xref: /openbmc/linux/mm/slub.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
38 
39 #include <trace/events/kmem.h>
40 
41 #include "internal.h"
42 
43 /*
44  * Lock order:
45  *   1. slab_mutex (Global Mutex)
46  *   2. node->list_lock
47  *   3. slab_lock(page) (Only on some arches and for debugging)
48  *
49  *   slab_mutex
50  *
51  *   The role of the slab_mutex is to protect the list of all the slabs
52  *   and to synchronize major metadata changes to slab cache structures.
53  *
54  *   The slab_lock is only used for debugging and on arches that do not
55  *   have the ability to do a cmpxchg_double. It only protects the second
56  *   double word in the page struct. Meaning
57  *	A. page->freelist	-> List of object free in a page
58  *	B. page->counters	-> Counters of objects
59  *	C. page->frozen		-> frozen state
60  *
61  *   If a slab is frozen then it is exempt from list management. It is not
62  *   on any list. The processor that froze the slab is the one who can
63  *   perform list operations on the page. Other processors may put objects
64  *   onto the freelist but the processor that froze the slab is the only
65  *   one that can retrieve the objects from the page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * Overloading of page flags that are otherwise used for LRU management.
97  *
98  * PageActive 		The slab is frozen and exempt from list processing.
99  * 			This means that the slab is dedicated to a purpose
100  * 			such as satisfying allocations for a specific
101  * 			processor. Objects may be freed in the slab while
102  * 			it is frozen but slab_free will then skip the usual
103  * 			list operations. It is up to the processor holding
104  * 			the slab to integrate the slab into the slab lists
105  * 			when the slab is no longer needed.
106  *
107  * 			One use of this flag is to mark slabs that are
108  * 			used for allocations. Then such a slab becomes a cpu
109  * 			slab. The cpu slab may be equipped with an additional
110  * 			freelist that allows lockless access to
111  * 			free objects in addition to the regular freelist
112  * 			that requires the slab lock.
113  *
114  * PageError		Slab requires special handling due to debug
115  * 			options set. This moves	slab handling out of
116  * 			the fast path and disables lockless freelists.
117  */
118 
119 static inline int kmem_cache_debug(struct kmem_cache *s)
120 {
121 #ifdef CONFIG_SLUB_DEBUG
122 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 	return 0;
125 #endif
126 }
127 
128 void *fixup_red_left(struct kmem_cache *s, void *p)
129 {
130 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 		p += s->red_left_pad;
132 
133 	return p;
134 }
135 
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 {
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 	return !kmem_cache_debug(s);
140 #else
141 	return false;
142 #endif
143 }
144 
145 /*
146  * Issues still to be resolved:
147  *
148  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149  *
150  * - Variable sizing of the per node arrays
151  */
152 
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155 
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
158 
159 /*
160  * Mininum number of partial slabs. These will be left on the partial
161  * lists even if they are empty. kmem_cache_shrink may reclaim them.
162  */
163 #define MIN_PARTIAL 5
164 
165 /*
166  * Maximum number of desirable partial slabs.
167  * The existence of more partial slabs makes kmem_cache_shrink
168  * sort the partial list by the number of objects in use.
169  */
170 #define MAX_PARTIAL 10
171 
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 				SLAB_POISON | SLAB_STORE_USER)
174 
175 /*
176  * These debug flags cannot use CMPXCHG because there might be consistency
177  * issues when checking or reading debug information
178  */
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 				SLAB_TRACE)
181 
182 
183 /*
184  * Debugging flags that require metadata to be stored in the slab.  These get
185  * disabled when slub_debug=O is used and a cache's min order increases with
186  * metadata.
187  */
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189 
190 #define OO_SHIFT	16
191 #define OO_MASK		((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
193 
194 /* Internal SLUB flags */
195 /* Poison object */
196 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
199 
200 /*
201  * Tracking user of a slab.
202  */
203 #define TRACK_ADDRS_COUNT 16
204 struct track {
205 	unsigned long addr;	/* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
208 #endif
209 	int cpu;		/* Was running on cpu */
210 	int pid;		/* Pid context */
211 	unsigned long when;	/* When did the operation occur */
212 };
213 
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
215 
216 #ifdef CONFIG_SYSFS
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 							{ return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 #endif
228 
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 	/*
233 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 	 * avoid this_cpu_add()'s irq-disable overhead.
235 	 */
236 	raw_cpu_inc(s->cpu_slab->stat[si]);
237 #endif
238 }
239 
240 /********************************************************************
241  * 			Core slab cache functions
242  *******************************************************************/
243 
244 /*
245  * Returns freelist pointer (ptr). With hardening, this is obfuscated
246  * with an XOR of the address where the pointer is held and a per-cache
247  * random number.
248  */
249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 				 unsigned long ptr_addr)
251 {
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 	return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
254 #else
255 	return ptr;
256 #endif
257 }
258 
259 /* Returns the freelist pointer recorded at location ptr_addr. */
260 static inline void *freelist_dereference(const struct kmem_cache *s,
261 					 void *ptr_addr)
262 {
263 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
264 			    (unsigned long)ptr_addr);
265 }
266 
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
268 {
269 	return freelist_dereference(s, object + s->offset);
270 }
271 
272 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
273 {
274 	if (object)
275 		prefetch(freelist_dereference(s, object + s->offset));
276 }
277 
278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279 {
280 	unsigned long freepointer_addr;
281 	void *p;
282 
283 	if (!debug_pagealloc_enabled())
284 		return get_freepointer(s, object);
285 
286 	freepointer_addr = (unsigned long)object + s->offset;
287 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
288 	return freelist_ptr(s, p, freepointer_addr);
289 }
290 
291 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
292 {
293 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
294 
295 #ifdef CONFIG_SLAB_FREELIST_HARDENED
296 	BUG_ON(object == fp); /* naive detection of double free or corruption */
297 #endif
298 
299 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
300 }
301 
302 /* Loop over all objects in a slab */
303 #define for_each_object(__p, __s, __addr, __objects) \
304 	for (__p = fixup_red_left(__s, __addr); \
305 		__p < (__addr) + (__objects) * (__s)->size; \
306 		__p += (__s)->size)
307 
308 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
309 	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
310 		__idx <= __objects; \
311 		__p += (__s)->size, __idx++)
312 
313 /* Determine object index from a given position */
314 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
315 {
316 	return (p - addr) / s->size;
317 }
318 
319 static inline int order_objects(int order, unsigned long size, int reserved)
320 {
321 	return ((PAGE_SIZE << order) - reserved) / size;
322 }
323 
324 static inline struct kmem_cache_order_objects oo_make(int order,
325 		unsigned long size, int reserved)
326 {
327 	struct kmem_cache_order_objects x = {
328 		(order << OO_SHIFT) + order_objects(order, size, reserved)
329 	};
330 
331 	return x;
332 }
333 
334 static inline int oo_order(struct kmem_cache_order_objects x)
335 {
336 	return x.x >> OO_SHIFT;
337 }
338 
339 static inline int oo_objects(struct kmem_cache_order_objects x)
340 {
341 	return x.x & OO_MASK;
342 }
343 
344 /*
345  * Per slab locking using the pagelock
346  */
347 static __always_inline void slab_lock(struct page *page)
348 {
349 	VM_BUG_ON_PAGE(PageTail(page), page);
350 	bit_spin_lock(PG_locked, &page->flags);
351 }
352 
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 	VM_BUG_ON_PAGE(PageTail(page), page);
356 	__bit_spin_unlock(PG_locked, &page->flags);
357 }
358 
359 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
360 {
361 	struct page tmp;
362 	tmp.counters = counters_new;
363 	/*
364 	 * page->counters can cover frozen/inuse/objects as well
365 	 * as page->_refcount.  If we assign to ->counters directly
366 	 * we run the risk of losing updates to page->_refcount, so
367 	 * be careful and only assign to the fields we need.
368 	 */
369 	page->frozen  = tmp.frozen;
370 	page->inuse   = tmp.inuse;
371 	page->objects = tmp.objects;
372 }
373 
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 		void *freelist_old, unsigned long counters_old,
377 		void *freelist_new, unsigned long counters_new,
378 		const char *n)
379 {
380 	VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 	if (s->flags & __CMPXCHG_DOUBLE) {
384 		if (cmpxchg_double(&page->freelist, &page->counters,
385 				   freelist_old, counters_old,
386 				   freelist_new, counters_new))
387 			return true;
388 	} else
389 #endif
390 	{
391 		slab_lock(page);
392 		if (page->freelist == freelist_old &&
393 					page->counters == counters_old) {
394 			page->freelist = freelist_new;
395 			set_page_slub_counters(page, counters_new);
396 			slab_unlock(page);
397 			return true;
398 		}
399 		slab_unlock(page);
400 	}
401 
402 	cpu_relax();
403 	stat(s, CMPXCHG_DOUBLE_FAIL);
404 
405 #ifdef SLUB_DEBUG_CMPXCHG
406 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
407 #endif
408 
409 	return false;
410 }
411 
412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 		void *freelist_old, unsigned long counters_old,
414 		void *freelist_new, unsigned long counters_new,
415 		const char *n)
416 {
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 	if (s->flags & __CMPXCHG_DOUBLE) {
420 		if (cmpxchg_double(&page->freelist, &page->counters,
421 				   freelist_old, counters_old,
422 				   freelist_new, counters_new))
423 			return true;
424 	} else
425 #endif
426 	{
427 		unsigned long flags;
428 
429 		local_irq_save(flags);
430 		slab_lock(page);
431 		if (page->freelist == freelist_old &&
432 					page->counters == counters_old) {
433 			page->freelist = freelist_new;
434 			set_page_slub_counters(page, counters_new);
435 			slab_unlock(page);
436 			local_irq_restore(flags);
437 			return true;
438 		}
439 		slab_unlock(page);
440 		local_irq_restore(flags);
441 	}
442 
443 	cpu_relax();
444 	stat(s, CMPXCHG_DOUBLE_FAIL);
445 
446 #ifdef SLUB_DEBUG_CMPXCHG
447 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
448 #endif
449 
450 	return false;
451 }
452 
453 #ifdef CONFIG_SLUB_DEBUG
454 /*
455  * Determine a map of object in use on a page.
456  *
457  * Node listlock must be held to guarantee that the page does
458  * not vanish from under us.
459  */
460 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
461 {
462 	void *p;
463 	void *addr = page_address(page);
464 
465 	for (p = page->freelist; p; p = get_freepointer(s, p))
466 		set_bit(slab_index(p, s, addr), map);
467 }
468 
469 static inline int size_from_object(struct kmem_cache *s)
470 {
471 	if (s->flags & SLAB_RED_ZONE)
472 		return s->size - s->red_left_pad;
473 
474 	return s->size;
475 }
476 
477 static inline void *restore_red_left(struct kmem_cache *s, void *p)
478 {
479 	if (s->flags & SLAB_RED_ZONE)
480 		p -= s->red_left_pad;
481 
482 	return p;
483 }
484 
485 /*
486  * Debug settings:
487  */
488 #if defined(CONFIG_SLUB_DEBUG_ON)
489 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
490 #else
491 static slab_flags_t slub_debug;
492 #endif
493 
494 static char *slub_debug_slabs;
495 static int disable_higher_order_debug;
496 
497 /*
498  * slub is about to manipulate internal object metadata.  This memory lies
499  * outside the range of the allocated object, so accessing it would normally
500  * be reported by kasan as a bounds error.  metadata_access_enable() is used
501  * to tell kasan that these accesses are OK.
502  */
503 static inline void metadata_access_enable(void)
504 {
505 	kasan_disable_current();
506 }
507 
508 static inline void metadata_access_disable(void)
509 {
510 	kasan_enable_current();
511 }
512 
513 /*
514  * Object debugging
515  */
516 
517 /* Verify that a pointer has an address that is valid within a slab page */
518 static inline int check_valid_pointer(struct kmem_cache *s,
519 				struct page *page, void *object)
520 {
521 	void *base;
522 
523 	if (!object)
524 		return 1;
525 
526 	base = page_address(page);
527 	object = restore_red_left(s, object);
528 	if (object < base || object >= base + page->objects * s->size ||
529 		(object - base) % s->size) {
530 		return 0;
531 	}
532 
533 	return 1;
534 }
535 
536 static void print_section(char *level, char *text, u8 *addr,
537 			  unsigned int length)
538 {
539 	metadata_access_enable();
540 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
541 			length, 1);
542 	metadata_access_disable();
543 }
544 
545 static struct track *get_track(struct kmem_cache *s, void *object,
546 	enum track_item alloc)
547 {
548 	struct track *p;
549 
550 	if (s->offset)
551 		p = object + s->offset + sizeof(void *);
552 	else
553 		p = object + s->inuse;
554 
555 	return p + alloc;
556 }
557 
558 static void set_track(struct kmem_cache *s, void *object,
559 			enum track_item alloc, unsigned long addr)
560 {
561 	struct track *p = get_track(s, object, alloc);
562 
563 	if (addr) {
564 #ifdef CONFIG_STACKTRACE
565 		struct stack_trace trace;
566 		int i;
567 
568 		trace.nr_entries = 0;
569 		trace.max_entries = TRACK_ADDRS_COUNT;
570 		trace.entries = p->addrs;
571 		trace.skip = 3;
572 		metadata_access_enable();
573 		save_stack_trace(&trace);
574 		metadata_access_disable();
575 
576 		/* See rant in lockdep.c */
577 		if (trace.nr_entries != 0 &&
578 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
579 			trace.nr_entries--;
580 
581 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
582 			p->addrs[i] = 0;
583 #endif
584 		p->addr = addr;
585 		p->cpu = smp_processor_id();
586 		p->pid = current->pid;
587 		p->when = jiffies;
588 	} else
589 		memset(p, 0, sizeof(struct track));
590 }
591 
592 static void init_tracking(struct kmem_cache *s, void *object)
593 {
594 	if (!(s->flags & SLAB_STORE_USER))
595 		return;
596 
597 	set_track(s, object, TRACK_FREE, 0UL);
598 	set_track(s, object, TRACK_ALLOC, 0UL);
599 }
600 
601 static void print_track(const char *s, struct track *t)
602 {
603 	if (!t->addr)
604 		return;
605 
606 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
607 	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
608 #ifdef CONFIG_STACKTRACE
609 	{
610 		int i;
611 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
612 			if (t->addrs[i])
613 				pr_err("\t%pS\n", (void *)t->addrs[i]);
614 			else
615 				break;
616 	}
617 #endif
618 }
619 
620 static void print_tracking(struct kmem_cache *s, void *object)
621 {
622 	if (!(s->flags & SLAB_STORE_USER))
623 		return;
624 
625 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
626 	print_track("Freed", get_track(s, object, TRACK_FREE));
627 }
628 
629 static void print_page_info(struct page *page)
630 {
631 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
632 	       page, page->objects, page->inuse, page->freelist, page->flags);
633 
634 }
635 
636 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
637 {
638 	struct va_format vaf;
639 	va_list args;
640 
641 	va_start(args, fmt);
642 	vaf.fmt = fmt;
643 	vaf.va = &args;
644 	pr_err("=============================================================================\n");
645 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
646 	pr_err("-----------------------------------------------------------------------------\n\n");
647 
648 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
649 	va_end(args);
650 }
651 
652 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
653 {
654 	struct va_format vaf;
655 	va_list args;
656 
657 	va_start(args, fmt);
658 	vaf.fmt = fmt;
659 	vaf.va = &args;
660 	pr_err("FIX %s: %pV\n", s->name, &vaf);
661 	va_end(args);
662 }
663 
664 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
665 {
666 	unsigned int off;	/* Offset of last byte */
667 	u8 *addr = page_address(page);
668 
669 	print_tracking(s, p);
670 
671 	print_page_info(page);
672 
673 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
674 	       p, p - addr, get_freepointer(s, p));
675 
676 	if (s->flags & SLAB_RED_ZONE)
677 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
678 			      s->red_left_pad);
679 	else if (p > addr + 16)
680 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
681 
682 	print_section(KERN_ERR, "Object ", p,
683 		      min_t(unsigned long, s->object_size, PAGE_SIZE));
684 	if (s->flags & SLAB_RED_ZONE)
685 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
686 			s->inuse - s->object_size);
687 
688 	if (s->offset)
689 		off = s->offset + sizeof(void *);
690 	else
691 		off = s->inuse;
692 
693 	if (s->flags & SLAB_STORE_USER)
694 		off += 2 * sizeof(struct track);
695 
696 	off += kasan_metadata_size(s);
697 
698 	if (off != size_from_object(s))
699 		/* Beginning of the filler is the free pointer */
700 		print_section(KERN_ERR, "Padding ", p + off,
701 			      size_from_object(s) - off);
702 
703 	dump_stack();
704 }
705 
706 void object_err(struct kmem_cache *s, struct page *page,
707 			u8 *object, char *reason)
708 {
709 	slab_bug(s, "%s", reason);
710 	print_trailer(s, page, object);
711 }
712 
713 static void slab_err(struct kmem_cache *s, struct page *page,
714 			const char *fmt, ...)
715 {
716 	va_list args;
717 	char buf[100];
718 
719 	va_start(args, fmt);
720 	vsnprintf(buf, sizeof(buf), fmt, args);
721 	va_end(args);
722 	slab_bug(s, "%s", buf);
723 	print_page_info(page);
724 	dump_stack();
725 }
726 
727 static void init_object(struct kmem_cache *s, void *object, u8 val)
728 {
729 	u8 *p = object;
730 
731 	if (s->flags & SLAB_RED_ZONE)
732 		memset(p - s->red_left_pad, val, s->red_left_pad);
733 
734 	if (s->flags & __OBJECT_POISON) {
735 		memset(p, POISON_FREE, s->object_size - 1);
736 		p[s->object_size - 1] = POISON_END;
737 	}
738 
739 	if (s->flags & SLAB_RED_ZONE)
740 		memset(p + s->object_size, val, s->inuse - s->object_size);
741 }
742 
743 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
744 						void *from, void *to)
745 {
746 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
747 	memset(from, data, to - from);
748 }
749 
750 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
751 			u8 *object, char *what,
752 			u8 *start, unsigned int value, unsigned int bytes)
753 {
754 	u8 *fault;
755 	u8 *end;
756 
757 	metadata_access_enable();
758 	fault = memchr_inv(start, value, bytes);
759 	metadata_access_disable();
760 	if (!fault)
761 		return 1;
762 
763 	end = start + bytes;
764 	while (end > fault && end[-1] == value)
765 		end--;
766 
767 	slab_bug(s, "%s overwritten", what);
768 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
769 					fault, end - 1, fault[0], value);
770 	print_trailer(s, page, object);
771 
772 	restore_bytes(s, what, value, fault, end);
773 	return 0;
774 }
775 
776 /*
777  * Object layout:
778  *
779  * object address
780  * 	Bytes of the object to be managed.
781  * 	If the freepointer may overlay the object then the free
782  * 	pointer is the first word of the object.
783  *
784  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
785  * 	0xa5 (POISON_END)
786  *
787  * object + s->object_size
788  * 	Padding to reach word boundary. This is also used for Redzoning.
789  * 	Padding is extended by another word if Redzoning is enabled and
790  * 	object_size == inuse.
791  *
792  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
793  * 	0xcc (RED_ACTIVE) for objects in use.
794  *
795  * object + s->inuse
796  * 	Meta data starts here.
797  *
798  * 	A. Free pointer (if we cannot overwrite object on free)
799  * 	B. Tracking data for SLAB_STORE_USER
800  * 	C. Padding to reach required alignment boundary or at mininum
801  * 		one word if debugging is on to be able to detect writes
802  * 		before the word boundary.
803  *
804  *	Padding is done using 0x5a (POISON_INUSE)
805  *
806  * object + s->size
807  * 	Nothing is used beyond s->size.
808  *
809  * If slabcaches are merged then the object_size and inuse boundaries are mostly
810  * ignored. And therefore no slab options that rely on these boundaries
811  * may be used with merged slabcaches.
812  */
813 
814 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
815 {
816 	unsigned long off = s->inuse;	/* The end of info */
817 
818 	if (s->offset)
819 		/* Freepointer is placed after the object. */
820 		off += sizeof(void *);
821 
822 	if (s->flags & SLAB_STORE_USER)
823 		/* We also have user information there */
824 		off += 2 * sizeof(struct track);
825 
826 	off += kasan_metadata_size(s);
827 
828 	if (size_from_object(s) == off)
829 		return 1;
830 
831 	return check_bytes_and_report(s, page, p, "Object padding",
832 			p + off, POISON_INUSE, size_from_object(s) - off);
833 }
834 
835 /* Check the pad bytes at the end of a slab page */
836 static int slab_pad_check(struct kmem_cache *s, struct page *page)
837 {
838 	u8 *start;
839 	u8 *fault;
840 	u8 *end;
841 	u8 *pad;
842 	int length;
843 	int remainder;
844 
845 	if (!(s->flags & SLAB_POISON))
846 		return 1;
847 
848 	start = page_address(page);
849 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
850 	end = start + length;
851 	remainder = length % s->size;
852 	if (!remainder)
853 		return 1;
854 
855 	pad = end - remainder;
856 	metadata_access_enable();
857 	fault = memchr_inv(pad, POISON_INUSE, remainder);
858 	metadata_access_disable();
859 	if (!fault)
860 		return 1;
861 	while (end > fault && end[-1] == POISON_INUSE)
862 		end--;
863 
864 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
865 	print_section(KERN_ERR, "Padding ", pad, remainder);
866 
867 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
868 	return 0;
869 }
870 
871 static int check_object(struct kmem_cache *s, struct page *page,
872 					void *object, u8 val)
873 {
874 	u8 *p = object;
875 	u8 *endobject = object + s->object_size;
876 
877 	if (s->flags & SLAB_RED_ZONE) {
878 		if (!check_bytes_and_report(s, page, object, "Redzone",
879 			object - s->red_left_pad, val, s->red_left_pad))
880 			return 0;
881 
882 		if (!check_bytes_and_report(s, page, object, "Redzone",
883 			endobject, val, s->inuse - s->object_size))
884 			return 0;
885 	} else {
886 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
887 			check_bytes_and_report(s, page, p, "Alignment padding",
888 				endobject, POISON_INUSE,
889 				s->inuse - s->object_size);
890 		}
891 	}
892 
893 	if (s->flags & SLAB_POISON) {
894 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
895 			(!check_bytes_and_report(s, page, p, "Poison", p,
896 					POISON_FREE, s->object_size - 1) ||
897 			 !check_bytes_and_report(s, page, p, "Poison",
898 				p + s->object_size - 1, POISON_END, 1)))
899 			return 0;
900 		/*
901 		 * check_pad_bytes cleans up on its own.
902 		 */
903 		check_pad_bytes(s, page, p);
904 	}
905 
906 	if (!s->offset && val == SLUB_RED_ACTIVE)
907 		/*
908 		 * Object and freepointer overlap. Cannot check
909 		 * freepointer while object is allocated.
910 		 */
911 		return 1;
912 
913 	/* Check free pointer validity */
914 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
915 		object_err(s, page, p, "Freepointer corrupt");
916 		/*
917 		 * No choice but to zap it and thus lose the remainder
918 		 * of the free objects in this slab. May cause
919 		 * another error because the object count is now wrong.
920 		 */
921 		set_freepointer(s, p, NULL);
922 		return 0;
923 	}
924 	return 1;
925 }
926 
927 static int check_slab(struct kmem_cache *s, struct page *page)
928 {
929 	int maxobj;
930 
931 	VM_BUG_ON(!irqs_disabled());
932 
933 	if (!PageSlab(page)) {
934 		slab_err(s, page, "Not a valid slab page");
935 		return 0;
936 	}
937 
938 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
939 	if (page->objects > maxobj) {
940 		slab_err(s, page, "objects %u > max %u",
941 			page->objects, maxobj);
942 		return 0;
943 	}
944 	if (page->inuse > page->objects) {
945 		slab_err(s, page, "inuse %u > max %u",
946 			page->inuse, page->objects);
947 		return 0;
948 	}
949 	/* Slab_pad_check fixes things up after itself */
950 	slab_pad_check(s, page);
951 	return 1;
952 }
953 
954 /*
955  * Determine if a certain object on a page is on the freelist. Must hold the
956  * slab lock to guarantee that the chains are in a consistent state.
957  */
958 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
959 {
960 	int nr = 0;
961 	void *fp;
962 	void *object = NULL;
963 	int max_objects;
964 
965 	fp = page->freelist;
966 	while (fp && nr <= page->objects) {
967 		if (fp == search)
968 			return 1;
969 		if (!check_valid_pointer(s, page, fp)) {
970 			if (object) {
971 				object_err(s, page, object,
972 					"Freechain corrupt");
973 				set_freepointer(s, object, NULL);
974 			} else {
975 				slab_err(s, page, "Freepointer corrupt");
976 				page->freelist = NULL;
977 				page->inuse = page->objects;
978 				slab_fix(s, "Freelist cleared");
979 				return 0;
980 			}
981 			break;
982 		}
983 		object = fp;
984 		fp = get_freepointer(s, object);
985 		nr++;
986 	}
987 
988 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
989 	if (max_objects > MAX_OBJS_PER_PAGE)
990 		max_objects = MAX_OBJS_PER_PAGE;
991 
992 	if (page->objects != max_objects) {
993 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
994 			 page->objects, max_objects);
995 		page->objects = max_objects;
996 		slab_fix(s, "Number of objects adjusted.");
997 	}
998 	if (page->inuse != page->objects - nr) {
999 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1000 			 page->inuse, page->objects - nr);
1001 		page->inuse = page->objects - nr;
1002 		slab_fix(s, "Object count adjusted.");
1003 	}
1004 	return search == NULL;
1005 }
1006 
1007 static void trace(struct kmem_cache *s, struct page *page, void *object,
1008 								int alloc)
1009 {
1010 	if (s->flags & SLAB_TRACE) {
1011 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1012 			s->name,
1013 			alloc ? "alloc" : "free",
1014 			object, page->inuse,
1015 			page->freelist);
1016 
1017 		if (!alloc)
1018 			print_section(KERN_INFO, "Object ", (void *)object,
1019 					s->object_size);
1020 
1021 		dump_stack();
1022 	}
1023 }
1024 
1025 /*
1026  * Tracking of fully allocated slabs for debugging purposes.
1027  */
1028 static void add_full(struct kmem_cache *s,
1029 	struct kmem_cache_node *n, struct page *page)
1030 {
1031 	if (!(s->flags & SLAB_STORE_USER))
1032 		return;
1033 
1034 	lockdep_assert_held(&n->list_lock);
1035 	list_add(&page->lru, &n->full);
1036 }
1037 
1038 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1039 {
1040 	if (!(s->flags & SLAB_STORE_USER))
1041 		return;
1042 
1043 	lockdep_assert_held(&n->list_lock);
1044 	list_del(&page->lru);
1045 }
1046 
1047 /* Tracking of the number of slabs for debugging purposes */
1048 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1049 {
1050 	struct kmem_cache_node *n = get_node(s, node);
1051 
1052 	return atomic_long_read(&n->nr_slabs);
1053 }
1054 
1055 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1056 {
1057 	return atomic_long_read(&n->nr_slabs);
1058 }
1059 
1060 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1061 {
1062 	struct kmem_cache_node *n = get_node(s, node);
1063 
1064 	/*
1065 	 * May be called early in order to allocate a slab for the
1066 	 * kmem_cache_node structure. Solve the chicken-egg
1067 	 * dilemma by deferring the increment of the count during
1068 	 * bootstrap (see early_kmem_cache_node_alloc).
1069 	 */
1070 	if (likely(n)) {
1071 		atomic_long_inc(&n->nr_slabs);
1072 		atomic_long_add(objects, &n->total_objects);
1073 	}
1074 }
1075 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1076 {
1077 	struct kmem_cache_node *n = get_node(s, node);
1078 
1079 	atomic_long_dec(&n->nr_slabs);
1080 	atomic_long_sub(objects, &n->total_objects);
1081 }
1082 
1083 /* Object debug checks for alloc/free paths */
1084 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1085 								void *object)
1086 {
1087 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1088 		return;
1089 
1090 	init_object(s, object, SLUB_RED_INACTIVE);
1091 	init_tracking(s, object);
1092 }
1093 
1094 static inline int alloc_consistency_checks(struct kmem_cache *s,
1095 					struct page *page,
1096 					void *object, unsigned long addr)
1097 {
1098 	if (!check_slab(s, page))
1099 		return 0;
1100 
1101 	if (!check_valid_pointer(s, page, object)) {
1102 		object_err(s, page, object, "Freelist Pointer check fails");
1103 		return 0;
1104 	}
1105 
1106 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1107 		return 0;
1108 
1109 	return 1;
1110 }
1111 
1112 static noinline int alloc_debug_processing(struct kmem_cache *s,
1113 					struct page *page,
1114 					void *object, unsigned long addr)
1115 {
1116 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1117 		if (!alloc_consistency_checks(s, page, object, addr))
1118 			goto bad;
1119 	}
1120 
1121 	/* Success perform special debug activities for allocs */
1122 	if (s->flags & SLAB_STORE_USER)
1123 		set_track(s, object, TRACK_ALLOC, addr);
1124 	trace(s, page, object, 1);
1125 	init_object(s, object, SLUB_RED_ACTIVE);
1126 	return 1;
1127 
1128 bad:
1129 	if (PageSlab(page)) {
1130 		/*
1131 		 * If this is a slab page then lets do the best we can
1132 		 * to avoid issues in the future. Marking all objects
1133 		 * as used avoids touching the remaining objects.
1134 		 */
1135 		slab_fix(s, "Marking all objects used");
1136 		page->inuse = page->objects;
1137 		page->freelist = NULL;
1138 	}
1139 	return 0;
1140 }
1141 
1142 static inline int free_consistency_checks(struct kmem_cache *s,
1143 		struct page *page, void *object, unsigned long addr)
1144 {
1145 	if (!check_valid_pointer(s, page, object)) {
1146 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1147 		return 0;
1148 	}
1149 
1150 	if (on_freelist(s, page, object)) {
1151 		object_err(s, page, object, "Object already free");
1152 		return 0;
1153 	}
1154 
1155 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1156 		return 0;
1157 
1158 	if (unlikely(s != page->slab_cache)) {
1159 		if (!PageSlab(page)) {
1160 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1161 				 object);
1162 		} else if (!page->slab_cache) {
1163 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1164 			       object);
1165 			dump_stack();
1166 		} else
1167 			object_err(s, page, object,
1168 					"page slab pointer corrupt.");
1169 		return 0;
1170 	}
1171 	return 1;
1172 }
1173 
1174 /* Supports checking bulk free of a constructed freelist */
1175 static noinline int free_debug_processing(
1176 	struct kmem_cache *s, struct page *page,
1177 	void *head, void *tail, int bulk_cnt,
1178 	unsigned long addr)
1179 {
1180 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1181 	void *object = head;
1182 	int cnt = 0;
1183 	unsigned long uninitialized_var(flags);
1184 	int ret = 0;
1185 
1186 	spin_lock_irqsave(&n->list_lock, flags);
1187 	slab_lock(page);
1188 
1189 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1190 		if (!check_slab(s, page))
1191 			goto out;
1192 	}
1193 
1194 next_object:
1195 	cnt++;
1196 
1197 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1198 		if (!free_consistency_checks(s, page, object, addr))
1199 			goto out;
1200 	}
1201 
1202 	if (s->flags & SLAB_STORE_USER)
1203 		set_track(s, object, TRACK_FREE, addr);
1204 	trace(s, page, object, 0);
1205 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1206 	init_object(s, object, SLUB_RED_INACTIVE);
1207 
1208 	/* Reached end of constructed freelist yet? */
1209 	if (object != tail) {
1210 		object = get_freepointer(s, object);
1211 		goto next_object;
1212 	}
1213 	ret = 1;
1214 
1215 out:
1216 	if (cnt != bulk_cnt)
1217 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1218 			 bulk_cnt, cnt);
1219 
1220 	slab_unlock(page);
1221 	spin_unlock_irqrestore(&n->list_lock, flags);
1222 	if (!ret)
1223 		slab_fix(s, "Object at 0x%p not freed", object);
1224 	return ret;
1225 }
1226 
1227 static int __init setup_slub_debug(char *str)
1228 {
1229 	slub_debug = DEBUG_DEFAULT_FLAGS;
1230 	if (*str++ != '=' || !*str)
1231 		/*
1232 		 * No options specified. Switch on full debugging.
1233 		 */
1234 		goto out;
1235 
1236 	if (*str == ',')
1237 		/*
1238 		 * No options but restriction on slabs. This means full
1239 		 * debugging for slabs matching a pattern.
1240 		 */
1241 		goto check_slabs;
1242 
1243 	slub_debug = 0;
1244 	if (*str == '-')
1245 		/*
1246 		 * Switch off all debugging measures.
1247 		 */
1248 		goto out;
1249 
1250 	/*
1251 	 * Determine which debug features should be switched on
1252 	 */
1253 	for (; *str && *str != ','; str++) {
1254 		switch (tolower(*str)) {
1255 		case 'f':
1256 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1257 			break;
1258 		case 'z':
1259 			slub_debug |= SLAB_RED_ZONE;
1260 			break;
1261 		case 'p':
1262 			slub_debug |= SLAB_POISON;
1263 			break;
1264 		case 'u':
1265 			slub_debug |= SLAB_STORE_USER;
1266 			break;
1267 		case 't':
1268 			slub_debug |= SLAB_TRACE;
1269 			break;
1270 		case 'a':
1271 			slub_debug |= SLAB_FAILSLAB;
1272 			break;
1273 		case 'o':
1274 			/*
1275 			 * Avoid enabling debugging on caches if its minimum
1276 			 * order would increase as a result.
1277 			 */
1278 			disable_higher_order_debug = 1;
1279 			break;
1280 		default:
1281 			pr_err("slub_debug option '%c' unknown. skipped\n",
1282 			       *str);
1283 		}
1284 	}
1285 
1286 check_slabs:
1287 	if (*str == ',')
1288 		slub_debug_slabs = str + 1;
1289 out:
1290 	return 1;
1291 }
1292 
1293 __setup("slub_debug", setup_slub_debug);
1294 
1295 slab_flags_t kmem_cache_flags(unsigned long object_size,
1296 	slab_flags_t flags, const char *name,
1297 	void (*ctor)(void *))
1298 {
1299 	/*
1300 	 * Enable debugging if selected on the kernel commandline.
1301 	 */
1302 	if (slub_debug && (!slub_debug_slabs || (name &&
1303 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1304 		flags |= slub_debug;
1305 
1306 	return flags;
1307 }
1308 #else /* !CONFIG_SLUB_DEBUG */
1309 static inline void setup_object_debug(struct kmem_cache *s,
1310 			struct page *page, void *object) {}
1311 
1312 static inline int alloc_debug_processing(struct kmem_cache *s,
1313 	struct page *page, void *object, unsigned long addr) { return 0; }
1314 
1315 static inline int free_debug_processing(
1316 	struct kmem_cache *s, struct page *page,
1317 	void *head, void *tail, int bulk_cnt,
1318 	unsigned long addr) { return 0; }
1319 
1320 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1321 			{ return 1; }
1322 static inline int check_object(struct kmem_cache *s, struct page *page,
1323 			void *object, u8 val) { return 1; }
1324 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1325 					struct page *page) {}
1326 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1327 					struct page *page) {}
1328 slab_flags_t kmem_cache_flags(unsigned long object_size,
1329 	slab_flags_t flags, const char *name,
1330 	void (*ctor)(void *))
1331 {
1332 	return flags;
1333 }
1334 #define slub_debug 0
1335 
1336 #define disable_higher_order_debug 0
1337 
1338 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1339 							{ return 0; }
1340 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1341 							{ return 0; }
1342 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1343 							int objects) {}
1344 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1345 							int objects) {}
1346 
1347 #endif /* CONFIG_SLUB_DEBUG */
1348 
1349 /*
1350  * Hooks for other subsystems that check memory allocations. In a typical
1351  * production configuration these hooks all should produce no code at all.
1352  */
1353 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1354 {
1355 	kmemleak_alloc(ptr, size, 1, flags);
1356 	kasan_kmalloc_large(ptr, size, flags);
1357 }
1358 
1359 static __always_inline void kfree_hook(void *x)
1360 {
1361 	kmemleak_free(x);
1362 	kasan_kfree_large(x, _RET_IP_);
1363 }
1364 
1365 static __always_inline void *slab_free_hook(struct kmem_cache *s, void *x)
1366 {
1367 	void *freeptr;
1368 
1369 	kmemleak_free_recursive(x, s->flags);
1370 
1371 	/*
1372 	 * Trouble is that we may no longer disable interrupts in the fast path
1373 	 * So in order to make the debug calls that expect irqs to be
1374 	 * disabled we need to disable interrupts temporarily.
1375 	 */
1376 #ifdef CONFIG_LOCKDEP
1377 	{
1378 		unsigned long flags;
1379 
1380 		local_irq_save(flags);
1381 		debug_check_no_locks_freed(x, s->object_size);
1382 		local_irq_restore(flags);
1383 	}
1384 #endif
1385 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1386 		debug_check_no_obj_freed(x, s->object_size);
1387 
1388 	freeptr = get_freepointer(s, x);
1389 	/*
1390 	 * kasan_slab_free() may put x into memory quarantine, delaying its
1391 	 * reuse. In this case the object's freelist pointer is changed.
1392 	 */
1393 	kasan_slab_free(s, x, _RET_IP_);
1394 	return freeptr;
1395 }
1396 
1397 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1398 					   void *head, void *tail)
1399 {
1400 /*
1401  * Compiler cannot detect this function can be removed if slab_free_hook()
1402  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1403  */
1404 #if defined(CONFIG_LOCKDEP)	||		\
1405 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1406 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1407 	defined(CONFIG_KASAN)
1408 
1409 	void *object = head;
1410 	void *tail_obj = tail ? : head;
1411 	void *freeptr;
1412 
1413 	do {
1414 		freeptr = slab_free_hook(s, object);
1415 	} while ((object != tail_obj) && (object = freeptr));
1416 #endif
1417 }
1418 
1419 static void setup_object(struct kmem_cache *s, struct page *page,
1420 				void *object)
1421 {
1422 	setup_object_debug(s, page, object);
1423 	kasan_init_slab_obj(s, object);
1424 	if (unlikely(s->ctor)) {
1425 		kasan_unpoison_object_data(s, object);
1426 		s->ctor(object);
1427 		kasan_poison_object_data(s, object);
1428 	}
1429 }
1430 
1431 /*
1432  * Slab allocation and freeing
1433  */
1434 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1435 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1436 {
1437 	struct page *page;
1438 	int order = oo_order(oo);
1439 
1440 	if (node == NUMA_NO_NODE)
1441 		page = alloc_pages(flags, order);
1442 	else
1443 		page = __alloc_pages_node(node, flags, order);
1444 
1445 	if (page && memcg_charge_slab(page, flags, order, s)) {
1446 		__free_pages(page, order);
1447 		page = NULL;
1448 	}
1449 
1450 	return page;
1451 }
1452 
1453 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1454 /* Pre-initialize the random sequence cache */
1455 static int init_cache_random_seq(struct kmem_cache *s)
1456 {
1457 	int err;
1458 	unsigned long i, count = oo_objects(s->oo);
1459 
1460 	/* Bailout if already initialised */
1461 	if (s->random_seq)
1462 		return 0;
1463 
1464 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1465 	if (err) {
1466 		pr_err("SLUB: Unable to initialize free list for %s\n",
1467 			s->name);
1468 		return err;
1469 	}
1470 
1471 	/* Transform to an offset on the set of pages */
1472 	if (s->random_seq) {
1473 		for (i = 0; i < count; i++)
1474 			s->random_seq[i] *= s->size;
1475 	}
1476 	return 0;
1477 }
1478 
1479 /* Initialize each random sequence freelist per cache */
1480 static void __init init_freelist_randomization(void)
1481 {
1482 	struct kmem_cache *s;
1483 
1484 	mutex_lock(&slab_mutex);
1485 
1486 	list_for_each_entry(s, &slab_caches, list)
1487 		init_cache_random_seq(s);
1488 
1489 	mutex_unlock(&slab_mutex);
1490 }
1491 
1492 /* Get the next entry on the pre-computed freelist randomized */
1493 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1494 				unsigned long *pos, void *start,
1495 				unsigned long page_limit,
1496 				unsigned long freelist_count)
1497 {
1498 	unsigned int idx;
1499 
1500 	/*
1501 	 * If the target page allocation failed, the number of objects on the
1502 	 * page might be smaller than the usual size defined by the cache.
1503 	 */
1504 	do {
1505 		idx = s->random_seq[*pos];
1506 		*pos += 1;
1507 		if (*pos >= freelist_count)
1508 			*pos = 0;
1509 	} while (unlikely(idx >= page_limit));
1510 
1511 	return (char *)start + idx;
1512 }
1513 
1514 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1515 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1516 {
1517 	void *start;
1518 	void *cur;
1519 	void *next;
1520 	unsigned long idx, pos, page_limit, freelist_count;
1521 
1522 	if (page->objects < 2 || !s->random_seq)
1523 		return false;
1524 
1525 	freelist_count = oo_objects(s->oo);
1526 	pos = get_random_int() % freelist_count;
1527 
1528 	page_limit = page->objects * s->size;
1529 	start = fixup_red_left(s, page_address(page));
1530 
1531 	/* First entry is used as the base of the freelist */
1532 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1533 				freelist_count);
1534 	page->freelist = cur;
1535 
1536 	for (idx = 1; idx < page->objects; idx++) {
1537 		setup_object(s, page, cur);
1538 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1539 			freelist_count);
1540 		set_freepointer(s, cur, next);
1541 		cur = next;
1542 	}
1543 	setup_object(s, page, cur);
1544 	set_freepointer(s, cur, NULL);
1545 
1546 	return true;
1547 }
1548 #else
1549 static inline int init_cache_random_seq(struct kmem_cache *s)
1550 {
1551 	return 0;
1552 }
1553 static inline void init_freelist_randomization(void) { }
1554 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1555 {
1556 	return false;
1557 }
1558 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1559 
1560 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1561 {
1562 	struct page *page;
1563 	struct kmem_cache_order_objects oo = s->oo;
1564 	gfp_t alloc_gfp;
1565 	void *start, *p;
1566 	int idx, order;
1567 	bool shuffle;
1568 
1569 	flags &= gfp_allowed_mask;
1570 
1571 	if (gfpflags_allow_blocking(flags))
1572 		local_irq_enable();
1573 
1574 	flags |= s->allocflags;
1575 
1576 	/*
1577 	 * Let the initial higher-order allocation fail under memory pressure
1578 	 * so we fall-back to the minimum order allocation.
1579 	 */
1580 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1581 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1582 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1583 
1584 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1585 	if (unlikely(!page)) {
1586 		oo = s->min;
1587 		alloc_gfp = flags;
1588 		/*
1589 		 * Allocation may have failed due to fragmentation.
1590 		 * Try a lower order alloc if possible
1591 		 */
1592 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1593 		if (unlikely(!page))
1594 			goto out;
1595 		stat(s, ORDER_FALLBACK);
1596 	}
1597 
1598 	page->objects = oo_objects(oo);
1599 
1600 	order = compound_order(page);
1601 	page->slab_cache = s;
1602 	__SetPageSlab(page);
1603 	if (page_is_pfmemalloc(page))
1604 		SetPageSlabPfmemalloc(page);
1605 
1606 	start = page_address(page);
1607 
1608 	if (unlikely(s->flags & SLAB_POISON))
1609 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1610 
1611 	kasan_poison_slab(page);
1612 
1613 	shuffle = shuffle_freelist(s, page);
1614 
1615 	if (!shuffle) {
1616 		for_each_object_idx(p, idx, s, start, page->objects) {
1617 			setup_object(s, page, p);
1618 			if (likely(idx < page->objects))
1619 				set_freepointer(s, p, p + s->size);
1620 			else
1621 				set_freepointer(s, p, NULL);
1622 		}
1623 		page->freelist = fixup_red_left(s, start);
1624 	}
1625 
1626 	page->inuse = page->objects;
1627 	page->frozen = 1;
1628 
1629 out:
1630 	if (gfpflags_allow_blocking(flags))
1631 		local_irq_disable();
1632 	if (!page)
1633 		return NULL;
1634 
1635 	mod_lruvec_page_state(page,
1636 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1637 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1638 		1 << oo_order(oo));
1639 
1640 	inc_slabs_node(s, page_to_nid(page), page->objects);
1641 
1642 	return page;
1643 }
1644 
1645 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1646 {
1647 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1648 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1649 		flags &= ~GFP_SLAB_BUG_MASK;
1650 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1651 				invalid_mask, &invalid_mask, flags, &flags);
1652 		dump_stack();
1653 	}
1654 
1655 	return allocate_slab(s,
1656 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1657 }
1658 
1659 static void __free_slab(struct kmem_cache *s, struct page *page)
1660 {
1661 	int order = compound_order(page);
1662 	int pages = 1 << order;
1663 
1664 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1665 		void *p;
1666 
1667 		slab_pad_check(s, page);
1668 		for_each_object(p, s, page_address(page),
1669 						page->objects)
1670 			check_object(s, page, p, SLUB_RED_INACTIVE);
1671 	}
1672 
1673 	mod_lruvec_page_state(page,
1674 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1675 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1676 		-pages);
1677 
1678 	__ClearPageSlabPfmemalloc(page);
1679 	__ClearPageSlab(page);
1680 
1681 	page_mapcount_reset(page);
1682 	if (current->reclaim_state)
1683 		current->reclaim_state->reclaimed_slab += pages;
1684 	memcg_uncharge_slab(page, order, s);
1685 	__free_pages(page, order);
1686 }
1687 
1688 #define need_reserve_slab_rcu						\
1689 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1690 
1691 static void rcu_free_slab(struct rcu_head *h)
1692 {
1693 	struct page *page;
1694 
1695 	if (need_reserve_slab_rcu)
1696 		page = virt_to_head_page(h);
1697 	else
1698 		page = container_of((struct list_head *)h, struct page, lru);
1699 
1700 	__free_slab(page->slab_cache, page);
1701 }
1702 
1703 static void free_slab(struct kmem_cache *s, struct page *page)
1704 {
1705 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1706 		struct rcu_head *head;
1707 
1708 		if (need_reserve_slab_rcu) {
1709 			int order = compound_order(page);
1710 			int offset = (PAGE_SIZE << order) - s->reserved;
1711 
1712 			VM_BUG_ON(s->reserved != sizeof(*head));
1713 			head = page_address(page) + offset;
1714 		} else {
1715 			head = &page->rcu_head;
1716 		}
1717 
1718 		call_rcu(head, rcu_free_slab);
1719 	} else
1720 		__free_slab(s, page);
1721 }
1722 
1723 static void discard_slab(struct kmem_cache *s, struct page *page)
1724 {
1725 	dec_slabs_node(s, page_to_nid(page), page->objects);
1726 	free_slab(s, page);
1727 }
1728 
1729 /*
1730  * Management of partially allocated slabs.
1731  */
1732 static inline void
1733 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1734 {
1735 	n->nr_partial++;
1736 	if (tail == DEACTIVATE_TO_TAIL)
1737 		list_add_tail(&page->lru, &n->partial);
1738 	else
1739 		list_add(&page->lru, &n->partial);
1740 }
1741 
1742 static inline void add_partial(struct kmem_cache_node *n,
1743 				struct page *page, int tail)
1744 {
1745 	lockdep_assert_held(&n->list_lock);
1746 	__add_partial(n, page, tail);
1747 }
1748 
1749 static inline void remove_partial(struct kmem_cache_node *n,
1750 					struct page *page)
1751 {
1752 	lockdep_assert_held(&n->list_lock);
1753 	list_del(&page->lru);
1754 	n->nr_partial--;
1755 }
1756 
1757 /*
1758  * Remove slab from the partial list, freeze it and
1759  * return the pointer to the freelist.
1760  *
1761  * Returns a list of objects or NULL if it fails.
1762  */
1763 static inline void *acquire_slab(struct kmem_cache *s,
1764 		struct kmem_cache_node *n, struct page *page,
1765 		int mode, int *objects)
1766 {
1767 	void *freelist;
1768 	unsigned long counters;
1769 	struct page new;
1770 
1771 	lockdep_assert_held(&n->list_lock);
1772 
1773 	/*
1774 	 * Zap the freelist and set the frozen bit.
1775 	 * The old freelist is the list of objects for the
1776 	 * per cpu allocation list.
1777 	 */
1778 	freelist = page->freelist;
1779 	counters = page->counters;
1780 	new.counters = counters;
1781 	*objects = new.objects - new.inuse;
1782 	if (mode) {
1783 		new.inuse = page->objects;
1784 		new.freelist = NULL;
1785 	} else {
1786 		new.freelist = freelist;
1787 	}
1788 
1789 	VM_BUG_ON(new.frozen);
1790 	new.frozen = 1;
1791 
1792 	if (!__cmpxchg_double_slab(s, page,
1793 			freelist, counters,
1794 			new.freelist, new.counters,
1795 			"acquire_slab"))
1796 		return NULL;
1797 
1798 	remove_partial(n, page);
1799 	WARN_ON(!freelist);
1800 	return freelist;
1801 }
1802 
1803 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1804 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1805 
1806 /*
1807  * Try to allocate a partial slab from a specific node.
1808  */
1809 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1810 				struct kmem_cache_cpu *c, gfp_t flags)
1811 {
1812 	struct page *page, *page2;
1813 	void *object = NULL;
1814 	int available = 0;
1815 	int objects;
1816 
1817 	/*
1818 	 * Racy check. If we mistakenly see no partial slabs then we
1819 	 * just allocate an empty slab. If we mistakenly try to get a
1820 	 * partial slab and there is none available then get_partials()
1821 	 * will return NULL.
1822 	 */
1823 	if (!n || !n->nr_partial)
1824 		return NULL;
1825 
1826 	spin_lock(&n->list_lock);
1827 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1828 		void *t;
1829 
1830 		if (!pfmemalloc_match(page, flags))
1831 			continue;
1832 
1833 		t = acquire_slab(s, n, page, object == NULL, &objects);
1834 		if (!t)
1835 			break;
1836 
1837 		available += objects;
1838 		if (!object) {
1839 			c->page = page;
1840 			stat(s, ALLOC_FROM_PARTIAL);
1841 			object = t;
1842 		} else {
1843 			put_cpu_partial(s, page, 0);
1844 			stat(s, CPU_PARTIAL_NODE);
1845 		}
1846 		if (!kmem_cache_has_cpu_partial(s)
1847 			|| available > slub_cpu_partial(s) / 2)
1848 			break;
1849 
1850 	}
1851 	spin_unlock(&n->list_lock);
1852 	return object;
1853 }
1854 
1855 /*
1856  * Get a page from somewhere. Search in increasing NUMA distances.
1857  */
1858 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1859 		struct kmem_cache_cpu *c)
1860 {
1861 #ifdef CONFIG_NUMA
1862 	struct zonelist *zonelist;
1863 	struct zoneref *z;
1864 	struct zone *zone;
1865 	enum zone_type high_zoneidx = gfp_zone(flags);
1866 	void *object;
1867 	unsigned int cpuset_mems_cookie;
1868 
1869 	/*
1870 	 * The defrag ratio allows a configuration of the tradeoffs between
1871 	 * inter node defragmentation and node local allocations. A lower
1872 	 * defrag_ratio increases the tendency to do local allocations
1873 	 * instead of attempting to obtain partial slabs from other nodes.
1874 	 *
1875 	 * If the defrag_ratio is set to 0 then kmalloc() always
1876 	 * returns node local objects. If the ratio is higher then kmalloc()
1877 	 * may return off node objects because partial slabs are obtained
1878 	 * from other nodes and filled up.
1879 	 *
1880 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1881 	 * (which makes defrag_ratio = 1000) then every (well almost)
1882 	 * allocation will first attempt to defrag slab caches on other nodes.
1883 	 * This means scanning over all nodes to look for partial slabs which
1884 	 * may be expensive if we do it every time we are trying to find a slab
1885 	 * with available objects.
1886 	 */
1887 	if (!s->remote_node_defrag_ratio ||
1888 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1889 		return NULL;
1890 
1891 	do {
1892 		cpuset_mems_cookie = read_mems_allowed_begin();
1893 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1894 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1895 			struct kmem_cache_node *n;
1896 
1897 			n = get_node(s, zone_to_nid(zone));
1898 
1899 			if (n && cpuset_zone_allowed(zone, flags) &&
1900 					n->nr_partial > s->min_partial) {
1901 				object = get_partial_node(s, n, c, flags);
1902 				if (object) {
1903 					/*
1904 					 * Don't check read_mems_allowed_retry()
1905 					 * here - if mems_allowed was updated in
1906 					 * parallel, that was a harmless race
1907 					 * between allocation and the cpuset
1908 					 * update
1909 					 */
1910 					return object;
1911 				}
1912 			}
1913 		}
1914 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1915 #endif
1916 	return NULL;
1917 }
1918 
1919 /*
1920  * Get a partial page, lock it and return it.
1921  */
1922 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1923 		struct kmem_cache_cpu *c)
1924 {
1925 	void *object;
1926 	int searchnode = node;
1927 
1928 	if (node == NUMA_NO_NODE)
1929 		searchnode = numa_mem_id();
1930 	else if (!node_present_pages(node))
1931 		searchnode = node_to_mem_node(node);
1932 
1933 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1934 	if (object || node != NUMA_NO_NODE)
1935 		return object;
1936 
1937 	return get_any_partial(s, flags, c);
1938 }
1939 
1940 #ifdef CONFIG_PREEMPT
1941 /*
1942  * Calculate the next globally unique transaction for disambiguiation
1943  * during cmpxchg. The transactions start with the cpu number and are then
1944  * incremented by CONFIG_NR_CPUS.
1945  */
1946 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1947 #else
1948 /*
1949  * No preemption supported therefore also no need to check for
1950  * different cpus.
1951  */
1952 #define TID_STEP 1
1953 #endif
1954 
1955 static inline unsigned long next_tid(unsigned long tid)
1956 {
1957 	return tid + TID_STEP;
1958 }
1959 
1960 static inline unsigned int tid_to_cpu(unsigned long tid)
1961 {
1962 	return tid % TID_STEP;
1963 }
1964 
1965 static inline unsigned long tid_to_event(unsigned long tid)
1966 {
1967 	return tid / TID_STEP;
1968 }
1969 
1970 static inline unsigned int init_tid(int cpu)
1971 {
1972 	return cpu;
1973 }
1974 
1975 static inline void note_cmpxchg_failure(const char *n,
1976 		const struct kmem_cache *s, unsigned long tid)
1977 {
1978 #ifdef SLUB_DEBUG_CMPXCHG
1979 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1980 
1981 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1982 
1983 #ifdef CONFIG_PREEMPT
1984 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1985 		pr_warn("due to cpu change %d -> %d\n",
1986 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1987 	else
1988 #endif
1989 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1990 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1991 			tid_to_event(tid), tid_to_event(actual_tid));
1992 	else
1993 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1994 			actual_tid, tid, next_tid(tid));
1995 #endif
1996 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1997 }
1998 
1999 static void init_kmem_cache_cpus(struct kmem_cache *s)
2000 {
2001 	int cpu;
2002 
2003 	for_each_possible_cpu(cpu)
2004 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2005 }
2006 
2007 /*
2008  * Remove the cpu slab
2009  */
2010 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2011 				void *freelist, struct kmem_cache_cpu *c)
2012 {
2013 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2014 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2015 	int lock = 0;
2016 	enum slab_modes l = M_NONE, m = M_NONE;
2017 	void *nextfree;
2018 	int tail = DEACTIVATE_TO_HEAD;
2019 	struct page new;
2020 	struct page old;
2021 
2022 	if (page->freelist) {
2023 		stat(s, DEACTIVATE_REMOTE_FREES);
2024 		tail = DEACTIVATE_TO_TAIL;
2025 	}
2026 
2027 	/*
2028 	 * Stage one: Free all available per cpu objects back
2029 	 * to the page freelist while it is still frozen. Leave the
2030 	 * last one.
2031 	 *
2032 	 * There is no need to take the list->lock because the page
2033 	 * is still frozen.
2034 	 */
2035 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2036 		void *prior;
2037 		unsigned long counters;
2038 
2039 		do {
2040 			prior = page->freelist;
2041 			counters = page->counters;
2042 			set_freepointer(s, freelist, prior);
2043 			new.counters = counters;
2044 			new.inuse--;
2045 			VM_BUG_ON(!new.frozen);
2046 
2047 		} while (!__cmpxchg_double_slab(s, page,
2048 			prior, counters,
2049 			freelist, new.counters,
2050 			"drain percpu freelist"));
2051 
2052 		freelist = nextfree;
2053 	}
2054 
2055 	/*
2056 	 * Stage two: Ensure that the page is unfrozen while the
2057 	 * list presence reflects the actual number of objects
2058 	 * during unfreeze.
2059 	 *
2060 	 * We setup the list membership and then perform a cmpxchg
2061 	 * with the count. If there is a mismatch then the page
2062 	 * is not unfrozen but the page is on the wrong list.
2063 	 *
2064 	 * Then we restart the process which may have to remove
2065 	 * the page from the list that we just put it on again
2066 	 * because the number of objects in the slab may have
2067 	 * changed.
2068 	 */
2069 redo:
2070 
2071 	old.freelist = page->freelist;
2072 	old.counters = page->counters;
2073 	VM_BUG_ON(!old.frozen);
2074 
2075 	/* Determine target state of the slab */
2076 	new.counters = old.counters;
2077 	if (freelist) {
2078 		new.inuse--;
2079 		set_freepointer(s, freelist, old.freelist);
2080 		new.freelist = freelist;
2081 	} else
2082 		new.freelist = old.freelist;
2083 
2084 	new.frozen = 0;
2085 
2086 	if (!new.inuse && n->nr_partial >= s->min_partial)
2087 		m = M_FREE;
2088 	else if (new.freelist) {
2089 		m = M_PARTIAL;
2090 		if (!lock) {
2091 			lock = 1;
2092 			/*
2093 			 * Taking the spinlock removes the possiblity
2094 			 * that acquire_slab() will see a slab page that
2095 			 * is frozen
2096 			 */
2097 			spin_lock(&n->list_lock);
2098 		}
2099 	} else {
2100 		m = M_FULL;
2101 		if (kmem_cache_debug(s) && !lock) {
2102 			lock = 1;
2103 			/*
2104 			 * This also ensures that the scanning of full
2105 			 * slabs from diagnostic functions will not see
2106 			 * any frozen slabs.
2107 			 */
2108 			spin_lock(&n->list_lock);
2109 		}
2110 	}
2111 
2112 	if (l != m) {
2113 
2114 		if (l == M_PARTIAL)
2115 
2116 			remove_partial(n, page);
2117 
2118 		else if (l == M_FULL)
2119 
2120 			remove_full(s, n, page);
2121 
2122 		if (m == M_PARTIAL) {
2123 
2124 			add_partial(n, page, tail);
2125 			stat(s, tail);
2126 
2127 		} else if (m == M_FULL) {
2128 
2129 			stat(s, DEACTIVATE_FULL);
2130 			add_full(s, n, page);
2131 
2132 		}
2133 	}
2134 
2135 	l = m;
2136 	if (!__cmpxchg_double_slab(s, page,
2137 				old.freelist, old.counters,
2138 				new.freelist, new.counters,
2139 				"unfreezing slab"))
2140 		goto redo;
2141 
2142 	if (lock)
2143 		spin_unlock(&n->list_lock);
2144 
2145 	if (m == M_FREE) {
2146 		stat(s, DEACTIVATE_EMPTY);
2147 		discard_slab(s, page);
2148 		stat(s, FREE_SLAB);
2149 	}
2150 
2151 	c->page = NULL;
2152 	c->freelist = NULL;
2153 }
2154 
2155 /*
2156  * Unfreeze all the cpu partial slabs.
2157  *
2158  * This function must be called with interrupts disabled
2159  * for the cpu using c (or some other guarantee must be there
2160  * to guarantee no concurrent accesses).
2161  */
2162 static void unfreeze_partials(struct kmem_cache *s,
2163 		struct kmem_cache_cpu *c)
2164 {
2165 #ifdef CONFIG_SLUB_CPU_PARTIAL
2166 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2167 	struct page *page, *discard_page = NULL;
2168 
2169 	while ((page = c->partial)) {
2170 		struct page new;
2171 		struct page old;
2172 
2173 		c->partial = page->next;
2174 
2175 		n2 = get_node(s, page_to_nid(page));
2176 		if (n != n2) {
2177 			if (n)
2178 				spin_unlock(&n->list_lock);
2179 
2180 			n = n2;
2181 			spin_lock(&n->list_lock);
2182 		}
2183 
2184 		do {
2185 
2186 			old.freelist = page->freelist;
2187 			old.counters = page->counters;
2188 			VM_BUG_ON(!old.frozen);
2189 
2190 			new.counters = old.counters;
2191 			new.freelist = old.freelist;
2192 
2193 			new.frozen = 0;
2194 
2195 		} while (!__cmpxchg_double_slab(s, page,
2196 				old.freelist, old.counters,
2197 				new.freelist, new.counters,
2198 				"unfreezing slab"));
2199 
2200 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2201 			page->next = discard_page;
2202 			discard_page = page;
2203 		} else {
2204 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2205 			stat(s, FREE_ADD_PARTIAL);
2206 		}
2207 	}
2208 
2209 	if (n)
2210 		spin_unlock(&n->list_lock);
2211 
2212 	while (discard_page) {
2213 		page = discard_page;
2214 		discard_page = discard_page->next;
2215 
2216 		stat(s, DEACTIVATE_EMPTY);
2217 		discard_slab(s, page);
2218 		stat(s, FREE_SLAB);
2219 	}
2220 #endif
2221 }
2222 
2223 /*
2224  * Put a page that was just frozen (in __slab_free) into a partial page
2225  * slot if available.
2226  *
2227  * If we did not find a slot then simply move all the partials to the
2228  * per node partial list.
2229  */
2230 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2231 {
2232 #ifdef CONFIG_SLUB_CPU_PARTIAL
2233 	struct page *oldpage;
2234 	int pages;
2235 	int pobjects;
2236 
2237 	preempt_disable();
2238 	do {
2239 		pages = 0;
2240 		pobjects = 0;
2241 		oldpage = this_cpu_read(s->cpu_slab->partial);
2242 
2243 		if (oldpage) {
2244 			pobjects = oldpage->pobjects;
2245 			pages = oldpage->pages;
2246 			if (drain && pobjects > s->cpu_partial) {
2247 				unsigned long flags;
2248 				/*
2249 				 * partial array is full. Move the existing
2250 				 * set to the per node partial list.
2251 				 */
2252 				local_irq_save(flags);
2253 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2254 				local_irq_restore(flags);
2255 				oldpage = NULL;
2256 				pobjects = 0;
2257 				pages = 0;
2258 				stat(s, CPU_PARTIAL_DRAIN);
2259 			}
2260 		}
2261 
2262 		pages++;
2263 		pobjects += page->objects - page->inuse;
2264 
2265 		page->pages = pages;
2266 		page->pobjects = pobjects;
2267 		page->next = oldpage;
2268 
2269 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2270 								!= oldpage);
2271 	if (unlikely(!s->cpu_partial)) {
2272 		unsigned long flags;
2273 
2274 		local_irq_save(flags);
2275 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2276 		local_irq_restore(flags);
2277 	}
2278 	preempt_enable();
2279 #endif
2280 }
2281 
2282 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2283 {
2284 	stat(s, CPUSLAB_FLUSH);
2285 	deactivate_slab(s, c->page, c->freelist, c);
2286 
2287 	c->tid = next_tid(c->tid);
2288 }
2289 
2290 /*
2291  * Flush cpu slab.
2292  *
2293  * Called from IPI handler with interrupts disabled.
2294  */
2295 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2296 {
2297 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2298 
2299 	if (likely(c)) {
2300 		if (c->page)
2301 			flush_slab(s, c);
2302 
2303 		unfreeze_partials(s, c);
2304 	}
2305 }
2306 
2307 static void flush_cpu_slab(void *d)
2308 {
2309 	struct kmem_cache *s = d;
2310 
2311 	__flush_cpu_slab(s, smp_processor_id());
2312 }
2313 
2314 static bool has_cpu_slab(int cpu, void *info)
2315 {
2316 	struct kmem_cache *s = info;
2317 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2318 
2319 	return c->page || slub_percpu_partial(c);
2320 }
2321 
2322 static void flush_all(struct kmem_cache *s)
2323 {
2324 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2325 }
2326 
2327 /*
2328  * Use the cpu notifier to insure that the cpu slabs are flushed when
2329  * necessary.
2330  */
2331 static int slub_cpu_dead(unsigned int cpu)
2332 {
2333 	struct kmem_cache *s;
2334 	unsigned long flags;
2335 
2336 	mutex_lock(&slab_mutex);
2337 	list_for_each_entry(s, &slab_caches, list) {
2338 		local_irq_save(flags);
2339 		__flush_cpu_slab(s, cpu);
2340 		local_irq_restore(flags);
2341 	}
2342 	mutex_unlock(&slab_mutex);
2343 	return 0;
2344 }
2345 
2346 /*
2347  * Check if the objects in a per cpu structure fit numa
2348  * locality expectations.
2349  */
2350 static inline int node_match(struct page *page, int node)
2351 {
2352 #ifdef CONFIG_NUMA
2353 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2354 		return 0;
2355 #endif
2356 	return 1;
2357 }
2358 
2359 #ifdef CONFIG_SLUB_DEBUG
2360 static int count_free(struct page *page)
2361 {
2362 	return page->objects - page->inuse;
2363 }
2364 
2365 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2366 {
2367 	return atomic_long_read(&n->total_objects);
2368 }
2369 #endif /* CONFIG_SLUB_DEBUG */
2370 
2371 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2372 static unsigned long count_partial(struct kmem_cache_node *n,
2373 					int (*get_count)(struct page *))
2374 {
2375 	unsigned long flags;
2376 	unsigned long x = 0;
2377 	struct page *page;
2378 
2379 	spin_lock_irqsave(&n->list_lock, flags);
2380 	list_for_each_entry(page, &n->partial, lru)
2381 		x += get_count(page);
2382 	spin_unlock_irqrestore(&n->list_lock, flags);
2383 	return x;
2384 }
2385 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2386 
2387 static noinline void
2388 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2389 {
2390 #ifdef CONFIG_SLUB_DEBUG
2391 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2392 				      DEFAULT_RATELIMIT_BURST);
2393 	int node;
2394 	struct kmem_cache_node *n;
2395 
2396 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2397 		return;
2398 
2399 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2400 		nid, gfpflags, &gfpflags);
2401 	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2402 		s->name, s->object_size, s->size, oo_order(s->oo),
2403 		oo_order(s->min));
2404 
2405 	if (oo_order(s->min) > get_order(s->object_size))
2406 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2407 			s->name);
2408 
2409 	for_each_kmem_cache_node(s, node, n) {
2410 		unsigned long nr_slabs;
2411 		unsigned long nr_objs;
2412 		unsigned long nr_free;
2413 
2414 		nr_free  = count_partial(n, count_free);
2415 		nr_slabs = node_nr_slabs(n);
2416 		nr_objs  = node_nr_objs(n);
2417 
2418 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2419 			node, nr_slabs, nr_objs, nr_free);
2420 	}
2421 #endif
2422 }
2423 
2424 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2425 			int node, struct kmem_cache_cpu **pc)
2426 {
2427 	void *freelist;
2428 	struct kmem_cache_cpu *c = *pc;
2429 	struct page *page;
2430 
2431 	freelist = get_partial(s, flags, node, c);
2432 
2433 	if (freelist)
2434 		return freelist;
2435 
2436 	page = new_slab(s, flags, node);
2437 	if (page) {
2438 		c = raw_cpu_ptr(s->cpu_slab);
2439 		if (c->page)
2440 			flush_slab(s, c);
2441 
2442 		/*
2443 		 * No other reference to the page yet so we can
2444 		 * muck around with it freely without cmpxchg
2445 		 */
2446 		freelist = page->freelist;
2447 		page->freelist = NULL;
2448 
2449 		stat(s, ALLOC_SLAB);
2450 		c->page = page;
2451 		*pc = c;
2452 	} else
2453 		freelist = NULL;
2454 
2455 	return freelist;
2456 }
2457 
2458 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2459 {
2460 	if (unlikely(PageSlabPfmemalloc(page)))
2461 		return gfp_pfmemalloc_allowed(gfpflags);
2462 
2463 	return true;
2464 }
2465 
2466 /*
2467  * Check the page->freelist of a page and either transfer the freelist to the
2468  * per cpu freelist or deactivate the page.
2469  *
2470  * The page is still frozen if the return value is not NULL.
2471  *
2472  * If this function returns NULL then the page has been unfrozen.
2473  *
2474  * This function must be called with interrupt disabled.
2475  */
2476 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2477 {
2478 	struct page new;
2479 	unsigned long counters;
2480 	void *freelist;
2481 
2482 	do {
2483 		freelist = page->freelist;
2484 		counters = page->counters;
2485 
2486 		new.counters = counters;
2487 		VM_BUG_ON(!new.frozen);
2488 
2489 		new.inuse = page->objects;
2490 		new.frozen = freelist != NULL;
2491 
2492 	} while (!__cmpxchg_double_slab(s, page,
2493 		freelist, counters,
2494 		NULL, new.counters,
2495 		"get_freelist"));
2496 
2497 	return freelist;
2498 }
2499 
2500 /*
2501  * Slow path. The lockless freelist is empty or we need to perform
2502  * debugging duties.
2503  *
2504  * Processing is still very fast if new objects have been freed to the
2505  * regular freelist. In that case we simply take over the regular freelist
2506  * as the lockless freelist and zap the regular freelist.
2507  *
2508  * If that is not working then we fall back to the partial lists. We take the
2509  * first element of the freelist as the object to allocate now and move the
2510  * rest of the freelist to the lockless freelist.
2511  *
2512  * And if we were unable to get a new slab from the partial slab lists then
2513  * we need to allocate a new slab. This is the slowest path since it involves
2514  * a call to the page allocator and the setup of a new slab.
2515  *
2516  * Version of __slab_alloc to use when we know that interrupts are
2517  * already disabled (which is the case for bulk allocation).
2518  */
2519 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2520 			  unsigned long addr, struct kmem_cache_cpu *c)
2521 {
2522 	void *freelist;
2523 	struct page *page;
2524 
2525 	page = c->page;
2526 	if (!page)
2527 		goto new_slab;
2528 redo:
2529 
2530 	if (unlikely(!node_match(page, node))) {
2531 		int searchnode = node;
2532 
2533 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2534 			searchnode = node_to_mem_node(node);
2535 
2536 		if (unlikely(!node_match(page, searchnode))) {
2537 			stat(s, ALLOC_NODE_MISMATCH);
2538 			deactivate_slab(s, page, c->freelist, c);
2539 			goto new_slab;
2540 		}
2541 	}
2542 
2543 	/*
2544 	 * By rights, we should be searching for a slab page that was
2545 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2546 	 * information when the page leaves the per-cpu allocator
2547 	 */
2548 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2549 		deactivate_slab(s, page, c->freelist, c);
2550 		goto new_slab;
2551 	}
2552 
2553 	/* must check again c->freelist in case of cpu migration or IRQ */
2554 	freelist = c->freelist;
2555 	if (freelist)
2556 		goto load_freelist;
2557 
2558 	freelist = get_freelist(s, page);
2559 
2560 	if (!freelist) {
2561 		c->page = NULL;
2562 		stat(s, DEACTIVATE_BYPASS);
2563 		goto new_slab;
2564 	}
2565 
2566 	stat(s, ALLOC_REFILL);
2567 
2568 load_freelist:
2569 	/*
2570 	 * freelist is pointing to the list of objects to be used.
2571 	 * page is pointing to the page from which the objects are obtained.
2572 	 * That page must be frozen for per cpu allocations to work.
2573 	 */
2574 	VM_BUG_ON(!c->page->frozen);
2575 	c->freelist = get_freepointer(s, freelist);
2576 	c->tid = next_tid(c->tid);
2577 	return freelist;
2578 
2579 new_slab:
2580 
2581 	if (slub_percpu_partial(c)) {
2582 		page = c->page = slub_percpu_partial(c);
2583 		slub_set_percpu_partial(c, page);
2584 		stat(s, CPU_PARTIAL_ALLOC);
2585 		goto redo;
2586 	}
2587 
2588 	freelist = new_slab_objects(s, gfpflags, node, &c);
2589 
2590 	if (unlikely(!freelist)) {
2591 		slab_out_of_memory(s, gfpflags, node);
2592 		return NULL;
2593 	}
2594 
2595 	page = c->page;
2596 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2597 		goto load_freelist;
2598 
2599 	/* Only entered in the debug case */
2600 	if (kmem_cache_debug(s) &&
2601 			!alloc_debug_processing(s, page, freelist, addr))
2602 		goto new_slab;	/* Slab failed checks. Next slab needed */
2603 
2604 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2605 	return freelist;
2606 }
2607 
2608 /*
2609  * Another one that disabled interrupt and compensates for possible
2610  * cpu changes by refetching the per cpu area pointer.
2611  */
2612 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2613 			  unsigned long addr, struct kmem_cache_cpu *c)
2614 {
2615 	void *p;
2616 	unsigned long flags;
2617 
2618 	local_irq_save(flags);
2619 #ifdef CONFIG_PREEMPT
2620 	/*
2621 	 * We may have been preempted and rescheduled on a different
2622 	 * cpu before disabling interrupts. Need to reload cpu area
2623 	 * pointer.
2624 	 */
2625 	c = this_cpu_ptr(s->cpu_slab);
2626 #endif
2627 
2628 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2629 	local_irq_restore(flags);
2630 	return p;
2631 }
2632 
2633 /*
2634  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2635  * have the fastpath folded into their functions. So no function call
2636  * overhead for requests that can be satisfied on the fastpath.
2637  *
2638  * The fastpath works by first checking if the lockless freelist can be used.
2639  * If not then __slab_alloc is called for slow processing.
2640  *
2641  * Otherwise we can simply pick the next object from the lockless free list.
2642  */
2643 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2644 		gfp_t gfpflags, int node, unsigned long addr)
2645 {
2646 	void *object;
2647 	struct kmem_cache_cpu *c;
2648 	struct page *page;
2649 	unsigned long tid;
2650 
2651 	s = slab_pre_alloc_hook(s, gfpflags);
2652 	if (!s)
2653 		return NULL;
2654 redo:
2655 	/*
2656 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2657 	 * enabled. We may switch back and forth between cpus while
2658 	 * reading from one cpu area. That does not matter as long
2659 	 * as we end up on the original cpu again when doing the cmpxchg.
2660 	 *
2661 	 * We should guarantee that tid and kmem_cache are retrieved on
2662 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2663 	 * to check if it is matched or not.
2664 	 */
2665 	do {
2666 		tid = this_cpu_read(s->cpu_slab->tid);
2667 		c = raw_cpu_ptr(s->cpu_slab);
2668 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2669 		 unlikely(tid != READ_ONCE(c->tid)));
2670 
2671 	/*
2672 	 * Irqless object alloc/free algorithm used here depends on sequence
2673 	 * of fetching cpu_slab's data. tid should be fetched before anything
2674 	 * on c to guarantee that object and page associated with previous tid
2675 	 * won't be used with current tid. If we fetch tid first, object and
2676 	 * page could be one associated with next tid and our alloc/free
2677 	 * request will be failed. In this case, we will retry. So, no problem.
2678 	 */
2679 	barrier();
2680 
2681 	/*
2682 	 * The transaction ids are globally unique per cpu and per operation on
2683 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2684 	 * occurs on the right processor and that there was no operation on the
2685 	 * linked list in between.
2686 	 */
2687 
2688 	object = c->freelist;
2689 	page = c->page;
2690 	if (unlikely(!object || !node_match(page, node))) {
2691 		object = __slab_alloc(s, gfpflags, node, addr, c);
2692 		stat(s, ALLOC_SLOWPATH);
2693 	} else {
2694 		void *next_object = get_freepointer_safe(s, object);
2695 
2696 		/*
2697 		 * The cmpxchg will only match if there was no additional
2698 		 * operation and if we are on the right processor.
2699 		 *
2700 		 * The cmpxchg does the following atomically (without lock
2701 		 * semantics!)
2702 		 * 1. Relocate first pointer to the current per cpu area.
2703 		 * 2. Verify that tid and freelist have not been changed
2704 		 * 3. If they were not changed replace tid and freelist
2705 		 *
2706 		 * Since this is without lock semantics the protection is only
2707 		 * against code executing on this cpu *not* from access by
2708 		 * other cpus.
2709 		 */
2710 		if (unlikely(!this_cpu_cmpxchg_double(
2711 				s->cpu_slab->freelist, s->cpu_slab->tid,
2712 				object, tid,
2713 				next_object, next_tid(tid)))) {
2714 
2715 			note_cmpxchg_failure("slab_alloc", s, tid);
2716 			goto redo;
2717 		}
2718 		prefetch_freepointer(s, next_object);
2719 		stat(s, ALLOC_FASTPATH);
2720 	}
2721 
2722 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2723 		memset(object, 0, s->object_size);
2724 
2725 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2726 
2727 	return object;
2728 }
2729 
2730 static __always_inline void *slab_alloc(struct kmem_cache *s,
2731 		gfp_t gfpflags, unsigned long addr)
2732 {
2733 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2734 }
2735 
2736 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2737 {
2738 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2739 
2740 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2741 				s->size, gfpflags);
2742 
2743 	return ret;
2744 }
2745 EXPORT_SYMBOL(kmem_cache_alloc);
2746 
2747 #ifdef CONFIG_TRACING
2748 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2749 {
2750 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2751 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2752 	kasan_kmalloc(s, ret, size, gfpflags);
2753 	return ret;
2754 }
2755 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2756 #endif
2757 
2758 #ifdef CONFIG_NUMA
2759 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2760 {
2761 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2762 
2763 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2764 				    s->object_size, s->size, gfpflags, node);
2765 
2766 	return ret;
2767 }
2768 EXPORT_SYMBOL(kmem_cache_alloc_node);
2769 
2770 #ifdef CONFIG_TRACING
2771 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2772 				    gfp_t gfpflags,
2773 				    int node, size_t size)
2774 {
2775 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2776 
2777 	trace_kmalloc_node(_RET_IP_, ret,
2778 			   size, s->size, gfpflags, node);
2779 
2780 	kasan_kmalloc(s, ret, size, gfpflags);
2781 	return ret;
2782 }
2783 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2784 #endif
2785 #endif
2786 
2787 /*
2788  * Slow path handling. This may still be called frequently since objects
2789  * have a longer lifetime than the cpu slabs in most processing loads.
2790  *
2791  * So we still attempt to reduce cache line usage. Just take the slab
2792  * lock and free the item. If there is no additional partial page
2793  * handling required then we can return immediately.
2794  */
2795 static void __slab_free(struct kmem_cache *s, struct page *page,
2796 			void *head, void *tail, int cnt,
2797 			unsigned long addr)
2798 
2799 {
2800 	void *prior;
2801 	int was_frozen;
2802 	struct page new;
2803 	unsigned long counters;
2804 	struct kmem_cache_node *n = NULL;
2805 	unsigned long uninitialized_var(flags);
2806 
2807 	stat(s, FREE_SLOWPATH);
2808 
2809 	if (kmem_cache_debug(s) &&
2810 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2811 		return;
2812 
2813 	do {
2814 		if (unlikely(n)) {
2815 			spin_unlock_irqrestore(&n->list_lock, flags);
2816 			n = NULL;
2817 		}
2818 		prior = page->freelist;
2819 		counters = page->counters;
2820 		set_freepointer(s, tail, prior);
2821 		new.counters = counters;
2822 		was_frozen = new.frozen;
2823 		new.inuse -= cnt;
2824 		if ((!new.inuse || !prior) && !was_frozen) {
2825 
2826 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2827 
2828 				/*
2829 				 * Slab was on no list before and will be
2830 				 * partially empty
2831 				 * We can defer the list move and instead
2832 				 * freeze it.
2833 				 */
2834 				new.frozen = 1;
2835 
2836 			} else { /* Needs to be taken off a list */
2837 
2838 				n = get_node(s, page_to_nid(page));
2839 				/*
2840 				 * Speculatively acquire the list_lock.
2841 				 * If the cmpxchg does not succeed then we may
2842 				 * drop the list_lock without any processing.
2843 				 *
2844 				 * Otherwise the list_lock will synchronize with
2845 				 * other processors updating the list of slabs.
2846 				 */
2847 				spin_lock_irqsave(&n->list_lock, flags);
2848 
2849 			}
2850 		}
2851 
2852 	} while (!cmpxchg_double_slab(s, page,
2853 		prior, counters,
2854 		head, new.counters,
2855 		"__slab_free"));
2856 
2857 	if (likely(!n)) {
2858 
2859 		/*
2860 		 * If we just froze the page then put it onto the
2861 		 * per cpu partial list.
2862 		 */
2863 		if (new.frozen && !was_frozen) {
2864 			put_cpu_partial(s, page, 1);
2865 			stat(s, CPU_PARTIAL_FREE);
2866 		}
2867 		/*
2868 		 * The list lock was not taken therefore no list
2869 		 * activity can be necessary.
2870 		 */
2871 		if (was_frozen)
2872 			stat(s, FREE_FROZEN);
2873 		return;
2874 	}
2875 
2876 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2877 		goto slab_empty;
2878 
2879 	/*
2880 	 * Objects left in the slab. If it was not on the partial list before
2881 	 * then add it.
2882 	 */
2883 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2884 		if (kmem_cache_debug(s))
2885 			remove_full(s, n, page);
2886 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2887 		stat(s, FREE_ADD_PARTIAL);
2888 	}
2889 	spin_unlock_irqrestore(&n->list_lock, flags);
2890 	return;
2891 
2892 slab_empty:
2893 	if (prior) {
2894 		/*
2895 		 * Slab on the partial list.
2896 		 */
2897 		remove_partial(n, page);
2898 		stat(s, FREE_REMOVE_PARTIAL);
2899 	} else {
2900 		/* Slab must be on the full list */
2901 		remove_full(s, n, page);
2902 	}
2903 
2904 	spin_unlock_irqrestore(&n->list_lock, flags);
2905 	stat(s, FREE_SLAB);
2906 	discard_slab(s, page);
2907 }
2908 
2909 /*
2910  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2911  * can perform fastpath freeing without additional function calls.
2912  *
2913  * The fastpath is only possible if we are freeing to the current cpu slab
2914  * of this processor. This typically the case if we have just allocated
2915  * the item before.
2916  *
2917  * If fastpath is not possible then fall back to __slab_free where we deal
2918  * with all sorts of special processing.
2919  *
2920  * Bulk free of a freelist with several objects (all pointing to the
2921  * same page) possible by specifying head and tail ptr, plus objects
2922  * count (cnt). Bulk free indicated by tail pointer being set.
2923  */
2924 static __always_inline void do_slab_free(struct kmem_cache *s,
2925 				struct page *page, void *head, void *tail,
2926 				int cnt, unsigned long addr)
2927 {
2928 	void *tail_obj = tail ? : head;
2929 	struct kmem_cache_cpu *c;
2930 	unsigned long tid;
2931 redo:
2932 	/*
2933 	 * Determine the currently cpus per cpu slab.
2934 	 * The cpu may change afterward. However that does not matter since
2935 	 * data is retrieved via this pointer. If we are on the same cpu
2936 	 * during the cmpxchg then the free will succeed.
2937 	 */
2938 	do {
2939 		tid = this_cpu_read(s->cpu_slab->tid);
2940 		c = raw_cpu_ptr(s->cpu_slab);
2941 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2942 		 unlikely(tid != READ_ONCE(c->tid)));
2943 
2944 	/* Same with comment on barrier() in slab_alloc_node() */
2945 	barrier();
2946 
2947 	if (likely(page == c->page)) {
2948 		set_freepointer(s, tail_obj, c->freelist);
2949 
2950 		if (unlikely(!this_cpu_cmpxchg_double(
2951 				s->cpu_slab->freelist, s->cpu_slab->tid,
2952 				c->freelist, tid,
2953 				head, next_tid(tid)))) {
2954 
2955 			note_cmpxchg_failure("slab_free", s, tid);
2956 			goto redo;
2957 		}
2958 		stat(s, FREE_FASTPATH);
2959 	} else
2960 		__slab_free(s, page, head, tail_obj, cnt, addr);
2961 
2962 }
2963 
2964 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2965 				      void *head, void *tail, int cnt,
2966 				      unsigned long addr)
2967 {
2968 	slab_free_freelist_hook(s, head, tail);
2969 	/*
2970 	 * slab_free_freelist_hook() could have put the items into quarantine.
2971 	 * If so, no need to free them.
2972 	 */
2973 	if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2974 		return;
2975 	do_slab_free(s, page, head, tail, cnt, addr);
2976 }
2977 
2978 #ifdef CONFIG_KASAN
2979 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2980 {
2981 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2982 }
2983 #endif
2984 
2985 void kmem_cache_free(struct kmem_cache *s, void *x)
2986 {
2987 	s = cache_from_obj(s, x);
2988 	if (!s)
2989 		return;
2990 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2991 	trace_kmem_cache_free(_RET_IP_, x);
2992 }
2993 EXPORT_SYMBOL(kmem_cache_free);
2994 
2995 struct detached_freelist {
2996 	struct page *page;
2997 	void *tail;
2998 	void *freelist;
2999 	int cnt;
3000 	struct kmem_cache *s;
3001 };
3002 
3003 /*
3004  * This function progressively scans the array with free objects (with
3005  * a limited look ahead) and extract objects belonging to the same
3006  * page.  It builds a detached freelist directly within the given
3007  * page/objects.  This can happen without any need for
3008  * synchronization, because the objects are owned by running process.
3009  * The freelist is build up as a single linked list in the objects.
3010  * The idea is, that this detached freelist can then be bulk
3011  * transferred to the real freelist(s), but only requiring a single
3012  * synchronization primitive.  Look ahead in the array is limited due
3013  * to performance reasons.
3014  */
3015 static inline
3016 int build_detached_freelist(struct kmem_cache *s, size_t size,
3017 			    void **p, struct detached_freelist *df)
3018 {
3019 	size_t first_skipped_index = 0;
3020 	int lookahead = 3;
3021 	void *object;
3022 	struct page *page;
3023 
3024 	/* Always re-init detached_freelist */
3025 	df->page = NULL;
3026 
3027 	do {
3028 		object = p[--size];
3029 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3030 	} while (!object && size);
3031 
3032 	if (!object)
3033 		return 0;
3034 
3035 	page = virt_to_head_page(object);
3036 	if (!s) {
3037 		/* Handle kalloc'ed objects */
3038 		if (unlikely(!PageSlab(page))) {
3039 			BUG_ON(!PageCompound(page));
3040 			kfree_hook(object);
3041 			__free_pages(page, compound_order(page));
3042 			p[size] = NULL; /* mark object processed */
3043 			return size;
3044 		}
3045 		/* Derive kmem_cache from object */
3046 		df->s = page->slab_cache;
3047 	} else {
3048 		df->s = cache_from_obj(s, object); /* Support for memcg */
3049 	}
3050 
3051 	/* Start new detached freelist */
3052 	df->page = page;
3053 	set_freepointer(df->s, object, NULL);
3054 	df->tail = object;
3055 	df->freelist = object;
3056 	p[size] = NULL; /* mark object processed */
3057 	df->cnt = 1;
3058 
3059 	while (size) {
3060 		object = p[--size];
3061 		if (!object)
3062 			continue; /* Skip processed objects */
3063 
3064 		/* df->page is always set at this point */
3065 		if (df->page == virt_to_head_page(object)) {
3066 			/* Opportunity build freelist */
3067 			set_freepointer(df->s, object, df->freelist);
3068 			df->freelist = object;
3069 			df->cnt++;
3070 			p[size] = NULL; /* mark object processed */
3071 
3072 			continue;
3073 		}
3074 
3075 		/* Limit look ahead search */
3076 		if (!--lookahead)
3077 			break;
3078 
3079 		if (!first_skipped_index)
3080 			first_skipped_index = size + 1;
3081 	}
3082 
3083 	return first_skipped_index;
3084 }
3085 
3086 /* Note that interrupts must be enabled when calling this function. */
3087 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3088 {
3089 	if (WARN_ON(!size))
3090 		return;
3091 
3092 	do {
3093 		struct detached_freelist df;
3094 
3095 		size = build_detached_freelist(s, size, p, &df);
3096 		if (!df.page)
3097 			continue;
3098 
3099 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3100 	} while (likely(size));
3101 }
3102 EXPORT_SYMBOL(kmem_cache_free_bulk);
3103 
3104 /* Note that interrupts must be enabled when calling this function. */
3105 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3106 			  void **p)
3107 {
3108 	struct kmem_cache_cpu *c;
3109 	int i;
3110 
3111 	/* memcg and kmem_cache debug support */
3112 	s = slab_pre_alloc_hook(s, flags);
3113 	if (unlikely(!s))
3114 		return false;
3115 	/*
3116 	 * Drain objects in the per cpu slab, while disabling local
3117 	 * IRQs, which protects against PREEMPT and interrupts
3118 	 * handlers invoking normal fastpath.
3119 	 */
3120 	local_irq_disable();
3121 	c = this_cpu_ptr(s->cpu_slab);
3122 
3123 	for (i = 0; i < size; i++) {
3124 		void *object = c->freelist;
3125 
3126 		if (unlikely(!object)) {
3127 			/*
3128 			 * Invoking slow path likely have side-effect
3129 			 * of re-populating per CPU c->freelist
3130 			 */
3131 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3132 					    _RET_IP_, c);
3133 			if (unlikely(!p[i]))
3134 				goto error;
3135 
3136 			c = this_cpu_ptr(s->cpu_slab);
3137 			continue; /* goto for-loop */
3138 		}
3139 		c->freelist = get_freepointer(s, object);
3140 		p[i] = object;
3141 	}
3142 	c->tid = next_tid(c->tid);
3143 	local_irq_enable();
3144 
3145 	/* Clear memory outside IRQ disabled fastpath loop */
3146 	if (unlikely(flags & __GFP_ZERO)) {
3147 		int j;
3148 
3149 		for (j = 0; j < i; j++)
3150 			memset(p[j], 0, s->object_size);
3151 	}
3152 
3153 	/* memcg and kmem_cache debug support */
3154 	slab_post_alloc_hook(s, flags, size, p);
3155 	return i;
3156 error:
3157 	local_irq_enable();
3158 	slab_post_alloc_hook(s, flags, i, p);
3159 	__kmem_cache_free_bulk(s, i, p);
3160 	return 0;
3161 }
3162 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3163 
3164 
3165 /*
3166  * Object placement in a slab is made very easy because we always start at
3167  * offset 0. If we tune the size of the object to the alignment then we can
3168  * get the required alignment by putting one properly sized object after
3169  * another.
3170  *
3171  * Notice that the allocation order determines the sizes of the per cpu
3172  * caches. Each processor has always one slab available for allocations.
3173  * Increasing the allocation order reduces the number of times that slabs
3174  * must be moved on and off the partial lists and is therefore a factor in
3175  * locking overhead.
3176  */
3177 
3178 /*
3179  * Mininum / Maximum order of slab pages. This influences locking overhead
3180  * and slab fragmentation. A higher order reduces the number of partial slabs
3181  * and increases the number of allocations possible without having to
3182  * take the list_lock.
3183  */
3184 static int slub_min_order;
3185 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3186 static int slub_min_objects;
3187 
3188 /*
3189  * Calculate the order of allocation given an slab object size.
3190  *
3191  * The order of allocation has significant impact on performance and other
3192  * system components. Generally order 0 allocations should be preferred since
3193  * order 0 does not cause fragmentation in the page allocator. Larger objects
3194  * be problematic to put into order 0 slabs because there may be too much
3195  * unused space left. We go to a higher order if more than 1/16th of the slab
3196  * would be wasted.
3197  *
3198  * In order to reach satisfactory performance we must ensure that a minimum
3199  * number of objects is in one slab. Otherwise we may generate too much
3200  * activity on the partial lists which requires taking the list_lock. This is
3201  * less a concern for large slabs though which are rarely used.
3202  *
3203  * slub_max_order specifies the order where we begin to stop considering the
3204  * number of objects in a slab as critical. If we reach slub_max_order then
3205  * we try to keep the page order as low as possible. So we accept more waste
3206  * of space in favor of a small page order.
3207  *
3208  * Higher order allocations also allow the placement of more objects in a
3209  * slab and thereby reduce object handling overhead. If the user has
3210  * requested a higher mininum order then we start with that one instead of
3211  * the smallest order which will fit the object.
3212  */
3213 static inline int slab_order(int size, int min_objects,
3214 				int max_order, int fract_leftover, int reserved)
3215 {
3216 	int order;
3217 	int rem;
3218 	int min_order = slub_min_order;
3219 
3220 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3221 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3222 
3223 	for (order = max(min_order, get_order(min_objects * size + reserved));
3224 			order <= max_order; order++) {
3225 
3226 		unsigned long slab_size = PAGE_SIZE << order;
3227 
3228 		rem = (slab_size - reserved) % size;
3229 
3230 		if (rem <= slab_size / fract_leftover)
3231 			break;
3232 	}
3233 
3234 	return order;
3235 }
3236 
3237 static inline int calculate_order(int size, int reserved)
3238 {
3239 	int order;
3240 	int min_objects;
3241 	int fraction;
3242 	int max_objects;
3243 
3244 	/*
3245 	 * Attempt to find best configuration for a slab. This
3246 	 * works by first attempting to generate a layout with
3247 	 * the best configuration and backing off gradually.
3248 	 *
3249 	 * First we increase the acceptable waste in a slab. Then
3250 	 * we reduce the minimum objects required in a slab.
3251 	 */
3252 	min_objects = slub_min_objects;
3253 	if (!min_objects)
3254 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3255 	max_objects = order_objects(slub_max_order, size, reserved);
3256 	min_objects = min(min_objects, max_objects);
3257 
3258 	while (min_objects > 1) {
3259 		fraction = 16;
3260 		while (fraction >= 4) {
3261 			order = slab_order(size, min_objects,
3262 					slub_max_order, fraction, reserved);
3263 			if (order <= slub_max_order)
3264 				return order;
3265 			fraction /= 2;
3266 		}
3267 		min_objects--;
3268 	}
3269 
3270 	/*
3271 	 * We were unable to place multiple objects in a slab. Now
3272 	 * lets see if we can place a single object there.
3273 	 */
3274 	order = slab_order(size, 1, slub_max_order, 1, reserved);
3275 	if (order <= slub_max_order)
3276 		return order;
3277 
3278 	/*
3279 	 * Doh this slab cannot be placed using slub_max_order.
3280 	 */
3281 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3282 	if (order < MAX_ORDER)
3283 		return order;
3284 	return -ENOSYS;
3285 }
3286 
3287 static void
3288 init_kmem_cache_node(struct kmem_cache_node *n)
3289 {
3290 	n->nr_partial = 0;
3291 	spin_lock_init(&n->list_lock);
3292 	INIT_LIST_HEAD(&n->partial);
3293 #ifdef CONFIG_SLUB_DEBUG
3294 	atomic_long_set(&n->nr_slabs, 0);
3295 	atomic_long_set(&n->total_objects, 0);
3296 	INIT_LIST_HEAD(&n->full);
3297 #endif
3298 }
3299 
3300 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3301 {
3302 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3303 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3304 
3305 	/*
3306 	 * Must align to double word boundary for the double cmpxchg
3307 	 * instructions to work; see __pcpu_double_call_return_bool().
3308 	 */
3309 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3310 				     2 * sizeof(void *));
3311 
3312 	if (!s->cpu_slab)
3313 		return 0;
3314 
3315 	init_kmem_cache_cpus(s);
3316 
3317 	return 1;
3318 }
3319 
3320 static struct kmem_cache *kmem_cache_node;
3321 
3322 /*
3323  * No kmalloc_node yet so do it by hand. We know that this is the first
3324  * slab on the node for this slabcache. There are no concurrent accesses
3325  * possible.
3326  *
3327  * Note that this function only works on the kmem_cache_node
3328  * when allocating for the kmem_cache_node. This is used for bootstrapping
3329  * memory on a fresh node that has no slab structures yet.
3330  */
3331 static void early_kmem_cache_node_alloc(int node)
3332 {
3333 	struct page *page;
3334 	struct kmem_cache_node *n;
3335 
3336 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3337 
3338 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3339 
3340 	BUG_ON(!page);
3341 	if (page_to_nid(page) != node) {
3342 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3343 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3344 	}
3345 
3346 	n = page->freelist;
3347 	BUG_ON(!n);
3348 	page->freelist = get_freepointer(kmem_cache_node, n);
3349 	page->inuse = 1;
3350 	page->frozen = 0;
3351 	kmem_cache_node->node[node] = n;
3352 #ifdef CONFIG_SLUB_DEBUG
3353 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3354 	init_tracking(kmem_cache_node, n);
3355 #endif
3356 	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3357 		      GFP_KERNEL);
3358 	init_kmem_cache_node(n);
3359 	inc_slabs_node(kmem_cache_node, node, page->objects);
3360 
3361 	/*
3362 	 * No locks need to be taken here as it has just been
3363 	 * initialized and there is no concurrent access.
3364 	 */
3365 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3366 }
3367 
3368 static void free_kmem_cache_nodes(struct kmem_cache *s)
3369 {
3370 	int node;
3371 	struct kmem_cache_node *n;
3372 
3373 	for_each_kmem_cache_node(s, node, n) {
3374 		s->node[node] = NULL;
3375 		kmem_cache_free(kmem_cache_node, n);
3376 	}
3377 }
3378 
3379 void __kmem_cache_release(struct kmem_cache *s)
3380 {
3381 	cache_random_seq_destroy(s);
3382 	free_percpu(s->cpu_slab);
3383 	free_kmem_cache_nodes(s);
3384 }
3385 
3386 static int init_kmem_cache_nodes(struct kmem_cache *s)
3387 {
3388 	int node;
3389 
3390 	for_each_node_state(node, N_NORMAL_MEMORY) {
3391 		struct kmem_cache_node *n;
3392 
3393 		if (slab_state == DOWN) {
3394 			early_kmem_cache_node_alloc(node);
3395 			continue;
3396 		}
3397 		n = kmem_cache_alloc_node(kmem_cache_node,
3398 						GFP_KERNEL, node);
3399 
3400 		if (!n) {
3401 			free_kmem_cache_nodes(s);
3402 			return 0;
3403 		}
3404 
3405 		init_kmem_cache_node(n);
3406 		s->node[node] = n;
3407 	}
3408 	return 1;
3409 }
3410 
3411 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3412 {
3413 	if (min < MIN_PARTIAL)
3414 		min = MIN_PARTIAL;
3415 	else if (min > MAX_PARTIAL)
3416 		min = MAX_PARTIAL;
3417 	s->min_partial = min;
3418 }
3419 
3420 static void set_cpu_partial(struct kmem_cache *s)
3421 {
3422 #ifdef CONFIG_SLUB_CPU_PARTIAL
3423 	/*
3424 	 * cpu_partial determined the maximum number of objects kept in the
3425 	 * per cpu partial lists of a processor.
3426 	 *
3427 	 * Per cpu partial lists mainly contain slabs that just have one
3428 	 * object freed. If they are used for allocation then they can be
3429 	 * filled up again with minimal effort. The slab will never hit the
3430 	 * per node partial lists and therefore no locking will be required.
3431 	 *
3432 	 * This setting also determines
3433 	 *
3434 	 * A) The number of objects from per cpu partial slabs dumped to the
3435 	 *    per node list when we reach the limit.
3436 	 * B) The number of objects in cpu partial slabs to extract from the
3437 	 *    per node list when we run out of per cpu objects. We only fetch
3438 	 *    50% to keep some capacity around for frees.
3439 	 */
3440 	if (!kmem_cache_has_cpu_partial(s))
3441 		s->cpu_partial = 0;
3442 	else if (s->size >= PAGE_SIZE)
3443 		s->cpu_partial = 2;
3444 	else if (s->size >= 1024)
3445 		s->cpu_partial = 6;
3446 	else if (s->size >= 256)
3447 		s->cpu_partial = 13;
3448 	else
3449 		s->cpu_partial = 30;
3450 #endif
3451 }
3452 
3453 /*
3454  * calculate_sizes() determines the order and the distribution of data within
3455  * a slab object.
3456  */
3457 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3458 {
3459 	slab_flags_t flags = s->flags;
3460 	size_t size = s->object_size;
3461 	int order;
3462 
3463 	/*
3464 	 * Round up object size to the next word boundary. We can only
3465 	 * place the free pointer at word boundaries and this determines
3466 	 * the possible location of the free pointer.
3467 	 */
3468 	size = ALIGN(size, sizeof(void *));
3469 
3470 #ifdef CONFIG_SLUB_DEBUG
3471 	/*
3472 	 * Determine if we can poison the object itself. If the user of
3473 	 * the slab may touch the object after free or before allocation
3474 	 * then we should never poison the object itself.
3475 	 */
3476 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3477 			!s->ctor)
3478 		s->flags |= __OBJECT_POISON;
3479 	else
3480 		s->flags &= ~__OBJECT_POISON;
3481 
3482 
3483 	/*
3484 	 * If we are Redzoning then check if there is some space between the
3485 	 * end of the object and the free pointer. If not then add an
3486 	 * additional word to have some bytes to store Redzone information.
3487 	 */
3488 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3489 		size += sizeof(void *);
3490 #endif
3491 
3492 	/*
3493 	 * With that we have determined the number of bytes in actual use
3494 	 * by the object. This is the potential offset to the free pointer.
3495 	 */
3496 	s->inuse = size;
3497 
3498 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3499 		s->ctor)) {
3500 		/*
3501 		 * Relocate free pointer after the object if it is not
3502 		 * permitted to overwrite the first word of the object on
3503 		 * kmem_cache_free.
3504 		 *
3505 		 * This is the case if we do RCU, have a constructor or
3506 		 * destructor or are poisoning the objects.
3507 		 */
3508 		s->offset = size;
3509 		size += sizeof(void *);
3510 	}
3511 
3512 #ifdef CONFIG_SLUB_DEBUG
3513 	if (flags & SLAB_STORE_USER)
3514 		/*
3515 		 * Need to store information about allocs and frees after
3516 		 * the object.
3517 		 */
3518 		size += 2 * sizeof(struct track);
3519 #endif
3520 
3521 	kasan_cache_create(s, &size, &s->flags);
3522 #ifdef CONFIG_SLUB_DEBUG
3523 	if (flags & SLAB_RED_ZONE) {
3524 		/*
3525 		 * Add some empty padding so that we can catch
3526 		 * overwrites from earlier objects rather than let
3527 		 * tracking information or the free pointer be
3528 		 * corrupted if a user writes before the start
3529 		 * of the object.
3530 		 */
3531 		size += sizeof(void *);
3532 
3533 		s->red_left_pad = sizeof(void *);
3534 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3535 		size += s->red_left_pad;
3536 	}
3537 #endif
3538 
3539 	/*
3540 	 * SLUB stores one object immediately after another beginning from
3541 	 * offset 0. In order to align the objects we have to simply size
3542 	 * each object to conform to the alignment.
3543 	 */
3544 	size = ALIGN(size, s->align);
3545 	s->size = size;
3546 	if (forced_order >= 0)
3547 		order = forced_order;
3548 	else
3549 		order = calculate_order(size, s->reserved);
3550 
3551 	if (order < 0)
3552 		return 0;
3553 
3554 	s->allocflags = 0;
3555 	if (order)
3556 		s->allocflags |= __GFP_COMP;
3557 
3558 	if (s->flags & SLAB_CACHE_DMA)
3559 		s->allocflags |= GFP_DMA;
3560 
3561 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3562 		s->allocflags |= __GFP_RECLAIMABLE;
3563 
3564 	/*
3565 	 * Determine the number of objects per slab
3566 	 */
3567 	s->oo = oo_make(order, size, s->reserved);
3568 	s->min = oo_make(get_order(size), size, s->reserved);
3569 	if (oo_objects(s->oo) > oo_objects(s->max))
3570 		s->max = s->oo;
3571 
3572 	return !!oo_objects(s->oo);
3573 }
3574 
3575 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3576 {
3577 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3578 	s->reserved = 0;
3579 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3580 	s->random = get_random_long();
3581 #endif
3582 
3583 	if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3584 		s->reserved = sizeof(struct rcu_head);
3585 
3586 	if (!calculate_sizes(s, -1))
3587 		goto error;
3588 	if (disable_higher_order_debug) {
3589 		/*
3590 		 * Disable debugging flags that store metadata if the min slab
3591 		 * order increased.
3592 		 */
3593 		if (get_order(s->size) > get_order(s->object_size)) {
3594 			s->flags &= ~DEBUG_METADATA_FLAGS;
3595 			s->offset = 0;
3596 			if (!calculate_sizes(s, -1))
3597 				goto error;
3598 		}
3599 	}
3600 
3601 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3602     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3603 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3604 		/* Enable fast mode */
3605 		s->flags |= __CMPXCHG_DOUBLE;
3606 #endif
3607 
3608 	/*
3609 	 * The larger the object size is, the more pages we want on the partial
3610 	 * list to avoid pounding the page allocator excessively.
3611 	 */
3612 	set_min_partial(s, ilog2(s->size) / 2);
3613 
3614 	set_cpu_partial(s);
3615 
3616 #ifdef CONFIG_NUMA
3617 	s->remote_node_defrag_ratio = 1000;
3618 #endif
3619 
3620 	/* Initialize the pre-computed randomized freelist if slab is up */
3621 	if (slab_state >= UP) {
3622 		if (init_cache_random_seq(s))
3623 			goto error;
3624 	}
3625 
3626 	if (!init_kmem_cache_nodes(s))
3627 		goto error;
3628 
3629 	if (alloc_kmem_cache_cpus(s))
3630 		return 0;
3631 
3632 	free_kmem_cache_nodes(s);
3633 error:
3634 	if (flags & SLAB_PANIC)
3635 		panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3636 		      s->name, (unsigned long)s->size, s->size,
3637 		      oo_order(s->oo), s->offset, (unsigned long)flags);
3638 	return -EINVAL;
3639 }
3640 
3641 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3642 							const char *text)
3643 {
3644 #ifdef CONFIG_SLUB_DEBUG
3645 	void *addr = page_address(page);
3646 	void *p;
3647 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3648 				     sizeof(long), GFP_ATOMIC);
3649 	if (!map)
3650 		return;
3651 	slab_err(s, page, text, s->name);
3652 	slab_lock(page);
3653 
3654 	get_map(s, page, map);
3655 	for_each_object(p, s, addr, page->objects) {
3656 
3657 		if (!test_bit(slab_index(p, s, addr), map)) {
3658 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3659 			print_tracking(s, p);
3660 		}
3661 	}
3662 	slab_unlock(page);
3663 	kfree(map);
3664 #endif
3665 }
3666 
3667 /*
3668  * Attempt to free all partial slabs on a node.
3669  * This is called from __kmem_cache_shutdown(). We must take list_lock
3670  * because sysfs file might still access partial list after the shutdowning.
3671  */
3672 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3673 {
3674 	LIST_HEAD(discard);
3675 	struct page *page, *h;
3676 
3677 	BUG_ON(irqs_disabled());
3678 	spin_lock_irq(&n->list_lock);
3679 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3680 		if (!page->inuse) {
3681 			remove_partial(n, page);
3682 			list_add(&page->lru, &discard);
3683 		} else {
3684 			list_slab_objects(s, page,
3685 			"Objects remaining in %s on __kmem_cache_shutdown()");
3686 		}
3687 	}
3688 	spin_unlock_irq(&n->list_lock);
3689 
3690 	list_for_each_entry_safe(page, h, &discard, lru)
3691 		discard_slab(s, page);
3692 }
3693 
3694 /*
3695  * Release all resources used by a slab cache.
3696  */
3697 int __kmem_cache_shutdown(struct kmem_cache *s)
3698 {
3699 	int node;
3700 	struct kmem_cache_node *n;
3701 
3702 	flush_all(s);
3703 	/* Attempt to free all objects */
3704 	for_each_kmem_cache_node(s, node, n) {
3705 		free_partial(s, n);
3706 		if (n->nr_partial || slabs_node(s, node))
3707 			return 1;
3708 	}
3709 	sysfs_slab_remove(s);
3710 	return 0;
3711 }
3712 
3713 /********************************************************************
3714  *		Kmalloc subsystem
3715  *******************************************************************/
3716 
3717 static int __init setup_slub_min_order(char *str)
3718 {
3719 	get_option(&str, &slub_min_order);
3720 
3721 	return 1;
3722 }
3723 
3724 __setup("slub_min_order=", setup_slub_min_order);
3725 
3726 static int __init setup_slub_max_order(char *str)
3727 {
3728 	get_option(&str, &slub_max_order);
3729 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3730 
3731 	return 1;
3732 }
3733 
3734 __setup("slub_max_order=", setup_slub_max_order);
3735 
3736 static int __init setup_slub_min_objects(char *str)
3737 {
3738 	get_option(&str, &slub_min_objects);
3739 
3740 	return 1;
3741 }
3742 
3743 __setup("slub_min_objects=", setup_slub_min_objects);
3744 
3745 void *__kmalloc(size_t size, gfp_t flags)
3746 {
3747 	struct kmem_cache *s;
3748 	void *ret;
3749 
3750 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3751 		return kmalloc_large(size, flags);
3752 
3753 	s = kmalloc_slab(size, flags);
3754 
3755 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3756 		return s;
3757 
3758 	ret = slab_alloc(s, flags, _RET_IP_);
3759 
3760 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3761 
3762 	kasan_kmalloc(s, ret, size, flags);
3763 
3764 	return ret;
3765 }
3766 EXPORT_SYMBOL(__kmalloc);
3767 
3768 #ifdef CONFIG_NUMA
3769 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3770 {
3771 	struct page *page;
3772 	void *ptr = NULL;
3773 
3774 	flags |= __GFP_COMP;
3775 	page = alloc_pages_node(node, flags, get_order(size));
3776 	if (page)
3777 		ptr = page_address(page);
3778 
3779 	kmalloc_large_node_hook(ptr, size, flags);
3780 	return ptr;
3781 }
3782 
3783 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3784 {
3785 	struct kmem_cache *s;
3786 	void *ret;
3787 
3788 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3789 		ret = kmalloc_large_node(size, flags, node);
3790 
3791 		trace_kmalloc_node(_RET_IP_, ret,
3792 				   size, PAGE_SIZE << get_order(size),
3793 				   flags, node);
3794 
3795 		return ret;
3796 	}
3797 
3798 	s = kmalloc_slab(size, flags);
3799 
3800 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3801 		return s;
3802 
3803 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3804 
3805 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3806 
3807 	kasan_kmalloc(s, ret, size, flags);
3808 
3809 	return ret;
3810 }
3811 EXPORT_SYMBOL(__kmalloc_node);
3812 #endif
3813 
3814 #ifdef CONFIG_HARDENED_USERCOPY
3815 /*
3816  * Rejects incorrectly sized objects and objects that are to be copied
3817  * to/from userspace but do not fall entirely within the containing slab
3818  * cache's usercopy region.
3819  *
3820  * Returns NULL if check passes, otherwise const char * to name of cache
3821  * to indicate an error.
3822  */
3823 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3824 			 bool to_user)
3825 {
3826 	struct kmem_cache *s;
3827 	unsigned long offset;
3828 	size_t object_size;
3829 
3830 	/* Find object and usable object size. */
3831 	s = page->slab_cache;
3832 
3833 	/* Reject impossible pointers. */
3834 	if (ptr < page_address(page))
3835 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3836 			       to_user, 0, n);
3837 
3838 	/* Find offset within object. */
3839 	offset = (ptr - page_address(page)) % s->size;
3840 
3841 	/* Adjust for redzone and reject if within the redzone. */
3842 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3843 		if (offset < s->red_left_pad)
3844 			usercopy_abort("SLUB object in left red zone",
3845 				       s->name, to_user, offset, n);
3846 		offset -= s->red_left_pad;
3847 	}
3848 
3849 	/* Allow address range falling entirely within usercopy region. */
3850 	if (offset >= s->useroffset &&
3851 	    offset - s->useroffset <= s->usersize &&
3852 	    n <= s->useroffset - offset + s->usersize)
3853 		return;
3854 
3855 	/*
3856 	 * If the copy is still within the allocated object, produce
3857 	 * a warning instead of rejecting the copy. This is intended
3858 	 * to be a temporary method to find any missing usercopy
3859 	 * whitelists.
3860 	 */
3861 	object_size = slab_ksize(s);
3862 	if (usercopy_fallback &&
3863 	    offset <= object_size && n <= object_size - offset) {
3864 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3865 		return;
3866 	}
3867 
3868 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3869 }
3870 #endif /* CONFIG_HARDENED_USERCOPY */
3871 
3872 static size_t __ksize(const void *object)
3873 {
3874 	struct page *page;
3875 
3876 	if (unlikely(object == ZERO_SIZE_PTR))
3877 		return 0;
3878 
3879 	page = virt_to_head_page(object);
3880 
3881 	if (unlikely(!PageSlab(page))) {
3882 		WARN_ON(!PageCompound(page));
3883 		return PAGE_SIZE << compound_order(page);
3884 	}
3885 
3886 	return slab_ksize(page->slab_cache);
3887 }
3888 
3889 size_t ksize(const void *object)
3890 {
3891 	size_t size = __ksize(object);
3892 	/* We assume that ksize callers could use whole allocated area,
3893 	 * so we need to unpoison this area.
3894 	 */
3895 	kasan_unpoison_shadow(object, size);
3896 	return size;
3897 }
3898 EXPORT_SYMBOL(ksize);
3899 
3900 void kfree(const void *x)
3901 {
3902 	struct page *page;
3903 	void *object = (void *)x;
3904 
3905 	trace_kfree(_RET_IP_, x);
3906 
3907 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3908 		return;
3909 
3910 	page = virt_to_head_page(x);
3911 	if (unlikely(!PageSlab(page))) {
3912 		BUG_ON(!PageCompound(page));
3913 		kfree_hook(object);
3914 		__free_pages(page, compound_order(page));
3915 		return;
3916 	}
3917 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3918 }
3919 EXPORT_SYMBOL(kfree);
3920 
3921 #define SHRINK_PROMOTE_MAX 32
3922 
3923 /*
3924  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3925  * up most to the head of the partial lists. New allocations will then
3926  * fill those up and thus they can be removed from the partial lists.
3927  *
3928  * The slabs with the least items are placed last. This results in them
3929  * being allocated from last increasing the chance that the last objects
3930  * are freed in them.
3931  */
3932 int __kmem_cache_shrink(struct kmem_cache *s)
3933 {
3934 	int node;
3935 	int i;
3936 	struct kmem_cache_node *n;
3937 	struct page *page;
3938 	struct page *t;
3939 	struct list_head discard;
3940 	struct list_head promote[SHRINK_PROMOTE_MAX];
3941 	unsigned long flags;
3942 	int ret = 0;
3943 
3944 	flush_all(s);
3945 	for_each_kmem_cache_node(s, node, n) {
3946 		INIT_LIST_HEAD(&discard);
3947 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3948 			INIT_LIST_HEAD(promote + i);
3949 
3950 		spin_lock_irqsave(&n->list_lock, flags);
3951 
3952 		/*
3953 		 * Build lists of slabs to discard or promote.
3954 		 *
3955 		 * Note that concurrent frees may occur while we hold the
3956 		 * list_lock. page->inuse here is the upper limit.
3957 		 */
3958 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3959 			int free = page->objects - page->inuse;
3960 
3961 			/* Do not reread page->inuse */
3962 			barrier();
3963 
3964 			/* We do not keep full slabs on the list */
3965 			BUG_ON(free <= 0);
3966 
3967 			if (free == page->objects) {
3968 				list_move(&page->lru, &discard);
3969 				n->nr_partial--;
3970 			} else if (free <= SHRINK_PROMOTE_MAX)
3971 				list_move(&page->lru, promote + free - 1);
3972 		}
3973 
3974 		/*
3975 		 * Promote the slabs filled up most to the head of the
3976 		 * partial list.
3977 		 */
3978 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3979 			list_splice(promote + i, &n->partial);
3980 
3981 		spin_unlock_irqrestore(&n->list_lock, flags);
3982 
3983 		/* Release empty slabs */
3984 		list_for_each_entry_safe(page, t, &discard, lru)
3985 			discard_slab(s, page);
3986 
3987 		if (slabs_node(s, node))
3988 			ret = 1;
3989 	}
3990 
3991 	return ret;
3992 }
3993 
3994 #ifdef CONFIG_MEMCG
3995 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3996 {
3997 	/*
3998 	 * Called with all the locks held after a sched RCU grace period.
3999 	 * Even if @s becomes empty after shrinking, we can't know that @s
4000 	 * doesn't have allocations already in-flight and thus can't
4001 	 * destroy @s until the associated memcg is released.
4002 	 *
4003 	 * However, let's remove the sysfs files for empty caches here.
4004 	 * Each cache has a lot of interface files which aren't
4005 	 * particularly useful for empty draining caches; otherwise, we can
4006 	 * easily end up with millions of unnecessary sysfs files on
4007 	 * systems which have a lot of memory and transient cgroups.
4008 	 */
4009 	if (!__kmem_cache_shrink(s))
4010 		sysfs_slab_remove(s);
4011 }
4012 
4013 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4014 {
4015 	/*
4016 	 * Disable empty slabs caching. Used to avoid pinning offline
4017 	 * memory cgroups by kmem pages that can be freed.
4018 	 */
4019 	slub_set_cpu_partial(s, 0);
4020 	s->min_partial = 0;
4021 
4022 	/*
4023 	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4024 	 * we have to make sure the change is visible before shrinking.
4025 	 */
4026 	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4027 }
4028 #endif
4029 
4030 static int slab_mem_going_offline_callback(void *arg)
4031 {
4032 	struct kmem_cache *s;
4033 
4034 	mutex_lock(&slab_mutex);
4035 	list_for_each_entry(s, &slab_caches, list)
4036 		__kmem_cache_shrink(s);
4037 	mutex_unlock(&slab_mutex);
4038 
4039 	return 0;
4040 }
4041 
4042 static void slab_mem_offline_callback(void *arg)
4043 {
4044 	struct kmem_cache_node *n;
4045 	struct kmem_cache *s;
4046 	struct memory_notify *marg = arg;
4047 	int offline_node;
4048 
4049 	offline_node = marg->status_change_nid_normal;
4050 
4051 	/*
4052 	 * If the node still has available memory. we need kmem_cache_node
4053 	 * for it yet.
4054 	 */
4055 	if (offline_node < 0)
4056 		return;
4057 
4058 	mutex_lock(&slab_mutex);
4059 	list_for_each_entry(s, &slab_caches, list) {
4060 		n = get_node(s, offline_node);
4061 		if (n) {
4062 			/*
4063 			 * if n->nr_slabs > 0, slabs still exist on the node
4064 			 * that is going down. We were unable to free them,
4065 			 * and offline_pages() function shouldn't call this
4066 			 * callback. So, we must fail.
4067 			 */
4068 			BUG_ON(slabs_node(s, offline_node));
4069 
4070 			s->node[offline_node] = NULL;
4071 			kmem_cache_free(kmem_cache_node, n);
4072 		}
4073 	}
4074 	mutex_unlock(&slab_mutex);
4075 }
4076 
4077 static int slab_mem_going_online_callback(void *arg)
4078 {
4079 	struct kmem_cache_node *n;
4080 	struct kmem_cache *s;
4081 	struct memory_notify *marg = arg;
4082 	int nid = marg->status_change_nid_normal;
4083 	int ret = 0;
4084 
4085 	/*
4086 	 * If the node's memory is already available, then kmem_cache_node is
4087 	 * already created. Nothing to do.
4088 	 */
4089 	if (nid < 0)
4090 		return 0;
4091 
4092 	/*
4093 	 * We are bringing a node online. No memory is available yet. We must
4094 	 * allocate a kmem_cache_node structure in order to bring the node
4095 	 * online.
4096 	 */
4097 	mutex_lock(&slab_mutex);
4098 	list_for_each_entry(s, &slab_caches, list) {
4099 		/*
4100 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4101 		 *      since memory is not yet available from the node that
4102 		 *      is brought up.
4103 		 */
4104 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4105 		if (!n) {
4106 			ret = -ENOMEM;
4107 			goto out;
4108 		}
4109 		init_kmem_cache_node(n);
4110 		s->node[nid] = n;
4111 	}
4112 out:
4113 	mutex_unlock(&slab_mutex);
4114 	return ret;
4115 }
4116 
4117 static int slab_memory_callback(struct notifier_block *self,
4118 				unsigned long action, void *arg)
4119 {
4120 	int ret = 0;
4121 
4122 	switch (action) {
4123 	case MEM_GOING_ONLINE:
4124 		ret = slab_mem_going_online_callback(arg);
4125 		break;
4126 	case MEM_GOING_OFFLINE:
4127 		ret = slab_mem_going_offline_callback(arg);
4128 		break;
4129 	case MEM_OFFLINE:
4130 	case MEM_CANCEL_ONLINE:
4131 		slab_mem_offline_callback(arg);
4132 		break;
4133 	case MEM_ONLINE:
4134 	case MEM_CANCEL_OFFLINE:
4135 		break;
4136 	}
4137 	if (ret)
4138 		ret = notifier_from_errno(ret);
4139 	else
4140 		ret = NOTIFY_OK;
4141 	return ret;
4142 }
4143 
4144 static struct notifier_block slab_memory_callback_nb = {
4145 	.notifier_call = slab_memory_callback,
4146 	.priority = SLAB_CALLBACK_PRI,
4147 };
4148 
4149 /********************************************************************
4150  *			Basic setup of slabs
4151  *******************************************************************/
4152 
4153 /*
4154  * Used for early kmem_cache structures that were allocated using
4155  * the page allocator. Allocate them properly then fix up the pointers
4156  * that may be pointing to the wrong kmem_cache structure.
4157  */
4158 
4159 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4160 {
4161 	int node;
4162 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4163 	struct kmem_cache_node *n;
4164 
4165 	memcpy(s, static_cache, kmem_cache->object_size);
4166 
4167 	/*
4168 	 * This runs very early, and only the boot processor is supposed to be
4169 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4170 	 * IPIs around.
4171 	 */
4172 	__flush_cpu_slab(s, smp_processor_id());
4173 	for_each_kmem_cache_node(s, node, n) {
4174 		struct page *p;
4175 
4176 		list_for_each_entry(p, &n->partial, lru)
4177 			p->slab_cache = s;
4178 
4179 #ifdef CONFIG_SLUB_DEBUG
4180 		list_for_each_entry(p, &n->full, lru)
4181 			p->slab_cache = s;
4182 #endif
4183 	}
4184 	slab_init_memcg_params(s);
4185 	list_add(&s->list, &slab_caches);
4186 	memcg_link_cache(s);
4187 	return s;
4188 }
4189 
4190 void __init kmem_cache_init(void)
4191 {
4192 	static __initdata struct kmem_cache boot_kmem_cache,
4193 		boot_kmem_cache_node;
4194 
4195 	if (debug_guardpage_minorder())
4196 		slub_max_order = 0;
4197 
4198 	kmem_cache_node = &boot_kmem_cache_node;
4199 	kmem_cache = &boot_kmem_cache;
4200 
4201 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4202 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4203 
4204 	register_hotmemory_notifier(&slab_memory_callback_nb);
4205 
4206 	/* Able to allocate the per node structures */
4207 	slab_state = PARTIAL;
4208 
4209 	create_boot_cache(kmem_cache, "kmem_cache",
4210 			offsetof(struct kmem_cache, node) +
4211 				nr_node_ids * sizeof(struct kmem_cache_node *),
4212 		       SLAB_HWCACHE_ALIGN, 0, 0);
4213 
4214 	kmem_cache = bootstrap(&boot_kmem_cache);
4215 
4216 	/*
4217 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
4218 	 * kmem_cache_node is separately allocated so no need to
4219 	 * update any list pointers.
4220 	 */
4221 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4222 
4223 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4224 	setup_kmalloc_cache_index_table();
4225 	create_kmalloc_caches(0);
4226 
4227 	/* Setup random freelists for each cache */
4228 	init_freelist_randomization();
4229 
4230 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4231 				  slub_cpu_dead);
4232 
4233 	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
4234 		cache_line_size(),
4235 		slub_min_order, slub_max_order, slub_min_objects,
4236 		nr_cpu_ids, nr_node_ids);
4237 }
4238 
4239 void __init kmem_cache_init_late(void)
4240 {
4241 }
4242 
4243 struct kmem_cache *
4244 __kmem_cache_alias(const char *name, size_t size, size_t align,
4245 		   slab_flags_t flags, void (*ctor)(void *))
4246 {
4247 	struct kmem_cache *s, *c;
4248 
4249 	s = find_mergeable(size, align, flags, name, ctor);
4250 	if (s) {
4251 		s->refcount++;
4252 
4253 		/*
4254 		 * Adjust the object sizes so that we clear
4255 		 * the complete object on kzalloc.
4256 		 */
4257 		s->object_size = max(s->object_size, (int)size);
4258 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4259 
4260 		for_each_memcg_cache(c, s) {
4261 			c->object_size = s->object_size;
4262 			c->inuse = max_t(int, c->inuse,
4263 					 ALIGN(size, sizeof(void *)));
4264 		}
4265 
4266 		if (sysfs_slab_alias(s, name)) {
4267 			s->refcount--;
4268 			s = NULL;
4269 		}
4270 	}
4271 
4272 	return s;
4273 }
4274 
4275 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4276 {
4277 	int err;
4278 
4279 	err = kmem_cache_open(s, flags);
4280 	if (err)
4281 		return err;
4282 
4283 	/* Mutex is not taken during early boot */
4284 	if (slab_state <= UP)
4285 		return 0;
4286 
4287 	memcg_propagate_slab_attrs(s);
4288 	err = sysfs_slab_add(s);
4289 	if (err)
4290 		__kmem_cache_release(s);
4291 
4292 	return err;
4293 }
4294 
4295 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4296 {
4297 	struct kmem_cache *s;
4298 	void *ret;
4299 
4300 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4301 		return kmalloc_large(size, gfpflags);
4302 
4303 	s = kmalloc_slab(size, gfpflags);
4304 
4305 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4306 		return s;
4307 
4308 	ret = slab_alloc(s, gfpflags, caller);
4309 
4310 	/* Honor the call site pointer we received. */
4311 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4312 
4313 	return ret;
4314 }
4315 
4316 #ifdef CONFIG_NUMA
4317 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4318 					int node, unsigned long caller)
4319 {
4320 	struct kmem_cache *s;
4321 	void *ret;
4322 
4323 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4324 		ret = kmalloc_large_node(size, gfpflags, node);
4325 
4326 		trace_kmalloc_node(caller, ret,
4327 				   size, PAGE_SIZE << get_order(size),
4328 				   gfpflags, node);
4329 
4330 		return ret;
4331 	}
4332 
4333 	s = kmalloc_slab(size, gfpflags);
4334 
4335 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4336 		return s;
4337 
4338 	ret = slab_alloc_node(s, gfpflags, node, caller);
4339 
4340 	/* Honor the call site pointer we received. */
4341 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4342 
4343 	return ret;
4344 }
4345 #endif
4346 
4347 #ifdef CONFIG_SYSFS
4348 static int count_inuse(struct page *page)
4349 {
4350 	return page->inuse;
4351 }
4352 
4353 static int count_total(struct page *page)
4354 {
4355 	return page->objects;
4356 }
4357 #endif
4358 
4359 #ifdef CONFIG_SLUB_DEBUG
4360 static int validate_slab(struct kmem_cache *s, struct page *page,
4361 						unsigned long *map)
4362 {
4363 	void *p;
4364 	void *addr = page_address(page);
4365 
4366 	if (!check_slab(s, page) ||
4367 			!on_freelist(s, page, NULL))
4368 		return 0;
4369 
4370 	/* Now we know that a valid freelist exists */
4371 	bitmap_zero(map, page->objects);
4372 
4373 	get_map(s, page, map);
4374 	for_each_object(p, s, addr, page->objects) {
4375 		if (test_bit(slab_index(p, s, addr), map))
4376 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4377 				return 0;
4378 	}
4379 
4380 	for_each_object(p, s, addr, page->objects)
4381 		if (!test_bit(slab_index(p, s, addr), map))
4382 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4383 				return 0;
4384 	return 1;
4385 }
4386 
4387 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4388 						unsigned long *map)
4389 {
4390 	slab_lock(page);
4391 	validate_slab(s, page, map);
4392 	slab_unlock(page);
4393 }
4394 
4395 static int validate_slab_node(struct kmem_cache *s,
4396 		struct kmem_cache_node *n, unsigned long *map)
4397 {
4398 	unsigned long count = 0;
4399 	struct page *page;
4400 	unsigned long flags;
4401 
4402 	spin_lock_irqsave(&n->list_lock, flags);
4403 
4404 	list_for_each_entry(page, &n->partial, lru) {
4405 		validate_slab_slab(s, page, map);
4406 		count++;
4407 	}
4408 	if (count != n->nr_partial)
4409 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4410 		       s->name, count, n->nr_partial);
4411 
4412 	if (!(s->flags & SLAB_STORE_USER))
4413 		goto out;
4414 
4415 	list_for_each_entry(page, &n->full, lru) {
4416 		validate_slab_slab(s, page, map);
4417 		count++;
4418 	}
4419 	if (count != atomic_long_read(&n->nr_slabs))
4420 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4421 		       s->name, count, atomic_long_read(&n->nr_slabs));
4422 
4423 out:
4424 	spin_unlock_irqrestore(&n->list_lock, flags);
4425 	return count;
4426 }
4427 
4428 static long validate_slab_cache(struct kmem_cache *s)
4429 {
4430 	int node;
4431 	unsigned long count = 0;
4432 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4433 				sizeof(unsigned long), GFP_KERNEL);
4434 	struct kmem_cache_node *n;
4435 
4436 	if (!map)
4437 		return -ENOMEM;
4438 
4439 	flush_all(s);
4440 	for_each_kmem_cache_node(s, node, n)
4441 		count += validate_slab_node(s, n, map);
4442 	kfree(map);
4443 	return count;
4444 }
4445 /*
4446  * Generate lists of code addresses where slabcache objects are allocated
4447  * and freed.
4448  */
4449 
4450 struct location {
4451 	unsigned long count;
4452 	unsigned long addr;
4453 	long long sum_time;
4454 	long min_time;
4455 	long max_time;
4456 	long min_pid;
4457 	long max_pid;
4458 	DECLARE_BITMAP(cpus, NR_CPUS);
4459 	nodemask_t nodes;
4460 };
4461 
4462 struct loc_track {
4463 	unsigned long max;
4464 	unsigned long count;
4465 	struct location *loc;
4466 };
4467 
4468 static void free_loc_track(struct loc_track *t)
4469 {
4470 	if (t->max)
4471 		free_pages((unsigned long)t->loc,
4472 			get_order(sizeof(struct location) * t->max));
4473 }
4474 
4475 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4476 {
4477 	struct location *l;
4478 	int order;
4479 
4480 	order = get_order(sizeof(struct location) * max);
4481 
4482 	l = (void *)__get_free_pages(flags, order);
4483 	if (!l)
4484 		return 0;
4485 
4486 	if (t->count) {
4487 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4488 		free_loc_track(t);
4489 	}
4490 	t->max = max;
4491 	t->loc = l;
4492 	return 1;
4493 }
4494 
4495 static int add_location(struct loc_track *t, struct kmem_cache *s,
4496 				const struct track *track)
4497 {
4498 	long start, end, pos;
4499 	struct location *l;
4500 	unsigned long caddr;
4501 	unsigned long age = jiffies - track->when;
4502 
4503 	start = -1;
4504 	end = t->count;
4505 
4506 	for ( ; ; ) {
4507 		pos = start + (end - start + 1) / 2;
4508 
4509 		/*
4510 		 * There is nothing at "end". If we end up there
4511 		 * we need to add something to before end.
4512 		 */
4513 		if (pos == end)
4514 			break;
4515 
4516 		caddr = t->loc[pos].addr;
4517 		if (track->addr == caddr) {
4518 
4519 			l = &t->loc[pos];
4520 			l->count++;
4521 			if (track->when) {
4522 				l->sum_time += age;
4523 				if (age < l->min_time)
4524 					l->min_time = age;
4525 				if (age > l->max_time)
4526 					l->max_time = age;
4527 
4528 				if (track->pid < l->min_pid)
4529 					l->min_pid = track->pid;
4530 				if (track->pid > l->max_pid)
4531 					l->max_pid = track->pid;
4532 
4533 				cpumask_set_cpu(track->cpu,
4534 						to_cpumask(l->cpus));
4535 			}
4536 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4537 			return 1;
4538 		}
4539 
4540 		if (track->addr < caddr)
4541 			end = pos;
4542 		else
4543 			start = pos;
4544 	}
4545 
4546 	/*
4547 	 * Not found. Insert new tracking element.
4548 	 */
4549 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4550 		return 0;
4551 
4552 	l = t->loc + pos;
4553 	if (pos < t->count)
4554 		memmove(l + 1, l,
4555 			(t->count - pos) * sizeof(struct location));
4556 	t->count++;
4557 	l->count = 1;
4558 	l->addr = track->addr;
4559 	l->sum_time = age;
4560 	l->min_time = age;
4561 	l->max_time = age;
4562 	l->min_pid = track->pid;
4563 	l->max_pid = track->pid;
4564 	cpumask_clear(to_cpumask(l->cpus));
4565 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4566 	nodes_clear(l->nodes);
4567 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4568 	return 1;
4569 }
4570 
4571 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4572 		struct page *page, enum track_item alloc,
4573 		unsigned long *map)
4574 {
4575 	void *addr = page_address(page);
4576 	void *p;
4577 
4578 	bitmap_zero(map, page->objects);
4579 	get_map(s, page, map);
4580 
4581 	for_each_object(p, s, addr, page->objects)
4582 		if (!test_bit(slab_index(p, s, addr), map))
4583 			add_location(t, s, get_track(s, p, alloc));
4584 }
4585 
4586 static int list_locations(struct kmem_cache *s, char *buf,
4587 					enum track_item alloc)
4588 {
4589 	int len = 0;
4590 	unsigned long i;
4591 	struct loc_track t = { 0, 0, NULL };
4592 	int node;
4593 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4594 				     sizeof(unsigned long), GFP_KERNEL);
4595 	struct kmem_cache_node *n;
4596 
4597 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4598 				     GFP_KERNEL)) {
4599 		kfree(map);
4600 		return sprintf(buf, "Out of memory\n");
4601 	}
4602 	/* Push back cpu slabs */
4603 	flush_all(s);
4604 
4605 	for_each_kmem_cache_node(s, node, n) {
4606 		unsigned long flags;
4607 		struct page *page;
4608 
4609 		if (!atomic_long_read(&n->nr_slabs))
4610 			continue;
4611 
4612 		spin_lock_irqsave(&n->list_lock, flags);
4613 		list_for_each_entry(page, &n->partial, lru)
4614 			process_slab(&t, s, page, alloc, map);
4615 		list_for_each_entry(page, &n->full, lru)
4616 			process_slab(&t, s, page, alloc, map);
4617 		spin_unlock_irqrestore(&n->list_lock, flags);
4618 	}
4619 
4620 	for (i = 0; i < t.count; i++) {
4621 		struct location *l = &t.loc[i];
4622 
4623 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4624 			break;
4625 		len += sprintf(buf + len, "%7ld ", l->count);
4626 
4627 		if (l->addr)
4628 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4629 		else
4630 			len += sprintf(buf + len, "<not-available>");
4631 
4632 		if (l->sum_time != l->min_time) {
4633 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4634 				l->min_time,
4635 				(long)div_u64(l->sum_time, l->count),
4636 				l->max_time);
4637 		} else
4638 			len += sprintf(buf + len, " age=%ld",
4639 				l->min_time);
4640 
4641 		if (l->min_pid != l->max_pid)
4642 			len += sprintf(buf + len, " pid=%ld-%ld",
4643 				l->min_pid, l->max_pid);
4644 		else
4645 			len += sprintf(buf + len, " pid=%ld",
4646 				l->min_pid);
4647 
4648 		if (num_online_cpus() > 1 &&
4649 				!cpumask_empty(to_cpumask(l->cpus)) &&
4650 				len < PAGE_SIZE - 60)
4651 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4652 					 " cpus=%*pbl",
4653 					 cpumask_pr_args(to_cpumask(l->cpus)));
4654 
4655 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4656 				len < PAGE_SIZE - 60)
4657 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4658 					 " nodes=%*pbl",
4659 					 nodemask_pr_args(&l->nodes));
4660 
4661 		len += sprintf(buf + len, "\n");
4662 	}
4663 
4664 	free_loc_track(&t);
4665 	kfree(map);
4666 	if (!t.count)
4667 		len += sprintf(buf, "No data\n");
4668 	return len;
4669 }
4670 #endif
4671 
4672 #ifdef SLUB_RESILIENCY_TEST
4673 static void __init resiliency_test(void)
4674 {
4675 	u8 *p;
4676 
4677 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4678 
4679 	pr_err("SLUB resiliency testing\n");
4680 	pr_err("-----------------------\n");
4681 	pr_err("A. Corruption after allocation\n");
4682 
4683 	p = kzalloc(16, GFP_KERNEL);
4684 	p[16] = 0x12;
4685 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4686 	       p + 16);
4687 
4688 	validate_slab_cache(kmalloc_caches[4]);
4689 
4690 	/* Hmmm... The next two are dangerous */
4691 	p = kzalloc(32, GFP_KERNEL);
4692 	p[32 + sizeof(void *)] = 0x34;
4693 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4694 	       p);
4695 	pr_err("If allocated object is overwritten then not detectable\n\n");
4696 
4697 	validate_slab_cache(kmalloc_caches[5]);
4698 	p = kzalloc(64, GFP_KERNEL);
4699 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4700 	*p = 0x56;
4701 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4702 	       p);
4703 	pr_err("If allocated object is overwritten then not detectable\n\n");
4704 	validate_slab_cache(kmalloc_caches[6]);
4705 
4706 	pr_err("\nB. Corruption after free\n");
4707 	p = kzalloc(128, GFP_KERNEL);
4708 	kfree(p);
4709 	*p = 0x78;
4710 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4711 	validate_slab_cache(kmalloc_caches[7]);
4712 
4713 	p = kzalloc(256, GFP_KERNEL);
4714 	kfree(p);
4715 	p[50] = 0x9a;
4716 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4717 	validate_slab_cache(kmalloc_caches[8]);
4718 
4719 	p = kzalloc(512, GFP_KERNEL);
4720 	kfree(p);
4721 	p[512] = 0xab;
4722 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4723 	validate_slab_cache(kmalloc_caches[9]);
4724 }
4725 #else
4726 #ifdef CONFIG_SYSFS
4727 static void resiliency_test(void) {};
4728 #endif
4729 #endif
4730 
4731 #ifdef CONFIG_SYSFS
4732 enum slab_stat_type {
4733 	SL_ALL,			/* All slabs */
4734 	SL_PARTIAL,		/* Only partially allocated slabs */
4735 	SL_CPU,			/* Only slabs used for cpu caches */
4736 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4737 	SL_TOTAL		/* Determine object capacity not slabs */
4738 };
4739 
4740 #define SO_ALL		(1 << SL_ALL)
4741 #define SO_PARTIAL	(1 << SL_PARTIAL)
4742 #define SO_CPU		(1 << SL_CPU)
4743 #define SO_OBJECTS	(1 << SL_OBJECTS)
4744 #define SO_TOTAL	(1 << SL_TOTAL)
4745 
4746 #ifdef CONFIG_MEMCG
4747 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4748 
4749 static int __init setup_slub_memcg_sysfs(char *str)
4750 {
4751 	int v;
4752 
4753 	if (get_option(&str, &v) > 0)
4754 		memcg_sysfs_enabled = v;
4755 
4756 	return 1;
4757 }
4758 
4759 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4760 #endif
4761 
4762 static ssize_t show_slab_objects(struct kmem_cache *s,
4763 			    char *buf, unsigned long flags)
4764 {
4765 	unsigned long total = 0;
4766 	int node;
4767 	int x;
4768 	unsigned long *nodes;
4769 
4770 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4771 	if (!nodes)
4772 		return -ENOMEM;
4773 
4774 	if (flags & SO_CPU) {
4775 		int cpu;
4776 
4777 		for_each_possible_cpu(cpu) {
4778 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4779 							       cpu);
4780 			int node;
4781 			struct page *page;
4782 
4783 			page = READ_ONCE(c->page);
4784 			if (!page)
4785 				continue;
4786 
4787 			node = page_to_nid(page);
4788 			if (flags & SO_TOTAL)
4789 				x = page->objects;
4790 			else if (flags & SO_OBJECTS)
4791 				x = page->inuse;
4792 			else
4793 				x = 1;
4794 
4795 			total += x;
4796 			nodes[node] += x;
4797 
4798 			page = slub_percpu_partial_read_once(c);
4799 			if (page) {
4800 				node = page_to_nid(page);
4801 				if (flags & SO_TOTAL)
4802 					WARN_ON_ONCE(1);
4803 				else if (flags & SO_OBJECTS)
4804 					WARN_ON_ONCE(1);
4805 				else
4806 					x = page->pages;
4807 				total += x;
4808 				nodes[node] += x;
4809 			}
4810 		}
4811 	}
4812 
4813 	get_online_mems();
4814 #ifdef CONFIG_SLUB_DEBUG
4815 	if (flags & SO_ALL) {
4816 		struct kmem_cache_node *n;
4817 
4818 		for_each_kmem_cache_node(s, node, n) {
4819 
4820 			if (flags & SO_TOTAL)
4821 				x = atomic_long_read(&n->total_objects);
4822 			else if (flags & SO_OBJECTS)
4823 				x = atomic_long_read(&n->total_objects) -
4824 					count_partial(n, count_free);
4825 			else
4826 				x = atomic_long_read(&n->nr_slabs);
4827 			total += x;
4828 			nodes[node] += x;
4829 		}
4830 
4831 	} else
4832 #endif
4833 	if (flags & SO_PARTIAL) {
4834 		struct kmem_cache_node *n;
4835 
4836 		for_each_kmem_cache_node(s, node, n) {
4837 			if (flags & SO_TOTAL)
4838 				x = count_partial(n, count_total);
4839 			else if (flags & SO_OBJECTS)
4840 				x = count_partial(n, count_inuse);
4841 			else
4842 				x = n->nr_partial;
4843 			total += x;
4844 			nodes[node] += x;
4845 		}
4846 	}
4847 	x = sprintf(buf, "%lu", total);
4848 #ifdef CONFIG_NUMA
4849 	for (node = 0; node < nr_node_ids; node++)
4850 		if (nodes[node])
4851 			x += sprintf(buf + x, " N%d=%lu",
4852 					node, nodes[node]);
4853 #endif
4854 	put_online_mems();
4855 	kfree(nodes);
4856 	return x + sprintf(buf + x, "\n");
4857 }
4858 
4859 #ifdef CONFIG_SLUB_DEBUG
4860 static int any_slab_objects(struct kmem_cache *s)
4861 {
4862 	int node;
4863 	struct kmem_cache_node *n;
4864 
4865 	for_each_kmem_cache_node(s, node, n)
4866 		if (atomic_long_read(&n->total_objects))
4867 			return 1;
4868 
4869 	return 0;
4870 }
4871 #endif
4872 
4873 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4874 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4875 
4876 struct slab_attribute {
4877 	struct attribute attr;
4878 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4879 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4880 };
4881 
4882 #define SLAB_ATTR_RO(_name) \
4883 	static struct slab_attribute _name##_attr = \
4884 	__ATTR(_name, 0400, _name##_show, NULL)
4885 
4886 #define SLAB_ATTR(_name) \
4887 	static struct slab_attribute _name##_attr =  \
4888 	__ATTR(_name, 0600, _name##_show, _name##_store)
4889 
4890 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4891 {
4892 	return sprintf(buf, "%d\n", s->size);
4893 }
4894 SLAB_ATTR_RO(slab_size);
4895 
4896 static ssize_t align_show(struct kmem_cache *s, char *buf)
4897 {
4898 	return sprintf(buf, "%d\n", s->align);
4899 }
4900 SLAB_ATTR_RO(align);
4901 
4902 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4903 {
4904 	return sprintf(buf, "%d\n", s->object_size);
4905 }
4906 SLAB_ATTR_RO(object_size);
4907 
4908 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4909 {
4910 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4911 }
4912 SLAB_ATTR_RO(objs_per_slab);
4913 
4914 static ssize_t order_store(struct kmem_cache *s,
4915 				const char *buf, size_t length)
4916 {
4917 	unsigned long order;
4918 	int err;
4919 
4920 	err = kstrtoul(buf, 10, &order);
4921 	if (err)
4922 		return err;
4923 
4924 	if (order > slub_max_order || order < slub_min_order)
4925 		return -EINVAL;
4926 
4927 	calculate_sizes(s, order);
4928 	return length;
4929 }
4930 
4931 static ssize_t order_show(struct kmem_cache *s, char *buf)
4932 {
4933 	return sprintf(buf, "%d\n", oo_order(s->oo));
4934 }
4935 SLAB_ATTR(order);
4936 
4937 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4938 {
4939 	return sprintf(buf, "%lu\n", s->min_partial);
4940 }
4941 
4942 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4943 				 size_t length)
4944 {
4945 	unsigned long min;
4946 	int err;
4947 
4948 	err = kstrtoul(buf, 10, &min);
4949 	if (err)
4950 		return err;
4951 
4952 	set_min_partial(s, min);
4953 	return length;
4954 }
4955 SLAB_ATTR(min_partial);
4956 
4957 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4958 {
4959 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4960 }
4961 
4962 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4963 				 size_t length)
4964 {
4965 	unsigned long objects;
4966 	int err;
4967 
4968 	err = kstrtoul(buf, 10, &objects);
4969 	if (err)
4970 		return err;
4971 	if (objects && !kmem_cache_has_cpu_partial(s))
4972 		return -EINVAL;
4973 
4974 	slub_set_cpu_partial(s, objects);
4975 	flush_all(s);
4976 	return length;
4977 }
4978 SLAB_ATTR(cpu_partial);
4979 
4980 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4981 {
4982 	if (!s->ctor)
4983 		return 0;
4984 	return sprintf(buf, "%pS\n", s->ctor);
4985 }
4986 SLAB_ATTR_RO(ctor);
4987 
4988 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4989 {
4990 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4991 }
4992 SLAB_ATTR_RO(aliases);
4993 
4994 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4995 {
4996 	return show_slab_objects(s, buf, SO_PARTIAL);
4997 }
4998 SLAB_ATTR_RO(partial);
4999 
5000 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5001 {
5002 	return show_slab_objects(s, buf, SO_CPU);
5003 }
5004 SLAB_ATTR_RO(cpu_slabs);
5005 
5006 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5007 {
5008 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5009 }
5010 SLAB_ATTR_RO(objects);
5011 
5012 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5013 {
5014 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5015 }
5016 SLAB_ATTR_RO(objects_partial);
5017 
5018 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5019 {
5020 	int objects = 0;
5021 	int pages = 0;
5022 	int cpu;
5023 	int len;
5024 
5025 	for_each_online_cpu(cpu) {
5026 		struct page *page;
5027 
5028 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5029 
5030 		if (page) {
5031 			pages += page->pages;
5032 			objects += page->pobjects;
5033 		}
5034 	}
5035 
5036 	len = sprintf(buf, "%d(%d)", objects, pages);
5037 
5038 #ifdef CONFIG_SMP
5039 	for_each_online_cpu(cpu) {
5040 		struct page *page;
5041 
5042 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5043 
5044 		if (page && len < PAGE_SIZE - 20)
5045 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5046 				page->pobjects, page->pages);
5047 	}
5048 #endif
5049 	return len + sprintf(buf + len, "\n");
5050 }
5051 SLAB_ATTR_RO(slabs_cpu_partial);
5052 
5053 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5054 {
5055 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5056 }
5057 
5058 static ssize_t reclaim_account_store(struct kmem_cache *s,
5059 				const char *buf, size_t length)
5060 {
5061 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5062 	if (buf[0] == '1')
5063 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5064 	return length;
5065 }
5066 SLAB_ATTR(reclaim_account);
5067 
5068 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5069 {
5070 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5071 }
5072 SLAB_ATTR_RO(hwcache_align);
5073 
5074 #ifdef CONFIG_ZONE_DMA
5075 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5076 {
5077 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5078 }
5079 SLAB_ATTR_RO(cache_dma);
5080 #endif
5081 
5082 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5083 {
5084 	return sprintf(buf, "%zu\n", s->usersize);
5085 }
5086 SLAB_ATTR_RO(usersize);
5087 
5088 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5089 {
5090 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5091 }
5092 SLAB_ATTR_RO(destroy_by_rcu);
5093 
5094 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5095 {
5096 	return sprintf(buf, "%d\n", s->reserved);
5097 }
5098 SLAB_ATTR_RO(reserved);
5099 
5100 #ifdef CONFIG_SLUB_DEBUG
5101 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5102 {
5103 	return show_slab_objects(s, buf, SO_ALL);
5104 }
5105 SLAB_ATTR_RO(slabs);
5106 
5107 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5108 {
5109 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5110 }
5111 SLAB_ATTR_RO(total_objects);
5112 
5113 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5114 {
5115 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5116 }
5117 
5118 static ssize_t sanity_checks_store(struct kmem_cache *s,
5119 				const char *buf, size_t length)
5120 {
5121 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5122 	if (buf[0] == '1') {
5123 		s->flags &= ~__CMPXCHG_DOUBLE;
5124 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5125 	}
5126 	return length;
5127 }
5128 SLAB_ATTR(sanity_checks);
5129 
5130 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5131 {
5132 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5133 }
5134 
5135 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5136 							size_t length)
5137 {
5138 	/*
5139 	 * Tracing a merged cache is going to give confusing results
5140 	 * as well as cause other issues like converting a mergeable
5141 	 * cache into an umergeable one.
5142 	 */
5143 	if (s->refcount > 1)
5144 		return -EINVAL;
5145 
5146 	s->flags &= ~SLAB_TRACE;
5147 	if (buf[0] == '1') {
5148 		s->flags &= ~__CMPXCHG_DOUBLE;
5149 		s->flags |= SLAB_TRACE;
5150 	}
5151 	return length;
5152 }
5153 SLAB_ATTR(trace);
5154 
5155 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5156 {
5157 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5158 }
5159 
5160 static ssize_t red_zone_store(struct kmem_cache *s,
5161 				const char *buf, size_t length)
5162 {
5163 	if (any_slab_objects(s))
5164 		return -EBUSY;
5165 
5166 	s->flags &= ~SLAB_RED_ZONE;
5167 	if (buf[0] == '1') {
5168 		s->flags |= SLAB_RED_ZONE;
5169 	}
5170 	calculate_sizes(s, -1);
5171 	return length;
5172 }
5173 SLAB_ATTR(red_zone);
5174 
5175 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5176 {
5177 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5178 }
5179 
5180 static ssize_t poison_store(struct kmem_cache *s,
5181 				const char *buf, size_t length)
5182 {
5183 	if (any_slab_objects(s))
5184 		return -EBUSY;
5185 
5186 	s->flags &= ~SLAB_POISON;
5187 	if (buf[0] == '1') {
5188 		s->flags |= SLAB_POISON;
5189 	}
5190 	calculate_sizes(s, -1);
5191 	return length;
5192 }
5193 SLAB_ATTR(poison);
5194 
5195 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5196 {
5197 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5198 }
5199 
5200 static ssize_t store_user_store(struct kmem_cache *s,
5201 				const char *buf, size_t length)
5202 {
5203 	if (any_slab_objects(s))
5204 		return -EBUSY;
5205 
5206 	s->flags &= ~SLAB_STORE_USER;
5207 	if (buf[0] == '1') {
5208 		s->flags &= ~__CMPXCHG_DOUBLE;
5209 		s->flags |= SLAB_STORE_USER;
5210 	}
5211 	calculate_sizes(s, -1);
5212 	return length;
5213 }
5214 SLAB_ATTR(store_user);
5215 
5216 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5217 {
5218 	return 0;
5219 }
5220 
5221 static ssize_t validate_store(struct kmem_cache *s,
5222 			const char *buf, size_t length)
5223 {
5224 	int ret = -EINVAL;
5225 
5226 	if (buf[0] == '1') {
5227 		ret = validate_slab_cache(s);
5228 		if (ret >= 0)
5229 			ret = length;
5230 	}
5231 	return ret;
5232 }
5233 SLAB_ATTR(validate);
5234 
5235 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5236 {
5237 	if (!(s->flags & SLAB_STORE_USER))
5238 		return -ENOSYS;
5239 	return list_locations(s, buf, TRACK_ALLOC);
5240 }
5241 SLAB_ATTR_RO(alloc_calls);
5242 
5243 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5244 {
5245 	if (!(s->flags & SLAB_STORE_USER))
5246 		return -ENOSYS;
5247 	return list_locations(s, buf, TRACK_FREE);
5248 }
5249 SLAB_ATTR_RO(free_calls);
5250 #endif /* CONFIG_SLUB_DEBUG */
5251 
5252 #ifdef CONFIG_FAILSLAB
5253 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5254 {
5255 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5256 }
5257 
5258 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5259 							size_t length)
5260 {
5261 	if (s->refcount > 1)
5262 		return -EINVAL;
5263 
5264 	s->flags &= ~SLAB_FAILSLAB;
5265 	if (buf[0] == '1')
5266 		s->flags |= SLAB_FAILSLAB;
5267 	return length;
5268 }
5269 SLAB_ATTR(failslab);
5270 #endif
5271 
5272 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5273 {
5274 	return 0;
5275 }
5276 
5277 static ssize_t shrink_store(struct kmem_cache *s,
5278 			const char *buf, size_t length)
5279 {
5280 	if (buf[0] == '1')
5281 		kmem_cache_shrink(s);
5282 	else
5283 		return -EINVAL;
5284 	return length;
5285 }
5286 SLAB_ATTR(shrink);
5287 
5288 #ifdef CONFIG_NUMA
5289 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5290 {
5291 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5292 }
5293 
5294 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5295 				const char *buf, size_t length)
5296 {
5297 	unsigned long ratio;
5298 	int err;
5299 
5300 	err = kstrtoul(buf, 10, &ratio);
5301 	if (err)
5302 		return err;
5303 
5304 	if (ratio <= 100)
5305 		s->remote_node_defrag_ratio = ratio * 10;
5306 
5307 	return length;
5308 }
5309 SLAB_ATTR(remote_node_defrag_ratio);
5310 #endif
5311 
5312 #ifdef CONFIG_SLUB_STATS
5313 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5314 {
5315 	unsigned long sum  = 0;
5316 	int cpu;
5317 	int len;
5318 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5319 
5320 	if (!data)
5321 		return -ENOMEM;
5322 
5323 	for_each_online_cpu(cpu) {
5324 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5325 
5326 		data[cpu] = x;
5327 		sum += x;
5328 	}
5329 
5330 	len = sprintf(buf, "%lu", sum);
5331 
5332 #ifdef CONFIG_SMP
5333 	for_each_online_cpu(cpu) {
5334 		if (data[cpu] && len < PAGE_SIZE - 20)
5335 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5336 	}
5337 #endif
5338 	kfree(data);
5339 	return len + sprintf(buf + len, "\n");
5340 }
5341 
5342 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5343 {
5344 	int cpu;
5345 
5346 	for_each_online_cpu(cpu)
5347 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5348 }
5349 
5350 #define STAT_ATTR(si, text) 					\
5351 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5352 {								\
5353 	return show_stat(s, buf, si);				\
5354 }								\
5355 static ssize_t text##_store(struct kmem_cache *s,		\
5356 				const char *buf, size_t length)	\
5357 {								\
5358 	if (buf[0] != '0')					\
5359 		return -EINVAL;					\
5360 	clear_stat(s, si);					\
5361 	return length;						\
5362 }								\
5363 SLAB_ATTR(text);						\
5364 
5365 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5366 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5367 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5368 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5369 STAT_ATTR(FREE_FROZEN, free_frozen);
5370 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5371 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5372 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5373 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5374 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5375 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5376 STAT_ATTR(FREE_SLAB, free_slab);
5377 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5378 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5379 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5380 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5381 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5382 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5383 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5384 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5385 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5386 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5387 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5388 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5389 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5390 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5391 #endif
5392 
5393 static struct attribute *slab_attrs[] = {
5394 	&slab_size_attr.attr,
5395 	&object_size_attr.attr,
5396 	&objs_per_slab_attr.attr,
5397 	&order_attr.attr,
5398 	&min_partial_attr.attr,
5399 	&cpu_partial_attr.attr,
5400 	&objects_attr.attr,
5401 	&objects_partial_attr.attr,
5402 	&partial_attr.attr,
5403 	&cpu_slabs_attr.attr,
5404 	&ctor_attr.attr,
5405 	&aliases_attr.attr,
5406 	&align_attr.attr,
5407 	&hwcache_align_attr.attr,
5408 	&reclaim_account_attr.attr,
5409 	&destroy_by_rcu_attr.attr,
5410 	&shrink_attr.attr,
5411 	&reserved_attr.attr,
5412 	&slabs_cpu_partial_attr.attr,
5413 #ifdef CONFIG_SLUB_DEBUG
5414 	&total_objects_attr.attr,
5415 	&slabs_attr.attr,
5416 	&sanity_checks_attr.attr,
5417 	&trace_attr.attr,
5418 	&red_zone_attr.attr,
5419 	&poison_attr.attr,
5420 	&store_user_attr.attr,
5421 	&validate_attr.attr,
5422 	&alloc_calls_attr.attr,
5423 	&free_calls_attr.attr,
5424 #endif
5425 #ifdef CONFIG_ZONE_DMA
5426 	&cache_dma_attr.attr,
5427 #endif
5428 #ifdef CONFIG_NUMA
5429 	&remote_node_defrag_ratio_attr.attr,
5430 #endif
5431 #ifdef CONFIG_SLUB_STATS
5432 	&alloc_fastpath_attr.attr,
5433 	&alloc_slowpath_attr.attr,
5434 	&free_fastpath_attr.attr,
5435 	&free_slowpath_attr.attr,
5436 	&free_frozen_attr.attr,
5437 	&free_add_partial_attr.attr,
5438 	&free_remove_partial_attr.attr,
5439 	&alloc_from_partial_attr.attr,
5440 	&alloc_slab_attr.attr,
5441 	&alloc_refill_attr.attr,
5442 	&alloc_node_mismatch_attr.attr,
5443 	&free_slab_attr.attr,
5444 	&cpuslab_flush_attr.attr,
5445 	&deactivate_full_attr.attr,
5446 	&deactivate_empty_attr.attr,
5447 	&deactivate_to_head_attr.attr,
5448 	&deactivate_to_tail_attr.attr,
5449 	&deactivate_remote_frees_attr.attr,
5450 	&deactivate_bypass_attr.attr,
5451 	&order_fallback_attr.attr,
5452 	&cmpxchg_double_fail_attr.attr,
5453 	&cmpxchg_double_cpu_fail_attr.attr,
5454 	&cpu_partial_alloc_attr.attr,
5455 	&cpu_partial_free_attr.attr,
5456 	&cpu_partial_node_attr.attr,
5457 	&cpu_partial_drain_attr.attr,
5458 #endif
5459 #ifdef CONFIG_FAILSLAB
5460 	&failslab_attr.attr,
5461 #endif
5462 	&usersize_attr.attr,
5463 
5464 	NULL
5465 };
5466 
5467 static const struct attribute_group slab_attr_group = {
5468 	.attrs = slab_attrs,
5469 };
5470 
5471 static ssize_t slab_attr_show(struct kobject *kobj,
5472 				struct attribute *attr,
5473 				char *buf)
5474 {
5475 	struct slab_attribute *attribute;
5476 	struct kmem_cache *s;
5477 	int err;
5478 
5479 	attribute = to_slab_attr(attr);
5480 	s = to_slab(kobj);
5481 
5482 	if (!attribute->show)
5483 		return -EIO;
5484 
5485 	err = attribute->show(s, buf);
5486 
5487 	return err;
5488 }
5489 
5490 static ssize_t slab_attr_store(struct kobject *kobj,
5491 				struct attribute *attr,
5492 				const char *buf, size_t len)
5493 {
5494 	struct slab_attribute *attribute;
5495 	struct kmem_cache *s;
5496 	int err;
5497 
5498 	attribute = to_slab_attr(attr);
5499 	s = to_slab(kobj);
5500 
5501 	if (!attribute->store)
5502 		return -EIO;
5503 
5504 	err = attribute->store(s, buf, len);
5505 #ifdef CONFIG_MEMCG
5506 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5507 		struct kmem_cache *c;
5508 
5509 		mutex_lock(&slab_mutex);
5510 		if (s->max_attr_size < len)
5511 			s->max_attr_size = len;
5512 
5513 		/*
5514 		 * This is a best effort propagation, so this function's return
5515 		 * value will be determined by the parent cache only. This is
5516 		 * basically because not all attributes will have a well
5517 		 * defined semantics for rollbacks - most of the actions will
5518 		 * have permanent effects.
5519 		 *
5520 		 * Returning the error value of any of the children that fail
5521 		 * is not 100 % defined, in the sense that users seeing the
5522 		 * error code won't be able to know anything about the state of
5523 		 * the cache.
5524 		 *
5525 		 * Only returning the error code for the parent cache at least
5526 		 * has well defined semantics. The cache being written to
5527 		 * directly either failed or succeeded, in which case we loop
5528 		 * through the descendants with best-effort propagation.
5529 		 */
5530 		for_each_memcg_cache(c, s)
5531 			attribute->store(c, buf, len);
5532 		mutex_unlock(&slab_mutex);
5533 	}
5534 #endif
5535 	return err;
5536 }
5537 
5538 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5539 {
5540 #ifdef CONFIG_MEMCG
5541 	int i;
5542 	char *buffer = NULL;
5543 	struct kmem_cache *root_cache;
5544 
5545 	if (is_root_cache(s))
5546 		return;
5547 
5548 	root_cache = s->memcg_params.root_cache;
5549 
5550 	/*
5551 	 * This mean this cache had no attribute written. Therefore, no point
5552 	 * in copying default values around
5553 	 */
5554 	if (!root_cache->max_attr_size)
5555 		return;
5556 
5557 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5558 		char mbuf[64];
5559 		char *buf;
5560 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5561 		ssize_t len;
5562 
5563 		if (!attr || !attr->store || !attr->show)
5564 			continue;
5565 
5566 		/*
5567 		 * It is really bad that we have to allocate here, so we will
5568 		 * do it only as a fallback. If we actually allocate, though,
5569 		 * we can just use the allocated buffer until the end.
5570 		 *
5571 		 * Most of the slub attributes will tend to be very small in
5572 		 * size, but sysfs allows buffers up to a page, so they can
5573 		 * theoretically happen.
5574 		 */
5575 		if (buffer)
5576 			buf = buffer;
5577 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5578 			buf = mbuf;
5579 		else {
5580 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5581 			if (WARN_ON(!buffer))
5582 				continue;
5583 			buf = buffer;
5584 		}
5585 
5586 		len = attr->show(root_cache, buf);
5587 		if (len > 0)
5588 			attr->store(s, buf, len);
5589 	}
5590 
5591 	if (buffer)
5592 		free_page((unsigned long)buffer);
5593 #endif
5594 }
5595 
5596 static void kmem_cache_release(struct kobject *k)
5597 {
5598 	slab_kmem_cache_release(to_slab(k));
5599 }
5600 
5601 static const struct sysfs_ops slab_sysfs_ops = {
5602 	.show = slab_attr_show,
5603 	.store = slab_attr_store,
5604 };
5605 
5606 static struct kobj_type slab_ktype = {
5607 	.sysfs_ops = &slab_sysfs_ops,
5608 	.release = kmem_cache_release,
5609 };
5610 
5611 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5612 {
5613 	struct kobj_type *ktype = get_ktype(kobj);
5614 
5615 	if (ktype == &slab_ktype)
5616 		return 1;
5617 	return 0;
5618 }
5619 
5620 static const struct kset_uevent_ops slab_uevent_ops = {
5621 	.filter = uevent_filter,
5622 };
5623 
5624 static struct kset *slab_kset;
5625 
5626 static inline struct kset *cache_kset(struct kmem_cache *s)
5627 {
5628 #ifdef CONFIG_MEMCG
5629 	if (!is_root_cache(s))
5630 		return s->memcg_params.root_cache->memcg_kset;
5631 #endif
5632 	return slab_kset;
5633 }
5634 
5635 #define ID_STR_LENGTH 64
5636 
5637 /* Create a unique string id for a slab cache:
5638  *
5639  * Format	:[flags-]size
5640  */
5641 static char *create_unique_id(struct kmem_cache *s)
5642 {
5643 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5644 	char *p = name;
5645 
5646 	BUG_ON(!name);
5647 
5648 	*p++ = ':';
5649 	/*
5650 	 * First flags affecting slabcache operations. We will only
5651 	 * get here for aliasable slabs so we do not need to support
5652 	 * too many flags. The flags here must cover all flags that
5653 	 * are matched during merging to guarantee that the id is
5654 	 * unique.
5655 	 */
5656 	if (s->flags & SLAB_CACHE_DMA)
5657 		*p++ = 'd';
5658 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5659 		*p++ = 'a';
5660 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5661 		*p++ = 'F';
5662 	if (s->flags & SLAB_ACCOUNT)
5663 		*p++ = 'A';
5664 	if (p != name + 1)
5665 		*p++ = '-';
5666 	p += sprintf(p, "%07d", s->size);
5667 
5668 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5669 	return name;
5670 }
5671 
5672 static void sysfs_slab_remove_workfn(struct work_struct *work)
5673 {
5674 	struct kmem_cache *s =
5675 		container_of(work, struct kmem_cache, kobj_remove_work);
5676 
5677 	if (!s->kobj.state_in_sysfs)
5678 		/*
5679 		 * For a memcg cache, this may be called during
5680 		 * deactivation and again on shutdown.  Remove only once.
5681 		 * A cache is never shut down before deactivation is
5682 		 * complete, so no need to worry about synchronization.
5683 		 */
5684 		goto out;
5685 
5686 #ifdef CONFIG_MEMCG
5687 	kset_unregister(s->memcg_kset);
5688 #endif
5689 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5690 	kobject_del(&s->kobj);
5691 out:
5692 	kobject_put(&s->kobj);
5693 }
5694 
5695 static int sysfs_slab_add(struct kmem_cache *s)
5696 {
5697 	int err;
5698 	const char *name;
5699 	struct kset *kset = cache_kset(s);
5700 	int unmergeable = slab_unmergeable(s);
5701 
5702 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5703 
5704 	if (!kset) {
5705 		kobject_init(&s->kobj, &slab_ktype);
5706 		return 0;
5707 	}
5708 
5709 	if (!unmergeable && disable_higher_order_debug &&
5710 			(slub_debug & DEBUG_METADATA_FLAGS))
5711 		unmergeable = 1;
5712 
5713 	if (unmergeable) {
5714 		/*
5715 		 * Slabcache can never be merged so we can use the name proper.
5716 		 * This is typically the case for debug situations. In that
5717 		 * case we can catch duplicate names easily.
5718 		 */
5719 		sysfs_remove_link(&slab_kset->kobj, s->name);
5720 		name = s->name;
5721 	} else {
5722 		/*
5723 		 * Create a unique name for the slab as a target
5724 		 * for the symlinks.
5725 		 */
5726 		name = create_unique_id(s);
5727 	}
5728 
5729 	s->kobj.kset = kset;
5730 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5731 	if (err)
5732 		goto out;
5733 
5734 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5735 	if (err)
5736 		goto out_del_kobj;
5737 
5738 #ifdef CONFIG_MEMCG
5739 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5740 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5741 		if (!s->memcg_kset) {
5742 			err = -ENOMEM;
5743 			goto out_del_kobj;
5744 		}
5745 	}
5746 #endif
5747 
5748 	kobject_uevent(&s->kobj, KOBJ_ADD);
5749 	if (!unmergeable) {
5750 		/* Setup first alias */
5751 		sysfs_slab_alias(s, s->name);
5752 	}
5753 out:
5754 	if (!unmergeable)
5755 		kfree(name);
5756 	return err;
5757 out_del_kobj:
5758 	kobject_del(&s->kobj);
5759 	goto out;
5760 }
5761 
5762 static void sysfs_slab_remove(struct kmem_cache *s)
5763 {
5764 	if (slab_state < FULL)
5765 		/*
5766 		 * Sysfs has not been setup yet so no need to remove the
5767 		 * cache from sysfs.
5768 		 */
5769 		return;
5770 
5771 	kobject_get(&s->kobj);
5772 	schedule_work(&s->kobj_remove_work);
5773 }
5774 
5775 void sysfs_slab_release(struct kmem_cache *s)
5776 {
5777 	if (slab_state >= FULL)
5778 		kobject_put(&s->kobj);
5779 }
5780 
5781 /*
5782  * Need to buffer aliases during bootup until sysfs becomes
5783  * available lest we lose that information.
5784  */
5785 struct saved_alias {
5786 	struct kmem_cache *s;
5787 	const char *name;
5788 	struct saved_alias *next;
5789 };
5790 
5791 static struct saved_alias *alias_list;
5792 
5793 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5794 {
5795 	struct saved_alias *al;
5796 
5797 	if (slab_state == FULL) {
5798 		/*
5799 		 * If we have a leftover link then remove it.
5800 		 */
5801 		sysfs_remove_link(&slab_kset->kobj, name);
5802 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5803 	}
5804 
5805 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5806 	if (!al)
5807 		return -ENOMEM;
5808 
5809 	al->s = s;
5810 	al->name = name;
5811 	al->next = alias_list;
5812 	alias_list = al;
5813 	return 0;
5814 }
5815 
5816 static int __init slab_sysfs_init(void)
5817 {
5818 	struct kmem_cache *s;
5819 	int err;
5820 
5821 	mutex_lock(&slab_mutex);
5822 
5823 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5824 	if (!slab_kset) {
5825 		mutex_unlock(&slab_mutex);
5826 		pr_err("Cannot register slab subsystem.\n");
5827 		return -ENOSYS;
5828 	}
5829 
5830 	slab_state = FULL;
5831 
5832 	list_for_each_entry(s, &slab_caches, list) {
5833 		err = sysfs_slab_add(s);
5834 		if (err)
5835 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5836 			       s->name);
5837 	}
5838 
5839 	while (alias_list) {
5840 		struct saved_alias *al = alias_list;
5841 
5842 		alias_list = alias_list->next;
5843 		err = sysfs_slab_alias(al->s, al->name);
5844 		if (err)
5845 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5846 			       al->name);
5847 		kfree(al);
5848 	}
5849 
5850 	mutex_unlock(&slab_mutex);
5851 	resiliency_test();
5852 	return 0;
5853 }
5854 
5855 __initcall(slab_sysfs_init);
5856 #endif /* CONFIG_SYSFS */
5857 
5858 /*
5859  * The /proc/slabinfo ABI
5860  */
5861 #ifdef CONFIG_SLUB_DEBUG
5862 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5863 {
5864 	unsigned long nr_slabs = 0;
5865 	unsigned long nr_objs = 0;
5866 	unsigned long nr_free = 0;
5867 	int node;
5868 	struct kmem_cache_node *n;
5869 
5870 	for_each_kmem_cache_node(s, node, n) {
5871 		nr_slabs += node_nr_slabs(n);
5872 		nr_objs += node_nr_objs(n);
5873 		nr_free += count_partial(n, count_free);
5874 	}
5875 
5876 	sinfo->active_objs = nr_objs - nr_free;
5877 	sinfo->num_objs = nr_objs;
5878 	sinfo->active_slabs = nr_slabs;
5879 	sinfo->num_slabs = nr_slabs;
5880 	sinfo->objects_per_slab = oo_objects(s->oo);
5881 	sinfo->cache_order = oo_order(s->oo);
5882 }
5883 
5884 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5885 {
5886 }
5887 
5888 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5889 		       size_t count, loff_t *ppos)
5890 {
5891 	return -EIO;
5892 }
5893 #endif /* CONFIG_SLUB_DEBUG */
5894