xref: /openbmc/linux/mm/slub.c (revision 9cfc5c90)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects the second
55  *   double word in the page struct. Meaning
56  *	A. page->freelist	-> List of object free in a page
57  *	B. page->counters	-> Counters of objects
58  *	C. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list. The processor that froze the slab is the one who can
62  *   perform list operations on the page. Other processors may put objects
63  *   onto the freelist but the processor that froze the slab is the only
64  *   one that can retrieve the objects from the page's freelist.
65  *
66  *   The list_lock protects the partial and full list on each node and
67  *   the partial slab counter. If taken then no new slabs may be added or
68  *   removed from the lists nor make the number of partial slabs be modified.
69  *   (Note that the total number of slabs is an atomic value that may be
70  *   modified without taking the list lock).
71  *
72  *   The list_lock is a centralized lock and thus we avoid taking it as
73  *   much as possible. As long as SLUB does not have to handle partial
74  *   slabs, operations can continue without any centralized lock. F.e.
75  *   allocating a long series of objects that fill up slabs does not require
76  *   the list lock.
77  *   Interrupts are disabled during allocation and deallocation in order to
78  *   make the slab allocator safe to use in the context of an irq. In addition
79  *   interrupts are disabled to ensure that the processor does not change
80  *   while handling per_cpu slabs, due to kernel preemption.
81  *
82  * SLUB assigns one slab for allocation to each processor.
83  * Allocations only occur from these slabs called cpu slabs.
84  *
85  * Slabs with free elements are kept on a partial list and during regular
86  * operations no list for full slabs is used. If an object in a full slab is
87  * freed then the slab will show up again on the partial lists.
88  * We track full slabs for debugging purposes though because otherwise we
89  * cannot scan all objects.
90  *
91  * Slabs are freed when they become empty. Teardown and setup is
92  * minimal so we rely on the page allocators per cpu caches for
93  * fast frees and allocs.
94  *
95  * Overloading of page flags that are otherwise used for LRU management.
96  *
97  * PageActive 		The slab is frozen and exempt from list processing.
98  * 			This means that the slab is dedicated to a purpose
99  * 			such as satisfying allocations for a specific
100  * 			processor. Objects may be freed in the slab while
101  * 			it is frozen but slab_free will then skip the usual
102  * 			list operations. It is up to the processor holding
103  * 			the slab to integrate the slab into the slab lists
104  * 			when the slab is no longer needed.
105  *
106  * 			One use of this flag is to mark slabs that are
107  * 			used for allocations. Then such a slab becomes a cpu
108  * 			slab. The cpu slab may be equipped with an additional
109  * 			freelist that allows lockless access to
110  * 			free objects in addition to the regular freelist
111  * 			that requires the slab lock.
112  *
113  * PageError		Slab requires special handling due to debug
114  * 			options set. This moves	slab handling out of
115  * 			the fast path and disables lockless freelists.
116  */
117 
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 	return 0;
124 #endif
125 }
126 
127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128 {
129 #ifdef CONFIG_SLUB_CPU_PARTIAL
130 	return !kmem_cache_debug(s);
131 #else
132 	return false;
133 #endif
134 }
135 
136 /*
137  * Issues still to be resolved:
138  *
139  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140  *
141  * - Variable sizing of the per node arrays
142  */
143 
144 /* Enable to test recovery from slab corruption on boot */
145 #undef SLUB_RESILIENCY_TEST
146 
147 /* Enable to log cmpxchg failures */
148 #undef SLUB_DEBUG_CMPXCHG
149 
150 /*
151  * Mininum number of partial slabs. These will be left on the partial
152  * lists even if they are empty. kmem_cache_shrink may reclaim them.
153  */
154 #define MIN_PARTIAL 5
155 
156 /*
157  * Maximum number of desirable partial slabs.
158  * The existence of more partial slabs makes kmem_cache_shrink
159  * sort the partial list by the number of objects in use.
160  */
161 #define MAX_PARTIAL 10
162 
163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 				SLAB_POISON | SLAB_STORE_USER)
165 
166 /*
167  * Debugging flags that require metadata to be stored in the slab.  These get
168  * disabled when slub_debug=O is used and a cache's min order increases with
169  * metadata.
170  */
171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172 
173 #define OO_SHIFT	16
174 #define OO_MASK		((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
176 
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON		0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
180 
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184 
185 /*
186  * Tracking user of a slab.
187  */
188 #define TRACK_ADDRS_COUNT 16
189 struct track {
190 	unsigned long addr;	/* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
193 #endif
194 	int cpu;		/* Was running on cpu */
195 	int pid;		/* Pid context */
196 	unsigned long when;	/* When did the operation occur */
197 };
198 
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200 
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 							{ return 0; }
209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
210 #endif
211 
212 static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 {
214 #ifdef CONFIG_SLUB_STATS
215 	/*
216 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 	 * avoid this_cpu_add()'s irq-disable overhead.
218 	 */
219 	raw_cpu_inc(s->cpu_slab->stat[si]);
220 #endif
221 }
222 
223 /********************************************************************
224  * 			Core slab cache functions
225  *******************************************************************/
226 
227 /* Verify that a pointer has an address that is valid within a slab page */
228 static inline int check_valid_pointer(struct kmem_cache *s,
229 				struct page *page, const void *object)
230 {
231 	void *base;
232 
233 	if (!object)
234 		return 1;
235 
236 	base = page_address(page);
237 	if (object < base || object >= base + page->objects * s->size ||
238 		(object - base) % s->size) {
239 		return 0;
240 	}
241 
242 	return 1;
243 }
244 
245 static inline void *get_freepointer(struct kmem_cache *s, void *object)
246 {
247 	return *(void **)(object + s->offset);
248 }
249 
250 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251 {
252 	prefetch(object + s->offset);
253 }
254 
255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256 {
257 	void *p;
258 
259 #ifdef CONFIG_DEBUG_PAGEALLOC
260 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261 #else
262 	p = get_freepointer(s, object);
263 #endif
264 	return p;
265 }
266 
267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268 {
269 	*(void **)(object + s->offset) = fp;
270 }
271 
272 /* Loop over all objects in a slab */
273 #define for_each_object(__p, __s, __addr, __objects) \
274 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 			__p += (__s)->size)
276 
277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 	for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 			__p += (__s)->size, __idx++)
280 
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283 {
284 	return (p - addr) / s->size;
285 }
286 
287 static inline size_t slab_ksize(const struct kmem_cache *s)
288 {
289 #ifdef CONFIG_SLUB_DEBUG
290 	/*
291 	 * Debugging requires use of the padding between object
292 	 * and whatever may come after it.
293 	 */
294 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295 		return s->object_size;
296 
297 #endif
298 	/*
299 	 * If we have the need to store the freelist pointer
300 	 * back there or track user information then we can
301 	 * only use the space before that information.
302 	 */
303 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 		return s->inuse;
305 	/*
306 	 * Else we can use all the padding etc for the allocation
307 	 */
308 	return s->size;
309 }
310 
311 static inline int order_objects(int order, unsigned long size, int reserved)
312 {
313 	return ((PAGE_SIZE << order) - reserved) / size;
314 }
315 
316 static inline struct kmem_cache_order_objects oo_make(int order,
317 		unsigned long size, int reserved)
318 {
319 	struct kmem_cache_order_objects x = {
320 		(order << OO_SHIFT) + order_objects(order, size, reserved)
321 	};
322 
323 	return x;
324 }
325 
326 static inline int oo_order(struct kmem_cache_order_objects x)
327 {
328 	return x.x >> OO_SHIFT;
329 }
330 
331 static inline int oo_objects(struct kmem_cache_order_objects x)
332 {
333 	return x.x & OO_MASK;
334 }
335 
336 /*
337  * Per slab locking using the pagelock
338  */
339 static __always_inline void slab_lock(struct page *page)
340 {
341 	bit_spin_lock(PG_locked, &page->flags);
342 }
343 
344 static __always_inline void slab_unlock(struct page *page)
345 {
346 	__bit_spin_unlock(PG_locked, &page->flags);
347 }
348 
349 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350 {
351 	struct page tmp;
352 	tmp.counters = counters_new;
353 	/*
354 	 * page->counters can cover frozen/inuse/objects as well
355 	 * as page->_count.  If we assign to ->counters directly
356 	 * we run the risk of losing updates to page->_count, so
357 	 * be careful and only assign to the fields we need.
358 	 */
359 	page->frozen  = tmp.frozen;
360 	page->inuse   = tmp.inuse;
361 	page->objects = tmp.objects;
362 }
363 
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 		void *freelist_old, unsigned long counters_old,
367 		void *freelist_new, unsigned long counters_new,
368 		const char *n)
369 {
370 	VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 	if (s->flags & __CMPXCHG_DOUBLE) {
374 		if (cmpxchg_double(&page->freelist, &page->counters,
375 				   freelist_old, counters_old,
376 				   freelist_new, counters_new))
377 			return true;
378 	} else
379 #endif
380 	{
381 		slab_lock(page);
382 		if (page->freelist == freelist_old &&
383 					page->counters == counters_old) {
384 			page->freelist = freelist_new;
385 			set_page_slub_counters(page, counters_new);
386 			slab_unlock(page);
387 			return true;
388 		}
389 		slab_unlock(page);
390 	}
391 
392 	cpu_relax();
393 	stat(s, CMPXCHG_DOUBLE_FAIL);
394 
395 #ifdef SLUB_DEBUG_CMPXCHG
396 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398 
399 	return false;
400 }
401 
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 		void *freelist_old, unsigned long counters_old,
404 		void *freelist_new, unsigned long counters_new,
405 		const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 	if (s->flags & __CMPXCHG_DOUBLE) {
410 		if (cmpxchg_double(&page->freelist, &page->counters,
411 				   freelist_old, counters_old,
412 				   freelist_new, counters_new))
413 			return true;
414 	} else
415 #endif
416 	{
417 		unsigned long flags;
418 
419 		local_irq_save(flags);
420 		slab_lock(page);
421 		if (page->freelist == freelist_old &&
422 					page->counters == counters_old) {
423 			page->freelist = freelist_new;
424 			set_page_slub_counters(page, counters_new);
425 			slab_unlock(page);
426 			local_irq_restore(flags);
427 			return true;
428 		}
429 		slab_unlock(page);
430 		local_irq_restore(flags);
431 	}
432 
433 	cpu_relax();
434 	stat(s, CMPXCHG_DOUBLE_FAIL);
435 
436 #ifdef SLUB_DEBUG_CMPXCHG
437 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439 
440 	return false;
441 }
442 
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445  * Determine a map of object in use on a page.
446  *
447  * Node listlock must be held to guarantee that the page does
448  * not vanish from under us.
449  */
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 	void *p;
453 	void *addr = page_address(page);
454 
455 	for (p = page->freelist; p; p = get_freepointer(s, p))
456 		set_bit(slab_index(p, s, addr), map);
457 }
458 
459 /*
460  * Debug settings:
461  */
462 #if defined(CONFIG_SLUB_DEBUG_ON)
463 static int slub_debug = DEBUG_DEFAULT_FLAGS;
464 #elif defined(CONFIG_KASAN)
465 static int slub_debug = SLAB_STORE_USER;
466 #else
467 static int slub_debug;
468 #endif
469 
470 static char *slub_debug_slabs;
471 static int disable_higher_order_debug;
472 
473 /*
474  * slub is about to manipulate internal object metadata.  This memory lies
475  * outside the range of the allocated object, so accessing it would normally
476  * be reported by kasan as a bounds error.  metadata_access_enable() is used
477  * to tell kasan that these accesses are OK.
478  */
479 static inline void metadata_access_enable(void)
480 {
481 	kasan_disable_current();
482 }
483 
484 static inline void metadata_access_disable(void)
485 {
486 	kasan_enable_current();
487 }
488 
489 /*
490  * Object debugging
491  */
492 static void print_section(char *text, u8 *addr, unsigned int length)
493 {
494 	metadata_access_enable();
495 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
496 			length, 1);
497 	metadata_access_disable();
498 }
499 
500 static struct track *get_track(struct kmem_cache *s, void *object,
501 	enum track_item alloc)
502 {
503 	struct track *p;
504 
505 	if (s->offset)
506 		p = object + s->offset + sizeof(void *);
507 	else
508 		p = object + s->inuse;
509 
510 	return p + alloc;
511 }
512 
513 static void set_track(struct kmem_cache *s, void *object,
514 			enum track_item alloc, unsigned long addr)
515 {
516 	struct track *p = get_track(s, object, alloc);
517 
518 	if (addr) {
519 #ifdef CONFIG_STACKTRACE
520 		struct stack_trace trace;
521 		int i;
522 
523 		trace.nr_entries = 0;
524 		trace.max_entries = TRACK_ADDRS_COUNT;
525 		trace.entries = p->addrs;
526 		trace.skip = 3;
527 		metadata_access_enable();
528 		save_stack_trace(&trace);
529 		metadata_access_disable();
530 
531 		/* See rant in lockdep.c */
532 		if (trace.nr_entries != 0 &&
533 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
534 			trace.nr_entries--;
535 
536 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
537 			p->addrs[i] = 0;
538 #endif
539 		p->addr = addr;
540 		p->cpu = smp_processor_id();
541 		p->pid = current->pid;
542 		p->when = jiffies;
543 	} else
544 		memset(p, 0, sizeof(struct track));
545 }
546 
547 static void init_tracking(struct kmem_cache *s, void *object)
548 {
549 	if (!(s->flags & SLAB_STORE_USER))
550 		return;
551 
552 	set_track(s, object, TRACK_FREE, 0UL);
553 	set_track(s, object, TRACK_ALLOC, 0UL);
554 }
555 
556 static void print_track(const char *s, struct track *t)
557 {
558 	if (!t->addr)
559 		return;
560 
561 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
562 	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
563 #ifdef CONFIG_STACKTRACE
564 	{
565 		int i;
566 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
567 			if (t->addrs[i])
568 				pr_err("\t%pS\n", (void *)t->addrs[i]);
569 			else
570 				break;
571 	}
572 #endif
573 }
574 
575 static void print_tracking(struct kmem_cache *s, void *object)
576 {
577 	if (!(s->flags & SLAB_STORE_USER))
578 		return;
579 
580 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
581 	print_track("Freed", get_track(s, object, TRACK_FREE));
582 }
583 
584 static void print_page_info(struct page *page)
585 {
586 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
587 	       page, page->objects, page->inuse, page->freelist, page->flags);
588 
589 }
590 
591 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
592 {
593 	struct va_format vaf;
594 	va_list args;
595 
596 	va_start(args, fmt);
597 	vaf.fmt = fmt;
598 	vaf.va = &args;
599 	pr_err("=============================================================================\n");
600 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
601 	pr_err("-----------------------------------------------------------------------------\n\n");
602 
603 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
604 	va_end(args);
605 }
606 
607 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
608 {
609 	struct va_format vaf;
610 	va_list args;
611 
612 	va_start(args, fmt);
613 	vaf.fmt = fmt;
614 	vaf.va = &args;
615 	pr_err("FIX %s: %pV\n", s->name, &vaf);
616 	va_end(args);
617 }
618 
619 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
620 {
621 	unsigned int off;	/* Offset of last byte */
622 	u8 *addr = page_address(page);
623 
624 	print_tracking(s, p);
625 
626 	print_page_info(page);
627 
628 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
629 	       p, p - addr, get_freepointer(s, p));
630 
631 	if (p > addr + 16)
632 		print_section("Bytes b4 ", p - 16, 16);
633 
634 	print_section("Object ", p, min_t(unsigned long, s->object_size,
635 				PAGE_SIZE));
636 	if (s->flags & SLAB_RED_ZONE)
637 		print_section("Redzone ", p + s->object_size,
638 			s->inuse - s->object_size);
639 
640 	if (s->offset)
641 		off = s->offset + sizeof(void *);
642 	else
643 		off = s->inuse;
644 
645 	if (s->flags & SLAB_STORE_USER)
646 		off += 2 * sizeof(struct track);
647 
648 	if (off != s->size)
649 		/* Beginning of the filler is the free pointer */
650 		print_section("Padding ", p + off, s->size - off);
651 
652 	dump_stack();
653 }
654 
655 void object_err(struct kmem_cache *s, struct page *page,
656 			u8 *object, char *reason)
657 {
658 	slab_bug(s, "%s", reason);
659 	print_trailer(s, page, object);
660 }
661 
662 static void slab_err(struct kmem_cache *s, struct page *page,
663 			const char *fmt, ...)
664 {
665 	va_list args;
666 	char buf[100];
667 
668 	va_start(args, fmt);
669 	vsnprintf(buf, sizeof(buf), fmt, args);
670 	va_end(args);
671 	slab_bug(s, "%s", buf);
672 	print_page_info(page);
673 	dump_stack();
674 }
675 
676 static void init_object(struct kmem_cache *s, void *object, u8 val)
677 {
678 	u8 *p = object;
679 
680 	if (s->flags & __OBJECT_POISON) {
681 		memset(p, POISON_FREE, s->object_size - 1);
682 		p[s->object_size - 1] = POISON_END;
683 	}
684 
685 	if (s->flags & SLAB_RED_ZONE)
686 		memset(p + s->object_size, val, s->inuse - s->object_size);
687 }
688 
689 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
690 						void *from, void *to)
691 {
692 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
693 	memset(from, data, to - from);
694 }
695 
696 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
697 			u8 *object, char *what,
698 			u8 *start, unsigned int value, unsigned int bytes)
699 {
700 	u8 *fault;
701 	u8 *end;
702 
703 	metadata_access_enable();
704 	fault = memchr_inv(start, value, bytes);
705 	metadata_access_disable();
706 	if (!fault)
707 		return 1;
708 
709 	end = start + bytes;
710 	while (end > fault && end[-1] == value)
711 		end--;
712 
713 	slab_bug(s, "%s overwritten", what);
714 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
715 					fault, end - 1, fault[0], value);
716 	print_trailer(s, page, object);
717 
718 	restore_bytes(s, what, value, fault, end);
719 	return 0;
720 }
721 
722 /*
723  * Object layout:
724  *
725  * object address
726  * 	Bytes of the object to be managed.
727  * 	If the freepointer may overlay the object then the free
728  * 	pointer is the first word of the object.
729  *
730  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
731  * 	0xa5 (POISON_END)
732  *
733  * object + s->object_size
734  * 	Padding to reach word boundary. This is also used for Redzoning.
735  * 	Padding is extended by another word if Redzoning is enabled and
736  * 	object_size == inuse.
737  *
738  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
739  * 	0xcc (RED_ACTIVE) for objects in use.
740  *
741  * object + s->inuse
742  * 	Meta data starts here.
743  *
744  * 	A. Free pointer (if we cannot overwrite object on free)
745  * 	B. Tracking data for SLAB_STORE_USER
746  * 	C. Padding to reach required alignment boundary or at mininum
747  * 		one word if debugging is on to be able to detect writes
748  * 		before the word boundary.
749  *
750  *	Padding is done using 0x5a (POISON_INUSE)
751  *
752  * object + s->size
753  * 	Nothing is used beyond s->size.
754  *
755  * If slabcaches are merged then the object_size and inuse boundaries are mostly
756  * ignored. And therefore no slab options that rely on these boundaries
757  * may be used with merged slabcaches.
758  */
759 
760 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
761 {
762 	unsigned long off = s->inuse;	/* The end of info */
763 
764 	if (s->offset)
765 		/* Freepointer is placed after the object. */
766 		off += sizeof(void *);
767 
768 	if (s->flags & SLAB_STORE_USER)
769 		/* We also have user information there */
770 		off += 2 * sizeof(struct track);
771 
772 	if (s->size == off)
773 		return 1;
774 
775 	return check_bytes_and_report(s, page, p, "Object padding",
776 				p + off, POISON_INUSE, s->size - off);
777 }
778 
779 /* Check the pad bytes at the end of a slab page */
780 static int slab_pad_check(struct kmem_cache *s, struct page *page)
781 {
782 	u8 *start;
783 	u8 *fault;
784 	u8 *end;
785 	int length;
786 	int remainder;
787 
788 	if (!(s->flags & SLAB_POISON))
789 		return 1;
790 
791 	start = page_address(page);
792 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
793 	end = start + length;
794 	remainder = length % s->size;
795 	if (!remainder)
796 		return 1;
797 
798 	metadata_access_enable();
799 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
800 	metadata_access_disable();
801 	if (!fault)
802 		return 1;
803 	while (end > fault && end[-1] == POISON_INUSE)
804 		end--;
805 
806 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
807 	print_section("Padding ", end - remainder, remainder);
808 
809 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
810 	return 0;
811 }
812 
813 static int check_object(struct kmem_cache *s, struct page *page,
814 					void *object, u8 val)
815 {
816 	u8 *p = object;
817 	u8 *endobject = object + s->object_size;
818 
819 	if (s->flags & SLAB_RED_ZONE) {
820 		if (!check_bytes_and_report(s, page, object, "Redzone",
821 			endobject, val, s->inuse - s->object_size))
822 			return 0;
823 	} else {
824 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
825 			check_bytes_and_report(s, page, p, "Alignment padding",
826 				endobject, POISON_INUSE,
827 				s->inuse - s->object_size);
828 		}
829 	}
830 
831 	if (s->flags & SLAB_POISON) {
832 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
833 			(!check_bytes_and_report(s, page, p, "Poison", p,
834 					POISON_FREE, s->object_size - 1) ||
835 			 !check_bytes_and_report(s, page, p, "Poison",
836 				p + s->object_size - 1, POISON_END, 1)))
837 			return 0;
838 		/*
839 		 * check_pad_bytes cleans up on its own.
840 		 */
841 		check_pad_bytes(s, page, p);
842 	}
843 
844 	if (!s->offset && val == SLUB_RED_ACTIVE)
845 		/*
846 		 * Object and freepointer overlap. Cannot check
847 		 * freepointer while object is allocated.
848 		 */
849 		return 1;
850 
851 	/* Check free pointer validity */
852 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
853 		object_err(s, page, p, "Freepointer corrupt");
854 		/*
855 		 * No choice but to zap it and thus lose the remainder
856 		 * of the free objects in this slab. May cause
857 		 * another error because the object count is now wrong.
858 		 */
859 		set_freepointer(s, p, NULL);
860 		return 0;
861 	}
862 	return 1;
863 }
864 
865 static int check_slab(struct kmem_cache *s, struct page *page)
866 {
867 	int maxobj;
868 
869 	VM_BUG_ON(!irqs_disabled());
870 
871 	if (!PageSlab(page)) {
872 		slab_err(s, page, "Not a valid slab page");
873 		return 0;
874 	}
875 
876 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
877 	if (page->objects > maxobj) {
878 		slab_err(s, page, "objects %u > max %u",
879 			page->objects, maxobj);
880 		return 0;
881 	}
882 	if (page->inuse > page->objects) {
883 		slab_err(s, page, "inuse %u > max %u",
884 			page->inuse, page->objects);
885 		return 0;
886 	}
887 	/* Slab_pad_check fixes things up after itself */
888 	slab_pad_check(s, page);
889 	return 1;
890 }
891 
892 /*
893  * Determine if a certain object on a page is on the freelist. Must hold the
894  * slab lock to guarantee that the chains are in a consistent state.
895  */
896 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
897 {
898 	int nr = 0;
899 	void *fp;
900 	void *object = NULL;
901 	int max_objects;
902 
903 	fp = page->freelist;
904 	while (fp && nr <= page->objects) {
905 		if (fp == search)
906 			return 1;
907 		if (!check_valid_pointer(s, page, fp)) {
908 			if (object) {
909 				object_err(s, page, object,
910 					"Freechain corrupt");
911 				set_freepointer(s, object, NULL);
912 			} else {
913 				slab_err(s, page, "Freepointer corrupt");
914 				page->freelist = NULL;
915 				page->inuse = page->objects;
916 				slab_fix(s, "Freelist cleared");
917 				return 0;
918 			}
919 			break;
920 		}
921 		object = fp;
922 		fp = get_freepointer(s, object);
923 		nr++;
924 	}
925 
926 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
927 	if (max_objects > MAX_OBJS_PER_PAGE)
928 		max_objects = MAX_OBJS_PER_PAGE;
929 
930 	if (page->objects != max_objects) {
931 		slab_err(s, page, "Wrong number of objects. Found %d but "
932 			"should be %d", page->objects, max_objects);
933 		page->objects = max_objects;
934 		slab_fix(s, "Number of objects adjusted.");
935 	}
936 	if (page->inuse != page->objects - nr) {
937 		slab_err(s, page, "Wrong object count. Counter is %d but "
938 			"counted were %d", page->inuse, page->objects - nr);
939 		page->inuse = page->objects - nr;
940 		slab_fix(s, "Object count adjusted.");
941 	}
942 	return search == NULL;
943 }
944 
945 static void trace(struct kmem_cache *s, struct page *page, void *object,
946 								int alloc)
947 {
948 	if (s->flags & SLAB_TRACE) {
949 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
950 			s->name,
951 			alloc ? "alloc" : "free",
952 			object, page->inuse,
953 			page->freelist);
954 
955 		if (!alloc)
956 			print_section("Object ", (void *)object,
957 					s->object_size);
958 
959 		dump_stack();
960 	}
961 }
962 
963 /*
964  * Tracking of fully allocated slabs for debugging purposes.
965  */
966 static void add_full(struct kmem_cache *s,
967 	struct kmem_cache_node *n, struct page *page)
968 {
969 	if (!(s->flags & SLAB_STORE_USER))
970 		return;
971 
972 	lockdep_assert_held(&n->list_lock);
973 	list_add(&page->lru, &n->full);
974 }
975 
976 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
977 {
978 	if (!(s->flags & SLAB_STORE_USER))
979 		return;
980 
981 	lockdep_assert_held(&n->list_lock);
982 	list_del(&page->lru);
983 }
984 
985 /* Tracking of the number of slabs for debugging purposes */
986 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
987 {
988 	struct kmem_cache_node *n = get_node(s, node);
989 
990 	return atomic_long_read(&n->nr_slabs);
991 }
992 
993 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
994 {
995 	return atomic_long_read(&n->nr_slabs);
996 }
997 
998 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
999 {
1000 	struct kmem_cache_node *n = get_node(s, node);
1001 
1002 	/*
1003 	 * May be called early in order to allocate a slab for the
1004 	 * kmem_cache_node structure. Solve the chicken-egg
1005 	 * dilemma by deferring the increment of the count during
1006 	 * bootstrap (see early_kmem_cache_node_alloc).
1007 	 */
1008 	if (likely(n)) {
1009 		atomic_long_inc(&n->nr_slabs);
1010 		atomic_long_add(objects, &n->total_objects);
1011 	}
1012 }
1013 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1014 {
1015 	struct kmem_cache_node *n = get_node(s, node);
1016 
1017 	atomic_long_dec(&n->nr_slabs);
1018 	atomic_long_sub(objects, &n->total_objects);
1019 }
1020 
1021 /* Object debug checks for alloc/free paths */
1022 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1023 								void *object)
1024 {
1025 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1026 		return;
1027 
1028 	init_object(s, object, SLUB_RED_INACTIVE);
1029 	init_tracking(s, object);
1030 }
1031 
1032 static noinline int alloc_debug_processing(struct kmem_cache *s,
1033 					struct page *page,
1034 					void *object, unsigned long addr)
1035 {
1036 	if (!check_slab(s, page))
1037 		goto bad;
1038 
1039 	if (!check_valid_pointer(s, page, object)) {
1040 		object_err(s, page, object, "Freelist Pointer check fails");
1041 		goto bad;
1042 	}
1043 
1044 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1045 		goto bad;
1046 
1047 	/* Success perform special debug activities for allocs */
1048 	if (s->flags & SLAB_STORE_USER)
1049 		set_track(s, object, TRACK_ALLOC, addr);
1050 	trace(s, page, object, 1);
1051 	init_object(s, object, SLUB_RED_ACTIVE);
1052 	return 1;
1053 
1054 bad:
1055 	if (PageSlab(page)) {
1056 		/*
1057 		 * If this is a slab page then lets do the best we can
1058 		 * to avoid issues in the future. Marking all objects
1059 		 * as used avoids touching the remaining objects.
1060 		 */
1061 		slab_fix(s, "Marking all objects used");
1062 		page->inuse = page->objects;
1063 		page->freelist = NULL;
1064 	}
1065 	return 0;
1066 }
1067 
1068 static noinline struct kmem_cache_node *free_debug_processing(
1069 	struct kmem_cache *s, struct page *page, void *object,
1070 	unsigned long addr, unsigned long *flags)
1071 {
1072 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1073 
1074 	spin_lock_irqsave(&n->list_lock, *flags);
1075 	slab_lock(page);
1076 
1077 	if (!check_slab(s, page))
1078 		goto fail;
1079 
1080 	if (!check_valid_pointer(s, page, object)) {
1081 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1082 		goto fail;
1083 	}
1084 
1085 	if (on_freelist(s, page, object)) {
1086 		object_err(s, page, object, "Object already free");
1087 		goto fail;
1088 	}
1089 
1090 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1091 		goto out;
1092 
1093 	if (unlikely(s != page->slab_cache)) {
1094 		if (!PageSlab(page)) {
1095 			slab_err(s, page, "Attempt to free object(0x%p) "
1096 				"outside of slab", object);
1097 		} else if (!page->slab_cache) {
1098 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1099 			       object);
1100 			dump_stack();
1101 		} else
1102 			object_err(s, page, object,
1103 					"page slab pointer corrupt.");
1104 		goto fail;
1105 	}
1106 
1107 	if (s->flags & SLAB_STORE_USER)
1108 		set_track(s, object, TRACK_FREE, addr);
1109 	trace(s, page, object, 0);
1110 	init_object(s, object, SLUB_RED_INACTIVE);
1111 out:
1112 	slab_unlock(page);
1113 	/*
1114 	 * Keep node_lock to preserve integrity
1115 	 * until the object is actually freed
1116 	 */
1117 	return n;
1118 
1119 fail:
1120 	slab_unlock(page);
1121 	spin_unlock_irqrestore(&n->list_lock, *flags);
1122 	slab_fix(s, "Object at 0x%p not freed", object);
1123 	return NULL;
1124 }
1125 
1126 static int __init setup_slub_debug(char *str)
1127 {
1128 	slub_debug = DEBUG_DEFAULT_FLAGS;
1129 	if (*str++ != '=' || !*str)
1130 		/*
1131 		 * No options specified. Switch on full debugging.
1132 		 */
1133 		goto out;
1134 
1135 	if (*str == ',')
1136 		/*
1137 		 * No options but restriction on slabs. This means full
1138 		 * debugging for slabs matching a pattern.
1139 		 */
1140 		goto check_slabs;
1141 
1142 	slub_debug = 0;
1143 	if (*str == '-')
1144 		/*
1145 		 * Switch off all debugging measures.
1146 		 */
1147 		goto out;
1148 
1149 	/*
1150 	 * Determine which debug features should be switched on
1151 	 */
1152 	for (; *str && *str != ','; str++) {
1153 		switch (tolower(*str)) {
1154 		case 'f':
1155 			slub_debug |= SLAB_DEBUG_FREE;
1156 			break;
1157 		case 'z':
1158 			slub_debug |= SLAB_RED_ZONE;
1159 			break;
1160 		case 'p':
1161 			slub_debug |= SLAB_POISON;
1162 			break;
1163 		case 'u':
1164 			slub_debug |= SLAB_STORE_USER;
1165 			break;
1166 		case 't':
1167 			slub_debug |= SLAB_TRACE;
1168 			break;
1169 		case 'a':
1170 			slub_debug |= SLAB_FAILSLAB;
1171 			break;
1172 		case 'o':
1173 			/*
1174 			 * Avoid enabling debugging on caches if its minimum
1175 			 * order would increase as a result.
1176 			 */
1177 			disable_higher_order_debug = 1;
1178 			break;
1179 		default:
1180 			pr_err("slub_debug option '%c' unknown. skipped\n",
1181 			       *str);
1182 		}
1183 	}
1184 
1185 check_slabs:
1186 	if (*str == ',')
1187 		slub_debug_slabs = str + 1;
1188 out:
1189 	return 1;
1190 }
1191 
1192 __setup("slub_debug", setup_slub_debug);
1193 
1194 unsigned long kmem_cache_flags(unsigned long object_size,
1195 	unsigned long flags, const char *name,
1196 	void (*ctor)(void *))
1197 {
1198 	/*
1199 	 * Enable debugging if selected on the kernel commandline.
1200 	 */
1201 	if (slub_debug && (!slub_debug_slabs || (name &&
1202 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1203 		flags |= slub_debug;
1204 
1205 	return flags;
1206 }
1207 #else
1208 static inline void setup_object_debug(struct kmem_cache *s,
1209 			struct page *page, void *object) {}
1210 
1211 static inline int alloc_debug_processing(struct kmem_cache *s,
1212 	struct page *page, void *object, unsigned long addr) { return 0; }
1213 
1214 static inline struct kmem_cache_node *free_debug_processing(
1215 	struct kmem_cache *s, struct page *page, void *object,
1216 	unsigned long addr, unsigned long *flags) { return NULL; }
1217 
1218 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1219 			{ return 1; }
1220 static inline int check_object(struct kmem_cache *s, struct page *page,
1221 			void *object, u8 val) { return 1; }
1222 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1223 					struct page *page) {}
1224 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 					struct page *page) {}
1226 unsigned long kmem_cache_flags(unsigned long object_size,
1227 	unsigned long flags, const char *name,
1228 	void (*ctor)(void *))
1229 {
1230 	return flags;
1231 }
1232 #define slub_debug 0
1233 
1234 #define disable_higher_order_debug 0
1235 
1236 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1237 							{ return 0; }
1238 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1239 							{ return 0; }
1240 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1241 							int objects) {}
1242 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1243 							int objects) {}
1244 
1245 #endif /* CONFIG_SLUB_DEBUG */
1246 
1247 /*
1248  * Hooks for other subsystems that check memory allocations. In a typical
1249  * production configuration these hooks all should produce no code at all.
1250  */
1251 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1252 {
1253 	kmemleak_alloc(ptr, size, 1, flags);
1254 	kasan_kmalloc_large(ptr, size);
1255 }
1256 
1257 static inline void kfree_hook(const void *x)
1258 {
1259 	kmemleak_free(x);
1260 	kasan_kfree_large(x);
1261 }
1262 
1263 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1264 						     gfp_t flags)
1265 {
1266 	flags &= gfp_allowed_mask;
1267 	lockdep_trace_alloc(flags);
1268 	might_sleep_if(gfpflags_allow_blocking(flags));
1269 
1270 	if (should_failslab(s->object_size, flags, s->flags))
1271 		return NULL;
1272 
1273 	return memcg_kmem_get_cache(s, flags);
1274 }
1275 
1276 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1277 					gfp_t flags, void *object)
1278 {
1279 	flags &= gfp_allowed_mask;
1280 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1281 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1282 	memcg_kmem_put_cache(s);
1283 	kasan_slab_alloc(s, object);
1284 }
1285 
1286 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1287 {
1288 	kmemleak_free_recursive(x, s->flags);
1289 
1290 	/*
1291 	 * Trouble is that we may no longer disable interrupts in the fast path
1292 	 * So in order to make the debug calls that expect irqs to be
1293 	 * disabled we need to disable interrupts temporarily.
1294 	 */
1295 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1296 	{
1297 		unsigned long flags;
1298 
1299 		local_irq_save(flags);
1300 		kmemcheck_slab_free(s, x, s->object_size);
1301 		debug_check_no_locks_freed(x, s->object_size);
1302 		local_irq_restore(flags);
1303 	}
1304 #endif
1305 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1306 		debug_check_no_obj_freed(x, s->object_size);
1307 
1308 	kasan_slab_free(s, x);
1309 }
1310 
1311 static void setup_object(struct kmem_cache *s, struct page *page,
1312 				void *object)
1313 {
1314 	setup_object_debug(s, page, object);
1315 	if (unlikely(s->ctor)) {
1316 		kasan_unpoison_object_data(s, object);
1317 		s->ctor(object);
1318 		kasan_poison_object_data(s, object);
1319 	}
1320 }
1321 
1322 /*
1323  * Slab allocation and freeing
1324  */
1325 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1326 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1327 {
1328 	struct page *page;
1329 	int order = oo_order(oo);
1330 
1331 	flags |= __GFP_NOTRACK;
1332 
1333 	if (node == NUMA_NO_NODE)
1334 		page = alloc_pages(flags, order);
1335 	else
1336 		page = __alloc_pages_node(node, flags, order);
1337 
1338 	if (page && memcg_charge_slab(page, flags, order, s)) {
1339 		__free_pages(page, order);
1340 		page = NULL;
1341 	}
1342 
1343 	return page;
1344 }
1345 
1346 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1347 {
1348 	struct page *page;
1349 	struct kmem_cache_order_objects oo = s->oo;
1350 	gfp_t alloc_gfp;
1351 	void *start, *p;
1352 	int idx, order;
1353 
1354 	flags &= gfp_allowed_mask;
1355 
1356 	if (gfpflags_allow_blocking(flags))
1357 		local_irq_enable();
1358 
1359 	flags |= s->allocflags;
1360 
1361 	/*
1362 	 * Let the initial higher-order allocation fail under memory pressure
1363 	 * so we fall-back to the minimum order allocation.
1364 	 */
1365 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1366 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1367 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
1368 
1369 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1370 	if (unlikely(!page)) {
1371 		oo = s->min;
1372 		alloc_gfp = flags;
1373 		/*
1374 		 * Allocation may have failed due to fragmentation.
1375 		 * Try a lower order alloc if possible
1376 		 */
1377 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1378 		if (unlikely(!page))
1379 			goto out;
1380 		stat(s, ORDER_FALLBACK);
1381 	}
1382 
1383 	if (kmemcheck_enabled &&
1384 	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1385 		int pages = 1 << oo_order(oo);
1386 
1387 		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1388 
1389 		/*
1390 		 * Objects from caches that have a constructor don't get
1391 		 * cleared when they're allocated, so we need to do it here.
1392 		 */
1393 		if (s->ctor)
1394 			kmemcheck_mark_uninitialized_pages(page, pages);
1395 		else
1396 			kmemcheck_mark_unallocated_pages(page, pages);
1397 	}
1398 
1399 	page->objects = oo_objects(oo);
1400 
1401 	order = compound_order(page);
1402 	page->slab_cache = s;
1403 	__SetPageSlab(page);
1404 	if (page_is_pfmemalloc(page))
1405 		SetPageSlabPfmemalloc(page);
1406 
1407 	start = page_address(page);
1408 
1409 	if (unlikely(s->flags & SLAB_POISON))
1410 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1411 
1412 	kasan_poison_slab(page);
1413 
1414 	for_each_object_idx(p, idx, s, start, page->objects) {
1415 		setup_object(s, page, p);
1416 		if (likely(idx < page->objects))
1417 			set_freepointer(s, p, p + s->size);
1418 		else
1419 			set_freepointer(s, p, NULL);
1420 	}
1421 
1422 	page->freelist = start;
1423 	page->inuse = page->objects;
1424 	page->frozen = 1;
1425 
1426 out:
1427 	if (gfpflags_allow_blocking(flags))
1428 		local_irq_disable();
1429 	if (!page)
1430 		return NULL;
1431 
1432 	mod_zone_page_state(page_zone(page),
1433 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1434 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1435 		1 << oo_order(oo));
1436 
1437 	inc_slabs_node(s, page_to_nid(page), page->objects);
1438 
1439 	return page;
1440 }
1441 
1442 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1443 {
1444 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1445 		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1446 		BUG();
1447 	}
1448 
1449 	return allocate_slab(s,
1450 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1451 }
1452 
1453 static void __free_slab(struct kmem_cache *s, struct page *page)
1454 {
1455 	int order = compound_order(page);
1456 	int pages = 1 << order;
1457 
1458 	if (kmem_cache_debug(s)) {
1459 		void *p;
1460 
1461 		slab_pad_check(s, page);
1462 		for_each_object(p, s, page_address(page),
1463 						page->objects)
1464 			check_object(s, page, p, SLUB_RED_INACTIVE);
1465 	}
1466 
1467 	kmemcheck_free_shadow(page, compound_order(page));
1468 
1469 	mod_zone_page_state(page_zone(page),
1470 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1471 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1472 		-pages);
1473 
1474 	__ClearPageSlabPfmemalloc(page);
1475 	__ClearPageSlab(page);
1476 
1477 	page_mapcount_reset(page);
1478 	if (current->reclaim_state)
1479 		current->reclaim_state->reclaimed_slab += pages;
1480 	__free_kmem_pages(page, order);
1481 }
1482 
1483 #define need_reserve_slab_rcu						\
1484 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1485 
1486 static void rcu_free_slab(struct rcu_head *h)
1487 {
1488 	struct page *page;
1489 
1490 	if (need_reserve_slab_rcu)
1491 		page = virt_to_head_page(h);
1492 	else
1493 		page = container_of((struct list_head *)h, struct page, lru);
1494 
1495 	__free_slab(page->slab_cache, page);
1496 }
1497 
1498 static void free_slab(struct kmem_cache *s, struct page *page)
1499 {
1500 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1501 		struct rcu_head *head;
1502 
1503 		if (need_reserve_slab_rcu) {
1504 			int order = compound_order(page);
1505 			int offset = (PAGE_SIZE << order) - s->reserved;
1506 
1507 			VM_BUG_ON(s->reserved != sizeof(*head));
1508 			head = page_address(page) + offset;
1509 		} else {
1510 			head = &page->rcu_head;
1511 		}
1512 
1513 		call_rcu(head, rcu_free_slab);
1514 	} else
1515 		__free_slab(s, page);
1516 }
1517 
1518 static void discard_slab(struct kmem_cache *s, struct page *page)
1519 {
1520 	dec_slabs_node(s, page_to_nid(page), page->objects);
1521 	free_slab(s, page);
1522 }
1523 
1524 /*
1525  * Management of partially allocated slabs.
1526  */
1527 static inline void
1528 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1529 {
1530 	n->nr_partial++;
1531 	if (tail == DEACTIVATE_TO_TAIL)
1532 		list_add_tail(&page->lru, &n->partial);
1533 	else
1534 		list_add(&page->lru, &n->partial);
1535 }
1536 
1537 static inline void add_partial(struct kmem_cache_node *n,
1538 				struct page *page, int tail)
1539 {
1540 	lockdep_assert_held(&n->list_lock);
1541 	__add_partial(n, page, tail);
1542 }
1543 
1544 static inline void
1545 __remove_partial(struct kmem_cache_node *n, struct page *page)
1546 {
1547 	list_del(&page->lru);
1548 	n->nr_partial--;
1549 }
1550 
1551 static inline void remove_partial(struct kmem_cache_node *n,
1552 					struct page *page)
1553 {
1554 	lockdep_assert_held(&n->list_lock);
1555 	__remove_partial(n, page);
1556 }
1557 
1558 /*
1559  * Remove slab from the partial list, freeze it and
1560  * return the pointer to the freelist.
1561  *
1562  * Returns a list of objects or NULL if it fails.
1563  */
1564 static inline void *acquire_slab(struct kmem_cache *s,
1565 		struct kmem_cache_node *n, struct page *page,
1566 		int mode, int *objects)
1567 {
1568 	void *freelist;
1569 	unsigned long counters;
1570 	struct page new;
1571 
1572 	lockdep_assert_held(&n->list_lock);
1573 
1574 	/*
1575 	 * Zap the freelist and set the frozen bit.
1576 	 * The old freelist is the list of objects for the
1577 	 * per cpu allocation list.
1578 	 */
1579 	freelist = page->freelist;
1580 	counters = page->counters;
1581 	new.counters = counters;
1582 	*objects = new.objects - new.inuse;
1583 	if (mode) {
1584 		new.inuse = page->objects;
1585 		new.freelist = NULL;
1586 	} else {
1587 		new.freelist = freelist;
1588 	}
1589 
1590 	VM_BUG_ON(new.frozen);
1591 	new.frozen = 1;
1592 
1593 	if (!__cmpxchg_double_slab(s, page,
1594 			freelist, counters,
1595 			new.freelist, new.counters,
1596 			"acquire_slab"))
1597 		return NULL;
1598 
1599 	remove_partial(n, page);
1600 	WARN_ON(!freelist);
1601 	return freelist;
1602 }
1603 
1604 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1605 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1606 
1607 /*
1608  * Try to allocate a partial slab from a specific node.
1609  */
1610 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1611 				struct kmem_cache_cpu *c, gfp_t flags)
1612 {
1613 	struct page *page, *page2;
1614 	void *object = NULL;
1615 	int available = 0;
1616 	int objects;
1617 
1618 	/*
1619 	 * Racy check. If we mistakenly see no partial slabs then we
1620 	 * just allocate an empty slab. If we mistakenly try to get a
1621 	 * partial slab and there is none available then get_partials()
1622 	 * will return NULL.
1623 	 */
1624 	if (!n || !n->nr_partial)
1625 		return NULL;
1626 
1627 	spin_lock(&n->list_lock);
1628 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1629 		void *t;
1630 
1631 		if (!pfmemalloc_match(page, flags))
1632 			continue;
1633 
1634 		t = acquire_slab(s, n, page, object == NULL, &objects);
1635 		if (!t)
1636 			break;
1637 
1638 		available += objects;
1639 		if (!object) {
1640 			c->page = page;
1641 			stat(s, ALLOC_FROM_PARTIAL);
1642 			object = t;
1643 		} else {
1644 			put_cpu_partial(s, page, 0);
1645 			stat(s, CPU_PARTIAL_NODE);
1646 		}
1647 		if (!kmem_cache_has_cpu_partial(s)
1648 			|| available > s->cpu_partial / 2)
1649 			break;
1650 
1651 	}
1652 	spin_unlock(&n->list_lock);
1653 	return object;
1654 }
1655 
1656 /*
1657  * Get a page from somewhere. Search in increasing NUMA distances.
1658  */
1659 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1660 		struct kmem_cache_cpu *c)
1661 {
1662 #ifdef CONFIG_NUMA
1663 	struct zonelist *zonelist;
1664 	struct zoneref *z;
1665 	struct zone *zone;
1666 	enum zone_type high_zoneidx = gfp_zone(flags);
1667 	void *object;
1668 	unsigned int cpuset_mems_cookie;
1669 
1670 	/*
1671 	 * The defrag ratio allows a configuration of the tradeoffs between
1672 	 * inter node defragmentation and node local allocations. A lower
1673 	 * defrag_ratio increases the tendency to do local allocations
1674 	 * instead of attempting to obtain partial slabs from other nodes.
1675 	 *
1676 	 * If the defrag_ratio is set to 0 then kmalloc() always
1677 	 * returns node local objects. If the ratio is higher then kmalloc()
1678 	 * may return off node objects because partial slabs are obtained
1679 	 * from other nodes and filled up.
1680 	 *
1681 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1682 	 * defrag_ratio = 1000) then every (well almost) allocation will
1683 	 * first attempt to defrag slab caches on other nodes. This means
1684 	 * scanning over all nodes to look for partial slabs which may be
1685 	 * expensive if we do it every time we are trying to find a slab
1686 	 * with available objects.
1687 	 */
1688 	if (!s->remote_node_defrag_ratio ||
1689 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1690 		return NULL;
1691 
1692 	do {
1693 		cpuset_mems_cookie = read_mems_allowed_begin();
1694 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1695 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1696 			struct kmem_cache_node *n;
1697 
1698 			n = get_node(s, zone_to_nid(zone));
1699 
1700 			if (n && cpuset_zone_allowed(zone, flags) &&
1701 					n->nr_partial > s->min_partial) {
1702 				object = get_partial_node(s, n, c, flags);
1703 				if (object) {
1704 					/*
1705 					 * Don't check read_mems_allowed_retry()
1706 					 * here - if mems_allowed was updated in
1707 					 * parallel, that was a harmless race
1708 					 * between allocation and the cpuset
1709 					 * update
1710 					 */
1711 					return object;
1712 				}
1713 			}
1714 		}
1715 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1716 #endif
1717 	return NULL;
1718 }
1719 
1720 /*
1721  * Get a partial page, lock it and return it.
1722  */
1723 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1724 		struct kmem_cache_cpu *c)
1725 {
1726 	void *object;
1727 	int searchnode = node;
1728 
1729 	if (node == NUMA_NO_NODE)
1730 		searchnode = numa_mem_id();
1731 	else if (!node_present_pages(node))
1732 		searchnode = node_to_mem_node(node);
1733 
1734 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1735 	if (object || node != NUMA_NO_NODE)
1736 		return object;
1737 
1738 	return get_any_partial(s, flags, c);
1739 }
1740 
1741 #ifdef CONFIG_PREEMPT
1742 /*
1743  * Calculate the next globally unique transaction for disambiguiation
1744  * during cmpxchg. The transactions start with the cpu number and are then
1745  * incremented by CONFIG_NR_CPUS.
1746  */
1747 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1748 #else
1749 /*
1750  * No preemption supported therefore also no need to check for
1751  * different cpus.
1752  */
1753 #define TID_STEP 1
1754 #endif
1755 
1756 static inline unsigned long next_tid(unsigned long tid)
1757 {
1758 	return tid + TID_STEP;
1759 }
1760 
1761 static inline unsigned int tid_to_cpu(unsigned long tid)
1762 {
1763 	return tid % TID_STEP;
1764 }
1765 
1766 static inline unsigned long tid_to_event(unsigned long tid)
1767 {
1768 	return tid / TID_STEP;
1769 }
1770 
1771 static inline unsigned int init_tid(int cpu)
1772 {
1773 	return cpu;
1774 }
1775 
1776 static inline void note_cmpxchg_failure(const char *n,
1777 		const struct kmem_cache *s, unsigned long tid)
1778 {
1779 #ifdef SLUB_DEBUG_CMPXCHG
1780 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1781 
1782 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1783 
1784 #ifdef CONFIG_PREEMPT
1785 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1786 		pr_warn("due to cpu change %d -> %d\n",
1787 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1788 	else
1789 #endif
1790 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1791 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1792 			tid_to_event(tid), tid_to_event(actual_tid));
1793 	else
1794 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1795 			actual_tid, tid, next_tid(tid));
1796 #endif
1797 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1798 }
1799 
1800 static void init_kmem_cache_cpus(struct kmem_cache *s)
1801 {
1802 	int cpu;
1803 
1804 	for_each_possible_cpu(cpu)
1805 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1806 }
1807 
1808 /*
1809  * Remove the cpu slab
1810  */
1811 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1812 				void *freelist)
1813 {
1814 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1815 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1816 	int lock = 0;
1817 	enum slab_modes l = M_NONE, m = M_NONE;
1818 	void *nextfree;
1819 	int tail = DEACTIVATE_TO_HEAD;
1820 	struct page new;
1821 	struct page old;
1822 
1823 	if (page->freelist) {
1824 		stat(s, DEACTIVATE_REMOTE_FREES);
1825 		tail = DEACTIVATE_TO_TAIL;
1826 	}
1827 
1828 	/*
1829 	 * Stage one: Free all available per cpu objects back
1830 	 * to the page freelist while it is still frozen. Leave the
1831 	 * last one.
1832 	 *
1833 	 * There is no need to take the list->lock because the page
1834 	 * is still frozen.
1835 	 */
1836 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1837 		void *prior;
1838 		unsigned long counters;
1839 
1840 		do {
1841 			prior = page->freelist;
1842 			counters = page->counters;
1843 			set_freepointer(s, freelist, prior);
1844 			new.counters = counters;
1845 			new.inuse--;
1846 			VM_BUG_ON(!new.frozen);
1847 
1848 		} while (!__cmpxchg_double_slab(s, page,
1849 			prior, counters,
1850 			freelist, new.counters,
1851 			"drain percpu freelist"));
1852 
1853 		freelist = nextfree;
1854 	}
1855 
1856 	/*
1857 	 * Stage two: Ensure that the page is unfrozen while the
1858 	 * list presence reflects the actual number of objects
1859 	 * during unfreeze.
1860 	 *
1861 	 * We setup the list membership and then perform a cmpxchg
1862 	 * with the count. If there is a mismatch then the page
1863 	 * is not unfrozen but the page is on the wrong list.
1864 	 *
1865 	 * Then we restart the process which may have to remove
1866 	 * the page from the list that we just put it on again
1867 	 * because the number of objects in the slab may have
1868 	 * changed.
1869 	 */
1870 redo:
1871 
1872 	old.freelist = page->freelist;
1873 	old.counters = page->counters;
1874 	VM_BUG_ON(!old.frozen);
1875 
1876 	/* Determine target state of the slab */
1877 	new.counters = old.counters;
1878 	if (freelist) {
1879 		new.inuse--;
1880 		set_freepointer(s, freelist, old.freelist);
1881 		new.freelist = freelist;
1882 	} else
1883 		new.freelist = old.freelist;
1884 
1885 	new.frozen = 0;
1886 
1887 	if (!new.inuse && n->nr_partial >= s->min_partial)
1888 		m = M_FREE;
1889 	else if (new.freelist) {
1890 		m = M_PARTIAL;
1891 		if (!lock) {
1892 			lock = 1;
1893 			/*
1894 			 * Taking the spinlock removes the possiblity
1895 			 * that acquire_slab() will see a slab page that
1896 			 * is frozen
1897 			 */
1898 			spin_lock(&n->list_lock);
1899 		}
1900 	} else {
1901 		m = M_FULL;
1902 		if (kmem_cache_debug(s) && !lock) {
1903 			lock = 1;
1904 			/*
1905 			 * This also ensures that the scanning of full
1906 			 * slabs from diagnostic functions will not see
1907 			 * any frozen slabs.
1908 			 */
1909 			spin_lock(&n->list_lock);
1910 		}
1911 	}
1912 
1913 	if (l != m) {
1914 
1915 		if (l == M_PARTIAL)
1916 
1917 			remove_partial(n, page);
1918 
1919 		else if (l == M_FULL)
1920 
1921 			remove_full(s, n, page);
1922 
1923 		if (m == M_PARTIAL) {
1924 
1925 			add_partial(n, page, tail);
1926 			stat(s, tail);
1927 
1928 		} else if (m == M_FULL) {
1929 
1930 			stat(s, DEACTIVATE_FULL);
1931 			add_full(s, n, page);
1932 
1933 		}
1934 	}
1935 
1936 	l = m;
1937 	if (!__cmpxchg_double_slab(s, page,
1938 				old.freelist, old.counters,
1939 				new.freelist, new.counters,
1940 				"unfreezing slab"))
1941 		goto redo;
1942 
1943 	if (lock)
1944 		spin_unlock(&n->list_lock);
1945 
1946 	if (m == M_FREE) {
1947 		stat(s, DEACTIVATE_EMPTY);
1948 		discard_slab(s, page);
1949 		stat(s, FREE_SLAB);
1950 	}
1951 }
1952 
1953 /*
1954  * Unfreeze all the cpu partial slabs.
1955  *
1956  * This function must be called with interrupts disabled
1957  * for the cpu using c (or some other guarantee must be there
1958  * to guarantee no concurrent accesses).
1959  */
1960 static void unfreeze_partials(struct kmem_cache *s,
1961 		struct kmem_cache_cpu *c)
1962 {
1963 #ifdef CONFIG_SLUB_CPU_PARTIAL
1964 	struct kmem_cache_node *n = NULL, *n2 = NULL;
1965 	struct page *page, *discard_page = NULL;
1966 
1967 	while ((page = c->partial)) {
1968 		struct page new;
1969 		struct page old;
1970 
1971 		c->partial = page->next;
1972 
1973 		n2 = get_node(s, page_to_nid(page));
1974 		if (n != n2) {
1975 			if (n)
1976 				spin_unlock(&n->list_lock);
1977 
1978 			n = n2;
1979 			spin_lock(&n->list_lock);
1980 		}
1981 
1982 		do {
1983 
1984 			old.freelist = page->freelist;
1985 			old.counters = page->counters;
1986 			VM_BUG_ON(!old.frozen);
1987 
1988 			new.counters = old.counters;
1989 			new.freelist = old.freelist;
1990 
1991 			new.frozen = 0;
1992 
1993 		} while (!__cmpxchg_double_slab(s, page,
1994 				old.freelist, old.counters,
1995 				new.freelist, new.counters,
1996 				"unfreezing slab"));
1997 
1998 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1999 			page->next = discard_page;
2000 			discard_page = page;
2001 		} else {
2002 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2003 			stat(s, FREE_ADD_PARTIAL);
2004 		}
2005 	}
2006 
2007 	if (n)
2008 		spin_unlock(&n->list_lock);
2009 
2010 	while (discard_page) {
2011 		page = discard_page;
2012 		discard_page = discard_page->next;
2013 
2014 		stat(s, DEACTIVATE_EMPTY);
2015 		discard_slab(s, page);
2016 		stat(s, FREE_SLAB);
2017 	}
2018 #endif
2019 }
2020 
2021 /*
2022  * Put a page that was just frozen (in __slab_free) into a partial page
2023  * slot if available. This is done without interrupts disabled and without
2024  * preemption disabled. The cmpxchg is racy and may put the partial page
2025  * onto a random cpus partial slot.
2026  *
2027  * If we did not find a slot then simply move all the partials to the
2028  * per node partial list.
2029  */
2030 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2031 {
2032 #ifdef CONFIG_SLUB_CPU_PARTIAL
2033 	struct page *oldpage;
2034 	int pages;
2035 	int pobjects;
2036 
2037 	preempt_disable();
2038 	do {
2039 		pages = 0;
2040 		pobjects = 0;
2041 		oldpage = this_cpu_read(s->cpu_slab->partial);
2042 
2043 		if (oldpage) {
2044 			pobjects = oldpage->pobjects;
2045 			pages = oldpage->pages;
2046 			if (drain && pobjects > s->cpu_partial) {
2047 				unsigned long flags;
2048 				/*
2049 				 * partial array is full. Move the existing
2050 				 * set to the per node partial list.
2051 				 */
2052 				local_irq_save(flags);
2053 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2054 				local_irq_restore(flags);
2055 				oldpage = NULL;
2056 				pobjects = 0;
2057 				pages = 0;
2058 				stat(s, CPU_PARTIAL_DRAIN);
2059 			}
2060 		}
2061 
2062 		pages++;
2063 		pobjects += page->objects - page->inuse;
2064 
2065 		page->pages = pages;
2066 		page->pobjects = pobjects;
2067 		page->next = oldpage;
2068 
2069 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2070 								!= oldpage);
2071 	if (unlikely(!s->cpu_partial)) {
2072 		unsigned long flags;
2073 
2074 		local_irq_save(flags);
2075 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2076 		local_irq_restore(flags);
2077 	}
2078 	preempt_enable();
2079 #endif
2080 }
2081 
2082 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2083 {
2084 	stat(s, CPUSLAB_FLUSH);
2085 	deactivate_slab(s, c->page, c->freelist);
2086 
2087 	c->tid = next_tid(c->tid);
2088 	c->page = NULL;
2089 	c->freelist = NULL;
2090 }
2091 
2092 /*
2093  * Flush cpu slab.
2094  *
2095  * Called from IPI handler with interrupts disabled.
2096  */
2097 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2098 {
2099 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2100 
2101 	if (likely(c)) {
2102 		if (c->page)
2103 			flush_slab(s, c);
2104 
2105 		unfreeze_partials(s, c);
2106 	}
2107 }
2108 
2109 static void flush_cpu_slab(void *d)
2110 {
2111 	struct kmem_cache *s = d;
2112 
2113 	__flush_cpu_slab(s, smp_processor_id());
2114 }
2115 
2116 static bool has_cpu_slab(int cpu, void *info)
2117 {
2118 	struct kmem_cache *s = info;
2119 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2120 
2121 	return c->page || c->partial;
2122 }
2123 
2124 static void flush_all(struct kmem_cache *s)
2125 {
2126 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2127 }
2128 
2129 /*
2130  * Check if the objects in a per cpu structure fit numa
2131  * locality expectations.
2132  */
2133 static inline int node_match(struct page *page, int node)
2134 {
2135 #ifdef CONFIG_NUMA
2136 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2137 		return 0;
2138 #endif
2139 	return 1;
2140 }
2141 
2142 #ifdef CONFIG_SLUB_DEBUG
2143 static int count_free(struct page *page)
2144 {
2145 	return page->objects - page->inuse;
2146 }
2147 
2148 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2149 {
2150 	return atomic_long_read(&n->total_objects);
2151 }
2152 #endif /* CONFIG_SLUB_DEBUG */
2153 
2154 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2155 static unsigned long count_partial(struct kmem_cache_node *n,
2156 					int (*get_count)(struct page *))
2157 {
2158 	unsigned long flags;
2159 	unsigned long x = 0;
2160 	struct page *page;
2161 
2162 	spin_lock_irqsave(&n->list_lock, flags);
2163 	list_for_each_entry(page, &n->partial, lru)
2164 		x += get_count(page);
2165 	spin_unlock_irqrestore(&n->list_lock, flags);
2166 	return x;
2167 }
2168 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2169 
2170 static noinline void
2171 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2172 {
2173 #ifdef CONFIG_SLUB_DEBUG
2174 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2175 				      DEFAULT_RATELIMIT_BURST);
2176 	int node;
2177 	struct kmem_cache_node *n;
2178 
2179 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2180 		return;
2181 
2182 	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2183 		nid, gfpflags);
2184 	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2185 		s->name, s->object_size, s->size, oo_order(s->oo),
2186 		oo_order(s->min));
2187 
2188 	if (oo_order(s->min) > get_order(s->object_size))
2189 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2190 			s->name);
2191 
2192 	for_each_kmem_cache_node(s, node, n) {
2193 		unsigned long nr_slabs;
2194 		unsigned long nr_objs;
2195 		unsigned long nr_free;
2196 
2197 		nr_free  = count_partial(n, count_free);
2198 		nr_slabs = node_nr_slabs(n);
2199 		nr_objs  = node_nr_objs(n);
2200 
2201 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2202 			node, nr_slabs, nr_objs, nr_free);
2203 	}
2204 #endif
2205 }
2206 
2207 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2208 			int node, struct kmem_cache_cpu **pc)
2209 {
2210 	void *freelist;
2211 	struct kmem_cache_cpu *c = *pc;
2212 	struct page *page;
2213 
2214 	freelist = get_partial(s, flags, node, c);
2215 
2216 	if (freelist)
2217 		return freelist;
2218 
2219 	page = new_slab(s, flags, node);
2220 	if (page) {
2221 		c = raw_cpu_ptr(s->cpu_slab);
2222 		if (c->page)
2223 			flush_slab(s, c);
2224 
2225 		/*
2226 		 * No other reference to the page yet so we can
2227 		 * muck around with it freely without cmpxchg
2228 		 */
2229 		freelist = page->freelist;
2230 		page->freelist = NULL;
2231 
2232 		stat(s, ALLOC_SLAB);
2233 		c->page = page;
2234 		*pc = c;
2235 	} else
2236 		freelist = NULL;
2237 
2238 	return freelist;
2239 }
2240 
2241 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2242 {
2243 	if (unlikely(PageSlabPfmemalloc(page)))
2244 		return gfp_pfmemalloc_allowed(gfpflags);
2245 
2246 	return true;
2247 }
2248 
2249 /*
2250  * Check the page->freelist of a page and either transfer the freelist to the
2251  * per cpu freelist or deactivate the page.
2252  *
2253  * The page is still frozen if the return value is not NULL.
2254  *
2255  * If this function returns NULL then the page has been unfrozen.
2256  *
2257  * This function must be called with interrupt disabled.
2258  */
2259 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2260 {
2261 	struct page new;
2262 	unsigned long counters;
2263 	void *freelist;
2264 
2265 	do {
2266 		freelist = page->freelist;
2267 		counters = page->counters;
2268 
2269 		new.counters = counters;
2270 		VM_BUG_ON(!new.frozen);
2271 
2272 		new.inuse = page->objects;
2273 		new.frozen = freelist != NULL;
2274 
2275 	} while (!__cmpxchg_double_slab(s, page,
2276 		freelist, counters,
2277 		NULL, new.counters,
2278 		"get_freelist"));
2279 
2280 	return freelist;
2281 }
2282 
2283 /*
2284  * Slow path. The lockless freelist is empty or we need to perform
2285  * debugging duties.
2286  *
2287  * Processing is still very fast if new objects have been freed to the
2288  * regular freelist. In that case we simply take over the regular freelist
2289  * as the lockless freelist and zap the regular freelist.
2290  *
2291  * If that is not working then we fall back to the partial lists. We take the
2292  * first element of the freelist as the object to allocate now and move the
2293  * rest of the freelist to the lockless freelist.
2294  *
2295  * And if we were unable to get a new slab from the partial slab lists then
2296  * we need to allocate a new slab. This is the slowest path since it involves
2297  * a call to the page allocator and the setup of a new slab.
2298  */
2299 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2300 			  unsigned long addr, struct kmem_cache_cpu *c)
2301 {
2302 	void *freelist;
2303 	struct page *page;
2304 	unsigned long flags;
2305 
2306 	local_irq_save(flags);
2307 #ifdef CONFIG_PREEMPT
2308 	/*
2309 	 * We may have been preempted and rescheduled on a different
2310 	 * cpu before disabling interrupts. Need to reload cpu area
2311 	 * pointer.
2312 	 */
2313 	c = this_cpu_ptr(s->cpu_slab);
2314 #endif
2315 
2316 	page = c->page;
2317 	if (!page)
2318 		goto new_slab;
2319 redo:
2320 
2321 	if (unlikely(!node_match(page, node))) {
2322 		int searchnode = node;
2323 
2324 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2325 			searchnode = node_to_mem_node(node);
2326 
2327 		if (unlikely(!node_match(page, searchnode))) {
2328 			stat(s, ALLOC_NODE_MISMATCH);
2329 			deactivate_slab(s, page, c->freelist);
2330 			c->page = NULL;
2331 			c->freelist = NULL;
2332 			goto new_slab;
2333 		}
2334 	}
2335 
2336 	/*
2337 	 * By rights, we should be searching for a slab page that was
2338 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2339 	 * information when the page leaves the per-cpu allocator
2340 	 */
2341 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2342 		deactivate_slab(s, page, c->freelist);
2343 		c->page = NULL;
2344 		c->freelist = NULL;
2345 		goto new_slab;
2346 	}
2347 
2348 	/* must check again c->freelist in case of cpu migration or IRQ */
2349 	freelist = c->freelist;
2350 	if (freelist)
2351 		goto load_freelist;
2352 
2353 	freelist = get_freelist(s, page);
2354 
2355 	if (!freelist) {
2356 		c->page = NULL;
2357 		stat(s, DEACTIVATE_BYPASS);
2358 		goto new_slab;
2359 	}
2360 
2361 	stat(s, ALLOC_REFILL);
2362 
2363 load_freelist:
2364 	/*
2365 	 * freelist is pointing to the list of objects to be used.
2366 	 * page is pointing to the page from which the objects are obtained.
2367 	 * That page must be frozen for per cpu allocations to work.
2368 	 */
2369 	VM_BUG_ON(!c->page->frozen);
2370 	c->freelist = get_freepointer(s, freelist);
2371 	c->tid = next_tid(c->tid);
2372 	local_irq_restore(flags);
2373 	return freelist;
2374 
2375 new_slab:
2376 
2377 	if (c->partial) {
2378 		page = c->page = c->partial;
2379 		c->partial = page->next;
2380 		stat(s, CPU_PARTIAL_ALLOC);
2381 		c->freelist = NULL;
2382 		goto redo;
2383 	}
2384 
2385 	freelist = new_slab_objects(s, gfpflags, node, &c);
2386 
2387 	if (unlikely(!freelist)) {
2388 		slab_out_of_memory(s, gfpflags, node);
2389 		local_irq_restore(flags);
2390 		return NULL;
2391 	}
2392 
2393 	page = c->page;
2394 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2395 		goto load_freelist;
2396 
2397 	/* Only entered in the debug case */
2398 	if (kmem_cache_debug(s) &&
2399 			!alloc_debug_processing(s, page, freelist, addr))
2400 		goto new_slab;	/* Slab failed checks. Next slab needed */
2401 
2402 	deactivate_slab(s, page, get_freepointer(s, freelist));
2403 	c->page = NULL;
2404 	c->freelist = NULL;
2405 	local_irq_restore(flags);
2406 	return freelist;
2407 }
2408 
2409 /*
2410  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2411  * have the fastpath folded into their functions. So no function call
2412  * overhead for requests that can be satisfied on the fastpath.
2413  *
2414  * The fastpath works by first checking if the lockless freelist can be used.
2415  * If not then __slab_alloc is called for slow processing.
2416  *
2417  * Otherwise we can simply pick the next object from the lockless free list.
2418  */
2419 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2420 		gfp_t gfpflags, int node, unsigned long addr)
2421 {
2422 	void **object;
2423 	struct kmem_cache_cpu *c;
2424 	struct page *page;
2425 	unsigned long tid;
2426 
2427 	s = slab_pre_alloc_hook(s, gfpflags);
2428 	if (!s)
2429 		return NULL;
2430 redo:
2431 	/*
2432 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2433 	 * enabled. We may switch back and forth between cpus while
2434 	 * reading from one cpu area. That does not matter as long
2435 	 * as we end up on the original cpu again when doing the cmpxchg.
2436 	 *
2437 	 * We should guarantee that tid and kmem_cache are retrieved on
2438 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2439 	 * to check if it is matched or not.
2440 	 */
2441 	do {
2442 		tid = this_cpu_read(s->cpu_slab->tid);
2443 		c = raw_cpu_ptr(s->cpu_slab);
2444 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2445 		 unlikely(tid != READ_ONCE(c->tid)));
2446 
2447 	/*
2448 	 * Irqless object alloc/free algorithm used here depends on sequence
2449 	 * of fetching cpu_slab's data. tid should be fetched before anything
2450 	 * on c to guarantee that object and page associated with previous tid
2451 	 * won't be used with current tid. If we fetch tid first, object and
2452 	 * page could be one associated with next tid and our alloc/free
2453 	 * request will be failed. In this case, we will retry. So, no problem.
2454 	 */
2455 	barrier();
2456 
2457 	/*
2458 	 * The transaction ids are globally unique per cpu and per operation on
2459 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2460 	 * occurs on the right processor and that there was no operation on the
2461 	 * linked list in between.
2462 	 */
2463 
2464 	object = c->freelist;
2465 	page = c->page;
2466 	if (unlikely(!object || !node_match(page, node))) {
2467 		object = __slab_alloc(s, gfpflags, node, addr, c);
2468 		stat(s, ALLOC_SLOWPATH);
2469 	} else {
2470 		void *next_object = get_freepointer_safe(s, object);
2471 
2472 		/*
2473 		 * The cmpxchg will only match if there was no additional
2474 		 * operation and if we are on the right processor.
2475 		 *
2476 		 * The cmpxchg does the following atomically (without lock
2477 		 * semantics!)
2478 		 * 1. Relocate first pointer to the current per cpu area.
2479 		 * 2. Verify that tid and freelist have not been changed
2480 		 * 3. If they were not changed replace tid and freelist
2481 		 *
2482 		 * Since this is without lock semantics the protection is only
2483 		 * against code executing on this cpu *not* from access by
2484 		 * other cpus.
2485 		 */
2486 		if (unlikely(!this_cpu_cmpxchg_double(
2487 				s->cpu_slab->freelist, s->cpu_slab->tid,
2488 				object, tid,
2489 				next_object, next_tid(tid)))) {
2490 
2491 			note_cmpxchg_failure("slab_alloc", s, tid);
2492 			goto redo;
2493 		}
2494 		prefetch_freepointer(s, next_object);
2495 		stat(s, ALLOC_FASTPATH);
2496 	}
2497 
2498 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2499 		memset(object, 0, s->object_size);
2500 
2501 	slab_post_alloc_hook(s, gfpflags, object);
2502 
2503 	return object;
2504 }
2505 
2506 static __always_inline void *slab_alloc(struct kmem_cache *s,
2507 		gfp_t gfpflags, unsigned long addr)
2508 {
2509 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2510 }
2511 
2512 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2513 {
2514 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2515 
2516 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2517 				s->size, gfpflags);
2518 
2519 	return ret;
2520 }
2521 EXPORT_SYMBOL(kmem_cache_alloc);
2522 
2523 #ifdef CONFIG_TRACING
2524 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2525 {
2526 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2527 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2528 	kasan_kmalloc(s, ret, size);
2529 	return ret;
2530 }
2531 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2532 #endif
2533 
2534 #ifdef CONFIG_NUMA
2535 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2536 {
2537 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2538 
2539 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2540 				    s->object_size, s->size, gfpflags, node);
2541 
2542 	return ret;
2543 }
2544 EXPORT_SYMBOL(kmem_cache_alloc_node);
2545 
2546 #ifdef CONFIG_TRACING
2547 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2548 				    gfp_t gfpflags,
2549 				    int node, size_t size)
2550 {
2551 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2552 
2553 	trace_kmalloc_node(_RET_IP_, ret,
2554 			   size, s->size, gfpflags, node);
2555 
2556 	kasan_kmalloc(s, ret, size);
2557 	return ret;
2558 }
2559 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2560 #endif
2561 #endif
2562 
2563 /*
2564  * Slow path handling. This may still be called frequently since objects
2565  * have a longer lifetime than the cpu slabs in most processing loads.
2566  *
2567  * So we still attempt to reduce cache line usage. Just take the slab
2568  * lock and free the item. If there is no additional partial page
2569  * handling required then we can return immediately.
2570  */
2571 static void __slab_free(struct kmem_cache *s, struct page *page,
2572 			void *x, unsigned long addr)
2573 {
2574 	void *prior;
2575 	void **object = (void *)x;
2576 	int was_frozen;
2577 	struct page new;
2578 	unsigned long counters;
2579 	struct kmem_cache_node *n = NULL;
2580 	unsigned long uninitialized_var(flags);
2581 
2582 	stat(s, FREE_SLOWPATH);
2583 
2584 	if (kmem_cache_debug(s) &&
2585 		!(n = free_debug_processing(s, page, x, addr, &flags)))
2586 		return;
2587 
2588 	do {
2589 		if (unlikely(n)) {
2590 			spin_unlock_irqrestore(&n->list_lock, flags);
2591 			n = NULL;
2592 		}
2593 		prior = page->freelist;
2594 		counters = page->counters;
2595 		set_freepointer(s, object, prior);
2596 		new.counters = counters;
2597 		was_frozen = new.frozen;
2598 		new.inuse--;
2599 		if ((!new.inuse || !prior) && !was_frozen) {
2600 
2601 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2602 
2603 				/*
2604 				 * Slab was on no list before and will be
2605 				 * partially empty
2606 				 * We can defer the list move and instead
2607 				 * freeze it.
2608 				 */
2609 				new.frozen = 1;
2610 
2611 			} else { /* Needs to be taken off a list */
2612 
2613 				n = get_node(s, page_to_nid(page));
2614 				/*
2615 				 * Speculatively acquire the list_lock.
2616 				 * If the cmpxchg does not succeed then we may
2617 				 * drop the list_lock without any processing.
2618 				 *
2619 				 * Otherwise the list_lock will synchronize with
2620 				 * other processors updating the list of slabs.
2621 				 */
2622 				spin_lock_irqsave(&n->list_lock, flags);
2623 
2624 			}
2625 		}
2626 
2627 	} while (!cmpxchg_double_slab(s, page,
2628 		prior, counters,
2629 		object, new.counters,
2630 		"__slab_free"));
2631 
2632 	if (likely(!n)) {
2633 
2634 		/*
2635 		 * If we just froze the page then put it onto the
2636 		 * per cpu partial list.
2637 		 */
2638 		if (new.frozen && !was_frozen) {
2639 			put_cpu_partial(s, page, 1);
2640 			stat(s, CPU_PARTIAL_FREE);
2641 		}
2642 		/*
2643 		 * The list lock was not taken therefore no list
2644 		 * activity can be necessary.
2645 		 */
2646 		if (was_frozen)
2647 			stat(s, FREE_FROZEN);
2648 		return;
2649 	}
2650 
2651 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2652 		goto slab_empty;
2653 
2654 	/*
2655 	 * Objects left in the slab. If it was not on the partial list before
2656 	 * then add it.
2657 	 */
2658 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2659 		if (kmem_cache_debug(s))
2660 			remove_full(s, n, page);
2661 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2662 		stat(s, FREE_ADD_PARTIAL);
2663 	}
2664 	spin_unlock_irqrestore(&n->list_lock, flags);
2665 	return;
2666 
2667 slab_empty:
2668 	if (prior) {
2669 		/*
2670 		 * Slab on the partial list.
2671 		 */
2672 		remove_partial(n, page);
2673 		stat(s, FREE_REMOVE_PARTIAL);
2674 	} else {
2675 		/* Slab must be on the full list */
2676 		remove_full(s, n, page);
2677 	}
2678 
2679 	spin_unlock_irqrestore(&n->list_lock, flags);
2680 	stat(s, FREE_SLAB);
2681 	discard_slab(s, page);
2682 }
2683 
2684 /*
2685  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2686  * can perform fastpath freeing without additional function calls.
2687  *
2688  * The fastpath is only possible if we are freeing to the current cpu slab
2689  * of this processor. This typically the case if we have just allocated
2690  * the item before.
2691  *
2692  * If fastpath is not possible then fall back to __slab_free where we deal
2693  * with all sorts of special processing.
2694  */
2695 static __always_inline void slab_free(struct kmem_cache *s,
2696 			struct page *page, void *x, unsigned long addr)
2697 {
2698 	void **object = (void *)x;
2699 	struct kmem_cache_cpu *c;
2700 	unsigned long tid;
2701 
2702 	slab_free_hook(s, x);
2703 
2704 redo:
2705 	/*
2706 	 * Determine the currently cpus per cpu slab.
2707 	 * The cpu may change afterward. However that does not matter since
2708 	 * data is retrieved via this pointer. If we are on the same cpu
2709 	 * during the cmpxchg then the free will succeed.
2710 	 */
2711 	do {
2712 		tid = this_cpu_read(s->cpu_slab->tid);
2713 		c = raw_cpu_ptr(s->cpu_slab);
2714 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2715 		 unlikely(tid != READ_ONCE(c->tid)));
2716 
2717 	/* Same with comment on barrier() in slab_alloc_node() */
2718 	barrier();
2719 
2720 	if (likely(page == c->page)) {
2721 		set_freepointer(s, object, c->freelist);
2722 
2723 		if (unlikely(!this_cpu_cmpxchg_double(
2724 				s->cpu_slab->freelist, s->cpu_slab->tid,
2725 				c->freelist, tid,
2726 				object, next_tid(tid)))) {
2727 
2728 			note_cmpxchg_failure("slab_free", s, tid);
2729 			goto redo;
2730 		}
2731 		stat(s, FREE_FASTPATH);
2732 	} else
2733 		__slab_free(s, page, x, addr);
2734 
2735 }
2736 
2737 void kmem_cache_free(struct kmem_cache *s, void *x)
2738 {
2739 	s = cache_from_obj(s, x);
2740 	if (!s)
2741 		return;
2742 	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2743 	trace_kmem_cache_free(_RET_IP_, x);
2744 }
2745 EXPORT_SYMBOL(kmem_cache_free);
2746 
2747 /* Note that interrupts must be enabled when calling this function. */
2748 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2749 {
2750 	struct kmem_cache_cpu *c;
2751 	struct page *page;
2752 	int i;
2753 
2754 	local_irq_disable();
2755 	c = this_cpu_ptr(s->cpu_slab);
2756 
2757 	for (i = 0; i < size; i++) {
2758 		void *object = p[i];
2759 
2760 		BUG_ON(!object);
2761 		/* kmem cache debug support */
2762 		s = cache_from_obj(s, object);
2763 		if (unlikely(!s))
2764 			goto exit;
2765 		slab_free_hook(s, object);
2766 
2767 		page = virt_to_head_page(object);
2768 
2769 		if (c->page == page) {
2770 			/* Fastpath: local CPU free */
2771 			set_freepointer(s, object, c->freelist);
2772 			c->freelist = object;
2773 		} else {
2774 			c->tid = next_tid(c->tid);
2775 			local_irq_enable();
2776 			/* Slowpath: overhead locked cmpxchg_double_slab */
2777 			__slab_free(s, page, object, _RET_IP_);
2778 			local_irq_disable();
2779 			c = this_cpu_ptr(s->cpu_slab);
2780 		}
2781 	}
2782 exit:
2783 	c->tid = next_tid(c->tid);
2784 	local_irq_enable();
2785 }
2786 EXPORT_SYMBOL(kmem_cache_free_bulk);
2787 
2788 /* Note that interrupts must be enabled when calling this function. */
2789 bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2790 			   void **p)
2791 {
2792 	struct kmem_cache_cpu *c;
2793 	int i;
2794 
2795 	/*
2796 	 * Drain objects in the per cpu slab, while disabling local
2797 	 * IRQs, which protects against PREEMPT and interrupts
2798 	 * handlers invoking normal fastpath.
2799 	 */
2800 	local_irq_disable();
2801 	c = this_cpu_ptr(s->cpu_slab);
2802 
2803 	for (i = 0; i < size; i++) {
2804 		void *object = c->freelist;
2805 
2806 		if (unlikely(!object)) {
2807 			local_irq_enable();
2808 			/*
2809 			 * Invoking slow path likely have side-effect
2810 			 * of re-populating per CPU c->freelist
2811 			 */
2812 			p[i] = __slab_alloc(s, flags, NUMA_NO_NODE,
2813 					    _RET_IP_, c);
2814 			if (unlikely(!p[i])) {
2815 				__kmem_cache_free_bulk(s, i, p);
2816 				return false;
2817 			}
2818 			local_irq_disable();
2819 			c = this_cpu_ptr(s->cpu_slab);
2820 			continue; /* goto for-loop */
2821 		}
2822 
2823 		/* kmem_cache debug support */
2824 		s = slab_pre_alloc_hook(s, flags);
2825 		if (unlikely(!s)) {
2826 			__kmem_cache_free_bulk(s, i, p);
2827 			c->tid = next_tid(c->tid);
2828 			local_irq_enable();
2829 			return false;
2830 		}
2831 
2832 		c->freelist = get_freepointer(s, object);
2833 		p[i] = object;
2834 
2835 		/* kmem_cache debug support */
2836 		slab_post_alloc_hook(s, flags, object);
2837 	}
2838 	c->tid = next_tid(c->tid);
2839 	local_irq_enable();
2840 
2841 	/* Clear memory outside IRQ disabled fastpath loop */
2842 	if (unlikely(flags & __GFP_ZERO)) {
2843 		int j;
2844 
2845 		for (j = 0; j < i; j++)
2846 			memset(p[j], 0, s->object_size);
2847 	}
2848 
2849 	return true;
2850 }
2851 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2852 
2853 
2854 /*
2855  * Object placement in a slab is made very easy because we always start at
2856  * offset 0. If we tune the size of the object to the alignment then we can
2857  * get the required alignment by putting one properly sized object after
2858  * another.
2859  *
2860  * Notice that the allocation order determines the sizes of the per cpu
2861  * caches. Each processor has always one slab available for allocations.
2862  * Increasing the allocation order reduces the number of times that slabs
2863  * must be moved on and off the partial lists and is therefore a factor in
2864  * locking overhead.
2865  */
2866 
2867 /*
2868  * Mininum / Maximum order of slab pages. This influences locking overhead
2869  * and slab fragmentation. A higher order reduces the number of partial slabs
2870  * and increases the number of allocations possible without having to
2871  * take the list_lock.
2872  */
2873 static int slub_min_order;
2874 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2875 static int slub_min_objects;
2876 
2877 /*
2878  * Calculate the order of allocation given an slab object size.
2879  *
2880  * The order of allocation has significant impact on performance and other
2881  * system components. Generally order 0 allocations should be preferred since
2882  * order 0 does not cause fragmentation in the page allocator. Larger objects
2883  * be problematic to put into order 0 slabs because there may be too much
2884  * unused space left. We go to a higher order if more than 1/16th of the slab
2885  * would be wasted.
2886  *
2887  * In order to reach satisfactory performance we must ensure that a minimum
2888  * number of objects is in one slab. Otherwise we may generate too much
2889  * activity on the partial lists which requires taking the list_lock. This is
2890  * less a concern for large slabs though which are rarely used.
2891  *
2892  * slub_max_order specifies the order where we begin to stop considering the
2893  * number of objects in a slab as critical. If we reach slub_max_order then
2894  * we try to keep the page order as low as possible. So we accept more waste
2895  * of space in favor of a small page order.
2896  *
2897  * Higher order allocations also allow the placement of more objects in a
2898  * slab and thereby reduce object handling overhead. If the user has
2899  * requested a higher mininum order then we start with that one instead of
2900  * the smallest order which will fit the object.
2901  */
2902 static inline int slab_order(int size, int min_objects,
2903 				int max_order, int fract_leftover, int reserved)
2904 {
2905 	int order;
2906 	int rem;
2907 	int min_order = slub_min_order;
2908 
2909 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2910 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2911 
2912 	for (order = max(min_order, get_order(min_objects * size + reserved));
2913 			order <= max_order; order++) {
2914 
2915 		unsigned long slab_size = PAGE_SIZE << order;
2916 
2917 		rem = (slab_size - reserved) % size;
2918 
2919 		if (rem <= slab_size / fract_leftover)
2920 			break;
2921 	}
2922 
2923 	return order;
2924 }
2925 
2926 static inline int calculate_order(int size, int reserved)
2927 {
2928 	int order;
2929 	int min_objects;
2930 	int fraction;
2931 	int max_objects;
2932 
2933 	/*
2934 	 * Attempt to find best configuration for a slab. This
2935 	 * works by first attempting to generate a layout with
2936 	 * the best configuration and backing off gradually.
2937 	 *
2938 	 * First we increase the acceptable waste in a slab. Then
2939 	 * we reduce the minimum objects required in a slab.
2940 	 */
2941 	min_objects = slub_min_objects;
2942 	if (!min_objects)
2943 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2944 	max_objects = order_objects(slub_max_order, size, reserved);
2945 	min_objects = min(min_objects, max_objects);
2946 
2947 	while (min_objects > 1) {
2948 		fraction = 16;
2949 		while (fraction >= 4) {
2950 			order = slab_order(size, min_objects,
2951 					slub_max_order, fraction, reserved);
2952 			if (order <= slub_max_order)
2953 				return order;
2954 			fraction /= 2;
2955 		}
2956 		min_objects--;
2957 	}
2958 
2959 	/*
2960 	 * We were unable to place multiple objects in a slab. Now
2961 	 * lets see if we can place a single object there.
2962 	 */
2963 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2964 	if (order <= slub_max_order)
2965 		return order;
2966 
2967 	/*
2968 	 * Doh this slab cannot be placed using slub_max_order.
2969 	 */
2970 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2971 	if (order < MAX_ORDER)
2972 		return order;
2973 	return -ENOSYS;
2974 }
2975 
2976 static void
2977 init_kmem_cache_node(struct kmem_cache_node *n)
2978 {
2979 	n->nr_partial = 0;
2980 	spin_lock_init(&n->list_lock);
2981 	INIT_LIST_HEAD(&n->partial);
2982 #ifdef CONFIG_SLUB_DEBUG
2983 	atomic_long_set(&n->nr_slabs, 0);
2984 	atomic_long_set(&n->total_objects, 0);
2985 	INIT_LIST_HEAD(&n->full);
2986 #endif
2987 }
2988 
2989 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2990 {
2991 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2992 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2993 
2994 	/*
2995 	 * Must align to double word boundary for the double cmpxchg
2996 	 * instructions to work; see __pcpu_double_call_return_bool().
2997 	 */
2998 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2999 				     2 * sizeof(void *));
3000 
3001 	if (!s->cpu_slab)
3002 		return 0;
3003 
3004 	init_kmem_cache_cpus(s);
3005 
3006 	return 1;
3007 }
3008 
3009 static struct kmem_cache *kmem_cache_node;
3010 
3011 /*
3012  * No kmalloc_node yet so do it by hand. We know that this is the first
3013  * slab on the node for this slabcache. There are no concurrent accesses
3014  * possible.
3015  *
3016  * Note that this function only works on the kmem_cache_node
3017  * when allocating for the kmem_cache_node. This is used for bootstrapping
3018  * memory on a fresh node that has no slab structures yet.
3019  */
3020 static void early_kmem_cache_node_alloc(int node)
3021 {
3022 	struct page *page;
3023 	struct kmem_cache_node *n;
3024 
3025 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3026 
3027 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3028 
3029 	BUG_ON(!page);
3030 	if (page_to_nid(page) != node) {
3031 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3032 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3033 	}
3034 
3035 	n = page->freelist;
3036 	BUG_ON(!n);
3037 	page->freelist = get_freepointer(kmem_cache_node, n);
3038 	page->inuse = 1;
3039 	page->frozen = 0;
3040 	kmem_cache_node->node[node] = n;
3041 #ifdef CONFIG_SLUB_DEBUG
3042 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3043 	init_tracking(kmem_cache_node, n);
3044 #endif
3045 	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
3046 	init_kmem_cache_node(n);
3047 	inc_slabs_node(kmem_cache_node, node, page->objects);
3048 
3049 	/*
3050 	 * No locks need to be taken here as it has just been
3051 	 * initialized and there is no concurrent access.
3052 	 */
3053 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3054 }
3055 
3056 static void free_kmem_cache_nodes(struct kmem_cache *s)
3057 {
3058 	int node;
3059 	struct kmem_cache_node *n;
3060 
3061 	for_each_kmem_cache_node(s, node, n) {
3062 		kmem_cache_free(kmem_cache_node, n);
3063 		s->node[node] = NULL;
3064 	}
3065 }
3066 
3067 static int init_kmem_cache_nodes(struct kmem_cache *s)
3068 {
3069 	int node;
3070 
3071 	for_each_node_state(node, N_NORMAL_MEMORY) {
3072 		struct kmem_cache_node *n;
3073 
3074 		if (slab_state == DOWN) {
3075 			early_kmem_cache_node_alloc(node);
3076 			continue;
3077 		}
3078 		n = kmem_cache_alloc_node(kmem_cache_node,
3079 						GFP_KERNEL, node);
3080 
3081 		if (!n) {
3082 			free_kmem_cache_nodes(s);
3083 			return 0;
3084 		}
3085 
3086 		s->node[node] = n;
3087 		init_kmem_cache_node(n);
3088 	}
3089 	return 1;
3090 }
3091 
3092 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3093 {
3094 	if (min < MIN_PARTIAL)
3095 		min = MIN_PARTIAL;
3096 	else if (min > MAX_PARTIAL)
3097 		min = MAX_PARTIAL;
3098 	s->min_partial = min;
3099 }
3100 
3101 /*
3102  * calculate_sizes() determines the order and the distribution of data within
3103  * a slab object.
3104  */
3105 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3106 {
3107 	unsigned long flags = s->flags;
3108 	unsigned long size = s->object_size;
3109 	int order;
3110 
3111 	/*
3112 	 * Round up object size to the next word boundary. We can only
3113 	 * place the free pointer at word boundaries and this determines
3114 	 * the possible location of the free pointer.
3115 	 */
3116 	size = ALIGN(size, sizeof(void *));
3117 
3118 #ifdef CONFIG_SLUB_DEBUG
3119 	/*
3120 	 * Determine if we can poison the object itself. If the user of
3121 	 * the slab may touch the object after free or before allocation
3122 	 * then we should never poison the object itself.
3123 	 */
3124 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3125 			!s->ctor)
3126 		s->flags |= __OBJECT_POISON;
3127 	else
3128 		s->flags &= ~__OBJECT_POISON;
3129 
3130 
3131 	/*
3132 	 * If we are Redzoning then check if there is some space between the
3133 	 * end of the object and the free pointer. If not then add an
3134 	 * additional word to have some bytes to store Redzone information.
3135 	 */
3136 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3137 		size += sizeof(void *);
3138 #endif
3139 
3140 	/*
3141 	 * With that we have determined the number of bytes in actual use
3142 	 * by the object. This is the potential offset to the free pointer.
3143 	 */
3144 	s->inuse = size;
3145 
3146 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3147 		s->ctor)) {
3148 		/*
3149 		 * Relocate free pointer after the object if it is not
3150 		 * permitted to overwrite the first word of the object on
3151 		 * kmem_cache_free.
3152 		 *
3153 		 * This is the case if we do RCU, have a constructor or
3154 		 * destructor or are poisoning the objects.
3155 		 */
3156 		s->offset = size;
3157 		size += sizeof(void *);
3158 	}
3159 
3160 #ifdef CONFIG_SLUB_DEBUG
3161 	if (flags & SLAB_STORE_USER)
3162 		/*
3163 		 * Need to store information about allocs and frees after
3164 		 * the object.
3165 		 */
3166 		size += 2 * sizeof(struct track);
3167 
3168 	if (flags & SLAB_RED_ZONE)
3169 		/*
3170 		 * Add some empty padding so that we can catch
3171 		 * overwrites from earlier objects rather than let
3172 		 * tracking information or the free pointer be
3173 		 * corrupted if a user writes before the start
3174 		 * of the object.
3175 		 */
3176 		size += sizeof(void *);
3177 #endif
3178 
3179 	/*
3180 	 * SLUB stores one object immediately after another beginning from
3181 	 * offset 0. In order to align the objects we have to simply size
3182 	 * each object to conform to the alignment.
3183 	 */
3184 	size = ALIGN(size, s->align);
3185 	s->size = size;
3186 	if (forced_order >= 0)
3187 		order = forced_order;
3188 	else
3189 		order = calculate_order(size, s->reserved);
3190 
3191 	if (order < 0)
3192 		return 0;
3193 
3194 	s->allocflags = 0;
3195 	if (order)
3196 		s->allocflags |= __GFP_COMP;
3197 
3198 	if (s->flags & SLAB_CACHE_DMA)
3199 		s->allocflags |= GFP_DMA;
3200 
3201 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3202 		s->allocflags |= __GFP_RECLAIMABLE;
3203 
3204 	/*
3205 	 * Determine the number of objects per slab
3206 	 */
3207 	s->oo = oo_make(order, size, s->reserved);
3208 	s->min = oo_make(get_order(size), size, s->reserved);
3209 	if (oo_objects(s->oo) > oo_objects(s->max))
3210 		s->max = s->oo;
3211 
3212 	return !!oo_objects(s->oo);
3213 }
3214 
3215 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3216 {
3217 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3218 	s->reserved = 0;
3219 
3220 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3221 		s->reserved = sizeof(struct rcu_head);
3222 
3223 	if (!calculate_sizes(s, -1))
3224 		goto error;
3225 	if (disable_higher_order_debug) {
3226 		/*
3227 		 * Disable debugging flags that store metadata if the min slab
3228 		 * order increased.
3229 		 */
3230 		if (get_order(s->size) > get_order(s->object_size)) {
3231 			s->flags &= ~DEBUG_METADATA_FLAGS;
3232 			s->offset = 0;
3233 			if (!calculate_sizes(s, -1))
3234 				goto error;
3235 		}
3236 	}
3237 
3238 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3239     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3240 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3241 		/* Enable fast mode */
3242 		s->flags |= __CMPXCHG_DOUBLE;
3243 #endif
3244 
3245 	/*
3246 	 * The larger the object size is, the more pages we want on the partial
3247 	 * list to avoid pounding the page allocator excessively.
3248 	 */
3249 	set_min_partial(s, ilog2(s->size) / 2);
3250 
3251 	/*
3252 	 * cpu_partial determined the maximum number of objects kept in the
3253 	 * per cpu partial lists of a processor.
3254 	 *
3255 	 * Per cpu partial lists mainly contain slabs that just have one
3256 	 * object freed. If they are used for allocation then they can be
3257 	 * filled up again with minimal effort. The slab will never hit the
3258 	 * per node partial lists and therefore no locking will be required.
3259 	 *
3260 	 * This setting also determines
3261 	 *
3262 	 * A) The number of objects from per cpu partial slabs dumped to the
3263 	 *    per node list when we reach the limit.
3264 	 * B) The number of objects in cpu partial slabs to extract from the
3265 	 *    per node list when we run out of per cpu objects. We only fetch
3266 	 *    50% to keep some capacity around for frees.
3267 	 */
3268 	if (!kmem_cache_has_cpu_partial(s))
3269 		s->cpu_partial = 0;
3270 	else if (s->size >= PAGE_SIZE)
3271 		s->cpu_partial = 2;
3272 	else if (s->size >= 1024)
3273 		s->cpu_partial = 6;
3274 	else if (s->size >= 256)
3275 		s->cpu_partial = 13;
3276 	else
3277 		s->cpu_partial = 30;
3278 
3279 #ifdef CONFIG_NUMA
3280 	s->remote_node_defrag_ratio = 1000;
3281 #endif
3282 	if (!init_kmem_cache_nodes(s))
3283 		goto error;
3284 
3285 	if (alloc_kmem_cache_cpus(s))
3286 		return 0;
3287 
3288 	free_kmem_cache_nodes(s);
3289 error:
3290 	if (flags & SLAB_PANIC)
3291 		panic("Cannot create slab %s size=%lu realsize=%u "
3292 			"order=%u offset=%u flags=%lx\n",
3293 			s->name, (unsigned long)s->size, s->size,
3294 			oo_order(s->oo), s->offset, flags);
3295 	return -EINVAL;
3296 }
3297 
3298 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3299 							const char *text)
3300 {
3301 #ifdef CONFIG_SLUB_DEBUG
3302 	void *addr = page_address(page);
3303 	void *p;
3304 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3305 				     sizeof(long), GFP_ATOMIC);
3306 	if (!map)
3307 		return;
3308 	slab_err(s, page, text, s->name);
3309 	slab_lock(page);
3310 
3311 	get_map(s, page, map);
3312 	for_each_object(p, s, addr, page->objects) {
3313 
3314 		if (!test_bit(slab_index(p, s, addr), map)) {
3315 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3316 			print_tracking(s, p);
3317 		}
3318 	}
3319 	slab_unlock(page);
3320 	kfree(map);
3321 #endif
3322 }
3323 
3324 /*
3325  * Attempt to free all partial slabs on a node.
3326  * This is called from kmem_cache_close(). We must be the last thread
3327  * using the cache and therefore we do not need to lock anymore.
3328  */
3329 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3330 {
3331 	struct page *page, *h;
3332 
3333 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3334 		if (!page->inuse) {
3335 			__remove_partial(n, page);
3336 			discard_slab(s, page);
3337 		} else {
3338 			list_slab_objects(s, page,
3339 			"Objects remaining in %s on kmem_cache_close()");
3340 		}
3341 	}
3342 }
3343 
3344 /*
3345  * Release all resources used by a slab cache.
3346  */
3347 static inline int kmem_cache_close(struct kmem_cache *s)
3348 {
3349 	int node;
3350 	struct kmem_cache_node *n;
3351 
3352 	flush_all(s);
3353 	/* Attempt to free all objects */
3354 	for_each_kmem_cache_node(s, node, n) {
3355 		free_partial(s, n);
3356 		if (n->nr_partial || slabs_node(s, node))
3357 			return 1;
3358 	}
3359 	free_percpu(s->cpu_slab);
3360 	free_kmem_cache_nodes(s);
3361 	return 0;
3362 }
3363 
3364 int __kmem_cache_shutdown(struct kmem_cache *s)
3365 {
3366 	return kmem_cache_close(s);
3367 }
3368 
3369 /********************************************************************
3370  *		Kmalloc subsystem
3371  *******************************************************************/
3372 
3373 static int __init setup_slub_min_order(char *str)
3374 {
3375 	get_option(&str, &slub_min_order);
3376 
3377 	return 1;
3378 }
3379 
3380 __setup("slub_min_order=", setup_slub_min_order);
3381 
3382 static int __init setup_slub_max_order(char *str)
3383 {
3384 	get_option(&str, &slub_max_order);
3385 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3386 
3387 	return 1;
3388 }
3389 
3390 __setup("slub_max_order=", setup_slub_max_order);
3391 
3392 static int __init setup_slub_min_objects(char *str)
3393 {
3394 	get_option(&str, &slub_min_objects);
3395 
3396 	return 1;
3397 }
3398 
3399 __setup("slub_min_objects=", setup_slub_min_objects);
3400 
3401 void *__kmalloc(size_t size, gfp_t flags)
3402 {
3403 	struct kmem_cache *s;
3404 	void *ret;
3405 
3406 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3407 		return kmalloc_large(size, flags);
3408 
3409 	s = kmalloc_slab(size, flags);
3410 
3411 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3412 		return s;
3413 
3414 	ret = slab_alloc(s, flags, _RET_IP_);
3415 
3416 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3417 
3418 	kasan_kmalloc(s, ret, size);
3419 
3420 	return ret;
3421 }
3422 EXPORT_SYMBOL(__kmalloc);
3423 
3424 #ifdef CONFIG_NUMA
3425 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3426 {
3427 	struct page *page;
3428 	void *ptr = NULL;
3429 
3430 	flags |= __GFP_COMP | __GFP_NOTRACK;
3431 	page = alloc_kmem_pages_node(node, flags, get_order(size));
3432 	if (page)
3433 		ptr = page_address(page);
3434 
3435 	kmalloc_large_node_hook(ptr, size, flags);
3436 	return ptr;
3437 }
3438 
3439 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3440 {
3441 	struct kmem_cache *s;
3442 	void *ret;
3443 
3444 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3445 		ret = kmalloc_large_node(size, flags, node);
3446 
3447 		trace_kmalloc_node(_RET_IP_, ret,
3448 				   size, PAGE_SIZE << get_order(size),
3449 				   flags, node);
3450 
3451 		return ret;
3452 	}
3453 
3454 	s = kmalloc_slab(size, flags);
3455 
3456 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3457 		return s;
3458 
3459 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3460 
3461 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3462 
3463 	kasan_kmalloc(s, ret, size);
3464 
3465 	return ret;
3466 }
3467 EXPORT_SYMBOL(__kmalloc_node);
3468 #endif
3469 
3470 static size_t __ksize(const void *object)
3471 {
3472 	struct page *page;
3473 
3474 	if (unlikely(object == ZERO_SIZE_PTR))
3475 		return 0;
3476 
3477 	page = virt_to_head_page(object);
3478 
3479 	if (unlikely(!PageSlab(page))) {
3480 		WARN_ON(!PageCompound(page));
3481 		return PAGE_SIZE << compound_order(page);
3482 	}
3483 
3484 	return slab_ksize(page->slab_cache);
3485 }
3486 
3487 size_t ksize(const void *object)
3488 {
3489 	size_t size = __ksize(object);
3490 	/* We assume that ksize callers could use whole allocated area,
3491 	   so we need unpoison this area. */
3492 	kasan_krealloc(object, size);
3493 	return size;
3494 }
3495 EXPORT_SYMBOL(ksize);
3496 
3497 void kfree(const void *x)
3498 {
3499 	struct page *page;
3500 	void *object = (void *)x;
3501 
3502 	trace_kfree(_RET_IP_, x);
3503 
3504 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3505 		return;
3506 
3507 	page = virt_to_head_page(x);
3508 	if (unlikely(!PageSlab(page))) {
3509 		BUG_ON(!PageCompound(page));
3510 		kfree_hook(x);
3511 		__free_kmem_pages(page, compound_order(page));
3512 		return;
3513 	}
3514 	slab_free(page->slab_cache, page, object, _RET_IP_);
3515 }
3516 EXPORT_SYMBOL(kfree);
3517 
3518 #define SHRINK_PROMOTE_MAX 32
3519 
3520 /*
3521  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3522  * up most to the head of the partial lists. New allocations will then
3523  * fill those up and thus they can be removed from the partial lists.
3524  *
3525  * The slabs with the least items are placed last. This results in them
3526  * being allocated from last increasing the chance that the last objects
3527  * are freed in them.
3528  */
3529 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3530 {
3531 	int node;
3532 	int i;
3533 	struct kmem_cache_node *n;
3534 	struct page *page;
3535 	struct page *t;
3536 	struct list_head discard;
3537 	struct list_head promote[SHRINK_PROMOTE_MAX];
3538 	unsigned long flags;
3539 	int ret = 0;
3540 
3541 	if (deactivate) {
3542 		/*
3543 		 * Disable empty slabs caching. Used to avoid pinning offline
3544 		 * memory cgroups by kmem pages that can be freed.
3545 		 */
3546 		s->cpu_partial = 0;
3547 		s->min_partial = 0;
3548 
3549 		/*
3550 		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3551 		 * so we have to make sure the change is visible.
3552 		 */
3553 		kick_all_cpus_sync();
3554 	}
3555 
3556 	flush_all(s);
3557 	for_each_kmem_cache_node(s, node, n) {
3558 		INIT_LIST_HEAD(&discard);
3559 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3560 			INIT_LIST_HEAD(promote + i);
3561 
3562 		spin_lock_irqsave(&n->list_lock, flags);
3563 
3564 		/*
3565 		 * Build lists of slabs to discard or promote.
3566 		 *
3567 		 * Note that concurrent frees may occur while we hold the
3568 		 * list_lock. page->inuse here is the upper limit.
3569 		 */
3570 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3571 			int free = page->objects - page->inuse;
3572 
3573 			/* Do not reread page->inuse */
3574 			barrier();
3575 
3576 			/* We do not keep full slabs on the list */
3577 			BUG_ON(free <= 0);
3578 
3579 			if (free == page->objects) {
3580 				list_move(&page->lru, &discard);
3581 				n->nr_partial--;
3582 			} else if (free <= SHRINK_PROMOTE_MAX)
3583 				list_move(&page->lru, promote + free - 1);
3584 		}
3585 
3586 		/*
3587 		 * Promote the slabs filled up most to the head of the
3588 		 * partial list.
3589 		 */
3590 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3591 			list_splice(promote + i, &n->partial);
3592 
3593 		spin_unlock_irqrestore(&n->list_lock, flags);
3594 
3595 		/* Release empty slabs */
3596 		list_for_each_entry_safe(page, t, &discard, lru)
3597 			discard_slab(s, page);
3598 
3599 		if (slabs_node(s, node))
3600 			ret = 1;
3601 	}
3602 
3603 	return ret;
3604 }
3605 
3606 static int slab_mem_going_offline_callback(void *arg)
3607 {
3608 	struct kmem_cache *s;
3609 
3610 	mutex_lock(&slab_mutex);
3611 	list_for_each_entry(s, &slab_caches, list)
3612 		__kmem_cache_shrink(s, false);
3613 	mutex_unlock(&slab_mutex);
3614 
3615 	return 0;
3616 }
3617 
3618 static void slab_mem_offline_callback(void *arg)
3619 {
3620 	struct kmem_cache_node *n;
3621 	struct kmem_cache *s;
3622 	struct memory_notify *marg = arg;
3623 	int offline_node;
3624 
3625 	offline_node = marg->status_change_nid_normal;
3626 
3627 	/*
3628 	 * If the node still has available memory. we need kmem_cache_node
3629 	 * for it yet.
3630 	 */
3631 	if (offline_node < 0)
3632 		return;
3633 
3634 	mutex_lock(&slab_mutex);
3635 	list_for_each_entry(s, &slab_caches, list) {
3636 		n = get_node(s, offline_node);
3637 		if (n) {
3638 			/*
3639 			 * if n->nr_slabs > 0, slabs still exist on the node
3640 			 * that is going down. We were unable to free them,
3641 			 * and offline_pages() function shouldn't call this
3642 			 * callback. So, we must fail.
3643 			 */
3644 			BUG_ON(slabs_node(s, offline_node));
3645 
3646 			s->node[offline_node] = NULL;
3647 			kmem_cache_free(kmem_cache_node, n);
3648 		}
3649 	}
3650 	mutex_unlock(&slab_mutex);
3651 }
3652 
3653 static int slab_mem_going_online_callback(void *arg)
3654 {
3655 	struct kmem_cache_node *n;
3656 	struct kmem_cache *s;
3657 	struct memory_notify *marg = arg;
3658 	int nid = marg->status_change_nid_normal;
3659 	int ret = 0;
3660 
3661 	/*
3662 	 * If the node's memory is already available, then kmem_cache_node is
3663 	 * already created. Nothing to do.
3664 	 */
3665 	if (nid < 0)
3666 		return 0;
3667 
3668 	/*
3669 	 * We are bringing a node online. No memory is available yet. We must
3670 	 * allocate a kmem_cache_node structure in order to bring the node
3671 	 * online.
3672 	 */
3673 	mutex_lock(&slab_mutex);
3674 	list_for_each_entry(s, &slab_caches, list) {
3675 		/*
3676 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3677 		 *      since memory is not yet available from the node that
3678 		 *      is brought up.
3679 		 */
3680 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3681 		if (!n) {
3682 			ret = -ENOMEM;
3683 			goto out;
3684 		}
3685 		init_kmem_cache_node(n);
3686 		s->node[nid] = n;
3687 	}
3688 out:
3689 	mutex_unlock(&slab_mutex);
3690 	return ret;
3691 }
3692 
3693 static int slab_memory_callback(struct notifier_block *self,
3694 				unsigned long action, void *arg)
3695 {
3696 	int ret = 0;
3697 
3698 	switch (action) {
3699 	case MEM_GOING_ONLINE:
3700 		ret = slab_mem_going_online_callback(arg);
3701 		break;
3702 	case MEM_GOING_OFFLINE:
3703 		ret = slab_mem_going_offline_callback(arg);
3704 		break;
3705 	case MEM_OFFLINE:
3706 	case MEM_CANCEL_ONLINE:
3707 		slab_mem_offline_callback(arg);
3708 		break;
3709 	case MEM_ONLINE:
3710 	case MEM_CANCEL_OFFLINE:
3711 		break;
3712 	}
3713 	if (ret)
3714 		ret = notifier_from_errno(ret);
3715 	else
3716 		ret = NOTIFY_OK;
3717 	return ret;
3718 }
3719 
3720 static struct notifier_block slab_memory_callback_nb = {
3721 	.notifier_call = slab_memory_callback,
3722 	.priority = SLAB_CALLBACK_PRI,
3723 };
3724 
3725 /********************************************************************
3726  *			Basic setup of slabs
3727  *******************************************************************/
3728 
3729 /*
3730  * Used for early kmem_cache structures that were allocated using
3731  * the page allocator. Allocate them properly then fix up the pointers
3732  * that may be pointing to the wrong kmem_cache structure.
3733  */
3734 
3735 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3736 {
3737 	int node;
3738 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3739 	struct kmem_cache_node *n;
3740 
3741 	memcpy(s, static_cache, kmem_cache->object_size);
3742 
3743 	/*
3744 	 * This runs very early, and only the boot processor is supposed to be
3745 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3746 	 * IPIs around.
3747 	 */
3748 	__flush_cpu_slab(s, smp_processor_id());
3749 	for_each_kmem_cache_node(s, node, n) {
3750 		struct page *p;
3751 
3752 		list_for_each_entry(p, &n->partial, lru)
3753 			p->slab_cache = s;
3754 
3755 #ifdef CONFIG_SLUB_DEBUG
3756 		list_for_each_entry(p, &n->full, lru)
3757 			p->slab_cache = s;
3758 #endif
3759 	}
3760 	slab_init_memcg_params(s);
3761 	list_add(&s->list, &slab_caches);
3762 	return s;
3763 }
3764 
3765 void __init kmem_cache_init(void)
3766 {
3767 	static __initdata struct kmem_cache boot_kmem_cache,
3768 		boot_kmem_cache_node;
3769 
3770 	if (debug_guardpage_minorder())
3771 		slub_max_order = 0;
3772 
3773 	kmem_cache_node = &boot_kmem_cache_node;
3774 	kmem_cache = &boot_kmem_cache;
3775 
3776 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3777 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3778 
3779 	register_hotmemory_notifier(&slab_memory_callback_nb);
3780 
3781 	/* Able to allocate the per node structures */
3782 	slab_state = PARTIAL;
3783 
3784 	create_boot_cache(kmem_cache, "kmem_cache",
3785 			offsetof(struct kmem_cache, node) +
3786 				nr_node_ids * sizeof(struct kmem_cache_node *),
3787 		       SLAB_HWCACHE_ALIGN);
3788 
3789 	kmem_cache = bootstrap(&boot_kmem_cache);
3790 
3791 	/*
3792 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3793 	 * kmem_cache_node is separately allocated so no need to
3794 	 * update any list pointers.
3795 	 */
3796 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3797 
3798 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3799 	setup_kmalloc_cache_index_table();
3800 	create_kmalloc_caches(0);
3801 
3802 #ifdef CONFIG_SMP
3803 	register_cpu_notifier(&slab_notifier);
3804 #endif
3805 
3806 	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3807 		cache_line_size(),
3808 		slub_min_order, slub_max_order, slub_min_objects,
3809 		nr_cpu_ids, nr_node_ids);
3810 }
3811 
3812 void __init kmem_cache_init_late(void)
3813 {
3814 }
3815 
3816 struct kmem_cache *
3817 __kmem_cache_alias(const char *name, size_t size, size_t align,
3818 		   unsigned long flags, void (*ctor)(void *))
3819 {
3820 	struct kmem_cache *s, *c;
3821 
3822 	s = find_mergeable(size, align, flags, name, ctor);
3823 	if (s) {
3824 		s->refcount++;
3825 
3826 		/*
3827 		 * Adjust the object sizes so that we clear
3828 		 * the complete object on kzalloc.
3829 		 */
3830 		s->object_size = max(s->object_size, (int)size);
3831 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3832 
3833 		for_each_memcg_cache(c, s) {
3834 			c->object_size = s->object_size;
3835 			c->inuse = max_t(int, c->inuse,
3836 					 ALIGN(size, sizeof(void *)));
3837 		}
3838 
3839 		if (sysfs_slab_alias(s, name)) {
3840 			s->refcount--;
3841 			s = NULL;
3842 		}
3843 	}
3844 
3845 	return s;
3846 }
3847 
3848 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3849 {
3850 	int err;
3851 
3852 	err = kmem_cache_open(s, flags);
3853 	if (err)
3854 		return err;
3855 
3856 	/* Mutex is not taken during early boot */
3857 	if (slab_state <= UP)
3858 		return 0;
3859 
3860 	memcg_propagate_slab_attrs(s);
3861 	err = sysfs_slab_add(s);
3862 	if (err)
3863 		kmem_cache_close(s);
3864 
3865 	return err;
3866 }
3867 
3868 #ifdef CONFIG_SMP
3869 /*
3870  * Use the cpu notifier to insure that the cpu slabs are flushed when
3871  * necessary.
3872  */
3873 static int slab_cpuup_callback(struct notifier_block *nfb,
3874 		unsigned long action, void *hcpu)
3875 {
3876 	long cpu = (long)hcpu;
3877 	struct kmem_cache *s;
3878 	unsigned long flags;
3879 
3880 	switch (action) {
3881 	case CPU_UP_CANCELED:
3882 	case CPU_UP_CANCELED_FROZEN:
3883 	case CPU_DEAD:
3884 	case CPU_DEAD_FROZEN:
3885 		mutex_lock(&slab_mutex);
3886 		list_for_each_entry(s, &slab_caches, list) {
3887 			local_irq_save(flags);
3888 			__flush_cpu_slab(s, cpu);
3889 			local_irq_restore(flags);
3890 		}
3891 		mutex_unlock(&slab_mutex);
3892 		break;
3893 	default:
3894 		break;
3895 	}
3896 	return NOTIFY_OK;
3897 }
3898 
3899 static struct notifier_block slab_notifier = {
3900 	.notifier_call = slab_cpuup_callback
3901 };
3902 
3903 #endif
3904 
3905 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3906 {
3907 	struct kmem_cache *s;
3908 	void *ret;
3909 
3910 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3911 		return kmalloc_large(size, gfpflags);
3912 
3913 	s = kmalloc_slab(size, gfpflags);
3914 
3915 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3916 		return s;
3917 
3918 	ret = slab_alloc(s, gfpflags, caller);
3919 
3920 	/* Honor the call site pointer we received. */
3921 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3922 
3923 	return ret;
3924 }
3925 
3926 #ifdef CONFIG_NUMA
3927 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3928 					int node, unsigned long caller)
3929 {
3930 	struct kmem_cache *s;
3931 	void *ret;
3932 
3933 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3934 		ret = kmalloc_large_node(size, gfpflags, node);
3935 
3936 		trace_kmalloc_node(caller, ret,
3937 				   size, PAGE_SIZE << get_order(size),
3938 				   gfpflags, node);
3939 
3940 		return ret;
3941 	}
3942 
3943 	s = kmalloc_slab(size, gfpflags);
3944 
3945 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3946 		return s;
3947 
3948 	ret = slab_alloc_node(s, gfpflags, node, caller);
3949 
3950 	/* Honor the call site pointer we received. */
3951 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3952 
3953 	return ret;
3954 }
3955 #endif
3956 
3957 #ifdef CONFIG_SYSFS
3958 static int count_inuse(struct page *page)
3959 {
3960 	return page->inuse;
3961 }
3962 
3963 static int count_total(struct page *page)
3964 {
3965 	return page->objects;
3966 }
3967 #endif
3968 
3969 #ifdef CONFIG_SLUB_DEBUG
3970 static int validate_slab(struct kmem_cache *s, struct page *page,
3971 						unsigned long *map)
3972 {
3973 	void *p;
3974 	void *addr = page_address(page);
3975 
3976 	if (!check_slab(s, page) ||
3977 			!on_freelist(s, page, NULL))
3978 		return 0;
3979 
3980 	/* Now we know that a valid freelist exists */
3981 	bitmap_zero(map, page->objects);
3982 
3983 	get_map(s, page, map);
3984 	for_each_object(p, s, addr, page->objects) {
3985 		if (test_bit(slab_index(p, s, addr), map))
3986 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3987 				return 0;
3988 	}
3989 
3990 	for_each_object(p, s, addr, page->objects)
3991 		if (!test_bit(slab_index(p, s, addr), map))
3992 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3993 				return 0;
3994 	return 1;
3995 }
3996 
3997 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3998 						unsigned long *map)
3999 {
4000 	slab_lock(page);
4001 	validate_slab(s, page, map);
4002 	slab_unlock(page);
4003 }
4004 
4005 static int validate_slab_node(struct kmem_cache *s,
4006 		struct kmem_cache_node *n, unsigned long *map)
4007 {
4008 	unsigned long count = 0;
4009 	struct page *page;
4010 	unsigned long flags;
4011 
4012 	spin_lock_irqsave(&n->list_lock, flags);
4013 
4014 	list_for_each_entry(page, &n->partial, lru) {
4015 		validate_slab_slab(s, page, map);
4016 		count++;
4017 	}
4018 	if (count != n->nr_partial)
4019 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4020 		       s->name, count, n->nr_partial);
4021 
4022 	if (!(s->flags & SLAB_STORE_USER))
4023 		goto out;
4024 
4025 	list_for_each_entry(page, &n->full, lru) {
4026 		validate_slab_slab(s, page, map);
4027 		count++;
4028 	}
4029 	if (count != atomic_long_read(&n->nr_slabs))
4030 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4031 		       s->name, count, atomic_long_read(&n->nr_slabs));
4032 
4033 out:
4034 	spin_unlock_irqrestore(&n->list_lock, flags);
4035 	return count;
4036 }
4037 
4038 static long validate_slab_cache(struct kmem_cache *s)
4039 {
4040 	int node;
4041 	unsigned long count = 0;
4042 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4043 				sizeof(unsigned long), GFP_KERNEL);
4044 	struct kmem_cache_node *n;
4045 
4046 	if (!map)
4047 		return -ENOMEM;
4048 
4049 	flush_all(s);
4050 	for_each_kmem_cache_node(s, node, n)
4051 		count += validate_slab_node(s, n, map);
4052 	kfree(map);
4053 	return count;
4054 }
4055 /*
4056  * Generate lists of code addresses where slabcache objects are allocated
4057  * and freed.
4058  */
4059 
4060 struct location {
4061 	unsigned long count;
4062 	unsigned long addr;
4063 	long long sum_time;
4064 	long min_time;
4065 	long max_time;
4066 	long min_pid;
4067 	long max_pid;
4068 	DECLARE_BITMAP(cpus, NR_CPUS);
4069 	nodemask_t nodes;
4070 };
4071 
4072 struct loc_track {
4073 	unsigned long max;
4074 	unsigned long count;
4075 	struct location *loc;
4076 };
4077 
4078 static void free_loc_track(struct loc_track *t)
4079 {
4080 	if (t->max)
4081 		free_pages((unsigned long)t->loc,
4082 			get_order(sizeof(struct location) * t->max));
4083 }
4084 
4085 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4086 {
4087 	struct location *l;
4088 	int order;
4089 
4090 	order = get_order(sizeof(struct location) * max);
4091 
4092 	l = (void *)__get_free_pages(flags, order);
4093 	if (!l)
4094 		return 0;
4095 
4096 	if (t->count) {
4097 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4098 		free_loc_track(t);
4099 	}
4100 	t->max = max;
4101 	t->loc = l;
4102 	return 1;
4103 }
4104 
4105 static int add_location(struct loc_track *t, struct kmem_cache *s,
4106 				const struct track *track)
4107 {
4108 	long start, end, pos;
4109 	struct location *l;
4110 	unsigned long caddr;
4111 	unsigned long age = jiffies - track->when;
4112 
4113 	start = -1;
4114 	end = t->count;
4115 
4116 	for ( ; ; ) {
4117 		pos = start + (end - start + 1) / 2;
4118 
4119 		/*
4120 		 * There is nothing at "end". If we end up there
4121 		 * we need to add something to before end.
4122 		 */
4123 		if (pos == end)
4124 			break;
4125 
4126 		caddr = t->loc[pos].addr;
4127 		if (track->addr == caddr) {
4128 
4129 			l = &t->loc[pos];
4130 			l->count++;
4131 			if (track->when) {
4132 				l->sum_time += age;
4133 				if (age < l->min_time)
4134 					l->min_time = age;
4135 				if (age > l->max_time)
4136 					l->max_time = age;
4137 
4138 				if (track->pid < l->min_pid)
4139 					l->min_pid = track->pid;
4140 				if (track->pid > l->max_pid)
4141 					l->max_pid = track->pid;
4142 
4143 				cpumask_set_cpu(track->cpu,
4144 						to_cpumask(l->cpus));
4145 			}
4146 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4147 			return 1;
4148 		}
4149 
4150 		if (track->addr < caddr)
4151 			end = pos;
4152 		else
4153 			start = pos;
4154 	}
4155 
4156 	/*
4157 	 * Not found. Insert new tracking element.
4158 	 */
4159 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4160 		return 0;
4161 
4162 	l = t->loc + pos;
4163 	if (pos < t->count)
4164 		memmove(l + 1, l,
4165 			(t->count - pos) * sizeof(struct location));
4166 	t->count++;
4167 	l->count = 1;
4168 	l->addr = track->addr;
4169 	l->sum_time = age;
4170 	l->min_time = age;
4171 	l->max_time = age;
4172 	l->min_pid = track->pid;
4173 	l->max_pid = track->pid;
4174 	cpumask_clear(to_cpumask(l->cpus));
4175 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4176 	nodes_clear(l->nodes);
4177 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4178 	return 1;
4179 }
4180 
4181 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4182 		struct page *page, enum track_item alloc,
4183 		unsigned long *map)
4184 {
4185 	void *addr = page_address(page);
4186 	void *p;
4187 
4188 	bitmap_zero(map, page->objects);
4189 	get_map(s, page, map);
4190 
4191 	for_each_object(p, s, addr, page->objects)
4192 		if (!test_bit(slab_index(p, s, addr), map))
4193 			add_location(t, s, get_track(s, p, alloc));
4194 }
4195 
4196 static int list_locations(struct kmem_cache *s, char *buf,
4197 					enum track_item alloc)
4198 {
4199 	int len = 0;
4200 	unsigned long i;
4201 	struct loc_track t = { 0, 0, NULL };
4202 	int node;
4203 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4204 				     sizeof(unsigned long), GFP_KERNEL);
4205 	struct kmem_cache_node *n;
4206 
4207 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4208 				     GFP_TEMPORARY)) {
4209 		kfree(map);
4210 		return sprintf(buf, "Out of memory\n");
4211 	}
4212 	/* Push back cpu slabs */
4213 	flush_all(s);
4214 
4215 	for_each_kmem_cache_node(s, node, n) {
4216 		unsigned long flags;
4217 		struct page *page;
4218 
4219 		if (!atomic_long_read(&n->nr_slabs))
4220 			continue;
4221 
4222 		spin_lock_irqsave(&n->list_lock, flags);
4223 		list_for_each_entry(page, &n->partial, lru)
4224 			process_slab(&t, s, page, alloc, map);
4225 		list_for_each_entry(page, &n->full, lru)
4226 			process_slab(&t, s, page, alloc, map);
4227 		spin_unlock_irqrestore(&n->list_lock, flags);
4228 	}
4229 
4230 	for (i = 0; i < t.count; i++) {
4231 		struct location *l = &t.loc[i];
4232 
4233 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4234 			break;
4235 		len += sprintf(buf + len, "%7ld ", l->count);
4236 
4237 		if (l->addr)
4238 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4239 		else
4240 			len += sprintf(buf + len, "<not-available>");
4241 
4242 		if (l->sum_time != l->min_time) {
4243 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4244 				l->min_time,
4245 				(long)div_u64(l->sum_time, l->count),
4246 				l->max_time);
4247 		} else
4248 			len += sprintf(buf + len, " age=%ld",
4249 				l->min_time);
4250 
4251 		if (l->min_pid != l->max_pid)
4252 			len += sprintf(buf + len, " pid=%ld-%ld",
4253 				l->min_pid, l->max_pid);
4254 		else
4255 			len += sprintf(buf + len, " pid=%ld",
4256 				l->min_pid);
4257 
4258 		if (num_online_cpus() > 1 &&
4259 				!cpumask_empty(to_cpumask(l->cpus)) &&
4260 				len < PAGE_SIZE - 60)
4261 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4262 					 " cpus=%*pbl",
4263 					 cpumask_pr_args(to_cpumask(l->cpus)));
4264 
4265 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4266 				len < PAGE_SIZE - 60)
4267 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4268 					 " nodes=%*pbl",
4269 					 nodemask_pr_args(&l->nodes));
4270 
4271 		len += sprintf(buf + len, "\n");
4272 	}
4273 
4274 	free_loc_track(&t);
4275 	kfree(map);
4276 	if (!t.count)
4277 		len += sprintf(buf, "No data\n");
4278 	return len;
4279 }
4280 #endif
4281 
4282 #ifdef SLUB_RESILIENCY_TEST
4283 static void __init resiliency_test(void)
4284 {
4285 	u8 *p;
4286 
4287 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4288 
4289 	pr_err("SLUB resiliency testing\n");
4290 	pr_err("-----------------------\n");
4291 	pr_err("A. Corruption after allocation\n");
4292 
4293 	p = kzalloc(16, GFP_KERNEL);
4294 	p[16] = 0x12;
4295 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4296 	       p + 16);
4297 
4298 	validate_slab_cache(kmalloc_caches[4]);
4299 
4300 	/* Hmmm... The next two are dangerous */
4301 	p = kzalloc(32, GFP_KERNEL);
4302 	p[32 + sizeof(void *)] = 0x34;
4303 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4304 	       p);
4305 	pr_err("If allocated object is overwritten then not detectable\n\n");
4306 
4307 	validate_slab_cache(kmalloc_caches[5]);
4308 	p = kzalloc(64, GFP_KERNEL);
4309 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4310 	*p = 0x56;
4311 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4312 	       p);
4313 	pr_err("If allocated object is overwritten then not detectable\n\n");
4314 	validate_slab_cache(kmalloc_caches[6]);
4315 
4316 	pr_err("\nB. Corruption after free\n");
4317 	p = kzalloc(128, GFP_KERNEL);
4318 	kfree(p);
4319 	*p = 0x78;
4320 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4321 	validate_slab_cache(kmalloc_caches[7]);
4322 
4323 	p = kzalloc(256, GFP_KERNEL);
4324 	kfree(p);
4325 	p[50] = 0x9a;
4326 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4327 	validate_slab_cache(kmalloc_caches[8]);
4328 
4329 	p = kzalloc(512, GFP_KERNEL);
4330 	kfree(p);
4331 	p[512] = 0xab;
4332 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4333 	validate_slab_cache(kmalloc_caches[9]);
4334 }
4335 #else
4336 #ifdef CONFIG_SYSFS
4337 static void resiliency_test(void) {};
4338 #endif
4339 #endif
4340 
4341 #ifdef CONFIG_SYSFS
4342 enum slab_stat_type {
4343 	SL_ALL,			/* All slabs */
4344 	SL_PARTIAL,		/* Only partially allocated slabs */
4345 	SL_CPU,			/* Only slabs used for cpu caches */
4346 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4347 	SL_TOTAL		/* Determine object capacity not slabs */
4348 };
4349 
4350 #define SO_ALL		(1 << SL_ALL)
4351 #define SO_PARTIAL	(1 << SL_PARTIAL)
4352 #define SO_CPU		(1 << SL_CPU)
4353 #define SO_OBJECTS	(1 << SL_OBJECTS)
4354 #define SO_TOTAL	(1 << SL_TOTAL)
4355 
4356 static ssize_t show_slab_objects(struct kmem_cache *s,
4357 			    char *buf, unsigned long flags)
4358 {
4359 	unsigned long total = 0;
4360 	int node;
4361 	int x;
4362 	unsigned long *nodes;
4363 
4364 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4365 	if (!nodes)
4366 		return -ENOMEM;
4367 
4368 	if (flags & SO_CPU) {
4369 		int cpu;
4370 
4371 		for_each_possible_cpu(cpu) {
4372 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4373 							       cpu);
4374 			int node;
4375 			struct page *page;
4376 
4377 			page = READ_ONCE(c->page);
4378 			if (!page)
4379 				continue;
4380 
4381 			node = page_to_nid(page);
4382 			if (flags & SO_TOTAL)
4383 				x = page->objects;
4384 			else if (flags & SO_OBJECTS)
4385 				x = page->inuse;
4386 			else
4387 				x = 1;
4388 
4389 			total += x;
4390 			nodes[node] += x;
4391 
4392 			page = READ_ONCE(c->partial);
4393 			if (page) {
4394 				node = page_to_nid(page);
4395 				if (flags & SO_TOTAL)
4396 					WARN_ON_ONCE(1);
4397 				else if (flags & SO_OBJECTS)
4398 					WARN_ON_ONCE(1);
4399 				else
4400 					x = page->pages;
4401 				total += x;
4402 				nodes[node] += x;
4403 			}
4404 		}
4405 	}
4406 
4407 	get_online_mems();
4408 #ifdef CONFIG_SLUB_DEBUG
4409 	if (flags & SO_ALL) {
4410 		struct kmem_cache_node *n;
4411 
4412 		for_each_kmem_cache_node(s, node, n) {
4413 
4414 			if (flags & SO_TOTAL)
4415 				x = atomic_long_read(&n->total_objects);
4416 			else if (flags & SO_OBJECTS)
4417 				x = atomic_long_read(&n->total_objects) -
4418 					count_partial(n, count_free);
4419 			else
4420 				x = atomic_long_read(&n->nr_slabs);
4421 			total += x;
4422 			nodes[node] += x;
4423 		}
4424 
4425 	} else
4426 #endif
4427 	if (flags & SO_PARTIAL) {
4428 		struct kmem_cache_node *n;
4429 
4430 		for_each_kmem_cache_node(s, node, n) {
4431 			if (flags & SO_TOTAL)
4432 				x = count_partial(n, count_total);
4433 			else if (flags & SO_OBJECTS)
4434 				x = count_partial(n, count_inuse);
4435 			else
4436 				x = n->nr_partial;
4437 			total += x;
4438 			nodes[node] += x;
4439 		}
4440 	}
4441 	x = sprintf(buf, "%lu", total);
4442 #ifdef CONFIG_NUMA
4443 	for (node = 0; node < nr_node_ids; node++)
4444 		if (nodes[node])
4445 			x += sprintf(buf + x, " N%d=%lu",
4446 					node, nodes[node]);
4447 #endif
4448 	put_online_mems();
4449 	kfree(nodes);
4450 	return x + sprintf(buf + x, "\n");
4451 }
4452 
4453 #ifdef CONFIG_SLUB_DEBUG
4454 static int any_slab_objects(struct kmem_cache *s)
4455 {
4456 	int node;
4457 	struct kmem_cache_node *n;
4458 
4459 	for_each_kmem_cache_node(s, node, n)
4460 		if (atomic_long_read(&n->total_objects))
4461 			return 1;
4462 
4463 	return 0;
4464 }
4465 #endif
4466 
4467 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4468 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4469 
4470 struct slab_attribute {
4471 	struct attribute attr;
4472 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4473 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4474 };
4475 
4476 #define SLAB_ATTR_RO(_name) \
4477 	static struct slab_attribute _name##_attr = \
4478 	__ATTR(_name, 0400, _name##_show, NULL)
4479 
4480 #define SLAB_ATTR(_name) \
4481 	static struct slab_attribute _name##_attr =  \
4482 	__ATTR(_name, 0600, _name##_show, _name##_store)
4483 
4484 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4485 {
4486 	return sprintf(buf, "%d\n", s->size);
4487 }
4488 SLAB_ATTR_RO(slab_size);
4489 
4490 static ssize_t align_show(struct kmem_cache *s, char *buf)
4491 {
4492 	return sprintf(buf, "%d\n", s->align);
4493 }
4494 SLAB_ATTR_RO(align);
4495 
4496 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4497 {
4498 	return sprintf(buf, "%d\n", s->object_size);
4499 }
4500 SLAB_ATTR_RO(object_size);
4501 
4502 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4503 {
4504 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4505 }
4506 SLAB_ATTR_RO(objs_per_slab);
4507 
4508 static ssize_t order_store(struct kmem_cache *s,
4509 				const char *buf, size_t length)
4510 {
4511 	unsigned long order;
4512 	int err;
4513 
4514 	err = kstrtoul(buf, 10, &order);
4515 	if (err)
4516 		return err;
4517 
4518 	if (order > slub_max_order || order < slub_min_order)
4519 		return -EINVAL;
4520 
4521 	calculate_sizes(s, order);
4522 	return length;
4523 }
4524 
4525 static ssize_t order_show(struct kmem_cache *s, char *buf)
4526 {
4527 	return sprintf(buf, "%d\n", oo_order(s->oo));
4528 }
4529 SLAB_ATTR(order);
4530 
4531 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4532 {
4533 	return sprintf(buf, "%lu\n", s->min_partial);
4534 }
4535 
4536 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4537 				 size_t length)
4538 {
4539 	unsigned long min;
4540 	int err;
4541 
4542 	err = kstrtoul(buf, 10, &min);
4543 	if (err)
4544 		return err;
4545 
4546 	set_min_partial(s, min);
4547 	return length;
4548 }
4549 SLAB_ATTR(min_partial);
4550 
4551 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4552 {
4553 	return sprintf(buf, "%u\n", s->cpu_partial);
4554 }
4555 
4556 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4557 				 size_t length)
4558 {
4559 	unsigned long objects;
4560 	int err;
4561 
4562 	err = kstrtoul(buf, 10, &objects);
4563 	if (err)
4564 		return err;
4565 	if (objects && !kmem_cache_has_cpu_partial(s))
4566 		return -EINVAL;
4567 
4568 	s->cpu_partial = objects;
4569 	flush_all(s);
4570 	return length;
4571 }
4572 SLAB_ATTR(cpu_partial);
4573 
4574 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4575 {
4576 	if (!s->ctor)
4577 		return 0;
4578 	return sprintf(buf, "%pS\n", s->ctor);
4579 }
4580 SLAB_ATTR_RO(ctor);
4581 
4582 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4583 {
4584 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4585 }
4586 SLAB_ATTR_RO(aliases);
4587 
4588 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4589 {
4590 	return show_slab_objects(s, buf, SO_PARTIAL);
4591 }
4592 SLAB_ATTR_RO(partial);
4593 
4594 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4595 {
4596 	return show_slab_objects(s, buf, SO_CPU);
4597 }
4598 SLAB_ATTR_RO(cpu_slabs);
4599 
4600 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4601 {
4602 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4603 }
4604 SLAB_ATTR_RO(objects);
4605 
4606 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4607 {
4608 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4609 }
4610 SLAB_ATTR_RO(objects_partial);
4611 
4612 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4613 {
4614 	int objects = 0;
4615 	int pages = 0;
4616 	int cpu;
4617 	int len;
4618 
4619 	for_each_online_cpu(cpu) {
4620 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4621 
4622 		if (page) {
4623 			pages += page->pages;
4624 			objects += page->pobjects;
4625 		}
4626 	}
4627 
4628 	len = sprintf(buf, "%d(%d)", objects, pages);
4629 
4630 #ifdef CONFIG_SMP
4631 	for_each_online_cpu(cpu) {
4632 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4633 
4634 		if (page && len < PAGE_SIZE - 20)
4635 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4636 				page->pobjects, page->pages);
4637 	}
4638 #endif
4639 	return len + sprintf(buf + len, "\n");
4640 }
4641 SLAB_ATTR_RO(slabs_cpu_partial);
4642 
4643 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4644 {
4645 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4646 }
4647 
4648 static ssize_t reclaim_account_store(struct kmem_cache *s,
4649 				const char *buf, size_t length)
4650 {
4651 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4652 	if (buf[0] == '1')
4653 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4654 	return length;
4655 }
4656 SLAB_ATTR(reclaim_account);
4657 
4658 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4659 {
4660 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4661 }
4662 SLAB_ATTR_RO(hwcache_align);
4663 
4664 #ifdef CONFIG_ZONE_DMA
4665 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4666 {
4667 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4668 }
4669 SLAB_ATTR_RO(cache_dma);
4670 #endif
4671 
4672 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4673 {
4674 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4675 }
4676 SLAB_ATTR_RO(destroy_by_rcu);
4677 
4678 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4679 {
4680 	return sprintf(buf, "%d\n", s->reserved);
4681 }
4682 SLAB_ATTR_RO(reserved);
4683 
4684 #ifdef CONFIG_SLUB_DEBUG
4685 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4686 {
4687 	return show_slab_objects(s, buf, SO_ALL);
4688 }
4689 SLAB_ATTR_RO(slabs);
4690 
4691 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4692 {
4693 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4694 }
4695 SLAB_ATTR_RO(total_objects);
4696 
4697 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4698 {
4699 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4700 }
4701 
4702 static ssize_t sanity_checks_store(struct kmem_cache *s,
4703 				const char *buf, size_t length)
4704 {
4705 	s->flags &= ~SLAB_DEBUG_FREE;
4706 	if (buf[0] == '1') {
4707 		s->flags &= ~__CMPXCHG_DOUBLE;
4708 		s->flags |= SLAB_DEBUG_FREE;
4709 	}
4710 	return length;
4711 }
4712 SLAB_ATTR(sanity_checks);
4713 
4714 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4715 {
4716 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4717 }
4718 
4719 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4720 							size_t length)
4721 {
4722 	/*
4723 	 * Tracing a merged cache is going to give confusing results
4724 	 * as well as cause other issues like converting a mergeable
4725 	 * cache into an umergeable one.
4726 	 */
4727 	if (s->refcount > 1)
4728 		return -EINVAL;
4729 
4730 	s->flags &= ~SLAB_TRACE;
4731 	if (buf[0] == '1') {
4732 		s->flags &= ~__CMPXCHG_DOUBLE;
4733 		s->flags |= SLAB_TRACE;
4734 	}
4735 	return length;
4736 }
4737 SLAB_ATTR(trace);
4738 
4739 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4740 {
4741 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4742 }
4743 
4744 static ssize_t red_zone_store(struct kmem_cache *s,
4745 				const char *buf, size_t length)
4746 {
4747 	if (any_slab_objects(s))
4748 		return -EBUSY;
4749 
4750 	s->flags &= ~SLAB_RED_ZONE;
4751 	if (buf[0] == '1') {
4752 		s->flags &= ~__CMPXCHG_DOUBLE;
4753 		s->flags |= SLAB_RED_ZONE;
4754 	}
4755 	calculate_sizes(s, -1);
4756 	return length;
4757 }
4758 SLAB_ATTR(red_zone);
4759 
4760 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4761 {
4762 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4763 }
4764 
4765 static ssize_t poison_store(struct kmem_cache *s,
4766 				const char *buf, size_t length)
4767 {
4768 	if (any_slab_objects(s))
4769 		return -EBUSY;
4770 
4771 	s->flags &= ~SLAB_POISON;
4772 	if (buf[0] == '1') {
4773 		s->flags &= ~__CMPXCHG_DOUBLE;
4774 		s->flags |= SLAB_POISON;
4775 	}
4776 	calculate_sizes(s, -1);
4777 	return length;
4778 }
4779 SLAB_ATTR(poison);
4780 
4781 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4782 {
4783 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4784 }
4785 
4786 static ssize_t store_user_store(struct kmem_cache *s,
4787 				const char *buf, size_t length)
4788 {
4789 	if (any_slab_objects(s))
4790 		return -EBUSY;
4791 
4792 	s->flags &= ~SLAB_STORE_USER;
4793 	if (buf[0] == '1') {
4794 		s->flags &= ~__CMPXCHG_DOUBLE;
4795 		s->flags |= SLAB_STORE_USER;
4796 	}
4797 	calculate_sizes(s, -1);
4798 	return length;
4799 }
4800 SLAB_ATTR(store_user);
4801 
4802 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4803 {
4804 	return 0;
4805 }
4806 
4807 static ssize_t validate_store(struct kmem_cache *s,
4808 			const char *buf, size_t length)
4809 {
4810 	int ret = -EINVAL;
4811 
4812 	if (buf[0] == '1') {
4813 		ret = validate_slab_cache(s);
4814 		if (ret >= 0)
4815 			ret = length;
4816 	}
4817 	return ret;
4818 }
4819 SLAB_ATTR(validate);
4820 
4821 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4822 {
4823 	if (!(s->flags & SLAB_STORE_USER))
4824 		return -ENOSYS;
4825 	return list_locations(s, buf, TRACK_ALLOC);
4826 }
4827 SLAB_ATTR_RO(alloc_calls);
4828 
4829 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4830 {
4831 	if (!(s->flags & SLAB_STORE_USER))
4832 		return -ENOSYS;
4833 	return list_locations(s, buf, TRACK_FREE);
4834 }
4835 SLAB_ATTR_RO(free_calls);
4836 #endif /* CONFIG_SLUB_DEBUG */
4837 
4838 #ifdef CONFIG_FAILSLAB
4839 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4840 {
4841 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4842 }
4843 
4844 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4845 							size_t length)
4846 {
4847 	if (s->refcount > 1)
4848 		return -EINVAL;
4849 
4850 	s->flags &= ~SLAB_FAILSLAB;
4851 	if (buf[0] == '1')
4852 		s->flags |= SLAB_FAILSLAB;
4853 	return length;
4854 }
4855 SLAB_ATTR(failslab);
4856 #endif
4857 
4858 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4859 {
4860 	return 0;
4861 }
4862 
4863 static ssize_t shrink_store(struct kmem_cache *s,
4864 			const char *buf, size_t length)
4865 {
4866 	if (buf[0] == '1')
4867 		kmem_cache_shrink(s);
4868 	else
4869 		return -EINVAL;
4870 	return length;
4871 }
4872 SLAB_ATTR(shrink);
4873 
4874 #ifdef CONFIG_NUMA
4875 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4876 {
4877 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4878 }
4879 
4880 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4881 				const char *buf, size_t length)
4882 {
4883 	unsigned long ratio;
4884 	int err;
4885 
4886 	err = kstrtoul(buf, 10, &ratio);
4887 	if (err)
4888 		return err;
4889 
4890 	if (ratio <= 100)
4891 		s->remote_node_defrag_ratio = ratio * 10;
4892 
4893 	return length;
4894 }
4895 SLAB_ATTR(remote_node_defrag_ratio);
4896 #endif
4897 
4898 #ifdef CONFIG_SLUB_STATS
4899 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4900 {
4901 	unsigned long sum  = 0;
4902 	int cpu;
4903 	int len;
4904 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4905 
4906 	if (!data)
4907 		return -ENOMEM;
4908 
4909 	for_each_online_cpu(cpu) {
4910 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4911 
4912 		data[cpu] = x;
4913 		sum += x;
4914 	}
4915 
4916 	len = sprintf(buf, "%lu", sum);
4917 
4918 #ifdef CONFIG_SMP
4919 	for_each_online_cpu(cpu) {
4920 		if (data[cpu] && len < PAGE_SIZE - 20)
4921 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4922 	}
4923 #endif
4924 	kfree(data);
4925 	return len + sprintf(buf + len, "\n");
4926 }
4927 
4928 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4929 {
4930 	int cpu;
4931 
4932 	for_each_online_cpu(cpu)
4933 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4934 }
4935 
4936 #define STAT_ATTR(si, text) 					\
4937 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4938 {								\
4939 	return show_stat(s, buf, si);				\
4940 }								\
4941 static ssize_t text##_store(struct kmem_cache *s,		\
4942 				const char *buf, size_t length)	\
4943 {								\
4944 	if (buf[0] != '0')					\
4945 		return -EINVAL;					\
4946 	clear_stat(s, si);					\
4947 	return length;						\
4948 }								\
4949 SLAB_ATTR(text);						\
4950 
4951 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4952 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4953 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4954 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4955 STAT_ATTR(FREE_FROZEN, free_frozen);
4956 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4957 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4958 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4959 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4960 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4961 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4962 STAT_ATTR(FREE_SLAB, free_slab);
4963 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4964 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4965 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4966 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4967 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4968 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4969 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4970 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4971 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4972 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4973 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4974 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4975 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4976 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4977 #endif
4978 
4979 static struct attribute *slab_attrs[] = {
4980 	&slab_size_attr.attr,
4981 	&object_size_attr.attr,
4982 	&objs_per_slab_attr.attr,
4983 	&order_attr.attr,
4984 	&min_partial_attr.attr,
4985 	&cpu_partial_attr.attr,
4986 	&objects_attr.attr,
4987 	&objects_partial_attr.attr,
4988 	&partial_attr.attr,
4989 	&cpu_slabs_attr.attr,
4990 	&ctor_attr.attr,
4991 	&aliases_attr.attr,
4992 	&align_attr.attr,
4993 	&hwcache_align_attr.attr,
4994 	&reclaim_account_attr.attr,
4995 	&destroy_by_rcu_attr.attr,
4996 	&shrink_attr.attr,
4997 	&reserved_attr.attr,
4998 	&slabs_cpu_partial_attr.attr,
4999 #ifdef CONFIG_SLUB_DEBUG
5000 	&total_objects_attr.attr,
5001 	&slabs_attr.attr,
5002 	&sanity_checks_attr.attr,
5003 	&trace_attr.attr,
5004 	&red_zone_attr.attr,
5005 	&poison_attr.attr,
5006 	&store_user_attr.attr,
5007 	&validate_attr.attr,
5008 	&alloc_calls_attr.attr,
5009 	&free_calls_attr.attr,
5010 #endif
5011 #ifdef CONFIG_ZONE_DMA
5012 	&cache_dma_attr.attr,
5013 #endif
5014 #ifdef CONFIG_NUMA
5015 	&remote_node_defrag_ratio_attr.attr,
5016 #endif
5017 #ifdef CONFIG_SLUB_STATS
5018 	&alloc_fastpath_attr.attr,
5019 	&alloc_slowpath_attr.attr,
5020 	&free_fastpath_attr.attr,
5021 	&free_slowpath_attr.attr,
5022 	&free_frozen_attr.attr,
5023 	&free_add_partial_attr.attr,
5024 	&free_remove_partial_attr.attr,
5025 	&alloc_from_partial_attr.attr,
5026 	&alloc_slab_attr.attr,
5027 	&alloc_refill_attr.attr,
5028 	&alloc_node_mismatch_attr.attr,
5029 	&free_slab_attr.attr,
5030 	&cpuslab_flush_attr.attr,
5031 	&deactivate_full_attr.attr,
5032 	&deactivate_empty_attr.attr,
5033 	&deactivate_to_head_attr.attr,
5034 	&deactivate_to_tail_attr.attr,
5035 	&deactivate_remote_frees_attr.attr,
5036 	&deactivate_bypass_attr.attr,
5037 	&order_fallback_attr.attr,
5038 	&cmpxchg_double_fail_attr.attr,
5039 	&cmpxchg_double_cpu_fail_attr.attr,
5040 	&cpu_partial_alloc_attr.attr,
5041 	&cpu_partial_free_attr.attr,
5042 	&cpu_partial_node_attr.attr,
5043 	&cpu_partial_drain_attr.attr,
5044 #endif
5045 #ifdef CONFIG_FAILSLAB
5046 	&failslab_attr.attr,
5047 #endif
5048 
5049 	NULL
5050 };
5051 
5052 static struct attribute_group slab_attr_group = {
5053 	.attrs = slab_attrs,
5054 };
5055 
5056 static ssize_t slab_attr_show(struct kobject *kobj,
5057 				struct attribute *attr,
5058 				char *buf)
5059 {
5060 	struct slab_attribute *attribute;
5061 	struct kmem_cache *s;
5062 	int err;
5063 
5064 	attribute = to_slab_attr(attr);
5065 	s = to_slab(kobj);
5066 
5067 	if (!attribute->show)
5068 		return -EIO;
5069 
5070 	err = attribute->show(s, buf);
5071 
5072 	return err;
5073 }
5074 
5075 static ssize_t slab_attr_store(struct kobject *kobj,
5076 				struct attribute *attr,
5077 				const char *buf, size_t len)
5078 {
5079 	struct slab_attribute *attribute;
5080 	struct kmem_cache *s;
5081 	int err;
5082 
5083 	attribute = to_slab_attr(attr);
5084 	s = to_slab(kobj);
5085 
5086 	if (!attribute->store)
5087 		return -EIO;
5088 
5089 	err = attribute->store(s, buf, len);
5090 #ifdef CONFIG_MEMCG_KMEM
5091 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5092 		struct kmem_cache *c;
5093 
5094 		mutex_lock(&slab_mutex);
5095 		if (s->max_attr_size < len)
5096 			s->max_attr_size = len;
5097 
5098 		/*
5099 		 * This is a best effort propagation, so this function's return
5100 		 * value will be determined by the parent cache only. This is
5101 		 * basically because not all attributes will have a well
5102 		 * defined semantics for rollbacks - most of the actions will
5103 		 * have permanent effects.
5104 		 *
5105 		 * Returning the error value of any of the children that fail
5106 		 * is not 100 % defined, in the sense that users seeing the
5107 		 * error code won't be able to know anything about the state of
5108 		 * the cache.
5109 		 *
5110 		 * Only returning the error code for the parent cache at least
5111 		 * has well defined semantics. The cache being written to
5112 		 * directly either failed or succeeded, in which case we loop
5113 		 * through the descendants with best-effort propagation.
5114 		 */
5115 		for_each_memcg_cache(c, s)
5116 			attribute->store(c, buf, len);
5117 		mutex_unlock(&slab_mutex);
5118 	}
5119 #endif
5120 	return err;
5121 }
5122 
5123 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5124 {
5125 #ifdef CONFIG_MEMCG_KMEM
5126 	int i;
5127 	char *buffer = NULL;
5128 	struct kmem_cache *root_cache;
5129 
5130 	if (is_root_cache(s))
5131 		return;
5132 
5133 	root_cache = s->memcg_params.root_cache;
5134 
5135 	/*
5136 	 * This mean this cache had no attribute written. Therefore, no point
5137 	 * in copying default values around
5138 	 */
5139 	if (!root_cache->max_attr_size)
5140 		return;
5141 
5142 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5143 		char mbuf[64];
5144 		char *buf;
5145 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5146 
5147 		if (!attr || !attr->store || !attr->show)
5148 			continue;
5149 
5150 		/*
5151 		 * It is really bad that we have to allocate here, so we will
5152 		 * do it only as a fallback. If we actually allocate, though,
5153 		 * we can just use the allocated buffer until the end.
5154 		 *
5155 		 * Most of the slub attributes will tend to be very small in
5156 		 * size, but sysfs allows buffers up to a page, so they can
5157 		 * theoretically happen.
5158 		 */
5159 		if (buffer)
5160 			buf = buffer;
5161 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5162 			buf = mbuf;
5163 		else {
5164 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5165 			if (WARN_ON(!buffer))
5166 				continue;
5167 			buf = buffer;
5168 		}
5169 
5170 		attr->show(root_cache, buf);
5171 		attr->store(s, buf, strlen(buf));
5172 	}
5173 
5174 	if (buffer)
5175 		free_page((unsigned long)buffer);
5176 #endif
5177 }
5178 
5179 static void kmem_cache_release(struct kobject *k)
5180 {
5181 	slab_kmem_cache_release(to_slab(k));
5182 }
5183 
5184 static const struct sysfs_ops slab_sysfs_ops = {
5185 	.show = slab_attr_show,
5186 	.store = slab_attr_store,
5187 };
5188 
5189 static struct kobj_type slab_ktype = {
5190 	.sysfs_ops = &slab_sysfs_ops,
5191 	.release = kmem_cache_release,
5192 };
5193 
5194 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5195 {
5196 	struct kobj_type *ktype = get_ktype(kobj);
5197 
5198 	if (ktype == &slab_ktype)
5199 		return 1;
5200 	return 0;
5201 }
5202 
5203 static const struct kset_uevent_ops slab_uevent_ops = {
5204 	.filter = uevent_filter,
5205 };
5206 
5207 static struct kset *slab_kset;
5208 
5209 static inline struct kset *cache_kset(struct kmem_cache *s)
5210 {
5211 #ifdef CONFIG_MEMCG_KMEM
5212 	if (!is_root_cache(s))
5213 		return s->memcg_params.root_cache->memcg_kset;
5214 #endif
5215 	return slab_kset;
5216 }
5217 
5218 #define ID_STR_LENGTH 64
5219 
5220 /* Create a unique string id for a slab cache:
5221  *
5222  * Format	:[flags-]size
5223  */
5224 static char *create_unique_id(struct kmem_cache *s)
5225 {
5226 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5227 	char *p = name;
5228 
5229 	BUG_ON(!name);
5230 
5231 	*p++ = ':';
5232 	/*
5233 	 * First flags affecting slabcache operations. We will only
5234 	 * get here for aliasable slabs so we do not need to support
5235 	 * too many flags. The flags here must cover all flags that
5236 	 * are matched during merging to guarantee that the id is
5237 	 * unique.
5238 	 */
5239 	if (s->flags & SLAB_CACHE_DMA)
5240 		*p++ = 'd';
5241 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5242 		*p++ = 'a';
5243 	if (s->flags & SLAB_DEBUG_FREE)
5244 		*p++ = 'F';
5245 	if (!(s->flags & SLAB_NOTRACK))
5246 		*p++ = 't';
5247 	if (p != name + 1)
5248 		*p++ = '-';
5249 	p += sprintf(p, "%07d", s->size);
5250 
5251 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5252 	return name;
5253 }
5254 
5255 static int sysfs_slab_add(struct kmem_cache *s)
5256 {
5257 	int err;
5258 	const char *name;
5259 	int unmergeable = slab_unmergeable(s);
5260 
5261 	if (unmergeable) {
5262 		/*
5263 		 * Slabcache can never be merged so we can use the name proper.
5264 		 * This is typically the case for debug situations. In that
5265 		 * case we can catch duplicate names easily.
5266 		 */
5267 		sysfs_remove_link(&slab_kset->kobj, s->name);
5268 		name = s->name;
5269 	} else {
5270 		/*
5271 		 * Create a unique name for the slab as a target
5272 		 * for the symlinks.
5273 		 */
5274 		name = create_unique_id(s);
5275 	}
5276 
5277 	s->kobj.kset = cache_kset(s);
5278 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5279 	if (err)
5280 		goto out;
5281 
5282 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5283 	if (err)
5284 		goto out_del_kobj;
5285 
5286 #ifdef CONFIG_MEMCG_KMEM
5287 	if (is_root_cache(s)) {
5288 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5289 		if (!s->memcg_kset) {
5290 			err = -ENOMEM;
5291 			goto out_del_kobj;
5292 		}
5293 	}
5294 #endif
5295 
5296 	kobject_uevent(&s->kobj, KOBJ_ADD);
5297 	if (!unmergeable) {
5298 		/* Setup first alias */
5299 		sysfs_slab_alias(s, s->name);
5300 	}
5301 out:
5302 	if (!unmergeable)
5303 		kfree(name);
5304 	return err;
5305 out_del_kobj:
5306 	kobject_del(&s->kobj);
5307 	goto out;
5308 }
5309 
5310 void sysfs_slab_remove(struct kmem_cache *s)
5311 {
5312 	if (slab_state < FULL)
5313 		/*
5314 		 * Sysfs has not been setup yet so no need to remove the
5315 		 * cache from sysfs.
5316 		 */
5317 		return;
5318 
5319 #ifdef CONFIG_MEMCG_KMEM
5320 	kset_unregister(s->memcg_kset);
5321 #endif
5322 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5323 	kobject_del(&s->kobj);
5324 	kobject_put(&s->kobj);
5325 }
5326 
5327 /*
5328  * Need to buffer aliases during bootup until sysfs becomes
5329  * available lest we lose that information.
5330  */
5331 struct saved_alias {
5332 	struct kmem_cache *s;
5333 	const char *name;
5334 	struct saved_alias *next;
5335 };
5336 
5337 static struct saved_alias *alias_list;
5338 
5339 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5340 {
5341 	struct saved_alias *al;
5342 
5343 	if (slab_state == FULL) {
5344 		/*
5345 		 * If we have a leftover link then remove it.
5346 		 */
5347 		sysfs_remove_link(&slab_kset->kobj, name);
5348 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5349 	}
5350 
5351 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5352 	if (!al)
5353 		return -ENOMEM;
5354 
5355 	al->s = s;
5356 	al->name = name;
5357 	al->next = alias_list;
5358 	alias_list = al;
5359 	return 0;
5360 }
5361 
5362 static int __init slab_sysfs_init(void)
5363 {
5364 	struct kmem_cache *s;
5365 	int err;
5366 
5367 	mutex_lock(&slab_mutex);
5368 
5369 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5370 	if (!slab_kset) {
5371 		mutex_unlock(&slab_mutex);
5372 		pr_err("Cannot register slab subsystem.\n");
5373 		return -ENOSYS;
5374 	}
5375 
5376 	slab_state = FULL;
5377 
5378 	list_for_each_entry(s, &slab_caches, list) {
5379 		err = sysfs_slab_add(s);
5380 		if (err)
5381 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5382 			       s->name);
5383 	}
5384 
5385 	while (alias_list) {
5386 		struct saved_alias *al = alias_list;
5387 
5388 		alias_list = alias_list->next;
5389 		err = sysfs_slab_alias(al->s, al->name);
5390 		if (err)
5391 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5392 			       al->name);
5393 		kfree(al);
5394 	}
5395 
5396 	mutex_unlock(&slab_mutex);
5397 	resiliency_test();
5398 	return 0;
5399 }
5400 
5401 __initcall(slab_sysfs_init);
5402 #endif /* CONFIG_SYSFS */
5403 
5404 /*
5405  * The /proc/slabinfo ABI
5406  */
5407 #ifdef CONFIG_SLABINFO
5408 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5409 {
5410 	unsigned long nr_slabs = 0;
5411 	unsigned long nr_objs = 0;
5412 	unsigned long nr_free = 0;
5413 	int node;
5414 	struct kmem_cache_node *n;
5415 
5416 	for_each_kmem_cache_node(s, node, n) {
5417 		nr_slabs += node_nr_slabs(n);
5418 		nr_objs += node_nr_objs(n);
5419 		nr_free += count_partial(n, count_free);
5420 	}
5421 
5422 	sinfo->active_objs = nr_objs - nr_free;
5423 	sinfo->num_objs = nr_objs;
5424 	sinfo->active_slabs = nr_slabs;
5425 	sinfo->num_slabs = nr_slabs;
5426 	sinfo->objects_per_slab = oo_objects(s->oo);
5427 	sinfo->cache_order = oo_order(s->oo);
5428 }
5429 
5430 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5431 {
5432 }
5433 
5434 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5435 		       size_t count, loff_t *ppos)
5436 {
5437 	return -EIO;
5438 }
5439 #endif /* CONFIG_SLABINFO */
5440