1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks and only 6 * uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/swap.h> /* struct reclaim_state */ 13 #include <linux/module.h> 14 #include <linux/bit_spinlock.h> 15 #include <linux/interrupt.h> 16 #include <linux/bitops.h> 17 #include <linux/slab.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/kmemtrace.h> 21 #include <linux/kmemcheck.h> 22 #include <linux/cpu.h> 23 #include <linux/cpuset.h> 24 #include <linux/mempolicy.h> 25 #include <linux/ctype.h> 26 #include <linux/debugobjects.h> 27 #include <linux/kallsyms.h> 28 #include <linux/memory.h> 29 #include <linux/math64.h> 30 #include <linux/fault-inject.h> 31 32 /* 33 * Lock order: 34 * 1. slab_lock(page) 35 * 2. slab->list_lock 36 * 37 * The slab_lock protects operations on the object of a particular 38 * slab and its metadata in the page struct. If the slab lock 39 * has been taken then no allocations nor frees can be performed 40 * on the objects in the slab nor can the slab be added or removed 41 * from the partial or full lists since this would mean modifying 42 * the page_struct of the slab. 43 * 44 * The list_lock protects the partial and full list on each node and 45 * the partial slab counter. If taken then no new slabs may be added or 46 * removed from the lists nor make the number of partial slabs be modified. 47 * (Note that the total number of slabs is an atomic value that may be 48 * modified without taking the list lock). 49 * 50 * The list_lock is a centralized lock and thus we avoid taking it as 51 * much as possible. As long as SLUB does not have to handle partial 52 * slabs, operations can continue without any centralized lock. F.e. 53 * allocating a long series of objects that fill up slabs does not require 54 * the list lock. 55 * 56 * The lock order is sometimes inverted when we are trying to get a slab 57 * off a list. We take the list_lock and then look for a page on the list 58 * to use. While we do that objects in the slabs may be freed. We can 59 * only operate on the slab if we have also taken the slab_lock. So we use 60 * a slab_trylock() on the slab. If trylock was successful then no frees 61 * can occur anymore and we can use the slab for allocations etc. If the 62 * slab_trylock() does not succeed then frees are in progress in the slab and 63 * we must stay away from it for a while since we may cause a bouncing 64 * cacheline if we try to acquire the lock. So go onto the next slab. 65 * If all pages are busy then we may allocate a new slab instead of reusing 66 * a partial slab. A new slab has noone operating on it and thus there is 67 * no danger of cacheline contention. 68 * 69 * Interrupts are disabled during allocation and deallocation in order to 70 * make the slab allocator safe to use in the context of an irq. In addition 71 * interrupts are disabled to ensure that the processor does not change 72 * while handling per_cpu slabs, due to kernel preemption. 73 * 74 * SLUB assigns one slab for allocation to each processor. 75 * Allocations only occur from these slabs called cpu slabs. 76 * 77 * Slabs with free elements are kept on a partial list and during regular 78 * operations no list for full slabs is used. If an object in a full slab is 79 * freed then the slab will show up again on the partial lists. 80 * We track full slabs for debugging purposes though because otherwise we 81 * cannot scan all objects. 82 * 83 * Slabs are freed when they become empty. Teardown and setup is 84 * minimal so we rely on the page allocators per cpu caches for 85 * fast frees and allocs. 86 * 87 * Overloading of page flags that are otherwise used for LRU management. 88 * 89 * PageActive The slab is frozen and exempt from list processing. 90 * This means that the slab is dedicated to a purpose 91 * such as satisfying allocations for a specific 92 * processor. Objects may be freed in the slab while 93 * it is frozen but slab_free will then skip the usual 94 * list operations. It is up to the processor holding 95 * the slab to integrate the slab into the slab lists 96 * when the slab is no longer needed. 97 * 98 * One use of this flag is to mark slabs that are 99 * used for allocations. Then such a slab becomes a cpu 100 * slab. The cpu slab may be equipped with an additional 101 * freelist that allows lockless access to 102 * free objects in addition to the regular freelist 103 * that requires the slab lock. 104 * 105 * PageError Slab requires special handling due to debug 106 * options set. This moves slab handling out of 107 * the fast path and disables lockless freelists. 108 */ 109 110 #ifdef CONFIG_SLUB_DEBUG 111 #define SLABDEBUG 1 112 #else 113 #define SLABDEBUG 0 114 #endif 115 116 /* 117 * Issues still to be resolved: 118 * 119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 120 * 121 * - Variable sizing of the per node arrays 122 */ 123 124 /* Enable to test recovery from slab corruption on boot */ 125 #undef SLUB_RESILIENCY_TEST 126 127 /* 128 * Mininum number of partial slabs. These will be left on the partial 129 * lists even if they are empty. kmem_cache_shrink may reclaim them. 130 */ 131 #define MIN_PARTIAL 5 132 133 /* 134 * Maximum number of desirable partial slabs. 135 * The existence of more partial slabs makes kmem_cache_shrink 136 * sort the partial list by the number of objects in the. 137 */ 138 #define MAX_PARTIAL 10 139 140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 141 SLAB_POISON | SLAB_STORE_USER) 142 143 /* 144 * Debugging flags that require metadata to be stored in the slab. These get 145 * disabled when slub_debug=O is used and a cache's min order increases with 146 * metadata. 147 */ 148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 149 150 /* 151 * Set of flags that will prevent slab merging 152 */ 153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 155 SLAB_FAILSLAB) 156 157 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 158 SLAB_CACHE_DMA | SLAB_NOTRACK) 159 160 #ifndef ARCH_KMALLOC_MINALIGN 161 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 162 #endif 163 164 #ifndef ARCH_SLAB_MINALIGN 165 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 166 #endif 167 168 #define OO_SHIFT 16 169 #define OO_MASK ((1 << OO_SHIFT) - 1) 170 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ 171 172 /* Internal SLUB flags */ 173 #define __OBJECT_POISON 0x80000000 /* Poison object */ 174 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ 175 176 static int kmem_size = sizeof(struct kmem_cache); 177 178 #ifdef CONFIG_SMP 179 static struct notifier_block slab_notifier; 180 #endif 181 182 static enum { 183 DOWN, /* No slab functionality available */ 184 PARTIAL, /* kmem_cache_open() works but kmalloc does not */ 185 UP, /* Everything works but does not show up in sysfs */ 186 SYSFS /* Sysfs up */ 187 } slab_state = DOWN; 188 189 /* A list of all slab caches on the system */ 190 static DECLARE_RWSEM(slub_lock); 191 static LIST_HEAD(slab_caches); 192 193 /* 194 * Tracking user of a slab. 195 */ 196 struct track { 197 unsigned long addr; /* Called from address */ 198 int cpu; /* Was running on cpu */ 199 int pid; /* Pid context */ 200 unsigned long when; /* When did the operation occur */ 201 }; 202 203 enum track_item { TRACK_ALLOC, TRACK_FREE }; 204 205 #ifdef CONFIG_SLUB_DEBUG 206 static int sysfs_slab_add(struct kmem_cache *); 207 static int sysfs_slab_alias(struct kmem_cache *, const char *); 208 static void sysfs_slab_remove(struct kmem_cache *); 209 210 #else 211 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 212 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 213 { return 0; } 214 static inline void sysfs_slab_remove(struct kmem_cache *s) 215 { 216 kfree(s); 217 } 218 219 #endif 220 221 static inline void stat(struct kmem_cache *s, enum stat_item si) 222 { 223 #ifdef CONFIG_SLUB_STATS 224 __this_cpu_inc(s->cpu_slab->stat[si]); 225 #endif 226 } 227 228 /******************************************************************** 229 * Core slab cache functions 230 *******************************************************************/ 231 232 int slab_is_available(void) 233 { 234 return slab_state >= UP; 235 } 236 237 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 238 { 239 #ifdef CONFIG_NUMA 240 return s->node[node]; 241 #else 242 return &s->local_node; 243 #endif 244 } 245 246 /* Verify that a pointer has an address that is valid within a slab page */ 247 static inline int check_valid_pointer(struct kmem_cache *s, 248 struct page *page, const void *object) 249 { 250 void *base; 251 252 if (!object) 253 return 1; 254 255 base = page_address(page); 256 if (object < base || object >= base + page->objects * s->size || 257 (object - base) % s->size) { 258 return 0; 259 } 260 261 return 1; 262 } 263 264 static inline void *get_freepointer(struct kmem_cache *s, void *object) 265 { 266 return *(void **)(object + s->offset); 267 } 268 269 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 270 { 271 *(void **)(object + s->offset) = fp; 272 } 273 274 /* Loop over all objects in a slab */ 275 #define for_each_object(__p, __s, __addr, __objects) \ 276 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 277 __p += (__s)->size) 278 279 /* Scan freelist */ 280 #define for_each_free_object(__p, __s, __free) \ 281 for (__p = (__free); __p; __p = get_freepointer((__s), __p)) 282 283 /* Determine object index from a given position */ 284 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 285 { 286 return (p - addr) / s->size; 287 } 288 289 static inline struct kmem_cache_order_objects oo_make(int order, 290 unsigned long size) 291 { 292 struct kmem_cache_order_objects x = { 293 (order << OO_SHIFT) + (PAGE_SIZE << order) / size 294 }; 295 296 return x; 297 } 298 299 static inline int oo_order(struct kmem_cache_order_objects x) 300 { 301 return x.x >> OO_SHIFT; 302 } 303 304 static inline int oo_objects(struct kmem_cache_order_objects x) 305 { 306 return x.x & OO_MASK; 307 } 308 309 #ifdef CONFIG_SLUB_DEBUG 310 /* 311 * Debug settings: 312 */ 313 #ifdef CONFIG_SLUB_DEBUG_ON 314 static int slub_debug = DEBUG_DEFAULT_FLAGS; 315 #else 316 static int slub_debug; 317 #endif 318 319 static char *slub_debug_slabs; 320 static int disable_higher_order_debug; 321 322 /* 323 * Object debugging 324 */ 325 static void print_section(char *text, u8 *addr, unsigned int length) 326 { 327 int i, offset; 328 int newline = 1; 329 char ascii[17]; 330 331 ascii[16] = 0; 332 333 for (i = 0; i < length; i++) { 334 if (newline) { 335 printk(KERN_ERR "%8s 0x%p: ", text, addr + i); 336 newline = 0; 337 } 338 printk(KERN_CONT " %02x", addr[i]); 339 offset = i % 16; 340 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; 341 if (offset == 15) { 342 printk(KERN_CONT " %s\n", ascii); 343 newline = 1; 344 } 345 } 346 if (!newline) { 347 i %= 16; 348 while (i < 16) { 349 printk(KERN_CONT " "); 350 ascii[i] = ' '; 351 i++; 352 } 353 printk(KERN_CONT " %s\n", ascii); 354 } 355 } 356 357 static struct track *get_track(struct kmem_cache *s, void *object, 358 enum track_item alloc) 359 { 360 struct track *p; 361 362 if (s->offset) 363 p = object + s->offset + sizeof(void *); 364 else 365 p = object + s->inuse; 366 367 return p + alloc; 368 } 369 370 static void set_track(struct kmem_cache *s, void *object, 371 enum track_item alloc, unsigned long addr) 372 { 373 struct track *p = get_track(s, object, alloc); 374 375 if (addr) { 376 p->addr = addr; 377 p->cpu = smp_processor_id(); 378 p->pid = current->pid; 379 p->when = jiffies; 380 } else 381 memset(p, 0, sizeof(struct track)); 382 } 383 384 static void init_tracking(struct kmem_cache *s, void *object) 385 { 386 if (!(s->flags & SLAB_STORE_USER)) 387 return; 388 389 set_track(s, object, TRACK_FREE, 0UL); 390 set_track(s, object, TRACK_ALLOC, 0UL); 391 } 392 393 static void print_track(const char *s, struct track *t) 394 { 395 if (!t->addr) 396 return; 397 398 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 399 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 400 } 401 402 static void print_tracking(struct kmem_cache *s, void *object) 403 { 404 if (!(s->flags & SLAB_STORE_USER)) 405 return; 406 407 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 408 print_track("Freed", get_track(s, object, TRACK_FREE)); 409 } 410 411 static void print_page_info(struct page *page) 412 { 413 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 414 page, page->objects, page->inuse, page->freelist, page->flags); 415 416 } 417 418 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 419 { 420 va_list args; 421 char buf[100]; 422 423 va_start(args, fmt); 424 vsnprintf(buf, sizeof(buf), fmt, args); 425 va_end(args); 426 printk(KERN_ERR "========================================" 427 "=====================================\n"); 428 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 429 printk(KERN_ERR "----------------------------------------" 430 "-------------------------------------\n\n"); 431 } 432 433 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 434 { 435 va_list args; 436 char buf[100]; 437 438 va_start(args, fmt); 439 vsnprintf(buf, sizeof(buf), fmt, args); 440 va_end(args); 441 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 442 } 443 444 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 445 { 446 unsigned int off; /* Offset of last byte */ 447 u8 *addr = page_address(page); 448 449 print_tracking(s, p); 450 451 print_page_info(page); 452 453 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 454 p, p - addr, get_freepointer(s, p)); 455 456 if (p > addr + 16) 457 print_section("Bytes b4", p - 16, 16); 458 459 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); 460 461 if (s->flags & SLAB_RED_ZONE) 462 print_section("Redzone", p + s->objsize, 463 s->inuse - s->objsize); 464 465 if (s->offset) 466 off = s->offset + sizeof(void *); 467 else 468 off = s->inuse; 469 470 if (s->flags & SLAB_STORE_USER) 471 off += 2 * sizeof(struct track); 472 473 if (off != s->size) 474 /* Beginning of the filler is the free pointer */ 475 print_section("Padding", p + off, s->size - off); 476 477 dump_stack(); 478 } 479 480 static void object_err(struct kmem_cache *s, struct page *page, 481 u8 *object, char *reason) 482 { 483 slab_bug(s, "%s", reason); 484 print_trailer(s, page, object); 485 } 486 487 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 488 { 489 va_list args; 490 char buf[100]; 491 492 va_start(args, fmt); 493 vsnprintf(buf, sizeof(buf), fmt, args); 494 va_end(args); 495 slab_bug(s, "%s", buf); 496 print_page_info(page); 497 dump_stack(); 498 } 499 500 static void init_object(struct kmem_cache *s, void *object, int active) 501 { 502 u8 *p = object; 503 504 if (s->flags & __OBJECT_POISON) { 505 memset(p, POISON_FREE, s->objsize - 1); 506 p[s->objsize - 1] = POISON_END; 507 } 508 509 if (s->flags & SLAB_RED_ZONE) 510 memset(p + s->objsize, 511 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, 512 s->inuse - s->objsize); 513 } 514 515 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) 516 { 517 while (bytes) { 518 if (*start != (u8)value) 519 return start; 520 start++; 521 bytes--; 522 } 523 return NULL; 524 } 525 526 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 527 void *from, void *to) 528 { 529 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 530 memset(from, data, to - from); 531 } 532 533 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 534 u8 *object, char *what, 535 u8 *start, unsigned int value, unsigned int bytes) 536 { 537 u8 *fault; 538 u8 *end; 539 540 fault = check_bytes(start, value, bytes); 541 if (!fault) 542 return 1; 543 544 end = start + bytes; 545 while (end > fault && end[-1] == value) 546 end--; 547 548 slab_bug(s, "%s overwritten", what); 549 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 550 fault, end - 1, fault[0], value); 551 print_trailer(s, page, object); 552 553 restore_bytes(s, what, value, fault, end); 554 return 0; 555 } 556 557 /* 558 * Object layout: 559 * 560 * object address 561 * Bytes of the object to be managed. 562 * If the freepointer may overlay the object then the free 563 * pointer is the first word of the object. 564 * 565 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 566 * 0xa5 (POISON_END) 567 * 568 * object + s->objsize 569 * Padding to reach word boundary. This is also used for Redzoning. 570 * Padding is extended by another word if Redzoning is enabled and 571 * objsize == inuse. 572 * 573 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 574 * 0xcc (RED_ACTIVE) for objects in use. 575 * 576 * object + s->inuse 577 * Meta data starts here. 578 * 579 * A. Free pointer (if we cannot overwrite object on free) 580 * B. Tracking data for SLAB_STORE_USER 581 * C. Padding to reach required alignment boundary or at mininum 582 * one word if debugging is on to be able to detect writes 583 * before the word boundary. 584 * 585 * Padding is done using 0x5a (POISON_INUSE) 586 * 587 * object + s->size 588 * Nothing is used beyond s->size. 589 * 590 * If slabcaches are merged then the objsize and inuse boundaries are mostly 591 * ignored. And therefore no slab options that rely on these boundaries 592 * may be used with merged slabcaches. 593 */ 594 595 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 596 { 597 unsigned long off = s->inuse; /* The end of info */ 598 599 if (s->offset) 600 /* Freepointer is placed after the object. */ 601 off += sizeof(void *); 602 603 if (s->flags & SLAB_STORE_USER) 604 /* We also have user information there */ 605 off += 2 * sizeof(struct track); 606 607 if (s->size == off) 608 return 1; 609 610 return check_bytes_and_report(s, page, p, "Object padding", 611 p + off, POISON_INUSE, s->size - off); 612 } 613 614 /* Check the pad bytes at the end of a slab page */ 615 static int slab_pad_check(struct kmem_cache *s, struct page *page) 616 { 617 u8 *start; 618 u8 *fault; 619 u8 *end; 620 int length; 621 int remainder; 622 623 if (!(s->flags & SLAB_POISON)) 624 return 1; 625 626 start = page_address(page); 627 length = (PAGE_SIZE << compound_order(page)); 628 end = start + length; 629 remainder = length % s->size; 630 if (!remainder) 631 return 1; 632 633 fault = check_bytes(end - remainder, POISON_INUSE, remainder); 634 if (!fault) 635 return 1; 636 while (end > fault && end[-1] == POISON_INUSE) 637 end--; 638 639 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 640 print_section("Padding", end - remainder, remainder); 641 642 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 643 return 0; 644 } 645 646 static int check_object(struct kmem_cache *s, struct page *page, 647 void *object, int active) 648 { 649 u8 *p = object; 650 u8 *endobject = object + s->objsize; 651 652 if (s->flags & SLAB_RED_ZONE) { 653 unsigned int red = 654 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; 655 656 if (!check_bytes_and_report(s, page, object, "Redzone", 657 endobject, red, s->inuse - s->objsize)) 658 return 0; 659 } else { 660 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { 661 check_bytes_and_report(s, page, p, "Alignment padding", 662 endobject, POISON_INUSE, s->inuse - s->objsize); 663 } 664 } 665 666 if (s->flags & SLAB_POISON) { 667 if (!active && (s->flags & __OBJECT_POISON) && 668 (!check_bytes_and_report(s, page, p, "Poison", p, 669 POISON_FREE, s->objsize - 1) || 670 !check_bytes_and_report(s, page, p, "Poison", 671 p + s->objsize - 1, POISON_END, 1))) 672 return 0; 673 /* 674 * check_pad_bytes cleans up on its own. 675 */ 676 check_pad_bytes(s, page, p); 677 } 678 679 if (!s->offset && active) 680 /* 681 * Object and freepointer overlap. Cannot check 682 * freepointer while object is allocated. 683 */ 684 return 1; 685 686 /* Check free pointer validity */ 687 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 688 object_err(s, page, p, "Freepointer corrupt"); 689 /* 690 * No choice but to zap it and thus lose the remainder 691 * of the free objects in this slab. May cause 692 * another error because the object count is now wrong. 693 */ 694 set_freepointer(s, p, NULL); 695 return 0; 696 } 697 return 1; 698 } 699 700 static int check_slab(struct kmem_cache *s, struct page *page) 701 { 702 int maxobj; 703 704 VM_BUG_ON(!irqs_disabled()); 705 706 if (!PageSlab(page)) { 707 slab_err(s, page, "Not a valid slab page"); 708 return 0; 709 } 710 711 maxobj = (PAGE_SIZE << compound_order(page)) / s->size; 712 if (page->objects > maxobj) { 713 slab_err(s, page, "objects %u > max %u", 714 s->name, page->objects, maxobj); 715 return 0; 716 } 717 if (page->inuse > page->objects) { 718 slab_err(s, page, "inuse %u > max %u", 719 s->name, page->inuse, page->objects); 720 return 0; 721 } 722 /* Slab_pad_check fixes things up after itself */ 723 slab_pad_check(s, page); 724 return 1; 725 } 726 727 /* 728 * Determine if a certain object on a page is on the freelist. Must hold the 729 * slab lock to guarantee that the chains are in a consistent state. 730 */ 731 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 732 { 733 int nr = 0; 734 void *fp = page->freelist; 735 void *object = NULL; 736 unsigned long max_objects; 737 738 while (fp && nr <= page->objects) { 739 if (fp == search) 740 return 1; 741 if (!check_valid_pointer(s, page, fp)) { 742 if (object) { 743 object_err(s, page, object, 744 "Freechain corrupt"); 745 set_freepointer(s, object, NULL); 746 break; 747 } else { 748 slab_err(s, page, "Freepointer corrupt"); 749 page->freelist = NULL; 750 page->inuse = page->objects; 751 slab_fix(s, "Freelist cleared"); 752 return 0; 753 } 754 break; 755 } 756 object = fp; 757 fp = get_freepointer(s, object); 758 nr++; 759 } 760 761 max_objects = (PAGE_SIZE << compound_order(page)) / s->size; 762 if (max_objects > MAX_OBJS_PER_PAGE) 763 max_objects = MAX_OBJS_PER_PAGE; 764 765 if (page->objects != max_objects) { 766 slab_err(s, page, "Wrong number of objects. Found %d but " 767 "should be %d", page->objects, max_objects); 768 page->objects = max_objects; 769 slab_fix(s, "Number of objects adjusted."); 770 } 771 if (page->inuse != page->objects - nr) { 772 slab_err(s, page, "Wrong object count. Counter is %d but " 773 "counted were %d", page->inuse, page->objects - nr); 774 page->inuse = page->objects - nr; 775 slab_fix(s, "Object count adjusted."); 776 } 777 return search == NULL; 778 } 779 780 static void trace(struct kmem_cache *s, struct page *page, void *object, 781 int alloc) 782 { 783 if (s->flags & SLAB_TRACE) { 784 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 785 s->name, 786 alloc ? "alloc" : "free", 787 object, page->inuse, 788 page->freelist); 789 790 if (!alloc) 791 print_section("Object", (void *)object, s->objsize); 792 793 dump_stack(); 794 } 795 } 796 797 /* 798 * Tracking of fully allocated slabs for debugging purposes. 799 */ 800 static void add_full(struct kmem_cache_node *n, struct page *page) 801 { 802 spin_lock(&n->list_lock); 803 list_add(&page->lru, &n->full); 804 spin_unlock(&n->list_lock); 805 } 806 807 static void remove_full(struct kmem_cache *s, struct page *page) 808 { 809 struct kmem_cache_node *n; 810 811 if (!(s->flags & SLAB_STORE_USER)) 812 return; 813 814 n = get_node(s, page_to_nid(page)); 815 816 spin_lock(&n->list_lock); 817 list_del(&page->lru); 818 spin_unlock(&n->list_lock); 819 } 820 821 /* Tracking of the number of slabs for debugging purposes */ 822 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 823 { 824 struct kmem_cache_node *n = get_node(s, node); 825 826 return atomic_long_read(&n->nr_slabs); 827 } 828 829 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 830 { 831 return atomic_long_read(&n->nr_slabs); 832 } 833 834 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 835 { 836 struct kmem_cache_node *n = get_node(s, node); 837 838 /* 839 * May be called early in order to allocate a slab for the 840 * kmem_cache_node structure. Solve the chicken-egg 841 * dilemma by deferring the increment of the count during 842 * bootstrap (see early_kmem_cache_node_alloc). 843 */ 844 if (!NUMA_BUILD || n) { 845 atomic_long_inc(&n->nr_slabs); 846 atomic_long_add(objects, &n->total_objects); 847 } 848 } 849 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 850 { 851 struct kmem_cache_node *n = get_node(s, node); 852 853 atomic_long_dec(&n->nr_slabs); 854 atomic_long_sub(objects, &n->total_objects); 855 } 856 857 /* Object debug checks for alloc/free paths */ 858 static void setup_object_debug(struct kmem_cache *s, struct page *page, 859 void *object) 860 { 861 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 862 return; 863 864 init_object(s, object, 0); 865 init_tracking(s, object); 866 } 867 868 static int alloc_debug_processing(struct kmem_cache *s, struct page *page, 869 void *object, unsigned long addr) 870 { 871 if (!check_slab(s, page)) 872 goto bad; 873 874 if (!on_freelist(s, page, object)) { 875 object_err(s, page, object, "Object already allocated"); 876 goto bad; 877 } 878 879 if (!check_valid_pointer(s, page, object)) { 880 object_err(s, page, object, "Freelist Pointer check fails"); 881 goto bad; 882 } 883 884 if (!check_object(s, page, object, 0)) 885 goto bad; 886 887 /* Success perform special debug activities for allocs */ 888 if (s->flags & SLAB_STORE_USER) 889 set_track(s, object, TRACK_ALLOC, addr); 890 trace(s, page, object, 1); 891 init_object(s, object, 1); 892 return 1; 893 894 bad: 895 if (PageSlab(page)) { 896 /* 897 * If this is a slab page then lets do the best we can 898 * to avoid issues in the future. Marking all objects 899 * as used avoids touching the remaining objects. 900 */ 901 slab_fix(s, "Marking all objects used"); 902 page->inuse = page->objects; 903 page->freelist = NULL; 904 } 905 return 0; 906 } 907 908 static int free_debug_processing(struct kmem_cache *s, struct page *page, 909 void *object, unsigned long addr) 910 { 911 if (!check_slab(s, page)) 912 goto fail; 913 914 if (!check_valid_pointer(s, page, object)) { 915 slab_err(s, page, "Invalid object pointer 0x%p", object); 916 goto fail; 917 } 918 919 if (on_freelist(s, page, object)) { 920 object_err(s, page, object, "Object already free"); 921 goto fail; 922 } 923 924 if (!check_object(s, page, object, 1)) 925 return 0; 926 927 if (unlikely(s != page->slab)) { 928 if (!PageSlab(page)) { 929 slab_err(s, page, "Attempt to free object(0x%p) " 930 "outside of slab", object); 931 } else if (!page->slab) { 932 printk(KERN_ERR 933 "SLUB <none>: no slab for object 0x%p.\n", 934 object); 935 dump_stack(); 936 } else 937 object_err(s, page, object, 938 "page slab pointer corrupt."); 939 goto fail; 940 } 941 942 /* Special debug activities for freeing objects */ 943 if (!PageSlubFrozen(page) && !page->freelist) 944 remove_full(s, page); 945 if (s->flags & SLAB_STORE_USER) 946 set_track(s, object, TRACK_FREE, addr); 947 trace(s, page, object, 0); 948 init_object(s, object, 0); 949 return 1; 950 951 fail: 952 slab_fix(s, "Object at 0x%p not freed", object); 953 return 0; 954 } 955 956 static int __init setup_slub_debug(char *str) 957 { 958 slub_debug = DEBUG_DEFAULT_FLAGS; 959 if (*str++ != '=' || !*str) 960 /* 961 * No options specified. Switch on full debugging. 962 */ 963 goto out; 964 965 if (*str == ',') 966 /* 967 * No options but restriction on slabs. This means full 968 * debugging for slabs matching a pattern. 969 */ 970 goto check_slabs; 971 972 if (tolower(*str) == 'o') { 973 /* 974 * Avoid enabling debugging on caches if its minimum order 975 * would increase as a result. 976 */ 977 disable_higher_order_debug = 1; 978 goto out; 979 } 980 981 slub_debug = 0; 982 if (*str == '-') 983 /* 984 * Switch off all debugging measures. 985 */ 986 goto out; 987 988 /* 989 * Determine which debug features should be switched on 990 */ 991 for (; *str && *str != ','; str++) { 992 switch (tolower(*str)) { 993 case 'f': 994 slub_debug |= SLAB_DEBUG_FREE; 995 break; 996 case 'z': 997 slub_debug |= SLAB_RED_ZONE; 998 break; 999 case 'p': 1000 slub_debug |= SLAB_POISON; 1001 break; 1002 case 'u': 1003 slub_debug |= SLAB_STORE_USER; 1004 break; 1005 case 't': 1006 slub_debug |= SLAB_TRACE; 1007 break; 1008 case 'a': 1009 slub_debug |= SLAB_FAILSLAB; 1010 break; 1011 default: 1012 printk(KERN_ERR "slub_debug option '%c' " 1013 "unknown. skipped\n", *str); 1014 } 1015 } 1016 1017 check_slabs: 1018 if (*str == ',') 1019 slub_debug_slabs = str + 1; 1020 out: 1021 return 1; 1022 } 1023 1024 __setup("slub_debug", setup_slub_debug); 1025 1026 static unsigned long kmem_cache_flags(unsigned long objsize, 1027 unsigned long flags, const char *name, 1028 void (*ctor)(void *)) 1029 { 1030 /* 1031 * Enable debugging if selected on the kernel commandline. 1032 */ 1033 if (slub_debug && (!slub_debug_slabs || 1034 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) 1035 flags |= slub_debug; 1036 1037 return flags; 1038 } 1039 #else 1040 static inline void setup_object_debug(struct kmem_cache *s, 1041 struct page *page, void *object) {} 1042 1043 static inline int alloc_debug_processing(struct kmem_cache *s, 1044 struct page *page, void *object, unsigned long addr) { return 0; } 1045 1046 static inline int free_debug_processing(struct kmem_cache *s, 1047 struct page *page, void *object, unsigned long addr) { return 0; } 1048 1049 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1050 { return 1; } 1051 static inline int check_object(struct kmem_cache *s, struct page *page, 1052 void *object, int active) { return 1; } 1053 static inline void add_full(struct kmem_cache_node *n, struct page *page) {} 1054 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1055 unsigned long flags, const char *name, 1056 void (*ctor)(void *)) 1057 { 1058 return flags; 1059 } 1060 #define slub_debug 0 1061 1062 #define disable_higher_order_debug 0 1063 1064 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1065 { return 0; } 1066 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1067 { return 0; } 1068 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1069 int objects) {} 1070 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1071 int objects) {} 1072 #endif 1073 1074 /* 1075 * Slab allocation and freeing 1076 */ 1077 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1078 struct kmem_cache_order_objects oo) 1079 { 1080 int order = oo_order(oo); 1081 1082 flags |= __GFP_NOTRACK; 1083 1084 if (node == -1) 1085 return alloc_pages(flags, order); 1086 else 1087 return alloc_pages_node(node, flags, order); 1088 } 1089 1090 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1091 { 1092 struct page *page; 1093 struct kmem_cache_order_objects oo = s->oo; 1094 gfp_t alloc_gfp; 1095 1096 flags |= s->allocflags; 1097 1098 /* 1099 * Let the initial higher-order allocation fail under memory pressure 1100 * so we fall-back to the minimum order allocation. 1101 */ 1102 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1103 1104 page = alloc_slab_page(alloc_gfp, node, oo); 1105 if (unlikely(!page)) { 1106 oo = s->min; 1107 /* 1108 * Allocation may have failed due to fragmentation. 1109 * Try a lower order alloc if possible 1110 */ 1111 page = alloc_slab_page(flags, node, oo); 1112 if (!page) 1113 return NULL; 1114 1115 stat(s, ORDER_FALLBACK); 1116 } 1117 1118 if (kmemcheck_enabled 1119 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1120 int pages = 1 << oo_order(oo); 1121 1122 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1123 1124 /* 1125 * Objects from caches that have a constructor don't get 1126 * cleared when they're allocated, so we need to do it here. 1127 */ 1128 if (s->ctor) 1129 kmemcheck_mark_uninitialized_pages(page, pages); 1130 else 1131 kmemcheck_mark_unallocated_pages(page, pages); 1132 } 1133 1134 page->objects = oo_objects(oo); 1135 mod_zone_page_state(page_zone(page), 1136 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1137 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1138 1 << oo_order(oo)); 1139 1140 return page; 1141 } 1142 1143 static void setup_object(struct kmem_cache *s, struct page *page, 1144 void *object) 1145 { 1146 setup_object_debug(s, page, object); 1147 if (unlikely(s->ctor)) 1148 s->ctor(object); 1149 } 1150 1151 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1152 { 1153 struct page *page; 1154 void *start; 1155 void *last; 1156 void *p; 1157 1158 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1159 1160 page = allocate_slab(s, 1161 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1162 if (!page) 1163 goto out; 1164 1165 inc_slabs_node(s, page_to_nid(page), page->objects); 1166 page->slab = s; 1167 page->flags |= 1 << PG_slab; 1168 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | 1169 SLAB_STORE_USER | SLAB_TRACE)) 1170 __SetPageSlubDebug(page); 1171 1172 start = page_address(page); 1173 1174 if (unlikely(s->flags & SLAB_POISON)) 1175 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1176 1177 last = start; 1178 for_each_object(p, s, start, page->objects) { 1179 setup_object(s, page, last); 1180 set_freepointer(s, last, p); 1181 last = p; 1182 } 1183 setup_object(s, page, last); 1184 set_freepointer(s, last, NULL); 1185 1186 page->freelist = start; 1187 page->inuse = 0; 1188 out: 1189 return page; 1190 } 1191 1192 static void __free_slab(struct kmem_cache *s, struct page *page) 1193 { 1194 int order = compound_order(page); 1195 int pages = 1 << order; 1196 1197 if (unlikely(SLABDEBUG && PageSlubDebug(page))) { 1198 void *p; 1199 1200 slab_pad_check(s, page); 1201 for_each_object(p, s, page_address(page), 1202 page->objects) 1203 check_object(s, page, p, 0); 1204 __ClearPageSlubDebug(page); 1205 } 1206 1207 kmemcheck_free_shadow(page, compound_order(page)); 1208 1209 mod_zone_page_state(page_zone(page), 1210 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1211 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1212 -pages); 1213 1214 __ClearPageSlab(page); 1215 reset_page_mapcount(page); 1216 if (current->reclaim_state) 1217 current->reclaim_state->reclaimed_slab += pages; 1218 __free_pages(page, order); 1219 } 1220 1221 static void rcu_free_slab(struct rcu_head *h) 1222 { 1223 struct page *page; 1224 1225 page = container_of((struct list_head *)h, struct page, lru); 1226 __free_slab(page->slab, page); 1227 } 1228 1229 static void free_slab(struct kmem_cache *s, struct page *page) 1230 { 1231 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1232 /* 1233 * RCU free overloads the RCU head over the LRU 1234 */ 1235 struct rcu_head *head = (void *)&page->lru; 1236 1237 call_rcu(head, rcu_free_slab); 1238 } else 1239 __free_slab(s, page); 1240 } 1241 1242 static void discard_slab(struct kmem_cache *s, struct page *page) 1243 { 1244 dec_slabs_node(s, page_to_nid(page), page->objects); 1245 free_slab(s, page); 1246 } 1247 1248 /* 1249 * Per slab locking using the pagelock 1250 */ 1251 static __always_inline void slab_lock(struct page *page) 1252 { 1253 bit_spin_lock(PG_locked, &page->flags); 1254 } 1255 1256 static __always_inline void slab_unlock(struct page *page) 1257 { 1258 __bit_spin_unlock(PG_locked, &page->flags); 1259 } 1260 1261 static __always_inline int slab_trylock(struct page *page) 1262 { 1263 int rc = 1; 1264 1265 rc = bit_spin_trylock(PG_locked, &page->flags); 1266 return rc; 1267 } 1268 1269 /* 1270 * Management of partially allocated slabs 1271 */ 1272 static void add_partial(struct kmem_cache_node *n, 1273 struct page *page, int tail) 1274 { 1275 spin_lock(&n->list_lock); 1276 n->nr_partial++; 1277 if (tail) 1278 list_add_tail(&page->lru, &n->partial); 1279 else 1280 list_add(&page->lru, &n->partial); 1281 spin_unlock(&n->list_lock); 1282 } 1283 1284 static void remove_partial(struct kmem_cache *s, struct page *page) 1285 { 1286 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1287 1288 spin_lock(&n->list_lock); 1289 list_del(&page->lru); 1290 n->nr_partial--; 1291 spin_unlock(&n->list_lock); 1292 } 1293 1294 /* 1295 * Lock slab and remove from the partial list. 1296 * 1297 * Must hold list_lock. 1298 */ 1299 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, 1300 struct page *page) 1301 { 1302 if (slab_trylock(page)) { 1303 list_del(&page->lru); 1304 n->nr_partial--; 1305 __SetPageSlubFrozen(page); 1306 return 1; 1307 } 1308 return 0; 1309 } 1310 1311 /* 1312 * Try to allocate a partial slab from a specific node. 1313 */ 1314 static struct page *get_partial_node(struct kmem_cache_node *n) 1315 { 1316 struct page *page; 1317 1318 /* 1319 * Racy check. If we mistakenly see no partial slabs then we 1320 * just allocate an empty slab. If we mistakenly try to get a 1321 * partial slab and there is none available then get_partials() 1322 * will return NULL. 1323 */ 1324 if (!n || !n->nr_partial) 1325 return NULL; 1326 1327 spin_lock(&n->list_lock); 1328 list_for_each_entry(page, &n->partial, lru) 1329 if (lock_and_freeze_slab(n, page)) 1330 goto out; 1331 page = NULL; 1332 out: 1333 spin_unlock(&n->list_lock); 1334 return page; 1335 } 1336 1337 /* 1338 * Get a page from somewhere. Search in increasing NUMA distances. 1339 */ 1340 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) 1341 { 1342 #ifdef CONFIG_NUMA 1343 struct zonelist *zonelist; 1344 struct zoneref *z; 1345 struct zone *zone; 1346 enum zone_type high_zoneidx = gfp_zone(flags); 1347 struct page *page; 1348 1349 /* 1350 * The defrag ratio allows a configuration of the tradeoffs between 1351 * inter node defragmentation and node local allocations. A lower 1352 * defrag_ratio increases the tendency to do local allocations 1353 * instead of attempting to obtain partial slabs from other nodes. 1354 * 1355 * If the defrag_ratio is set to 0 then kmalloc() always 1356 * returns node local objects. If the ratio is higher then kmalloc() 1357 * may return off node objects because partial slabs are obtained 1358 * from other nodes and filled up. 1359 * 1360 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1361 * defrag_ratio = 1000) then every (well almost) allocation will 1362 * first attempt to defrag slab caches on other nodes. This means 1363 * scanning over all nodes to look for partial slabs which may be 1364 * expensive if we do it every time we are trying to find a slab 1365 * with available objects. 1366 */ 1367 if (!s->remote_node_defrag_ratio || 1368 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1369 return NULL; 1370 1371 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 1372 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1373 struct kmem_cache_node *n; 1374 1375 n = get_node(s, zone_to_nid(zone)); 1376 1377 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1378 n->nr_partial > s->min_partial) { 1379 page = get_partial_node(n); 1380 if (page) 1381 return page; 1382 } 1383 } 1384 #endif 1385 return NULL; 1386 } 1387 1388 /* 1389 * Get a partial page, lock it and return it. 1390 */ 1391 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) 1392 { 1393 struct page *page; 1394 int searchnode = (node == -1) ? numa_node_id() : node; 1395 1396 page = get_partial_node(get_node(s, searchnode)); 1397 if (page || (flags & __GFP_THISNODE)) 1398 return page; 1399 1400 return get_any_partial(s, flags); 1401 } 1402 1403 /* 1404 * Move a page back to the lists. 1405 * 1406 * Must be called with the slab lock held. 1407 * 1408 * On exit the slab lock will have been dropped. 1409 */ 1410 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) 1411 { 1412 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1413 1414 __ClearPageSlubFrozen(page); 1415 if (page->inuse) { 1416 1417 if (page->freelist) { 1418 add_partial(n, page, tail); 1419 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); 1420 } else { 1421 stat(s, DEACTIVATE_FULL); 1422 if (SLABDEBUG && PageSlubDebug(page) && 1423 (s->flags & SLAB_STORE_USER)) 1424 add_full(n, page); 1425 } 1426 slab_unlock(page); 1427 } else { 1428 stat(s, DEACTIVATE_EMPTY); 1429 if (n->nr_partial < s->min_partial) { 1430 /* 1431 * Adding an empty slab to the partial slabs in order 1432 * to avoid page allocator overhead. This slab needs 1433 * to come after the other slabs with objects in 1434 * so that the others get filled first. That way the 1435 * size of the partial list stays small. 1436 * 1437 * kmem_cache_shrink can reclaim any empty slabs from 1438 * the partial list. 1439 */ 1440 add_partial(n, page, 1); 1441 slab_unlock(page); 1442 } else { 1443 slab_unlock(page); 1444 stat(s, FREE_SLAB); 1445 discard_slab(s, page); 1446 } 1447 } 1448 } 1449 1450 /* 1451 * Remove the cpu slab 1452 */ 1453 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1454 { 1455 struct page *page = c->page; 1456 int tail = 1; 1457 1458 if (page->freelist) 1459 stat(s, DEACTIVATE_REMOTE_FREES); 1460 /* 1461 * Merge cpu freelist into slab freelist. Typically we get here 1462 * because both freelists are empty. So this is unlikely 1463 * to occur. 1464 */ 1465 while (unlikely(c->freelist)) { 1466 void **object; 1467 1468 tail = 0; /* Hot objects. Put the slab first */ 1469 1470 /* Retrieve object from cpu_freelist */ 1471 object = c->freelist; 1472 c->freelist = get_freepointer(s, c->freelist); 1473 1474 /* And put onto the regular freelist */ 1475 set_freepointer(s, object, page->freelist); 1476 page->freelist = object; 1477 page->inuse--; 1478 } 1479 c->page = NULL; 1480 unfreeze_slab(s, page, tail); 1481 } 1482 1483 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1484 { 1485 stat(s, CPUSLAB_FLUSH); 1486 slab_lock(c->page); 1487 deactivate_slab(s, c); 1488 } 1489 1490 /* 1491 * Flush cpu slab. 1492 * 1493 * Called from IPI handler with interrupts disabled. 1494 */ 1495 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1496 { 1497 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 1498 1499 if (likely(c && c->page)) 1500 flush_slab(s, c); 1501 } 1502 1503 static void flush_cpu_slab(void *d) 1504 { 1505 struct kmem_cache *s = d; 1506 1507 __flush_cpu_slab(s, smp_processor_id()); 1508 } 1509 1510 static void flush_all(struct kmem_cache *s) 1511 { 1512 on_each_cpu(flush_cpu_slab, s, 1); 1513 } 1514 1515 /* 1516 * Check if the objects in a per cpu structure fit numa 1517 * locality expectations. 1518 */ 1519 static inline int node_match(struct kmem_cache_cpu *c, int node) 1520 { 1521 #ifdef CONFIG_NUMA 1522 if (node != -1 && c->node != node) 1523 return 0; 1524 #endif 1525 return 1; 1526 } 1527 1528 static int count_free(struct page *page) 1529 { 1530 return page->objects - page->inuse; 1531 } 1532 1533 static unsigned long count_partial(struct kmem_cache_node *n, 1534 int (*get_count)(struct page *)) 1535 { 1536 unsigned long flags; 1537 unsigned long x = 0; 1538 struct page *page; 1539 1540 spin_lock_irqsave(&n->list_lock, flags); 1541 list_for_each_entry(page, &n->partial, lru) 1542 x += get_count(page); 1543 spin_unlock_irqrestore(&n->list_lock, flags); 1544 return x; 1545 } 1546 1547 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 1548 { 1549 #ifdef CONFIG_SLUB_DEBUG 1550 return atomic_long_read(&n->total_objects); 1551 #else 1552 return 0; 1553 #endif 1554 } 1555 1556 static noinline void 1557 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 1558 { 1559 int node; 1560 1561 printk(KERN_WARNING 1562 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 1563 nid, gfpflags); 1564 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 1565 "default order: %d, min order: %d\n", s->name, s->objsize, 1566 s->size, oo_order(s->oo), oo_order(s->min)); 1567 1568 if (oo_order(s->min) > get_order(s->objsize)) 1569 printk(KERN_WARNING " %s debugging increased min order, use " 1570 "slub_debug=O to disable.\n", s->name); 1571 1572 for_each_online_node(node) { 1573 struct kmem_cache_node *n = get_node(s, node); 1574 unsigned long nr_slabs; 1575 unsigned long nr_objs; 1576 unsigned long nr_free; 1577 1578 if (!n) 1579 continue; 1580 1581 nr_free = count_partial(n, count_free); 1582 nr_slabs = node_nr_slabs(n); 1583 nr_objs = node_nr_objs(n); 1584 1585 printk(KERN_WARNING 1586 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 1587 node, nr_slabs, nr_objs, nr_free); 1588 } 1589 } 1590 1591 /* 1592 * Slow path. The lockless freelist is empty or we need to perform 1593 * debugging duties. 1594 * 1595 * Interrupts are disabled. 1596 * 1597 * Processing is still very fast if new objects have been freed to the 1598 * regular freelist. In that case we simply take over the regular freelist 1599 * as the lockless freelist and zap the regular freelist. 1600 * 1601 * If that is not working then we fall back to the partial lists. We take the 1602 * first element of the freelist as the object to allocate now and move the 1603 * rest of the freelist to the lockless freelist. 1604 * 1605 * And if we were unable to get a new slab from the partial slab lists then 1606 * we need to allocate a new slab. This is the slowest path since it involves 1607 * a call to the page allocator and the setup of a new slab. 1608 */ 1609 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 1610 unsigned long addr, struct kmem_cache_cpu *c) 1611 { 1612 void **object; 1613 struct page *new; 1614 1615 /* We handle __GFP_ZERO in the caller */ 1616 gfpflags &= ~__GFP_ZERO; 1617 1618 if (!c->page) 1619 goto new_slab; 1620 1621 slab_lock(c->page); 1622 if (unlikely(!node_match(c, node))) 1623 goto another_slab; 1624 1625 stat(s, ALLOC_REFILL); 1626 1627 load_freelist: 1628 object = c->page->freelist; 1629 if (unlikely(!object)) 1630 goto another_slab; 1631 if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) 1632 goto debug; 1633 1634 c->freelist = get_freepointer(s, object); 1635 c->page->inuse = c->page->objects; 1636 c->page->freelist = NULL; 1637 c->node = page_to_nid(c->page); 1638 unlock_out: 1639 slab_unlock(c->page); 1640 stat(s, ALLOC_SLOWPATH); 1641 return object; 1642 1643 another_slab: 1644 deactivate_slab(s, c); 1645 1646 new_slab: 1647 new = get_partial(s, gfpflags, node); 1648 if (new) { 1649 c->page = new; 1650 stat(s, ALLOC_FROM_PARTIAL); 1651 goto load_freelist; 1652 } 1653 1654 if (gfpflags & __GFP_WAIT) 1655 local_irq_enable(); 1656 1657 new = new_slab(s, gfpflags, node); 1658 1659 if (gfpflags & __GFP_WAIT) 1660 local_irq_disable(); 1661 1662 if (new) { 1663 c = __this_cpu_ptr(s->cpu_slab); 1664 stat(s, ALLOC_SLAB); 1665 if (c->page) 1666 flush_slab(s, c); 1667 slab_lock(new); 1668 __SetPageSlubFrozen(new); 1669 c->page = new; 1670 goto load_freelist; 1671 } 1672 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 1673 slab_out_of_memory(s, gfpflags, node); 1674 return NULL; 1675 debug: 1676 if (!alloc_debug_processing(s, c->page, object, addr)) 1677 goto another_slab; 1678 1679 c->page->inuse++; 1680 c->page->freelist = get_freepointer(s, object); 1681 c->node = -1; 1682 goto unlock_out; 1683 } 1684 1685 /* 1686 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 1687 * have the fastpath folded into their functions. So no function call 1688 * overhead for requests that can be satisfied on the fastpath. 1689 * 1690 * The fastpath works by first checking if the lockless freelist can be used. 1691 * If not then __slab_alloc is called for slow processing. 1692 * 1693 * Otherwise we can simply pick the next object from the lockless free list. 1694 */ 1695 static __always_inline void *slab_alloc(struct kmem_cache *s, 1696 gfp_t gfpflags, int node, unsigned long addr) 1697 { 1698 void **object; 1699 struct kmem_cache_cpu *c; 1700 unsigned long flags; 1701 1702 gfpflags &= gfp_allowed_mask; 1703 1704 lockdep_trace_alloc(gfpflags); 1705 might_sleep_if(gfpflags & __GFP_WAIT); 1706 1707 if (should_failslab(s->objsize, gfpflags, s->flags)) 1708 return NULL; 1709 1710 local_irq_save(flags); 1711 c = __this_cpu_ptr(s->cpu_slab); 1712 object = c->freelist; 1713 if (unlikely(!object || !node_match(c, node))) 1714 1715 object = __slab_alloc(s, gfpflags, node, addr, c); 1716 1717 else { 1718 c->freelist = get_freepointer(s, object); 1719 stat(s, ALLOC_FASTPATH); 1720 } 1721 local_irq_restore(flags); 1722 1723 if (unlikely(gfpflags & __GFP_ZERO) && object) 1724 memset(object, 0, s->objsize); 1725 1726 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize); 1727 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags); 1728 1729 return object; 1730 } 1731 1732 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 1733 { 1734 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_); 1735 1736 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); 1737 1738 return ret; 1739 } 1740 EXPORT_SYMBOL(kmem_cache_alloc); 1741 1742 #ifdef CONFIG_TRACING 1743 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags) 1744 { 1745 return slab_alloc(s, gfpflags, -1, _RET_IP_); 1746 } 1747 EXPORT_SYMBOL(kmem_cache_alloc_notrace); 1748 #endif 1749 1750 #ifdef CONFIG_NUMA 1751 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 1752 { 1753 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 1754 1755 trace_kmem_cache_alloc_node(_RET_IP_, ret, 1756 s->objsize, s->size, gfpflags, node); 1757 1758 return ret; 1759 } 1760 EXPORT_SYMBOL(kmem_cache_alloc_node); 1761 #endif 1762 1763 #ifdef CONFIG_TRACING 1764 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s, 1765 gfp_t gfpflags, 1766 int node) 1767 { 1768 return slab_alloc(s, gfpflags, node, _RET_IP_); 1769 } 1770 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace); 1771 #endif 1772 1773 /* 1774 * Slow patch handling. This may still be called frequently since objects 1775 * have a longer lifetime than the cpu slabs in most processing loads. 1776 * 1777 * So we still attempt to reduce cache line usage. Just take the slab 1778 * lock and free the item. If there is no additional partial page 1779 * handling required then we can return immediately. 1780 */ 1781 static void __slab_free(struct kmem_cache *s, struct page *page, 1782 void *x, unsigned long addr) 1783 { 1784 void *prior; 1785 void **object = (void *)x; 1786 1787 stat(s, FREE_SLOWPATH); 1788 slab_lock(page); 1789 1790 if (unlikely(SLABDEBUG && PageSlubDebug(page))) 1791 goto debug; 1792 1793 checks_ok: 1794 prior = page->freelist; 1795 set_freepointer(s, object, prior); 1796 page->freelist = object; 1797 page->inuse--; 1798 1799 if (unlikely(PageSlubFrozen(page))) { 1800 stat(s, FREE_FROZEN); 1801 goto out_unlock; 1802 } 1803 1804 if (unlikely(!page->inuse)) 1805 goto slab_empty; 1806 1807 /* 1808 * Objects left in the slab. If it was not on the partial list before 1809 * then add it. 1810 */ 1811 if (unlikely(!prior)) { 1812 add_partial(get_node(s, page_to_nid(page)), page, 1); 1813 stat(s, FREE_ADD_PARTIAL); 1814 } 1815 1816 out_unlock: 1817 slab_unlock(page); 1818 return; 1819 1820 slab_empty: 1821 if (prior) { 1822 /* 1823 * Slab still on the partial list. 1824 */ 1825 remove_partial(s, page); 1826 stat(s, FREE_REMOVE_PARTIAL); 1827 } 1828 slab_unlock(page); 1829 stat(s, FREE_SLAB); 1830 discard_slab(s, page); 1831 return; 1832 1833 debug: 1834 if (!free_debug_processing(s, page, x, addr)) 1835 goto out_unlock; 1836 goto checks_ok; 1837 } 1838 1839 /* 1840 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 1841 * can perform fastpath freeing without additional function calls. 1842 * 1843 * The fastpath is only possible if we are freeing to the current cpu slab 1844 * of this processor. This typically the case if we have just allocated 1845 * the item before. 1846 * 1847 * If fastpath is not possible then fall back to __slab_free where we deal 1848 * with all sorts of special processing. 1849 */ 1850 static __always_inline void slab_free(struct kmem_cache *s, 1851 struct page *page, void *x, unsigned long addr) 1852 { 1853 void **object = (void *)x; 1854 struct kmem_cache_cpu *c; 1855 unsigned long flags; 1856 1857 kmemleak_free_recursive(x, s->flags); 1858 local_irq_save(flags); 1859 c = __this_cpu_ptr(s->cpu_slab); 1860 kmemcheck_slab_free(s, object, s->objsize); 1861 debug_check_no_locks_freed(object, s->objsize); 1862 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1863 debug_check_no_obj_freed(object, s->objsize); 1864 if (likely(page == c->page && c->node >= 0)) { 1865 set_freepointer(s, object, c->freelist); 1866 c->freelist = object; 1867 stat(s, FREE_FASTPATH); 1868 } else 1869 __slab_free(s, page, x, addr); 1870 1871 local_irq_restore(flags); 1872 } 1873 1874 void kmem_cache_free(struct kmem_cache *s, void *x) 1875 { 1876 struct page *page; 1877 1878 page = virt_to_head_page(x); 1879 1880 slab_free(s, page, x, _RET_IP_); 1881 1882 trace_kmem_cache_free(_RET_IP_, x); 1883 } 1884 EXPORT_SYMBOL(kmem_cache_free); 1885 1886 /* Figure out on which slab page the object resides */ 1887 static struct page *get_object_page(const void *x) 1888 { 1889 struct page *page = virt_to_head_page(x); 1890 1891 if (!PageSlab(page)) 1892 return NULL; 1893 1894 return page; 1895 } 1896 1897 /* 1898 * Object placement in a slab is made very easy because we always start at 1899 * offset 0. If we tune the size of the object to the alignment then we can 1900 * get the required alignment by putting one properly sized object after 1901 * another. 1902 * 1903 * Notice that the allocation order determines the sizes of the per cpu 1904 * caches. Each processor has always one slab available for allocations. 1905 * Increasing the allocation order reduces the number of times that slabs 1906 * must be moved on and off the partial lists and is therefore a factor in 1907 * locking overhead. 1908 */ 1909 1910 /* 1911 * Mininum / Maximum order of slab pages. This influences locking overhead 1912 * and slab fragmentation. A higher order reduces the number of partial slabs 1913 * and increases the number of allocations possible without having to 1914 * take the list_lock. 1915 */ 1916 static int slub_min_order; 1917 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 1918 static int slub_min_objects; 1919 1920 /* 1921 * Merge control. If this is set then no merging of slab caches will occur. 1922 * (Could be removed. This was introduced to pacify the merge skeptics.) 1923 */ 1924 static int slub_nomerge; 1925 1926 /* 1927 * Calculate the order of allocation given an slab object size. 1928 * 1929 * The order of allocation has significant impact on performance and other 1930 * system components. Generally order 0 allocations should be preferred since 1931 * order 0 does not cause fragmentation in the page allocator. Larger objects 1932 * be problematic to put into order 0 slabs because there may be too much 1933 * unused space left. We go to a higher order if more than 1/16th of the slab 1934 * would be wasted. 1935 * 1936 * In order to reach satisfactory performance we must ensure that a minimum 1937 * number of objects is in one slab. Otherwise we may generate too much 1938 * activity on the partial lists which requires taking the list_lock. This is 1939 * less a concern for large slabs though which are rarely used. 1940 * 1941 * slub_max_order specifies the order where we begin to stop considering the 1942 * number of objects in a slab as critical. If we reach slub_max_order then 1943 * we try to keep the page order as low as possible. So we accept more waste 1944 * of space in favor of a small page order. 1945 * 1946 * Higher order allocations also allow the placement of more objects in a 1947 * slab and thereby reduce object handling overhead. If the user has 1948 * requested a higher mininum order then we start with that one instead of 1949 * the smallest order which will fit the object. 1950 */ 1951 static inline int slab_order(int size, int min_objects, 1952 int max_order, int fract_leftover) 1953 { 1954 int order; 1955 int rem; 1956 int min_order = slub_min_order; 1957 1958 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE) 1959 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 1960 1961 for (order = max(min_order, 1962 fls(min_objects * size - 1) - PAGE_SHIFT); 1963 order <= max_order; order++) { 1964 1965 unsigned long slab_size = PAGE_SIZE << order; 1966 1967 if (slab_size < min_objects * size) 1968 continue; 1969 1970 rem = slab_size % size; 1971 1972 if (rem <= slab_size / fract_leftover) 1973 break; 1974 1975 } 1976 1977 return order; 1978 } 1979 1980 static inline int calculate_order(int size) 1981 { 1982 int order; 1983 int min_objects; 1984 int fraction; 1985 int max_objects; 1986 1987 /* 1988 * Attempt to find best configuration for a slab. This 1989 * works by first attempting to generate a layout with 1990 * the best configuration and backing off gradually. 1991 * 1992 * First we reduce the acceptable waste in a slab. Then 1993 * we reduce the minimum objects required in a slab. 1994 */ 1995 min_objects = slub_min_objects; 1996 if (!min_objects) 1997 min_objects = 4 * (fls(nr_cpu_ids) + 1); 1998 max_objects = (PAGE_SIZE << slub_max_order)/size; 1999 min_objects = min(min_objects, max_objects); 2000 2001 while (min_objects > 1) { 2002 fraction = 16; 2003 while (fraction >= 4) { 2004 order = slab_order(size, min_objects, 2005 slub_max_order, fraction); 2006 if (order <= slub_max_order) 2007 return order; 2008 fraction /= 2; 2009 } 2010 min_objects--; 2011 } 2012 2013 /* 2014 * We were unable to place multiple objects in a slab. Now 2015 * lets see if we can place a single object there. 2016 */ 2017 order = slab_order(size, 1, slub_max_order, 1); 2018 if (order <= slub_max_order) 2019 return order; 2020 2021 /* 2022 * Doh this slab cannot be placed using slub_max_order. 2023 */ 2024 order = slab_order(size, 1, MAX_ORDER, 1); 2025 if (order < MAX_ORDER) 2026 return order; 2027 return -ENOSYS; 2028 } 2029 2030 /* 2031 * Figure out what the alignment of the objects will be. 2032 */ 2033 static unsigned long calculate_alignment(unsigned long flags, 2034 unsigned long align, unsigned long size) 2035 { 2036 /* 2037 * If the user wants hardware cache aligned objects then follow that 2038 * suggestion if the object is sufficiently large. 2039 * 2040 * The hardware cache alignment cannot override the specified 2041 * alignment though. If that is greater then use it. 2042 */ 2043 if (flags & SLAB_HWCACHE_ALIGN) { 2044 unsigned long ralign = cache_line_size(); 2045 while (size <= ralign / 2) 2046 ralign /= 2; 2047 align = max(align, ralign); 2048 } 2049 2050 if (align < ARCH_SLAB_MINALIGN) 2051 align = ARCH_SLAB_MINALIGN; 2052 2053 return ALIGN(align, sizeof(void *)); 2054 } 2055 2056 static void 2057 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) 2058 { 2059 n->nr_partial = 0; 2060 spin_lock_init(&n->list_lock); 2061 INIT_LIST_HEAD(&n->partial); 2062 #ifdef CONFIG_SLUB_DEBUG 2063 atomic_long_set(&n->nr_slabs, 0); 2064 atomic_long_set(&n->total_objects, 0); 2065 INIT_LIST_HEAD(&n->full); 2066 #endif 2067 } 2068 2069 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]); 2070 2071 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2072 { 2073 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches) 2074 /* 2075 * Boot time creation of the kmalloc array. Use static per cpu data 2076 * since the per cpu allocator is not available yet. 2077 */ 2078 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches); 2079 else 2080 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu); 2081 2082 if (!s->cpu_slab) 2083 return 0; 2084 2085 return 1; 2086 } 2087 2088 #ifdef CONFIG_NUMA 2089 /* 2090 * No kmalloc_node yet so do it by hand. We know that this is the first 2091 * slab on the node for this slabcache. There are no concurrent accesses 2092 * possible. 2093 * 2094 * Note that this function only works on the kmalloc_node_cache 2095 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2096 * memory on a fresh node that has no slab structures yet. 2097 */ 2098 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node) 2099 { 2100 struct page *page; 2101 struct kmem_cache_node *n; 2102 unsigned long flags; 2103 2104 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); 2105 2106 page = new_slab(kmalloc_caches, gfpflags, node); 2107 2108 BUG_ON(!page); 2109 if (page_to_nid(page) != node) { 2110 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2111 "node %d\n", node); 2112 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2113 "in order to be able to continue\n"); 2114 } 2115 2116 n = page->freelist; 2117 BUG_ON(!n); 2118 page->freelist = get_freepointer(kmalloc_caches, n); 2119 page->inuse++; 2120 kmalloc_caches->node[node] = n; 2121 #ifdef CONFIG_SLUB_DEBUG 2122 init_object(kmalloc_caches, n, 1); 2123 init_tracking(kmalloc_caches, n); 2124 #endif 2125 init_kmem_cache_node(n, kmalloc_caches); 2126 inc_slabs_node(kmalloc_caches, node, page->objects); 2127 2128 /* 2129 * lockdep requires consistent irq usage for each lock 2130 * so even though there cannot be a race this early in 2131 * the boot sequence, we still disable irqs. 2132 */ 2133 local_irq_save(flags); 2134 add_partial(n, page, 0); 2135 local_irq_restore(flags); 2136 } 2137 2138 static void free_kmem_cache_nodes(struct kmem_cache *s) 2139 { 2140 int node; 2141 2142 for_each_node_state(node, N_NORMAL_MEMORY) { 2143 struct kmem_cache_node *n = s->node[node]; 2144 if (n && n != &s->local_node) 2145 kmem_cache_free(kmalloc_caches, n); 2146 s->node[node] = NULL; 2147 } 2148 } 2149 2150 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2151 { 2152 int node; 2153 int local_node; 2154 2155 if (slab_state >= UP && (s < kmalloc_caches || 2156 s >= kmalloc_caches + KMALLOC_CACHES)) 2157 local_node = page_to_nid(virt_to_page(s)); 2158 else 2159 local_node = 0; 2160 2161 for_each_node_state(node, N_NORMAL_MEMORY) { 2162 struct kmem_cache_node *n; 2163 2164 if (local_node == node) 2165 n = &s->local_node; 2166 else { 2167 if (slab_state == DOWN) { 2168 early_kmem_cache_node_alloc(gfpflags, node); 2169 continue; 2170 } 2171 n = kmem_cache_alloc_node(kmalloc_caches, 2172 gfpflags, node); 2173 2174 if (!n) { 2175 free_kmem_cache_nodes(s); 2176 return 0; 2177 } 2178 2179 } 2180 s->node[node] = n; 2181 init_kmem_cache_node(n, s); 2182 } 2183 return 1; 2184 } 2185 #else 2186 static void free_kmem_cache_nodes(struct kmem_cache *s) 2187 { 2188 } 2189 2190 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2191 { 2192 init_kmem_cache_node(&s->local_node, s); 2193 return 1; 2194 } 2195 #endif 2196 2197 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2198 { 2199 if (min < MIN_PARTIAL) 2200 min = MIN_PARTIAL; 2201 else if (min > MAX_PARTIAL) 2202 min = MAX_PARTIAL; 2203 s->min_partial = min; 2204 } 2205 2206 /* 2207 * calculate_sizes() determines the order and the distribution of data within 2208 * a slab object. 2209 */ 2210 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2211 { 2212 unsigned long flags = s->flags; 2213 unsigned long size = s->objsize; 2214 unsigned long align = s->align; 2215 int order; 2216 2217 /* 2218 * Round up object size to the next word boundary. We can only 2219 * place the free pointer at word boundaries and this determines 2220 * the possible location of the free pointer. 2221 */ 2222 size = ALIGN(size, sizeof(void *)); 2223 2224 #ifdef CONFIG_SLUB_DEBUG 2225 /* 2226 * Determine if we can poison the object itself. If the user of 2227 * the slab may touch the object after free or before allocation 2228 * then we should never poison the object itself. 2229 */ 2230 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2231 !s->ctor) 2232 s->flags |= __OBJECT_POISON; 2233 else 2234 s->flags &= ~__OBJECT_POISON; 2235 2236 2237 /* 2238 * If we are Redzoning then check if there is some space between the 2239 * end of the object and the free pointer. If not then add an 2240 * additional word to have some bytes to store Redzone information. 2241 */ 2242 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2243 size += sizeof(void *); 2244 #endif 2245 2246 /* 2247 * With that we have determined the number of bytes in actual use 2248 * by the object. This is the potential offset to the free pointer. 2249 */ 2250 s->inuse = size; 2251 2252 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2253 s->ctor)) { 2254 /* 2255 * Relocate free pointer after the object if it is not 2256 * permitted to overwrite the first word of the object on 2257 * kmem_cache_free. 2258 * 2259 * This is the case if we do RCU, have a constructor or 2260 * destructor or are poisoning the objects. 2261 */ 2262 s->offset = size; 2263 size += sizeof(void *); 2264 } 2265 2266 #ifdef CONFIG_SLUB_DEBUG 2267 if (flags & SLAB_STORE_USER) 2268 /* 2269 * Need to store information about allocs and frees after 2270 * the object. 2271 */ 2272 size += 2 * sizeof(struct track); 2273 2274 if (flags & SLAB_RED_ZONE) 2275 /* 2276 * Add some empty padding so that we can catch 2277 * overwrites from earlier objects rather than let 2278 * tracking information or the free pointer be 2279 * corrupted if a user writes before the start 2280 * of the object. 2281 */ 2282 size += sizeof(void *); 2283 #endif 2284 2285 /* 2286 * Determine the alignment based on various parameters that the 2287 * user specified and the dynamic determination of cache line size 2288 * on bootup. 2289 */ 2290 align = calculate_alignment(flags, align, s->objsize); 2291 s->align = align; 2292 2293 /* 2294 * SLUB stores one object immediately after another beginning from 2295 * offset 0. In order to align the objects we have to simply size 2296 * each object to conform to the alignment. 2297 */ 2298 size = ALIGN(size, align); 2299 s->size = size; 2300 if (forced_order >= 0) 2301 order = forced_order; 2302 else 2303 order = calculate_order(size); 2304 2305 if (order < 0) 2306 return 0; 2307 2308 s->allocflags = 0; 2309 if (order) 2310 s->allocflags |= __GFP_COMP; 2311 2312 if (s->flags & SLAB_CACHE_DMA) 2313 s->allocflags |= SLUB_DMA; 2314 2315 if (s->flags & SLAB_RECLAIM_ACCOUNT) 2316 s->allocflags |= __GFP_RECLAIMABLE; 2317 2318 /* 2319 * Determine the number of objects per slab 2320 */ 2321 s->oo = oo_make(order, size); 2322 s->min = oo_make(get_order(size), size); 2323 if (oo_objects(s->oo) > oo_objects(s->max)) 2324 s->max = s->oo; 2325 2326 return !!oo_objects(s->oo); 2327 2328 } 2329 2330 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, 2331 const char *name, size_t size, 2332 size_t align, unsigned long flags, 2333 void (*ctor)(void *)) 2334 { 2335 memset(s, 0, kmem_size); 2336 s->name = name; 2337 s->ctor = ctor; 2338 s->objsize = size; 2339 s->align = align; 2340 s->flags = kmem_cache_flags(size, flags, name, ctor); 2341 2342 if (!calculate_sizes(s, -1)) 2343 goto error; 2344 if (disable_higher_order_debug) { 2345 /* 2346 * Disable debugging flags that store metadata if the min slab 2347 * order increased. 2348 */ 2349 if (get_order(s->size) > get_order(s->objsize)) { 2350 s->flags &= ~DEBUG_METADATA_FLAGS; 2351 s->offset = 0; 2352 if (!calculate_sizes(s, -1)) 2353 goto error; 2354 } 2355 } 2356 2357 /* 2358 * The larger the object size is, the more pages we want on the partial 2359 * list to avoid pounding the page allocator excessively. 2360 */ 2361 set_min_partial(s, ilog2(s->size)); 2362 s->refcount = 1; 2363 #ifdef CONFIG_NUMA 2364 s->remote_node_defrag_ratio = 1000; 2365 #endif 2366 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) 2367 goto error; 2368 2369 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) 2370 return 1; 2371 2372 free_kmem_cache_nodes(s); 2373 error: 2374 if (flags & SLAB_PANIC) 2375 panic("Cannot create slab %s size=%lu realsize=%u " 2376 "order=%u offset=%u flags=%lx\n", 2377 s->name, (unsigned long)size, s->size, oo_order(s->oo), 2378 s->offset, flags); 2379 return 0; 2380 } 2381 2382 /* 2383 * Check if a given pointer is valid 2384 */ 2385 int kmem_ptr_validate(struct kmem_cache *s, const void *object) 2386 { 2387 struct page *page; 2388 2389 if (!kern_ptr_validate(object, s->size)) 2390 return 0; 2391 2392 page = get_object_page(object); 2393 2394 if (!page || s != page->slab) 2395 /* No slab or wrong slab */ 2396 return 0; 2397 2398 if (!check_valid_pointer(s, page, object)) 2399 return 0; 2400 2401 /* 2402 * We could also check if the object is on the slabs freelist. 2403 * But this would be too expensive and it seems that the main 2404 * purpose of kmem_ptr_valid() is to check if the object belongs 2405 * to a certain slab. 2406 */ 2407 return 1; 2408 } 2409 EXPORT_SYMBOL(kmem_ptr_validate); 2410 2411 /* 2412 * Determine the size of a slab object 2413 */ 2414 unsigned int kmem_cache_size(struct kmem_cache *s) 2415 { 2416 return s->objsize; 2417 } 2418 EXPORT_SYMBOL(kmem_cache_size); 2419 2420 const char *kmem_cache_name(struct kmem_cache *s) 2421 { 2422 return s->name; 2423 } 2424 EXPORT_SYMBOL(kmem_cache_name); 2425 2426 static void list_slab_objects(struct kmem_cache *s, struct page *page, 2427 const char *text) 2428 { 2429 #ifdef CONFIG_SLUB_DEBUG 2430 void *addr = page_address(page); 2431 void *p; 2432 DECLARE_BITMAP(map, page->objects); 2433 2434 bitmap_zero(map, page->objects); 2435 slab_err(s, page, "%s", text); 2436 slab_lock(page); 2437 for_each_free_object(p, s, page->freelist) 2438 set_bit(slab_index(p, s, addr), map); 2439 2440 for_each_object(p, s, addr, page->objects) { 2441 2442 if (!test_bit(slab_index(p, s, addr), map)) { 2443 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 2444 p, p - addr); 2445 print_tracking(s, p); 2446 } 2447 } 2448 slab_unlock(page); 2449 #endif 2450 } 2451 2452 /* 2453 * Attempt to free all partial slabs on a node. 2454 */ 2455 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 2456 { 2457 unsigned long flags; 2458 struct page *page, *h; 2459 2460 spin_lock_irqsave(&n->list_lock, flags); 2461 list_for_each_entry_safe(page, h, &n->partial, lru) { 2462 if (!page->inuse) { 2463 list_del(&page->lru); 2464 discard_slab(s, page); 2465 n->nr_partial--; 2466 } else { 2467 list_slab_objects(s, page, 2468 "Objects remaining on kmem_cache_close()"); 2469 } 2470 } 2471 spin_unlock_irqrestore(&n->list_lock, flags); 2472 } 2473 2474 /* 2475 * Release all resources used by a slab cache. 2476 */ 2477 static inline int kmem_cache_close(struct kmem_cache *s) 2478 { 2479 int node; 2480 2481 flush_all(s); 2482 free_percpu(s->cpu_slab); 2483 /* Attempt to free all objects */ 2484 for_each_node_state(node, N_NORMAL_MEMORY) { 2485 struct kmem_cache_node *n = get_node(s, node); 2486 2487 free_partial(s, n); 2488 if (n->nr_partial || slabs_node(s, node)) 2489 return 1; 2490 } 2491 free_kmem_cache_nodes(s); 2492 return 0; 2493 } 2494 2495 /* 2496 * Close a cache and release the kmem_cache structure 2497 * (must be used for caches created using kmem_cache_create) 2498 */ 2499 void kmem_cache_destroy(struct kmem_cache *s) 2500 { 2501 down_write(&slub_lock); 2502 s->refcount--; 2503 if (!s->refcount) { 2504 list_del(&s->list); 2505 up_write(&slub_lock); 2506 if (kmem_cache_close(s)) { 2507 printk(KERN_ERR "SLUB %s: %s called for cache that " 2508 "still has objects.\n", s->name, __func__); 2509 dump_stack(); 2510 } 2511 if (s->flags & SLAB_DESTROY_BY_RCU) 2512 rcu_barrier(); 2513 sysfs_slab_remove(s); 2514 } else 2515 up_write(&slub_lock); 2516 } 2517 EXPORT_SYMBOL(kmem_cache_destroy); 2518 2519 /******************************************************************** 2520 * Kmalloc subsystem 2521 *******************************************************************/ 2522 2523 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned; 2524 EXPORT_SYMBOL(kmalloc_caches); 2525 2526 static int __init setup_slub_min_order(char *str) 2527 { 2528 get_option(&str, &slub_min_order); 2529 2530 return 1; 2531 } 2532 2533 __setup("slub_min_order=", setup_slub_min_order); 2534 2535 static int __init setup_slub_max_order(char *str) 2536 { 2537 get_option(&str, &slub_max_order); 2538 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 2539 2540 return 1; 2541 } 2542 2543 __setup("slub_max_order=", setup_slub_max_order); 2544 2545 static int __init setup_slub_min_objects(char *str) 2546 { 2547 get_option(&str, &slub_min_objects); 2548 2549 return 1; 2550 } 2551 2552 __setup("slub_min_objects=", setup_slub_min_objects); 2553 2554 static int __init setup_slub_nomerge(char *str) 2555 { 2556 slub_nomerge = 1; 2557 return 1; 2558 } 2559 2560 __setup("slub_nomerge", setup_slub_nomerge); 2561 2562 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, 2563 const char *name, int size, gfp_t gfp_flags) 2564 { 2565 unsigned int flags = 0; 2566 2567 if (gfp_flags & SLUB_DMA) 2568 flags = SLAB_CACHE_DMA; 2569 2570 /* 2571 * This function is called with IRQs disabled during early-boot on 2572 * single CPU so there's no need to take slub_lock here. 2573 */ 2574 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, 2575 flags, NULL)) 2576 goto panic; 2577 2578 list_add(&s->list, &slab_caches); 2579 2580 if (sysfs_slab_add(s)) 2581 goto panic; 2582 return s; 2583 2584 panic: 2585 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 2586 } 2587 2588 #ifdef CONFIG_ZONE_DMA 2589 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT]; 2590 2591 static void sysfs_add_func(struct work_struct *w) 2592 { 2593 struct kmem_cache *s; 2594 2595 down_write(&slub_lock); 2596 list_for_each_entry(s, &slab_caches, list) { 2597 if (s->flags & __SYSFS_ADD_DEFERRED) { 2598 s->flags &= ~__SYSFS_ADD_DEFERRED; 2599 sysfs_slab_add(s); 2600 } 2601 } 2602 up_write(&slub_lock); 2603 } 2604 2605 static DECLARE_WORK(sysfs_add_work, sysfs_add_func); 2606 2607 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) 2608 { 2609 struct kmem_cache *s; 2610 char *text; 2611 size_t realsize; 2612 unsigned long slabflags; 2613 int i; 2614 2615 s = kmalloc_caches_dma[index]; 2616 if (s) 2617 return s; 2618 2619 /* Dynamically create dma cache */ 2620 if (flags & __GFP_WAIT) 2621 down_write(&slub_lock); 2622 else { 2623 if (!down_write_trylock(&slub_lock)) 2624 goto out; 2625 } 2626 2627 if (kmalloc_caches_dma[index]) 2628 goto unlock_out; 2629 2630 realsize = kmalloc_caches[index].objsize; 2631 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", 2632 (unsigned int)realsize); 2633 2634 s = NULL; 2635 for (i = 0; i < KMALLOC_CACHES; i++) 2636 if (!kmalloc_caches[i].size) 2637 break; 2638 2639 BUG_ON(i >= KMALLOC_CACHES); 2640 s = kmalloc_caches + i; 2641 2642 /* 2643 * Must defer sysfs creation to a workqueue because we don't know 2644 * what context we are called from. Before sysfs comes up, we don't 2645 * need to do anything because our sysfs initcall will start by 2646 * adding all existing slabs to sysfs. 2647 */ 2648 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK; 2649 if (slab_state >= SYSFS) 2650 slabflags |= __SYSFS_ADD_DEFERRED; 2651 2652 if (!text || !kmem_cache_open(s, flags, text, 2653 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) { 2654 s->size = 0; 2655 kfree(text); 2656 goto unlock_out; 2657 } 2658 2659 list_add(&s->list, &slab_caches); 2660 kmalloc_caches_dma[index] = s; 2661 2662 if (slab_state >= SYSFS) 2663 schedule_work(&sysfs_add_work); 2664 2665 unlock_out: 2666 up_write(&slub_lock); 2667 out: 2668 return kmalloc_caches_dma[index]; 2669 } 2670 #endif 2671 2672 /* 2673 * Conversion table for small slabs sizes / 8 to the index in the 2674 * kmalloc array. This is necessary for slabs < 192 since we have non power 2675 * of two cache sizes there. The size of larger slabs can be determined using 2676 * fls. 2677 */ 2678 static s8 size_index[24] = { 2679 3, /* 8 */ 2680 4, /* 16 */ 2681 5, /* 24 */ 2682 5, /* 32 */ 2683 6, /* 40 */ 2684 6, /* 48 */ 2685 6, /* 56 */ 2686 6, /* 64 */ 2687 1, /* 72 */ 2688 1, /* 80 */ 2689 1, /* 88 */ 2690 1, /* 96 */ 2691 7, /* 104 */ 2692 7, /* 112 */ 2693 7, /* 120 */ 2694 7, /* 128 */ 2695 2, /* 136 */ 2696 2, /* 144 */ 2697 2, /* 152 */ 2698 2, /* 160 */ 2699 2, /* 168 */ 2700 2, /* 176 */ 2701 2, /* 184 */ 2702 2 /* 192 */ 2703 }; 2704 2705 static inline int size_index_elem(size_t bytes) 2706 { 2707 return (bytes - 1) / 8; 2708 } 2709 2710 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 2711 { 2712 int index; 2713 2714 if (size <= 192) { 2715 if (!size) 2716 return ZERO_SIZE_PTR; 2717 2718 index = size_index[size_index_elem(size)]; 2719 } else 2720 index = fls(size - 1); 2721 2722 #ifdef CONFIG_ZONE_DMA 2723 if (unlikely((flags & SLUB_DMA))) 2724 return dma_kmalloc_cache(index, flags); 2725 2726 #endif 2727 return &kmalloc_caches[index]; 2728 } 2729 2730 void *__kmalloc(size_t size, gfp_t flags) 2731 { 2732 struct kmem_cache *s; 2733 void *ret; 2734 2735 if (unlikely(size > SLUB_MAX_SIZE)) 2736 return kmalloc_large(size, flags); 2737 2738 s = get_slab(size, flags); 2739 2740 if (unlikely(ZERO_OR_NULL_PTR(s))) 2741 return s; 2742 2743 ret = slab_alloc(s, flags, -1, _RET_IP_); 2744 2745 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 2746 2747 return ret; 2748 } 2749 EXPORT_SYMBOL(__kmalloc); 2750 2751 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 2752 { 2753 struct page *page; 2754 void *ptr = NULL; 2755 2756 flags |= __GFP_COMP | __GFP_NOTRACK; 2757 page = alloc_pages_node(node, flags, get_order(size)); 2758 if (page) 2759 ptr = page_address(page); 2760 2761 kmemleak_alloc(ptr, size, 1, flags); 2762 return ptr; 2763 } 2764 2765 #ifdef CONFIG_NUMA 2766 void *__kmalloc_node(size_t size, gfp_t flags, int node) 2767 { 2768 struct kmem_cache *s; 2769 void *ret; 2770 2771 if (unlikely(size > SLUB_MAX_SIZE)) { 2772 ret = kmalloc_large_node(size, flags, node); 2773 2774 trace_kmalloc_node(_RET_IP_, ret, 2775 size, PAGE_SIZE << get_order(size), 2776 flags, node); 2777 2778 return ret; 2779 } 2780 2781 s = get_slab(size, flags); 2782 2783 if (unlikely(ZERO_OR_NULL_PTR(s))) 2784 return s; 2785 2786 ret = slab_alloc(s, flags, node, _RET_IP_); 2787 2788 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 2789 2790 return ret; 2791 } 2792 EXPORT_SYMBOL(__kmalloc_node); 2793 #endif 2794 2795 size_t ksize(const void *object) 2796 { 2797 struct page *page; 2798 struct kmem_cache *s; 2799 2800 if (unlikely(object == ZERO_SIZE_PTR)) 2801 return 0; 2802 2803 page = virt_to_head_page(object); 2804 2805 if (unlikely(!PageSlab(page))) { 2806 WARN_ON(!PageCompound(page)); 2807 return PAGE_SIZE << compound_order(page); 2808 } 2809 s = page->slab; 2810 2811 #ifdef CONFIG_SLUB_DEBUG 2812 /* 2813 * Debugging requires use of the padding between object 2814 * and whatever may come after it. 2815 */ 2816 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 2817 return s->objsize; 2818 2819 #endif 2820 /* 2821 * If we have the need to store the freelist pointer 2822 * back there or track user information then we can 2823 * only use the space before that information. 2824 */ 2825 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 2826 return s->inuse; 2827 /* 2828 * Else we can use all the padding etc for the allocation 2829 */ 2830 return s->size; 2831 } 2832 EXPORT_SYMBOL(ksize); 2833 2834 void kfree(const void *x) 2835 { 2836 struct page *page; 2837 void *object = (void *)x; 2838 2839 trace_kfree(_RET_IP_, x); 2840 2841 if (unlikely(ZERO_OR_NULL_PTR(x))) 2842 return; 2843 2844 page = virt_to_head_page(x); 2845 if (unlikely(!PageSlab(page))) { 2846 BUG_ON(!PageCompound(page)); 2847 kmemleak_free(x); 2848 put_page(page); 2849 return; 2850 } 2851 slab_free(page->slab, page, object, _RET_IP_); 2852 } 2853 EXPORT_SYMBOL(kfree); 2854 2855 /* 2856 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 2857 * the remaining slabs by the number of items in use. The slabs with the 2858 * most items in use come first. New allocations will then fill those up 2859 * and thus they can be removed from the partial lists. 2860 * 2861 * The slabs with the least items are placed last. This results in them 2862 * being allocated from last increasing the chance that the last objects 2863 * are freed in them. 2864 */ 2865 int kmem_cache_shrink(struct kmem_cache *s) 2866 { 2867 int node; 2868 int i; 2869 struct kmem_cache_node *n; 2870 struct page *page; 2871 struct page *t; 2872 int objects = oo_objects(s->max); 2873 struct list_head *slabs_by_inuse = 2874 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 2875 unsigned long flags; 2876 2877 if (!slabs_by_inuse) 2878 return -ENOMEM; 2879 2880 flush_all(s); 2881 for_each_node_state(node, N_NORMAL_MEMORY) { 2882 n = get_node(s, node); 2883 2884 if (!n->nr_partial) 2885 continue; 2886 2887 for (i = 0; i < objects; i++) 2888 INIT_LIST_HEAD(slabs_by_inuse + i); 2889 2890 spin_lock_irqsave(&n->list_lock, flags); 2891 2892 /* 2893 * Build lists indexed by the items in use in each slab. 2894 * 2895 * Note that concurrent frees may occur while we hold the 2896 * list_lock. page->inuse here is the upper limit. 2897 */ 2898 list_for_each_entry_safe(page, t, &n->partial, lru) { 2899 if (!page->inuse && slab_trylock(page)) { 2900 /* 2901 * Must hold slab lock here because slab_free 2902 * may have freed the last object and be 2903 * waiting to release the slab. 2904 */ 2905 list_del(&page->lru); 2906 n->nr_partial--; 2907 slab_unlock(page); 2908 discard_slab(s, page); 2909 } else { 2910 list_move(&page->lru, 2911 slabs_by_inuse + page->inuse); 2912 } 2913 } 2914 2915 /* 2916 * Rebuild the partial list with the slabs filled up most 2917 * first and the least used slabs at the end. 2918 */ 2919 for (i = objects - 1; i >= 0; i--) 2920 list_splice(slabs_by_inuse + i, n->partial.prev); 2921 2922 spin_unlock_irqrestore(&n->list_lock, flags); 2923 } 2924 2925 kfree(slabs_by_inuse); 2926 return 0; 2927 } 2928 EXPORT_SYMBOL(kmem_cache_shrink); 2929 2930 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 2931 static int slab_mem_going_offline_callback(void *arg) 2932 { 2933 struct kmem_cache *s; 2934 2935 down_read(&slub_lock); 2936 list_for_each_entry(s, &slab_caches, list) 2937 kmem_cache_shrink(s); 2938 up_read(&slub_lock); 2939 2940 return 0; 2941 } 2942 2943 static void slab_mem_offline_callback(void *arg) 2944 { 2945 struct kmem_cache_node *n; 2946 struct kmem_cache *s; 2947 struct memory_notify *marg = arg; 2948 int offline_node; 2949 2950 offline_node = marg->status_change_nid; 2951 2952 /* 2953 * If the node still has available memory. we need kmem_cache_node 2954 * for it yet. 2955 */ 2956 if (offline_node < 0) 2957 return; 2958 2959 down_read(&slub_lock); 2960 list_for_each_entry(s, &slab_caches, list) { 2961 n = get_node(s, offline_node); 2962 if (n) { 2963 /* 2964 * if n->nr_slabs > 0, slabs still exist on the node 2965 * that is going down. We were unable to free them, 2966 * and offline_pages() function shouldn't call this 2967 * callback. So, we must fail. 2968 */ 2969 BUG_ON(slabs_node(s, offline_node)); 2970 2971 s->node[offline_node] = NULL; 2972 kmem_cache_free(kmalloc_caches, n); 2973 } 2974 } 2975 up_read(&slub_lock); 2976 } 2977 2978 static int slab_mem_going_online_callback(void *arg) 2979 { 2980 struct kmem_cache_node *n; 2981 struct kmem_cache *s; 2982 struct memory_notify *marg = arg; 2983 int nid = marg->status_change_nid; 2984 int ret = 0; 2985 2986 /* 2987 * If the node's memory is already available, then kmem_cache_node is 2988 * already created. Nothing to do. 2989 */ 2990 if (nid < 0) 2991 return 0; 2992 2993 /* 2994 * We are bringing a node online. No memory is available yet. We must 2995 * allocate a kmem_cache_node structure in order to bring the node 2996 * online. 2997 */ 2998 down_read(&slub_lock); 2999 list_for_each_entry(s, &slab_caches, list) { 3000 /* 3001 * XXX: kmem_cache_alloc_node will fallback to other nodes 3002 * since memory is not yet available from the node that 3003 * is brought up. 3004 */ 3005 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); 3006 if (!n) { 3007 ret = -ENOMEM; 3008 goto out; 3009 } 3010 init_kmem_cache_node(n, s); 3011 s->node[nid] = n; 3012 } 3013 out: 3014 up_read(&slub_lock); 3015 return ret; 3016 } 3017 3018 static int slab_memory_callback(struct notifier_block *self, 3019 unsigned long action, void *arg) 3020 { 3021 int ret = 0; 3022 3023 switch (action) { 3024 case MEM_GOING_ONLINE: 3025 ret = slab_mem_going_online_callback(arg); 3026 break; 3027 case MEM_GOING_OFFLINE: 3028 ret = slab_mem_going_offline_callback(arg); 3029 break; 3030 case MEM_OFFLINE: 3031 case MEM_CANCEL_ONLINE: 3032 slab_mem_offline_callback(arg); 3033 break; 3034 case MEM_ONLINE: 3035 case MEM_CANCEL_OFFLINE: 3036 break; 3037 } 3038 if (ret) 3039 ret = notifier_from_errno(ret); 3040 else 3041 ret = NOTIFY_OK; 3042 return ret; 3043 } 3044 3045 #endif /* CONFIG_MEMORY_HOTPLUG */ 3046 3047 /******************************************************************** 3048 * Basic setup of slabs 3049 *******************************************************************/ 3050 3051 void __init kmem_cache_init(void) 3052 { 3053 int i; 3054 int caches = 0; 3055 3056 #ifdef CONFIG_NUMA 3057 /* 3058 * Must first have the slab cache available for the allocations of the 3059 * struct kmem_cache_node's. There is special bootstrap code in 3060 * kmem_cache_open for slab_state == DOWN. 3061 */ 3062 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", 3063 sizeof(struct kmem_cache_node), GFP_NOWAIT); 3064 kmalloc_caches[0].refcount = -1; 3065 caches++; 3066 3067 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 3068 #endif 3069 3070 /* Able to allocate the per node structures */ 3071 slab_state = PARTIAL; 3072 3073 /* Caches that are not of the two-to-the-power-of size */ 3074 if (KMALLOC_MIN_SIZE <= 32) { 3075 create_kmalloc_cache(&kmalloc_caches[1], 3076 "kmalloc-96", 96, GFP_NOWAIT); 3077 caches++; 3078 } 3079 if (KMALLOC_MIN_SIZE <= 64) { 3080 create_kmalloc_cache(&kmalloc_caches[2], 3081 "kmalloc-192", 192, GFP_NOWAIT); 3082 caches++; 3083 } 3084 3085 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3086 create_kmalloc_cache(&kmalloc_caches[i], 3087 "kmalloc", 1 << i, GFP_NOWAIT); 3088 caches++; 3089 } 3090 3091 3092 /* 3093 * Patch up the size_index table if we have strange large alignment 3094 * requirements for the kmalloc array. This is only the case for 3095 * MIPS it seems. The standard arches will not generate any code here. 3096 * 3097 * Largest permitted alignment is 256 bytes due to the way we 3098 * handle the index determination for the smaller caches. 3099 * 3100 * Make sure that nothing crazy happens if someone starts tinkering 3101 * around with ARCH_KMALLOC_MINALIGN 3102 */ 3103 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3104 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3105 3106 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 3107 int elem = size_index_elem(i); 3108 if (elem >= ARRAY_SIZE(size_index)) 3109 break; 3110 size_index[elem] = KMALLOC_SHIFT_LOW; 3111 } 3112 3113 if (KMALLOC_MIN_SIZE == 64) { 3114 /* 3115 * The 96 byte size cache is not used if the alignment 3116 * is 64 byte. 3117 */ 3118 for (i = 64 + 8; i <= 96; i += 8) 3119 size_index[size_index_elem(i)] = 7; 3120 } else if (KMALLOC_MIN_SIZE == 128) { 3121 /* 3122 * The 192 byte sized cache is not used if the alignment 3123 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3124 * instead. 3125 */ 3126 for (i = 128 + 8; i <= 192; i += 8) 3127 size_index[size_index_elem(i)] = 8; 3128 } 3129 3130 slab_state = UP; 3131 3132 /* Provide the correct kmalloc names now that the caches are up */ 3133 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) 3134 kmalloc_caches[i]. name = 3135 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); 3136 3137 #ifdef CONFIG_SMP 3138 register_cpu_notifier(&slab_notifier); 3139 #endif 3140 #ifdef CONFIG_NUMA 3141 kmem_size = offsetof(struct kmem_cache, node) + 3142 nr_node_ids * sizeof(struct kmem_cache_node *); 3143 #else 3144 kmem_size = sizeof(struct kmem_cache); 3145 #endif 3146 3147 printk(KERN_INFO 3148 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3149 " CPUs=%d, Nodes=%d\n", 3150 caches, cache_line_size(), 3151 slub_min_order, slub_max_order, slub_min_objects, 3152 nr_cpu_ids, nr_node_ids); 3153 } 3154 3155 void __init kmem_cache_init_late(void) 3156 { 3157 } 3158 3159 /* 3160 * Find a mergeable slab cache 3161 */ 3162 static int slab_unmergeable(struct kmem_cache *s) 3163 { 3164 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3165 return 1; 3166 3167 if (s->ctor) 3168 return 1; 3169 3170 /* 3171 * We may have set a slab to be unmergeable during bootstrap. 3172 */ 3173 if (s->refcount < 0) 3174 return 1; 3175 3176 return 0; 3177 } 3178 3179 static struct kmem_cache *find_mergeable(size_t size, 3180 size_t align, unsigned long flags, const char *name, 3181 void (*ctor)(void *)) 3182 { 3183 struct kmem_cache *s; 3184 3185 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3186 return NULL; 3187 3188 if (ctor) 3189 return NULL; 3190 3191 size = ALIGN(size, sizeof(void *)); 3192 align = calculate_alignment(flags, align, size); 3193 size = ALIGN(size, align); 3194 flags = kmem_cache_flags(size, flags, name, NULL); 3195 3196 list_for_each_entry(s, &slab_caches, list) { 3197 if (slab_unmergeable(s)) 3198 continue; 3199 3200 if (size > s->size) 3201 continue; 3202 3203 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3204 continue; 3205 /* 3206 * Check if alignment is compatible. 3207 * Courtesy of Adrian Drzewiecki 3208 */ 3209 if ((s->size & ~(align - 1)) != s->size) 3210 continue; 3211 3212 if (s->size - size >= sizeof(void *)) 3213 continue; 3214 3215 return s; 3216 } 3217 return NULL; 3218 } 3219 3220 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 3221 size_t align, unsigned long flags, void (*ctor)(void *)) 3222 { 3223 struct kmem_cache *s; 3224 3225 if (WARN_ON(!name)) 3226 return NULL; 3227 3228 down_write(&slub_lock); 3229 s = find_mergeable(size, align, flags, name, ctor); 3230 if (s) { 3231 s->refcount++; 3232 /* 3233 * Adjust the object sizes so that we clear 3234 * the complete object on kzalloc. 3235 */ 3236 s->objsize = max(s->objsize, (int)size); 3237 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3238 up_write(&slub_lock); 3239 3240 if (sysfs_slab_alias(s, name)) { 3241 down_write(&slub_lock); 3242 s->refcount--; 3243 up_write(&slub_lock); 3244 goto err; 3245 } 3246 return s; 3247 } 3248 3249 s = kmalloc(kmem_size, GFP_KERNEL); 3250 if (s) { 3251 if (kmem_cache_open(s, GFP_KERNEL, name, 3252 size, align, flags, ctor)) { 3253 list_add(&s->list, &slab_caches); 3254 up_write(&slub_lock); 3255 if (sysfs_slab_add(s)) { 3256 down_write(&slub_lock); 3257 list_del(&s->list); 3258 up_write(&slub_lock); 3259 kfree(s); 3260 goto err; 3261 } 3262 return s; 3263 } 3264 kfree(s); 3265 } 3266 up_write(&slub_lock); 3267 3268 err: 3269 if (flags & SLAB_PANIC) 3270 panic("Cannot create slabcache %s\n", name); 3271 else 3272 s = NULL; 3273 return s; 3274 } 3275 EXPORT_SYMBOL(kmem_cache_create); 3276 3277 #ifdef CONFIG_SMP 3278 /* 3279 * Use the cpu notifier to insure that the cpu slabs are flushed when 3280 * necessary. 3281 */ 3282 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3283 unsigned long action, void *hcpu) 3284 { 3285 long cpu = (long)hcpu; 3286 struct kmem_cache *s; 3287 unsigned long flags; 3288 3289 switch (action) { 3290 case CPU_UP_CANCELED: 3291 case CPU_UP_CANCELED_FROZEN: 3292 case CPU_DEAD: 3293 case CPU_DEAD_FROZEN: 3294 down_read(&slub_lock); 3295 list_for_each_entry(s, &slab_caches, list) { 3296 local_irq_save(flags); 3297 __flush_cpu_slab(s, cpu); 3298 local_irq_restore(flags); 3299 } 3300 up_read(&slub_lock); 3301 break; 3302 default: 3303 break; 3304 } 3305 return NOTIFY_OK; 3306 } 3307 3308 static struct notifier_block __cpuinitdata slab_notifier = { 3309 .notifier_call = slab_cpuup_callback 3310 }; 3311 3312 #endif 3313 3314 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3315 { 3316 struct kmem_cache *s; 3317 void *ret; 3318 3319 if (unlikely(size > SLUB_MAX_SIZE)) 3320 return kmalloc_large(size, gfpflags); 3321 3322 s = get_slab(size, gfpflags); 3323 3324 if (unlikely(ZERO_OR_NULL_PTR(s))) 3325 return s; 3326 3327 ret = slab_alloc(s, gfpflags, -1, caller); 3328 3329 /* Honor the call site pointer we recieved. */ 3330 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3331 3332 return ret; 3333 } 3334 3335 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3336 int node, unsigned long caller) 3337 { 3338 struct kmem_cache *s; 3339 void *ret; 3340 3341 if (unlikely(size > SLUB_MAX_SIZE)) 3342 return kmalloc_large_node(size, gfpflags, node); 3343 3344 s = get_slab(size, gfpflags); 3345 3346 if (unlikely(ZERO_OR_NULL_PTR(s))) 3347 return s; 3348 3349 ret = slab_alloc(s, gfpflags, node, caller); 3350 3351 /* Honor the call site pointer we recieved. */ 3352 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3353 3354 return ret; 3355 } 3356 3357 #ifdef CONFIG_SLUB_DEBUG 3358 static int count_inuse(struct page *page) 3359 { 3360 return page->inuse; 3361 } 3362 3363 static int count_total(struct page *page) 3364 { 3365 return page->objects; 3366 } 3367 3368 static int validate_slab(struct kmem_cache *s, struct page *page, 3369 unsigned long *map) 3370 { 3371 void *p; 3372 void *addr = page_address(page); 3373 3374 if (!check_slab(s, page) || 3375 !on_freelist(s, page, NULL)) 3376 return 0; 3377 3378 /* Now we know that a valid freelist exists */ 3379 bitmap_zero(map, page->objects); 3380 3381 for_each_free_object(p, s, page->freelist) { 3382 set_bit(slab_index(p, s, addr), map); 3383 if (!check_object(s, page, p, 0)) 3384 return 0; 3385 } 3386 3387 for_each_object(p, s, addr, page->objects) 3388 if (!test_bit(slab_index(p, s, addr), map)) 3389 if (!check_object(s, page, p, 1)) 3390 return 0; 3391 return 1; 3392 } 3393 3394 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3395 unsigned long *map) 3396 { 3397 if (slab_trylock(page)) { 3398 validate_slab(s, page, map); 3399 slab_unlock(page); 3400 } else 3401 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", 3402 s->name, page); 3403 3404 if (s->flags & DEBUG_DEFAULT_FLAGS) { 3405 if (!PageSlubDebug(page)) 3406 printk(KERN_ERR "SLUB %s: SlubDebug not set " 3407 "on slab 0x%p\n", s->name, page); 3408 } else { 3409 if (PageSlubDebug(page)) 3410 printk(KERN_ERR "SLUB %s: SlubDebug set on " 3411 "slab 0x%p\n", s->name, page); 3412 } 3413 } 3414 3415 static int validate_slab_node(struct kmem_cache *s, 3416 struct kmem_cache_node *n, unsigned long *map) 3417 { 3418 unsigned long count = 0; 3419 struct page *page; 3420 unsigned long flags; 3421 3422 spin_lock_irqsave(&n->list_lock, flags); 3423 3424 list_for_each_entry(page, &n->partial, lru) { 3425 validate_slab_slab(s, page, map); 3426 count++; 3427 } 3428 if (count != n->nr_partial) 3429 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3430 "counter=%ld\n", s->name, count, n->nr_partial); 3431 3432 if (!(s->flags & SLAB_STORE_USER)) 3433 goto out; 3434 3435 list_for_each_entry(page, &n->full, lru) { 3436 validate_slab_slab(s, page, map); 3437 count++; 3438 } 3439 if (count != atomic_long_read(&n->nr_slabs)) 3440 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3441 "counter=%ld\n", s->name, count, 3442 atomic_long_read(&n->nr_slabs)); 3443 3444 out: 3445 spin_unlock_irqrestore(&n->list_lock, flags); 3446 return count; 3447 } 3448 3449 static long validate_slab_cache(struct kmem_cache *s) 3450 { 3451 int node; 3452 unsigned long count = 0; 3453 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3454 sizeof(unsigned long), GFP_KERNEL); 3455 3456 if (!map) 3457 return -ENOMEM; 3458 3459 flush_all(s); 3460 for_each_node_state(node, N_NORMAL_MEMORY) { 3461 struct kmem_cache_node *n = get_node(s, node); 3462 3463 count += validate_slab_node(s, n, map); 3464 } 3465 kfree(map); 3466 return count; 3467 } 3468 3469 #ifdef SLUB_RESILIENCY_TEST 3470 static void resiliency_test(void) 3471 { 3472 u8 *p; 3473 3474 printk(KERN_ERR "SLUB resiliency testing\n"); 3475 printk(KERN_ERR "-----------------------\n"); 3476 printk(KERN_ERR "A. Corruption after allocation\n"); 3477 3478 p = kzalloc(16, GFP_KERNEL); 3479 p[16] = 0x12; 3480 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 3481 " 0x12->0x%p\n\n", p + 16); 3482 3483 validate_slab_cache(kmalloc_caches + 4); 3484 3485 /* Hmmm... The next two are dangerous */ 3486 p = kzalloc(32, GFP_KERNEL); 3487 p[32 + sizeof(void *)] = 0x34; 3488 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 3489 " 0x34 -> -0x%p\n", p); 3490 printk(KERN_ERR 3491 "If allocated object is overwritten then not detectable\n\n"); 3492 3493 validate_slab_cache(kmalloc_caches + 5); 3494 p = kzalloc(64, GFP_KERNEL); 3495 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 3496 *p = 0x56; 3497 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 3498 p); 3499 printk(KERN_ERR 3500 "If allocated object is overwritten then not detectable\n\n"); 3501 validate_slab_cache(kmalloc_caches + 6); 3502 3503 printk(KERN_ERR "\nB. Corruption after free\n"); 3504 p = kzalloc(128, GFP_KERNEL); 3505 kfree(p); 3506 *p = 0x78; 3507 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 3508 validate_slab_cache(kmalloc_caches + 7); 3509 3510 p = kzalloc(256, GFP_KERNEL); 3511 kfree(p); 3512 p[50] = 0x9a; 3513 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 3514 p); 3515 validate_slab_cache(kmalloc_caches + 8); 3516 3517 p = kzalloc(512, GFP_KERNEL); 3518 kfree(p); 3519 p[512] = 0xab; 3520 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 3521 validate_slab_cache(kmalloc_caches + 9); 3522 } 3523 #else 3524 static void resiliency_test(void) {}; 3525 #endif 3526 3527 /* 3528 * Generate lists of code addresses where slabcache objects are allocated 3529 * and freed. 3530 */ 3531 3532 struct location { 3533 unsigned long count; 3534 unsigned long addr; 3535 long long sum_time; 3536 long min_time; 3537 long max_time; 3538 long min_pid; 3539 long max_pid; 3540 DECLARE_BITMAP(cpus, NR_CPUS); 3541 nodemask_t nodes; 3542 }; 3543 3544 struct loc_track { 3545 unsigned long max; 3546 unsigned long count; 3547 struct location *loc; 3548 }; 3549 3550 static void free_loc_track(struct loc_track *t) 3551 { 3552 if (t->max) 3553 free_pages((unsigned long)t->loc, 3554 get_order(sizeof(struct location) * t->max)); 3555 } 3556 3557 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3558 { 3559 struct location *l; 3560 int order; 3561 3562 order = get_order(sizeof(struct location) * max); 3563 3564 l = (void *)__get_free_pages(flags, order); 3565 if (!l) 3566 return 0; 3567 3568 if (t->count) { 3569 memcpy(l, t->loc, sizeof(struct location) * t->count); 3570 free_loc_track(t); 3571 } 3572 t->max = max; 3573 t->loc = l; 3574 return 1; 3575 } 3576 3577 static int add_location(struct loc_track *t, struct kmem_cache *s, 3578 const struct track *track) 3579 { 3580 long start, end, pos; 3581 struct location *l; 3582 unsigned long caddr; 3583 unsigned long age = jiffies - track->when; 3584 3585 start = -1; 3586 end = t->count; 3587 3588 for ( ; ; ) { 3589 pos = start + (end - start + 1) / 2; 3590 3591 /* 3592 * There is nothing at "end". If we end up there 3593 * we need to add something to before end. 3594 */ 3595 if (pos == end) 3596 break; 3597 3598 caddr = t->loc[pos].addr; 3599 if (track->addr == caddr) { 3600 3601 l = &t->loc[pos]; 3602 l->count++; 3603 if (track->when) { 3604 l->sum_time += age; 3605 if (age < l->min_time) 3606 l->min_time = age; 3607 if (age > l->max_time) 3608 l->max_time = age; 3609 3610 if (track->pid < l->min_pid) 3611 l->min_pid = track->pid; 3612 if (track->pid > l->max_pid) 3613 l->max_pid = track->pid; 3614 3615 cpumask_set_cpu(track->cpu, 3616 to_cpumask(l->cpus)); 3617 } 3618 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3619 return 1; 3620 } 3621 3622 if (track->addr < caddr) 3623 end = pos; 3624 else 3625 start = pos; 3626 } 3627 3628 /* 3629 * Not found. Insert new tracking element. 3630 */ 3631 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3632 return 0; 3633 3634 l = t->loc + pos; 3635 if (pos < t->count) 3636 memmove(l + 1, l, 3637 (t->count - pos) * sizeof(struct location)); 3638 t->count++; 3639 l->count = 1; 3640 l->addr = track->addr; 3641 l->sum_time = age; 3642 l->min_time = age; 3643 l->max_time = age; 3644 l->min_pid = track->pid; 3645 l->max_pid = track->pid; 3646 cpumask_clear(to_cpumask(l->cpus)); 3647 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 3648 nodes_clear(l->nodes); 3649 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3650 return 1; 3651 } 3652 3653 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3654 struct page *page, enum track_item alloc) 3655 { 3656 void *addr = page_address(page); 3657 DECLARE_BITMAP(map, page->objects); 3658 void *p; 3659 3660 bitmap_zero(map, page->objects); 3661 for_each_free_object(p, s, page->freelist) 3662 set_bit(slab_index(p, s, addr), map); 3663 3664 for_each_object(p, s, addr, page->objects) 3665 if (!test_bit(slab_index(p, s, addr), map)) 3666 add_location(t, s, get_track(s, p, alloc)); 3667 } 3668 3669 static int list_locations(struct kmem_cache *s, char *buf, 3670 enum track_item alloc) 3671 { 3672 int len = 0; 3673 unsigned long i; 3674 struct loc_track t = { 0, 0, NULL }; 3675 int node; 3676 3677 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 3678 GFP_TEMPORARY)) 3679 return sprintf(buf, "Out of memory\n"); 3680 3681 /* Push back cpu slabs */ 3682 flush_all(s); 3683 3684 for_each_node_state(node, N_NORMAL_MEMORY) { 3685 struct kmem_cache_node *n = get_node(s, node); 3686 unsigned long flags; 3687 struct page *page; 3688 3689 if (!atomic_long_read(&n->nr_slabs)) 3690 continue; 3691 3692 spin_lock_irqsave(&n->list_lock, flags); 3693 list_for_each_entry(page, &n->partial, lru) 3694 process_slab(&t, s, page, alloc); 3695 list_for_each_entry(page, &n->full, lru) 3696 process_slab(&t, s, page, alloc); 3697 spin_unlock_irqrestore(&n->list_lock, flags); 3698 } 3699 3700 for (i = 0; i < t.count; i++) { 3701 struct location *l = &t.loc[i]; 3702 3703 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 3704 break; 3705 len += sprintf(buf + len, "%7ld ", l->count); 3706 3707 if (l->addr) 3708 len += sprint_symbol(buf + len, (unsigned long)l->addr); 3709 else 3710 len += sprintf(buf + len, "<not-available>"); 3711 3712 if (l->sum_time != l->min_time) { 3713 len += sprintf(buf + len, " age=%ld/%ld/%ld", 3714 l->min_time, 3715 (long)div_u64(l->sum_time, l->count), 3716 l->max_time); 3717 } else 3718 len += sprintf(buf + len, " age=%ld", 3719 l->min_time); 3720 3721 if (l->min_pid != l->max_pid) 3722 len += sprintf(buf + len, " pid=%ld-%ld", 3723 l->min_pid, l->max_pid); 3724 else 3725 len += sprintf(buf + len, " pid=%ld", 3726 l->min_pid); 3727 3728 if (num_online_cpus() > 1 && 3729 !cpumask_empty(to_cpumask(l->cpus)) && 3730 len < PAGE_SIZE - 60) { 3731 len += sprintf(buf + len, " cpus="); 3732 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3733 to_cpumask(l->cpus)); 3734 } 3735 3736 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 3737 len < PAGE_SIZE - 60) { 3738 len += sprintf(buf + len, " nodes="); 3739 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3740 l->nodes); 3741 } 3742 3743 len += sprintf(buf + len, "\n"); 3744 } 3745 3746 free_loc_track(&t); 3747 if (!t.count) 3748 len += sprintf(buf, "No data\n"); 3749 return len; 3750 } 3751 3752 enum slab_stat_type { 3753 SL_ALL, /* All slabs */ 3754 SL_PARTIAL, /* Only partially allocated slabs */ 3755 SL_CPU, /* Only slabs used for cpu caches */ 3756 SL_OBJECTS, /* Determine allocated objects not slabs */ 3757 SL_TOTAL /* Determine object capacity not slabs */ 3758 }; 3759 3760 #define SO_ALL (1 << SL_ALL) 3761 #define SO_PARTIAL (1 << SL_PARTIAL) 3762 #define SO_CPU (1 << SL_CPU) 3763 #define SO_OBJECTS (1 << SL_OBJECTS) 3764 #define SO_TOTAL (1 << SL_TOTAL) 3765 3766 static ssize_t show_slab_objects(struct kmem_cache *s, 3767 char *buf, unsigned long flags) 3768 { 3769 unsigned long total = 0; 3770 int node; 3771 int x; 3772 unsigned long *nodes; 3773 unsigned long *per_cpu; 3774 3775 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 3776 if (!nodes) 3777 return -ENOMEM; 3778 per_cpu = nodes + nr_node_ids; 3779 3780 if (flags & SO_CPU) { 3781 int cpu; 3782 3783 for_each_possible_cpu(cpu) { 3784 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3785 3786 if (!c || c->node < 0) 3787 continue; 3788 3789 if (c->page) { 3790 if (flags & SO_TOTAL) 3791 x = c->page->objects; 3792 else if (flags & SO_OBJECTS) 3793 x = c->page->inuse; 3794 else 3795 x = 1; 3796 3797 total += x; 3798 nodes[c->node] += x; 3799 } 3800 per_cpu[c->node]++; 3801 } 3802 } 3803 3804 if (flags & SO_ALL) { 3805 for_each_node_state(node, N_NORMAL_MEMORY) { 3806 struct kmem_cache_node *n = get_node(s, node); 3807 3808 if (flags & SO_TOTAL) 3809 x = atomic_long_read(&n->total_objects); 3810 else if (flags & SO_OBJECTS) 3811 x = atomic_long_read(&n->total_objects) - 3812 count_partial(n, count_free); 3813 3814 else 3815 x = atomic_long_read(&n->nr_slabs); 3816 total += x; 3817 nodes[node] += x; 3818 } 3819 3820 } else if (flags & SO_PARTIAL) { 3821 for_each_node_state(node, N_NORMAL_MEMORY) { 3822 struct kmem_cache_node *n = get_node(s, node); 3823 3824 if (flags & SO_TOTAL) 3825 x = count_partial(n, count_total); 3826 else if (flags & SO_OBJECTS) 3827 x = count_partial(n, count_inuse); 3828 else 3829 x = n->nr_partial; 3830 total += x; 3831 nodes[node] += x; 3832 } 3833 } 3834 x = sprintf(buf, "%lu", total); 3835 #ifdef CONFIG_NUMA 3836 for_each_node_state(node, N_NORMAL_MEMORY) 3837 if (nodes[node]) 3838 x += sprintf(buf + x, " N%d=%lu", 3839 node, nodes[node]); 3840 #endif 3841 kfree(nodes); 3842 return x + sprintf(buf + x, "\n"); 3843 } 3844 3845 static int any_slab_objects(struct kmem_cache *s) 3846 { 3847 int node; 3848 3849 for_each_online_node(node) { 3850 struct kmem_cache_node *n = get_node(s, node); 3851 3852 if (!n) 3853 continue; 3854 3855 if (atomic_long_read(&n->total_objects)) 3856 return 1; 3857 } 3858 return 0; 3859 } 3860 3861 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 3862 #define to_slab(n) container_of(n, struct kmem_cache, kobj); 3863 3864 struct slab_attribute { 3865 struct attribute attr; 3866 ssize_t (*show)(struct kmem_cache *s, char *buf); 3867 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 3868 }; 3869 3870 #define SLAB_ATTR_RO(_name) \ 3871 static struct slab_attribute _name##_attr = __ATTR_RO(_name) 3872 3873 #define SLAB_ATTR(_name) \ 3874 static struct slab_attribute _name##_attr = \ 3875 __ATTR(_name, 0644, _name##_show, _name##_store) 3876 3877 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 3878 { 3879 return sprintf(buf, "%d\n", s->size); 3880 } 3881 SLAB_ATTR_RO(slab_size); 3882 3883 static ssize_t align_show(struct kmem_cache *s, char *buf) 3884 { 3885 return sprintf(buf, "%d\n", s->align); 3886 } 3887 SLAB_ATTR_RO(align); 3888 3889 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 3890 { 3891 return sprintf(buf, "%d\n", s->objsize); 3892 } 3893 SLAB_ATTR_RO(object_size); 3894 3895 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 3896 { 3897 return sprintf(buf, "%d\n", oo_objects(s->oo)); 3898 } 3899 SLAB_ATTR_RO(objs_per_slab); 3900 3901 static ssize_t order_store(struct kmem_cache *s, 3902 const char *buf, size_t length) 3903 { 3904 unsigned long order; 3905 int err; 3906 3907 err = strict_strtoul(buf, 10, &order); 3908 if (err) 3909 return err; 3910 3911 if (order > slub_max_order || order < slub_min_order) 3912 return -EINVAL; 3913 3914 calculate_sizes(s, order); 3915 return length; 3916 } 3917 3918 static ssize_t order_show(struct kmem_cache *s, char *buf) 3919 { 3920 return sprintf(buf, "%d\n", oo_order(s->oo)); 3921 } 3922 SLAB_ATTR(order); 3923 3924 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 3925 { 3926 return sprintf(buf, "%lu\n", s->min_partial); 3927 } 3928 3929 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 3930 size_t length) 3931 { 3932 unsigned long min; 3933 int err; 3934 3935 err = strict_strtoul(buf, 10, &min); 3936 if (err) 3937 return err; 3938 3939 set_min_partial(s, min); 3940 return length; 3941 } 3942 SLAB_ATTR(min_partial); 3943 3944 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 3945 { 3946 if (s->ctor) { 3947 int n = sprint_symbol(buf, (unsigned long)s->ctor); 3948 3949 return n + sprintf(buf + n, "\n"); 3950 } 3951 return 0; 3952 } 3953 SLAB_ATTR_RO(ctor); 3954 3955 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 3956 { 3957 return sprintf(buf, "%d\n", s->refcount - 1); 3958 } 3959 SLAB_ATTR_RO(aliases); 3960 3961 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 3962 { 3963 return show_slab_objects(s, buf, SO_ALL); 3964 } 3965 SLAB_ATTR_RO(slabs); 3966 3967 static ssize_t partial_show(struct kmem_cache *s, char *buf) 3968 { 3969 return show_slab_objects(s, buf, SO_PARTIAL); 3970 } 3971 SLAB_ATTR_RO(partial); 3972 3973 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 3974 { 3975 return show_slab_objects(s, buf, SO_CPU); 3976 } 3977 SLAB_ATTR_RO(cpu_slabs); 3978 3979 static ssize_t objects_show(struct kmem_cache *s, char *buf) 3980 { 3981 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 3982 } 3983 SLAB_ATTR_RO(objects); 3984 3985 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 3986 { 3987 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 3988 } 3989 SLAB_ATTR_RO(objects_partial); 3990 3991 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 3992 { 3993 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 3994 } 3995 SLAB_ATTR_RO(total_objects); 3996 3997 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 3998 { 3999 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4000 } 4001 4002 static ssize_t sanity_checks_store(struct kmem_cache *s, 4003 const char *buf, size_t length) 4004 { 4005 s->flags &= ~SLAB_DEBUG_FREE; 4006 if (buf[0] == '1') 4007 s->flags |= SLAB_DEBUG_FREE; 4008 return length; 4009 } 4010 SLAB_ATTR(sanity_checks); 4011 4012 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4013 { 4014 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4015 } 4016 4017 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4018 size_t length) 4019 { 4020 s->flags &= ~SLAB_TRACE; 4021 if (buf[0] == '1') 4022 s->flags |= SLAB_TRACE; 4023 return length; 4024 } 4025 SLAB_ATTR(trace); 4026 4027 #ifdef CONFIG_FAILSLAB 4028 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4029 { 4030 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4031 } 4032 4033 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4034 size_t length) 4035 { 4036 s->flags &= ~SLAB_FAILSLAB; 4037 if (buf[0] == '1') 4038 s->flags |= SLAB_FAILSLAB; 4039 return length; 4040 } 4041 SLAB_ATTR(failslab); 4042 #endif 4043 4044 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4045 { 4046 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4047 } 4048 4049 static ssize_t reclaim_account_store(struct kmem_cache *s, 4050 const char *buf, size_t length) 4051 { 4052 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4053 if (buf[0] == '1') 4054 s->flags |= SLAB_RECLAIM_ACCOUNT; 4055 return length; 4056 } 4057 SLAB_ATTR(reclaim_account); 4058 4059 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4060 { 4061 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4062 } 4063 SLAB_ATTR_RO(hwcache_align); 4064 4065 #ifdef CONFIG_ZONE_DMA 4066 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4067 { 4068 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4069 } 4070 SLAB_ATTR_RO(cache_dma); 4071 #endif 4072 4073 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4074 { 4075 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4076 } 4077 SLAB_ATTR_RO(destroy_by_rcu); 4078 4079 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4080 { 4081 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4082 } 4083 4084 static ssize_t red_zone_store(struct kmem_cache *s, 4085 const char *buf, size_t length) 4086 { 4087 if (any_slab_objects(s)) 4088 return -EBUSY; 4089 4090 s->flags &= ~SLAB_RED_ZONE; 4091 if (buf[0] == '1') 4092 s->flags |= SLAB_RED_ZONE; 4093 calculate_sizes(s, -1); 4094 return length; 4095 } 4096 SLAB_ATTR(red_zone); 4097 4098 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4099 { 4100 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4101 } 4102 4103 static ssize_t poison_store(struct kmem_cache *s, 4104 const char *buf, size_t length) 4105 { 4106 if (any_slab_objects(s)) 4107 return -EBUSY; 4108 4109 s->flags &= ~SLAB_POISON; 4110 if (buf[0] == '1') 4111 s->flags |= SLAB_POISON; 4112 calculate_sizes(s, -1); 4113 return length; 4114 } 4115 SLAB_ATTR(poison); 4116 4117 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4118 { 4119 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4120 } 4121 4122 static ssize_t store_user_store(struct kmem_cache *s, 4123 const char *buf, size_t length) 4124 { 4125 if (any_slab_objects(s)) 4126 return -EBUSY; 4127 4128 s->flags &= ~SLAB_STORE_USER; 4129 if (buf[0] == '1') 4130 s->flags |= SLAB_STORE_USER; 4131 calculate_sizes(s, -1); 4132 return length; 4133 } 4134 SLAB_ATTR(store_user); 4135 4136 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4137 { 4138 return 0; 4139 } 4140 4141 static ssize_t validate_store(struct kmem_cache *s, 4142 const char *buf, size_t length) 4143 { 4144 int ret = -EINVAL; 4145 4146 if (buf[0] == '1') { 4147 ret = validate_slab_cache(s); 4148 if (ret >= 0) 4149 ret = length; 4150 } 4151 return ret; 4152 } 4153 SLAB_ATTR(validate); 4154 4155 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4156 { 4157 return 0; 4158 } 4159 4160 static ssize_t shrink_store(struct kmem_cache *s, 4161 const char *buf, size_t length) 4162 { 4163 if (buf[0] == '1') { 4164 int rc = kmem_cache_shrink(s); 4165 4166 if (rc) 4167 return rc; 4168 } else 4169 return -EINVAL; 4170 return length; 4171 } 4172 SLAB_ATTR(shrink); 4173 4174 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4175 { 4176 if (!(s->flags & SLAB_STORE_USER)) 4177 return -ENOSYS; 4178 return list_locations(s, buf, TRACK_ALLOC); 4179 } 4180 SLAB_ATTR_RO(alloc_calls); 4181 4182 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4183 { 4184 if (!(s->flags & SLAB_STORE_USER)) 4185 return -ENOSYS; 4186 return list_locations(s, buf, TRACK_FREE); 4187 } 4188 SLAB_ATTR_RO(free_calls); 4189 4190 #ifdef CONFIG_NUMA 4191 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4192 { 4193 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4194 } 4195 4196 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4197 const char *buf, size_t length) 4198 { 4199 unsigned long ratio; 4200 int err; 4201 4202 err = strict_strtoul(buf, 10, &ratio); 4203 if (err) 4204 return err; 4205 4206 if (ratio <= 100) 4207 s->remote_node_defrag_ratio = ratio * 10; 4208 4209 return length; 4210 } 4211 SLAB_ATTR(remote_node_defrag_ratio); 4212 #endif 4213 4214 #ifdef CONFIG_SLUB_STATS 4215 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4216 { 4217 unsigned long sum = 0; 4218 int cpu; 4219 int len; 4220 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4221 4222 if (!data) 4223 return -ENOMEM; 4224 4225 for_each_online_cpu(cpu) { 4226 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4227 4228 data[cpu] = x; 4229 sum += x; 4230 } 4231 4232 len = sprintf(buf, "%lu", sum); 4233 4234 #ifdef CONFIG_SMP 4235 for_each_online_cpu(cpu) { 4236 if (data[cpu] && len < PAGE_SIZE - 20) 4237 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4238 } 4239 #endif 4240 kfree(data); 4241 return len + sprintf(buf + len, "\n"); 4242 } 4243 4244 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4245 { 4246 int cpu; 4247 4248 for_each_online_cpu(cpu) 4249 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4250 } 4251 4252 #define STAT_ATTR(si, text) \ 4253 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4254 { \ 4255 return show_stat(s, buf, si); \ 4256 } \ 4257 static ssize_t text##_store(struct kmem_cache *s, \ 4258 const char *buf, size_t length) \ 4259 { \ 4260 if (buf[0] != '0') \ 4261 return -EINVAL; \ 4262 clear_stat(s, si); \ 4263 return length; \ 4264 } \ 4265 SLAB_ATTR(text); \ 4266 4267 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4268 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4269 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4270 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4271 STAT_ATTR(FREE_FROZEN, free_frozen); 4272 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4273 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4274 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4275 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4276 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4277 STAT_ATTR(FREE_SLAB, free_slab); 4278 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4279 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4280 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4281 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4282 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4283 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4284 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4285 #endif 4286 4287 static struct attribute *slab_attrs[] = { 4288 &slab_size_attr.attr, 4289 &object_size_attr.attr, 4290 &objs_per_slab_attr.attr, 4291 &order_attr.attr, 4292 &min_partial_attr.attr, 4293 &objects_attr.attr, 4294 &objects_partial_attr.attr, 4295 &total_objects_attr.attr, 4296 &slabs_attr.attr, 4297 &partial_attr.attr, 4298 &cpu_slabs_attr.attr, 4299 &ctor_attr.attr, 4300 &aliases_attr.attr, 4301 &align_attr.attr, 4302 &sanity_checks_attr.attr, 4303 &trace_attr.attr, 4304 &hwcache_align_attr.attr, 4305 &reclaim_account_attr.attr, 4306 &destroy_by_rcu_attr.attr, 4307 &red_zone_attr.attr, 4308 &poison_attr.attr, 4309 &store_user_attr.attr, 4310 &validate_attr.attr, 4311 &shrink_attr.attr, 4312 &alloc_calls_attr.attr, 4313 &free_calls_attr.attr, 4314 #ifdef CONFIG_ZONE_DMA 4315 &cache_dma_attr.attr, 4316 #endif 4317 #ifdef CONFIG_NUMA 4318 &remote_node_defrag_ratio_attr.attr, 4319 #endif 4320 #ifdef CONFIG_SLUB_STATS 4321 &alloc_fastpath_attr.attr, 4322 &alloc_slowpath_attr.attr, 4323 &free_fastpath_attr.attr, 4324 &free_slowpath_attr.attr, 4325 &free_frozen_attr.attr, 4326 &free_add_partial_attr.attr, 4327 &free_remove_partial_attr.attr, 4328 &alloc_from_partial_attr.attr, 4329 &alloc_slab_attr.attr, 4330 &alloc_refill_attr.attr, 4331 &free_slab_attr.attr, 4332 &cpuslab_flush_attr.attr, 4333 &deactivate_full_attr.attr, 4334 &deactivate_empty_attr.attr, 4335 &deactivate_to_head_attr.attr, 4336 &deactivate_to_tail_attr.attr, 4337 &deactivate_remote_frees_attr.attr, 4338 &order_fallback_attr.attr, 4339 #endif 4340 #ifdef CONFIG_FAILSLAB 4341 &failslab_attr.attr, 4342 #endif 4343 4344 NULL 4345 }; 4346 4347 static struct attribute_group slab_attr_group = { 4348 .attrs = slab_attrs, 4349 }; 4350 4351 static ssize_t slab_attr_show(struct kobject *kobj, 4352 struct attribute *attr, 4353 char *buf) 4354 { 4355 struct slab_attribute *attribute; 4356 struct kmem_cache *s; 4357 int err; 4358 4359 attribute = to_slab_attr(attr); 4360 s = to_slab(kobj); 4361 4362 if (!attribute->show) 4363 return -EIO; 4364 4365 err = attribute->show(s, buf); 4366 4367 return err; 4368 } 4369 4370 static ssize_t slab_attr_store(struct kobject *kobj, 4371 struct attribute *attr, 4372 const char *buf, size_t len) 4373 { 4374 struct slab_attribute *attribute; 4375 struct kmem_cache *s; 4376 int err; 4377 4378 attribute = to_slab_attr(attr); 4379 s = to_slab(kobj); 4380 4381 if (!attribute->store) 4382 return -EIO; 4383 4384 err = attribute->store(s, buf, len); 4385 4386 return err; 4387 } 4388 4389 static void kmem_cache_release(struct kobject *kobj) 4390 { 4391 struct kmem_cache *s = to_slab(kobj); 4392 4393 kfree(s); 4394 } 4395 4396 static const struct sysfs_ops slab_sysfs_ops = { 4397 .show = slab_attr_show, 4398 .store = slab_attr_store, 4399 }; 4400 4401 static struct kobj_type slab_ktype = { 4402 .sysfs_ops = &slab_sysfs_ops, 4403 .release = kmem_cache_release 4404 }; 4405 4406 static int uevent_filter(struct kset *kset, struct kobject *kobj) 4407 { 4408 struct kobj_type *ktype = get_ktype(kobj); 4409 4410 if (ktype == &slab_ktype) 4411 return 1; 4412 return 0; 4413 } 4414 4415 static const struct kset_uevent_ops slab_uevent_ops = { 4416 .filter = uevent_filter, 4417 }; 4418 4419 static struct kset *slab_kset; 4420 4421 #define ID_STR_LENGTH 64 4422 4423 /* Create a unique string id for a slab cache: 4424 * 4425 * Format :[flags-]size 4426 */ 4427 static char *create_unique_id(struct kmem_cache *s) 4428 { 4429 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 4430 char *p = name; 4431 4432 BUG_ON(!name); 4433 4434 *p++ = ':'; 4435 /* 4436 * First flags affecting slabcache operations. We will only 4437 * get here for aliasable slabs so we do not need to support 4438 * too many flags. The flags here must cover all flags that 4439 * are matched during merging to guarantee that the id is 4440 * unique. 4441 */ 4442 if (s->flags & SLAB_CACHE_DMA) 4443 *p++ = 'd'; 4444 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4445 *p++ = 'a'; 4446 if (s->flags & SLAB_DEBUG_FREE) 4447 *p++ = 'F'; 4448 if (!(s->flags & SLAB_NOTRACK)) 4449 *p++ = 't'; 4450 if (p != name + 1) 4451 *p++ = '-'; 4452 p += sprintf(p, "%07d", s->size); 4453 BUG_ON(p > name + ID_STR_LENGTH - 1); 4454 return name; 4455 } 4456 4457 static int sysfs_slab_add(struct kmem_cache *s) 4458 { 4459 int err; 4460 const char *name; 4461 int unmergeable; 4462 4463 if (slab_state < SYSFS) 4464 /* Defer until later */ 4465 return 0; 4466 4467 unmergeable = slab_unmergeable(s); 4468 if (unmergeable) { 4469 /* 4470 * Slabcache can never be merged so we can use the name proper. 4471 * This is typically the case for debug situations. In that 4472 * case we can catch duplicate names easily. 4473 */ 4474 sysfs_remove_link(&slab_kset->kobj, s->name); 4475 name = s->name; 4476 } else { 4477 /* 4478 * Create a unique name for the slab as a target 4479 * for the symlinks. 4480 */ 4481 name = create_unique_id(s); 4482 } 4483 4484 s->kobj.kset = slab_kset; 4485 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 4486 if (err) { 4487 kobject_put(&s->kobj); 4488 return err; 4489 } 4490 4491 err = sysfs_create_group(&s->kobj, &slab_attr_group); 4492 if (err) { 4493 kobject_del(&s->kobj); 4494 kobject_put(&s->kobj); 4495 return err; 4496 } 4497 kobject_uevent(&s->kobj, KOBJ_ADD); 4498 if (!unmergeable) { 4499 /* Setup first alias */ 4500 sysfs_slab_alias(s, s->name); 4501 kfree(name); 4502 } 4503 return 0; 4504 } 4505 4506 static void sysfs_slab_remove(struct kmem_cache *s) 4507 { 4508 kobject_uevent(&s->kobj, KOBJ_REMOVE); 4509 kobject_del(&s->kobj); 4510 kobject_put(&s->kobj); 4511 } 4512 4513 /* 4514 * Need to buffer aliases during bootup until sysfs becomes 4515 * available lest we lose that information. 4516 */ 4517 struct saved_alias { 4518 struct kmem_cache *s; 4519 const char *name; 4520 struct saved_alias *next; 4521 }; 4522 4523 static struct saved_alias *alias_list; 4524 4525 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 4526 { 4527 struct saved_alias *al; 4528 4529 if (slab_state == SYSFS) { 4530 /* 4531 * If we have a leftover link then remove it. 4532 */ 4533 sysfs_remove_link(&slab_kset->kobj, name); 4534 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 4535 } 4536 4537 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 4538 if (!al) 4539 return -ENOMEM; 4540 4541 al->s = s; 4542 al->name = name; 4543 al->next = alias_list; 4544 alias_list = al; 4545 return 0; 4546 } 4547 4548 static int __init slab_sysfs_init(void) 4549 { 4550 struct kmem_cache *s; 4551 int err; 4552 4553 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 4554 if (!slab_kset) { 4555 printk(KERN_ERR "Cannot register slab subsystem.\n"); 4556 return -ENOSYS; 4557 } 4558 4559 slab_state = SYSFS; 4560 4561 list_for_each_entry(s, &slab_caches, list) { 4562 err = sysfs_slab_add(s); 4563 if (err) 4564 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 4565 " to sysfs\n", s->name); 4566 } 4567 4568 while (alias_list) { 4569 struct saved_alias *al = alias_list; 4570 4571 alias_list = alias_list->next; 4572 err = sysfs_slab_alias(al->s, al->name); 4573 if (err) 4574 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 4575 " %s to sysfs\n", s->name); 4576 kfree(al); 4577 } 4578 4579 resiliency_test(); 4580 return 0; 4581 } 4582 4583 __initcall(slab_sysfs_init); 4584 #endif 4585 4586 /* 4587 * The /proc/slabinfo ABI 4588 */ 4589 #ifdef CONFIG_SLABINFO 4590 static void print_slabinfo_header(struct seq_file *m) 4591 { 4592 seq_puts(m, "slabinfo - version: 2.1\n"); 4593 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4594 "<objperslab> <pagesperslab>"); 4595 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4596 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4597 seq_putc(m, '\n'); 4598 } 4599 4600 static void *s_start(struct seq_file *m, loff_t *pos) 4601 { 4602 loff_t n = *pos; 4603 4604 down_read(&slub_lock); 4605 if (!n) 4606 print_slabinfo_header(m); 4607 4608 return seq_list_start(&slab_caches, *pos); 4609 } 4610 4611 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4612 { 4613 return seq_list_next(p, &slab_caches, pos); 4614 } 4615 4616 static void s_stop(struct seq_file *m, void *p) 4617 { 4618 up_read(&slub_lock); 4619 } 4620 4621 static int s_show(struct seq_file *m, void *p) 4622 { 4623 unsigned long nr_partials = 0; 4624 unsigned long nr_slabs = 0; 4625 unsigned long nr_inuse = 0; 4626 unsigned long nr_objs = 0; 4627 unsigned long nr_free = 0; 4628 struct kmem_cache *s; 4629 int node; 4630 4631 s = list_entry(p, struct kmem_cache, list); 4632 4633 for_each_online_node(node) { 4634 struct kmem_cache_node *n = get_node(s, node); 4635 4636 if (!n) 4637 continue; 4638 4639 nr_partials += n->nr_partial; 4640 nr_slabs += atomic_long_read(&n->nr_slabs); 4641 nr_objs += atomic_long_read(&n->total_objects); 4642 nr_free += count_partial(n, count_free); 4643 } 4644 4645 nr_inuse = nr_objs - nr_free; 4646 4647 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 4648 nr_objs, s->size, oo_objects(s->oo), 4649 (1 << oo_order(s->oo))); 4650 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 4651 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 4652 0UL); 4653 seq_putc(m, '\n'); 4654 return 0; 4655 } 4656 4657 static const struct seq_operations slabinfo_op = { 4658 .start = s_start, 4659 .next = s_next, 4660 .stop = s_stop, 4661 .show = s_show, 4662 }; 4663 4664 static int slabinfo_open(struct inode *inode, struct file *file) 4665 { 4666 return seq_open(file, &slabinfo_op); 4667 } 4668 4669 static const struct file_operations proc_slabinfo_operations = { 4670 .open = slabinfo_open, 4671 .read = seq_read, 4672 .llseek = seq_lseek, 4673 .release = seq_release, 4674 }; 4675 4676 static int __init slab_proc_init(void) 4677 { 4678 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations); 4679 return 0; 4680 } 4681 module_init(slab_proc_init); 4682 #endif /* CONFIG_SLABINFO */ 4683