG_SLUB_DEBUG
1550 	return atomic_long_read(&n->total_objects);
1551 #else
1552 	return 0;
1553 #endif
1554 }
1555 
1556 static noinline void
1557 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1558 {
1559 	int node;
1560 
1561 	printk(KERN_WARNING
1562 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1563 		nid, gfpflags);
1564 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
1565 		"default order: %d, min order: %d\n", s->name, s->objsize,
1566 		s->size, oo_order(s->oo), oo_order(s->min));
1567 
1568 	if (oo_order(s->min) > get_order(s->objsize))
1569 		printk(KERN_WARNING "  %s debugging increased min order, use "
1570 		       "slub_debug=O to disable.\n", s->name);
1571 
1572 	for_each_online_node(node) {
1573 		struct kmem_cache_node *n = get_node(s, node);
1574 		unsigned long nr_slabs;
1575 		unsigned long nr_objs;
1576 		unsigned long nr_free;
1577 
1578 		if (!n)
1579 			continue;
1580 
1581 		nr_free  = count_partial(n, count_free);
1582 		nr_slabs = node_nr_slabs(n);
1583 		nr_objs  = node_nr_objs(n);
1584 
1585 		printk(KERN_WARNING
1586 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
1587 			node, nr_slabs, nr_objs, nr_free);
1588 	}
1589 }
1590 
1591 /*
1592  * Slow path. The lockless freelist is empty or we need to perform
1593  * debugging duties.
1594  *
1595  * Interrupts are disabled.
1596  *
1597  * Processing is still very fast if new objects have been freed to the
1598  * regular freelist. In that case we simply take over the regular freelist
1599  * as the lockless freelist and zap the regular freelist.
1600  *
1601  * If that is not working then we fall back to the partial lists. We take the
1602  * first element of the freelist as the object to allocate now and move the
1603  * rest of the freelist to the lockless freelist.
1604  *
1605  * And if we were unable to get a new slab from the partial slab lists then
1606  * we need to allocate a new slab. This is the slowest path since it involves
1607  * a call to the page allocator and the setup of a new slab.
1608  */
1609 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1610 			  unsigned long addr, struct kmem_cache_cpu *c)
1611 {
1612 	void **object;
1613 	struct page *new;
1614 
1615 	/* We handle __GFP_ZERO in the caller */
1616 	gfpflags &= ~__GFP_ZERO;
1617 
1618 	if (!c->page)
1619 		goto new_slab;
1620 
1621 	slab_lock(c->page);
1622 	if (unlikely(!node_match(c, node)))
1623 		goto another_slab;
1624 
1625 	stat(s, ALLOC_REFILL);
1626 
1627 load_freelist:
1628 	object = c->page->freelist;
1629 	if (unlikely(!object))
1630 		goto another_slab;
1631 	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1632 		goto debug;
1633 
1634 	c->freelist = get_freepointer(s, object);
1635 	c->page->inuse = c->page->objects;
1636 	c->page->freelist = NULL;
1637 	c->node = page_to_nid(c->page);
1638 unlock_out:
1639 	slab_unlock(c->page);
1640 	stat(s, ALLOC_SLOWPATH);
1641 	return object;
1642 
1643 another_slab:
1644 	deactivate_slab(s, c);
1645 
1646 new_slab:
1647 	new = get_partial(s, gfpflags, node);
1648 	if (new) {
1649 		c->page = new;
1650 		stat(s, ALLOC_FROM_PARTIAL);
1651 		goto load_freelist;
1652 	}
1653 
1654 	if (gfpflags & __GFP_WAIT)
1655 		local_irq_enable();
1656 
1657 	new = new_slab(s, gfpflags, node);
1658 
1659 	if (gfpflags & __GFP_WAIT)
1660 		local_irq_disable();
1661 
1662 	if (new) {
1663 		c = __this_cpu_ptr(s->cpu_slab);
1664 		stat(s, ALLOC_SLAB);
1665 		if (c->page)
1666 			flush_slab(s, c);
1667 		slab_lock(new);
1668 		__SetPageSlubFrozen(new);
1669 		c->page = new;
1670 		goto load_freelist;
1671 	}
1672 	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1673 		slab_out_of_memory(s, gfpflags, node);
1674 	return NULL;
1675 debug:
1676 	if (!alloc_debug_processing(s, c->page, object, addr))
1677 		goto another_slab;
1678 
1679 	c->page->inuse++;
1680 	c->page->freelist = get_freepointer(s, object);
1681 	c->node = -1;
1682 	goto unlock_out;
1683 }
1684 
1685 /*
1686  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1687  * have the fastpath folded into their functions. So no function call
1688  * overhead for requests that can be satisfied on the fastpath.
1689  *
1690  * The fastpath works by first checking if the lockless freelist can be used.
1691  * If not then __slab_alloc is called for slow processing.
1692  *
1693  * Otherwise we can simply pick the next object from the lockless free list.
1694  */
1695 static __always_inline void *slab_alloc(struct kmem_cache *s,
1696 		gfp_t gfpflags, int node, unsigned long addr)
1697 {
1698 	void **object;
1699 	struct kmem_cache_cpu *c;
1700 	unsigned long flags;
1701 
1702 	gfpflags &= gfp_allowed_mask;
1703 
1704 	lockdep_trace_alloc(gfpflags);
1705 	might_sleep_if(gfpflags & __GFP_WAIT);
1706 
1707 	if (should_failslab(s->objsize, gfpflags, s->flags))
1708 		return NULL;
1709 
1710 	local_irq_save(flags);
1711 	c = __this_cpu_ptr(s->cpu_slab);
1712 	object = c->freelist;
1713 	if (unlikely(!object || !node_match(c, node)))
1714 
1715 		object = __slab_alloc(s, gfpflags, node, addr, c);
1716 
1717 	else {
1718 		c->freelist = get_freepointer(s, object);
1719 		stat(s, ALLOC_FASTPATH);
1720 	}
1721 	local_irq_restore(flags);
1722 
1723 	if (unlikely(gfpflags & __GFP_ZERO) && object)
1724 		memset(object, 0, s->objsize);
1725 
1726 	kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1727 	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
1728 
1729 	return object;
1730 }
1731 
1732 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1733 {
1734 	void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1735 
1736 	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1737 
1738 	return ret;
1739 }
1740 EXPORT_SYMBOL(kmem_cache_alloc);
1741 
1742 #ifdef CONFIG_TRACING
1743 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1744 {
1745 	return slab_alloc(s, gfpflags, -1, _RET_IP_);
1746 }
1747 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1748 #endif
1749 
1750 #ifdef CONFIG_NUMA
1751 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1752 {
1753 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1754 
1755 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
1756 				    s->objsize, s->size, gfpflags, node);
1757 
1758 	return ret;
1759 }
1760 EXPORT_SYMBOL(kmem_cache_alloc_node);
1761 #endif
1762 
1763 #ifdef CONFIG_TRACING
1764 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1765 				    gfp_t gfpflags,
1766 				    int node)
1767 {
1768 	return slab_alloc(s, gfpflags, node, _RET_IP_);
1769 }
1770 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1771 #endif
1772 
1773 /*
1774  * Slow patch handling. This may still be called frequently since objects
1775  * have a longer lifetime than the cpu slabs in most processing loads.
1776  *
1777  * So we still attempt to reduce cache line usage. Just take the slab
1778  * lock and free the item. If there is no additional partial page
1779  * handling required then we can return immediately.
1780  */
1781 static void __slab_free(struct kmem_cache *s, struct page *page,
1782 			void *x, unsigned long addr)
1783 {
1784 	void *prior;
1785 	void **object = (void *)x;
1786 
1787 	stat(s, FREE_SLOWPATH);
1788 	slab_lock(page);
1789 
1790 	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1791 		goto debug;
1792 
1793 checks_ok:
1794 	prior = page->freelist;
1795 	set_freepointer(s, object, prior);
1796 	page->freelist = object;
1797 	page->inuse--;
1798 
1799 	if (unlikely(PageSlubFrozen(page))) {
1800 		stat(s, FREE_FROZEN);
1801 		goto out_unlock;
1802 	}
1803 
1804 	if (unlikely(!page->inuse))
1805 		goto slab_empty;
1806 
1807 	/*
1808 	 * Objects left in the slab. If it was not on the partial list before
1809 	 * then add it.
1810 	 */
1811 	if (unlikely(!prior)) {
1812 		add_partial(get_node(s, page_to_nid(page)), page, 1);
1813 		stat(s, FREE_ADD_PARTIAL);
1814 	}
1815 
1816 out_unlock:
1817 	slab_unlock(page);
1818 	return;
1819 
1820 slab_empty:
1821 	if (prior) {
1822 		/*
1823 		 * Slab still on the partial list.
1824 		 */
1825 		remove_partial(s, page);
1826 		stat(s, FREE_REMOVE_PARTIAL);
1827 	}
1828 	slab_unlock(page);
1829 	stat(s, FREE_SLAB);
1830 	discard_slab(s, page);
1831 	return;
1832 
1833 debug:
1834 	if (!free_debug_processing(s, page, x, addr))
1835 		goto out_unlock;
1836 	goto checks_ok;
1837 }
1838 
1839 /*
1840  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1841  * can perform fastpath freeing without additional function calls.
1842  *
1843  * The fastpath is only possible if we are freeing to the current cpu slab
1844  * of this processor. This typically the case if we have just allocated
1845  * the item before.
1846  *
1847  * If fastpath is not possible then fall back to __slab_free where we deal
1848  * with all sorts of special processing.
1849  */
1850 static __always_inline void slab_free(struct kmem_cache *s,
1851 			struct page *page, void *x, unsigned long addr)
1852 {
1853 	void **object = (void *)x;
1854 	struct kmem_cache_cpu *c;
1855 	unsigned long flags;
1856 
1857 	kmemleak_free_recursive(x, s->flags);
1858 	local_irq_save(flags);
1859 	c = __this_cpu_ptr(s->cpu_slab);
1860 	kmemcheck_slab_free(s, object, s->objsize);
1861 	debug_check_no_locks_freed(object, s->objsize);
1862 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1863 		debug_check_no_obj_freed(object, s->objsize);
1864 	if (likely(page == c->page && c->node >= 0)) {
1865 		set_freepointer(s, object, c->freelist);
1866 		c->freelist = object;
1867 		stat(s, FREE_FASTPATH);
1868 	} else
1869 		__slab_free(s, page, x, addr);
1870 
1871 	local_irq_restore(flags);
1872 }
1873 
1874 void kmem_cache_free(struct kmem_cache *s, void *x)
1875 {
1876 	struct page *page;
1877 
1878 	page = virt_to_head_page(x);
1879 
1880 	slab_free(s, page, x, _RET_IP_);
1881 
1882 	trace_kmem_cache_free(_RET_IP_, x);
1883 }
1884 EXPORT_SYMBOL(kmem_cache_free);
1885 
1886 /* Figure out on which slab page the object resides */
1887 static struct page *get_object_page(const void *x)
1888 {
1889 	struct page *page = virt_to_head_page(x);
1890 
1891 	if (!PageSlab(page))
1892 		return NULL;
1893 
1894 	return page;
1895 }
1896 
1897 /*
1898  * Object placement in a slab is made very easy because we always start at
1899  * offset 0. If we tune the size of the object to the alignment then we can
1900  * get the required alignment by putting one properly sized object after
1901  * another.
1902  *
1903  * Notice that the allocation order determines the sizes of the per cpu
1904  * caches. Each processor has always one slab available for allocations.
1905  * Increasing the allocation order reduces the number of times that slabs
1906  * must be moved on and off the partial lists and is therefore a factor in
1907  * locking overhead.
1908  */
1909 
1910 /*
1911  * Mininum / Maximum order of slab pages. This influences locking overhead
1912  * and slab fragmentation. A higher order reduces the number of partial slabs
1913  * and increases the number of allocations possible without having to
1914  * take the list_lock.
1915  */
1916 static int slub_min_order;
1917 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1918 static int slub_min_objects;
1919 
1920 /*
1921  * Merge control. If this is set then no merging of slab caches will occur.
1922  * (Could be removed. This was introduced to pacify the merge skeptics.)
1923  */
1924 static int slub_nomerge;
1925 
1926 /*
1927  * Calculate the order of allocation given an slab object size.
1928  *
1929  * The order of allocation has significant impact on performance and other
1930  * system components. Generally order 0 allocations should be preferred since
1931  * order 0 does not cause fragmentation in the page allocator. Larger objects
1932  * be problematic to put into order 0 slabs because there may be too much
1933  * unused space left. We go to a higher order if more than 1/16th of the slab
1934  * would be wasted.
1935  *
1936  * In order to reach satisfactory performance we must ensure that a minimum
1937  * number of objects is in one slab. Otherwise we may generate too much
1938  * activity on the partial lists which requires taking the list_lock. This is
1939  * less a concern for large slabs though which are rarely used.
1940  *
1941  * slub_max_order specifies the order where we begin to stop considering the
1942  * number of objects in a slab as critical. If we reach slub_max_order then
1943  * we try to keep the page order as low as possible. So we accept more waste
1944  * of space in favor of a small page order.
1945  *
1946  * Higher order allocations also allow the placement of more objects in a
1947  * slab and thereby reduce object handling overhead. If the user has
1948  * requested a higher mininum order then we start with that one instead of
1949  * the smallest order which will fit the object.
1950  */
1951 static inline int slab_order(int size, int min_objects,
1952 				int max_order, int fract_leftover)
1953 {
1954 	int order;
1955 	int rem;
1956 	int min_order = slub_min_order;
1957 
1958 	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1959 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1960 
1961 	for (order = max(min_order,
1962 				fls(min_objects * size - 1) - PAGE_SHIFT);
1963 			order <= max_order; order++) {
1964 
1965 		unsigned long slab_size = PAGE_SIZE << order;
1966 
1967 		if (slab_size < min_objects * size)
1968 			continue;
1969 
1970 		rem = slab_size % size;
1971 
1972 		if (rem <= slab_size / fract_leftover)
1973 			break;
1974 
1975 	}
1976 
1977 	return order;
1978 }
1979 
1980 static inline int calculate_order(int size)
1981 {
1982 	int order;
1983 	int min_objects;
1984 	int fraction;
1985 	int max_objects;
1986 
1987 	/*
1988 	 * Attempt to find best configuration for a slab. This
1989 	 * works by first attempting to generate a layout with
1990 	 * the best configuration and backing off gradually.
1991 	 *
1992 	 * First we reduce the acceptable waste in a slab. Then
1993 	 * we reduce the minimum objects required in a slab.
1994 	 */
1995 	min_objects = slub_min_objects;
1996 	if (!min_objects)
1997 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1998 	max_objects = (PAGE_SIZE << slub_max_order)/size;
1999 	min_objects = min(min_objects, max_objects);
2000 
2001 	while (min_objects > 1) {
2002 		fraction = 16;
2003 		while (fraction >= 4) {
2004 			order = slab_order(size, min_objects,
2005 						slub_max_order, fraction);
2006 			if (order <= slub_max_order)
2007 				return order;
2008 			fraction /= 2;
2009 		}
2010 		min_objects--;
2011 	}
2012 
2013 	/*
2014 	 * We were unable to place multiple objects in a slab. Now
2015 	 * lets see if we can place a single object there.
2016 	 */
2017 	order = slab_order(size, 1, slub_max_order, 1);
2018 	if (order <= slub_max_order)
2019 		return order;
2020 
2021 	/*
2022 	 * Doh this slab cannot be placed using slub_max_order.
2023 	 */
2024 	order = slab_order(size, 1, MAX_ORDER, 1);
2025 	if (order < MAX_ORDER)
2026 		return order;
2027 	return -ENOSYS;
2028 }
2029 
2030 /*
2031  * Figure out what the alignment of the objects will be.
2032  */
2033 static unsigned long calculate_alignment(unsigned long flags,
2034 		unsigned long align, unsigned long size)
2035 {
2036 	/*
2037 	 * If the user wants hardware cache aligned objects then follow that
2038 	 * suggestion if the object is sufficiently large.
2039 	 *
2040 	 * The hardware cache alignment cannot override the specified
2041 	 * alignment though. If that is greater then use it.
2042 	 */
2043 	if (flags & SLAB_HWCACHE_ALIGN) {
2044 		unsigned long ralign = cache_line_size();
2045 		while (size <= ralign / 2)
2046 			ralign /= 2;
2047 		align = max(align, ralign);
2048 	}
2049 
2050 	if (align < ARCH_SLAB_MINALIGN)
2051 		align = ARCH_SLAB_MINALIGN;
2052 
2053 	return ALIGN(align, sizeof(void *));
2054 }
2055 
2056 static void
2057 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2058 {
2059 	n->nr_partial = 0;
2060 	spin_lock_init(&n->list_lock);
2061 	INIT_LIST_HEAD(&n->partial);
2062 #ifdef CONFIG_SLUB_DEBUG
2063 	atomic_long_set(&n->nr_slabs, 0);
2064 	atomic_long_set(&n->total_objects, 0);
2065 	INIT_LIST_HEAD(&n->full);
2066 #endif
2067 }
2068 
2069 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
2070 
2071 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2072 {
2073 	if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2074 		/*
2075 		 * Boot time creation of the kmalloc array. Use static per cpu data
2076 		 * since the per cpu allocator is not available yet.
2077 		 */
2078 		s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
2079 	else
2080 		s->cpu_slab =  alloc_percpu(struct kmem_cache_cpu);
2081 
2082 	if (!s->cpu_slab)
2083 		return 0;
2084 
2085 	return 1;
2086 }
2087 
2088 #ifdef CONFIG_NUMA
2089 /*
2090  * No kmalloc_node yet so do it by hand. We know that this is the first
2091  * slab on the node for this slabcache. There are no concurrent accesses
2092  * possible.
2093  *
2094  * Note that this function only works on the kmalloc_node_cache
2095  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2096  * memory on a fresh node that has no slab structures yet.
2097  */
2098 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2099 {
2100 	struct page *page;
2101 	struct kmem_cache_node *n;
2102 	unsigned long flags;
2103 
2104 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2105 
2106 	page = new_slab(kmalloc_caches, gfpflags, node);
2107 
2108 	BUG_ON(!page);
2109 	if (page_to_nid(page) != node) {
2110 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2111 				"node %d\n", node);
2112 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2113 				"in order to be able to continue\n");
2114 	}
2115 
2116 	n = page->freelist;
2117 	BUG_ON(!n);
2118 	page->freelist = get_freepointer(kmalloc_caches, n);
2119 	page->inuse++;
2120 	kmalloc_caches->node[node] = n;
2121 #ifdef CONFIG_SLUB_DEBUG
2122 	init_object(kmalloc_caches, n, 1);
2123 	init_tracking(kmalloc_caches, n);
2124 #endif
2125 	init_kmem_cache_node(n, kmalloc_caches);
2126 	inc_slabs_node(kmalloc_caches, node, page->objects);
2127 
2128 	/*
2129 	 * lockdep requires consistent irq usage for each lock
2130 	 * so even though there cannot be a race this early in
2131 	 * the boot sequence, we still disable irqs.
2132 	 */
2133 	local_irq_save(flags);
2134 	add_partial(n, page, 0);
2135 	local_irq_restore(flags);
2136 }
2137 
2138 static void free_kmem_cache_nodes(struct kmem_cache *s)
2139 {
2140 	int node;
2141 
2142 	for_each_node_state(node, N_NORMAL_MEMORY) {
2143 		struct kmem_cache_node *n = s->node[node];
2144 		if (n && n != &s->local_node)
2145 			kmem_cache_free(kmalloc_caches, n);
2146 		s->node[node] = NULL;
2147 	}
2148 }
2149 
2150 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2151 {
2152 	int node;
2153 	int local_node;
2154 
2155 	if (slab_state >= UP && (s < kmalloc_caches ||
2156 			s >= kmalloc_caches + KMALLOC_CACHES))
2157 		local_node = page_to_nid(virt_to_page(s));
2158 	else
2159 		local_node = 0;
2160 
2161 	for_each_node_state(node, N_NORMAL_MEMORY) {
2162 		struct kmem_cache_node *n;
2163 
2164 		if (local_node == node)
2165 			n = &s->local_node;
2166 		else {
2167 			if (slab_state == DOWN) {
2168 				early_kmem_cache_node_alloc(gfpflags, node);
2169 				continue;
2170 			}
2171 			n = kmem_cache_alloc_node(kmalloc_caches,
2172 							gfpflags, node);
2173 
2174 			if (!n) {
2175 				free_kmem_cache_nodes(s);
2176 				return 0;
2177 			}
2178 
2179 		}
2180 		s->node[node] = n;
2181 		init_kmem_cache_node(n, s);
2182 	}
2183 	return 1;
2184 }
2185 #else
2186 static void free_kmem_cache_nodes(struct kmem_cache *s)
2187 {
2188 }
2189 
2190 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2191 {
2192 	init_kmem_cache_node(&s->local_node, s);
2193 	return 1;
2194 }
2195 #endif
2196 
2197 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2198 {
2199 	if (min < MIN_PARTIAL)
2200 		min = MIN_PARTIAL;
2201 	else if (min > MAX_PARTIAL)
2202 		min = MAX_PARTIAL;
2203 	s->min_partial = min;
2204 }
2205 
2206 /*
2207  * calculate_sizes() determines the order and the distribution of data within
2208  * a slab object.
2209  */
2210 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2211 {
2212 	unsigned long flags = s->flags;
2213 	unsigned long size = s->objsize;
2214 	unsigned long align = s->align;
2215 	int order;
2216 
2217 	/*
2218 	 * Round up object size to the next word boundary. We can only
2219 	 * place the free pointer at word boundaries and this determines
2220 	 * the possible location of the free pointer.
2221 	 */
2222 	size = ALIGN(size, sizeof(void *));
2223 
2224 #ifdef CONFIG_SLUB_DEBUG
2225 	/*
2226 	 * Determine if we can poison the object itself. If the user of
2227 	 * the slab may touch the object after free or before allocation
2228 	 * then we should never poison the object itself.
2229 	 */
2230 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2231 			!s->ctor)
2232 		s->flags |= __OBJECT_POISON;
2233 	else
2234 		s->flags &= ~__OBJECT_POISON;
2235 
2236 
2237 	/*
2238 	 * If we are Redzoning then check if there is some space between the
2239 	 * end of the object and the free pointer. If not then add an
2240 	 * additional word to have some bytes to store Redzone information.
2241 	 */
2242 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2243 		size += sizeof(void *);
2244 #endif
2245 
2246 	/*
2247 	 * With that we have determined the number of bytes in actual use
2248 	 * by the object. This is the potential offset to the free pointer.
2249 	 */
2250 	s->inuse = size;
2251 
2252 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2253 		s->ctor)) {
2254 		/*
2255 		 * Relocate free pointer after the object if it is not
2256 		 * permitted to overwrite the first word of the object on
2257 		 * kmem_cache_free.
2258 		 *
2259 		 * This is the case if we do RCU, have a constructor or
2260 		 * destructor or are poisoning the objects.
2261 		 */
2262 		s->offset = size;
2263 		size += sizeof(void *);
2264 	}
2265 
2266 #ifdef CONFIG_SLUB_DEBUG
2267 	if (flags & SLAB_STORE_USER)
2268 		/*
2269 		 * Need to store information about allocs and frees after
2270 		 * the object.
2271 		 */
2272 		size += 2 * sizeof(struct track);
2273 
2274 	if (flags & SLAB_RED_ZONE)
2275 		/*
2276 		 * Add some empty padding so that we can catch
2277 		 * overwrites from earlier objects rather than let
2278 		 * tracking information or the free pointer be
2279 		 * corrupted if a user writes before the start
2280 		 * of the object.
2281 		 */
2282 		size += sizeof(void *);
2283 #endif
2284 
2285 	/*
2286 	 * Determine the alignment based on various parameters that the
2287 	 * user specified and the dynamic determination of cache line size
2288 	 * on bootup.
2289 	 */
2290 	align = calculate_alignment(flags, align, s->objsize);
2291 	s->align = align;
2292 
2293 	/*
2294 	 * SLUB stores one object immediately after another beginning from
2295 	 * offset 0. In order to align the objects we have to simply size
2296 	 * each object to conform to the alignment.
2297 	 */
2298 	size = ALIGN(size, align);
2299 	s->size = size;
2300 	if (forced_order >= 0)
2301 		order = forced_order;
2302 	else
2303 		order = calculate_order(size);
2304 
2305 	if (order < 0)
2306 		return 0;
2307 
2308 	s->allocflags = 0;
2309 	if (order)
2310 		s->allocflags |= __GFP_COMP;
2311 
2312 	if (s->flags & SLAB_CACHE_DMA)
2313 		s->allocflags |= SLUB_DMA;
2314 
2315 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2316 		s->allocflags |= __GFP_RECLAIMABLE;
2317 
2318 	/*
2319 	 * Determine the number of objects per slab
2320 	 */
2321 	s->oo = oo_make(order, size);
2322 	s->min = oo_make(get_order(size), size);
2323 	if (oo_objects(s->oo) > oo_objects(s->max))
2324 		s->max = s->oo;
2325 
2326 	return !!oo_objects(s->oo);
2327 
2328 }
2329 
2330 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2331 		const char *name, size_t size,
2332 		size_t align, unsigned long flags,
2333 		void (*ctor)(void *))
2334 {
2335 	memset(s, 0, kmem_size);
2336 	s->name = name;
2337 	s->ctor = ctor;
2338 	s->objsize = size;
2339 	s->align = align;
2340 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2341 
2342 	if (!calculate_sizes(s, -1))
2343 		goto error;
2344 	if (disable_higher_order_debug) {
2345 		/*
2346 		 * Disable debugging flags that store metadata if the min slab
2347 		 * order increased.
2348 		 */
2349 		if (get_order(s->size) > get_order(s->objsize)) {
2350 			s->flags &= ~DEBUG_METADATA_FLAGS;
2351 			s->offset = 0;
2352 			if (!calculate_sizes(s, -1))
2353 				goto error;
2354 		}
2355 	}
2356 
2357 	/*
2358 	 * The larger the object size is, the more pages we want on the partial
2359 	 * list to avoid pounding the page allocator excessively.
2360 	 */
2361 	set_min_partial(s, ilog2(s->size));
2362 	s->refcount = 1;
2363 #ifdef CONFIG_NUMA
2364 	s->remote_node_defrag_ratio = 1000;
2365 #endif
2366 	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2367 		goto error;
2368 
2369 	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2370 		return 1;
2371 
2372 	free_kmem_cache_nodes(s);
2373 error:
2374 	if (flags & SLAB_PANIC)
2375 		panic("Cannot create slab %s size=%lu realsize=%u "
2376 			"order=%u offset=%u flags=%lx\n",
2377 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2378 			s->offset, flags);
2379 	return 0;
2380 }
2381 
2382 /*
2383  * Check if a given pointer is valid
2384  */
2385 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2386 {
2387 	struct page *page;
2388 
2389 	if (!kern_ptr_validate(object, s->size))
2390 		return 0;
2391 
2392 	page = get_object_page(object);
2393 
2394 	if (!page || s != page->slab)
2395 		/* No slab or wrong slab */
2396 		return 0;
2397 
2398 	if (!check_valid_pointer(s, page, object))
2399 		return 0;
2400 
2401 	/*
2402 	 * We could also check if the object is on the slabs freelist.
2403 	 * But this would be too expensive and it seems that the main
2404 	 * purpose of kmem_ptr_valid() is to check if the object belongs
2405 	 * to a certain slab.
2406 	 */
2407 	return 1;
2408 }
2409 EXPORT_SYMBOL(kmem_ptr_validate);
2410 
2411 /*
2412  * Determine the size of a slab object
2413  */
2414 unsigned int kmem_cache_size(struct kmem_cache *s)
2415 {
2416 	return s->objsize;
2417 }
2418 EXPORT_SYMBOL(kmem_cache_size);
2419 
2420 const char *kmem_cache_name(struct kmem_cache *s)
2421 {
2422 	return s->name;
2423 }
2424 EXPORT_SYMBOL(kmem_cache_name);
2425 
2426 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2427 							const char *text)
2428 {
2429 #ifdef CONFIG_SLUB_DEBUG
2430 	void *addr = page_address(page);
2431 	void *p;
2432 	DECLARE_BITMAP(map, page->objects);
2433 
2434 	bitmap_zero(map, page->objects);
2435 	slab_err(s, page, "%s", text);
2436 	slab_lock(page);
2437 	for_each_free_object(p, s, page->freelist)
2438 		set_bit(slab_index(p, s, addr), map);
2439 
2440 	for_each_object(p, s, addr, page->objects) {
2441 
2442 		if (!test_bit(slab_index(p, s, addr), map)) {
2443 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2444 							p, p - addr);
2445 			print_tracking(s, p);
2446 		}
2447 	}
2448 	slab_unlock(page);
2449 #endif
2450 }
2451 
2452 /*
2453  * Attempt to free all partial slabs on a node.
2454  */
2455 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2456 {
2457 	unsigned long flags;
2458 	struct page *page, *h;
2459 
2460 	spin_lock_irqsave(&n->list_lock, flags);
2461 	list_for_each_entry_safe(page, h, &n->partial, lru) {
2462 		if (!page->inuse) {
2463 			list_del(&page->lru);
2464 			discard_slab(s, page);
2465 			n->nr_partial--;
2466 		} else {
2467 			list_slab_objects(s, page,
2468 				"Objects remaining on kmem_cache_close()");
2469 		}
2470 	}
2471 	spin_unlock_irqrestore(&n->list_lock, flags);
2472 }
2473 
2474 /*
2475  * Release all resources used by a slab cache.
2476  */
2477 static inline int kmem_cache_close(struct kmem_cache *s)
2478 {
2479 	int node;
2480 
2481 	flush_all(s);
2482 	free_percpu(s->cpu_slab);
2483 	/* Attempt to free all objects */
2484 	for_each_node_state(node, N_NORMAL_MEMORY) {
2485 		struct kmem_cache_node *n = get_node(s, node);
2486 
2487 		free_partial(s, n);
2488 		if (n->nr_partial || slabs_node(s, node))
2489 			return 1;
2490 	}
2491 	free_kmem_cache_nodes(s);
2492 	return 0;
2493 }
2494 
2495 /*
2496  * Close a cache and release the kmem_cache structure
2497  * (must be used for caches created using kmem_cache_create)
2498  */
2499 void kmem_cache_destroy(struct kmem_cache *s)
2500 {
2501 	down_write(&slub_lock);
2502 	s->refcount--;
2503 	if (!s->refcount) {
2504 		list_del(&s->list);
2505 		up_write(&slub_lock);
2506 		if (kmem_cache_close(s)) {
2507 			printk(KERN_ERR "SLUB %s: %s called for cache that "
2508 				"still has objects.\n", s->name, __func__);
2509 			dump_stack();
2510 		}
2511 		if (s->flags & SLAB_DESTROY_BY_RCU)
2512 			rcu_barrier();
2513 		sysfs_slab_remove(s);
2514 	} else
2515 		up_write(&slub_lock);
2516 }
2517 EXPORT_SYMBOL(kmem_cache_destroy);
2518 
2519 /********************************************************************
2520  *		Kmalloc subsystem
2521  *******************************************************************/
2522 
2523 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2524 EXPORT_SYMBOL(kmalloc_caches);
2525 
2526 static int __init setup_slub_min_order(char *str)
2527 {
2528 	get_option(&str, &slub_min_order);
2529 
2530 	return 1;
2531 }
2532 
2533 __setup("slub_min_order=", setup_slub_min_order);
2534 
2535 static int __init setup_slub_max_order(char *str)
2536 {
2537 	get_option(&str, &slub_max_order);
2538 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2539 
2540 	return 1;
2541 }
2542 
2543 __setup("slub_max_order=", setup_slub_max_order);
2544 
2545 static int __init setup_slub_min_objects(char *str)
2546 {
2547 	get_option(&str, &slub_min_objects);
2548 
2549 	return 1;
2550 }
2551 
2552 __setup("slub_min_objects=", setup_slub_min_objects);
2553 
2554 static int __init setup_slub_nomerge(char *str)
2555 {
2556 	slub_nomerge = 1;
2557 	return 1;
2558 }
2559 
2560 __setup("slub_nomerge", setup_slub_nomerge);
2561 
2562 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2563 		const char *name, int size, gfp_t gfp_flags)
2564 {
2565 	unsigned int flags = 0;
2566 
2567 	if (gfp_flags & SLUB_DMA)
2568 		flags = SLAB_CACHE_DMA;
2569 
2570 	/*
2571 	 * This function is called with IRQs disabled during early-boot on
2572 	 * single CPU so there's no need to take slub_lock here.
2573 	 */
2574 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2575 								flags, NULL))
2576 		goto panic;
2577 
2578 	list_add(&s->list, &slab_caches);
2579 
2580 	if (sysfs_slab_add(s))
2581 		goto panic;
2582 	return s;
2583 
2584 panic:
2585 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2586 }
2587 
2588 #ifdef CONFIG_ZONE_DMA
2589 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2590 
2591 static void sysfs_add_func(struct work_struct *w)
2592 {
2593 	struct kmem_cache *s;
2594 
2595 	down_write(&slub_lock);
2596 	list_for_each_entry(s, &slab_caches, list) {
2597 		if (s->flags & __SYSFS_ADD_DEFERRED) {
2598 			s->flags &= ~__SYSFS_ADD_DEFERRED;
2599 			sysfs_slab_add(s);
2600 		}
2601 	}
2602 	up_write(&slub_lock);
2603 }
2604 
2605 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2606 
2607 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2608 {
2609 	struct kmem_cache *s;
2610 	char *text;
2611 	size_t realsize;
2612 	unsigned long slabflags;
2613 	int i;
2614 
2615 	s = kmalloc_caches_dma[index];
2616 	if (s)
2617 		return s;
2618 
2619 	/* Dynamically create dma cache */
2620 	if (flags & __GFP_WAIT)
2621 		down_write(&slub_lock);
2622 	else {
2623 		if (!down_write_trylock(&slub_lock))
2624 			goto out;
2625 	}
2626 
2627 	if (kmalloc_caches_dma[index])
2628 		goto unlock_out;
2629 
2630 	realsize = kmalloc_caches[index].objsize;
2631 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2632 			 (unsigned int)realsize);
2633 
2634 	s = NULL;
2635 	for (i = 0; i < KMALLOC_CACHES; i++)
2636 		if (!kmalloc_caches[i].size)
2637 			break;
2638 
2639 	BUG_ON(i >= KMALLOC_CACHES);
2640 	s = kmalloc_caches + i;
2641 
2642 	/*
2643 	 * Must defer sysfs creation to a workqueue because we don't know
2644 	 * what context we are called from. Before sysfs comes up, we don't
2645 	 * need to do anything because our sysfs initcall will start by
2646 	 * adding all existing slabs to sysfs.
2647 	 */
2648 	slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2649 	if (slab_state >= SYSFS)
2650 		slabflags |= __SYSFS_ADD_DEFERRED;
2651 
2652 	if (!text || !kmem_cache_open(s, flags, text,
2653 			realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2654 		s->size = 0;
2655 		kfree(text);
2656 		goto unlock_out;
2657 	}
2658 
2659 	list_add(&s->list, &slab_caches);
2660 	kmalloc_caches_dma[index] = s;
2661 
2662 	if (slab_state >= SYSFS)
2663 		schedule_work(&sysfs_add_work);
2664 
2665 unlock_out:
2666 	up_write(&slub_lock);
2667 out:
2668 	return kmalloc_caches_dma[index];
2669 }
2670 #endif
2671 
2672 /*
2673  * Conversion table for small slabs sizes / 8 to the index in the
2674  * kmalloc array. This is necessary for slabs < 192 since we have non power
2675  * of two cache sizes there. The size of larger slabs can be determined using
2676  * fls.
2677  */
2678 static s8 size_index[24] = {
2679 	3,	/* 8 */
2680 	4,	/* 16 */
2681 	5,	/* 24 */
2682 	5,	/* 32 */
2683 	6,	/* 40 */
2684 	6,	/* 48 */
2685 	6,	/* 56 */
2686 	6,	/* 64 */
2687 	1,	/* 72 */
2688 	1,	/* 80 */
2689 	1,	/* 88 */
2690 	1,	/* 96 */
2691 	7,	/* 104 */
2692 	7,	/* 112 */
2693 	7,	/* 120 */
2694 	7,	/* 128 */
2695 	2,	/* 136 */
2696 	2,	/* 144 */
2697 	2,	/* 152 */
2698 	2,	/* 160 */
2699 	2,	/* 168 */
2700 	2,	/* 176 */
2701 	2,	/* 184 */
2702 	2	/* 192 */
2703 };
2704 
2705 static inline int size_index_elem(size_t bytes)
2706 {
2707 	return (bytes - 1) / 8;
2708 }
2709 
2710 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2711 {
2712 	int index;
2713 
2714 	if (size <= 192) {
2715 		if (!size)
2716 			return ZERO_SIZE_PTR;
2717 
2718 		index = size_index[size_index_elem(size)];
2719 	} else
2720 		index = fls(size - 1);
2721 
2722 #ifdef CONFIG_ZONE_DMA
2723 	if (unlikely((flags & SLUB_DMA)))
2724 		return dma_kmalloc_cache(index, flags);
2725 
2726 #endif
2727 	return &kmalloc_caches[index];
2728 }
2729 
2730 void *__kmalloc(size_t size, gfp_t flags)
2731 {
2732 	struct kmem_cache *s;
2733 	void *ret;
2734 
2735 	if (unlikely(size > SLUB_MAX_SIZE))
2736 		return kmalloc_large(size, flags);
2737 
2738 	s = get_slab(size, flags);
2739 
2740 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2741 		return s;
2742 
2743 	ret = slab_alloc(s, flags, -1, _RET_IP_);
2744 
2745 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2746 
2747 	return ret;
2748 }
2749 EXPORT_SYMBOL(__kmalloc);
2750 
2751 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2752 {
2753 	struct page *page;
2754 	void *ptr = NULL;
2755 
2756 	flags |= __GFP_COMP | __GFP_NOTRACK;
2757 	page = alloc_pages_node(node, flags, get_order(size));
2758 	if (page)
2759 		ptr = page_address(page);
2760 
2761 	kmemleak_alloc(ptr, size, 1, flags);
2762 	return ptr;
2763 }
2764 
2765 #ifdef CONFIG_NUMA
2766 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2767 {
2768 	struct kmem_cache *s;
2769 	void *ret;
2770 
2771 	if (unlikely(size > SLUB_MAX_SIZE)) {
2772 		ret = kmalloc_large_node(size, flags, node);
2773 
2774 		trace_kmalloc_node(_RET_IP_, ret,
2775 				   size, PAGE_SIZE << get_order(size),
2776 				   flags, node);
2777 
2778 		return ret;
2779 	}
2780 
2781 	s = get_slab(size, flags);
2782 
2783 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2784 		return s;
2785 
2786 	ret = slab_alloc(s, flags, node, _RET_IP_);
2787 
2788 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2789 
2790 	return ret;
2791 }
2792 EXPORT_SYMBOL(__kmalloc_node);
2793 #endif
2794 
2795 size_t ksize(const void *object)
2796 {
2797 	struct page *page;
2798 	struct kmem_cache *s;
2799 
2800 	if (unlikely(object == ZERO_SIZE_PTR))
2801 		return 0;
2802 
2803 	page = virt_to_head_page(object);
2804 
2805 	if (unlikely(!PageSlab(page))) {
2806 		WARN_ON(!PageCompound(page));
2807 		return PAGE_SIZE << compound_order(page);
2808 	}
2809 	s = page->slab;
2810 
2811 #ifdef CONFIG_SLUB_DEBUG
2812 	/*
2813 	 * Debugging requires use of the padding between object
2814 	 * and whatever may come after it.
2815 	 */
2816 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2817 		return s->objsize;
2818 
2819 #endif
2820 	/*
2821 	 * If we have the need to store the freelist pointer
2822 	 * back there or track user information then we can
2823 	 * only use the space before that information.
2824 	 */
2825 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2826 		return s->inuse;
2827 	/*
2828 	 * Else we can use all the padding etc for the allocation
2829 	 */
2830 	return s->size;
2831 }
2832 EXPORT_SYMBOL(ksize);
2833 
2834 void kfree(const void *x)
2835 {
2836 	struct page *page;
2837 	void *object = (void *)x;
2838 
2839 	trace_kfree(_RET_IP_, x);
2840 
2841 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2842 		return;
2843 
2844 	page = virt_to_head_page(x);
2845 	if (unlikely(!PageSlab(page))) {
2846 		BUG_ON(!PageCompound(page));
2847 		kmemleak_free(x);
2848 		put_page(page);
2849 		return;
2850 	}
2851 	slab_free(page->slab, page, object, _RET_IP_);
2852 }
2853 EXPORT_SYMBOL(kfree);
2854 
2855 /*
2856  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2857  * the remaining slabs by the number of items in use. The slabs with the
2858  * most items in use come first. New allocations will then fill those up
2859  * and thus they can be removed from the partial lists.
2860  *
2861  * The slabs with the least items are placed last. This results in them
2862  * being allocated from last increasing the chance that the last objects
2863  * are freed in them.
2864  */
2865 int kmem_cache_shrink(struct kmem_cache *s)
2866 {
2867 	int node;
2868 	int i;
2869 	struct kmem_cache_node *n;
2870 	struct page *page;
2871 	struct page *t;
2872 	int objects = oo_objects(s->max);
2873 	struct list_head *slabs_by_inuse =
2874 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2875 	unsigned long flags;
2876 
2877 	if (!slabs_by_inuse)
2878 		return -ENOMEM;
2879 
2880 	flush_all(s);
2881 	for_each_node_state(node, N_NORMAL_MEMORY) {
2882 		n = get_node(s, node);
2883 
2884 		if (!n->nr_partial)
2885 			continue;
2886 
2887 		for (i = 0; i < objects; i++)
2888 			INIT_LIST_HEAD(slabs_by_inuse + i);
2889 
2890 		spin_lock_irqsave(&n->list_lock, flags);
2891 
2892 		/*
2893 		 * Build lists indexed by the items in use in each slab.
2894 		 *
2895 		 * Note that concurrent frees may occur while we hold the
2896 		 * list_lock. page->inuse here is the upper limit.
2897 		 */
2898 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2899 			if (!page->inuse && slab_trylock(page)) {
2900 				/*
2901 				 * Must hold slab lock here because slab_free
2902 				 * may have freed the last object and be
2903 				 * waiting to release the slab.
2904 				 */
2905 				list_del(&page->lru);
2906 				n->nr_partial--;
2907 				slab_unlock(page);
2908 				discard_slab(s, page);
2909 			} else {
2910 				list_move(&page->lru,
2911 				slabs_by_inuse + page->inuse);
2912 			}
2913 		}
2914 
2915 		/*
2916 		 * Rebuild the partial list with the slabs filled up most
2917 		 * first and the least used slabs at the end.
2918 		 */
2919 		for (i = objects - 1; i >= 0; i--)
2920 			list_splice(slabs_by_inuse + i, n->partial.prev);
2921 
2922 		spin_unlock_irqrestore(&n->list_lock, flags);
2923 	}
2924 
2925 	kfree(slabs_by_inuse);
2926 	return 0;
2927 }
2928 EXPORT_SYMBOL(kmem_cache_shrink);
2929 
2930 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2931 static int slab_mem_going_offline_callback(void *arg)
2932 {
2933 	struct kmem_cache *s;
2934 
2935 	down_read(&slub_lock);
2936 	list_for_each_entry(s, &slab_caches, list)
2937 		kmem_cache_shrink(s);
2938 	up_read(&slub_lock);
2939 
2940 	return 0;
2941 }
2942 
2943 static void slab_mem_offline_callback(void *arg)
2944 {
2945 	struct kmem_cache_node *n;
2946 	struct kmem_cache *s;
2947 	struct memory_notify *marg = arg;
2948 	int offline_node;
2949 
2950 	offline_node = marg->status_change_nid;
2951 
2952 	/*
2953 	 * If the node still has available memory. we need kmem_cache_node
2954 	 * for it yet.
2955 	 */
2956 	if (offline_node < 0)
2957 		return;
2958 
2959 	down_read(&slub_lock);
2960 	list_for_each_entry(s, &slab_caches, list) {
2961 		n = get_node(s, offline_node);
2962 		if (n) {
2963 			/*
2964 			 * if n->nr_slabs > 0, slabs still exist on the node
2965 			 * that is going down. We were unable to free them,
2966 			 * and offline_pages() function shouldn't call this
2967 			 * callback. So, we must fail.
2968 			 */
2969 			BUG_ON(slabs_node(s, offline_node));
2970 
2971 			s->node[offline_node] = NULL;
2972 			kmem_cache_free(kmalloc_caches, n);
2973 		}
2974 	}
2975 	up_read(&slub_lock);
2976 }
2977 
2978 static int slab_mem_going_online_callback(void *arg)
2979 {
2980 	struct kmem_cache_node *n;
2981 	struct kmem_cache *s;
2982 	struct memory_notify *marg = arg;
2983 	int nid = marg->status_change_nid;
2984 	int ret = 0;
2985 
2986 	/*
2987 	 * If the node's memory is already available, then kmem_cache_node is
2988 	 * already created. Nothing to do.
2989 	 */
2990 	if (nid < 0)
2991 		return 0;
2992 
2993 	/*
2994 	 * We are bringing a node online. No memory is available yet. We must
2995 	 * allocate a kmem_cache_node structure in order to bring the node
2996 	 * online.
2997 	 */
2998 	down_read(&slub_lock);
2999 	list_for_each_entry(s, &slab_caches, list) {
3000 		/*
3001 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3002 		 *      since memory is not yet available from the node that
3003 		 *      is brought up.
3004 		 */
3005 		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3006 		if (!n) {
3007 			ret = -ENOMEM;
3008 			goto out;
3009 		}
3010 		init_kmem_cache_node(n, s);
3011 		s->node[nid] = n;
3012 	}
3013 out:
3014 	up_read(&slub_lock);
3015 	return ret;
3016 }
3017 
3018 static int slab_memory_callback(struct notifier_block *self,
3019 				unsigned long action, void *arg)
3020 {
3021 	int ret = 0;
3022 
3023 	switch (action) {
3024 	case MEM_GOING_ONLINE:
3025 		ret = slab_mem_going_online_callback(arg);
3026 		break;
3027 	case MEM_GOING_OFFLINE:
3028 		ret = slab_mem_going_offline_callback(arg);
3029 		break;
3030 	case MEM_OFFLINE:
3031 	case MEM_CANCEL_ONLINE:
3032 		slab_mem_offline_callback(arg);
3033 		break;
3034 	case MEM_ONLINE:
3035 	case MEM_CANCEL_OFFLINE:
3036 		break;
3037 	}
3038 	if (ret)
3039 		ret = notifier_from_errno(ret);
3040 	else
3041 		ret = NOTIFY_OK;
3042 	return ret;
3043 }
3044 
3045 #endif /* CONFIG_MEMORY_HOTPLUG */
3046 
3047 /********************************************************************
3048  *			Basic setup of slabs
3049  *******************************************************************/
3050 
3051 void __init kmem_cache_init(void)
3052 {
3053 	int i;
3054 	int caches = 0;
3055 
3056 #ifdef CONFIG_NUMA
3057 	/*
3058 	 * Must first have the slab cache available for the allocations of the
3059 	 * struct kmem_cache_node's. There is special bootstrap code in
3060 	 * kmem_cache_open for slab_state == DOWN.
3061 	 */
3062 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3063 		sizeof(struct kmem_cache_node), GFP_NOWAIT);
3064 	kmalloc_caches[0].refcount = -1;
3065 	caches++;
3066 
3067 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3068 #endif
3069 
3070 	/* Able to allocate the per node structures */
3071 	slab_state = PARTIAL;
3072 
3073 	/* Caches that are not of the two-to-the-power-of size */
3074 	if (KMALLOC_MIN_SIZE <= 32) {
3075 		create_kmalloc_cache(&kmalloc_caches[1],
3076 				"kmalloc-96", 96, GFP_NOWAIT);
3077 		caches++;
3078 	}
3079 	if (KMALLOC_MIN_SIZE <= 64) {
3080 		create_kmalloc_cache(&kmalloc_caches[2],
3081 				"kmalloc-192", 192, GFP_NOWAIT);
3082 		caches++;
3083 	}
3084 
3085 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3086 		create_kmalloc_cache(&kmalloc_caches[i],
3087 			"kmalloc", 1 << i, GFP_NOWAIT);
3088 		caches++;
3089 	}
3090 
3091 
3092 	/*
3093 	 * Patch up the size_index table if we have strange large alignment
3094 	 * requirements for the kmalloc array. This is only the case for
3095 	 * MIPS it seems. The standard arches will not generate any code here.
3096 	 *
3097 	 * Largest permitted alignment is 256 bytes due to the way we
3098 	 * handle the index determination for the smaller caches.
3099 	 *
3100 	 * Make sure that nothing crazy happens if someone starts tinkering
3101 	 * around with ARCH_KMALLOC_MINALIGN
3102 	 */
3103 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3104 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3105 
3106 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3107 		int elem = size_index_elem(i);
3108 		if (elem >= ARRAY_SIZE(size_index))
3109 			break;
3110 		size_index[elem] = KMALLOC_SHIFT_LOW;
3111 	}
3112 
3113 	if (KMALLOC_MIN_SIZE == 64) {
3114 		/*
3115 		 * The 96 byte size cache is not used if the alignment
3116 		 * is 64 byte.
3117 		 */
3118 		for (i = 64 + 8; i <= 96; i += 8)
3119 			size_index[size_index_elem(i)] = 7;
3120 	} else if (KMALLOC_MIN_SIZE == 128) {
3121 		/*
3122 		 * The 192 byte sized cache is not used if the alignment
3123 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3124 		 * instead.
3125 		 */
3126 		for (i = 128 + 8; i <= 192; i += 8)
3127 			size_index[size_index_elem(i)] = 8;
3128 	}
3129 
3130 	slab_state = UP;
3131 
3132 	/* Provide the correct kmalloc names now that the caches are up */
3133 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3134 		kmalloc_caches[i]. name =
3135 			kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3136 
3137 #ifdef CONFIG_SMP
3138 	register_cpu_notifier(&slab_notifier);
3139 #endif
3140 #ifdef CONFIG_NUMA
3141 	kmem_size = offsetof(struct kmem_cache, node) +
3142 				nr_node_ids * sizeof(struct kmem_cache_node *);
3143 #else
3144 	kmem_size = sizeof(struct kmem_cache);
3145 #endif
3146 
3147 	printk(KERN_INFO
3148 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3149 		" CPUs=%d, Nodes=%d\n",
3150 		caches, cache_line_size(),
3151 		slub_min_order, slub_max_order, slub_min_objects,
3152 		nr_cpu_ids, nr_node_ids);
3153 }
3154 
3155 void __init kmem_cache_init_late(void)
3156 {
3157 }
3158 
3159 /*
3160  * Find a mergeable slab cache
3161  */
3162 static int slab_unmergeable(struct kmem_cache *s)
3163 {
3164 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3165 		return 1;
3166 
3167 	if (s->ctor)
3168 		return 1;
3169 
3170 	/*
3171 	 * We may have set a slab to be unmergeable during bootstrap.
3172 	 */
3173 	if (s->refcount < 0)
3174 		return 1;
3175 
3176 	return 0;
3177 }
3178 
3179 static struct kmem_cache *find_mergeable(size_t size,
3180 		size_t align, unsigned long flags, const char *name,
3181 		void (*ctor)(void *))
3182 {
3183 	struct kmem_cache *s;
3184 
3185 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3186 		return NULL;
3187 
3188 	if (ctor)
3189 		return NULL;
3190 
3191 	size = ALIGN(size, sizeof(void *));
3192 	align = calculate_alignment(flags, align, size);
3193 	size = ALIGN(size, align);
3194 	flags = kmem_cache_flags(size, flags, name, NULL);
3195 
3196 	list_for_each_entry(s, &slab_caches, list) {
3197 		if (slab_unmergeable(s))
3198 			continue;
3199 
3200 		if (size > s->size)
3201 			continue;
3202 
3203 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3204 				continue;
3205 		/*
3206 		 * Check if alignment is compatible.
3207 		 * Courtesy of Adrian Drzewiecki
3208 		 */
3209 		if ((s->size & ~(align - 1)) != s->size)
3210 			continue;
3211 
3212 		if (s->size - size >= sizeof(void *))
3213 			continue;
3214 
3215 		return s;
3216 	}
3217 	return NULL;
3218 }
3219 
3220 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3221 		size_t align, unsigned long flags, void (*ctor)(void *))
3222 {
3223 	struct kmem_cache *s;
3224 
3225 	if (WARN_ON(!name))
3226 		return NULL;
3227 
3228 	down_write(&slub_lock);
3229 	s = find_mergeable(size, align, flags, name, ctor);
3230 	if (s) {
3231 		s->refcount++;
3232 		/*
3233 		 * Adjust the object sizes so that we clear
3234 		 * the complete object on kzalloc.
3235 		 */
3236 		s->objsize = max(s->objsize, (int)size);
3237 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3238 		up_write(&slub_lock);
3239 
3240 		if (sysfs_slab_alias(s, name)) {
3241 			down_write(&slub_lock);
3242 			s->refcount--;
3243 			up_write(&slub_lock);
3244 			goto err;
3245 		}
3246 		return s;
3247 	}
3248 
3249 	s = kmalloc(kmem_size, GFP_KERNEL);
3250 	if (s) {
3251 		if (kmem_cache_open(s, GFP_KERNEL, name,
3252 				size, align, flags, ctor)) {
3253 			list_add(&s->list, &slab_caches);
3254 			up_write(&slub_lock);
3255 			if (sysfs_slab_add(s)) {
3256 				down_write(&slub_lock);
3257 				list_del(&s->list);
3258 				up_write(&slub_lock);
3259 				kfree(s);
3260 				goto err;
3261 			}
3262 			return s;
3263 		}
3264 		kfree(s);
3265 	}
3266 	up_write(&slub_lock);
3267 
3268 err:
3269 	if (flags & SLAB_PANIC)
3270 		panic("Cannot create slabcache %s\n", name);
3271 	else
3272 		s = NULL;
3273 	return s;
3274 }
3275 EXPORT_SYMBOL(kmem_cache_create);
3276 
3277 #ifdef CONFIG_SMP
3278 /*
3279  * Use the cpu notifier to insure that the cpu slabs are flushed when
3280  * necessary.
3281  */
3282 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3283 		unsigned long action, void *hcpu)
3284 {
3285 	long cpu = (long)hcpu;
3286 	struct kmem_cache *s;
3287 	unsigned long flags;
3288 
3289 	switch (action) {
3290 	case CPU_UP_CANCELED:
3291 	case CPU_UP_CANCELED_FROZEN:
3292 	case CPU_DEAD:
3293 	case CPU_DEAD_FROZEN:
3294 		down_read(&slub_lock);
3295 		list_for_each_entry(s, &slab_caches, list) {
3296 			local_irq_save(flags);
3297 			__flush_cpu_slab(s, cpu);
3298 			local_irq_restore(flags);
3299 		}
3300 		up_read(&slub_lock);
3301 		break;
3302 	default:
3303 		break;
3304 	}
3305 	return NOTIFY_OK;
3306 }
3307 
3308 static struct notifier_block __cpuinitdata slab_notifier = {
3309 	.notifier_call = slab_cpuup_callback
3310 };
3311 
3312 #endif
3313 
3314 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3315 {
3316 	struct kmem_cache *s;
3317 	void *ret;
3318 
3319 	if (unlikely(size > SLUB_MAX_SIZE))
3320 		return kmalloc_large(size, gfpflags);
3321 
3322 	s = get_slab(size, gfpflags);
3323 
3324 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3325 		return s;
3326 
3327 	ret = slab_alloc(s, gfpflags, -1, caller);
3328 
3329 	/* Honor the call site pointer we recieved. */
3330 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3331 
3332 	return ret;
3333 }
3334 
3335 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3336 					int node, unsigned long caller)
3337 {
3338 	struct kmem_cache *s;
3339 	void *ret;
3340 
3341 	if (unlikely(size > SLUB_MAX_SIZE))
3342 		return kmalloc_large_node(size, gfpflags, node);
3343 
3344 	s = get_slab(size, gfpflags);
3345 
3346 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3347 		return s;
3348 
3349 	ret = slab_alloc(s, gfpflags, node, caller);
3350 
3351 	/* Honor the call site pointer we recieved. */
3352 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3353 
3354 	return ret;
3355 }
3356 
3357 #ifdef CONFIG_SLUB_DEBUG
3358 static int count_inuse(struct page *page)
3359 {
3360 	return page->inuse;
3361 }
3362 
3363 static int count_total(struct page *page)
3364 {
3365 	return page->objects;
3366 }
3367 
3368 static int validate_slab(struct kmem_cache *s, struct page *page,
3369 						unsigned long *map)
3370 {
3371 	void *p;
3372 	void *addr = page_address(page);
3373 
3374 	if (!check_slab(s, page) ||
3375 			!on_freelist(s, page, NULL))
3376 		return 0;
3377 
3378 	/* Now we know that a valid freelist exists */
3379 	bitmap_zero(map, page->objects);
3380 
3381 	for_each_free_object(p, s, page->freelist) {
3382 		set_bit(slab_index(p, s, addr), map);
3383 		if (!check_object(s, page, p, 0))
3384 			return 0;
3385 	}
3386 
3387 	for_each_object(p, s, addr, page->objects)
3388 		if (!test_bit(slab_index(p, s, addr), map))
3389 			if (!check_object(s, page, p, 1))
3390 				return 0;
3391 	return 1;
3392 }
3393 
3394 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3395 						unsigned long *map)
3396 {
3397 	if (slab_trylock(page)) {
3398 		validate_slab(s, page, map);
3399 		slab_unlock(page);
3400 	} else
3401 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3402 			s->name, page);
3403 
3404 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3405 		if (!PageSlubDebug(page))
3406 			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3407 				"on slab 0x%p\n", s->name, page);
3408 	} else {
3409 		if (PageSlubDebug(page))
3410 			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3411 				"slab 0x%p\n", s->name, page);
3412 	}
3413 }
3414 
3415 static int validate_slab_node(struct kmem_cache *s,
3416 		struct kmem_cache_node *n, unsigned long *map)
3417 {
3418 	unsigned long count = 0;
3419 	struct page *page;
3420 	unsigned long flags;
3421 
3422 	spin_lock_irqsave(&n->list_lock, flags);
3423 
3424 	list_for_each_entry(page, &n->partial, lru) {
3425 		validate_slab_slab(s, page, map);
3426 		count++;
3427 	}
3428 	if (count != n->nr_partial)
3429 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3430 			"counter=%ld\n", s->name, count, n->nr_partial);
3431 
3432 	if (!(s->flags & SLAB_STORE_USER))
3433 		goto out;
3434 
3435 	list_for_each_entry(page, &n->full, lru) {
3436 		validate_slab_slab(s, page, map);
3437 		count++;
3438 	}
3439 	if (count != atomic_long_read(&n->nr_slabs))
3440 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3441 			"counter=%ld\n", s->name, count,
3442 			atomic_long_read(&n->nr_slabs));
3443 
3444 out:
3445 	spin_unlock_irqrestore(&n->list_lock, flags);
3446 	return count;
3447 }
3448 
3449 static long validate_slab_cache(struct kmem_cache *s)
3450 {
3451 	int node;
3452 	unsigned long count = 0;
3453 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3454 				sizeof(unsigned long), GFP_KERNEL);
3455 
3456 	if (!map)
3457 		return -ENOMEM;
3458 
3459 	flush_all(s);
3460 	for_each_node_state(node, N_NORMAL_MEMORY) {
3461 		struct kmem_cache_node *n = get_node(s, node);
3462 
3463 		count += validate_slab_node(s, n, map);
3464 	}
3465 	kfree(map);
3466 	return count;
3467 }
3468 
3469 #ifdef SLUB_RESILIENCY_TEST
3470 static void resiliency_test(void)
3471 {
3472 	u8 *p;
3473 
3474 	printk(KERN_ERR "SLUB resiliency testing\n");
3475 	printk(KERN_ERR "-----------------------\n");
3476 	printk(KERN_ERR "A. Corruption after allocation\n");
3477 
3478 	p = kzalloc(16, GFP_KERNEL);
3479 	p[16] = 0x12;
3480 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3481 			" 0x12->0x%p\n\n", p + 16);
3482 
3483 	validate_slab_cache(kmalloc_caches + 4);
3484 
3485 	/* Hmmm... The next two are dangerous */
3486 	p = kzalloc(32, GFP_KERNEL);
3487 	p[32 + sizeof(void *)] = 0x34;
3488 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3489 			" 0x34 -> -0x%p\n", p);
3490 	printk(KERN_ERR
3491 		"If allocated object is overwritten then not detectable\n\n");
3492 
3493 	validate_slab_cache(kmalloc_caches + 5);
3494 	p = kzalloc(64, GFP_KERNEL);
3495 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3496 	*p = 0x56;
3497 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3498 									p);
3499 	printk(KERN_ERR
3500 		"If allocated object is overwritten then not detectable\n\n");
3501 	validate_slab_cache(kmalloc_caches + 6);
3502 
3503 	printk(KERN_ERR "\nB. Corruption after free\n");
3504 	p = kzalloc(128, GFP_KERNEL);
3505 	kfree(p);
3506 	*p = 0x78;
3507 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3508 	validate_slab_cache(kmalloc_caches + 7);
3509 
3510 	p = kzalloc(256, GFP_KERNEL);
3511 	kfree(p);
3512 	p[50] = 0x9a;
3513 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3514 			p);
3515 	validate_slab_cache(kmalloc_caches + 8);
3516 
3517 	p = kzalloc(512, GFP_KERNEL);
3518 	kfree(p);
3519 	p[512] = 0xab;
3520 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3521 	validate_slab_cache(kmalloc_caches + 9);
3522 }
3523 #else
3524 static void resiliency_test(void) {};
3525 #endif
3526 
3527 /*
3528  * Generate lists of code addresses where slabcache objects are allocated
3529  * and freed.
3530  */
3531 
3532 struct location {
3533 	unsigned long count;
3534 	unsigned long addr;
3535 	long long sum_time;
3536 	long min_time;
3537 	long max_time;
3538 	long min_pid;
3539 	long max_pid;
3540 	DECLARE_BITMAP(cpus, NR_CPUS);
3541 	nodemask_t nodes;
3542 };
3543 
3544 struct loc_track {
3545 	unsigned long max;
3546 	unsigned long count;
3547 	struct location *loc;
3548 };
3549 
3550 static void free_loc_track(struct loc_track *t)
3551 {
3552 	if (t->max)
3553 		free_pages((unsigned long)t->loc,
3554 			get_order(sizeof(struct location) * t->max));
3555 }
3556 
3557 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3558 {
3559 	struct location *l;
3560 	int order;
3561 
3562 	order = get_order(sizeof(struct location) * max);
3563 
3564 	l = (void *)__get_free_pages(flags, order);
3565 	if (!l)
3566 		return 0;
3567 
3568 	if (t->count) {
3569 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3570 		free_loc_track(t);
3571 	}
3572 	t->max = max;
3573 	t->loc = l;
3574 	return 1;
3575 }
3576 
3577 static int add_location(struct loc_track *t, struct kmem_cache *s,
3578 				const struct track *track)
3579 {
3580 	long start, end, pos;
3581 	struct location *l;
3582 	unsigned long caddr;
3583 	unsigned long age = jiffies - track->when;
3584 
3585 	start = -1;
3586 	end = t->count;
3587 
3588 	for ( ; ; ) {
3589 		pos = start + (end - start + 1) / 2;
3590 
3591 		/*
3592 		 * There is nothing at "end". If we end up there
3593 		 * we need to add something to before end.
3594 		 */
3595 		if (pos == end)
3596 			break;
3597 
3598 		caddr = t->loc[pos].addr;
3599 		if (track->addr == caddr) {
3600 
3601 			l = &t->loc[pos];
3602 			l->count++;
3603 			if (track->when) {
3604 				l->sum_time += age;
3605 				if (age < l->min_time)
3606 					l->min_time = age;
3607 				if (age > l->max_time)
3608 					l->max_time = age;
3609 
3610 				if (track->pid < l->min_pid)
3611 					l->min_pid = track->pid;
3612 				if (track->pid > l->max_pid)
3613 					l->max_pid = track->pid;
3614 
3615 				cpumask_set_cpu(track->cpu,
3616 						to_cpumask(l->cpus));
3617 			}
3618 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3619 			return 1;
3620 		}
3621 
3622 		if (track->addr < caddr)
3623 			end = pos;
3624 		else
3625 			start = pos;
3626 	}
3627 
3628 	/*
3629 	 * Not found. Insert new tracking element.
3630 	 */
3631 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3632 		return 0;
3633 
3634 	l = t->loc + pos;
3635 	if (pos < t->count)
3636 		memmove(l + 1, l,
3637 			(t->count - pos) * sizeof(struct location));
3638 	t->count++;
3639 	l->count = 1;
3640 	l->addr = track->addr;
3641 	l->sum_time = age;
3642 	l->min_time = age;
3643 	l->max_time = age;
3644 	l->min_pid = track->pid;
3645 	l->max_pid = track->pid;
3646 	cpumask_clear(to_cpumask(l->cpus));
3647 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3648 	nodes_clear(l->nodes);
3649 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3650 	return 1;
3651 }
3652 
3653 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3654 		struct page *page, enum track_item alloc)
3655 {
3656 	void *addr = page_address(page);
3657 	DECLARE_BITMAP(map, page->objects);
3658 	void *p;
3659 
3660 	bitmap_zero(map, page->objects);
3661 	for_each_free_object(p, s, page->freelist)
3662 		set_bit(slab_index(p, s, addr), map);
3663 
3664 	for_each_object(p, s, addr, page->objects)
3665 		if (!test_bit(slab_index(p, s, addr), map))
3666 			add_location(t, s, get_track(s, p, alloc));
3667 }
3668 
3669 static int list_locations(struct kmem_cache *s, char *buf,
3670 					enum track_item alloc)
3671 {
3672 	int len = 0;
3673 	unsigned long i;
3674 	struct loc_track t = { 0, 0, NULL };
3675 	int node;
3676 
3677 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3678 			GFP_TEMPORARY))
3679 		return sprintf(buf, "Out of memory\n");
3680 
3681 	/* Push back cpu slabs */
3682 	flush_all(s);
3683 
3684 	for_each_node_state(node, N_NORMAL_MEMORY) {
3685 		struct kmem_cache_node *n = get_node(s, node);
3686 		unsigned long flags;
3687 		struct page *page;
3688 
3689 		if (!atomic_long_read(&n->nr_slabs))
3690 			continue;
3691 
3692 		spin_lock_irqsave(&n->list_lock, flags);
3693 		list_for_each_entry(page, &n->partial, lru)
3694 			process_slab(&t, s, page, alloc);
3695 		list_for_each_entry(page, &n->full, lru)
3696 			process_slab(&t, s, page, alloc);
3697 		spin_unlock_irqrestore(&n->list_lock, flags);
3698 	}
3699 
3700 	for (i = 0; i < t.count; i++) {
3701 		struct location *l = &t.loc[i];
3702 
3703 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3704 			break;
3705 		len += sprintf(buf + len, "%7ld ", l->count);
3706 
3707 		if (l->addr)
3708 			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3709 		else
3710 			len += sprintf(buf + len, "<not-available>");
3711 
3712 		if (l->sum_time != l->min_time) {
3713 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3714 				l->min_time,
3715 				(long)div_u64(l->sum_time, l->count),
3716 				l->max_time);
3717 		} else
3718 			len += sprintf(buf + len, " age=%ld",
3719 				l->min_time);
3720 
3721 		if (l->min_pid != l->max_pid)
3722 			len += sprintf(buf + len, " pid=%ld-%ld",
3723 				l->min_pid, l->max_pid);
3724 		else
3725 			len += sprintf(buf + len, " pid=%ld",
3726 				l->min_pid);
3727 
3728 		if (num_online_cpus() > 1 &&
3729 				!cpumask_empty(to_cpumask(l->cpus)) &&
3730 				len < PAGE_SIZE - 60) {
3731 			len += sprintf(buf + len, " cpus=");
3732 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3733 						 to_cpumask(l->cpus));
3734 		}
3735 
3736 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3737 				len < PAGE_SIZE - 60) {
3738 			len += sprintf(buf + len, " nodes=");
3739 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3740 					l->nodes);
3741 		}
3742 
3743 		len += sprintf(buf + len, "\n");
3744 	}
3745 
3746 	free_loc_track(&t);
3747 	if (!t.count)
3748 		len += sprintf(buf, "No data\n");
3749 	return len;
3750 }
3751 
3752 enum slab_stat_type {
3753 	SL_ALL,			/* All slabs */
3754 	SL_PARTIAL,		/* Only partially allocated slabs */
3755 	SL_CPU,			/* Only slabs used for cpu caches */
3756 	SL_OBJECTS,		/* Determine allocated objects not slabs */
3757 	SL_TOTAL		/* Determine object capacity not slabs */
3758 };
3759 
3760 #define SO_ALL		(1 << SL_ALL)
3761 #define SO_PARTIAL	(1 << SL_PARTIAL)
3762 #define SO_CPU		(1 << SL_CPU)
3763 #define SO_OBJECTS	(1 << SL_OBJECTS)
3764 #define SO_TOTAL	(1 << SL_TOTAL)
3765 
3766 static ssize_t show_slab_objects(struct kmem_cache *s,
3767 			    char *buf, unsigned long flags)
3768 {
3769 	unsigned long total = 0;
3770 	int node;
3771 	int x;
3772 	unsigned long *nodes;
3773 	unsigned long *per_cpu;
3774 
3775 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3776 	if (!nodes)
3777 		return -ENOMEM;
3778 	per_cpu = nodes + nr_node_ids;
3779 
3780 	if (flags & SO_CPU) {
3781 		int cpu;
3782 
3783 		for_each_possible_cpu(cpu) {
3784 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3785 
3786 			if (!c || c->node < 0)
3787 				continue;
3788 
3789 			if (c->page) {
3790 					if (flags & SO_TOTAL)
3791 						x = c->page->objects;
3792 				else if (flags & SO_OBJECTS)
3793 					x = c->page->inuse;
3794 				else
3795 					x = 1;
3796 
3797 				total += x;
3798 				nodes[c->node] += x;
3799 			}
3800 			per_cpu[c->node]++;
3801 		}
3802 	}
3803 
3804 	if (flags & SO_ALL) {
3805 		for_each_node_state(node, N_NORMAL_MEMORY) {
3806 			struct kmem_cache_node *n = get_node(s, node);
3807 
3808 		if (flags & SO_TOTAL)
3809 			x = atomic_long_read(&n->total_objects);
3810 		else if (flags & SO_OBJECTS)
3811 			x = atomic_long_read(&n->total_objects) -
3812 				count_partial(n, count_free);
3813 
3814 			else
3815 				x = atomic_long_read(&n->nr_slabs);
3816 			total += x;
3817 			nodes[node] += x;
3818 		}
3819 
3820 	} else if (flags & SO_PARTIAL) {
3821 		for_each_node_state(node, N_NORMAL_MEMORY) {
3822 			struct kmem_cache_node *n = get_node(s, node);
3823 
3824 			if (flags & SO_TOTAL)
3825 				x = count_partial(n, count_total);
3826 			else if (flags & SO_OBJECTS)
3827 				x = count_partial(n, count_inuse);
3828 			else
3829 				x = n->nr_partial;
3830 			total += x;
3831 			nodes[node] += x;
3832 		}
3833 	}
3834 	x = sprintf(buf, "%lu", total);
3835 #ifdef CONFIG_NUMA
3836 	for_each_node_state(node, N_NORMAL_MEMORY)
3837 		if (nodes[node])
3838 			x += sprintf(buf + x, " N%d=%lu",
3839 					node, nodes[node]);
3840 #endif
3841 	kfree(nodes);
3842 	return x + sprintf(buf + x, "\n");
3843 }
3844 
3845 static int any_slab_objects(struct kmem_cache *s)
3846 {
3847 	int node;
3848 
3849 	for_each_online_node(node) {
3850 		struct kmem_cache_node *n = get_node(s, node);
3851 
3852 		if (!n)
3853 			continue;
3854 
3855 		if (atomic_long_read(&n->total_objects))
3856 			return 1;
3857 	}
3858 	return 0;
3859 }
3860 
3861 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3862 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3863 
3864 struct slab_attribute {
3865 	struct attribute attr;
3866 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3867 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3868 };
3869 
3870 #define SLAB_ATTR_RO(_name) \
3871 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3872 
3873 #define SLAB_ATTR(_name) \
3874 	static struct slab_attribute _name##_attr =  \
3875 	__ATTR(_name, 0644, _name##_show, _name##_store)
3876 
3877 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3878 {
3879 	return sprintf(buf, "%d\n", s->size);
3880 }
3881 SLAB_ATTR_RO(slab_size);
3882 
3883 static ssize_t align_show(struct kmem_cache *s, char *buf)
3884 {
3885 	return sprintf(buf, "%d\n", s->align);
3886 }
3887 SLAB_ATTR_RO(align);
3888 
3889 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3890 {
3891 	return sprintf(buf, "%d\n", s->objsize);
3892 }
3893 SLAB_ATTR_RO(object_size);
3894 
3895 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3896 {
3897 	return sprintf(buf, "%d\n", oo_objects(s->oo));
3898 }
3899 SLAB_ATTR_RO(objs_per_slab);
3900 
3901 static ssize_t order_store(struct kmem_cache *s,
3902 				const char *buf, size_t length)
3903 {
3904 	unsigned long order;
3905 	int err;
3906 
3907 	err = strict_strtoul(buf, 10, &order);
3908 	if (err)
3909 		return err;
3910 
3911 	if (order > slub_max_order || order < slub_min_order)
3912 		return -EINVAL;
3913 
3914 	calculate_sizes(s, order);
3915 	return length;
3916 }
3917 
3918 static ssize_t order_show(struct kmem_cache *s, char *buf)
3919 {
3920 	return sprintf(buf, "%d\n", oo_order(s->oo));
3921 }
3922 SLAB_ATTR(order);
3923 
3924 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3925 {
3926 	return sprintf(buf, "%lu\n", s->min_partial);
3927 }
3928 
3929 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3930 				 size_t length)
3931 {
3932 	unsigned long min;
3933 	int err;
3934 
3935 	err = strict_strtoul(buf, 10, &min);
3936 	if (err)
3937 		return err;
3938 
3939 	set_min_partial(s, min);
3940 	return length;
3941 }
3942 SLAB_ATTR(min_partial);
3943 
3944 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3945 {
3946 	if (s->ctor) {
3947 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3948 
3949 		return n + sprintf(buf + n, "\n");
3950 	}
3951 	return 0;
3952 }
3953 SLAB_ATTR_RO(ctor);
3954 
3955 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3956 {
3957 	return sprintf(buf, "%d\n", s->refcount - 1);
3958 }
3959 SLAB_ATTR_RO(aliases);
3960 
3961 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3962 {
3963 	return show_slab_objects(s, buf, SO_ALL);
3964 }
3965 SLAB_ATTR_RO(slabs);
3966 
3967 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3968 {
3969 	return show_slab_objects(s, buf, SO_PARTIAL);
3970 }
3971 SLAB_ATTR_RO(partial);
3972 
3973 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3974 {
3975 	return show_slab_objects(s, buf, SO_CPU);
3976 }
3977 SLAB_ATTR_RO(cpu_slabs);
3978 
3979 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3980 {
3981 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3982 }
3983 SLAB_ATTR_RO(objects);
3984 
3985 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3986 {
3987 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3988 }
3989 SLAB_ATTR_RO(objects_partial);
3990 
3991 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3992 {
3993 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3994 }
3995 SLAB_ATTR_RO(total_objects);
3996 
3997 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3998 {
3999 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4000 }
4001 
4002 static ssize_t sanity_checks_store(struct kmem_cache *s,
4003 				const char *buf, size_t length)
4004 {
4005 	s->flags &= ~SLAB_DEBUG_FREE;
4006 	if (buf[0] == '1')
4007 		s->flags |= SLAB_DEBUG_FREE;
4008 	return length;
4009 }
4010 SLAB_ATTR(sanity_checks);
4011 
4012 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4013 {
4014 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4015 }
4016 
4017 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4018 							size_t length)
4019 {
4020 	s->flags &= ~SLAB_TRACE;
4021 	if (buf[0] == '1')
4022 		s->flags |= SLAB_TRACE;
4023 	return length;
4024 }
4025 SLAB_ATTR(trace);
4026 
4027 #ifdef CONFIG_FAILSLAB
4028 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4029 {
4030 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4031 }
4032 
4033 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4034 							size_t length)
4035 {
4036 	s->flags &= ~SLAB_FAILSLAB;
4037 	if (buf[0] == '1')
4038 		s->flags |= SLAB_FAILSLAB;
4039 	return length;
4040 }
4041 SLAB_ATTR(failslab);
4042 #endif
4043 
4044 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4045 {
4046 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4047 }
4048 
4049 static ssize_t reclaim_account_store(struct kmem_cache *s,
4050 				const char *buf, size_t length)
4051 {
4052 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4053 	if (buf[0] == '1')
4054 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4055 	return length;
4056 }
4057 SLAB_ATTR(reclaim_account);
4058 
4059 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4060 {
4061 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4062 }
4063 SLAB_ATTR_RO(hwcache_align);
4064 
4065 #ifdef CONFIG_ZONE_DMA
4066 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4067 {
4068 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4069 }
4070 SLAB_ATTR_RO(cache_dma);
4071 #endif
4072 
4073 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4074 {
4075 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4076 }
4077 SLAB_ATTR_RO(destroy_by_rcu);
4078 
4079 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4080 {
4081 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4082 }
4083 
4084 static ssize_t red_zone_store(struct kmem_cache *s,
4085 				const char *buf, size_t length)
4086 {
4087 	if (any_slab_objects(s))
4088 		return -EBUSY;
4089 
4090 	s->flags &= ~SLAB_RED_ZONE;
4091 	if (buf[0] == '1')
4092 		s->flags |= SLAB_RED_ZONE;
4093 	calculate_sizes(s, -1);
4094 	return length;
4095 }
4096 SLAB_ATTR(red_zone);
4097 
4098 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4099 {
4100 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4101 }
4102 
4103 static ssize_t poison_store(struct kmem_cache *s,
4104 				const char *buf, size_t length)
4105 {
4106 	if (any_slab_objects(s))
4107 		return -EBUSY;
4108 
4109 	s->flags &= ~SLAB_POISON;
4110 	if (buf[0] == '1')
4111 		s->flags |= SLAB_POISON;
4112 	calculate_sizes(s, -1);
4113 	return length;
4114 }
4115 SLAB_ATTR(poison);
4116 
4117 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4118 {
4119 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4120 }
4121 
4122 static ssize_t store_user_store(struct kmem_cache *s,
4123 				const char *buf, size_t length)
4124 {
4125 	if (any_slab_objects(s))
4126 		return -EBUSY;
4127 
4128 	s->flags &= ~SLAB_STORE_USER;
4129 	if (buf[0] == '1')
4130 		s->flags |= SLAB_STORE_USER;
4131 	calculate_sizes(s, -1);
4132 	return length;
4133 }
4134 SLAB_ATTR(store_user);
4135 
4136 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4137 {
4138 	return 0;
4139 }
4140 
4141 static ssize_t validate_store(struct kmem_cache *s,
4142 			const char *buf, size_t length)
4143 {
4144 	int ret = -EINVAL;
4145 
4146 	if (buf[0] == '1') {
4147 		ret = validate_slab_cache(s);
4148 		if (ret >= 0)
4149 			ret = length;
4150 	}
4151 	return ret;
4152 }
4153 SLAB_ATTR(validate);
4154 
4155 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4156 {
4157 	return 0;
4158 }
4159 
4160 static ssize_t shrink_store(struct kmem_cache *s,
4161 			const char *buf, size_t length)
4162 {
4163 	if (buf[0] == '1') {
4164 		int rc = kmem_cache_shrink(s);
4165 
4166 		if (rc)
4167 			return rc;
4168 	} else
4169 		return -EINVAL;
4170 	return length;
4171 }
4172 SLAB_ATTR(shrink);
4173 
4174 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4175 {
4176 	if (!(s->flags & SLAB_STORE_USER))
4177 		return -ENOSYS;
4178 	return list_locations(s, buf, TRACK_ALLOC);
4179 }
4180 SLAB_ATTR_RO(alloc_calls);
4181 
4182 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4183 {
4184 	if (!(s->flags & SLAB_STORE_USER))
4185 		return -ENOSYS;
4186 	return list_locations(s, buf, TRACK_FREE);
4187 }
4188 SLAB_ATTR_RO(free_calls);
4189 
4190 #ifdef CONFIG_NUMA
4191 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4192 {
4193 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4194 }
4195 
4196 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4197 				const char *buf, size_t length)
4198 {
4199 	unsigned long ratio;
4200 	int err;
4201 
4202 	err = strict_strtoul(buf, 10, &ratio);
4203 	if (err)
4204 		return err;
4205 
4206 	if (ratio <= 100)
4207 		s->remote_node_defrag_ratio = ratio * 10;
4208 
4209 	return length;
4210 }
4211 SLAB_ATTR(remote_node_defrag_ratio);
4212 #endif
4213 
4214 #ifdef CONFIG_SLUB_STATS
4215 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4216 {
4217 	unsigned long sum  = 0;
4218 	int cpu;
4219 	int len;
4220 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4221 
4222 	if (!data)
4223 		return -ENOMEM;
4224 
4225 	for_each_online_cpu(cpu) {
4226 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4227 
4228 		data[cpu] = x;
4229 		sum += x;
4230 	}
4231 
4232 	len = sprintf(buf, "%lu", sum);
4233 
4234 #ifdef CONFIG_SMP
4235 	for_each_online_cpu(cpu) {
4236 		if (data[cpu] && len < PAGE_SIZE - 20)
4237 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4238 	}
4239 #endif
4240 	kfree(data);
4241 	return len + sprintf(buf + len, "\n");
4242 }
4243 
4244 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4245 {
4246 	int cpu;
4247 
4248 	for_each_online_cpu(cpu)
4249 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4250 }
4251 
4252 #define STAT_ATTR(si, text) 					\
4253 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4254 {								\
4255 	return show_stat(s, buf, si);				\
4256 }								\
4257 static ssize_t text##_store(struct kmem_cache *s,		\
4258 				const char *buf, size_t length)	\
4259 {								\
4260 	if (buf[0] != '0')					\
4261 		return -EINVAL;					\
4262 	clear_stat(s, si);					\
4263 	return length;						\
4264 }								\
4265 SLAB_ATTR(text);						\
4266 
4267 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4268 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4269 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4270 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4271 STAT_ATTR(FREE_FROZEN, free_frozen);
4272 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4273 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4274 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4275 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4276 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4277 STAT_ATTR(FREE_SLAB, free_slab);
4278 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4279 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4280 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4281 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4282 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4283 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4284 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4285 #endif
4286 
4287 static struct attribute *slab_attrs[] = {
4288 	&slab_size_attr.attr,
4289 	&object_size_attr.attr,
4290 	&objs_per_slab_attr.attr,
4291 	&order_attr.attr,
4292 	&min_partial_attr.attr,
4293 	&objects_attr.attr,
4294 	&objects_partial_attr.attr,
4295 	&total_objects_attr.attr,
4296 	&slabs_attr.attr,
4297 	&partial_attr.attr,
4298 	&cpu_slabs_attr.attr,
4299 	&ctor_attr.attr,
4300 	&aliases_attr.attr,
4301 	&align_attr.attr,
4302 	&sanity_checks_attr.attr,
4303 	&trace_attr.attr,
4304 	&hwcache_align_attr.attr,
4305 	&reclaim_account_attr.attr,
4306 	&destroy_by_rcu_attr.attr,
4307 	&red_zone_attr.attr,
4308 	&poison_attr.attr,
4309 	&store_user_attr.attr,
4310 	&validate_attr.attr,
4311 	&shrink_attr.attr,
4312 	&alloc_calls_attr.attr,
4313 	&free_calls_attr.attr,
4314 #ifdef CONFIG_ZONE_DMA
4315 	&cache_dma_attr.attr,
4316 #endif
4317 #ifdef CONFIG_NUMA
4318 	&remote_node_defrag_ratio_attr.attr,
4319 #endif
4320 #ifdef CONFIG_SLUB_STATS
4321 	&alloc_fastpath_attr.attr,
4322 	&alloc_slowpath_attr.attr,
4323 	&free_fastpath_attr.attr,
4324 	&free_slowpath_attr.attr,
4325 	&free_frozen_attr.attr,
4326 	&free_add_partial_attr.attr,
4327 	&free_remove_partial_attr.attr,
4328 	&alloc_from_partial_attr.attr,
4329 	&alloc_slab_attr.attr,
4330 	&alloc_refill_attr.attr,
4331 	&free_slab_attr.attr,
4332 	&cpuslab_flush_attr.attr,
4333 	&deactivate_full_attr.attr,
4334 	&deactivate_empty_attr.attr,
4335 	&deactivate_to_head_attr.attr,
4336 	&deactivate_to_tail_attr.attr,
4337 	&deactivate_remote_frees_attr.attr,
4338 	&order_fallback_attr.attr,
4339 #endif
4340 #ifdef CONFIG_FAILSLAB
4341 	&failslab_attr.attr,
4342 #endif
4343 
4344 	NULL
4345 };
4346 
4347 static struct attribute_group slab_attr_group = {
4348 	.attrs = slab_attrs,
4349 };
4350 
4351 static ssize_t slab_attr_show(struct kobject *kobj,
4352 				struct attribute *attr,
4353 				char *buf)
4354 {
4355 	struct slab_attribute *attribute;
4356 	struct kmem_cache *s;
4357 	int err;
4358 
4359 	attribute = to_slab_attr(attr);
4360 	s = to_slab(kobj);
4361 
4362 	if (!attribute->show)
4363 		return -EIO;
4364 
4365 	err = attribute->show(s, buf);
4366 
4367 	return err;
4368 }
4369 
4370 static ssize_t slab_attr_store(struct kobject *kobj,
4371 				struct attribute *attr,
4372 				const char *buf, size_t len)
4373 {
4374 	struct slab_attribute *attribute;
4375 	struct kmem_cache *s;
4376 	int err;
4377 
4378 	attribute = to_slab_attr(attr);
4379 	s = to_slab(kobj);
4380 
4381 	if (!attribute->store)
4382 		return -EIO;
4383 
4384 	err = attribute->store(s, buf, len);
4385 
4386 	return err;
4387 }
4388 
4389 static void kmem_cache_release(struct kobject *kobj)
4390 {
4391 	struct kmem_cache *s = to_slab(kobj);
4392 
4393 	kfree(s);
4394 }
4395 
4396 static const struct sysfs_ops slab_sysfs_ops = {
4397 	.show = slab_attr_show,
4398 	.store = slab_attr_store,
4399 };
4400 
4401 static struct kobj_type slab_ktype = {
4402 	.sysfs_ops = &slab_sysfs_ops,
4403 	.release = kmem_cache_release
4404 };
4405 
4406 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4407 {
4408 	struct kobj_type *ktype = get_ktype(kobj);
4409 
4410 	if (ktype == &slab_ktype)
4411 		return 1;
4412 	return 0;
4413 }
4414 
4415 static const struct kset_uevent_ops slab_uevent_ops = {
4416 	.filter = uevent_filter,
4417 };
4418 
4419 static struct kset *slab_kset;
4420 
4421 #define ID_STR_LENGTH 64
4422 
4423 /* Create a unique string id for a slab cache:
4424  *
4425  * Format	:[flags-]size
4426  */
4427 static char *create_unique_id(struct kmem_cache *s)
4428 {
4429 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4430 	char *p = name;
4431 
4432 	BUG_ON(!name);
4433 
4434 	*p++ = ':';
4435 	/*
4436 	 * First flags affecting slabcache operations. We will only
4437 	 * get here for aliasable slabs so we do not need to support
4438 	 * too many flags. The flags here must cover all flags that
4439 	 * are matched during merging to guarantee that the id is
4440 	 * unique.
4441 	 */
4442 	if (s->flags & SLAB_CACHE_DMA)
4443 		*p++ = 'd';
4444 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4445 		*p++ = 'a';
4446 	if (s->flags & SLAB_DEBUG_FREE)
4447 		*p++ = 'F';
4448 	if (!(s->flags & SLAB_NOTRACK))
4449 		*p++ = 't';
4450 	if (p != name + 1)
4451 		*p++ = '-';
4452 	p += sprintf(p, "%07d", s->size);
4453 	BUG_ON(p > name + ID_STR_LENGTH - 1);
4454 	return name;
4455 }
4456 
4457 static int sysfs_slab_add(struct kmem_cache *s)
4458 {
4459 	int err;
4460 	const char *name;
4461 	int unmergeable;
4462 
4463 	if (slab_state < SYSFS)
4464 		/* Defer until later */
4465 		return 0;
4466 
4467 	unmergeable = slab_unmergeable(s);
4468 	if (unmergeable) {
4469 		/*
4470 		 * Slabcache can never be merged so we can use the name proper.
4471 		 * This is typically the case for debug situations. In that
4472 		 * case we can catch duplicate names easily.
4473 		 */
4474 		sysfs_remove_link(&slab_kset->kobj, s->name);
4475 		name = s->name;
4476 	} else {
4477 		/*
4478 		 * Create a unique name for the slab as a target
4479 		 * for the symlinks.
4480 		 */
4481 		name = create_unique_id(s);
4482 	}
4483 
4484 	s->kobj.kset = slab_kset;
4485 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4486 	if (err) {
4487 		kobject_put(&s->kobj);
4488 		return err;
4489 	}
4490 
4491 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4492 	if (err) {
4493 		kobject_del(&s->kobj);
4494 		kobject_put(&s->kobj);
4495 		return err;
4496 	}
4497 	kobject_uevent(&s->kobj, KOBJ_ADD);
4498 	if (!unmergeable) {
4499 		/* Setup first alias */
4500 		sysfs_slab_alias(s, s->name);
4501 		kfree(name);
4502 	}
4503 	return 0;
4504 }
4505 
4506 static void sysfs_slab_remove(struct kmem_cache *s)
4507 {
4508 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4509 	kobject_del(&s->kobj);
4510 	kobject_put(&s->kobj);
4511 }
4512 
4513 /*
4514  * Need to buffer aliases during bootup until sysfs becomes
4515  * available lest we lose that information.
4516  */
4517 struct saved_alias {
4518 	struct kmem_cache *s;
4519 	const char *name;
4520 	struct saved_alias *next;
4521 };
4522 
4523 static struct saved_alias *alias_list;
4524 
4525 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4526 {
4527 	struct saved_alias *al;
4528 
4529 	if (slab_state == SYSFS) {
4530 		/*
4531 		 * If we have a leftover link then remove it.
4532 		 */
4533 		sysfs_remove_link(&slab_kset->kobj, name);
4534 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4535 	}
4536 
4537 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4538 	if (!al)
4539 		return -ENOMEM;
4540 
4541 	al->s = s;
4542 	al->name = name;
4543 	al->next = alias_list;
4544 	alias_list = al;
4545 	return 0;
4546 }
4547 
4548 static int __init slab_sysfs_init(void)
4549 {
4550 	struct kmem_cache *s;
4551 	int err;
4552 
4553 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4554 	if (!slab_kset) {
4555 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4556 		return -ENOSYS;
4557 	}
4558 
4559 	slab_state = SYSFS;
4560 
4561 	list_for_each_entry(s, &slab_caches, list) {
4562 		err = sysfs_slab_add(s);
4563 		if (err)
4564 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4565 						" to sysfs\n", s->name);
4566 	}
4567 
4568 	while (alias_list) {
4569 		struct saved_alias *al = alias_list;
4570 
4571 		alias_list = alias_list->next;
4572 		err = sysfs_slab_alias(al->s, al->name);
4573 		if (err)
4574 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4575 					" %s to sysfs\n", s->name);
4576 		kfree(al);
4577 	}
4578 
4579 	resiliency_test();
4580 	return 0;
4581 }
4582 
4583 __initcall(slab_sysfs_init);
4584 #endif
4585 
4586 /*
4587  * The /proc/slabinfo ABI
4588  */
4589 #ifdef CONFIG_SLABINFO
4590 static void print_slabinfo_header(struct seq_file *m)
4591 {
4592 	seq_puts(m, "slabinfo - version: 2.1\n");
4593 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4594 		 "<objperslab> <pagesperslab>");
4595 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4596 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4597 	seq_putc(m, '\n');
4598 }
4599 
4600 static void *s_start(struct seq_file *m, loff_t *pos)
4601 {
4602 	loff_t n = *pos;
4603 
4604 	down_read(&slub_lock);
4605 	if (!n)
4606 		print_slabinfo_header(m);
4607 
4608 	return seq_list_start(&slab_caches, *pos);
4609 }
4610 
4611 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4612 {
4613 	return seq_list_next(p, &slab_caches, pos);
4614 }
4615 
4616 static void s_stop(struct seq_file *m, void *p)
4617 {
4618 	up_read(&slub_lock);
4619 }
4620 
4621 static int s_show(struct seq_file *m, void *p)
4622 {
4623 	unsigned long nr_partials = 0;
4624 	unsigned long nr_slabs = 0;
4625 	unsigned long nr_inuse = 0;
4626 	unsigned long nr_objs = 0;
4627 	unsigned long nr_free = 0;
4628 	struct kmem_cache *s;
4629 	int node;
4630 
4631 	s = list_entry(p, struct kmem_cache, list);
4632 
4633 	for_each_online_node(node) {
4634 		struct kmem_cache_node *n = get_node(s, node);
4635 
4636 		if (!n)
4637 			continue;
4638 
4639 		nr_partials += n->nr_partial;
4640 		nr_slabs += atomic_long_read(&n->nr_slabs);
4641 		nr_objs += atomic_long_read(&n->total_objects);
4642 		nr_free += count_partial(n, count_free);
4643 	}
4644 
4645 	nr_inuse = nr_objs - nr_free;
4646 
4647 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4648 		   nr_objs, s->size, oo_objects(s->oo),
4649 		   (1 << oo_order(s->oo)));
4650 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4651 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4652 		   0UL);
4653 	seq_putc(m, '\n');
4654 	return 0;
4655 }
4656 
4657 static const struct seq_operations slabinfo_op = {
4658 	.start = s_start,
4659 	.next = s_next,
4660 	.stop = s_stop,
4661 	.show = s_show,
4662 };
4663 
4664 static int slabinfo_open(struct inode *inode, struct file *file)
4665 {
4666 	return seq_open(file, &slabinfo_op);
4667 }
4668 
4669 static const struct file_operations proc_slabinfo_operations = {
4670 	.open		= slabinfo_open,
4671 	.read		= seq_read,
4672 	.llseek		= seq_lseek,
4673 	.release	= seq_release,
4674 };
4675 
4676 static int __init slab_proc_init(void)
4677 {
4678 	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4679 	return 0;
4680 }
4681 module_init(slab_proc_init);
4682 #endif /* CONFIG_SLABINFO */
4683