1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/kmemcheck.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/memory.h> 32 #include <linux/math64.h> 33 #include <linux/fault-inject.h> 34 #include <linux/stacktrace.h> 35 #include <linux/prefetch.h> 36 #include <linux/memcontrol.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects the second 55 * double word in the page struct. Meaning 56 * A. page->freelist -> List of object free in a page 57 * B. page->counters -> Counters of objects 58 * C. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list. The processor that froze the slab is the one who can 62 * perform list operations on the page. Other processors may put objects 63 * onto the freelist but the processor that froze the slab is the only 64 * one that can retrieve the objects from the page's freelist. 65 * 66 * The list_lock protects the partial and full list on each node and 67 * the partial slab counter. If taken then no new slabs may be added or 68 * removed from the lists nor make the number of partial slabs be modified. 69 * (Note that the total number of slabs is an atomic value that may be 70 * modified without taking the list lock). 71 * 72 * The list_lock is a centralized lock and thus we avoid taking it as 73 * much as possible. As long as SLUB does not have to handle partial 74 * slabs, operations can continue without any centralized lock. F.e. 75 * allocating a long series of objects that fill up slabs does not require 76 * the list lock. 77 * Interrupts are disabled during allocation and deallocation in order to 78 * make the slab allocator safe to use in the context of an irq. In addition 79 * interrupts are disabled to ensure that the processor does not change 80 * while handling per_cpu slabs, due to kernel preemption. 81 * 82 * SLUB assigns one slab for allocation to each processor. 83 * Allocations only occur from these slabs called cpu slabs. 84 * 85 * Slabs with free elements are kept on a partial list and during regular 86 * operations no list for full slabs is used. If an object in a full slab is 87 * freed then the slab will show up again on the partial lists. 88 * We track full slabs for debugging purposes though because otherwise we 89 * cannot scan all objects. 90 * 91 * Slabs are freed when they become empty. Teardown and setup is 92 * minimal so we rely on the page allocators per cpu caches for 93 * fast frees and allocs. 94 * 95 * Overloading of page flags that are otherwise used for LRU management. 96 * 97 * PageActive The slab is frozen and exempt from list processing. 98 * This means that the slab is dedicated to a purpose 99 * such as satisfying allocations for a specific 100 * processor. Objects may be freed in the slab while 101 * it is frozen but slab_free will then skip the usual 102 * list operations. It is up to the processor holding 103 * the slab to integrate the slab into the slab lists 104 * when the slab is no longer needed. 105 * 106 * One use of this flag is to mark slabs that are 107 * used for allocations. Then such a slab becomes a cpu 108 * slab. The cpu slab may be equipped with an additional 109 * freelist that allows lockless access to 110 * free objects in addition to the regular freelist 111 * that requires the slab lock. 112 * 113 * PageError Slab requires special handling due to debug 114 * options set. This moves slab handling out of 115 * the fast path and disables lockless freelists. 116 */ 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 128 { 129 #ifdef CONFIG_SLUB_CPU_PARTIAL 130 return !kmem_cache_debug(s); 131 #else 132 return false; 133 #endif 134 } 135 136 /* 137 * Issues still to be resolved: 138 * 139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 140 * 141 * - Variable sizing of the per node arrays 142 */ 143 144 /* Enable to test recovery from slab corruption on boot */ 145 #undef SLUB_RESILIENCY_TEST 146 147 /* Enable to log cmpxchg failures */ 148 #undef SLUB_DEBUG_CMPXCHG 149 150 /* 151 * Mininum number of partial slabs. These will be left on the partial 152 * lists even if they are empty. kmem_cache_shrink may reclaim them. 153 */ 154 #define MIN_PARTIAL 5 155 156 /* 157 * Maximum number of desirable partial slabs. 158 * The existence of more partial slabs makes kmem_cache_shrink 159 * sort the partial list by the number of objects in use. 160 */ 161 #define MAX_PARTIAL 10 162 163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 164 SLAB_POISON | SLAB_STORE_USER) 165 166 /* 167 * Debugging flags that require metadata to be stored in the slab. These get 168 * disabled when slub_debug=O is used and a cache's min order increases with 169 * metadata. 170 */ 171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 172 173 #define OO_SHIFT 16 174 #define OO_MASK ((1 << OO_SHIFT) - 1) 175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 176 177 /* Internal SLUB flags */ 178 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 180 181 #ifdef CONFIG_SMP 182 static struct notifier_block slab_notifier; 183 #endif 184 185 /* 186 * Tracking user of a slab. 187 */ 188 #define TRACK_ADDRS_COUNT 16 189 struct track { 190 unsigned long addr; /* Called from address */ 191 #ifdef CONFIG_STACKTRACE 192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 193 #endif 194 int cpu; /* Was running on cpu */ 195 int pid; /* Pid context */ 196 unsigned long when; /* When did the operation occur */ 197 }; 198 199 enum track_item { TRACK_ALLOC, TRACK_FREE }; 200 201 #ifdef CONFIG_SYSFS 202 static int sysfs_slab_add(struct kmem_cache *); 203 static int sysfs_slab_alias(struct kmem_cache *, const char *); 204 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 205 #else 206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 208 { return 0; } 209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 210 #endif 211 212 static inline void stat(const struct kmem_cache *s, enum stat_item si) 213 { 214 #ifdef CONFIG_SLUB_STATS 215 /* 216 * The rmw is racy on a preemptible kernel but this is acceptable, so 217 * avoid this_cpu_add()'s irq-disable overhead. 218 */ 219 raw_cpu_inc(s->cpu_slab->stat[si]); 220 #endif 221 } 222 223 /******************************************************************** 224 * Core slab cache functions 225 *******************************************************************/ 226 227 /* Verify that a pointer has an address that is valid within a slab page */ 228 static inline int check_valid_pointer(struct kmem_cache *s, 229 struct page *page, const void *object) 230 { 231 void *base; 232 233 if (!object) 234 return 1; 235 236 base = page_address(page); 237 if (object < base || object >= base + page->objects * s->size || 238 (object - base) % s->size) { 239 return 0; 240 } 241 242 return 1; 243 } 244 245 static inline void *get_freepointer(struct kmem_cache *s, void *object) 246 { 247 return *(void **)(object + s->offset); 248 } 249 250 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 251 { 252 prefetch(object + s->offset); 253 } 254 255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 256 { 257 void *p; 258 259 #ifdef CONFIG_DEBUG_PAGEALLOC 260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 261 #else 262 p = get_freepointer(s, object); 263 #endif 264 return p; 265 } 266 267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 268 { 269 *(void **)(object + s->offset) = fp; 270 } 271 272 /* Loop over all objects in a slab */ 273 #define for_each_object(__p, __s, __addr, __objects) \ 274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 275 __p += (__s)->size) 276 277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 278 for (__p = (__addr), __idx = 1; __idx <= __objects;\ 279 __p += (__s)->size, __idx++) 280 281 /* Determine object index from a given position */ 282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 283 { 284 return (p - addr) / s->size; 285 } 286 287 static inline size_t slab_ksize(const struct kmem_cache *s) 288 { 289 #ifdef CONFIG_SLUB_DEBUG 290 /* 291 * Debugging requires use of the padding between object 292 * and whatever may come after it. 293 */ 294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 295 return s->object_size; 296 297 #endif 298 /* 299 * If we have the need to store the freelist pointer 300 * back there or track user information then we can 301 * only use the space before that information. 302 */ 303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 304 return s->inuse; 305 /* 306 * Else we can use all the padding etc for the allocation 307 */ 308 return s->size; 309 } 310 311 static inline int order_objects(int order, unsigned long size, int reserved) 312 { 313 return ((PAGE_SIZE << order) - reserved) / size; 314 } 315 316 static inline struct kmem_cache_order_objects oo_make(int order, 317 unsigned long size, int reserved) 318 { 319 struct kmem_cache_order_objects x = { 320 (order << OO_SHIFT) + order_objects(order, size, reserved) 321 }; 322 323 return x; 324 } 325 326 static inline int oo_order(struct kmem_cache_order_objects x) 327 { 328 return x.x >> OO_SHIFT; 329 } 330 331 static inline int oo_objects(struct kmem_cache_order_objects x) 332 { 333 return x.x & OO_MASK; 334 } 335 336 /* 337 * Per slab locking using the pagelock 338 */ 339 static __always_inline void slab_lock(struct page *page) 340 { 341 bit_spin_lock(PG_locked, &page->flags); 342 } 343 344 static __always_inline void slab_unlock(struct page *page) 345 { 346 __bit_spin_unlock(PG_locked, &page->flags); 347 } 348 349 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 350 { 351 struct page tmp; 352 tmp.counters = counters_new; 353 /* 354 * page->counters can cover frozen/inuse/objects as well 355 * as page->_count. If we assign to ->counters directly 356 * we run the risk of losing updates to page->_count, so 357 * be careful and only assign to the fields we need. 358 */ 359 page->frozen = tmp.frozen; 360 page->inuse = tmp.inuse; 361 page->objects = tmp.objects; 362 } 363 364 /* Interrupts must be disabled (for the fallback code to work right) */ 365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 366 void *freelist_old, unsigned long counters_old, 367 void *freelist_new, unsigned long counters_new, 368 const char *n) 369 { 370 VM_BUG_ON(!irqs_disabled()); 371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 373 if (s->flags & __CMPXCHG_DOUBLE) { 374 if (cmpxchg_double(&page->freelist, &page->counters, 375 freelist_old, counters_old, 376 freelist_new, counters_new)) 377 return true; 378 } else 379 #endif 380 { 381 slab_lock(page); 382 if (page->freelist == freelist_old && 383 page->counters == counters_old) { 384 page->freelist = freelist_new; 385 set_page_slub_counters(page, counters_new); 386 slab_unlock(page); 387 return true; 388 } 389 slab_unlock(page); 390 } 391 392 cpu_relax(); 393 stat(s, CMPXCHG_DOUBLE_FAIL); 394 395 #ifdef SLUB_DEBUG_CMPXCHG 396 pr_info("%s %s: cmpxchg double redo ", n, s->name); 397 #endif 398 399 return false; 400 } 401 402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 403 void *freelist_old, unsigned long counters_old, 404 void *freelist_new, unsigned long counters_new, 405 const char *n) 406 { 407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 409 if (s->flags & __CMPXCHG_DOUBLE) { 410 if (cmpxchg_double(&page->freelist, &page->counters, 411 freelist_old, counters_old, 412 freelist_new, counters_new)) 413 return true; 414 } else 415 #endif 416 { 417 unsigned long flags; 418 419 local_irq_save(flags); 420 slab_lock(page); 421 if (page->freelist == freelist_old && 422 page->counters == counters_old) { 423 page->freelist = freelist_new; 424 set_page_slub_counters(page, counters_new); 425 slab_unlock(page); 426 local_irq_restore(flags); 427 return true; 428 } 429 slab_unlock(page); 430 local_irq_restore(flags); 431 } 432 433 cpu_relax(); 434 stat(s, CMPXCHG_DOUBLE_FAIL); 435 436 #ifdef SLUB_DEBUG_CMPXCHG 437 pr_info("%s %s: cmpxchg double redo ", n, s->name); 438 #endif 439 440 return false; 441 } 442 443 #ifdef CONFIG_SLUB_DEBUG 444 /* 445 * Determine a map of object in use on a page. 446 * 447 * Node listlock must be held to guarantee that the page does 448 * not vanish from under us. 449 */ 450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 451 { 452 void *p; 453 void *addr = page_address(page); 454 455 for (p = page->freelist; p; p = get_freepointer(s, p)) 456 set_bit(slab_index(p, s, addr), map); 457 } 458 459 /* 460 * Debug settings: 461 */ 462 #if defined(CONFIG_SLUB_DEBUG_ON) 463 static int slub_debug = DEBUG_DEFAULT_FLAGS; 464 #elif defined(CONFIG_KASAN) 465 static int slub_debug = SLAB_STORE_USER; 466 #else 467 static int slub_debug; 468 #endif 469 470 static char *slub_debug_slabs; 471 static int disable_higher_order_debug; 472 473 /* 474 * slub is about to manipulate internal object metadata. This memory lies 475 * outside the range of the allocated object, so accessing it would normally 476 * be reported by kasan as a bounds error. metadata_access_enable() is used 477 * to tell kasan that these accesses are OK. 478 */ 479 static inline void metadata_access_enable(void) 480 { 481 kasan_disable_current(); 482 } 483 484 static inline void metadata_access_disable(void) 485 { 486 kasan_enable_current(); 487 } 488 489 /* 490 * Object debugging 491 */ 492 static void print_section(char *text, u8 *addr, unsigned int length) 493 { 494 metadata_access_enable(); 495 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 496 length, 1); 497 metadata_access_disable(); 498 } 499 500 static struct track *get_track(struct kmem_cache *s, void *object, 501 enum track_item alloc) 502 { 503 struct track *p; 504 505 if (s->offset) 506 p = object + s->offset + sizeof(void *); 507 else 508 p = object + s->inuse; 509 510 return p + alloc; 511 } 512 513 static void set_track(struct kmem_cache *s, void *object, 514 enum track_item alloc, unsigned long addr) 515 { 516 struct track *p = get_track(s, object, alloc); 517 518 if (addr) { 519 #ifdef CONFIG_STACKTRACE 520 struct stack_trace trace; 521 int i; 522 523 trace.nr_entries = 0; 524 trace.max_entries = TRACK_ADDRS_COUNT; 525 trace.entries = p->addrs; 526 trace.skip = 3; 527 metadata_access_enable(); 528 save_stack_trace(&trace); 529 metadata_access_disable(); 530 531 /* See rant in lockdep.c */ 532 if (trace.nr_entries != 0 && 533 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 534 trace.nr_entries--; 535 536 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 537 p->addrs[i] = 0; 538 #endif 539 p->addr = addr; 540 p->cpu = smp_processor_id(); 541 p->pid = current->pid; 542 p->when = jiffies; 543 } else 544 memset(p, 0, sizeof(struct track)); 545 } 546 547 static void init_tracking(struct kmem_cache *s, void *object) 548 { 549 if (!(s->flags & SLAB_STORE_USER)) 550 return; 551 552 set_track(s, object, TRACK_FREE, 0UL); 553 set_track(s, object, TRACK_ALLOC, 0UL); 554 } 555 556 static void print_track(const char *s, struct track *t) 557 { 558 if (!t->addr) 559 return; 560 561 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 562 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 563 #ifdef CONFIG_STACKTRACE 564 { 565 int i; 566 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 567 if (t->addrs[i]) 568 pr_err("\t%pS\n", (void *)t->addrs[i]); 569 else 570 break; 571 } 572 #endif 573 } 574 575 static void print_tracking(struct kmem_cache *s, void *object) 576 { 577 if (!(s->flags & SLAB_STORE_USER)) 578 return; 579 580 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 581 print_track("Freed", get_track(s, object, TRACK_FREE)); 582 } 583 584 static void print_page_info(struct page *page) 585 { 586 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 587 page, page->objects, page->inuse, page->freelist, page->flags); 588 589 } 590 591 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 592 { 593 struct va_format vaf; 594 va_list args; 595 596 va_start(args, fmt); 597 vaf.fmt = fmt; 598 vaf.va = &args; 599 pr_err("=============================================================================\n"); 600 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 601 pr_err("-----------------------------------------------------------------------------\n\n"); 602 603 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 604 va_end(args); 605 } 606 607 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 608 { 609 struct va_format vaf; 610 va_list args; 611 612 va_start(args, fmt); 613 vaf.fmt = fmt; 614 vaf.va = &args; 615 pr_err("FIX %s: %pV\n", s->name, &vaf); 616 va_end(args); 617 } 618 619 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 620 { 621 unsigned int off; /* Offset of last byte */ 622 u8 *addr = page_address(page); 623 624 print_tracking(s, p); 625 626 print_page_info(page); 627 628 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 629 p, p - addr, get_freepointer(s, p)); 630 631 if (p > addr + 16) 632 print_section("Bytes b4 ", p - 16, 16); 633 634 print_section("Object ", p, min_t(unsigned long, s->object_size, 635 PAGE_SIZE)); 636 if (s->flags & SLAB_RED_ZONE) 637 print_section("Redzone ", p + s->object_size, 638 s->inuse - s->object_size); 639 640 if (s->offset) 641 off = s->offset + sizeof(void *); 642 else 643 off = s->inuse; 644 645 if (s->flags & SLAB_STORE_USER) 646 off += 2 * sizeof(struct track); 647 648 if (off != s->size) 649 /* Beginning of the filler is the free pointer */ 650 print_section("Padding ", p + off, s->size - off); 651 652 dump_stack(); 653 } 654 655 void object_err(struct kmem_cache *s, struct page *page, 656 u8 *object, char *reason) 657 { 658 slab_bug(s, "%s", reason); 659 print_trailer(s, page, object); 660 } 661 662 static void slab_err(struct kmem_cache *s, struct page *page, 663 const char *fmt, ...) 664 { 665 va_list args; 666 char buf[100]; 667 668 va_start(args, fmt); 669 vsnprintf(buf, sizeof(buf), fmt, args); 670 va_end(args); 671 slab_bug(s, "%s", buf); 672 print_page_info(page); 673 dump_stack(); 674 } 675 676 static void init_object(struct kmem_cache *s, void *object, u8 val) 677 { 678 u8 *p = object; 679 680 if (s->flags & __OBJECT_POISON) { 681 memset(p, POISON_FREE, s->object_size - 1); 682 p[s->object_size - 1] = POISON_END; 683 } 684 685 if (s->flags & SLAB_RED_ZONE) 686 memset(p + s->object_size, val, s->inuse - s->object_size); 687 } 688 689 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 690 void *from, void *to) 691 { 692 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 693 memset(from, data, to - from); 694 } 695 696 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 697 u8 *object, char *what, 698 u8 *start, unsigned int value, unsigned int bytes) 699 { 700 u8 *fault; 701 u8 *end; 702 703 metadata_access_enable(); 704 fault = memchr_inv(start, value, bytes); 705 metadata_access_disable(); 706 if (!fault) 707 return 1; 708 709 end = start + bytes; 710 while (end > fault && end[-1] == value) 711 end--; 712 713 slab_bug(s, "%s overwritten", what); 714 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 715 fault, end - 1, fault[0], value); 716 print_trailer(s, page, object); 717 718 restore_bytes(s, what, value, fault, end); 719 return 0; 720 } 721 722 /* 723 * Object layout: 724 * 725 * object address 726 * Bytes of the object to be managed. 727 * If the freepointer may overlay the object then the free 728 * pointer is the first word of the object. 729 * 730 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 731 * 0xa5 (POISON_END) 732 * 733 * object + s->object_size 734 * Padding to reach word boundary. This is also used for Redzoning. 735 * Padding is extended by another word if Redzoning is enabled and 736 * object_size == inuse. 737 * 738 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 739 * 0xcc (RED_ACTIVE) for objects in use. 740 * 741 * object + s->inuse 742 * Meta data starts here. 743 * 744 * A. Free pointer (if we cannot overwrite object on free) 745 * B. Tracking data for SLAB_STORE_USER 746 * C. Padding to reach required alignment boundary or at mininum 747 * one word if debugging is on to be able to detect writes 748 * before the word boundary. 749 * 750 * Padding is done using 0x5a (POISON_INUSE) 751 * 752 * object + s->size 753 * Nothing is used beyond s->size. 754 * 755 * If slabcaches are merged then the object_size and inuse boundaries are mostly 756 * ignored. And therefore no slab options that rely on these boundaries 757 * may be used with merged slabcaches. 758 */ 759 760 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 761 { 762 unsigned long off = s->inuse; /* The end of info */ 763 764 if (s->offset) 765 /* Freepointer is placed after the object. */ 766 off += sizeof(void *); 767 768 if (s->flags & SLAB_STORE_USER) 769 /* We also have user information there */ 770 off += 2 * sizeof(struct track); 771 772 if (s->size == off) 773 return 1; 774 775 return check_bytes_and_report(s, page, p, "Object padding", 776 p + off, POISON_INUSE, s->size - off); 777 } 778 779 /* Check the pad bytes at the end of a slab page */ 780 static int slab_pad_check(struct kmem_cache *s, struct page *page) 781 { 782 u8 *start; 783 u8 *fault; 784 u8 *end; 785 int length; 786 int remainder; 787 788 if (!(s->flags & SLAB_POISON)) 789 return 1; 790 791 start = page_address(page); 792 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 793 end = start + length; 794 remainder = length % s->size; 795 if (!remainder) 796 return 1; 797 798 metadata_access_enable(); 799 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 800 metadata_access_disable(); 801 if (!fault) 802 return 1; 803 while (end > fault && end[-1] == POISON_INUSE) 804 end--; 805 806 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 807 print_section("Padding ", end - remainder, remainder); 808 809 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 810 return 0; 811 } 812 813 static int check_object(struct kmem_cache *s, struct page *page, 814 void *object, u8 val) 815 { 816 u8 *p = object; 817 u8 *endobject = object + s->object_size; 818 819 if (s->flags & SLAB_RED_ZONE) { 820 if (!check_bytes_and_report(s, page, object, "Redzone", 821 endobject, val, s->inuse - s->object_size)) 822 return 0; 823 } else { 824 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 825 check_bytes_and_report(s, page, p, "Alignment padding", 826 endobject, POISON_INUSE, 827 s->inuse - s->object_size); 828 } 829 } 830 831 if (s->flags & SLAB_POISON) { 832 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 833 (!check_bytes_and_report(s, page, p, "Poison", p, 834 POISON_FREE, s->object_size - 1) || 835 !check_bytes_and_report(s, page, p, "Poison", 836 p + s->object_size - 1, POISON_END, 1))) 837 return 0; 838 /* 839 * check_pad_bytes cleans up on its own. 840 */ 841 check_pad_bytes(s, page, p); 842 } 843 844 if (!s->offset && val == SLUB_RED_ACTIVE) 845 /* 846 * Object and freepointer overlap. Cannot check 847 * freepointer while object is allocated. 848 */ 849 return 1; 850 851 /* Check free pointer validity */ 852 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 853 object_err(s, page, p, "Freepointer corrupt"); 854 /* 855 * No choice but to zap it and thus lose the remainder 856 * of the free objects in this slab. May cause 857 * another error because the object count is now wrong. 858 */ 859 set_freepointer(s, p, NULL); 860 return 0; 861 } 862 return 1; 863 } 864 865 static int check_slab(struct kmem_cache *s, struct page *page) 866 { 867 int maxobj; 868 869 VM_BUG_ON(!irqs_disabled()); 870 871 if (!PageSlab(page)) { 872 slab_err(s, page, "Not a valid slab page"); 873 return 0; 874 } 875 876 maxobj = order_objects(compound_order(page), s->size, s->reserved); 877 if (page->objects > maxobj) { 878 slab_err(s, page, "objects %u > max %u", 879 page->objects, maxobj); 880 return 0; 881 } 882 if (page->inuse > page->objects) { 883 slab_err(s, page, "inuse %u > max %u", 884 page->inuse, page->objects); 885 return 0; 886 } 887 /* Slab_pad_check fixes things up after itself */ 888 slab_pad_check(s, page); 889 return 1; 890 } 891 892 /* 893 * Determine if a certain object on a page is on the freelist. Must hold the 894 * slab lock to guarantee that the chains are in a consistent state. 895 */ 896 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 897 { 898 int nr = 0; 899 void *fp; 900 void *object = NULL; 901 int max_objects; 902 903 fp = page->freelist; 904 while (fp && nr <= page->objects) { 905 if (fp == search) 906 return 1; 907 if (!check_valid_pointer(s, page, fp)) { 908 if (object) { 909 object_err(s, page, object, 910 "Freechain corrupt"); 911 set_freepointer(s, object, NULL); 912 } else { 913 slab_err(s, page, "Freepointer corrupt"); 914 page->freelist = NULL; 915 page->inuse = page->objects; 916 slab_fix(s, "Freelist cleared"); 917 return 0; 918 } 919 break; 920 } 921 object = fp; 922 fp = get_freepointer(s, object); 923 nr++; 924 } 925 926 max_objects = order_objects(compound_order(page), s->size, s->reserved); 927 if (max_objects > MAX_OBJS_PER_PAGE) 928 max_objects = MAX_OBJS_PER_PAGE; 929 930 if (page->objects != max_objects) { 931 slab_err(s, page, "Wrong number of objects. Found %d but " 932 "should be %d", page->objects, max_objects); 933 page->objects = max_objects; 934 slab_fix(s, "Number of objects adjusted."); 935 } 936 if (page->inuse != page->objects - nr) { 937 slab_err(s, page, "Wrong object count. Counter is %d but " 938 "counted were %d", page->inuse, page->objects - nr); 939 page->inuse = page->objects - nr; 940 slab_fix(s, "Object count adjusted."); 941 } 942 return search == NULL; 943 } 944 945 static void trace(struct kmem_cache *s, struct page *page, void *object, 946 int alloc) 947 { 948 if (s->flags & SLAB_TRACE) { 949 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 950 s->name, 951 alloc ? "alloc" : "free", 952 object, page->inuse, 953 page->freelist); 954 955 if (!alloc) 956 print_section("Object ", (void *)object, 957 s->object_size); 958 959 dump_stack(); 960 } 961 } 962 963 /* 964 * Tracking of fully allocated slabs for debugging purposes. 965 */ 966 static void add_full(struct kmem_cache *s, 967 struct kmem_cache_node *n, struct page *page) 968 { 969 if (!(s->flags & SLAB_STORE_USER)) 970 return; 971 972 lockdep_assert_held(&n->list_lock); 973 list_add(&page->lru, &n->full); 974 } 975 976 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 977 { 978 if (!(s->flags & SLAB_STORE_USER)) 979 return; 980 981 lockdep_assert_held(&n->list_lock); 982 list_del(&page->lru); 983 } 984 985 /* Tracking of the number of slabs for debugging purposes */ 986 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 987 { 988 struct kmem_cache_node *n = get_node(s, node); 989 990 return atomic_long_read(&n->nr_slabs); 991 } 992 993 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 994 { 995 return atomic_long_read(&n->nr_slabs); 996 } 997 998 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 999 { 1000 struct kmem_cache_node *n = get_node(s, node); 1001 1002 /* 1003 * May be called early in order to allocate a slab for the 1004 * kmem_cache_node structure. Solve the chicken-egg 1005 * dilemma by deferring the increment of the count during 1006 * bootstrap (see early_kmem_cache_node_alloc). 1007 */ 1008 if (likely(n)) { 1009 atomic_long_inc(&n->nr_slabs); 1010 atomic_long_add(objects, &n->total_objects); 1011 } 1012 } 1013 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1014 { 1015 struct kmem_cache_node *n = get_node(s, node); 1016 1017 atomic_long_dec(&n->nr_slabs); 1018 atomic_long_sub(objects, &n->total_objects); 1019 } 1020 1021 /* Object debug checks for alloc/free paths */ 1022 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1023 void *object) 1024 { 1025 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1026 return; 1027 1028 init_object(s, object, SLUB_RED_INACTIVE); 1029 init_tracking(s, object); 1030 } 1031 1032 static noinline int alloc_debug_processing(struct kmem_cache *s, 1033 struct page *page, 1034 void *object, unsigned long addr) 1035 { 1036 if (!check_slab(s, page)) 1037 goto bad; 1038 1039 if (!check_valid_pointer(s, page, object)) { 1040 object_err(s, page, object, "Freelist Pointer check fails"); 1041 goto bad; 1042 } 1043 1044 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1045 goto bad; 1046 1047 /* Success perform special debug activities for allocs */ 1048 if (s->flags & SLAB_STORE_USER) 1049 set_track(s, object, TRACK_ALLOC, addr); 1050 trace(s, page, object, 1); 1051 init_object(s, object, SLUB_RED_ACTIVE); 1052 return 1; 1053 1054 bad: 1055 if (PageSlab(page)) { 1056 /* 1057 * If this is a slab page then lets do the best we can 1058 * to avoid issues in the future. Marking all objects 1059 * as used avoids touching the remaining objects. 1060 */ 1061 slab_fix(s, "Marking all objects used"); 1062 page->inuse = page->objects; 1063 page->freelist = NULL; 1064 } 1065 return 0; 1066 } 1067 1068 static noinline struct kmem_cache_node *free_debug_processing( 1069 struct kmem_cache *s, struct page *page, void *object, 1070 unsigned long addr, unsigned long *flags) 1071 { 1072 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1073 1074 spin_lock_irqsave(&n->list_lock, *flags); 1075 slab_lock(page); 1076 1077 if (!check_slab(s, page)) 1078 goto fail; 1079 1080 if (!check_valid_pointer(s, page, object)) { 1081 slab_err(s, page, "Invalid object pointer 0x%p", object); 1082 goto fail; 1083 } 1084 1085 if (on_freelist(s, page, object)) { 1086 object_err(s, page, object, "Object already free"); 1087 goto fail; 1088 } 1089 1090 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1091 goto out; 1092 1093 if (unlikely(s != page->slab_cache)) { 1094 if (!PageSlab(page)) { 1095 slab_err(s, page, "Attempt to free object(0x%p) " 1096 "outside of slab", object); 1097 } else if (!page->slab_cache) { 1098 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1099 object); 1100 dump_stack(); 1101 } else 1102 object_err(s, page, object, 1103 "page slab pointer corrupt."); 1104 goto fail; 1105 } 1106 1107 if (s->flags & SLAB_STORE_USER) 1108 set_track(s, object, TRACK_FREE, addr); 1109 trace(s, page, object, 0); 1110 init_object(s, object, SLUB_RED_INACTIVE); 1111 out: 1112 slab_unlock(page); 1113 /* 1114 * Keep node_lock to preserve integrity 1115 * until the object is actually freed 1116 */ 1117 return n; 1118 1119 fail: 1120 slab_unlock(page); 1121 spin_unlock_irqrestore(&n->list_lock, *flags); 1122 slab_fix(s, "Object at 0x%p not freed", object); 1123 return NULL; 1124 } 1125 1126 static int __init setup_slub_debug(char *str) 1127 { 1128 slub_debug = DEBUG_DEFAULT_FLAGS; 1129 if (*str++ != '=' || !*str) 1130 /* 1131 * No options specified. Switch on full debugging. 1132 */ 1133 goto out; 1134 1135 if (*str == ',') 1136 /* 1137 * No options but restriction on slabs. This means full 1138 * debugging for slabs matching a pattern. 1139 */ 1140 goto check_slabs; 1141 1142 slub_debug = 0; 1143 if (*str == '-') 1144 /* 1145 * Switch off all debugging measures. 1146 */ 1147 goto out; 1148 1149 /* 1150 * Determine which debug features should be switched on 1151 */ 1152 for (; *str && *str != ','; str++) { 1153 switch (tolower(*str)) { 1154 case 'f': 1155 slub_debug |= SLAB_DEBUG_FREE; 1156 break; 1157 case 'z': 1158 slub_debug |= SLAB_RED_ZONE; 1159 break; 1160 case 'p': 1161 slub_debug |= SLAB_POISON; 1162 break; 1163 case 'u': 1164 slub_debug |= SLAB_STORE_USER; 1165 break; 1166 case 't': 1167 slub_debug |= SLAB_TRACE; 1168 break; 1169 case 'a': 1170 slub_debug |= SLAB_FAILSLAB; 1171 break; 1172 case 'o': 1173 /* 1174 * Avoid enabling debugging on caches if its minimum 1175 * order would increase as a result. 1176 */ 1177 disable_higher_order_debug = 1; 1178 break; 1179 default: 1180 pr_err("slub_debug option '%c' unknown. skipped\n", 1181 *str); 1182 } 1183 } 1184 1185 check_slabs: 1186 if (*str == ',') 1187 slub_debug_slabs = str + 1; 1188 out: 1189 return 1; 1190 } 1191 1192 __setup("slub_debug", setup_slub_debug); 1193 1194 unsigned long kmem_cache_flags(unsigned long object_size, 1195 unsigned long flags, const char *name, 1196 void (*ctor)(void *)) 1197 { 1198 /* 1199 * Enable debugging if selected on the kernel commandline. 1200 */ 1201 if (slub_debug && (!slub_debug_slabs || (name && 1202 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1203 flags |= slub_debug; 1204 1205 return flags; 1206 } 1207 #else 1208 static inline void setup_object_debug(struct kmem_cache *s, 1209 struct page *page, void *object) {} 1210 1211 static inline int alloc_debug_processing(struct kmem_cache *s, 1212 struct page *page, void *object, unsigned long addr) { return 0; } 1213 1214 static inline struct kmem_cache_node *free_debug_processing( 1215 struct kmem_cache *s, struct page *page, void *object, 1216 unsigned long addr, unsigned long *flags) { return NULL; } 1217 1218 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1219 { return 1; } 1220 static inline int check_object(struct kmem_cache *s, struct page *page, 1221 void *object, u8 val) { return 1; } 1222 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1223 struct page *page) {} 1224 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1225 struct page *page) {} 1226 unsigned long kmem_cache_flags(unsigned long object_size, 1227 unsigned long flags, const char *name, 1228 void (*ctor)(void *)) 1229 { 1230 return flags; 1231 } 1232 #define slub_debug 0 1233 1234 #define disable_higher_order_debug 0 1235 1236 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1237 { return 0; } 1238 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1239 { return 0; } 1240 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1241 int objects) {} 1242 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1243 int objects) {} 1244 1245 #endif /* CONFIG_SLUB_DEBUG */ 1246 1247 /* 1248 * Hooks for other subsystems that check memory allocations. In a typical 1249 * production configuration these hooks all should produce no code at all. 1250 */ 1251 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1252 { 1253 kmemleak_alloc(ptr, size, 1, flags); 1254 kasan_kmalloc_large(ptr, size); 1255 } 1256 1257 static inline void kfree_hook(const void *x) 1258 { 1259 kmemleak_free(x); 1260 kasan_kfree_large(x); 1261 } 1262 1263 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, 1264 gfp_t flags) 1265 { 1266 flags &= gfp_allowed_mask; 1267 lockdep_trace_alloc(flags); 1268 might_sleep_if(gfpflags_allow_blocking(flags)); 1269 1270 if (should_failslab(s->object_size, flags, s->flags)) 1271 return NULL; 1272 1273 return memcg_kmem_get_cache(s, flags); 1274 } 1275 1276 static inline void slab_post_alloc_hook(struct kmem_cache *s, 1277 gfp_t flags, void *object) 1278 { 1279 flags &= gfp_allowed_mask; 1280 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 1281 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); 1282 memcg_kmem_put_cache(s); 1283 kasan_slab_alloc(s, object); 1284 } 1285 1286 static inline void slab_free_hook(struct kmem_cache *s, void *x) 1287 { 1288 kmemleak_free_recursive(x, s->flags); 1289 1290 /* 1291 * Trouble is that we may no longer disable interrupts in the fast path 1292 * So in order to make the debug calls that expect irqs to be 1293 * disabled we need to disable interrupts temporarily. 1294 */ 1295 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 1296 { 1297 unsigned long flags; 1298 1299 local_irq_save(flags); 1300 kmemcheck_slab_free(s, x, s->object_size); 1301 debug_check_no_locks_freed(x, s->object_size); 1302 local_irq_restore(flags); 1303 } 1304 #endif 1305 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1306 debug_check_no_obj_freed(x, s->object_size); 1307 1308 kasan_slab_free(s, x); 1309 } 1310 1311 static void setup_object(struct kmem_cache *s, struct page *page, 1312 void *object) 1313 { 1314 setup_object_debug(s, page, object); 1315 if (unlikely(s->ctor)) { 1316 kasan_unpoison_object_data(s, object); 1317 s->ctor(object); 1318 kasan_poison_object_data(s, object); 1319 } 1320 } 1321 1322 /* 1323 * Slab allocation and freeing 1324 */ 1325 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1326 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1327 { 1328 struct page *page; 1329 int order = oo_order(oo); 1330 1331 flags |= __GFP_NOTRACK; 1332 1333 if (node == NUMA_NO_NODE) 1334 page = alloc_pages(flags, order); 1335 else 1336 page = __alloc_pages_node(node, flags, order); 1337 1338 if (page && memcg_charge_slab(page, flags, order, s)) { 1339 __free_pages(page, order); 1340 page = NULL; 1341 } 1342 1343 return page; 1344 } 1345 1346 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1347 { 1348 struct page *page; 1349 struct kmem_cache_order_objects oo = s->oo; 1350 gfp_t alloc_gfp; 1351 void *start, *p; 1352 int idx, order; 1353 1354 flags &= gfp_allowed_mask; 1355 1356 if (gfpflags_allow_blocking(flags)) 1357 local_irq_enable(); 1358 1359 flags |= s->allocflags; 1360 1361 /* 1362 * Let the initial higher-order allocation fail under memory pressure 1363 * so we fall-back to the minimum order allocation. 1364 */ 1365 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1366 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1367 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM; 1368 1369 page = alloc_slab_page(s, alloc_gfp, node, oo); 1370 if (unlikely(!page)) { 1371 oo = s->min; 1372 alloc_gfp = flags; 1373 /* 1374 * Allocation may have failed due to fragmentation. 1375 * Try a lower order alloc if possible 1376 */ 1377 page = alloc_slab_page(s, alloc_gfp, node, oo); 1378 if (unlikely(!page)) 1379 goto out; 1380 stat(s, ORDER_FALLBACK); 1381 } 1382 1383 if (kmemcheck_enabled && 1384 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1385 int pages = 1 << oo_order(oo); 1386 1387 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1388 1389 /* 1390 * Objects from caches that have a constructor don't get 1391 * cleared when they're allocated, so we need to do it here. 1392 */ 1393 if (s->ctor) 1394 kmemcheck_mark_uninitialized_pages(page, pages); 1395 else 1396 kmemcheck_mark_unallocated_pages(page, pages); 1397 } 1398 1399 page->objects = oo_objects(oo); 1400 1401 order = compound_order(page); 1402 page->slab_cache = s; 1403 __SetPageSlab(page); 1404 if (page_is_pfmemalloc(page)) 1405 SetPageSlabPfmemalloc(page); 1406 1407 start = page_address(page); 1408 1409 if (unlikely(s->flags & SLAB_POISON)) 1410 memset(start, POISON_INUSE, PAGE_SIZE << order); 1411 1412 kasan_poison_slab(page); 1413 1414 for_each_object_idx(p, idx, s, start, page->objects) { 1415 setup_object(s, page, p); 1416 if (likely(idx < page->objects)) 1417 set_freepointer(s, p, p + s->size); 1418 else 1419 set_freepointer(s, p, NULL); 1420 } 1421 1422 page->freelist = start; 1423 page->inuse = page->objects; 1424 page->frozen = 1; 1425 1426 out: 1427 if (gfpflags_allow_blocking(flags)) 1428 local_irq_disable(); 1429 if (!page) 1430 return NULL; 1431 1432 mod_zone_page_state(page_zone(page), 1433 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1434 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1435 1 << oo_order(oo)); 1436 1437 inc_slabs_node(s, page_to_nid(page), page->objects); 1438 1439 return page; 1440 } 1441 1442 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1443 { 1444 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1445 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); 1446 BUG(); 1447 } 1448 1449 return allocate_slab(s, 1450 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1451 } 1452 1453 static void __free_slab(struct kmem_cache *s, struct page *page) 1454 { 1455 int order = compound_order(page); 1456 int pages = 1 << order; 1457 1458 if (kmem_cache_debug(s)) { 1459 void *p; 1460 1461 slab_pad_check(s, page); 1462 for_each_object(p, s, page_address(page), 1463 page->objects) 1464 check_object(s, page, p, SLUB_RED_INACTIVE); 1465 } 1466 1467 kmemcheck_free_shadow(page, compound_order(page)); 1468 1469 mod_zone_page_state(page_zone(page), 1470 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1471 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1472 -pages); 1473 1474 __ClearPageSlabPfmemalloc(page); 1475 __ClearPageSlab(page); 1476 1477 page_mapcount_reset(page); 1478 if (current->reclaim_state) 1479 current->reclaim_state->reclaimed_slab += pages; 1480 __free_kmem_pages(page, order); 1481 } 1482 1483 #define need_reserve_slab_rcu \ 1484 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1485 1486 static void rcu_free_slab(struct rcu_head *h) 1487 { 1488 struct page *page; 1489 1490 if (need_reserve_slab_rcu) 1491 page = virt_to_head_page(h); 1492 else 1493 page = container_of((struct list_head *)h, struct page, lru); 1494 1495 __free_slab(page->slab_cache, page); 1496 } 1497 1498 static void free_slab(struct kmem_cache *s, struct page *page) 1499 { 1500 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1501 struct rcu_head *head; 1502 1503 if (need_reserve_slab_rcu) { 1504 int order = compound_order(page); 1505 int offset = (PAGE_SIZE << order) - s->reserved; 1506 1507 VM_BUG_ON(s->reserved != sizeof(*head)); 1508 head = page_address(page) + offset; 1509 } else { 1510 head = &page->rcu_head; 1511 } 1512 1513 call_rcu(head, rcu_free_slab); 1514 } else 1515 __free_slab(s, page); 1516 } 1517 1518 static void discard_slab(struct kmem_cache *s, struct page *page) 1519 { 1520 dec_slabs_node(s, page_to_nid(page), page->objects); 1521 free_slab(s, page); 1522 } 1523 1524 /* 1525 * Management of partially allocated slabs. 1526 */ 1527 static inline void 1528 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1529 { 1530 n->nr_partial++; 1531 if (tail == DEACTIVATE_TO_TAIL) 1532 list_add_tail(&page->lru, &n->partial); 1533 else 1534 list_add(&page->lru, &n->partial); 1535 } 1536 1537 static inline void add_partial(struct kmem_cache_node *n, 1538 struct page *page, int tail) 1539 { 1540 lockdep_assert_held(&n->list_lock); 1541 __add_partial(n, page, tail); 1542 } 1543 1544 static inline void 1545 __remove_partial(struct kmem_cache_node *n, struct page *page) 1546 { 1547 list_del(&page->lru); 1548 n->nr_partial--; 1549 } 1550 1551 static inline void remove_partial(struct kmem_cache_node *n, 1552 struct page *page) 1553 { 1554 lockdep_assert_held(&n->list_lock); 1555 __remove_partial(n, page); 1556 } 1557 1558 /* 1559 * Remove slab from the partial list, freeze it and 1560 * return the pointer to the freelist. 1561 * 1562 * Returns a list of objects or NULL if it fails. 1563 */ 1564 static inline void *acquire_slab(struct kmem_cache *s, 1565 struct kmem_cache_node *n, struct page *page, 1566 int mode, int *objects) 1567 { 1568 void *freelist; 1569 unsigned long counters; 1570 struct page new; 1571 1572 lockdep_assert_held(&n->list_lock); 1573 1574 /* 1575 * Zap the freelist and set the frozen bit. 1576 * The old freelist is the list of objects for the 1577 * per cpu allocation list. 1578 */ 1579 freelist = page->freelist; 1580 counters = page->counters; 1581 new.counters = counters; 1582 *objects = new.objects - new.inuse; 1583 if (mode) { 1584 new.inuse = page->objects; 1585 new.freelist = NULL; 1586 } else { 1587 new.freelist = freelist; 1588 } 1589 1590 VM_BUG_ON(new.frozen); 1591 new.frozen = 1; 1592 1593 if (!__cmpxchg_double_slab(s, page, 1594 freelist, counters, 1595 new.freelist, new.counters, 1596 "acquire_slab")) 1597 return NULL; 1598 1599 remove_partial(n, page); 1600 WARN_ON(!freelist); 1601 return freelist; 1602 } 1603 1604 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1605 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1606 1607 /* 1608 * Try to allocate a partial slab from a specific node. 1609 */ 1610 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1611 struct kmem_cache_cpu *c, gfp_t flags) 1612 { 1613 struct page *page, *page2; 1614 void *object = NULL; 1615 int available = 0; 1616 int objects; 1617 1618 /* 1619 * Racy check. If we mistakenly see no partial slabs then we 1620 * just allocate an empty slab. If we mistakenly try to get a 1621 * partial slab and there is none available then get_partials() 1622 * will return NULL. 1623 */ 1624 if (!n || !n->nr_partial) 1625 return NULL; 1626 1627 spin_lock(&n->list_lock); 1628 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1629 void *t; 1630 1631 if (!pfmemalloc_match(page, flags)) 1632 continue; 1633 1634 t = acquire_slab(s, n, page, object == NULL, &objects); 1635 if (!t) 1636 break; 1637 1638 available += objects; 1639 if (!object) { 1640 c->page = page; 1641 stat(s, ALLOC_FROM_PARTIAL); 1642 object = t; 1643 } else { 1644 put_cpu_partial(s, page, 0); 1645 stat(s, CPU_PARTIAL_NODE); 1646 } 1647 if (!kmem_cache_has_cpu_partial(s) 1648 || available > s->cpu_partial / 2) 1649 break; 1650 1651 } 1652 spin_unlock(&n->list_lock); 1653 return object; 1654 } 1655 1656 /* 1657 * Get a page from somewhere. Search in increasing NUMA distances. 1658 */ 1659 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1660 struct kmem_cache_cpu *c) 1661 { 1662 #ifdef CONFIG_NUMA 1663 struct zonelist *zonelist; 1664 struct zoneref *z; 1665 struct zone *zone; 1666 enum zone_type high_zoneidx = gfp_zone(flags); 1667 void *object; 1668 unsigned int cpuset_mems_cookie; 1669 1670 /* 1671 * The defrag ratio allows a configuration of the tradeoffs between 1672 * inter node defragmentation and node local allocations. A lower 1673 * defrag_ratio increases the tendency to do local allocations 1674 * instead of attempting to obtain partial slabs from other nodes. 1675 * 1676 * If the defrag_ratio is set to 0 then kmalloc() always 1677 * returns node local objects. If the ratio is higher then kmalloc() 1678 * may return off node objects because partial slabs are obtained 1679 * from other nodes and filled up. 1680 * 1681 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1682 * defrag_ratio = 1000) then every (well almost) allocation will 1683 * first attempt to defrag slab caches on other nodes. This means 1684 * scanning over all nodes to look for partial slabs which may be 1685 * expensive if we do it every time we are trying to find a slab 1686 * with available objects. 1687 */ 1688 if (!s->remote_node_defrag_ratio || 1689 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1690 return NULL; 1691 1692 do { 1693 cpuset_mems_cookie = read_mems_allowed_begin(); 1694 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1695 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1696 struct kmem_cache_node *n; 1697 1698 n = get_node(s, zone_to_nid(zone)); 1699 1700 if (n && cpuset_zone_allowed(zone, flags) && 1701 n->nr_partial > s->min_partial) { 1702 object = get_partial_node(s, n, c, flags); 1703 if (object) { 1704 /* 1705 * Don't check read_mems_allowed_retry() 1706 * here - if mems_allowed was updated in 1707 * parallel, that was a harmless race 1708 * between allocation and the cpuset 1709 * update 1710 */ 1711 return object; 1712 } 1713 } 1714 } 1715 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1716 #endif 1717 return NULL; 1718 } 1719 1720 /* 1721 * Get a partial page, lock it and return it. 1722 */ 1723 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1724 struct kmem_cache_cpu *c) 1725 { 1726 void *object; 1727 int searchnode = node; 1728 1729 if (node == NUMA_NO_NODE) 1730 searchnode = numa_mem_id(); 1731 else if (!node_present_pages(node)) 1732 searchnode = node_to_mem_node(node); 1733 1734 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1735 if (object || node != NUMA_NO_NODE) 1736 return object; 1737 1738 return get_any_partial(s, flags, c); 1739 } 1740 1741 #ifdef CONFIG_PREEMPT 1742 /* 1743 * Calculate the next globally unique transaction for disambiguiation 1744 * during cmpxchg. The transactions start with the cpu number and are then 1745 * incremented by CONFIG_NR_CPUS. 1746 */ 1747 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1748 #else 1749 /* 1750 * No preemption supported therefore also no need to check for 1751 * different cpus. 1752 */ 1753 #define TID_STEP 1 1754 #endif 1755 1756 static inline unsigned long next_tid(unsigned long tid) 1757 { 1758 return tid + TID_STEP; 1759 } 1760 1761 static inline unsigned int tid_to_cpu(unsigned long tid) 1762 { 1763 return tid % TID_STEP; 1764 } 1765 1766 static inline unsigned long tid_to_event(unsigned long tid) 1767 { 1768 return tid / TID_STEP; 1769 } 1770 1771 static inline unsigned int init_tid(int cpu) 1772 { 1773 return cpu; 1774 } 1775 1776 static inline void note_cmpxchg_failure(const char *n, 1777 const struct kmem_cache *s, unsigned long tid) 1778 { 1779 #ifdef SLUB_DEBUG_CMPXCHG 1780 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1781 1782 pr_info("%s %s: cmpxchg redo ", n, s->name); 1783 1784 #ifdef CONFIG_PREEMPT 1785 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1786 pr_warn("due to cpu change %d -> %d\n", 1787 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1788 else 1789 #endif 1790 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1791 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1792 tid_to_event(tid), tid_to_event(actual_tid)); 1793 else 1794 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1795 actual_tid, tid, next_tid(tid)); 1796 #endif 1797 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1798 } 1799 1800 static void init_kmem_cache_cpus(struct kmem_cache *s) 1801 { 1802 int cpu; 1803 1804 for_each_possible_cpu(cpu) 1805 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1806 } 1807 1808 /* 1809 * Remove the cpu slab 1810 */ 1811 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1812 void *freelist) 1813 { 1814 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1815 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1816 int lock = 0; 1817 enum slab_modes l = M_NONE, m = M_NONE; 1818 void *nextfree; 1819 int tail = DEACTIVATE_TO_HEAD; 1820 struct page new; 1821 struct page old; 1822 1823 if (page->freelist) { 1824 stat(s, DEACTIVATE_REMOTE_FREES); 1825 tail = DEACTIVATE_TO_TAIL; 1826 } 1827 1828 /* 1829 * Stage one: Free all available per cpu objects back 1830 * to the page freelist while it is still frozen. Leave the 1831 * last one. 1832 * 1833 * There is no need to take the list->lock because the page 1834 * is still frozen. 1835 */ 1836 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1837 void *prior; 1838 unsigned long counters; 1839 1840 do { 1841 prior = page->freelist; 1842 counters = page->counters; 1843 set_freepointer(s, freelist, prior); 1844 new.counters = counters; 1845 new.inuse--; 1846 VM_BUG_ON(!new.frozen); 1847 1848 } while (!__cmpxchg_double_slab(s, page, 1849 prior, counters, 1850 freelist, new.counters, 1851 "drain percpu freelist")); 1852 1853 freelist = nextfree; 1854 } 1855 1856 /* 1857 * Stage two: Ensure that the page is unfrozen while the 1858 * list presence reflects the actual number of objects 1859 * during unfreeze. 1860 * 1861 * We setup the list membership and then perform a cmpxchg 1862 * with the count. If there is a mismatch then the page 1863 * is not unfrozen but the page is on the wrong list. 1864 * 1865 * Then we restart the process which may have to remove 1866 * the page from the list that we just put it on again 1867 * because the number of objects in the slab may have 1868 * changed. 1869 */ 1870 redo: 1871 1872 old.freelist = page->freelist; 1873 old.counters = page->counters; 1874 VM_BUG_ON(!old.frozen); 1875 1876 /* Determine target state of the slab */ 1877 new.counters = old.counters; 1878 if (freelist) { 1879 new.inuse--; 1880 set_freepointer(s, freelist, old.freelist); 1881 new.freelist = freelist; 1882 } else 1883 new.freelist = old.freelist; 1884 1885 new.frozen = 0; 1886 1887 if (!new.inuse && n->nr_partial >= s->min_partial) 1888 m = M_FREE; 1889 else if (new.freelist) { 1890 m = M_PARTIAL; 1891 if (!lock) { 1892 lock = 1; 1893 /* 1894 * Taking the spinlock removes the possiblity 1895 * that acquire_slab() will see a slab page that 1896 * is frozen 1897 */ 1898 spin_lock(&n->list_lock); 1899 } 1900 } else { 1901 m = M_FULL; 1902 if (kmem_cache_debug(s) && !lock) { 1903 lock = 1; 1904 /* 1905 * This also ensures that the scanning of full 1906 * slabs from diagnostic functions will not see 1907 * any frozen slabs. 1908 */ 1909 spin_lock(&n->list_lock); 1910 } 1911 } 1912 1913 if (l != m) { 1914 1915 if (l == M_PARTIAL) 1916 1917 remove_partial(n, page); 1918 1919 else if (l == M_FULL) 1920 1921 remove_full(s, n, page); 1922 1923 if (m == M_PARTIAL) { 1924 1925 add_partial(n, page, tail); 1926 stat(s, tail); 1927 1928 } else if (m == M_FULL) { 1929 1930 stat(s, DEACTIVATE_FULL); 1931 add_full(s, n, page); 1932 1933 } 1934 } 1935 1936 l = m; 1937 if (!__cmpxchg_double_slab(s, page, 1938 old.freelist, old.counters, 1939 new.freelist, new.counters, 1940 "unfreezing slab")) 1941 goto redo; 1942 1943 if (lock) 1944 spin_unlock(&n->list_lock); 1945 1946 if (m == M_FREE) { 1947 stat(s, DEACTIVATE_EMPTY); 1948 discard_slab(s, page); 1949 stat(s, FREE_SLAB); 1950 } 1951 } 1952 1953 /* 1954 * Unfreeze all the cpu partial slabs. 1955 * 1956 * This function must be called with interrupts disabled 1957 * for the cpu using c (or some other guarantee must be there 1958 * to guarantee no concurrent accesses). 1959 */ 1960 static void unfreeze_partials(struct kmem_cache *s, 1961 struct kmem_cache_cpu *c) 1962 { 1963 #ifdef CONFIG_SLUB_CPU_PARTIAL 1964 struct kmem_cache_node *n = NULL, *n2 = NULL; 1965 struct page *page, *discard_page = NULL; 1966 1967 while ((page = c->partial)) { 1968 struct page new; 1969 struct page old; 1970 1971 c->partial = page->next; 1972 1973 n2 = get_node(s, page_to_nid(page)); 1974 if (n != n2) { 1975 if (n) 1976 spin_unlock(&n->list_lock); 1977 1978 n = n2; 1979 spin_lock(&n->list_lock); 1980 } 1981 1982 do { 1983 1984 old.freelist = page->freelist; 1985 old.counters = page->counters; 1986 VM_BUG_ON(!old.frozen); 1987 1988 new.counters = old.counters; 1989 new.freelist = old.freelist; 1990 1991 new.frozen = 0; 1992 1993 } while (!__cmpxchg_double_slab(s, page, 1994 old.freelist, old.counters, 1995 new.freelist, new.counters, 1996 "unfreezing slab")); 1997 1998 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 1999 page->next = discard_page; 2000 discard_page = page; 2001 } else { 2002 add_partial(n, page, DEACTIVATE_TO_TAIL); 2003 stat(s, FREE_ADD_PARTIAL); 2004 } 2005 } 2006 2007 if (n) 2008 spin_unlock(&n->list_lock); 2009 2010 while (discard_page) { 2011 page = discard_page; 2012 discard_page = discard_page->next; 2013 2014 stat(s, DEACTIVATE_EMPTY); 2015 discard_slab(s, page); 2016 stat(s, FREE_SLAB); 2017 } 2018 #endif 2019 } 2020 2021 /* 2022 * Put a page that was just frozen (in __slab_free) into a partial page 2023 * slot if available. This is done without interrupts disabled and without 2024 * preemption disabled. The cmpxchg is racy and may put the partial page 2025 * onto a random cpus partial slot. 2026 * 2027 * If we did not find a slot then simply move all the partials to the 2028 * per node partial list. 2029 */ 2030 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2031 { 2032 #ifdef CONFIG_SLUB_CPU_PARTIAL 2033 struct page *oldpage; 2034 int pages; 2035 int pobjects; 2036 2037 preempt_disable(); 2038 do { 2039 pages = 0; 2040 pobjects = 0; 2041 oldpage = this_cpu_read(s->cpu_slab->partial); 2042 2043 if (oldpage) { 2044 pobjects = oldpage->pobjects; 2045 pages = oldpage->pages; 2046 if (drain && pobjects > s->cpu_partial) { 2047 unsigned long flags; 2048 /* 2049 * partial array is full. Move the existing 2050 * set to the per node partial list. 2051 */ 2052 local_irq_save(flags); 2053 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2054 local_irq_restore(flags); 2055 oldpage = NULL; 2056 pobjects = 0; 2057 pages = 0; 2058 stat(s, CPU_PARTIAL_DRAIN); 2059 } 2060 } 2061 2062 pages++; 2063 pobjects += page->objects - page->inuse; 2064 2065 page->pages = pages; 2066 page->pobjects = pobjects; 2067 page->next = oldpage; 2068 2069 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2070 != oldpage); 2071 if (unlikely(!s->cpu_partial)) { 2072 unsigned long flags; 2073 2074 local_irq_save(flags); 2075 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2076 local_irq_restore(flags); 2077 } 2078 preempt_enable(); 2079 #endif 2080 } 2081 2082 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2083 { 2084 stat(s, CPUSLAB_FLUSH); 2085 deactivate_slab(s, c->page, c->freelist); 2086 2087 c->tid = next_tid(c->tid); 2088 c->page = NULL; 2089 c->freelist = NULL; 2090 } 2091 2092 /* 2093 * Flush cpu slab. 2094 * 2095 * Called from IPI handler with interrupts disabled. 2096 */ 2097 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2098 { 2099 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2100 2101 if (likely(c)) { 2102 if (c->page) 2103 flush_slab(s, c); 2104 2105 unfreeze_partials(s, c); 2106 } 2107 } 2108 2109 static void flush_cpu_slab(void *d) 2110 { 2111 struct kmem_cache *s = d; 2112 2113 __flush_cpu_slab(s, smp_processor_id()); 2114 } 2115 2116 static bool has_cpu_slab(int cpu, void *info) 2117 { 2118 struct kmem_cache *s = info; 2119 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2120 2121 return c->page || c->partial; 2122 } 2123 2124 static void flush_all(struct kmem_cache *s) 2125 { 2126 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2127 } 2128 2129 /* 2130 * Check if the objects in a per cpu structure fit numa 2131 * locality expectations. 2132 */ 2133 static inline int node_match(struct page *page, int node) 2134 { 2135 #ifdef CONFIG_NUMA 2136 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2137 return 0; 2138 #endif 2139 return 1; 2140 } 2141 2142 #ifdef CONFIG_SLUB_DEBUG 2143 static int count_free(struct page *page) 2144 { 2145 return page->objects - page->inuse; 2146 } 2147 2148 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2149 { 2150 return atomic_long_read(&n->total_objects); 2151 } 2152 #endif /* CONFIG_SLUB_DEBUG */ 2153 2154 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2155 static unsigned long count_partial(struct kmem_cache_node *n, 2156 int (*get_count)(struct page *)) 2157 { 2158 unsigned long flags; 2159 unsigned long x = 0; 2160 struct page *page; 2161 2162 spin_lock_irqsave(&n->list_lock, flags); 2163 list_for_each_entry(page, &n->partial, lru) 2164 x += get_count(page); 2165 spin_unlock_irqrestore(&n->list_lock, flags); 2166 return x; 2167 } 2168 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2169 2170 static noinline void 2171 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2172 { 2173 #ifdef CONFIG_SLUB_DEBUG 2174 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2175 DEFAULT_RATELIMIT_BURST); 2176 int node; 2177 struct kmem_cache_node *n; 2178 2179 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2180 return; 2181 2182 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2183 nid, gfpflags); 2184 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2185 s->name, s->object_size, s->size, oo_order(s->oo), 2186 oo_order(s->min)); 2187 2188 if (oo_order(s->min) > get_order(s->object_size)) 2189 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2190 s->name); 2191 2192 for_each_kmem_cache_node(s, node, n) { 2193 unsigned long nr_slabs; 2194 unsigned long nr_objs; 2195 unsigned long nr_free; 2196 2197 nr_free = count_partial(n, count_free); 2198 nr_slabs = node_nr_slabs(n); 2199 nr_objs = node_nr_objs(n); 2200 2201 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2202 node, nr_slabs, nr_objs, nr_free); 2203 } 2204 #endif 2205 } 2206 2207 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2208 int node, struct kmem_cache_cpu **pc) 2209 { 2210 void *freelist; 2211 struct kmem_cache_cpu *c = *pc; 2212 struct page *page; 2213 2214 freelist = get_partial(s, flags, node, c); 2215 2216 if (freelist) 2217 return freelist; 2218 2219 page = new_slab(s, flags, node); 2220 if (page) { 2221 c = raw_cpu_ptr(s->cpu_slab); 2222 if (c->page) 2223 flush_slab(s, c); 2224 2225 /* 2226 * No other reference to the page yet so we can 2227 * muck around with it freely without cmpxchg 2228 */ 2229 freelist = page->freelist; 2230 page->freelist = NULL; 2231 2232 stat(s, ALLOC_SLAB); 2233 c->page = page; 2234 *pc = c; 2235 } else 2236 freelist = NULL; 2237 2238 return freelist; 2239 } 2240 2241 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2242 { 2243 if (unlikely(PageSlabPfmemalloc(page))) 2244 return gfp_pfmemalloc_allowed(gfpflags); 2245 2246 return true; 2247 } 2248 2249 /* 2250 * Check the page->freelist of a page and either transfer the freelist to the 2251 * per cpu freelist or deactivate the page. 2252 * 2253 * The page is still frozen if the return value is not NULL. 2254 * 2255 * If this function returns NULL then the page has been unfrozen. 2256 * 2257 * This function must be called with interrupt disabled. 2258 */ 2259 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2260 { 2261 struct page new; 2262 unsigned long counters; 2263 void *freelist; 2264 2265 do { 2266 freelist = page->freelist; 2267 counters = page->counters; 2268 2269 new.counters = counters; 2270 VM_BUG_ON(!new.frozen); 2271 2272 new.inuse = page->objects; 2273 new.frozen = freelist != NULL; 2274 2275 } while (!__cmpxchg_double_slab(s, page, 2276 freelist, counters, 2277 NULL, new.counters, 2278 "get_freelist")); 2279 2280 return freelist; 2281 } 2282 2283 /* 2284 * Slow path. The lockless freelist is empty or we need to perform 2285 * debugging duties. 2286 * 2287 * Processing is still very fast if new objects have been freed to the 2288 * regular freelist. In that case we simply take over the regular freelist 2289 * as the lockless freelist and zap the regular freelist. 2290 * 2291 * If that is not working then we fall back to the partial lists. We take the 2292 * first element of the freelist as the object to allocate now and move the 2293 * rest of the freelist to the lockless freelist. 2294 * 2295 * And if we were unable to get a new slab from the partial slab lists then 2296 * we need to allocate a new slab. This is the slowest path since it involves 2297 * a call to the page allocator and the setup of a new slab. 2298 */ 2299 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2300 unsigned long addr, struct kmem_cache_cpu *c) 2301 { 2302 void *freelist; 2303 struct page *page; 2304 unsigned long flags; 2305 2306 local_irq_save(flags); 2307 #ifdef CONFIG_PREEMPT 2308 /* 2309 * We may have been preempted and rescheduled on a different 2310 * cpu before disabling interrupts. Need to reload cpu area 2311 * pointer. 2312 */ 2313 c = this_cpu_ptr(s->cpu_slab); 2314 #endif 2315 2316 page = c->page; 2317 if (!page) 2318 goto new_slab; 2319 redo: 2320 2321 if (unlikely(!node_match(page, node))) { 2322 int searchnode = node; 2323 2324 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2325 searchnode = node_to_mem_node(node); 2326 2327 if (unlikely(!node_match(page, searchnode))) { 2328 stat(s, ALLOC_NODE_MISMATCH); 2329 deactivate_slab(s, page, c->freelist); 2330 c->page = NULL; 2331 c->freelist = NULL; 2332 goto new_slab; 2333 } 2334 } 2335 2336 /* 2337 * By rights, we should be searching for a slab page that was 2338 * PFMEMALLOC but right now, we are losing the pfmemalloc 2339 * information when the page leaves the per-cpu allocator 2340 */ 2341 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2342 deactivate_slab(s, page, c->freelist); 2343 c->page = NULL; 2344 c->freelist = NULL; 2345 goto new_slab; 2346 } 2347 2348 /* must check again c->freelist in case of cpu migration or IRQ */ 2349 freelist = c->freelist; 2350 if (freelist) 2351 goto load_freelist; 2352 2353 freelist = get_freelist(s, page); 2354 2355 if (!freelist) { 2356 c->page = NULL; 2357 stat(s, DEACTIVATE_BYPASS); 2358 goto new_slab; 2359 } 2360 2361 stat(s, ALLOC_REFILL); 2362 2363 load_freelist: 2364 /* 2365 * freelist is pointing to the list of objects to be used. 2366 * page is pointing to the page from which the objects are obtained. 2367 * That page must be frozen for per cpu allocations to work. 2368 */ 2369 VM_BUG_ON(!c->page->frozen); 2370 c->freelist = get_freepointer(s, freelist); 2371 c->tid = next_tid(c->tid); 2372 local_irq_restore(flags); 2373 return freelist; 2374 2375 new_slab: 2376 2377 if (c->partial) { 2378 page = c->page = c->partial; 2379 c->partial = page->next; 2380 stat(s, CPU_PARTIAL_ALLOC); 2381 c->freelist = NULL; 2382 goto redo; 2383 } 2384 2385 freelist = new_slab_objects(s, gfpflags, node, &c); 2386 2387 if (unlikely(!freelist)) { 2388 slab_out_of_memory(s, gfpflags, node); 2389 local_irq_restore(flags); 2390 return NULL; 2391 } 2392 2393 page = c->page; 2394 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2395 goto load_freelist; 2396 2397 /* Only entered in the debug case */ 2398 if (kmem_cache_debug(s) && 2399 !alloc_debug_processing(s, page, freelist, addr)) 2400 goto new_slab; /* Slab failed checks. Next slab needed */ 2401 2402 deactivate_slab(s, page, get_freepointer(s, freelist)); 2403 c->page = NULL; 2404 c->freelist = NULL; 2405 local_irq_restore(flags); 2406 return freelist; 2407 } 2408 2409 /* 2410 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2411 * have the fastpath folded into their functions. So no function call 2412 * overhead for requests that can be satisfied on the fastpath. 2413 * 2414 * The fastpath works by first checking if the lockless freelist can be used. 2415 * If not then __slab_alloc is called for slow processing. 2416 * 2417 * Otherwise we can simply pick the next object from the lockless free list. 2418 */ 2419 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2420 gfp_t gfpflags, int node, unsigned long addr) 2421 { 2422 void **object; 2423 struct kmem_cache_cpu *c; 2424 struct page *page; 2425 unsigned long tid; 2426 2427 s = slab_pre_alloc_hook(s, gfpflags); 2428 if (!s) 2429 return NULL; 2430 redo: 2431 /* 2432 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2433 * enabled. We may switch back and forth between cpus while 2434 * reading from one cpu area. That does not matter as long 2435 * as we end up on the original cpu again when doing the cmpxchg. 2436 * 2437 * We should guarantee that tid and kmem_cache are retrieved on 2438 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2439 * to check if it is matched or not. 2440 */ 2441 do { 2442 tid = this_cpu_read(s->cpu_slab->tid); 2443 c = raw_cpu_ptr(s->cpu_slab); 2444 } while (IS_ENABLED(CONFIG_PREEMPT) && 2445 unlikely(tid != READ_ONCE(c->tid))); 2446 2447 /* 2448 * Irqless object alloc/free algorithm used here depends on sequence 2449 * of fetching cpu_slab's data. tid should be fetched before anything 2450 * on c to guarantee that object and page associated with previous tid 2451 * won't be used with current tid. If we fetch tid first, object and 2452 * page could be one associated with next tid and our alloc/free 2453 * request will be failed. In this case, we will retry. So, no problem. 2454 */ 2455 barrier(); 2456 2457 /* 2458 * The transaction ids are globally unique per cpu and per operation on 2459 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2460 * occurs on the right processor and that there was no operation on the 2461 * linked list in between. 2462 */ 2463 2464 object = c->freelist; 2465 page = c->page; 2466 if (unlikely(!object || !node_match(page, node))) { 2467 object = __slab_alloc(s, gfpflags, node, addr, c); 2468 stat(s, ALLOC_SLOWPATH); 2469 } else { 2470 void *next_object = get_freepointer_safe(s, object); 2471 2472 /* 2473 * The cmpxchg will only match if there was no additional 2474 * operation and if we are on the right processor. 2475 * 2476 * The cmpxchg does the following atomically (without lock 2477 * semantics!) 2478 * 1. Relocate first pointer to the current per cpu area. 2479 * 2. Verify that tid and freelist have not been changed 2480 * 3. If they were not changed replace tid and freelist 2481 * 2482 * Since this is without lock semantics the protection is only 2483 * against code executing on this cpu *not* from access by 2484 * other cpus. 2485 */ 2486 if (unlikely(!this_cpu_cmpxchg_double( 2487 s->cpu_slab->freelist, s->cpu_slab->tid, 2488 object, tid, 2489 next_object, next_tid(tid)))) { 2490 2491 note_cmpxchg_failure("slab_alloc", s, tid); 2492 goto redo; 2493 } 2494 prefetch_freepointer(s, next_object); 2495 stat(s, ALLOC_FASTPATH); 2496 } 2497 2498 if (unlikely(gfpflags & __GFP_ZERO) && object) 2499 memset(object, 0, s->object_size); 2500 2501 slab_post_alloc_hook(s, gfpflags, object); 2502 2503 return object; 2504 } 2505 2506 static __always_inline void *slab_alloc(struct kmem_cache *s, 2507 gfp_t gfpflags, unsigned long addr) 2508 { 2509 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2510 } 2511 2512 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2513 { 2514 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2515 2516 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2517 s->size, gfpflags); 2518 2519 return ret; 2520 } 2521 EXPORT_SYMBOL(kmem_cache_alloc); 2522 2523 #ifdef CONFIG_TRACING 2524 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2525 { 2526 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2527 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2528 kasan_kmalloc(s, ret, size); 2529 return ret; 2530 } 2531 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2532 #endif 2533 2534 #ifdef CONFIG_NUMA 2535 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2536 { 2537 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2538 2539 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2540 s->object_size, s->size, gfpflags, node); 2541 2542 return ret; 2543 } 2544 EXPORT_SYMBOL(kmem_cache_alloc_node); 2545 2546 #ifdef CONFIG_TRACING 2547 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2548 gfp_t gfpflags, 2549 int node, size_t size) 2550 { 2551 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2552 2553 trace_kmalloc_node(_RET_IP_, ret, 2554 size, s->size, gfpflags, node); 2555 2556 kasan_kmalloc(s, ret, size); 2557 return ret; 2558 } 2559 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2560 #endif 2561 #endif 2562 2563 /* 2564 * Slow path handling. This may still be called frequently since objects 2565 * have a longer lifetime than the cpu slabs in most processing loads. 2566 * 2567 * So we still attempt to reduce cache line usage. Just take the slab 2568 * lock and free the item. If there is no additional partial page 2569 * handling required then we can return immediately. 2570 */ 2571 static void __slab_free(struct kmem_cache *s, struct page *page, 2572 void *x, unsigned long addr) 2573 { 2574 void *prior; 2575 void **object = (void *)x; 2576 int was_frozen; 2577 struct page new; 2578 unsigned long counters; 2579 struct kmem_cache_node *n = NULL; 2580 unsigned long uninitialized_var(flags); 2581 2582 stat(s, FREE_SLOWPATH); 2583 2584 if (kmem_cache_debug(s) && 2585 !(n = free_debug_processing(s, page, x, addr, &flags))) 2586 return; 2587 2588 do { 2589 if (unlikely(n)) { 2590 spin_unlock_irqrestore(&n->list_lock, flags); 2591 n = NULL; 2592 } 2593 prior = page->freelist; 2594 counters = page->counters; 2595 set_freepointer(s, object, prior); 2596 new.counters = counters; 2597 was_frozen = new.frozen; 2598 new.inuse--; 2599 if ((!new.inuse || !prior) && !was_frozen) { 2600 2601 if (kmem_cache_has_cpu_partial(s) && !prior) { 2602 2603 /* 2604 * Slab was on no list before and will be 2605 * partially empty 2606 * We can defer the list move and instead 2607 * freeze it. 2608 */ 2609 new.frozen = 1; 2610 2611 } else { /* Needs to be taken off a list */ 2612 2613 n = get_node(s, page_to_nid(page)); 2614 /* 2615 * Speculatively acquire the list_lock. 2616 * If the cmpxchg does not succeed then we may 2617 * drop the list_lock without any processing. 2618 * 2619 * Otherwise the list_lock will synchronize with 2620 * other processors updating the list of slabs. 2621 */ 2622 spin_lock_irqsave(&n->list_lock, flags); 2623 2624 } 2625 } 2626 2627 } while (!cmpxchg_double_slab(s, page, 2628 prior, counters, 2629 object, new.counters, 2630 "__slab_free")); 2631 2632 if (likely(!n)) { 2633 2634 /* 2635 * If we just froze the page then put it onto the 2636 * per cpu partial list. 2637 */ 2638 if (new.frozen && !was_frozen) { 2639 put_cpu_partial(s, page, 1); 2640 stat(s, CPU_PARTIAL_FREE); 2641 } 2642 /* 2643 * The list lock was not taken therefore no list 2644 * activity can be necessary. 2645 */ 2646 if (was_frozen) 2647 stat(s, FREE_FROZEN); 2648 return; 2649 } 2650 2651 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2652 goto slab_empty; 2653 2654 /* 2655 * Objects left in the slab. If it was not on the partial list before 2656 * then add it. 2657 */ 2658 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2659 if (kmem_cache_debug(s)) 2660 remove_full(s, n, page); 2661 add_partial(n, page, DEACTIVATE_TO_TAIL); 2662 stat(s, FREE_ADD_PARTIAL); 2663 } 2664 spin_unlock_irqrestore(&n->list_lock, flags); 2665 return; 2666 2667 slab_empty: 2668 if (prior) { 2669 /* 2670 * Slab on the partial list. 2671 */ 2672 remove_partial(n, page); 2673 stat(s, FREE_REMOVE_PARTIAL); 2674 } else { 2675 /* Slab must be on the full list */ 2676 remove_full(s, n, page); 2677 } 2678 2679 spin_unlock_irqrestore(&n->list_lock, flags); 2680 stat(s, FREE_SLAB); 2681 discard_slab(s, page); 2682 } 2683 2684 /* 2685 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2686 * can perform fastpath freeing without additional function calls. 2687 * 2688 * The fastpath is only possible if we are freeing to the current cpu slab 2689 * of this processor. This typically the case if we have just allocated 2690 * the item before. 2691 * 2692 * If fastpath is not possible then fall back to __slab_free where we deal 2693 * with all sorts of special processing. 2694 */ 2695 static __always_inline void slab_free(struct kmem_cache *s, 2696 struct page *page, void *x, unsigned long addr) 2697 { 2698 void **object = (void *)x; 2699 struct kmem_cache_cpu *c; 2700 unsigned long tid; 2701 2702 slab_free_hook(s, x); 2703 2704 redo: 2705 /* 2706 * Determine the currently cpus per cpu slab. 2707 * The cpu may change afterward. However that does not matter since 2708 * data is retrieved via this pointer. If we are on the same cpu 2709 * during the cmpxchg then the free will succeed. 2710 */ 2711 do { 2712 tid = this_cpu_read(s->cpu_slab->tid); 2713 c = raw_cpu_ptr(s->cpu_slab); 2714 } while (IS_ENABLED(CONFIG_PREEMPT) && 2715 unlikely(tid != READ_ONCE(c->tid))); 2716 2717 /* Same with comment on barrier() in slab_alloc_node() */ 2718 barrier(); 2719 2720 if (likely(page == c->page)) { 2721 set_freepointer(s, object, c->freelist); 2722 2723 if (unlikely(!this_cpu_cmpxchg_double( 2724 s->cpu_slab->freelist, s->cpu_slab->tid, 2725 c->freelist, tid, 2726 object, next_tid(tid)))) { 2727 2728 note_cmpxchg_failure("slab_free", s, tid); 2729 goto redo; 2730 } 2731 stat(s, FREE_FASTPATH); 2732 } else 2733 __slab_free(s, page, x, addr); 2734 2735 } 2736 2737 void kmem_cache_free(struct kmem_cache *s, void *x) 2738 { 2739 s = cache_from_obj(s, x); 2740 if (!s) 2741 return; 2742 slab_free(s, virt_to_head_page(x), x, _RET_IP_); 2743 trace_kmem_cache_free(_RET_IP_, x); 2744 } 2745 EXPORT_SYMBOL(kmem_cache_free); 2746 2747 /* Note that interrupts must be enabled when calling this function. */ 2748 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 2749 { 2750 struct kmem_cache_cpu *c; 2751 struct page *page; 2752 int i; 2753 2754 local_irq_disable(); 2755 c = this_cpu_ptr(s->cpu_slab); 2756 2757 for (i = 0; i < size; i++) { 2758 void *object = p[i]; 2759 2760 BUG_ON(!object); 2761 /* kmem cache debug support */ 2762 s = cache_from_obj(s, object); 2763 if (unlikely(!s)) 2764 goto exit; 2765 slab_free_hook(s, object); 2766 2767 page = virt_to_head_page(object); 2768 2769 if (c->page == page) { 2770 /* Fastpath: local CPU free */ 2771 set_freepointer(s, object, c->freelist); 2772 c->freelist = object; 2773 } else { 2774 c->tid = next_tid(c->tid); 2775 local_irq_enable(); 2776 /* Slowpath: overhead locked cmpxchg_double_slab */ 2777 __slab_free(s, page, object, _RET_IP_); 2778 local_irq_disable(); 2779 c = this_cpu_ptr(s->cpu_slab); 2780 } 2781 } 2782 exit: 2783 c->tid = next_tid(c->tid); 2784 local_irq_enable(); 2785 } 2786 EXPORT_SYMBOL(kmem_cache_free_bulk); 2787 2788 /* Note that interrupts must be enabled when calling this function. */ 2789 bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 2790 void **p) 2791 { 2792 struct kmem_cache_cpu *c; 2793 int i; 2794 2795 /* 2796 * Drain objects in the per cpu slab, while disabling local 2797 * IRQs, which protects against PREEMPT and interrupts 2798 * handlers invoking normal fastpath. 2799 */ 2800 local_irq_disable(); 2801 c = this_cpu_ptr(s->cpu_slab); 2802 2803 for (i = 0; i < size; i++) { 2804 void *object = c->freelist; 2805 2806 if (unlikely(!object)) { 2807 local_irq_enable(); 2808 /* 2809 * Invoking slow path likely have side-effect 2810 * of re-populating per CPU c->freelist 2811 */ 2812 p[i] = __slab_alloc(s, flags, NUMA_NO_NODE, 2813 _RET_IP_, c); 2814 if (unlikely(!p[i])) { 2815 __kmem_cache_free_bulk(s, i, p); 2816 return false; 2817 } 2818 local_irq_disable(); 2819 c = this_cpu_ptr(s->cpu_slab); 2820 continue; /* goto for-loop */ 2821 } 2822 2823 /* kmem_cache debug support */ 2824 s = slab_pre_alloc_hook(s, flags); 2825 if (unlikely(!s)) { 2826 __kmem_cache_free_bulk(s, i, p); 2827 c->tid = next_tid(c->tid); 2828 local_irq_enable(); 2829 return false; 2830 } 2831 2832 c->freelist = get_freepointer(s, object); 2833 p[i] = object; 2834 2835 /* kmem_cache debug support */ 2836 slab_post_alloc_hook(s, flags, object); 2837 } 2838 c->tid = next_tid(c->tid); 2839 local_irq_enable(); 2840 2841 /* Clear memory outside IRQ disabled fastpath loop */ 2842 if (unlikely(flags & __GFP_ZERO)) { 2843 int j; 2844 2845 for (j = 0; j < i; j++) 2846 memset(p[j], 0, s->object_size); 2847 } 2848 2849 return true; 2850 } 2851 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 2852 2853 2854 /* 2855 * Object placement in a slab is made very easy because we always start at 2856 * offset 0. If we tune the size of the object to the alignment then we can 2857 * get the required alignment by putting one properly sized object after 2858 * another. 2859 * 2860 * Notice that the allocation order determines the sizes of the per cpu 2861 * caches. Each processor has always one slab available for allocations. 2862 * Increasing the allocation order reduces the number of times that slabs 2863 * must be moved on and off the partial lists and is therefore a factor in 2864 * locking overhead. 2865 */ 2866 2867 /* 2868 * Mininum / Maximum order of slab pages. This influences locking overhead 2869 * and slab fragmentation. A higher order reduces the number of partial slabs 2870 * and increases the number of allocations possible without having to 2871 * take the list_lock. 2872 */ 2873 static int slub_min_order; 2874 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2875 static int slub_min_objects; 2876 2877 /* 2878 * Calculate the order of allocation given an slab object size. 2879 * 2880 * The order of allocation has significant impact on performance and other 2881 * system components. Generally order 0 allocations should be preferred since 2882 * order 0 does not cause fragmentation in the page allocator. Larger objects 2883 * be problematic to put into order 0 slabs because there may be too much 2884 * unused space left. We go to a higher order if more than 1/16th of the slab 2885 * would be wasted. 2886 * 2887 * In order to reach satisfactory performance we must ensure that a minimum 2888 * number of objects is in one slab. Otherwise we may generate too much 2889 * activity on the partial lists which requires taking the list_lock. This is 2890 * less a concern for large slabs though which are rarely used. 2891 * 2892 * slub_max_order specifies the order where we begin to stop considering the 2893 * number of objects in a slab as critical. If we reach slub_max_order then 2894 * we try to keep the page order as low as possible. So we accept more waste 2895 * of space in favor of a small page order. 2896 * 2897 * Higher order allocations also allow the placement of more objects in a 2898 * slab and thereby reduce object handling overhead. If the user has 2899 * requested a higher mininum order then we start with that one instead of 2900 * the smallest order which will fit the object. 2901 */ 2902 static inline int slab_order(int size, int min_objects, 2903 int max_order, int fract_leftover, int reserved) 2904 { 2905 int order; 2906 int rem; 2907 int min_order = slub_min_order; 2908 2909 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2910 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2911 2912 for (order = max(min_order, get_order(min_objects * size + reserved)); 2913 order <= max_order; order++) { 2914 2915 unsigned long slab_size = PAGE_SIZE << order; 2916 2917 rem = (slab_size - reserved) % size; 2918 2919 if (rem <= slab_size / fract_leftover) 2920 break; 2921 } 2922 2923 return order; 2924 } 2925 2926 static inline int calculate_order(int size, int reserved) 2927 { 2928 int order; 2929 int min_objects; 2930 int fraction; 2931 int max_objects; 2932 2933 /* 2934 * Attempt to find best configuration for a slab. This 2935 * works by first attempting to generate a layout with 2936 * the best configuration and backing off gradually. 2937 * 2938 * First we increase the acceptable waste in a slab. Then 2939 * we reduce the minimum objects required in a slab. 2940 */ 2941 min_objects = slub_min_objects; 2942 if (!min_objects) 2943 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2944 max_objects = order_objects(slub_max_order, size, reserved); 2945 min_objects = min(min_objects, max_objects); 2946 2947 while (min_objects > 1) { 2948 fraction = 16; 2949 while (fraction >= 4) { 2950 order = slab_order(size, min_objects, 2951 slub_max_order, fraction, reserved); 2952 if (order <= slub_max_order) 2953 return order; 2954 fraction /= 2; 2955 } 2956 min_objects--; 2957 } 2958 2959 /* 2960 * We were unable to place multiple objects in a slab. Now 2961 * lets see if we can place a single object there. 2962 */ 2963 order = slab_order(size, 1, slub_max_order, 1, reserved); 2964 if (order <= slub_max_order) 2965 return order; 2966 2967 /* 2968 * Doh this slab cannot be placed using slub_max_order. 2969 */ 2970 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2971 if (order < MAX_ORDER) 2972 return order; 2973 return -ENOSYS; 2974 } 2975 2976 static void 2977 init_kmem_cache_node(struct kmem_cache_node *n) 2978 { 2979 n->nr_partial = 0; 2980 spin_lock_init(&n->list_lock); 2981 INIT_LIST_HEAD(&n->partial); 2982 #ifdef CONFIG_SLUB_DEBUG 2983 atomic_long_set(&n->nr_slabs, 0); 2984 atomic_long_set(&n->total_objects, 0); 2985 INIT_LIST_HEAD(&n->full); 2986 #endif 2987 } 2988 2989 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2990 { 2991 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2992 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 2993 2994 /* 2995 * Must align to double word boundary for the double cmpxchg 2996 * instructions to work; see __pcpu_double_call_return_bool(). 2997 */ 2998 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2999 2 * sizeof(void *)); 3000 3001 if (!s->cpu_slab) 3002 return 0; 3003 3004 init_kmem_cache_cpus(s); 3005 3006 return 1; 3007 } 3008 3009 static struct kmem_cache *kmem_cache_node; 3010 3011 /* 3012 * No kmalloc_node yet so do it by hand. We know that this is the first 3013 * slab on the node for this slabcache. There are no concurrent accesses 3014 * possible. 3015 * 3016 * Note that this function only works on the kmem_cache_node 3017 * when allocating for the kmem_cache_node. This is used for bootstrapping 3018 * memory on a fresh node that has no slab structures yet. 3019 */ 3020 static void early_kmem_cache_node_alloc(int node) 3021 { 3022 struct page *page; 3023 struct kmem_cache_node *n; 3024 3025 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3026 3027 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3028 3029 BUG_ON(!page); 3030 if (page_to_nid(page) != node) { 3031 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3032 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3033 } 3034 3035 n = page->freelist; 3036 BUG_ON(!n); 3037 page->freelist = get_freepointer(kmem_cache_node, n); 3038 page->inuse = 1; 3039 page->frozen = 0; 3040 kmem_cache_node->node[node] = n; 3041 #ifdef CONFIG_SLUB_DEBUG 3042 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3043 init_tracking(kmem_cache_node, n); 3044 #endif 3045 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node)); 3046 init_kmem_cache_node(n); 3047 inc_slabs_node(kmem_cache_node, node, page->objects); 3048 3049 /* 3050 * No locks need to be taken here as it has just been 3051 * initialized and there is no concurrent access. 3052 */ 3053 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3054 } 3055 3056 static void free_kmem_cache_nodes(struct kmem_cache *s) 3057 { 3058 int node; 3059 struct kmem_cache_node *n; 3060 3061 for_each_kmem_cache_node(s, node, n) { 3062 kmem_cache_free(kmem_cache_node, n); 3063 s->node[node] = NULL; 3064 } 3065 } 3066 3067 static int init_kmem_cache_nodes(struct kmem_cache *s) 3068 { 3069 int node; 3070 3071 for_each_node_state(node, N_NORMAL_MEMORY) { 3072 struct kmem_cache_node *n; 3073 3074 if (slab_state == DOWN) { 3075 early_kmem_cache_node_alloc(node); 3076 continue; 3077 } 3078 n = kmem_cache_alloc_node(kmem_cache_node, 3079 GFP_KERNEL, node); 3080 3081 if (!n) { 3082 free_kmem_cache_nodes(s); 3083 return 0; 3084 } 3085 3086 s->node[node] = n; 3087 init_kmem_cache_node(n); 3088 } 3089 return 1; 3090 } 3091 3092 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3093 { 3094 if (min < MIN_PARTIAL) 3095 min = MIN_PARTIAL; 3096 else if (min > MAX_PARTIAL) 3097 min = MAX_PARTIAL; 3098 s->min_partial = min; 3099 } 3100 3101 /* 3102 * calculate_sizes() determines the order and the distribution of data within 3103 * a slab object. 3104 */ 3105 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3106 { 3107 unsigned long flags = s->flags; 3108 unsigned long size = s->object_size; 3109 int order; 3110 3111 /* 3112 * Round up object size to the next word boundary. We can only 3113 * place the free pointer at word boundaries and this determines 3114 * the possible location of the free pointer. 3115 */ 3116 size = ALIGN(size, sizeof(void *)); 3117 3118 #ifdef CONFIG_SLUB_DEBUG 3119 /* 3120 * Determine if we can poison the object itself. If the user of 3121 * the slab may touch the object after free or before allocation 3122 * then we should never poison the object itself. 3123 */ 3124 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 3125 !s->ctor) 3126 s->flags |= __OBJECT_POISON; 3127 else 3128 s->flags &= ~__OBJECT_POISON; 3129 3130 3131 /* 3132 * If we are Redzoning then check if there is some space between the 3133 * end of the object and the free pointer. If not then add an 3134 * additional word to have some bytes to store Redzone information. 3135 */ 3136 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3137 size += sizeof(void *); 3138 #endif 3139 3140 /* 3141 * With that we have determined the number of bytes in actual use 3142 * by the object. This is the potential offset to the free pointer. 3143 */ 3144 s->inuse = size; 3145 3146 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 3147 s->ctor)) { 3148 /* 3149 * Relocate free pointer after the object if it is not 3150 * permitted to overwrite the first word of the object on 3151 * kmem_cache_free. 3152 * 3153 * This is the case if we do RCU, have a constructor or 3154 * destructor or are poisoning the objects. 3155 */ 3156 s->offset = size; 3157 size += sizeof(void *); 3158 } 3159 3160 #ifdef CONFIG_SLUB_DEBUG 3161 if (flags & SLAB_STORE_USER) 3162 /* 3163 * Need to store information about allocs and frees after 3164 * the object. 3165 */ 3166 size += 2 * sizeof(struct track); 3167 3168 if (flags & SLAB_RED_ZONE) 3169 /* 3170 * Add some empty padding so that we can catch 3171 * overwrites from earlier objects rather than let 3172 * tracking information or the free pointer be 3173 * corrupted if a user writes before the start 3174 * of the object. 3175 */ 3176 size += sizeof(void *); 3177 #endif 3178 3179 /* 3180 * SLUB stores one object immediately after another beginning from 3181 * offset 0. In order to align the objects we have to simply size 3182 * each object to conform to the alignment. 3183 */ 3184 size = ALIGN(size, s->align); 3185 s->size = size; 3186 if (forced_order >= 0) 3187 order = forced_order; 3188 else 3189 order = calculate_order(size, s->reserved); 3190 3191 if (order < 0) 3192 return 0; 3193 3194 s->allocflags = 0; 3195 if (order) 3196 s->allocflags |= __GFP_COMP; 3197 3198 if (s->flags & SLAB_CACHE_DMA) 3199 s->allocflags |= GFP_DMA; 3200 3201 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3202 s->allocflags |= __GFP_RECLAIMABLE; 3203 3204 /* 3205 * Determine the number of objects per slab 3206 */ 3207 s->oo = oo_make(order, size, s->reserved); 3208 s->min = oo_make(get_order(size), size, s->reserved); 3209 if (oo_objects(s->oo) > oo_objects(s->max)) 3210 s->max = s->oo; 3211 3212 return !!oo_objects(s->oo); 3213 } 3214 3215 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3216 { 3217 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3218 s->reserved = 0; 3219 3220 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3221 s->reserved = sizeof(struct rcu_head); 3222 3223 if (!calculate_sizes(s, -1)) 3224 goto error; 3225 if (disable_higher_order_debug) { 3226 /* 3227 * Disable debugging flags that store metadata if the min slab 3228 * order increased. 3229 */ 3230 if (get_order(s->size) > get_order(s->object_size)) { 3231 s->flags &= ~DEBUG_METADATA_FLAGS; 3232 s->offset = 0; 3233 if (!calculate_sizes(s, -1)) 3234 goto error; 3235 } 3236 } 3237 3238 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3239 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3240 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3241 /* Enable fast mode */ 3242 s->flags |= __CMPXCHG_DOUBLE; 3243 #endif 3244 3245 /* 3246 * The larger the object size is, the more pages we want on the partial 3247 * list to avoid pounding the page allocator excessively. 3248 */ 3249 set_min_partial(s, ilog2(s->size) / 2); 3250 3251 /* 3252 * cpu_partial determined the maximum number of objects kept in the 3253 * per cpu partial lists of a processor. 3254 * 3255 * Per cpu partial lists mainly contain slabs that just have one 3256 * object freed. If they are used for allocation then they can be 3257 * filled up again with minimal effort. The slab will never hit the 3258 * per node partial lists and therefore no locking will be required. 3259 * 3260 * This setting also determines 3261 * 3262 * A) The number of objects from per cpu partial slabs dumped to the 3263 * per node list when we reach the limit. 3264 * B) The number of objects in cpu partial slabs to extract from the 3265 * per node list when we run out of per cpu objects. We only fetch 3266 * 50% to keep some capacity around for frees. 3267 */ 3268 if (!kmem_cache_has_cpu_partial(s)) 3269 s->cpu_partial = 0; 3270 else if (s->size >= PAGE_SIZE) 3271 s->cpu_partial = 2; 3272 else if (s->size >= 1024) 3273 s->cpu_partial = 6; 3274 else if (s->size >= 256) 3275 s->cpu_partial = 13; 3276 else 3277 s->cpu_partial = 30; 3278 3279 #ifdef CONFIG_NUMA 3280 s->remote_node_defrag_ratio = 1000; 3281 #endif 3282 if (!init_kmem_cache_nodes(s)) 3283 goto error; 3284 3285 if (alloc_kmem_cache_cpus(s)) 3286 return 0; 3287 3288 free_kmem_cache_nodes(s); 3289 error: 3290 if (flags & SLAB_PANIC) 3291 panic("Cannot create slab %s size=%lu realsize=%u " 3292 "order=%u offset=%u flags=%lx\n", 3293 s->name, (unsigned long)s->size, s->size, 3294 oo_order(s->oo), s->offset, flags); 3295 return -EINVAL; 3296 } 3297 3298 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3299 const char *text) 3300 { 3301 #ifdef CONFIG_SLUB_DEBUG 3302 void *addr = page_address(page); 3303 void *p; 3304 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3305 sizeof(long), GFP_ATOMIC); 3306 if (!map) 3307 return; 3308 slab_err(s, page, text, s->name); 3309 slab_lock(page); 3310 3311 get_map(s, page, map); 3312 for_each_object(p, s, addr, page->objects) { 3313 3314 if (!test_bit(slab_index(p, s, addr), map)) { 3315 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3316 print_tracking(s, p); 3317 } 3318 } 3319 slab_unlock(page); 3320 kfree(map); 3321 #endif 3322 } 3323 3324 /* 3325 * Attempt to free all partial slabs on a node. 3326 * This is called from kmem_cache_close(). We must be the last thread 3327 * using the cache and therefore we do not need to lock anymore. 3328 */ 3329 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3330 { 3331 struct page *page, *h; 3332 3333 list_for_each_entry_safe(page, h, &n->partial, lru) { 3334 if (!page->inuse) { 3335 __remove_partial(n, page); 3336 discard_slab(s, page); 3337 } else { 3338 list_slab_objects(s, page, 3339 "Objects remaining in %s on kmem_cache_close()"); 3340 } 3341 } 3342 } 3343 3344 /* 3345 * Release all resources used by a slab cache. 3346 */ 3347 static inline int kmem_cache_close(struct kmem_cache *s) 3348 { 3349 int node; 3350 struct kmem_cache_node *n; 3351 3352 flush_all(s); 3353 /* Attempt to free all objects */ 3354 for_each_kmem_cache_node(s, node, n) { 3355 free_partial(s, n); 3356 if (n->nr_partial || slabs_node(s, node)) 3357 return 1; 3358 } 3359 free_percpu(s->cpu_slab); 3360 free_kmem_cache_nodes(s); 3361 return 0; 3362 } 3363 3364 int __kmem_cache_shutdown(struct kmem_cache *s) 3365 { 3366 return kmem_cache_close(s); 3367 } 3368 3369 /******************************************************************** 3370 * Kmalloc subsystem 3371 *******************************************************************/ 3372 3373 static int __init setup_slub_min_order(char *str) 3374 { 3375 get_option(&str, &slub_min_order); 3376 3377 return 1; 3378 } 3379 3380 __setup("slub_min_order=", setup_slub_min_order); 3381 3382 static int __init setup_slub_max_order(char *str) 3383 { 3384 get_option(&str, &slub_max_order); 3385 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3386 3387 return 1; 3388 } 3389 3390 __setup("slub_max_order=", setup_slub_max_order); 3391 3392 static int __init setup_slub_min_objects(char *str) 3393 { 3394 get_option(&str, &slub_min_objects); 3395 3396 return 1; 3397 } 3398 3399 __setup("slub_min_objects=", setup_slub_min_objects); 3400 3401 void *__kmalloc(size_t size, gfp_t flags) 3402 { 3403 struct kmem_cache *s; 3404 void *ret; 3405 3406 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3407 return kmalloc_large(size, flags); 3408 3409 s = kmalloc_slab(size, flags); 3410 3411 if (unlikely(ZERO_OR_NULL_PTR(s))) 3412 return s; 3413 3414 ret = slab_alloc(s, flags, _RET_IP_); 3415 3416 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3417 3418 kasan_kmalloc(s, ret, size); 3419 3420 return ret; 3421 } 3422 EXPORT_SYMBOL(__kmalloc); 3423 3424 #ifdef CONFIG_NUMA 3425 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3426 { 3427 struct page *page; 3428 void *ptr = NULL; 3429 3430 flags |= __GFP_COMP | __GFP_NOTRACK; 3431 page = alloc_kmem_pages_node(node, flags, get_order(size)); 3432 if (page) 3433 ptr = page_address(page); 3434 3435 kmalloc_large_node_hook(ptr, size, flags); 3436 return ptr; 3437 } 3438 3439 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3440 { 3441 struct kmem_cache *s; 3442 void *ret; 3443 3444 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3445 ret = kmalloc_large_node(size, flags, node); 3446 3447 trace_kmalloc_node(_RET_IP_, ret, 3448 size, PAGE_SIZE << get_order(size), 3449 flags, node); 3450 3451 return ret; 3452 } 3453 3454 s = kmalloc_slab(size, flags); 3455 3456 if (unlikely(ZERO_OR_NULL_PTR(s))) 3457 return s; 3458 3459 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3460 3461 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3462 3463 kasan_kmalloc(s, ret, size); 3464 3465 return ret; 3466 } 3467 EXPORT_SYMBOL(__kmalloc_node); 3468 #endif 3469 3470 static size_t __ksize(const void *object) 3471 { 3472 struct page *page; 3473 3474 if (unlikely(object == ZERO_SIZE_PTR)) 3475 return 0; 3476 3477 page = virt_to_head_page(object); 3478 3479 if (unlikely(!PageSlab(page))) { 3480 WARN_ON(!PageCompound(page)); 3481 return PAGE_SIZE << compound_order(page); 3482 } 3483 3484 return slab_ksize(page->slab_cache); 3485 } 3486 3487 size_t ksize(const void *object) 3488 { 3489 size_t size = __ksize(object); 3490 /* We assume that ksize callers could use whole allocated area, 3491 so we need unpoison this area. */ 3492 kasan_krealloc(object, size); 3493 return size; 3494 } 3495 EXPORT_SYMBOL(ksize); 3496 3497 void kfree(const void *x) 3498 { 3499 struct page *page; 3500 void *object = (void *)x; 3501 3502 trace_kfree(_RET_IP_, x); 3503 3504 if (unlikely(ZERO_OR_NULL_PTR(x))) 3505 return; 3506 3507 page = virt_to_head_page(x); 3508 if (unlikely(!PageSlab(page))) { 3509 BUG_ON(!PageCompound(page)); 3510 kfree_hook(x); 3511 __free_kmem_pages(page, compound_order(page)); 3512 return; 3513 } 3514 slab_free(page->slab_cache, page, object, _RET_IP_); 3515 } 3516 EXPORT_SYMBOL(kfree); 3517 3518 #define SHRINK_PROMOTE_MAX 32 3519 3520 /* 3521 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3522 * up most to the head of the partial lists. New allocations will then 3523 * fill those up and thus they can be removed from the partial lists. 3524 * 3525 * The slabs with the least items are placed last. This results in them 3526 * being allocated from last increasing the chance that the last objects 3527 * are freed in them. 3528 */ 3529 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate) 3530 { 3531 int node; 3532 int i; 3533 struct kmem_cache_node *n; 3534 struct page *page; 3535 struct page *t; 3536 struct list_head discard; 3537 struct list_head promote[SHRINK_PROMOTE_MAX]; 3538 unsigned long flags; 3539 int ret = 0; 3540 3541 if (deactivate) { 3542 /* 3543 * Disable empty slabs caching. Used to avoid pinning offline 3544 * memory cgroups by kmem pages that can be freed. 3545 */ 3546 s->cpu_partial = 0; 3547 s->min_partial = 0; 3548 3549 /* 3550 * s->cpu_partial is checked locklessly (see put_cpu_partial), 3551 * so we have to make sure the change is visible. 3552 */ 3553 kick_all_cpus_sync(); 3554 } 3555 3556 flush_all(s); 3557 for_each_kmem_cache_node(s, node, n) { 3558 INIT_LIST_HEAD(&discard); 3559 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3560 INIT_LIST_HEAD(promote + i); 3561 3562 spin_lock_irqsave(&n->list_lock, flags); 3563 3564 /* 3565 * Build lists of slabs to discard or promote. 3566 * 3567 * Note that concurrent frees may occur while we hold the 3568 * list_lock. page->inuse here is the upper limit. 3569 */ 3570 list_for_each_entry_safe(page, t, &n->partial, lru) { 3571 int free = page->objects - page->inuse; 3572 3573 /* Do not reread page->inuse */ 3574 barrier(); 3575 3576 /* We do not keep full slabs on the list */ 3577 BUG_ON(free <= 0); 3578 3579 if (free == page->objects) { 3580 list_move(&page->lru, &discard); 3581 n->nr_partial--; 3582 } else if (free <= SHRINK_PROMOTE_MAX) 3583 list_move(&page->lru, promote + free - 1); 3584 } 3585 3586 /* 3587 * Promote the slabs filled up most to the head of the 3588 * partial list. 3589 */ 3590 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 3591 list_splice(promote + i, &n->partial); 3592 3593 spin_unlock_irqrestore(&n->list_lock, flags); 3594 3595 /* Release empty slabs */ 3596 list_for_each_entry_safe(page, t, &discard, lru) 3597 discard_slab(s, page); 3598 3599 if (slabs_node(s, node)) 3600 ret = 1; 3601 } 3602 3603 return ret; 3604 } 3605 3606 static int slab_mem_going_offline_callback(void *arg) 3607 { 3608 struct kmem_cache *s; 3609 3610 mutex_lock(&slab_mutex); 3611 list_for_each_entry(s, &slab_caches, list) 3612 __kmem_cache_shrink(s, false); 3613 mutex_unlock(&slab_mutex); 3614 3615 return 0; 3616 } 3617 3618 static void slab_mem_offline_callback(void *arg) 3619 { 3620 struct kmem_cache_node *n; 3621 struct kmem_cache *s; 3622 struct memory_notify *marg = arg; 3623 int offline_node; 3624 3625 offline_node = marg->status_change_nid_normal; 3626 3627 /* 3628 * If the node still has available memory. we need kmem_cache_node 3629 * for it yet. 3630 */ 3631 if (offline_node < 0) 3632 return; 3633 3634 mutex_lock(&slab_mutex); 3635 list_for_each_entry(s, &slab_caches, list) { 3636 n = get_node(s, offline_node); 3637 if (n) { 3638 /* 3639 * if n->nr_slabs > 0, slabs still exist on the node 3640 * that is going down. We were unable to free them, 3641 * and offline_pages() function shouldn't call this 3642 * callback. So, we must fail. 3643 */ 3644 BUG_ON(slabs_node(s, offline_node)); 3645 3646 s->node[offline_node] = NULL; 3647 kmem_cache_free(kmem_cache_node, n); 3648 } 3649 } 3650 mutex_unlock(&slab_mutex); 3651 } 3652 3653 static int slab_mem_going_online_callback(void *arg) 3654 { 3655 struct kmem_cache_node *n; 3656 struct kmem_cache *s; 3657 struct memory_notify *marg = arg; 3658 int nid = marg->status_change_nid_normal; 3659 int ret = 0; 3660 3661 /* 3662 * If the node's memory is already available, then kmem_cache_node is 3663 * already created. Nothing to do. 3664 */ 3665 if (nid < 0) 3666 return 0; 3667 3668 /* 3669 * We are bringing a node online. No memory is available yet. We must 3670 * allocate a kmem_cache_node structure in order to bring the node 3671 * online. 3672 */ 3673 mutex_lock(&slab_mutex); 3674 list_for_each_entry(s, &slab_caches, list) { 3675 /* 3676 * XXX: kmem_cache_alloc_node will fallback to other nodes 3677 * since memory is not yet available from the node that 3678 * is brought up. 3679 */ 3680 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3681 if (!n) { 3682 ret = -ENOMEM; 3683 goto out; 3684 } 3685 init_kmem_cache_node(n); 3686 s->node[nid] = n; 3687 } 3688 out: 3689 mutex_unlock(&slab_mutex); 3690 return ret; 3691 } 3692 3693 static int slab_memory_callback(struct notifier_block *self, 3694 unsigned long action, void *arg) 3695 { 3696 int ret = 0; 3697 3698 switch (action) { 3699 case MEM_GOING_ONLINE: 3700 ret = slab_mem_going_online_callback(arg); 3701 break; 3702 case MEM_GOING_OFFLINE: 3703 ret = slab_mem_going_offline_callback(arg); 3704 break; 3705 case MEM_OFFLINE: 3706 case MEM_CANCEL_ONLINE: 3707 slab_mem_offline_callback(arg); 3708 break; 3709 case MEM_ONLINE: 3710 case MEM_CANCEL_OFFLINE: 3711 break; 3712 } 3713 if (ret) 3714 ret = notifier_from_errno(ret); 3715 else 3716 ret = NOTIFY_OK; 3717 return ret; 3718 } 3719 3720 static struct notifier_block slab_memory_callback_nb = { 3721 .notifier_call = slab_memory_callback, 3722 .priority = SLAB_CALLBACK_PRI, 3723 }; 3724 3725 /******************************************************************** 3726 * Basic setup of slabs 3727 *******************************************************************/ 3728 3729 /* 3730 * Used for early kmem_cache structures that were allocated using 3731 * the page allocator. Allocate them properly then fix up the pointers 3732 * that may be pointing to the wrong kmem_cache structure. 3733 */ 3734 3735 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 3736 { 3737 int node; 3738 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 3739 struct kmem_cache_node *n; 3740 3741 memcpy(s, static_cache, kmem_cache->object_size); 3742 3743 /* 3744 * This runs very early, and only the boot processor is supposed to be 3745 * up. Even if it weren't true, IRQs are not up so we couldn't fire 3746 * IPIs around. 3747 */ 3748 __flush_cpu_slab(s, smp_processor_id()); 3749 for_each_kmem_cache_node(s, node, n) { 3750 struct page *p; 3751 3752 list_for_each_entry(p, &n->partial, lru) 3753 p->slab_cache = s; 3754 3755 #ifdef CONFIG_SLUB_DEBUG 3756 list_for_each_entry(p, &n->full, lru) 3757 p->slab_cache = s; 3758 #endif 3759 } 3760 slab_init_memcg_params(s); 3761 list_add(&s->list, &slab_caches); 3762 return s; 3763 } 3764 3765 void __init kmem_cache_init(void) 3766 { 3767 static __initdata struct kmem_cache boot_kmem_cache, 3768 boot_kmem_cache_node; 3769 3770 if (debug_guardpage_minorder()) 3771 slub_max_order = 0; 3772 3773 kmem_cache_node = &boot_kmem_cache_node; 3774 kmem_cache = &boot_kmem_cache; 3775 3776 create_boot_cache(kmem_cache_node, "kmem_cache_node", 3777 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 3778 3779 register_hotmemory_notifier(&slab_memory_callback_nb); 3780 3781 /* Able to allocate the per node structures */ 3782 slab_state = PARTIAL; 3783 3784 create_boot_cache(kmem_cache, "kmem_cache", 3785 offsetof(struct kmem_cache, node) + 3786 nr_node_ids * sizeof(struct kmem_cache_node *), 3787 SLAB_HWCACHE_ALIGN); 3788 3789 kmem_cache = bootstrap(&boot_kmem_cache); 3790 3791 /* 3792 * Allocate kmem_cache_node properly from the kmem_cache slab. 3793 * kmem_cache_node is separately allocated so no need to 3794 * update any list pointers. 3795 */ 3796 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 3797 3798 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3799 setup_kmalloc_cache_index_table(); 3800 create_kmalloc_caches(0); 3801 3802 #ifdef CONFIG_SMP 3803 register_cpu_notifier(&slab_notifier); 3804 #endif 3805 3806 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n", 3807 cache_line_size(), 3808 slub_min_order, slub_max_order, slub_min_objects, 3809 nr_cpu_ids, nr_node_ids); 3810 } 3811 3812 void __init kmem_cache_init_late(void) 3813 { 3814 } 3815 3816 struct kmem_cache * 3817 __kmem_cache_alias(const char *name, size_t size, size_t align, 3818 unsigned long flags, void (*ctor)(void *)) 3819 { 3820 struct kmem_cache *s, *c; 3821 3822 s = find_mergeable(size, align, flags, name, ctor); 3823 if (s) { 3824 s->refcount++; 3825 3826 /* 3827 * Adjust the object sizes so that we clear 3828 * the complete object on kzalloc. 3829 */ 3830 s->object_size = max(s->object_size, (int)size); 3831 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3832 3833 for_each_memcg_cache(c, s) { 3834 c->object_size = s->object_size; 3835 c->inuse = max_t(int, c->inuse, 3836 ALIGN(size, sizeof(void *))); 3837 } 3838 3839 if (sysfs_slab_alias(s, name)) { 3840 s->refcount--; 3841 s = NULL; 3842 } 3843 } 3844 3845 return s; 3846 } 3847 3848 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 3849 { 3850 int err; 3851 3852 err = kmem_cache_open(s, flags); 3853 if (err) 3854 return err; 3855 3856 /* Mutex is not taken during early boot */ 3857 if (slab_state <= UP) 3858 return 0; 3859 3860 memcg_propagate_slab_attrs(s); 3861 err = sysfs_slab_add(s); 3862 if (err) 3863 kmem_cache_close(s); 3864 3865 return err; 3866 } 3867 3868 #ifdef CONFIG_SMP 3869 /* 3870 * Use the cpu notifier to insure that the cpu slabs are flushed when 3871 * necessary. 3872 */ 3873 static int slab_cpuup_callback(struct notifier_block *nfb, 3874 unsigned long action, void *hcpu) 3875 { 3876 long cpu = (long)hcpu; 3877 struct kmem_cache *s; 3878 unsigned long flags; 3879 3880 switch (action) { 3881 case CPU_UP_CANCELED: 3882 case CPU_UP_CANCELED_FROZEN: 3883 case CPU_DEAD: 3884 case CPU_DEAD_FROZEN: 3885 mutex_lock(&slab_mutex); 3886 list_for_each_entry(s, &slab_caches, list) { 3887 local_irq_save(flags); 3888 __flush_cpu_slab(s, cpu); 3889 local_irq_restore(flags); 3890 } 3891 mutex_unlock(&slab_mutex); 3892 break; 3893 default: 3894 break; 3895 } 3896 return NOTIFY_OK; 3897 } 3898 3899 static struct notifier_block slab_notifier = { 3900 .notifier_call = slab_cpuup_callback 3901 }; 3902 3903 #endif 3904 3905 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3906 { 3907 struct kmem_cache *s; 3908 void *ret; 3909 3910 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3911 return kmalloc_large(size, gfpflags); 3912 3913 s = kmalloc_slab(size, gfpflags); 3914 3915 if (unlikely(ZERO_OR_NULL_PTR(s))) 3916 return s; 3917 3918 ret = slab_alloc(s, gfpflags, caller); 3919 3920 /* Honor the call site pointer we received. */ 3921 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3922 3923 return ret; 3924 } 3925 3926 #ifdef CONFIG_NUMA 3927 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3928 int node, unsigned long caller) 3929 { 3930 struct kmem_cache *s; 3931 void *ret; 3932 3933 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3934 ret = kmalloc_large_node(size, gfpflags, node); 3935 3936 trace_kmalloc_node(caller, ret, 3937 size, PAGE_SIZE << get_order(size), 3938 gfpflags, node); 3939 3940 return ret; 3941 } 3942 3943 s = kmalloc_slab(size, gfpflags); 3944 3945 if (unlikely(ZERO_OR_NULL_PTR(s))) 3946 return s; 3947 3948 ret = slab_alloc_node(s, gfpflags, node, caller); 3949 3950 /* Honor the call site pointer we received. */ 3951 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3952 3953 return ret; 3954 } 3955 #endif 3956 3957 #ifdef CONFIG_SYSFS 3958 static int count_inuse(struct page *page) 3959 { 3960 return page->inuse; 3961 } 3962 3963 static int count_total(struct page *page) 3964 { 3965 return page->objects; 3966 } 3967 #endif 3968 3969 #ifdef CONFIG_SLUB_DEBUG 3970 static int validate_slab(struct kmem_cache *s, struct page *page, 3971 unsigned long *map) 3972 { 3973 void *p; 3974 void *addr = page_address(page); 3975 3976 if (!check_slab(s, page) || 3977 !on_freelist(s, page, NULL)) 3978 return 0; 3979 3980 /* Now we know that a valid freelist exists */ 3981 bitmap_zero(map, page->objects); 3982 3983 get_map(s, page, map); 3984 for_each_object(p, s, addr, page->objects) { 3985 if (test_bit(slab_index(p, s, addr), map)) 3986 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 3987 return 0; 3988 } 3989 3990 for_each_object(p, s, addr, page->objects) 3991 if (!test_bit(slab_index(p, s, addr), map)) 3992 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 3993 return 0; 3994 return 1; 3995 } 3996 3997 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3998 unsigned long *map) 3999 { 4000 slab_lock(page); 4001 validate_slab(s, page, map); 4002 slab_unlock(page); 4003 } 4004 4005 static int validate_slab_node(struct kmem_cache *s, 4006 struct kmem_cache_node *n, unsigned long *map) 4007 { 4008 unsigned long count = 0; 4009 struct page *page; 4010 unsigned long flags; 4011 4012 spin_lock_irqsave(&n->list_lock, flags); 4013 4014 list_for_each_entry(page, &n->partial, lru) { 4015 validate_slab_slab(s, page, map); 4016 count++; 4017 } 4018 if (count != n->nr_partial) 4019 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4020 s->name, count, n->nr_partial); 4021 4022 if (!(s->flags & SLAB_STORE_USER)) 4023 goto out; 4024 4025 list_for_each_entry(page, &n->full, lru) { 4026 validate_slab_slab(s, page, map); 4027 count++; 4028 } 4029 if (count != atomic_long_read(&n->nr_slabs)) 4030 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4031 s->name, count, atomic_long_read(&n->nr_slabs)); 4032 4033 out: 4034 spin_unlock_irqrestore(&n->list_lock, flags); 4035 return count; 4036 } 4037 4038 static long validate_slab_cache(struct kmem_cache *s) 4039 { 4040 int node; 4041 unsigned long count = 0; 4042 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4043 sizeof(unsigned long), GFP_KERNEL); 4044 struct kmem_cache_node *n; 4045 4046 if (!map) 4047 return -ENOMEM; 4048 4049 flush_all(s); 4050 for_each_kmem_cache_node(s, node, n) 4051 count += validate_slab_node(s, n, map); 4052 kfree(map); 4053 return count; 4054 } 4055 /* 4056 * Generate lists of code addresses where slabcache objects are allocated 4057 * and freed. 4058 */ 4059 4060 struct location { 4061 unsigned long count; 4062 unsigned long addr; 4063 long long sum_time; 4064 long min_time; 4065 long max_time; 4066 long min_pid; 4067 long max_pid; 4068 DECLARE_BITMAP(cpus, NR_CPUS); 4069 nodemask_t nodes; 4070 }; 4071 4072 struct loc_track { 4073 unsigned long max; 4074 unsigned long count; 4075 struct location *loc; 4076 }; 4077 4078 static void free_loc_track(struct loc_track *t) 4079 { 4080 if (t->max) 4081 free_pages((unsigned long)t->loc, 4082 get_order(sizeof(struct location) * t->max)); 4083 } 4084 4085 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4086 { 4087 struct location *l; 4088 int order; 4089 4090 order = get_order(sizeof(struct location) * max); 4091 4092 l = (void *)__get_free_pages(flags, order); 4093 if (!l) 4094 return 0; 4095 4096 if (t->count) { 4097 memcpy(l, t->loc, sizeof(struct location) * t->count); 4098 free_loc_track(t); 4099 } 4100 t->max = max; 4101 t->loc = l; 4102 return 1; 4103 } 4104 4105 static int add_location(struct loc_track *t, struct kmem_cache *s, 4106 const struct track *track) 4107 { 4108 long start, end, pos; 4109 struct location *l; 4110 unsigned long caddr; 4111 unsigned long age = jiffies - track->when; 4112 4113 start = -1; 4114 end = t->count; 4115 4116 for ( ; ; ) { 4117 pos = start + (end - start + 1) / 2; 4118 4119 /* 4120 * There is nothing at "end". If we end up there 4121 * we need to add something to before end. 4122 */ 4123 if (pos == end) 4124 break; 4125 4126 caddr = t->loc[pos].addr; 4127 if (track->addr == caddr) { 4128 4129 l = &t->loc[pos]; 4130 l->count++; 4131 if (track->when) { 4132 l->sum_time += age; 4133 if (age < l->min_time) 4134 l->min_time = age; 4135 if (age > l->max_time) 4136 l->max_time = age; 4137 4138 if (track->pid < l->min_pid) 4139 l->min_pid = track->pid; 4140 if (track->pid > l->max_pid) 4141 l->max_pid = track->pid; 4142 4143 cpumask_set_cpu(track->cpu, 4144 to_cpumask(l->cpus)); 4145 } 4146 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4147 return 1; 4148 } 4149 4150 if (track->addr < caddr) 4151 end = pos; 4152 else 4153 start = pos; 4154 } 4155 4156 /* 4157 * Not found. Insert new tracking element. 4158 */ 4159 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4160 return 0; 4161 4162 l = t->loc + pos; 4163 if (pos < t->count) 4164 memmove(l + 1, l, 4165 (t->count - pos) * sizeof(struct location)); 4166 t->count++; 4167 l->count = 1; 4168 l->addr = track->addr; 4169 l->sum_time = age; 4170 l->min_time = age; 4171 l->max_time = age; 4172 l->min_pid = track->pid; 4173 l->max_pid = track->pid; 4174 cpumask_clear(to_cpumask(l->cpus)); 4175 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4176 nodes_clear(l->nodes); 4177 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4178 return 1; 4179 } 4180 4181 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4182 struct page *page, enum track_item alloc, 4183 unsigned long *map) 4184 { 4185 void *addr = page_address(page); 4186 void *p; 4187 4188 bitmap_zero(map, page->objects); 4189 get_map(s, page, map); 4190 4191 for_each_object(p, s, addr, page->objects) 4192 if (!test_bit(slab_index(p, s, addr), map)) 4193 add_location(t, s, get_track(s, p, alloc)); 4194 } 4195 4196 static int list_locations(struct kmem_cache *s, char *buf, 4197 enum track_item alloc) 4198 { 4199 int len = 0; 4200 unsigned long i; 4201 struct loc_track t = { 0, 0, NULL }; 4202 int node; 4203 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4204 sizeof(unsigned long), GFP_KERNEL); 4205 struct kmem_cache_node *n; 4206 4207 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4208 GFP_TEMPORARY)) { 4209 kfree(map); 4210 return sprintf(buf, "Out of memory\n"); 4211 } 4212 /* Push back cpu slabs */ 4213 flush_all(s); 4214 4215 for_each_kmem_cache_node(s, node, n) { 4216 unsigned long flags; 4217 struct page *page; 4218 4219 if (!atomic_long_read(&n->nr_slabs)) 4220 continue; 4221 4222 spin_lock_irqsave(&n->list_lock, flags); 4223 list_for_each_entry(page, &n->partial, lru) 4224 process_slab(&t, s, page, alloc, map); 4225 list_for_each_entry(page, &n->full, lru) 4226 process_slab(&t, s, page, alloc, map); 4227 spin_unlock_irqrestore(&n->list_lock, flags); 4228 } 4229 4230 for (i = 0; i < t.count; i++) { 4231 struct location *l = &t.loc[i]; 4232 4233 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4234 break; 4235 len += sprintf(buf + len, "%7ld ", l->count); 4236 4237 if (l->addr) 4238 len += sprintf(buf + len, "%pS", (void *)l->addr); 4239 else 4240 len += sprintf(buf + len, "<not-available>"); 4241 4242 if (l->sum_time != l->min_time) { 4243 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4244 l->min_time, 4245 (long)div_u64(l->sum_time, l->count), 4246 l->max_time); 4247 } else 4248 len += sprintf(buf + len, " age=%ld", 4249 l->min_time); 4250 4251 if (l->min_pid != l->max_pid) 4252 len += sprintf(buf + len, " pid=%ld-%ld", 4253 l->min_pid, l->max_pid); 4254 else 4255 len += sprintf(buf + len, " pid=%ld", 4256 l->min_pid); 4257 4258 if (num_online_cpus() > 1 && 4259 !cpumask_empty(to_cpumask(l->cpus)) && 4260 len < PAGE_SIZE - 60) 4261 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4262 " cpus=%*pbl", 4263 cpumask_pr_args(to_cpumask(l->cpus))); 4264 4265 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4266 len < PAGE_SIZE - 60) 4267 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4268 " nodes=%*pbl", 4269 nodemask_pr_args(&l->nodes)); 4270 4271 len += sprintf(buf + len, "\n"); 4272 } 4273 4274 free_loc_track(&t); 4275 kfree(map); 4276 if (!t.count) 4277 len += sprintf(buf, "No data\n"); 4278 return len; 4279 } 4280 #endif 4281 4282 #ifdef SLUB_RESILIENCY_TEST 4283 static void __init resiliency_test(void) 4284 { 4285 u8 *p; 4286 4287 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4288 4289 pr_err("SLUB resiliency testing\n"); 4290 pr_err("-----------------------\n"); 4291 pr_err("A. Corruption after allocation\n"); 4292 4293 p = kzalloc(16, GFP_KERNEL); 4294 p[16] = 0x12; 4295 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4296 p + 16); 4297 4298 validate_slab_cache(kmalloc_caches[4]); 4299 4300 /* Hmmm... The next two are dangerous */ 4301 p = kzalloc(32, GFP_KERNEL); 4302 p[32 + sizeof(void *)] = 0x34; 4303 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4304 p); 4305 pr_err("If allocated object is overwritten then not detectable\n\n"); 4306 4307 validate_slab_cache(kmalloc_caches[5]); 4308 p = kzalloc(64, GFP_KERNEL); 4309 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4310 *p = 0x56; 4311 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4312 p); 4313 pr_err("If allocated object is overwritten then not detectable\n\n"); 4314 validate_slab_cache(kmalloc_caches[6]); 4315 4316 pr_err("\nB. Corruption after free\n"); 4317 p = kzalloc(128, GFP_KERNEL); 4318 kfree(p); 4319 *p = 0x78; 4320 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4321 validate_slab_cache(kmalloc_caches[7]); 4322 4323 p = kzalloc(256, GFP_KERNEL); 4324 kfree(p); 4325 p[50] = 0x9a; 4326 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4327 validate_slab_cache(kmalloc_caches[8]); 4328 4329 p = kzalloc(512, GFP_KERNEL); 4330 kfree(p); 4331 p[512] = 0xab; 4332 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4333 validate_slab_cache(kmalloc_caches[9]); 4334 } 4335 #else 4336 #ifdef CONFIG_SYSFS 4337 static void resiliency_test(void) {}; 4338 #endif 4339 #endif 4340 4341 #ifdef CONFIG_SYSFS 4342 enum slab_stat_type { 4343 SL_ALL, /* All slabs */ 4344 SL_PARTIAL, /* Only partially allocated slabs */ 4345 SL_CPU, /* Only slabs used for cpu caches */ 4346 SL_OBJECTS, /* Determine allocated objects not slabs */ 4347 SL_TOTAL /* Determine object capacity not slabs */ 4348 }; 4349 4350 #define SO_ALL (1 << SL_ALL) 4351 #define SO_PARTIAL (1 << SL_PARTIAL) 4352 #define SO_CPU (1 << SL_CPU) 4353 #define SO_OBJECTS (1 << SL_OBJECTS) 4354 #define SO_TOTAL (1 << SL_TOTAL) 4355 4356 static ssize_t show_slab_objects(struct kmem_cache *s, 4357 char *buf, unsigned long flags) 4358 { 4359 unsigned long total = 0; 4360 int node; 4361 int x; 4362 unsigned long *nodes; 4363 4364 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4365 if (!nodes) 4366 return -ENOMEM; 4367 4368 if (flags & SO_CPU) { 4369 int cpu; 4370 4371 for_each_possible_cpu(cpu) { 4372 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4373 cpu); 4374 int node; 4375 struct page *page; 4376 4377 page = READ_ONCE(c->page); 4378 if (!page) 4379 continue; 4380 4381 node = page_to_nid(page); 4382 if (flags & SO_TOTAL) 4383 x = page->objects; 4384 else if (flags & SO_OBJECTS) 4385 x = page->inuse; 4386 else 4387 x = 1; 4388 4389 total += x; 4390 nodes[node] += x; 4391 4392 page = READ_ONCE(c->partial); 4393 if (page) { 4394 node = page_to_nid(page); 4395 if (flags & SO_TOTAL) 4396 WARN_ON_ONCE(1); 4397 else if (flags & SO_OBJECTS) 4398 WARN_ON_ONCE(1); 4399 else 4400 x = page->pages; 4401 total += x; 4402 nodes[node] += x; 4403 } 4404 } 4405 } 4406 4407 get_online_mems(); 4408 #ifdef CONFIG_SLUB_DEBUG 4409 if (flags & SO_ALL) { 4410 struct kmem_cache_node *n; 4411 4412 for_each_kmem_cache_node(s, node, n) { 4413 4414 if (flags & SO_TOTAL) 4415 x = atomic_long_read(&n->total_objects); 4416 else if (flags & SO_OBJECTS) 4417 x = atomic_long_read(&n->total_objects) - 4418 count_partial(n, count_free); 4419 else 4420 x = atomic_long_read(&n->nr_slabs); 4421 total += x; 4422 nodes[node] += x; 4423 } 4424 4425 } else 4426 #endif 4427 if (flags & SO_PARTIAL) { 4428 struct kmem_cache_node *n; 4429 4430 for_each_kmem_cache_node(s, node, n) { 4431 if (flags & SO_TOTAL) 4432 x = count_partial(n, count_total); 4433 else if (flags & SO_OBJECTS) 4434 x = count_partial(n, count_inuse); 4435 else 4436 x = n->nr_partial; 4437 total += x; 4438 nodes[node] += x; 4439 } 4440 } 4441 x = sprintf(buf, "%lu", total); 4442 #ifdef CONFIG_NUMA 4443 for (node = 0; node < nr_node_ids; node++) 4444 if (nodes[node]) 4445 x += sprintf(buf + x, " N%d=%lu", 4446 node, nodes[node]); 4447 #endif 4448 put_online_mems(); 4449 kfree(nodes); 4450 return x + sprintf(buf + x, "\n"); 4451 } 4452 4453 #ifdef CONFIG_SLUB_DEBUG 4454 static int any_slab_objects(struct kmem_cache *s) 4455 { 4456 int node; 4457 struct kmem_cache_node *n; 4458 4459 for_each_kmem_cache_node(s, node, n) 4460 if (atomic_long_read(&n->total_objects)) 4461 return 1; 4462 4463 return 0; 4464 } 4465 #endif 4466 4467 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4468 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4469 4470 struct slab_attribute { 4471 struct attribute attr; 4472 ssize_t (*show)(struct kmem_cache *s, char *buf); 4473 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4474 }; 4475 4476 #define SLAB_ATTR_RO(_name) \ 4477 static struct slab_attribute _name##_attr = \ 4478 __ATTR(_name, 0400, _name##_show, NULL) 4479 4480 #define SLAB_ATTR(_name) \ 4481 static struct slab_attribute _name##_attr = \ 4482 __ATTR(_name, 0600, _name##_show, _name##_store) 4483 4484 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4485 { 4486 return sprintf(buf, "%d\n", s->size); 4487 } 4488 SLAB_ATTR_RO(slab_size); 4489 4490 static ssize_t align_show(struct kmem_cache *s, char *buf) 4491 { 4492 return sprintf(buf, "%d\n", s->align); 4493 } 4494 SLAB_ATTR_RO(align); 4495 4496 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4497 { 4498 return sprintf(buf, "%d\n", s->object_size); 4499 } 4500 SLAB_ATTR_RO(object_size); 4501 4502 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4503 { 4504 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4505 } 4506 SLAB_ATTR_RO(objs_per_slab); 4507 4508 static ssize_t order_store(struct kmem_cache *s, 4509 const char *buf, size_t length) 4510 { 4511 unsigned long order; 4512 int err; 4513 4514 err = kstrtoul(buf, 10, &order); 4515 if (err) 4516 return err; 4517 4518 if (order > slub_max_order || order < slub_min_order) 4519 return -EINVAL; 4520 4521 calculate_sizes(s, order); 4522 return length; 4523 } 4524 4525 static ssize_t order_show(struct kmem_cache *s, char *buf) 4526 { 4527 return sprintf(buf, "%d\n", oo_order(s->oo)); 4528 } 4529 SLAB_ATTR(order); 4530 4531 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4532 { 4533 return sprintf(buf, "%lu\n", s->min_partial); 4534 } 4535 4536 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4537 size_t length) 4538 { 4539 unsigned long min; 4540 int err; 4541 4542 err = kstrtoul(buf, 10, &min); 4543 if (err) 4544 return err; 4545 4546 set_min_partial(s, min); 4547 return length; 4548 } 4549 SLAB_ATTR(min_partial); 4550 4551 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4552 { 4553 return sprintf(buf, "%u\n", s->cpu_partial); 4554 } 4555 4556 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4557 size_t length) 4558 { 4559 unsigned long objects; 4560 int err; 4561 4562 err = kstrtoul(buf, 10, &objects); 4563 if (err) 4564 return err; 4565 if (objects && !kmem_cache_has_cpu_partial(s)) 4566 return -EINVAL; 4567 4568 s->cpu_partial = objects; 4569 flush_all(s); 4570 return length; 4571 } 4572 SLAB_ATTR(cpu_partial); 4573 4574 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4575 { 4576 if (!s->ctor) 4577 return 0; 4578 return sprintf(buf, "%pS\n", s->ctor); 4579 } 4580 SLAB_ATTR_RO(ctor); 4581 4582 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4583 { 4584 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4585 } 4586 SLAB_ATTR_RO(aliases); 4587 4588 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4589 { 4590 return show_slab_objects(s, buf, SO_PARTIAL); 4591 } 4592 SLAB_ATTR_RO(partial); 4593 4594 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4595 { 4596 return show_slab_objects(s, buf, SO_CPU); 4597 } 4598 SLAB_ATTR_RO(cpu_slabs); 4599 4600 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4601 { 4602 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4603 } 4604 SLAB_ATTR_RO(objects); 4605 4606 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4607 { 4608 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4609 } 4610 SLAB_ATTR_RO(objects_partial); 4611 4612 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4613 { 4614 int objects = 0; 4615 int pages = 0; 4616 int cpu; 4617 int len; 4618 4619 for_each_online_cpu(cpu) { 4620 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4621 4622 if (page) { 4623 pages += page->pages; 4624 objects += page->pobjects; 4625 } 4626 } 4627 4628 len = sprintf(buf, "%d(%d)", objects, pages); 4629 4630 #ifdef CONFIG_SMP 4631 for_each_online_cpu(cpu) { 4632 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4633 4634 if (page && len < PAGE_SIZE - 20) 4635 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4636 page->pobjects, page->pages); 4637 } 4638 #endif 4639 return len + sprintf(buf + len, "\n"); 4640 } 4641 SLAB_ATTR_RO(slabs_cpu_partial); 4642 4643 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4644 { 4645 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4646 } 4647 4648 static ssize_t reclaim_account_store(struct kmem_cache *s, 4649 const char *buf, size_t length) 4650 { 4651 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4652 if (buf[0] == '1') 4653 s->flags |= SLAB_RECLAIM_ACCOUNT; 4654 return length; 4655 } 4656 SLAB_ATTR(reclaim_account); 4657 4658 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4659 { 4660 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4661 } 4662 SLAB_ATTR_RO(hwcache_align); 4663 4664 #ifdef CONFIG_ZONE_DMA 4665 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4666 { 4667 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4668 } 4669 SLAB_ATTR_RO(cache_dma); 4670 #endif 4671 4672 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4673 { 4674 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4675 } 4676 SLAB_ATTR_RO(destroy_by_rcu); 4677 4678 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4679 { 4680 return sprintf(buf, "%d\n", s->reserved); 4681 } 4682 SLAB_ATTR_RO(reserved); 4683 4684 #ifdef CONFIG_SLUB_DEBUG 4685 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4686 { 4687 return show_slab_objects(s, buf, SO_ALL); 4688 } 4689 SLAB_ATTR_RO(slabs); 4690 4691 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4692 { 4693 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4694 } 4695 SLAB_ATTR_RO(total_objects); 4696 4697 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4698 { 4699 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4700 } 4701 4702 static ssize_t sanity_checks_store(struct kmem_cache *s, 4703 const char *buf, size_t length) 4704 { 4705 s->flags &= ~SLAB_DEBUG_FREE; 4706 if (buf[0] == '1') { 4707 s->flags &= ~__CMPXCHG_DOUBLE; 4708 s->flags |= SLAB_DEBUG_FREE; 4709 } 4710 return length; 4711 } 4712 SLAB_ATTR(sanity_checks); 4713 4714 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4715 { 4716 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4717 } 4718 4719 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4720 size_t length) 4721 { 4722 /* 4723 * Tracing a merged cache is going to give confusing results 4724 * as well as cause other issues like converting a mergeable 4725 * cache into an umergeable one. 4726 */ 4727 if (s->refcount > 1) 4728 return -EINVAL; 4729 4730 s->flags &= ~SLAB_TRACE; 4731 if (buf[0] == '1') { 4732 s->flags &= ~__CMPXCHG_DOUBLE; 4733 s->flags |= SLAB_TRACE; 4734 } 4735 return length; 4736 } 4737 SLAB_ATTR(trace); 4738 4739 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4740 { 4741 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4742 } 4743 4744 static ssize_t red_zone_store(struct kmem_cache *s, 4745 const char *buf, size_t length) 4746 { 4747 if (any_slab_objects(s)) 4748 return -EBUSY; 4749 4750 s->flags &= ~SLAB_RED_ZONE; 4751 if (buf[0] == '1') { 4752 s->flags &= ~__CMPXCHG_DOUBLE; 4753 s->flags |= SLAB_RED_ZONE; 4754 } 4755 calculate_sizes(s, -1); 4756 return length; 4757 } 4758 SLAB_ATTR(red_zone); 4759 4760 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4761 { 4762 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4763 } 4764 4765 static ssize_t poison_store(struct kmem_cache *s, 4766 const char *buf, size_t length) 4767 { 4768 if (any_slab_objects(s)) 4769 return -EBUSY; 4770 4771 s->flags &= ~SLAB_POISON; 4772 if (buf[0] == '1') { 4773 s->flags &= ~__CMPXCHG_DOUBLE; 4774 s->flags |= SLAB_POISON; 4775 } 4776 calculate_sizes(s, -1); 4777 return length; 4778 } 4779 SLAB_ATTR(poison); 4780 4781 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4782 { 4783 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4784 } 4785 4786 static ssize_t store_user_store(struct kmem_cache *s, 4787 const char *buf, size_t length) 4788 { 4789 if (any_slab_objects(s)) 4790 return -EBUSY; 4791 4792 s->flags &= ~SLAB_STORE_USER; 4793 if (buf[0] == '1') { 4794 s->flags &= ~__CMPXCHG_DOUBLE; 4795 s->flags |= SLAB_STORE_USER; 4796 } 4797 calculate_sizes(s, -1); 4798 return length; 4799 } 4800 SLAB_ATTR(store_user); 4801 4802 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4803 { 4804 return 0; 4805 } 4806 4807 static ssize_t validate_store(struct kmem_cache *s, 4808 const char *buf, size_t length) 4809 { 4810 int ret = -EINVAL; 4811 4812 if (buf[0] == '1') { 4813 ret = validate_slab_cache(s); 4814 if (ret >= 0) 4815 ret = length; 4816 } 4817 return ret; 4818 } 4819 SLAB_ATTR(validate); 4820 4821 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4822 { 4823 if (!(s->flags & SLAB_STORE_USER)) 4824 return -ENOSYS; 4825 return list_locations(s, buf, TRACK_ALLOC); 4826 } 4827 SLAB_ATTR_RO(alloc_calls); 4828 4829 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4830 { 4831 if (!(s->flags & SLAB_STORE_USER)) 4832 return -ENOSYS; 4833 return list_locations(s, buf, TRACK_FREE); 4834 } 4835 SLAB_ATTR_RO(free_calls); 4836 #endif /* CONFIG_SLUB_DEBUG */ 4837 4838 #ifdef CONFIG_FAILSLAB 4839 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4840 { 4841 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4842 } 4843 4844 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4845 size_t length) 4846 { 4847 if (s->refcount > 1) 4848 return -EINVAL; 4849 4850 s->flags &= ~SLAB_FAILSLAB; 4851 if (buf[0] == '1') 4852 s->flags |= SLAB_FAILSLAB; 4853 return length; 4854 } 4855 SLAB_ATTR(failslab); 4856 #endif 4857 4858 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4859 { 4860 return 0; 4861 } 4862 4863 static ssize_t shrink_store(struct kmem_cache *s, 4864 const char *buf, size_t length) 4865 { 4866 if (buf[0] == '1') 4867 kmem_cache_shrink(s); 4868 else 4869 return -EINVAL; 4870 return length; 4871 } 4872 SLAB_ATTR(shrink); 4873 4874 #ifdef CONFIG_NUMA 4875 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4876 { 4877 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4878 } 4879 4880 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4881 const char *buf, size_t length) 4882 { 4883 unsigned long ratio; 4884 int err; 4885 4886 err = kstrtoul(buf, 10, &ratio); 4887 if (err) 4888 return err; 4889 4890 if (ratio <= 100) 4891 s->remote_node_defrag_ratio = ratio * 10; 4892 4893 return length; 4894 } 4895 SLAB_ATTR(remote_node_defrag_ratio); 4896 #endif 4897 4898 #ifdef CONFIG_SLUB_STATS 4899 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4900 { 4901 unsigned long sum = 0; 4902 int cpu; 4903 int len; 4904 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4905 4906 if (!data) 4907 return -ENOMEM; 4908 4909 for_each_online_cpu(cpu) { 4910 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4911 4912 data[cpu] = x; 4913 sum += x; 4914 } 4915 4916 len = sprintf(buf, "%lu", sum); 4917 4918 #ifdef CONFIG_SMP 4919 for_each_online_cpu(cpu) { 4920 if (data[cpu] && len < PAGE_SIZE - 20) 4921 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4922 } 4923 #endif 4924 kfree(data); 4925 return len + sprintf(buf + len, "\n"); 4926 } 4927 4928 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4929 { 4930 int cpu; 4931 4932 for_each_online_cpu(cpu) 4933 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4934 } 4935 4936 #define STAT_ATTR(si, text) \ 4937 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4938 { \ 4939 return show_stat(s, buf, si); \ 4940 } \ 4941 static ssize_t text##_store(struct kmem_cache *s, \ 4942 const char *buf, size_t length) \ 4943 { \ 4944 if (buf[0] != '0') \ 4945 return -EINVAL; \ 4946 clear_stat(s, si); \ 4947 return length; \ 4948 } \ 4949 SLAB_ATTR(text); \ 4950 4951 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4952 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4953 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4954 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4955 STAT_ATTR(FREE_FROZEN, free_frozen); 4956 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4957 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4958 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4959 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4960 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4961 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 4962 STAT_ATTR(FREE_SLAB, free_slab); 4963 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4964 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4965 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4966 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4967 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4968 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4969 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 4970 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4971 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 4972 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 4973 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 4974 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 4975 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 4976 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 4977 #endif 4978 4979 static struct attribute *slab_attrs[] = { 4980 &slab_size_attr.attr, 4981 &object_size_attr.attr, 4982 &objs_per_slab_attr.attr, 4983 &order_attr.attr, 4984 &min_partial_attr.attr, 4985 &cpu_partial_attr.attr, 4986 &objects_attr.attr, 4987 &objects_partial_attr.attr, 4988 &partial_attr.attr, 4989 &cpu_slabs_attr.attr, 4990 &ctor_attr.attr, 4991 &aliases_attr.attr, 4992 &align_attr.attr, 4993 &hwcache_align_attr.attr, 4994 &reclaim_account_attr.attr, 4995 &destroy_by_rcu_attr.attr, 4996 &shrink_attr.attr, 4997 &reserved_attr.attr, 4998 &slabs_cpu_partial_attr.attr, 4999 #ifdef CONFIG_SLUB_DEBUG 5000 &total_objects_attr.attr, 5001 &slabs_attr.attr, 5002 &sanity_checks_attr.attr, 5003 &trace_attr.attr, 5004 &red_zone_attr.attr, 5005 &poison_attr.attr, 5006 &store_user_attr.attr, 5007 &validate_attr.attr, 5008 &alloc_calls_attr.attr, 5009 &free_calls_attr.attr, 5010 #endif 5011 #ifdef CONFIG_ZONE_DMA 5012 &cache_dma_attr.attr, 5013 #endif 5014 #ifdef CONFIG_NUMA 5015 &remote_node_defrag_ratio_attr.attr, 5016 #endif 5017 #ifdef CONFIG_SLUB_STATS 5018 &alloc_fastpath_attr.attr, 5019 &alloc_slowpath_attr.attr, 5020 &free_fastpath_attr.attr, 5021 &free_slowpath_attr.attr, 5022 &free_frozen_attr.attr, 5023 &free_add_partial_attr.attr, 5024 &free_remove_partial_attr.attr, 5025 &alloc_from_partial_attr.attr, 5026 &alloc_slab_attr.attr, 5027 &alloc_refill_attr.attr, 5028 &alloc_node_mismatch_attr.attr, 5029 &free_slab_attr.attr, 5030 &cpuslab_flush_attr.attr, 5031 &deactivate_full_attr.attr, 5032 &deactivate_empty_attr.attr, 5033 &deactivate_to_head_attr.attr, 5034 &deactivate_to_tail_attr.attr, 5035 &deactivate_remote_frees_attr.attr, 5036 &deactivate_bypass_attr.attr, 5037 &order_fallback_attr.attr, 5038 &cmpxchg_double_fail_attr.attr, 5039 &cmpxchg_double_cpu_fail_attr.attr, 5040 &cpu_partial_alloc_attr.attr, 5041 &cpu_partial_free_attr.attr, 5042 &cpu_partial_node_attr.attr, 5043 &cpu_partial_drain_attr.attr, 5044 #endif 5045 #ifdef CONFIG_FAILSLAB 5046 &failslab_attr.attr, 5047 #endif 5048 5049 NULL 5050 }; 5051 5052 static struct attribute_group slab_attr_group = { 5053 .attrs = slab_attrs, 5054 }; 5055 5056 static ssize_t slab_attr_show(struct kobject *kobj, 5057 struct attribute *attr, 5058 char *buf) 5059 { 5060 struct slab_attribute *attribute; 5061 struct kmem_cache *s; 5062 int err; 5063 5064 attribute = to_slab_attr(attr); 5065 s = to_slab(kobj); 5066 5067 if (!attribute->show) 5068 return -EIO; 5069 5070 err = attribute->show(s, buf); 5071 5072 return err; 5073 } 5074 5075 static ssize_t slab_attr_store(struct kobject *kobj, 5076 struct attribute *attr, 5077 const char *buf, size_t len) 5078 { 5079 struct slab_attribute *attribute; 5080 struct kmem_cache *s; 5081 int err; 5082 5083 attribute = to_slab_attr(attr); 5084 s = to_slab(kobj); 5085 5086 if (!attribute->store) 5087 return -EIO; 5088 5089 err = attribute->store(s, buf, len); 5090 #ifdef CONFIG_MEMCG_KMEM 5091 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5092 struct kmem_cache *c; 5093 5094 mutex_lock(&slab_mutex); 5095 if (s->max_attr_size < len) 5096 s->max_attr_size = len; 5097 5098 /* 5099 * This is a best effort propagation, so this function's return 5100 * value will be determined by the parent cache only. This is 5101 * basically because not all attributes will have a well 5102 * defined semantics for rollbacks - most of the actions will 5103 * have permanent effects. 5104 * 5105 * Returning the error value of any of the children that fail 5106 * is not 100 % defined, in the sense that users seeing the 5107 * error code won't be able to know anything about the state of 5108 * the cache. 5109 * 5110 * Only returning the error code for the parent cache at least 5111 * has well defined semantics. The cache being written to 5112 * directly either failed or succeeded, in which case we loop 5113 * through the descendants with best-effort propagation. 5114 */ 5115 for_each_memcg_cache(c, s) 5116 attribute->store(c, buf, len); 5117 mutex_unlock(&slab_mutex); 5118 } 5119 #endif 5120 return err; 5121 } 5122 5123 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5124 { 5125 #ifdef CONFIG_MEMCG_KMEM 5126 int i; 5127 char *buffer = NULL; 5128 struct kmem_cache *root_cache; 5129 5130 if (is_root_cache(s)) 5131 return; 5132 5133 root_cache = s->memcg_params.root_cache; 5134 5135 /* 5136 * This mean this cache had no attribute written. Therefore, no point 5137 * in copying default values around 5138 */ 5139 if (!root_cache->max_attr_size) 5140 return; 5141 5142 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5143 char mbuf[64]; 5144 char *buf; 5145 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5146 5147 if (!attr || !attr->store || !attr->show) 5148 continue; 5149 5150 /* 5151 * It is really bad that we have to allocate here, so we will 5152 * do it only as a fallback. If we actually allocate, though, 5153 * we can just use the allocated buffer until the end. 5154 * 5155 * Most of the slub attributes will tend to be very small in 5156 * size, but sysfs allows buffers up to a page, so they can 5157 * theoretically happen. 5158 */ 5159 if (buffer) 5160 buf = buffer; 5161 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5162 buf = mbuf; 5163 else { 5164 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5165 if (WARN_ON(!buffer)) 5166 continue; 5167 buf = buffer; 5168 } 5169 5170 attr->show(root_cache, buf); 5171 attr->store(s, buf, strlen(buf)); 5172 } 5173 5174 if (buffer) 5175 free_page((unsigned long)buffer); 5176 #endif 5177 } 5178 5179 static void kmem_cache_release(struct kobject *k) 5180 { 5181 slab_kmem_cache_release(to_slab(k)); 5182 } 5183 5184 static const struct sysfs_ops slab_sysfs_ops = { 5185 .show = slab_attr_show, 5186 .store = slab_attr_store, 5187 }; 5188 5189 static struct kobj_type slab_ktype = { 5190 .sysfs_ops = &slab_sysfs_ops, 5191 .release = kmem_cache_release, 5192 }; 5193 5194 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5195 { 5196 struct kobj_type *ktype = get_ktype(kobj); 5197 5198 if (ktype == &slab_ktype) 5199 return 1; 5200 return 0; 5201 } 5202 5203 static const struct kset_uevent_ops slab_uevent_ops = { 5204 .filter = uevent_filter, 5205 }; 5206 5207 static struct kset *slab_kset; 5208 5209 static inline struct kset *cache_kset(struct kmem_cache *s) 5210 { 5211 #ifdef CONFIG_MEMCG_KMEM 5212 if (!is_root_cache(s)) 5213 return s->memcg_params.root_cache->memcg_kset; 5214 #endif 5215 return slab_kset; 5216 } 5217 5218 #define ID_STR_LENGTH 64 5219 5220 /* Create a unique string id for a slab cache: 5221 * 5222 * Format :[flags-]size 5223 */ 5224 static char *create_unique_id(struct kmem_cache *s) 5225 { 5226 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5227 char *p = name; 5228 5229 BUG_ON(!name); 5230 5231 *p++ = ':'; 5232 /* 5233 * First flags affecting slabcache operations. We will only 5234 * get here for aliasable slabs so we do not need to support 5235 * too many flags. The flags here must cover all flags that 5236 * are matched during merging to guarantee that the id is 5237 * unique. 5238 */ 5239 if (s->flags & SLAB_CACHE_DMA) 5240 *p++ = 'd'; 5241 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5242 *p++ = 'a'; 5243 if (s->flags & SLAB_DEBUG_FREE) 5244 *p++ = 'F'; 5245 if (!(s->flags & SLAB_NOTRACK)) 5246 *p++ = 't'; 5247 if (p != name + 1) 5248 *p++ = '-'; 5249 p += sprintf(p, "%07d", s->size); 5250 5251 BUG_ON(p > name + ID_STR_LENGTH - 1); 5252 return name; 5253 } 5254 5255 static int sysfs_slab_add(struct kmem_cache *s) 5256 { 5257 int err; 5258 const char *name; 5259 int unmergeable = slab_unmergeable(s); 5260 5261 if (unmergeable) { 5262 /* 5263 * Slabcache can never be merged so we can use the name proper. 5264 * This is typically the case for debug situations. In that 5265 * case we can catch duplicate names easily. 5266 */ 5267 sysfs_remove_link(&slab_kset->kobj, s->name); 5268 name = s->name; 5269 } else { 5270 /* 5271 * Create a unique name for the slab as a target 5272 * for the symlinks. 5273 */ 5274 name = create_unique_id(s); 5275 } 5276 5277 s->kobj.kset = cache_kset(s); 5278 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5279 if (err) 5280 goto out; 5281 5282 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5283 if (err) 5284 goto out_del_kobj; 5285 5286 #ifdef CONFIG_MEMCG_KMEM 5287 if (is_root_cache(s)) { 5288 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5289 if (!s->memcg_kset) { 5290 err = -ENOMEM; 5291 goto out_del_kobj; 5292 } 5293 } 5294 #endif 5295 5296 kobject_uevent(&s->kobj, KOBJ_ADD); 5297 if (!unmergeable) { 5298 /* Setup first alias */ 5299 sysfs_slab_alias(s, s->name); 5300 } 5301 out: 5302 if (!unmergeable) 5303 kfree(name); 5304 return err; 5305 out_del_kobj: 5306 kobject_del(&s->kobj); 5307 goto out; 5308 } 5309 5310 void sysfs_slab_remove(struct kmem_cache *s) 5311 { 5312 if (slab_state < FULL) 5313 /* 5314 * Sysfs has not been setup yet so no need to remove the 5315 * cache from sysfs. 5316 */ 5317 return; 5318 5319 #ifdef CONFIG_MEMCG_KMEM 5320 kset_unregister(s->memcg_kset); 5321 #endif 5322 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5323 kobject_del(&s->kobj); 5324 kobject_put(&s->kobj); 5325 } 5326 5327 /* 5328 * Need to buffer aliases during bootup until sysfs becomes 5329 * available lest we lose that information. 5330 */ 5331 struct saved_alias { 5332 struct kmem_cache *s; 5333 const char *name; 5334 struct saved_alias *next; 5335 }; 5336 5337 static struct saved_alias *alias_list; 5338 5339 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5340 { 5341 struct saved_alias *al; 5342 5343 if (slab_state == FULL) { 5344 /* 5345 * If we have a leftover link then remove it. 5346 */ 5347 sysfs_remove_link(&slab_kset->kobj, name); 5348 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5349 } 5350 5351 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5352 if (!al) 5353 return -ENOMEM; 5354 5355 al->s = s; 5356 al->name = name; 5357 al->next = alias_list; 5358 alias_list = al; 5359 return 0; 5360 } 5361 5362 static int __init slab_sysfs_init(void) 5363 { 5364 struct kmem_cache *s; 5365 int err; 5366 5367 mutex_lock(&slab_mutex); 5368 5369 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5370 if (!slab_kset) { 5371 mutex_unlock(&slab_mutex); 5372 pr_err("Cannot register slab subsystem.\n"); 5373 return -ENOSYS; 5374 } 5375 5376 slab_state = FULL; 5377 5378 list_for_each_entry(s, &slab_caches, list) { 5379 err = sysfs_slab_add(s); 5380 if (err) 5381 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5382 s->name); 5383 } 5384 5385 while (alias_list) { 5386 struct saved_alias *al = alias_list; 5387 5388 alias_list = alias_list->next; 5389 err = sysfs_slab_alias(al->s, al->name); 5390 if (err) 5391 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5392 al->name); 5393 kfree(al); 5394 } 5395 5396 mutex_unlock(&slab_mutex); 5397 resiliency_test(); 5398 return 0; 5399 } 5400 5401 __initcall(slab_sysfs_init); 5402 #endif /* CONFIG_SYSFS */ 5403 5404 /* 5405 * The /proc/slabinfo ABI 5406 */ 5407 #ifdef CONFIG_SLABINFO 5408 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5409 { 5410 unsigned long nr_slabs = 0; 5411 unsigned long nr_objs = 0; 5412 unsigned long nr_free = 0; 5413 int node; 5414 struct kmem_cache_node *n; 5415 5416 for_each_kmem_cache_node(s, node, n) { 5417 nr_slabs += node_nr_slabs(n); 5418 nr_objs += node_nr_objs(n); 5419 nr_free += count_partial(n, count_free); 5420 } 5421 5422 sinfo->active_objs = nr_objs - nr_free; 5423 sinfo->num_objs = nr_objs; 5424 sinfo->active_slabs = nr_slabs; 5425 sinfo->num_slabs = nr_slabs; 5426 sinfo->objects_per_slab = oo_objects(s->oo); 5427 sinfo->cache_order = oo_order(s->oo); 5428 } 5429 5430 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5431 { 5432 } 5433 5434 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5435 size_t count, loff_t *ppos) 5436 { 5437 return -EIO; 5438 } 5439 #endif /* CONFIG_SLABINFO */ 5440