1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/kmemcheck.h> 23 #include <linux/cpu.h> 24 #include <linux/cpuset.h> 25 #include <linux/mempolicy.h> 26 #include <linux/ctype.h> 27 #include <linux/debugobjects.h> 28 #include <linux/kallsyms.h> 29 #include <linux/memory.h> 30 #include <linux/math64.h> 31 #include <linux/fault-inject.h> 32 #include <linux/stacktrace.h> 33 #include <linux/prefetch.h> 34 35 #include <trace/events/kmem.h> 36 37 #include "internal.h" 38 39 /* 40 * Lock order: 41 * 1. slab_mutex (Global Mutex) 42 * 2. node->list_lock 43 * 3. slab_lock(page) (Only on some arches and for debugging) 44 * 45 * slab_mutex 46 * 47 * The role of the slab_mutex is to protect the list of all the slabs 48 * and to synchronize major metadata changes to slab cache structures. 49 * 50 * The slab_lock is only used for debugging and on arches that do not 51 * have the ability to do a cmpxchg_double. It only protects the second 52 * double word in the page struct. Meaning 53 * A. page->freelist -> List of object free in a page 54 * B. page->counters -> Counters of objects 55 * C. page->frozen -> frozen state 56 * 57 * If a slab is frozen then it is exempt from list management. It is not 58 * on any list. The processor that froze the slab is the one who can 59 * perform list operations on the page. Other processors may put objects 60 * onto the freelist but the processor that froze the slab is the only 61 * one that can retrieve the objects from the page's freelist. 62 * 63 * The list_lock protects the partial and full list on each node and 64 * the partial slab counter. If taken then no new slabs may be added or 65 * removed from the lists nor make the number of partial slabs be modified. 66 * (Note that the total number of slabs is an atomic value that may be 67 * modified without taking the list lock). 68 * 69 * The list_lock is a centralized lock and thus we avoid taking it as 70 * much as possible. As long as SLUB does not have to handle partial 71 * slabs, operations can continue without any centralized lock. F.e. 72 * allocating a long series of objects that fill up slabs does not require 73 * the list lock. 74 * Interrupts are disabled during allocation and deallocation in order to 75 * make the slab allocator safe to use in the context of an irq. In addition 76 * interrupts are disabled to ensure that the processor does not change 77 * while handling per_cpu slabs, due to kernel preemption. 78 * 79 * SLUB assigns one slab for allocation to each processor. 80 * Allocations only occur from these slabs called cpu slabs. 81 * 82 * Slabs with free elements are kept on a partial list and during regular 83 * operations no list for full slabs is used. If an object in a full slab is 84 * freed then the slab will show up again on the partial lists. 85 * We track full slabs for debugging purposes though because otherwise we 86 * cannot scan all objects. 87 * 88 * Slabs are freed when they become empty. Teardown and setup is 89 * minimal so we rely on the page allocators per cpu caches for 90 * fast frees and allocs. 91 * 92 * Overloading of page flags that are otherwise used for LRU management. 93 * 94 * PageActive The slab is frozen and exempt from list processing. 95 * This means that the slab is dedicated to a purpose 96 * such as satisfying allocations for a specific 97 * processor. Objects may be freed in the slab while 98 * it is frozen but slab_free will then skip the usual 99 * list operations. It is up to the processor holding 100 * the slab to integrate the slab into the slab lists 101 * when the slab is no longer needed. 102 * 103 * One use of this flag is to mark slabs that are 104 * used for allocations. Then such a slab becomes a cpu 105 * slab. The cpu slab may be equipped with an additional 106 * freelist that allows lockless access to 107 * free objects in addition to the regular freelist 108 * that requires the slab lock. 109 * 110 * PageError Slab requires special handling due to debug 111 * options set. This moves slab handling out of 112 * the fast path and disables lockless freelists. 113 */ 114 115 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 116 SLAB_TRACE | SLAB_DEBUG_FREE) 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 /* 128 * Issues still to be resolved: 129 * 130 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 131 * 132 * - Variable sizing of the per node arrays 133 */ 134 135 /* Enable to test recovery from slab corruption on boot */ 136 #undef SLUB_RESILIENCY_TEST 137 138 /* Enable to log cmpxchg failures */ 139 #undef SLUB_DEBUG_CMPXCHG 140 141 /* 142 * Mininum number of partial slabs. These will be left on the partial 143 * lists even if they are empty. kmem_cache_shrink may reclaim them. 144 */ 145 #define MIN_PARTIAL 5 146 147 /* 148 * Maximum number of desirable partial slabs. 149 * The existence of more partial slabs makes kmem_cache_shrink 150 * sort the partial list by the number of objects in the. 151 */ 152 #define MAX_PARTIAL 10 153 154 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 155 SLAB_POISON | SLAB_STORE_USER) 156 157 /* 158 * Debugging flags that require metadata to be stored in the slab. These get 159 * disabled when slub_debug=O is used and a cache's min order increases with 160 * metadata. 161 */ 162 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 163 164 /* 165 * Set of flags that will prevent slab merging 166 */ 167 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 168 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 169 SLAB_FAILSLAB) 170 171 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 172 SLAB_CACHE_DMA | SLAB_NOTRACK) 173 174 #define OO_SHIFT 16 175 #define OO_MASK ((1 << OO_SHIFT) - 1) 176 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 177 178 /* Internal SLUB flags */ 179 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 180 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 181 182 static int kmem_size = sizeof(struct kmem_cache); 183 184 #ifdef CONFIG_SMP 185 static struct notifier_block slab_notifier; 186 #endif 187 188 /* 189 * Tracking user of a slab. 190 */ 191 #define TRACK_ADDRS_COUNT 16 192 struct track { 193 unsigned long addr; /* Called from address */ 194 #ifdef CONFIG_STACKTRACE 195 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 196 #endif 197 int cpu; /* Was running on cpu */ 198 int pid; /* Pid context */ 199 unsigned long when; /* When did the operation occur */ 200 }; 201 202 enum track_item { TRACK_ALLOC, TRACK_FREE }; 203 204 #ifdef CONFIG_SYSFS 205 static int sysfs_slab_add(struct kmem_cache *); 206 static int sysfs_slab_alias(struct kmem_cache *, const char *); 207 static void sysfs_slab_remove(struct kmem_cache *); 208 209 #else 210 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 211 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 212 { return 0; } 213 static inline void sysfs_slab_remove(struct kmem_cache *s) 214 { 215 kfree(s->name); 216 kfree(s); 217 } 218 219 #endif 220 221 static inline void stat(const struct kmem_cache *s, enum stat_item si) 222 { 223 #ifdef CONFIG_SLUB_STATS 224 __this_cpu_inc(s->cpu_slab->stat[si]); 225 #endif 226 } 227 228 /******************************************************************** 229 * Core slab cache functions 230 *******************************************************************/ 231 232 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 233 { 234 return s->node[node]; 235 } 236 237 /* Verify that a pointer has an address that is valid within a slab page */ 238 static inline int check_valid_pointer(struct kmem_cache *s, 239 struct page *page, const void *object) 240 { 241 void *base; 242 243 if (!object) 244 return 1; 245 246 base = page_address(page); 247 if (object < base || object >= base + page->objects * s->size || 248 (object - base) % s->size) { 249 return 0; 250 } 251 252 return 1; 253 } 254 255 static inline void *get_freepointer(struct kmem_cache *s, void *object) 256 { 257 return *(void **)(object + s->offset); 258 } 259 260 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 261 { 262 prefetch(object + s->offset); 263 } 264 265 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 266 { 267 void *p; 268 269 #ifdef CONFIG_DEBUG_PAGEALLOC 270 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 271 #else 272 p = get_freepointer(s, object); 273 #endif 274 return p; 275 } 276 277 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 278 { 279 *(void **)(object + s->offset) = fp; 280 } 281 282 /* Loop over all objects in a slab */ 283 #define for_each_object(__p, __s, __addr, __objects) \ 284 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 285 __p += (__s)->size) 286 287 /* Determine object index from a given position */ 288 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 289 { 290 return (p - addr) / s->size; 291 } 292 293 static inline size_t slab_ksize(const struct kmem_cache *s) 294 { 295 #ifdef CONFIG_SLUB_DEBUG 296 /* 297 * Debugging requires use of the padding between object 298 * and whatever may come after it. 299 */ 300 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 301 return s->object_size; 302 303 #endif 304 /* 305 * If we have the need to store the freelist pointer 306 * back there or track user information then we can 307 * only use the space before that information. 308 */ 309 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 310 return s->inuse; 311 /* 312 * Else we can use all the padding etc for the allocation 313 */ 314 return s->size; 315 } 316 317 static inline int order_objects(int order, unsigned long size, int reserved) 318 { 319 return ((PAGE_SIZE << order) - reserved) / size; 320 } 321 322 static inline struct kmem_cache_order_objects oo_make(int order, 323 unsigned long size, int reserved) 324 { 325 struct kmem_cache_order_objects x = { 326 (order << OO_SHIFT) + order_objects(order, size, reserved) 327 }; 328 329 return x; 330 } 331 332 static inline int oo_order(struct kmem_cache_order_objects x) 333 { 334 return x.x >> OO_SHIFT; 335 } 336 337 static inline int oo_objects(struct kmem_cache_order_objects x) 338 { 339 return x.x & OO_MASK; 340 } 341 342 /* 343 * Per slab locking using the pagelock 344 */ 345 static __always_inline void slab_lock(struct page *page) 346 { 347 bit_spin_lock(PG_locked, &page->flags); 348 } 349 350 static __always_inline void slab_unlock(struct page *page) 351 { 352 __bit_spin_unlock(PG_locked, &page->flags); 353 } 354 355 /* Interrupts must be disabled (for the fallback code to work right) */ 356 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 357 void *freelist_old, unsigned long counters_old, 358 void *freelist_new, unsigned long counters_new, 359 const char *n) 360 { 361 VM_BUG_ON(!irqs_disabled()); 362 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 363 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 364 if (s->flags & __CMPXCHG_DOUBLE) { 365 if (cmpxchg_double(&page->freelist, &page->counters, 366 freelist_old, counters_old, 367 freelist_new, counters_new)) 368 return 1; 369 } else 370 #endif 371 { 372 slab_lock(page); 373 if (page->freelist == freelist_old && page->counters == counters_old) { 374 page->freelist = freelist_new; 375 page->counters = counters_new; 376 slab_unlock(page); 377 return 1; 378 } 379 slab_unlock(page); 380 } 381 382 cpu_relax(); 383 stat(s, CMPXCHG_DOUBLE_FAIL); 384 385 #ifdef SLUB_DEBUG_CMPXCHG 386 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 387 #endif 388 389 return 0; 390 } 391 392 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 393 void *freelist_old, unsigned long counters_old, 394 void *freelist_new, unsigned long counters_new, 395 const char *n) 396 { 397 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 398 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 399 if (s->flags & __CMPXCHG_DOUBLE) { 400 if (cmpxchg_double(&page->freelist, &page->counters, 401 freelist_old, counters_old, 402 freelist_new, counters_new)) 403 return 1; 404 } else 405 #endif 406 { 407 unsigned long flags; 408 409 local_irq_save(flags); 410 slab_lock(page); 411 if (page->freelist == freelist_old && page->counters == counters_old) { 412 page->freelist = freelist_new; 413 page->counters = counters_new; 414 slab_unlock(page); 415 local_irq_restore(flags); 416 return 1; 417 } 418 slab_unlock(page); 419 local_irq_restore(flags); 420 } 421 422 cpu_relax(); 423 stat(s, CMPXCHG_DOUBLE_FAIL); 424 425 #ifdef SLUB_DEBUG_CMPXCHG 426 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 427 #endif 428 429 return 0; 430 } 431 432 #ifdef CONFIG_SLUB_DEBUG 433 /* 434 * Determine a map of object in use on a page. 435 * 436 * Node listlock must be held to guarantee that the page does 437 * not vanish from under us. 438 */ 439 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 440 { 441 void *p; 442 void *addr = page_address(page); 443 444 for (p = page->freelist; p; p = get_freepointer(s, p)) 445 set_bit(slab_index(p, s, addr), map); 446 } 447 448 /* 449 * Debug settings: 450 */ 451 #ifdef CONFIG_SLUB_DEBUG_ON 452 static int slub_debug = DEBUG_DEFAULT_FLAGS; 453 #else 454 static int slub_debug; 455 #endif 456 457 static char *slub_debug_slabs; 458 static int disable_higher_order_debug; 459 460 /* 461 * Object debugging 462 */ 463 static void print_section(char *text, u8 *addr, unsigned int length) 464 { 465 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 466 length, 1); 467 } 468 469 static struct track *get_track(struct kmem_cache *s, void *object, 470 enum track_item alloc) 471 { 472 struct track *p; 473 474 if (s->offset) 475 p = object + s->offset + sizeof(void *); 476 else 477 p = object + s->inuse; 478 479 return p + alloc; 480 } 481 482 static void set_track(struct kmem_cache *s, void *object, 483 enum track_item alloc, unsigned long addr) 484 { 485 struct track *p = get_track(s, object, alloc); 486 487 if (addr) { 488 #ifdef CONFIG_STACKTRACE 489 struct stack_trace trace; 490 int i; 491 492 trace.nr_entries = 0; 493 trace.max_entries = TRACK_ADDRS_COUNT; 494 trace.entries = p->addrs; 495 trace.skip = 3; 496 save_stack_trace(&trace); 497 498 /* See rant in lockdep.c */ 499 if (trace.nr_entries != 0 && 500 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 501 trace.nr_entries--; 502 503 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 504 p->addrs[i] = 0; 505 #endif 506 p->addr = addr; 507 p->cpu = smp_processor_id(); 508 p->pid = current->pid; 509 p->when = jiffies; 510 } else 511 memset(p, 0, sizeof(struct track)); 512 } 513 514 static void init_tracking(struct kmem_cache *s, void *object) 515 { 516 if (!(s->flags & SLAB_STORE_USER)) 517 return; 518 519 set_track(s, object, TRACK_FREE, 0UL); 520 set_track(s, object, TRACK_ALLOC, 0UL); 521 } 522 523 static void print_track(const char *s, struct track *t) 524 { 525 if (!t->addr) 526 return; 527 528 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 529 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 530 #ifdef CONFIG_STACKTRACE 531 { 532 int i; 533 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 534 if (t->addrs[i]) 535 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]); 536 else 537 break; 538 } 539 #endif 540 } 541 542 static void print_tracking(struct kmem_cache *s, void *object) 543 { 544 if (!(s->flags & SLAB_STORE_USER)) 545 return; 546 547 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 548 print_track("Freed", get_track(s, object, TRACK_FREE)); 549 } 550 551 static void print_page_info(struct page *page) 552 { 553 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 554 page, page->objects, page->inuse, page->freelist, page->flags); 555 556 } 557 558 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 559 { 560 va_list args; 561 char buf[100]; 562 563 va_start(args, fmt); 564 vsnprintf(buf, sizeof(buf), fmt, args); 565 va_end(args); 566 printk(KERN_ERR "========================================" 567 "=====================================\n"); 568 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf); 569 printk(KERN_ERR "----------------------------------------" 570 "-------------------------------------\n\n"); 571 } 572 573 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 574 { 575 va_list args; 576 char buf[100]; 577 578 va_start(args, fmt); 579 vsnprintf(buf, sizeof(buf), fmt, args); 580 va_end(args); 581 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 582 } 583 584 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 585 { 586 unsigned int off; /* Offset of last byte */ 587 u8 *addr = page_address(page); 588 589 print_tracking(s, p); 590 591 print_page_info(page); 592 593 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 594 p, p - addr, get_freepointer(s, p)); 595 596 if (p > addr + 16) 597 print_section("Bytes b4 ", p - 16, 16); 598 599 print_section("Object ", p, min_t(unsigned long, s->object_size, 600 PAGE_SIZE)); 601 if (s->flags & SLAB_RED_ZONE) 602 print_section("Redzone ", p + s->object_size, 603 s->inuse - s->object_size); 604 605 if (s->offset) 606 off = s->offset + sizeof(void *); 607 else 608 off = s->inuse; 609 610 if (s->flags & SLAB_STORE_USER) 611 off += 2 * sizeof(struct track); 612 613 if (off != s->size) 614 /* Beginning of the filler is the free pointer */ 615 print_section("Padding ", p + off, s->size - off); 616 617 dump_stack(); 618 } 619 620 static void object_err(struct kmem_cache *s, struct page *page, 621 u8 *object, char *reason) 622 { 623 slab_bug(s, "%s", reason); 624 print_trailer(s, page, object); 625 } 626 627 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 628 { 629 va_list args; 630 char buf[100]; 631 632 va_start(args, fmt); 633 vsnprintf(buf, sizeof(buf), fmt, args); 634 va_end(args); 635 slab_bug(s, "%s", buf); 636 print_page_info(page); 637 dump_stack(); 638 } 639 640 static void init_object(struct kmem_cache *s, void *object, u8 val) 641 { 642 u8 *p = object; 643 644 if (s->flags & __OBJECT_POISON) { 645 memset(p, POISON_FREE, s->object_size - 1); 646 p[s->object_size - 1] = POISON_END; 647 } 648 649 if (s->flags & SLAB_RED_ZONE) 650 memset(p + s->object_size, val, s->inuse - s->object_size); 651 } 652 653 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 654 void *from, void *to) 655 { 656 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 657 memset(from, data, to - from); 658 } 659 660 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 661 u8 *object, char *what, 662 u8 *start, unsigned int value, unsigned int bytes) 663 { 664 u8 *fault; 665 u8 *end; 666 667 fault = memchr_inv(start, value, bytes); 668 if (!fault) 669 return 1; 670 671 end = start + bytes; 672 while (end > fault && end[-1] == value) 673 end--; 674 675 slab_bug(s, "%s overwritten", what); 676 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 677 fault, end - 1, fault[0], value); 678 print_trailer(s, page, object); 679 680 restore_bytes(s, what, value, fault, end); 681 return 0; 682 } 683 684 /* 685 * Object layout: 686 * 687 * object address 688 * Bytes of the object to be managed. 689 * If the freepointer may overlay the object then the free 690 * pointer is the first word of the object. 691 * 692 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 693 * 0xa5 (POISON_END) 694 * 695 * object + s->object_size 696 * Padding to reach word boundary. This is also used for Redzoning. 697 * Padding is extended by another word if Redzoning is enabled and 698 * object_size == inuse. 699 * 700 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 701 * 0xcc (RED_ACTIVE) for objects in use. 702 * 703 * object + s->inuse 704 * Meta data starts here. 705 * 706 * A. Free pointer (if we cannot overwrite object on free) 707 * B. Tracking data for SLAB_STORE_USER 708 * C. Padding to reach required alignment boundary or at mininum 709 * one word if debugging is on to be able to detect writes 710 * before the word boundary. 711 * 712 * Padding is done using 0x5a (POISON_INUSE) 713 * 714 * object + s->size 715 * Nothing is used beyond s->size. 716 * 717 * If slabcaches are merged then the object_size and inuse boundaries are mostly 718 * ignored. And therefore no slab options that rely on these boundaries 719 * may be used with merged slabcaches. 720 */ 721 722 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 723 { 724 unsigned long off = s->inuse; /* The end of info */ 725 726 if (s->offset) 727 /* Freepointer is placed after the object. */ 728 off += sizeof(void *); 729 730 if (s->flags & SLAB_STORE_USER) 731 /* We also have user information there */ 732 off += 2 * sizeof(struct track); 733 734 if (s->size == off) 735 return 1; 736 737 return check_bytes_and_report(s, page, p, "Object padding", 738 p + off, POISON_INUSE, s->size - off); 739 } 740 741 /* Check the pad bytes at the end of a slab page */ 742 static int slab_pad_check(struct kmem_cache *s, struct page *page) 743 { 744 u8 *start; 745 u8 *fault; 746 u8 *end; 747 int length; 748 int remainder; 749 750 if (!(s->flags & SLAB_POISON)) 751 return 1; 752 753 start = page_address(page); 754 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 755 end = start + length; 756 remainder = length % s->size; 757 if (!remainder) 758 return 1; 759 760 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 761 if (!fault) 762 return 1; 763 while (end > fault && end[-1] == POISON_INUSE) 764 end--; 765 766 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 767 print_section("Padding ", end - remainder, remainder); 768 769 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 770 return 0; 771 } 772 773 static int check_object(struct kmem_cache *s, struct page *page, 774 void *object, u8 val) 775 { 776 u8 *p = object; 777 u8 *endobject = object + s->object_size; 778 779 if (s->flags & SLAB_RED_ZONE) { 780 if (!check_bytes_and_report(s, page, object, "Redzone", 781 endobject, val, s->inuse - s->object_size)) 782 return 0; 783 } else { 784 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 785 check_bytes_and_report(s, page, p, "Alignment padding", 786 endobject, POISON_INUSE, s->inuse - s->object_size); 787 } 788 } 789 790 if (s->flags & SLAB_POISON) { 791 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 792 (!check_bytes_and_report(s, page, p, "Poison", p, 793 POISON_FREE, s->object_size - 1) || 794 !check_bytes_and_report(s, page, p, "Poison", 795 p + s->object_size - 1, POISON_END, 1))) 796 return 0; 797 /* 798 * check_pad_bytes cleans up on its own. 799 */ 800 check_pad_bytes(s, page, p); 801 } 802 803 if (!s->offset && val == SLUB_RED_ACTIVE) 804 /* 805 * Object and freepointer overlap. Cannot check 806 * freepointer while object is allocated. 807 */ 808 return 1; 809 810 /* Check free pointer validity */ 811 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 812 object_err(s, page, p, "Freepointer corrupt"); 813 /* 814 * No choice but to zap it and thus lose the remainder 815 * of the free objects in this slab. May cause 816 * another error because the object count is now wrong. 817 */ 818 set_freepointer(s, p, NULL); 819 return 0; 820 } 821 return 1; 822 } 823 824 static int check_slab(struct kmem_cache *s, struct page *page) 825 { 826 int maxobj; 827 828 VM_BUG_ON(!irqs_disabled()); 829 830 if (!PageSlab(page)) { 831 slab_err(s, page, "Not a valid slab page"); 832 return 0; 833 } 834 835 maxobj = order_objects(compound_order(page), s->size, s->reserved); 836 if (page->objects > maxobj) { 837 slab_err(s, page, "objects %u > max %u", 838 s->name, page->objects, maxobj); 839 return 0; 840 } 841 if (page->inuse > page->objects) { 842 slab_err(s, page, "inuse %u > max %u", 843 s->name, page->inuse, page->objects); 844 return 0; 845 } 846 /* Slab_pad_check fixes things up after itself */ 847 slab_pad_check(s, page); 848 return 1; 849 } 850 851 /* 852 * Determine if a certain object on a page is on the freelist. Must hold the 853 * slab lock to guarantee that the chains are in a consistent state. 854 */ 855 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 856 { 857 int nr = 0; 858 void *fp; 859 void *object = NULL; 860 unsigned long max_objects; 861 862 fp = page->freelist; 863 while (fp && nr <= page->objects) { 864 if (fp == search) 865 return 1; 866 if (!check_valid_pointer(s, page, fp)) { 867 if (object) { 868 object_err(s, page, object, 869 "Freechain corrupt"); 870 set_freepointer(s, object, NULL); 871 break; 872 } else { 873 slab_err(s, page, "Freepointer corrupt"); 874 page->freelist = NULL; 875 page->inuse = page->objects; 876 slab_fix(s, "Freelist cleared"); 877 return 0; 878 } 879 break; 880 } 881 object = fp; 882 fp = get_freepointer(s, object); 883 nr++; 884 } 885 886 max_objects = order_objects(compound_order(page), s->size, s->reserved); 887 if (max_objects > MAX_OBJS_PER_PAGE) 888 max_objects = MAX_OBJS_PER_PAGE; 889 890 if (page->objects != max_objects) { 891 slab_err(s, page, "Wrong number of objects. Found %d but " 892 "should be %d", page->objects, max_objects); 893 page->objects = max_objects; 894 slab_fix(s, "Number of objects adjusted."); 895 } 896 if (page->inuse != page->objects - nr) { 897 slab_err(s, page, "Wrong object count. Counter is %d but " 898 "counted were %d", page->inuse, page->objects - nr); 899 page->inuse = page->objects - nr; 900 slab_fix(s, "Object count adjusted."); 901 } 902 return search == NULL; 903 } 904 905 static void trace(struct kmem_cache *s, struct page *page, void *object, 906 int alloc) 907 { 908 if (s->flags & SLAB_TRACE) { 909 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 910 s->name, 911 alloc ? "alloc" : "free", 912 object, page->inuse, 913 page->freelist); 914 915 if (!alloc) 916 print_section("Object ", (void *)object, s->object_size); 917 918 dump_stack(); 919 } 920 } 921 922 /* 923 * Hooks for other subsystems that check memory allocations. In a typical 924 * production configuration these hooks all should produce no code at all. 925 */ 926 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 927 { 928 flags &= gfp_allowed_mask; 929 lockdep_trace_alloc(flags); 930 might_sleep_if(flags & __GFP_WAIT); 931 932 return should_failslab(s->object_size, flags, s->flags); 933 } 934 935 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object) 936 { 937 flags &= gfp_allowed_mask; 938 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 939 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); 940 } 941 942 static inline void slab_free_hook(struct kmem_cache *s, void *x) 943 { 944 kmemleak_free_recursive(x, s->flags); 945 946 /* 947 * Trouble is that we may no longer disable interupts in the fast path 948 * So in order to make the debug calls that expect irqs to be 949 * disabled we need to disable interrupts temporarily. 950 */ 951 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 952 { 953 unsigned long flags; 954 955 local_irq_save(flags); 956 kmemcheck_slab_free(s, x, s->object_size); 957 debug_check_no_locks_freed(x, s->object_size); 958 local_irq_restore(flags); 959 } 960 #endif 961 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 962 debug_check_no_obj_freed(x, s->object_size); 963 } 964 965 /* 966 * Tracking of fully allocated slabs for debugging purposes. 967 * 968 * list_lock must be held. 969 */ 970 static void add_full(struct kmem_cache *s, 971 struct kmem_cache_node *n, struct page *page) 972 { 973 if (!(s->flags & SLAB_STORE_USER)) 974 return; 975 976 list_add(&page->lru, &n->full); 977 } 978 979 /* 980 * list_lock must be held. 981 */ 982 static void remove_full(struct kmem_cache *s, struct page *page) 983 { 984 if (!(s->flags & SLAB_STORE_USER)) 985 return; 986 987 list_del(&page->lru); 988 } 989 990 /* Tracking of the number of slabs for debugging purposes */ 991 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 992 { 993 struct kmem_cache_node *n = get_node(s, node); 994 995 return atomic_long_read(&n->nr_slabs); 996 } 997 998 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 999 { 1000 return atomic_long_read(&n->nr_slabs); 1001 } 1002 1003 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1004 { 1005 struct kmem_cache_node *n = get_node(s, node); 1006 1007 /* 1008 * May be called early in order to allocate a slab for the 1009 * kmem_cache_node structure. Solve the chicken-egg 1010 * dilemma by deferring the increment of the count during 1011 * bootstrap (see early_kmem_cache_node_alloc). 1012 */ 1013 if (n) { 1014 atomic_long_inc(&n->nr_slabs); 1015 atomic_long_add(objects, &n->total_objects); 1016 } 1017 } 1018 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1019 { 1020 struct kmem_cache_node *n = get_node(s, node); 1021 1022 atomic_long_dec(&n->nr_slabs); 1023 atomic_long_sub(objects, &n->total_objects); 1024 } 1025 1026 /* Object debug checks for alloc/free paths */ 1027 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1028 void *object) 1029 { 1030 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1031 return; 1032 1033 init_object(s, object, SLUB_RED_INACTIVE); 1034 init_tracking(s, object); 1035 } 1036 1037 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page, 1038 void *object, unsigned long addr) 1039 { 1040 if (!check_slab(s, page)) 1041 goto bad; 1042 1043 if (!check_valid_pointer(s, page, object)) { 1044 object_err(s, page, object, "Freelist Pointer check fails"); 1045 goto bad; 1046 } 1047 1048 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1049 goto bad; 1050 1051 /* Success perform special debug activities for allocs */ 1052 if (s->flags & SLAB_STORE_USER) 1053 set_track(s, object, TRACK_ALLOC, addr); 1054 trace(s, page, object, 1); 1055 init_object(s, object, SLUB_RED_ACTIVE); 1056 return 1; 1057 1058 bad: 1059 if (PageSlab(page)) { 1060 /* 1061 * If this is a slab page then lets do the best we can 1062 * to avoid issues in the future. Marking all objects 1063 * as used avoids touching the remaining objects. 1064 */ 1065 slab_fix(s, "Marking all objects used"); 1066 page->inuse = page->objects; 1067 page->freelist = NULL; 1068 } 1069 return 0; 1070 } 1071 1072 static noinline int free_debug_processing(struct kmem_cache *s, 1073 struct page *page, void *object, unsigned long addr) 1074 { 1075 unsigned long flags; 1076 int rc = 0; 1077 1078 local_irq_save(flags); 1079 slab_lock(page); 1080 1081 if (!check_slab(s, page)) 1082 goto fail; 1083 1084 if (!check_valid_pointer(s, page, object)) { 1085 slab_err(s, page, "Invalid object pointer 0x%p", object); 1086 goto fail; 1087 } 1088 1089 if (on_freelist(s, page, object)) { 1090 object_err(s, page, object, "Object already free"); 1091 goto fail; 1092 } 1093 1094 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1095 goto out; 1096 1097 if (unlikely(s != page->slab)) { 1098 if (!PageSlab(page)) { 1099 slab_err(s, page, "Attempt to free object(0x%p) " 1100 "outside of slab", object); 1101 } else if (!page->slab) { 1102 printk(KERN_ERR 1103 "SLUB <none>: no slab for object 0x%p.\n", 1104 object); 1105 dump_stack(); 1106 } else 1107 object_err(s, page, object, 1108 "page slab pointer corrupt."); 1109 goto fail; 1110 } 1111 1112 if (s->flags & SLAB_STORE_USER) 1113 set_track(s, object, TRACK_FREE, addr); 1114 trace(s, page, object, 0); 1115 init_object(s, object, SLUB_RED_INACTIVE); 1116 rc = 1; 1117 out: 1118 slab_unlock(page); 1119 local_irq_restore(flags); 1120 return rc; 1121 1122 fail: 1123 slab_fix(s, "Object at 0x%p not freed", object); 1124 goto out; 1125 } 1126 1127 static int __init setup_slub_debug(char *str) 1128 { 1129 slub_debug = DEBUG_DEFAULT_FLAGS; 1130 if (*str++ != '=' || !*str) 1131 /* 1132 * No options specified. Switch on full debugging. 1133 */ 1134 goto out; 1135 1136 if (*str == ',') 1137 /* 1138 * No options but restriction on slabs. This means full 1139 * debugging for slabs matching a pattern. 1140 */ 1141 goto check_slabs; 1142 1143 if (tolower(*str) == 'o') { 1144 /* 1145 * Avoid enabling debugging on caches if its minimum order 1146 * would increase as a result. 1147 */ 1148 disable_higher_order_debug = 1; 1149 goto out; 1150 } 1151 1152 slub_debug = 0; 1153 if (*str == '-') 1154 /* 1155 * Switch off all debugging measures. 1156 */ 1157 goto out; 1158 1159 /* 1160 * Determine which debug features should be switched on 1161 */ 1162 for (; *str && *str != ','; str++) { 1163 switch (tolower(*str)) { 1164 case 'f': 1165 slub_debug |= SLAB_DEBUG_FREE; 1166 break; 1167 case 'z': 1168 slub_debug |= SLAB_RED_ZONE; 1169 break; 1170 case 'p': 1171 slub_debug |= SLAB_POISON; 1172 break; 1173 case 'u': 1174 slub_debug |= SLAB_STORE_USER; 1175 break; 1176 case 't': 1177 slub_debug |= SLAB_TRACE; 1178 break; 1179 case 'a': 1180 slub_debug |= SLAB_FAILSLAB; 1181 break; 1182 default: 1183 printk(KERN_ERR "slub_debug option '%c' " 1184 "unknown. skipped\n", *str); 1185 } 1186 } 1187 1188 check_slabs: 1189 if (*str == ',') 1190 slub_debug_slabs = str + 1; 1191 out: 1192 return 1; 1193 } 1194 1195 __setup("slub_debug", setup_slub_debug); 1196 1197 static unsigned long kmem_cache_flags(unsigned long object_size, 1198 unsigned long flags, const char *name, 1199 void (*ctor)(void *)) 1200 { 1201 /* 1202 * Enable debugging if selected on the kernel commandline. 1203 */ 1204 if (slub_debug && (!slub_debug_slabs || 1205 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) 1206 flags |= slub_debug; 1207 1208 return flags; 1209 } 1210 #else 1211 static inline void setup_object_debug(struct kmem_cache *s, 1212 struct page *page, void *object) {} 1213 1214 static inline int alloc_debug_processing(struct kmem_cache *s, 1215 struct page *page, void *object, unsigned long addr) { return 0; } 1216 1217 static inline int free_debug_processing(struct kmem_cache *s, 1218 struct page *page, void *object, unsigned long addr) { return 0; } 1219 1220 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1221 { return 1; } 1222 static inline int check_object(struct kmem_cache *s, struct page *page, 1223 void *object, u8 val) { return 1; } 1224 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1225 struct page *page) {} 1226 static inline void remove_full(struct kmem_cache *s, struct page *page) {} 1227 static inline unsigned long kmem_cache_flags(unsigned long object_size, 1228 unsigned long flags, const char *name, 1229 void (*ctor)(void *)) 1230 { 1231 return flags; 1232 } 1233 #define slub_debug 0 1234 1235 #define disable_higher_order_debug 0 1236 1237 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1238 { return 0; } 1239 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1240 { return 0; } 1241 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1242 int objects) {} 1243 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1244 int objects) {} 1245 1246 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 1247 { return 0; } 1248 1249 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 1250 void *object) {} 1251 1252 static inline void slab_free_hook(struct kmem_cache *s, void *x) {} 1253 1254 #endif /* CONFIG_SLUB_DEBUG */ 1255 1256 /* 1257 * Slab allocation and freeing 1258 */ 1259 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1260 struct kmem_cache_order_objects oo) 1261 { 1262 int order = oo_order(oo); 1263 1264 flags |= __GFP_NOTRACK; 1265 1266 if (node == NUMA_NO_NODE) 1267 return alloc_pages(flags, order); 1268 else 1269 return alloc_pages_exact_node(node, flags, order); 1270 } 1271 1272 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1273 { 1274 struct page *page; 1275 struct kmem_cache_order_objects oo = s->oo; 1276 gfp_t alloc_gfp; 1277 1278 flags &= gfp_allowed_mask; 1279 1280 if (flags & __GFP_WAIT) 1281 local_irq_enable(); 1282 1283 flags |= s->allocflags; 1284 1285 /* 1286 * Let the initial higher-order allocation fail under memory pressure 1287 * so we fall-back to the minimum order allocation. 1288 */ 1289 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1290 1291 page = alloc_slab_page(alloc_gfp, node, oo); 1292 if (unlikely(!page)) { 1293 oo = s->min; 1294 /* 1295 * Allocation may have failed due to fragmentation. 1296 * Try a lower order alloc if possible 1297 */ 1298 page = alloc_slab_page(flags, node, oo); 1299 1300 if (page) 1301 stat(s, ORDER_FALLBACK); 1302 } 1303 1304 if (kmemcheck_enabled && page 1305 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1306 int pages = 1 << oo_order(oo); 1307 1308 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1309 1310 /* 1311 * Objects from caches that have a constructor don't get 1312 * cleared when they're allocated, so we need to do it here. 1313 */ 1314 if (s->ctor) 1315 kmemcheck_mark_uninitialized_pages(page, pages); 1316 else 1317 kmemcheck_mark_unallocated_pages(page, pages); 1318 } 1319 1320 if (flags & __GFP_WAIT) 1321 local_irq_disable(); 1322 if (!page) 1323 return NULL; 1324 1325 page->objects = oo_objects(oo); 1326 mod_zone_page_state(page_zone(page), 1327 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1328 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1329 1 << oo_order(oo)); 1330 1331 return page; 1332 } 1333 1334 static void setup_object(struct kmem_cache *s, struct page *page, 1335 void *object) 1336 { 1337 setup_object_debug(s, page, object); 1338 if (unlikely(s->ctor)) 1339 s->ctor(object); 1340 } 1341 1342 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1343 { 1344 struct page *page; 1345 void *start; 1346 void *last; 1347 void *p; 1348 1349 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1350 1351 page = allocate_slab(s, 1352 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1353 if (!page) 1354 goto out; 1355 1356 inc_slabs_node(s, page_to_nid(page), page->objects); 1357 page->slab = s; 1358 __SetPageSlab(page); 1359 if (page->pfmemalloc) 1360 SetPageSlabPfmemalloc(page); 1361 1362 start = page_address(page); 1363 1364 if (unlikely(s->flags & SLAB_POISON)) 1365 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1366 1367 last = start; 1368 for_each_object(p, s, start, page->objects) { 1369 setup_object(s, page, last); 1370 set_freepointer(s, last, p); 1371 last = p; 1372 } 1373 setup_object(s, page, last); 1374 set_freepointer(s, last, NULL); 1375 1376 page->freelist = start; 1377 page->inuse = page->objects; 1378 page->frozen = 1; 1379 out: 1380 return page; 1381 } 1382 1383 static void __free_slab(struct kmem_cache *s, struct page *page) 1384 { 1385 int order = compound_order(page); 1386 int pages = 1 << order; 1387 1388 if (kmem_cache_debug(s)) { 1389 void *p; 1390 1391 slab_pad_check(s, page); 1392 for_each_object(p, s, page_address(page), 1393 page->objects) 1394 check_object(s, page, p, SLUB_RED_INACTIVE); 1395 } 1396 1397 kmemcheck_free_shadow(page, compound_order(page)); 1398 1399 mod_zone_page_state(page_zone(page), 1400 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1401 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1402 -pages); 1403 1404 __ClearPageSlabPfmemalloc(page); 1405 __ClearPageSlab(page); 1406 reset_page_mapcount(page); 1407 if (current->reclaim_state) 1408 current->reclaim_state->reclaimed_slab += pages; 1409 __free_pages(page, order); 1410 } 1411 1412 #define need_reserve_slab_rcu \ 1413 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1414 1415 static void rcu_free_slab(struct rcu_head *h) 1416 { 1417 struct page *page; 1418 1419 if (need_reserve_slab_rcu) 1420 page = virt_to_head_page(h); 1421 else 1422 page = container_of((struct list_head *)h, struct page, lru); 1423 1424 __free_slab(page->slab, page); 1425 } 1426 1427 static void free_slab(struct kmem_cache *s, struct page *page) 1428 { 1429 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1430 struct rcu_head *head; 1431 1432 if (need_reserve_slab_rcu) { 1433 int order = compound_order(page); 1434 int offset = (PAGE_SIZE << order) - s->reserved; 1435 1436 VM_BUG_ON(s->reserved != sizeof(*head)); 1437 head = page_address(page) + offset; 1438 } else { 1439 /* 1440 * RCU free overloads the RCU head over the LRU 1441 */ 1442 head = (void *)&page->lru; 1443 } 1444 1445 call_rcu(head, rcu_free_slab); 1446 } else 1447 __free_slab(s, page); 1448 } 1449 1450 static void discard_slab(struct kmem_cache *s, struct page *page) 1451 { 1452 dec_slabs_node(s, page_to_nid(page), page->objects); 1453 free_slab(s, page); 1454 } 1455 1456 /* 1457 * Management of partially allocated slabs. 1458 * 1459 * list_lock must be held. 1460 */ 1461 static inline void add_partial(struct kmem_cache_node *n, 1462 struct page *page, int tail) 1463 { 1464 n->nr_partial++; 1465 if (tail == DEACTIVATE_TO_TAIL) 1466 list_add_tail(&page->lru, &n->partial); 1467 else 1468 list_add(&page->lru, &n->partial); 1469 } 1470 1471 /* 1472 * list_lock must be held. 1473 */ 1474 static inline void remove_partial(struct kmem_cache_node *n, 1475 struct page *page) 1476 { 1477 list_del(&page->lru); 1478 n->nr_partial--; 1479 } 1480 1481 /* 1482 * Remove slab from the partial list, freeze it and 1483 * return the pointer to the freelist. 1484 * 1485 * Returns a list of objects or NULL if it fails. 1486 * 1487 * Must hold list_lock since we modify the partial list. 1488 */ 1489 static inline void *acquire_slab(struct kmem_cache *s, 1490 struct kmem_cache_node *n, struct page *page, 1491 int mode) 1492 { 1493 void *freelist; 1494 unsigned long counters; 1495 struct page new; 1496 1497 /* 1498 * Zap the freelist and set the frozen bit. 1499 * The old freelist is the list of objects for the 1500 * per cpu allocation list. 1501 */ 1502 freelist = page->freelist; 1503 counters = page->counters; 1504 new.counters = counters; 1505 if (mode) { 1506 new.inuse = page->objects; 1507 new.freelist = NULL; 1508 } else { 1509 new.freelist = freelist; 1510 } 1511 1512 VM_BUG_ON(new.frozen); 1513 new.frozen = 1; 1514 1515 if (!__cmpxchg_double_slab(s, page, 1516 freelist, counters, 1517 new.freelist, new.counters, 1518 "acquire_slab")) 1519 return NULL; 1520 1521 remove_partial(n, page); 1522 WARN_ON(!freelist); 1523 return freelist; 1524 } 1525 1526 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1527 1528 /* 1529 * Try to allocate a partial slab from a specific node. 1530 */ 1531 static void *get_partial_node(struct kmem_cache *s, 1532 struct kmem_cache_node *n, struct kmem_cache_cpu *c) 1533 { 1534 struct page *page, *page2; 1535 void *object = NULL; 1536 1537 /* 1538 * Racy check. If we mistakenly see no partial slabs then we 1539 * just allocate an empty slab. If we mistakenly try to get a 1540 * partial slab and there is none available then get_partials() 1541 * will return NULL. 1542 */ 1543 if (!n || !n->nr_partial) 1544 return NULL; 1545 1546 spin_lock(&n->list_lock); 1547 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1548 void *t = acquire_slab(s, n, page, object == NULL); 1549 int available; 1550 1551 if (!t) 1552 break; 1553 1554 if (!object) { 1555 c->page = page; 1556 stat(s, ALLOC_FROM_PARTIAL); 1557 object = t; 1558 available = page->objects - page->inuse; 1559 } else { 1560 available = put_cpu_partial(s, page, 0); 1561 stat(s, CPU_PARTIAL_NODE); 1562 } 1563 if (kmem_cache_debug(s) || available > s->cpu_partial / 2) 1564 break; 1565 1566 } 1567 spin_unlock(&n->list_lock); 1568 return object; 1569 } 1570 1571 /* 1572 * Get a page from somewhere. Search in increasing NUMA distances. 1573 */ 1574 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1575 struct kmem_cache_cpu *c) 1576 { 1577 #ifdef CONFIG_NUMA 1578 struct zonelist *zonelist; 1579 struct zoneref *z; 1580 struct zone *zone; 1581 enum zone_type high_zoneidx = gfp_zone(flags); 1582 void *object; 1583 unsigned int cpuset_mems_cookie; 1584 1585 /* 1586 * The defrag ratio allows a configuration of the tradeoffs between 1587 * inter node defragmentation and node local allocations. A lower 1588 * defrag_ratio increases the tendency to do local allocations 1589 * instead of attempting to obtain partial slabs from other nodes. 1590 * 1591 * If the defrag_ratio is set to 0 then kmalloc() always 1592 * returns node local objects. If the ratio is higher then kmalloc() 1593 * may return off node objects because partial slabs are obtained 1594 * from other nodes and filled up. 1595 * 1596 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1597 * defrag_ratio = 1000) then every (well almost) allocation will 1598 * first attempt to defrag slab caches on other nodes. This means 1599 * scanning over all nodes to look for partial slabs which may be 1600 * expensive if we do it every time we are trying to find a slab 1601 * with available objects. 1602 */ 1603 if (!s->remote_node_defrag_ratio || 1604 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1605 return NULL; 1606 1607 do { 1608 cpuset_mems_cookie = get_mems_allowed(); 1609 zonelist = node_zonelist(slab_node(), flags); 1610 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1611 struct kmem_cache_node *n; 1612 1613 n = get_node(s, zone_to_nid(zone)); 1614 1615 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1616 n->nr_partial > s->min_partial) { 1617 object = get_partial_node(s, n, c); 1618 if (object) { 1619 /* 1620 * Return the object even if 1621 * put_mems_allowed indicated that 1622 * the cpuset mems_allowed was 1623 * updated in parallel. It's a 1624 * harmless race between the alloc 1625 * and the cpuset update. 1626 */ 1627 put_mems_allowed(cpuset_mems_cookie); 1628 return object; 1629 } 1630 } 1631 } 1632 } while (!put_mems_allowed(cpuset_mems_cookie)); 1633 #endif 1634 return NULL; 1635 } 1636 1637 /* 1638 * Get a partial page, lock it and return it. 1639 */ 1640 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1641 struct kmem_cache_cpu *c) 1642 { 1643 void *object; 1644 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; 1645 1646 object = get_partial_node(s, get_node(s, searchnode), c); 1647 if (object || node != NUMA_NO_NODE) 1648 return object; 1649 1650 return get_any_partial(s, flags, c); 1651 } 1652 1653 #ifdef CONFIG_PREEMPT 1654 /* 1655 * Calculate the next globally unique transaction for disambiguiation 1656 * during cmpxchg. The transactions start with the cpu number and are then 1657 * incremented by CONFIG_NR_CPUS. 1658 */ 1659 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1660 #else 1661 /* 1662 * No preemption supported therefore also no need to check for 1663 * different cpus. 1664 */ 1665 #define TID_STEP 1 1666 #endif 1667 1668 static inline unsigned long next_tid(unsigned long tid) 1669 { 1670 return tid + TID_STEP; 1671 } 1672 1673 static inline unsigned int tid_to_cpu(unsigned long tid) 1674 { 1675 return tid % TID_STEP; 1676 } 1677 1678 static inline unsigned long tid_to_event(unsigned long tid) 1679 { 1680 return tid / TID_STEP; 1681 } 1682 1683 static inline unsigned int init_tid(int cpu) 1684 { 1685 return cpu; 1686 } 1687 1688 static inline void note_cmpxchg_failure(const char *n, 1689 const struct kmem_cache *s, unsigned long tid) 1690 { 1691 #ifdef SLUB_DEBUG_CMPXCHG 1692 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1693 1694 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); 1695 1696 #ifdef CONFIG_PREEMPT 1697 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1698 printk("due to cpu change %d -> %d\n", 1699 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1700 else 1701 #endif 1702 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1703 printk("due to cpu running other code. Event %ld->%ld\n", 1704 tid_to_event(tid), tid_to_event(actual_tid)); 1705 else 1706 printk("for unknown reason: actual=%lx was=%lx target=%lx\n", 1707 actual_tid, tid, next_tid(tid)); 1708 #endif 1709 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1710 } 1711 1712 void init_kmem_cache_cpus(struct kmem_cache *s) 1713 { 1714 int cpu; 1715 1716 for_each_possible_cpu(cpu) 1717 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1718 } 1719 1720 /* 1721 * Remove the cpu slab 1722 */ 1723 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist) 1724 { 1725 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1726 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1727 int lock = 0; 1728 enum slab_modes l = M_NONE, m = M_NONE; 1729 void *nextfree; 1730 int tail = DEACTIVATE_TO_HEAD; 1731 struct page new; 1732 struct page old; 1733 1734 if (page->freelist) { 1735 stat(s, DEACTIVATE_REMOTE_FREES); 1736 tail = DEACTIVATE_TO_TAIL; 1737 } 1738 1739 /* 1740 * Stage one: Free all available per cpu objects back 1741 * to the page freelist while it is still frozen. Leave the 1742 * last one. 1743 * 1744 * There is no need to take the list->lock because the page 1745 * is still frozen. 1746 */ 1747 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1748 void *prior; 1749 unsigned long counters; 1750 1751 do { 1752 prior = page->freelist; 1753 counters = page->counters; 1754 set_freepointer(s, freelist, prior); 1755 new.counters = counters; 1756 new.inuse--; 1757 VM_BUG_ON(!new.frozen); 1758 1759 } while (!__cmpxchg_double_slab(s, page, 1760 prior, counters, 1761 freelist, new.counters, 1762 "drain percpu freelist")); 1763 1764 freelist = nextfree; 1765 } 1766 1767 /* 1768 * Stage two: Ensure that the page is unfrozen while the 1769 * list presence reflects the actual number of objects 1770 * during unfreeze. 1771 * 1772 * We setup the list membership and then perform a cmpxchg 1773 * with the count. If there is a mismatch then the page 1774 * is not unfrozen but the page is on the wrong list. 1775 * 1776 * Then we restart the process which may have to remove 1777 * the page from the list that we just put it on again 1778 * because the number of objects in the slab may have 1779 * changed. 1780 */ 1781 redo: 1782 1783 old.freelist = page->freelist; 1784 old.counters = page->counters; 1785 VM_BUG_ON(!old.frozen); 1786 1787 /* Determine target state of the slab */ 1788 new.counters = old.counters; 1789 if (freelist) { 1790 new.inuse--; 1791 set_freepointer(s, freelist, old.freelist); 1792 new.freelist = freelist; 1793 } else 1794 new.freelist = old.freelist; 1795 1796 new.frozen = 0; 1797 1798 if (!new.inuse && n->nr_partial > s->min_partial) 1799 m = M_FREE; 1800 else if (new.freelist) { 1801 m = M_PARTIAL; 1802 if (!lock) { 1803 lock = 1; 1804 /* 1805 * Taking the spinlock removes the possiblity 1806 * that acquire_slab() will see a slab page that 1807 * is frozen 1808 */ 1809 spin_lock(&n->list_lock); 1810 } 1811 } else { 1812 m = M_FULL; 1813 if (kmem_cache_debug(s) && !lock) { 1814 lock = 1; 1815 /* 1816 * This also ensures that the scanning of full 1817 * slabs from diagnostic functions will not see 1818 * any frozen slabs. 1819 */ 1820 spin_lock(&n->list_lock); 1821 } 1822 } 1823 1824 if (l != m) { 1825 1826 if (l == M_PARTIAL) 1827 1828 remove_partial(n, page); 1829 1830 else if (l == M_FULL) 1831 1832 remove_full(s, page); 1833 1834 if (m == M_PARTIAL) { 1835 1836 add_partial(n, page, tail); 1837 stat(s, tail); 1838 1839 } else if (m == M_FULL) { 1840 1841 stat(s, DEACTIVATE_FULL); 1842 add_full(s, n, page); 1843 1844 } 1845 } 1846 1847 l = m; 1848 if (!__cmpxchg_double_slab(s, page, 1849 old.freelist, old.counters, 1850 new.freelist, new.counters, 1851 "unfreezing slab")) 1852 goto redo; 1853 1854 if (lock) 1855 spin_unlock(&n->list_lock); 1856 1857 if (m == M_FREE) { 1858 stat(s, DEACTIVATE_EMPTY); 1859 discard_slab(s, page); 1860 stat(s, FREE_SLAB); 1861 } 1862 } 1863 1864 /* 1865 * Unfreeze all the cpu partial slabs. 1866 * 1867 * This function must be called with interrupt disabled. 1868 */ 1869 static void unfreeze_partials(struct kmem_cache *s) 1870 { 1871 struct kmem_cache_node *n = NULL, *n2 = NULL; 1872 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab); 1873 struct page *page, *discard_page = NULL; 1874 1875 while ((page = c->partial)) { 1876 struct page new; 1877 struct page old; 1878 1879 c->partial = page->next; 1880 1881 n2 = get_node(s, page_to_nid(page)); 1882 if (n != n2) { 1883 if (n) 1884 spin_unlock(&n->list_lock); 1885 1886 n = n2; 1887 spin_lock(&n->list_lock); 1888 } 1889 1890 do { 1891 1892 old.freelist = page->freelist; 1893 old.counters = page->counters; 1894 VM_BUG_ON(!old.frozen); 1895 1896 new.counters = old.counters; 1897 new.freelist = old.freelist; 1898 1899 new.frozen = 0; 1900 1901 } while (!__cmpxchg_double_slab(s, page, 1902 old.freelist, old.counters, 1903 new.freelist, new.counters, 1904 "unfreezing slab")); 1905 1906 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) { 1907 page->next = discard_page; 1908 discard_page = page; 1909 } else { 1910 add_partial(n, page, DEACTIVATE_TO_TAIL); 1911 stat(s, FREE_ADD_PARTIAL); 1912 } 1913 } 1914 1915 if (n) 1916 spin_unlock(&n->list_lock); 1917 1918 while (discard_page) { 1919 page = discard_page; 1920 discard_page = discard_page->next; 1921 1922 stat(s, DEACTIVATE_EMPTY); 1923 discard_slab(s, page); 1924 stat(s, FREE_SLAB); 1925 } 1926 } 1927 1928 /* 1929 * Put a page that was just frozen (in __slab_free) into a partial page 1930 * slot if available. This is done without interrupts disabled and without 1931 * preemption disabled. The cmpxchg is racy and may put the partial page 1932 * onto a random cpus partial slot. 1933 * 1934 * If we did not find a slot then simply move all the partials to the 1935 * per node partial list. 1936 */ 1937 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 1938 { 1939 struct page *oldpage; 1940 int pages; 1941 int pobjects; 1942 1943 do { 1944 pages = 0; 1945 pobjects = 0; 1946 oldpage = this_cpu_read(s->cpu_slab->partial); 1947 1948 if (oldpage) { 1949 pobjects = oldpage->pobjects; 1950 pages = oldpage->pages; 1951 if (drain && pobjects > s->cpu_partial) { 1952 unsigned long flags; 1953 /* 1954 * partial array is full. Move the existing 1955 * set to the per node partial list. 1956 */ 1957 local_irq_save(flags); 1958 unfreeze_partials(s); 1959 local_irq_restore(flags); 1960 pobjects = 0; 1961 pages = 0; 1962 stat(s, CPU_PARTIAL_DRAIN); 1963 } 1964 } 1965 1966 pages++; 1967 pobjects += page->objects - page->inuse; 1968 1969 page->pages = pages; 1970 page->pobjects = pobjects; 1971 page->next = oldpage; 1972 1973 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); 1974 return pobjects; 1975 } 1976 1977 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1978 { 1979 stat(s, CPUSLAB_FLUSH); 1980 deactivate_slab(s, c->page, c->freelist); 1981 1982 c->tid = next_tid(c->tid); 1983 c->page = NULL; 1984 c->freelist = NULL; 1985 } 1986 1987 /* 1988 * Flush cpu slab. 1989 * 1990 * Called from IPI handler with interrupts disabled. 1991 */ 1992 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1993 { 1994 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 1995 1996 if (likely(c)) { 1997 if (c->page) 1998 flush_slab(s, c); 1999 2000 unfreeze_partials(s); 2001 } 2002 } 2003 2004 static void flush_cpu_slab(void *d) 2005 { 2006 struct kmem_cache *s = d; 2007 2008 __flush_cpu_slab(s, smp_processor_id()); 2009 } 2010 2011 static bool has_cpu_slab(int cpu, void *info) 2012 { 2013 struct kmem_cache *s = info; 2014 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2015 2016 return c->page || c->partial; 2017 } 2018 2019 static void flush_all(struct kmem_cache *s) 2020 { 2021 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2022 } 2023 2024 /* 2025 * Check if the objects in a per cpu structure fit numa 2026 * locality expectations. 2027 */ 2028 static inline int node_match(struct page *page, int node) 2029 { 2030 #ifdef CONFIG_NUMA 2031 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2032 return 0; 2033 #endif 2034 return 1; 2035 } 2036 2037 static int count_free(struct page *page) 2038 { 2039 return page->objects - page->inuse; 2040 } 2041 2042 static unsigned long count_partial(struct kmem_cache_node *n, 2043 int (*get_count)(struct page *)) 2044 { 2045 unsigned long flags; 2046 unsigned long x = 0; 2047 struct page *page; 2048 2049 spin_lock_irqsave(&n->list_lock, flags); 2050 list_for_each_entry(page, &n->partial, lru) 2051 x += get_count(page); 2052 spin_unlock_irqrestore(&n->list_lock, flags); 2053 return x; 2054 } 2055 2056 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2057 { 2058 #ifdef CONFIG_SLUB_DEBUG 2059 return atomic_long_read(&n->total_objects); 2060 #else 2061 return 0; 2062 #endif 2063 } 2064 2065 static noinline void 2066 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2067 { 2068 int node; 2069 2070 printk(KERN_WARNING 2071 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2072 nid, gfpflags); 2073 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 2074 "default order: %d, min order: %d\n", s->name, s->object_size, 2075 s->size, oo_order(s->oo), oo_order(s->min)); 2076 2077 if (oo_order(s->min) > get_order(s->object_size)) 2078 printk(KERN_WARNING " %s debugging increased min order, use " 2079 "slub_debug=O to disable.\n", s->name); 2080 2081 for_each_online_node(node) { 2082 struct kmem_cache_node *n = get_node(s, node); 2083 unsigned long nr_slabs; 2084 unsigned long nr_objs; 2085 unsigned long nr_free; 2086 2087 if (!n) 2088 continue; 2089 2090 nr_free = count_partial(n, count_free); 2091 nr_slabs = node_nr_slabs(n); 2092 nr_objs = node_nr_objs(n); 2093 2094 printk(KERN_WARNING 2095 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 2096 node, nr_slabs, nr_objs, nr_free); 2097 } 2098 } 2099 2100 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2101 int node, struct kmem_cache_cpu **pc) 2102 { 2103 void *freelist; 2104 struct kmem_cache_cpu *c = *pc; 2105 struct page *page; 2106 2107 freelist = get_partial(s, flags, node, c); 2108 2109 if (freelist) 2110 return freelist; 2111 2112 page = new_slab(s, flags, node); 2113 if (page) { 2114 c = __this_cpu_ptr(s->cpu_slab); 2115 if (c->page) 2116 flush_slab(s, c); 2117 2118 /* 2119 * No other reference to the page yet so we can 2120 * muck around with it freely without cmpxchg 2121 */ 2122 freelist = page->freelist; 2123 page->freelist = NULL; 2124 2125 stat(s, ALLOC_SLAB); 2126 c->page = page; 2127 *pc = c; 2128 } else 2129 freelist = NULL; 2130 2131 return freelist; 2132 } 2133 2134 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2135 { 2136 if (unlikely(PageSlabPfmemalloc(page))) 2137 return gfp_pfmemalloc_allowed(gfpflags); 2138 2139 return true; 2140 } 2141 2142 /* 2143 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist 2144 * or deactivate the page. 2145 * 2146 * The page is still frozen if the return value is not NULL. 2147 * 2148 * If this function returns NULL then the page has been unfrozen. 2149 * 2150 * This function must be called with interrupt disabled. 2151 */ 2152 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2153 { 2154 struct page new; 2155 unsigned long counters; 2156 void *freelist; 2157 2158 do { 2159 freelist = page->freelist; 2160 counters = page->counters; 2161 2162 new.counters = counters; 2163 VM_BUG_ON(!new.frozen); 2164 2165 new.inuse = page->objects; 2166 new.frozen = freelist != NULL; 2167 2168 } while (!__cmpxchg_double_slab(s, page, 2169 freelist, counters, 2170 NULL, new.counters, 2171 "get_freelist")); 2172 2173 return freelist; 2174 } 2175 2176 /* 2177 * Slow path. The lockless freelist is empty or we need to perform 2178 * debugging duties. 2179 * 2180 * Processing is still very fast if new objects have been freed to the 2181 * regular freelist. In that case we simply take over the regular freelist 2182 * as the lockless freelist and zap the regular freelist. 2183 * 2184 * If that is not working then we fall back to the partial lists. We take the 2185 * first element of the freelist as the object to allocate now and move the 2186 * rest of the freelist to the lockless freelist. 2187 * 2188 * And if we were unable to get a new slab from the partial slab lists then 2189 * we need to allocate a new slab. This is the slowest path since it involves 2190 * a call to the page allocator and the setup of a new slab. 2191 */ 2192 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2193 unsigned long addr, struct kmem_cache_cpu *c) 2194 { 2195 void *freelist; 2196 struct page *page; 2197 unsigned long flags; 2198 2199 local_irq_save(flags); 2200 #ifdef CONFIG_PREEMPT 2201 /* 2202 * We may have been preempted and rescheduled on a different 2203 * cpu before disabling interrupts. Need to reload cpu area 2204 * pointer. 2205 */ 2206 c = this_cpu_ptr(s->cpu_slab); 2207 #endif 2208 2209 page = c->page; 2210 if (!page) 2211 goto new_slab; 2212 redo: 2213 2214 if (unlikely(!node_match(page, node))) { 2215 stat(s, ALLOC_NODE_MISMATCH); 2216 deactivate_slab(s, page, c->freelist); 2217 c->page = NULL; 2218 c->freelist = NULL; 2219 goto new_slab; 2220 } 2221 2222 /* 2223 * By rights, we should be searching for a slab page that was 2224 * PFMEMALLOC but right now, we are losing the pfmemalloc 2225 * information when the page leaves the per-cpu allocator 2226 */ 2227 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2228 deactivate_slab(s, page, c->freelist); 2229 c->page = NULL; 2230 c->freelist = NULL; 2231 goto new_slab; 2232 } 2233 2234 /* must check again c->freelist in case of cpu migration or IRQ */ 2235 freelist = c->freelist; 2236 if (freelist) 2237 goto load_freelist; 2238 2239 stat(s, ALLOC_SLOWPATH); 2240 2241 freelist = get_freelist(s, page); 2242 2243 if (!freelist) { 2244 c->page = NULL; 2245 stat(s, DEACTIVATE_BYPASS); 2246 goto new_slab; 2247 } 2248 2249 stat(s, ALLOC_REFILL); 2250 2251 load_freelist: 2252 /* 2253 * freelist is pointing to the list of objects to be used. 2254 * page is pointing to the page from which the objects are obtained. 2255 * That page must be frozen for per cpu allocations to work. 2256 */ 2257 VM_BUG_ON(!c->page->frozen); 2258 c->freelist = get_freepointer(s, freelist); 2259 c->tid = next_tid(c->tid); 2260 local_irq_restore(flags); 2261 return freelist; 2262 2263 new_slab: 2264 2265 if (c->partial) { 2266 page = c->page = c->partial; 2267 c->partial = page->next; 2268 stat(s, CPU_PARTIAL_ALLOC); 2269 c->freelist = NULL; 2270 goto redo; 2271 } 2272 2273 freelist = new_slab_objects(s, gfpflags, node, &c); 2274 2275 if (unlikely(!freelist)) { 2276 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 2277 slab_out_of_memory(s, gfpflags, node); 2278 2279 local_irq_restore(flags); 2280 return NULL; 2281 } 2282 2283 page = c->page; 2284 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2285 goto load_freelist; 2286 2287 /* Only entered in the debug case */ 2288 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr)) 2289 goto new_slab; /* Slab failed checks. Next slab needed */ 2290 2291 deactivate_slab(s, page, get_freepointer(s, freelist)); 2292 c->page = NULL; 2293 c->freelist = NULL; 2294 local_irq_restore(flags); 2295 return freelist; 2296 } 2297 2298 /* 2299 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2300 * have the fastpath folded into their functions. So no function call 2301 * overhead for requests that can be satisfied on the fastpath. 2302 * 2303 * The fastpath works by first checking if the lockless freelist can be used. 2304 * If not then __slab_alloc is called for slow processing. 2305 * 2306 * Otherwise we can simply pick the next object from the lockless free list. 2307 */ 2308 static __always_inline void *slab_alloc(struct kmem_cache *s, 2309 gfp_t gfpflags, int node, unsigned long addr) 2310 { 2311 void **object; 2312 struct kmem_cache_cpu *c; 2313 struct page *page; 2314 unsigned long tid; 2315 2316 if (slab_pre_alloc_hook(s, gfpflags)) 2317 return NULL; 2318 2319 redo: 2320 2321 /* 2322 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2323 * enabled. We may switch back and forth between cpus while 2324 * reading from one cpu area. That does not matter as long 2325 * as we end up on the original cpu again when doing the cmpxchg. 2326 */ 2327 c = __this_cpu_ptr(s->cpu_slab); 2328 2329 /* 2330 * The transaction ids are globally unique per cpu and per operation on 2331 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2332 * occurs on the right processor and that there was no operation on the 2333 * linked list in between. 2334 */ 2335 tid = c->tid; 2336 barrier(); 2337 2338 object = c->freelist; 2339 page = c->page; 2340 if (unlikely(!object || !node_match(page, node))) 2341 object = __slab_alloc(s, gfpflags, node, addr, c); 2342 2343 else { 2344 void *next_object = get_freepointer_safe(s, object); 2345 2346 /* 2347 * The cmpxchg will only match if there was no additional 2348 * operation and if we are on the right processor. 2349 * 2350 * The cmpxchg does the following atomically (without lock semantics!) 2351 * 1. Relocate first pointer to the current per cpu area. 2352 * 2. Verify that tid and freelist have not been changed 2353 * 3. If they were not changed replace tid and freelist 2354 * 2355 * Since this is without lock semantics the protection is only against 2356 * code executing on this cpu *not* from access by other cpus. 2357 */ 2358 if (unlikely(!this_cpu_cmpxchg_double( 2359 s->cpu_slab->freelist, s->cpu_slab->tid, 2360 object, tid, 2361 next_object, next_tid(tid)))) { 2362 2363 note_cmpxchg_failure("slab_alloc", s, tid); 2364 goto redo; 2365 } 2366 prefetch_freepointer(s, next_object); 2367 stat(s, ALLOC_FASTPATH); 2368 } 2369 2370 if (unlikely(gfpflags & __GFP_ZERO) && object) 2371 memset(object, 0, s->object_size); 2372 2373 slab_post_alloc_hook(s, gfpflags, object); 2374 2375 return object; 2376 } 2377 2378 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2379 { 2380 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); 2381 2382 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags); 2383 2384 return ret; 2385 } 2386 EXPORT_SYMBOL(kmem_cache_alloc); 2387 2388 #ifdef CONFIG_TRACING 2389 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2390 { 2391 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); 2392 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2393 return ret; 2394 } 2395 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2396 2397 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 2398 { 2399 void *ret = kmalloc_order(size, flags, order); 2400 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 2401 return ret; 2402 } 2403 EXPORT_SYMBOL(kmalloc_order_trace); 2404 #endif 2405 2406 #ifdef CONFIG_NUMA 2407 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2408 { 2409 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 2410 2411 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2412 s->object_size, s->size, gfpflags, node); 2413 2414 return ret; 2415 } 2416 EXPORT_SYMBOL(kmem_cache_alloc_node); 2417 2418 #ifdef CONFIG_TRACING 2419 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2420 gfp_t gfpflags, 2421 int node, size_t size) 2422 { 2423 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 2424 2425 trace_kmalloc_node(_RET_IP_, ret, 2426 size, s->size, gfpflags, node); 2427 return ret; 2428 } 2429 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2430 #endif 2431 #endif 2432 2433 /* 2434 * Slow patch handling. This may still be called frequently since objects 2435 * have a longer lifetime than the cpu slabs in most processing loads. 2436 * 2437 * So we still attempt to reduce cache line usage. Just take the slab 2438 * lock and free the item. If there is no additional partial page 2439 * handling required then we can return immediately. 2440 */ 2441 static void __slab_free(struct kmem_cache *s, struct page *page, 2442 void *x, unsigned long addr) 2443 { 2444 void *prior; 2445 void **object = (void *)x; 2446 int was_frozen; 2447 int inuse; 2448 struct page new; 2449 unsigned long counters; 2450 struct kmem_cache_node *n = NULL; 2451 unsigned long uninitialized_var(flags); 2452 2453 stat(s, FREE_SLOWPATH); 2454 2455 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr)) 2456 return; 2457 2458 do { 2459 prior = page->freelist; 2460 counters = page->counters; 2461 set_freepointer(s, object, prior); 2462 new.counters = counters; 2463 was_frozen = new.frozen; 2464 new.inuse--; 2465 if ((!new.inuse || !prior) && !was_frozen && !n) { 2466 2467 if (!kmem_cache_debug(s) && !prior) 2468 2469 /* 2470 * Slab was on no list before and will be partially empty 2471 * We can defer the list move and instead freeze it. 2472 */ 2473 new.frozen = 1; 2474 2475 else { /* Needs to be taken off a list */ 2476 2477 n = get_node(s, page_to_nid(page)); 2478 /* 2479 * Speculatively acquire the list_lock. 2480 * If the cmpxchg does not succeed then we may 2481 * drop the list_lock without any processing. 2482 * 2483 * Otherwise the list_lock will synchronize with 2484 * other processors updating the list of slabs. 2485 */ 2486 spin_lock_irqsave(&n->list_lock, flags); 2487 2488 } 2489 } 2490 inuse = new.inuse; 2491 2492 } while (!cmpxchg_double_slab(s, page, 2493 prior, counters, 2494 object, new.counters, 2495 "__slab_free")); 2496 2497 if (likely(!n)) { 2498 2499 /* 2500 * If we just froze the page then put it onto the 2501 * per cpu partial list. 2502 */ 2503 if (new.frozen && !was_frozen) { 2504 put_cpu_partial(s, page, 1); 2505 stat(s, CPU_PARTIAL_FREE); 2506 } 2507 /* 2508 * The list lock was not taken therefore no list 2509 * activity can be necessary. 2510 */ 2511 if (was_frozen) 2512 stat(s, FREE_FROZEN); 2513 return; 2514 } 2515 2516 /* 2517 * was_frozen may have been set after we acquired the list_lock in 2518 * an earlier loop. So we need to check it here again. 2519 */ 2520 if (was_frozen) 2521 stat(s, FREE_FROZEN); 2522 else { 2523 if (unlikely(!inuse && n->nr_partial > s->min_partial)) 2524 goto slab_empty; 2525 2526 /* 2527 * Objects left in the slab. If it was not on the partial list before 2528 * then add it. 2529 */ 2530 if (unlikely(!prior)) { 2531 remove_full(s, page); 2532 add_partial(n, page, DEACTIVATE_TO_TAIL); 2533 stat(s, FREE_ADD_PARTIAL); 2534 } 2535 } 2536 spin_unlock_irqrestore(&n->list_lock, flags); 2537 return; 2538 2539 slab_empty: 2540 if (prior) { 2541 /* 2542 * Slab on the partial list. 2543 */ 2544 remove_partial(n, page); 2545 stat(s, FREE_REMOVE_PARTIAL); 2546 } else 2547 /* Slab must be on the full list */ 2548 remove_full(s, page); 2549 2550 spin_unlock_irqrestore(&n->list_lock, flags); 2551 stat(s, FREE_SLAB); 2552 discard_slab(s, page); 2553 } 2554 2555 /* 2556 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2557 * can perform fastpath freeing without additional function calls. 2558 * 2559 * The fastpath is only possible if we are freeing to the current cpu slab 2560 * of this processor. This typically the case if we have just allocated 2561 * the item before. 2562 * 2563 * If fastpath is not possible then fall back to __slab_free where we deal 2564 * with all sorts of special processing. 2565 */ 2566 static __always_inline void slab_free(struct kmem_cache *s, 2567 struct page *page, void *x, unsigned long addr) 2568 { 2569 void **object = (void *)x; 2570 struct kmem_cache_cpu *c; 2571 unsigned long tid; 2572 2573 slab_free_hook(s, x); 2574 2575 redo: 2576 /* 2577 * Determine the currently cpus per cpu slab. 2578 * The cpu may change afterward. However that does not matter since 2579 * data is retrieved via this pointer. If we are on the same cpu 2580 * during the cmpxchg then the free will succedd. 2581 */ 2582 c = __this_cpu_ptr(s->cpu_slab); 2583 2584 tid = c->tid; 2585 barrier(); 2586 2587 if (likely(page == c->page)) { 2588 set_freepointer(s, object, c->freelist); 2589 2590 if (unlikely(!this_cpu_cmpxchg_double( 2591 s->cpu_slab->freelist, s->cpu_slab->tid, 2592 c->freelist, tid, 2593 object, next_tid(tid)))) { 2594 2595 note_cmpxchg_failure("slab_free", s, tid); 2596 goto redo; 2597 } 2598 stat(s, FREE_FASTPATH); 2599 } else 2600 __slab_free(s, page, x, addr); 2601 2602 } 2603 2604 void kmem_cache_free(struct kmem_cache *s, void *x) 2605 { 2606 struct page *page; 2607 2608 page = virt_to_head_page(x); 2609 2610 slab_free(s, page, x, _RET_IP_); 2611 2612 trace_kmem_cache_free(_RET_IP_, x); 2613 } 2614 EXPORT_SYMBOL(kmem_cache_free); 2615 2616 /* 2617 * Object placement in a slab is made very easy because we always start at 2618 * offset 0. If we tune the size of the object to the alignment then we can 2619 * get the required alignment by putting one properly sized object after 2620 * another. 2621 * 2622 * Notice that the allocation order determines the sizes of the per cpu 2623 * caches. Each processor has always one slab available for allocations. 2624 * Increasing the allocation order reduces the number of times that slabs 2625 * must be moved on and off the partial lists and is therefore a factor in 2626 * locking overhead. 2627 */ 2628 2629 /* 2630 * Mininum / Maximum order of slab pages. This influences locking overhead 2631 * and slab fragmentation. A higher order reduces the number of partial slabs 2632 * and increases the number of allocations possible without having to 2633 * take the list_lock. 2634 */ 2635 static int slub_min_order; 2636 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2637 static int slub_min_objects; 2638 2639 /* 2640 * Merge control. If this is set then no merging of slab caches will occur. 2641 * (Could be removed. This was introduced to pacify the merge skeptics.) 2642 */ 2643 static int slub_nomerge; 2644 2645 /* 2646 * Calculate the order of allocation given an slab object size. 2647 * 2648 * The order of allocation has significant impact on performance and other 2649 * system components. Generally order 0 allocations should be preferred since 2650 * order 0 does not cause fragmentation in the page allocator. Larger objects 2651 * be problematic to put into order 0 slabs because there may be too much 2652 * unused space left. We go to a higher order if more than 1/16th of the slab 2653 * would be wasted. 2654 * 2655 * In order to reach satisfactory performance we must ensure that a minimum 2656 * number of objects is in one slab. Otherwise we may generate too much 2657 * activity on the partial lists which requires taking the list_lock. This is 2658 * less a concern for large slabs though which are rarely used. 2659 * 2660 * slub_max_order specifies the order where we begin to stop considering the 2661 * number of objects in a slab as critical. If we reach slub_max_order then 2662 * we try to keep the page order as low as possible. So we accept more waste 2663 * of space in favor of a small page order. 2664 * 2665 * Higher order allocations also allow the placement of more objects in a 2666 * slab and thereby reduce object handling overhead. If the user has 2667 * requested a higher mininum order then we start with that one instead of 2668 * the smallest order which will fit the object. 2669 */ 2670 static inline int slab_order(int size, int min_objects, 2671 int max_order, int fract_leftover, int reserved) 2672 { 2673 int order; 2674 int rem; 2675 int min_order = slub_min_order; 2676 2677 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2678 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2679 2680 for (order = max(min_order, 2681 fls(min_objects * size - 1) - PAGE_SHIFT); 2682 order <= max_order; order++) { 2683 2684 unsigned long slab_size = PAGE_SIZE << order; 2685 2686 if (slab_size < min_objects * size + reserved) 2687 continue; 2688 2689 rem = (slab_size - reserved) % size; 2690 2691 if (rem <= slab_size / fract_leftover) 2692 break; 2693 2694 } 2695 2696 return order; 2697 } 2698 2699 static inline int calculate_order(int size, int reserved) 2700 { 2701 int order; 2702 int min_objects; 2703 int fraction; 2704 int max_objects; 2705 2706 /* 2707 * Attempt to find best configuration for a slab. This 2708 * works by first attempting to generate a layout with 2709 * the best configuration and backing off gradually. 2710 * 2711 * First we reduce the acceptable waste in a slab. Then 2712 * we reduce the minimum objects required in a slab. 2713 */ 2714 min_objects = slub_min_objects; 2715 if (!min_objects) 2716 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2717 max_objects = order_objects(slub_max_order, size, reserved); 2718 min_objects = min(min_objects, max_objects); 2719 2720 while (min_objects > 1) { 2721 fraction = 16; 2722 while (fraction >= 4) { 2723 order = slab_order(size, min_objects, 2724 slub_max_order, fraction, reserved); 2725 if (order <= slub_max_order) 2726 return order; 2727 fraction /= 2; 2728 } 2729 min_objects--; 2730 } 2731 2732 /* 2733 * We were unable to place multiple objects in a slab. Now 2734 * lets see if we can place a single object there. 2735 */ 2736 order = slab_order(size, 1, slub_max_order, 1, reserved); 2737 if (order <= slub_max_order) 2738 return order; 2739 2740 /* 2741 * Doh this slab cannot be placed using slub_max_order. 2742 */ 2743 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2744 if (order < MAX_ORDER) 2745 return order; 2746 return -ENOSYS; 2747 } 2748 2749 /* 2750 * Figure out what the alignment of the objects will be. 2751 */ 2752 static unsigned long calculate_alignment(unsigned long flags, 2753 unsigned long align, unsigned long size) 2754 { 2755 /* 2756 * If the user wants hardware cache aligned objects then follow that 2757 * suggestion if the object is sufficiently large. 2758 * 2759 * The hardware cache alignment cannot override the specified 2760 * alignment though. If that is greater then use it. 2761 */ 2762 if (flags & SLAB_HWCACHE_ALIGN) { 2763 unsigned long ralign = cache_line_size(); 2764 while (size <= ralign / 2) 2765 ralign /= 2; 2766 align = max(align, ralign); 2767 } 2768 2769 if (align < ARCH_SLAB_MINALIGN) 2770 align = ARCH_SLAB_MINALIGN; 2771 2772 return ALIGN(align, sizeof(void *)); 2773 } 2774 2775 static void 2776 init_kmem_cache_node(struct kmem_cache_node *n) 2777 { 2778 n->nr_partial = 0; 2779 spin_lock_init(&n->list_lock); 2780 INIT_LIST_HEAD(&n->partial); 2781 #ifdef CONFIG_SLUB_DEBUG 2782 atomic_long_set(&n->nr_slabs, 0); 2783 atomic_long_set(&n->total_objects, 0); 2784 INIT_LIST_HEAD(&n->full); 2785 #endif 2786 } 2787 2788 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2789 { 2790 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2791 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu)); 2792 2793 /* 2794 * Must align to double word boundary for the double cmpxchg 2795 * instructions to work; see __pcpu_double_call_return_bool(). 2796 */ 2797 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2798 2 * sizeof(void *)); 2799 2800 if (!s->cpu_slab) 2801 return 0; 2802 2803 init_kmem_cache_cpus(s); 2804 2805 return 1; 2806 } 2807 2808 static struct kmem_cache *kmem_cache_node; 2809 2810 /* 2811 * No kmalloc_node yet so do it by hand. We know that this is the first 2812 * slab on the node for this slabcache. There are no concurrent accesses 2813 * possible. 2814 * 2815 * Note that this function only works on the kmalloc_node_cache 2816 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2817 * memory on a fresh node that has no slab structures yet. 2818 */ 2819 static void early_kmem_cache_node_alloc(int node) 2820 { 2821 struct page *page; 2822 struct kmem_cache_node *n; 2823 2824 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2825 2826 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2827 2828 BUG_ON(!page); 2829 if (page_to_nid(page) != node) { 2830 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2831 "node %d\n", node); 2832 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2833 "in order to be able to continue\n"); 2834 } 2835 2836 n = page->freelist; 2837 BUG_ON(!n); 2838 page->freelist = get_freepointer(kmem_cache_node, n); 2839 page->inuse = 1; 2840 page->frozen = 0; 2841 kmem_cache_node->node[node] = n; 2842 #ifdef CONFIG_SLUB_DEBUG 2843 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2844 init_tracking(kmem_cache_node, n); 2845 #endif 2846 init_kmem_cache_node(n); 2847 inc_slabs_node(kmem_cache_node, node, page->objects); 2848 2849 add_partial(n, page, DEACTIVATE_TO_HEAD); 2850 } 2851 2852 static void free_kmem_cache_nodes(struct kmem_cache *s) 2853 { 2854 int node; 2855 2856 for_each_node_state(node, N_NORMAL_MEMORY) { 2857 struct kmem_cache_node *n = s->node[node]; 2858 2859 if (n) 2860 kmem_cache_free(kmem_cache_node, n); 2861 2862 s->node[node] = NULL; 2863 } 2864 } 2865 2866 static int init_kmem_cache_nodes(struct kmem_cache *s) 2867 { 2868 int node; 2869 2870 for_each_node_state(node, N_NORMAL_MEMORY) { 2871 struct kmem_cache_node *n; 2872 2873 if (slab_state == DOWN) { 2874 early_kmem_cache_node_alloc(node); 2875 continue; 2876 } 2877 n = kmem_cache_alloc_node(kmem_cache_node, 2878 GFP_KERNEL, node); 2879 2880 if (!n) { 2881 free_kmem_cache_nodes(s); 2882 return 0; 2883 } 2884 2885 s->node[node] = n; 2886 init_kmem_cache_node(n); 2887 } 2888 return 1; 2889 } 2890 2891 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2892 { 2893 if (min < MIN_PARTIAL) 2894 min = MIN_PARTIAL; 2895 else if (min > MAX_PARTIAL) 2896 min = MAX_PARTIAL; 2897 s->min_partial = min; 2898 } 2899 2900 /* 2901 * calculate_sizes() determines the order and the distribution of data within 2902 * a slab object. 2903 */ 2904 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2905 { 2906 unsigned long flags = s->flags; 2907 unsigned long size = s->object_size; 2908 unsigned long align = s->align; 2909 int order; 2910 2911 /* 2912 * Round up object size to the next word boundary. We can only 2913 * place the free pointer at word boundaries and this determines 2914 * the possible location of the free pointer. 2915 */ 2916 size = ALIGN(size, sizeof(void *)); 2917 2918 #ifdef CONFIG_SLUB_DEBUG 2919 /* 2920 * Determine if we can poison the object itself. If the user of 2921 * the slab may touch the object after free or before allocation 2922 * then we should never poison the object itself. 2923 */ 2924 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2925 !s->ctor) 2926 s->flags |= __OBJECT_POISON; 2927 else 2928 s->flags &= ~__OBJECT_POISON; 2929 2930 2931 /* 2932 * If we are Redzoning then check if there is some space between the 2933 * end of the object and the free pointer. If not then add an 2934 * additional word to have some bytes to store Redzone information. 2935 */ 2936 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 2937 size += sizeof(void *); 2938 #endif 2939 2940 /* 2941 * With that we have determined the number of bytes in actual use 2942 * by the object. This is the potential offset to the free pointer. 2943 */ 2944 s->inuse = size; 2945 2946 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2947 s->ctor)) { 2948 /* 2949 * Relocate free pointer after the object if it is not 2950 * permitted to overwrite the first word of the object on 2951 * kmem_cache_free. 2952 * 2953 * This is the case if we do RCU, have a constructor or 2954 * destructor or are poisoning the objects. 2955 */ 2956 s->offset = size; 2957 size += sizeof(void *); 2958 } 2959 2960 #ifdef CONFIG_SLUB_DEBUG 2961 if (flags & SLAB_STORE_USER) 2962 /* 2963 * Need to store information about allocs and frees after 2964 * the object. 2965 */ 2966 size += 2 * sizeof(struct track); 2967 2968 if (flags & SLAB_RED_ZONE) 2969 /* 2970 * Add some empty padding so that we can catch 2971 * overwrites from earlier objects rather than let 2972 * tracking information or the free pointer be 2973 * corrupted if a user writes before the start 2974 * of the object. 2975 */ 2976 size += sizeof(void *); 2977 #endif 2978 2979 /* 2980 * Determine the alignment based on various parameters that the 2981 * user specified and the dynamic determination of cache line size 2982 * on bootup. 2983 */ 2984 align = calculate_alignment(flags, align, s->object_size); 2985 s->align = align; 2986 2987 /* 2988 * SLUB stores one object immediately after another beginning from 2989 * offset 0. In order to align the objects we have to simply size 2990 * each object to conform to the alignment. 2991 */ 2992 size = ALIGN(size, align); 2993 s->size = size; 2994 if (forced_order >= 0) 2995 order = forced_order; 2996 else 2997 order = calculate_order(size, s->reserved); 2998 2999 if (order < 0) 3000 return 0; 3001 3002 s->allocflags = 0; 3003 if (order) 3004 s->allocflags |= __GFP_COMP; 3005 3006 if (s->flags & SLAB_CACHE_DMA) 3007 s->allocflags |= SLUB_DMA; 3008 3009 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3010 s->allocflags |= __GFP_RECLAIMABLE; 3011 3012 /* 3013 * Determine the number of objects per slab 3014 */ 3015 s->oo = oo_make(order, size, s->reserved); 3016 s->min = oo_make(get_order(size), size, s->reserved); 3017 if (oo_objects(s->oo) > oo_objects(s->max)) 3018 s->max = s->oo; 3019 3020 return !!oo_objects(s->oo); 3021 3022 } 3023 3024 static int kmem_cache_open(struct kmem_cache *s, 3025 const char *name, size_t size, 3026 size_t align, unsigned long flags, 3027 void (*ctor)(void *)) 3028 { 3029 memset(s, 0, kmem_size); 3030 s->name = name; 3031 s->ctor = ctor; 3032 s->object_size = size; 3033 s->align = align; 3034 s->flags = kmem_cache_flags(size, flags, name, ctor); 3035 s->reserved = 0; 3036 3037 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3038 s->reserved = sizeof(struct rcu_head); 3039 3040 if (!calculate_sizes(s, -1)) 3041 goto error; 3042 if (disable_higher_order_debug) { 3043 /* 3044 * Disable debugging flags that store metadata if the min slab 3045 * order increased. 3046 */ 3047 if (get_order(s->size) > get_order(s->object_size)) { 3048 s->flags &= ~DEBUG_METADATA_FLAGS; 3049 s->offset = 0; 3050 if (!calculate_sizes(s, -1)) 3051 goto error; 3052 } 3053 } 3054 3055 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3056 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3057 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3058 /* Enable fast mode */ 3059 s->flags |= __CMPXCHG_DOUBLE; 3060 #endif 3061 3062 /* 3063 * The larger the object size is, the more pages we want on the partial 3064 * list to avoid pounding the page allocator excessively. 3065 */ 3066 set_min_partial(s, ilog2(s->size) / 2); 3067 3068 /* 3069 * cpu_partial determined the maximum number of objects kept in the 3070 * per cpu partial lists of a processor. 3071 * 3072 * Per cpu partial lists mainly contain slabs that just have one 3073 * object freed. If they are used for allocation then they can be 3074 * filled up again with minimal effort. The slab will never hit the 3075 * per node partial lists and therefore no locking will be required. 3076 * 3077 * This setting also determines 3078 * 3079 * A) The number of objects from per cpu partial slabs dumped to the 3080 * per node list when we reach the limit. 3081 * B) The number of objects in cpu partial slabs to extract from the 3082 * per node list when we run out of per cpu objects. We only fetch 50% 3083 * to keep some capacity around for frees. 3084 */ 3085 if (kmem_cache_debug(s)) 3086 s->cpu_partial = 0; 3087 else if (s->size >= PAGE_SIZE) 3088 s->cpu_partial = 2; 3089 else if (s->size >= 1024) 3090 s->cpu_partial = 6; 3091 else if (s->size >= 256) 3092 s->cpu_partial = 13; 3093 else 3094 s->cpu_partial = 30; 3095 3096 s->refcount = 1; 3097 #ifdef CONFIG_NUMA 3098 s->remote_node_defrag_ratio = 1000; 3099 #endif 3100 if (!init_kmem_cache_nodes(s)) 3101 goto error; 3102 3103 if (alloc_kmem_cache_cpus(s)) 3104 return 1; 3105 3106 free_kmem_cache_nodes(s); 3107 error: 3108 if (flags & SLAB_PANIC) 3109 panic("Cannot create slab %s size=%lu realsize=%u " 3110 "order=%u offset=%u flags=%lx\n", 3111 s->name, (unsigned long)size, s->size, oo_order(s->oo), 3112 s->offset, flags); 3113 return 0; 3114 } 3115 3116 /* 3117 * Determine the size of a slab object 3118 */ 3119 unsigned int kmem_cache_size(struct kmem_cache *s) 3120 { 3121 return s->object_size; 3122 } 3123 EXPORT_SYMBOL(kmem_cache_size); 3124 3125 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3126 const char *text) 3127 { 3128 #ifdef CONFIG_SLUB_DEBUG 3129 void *addr = page_address(page); 3130 void *p; 3131 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3132 sizeof(long), GFP_ATOMIC); 3133 if (!map) 3134 return; 3135 slab_err(s, page, "%s", text); 3136 slab_lock(page); 3137 3138 get_map(s, page, map); 3139 for_each_object(p, s, addr, page->objects) { 3140 3141 if (!test_bit(slab_index(p, s, addr), map)) { 3142 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 3143 p, p - addr); 3144 print_tracking(s, p); 3145 } 3146 } 3147 slab_unlock(page); 3148 kfree(map); 3149 #endif 3150 } 3151 3152 /* 3153 * Attempt to free all partial slabs on a node. 3154 * This is called from kmem_cache_close(). We must be the last thread 3155 * using the cache and therefore we do not need to lock anymore. 3156 */ 3157 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3158 { 3159 struct page *page, *h; 3160 3161 list_for_each_entry_safe(page, h, &n->partial, lru) { 3162 if (!page->inuse) { 3163 remove_partial(n, page); 3164 discard_slab(s, page); 3165 } else { 3166 list_slab_objects(s, page, 3167 "Objects remaining on kmem_cache_close()"); 3168 } 3169 } 3170 } 3171 3172 /* 3173 * Release all resources used by a slab cache. 3174 */ 3175 static inline int kmem_cache_close(struct kmem_cache *s) 3176 { 3177 int node; 3178 3179 flush_all(s); 3180 free_percpu(s->cpu_slab); 3181 /* Attempt to free all objects */ 3182 for_each_node_state(node, N_NORMAL_MEMORY) { 3183 struct kmem_cache_node *n = get_node(s, node); 3184 3185 free_partial(s, n); 3186 if (n->nr_partial || slabs_node(s, node)) 3187 return 1; 3188 } 3189 free_kmem_cache_nodes(s); 3190 return 0; 3191 } 3192 3193 /* 3194 * Close a cache and release the kmem_cache structure 3195 * (must be used for caches created using kmem_cache_create) 3196 */ 3197 void kmem_cache_destroy(struct kmem_cache *s) 3198 { 3199 mutex_lock(&slab_mutex); 3200 s->refcount--; 3201 if (!s->refcount) { 3202 list_del(&s->list); 3203 mutex_unlock(&slab_mutex); 3204 if (kmem_cache_close(s)) { 3205 printk(KERN_ERR "SLUB %s: %s called for cache that " 3206 "still has objects.\n", s->name, __func__); 3207 dump_stack(); 3208 } 3209 if (s->flags & SLAB_DESTROY_BY_RCU) 3210 rcu_barrier(); 3211 sysfs_slab_remove(s); 3212 } else 3213 mutex_unlock(&slab_mutex); 3214 } 3215 EXPORT_SYMBOL(kmem_cache_destroy); 3216 3217 /******************************************************************** 3218 * Kmalloc subsystem 3219 *******************************************************************/ 3220 3221 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; 3222 EXPORT_SYMBOL(kmalloc_caches); 3223 3224 static struct kmem_cache *kmem_cache; 3225 3226 #ifdef CONFIG_ZONE_DMA 3227 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT]; 3228 #endif 3229 3230 static int __init setup_slub_min_order(char *str) 3231 { 3232 get_option(&str, &slub_min_order); 3233 3234 return 1; 3235 } 3236 3237 __setup("slub_min_order=", setup_slub_min_order); 3238 3239 static int __init setup_slub_max_order(char *str) 3240 { 3241 get_option(&str, &slub_max_order); 3242 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3243 3244 return 1; 3245 } 3246 3247 __setup("slub_max_order=", setup_slub_max_order); 3248 3249 static int __init setup_slub_min_objects(char *str) 3250 { 3251 get_option(&str, &slub_min_objects); 3252 3253 return 1; 3254 } 3255 3256 __setup("slub_min_objects=", setup_slub_min_objects); 3257 3258 static int __init setup_slub_nomerge(char *str) 3259 { 3260 slub_nomerge = 1; 3261 return 1; 3262 } 3263 3264 __setup("slub_nomerge", setup_slub_nomerge); 3265 3266 static struct kmem_cache *__init create_kmalloc_cache(const char *name, 3267 int size, unsigned int flags) 3268 { 3269 struct kmem_cache *s; 3270 3271 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3272 3273 /* 3274 * This function is called with IRQs disabled during early-boot on 3275 * single CPU so there's no need to take slab_mutex here. 3276 */ 3277 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN, 3278 flags, NULL)) 3279 goto panic; 3280 3281 list_add(&s->list, &slab_caches); 3282 return s; 3283 3284 panic: 3285 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 3286 return NULL; 3287 } 3288 3289 /* 3290 * Conversion table for small slabs sizes / 8 to the index in the 3291 * kmalloc array. This is necessary for slabs < 192 since we have non power 3292 * of two cache sizes there. The size of larger slabs can be determined using 3293 * fls. 3294 */ 3295 static s8 size_index[24] = { 3296 3, /* 8 */ 3297 4, /* 16 */ 3298 5, /* 24 */ 3299 5, /* 32 */ 3300 6, /* 40 */ 3301 6, /* 48 */ 3302 6, /* 56 */ 3303 6, /* 64 */ 3304 1, /* 72 */ 3305 1, /* 80 */ 3306 1, /* 88 */ 3307 1, /* 96 */ 3308 7, /* 104 */ 3309 7, /* 112 */ 3310 7, /* 120 */ 3311 7, /* 128 */ 3312 2, /* 136 */ 3313 2, /* 144 */ 3314 2, /* 152 */ 3315 2, /* 160 */ 3316 2, /* 168 */ 3317 2, /* 176 */ 3318 2, /* 184 */ 3319 2 /* 192 */ 3320 }; 3321 3322 static inline int size_index_elem(size_t bytes) 3323 { 3324 return (bytes - 1) / 8; 3325 } 3326 3327 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 3328 { 3329 int index; 3330 3331 if (size <= 192) { 3332 if (!size) 3333 return ZERO_SIZE_PTR; 3334 3335 index = size_index[size_index_elem(size)]; 3336 } else 3337 index = fls(size - 1); 3338 3339 #ifdef CONFIG_ZONE_DMA 3340 if (unlikely((flags & SLUB_DMA))) 3341 return kmalloc_dma_caches[index]; 3342 3343 #endif 3344 return kmalloc_caches[index]; 3345 } 3346 3347 void *__kmalloc(size_t size, gfp_t flags) 3348 { 3349 struct kmem_cache *s; 3350 void *ret; 3351 3352 if (unlikely(size > SLUB_MAX_SIZE)) 3353 return kmalloc_large(size, flags); 3354 3355 s = get_slab(size, flags); 3356 3357 if (unlikely(ZERO_OR_NULL_PTR(s))) 3358 return s; 3359 3360 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_); 3361 3362 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3363 3364 return ret; 3365 } 3366 EXPORT_SYMBOL(__kmalloc); 3367 3368 #ifdef CONFIG_NUMA 3369 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3370 { 3371 struct page *page; 3372 void *ptr = NULL; 3373 3374 flags |= __GFP_COMP | __GFP_NOTRACK; 3375 page = alloc_pages_node(node, flags, get_order(size)); 3376 if (page) 3377 ptr = page_address(page); 3378 3379 kmemleak_alloc(ptr, size, 1, flags); 3380 return ptr; 3381 } 3382 3383 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3384 { 3385 struct kmem_cache *s; 3386 void *ret; 3387 3388 if (unlikely(size > SLUB_MAX_SIZE)) { 3389 ret = kmalloc_large_node(size, flags, node); 3390 3391 trace_kmalloc_node(_RET_IP_, ret, 3392 size, PAGE_SIZE << get_order(size), 3393 flags, node); 3394 3395 return ret; 3396 } 3397 3398 s = get_slab(size, flags); 3399 3400 if (unlikely(ZERO_OR_NULL_PTR(s))) 3401 return s; 3402 3403 ret = slab_alloc(s, flags, node, _RET_IP_); 3404 3405 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3406 3407 return ret; 3408 } 3409 EXPORT_SYMBOL(__kmalloc_node); 3410 #endif 3411 3412 size_t ksize(const void *object) 3413 { 3414 struct page *page; 3415 3416 if (unlikely(object == ZERO_SIZE_PTR)) 3417 return 0; 3418 3419 page = virt_to_head_page(object); 3420 3421 if (unlikely(!PageSlab(page))) { 3422 WARN_ON(!PageCompound(page)); 3423 return PAGE_SIZE << compound_order(page); 3424 } 3425 3426 return slab_ksize(page->slab); 3427 } 3428 EXPORT_SYMBOL(ksize); 3429 3430 #ifdef CONFIG_SLUB_DEBUG 3431 bool verify_mem_not_deleted(const void *x) 3432 { 3433 struct page *page; 3434 void *object = (void *)x; 3435 unsigned long flags; 3436 bool rv; 3437 3438 if (unlikely(ZERO_OR_NULL_PTR(x))) 3439 return false; 3440 3441 local_irq_save(flags); 3442 3443 page = virt_to_head_page(x); 3444 if (unlikely(!PageSlab(page))) { 3445 /* maybe it was from stack? */ 3446 rv = true; 3447 goto out_unlock; 3448 } 3449 3450 slab_lock(page); 3451 if (on_freelist(page->slab, page, object)) { 3452 object_err(page->slab, page, object, "Object is on free-list"); 3453 rv = false; 3454 } else { 3455 rv = true; 3456 } 3457 slab_unlock(page); 3458 3459 out_unlock: 3460 local_irq_restore(flags); 3461 return rv; 3462 } 3463 EXPORT_SYMBOL(verify_mem_not_deleted); 3464 #endif 3465 3466 void kfree(const void *x) 3467 { 3468 struct page *page; 3469 void *object = (void *)x; 3470 3471 trace_kfree(_RET_IP_, x); 3472 3473 if (unlikely(ZERO_OR_NULL_PTR(x))) 3474 return; 3475 3476 page = virt_to_head_page(x); 3477 if (unlikely(!PageSlab(page))) { 3478 BUG_ON(!PageCompound(page)); 3479 kmemleak_free(x); 3480 put_page(page); 3481 return; 3482 } 3483 slab_free(page->slab, page, object, _RET_IP_); 3484 } 3485 EXPORT_SYMBOL(kfree); 3486 3487 /* 3488 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 3489 * the remaining slabs by the number of items in use. The slabs with the 3490 * most items in use come first. New allocations will then fill those up 3491 * and thus they can be removed from the partial lists. 3492 * 3493 * The slabs with the least items are placed last. This results in them 3494 * being allocated from last increasing the chance that the last objects 3495 * are freed in them. 3496 */ 3497 int kmem_cache_shrink(struct kmem_cache *s) 3498 { 3499 int node; 3500 int i; 3501 struct kmem_cache_node *n; 3502 struct page *page; 3503 struct page *t; 3504 int objects = oo_objects(s->max); 3505 struct list_head *slabs_by_inuse = 3506 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 3507 unsigned long flags; 3508 3509 if (!slabs_by_inuse) 3510 return -ENOMEM; 3511 3512 flush_all(s); 3513 for_each_node_state(node, N_NORMAL_MEMORY) { 3514 n = get_node(s, node); 3515 3516 if (!n->nr_partial) 3517 continue; 3518 3519 for (i = 0; i < objects; i++) 3520 INIT_LIST_HEAD(slabs_by_inuse + i); 3521 3522 spin_lock_irqsave(&n->list_lock, flags); 3523 3524 /* 3525 * Build lists indexed by the items in use in each slab. 3526 * 3527 * Note that concurrent frees may occur while we hold the 3528 * list_lock. page->inuse here is the upper limit. 3529 */ 3530 list_for_each_entry_safe(page, t, &n->partial, lru) { 3531 list_move(&page->lru, slabs_by_inuse + page->inuse); 3532 if (!page->inuse) 3533 n->nr_partial--; 3534 } 3535 3536 /* 3537 * Rebuild the partial list with the slabs filled up most 3538 * first and the least used slabs at the end. 3539 */ 3540 for (i = objects - 1; i > 0; i--) 3541 list_splice(slabs_by_inuse + i, n->partial.prev); 3542 3543 spin_unlock_irqrestore(&n->list_lock, flags); 3544 3545 /* Release empty slabs */ 3546 list_for_each_entry_safe(page, t, slabs_by_inuse, lru) 3547 discard_slab(s, page); 3548 } 3549 3550 kfree(slabs_by_inuse); 3551 return 0; 3552 } 3553 EXPORT_SYMBOL(kmem_cache_shrink); 3554 3555 #if defined(CONFIG_MEMORY_HOTPLUG) 3556 static int slab_mem_going_offline_callback(void *arg) 3557 { 3558 struct kmem_cache *s; 3559 3560 mutex_lock(&slab_mutex); 3561 list_for_each_entry(s, &slab_caches, list) 3562 kmem_cache_shrink(s); 3563 mutex_unlock(&slab_mutex); 3564 3565 return 0; 3566 } 3567 3568 static void slab_mem_offline_callback(void *arg) 3569 { 3570 struct kmem_cache_node *n; 3571 struct kmem_cache *s; 3572 struct memory_notify *marg = arg; 3573 int offline_node; 3574 3575 offline_node = marg->status_change_nid; 3576 3577 /* 3578 * If the node still has available memory. we need kmem_cache_node 3579 * for it yet. 3580 */ 3581 if (offline_node < 0) 3582 return; 3583 3584 mutex_lock(&slab_mutex); 3585 list_for_each_entry(s, &slab_caches, list) { 3586 n = get_node(s, offline_node); 3587 if (n) { 3588 /* 3589 * if n->nr_slabs > 0, slabs still exist on the node 3590 * that is going down. We were unable to free them, 3591 * and offline_pages() function shouldn't call this 3592 * callback. So, we must fail. 3593 */ 3594 BUG_ON(slabs_node(s, offline_node)); 3595 3596 s->node[offline_node] = NULL; 3597 kmem_cache_free(kmem_cache_node, n); 3598 } 3599 } 3600 mutex_unlock(&slab_mutex); 3601 } 3602 3603 static int slab_mem_going_online_callback(void *arg) 3604 { 3605 struct kmem_cache_node *n; 3606 struct kmem_cache *s; 3607 struct memory_notify *marg = arg; 3608 int nid = marg->status_change_nid; 3609 int ret = 0; 3610 3611 /* 3612 * If the node's memory is already available, then kmem_cache_node is 3613 * already created. Nothing to do. 3614 */ 3615 if (nid < 0) 3616 return 0; 3617 3618 /* 3619 * We are bringing a node online. No memory is available yet. We must 3620 * allocate a kmem_cache_node structure in order to bring the node 3621 * online. 3622 */ 3623 mutex_lock(&slab_mutex); 3624 list_for_each_entry(s, &slab_caches, list) { 3625 /* 3626 * XXX: kmem_cache_alloc_node will fallback to other nodes 3627 * since memory is not yet available from the node that 3628 * is brought up. 3629 */ 3630 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3631 if (!n) { 3632 ret = -ENOMEM; 3633 goto out; 3634 } 3635 init_kmem_cache_node(n); 3636 s->node[nid] = n; 3637 } 3638 out: 3639 mutex_unlock(&slab_mutex); 3640 return ret; 3641 } 3642 3643 static int slab_memory_callback(struct notifier_block *self, 3644 unsigned long action, void *arg) 3645 { 3646 int ret = 0; 3647 3648 switch (action) { 3649 case MEM_GOING_ONLINE: 3650 ret = slab_mem_going_online_callback(arg); 3651 break; 3652 case MEM_GOING_OFFLINE: 3653 ret = slab_mem_going_offline_callback(arg); 3654 break; 3655 case MEM_OFFLINE: 3656 case MEM_CANCEL_ONLINE: 3657 slab_mem_offline_callback(arg); 3658 break; 3659 case MEM_ONLINE: 3660 case MEM_CANCEL_OFFLINE: 3661 break; 3662 } 3663 if (ret) 3664 ret = notifier_from_errno(ret); 3665 else 3666 ret = NOTIFY_OK; 3667 return ret; 3668 } 3669 3670 #endif /* CONFIG_MEMORY_HOTPLUG */ 3671 3672 /******************************************************************** 3673 * Basic setup of slabs 3674 *******************************************************************/ 3675 3676 /* 3677 * Used for early kmem_cache structures that were allocated using 3678 * the page allocator 3679 */ 3680 3681 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s) 3682 { 3683 int node; 3684 3685 list_add(&s->list, &slab_caches); 3686 s->refcount = -1; 3687 3688 for_each_node_state(node, N_NORMAL_MEMORY) { 3689 struct kmem_cache_node *n = get_node(s, node); 3690 struct page *p; 3691 3692 if (n) { 3693 list_for_each_entry(p, &n->partial, lru) 3694 p->slab = s; 3695 3696 #ifdef CONFIG_SLUB_DEBUG 3697 list_for_each_entry(p, &n->full, lru) 3698 p->slab = s; 3699 #endif 3700 } 3701 } 3702 } 3703 3704 void __init kmem_cache_init(void) 3705 { 3706 int i; 3707 int caches = 0; 3708 struct kmem_cache *temp_kmem_cache; 3709 int order; 3710 struct kmem_cache *temp_kmem_cache_node; 3711 unsigned long kmalloc_size; 3712 3713 if (debug_guardpage_minorder()) 3714 slub_max_order = 0; 3715 3716 kmem_size = offsetof(struct kmem_cache, node) + 3717 nr_node_ids * sizeof(struct kmem_cache_node *); 3718 3719 /* Allocate two kmem_caches from the page allocator */ 3720 kmalloc_size = ALIGN(kmem_size, cache_line_size()); 3721 order = get_order(2 * kmalloc_size); 3722 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order); 3723 3724 /* 3725 * Must first have the slab cache available for the allocations of the 3726 * struct kmem_cache_node's. There is special bootstrap code in 3727 * kmem_cache_open for slab_state == DOWN. 3728 */ 3729 kmem_cache_node = (void *)kmem_cache + kmalloc_size; 3730 3731 kmem_cache_open(kmem_cache_node, "kmem_cache_node", 3732 sizeof(struct kmem_cache_node), 3733 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3734 3735 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 3736 3737 /* Able to allocate the per node structures */ 3738 slab_state = PARTIAL; 3739 3740 temp_kmem_cache = kmem_cache; 3741 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size, 3742 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3743 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3744 memcpy(kmem_cache, temp_kmem_cache, kmem_size); 3745 3746 /* 3747 * Allocate kmem_cache_node properly from the kmem_cache slab. 3748 * kmem_cache_node is separately allocated so no need to 3749 * update any list pointers. 3750 */ 3751 temp_kmem_cache_node = kmem_cache_node; 3752 3753 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3754 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size); 3755 3756 kmem_cache_bootstrap_fixup(kmem_cache_node); 3757 3758 caches++; 3759 kmem_cache_bootstrap_fixup(kmem_cache); 3760 caches++; 3761 /* Free temporary boot structure */ 3762 free_pages((unsigned long)temp_kmem_cache, order); 3763 3764 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3765 3766 /* 3767 * Patch up the size_index table if we have strange large alignment 3768 * requirements for the kmalloc array. This is only the case for 3769 * MIPS it seems. The standard arches will not generate any code here. 3770 * 3771 * Largest permitted alignment is 256 bytes due to the way we 3772 * handle the index determination for the smaller caches. 3773 * 3774 * Make sure that nothing crazy happens if someone starts tinkering 3775 * around with ARCH_KMALLOC_MINALIGN 3776 */ 3777 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3778 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3779 3780 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 3781 int elem = size_index_elem(i); 3782 if (elem >= ARRAY_SIZE(size_index)) 3783 break; 3784 size_index[elem] = KMALLOC_SHIFT_LOW; 3785 } 3786 3787 if (KMALLOC_MIN_SIZE == 64) { 3788 /* 3789 * The 96 byte size cache is not used if the alignment 3790 * is 64 byte. 3791 */ 3792 for (i = 64 + 8; i <= 96; i += 8) 3793 size_index[size_index_elem(i)] = 7; 3794 } else if (KMALLOC_MIN_SIZE == 128) { 3795 /* 3796 * The 192 byte sized cache is not used if the alignment 3797 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3798 * instead. 3799 */ 3800 for (i = 128 + 8; i <= 192; i += 8) 3801 size_index[size_index_elem(i)] = 8; 3802 } 3803 3804 /* Caches that are not of the two-to-the-power-of size */ 3805 if (KMALLOC_MIN_SIZE <= 32) { 3806 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0); 3807 caches++; 3808 } 3809 3810 if (KMALLOC_MIN_SIZE <= 64) { 3811 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0); 3812 caches++; 3813 } 3814 3815 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3816 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0); 3817 caches++; 3818 } 3819 3820 slab_state = UP; 3821 3822 /* Provide the correct kmalloc names now that the caches are up */ 3823 if (KMALLOC_MIN_SIZE <= 32) { 3824 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT); 3825 BUG_ON(!kmalloc_caches[1]->name); 3826 } 3827 3828 if (KMALLOC_MIN_SIZE <= 64) { 3829 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT); 3830 BUG_ON(!kmalloc_caches[2]->name); 3831 } 3832 3833 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3834 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); 3835 3836 BUG_ON(!s); 3837 kmalloc_caches[i]->name = s; 3838 } 3839 3840 #ifdef CONFIG_SMP 3841 register_cpu_notifier(&slab_notifier); 3842 #endif 3843 3844 #ifdef CONFIG_ZONE_DMA 3845 for (i = 0; i < SLUB_PAGE_SHIFT; i++) { 3846 struct kmem_cache *s = kmalloc_caches[i]; 3847 3848 if (s && s->size) { 3849 char *name = kasprintf(GFP_NOWAIT, 3850 "dma-kmalloc-%d", s->object_size); 3851 3852 BUG_ON(!name); 3853 kmalloc_dma_caches[i] = create_kmalloc_cache(name, 3854 s->object_size, SLAB_CACHE_DMA); 3855 } 3856 } 3857 #endif 3858 printk(KERN_INFO 3859 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3860 " CPUs=%d, Nodes=%d\n", 3861 caches, cache_line_size(), 3862 slub_min_order, slub_max_order, slub_min_objects, 3863 nr_cpu_ids, nr_node_ids); 3864 } 3865 3866 void __init kmem_cache_init_late(void) 3867 { 3868 } 3869 3870 /* 3871 * Find a mergeable slab cache 3872 */ 3873 static int slab_unmergeable(struct kmem_cache *s) 3874 { 3875 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3876 return 1; 3877 3878 if (s->ctor) 3879 return 1; 3880 3881 /* 3882 * We may have set a slab to be unmergeable during bootstrap. 3883 */ 3884 if (s->refcount < 0) 3885 return 1; 3886 3887 return 0; 3888 } 3889 3890 static struct kmem_cache *find_mergeable(size_t size, 3891 size_t align, unsigned long flags, const char *name, 3892 void (*ctor)(void *)) 3893 { 3894 struct kmem_cache *s; 3895 3896 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3897 return NULL; 3898 3899 if (ctor) 3900 return NULL; 3901 3902 size = ALIGN(size, sizeof(void *)); 3903 align = calculate_alignment(flags, align, size); 3904 size = ALIGN(size, align); 3905 flags = kmem_cache_flags(size, flags, name, NULL); 3906 3907 list_for_each_entry(s, &slab_caches, list) { 3908 if (slab_unmergeable(s)) 3909 continue; 3910 3911 if (size > s->size) 3912 continue; 3913 3914 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3915 continue; 3916 /* 3917 * Check if alignment is compatible. 3918 * Courtesy of Adrian Drzewiecki 3919 */ 3920 if ((s->size & ~(align - 1)) != s->size) 3921 continue; 3922 3923 if (s->size - size >= sizeof(void *)) 3924 continue; 3925 3926 return s; 3927 } 3928 return NULL; 3929 } 3930 3931 struct kmem_cache *__kmem_cache_create(const char *name, size_t size, 3932 size_t align, unsigned long flags, void (*ctor)(void *)) 3933 { 3934 struct kmem_cache *s; 3935 char *n; 3936 3937 s = find_mergeable(size, align, flags, name, ctor); 3938 if (s) { 3939 s->refcount++; 3940 /* 3941 * Adjust the object sizes so that we clear 3942 * the complete object on kzalloc. 3943 */ 3944 s->object_size = max(s->object_size, (int)size); 3945 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3946 3947 if (sysfs_slab_alias(s, name)) { 3948 s->refcount--; 3949 return NULL; 3950 } 3951 return s; 3952 } 3953 3954 n = kstrdup(name, GFP_KERNEL); 3955 if (!n) 3956 return NULL; 3957 3958 s = kmalloc(kmem_size, GFP_KERNEL); 3959 if (s) { 3960 if (kmem_cache_open(s, n, 3961 size, align, flags, ctor)) { 3962 int r; 3963 3964 list_add(&s->list, &slab_caches); 3965 mutex_unlock(&slab_mutex); 3966 r = sysfs_slab_add(s); 3967 mutex_lock(&slab_mutex); 3968 3969 if (!r) 3970 return s; 3971 3972 list_del(&s->list); 3973 kmem_cache_close(s); 3974 } 3975 kfree(s); 3976 } 3977 kfree(n); 3978 return NULL; 3979 } 3980 3981 #ifdef CONFIG_SMP 3982 /* 3983 * Use the cpu notifier to insure that the cpu slabs are flushed when 3984 * necessary. 3985 */ 3986 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3987 unsigned long action, void *hcpu) 3988 { 3989 long cpu = (long)hcpu; 3990 struct kmem_cache *s; 3991 unsigned long flags; 3992 3993 switch (action) { 3994 case CPU_UP_CANCELED: 3995 case CPU_UP_CANCELED_FROZEN: 3996 case CPU_DEAD: 3997 case CPU_DEAD_FROZEN: 3998 mutex_lock(&slab_mutex); 3999 list_for_each_entry(s, &slab_caches, list) { 4000 local_irq_save(flags); 4001 __flush_cpu_slab(s, cpu); 4002 local_irq_restore(flags); 4003 } 4004 mutex_unlock(&slab_mutex); 4005 break; 4006 default: 4007 break; 4008 } 4009 return NOTIFY_OK; 4010 } 4011 4012 static struct notifier_block __cpuinitdata slab_notifier = { 4013 .notifier_call = slab_cpuup_callback 4014 }; 4015 4016 #endif 4017 4018 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4019 { 4020 struct kmem_cache *s; 4021 void *ret; 4022 4023 if (unlikely(size > SLUB_MAX_SIZE)) 4024 return kmalloc_large(size, gfpflags); 4025 4026 s = get_slab(size, gfpflags); 4027 4028 if (unlikely(ZERO_OR_NULL_PTR(s))) 4029 return s; 4030 4031 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller); 4032 4033 /* Honor the call site pointer we received. */ 4034 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4035 4036 return ret; 4037 } 4038 4039 #ifdef CONFIG_NUMA 4040 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4041 int node, unsigned long caller) 4042 { 4043 struct kmem_cache *s; 4044 void *ret; 4045 4046 if (unlikely(size > SLUB_MAX_SIZE)) { 4047 ret = kmalloc_large_node(size, gfpflags, node); 4048 4049 trace_kmalloc_node(caller, ret, 4050 size, PAGE_SIZE << get_order(size), 4051 gfpflags, node); 4052 4053 return ret; 4054 } 4055 4056 s = get_slab(size, gfpflags); 4057 4058 if (unlikely(ZERO_OR_NULL_PTR(s))) 4059 return s; 4060 4061 ret = slab_alloc(s, gfpflags, node, caller); 4062 4063 /* Honor the call site pointer we received. */ 4064 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4065 4066 return ret; 4067 } 4068 #endif 4069 4070 #ifdef CONFIG_SYSFS 4071 static int count_inuse(struct page *page) 4072 { 4073 return page->inuse; 4074 } 4075 4076 static int count_total(struct page *page) 4077 { 4078 return page->objects; 4079 } 4080 #endif 4081 4082 #ifdef CONFIG_SLUB_DEBUG 4083 static int validate_slab(struct kmem_cache *s, struct page *page, 4084 unsigned long *map) 4085 { 4086 void *p; 4087 void *addr = page_address(page); 4088 4089 if (!check_slab(s, page) || 4090 !on_freelist(s, page, NULL)) 4091 return 0; 4092 4093 /* Now we know that a valid freelist exists */ 4094 bitmap_zero(map, page->objects); 4095 4096 get_map(s, page, map); 4097 for_each_object(p, s, addr, page->objects) { 4098 if (test_bit(slab_index(p, s, addr), map)) 4099 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4100 return 0; 4101 } 4102 4103 for_each_object(p, s, addr, page->objects) 4104 if (!test_bit(slab_index(p, s, addr), map)) 4105 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4106 return 0; 4107 return 1; 4108 } 4109 4110 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4111 unsigned long *map) 4112 { 4113 slab_lock(page); 4114 validate_slab(s, page, map); 4115 slab_unlock(page); 4116 } 4117 4118 static int validate_slab_node(struct kmem_cache *s, 4119 struct kmem_cache_node *n, unsigned long *map) 4120 { 4121 unsigned long count = 0; 4122 struct page *page; 4123 unsigned long flags; 4124 4125 spin_lock_irqsave(&n->list_lock, flags); 4126 4127 list_for_each_entry(page, &n->partial, lru) { 4128 validate_slab_slab(s, page, map); 4129 count++; 4130 } 4131 if (count != n->nr_partial) 4132 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 4133 "counter=%ld\n", s->name, count, n->nr_partial); 4134 4135 if (!(s->flags & SLAB_STORE_USER)) 4136 goto out; 4137 4138 list_for_each_entry(page, &n->full, lru) { 4139 validate_slab_slab(s, page, map); 4140 count++; 4141 } 4142 if (count != atomic_long_read(&n->nr_slabs)) 4143 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 4144 "counter=%ld\n", s->name, count, 4145 atomic_long_read(&n->nr_slabs)); 4146 4147 out: 4148 spin_unlock_irqrestore(&n->list_lock, flags); 4149 return count; 4150 } 4151 4152 static long validate_slab_cache(struct kmem_cache *s) 4153 { 4154 int node; 4155 unsigned long count = 0; 4156 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4157 sizeof(unsigned long), GFP_KERNEL); 4158 4159 if (!map) 4160 return -ENOMEM; 4161 4162 flush_all(s); 4163 for_each_node_state(node, N_NORMAL_MEMORY) { 4164 struct kmem_cache_node *n = get_node(s, node); 4165 4166 count += validate_slab_node(s, n, map); 4167 } 4168 kfree(map); 4169 return count; 4170 } 4171 /* 4172 * Generate lists of code addresses where slabcache objects are allocated 4173 * and freed. 4174 */ 4175 4176 struct location { 4177 unsigned long count; 4178 unsigned long addr; 4179 long long sum_time; 4180 long min_time; 4181 long max_time; 4182 long min_pid; 4183 long max_pid; 4184 DECLARE_BITMAP(cpus, NR_CPUS); 4185 nodemask_t nodes; 4186 }; 4187 4188 struct loc_track { 4189 unsigned long max; 4190 unsigned long count; 4191 struct location *loc; 4192 }; 4193 4194 static void free_loc_track(struct loc_track *t) 4195 { 4196 if (t->max) 4197 free_pages((unsigned long)t->loc, 4198 get_order(sizeof(struct location) * t->max)); 4199 } 4200 4201 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4202 { 4203 struct location *l; 4204 int order; 4205 4206 order = get_order(sizeof(struct location) * max); 4207 4208 l = (void *)__get_free_pages(flags, order); 4209 if (!l) 4210 return 0; 4211 4212 if (t->count) { 4213 memcpy(l, t->loc, sizeof(struct location) * t->count); 4214 free_loc_track(t); 4215 } 4216 t->max = max; 4217 t->loc = l; 4218 return 1; 4219 } 4220 4221 static int add_location(struct loc_track *t, struct kmem_cache *s, 4222 const struct track *track) 4223 { 4224 long start, end, pos; 4225 struct location *l; 4226 unsigned long caddr; 4227 unsigned long age = jiffies - track->when; 4228 4229 start = -1; 4230 end = t->count; 4231 4232 for ( ; ; ) { 4233 pos = start + (end - start + 1) / 2; 4234 4235 /* 4236 * There is nothing at "end". If we end up there 4237 * we need to add something to before end. 4238 */ 4239 if (pos == end) 4240 break; 4241 4242 caddr = t->loc[pos].addr; 4243 if (track->addr == caddr) { 4244 4245 l = &t->loc[pos]; 4246 l->count++; 4247 if (track->when) { 4248 l->sum_time += age; 4249 if (age < l->min_time) 4250 l->min_time = age; 4251 if (age > l->max_time) 4252 l->max_time = age; 4253 4254 if (track->pid < l->min_pid) 4255 l->min_pid = track->pid; 4256 if (track->pid > l->max_pid) 4257 l->max_pid = track->pid; 4258 4259 cpumask_set_cpu(track->cpu, 4260 to_cpumask(l->cpus)); 4261 } 4262 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4263 return 1; 4264 } 4265 4266 if (track->addr < caddr) 4267 end = pos; 4268 else 4269 start = pos; 4270 } 4271 4272 /* 4273 * Not found. Insert new tracking element. 4274 */ 4275 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4276 return 0; 4277 4278 l = t->loc + pos; 4279 if (pos < t->count) 4280 memmove(l + 1, l, 4281 (t->count - pos) * sizeof(struct location)); 4282 t->count++; 4283 l->count = 1; 4284 l->addr = track->addr; 4285 l->sum_time = age; 4286 l->min_time = age; 4287 l->max_time = age; 4288 l->min_pid = track->pid; 4289 l->max_pid = track->pid; 4290 cpumask_clear(to_cpumask(l->cpus)); 4291 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4292 nodes_clear(l->nodes); 4293 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4294 return 1; 4295 } 4296 4297 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4298 struct page *page, enum track_item alloc, 4299 unsigned long *map) 4300 { 4301 void *addr = page_address(page); 4302 void *p; 4303 4304 bitmap_zero(map, page->objects); 4305 get_map(s, page, map); 4306 4307 for_each_object(p, s, addr, page->objects) 4308 if (!test_bit(slab_index(p, s, addr), map)) 4309 add_location(t, s, get_track(s, p, alloc)); 4310 } 4311 4312 static int list_locations(struct kmem_cache *s, char *buf, 4313 enum track_item alloc) 4314 { 4315 int len = 0; 4316 unsigned long i; 4317 struct loc_track t = { 0, 0, NULL }; 4318 int node; 4319 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4320 sizeof(unsigned long), GFP_KERNEL); 4321 4322 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4323 GFP_TEMPORARY)) { 4324 kfree(map); 4325 return sprintf(buf, "Out of memory\n"); 4326 } 4327 /* Push back cpu slabs */ 4328 flush_all(s); 4329 4330 for_each_node_state(node, N_NORMAL_MEMORY) { 4331 struct kmem_cache_node *n = get_node(s, node); 4332 unsigned long flags; 4333 struct page *page; 4334 4335 if (!atomic_long_read(&n->nr_slabs)) 4336 continue; 4337 4338 spin_lock_irqsave(&n->list_lock, flags); 4339 list_for_each_entry(page, &n->partial, lru) 4340 process_slab(&t, s, page, alloc, map); 4341 list_for_each_entry(page, &n->full, lru) 4342 process_slab(&t, s, page, alloc, map); 4343 spin_unlock_irqrestore(&n->list_lock, flags); 4344 } 4345 4346 for (i = 0; i < t.count; i++) { 4347 struct location *l = &t.loc[i]; 4348 4349 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4350 break; 4351 len += sprintf(buf + len, "%7ld ", l->count); 4352 4353 if (l->addr) 4354 len += sprintf(buf + len, "%pS", (void *)l->addr); 4355 else 4356 len += sprintf(buf + len, "<not-available>"); 4357 4358 if (l->sum_time != l->min_time) { 4359 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4360 l->min_time, 4361 (long)div_u64(l->sum_time, l->count), 4362 l->max_time); 4363 } else 4364 len += sprintf(buf + len, " age=%ld", 4365 l->min_time); 4366 4367 if (l->min_pid != l->max_pid) 4368 len += sprintf(buf + len, " pid=%ld-%ld", 4369 l->min_pid, l->max_pid); 4370 else 4371 len += sprintf(buf + len, " pid=%ld", 4372 l->min_pid); 4373 4374 if (num_online_cpus() > 1 && 4375 !cpumask_empty(to_cpumask(l->cpus)) && 4376 len < PAGE_SIZE - 60) { 4377 len += sprintf(buf + len, " cpus="); 4378 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4379 to_cpumask(l->cpus)); 4380 } 4381 4382 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4383 len < PAGE_SIZE - 60) { 4384 len += sprintf(buf + len, " nodes="); 4385 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4386 l->nodes); 4387 } 4388 4389 len += sprintf(buf + len, "\n"); 4390 } 4391 4392 free_loc_track(&t); 4393 kfree(map); 4394 if (!t.count) 4395 len += sprintf(buf, "No data\n"); 4396 return len; 4397 } 4398 #endif 4399 4400 #ifdef SLUB_RESILIENCY_TEST 4401 static void resiliency_test(void) 4402 { 4403 u8 *p; 4404 4405 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10); 4406 4407 printk(KERN_ERR "SLUB resiliency testing\n"); 4408 printk(KERN_ERR "-----------------------\n"); 4409 printk(KERN_ERR "A. Corruption after allocation\n"); 4410 4411 p = kzalloc(16, GFP_KERNEL); 4412 p[16] = 0x12; 4413 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 4414 " 0x12->0x%p\n\n", p + 16); 4415 4416 validate_slab_cache(kmalloc_caches[4]); 4417 4418 /* Hmmm... The next two are dangerous */ 4419 p = kzalloc(32, GFP_KERNEL); 4420 p[32 + sizeof(void *)] = 0x34; 4421 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 4422 " 0x34 -> -0x%p\n", p); 4423 printk(KERN_ERR 4424 "If allocated object is overwritten then not detectable\n\n"); 4425 4426 validate_slab_cache(kmalloc_caches[5]); 4427 p = kzalloc(64, GFP_KERNEL); 4428 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4429 *p = 0x56; 4430 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4431 p); 4432 printk(KERN_ERR 4433 "If allocated object is overwritten then not detectable\n\n"); 4434 validate_slab_cache(kmalloc_caches[6]); 4435 4436 printk(KERN_ERR "\nB. Corruption after free\n"); 4437 p = kzalloc(128, GFP_KERNEL); 4438 kfree(p); 4439 *p = 0x78; 4440 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4441 validate_slab_cache(kmalloc_caches[7]); 4442 4443 p = kzalloc(256, GFP_KERNEL); 4444 kfree(p); 4445 p[50] = 0x9a; 4446 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 4447 p); 4448 validate_slab_cache(kmalloc_caches[8]); 4449 4450 p = kzalloc(512, GFP_KERNEL); 4451 kfree(p); 4452 p[512] = 0xab; 4453 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4454 validate_slab_cache(kmalloc_caches[9]); 4455 } 4456 #else 4457 #ifdef CONFIG_SYSFS 4458 static void resiliency_test(void) {}; 4459 #endif 4460 #endif 4461 4462 #ifdef CONFIG_SYSFS 4463 enum slab_stat_type { 4464 SL_ALL, /* All slabs */ 4465 SL_PARTIAL, /* Only partially allocated slabs */ 4466 SL_CPU, /* Only slabs used for cpu caches */ 4467 SL_OBJECTS, /* Determine allocated objects not slabs */ 4468 SL_TOTAL /* Determine object capacity not slabs */ 4469 }; 4470 4471 #define SO_ALL (1 << SL_ALL) 4472 #define SO_PARTIAL (1 << SL_PARTIAL) 4473 #define SO_CPU (1 << SL_CPU) 4474 #define SO_OBJECTS (1 << SL_OBJECTS) 4475 #define SO_TOTAL (1 << SL_TOTAL) 4476 4477 static ssize_t show_slab_objects(struct kmem_cache *s, 4478 char *buf, unsigned long flags) 4479 { 4480 unsigned long total = 0; 4481 int node; 4482 int x; 4483 unsigned long *nodes; 4484 unsigned long *per_cpu; 4485 4486 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4487 if (!nodes) 4488 return -ENOMEM; 4489 per_cpu = nodes + nr_node_ids; 4490 4491 if (flags & SO_CPU) { 4492 int cpu; 4493 4494 for_each_possible_cpu(cpu) { 4495 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 4496 int node; 4497 struct page *page; 4498 4499 page = ACCESS_ONCE(c->page); 4500 if (!page) 4501 continue; 4502 4503 node = page_to_nid(page); 4504 if (flags & SO_TOTAL) 4505 x = page->objects; 4506 else if (flags & SO_OBJECTS) 4507 x = page->inuse; 4508 else 4509 x = 1; 4510 4511 total += x; 4512 nodes[node] += x; 4513 4514 page = ACCESS_ONCE(c->partial); 4515 if (page) { 4516 x = page->pobjects; 4517 total += x; 4518 nodes[node] += x; 4519 } 4520 4521 per_cpu[node]++; 4522 } 4523 } 4524 4525 lock_memory_hotplug(); 4526 #ifdef CONFIG_SLUB_DEBUG 4527 if (flags & SO_ALL) { 4528 for_each_node_state(node, N_NORMAL_MEMORY) { 4529 struct kmem_cache_node *n = get_node(s, node); 4530 4531 if (flags & SO_TOTAL) 4532 x = atomic_long_read(&n->total_objects); 4533 else if (flags & SO_OBJECTS) 4534 x = atomic_long_read(&n->total_objects) - 4535 count_partial(n, count_free); 4536 4537 else 4538 x = atomic_long_read(&n->nr_slabs); 4539 total += x; 4540 nodes[node] += x; 4541 } 4542 4543 } else 4544 #endif 4545 if (flags & SO_PARTIAL) { 4546 for_each_node_state(node, N_NORMAL_MEMORY) { 4547 struct kmem_cache_node *n = get_node(s, node); 4548 4549 if (flags & SO_TOTAL) 4550 x = count_partial(n, count_total); 4551 else if (flags & SO_OBJECTS) 4552 x = count_partial(n, count_inuse); 4553 else 4554 x = n->nr_partial; 4555 total += x; 4556 nodes[node] += x; 4557 } 4558 } 4559 x = sprintf(buf, "%lu", total); 4560 #ifdef CONFIG_NUMA 4561 for_each_node_state(node, N_NORMAL_MEMORY) 4562 if (nodes[node]) 4563 x += sprintf(buf + x, " N%d=%lu", 4564 node, nodes[node]); 4565 #endif 4566 unlock_memory_hotplug(); 4567 kfree(nodes); 4568 return x + sprintf(buf + x, "\n"); 4569 } 4570 4571 #ifdef CONFIG_SLUB_DEBUG 4572 static int any_slab_objects(struct kmem_cache *s) 4573 { 4574 int node; 4575 4576 for_each_online_node(node) { 4577 struct kmem_cache_node *n = get_node(s, node); 4578 4579 if (!n) 4580 continue; 4581 4582 if (atomic_long_read(&n->total_objects)) 4583 return 1; 4584 } 4585 return 0; 4586 } 4587 #endif 4588 4589 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4590 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4591 4592 struct slab_attribute { 4593 struct attribute attr; 4594 ssize_t (*show)(struct kmem_cache *s, char *buf); 4595 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4596 }; 4597 4598 #define SLAB_ATTR_RO(_name) \ 4599 static struct slab_attribute _name##_attr = \ 4600 __ATTR(_name, 0400, _name##_show, NULL) 4601 4602 #define SLAB_ATTR(_name) \ 4603 static struct slab_attribute _name##_attr = \ 4604 __ATTR(_name, 0600, _name##_show, _name##_store) 4605 4606 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4607 { 4608 return sprintf(buf, "%d\n", s->size); 4609 } 4610 SLAB_ATTR_RO(slab_size); 4611 4612 static ssize_t align_show(struct kmem_cache *s, char *buf) 4613 { 4614 return sprintf(buf, "%d\n", s->align); 4615 } 4616 SLAB_ATTR_RO(align); 4617 4618 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4619 { 4620 return sprintf(buf, "%d\n", s->object_size); 4621 } 4622 SLAB_ATTR_RO(object_size); 4623 4624 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4625 { 4626 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4627 } 4628 SLAB_ATTR_RO(objs_per_slab); 4629 4630 static ssize_t order_store(struct kmem_cache *s, 4631 const char *buf, size_t length) 4632 { 4633 unsigned long order; 4634 int err; 4635 4636 err = strict_strtoul(buf, 10, &order); 4637 if (err) 4638 return err; 4639 4640 if (order > slub_max_order || order < slub_min_order) 4641 return -EINVAL; 4642 4643 calculate_sizes(s, order); 4644 return length; 4645 } 4646 4647 static ssize_t order_show(struct kmem_cache *s, char *buf) 4648 { 4649 return sprintf(buf, "%d\n", oo_order(s->oo)); 4650 } 4651 SLAB_ATTR(order); 4652 4653 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4654 { 4655 return sprintf(buf, "%lu\n", s->min_partial); 4656 } 4657 4658 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4659 size_t length) 4660 { 4661 unsigned long min; 4662 int err; 4663 4664 err = strict_strtoul(buf, 10, &min); 4665 if (err) 4666 return err; 4667 4668 set_min_partial(s, min); 4669 return length; 4670 } 4671 SLAB_ATTR(min_partial); 4672 4673 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4674 { 4675 return sprintf(buf, "%u\n", s->cpu_partial); 4676 } 4677 4678 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4679 size_t length) 4680 { 4681 unsigned long objects; 4682 int err; 4683 4684 err = strict_strtoul(buf, 10, &objects); 4685 if (err) 4686 return err; 4687 if (objects && kmem_cache_debug(s)) 4688 return -EINVAL; 4689 4690 s->cpu_partial = objects; 4691 flush_all(s); 4692 return length; 4693 } 4694 SLAB_ATTR(cpu_partial); 4695 4696 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4697 { 4698 if (!s->ctor) 4699 return 0; 4700 return sprintf(buf, "%pS\n", s->ctor); 4701 } 4702 SLAB_ATTR_RO(ctor); 4703 4704 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4705 { 4706 return sprintf(buf, "%d\n", s->refcount - 1); 4707 } 4708 SLAB_ATTR_RO(aliases); 4709 4710 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4711 { 4712 return show_slab_objects(s, buf, SO_PARTIAL); 4713 } 4714 SLAB_ATTR_RO(partial); 4715 4716 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4717 { 4718 return show_slab_objects(s, buf, SO_CPU); 4719 } 4720 SLAB_ATTR_RO(cpu_slabs); 4721 4722 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4723 { 4724 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4725 } 4726 SLAB_ATTR_RO(objects); 4727 4728 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4729 { 4730 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4731 } 4732 SLAB_ATTR_RO(objects_partial); 4733 4734 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4735 { 4736 int objects = 0; 4737 int pages = 0; 4738 int cpu; 4739 int len; 4740 4741 for_each_online_cpu(cpu) { 4742 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4743 4744 if (page) { 4745 pages += page->pages; 4746 objects += page->pobjects; 4747 } 4748 } 4749 4750 len = sprintf(buf, "%d(%d)", objects, pages); 4751 4752 #ifdef CONFIG_SMP 4753 for_each_online_cpu(cpu) { 4754 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4755 4756 if (page && len < PAGE_SIZE - 20) 4757 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4758 page->pobjects, page->pages); 4759 } 4760 #endif 4761 return len + sprintf(buf + len, "\n"); 4762 } 4763 SLAB_ATTR_RO(slabs_cpu_partial); 4764 4765 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4766 { 4767 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4768 } 4769 4770 static ssize_t reclaim_account_store(struct kmem_cache *s, 4771 const char *buf, size_t length) 4772 { 4773 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4774 if (buf[0] == '1') 4775 s->flags |= SLAB_RECLAIM_ACCOUNT; 4776 return length; 4777 } 4778 SLAB_ATTR(reclaim_account); 4779 4780 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4781 { 4782 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4783 } 4784 SLAB_ATTR_RO(hwcache_align); 4785 4786 #ifdef CONFIG_ZONE_DMA 4787 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4788 { 4789 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4790 } 4791 SLAB_ATTR_RO(cache_dma); 4792 #endif 4793 4794 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4795 { 4796 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4797 } 4798 SLAB_ATTR_RO(destroy_by_rcu); 4799 4800 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4801 { 4802 return sprintf(buf, "%d\n", s->reserved); 4803 } 4804 SLAB_ATTR_RO(reserved); 4805 4806 #ifdef CONFIG_SLUB_DEBUG 4807 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4808 { 4809 return show_slab_objects(s, buf, SO_ALL); 4810 } 4811 SLAB_ATTR_RO(slabs); 4812 4813 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4814 { 4815 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4816 } 4817 SLAB_ATTR_RO(total_objects); 4818 4819 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4820 { 4821 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4822 } 4823 4824 static ssize_t sanity_checks_store(struct kmem_cache *s, 4825 const char *buf, size_t length) 4826 { 4827 s->flags &= ~SLAB_DEBUG_FREE; 4828 if (buf[0] == '1') { 4829 s->flags &= ~__CMPXCHG_DOUBLE; 4830 s->flags |= SLAB_DEBUG_FREE; 4831 } 4832 return length; 4833 } 4834 SLAB_ATTR(sanity_checks); 4835 4836 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4837 { 4838 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4839 } 4840 4841 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4842 size_t length) 4843 { 4844 s->flags &= ~SLAB_TRACE; 4845 if (buf[0] == '1') { 4846 s->flags &= ~__CMPXCHG_DOUBLE; 4847 s->flags |= SLAB_TRACE; 4848 } 4849 return length; 4850 } 4851 SLAB_ATTR(trace); 4852 4853 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4854 { 4855 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4856 } 4857 4858 static ssize_t red_zone_store(struct kmem_cache *s, 4859 const char *buf, size_t length) 4860 { 4861 if (any_slab_objects(s)) 4862 return -EBUSY; 4863 4864 s->flags &= ~SLAB_RED_ZONE; 4865 if (buf[0] == '1') { 4866 s->flags &= ~__CMPXCHG_DOUBLE; 4867 s->flags |= SLAB_RED_ZONE; 4868 } 4869 calculate_sizes(s, -1); 4870 return length; 4871 } 4872 SLAB_ATTR(red_zone); 4873 4874 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4875 { 4876 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4877 } 4878 4879 static ssize_t poison_store(struct kmem_cache *s, 4880 const char *buf, size_t length) 4881 { 4882 if (any_slab_objects(s)) 4883 return -EBUSY; 4884 4885 s->flags &= ~SLAB_POISON; 4886 if (buf[0] == '1') { 4887 s->flags &= ~__CMPXCHG_DOUBLE; 4888 s->flags |= SLAB_POISON; 4889 } 4890 calculate_sizes(s, -1); 4891 return length; 4892 } 4893 SLAB_ATTR(poison); 4894 4895 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4896 { 4897 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4898 } 4899 4900 static ssize_t store_user_store(struct kmem_cache *s, 4901 const char *buf, size_t length) 4902 { 4903 if (any_slab_objects(s)) 4904 return -EBUSY; 4905 4906 s->flags &= ~SLAB_STORE_USER; 4907 if (buf[0] == '1') { 4908 s->flags &= ~__CMPXCHG_DOUBLE; 4909 s->flags |= SLAB_STORE_USER; 4910 } 4911 calculate_sizes(s, -1); 4912 return length; 4913 } 4914 SLAB_ATTR(store_user); 4915 4916 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4917 { 4918 return 0; 4919 } 4920 4921 static ssize_t validate_store(struct kmem_cache *s, 4922 const char *buf, size_t length) 4923 { 4924 int ret = -EINVAL; 4925 4926 if (buf[0] == '1') { 4927 ret = validate_slab_cache(s); 4928 if (ret >= 0) 4929 ret = length; 4930 } 4931 return ret; 4932 } 4933 SLAB_ATTR(validate); 4934 4935 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4936 { 4937 if (!(s->flags & SLAB_STORE_USER)) 4938 return -ENOSYS; 4939 return list_locations(s, buf, TRACK_ALLOC); 4940 } 4941 SLAB_ATTR_RO(alloc_calls); 4942 4943 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4944 { 4945 if (!(s->flags & SLAB_STORE_USER)) 4946 return -ENOSYS; 4947 return list_locations(s, buf, TRACK_FREE); 4948 } 4949 SLAB_ATTR_RO(free_calls); 4950 #endif /* CONFIG_SLUB_DEBUG */ 4951 4952 #ifdef CONFIG_FAILSLAB 4953 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4954 { 4955 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4956 } 4957 4958 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4959 size_t length) 4960 { 4961 s->flags &= ~SLAB_FAILSLAB; 4962 if (buf[0] == '1') 4963 s->flags |= SLAB_FAILSLAB; 4964 return length; 4965 } 4966 SLAB_ATTR(failslab); 4967 #endif 4968 4969 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4970 { 4971 return 0; 4972 } 4973 4974 static ssize_t shrink_store(struct kmem_cache *s, 4975 const char *buf, size_t length) 4976 { 4977 if (buf[0] == '1') { 4978 int rc = kmem_cache_shrink(s); 4979 4980 if (rc) 4981 return rc; 4982 } else 4983 return -EINVAL; 4984 return length; 4985 } 4986 SLAB_ATTR(shrink); 4987 4988 #ifdef CONFIG_NUMA 4989 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4990 { 4991 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4992 } 4993 4994 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4995 const char *buf, size_t length) 4996 { 4997 unsigned long ratio; 4998 int err; 4999 5000 err = strict_strtoul(buf, 10, &ratio); 5001 if (err) 5002 return err; 5003 5004 if (ratio <= 100) 5005 s->remote_node_defrag_ratio = ratio * 10; 5006 5007 return length; 5008 } 5009 SLAB_ATTR(remote_node_defrag_ratio); 5010 #endif 5011 5012 #ifdef CONFIG_SLUB_STATS 5013 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5014 { 5015 unsigned long sum = 0; 5016 int cpu; 5017 int len; 5018 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 5019 5020 if (!data) 5021 return -ENOMEM; 5022 5023 for_each_online_cpu(cpu) { 5024 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5025 5026 data[cpu] = x; 5027 sum += x; 5028 } 5029 5030 len = sprintf(buf, "%lu", sum); 5031 5032 #ifdef CONFIG_SMP 5033 for_each_online_cpu(cpu) { 5034 if (data[cpu] && len < PAGE_SIZE - 20) 5035 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5036 } 5037 #endif 5038 kfree(data); 5039 return len + sprintf(buf + len, "\n"); 5040 } 5041 5042 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5043 { 5044 int cpu; 5045 5046 for_each_online_cpu(cpu) 5047 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5048 } 5049 5050 #define STAT_ATTR(si, text) \ 5051 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5052 { \ 5053 return show_stat(s, buf, si); \ 5054 } \ 5055 static ssize_t text##_store(struct kmem_cache *s, \ 5056 const char *buf, size_t length) \ 5057 { \ 5058 if (buf[0] != '0') \ 5059 return -EINVAL; \ 5060 clear_stat(s, si); \ 5061 return length; \ 5062 } \ 5063 SLAB_ATTR(text); \ 5064 5065 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5066 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5067 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5068 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5069 STAT_ATTR(FREE_FROZEN, free_frozen); 5070 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5071 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5072 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5073 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5074 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5075 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5076 STAT_ATTR(FREE_SLAB, free_slab); 5077 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5078 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5079 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5080 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5081 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5082 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5083 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5084 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5085 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5086 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5087 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5088 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5089 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5090 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5091 #endif 5092 5093 static struct attribute *slab_attrs[] = { 5094 &slab_size_attr.attr, 5095 &object_size_attr.attr, 5096 &objs_per_slab_attr.attr, 5097 &order_attr.attr, 5098 &min_partial_attr.attr, 5099 &cpu_partial_attr.attr, 5100 &objects_attr.attr, 5101 &objects_partial_attr.attr, 5102 &partial_attr.attr, 5103 &cpu_slabs_attr.attr, 5104 &ctor_attr.attr, 5105 &aliases_attr.attr, 5106 &align_attr.attr, 5107 &hwcache_align_attr.attr, 5108 &reclaim_account_attr.attr, 5109 &destroy_by_rcu_attr.attr, 5110 &shrink_attr.attr, 5111 &reserved_attr.attr, 5112 &slabs_cpu_partial_attr.attr, 5113 #ifdef CONFIG_SLUB_DEBUG 5114 &total_objects_attr.attr, 5115 &slabs_attr.attr, 5116 &sanity_checks_attr.attr, 5117 &trace_attr.attr, 5118 &red_zone_attr.attr, 5119 &poison_attr.attr, 5120 &store_user_attr.attr, 5121 &validate_attr.attr, 5122 &alloc_calls_attr.attr, 5123 &free_calls_attr.attr, 5124 #endif 5125 #ifdef CONFIG_ZONE_DMA 5126 &cache_dma_attr.attr, 5127 #endif 5128 #ifdef CONFIG_NUMA 5129 &remote_node_defrag_ratio_attr.attr, 5130 #endif 5131 #ifdef CONFIG_SLUB_STATS 5132 &alloc_fastpath_attr.attr, 5133 &alloc_slowpath_attr.attr, 5134 &free_fastpath_attr.attr, 5135 &free_slowpath_attr.attr, 5136 &free_frozen_attr.attr, 5137 &free_add_partial_attr.attr, 5138 &free_remove_partial_attr.attr, 5139 &alloc_from_partial_attr.attr, 5140 &alloc_slab_attr.attr, 5141 &alloc_refill_attr.attr, 5142 &alloc_node_mismatch_attr.attr, 5143 &free_slab_attr.attr, 5144 &cpuslab_flush_attr.attr, 5145 &deactivate_full_attr.attr, 5146 &deactivate_empty_attr.attr, 5147 &deactivate_to_head_attr.attr, 5148 &deactivate_to_tail_attr.attr, 5149 &deactivate_remote_frees_attr.attr, 5150 &deactivate_bypass_attr.attr, 5151 &order_fallback_attr.attr, 5152 &cmpxchg_double_fail_attr.attr, 5153 &cmpxchg_double_cpu_fail_attr.attr, 5154 &cpu_partial_alloc_attr.attr, 5155 &cpu_partial_free_attr.attr, 5156 &cpu_partial_node_attr.attr, 5157 &cpu_partial_drain_attr.attr, 5158 #endif 5159 #ifdef CONFIG_FAILSLAB 5160 &failslab_attr.attr, 5161 #endif 5162 5163 NULL 5164 }; 5165 5166 static struct attribute_group slab_attr_group = { 5167 .attrs = slab_attrs, 5168 }; 5169 5170 static ssize_t slab_attr_show(struct kobject *kobj, 5171 struct attribute *attr, 5172 char *buf) 5173 { 5174 struct slab_attribute *attribute; 5175 struct kmem_cache *s; 5176 int err; 5177 5178 attribute = to_slab_attr(attr); 5179 s = to_slab(kobj); 5180 5181 if (!attribute->show) 5182 return -EIO; 5183 5184 err = attribute->show(s, buf); 5185 5186 return err; 5187 } 5188 5189 static ssize_t slab_attr_store(struct kobject *kobj, 5190 struct attribute *attr, 5191 const char *buf, size_t len) 5192 { 5193 struct slab_attribute *attribute; 5194 struct kmem_cache *s; 5195 int err; 5196 5197 attribute = to_slab_attr(attr); 5198 s = to_slab(kobj); 5199 5200 if (!attribute->store) 5201 return -EIO; 5202 5203 err = attribute->store(s, buf, len); 5204 5205 return err; 5206 } 5207 5208 static void kmem_cache_release(struct kobject *kobj) 5209 { 5210 struct kmem_cache *s = to_slab(kobj); 5211 5212 kfree(s->name); 5213 kfree(s); 5214 } 5215 5216 static const struct sysfs_ops slab_sysfs_ops = { 5217 .show = slab_attr_show, 5218 .store = slab_attr_store, 5219 }; 5220 5221 static struct kobj_type slab_ktype = { 5222 .sysfs_ops = &slab_sysfs_ops, 5223 .release = kmem_cache_release 5224 }; 5225 5226 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5227 { 5228 struct kobj_type *ktype = get_ktype(kobj); 5229 5230 if (ktype == &slab_ktype) 5231 return 1; 5232 return 0; 5233 } 5234 5235 static const struct kset_uevent_ops slab_uevent_ops = { 5236 .filter = uevent_filter, 5237 }; 5238 5239 static struct kset *slab_kset; 5240 5241 #define ID_STR_LENGTH 64 5242 5243 /* Create a unique string id for a slab cache: 5244 * 5245 * Format :[flags-]size 5246 */ 5247 static char *create_unique_id(struct kmem_cache *s) 5248 { 5249 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5250 char *p = name; 5251 5252 BUG_ON(!name); 5253 5254 *p++ = ':'; 5255 /* 5256 * First flags affecting slabcache operations. We will only 5257 * get here for aliasable slabs so we do not need to support 5258 * too many flags. The flags here must cover all flags that 5259 * are matched during merging to guarantee that the id is 5260 * unique. 5261 */ 5262 if (s->flags & SLAB_CACHE_DMA) 5263 *p++ = 'd'; 5264 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5265 *p++ = 'a'; 5266 if (s->flags & SLAB_DEBUG_FREE) 5267 *p++ = 'F'; 5268 if (!(s->flags & SLAB_NOTRACK)) 5269 *p++ = 't'; 5270 if (p != name + 1) 5271 *p++ = '-'; 5272 p += sprintf(p, "%07d", s->size); 5273 BUG_ON(p > name + ID_STR_LENGTH - 1); 5274 return name; 5275 } 5276 5277 static int sysfs_slab_add(struct kmem_cache *s) 5278 { 5279 int err; 5280 const char *name; 5281 int unmergeable; 5282 5283 if (slab_state < FULL) 5284 /* Defer until later */ 5285 return 0; 5286 5287 unmergeable = slab_unmergeable(s); 5288 if (unmergeable) { 5289 /* 5290 * Slabcache can never be merged so we can use the name proper. 5291 * This is typically the case for debug situations. In that 5292 * case we can catch duplicate names easily. 5293 */ 5294 sysfs_remove_link(&slab_kset->kobj, s->name); 5295 name = s->name; 5296 } else { 5297 /* 5298 * Create a unique name for the slab as a target 5299 * for the symlinks. 5300 */ 5301 name = create_unique_id(s); 5302 } 5303 5304 s->kobj.kset = slab_kset; 5305 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 5306 if (err) { 5307 kobject_put(&s->kobj); 5308 return err; 5309 } 5310 5311 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5312 if (err) { 5313 kobject_del(&s->kobj); 5314 kobject_put(&s->kobj); 5315 return err; 5316 } 5317 kobject_uevent(&s->kobj, KOBJ_ADD); 5318 if (!unmergeable) { 5319 /* Setup first alias */ 5320 sysfs_slab_alias(s, s->name); 5321 kfree(name); 5322 } 5323 return 0; 5324 } 5325 5326 static void sysfs_slab_remove(struct kmem_cache *s) 5327 { 5328 if (slab_state < FULL) 5329 /* 5330 * Sysfs has not been setup yet so no need to remove the 5331 * cache from sysfs. 5332 */ 5333 return; 5334 5335 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5336 kobject_del(&s->kobj); 5337 kobject_put(&s->kobj); 5338 } 5339 5340 /* 5341 * Need to buffer aliases during bootup until sysfs becomes 5342 * available lest we lose that information. 5343 */ 5344 struct saved_alias { 5345 struct kmem_cache *s; 5346 const char *name; 5347 struct saved_alias *next; 5348 }; 5349 5350 static struct saved_alias *alias_list; 5351 5352 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5353 { 5354 struct saved_alias *al; 5355 5356 if (slab_state == FULL) { 5357 /* 5358 * If we have a leftover link then remove it. 5359 */ 5360 sysfs_remove_link(&slab_kset->kobj, name); 5361 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5362 } 5363 5364 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5365 if (!al) 5366 return -ENOMEM; 5367 5368 al->s = s; 5369 al->name = name; 5370 al->next = alias_list; 5371 alias_list = al; 5372 return 0; 5373 } 5374 5375 static int __init slab_sysfs_init(void) 5376 { 5377 struct kmem_cache *s; 5378 int err; 5379 5380 mutex_lock(&slab_mutex); 5381 5382 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5383 if (!slab_kset) { 5384 mutex_unlock(&slab_mutex); 5385 printk(KERN_ERR "Cannot register slab subsystem.\n"); 5386 return -ENOSYS; 5387 } 5388 5389 slab_state = FULL; 5390 5391 list_for_each_entry(s, &slab_caches, list) { 5392 err = sysfs_slab_add(s); 5393 if (err) 5394 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 5395 " to sysfs\n", s->name); 5396 } 5397 5398 while (alias_list) { 5399 struct saved_alias *al = alias_list; 5400 5401 alias_list = alias_list->next; 5402 err = sysfs_slab_alias(al->s, al->name); 5403 if (err) 5404 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 5405 " %s to sysfs\n", al->name); 5406 kfree(al); 5407 } 5408 5409 mutex_unlock(&slab_mutex); 5410 resiliency_test(); 5411 return 0; 5412 } 5413 5414 __initcall(slab_sysfs_init); 5415 #endif /* CONFIG_SYSFS */ 5416 5417 /* 5418 * The /proc/slabinfo ABI 5419 */ 5420 #ifdef CONFIG_SLABINFO 5421 static void print_slabinfo_header(struct seq_file *m) 5422 { 5423 seq_puts(m, "slabinfo - version: 2.1\n"); 5424 seq_puts(m, "# name <active_objs> <num_objs> <object_size> " 5425 "<objperslab> <pagesperslab>"); 5426 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 5427 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 5428 seq_putc(m, '\n'); 5429 } 5430 5431 static void *s_start(struct seq_file *m, loff_t *pos) 5432 { 5433 loff_t n = *pos; 5434 5435 mutex_lock(&slab_mutex); 5436 if (!n) 5437 print_slabinfo_header(m); 5438 5439 return seq_list_start(&slab_caches, *pos); 5440 } 5441 5442 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 5443 { 5444 return seq_list_next(p, &slab_caches, pos); 5445 } 5446 5447 static void s_stop(struct seq_file *m, void *p) 5448 { 5449 mutex_unlock(&slab_mutex); 5450 } 5451 5452 static int s_show(struct seq_file *m, void *p) 5453 { 5454 unsigned long nr_partials = 0; 5455 unsigned long nr_slabs = 0; 5456 unsigned long nr_inuse = 0; 5457 unsigned long nr_objs = 0; 5458 unsigned long nr_free = 0; 5459 struct kmem_cache *s; 5460 int node; 5461 5462 s = list_entry(p, struct kmem_cache, list); 5463 5464 for_each_online_node(node) { 5465 struct kmem_cache_node *n = get_node(s, node); 5466 5467 if (!n) 5468 continue; 5469 5470 nr_partials += n->nr_partial; 5471 nr_slabs += atomic_long_read(&n->nr_slabs); 5472 nr_objs += atomic_long_read(&n->total_objects); 5473 nr_free += count_partial(n, count_free); 5474 } 5475 5476 nr_inuse = nr_objs - nr_free; 5477 5478 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 5479 nr_objs, s->size, oo_objects(s->oo), 5480 (1 << oo_order(s->oo))); 5481 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 5482 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 5483 0UL); 5484 seq_putc(m, '\n'); 5485 return 0; 5486 } 5487 5488 static const struct seq_operations slabinfo_op = { 5489 .start = s_start, 5490 .next = s_next, 5491 .stop = s_stop, 5492 .show = s_show, 5493 }; 5494 5495 static int slabinfo_open(struct inode *inode, struct file *file) 5496 { 5497 return seq_open(file, &slabinfo_op); 5498 } 5499 5500 static const struct file_operations proc_slabinfo_operations = { 5501 .open = slabinfo_open, 5502 .read = seq_read, 5503 .llseek = seq_lseek, 5504 .release = seq_release, 5505 }; 5506 5507 static int __init slab_proc_init(void) 5508 { 5509 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations); 5510 return 0; 5511 } 5512 module_init(slab_proc_init); 5513 #endif /* CONFIG_SLABINFO */ 5514