xref: /openbmc/linux/mm/slub.c (revision 9c1f8594)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
32 
33 #include <trace/events/kmem.h>
34 
35 /*
36  * Lock order:
37  *   1. slub_lock (Global Semaphore)
38  *   2. node->list_lock
39  *   3. slab_lock(page) (Only on some arches and for debugging)
40  *
41  *   slub_lock
42  *
43  *   The role of the slub_lock is to protect the list of all the slabs
44  *   and to synchronize major metadata changes to slab cache structures.
45  *
46  *   The slab_lock is only used for debugging and on arches that do not
47  *   have the ability to do a cmpxchg_double. It only protects the second
48  *   double word in the page struct. Meaning
49  *	A. page->freelist	-> List of object free in a page
50  *	B. page->counters	-> Counters of objects
51  *	C. page->frozen		-> frozen state
52  *
53  *   If a slab is frozen then it is exempt from list management. It is not
54  *   on any list. The processor that froze the slab is the one who can
55  *   perform list operations on the page. Other processors may put objects
56  *   onto the freelist but the processor that froze the slab is the only
57  *   one that can retrieve the objects from the page's freelist.
58  *
59  *   The list_lock protects the partial and full list on each node and
60  *   the partial slab counter. If taken then no new slabs may be added or
61  *   removed from the lists nor make the number of partial slabs be modified.
62  *   (Note that the total number of slabs is an atomic value that may be
63  *   modified without taking the list lock).
64  *
65  *   The list_lock is a centralized lock and thus we avoid taking it as
66  *   much as possible. As long as SLUB does not have to handle partial
67  *   slabs, operations can continue without any centralized lock. F.e.
68  *   allocating a long series of objects that fill up slabs does not require
69  *   the list lock.
70  *   Interrupts are disabled during allocation and deallocation in order to
71  *   make the slab allocator safe to use in the context of an irq. In addition
72  *   interrupts are disabled to ensure that the processor does not change
73  *   while handling per_cpu slabs, due to kernel preemption.
74  *
75  * SLUB assigns one slab for allocation to each processor.
76  * Allocations only occur from these slabs called cpu slabs.
77  *
78  * Slabs with free elements are kept on a partial list and during regular
79  * operations no list for full slabs is used. If an object in a full slab is
80  * freed then the slab will show up again on the partial lists.
81  * We track full slabs for debugging purposes though because otherwise we
82  * cannot scan all objects.
83  *
84  * Slabs are freed when they become empty. Teardown and setup is
85  * minimal so we rely on the page allocators per cpu caches for
86  * fast frees and allocs.
87  *
88  * Overloading of page flags that are otherwise used for LRU management.
89  *
90  * PageActive 		The slab is frozen and exempt from list processing.
91  * 			This means that the slab is dedicated to a purpose
92  * 			such as satisfying allocations for a specific
93  * 			processor. Objects may be freed in the slab while
94  * 			it is frozen but slab_free will then skip the usual
95  * 			list operations. It is up to the processor holding
96  * 			the slab to integrate the slab into the slab lists
97  * 			when the slab is no longer needed.
98  *
99  * 			One use of this flag is to mark slabs that are
100  * 			used for allocations. Then such a slab becomes a cpu
101  * 			slab. The cpu slab may be equipped with an additional
102  * 			freelist that allows lockless access to
103  * 			free objects in addition to the regular freelist
104  * 			that requires the slab lock.
105  *
106  * PageError		Slab requires special handling due to debug
107  * 			options set. This moves	slab handling out of
108  * 			the fast path and disables lockless freelists.
109  */
110 
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 		SLAB_TRACE | SLAB_DEBUG_FREE)
113 
114 static inline int kmem_cache_debug(struct kmem_cache *s)
115 {
116 #ifdef CONFIG_SLUB_DEBUG
117 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118 #else
119 	return 0;
120 #endif
121 }
122 
123 /*
124  * Issues still to be resolved:
125  *
126  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127  *
128  * - Variable sizing of the per node arrays
129  */
130 
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
133 
134 /* Enable to log cmpxchg failures */
135 #undef SLUB_DEBUG_CMPXCHG
136 
137 /*
138  * Mininum number of partial slabs. These will be left on the partial
139  * lists even if they are empty. kmem_cache_shrink may reclaim them.
140  */
141 #define MIN_PARTIAL 5
142 
143 /*
144  * Maximum number of desirable partial slabs.
145  * The existence of more partial slabs makes kmem_cache_shrink
146  * sort the partial list by the number of objects in the.
147  */
148 #define MAX_PARTIAL 10
149 
150 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 				SLAB_POISON | SLAB_STORE_USER)
152 
153 /*
154  * Debugging flags that require metadata to be stored in the slab.  These get
155  * disabled when slub_debug=O is used and a cache's min order increases with
156  * metadata.
157  */
158 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
159 
160 /*
161  * Set of flags that will prevent slab merging
162  */
163 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
164 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 		SLAB_FAILSLAB)
166 
167 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
168 		SLAB_CACHE_DMA | SLAB_NOTRACK)
169 
170 #define OO_SHIFT	16
171 #define OO_MASK		((1 << OO_SHIFT) - 1)
172 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
173 
174 /* Internal SLUB flags */
175 #define __OBJECT_POISON		0x80000000UL /* Poison object */
176 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
177 
178 static int kmem_size = sizeof(struct kmem_cache);
179 
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183 
184 static enum {
185 	DOWN,		/* No slab functionality available */
186 	PARTIAL,	/* Kmem_cache_node works */
187 	UP,		/* Everything works but does not show up in sysfs */
188 	SYSFS		/* Sysfs up */
189 } slab_state = DOWN;
190 
191 /* A list of all slab caches on the system */
192 static DECLARE_RWSEM(slub_lock);
193 static LIST_HEAD(slab_caches);
194 
195 /*
196  * Tracking user of a slab.
197  */
198 #define TRACK_ADDRS_COUNT 16
199 struct track {
200 	unsigned long addr;	/* Called from address */
201 #ifdef CONFIG_STACKTRACE
202 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
203 #endif
204 	int cpu;		/* Was running on cpu */
205 	int pid;		/* Pid context */
206 	unsigned long when;	/* When did the operation occur */
207 };
208 
209 enum track_item { TRACK_ALLOC, TRACK_FREE };
210 
211 #ifdef CONFIG_SYSFS
212 static int sysfs_slab_add(struct kmem_cache *);
213 static int sysfs_slab_alias(struct kmem_cache *, const char *);
214 static void sysfs_slab_remove(struct kmem_cache *);
215 
216 #else
217 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 							{ return 0; }
220 static inline void sysfs_slab_remove(struct kmem_cache *s)
221 {
222 	kfree(s->name);
223 	kfree(s);
224 }
225 
226 #endif
227 
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 	__this_cpu_inc(s->cpu_slab->stat[si]);
232 #endif
233 }
234 
235 /********************************************************************
236  * 			Core slab cache functions
237  *******************************************************************/
238 
239 int slab_is_available(void)
240 {
241 	return slab_state >= UP;
242 }
243 
244 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245 {
246 	return s->node[node];
247 }
248 
249 /* Verify that a pointer has an address that is valid within a slab page */
250 static inline int check_valid_pointer(struct kmem_cache *s,
251 				struct page *page, const void *object)
252 {
253 	void *base;
254 
255 	if (!object)
256 		return 1;
257 
258 	base = page_address(page);
259 	if (object < base || object >= base + page->objects * s->size ||
260 		(object - base) % s->size) {
261 		return 0;
262 	}
263 
264 	return 1;
265 }
266 
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
268 {
269 	return *(void **)(object + s->offset);
270 }
271 
272 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273 {
274 	void *p;
275 
276 #ifdef CONFIG_DEBUG_PAGEALLOC
277 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278 #else
279 	p = get_freepointer(s, object);
280 #endif
281 	return p;
282 }
283 
284 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285 {
286 	*(void **)(object + s->offset) = fp;
287 }
288 
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
292 			__p += (__s)->size)
293 
294 /* Determine object index from a given position */
295 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296 {
297 	return (p - addr) / s->size;
298 }
299 
300 static inline size_t slab_ksize(const struct kmem_cache *s)
301 {
302 #ifdef CONFIG_SLUB_DEBUG
303 	/*
304 	 * Debugging requires use of the padding between object
305 	 * and whatever may come after it.
306 	 */
307 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 		return s->objsize;
309 
310 #endif
311 	/*
312 	 * If we have the need to store the freelist pointer
313 	 * back there or track user information then we can
314 	 * only use the space before that information.
315 	 */
316 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 		return s->inuse;
318 	/*
319 	 * Else we can use all the padding etc for the allocation
320 	 */
321 	return s->size;
322 }
323 
324 static inline int order_objects(int order, unsigned long size, int reserved)
325 {
326 	return ((PAGE_SIZE << order) - reserved) / size;
327 }
328 
329 static inline struct kmem_cache_order_objects oo_make(int order,
330 		unsigned long size, int reserved)
331 {
332 	struct kmem_cache_order_objects x = {
333 		(order << OO_SHIFT) + order_objects(order, size, reserved)
334 	};
335 
336 	return x;
337 }
338 
339 static inline int oo_order(struct kmem_cache_order_objects x)
340 {
341 	return x.x >> OO_SHIFT;
342 }
343 
344 static inline int oo_objects(struct kmem_cache_order_objects x)
345 {
346 	return x.x & OO_MASK;
347 }
348 
349 /*
350  * Per slab locking using the pagelock
351  */
352 static __always_inline void slab_lock(struct page *page)
353 {
354 	bit_spin_lock(PG_locked, &page->flags);
355 }
356 
357 static __always_inline void slab_unlock(struct page *page)
358 {
359 	__bit_spin_unlock(PG_locked, &page->flags);
360 }
361 
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 		void *freelist_old, unsigned long counters_old,
365 		void *freelist_new, unsigned long counters_new,
366 		const char *n)
367 {
368 	VM_BUG_ON(!irqs_disabled());
369 #ifdef CONFIG_CMPXCHG_DOUBLE
370 	if (s->flags & __CMPXCHG_DOUBLE) {
371 		if (cmpxchg_double(&page->freelist,
372 			freelist_old, counters_old,
373 			freelist_new, counters_new))
374 		return 1;
375 	} else
376 #endif
377 	{
378 		slab_lock(page);
379 		if (page->freelist == freelist_old && page->counters == counters_old) {
380 			page->freelist = freelist_new;
381 			page->counters = counters_new;
382 			slab_unlock(page);
383 			return 1;
384 		}
385 		slab_unlock(page);
386 	}
387 
388 	cpu_relax();
389 	stat(s, CMPXCHG_DOUBLE_FAIL);
390 
391 #ifdef SLUB_DEBUG_CMPXCHG
392 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
393 #endif
394 
395 	return 0;
396 }
397 
398 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
399 		void *freelist_old, unsigned long counters_old,
400 		void *freelist_new, unsigned long counters_new,
401 		const char *n)
402 {
403 #ifdef CONFIG_CMPXCHG_DOUBLE
404 	if (s->flags & __CMPXCHG_DOUBLE) {
405 		if (cmpxchg_double(&page->freelist,
406 			freelist_old, counters_old,
407 			freelist_new, counters_new))
408 		return 1;
409 	} else
410 #endif
411 	{
412 		unsigned long flags;
413 
414 		local_irq_save(flags);
415 		slab_lock(page);
416 		if (page->freelist == freelist_old && page->counters == counters_old) {
417 			page->freelist = freelist_new;
418 			page->counters = counters_new;
419 			slab_unlock(page);
420 			local_irq_restore(flags);
421 			return 1;
422 		}
423 		slab_unlock(page);
424 		local_irq_restore(flags);
425 	}
426 
427 	cpu_relax();
428 	stat(s, CMPXCHG_DOUBLE_FAIL);
429 
430 #ifdef SLUB_DEBUG_CMPXCHG
431 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432 #endif
433 
434 	return 0;
435 }
436 
437 #ifdef CONFIG_SLUB_DEBUG
438 /*
439  * Determine a map of object in use on a page.
440  *
441  * Node listlock must be held to guarantee that the page does
442  * not vanish from under us.
443  */
444 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445 {
446 	void *p;
447 	void *addr = page_address(page);
448 
449 	for (p = page->freelist; p; p = get_freepointer(s, p))
450 		set_bit(slab_index(p, s, addr), map);
451 }
452 
453 /*
454  * Debug settings:
455  */
456 #ifdef CONFIG_SLUB_DEBUG_ON
457 static int slub_debug = DEBUG_DEFAULT_FLAGS;
458 #else
459 static int slub_debug;
460 #endif
461 
462 static char *slub_debug_slabs;
463 static int disable_higher_order_debug;
464 
465 /*
466  * Object debugging
467  */
468 static void print_section(char *text, u8 *addr, unsigned int length)
469 {
470 	int i, offset;
471 	int newline = 1;
472 	char ascii[17];
473 
474 	ascii[16] = 0;
475 
476 	for (i = 0; i < length; i++) {
477 		if (newline) {
478 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
479 			newline = 0;
480 		}
481 		printk(KERN_CONT " %02x", addr[i]);
482 		offset = i % 16;
483 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
484 		if (offset == 15) {
485 			printk(KERN_CONT " %s\n", ascii);
486 			newline = 1;
487 		}
488 	}
489 	if (!newline) {
490 		i %= 16;
491 		while (i < 16) {
492 			printk(KERN_CONT "   ");
493 			ascii[i] = ' ';
494 			i++;
495 		}
496 		printk(KERN_CONT " %s\n", ascii);
497 	}
498 }
499 
500 static struct track *get_track(struct kmem_cache *s, void *object,
501 	enum track_item alloc)
502 {
503 	struct track *p;
504 
505 	if (s->offset)
506 		p = object + s->offset + sizeof(void *);
507 	else
508 		p = object + s->inuse;
509 
510 	return p + alloc;
511 }
512 
513 static void set_track(struct kmem_cache *s, void *object,
514 			enum track_item alloc, unsigned long addr)
515 {
516 	struct track *p = get_track(s, object, alloc);
517 
518 	if (addr) {
519 #ifdef CONFIG_STACKTRACE
520 		struct stack_trace trace;
521 		int i;
522 
523 		trace.nr_entries = 0;
524 		trace.max_entries = TRACK_ADDRS_COUNT;
525 		trace.entries = p->addrs;
526 		trace.skip = 3;
527 		save_stack_trace(&trace);
528 
529 		/* See rant in lockdep.c */
530 		if (trace.nr_entries != 0 &&
531 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532 			trace.nr_entries--;
533 
534 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535 			p->addrs[i] = 0;
536 #endif
537 		p->addr = addr;
538 		p->cpu = smp_processor_id();
539 		p->pid = current->pid;
540 		p->when = jiffies;
541 	} else
542 		memset(p, 0, sizeof(struct track));
543 }
544 
545 static void init_tracking(struct kmem_cache *s, void *object)
546 {
547 	if (!(s->flags & SLAB_STORE_USER))
548 		return;
549 
550 	set_track(s, object, TRACK_FREE, 0UL);
551 	set_track(s, object, TRACK_ALLOC, 0UL);
552 }
553 
554 static void print_track(const char *s, struct track *t)
555 {
556 	if (!t->addr)
557 		return;
558 
559 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
560 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
561 #ifdef CONFIG_STACKTRACE
562 	{
563 		int i;
564 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565 			if (t->addrs[i])
566 				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
567 			else
568 				break;
569 	}
570 #endif
571 }
572 
573 static void print_tracking(struct kmem_cache *s, void *object)
574 {
575 	if (!(s->flags & SLAB_STORE_USER))
576 		return;
577 
578 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579 	print_track("Freed", get_track(s, object, TRACK_FREE));
580 }
581 
582 static void print_page_info(struct page *page)
583 {
584 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585 		page, page->objects, page->inuse, page->freelist, page->flags);
586 
587 }
588 
589 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
590 {
591 	va_list args;
592 	char buf[100];
593 
594 	va_start(args, fmt);
595 	vsnprintf(buf, sizeof(buf), fmt, args);
596 	va_end(args);
597 	printk(KERN_ERR "========================================"
598 			"=====================================\n");
599 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
600 	printk(KERN_ERR "----------------------------------------"
601 			"-------------------------------------\n\n");
602 }
603 
604 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
605 {
606 	va_list args;
607 	char buf[100];
608 
609 	va_start(args, fmt);
610 	vsnprintf(buf, sizeof(buf), fmt, args);
611 	va_end(args);
612 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
613 }
614 
615 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
616 {
617 	unsigned int off;	/* Offset of last byte */
618 	u8 *addr = page_address(page);
619 
620 	print_tracking(s, p);
621 
622 	print_page_info(page);
623 
624 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
625 			p, p - addr, get_freepointer(s, p));
626 
627 	if (p > addr + 16)
628 		print_section("Bytes b4", p - 16, 16);
629 
630 	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
631 
632 	if (s->flags & SLAB_RED_ZONE)
633 		print_section("Redzone", p + s->objsize,
634 			s->inuse - s->objsize);
635 
636 	if (s->offset)
637 		off = s->offset + sizeof(void *);
638 	else
639 		off = s->inuse;
640 
641 	if (s->flags & SLAB_STORE_USER)
642 		off += 2 * sizeof(struct track);
643 
644 	if (off != s->size)
645 		/* Beginning of the filler is the free pointer */
646 		print_section("Padding", p + off, s->size - off);
647 
648 	dump_stack();
649 }
650 
651 static void object_err(struct kmem_cache *s, struct page *page,
652 			u8 *object, char *reason)
653 {
654 	slab_bug(s, "%s", reason);
655 	print_trailer(s, page, object);
656 }
657 
658 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
659 {
660 	va_list args;
661 	char buf[100];
662 
663 	va_start(args, fmt);
664 	vsnprintf(buf, sizeof(buf), fmt, args);
665 	va_end(args);
666 	slab_bug(s, "%s", buf);
667 	print_page_info(page);
668 	dump_stack();
669 }
670 
671 static void init_object(struct kmem_cache *s, void *object, u8 val)
672 {
673 	u8 *p = object;
674 
675 	if (s->flags & __OBJECT_POISON) {
676 		memset(p, POISON_FREE, s->objsize - 1);
677 		p[s->objsize - 1] = POISON_END;
678 	}
679 
680 	if (s->flags & SLAB_RED_ZONE)
681 		memset(p + s->objsize, val, s->inuse - s->objsize);
682 }
683 
684 static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
685 {
686 	while (bytes) {
687 		if (*start != value)
688 			return start;
689 		start++;
690 		bytes--;
691 	}
692 	return NULL;
693 }
694 
695 static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
696 {
697 	u64 value64;
698 	unsigned int words, prefix;
699 
700 	if (bytes <= 16)
701 		return check_bytes8(start, value, bytes);
702 
703 	value64 = value | value << 8 | value << 16 | value << 24;
704 	value64 = (value64 & 0xffffffff) | value64 << 32;
705 	prefix = 8 - ((unsigned long)start) % 8;
706 
707 	if (prefix) {
708 		u8 *r = check_bytes8(start, value, prefix);
709 		if (r)
710 			return r;
711 		start += prefix;
712 		bytes -= prefix;
713 	}
714 
715 	words = bytes / 8;
716 
717 	while (words) {
718 		if (*(u64 *)start != value64)
719 			return check_bytes8(start, value, 8);
720 		start += 8;
721 		words--;
722 	}
723 
724 	return check_bytes8(start, value, bytes % 8);
725 }
726 
727 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
728 						void *from, void *to)
729 {
730 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
731 	memset(from, data, to - from);
732 }
733 
734 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
735 			u8 *object, char *what,
736 			u8 *start, unsigned int value, unsigned int bytes)
737 {
738 	u8 *fault;
739 	u8 *end;
740 
741 	fault = check_bytes(start, value, bytes);
742 	if (!fault)
743 		return 1;
744 
745 	end = start + bytes;
746 	while (end > fault && end[-1] == value)
747 		end--;
748 
749 	slab_bug(s, "%s overwritten", what);
750 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
751 					fault, end - 1, fault[0], value);
752 	print_trailer(s, page, object);
753 
754 	restore_bytes(s, what, value, fault, end);
755 	return 0;
756 }
757 
758 /*
759  * Object layout:
760  *
761  * object address
762  * 	Bytes of the object to be managed.
763  * 	If the freepointer may overlay the object then the free
764  * 	pointer is the first word of the object.
765  *
766  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
767  * 	0xa5 (POISON_END)
768  *
769  * object + s->objsize
770  * 	Padding to reach word boundary. This is also used for Redzoning.
771  * 	Padding is extended by another word if Redzoning is enabled and
772  * 	objsize == inuse.
773  *
774  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
775  * 	0xcc (RED_ACTIVE) for objects in use.
776  *
777  * object + s->inuse
778  * 	Meta data starts here.
779  *
780  * 	A. Free pointer (if we cannot overwrite object on free)
781  * 	B. Tracking data for SLAB_STORE_USER
782  * 	C. Padding to reach required alignment boundary or at mininum
783  * 		one word if debugging is on to be able to detect writes
784  * 		before the word boundary.
785  *
786  *	Padding is done using 0x5a (POISON_INUSE)
787  *
788  * object + s->size
789  * 	Nothing is used beyond s->size.
790  *
791  * If slabcaches are merged then the objsize and inuse boundaries are mostly
792  * ignored. And therefore no slab options that rely on these boundaries
793  * may be used with merged slabcaches.
794  */
795 
796 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
797 {
798 	unsigned long off = s->inuse;	/* The end of info */
799 
800 	if (s->offset)
801 		/* Freepointer is placed after the object. */
802 		off += sizeof(void *);
803 
804 	if (s->flags & SLAB_STORE_USER)
805 		/* We also have user information there */
806 		off += 2 * sizeof(struct track);
807 
808 	if (s->size == off)
809 		return 1;
810 
811 	return check_bytes_and_report(s, page, p, "Object padding",
812 				p + off, POISON_INUSE, s->size - off);
813 }
814 
815 /* Check the pad bytes at the end of a slab page */
816 static int slab_pad_check(struct kmem_cache *s, struct page *page)
817 {
818 	u8 *start;
819 	u8 *fault;
820 	u8 *end;
821 	int length;
822 	int remainder;
823 
824 	if (!(s->flags & SLAB_POISON))
825 		return 1;
826 
827 	start = page_address(page);
828 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
829 	end = start + length;
830 	remainder = length % s->size;
831 	if (!remainder)
832 		return 1;
833 
834 	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
835 	if (!fault)
836 		return 1;
837 	while (end > fault && end[-1] == POISON_INUSE)
838 		end--;
839 
840 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
841 	print_section("Padding", end - remainder, remainder);
842 
843 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
844 	return 0;
845 }
846 
847 static int check_object(struct kmem_cache *s, struct page *page,
848 					void *object, u8 val)
849 {
850 	u8 *p = object;
851 	u8 *endobject = object + s->objsize;
852 
853 	if (s->flags & SLAB_RED_ZONE) {
854 		if (!check_bytes_and_report(s, page, object, "Redzone",
855 			endobject, val, s->inuse - s->objsize))
856 			return 0;
857 	} else {
858 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
859 			check_bytes_and_report(s, page, p, "Alignment padding",
860 				endobject, POISON_INUSE, s->inuse - s->objsize);
861 		}
862 	}
863 
864 	if (s->flags & SLAB_POISON) {
865 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
866 			(!check_bytes_and_report(s, page, p, "Poison", p,
867 					POISON_FREE, s->objsize - 1) ||
868 			 !check_bytes_and_report(s, page, p, "Poison",
869 				p + s->objsize - 1, POISON_END, 1)))
870 			return 0;
871 		/*
872 		 * check_pad_bytes cleans up on its own.
873 		 */
874 		check_pad_bytes(s, page, p);
875 	}
876 
877 	if (!s->offset && val == SLUB_RED_ACTIVE)
878 		/*
879 		 * Object and freepointer overlap. Cannot check
880 		 * freepointer while object is allocated.
881 		 */
882 		return 1;
883 
884 	/* Check free pointer validity */
885 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
886 		object_err(s, page, p, "Freepointer corrupt");
887 		/*
888 		 * No choice but to zap it and thus lose the remainder
889 		 * of the free objects in this slab. May cause
890 		 * another error because the object count is now wrong.
891 		 */
892 		set_freepointer(s, p, NULL);
893 		return 0;
894 	}
895 	return 1;
896 }
897 
898 static int check_slab(struct kmem_cache *s, struct page *page)
899 {
900 	int maxobj;
901 
902 	VM_BUG_ON(!irqs_disabled());
903 
904 	if (!PageSlab(page)) {
905 		slab_err(s, page, "Not a valid slab page");
906 		return 0;
907 	}
908 
909 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
910 	if (page->objects > maxobj) {
911 		slab_err(s, page, "objects %u > max %u",
912 			s->name, page->objects, maxobj);
913 		return 0;
914 	}
915 	if (page->inuse > page->objects) {
916 		slab_err(s, page, "inuse %u > max %u",
917 			s->name, page->inuse, page->objects);
918 		return 0;
919 	}
920 	/* Slab_pad_check fixes things up after itself */
921 	slab_pad_check(s, page);
922 	return 1;
923 }
924 
925 /*
926  * Determine if a certain object on a page is on the freelist. Must hold the
927  * slab lock to guarantee that the chains are in a consistent state.
928  */
929 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
930 {
931 	int nr = 0;
932 	void *fp;
933 	void *object = NULL;
934 	unsigned long max_objects;
935 
936 	fp = page->freelist;
937 	while (fp && nr <= page->objects) {
938 		if (fp == search)
939 			return 1;
940 		if (!check_valid_pointer(s, page, fp)) {
941 			if (object) {
942 				object_err(s, page, object,
943 					"Freechain corrupt");
944 				set_freepointer(s, object, NULL);
945 				break;
946 			} else {
947 				slab_err(s, page, "Freepointer corrupt");
948 				page->freelist = NULL;
949 				page->inuse = page->objects;
950 				slab_fix(s, "Freelist cleared");
951 				return 0;
952 			}
953 			break;
954 		}
955 		object = fp;
956 		fp = get_freepointer(s, object);
957 		nr++;
958 	}
959 
960 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
961 	if (max_objects > MAX_OBJS_PER_PAGE)
962 		max_objects = MAX_OBJS_PER_PAGE;
963 
964 	if (page->objects != max_objects) {
965 		slab_err(s, page, "Wrong number of objects. Found %d but "
966 			"should be %d", page->objects, max_objects);
967 		page->objects = max_objects;
968 		slab_fix(s, "Number of objects adjusted.");
969 	}
970 	if (page->inuse != page->objects - nr) {
971 		slab_err(s, page, "Wrong object count. Counter is %d but "
972 			"counted were %d", page->inuse, page->objects - nr);
973 		page->inuse = page->objects - nr;
974 		slab_fix(s, "Object count adjusted.");
975 	}
976 	return search == NULL;
977 }
978 
979 static void trace(struct kmem_cache *s, struct page *page, void *object,
980 								int alloc)
981 {
982 	if (s->flags & SLAB_TRACE) {
983 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
984 			s->name,
985 			alloc ? "alloc" : "free",
986 			object, page->inuse,
987 			page->freelist);
988 
989 		if (!alloc)
990 			print_section("Object", (void *)object, s->objsize);
991 
992 		dump_stack();
993 	}
994 }
995 
996 /*
997  * Hooks for other subsystems that check memory allocations. In a typical
998  * production configuration these hooks all should produce no code at all.
999  */
1000 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1001 {
1002 	flags &= gfp_allowed_mask;
1003 	lockdep_trace_alloc(flags);
1004 	might_sleep_if(flags & __GFP_WAIT);
1005 
1006 	return should_failslab(s->objsize, flags, s->flags);
1007 }
1008 
1009 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
1010 {
1011 	flags &= gfp_allowed_mask;
1012 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1013 	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
1014 }
1015 
1016 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1017 {
1018 	kmemleak_free_recursive(x, s->flags);
1019 
1020 	/*
1021 	 * Trouble is that we may no longer disable interupts in the fast path
1022 	 * So in order to make the debug calls that expect irqs to be
1023 	 * disabled we need to disable interrupts temporarily.
1024 	 */
1025 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1026 	{
1027 		unsigned long flags;
1028 
1029 		local_irq_save(flags);
1030 		kmemcheck_slab_free(s, x, s->objsize);
1031 		debug_check_no_locks_freed(x, s->objsize);
1032 		local_irq_restore(flags);
1033 	}
1034 #endif
1035 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1036 		debug_check_no_obj_freed(x, s->objsize);
1037 }
1038 
1039 /*
1040  * Tracking of fully allocated slabs for debugging purposes.
1041  *
1042  * list_lock must be held.
1043  */
1044 static void add_full(struct kmem_cache *s,
1045 	struct kmem_cache_node *n, struct page *page)
1046 {
1047 	if (!(s->flags & SLAB_STORE_USER))
1048 		return;
1049 
1050 	list_add(&page->lru, &n->full);
1051 }
1052 
1053 /*
1054  * list_lock must be held.
1055  */
1056 static void remove_full(struct kmem_cache *s, struct page *page)
1057 {
1058 	if (!(s->flags & SLAB_STORE_USER))
1059 		return;
1060 
1061 	list_del(&page->lru);
1062 }
1063 
1064 /* Tracking of the number of slabs for debugging purposes */
1065 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1066 {
1067 	struct kmem_cache_node *n = get_node(s, node);
1068 
1069 	return atomic_long_read(&n->nr_slabs);
1070 }
1071 
1072 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1073 {
1074 	return atomic_long_read(&n->nr_slabs);
1075 }
1076 
1077 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1078 {
1079 	struct kmem_cache_node *n = get_node(s, node);
1080 
1081 	/*
1082 	 * May be called early in order to allocate a slab for the
1083 	 * kmem_cache_node structure. Solve the chicken-egg
1084 	 * dilemma by deferring the increment of the count during
1085 	 * bootstrap (see early_kmem_cache_node_alloc).
1086 	 */
1087 	if (n) {
1088 		atomic_long_inc(&n->nr_slabs);
1089 		atomic_long_add(objects, &n->total_objects);
1090 	}
1091 }
1092 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1093 {
1094 	struct kmem_cache_node *n = get_node(s, node);
1095 
1096 	atomic_long_dec(&n->nr_slabs);
1097 	atomic_long_sub(objects, &n->total_objects);
1098 }
1099 
1100 /* Object debug checks for alloc/free paths */
1101 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1102 								void *object)
1103 {
1104 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1105 		return;
1106 
1107 	init_object(s, object, SLUB_RED_INACTIVE);
1108 	init_tracking(s, object);
1109 }
1110 
1111 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1112 					void *object, unsigned long addr)
1113 {
1114 	if (!check_slab(s, page))
1115 		goto bad;
1116 
1117 	if (!check_valid_pointer(s, page, object)) {
1118 		object_err(s, page, object, "Freelist Pointer check fails");
1119 		goto bad;
1120 	}
1121 
1122 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1123 		goto bad;
1124 
1125 	/* Success perform special debug activities for allocs */
1126 	if (s->flags & SLAB_STORE_USER)
1127 		set_track(s, object, TRACK_ALLOC, addr);
1128 	trace(s, page, object, 1);
1129 	init_object(s, object, SLUB_RED_ACTIVE);
1130 	return 1;
1131 
1132 bad:
1133 	if (PageSlab(page)) {
1134 		/*
1135 		 * If this is a slab page then lets do the best we can
1136 		 * to avoid issues in the future. Marking all objects
1137 		 * as used avoids touching the remaining objects.
1138 		 */
1139 		slab_fix(s, "Marking all objects used");
1140 		page->inuse = page->objects;
1141 		page->freelist = NULL;
1142 	}
1143 	return 0;
1144 }
1145 
1146 static noinline int free_debug_processing(struct kmem_cache *s,
1147 		 struct page *page, void *object, unsigned long addr)
1148 {
1149 	unsigned long flags;
1150 	int rc = 0;
1151 
1152 	local_irq_save(flags);
1153 	slab_lock(page);
1154 
1155 	if (!check_slab(s, page))
1156 		goto fail;
1157 
1158 	if (!check_valid_pointer(s, page, object)) {
1159 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1160 		goto fail;
1161 	}
1162 
1163 	if (on_freelist(s, page, object)) {
1164 		object_err(s, page, object, "Object already free");
1165 		goto fail;
1166 	}
1167 
1168 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1169 		goto out;
1170 
1171 	if (unlikely(s != page->slab)) {
1172 		if (!PageSlab(page)) {
1173 			slab_err(s, page, "Attempt to free object(0x%p) "
1174 				"outside of slab", object);
1175 		} else if (!page->slab) {
1176 			printk(KERN_ERR
1177 				"SLUB <none>: no slab for object 0x%p.\n",
1178 						object);
1179 			dump_stack();
1180 		} else
1181 			object_err(s, page, object,
1182 					"page slab pointer corrupt.");
1183 		goto fail;
1184 	}
1185 
1186 	if (s->flags & SLAB_STORE_USER)
1187 		set_track(s, object, TRACK_FREE, addr);
1188 	trace(s, page, object, 0);
1189 	init_object(s, object, SLUB_RED_INACTIVE);
1190 	rc = 1;
1191 out:
1192 	slab_unlock(page);
1193 	local_irq_restore(flags);
1194 	return rc;
1195 
1196 fail:
1197 	slab_fix(s, "Object at 0x%p not freed", object);
1198 	goto out;
1199 }
1200 
1201 static int __init setup_slub_debug(char *str)
1202 {
1203 	slub_debug = DEBUG_DEFAULT_FLAGS;
1204 	if (*str++ != '=' || !*str)
1205 		/*
1206 		 * No options specified. Switch on full debugging.
1207 		 */
1208 		goto out;
1209 
1210 	if (*str == ',')
1211 		/*
1212 		 * No options but restriction on slabs. This means full
1213 		 * debugging for slabs matching a pattern.
1214 		 */
1215 		goto check_slabs;
1216 
1217 	if (tolower(*str) == 'o') {
1218 		/*
1219 		 * Avoid enabling debugging on caches if its minimum order
1220 		 * would increase as a result.
1221 		 */
1222 		disable_higher_order_debug = 1;
1223 		goto out;
1224 	}
1225 
1226 	slub_debug = 0;
1227 	if (*str == '-')
1228 		/*
1229 		 * Switch off all debugging measures.
1230 		 */
1231 		goto out;
1232 
1233 	/*
1234 	 * Determine which debug features should be switched on
1235 	 */
1236 	for (; *str && *str != ','; str++) {
1237 		switch (tolower(*str)) {
1238 		case 'f':
1239 			slub_debug |= SLAB_DEBUG_FREE;
1240 			break;
1241 		case 'z':
1242 			slub_debug |= SLAB_RED_ZONE;
1243 			break;
1244 		case 'p':
1245 			slub_debug |= SLAB_POISON;
1246 			break;
1247 		case 'u':
1248 			slub_debug |= SLAB_STORE_USER;
1249 			break;
1250 		case 't':
1251 			slub_debug |= SLAB_TRACE;
1252 			break;
1253 		case 'a':
1254 			slub_debug |= SLAB_FAILSLAB;
1255 			break;
1256 		default:
1257 			printk(KERN_ERR "slub_debug option '%c' "
1258 				"unknown. skipped\n", *str);
1259 		}
1260 	}
1261 
1262 check_slabs:
1263 	if (*str == ',')
1264 		slub_debug_slabs = str + 1;
1265 out:
1266 	return 1;
1267 }
1268 
1269 __setup("slub_debug", setup_slub_debug);
1270 
1271 static unsigned long kmem_cache_flags(unsigned long objsize,
1272 	unsigned long flags, const char *name,
1273 	void (*ctor)(void *))
1274 {
1275 	/*
1276 	 * Enable debugging if selected on the kernel commandline.
1277 	 */
1278 	if (slub_debug && (!slub_debug_slabs ||
1279 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1280 		flags |= slub_debug;
1281 
1282 	return flags;
1283 }
1284 #else
1285 static inline void setup_object_debug(struct kmem_cache *s,
1286 			struct page *page, void *object) {}
1287 
1288 static inline int alloc_debug_processing(struct kmem_cache *s,
1289 	struct page *page, void *object, unsigned long addr) { return 0; }
1290 
1291 static inline int free_debug_processing(struct kmem_cache *s,
1292 	struct page *page, void *object, unsigned long addr) { return 0; }
1293 
1294 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1295 			{ return 1; }
1296 static inline int check_object(struct kmem_cache *s, struct page *page,
1297 			void *object, u8 val) { return 1; }
1298 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1299 					struct page *page) {}
1300 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1301 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1302 	unsigned long flags, const char *name,
1303 	void (*ctor)(void *))
1304 {
1305 	return flags;
1306 }
1307 #define slub_debug 0
1308 
1309 #define disable_higher_order_debug 0
1310 
1311 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1312 							{ return 0; }
1313 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1314 							{ return 0; }
1315 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1316 							int objects) {}
1317 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1318 							int objects) {}
1319 
1320 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1321 							{ return 0; }
1322 
1323 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1324 		void *object) {}
1325 
1326 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1327 
1328 #endif /* CONFIG_SLUB_DEBUG */
1329 
1330 /*
1331  * Slab allocation and freeing
1332  */
1333 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1334 					struct kmem_cache_order_objects oo)
1335 {
1336 	int order = oo_order(oo);
1337 
1338 	flags |= __GFP_NOTRACK;
1339 
1340 	if (node == NUMA_NO_NODE)
1341 		return alloc_pages(flags, order);
1342 	else
1343 		return alloc_pages_exact_node(node, flags, order);
1344 }
1345 
1346 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1347 {
1348 	struct page *page;
1349 	struct kmem_cache_order_objects oo = s->oo;
1350 	gfp_t alloc_gfp;
1351 
1352 	flags &= gfp_allowed_mask;
1353 
1354 	if (flags & __GFP_WAIT)
1355 		local_irq_enable();
1356 
1357 	flags |= s->allocflags;
1358 
1359 	/*
1360 	 * Let the initial higher-order allocation fail under memory pressure
1361 	 * so we fall-back to the minimum order allocation.
1362 	 */
1363 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1364 
1365 	page = alloc_slab_page(alloc_gfp, node, oo);
1366 	if (unlikely(!page)) {
1367 		oo = s->min;
1368 		/*
1369 		 * Allocation may have failed due to fragmentation.
1370 		 * Try a lower order alloc if possible
1371 		 */
1372 		page = alloc_slab_page(flags, node, oo);
1373 
1374 		if (page)
1375 			stat(s, ORDER_FALLBACK);
1376 	}
1377 
1378 	if (flags & __GFP_WAIT)
1379 		local_irq_disable();
1380 
1381 	if (!page)
1382 		return NULL;
1383 
1384 	if (kmemcheck_enabled
1385 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1386 		int pages = 1 << oo_order(oo);
1387 
1388 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1389 
1390 		/*
1391 		 * Objects from caches that have a constructor don't get
1392 		 * cleared when they're allocated, so we need to do it here.
1393 		 */
1394 		if (s->ctor)
1395 			kmemcheck_mark_uninitialized_pages(page, pages);
1396 		else
1397 			kmemcheck_mark_unallocated_pages(page, pages);
1398 	}
1399 
1400 	page->objects = oo_objects(oo);
1401 	mod_zone_page_state(page_zone(page),
1402 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1403 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1404 		1 << oo_order(oo));
1405 
1406 	return page;
1407 }
1408 
1409 static void setup_object(struct kmem_cache *s, struct page *page,
1410 				void *object)
1411 {
1412 	setup_object_debug(s, page, object);
1413 	if (unlikely(s->ctor))
1414 		s->ctor(object);
1415 }
1416 
1417 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1418 {
1419 	struct page *page;
1420 	void *start;
1421 	void *last;
1422 	void *p;
1423 
1424 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1425 
1426 	page = allocate_slab(s,
1427 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1428 	if (!page)
1429 		goto out;
1430 
1431 	inc_slabs_node(s, page_to_nid(page), page->objects);
1432 	page->slab = s;
1433 	page->flags |= 1 << PG_slab;
1434 
1435 	start = page_address(page);
1436 
1437 	if (unlikely(s->flags & SLAB_POISON))
1438 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1439 
1440 	last = start;
1441 	for_each_object(p, s, start, page->objects) {
1442 		setup_object(s, page, last);
1443 		set_freepointer(s, last, p);
1444 		last = p;
1445 	}
1446 	setup_object(s, page, last);
1447 	set_freepointer(s, last, NULL);
1448 
1449 	page->freelist = start;
1450 	page->inuse = 0;
1451 	page->frozen = 1;
1452 out:
1453 	return page;
1454 }
1455 
1456 static void __free_slab(struct kmem_cache *s, struct page *page)
1457 {
1458 	int order = compound_order(page);
1459 	int pages = 1 << order;
1460 
1461 	if (kmem_cache_debug(s)) {
1462 		void *p;
1463 
1464 		slab_pad_check(s, page);
1465 		for_each_object(p, s, page_address(page),
1466 						page->objects)
1467 			check_object(s, page, p, SLUB_RED_INACTIVE);
1468 	}
1469 
1470 	kmemcheck_free_shadow(page, compound_order(page));
1471 
1472 	mod_zone_page_state(page_zone(page),
1473 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1474 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1475 		-pages);
1476 
1477 	__ClearPageSlab(page);
1478 	reset_page_mapcount(page);
1479 	if (current->reclaim_state)
1480 		current->reclaim_state->reclaimed_slab += pages;
1481 	__free_pages(page, order);
1482 }
1483 
1484 #define need_reserve_slab_rcu						\
1485 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1486 
1487 static void rcu_free_slab(struct rcu_head *h)
1488 {
1489 	struct page *page;
1490 
1491 	if (need_reserve_slab_rcu)
1492 		page = virt_to_head_page(h);
1493 	else
1494 		page = container_of((struct list_head *)h, struct page, lru);
1495 
1496 	__free_slab(page->slab, page);
1497 }
1498 
1499 static void free_slab(struct kmem_cache *s, struct page *page)
1500 {
1501 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1502 		struct rcu_head *head;
1503 
1504 		if (need_reserve_slab_rcu) {
1505 			int order = compound_order(page);
1506 			int offset = (PAGE_SIZE << order) - s->reserved;
1507 
1508 			VM_BUG_ON(s->reserved != sizeof(*head));
1509 			head = page_address(page) + offset;
1510 		} else {
1511 			/*
1512 			 * RCU free overloads the RCU head over the LRU
1513 			 */
1514 			head = (void *)&page->lru;
1515 		}
1516 
1517 		call_rcu(head, rcu_free_slab);
1518 	} else
1519 		__free_slab(s, page);
1520 }
1521 
1522 static void discard_slab(struct kmem_cache *s, struct page *page)
1523 {
1524 	dec_slabs_node(s, page_to_nid(page), page->objects);
1525 	free_slab(s, page);
1526 }
1527 
1528 /*
1529  * Management of partially allocated slabs.
1530  *
1531  * list_lock must be held.
1532  */
1533 static inline void add_partial(struct kmem_cache_node *n,
1534 				struct page *page, int tail)
1535 {
1536 	n->nr_partial++;
1537 	if (tail)
1538 		list_add_tail(&page->lru, &n->partial);
1539 	else
1540 		list_add(&page->lru, &n->partial);
1541 }
1542 
1543 /*
1544  * list_lock must be held.
1545  */
1546 static inline void remove_partial(struct kmem_cache_node *n,
1547 					struct page *page)
1548 {
1549 	list_del(&page->lru);
1550 	n->nr_partial--;
1551 }
1552 
1553 /*
1554  * Lock slab, remove from the partial list and put the object into the
1555  * per cpu freelist.
1556  *
1557  * Must hold list_lock.
1558  */
1559 static inline int acquire_slab(struct kmem_cache *s,
1560 		struct kmem_cache_node *n, struct page *page)
1561 {
1562 	void *freelist;
1563 	unsigned long counters;
1564 	struct page new;
1565 
1566 	/*
1567 	 * Zap the freelist and set the frozen bit.
1568 	 * The old freelist is the list of objects for the
1569 	 * per cpu allocation list.
1570 	 */
1571 	do {
1572 		freelist = page->freelist;
1573 		counters = page->counters;
1574 		new.counters = counters;
1575 		new.inuse = page->objects;
1576 
1577 		VM_BUG_ON(new.frozen);
1578 		new.frozen = 1;
1579 
1580 	} while (!__cmpxchg_double_slab(s, page,
1581 			freelist, counters,
1582 			NULL, new.counters,
1583 			"lock and freeze"));
1584 
1585 	remove_partial(n, page);
1586 
1587 	if (freelist) {
1588 		/* Populate the per cpu freelist */
1589 		this_cpu_write(s->cpu_slab->freelist, freelist);
1590 		this_cpu_write(s->cpu_slab->page, page);
1591 		this_cpu_write(s->cpu_slab->node, page_to_nid(page));
1592 		return 1;
1593 	} else {
1594 		/*
1595 		 * Slab page came from the wrong list. No object to allocate
1596 		 * from. Put it onto the correct list and continue partial
1597 		 * scan.
1598 		 */
1599 		printk(KERN_ERR "SLUB: %s : Page without available objects on"
1600 			" partial list\n", s->name);
1601 		return 0;
1602 	}
1603 }
1604 
1605 /*
1606  * Try to allocate a partial slab from a specific node.
1607  */
1608 static struct page *get_partial_node(struct kmem_cache *s,
1609 					struct kmem_cache_node *n)
1610 {
1611 	struct page *page;
1612 
1613 	/*
1614 	 * Racy check. If we mistakenly see no partial slabs then we
1615 	 * just allocate an empty slab. If we mistakenly try to get a
1616 	 * partial slab and there is none available then get_partials()
1617 	 * will return NULL.
1618 	 */
1619 	if (!n || !n->nr_partial)
1620 		return NULL;
1621 
1622 	spin_lock(&n->list_lock);
1623 	list_for_each_entry(page, &n->partial, lru)
1624 		if (acquire_slab(s, n, page))
1625 			goto out;
1626 	page = NULL;
1627 out:
1628 	spin_unlock(&n->list_lock);
1629 	return page;
1630 }
1631 
1632 /*
1633  * Get a page from somewhere. Search in increasing NUMA distances.
1634  */
1635 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1636 {
1637 #ifdef CONFIG_NUMA
1638 	struct zonelist *zonelist;
1639 	struct zoneref *z;
1640 	struct zone *zone;
1641 	enum zone_type high_zoneidx = gfp_zone(flags);
1642 	struct page *page;
1643 
1644 	/*
1645 	 * The defrag ratio allows a configuration of the tradeoffs between
1646 	 * inter node defragmentation and node local allocations. A lower
1647 	 * defrag_ratio increases the tendency to do local allocations
1648 	 * instead of attempting to obtain partial slabs from other nodes.
1649 	 *
1650 	 * If the defrag_ratio is set to 0 then kmalloc() always
1651 	 * returns node local objects. If the ratio is higher then kmalloc()
1652 	 * may return off node objects because partial slabs are obtained
1653 	 * from other nodes and filled up.
1654 	 *
1655 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1656 	 * defrag_ratio = 1000) then every (well almost) allocation will
1657 	 * first attempt to defrag slab caches on other nodes. This means
1658 	 * scanning over all nodes to look for partial slabs which may be
1659 	 * expensive if we do it every time we are trying to find a slab
1660 	 * with available objects.
1661 	 */
1662 	if (!s->remote_node_defrag_ratio ||
1663 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1664 		return NULL;
1665 
1666 	get_mems_allowed();
1667 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1668 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1669 		struct kmem_cache_node *n;
1670 
1671 		n = get_node(s, zone_to_nid(zone));
1672 
1673 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1674 				n->nr_partial > s->min_partial) {
1675 			page = get_partial_node(s, n);
1676 			if (page) {
1677 				put_mems_allowed();
1678 				return page;
1679 			}
1680 		}
1681 	}
1682 	put_mems_allowed();
1683 #endif
1684 	return NULL;
1685 }
1686 
1687 /*
1688  * Get a partial page, lock it and return it.
1689  */
1690 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1691 {
1692 	struct page *page;
1693 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1694 
1695 	page = get_partial_node(s, get_node(s, searchnode));
1696 	if (page || node != NUMA_NO_NODE)
1697 		return page;
1698 
1699 	return get_any_partial(s, flags);
1700 }
1701 
1702 #ifdef CONFIG_PREEMPT
1703 /*
1704  * Calculate the next globally unique transaction for disambiguiation
1705  * during cmpxchg. The transactions start with the cpu number and are then
1706  * incremented by CONFIG_NR_CPUS.
1707  */
1708 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1709 #else
1710 /*
1711  * No preemption supported therefore also no need to check for
1712  * different cpus.
1713  */
1714 #define TID_STEP 1
1715 #endif
1716 
1717 static inline unsigned long next_tid(unsigned long tid)
1718 {
1719 	return tid + TID_STEP;
1720 }
1721 
1722 static inline unsigned int tid_to_cpu(unsigned long tid)
1723 {
1724 	return tid % TID_STEP;
1725 }
1726 
1727 static inline unsigned long tid_to_event(unsigned long tid)
1728 {
1729 	return tid / TID_STEP;
1730 }
1731 
1732 static inline unsigned int init_tid(int cpu)
1733 {
1734 	return cpu;
1735 }
1736 
1737 static inline void note_cmpxchg_failure(const char *n,
1738 		const struct kmem_cache *s, unsigned long tid)
1739 {
1740 #ifdef SLUB_DEBUG_CMPXCHG
1741 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1742 
1743 	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1744 
1745 #ifdef CONFIG_PREEMPT
1746 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1747 		printk("due to cpu change %d -> %d\n",
1748 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1749 	else
1750 #endif
1751 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1752 		printk("due to cpu running other code. Event %ld->%ld\n",
1753 			tid_to_event(tid), tid_to_event(actual_tid));
1754 	else
1755 		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1756 			actual_tid, tid, next_tid(tid));
1757 #endif
1758 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1759 }
1760 
1761 void init_kmem_cache_cpus(struct kmem_cache *s)
1762 {
1763 	int cpu;
1764 
1765 	for_each_possible_cpu(cpu)
1766 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1767 }
1768 /*
1769  * Remove the cpu slab
1770  */
1771 
1772 /*
1773  * Remove the cpu slab
1774  */
1775 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1776 {
1777 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1778 	struct page *page = c->page;
1779 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1780 	int lock = 0;
1781 	enum slab_modes l = M_NONE, m = M_NONE;
1782 	void *freelist;
1783 	void *nextfree;
1784 	int tail = 0;
1785 	struct page new;
1786 	struct page old;
1787 
1788 	if (page->freelist) {
1789 		stat(s, DEACTIVATE_REMOTE_FREES);
1790 		tail = 1;
1791 	}
1792 
1793 	c->tid = next_tid(c->tid);
1794 	c->page = NULL;
1795 	freelist = c->freelist;
1796 	c->freelist = NULL;
1797 
1798 	/*
1799 	 * Stage one: Free all available per cpu objects back
1800 	 * to the page freelist while it is still frozen. Leave the
1801 	 * last one.
1802 	 *
1803 	 * There is no need to take the list->lock because the page
1804 	 * is still frozen.
1805 	 */
1806 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1807 		void *prior;
1808 		unsigned long counters;
1809 
1810 		do {
1811 			prior = page->freelist;
1812 			counters = page->counters;
1813 			set_freepointer(s, freelist, prior);
1814 			new.counters = counters;
1815 			new.inuse--;
1816 			VM_BUG_ON(!new.frozen);
1817 
1818 		} while (!__cmpxchg_double_slab(s, page,
1819 			prior, counters,
1820 			freelist, new.counters,
1821 			"drain percpu freelist"));
1822 
1823 		freelist = nextfree;
1824 	}
1825 
1826 	/*
1827 	 * Stage two: Ensure that the page is unfrozen while the
1828 	 * list presence reflects the actual number of objects
1829 	 * during unfreeze.
1830 	 *
1831 	 * We setup the list membership and then perform a cmpxchg
1832 	 * with the count. If there is a mismatch then the page
1833 	 * is not unfrozen but the page is on the wrong list.
1834 	 *
1835 	 * Then we restart the process which may have to remove
1836 	 * the page from the list that we just put it on again
1837 	 * because the number of objects in the slab may have
1838 	 * changed.
1839 	 */
1840 redo:
1841 
1842 	old.freelist = page->freelist;
1843 	old.counters = page->counters;
1844 	VM_BUG_ON(!old.frozen);
1845 
1846 	/* Determine target state of the slab */
1847 	new.counters = old.counters;
1848 	if (freelist) {
1849 		new.inuse--;
1850 		set_freepointer(s, freelist, old.freelist);
1851 		new.freelist = freelist;
1852 	} else
1853 		new.freelist = old.freelist;
1854 
1855 	new.frozen = 0;
1856 
1857 	if (!new.inuse && n->nr_partial > s->min_partial)
1858 		m = M_FREE;
1859 	else if (new.freelist) {
1860 		m = M_PARTIAL;
1861 		if (!lock) {
1862 			lock = 1;
1863 			/*
1864 			 * Taking the spinlock removes the possiblity
1865 			 * that acquire_slab() will see a slab page that
1866 			 * is frozen
1867 			 */
1868 			spin_lock(&n->list_lock);
1869 		}
1870 	} else {
1871 		m = M_FULL;
1872 		if (kmem_cache_debug(s) && !lock) {
1873 			lock = 1;
1874 			/*
1875 			 * This also ensures that the scanning of full
1876 			 * slabs from diagnostic functions will not see
1877 			 * any frozen slabs.
1878 			 */
1879 			spin_lock(&n->list_lock);
1880 		}
1881 	}
1882 
1883 	if (l != m) {
1884 
1885 		if (l == M_PARTIAL)
1886 
1887 			remove_partial(n, page);
1888 
1889 		else if (l == M_FULL)
1890 
1891 			remove_full(s, page);
1892 
1893 		if (m == M_PARTIAL) {
1894 
1895 			add_partial(n, page, tail);
1896 			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1897 
1898 		} else if (m == M_FULL) {
1899 
1900 			stat(s, DEACTIVATE_FULL);
1901 			add_full(s, n, page);
1902 
1903 		}
1904 	}
1905 
1906 	l = m;
1907 	if (!__cmpxchg_double_slab(s, page,
1908 				old.freelist, old.counters,
1909 				new.freelist, new.counters,
1910 				"unfreezing slab"))
1911 		goto redo;
1912 
1913 	if (lock)
1914 		spin_unlock(&n->list_lock);
1915 
1916 	if (m == M_FREE) {
1917 		stat(s, DEACTIVATE_EMPTY);
1918 		discard_slab(s, page);
1919 		stat(s, FREE_SLAB);
1920 	}
1921 }
1922 
1923 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1924 {
1925 	stat(s, CPUSLAB_FLUSH);
1926 	deactivate_slab(s, c);
1927 }
1928 
1929 /*
1930  * Flush cpu slab.
1931  *
1932  * Called from IPI handler with interrupts disabled.
1933  */
1934 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1935 {
1936 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1937 
1938 	if (likely(c && c->page))
1939 		flush_slab(s, c);
1940 }
1941 
1942 static void flush_cpu_slab(void *d)
1943 {
1944 	struct kmem_cache *s = d;
1945 
1946 	__flush_cpu_slab(s, smp_processor_id());
1947 }
1948 
1949 static void flush_all(struct kmem_cache *s)
1950 {
1951 	on_each_cpu(flush_cpu_slab, s, 1);
1952 }
1953 
1954 /*
1955  * Check if the objects in a per cpu structure fit numa
1956  * locality expectations.
1957  */
1958 static inline int node_match(struct kmem_cache_cpu *c, int node)
1959 {
1960 #ifdef CONFIG_NUMA
1961 	if (node != NUMA_NO_NODE && c->node != node)
1962 		return 0;
1963 #endif
1964 	return 1;
1965 }
1966 
1967 static int count_free(struct page *page)
1968 {
1969 	return page->objects - page->inuse;
1970 }
1971 
1972 static unsigned long count_partial(struct kmem_cache_node *n,
1973 					int (*get_count)(struct page *))
1974 {
1975 	unsigned long flags;
1976 	unsigned long x = 0;
1977 	struct page *page;
1978 
1979 	spin_lock_irqsave(&n->list_lock, flags);
1980 	list_for_each_entry(page, &n->partial, lru)
1981 		x += get_count(page);
1982 	spin_unlock_irqrestore(&n->list_lock, flags);
1983 	return x;
1984 }
1985 
1986 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1987 {
1988 #ifdef CONFIG_SLUB_DEBUG
1989 	return atomic_long_read(&n->total_objects);
1990 #else
1991 	return 0;
1992 #endif
1993 }
1994 
1995 static noinline void
1996 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1997 {
1998 	int node;
1999 
2000 	printk(KERN_WARNING
2001 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2002 		nid, gfpflags);
2003 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2004 		"default order: %d, min order: %d\n", s->name, s->objsize,
2005 		s->size, oo_order(s->oo), oo_order(s->min));
2006 
2007 	if (oo_order(s->min) > get_order(s->objsize))
2008 		printk(KERN_WARNING "  %s debugging increased min order, use "
2009 		       "slub_debug=O to disable.\n", s->name);
2010 
2011 	for_each_online_node(node) {
2012 		struct kmem_cache_node *n = get_node(s, node);
2013 		unsigned long nr_slabs;
2014 		unsigned long nr_objs;
2015 		unsigned long nr_free;
2016 
2017 		if (!n)
2018 			continue;
2019 
2020 		nr_free  = count_partial(n, count_free);
2021 		nr_slabs = node_nr_slabs(n);
2022 		nr_objs  = node_nr_objs(n);
2023 
2024 		printk(KERN_WARNING
2025 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2026 			node, nr_slabs, nr_objs, nr_free);
2027 	}
2028 }
2029 
2030 /*
2031  * Slow path. The lockless freelist is empty or we need to perform
2032  * debugging duties.
2033  *
2034  * Interrupts are disabled.
2035  *
2036  * Processing is still very fast if new objects have been freed to the
2037  * regular freelist. In that case we simply take over the regular freelist
2038  * as the lockless freelist and zap the regular freelist.
2039  *
2040  * If that is not working then we fall back to the partial lists. We take the
2041  * first element of the freelist as the object to allocate now and move the
2042  * rest of the freelist to the lockless freelist.
2043  *
2044  * And if we were unable to get a new slab from the partial slab lists then
2045  * we need to allocate a new slab. This is the slowest path since it involves
2046  * a call to the page allocator and the setup of a new slab.
2047  */
2048 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2049 			  unsigned long addr, struct kmem_cache_cpu *c)
2050 {
2051 	void **object;
2052 	struct page *page;
2053 	unsigned long flags;
2054 	struct page new;
2055 	unsigned long counters;
2056 
2057 	local_irq_save(flags);
2058 #ifdef CONFIG_PREEMPT
2059 	/*
2060 	 * We may have been preempted and rescheduled on a different
2061 	 * cpu before disabling interrupts. Need to reload cpu area
2062 	 * pointer.
2063 	 */
2064 	c = this_cpu_ptr(s->cpu_slab);
2065 #endif
2066 
2067 	/* We handle __GFP_ZERO in the caller */
2068 	gfpflags &= ~__GFP_ZERO;
2069 
2070 	page = c->page;
2071 	if (!page)
2072 		goto new_slab;
2073 
2074 	if (unlikely(!node_match(c, node))) {
2075 		stat(s, ALLOC_NODE_MISMATCH);
2076 		deactivate_slab(s, c);
2077 		goto new_slab;
2078 	}
2079 
2080 	stat(s, ALLOC_SLOWPATH);
2081 
2082 	do {
2083 		object = page->freelist;
2084 		counters = page->counters;
2085 		new.counters = counters;
2086 		VM_BUG_ON(!new.frozen);
2087 
2088 		/*
2089 		 * If there is no object left then we use this loop to
2090 		 * deactivate the slab which is simple since no objects
2091 		 * are left in the slab and therefore we do not need to
2092 		 * put the page back onto the partial list.
2093 		 *
2094 		 * If there are objects left then we retrieve them
2095 		 * and use them to refill the per cpu queue.
2096 		*/
2097 
2098 		new.inuse = page->objects;
2099 		new.frozen = object != NULL;
2100 
2101 	} while (!__cmpxchg_double_slab(s, page,
2102 			object, counters,
2103 			NULL, new.counters,
2104 			"__slab_alloc"));
2105 
2106 	if (unlikely(!object)) {
2107 		c->page = NULL;
2108 		stat(s, DEACTIVATE_BYPASS);
2109 		goto new_slab;
2110 	}
2111 
2112 	stat(s, ALLOC_REFILL);
2113 
2114 load_freelist:
2115 	VM_BUG_ON(!page->frozen);
2116 	c->freelist = get_freepointer(s, object);
2117 	c->tid = next_tid(c->tid);
2118 	local_irq_restore(flags);
2119 	return object;
2120 
2121 new_slab:
2122 	page = get_partial(s, gfpflags, node);
2123 	if (page) {
2124 		stat(s, ALLOC_FROM_PARTIAL);
2125 		object = c->freelist;
2126 
2127 		if (kmem_cache_debug(s))
2128 			goto debug;
2129 		goto load_freelist;
2130 	}
2131 
2132 	page = new_slab(s, gfpflags, node);
2133 
2134 	if (page) {
2135 		c = __this_cpu_ptr(s->cpu_slab);
2136 		if (c->page)
2137 			flush_slab(s, c);
2138 
2139 		/*
2140 		 * No other reference to the page yet so we can
2141 		 * muck around with it freely without cmpxchg
2142 		 */
2143 		object = page->freelist;
2144 		page->freelist = NULL;
2145 		page->inuse = page->objects;
2146 
2147 		stat(s, ALLOC_SLAB);
2148 		c->node = page_to_nid(page);
2149 		c->page = page;
2150 
2151 		if (kmem_cache_debug(s))
2152 			goto debug;
2153 		goto load_freelist;
2154 	}
2155 	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2156 		slab_out_of_memory(s, gfpflags, node);
2157 	local_irq_restore(flags);
2158 	return NULL;
2159 
2160 debug:
2161 	if (!object || !alloc_debug_processing(s, page, object, addr))
2162 		goto new_slab;
2163 
2164 	c->freelist = get_freepointer(s, object);
2165 	deactivate_slab(s, c);
2166 	c->page = NULL;
2167 	c->node = NUMA_NO_NODE;
2168 	local_irq_restore(flags);
2169 	return object;
2170 }
2171 
2172 /*
2173  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2174  * have the fastpath folded into their functions. So no function call
2175  * overhead for requests that can be satisfied on the fastpath.
2176  *
2177  * The fastpath works by first checking if the lockless freelist can be used.
2178  * If not then __slab_alloc is called for slow processing.
2179  *
2180  * Otherwise we can simply pick the next object from the lockless free list.
2181  */
2182 static __always_inline void *slab_alloc(struct kmem_cache *s,
2183 		gfp_t gfpflags, int node, unsigned long addr)
2184 {
2185 	void **object;
2186 	struct kmem_cache_cpu *c;
2187 	unsigned long tid;
2188 
2189 	if (slab_pre_alloc_hook(s, gfpflags))
2190 		return NULL;
2191 
2192 redo:
2193 
2194 	/*
2195 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2196 	 * enabled. We may switch back and forth between cpus while
2197 	 * reading from one cpu area. That does not matter as long
2198 	 * as we end up on the original cpu again when doing the cmpxchg.
2199 	 */
2200 	c = __this_cpu_ptr(s->cpu_slab);
2201 
2202 	/*
2203 	 * The transaction ids are globally unique per cpu and per operation on
2204 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2205 	 * occurs on the right processor and that there was no operation on the
2206 	 * linked list in between.
2207 	 */
2208 	tid = c->tid;
2209 	barrier();
2210 
2211 	object = c->freelist;
2212 	if (unlikely(!object || !node_match(c, node)))
2213 
2214 		object = __slab_alloc(s, gfpflags, node, addr, c);
2215 
2216 	else {
2217 		/*
2218 		 * The cmpxchg will only match if there was no additional
2219 		 * operation and if we are on the right processor.
2220 		 *
2221 		 * The cmpxchg does the following atomically (without lock semantics!)
2222 		 * 1. Relocate first pointer to the current per cpu area.
2223 		 * 2. Verify that tid and freelist have not been changed
2224 		 * 3. If they were not changed replace tid and freelist
2225 		 *
2226 		 * Since this is without lock semantics the protection is only against
2227 		 * code executing on this cpu *not* from access by other cpus.
2228 		 */
2229 		if (unlikely(!irqsafe_cpu_cmpxchg_double(
2230 				s->cpu_slab->freelist, s->cpu_slab->tid,
2231 				object, tid,
2232 				get_freepointer_safe(s, object), next_tid(tid)))) {
2233 
2234 			note_cmpxchg_failure("slab_alloc", s, tid);
2235 			goto redo;
2236 		}
2237 		stat(s, ALLOC_FASTPATH);
2238 	}
2239 
2240 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2241 		memset(object, 0, s->objsize);
2242 
2243 	slab_post_alloc_hook(s, gfpflags, object);
2244 
2245 	return object;
2246 }
2247 
2248 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2249 {
2250 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2251 
2252 	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2253 
2254 	return ret;
2255 }
2256 EXPORT_SYMBOL(kmem_cache_alloc);
2257 
2258 #ifdef CONFIG_TRACING
2259 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2260 {
2261 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2262 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2263 	return ret;
2264 }
2265 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2266 
2267 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2268 {
2269 	void *ret = kmalloc_order(size, flags, order);
2270 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2271 	return ret;
2272 }
2273 EXPORT_SYMBOL(kmalloc_order_trace);
2274 #endif
2275 
2276 #ifdef CONFIG_NUMA
2277 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2278 {
2279 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2280 
2281 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2282 				    s->objsize, s->size, gfpflags, node);
2283 
2284 	return ret;
2285 }
2286 EXPORT_SYMBOL(kmem_cache_alloc_node);
2287 
2288 #ifdef CONFIG_TRACING
2289 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2290 				    gfp_t gfpflags,
2291 				    int node, size_t size)
2292 {
2293 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2294 
2295 	trace_kmalloc_node(_RET_IP_, ret,
2296 			   size, s->size, gfpflags, node);
2297 	return ret;
2298 }
2299 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2300 #endif
2301 #endif
2302 
2303 /*
2304  * Slow patch handling. This may still be called frequently since objects
2305  * have a longer lifetime than the cpu slabs in most processing loads.
2306  *
2307  * So we still attempt to reduce cache line usage. Just take the slab
2308  * lock and free the item. If there is no additional partial page
2309  * handling required then we can return immediately.
2310  */
2311 static void __slab_free(struct kmem_cache *s, struct page *page,
2312 			void *x, unsigned long addr)
2313 {
2314 	void *prior;
2315 	void **object = (void *)x;
2316 	int was_frozen;
2317 	int inuse;
2318 	struct page new;
2319 	unsigned long counters;
2320 	struct kmem_cache_node *n = NULL;
2321 	unsigned long uninitialized_var(flags);
2322 
2323 	stat(s, FREE_SLOWPATH);
2324 
2325 	if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2326 		return;
2327 
2328 	do {
2329 		prior = page->freelist;
2330 		counters = page->counters;
2331 		set_freepointer(s, object, prior);
2332 		new.counters = counters;
2333 		was_frozen = new.frozen;
2334 		new.inuse--;
2335 		if ((!new.inuse || !prior) && !was_frozen && !n) {
2336                         n = get_node(s, page_to_nid(page));
2337 			/*
2338 			 * Speculatively acquire the list_lock.
2339 			 * If the cmpxchg does not succeed then we may
2340 			 * drop the list_lock without any processing.
2341 			 *
2342 			 * Otherwise the list_lock will synchronize with
2343 			 * other processors updating the list of slabs.
2344 			 */
2345                         spin_lock_irqsave(&n->list_lock, flags);
2346 		}
2347 		inuse = new.inuse;
2348 
2349 	} while (!cmpxchg_double_slab(s, page,
2350 		prior, counters,
2351 		object, new.counters,
2352 		"__slab_free"));
2353 
2354 	if (likely(!n)) {
2355                 /*
2356 		 * The list lock was not taken therefore no list
2357 		 * activity can be necessary.
2358 		 */
2359                 if (was_frozen)
2360                         stat(s, FREE_FROZEN);
2361                 return;
2362         }
2363 
2364 	/*
2365 	 * was_frozen may have been set after we acquired the list_lock in
2366 	 * an earlier loop. So we need to check it here again.
2367 	 */
2368 	if (was_frozen)
2369 		stat(s, FREE_FROZEN);
2370 	else {
2371 		if (unlikely(!inuse && n->nr_partial > s->min_partial))
2372                         goto slab_empty;
2373 
2374 		/*
2375 		 * Objects left in the slab. If it was not on the partial list before
2376 		 * then add it.
2377 		 */
2378 		if (unlikely(!prior)) {
2379 			remove_full(s, page);
2380 			add_partial(n, page, 1);
2381 			stat(s, FREE_ADD_PARTIAL);
2382 		}
2383 	}
2384 	spin_unlock_irqrestore(&n->list_lock, flags);
2385 	return;
2386 
2387 slab_empty:
2388 	if (prior) {
2389 		/*
2390 		 * Slab on the partial list.
2391 		 */
2392 		remove_partial(n, page);
2393 		stat(s, FREE_REMOVE_PARTIAL);
2394 	} else
2395 		/* Slab must be on the full list */
2396 		remove_full(s, page);
2397 
2398 	spin_unlock_irqrestore(&n->list_lock, flags);
2399 	stat(s, FREE_SLAB);
2400 	discard_slab(s, page);
2401 }
2402 
2403 /*
2404  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2405  * can perform fastpath freeing without additional function calls.
2406  *
2407  * The fastpath is only possible if we are freeing to the current cpu slab
2408  * of this processor. This typically the case if we have just allocated
2409  * the item before.
2410  *
2411  * If fastpath is not possible then fall back to __slab_free where we deal
2412  * with all sorts of special processing.
2413  */
2414 static __always_inline void slab_free(struct kmem_cache *s,
2415 			struct page *page, void *x, unsigned long addr)
2416 {
2417 	void **object = (void *)x;
2418 	struct kmem_cache_cpu *c;
2419 	unsigned long tid;
2420 
2421 	slab_free_hook(s, x);
2422 
2423 redo:
2424 
2425 	/*
2426 	 * Determine the currently cpus per cpu slab.
2427 	 * The cpu may change afterward. However that does not matter since
2428 	 * data is retrieved via this pointer. If we are on the same cpu
2429 	 * during the cmpxchg then the free will succedd.
2430 	 */
2431 	c = __this_cpu_ptr(s->cpu_slab);
2432 
2433 	tid = c->tid;
2434 	barrier();
2435 
2436 	if (likely(page == c->page)) {
2437 		set_freepointer(s, object, c->freelist);
2438 
2439 		if (unlikely(!irqsafe_cpu_cmpxchg_double(
2440 				s->cpu_slab->freelist, s->cpu_slab->tid,
2441 				c->freelist, tid,
2442 				object, next_tid(tid)))) {
2443 
2444 			note_cmpxchg_failure("slab_free", s, tid);
2445 			goto redo;
2446 		}
2447 		stat(s, FREE_FASTPATH);
2448 	} else
2449 		__slab_free(s, page, x, addr);
2450 
2451 }
2452 
2453 void kmem_cache_free(struct kmem_cache *s, void *x)
2454 {
2455 	struct page *page;
2456 
2457 	page = virt_to_head_page(x);
2458 
2459 	slab_free(s, page, x, _RET_IP_);
2460 
2461 	trace_kmem_cache_free(_RET_IP_, x);
2462 }
2463 EXPORT_SYMBOL(kmem_cache_free);
2464 
2465 /*
2466  * Object placement in a slab is made very easy because we always start at
2467  * offset 0. If we tune the size of the object to the alignment then we can
2468  * get the required alignment by putting one properly sized object after
2469  * another.
2470  *
2471  * Notice that the allocation order determines the sizes of the per cpu
2472  * caches. Each processor has always one slab available for allocations.
2473  * Increasing the allocation order reduces the number of times that slabs
2474  * must be moved on and off the partial lists and is therefore a factor in
2475  * locking overhead.
2476  */
2477 
2478 /*
2479  * Mininum / Maximum order of slab pages. This influences locking overhead
2480  * and slab fragmentation. A higher order reduces the number of partial slabs
2481  * and increases the number of allocations possible without having to
2482  * take the list_lock.
2483  */
2484 static int slub_min_order;
2485 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2486 static int slub_min_objects;
2487 
2488 /*
2489  * Merge control. If this is set then no merging of slab caches will occur.
2490  * (Could be removed. This was introduced to pacify the merge skeptics.)
2491  */
2492 static int slub_nomerge;
2493 
2494 /*
2495  * Calculate the order of allocation given an slab object size.
2496  *
2497  * The order of allocation has significant impact on performance and other
2498  * system components. Generally order 0 allocations should be preferred since
2499  * order 0 does not cause fragmentation in the page allocator. Larger objects
2500  * be problematic to put into order 0 slabs because there may be too much
2501  * unused space left. We go to a higher order if more than 1/16th of the slab
2502  * would be wasted.
2503  *
2504  * In order to reach satisfactory performance we must ensure that a minimum
2505  * number of objects is in one slab. Otherwise we may generate too much
2506  * activity on the partial lists which requires taking the list_lock. This is
2507  * less a concern for large slabs though which are rarely used.
2508  *
2509  * slub_max_order specifies the order where we begin to stop considering the
2510  * number of objects in a slab as critical. If we reach slub_max_order then
2511  * we try to keep the page order as low as possible. So we accept more waste
2512  * of space in favor of a small page order.
2513  *
2514  * Higher order allocations also allow the placement of more objects in a
2515  * slab and thereby reduce object handling overhead. If the user has
2516  * requested a higher mininum order then we start with that one instead of
2517  * the smallest order which will fit the object.
2518  */
2519 static inline int slab_order(int size, int min_objects,
2520 				int max_order, int fract_leftover, int reserved)
2521 {
2522 	int order;
2523 	int rem;
2524 	int min_order = slub_min_order;
2525 
2526 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2527 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2528 
2529 	for (order = max(min_order,
2530 				fls(min_objects * size - 1) - PAGE_SHIFT);
2531 			order <= max_order; order++) {
2532 
2533 		unsigned long slab_size = PAGE_SIZE << order;
2534 
2535 		if (slab_size < min_objects * size + reserved)
2536 			continue;
2537 
2538 		rem = (slab_size - reserved) % size;
2539 
2540 		if (rem <= slab_size / fract_leftover)
2541 			break;
2542 
2543 	}
2544 
2545 	return order;
2546 }
2547 
2548 static inline int calculate_order(int size, int reserved)
2549 {
2550 	int order;
2551 	int min_objects;
2552 	int fraction;
2553 	int max_objects;
2554 
2555 	/*
2556 	 * Attempt to find best configuration for a slab. This
2557 	 * works by first attempting to generate a layout with
2558 	 * the best configuration and backing off gradually.
2559 	 *
2560 	 * First we reduce the acceptable waste in a slab. Then
2561 	 * we reduce the minimum objects required in a slab.
2562 	 */
2563 	min_objects = slub_min_objects;
2564 	if (!min_objects)
2565 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2566 	max_objects = order_objects(slub_max_order, size, reserved);
2567 	min_objects = min(min_objects, max_objects);
2568 
2569 	while (min_objects > 1) {
2570 		fraction = 16;
2571 		while (fraction >= 4) {
2572 			order = slab_order(size, min_objects,
2573 					slub_max_order, fraction, reserved);
2574 			if (order <= slub_max_order)
2575 				return order;
2576 			fraction /= 2;
2577 		}
2578 		min_objects--;
2579 	}
2580 
2581 	/*
2582 	 * We were unable to place multiple objects in a slab. Now
2583 	 * lets see if we can place a single object there.
2584 	 */
2585 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2586 	if (order <= slub_max_order)
2587 		return order;
2588 
2589 	/*
2590 	 * Doh this slab cannot be placed using slub_max_order.
2591 	 */
2592 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2593 	if (order < MAX_ORDER)
2594 		return order;
2595 	return -ENOSYS;
2596 }
2597 
2598 /*
2599  * Figure out what the alignment of the objects will be.
2600  */
2601 static unsigned long calculate_alignment(unsigned long flags,
2602 		unsigned long align, unsigned long size)
2603 {
2604 	/*
2605 	 * If the user wants hardware cache aligned objects then follow that
2606 	 * suggestion if the object is sufficiently large.
2607 	 *
2608 	 * The hardware cache alignment cannot override the specified
2609 	 * alignment though. If that is greater then use it.
2610 	 */
2611 	if (flags & SLAB_HWCACHE_ALIGN) {
2612 		unsigned long ralign = cache_line_size();
2613 		while (size <= ralign / 2)
2614 			ralign /= 2;
2615 		align = max(align, ralign);
2616 	}
2617 
2618 	if (align < ARCH_SLAB_MINALIGN)
2619 		align = ARCH_SLAB_MINALIGN;
2620 
2621 	return ALIGN(align, sizeof(void *));
2622 }
2623 
2624 static void
2625 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2626 {
2627 	n->nr_partial = 0;
2628 	spin_lock_init(&n->list_lock);
2629 	INIT_LIST_HEAD(&n->partial);
2630 #ifdef CONFIG_SLUB_DEBUG
2631 	atomic_long_set(&n->nr_slabs, 0);
2632 	atomic_long_set(&n->total_objects, 0);
2633 	INIT_LIST_HEAD(&n->full);
2634 #endif
2635 }
2636 
2637 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2638 {
2639 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2640 			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2641 
2642 	/*
2643 	 * Must align to double word boundary for the double cmpxchg
2644 	 * instructions to work; see __pcpu_double_call_return_bool().
2645 	 */
2646 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2647 				     2 * sizeof(void *));
2648 
2649 	if (!s->cpu_slab)
2650 		return 0;
2651 
2652 	init_kmem_cache_cpus(s);
2653 
2654 	return 1;
2655 }
2656 
2657 static struct kmem_cache *kmem_cache_node;
2658 
2659 /*
2660  * No kmalloc_node yet so do it by hand. We know that this is the first
2661  * slab on the node for this slabcache. There are no concurrent accesses
2662  * possible.
2663  *
2664  * Note that this function only works on the kmalloc_node_cache
2665  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2666  * memory on a fresh node that has no slab structures yet.
2667  */
2668 static void early_kmem_cache_node_alloc(int node)
2669 {
2670 	struct page *page;
2671 	struct kmem_cache_node *n;
2672 
2673 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2674 
2675 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2676 
2677 	BUG_ON(!page);
2678 	if (page_to_nid(page) != node) {
2679 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2680 				"node %d\n", node);
2681 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2682 				"in order to be able to continue\n");
2683 	}
2684 
2685 	n = page->freelist;
2686 	BUG_ON(!n);
2687 	page->freelist = get_freepointer(kmem_cache_node, n);
2688 	page->inuse++;
2689 	page->frozen = 0;
2690 	kmem_cache_node->node[node] = n;
2691 #ifdef CONFIG_SLUB_DEBUG
2692 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2693 	init_tracking(kmem_cache_node, n);
2694 #endif
2695 	init_kmem_cache_node(n, kmem_cache_node);
2696 	inc_slabs_node(kmem_cache_node, node, page->objects);
2697 
2698 	add_partial(n, page, 0);
2699 }
2700 
2701 static void free_kmem_cache_nodes(struct kmem_cache *s)
2702 {
2703 	int node;
2704 
2705 	for_each_node_state(node, N_NORMAL_MEMORY) {
2706 		struct kmem_cache_node *n = s->node[node];
2707 
2708 		if (n)
2709 			kmem_cache_free(kmem_cache_node, n);
2710 
2711 		s->node[node] = NULL;
2712 	}
2713 }
2714 
2715 static int init_kmem_cache_nodes(struct kmem_cache *s)
2716 {
2717 	int node;
2718 
2719 	for_each_node_state(node, N_NORMAL_MEMORY) {
2720 		struct kmem_cache_node *n;
2721 
2722 		if (slab_state == DOWN) {
2723 			early_kmem_cache_node_alloc(node);
2724 			continue;
2725 		}
2726 		n = kmem_cache_alloc_node(kmem_cache_node,
2727 						GFP_KERNEL, node);
2728 
2729 		if (!n) {
2730 			free_kmem_cache_nodes(s);
2731 			return 0;
2732 		}
2733 
2734 		s->node[node] = n;
2735 		init_kmem_cache_node(n, s);
2736 	}
2737 	return 1;
2738 }
2739 
2740 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2741 {
2742 	if (min < MIN_PARTIAL)
2743 		min = MIN_PARTIAL;
2744 	else if (min > MAX_PARTIAL)
2745 		min = MAX_PARTIAL;
2746 	s->min_partial = min;
2747 }
2748 
2749 /*
2750  * calculate_sizes() determines the order and the distribution of data within
2751  * a slab object.
2752  */
2753 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2754 {
2755 	unsigned long flags = s->flags;
2756 	unsigned long size = s->objsize;
2757 	unsigned long align = s->align;
2758 	int order;
2759 
2760 	/*
2761 	 * Round up object size to the next word boundary. We can only
2762 	 * place the free pointer at word boundaries and this determines
2763 	 * the possible location of the free pointer.
2764 	 */
2765 	size = ALIGN(size, sizeof(void *));
2766 
2767 #ifdef CONFIG_SLUB_DEBUG
2768 	/*
2769 	 * Determine if we can poison the object itself. If the user of
2770 	 * the slab may touch the object after free or before allocation
2771 	 * then we should never poison the object itself.
2772 	 */
2773 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2774 			!s->ctor)
2775 		s->flags |= __OBJECT_POISON;
2776 	else
2777 		s->flags &= ~__OBJECT_POISON;
2778 
2779 
2780 	/*
2781 	 * If we are Redzoning then check if there is some space between the
2782 	 * end of the object and the free pointer. If not then add an
2783 	 * additional word to have some bytes to store Redzone information.
2784 	 */
2785 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2786 		size += sizeof(void *);
2787 #endif
2788 
2789 	/*
2790 	 * With that we have determined the number of bytes in actual use
2791 	 * by the object. This is the potential offset to the free pointer.
2792 	 */
2793 	s->inuse = size;
2794 
2795 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2796 		s->ctor)) {
2797 		/*
2798 		 * Relocate free pointer after the object if it is not
2799 		 * permitted to overwrite the first word of the object on
2800 		 * kmem_cache_free.
2801 		 *
2802 		 * This is the case if we do RCU, have a constructor or
2803 		 * destructor or are poisoning the objects.
2804 		 */
2805 		s->offset = size;
2806 		size += sizeof(void *);
2807 	}
2808 
2809 #ifdef CONFIG_SLUB_DEBUG
2810 	if (flags & SLAB_STORE_USER)
2811 		/*
2812 		 * Need to store information about allocs and frees after
2813 		 * the object.
2814 		 */
2815 		size += 2 * sizeof(struct track);
2816 
2817 	if (flags & SLAB_RED_ZONE)
2818 		/*
2819 		 * Add some empty padding so that we can catch
2820 		 * overwrites from earlier objects rather than let
2821 		 * tracking information or the free pointer be
2822 		 * corrupted if a user writes before the start
2823 		 * of the object.
2824 		 */
2825 		size += sizeof(void *);
2826 #endif
2827 
2828 	/*
2829 	 * Determine the alignment based on various parameters that the
2830 	 * user specified and the dynamic determination of cache line size
2831 	 * on bootup.
2832 	 */
2833 	align = calculate_alignment(flags, align, s->objsize);
2834 	s->align = align;
2835 
2836 	/*
2837 	 * SLUB stores one object immediately after another beginning from
2838 	 * offset 0. In order to align the objects we have to simply size
2839 	 * each object to conform to the alignment.
2840 	 */
2841 	size = ALIGN(size, align);
2842 	s->size = size;
2843 	if (forced_order >= 0)
2844 		order = forced_order;
2845 	else
2846 		order = calculate_order(size, s->reserved);
2847 
2848 	if (order < 0)
2849 		return 0;
2850 
2851 	s->allocflags = 0;
2852 	if (order)
2853 		s->allocflags |= __GFP_COMP;
2854 
2855 	if (s->flags & SLAB_CACHE_DMA)
2856 		s->allocflags |= SLUB_DMA;
2857 
2858 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2859 		s->allocflags |= __GFP_RECLAIMABLE;
2860 
2861 	/*
2862 	 * Determine the number of objects per slab
2863 	 */
2864 	s->oo = oo_make(order, size, s->reserved);
2865 	s->min = oo_make(get_order(size), size, s->reserved);
2866 	if (oo_objects(s->oo) > oo_objects(s->max))
2867 		s->max = s->oo;
2868 
2869 	return !!oo_objects(s->oo);
2870 
2871 }
2872 
2873 static int kmem_cache_open(struct kmem_cache *s,
2874 		const char *name, size_t size,
2875 		size_t align, unsigned long flags,
2876 		void (*ctor)(void *))
2877 {
2878 	memset(s, 0, kmem_size);
2879 	s->name = name;
2880 	s->ctor = ctor;
2881 	s->objsize = size;
2882 	s->align = align;
2883 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2884 	s->reserved = 0;
2885 
2886 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2887 		s->reserved = sizeof(struct rcu_head);
2888 
2889 	if (!calculate_sizes(s, -1))
2890 		goto error;
2891 	if (disable_higher_order_debug) {
2892 		/*
2893 		 * Disable debugging flags that store metadata if the min slab
2894 		 * order increased.
2895 		 */
2896 		if (get_order(s->size) > get_order(s->objsize)) {
2897 			s->flags &= ~DEBUG_METADATA_FLAGS;
2898 			s->offset = 0;
2899 			if (!calculate_sizes(s, -1))
2900 				goto error;
2901 		}
2902 	}
2903 
2904 #ifdef CONFIG_CMPXCHG_DOUBLE
2905 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
2906 		/* Enable fast mode */
2907 		s->flags |= __CMPXCHG_DOUBLE;
2908 #endif
2909 
2910 	/*
2911 	 * The larger the object size is, the more pages we want on the partial
2912 	 * list to avoid pounding the page allocator excessively.
2913 	 */
2914 	set_min_partial(s, ilog2(s->size));
2915 	s->refcount = 1;
2916 #ifdef CONFIG_NUMA
2917 	s->remote_node_defrag_ratio = 1000;
2918 #endif
2919 	if (!init_kmem_cache_nodes(s))
2920 		goto error;
2921 
2922 	if (alloc_kmem_cache_cpus(s))
2923 		return 1;
2924 
2925 	free_kmem_cache_nodes(s);
2926 error:
2927 	if (flags & SLAB_PANIC)
2928 		panic("Cannot create slab %s size=%lu realsize=%u "
2929 			"order=%u offset=%u flags=%lx\n",
2930 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2931 			s->offset, flags);
2932 	return 0;
2933 }
2934 
2935 /*
2936  * Determine the size of a slab object
2937  */
2938 unsigned int kmem_cache_size(struct kmem_cache *s)
2939 {
2940 	return s->objsize;
2941 }
2942 EXPORT_SYMBOL(kmem_cache_size);
2943 
2944 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2945 							const char *text)
2946 {
2947 #ifdef CONFIG_SLUB_DEBUG
2948 	void *addr = page_address(page);
2949 	void *p;
2950 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2951 				     sizeof(long), GFP_ATOMIC);
2952 	if (!map)
2953 		return;
2954 	slab_err(s, page, "%s", text);
2955 	slab_lock(page);
2956 
2957 	get_map(s, page, map);
2958 	for_each_object(p, s, addr, page->objects) {
2959 
2960 		if (!test_bit(slab_index(p, s, addr), map)) {
2961 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2962 							p, p - addr);
2963 			print_tracking(s, p);
2964 		}
2965 	}
2966 	slab_unlock(page);
2967 	kfree(map);
2968 #endif
2969 }
2970 
2971 /*
2972  * Attempt to free all partial slabs on a node.
2973  */
2974 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2975 {
2976 	unsigned long flags;
2977 	struct page *page, *h;
2978 
2979 	spin_lock_irqsave(&n->list_lock, flags);
2980 	list_for_each_entry_safe(page, h, &n->partial, lru) {
2981 		if (!page->inuse) {
2982 			remove_partial(n, page);
2983 			discard_slab(s, page);
2984 		} else {
2985 			list_slab_objects(s, page,
2986 				"Objects remaining on kmem_cache_close()");
2987 		}
2988 	}
2989 	spin_unlock_irqrestore(&n->list_lock, flags);
2990 }
2991 
2992 /*
2993  * Release all resources used by a slab cache.
2994  */
2995 static inline int kmem_cache_close(struct kmem_cache *s)
2996 {
2997 	int node;
2998 
2999 	flush_all(s);
3000 	free_percpu(s->cpu_slab);
3001 	/* Attempt to free all objects */
3002 	for_each_node_state(node, N_NORMAL_MEMORY) {
3003 		struct kmem_cache_node *n = get_node(s, node);
3004 
3005 		free_partial(s, n);
3006 		if (n->nr_partial || slabs_node(s, node))
3007 			return 1;
3008 	}
3009 	free_kmem_cache_nodes(s);
3010 	return 0;
3011 }
3012 
3013 /*
3014  * Close a cache and release the kmem_cache structure
3015  * (must be used for caches created using kmem_cache_create)
3016  */
3017 void kmem_cache_destroy(struct kmem_cache *s)
3018 {
3019 	down_write(&slub_lock);
3020 	s->refcount--;
3021 	if (!s->refcount) {
3022 		list_del(&s->list);
3023 		if (kmem_cache_close(s)) {
3024 			printk(KERN_ERR "SLUB %s: %s called for cache that "
3025 				"still has objects.\n", s->name, __func__);
3026 			dump_stack();
3027 		}
3028 		if (s->flags & SLAB_DESTROY_BY_RCU)
3029 			rcu_barrier();
3030 		sysfs_slab_remove(s);
3031 	}
3032 	up_write(&slub_lock);
3033 }
3034 EXPORT_SYMBOL(kmem_cache_destroy);
3035 
3036 /********************************************************************
3037  *		Kmalloc subsystem
3038  *******************************************************************/
3039 
3040 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3041 EXPORT_SYMBOL(kmalloc_caches);
3042 
3043 static struct kmem_cache *kmem_cache;
3044 
3045 #ifdef CONFIG_ZONE_DMA
3046 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3047 #endif
3048 
3049 static int __init setup_slub_min_order(char *str)
3050 {
3051 	get_option(&str, &slub_min_order);
3052 
3053 	return 1;
3054 }
3055 
3056 __setup("slub_min_order=", setup_slub_min_order);
3057 
3058 static int __init setup_slub_max_order(char *str)
3059 {
3060 	get_option(&str, &slub_max_order);
3061 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3062 
3063 	return 1;
3064 }
3065 
3066 __setup("slub_max_order=", setup_slub_max_order);
3067 
3068 static int __init setup_slub_min_objects(char *str)
3069 {
3070 	get_option(&str, &slub_min_objects);
3071 
3072 	return 1;
3073 }
3074 
3075 __setup("slub_min_objects=", setup_slub_min_objects);
3076 
3077 static int __init setup_slub_nomerge(char *str)
3078 {
3079 	slub_nomerge = 1;
3080 	return 1;
3081 }
3082 
3083 __setup("slub_nomerge", setup_slub_nomerge);
3084 
3085 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3086 						int size, unsigned int flags)
3087 {
3088 	struct kmem_cache *s;
3089 
3090 	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3091 
3092 	/*
3093 	 * This function is called with IRQs disabled during early-boot on
3094 	 * single CPU so there's no need to take slub_lock here.
3095 	 */
3096 	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3097 								flags, NULL))
3098 		goto panic;
3099 
3100 	list_add(&s->list, &slab_caches);
3101 	return s;
3102 
3103 panic:
3104 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3105 	return NULL;
3106 }
3107 
3108 /*
3109  * Conversion table for small slabs sizes / 8 to the index in the
3110  * kmalloc array. This is necessary for slabs < 192 since we have non power
3111  * of two cache sizes there. The size of larger slabs can be determined using
3112  * fls.
3113  */
3114 static s8 size_index[24] = {
3115 	3,	/* 8 */
3116 	4,	/* 16 */
3117 	5,	/* 24 */
3118 	5,	/* 32 */
3119 	6,	/* 40 */
3120 	6,	/* 48 */
3121 	6,	/* 56 */
3122 	6,	/* 64 */
3123 	1,	/* 72 */
3124 	1,	/* 80 */
3125 	1,	/* 88 */
3126 	1,	/* 96 */
3127 	7,	/* 104 */
3128 	7,	/* 112 */
3129 	7,	/* 120 */
3130 	7,	/* 128 */
3131 	2,	/* 136 */
3132 	2,	/* 144 */
3133 	2,	/* 152 */
3134 	2,	/* 160 */
3135 	2,	/* 168 */
3136 	2,	/* 176 */
3137 	2,	/* 184 */
3138 	2	/* 192 */
3139 };
3140 
3141 static inline int size_index_elem(size_t bytes)
3142 {
3143 	return (bytes - 1) / 8;
3144 }
3145 
3146 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3147 {
3148 	int index;
3149 
3150 	if (size <= 192) {
3151 		if (!size)
3152 			return ZERO_SIZE_PTR;
3153 
3154 		index = size_index[size_index_elem(size)];
3155 	} else
3156 		index = fls(size - 1);
3157 
3158 #ifdef CONFIG_ZONE_DMA
3159 	if (unlikely((flags & SLUB_DMA)))
3160 		return kmalloc_dma_caches[index];
3161 
3162 #endif
3163 	return kmalloc_caches[index];
3164 }
3165 
3166 void *__kmalloc(size_t size, gfp_t flags)
3167 {
3168 	struct kmem_cache *s;
3169 	void *ret;
3170 
3171 	if (unlikely(size > SLUB_MAX_SIZE))
3172 		return kmalloc_large(size, flags);
3173 
3174 	s = get_slab(size, flags);
3175 
3176 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3177 		return s;
3178 
3179 	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3180 
3181 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3182 
3183 	return ret;
3184 }
3185 EXPORT_SYMBOL(__kmalloc);
3186 
3187 #ifdef CONFIG_NUMA
3188 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3189 {
3190 	struct page *page;
3191 	void *ptr = NULL;
3192 
3193 	flags |= __GFP_COMP | __GFP_NOTRACK;
3194 	page = alloc_pages_node(node, flags, get_order(size));
3195 	if (page)
3196 		ptr = page_address(page);
3197 
3198 	kmemleak_alloc(ptr, size, 1, flags);
3199 	return ptr;
3200 }
3201 
3202 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3203 {
3204 	struct kmem_cache *s;
3205 	void *ret;
3206 
3207 	if (unlikely(size > SLUB_MAX_SIZE)) {
3208 		ret = kmalloc_large_node(size, flags, node);
3209 
3210 		trace_kmalloc_node(_RET_IP_, ret,
3211 				   size, PAGE_SIZE << get_order(size),
3212 				   flags, node);
3213 
3214 		return ret;
3215 	}
3216 
3217 	s = get_slab(size, flags);
3218 
3219 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3220 		return s;
3221 
3222 	ret = slab_alloc(s, flags, node, _RET_IP_);
3223 
3224 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3225 
3226 	return ret;
3227 }
3228 EXPORT_SYMBOL(__kmalloc_node);
3229 #endif
3230 
3231 size_t ksize(const void *object)
3232 {
3233 	struct page *page;
3234 
3235 	if (unlikely(object == ZERO_SIZE_PTR))
3236 		return 0;
3237 
3238 	page = virt_to_head_page(object);
3239 
3240 	if (unlikely(!PageSlab(page))) {
3241 		WARN_ON(!PageCompound(page));
3242 		return PAGE_SIZE << compound_order(page);
3243 	}
3244 
3245 	return slab_ksize(page->slab);
3246 }
3247 EXPORT_SYMBOL(ksize);
3248 
3249 #ifdef CONFIG_SLUB_DEBUG
3250 bool verify_mem_not_deleted(const void *x)
3251 {
3252 	struct page *page;
3253 	void *object = (void *)x;
3254 	unsigned long flags;
3255 	bool rv;
3256 
3257 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3258 		return false;
3259 
3260 	local_irq_save(flags);
3261 
3262 	page = virt_to_head_page(x);
3263 	if (unlikely(!PageSlab(page))) {
3264 		/* maybe it was from stack? */
3265 		rv = true;
3266 		goto out_unlock;
3267 	}
3268 
3269 	slab_lock(page);
3270 	if (on_freelist(page->slab, page, object)) {
3271 		object_err(page->slab, page, object, "Object is on free-list");
3272 		rv = false;
3273 	} else {
3274 		rv = true;
3275 	}
3276 	slab_unlock(page);
3277 
3278 out_unlock:
3279 	local_irq_restore(flags);
3280 	return rv;
3281 }
3282 EXPORT_SYMBOL(verify_mem_not_deleted);
3283 #endif
3284 
3285 void kfree(const void *x)
3286 {
3287 	struct page *page;
3288 	void *object = (void *)x;
3289 
3290 	trace_kfree(_RET_IP_, x);
3291 
3292 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3293 		return;
3294 
3295 	page = virt_to_head_page(x);
3296 	if (unlikely(!PageSlab(page))) {
3297 		BUG_ON(!PageCompound(page));
3298 		kmemleak_free(x);
3299 		put_page(page);
3300 		return;
3301 	}
3302 	slab_free(page->slab, page, object, _RET_IP_);
3303 }
3304 EXPORT_SYMBOL(kfree);
3305 
3306 /*
3307  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3308  * the remaining slabs by the number of items in use. The slabs with the
3309  * most items in use come first. New allocations will then fill those up
3310  * and thus they can be removed from the partial lists.
3311  *
3312  * The slabs with the least items are placed last. This results in them
3313  * being allocated from last increasing the chance that the last objects
3314  * are freed in them.
3315  */
3316 int kmem_cache_shrink(struct kmem_cache *s)
3317 {
3318 	int node;
3319 	int i;
3320 	struct kmem_cache_node *n;
3321 	struct page *page;
3322 	struct page *t;
3323 	int objects = oo_objects(s->max);
3324 	struct list_head *slabs_by_inuse =
3325 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3326 	unsigned long flags;
3327 
3328 	if (!slabs_by_inuse)
3329 		return -ENOMEM;
3330 
3331 	flush_all(s);
3332 	for_each_node_state(node, N_NORMAL_MEMORY) {
3333 		n = get_node(s, node);
3334 
3335 		if (!n->nr_partial)
3336 			continue;
3337 
3338 		for (i = 0; i < objects; i++)
3339 			INIT_LIST_HEAD(slabs_by_inuse + i);
3340 
3341 		spin_lock_irqsave(&n->list_lock, flags);
3342 
3343 		/*
3344 		 * Build lists indexed by the items in use in each slab.
3345 		 *
3346 		 * Note that concurrent frees may occur while we hold the
3347 		 * list_lock. page->inuse here is the upper limit.
3348 		 */
3349 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3350 			if (!page->inuse) {
3351 				remove_partial(n, page);
3352 				discard_slab(s, page);
3353 			} else {
3354 				list_move(&page->lru,
3355 				slabs_by_inuse + page->inuse);
3356 			}
3357 		}
3358 
3359 		/*
3360 		 * Rebuild the partial list with the slabs filled up most
3361 		 * first and the least used slabs at the end.
3362 		 */
3363 		for (i = objects - 1; i >= 0; i--)
3364 			list_splice(slabs_by_inuse + i, n->partial.prev);
3365 
3366 		spin_unlock_irqrestore(&n->list_lock, flags);
3367 	}
3368 
3369 	kfree(slabs_by_inuse);
3370 	return 0;
3371 }
3372 EXPORT_SYMBOL(kmem_cache_shrink);
3373 
3374 #if defined(CONFIG_MEMORY_HOTPLUG)
3375 static int slab_mem_going_offline_callback(void *arg)
3376 {
3377 	struct kmem_cache *s;
3378 
3379 	down_read(&slub_lock);
3380 	list_for_each_entry(s, &slab_caches, list)
3381 		kmem_cache_shrink(s);
3382 	up_read(&slub_lock);
3383 
3384 	return 0;
3385 }
3386 
3387 static void slab_mem_offline_callback(void *arg)
3388 {
3389 	struct kmem_cache_node *n;
3390 	struct kmem_cache *s;
3391 	struct memory_notify *marg = arg;
3392 	int offline_node;
3393 
3394 	offline_node = marg->status_change_nid;
3395 
3396 	/*
3397 	 * If the node still has available memory. we need kmem_cache_node
3398 	 * for it yet.
3399 	 */
3400 	if (offline_node < 0)
3401 		return;
3402 
3403 	down_read(&slub_lock);
3404 	list_for_each_entry(s, &slab_caches, list) {
3405 		n = get_node(s, offline_node);
3406 		if (n) {
3407 			/*
3408 			 * if n->nr_slabs > 0, slabs still exist on the node
3409 			 * that is going down. We were unable to free them,
3410 			 * and offline_pages() function shouldn't call this
3411 			 * callback. So, we must fail.
3412 			 */
3413 			BUG_ON(slabs_node(s, offline_node));
3414 
3415 			s->node[offline_node] = NULL;
3416 			kmem_cache_free(kmem_cache_node, n);
3417 		}
3418 	}
3419 	up_read(&slub_lock);
3420 }
3421 
3422 static int slab_mem_going_online_callback(void *arg)
3423 {
3424 	struct kmem_cache_node *n;
3425 	struct kmem_cache *s;
3426 	struct memory_notify *marg = arg;
3427 	int nid = marg->status_change_nid;
3428 	int ret = 0;
3429 
3430 	/*
3431 	 * If the node's memory is already available, then kmem_cache_node is
3432 	 * already created. Nothing to do.
3433 	 */
3434 	if (nid < 0)
3435 		return 0;
3436 
3437 	/*
3438 	 * We are bringing a node online. No memory is available yet. We must
3439 	 * allocate a kmem_cache_node structure in order to bring the node
3440 	 * online.
3441 	 */
3442 	down_read(&slub_lock);
3443 	list_for_each_entry(s, &slab_caches, list) {
3444 		/*
3445 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3446 		 *      since memory is not yet available from the node that
3447 		 *      is brought up.
3448 		 */
3449 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3450 		if (!n) {
3451 			ret = -ENOMEM;
3452 			goto out;
3453 		}
3454 		init_kmem_cache_node(n, s);
3455 		s->node[nid] = n;
3456 	}
3457 out:
3458 	up_read(&slub_lock);
3459 	return ret;
3460 }
3461 
3462 static int slab_memory_callback(struct notifier_block *self,
3463 				unsigned long action, void *arg)
3464 {
3465 	int ret = 0;
3466 
3467 	switch (action) {
3468 	case MEM_GOING_ONLINE:
3469 		ret = slab_mem_going_online_callback(arg);
3470 		break;
3471 	case MEM_GOING_OFFLINE:
3472 		ret = slab_mem_going_offline_callback(arg);
3473 		break;
3474 	case MEM_OFFLINE:
3475 	case MEM_CANCEL_ONLINE:
3476 		slab_mem_offline_callback(arg);
3477 		break;
3478 	case MEM_ONLINE:
3479 	case MEM_CANCEL_OFFLINE:
3480 		break;
3481 	}
3482 	if (ret)
3483 		ret = notifier_from_errno(ret);
3484 	else
3485 		ret = NOTIFY_OK;
3486 	return ret;
3487 }
3488 
3489 #endif /* CONFIG_MEMORY_HOTPLUG */
3490 
3491 /********************************************************************
3492  *			Basic setup of slabs
3493  *******************************************************************/
3494 
3495 /*
3496  * Used for early kmem_cache structures that were allocated using
3497  * the page allocator
3498  */
3499 
3500 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3501 {
3502 	int node;
3503 
3504 	list_add(&s->list, &slab_caches);
3505 	s->refcount = -1;
3506 
3507 	for_each_node_state(node, N_NORMAL_MEMORY) {
3508 		struct kmem_cache_node *n = get_node(s, node);
3509 		struct page *p;
3510 
3511 		if (n) {
3512 			list_for_each_entry(p, &n->partial, lru)
3513 				p->slab = s;
3514 
3515 #ifdef CONFIG_SLUB_DEBUG
3516 			list_for_each_entry(p, &n->full, lru)
3517 				p->slab = s;
3518 #endif
3519 		}
3520 	}
3521 }
3522 
3523 void __init kmem_cache_init(void)
3524 {
3525 	int i;
3526 	int caches = 0;
3527 	struct kmem_cache *temp_kmem_cache;
3528 	int order;
3529 	struct kmem_cache *temp_kmem_cache_node;
3530 	unsigned long kmalloc_size;
3531 
3532 	kmem_size = offsetof(struct kmem_cache, node) +
3533 				nr_node_ids * sizeof(struct kmem_cache_node *);
3534 
3535 	/* Allocate two kmem_caches from the page allocator */
3536 	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3537 	order = get_order(2 * kmalloc_size);
3538 	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3539 
3540 	/*
3541 	 * Must first have the slab cache available for the allocations of the
3542 	 * struct kmem_cache_node's. There is special bootstrap code in
3543 	 * kmem_cache_open for slab_state == DOWN.
3544 	 */
3545 	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3546 
3547 	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3548 		sizeof(struct kmem_cache_node),
3549 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3550 
3551 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3552 
3553 	/* Able to allocate the per node structures */
3554 	slab_state = PARTIAL;
3555 
3556 	temp_kmem_cache = kmem_cache;
3557 	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3558 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3559 	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3560 	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3561 
3562 	/*
3563 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3564 	 * kmem_cache_node is separately allocated so no need to
3565 	 * update any list pointers.
3566 	 */
3567 	temp_kmem_cache_node = kmem_cache_node;
3568 
3569 	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3570 	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3571 
3572 	kmem_cache_bootstrap_fixup(kmem_cache_node);
3573 
3574 	caches++;
3575 	kmem_cache_bootstrap_fixup(kmem_cache);
3576 	caches++;
3577 	/* Free temporary boot structure */
3578 	free_pages((unsigned long)temp_kmem_cache, order);
3579 
3580 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3581 
3582 	/*
3583 	 * Patch up the size_index table if we have strange large alignment
3584 	 * requirements for the kmalloc array. This is only the case for
3585 	 * MIPS it seems. The standard arches will not generate any code here.
3586 	 *
3587 	 * Largest permitted alignment is 256 bytes due to the way we
3588 	 * handle the index determination for the smaller caches.
3589 	 *
3590 	 * Make sure that nothing crazy happens if someone starts tinkering
3591 	 * around with ARCH_KMALLOC_MINALIGN
3592 	 */
3593 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3594 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3595 
3596 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3597 		int elem = size_index_elem(i);
3598 		if (elem >= ARRAY_SIZE(size_index))
3599 			break;
3600 		size_index[elem] = KMALLOC_SHIFT_LOW;
3601 	}
3602 
3603 	if (KMALLOC_MIN_SIZE == 64) {
3604 		/*
3605 		 * The 96 byte size cache is not used if the alignment
3606 		 * is 64 byte.
3607 		 */
3608 		for (i = 64 + 8; i <= 96; i += 8)
3609 			size_index[size_index_elem(i)] = 7;
3610 	} else if (KMALLOC_MIN_SIZE == 128) {
3611 		/*
3612 		 * The 192 byte sized cache is not used if the alignment
3613 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3614 		 * instead.
3615 		 */
3616 		for (i = 128 + 8; i <= 192; i += 8)
3617 			size_index[size_index_elem(i)] = 8;
3618 	}
3619 
3620 	/* Caches that are not of the two-to-the-power-of size */
3621 	if (KMALLOC_MIN_SIZE <= 32) {
3622 		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3623 		caches++;
3624 	}
3625 
3626 	if (KMALLOC_MIN_SIZE <= 64) {
3627 		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3628 		caches++;
3629 	}
3630 
3631 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3632 		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3633 		caches++;
3634 	}
3635 
3636 	slab_state = UP;
3637 
3638 	/* Provide the correct kmalloc names now that the caches are up */
3639 	if (KMALLOC_MIN_SIZE <= 32) {
3640 		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3641 		BUG_ON(!kmalloc_caches[1]->name);
3642 	}
3643 
3644 	if (KMALLOC_MIN_SIZE <= 64) {
3645 		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3646 		BUG_ON(!kmalloc_caches[2]->name);
3647 	}
3648 
3649 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3650 		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3651 
3652 		BUG_ON(!s);
3653 		kmalloc_caches[i]->name = s;
3654 	}
3655 
3656 #ifdef CONFIG_SMP
3657 	register_cpu_notifier(&slab_notifier);
3658 #endif
3659 
3660 #ifdef CONFIG_ZONE_DMA
3661 	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3662 		struct kmem_cache *s = kmalloc_caches[i];
3663 
3664 		if (s && s->size) {
3665 			char *name = kasprintf(GFP_NOWAIT,
3666 				 "dma-kmalloc-%d", s->objsize);
3667 
3668 			BUG_ON(!name);
3669 			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3670 				s->objsize, SLAB_CACHE_DMA);
3671 		}
3672 	}
3673 #endif
3674 	printk(KERN_INFO
3675 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3676 		" CPUs=%d, Nodes=%d\n",
3677 		caches, cache_line_size(),
3678 		slub_min_order, slub_max_order, slub_min_objects,
3679 		nr_cpu_ids, nr_node_ids);
3680 }
3681 
3682 void __init kmem_cache_init_late(void)
3683 {
3684 }
3685 
3686 /*
3687  * Find a mergeable slab cache
3688  */
3689 static int slab_unmergeable(struct kmem_cache *s)
3690 {
3691 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3692 		return 1;
3693 
3694 	if (s->ctor)
3695 		return 1;
3696 
3697 	/*
3698 	 * We may have set a slab to be unmergeable during bootstrap.
3699 	 */
3700 	if (s->refcount < 0)
3701 		return 1;
3702 
3703 	return 0;
3704 }
3705 
3706 static struct kmem_cache *find_mergeable(size_t size,
3707 		size_t align, unsigned long flags, const char *name,
3708 		void (*ctor)(void *))
3709 {
3710 	struct kmem_cache *s;
3711 
3712 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3713 		return NULL;
3714 
3715 	if (ctor)
3716 		return NULL;
3717 
3718 	size = ALIGN(size, sizeof(void *));
3719 	align = calculate_alignment(flags, align, size);
3720 	size = ALIGN(size, align);
3721 	flags = kmem_cache_flags(size, flags, name, NULL);
3722 
3723 	list_for_each_entry(s, &slab_caches, list) {
3724 		if (slab_unmergeable(s))
3725 			continue;
3726 
3727 		if (size > s->size)
3728 			continue;
3729 
3730 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3731 				continue;
3732 		/*
3733 		 * Check if alignment is compatible.
3734 		 * Courtesy of Adrian Drzewiecki
3735 		 */
3736 		if ((s->size & ~(align - 1)) != s->size)
3737 			continue;
3738 
3739 		if (s->size - size >= sizeof(void *))
3740 			continue;
3741 
3742 		return s;
3743 	}
3744 	return NULL;
3745 }
3746 
3747 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3748 		size_t align, unsigned long flags, void (*ctor)(void *))
3749 {
3750 	struct kmem_cache *s;
3751 	char *n;
3752 
3753 	if (WARN_ON(!name))
3754 		return NULL;
3755 
3756 	down_write(&slub_lock);
3757 	s = find_mergeable(size, align, flags, name, ctor);
3758 	if (s) {
3759 		s->refcount++;
3760 		/*
3761 		 * Adjust the object sizes so that we clear
3762 		 * the complete object on kzalloc.
3763 		 */
3764 		s->objsize = max(s->objsize, (int)size);
3765 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3766 
3767 		if (sysfs_slab_alias(s, name)) {
3768 			s->refcount--;
3769 			goto err;
3770 		}
3771 		up_write(&slub_lock);
3772 		return s;
3773 	}
3774 
3775 	n = kstrdup(name, GFP_KERNEL);
3776 	if (!n)
3777 		goto err;
3778 
3779 	s = kmalloc(kmem_size, GFP_KERNEL);
3780 	if (s) {
3781 		if (kmem_cache_open(s, n,
3782 				size, align, flags, ctor)) {
3783 			list_add(&s->list, &slab_caches);
3784 			if (sysfs_slab_add(s)) {
3785 				list_del(&s->list);
3786 				kfree(n);
3787 				kfree(s);
3788 				goto err;
3789 			}
3790 			up_write(&slub_lock);
3791 			return s;
3792 		}
3793 		kfree(n);
3794 		kfree(s);
3795 	}
3796 err:
3797 	up_write(&slub_lock);
3798 
3799 	if (flags & SLAB_PANIC)
3800 		panic("Cannot create slabcache %s\n", name);
3801 	else
3802 		s = NULL;
3803 	return s;
3804 }
3805 EXPORT_SYMBOL(kmem_cache_create);
3806 
3807 #ifdef CONFIG_SMP
3808 /*
3809  * Use the cpu notifier to insure that the cpu slabs are flushed when
3810  * necessary.
3811  */
3812 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3813 		unsigned long action, void *hcpu)
3814 {
3815 	long cpu = (long)hcpu;
3816 	struct kmem_cache *s;
3817 	unsigned long flags;
3818 
3819 	switch (action) {
3820 	case CPU_UP_CANCELED:
3821 	case CPU_UP_CANCELED_FROZEN:
3822 	case CPU_DEAD:
3823 	case CPU_DEAD_FROZEN:
3824 		down_read(&slub_lock);
3825 		list_for_each_entry(s, &slab_caches, list) {
3826 			local_irq_save(flags);
3827 			__flush_cpu_slab(s, cpu);
3828 			local_irq_restore(flags);
3829 		}
3830 		up_read(&slub_lock);
3831 		break;
3832 	default:
3833 		break;
3834 	}
3835 	return NOTIFY_OK;
3836 }
3837 
3838 static struct notifier_block __cpuinitdata slab_notifier = {
3839 	.notifier_call = slab_cpuup_callback
3840 };
3841 
3842 #endif
3843 
3844 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3845 {
3846 	struct kmem_cache *s;
3847 	void *ret;
3848 
3849 	if (unlikely(size > SLUB_MAX_SIZE))
3850 		return kmalloc_large(size, gfpflags);
3851 
3852 	s = get_slab(size, gfpflags);
3853 
3854 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3855 		return s;
3856 
3857 	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3858 
3859 	/* Honor the call site pointer we received. */
3860 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3861 
3862 	return ret;
3863 }
3864 
3865 #ifdef CONFIG_NUMA
3866 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3867 					int node, unsigned long caller)
3868 {
3869 	struct kmem_cache *s;
3870 	void *ret;
3871 
3872 	if (unlikely(size > SLUB_MAX_SIZE)) {
3873 		ret = kmalloc_large_node(size, gfpflags, node);
3874 
3875 		trace_kmalloc_node(caller, ret,
3876 				   size, PAGE_SIZE << get_order(size),
3877 				   gfpflags, node);
3878 
3879 		return ret;
3880 	}
3881 
3882 	s = get_slab(size, gfpflags);
3883 
3884 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3885 		return s;
3886 
3887 	ret = slab_alloc(s, gfpflags, node, caller);
3888 
3889 	/* Honor the call site pointer we received. */
3890 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3891 
3892 	return ret;
3893 }
3894 #endif
3895 
3896 #ifdef CONFIG_SYSFS
3897 static int count_inuse(struct page *page)
3898 {
3899 	return page->inuse;
3900 }
3901 
3902 static int count_total(struct page *page)
3903 {
3904 	return page->objects;
3905 }
3906 #endif
3907 
3908 #ifdef CONFIG_SLUB_DEBUG
3909 static int validate_slab(struct kmem_cache *s, struct page *page,
3910 						unsigned long *map)
3911 {
3912 	void *p;
3913 	void *addr = page_address(page);
3914 
3915 	if (!check_slab(s, page) ||
3916 			!on_freelist(s, page, NULL))
3917 		return 0;
3918 
3919 	/* Now we know that a valid freelist exists */
3920 	bitmap_zero(map, page->objects);
3921 
3922 	get_map(s, page, map);
3923 	for_each_object(p, s, addr, page->objects) {
3924 		if (test_bit(slab_index(p, s, addr), map))
3925 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3926 				return 0;
3927 	}
3928 
3929 	for_each_object(p, s, addr, page->objects)
3930 		if (!test_bit(slab_index(p, s, addr), map))
3931 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3932 				return 0;
3933 	return 1;
3934 }
3935 
3936 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3937 						unsigned long *map)
3938 {
3939 	slab_lock(page);
3940 	validate_slab(s, page, map);
3941 	slab_unlock(page);
3942 }
3943 
3944 static int validate_slab_node(struct kmem_cache *s,
3945 		struct kmem_cache_node *n, unsigned long *map)
3946 {
3947 	unsigned long count = 0;
3948 	struct page *page;
3949 	unsigned long flags;
3950 
3951 	spin_lock_irqsave(&n->list_lock, flags);
3952 
3953 	list_for_each_entry(page, &n->partial, lru) {
3954 		validate_slab_slab(s, page, map);
3955 		count++;
3956 	}
3957 	if (count != n->nr_partial)
3958 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3959 			"counter=%ld\n", s->name, count, n->nr_partial);
3960 
3961 	if (!(s->flags & SLAB_STORE_USER))
3962 		goto out;
3963 
3964 	list_for_each_entry(page, &n->full, lru) {
3965 		validate_slab_slab(s, page, map);
3966 		count++;
3967 	}
3968 	if (count != atomic_long_read(&n->nr_slabs))
3969 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3970 			"counter=%ld\n", s->name, count,
3971 			atomic_long_read(&n->nr_slabs));
3972 
3973 out:
3974 	spin_unlock_irqrestore(&n->list_lock, flags);
3975 	return count;
3976 }
3977 
3978 static long validate_slab_cache(struct kmem_cache *s)
3979 {
3980 	int node;
3981 	unsigned long count = 0;
3982 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3983 				sizeof(unsigned long), GFP_KERNEL);
3984 
3985 	if (!map)
3986 		return -ENOMEM;
3987 
3988 	flush_all(s);
3989 	for_each_node_state(node, N_NORMAL_MEMORY) {
3990 		struct kmem_cache_node *n = get_node(s, node);
3991 
3992 		count += validate_slab_node(s, n, map);
3993 	}
3994 	kfree(map);
3995 	return count;
3996 }
3997 /*
3998  * Generate lists of code addresses where slabcache objects are allocated
3999  * and freed.
4000  */
4001 
4002 struct location {
4003 	unsigned long count;
4004 	unsigned long addr;
4005 	long long sum_time;
4006 	long min_time;
4007 	long max_time;
4008 	long min_pid;
4009 	long max_pid;
4010 	DECLARE_BITMAP(cpus, NR_CPUS);
4011 	nodemask_t nodes;
4012 };
4013 
4014 struct loc_track {
4015 	unsigned long max;
4016 	unsigned long count;
4017 	struct location *loc;
4018 };
4019 
4020 static void free_loc_track(struct loc_track *t)
4021 {
4022 	if (t->max)
4023 		free_pages((unsigned long)t->loc,
4024 			get_order(sizeof(struct location) * t->max));
4025 }
4026 
4027 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4028 {
4029 	struct location *l;
4030 	int order;
4031 
4032 	order = get_order(sizeof(struct location) * max);
4033 
4034 	l = (void *)__get_free_pages(flags, order);
4035 	if (!l)
4036 		return 0;
4037 
4038 	if (t->count) {
4039 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4040 		free_loc_track(t);
4041 	}
4042 	t->max = max;
4043 	t->loc = l;
4044 	return 1;
4045 }
4046 
4047 static int add_location(struct loc_track *t, struct kmem_cache *s,
4048 				const struct track *track)
4049 {
4050 	long start, end, pos;
4051 	struct location *l;
4052 	unsigned long caddr;
4053 	unsigned long age = jiffies - track->when;
4054 
4055 	start = -1;
4056 	end = t->count;
4057 
4058 	for ( ; ; ) {
4059 		pos = start + (end - start + 1) / 2;
4060 
4061 		/*
4062 		 * There is nothing at "end". If we end up there
4063 		 * we need to add something to before end.
4064 		 */
4065 		if (pos == end)
4066 			break;
4067 
4068 		caddr = t->loc[pos].addr;
4069 		if (track->addr == caddr) {
4070 
4071 			l = &t->loc[pos];
4072 			l->count++;
4073 			if (track->when) {
4074 				l->sum_time += age;
4075 				if (age < l->min_time)
4076 					l->min_time = age;
4077 				if (age > l->max_time)
4078 					l->max_time = age;
4079 
4080 				if (track->pid < l->min_pid)
4081 					l->min_pid = track->pid;
4082 				if (track->pid > l->max_pid)
4083 					l->max_pid = track->pid;
4084 
4085 				cpumask_set_cpu(track->cpu,
4086 						to_cpumask(l->cpus));
4087 			}
4088 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4089 			return 1;
4090 		}
4091 
4092 		if (track->addr < caddr)
4093 			end = pos;
4094 		else
4095 			start = pos;
4096 	}
4097 
4098 	/*
4099 	 * Not found. Insert new tracking element.
4100 	 */
4101 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4102 		return 0;
4103 
4104 	l = t->loc + pos;
4105 	if (pos < t->count)
4106 		memmove(l + 1, l,
4107 			(t->count - pos) * sizeof(struct location));
4108 	t->count++;
4109 	l->count = 1;
4110 	l->addr = track->addr;
4111 	l->sum_time = age;
4112 	l->min_time = age;
4113 	l->max_time = age;
4114 	l->min_pid = track->pid;
4115 	l->max_pid = track->pid;
4116 	cpumask_clear(to_cpumask(l->cpus));
4117 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4118 	nodes_clear(l->nodes);
4119 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4120 	return 1;
4121 }
4122 
4123 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4124 		struct page *page, enum track_item alloc,
4125 		unsigned long *map)
4126 {
4127 	void *addr = page_address(page);
4128 	void *p;
4129 
4130 	bitmap_zero(map, page->objects);
4131 	get_map(s, page, map);
4132 
4133 	for_each_object(p, s, addr, page->objects)
4134 		if (!test_bit(slab_index(p, s, addr), map))
4135 			add_location(t, s, get_track(s, p, alloc));
4136 }
4137 
4138 static int list_locations(struct kmem_cache *s, char *buf,
4139 					enum track_item alloc)
4140 {
4141 	int len = 0;
4142 	unsigned long i;
4143 	struct loc_track t = { 0, 0, NULL };
4144 	int node;
4145 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4146 				     sizeof(unsigned long), GFP_KERNEL);
4147 
4148 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4149 				     GFP_TEMPORARY)) {
4150 		kfree(map);
4151 		return sprintf(buf, "Out of memory\n");
4152 	}
4153 	/* Push back cpu slabs */
4154 	flush_all(s);
4155 
4156 	for_each_node_state(node, N_NORMAL_MEMORY) {
4157 		struct kmem_cache_node *n = get_node(s, node);
4158 		unsigned long flags;
4159 		struct page *page;
4160 
4161 		if (!atomic_long_read(&n->nr_slabs))
4162 			continue;
4163 
4164 		spin_lock_irqsave(&n->list_lock, flags);
4165 		list_for_each_entry(page, &n->partial, lru)
4166 			process_slab(&t, s, page, alloc, map);
4167 		list_for_each_entry(page, &n->full, lru)
4168 			process_slab(&t, s, page, alloc, map);
4169 		spin_unlock_irqrestore(&n->list_lock, flags);
4170 	}
4171 
4172 	for (i = 0; i < t.count; i++) {
4173 		struct location *l = &t.loc[i];
4174 
4175 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4176 			break;
4177 		len += sprintf(buf + len, "%7ld ", l->count);
4178 
4179 		if (l->addr)
4180 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4181 		else
4182 			len += sprintf(buf + len, "<not-available>");
4183 
4184 		if (l->sum_time != l->min_time) {
4185 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4186 				l->min_time,
4187 				(long)div_u64(l->sum_time, l->count),
4188 				l->max_time);
4189 		} else
4190 			len += sprintf(buf + len, " age=%ld",
4191 				l->min_time);
4192 
4193 		if (l->min_pid != l->max_pid)
4194 			len += sprintf(buf + len, " pid=%ld-%ld",
4195 				l->min_pid, l->max_pid);
4196 		else
4197 			len += sprintf(buf + len, " pid=%ld",
4198 				l->min_pid);
4199 
4200 		if (num_online_cpus() > 1 &&
4201 				!cpumask_empty(to_cpumask(l->cpus)) &&
4202 				len < PAGE_SIZE - 60) {
4203 			len += sprintf(buf + len, " cpus=");
4204 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4205 						 to_cpumask(l->cpus));
4206 		}
4207 
4208 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4209 				len < PAGE_SIZE - 60) {
4210 			len += sprintf(buf + len, " nodes=");
4211 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4212 					l->nodes);
4213 		}
4214 
4215 		len += sprintf(buf + len, "\n");
4216 	}
4217 
4218 	free_loc_track(&t);
4219 	kfree(map);
4220 	if (!t.count)
4221 		len += sprintf(buf, "No data\n");
4222 	return len;
4223 }
4224 #endif
4225 
4226 #ifdef SLUB_RESILIENCY_TEST
4227 static void resiliency_test(void)
4228 {
4229 	u8 *p;
4230 
4231 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4232 
4233 	printk(KERN_ERR "SLUB resiliency testing\n");
4234 	printk(KERN_ERR "-----------------------\n");
4235 	printk(KERN_ERR "A. Corruption after allocation\n");
4236 
4237 	p = kzalloc(16, GFP_KERNEL);
4238 	p[16] = 0x12;
4239 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4240 			" 0x12->0x%p\n\n", p + 16);
4241 
4242 	validate_slab_cache(kmalloc_caches[4]);
4243 
4244 	/* Hmmm... The next two are dangerous */
4245 	p = kzalloc(32, GFP_KERNEL);
4246 	p[32 + sizeof(void *)] = 0x34;
4247 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4248 			" 0x34 -> -0x%p\n", p);
4249 	printk(KERN_ERR
4250 		"If allocated object is overwritten then not detectable\n\n");
4251 
4252 	validate_slab_cache(kmalloc_caches[5]);
4253 	p = kzalloc(64, GFP_KERNEL);
4254 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4255 	*p = 0x56;
4256 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4257 									p);
4258 	printk(KERN_ERR
4259 		"If allocated object is overwritten then not detectable\n\n");
4260 	validate_slab_cache(kmalloc_caches[6]);
4261 
4262 	printk(KERN_ERR "\nB. Corruption after free\n");
4263 	p = kzalloc(128, GFP_KERNEL);
4264 	kfree(p);
4265 	*p = 0x78;
4266 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4267 	validate_slab_cache(kmalloc_caches[7]);
4268 
4269 	p = kzalloc(256, GFP_KERNEL);
4270 	kfree(p);
4271 	p[50] = 0x9a;
4272 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4273 			p);
4274 	validate_slab_cache(kmalloc_caches[8]);
4275 
4276 	p = kzalloc(512, GFP_KERNEL);
4277 	kfree(p);
4278 	p[512] = 0xab;
4279 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4280 	validate_slab_cache(kmalloc_caches[9]);
4281 }
4282 #else
4283 #ifdef CONFIG_SYSFS
4284 static void resiliency_test(void) {};
4285 #endif
4286 #endif
4287 
4288 #ifdef CONFIG_SYSFS
4289 enum slab_stat_type {
4290 	SL_ALL,			/* All slabs */
4291 	SL_PARTIAL,		/* Only partially allocated slabs */
4292 	SL_CPU,			/* Only slabs used for cpu caches */
4293 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4294 	SL_TOTAL		/* Determine object capacity not slabs */
4295 };
4296 
4297 #define SO_ALL		(1 << SL_ALL)
4298 #define SO_PARTIAL	(1 << SL_PARTIAL)
4299 #define SO_CPU		(1 << SL_CPU)
4300 #define SO_OBJECTS	(1 << SL_OBJECTS)
4301 #define SO_TOTAL	(1 << SL_TOTAL)
4302 
4303 static ssize_t show_slab_objects(struct kmem_cache *s,
4304 			    char *buf, unsigned long flags)
4305 {
4306 	unsigned long total = 0;
4307 	int node;
4308 	int x;
4309 	unsigned long *nodes;
4310 	unsigned long *per_cpu;
4311 
4312 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4313 	if (!nodes)
4314 		return -ENOMEM;
4315 	per_cpu = nodes + nr_node_ids;
4316 
4317 	if (flags & SO_CPU) {
4318 		int cpu;
4319 
4320 		for_each_possible_cpu(cpu) {
4321 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4322 
4323 			if (!c || c->node < 0)
4324 				continue;
4325 
4326 			if (c->page) {
4327 					if (flags & SO_TOTAL)
4328 						x = c->page->objects;
4329 				else if (flags & SO_OBJECTS)
4330 					x = c->page->inuse;
4331 				else
4332 					x = 1;
4333 
4334 				total += x;
4335 				nodes[c->node] += x;
4336 			}
4337 			per_cpu[c->node]++;
4338 		}
4339 	}
4340 
4341 	lock_memory_hotplug();
4342 #ifdef CONFIG_SLUB_DEBUG
4343 	if (flags & SO_ALL) {
4344 		for_each_node_state(node, N_NORMAL_MEMORY) {
4345 			struct kmem_cache_node *n = get_node(s, node);
4346 
4347 		if (flags & SO_TOTAL)
4348 			x = atomic_long_read(&n->total_objects);
4349 		else if (flags & SO_OBJECTS)
4350 			x = atomic_long_read(&n->total_objects) -
4351 				count_partial(n, count_free);
4352 
4353 			else
4354 				x = atomic_long_read(&n->nr_slabs);
4355 			total += x;
4356 			nodes[node] += x;
4357 		}
4358 
4359 	} else
4360 #endif
4361 	if (flags & SO_PARTIAL) {
4362 		for_each_node_state(node, N_NORMAL_MEMORY) {
4363 			struct kmem_cache_node *n = get_node(s, node);
4364 
4365 			if (flags & SO_TOTAL)
4366 				x = count_partial(n, count_total);
4367 			else if (flags & SO_OBJECTS)
4368 				x = count_partial(n, count_inuse);
4369 			else
4370 				x = n->nr_partial;
4371 			total += x;
4372 			nodes[node] += x;
4373 		}
4374 	}
4375 	x = sprintf(buf, "%lu", total);
4376 #ifdef CONFIG_NUMA
4377 	for_each_node_state(node, N_NORMAL_MEMORY)
4378 		if (nodes[node])
4379 			x += sprintf(buf + x, " N%d=%lu",
4380 					node, nodes[node]);
4381 #endif
4382 	unlock_memory_hotplug();
4383 	kfree(nodes);
4384 	return x + sprintf(buf + x, "\n");
4385 }
4386 
4387 #ifdef CONFIG_SLUB_DEBUG
4388 static int any_slab_objects(struct kmem_cache *s)
4389 {
4390 	int node;
4391 
4392 	for_each_online_node(node) {
4393 		struct kmem_cache_node *n = get_node(s, node);
4394 
4395 		if (!n)
4396 			continue;
4397 
4398 		if (atomic_long_read(&n->total_objects))
4399 			return 1;
4400 	}
4401 	return 0;
4402 }
4403 #endif
4404 
4405 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4406 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4407 
4408 struct slab_attribute {
4409 	struct attribute attr;
4410 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4411 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4412 };
4413 
4414 #define SLAB_ATTR_RO(_name) \
4415 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4416 
4417 #define SLAB_ATTR(_name) \
4418 	static struct slab_attribute _name##_attr =  \
4419 	__ATTR(_name, 0644, _name##_show, _name##_store)
4420 
4421 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4422 {
4423 	return sprintf(buf, "%d\n", s->size);
4424 }
4425 SLAB_ATTR_RO(slab_size);
4426 
4427 static ssize_t align_show(struct kmem_cache *s, char *buf)
4428 {
4429 	return sprintf(buf, "%d\n", s->align);
4430 }
4431 SLAB_ATTR_RO(align);
4432 
4433 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4434 {
4435 	return sprintf(buf, "%d\n", s->objsize);
4436 }
4437 SLAB_ATTR_RO(object_size);
4438 
4439 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4440 {
4441 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4442 }
4443 SLAB_ATTR_RO(objs_per_slab);
4444 
4445 static ssize_t order_store(struct kmem_cache *s,
4446 				const char *buf, size_t length)
4447 {
4448 	unsigned long order;
4449 	int err;
4450 
4451 	err = strict_strtoul(buf, 10, &order);
4452 	if (err)
4453 		return err;
4454 
4455 	if (order > slub_max_order || order < slub_min_order)
4456 		return -EINVAL;
4457 
4458 	calculate_sizes(s, order);
4459 	return length;
4460 }
4461 
4462 static ssize_t order_show(struct kmem_cache *s, char *buf)
4463 {
4464 	return sprintf(buf, "%d\n", oo_order(s->oo));
4465 }
4466 SLAB_ATTR(order);
4467 
4468 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4469 {
4470 	return sprintf(buf, "%lu\n", s->min_partial);
4471 }
4472 
4473 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4474 				 size_t length)
4475 {
4476 	unsigned long min;
4477 	int err;
4478 
4479 	err = strict_strtoul(buf, 10, &min);
4480 	if (err)
4481 		return err;
4482 
4483 	set_min_partial(s, min);
4484 	return length;
4485 }
4486 SLAB_ATTR(min_partial);
4487 
4488 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4489 {
4490 	if (!s->ctor)
4491 		return 0;
4492 	return sprintf(buf, "%pS\n", s->ctor);
4493 }
4494 SLAB_ATTR_RO(ctor);
4495 
4496 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4497 {
4498 	return sprintf(buf, "%d\n", s->refcount - 1);
4499 }
4500 SLAB_ATTR_RO(aliases);
4501 
4502 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4503 {
4504 	return show_slab_objects(s, buf, SO_PARTIAL);
4505 }
4506 SLAB_ATTR_RO(partial);
4507 
4508 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4509 {
4510 	return show_slab_objects(s, buf, SO_CPU);
4511 }
4512 SLAB_ATTR_RO(cpu_slabs);
4513 
4514 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4515 {
4516 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4517 }
4518 SLAB_ATTR_RO(objects);
4519 
4520 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4521 {
4522 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4523 }
4524 SLAB_ATTR_RO(objects_partial);
4525 
4526 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4527 {
4528 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4529 }
4530 
4531 static ssize_t reclaim_account_store(struct kmem_cache *s,
4532 				const char *buf, size_t length)
4533 {
4534 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4535 	if (buf[0] == '1')
4536 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4537 	return length;
4538 }
4539 SLAB_ATTR(reclaim_account);
4540 
4541 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4542 {
4543 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4544 }
4545 SLAB_ATTR_RO(hwcache_align);
4546 
4547 #ifdef CONFIG_ZONE_DMA
4548 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4549 {
4550 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4551 }
4552 SLAB_ATTR_RO(cache_dma);
4553 #endif
4554 
4555 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4556 {
4557 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4558 }
4559 SLAB_ATTR_RO(destroy_by_rcu);
4560 
4561 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4562 {
4563 	return sprintf(buf, "%d\n", s->reserved);
4564 }
4565 SLAB_ATTR_RO(reserved);
4566 
4567 #ifdef CONFIG_SLUB_DEBUG
4568 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4569 {
4570 	return show_slab_objects(s, buf, SO_ALL);
4571 }
4572 SLAB_ATTR_RO(slabs);
4573 
4574 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4575 {
4576 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4577 }
4578 SLAB_ATTR_RO(total_objects);
4579 
4580 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4581 {
4582 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4583 }
4584 
4585 static ssize_t sanity_checks_store(struct kmem_cache *s,
4586 				const char *buf, size_t length)
4587 {
4588 	s->flags &= ~SLAB_DEBUG_FREE;
4589 	if (buf[0] == '1') {
4590 		s->flags &= ~__CMPXCHG_DOUBLE;
4591 		s->flags |= SLAB_DEBUG_FREE;
4592 	}
4593 	return length;
4594 }
4595 SLAB_ATTR(sanity_checks);
4596 
4597 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4598 {
4599 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4600 }
4601 
4602 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4603 							size_t length)
4604 {
4605 	s->flags &= ~SLAB_TRACE;
4606 	if (buf[0] == '1') {
4607 		s->flags &= ~__CMPXCHG_DOUBLE;
4608 		s->flags |= SLAB_TRACE;
4609 	}
4610 	return length;
4611 }
4612 SLAB_ATTR(trace);
4613 
4614 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4615 {
4616 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4617 }
4618 
4619 static ssize_t red_zone_store(struct kmem_cache *s,
4620 				const char *buf, size_t length)
4621 {
4622 	if (any_slab_objects(s))
4623 		return -EBUSY;
4624 
4625 	s->flags &= ~SLAB_RED_ZONE;
4626 	if (buf[0] == '1') {
4627 		s->flags &= ~__CMPXCHG_DOUBLE;
4628 		s->flags |= SLAB_RED_ZONE;
4629 	}
4630 	calculate_sizes(s, -1);
4631 	return length;
4632 }
4633 SLAB_ATTR(red_zone);
4634 
4635 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4636 {
4637 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4638 }
4639 
4640 static ssize_t poison_store(struct kmem_cache *s,
4641 				const char *buf, size_t length)
4642 {
4643 	if (any_slab_objects(s))
4644 		return -EBUSY;
4645 
4646 	s->flags &= ~SLAB_POISON;
4647 	if (buf[0] == '1') {
4648 		s->flags &= ~__CMPXCHG_DOUBLE;
4649 		s->flags |= SLAB_POISON;
4650 	}
4651 	calculate_sizes(s, -1);
4652 	return length;
4653 }
4654 SLAB_ATTR(poison);
4655 
4656 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4657 {
4658 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4659 }
4660 
4661 static ssize_t store_user_store(struct kmem_cache *s,
4662 				const char *buf, size_t length)
4663 {
4664 	if (any_slab_objects(s))
4665 		return -EBUSY;
4666 
4667 	s->flags &= ~SLAB_STORE_USER;
4668 	if (buf[0] == '1') {
4669 		s->flags &= ~__CMPXCHG_DOUBLE;
4670 		s->flags |= SLAB_STORE_USER;
4671 	}
4672 	calculate_sizes(s, -1);
4673 	return length;
4674 }
4675 SLAB_ATTR(store_user);
4676 
4677 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4678 {
4679 	return 0;
4680 }
4681 
4682 static ssize_t validate_store(struct kmem_cache *s,
4683 			const char *buf, size_t length)
4684 {
4685 	int ret = -EINVAL;
4686 
4687 	if (buf[0] == '1') {
4688 		ret = validate_slab_cache(s);
4689 		if (ret >= 0)
4690 			ret = length;
4691 	}
4692 	return ret;
4693 }
4694 SLAB_ATTR(validate);
4695 
4696 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4697 {
4698 	if (!(s->flags & SLAB_STORE_USER))
4699 		return -ENOSYS;
4700 	return list_locations(s, buf, TRACK_ALLOC);
4701 }
4702 SLAB_ATTR_RO(alloc_calls);
4703 
4704 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4705 {
4706 	if (!(s->flags & SLAB_STORE_USER))
4707 		return -ENOSYS;
4708 	return list_locations(s, buf, TRACK_FREE);
4709 }
4710 SLAB_ATTR_RO(free_calls);
4711 #endif /* CONFIG_SLUB_DEBUG */
4712 
4713 #ifdef CONFIG_FAILSLAB
4714 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4715 {
4716 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4717 }
4718 
4719 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4720 							size_t length)
4721 {
4722 	s->flags &= ~SLAB_FAILSLAB;
4723 	if (buf[0] == '1')
4724 		s->flags |= SLAB_FAILSLAB;
4725 	return length;
4726 }
4727 SLAB_ATTR(failslab);
4728 #endif
4729 
4730 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4731 {
4732 	return 0;
4733 }
4734 
4735 static ssize_t shrink_store(struct kmem_cache *s,
4736 			const char *buf, size_t length)
4737 {
4738 	if (buf[0] == '1') {
4739 		int rc = kmem_cache_shrink(s);
4740 
4741 		if (rc)
4742 			return rc;
4743 	} else
4744 		return -EINVAL;
4745 	return length;
4746 }
4747 SLAB_ATTR(shrink);
4748 
4749 #ifdef CONFIG_NUMA
4750 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4751 {
4752 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4753 }
4754 
4755 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4756 				const char *buf, size_t length)
4757 {
4758 	unsigned long ratio;
4759 	int err;
4760 
4761 	err = strict_strtoul(buf, 10, &ratio);
4762 	if (err)
4763 		return err;
4764 
4765 	if (ratio <= 100)
4766 		s->remote_node_defrag_ratio = ratio * 10;
4767 
4768 	return length;
4769 }
4770 SLAB_ATTR(remote_node_defrag_ratio);
4771 #endif
4772 
4773 #ifdef CONFIG_SLUB_STATS
4774 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4775 {
4776 	unsigned long sum  = 0;
4777 	int cpu;
4778 	int len;
4779 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4780 
4781 	if (!data)
4782 		return -ENOMEM;
4783 
4784 	for_each_online_cpu(cpu) {
4785 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4786 
4787 		data[cpu] = x;
4788 		sum += x;
4789 	}
4790 
4791 	len = sprintf(buf, "%lu", sum);
4792 
4793 #ifdef CONFIG_SMP
4794 	for_each_online_cpu(cpu) {
4795 		if (data[cpu] && len < PAGE_SIZE - 20)
4796 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4797 	}
4798 #endif
4799 	kfree(data);
4800 	return len + sprintf(buf + len, "\n");
4801 }
4802 
4803 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4804 {
4805 	int cpu;
4806 
4807 	for_each_online_cpu(cpu)
4808 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4809 }
4810 
4811 #define STAT_ATTR(si, text) 					\
4812 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4813 {								\
4814 	return show_stat(s, buf, si);				\
4815 }								\
4816 static ssize_t text##_store(struct kmem_cache *s,		\
4817 				const char *buf, size_t length)	\
4818 {								\
4819 	if (buf[0] != '0')					\
4820 		return -EINVAL;					\
4821 	clear_stat(s, si);					\
4822 	return length;						\
4823 }								\
4824 SLAB_ATTR(text);						\
4825 
4826 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4827 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4828 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4829 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4830 STAT_ATTR(FREE_FROZEN, free_frozen);
4831 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4832 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4833 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4834 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4835 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4836 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4837 STAT_ATTR(FREE_SLAB, free_slab);
4838 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4839 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4840 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4841 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4842 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4843 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4844 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4845 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4846 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4847 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4848 #endif
4849 
4850 static struct attribute *slab_attrs[] = {
4851 	&slab_size_attr.attr,
4852 	&object_size_attr.attr,
4853 	&objs_per_slab_attr.attr,
4854 	&order_attr.attr,
4855 	&min_partial_attr.attr,
4856 	&objects_attr.attr,
4857 	&objects_partial_attr.attr,
4858 	&partial_attr.attr,
4859 	&cpu_slabs_attr.attr,
4860 	&ctor_attr.attr,
4861 	&aliases_attr.attr,
4862 	&align_attr.attr,
4863 	&hwcache_align_attr.attr,
4864 	&reclaim_account_attr.attr,
4865 	&destroy_by_rcu_attr.attr,
4866 	&shrink_attr.attr,
4867 	&reserved_attr.attr,
4868 #ifdef CONFIG_SLUB_DEBUG
4869 	&total_objects_attr.attr,
4870 	&slabs_attr.attr,
4871 	&sanity_checks_attr.attr,
4872 	&trace_attr.attr,
4873 	&red_zone_attr.attr,
4874 	&poison_attr.attr,
4875 	&store_user_attr.attr,
4876 	&validate_attr.attr,
4877 	&alloc_calls_attr.attr,
4878 	&free_calls_attr.attr,
4879 #endif
4880 #ifdef CONFIG_ZONE_DMA
4881 	&cache_dma_attr.attr,
4882 #endif
4883 #ifdef CONFIG_NUMA
4884 	&remote_node_defrag_ratio_attr.attr,
4885 #endif
4886 #ifdef CONFIG_SLUB_STATS
4887 	&alloc_fastpath_attr.attr,
4888 	&alloc_slowpath_attr.attr,
4889 	&free_fastpath_attr.attr,
4890 	&free_slowpath_attr.attr,
4891 	&free_frozen_attr.attr,
4892 	&free_add_partial_attr.attr,
4893 	&free_remove_partial_attr.attr,
4894 	&alloc_from_partial_attr.attr,
4895 	&alloc_slab_attr.attr,
4896 	&alloc_refill_attr.attr,
4897 	&alloc_node_mismatch_attr.attr,
4898 	&free_slab_attr.attr,
4899 	&cpuslab_flush_attr.attr,
4900 	&deactivate_full_attr.attr,
4901 	&deactivate_empty_attr.attr,
4902 	&deactivate_to_head_attr.attr,
4903 	&deactivate_to_tail_attr.attr,
4904 	&deactivate_remote_frees_attr.attr,
4905 	&deactivate_bypass_attr.attr,
4906 	&order_fallback_attr.attr,
4907 	&cmpxchg_double_fail_attr.attr,
4908 	&cmpxchg_double_cpu_fail_attr.attr,
4909 #endif
4910 #ifdef CONFIG_FAILSLAB
4911 	&failslab_attr.attr,
4912 #endif
4913 
4914 	NULL
4915 };
4916 
4917 static struct attribute_group slab_attr_group = {
4918 	.attrs = slab_attrs,
4919 };
4920 
4921 static ssize_t slab_attr_show(struct kobject *kobj,
4922 				struct attribute *attr,
4923 				char *buf)
4924 {
4925 	struct slab_attribute *attribute;
4926 	struct kmem_cache *s;
4927 	int err;
4928 
4929 	attribute = to_slab_attr(attr);
4930 	s = to_slab(kobj);
4931 
4932 	if (!attribute->show)
4933 		return -EIO;
4934 
4935 	err = attribute->show(s, buf);
4936 
4937 	return err;
4938 }
4939 
4940 static ssize_t slab_attr_store(struct kobject *kobj,
4941 				struct attribute *attr,
4942 				const char *buf, size_t len)
4943 {
4944 	struct slab_attribute *attribute;
4945 	struct kmem_cache *s;
4946 	int err;
4947 
4948 	attribute = to_slab_attr(attr);
4949 	s = to_slab(kobj);
4950 
4951 	if (!attribute->store)
4952 		return -EIO;
4953 
4954 	err = attribute->store(s, buf, len);
4955 
4956 	return err;
4957 }
4958 
4959 static void kmem_cache_release(struct kobject *kobj)
4960 {
4961 	struct kmem_cache *s = to_slab(kobj);
4962 
4963 	kfree(s->name);
4964 	kfree(s);
4965 }
4966 
4967 static const struct sysfs_ops slab_sysfs_ops = {
4968 	.show = slab_attr_show,
4969 	.store = slab_attr_store,
4970 };
4971 
4972 static struct kobj_type slab_ktype = {
4973 	.sysfs_ops = &slab_sysfs_ops,
4974 	.release = kmem_cache_release
4975 };
4976 
4977 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4978 {
4979 	struct kobj_type *ktype = get_ktype(kobj);
4980 
4981 	if (ktype == &slab_ktype)
4982 		return 1;
4983 	return 0;
4984 }
4985 
4986 static const struct kset_uevent_ops slab_uevent_ops = {
4987 	.filter = uevent_filter,
4988 };
4989 
4990 static struct kset *slab_kset;
4991 
4992 #define ID_STR_LENGTH 64
4993 
4994 /* Create a unique string id for a slab cache:
4995  *
4996  * Format	:[flags-]size
4997  */
4998 static char *create_unique_id(struct kmem_cache *s)
4999 {
5000 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5001 	char *p = name;
5002 
5003 	BUG_ON(!name);
5004 
5005 	*p++ = ':';
5006 	/*
5007 	 * First flags affecting slabcache operations. We will only
5008 	 * get here for aliasable slabs so we do not need to support
5009 	 * too many flags. The flags here must cover all flags that
5010 	 * are matched during merging to guarantee that the id is
5011 	 * unique.
5012 	 */
5013 	if (s->flags & SLAB_CACHE_DMA)
5014 		*p++ = 'd';
5015 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5016 		*p++ = 'a';
5017 	if (s->flags & SLAB_DEBUG_FREE)
5018 		*p++ = 'F';
5019 	if (!(s->flags & SLAB_NOTRACK))
5020 		*p++ = 't';
5021 	if (p != name + 1)
5022 		*p++ = '-';
5023 	p += sprintf(p, "%07d", s->size);
5024 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5025 	return name;
5026 }
5027 
5028 static int sysfs_slab_add(struct kmem_cache *s)
5029 {
5030 	int err;
5031 	const char *name;
5032 	int unmergeable;
5033 
5034 	if (slab_state < SYSFS)
5035 		/* Defer until later */
5036 		return 0;
5037 
5038 	unmergeable = slab_unmergeable(s);
5039 	if (unmergeable) {
5040 		/*
5041 		 * Slabcache can never be merged so we can use the name proper.
5042 		 * This is typically the case for debug situations. In that
5043 		 * case we can catch duplicate names easily.
5044 		 */
5045 		sysfs_remove_link(&slab_kset->kobj, s->name);
5046 		name = s->name;
5047 	} else {
5048 		/*
5049 		 * Create a unique name for the slab as a target
5050 		 * for the symlinks.
5051 		 */
5052 		name = create_unique_id(s);
5053 	}
5054 
5055 	s->kobj.kset = slab_kset;
5056 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5057 	if (err) {
5058 		kobject_put(&s->kobj);
5059 		return err;
5060 	}
5061 
5062 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5063 	if (err) {
5064 		kobject_del(&s->kobj);
5065 		kobject_put(&s->kobj);
5066 		return err;
5067 	}
5068 	kobject_uevent(&s->kobj, KOBJ_ADD);
5069 	if (!unmergeable) {
5070 		/* Setup first alias */
5071 		sysfs_slab_alias(s, s->name);
5072 		kfree(name);
5073 	}
5074 	return 0;
5075 }
5076 
5077 static void sysfs_slab_remove(struct kmem_cache *s)
5078 {
5079 	if (slab_state < SYSFS)
5080 		/*
5081 		 * Sysfs has not been setup yet so no need to remove the
5082 		 * cache from sysfs.
5083 		 */
5084 		return;
5085 
5086 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5087 	kobject_del(&s->kobj);
5088 	kobject_put(&s->kobj);
5089 }
5090 
5091 /*
5092  * Need to buffer aliases during bootup until sysfs becomes
5093  * available lest we lose that information.
5094  */
5095 struct saved_alias {
5096 	struct kmem_cache *s;
5097 	const char *name;
5098 	struct saved_alias *next;
5099 };
5100 
5101 static struct saved_alias *alias_list;
5102 
5103 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5104 {
5105 	struct saved_alias *al;
5106 
5107 	if (slab_state == SYSFS) {
5108 		/*
5109 		 * If we have a leftover link then remove it.
5110 		 */
5111 		sysfs_remove_link(&slab_kset->kobj, name);
5112 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5113 	}
5114 
5115 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5116 	if (!al)
5117 		return -ENOMEM;
5118 
5119 	al->s = s;
5120 	al->name = name;
5121 	al->next = alias_list;
5122 	alias_list = al;
5123 	return 0;
5124 }
5125 
5126 static int __init slab_sysfs_init(void)
5127 {
5128 	struct kmem_cache *s;
5129 	int err;
5130 
5131 	down_write(&slub_lock);
5132 
5133 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5134 	if (!slab_kset) {
5135 		up_write(&slub_lock);
5136 		printk(KERN_ERR "Cannot register slab subsystem.\n");
5137 		return -ENOSYS;
5138 	}
5139 
5140 	slab_state = SYSFS;
5141 
5142 	list_for_each_entry(s, &slab_caches, list) {
5143 		err = sysfs_slab_add(s);
5144 		if (err)
5145 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5146 						" to sysfs\n", s->name);
5147 	}
5148 
5149 	while (alias_list) {
5150 		struct saved_alias *al = alias_list;
5151 
5152 		alias_list = alias_list->next;
5153 		err = sysfs_slab_alias(al->s, al->name);
5154 		if (err)
5155 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5156 					" %s to sysfs\n", s->name);
5157 		kfree(al);
5158 	}
5159 
5160 	up_write(&slub_lock);
5161 	resiliency_test();
5162 	return 0;
5163 }
5164 
5165 __initcall(slab_sysfs_init);
5166 #endif /* CONFIG_SYSFS */
5167 
5168 /*
5169  * The /proc/slabinfo ABI
5170  */
5171 #ifdef CONFIG_SLABINFO
5172 static void print_slabinfo_header(struct seq_file *m)
5173 {
5174 	seq_puts(m, "slabinfo - version: 2.1\n");
5175 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
5176 		 "<objperslab> <pagesperslab>");
5177 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5178 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5179 	seq_putc(m, '\n');
5180 }
5181 
5182 static void *s_start(struct seq_file *m, loff_t *pos)
5183 {
5184 	loff_t n = *pos;
5185 
5186 	down_read(&slub_lock);
5187 	if (!n)
5188 		print_slabinfo_header(m);
5189 
5190 	return seq_list_start(&slab_caches, *pos);
5191 }
5192 
5193 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5194 {
5195 	return seq_list_next(p, &slab_caches, pos);
5196 }
5197 
5198 static void s_stop(struct seq_file *m, void *p)
5199 {
5200 	up_read(&slub_lock);
5201 }
5202 
5203 static int s_show(struct seq_file *m, void *p)
5204 {
5205 	unsigned long nr_partials = 0;
5206 	unsigned long nr_slabs = 0;
5207 	unsigned long nr_inuse = 0;
5208 	unsigned long nr_objs = 0;
5209 	unsigned long nr_free = 0;
5210 	struct kmem_cache *s;
5211 	int node;
5212 
5213 	s = list_entry(p, struct kmem_cache, list);
5214 
5215 	for_each_online_node(node) {
5216 		struct kmem_cache_node *n = get_node(s, node);
5217 
5218 		if (!n)
5219 			continue;
5220 
5221 		nr_partials += n->nr_partial;
5222 		nr_slabs += atomic_long_read(&n->nr_slabs);
5223 		nr_objs += atomic_long_read(&n->total_objects);
5224 		nr_free += count_partial(n, count_free);
5225 	}
5226 
5227 	nr_inuse = nr_objs - nr_free;
5228 
5229 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5230 		   nr_objs, s->size, oo_objects(s->oo),
5231 		   (1 << oo_order(s->oo)));
5232 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5233 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5234 		   0UL);
5235 	seq_putc(m, '\n');
5236 	return 0;
5237 }
5238 
5239 static const struct seq_operations slabinfo_op = {
5240 	.start = s_start,
5241 	.next = s_next,
5242 	.stop = s_stop,
5243 	.show = s_show,
5244 };
5245 
5246 static int slabinfo_open(struct inode *inode, struct file *file)
5247 {
5248 	return seq_open(file, &slabinfo_op);
5249 }
5250 
5251 static const struct file_operations proc_slabinfo_operations = {
5252 	.open		= slabinfo_open,
5253 	.read		= seq_read,
5254 	.llseek		= seq_lseek,
5255 	.release	= seq_release,
5256 };
5257 
5258 static int __init slab_proc_init(void)
5259 {
5260 	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
5261 	return 0;
5262 }
5263 module_init(slab_proc_init);
5264 #endif /* CONFIG_SLABINFO */
5265