xref: /openbmc/linux/mm/slub.c (revision 9c6d26df1fae6ad4718d51c48e6517913304ed27)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
38 
39 #include <trace/events/kmem.h>
40 
41 #include "internal.h"
42 
43 /*
44  * Lock order:
45  *   1. slab_mutex (Global Mutex)
46  *   2. node->list_lock
47  *   3. slab_lock(page) (Only on some arches and for debugging)
48  *
49  *   slab_mutex
50  *
51  *   The role of the slab_mutex is to protect the list of all the slabs
52  *   and to synchronize major metadata changes to slab cache structures.
53  *
54  *   The slab_lock is only used for debugging and on arches that do not
55  *   have the ability to do a cmpxchg_double. It only protects the second
56  *   double word in the page struct. Meaning
57  *	A. page->freelist	-> List of object free in a page
58  *	B. page->counters	-> Counters of objects
59  *	C. page->frozen		-> frozen state
60  *
61  *   If a slab is frozen then it is exempt from list management. It is not
62  *   on any list. The processor that froze the slab is the one who can
63  *   perform list operations on the page. Other processors may put objects
64  *   onto the freelist but the processor that froze the slab is the only
65  *   one that can retrieve the objects from the page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * Overloading of page flags that are otherwise used for LRU management.
97  *
98  * PageActive 		The slab is frozen and exempt from list processing.
99  * 			This means that the slab is dedicated to a purpose
100  * 			such as satisfying allocations for a specific
101  * 			processor. Objects may be freed in the slab while
102  * 			it is frozen but slab_free will then skip the usual
103  * 			list operations. It is up to the processor holding
104  * 			the slab to integrate the slab into the slab lists
105  * 			when the slab is no longer needed.
106  *
107  * 			One use of this flag is to mark slabs that are
108  * 			used for allocations. Then such a slab becomes a cpu
109  * 			slab. The cpu slab may be equipped with an additional
110  * 			freelist that allows lockless access to
111  * 			free objects in addition to the regular freelist
112  * 			that requires the slab lock.
113  *
114  * PageError		Slab requires special handling due to debug
115  * 			options set. This moves	slab handling out of
116  * 			the fast path and disables lockless freelists.
117  */
118 
119 static inline int kmem_cache_debug(struct kmem_cache *s)
120 {
121 #ifdef CONFIG_SLUB_DEBUG
122 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 	return 0;
125 #endif
126 }
127 
128 void *fixup_red_left(struct kmem_cache *s, void *p)
129 {
130 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 		p += s->red_left_pad;
132 
133 	return p;
134 }
135 
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 {
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 	return !kmem_cache_debug(s);
140 #else
141 	return false;
142 #endif
143 }
144 
145 /*
146  * Issues still to be resolved:
147  *
148  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149  *
150  * - Variable sizing of the per node arrays
151  */
152 
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155 
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
158 
159 /*
160  * Mininum number of partial slabs. These will be left on the partial
161  * lists even if they are empty. kmem_cache_shrink may reclaim them.
162  */
163 #define MIN_PARTIAL 5
164 
165 /*
166  * Maximum number of desirable partial slabs.
167  * The existence of more partial slabs makes kmem_cache_shrink
168  * sort the partial list by the number of objects in use.
169  */
170 #define MAX_PARTIAL 10
171 
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 				SLAB_POISON | SLAB_STORE_USER)
174 
175 /*
176  * These debug flags cannot use CMPXCHG because there might be consistency
177  * issues when checking or reading debug information
178  */
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 				SLAB_TRACE)
181 
182 
183 /*
184  * Debugging flags that require metadata to be stored in the slab.  These get
185  * disabled when slub_debug=O is used and a cache's min order increases with
186  * metadata.
187  */
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189 
190 #define OO_SHIFT	16
191 #define OO_MASK		((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
193 
194 /* Internal SLUB flags */
195 /* Poison object */
196 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
199 
200 /*
201  * Tracking user of a slab.
202  */
203 #define TRACK_ADDRS_COUNT 16
204 struct track {
205 	unsigned long addr;	/* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
208 #endif
209 	int cpu;		/* Was running on cpu */
210 	int pid;		/* Pid context */
211 	unsigned long when;	/* When did the operation occur */
212 };
213 
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
215 
216 #ifdef CONFIG_SYSFS
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 							{ return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 #endif
228 
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 	/*
233 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 	 * avoid this_cpu_add()'s irq-disable overhead.
235 	 */
236 	raw_cpu_inc(s->cpu_slab->stat[si]);
237 #endif
238 }
239 
240 /********************************************************************
241  * 			Core slab cache functions
242  *******************************************************************/
243 
244 /*
245  * Returns freelist pointer (ptr). With hardening, this is obfuscated
246  * with an XOR of the address where the pointer is held and a per-cache
247  * random number.
248  */
249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 				 unsigned long ptr_addr)
251 {
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 	return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
254 #else
255 	return ptr;
256 #endif
257 }
258 
259 /* Returns the freelist pointer recorded at location ptr_addr. */
260 static inline void *freelist_dereference(const struct kmem_cache *s,
261 					 void *ptr_addr)
262 {
263 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
264 			    (unsigned long)ptr_addr);
265 }
266 
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
268 {
269 	return freelist_dereference(s, object + s->offset);
270 }
271 
272 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
273 {
274 	if (object)
275 		prefetch(freelist_dereference(s, object + s->offset));
276 }
277 
278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279 {
280 	unsigned long freepointer_addr;
281 	void *p;
282 
283 	if (!debug_pagealloc_enabled())
284 		return get_freepointer(s, object);
285 
286 	freepointer_addr = (unsigned long)object + s->offset;
287 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
288 	return freelist_ptr(s, p, freepointer_addr);
289 }
290 
291 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
292 {
293 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
294 
295 #ifdef CONFIG_SLAB_FREELIST_HARDENED
296 	BUG_ON(object == fp); /* naive detection of double free or corruption */
297 #endif
298 
299 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
300 }
301 
302 /* Loop over all objects in a slab */
303 #define for_each_object(__p, __s, __addr, __objects) \
304 	for (__p = fixup_red_left(__s, __addr); \
305 		__p < (__addr) + (__objects) * (__s)->size; \
306 		__p += (__s)->size)
307 
308 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
309 	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
310 		__idx <= __objects; \
311 		__p += (__s)->size, __idx++)
312 
313 /* Determine object index from a given position */
314 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
315 {
316 	return (p - addr) / s->size;
317 }
318 
319 static inline unsigned int order_objects(unsigned int order, unsigned int size, unsigned int reserved)
320 {
321 	return (((unsigned int)PAGE_SIZE << order) - reserved) / size;
322 }
323 
324 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
325 		unsigned int size, unsigned int reserved)
326 {
327 	struct kmem_cache_order_objects x = {
328 		(order << OO_SHIFT) + order_objects(order, size, reserved)
329 	};
330 
331 	return x;
332 }
333 
334 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
335 {
336 	return x.x >> OO_SHIFT;
337 }
338 
339 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
340 {
341 	return x.x & OO_MASK;
342 }
343 
344 /*
345  * Per slab locking using the pagelock
346  */
347 static __always_inline void slab_lock(struct page *page)
348 {
349 	VM_BUG_ON_PAGE(PageTail(page), page);
350 	bit_spin_lock(PG_locked, &page->flags);
351 }
352 
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 	VM_BUG_ON_PAGE(PageTail(page), page);
356 	__bit_spin_unlock(PG_locked, &page->flags);
357 }
358 
359 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
360 {
361 	struct page tmp;
362 	tmp.counters = counters_new;
363 	/*
364 	 * page->counters can cover frozen/inuse/objects as well
365 	 * as page->_refcount.  If we assign to ->counters directly
366 	 * we run the risk of losing updates to page->_refcount, so
367 	 * be careful and only assign to the fields we need.
368 	 */
369 	page->frozen  = tmp.frozen;
370 	page->inuse   = tmp.inuse;
371 	page->objects = tmp.objects;
372 }
373 
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 		void *freelist_old, unsigned long counters_old,
377 		void *freelist_new, unsigned long counters_new,
378 		const char *n)
379 {
380 	VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 	if (s->flags & __CMPXCHG_DOUBLE) {
384 		if (cmpxchg_double(&page->freelist, &page->counters,
385 				   freelist_old, counters_old,
386 				   freelist_new, counters_new))
387 			return true;
388 	} else
389 #endif
390 	{
391 		slab_lock(page);
392 		if (page->freelist == freelist_old &&
393 					page->counters == counters_old) {
394 			page->freelist = freelist_new;
395 			set_page_slub_counters(page, counters_new);
396 			slab_unlock(page);
397 			return true;
398 		}
399 		slab_unlock(page);
400 	}
401 
402 	cpu_relax();
403 	stat(s, CMPXCHG_DOUBLE_FAIL);
404 
405 #ifdef SLUB_DEBUG_CMPXCHG
406 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
407 #endif
408 
409 	return false;
410 }
411 
412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 		void *freelist_old, unsigned long counters_old,
414 		void *freelist_new, unsigned long counters_new,
415 		const char *n)
416 {
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 	if (s->flags & __CMPXCHG_DOUBLE) {
420 		if (cmpxchg_double(&page->freelist, &page->counters,
421 				   freelist_old, counters_old,
422 				   freelist_new, counters_new))
423 			return true;
424 	} else
425 #endif
426 	{
427 		unsigned long flags;
428 
429 		local_irq_save(flags);
430 		slab_lock(page);
431 		if (page->freelist == freelist_old &&
432 					page->counters == counters_old) {
433 			page->freelist = freelist_new;
434 			set_page_slub_counters(page, counters_new);
435 			slab_unlock(page);
436 			local_irq_restore(flags);
437 			return true;
438 		}
439 		slab_unlock(page);
440 		local_irq_restore(flags);
441 	}
442 
443 	cpu_relax();
444 	stat(s, CMPXCHG_DOUBLE_FAIL);
445 
446 #ifdef SLUB_DEBUG_CMPXCHG
447 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
448 #endif
449 
450 	return false;
451 }
452 
453 #ifdef CONFIG_SLUB_DEBUG
454 /*
455  * Determine a map of object in use on a page.
456  *
457  * Node listlock must be held to guarantee that the page does
458  * not vanish from under us.
459  */
460 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
461 {
462 	void *p;
463 	void *addr = page_address(page);
464 
465 	for (p = page->freelist; p; p = get_freepointer(s, p))
466 		set_bit(slab_index(p, s, addr), map);
467 }
468 
469 static inline unsigned int size_from_object(struct kmem_cache *s)
470 {
471 	if (s->flags & SLAB_RED_ZONE)
472 		return s->size - s->red_left_pad;
473 
474 	return s->size;
475 }
476 
477 static inline void *restore_red_left(struct kmem_cache *s, void *p)
478 {
479 	if (s->flags & SLAB_RED_ZONE)
480 		p -= s->red_left_pad;
481 
482 	return p;
483 }
484 
485 /*
486  * Debug settings:
487  */
488 #if defined(CONFIG_SLUB_DEBUG_ON)
489 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
490 #else
491 static slab_flags_t slub_debug;
492 #endif
493 
494 static char *slub_debug_slabs;
495 static int disable_higher_order_debug;
496 
497 /*
498  * slub is about to manipulate internal object metadata.  This memory lies
499  * outside the range of the allocated object, so accessing it would normally
500  * be reported by kasan as a bounds error.  metadata_access_enable() is used
501  * to tell kasan that these accesses are OK.
502  */
503 static inline void metadata_access_enable(void)
504 {
505 	kasan_disable_current();
506 }
507 
508 static inline void metadata_access_disable(void)
509 {
510 	kasan_enable_current();
511 }
512 
513 /*
514  * Object debugging
515  */
516 
517 /* Verify that a pointer has an address that is valid within a slab page */
518 static inline int check_valid_pointer(struct kmem_cache *s,
519 				struct page *page, void *object)
520 {
521 	void *base;
522 
523 	if (!object)
524 		return 1;
525 
526 	base = page_address(page);
527 	object = restore_red_left(s, object);
528 	if (object < base || object >= base + page->objects * s->size ||
529 		(object - base) % s->size) {
530 		return 0;
531 	}
532 
533 	return 1;
534 }
535 
536 static void print_section(char *level, char *text, u8 *addr,
537 			  unsigned int length)
538 {
539 	metadata_access_enable();
540 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
541 			length, 1);
542 	metadata_access_disable();
543 }
544 
545 static struct track *get_track(struct kmem_cache *s, void *object,
546 	enum track_item alloc)
547 {
548 	struct track *p;
549 
550 	if (s->offset)
551 		p = object + s->offset + sizeof(void *);
552 	else
553 		p = object + s->inuse;
554 
555 	return p + alloc;
556 }
557 
558 static void set_track(struct kmem_cache *s, void *object,
559 			enum track_item alloc, unsigned long addr)
560 {
561 	struct track *p = get_track(s, object, alloc);
562 
563 	if (addr) {
564 #ifdef CONFIG_STACKTRACE
565 		struct stack_trace trace;
566 		int i;
567 
568 		trace.nr_entries = 0;
569 		trace.max_entries = TRACK_ADDRS_COUNT;
570 		trace.entries = p->addrs;
571 		trace.skip = 3;
572 		metadata_access_enable();
573 		save_stack_trace(&trace);
574 		metadata_access_disable();
575 
576 		/* See rant in lockdep.c */
577 		if (trace.nr_entries != 0 &&
578 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
579 			trace.nr_entries--;
580 
581 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
582 			p->addrs[i] = 0;
583 #endif
584 		p->addr = addr;
585 		p->cpu = smp_processor_id();
586 		p->pid = current->pid;
587 		p->when = jiffies;
588 	} else
589 		memset(p, 0, sizeof(struct track));
590 }
591 
592 static void init_tracking(struct kmem_cache *s, void *object)
593 {
594 	if (!(s->flags & SLAB_STORE_USER))
595 		return;
596 
597 	set_track(s, object, TRACK_FREE, 0UL);
598 	set_track(s, object, TRACK_ALLOC, 0UL);
599 }
600 
601 static void print_track(const char *s, struct track *t, unsigned long pr_time)
602 {
603 	if (!t->addr)
604 		return;
605 
606 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
607 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
608 #ifdef CONFIG_STACKTRACE
609 	{
610 		int i;
611 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
612 			if (t->addrs[i])
613 				pr_err("\t%pS\n", (void *)t->addrs[i]);
614 			else
615 				break;
616 	}
617 #endif
618 }
619 
620 static void print_tracking(struct kmem_cache *s, void *object)
621 {
622 	unsigned long pr_time = jiffies;
623 	if (!(s->flags & SLAB_STORE_USER))
624 		return;
625 
626 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
627 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
628 }
629 
630 static void print_page_info(struct page *page)
631 {
632 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
633 	       page, page->objects, page->inuse, page->freelist, page->flags);
634 
635 }
636 
637 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
638 {
639 	struct va_format vaf;
640 	va_list args;
641 
642 	va_start(args, fmt);
643 	vaf.fmt = fmt;
644 	vaf.va = &args;
645 	pr_err("=============================================================================\n");
646 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
647 	pr_err("-----------------------------------------------------------------------------\n\n");
648 
649 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
650 	va_end(args);
651 }
652 
653 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
654 {
655 	struct va_format vaf;
656 	va_list args;
657 
658 	va_start(args, fmt);
659 	vaf.fmt = fmt;
660 	vaf.va = &args;
661 	pr_err("FIX %s: %pV\n", s->name, &vaf);
662 	va_end(args);
663 }
664 
665 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
666 {
667 	unsigned int off;	/* Offset of last byte */
668 	u8 *addr = page_address(page);
669 
670 	print_tracking(s, p);
671 
672 	print_page_info(page);
673 
674 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
675 	       p, p - addr, get_freepointer(s, p));
676 
677 	if (s->flags & SLAB_RED_ZONE)
678 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
679 			      s->red_left_pad);
680 	else if (p > addr + 16)
681 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
682 
683 	print_section(KERN_ERR, "Object ", p,
684 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
685 	if (s->flags & SLAB_RED_ZONE)
686 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
687 			s->inuse - s->object_size);
688 
689 	if (s->offset)
690 		off = s->offset + sizeof(void *);
691 	else
692 		off = s->inuse;
693 
694 	if (s->flags & SLAB_STORE_USER)
695 		off += 2 * sizeof(struct track);
696 
697 	off += kasan_metadata_size(s);
698 
699 	if (off != size_from_object(s))
700 		/* Beginning of the filler is the free pointer */
701 		print_section(KERN_ERR, "Padding ", p + off,
702 			      size_from_object(s) - off);
703 
704 	dump_stack();
705 }
706 
707 void object_err(struct kmem_cache *s, struct page *page,
708 			u8 *object, char *reason)
709 {
710 	slab_bug(s, "%s", reason);
711 	print_trailer(s, page, object);
712 }
713 
714 static void slab_err(struct kmem_cache *s, struct page *page,
715 			const char *fmt, ...)
716 {
717 	va_list args;
718 	char buf[100];
719 
720 	va_start(args, fmt);
721 	vsnprintf(buf, sizeof(buf), fmt, args);
722 	va_end(args);
723 	slab_bug(s, "%s", buf);
724 	print_page_info(page);
725 	dump_stack();
726 }
727 
728 static void init_object(struct kmem_cache *s, void *object, u8 val)
729 {
730 	u8 *p = object;
731 
732 	if (s->flags & SLAB_RED_ZONE)
733 		memset(p - s->red_left_pad, val, s->red_left_pad);
734 
735 	if (s->flags & __OBJECT_POISON) {
736 		memset(p, POISON_FREE, s->object_size - 1);
737 		p[s->object_size - 1] = POISON_END;
738 	}
739 
740 	if (s->flags & SLAB_RED_ZONE)
741 		memset(p + s->object_size, val, s->inuse - s->object_size);
742 }
743 
744 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
745 						void *from, void *to)
746 {
747 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
748 	memset(from, data, to - from);
749 }
750 
751 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
752 			u8 *object, char *what,
753 			u8 *start, unsigned int value, unsigned int bytes)
754 {
755 	u8 *fault;
756 	u8 *end;
757 
758 	metadata_access_enable();
759 	fault = memchr_inv(start, value, bytes);
760 	metadata_access_disable();
761 	if (!fault)
762 		return 1;
763 
764 	end = start + bytes;
765 	while (end > fault && end[-1] == value)
766 		end--;
767 
768 	slab_bug(s, "%s overwritten", what);
769 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
770 					fault, end - 1, fault[0], value);
771 	print_trailer(s, page, object);
772 
773 	restore_bytes(s, what, value, fault, end);
774 	return 0;
775 }
776 
777 /*
778  * Object layout:
779  *
780  * object address
781  * 	Bytes of the object to be managed.
782  * 	If the freepointer may overlay the object then the free
783  * 	pointer is the first word of the object.
784  *
785  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
786  * 	0xa5 (POISON_END)
787  *
788  * object + s->object_size
789  * 	Padding to reach word boundary. This is also used for Redzoning.
790  * 	Padding is extended by another word if Redzoning is enabled and
791  * 	object_size == inuse.
792  *
793  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
794  * 	0xcc (RED_ACTIVE) for objects in use.
795  *
796  * object + s->inuse
797  * 	Meta data starts here.
798  *
799  * 	A. Free pointer (if we cannot overwrite object on free)
800  * 	B. Tracking data for SLAB_STORE_USER
801  * 	C. Padding to reach required alignment boundary or at mininum
802  * 		one word if debugging is on to be able to detect writes
803  * 		before the word boundary.
804  *
805  *	Padding is done using 0x5a (POISON_INUSE)
806  *
807  * object + s->size
808  * 	Nothing is used beyond s->size.
809  *
810  * If slabcaches are merged then the object_size and inuse boundaries are mostly
811  * ignored. And therefore no slab options that rely on these boundaries
812  * may be used with merged slabcaches.
813  */
814 
815 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
816 {
817 	unsigned long off = s->inuse;	/* The end of info */
818 
819 	if (s->offset)
820 		/* Freepointer is placed after the object. */
821 		off += sizeof(void *);
822 
823 	if (s->flags & SLAB_STORE_USER)
824 		/* We also have user information there */
825 		off += 2 * sizeof(struct track);
826 
827 	off += kasan_metadata_size(s);
828 
829 	if (size_from_object(s) == off)
830 		return 1;
831 
832 	return check_bytes_and_report(s, page, p, "Object padding",
833 			p + off, POISON_INUSE, size_from_object(s) - off);
834 }
835 
836 /* Check the pad bytes at the end of a slab page */
837 static int slab_pad_check(struct kmem_cache *s, struct page *page)
838 {
839 	u8 *start;
840 	u8 *fault;
841 	u8 *end;
842 	u8 *pad;
843 	int length;
844 	int remainder;
845 
846 	if (!(s->flags & SLAB_POISON))
847 		return 1;
848 
849 	start = page_address(page);
850 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
851 	end = start + length;
852 	remainder = length % s->size;
853 	if (!remainder)
854 		return 1;
855 
856 	pad = end - remainder;
857 	metadata_access_enable();
858 	fault = memchr_inv(pad, POISON_INUSE, remainder);
859 	metadata_access_disable();
860 	if (!fault)
861 		return 1;
862 	while (end > fault && end[-1] == POISON_INUSE)
863 		end--;
864 
865 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
866 	print_section(KERN_ERR, "Padding ", pad, remainder);
867 
868 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
869 	return 0;
870 }
871 
872 static int check_object(struct kmem_cache *s, struct page *page,
873 					void *object, u8 val)
874 {
875 	u8 *p = object;
876 	u8 *endobject = object + s->object_size;
877 
878 	if (s->flags & SLAB_RED_ZONE) {
879 		if (!check_bytes_and_report(s, page, object, "Redzone",
880 			object - s->red_left_pad, val, s->red_left_pad))
881 			return 0;
882 
883 		if (!check_bytes_and_report(s, page, object, "Redzone",
884 			endobject, val, s->inuse - s->object_size))
885 			return 0;
886 	} else {
887 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
888 			check_bytes_and_report(s, page, p, "Alignment padding",
889 				endobject, POISON_INUSE,
890 				s->inuse - s->object_size);
891 		}
892 	}
893 
894 	if (s->flags & SLAB_POISON) {
895 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
896 			(!check_bytes_and_report(s, page, p, "Poison", p,
897 					POISON_FREE, s->object_size - 1) ||
898 			 !check_bytes_and_report(s, page, p, "Poison",
899 				p + s->object_size - 1, POISON_END, 1)))
900 			return 0;
901 		/*
902 		 * check_pad_bytes cleans up on its own.
903 		 */
904 		check_pad_bytes(s, page, p);
905 	}
906 
907 	if (!s->offset && val == SLUB_RED_ACTIVE)
908 		/*
909 		 * Object and freepointer overlap. Cannot check
910 		 * freepointer while object is allocated.
911 		 */
912 		return 1;
913 
914 	/* Check free pointer validity */
915 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
916 		object_err(s, page, p, "Freepointer corrupt");
917 		/*
918 		 * No choice but to zap it and thus lose the remainder
919 		 * of the free objects in this slab. May cause
920 		 * another error because the object count is now wrong.
921 		 */
922 		set_freepointer(s, p, NULL);
923 		return 0;
924 	}
925 	return 1;
926 }
927 
928 static int check_slab(struct kmem_cache *s, struct page *page)
929 {
930 	int maxobj;
931 
932 	VM_BUG_ON(!irqs_disabled());
933 
934 	if (!PageSlab(page)) {
935 		slab_err(s, page, "Not a valid slab page");
936 		return 0;
937 	}
938 
939 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
940 	if (page->objects > maxobj) {
941 		slab_err(s, page, "objects %u > max %u",
942 			page->objects, maxobj);
943 		return 0;
944 	}
945 	if (page->inuse > page->objects) {
946 		slab_err(s, page, "inuse %u > max %u",
947 			page->inuse, page->objects);
948 		return 0;
949 	}
950 	/* Slab_pad_check fixes things up after itself */
951 	slab_pad_check(s, page);
952 	return 1;
953 }
954 
955 /*
956  * Determine if a certain object on a page is on the freelist. Must hold the
957  * slab lock to guarantee that the chains are in a consistent state.
958  */
959 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
960 {
961 	int nr = 0;
962 	void *fp;
963 	void *object = NULL;
964 	int max_objects;
965 
966 	fp = page->freelist;
967 	while (fp && nr <= page->objects) {
968 		if (fp == search)
969 			return 1;
970 		if (!check_valid_pointer(s, page, fp)) {
971 			if (object) {
972 				object_err(s, page, object,
973 					"Freechain corrupt");
974 				set_freepointer(s, object, NULL);
975 			} else {
976 				slab_err(s, page, "Freepointer corrupt");
977 				page->freelist = NULL;
978 				page->inuse = page->objects;
979 				slab_fix(s, "Freelist cleared");
980 				return 0;
981 			}
982 			break;
983 		}
984 		object = fp;
985 		fp = get_freepointer(s, object);
986 		nr++;
987 	}
988 
989 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
990 	if (max_objects > MAX_OBJS_PER_PAGE)
991 		max_objects = MAX_OBJS_PER_PAGE;
992 
993 	if (page->objects != max_objects) {
994 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
995 			 page->objects, max_objects);
996 		page->objects = max_objects;
997 		slab_fix(s, "Number of objects adjusted.");
998 	}
999 	if (page->inuse != page->objects - nr) {
1000 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1001 			 page->inuse, page->objects - nr);
1002 		page->inuse = page->objects - nr;
1003 		slab_fix(s, "Object count adjusted.");
1004 	}
1005 	return search == NULL;
1006 }
1007 
1008 static void trace(struct kmem_cache *s, struct page *page, void *object,
1009 								int alloc)
1010 {
1011 	if (s->flags & SLAB_TRACE) {
1012 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1013 			s->name,
1014 			alloc ? "alloc" : "free",
1015 			object, page->inuse,
1016 			page->freelist);
1017 
1018 		if (!alloc)
1019 			print_section(KERN_INFO, "Object ", (void *)object,
1020 					s->object_size);
1021 
1022 		dump_stack();
1023 	}
1024 }
1025 
1026 /*
1027  * Tracking of fully allocated slabs for debugging purposes.
1028  */
1029 static void add_full(struct kmem_cache *s,
1030 	struct kmem_cache_node *n, struct page *page)
1031 {
1032 	if (!(s->flags & SLAB_STORE_USER))
1033 		return;
1034 
1035 	lockdep_assert_held(&n->list_lock);
1036 	list_add(&page->lru, &n->full);
1037 }
1038 
1039 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1040 {
1041 	if (!(s->flags & SLAB_STORE_USER))
1042 		return;
1043 
1044 	lockdep_assert_held(&n->list_lock);
1045 	list_del(&page->lru);
1046 }
1047 
1048 /* Tracking of the number of slabs for debugging purposes */
1049 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1050 {
1051 	struct kmem_cache_node *n = get_node(s, node);
1052 
1053 	return atomic_long_read(&n->nr_slabs);
1054 }
1055 
1056 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1057 {
1058 	return atomic_long_read(&n->nr_slabs);
1059 }
1060 
1061 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1062 {
1063 	struct kmem_cache_node *n = get_node(s, node);
1064 
1065 	/*
1066 	 * May be called early in order to allocate a slab for the
1067 	 * kmem_cache_node structure. Solve the chicken-egg
1068 	 * dilemma by deferring the increment of the count during
1069 	 * bootstrap (see early_kmem_cache_node_alloc).
1070 	 */
1071 	if (likely(n)) {
1072 		atomic_long_inc(&n->nr_slabs);
1073 		atomic_long_add(objects, &n->total_objects);
1074 	}
1075 }
1076 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1077 {
1078 	struct kmem_cache_node *n = get_node(s, node);
1079 
1080 	atomic_long_dec(&n->nr_slabs);
1081 	atomic_long_sub(objects, &n->total_objects);
1082 }
1083 
1084 /* Object debug checks for alloc/free paths */
1085 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1086 								void *object)
1087 {
1088 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1089 		return;
1090 
1091 	init_object(s, object, SLUB_RED_INACTIVE);
1092 	init_tracking(s, object);
1093 }
1094 
1095 static inline int alloc_consistency_checks(struct kmem_cache *s,
1096 					struct page *page,
1097 					void *object, unsigned long addr)
1098 {
1099 	if (!check_slab(s, page))
1100 		return 0;
1101 
1102 	if (!check_valid_pointer(s, page, object)) {
1103 		object_err(s, page, object, "Freelist Pointer check fails");
1104 		return 0;
1105 	}
1106 
1107 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1108 		return 0;
1109 
1110 	return 1;
1111 }
1112 
1113 static noinline int alloc_debug_processing(struct kmem_cache *s,
1114 					struct page *page,
1115 					void *object, unsigned long addr)
1116 {
1117 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1118 		if (!alloc_consistency_checks(s, page, object, addr))
1119 			goto bad;
1120 	}
1121 
1122 	/* Success perform special debug activities for allocs */
1123 	if (s->flags & SLAB_STORE_USER)
1124 		set_track(s, object, TRACK_ALLOC, addr);
1125 	trace(s, page, object, 1);
1126 	init_object(s, object, SLUB_RED_ACTIVE);
1127 	return 1;
1128 
1129 bad:
1130 	if (PageSlab(page)) {
1131 		/*
1132 		 * If this is a slab page then lets do the best we can
1133 		 * to avoid issues in the future. Marking all objects
1134 		 * as used avoids touching the remaining objects.
1135 		 */
1136 		slab_fix(s, "Marking all objects used");
1137 		page->inuse = page->objects;
1138 		page->freelist = NULL;
1139 	}
1140 	return 0;
1141 }
1142 
1143 static inline int free_consistency_checks(struct kmem_cache *s,
1144 		struct page *page, void *object, unsigned long addr)
1145 {
1146 	if (!check_valid_pointer(s, page, object)) {
1147 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1148 		return 0;
1149 	}
1150 
1151 	if (on_freelist(s, page, object)) {
1152 		object_err(s, page, object, "Object already free");
1153 		return 0;
1154 	}
1155 
1156 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1157 		return 0;
1158 
1159 	if (unlikely(s != page->slab_cache)) {
1160 		if (!PageSlab(page)) {
1161 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1162 				 object);
1163 		} else if (!page->slab_cache) {
1164 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1165 			       object);
1166 			dump_stack();
1167 		} else
1168 			object_err(s, page, object,
1169 					"page slab pointer corrupt.");
1170 		return 0;
1171 	}
1172 	return 1;
1173 }
1174 
1175 /* Supports checking bulk free of a constructed freelist */
1176 static noinline int free_debug_processing(
1177 	struct kmem_cache *s, struct page *page,
1178 	void *head, void *tail, int bulk_cnt,
1179 	unsigned long addr)
1180 {
1181 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1182 	void *object = head;
1183 	int cnt = 0;
1184 	unsigned long uninitialized_var(flags);
1185 	int ret = 0;
1186 
1187 	spin_lock_irqsave(&n->list_lock, flags);
1188 	slab_lock(page);
1189 
1190 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1191 		if (!check_slab(s, page))
1192 			goto out;
1193 	}
1194 
1195 next_object:
1196 	cnt++;
1197 
1198 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1199 		if (!free_consistency_checks(s, page, object, addr))
1200 			goto out;
1201 	}
1202 
1203 	if (s->flags & SLAB_STORE_USER)
1204 		set_track(s, object, TRACK_FREE, addr);
1205 	trace(s, page, object, 0);
1206 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1207 	init_object(s, object, SLUB_RED_INACTIVE);
1208 
1209 	/* Reached end of constructed freelist yet? */
1210 	if (object != tail) {
1211 		object = get_freepointer(s, object);
1212 		goto next_object;
1213 	}
1214 	ret = 1;
1215 
1216 out:
1217 	if (cnt != bulk_cnt)
1218 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1219 			 bulk_cnt, cnt);
1220 
1221 	slab_unlock(page);
1222 	spin_unlock_irqrestore(&n->list_lock, flags);
1223 	if (!ret)
1224 		slab_fix(s, "Object at 0x%p not freed", object);
1225 	return ret;
1226 }
1227 
1228 static int __init setup_slub_debug(char *str)
1229 {
1230 	slub_debug = DEBUG_DEFAULT_FLAGS;
1231 	if (*str++ != '=' || !*str)
1232 		/*
1233 		 * No options specified. Switch on full debugging.
1234 		 */
1235 		goto out;
1236 
1237 	if (*str == ',')
1238 		/*
1239 		 * No options but restriction on slabs. This means full
1240 		 * debugging for slabs matching a pattern.
1241 		 */
1242 		goto check_slabs;
1243 
1244 	slub_debug = 0;
1245 	if (*str == '-')
1246 		/*
1247 		 * Switch off all debugging measures.
1248 		 */
1249 		goto out;
1250 
1251 	/*
1252 	 * Determine which debug features should be switched on
1253 	 */
1254 	for (; *str && *str != ','; str++) {
1255 		switch (tolower(*str)) {
1256 		case 'f':
1257 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1258 			break;
1259 		case 'z':
1260 			slub_debug |= SLAB_RED_ZONE;
1261 			break;
1262 		case 'p':
1263 			slub_debug |= SLAB_POISON;
1264 			break;
1265 		case 'u':
1266 			slub_debug |= SLAB_STORE_USER;
1267 			break;
1268 		case 't':
1269 			slub_debug |= SLAB_TRACE;
1270 			break;
1271 		case 'a':
1272 			slub_debug |= SLAB_FAILSLAB;
1273 			break;
1274 		case 'o':
1275 			/*
1276 			 * Avoid enabling debugging on caches if its minimum
1277 			 * order would increase as a result.
1278 			 */
1279 			disable_higher_order_debug = 1;
1280 			break;
1281 		default:
1282 			pr_err("slub_debug option '%c' unknown. skipped\n",
1283 			       *str);
1284 		}
1285 	}
1286 
1287 check_slabs:
1288 	if (*str == ',')
1289 		slub_debug_slabs = str + 1;
1290 out:
1291 	return 1;
1292 }
1293 
1294 __setup("slub_debug", setup_slub_debug);
1295 
1296 slab_flags_t kmem_cache_flags(unsigned int object_size,
1297 	slab_flags_t flags, const char *name,
1298 	void (*ctor)(void *))
1299 {
1300 	/*
1301 	 * Enable debugging if selected on the kernel commandline.
1302 	 */
1303 	if (slub_debug && (!slub_debug_slabs || (name &&
1304 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1305 		flags |= slub_debug;
1306 
1307 	return flags;
1308 }
1309 #else /* !CONFIG_SLUB_DEBUG */
1310 static inline void setup_object_debug(struct kmem_cache *s,
1311 			struct page *page, void *object) {}
1312 
1313 static inline int alloc_debug_processing(struct kmem_cache *s,
1314 	struct page *page, void *object, unsigned long addr) { return 0; }
1315 
1316 static inline int free_debug_processing(
1317 	struct kmem_cache *s, struct page *page,
1318 	void *head, void *tail, int bulk_cnt,
1319 	unsigned long addr) { return 0; }
1320 
1321 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1322 			{ return 1; }
1323 static inline int check_object(struct kmem_cache *s, struct page *page,
1324 			void *object, u8 val) { return 1; }
1325 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1326 					struct page *page) {}
1327 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1328 					struct page *page) {}
1329 slab_flags_t kmem_cache_flags(unsigned int object_size,
1330 	slab_flags_t flags, const char *name,
1331 	void (*ctor)(void *))
1332 {
1333 	return flags;
1334 }
1335 #define slub_debug 0
1336 
1337 #define disable_higher_order_debug 0
1338 
1339 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1340 							{ return 0; }
1341 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1342 							{ return 0; }
1343 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1344 							int objects) {}
1345 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1346 							int objects) {}
1347 
1348 #endif /* CONFIG_SLUB_DEBUG */
1349 
1350 /*
1351  * Hooks for other subsystems that check memory allocations. In a typical
1352  * production configuration these hooks all should produce no code at all.
1353  */
1354 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1355 {
1356 	kmemleak_alloc(ptr, size, 1, flags);
1357 	kasan_kmalloc_large(ptr, size, flags);
1358 }
1359 
1360 static __always_inline void kfree_hook(void *x)
1361 {
1362 	kmemleak_free(x);
1363 	kasan_kfree_large(x, _RET_IP_);
1364 }
1365 
1366 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1367 {
1368 	kmemleak_free_recursive(x, s->flags);
1369 
1370 	/*
1371 	 * Trouble is that we may no longer disable interrupts in the fast path
1372 	 * So in order to make the debug calls that expect irqs to be
1373 	 * disabled we need to disable interrupts temporarily.
1374 	 */
1375 #ifdef CONFIG_LOCKDEP
1376 	{
1377 		unsigned long flags;
1378 
1379 		local_irq_save(flags);
1380 		debug_check_no_locks_freed(x, s->object_size);
1381 		local_irq_restore(flags);
1382 	}
1383 #endif
1384 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1385 		debug_check_no_obj_freed(x, s->object_size);
1386 
1387 	/* KASAN might put x into memory quarantine, delaying its reuse */
1388 	return kasan_slab_free(s, x, _RET_IP_);
1389 }
1390 
1391 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1392 					   void **head, void **tail)
1393 {
1394 /*
1395  * Compiler cannot detect this function can be removed if slab_free_hook()
1396  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1397  */
1398 #if defined(CONFIG_LOCKDEP)	||		\
1399 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1400 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1401 	defined(CONFIG_KASAN)
1402 
1403 	void *object;
1404 	void *next = *head;
1405 	void *old_tail = *tail ? *tail : *head;
1406 
1407 	/* Head and tail of the reconstructed freelist */
1408 	*head = NULL;
1409 	*tail = NULL;
1410 
1411 	do {
1412 		object = next;
1413 		next = get_freepointer(s, object);
1414 		/* If object's reuse doesn't have to be delayed */
1415 		if (!slab_free_hook(s, object)) {
1416 			/* Move object to the new freelist */
1417 			set_freepointer(s, object, *head);
1418 			*head = object;
1419 			if (!*tail)
1420 				*tail = object;
1421 		}
1422 	} while (object != old_tail);
1423 
1424 	if (*head == *tail)
1425 		*tail = NULL;
1426 
1427 	return *head != NULL;
1428 #else
1429 	return true;
1430 #endif
1431 }
1432 
1433 static void setup_object(struct kmem_cache *s, struct page *page,
1434 				void *object)
1435 {
1436 	setup_object_debug(s, page, object);
1437 	kasan_init_slab_obj(s, object);
1438 	if (unlikely(s->ctor)) {
1439 		kasan_unpoison_object_data(s, object);
1440 		s->ctor(object);
1441 		kasan_poison_object_data(s, object);
1442 	}
1443 }
1444 
1445 /*
1446  * Slab allocation and freeing
1447  */
1448 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1449 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1450 {
1451 	struct page *page;
1452 	unsigned int order = oo_order(oo);
1453 
1454 	if (node == NUMA_NO_NODE)
1455 		page = alloc_pages(flags, order);
1456 	else
1457 		page = __alloc_pages_node(node, flags, order);
1458 
1459 	if (page && memcg_charge_slab(page, flags, order, s)) {
1460 		__free_pages(page, order);
1461 		page = NULL;
1462 	}
1463 
1464 	return page;
1465 }
1466 
1467 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1468 /* Pre-initialize the random sequence cache */
1469 static int init_cache_random_seq(struct kmem_cache *s)
1470 {
1471 	unsigned int count = oo_objects(s->oo);
1472 	int err;
1473 
1474 	/* Bailout if already initialised */
1475 	if (s->random_seq)
1476 		return 0;
1477 
1478 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1479 	if (err) {
1480 		pr_err("SLUB: Unable to initialize free list for %s\n",
1481 			s->name);
1482 		return err;
1483 	}
1484 
1485 	/* Transform to an offset on the set of pages */
1486 	if (s->random_seq) {
1487 		unsigned int i;
1488 
1489 		for (i = 0; i < count; i++)
1490 			s->random_seq[i] *= s->size;
1491 	}
1492 	return 0;
1493 }
1494 
1495 /* Initialize each random sequence freelist per cache */
1496 static void __init init_freelist_randomization(void)
1497 {
1498 	struct kmem_cache *s;
1499 
1500 	mutex_lock(&slab_mutex);
1501 
1502 	list_for_each_entry(s, &slab_caches, list)
1503 		init_cache_random_seq(s);
1504 
1505 	mutex_unlock(&slab_mutex);
1506 }
1507 
1508 /* Get the next entry on the pre-computed freelist randomized */
1509 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1510 				unsigned long *pos, void *start,
1511 				unsigned long page_limit,
1512 				unsigned long freelist_count)
1513 {
1514 	unsigned int idx;
1515 
1516 	/*
1517 	 * If the target page allocation failed, the number of objects on the
1518 	 * page might be smaller than the usual size defined by the cache.
1519 	 */
1520 	do {
1521 		idx = s->random_seq[*pos];
1522 		*pos += 1;
1523 		if (*pos >= freelist_count)
1524 			*pos = 0;
1525 	} while (unlikely(idx >= page_limit));
1526 
1527 	return (char *)start + idx;
1528 }
1529 
1530 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1531 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1532 {
1533 	void *start;
1534 	void *cur;
1535 	void *next;
1536 	unsigned long idx, pos, page_limit, freelist_count;
1537 
1538 	if (page->objects < 2 || !s->random_seq)
1539 		return false;
1540 
1541 	freelist_count = oo_objects(s->oo);
1542 	pos = get_random_int() % freelist_count;
1543 
1544 	page_limit = page->objects * s->size;
1545 	start = fixup_red_left(s, page_address(page));
1546 
1547 	/* First entry is used as the base of the freelist */
1548 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1549 				freelist_count);
1550 	page->freelist = cur;
1551 
1552 	for (idx = 1; idx < page->objects; idx++) {
1553 		setup_object(s, page, cur);
1554 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1555 			freelist_count);
1556 		set_freepointer(s, cur, next);
1557 		cur = next;
1558 	}
1559 	setup_object(s, page, cur);
1560 	set_freepointer(s, cur, NULL);
1561 
1562 	return true;
1563 }
1564 #else
1565 static inline int init_cache_random_seq(struct kmem_cache *s)
1566 {
1567 	return 0;
1568 }
1569 static inline void init_freelist_randomization(void) { }
1570 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1571 {
1572 	return false;
1573 }
1574 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1575 
1576 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1577 {
1578 	struct page *page;
1579 	struct kmem_cache_order_objects oo = s->oo;
1580 	gfp_t alloc_gfp;
1581 	void *start, *p;
1582 	int idx, order;
1583 	bool shuffle;
1584 
1585 	flags &= gfp_allowed_mask;
1586 
1587 	if (gfpflags_allow_blocking(flags))
1588 		local_irq_enable();
1589 
1590 	flags |= s->allocflags;
1591 
1592 	/*
1593 	 * Let the initial higher-order allocation fail under memory pressure
1594 	 * so we fall-back to the minimum order allocation.
1595 	 */
1596 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1597 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1598 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1599 
1600 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1601 	if (unlikely(!page)) {
1602 		oo = s->min;
1603 		alloc_gfp = flags;
1604 		/*
1605 		 * Allocation may have failed due to fragmentation.
1606 		 * Try a lower order alloc if possible
1607 		 */
1608 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1609 		if (unlikely(!page))
1610 			goto out;
1611 		stat(s, ORDER_FALLBACK);
1612 	}
1613 
1614 	page->objects = oo_objects(oo);
1615 
1616 	order = compound_order(page);
1617 	page->slab_cache = s;
1618 	__SetPageSlab(page);
1619 	if (page_is_pfmemalloc(page))
1620 		SetPageSlabPfmemalloc(page);
1621 
1622 	start = page_address(page);
1623 
1624 	if (unlikely(s->flags & SLAB_POISON))
1625 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1626 
1627 	kasan_poison_slab(page);
1628 
1629 	shuffle = shuffle_freelist(s, page);
1630 
1631 	if (!shuffle) {
1632 		for_each_object_idx(p, idx, s, start, page->objects) {
1633 			setup_object(s, page, p);
1634 			if (likely(idx < page->objects))
1635 				set_freepointer(s, p, p + s->size);
1636 			else
1637 				set_freepointer(s, p, NULL);
1638 		}
1639 		page->freelist = fixup_red_left(s, start);
1640 	}
1641 
1642 	page->inuse = page->objects;
1643 	page->frozen = 1;
1644 
1645 out:
1646 	if (gfpflags_allow_blocking(flags))
1647 		local_irq_disable();
1648 	if (!page)
1649 		return NULL;
1650 
1651 	mod_lruvec_page_state(page,
1652 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1653 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1654 		1 << oo_order(oo));
1655 
1656 	inc_slabs_node(s, page_to_nid(page), page->objects);
1657 
1658 	return page;
1659 }
1660 
1661 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1662 {
1663 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1664 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1665 		flags &= ~GFP_SLAB_BUG_MASK;
1666 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1667 				invalid_mask, &invalid_mask, flags, &flags);
1668 		dump_stack();
1669 	}
1670 
1671 	return allocate_slab(s,
1672 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1673 }
1674 
1675 static void __free_slab(struct kmem_cache *s, struct page *page)
1676 {
1677 	int order = compound_order(page);
1678 	int pages = 1 << order;
1679 
1680 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1681 		void *p;
1682 
1683 		slab_pad_check(s, page);
1684 		for_each_object(p, s, page_address(page),
1685 						page->objects)
1686 			check_object(s, page, p, SLUB_RED_INACTIVE);
1687 	}
1688 
1689 	mod_lruvec_page_state(page,
1690 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1691 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1692 		-pages);
1693 
1694 	__ClearPageSlabPfmemalloc(page);
1695 	__ClearPageSlab(page);
1696 
1697 	page_mapcount_reset(page);
1698 	if (current->reclaim_state)
1699 		current->reclaim_state->reclaimed_slab += pages;
1700 	memcg_uncharge_slab(page, order, s);
1701 	__free_pages(page, order);
1702 }
1703 
1704 #define need_reserve_slab_rcu						\
1705 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1706 
1707 static void rcu_free_slab(struct rcu_head *h)
1708 {
1709 	struct page *page;
1710 
1711 	if (need_reserve_slab_rcu)
1712 		page = virt_to_head_page(h);
1713 	else
1714 		page = container_of((struct list_head *)h, struct page, lru);
1715 
1716 	__free_slab(page->slab_cache, page);
1717 }
1718 
1719 static void free_slab(struct kmem_cache *s, struct page *page)
1720 {
1721 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1722 		struct rcu_head *head;
1723 
1724 		if (need_reserve_slab_rcu) {
1725 			int order = compound_order(page);
1726 			int offset = (PAGE_SIZE << order) - s->reserved;
1727 
1728 			VM_BUG_ON(s->reserved != sizeof(*head));
1729 			head = page_address(page) + offset;
1730 		} else {
1731 			head = &page->rcu_head;
1732 		}
1733 
1734 		call_rcu(head, rcu_free_slab);
1735 	} else
1736 		__free_slab(s, page);
1737 }
1738 
1739 static void discard_slab(struct kmem_cache *s, struct page *page)
1740 {
1741 	dec_slabs_node(s, page_to_nid(page), page->objects);
1742 	free_slab(s, page);
1743 }
1744 
1745 /*
1746  * Management of partially allocated slabs.
1747  */
1748 static inline void
1749 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1750 {
1751 	n->nr_partial++;
1752 	if (tail == DEACTIVATE_TO_TAIL)
1753 		list_add_tail(&page->lru, &n->partial);
1754 	else
1755 		list_add(&page->lru, &n->partial);
1756 }
1757 
1758 static inline void add_partial(struct kmem_cache_node *n,
1759 				struct page *page, int tail)
1760 {
1761 	lockdep_assert_held(&n->list_lock);
1762 	__add_partial(n, page, tail);
1763 }
1764 
1765 static inline void remove_partial(struct kmem_cache_node *n,
1766 					struct page *page)
1767 {
1768 	lockdep_assert_held(&n->list_lock);
1769 	list_del(&page->lru);
1770 	n->nr_partial--;
1771 }
1772 
1773 /*
1774  * Remove slab from the partial list, freeze it and
1775  * return the pointer to the freelist.
1776  *
1777  * Returns a list of objects or NULL if it fails.
1778  */
1779 static inline void *acquire_slab(struct kmem_cache *s,
1780 		struct kmem_cache_node *n, struct page *page,
1781 		int mode, int *objects)
1782 {
1783 	void *freelist;
1784 	unsigned long counters;
1785 	struct page new;
1786 
1787 	lockdep_assert_held(&n->list_lock);
1788 
1789 	/*
1790 	 * Zap the freelist and set the frozen bit.
1791 	 * The old freelist is the list of objects for the
1792 	 * per cpu allocation list.
1793 	 */
1794 	freelist = page->freelist;
1795 	counters = page->counters;
1796 	new.counters = counters;
1797 	*objects = new.objects - new.inuse;
1798 	if (mode) {
1799 		new.inuse = page->objects;
1800 		new.freelist = NULL;
1801 	} else {
1802 		new.freelist = freelist;
1803 	}
1804 
1805 	VM_BUG_ON(new.frozen);
1806 	new.frozen = 1;
1807 
1808 	if (!__cmpxchg_double_slab(s, page,
1809 			freelist, counters,
1810 			new.freelist, new.counters,
1811 			"acquire_slab"))
1812 		return NULL;
1813 
1814 	remove_partial(n, page);
1815 	WARN_ON(!freelist);
1816 	return freelist;
1817 }
1818 
1819 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1820 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1821 
1822 /*
1823  * Try to allocate a partial slab from a specific node.
1824  */
1825 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1826 				struct kmem_cache_cpu *c, gfp_t flags)
1827 {
1828 	struct page *page, *page2;
1829 	void *object = NULL;
1830 	unsigned int available = 0;
1831 	int objects;
1832 
1833 	/*
1834 	 * Racy check. If we mistakenly see no partial slabs then we
1835 	 * just allocate an empty slab. If we mistakenly try to get a
1836 	 * partial slab and there is none available then get_partials()
1837 	 * will return NULL.
1838 	 */
1839 	if (!n || !n->nr_partial)
1840 		return NULL;
1841 
1842 	spin_lock(&n->list_lock);
1843 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1844 		void *t;
1845 
1846 		if (!pfmemalloc_match(page, flags))
1847 			continue;
1848 
1849 		t = acquire_slab(s, n, page, object == NULL, &objects);
1850 		if (!t)
1851 			break;
1852 
1853 		available += objects;
1854 		if (!object) {
1855 			c->page = page;
1856 			stat(s, ALLOC_FROM_PARTIAL);
1857 			object = t;
1858 		} else {
1859 			put_cpu_partial(s, page, 0);
1860 			stat(s, CPU_PARTIAL_NODE);
1861 		}
1862 		if (!kmem_cache_has_cpu_partial(s)
1863 			|| available > slub_cpu_partial(s) / 2)
1864 			break;
1865 
1866 	}
1867 	spin_unlock(&n->list_lock);
1868 	return object;
1869 }
1870 
1871 /*
1872  * Get a page from somewhere. Search in increasing NUMA distances.
1873  */
1874 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1875 		struct kmem_cache_cpu *c)
1876 {
1877 #ifdef CONFIG_NUMA
1878 	struct zonelist *zonelist;
1879 	struct zoneref *z;
1880 	struct zone *zone;
1881 	enum zone_type high_zoneidx = gfp_zone(flags);
1882 	void *object;
1883 	unsigned int cpuset_mems_cookie;
1884 
1885 	/*
1886 	 * The defrag ratio allows a configuration of the tradeoffs between
1887 	 * inter node defragmentation and node local allocations. A lower
1888 	 * defrag_ratio increases the tendency to do local allocations
1889 	 * instead of attempting to obtain partial slabs from other nodes.
1890 	 *
1891 	 * If the defrag_ratio is set to 0 then kmalloc() always
1892 	 * returns node local objects. If the ratio is higher then kmalloc()
1893 	 * may return off node objects because partial slabs are obtained
1894 	 * from other nodes and filled up.
1895 	 *
1896 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1897 	 * (which makes defrag_ratio = 1000) then every (well almost)
1898 	 * allocation will first attempt to defrag slab caches on other nodes.
1899 	 * This means scanning over all nodes to look for partial slabs which
1900 	 * may be expensive if we do it every time we are trying to find a slab
1901 	 * with available objects.
1902 	 */
1903 	if (!s->remote_node_defrag_ratio ||
1904 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1905 		return NULL;
1906 
1907 	do {
1908 		cpuset_mems_cookie = read_mems_allowed_begin();
1909 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1910 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1911 			struct kmem_cache_node *n;
1912 
1913 			n = get_node(s, zone_to_nid(zone));
1914 
1915 			if (n && cpuset_zone_allowed(zone, flags) &&
1916 					n->nr_partial > s->min_partial) {
1917 				object = get_partial_node(s, n, c, flags);
1918 				if (object) {
1919 					/*
1920 					 * Don't check read_mems_allowed_retry()
1921 					 * here - if mems_allowed was updated in
1922 					 * parallel, that was a harmless race
1923 					 * between allocation and the cpuset
1924 					 * update
1925 					 */
1926 					return object;
1927 				}
1928 			}
1929 		}
1930 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1931 #endif
1932 	return NULL;
1933 }
1934 
1935 /*
1936  * Get a partial page, lock it and return it.
1937  */
1938 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1939 		struct kmem_cache_cpu *c)
1940 {
1941 	void *object;
1942 	int searchnode = node;
1943 
1944 	if (node == NUMA_NO_NODE)
1945 		searchnode = numa_mem_id();
1946 	else if (!node_present_pages(node))
1947 		searchnode = node_to_mem_node(node);
1948 
1949 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1950 	if (object || node != NUMA_NO_NODE)
1951 		return object;
1952 
1953 	return get_any_partial(s, flags, c);
1954 }
1955 
1956 #ifdef CONFIG_PREEMPT
1957 /*
1958  * Calculate the next globally unique transaction for disambiguiation
1959  * during cmpxchg. The transactions start with the cpu number and are then
1960  * incremented by CONFIG_NR_CPUS.
1961  */
1962 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1963 #else
1964 /*
1965  * No preemption supported therefore also no need to check for
1966  * different cpus.
1967  */
1968 #define TID_STEP 1
1969 #endif
1970 
1971 static inline unsigned long next_tid(unsigned long tid)
1972 {
1973 	return tid + TID_STEP;
1974 }
1975 
1976 static inline unsigned int tid_to_cpu(unsigned long tid)
1977 {
1978 	return tid % TID_STEP;
1979 }
1980 
1981 static inline unsigned long tid_to_event(unsigned long tid)
1982 {
1983 	return tid / TID_STEP;
1984 }
1985 
1986 static inline unsigned int init_tid(int cpu)
1987 {
1988 	return cpu;
1989 }
1990 
1991 static inline void note_cmpxchg_failure(const char *n,
1992 		const struct kmem_cache *s, unsigned long tid)
1993 {
1994 #ifdef SLUB_DEBUG_CMPXCHG
1995 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1996 
1997 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1998 
1999 #ifdef CONFIG_PREEMPT
2000 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2001 		pr_warn("due to cpu change %d -> %d\n",
2002 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2003 	else
2004 #endif
2005 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2006 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2007 			tid_to_event(tid), tid_to_event(actual_tid));
2008 	else
2009 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2010 			actual_tid, tid, next_tid(tid));
2011 #endif
2012 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2013 }
2014 
2015 static void init_kmem_cache_cpus(struct kmem_cache *s)
2016 {
2017 	int cpu;
2018 
2019 	for_each_possible_cpu(cpu)
2020 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2021 }
2022 
2023 /*
2024  * Remove the cpu slab
2025  */
2026 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2027 				void *freelist, struct kmem_cache_cpu *c)
2028 {
2029 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2030 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2031 	int lock = 0;
2032 	enum slab_modes l = M_NONE, m = M_NONE;
2033 	void *nextfree;
2034 	int tail = DEACTIVATE_TO_HEAD;
2035 	struct page new;
2036 	struct page old;
2037 
2038 	if (page->freelist) {
2039 		stat(s, DEACTIVATE_REMOTE_FREES);
2040 		tail = DEACTIVATE_TO_TAIL;
2041 	}
2042 
2043 	/*
2044 	 * Stage one: Free all available per cpu objects back
2045 	 * to the page freelist while it is still frozen. Leave the
2046 	 * last one.
2047 	 *
2048 	 * There is no need to take the list->lock because the page
2049 	 * is still frozen.
2050 	 */
2051 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2052 		void *prior;
2053 		unsigned long counters;
2054 
2055 		do {
2056 			prior = page->freelist;
2057 			counters = page->counters;
2058 			set_freepointer(s, freelist, prior);
2059 			new.counters = counters;
2060 			new.inuse--;
2061 			VM_BUG_ON(!new.frozen);
2062 
2063 		} while (!__cmpxchg_double_slab(s, page,
2064 			prior, counters,
2065 			freelist, new.counters,
2066 			"drain percpu freelist"));
2067 
2068 		freelist = nextfree;
2069 	}
2070 
2071 	/*
2072 	 * Stage two: Ensure that the page is unfrozen while the
2073 	 * list presence reflects the actual number of objects
2074 	 * during unfreeze.
2075 	 *
2076 	 * We setup the list membership and then perform a cmpxchg
2077 	 * with the count. If there is a mismatch then the page
2078 	 * is not unfrozen but the page is on the wrong list.
2079 	 *
2080 	 * Then we restart the process which may have to remove
2081 	 * the page from the list that we just put it on again
2082 	 * because the number of objects in the slab may have
2083 	 * changed.
2084 	 */
2085 redo:
2086 
2087 	old.freelist = page->freelist;
2088 	old.counters = page->counters;
2089 	VM_BUG_ON(!old.frozen);
2090 
2091 	/* Determine target state of the slab */
2092 	new.counters = old.counters;
2093 	if (freelist) {
2094 		new.inuse--;
2095 		set_freepointer(s, freelist, old.freelist);
2096 		new.freelist = freelist;
2097 	} else
2098 		new.freelist = old.freelist;
2099 
2100 	new.frozen = 0;
2101 
2102 	if (!new.inuse && n->nr_partial >= s->min_partial)
2103 		m = M_FREE;
2104 	else if (new.freelist) {
2105 		m = M_PARTIAL;
2106 		if (!lock) {
2107 			lock = 1;
2108 			/*
2109 			 * Taking the spinlock removes the possiblity
2110 			 * that acquire_slab() will see a slab page that
2111 			 * is frozen
2112 			 */
2113 			spin_lock(&n->list_lock);
2114 		}
2115 	} else {
2116 		m = M_FULL;
2117 		if (kmem_cache_debug(s) && !lock) {
2118 			lock = 1;
2119 			/*
2120 			 * This also ensures that the scanning of full
2121 			 * slabs from diagnostic functions will not see
2122 			 * any frozen slabs.
2123 			 */
2124 			spin_lock(&n->list_lock);
2125 		}
2126 	}
2127 
2128 	if (l != m) {
2129 
2130 		if (l == M_PARTIAL)
2131 
2132 			remove_partial(n, page);
2133 
2134 		else if (l == M_FULL)
2135 
2136 			remove_full(s, n, page);
2137 
2138 		if (m == M_PARTIAL) {
2139 
2140 			add_partial(n, page, tail);
2141 			stat(s, tail);
2142 
2143 		} else if (m == M_FULL) {
2144 
2145 			stat(s, DEACTIVATE_FULL);
2146 			add_full(s, n, page);
2147 
2148 		}
2149 	}
2150 
2151 	l = m;
2152 	if (!__cmpxchg_double_slab(s, page,
2153 				old.freelist, old.counters,
2154 				new.freelist, new.counters,
2155 				"unfreezing slab"))
2156 		goto redo;
2157 
2158 	if (lock)
2159 		spin_unlock(&n->list_lock);
2160 
2161 	if (m == M_FREE) {
2162 		stat(s, DEACTIVATE_EMPTY);
2163 		discard_slab(s, page);
2164 		stat(s, FREE_SLAB);
2165 	}
2166 
2167 	c->page = NULL;
2168 	c->freelist = NULL;
2169 }
2170 
2171 /*
2172  * Unfreeze all the cpu partial slabs.
2173  *
2174  * This function must be called with interrupts disabled
2175  * for the cpu using c (or some other guarantee must be there
2176  * to guarantee no concurrent accesses).
2177  */
2178 static void unfreeze_partials(struct kmem_cache *s,
2179 		struct kmem_cache_cpu *c)
2180 {
2181 #ifdef CONFIG_SLUB_CPU_PARTIAL
2182 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2183 	struct page *page, *discard_page = NULL;
2184 
2185 	while ((page = c->partial)) {
2186 		struct page new;
2187 		struct page old;
2188 
2189 		c->partial = page->next;
2190 
2191 		n2 = get_node(s, page_to_nid(page));
2192 		if (n != n2) {
2193 			if (n)
2194 				spin_unlock(&n->list_lock);
2195 
2196 			n = n2;
2197 			spin_lock(&n->list_lock);
2198 		}
2199 
2200 		do {
2201 
2202 			old.freelist = page->freelist;
2203 			old.counters = page->counters;
2204 			VM_BUG_ON(!old.frozen);
2205 
2206 			new.counters = old.counters;
2207 			new.freelist = old.freelist;
2208 
2209 			new.frozen = 0;
2210 
2211 		} while (!__cmpxchg_double_slab(s, page,
2212 				old.freelist, old.counters,
2213 				new.freelist, new.counters,
2214 				"unfreezing slab"));
2215 
2216 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2217 			page->next = discard_page;
2218 			discard_page = page;
2219 		} else {
2220 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2221 			stat(s, FREE_ADD_PARTIAL);
2222 		}
2223 	}
2224 
2225 	if (n)
2226 		spin_unlock(&n->list_lock);
2227 
2228 	while (discard_page) {
2229 		page = discard_page;
2230 		discard_page = discard_page->next;
2231 
2232 		stat(s, DEACTIVATE_EMPTY);
2233 		discard_slab(s, page);
2234 		stat(s, FREE_SLAB);
2235 	}
2236 #endif
2237 }
2238 
2239 /*
2240  * Put a page that was just frozen (in __slab_free) into a partial page
2241  * slot if available.
2242  *
2243  * If we did not find a slot then simply move all the partials to the
2244  * per node partial list.
2245  */
2246 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2247 {
2248 #ifdef CONFIG_SLUB_CPU_PARTIAL
2249 	struct page *oldpage;
2250 	int pages;
2251 	int pobjects;
2252 
2253 	preempt_disable();
2254 	do {
2255 		pages = 0;
2256 		pobjects = 0;
2257 		oldpage = this_cpu_read(s->cpu_slab->partial);
2258 
2259 		if (oldpage) {
2260 			pobjects = oldpage->pobjects;
2261 			pages = oldpage->pages;
2262 			if (drain && pobjects > s->cpu_partial) {
2263 				unsigned long flags;
2264 				/*
2265 				 * partial array is full. Move the existing
2266 				 * set to the per node partial list.
2267 				 */
2268 				local_irq_save(flags);
2269 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2270 				local_irq_restore(flags);
2271 				oldpage = NULL;
2272 				pobjects = 0;
2273 				pages = 0;
2274 				stat(s, CPU_PARTIAL_DRAIN);
2275 			}
2276 		}
2277 
2278 		pages++;
2279 		pobjects += page->objects - page->inuse;
2280 
2281 		page->pages = pages;
2282 		page->pobjects = pobjects;
2283 		page->next = oldpage;
2284 
2285 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2286 								!= oldpage);
2287 	if (unlikely(!s->cpu_partial)) {
2288 		unsigned long flags;
2289 
2290 		local_irq_save(flags);
2291 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2292 		local_irq_restore(flags);
2293 	}
2294 	preempt_enable();
2295 #endif
2296 }
2297 
2298 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2299 {
2300 	stat(s, CPUSLAB_FLUSH);
2301 	deactivate_slab(s, c->page, c->freelist, c);
2302 
2303 	c->tid = next_tid(c->tid);
2304 }
2305 
2306 /*
2307  * Flush cpu slab.
2308  *
2309  * Called from IPI handler with interrupts disabled.
2310  */
2311 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2312 {
2313 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2314 
2315 	if (likely(c)) {
2316 		if (c->page)
2317 			flush_slab(s, c);
2318 
2319 		unfreeze_partials(s, c);
2320 	}
2321 }
2322 
2323 static void flush_cpu_slab(void *d)
2324 {
2325 	struct kmem_cache *s = d;
2326 
2327 	__flush_cpu_slab(s, smp_processor_id());
2328 }
2329 
2330 static bool has_cpu_slab(int cpu, void *info)
2331 {
2332 	struct kmem_cache *s = info;
2333 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2334 
2335 	return c->page || slub_percpu_partial(c);
2336 }
2337 
2338 static void flush_all(struct kmem_cache *s)
2339 {
2340 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2341 }
2342 
2343 /*
2344  * Use the cpu notifier to insure that the cpu slabs are flushed when
2345  * necessary.
2346  */
2347 static int slub_cpu_dead(unsigned int cpu)
2348 {
2349 	struct kmem_cache *s;
2350 	unsigned long flags;
2351 
2352 	mutex_lock(&slab_mutex);
2353 	list_for_each_entry(s, &slab_caches, list) {
2354 		local_irq_save(flags);
2355 		__flush_cpu_slab(s, cpu);
2356 		local_irq_restore(flags);
2357 	}
2358 	mutex_unlock(&slab_mutex);
2359 	return 0;
2360 }
2361 
2362 /*
2363  * Check if the objects in a per cpu structure fit numa
2364  * locality expectations.
2365  */
2366 static inline int node_match(struct page *page, int node)
2367 {
2368 #ifdef CONFIG_NUMA
2369 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2370 		return 0;
2371 #endif
2372 	return 1;
2373 }
2374 
2375 #ifdef CONFIG_SLUB_DEBUG
2376 static int count_free(struct page *page)
2377 {
2378 	return page->objects - page->inuse;
2379 }
2380 
2381 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2382 {
2383 	return atomic_long_read(&n->total_objects);
2384 }
2385 #endif /* CONFIG_SLUB_DEBUG */
2386 
2387 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2388 static unsigned long count_partial(struct kmem_cache_node *n,
2389 					int (*get_count)(struct page *))
2390 {
2391 	unsigned long flags;
2392 	unsigned long x = 0;
2393 	struct page *page;
2394 
2395 	spin_lock_irqsave(&n->list_lock, flags);
2396 	list_for_each_entry(page, &n->partial, lru)
2397 		x += get_count(page);
2398 	spin_unlock_irqrestore(&n->list_lock, flags);
2399 	return x;
2400 }
2401 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2402 
2403 static noinline void
2404 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2405 {
2406 #ifdef CONFIG_SLUB_DEBUG
2407 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2408 				      DEFAULT_RATELIMIT_BURST);
2409 	int node;
2410 	struct kmem_cache_node *n;
2411 
2412 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2413 		return;
2414 
2415 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2416 		nid, gfpflags, &gfpflags);
2417 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2418 		s->name, s->object_size, s->size, oo_order(s->oo),
2419 		oo_order(s->min));
2420 
2421 	if (oo_order(s->min) > get_order(s->object_size))
2422 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2423 			s->name);
2424 
2425 	for_each_kmem_cache_node(s, node, n) {
2426 		unsigned long nr_slabs;
2427 		unsigned long nr_objs;
2428 		unsigned long nr_free;
2429 
2430 		nr_free  = count_partial(n, count_free);
2431 		nr_slabs = node_nr_slabs(n);
2432 		nr_objs  = node_nr_objs(n);
2433 
2434 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2435 			node, nr_slabs, nr_objs, nr_free);
2436 	}
2437 #endif
2438 }
2439 
2440 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2441 			int node, struct kmem_cache_cpu **pc)
2442 {
2443 	void *freelist;
2444 	struct kmem_cache_cpu *c = *pc;
2445 	struct page *page;
2446 
2447 	freelist = get_partial(s, flags, node, c);
2448 
2449 	if (freelist)
2450 		return freelist;
2451 
2452 	page = new_slab(s, flags, node);
2453 	if (page) {
2454 		c = raw_cpu_ptr(s->cpu_slab);
2455 		if (c->page)
2456 			flush_slab(s, c);
2457 
2458 		/*
2459 		 * No other reference to the page yet so we can
2460 		 * muck around with it freely without cmpxchg
2461 		 */
2462 		freelist = page->freelist;
2463 		page->freelist = NULL;
2464 
2465 		stat(s, ALLOC_SLAB);
2466 		c->page = page;
2467 		*pc = c;
2468 	} else
2469 		freelist = NULL;
2470 
2471 	return freelist;
2472 }
2473 
2474 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2475 {
2476 	if (unlikely(PageSlabPfmemalloc(page)))
2477 		return gfp_pfmemalloc_allowed(gfpflags);
2478 
2479 	return true;
2480 }
2481 
2482 /*
2483  * Check the page->freelist of a page and either transfer the freelist to the
2484  * per cpu freelist or deactivate the page.
2485  *
2486  * The page is still frozen if the return value is not NULL.
2487  *
2488  * If this function returns NULL then the page has been unfrozen.
2489  *
2490  * This function must be called with interrupt disabled.
2491  */
2492 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2493 {
2494 	struct page new;
2495 	unsigned long counters;
2496 	void *freelist;
2497 
2498 	do {
2499 		freelist = page->freelist;
2500 		counters = page->counters;
2501 
2502 		new.counters = counters;
2503 		VM_BUG_ON(!new.frozen);
2504 
2505 		new.inuse = page->objects;
2506 		new.frozen = freelist != NULL;
2507 
2508 	} while (!__cmpxchg_double_slab(s, page,
2509 		freelist, counters,
2510 		NULL, new.counters,
2511 		"get_freelist"));
2512 
2513 	return freelist;
2514 }
2515 
2516 /*
2517  * Slow path. The lockless freelist is empty or we need to perform
2518  * debugging duties.
2519  *
2520  * Processing is still very fast if new objects have been freed to the
2521  * regular freelist. In that case we simply take over the regular freelist
2522  * as the lockless freelist and zap the regular freelist.
2523  *
2524  * If that is not working then we fall back to the partial lists. We take the
2525  * first element of the freelist as the object to allocate now and move the
2526  * rest of the freelist to the lockless freelist.
2527  *
2528  * And if we were unable to get a new slab from the partial slab lists then
2529  * we need to allocate a new slab. This is the slowest path since it involves
2530  * a call to the page allocator and the setup of a new slab.
2531  *
2532  * Version of __slab_alloc to use when we know that interrupts are
2533  * already disabled (which is the case for bulk allocation).
2534  */
2535 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2536 			  unsigned long addr, struct kmem_cache_cpu *c)
2537 {
2538 	void *freelist;
2539 	struct page *page;
2540 
2541 	page = c->page;
2542 	if (!page)
2543 		goto new_slab;
2544 redo:
2545 
2546 	if (unlikely(!node_match(page, node))) {
2547 		int searchnode = node;
2548 
2549 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2550 			searchnode = node_to_mem_node(node);
2551 
2552 		if (unlikely(!node_match(page, searchnode))) {
2553 			stat(s, ALLOC_NODE_MISMATCH);
2554 			deactivate_slab(s, page, c->freelist, c);
2555 			goto new_slab;
2556 		}
2557 	}
2558 
2559 	/*
2560 	 * By rights, we should be searching for a slab page that was
2561 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2562 	 * information when the page leaves the per-cpu allocator
2563 	 */
2564 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2565 		deactivate_slab(s, page, c->freelist, c);
2566 		goto new_slab;
2567 	}
2568 
2569 	/* must check again c->freelist in case of cpu migration or IRQ */
2570 	freelist = c->freelist;
2571 	if (freelist)
2572 		goto load_freelist;
2573 
2574 	freelist = get_freelist(s, page);
2575 
2576 	if (!freelist) {
2577 		c->page = NULL;
2578 		stat(s, DEACTIVATE_BYPASS);
2579 		goto new_slab;
2580 	}
2581 
2582 	stat(s, ALLOC_REFILL);
2583 
2584 load_freelist:
2585 	/*
2586 	 * freelist is pointing to the list of objects to be used.
2587 	 * page is pointing to the page from which the objects are obtained.
2588 	 * That page must be frozen for per cpu allocations to work.
2589 	 */
2590 	VM_BUG_ON(!c->page->frozen);
2591 	c->freelist = get_freepointer(s, freelist);
2592 	c->tid = next_tid(c->tid);
2593 	return freelist;
2594 
2595 new_slab:
2596 
2597 	if (slub_percpu_partial(c)) {
2598 		page = c->page = slub_percpu_partial(c);
2599 		slub_set_percpu_partial(c, page);
2600 		stat(s, CPU_PARTIAL_ALLOC);
2601 		goto redo;
2602 	}
2603 
2604 	freelist = new_slab_objects(s, gfpflags, node, &c);
2605 
2606 	if (unlikely(!freelist)) {
2607 		slab_out_of_memory(s, gfpflags, node);
2608 		return NULL;
2609 	}
2610 
2611 	page = c->page;
2612 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2613 		goto load_freelist;
2614 
2615 	/* Only entered in the debug case */
2616 	if (kmem_cache_debug(s) &&
2617 			!alloc_debug_processing(s, page, freelist, addr))
2618 		goto new_slab;	/* Slab failed checks. Next slab needed */
2619 
2620 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2621 	return freelist;
2622 }
2623 
2624 /*
2625  * Another one that disabled interrupt and compensates for possible
2626  * cpu changes by refetching the per cpu area pointer.
2627  */
2628 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2629 			  unsigned long addr, struct kmem_cache_cpu *c)
2630 {
2631 	void *p;
2632 	unsigned long flags;
2633 
2634 	local_irq_save(flags);
2635 #ifdef CONFIG_PREEMPT
2636 	/*
2637 	 * We may have been preempted and rescheduled on a different
2638 	 * cpu before disabling interrupts. Need to reload cpu area
2639 	 * pointer.
2640 	 */
2641 	c = this_cpu_ptr(s->cpu_slab);
2642 #endif
2643 
2644 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2645 	local_irq_restore(flags);
2646 	return p;
2647 }
2648 
2649 /*
2650  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2651  * have the fastpath folded into their functions. So no function call
2652  * overhead for requests that can be satisfied on the fastpath.
2653  *
2654  * The fastpath works by first checking if the lockless freelist can be used.
2655  * If not then __slab_alloc is called for slow processing.
2656  *
2657  * Otherwise we can simply pick the next object from the lockless free list.
2658  */
2659 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2660 		gfp_t gfpflags, int node, unsigned long addr)
2661 {
2662 	void *object;
2663 	struct kmem_cache_cpu *c;
2664 	struct page *page;
2665 	unsigned long tid;
2666 
2667 	s = slab_pre_alloc_hook(s, gfpflags);
2668 	if (!s)
2669 		return NULL;
2670 redo:
2671 	/*
2672 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2673 	 * enabled. We may switch back and forth between cpus while
2674 	 * reading from one cpu area. That does not matter as long
2675 	 * as we end up on the original cpu again when doing the cmpxchg.
2676 	 *
2677 	 * We should guarantee that tid and kmem_cache are retrieved on
2678 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2679 	 * to check if it is matched or not.
2680 	 */
2681 	do {
2682 		tid = this_cpu_read(s->cpu_slab->tid);
2683 		c = raw_cpu_ptr(s->cpu_slab);
2684 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2685 		 unlikely(tid != READ_ONCE(c->tid)));
2686 
2687 	/*
2688 	 * Irqless object alloc/free algorithm used here depends on sequence
2689 	 * of fetching cpu_slab's data. tid should be fetched before anything
2690 	 * on c to guarantee that object and page associated with previous tid
2691 	 * won't be used with current tid. If we fetch tid first, object and
2692 	 * page could be one associated with next tid and our alloc/free
2693 	 * request will be failed. In this case, we will retry. So, no problem.
2694 	 */
2695 	barrier();
2696 
2697 	/*
2698 	 * The transaction ids are globally unique per cpu and per operation on
2699 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2700 	 * occurs on the right processor and that there was no operation on the
2701 	 * linked list in between.
2702 	 */
2703 
2704 	object = c->freelist;
2705 	page = c->page;
2706 	if (unlikely(!object || !node_match(page, node))) {
2707 		object = __slab_alloc(s, gfpflags, node, addr, c);
2708 		stat(s, ALLOC_SLOWPATH);
2709 	} else {
2710 		void *next_object = get_freepointer_safe(s, object);
2711 
2712 		/*
2713 		 * The cmpxchg will only match if there was no additional
2714 		 * operation and if we are on the right processor.
2715 		 *
2716 		 * The cmpxchg does the following atomically (without lock
2717 		 * semantics!)
2718 		 * 1. Relocate first pointer to the current per cpu area.
2719 		 * 2. Verify that tid and freelist have not been changed
2720 		 * 3. If they were not changed replace tid and freelist
2721 		 *
2722 		 * Since this is without lock semantics the protection is only
2723 		 * against code executing on this cpu *not* from access by
2724 		 * other cpus.
2725 		 */
2726 		if (unlikely(!this_cpu_cmpxchg_double(
2727 				s->cpu_slab->freelist, s->cpu_slab->tid,
2728 				object, tid,
2729 				next_object, next_tid(tid)))) {
2730 
2731 			note_cmpxchg_failure("slab_alloc", s, tid);
2732 			goto redo;
2733 		}
2734 		prefetch_freepointer(s, next_object);
2735 		stat(s, ALLOC_FASTPATH);
2736 	}
2737 
2738 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2739 		memset(object, 0, s->object_size);
2740 
2741 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2742 
2743 	return object;
2744 }
2745 
2746 static __always_inline void *slab_alloc(struct kmem_cache *s,
2747 		gfp_t gfpflags, unsigned long addr)
2748 {
2749 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2750 }
2751 
2752 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2753 {
2754 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2755 
2756 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2757 				s->size, gfpflags);
2758 
2759 	return ret;
2760 }
2761 EXPORT_SYMBOL(kmem_cache_alloc);
2762 
2763 #ifdef CONFIG_TRACING
2764 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2765 {
2766 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2767 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2768 	kasan_kmalloc(s, ret, size, gfpflags);
2769 	return ret;
2770 }
2771 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2772 #endif
2773 
2774 #ifdef CONFIG_NUMA
2775 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2776 {
2777 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2778 
2779 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2780 				    s->object_size, s->size, gfpflags, node);
2781 
2782 	return ret;
2783 }
2784 EXPORT_SYMBOL(kmem_cache_alloc_node);
2785 
2786 #ifdef CONFIG_TRACING
2787 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2788 				    gfp_t gfpflags,
2789 				    int node, size_t size)
2790 {
2791 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2792 
2793 	trace_kmalloc_node(_RET_IP_, ret,
2794 			   size, s->size, gfpflags, node);
2795 
2796 	kasan_kmalloc(s, ret, size, gfpflags);
2797 	return ret;
2798 }
2799 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2800 #endif
2801 #endif
2802 
2803 /*
2804  * Slow path handling. This may still be called frequently since objects
2805  * have a longer lifetime than the cpu slabs in most processing loads.
2806  *
2807  * So we still attempt to reduce cache line usage. Just take the slab
2808  * lock and free the item. If there is no additional partial page
2809  * handling required then we can return immediately.
2810  */
2811 static void __slab_free(struct kmem_cache *s, struct page *page,
2812 			void *head, void *tail, int cnt,
2813 			unsigned long addr)
2814 
2815 {
2816 	void *prior;
2817 	int was_frozen;
2818 	struct page new;
2819 	unsigned long counters;
2820 	struct kmem_cache_node *n = NULL;
2821 	unsigned long uninitialized_var(flags);
2822 
2823 	stat(s, FREE_SLOWPATH);
2824 
2825 	if (kmem_cache_debug(s) &&
2826 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2827 		return;
2828 
2829 	do {
2830 		if (unlikely(n)) {
2831 			spin_unlock_irqrestore(&n->list_lock, flags);
2832 			n = NULL;
2833 		}
2834 		prior = page->freelist;
2835 		counters = page->counters;
2836 		set_freepointer(s, tail, prior);
2837 		new.counters = counters;
2838 		was_frozen = new.frozen;
2839 		new.inuse -= cnt;
2840 		if ((!new.inuse || !prior) && !was_frozen) {
2841 
2842 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2843 
2844 				/*
2845 				 * Slab was on no list before and will be
2846 				 * partially empty
2847 				 * We can defer the list move and instead
2848 				 * freeze it.
2849 				 */
2850 				new.frozen = 1;
2851 
2852 			} else { /* Needs to be taken off a list */
2853 
2854 				n = get_node(s, page_to_nid(page));
2855 				/*
2856 				 * Speculatively acquire the list_lock.
2857 				 * If the cmpxchg does not succeed then we may
2858 				 * drop the list_lock without any processing.
2859 				 *
2860 				 * Otherwise the list_lock will synchronize with
2861 				 * other processors updating the list of slabs.
2862 				 */
2863 				spin_lock_irqsave(&n->list_lock, flags);
2864 
2865 			}
2866 		}
2867 
2868 	} while (!cmpxchg_double_slab(s, page,
2869 		prior, counters,
2870 		head, new.counters,
2871 		"__slab_free"));
2872 
2873 	if (likely(!n)) {
2874 
2875 		/*
2876 		 * If we just froze the page then put it onto the
2877 		 * per cpu partial list.
2878 		 */
2879 		if (new.frozen && !was_frozen) {
2880 			put_cpu_partial(s, page, 1);
2881 			stat(s, CPU_PARTIAL_FREE);
2882 		}
2883 		/*
2884 		 * The list lock was not taken therefore no list
2885 		 * activity can be necessary.
2886 		 */
2887 		if (was_frozen)
2888 			stat(s, FREE_FROZEN);
2889 		return;
2890 	}
2891 
2892 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2893 		goto slab_empty;
2894 
2895 	/*
2896 	 * Objects left in the slab. If it was not on the partial list before
2897 	 * then add it.
2898 	 */
2899 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2900 		if (kmem_cache_debug(s))
2901 			remove_full(s, n, page);
2902 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2903 		stat(s, FREE_ADD_PARTIAL);
2904 	}
2905 	spin_unlock_irqrestore(&n->list_lock, flags);
2906 	return;
2907 
2908 slab_empty:
2909 	if (prior) {
2910 		/*
2911 		 * Slab on the partial list.
2912 		 */
2913 		remove_partial(n, page);
2914 		stat(s, FREE_REMOVE_PARTIAL);
2915 	} else {
2916 		/* Slab must be on the full list */
2917 		remove_full(s, n, page);
2918 	}
2919 
2920 	spin_unlock_irqrestore(&n->list_lock, flags);
2921 	stat(s, FREE_SLAB);
2922 	discard_slab(s, page);
2923 }
2924 
2925 /*
2926  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2927  * can perform fastpath freeing without additional function calls.
2928  *
2929  * The fastpath is only possible if we are freeing to the current cpu slab
2930  * of this processor. This typically the case if we have just allocated
2931  * the item before.
2932  *
2933  * If fastpath is not possible then fall back to __slab_free where we deal
2934  * with all sorts of special processing.
2935  *
2936  * Bulk free of a freelist with several objects (all pointing to the
2937  * same page) possible by specifying head and tail ptr, plus objects
2938  * count (cnt). Bulk free indicated by tail pointer being set.
2939  */
2940 static __always_inline void do_slab_free(struct kmem_cache *s,
2941 				struct page *page, void *head, void *tail,
2942 				int cnt, unsigned long addr)
2943 {
2944 	void *tail_obj = tail ? : head;
2945 	struct kmem_cache_cpu *c;
2946 	unsigned long tid;
2947 redo:
2948 	/*
2949 	 * Determine the currently cpus per cpu slab.
2950 	 * The cpu may change afterward. However that does not matter since
2951 	 * data is retrieved via this pointer. If we are on the same cpu
2952 	 * during the cmpxchg then the free will succeed.
2953 	 */
2954 	do {
2955 		tid = this_cpu_read(s->cpu_slab->tid);
2956 		c = raw_cpu_ptr(s->cpu_slab);
2957 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2958 		 unlikely(tid != READ_ONCE(c->tid)));
2959 
2960 	/* Same with comment on barrier() in slab_alloc_node() */
2961 	barrier();
2962 
2963 	if (likely(page == c->page)) {
2964 		set_freepointer(s, tail_obj, c->freelist);
2965 
2966 		if (unlikely(!this_cpu_cmpxchg_double(
2967 				s->cpu_slab->freelist, s->cpu_slab->tid,
2968 				c->freelist, tid,
2969 				head, next_tid(tid)))) {
2970 
2971 			note_cmpxchg_failure("slab_free", s, tid);
2972 			goto redo;
2973 		}
2974 		stat(s, FREE_FASTPATH);
2975 	} else
2976 		__slab_free(s, page, head, tail_obj, cnt, addr);
2977 
2978 }
2979 
2980 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2981 				      void *head, void *tail, int cnt,
2982 				      unsigned long addr)
2983 {
2984 	/*
2985 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2986 	 * to remove objects, whose reuse must be delayed.
2987 	 */
2988 	if (slab_free_freelist_hook(s, &head, &tail))
2989 		do_slab_free(s, page, head, tail, cnt, addr);
2990 }
2991 
2992 #ifdef CONFIG_KASAN
2993 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2994 {
2995 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2996 }
2997 #endif
2998 
2999 void kmem_cache_free(struct kmem_cache *s, void *x)
3000 {
3001 	s = cache_from_obj(s, x);
3002 	if (!s)
3003 		return;
3004 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3005 	trace_kmem_cache_free(_RET_IP_, x);
3006 }
3007 EXPORT_SYMBOL(kmem_cache_free);
3008 
3009 struct detached_freelist {
3010 	struct page *page;
3011 	void *tail;
3012 	void *freelist;
3013 	int cnt;
3014 	struct kmem_cache *s;
3015 };
3016 
3017 /*
3018  * This function progressively scans the array with free objects (with
3019  * a limited look ahead) and extract objects belonging to the same
3020  * page.  It builds a detached freelist directly within the given
3021  * page/objects.  This can happen without any need for
3022  * synchronization, because the objects are owned by running process.
3023  * The freelist is build up as a single linked list in the objects.
3024  * The idea is, that this detached freelist can then be bulk
3025  * transferred to the real freelist(s), but only requiring a single
3026  * synchronization primitive.  Look ahead in the array is limited due
3027  * to performance reasons.
3028  */
3029 static inline
3030 int build_detached_freelist(struct kmem_cache *s, size_t size,
3031 			    void **p, struct detached_freelist *df)
3032 {
3033 	size_t first_skipped_index = 0;
3034 	int lookahead = 3;
3035 	void *object;
3036 	struct page *page;
3037 
3038 	/* Always re-init detached_freelist */
3039 	df->page = NULL;
3040 
3041 	do {
3042 		object = p[--size];
3043 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3044 	} while (!object && size);
3045 
3046 	if (!object)
3047 		return 0;
3048 
3049 	page = virt_to_head_page(object);
3050 	if (!s) {
3051 		/* Handle kalloc'ed objects */
3052 		if (unlikely(!PageSlab(page))) {
3053 			BUG_ON(!PageCompound(page));
3054 			kfree_hook(object);
3055 			__free_pages(page, compound_order(page));
3056 			p[size] = NULL; /* mark object processed */
3057 			return size;
3058 		}
3059 		/* Derive kmem_cache from object */
3060 		df->s = page->slab_cache;
3061 	} else {
3062 		df->s = cache_from_obj(s, object); /* Support for memcg */
3063 	}
3064 
3065 	/* Start new detached freelist */
3066 	df->page = page;
3067 	set_freepointer(df->s, object, NULL);
3068 	df->tail = object;
3069 	df->freelist = object;
3070 	p[size] = NULL; /* mark object processed */
3071 	df->cnt = 1;
3072 
3073 	while (size) {
3074 		object = p[--size];
3075 		if (!object)
3076 			continue; /* Skip processed objects */
3077 
3078 		/* df->page is always set at this point */
3079 		if (df->page == virt_to_head_page(object)) {
3080 			/* Opportunity build freelist */
3081 			set_freepointer(df->s, object, df->freelist);
3082 			df->freelist = object;
3083 			df->cnt++;
3084 			p[size] = NULL; /* mark object processed */
3085 
3086 			continue;
3087 		}
3088 
3089 		/* Limit look ahead search */
3090 		if (!--lookahead)
3091 			break;
3092 
3093 		if (!first_skipped_index)
3094 			first_skipped_index = size + 1;
3095 	}
3096 
3097 	return first_skipped_index;
3098 }
3099 
3100 /* Note that interrupts must be enabled when calling this function. */
3101 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3102 {
3103 	if (WARN_ON(!size))
3104 		return;
3105 
3106 	do {
3107 		struct detached_freelist df;
3108 
3109 		size = build_detached_freelist(s, size, p, &df);
3110 		if (!df.page)
3111 			continue;
3112 
3113 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3114 	} while (likely(size));
3115 }
3116 EXPORT_SYMBOL(kmem_cache_free_bulk);
3117 
3118 /* Note that interrupts must be enabled when calling this function. */
3119 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3120 			  void **p)
3121 {
3122 	struct kmem_cache_cpu *c;
3123 	int i;
3124 
3125 	/* memcg and kmem_cache debug support */
3126 	s = slab_pre_alloc_hook(s, flags);
3127 	if (unlikely(!s))
3128 		return false;
3129 	/*
3130 	 * Drain objects in the per cpu slab, while disabling local
3131 	 * IRQs, which protects against PREEMPT and interrupts
3132 	 * handlers invoking normal fastpath.
3133 	 */
3134 	local_irq_disable();
3135 	c = this_cpu_ptr(s->cpu_slab);
3136 
3137 	for (i = 0; i < size; i++) {
3138 		void *object = c->freelist;
3139 
3140 		if (unlikely(!object)) {
3141 			/*
3142 			 * Invoking slow path likely have side-effect
3143 			 * of re-populating per CPU c->freelist
3144 			 */
3145 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3146 					    _RET_IP_, c);
3147 			if (unlikely(!p[i]))
3148 				goto error;
3149 
3150 			c = this_cpu_ptr(s->cpu_slab);
3151 			continue; /* goto for-loop */
3152 		}
3153 		c->freelist = get_freepointer(s, object);
3154 		p[i] = object;
3155 	}
3156 	c->tid = next_tid(c->tid);
3157 	local_irq_enable();
3158 
3159 	/* Clear memory outside IRQ disabled fastpath loop */
3160 	if (unlikely(flags & __GFP_ZERO)) {
3161 		int j;
3162 
3163 		for (j = 0; j < i; j++)
3164 			memset(p[j], 0, s->object_size);
3165 	}
3166 
3167 	/* memcg and kmem_cache debug support */
3168 	slab_post_alloc_hook(s, flags, size, p);
3169 	return i;
3170 error:
3171 	local_irq_enable();
3172 	slab_post_alloc_hook(s, flags, i, p);
3173 	__kmem_cache_free_bulk(s, i, p);
3174 	return 0;
3175 }
3176 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3177 
3178 
3179 /*
3180  * Object placement in a slab is made very easy because we always start at
3181  * offset 0. If we tune the size of the object to the alignment then we can
3182  * get the required alignment by putting one properly sized object after
3183  * another.
3184  *
3185  * Notice that the allocation order determines the sizes of the per cpu
3186  * caches. Each processor has always one slab available for allocations.
3187  * Increasing the allocation order reduces the number of times that slabs
3188  * must be moved on and off the partial lists and is therefore a factor in
3189  * locking overhead.
3190  */
3191 
3192 /*
3193  * Mininum / Maximum order of slab pages. This influences locking overhead
3194  * and slab fragmentation. A higher order reduces the number of partial slabs
3195  * and increases the number of allocations possible without having to
3196  * take the list_lock.
3197  */
3198 static unsigned int slub_min_order;
3199 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3200 static unsigned int slub_min_objects;
3201 
3202 /*
3203  * Calculate the order of allocation given an slab object size.
3204  *
3205  * The order of allocation has significant impact on performance and other
3206  * system components. Generally order 0 allocations should be preferred since
3207  * order 0 does not cause fragmentation in the page allocator. Larger objects
3208  * be problematic to put into order 0 slabs because there may be too much
3209  * unused space left. We go to a higher order if more than 1/16th of the slab
3210  * would be wasted.
3211  *
3212  * In order to reach satisfactory performance we must ensure that a minimum
3213  * number of objects is in one slab. Otherwise we may generate too much
3214  * activity on the partial lists which requires taking the list_lock. This is
3215  * less a concern for large slabs though which are rarely used.
3216  *
3217  * slub_max_order specifies the order where we begin to stop considering the
3218  * number of objects in a slab as critical. If we reach slub_max_order then
3219  * we try to keep the page order as low as possible. So we accept more waste
3220  * of space in favor of a small page order.
3221  *
3222  * Higher order allocations also allow the placement of more objects in a
3223  * slab and thereby reduce object handling overhead. If the user has
3224  * requested a higher mininum order then we start with that one instead of
3225  * the smallest order which will fit the object.
3226  */
3227 static inline unsigned int slab_order(unsigned int size,
3228 		unsigned int min_objects, unsigned int max_order,
3229 		unsigned int fract_leftover, unsigned int reserved)
3230 {
3231 	unsigned int min_order = slub_min_order;
3232 	unsigned int order;
3233 
3234 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3235 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3236 
3237 	for (order = max(min_order, (unsigned int)get_order(min_objects * size + reserved));
3238 			order <= max_order; order++) {
3239 
3240 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3241 		unsigned int rem;
3242 
3243 		rem = (slab_size - reserved) % size;
3244 
3245 		if (rem <= slab_size / fract_leftover)
3246 			break;
3247 	}
3248 
3249 	return order;
3250 }
3251 
3252 static inline int calculate_order(unsigned int size, unsigned int reserved)
3253 {
3254 	unsigned int order;
3255 	unsigned int min_objects;
3256 	unsigned int max_objects;
3257 
3258 	/*
3259 	 * Attempt to find best configuration for a slab. This
3260 	 * works by first attempting to generate a layout with
3261 	 * the best configuration and backing off gradually.
3262 	 *
3263 	 * First we increase the acceptable waste in a slab. Then
3264 	 * we reduce the minimum objects required in a slab.
3265 	 */
3266 	min_objects = slub_min_objects;
3267 	if (!min_objects)
3268 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3269 	max_objects = order_objects(slub_max_order, size, reserved);
3270 	min_objects = min(min_objects, max_objects);
3271 
3272 	while (min_objects > 1) {
3273 		unsigned int fraction;
3274 
3275 		fraction = 16;
3276 		while (fraction >= 4) {
3277 			order = slab_order(size, min_objects,
3278 					slub_max_order, fraction, reserved);
3279 			if (order <= slub_max_order)
3280 				return order;
3281 			fraction /= 2;
3282 		}
3283 		min_objects--;
3284 	}
3285 
3286 	/*
3287 	 * We were unable to place multiple objects in a slab. Now
3288 	 * lets see if we can place a single object there.
3289 	 */
3290 	order = slab_order(size, 1, slub_max_order, 1, reserved);
3291 	if (order <= slub_max_order)
3292 		return order;
3293 
3294 	/*
3295 	 * Doh this slab cannot be placed using slub_max_order.
3296 	 */
3297 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3298 	if (order < MAX_ORDER)
3299 		return order;
3300 	return -ENOSYS;
3301 }
3302 
3303 static void
3304 init_kmem_cache_node(struct kmem_cache_node *n)
3305 {
3306 	n->nr_partial = 0;
3307 	spin_lock_init(&n->list_lock);
3308 	INIT_LIST_HEAD(&n->partial);
3309 #ifdef CONFIG_SLUB_DEBUG
3310 	atomic_long_set(&n->nr_slabs, 0);
3311 	atomic_long_set(&n->total_objects, 0);
3312 	INIT_LIST_HEAD(&n->full);
3313 #endif
3314 }
3315 
3316 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3317 {
3318 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3319 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3320 
3321 	/*
3322 	 * Must align to double word boundary for the double cmpxchg
3323 	 * instructions to work; see __pcpu_double_call_return_bool().
3324 	 */
3325 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3326 				     2 * sizeof(void *));
3327 
3328 	if (!s->cpu_slab)
3329 		return 0;
3330 
3331 	init_kmem_cache_cpus(s);
3332 
3333 	return 1;
3334 }
3335 
3336 static struct kmem_cache *kmem_cache_node;
3337 
3338 /*
3339  * No kmalloc_node yet so do it by hand. We know that this is the first
3340  * slab on the node for this slabcache. There are no concurrent accesses
3341  * possible.
3342  *
3343  * Note that this function only works on the kmem_cache_node
3344  * when allocating for the kmem_cache_node. This is used for bootstrapping
3345  * memory on a fresh node that has no slab structures yet.
3346  */
3347 static void early_kmem_cache_node_alloc(int node)
3348 {
3349 	struct page *page;
3350 	struct kmem_cache_node *n;
3351 
3352 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3353 
3354 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3355 
3356 	BUG_ON(!page);
3357 	if (page_to_nid(page) != node) {
3358 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3359 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3360 	}
3361 
3362 	n = page->freelist;
3363 	BUG_ON(!n);
3364 	page->freelist = get_freepointer(kmem_cache_node, n);
3365 	page->inuse = 1;
3366 	page->frozen = 0;
3367 	kmem_cache_node->node[node] = n;
3368 #ifdef CONFIG_SLUB_DEBUG
3369 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3370 	init_tracking(kmem_cache_node, n);
3371 #endif
3372 	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3373 		      GFP_KERNEL);
3374 	init_kmem_cache_node(n);
3375 	inc_slabs_node(kmem_cache_node, node, page->objects);
3376 
3377 	/*
3378 	 * No locks need to be taken here as it has just been
3379 	 * initialized and there is no concurrent access.
3380 	 */
3381 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3382 }
3383 
3384 static void free_kmem_cache_nodes(struct kmem_cache *s)
3385 {
3386 	int node;
3387 	struct kmem_cache_node *n;
3388 
3389 	for_each_kmem_cache_node(s, node, n) {
3390 		s->node[node] = NULL;
3391 		kmem_cache_free(kmem_cache_node, n);
3392 	}
3393 }
3394 
3395 void __kmem_cache_release(struct kmem_cache *s)
3396 {
3397 	cache_random_seq_destroy(s);
3398 	free_percpu(s->cpu_slab);
3399 	free_kmem_cache_nodes(s);
3400 }
3401 
3402 static int init_kmem_cache_nodes(struct kmem_cache *s)
3403 {
3404 	int node;
3405 
3406 	for_each_node_state(node, N_NORMAL_MEMORY) {
3407 		struct kmem_cache_node *n;
3408 
3409 		if (slab_state == DOWN) {
3410 			early_kmem_cache_node_alloc(node);
3411 			continue;
3412 		}
3413 		n = kmem_cache_alloc_node(kmem_cache_node,
3414 						GFP_KERNEL, node);
3415 
3416 		if (!n) {
3417 			free_kmem_cache_nodes(s);
3418 			return 0;
3419 		}
3420 
3421 		init_kmem_cache_node(n);
3422 		s->node[node] = n;
3423 	}
3424 	return 1;
3425 }
3426 
3427 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3428 {
3429 	if (min < MIN_PARTIAL)
3430 		min = MIN_PARTIAL;
3431 	else if (min > MAX_PARTIAL)
3432 		min = MAX_PARTIAL;
3433 	s->min_partial = min;
3434 }
3435 
3436 static void set_cpu_partial(struct kmem_cache *s)
3437 {
3438 #ifdef CONFIG_SLUB_CPU_PARTIAL
3439 	/*
3440 	 * cpu_partial determined the maximum number of objects kept in the
3441 	 * per cpu partial lists of a processor.
3442 	 *
3443 	 * Per cpu partial lists mainly contain slabs that just have one
3444 	 * object freed. If they are used for allocation then they can be
3445 	 * filled up again with minimal effort. The slab will never hit the
3446 	 * per node partial lists and therefore no locking will be required.
3447 	 *
3448 	 * This setting also determines
3449 	 *
3450 	 * A) The number of objects from per cpu partial slabs dumped to the
3451 	 *    per node list when we reach the limit.
3452 	 * B) The number of objects in cpu partial slabs to extract from the
3453 	 *    per node list when we run out of per cpu objects. We only fetch
3454 	 *    50% to keep some capacity around for frees.
3455 	 */
3456 	if (!kmem_cache_has_cpu_partial(s))
3457 		s->cpu_partial = 0;
3458 	else if (s->size >= PAGE_SIZE)
3459 		s->cpu_partial = 2;
3460 	else if (s->size >= 1024)
3461 		s->cpu_partial = 6;
3462 	else if (s->size >= 256)
3463 		s->cpu_partial = 13;
3464 	else
3465 		s->cpu_partial = 30;
3466 #endif
3467 }
3468 
3469 /*
3470  * calculate_sizes() determines the order and the distribution of data within
3471  * a slab object.
3472  */
3473 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3474 {
3475 	slab_flags_t flags = s->flags;
3476 	unsigned int size = s->object_size;
3477 	unsigned int order;
3478 
3479 	/*
3480 	 * Round up object size to the next word boundary. We can only
3481 	 * place the free pointer at word boundaries and this determines
3482 	 * the possible location of the free pointer.
3483 	 */
3484 	size = ALIGN(size, sizeof(void *));
3485 
3486 #ifdef CONFIG_SLUB_DEBUG
3487 	/*
3488 	 * Determine if we can poison the object itself. If the user of
3489 	 * the slab may touch the object after free or before allocation
3490 	 * then we should never poison the object itself.
3491 	 */
3492 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3493 			!s->ctor)
3494 		s->flags |= __OBJECT_POISON;
3495 	else
3496 		s->flags &= ~__OBJECT_POISON;
3497 
3498 
3499 	/*
3500 	 * If we are Redzoning then check if there is some space between the
3501 	 * end of the object and the free pointer. If not then add an
3502 	 * additional word to have some bytes to store Redzone information.
3503 	 */
3504 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3505 		size += sizeof(void *);
3506 #endif
3507 
3508 	/*
3509 	 * With that we have determined the number of bytes in actual use
3510 	 * by the object. This is the potential offset to the free pointer.
3511 	 */
3512 	s->inuse = size;
3513 
3514 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3515 		s->ctor)) {
3516 		/*
3517 		 * Relocate free pointer after the object if it is not
3518 		 * permitted to overwrite the first word of the object on
3519 		 * kmem_cache_free.
3520 		 *
3521 		 * This is the case if we do RCU, have a constructor or
3522 		 * destructor or are poisoning the objects.
3523 		 */
3524 		s->offset = size;
3525 		size += sizeof(void *);
3526 	}
3527 
3528 #ifdef CONFIG_SLUB_DEBUG
3529 	if (flags & SLAB_STORE_USER)
3530 		/*
3531 		 * Need to store information about allocs and frees after
3532 		 * the object.
3533 		 */
3534 		size += 2 * sizeof(struct track);
3535 #endif
3536 
3537 	kasan_cache_create(s, &size, &s->flags);
3538 #ifdef CONFIG_SLUB_DEBUG
3539 	if (flags & SLAB_RED_ZONE) {
3540 		/*
3541 		 * Add some empty padding so that we can catch
3542 		 * overwrites from earlier objects rather than let
3543 		 * tracking information or the free pointer be
3544 		 * corrupted if a user writes before the start
3545 		 * of the object.
3546 		 */
3547 		size += sizeof(void *);
3548 
3549 		s->red_left_pad = sizeof(void *);
3550 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3551 		size += s->red_left_pad;
3552 	}
3553 #endif
3554 
3555 	/*
3556 	 * SLUB stores one object immediately after another beginning from
3557 	 * offset 0. In order to align the objects we have to simply size
3558 	 * each object to conform to the alignment.
3559 	 */
3560 	size = ALIGN(size, s->align);
3561 	s->size = size;
3562 	if (forced_order >= 0)
3563 		order = forced_order;
3564 	else
3565 		order = calculate_order(size, s->reserved);
3566 
3567 	if ((int)order < 0)
3568 		return 0;
3569 
3570 	s->allocflags = 0;
3571 	if (order)
3572 		s->allocflags |= __GFP_COMP;
3573 
3574 	if (s->flags & SLAB_CACHE_DMA)
3575 		s->allocflags |= GFP_DMA;
3576 
3577 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3578 		s->allocflags |= __GFP_RECLAIMABLE;
3579 
3580 	/*
3581 	 * Determine the number of objects per slab
3582 	 */
3583 	s->oo = oo_make(order, size, s->reserved);
3584 	s->min = oo_make(get_order(size), size, s->reserved);
3585 	if (oo_objects(s->oo) > oo_objects(s->max))
3586 		s->max = s->oo;
3587 
3588 	return !!oo_objects(s->oo);
3589 }
3590 
3591 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3592 {
3593 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3594 	s->reserved = 0;
3595 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3596 	s->random = get_random_long();
3597 #endif
3598 
3599 	if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3600 		s->reserved = sizeof(struct rcu_head);
3601 
3602 	if (!calculate_sizes(s, -1))
3603 		goto error;
3604 	if (disable_higher_order_debug) {
3605 		/*
3606 		 * Disable debugging flags that store metadata if the min slab
3607 		 * order increased.
3608 		 */
3609 		if (get_order(s->size) > get_order(s->object_size)) {
3610 			s->flags &= ~DEBUG_METADATA_FLAGS;
3611 			s->offset = 0;
3612 			if (!calculate_sizes(s, -1))
3613 				goto error;
3614 		}
3615 	}
3616 
3617 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3618     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3619 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3620 		/* Enable fast mode */
3621 		s->flags |= __CMPXCHG_DOUBLE;
3622 #endif
3623 
3624 	/*
3625 	 * The larger the object size is, the more pages we want on the partial
3626 	 * list to avoid pounding the page allocator excessively.
3627 	 */
3628 	set_min_partial(s, ilog2(s->size) / 2);
3629 
3630 	set_cpu_partial(s);
3631 
3632 #ifdef CONFIG_NUMA
3633 	s->remote_node_defrag_ratio = 1000;
3634 #endif
3635 
3636 	/* Initialize the pre-computed randomized freelist if slab is up */
3637 	if (slab_state >= UP) {
3638 		if (init_cache_random_seq(s))
3639 			goto error;
3640 	}
3641 
3642 	if (!init_kmem_cache_nodes(s))
3643 		goto error;
3644 
3645 	if (alloc_kmem_cache_cpus(s))
3646 		return 0;
3647 
3648 	free_kmem_cache_nodes(s);
3649 error:
3650 	if (flags & SLAB_PANIC)
3651 		panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3652 		      s->name, s->size, s->size,
3653 		      oo_order(s->oo), s->offset, (unsigned long)flags);
3654 	return -EINVAL;
3655 }
3656 
3657 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3658 							const char *text)
3659 {
3660 #ifdef CONFIG_SLUB_DEBUG
3661 	void *addr = page_address(page);
3662 	void *p;
3663 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3664 				     sizeof(long), GFP_ATOMIC);
3665 	if (!map)
3666 		return;
3667 	slab_err(s, page, text, s->name);
3668 	slab_lock(page);
3669 
3670 	get_map(s, page, map);
3671 	for_each_object(p, s, addr, page->objects) {
3672 
3673 		if (!test_bit(slab_index(p, s, addr), map)) {
3674 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3675 			print_tracking(s, p);
3676 		}
3677 	}
3678 	slab_unlock(page);
3679 	kfree(map);
3680 #endif
3681 }
3682 
3683 /*
3684  * Attempt to free all partial slabs on a node.
3685  * This is called from __kmem_cache_shutdown(). We must take list_lock
3686  * because sysfs file might still access partial list after the shutdowning.
3687  */
3688 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3689 {
3690 	LIST_HEAD(discard);
3691 	struct page *page, *h;
3692 
3693 	BUG_ON(irqs_disabled());
3694 	spin_lock_irq(&n->list_lock);
3695 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3696 		if (!page->inuse) {
3697 			remove_partial(n, page);
3698 			list_add(&page->lru, &discard);
3699 		} else {
3700 			list_slab_objects(s, page,
3701 			"Objects remaining in %s on __kmem_cache_shutdown()");
3702 		}
3703 	}
3704 	spin_unlock_irq(&n->list_lock);
3705 
3706 	list_for_each_entry_safe(page, h, &discard, lru)
3707 		discard_slab(s, page);
3708 }
3709 
3710 bool __kmem_cache_empty(struct kmem_cache *s)
3711 {
3712 	int node;
3713 	struct kmem_cache_node *n;
3714 
3715 	for_each_kmem_cache_node(s, node, n)
3716 		if (n->nr_partial || slabs_node(s, node))
3717 			return false;
3718 	return true;
3719 }
3720 
3721 /*
3722  * Release all resources used by a slab cache.
3723  */
3724 int __kmem_cache_shutdown(struct kmem_cache *s)
3725 {
3726 	int node;
3727 	struct kmem_cache_node *n;
3728 
3729 	flush_all(s);
3730 	/* Attempt to free all objects */
3731 	for_each_kmem_cache_node(s, node, n) {
3732 		free_partial(s, n);
3733 		if (n->nr_partial || slabs_node(s, node))
3734 			return 1;
3735 	}
3736 	sysfs_slab_remove(s);
3737 	return 0;
3738 }
3739 
3740 /********************************************************************
3741  *		Kmalloc subsystem
3742  *******************************************************************/
3743 
3744 static int __init setup_slub_min_order(char *str)
3745 {
3746 	get_option(&str, (int *)&slub_min_order);
3747 
3748 	return 1;
3749 }
3750 
3751 __setup("slub_min_order=", setup_slub_min_order);
3752 
3753 static int __init setup_slub_max_order(char *str)
3754 {
3755 	get_option(&str, (int *)&slub_max_order);
3756 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3757 
3758 	return 1;
3759 }
3760 
3761 __setup("slub_max_order=", setup_slub_max_order);
3762 
3763 static int __init setup_slub_min_objects(char *str)
3764 {
3765 	get_option(&str, (int *)&slub_min_objects);
3766 
3767 	return 1;
3768 }
3769 
3770 __setup("slub_min_objects=", setup_slub_min_objects);
3771 
3772 void *__kmalloc(size_t size, gfp_t flags)
3773 {
3774 	struct kmem_cache *s;
3775 	void *ret;
3776 
3777 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3778 		return kmalloc_large(size, flags);
3779 
3780 	s = kmalloc_slab(size, flags);
3781 
3782 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3783 		return s;
3784 
3785 	ret = slab_alloc(s, flags, _RET_IP_);
3786 
3787 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3788 
3789 	kasan_kmalloc(s, ret, size, flags);
3790 
3791 	return ret;
3792 }
3793 EXPORT_SYMBOL(__kmalloc);
3794 
3795 #ifdef CONFIG_NUMA
3796 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3797 {
3798 	struct page *page;
3799 	void *ptr = NULL;
3800 
3801 	flags |= __GFP_COMP;
3802 	page = alloc_pages_node(node, flags, get_order(size));
3803 	if (page)
3804 		ptr = page_address(page);
3805 
3806 	kmalloc_large_node_hook(ptr, size, flags);
3807 	return ptr;
3808 }
3809 
3810 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3811 {
3812 	struct kmem_cache *s;
3813 	void *ret;
3814 
3815 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3816 		ret = kmalloc_large_node(size, flags, node);
3817 
3818 		trace_kmalloc_node(_RET_IP_, ret,
3819 				   size, PAGE_SIZE << get_order(size),
3820 				   flags, node);
3821 
3822 		return ret;
3823 	}
3824 
3825 	s = kmalloc_slab(size, flags);
3826 
3827 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3828 		return s;
3829 
3830 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3831 
3832 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3833 
3834 	kasan_kmalloc(s, ret, size, flags);
3835 
3836 	return ret;
3837 }
3838 EXPORT_SYMBOL(__kmalloc_node);
3839 #endif
3840 
3841 #ifdef CONFIG_HARDENED_USERCOPY
3842 /*
3843  * Rejects incorrectly sized objects and objects that are to be copied
3844  * to/from userspace but do not fall entirely within the containing slab
3845  * cache's usercopy region.
3846  *
3847  * Returns NULL if check passes, otherwise const char * to name of cache
3848  * to indicate an error.
3849  */
3850 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3851 			 bool to_user)
3852 {
3853 	struct kmem_cache *s;
3854 	unsigned int offset;
3855 	size_t object_size;
3856 
3857 	/* Find object and usable object size. */
3858 	s = page->slab_cache;
3859 
3860 	/* Reject impossible pointers. */
3861 	if (ptr < page_address(page))
3862 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3863 			       to_user, 0, n);
3864 
3865 	/* Find offset within object. */
3866 	offset = (ptr - page_address(page)) % s->size;
3867 
3868 	/* Adjust for redzone and reject if within the redzone. */
3869 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3870 		if (offset < s->red_left_pad)
3871 			usercopy_abort("SLUB object in left red zone",
3872 				       s->name, to_user, offset, n);
3873 		offset -= s->red_left_pad;
3874 	}
3875 
3876 	/* Allow address range falling entirely within usercopy region. */
3877 	if (offset >= s->useroffset &&
3878 	    offset - s->useroffset <= s->usersize &&
3879 	    n <= s->useroffset - offset + s->usersize)
3880 		return;
3881 
3882 	/*
3883 	 * If the copy is still within the allocated object, produce
3884 	 * a warning instead of rejecting the copy. This is intended
3885 	 * to be a temporary method to find any missing usercopy
3886 	 * whitelists.
3887 	 */
3888 	object_size = slab_ksize(s);
3889 	if (usercopy_fallback &&
3890 	    offset <= object_size && n <= object_size - offset) {
3891 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3892 		return;
3893 	}
3894 
3895 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3896 }
3897 #endif /* CONFIG_HARDENED_USERCOPY */
3898 
3899 static size_t __ksize(const void *object)
3900 {
3901 	struct page *page;
3902 
3903 	if (unlikely(object == ZERO_SIZE_PTR))
3904 		return 0;
3905 
3906 	page = virt_to_head_page(object);
3907 
3908 	if (unlikely(!PageSlab(page))) {
3909 		WARN_ON(!PageCompound(page));
3910 		return PAGE_SIZE << compound_order(page);
3911 	}
3912 
3913 	return slab_ksize(page->slab_cache);
3914 }
3915 
3916 size_t ksize(const void *object)
3917 {
3918 	size_t size = __ksize(object);
3919 	/* We assume that ksize callers could use whole allocated area,
3920 	 * so we need to unpoison this area.
3921 	 */
3922 	kasan_unpoison_shadow(object, size);
3923 	return size;
3924 }
3925 EXPORT_SYMBOL(ksize);
3926 
3927 void kfree(const void *x)
3928 {
3929 	struct page *page;
3930 	void *object = (void *)x;
3931 
3932 	trace_kfree(_RET_IP_, x);
3933 
3934 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3935 		return;
3936 
3937 	page = virt_to_head_page(x);
3938 	if (unlikely(!PageSlab(page))) {
3939 		BUG_ON(!PageCompound(page));
3940 		kfree_hook(object);
3941 		__free_pages(page, compound_order(page));
3942 		return;
3943 	}
3944 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3945 }
3946 EXPORT_SYMBOL(kfree);
3947 
3948 #define SHRINK_PROMOTE_MAX 32
3949 
3950 /*
3951  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3952  * up most to the head of the partial lists. New allocations will then
3953  * fill those up and thus they can be removed from the partial lists.
3954  *
3955  * The slabs with the least items are placed last. This results in them
3956  * being allocated from last increasing the chance that the last objects
3957  * are freed in them.
3958  */
3959 int __kmem_cache_shrink(struct kmem_cache *s)
3960 {
3961 	int node;
3962 	int i;
3963 	struct kmem_cache_node *n;
3964 	struct page *page;
3965 	struct page *t;
3966 	struct list_head discard;
3967 	struct list_head promote[SHRINK_PROMOTE_MAX];
3968 	unsigned long flags;
3969 	int ret = 0;
3970 
3971 	flush_all(s);
3972 	for_each_kmem_cache_node(s, node, n) {
3973 		INIT_LIST_HEAD(&discard);
3974 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3975 			INIT_LIST_HEAD(promote + i);
3976 
3977 		spin_lock_irqsave(&n->list_lock, flags);
3978 
3979 		/*
3980 		 * Build lists of slabs to discard or promote.
3981 		 *
3982 		 * Note that concurrent frees may occur while we hold the
3983 		 * list_lock. page->inuse here is the upper limit.
3984 		 */
3985 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3986 			int free = page->objects - page->inuse;
3987 
3988 			/* Do not reread page->inuse */
3989 			barrier();
3990 
3991 			/* We do not keep full slabs on the list */
3992 			BUG_ON(free <= 0);
3993 
3994 			if (free == page->objects) {
3995 				list_move(&page->lru, &discard);
3996 				n->nr_partial--;
3997 			} else if (free <= SHRINK_PROMOTE_MAX)
3998 				list_move(&page->lru, promote + free - 1);
3999 		}
4000 
4001 		/*
4002 		 * Promote the slabs filled up most to the head of the
4003 		 * partial list.
4004 		 */
4005 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4006 			list_splice(promote + i, &n->partial);
4007 
4008 		spin_unlock_irqrestore(&n->list_lock, flags);
4009 
4010 		/* Release empty slabs */
4011 		list_for_each_entry_safe(page, t, &discard, lru)
4012 			discard_slab(s, page);
4013 
4014 		if (slabs_node(s, node))
4015 			ret = 1;
4016 	}
4017 
4018 	return ret;
4019 }
4020 
4021 #ifdef CONFIG_MEMCG
4022 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4023 {
4024 	/*
4025 	 * Called with all the locks held after a sched RCU grace period.
4026 	 * Even if @s becomes empty after shrinking, we can't know that @s
4027 	 * doesn't have allocations already in-flight and thus can't
4028 	 * destroy @s until the associated memcg is released.
4029 	 *
4030 	 * However, let's remove the sysfs files for empty caches here.
4031 	 * Each cache has a lot of interface files which aren't
4032 	 * particularly useful for empty draining caches; otherwise, we can
4033 	 * easily end up with millions of unnecessary sysfs files on
4034 	 * systems which have a lot of memory and transient cgroups.
4035 	 */
4036 	if (!__kmem_cache_shrink(s))
4037 		sysfs_slab_remove(s);
4038 }
4039 
4040 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4041 {
4042 	/*
4043 	 * Disable empty slabs caching. Used to avoid pinning offline
4044 	 * memory cgroups by kmem pages that can be freed.
4045 	 */
4046 	slub_set_cpu_partial(s, 0);
4047 	s->min_partial = 0;
4048 
4049 	/*
4050 	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4051 	 * we have to make sure the change is visible before shrinking.
4052 	 */
4053 	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4054 }
4055 #endif
4056 
4057 static int slab_mem_going_offline_callback(void *arg)
4058 {
4059 	struct kmem_cache *s;
4060 
4061 	mutex_lock(&slab_mutex);
4062 	list_for_each_entry(s, &slab_caches, list)
4063 		__kmem_cache_shrink(s);
4064 	mutex_unlock(&slab_mutex);
4065 
4066 	return 0;
4067 }
4068 
4069 static void slab_mem_offline_callback(void *arg)
4070 {
4071 	struct kmem_cache_node *n;
4072 	struct kmem_cache *s;
4073 	struct memory_notify *marg = arg;
4074 	int offline_node;
4075 
4076 	offline_node = marg->status_change_nid_normal;
4077 
4078 	/*
4079 	 * If the node still has available memory. we need kmem_cache_node
4080 	 * for it yet.
4081 	 */
4082 	if (offline_node < 0)
4083 		return;
4084 
4085 	mutex_lock(&slab_mutex);
4086 	list_for_each_entry(s, &slab_caches, list) {
4087 		n = get_node(s, offline_node);
4088 		if (n) {
4089 			/*
4090 			 * if n->nr_slabs > 0, slabs still exist on the node
4091 			 * that is going down. We were unable to free them,
4092 			 * and offline_pages() function shouldn't call this
4093 			 * callback. So, we must fail.
4094 			 */
4095 			BUG_ON(slabs_node(s, offline_node));
4096 
4097 			s->node[offline_node] = NULL;
4098 			kmem_cache_free(kmem_cache_node, n);
4099 		}
4100 	}
4101 	mutex_unlock(&slab_mutex);
4102 }
4103 
4104 static int slab_mem_going_online_callback(void *arg)
4105 {
4106 	struct kmem_cache_node *n;
4107 	struct kmem_cache *s;
4108 	struct memory_notify *marg = arg;
4109 	int nid = marg->status_change_nid_normal;
4110 	int ret = 0;
4111 
4112 	/*
4113 	 * If the node's memory is already available, then kmem_cache_node is
4114 	 * already created. Nothing to do.
4115 	 */
4116 	if (nid < 0)
4117 		return 0;
4118 
4119 	/*
4120 	 * We are bringing a node online. No memory is available yet. We must
4121 	 * allocate a kmem_cache_node structure in order to bring the node
4122 	 * online.
4123 	 */
4124 	mutex_lock(&slab_mutex);
4125 	list_for_each_entry(s, &slab_caches, list) {
4126 		/*
4127 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4128 		 *      since memory is not yet available from the node that
4129 		 *      is brought up.
4130 		 */
4131 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4132 		if (!n) {
4133 			ret = -ENOMEM;
4134 			goto out;
4135 		}
4136 		init_kmem_cache_node(n);
4137 		s->node[nid] = n;
4138 	}
4139 out:
4140 	mutex_unlock(&slab_mutex);
4141 	return ret;
4142 }
4143 
4144 static int slab_memory_callback(struct notifier_block *self,
4145 				unsigned long action, void *arg)
4146 {
4147 	int ret = 0;
4148 
4149 	switch (action) {
4150 	case MEM_GOING_ONLINE:
4151 		ret = slab_mem_going_online_callback(arg);
4152 		break;
4153 	case MEM_GOING_OFFLINE:
4154 		ret = slab_mem_going_offline_callback(arg);
4155 		break;
4156 	case MEM_OFFLINE:
4157 	case MEM_CANCEL_ONLINE:
4158 		slab_mem_offline_callback(arg);
4159 		break;
4160 	case MEM_ONLINE:
4161 	case MEM_CANCEL_OFFLINE:
4162 		break;
4163 	}
4164 	if (ret)
4165 		ret = notifier_from_errno(ret);
4166 	else
4167 		ret = NOTIFY_OK;
4168 	return ret;
4169 }
4170 
4171 static struct notifier_block slab_memory_callback_nb = {
4172 	.notifier_call = slab_memory_callback,
4173 	.priority = SLAB_CALLBACK_PRI,
4174 };
4175 
4176 /********************************************************************
4177  *			Basic setup of slabs
4178  *******************************************************************/
4179 
4180 /*
4181  * Used for early kmem_cache structures that were allocated using
4182  * the page allocator. Allocate them properly then fix up the pointers
4183  * that may be pointing to the wrong kmem_cache structure.
4184  */
4185 
4186 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4187 {
4188 	int node;
4189 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4190 	struct kmem_cache_node *n;
4191 
4192 	memcpy(s, static_cache, kmem_cache->object_size);
4193 
4194 	/*
4195 	 * This runs very early, and only the boot processor is supposed to be
4196 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4197 	 * IPIs around.
4198 	 */
4199 	__flush_cpu_slab(s, smp_processor_id());
4200 	for_each_kmem_cache_node(s, node, n) {
4201 		struct page *p;
4202 
4203 		list_for_each_entry(p, &n->partial, lru)
4204 			p->slab_cache = s;
4205 
4206 #ifdef CONFIG_SLUB_DEBUG
4207 		list_for_each_entry(p, &n->full, lru)
4208 			p->slab_cache = s;
4209 #endif
4210 	}
4211 	slab_init_memcg_params(s);
4212 	list_add(&s->list, &slab_caches);
4213 	memcg_link_cache(s);
4214 	return s;
4215 }
4216 
4217 void __init kmem_cache_init(void)
4218 {
4219 	static __initdata struct kmem_cache boot_kmem_cache,
4220 		boot_kmem_cache_node;
4221 
4222 	if (debug_guardpage_minorder())
4223 		slub_max_order = 0;
4224 
4225 	kmem_cache_node = &boot_kmem_cache_node;
4226 	kmem_cache = &boot_kmem_cache;
4227 
4228 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4229 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4230 
4231 	register_hotmemory_notifier(&slab_memory_callback_nb);
4232 
4233 	/* Able to allocate the per node structures */
4234 	slab_state = PARTIAL;
4235 
4236 	create_boot_cache(kmem_cache, "kmem_cache",
4237 			offsetof(struct kmem_cache, node) +
4238 				nr_node_ids * sizeof(struct kmem_cache_node *),
4239 		       SLAB_HWCACHE_ALIGN, 0, 0);
4240 
4241 	kmem_cache = bootstrap(&boot_kmem_cache);
4242 
4243 	/*
4244 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
4245 	 * kmem_cache_node is separately allocated so no need to
4246 	 * update any list pointers.
4247 	 */
4248 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4249 
4250 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4251 	setup_kmalloc_cache_index_table();
4252 	create_kmalloc_caches(0);
4253 
4254 	/* Setup random freelists for each cache */
4255 	init_freelist_randomization();
4256 
4257 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4258 				  slub_cpu_dead);
4259 
4260 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
4261 		cache_line_size(),
4262 		slub_min_order, slub_max_order, slub_min_objects,
4263 		nr_cpu_ids, nr_node_ids);
4264 }
4265 
4266 void __init kmem_cache_init_late(void)
4267 {
4268 }
4269 
4270 struct kmem_cache *
4271 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4272 		   slab_flags_t flags, void (*ctor)(void *))
4273 {
4274 	struct kmem_cache *s, *c;
4275 
4276 	s = find_mergeable(size, align, flags, name, ctor);
4277 	if (s) {
4278 		s->refcount++;
4279 
4280 		/*
4281 		 * Adjust the object sizes so that we clear
4282 		 * the complete object on kzalloc.
4283 		 */
4284 		s->object_size = max(s->object_size, size);
4285 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4286 
4287 		for_each_memcg_cache(c, s) {
4288 			c->object_size = s->object_size;
4289 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4290 		}
4291 
4292 		if (sysfs_slab_alias(s, name)) {
4293 			s->refcount--;
4294 			s = NULL;
4295 		}
4296 	}
4297 
4298 	return s;
4299 }
4300 
4301 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4302 {
4303 	int err;
4304 
4305 	err = kmem_cache_open(s, flags);
4306 	if (err)
4307 		return err;
4308 
4309 	/* Mutex is not taken during early boot */
4310 	if (slab_state <= UP)
4311 		return 0;
4312 
4313 	memcg_propagate_slab_attrs(s);
4314 	err = sysfs_slab_add(s);
4315 	if (err)
4316 		__kmem_cache_release(s);
4317 
4318 	return err;
4319 }
4320 
4321 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4322 {
4323 	struct kmem_cache *s;
4324 	void *ret;
4325 
4326 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4327 		return kmalloc_large(size, gfpflags);
4328 
4329 	s = kmalloc_slab(size, gfpflags);
4330 
4331 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4332 		return s;
4333 
4334 	ret = slab_alloc(s, gfpflags, caller);
4335 
4336 	/* Honor the call site pointer we received. */
4337 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4338 
4339 	return ret;
4340 }
4341 
4342 #ifdef CONFIG_NUMA
4343 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4344 					int node, unsigned long caller)
4345 {
4346 	struct kmem_cache *s;
4347 	void *ret;
4348 
4349 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4350 		ret = kmalloc_large_node(size, gfpflags, node);
4351 
4352 		trace_kmalloc_node(caller, ret,
4353 				   size, PAGE_SIZE << get_order(size),
4354 				   gfpflags, node);
4355 
4356 		return ret;
4357 	}
4358 
4359 	s = kmalloc_slab(size, gfpflags);
4360 
4361 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4362 		return s;
4363 
4364 	ret = slab_alloc_node(s, gfpflags, node, caller);
4365 
4366 	/* Honor the call site pointer we received. */
4367 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4368 
4369 	return ret;
4370 }
4371 #endif
4372 
4373 #ifdef CONFIG_SYSFS
4374 static int count_inuse(struct page *page)
4375 {
4376 	return page->inuse;
4377 }
4378 
4379 static int count_total(struct page *page)
4380 {
4381 	return page->objects;
4382 }
4383 #endif
4384 
4385 #ifdef CONFIG_SLUB_DEBUG
4386 static int validate_slab(struct kmem_cache *s, struct page *page,
4387 						unsigned long *map)
4388 {
4389 	void *p;
4390 	void *addr = page_address(page);
4391 
4392 	if (!check_slab(s, page) ||
4393 			!on_freelist(s, page, NULL))
4394 		return 0;
4395 
4396 	/* Now we know that a valid freelist exists */
4397 	bitmap_zero(map, page->objects);
4398 
4399 	get_map(s, page, map);
4400 	for_each_object(p, s, addr, page->objects) {
4401 		if (test_bit(slab_index(p, s, addr), map))
4402 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4403 				return 0;
4404 	}
4405 
4406 	for_each_object(p, s, addr, page->objects)
4407 		if (!test_bit(slab_index(p, s, addr), map))
4408 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4409 				return 0;
4410 	return 1;
4411 }
4412 
4413 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4414 						unsigned long *map)
4415 {
4416 	slab_lock(page);
4417 	validate_slab(s, page, map);
4418 	slab_unlock(page);
4419 }
4420 
4421 static int validate_slab_node(struct kmem_cache *s,
4422 		struct kmem_cache_node *n, unsigned long *map)
4423 {
4424 	unsigned long count = 0;
4425 	struct page *page;
4426 	unsigned long flags;
4427 
4428 	spin_lock_irqsave(&n->list_lock, flags);
4429 
4430 	list_for_each_entry(page, &n->partial, lru) {
4431 		validate_slab_slab(s, page, map);
4432 		count++;
4433 	}
4434 	if (count != n->nr_partial)
4435 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4436 		       s->name, count, n->nr_partial);
4437 
4438 	if (!(s->flags & SLAB_STORE_USER))
4439 		goto out;
4440 
4441 	list_for_each_entry(page, &n->full, lru) {
4442 		validate_slab_slab(s, page, map);
4443 		count++;
4444 	}
4445 	if (count != atomic_long_read(&n->nr_slabs))
4446 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4447 		       s->name, count, atomic_long_read(&n->nr_slabs));
4448 
4449 out:
4450 	spin_unlock_irqrestore(&n->list_lock, flags);
4451 	return count;
4452 }
4453 
4454 static long validate_slab_cache(struct kmem_cache *s)
4455 {
4456 	int node;
4457 	unsigned long count = 0;
4458 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4459 				sizeof(unsigned long), GFP_KERNEL);
4460 	struct kmem_cache_node *n;
4461 
4462 	if (!map)
4463 		return -ENOMEM;
4464 
4465 	flush_all(s);
4466 	for_each_kmem_cache_node(s, node, n)
4467 		count += validate_slab_node(s, n, map);
4468 	kfree(map);
4469 	return count;
4470 }
4471 /*
4472  * Generate lists of code addresses where slabcache objects are allocated
4473  * and freed.
4474  */
4475 
4476 struct location {
4477 	unsigned long count;
4478 	unsigned long addr;
4479 	long long sum_time;
4480 	long min_time;
4481 	long max_time;
4482 	long min_pid;
4483 	long max_pid;
4484 	DECLARE_BITMAP(cpus, NR_CPUS);
4485 	nodemask_t nodes;
4486 };
4487 
4488 struct loc_track {
4489 	unsigned long max;
4490 	unsigned long count;
4491 	struct location *loc;
4492 };
4493 
4494 static void free_loc_track(struct loc_track *t)
4495 {
4496 	if (t->max)
4497 		free_pages((unsigned long)t->loc,
4498 			get_order(sizeof(struct location) * t->max));
4499 }
4500 
4501 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4502 {
4503 	struct location *l;
4504 	int order;
4505 
4506 	order = get_order(sizeof(struct location) * max);
4507 
4508 	l = (void *)__get_free_pages(flags, order);
4509 	if (!l)
4510 		return 0;
4511 
4512 	if (t->count) {
4513 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4514 		free_loc_track(t);
4515 	}
4516 	t->max = max;
4517 	t->loc = l;
4518 	return 1;
4519 }
4520 
4521 static int add_location(struct loc_track *t, struct kmem_cache *s,
4522 				const struct track *track)
4523 {
4524 	long start, end, pos;
4525 	struct location *l;
4526 	unsigned long caddr;
4527 	unsigned long age = jiffies - track->when;
4528 
4529 	start = -1;
4530 	end = t->count;
4531 
4532 	for ( ; ; ) {
4533 		pos = start + (end - start + 1) / 2;
4534 
4535 		/*
4536 		 * There is nothing at "end". If we end up there
4537 		 * we need to add something to before end.
4538 		 */
4539 		if (pos == end)
4540 			break;
4541 
4542 		caddr = t->loc[pos].addr;
4543 		if (track->addr == caddr) {
4544 
4545 			l = &t->loc[pos];
4546 			l->count++;
4547 			if (track->when) {
4548 				l->sum_time += age;
4549 				if (age < l->min_time)
4550 					l->min_time = age;
4551 				if (age > l->max_time)
4552 					l->max_time = age;
4553 
4554 				if (track->pid < l->min_pid)
4555 					l->min_pid = track->pid;
4556 				if (track->pid > l->max_pid)
4557 					l->max_pid = track->pid;
4558 
4559 				cpumask_set_cpu(track->cpu,
4560 						to_cpumask(l->cpus));
4561 			}
4562 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4563 			return 1;
4564 		}
4565 
4566 		if (track->addr < caddr)
4567 			end = pos;
4568 		else
4569 			start = pos;
4570 	}
4571 
4572 	/*
4573 	 * Not found. Insert new tracking element.
4574 	 */
4575 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4576 		return 0;
4577 
4578 	l = t->loc + pos;
4579 	if (pos < t->count)
4580 		memmove(l + 1, l,
4581 			(t->count - pos) * sizeof(struct location));
4582 	t->count++;
4583 	l->count = 1;
4584 	l->addr = track->addr;
4585 	l->sum_time = age;
4586 	l->min_time = age;
4587 	l->max_time = age;
4588 	l->min_pid = track->pid;
4589 	l->max_pid = track->pid;
4590 	cpumask_clear(to_cpumask(l->cpus));
4591 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4592 	nodes_clear(l->nodes);
4593 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4594 	return 1;
4595 }
4596 
4597 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4598 		struct page *page, enum track_item alloc,
4599 		unsigned long *map)
4600 {
4601 	void *addr = page_address(page);
4602 	void *p;
4603 
4604 	bitmap_zero(map, page->objects);
4605 	get_map(s, page, map);
4606 
4607 	for_each_object(p, s, addr, page->objects)
4608 		if (!test_bit(slab_index(p, s, addr), map))
4609 			add_location(t, s, get_track(s, p, alloc));
4610 }
4611 
4612 static int list_locations(struct kmem_cache *s, char *buf,
4613 					enum track_item alloc)
4614 {
4615 	int len = 0;
4616 	unsigned long i;
4617 	struct loc_track t = { 0, 0, NULL };
4618 	int node;
4619 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4620 				     sizeof(unsigned long), GFP_KERNEL);
4621 	struct kmem_cache_node *n;
4622 
4623 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4624 				     GFP_KERNEL)) {
4625 		kfree(map);
4626 		return sprintf(buf, "Out of memory\n");
4627 	}
4628 	/* Push back cpu slabs */
4629 	flush_all(s);
4630 
4631 	for_each_kmem_cache_node(s, node, n) {
4632 		unsigned long flags;
4633 		struct page *page;
4634 
4635 		if (!atomic_long_read(&n->nr_slabs))
4636 			continue;
4637 
4638 		spin_lock_irqsave(&n->list_lock, flags);
4639 		list_for_each_entry(page, &n->partial, lru)
4640 			process_slab(&t, s, page, alloc, map);
4641 		list_for_each_entry(page, &n->full, lru)
4642 			process_slab(&t, s, page, alloc, map);
4643 		spin_unlock_irqrestore(&n->list_lock, flags);
4644 	}
4645 
4646 	for (i = 0; i < t.count; i++) {
4647 		struct location *l = &t.loc[i];
4648 
4649 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4650 			break;
4651 		len += sprintf(buf + len, "%7ld ", l->count);
4652 
4653 		if (l->addr)
4654 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4655 		else
4656 			len += sprintf(buf + len, "<not-available>");
4657 
4658 		if (l->sum_time != l->min_time) {
4659 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4660 				l->min_time,
4661 				(long)div_u64(l->sum_time, l->count),
4662 				l->max_time);
4663 		} else
4664 			len += sprintf(buf + len, " age=%ld",
4665 				l->min_time);
4666 
4667 		if (l->min_pid != l->max_pid)
4668 			len += sprintf(buf + len, " pid=%ld-%ld",
4669 				l->min_pid, l->max_pid);
4670 		else
4671 			len += sprintf(buf + len, " pid=%ld",
4672 				l->min_pid);
4673 
4674 		if (num_online_cpus() > 1 &&
4675 				!cpumask_empty(to_cpumask(l->cpus)) &&
4676 				len < PAGE_SIZE - 60)
4677 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4678 					 " cpus=%*pbl",
4679 					 cpumask_pr_args(to_cpumask(l->cpus)));
4680 
4681 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4682 				len < PAGE_SIZE - 60)
4683 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4684 					 " nodes=%*pbl",
4685 					 nodemask_pr_args(&l->nodes));
4686 
4687 		len += sprintf(buf + len, "\n");
4688 	}
4689 
4690 	free_loc_track(&t);
4691 	kfree(map);
4692 	if (!t.count)
4693 		len += sprintf(buf, "No data\n");
4694 	return len;
4695 }
4696 #endif
4697 
4698 #ifdef SLUB_RESILIENCY_TEST
4699 static void __init resiliency_test(void)
4700 {
4701 	u8 *p;
4702 
4703 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4704 
4705 	pr_err("SLUB resiliency testing\n");
4706 	pr_err("-----------------------\n");
4707 	pr_err("A. Corruption after allocation\n");
4708 
4709 	p = kzalloc(16, GFP_KERNEL);
4710 	p[16] = 0x12;
4711 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4712 	       p + 16);
4713 
4714 	validate_slab_cache(kmalloc_caches[4]);
4715 
4716 	/* Hmmm... The next two are dangerous */
4717 	p = kzalloc(32, GFP_KERNEL);
4718 	p[32 + sizeof(void *)] = 0x34;
4719 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4720 	       p);
4721 	pr_err("If allocated object is overwritten then not detectable\n\n");
4722 
4723 	validate_slab_cache(kmalloc_caches[5]);
4724 	p = kzalloc(64, GFP_KERNEL);
4725 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4726 	*p = 0x56;
4727 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4728 	       p);
4729 	pr_err("If allocated object is overwritten then not detectable\n\n");
4730 	validate_slab_cache(kmalloc_caches[6]);
4731 
4732 	pr_err("\nB. Corruption after free\n");
4733 	p = kzalloc(128, GFP_KERNEL);
4734 	kfree(p);
4735 	*p = 0x78;
4736 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4737 	validate_slab_cache(kmalloc_caches[7]);
4738 
4739 	p = kzalloc(256, GFP_KERNEL);
4740 	kfree(p);
4741 	p[50] = 0x9a;
4742 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4743 	validate_slab_cache(kmalloc_caches[8]);
4744 
4745 	p = kzalloc(512, GFP_KERNEL);
4746 	kfree(p);
4747 	p[512] = 0xab;
4748 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4749 	validate_slab_cache(kmalloc_caches[9]);
4750 }
4751 #else
4752 #ifdef CONFIG_SYSFS
4753 static void resiliency_test(void) {};
4754 #endif
4755 #endif
4756 
4757 #ifdef CONFIG_SYSFS
4758 enum slab_stat_type {
4759 	SL_ALL,			/* All slabs */
4760 	SL_PARTIAL,		/* Only partially allocated slabs */
4761 	SL_CPU,			/* Only slabs used for cpu caches */
4762 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4763 	SL_TOTAL		/* Determine object capacity not slabs */
4764 };
4765 
4766 #define SO_ALL		(1 << SL_ALL)
4767 #define SO_PARTIAL	(1 << SL_PARTIAL)
4768 #define SO_CPU		(1 << SL_CPU)
4769 #define SO_OBJECTS	(1 << SL_OBJECTS)
4770 #define SO_TOTAL	(1 << SL_TOTAL)
4771 
4772 #ifdef CONFIG_MEMCG
4773 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4774 
4775 static int __init setup_slub_memcg_sysfs(char *str)
4776 {
4777 	int v;
4778 
4779 	if (get_option(&str, &v) > 0)
4780 		memcg_sysfs_enabled = v;
4781 
4782 	return 1;
4783 }
4784 
4785 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4786 #endif
4787 
4788 static ssize_t show_slab_objects(struct kmem_cache *s,
4789 			    char *buf, unsigned long flags)
4790 {
4791 	unsigned long total = 0;
4792 	int node;
4793 	int x;
4794 	unsigned long *nodes;
4795 
4796 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4797 	if (!nodes)
4798 		return -ENOMEM;
4799 
4800 	if (flags & SO_CPU) {
4801 		int cpu;
4802 
4803 		for_each_possible_cpu(cpu) {
4804 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4805 							       cpu);
4806 			int node;
4807 			struct page *page;
4808 
4809 			page = READ_ONCE(c->page);
4810 			if (!page)
4811 				continue;
4812 
4813 			node = page_to_nid(page);
4814 			if (flags & SO_TOTAL)
4815 				x = page->objects;
4816 			else if (flags & SO_OBJECTS)
4817 				x = page->inuse;
4818 			else
4819 				x = 1;
4820 
4821 			total += x;
4822 			nodes[node] += x;
4823 
4824 			page = slub_percpu_partial_read_once(c);
4825 			if (page) {
4826 				node = page_to_nid(page);
4827 				if (flags & SO_TOTAL)
4828 					WARN_ON_ONCE(1);
4829 				else if (flags & SO_OBJECTS)
4830 					WARN_ON_ONCE(1);
4831 				else
4832 					x = page->pages;
4833 				total += x;
4834 				nodes[node] += x;
4835 			}
4836 		}
4837 	}
4838 
4839 	get_online_mems();
4840 #ifdef CONFIG_SLUB_DEBUG
4841 	if (flags & SO_ALL) {
4842 		struct kmem_cache_node *n;
4843 
4844 		for_each_kmem_cache_node(s, node, n) {
4845 
4846 			if (flags & SO_TOTAL)
4847 				x = atomic_long_read(&n->total_objects);
4848 			else if (flags & SO_OBJECTS)
4849 				x = atomic_long_read(&n->total_objects) -
4850 					count_partial(n, count_free);
4851 			else
4852 				x = atomic_long_read(&n->nr_slabs);
4853 			total += x;
4854 			nodes[node] += x;
4855 		}
4856 
4857 	} else
4858 #endif
4859 	if (flags & SO_PARTIAL) {
4860 		struct kmem_cache_node *n;
4861 
4862 		for_each_kmem_cache_node(s, node, n) {
4863 			if (flags & SO_TOTAL)
4864 				x = count_partial(n, count_total);
4865 			else if (flags & SO_OBJECTS)
4866 				x = count_partial(n, count_inuse);
4867 			else
4868 				x = n->nr_partial;
4869 			total += x;
4870 			nodes[node] += x;
4871 		}
4872 	}
4873 	x = sprintf(buf, "%lu", total);
4874 #ifdef CONFIG_NUMA
4875 	for (node = 0; node < nr_node_ids; node++)
4876 		if (nodes[node])
4877 			x += sprintf(buf + x, " N%d=%lu",
4878 					node, nodes[node]);
4879 #endif
4880 	put_online_mems();
4881 	kfree(nodes);
4882 	return x + sprintf(buf + x, "\n");
4883 }
4884 
4885 #ifdef CONFIG_SLUB_DEBUG
4886 static int any_slab_objects(struct kmem_cache *s)
4887 {
4888 	int node;
4889 	struct kmem_cache_node *n;
4890 
4891 	for_each_kmem_cache_node(s, node, n)
4892 		if (atomic_long_read(&n->total_objects))
4893 			return 1;
4894 
4895 	return 0;
4896 }
4897 #endif
4898 
4899 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4900 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4901 
4902 struct slab_attribute {
4903 	struct attribute attr;
4904 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4905 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4906 };
4907 
4908 #define SLAB_ATTR_RO(_name) \
4909 	static struct slab_attribute _name##_attr = \
4910 	__ATTR(_name, 0400, _name##_show, NULL)
4911 
4912 #define SLAB_ATTR(_name) \
4913 	static struct slab_attribute _name##_attr =  \
4914 	__ATTR(_name, 0600, _name##_show, _name##_store)
4915 
4916 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4917 {
4918 	return sprintf(buf, "%u\n", s->size);
4919 }
4920 SLAB_ATTR_RO(slab_size);
4921 
4922 static ssize_t align_show(struct kmem_cache *s, char *buf)
4923 {
4924 	return sprintf(buf, "%u\n", s->align);
4925 }
4926 SLAB_ATTR_RO(align);
4927 
4928 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4929 {
4930 	return sprintf(buf, "%u\n", s->object_size);
4931 }
4932 SLAB_ATTR_RO(object_size);
4933 
4934 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4935 {
4936 	return sprintf(buf, "%u\n", oo_objects(s->oo));
4937 }
4938 SLAB_ATTR_RO(objs_per_slab);
4939 
4940 static ssize_t order_store(struct kmem_cache *s,
4941 				const char *buf, size_t length)
4942 {
4943 	unsigned int order;
4944 	int err;
4945 
4946 	err = kstrtouint(buf, 10, &order);
4947 	if (err)
4948 		return err;
4949 
4950 	if (order > slub_max_order || order < slub_min_order)
4951 		return -EINVAL;
4952 
4953 	calculate_sizes(s, order);
4954 	return length;
4955 }
4956 
4957 static ssize_t order_show(struct kmem_cache *s, char *buf)
4958 {
4959 	return sprintf(buf, "%u\n", oo_order(s->oo));
4960 }
4961 SLAB_ATTR(order);
4962 
4963 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4964 {
4965 	return sprintf(buf, "%lu\n", s->min_partial);
4966 }
4967 
4968 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4969 				 size_t length)
4970 {
4971 	unsigned long min;
4972 	int err;
4973 
4974 	err = kstrtoul(buf, 10, &min);
4975 	if (err)
4976 		return err;
4977 
4978 	set_min_partial(s, min);
4979 	return length;
4980 }
4981 SLAB_ATTR(min_partial);
4982 
4983 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4984 {
4985 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4986 }
4987 
4988 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4989 				 size_t length)
4990 {
4991 	unsigned int objects;
4992 	int err;
4993 
4994 	err = kstrtouint(buf, 10, &objects);
4995 	if (err)
4996 		return err;
4997 	if (objects && !kmem_cache_has_cpu_partial(s))
4998 		return -EINVAL;
4999 
5000 	slub_set_cpu_partial(s, objects);
5001 	flush_all(s);
5002 	return length;
5003 }
5004 SLAB_ATTR(cpu_partial);
5005 
5006 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5007 {
5008 	if (!s->ctor)
5009 		return 0;
5010 	return sprintf(buf, "%pS\n", s->ctor);
5011 }
5012 SLAB_ATTR_RO(ctor);
5013 
5014 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5015 {
5016 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5017 }
5018 SLAB_ATTR_RO(aliases);
5019 
5020 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5021 {
5022 	return show_slab_objects(s, buf, SO_PARTIAL);
5023 }
5024 SLAB_ATTR_RO(partial);
5025 
5026 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5027 {
5028 	return show_slab_objects(s, buf, SO_CPU);
5029 }
5030 SLAB_ATTR_RO(cpu_slabs);
5031 
5032 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5033 {
5034 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5035 }
5036 SLAB_ATTR_RO(objects);
5037 
5038 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5039 {
5040 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5041 }
5042 SLAB_ATTR_RO(objects_partial);
5043 
5044 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5045 {
5046 	int objects = 0;
5047 	int pages = 0;
5048 	int cpu;
5049 	int len;
5050 
5051 	for_each_online_cpu(cpu) {
5052 		struct page *page;
5053 
5054 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5055 
5056 		if (page) {
5057 			pages += page->pages;
5058 			objects += page->pobjects;
5059 		}
5060 	}
5061 
5062 	len = sprintf(buf, "%d(%d)", objects, pages);
5063 
5064 #ifdef CONFIG_SMP
5065 	for_each_online_cpu(cpu) {
5066 		struct page *page;
5067 
5068 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5069 
5070 		if (page && len < PAGE_SIZE - 20)
5071 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5072 				page->pobjects, page->pages);
5073 	}
5074 #endif
5075 	return len + sprintf(buf + len, "\n");
5076 }
5077 SLAB_ATTR_RO(slabs_cpu_partial);
5078 
5079 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5080 {
5081 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5082 }
5083 
5084 static ssize_t reclaim_account_store(struct kmem_cache *s,
5085 				const char *buf, size_t length)
5086 {
5087 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5088 	if (buf[0] == '1')
5089 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5090 	return length;
5091 }
5092 SLAB_ATTR(reclaim_account);
5093 
5094 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5095 {
5096 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5097 }
5098 SLAB_ATTR_RO(hwcache_align);
5099 
5100 #ifdef CONFIG_ZONE_DMA
5101 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5102 {
5103 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5104 }
5105 SLAB_ATTR_RO(cache_dma);
5106 #endif
5107 
5108 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5109 {
5110 	return sprintf(buf, "%u\n", s->usersize);
5111 }
5112 SLAB_ATTR_RO(usersize);
5113 
5114 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5115 {
5116 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5117 }
5118 SLAB_ATTR_RO(destroy_by_rcu);
5119 
5120 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5121 {
5122 	return sprintf(buf, "%u\n", s->reserved);
5123 }
5124 SLAB_ATTR_RO(reserved);
5125 
5126 #ifdef CONFIG_SLUB_DEBUG
5127 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5128 {
5129 	return show_slab_objects(s, buf, SO_ALL);
5130 }
5131 SLAB_ATTR_RO(slabs);
5132 
5133 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5134 {
5135 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5136 }
5137 SLAB_ATTR_RO(total_objects);
5138 
5139 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5140 {
5141 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5142 }
5143 
5144 static ssize_t sanity_checks_store(struct kmem_cache *s,
5145 				const char *buf, size_t length)
5146 {
5147 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5148 	if (buf[0] == '1') {
5149 		s->flags &= ~__CMPXCHG_DOUBLE;
5150 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5151 	}
5152 	return length;
5153 }
5154 SLAB_ATTR(sanity_checks);
5155 
5156 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5157 {
5158 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5159 }
5160 
5161 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5162 							size_t length)
5163 {
5164 	/*
5165 	 * Tracing a merged cache is going to give confusing results
5166 	 * as well as cause other issues like converting a mergeable
5167 	 * cache into an umergeable one.
5168 	 */
5169 	if (s->refcount > 1)
5170 		return -EINVAL;
5171 
5172 	s->flags &= ~SLAB_TRACE;
5173 	if (buf[0] == '1') {
5174 		s->flags &= ~__CMPXCHG_DOUBLE;
5175 		s->flags |= SLAB_TRACE;
5176 	}
5177 	return length;
5178 }
5179 SLAB_ATTR(trace);
5180 
5181 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5182 {
5183 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5184 }
5185 
5186 static ssize_t red_zone_store(struct kmem_cache *s,
5187 				const char *buf, size_t length)
5188 {
5189 	if (any_slab_objects(s))
5190 		return -EBUSY;
5191 
5192 	s->flags &= ~SLAB_RED_ZONE;
5193 	if (buf[0] == '1') {
5194 		s->flags |= SLAB_RED_ZONE;
5195 	}
5196 	calculate_sizes(s, -1);
5197 	return length;
5198 }
5199 SLAB_ATTR(red_zone);
5200 
5201 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5202 {
5203 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5204 }
5205 
5206 static ssize_t poison_store(struct kmem_cache *s,
5207 				const char *buf, size_t length)
5208 {
5209 	if (any_slab_objects(s))
5210 		return -EBUSY;
5211 
5212 	s->flags &= ~SLAB_POISON;
5213 	if (buf[0] == '1') {
5214 		s->flags |= SLAB_POISON;
5215 	}
5216 	calculate_sizes(s, -1);
5217 	return length;
5218 }
5219 SLAB_ATTR(poison);
5220 
5221 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5222 {
5223 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5224 }
5225 
5226 static ssize_t store_user_store(struct kmem_cache *s,
5227 				const char *buf, size_t length)
5228 {
5229 	if (any_slab_objects(s))
5230 		return -EBUSY;
5231 
5232 	s->flags &= ~SLAB_STORE_USER;
5233 	if (buf[0] == '1') {
5234 		s->flags &= ~__CMPXCHG_DOUBLE;
5235 		s->flags |= SLAB_STORE_USER;
5236 	}
5237 	calculate_sizes(s, -1);
5238 	return length;
5239 }
5240 SLAB_ATTR(store_user);
5241 
5242 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5243 {
5244 	return 0;
5245 }
5246 
5247 static ssize_t validate_store(struct kmem_cache *s,
5248 			const char *buf, size_t length)
5249 {
5250 	int ret = -EINVAL;
5251 
5252 	if (buf[0] == '1') {
5253 		ret = validate_slab_cache(s);
5254 		if (ret >= 0)
5255 			ret = length;
5256 	}
5257 	return ret;
5258 }
5259 SLAB_ATTR(validate);
5260 
5261 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5262 {
5263 	if (!(s->flags & SLAB_STORE_USER))
5264 		return -ENOSYS;
5265 	return list_locations(s, buf, TRACK_ALLOC);
5266 }
5267 SLAB_ATTR_RO(alloc_calls);
5268 
5269 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5270 {
5271 	if (!(s->flags & SLAB_STORE_USER))
5272 		return -ENOSYS;
5273 	return list_locations(s, buf, TRACK_FREE);
5274 }
5275 SLAB_ATTR_RO(free_calls);
5276 #endif /* CONFIG_SLUB_DEBUG */
5277 
5278 #ifdef CONFIG_FAILSLAB
5279 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5280 {
5281 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5282 }
5283 
5284 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5285 							size_t length)
5286 {
5287 	if (s->refcount > 1)
5288 		return -EINVAL;
5289 
5290 	s->flags &= ~SLAB_FAILSLAB;
5291 	if (buf[0] == '1')
5292 		s->flags |= SLAB_FAILSLAB;
5293 	return length;
5294 }
5295 SLAB_ATTR(failslab);
5296 #endif
5297 
5298 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5299 {
5300 	return 0;
5301 }
5302 
5303 static ssize_t shrink_store(struct kmem_cache *s,
5304 			const char *buf, size_t length)
5305 {
5306 	if (buf[0] == '1')
5307 		kmem_cache_shrink(s);
5308 	else
5309 		return -EINVAL;
5310 	return length;
5311 }
5312 SLAB_ATTR(shrink);
5313 
5314 #ifdef CONFIG_NUMA
5315 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5316 {
5317 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5318 }
5319 
5320 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5321 				const char *buf, size_t length)
5322 {
5323 	unsigned int ratio;
5324 	int err;
5325 
5326 	err = kstrtouint(buf, 10, &ratio);
5327 	if (err)
5328 		return err;
5329 	if (ratio > 100)
5330 		return -ERANGE;
5331 
5332 	s->remote_node_defrag_ratio = ratio * 10;
5333 
5334 	return length;
5335 }
5336 SLAB_ATTR(remote_node_defrag_ratio);
5337 #endif
5338 
5339 #ifdef CONFIG_SLUB_STATS
5340 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5341 {
5342 	unsigned long sum  = 0;
5343 	int cpu;
5344 	int len;
5345 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5346 
5347 	if (!data)
5348 		return -ENOMEM;
5349 
5350 	for_each_online_cpu(cpu) {
5351 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5352 
5353 		data[cpu] = x;
5354 		sum += x;
5355 	}
5356 
5357 	len = sprintf(buf, "%lu", sum);
5358 
5359 #ifdef CONFIG_SMP
5360 	for_each_online_cpu(cpu) {
5361 		if (data[cpu] && len < PAGE_SIZE - 20)
5362 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5363 	}
5364 #endif
5365 	kfree(data);
5366 	return len + sprintf(buf + len, "\n");
5367 }
5368 
5369 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5370 {
5371 	int cpu;
5372 
5373 	for_each_online_cpu(cpu)
5374 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5375 }
5376 
5377 #define STAT_ATTR(si, text) 					\
5378 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5379 {								\
5380 	return show_stat(s, buf, si);				\
5381 }								\
5382 static ssize_t text##_store(struct kmem_cache *s,		\
5383 				const char *buf, size_t length)	\
5384 {								\
5385 	if (buf[0] != '0')					\
5386 		return -EINVAL;					\
5387 	clear_stat(s, si);					\
5388 	return length;						\
5389 }								\
5390 SLAB_ATTR(text);						\
5391 
5392 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5393 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5394 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5395 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5396 STAT_ATTR(FREE_FROZEN, free_frozen);
5397 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5398 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5399 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5400 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5401 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5402 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5403 STAT_ATTR(FREE_SLAB, free_slab);
5404 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5405 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5406 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5407 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5408 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5409 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5410 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5411 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5412 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5413 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5414 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5415 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5416 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5417 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5418 #endif
5419 
5420 static struct attribute *slab_attrs[] = {
5421 	&slab_size_attr.attr,
5422 	&object_size_attr.attr,
5423 	&objs_per_slab_attr.attr,
5424 	&order_attr.attr,
5425 	&min_partial_attr.attr,
5426 	&cpu_partial_attr.attr,
5427 	&objects_attr.attr,
5428 	&objects_partial_attr.attr,
5429 	&partial_attr.attr,
5430 	&cpu_slabs_attr.attr,
5431 	&ctor_attr.attr,
5432 	&aliases_attr.attr,
5433 	&align_attr.attr,
5434 	&hwcache_align_attr.attr,
5435 	&reclaim_account_attr.attr,
5436 	&destroy_by_rcu_attr.attr,
5437 	&shrink_attr.attr,
5438 	&reserved_attr.attr,
5439 	&slabs_cpu_partial_attr.attr,
5440 #ifdef CONFIG_SLUB_DEBUG
5441 	&total_objects_attr.attr,
5442 	&slabs_attr.attr,
5443 	&sanity_checks_attr.attr,
5444 	&trace_attr.attr,
5445 	&red_zone_attr.attr,
5446 	&poison_attr.attr,
5447 	&store_user_attr.attr,
5448 	&validate_attr.attr,
5449 	&alloc_calls_attr.attr,
5450 	&free_calls_attr.attr,
5451 #endif
5452 #ifdef CONFIG_ZONE_DMA
5453 	&cache_dma_attr.attr,
5454 #endif
5455 #ifdef CONFIG_NUMA
5456 	&remote_node_defrag_ratio_attr.attr,
5457 #endif
5458 #ifdef CONFIG_SLUB_STATS
5459 	&alloc_fastpath_attr.attr,
5460 	&alloc_slowpath_attr.attr,
5461 	&free_fastpath_attr.attr,
5462 	&free_slowpath_attr.attr,
5463 	&free_frozen_attr.attr,
5464 	&free_add_partial_attr.attr,
5465 	&free_remove_partial_attr.attr,
5466 	&alloc_from_partial_attr.attr,
5467 	&alloc_slab_attr.attr,
5468 	&alloc_refill_attr.attr,
5469 	&alloc_node_mismatch_attr.attr,
5470 	&free_slab_attr.attr,
5471 	&cpuslab_flush_attr.attr,
5472 	&deactivate_full_attr.attr,
5473 	&deactivate_empty_attr.attr,
5474 	&deactivate_to_head_attr.attr,
5475 	&deactivate_to_tail_attr.attr,
5476 	&deactivate_remote_frees_attr.attr,
5477 	&deactivate_bypass_attr.attr,
5478 	&order_fallback_attr.attr,
5479 	&cmpxchg_double_fail_attr.attr,
5480 	&cmpxchg_double_cpu_fail_attr.attr,
5481 	&cpu_partial_alloc_attr.attr,
5482 	&cpu_partial_free_attr.attr,
5483 	&cpu_partial_node_attr.attr,
5484 	&cpu_partial_drain_attr.attr,
5485 #endif
5486 #ifdef CONFIG_FAILSLAB
5487 	&failslab_attr.attr,
5488 #endif
5489 	&usersize_attr.attr,
5490 
5491 	NULL
5492 };
5493 
5494 static const struct attribute_group slab_attr_group = {
5495 	.attrs = slab_attrs,
5496 };
5497 
5498 static ssize_t slab_attr_show(struct kobject *kobj,
5499 				struct attribute *attr,
5500 				char *buf)
5501 {
5502 	struct slab_attribute *attribute;
5503 	struct kmem_cache *s;
5504 	int err;
5505 
5506 	attribute = to_slab_attr(attr);
5507 	s = to_slab(kobj);
5508 
5509 	if (!attribute->show)
5510 		return -EIO;
5511 
5512 	err = attribute->show(s, buf);
5513 
5514 	return err;
5515 }
5516 
5517 static ssize_t slab_attr_store(struct kobject *kobj,
5518 				struct attribute *attr,
5519 				const char *buf, size_t len)
5520 {
5521 	struct slab_attribute *attribute;
5522 	struct kmem_cache *s;
5523 	int err;
5524 
5525 	attribute = to_slab_attr(attr);
5526 	s = to_slab(kobj);
5527 
5528 	if (!attribute->store)
5529 		return -EIO;
5530 
5531 	err = attribute->store(s, buf, len);
5532 #ifdef CONFIG_MEMCG
5533 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5534 		struct kmem_cache *c;
5535 
5536 		mutex_lock(&slab_mutex);
5537 		if (s->max_attr_size < len)
5538 			s->max_attr_size = len;
5539 
5540 		/*
5541 		 * This is a best effort propagation, so this function's return
5542 		 * value will be determined by the parent cache only. This is
5543 		 * basically because not all attributes will have a well
5544 		 * defined semantics for rollbacks - most of the actions will
5545 		 * have permanent effects.
5546 		 *
5547 		 * Returning the error value of any of the children that fail
5548 		 * is not 100 % defined, in the sense that users seeing the
5549 		 * error code won't be able to know anything about the state of
5550 		 * the cache.
5551 		 *
5552 		 * Only returning the error code for the parent cache at least
5553 		 * has well defined semantics. The cache being written to
5554 		 * directly either failed or succeeded, in which case we loop
5555 		 * through the descendants with best-effort propagation.
5556 		 */
5557 		for_each_memcg_cache(c, s)
5558 			attribute->store(c, buf, len);
5559 		mutex_unlock(&slab_mutex);
5560 	}
5561 #endif
5562 	return err;
5563 }
5564 
5565 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5566 {
5567 #ifdef CONFIG_MEMCG
5568 	int i;
5569 	char *buffer = NULL;
5570 	struct kmem_cache *root_cache;
5571 
5572 	if (is_root_cache(s))
5573 		return;
5574 
5575 	root_cache = s->memcg_params.root_cache;
5576 
5577 	/*
5578 	 * This mean this cache had no attribute written. Therefore, no point
5579 	 * in copying default values around
5580 	 */
5581 	if (!root_cache->max_attr_size)
5582 		return;
5583 
5584 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5585 		char mbuf[64];
5586 		char *buf;
5587 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5588 		ssize_t len;
5589 
5590 		if (!attr || !attr->store || !attr->show)
5591 			continue;
5592 
5593 		/*
5594 		 * It is really bad that we have to allocate here, so we will
5595 		 * do it only as a fallback. If we actually allocate, though,
5596 		 * we can just use the allocated buffer until the end.
5597 		 *
5598 		 * Most of the slub attributes will tend to be very small in
5599 		 * size, but sysfs allows buffers up to a page, so they can
5600 		 * theoretically happen.
5601 		 */
5602 		if (buffer)
5603 			buf = buffer;
5604 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5605 			buf = mbuf;
5606 		else {
5607 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5608 			if (WARN_ON(!buffer))
5609 				continue;
5610 			buf = buffer;
5611 		}
5612 
5613 		len = attr->show(root_cache, buf);
5614 		if (len > 0)
5615 			attr->store(s, buf, len);
5616 	}
5617 
5618 	if (buffer)
5619 		free_page((unsigned long)buffer);
5620 #endif
5621 }
5622 
5623 static void kmem_cache_release(struct kobject *k)
5624 {
5625 	slab_kmem_cache_release(to_slab(k));
5626 }
5627 
5628 static const struct sysfs_ops slab_sysfs_ops = {
5629 	.show = slab_attr_show,
5630 	.store = slab_attr_store,
5631 };
5632 
5633 static struct kobj_type slab_ktype = {
5634 	.sysfs_ops = &slab_sysfs_ops,
5635 	.release = kmem_cache_release,
5636 };
5637 
5638 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5639 {
5640 	struct kobj_type *ktype = get_ktype(kobj);
5641 
5642 	if (ktype == &slab_ktype)
5643 		return 1;
5644 	return 0;
5645 }
5646 
5647 static const struct kset_uevent_ops slab_uevent_ops = {
5648 	.filter = uevent_filter,
5649 };
5650 
5651 static struct kset *slab_kset;
5652 
5653 static inline struct kset *cache_kset(struct kmem_cache *s)
5654 {
5655 #ifdef CONFIG_MEMCG
5656 	if (!is_root_cache(s))
5657 		return s->memcg_params.root_cache->memcg_kset;
5658 #endif
5659 	return slab_kset;
5660 }
5661 
5662 #define ID_STR_LENGTH 64
5663 
5664 /* Create a unique string id for a slab cache:
5665  *
5666  * Format	:[flags-]size
5667  */
5668 static char *create_unique_id(struct kmem_cache *s)
5669 {
5670 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5671 	char *p = name;
5672 
5673 	BUG_ON(!name);
5674 
5675 	*p++ = ':';
5676 	/*
5677 	 * First flags affecting slabcache operations. We will only
5678 	 * get here for aliasable slabs so we do not need to support
5679 	 * too many flags. The flags here must cover all flags that
5680 	 * are matched during merging to guarantee that the id is
5681 	 * unique.
5682 	 */
5683 	if (s->flags & SLAB_CACHE_DMA)
5684 		*p++ = 'd';
5685 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5686 		*p++ = 'a';
5687 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5688 		*p++ = 'F';
5689 	if (s->flags & SLAB_ACCOUNT)
5690 		*p++ = 'A';
5691 	if (p != name + 1)
5692 		*p++ = '-';
5693 	p += sprintf(p, "%07u", s->size);
5694 
5695 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5696 	return name;
5697 }
5698 
5699 static void sysfs_slab_remove_workfn(struct work_struct *work)
5700 {
5701 	struct kmem_cache *s =
5702 		container_of(work, struct kmem_cache, kobj_remove_work);
5703 
5704 	if (!s->kobj.state_in_sysfs)
5705 		/*
5706 		 * For a memcg cache, this may be called during
5707 		 * deactivation and again on shutdown.  Remove only once.
5708 		 * A cache is never shut down before deactivation is
5709 		 * complete, so no need to worry about synchronization.
5710 		 */
5711 		goto out;
5712 
5713 #ifdef CONFIG_MEMCG
5714 	kset_unregister(s->memcg_kset);
5715 #endif
5716 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5717 	kobject_del(&s->kobj);
5718 out:
5719 	kobject_put(&s->kobj);
5720 }
5721 
5722 static int sysfs_slab_add(struct kmem_cache *s)
5723 {
5724 	int err;
5725 	const char *name;
5726 	struct kset *kset = cache_kset(s);
5727 	int unmergeable = slab_unmergeable(s);
5728 
5729 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5730 
5731 	if (!kset) {
5732 		kobject_init(&s->kobj, &slab_ktype);
5733 		return 0;
5734 	}
5735 
5736 	if (!unmergeable && disable_higher_order_debug &&
5737 			(slub_debug & DEBUG_METADATA_FLAGS))
5738 		unmergeable = 1;
5739 
5740 	if (unmergeable) {
5741 		/*
5742 		 * Slabcache can never be merged so we can use the name proper.
5743 		 * This is typically the case for debug situations. In that
5744 		 * case we can catch duplicate names easily.
5745 		 */
5746 		sysfs_remove_link(&slab_kset->kobj, s->name);
5747 		name = s->name;
5748 	} else {
5749 		/*
5750 		 * Create a unique name for the slab as a target
5751 		 * for the symlinks.
5752 		 */
5753 		name = create_unique_id(s);
5754 	}
5755 
5756 	s->kobj.kset = kset;
5757 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5758 	if (err)
5759 		goto out;
5760 
5761 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5762 	if (err)
5763 		goto out_del_kobj;
5764 
5765 #ifdef CONFIG_MEMCG
5766 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5767 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5768 		if (!s->memcg_kset) {
5769 			err = -ENOMEM;
5770 			goto out_del_kobj;
5771 		}
5772 	}
5773 #endif
5774 
5775 	kobject_uevent(&s->kobj, KOBJ_ADD);
5776 	if (!unmergeable) {
5777 		/* Setup first alias */
5778 		sysfs_slab_alias(s, s->name);
5779 	}
5780 out:
5781 	if (!unmergeable)
5782 		kfree(name);
5783 	return err;
5784 out_del_kobj:
5785 	kobject_del(&s->kobj);
5786 	goto out;
5787 }
5788 
5789 static void sysfs_slab_remove(struct kmem_cache *s)
5790 {
5791 	if (slab_state < FULL)
5792 		/*
5793 		 * Sysfs has not been setup yet so no need to remove the
5794 		 * cache from sysfs.
5795 		 */
5796 		return;
5797 
5798 	kobject_get(&s->kobj);
5799 	schedule_work(&s->kobj_remove_work);
5800 }
5801 
5802 void sysfs_slab_release(struct kmem_cache *s)
5803 {
5804 	if (slab_state >= FULL)
5805 		kobject_put(&s->kobj);
5806 }
5807 
5808 /*
5809  * Need to buffer aliases during bootup until sysfs becomes
5810  * available lest we lose that information.
5811  */
5812 struct saved_alias {
5813 	struct kmem_cache *s;
5814 	const char *name;
5815 	struct saved_alias *next;
5816 };
5817 
5818 static struct saved_alias *alias_list;
5819 
5820 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5821 {
5822 	struct saved_alias *al;
5823 
5824 	if (slab_state == FULL) {
5825 		/*
5826 		 * If we have a leftover link then remove it.
5827 		 */
5828 		sysfs_remove_link(&slab_kset->kobj, name);
5829 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5830 	}
5831 
5832 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5833 	if (!al)
5834 		return -ENOMEM;
5835 
5836 	al->s = s;
5837 	al->name = name;
5838 	al->next = alias_list;
5839 	alias_list = al;
5840 	return 0;
5841 }
5842 
5843 static int __init slab_sysfs_init(void)
5844 {
5845 	struct kmem_cache *s;
5846 	int err;
5847 
5848 	mutex_lock(&slab_mutex);
5849 
5850 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5851 	if (!slab_kset) {
5852 		mutex_unlock(&slab_mutex);
5853 		pr_err("Cannot register slab subsystem.\n");
5854 		return -ENOSYS;
5855 	}
5856 
5857 	slab_state = FULL;
5858 
5859 	list_for_each_entry(s, &slab_caches, list) {
5860 		err = sysfs_slab_add(s);
5861 		if (err)
5862 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5863 			       s->name);
5864 	}
5865 
5866 	while (alias_list) {
5867 		struct saved_alias *al = alias_list;
5868 
5869 		alias_list = alias_list->next;
5870 		err = sysfs_slab_alias(al->s, al->name);
5871 		if (err)
5872 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5873 			       al->name);
5874 		kfree(al);
5875 	}
5876 
5877 	mutex_unlock(&slab_mutex);
5878 	resiliency_test();
5879 	return 0;
5880 }
5881 
5882 __initcall(slab_sysfs_init);
5883 #endif /* CONFIG_SYSFS */
5884 
5885 /*
5886  * The /proc/slabinfo ABI
5887  */
5888 #ifdef CONFIG_SLUB_DEBUG
5889 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5890 {
5891 	unsigned long nr_slabs = 0;
5892 	unsigned long nr_objs = 0;
5893 	unsigned long nr_free = 0;
5894 	int node;
5895 	struct kmem_cache_node *n;
5896 
5897 	for_each_kmem_cache_node(s, node, n) {
5898 		nr_slabs += node_nr_slabs(n);
5899 		nr_objs += node_nr_objs(n);
5900 		nr_free += count_partial(n, count_free);
5901 	}
5902 
5903 	sinfo->active_objs = nr_objs - nr_free;
5904 	sinfo->num_objs = nr_objs;
5905 	sinfo->active_slabs = nr_slabs;
5906 	sinfo->num_slabs = nr_slabs;
5907 	sinfo->objects_per_slab = oo_objects(s->oo);
5908 	sinfo->cache_order = oo_order(s->oo);
5909 }
5910 
5911 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5912 {
5913 }
5914 
5915 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5916 		       size_t count, loff_t *ppos)
5917 {
5918 	return -EIO;
5919 }
5920 #endif /* CONFIG_SLUB_DEBUG */
5921