xref: /openbmc/linux/mm/slub.c (revision 95e9fd10)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kmemcheck.h>
23 #include <linux/cpu.h>
24 #include <linux/cpuset.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32 #include <linux/stacktrace.h>
33 #include <linux/prefetch.h>
34 
35 #include <trace/events/kmem.h>
36 
37 #include "internal.h"
38 
39 /*
40  * Lock order:
41  *   1. slab_mutex (Global Mutex)
42  *   2. node->list_lock
43  *   3. slab_lock(page) (Only on some arches and for debugging)
44  *
45  *   slab_mutex
46  *
47  *   The role of the slab_mutex is to protect the list of all the slabs
48  *   and to synchronize major metadata changes to slab cache structures.
49  *
50  *   The slab_lock is only used for debugging and on arches that do not
51  *   have the ability to do a cmpxchg_double. It only protects the second
52  *   double word in the page struct. Meaning
53  *	A. page->freelist	-> List of object free in a page
54  *	B. page->counters	-> Counters of objects
55  *	C. page->frozen		-> frozen state
56  *
57  *   If a slab is frozen then it is exempt from list management. It is not
58  *   on any list. The processor that froze the slab is the one who can
59  *   perform list operations on the page. Other processors may put objects
60  *   onto the freelist but the processor that froze the slab is the only
61  *   one that can retrieve the objects from the page's freelist.
62  *
63  *   The list_lock protects the partial and full list on each node and
64  *   the partial slab counter. If taken then no new slabs may be added or
65  *   removed from the lists nor make the number of partial slabs be modified.
66  *   (Note that the total number of slabs is an atomic value that may be
67  *   modified without taking the list lock).
68  *
69  *   The list_lock is a centralized lock and thus we avoid taking it as
70  *   much as possible. As long as SLUB does not have to handle partial
71  *   slabs, operations can continue without any centralized lock. F.e.
72  *   allocating a long series of objects that fill up slabs does not require
73  *   the list lock.
74  *   Interrupts are disabled during allocation and deallocation in order to
75  *   make the slab allocator safe to use in the context of an irq. In addition
76  *   interrupts are disabled to ensure that the processor does not change
77  *   while handling per_cpu slabs, due to kernel preemption.
78  *
79  * SLUB assigns one slab for allocation to each processor.
80  * Allocations only occur from these slabs called cpu slabs.
81  *
82  * Slabs with free elements are kept on a partial list and during regular
83  * operations no list for full slabs is used. If an object in a full slab is
84  * freed then the slab will show up again on the partial lists.
85  * We track full slabs for debugging purposes though because otherwise we
86  * cannot scan all objects.
87  *
88  * Slabs are freed when they become empty. Teardown and setup is
89  * minimal so we rely on the page allocators per cpu caches for
90  * fast frees and allocs.
91  *
92  * Overloading of page flags that are otherwise used for LRU management.
93  *
94  * PageActive 		The slab is frozen and exempt from list processing.
95  * 			This means that the slab is dedicated to a purpose
96  * 			such as satisfying allocations for a specific
97  * 			processor. Objects may be freed in the slab while
98  * 			it is frozen but slab_free will then skip the usual
99  * 			list operations. It is up to the processor holding
100  * 			the slab to integrate the slab into the slab lists
101  * 			when the slab is no longer needed.
102  *
103  * 			One use of this flag is to mark slabs that are
104  * 			used for allocations. Then such a slab becomes a cpu
105  * 			slab. The cpu slab may be equipped with an additional
106  * 			freelist that allows lockless access to
107  * 			free objects in addition to the regular freelist
108  * 			that requires the slab lock.
109  *
110  * PageError		Slab requires special handling due to debug
111  * 			options set. This moves	slab handling out of
112  * 			the fast path and disables lockless freelists.
113  */
114 
115 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
116 		SLAB_TRACE | SLAB_DEBUG_FREE)
117 
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 	return 0;
124 #endif
125 }
126 
127 /*
128  * Issues still to be resolved:
129  *
130  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
131  *
132  * - Variable sizing of the per node arrays
133  */
134 
135 /* Enable to test recovery from slab corruption on boot */
136 #undef SLUB_RESILIENCY_TEST
137 
138 /* Enable to log cmpxchg failures */
139 #undef SLUB_DEBUG_CMPXCHG
140 
141 /*
142  * Mininum number of partial slabs. These will be left on the partial
143  * lists even if they are empty. kmem_cache_shrink may reclaim them.
144  */
145 #define MIN_PARTIAL 5
146 
147 /*
148  * Maximum number of desirable partial slabs.
149  * The existence of more partial slabs makes kmem_cache_shrink
150  * sort the partial list by the number of objects in the.
151  */
152 #define MAX_PARTIAL 10
153 
154 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
155 				SLAB_POISON | SLAB_STORE_USER)
156 
157 /*
158  * Debugging flags that require metadata to be stored in the slab.  These get
159  * disabled when slub_debug=O is used and a cache's min order increases with
160  * metadata.
161  */
162 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
163 
164 /*
165  * Set of flags that will prevent slab merging
166  */
167 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
168 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
169 		SLAB_FAILSLAB)
170 
171 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
172 		SLAB_CACHE_DMA | SLAB_NOTRACK)
173 
174 #define OO_SHIFT	16
175 #define OO_MASK		((1 << OO_SHIFT) - 1)
176 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
177 
178 /* Internal SLUB flags */
179 #define __OBJECT_POISON		0x80000000UL /* Poison object */
180 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
181 
182 static int kmem_size = sizeof(struct kmem_cache);
183 
184 #ifdef CONFIG_SMP
185 static struct notifier_block slab_notifier;
186 #endif
187 
188 /*
189  * Tracking user of a slab.
190  */
191 #define TRACK_ADDRS_COUNT 16
192 struct track {
193 	unsigned long addr;	/* Called from address */
194 #ifdef CONFIG_STACKTRACE
195 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
196 #endif
197 	int cpu;		/* Was running on cpu */
198 	int pid;		/* Pid context */
199 	unsigned long when;	/* When did the operation occur */
200 };
201 
202 enum track_item { TRACK_ALLOC, TRACK_FREE };
203 
204 #ifdef CONFIG_SYSFS
205 static int sysfs_slab_add(struct kmem_cache *);
206 static int sysfs_slab_alias(struct kmem_cache *, const char *);
207 static void sysfs_slab_remove(struct kmem_cache *);
208 
209 #else
210 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 							{ return 0; }
213 static inline void sysfs_slab_remove(struct kmem_cache *s)
214 {
215 	kfree(s->name);
216 	kfree(s);
217 }
218 
219 #endif
220 
221 static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 {
223 #ifdef CONFIG_SLUB_STATS
224 	__this_cpu_inc(s->cpu_slab->stat[si]);
225 #endif
226 }
227 
228 /********************************************************************
229  * 			Core slab cache functions
230  *******************************************************************/
231 
232 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
233 {
234 	return s->node[node];
235 }
236 
237 /* Verify that a pointer has an address that is valid within a slab page */
238 static inline int check_valid_pointer(struct kmem_cache *s,
239 				struct page *page, const void *object)
240 {
241 	void *base;
242 
243 	if (!object)
244 		return 1;
245 
246 	base = page_address(page);
247 	if (object < base || object >= base + page->objects * s->size ||
248 		(object - base) % s->size) {
249 		return 0;
250 	}
251 
252 	return 1;
253 }
254 
255 static inline void *get_freepointer(struct kmem_cache *s, void *object)
256 {
257 	return *(void **)(object + s->offset);
258 }
259 
260 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
261 {
262 	prefetch(object + s->offset);
263 }
264 
265 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
266 {
267 	void *p;
268 
269 #ifdef CONFIG_DEBUG_PAGEALLOC
270 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
271 #else
272 	p = get_freepointer(s, object);
273 #endif
274 	return p;
275 }
276 
277 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
278 {
279 	*(void **)(object + s->offset) = fp;
280 }
281 
282 /* Loop over all objects in a slab */
283 #define for_each_object(__p, __s, __addr, __objects) \
284 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
285 			__p += (__s)->size)
286 
287 /* Determine object index from a given position */
288 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
289 {
290 	return (p - addr) / s->size;
291 }
292 
293 static inline size_t slab_ksize(const struct kmem_cache *s)
294 {
295 #ifdef CONFIG_SLUB_DEBUG
296 	/*
297 	 * Debugging requires use of the padding between object
298 	 * and whatever may come after it.
299 	 */
300 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
301 		return s->object_size;
302 
303 #endif
304 	/*
305 	 * If we have the need to store the freelist pointer
306 	 * back there or track user information then we can
307 	 * only use the space before that information.
308 	 */
309 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
310 		return s->inuse;
311 	/*
312 	 * Else we can use all the padding etc for the allocation
313 	 */
314 	return s->size;
315 }
316 
317 static inline int order_objects(int order, unsigned long size, int reserved)
318 {
319 	return ((PAGE_SIZE << order) - reserved) / size;
320 }
321 
322 static inline struct kmem_cache_order_objects oo_make(int order,
323 		unsigned long size, int reserved)
324 {
325 	struct kmem_cache_order_objects x = {
326 		(order << OO_SHIFT) + order_objects(order, size, reserved)
327 	};
328 
329 	return x;
330 }
331 
332 static inline int oo_order(struct kmem_cache_order_objects x)
333 {
334 	return x.x >> OO_SHIFT;
335 }
336 
337 static inline int oo_objects(struct kmem_cache_order_objects x)
338 {
339 	return x.x & OO_MASK;
340 }
341 
342 /*
343  * Per slab locking using the pagelock
344  */
345 static __always_inline void slab_lock(struct page *page)
346 {
347 	bit_spin_lock(PG_locked, &page->flags);
348 }
349 
350 static __always_inline void slab_unlock(struct page *page)
351 {
352 	__bit_spin_unlock(PG_locked, &page->flags);
353 }
354 
355 /* Interrupts must be disabled (for the fallback code to work right) */
356 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
357 		void *freelist_old, unsigned long counters_old,
358 		void *freelist_new, unsigned long counters_new,
359 		const char *n)
360 {
361 	VM_BUG_ON(!irqs_disabled());
362 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
363     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
364 	if (s->flags & __CMPXCHG_DOUBLE) {
365 		if (cmpxchg_double(&page->freelist, &page->counters,
366 			freelist_old, counters_old,
367 			freelist_new, counters_new))
368 		return 1;
369 	} else
370 #endif
371 	{
372 		slab_lock(page);
373 		if (page->freelist == freelist_old && page->counters == counters_old) {
374 			page->freelist = freelist_new;
375 			page->counters = counters_new;
376 			slab_unlock(page);
377 			return 1;
378 		}
379 		slab_unlock(page);
380 	}
381 
382 	cpu_relax();
383 	stat(s, CMPXCHG_DOUBLE_FAIL);
384 
385 #ifdef SLUB_DEBUG_CMPXCHG
386 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
387 #endif
388 
389 	return 0;
390 }
391 
392 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
393 		void *freelist_old, unsigned long counters_old,
394 		void *freelist_new, unsigned long counters_new,
395 		const char *n)
396 {
397 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
398     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
399 	if (s->flags & __CMPXCHG_DOUBLE) {
400 		if (cmpxchg_double(&page->freelist, &page->counters,
401 			freelist_old, counters_old,
402 			freelist_new, counters_new))
403 		return 1;
404 	} else
405 #endif
406 	{
407 		unsigned long flags;
408 
409 		local_irq_save(flags);
410 		slab_lock(page);
411 		if (page->freelist == freelist_old && page->counters == counters_old) {
412 			page->freelist = freelist_new;
413 			page->counters = counters_new;
414 			slab_unlock(page);
415 			local_irq_restore(flags);
416 			return 1;
417 		}
418 		slab_unlock(page);
419 		local_irq_restore(flags);
420 	}
421 
422 	cpu_relax();
423 	stat(s, CMPXCHG_DOUBLE_FAIL);
424 
425 #ifdef SLUB_DEBUG_CMPXCHG
426 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
427 #endif
428 
429 	return 0;
430 }
431 
432 #ifdef CONFIG_SLUB_DEBUG
433 /*
434  * Determine a map of object in use on a page.
435  *
436  * Node listlock must be held to guarantee that the page does
437  * not vanish from under us.
438  */
439 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
440 {
441 	void *p;
442 	void *addr = page_address(page);
443 
444 	for (p = page->freelist; p; p = get_freepointer(s, p))
445 		set_bit(slab_index(p, s, addr), map);
446 }
447 
448 /*
449  * Debug settings:
450  */
451 #ifdef CONFIG_SLUB_DEBUG_ON
452 static int slub_debug = DEBUG_DEFAULT_FLAGS;
453 #else
454 static int slub_debug;
455 #endif
456 
457 static char *slub_debug_slabs;
458 static int disable_higher_order_debug;
459 
460 /*
461  * Object debugging
462  */
463 static void print_section(char *text, u8 *addr, unsigned int length)
464 {
465 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
466 			length, 1);
467 }
468 
469 static struct track *get_track(struct kmem_cache *s, void *object,
470 	enum track_item alloc)
471 {
472 	struct track *p;
473 
474 	if (s->offset)
475 		p = object + s->offset + sizeof(void *);
476 	else
477 		p = object + s->inuse;
478 
479 	return p + alloc;
480 }
481 
482 static void set_track(struct kmem_cache *s, void *object,
483 			enum track_item alloc, unsigned long addr)
484 {
485 	struct track *p = get_track(s, object, alloc);
486 
487 	if (addr) {
488 #ifdef CONFIG_STACKTRACE
489 		struct stack_trace trace;
490 		int i;
491 
492 		trace.nr_entries = 0;
493 		trace.max_entries = TRACK_ADDRS_COUNT;
494 		trace.entries = p->addrs;
495 		trace.skip = 3;
496 		save_stack_trace(&trace);
497 
498 		/* See rant in lockdep.c */
499 		if (trace.nr_entries != 0 &&
500 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
501 			trace.nr_entries--;
502 
503 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
504 			p->addrs[i] = 0;
505 #endif
506 		p->addr = addr;
507 		p->cpu = smp_processor_id();
508 		p->pid = current->pid;
509 		p->when = jiffies;
510 	} else
511 		memset(p, 0, sizeof(struct track));
512 }
513 
514 static void init_tracking(struct kmem_cache *s, void *object)
515 {
516 	if (!(s->flags & SLAB_STORE_USER))
517 		return;
518 
519 	set_track(s, object, TRACK_FREE, 0UL);
520 	set_track(s, object, TRACK_ALLOC, 0UL);
521 }
522 
523 static void print_track(const char *s, struct track *t)
524 {
525 	if (!t->addr)
526 		return;
527 
528 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
529 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
530 #ifdef CONFIG_STACKTRACE
531 	{
532 		int i;
533 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
534 			if (t->addrs[i])
535 				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
536 			else
537 				break;
538 	}
539 #endif
540 }
541 
542 static void print_tracking(struct kmem_cache *s, void *object)
543 {
544 	if (!(s->flags & SLAB_STORE_USER))
545 		return;
546 
547 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
548 	print_track("Freed", get_track(s, object, TRACK_FREE));
549 }
550 
551 static void print_page_info(struct page *page)
552 {
553 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
554 		page, page->objects, page->inuse, page->freelist, page->flags);
555 
556 }
557 
558 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
559 {
560 	va_list args;
561 	char buf[100];
562 
563 	va_start(args, fmt);
564 	vsnprintf(buf, sizeof(buf), fmt, args);
565 	va_end(args);
566 	printk(KERN_ERR "========================================"
567 			"=====================================\n");
568 	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
569 	printk(KERN_ERR "----------------------------------------"
570 			"-------------------------------------\n\n");
571 }
572 
573 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
574 {
575 	va_list args;
576 	char buf[100];
577 
578 	va_start(args, fmt);
579 	vsnprintf(buf, sizeof(buf), fmt, args);
580 	va_end(args);
581 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
582 }
583 
584 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
585 {
586 	unsigned int off;	/* Offset of last byte */
587 	u8 *addr = page_address(page);
588 
589 	print_tracking(s, p);
590 
591 	print_page_info(page);
592 
593 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
594 			p, p - addr, get_freepointer(s, p));
595 
596 	if (p > addr + 16)
597 		print_section("Bytes b4 ", p - 16, 16);
598 
599 	print_section("Object ", p, min_t(unsigned long, s->object_size,
600 				PAGE_SIZE));
601 	if (s->flags & SLAB_RED_ZONE)
602 		print_section("Redzone ", p + s->object_size,
603 			s->inuse - s->object_size);
604 
605 	if (s->offset)
606 		off = s->offset + sizeof(void *);
607 	else
608 		off = s->inuse;
609 
610 	if (s->flags & SLAB_STORE_USER)
611 		off += 2 * sizeof(struct track);
612 
613 	if (off != s->size)
614 		/* Beginning of the filler is the free pointer */
615 		print_section("Padding ", p + off, s->size - off);
616 
617 	dump_stack();
618 }
619 
620 static void object_err(struct kmem_cache *s, struct page *page,
621 			u8 *object, char *reason)
622 {
623 	slab_bug(s, "%s", reason);
624 	print_trailer(s, page, object);
625 }
626 
627 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
628 {
629 	va_list args;
630 	char buf[100];
631 
632 	va_start(args, fmt);
633 	vsnprintf(buf, sizeof(buf), fmt, args);
634 	va_end(args);
635 	slab_bug(s, "%s", buf);
636 	print_page_info(page);
637 	dump_stack();
638 }
639 
640 static void init_object(struct kmem_cache *s, void *object, u8 val)
641 {
642 	u8 *p = object;
643 
644 	if (s->flags & __OBJECT_POISON) {
645 		memset(p, POISON_FREE, s->object_size - 1);
646 		p[s->object_size - 1] = POISON_END;
647 	}
648 
649 	if (s->flags & SLAB_RED_ZONE)
650 		memset(p + s->object_size, val, s->inuse - s->object_size);
651 }
652 
653 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
654 						void *from, void *to)
655 {
656 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
657 	memset(from, data, to - from);
658 }
659 
660 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
661 			u8 *object, char *what,
662 			u8 *start, unsigned int value, unsigned int bytes)
663 {
664 	u8 *fault;
665 	u8 *end;
666 
667 	fault = memchr_inv(start, value, bytes);
668 	if (!fault)
669 		return 1;
670 
671 	end = start + bytes;
672 	while (end > fault && end[-1] == value)
673 		end--;
674 
675 	slab_bug(s, "%s overwritten", what);
676 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
677 					fault, end - 1, fault[0], value);
678 	print_trailer(s, page, object);
679 
680 	restore_bytes(s, what, value, fault, end);
681 	return 0;
682 }
683 
684 /*
685  * Object layout:
686  *
687  * object address
688  * 	Bytes of the object to be managed.
689  * 	If the freepointer may overlay the object then the free
690  * 	pointer is the first word of the object.
691  *
692  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
693  * 	0xa5 (POISON_END)
694  *
695  * object + s->object_size
696  * 	Padding to reach word boundary. This is also used for Redzoning.
697  * 	Padding is extended by another word if Redzoning is enabled and
698  * 	object_size == inuse.
699  *
700  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
701  * 	0xcc (RED_ACTIVE) for objects in use.
702  *
703  * object + s->inuse
704  * 	Meta data starts here.
705  *
706  * 	A. Free pointer (if we cannot overwrite object on free)
707  * 	B. Tracking data for SLAB_STORE_USER
708  * 	C. Padding to reach required alignment boundary or at mininum
709  * 		one word if debugging is on to be able to detect writes
710  * 		before the word boundary.
711  *
712  *	Padding is done using 0x5a (POISON_INUSE)
713  *
714  * object + s->size
715  * 	Nothing is used beyond s->size.
716  *
717  * If slabcaches are merged then the object_size and inuse boundaries are mostly
718  * ignored. And therefore no slab options that rely on these boundaries
719  * may be used with merged slabcaches.
720  */
721 
722 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
723 {
724 	unsigned long off = s->inuse;	/* The end of info */
725 
726 	if (s->offset)
727 		/* Freepointer is placed after the object. */
728 		off += sizeof(void *);
729 
730 	if (s->flags & SLAB_STORE_USER)
731 		/* We also have user information there */
732 		off += 2 * sizeof(struct track);
733 
734 	if (s->size == off)
735 		return 1;
736 
737 	return check_bytes_and_report(s, page, p, "Object padding",
738 				p + off, POISON_INUSE, s->size - off);
739 }
740 
741 /* Check the pad bytes at the end of a slab page */
742 static int slab_pad_check(struct kmem_cache *s, struct page *page)
743 {
744 	u8 *start;
745 	u8 *fault;
746 	u8 *end;
747 	int length;
748 	int remainder;
749 
750 	if (!(s->flags & SLAB_POISON))
751 		return 1;
752 
753 	start = page_address(page);
754 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
755 	end = start + length;
756 	remainder = length % s->size;
757 	if (!remainder)
758 		return 1;
759 
760 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
761 	if (!fault)
762 		return 1;
763 	while (end > fault && end[-1] == POISON_INUSE)
764 		end--;
765 
766 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
767 	print_section("Padding ", end - remainder, remainder);
768 
769 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
770 	return 0;
771 }
772 
773 static int check_object(struct kmem_cache *s, struct page *page,
774 					void *object, u8 val)
775 {
776 	u8 *p = object;
777 	u8 *endobject = object + s->object_size;
778 
779 	if (s->flags & SLAB_RED_ZONE) {
780 		if (!check_bytes_and_report(s, page, object, "Redzone",
781 			endobject, val, s->inuse - s->object_size))
782 			return 0;
783 	} else {
784 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
785 			check_bytes_and_report(s, page, p, "Alignment padding",
786 				endobject, POISON_INUSE, s->inuse - s->object_size);
787 		}
788 	}
789 
790 	if (s->flags & SLAB_POISON) {
791 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
792 			(!check_bytes_and_report(s, page, p, "Poison", p,
793 					POISON_FREE, s->object_size - 1) ||
794 			 !check_bytes_and_report(s, page, p, "Poison",
795 				p + s->object_size - 1, POISON_END, 1)))
796 			return 0;
797 		/*
798 		 * check_pad_bytes cleans up on its own.
799 		 */
800 		check_pad_bytes(s, page, p);
801 	}
802 
803 	if (!s->offset && val == SLUB_RED_ACTIVE)
804 		/*
805 		 * Object and freepointer overlap. Cannot check
806 		 * freepointer while object is allocated.
807 		 */
808 		return 1;
809 
810 	/* Check free pointer validity */
811 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
812 		object_err(s, page, p, "Freepointer corrupt");
813 		/*
814 		 * No choice but to zap it and thus lose the remainder
815 		 * of the free objects in this slab. May cause
816 		 * another error because the object count is now wrong.
817 		 */
818 		set_freepointer(s, p, NULL);
819 		return 0;
820 	}
821 	return 1;
822 }
823 
824 static int check_slab(struct kmem_cache *s, struct page *page)
825 {
826 	int maxobj;
827 
828 	VM_BUG_ON(!irqs_disabled());
829 
830 	if (!PageSlab(page)) {
831 		slab_err(s, page, "Not a valid slab page");
832 		return 0;
833 	}
834 
835 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
836 	if (page->objects > maxobj) {
837 		slab_err(s, page, "objects %u > max %u",
838 			s->name, page->objects, maxobj);
839 		return 0;
840 	}
841 	if (page->inuse > page->objects) {
842 		slab_err(s, page, "inuse %u > max %u",
843 			s->name, page->inuse, page->objects);
844 		return 0;
845 	}
846 	/* Slab_pad_check fixes things up after itself */
847 	slab_pad_check(s, page);
848 	return 1;
849 }
850 
851 /*
852  * Determine if a certain object on a page is on the freelist. Must hold the
853  * slab lock to guarantee that the chains are in a consistent state.
854  */
855 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
856 {
857 	int nr = 0;
858 	void *fp;
859 	void *object = NULL;
860 	unsigned long max_objects;
861 
862 	fp = page->freelist;
863 	while (fp && nr <= page->objects) {
864 		if (fp == search)
865 			return 1;
866 		if (!check_valid_pointer(s, page, fp)) {
867 			if (object) {
868 				object_err(s, page, object,
869 					"Freechain corrupt");
870 				set_freepointer(s, object, NULL);
871 				break;
872 			} else {
873 				slab_err(s, page, "Freepointer corrupt");
874 				page->freelist = NULL;
875 				page->inuse = page->objects;
876 				slab_fix(s, "Freelist cleared");
877 				return 0;
878 			}
879 			break;
880 		}
881 		object = fp;
882 		fp = get_freepointer(s, object);
883 		nr++;
884 	}
885 
886 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
887 	if (max_objects > MAX_OBJS_PER_PAGE)
888 		max_objects = MAX_OBJS_PER_PAGE;
889 
890 	if (page->objects != max_objects) {
891 		slab_err(s, page, "Wrong number of objects. Found %d but "
892 			"should be %d", page->objects, max_objects);
893 		page->objects = max_objects;
894 		slab_fix(s, "Number of objects adjusted.");
895 	}
896 	if (page->inuse != page->objects - nr) {
897 		slab_err(s, page, "Wrong object count. Counter is %d but "
898 			"counted were %d", page->inuse, page->objects - nr);
899 		page->inuse = page->objects - nr;
900 		slab_fix(s, "Object count adjusted.");
901 	}
902 	return search == NULL;
903 }
904 
905 static void trace(struct kmem_cache *s, struct page *page, void *object,
906 								int alloc)
907 {
908 	if (s->flags & SLAB_TRACE) {
909 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
910 			s->name,
911 			alloc ? "alloc" : "free",
912 			object, page->inuse,
913 			page->freelist);
914 
915 		if (!alloc)
916 			print_section("Object ", (void *)object, s->object_size);
917 
918 		dump_stack();
919 	}
920 }
921 
922 /*
923  * Hooks for other subsystems that check memory allocations. In a typical
924  * production configuration these hooks all should produce no code at all.
925  */
926 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
927 {
928 	flags &= gfp_allowed_mask;
929 	lockdep_trace_alloc(flags);
930 	might_sleep_if(flags & __GFP_WAIT);
931 
932 	return should_failslab(s->object_size, flags, s->flags);
933 }
934 
935 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
936 {
937 	flags &= gfp_allowed_mask;
938 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
939 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
940 }
941 
942 static inline void slab_free_hook(struct kmem_cache *s, void *x)
943 {
944 	kmemleak_free_recursive(x, s->flags);
945 
946 	/*
947 	 * Trouble is that we may no longer disable interupts in the fast path
948 	 * So in order to make the debug calls that expect irqs to be
949 	 * disabled we need to disable interrupts temporarily.
950 	 */
951 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
952 	{
953 		unsigned long flags;
954 
955 		local_irq_save(flags);
956 		kmemcheck_slab_free(s, x, s->object_size);
957 		debug_check_no_locks_freed(x, s->object_size);
958 		local_irq_restore(flags);
959 	}
960 #endif
961 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
962 		debug_check_no_obj_freed(x, s->object_size);
963 }
964 
965 /*
966  * Tracking of fully allocated slabs for debugging purposes.
967  *
968  * list_lock must be held.
969  */
970 static void add_full(struct kmem_cache *s,
971 	struct kmem_cache_node *n, struct page *page)
972 {
973 	if (!(s->flags & SLAB_STORE_USER))
974 		return;
975 
976 	list_add(&page->lru, &n->full);
977 }
978 
979 /*
980  * list_lock must be held.
981  */
982 static void remove_full(struct kmem_cache *s, struct page *page)
983 {
984 	if (!(s->flags & SLAB_STORE_USER))
985 		return;
986 
987 	list_del(&page->lru);
988 }
989 
990 /* Tracking of the number of slabs for debugging purposes */
991 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
992 {
993 	struct kmem_cache_node *n = get_node(s, node);
994 
995 	return atomic_long_read(&n->nr_slabs);
996 }
997 
998 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
999 {
1000 	return atomic_long_read(&n->nr_slabs);
1001 }
1002 
1003 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1004 {
1005 	struct kmem_cache_node *n = get_node(s, node);
1006 
1007 	/*
1008 	 * May be called early in order to allocate a slab for the
1009 	 * kmem_cache_node structure. Solve the chicken-egg
1010 	 * dilemma by deferring the increment of the count during
1011 	 * bootstrap (see early_kmem_cache_node_alloc).
1012 	 */
1013 	if (n) {
1014 		atomic_long_inc(&n->nr_slabs);
1015 		atomic_long_add(objects, &n->total_objects);
1016 	}
1017 }
1018 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1019 {
1020 	struct kmem_cache_node *n = get_node(s, node);
1021 
1022 	atomic_long_dec(&n->nr_slabs);
1023 	atomic_long_sub(objects, &n->total_objects);
1024 }
1025 
1026 /* Object debug checks for alloc/free paths */
1027 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1028 								void *object)
1029 {
1030 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1031 		return;
1032 
1033 	init_object(s, object, SLUB_RED_INACTIVE);
1034 	init_tracking(s, object);
1035 }
1036 
1037 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1038 					void *object, unsigned long addr)
1039 {
1040 	if (!check_slab(s, page))
1041 		goto bad;
1042 
1043 	if (!check_valid_pointer(s, page, object)) {
1044 		object_err(s, page, object, "Freelist Pointer check fails");
1045 		goto bad;
1046 	}
1047 
1048 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1049 		goto bad;
1050 
1051 	/* Success perform special debug activities for allocs */
1052 	if (s->flags & SLAB_STORE_USER)
1053 		set_track(s, object, TRACK_ALLOC, addr);
1054 	trace(s, page, object, 1);
1055 	init_object(s, object, SLUB_RED_ACTIVE);
1056 	return 1;
1057 
1058 bad:
1059 	if (PageSlab(page)) {
1060 		/*
1061 		 * If this is a slab page then lets do the best we can
1062 		 * to avoid issues in the future. Marking all objects
1063 		 * as used avoids touching the remaining objects.
1064 		 */
1065 		slab_fix(s, "Marking all objects used");
1066 		page->inuse = page->objects;
1067 		page->freelist = NULL;
1068 	}
1069 	return 0;
1070 }
1071 
1072 static noinline int free_debug_processing(struct kmem_cache *s,
1073 		 struct page *page, void *object, unsigned long addr)
1074 {
1075 	unsigned long flags;
1076 	int rc = 0;
1077 
1078 	local_irq_save(flags);
1079 	slab_lock(page);
1080 
1081 	if (!check_slab(s, page))
1082 		goto fail;
1083 
1084 	if (!check_valid_pointer(s, page, object)) {
1085 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1086 		goto fail;
1087 	}
1088 
1089 	if (on_freelist(s, page, object)) {
1090 		object_err(s, page, object, "Object already free");
1091 		goto fail;
1092 	}
1093 
1094 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1095 		goto out;
1096 
1097 	if (unlikely(s != page->slab)) {
1098 		if (!PageSlab(page)) {
1099 			slab_err(s, page, "Attempt to free object(0x%p) "
1100 				"outside of slab", object);
1101 		} else if (!page->slab) {
1102 			printk(KERN_ERR
1103 				"SLUB <none>: no slab for object 0x%p.\n",
1104 						object);
1105 			dump_stack();
1106 		} else
1107 			object_err(s, page, object,
1108 					"page slab pointer corrupt.");
1109 		goto fail;
1110 	}
1111 
1112 	if (s->flags & SLAB_STORE_USER)
1113 		set_track(s, object, TRACK_FREE, addr);
1114 	trace(s, page, object, 0);
1115 	init_object(s, object, SLUB_RED_INACTIVE);
1116 	rc = 1;
1117 out:
1118 	slab_unlock(page);
1119 	local_irq_restore(flags);
1120 	return rc;
1121 
1122 fail:
1123 	slab_fix(s, "Object at 0x%p not freed", object);
1124 	goto out;
1125 }
1126 
1127 static int __init setup_slub_debug(char *str)
1128 {
1129 	slub_debug = DEBUG_DEFAULT_FLAGS;
1130 	if (*str++ != '=' || !*str)
1131 		/*
1132 		 * No options specified. Switch on full debugging.
1133 		 */
1134 		goto out;
1135 
1136 	if (*str == ',')
1137 		/*
1138 		 * No options but restriction on slabs. This means full
1139 		 * debugging for slabs matching a pattern.
1140 		 */
1141 		goto check_slabs;
1142 
1143 	if (tolower(*str) == 'o') {
1144 		/*
1145 		 * Avoid enabling debugging on caches if its minimum order
1146 		 * would increase as a result.
1147 		 */
1148 		disable_higher_order_debug = 1;
1149 		goto out;
1150 	}
1151 
1152 	slub_debug = 0;
1153 	if (*str == '-')
1154 		/*
1155 		 * Switch off all debugging measures.
1156 		 */
1157 		goto out;
1158 
1159 	/*
1160 	 * Determine which debug features should be switched on
1161 	 */
1162 	for (; *str && *str != ','; str++) {
1163 		switch (tolower(*str)) {
1164 		case 'f':
1165 			slub_debug |= SLAB_DEBUG_FREE;
1166 			break;
1167 		case 'z':
1168 			slub_debug |= SLAB_RED_ZONE;
1169 			break;
1170 		case 'p':
1171 			slub_debug |= SLAB_POISON;
1172 			break;
1173 		case 'u':
1174 			slub_debug |= SLAB_STORE_USER;
1175 			break;
1176 		case 't':
1177 			slub_debug |= SLAB_TRACE;
1178 			break;
1179 		case 'a':
1180 			slub_debug |= SLAB_FAILSLAB;
1181 			break;
1182 		default:
1183 			printk(KERN_ERR "slub_debug option '%c' "
1184 				"unknown. skipped\n", *str);
1185 		}
1186 	}
1187 
1188 check_slabs:
1189 	if (*str == ',')
1190 		slub_debug_slabs = str + 1;
1191 out:
1192 	return 1;
1193 }
1194 
1195 __setup("slub_debug", setup_slub_debug);
1196 
1197 static unsigned long kmem_cache_flags(unsigned long object_size,
1198 	unsigned long flags, const char *name,
1199 	void (*ctor)(void *))
1200 {
1201 	/*
1202 	 * Enable debugging if selected on the kernel commandline.
1203 	 */
1204 	if (slub_debug && (!slub_debug_slabs ||
1205 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1206 		flags |= slub_debug;
1207 
1208 	return flags;
1209 }
1210 #else
1211 static inline void setup_object_debug(struct kmem_cache *s,
1212 			struct page *page, void *object) {}
1213 
1214 static inline int alloc_debug_processing(struct kmem_cache *s,
1215 	struct page *page, void *object, unsigned long addr) { return 0; }
1216 
1217 static inline int free_debug_processing(struct kmem_cache *s,
1218 	struct page *page, void *object, unsigned long addr) { return 0; }
1219 
1220 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1221 			{ return 1; }
1222 static inline int check_object(struct kmem_cache *s, struct page *page,
1223 			void *object, u8 val) { return 1; }
1224 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 					struct page *page) {}
1226 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1227 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1228 	unsigned long flags, const char *name,
1229 	void (*ctor)(void *))
1230 {
1231 	return flags;
1232 }
1233 #define slub_debug 0
1234 
1235 #define disable_higher_order_debug 0
1236 
1237 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1238 							{ return 0; }
1239 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1240 							{ return 0; }
1241 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1242 							int objects) {}
1243 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1244 							int objects) {}
1245 
1246 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1247 							{ return 0; }
1248 
1249 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1250 		void *object) {}
1251 
1252 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1253 
1254 #endif /* CONFIG_SLUB_DEBUG */
1255 
1256 /*
1257  * Slab allocation and freeing
1258  */
1259 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1260 					struct kmem_cache_order_objects oo)
1261 {
1262 	int order = oo_order(oo);
1263 
1264 	flags |= __GFP_NOTRACK;
1265 
1266 	if (node == NUMA_NO_NODE)
1267 		return alloc_pages(flags, order);
1268 	else
1269 		return alloc_pages_exact_node(node, flags, order);
1270 }
1271 
1272 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1273 {
1274 	struct page *page;
1275 	struct kmem_cache_order_objects oo = s->oo;
1276 	gfp_t alloc_gfp;
1277 
1278 	flags &= gfp_allowed_mask;
1279 
1280 	if (flags & __GFP_WAIT)
1281 		local_irq_enable();
1282 
1283 	flags |= s->allocflags;
1284 
1285 	/*
1286 	 * Let the initial higher-order allocation fail under memory pressure
1287 	 * so we fall-back to the minimum order allocation.
1288 	 */
1289 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1290 
1291 	page = alloc_slab_page(alloc_gfp, node, oo);
1292 	if (unlikely(!page)) {
1293 		oo = s->min;
1294 		/*
1295 		 * Allocation may have failed due to fragmentation.
1296 		 * Try a lower order alloc if possible
1297 		 */
1298 		page = alloc_slab_page(flags, node, oo);
1299 
1300 		if (page)
1301 			stat(s, ORDER_FALLBACK);
1302 	}
1303 
1304 	if (kmemcheck_enabled && page
1305 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1306 		int pages = 1 << oo_order(oo);
1307 
1308 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1309 
1310 		/*
1311 		 * Objects from caches that have a constructor don't get
1312 		 * cleared when they're allocated, so we need to do it here.
1313 		 */
1314 		if (s->ctor)
1315 			kmemcheck_mark_uninitialized_pages(page, pages);
1316 		else
1317 			kmemcheck_mark_unallocated_pages(page, pages);
1318 	}
1319 
1320 	if (flags & __GFP_WAIT)
1321 		local_irq_disable();
1322 	if (!page)
1323 		return NULL;
1324 
1325 	page->objects = oo_objects(oo);
1326 	mod_zone_page_state(page_zone(page),
1327 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1328 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1329 		1 << oo_order(oo));
1330 
1331 	return page;
1332 }
1333 
1334 static void setup_object(struct kmem_cache *s, struct page *page,
1335 				void *object)
1336 {
1337 	setup_object_debug(s, page, object);
1338 	if (unlikely(s->ctor))
1339 		s->ctor(object);
1340 }
1341 
1342 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1343 {
1344 	struct page *page;
1345 	void *start;
1346 	void *last;
1347 	void *p;
1348 
1349 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1350 
1351 	page = allocate_slab(s,
1352 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1353 	if (!page)
1354 		goto out;
1355 
1356 	inc_slabs_node(s, page_to_nid(page), page->objects);
1357 	page->slab = s;
1358 	__SetPageSlab(page);
1359 	if (page->pfmemalloc)
1360 		SetPageSlabPfmemalloc(page);
1361 
1362 	start = page_address(page);
1363 
1364 	if (unlikely(s->flags & SLAB_POISON))
1365 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1366 
1367 	last = start;
1368 	for_each_object(p, s, start, page->objects) {
1369 		setup_object(s, page, last);
1370 		set_freepointer(s, last, p);
1371 		last = p;
1372 	}
1373 	setup_object(s, page, last);
1374 	set_freepointer(s, last, NULL);
1375 
1376 	page->freelist = start;
1377 	page->inuse = page->objects;
1378 	page->frozen = 1;
1379 out:
1380 	return page;
1381 }
1382 
1383 static void __free_slab(struct kmem_cache *s, struct page *page)
1384 {
1385 	int order = compound_order(page);
1386 	int pages = 1 << order;
1387 
1388 	if (kmem_cache_debug(s)) {
1389 		void *p;
1390 
1391 		slab_pad_check(s, page);
1392 		for_each_object(p, s, page_address(page),
1393 						page->objects)
1394 			check_object(s, page, p, SLUB_RED_INACTIVE);
1395 	}
1396 
1397 	kmemcheck_free_shadow(page, compound_order(page));
1398 
1399 	mod_zone_page_state(page_zone(page),
1400 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1401 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1402 		-pages);
1403 
1404 	__ClearPageSlabPfmemalloc(page);
1405 	__ClearPageSlab(page);
1406 	reset_page_mapcount(page);
1407 	if (current->reclaim_state)
1408 		current->reclaim_state->reclaimed_slab += pages;
1409 	__free_pages(page, order);
1410 }
1411 
1412 #define need_reserve_slab_rcu						\
1413 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1414 
1415 static void rcu_free_slab(struct rcu_head *h)
1416 {
1417 	struct page *page;
1418 
1419 	if (need_reserve_slab_rcu)
1420 		page = virt_to_head_page(h);
1421 	else
1422 		page = container_of((struct list_head *)h, struct page, lru);
1423 
1424 	__free_slab(page->slab, page);
1425 }
1426 
1427 static void free_slab(struct kmem_cache *s, struct page *page)
1428 {
1429 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1430 		struct rcu_head *head;
1431 
1432 		if (need_reserve_slab_rcu) {
1433 			int order = compound_order(page);
1434 			int offset = (PAGE_SIZE << order) - s->reserved;
1435 
1436 			VM_BUG_ON(s->reserved != sizeof(*head));
1437 			head = page_address(page) + offset;
1438 		} else {
1439 			/*
1440 			 * RCU free overloads the RCU head over the LRU
1441 			 */
1442 			head = (void *)&page->lru;
1443 		}
1444 
1445 		call_rcu(head, rcu_free_slab);
1446 	} else
1447 		__free_slab(s, page);
1448 }
1449 
1450 static void discard_slab(struct kmem_cache *s, struct page *page)
1451 {
1452 	dec_slabs_node(s, page_to_nid(page), page->objects);
1453 	free_slab(s, page);
1454 }
1455 
1456 /*
1457  * Management of partially allocated slabs.
1458  *
1459  * list_lock must be held.
1460  */
1461 static inline void add_partial(struct kmem_cache_node *n,
1462 				struct page *page, int tail)
1463 {
1464 	n->nr_partial++;
1465 	if (tail == DEACTIVATE_TO_TAIL)
1466 		list_add_tail(&page->lru, &n->partial);
1467 	else
1468 		list_add(&page->lru, &n->partial);
1469 }
1470 
1471 /*
1472  * list_lock must be held.
1473  */
1474 static inline void remove_partial(struct kmem_cache_node *n,
1475 					struct page *page)
1476 {
1477 	list_del(&page->lru);
1478 	n->nr_partial--;
1479 }
1480 
1481 /*
1482  * Remove slab from the partial list, freeze it and
1483  * return the pointer to the freelist.
1484  *
1485  * Returns a list of objects or NULL if it fails.
1486  *
1487  * Must hold list_lock since we modify the partial list.
1488  */
1489 static inline void *acquire_slab(struct kmem_cache *s,
1490 		struct kmem_cache_node *n, struct page *page,
1491 		int mode)
1492 {
1493 	void *freelist;
1494 	unsigned long counters;
1495 	struct page new;
1496 
1497 	/*
1498 	 * Zap the freelist and set the frozen bit.
1499 	 * The old freelist is the list of objects for the
1500 	 * per cpu allocation list.
1501 	 */
1502 	freelist = page->freelist;
1503 	counters = page->counters;
1504 	new.counters = counters;
1505 	if (mode) {
1506 		new.inuse = page->objects;
1507 		new.freelist = NULL;
1508 	} else {
1509 		new.freelist = freelist;
1510 	}
1511 
1512 	VM_BUG_ON(new.frozen);
1513 	new.frozen = 1;
1514 
1515 	if (!__cmpxchg_double_slab(s, page,
1516 			freelist, counters,
1517 			new.freelist, new.counters,
1518 			"acquire_slab"))
1519 		return NULL;
1520 
1521 	remove_partial(n, page);
1522 	WARN_ON(!freelist);
1523 	return freelist;
1524 }
1525 
1526 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1527 
1528 /*
1529  * Try to allocate a partial slab from a specific node.
1530  */
1531 static void *get_partial_node(struct kmem_cache *s,
1532 		struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1533 {
1534 	struct page *page, *page2;
1535 	void *object = NULL;
1536 
1537 	/*
1538 	 * Racy check. If we mistakenly see no partial slabs then we
1539 	 * just allocate an empty slab. If we mistakenly try to get a
1540 	 * partial slab and there is none available then get_partials()
1541 	 * will return NULL.
1542 	 */
1543 	if (!n || !n->nr_partial)
1544 		return NULL;
1545 
1546 	spin_lock(&n->list_lock);
1547 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1548 		void *t = acquire_slab(s, n, page, object == NULL);
1549 		int available;
1550 
1551 		if (!t)
1552 			break;
1553 
1554 		if (!object) {
1555 			c->page = page;
1556 			stat(s, ALLOC_FROM_PARTIAL);
1557 			object = t;
1558 			available =  page->objects - page->inuse;
1559 		} else {
1560 			available = put_cpu_partial(s, page, 0);
1561 			stat(s, CPU_PARTIAL_NODE);
1562 		}
1563 		if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1564 			break;
1565 
1566 	}
1567 	spin_unlock(&n->list_lock);
1568 	return object;
1569 }
1570 
1571 /*
1572  * Get a page from somewhere. Search in increasing NUMA distances.
1573  */
1574 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1575 		struct kmem_cache_cpu *c)
1576 {
1577 #ifdef CONFIG_NUMA
1578 	struct zonelist *zonelist;
1579 	struct zoneref *z;
1580 	struct zone *zone;
1581 	enum zone_type high_zoneidx = gfp_zone(flags);
1582 	void *object;
1583 	unsigned int cpuset_mems_cookie;
1584 
1585 	/*
1586 	 * The defrag ratio allows a configuration of the tradeoffs between
1587 	 * inter node defragmentation and node local allocations. A lower
1588 	 * defrag_ratio increases the tendency to do local allocations
1589 	 * instead of attempting to obtain partial slabs from other nodes.
1590 	 *
1591 	 * If the defrag_ratio is set to 0 then kmalloc() always
1592 	 * returns node local objects. If the ratio is higher then kmalloc()
1593 	 * may return off node objects because partial slabs are obtained
1594 	 * from other nodes and filled up.
1595 	 *
1596 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1597 	 * defrag_ratio = 1000) then every (well almost) allocation will
1598 	 * first attempt to defrag slab caches on other nodes. This means
1599 	 * scanning over all nodes to look for partial slabs which may be
1600 	 * expensive if we do it every time we are trying to find a slab
1601 	 * with available objects.
1602 	 */
1603 	if (!s->remote_node_defrag_ratio ||
1604 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1605 		return NULL;
1606 
1607 	do {
1608 		cpuset_mems_cookie = get_mems_allowed();
1609 		zonelist = node_zonelist(slab_node(), flags);
1610 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1611 			struct kmem_cache_node *n;
1612 
1613 			n = get_node(s, zone_to_nid(zone));
1614 
1615 			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1616 					n->nr_partial > s->min_partial) {
1617 				object = get_partial_node(s, n, c);
1618 				if (object) {
1619 					/*
1620 					 * Return the object even if
1621 					 * put_mems_allowed indicated that
1622 					 * the cpuset mems_allowed was
1623 					 * updated in parallel. It's a
1624 					 * harmless race between the alloc
1625 					 * and the cpuset update.
1626 					 */
1627 					put_mems_allowed(cpuset_mems_cookie);
1628 					return object;
1629 				}
1630 			}
1631 		}
1632 	} while (!put_mems_allowed(cpuset_mems_cookie));
1633 #endif
1634 	return NULL;
1635 }
1636 
1637 /*
1638  * Get a partial page, lock it and return it.
1639  */
1640 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1641 		struct kmem_cache_cpu *c)
1642 {
1643 	void *object;
1644 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1645 
1646 	object = get_partial_node(s, get_node(s, searchnode), c);
1647 	if (object || node != NUMA_NO_NODE)
1648 		return object;
1649 
1650 	return get_any_partial(s, flags, c);
1651 }
1652 
1653 #ifdef CONFIG_PREEMPT
1654 /*
1655  * Calculate the next globally unique transaction for disambiguiation
1656  * during cmpxchg. The transactions start with the cpu number and are then
1657  * incremented by CONFIG_NR_CPUS.
1658  */
1659 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1660 #else
1661 /*
1662  * No preemption supported therefore also no need to check for
1663  * different cpus.
1664  */
1665 #define TID_STEP 1
1666 #endif
1667 
1668 static inline unsigned long next_tid(unsigned long tid)
1669 {
1670 	return tid + TID_STEP;
1671 }
1672 
1673 static inline unsigned int tid_to_cpu(unsigned long tid)
1674 {
1675 	return tid % TID_STEP;
1676 }
1677 
1678 static inline unsigned long tid_to_event(unsigned long tid)
1679 {
1680 	return tid / TID_STEP;
1681 }
1682 
1683 static inline unsigned int init_tid(int cpu)
1684 {
1685 	return cpu;
1686 }
1687 
1688 static inline void note_cmpxchg_failure(const char *n,
1689 		const struct kmem_cache *s, unsigned long tid)
1690 {
1691 #ifdef SLUB_DEBUG_CMPXCHG
1692 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1693 
1694 	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1695 
1696 #ifdef CONFIG_PREEMPT
1697 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1698 		printk("due to cpu change %d -> %d\n",
1699 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1700 	else
1701 #endif
1702 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1703 		printk("due to cpu running other code. Event %ld->%ld\n",
1704 			tid_to_event(tid), tid_to_event(actual_tid));
1705 	else
1706 		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1707 			actual_tid, tid, next_tid(tid));
1708 #endif
1709 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1710 }
1711 
1712 void init_kmem_cache_cpus(struct kmem_cache *s)
1713 {
1714 	int cpu;
1715 
1716 	for_each_possible_cpu(cpu)
1717 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1718 }
1719 
1720 /*
1721  * Remove the cpu slab
1722  */
1723 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1724 {
1725 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1726 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1727 	int lock = 0;
1728 	enum slab_modes l = M_NONE, m = M_NONE;
1729 	void *nextfree;
1730 	int tail = DEACTIVATE_TO_HEAD;
1731 	struct page new;
1732 	struct page old;
1733 
1734 	if (page->freelist) {
1735 		stat(s, DEACTIVATE_REMOTE_FREES);
1736 		tail = DEACTIVATE_TO_TAIL;
1737 	}
1738 
1739 	/*
1740 	 * Stage one: Free all available per cpu objects back
1741 	 * to the page freelist while it is still frozen. Leave the
1742 	 * last one.
1743 	 *
1744 	 * There is no need to take the list->lock because the page
1745 	 * is still frozen.
1746 	 */
1747 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1748 		void *prior;
1749 		unsigned long counters;
1750 
1751 		do {
1752 			prior = page->freelist;
1753 			counters = page->counters;
1754 			set_freepointer(s, freelist, prior);
1755 			new.counters = counters;
1756 			new.inuse--;
1757 			VM_BUG_ON(!new.frozen);
1758 
1759 		} while (!__cmpxchg_double_slab(s, page,
1760 			prior, counters,
1761 			freelist, new.counters,
1762 			"drain percpu freelist"));
1763 
1764 		freelist = nextfree;
1765 	}
1766 
1767 	/*
1768 	 * Stage two: Ensure that the page is unfrozen while the
1769 	 * list presence reflects the actual number of objects
1770 	 * during unfreeze.
1771 	 *
1772 	 * We setup the list membership and then perform a cmpxchg
1773 	 * with the count. If there is a mismatch then the page
1774 	 * is not unfrozen but the page is on the wrong list.
1775 	 *
1776 	 * Then we restart the process which may have to remove
1777 	 * the page from the list that we just put it on again
1778 	 * because the number of objects in the slab may have
1779 	 * changed.
1780 	 */
1781 redo:
1782 
1783 	old.freelist = page->freelist;
1784 	old.counters = page->counters;
1785 	VM_BUG_ON(!old.frozen);
1786 
1787 	/* Determine target state of the slab */
1788 	new.counters = old.counters;
1789 	if (freelist) {
1790 		new.inuse--;
1791 		set_freepointer(s, freelist, old.freelist);
1792 		new.freelist = freelist;
1793 	} else
1794 		new.freelist = old.freelist;
1795 
1796 	new.frozen = 0;
1797 
1798 	if (!new.inuse && n->nr_partial > s->min_partial)
1799 		m = M_FREE;
1800 	else if (new.freelist) {
1801 		m = M_PARTIAL;
1802 		if (!lock) {
1803 			lock = 1;
1804 			/*
1805 			 * Taking the spinlock removes the possiblity
1806 			 * that acquire_slab() will see a slab page that
1807 			 * is frozen
1808 			 */
1809 			spin_lock(&n->list_lock);
1810 		}
1811 	} else {
1812 		m = M_FULL;
1813 		if (kmem_cache_debug(s) && !lock) {
1814 			lock = 1;
1815 			/*
1816 			 * This also ensures that the scanning of full
1817 			 * slabs from diagnostic functions will not see
1818 			 * any frozen slabs.
1819 			 */
1820 			spin_lock(&n->list_lock);
1821 		}
1822 	}
1823 
1824 	if (l != m) {
1825 
1826 		if (l == M_PARTIAL)
1827 
1828 			remove_partial(n, page);
1829 
1830 		else if (l == M_FULL)
1831 
1832 			remove_full(s, page);
1833 
1834 		if (m == M_PARTIAL) {
1835 
1836 			add_partial(n, page, tail);
1837 			stat(s, tail);
1838 
1839 		} else if (m == M_FULL) {
1840 
1841 			stat(s, DEACTIVATE_FULL);
1842 			add_full(s, n, page);
1843 
1844 		}
1845 	}
1846 
1847 	l = m;
1848 	if (!__cmpxchg_double_slab(s, page,
1849 				old.freelist, old.counters,
1850 				new.freelist, new.counters,
1851 				"unfreezing slab"))
1852 		goto redo;
1853 
1854 	if (lock)
1855 		spin_unlock(&n->list_lock);
1856 
1857 	if (m == M_FREE) {
1858 		stat(s, DEACTIVATE_EMPTY);
1859 		discard_slab(s, page);
1860 		stat(s, FREE_SLAB);
1861 	}
1862 }
1863 
1864 /*
1865  * Unfreeze all the cpu partial slabs.
1866  *
1867  * This function must be called with interrupt disabled.
1868  */
1869 static void unfreeze_partials(struct kmem_cache *s)
1870 {
1871 	struct kmem_cache_node *n = NULL, *n2 = NULL;
1872 	struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1873 	struct page *page, *discard_page = NULL;
1874 
1875 	while ((page = c->partial)) {
1876 		struct page new;
1877 		struct page old;
1878 
1879 		c->partial = page->next;
1880 
1881 		n2 = get_node(s, page_to_nid(page));
1882 		if (n != n2) {
1883 			if (n)
1884 				spin_unlock(&n->list_lock);
1885 
1886 			n = n2;
1887 			spin_lock(&n->list_lock);
1888 		}
1889 
1890 		do {
1891 
1892 			old.freelist = page->freelist;
1893 			old.counters = page->counters;
1894 			VM_BUG_ON(!old.frozen);
1895 
1896 			new.counters = old.counters;
1897 			new.freelist = old.freelist;
1898 
1899 			new.frozen = 0;
1900 
1901 		} while (!__cmpxchg_double_slab(s, page,
1902 				old.freelist, old.counters,
1903 				new.freelist, new.counters,
1904 				"unfreezing slab"));
1905 
1906 		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1907 			page->next = discard_page;
1908 			discard_page = page;
1909 		} else {
1910 			add_partial(n, page, DEACTIVATE_TO_TAIL);
1911 			stat(s, FREE_ADD_PARTIAL);
1912 		}
1913 	}
1914 
1915 	if (n)
1916 		spin_unlock(&n->list_lock);
1917 
1918 	while (discard_page) {
1919 		page = discard_page;
1920 		discard_page = discard_page->next;
1921 
1922 		stat(s, DEACTIVATE_EMPTY);
1923 		discard_slab(s, page);
1924 		stat(s, FREE_SLAB);
1925 	}
1926 }
1927 
1928 /*
1929  * Put a page that was just frozen (in __slab_free) into a partial page
1930  * slot if available. This is done without interrupts disabled and without
1931  * preemption disabled. The cmpxchg is racy and may put the partial page
1932  * onto a random cpus partial slot.
1933  *
1934  * If we did not find a slot then simply move all the partials to the
1935  * per node partial list.
1936  */
1937 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1938 {
1939 	struct page *oldpage;
1940 	int pages;
1941 	int pobjects;
1942 
1943 	do {
1944 		pages = 0;
1945 		pobjects = 0;
1946 		oldpage = this_cpu_read(s->cpu_slab->partial);
1947 
1948 		if (oldpage) {
1949 			pobjects = oldpage->pobjects;
1950 			pages = oldpage->pages;
1951 			if (drain && pobjects > s->cpu_partial) {
1952 				unsigned long flags;
1953 				/*
1954 				 * partial array is full. Move the existing
1955 				 * set to the per node partial list.
1956 				 */
1957 				local_irq_save(flags);
1958 				unfreeze_partials(s);
1959 				local_irq_restore(flags);
1960 				pobjects = 0;
1961 				pages = 0;
1962 				stat(s, CPU_PARTIAL_DRAIN);
1963 			}
1964 		}
1965 
1966 		pages++;
1967 		pobjects += page->objects - page->inuse;
1968 
1969 		page->pages = pages;
1970 		page->pobjects = pobjects;
1971 		page->next = oldpage;
1972 
1973 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1974 	return pobjects;
1975 }
1976 
1977 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1978 {
1979 	stat(s, CPUSLAB_FLUSH);
1980 	deactivate_slab(s, c->page, c->freelist);
1981 
1982 	c->tid = next_tid(c->tid);
1983 	c->page = NULL;
1984 	c->freelist = NULL;
1985 }
1986 
1987 /*
1988  * Flush cpu slab.
1989  *
1990  * Called from IPI handler with interrupts disabled.
1991  */
1992 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1993 {
1994 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1995 
1996 	if (likely(c)) {
1997 		if (c->page)
1998 			flush_slab(s, c);
1999 
2000 		unfreeze_partials(s);
2001 	}
2002 }
2003 
2004 static void flush_cpu_slab(void *d)
2005 {
2006 	struct kmem_cache *s = d;
2007 
2008 	__flush_cpu_slab(s, smp_processor_id());
2009 }
2010 
2011 static bool has_cpu_slab(int cpu, void *info)
2012 {
2013 	struct kmem_cache *s = info;
2014 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2015 
2016 	return c->page || c->partial;
2017 }
2018 
2019 static void flush_all(struct kmem_cache *s)
2020 {
2021 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2022 }
2023 
2024 /*
2025  * Check if the objects in a per cpu structure fit numa
2026  * locality expectations.
2027  */
2028 static inline int node_match(struct page *page, int node)
2029 {
2030 #ifdef CONFIG_NUMA
2031 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2032 		return 0;
2033 #endif
2034 	return 1;
2035 }
2036 
2037 static int count_free(struct page *page)
2038 {
2039 	return page->objects - page->inuse;
2040 }
2041 
2042 static unsigned long count_partial(struct kmem_cache_node *n,
2043 					int (*get_count)(struct page *))
2044 {
2045 	unsigned long flags;
2046 	unsigned long x = 0;
2047 	struct page *page;
2048 
2049 	spin_lock_irqsave(&n->list_lock, flags);
2050 	list_for_each_entry(page, &n->partial, lru)
2051 		x += get_count(page);
2052 	spin_unlock_irqrestore(&n->list_lock, flags);
2053 	return x;
2054 }
2055 
2056 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2057 {
2058 #ifdef CONFIG_SLUB_DEBUG
2059 	return atomic_long_read(&n->total_objects);
2060 #else
2061 	return 0;
2062 #endif
2063 }
2064 
2065 static noinline void
2066 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2067 {
2068 	int node;
2069 
2070 	printk(KERN_WARNING
2071 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2072 		nid, gfpflags);
2073 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2074 		"default order: %d, min order: %d\n", s->name, s->object_size,
2075 		s->size, oo_order(s->oo), oo_order(s->min));
2076 
2077 	if (oo_order(s->min) > get_order(s->object_size))
2078 		printk(KERN_WARNING "  %s debugging increased min order, use "
2079 		       "slub_debug=O to disable.\n", s->name);
2080 
2081 	for_each_online_node(node) {
2082 		struct kmem_cache_node *n = get_node(s, node);
2083 		unsigned long nr_slabs;
2084 		unsigned long nr_objs;
2085 		unsigned long nr_free;
2086 
2087 		if (!n)
2088 			continue;
2089 
2090 		nr_free  = count_partial(n, count_free);
2091 		nr_slabs = node_nr_slabs(n);
2092 		nr_objs  = node_nr_objs(n);
2093 
2094 		printk(KERN_WARNING
2095 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2096 			node, nr_slabs, nr_objs, nr_free);
2097 	}
2098 }
2099 
2100 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2101 			int node, struct kmem_cache_cpu **pc)
2102 {
2103 	void *freelist;
2104 	struct kmem_cache_cpu *c = *pc;
2105 	struct page *page;
2106 
2107 	freelist = get_partial(s, flags, node, c);
2108 
2109 	if (freelist)
2110 		return freelist;
2111 
2112 	page = new_slab(s, flags, node);
2113 	if (page) {
2114 		c = __this_cpu_ptr(s->cpu_slab);
2115 		if (c->page)
2116 			flush_slab(s, c);
2117 
2118 		/*
2119 		 * No other reference to the page yet so we can
2120 		 * muck around with it freely without cmpxchg
2121 		 */
2122 		freelist = page->freelist;
2123 		page->freelist = NULL;
2124 
2125 		stat(s, ALLOC_SLAB);
2126 		c->page = page;
2127 		*pc = c;
2128 	} else
2129 		freelist = NULL;
2130 
2131 	return freelist;
2132 }
2133 
2134 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2135 {
2136 	if (unlikely(PageSlabPfmemalloc(page)))
2137 		return gfp_pfmemalloc_allowed(gfpflags);
2138 
2139 	return true;
2140 }
2141 
2142 /*
2143  * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2144  * or deactivate the page.
2145  *
2146  * The page is still frozen if the return value is not NULL.
2147  *
2148  * If this function returns NULL then the page has been unfrozen.
2149  *
2150  * This function must be called with interrupt disabled.
2151  */
2152 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2153 {
2154 	struct page new;
2155 	unsigned long counters;
2156 	void *freelist;
2157 
2158 	do {
2159 		freelist = page->freelist;
2160 		counters = page->counters;
2161 
2162 		new.counters = counters;
2163 		VM_BUG_ON(!new.frozen);
2164 
2165 		new.inuse = page->objects;
2166 		new.frozen = freelist != NULL;
2167 
2168 	} while (!__cmpxchg_double_slab(s, page,
2169 		freelist, counters,
2170 		NULL, new.counters,
2171 		"get_freelist"));
2172 
2173 	return freelist;
2174 }
2175 
2176 /*
2177  * Slow path. The lockless freelist is empty or we need to perform
2178  * debugging duties.
2179  *
2180  * Processing is still very fast if new objects have been freed to the
2181  * regular freelist. In that case we simply take over the regular freelist
2182  * as the lockless freelist and zap the regular freelist.
2183  *
2184  * If that is not working then we fall back to the partial lists. We take the
2185  * first element of the freelist as the object to allocate now and move the
2186  * rest of the freelist to the lockless freelist.
2187  *
2188  * And if we were unable to get a new slab from the partial slab lists then
2189  * we need to allocate a new slab. This is the slowest path since it involves
2190  * a call to the page allocator and the setup of a new slab.
2191  */
2192 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2193 			  unsigned long addr, struct kmem_cache_cpu *c)
2194 {
2195 	void *freelist;
2196 	struct page *page;
2197 	unsigned long flags;
2198 
2199 	local_irq_save(flags);
2200 #ifdef CONFIG_PREEMPT
2201 	/*
2202 	 * We may have been preempted and rescheduled on a different
2203 	 * cpu before disabling interrupts. Need to reload cpu area
2204 	 * pointer.
2205 	 */
2206 	c = this_cpu_ptr(s->cpu_slab);
2207 #endif
2208 
2209 	page = c->page;
2210 	if (!page)
2211 		goto new_slab;
2212 redo:
2213 
2214 	if (unlikely(!node_match(page, node))) {
2215 		stat(s, ALLOC_NODE_MISMATCH);
2216 		deactivate_slab(s, page, c->freelist);
2217 		c->page = NULL;
2218 		c->freelist = NULL;
2219 		goto new_slab;
2220 	}
2221 
2222 	/*
2223 	 * By rights, we should be searching for a slab page that was
2224 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2225 	 * information when the page leaves the per-cpu allocator
2226 	 */
2227 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2228 		deactivate_slab(s, page, c->freelist);
2229 		c->page = NULL;
2230 		c->freelist = NULL;
2231 		goto new_slab;
2232 	}
2233 
2234 	/* must check again c->freelist in case of cpu migration or IRQ */
2235 	freelist = c->freelist;
2236 	if (freelist)
2237 		goto load_freelist;
2238 
2239 	stat(s, ALLOC_SLOWPATH);
2240 
2241 	freelist = get_freelist(s, page);
2242 
2243 	if (!freelist) {
2244 		c->page = NULL;
2245 		stat(s, DEACTIVATE_BYPASS);
2246 		goto new_slab;
2247 	}
2248 
2249 	stat(s, ALLOC_REFILL);
2250 
2251 load_freelist:
2252 	/*
2253 	 * freelist is pointing to the list of objects to be used.
2254 	 * page is pointing to the page from which the objects are obtained.
2255 	 * That page must be frozen for per cpu allocations to work.
2256 	 */
2257 	VM_BUG_ON(!c->page->frozen);
2258 	c->freelist = get_freepointer(s, freelist);
2259 	c->tid = next_tid(c->tid);
2260 	local_irq_restore(flags);
2261 	return freelist;
2262 
2263 new_slab:
2264 
2265 	if (c->partial) {
2266 		page = c->page = c->partial;
2267 		c->partial = page->next;
2268 		stat(s, CPU_PARTIAL_ALLOC);
2269 		c->freelist = NULL;
2270 		goto redo;
2271 	}
2272 
2273 	freelist = new_slab_objects(s, gfpflags, node, &c);
2274 
2275 	if (unlikely(!freelist)) {
2276 		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2277 			slab_out_of_memory(s, gfpflags, node);
2278 
2279 		local_irq_restore(flags);
2280 		return NULL;
2281 	}
2282 
2283 	page = c->page;
2284 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2285 		goto load_freelist;
2286 
2287 	/* Only entered in the debug case */
2288 	if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2289 		goto new_slab;	/* Slab failed checks. Next slab needed */
2290 
2291 	deactivate_slab(s, page, get_freepointer(s, freelist));
2292 	c->page = NULL;
2293 	c->freelist = NULL;
2294 	local_irq_restore(flags);
2295 	return freelist;
2296 }
2297 
2298 /*
2299  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2300  * have the fastpath folded into their functions. So no function call
2301  * overhead for requests that can be satisfied on the fastpath.
2302  *
2303  * The fastpath works by first checking if the lockless freelist can be used.
2304  * If not then __slab_alloc is called for slow processing.
2305  *
2306  * Otherwise we can simply pick the next object from the lockless free list.
2307  */
2308 static __always_inline void *slab_alloc(struct kmem_cache *s,
2309 		gfp_t gfpflags, int node, unsigned long addr)
2310 {
2311 	void **object;
2312 	struct kmem_cache_cpu *c;
2313 	struct page *page;
2314 	unsigned long tid;
2315 
2316 	if (slab_pre_alloc_hook(s, gfpflags))
2317 		return NULL;
2318 
2319 redo:
2320 
2321 	/*
2322 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2323 	 * enabled. We may switch back and forth between cpus while
2324 	 * reading from one cpu area. That does not matter as long
2325 	 * as we end up on the original cpu again when doing the cmpxchg.
2326 	 */
2327 	c = __this_cpu_ptr(s->cpu_slab);
2328 
2329 	/*
2330 	 * The transaction ids are globally unique per cpu and per operation on
2331 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2332 	 * occurs on the right processor and that there was no operation on the
2333 	 * linked list in between.
2334 	 */
2335 	tid = c->tid;
2336 	barrier();
2337 
2338 	object = c->freelist;
2339 	page = c->page;
2340 	if (unlikely(!object || !node_match(page, node)))
2341 		object = __slab_alloc(s, gfpflags, node, addr, c);
2342 
2343 	else {
2344 		void *next_object = get_freepointer_safe(s, object);
2345 
2346 		/*
2347 		 * The cmpxchg will only match if there was no additional
2348 		 * operation and if we are on the right processor.
2349 		 *
2350 		 * The cmpxchg does the following atomically (without lock semantics!)
2351 		 * 1. Relocate first pointer to the current per cpu area.
2352 		 * 2. Verify that tid and freelist have not been changed
2353 		 * 3. If they were not changed replace tid and freelist
2354 		 *
2355 		 * Since this is without lock semantics the protection is only against
2356 		 * code executing on this cpu *not* from access by other cpus.
2357 		 */
2358 		if (unlikely(!this_cpu_cmpxchg_double(
2359 				s->cpu_slab->freelist, s->cpu_slab->tid,
2360 				object, tid,
2361 				next_object, next_tid(tid)))) {
2362 
2363 			note_cmpxchg_failure("slab_alloc", s, tid);
2364 			goto redo;
2365 		}
2366 		prefetch_freepointer(s, next_object);
2367 		stat(s, ALLOC_FASTPATH);
2368 	}
2369 
2370 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2371 		memset(object, 0, s->object_size);
2372 
2373 	slab_post_alloc_hook(s, gfpflags, object);
2374 
2375 	return object;
2376 }
2377 
2378 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2379 {
2380 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2381 
2382 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2383 
2384 	return ret;
2385 }
2386 EXPORT_SYMBOL(kmem_cache_alloc);
2387 
2388 #ifdef CONFIG_TRACING
2389 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2390 {
2391 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2392 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2393 	return ret;
2394 }
2395 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2396 
2397 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2398 {
2399 	void *ret = kmalloc_order(size, flags, order);
2400 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2401 	return ret;
2402 }
2403 EXPORT_SYMBOL(kmalloc_order_trace);
2404 #endif
2405 
2406 #ifdef CONFIG_NUMA
2407 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2408 {
2409 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2410 
2411 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2412 				    s->object_size, s->size, gfpflags, node);
2413 
2414 	return ret;
2415 }
2416 EXPORT_SYMBOL(kmem_cache_alloc_node);
2417 
2418 #ifdef CONFIG_TRACING
2419 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2420 				    gfp_t gfpflags,
2421 				    int node, size_t size)
2422 {
2423 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2424 
2425 	trace_kmalloc_node(_RET_IP_, ret,
2426 			   size, s->size, gfpflags, node);
2427 	return ret;
2428 }
2429 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2430 #endif
2431 #endif
2432 
2433 /*
2434  * Slow patch handling. This may still be called frequently since objects
2435  * have a longer lifetime than the cpu slabs in most processing loads.
2436  *
2437  * So we still attempt to reduce cache line usage. Just take the slab
2438  * lock and free the item. If there is no additional partial page
2439  * handling required then we can return immediately.
2440  */
2441 static void __slab_free(struct kmem_cache *s, struct page *page,
2442 			void *x, unsigned long addr)
2443 {
2444 	void *prior;
2445 	void **object = (void *)x;
2446 	int was_frozen;
2447 	int inuse;
2448 	struct page new;
2449 	unsigned long counters;
2450 	struct kmem_cache_node *n = NULL;
2451 	unsigned long uninitialized_var(flags);
2452 
2453 	stat(s, FREE_SLOWPATH);
2454 
2455 	if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2456 		return;
2457 
2458 	do {
2459 		prior = page->freelist;
2460 		counters = page->counters;
2461 		set_freepointer(s, object, prior);
2462 		new.counters = counters;
2463 		was_frozen = new.frozen;
2464 		new.inuse--;
2465 		if ((!new.inuse || !prior) && !was_frozen && !n) {
2466 
2467 			if (!kmem_cache_debug(s) && !prior)
2468 
2469 				/*
2470 				 * Slab was on no list before and will be partially empty
2471 				 * We can defer the list move and instead freeze it.
2472 				 */
2473 				new.frozen = 1;
2474 
2475 			else { /* Needs to be taken off a list */
2476 
2477 	                        n = get_node(s, page_to_nid(page));
2478 				/*
2479 				 * Speculatively acquire the list_lock.
2480 				 * If the cmpxchg does not succeed then we may
2481 				 * drop the list_lock without any processing.
2482 				 *
2483 				 * Otherwise the list_lock will synchronize with
2484 				 * other processors updating the list of slabs.
2485 				 */
2486 				spin_lock_irqsave(&n->list_lock, flags);
2487 
2488 			}
2489 		}
2490 		inuse = new.inuse;
2491 
2492 	} while (!cmpxchg_double_slab(s, page,
2493 		prior, counters,
2494 		object, new.counters,
2495 		"__slab_free"));
2496 
2497 	if (likely(!n)) {
2498 
2499 		/*
2500 		 * If we just froze the page then put it onto the
2501 		 * per cpu partial list.
2502 		 */
2503 		if (new.frozen && !was_frozen) {
2504 			put_cpu_partial(s, page, 1);
2505 			stat(s, CPU_PARTIAL_FREE);
2506 		}
2507 		/*
2508 		 * The list lock was not taken therefore no list
2509 		 * activity can be necessary.
2510 		 */
2511                 if (was_frozen)
2512                         stat(s, FREE_FROZEN);
2513                 return;
2514         }
2515 
2516 	/*
2517 	 * was_frozen may have been set after we acquired the list_lock in
2518 	 * an earlier loop. So we need to check it here again.
2519 	 */
2520 	if (was_frozen)
2521 		stat(s, FREE_FROZEN);
2522 	else {
2523 		if (unlikely(!inuse && n->nr_partial > s->min_partial))
2524                         goto slab_empty;
2525 
2526 		/*
2527 		 * Objects left in the slab. If it was not on the partial list before
2528 		 * then add it.
2529 		 */
2530 		if (unlikely(!prior)) {
2531 			remove_full(s, page);
2532 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2533 			stat(s, FREE_ADD_PARTIAL);
2534 		}
2535 	}
2536 	spin_unlock_irqrestore(&n->list_lock, flags);
2537 	return;
2538 
2539 slab_empty:
2540 	if (prior) {
2541 		/*
2542 		 * Slab on the partial list.
2543 		 */
2544 		remove_partial(n, page);
2545 		stat(s, FREE_REMOVE_PARTIAL);
2546 	} else
2547 		/* Slab must be on the full list */
2548 		remove_full(s, page);
2549 
2550 	spin_unlock_irqrestore(&n->list_lock, flags);
2551 	stat(s, FREE_SLAB);
2552 	discard_slab(s, page);
2553 }
2554 
2555 /*
2556  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2557  * can perform fastpath freeing without additional function calls.
2558  *
2559  * The fastpath is only possible if we are freeing to the current cpu slab
2560  * of this processor. This typically the case if we have just allocated
2561  * the item before.
2562  *
2563  * If fastpath is not possible then fall back to __slab_free where we deal
2564  * with all sorts of special processing.
2565  */
2566 static __always_inline void slab_free(struct kmem_cache *s,
2567 			struct page *page, void *x, unsigned long addr)
2568 {
2569 	void **object = (void *)x;
2570 	struct kmem_cache_cpu *c;
2571 	unsigned long tid;
2572 
2573 	slab_free_hook(s, x);
2574 
2575 redo:
2576 	/*
2577 	 * Determine the currently cpus per cpu slab.
2578 	 * The cpu may change afterward. However that does not matter since
2579 	 * data is retrieved via this pointer. If we are on the same cpu
2580 	 * during the cmpxchg then the free will succedd.
2581 	 */
2582 	c = __this_cpu_ptr(s->cpu_slab);
2583 
2584 	tid = c->tid;
2585 	barrier();
2586 
2587 	if (likely(page == c->page)) {
2588 		set_freepointer(s, object, c->freelist);
2589 
2590 		if (unlikely(!this_cpu_cmpxchg_double(
2591 				s->cpu_slab->freelist, s->cpu_slab->tid,
2592 				c->freelist, tid,
2593 				object, next_tid(tid)))) {
2594 
2595 			note_cmpxchg_failure("slab_free", s, tid);
2596 			goto redo;
2597 		}
2598 		stat(s, FREE_FASTPATH);
2599 	} else
2600 		__slab_free(s, page, x, addr);
2601 
2602 }
2603 
2604 void kmem_cache_free(struct kmem_cache *s, void *x)
2605 {
2606 	struct page *page;
2607 
2608 	page = virt_to_head_page(x);
2609 
2610 	slab_free(s, page, x, _RET_IP_);
2611 
2612 	trace_kmem_cache_free(_RET_IP_, x);
2613 }
2614 EXPORT_SYMBOL(kmem_cache_free);
2615 
2616 /*
2617  * Object placement in a slab is made very easy because we always start at
2618  * offset 0. If we tune the size of the object to the alignment then we can
2619  * get the required alignment by putting one properly sized object after
2620  * another.
2621  *
2622  * Notice that the allocation order determines the sizes of the per cpu
2623  * caches. Each processor has always one slab available for allocations.
2624  * Increasing the allocation order reduces the number of times that slabs
2625  * must be moved on and off the partial lists and is therefore a factor in
2626  * locking overhead.
2627  */
2628 
2629 /*
2630  * Mininum / Maximum order of slab pages. This influences locking overhead
2631  * and slab fragmentation. A higher order reduces the number of partial slabs
2632  * and increases the number of allocations possible without having to
2633  * take the list_lock.
2634  */
2635 static int slub_min_order;
2636 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2637 static int slub_min_objects;
2638 
2639 /*
2640  * Merge control. If this is set then no merging of slab caches will occur.
2641  * (Could be removed. This was introduced to pacify the merge skeptics.)
2642  */
2643 static int slub_nomerge;
2644 
2645 /*
2646  * Calculate the order of allocation given an slab object size.
2647  *
2648  * The order of allocation has significant impact on performance and other
2649  * system components. Generally order 0 allocations should be preferred since
2650  * order 0 does not cause fragmentation in the page allocator. Larger objects
2651  * be problematic to put into order 0 slabs because there may be too much
2652  * unused space left. We go to a higher order if more than 1/16th of the slab
2653  * would be wasted.
2654  *
2655  * In order to reach satisfactory performance we must ensure that a minimum
2656  * number of objects is in one slab. Otherwise we may generate too much
2657  * activity on the partial lists which requires taking the list_lock. This is
2658  * less a concern for large slabs though which are rarely used.
2659  *
2660  * slub_max_order specifies the order where we begin to stop considering the
2661  * number of objects in a slab as critical. If we reach slub_max_order then
2662  * we try to keep the page order as low as possible. So we accept more waste
2663  * of space in favor of a small page order.
2664  *
2665  * Higher order allocations also allow the placement of more objects in a
2666  * slab and thereby reduce object handling overhead. If the user has
2667  * requested a higher mininum order then we start with that one instead of
2668  * the smallest order which will fit the object.
2669  */
2670 static inline int slab_order(int size, int min_objects,
2671 				int max_order, int fract_leftover, int reserved)
2672 {
2673 	int order;
2674 	int rem;
2675 	int min_order = slub_min_order;
2676 
2677 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2678 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2679 
2680 	for (order = max(min_order,
2681 				fls(min_objects * size - 1) - PAGE_SHIFT);
2682 			order <= max_order; order++) {
2683 
2684 		unsigned long slab_size = PAGE_SIZE << order;
2685 
2686 		if (slab_size < min_objects * size + reserved)
2687 			continue;
2688 
2689 		rem = (slab_size - reserved) % size;
2690 
2691 		if (rem <= slab_size / fract_leftover)
2692 			break;
2693 
2694 	}
2695 
2696 	return order;
2697 }
2698 
2699 static inline int calculate_order(int size, int reserved)
2700 {
2701 	int order;
2702 	int min_objects;
2703 	int fraction;
2704 	int max_objects;
2705 
2706 	/*
2707 	 * Attempt to find best configuration for a slab. This
2708 	 * works by first attempting to generate a layout with
2709 	 * the best configuration and backing off gradually.
2710 	 *
2711 	 * First we reduce the acceptable waste in a slab. Then
2712 	 * we reduce the minimum objects required in a slab.
2713 	 */
2714 	min_objects = slub_min_objects;
2715 	if (!min_objects)
2716 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2717 	max_objects = order_objects(slub_max_order, size, reserved);
2718 	min_objects = min(min_objects, max_objects);
2719 
2720 	while (min_objects > 1) {
2721 		fraction = 16;
2722 		while (fraction >= 4) {
2723 			order = slab_order(size, min_objects,
2724 					slub_max_order, fraction, reserved);
2725 			if (order <= slub_max_order)
2726 				return order;
2727 			fraction /= 2;
2728 		}
2729 		min_objects--;
2730 	}
2731 
2732 	/*
2733 	 * We were unable to place multiple objects in a slab. Now
2734 	 * lets see if we can place a single object there.
2735 	 */
2736 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2737 	if (order <= slub_max_order)
2738 		return order;
2739 
2740 	/*
2741 	 * Doh this slab cannot be placed using slub_max_order.
2742 	 */
2743 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2744 	if (order < MAX_ORDER)
2745 		return order;
2746 	return -ENOSYS;
2747 }
2748 
2749 /*
2750  * Figure out what the alignment of the objects will be.
2751  */
2752 static unsigned long calculate_alignment(unsigned long flags,
2753 		unsigned long align, unsigned long size)
2754 {
2755 	/*
2756 	 * If the user wants hardware cache aligned objects then follow that
2757 	 * suggestion if the object is sufficiently large.
2758 	 *
2759 	 * The hardware cache alignment cannot override the specified
2760 	 * alignment though. If that is greater then use it.
2761 	 */
2762 	if (flags & SLAB_HWCACHE_ALIGN) {
2763 		unsigned long ralign = cache_line_size();
2764 		while (size <= ralign / 2)
2765 			ralign /= 2;
2766 		align = max(align, ralign);
2767 	}
2768 
2769 	if (align < ARCH_SLAB_MINALIGN)
2770 		align = ARCH_SLAB_MINALIGN;
2771 
2772 	return ALIGN(align, sizeof(void *));
2773 }
2774 
2775 static void
2776 init_kmem_cache_node(struct kmem_cache_node *n)
2777 {
2778 	n->nr_partial = 0;
2779 	spin_lock_init(&n->list_lock);
2780 	INIT_LIST_HEAD(&n->partial);
2781 #ifdef CONFIG_SLUB_DEBUG
2782 	atomic_long_set(&n->nr_slabs, 0);
2783 	atomic_long_set(&n->total_objects, 0);
2784 	INIT_LIST_HEAD(&n->full);
2785 #endif
2786 }
2787 
2788 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2789 {
2790 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2791 			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2792 
2793 	/*
2794 	 * Must align to double word boundary for the double cmpxchg
2795 	 * instructions to work; see __pcpu_double_call_return_bool().
2796 	 */
2797 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2798 				     2 * sizeof(void *));
2799 
2800 	if (!s->cpu_slab)
2801 		return 0;
2802 
2803 	init_kmem_cache_cpus(s);
2804 
2805 	return 1;
2806 }
2807 
2808 static struct kmem_cache *kmem_cache_node;
2809 
2810 /*
2811  * No kmalloc_node yet so do it by hand. We know that this is the first
2812  * slab on the node for this slabcache. There are no concurrent accesses
2813  * possible.
2814  *
2815  * Note that this function only works on the kmalloc_node_cache
2816  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2817  * memory on a fresh node that has no slab structures yet.
2818  */
2819 static void early_kmem_cache_node_alloc(int node)
2820 {
2821 	struct page *page;
2822 	struct kmem_cache_node *n;
2823 
2824 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2825 
2826 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2827 
2828 	BUG_ON(!page);
2829 	if (page_to_nid(page) != node) {
2830 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2831 				"node %d\n", node);
2832 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2833 				"in order to be able to continue\n");
2834 	}
2835 
2836 	n = page->freelist;
2837 	BUG_ON(!n);
2838 	page->freelist = get_freepointer(kmem_cache_node, n);
2839 	page->inuse = 1;
2840 	page->frozen = 0;
2841 	kmem_cache_node->node[node] = n;
2842 #ifdef CONFIG_SLUB_DEBUG
2843 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2844 	init_tracking(kmem_cache_node, n);
2845 #endif
2846 	init_kmem_cache_node(n);
2847 	inc_slabs_node(kmem_cache_node, node, page->objects);
2848 
2849 	add_partial(n, page, DEACTIVATE_TO_HEAD);
2850 }
2851 
2852 static void free_kmem_cache_nodes(struct kmem_cache *s)
2853 {
2854 	int node;
2855 
2856 	for_each_node_state(node, N_NORMAL_MEMORY) {
2857 		struct kmem_cache_node *n = s->node[node];
2858 
2859 		if (n)
2860 			kmem_cache_free(kmem_cache_node, n);
2861 
2862 		s->node[node] = NULL;
2863 	}
2864 }
2865 
2866 static int init_kmem_cache_nodes(struct kmem_cache *s)
2867 {
2868 	int node;
2869 
2870 	for_each_node_state(node, N_NORMAL_MEMORY) {
2871 		struct kmem_cache_node *n;
2872 
2873 		if (slab_state == DOWN) {
2874 			early_kmem_cache_node_alloc(node);
2875 			continue;
2876 		}
2877 		n = kmem_cache_alloc_node(kmem_cache_node,
2878 						GFP_KERNEL, node);
2879 
2880 		if (!n) {
2881 			free_kmem_cache_nodes(s);
2882 			return 0;
2883 		}
2884 
2885 		s->node[node] = n;
2886 		init_kmem_cache_node(n);
2887 	}
2888 	return 1;
2889 }
2890 
2891 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2892 {
2893 	if (min < MIN_PARTIAL)
2894 		min = MIN_PARTIAL;
2895 	else if (min > MAX_PARTIAL)
2896 		min = MAX_PARTIAL;
2897 	s->min_partial = min;
2898 }
2899 
2900 /*
2901  * calculate_sizes() determines the order and the distribution of data within
2902  * a slab object.
2903  */
2904 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2905 {
2906 	unsigned long flags = s->flags;
2907 	unsigned long size = s->object_size;
2908 	unsigned long align = s->align;
2909 	int order;
2910 
2911 	/*
2912 	 * Round up object size to the next word boundary. We can only
2913 	 * place the free pointer at word boundaries and this determines
2914 	 * the possible location of the free pointer.
2915 	 */
2916 	size = ALIGN(size, sizeof(void *));
2917 
2918 #ifdef CONFIG_SLUB_DEBUG
2919 	/*
2920 	 * Determine if we can poison the object itself. If the user of
2921 	 * the slab may touch the object after free or before allocation
2922 	 * then we should never poison the object itself.
2923 	 */
2924 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2925 			!s->ctor)
2926 		s->flags |= __OBJECT_POISON;
2927 	else
2928 		s->flags &= ~__OBJECT_POISON;
2929 
2930 
2931 	/*
2932 	 * If we are Redzoning then check if there is some space between the
2933 	 * end of the object and the free pointer. If not then add an
2934 	 * additional word to have some bytes to store Redzone information.
2935 	 */
2936 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2937 		size += sizeof(void *);
2938 #endif
2939 
2940 	/*
2941 	 * With that we have determined the number of bytes in actual use
2942 	 * by the object. This is the potential offset to the free pointer.
2943 	 */
2944 	s->inuse = size;
2945 
2946 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2947 		s->ctor)) {
2948 		/*
2949 		 * Relocate free pointer after the object if it is not
2950 		 * permitted to overwrite the first word of the object on
2951 		 * kmem_cache_free.
2952 		 *
2953 		 * This is the case if we do RCU, have a constructor or
2954 		 * destructor or are poisoning the objects.
2955 		 */
2956 		s->offset = size;
2957 		size += sizeof(void *);
2958 	}
2959 
2960 #ifdef CONFIG_SLUB_DEBUG
2961 	if (flags & SLAB_STORE_USER)
2962 		/*
2963 		 * Need to store information about allocs and frees after
2964 		 * the object.
2965 		 */
2966 		size += 2 * sizeof(struct track);
2967 
2968 	if (flags & SLAB_RED_ZONE)
2969 		/*
2970 		 * Add some empty padding so that we can catch
2971 		 * overwrites from earlier objects rather than let
2972 		 * tracking information or the free pointer be
2973 		 * corrupted if a user writes before the start
2974 		 * of the object.
2975 		 */
2976 		size += sizeof(void *);
2977 #endif
2978 
2979 	/*
2980 	 * Determine the alignment based on various parameters that the
2981 	 * user specified and the dynamic determination of cache line size
2982 	 * on bootup.
2983 	 */
2984 	align = calculate_alignment(flags, align, s->object_size);
2985 	s->align = align;
2986 
2987 	/*
2988 	 * SLUB stores one object immediately after another beginning from
2989 	 * offset 0. In order to align the objects we have to simply size
2990 	 * each object to conform to the alignment.
2991 	 */
2992 	size = ALIGN(size, align);
2993 	s->size = size;
2994 	if (forced_order >= 0)
2995 		order = forced_order;
2996 	else
2997 		order = calculate_order(size, s->reserved);
2998 
2999 	if (order < 0)
3000 		return 0;
3001 
3002 	s->allocflags = 0;
3003 	if (order)
3004 		s->allocflags |= __GFP_COMP;
3005 
3006 	if (s->flags & SLAB_CACHE_DMA)
3007 		s->allocflags |= SLUB_DMA;
3008 
3009 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3010 		s->allocflags |= __GFP_RECLAIMABLE;
3011 
3012 	/*
3013 	 * Determine the number of objects per slab
3014 	 */
3015 	s->oo = oo_make(order, size, s->reserved);
3016 	s->min = oo_make(get_order(size), size, s->reserved);
3017 	if (oo_objects(s->oo) > oo_objects(s->max))
3018 		s->max = s->oo;
3019 
3020 	return !!oo_objects(s->oo);
3021 
3022 }
3023 
3024 static int kmem_cache_open(struct kmem_cache *s,
3025 		const char *name, size_t size,
3026 		size_t align, unsigned long flags,
3027 		void (*ctor)(void *))
3028 {
3029 	memset(s, 0, kmem_size);
3030 	s->name = name;
3031 	s->ctor = ctor;
3032 	s->object_size = size;
3033 	s->align = align;
3034 	s->flags = kmem_cache_flags(size, flags, name, ctor);
3035 	s->reserved = 0;
3036 
3037 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3038 		s->reserved = sizeof(struct rcu_head);
3039 
3040 	if (!calculate_sizes(s, -1))
3041 		goto error;
3042 	if (disable_higher_order_debug) {
3043 		/*
3044 		 * Disable debugging flags that store metadata if the min slab
3045 		 * order increased.
3046 		 */
3047 		if (get_order(s->size) > get_order(s->object_size)) {
3048 			s->flags &= ~DEBUG_METADATA_FLAGS;
3049 			s->offset = 0;
3050 			if (!calculate_sizes(s, -1))
3051 				goto error;
3052 		}
3053 	}
3054 
3055 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3056     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3057 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3058 		/* Enable fast mode */
3059 		s->flags |= __CMPXCHG_DOUBLE;
3060 #endif
3061 
3062 	/*
3063 	 * The larger the object size is, the more pages we want on the partial
3064 	 * list to avoid pounding the page allocator excessively.
3065 	 */
3066 	set_min_partial(s, ilog2(s->size) / 2);
3067 
3068 	/*
3069 	 * cpu_partial determined the maximum number of objects kept in the
3070 	 * per cpu partial lists of a processor.
3071 	 *
3072 	 * Per cpu partial lists mainly contain slabs that just have one
3073 	 * object freed. If they are used for allocation then they can be
3074 	 * filled up again with minimal effort. The slab will never hit the
3075 	 * per node partial lists and therefore no locking will be required.
3076 	 *
3077 	 * This setting also determines
3078 	 *
3079 	 * A) The number of objects from per cpu partial slabs dumped to the
3080 	 *    per node list when we reach the limit.
3081 	 * B) The number of objects in cpu partial slabs to extract from the
3082 	 *    per node list when we run out of per cpu objects. We only fetch 50%
3083 	 *    to keep some capacity around for frees.
3084 	 */
3085 	if (kmem_cache_debug(s))
3086 		s->cpu_partial = 0;
3087 	else if (s->size >= PAGE_SIZE)
3088 		s->cpu_partial = 2;
3089 	else if (s->size >= 1024)
3090 		s->cpu_partial = 6;
3091 	else if (s->size >= 256)
3092 		s->cpu_partial = 13;
3093 	else
3094 		s->cpu_partial = 30;
3095 
3096 	s->refcount = 1;
3097 #ifdef CONFIG_NUMA
3098 	s->remote_node_defrag_ratio = 1000;
3099 #endif
3100 	if (!init_kmem_cache_nodes(s))
3101 		goto error;
3102 
3103 	if (alloc_kmem_cache_cpus(s))
3104 		return 1;
3105 
3106 	free_kmem_cache_nodes(s);
3107 error:
3108 	if (flags & SLAB_PANIC)
3109 		panic("Cannot create slab %s size=%lu realsize=%u "
3110 			"order=%u offset=%u flags=%lx\n",
3111 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
3112 			s->offset, flags);
3113 	return 0;
3114 }
3115 
3116 /*
3117  * Determine the size of a slab object
3118  */
3119 unsigned int kmem_cache_size(struct kmem_cache *s)
3120 {
3121 	return s->object_size;
3122 }
3123 EXPORT_SYMBOL(kmem_cache_size);
3124 
3125 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3126 							const char *text)
3127 {
3128 #ifdef CONFIG_SLUB_DEBUG
3129 	void *addr = page_address(page);
3130 	void *p;
3131 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3132 				     sizeof(long), GFP_ATOMIC);
3133 	if (!map)
3134 		return;
3135 	slab_err(s, page, "%s", text);
3136 	slab_lock(page);
3137 
3138 	get_map(s, page, map);
3139 	for_each_object(p, s, addr, page->objects) {
3140 
3141 		if (!test_bit(slab_index(p, s, addr), map)) {
3142 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3143 							p, p - addr);
3144 			print_tracking(s, p);
3145 		}
3146 	}
3147 	slab_unlock(page);
3148 	kfree(map);
3149 #endif
3150 }
3151 
3152 /*
3153  * Attempt to free all partial slabs on a node.
3154  * This is called from kmem_cache_close(). We must be the last thread
3155  * using the cache and therefore we do not need to lock anymore.
3156  */
3157 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3158 {
3159 	struct page *page, *h;
3160 
3161 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3162 		if (!page->inuse) {
3163 			remove_partial(n, page);
3164 			discard_slab(s, page);
3165 		} else {
3166 			list_slab_objects(s, page,
3167 				"Objects remaining on kmem_cache_close()");
3168 		}
3169 	}
3170 }
3171 
3172 /*
3173  * Release all resources used by a slab cache.
3174  */
3175 static inline int kmem_cache_close(struct kmem_cache *s)
3176 {
3177 	int node;
3178 
3179 	flush_all(s);
3180 	free_percpu(s->cpu_slab);
3181 	/* Attempt to free all objects */
3182 	for_each_node_state(node, N_NORMAL_MEMORY) {
3183 		struct kmem_cache_node *n = get_node(s, node);
3184 
3185 		free_partial(s, n);
3186 		if (n->nr_partial || slabs_node(s, node))
3187 			return 1;
3188 	}
3189 	free_kmem_cache_nodes(s);
3190 	return 0;
3191 }
3192 
3193 /*
3194  * Close a cache and release the kmem_cache structure
3195  * (must be used for caches created using kmem_cache_create)
3196  */
3197 void kmem_cache_destroy(struct kmem_cache *s)
3198 {
3199 	mutex_lock(&slab_mutex);
3200 	s->refcount--;
3201 	if (!s->refcount) {
3202 		list_del(&s->list);
3203 		mutex_unlock(&slab_mutex);
3204 		if (kmem_cache_close(s)) {
3205 			printk(KERN_ERR "SLUB %s: %s called for cache that "
3206 				"still has objects.\n", s->name, __func__);
3207 			dump_stack();
3208 		}
3209 		if (s->flags & SLAB_DESTROY_BY_RCU)
3210 			rcu_barrier();
3211 		sysfs_slab_remove(s);
3212 	} else
3213 		mutex_unlock(&slab_mutex);
3214 }
3215 EXPORT_SYMBOL(kmem_cache_destroy);
3216 
3217 /********************************************************************
3218  *		Kmalloc subsystem
3219  *******************************************************************/
3220 
3221 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3222 EXPORT_SYMBOL(kmalloc_caches);
3223 
3224 static struct kmem_cache *kmem_cache;
3225 
3226 #ifdef CONFIG_ZONE_DMA
3227 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3228 #endif
3229 
3230 static int __init setup_slub_min_order(char *str)
3231 {
3232 	get_option(&str, &slub_min_order);
3233 
3234 	return 1;
3235 }
3236 
3237 __setup("slub_min_order=", setup_slub_min_order);
3238 
3239 static int __init setup_slub_max_order(char *str)
3240 {
3241 	get_option(&str, &slub_max_order);
3242 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3243 
3244 	return 1;
3245 }
3246 
3247 __setup("slub_max_order=", setup_slub_max_order);
3248 
3249 static int __init setup_slub_min_objects(char *str)
3250 {
3251 	get_option(&str, &slub_min_objects);
3252 
3253 	return 1;
3254 }
3255 
3256 __setup("slub_min_objects=", setup_slub_min_objects);
3257 
3258 static int __init setup_slub_nomerge(char *str)
3259 {
3260 	slub_nomerge = 1;
3261 	return 1;
3262 }
3263 
3264 __setup("slub_nomerge", setup_slub_nomerge);
3265 
3266 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3267 						int size, unsigned int flags)
3268 {
3269 	struct kmem_cache *s;
3270 
3271 	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3272 
3273 	/*
3274 	 * This function is called with IRQs disabled during early-boot on
3275 	 * single CPU so there's no need to take slab_mutex here.
3276 	 */
3277 	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3278 								flags, NULL))
3279 		goto panic;
3280 
3281 	list_add(&s->list, &slab_caches);
3282 	return s;
3283 
3284 panic:
3285 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3286 	return NULL;
3287 }
3288 
3289 /*
3290  * Conversion table for small slabs sizes / 8 to the index in the
3291  * kmalloc array. This is necessary for slabs < 192 since we have non power
3292  * of two cache sizes there. The size of larger slabs can be determined using
3293  * fls.
3294  */
3295 static s8 size_index[24] = {
3296 	3,	/* 8 */
3297 	4,	/* 16 */
3298 	5,	/* 24 */
3299 	5,	/* 32 */
3300 	6,	/* 40 */
3301 	6,	/* 48 */
3302 	6,	/* 56 */
3303 	6,	/* 64 */
3304 	1,	/* 72 */
3305 	1,	/* 80 */
3306 	1,	/* 88 */
3307 	1,	/* 96 */
3308 	7,	/* 104 */
3309 	7,	/* 112 */
3310 	7,	/* 120 */
3311 	7,	/* 128 */
3312 	2,	/* 136 */
3313 	2,	/* 144 */
3314 	2,	/* 152 */
3315 	2,	/* 160 */
3316 	2,	/* 168 */
3317 	2,	/* 176 */
3318 	2,	/* 184 */
3319 	2	/* 192 */
3320 };
3321 
3322 static inline int size_index_elem(size_t bytes)
3323 {
3324 	return (bytes - 1) / 8;
3325 }
3326 
3327 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3328 {
3329 	int index;
3330 
3331 	if (size <= 192) {
3332 		if (!size)
3333 			return ZERO_SIZE_PTR;
3334 
3335 		index = size_index[size_index_elem(size)];
3336 	} else
3337 		index = fls(size - 1);
3338 
3339 #ifdef CONFIG_ZONE_DMA
3340 	if (unlikely((flags & SLUB_DMA)))
3341 		return kmalloc_dma_caches[index];
3342 
3343 #endif
3344 	return kmalloc_caches[index];
3345 }
3346 
3347 void *__kmalloc(size_t size, gfp_t flags)
3348 {
3349 	struct kmem_cache *s;
3350 	void *ret;
3351 
3352 	if (unlikely(size > SLUB_MAX_SIZE))
3353 		return kmalloc_large(size, flags);
3354 
3355 	s = get_slab(size, flags);
3356 
3357 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3358 		return s;
3359 
3360 	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3361 
3362 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3363 
3364 	return ret;
3365 }
3366 EXPORT_SYMBOL(__kmalloc);
3367 
3368 #ifdef CONFIG_NUMA
3369 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3370 {
3371 	struct page *page;
3372 	void *ptr = NULL;
3373 
3374 	flags |= __GFP_COMP | __GFP_NOTRACK;
3375 	page = alloc_pages_node(node, flags, get_order(size));
3376 	if (page)
3377 		ptr = page_address(page);
3378 
3379 	kmemleak_alloc(ptr, size, 1, flags);
3380 	return ptr;
3381 }
3382 
3383 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3384 {
3385 	struct kmem_cache *s;
3386 	void *ret;
3387 
3388 	if (unlikely(size > SLUB_MAX_SIZE)) {
3389 		ret = kmalloc_large_node(size, flags, node);
3390 
3391 		trace_kmalloc_node(_RET_IP_, ret,
3392 				   size, PAGE_SIZE << get_order(size),
3393 				   flags, node);
3394 
3395 		return ret;
3396 	}
3397 
3398 	s = get_slab(size, flags);
3399 
3400 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3401 		return s;
3402 
3403 	ret = slab_alloc(s, flags, node, _RET_IP_);
3404 
3405 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3406 
3407 	return ret;
3408 }
3409 EXPORT_SYMBOL(__kmalloc_node);
3410 #endif
3411 
3412 size_t ksize(const void *object)
3413 {
3414 	struct page *page;
3415 
3416 	if (unlikely(object == ZERO_SIZE_PTR))
3417 		return 0;
3418 
3419 	page = virt_to_head_page(object);
3420 
3421 	if (unlikely(!PageSlab(page))) {
3422 		WARN_ON(!PageCompound(page));
3423 		return PAGE_SIZE << compound_order(page);
3424 	}
3425 
3426 	return slab_ksize(page->slab);
3427 }
3428 EXPORT_SYMBOL(ksize);
3429 
3430 #ifdef CONFIG_SLUB_DEBUG
3431 bool verify_mem_not_deleted(const void *x)
3432 {
3433 	struct page *page;
3434 	void *object = (void *)x;
3435 	unsigned long flags;
3436 	bool rv;
3437 
3438 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3439 		return false;
3440 
3441 	local_irq_save(flags);
3442 
3443 	page = virt_to_head_page(x);
3444 	if (unlikely(!PageSlab(page))) {
3445 		/* maybe it was from stack? */
3446 		rv = true;
3447 		goto out_unlock;
3448 	}
3449 
3450 	slab_lock(page);
3451 	if (on_freelist(page->slab, page, object)) {
3452 		object_err(page->slab, page, object, "Object is on free-list");
3453 		rv = false;
3454 	} else {
3455 		rv = true;
3456 	}
3457 	slab_unlock(page);
3458 
3459 out_unlock:
3460 	local_irq_restore(flags);
3461 	return rv;
3462 }
3463 EXPORT_SYMBOL(verify_mem_not_deleted);
3464 #endif
3465 
3466 void kfree(const void *x)
3467 {
3468 	struct page *page;
3469 	void *object = (void *)x;
3470 
3471 	trace_kfree(_RET_IP_, x);
3472 
3473 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3474 		return;
3475 
3476 	page = virt_to_head_page(x);
3477 	if (unlikely(!PageSlab(page))) {
3478 		BUG_ON(!PageCompound(page));
3479 		kmemleak_free(x);
3480 		put_page(page);
3481 		return;
3482 	}
3483 	slab_free(page->slab, page, object, _RET_IP_);
3484 }
3485 EXPORT_SYMBOL(kfree);
3486 
3487 /*
3488  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3489  * the remaining slabs by the number of items in use. The slabs with the
3490  * most items in use come first. New allocations will then fill those up
3491  * and thus they can be removed from the partial lists.
3492  *
3493  * The slabs with the least items are placed last. This results in them
3494  * being allocated from last increasing the chance that the last objects
3495  * are freed in them.
3496  */
3497 int kmem_cache_shrink(struct kmem_cache *s)
3498 {
3499 	int node;
3500 	int i;
3501 	struct kmem_cache_node *n;
3502 	struct page *page;
3503 	struct page *t;
3504 	int objects = oo_objects(s->max);
3505 	struct list_head *slabs_by_inuse =
3506 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3507 	unsigned long flags;
3508 
3509 	if (!slabs_by_inuse)
3510 		return -ENOMEM;
3511 
3512 	flush_all(s);
3513 	for_each_node_state(node, N_NORMAL_MEMORY) {
3514 		n = get_node(s, node);
3515 
3516 		if (!n->nr_partial)
3517 			continue;
3518 
3519 		for (i = 0; i < objects; i++)
3520 			INIT_LIST_HEAD(slabs_by_inuse + i);
3521 
3522 		spin_lock_irqsave(&n->list_lock, flags);
3523 
3524 		/*
3525 		 * Build lists indexed by the items in use in each slab.
3526 		 *
3527 		 * Note that concurrent frees may occur while we hold the
3528 		 * list_lock. page->inuse here is the upper limit.
3529 		 */
3530 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3531 			list_move(&page->lru, slabs_by_inuse + page->inuse);
3532 			if (!page->inuse)
3533 				n->nr_partial--;
3534 		}
3535 
3536 		/*
3537 		 * Rebuild the partial list with the slabs filled up most
3538 		 * first and the least used slabs at the end.
3539 		 */
3540 		for (i = objects - 1; i > 0; i--)
3541 			list_splice(slabs_by_inuse + i, n->partial.prev);
3542 
3543 		spin_unlock_irqrestore(&n->list_lock, flags);
3544 
3545 		/* Release empty slabs */
3546 		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3547 			discard_slab(s, page);
3548 	}
3549 
3550 	kfree(slabs_by_inuse);
3551 	return 0;
3552 }
3553 EXPORT_SYMBOL(kmem_cache_shrink);
3554 
3555 #if defined(CONFIG_MEMORY_HOTPLUG)
3556 static int slab_mem_going_offline_callback(void *arg)
3557 {
3558 	struct kmem_cache *s;
3559 
3560 	mutex_lock(&slab_mutex);
3561 	list_for_each_entry(s, &slab_caches, list)
3562 		kmem_cache_shrink(s);
3563 	mutex_unlock(&slab_mutex);
3564 
3565 	return 0;
3566 }
3567 
3568 static void slab_mem_offline_callback(void *arg)
3569 {
3570 	struct kmem_cache_node *n;
3571 	struct kmem_cache *s;
3572 	struct memory_notify *marg = arg;
3573 	int offline_node;
3574 
3575 	offline_node = marg->status_change_nid;
3576 
3577 	/*
3578 	 * If the node still has available memory. we need kmem_cache_node
3579 	 * for it yet.
3580 	 */
3581 	if (offline_node < 0)
3582 		return;
3583 
3584 	mutex_lock(&slab_mutex);
3585 	list_for_each_entry(s, &slab_caches, list) {
3586 		n = get_node(s, offline_node);
3587 		if (n) {
3588 			/*
3589 			 * if n->nr_slabs > 0, slabs still exist on the node
3590 			 * that is going down. We were unable to free them,
3591 			 * and offline_pages() function shouldn't call this
3592 			 * callback. So, we must fail.
3593 			 */
3594 			BUG_ON(slabs_node(s, offline_node));
3595 
3596 			s->node[offline_node] = NULL;
3597 			kmem_cache_free(kmem_cache_node, n);
3598 		}
3599 	}
3600 	mutex_unlock(&slab_mutex);
3601 }
3602 
3603 static int slab_mem_going_online_callback(void *arg)
3604 {
3605 	struct kmem_cache_node *n;
3606 	struct kmem_cache *s;
3607 	struct memory_notify *marg = arg;
3608 	int nid = marg->status_change_nid;
3609 	int ret = 0;
3610 
3611 	/*
3612 	 * If the node's memory is already available, then kmem_cache_node is
3613 	 * already created. Nothing to do.
3614 	 */
3615 	if (nid < 0)
3616 		return 0;
3617 
3618 	/*
3619 	 * We are bringing a node online. No memory is available yet. We must
3620 	 * allocate a kmem_cache_node structure in order to bring the node
3621 	 * online.
3622 	 */
3623 	mutex_lock(&slab_mutex);
3624 	list_for_each_entry(s, &slab_caches, list) {
3625 		/*
3626 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3627 		 *      since memory is not yet available from the node that
3628 		 *      is brought up.
3629 		 */
3630 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3631 		if (!n) {
3632 			ret = -ENOMEM;
3633 			goto out;
3634 		}
3635 		init_kmem_cache_node(n);
3636 		s->node[nid] = n;
3637 	}
3638 out:
3639 	mutex_unlock(&slab_mutex);
3640 	return ret;
3641 }
3642 
3643 static int slab_memory_callback(struct notifier_block *self,
3644 				unsigned long action, void *arg)
3645 {
3646 	int ret = 0;
3647 
3648 	switch (action) {
3649 	case MEM_GOING_ONLINE:
3650 		ret = slab_mem_going_online_callback(arg);
3651 		break;
3652 	case MEM_GOING_OFFLINE:
3653 		ret = slab_mem_going_offline_callback(arg);
3654 		break;
3655 	case MEM_OFFLINE:
3656 	case MEM_CANCEL_ONLINE:
3657 		slab_mem_offline_callback(arg);
3658 		break;
3659 	case MEM_ONLINE:
3660 	case MEM_CANCEL_OFFLINE:
3661 		break;
3662 	}
3663 	if (ret)
3664 		ret = notifier_from_errno(ret);
3665 	else
3666 		ret = NOTIFY_OK;
3667 	return ret;
3668 }
3669 
3670 #endif /* CONFIG_MEMORY_HOTPLUG */
3671 
3672 /********************************************************************
3673  *			Basic setup of slabs
3674  *******************************************************************/
3675 
3676 /*
3677  * Used for early kmem_cache structures that were allocated using
3678  * the page allocator
3679  */
3680 
3681 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3682 {
3683 	int node;
3684 
3685 	list_add(&s->list, &slab_caches);
3686 	s->refcount = -1;
3687 
3688 	for_each_node_state(node, N_NORMAL_MEMORY) {
3689 		struct kmem_cache_node *n = get_node(s, node);
3690 		struct page *p;
3691 
3692 		if (n) {
3693 			list_for_each_entry(p, &n->partial, lru)
3694 				p->slab = s;
3695 
3696 #ifdef CONFIG_SLUB_DEBUG
3697 			list_for_each_entry(p, &n->full, lru)
3698 				p->slab = s;
3699 #endif
3700 		}
3701 	}
3702 }
3703 
3704 void __init kmem_cache_init(void)
3705 {
3706 	int i;
3707 	int caches = 0;
3708 	struct kmem_cache *temp_kmem_cache;
3709 	int order;
3710 	struct kmem_cache *temp_kmem_cache_node;
3711 	unsigned long kmalloc_size;
3712 
3713 	if (debug_guardpage_minorder())
3714 		slub_max_order = 0;
3715 
3716 	kmem_size = offsetof(struct kmem_cache, node) +
3717 				nr_node_ids * sizeof(struct kmem_cache_node *);
3718 
3719 	/* Allocate two kmem_caches from the page allocator */
3720 	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3721 	order = get_order(2 * kmalloc_size);
3722 	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3723 
3724 	/*
3725 	 * Must first have the slab cache available for the allocations of the
3726 	 * struct kmem_cache_node's. There is special bootstrap code in
3727 	 * kmem_cache_open for slab_state == DOWN.
3728 	 */
3729 	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3730 
3731 	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3732 		sizeof(struct kmem_cache_node),
3733 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3734 
3735 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3736 
3737 	/* Able to allocate the per node structures */
3738 	slab_state = PARTIAL;
3739 
3740 	temp_kmem_cache = kmem_cache;
3741 	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3742 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3743 	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3744 	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3745 
3746 	/*
3747 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3748 	 * kmem_cache_node is separately allocated so no need to
3749 	 * update any list pointers.
3750 	 */
3751 	temp_kmem_cache_node = kmem_cache_node;
3752 
3753 	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3754 	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3755 
3756 	kmem_cache_bootstrap_fixup(kmem_cache_node);
3757 
3758 	caches++;
3759 	kmem_cache_bootstrap_fixup(kmem_cache);
3760 	caches++;
3761 	/* Free temporary boot structure */
3762 	free_pages((unsigned long)temp_kmem_cache, order);
3763 
3764 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3765 
3766 	/*
3767 	 * Patch up the size_index table if we have strange large alignment
3768 	 * requirements for the kmalloc array. This is only the case for
3769 	 * MIPS it seems. The standard arches will not generate any code here.
3770 	 *
3771 	 * Largest permitted alignment is 256 bytes due to the way we
3772 	 * handle the index determination for the smaller caches.
3773 	 *
3774 	 * Make sure that nothing crazy happens if someone starts tinkering
3775 	 * around with ARCH_KMALLOC_MINALIGN
3776 	 */
3777 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3778 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3779 
3780 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3781 		int elem = size_index_elem(i);
3782 		if (elem >= ARRAY_SIZE(size_index))
3783 			break;
3784 		size_index[elem] = KMALLOC_SHIFT_LOW;
3785 	}
3786 
3787 	if (KMALLOC_MIN_SIZE == 64) {
3788 		/*
3789 		 * The 96 byte size cache is not used if the alignment
3790 		 * is 64 byte.
3791 		 */
3792 		for (i = 64 + 8; i <= 96; i += 8)
3793 			size_index[size_index_elem(i)] = 7;
3794 	} else if (KMALLOC_MIN_SIZE == 128) {
3795 		/*
3796 		 * The 192 byte sized cache is not used if the alignment
3797 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3798 		 * instead.
3799 		 */
3800 		for (i = 128 + 8; i <= 192; i += 8)
3801 			size_index[size_index_elem(i)] = 8;
3802 	}
3803 
3804 	/* Caches that are not of the two-to-the-power-of size */
3805 	if (KMALLOC_MIN_SIZE <= 32) {
3806 		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3807 		caches++;
3808 	}
3809 
3810 	if (KMALLOC_MIN_SIZE <= 64) {
3811 		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3812 		caches++;
3813 	}
3814 
3815 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3816 		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3817 		caches++;
3818 	}
3819 
3820 	slab_state = UP;
3821 
3822 	/* Provide the correct kmalloc names now that the caches are up */
3823 	if (KMALLOC_MIN_SIZE <= 32) {
3824 		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3825 		BUG_ON(!kmalloc_caches[1]->name);
3826 	}
3827 
3828 	if (KMALLOC_MIN_SIZE <= 64) {
3829 		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3830 		BUG_ON(!kmalloc_caches[2]->name);
3831 	}
3832 
3833 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3834 		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3835 
3836 		BUG_ON(!s);
3837 		kmalloc_caches[i]->name = s;
3838 	}
3839 
3840 #ifdef CONFIG_SMP
3841 	register_cpu_notifier(&slab_notifier);
3842 #endif
3843 
3844 #ifdef CONFIG_ZONE_DMA
3845 	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3846 		struct kmem_cache *s = kmalloc_caches[i];
3847 
3848 		if (s && s->size) {
3849 			char *name = kasprintf(GFP_NOWAIT,
3850 				 "dma-kmalloc-%d", s->object_size);
3851 
3852 			BUG_ON(!name);
3853 			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3854 				s->object_size, SLAB_CACHE_DMA);
3855 		}
3856 	}
3857 #endif
3858 	printk(KERN_INFO
3859 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3860 		" CPUs=%d, Nodes=%d\n",
3861 		caches, cache_line_size(),
3862 		slub_min_order, slub_max_order, slub_min_objects,
3863 		nr_cpu_ids, nr_node_ids);
3864 }
3865 
3866 void __init kmem_cache_init_late(void)
3867 {
3868 }
3869 
3870 /*
3871  * Find a mergeable slab cache
3872  */
3873 static int slab_unmergeable(struct kmem_cache *s)
3874 {
3875 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3876 		return 1;
3877 
3878 	if (s->ctor)
3879 		return 1;
3880 
3881 	/*
3882 	 * We may have set a slab to be unmergeable during bootstrap.
3883 	 */
3884 	if (s->refcount < 0)
3885 		return 1;
3886 
3887 	return 0;
3888 }
3889 
3890 static struct kmem_cache *find_mergeable(size_t size,
3891 		size_t align, unsigned long flags, const char *name,
3892 		void (*ctor)(void *))
3893 {
3894 	struct kmem_cache *s;
3895 
3896 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3897 		return NULL;
3898 
3899 	if (ctor)
3900 		return NULL;
3901 
3902 	size = ALIGN(size, sizeof(void *));
3903 	align = calculate_alignment(flags, align, size);
3904 	size = ALIGN(size, align);
3905 	flags = kmem_cache_flags(size, flags, name, NULL);
3906 
3907 	list_for_each_entry(s, &slab_caches, list) {
3908 		if (slab_unmergeable(s))
3909 			continue;
3910 
3911 		if (size > s->size)
3912 			continue;
3913 
3914 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3915 				continue;
3916 		/*
3917 		 * Check if alignment is compatible.
3918 		 * Courtesy of Adrian Drzewiecki
3919 		 */
3920 		if ((s->size & ~(align - 1)) != s->size)
3921 			continue;
3922 
3923 		if (s->size - size >= sizeof(void *))
3924 			continue;
3925 
3926 		return s;
3927 	}
3928 	return NULL;
3929 }
3930 
3931 struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
3932 		size_t align, unsigned long flags, void (*ctor)(void *))
3933 {
3934 	struct kmem_cache *s;
3935 	char *n;
3936 
3937 	s = find_mergeable(size, align, flags, name, ctor);
3938 	if (s) {
3939 		s->refcount++;
3940 		/*
3941 		 * Adjust the object sizes so that we clear
3942 		 * the complete object on kzalloc.
3943 		 */
3944 		s->object_size = max(s->object_size, (int)size);
3945 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3946 
3947 		if (sysfs_slab_alias(s, name)) {
3948 			s->refcount--;
3949 			return NULL;
3950 		}
3951 		return s;
3952 	}
3953 
3954 	n = kstrdup(name, GFP_KERNEL);
3955 	if (!n)
3956 		return NULL;
3957 
3958 	s = kmalloc(kmem_size, GFP_KERNEL);
3959 	if (s) {
3960 		if (kmem_cache_open(s, n,
3961 				size, align, flags, ctor)) {
3962 			int r;
3963 
3964 			list_add(&s->list, &slab_caches);
3965 			mutex_unlock(&slab_mutex);
3966 			r = sysfs_slab_add(s);
3967 			mutex_lock(&slab_mutex);
3968 
3969 			if (!r)
3970 				return s;
3971 
3972 			list_del(&s->list);
3973 			kmem_cache_close(s);
3974 		}
3975 		kfree(s);
3976 	}
3977 	kfree(n);
3978 	return NULL;
3979 }
3980 
3981 #ifdef CONFIG_SMP
3982 /*
3983  * Use the cpu notifier to insure that the cpu slabs are flushed when
3984  * necessary.
3985  */
3986 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3987 		unsigned long action, void *hcpu)
3988 {
3989 	long cpu = (long)hcpu;
3990 	struct kmem_cache *s;
3991 	unsigned long flags;
3992 
3993 	switch (action) {
3994 	case CPU_UP_CANCELED:
3995 	case CPU_UP_CANCELED_FROZEN:
3996 	case CPU_DEAD:
3997 	case CPU_DEAD_FROZEN:
3998 		mutex_lock(&slab_mutex);
3999 		list_for_each_entry(s, &slab_caches, list) {
4000 			local_irq_save(flags);
4001 			__flush_cpu_slab(s, cpu);
4002 			local_irq_restore(flags);
4003 		}
4004 		mutex_unlock(&slab_mutex);
4005 		break;
4006 	default:
4007 		break;
4008 	}
4009 	return NOTIFY_OK;
4010 }
4011 
4012 static struct notifier_block __cpuinitdata slab_notifier = {
4013 	.notifier_call = slab_cpuup_callback
4014 };
4015 
4016 #endif
4017 
4018 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4019 {
4020 	struct kmem_cache *s;
4021 	void *ret;
4022 
4023 	if (unlikely(size > SLUB_MAX_SIZE))
4024 		return kmalloc_large(size, gfpflags);
4025 
4026 	s = get_slab(size, gfpflags);
4027 
4028 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4029 		return s;
4030 
4031 	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4032 
4033 	/* Honor the call site pointer we received. */
4034 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4035 
4036 	return ret;
4037 }
4038 
4039 #ifdef CONFIG_NUMA
4040 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4041 					int node, unsigned long caller)
4042 {
4043 	struct kmem_cache *s;
4044 	void *ret;
4045 
4046 	if (unlikely(size > SLUB_MAX_SIZE)) {
4047 		ret = kmalloc_large_node(size, gfpflags, node);
4048 
4049 		trace_kmalloc_node(caller, ret,
4050 				   size, PAGE_SIZE << get_order(size),
4051 				   gfpflags, node);
4052 
4053 		return ret;
4054 	}
4055 
4056 	s = get_slab(size, gfpflags);
4057 
4058 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4059 		return s;
4060 
4061 	ret = slab_alloc(s, gfpflags, node, caller);
4062 
4063 	/* Honor the call site pointer we received. */
4064 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4065 
4066 	return ret;
4067 }
4068 #endif
4069 
4070 #ifdef CONFIG_SYSFS
4071 static int count_inuse(struct page *page)
4072 {
4073 	return page->inuse;
4074 }
4075 
4076 static int count_total(struct page *page)
4077 {
4078 	return page->objects;
4079 }
4080 #endif
4081 
4082 #ifdef CONFIG_SLUB_DEBUG
4083 static int validate_slab(struct kmem_cache *s, struct page *page,
4084 						unsigned long *map)
4085 {
4086 	void *p;
4087 	void *addr = page_address(page);
4088 
4089 	if (!check_slab(s, page) ||
4090 			!on_freelist(s, page, NULL))
4091 		return 0;
4092 
4093 	/* Now we know that a valid freelist exists */
4094 	bitmap_zero(map, page->objects);
4095 
4096 	get_map(s, page, map);
4097 	for_each_object(p, s, addr, page->objects) {
4098 		if (test_bit(slab_index(p, s, addr), map))
4099 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4100 				return 0;
4101 	}
4102 
4103 	for_each_object(p, s, addr, page->objects)
4104 		if (!test_bit(slab_index(p, s, addr), map))
4105 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4106 				return 0;
4107 	return 1;
4108 }
4109 
4110 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4111 						unsigned long *map)
4112 {
4113 	slab_lock(page);
4114 	validate_slab(s, page, map);
4115 	slab_unlock(page);
4116 }
4117 
4118 static int validate_slab_node(struct kmem_cache *s,
4119 		struct kmem_cache_node *n, unsigned long *map)
4120 {
4121 	unsigned long count = 0;
4122 	struct page *page;
4123 	unsigned long flags;
4124 
4125 	spin_lock_irqsave(&n->list_lock, flags);
4126 
4127 	list_for_each_entry(page, &n->partial, lru) {
4128 		validate_slab_slab(s, page, map);
4129 		count++;
4130 	}
4131 	if (count != n->nr_partial)
4132 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4133 			"counter=%ld\n", s->name, count, n->nr_partial);
4134 
4135 	if (!(s->flags & SLAB_STORE_USER))
4136 		goto out;
4137 
4138 	list_for_each_entry(page, &n->full, lru) {
4139 		validate_slab_slab(s, page, map);
4140 		count++;
4141 	}
4142 	if (count != atomic_long_read(&n->nr_slabs))
4143 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4144 			"counter=%ld\n", s->name, count,
4145 			atomic_long_read(&n->nr_slabs));
4146 
4147 out:
4148 	spin_unlock_irqrestore(&n->list_lock, flags);
4149 	return count;
4150 }
4151 
4152 static long validate_slab_cache(struct kmem_cache *s)
4153 {
4154 	int node;
4155 	unsigned long count = 0;
4156 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4157 				sizeof(unsigned long), GFP_KERNEL);
4158 
4159 	if (!map)
4160 		return -ENOMEM;
4161 
4162 	flush_all(s);
4163 	for_each_node_state(node, N_NORMAL_MEMORY) {
4164 		struct kmem_cache_node *n = get_node(s, node);
4165 
4166 		count += validate_slab_node(s, n, map);
4167 	}
4168 	kfree(map);
4169 	return count;
4170 }
4171 /*
4172  * Generate lists of code addresses where slabcache objects are allocated
4173  * and freed.
4174  */
4175 
4176 struct location {
4177 	unsigned long count;
4178 	unsigned long addr;
4179 	long long sum_time;
4180 	long min_time;
4181 	long max_time;
4182 	long min_pid;
4183 	long max_pid;
4184 	DECLARE_BITMAP(cpus, NR_CPUS);
4185 	nodemask_t nodes;
4186 };
4187 
4188 struct loc_track {
4189 	unsigned long max;
4190 	unsigned long count;
4191 	struct location *loc;
4192 };
4193 
4194 static void free_loc_track(struct loc_track *t)
4195 {
4196 	if (t->max)
4197 		free_pages((unsigned long)t->loc,
4198 			get_order(sizeof(struct location) * t->max));
4199 }
4200 
4201 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4202 {
4203 	struct location *l;
4204 	int order;
4205 
4206 	order = get_order(sizeof(struct location) * max);
4207 
4208 	l = (void *)__get_free_pages(flags, order);
4209 	if (!l)
4210 		return 0;
4211 
4212 	if (t->count) {
4213 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4214 		free_loc_track(t);
4215 	}
4216 	t->max = max;
4217 	t->loc = l;
4218 	return 1;
4219 }
4220 
4221 static int add_location(struct loc_track *t, struct kmem_cache *s,
4222 				const struct track *track)
4223 {
4224 	long start, end, pos;
4225 	struct location *l;
4226 	unsigned long caddr;
4227 	unsigned long age = jiffies - track->when;
4228 
4229 	start = -1;
4230 	end = t->count;
4231 
4232 	for ( ; ; ) {
4233 		pos = start + (end - start + 1) / 2;
4234 
4235 		/*
4236 		 * There is nothing at "end". If we end up there
4237 		 * we need to add something to before end.
4238 		 */
4239 		if (pos == end)
4240 			break;
4241 
4242 		caddr = t->loc[pos].addr;
4243 		if (track->addr == caddr) {
4244 
4245 			l = &t->loc[pos];
4246 			l->count++;
4247 			if (track->when) {
4248 				l->sum_time += age;
4249 				if (age < l->min_time)
4250 					l->min_time = age;
4251 				if (age > l->max_time)
4252 					l->max_time = age;
4253 
4254 				if (track->pid < l->min_pid)
4255 					l->min_pid = track->pid;
4256 				if (track->pid > l->max_pid)
4257 					l->max_pid = track->pid;
4258 
4259 				cpumask_set_cpu(track->cpu,
4260 						to_cpumask(l->cpus));
4261 			}
4262 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4263 			return 1;
4264 		}
4265 
4266 		if (track->addr < caddr)
4267 			end = pos;
4268 		else
4269 			start = pos;
4270 	}
4271 
4272 	/*
4273 	 * Not found. Insert new tracking element.
4274 	 */
4275 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4276 		return 0;
4277 
4278 	l = t->loc + pos;
4279 	if (pos < t->count)
4280 		memmove(l + 1, l,
4281 			(t->count - pos) * sizeof(struct location));
4282 	t->count++;
4283 	l->count = 1;
4284 	l->addr = track->addr;
4285 	l->sum_time = age;
4286 	l->min_time = age;
4287 	l->max_time = age;
4288 	l->min_pid = track->pid;
4289 	l->max_pid = track->pid;
4290 	cpumask_clear(to_cpumask(l->cpus));
4291 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4292 	nodes_clear(l->nodes);
4293 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4294 	return 1;
4295 }
4296 
4297 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4298 		struct page *page, enum track_item alloc,
4299 		unsigned long *map)
4300 {
4301 	void *addr = page_address(page);
4302 	void *p;
4303 
4304 	bitmap_zero(map, page->objects);
4305 	get_map(s, page, map);
4306 
4307 	for_each_object(p, s, addr, page->objects)
4308 		if (!test_bit(slab_index(p, s, addr), map))
4309 			add_location(t, s, get_track(s, p, alloc));
4310 }
4311 
4312 static int list_locations(struct kmem_cache *s, char *buf,
4313 					enum track_item alloc)
4314 {
4315 	int len = 0;
4316 	unsigned long i;
4317 	struct loc_track t = { 0, 0, NULL };
4318 	int node;
4319 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4320 				     sizeof(unsigned long), GFP_KERNEL);
4321 
4322 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4323 				     GFP_TEMPORARY)) {
4324 		kfree(map);
4325 		return sprintf(buf, "Out of memory\n");
4326 	}
4327 	/* Push back cpu slabs */
4328 	flush_all(s);
4329 
4330 	for_each_node_state(node, N_NORMAL_MEMORY) {
4331 		struct kmem_cache_node *n = get_node(s, node);
4332 		unsigned long flags;
4333 		struct page *page;
4334 
4335 		if (!atomic_long_read(&n->nr_slabs))
4336 			continue;
4337 
4338 		spin_lock_irqsave(&n->list_lock, flags);
4339 		list_for_each_entry(page, &n->partial, lru)
4340 			process_slab(&t, s, page, alloc, map);
4341 		list_for_each_entry(page, &n->full, lru)
4342 			process_slab(&t, s, page, alloc, map);
4343 		spin_unlock_irqrestore(&n->list_lock, flags);
4344 	}
4345 
4346 	for (i = 0; i < t.count; i++) {
4347 		struct location *l = &t.loc[i];
4348 
4349 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4350 			break;
4351 		len += sprintf(buf + len, "%7ld ", l->count);
4352 
4353 		if (l->addr)
4354 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4355 		else
4356 			len += sprintf(buf + len, "<not-available>");
4357 
4358 		if (l->sum_time != l->min_time) {
4359 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4360 				l->min_time,
4361 				(long)div_u64(l->sum_time, l->count),
4362 				l->max_time);
4363 		} else
4364 			len += sprintf(buf + len, " age=%ld",
4365 				l->min_time);
4366 
4367 		if (l->min_pid != l->max_pid)
4368 			len += sprintf(buf + len, " pid=%ld-%ld",
4369 				l->min_pid, l->max_pid);
4370 		else
4371 			len += sprintf(buf + len, " pid=%ld",
4372 				l->min_pid);
4373 
4374 		if (num_online_cpus() > 1 &&
4375 				!cpumask_empty(to_cpumask(l->cpus)) &&
4376 				len < PAGE_SIZE - 60) {
4377 			len += sprintf(buf + len, " cpus=");
4378 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4379 						 to_cpumask(l->cpus));
4380 		}
4381 
4382 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4383 				len < PAGE_SIZE - 60) {
4384 			len += sprintf(buf + len, " nodes=");
4385 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4386 					l->nodes);
4387 		}
4388 
4389 		len += sprintf(buf + len, "\n");
4390 	}
4391 
4392 	free_loc_track(&t);
4393 	kfree(map);
4394 	if (!t.count)
4395 		len += sprintf(buf, "No data\n");
4396 	return len;
4397 }
4398 #endif
4399 
4400 #ifdef SLUB_RESILIENCY_TEST
4401 static void resiliency_test(void)
4402 {
4403 	u8 *p;
4404 
4405 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4406 
4407 	printk(KERN_ERR "SLUB resiliency testing\n");
4408 	printk(KERN_ERR "-----------------------\n");
4409 	printk(KERN_ERR "A. Corruption after allocation\n");
4410 
4411 	p = kzalloc(16, GFP_KERNEL);
4412 	p[16] = 0x12;
4413 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4414 			" 0x12->0x%p\n\n", p + 16);
4415 
4416 	validate_slab_cache(kmalloc_caches[4]);
4417 
4418 	/* Hmmm... The next two are dangerous */
4419 	p = kzalloc(32, GFP_KERNEL);
4420 	p[32 + sizeof(void *)] = 0x34;
4421 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4422 			" 0x34 -> -0x%p\n", p);
4423 	printk(KERN_ERR
4424 		"If allocated object is overwritten then not detectable\n\n");
4425 
4426 	validate_slab_cache(kmalloc_caches[5]);
4427 	p = kzalloc(64, GFP_KERNEL);
4428 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4429 	*p = 0x56;
4430 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4431 									p);
4432 	printk(KERN_ERR
4433 		"If allocated object is overwritten then not detectable\n\n");
4434 	validate_slab_cache(kmalloc_caches[6]);
4435 
4436 	printk(KERN_ERR "\nB. Corruption after free\n");
4437 	p = kzalloc(128, GFP_KERNEL);
4438 	kfree(p);
4439 	*p = 0x78;
4440 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4441 	validate_slab_cache(kmalloc_caches[7]);
4442 
4443 	p = kzalloc(256, GFP_KERNEL);
4444 	kfree(p);
4445 	p[50] = 0x9a;
4446 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4447 			p);
4448 	validate_slab_cache(kmalloc_caches[8]);
4449 
4450 	p = kzalloc(512, GFP_KERNEL);
4451 	kfree(p);
4452 	p[512] = 0xab;
4453 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4454 	validate_slab_cache(kmalloc_caches[9]);
4455 }
4456 #else
4457 #ifdef CONFIG_SYSFS
4458 static void resiliency_test(void) {};
4459 #endif
4460 #endif
4461 
4462 #ifdef CONFIG_SYSFS
4463 enum slab_stat_type {
4464 	SL_ALL,			/* All slabs */
4465 	SL_PARTIAL,		/* Only partially allocated slabs */
4466 	SL_CPU,			/* Only slabs used for cpu caches */
4467 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4468 	SL_TOTAL		/* Determine object capacity not slabs */
4469 };
4470 
4471 #define SO_ALL		(1 << SL_ALL)
4472 #define SO_PARTIAL	(1 << SL_PARTIAL)
4473 #define SO_CPU		(1 << SL_CPU)
4474 #define SO_OBJECTS	(1 << SL_OBJECTS)
4475 #define SO_TOTAL	(1 << SL_TOTAL)
4476 
4477 static ssize_t show_slab_objects(struct kmem_cache *s,
4478 			    char *buf, unsigned long flags)
4479 {
4480 	unsigned long total = 0;
4481 	int node;
4482 	int x;
4483 	unsigned long *nodes;
4484 	unsigned long *per_cpu;
4485 
4486 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4487 	if (!nodes)
4488 		return -ENOMEM;
4489 	per_cpu = nodes + nr_node_ids;
4490 
4491 	if (flags & SO_CPU) {
4492 		int cpu;
4493 
4494 		for_each_possible_cpu(cpu) {
4495 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4496 			int node;
4497 			struct page *page;
4498 
4499 			page = ACCESS_ONCE(c->page);
4500 			if (!page)
4501 				continue;
4502 
4503 			node = page_to_nid(page);
4504 			if (flags & SO_TOTAL)
4505 				x = page->objects;
4506 			else if (flags & SO_OBJECTS)
4507 				x = page->inuse;
4508 			else
4509 				x = 1;
4510 
4511 			total += x;
4512 			nodes[node] += x;
4513 
4514 			page = ACCESS_ONCE(c->partial);
4515 			if (page) {
4516 				x = page->pobjects;
4517 				total += x;
4518 				nodes[node] += x;
4519 			}
4520 
4521 			per_cpu[node]++;
4522 		}
4523 	}
4524 
4525 	lock_memory_hotplug();
4526 #ifdef CONFIG_SLUB_DEBUG
4527 	if (flags & SO_ALL) {
4528 		for_each_node_state(node, N_NORMAL_MEMORY) {
4529 			struct kmem_cache_node *n = get_node(s, node);
4530 
4531 		if (flags & SO_TOTAL)
4532 			x = atomic_long_read(&n->total_objects);
4533 		else if (flags & SO_OBJECTS)
4534 			x = atomic_long_read(&n->total_objects) -
4535 				count_partial(n, count_free);
4536 
4537 			else
4538 				x = atomic_long_read(&n->nr_slabs);
4539 			total += x;
4540 			nodes[node] += x;
4541 		}
4542 
4543 	} else
4544 #endif
4545 	if (flags & SO_PARTIAL) {
4546 		for_each_node_state(node, N_NORMAL_MEMORY) {
4547 			struct kmem_cache_node *n = get_node(s, node);
4548 
4549 			if (flags & SO_TOTAL)
4550 				x = count_partial(n, count_total);
4551 			else if (flags & SO_OBJECTS)
4552 				x = count_partial(n, count_inuse);
4553 			else
4554 				x = n->nr_partial;
4555 			total += x;
4556 			nodes[node] += x;
4557 		}
4558 	}
4559 	x = sprintf(buf, "%lu", total);
4560 #ifdef CONFIG_NUMA
4561 	for_each_node_state(node, N_NORMAL_MEMORY)
4562 		if (nodes[node])
4563 			x += sprintf(buf + x, " N%d=%lu",
4564 					node, nodes[node]);
4565 #endif
4566 	unlock_memory_hotplug();
4567 	kfree(nodes);
4568 	return x + sprintf(buf + x, "\n");
4569 }
4570 
4571 #ifdef CONFIG_SLUB_DEBUG
4572 static int any_slab_objects(struct kmem_cache *s)
4573 {
4574 	int node;
4575 
4576 	for_each_online_node(node) {
4577 		struct kmem_cache_node *n = get_node(s, node);
4578 
4579 		if (!n)
4580 			continue;
4581 
4582 		if (atomic_long_read(&n->total_objects))
4583 			return 1;
4584 	}
4585 	return 0;
4586 }
4587 #endif
4588 
4589 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4590 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4591 
4592 struct slab_attribute {
4593 	struct attribute attr;
4594 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4595 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4596 };
4597 
4598 #define SLAB_ATTR_RO(_name) \
4599 	static struct slab_attribute _name##_attr = \
4600 	__ATTR(_name, 0400, _name##_show, NULL)
4601 
4602 #define SLAB_ATTR(_name) \
4603 	static struct slab_attribute _name##_attr =  \
4604 	__ATTR(_name, 0600, _name##_show, _name##_store)
4605 
4606 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4607 {
4608 	return sprintf(buf, "%d\n", s->size);
4609 }
4610 SLAB_ATTR_RO(slab_size);
4611 
4612 static ssize_t align_show(struct kmem_cache *s, char *buf)
4613 {
4614 	return sprintf(buf, "%d\n", s->align);
4615 }
4616 SLAB_ATTR_RO(align);
4617 
4618 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4619 {
4620 	return sprintf(buf, "%d\n", s->object_size);
4621 }
4622 SLAB_ATTR_RO(object_size);
4623 
4624 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4625 {
4626 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4627 }
4628 SLAB_ATTR_RO(objs_per_slab);
4629 
4630 static ssize_t order_store(struct kmem_cache *s,
4631 				const char *buf, size_t length)
4632 {
4633 	unsigned long order;
4634 	int err;
4635 
4636 	err = strict_strtoul(buf, 10, &order);
4637 	if (err)
4638 		return err;
4639 
4640 	if (order > slub_max_order || order < slub_min_order)
4641 		return -EINVAL;
4642 
4643 	calculate_sizes(s, order);
4644 	return length;
4645 }
4646 
4647 static ssize_t order_show(struct kmem_cache *s, char *buf)
4648 {
4649 	return sprintf(buf, "%d\n", oo_order(s->oo));
4650 }
4651 SLAB_ATTR(order);
4652 
4653 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4654 {
4655 	return sprintf(buf, "%lu\n", s->min_partial);
4656 }
4657 
4658 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4659 				 size_t length)
4660 {
4661 	unsigned long min;
4662 	int err;
4663 
4664 	err = strict_strtoul(buf, 10, &min);
4665 	if (err)
4666 		return err;
4667 
4668 	set_min_partial(s, min);
4669 	return length;
4670 }
4671 SLAB_ATTR(min_partial);
4672 
4673 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4674 {
4675 	return sprintf(buf, "%u\n", s->cpu_partial);
4676 }
4677 
4678 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4679 				 size_t length)
4680 {
4681 	unsigned long objects;
4682 	int err;
4683 
4684 	err = strict_strtoul(buf, 10, &objects);
4685 	if (err)
4686 		return err;
4687 	if (objects && kmem_cache_debug(s))
4688 		return -EINVAL;
4689 
4690 	s->cpu_partial = objects;
4691 	flush_all(s);
4692 	return length;
4693 }
4694 SLAB_ATTR(cpu_partial);
4695 
4696 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4697 {
4698 	if (!s->ctor)
4699 		return 0;
4700 	return sprintf(buf, "%pS\n", s->ctor);
4701 }
4702 SLAB_ATTR_RO(ctor);
4703 
4704 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4705 {
4706 	return sprintf(buf, "%d\n", s->refcount - 1);
4707 }
4708 SLAB_ATTR_RO(aliases);
4709 
4710 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4711 {
4712 	return show_slab_objects(s, buf, SO_PARTIAL);
4713 }
4714 SLAB_ATTR_RO(partial);
4715 
4716 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4717 {
4718 	return show_slab_objects(s, buf, SO_CPU);
4719 }
4720 SLAB_ATTR_RO(cpu_slabs);
4721 
4722 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4723 {
4724 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4725 }
4726 SLAB_ATTR_RO(objects);
4727 
4728 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4729 {
4730 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4731 }
4732 SLAB_ATTR_RO(objects_partial);
4733 
4734 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4735 {
4736 	int objects = 0;
4737 	int pages = 0;
4738 	int cpu;
4739 	int len;
4740 
4741 	for_each_online_cpu(cpu) {
4742 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4743 
4744 		if (page) {
4745 			pages += page->pages;
4746 			objects += page->pobjects;
4747 		}
4748 	}
4749 
4750 	len = sprintf(buf, "%d(%d)", objects, pages);
4751 
4752 #ifdef CONFIG_SMP
4753 	for_each_online_cpu(cpu) {
4754 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4755 
4756 		if (page && len < PAGE_SIZE - 20)
4757 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4758 				page->pobjects, page->pages);
4759 	}
4760 #endif
4761 	return len + sprintf(buf + len, "\n");
4762 }
4763 SLAB_ATTR_RO(slabs_cpu_partial);
4764 
4765 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4766 {
4767 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4768 }
4769 
4770 static ssize_t reclaim_account_store(struct kmem_cache *s,
4771 				const char *buf, size_t length)
4772 {
4773 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4774 	if (buf[0] == '1')
4775 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4776 	return length;
4777 }
4778 SLAB_ATTR(reclaim_account);
4779 
4780 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4781 {
4782 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4783 }
4784 SLAB_ATTR_RO(hwcache_align);
4785 
4786 #ifdef CONFIG_ZONE_DMA
4787 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4788 {
4789 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4790 }
4791 SLAB_ATTR_RO(cache_dma);
4792 #endif
4793 
4794 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4795 {
4796 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4797 }
4798 SLAB_ATTR_RO(destroy_by_rcu);
4799 
4800 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4801 {
4802 	return sprintf(buf, "%d\n", s->reserved);
4803 }
4804 SLAB_ATTR_RO(reserved);
4805 
4806 #ifdef CONFIG_SLUB_DEBUG
4807 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4808 {
4809 	return show_slab_objects(s, buf, SO_ALL);
4810 }
4811 SLAB_ATTR_RO(slabs);
4812 
4813 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4814 {
4815 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4816 }
4817 SLAB_ATTR_RO(total_objects);
4818 
4819 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4820 {
4821 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4822 }
4823 
4824 static ssize_t sanity_checks_store(struct kmem_cache *s,
4825 				const char *buf, size_t length)
4826 {
4827 	s->flags &= ~SLAB_DEBUG_FREE;
4828 	if (buf[0] == '1') {
4829 		s->flags &= ~__CMPXCHG_DOUBLE;
4830 		s->flags |= SLAB_DEBUG_FREE;
4831 	}
4832 	return length;
4833 }
4834 SLAB_ATTR(sanity_checks);
4835 
4836 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4837 {
4838 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4839 }
4840 
4841 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4842 							size_t length)
4843 {
4844 	s->flags &= ~SLAB_TRACE;
4845 	if (buf[0] == '1') {
4846 		s->flags &= ~__CMPXCHG_DOUBLE;
4847 		s->flags |= SLAB_TRACE;
4848 	}
4849 	return length;
4850 }
4851 SLAB_ATTR(trace);
4852 
4853 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4854 {
4855 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4856 }
4857 
4858 static ssize_t red_zone_store(struct kmem_cache *s,
4859 				const char *buf, size_t length)
4860 {
4861 	if (any_slab_objects(s))
4862 		return -EBUSY;
4863 
4864 	s->flags &= ~SLAB_RED_ZONE;
4865 	if (buf[0] == '1') {
4866 		s->flags &= ~__CMPXCHG_DOUBLE;
4867 		s->flags |= SLAB_RED_ZONE;
4868 	}
4869 	calculate_sizes(s, -1);
4870 	return length;
4871 }
4872 SLAB_ATTR(red_zone);
4873 
4874 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4875 {
4876 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4877 }
4878 
4879 static ssize_t poison_store(struct kmem_cache *s,
4880 				const char *buf, size_t length)
4881 {
4882 	if (any_slab_objects(s))
4883 		return -EBUSY;
4884 
4885 	s->flags &= ~SLAB_POISON;
4886 	if (buf[0] == '1') {
4887 		s->flags &= ~__CMPXCHG_DOUBLE;
4888 		s->flags |= SLAB_POISON;
4889 	}
4890 	calculate_sizes(s, -1);
4891 	return length;
4892 }
4893 SLAB_ATTR(poison);
4894 
4895 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4896 {
4897 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4898 }
4899 
4900 static ssize_t store_user_store(struct kmem_cache *s,
4901 				const char *buf, size_t length)
4902 {
4903 	if (any_slab_objects(s))
4904 		return -EBUSY;
4905 
4906 	s->flags &= ~SLAB_STORE_USER;
4907 	if (buf[0] == '1') {
4908 		s->flags &= ~__CMPXCHG_DOUBLE;
4909 		s->flags |= SLAB_STORE_USER;
4910 	}
4911 	calculate_sizes(s, -1);
4912 	return length;
4913 }
4914 SLAB_ATTR(store_user);
4915 
4916 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4917 {
4918 	return 0;
4919 }
4920 
4921 static ssize_t validate_store(struct kmem_cache *s,
4922 			const char *buf, size_t length)
4923 {
4924 	int ret = -EINVAL;
4925 
4926 	if (buf[0] == '1') {
4927 		ret = validate_slab_cache(s);
4928 		if (ret >= 0)
4929 			ret = length;
4930 	}
4931 	return ret;
4932 }
4933 SLAB_ATTR(validate);
4934 
4935 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4936 {
4937 	if (!(s->flags & SLAB_STORE_USER))
4938 		return -ENOSYS;
4939 	return list_locations(s, buf, TRACK_ALLOC);
4940 }
4941 SLAB_ATTR_RO(alloc_calls);
4942 
4943 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4944 {
4945 	if (!(s->flags & SLAB_STORE_USER))
4946 		return -ENOSYS;
4947 	return list_locations(s, buf, TRACK_FREE);
4948 }
4949 SLAB_ATTR_RO(free_calls);
4950 #endif /* CONFIG_SLUB_DEBUG */
4951 
4952 #ifdef CONFIG_FAILSLAB
4953 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4954 {
4955 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4956 }
4957 
4958 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4959 							size_t length)
4960 {
4961 	s->flags &= ~SLAB_FAILSLAB;
4962 	if (buf[0] == '1')
4963 		s->flags |= SLAB_FAILSLAB;
4964 	return length;
4965 }
4966 SLAB_ATTR(failslab);
4967 #endif
4968 
4969 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4970 {
4971 	return 0;
4972 }
4973 
4974 static ssize_t shrink_store(struct kmem_cache *s,
4975 			const char *buf, size_t length)
4976 {
4977 	if (buf[0] == '1') {
4978 		int rc = kmem_cache_shrink(s);
4979 
4980 		if (rc)
4981 			return rc;
4982 	} else
4983 		return -EINVAL;
4984 	return length;
4985 }
4986 SLAB_ATTR(shrink);
4987 
4988 #ifdef CONFIG_NUMA
4989 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4990 {
4991 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4992 }
4993 
4994 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4995 				const char *buf, size_t length)
4996 {
4997 	unsigned long ratio;
4998 	int err;
4999 
5000 	err = strict_strtoul(buf, 10, &ratio);
5001 	if (err)
5002 		return err;
5003 
5004 	if (ratio <= 100)
5005 		s->remote_node_defrag_ratio = ratio * 10;
5006 
5007 	return length;
5008 }
5009 SLAB_ATTR(remote_node_defrag_ratio);
5010 #endif
5011 
5012 #ifdef CONFIG_SLUB_STATS
5013 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5014 {
5015 	unsigned long sum  = 0;
5016 	int cpu;
5017 	int len;
5018 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5019 
5020 	if (!data)
5021 		return -ENOMEM;
5022 
5023 	for_each_online_cpu(cpu) {
5024 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5025 
5026 		data[cpu] = x;
5027 		sum += x;
5028 	}
5029 
5030 	len = sprintf(buf, "%lu", sum);
5031 
5032 #ifdef CONFIG_SMP
5033 	for_each_online_cpu(cpu) {
5034 		if (data[cpu] && len < PAGE_SIZE - 20)
5035 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5036 	}
5037 #endif
5038 	kfree(data);
5039 	return len + sprintf(buf + len, "\n");
5040 }
5041 
5042 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5043 {
5044 	int cpu;
5045 
5046 	for_each_online_cpu(cpu)
5047 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5048 }
5049 
5050 #define STAT_ATTR(si, text) 					\
5051 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5052 {								\
5053 	return show_stat(s, buf, si);				\
5054 }								\
5055 static ssize_t text##_store(struct kmem_cache *s,		\
5056 				const char *buf, size_t length)	\
5057 {								\
5058 	if (buf[0] != '0')					\
5059 		return -EINVAL;					\
5060 	clear_stat(s, si);					\
5061 	return length;						\
5062 }								\
5063 SLAB_ATTR(text);						\
5064 
5065 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5066 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5067 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5068 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5069 STAT_ATTR(FREE_FROZEN, free_frozen);
5070 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5071 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5072 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5073 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5074 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5075 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5076 STAT_ATTR(FREE_SLAB, free_slab);
5077 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5078 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5079 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5080 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5081 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5082 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5083 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5084 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5085 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5086 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5087 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5088 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5089 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5090 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5091 #endif
5092 
5093 static struct attribute *slab_attrs[] = {
5094 	&slab_size_attr.attr,
5095 	&object_size_attr.attr,
5096 	&objs_per_slab_attr.attr,
5097 	&order_attr.attr,
5098 	&min_partial_attr.attr,
5099 	&cpu_partial_attr.attr,
5100 	&objects_attr.attr,
5101 	&objects_partial_attr.attr,
5102 	&partial_attr.attr,
5103 	&cpu_slabs_attr.attr,
5104 	&ctor_attr.attr,
5105 	&aliases_attr.attr,
5106 	&align_attr.attr,
5107 	&hwcache_align_attr.attr,
5108 	&reclaim_account_attr.attr,
5109 	&destroy_by_rcu_attr.attr,
5110 	&shrink_attr.attr,
5111 	&reserved_attr.attr,
5112 	&slabs_cpu_partial_attr.attr,
5113 #ifdef CONFIG_SLUB_DEBUG
5114 	&total_objects_attr.attr,
5115 	&slabs_attr.attr,
5116 	&sanity_checks_attr.attr,
5117 	&trace_attr.attr,
5118 	&red_zone_attr.attr,
5119 	&poison_attr.attr,
5120 	&store_user_attr.attr,
5121 	&validate_attr.attr,
5122 	&alloc_calls_attr.attr,
5123 	&free_calls_attr.attr,
5124 #endif
5125 #ifdef CONFIG_ZONE_DMA
5126 	&cache_dma_attr.attr,
5127 #endif
5128 #ifdef CONFIG_NUMA
5129 	&remote_node_defrag_ratio_attr.attr,
5130 #endif
5131 #ifdef CONFIG_SLUB_STATS
5132 	&alloc_fastpath_attr.attr,
5133 	&alloc_slowpath_attr.attr,
5134 	&free_fastpath_attr.attr,
5135 	&free_slowpath_attr.attr,
5136 	&free_frozen_attr.attr,
5137 	&free_add_partial_attr.attr,
5138 	&free_remove_partial_attr.attr,
5139 	&alloc_from_partial_attr.attr,
5140 	&alloc_slab_attr.attr,
5141 	&alloc_refill_attr.attr,
5142 	&alloc_node_mismatch_attr.attr,
5143 	&free_slab_attr.attr,
5144 	&cpuslab_flush_attr.attr,
5145 	&deactivate_full_attr.attr,
5146 	&deactivate_empty_attr.attr,
5147 	&deactivate_to_head_attr.attr,
5148 	&deactivate_to_tail_attr.attr,
5149 	&deactivate_remote_frees_attr.attr,
5150 	&deactivate_bypass_attr.attr,
5151 	&order_fallback_attr.attr,
5152 	&cmpxchg_double_fail_attr.attr,
5153 	&cmpxchg_double_cpu_fail_attr.attr,
5154 	&cpu_partial_alloc_attr.attr,
5155 	&cpu_partial_free_attr.attr,
5156 	&cpu_partial_node_attr.attr,
5157 	&cpu_partial_drain_attr.attr,
5158 #endif
5159 #ifdef CONFIG_FAILSLAB
5160 	&failslab_attr.attr,
5161 #endif
5162 
5163 	NULL
5164 };
5165 
5166 static struct attribute_group slab_attr_group = {
5167 	.attrs = slab_attrs,
5168 };
5169 
5170 static ssize_t slab_attr_show(struct kobject *kobj,
5171 				struct attribute *attr,
5172 				char *buf)
5173 {
5174 	struct slab_attribute *attribute;
5175 	struct kmem_cache *s;
5176 	int err;
5177 
5178 	attribute = to_slab_attr(attr);
5179 	s = to_slab(kobj);
5180 
5181 	if (!attribute->show)
5182 		return -EIO;
5183 
5184 	err = attribute->show(s, buf);
5185 
5186 	return err;
5187 }
5188 
5189 static ssize_t slab_attr_store(struct kobject *kobj,
5190 				struct attribute *attr,
5191 				const char *buf, size_t len)
5192 {
5193 	struct slab_attribute *attribute;
5194 	struct kmem_cache *s;
5195 	int err;
5196 
5197 	attribute = to_slab_attr(attr);
5198 	s = to_slab(kobj);
5199 
5200 	if (!attribute->store)
5201 		return -EIO;
5202 
5203 	err = attribute->store(s, buf, len);
5204 
5205 	return err;
5206 }
5207 
5208 static void kmem_cache_release(struct kobject *kobj)
5209 {
5210 	struct kmem_cache *s = to_slab(kobj);
5211 
5212 	kfree(s->name);
5213 	kfree(s);
5214 }
5215 
5216 static const struct sysfs_ops slab_sysfs_ops = {
5217 	.show = slab_attr_show,
5218 	.store = slab_attr_store,
5219 };
5220 
5221 static struct kobj_type slab_ktype = {
5222 	.sysfs_ops = &slab_sysfs_ops,
5223 	.release = kmem_cache_release
5224 };
5225 
5226 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5227 {
5228 	struct kobj_type *ktype = get_ktype(kobj);
5229 
5230 	if (ktype == &slab_ktype)
5231 		return 1;
5232 	return 0;
5233 }
5234 
5235 static const struct kset_uevent_ops slab_uevent_ops = {
5236 	.filter = uevent_filter,
5237 };
5238 
5239 static struct kset *slab_kset;
5240 
5241 #define ID_STR_LENGTH 64
5242 
5243 /* Create a unique string id for a slab cache:
5244  *
5245  * Format	:[flags-]size
5246  */
5247 static char *create_unique_id(struct kmem_cache *s)
5248 {
5249 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5250 	char *p = name;
5251 
5252 	BUG_ON(!name);
5253 
5254 	*p++ = ':';
5255 	/*
5256 	 * First flags affecting slabcache operations. We will only
5257 	 * get here for aliasable slabs so we do not need to support
5258 	 * too many flags. The flags here must cover all flags that
5259 	 * are matched during merging to guarantee that the id is
5260 	 * unique.
5261 	 */
5262 	if (s->flags & SLAB_CACHE_DMA)
5263 		*p++ = 'd';
5264 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5265 		*p++ = 'a';
5266 	if (s->flags & SLAB_DEBUG_FREE)
5267 		*p++ = 'F';
5268 	if (!(s->flags & SLAB_NOTRACK))
5269 		*p++ = 't';
5270 	if (p != name + 1)
5271 		*p++ = '-';
5272 	p += sprintf(p, "%07d", s->size);
5273 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5274 	return name;
5275 }
5276 
5277 static int sysfs_slab_add(struct kmem_cache *s)
5278 {
5279 	int err;
5280 	const char *name;
5281 	int unmergeable;
5282 
5283 	if (slab_state < FULL)
5284 		/* Defer until later */
5285 		return 0;
5286 
5287 	unmergeable = slab_unmergeable(s);
5288 	if (unmergeable) {
5289 		/*
5290 		 * Slabcache can never be merged so we can use the name proper.
5291 		 * This is typically the case for debug situations. In that
5292 		 * case we can catch duplicate names easily.
5293 		 */
5294 		sysfs_remove_link(&slab_kset->kobj, s->name);
5295 		name = s->name;
5296 	} else {
5297 		/*
5298 		 * Create a unique name for the slab as a target
5299 		 * for the symlinks.
5300 		 */
5301 		name = create_unique_id(s);
5302 	}
5303 
5304 	s->kobj.kset = slab_kset;
5305 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5306 	if (err) {
5307 		kobject_put(&s->kobj);
5308 		return err;
5309 	}
5310 
5311 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5312 	if (err) {
5313 		kobject_del(&s->kobj);
5314 		kobject_put(&s->kobj);
5315 		return err;
5316 	}
5317 	kobject_uevent(&s->kobj, KOBJ_ADD);
5318 	if (!unmergeable) {
5319 		/* Setup first alias */
5320 		sysfs_slab_alias(s, s->name);
5321 		kfree(name);
5322 	}
5323 	return 0;
5324 }
5325 
5326 static void sysfs_slab_remove(struct kmem_cache *s)
5327 {
5328 	if (slab_state < FULL)
5329 		/*
5330 		 * Sysfs has not been setup yet so no need to remove the
5331 		 * cache from sysfs.
5332 		 */
5333 		return;
5334 
5335 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5336 	kobject_del(&s->kobj);
5337 	kobject_put(&s->kobj);
5338 }
5339 
5340 /*
5341  * Need to buffer aliases during bootup until sysfs becomes
5342  * available lest we lose that information.
5343  */
5344 struct saved_alias {
5345 	struct kmem_cache *s;
5346 	const char *name;
5347 	struct saved_alias *next;
5348 };
5349 
5350 static struct saved_alias *alias_list;
5351 
5352 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5353 {
5354 	struct saved_alias *al;
5355 
5356 	if (slab_state == FULL) {
5357 		/*
5358 		 * If we have a leftover link then remove it.
5359 		 */
5360 		sysfs_remove_link(&slab_kset->kobj, name);
5361 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5362 	}
5363 
5364 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5365 	if (!al)
5366 		return -ENOMEM;
5367 
5368 	al->s = s;
5369 	al->name = name;
5370 	al->next = alias_list;
5371 	alias_list = al;
5372 	return 0;
5373 }
5374 
5375 static int __init slab_sysfs_init(void)
5376 {
5377 	struct kmem_cache *s;
5378 	int err;
5379 
5380 	mutex_lock(&slab_mutex);
5381 
5382 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5383 	if (!slab_kset) {
5384 		mutex_unlock(&slab_mutex);
5385 		printk(KERN_ERR "Cannot register slab subsystem.\n");
5386 		return -ENOSYS;
5387 	}
5388 
5389 	slab_state = FULL;
5390 
5391 	list_for_each_entry(s, &slab_caches, list) {
5392 		err = sysfs_slab_add(s);
5393 		if (err)
5394 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5395 						" to sysfs\n", s->name);
5396 	}
5397 
5398 	while (alias_list) {
5399 		struct saved_alias *al = alias_list;
5400 
5401 		alias_list = alias_list->next;
5402 		err = sysfs_slab_alias(al->s, al->name);
5403 		if (err)
5404 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5405 					" %s to sysfs\n", al->name);
5406 		kfree(al);
5407 	}
5408 
5409 	mutex_unlock(&slab_mutex);
5410 	resiliency_test();
5411 	return 0;
5412 }
5413 
5414 __initcall(slab_sysfs_init);
5415 #endif /* CONFIG_SYSFS */
5416 
5417 /*
5418  * The /proc/slabinfo ABI
5419  */
5420 #ifdef CONFIG_SLABINFO
5421 static void print_slabinfo_header(struct seq_file *m)
5422 {
5423 	seq_puts(m, "slabinfo - version: 2.1\n");
5424 	seq_puts(m, "# name            <active_objs> <num_objs> <object_size> "
5425 		 "<objperslab> <pagesperslab>");
5426 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5427 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5428 	seq_putc(m, '\n');
5429 }
5430 
5431 static void *s_start(struct seq_file *m, loff_t *pos)
5432 {
5433 	loff_t n = *pos;
5434 
5435 	mutex_lock(&slab_mutex);
5436 	if (!n)
5437 		print_slabinfo_header(m);
5438 
5439 	return seq_list_start(&slab_caches, *pos);
5440 }
5441 
5442 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5443 {
5444 	return seq_list_next(p, &slab_caches, pos);
5445 }
5446 
5447 static void s_stop(struct seq_file *m, void *p)
5448 {
5449 	mutex_unlock(&slab_mutex);
5450 }
5451 
5452 static int s_show(struct seq_file *m, void *p)
5453 {
5454 	unsigned long nr_partials = 0;
5455 	unsigned long nr_slabs = 0;
5456 	unsigned long nr_inuse = 0;
5457 	unsigned long nr_objs = 0;
5458 	unsigned long nr_free = 0;
5459 	struct kmem_cache *s;
5460 	int node;
5461 
5462 	s = list_entry(p, struct kmem_cache, list);
5463 
5464 	for_each_online_node(node) {
5465 		struct kmem_cache_node *n = get_node(s, node);
5466 
5467 		if (!n)
5468 			continue;
5469 
5470 		nr_partials += n->nr_partial;
5471 		nr_slabs += atomic_long_read(&n->nr_slabs);
5472 		nr_objs += atomic_long_read(&n->total_objects);
5473 		nr_free += count_partial(n, count_free);
5474 	}
5475 
5476 	nr_inuse = nr_objs - nr_free;
5477 
5478 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5479 		   nr_objs, s->size, oo_objects(s->oo),
5480 		   (1 << oo_order(s->oo)));
5481 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5482 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5483 		   0UL);
5484 	seq_putc(m, '\n');
5485 	return 0;
5486 }
5487 
5488 static const struct seq_operations slabinfo_op = {
5489 	.start = s_start,
5490 	.next = s_next,
5491 	.stop = s_stop,
5492 	.show = s_show,
5493 };
5494 
5495 static int slabinfo_open(struct inode *inode, struct file *file)
5496 {
5497 	return seq_open(file, &slabinfo_op);
5498 }
5499 
5500 static const struct file_operations proc_slabinfo_operations = {
5501 	.open		= slabinfo_open,
5502 	.read		= seq_read,
5503 	.llseek		= seq_lseek,
5504 	.release	= seq_release,
5505 };
5506 
5507 static int __init slab_proc_init(void)
5508 {
5509 	proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5510 	return 0;
5511 }
5512 module_init(slab_proc_init);
5513 #endif /* CONFIG_SLABINFO */
5514