1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 #include <linux/random.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects: 55 * A. page->freelist -> List of object free in a page 56 * B. page->inuse -> Number of objects in use 57 * C. page->objects -> Number of objects in page 58 * D. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list. The processor that froze the slab is the one who can 62 * perform list operations on the page. Other processors may put objects 63 * onto the freelist but the processor that froze the slab is the only 64 * one that can retrieve the objects from the page's freelist. 65 * 66 * The list_lock protects the partial and full list on each node and 67 * the partial slab counter. If taken then no new slabs may be added or 68 * removed from the lists nor make the number of partial slabs be modified. 69 * (Note that the total number of slabs is an atomic value that may be 70 * modified without taking the list lock). 71 * 72 * The list_lock is a centralized lock and thus we avoid taking it as 73 * much as possible. As long as SLUB does not have to handle partial 74 * slabs, operations can continue without any centralized lock. F.e. 75 * allocating a long series of objects that fill up slabs does not require 76 * the list lock. 77 * Interrupts are disabled during allocation and deallocation in order to 78 * make the slab allocator safe to use in the context of an irq. In addition 79 * interrupts are disabled to ensure that the processor does not change 80 * while handling per_cpu slabs, due to kernel preemption. 81 * 82 * SLUB assigns one slab for allocation to each processor. 83 * Allocations only occur from these slabs called cpu slabs. 84 * 85 * Slabs with free elements are kept on a partial list and during regular 86 * operations no list for full slabs is used. If an object in a full slab is 87 * freed then the slab will show up again on the partial lists. 88 * We track full slabs for debugging purposes though because otherwise we 89 * cannot scan all objects. 90 * 91 * Slabs are freed when they become empty. Teardown and setup is 92 * minimal so we rely on the page allocators per cpu caches for 93 * fast frees and allocs. 94 * 95 * Overloading of page flags that are otherwise used for LRU management. 96 * 97 * PageActive The slab is frozen and exempt from list processing. 98 * This means that the slab is dedicated to a purpose 99 * such as satisfying allocations for a specific 100 * processor. Objects may be freed in the slab while 101 * it is frozen but slab_free will then skip the usual 102 * list operations. It is up to the processor holding 103 * the slab to integrate the slab into the slab lists 104 * when the slab is no longer needed. 105 * 106 * One use of this flag is to mark slabs that are 107 * used for allocations. Then such a slab becomes a cpu 108 * slab. The cpu slab may be equipped with an additional 109 * freelist that allows lockless access to 110 * free objects in addition to the regular freelist 111 * that requires the slab lock. 112 * 113 * PageError Slab requires special handling due to debug 114 * options set. This moves slab handling out of 115 * the fast path and disables lockless freelists. 116 */ 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 void *fixup_red_left(struct kmem_cache *s, void *p) 128 { 129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 130 p += s->red_left_pad; 131 132 return p; 133 } 134 135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 136 { 137 #ifdef CONFIG_SLUB_CPU_PARTIAL 138 return !kmem_cache_debug(s); 139 #else 140 return false; 141 #endif 142 } 143 144 /* 145 * Issues still to be resolved: 146 * 147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 148 * 149 * - Variable sizing of the per node arrays 150 */ 151 152 /* Enable to test recovery from slab corruption on boot */ 153 #undef SLUB_RESILIENCY_TEST 154 155 /* Enable to log cmpxchg failures */ 156 #undef SLUB_DEBUG_CMPXCHG 157 158 /* 159 * Mininum number of partial slabs. These will be left on the partial 160 * lists even if they are empty. kmem_cache_shrink may reclaim them. 161 */ 162 #define MIN_PARTIAL 5 163 164 /* 165 * Maximum number of desirable partial slabs. 166 * The existence of more partial slabs makes kmem_cache_shrink 167 * sort the partial list by the number of objects in use. 168 */ 169 #define MAX_PARTIAL 10 170 171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 172 SLAB_POISON | SLAB_STORE_USER) 173 174 /* 175 * These debug flags cannot use CMPXCHG because there might be consistency 176 * issues when checking or reading debug information 177 */ 178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 179 SLAB_TRACE) 180 181 182 /* 183 * Debugging flags that require metadata to be stored in the slab. These get 184 * disabled when slub_debug=O is used and a cache's min order increases with 185 * metadata. 186 */ 187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 188 189 #define OO_SHIFT 16 190 #define OO_MASK ((1 << OO_SHIFT) - 1) 191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 192 193 /* Internal SLUB flags */ 194 /* Poison object */ 195 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 196 /* Use cmpxchg_double */ 197 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 198 199 /* 200 * Tracking user of a slab. 201 */ 202 #define TRACK_ADDRS_COUNT 16 203 struct track { 204 unsigned long addr; /* Called from address */ 205 #ifdef CONFIG_STACKTRACE 206 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 207 #endif 208 int cpu; /* Was running on cpu */ 209 int pid; /* Pid context */ 210 unsigned long when; /* When did the operation occur */ 211 }; 212 213 enum track_item { TRACK_ALLOC, TRACK_FREE }; 214 215 #ifdef CONFIG_SYSFS 216 static int sysfs_slab_add(struct kmem_cache *); 217 static int sysfs_slab_alias(struct kmem_cache *, const char *); 218 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 219 static void sysfs_slab_remove(struct kmem_cache *s); 220 #else 221 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 222 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 223 { return 0; } 224 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 225 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 226 #endif 227 228 static inline void stat(const struct kmem_cache *s, enum stat_item si) 229 { 230 #ifdef CONFIG_SLUB_STATS 231 /* 232 * The rmw is racy on a preemptible kernel but this is acceptable, so 233 * avoid this_cpu_add()'s irq-disable overhead. 234 */ 235 raw_cpu_inc(s->cpu_slab->stat[si]); 236 #endif 237 } 238 239 /******************************************************************** 240 * Core slab cache functions 241 *******************************************************************/ 242 243 /* 244 * Returns freelist pointer (ptr). With hardening, this is obfuscated 245 * with an XOR of the address where the pointer is held and a per-cache 246 * random number. 247 */ 248 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 249 unsigned long ptr_addr) 250 { 251 #ifdef CONFIG_SLAB_FREELIST_HARDENED 252 /* 253 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. 254 * Normally, this doesn't cause any issues, as both set_freepointer() 255 * and get_freepointer() are called with a pointer with the same tag. 256 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 257 * example, when __free_slub() iterates over objects in a cache, it 258 * passes untagged pointers to check_object(). check_object() in turns 259 * calls get_freepointer() with an untagged pointer, which causes the 260 * freepointer to be restored incorrectly. 261 */ 262 return (void *)((unsigned long)ptr ^ s->random ^ 263 (unsigned long)kasan_reset_tag((void *)ptr_addr)); 264 #else 265 return ptr; 266 #endif 267 } 268 269 /* Returns the freelist pointer recorded at location ptr_addr. */ 270 static inline void *freelist_dereference(const struct kmem_cache *s, 271 void *ptr_addr) 272 { 273 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 274 (unsigned long)ptr_addr); 275 } 276 277 static inline void *get_freepointer(struct kmem_cache *s, void *object) 278 { 279 return freelist_dereference(s, object + s->offset); 280 } 281 282 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 283 { 284 prefetch(object + s->offset); 285 } 286 287 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 288 { 289 unsigned long freepointer_addr; 290 void *p; 291 292 if (!debug_pagealloc_enabled()) 293 return get_freepointer(s, object); 294 295 freepointer_addr = (unsigned long)object + s->offset; 296 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 297 return freelist_ptr(s, p, freepointer_addr); 298 } 299 300 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 301 { 302 unsigned long freeptr_addr = (unsigned long)object + s->offset; 303 304 #ifdef CONFIG_SLAB_FREELIST_HARDENED 305 BUG_ON(object == fp); /* naive detection of double free or corruption */ 306 #endif 307 308 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 309 } 310 311 /* Loop over all objects in a slab */ 312 #define for_each_object(__p, __s, __addr, __objects) \ 313 for (__p = fixup_red_left(__s, __addr); \ 314 __p < (__addr) + (__objects) * (__s)->size; \ 315 __p += (__s)->size) 316 317 /* Determine object index from a given position */ 318 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) 319 { 320 return (kasan_reset_tag(p) - addr) / s->size; 321 } 322 323 static inline unsigned int order_objects(unsigned int order, unsigned int size) 324 { 325 return ((unsigned int)PAGE_SIZE << order) / size; 326 } 327 328 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 329 unsigned int size) 330 { 331 struct kmem_cache_order_objects x = { 332 (order << OO_SHIFT) + order_objects(order, size) 333 }; 334 335 return x; 336 } 337 338 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 339 { 340 return x.x >> OO_SHIFT; 341 } 342 343 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 344 { 345 return x.x & OO_MASK; 346 } 347 348 /* 349 * Per slab locking using the pagelock 350 */ 351 static __always_inline void slab_lock(struct page *page) 352 { 353 VM_BUG_ON_PAGE(PageTail(page), page); 354 bit_spin_lock(PG_locked, &page->flags); 355 } 356 357 static __always_inline void slab_unlock(struct page *page) 358 { 359 VM_BUG_ON_PAGE(PageTail(page), page); 360 __bit_spin_unlock(PG_locked, &page->flags); 361 } 362 363 /* Interrupts must be disabled (for the fallback code to work right) */ 364 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 365 void *freelist_old, unsigned long counters_old, 366 void *freelist_new, unsigned long counters_new, 367 const char *n) 368 { 369 VM_BUG_ON(!irqs_disabled()); 370 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 372 if (s->flags & __CMPXCHG_DOUBLE) { 373 if (cmpxchg_double(&page->freelist, &page->counters, 374 freelist_old, counters_old, 375 freelist_new, counters_new)) 376 return true; 377 } else 378 #endif 379 { 380 slab_lock(page); 381 if (page->freelist == freelist_old && 382 page->counters == counters_old) { 383 page->freelist = freelist_new; 384 page->counters = counters_new; 385 slab_unlock(page); 386 return true; 387 } 388 slab_unlock(page); 389 } 390 391 cpu_relax(); 392 stat(s, CMPXCHG_DOUBLE_FAIL); 393 394 #ifdef SLUB_DEBUG_CMPXCHG 395 pr_info("%s %s: cmpxchg double redo ", n, s->name); 396 #endif 397 398 return false; 399 } 400 401 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 402 void *freelist_old, unsigned long counters_old, 403 void *freelist_new, unsigned long counters_new, 404 const char *n) 405 { 406 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 408 if (s->flags & __CMPXCHG_DOUBLE) { 409 if (cmpxchg_double(&page->freelist, &page->counters, 410 freelist_old, counters_old, 411 freelist_new, counters_new)) 412 return true; 413 } else 414 #endif 415 { 416 unsigned long flags; 417 418 local_irq_save(flags); 419 slab_lock(page); 420 if (page->freelist == freelist_old && 421 page->counters == counters_old) { 422 page->freelist = freelist_new; 423 page->counters = counters_new; 424 slab_unlock(page); 425 local_irq_restore(flags); 426 return true; 427 } 428 slab_unlock(page); 429 local_irq_restore(flags); 430 } 431 432 cpu_relax(); 433 stat(s, CMPXCHG_DOUBLE_FAIL); 434 435 #ifdef SLUB_DEBUG_CMPXCHG 436 pr_info("%s %s: cmpxchg double redo ", n, s->name); 437 #endif 438 439 return false; 440 } 441 442 #ifdef CONFIG_SLUB_DEBUG 443 /* 444 * Determine a map of object in use on a page. 445 * 446 * Node listlock must be held to guarantee that the page does 447 * not vanish from under us. 448 */ 449 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 450 { 451 void *p; 452 void *addr = page_address(page); 453 454 for (p = page->freelist; p; p = get_freepointer(s, p)) 455 set_bit(slab_index(p, s, addr), map); 456 } 457 458 static inline unsigned int size_from_object(struct kmem_cache *s) 459 { 460 if (s->flags & SLAB_RED_ZONE) 461 return s->size - s->red_left_pad; 462 463 return s->size; 464 } 465 466 static inline void *restore_red_left(struct kmem_cache *s, void *p) 467 { 468 if (s->flags & SLAB_RED_ZONE) 469 p -= s->red_left_pad; 470 471 return p; 472 } 473 474 /* 475 * Debug settings: 476 */ 477 #if defined(CONFIG_SLUB_DEBUG_ON) 478 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 479 #else 480 static slab_flags_t slub_debug; 481 #endif 482 483 static char *slub_debug_slabs; 484 static int disable_higher_order_debug; 485 486 /* 487 * slub is about to manipulate internal object metadata. This memory lies 488 * outside the range of the allocated object, so accessing it would normally 489 * be reported by kasan as a bounds error. metadata_access_enable() is used 490 * to tell kasan that these accesses are OK. 491 */ 492 static inline void metadata_access_enable(void) 493 { 494 kasan_disable_current(); 495 } 496 497 static inline void metadata_access_disable(void) 498 { 499 kasan_enable_current(); 500 } 501 502 /* 503 * Object debugging 504 */ 505 506 /* Verify that a pointer has an address that is valid within a slab page */ 507 static inline int check_valid_pointer(struct kmem_cache *s, 508 struct page *page, void *object) 509 { 510 void *base; 511 512 if (!object) 513 return 1; 514 515 base = page_address(page); 516 object = kasan_reset_tag(object); 517 object = restore_red_left(s, object); 518 if (object < base || object >= base + page->objects * s->size || 519 (object - base) % s->size) { 520 return 0; 521 } 522 523 return 1; 524 } 525 526 static void print_section(char *level, char *text, u8 *addr, 527 unsigned int length) 528 { 529 metadata_access_enable(); 530 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 531 length, 1); 532 metadata_access_disable(); 533 } 534 535 static struct track *get_track(struct kmem_cache *s, void *object, 536 enum track_item alloc) 537 { 538 struct track *p; 539 540 if (s->offset) 541 p = object + s->offset + sizeof(void *); 542 else 543 p = object + s->inuse; 544 545 return p + alloc; 546 } 547 548 static void set_track(struct kmem_cache *s, void *object, 549 enum track_item alloc, unsigned long addr) 550 { 551 struct track *p = get_track(s, object, alloc); 552 553 if (addr) { 554 #ifdef CONFIG_STACKTRACE 555 struct stack_trace trace; 556 int i; 557 558 trace.nr_entries = 0; 559 trace.max_entries = TRACK_ADDRS_COUNT; 560 trace.entries = p->addrs; 561 trace.skip = 3; 562 metadata_access_enable(); 563 save_stack_trace(&trace); 564 metadata_access_disable(); 565 566 /* See rant in lockdep.c */ 567 if (trace.nr_entries != 0 && 568 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 569 trace.nr_entries--; 570 571 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 572 p->addrs[i] = 0; 573 #endif 574 p->addr = addr; 575 p->cpu = smp_processor_id(); 576 p->pid = current->pid; 577 p->when = jiffies; 578 } else 579 memset(p, 0, sizeof(struct track)); 580 } 581 582 static void init_tracking(struct kmem_cache *s, void *object) 583 { 584 if (!(s->flags & SLAB_STORE_USER)) 585 return; 586 587 set_track(s, object, TRACK_FREE, 0UL); 588 set_track(s, object, TRACK_ALLOC, 0UL); 589 } 590 591 static void print_track(const char *s, struct track *t, unsigned long pr_time) 592 { 593 if (!t->addr) 594 return; 595 596 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 597 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 598 #ifdef CONFIG_STACKTRACE 599 { 600 int i; 601 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 602 if (t->addrs[i]) 603 pr_err("\t%pS\n", (void *)t->addrs[i]); 604 else 605 break; 606 } 607 #endif 608 } 609 610 static void print_tracking(struct kmem_cache *s, void *object) 611 { 612 unsigned long pr_time = jiffies; 613 if (!(s->flags & SLAB_STORE_USER)) 614 return; 615 616 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 617 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 618 } 619 620 static void print_page_info(struct page *page) 621 { 622 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 623 page, page->objects, page->inuse, page->freelist, page->flags); 624 625 } 626 627 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 628 { 629 struct va_format vaf; 630 va_list args; 631 632 va_start(args, fmt); 633 vaf.fmt = fmt; 634 vaf.va = &args; 635 pr_err("=============================================================================\n"); 636 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 637 pr_err("-----------------------------------------------------------------------------\n\n"); 638 639 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 640 va_end(args); 641 } 642 643 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 644 { 645 struct va_format vaf; 646 va_list args; 647 648 va_start(args, fmt); 649 vaf.fmt = fmt; 650 vaf.va = &args; 651 pr_err("FIX %s: %pV\n", s->name, &vaf); 652 va_end(args); 653 } 654 655 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 656 { 657 unsigned int off; /* Offset of last byte */ 658 u8 *addr = page_address(page); 659 660 print_tracking(s, p); 661 662 print_page_info(page); 663 664 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 665 p, p - addr, get_freepointer(s, p)); 666 667 if (s->flags & SLAB_RED_ZONE) 668 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 669 s->red_left_pad); 670 else if (p > addr + 16) 671 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 672 673 print_section(KERN_ERR, "Object ", p, 674 min_t(unsigned int, s->object_size, PAGE_SIZE)); 675 if (s->flags & SLAB_RED_ZONE) 676 print_section(KERN_ERR, "Redzone ", p + s->object_size, 677 s->inuse - s->object_size); 678 679 if (s->offset) 680 off = s->offset + sizeof(void *); 681 else 682 off = s->inuse; 683 684 if (s->flags & SLAB_STORE_USER) 685 off += 2 * sizeof(struct track); 686 687 off += kasan_metadata_size(s); 688 689 if (off != size_from_object(s)) 690 /* Beginning of the filler is the free pointer */ 691 print_section(KERN_ERR, "Padding ", p + off, 692 size_from_object(s) - off); 693 694 dump_stack(); 695 } 696 697 void object_err(struct kmem_cache *s, struct page *page, 698 u8 *object, char *reason) 699 { 700 slab_bug(s, "%s", reason); 701 print_trailer(s, page, object); 702 } 703 704 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 705 const char *fmt, ...) 706 { 707 va_list args; 708 char buf[100]; 709 710 va_start(args, fmt); 711 vsnprintf(buf, sizeof(buf), fmt, args); 712 va_end(args); 713 slab_bug(s, "%s", buf); 714 print_page_info(page); 715 dump_stack(); 716 } 717 718 static void init_object(struct kmem_cache *s, void *object, u8 val) 719 { 720 u8 *p = object; 721 722 if (s->flags & SLAB_RED_ZONE) 723 memset(p - s->red_left_pad, val, s->red_left_pad); 724 725 if (s->flags & __OBJECT_POISON) { 726 memset(p, POISON_FREE, s->object_size - 1); 727 p[s->object_size - 1] = POISON_END; 728 } 729 730 if (s->flags & SLAB_RED_ZONE) 731 memset(p + s->object_size, val, s->inuse - s->object_size); 732 } 733 734 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 735 void *from, void *to) 736 { 737 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 738 memset(from, data, to - from); 739 } 740 741 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 742 u8 *object, char *what, 743 u8 *start, unsigned int value, unsigned int bytes) 744 { 745 u8 *fault; 746 u8 *end; 747 748 metadata_access_enable(); 749 fault = memchr_inv(start, value, bytes); 750 metadata_access_disable(); 751 if (!fault) 752 return 1; 753 754 end = start + bytes; 755 while (end > fault && end[-1] == value) 756 end--; 757 758 slab_bug(s, "%s overwritten", what); 759 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 760 fault, end - 1, fault[0], value); 761 print_trailer(s, page, object); 762 763 restore_bytes(s, what, value, fault, end); 764 return 0; 765 } 766 767 /* 768 * Object layout: 769 * 770 * object address 771 * Bytes of the object to be managed. 772 * If the freepointer may overlay the object then the free 773 * pointer is the first word of the object. 774 * 775 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 776 * 0xa5 (POISON_END) 777 * 778 * object + s->object_size 779 * Padding to reach word boundary. This is also used for Redzoning. 780 * Padding is extended by another word if Redzoning is enabled and 781 * object_size == inuse. 782 * 783 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 784 * 0xcc (RED_ACTIVE) for objects in use. 785 * 786 * object + s->inuse 787 * Meta data starts here. 788 * 789 * A. Free pointer (if we cannot overwrite object on free) 790 * B. Tracking data for SLAB_STORE_USER 791 * C. Padding to reach required alignment boundary or at mininum 792 * one word if debugging is on to be able to detect writes 793 * before the word boundary. 794 * 795 * Padding is done using 0x5a (POISON_INUSE) 796 * 797 * object + s->size 798 * Nothing is used beyond s->size. 799 * 800 * If slabcaches are merged then the object_size and inuse boundaries are mostly 801 * ignored. And therefore no slab options that rely on these boundaries 802 * may be used with merged slabcaches. 803 */ 804 805 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 806 { 807 unsigned long off = s->inuse; /* The end of info */ 808 809 if (s->offset) 810 /* Freepointer is placed after the object. */ 811 off += sizeof(void *); 812 813 if (s->flags & SLAB_STORE_USER) 814 /* We also have user information there */ 815 off += 2 * sizeof(struct track); 816 817 off += kasan_metadata_size(s); 818 819 if (size_from_object(s) == off) 820 return 1; 821 822 return check_bytes_and_report(s, page, p, "Object padding", 823 p + off, POISON_INUSE, size_from_object(s) - off); 824 } 825 826 /* Check the pad bytes at the end of a slab page */ 827 static int slab_pad_check(struct kmem_cache *s, struct page *page) 828 { 829 u8 *start; 830 u8 *fault; 831 u8 *end; 832 u8 *pad; 833 int length; 834 int remainder; 835 836 if (!(s->flags & SLAB_POISON)) 837 return 1; 838 839 start = page_address(page); 840 length = PAGE_SIZE << compound_order(page); 841 end = start + length; 842 remainder = length % s->size; 843 if (!remainder) 844 return 1; 845 846 pad = end - remainder; 847 metadata_access_enable(); 848 fault = memchr_inv(pad, POISON_INUSE, remainder); 849 metadata_access_disable(); 850 if (!fault) 851 return 1; 852 while (end > fault && end[-1] == POISON_INUSE) 853 end--; 854 855 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 856 print_section(KERN_ERR, "Padding ", pad, remainder); 857 858 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 859 return 0; 860 } 861 862 static int check_object(struct kmem_cache *s, struct page *page, 863 void *object, u8 val) 864 { 865 u8 *p = object; 866 u8 *endobject = object + s->object_size; 867 868 if (s->flags & SLAB_RED_ZONE) { 869 if (!check_bytes_and_report(s, page, object, "Redzone", 870 object - s->red_left_pad, val, s->red_left_pad)) 871 return 0; 872 873 if (!check_bytes_and_report(s, page, object, "Redzone", 874 endobject, val, s->inuse - s->object_size)) 875 return 0; 876 } else { 877 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 878 check_bytes_and_report(s, page, p, "Alignment padding", 879 endobject, POISON_INUSE, 880 s->inuse - s->object_size); 881 } 882 } 883 884 if (s->flags & SLAB_POISON) { 885 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 886 (!check_bytes_and_report(s, page, p, "Poison", p, 887 POISON_FREE, s->object_size - 1) || 888 !check_bytes_and_report(s, page, p, "Poison", 889 p + s->object_size - 1, POISON_END, 1))) 890 return 0; 891 /* 892 * check_pad_bytes cleans up on its own. 893 */ 894 check_pad_bytes(s, page, p); 895 } 896 897 if (!s->offset && val == SLUB_RED_ACTIVE) 898 /* 899 * Object and freepointer overlap. Cannot check 900 * freepointer while object is allocated. 901 */ 902 return 1; 903 904 /* Check free pointer validity */ 905 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 906 object_err(s, page, p, "Freepointer corrupt"); 907 /* 908 * No choice but to zap it and thus lose the remainder 909 * of the free objects in this slab. May cause 910 * another error because the object count is now wrong. 911 */ 912 set_freepointer(s, p, NULL); 913 return 0; 914 } 915 return 1; 916 } 917 918 static int check_slab(struct kmem_cache *s, struct page *page) 919 { 920 int maxobj; 921 922 VM_BUG_ON(!irqs_disabled()); 923 924 if (!PageSlab(page)) { 925 slab_err(s, page, "Not a valid slab page"); 926 return 0; 927 } 928 929 maxobj = order_objects(compound_order(page), s->size); 930 if (page->objects > maxobj) { 931 slab_err(s, page, "objects %u > max %u", 932 page->objects, maxobj); 933 return 0; 934 } 935 if (page->inuse > page->objects) { 936 slab_err(s, page, "inuse %u > max %u", 937 page->inuse, page->objects); 938 return 0; 939 } 940 /* Slab_pad_check fixes things up after itself */ 941 slab_pad_check(s, page); 942 return 1; 943 } 944 945 /* 946 * Determine if a certain object on a page is on the freelist. Must hold the 947 * slab lock to guarantee that the chains are in a consistent state. 948 */ 949 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 950 { 951 int nr = 0; 952 void *fp; 953 void *object = NULL; 954 int max_objects; 955 956 fp = page->freelist; 957 while (fp && nr <= page->objects) { 958 if (fp == search) 959 return 1; 960 if (!check_valid_pointer(s, page, fp)) { 961 if (object) { 962 object_err(s, page, object, 963 "Freechain corrupt"); 964 set_freepointer(s, object, NULL); 965 } else { 966 slab_err(s, page, "Freepointer corrupt"); 967 page->freelist = NULL; 968 page->inuse = page->objects; 969 slab_fix(s, "Freelist cleared"); 970 return 0; 971 } 972 break; 973 } 974 object = fp; 975 fp = get_freepointer(s, object); 976 nr++; 977 } 978 979 max_objects = order_objects(compound_order(page), s->size); 980 if (max_objects > MAX_OBJS_PER_PAGE) 981 max_objects = MAX_OBJS_PER_PAGE; 982 983 if (page->objects != max_objects) { 984 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 985 page->objects, max_objects); 986 page->objects = max_objects; 987 slab_fix(s, "Number of objects adjusted."); 988 } 989 if (page->inuse != page->objects - nr) { 990 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 991 page->inuse, page->objects - nr); 992 page->inuse = page->objects - nr; 993 slab_fix(s, "Object count adjusted."); 994 } 995 return search == NULL; 996 } 997 998 static void trace(struct kmem_cache *s, struct page *page, void *object, 999 int alloc) 1000 { 1001 if (s->flags & SLAB_TRACE) { 1002 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1003 s->name, 1004 alloc ? "alloc" : "free", 1005 object, page->inuse, 1006 page->freelist); 1007 1008 if (!alloc) 1009 print_section(KERN_INFO, "Object ", (void *)object, 1010 s->object_size); 1011 1012 dump_stack(); 1013 } 1014 } 1015 1016 /* 1017 * Tracking of fully allocated slabs for debugging purposes. 1018 */ 1019 static void add_full(struct kmem_cache *s, 1020 struct kmem_cache_node *n, struct page *page) 1021 { 1022 if (!(s->flags & SLAB_STORE_USER)) 1023 return; 1024 1025 lockdep_assert_held(&n->list_lock); 1026 list_add(&page->lru, &n->full); 1027 } 1028 1029 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1030 { 1031 if (!(s->flags & SLAB_STORE_USER)) 1032 return; 1033 1034 lockdep_assert_held(&n->list_lock); 1035 list_del(&page->lru); 1036 } 1037 1038 /* Tracking of the number of slabs for debugging purposes */ 1039 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1040 { 1041 struct kmem_cache_node *n = get_node(s, node); 1042 1043 return atomic_long_read(&n->nr_slabs); 1044 } 1045 1046 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1047 { 1048 return atomic_long_read(&n->nr_slabs); 1049 } 1050 1051 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1052 { 1053 struct kmem_cache_node *n = get_node(s, node); 1054 1055 /* 1056 * May be called early in order to allocate a slab for the 1057 * kmem_cache_node structure. Solve the chicken-egg 1058 * dilemma by deferring the increment of the count during 1059 * bootstrap (see early_kmem_cache_node_alloc). 1060 */ 1061 if (likely(n)) { 1062 atomic_long_inc(&n->nr_slabs); 1063 atomic_long_add(objects, &n->total_objects); 1064 } 1065 } 1066 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1067 { 1068 struct kmem_cache_node *n = get_node(s, node); 1069 1070 atomic_long_dec(&n->nr_slabs); 1071 atomic_long_sub(objects, &n->total_objects); 1072 } 1073 1074 /* Object debug checks for alloc/free paths */ 1075 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1076 void *object) 1077 { 1078 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1079 return; 1080 1081 init_object(s, object, SLUB_RED_INACTIVE); 1082 init_tracking(s, object); 1083 } 1084 1085 static void setup_page_debug(struct kmem_cache *s, void *addr, int order) 1086 { 1087 if (!(s->flags & SLAB_POISON)) 1088 return; 1089 1090 metadata_access_enable(); 1091 memset(addr, POISON_INUSE, PAGE_SIZE << order); 1092 metadata_access_disable(); 1093 } 1094 1095 static inline int alloc_consistency_checks(struct kmem_cache *s, 1096 struct page *page, void *object) 1097 { 1098 if (!check_slab(s, page)) 1099 return 0; 1100 1101 if (!check_valid_pointer(s, page, object)) { 1102 object_err(s, page, object, "Freelist Pointer check fails"); 1103 return 0; 1104 } 1105 1106 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1107 return 0; 1108 1109 return 1; 1110 } 1111 1112 static noinline int alloc_debug_processing(struct kmem_cache *s, 1113 struct page *page, 1114 void *object, unsigned long addr) 1115 { 1116 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1117 if (!alloc_consistency_checks(s, page, object)) 1118 goto bad; 1119 } 1120 1121 /* Success perform special debug activities for allocs */ 1122 if (s->flags & SLAB_STORE_USER) 1123 set_track(s, object, TRACK_ALLOC, addr); 1124 trace(s, page, object, 1); 1125 init_object(s, object, SLUB_RED_ACTIVE); 1126 return 1; 1127 1128 bad: 1129 if (PageSlab(page)) { 1130 /* 1131 * If this is a slab page then lets do the best we can 1132 * to avoid issues in the future. Marking all objects 1133 * as used avoids touching the remaining objects. 1134 */ 1135 slab_fix(s, "Marking all objects used"); 1136 page->inuse = page->objects; 1137 page->freelist = NULL; 1138 } 1139 return 0; 1140 } 1141 1142 static inline int free_consistency_checks(struct kmem_cache *s, 1143 struct page *page, void *object, unsigned long addr) 1144 { 1145 if (!check_valid_pointer(s, page, object)) { 1146 slab_err(s, page, "Invalid object pointer 0x%p", object); 1147 return 0; 1148 } 1149 1150 if (on_freelist(s, page, object)) { 1151 object_err(s, page, object, "Object already free"); 1152 return 0; 1153 } 1154 1155 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1156 return 0; 1157 1158 if (unlikely(s != page->slab_cache)) { 1159 if (!PageSlab(page)) { 1160 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1161 object); 1162 } else if (!page->slab_cache) { 1163 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1164 object); 1165 dump_stack(); 1166 } else 1167 object_err(s, page, object, 1168 "page slab pointer corrupt."); 1169 return 0; 1170 } 1171 return 1; 1172 } 1173 1174 /* Supports checking bulk free of a constructed freelist */ 1175 static noinline int free_debug_processing( 1176 struct kmem_cache *s, struct page *page, 1177 void *head, void *tail, int bulk_cnt, 1178 unsigned long addr) 1179 { 1180 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1181 void *object = head; 1182 int cnt = 0; 1183 unsigned long uninitialized_var(flags); 1184 int ret = 0; 1185 1186 spin_lock_irqsave(&n->list_lock, flags); 1187 slab_lock(page); 1188 1189 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1190 if (!check_slab(s, page)) 1191 goto out; 1192 } 1193 1194 next_object: 1195 cnt++; 1196 1197 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1198 if (!free_consistency_checks(s, page, object, addr)) 1199 goto out; 1200 } 1201 1202 if (s->flags & SLAB_STORE_USER) 1203 set_track(s, object, TRACK_FREE, addr); 1204 trace(s, page, object, 0); 1205 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1206 init_object(s, object, SLUB_RED_INACTIVE); 1207 1208 /* Reached end of constructed freelist yet? */ 1209 if (object != tail) { 1210 object = get_freepointer(s, object); 1211 goto next_object; 1212 } 1213 ret = 1; 1214 1215 out: 1216 if (cnt != bulk_cnt) 1217 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1218 bulk_cnt, cnt); 1219 1220 slab_unlock(page); 1221 spin_unlock_irqrestore(&n->list_lock, flags); 1222 if (!ret) 1223 slab_fix(s, "Object at 0x%p not freed", object); 1224 return ret; 1225 } 1226 1227 static int __init setup_slub_debug(char *str) 1228 { 1229 slub_debug = DEBUG_DEFAULT_FLAGS; 1230 if (*str++ != '=' || !*str) 1231 /* 1232 * No options specified. Switch on full debugging. 1233 */ 1234 goto out; 1235 1236 if (*str == ',') 1237 /* 1238 * No options but restriction on slabs. This means full 1239 * debugging for slabs matching a pattern. 1240 */ 1241 goto check_slabs; 1242 1243 slub_debug = 0; 1244 if (*str == '-') 1245 /* 1246 * Switch off all debugging measures. 1247 */ 1248 goto out; 1249 1250 /* 1251 * Determine which debug features should be switched on 1252 */ 1253 for (; *str && *str != ','; str++) { 1254 switch (tolower(*str)) { 1255 case 'f': 1256 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1257 break; 1258 case 'z': 1259 slub_debug |= SLAB_RED_ZONE; 1260 break; 1261 case 'p': 1262 slub_debug |= SLAB_POISON; 1263 break; 1264 case 'u': 1265 slub_debug |= SLAB_STORE_USER; 1266 break; 1267 case 't': 1268 slub_debug |= SLAB_TRACE; 1269 break; 1270 case 'a': 1271 slub_debug |= SLAB_FAILSLAB; 1272 break; 1273 case 'o': 1274 /* 1275 * Avoid enabling debugging on caches if its minimum 1276 * order would increase as a result. 1277 */ 1278 disable_higher_order_debug = 1; 1279 break; 1280 default: 1281 pr_err("slub_debug option '%c' unknown. skipped\n", 1282 *str); 1283 } 1284 } 1285 1286 check_slabs: 1287 if (*str == ',') 1288 slub_debug_slabs = str + 1; 1289 out: 1290 return 1; 1291 } 1292 1293 __setup("slub_debug", setup_slub_debug); 1294 1295 /* 1296 * kmem_cache_flags - apply debugging options to the cache 1297 * @object_size: the size of an object without meta data 1298 * @flags: flags to set 1299 * @name: name of the cache 1300 * @ctor: constructor function 1301 * 1302 * Debug option(s) are applied to @flags. In addition to the debug 1303 * option(s), if a slab name (or multiple) is specified i.e. 1304 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1305 * then only the select slabs will receive the debug option(s). 1306 */ 1307 slab_flags_t kmem_cache_flags(unsigned int object_size, 1308 slab_flags_t flags, const char *name, 1309 void (*ctor)(void *)) 1310 { 1311 char *iter; 1312 size_t len; 1313 1314 /* If slub_debug = 0, it folds into the if conditional. */ 1315 if (!slub_debug_slabs) 1316 return flags | slub_debug; 1317 1318 len = strlen(name); 1319 iter = slub_debug_slabs; 1320 while (*iter) { 1321 char *end, *glob; 1322 size_t cmplen; 1323 1324 end = strchr(iter, ','); 1325 if (!end) 1326 end = iter + strlen(iter); 1327 1328 glob = strnchr(iter, end - iter, '*'); 1329 if (glob) 1330 cmplen = glob - iter; 1331 else 1332 cmplen = max_t(size_t, len, (end - iter)); 1333 1334 if (!strncmp(name, iter, cmplen)) { 1335 flags |= slub_debug; 1336 break; 1337 } 1338 1339 if (!*end) 1340 break; 1341 iter = end + 1; 1342 } 1343 1344 return flags; 1345 } 1346 #else /* !CONFIG_SLUB_DEBUG */ 1347 static inline void setup_object_debug(struct kmem_cache *s, 1348 struct page *page, void *object) {} 1349 static inline void setup_page_debug(struct kmem_cache *s, 1350 void *addr, int order) {} 1351 1352 static inline int alloc_debug_processing(struct kmem_cache *s, 1353 struct page *page, void *object, unsigned long addr) { return 0; } 1354 1355 static inline int free_debug_processing( 1356 struct kmem_cache *s, struct page *page, 1357 void *head, void *tail, int bulk_cnt, 1358 unsigned long addr) { return 0; } 1359 1360 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1361 { return 1; } 1362 static inline int check_object(struct kmem_cache *s, struct page *page, 1363 void *object, u8 val) { return 1; } 1364 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1365 struct page *page) {} 1366 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1367 struct page *page) {} 1368 slab_flags_t kmem_cache_flags(unsigned int object_size, 1369 slab_flags_t flags, const char *name, 1370 void (*ctor)(void *)) 1371 { 1372 return flags; 1373 } 1374 #define slub_debug 0 1375 1376 #define disable_higher_order_debug 0 1377 1378 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1379 { return 0; } 1380 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1381 { return 0; } 1382 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1383 int objects) {} 1384 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1385 int objects) {} 1386 1387 #endif /* CONFIG_SLUB_DEBUG */ 1388 1389 /* 1390 * Hooks for other subsystems that check memory allocations. In a typical 1391 * production configuration these hooks all should produce no code at all. 1392 */ 1393 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1394 { 1395 ptr = kasan_kmalloc_large(ptr, size, flags); 1396 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1397 kmemleak_alloc(ptr, size, 1, flags); 1398 return ptr; 1399 } 1400 1401 static __always_inline void kfree_hook(void *x) 1402 { 1403 kmemleak_free(x); 1404 kasan_kfree_large(x, _RET_IP_); 1405 } 1406 1407 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1408 { 1409 kmemleak_free_recursive(x, s->flags); 1410 1411 /* 1412 * Trouble is that we may no longer disable interrupts in the fast path 1413 * So in order to make the debug calls that expect irqs to be 1414 * disabled we need to disable interrupts temporarily. 1415 */ 1416 #ifdef CONFIG_LOCKDEP 1417 { 1418 unsigned long flags; 1419 1420 local_irq_save(flags); 1421 debug_check_no_locks_freed(x, s->object_size); 1422 local_irq_restore(flags); 1423 } 1424 #endif 1425 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1426 debug_check_no_obj_freed(x, s->object_size); 1427 1428 /* KASAN might put x into memory quarantine, delaying its reuse */ 1429 return kasan_slab_free(s, x, _RET_IP_); 1430 } 1431 1432 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1433 void **head, void **tail) 1434 { 1435 /* 1436 * Compiler cannot detect this function can be removed if slab_free_hook() 1437 * evaluates to nothing. Thus, catch all relevant config debug options here. 1438 */ 1439 #if defined(CONFIG_LOCKDEP) || \ 1440 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1441 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1442 defined(CONFIG_KASAN) 1443 1444 void *object; 1445 void *next = *head; 1446 void *old_tail = *tail ? *tail : *head; 1447 1448 /* Head and tail of the reconstructed freelist */ 1449 *head = NULL; 1450 *tail = NULL; 1451 1452 do { 1453 object = next; 1454 next = get_freepointer(s, object); 1455 /* If object's reuse doesn't have to be delayed */ 1456 if (!slab_free_hook(s, object)) { 1457 /* Move object to the new freelist */ 1458 set_freepointer(s, object, *head); 1459 *head = object; 1460 if (!*tail) 1461 *tail = object; 1462 } 1463 } while (object != old_tail); 1464 1465 if (*head == *tail) 1466 *tail = NULL; 1467 1468 return *head != NULL; 1469 #else 1470 return true; 1471 #endif 1472 } 1473 1474 static void *setup_object(struct kmem_cache *s, struct page *page, 1475 void *object) 1476 { 1477 setup_object_debug(s, page, object); 1478 object = kasan_init_slab_obj(s, object); 1479 if (unlikely(s->ctor)) { 1480 kasan_unpoison_object_data(s, object); 1481 s->ctor(object); 1482 kasan_poison_object_data(s, object); 1483 } 1484 return object; 1485 } 1486 1487 /* 1488 * Slab allocation and freeing 1489 */ 1490 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1491 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1492 { 1493 struct page *page; 1494 unsigned int order = oo_order(oo); 1495 1496 if (node == NUMA_NO_NODE) 1497 page = alloc_pages(flags, order); 1498 else 1499 page = __alloc_pages_node(node, flags, order); 1500 1501 if (page && memcg_charge_slab(page, flags, order, s)) { 1502 __free_pages(page, order); 1503 page = NULL; 1504 } 1505 1506 return page; 1507 } 1508 1509 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1510 /* Pre-initialize the random sequence cache */ 1511 static int init_cache_random_seq(struct kmem_cache *s) 1512 { 1513 unsigned int count = oo_objects(s->oo); 1514 int err; 1515 1516 /* Bailout if already initialised */ 1517 if (s->random_seq) 1518 return 0; 1519 1520 err = cache_random_seq_create(s, count, GFP_KERNEL); 1521 if (err) { 1522 pr_err("SLUB: Unable to initialize free list for %s\n", 1523 s->name); 1524 return err; 1525 } 1526 1527 /* Transform to an offset on the set of pages */ 1528 if (s->random_seq) { 1529 unsigned int i; 1530 1531 for (i = 0; i < count; i++) 1532 s->random_seq[i] *= s->size; 1533 } 1534 return 0; 1535 } 1536 1537 /* Initialize each random sequence freelist per cache */ 1538 static void __init init_freelist_randomization(void) 1539 { 1540 struct kmem_cache *s; 1541 1542 mutex_lock(&slab_mutex); 1543 1544 list_for_each_entry(s, &slab_caches, list) 1545 init_cache_random_seq(s); 1546 1547 mutex_unlock(&slab_mutex); 1548 } 1549 1550 /* Get the next entry on the pre-computed freelist randomized */ 1551 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1552 unsigned long *pos, void *start, 1553 unsigned long page_limit, 1554 unsigned long freelist_count) 1555 { 1556 unsigned int idx; 1557 1558 /* 1559 * If the target page allocation failed, the number of objects on the 1560 * page might be smaller than the usual size defined by the cache. 1561 */ 1562 do { 1563 idx = s->random_seq[*pos]; 1564 *pos += 1; 1565 if (*pos >= freelist_count) 1566 *pos = 0; 1567 } while (unlikely(idx >= page_limit)); 1568 1569 return (char *)start + idx; 1570 } 1571 1572 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1573 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1574 { 1575 void *start; 1576 void *cur; 1577 void *next; 1578 unsigned long idx, pos, page_limit, freelist_count; 1579 1580 if (page->objects < 2 || !s->random_seq) 1581 return false; 1582 1583 freelist_count = oo_objects(s->oo); 1584 pos = get_random_int() % freelist_count; 1585 1586 page_limit = page->objects * s->size; 1587 start = fixup_red_left(s, page_address(page)); 1588 1589 /* First entry is used as the base of the freelist */ 1590 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1591 freelist_count); 1592 cur = setup_object(s, page, cur); 1593 page->freelist = cur; 1594 1595 for (idx = 1; idx < page->objects; idx++) { 1596 next = next_freelist_entry(s, page, &pos, start, page_limit, 1597 freelist_count); 1598 next = setup_object(s, page, next); 1599 set_freepointer(s, cur, next); 1600 cur = next; 1601 } 1602 set_freepointer(s, cur, NULL); 1603 1604 return true; 1605 } 1606 #else 1607 static inline int init_cache_random_seq(struct kmem_cache *s) 1608 { 1609 return 0; 1610 } 1611 static inline void init_freelist_randomization(void) { } 1612 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1613 { 1614 return false; 1615 } 1616 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1617 1618 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1619 { 1620 struct page *page; 1621 struct kmem_cache_order_objects oo = s->oo; 1622 gfp_t alloc_gfp; 1623 void *start, *p, *next; 1624 int idx, order; 1625 bool shuffle; 1626 1627 flags &= gfp_allowed_mask; 1628 1629 if (gfpflags_allow_blocking(flags)) 1630 local_irq_enable(); 1631 1632 flags |= s->allocflags; 1633 1634 /* 1635 * Let the initial higher-order allocation fail under memory pressure 1636 * so we fall-back to the minimum order allocation. 1637 */ 1638 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1639 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1640 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1641 1642 page = alloc_slab_page(s, alloc_gfp, node, oo); 1643 if (unlikely(!page)) { 1644 oo = s->min; 1645 alloc_gfp = flags; 1646 /* 1647 * Allocation may have failed due to fragmentation. 1648 * Try a lower order alloc if possible 1649 */ 1650 page = alloc_slab_page(s, alloc_gfp, node, oo); 1651 if (unlikely(!page)) 1652 goto out; 1653 stat(s, ORDER_FALLBACK); 1654 } 1655 1656 page->objects = oo_objects(oo); 1657 1658 order = compound_order(page); 1659 page->slab_cache = s; 1660 __SetPageSlab(page); 1661 if (page_is_pfmemalloc(page)) 1662 SetPageSlabPfmemalloc(page); 1663 1664 kasan_poison_slab(page); 1665 1666 start = page_address(page); 1667 1668 setup_page_debug(s, start, order); 1669 1670 shuffle = shuffle_freelist(s, page); 1671 1672 if (!shuffle) { 1673 start = fixup_red_left(s, start); 1674 start = setup_object(s, page, start); 1675 page->freelist = start; 1676 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1677 next = p + s->size; 1678 next = setup_object(s, page, next); 1679 set_freepointer(s, p, next); 1680 p = next; 1681 } 1682 set_freepointer(s, p, NULL); 1683 } 1684 1685 page->inuse = page->objects; 1686 page->frozen = 1; 1687 1688 out: 1689 if (gfpflags_allow_blocking(flags)) 1690 local_irq_disable(); 1691 if (!page) 1692 return NULL; 1693 1694 mod_lruvec_page_state(page, 1695 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1696 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1697 1 << oo_order(oo)); 1698 1699 inc_slabs_node(s, page_to_nid(page), page->objects); 1700 1701 return page; 1702 } 1703 1704 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1705 { 1706 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1707 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1708 flags &= ~GFP_SLAB_BUG_MASK; 1709 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1710 invalid_mask, &invalid_mask, flags, &flags); 1711 dump_stack(); 1712 } 1713 1714 return allocate_slab(s, 1715 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1716 } 1717 1718 static void __free_slab(struct kmem_cache *s, struct page *page) 1719 { 1720 int order = compound_order(page); 1721 int pages = 1 << order; 1722 1723 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1724 void *p; 1725 1726 slab_pad_check(s, page); 1727 for_each_object(p, s, page_address(page), 1728 page->objects) 1729 check_object(s, page, p, SLUB_RED_INACTIVE); 1730 } 1731 1732 mod_lruvec_page_state(page, 1733 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1734 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1735 -pages); 1736 1737 __ClearPageSlabPfmemalloc(page); 1738 __ClearPageSlab(page); 1739 1740 page->mapping = NULL; 1741 if (current->reclaim_state) 1742 current->reclaim_state->reclaimed_slab += pages; 1743 memcg_uncharge_slab(page, order, s); 1744 __free_pages(page, order); 1745 } 1746 1747 static void rcu_free_slab(struct rcu_head *h) 1748 { 1749 struct page *page = container_of(h, struct page, rcu_head); 1750 1751 __free_slab(page->slab_cache, page); 1752 } 1753 1754 static void free_slab(struct kmem_cache *s, struct page *page) 1755 { 1756 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1757 call_rcu(&page->rcu_head, rcu_free_slab); 1758 } else 1759 __free_slab(s, page); 1760 } 1761 1762 static void discard_slab(struct kmem_cache *s, struct page *page) 1763 { 1764 dec_slabs_node(s, page_to_nid(page), page->objects); 1765 free_slab(s, page); 1766 } 1767 1768 /* 1769 * Management of partially allocated slabs. 1770 */ 1771 static inline void 1772 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1773 { 1774 n->nr_partial++; 1775 if (tail == DEACTIVATE_TO_TAIL) 1776 list_add_tail(&page->lru, &n->partial); 1777 else 1778 list_add(&page->lru, &n->partial); 1779 } 1780 1781 static inline void add_partial(struct kmem_cache_node *n, 1782 struct page *page, int tail) 1783 { 1784 lockdep_assert_held(&n->list_lock); 1785 __add_partial(n, page, tail); 1786 } 1787 1788 static inline void remove_partial(struct kmem_cache_node *n, 1789 struct page *page) 1790 { 1791 lockdep_assert_held(&n->list_lock); 1792 list_del(&page->lru); 1793 n->nr_partial--; 1794 } 1795 1796 /* 1797 * Remove slab from the partial list, freeze it and 1798 * return the pointer to the freelist. 1799 * 1800 * Returns a list of objects or NULL if it fails. 1801 */ 1802 static inline void *acquire_slab(struct kmem_cache *s, 1803 struct kmem_cache_node *n, struct page *page, 1804 int mode, int *objects) 1805 { 1806 void *freelist; 1807 unsigned long counters; 1808 struct page new; 1809 1810 lockdep_assert_held(&n->list_lock); 1811 1812 /* 1813 * Zap the freelist and set the frozen bit. 1814 * The old freelist is the list of objects for the 1815 * per cpu allocation list. 1816 */ 1817 freelist = page->freelist; 1818 counters = page->counters; 1819 new.counters = counters; 1820 *objects = new.objects - new.inuse; 1821 if (mode) { 1822 new.inuse = page->objects; 1823 new.freelist = NULL; 1824 } else { 1825 new.freelist = freelist; 1826 } 1827 1828 VM_BUG_ON(new.frozen); 1829 new.frozen = 1; 1830 1831 if (!__cmpxchg_double_slab(s, page, 1832 freelist, counters, 1833 new.freelist, new.counters, 1834 "acquire_slab")) 1835 return NULL; 1836 1837 remove_partial(n, page); 1838 WARN_ON(!freelist); 1839 return freelist; 1840 } 1841 1842 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1843 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1844 1845 /* 1846 * Try to allocate a partial slab from a specific node. 1847 */ 1848 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1849 struct kmem_cache_cpu *c, gfp_t flags) 1850 { 1851 struct page *page, *page2; 1852 void *object = NULL; 1853 unsigned int available = 0; 1854 int objects; 1855 1856 /* 1857 * Racy check. If we mistakenly see no partial slabs then we 1858 * just allocate an empty slab. If we mistakenly try to get a 1859 * partial slab and there is none available then get_partials() 1860 * will return NULL. 1861 */ 1862 if (!n || !n->nr_partial) 1863 return NULL; 1864 1865 spin_lock(&n->list_lock); 1866 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1867 void *t; 1868 1869 if (!pfmemalloc_match(page, flags)) 1870 continue; 1871 1872 t = acquire_slab(s, n, page, object == NULL, &objects); 1873 if (!t) 1874 break; 1875 1876 available += objects; 1877 if (!object) { 1878 c->page = page; 1879 stat(s, ALLOC_FROM_PARTIAL); 1880 object = t; 1881 } else { 1882 put_cpu_partial(s, page, 0); 1883 stat(s, CPU_PARTIAL_NODE); 1884 } 1885 if (!kmem_cache_has_cpu_partial(s) 1886 || available > slub_cpu_partial(s) / 2) 1887 break; 1888 1889 } 1890 spin_unlock(&n->list_lock); 1891 return object; 1892 } 1893 1894 /* 1895 * Get a page from somewhere. Search in increasing NUMA distances. 1896 */ 1897 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1898 struct kmem_cache_cpu *c) 1899 { 1900 #ifdef CONFIG_NUMA 1901 struct zonelist *zonelist; 1902 struct zoneref *z; 1903 struct zone *zone; 1904 enum zone_type high_zoneidx = gfp_zone(flags); 1905 void *object; 1906 unsigned int cpuset_mems_cookie; 1907 1908 /* 1909 * The defrag ratio allows a configuration of the tradeoffs between 1910 * inter node defragmentation and node local allocations. A lower 1911 * defrag_ratio increases the tendency to do local allocations 1912 * instead of attempting to obtain partial slabs from other nodes. 1913 * 1914 * If the defrag_ratio is set to 0 then kmalloc() always 1915 * returns node local objects. If the ratio is higher then kmalloc() 1916 * may return off node objects because partial slabs are obtained 1917 * from other nodes and filled up. 1918 * 1919 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1920 * (which makes defrag_ratio = 1000) then every (well almost) 1921 * allocation will first attempt to defrag slab caches on other nodes. 1922 * This means scanning over all nodes to look for partial slabs which 1923 * may be expensive if we do it every time we are trying to find a slab 1924 * with available objects. 1925 */ 1926 if (!s->remote_node_defrag_ratio || 1927 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1928 return NULL; 1929 1930 do { 1931 cpuset_mems_cookie = read_mems_allowed_begin(); 1932 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1933 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1934 struct kmem_cache_node *n; 1935 1936 n = get_node(s, zone_to_nid(zone)); 1937 1938 if (n && cpuset_zone_allowed(zone, flags) && 1939 n->nr_partial > s->min_partial) { 1940 object = get_partial_node(s, n, c, flags); 1941 if (object) { 1942 /* 1943 * Don't check read_mems_allowed_retry() 1944 * here - if mems_allowed was updated in 1945 * parallel, that was a harmless race 1946 * between allocation and the cpuset 1947 * update 1948 */ 1949 return object; 1950 } 1951 } 1952 } 1953 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1954 #endif 1955 return NULL; 1956 } 1957 1958 /* 1959 * Get a partial page, lock it and return it. 1960 */ 1961 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1962 struct kmem_cache_cpu *c) 1963 { 1964 void *object; 1965 int searchnode = node; 1966 1967 if (node == NUMA_NO_NODE) 1968 searchnode = numa_mem_id(); 1969 else if (!node_present_pages(node)) 1970 searchnode = node_to_mem_node(node); 1971 1972 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1973 if (object || node != NUMA_NO_NODE) 1974 return object; 1975 1976 return get_any_partial(s, flags, c); 1977 } 1978 1979 #ifdef CONFIG_PREEMPT 1980 /* 1981 * Calculate the next globally unique transaction for disambiguiation 1982 * during cmpxchg. The transactions start with the cpu number and are then 1983 * incremented by CONFIG_NR_CPUS. 1984 */ 1985 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1986 #else 1987 /* 1988 * No preemption supported therefore also no need to check for 1989 * different cpus. 1990 */ 1991 #define TID_STEP 1 1992 #endif 1993 1994 static inline unsigned long next_tid(unsigned long tid) 1995 { 1996 return tid + TID_STEP; 1997 } 1998 1999 static inline unsigned int tid_to_cpu(unsigned long tid) 2000 { 2001 return tid % TID_STEP; 2002 } 2003 2004 static inline unsigned long tid_to_event(unsigned long tid) 2005 { 2006 return tid / TID_STEP; 2007 } 2008 2009 static inline unsigned int init_tid(int cpu) 2010 { 2011 return cpu; 2012 } 2013 2014 static inline void note_cmpxchg_failure(const char *n, 2015 const struct kmem_cache *s, unsigned long tid) 2016 { 2017 #ifdef SLUB_DEBUG_CMPXCHG 2018 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2019 2020 pr_info("%s %s: cmpxchg redo ", n, s->name); 2021 2022 #ifdef CONFIG_PREEMPT 2023 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2024 pr_warn("due to cpu change %d -> %d\n", 2025 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2026 else 2027 #endif 2028 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2029 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2030 tid_to_event(tid), tid_to_event(actual_tid)); 2031 else 2032 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2033 actual_tid, tid, next_tid(tid)); 2034 #endif 2035 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2036 } 2037 2038 static void init_kmem_cache_cpus(struct kmem_cache *s) 2039 { 2040 int cpu; 2041 2042 for_each_possible_cpu(cpu) 2043 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2044 } 2045 2046 /* 2047 * Remove the cpu slab 2048 */ 2049 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2050 void *freelist, struct kmem_cache_cpu *c) 2051 { 2052 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2053 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2054 int lock = 0; 2055 enum slab_modes l = M_NONE, m = M_NONE; 2056 void *nextfree; 2057 int tail = DEACTIVATE_TO_HEAD; 2058 struct page new; 2059 struct page old; 2060 2061 if (page->freelist) { 2062 stat(s, DEACTIVATE_REMOTE_FREES); 2063 tail = DEACTIVATE_TO_TAIL; 2064 } 2065 2066 /* 2067 * Stage one: Free all available per cpu objects back 2068 * to the page freelist while it is still frozen. Leave the 2069 * last one. 2070 * 2071 * There is no need to take the list->lock because the page 2072 * is still frozen. 2073 */ 2074 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2075 void *prior; 2076 unsigned long counters; 2077 2078 do { 2079 prior = page->freelist; 2080 counters = page->counters; 2081 set_freepointer(s, freelist, prior); 2082 new.counters = counters; 2083 new.inuse--; 2084 VM_BUG_ON(!new.frozen); 2085 2086 } while (!__cmpxchg_double_slab(s, page, 2087 prior, counters, 2088 freelist, new.counters, 2089 "drain percpu freelist")); 2090 2091 freelist = nextfree; 2092 } 2093 2094 /* 2095 * Stage two: Ensure that the page is unfrozen while the 2096 * list presence reflects the actual number of objects 2097 * during unfreeze. 2098 * 2099 * We setup the list membership and then perform a cmpxchg 2100 * with the count. If there is a mismatch then the page 2101 * is not unfrozen but the page is on the wrong list. 2102 * 2103 * Then we restart the process which may have to remove 2104 * the page from the list that we just put it on again 2105 * because the number of objects in the slab may have 2106 * changed. 2107 */ 2108 redo: 2109 2110 old.freelist = page->freelist; 2111 old.counters = page->counters; 2112 VM_BUG_ON(!old.frozen); 2113 2114 /* Determine target state of the slab */ 2115 new.counters = old.counters; 2116 if (freelist) { 2117 new.inuse--; 2118 set_freepointer(s, freelist, old.freelist); 2119 new.freelist = freelist; 2120 } else 2121 new.freelist = old.freelist; 2122 2123 new.frozen = 0; 2124 2125 if (!new.inuse && n->nr_partial >= s->min_partial) 2126 m = M_FREE; 2127 else if (new.freelist) { 2128 m = M_PARTIAL; 2129 if (!lock) { 2130 lock = 1; 2131 /* 2132 * Taking the spinlock removes the possibility 2133 * that acquire_slab() will see a slab page that 2134 * is frozen 2135 */ 2136 spin_lock(&n->list_lock); 2137 } 2138 } else { 2139 m = M_FULL; 2140 if (kmem_cache_debug(s) && !lock) { 2141 lock = 1; 2142 /* 2143 * This also ensures that the scanning of full 2144 * slabs from diagnostic functions will not see 2145 * any frozen slabs. 2146 */ 2147 spin_lock(&n->list_lock); 2148 } 2149 } 2150 2151 if (l != m) { 2152 if (l == M_PARTIAL) 2153 remove_partial(n, page); 2154 else if (l == M_FULL) 2155 remove_full(s, n, page); 2156 2157 if (m == M_PARTIAL) 2158 add_partial(n, page, tail); 2159 else if (m == M_FULL) 2160 add_full(s, n, page); 2161 } 2162 2163 l = m; 2164 if (!__cmpxchg_double_slab(s, page, 2165 old.freelist, old.counters, 2166 new.freelist, new.counters, 2167 "unfreezing slab")) 2168 goto redo; 2169 2170 if (lock) 2171 spin_unlock(&n->list_lock); 2172 2173 if (m == M_PARTIAL) 2174 stat(s, tail); 2175 else if (m == M_FULL) 2176 stat(s, DEACTIVATE_FULL); 2177 else if (m == M_FREE) { 2178 stat(s, DEACTIVATE_EMPTY); 2179 discard_slab(s, page); 2180 stat(s, FREE_SLAB); 2181 } 2182 2183 c->page = NULL; 2184 c->freelist = NULL; 2185 } 2186 2187 /* 2188 * Unfreeze all the cpu partial slabs. 2189 * 2190 * This function must be called with interrupts disabled 2191 * for the cpu using c (or some other guarantee must be there 2192 * to guarantee no concurrent accesses). 2193 */ 2194 static void unfreeze_partials(struct kmem_cache *s, 2195 struct kmem_cache_cpu *c) 2196 { 2197 #ifdef CONFIG_SLUB_CPU_PARTIAL 2198 struct kmem_cache_node *n = NULL, *n2 = NULL; 2199 struct page *page, *discard_page = NULL; 2200 2201 while ((page = c->partial)) { 2202 struct page new; 2203 struct page old; 2204 2205 c->partial = page->next; 2206 2207 n2 = get_node(s, page_to_nid(page)); 2208 if (n != n2) { 2209 if (n) 2210 spin_unlock(&n->list_lock); 2211 2212 n = n2; 2213 spin_lock(&n->list_lock); 2214 } 2215 2216 do { 2217 2218 old.freelist = page->freelist; 2219 old.counters = page->counters; 2220 VM_BUG_ON(!old.frozen); 2221 2222 new.counters = old.counters; 2223 new.freelist = old.freelist; 2224 2225 new.frozen = 0; 2226 2227 } while (!__cmpxchg_double_slab(s, page, 2228 old.freelist, old.counters, 2229 new.freelist, new.counters, 2230 "unfreezing slab")); 2231 2232 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2233 page->next = discard_page; 2234 discard_page = page; 2235 } else { 2236 add_partial(n, page, DEACTIVATE_TO_TAIL); 2237 stat(s, FREE_ADD_PARTIAL); 2238 } 2239 } 2240 2241 if (n) 2242 spin_unlock(&n->list_lock); 2243 2244 while (discard_page) { 2245 page = discard_page; 2246 discard_page = discard_page->next; 2247 2248 stat(s, DEACTIVATE_EMPTY); 2249 discard_slab(s, page); 2250 stat(s, FREE_SLAB); 2251 } 2252 #endif 2253 } 2254 2255 /* 2256 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2257 * partial page slot if available. 2258 * 2259 * If we did not find a slot then simply move all the partials to the 2260 * per node partial list. 2261 */ 2262 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2263 { 2264 #ifdef CONFIG_SLUB_CPU_PARTIAL 2265 struct page *oldpage; 2266 int pages; 2267 int pobjects; 2268 2269 preempt_disable(); 2270 do { 2271 pages = 0; 2272 pobjects = 0; 2273 oldpage = this_cpu_read(s->cpu_slab->partial); 2274 2275 if (oldpage) { 2276 pobjects = oldpage->pobjects; 2277 pages = oldpage->pages; 2278 if (drain && pobjects > s->cpu_partial) { 2279 unsigned long flags; 2280 /* 2281 * partial array is full. Move the existing 2282 * set to the per node partial list. 2283 */ 2284 local_irq_save(flags); 2285 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2286 local_irq_restore(flags); 2287 oldpage = NULL; 2288 pobjects = 0; 2289 pages = 0; 2290 stat(s, CPU_PARTIAL_DRAIN); 2291 } 2292 } 2293 2294 pages++; 2295 pobjects += page->objects - page->inuse; 2296 2297 page->pages = pages; 2298 page->pobjects = pobjects; 2299 page->next = oldpage; 2300 2301 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2302 != oldpage); 2303 if (unlikely(!s->cpu_partial)) { 2304 unsigned long flags; 2305 2306 local_irq_save(flags); 2307 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2308 local_irq_restore(flags); 2309 } 2310 preempt_enable(); 2311 #endif 2312 } 2313 2314 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2315 { 2316 stat(s, CPUSLAB_FLUSH); 2317 deactivate_slab(s, c->page, c->freelist, c); 2318 2319 c->tid = next_tid(c->tid); 2320 } 2321 2322 /* 2323 * Flush cpu slab. 2324 * 2325 * Called from IPI handler with interrupts disabled. 2326 */ 2327 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2328 { 2329 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2330 2331 if (c->page) 2332 flush_slab(s, c); 2333 2334 unfreeze_partials(s, c); 2335 } 2336 2337 static void flush_cpu_slab(void *d) 2338 { 2339 struct kmem_cache *s = d; 2340 2341 __flush_cpu_slab(s, smp_processor_id()); 2342 } 2343 2344 static bool has_cpu_slab(int cpu, void *info) 2345 { 2346 struct kmem_cache *s = info; 2347 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2348 2349 return c->page || slub_percpu_partial(c); 2350 } 2351 2352 static void flush_all(struct kmem_cache *s) 2353 { 2354 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2355 } 2356 2357 /* 2358 * Use the cpu notifier to insure that the cpu slabs are flushed when 2359 * necessary. 2360 */ 2361 static int slub_cpu_dead(unsigned int cpu) 2362 { 2363 struct kmem_cache *s; 2364 unsigned long flags; 2365 2366 mutex_lock(&slab_mutex); 2367 list_for_each_entry(s, &slab_caches, list) { 2368 local_irq_save(flags); 2369 __flush_cpu_slab(s, cpu); 2370 local_irq_restore(flags); 2371 } 2372 mutex_unlock(&slab_mutex); 2373 return 0; 2374 } 2375 2376 /* 2377 * Check if the objects in a per cpu structure fit numa 2378 * locality expectations. 2379 */ 2380 static inline int node_match(struct page *page, int node) 2381 { 2382 #ifdef CONFIG_NUMA 2383 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2384 return 0; 2385 #endif 2386 return 1; 2387 } 2388 2389 #ifdef CONFIG_SLUB_DEBUG 2390 static int count_free(struct page *page) 2391 { 2392 return page->objects - page->inuse; 2393 } 2394 2395 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2396 { 2397 return atomic_long_read(&n->total_objects); 2398 } 2399 #endif /* CONFIG_SLUB_DEBUG */ 2400 2401 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2402 static unsigned long count_partial(struct kmem_cache_node *n, 2403 int (*get_count)(struct page *)) 2404 { 2405 unsigned long flags; 2406 unsigned long x = 0; 2407 struct page *page; 2408 2409 spin_lock_irqsave(&n->list_lock, flags); 2410 list_for_each_entry(page, &n->partial, lru) 2411 x += get_count(page); 2412 spin_unlock_irqrestore(&n->list_lock, flags); 2413 return x; 2414 } 2415 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2416 2417 static noinline void 2418 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2419 { 2420 #ifdef CONFIG_SLUB_DEBUG 2421 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2422 DEFAULT_RATELIMIT_BURST); 2423 int node; 2424 struct kmem_cache_node *n; 2425 2426 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2427 return; 2428 2429 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2430 nid, gfpflags, &gfpflags); 2431 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2432 s->name, s->object_size, s->size, oo_order(s->oo), 2433 oo_order(s->min)); 2434 2435 if (oo_order(s->min) > get_order(s->object_size)) 2436 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2437 s->name); 2438 2439 for_each_kmem_cache_node(s, node, n) { 2440 unsigned long nr_slabs; 2441 unsigned long nr_objs; 2442 unsigned long nr_free; 2443 2444 nr_free = count_partial(n, count_free); 2445 nr_slabs = node_nr_slabs(n); 2446 nr_objs = node_nr_objs(n); 2447 2448 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2449 node, nr_slabs, nr_objs, nr_free); 2450 } 2451 #endif 2452 } 2453 2454 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2455 int node, struct kmem_cache_cpu **pc) 2456 { 2457 void *freelist; 2458 struct kmem_cache_cpu *c = *pc; 2459 struct page *page; 2460 2461 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2462 2463 freelist = get_partial(s, flags, node, c); 2464 2465 if (freelist) 2466 return freelist; 2467 2468 page = new_slab(s, flags, node); 2469 if (page) { 2470 c = raw_cpu_ptr(s->cpu_slab); 2471 if (c->page) 2472 flush_slab(s, c); 2473 2474 /* 2475 * No other reference to the page yet so we can 2476 * muck around with it freely without cmpxchg 2477 */ 2478 freelist = page->freelist; 2479 page->freelist = NULL; 2480 2481 stat(s, ALLOC_SLAB); 2482 c->page = page; 2483 *pc = c; 2484 } 2485 2486 return freelist; 2487 } 2488 2489 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2490 { 2491 if (unlikely(PageSlabPfmemalloc(page))) 2492 return gfp_pfmemalloc_allowed(gfpflags); 2493 2494 return true; 2495 } 2496 2497 /* 2498 * Check the page->freelist of a page and either transfer the freelist to the 2499 * per cpu freelist or deactivate the page. 2500 * 2501 * The page is still frozen if the return value is not NULL. 2502 * 2503 * If this function returns NULL then the page has been unfrozen. 2504 * 2505 * This function must be called with interrupt disabled. 2506 */ 2507 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2508 { 2509 struct page new; 2510 unsigned long counters; 2511 void *freelist; 2512 2513 do { 2514 freelist = page->freelist; 2515 counters = page->counters; 2516 2517 new.counters = counters; 2518 VM_BUG_ON(!new.frozen); 2519 2520 new.inuse = page->objects; 2521 new.frozen = freelist != NULL; 2522 2523 } while (!__cmpxchg_double_slab(s, page, 2524 freelist, counters, 2525 NULL, new.counters, 2526 "get_freelist")); 2527 2528 return freelist; 2529 } 2530 2531 /* 2532 * Slow path. The lockless freelist is empty or we need to perform 2533 * debugging duties. 2534 * 2535 * Processing is still very fast if new objects have been freed to the 2536 * regular freelist. In that case we simply take over the regular freelist 2537 * as the lockless freelist and zap the regular freelist. 2538 * 2539 * If that is not working then we fall back to the partial lists. We take the 2540 * first element of the freelist as the object to allocate now and move the 2541 * rest of the freelist to the lockless freelist. 2542 * 2543 * And if we were unable to get a new slab from the partial slab lists then 2544 * we need to allocate a new slab. This is the slowest path since it involves 2545 * a call to the page allocator and the setup of a new slab. 2546 * 2547 * Version of __slab_alloc to use when we know that interrupts are 2548 * already disabled (which is the case for bulk allocation). 2549 */ 2550 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2551 unsigned long addr, struct kmem_cache_cpu *c) 2552 { 2553 void *freelist; 2554 struct page *page; 2555 2556 page = c->page; 2557 if (!page) 2558 goto new_slab; 2559 redo: 2560 2561 if (unlikely(!node_match(page, node))) { 2562 int searchnode = node; 2563 2564 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2565 searchnode = node_to_mem_node(node); 2566 2567 if (unlikely(!node_match(page, searchnode))) { 2568 stat(s, ALLOC_NODE_MISMATCH); 2569 deactivate_slab(s, page, c->freelist, c); 2570 goto new_slab; 2571 } 2572 } 2573 2574 /* 2575 * By rights, we should be searching for a slab page that was 2576 * PFMEMALLOC but right now, we are losing the pfmemalloc 2577 * information when the page leaves the per-cpu allocator 2578 */ 2579 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2580 deactivate_slab(s, page, c->freelist, c); 2581 goto new_slab; 2582 } 2583 2584 /* must check again c->freelist in case of cpu migration or IRQ */ 2585 freelist = c->freelist; 2586 if (freelist) 2587 goto load_freelist; 2588 2589 freelist = get_freelist(s, page); 2590 2591 if (!freelist) { 2592 c->page = NULL; 2593 stat(s, DEACTIVATE_BYPASS); 2594 goto new_slab; 2595 } 2596 2597 stat(s, ALLOC_REFILL); 2598 2599 load_freelist: 2600 /* 2601 * freelist is pointing to the list of objects to be used. 2602 * page is pointing to the page from which the objects are obtained. 2603 * That page must be frozen for per cpu allocations to work. 2604 */ 2605 VM_BUG_ON(!c->page->frozen); 2606 c->freelist = get_freepointer(s, freelist); 2607 c->tid = next_tid(c->tid); 2608 return freelist; 2609 2610 new_slab: 2611 2612 if (slub_percpu_partial(c)) { 2613 page = c->page = slub_percpu_partial(c); 2614 slub_set_percpu_partial(c, page); 2615 stat(s, CPU_PARTIAL_ALLOC); 2616 goto redo; 2617 } 2618 2619 freelist = new_slab_objects(s, gfpflags, node, &c); 2620 2621 if (unlikely(!freelist)) { 2622 slab_out_of_memory(s, gfpflags, node); 2623 return NULL; 2624 } 2625 2626 page = c->page; 2627 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2628 goto load_freelist; 2629 2630 /* Only entered in the debug case */ 2631 if (kmem_cache_debug(s) && 2632 !alloc_debug_processing(s, page, freelist, addr)) 2633 goto new_slab; /* Slab failed checks. Next slab needed */ 2634 2635 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2636 return freelist; 2637 } 2638 2639 /* 2640 * Another one that disabled interrupt and compensates for possible 2641 * cpu changes by refetching the per cpu area pointer. 2642 */ 2643 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2644 unsigned long addr, struct kmem_cache_cpu *c) 2645 { 2646 void *p; 2647 unsigned long flags; 2648 2649 local_irq_save(flags); 2650 #ifdef CONFIG_PREEMPT 2651 /* 2652 * We may have been preempted and rescheduled on a different 2653 * cpu before disabling interrupts. Need to reload cpu area 2654 * pointer. 2655 */ 2656 c = this_cpu_ptr(s->cpu_slab); 2657 #endif 2658 2659 p = ___slab_alloc(s, gfpflags, node, addr, c); 2660 local_irq_restore(flags); 2661 return p; 2662 } 2663 2664 /* 2665 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2666 * have the fastpath folded into their functions. So no function call 2667 * overhead for requests that can be satisfied on the fastpath. 2668 * 2669 * The fastpath works by first checking if the lockless freelist can be used. 2670 * If not then __slab_alloc is called for slow processing. 2671 * 2672 * Otherwise we can simply pick the next object from the lockless free list. 2673 */ 2674 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2675 gfp_t gfpflags, int node, unsigned long addr) 2676 { 2677 void *object; 2678 struct kmem_cache_cpu *c; 2679 struct page *page; 2680 unsigned long tid; 2681 2682 s = slab_pre_alloc_hook(s, gfpflags); 2683 if (!s) 2684 return NULL; 2685 redo: 2686 /* 2687 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2688 * enabled. We may switch back and forth between cpus while 2689 * reading from one cpu area. That does not matter as long 2690 * as we end up on the original cpu again when doing the cmpxchg. 2691 * 2692 * We should guarantee that tid and kmem_cache are retrieved on 2693 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2694 * to check if it is matched or not. 2695 */ 2696 do { 2697 tid = this_cpu_read(s->cpu_slab->tid); 2698 c = raw_cpu_ptr(s->cpu_slab); 2699 } while (IS_ENABLED(CONFIG_PREEMPT) && 2700 unlikely(tid != READ_ONCE(c->tid))); 2701 2702 /* 2703 * Irqless object alloc/free algorithm used here depends on sequence 2704 * of fetching cpu_slab's data. tid should be fetched before anything 2705 * on c to guarantee that object and page associated with previous tid 2706 * won't be used with current tid. If we fetch tid first, object and 2707 * page could be one associated with next tid and our alloc/free 2708 * request will be failed. In this case, we will retry. So, no problem. 2709 */ 2710 barrier(); 2711 2712 /* 2713 * The transaction ids are globally unique per cpu and per operation on 2714 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2715 * occurs on the right processor and that there was no operation on the 2716 * linked list in between. 2717 */ 2718 2719 object = c->freelist; 2720 page = c->page; 2721 if (unlikely(!object || !node_match(page, node))) { 2722 object = __slab_alloc(s, gfpflags, node, addr, c); 2723 stat(s, ALLOC_SLOWPATH); 2724 } else { 2725 void *next_object = get_freepointer_safe(s, object); 2726 2727 /* 2728 * The cmpxchg will only match if there was no additional 2729 * operation and if we are on the right processor. 2730 * 2731 * The cmpxchg does the following atomically (without lock 2732 * semantics!) 2733 * 1. Relocate first pointer to the current per cpu area. 2734 * 2. Verify that tid and freelist have not been changed 2735 * 3. If they were not changed replace tid and freelist 2736 * 2737 * Since this is without lock semantics the protection is only 2738 * against code executing on this cpu *not* from access by 2739 * other cpus. 2740 */ 2741 if (unlikely(!this_cpu_cmpxchg_double( 2742 s->cpu_slab->freelist, s->cpu_slab->tid, 2743 object, tid, 2744 next_object, next_tid(tid)))) { 2745 2746 note_cmpxchg_failure("slab_alloc", s, tid); 2747 goto redo; 2748 } 2749 prefetch_freepointer(s, next_object); 2750 stat(s, ALLOC_FASTPATH); 2751 } 2752 2753 if (unlikely(gfpflags & __GFP_ZERO) && object) 2754 memset(object, 0, s->object_size); 2755 2756 slab_post_alloc_hook(s, gfpflags, 1, &object); 2757 2758 return object; 2759 } 2760 2761 static __always_inline void *slab_alloc(struct kmem_cache *s, 2762 gfp_t gfpflags, unsigned long addr) 2763 { 2764 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2765 } 2766 2767 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2768 { 2769 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2770 2771 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2772 s->size, gfpflags); 2773 2774 return ret; 2775 } 2776 EXPORT_SYMBOL(kmem_cache_alloc); 2777 2778 #ifdef CONFIG_TRACING 2779 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2780 { 2781 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2782 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2783 ret = kasan_kmalloc(s, ret, size, gfpflags); 2784 return ret; 2785 } 2786 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2787 #endif 2788 2789 #ifdef CONFIG_NUMA 2790 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2791 { 2792 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2793 2794 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2795 s->object_size, s->size, gfpflags, node); 2796 2797 return ret; 2798 } 2799 EXPORT_SYMBOL(kmem_cache_alloc_node); 2800 2801 #ifdef CONFIG_TRACING 2802 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2803 gfp_t gfpflags, 2804 int node, size_t size) 2805 { 2806 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2807 2808 trace_kmalloc_node(_RET_IP_, ret, 2809 size, s->size, gfpflags, node); 2810 2811 ret = kasan_kmalloc(s, ret, size, gfpflags); 2812 return ret; 2813 } 2814 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2815 #endif 2816 #endif 2817 2818 /* 2819 * Slow path handling. This may still be called frequently since objects 2820 * have a longer lifetime than the cpu slabs in most processing loads. 2821 * 2822 * So we still attempt to reduce cache line usage. Just take the slab 2823 * lock and free the item. If there is no additional partial page 2824 * handling required then we can return immediately. 2825 */ 2826 static void __slab_free(struct kmem_cache *s, struct page *page, 2827 void *head, void *tail, int cnt, 2828 unsigned long addr) 2829 2830 { 2831 void *prior; 2832 int was_frozen; 2833 struct page new; 2834 unsigned long counters; 2835 struct kmem_cache_node *n = NULL; 2836 unsigned long uninitialized_var(flags); 2837 2838 stat(s, FREE_SLOWPATH); 2839 2840 if (kmem_cache_debug(s) && 2841 !free_debug_processing(s, page, head, tail, cnt, addr)) 2842 return; 2843 2844 do { 2845 if (unlikely(n)) { 2846 spin_unlock_irqrestore(&n->list_lock, flags); 2847 n = NULL; 2848 } 2849 prior = page->freelist; 2850 counters = page->counters; 2851 set_freepointer(s, tail, prior); 2852 new.counters = counters; 2853 was_frozen = new.frozen; 2854 new.inuse -= cnt; 2855 if ((!new.inuse || !prior) && !was_frozen) { 2856 2857 if (kmem_cache_has_cpu_partial(s) && !prior) { 2858 2859 /* 2860 * Slab was on no list before and will be 2861 * partially empty 2862 * We can defer the list move and instead 2863 * freeze it. 2864 */ 2865 new.frozen = 1; 2866 2867 } else { /* Needs to be taken off a list */ 2868 2869 n = get_node(s, page_to_nid(page)); 2870 /* 2871 * Speculatively acquire the list_lock. 2872 * If the cmpxchg does not succeed then we may 2873 * drop the list_lock without any processing. 2874 * 2875 * Otherwise the list_lock will synchronize with 2876 * other processors updating the list of slabs. 2877 */ 2878 spin_lock_irqsave(&n->list_lock, flags); 2879 2880 } 2881 } 2882 2883 } while (!cmpxchg_double_slab(s, page, 2884 prior, counters, 2885 head, new.counters, 2886 "__slab_free")); 2887 2888 if (likely(!n)) { 2889 2890 /* 2891 * If we just froze the page then put it onto the 2892 * per cpu partial list. 2893 */ 2894 if (new.frozen && !was_frozen) { 2895 put_cpu_partial(s, page, 1); 2896 stat(s, CPU_PARTIAL_FREE); 2897 } 2898 /* 2899 * The list lock was not taken therefore no list 2900 * activity can be necessary. 2901 */ 2902 if (was_frozen) 2903 stat(s, FREE_FROZEN); 2904 return; 2905 } 2906 2907 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2908 goto slab_empty; 2909 2910 /* 2911 * Objects left in the slab. If it was not on the partial list before 2912 * then add it. 2913 */ 2914 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2915 if (kmem_cache_debug(s)) 2916 remove_full(s, n, page); 2917 add_partial(n, page, DEACTIVATE_TO_TAIL); 2918 stat(s, FREE_ADD_PARTIAL); 2919 } 2920 spin_unlock_irqrestore(&n->list_lock, flags); 2921 return; 2922 2923 slab_empty: 2924 if (prior) { 2925 /* 2926 * Slab on the partial list. 2927 */ 2928 remove_partial(n, page); 2929 stat(s, FREE_REMOVE_PARTIAL); 2930 } else { 2931 /* Slab must be on the full list */ 2932 remove_full(s, n, page); 2933 } 2934 2935 spin_unlock_irqrestore(&n->list_lock, flags); 2936 stat(s, FREE_SLAB); 2937 discard_slab(s, page); 2938 } 2939 2940 /* 2941 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2942 * can perform fastpath freeing without additional function calls. 2943 * 2944 * The fastpath is only possible if we are freeing to the current cpu slab 2945 * of this processor. This typically the case if we have just allocated 2946 * the item before. 2947 * 2948 * If fastpath is not possible then fall back to __slab_free where we deal 2949 * with all sorts of special processing. 2950 * 2951 * Bulk free of a freelist with several objects (all pointing to the 2952 * same page) possible by specifying head and tail ptr, plus objects 2953 * count (cnt). Bulk free indicated by tail pointer being set. 2954 */ 2955 static __always_inline void do_slab_free(struct kmem_cache *s, 2956 struct page *page, void *head, void *tail, 2957 int cnt, unsigned long addr) 2958 { 2959 void *tail_obj = tail ? : head; 2960 struct kmem_cache_cpu *c; 2961 unsigned long tid; 2962 redo: 2963 /* 2964 * Determine the currently cpus per cpu slab. 2965 * The cpu may change afterward. However that does not matter since 2966 * data is retrieved via this pointer. If we are on the same cpu 2967 * during the cmpxchg then the free will succeed. 2968 */ 2969 do { 2970 tid = this_cpu_read(s->cpu_slab->tid); 2971 c = raw_cpu_ptr(s->cpu_slab); 2972 } while (IS_ENABLED(CONFIG_PREEMPT) && 2973 unlikely(tid != READ_ONCE(c->tid))); 2974 2975 /* Same with comment on barrier() in slab_alloc_node() */ 2976 barrier(); 2977 2978 if (likely(page == c->page)) { 2979 set_freepointer(s, tail_obj, c->freelist); 2980 2981 if (unlikely(!this_cpu_cmpxchg_double( 2982 s->cpu_slab->freelist, s->cpu_slab->tid, 2983 c->freelist, tid, 2984 head, next_tid(tid)))) { 2985 2986 note_cmpxchg_failure("slab_free", s, tid); 2987 goto redo; 2988 } 2989 stat(s, FREE_FASTPATH); 2990 } else 2991 __slab_free(s, page, head, tail_obj, cnt, addr); 2992 2993 } 2994 2995 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2996 void *head, void *tail, int cnt, 2997 unsigned long addr) 2998 { 2999 /* 3000 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3001 * to remove objects, whose reuse must be delayed. 3002 */ 3003 if (slab_free_freelist_hook(s, &head, &tail)) 3004 do_slab_free(s, page, head, tail, cnt, addr); 3005 } 3006 3007 #ifdef CONFIG_KASAN_GENERIC 3008 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3009 { 3010 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3011 } 3012 #endif 3013 3014 void kmem_cache_free(struct kmem_cache *s, void *x) 3015 { 3016 s = cache_from_obj(s, x); 3017 if (!s) 3018 return; 3019 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3020 trace_kmem_cache_free(_RET_IP_, x); 3021 } 3022 EXPORT_SYMBOL(kmem_cache_free); 3023 3024 struct detached_freelist { 3025 struct page *page; 3026 void *tail; 3027 void *freelist; 3028 int cnt; 3029 struct kmem_cache *s; 3030 }; 3031 3032 /* 3033 * This function progressively scans the array with free objects (with 3034 * a limited look ahead) and extract objects belonging to the same 3035 * page. It builds a detached freelist directly within the given 3036 * page/objects. This can happen without any need for 3037 * synchronization, because the objects are owned by running process. 3038 * The freelist is build up as a single linked list in the objects. 3039 * The idea is, that this detached freelist can then be bulk 3040 * transferred to the real freelist(s), but only requiring a single 3041 * synchronization primitive. Look ahead in the array is limited due 3042 * to performance reasons. 3043 */ 3044 static inline 3045 int build_detached_freelist(struct kmem_cache *s, size_t size, 3046 void **p, struct detached_freelist *df) 3047 { 3048 size_t first_skipped_index = 0; 3049 int lookahead = 3; 3050 void *object; 3051 struct page *page; 3052 3053 /* Always re-init detached_freelist */ 3054 df->page = NULL; 3055 3056 do { 3057 object = p[--size]; 3058 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3059 } while (!object && size); 3060 3061 if (!object) 3062 return 0; 3063 3064 page = virt_to_head_page(object); 3065 if (!s) { 3066 /* Handle kalloc'ed objects */ 3067 if (unlikely(!PageSlab(page))) { 3068 BUG_ON(!PageCompound(page)); 3069 kfree_hook(object); 3070 __free_pages(page, compound_order(page)); 3071 p[size] = NULL; /* mark object processed */ 3072 return size; 3073 } 3074 /* Derive kmem_cache from object */ 3075 df->s = page->slab_cache; 3076 } else { 3077 df->s = cache_from_obj(s, object); /* Support for memcg */ 3078 } 3079 3080 /* Start new detached freelist */ 3081 df->page = page; 3082 set_freepointer(df->s, object, NULL); 3083 df->tail = object; 3084 df->freelist = object; 3085 p[size] = NULL; /* mark object processed */ 3086 df->cnt = 1; 3087 3088 while (size) { 3089 object = p[--size]; 3090 if (!object) 3091 continue; /* Skip processed objects */ 3092 3093 /* df->page is always set at this point */ 3094 if (df->page == virt_to_head_page(object)) { 3095 /* Opportunity build freelist */ 3096 set_freepointer(df->s, object, df->freelist); 3097 df->freelist = object; 3098 df->cnt++; 3099 p[size] = NULL; /* mark object processed */ 3100 3101 continue; 3102 } 3103 3104 /* Limit look ahead search */ 3105 if (!--lookahead) 3106 break; 3107 3108 if (!first_skipped_index) 3109 first_skipped_index = size + 1; 3110 } 3111 3112 return first_skipped_index; 3113 } 3114 3115 /* Note that interrupts must be enabled when calling this function. */ 3116 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3117 { 3118 if (WARN_ON(!size)) 3119 return; 3120 3121 do { 3122 struct detached_freelist df; 3123 3124 size = build_detached_freelist(s, size, p, &df); 3125 if (!df.page) 3126 continue; 3127 3128 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3129 } while (likely(size)); 3130 } 3131 EXPORT_SYMBOL(kmem_cache_free_bulk); 3132 3133 /* Note that interrupts must be enabled when calling this function. */ 3134 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3135 void **p) 3136 { 3137 struct kmem_cache_cpu *c; 3138 int i; 3139 3140 /* memcg and kmem_cache debug support */ 3141 s = slab_pre_alloc_hook(s, flags); 3142 if (unlikely(!s)) 3143 return false; 3144 /* 3145 * Drain objects in the per cpu slab, while disabling local 3146 * IRQs, which protects against PREEMPT and interrupts 3147 * handlers invoking normal fastpath. 3148 */ 3149 local_irq_disable(); 3150 c = this_cpu_ptr(s->cpu_slab); 3151 3152 for (i = 0; i < size; i++) { 3153 void *object = c->freelist; 3154 3155 if (unlikely(!object)) { 3156 /* 3157 * Invoking slow path likely have side-effect 3158 * of re-populating per CPU c->freelist 3159 */ 3160 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3161 _RET_IP_, c); 3162 if (unlikely(!p[i])) 3163 goto error; 3164 3165 c = this_cpu_ptr(s->cpu_slab); 3166 continue; /* goto for-loop */ 3167 } 3168 c->freelist = get_freepointer(s, object); 3169 p[i] = object; 3170 } 3171 c->tid = next_tid(c->tid); 3172 local_irq_enable(); 3173 3174 /* Clear memory outside IRQ disabled fastpath loop */ 3175 if (unlikely(flags & __GFP_ZERO)) { 3176 int j; 3177 3178 for (j = 0; j < i; j++) 3179 memset(p[j], 0, s->object_size); 3180 } 3181 3182 /* memcg and kmem_cache debug support */ 3183 slab_post_alloc_hook(s, flags, size, p); 3184 return i; 3185 error: 3186 local_irq_enable(); 3187 slab_post_alloc_hook(s, flags, i, p); 3188 __kmem_cache_free_bulk(s, i, p); 3189 return 0; 3190 } 3191 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3192 3193 3194 /* 3195 * Object placement in a slab is made very easy because we always start at 3196 * offset 0. If we tune the size of the object to the alignment then we can 3197 * get the required alignment by putting one properly sized object after 3198 * another. 3199 * 3200 * Notice that the allocation order determines the sizes of the per cpu 3201 * caches. Each processor has always one slab available for allocations. 3202 * Increasing the allocation order reduces the number of times that slabs 3203 * must be moved on and off the partial lists and is therefore a factor in 3204 * locking overhead. 3205 */ 3206 3207 /* 3208 * Mininum / Maximum order of slab pages. This influences locking overhead 3209 * and slab fragmentation. A higher order reduces the number of partial slabs 3210 * and increases the number of allocations possible without having to 3211 * take the list_lock. 3212 */ 3213 static unsigned int slub_min_order; 3214 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3215 static unsigned int slub_min_objects; 3216 3217 /* 3218 * Calculate the order of allocation given an slab object size. 3219 * 3220 * The order of allocation has significant impact on performance and other 3221 * system components. Generally order 0 allocations should be preferred since 3222 * order 0 does not cause fragmentation in the page allocator. Larger objects 3223 * be problematic to put into order 0 slabs because there may be too much 3224 * unused space left. We go to a higher order if more than 1/16th of the slab 3225 * would be wasted. 3226 * 3227 * In order to reach satisfactory performance we must ensure that a minimum 3228 * number of objects is in one slab. Otherwise we may generate too much 3229 * activity on the partial lists which requires taking the list_lock. This is 3230 * less a concern for large slabs though which are rarely used. 3231 * 3232 * slub_max_order specifies the order where we begin to stop considering the 3233 * number of objects in a slab as critical. If we reach slub_max_order then 3234 * we try to keep the page order as low as possible. So we accept more waste 3235 * of space in favor of a small page order. 3236 * 3237 * Higher order allocations also allow the placement of more objects in a 3238 * slab and thereby reduce object handling overhead. If the user has 3239 * requested a higher mininum order then we start with that one instead of 3240 * the smallest order which will fit the object. 3241 */ 3242 static inline unsigned int slab_order(unsigned int size, 3243 unsigned int min_objects, unsigned int max_order, 3244 unsigned int fract_leftover) 3245 { 3246 unsigned int min_order = slub_min_order; 3247 unsigned int order; 3248 3249 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3250 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3251 3252 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3253 order <= max_order; order++) { 3254 3255 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3256 unsigned int rem; 3257 3258 rem = slab_size % size; 3259 3260 if (rem <= slab_size / fract_leftover) 3261 break; 3262 } 3263 3264 return order; 3265 } 3266 3267 static inline int calculate_order(unsigned int size) 3268 { 3269 unsigned int order; 3270 unsigned int min_objects; 3271 unsigned int max_objects; 3272 3273 /* 3274 * Attempt to find best configuration for a slab. This 3275 * works by first attempting to generate a layout with 3276 * the best configuration and backing off gradually. 3277 * 3278 * First we increase the acceptable waste in a slab. Then 3279 * we reduce the minimum objects required in a slab. 3280 */ 3281 min_objects = slub_min_objects; 3282 if (!min_objects) 3283 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3284 max_objects = order_objects(slub_max_order, size); 3285 min_objects = min(min_objects, max_objects); 3286 3287 while (min_objects > 1) { 3288 unsigned int fraction; 3289 3290 fraction = 16; 3291 while (fraction >= 4) { 3292 order = slab_order(size, min_objects, 3293 slub_max_order, fraction); 3294 if (order <= slub_max_order) 3295 return order; 3296 fraction /= 2; 3297 } 3298 min_objects--; 3299 } 3300 3301 /* 3302 * We were unable to place multiple objects in a slab. Now 3303 * lets see if we can place a single object there. 3304 */ 3305 order = slab_order(size, 1, slub_max_order, 1); 3306 if (order <= slub_max_order) 3307 return order; 3308 3309 /* 3310 * Doh this slab cannot be placed using slub_max_order. 3311 */ 3312 order = slab_order(size, 1, MAX_ORDER, 1); 3313 if (order < MAX_ORDER) 3314 return order; 3315 return -ENOSYS; 3316 } 3317 3318 static void 3319 init_kmem_cache_node(struct kmem_cache_node *n) 3320 { 3321 n->nr_partial = 0; 3322 spin_lock_init(&n->list_lock); 3323 INIT_LIST_HEAD(&n->partial); 3324 #ifdef CONFIG_SLUB_DEBUG 3325 atomic_long_set(&n->nr_slabs, 0); 3326 atomic_long_set(&n->total_objects, 0); 3327 INIT_LIST_HEAD(&n->full); 3328 #endif 3329 } 3330 3331 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3332 { 3333 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3334 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3335 3336 /* 3337 * Must align to double word boundary for the double cmpxchg 3338 * instructions to work; see __pcpu_double_call_return_bool(). 3339 */ 3340 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3341 2 * sizeof(void *)); 3342 3343 if (!s->cpu_slab) 3344 return 0; 3345 3346 init_kmem_cache_cpus(s); 3347 3348 return 1; 3349 } 3350 3351 static struct kmem_cache *kmem_cache_node; 3352 3353 /* 3354 * No kmalloc_node yet so do it by hand. We know that this is the first 3355 * slab on the node for this slabcache. There are no concurrent accesses 3356 * possible. 3357 * 3358 * Note that this function only works on the kmem_cache_node 3359 * when allocating for the kmem_cache_node. This is used for bootstrapping 3360 * memory on a fresh node that has no slab structures yet. 3361 */ 3362 static void early_kmem_cache_node_alloc(int node) 3363 { 3364 struct page *page; 3365 struct kmem_cache_node *n; 3366 3367 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3368 3369 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3370 3371 BUG_ON(!page); 3372 if (page_to_nid(page) != node) { 3373 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3374 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3375 } 3376 3377 n = page->freelist; 3378 BUG_ON(!n); 3379 #ifdef CONFIG_SLUB_DEBUG 3380 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3381 init_tracking(kmem_cache_node, n); 3382 #endif 3383 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3384 GFP_KERNEL); 3385 page->freelist = get_freepointer(kmem_cache_node, n); 3386 page->inuse = 1; 3387 page->frozen = 0; 3388 kmem_cache_node->node[node] = n; 3389 init_kmem_cache_node(n); 3390 inc_slabs_node(kmem_cache_node, node, page->objects); 3391 3392 /* 3393 * No locks need to be taken here as it has just been 3394 * initialized and there is no concurrent access. 3395 */ 3396 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3397 } 3398 3399 static void free_kmem_cache_nodes(struct kmem_cache *s) 3400 { 3401 int node; 3402 struct kmem_cache_node *n; 3403 3404 for_each_kmem_cache_node(s, node, n) { 3405 s->node[node] = NULL; 3406 kmem_cache_free(kmem_cache_node, n); 3407 } 3408 } 3409 3410 void __kmem_cache_release(struct kmem_cache *s) 3411 { 3412 cache_random_seq_destroy(s); 3413 free_percpu(s->cpu_slab); 3414 free_kmem_cache_nodes(s); 3415 } 3416 3417 static int init_kmem_cache_nodes(struct kmem_cache *s) 3418 { 3419 int node; 3420 3421 for_each_node_state(node, N_NORMAL_MEMORY) { 3422 struct kmem_cache_node *n; 3423 3424 if (slab_state == DOWN) { 3425 early_kmem_cache_node_alloc(node); 3426 continue; 3427 } 3428 n = kmem_cache_alloc_node(kmem_cache_node, 3429 GFP_KERNEL, node); 3430 3431 if (!n) { 3432 free_kmem_cache_nodes(s); 3433 return 0; 3434 } 3435 3436 init_kmem_cache_node(n); 3437 s->node[node] = n; 3438 } 3439 return 1; 3440 } 3441 3442 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3443 { 3444 if (min < MIN_PARTIAL) 3445 min = MIN_PARTIAL; 3446 else if (min > MAX_PARTIAL) 3447 min = MAX_PARTIAL; 3448 s->min_partial = min; 3449 } 3450 3451 static void set_cpu_partial(struct kmem_cache *s) 3452 { 3453 #ifdef CONFIG_SLUB_CPU_PARTIAL 3454 /* 3455 * cpu_partial determined the maximum number of objects kept in the 3456 * per cpu partial lists of a processor. 3457 * 3458 * Per cpu partial lists mainly contain slabs that just have one 3459 * object freed. If they are used for allocation then they can be 3460 * filled up again with minimal effort. The slab will never hit the 3461 * per node partial lists and therefore no locking will be required. 3462 * 3463 * This setting also determines 3464 * 3465 * A) The number of objects from per cpu partial slabs dumped to the 3466 * per node list when we reach the limit. 3467 * B) The number of objects in cpu partial slabs to extract from the 3468 * per node list when we run out of per cpu objects. We only fetch 3469 * 50% to keep some capacity around for frees. 3470 */ 3471 if (!kmem_cache_has_cpu_partial(s)) 3472 s->cpu_partial = 0; 3473 else if (s->size >= PAGE_SIZE) 3474 s->cpu_partial = 2; 3475 else if (s->size >= 1024) 3476 s->cpu_partial = 6; 3477 else if (s->size >= 256) 3478 s->cpu_partial = 13; 3479 else 3480 s->cpu_partial = 30; 3481 #endif 3482 } 3483 3484 /* 3485 * calculate_sizes() determines the order and the distribution of data within 3486 * a slab object. 3487 */ 3488 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3489 { 3490 slab_flags_t flags = s->flags; 3491 unsigned int size = s->object_size; 3492 unsigned int order; 3493 3494 /* 3495 * Round up object size to the next word boundary. We can only 3496 * place the free pointer at word boundaries and this determines 3497 * the possible location of the free pointer. 3498 */ 3499 size = ALIGN(size, sizeof(void *)); 3500 3501 #ifdef CONFIG_SLUB_DEBUG 3502 /* 3503 * Determine if we can poison the object itself. If the user of 3504 * the slab may touch the object after free or before allocation 3505 * then we should never poison the object itself. 3506 */ 3507 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3508 !s->ctor) 3509 s->flags |= __OBJECT_POISON; 3510 else 3511 s->flags &= ~__OBJECT_POISON; 3512 3513 3514 /* 3515 * If we are Redzoning then check if there is some space between the 3516 * end of the object and the free pointer. If not then add an 3517 * additional word to have some bytes to store Redzone information. 3518 */ 3519 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3520 size += sizeof(void *); 3521 #endif 3522 3523 /* 3524 * With that we have determined the number of bytes in actual use 3525 * by the object. This is the potential offset to the free pointer. 3526 */ 3527 s->inuse = size; 3528 3529 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3530 s->ctor)) { 3531 /* 3532 * Relocate free pointer after the object if it is not 3533 * permitted to overwrite the first word of the object on 3534 * kmem_cache_free. 3535 * 3536 * This is the case if we do RCU, have a constructor or 3537 * destructor or are poisoning the objects. 3538 */ 3539 s->offset = size; 3540 size += sizeof(void *); 3541 } 3542 3543 #ifdef CONFIG_SLUB_DEBUG 3544 if (flags & SLAB_STORE_USER) 3545 /* 3546 * Need to store information about allocs and frees after 3547 * the object. 3548 */ 3549 size += 2 * sizeof(struct track); 3550 #endif 3551 3552 kasan_cache_create(s, &size, &s->flags); 3553 #ifdef CONFIG_SLUB_DEBUG 3554 if (flags & SLAB_RED_ZONE) { 3555 /* 3556 * Add some empty padding so that we can catch 3557 * overwrites from earlier objects rather than let 3558 * tracking information or the free pointer be 3559 * corrupted if a user writes before the start 3560 * of the object. 3561 */ 3562 size += sizeof(void *); 3563 3564 s->red_left_pad = sizeof(void *); 3565 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3566 size += s->red_left_pad; 3567 } 3568 #endif 3569 3570 /* 3571 * SLUB stores one object immediately after another beginning from 3572 * offset 0. In order to align the objects we have to simply size 3573 * each object to conform to the alignment. 3574 */ 3575 size = ALIGN(size, s->align); 3576 s->size = size; 3577 if (forced_order >= 0) 3578 order = forced_order; 3579 else 3580 order = calculate_order(size); 3581 3582 if ((int)order < 0) 3583 return 0; 3584 3585 s->allocflags = 0; 3586 if (order) 3587 s->allocflags |= __GFP_COMP; 3588 3589 if (s->flags & SLAB_CACHE_DMA) 3590 s->allocflags |= GFP_DMA; 3591 3592 if (s->flags & SLAB_CACHE_DMA32) 3593 s->allocflags |= GFP_DMA32; 3594 3595 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3596 s->allocflags |= __GFP_RECLAIMABLE; 3597 3598 /* 3599 * Determine the number of objects per slab 3600 */ 3601 s->oo = oo_make(order, size); 3602 s->min = oo_make(get_order(size), size); 3603 if (oo_objects(s->oo) > oo_objects(s->max)) 3604 s->max = s->oo; 3605 3606 return !!oo_objects(s->oo); 3607 } 3608 3609 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3610 { 3611 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3612 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3613 s->random = get_random_long(); 3614 #endif 3615 3616 if (!calculate_sizes(s, -1)) 3617 goto error; 3618 if (disable_higher_order_debug) { 3619 /* 3620 * Disable debugging flags that store metadata if the min slab 3621 * order increased. 3622 */ 3623 if (get_order(s->size) > get_order(s->object_size)) { 3624 s->flags &= ~DEBUG_METADATA_FLAGS; 3625 s->offset = 0; 3626 if (!calculate_sizes(s, -1)) 3627 goto error; 3628 } 3629 } 3630 3631 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3632 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3633 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3634 /* Enable fast mode */ 3635 s->flags |= __CMPXCHG_DOUBLE; 3636 #endif 3637 3638 /* 3639 * The larger the object size is, the more pages we want on the partial 3640 * list to avoid pounding the page allocator excessively. 3641 */ 3642 set_min_partial(s, ilog2(s->size) / 2); 3643 3644 set_cpu_partial(s); 3645 3646 #ifdef CONFIG_NUMA 3647 s->remote_node_defrag_ratio = 1000; 3648 #endif 3649 3650 /* Initialize the pre-computed randomized freelist if slab is up */ 3651 if (slab_state >= UP) { 3652 if (init_cache_random_seq(s)) 3653 goto error; 3654 } 3655 3656 if (!init_kmem_cache_nodes(s)) 3657 goto error; 3658 3659 if (alloc_kmem_cache_cpus(s)) 3660 return 0; 3661 3662 free_kmem_cache_nodes(s); 3663 error: 3664 if (flags & SLAB_PANIC) 3665 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n", 3666 s->name, s->size, s->size, 3667 oo_order(s->oo), s->offset, (unsigned long)flags); 3668 return -EINVAL; 3669 } 3670 3671 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3672 const char *text) 3673 { 3674 #ifdef CONFIG_SLUB_DEBUG 3675 void *addr = page_address(page); 3676 void *p; 3677 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC); 3678 if (!map) 3679 return; 3680 slab_err(s, page, text, s->name); 3681 slab_lock(page); 3682 3683 get_map(s, page, map); 3684 for_each_object(p, s, addr, page->objects) { 3685 3686 if (!test_bit(slab_index(p, s, addr), map)) { 3687 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3688 print_tracking(s, p); 3689 } 3690 } 3691 slab_unlock(page); 3692 bitmap_free(map); 3693 #endif 3694 } 3695 3696 /* 3697 * Attempt to free all partial slabs on a node. 3698 * This is called from __kmem_cache_shutdown(). We must take list_lock 3699 * because sysfs file might still access partial list after the shutdowning. 3700 */ 3701 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3702 { 3703 LIST_HEAD(discard); 3704 struct page *page, *h; 3705 3706 BUG_ON(irqs_disabled()); 3707 spin_lock_irq(&n->list_lock); 3708 list_for_each_entry_safe(page, h, &n->partial, lru) { 3709 if (!page->inuse) { 3710 remove_partial(n, page); 3711 list_add(&page->lru, &discard); 3712 } else { 3713 list_slab_objects(s, page, 3714 "Objects remaining in %s on __kmem_cache_shutdown()"); 3715 } 3716 } 3717 spin_unlock_irq(&n->list_lock); 3718 3719 list_for_each_entry_safe(page, h, &discard, lru) 3720 discard_slab(s, page); 3721 } 3722 3723 bool __kmem_cache_empty(struct kmem_cache *s) 3724 { 3725 int node; 3726 struct kmem_cache_node *n; 3727 3728 for_each_kmem_cache_node(s, node, n) 3729 if (n->nr_partial || slabs_node(s, node)) 3730 return false; 3731 return true; 3732 } 3733 3734 /* 3735 * Release all resources used by a slab cache. 3736 */ 3737 int __kmem_cache_shutdown(struct kmem_cache *s) 3738 { 3739 int node; 3740 struct kmem_cache_node *n; 3741 3742 flush_all(s); 3743 /* Attempt to free all objects */ 3744 for_each_kmem_cache_node(s, node, n) { 3745 free_partial(s, n); 3746 if (n->nr_partial || slabs_node(s, node)) 3747 return 1; 3748 } 3749 sysfs_slab_remove(s); 3750 return 0; 3751 } 3752 3753 /******************************************************************** 3754 * Kmalloc subsystem 3755 *******************************************************************/ 3756 3757 static int __init setup_slub_min_order(char *str) 3758 { 3759 get_option(&str, (int *)&slub_min_order); 3760 3761 return 1; 3762 } 3763 3764 __setup("slub_min_order=", setup_slub_min_order); 3765 3766 static int __init setup_slub_max_order(char *str) 3767 { 3768 get_option(&str, (int *)&slub_max_order); 3769 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3770 3771 return 1; 3772 } 3773 3774 __setup("slub_max_order=", setup_slub_max_order); 3775 3776 static int __init setup_slub_min_objects(char *str) 3777 { 3778 get_option(&str, (int *)&slub_min_objects); 3779 3780 return 1; 3781 } 3782 3783 __setup("slub_min_objects=", setup_slub_min_objects); 3784 3785 void *__kmalloc(size_t size, gfp_t flags) 3786 { 3787 struct kmem_cache *s; 3788 void *ret; 3789 3790 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3791 return kmalloc_large(size, flags); 3792 3793 s = kmalloc_slab(size, flags); 3794 3795 if (unlikely(ZERO_OR_NULL_PTR(s))) 3796 return s; 3797 3798 ret = slab_alloc(s, flags, _RET_IP_); 3799 3800 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3801 3802 ret = kasan_kmalloc(s, ret, size, flags); 3803 3804 return ret; 3805 } 3806 EXPORT_SYMBOL(__kmalloc); 3807 3808 #ifdef CONFIG_NUMA 3809 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3810 { 3811 struct page *page; 3812 void *ptr = NULL; 3813 3814 flags |= __GFP_COMP; 3815 page = alloc_pages_node(node, flags, get_order(size)); 3816 if (page) 3817 ptr = page_address(page); 3818 3819 return kmalloc_large_node_hook(ptr, size, flags); 3820 } 3821 3822 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3823 { 3824 struct kmem_cache *s; 3825 void *ret; 3826 3827 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3828 ret = kmalloc_large_node(size, flags, node); 3829 3830 trace_kmalloc_node(_RET_IP_, ret, 3831 size, PAGE_SIZE << get_order(size), 3832 flags, node); 3833 3834 return ret; 3835 } 3836 3837 s = kmalloc_slab(size, flags); 3838 3839 if (unlikely(ZERO_OR_NULL_PTR(s))) 3840 return s; 3841 3842 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3843 3844 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3845 3846 ret = kasan_kmalloc(s, ret, size, flags); 3847 3848 return ret; 3849 } 3850 EXPORT_SYMBOL(__kmalloc_node); 3851 #endif 3852 3853 #ifdef CONFIG_HARDENED_USERCOPY 3854 /* 3855 * Rejects incorrectly sized objects and objects that are to be copied 3856 * to/from userspace but do not fall entirely within the containing slab 3857 * cache's usercopy region. 3858 * 3859 * Returns NULL if check passes, otherwise const char * to name of cache 3860 * to indicate an error. 3861 */ 3862 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 3863 bool to_user) 3864 { 3865 struct kmem_cache *s; 3866 unsigned int offset; 3867 size_t object_size; 3868 3869 ptr = kasan_reset_tag(ptr); 3870 3871 /* Find object and usable object size. */ 3872 s = page->slab_cache; 3873 3874 /* Reject impossible pointers. */ 3875 if (ptr < page_address(page)) 3876 usercopy_abort("SLUB object not in SLUB page?!", NULL, 3877 to_user, 0, n); 3878 3879 /* Find offset within object. */ 3880 offset = (ptr - page_address(page)) % s->size; 3881 3882 /* Adjust for redzone and reject if within the redzone. */ 3883 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3884 if (offset < s->red_left_pad) 3885 usercopy_abort("SLUB object in left red zone", 3886 s->name, to_user, offset, n); 3887 offset -= s->red_left_pad; 3888 } 3889 3890 /* Allow address range falling entirely within usercopy region. */ 3891 if (offset >= s->useroffset && 3892 offset - s->useroffset <= s->usersize && 3893 n <= s->useroffset - offset + s->usersize) 3894 return; 3895 3896 /* 3897 * If the copy is still within the allocated object, produce 3898 * a warning instead of rejecting the copy. This is intended 3899 * to be a temporary method to find any missing usercopy 3900 * whitelists. 3901 */ 3902 object_size = slab_ksize(s); 3903 if (usercopy_fallback && 3904 offset <= object_size && n <= object_size - offset) { 3905 usercopy_warn("SLUB object", s->name, to_user, offset, n); 3906 return; 3907 } 3908 3909 usercopy_abort("SLUB object", s->name, to_user, offset, n); 3910 } 3911 #endif /* CONFIG_HARDENED_USERCOPY */ 3912 3913 static size_t __ksize(const void *object) 3914 { 3915 struct page *page; 3916 3917 if (unlikely(object == ZERO_SIZE_PTR)) 3918 return 0; 3919 3920 page = virt_to_head_page(object); 3921 3922 if (unlikely(!PageSlab(page))) { 3923 WARN_ON(!PageCompound(page)); 3924 return PAGE_SIZE << compound_order(page); 3925 } 3926 3927 return slab_ksize(page->slab_cache); 3928 } 3929 3930 size_t ksize(const void *object) 3931 { 3932 size_t size = __ksize(object); 3933 /* We assume that ksize callers could use whole allocated area, 3934 * so we need to unpoison this area. 3935 */ 3936 kasan_unpoison_shadow(object, size); 3937 return size; 3938 } 3939 EXPORT_SYMBOL(ksize); 3940 3941 void kfree(const void *x) 3942 { 3943 struct page *page; 3944 void *object = (void *)x; 3945 3946 trace_kfree(_RET_IP_, x); 3947 3948 if (unlikely(ZERO_OR_NULL_PTR(x))) 3949 return; 3950 3951 page = virt_to_head_page(x); 3952 if (unlikely(!PageSlab(page))) { 3953 BUG_ON(!PageCompound(page)); 3954 kfree_hook(object); 3955 __free_pages(page, compound_order(page)); 3956 return; 3957 } 3958 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3959 } 3960 EXPORT_SYMBOL(kfree); 3961 3962 #define SHRINK_PROMOTE_MAX 32 3963 3964 /* 3965 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3966 * up most to the head of the partial lists. New allocations will then 3967 * fill those up and thus they can be removed from the partial lists. 3968 * 3969 * The slabs with the least items are placed last. This results in them 3970 * being allocated from last increasing the chance that the last objects 3971 * are freed in them. 3972 */ 3973 int __kmem_cache_shrink(struct kmem_cache *s) 3974 { 3975 int node; 3976 int i; 3977 struct kmem_cache_node *n; 3978 struct page *page; 3979 struct page *t; 3980 struct list_head discard; 3981 struct list_head promote[SHRINK_PROMOTE_MAX]; 3982 unsigned long flags; 3983 int ret = 0; 3984 3985 flush_all(s); 3986 for_each_kmem_cache_node(s, node, n) { 3987 INIT_LIST_HEAD(&discard); 3988 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3989 INIT_LIST_HEAD(promote + i); 3990 3991 spin_lock_irqsave(&n->list_lock, flags); 3992 3993 /* 3994 * Build lists of slabs to discard or promote. 3995 * 3996 * Note that concurrent frees may occur while we hold the 3997 * list_lock. page->inuse here is the upper limit. 3998 */ 3999 list_for_each_entry_safe(page, t, &n->partial, lru) { 4000 int free = page->objects - page->inuse; 4001 4002 /* Do not reread page->inuse */ 4003 barrier(); 4004 4005 /* We do not keep full slabs on the list */ 4006 BUG_ON(free <= 0); 4007 4008 if (free == page->objects) { 4009 list_move(&page->lru, &discard); 4010 n->nr_partial--; 4011 } else if (free <= SHRINK_PROMOTE_MAX) 4012 list_move(&page->lru, promote + free - 1); 4013 } 4014 4015 /* 4016 * Promote the slabs filled up most to the head of the 4017 * partial list. 4018 */ 4019 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4020 list_splice(promote + i, &n->partial); 4021 4022 spin_unlock_irqrestore(&n->list_lock, flags); 4023 4024 /* Release empty slabs */ 4025 list_for_each_entry_safe(page, t, &discard, lru) 4026 discard_slab(s, page); 4027 4028 if (slabs_node(s, node)) 4029 ret = 1; 4030 } 4031 4032 return ret; 4033 } 4034 4035 #ifdef CONFIG_MEMCG 4036 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) 4037 { 4038 /* 4039 * Called with all the locks held after a sched RCU grace period. 4040 * Even if @s becomes empty after shrinking, we can't know that @s 4041 * doesn't have allocations already in-flight and thus can't 4042 * destroy @s until the associated memcg is released. 4043 * 4044 * However, let's remove the sysfs files for empty caches here. 4045 * Each cache has a lot of interface files which aren't 4046 * particularly useful for empty draining caches; otherwise, we can 4047 * easily end up with millions of unnecessary sysfs files on 4048 * systems which have a lot of memory and transient cgroups. 4049 */ 4050 if (!__kmem_cache_shrink(s)) 4051 sysfs_slab_remove(s); 4052 } 4053 4054 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4055 { 4056 /* 4057 * Disable empty slabs caching. Used to avoid pinning offline 4058 * memory cgroups by kmem pages that can be freed. 4059 */ 4060 slub_set_cpu_partial(s, 0); 4061 s->min_partial = 0; 4062 4063 /* 4064 * s->cpu_partial is checked locklessly (see put_cpu_partial), so 4065 * we have to make sure the change is visible before shrinking. 4066 */ 4067 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); 4068 } 4069 #endif 4070 4071 static int slab_mem_going_offline_callback(void *arg) 4072 { 4073 struct kmem_cache *s; 4074 4075 mutex_lock(&slab_mutex); 4076 list_for_each_entry(s, &slab_caches, list) 4077 __kmem_cache_shrink(s); 4078 mutex_unlock(&slab_mutex); 4079 4080 return 0; 4081 } 4082 4083 static void slab_mem_offline_callback(void *arg) 4084 { 4085 struct kmem_cache_node *n; 4086 struct kmem_cache *s; 4087 struct memory_notify *marg = arg; 4088 int offline_node; 4089 4090 offline_node = marg->status_change_nid_normal; 4091 4092 /* 4093 * If the node still has available memory. we need kmem_cache_node 4094 * for it yet. 4095 */ 4096 if (offline_node < 0) 4097 return; 4098 4099 mutex_lock(&slab_mutex); 4100 list_for_each_entry(s, &slab_caches, list) { 4101 n = get_node(s, offline_node); 4102 if (n) { 4103 /* 4104 * if n->nr_slabs > 0, slabs still exist on the node 4105 * that is going down. We were unable to free them, 4106 * and offline_pages() function shouldn't call this 4107 * callback. So, we must fail. 4108 */ 4109 BUG_ON(slabs_node(s, offline_node)); 4110 4111 s->node[offline_node] = NULL; 4112 kmem_cache_free(kmem_cache_node, n); 4113 } 4114 } 4115 mutex_unlock(&slab_mutex); 4116 } 4117 4118 static int slab_mem_going_online_callback(void *arg) 4119 { 4120 struct kmem_cache_node *n; 4121 struct kmem_cache *s; 4122 struct memory_notify *marg = arg; 4123 int nid = marg->status_change_nid_normal; 4124 int ret = 0; 4125 4126 /* 4127 * If the node's memory is already available, then kmem_cache_node is 4128 * already created. Nothing to do. 4129 */ 4130 if (nid < 0) 4131 return 0; 4132 4133 /* 4134 * We are bringing a node online. No memory is available yet. We must 4135 * allocate a kmem_cache_node structure in order to bring the node 4136 * online. 4137 */ 4138 mutex_lock(&slab_mutex); 4139 list_for_each_entry(s, &slab_caches, list) { 4140 /* 4141 * XXX: kmem_cache_alloc_node will fallback to other nodes 4142 * since memory is not yet available from the node that 4143 * is brought up. 4144 */ 4145 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4146 if (!n) { 4147 ret = -ENOMEM; 4148 goto out; 4149 } 4150 init_kmem_cache_node(n); 4151 s->node[nid] = n; 4152 } 4153 out: 4154 mutex_unlock(&slab_mutex); 4155 return ret; 4156 } 4157 4158 static int slab_memory_callback(struct notifier_block *self, 4159 unsigned long action, void *arg) 4160 { 4161 int ret = 0; 4162 4163 switch (action) { 4164 case MEM_GOING_ONLINE: 4165 ret = slab_mem_going_online_callback(arg); 4166 break; 4167 case MEM_GOING_OFFLINE: 4168 ret = slab_mem_going_offline_callback(arg); 4169 break; 4170 case MEM_OFFLINE: 4171 case MEM_CANCEL_ONLINE: 4172 slab_mem_offline_callback(arg); 4173 break; 4174 case MEM_ONLINE: 4175 case MEM_CANCEL_OFFLINE: 4176 break; 4177 } 4178 if (ret) 4179 ret = notifier_from_errno(ret); 4180 else 4181 ret = NOTIFY_OK; 4182 return ret; 4183 } 4184 4185 static struct notifier_block slab_memory_callback_nb = { 4186 .notifier_call = slab_memory_callback, 4187 .priority = SLAB_CALLBACK_PRI, 4188 }; 4189 4190 /******************************************************************** 4191 * Basic setup of slabs 4192 *******************************************************************/ 4193 4194 /* 4195 * Used for early kmem_cache structures that were allocated using 4196 * the page allocator. Allocate them properly then fix up the pointers 4197 * that may be pointing to the wrong kmem_cache structure. 4198 */ 4199 4200 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4201 { 4202 int node; 4203 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4204 struct kmem_cache_node *n; 4205 4206 memcpy(s, static_cache, kmem_cache->object_size); 4207 4208 /* 4209 * This runs very early, and only the boot processor is supposed to be 4210 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4211 * IPIs around. 4212 */ 4213 __flush_cpu_slab(s, smp_processor_id()); 4214 for_each_kmem_cache_node(s, node, n) { 4215 struct page *p; 4216 4217 list_for_each_entry(p, &n->partial, lru) 4218 p->slab_cache = s; 4219 4220 #ifdef CONFIG_SLUB_DEBUG 4221 list_for_each_entry(p, &n->full, lru) 4222 p->slab_cache = s; 4223 #endif 4224 } 4225 slab_init_memcg_params(s); 4226 list_add(&s->list, &slab_caches); 4227 memcg_link_cache(s); 4228 return s; 4229 } 4230 4231 void __init kmem_cache_init(void) 4232 { 4233 static __initdata struct kmem_cache boot_kmem_cache, 4234 boot_kmem_cache_node; 4235 4236 if (debug_guardpage_minorder()) 4237 slub_max_order = 0; 4238 4239 kmem_cache_node = &boot_kmem_cache_node; 4240 kmem_cache = &boot_kmem_cache; 4241 4242 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4243 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4244 4245 register_hotmemory_notifier(&slab_memory_callback_nb); 4246 4247 /* Able to allocate the per node structures */ 4248 slab_state = PARTIAL; 4249 4250 create_boot_cache(kmem_cache, "kmem_cache", 4251 offsetof(struct kmem_cache, node) + 4252 nr_node_ids * sizeof(struct kmem_cache_node *), 4253 SLAB_HWCACHE_ALIGN, 0, 0); 4254 4255 kmem_cache = bootstrap(&boot_kmem_cache); 4256 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4257 4258 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4259 setup_kmalloc_cache_index_table(); 4260 create_kmalloc_caches(0); 4261 4262 /* Setup random freelists for each cache */ 4263 init_freelist_randomization(); 4264 4265 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4266 slub_cpu_dead); 4267 4268 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4269 cache_line_size(), 4270 slub_min_order, slub_max_order, slub_min_objects, 4271 nr_cpu_ids, nr_node_ids); 4272 } 4273 4274 void __init kmem_cache_init_late(void) 4275 { 4276 } 4277 4278 struct kmem_cache * 4279 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4280 slab_flags_t flags, void (*ctor)(void *)) 4281 { 4282 struct kmem_cache *s, *c; 4283 4284 s = find_mergeable(size, align, flags, name, ctor); 4285 if (s) { 4286 s->refcount++; 4287 4288 /* 4289 * Adjust the object sizes so that we clear 4290 * the complete object on kzalloc. 4291 */ 4292 s->object_size = max(s->object_size, size); 4293 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4294 4295 for_each_memcg_cache(c, s) { 4296 c->object_size = s->object_size; 4297 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); 4298 } 4299 4300 if (sysfs_slab_alias(s, name)) { 4301 s->refcount--; 4302 s = NULL; 4303 } 4304 } 4305 4306 return s; 4307 } 4308 4309 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4310 { 4311 int err; 4312 4313 err = kmem_cache_open(s, flags); 4314 if (err) 4315 return err; 4316 4317 /* Mutex is not taken during early boot */ 4318 if (slab_state <= UP) 4319 return 0; 4320 4321 memcg_propagate_slab_attrs(s); 4322 err = sysfs_slab_add(s); 4323 if (err) 4324 __kmem_cache_release(s); 4325 4326 return err; 4327 } 4328 4329 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4330 { 4331 struct kmem_cache *s; 4332 void *ret; 4333 4334 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4335 return kmalloc_large(size, gfpflags); 4336 4337 s = kmalloc_slab(size, gfpflags); 4338 4339 if (unlikely(ZERO_OR_NULL_PTR(s))) 4340 return s; 4341 4342 ret = slab_alloc(s, gfpflags, caller); 4343 4344 /* Honor the call site pointer we received. */ 4345 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4346 4347 return ret; 4348 } 4349 4350 #ifdef CONFIG_NUMA 4351 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4352 int node, unsigned long caller) 4353 { 4354 struct kmem_cache *s; 4355 void *ret; 4356 4357 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4358 ret = kmalloc_large_node(size, gfpflags, node); 4359 4360 trace_kmalloc_node(caller, ret, 4361 size, PAGE_SIZE << get_order(size), 4362 gfpflags, node); 4363 4364 return ret; 4365 } 4366 4367 s = kmalloc_slab(size, gfpflags); 4368 4369 if (unlikely(ZERO_OR_NULL_PTR(s))) 4370 return s; 4371 4372 ret = slab_alloc_node(s, gfpflags, node, caller); 4373 4374 /* Honor the call site pointer we received. */ 4375 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4376 4377 return ret; 4378 } 4379 #endif 4380 4381 #ifdef CONFIG_SYSFS 4382 static int count_inuse(struct page *page) 4383 { 4384 return page->inuse; 4385 } 4386 4387 static int count_total(struct page *page) 4388 { 4389 return page->objects; 4390 } 4391 #endif 4392 4393 #ifdef CONFIG_SLUB_DEBUG 4394 static int validate_slab(struct kmem_cache *s, struct page *page, 4395 unsigned long *map) 4396 { 4397 void *p; 4398 void *addr = page_address(page); 4399 4400 if (!check_slab(s, page) || 4401 !on_freelist(s, page, NULL)) 4402 return 0; 4403 4404 /* Now we know that a valid freelist exists */ 4405 bitmap_zero(map, page->objects); 4406 4407 get_map(s, page, map); 4408 for_each_object(p, s, addr, page->objects) { 4409 if (test_bit(slab_index(p, s, addr), map)) 4410 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4411 return 0; 4412 } 4413 4414 for_each_object(p, s, addr, page->objects) 4415 if (!test_bit(slab_index(p, s, addr), map)) 4416 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4417 return 0; 4418 return 1; 4419 } 4420 4421 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4422 unsigned long *map) 4423 { 4424 slab_lock(page); 4425 validate_slab(s, page, map); 4426 slab_unlock(page); 4427 } 4428 4429 static int validate_slab_node(struct kmem_cache *s, 4430 struct kmem_cache_node *n, unsigned long *map) 4431 { 4432 unsigned long count = 0; 4433 struct page *page; 4434 unsigned long flags; 4435 4436 spin_lock_irqsave(&n->list_lock, flags); 4437 4438 list_for_each_entry(page, &n->partial, lru) { 4439 validate_slab_slab(s, page, map); 4440 count++; 4441 } 4442 if (count != n->nr_partial) 4443 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4444 s->name, count, n->nr_partial); 4445 4446 if (!(s->flags & SLAB_STORE_USER)) 4447 goto out; 4448 4449 list_for_each_entry(page, &n->full, lru) { 4450 validate_slab_slab(s, page, map); 4451 count++; 4452 } 4453 if (count != atomic_long_read(&n->nr_slabs)) 4454 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4455 s->name, count, atomic_long_read(&n->nr_slabs)); 4456 4457 out: 4458 spin_unlock_irqrestore(&n->list_lock, flags); 4459 return count; 4460 } 4461 4462 static long validate_slab_cache(struct kmem_cache *s) 4463 { 4464 int node; 4465 unsigned long count = 0; 4466 struct kmem_cache_node *n; 4467 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4468 4469 if (!map) 4470 return -ENOMEM; 4471 4472 flush_all(s); 4473 for_each_kmem_cache_node(s, node, n) 4474 count += validate_slab_node(s, n, map); 4475 bitmap_free(map); 4476 return count; 4477 } 4478 /* 4479 * Generate lists of code addresses where slabcache objects are allocated 4480 * and freed. 4481 */ 4482 4483 struct location { 4484 unsigned long count; 4485 unsigned long addr; 4486 long long sum_time; 4487 long min_time; 4488 long max_time; 4489 long min_pid; 4490 long max_pid; 4491 DECLARE_BITMAP(cpus, NR_CPUS); 4492 nodemask_t nodes; 4493 }; 4494 4495 struct loc_track { 4496 unsigned long max; 4497 unsigned long count; 4498 struct location *loc; 4499 }; 4500 4501 static void free_loc_track(struct loc_track *t) 4502 { 4503 if (t->max) 4504 free_pages((unsigned long)t->loc, 4505 get_order(sizeof(struct location) * t->max)); 4506 } 4507 4508 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4509 { 4510 struct location *l; 4511 int order; 4512 4513 order = get_order(sizeof(struct location) * max); 4514 4515 l = (void *)__get_free_pages(flags, order); 4516 if (!l) 4517 return 0; 4518 4519 if (t->count) { 4520 memcpy(l, t->loc, sizeof(struct location) * t->count); 4521 free_loc_track(t); 4522 } 4523 t->max = max; 4524 t->loc = l; 4525 return 1; 4526 } 4527 4528 static int add_location(struct loc_track *t, struct kmem_cache *s, 4529 const struct track *track) 4530 { 4531 long start, end, pos; 4532 struct location *l; 4533 unsigned long caddr; 4534 unsigned long age = jiffies - track->when; 4535 4536 start = -1; 4537 end = t->count; 4538 4539 for ( ; ; ) { 4540 pos = start + (end - start + 1) / 2; 4541 4542 /* 4543 * There is nothing at "end". If we end up there 4544 * we need to add something to before end. 4545 */ 4546 if (pos == end) 4547 break; 4548 4549 caddr = t->loc[pos].addr; 4550 if (track->addr == caddr) { 4551 4552 l = &t->loc[pos]; 4553 l->count++; 4554 if (track->when) { 4555 l->sum_time += age; 4556 if (age < l->min_time) 4557 l->min_time = age; 4558 if (age > l->max_time) 4559 l->max_time = age; 4560 4561 if (track->pid < l->min_pid) 4562 l->min_pid = track->pid; 4563 if (track->pid > l->max_pid) 4564 l->max_pid = track->pid; 4565 4566 cpumask_set_cpu(track->cpu, 4567 to_cpumask(l->cpus)); 4568 } 4569 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4570 return 1; 4571 } 4572 4573 if (track->addr < caddr) 4574 end = pos; 4575 else 4576 start = pos; 4577 } 4578 4579 /* 4580 * Not found. Insert new tracking element. 4581 */ 4582 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4583 return 0; 4584 4585 l = t->loc + pos; 4586 if (pos < t->count) 4587 memmove(l + 1, l, 4588 (t->count - pos) * sizeof(struct location)); 4589 t->count++; 4590 l->count = 1; 4591 l->addr = track->addr; 4592 l->sum_time = age; 4593 l->min_time = age; 4594 l->max_time = age; 4595 l->min_pid = track->pid; 4596 l->max_pid = track->pid; 4597 cpumask_clear(to_cpumask(l->cpus)); 4598 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4599 nodes_clear(l->nodes); 4600 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4601 return 1; 4602 } 4603 4604 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4605 struct page *page, enum track_item alloc, 4606 unsigned long *map) 4607 { 4608 void *addr = page_address(page); 4609 void *p; 4610 4611 bitmap_zero(map, page->objects); 4612 get_map(s, page, map); 4613 4614 for_each_object(p, s, addr, page->objects) 4615 if (!test_bit(slab_index(p, s, addr), map)) 4616 add_location(t, s, get_track(s, p, alloc)); 4617 } 4618 4619 static int list_locations(struct kmem_cache *s, char *buf, 4620 enum track_item alloc) 4621 { 4622 int len = 0; 4623 unsigned long i; 4624 struct loc_track t = { 0, 0, NULL }; 4625 int node; 4626 struct kmem_cache_node *n; 4627 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4628 4629 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4630 GFP_KERNEL)) { 4631 bitmap_free(map); 4632 return sprintf(buf, "Out of memory\n"); 4633 } 4634 /* Push back cpu slabs */ 4635 flush_all(s); 4636 4637 for_each_kmem_cache_node(s, node, n) { 4638 unsigned long flags; 4639 struct page *page; 4640 4641 if (!atomic_long_read(&n->nr_slabs)) 4642 continue; 4643 4644 spin_lock_irqsave(&n->list_lock, flags); 4645 list_for_each_entry(page, &n->partial, lru) 4646 process_slab(&t, s, page, alloc, map); 4647 list_for_each_entry(page, &n->full, lru) 4648 process_slab(&t, s, page, alloc, map); 4649 spin_unlock_irqrestore(&n->list_lock, flags); 4650 } 4651 4652 for (i = 0; i < t.count; i++) { 4653 struct location *l = &t.loc[i]; 4654 4655 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4656 break; 4657 len += sprintf(buf + len, "%7ld ", l->count); 4658 4659 if (l->addr) 4660 len += sprintf(buf + len, "%pS", (void *)l->addr); 4661 else 4662 len += sprintf(buf + len, "<not-available>"); 4663 4664 if (l->sum_time != l->min_time) { 4665 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4666 l->min_time, 4667 (long)div_u64(l->sum_time, l->count), 4668 l->max_time); 4669 } else 4670 len += sprintf(buf + len, " age=%ld", 4671 l->min_time); 4672 4673 if (l->min_pid != l->max_pid) 4674 len += sprintf(buf + len, " pid=%ld-%ld", 4675 l->min_pid, l->max_pid); 4676 else 4677 len += sprintf(buf + len, " pid=%ld", 4678 l->min_pid); 4679 4680 if (num_online_cpus() > 1 && 4681 !cpumask_empty(to_cpumask(l->cpus)) && 4682 len < PAGE_SIZE - 60) 4683 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4684 " cpus=%*pbl", 4685 cpumask_pr_args(to_cpumask(l->cpus))); 4686 4687 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4688 len < PAGE_SIZE - 60) 4689 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4690 " nodes=%*pbl", 4691 nodemask_pr_args(&l->nodes)); 4692 4693 len += sprintf(buf + len, "\n"); 4694 } 4695 4696 free_loc_track(&t); 4697 bitmap_free(map); 4698 if (!t.count) 4699 len += sprintf(buf, "No data\n"); 4700 return len; 4701 } 4702 #endif 4703 4704 #ifdef SLUB_RESILIENCY_TEST 4705 static void __init resiliency_test(void) 4706 { 4707 u8 *p; 4708 int type = KMALLOC_NORMAL; 4709 4710 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4711 4712 pr_err("SLUB resiliency testing\n"); 4713 pr_err("-----------------------\n"); 4714 pr_err("A. Corruption after allocation\n"); 4715 4716 p = kzalloc(16, GFP_KERNEL); 4717 p[16] = 0x12; 4718 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4719 p + 16); 4720 4721 validate_slab_cache(kmalloc_caches[type][4]); 4722 4723 /* Hmmm... The next two are dangerous */ 4724 p = kzalloc(32, GFP_KERNEL); 4725 p[32 + sizeof(void *)] = 0x34; 4726 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4727 p); 4728 pr_err("If allocated object is overwritten then not detectable\n\n"); 4729 4730 validate_slab_cache(kmalloc_caches[type][5]); 4731 p = kzalloc(64, GFP_KERNEL); 4732 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4733 *p = 0x56; 4734 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4735 p); 4736 pr_err("If allocated object is overwritten then not detectable\n\n"); 4737 validate_slab_cache(kmalloc_caches[type][6]); 4738 4739 pr_err("\nB. Corruption after free\n"); 4740 p = kzalloc(128, GFP_KERNEL); 4741 kfree(p); 4742 *p = 0x78; 4743 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4744 validate_slab_cache(kmalloc_caches[type][7]); 4745 4746 p = kzalloc(256, GFP_KERNEL); 4747 kfree(p); 4748 p[50] = 0x9a; 4749 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4750 validate_slab_cache(kmalloc_caches[type][8]); 4751 4752 p = kzalloc(512, GFP_KERNEL); 4753 kfree(p); 4754 p[512] = 0xab; 4755 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4756 validate_slab_cache(kmalloc_caches[type][9]); 4757 } 4758 #else 4759 #ifdef CONFIG_SYSFS 4760 static void resiliency_test(void) {}; 4761 #endif 4762 #endif 4763 4764 #ifdef CONFIG_SYSFS 4765 enum slab_stat_type { 4766 SL_ALL, /* All slabs */ 4767 SL_PARTIAL, /* Only partially allocated slabs */ 4768 SL_CPU, /* Only slabs used for cpu caches */ 4769 SL_OBJECTS, /* Determine allocated objects not slabs */ 4770 SL_TOTAL /* Determine object capacity not slabs */ 4771 }; 4772 4773 #define SO_ALL (1 << SL_ALL) 4774 #define SO_PARTIAL (1 << SL_PARTIAL) 4775 #define SO_CPU (1 << SL_CPU) 4776 #define SO_OBJECTS (1 << SL_OBJECTS) 4777 #define SO_TOTAL (1 << SL_TOTAL) 4778 4779 #ifdef CONFIG_MEMCG 4780 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4781 4782 static int __init setup_slub_memcg_sysfs(char *str) 4783 { 4784 int v; 4785 4786 if (get_option(&str, &v) > 0) 4787 memcg_sysfs_enabled = v; 4788 4789 return 1; 4790 } 4791 4792 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4793 #endif 4794 4795 static ssize_t show_slab_objects(struct kmem_cache *s, 4796 char *buf, unsigned long flags) 4797 { 4798 unsigned long total = 0; 4799 int node; 4800 int x; 4801 unsigned long *nodes; 4802 4803 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4804 if (!nodes) 4805 return -ENOMEM; 4806 4807 if (flags & SO_CPU) { 4808 int cpu; 4809 4810 for_each_possible_cpu(cpu) { 4811 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4812 cpu); 4813 int node; 4814 struct page *page; 4815 4816 page = READ_ONCE(c->page); 4817 if (!page) 4818 continue; 4819 4820 node = page_to_nid(page); 4821 if (flags & SO_TOTAL) 4822 x = page->objects; 4823 else if (flags & SO_OBJECTS) 4824 x = page->inuse; 4825 else 4826 x = 1; 4827 4828 total += x; 4829 nodes[node] += x; 4830 4831 page = slub_percpu_partial_read_once(c); 4832 if (page) { 4833 node = page_to_nid(page); 4834 if (flags & SO_TOTAL) 4835 WARN_ON_ONCE(1); 4836 else if (flags & SO_OBJECTS) 4837 WARN_ON_ONCE(1); 4838 else 4839 x = page->pages; 4840 total += x; 4841 nodes[node] += x; 4842 } 4843 } 4844 } 4845 4846 get_online_mems(); 4847 #ifdef CONFIG_SLUB_DEBUG 4848 if (flags & SO_ALL) { 4849 struct kmem_cache_node *n; 4850 4851 for_each_kmem_cache_node(s, node, n) { 4852 4853 if (flags & SO_TOTAL) 4854 x = atomic_long_read(&n->total_objects); 4855 else if (flags & SO_OBJECTS) 4856 x = atomic_long_read(&n->total_objects) - 4857 count_partial(n, count_free); 4858 else 4859 x = atomic_long_read(&n->nr_slabs); 4860 total += x; 4861 nodes[node] += x; 4862 } 4863 4864 } else 4865 #endif 4866 if (flags & SO_PARTIAL) { 4867 struct kmem_cache_node *n; 4868 4869 for_each_kmem_cache_node(s, node, n) { 4870 if (flags & SO_TOTAL) 4871 x = count_partial(n, count_total); 4872 else if (flags & SO_OBJECTS) 4873 x = count_partial(n, count_inuse); 4874 else 4875 x = n->nr_partial; 4876 total += x; 4877 nodes[node] += x; 4878 } 4879 } 4880 x = sprintf(buf, "%lu", total); 4881 #ifdef CONFIG_NUMA 4882 for (node = 0; node < nr_node_ids; node++) 4883 if (nodes[node]) 4884 x += sprintf(buf + x, " N%d=%lu", 4885 node, nodes[node]); 4886 #endif 4887 put_online_mems(); 4888 kfree(nodes); 4889 return x + sprintf(buf + x, "\n"); 4890 } 4891 4892 #ifdef CONFIG_SLUB_DEBUG 4893 static int any_slab_objects(struct kmem_cache *s) 4894 { 4895 int node; 4896 struct kmem_cache_node *n; 4897 4898 for_each_kmem_cache_node(s, node, n) 4899 if (atomic_long_read(&n->total_objects)) 4900 return 1; 4901 4902 return 0; 4903 } 4904 #endif 4905 4906 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4907 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4908 4909 struct slab_attribute { 4910 struct attribute attr; 4911 ssize_t (*show)(struct kmem_cache *s, char *buf); 4912 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4913 }; 4914 4915 #define SLAB_ATTR_RO(_name) \ 4916 static struct slab_attribute _name##_attr = \ 4917 __ATTR(_name, 0400, _name##_show, NULL) 4918 4919 #define SLAB_ATTR(_name) \ 4920 static struct slab_attribute _name##_attr = \ 4921 __ATTR(_name, 0600, _name##_show, _name##_store) 4922 4923 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4924 { 4925 return sprintf(buf, "%u\n", s->size); 4926 } 4927 SLAB_ATTR_RO(slab_size); 4928 4929 static ssize_t align_show(struct kmem_cache *s, char *buf) 4930 { 4931 return sprintf(buf, "%u\n", s->align); 4932 } 4933 SLAB_ATTR_RO(align); 4934 4935 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4936 { 4937 return sprintf(buf, "%u\n", s->object_size); 4938 } 4939 SLAB_ATTR_RO(object_size); 4940 4941 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4942 { 4943 return sprintf(buf, "%u\n", oo_objects(s->oo)); 4944 } 4945 SLAB_ATTR_RO(objs_per_slab); 4946 4947 static ssize_t order_store(struct kmem_cache *s, 4948 const char *buf, size_t length) 4949 { 4950 unsigned int order; 4951 int err; 4952 4953 err = kstrtouint(buf, 10, &order); 4954 if (err) 4955 return err; 4956 4957 if (order > slub_max_order || order < slub_min_order) 4958 return -EINVAL; 4959 4960 calculate_sizes(s, order); 4961 return length; 4962 } 4963 4964 static ssize_t order_show(struct kmem_cache *s, char *buf) 4965 { 4966 return sprintf(buf, "%u\n", oo_order(s->oo)); 4967 } 4968 SLAB_ATTR(order); 4969 4970 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4971 { 4972 return sprintf(buf, "%lu\n", s->min_partial); 4973 } 4974 4975 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4976 size_t length) 4977 { 4978 unsigned long min; 4979 int err; 4980 4981 err = kstrtoul(buf, 10, &min); 4982 if (err) 4983 return err; 4984 4985 set_min_partial(s, min); 4986 return length; 4987 } 4988 SLAB_ATTR(min_partial); 4989 4990 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4991 { 4992 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 4993 } 4994 4995 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4996 size_t length) 4997 { 4998 unsigned int objects; 4999 int err; 5000 5001 err = kstrtouint(buf, 10, &objects); 5002 if (err) 5003 return err; 5004 if (objects && !kmem_cache_has_cpu_partial(s)) 5005 return -EINVAL; 5006 5007 slub_set_cpu_partial(s, objects); 5008 flush_all(s); 5009 return length; 5010 } 5011 SLAB_ATTR(cpu_partial); 5012 5013 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5014 { 5015 if (!s->ctor) 5016 return 0; 5017 return sprintf(buf, "%pS\n", s->ctor); 5018 } 5019 SLAB_ATTR_RO(ctor); 5020 5021 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5022 { 5023 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5024 } 5025 SLAB_ATTR_RO(aliases); 5026 5027 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5028 { 5029 return show_slab_objects(s, buf, SO_PARTIAL); 5030 } 5031 SLAB_ATTR_RO(partial); 5032 5033 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5034 { 5035 return show_slab_objects(s, buf, SO_CPU); 5036 } 5037 SLAB_ATTR_RO(cpu_slabs); 5038 5039 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5040 { 5041 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5042 } 5043 SLAB_ATTR_RO(objects); 5044 5045 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5046 { 5047 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5048 } 5049 SLAB_ATTR_RO(objects_partial); 5050 5051 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5052 { 5053 int objects = 0; 5054 int pages = 0; 5055 int cpu; 5056 int len; 5057 5058 for_each_online_cpu(cpu) { 5059 struct page *page; 5060 5061 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5062 5063 if (page) { 5064 pages += page->pages; 5065 objects += page->pobjects; 5066 } 5067 } 5068 5069 len = sprintf(buf, "%d(%d)", objects, pages); 5070 5071 #ifdef CONFIG_SMP 5072 for_each_online_cpu(cpu) { 5073 struct page *page; 5074 5075 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5076 5077 if (page && len < PAGE_SIZE - 20) 5078 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5079 page->pobjects, page->pages); 5080 } 5081 #endif 5082 return len + sprintf(buf + len, "\n"); 5083 } 5084 SLAB_ATTR_RO(slabs_cpu_partial); 5085 5086 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5087 { 5088 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5089 } 5090 5091 static ssize_t reclaim_account_store(struct kmem_cache *s, 5092 const char *buf, size_t length) 5093 { 5094 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5095 if (buf[0] == '1') 5096 s->flags |= SLAB_RECLAIM_ACCOUNT; 5097 return length; 5098 } 5099 SLAB_ATTR(reclaim_account); 5100 5101 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5102 { 5103 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5104 } 5105 SLAB_ATTR_RO(hwcache_align); 5106 5107 #ifdef CONFIG_ZONE_DMA 5108 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5109 { 5110 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5111 } 5112 SLAB_ATTR_RO(cache_dma); 5113 #endif 5114 5115 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5116 { 5117 return sprintf(buf, "%u\n", s->usersize); 5118 } 5119 SLAB_ATTR_RO(usersize); 5120 5121 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5122 { 5123 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5124 } 5125 SLAB_ATTR_RO(destroy_by_rcu); 5126 5127 #ifdef CONFIG_SLUB_DEBUG 5128 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5129 { 5130 return show_slab_objects(s, buf, SO_ALL); 5131 } 5132 SLAB_ATTR_RO(slabs); 5133 5134 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5135 { 5136 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5137 } 5138 SLAB_ATTR_RO(total_objects); 5139 5140 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5141 { 5142 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5143 } 5144 5145 static ssize_t sanity_checks_store(struct kmem_cache *s, 5146 const char *buf, size_t length) 5147 { 5148 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5149 if (buf[0] == '1') { 5150 s->flags &= ~__CMPXCHG_DOUBLE; 5151 s->flags |= SLAB_CONSISTENCY_CHECKS; 5152 } 5153 return length; 5154 } 5155 SLAB_ATTR(sanity_checks); 5156 5157 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5158 { 5159 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5160 } 5161 5162 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5163 size_t length) 5164 { 5165 /* 5166 * Tracing a merged cache is going to give confusing results 5167 * as well as cause other issues like converting a mergeable 5168 * cache into an umergeable one. 5169 */ 5170 if (s->refcount > 1) 5171 return -EINVAL; 5172 5173 s->flags &= ~SLAB_TRACE; 5174 if (buf[0] == '1') { 5175 s->flags &= ~__CMPXCHG_DOUBLE; 5176 s->flags |= SLAB_TRACE; 5177 } 5178 return length; 5179 } 5180 SLAB_ATTR(trace); 5181 5182 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5183 { 5184 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5185 } 5186 5187 static ssize_t red_zone_store(struct kmem_cache *s, 5188 const char *buf, size_t length) 5189 { 5190 if (any_slab_objects(s)) 5191 return -EBUSY; 5192 5193 s->flags &= ~SLAB_RED_ZONE; 5194 if (buf[0] == '1') { 5195 s->flags |= SLAB_RED_ZONE; 5196 } 5197 calculate_sizes(s, -1); 5198 return length; 5199 } 5200 SLAB_ATTR(red_zone); 5201 5202 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5203 { 5204 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5205 } 5206 5207 static ssize_t poison_store(struct kmem_cache *s, 5208 const char *buf, size_t length) 5209 { 5210 if (any_slab_objects(s)) 5211 return -EBUSY; 5212 5213 s->flags &= ~SLAB_POISON; 5214 if (buf[0] == '1') { 5215 s->flags |= SLAB_POISON; 5216 } 5217 calculate_sizes(s, -1); 5218 return length; 5219 } 5220 SLAB_ATTR(poison); 5221 5222 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5223 { 5224 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5225 } 5226 5227 static ssize_t store_user_store(struct kmem_cache *s, 5228 const char *buf, size_t length) 5229 { 5230 if (any_slab_objects(s)) 5231 return -EBUSY; 5232 5233 s->flags &= ~SLAB_STORE_USER; 5234 if (buf[0] == '1') { 5235 s->flags &= ~__CMPXCHG_DOUBLE; 5236 s->flags |= SLAB_STORE_USER; 5237 } 5238 calculate_sizes(s, -1); 5239 return length; 5240 } 5241 SLAB_ATTR(store_user); 5242 5243 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5244 { 5245 return 0; 5246 } 5247 5248 static ssize_t validate_store(struct kmem_cache *s, 5249 const char *buf, size_t length) 5250 { 5251 int ret = -EINVAL; 5252 5253 if (buf[0] == '1') { 5254 ret = validate_slab_cache(s); 5255 if (ret >= 0) 5256 ret = length; 5257 } 5258 return ret; 5259 } 5260 SLAB_ATTR(validate); 5261 5262 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5263 { 5264 if (!(s->flags & SLAB_STORE_USER)) 5265 return -ENOSYS; 5266 return list_locations(s, buf, TRACK_ALLOC); 5267 } 5268 SLAB_ATTR_RO(alloc_calls); 5269 5270 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5271 { 5272 if (!(s->flags & SLAB_STORE_USER)) 5273 return -ENOSYS; 5274 return list_locations(s, buf, TRACK_FREE); 5275 } 5276 SLAB_ATTR_RO(free_calls); 5277 #endif /* CONFIG_SLUB_DEBUG */ 5278 5279 #ifdef CONFIG_FAILSLAB 5280 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5281 { 5282 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5283 } 5284 5285 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5286 size_t length) 5287 { 5288 if (s->refcount > 1) 5289 return -EINVAL; 5290 5291 s->flags &= ~SLAB_FAILSLAB; 5292 if (buf[0] == '1') 5293 s->flags |= SLAB_FAILSLAB; 5294 return length; 5295 } 5296 SLAB_ATTR(failslab); 5297 #endif 5298 5299 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5300 { 5301 return 0; 5302 } 5303 5304 static ssize_t shrink_store(struct kmem_cache *s, 5305 const char *buf, size_t length) 5306 { 5307 if (buf[0] == '1') 5308 kmem_cache_shrink(s); 5309 else 5310 return -EINVAL; 5311 return length; 5312 } 5313 SLAB_ATTR(shrink); 5314 5315 #ifdef CONFIG_NUMA 5316 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5317 { 5318 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5319 } 5320 5321 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5322 const char *buf, size_t length) 5323 { 5324 unsigned int ratio; 5325 int err; 5326 5327 err = kstrtouint(buf, 10, &ratio); 5328 if (err) 5329 return err; 5330 if (ratio > 100) 5331 return -ERANGE; 5332 5333 s->remote_node_defrag_ratio = ratio * 10; 5334 5335 return length; 5336 } 5337 SLAB_ATTR(remote_node_defrag_ratio); 5338 #endif 5339 5340 #ifdef CONFIG_SLUB_STATS 5341 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5342 { 5343 unsigned long sum = 0; 5344 int cpu; 5345 int len; 5346 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5347 5348 if (!data) 5349 return -ENOMEM; 5350 5351 for_each_online_cpu(cpu) { 5352 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5353 5354 data[cpu] = x; 5355 sum += x; 5356 } 5357 5358 len = sprintf(buf, "%lu", sum); 5359 5360 #ifdef CONFIG_SMP 5361 for_each_online_cpu(cpu) { 5362 if (data[cpu] && len < PAGE_SIZE - 20) 5363 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5364 } 5365 #endif 5366 kfree(data); 5367 return len + sprintf(buf + len, "\n"); 5368 } 5369 5370 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5371 { 5372 int cpu; 5373 5374 for_each_online_cpu(cpu) 5375 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5376 } 5377 5378 #define STAT_ATTR(si, text) \ 5379 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5380 { \ 5381 return show_stat(s, buf, si); \ 5382 } \ 5383 static ssize_t text##_store(struct kmem_cache *s, \ 5384 const char *buf, size_t length) \ 5385 { \ 5386 if (buf[0] != '0') \ 5387 return -EINVAL; \ 5388 clear_stat(s, si); \ 5389 return length; \ 5390 } \ 5391 SLAB_ATTR(text); \ 5392 5393 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5394 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5395 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5396 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5397 STAT_ATTR(FREE_FROZEN, free_frozen); 5398 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5399 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5400 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5401 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5402 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5403 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5404 STAT_ATTR(FREE_SLAB, free_slab); 5405 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5406 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5407 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5408 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5409 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5410 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5411 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5412 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5413 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5414 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5415 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5416 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5417 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5418 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5419 #endif 5420 5421 static struct attribute *slab_attrs[] = { 5422 &slab_size_attr.attr, 5423 &object_size_attr.attr, 5424 &objs_per_slab_attr.attr, 5425 &order_attr.attr, 5426 &min_partial_attr.attr, 5427 &cpu_partial_attr.attr, 5428 &objects_attr.attr, 5429 &objects_partial_attr.attr, 5430 &partial_attr.attr, 5431 &cpu_slabs_attr.attr, 5432 &ctor_attr.attr, 5433 &aliases_attr.attr, 5434 &align_attr.attr, 5435 &hwcache_align_attr.attr, 5436 &reclaim_account_attr.attr, 5437 &destroy_by_rcu_attr.attr, 5438 &shrink_attr.attr, 5439 &slabs_cpu_partial_attr.attr, 5440 #ifdef CONFIG_SLUB_DEBUG 5441 &total_objects_attr.attr, 5442 &slabs_attr.attr, 5443 &sanity_checks_attr.attr, 5444 &trace_attr.attr, 5445 &red_zone_attr.attr, 5446 &poison_attr.attr, 5447 &store_user_attr.attr, 5448 &validate_attr.attr, 5449 &alloc_calls_attr.attr, 5450 &free_calls_attr.attr, 5451 #endif 5452 #ifdef CONFIG_ZONE_DMA 5453 &cache_dma_attr.attr, 5454 #endif 5455 #ifdef CONFIG_NUMA 5456 &remote_node_defrag_ratio_attr.attr, 5457 #endif 5458 #ifdef CONFIG_SLUB_STATS 5459 &alloc_fastpath_attr.attr, 5460 &alloc_slowpath_attr.attr, 5461 &free_fastpath_attr.attr, 5462 &free_slowpath_attr.attr, 5463 &free_frozen_attr.attr, 5464 &free_add_partial_attr.attr, 5465 &free_remove_partial_attr.attr, 5466 &alloc_from_partial_attr.attr, 5467 &alloc_slab_attr.attr, 5468 &alloc_refill_attr.attr, 5469 &alloc_node_mismatch_attr.attr, 5470 &free_slab_attr.attr, 5471 &cpuslab_flush_attr.attr, 5472 &deactivate_full_attr.attr, 5473 &deactivate_empty_attr.attr, 5474 &deactivate_to_head_attr.attr, 5475 &deactivate_to_tail_attr.attr, 5476 &deactivate_remote_frees_attr.attr, 5477 &deactivate_bypass_attr.attr, 5478 &order_fallback_attr.attr, 5479 &cmpxchg_double_fail_attr.attr, 5480 &cmpxchg_double_cpu_fail_attr.attr, 5481 &cpu_partial_alloc_attr.attr, 5482 &cpu_partial_free_attr.attr, 5483 &cpu_partial_node_attr.attr, 5484 &cpu_partial_drain_attr.attr, 5485 #endif 5486 #ifdef CONFIG_FAILSLAB 5487 &failslab_attr.attr, 5488 #endif 5489 &usersize_attr.attr, 5490 5491 NULL 5492 }; 5493 5494 static const struct attribute_group slab_attr_group = { 5495 .attrs = slab_attrs, 5496 }; 5497 5498 static ssize_t slab_attr_show(struct kobject *kobj, 5499 struct attribute *attr, 5500 char *buf) 5501 { 5502 struct slab_attribute *attribute; 5503 struct kmem_cache *s; 5504 int err; 5505 5506 attribute = to_slab_attr(attr); 5507 s = to_slab(kobj); 5508 5509 if (!attribute->show) 5510 return -EIO; 5511 5512 err = attribute->show(s, buf); 5513 5514 return err; 5515 } 5516 5517 static ssize_t slab_attr_store(struct kobject *kobj, 5518 struct attribute *attr, 5519 const char *buf, size_t len) 5520 { 5521 struct slab_attribute *attribute; 5522 struct kmem_cache *s; 5523 int err; 5524 5525 attribute = to_slab_attr(attr); 5526 s = to_slab(kobj); 5527 5528 if (!attribute->store) 5529 return -EIO; 5530 5531 err = attribute->store(s, buf, len); 5532 #ifdef CONFIG_MEMCG 5533 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5534 struct kmem_cache *c; 5535 5536 mutex_lock(&slab_mutex); 5537 if (s->max_attr_size < len) 5538 s->max_attr_size = len; 5539 5540 /* 5541 * This is a best effort propagation, so this function's return 5542 * value will be determined by the parent cache only. This is 5543 * basically because not all attributes will have a well 5544 * defined semantics for rollbacks - most of the actions will 5545 * have permanent effects. 5546 * 5547 * Returning the error value of any of the children that fail 5548 * is not 100 % defined, in the sense that users seeing the 5549 * error code won't be able to know anything about the state of 5550 * the cache. 5551 * 5552 * Only returning the error code for the parent cache at least 5553 * has well defined semantics. The cache being written to 5554 * directly either failed or succeeded, in which case we loop 5555 * through the descendants with best-effort propagation. 5556 */ 5557 for_each_memcg_cache(c, s) 5558 attribute->store(c, buf, len); 5559 mutex_unlock(&slab_mutex); 5560 } 5561 #endif 5562 return err; 5563 } 5564 5565 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5566 { 5567 #ifdef CONFIG_MEMCG 5568 int i; 5569 char *buffer = NULL; 5570 struct kmem_cache *root_cache; 5571 5572 if (is_root_cache(s)) 5573 return; 5574 5575 root_cache = s->memcg_params.root_cache; 5576 5577 /* 5578 * This mean this cache had no attribute written. Therefore, no point 5579 * in copying default values around 5580 */ 5581 if (!root_cache->max_attr_size) 5582 return; 5583 5584 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5585 char mbuf[64]; 5586 char *buf; 5587 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5588 ssize_t len; 5589 5590 if (!attr || !attr->store || !attr->show) 5591 continue; 5592 5593 /* 5594 * It is really bad that we have to allocate here, so we will 5595 * do it only as a fallback. If we actually allocate, though, 5596 * we can just use the allocated buffer until the end. 5597 * 5598 * Most of the slub attributes will tend to be very small in 5599 * size, but sysfs allows buffers up to a page, so they can 5600 * theoretically happen. 5601 */ 5602 if (buffer) 5603 buf = buffer; 5604 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5605 buf = mbuf; 5606 else { 5607 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5608 if (WARN_ON(!buffer)) 5609 continue; 5610 buf = buffer; 5611 } 5612 5613 len = attr->show(root_cache, buf); 5614 if (len > 0) 5615 attr->store(s, buf, len); 5616 } 5617 5618 if (buffer) 5619 free_page((unsigned long)buffer); 5620 #endif 5621 } 5622 5623 static void kmem_cache_release(struct kobject *k) 5624 { 5625 slab_kmem_cache_release(to_slab(k)); 5626 } 5627 5628 static const struct sysfs_ops slab_sysfs_ops = { 5629 .show = slab_attr_show, 5630 .store = slab_attr_store, 5631 }; 5632 5633 static struct kobj_type slab_ktype = { 5634 .sysfs_ops = &slab_sysfs_ops, 5635 .release = kmem_cache_release, 5636 }; 5637 5638 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5639 { 5640 struct kobj_type *ktype = get_ktype(kobj); 5641 5642 if (ktype == &slab_ktype) 5643 return 1; 5644 return 0; 5645 } 5646 5647 static const struct kset_uevent_ops slab_uevent_ops = { 5648 .filter = uevent_filter, 5649 }; 5650 5651 static struct kset *slab_kset; 5652 5653 static inline struct kset *cache_kset(struct kmem_cache *s) 5654 { 5655 #ifdef CONFIG_MEMCG 5656 if (!is_root_cache(s)) 5657 return s->memcg_params.root_cache->memcg_kset; 5658 #endif 5659 return slab_kset; 5660 } 5661 5662 #define ID_STR_LENGTH 64 5663 5664 /* Create a unique string id for a slab cache: 5665 * 5666 * Format :[flags-]size 5667 */ 5668 static char *create_unique_id(struct kmem_cache *s) 5669 { 5670 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5671 char *p = name; 5672 5673 BUG_ON(!name); 5674 5675 *p++ = ':'; 5676 /* 5677 * First flags affecting slabcache operations. We will only 5678 * get here for aliasable slabs so we do not need to support 5679 * too many flags. The flags here must cover all flags that 5680 * are matched during merging to guarantee that the id is 5681 * unique. 5682 */ 5683 if (s->flags & SLAB_CACHE_DMA) 5684 *p++ = 'd'; 5685 if (s->flags & SLAB_CACHE_DMA32) 5686 *p++ = 'D'; 5687 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5688 *p++ = 'a'; 5689 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5690 *p++ = 'F'; 5691 if (s->flags & SLAB_ACCOUNT) 5692 *p++ = 'A'; 5693 if (p != name + 1) 5694 *p++ = '-'; 5695 p += sprintf(p, "%07u", s->size); 5696 5697 BUG_ON(p > name + ID_STR_LENGTH - 1); 5698 return name; 5699 } 5700 5701 static void sysfs_slab_remove_workfn(struct work_struct *work) 5702 { 5703 struct kmem_cache *s = 5704 container_of(work, struct kmem_cache, kobj_remove_work); 5705 5706 if (!s->kobj.state_in_sysfs) 5707 /* 5708 * For a memcg cache, this may be called during 5709 * deactivation and again on shutdown. Remove only once. 5710 * A cache is never shut down before deactivation is 5711 * complete, so no need to worry about synchronization. 5712 */ 5713 goto out; 5714 5715 #ifdef CONFIG_MEMCG 5716 kset_unregister(s->memcg_kset); 5717 #endif 5718 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5719 out: 5720 kobject_put(&s->kobj); 5721 } 5722 5723 static int sysfs_slab_add(struct kmem_cache *s) 5724 { 5725 int err; 5726 const char *name; 5727 struct kset *kset = cache_kset(s); 5728 int unmergeable = slab_unmergeable(s); 5729 5730 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5731 5732 if (!kset) { 5733 kobject_init(&s->kobj, &slab_ktype); 5734 return 0; 5735 } 5736 5737 if (!unmergeable && disable_higher_order_debug && 5738 (slub_debug & DEBUG_METADATA_FLAGS)) 5739 unmergeable = 1; 5740 5741 if (unmergeable) { 5742 /* 5743 * Slabcache can never be merged so we can use the name proper. 5744 * This is typically the case for debug situations. In that 5745 * case we can catch duplicate names easily. 5746 */ 5747 sysfs_remove_link(&slab_kset->kobj, s->name); 5748 name = s->name; 5749 } else { 5750 /* 5751 * Create a unique name for the slab as a target 5752 * for the symlinks. 5753 */ 5754 name = create_unique_id(s); 5755 } 5756 5757 s->kobj.kset = kset; 5758 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5759 if (err) 5760 goto out; 5761 5762 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5763 if (err) 5764 goto out_del_kobj; 5765 5766 #ifdef CONFIG_MEMCG 5767 if (is_root_cache(s) && memcg_sysfs_enabled) { 5768 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5769 if (!s->memcg_kset) { 5770 err = -ENOMEM; 5771 goto out_del_kobj; 5772 } 5773 } 5774 #endif 5775 5776 kobject_uevent(&s->kobj, KOBJ_ADD); 5777 if (!unmergeable) { 5778 /* Setup first alias */ 5779 sysfs_slab_alias(s, s->name); 5780 } 5781 out: 5782 if (!unmergeable) 5783 kfree(name); 5784 return err; 5785 out_del_kobj: 5786 kobject_del(&s->kobj); 5787 goto out; 5788 } 5789 5790 static void sysfs_slab_remove(struct kmem_cache *s) 5791 { 5792 if (slab_state < FULL) 5793 /* 5794 * Sysfs has not been setup yet so no need to remove the 5795 * cache from sysfs. 5796 */ 5797 return; 5798 5799 kobject_get(&s->kobj); 5800 schedule_work(&s->kobj_remove_work); 5801 } 5802 5803 void sysfs_slab_unlink(struct kmem_cache *s) 5804 { 5805 if (slab_state >= FULL) 5806 kobject_del(&s->kobj); 5807 } 5808 5809 void sysfs_slab_release(struct kmem_cache *s) 5810 { 5811 if (slab_state >= FULL) 5812 kobject_put(&s->kobj); 5813 } 5814 5815 /* 5816 * Need to buffer aliases during bootup until sysfs becomes 5817 * available lest we lose that information. 5818 */ 5819 struct saved_alias { 5820 struct kmem_cache *s; 5821 const char *name; 5822 struct saved_alias *next; 5823 }; 5824 5825 static struct saved_alias *alias_list; 5826 5827 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5828 { 5829 struct saved_alias *al; 5830 5831 if (slab_state == FULL) { 5832 /* 5833 * If we have a leftover link then remove it. 5834 */ 5835 sysfs_remove_link(&slab_kset->kobj, name); 5836 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5837 } 5838 5839 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5840 if (!al) 5841 return -ENOMEM; 5842 5843 al->s = s; 5844 al->name = name; 5845 al->next = alias_list; 5846 alias_list = al; 5847 return 0; 5848 } 5849 5850 static int __init slab_sysfs_init(void) 5851 { 5852 struct kmem_cache *s; 5853 int err; 5854 5855 mutex_lock(&slab_mutex); 5856 5857 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5858 if (!slab_kset) { 5859 mutex_unlock(&slab_mutex); 5860 pr_err("Cannot register slab subsystem.\n"); 5861 return -ENOSYS; 5862 } 5863 5864 slab_state = FULL; 5865 5866 list_for_each_entry(s, &slab_caches, list) { 5867 err = sysfs_slab_add(s); 5868 if (err) 5869 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5870 s->name); 5871 } 5872 5873 while (alias_list) { 5874 struct saved_alias *al = alias_list; 5875 5876 alias_list = alias_list->next; 5877 err = sysfs_slab_alias(al->s, al->name); 5878 if (err) 5879 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5880 al->name); 5881 kfree(al); 5882 } 5883 5884 mutex_unlock(&slab_mutex); 5885 resiliency_test(); 5886 return 0; 5887 } 5888 5889 __initcall(slab_sysfs_init); 5890 #endif /* CONFIG_SYSFS */ 5891 5892 /* 5893 * The /proc/slabinfo ABI 5894 */ 5895 #ifdef CONFIG_SLUB_DEBUG 5896 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5897 { 5898 unsigned long nr_slabs = 0; 5899 unsigned long nr_objs = 0; 5900 unsigned long nr_free = 0; 5901 int node; 5902 struct kmem_cache_node *n; 5903 5904 for_each_kmem_cache_node(s, node, n) { 5905 nr_slabs += node_nr_slabs(n); 5906 nr_objs += node_nr_objs(n); 5907 nr_free += count_partial(n, count_free); 5908 } 5909 5910 sinfo->active_objs = nr_objs - nr_free; 5911 sinfo->num_objs = nr_objs; 5912 sinfo->active_slabs = nr_slabs; 5913 sinfo->num_slabs = nr_slabs; 5914 sinfo->objects_per_slab = oo_objects(s->oo); 5915 sinfo->cache_order = oo_order(s->oo); 5916 } 5917 5918 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5919 { 5920 } 5921 5922 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5923 size_t count, loff_t *ppos) 5924 { 5925 return -EIO; 5926 } 5927 #endif /* CONFIG_SLUB_DEBUG */ 5928