xref: /openbmc/linux/mm/slub.c (revision 92a2c6b2)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects the second
55  *   double word in the page struct. Meaning
56  *	A. page->freelist	-> List of object free in a page
57  *	B. page->counters	-> Counters of objects
58  *	C. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list. The processor that froze the slab is the one who can
62  *   perform list operations on the page. Other processors may put objects
63  *   onto the freelist but the processor that froze the slab is the only
64  *   one that can retrieve the objects from the page's freelist.
65  *
66  *   The list_lock protects the partial and full list on each node and
67  *   the partial slab counter. If taken then no new slabs may be added or
68  *   removed from the lists nor make the number of partial slabs be modified.
69  *   (Note that the total number of slabs is an atomic value that may be
70  *   modified without taking the list lock).
71  *
72  *   The list_lock is a centralized lock and thus we avoid taking it as
73  *   much as possible. As long as SLUB does not have to handle partial
74  *   slabs, operations can continue without any centralized lock. F.e.
75  *   allocating a long series of objects that fill up slabs does not require
76  *   the list lock.
77  *   Interrupts are disabled during allocation and deallocation in order to
78  *   make the slab allocator safe to use in the context of an irq. In addition
79  *   interrupts are disabled to ensure that the processor does not change
80  *   while handling per_cpu slabs, due to kernel preemption.
81  *
82  * SLUB assigns one slab for allocation to each processor.
83  * Allocations only occur from these slabs called cpu slabs.
84  *
85  * Slabs with free elements are kept on a partial list and during regular
86  * operations no list for full slabs is used. If an object in a full slab is
87  * freed then the slab will show up again on the partial lists.
88  * We track full slabs for debugging purposes though because otherwise we
89  * cannot scan all objects.
90  *
91  * Slabs are freed when they become empty. Teardown and setup is
92  * minimal so we rely on the page allocators per cpu caches for
93  * fast frees and allocs.
94  *
95  * Overloading of page flags that are otherwise used for LRU management.
96  *
97  * PageActive 		The slab is frozen and exempt from list processing.
98  * 			This means that the slab is dedicated to a purpose
99  * 			such as satisfying allocations for a specific
100  * 			processor. Objects may be freed in the slab while
101  * 			it is frozen but slab_free will then skip the usual
102  * 			list operations. It is up to the processor holding
103  * 			the slab to integrate the slab into the slab lists
104  * 			when the slab is no longer needed.
105  *
106  * 			One use of this flag is to mark slabs that are
107  * 			used for allocations. Then such a slab becomes a cpu
108  * 			slab. The cpu slab may be equipped with an additional
109  * 			freelist that allows lockless access to
110  * 			free objects in addition to the regular freelist
111  * 			that requires the slab lock.
112  *
113  * PageError		Slab requires special handling due to debug
114  * 			options set. This moves	slab handling out of
115  * 			the fast path and disables lockless freelists.
116  */
117 
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 	return 0;
124 #endif
125 }
126 
127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128 {
129 #ifdef CONFIG_SLUB_CPU_PARTIAL
130 	return !kmem_cache_debug(s);
131 #else
132 	return false;
133 #endif
134 }
135 
136 /*
137  * Issues still to be resolved:
138  *
139  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140  *
141  * - Variable sizing of the per node arrays
142  */
143 
144 /* Enable to test recovery from slab corruption on boot */
145 #undef SLUB_RESILIENCY_TEST
146 
147 /* Enable to log cmpxchg failures */
148 #undef SLUB_DEBUG_CMPXCHG
149 
150 /*
151  * Mininum number of partial slabs. These will be left on the partial
152  * lists even if they are empty. kmem_cache_shrink may reclaim them.
153  */
154 #define MIN_PARTIAL 5
155 
156 /*
157  * Maximum number of desirable partial slabs.
158  * The existence of more partial slabs makes kmem_cache_shrink
159  * sort the partial list by the number of objects in use.
160  */
161 #define MAX_PARTIAL 10
162 
163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 				SLAB_POISON | SLAB_STORE_USER)
165 
166 /*
167  * Debugging flags that require metadata to be stored in the slab.  These get
168  * disabled when slub_debug=O is used and a cache's min order increases with
169  * metadata.
170  */
171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172 
173 #define OO_SHIFT	16
174 #define OO_MASK		((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
176 
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON		0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
180 
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184 
185 /*
186  * Tracking user of a slab.
187  */
188 #define TRACK_ADDRS_COUNT 16
189 struct track {
190 	unsigned long addr;	/* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
193 #endif
194 	int cpu;		/* Was running on cpu */
195 	int pid;		/* Pid context */
196 	unsigned long when;	/* When did the operation occur */
197 };
198 
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200 
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 							{ return 0; }
209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
210 #endif
211 
212 static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 {
214 #ifdef CONFIG_SLUB_STATS
215 	/*
216 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 	 * avoid this_cpu_add()'s irq-disable overhead.
218 	 */
219 	raw_cpu_inc(s->cpu_slab->stat[si]);
220 #endif
221 }
222 
223 /********************************************************************
224  * 			Core slab cache functions
225  *******************************************************************/
226 
227 /* Verify that a pointer has an address that is valid within a slab page */
228 static inline int check_valid_pointer(struct kmem_cache *s,
229 				struct page *page, const void *object)
230 {
231 	void *base;
232 
233 	if (!object)
234 		return 1;
235 
236 	base = page_address(page);
237 	if (object < base || object >= base + page->objects * s->size ||
238 		(object - base) % s->size) {
239 		return 0;
240 	}
241 
242 	return 1;
243 }
244 
245 static inline void *get_freepointer(struct kmem_cache *s, void *object)
246 {
247 	return *(void **)(object + s->offset);
248 }
249 
250 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251 {
252 	prefetch(object + s->offset);
253 }
254 
255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256 {
257 	void *p;
258 
259 #ifdef CONFIG_DEBUG_PAGEALLOC
260 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261 #else
262 	p = get_freepointer(s, object);
263 #endif
264 	return p;
265 }
266 
267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268 {
269 	*(void **)(object + s->offset) = fp;
270 }
271 
272 /* Loop over all objects in a slab */
273 #define for_each_object(__p, __s, __addr, __objects) \
274 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 			__p += (__s)->size)
276 
277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 	for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 			__p += (__s)->size, __idx++)
280 
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283 {
284 	return (p - addr) / s->size;
285 }
286 
287 static inline size_t slab_ksize(const struct kmem_cache *s)
288 {
289 #ifdef CONFIG_SLUB_DEBUG
290 	/*
291 	 * Debugging requires use of the padding between object
292 	 * and whatever may come after it.
293 	 */
294 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295 		return s->object_size;
296 
297 #endif
298 	/*
299 	 * If we have the need to store the freelist pointer
300 	 * back there or track user information then we can
301 	 * only use the space before that information.
302 	 */
303 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 		return s->inuse;
305 	/*
306 	 * Else we can use all the padding etc for the allocation
307 	 */
308 	return s->size;
309 }
310 
311 static inline int order_objects(int order, unsigned long size, int reserved)
312 {
313 	return ((PAGE_SIZE << order) - reserved) / size;
314 }
315 
316 static inline struct kmem_cache_order_objects oo_make(int order,
317 		unsigned long size, int reserved)
318 {
319 	struct kmem_cache_order_objects x = {
320 		(order << OO_SHIFT) + order_objects(order, size, reserved)
321 	};
322 
323 	return x;
324 }
325 
326 static inline int oo_order(struct kmem_cache_order_objects x)
327 {
328 	return x.x >> OO_SHIFT;
329 }
330 
331 static inline int oo_objects(struct kmem_cache_order_objects x)
332 {
333 	return x.x & OO_MASK;
334 }
335 
336 /*
337  * Per slab locking using the pagelock
338  */
339 static __always_inline void slab_lock(struct page *page)
340 {
341 	bit_spin_lock(PG_locked, &page->flags);
342 }
343 
344 static __always_inline void slab_unlock(struct page *page)
345 {
346 	__bit_spin_unlock(PG_locked, &page->flags);
347 }
348 
349 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350 {
351 	struct page tmp;
352 	tmp.counters = counters_new;
353 	/*
354 	 * page->counters can cover frozen/inuse/objects as well
355 	 * as page->_count.  If we assign to ->counters directly
356 	 * we run the risk of losing updates to page->_count, so
357 	 * be careful and only assign to the fields we need.
358 	 */
359 	page->frozen  = tmp.frozen;
360 	page->inuse   = tmp.inuse;
361 	page->objects = tmp.objects;
362 }
363 
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 		void *freelist_old, unsigned long counters_old,
367 		void *freelist_new, unsigned long counters_new,
368 		const char *n)
369 {
370 	VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 	if (s->flags & __CMPXCHG_DOUBLE) {
374 		if (cmpxchg_double(&page->freelist, &page->counters,
375 				   freelist_old, counters_old,
376 				   freelist_new, counters_new))
377 			return 1;
378 	} else
379 #endif
380 	{
381 		slab_lock(page);
382 		if (page->freelist == freelist_old &&
383 					page->counters == counters_old) {
384 			page->freelist = freelist_new;
385 			set_page_slub_counters(page, counters_new);
386 			slab_unlock(page);
387 			return 1;
388 		}
389 		slab_unlock(page);
390 	}
391 
392 	cpu_relax();
393 	stat(s, CMPXCHG_DOUBLE_FAIL);
394 
395 #ifdef SLUB_DEBUG_CMPXCHG
396 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398 
399 	return 0;
400 }
401 
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 		void *freelist_old, unsigned long counters_old,
404 		void *freelist_new, unsigned long counters_new,
405 		const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 	if (s->flags & __CMPXCHG_DOUBLE) {
410 		if (cmpxchg_double(&page->freelist, &page->counters,
411 				   freelist_old, counters_old,
412 				   freelist_new, counters_new))
413 			return 1;
414 	} else
415 #endif
416 	{
417 		unsigned long flags;
418 
419 		local_irq_save(flags);
420 		slab_lock(page);
421 		if (page->freelist == freelist_old &&
422 					page->counters == counters_old) {
423 			page->freelist = freelist_new;
424 			set_page_slub_counters(page, counters_new);
425 			slab_unlock(page);
426 			local_irq_restore(flags);
427 			return 1;
428 		}
429 		slab_unlock(page);
430 		local_irq_restore(flags);
431 	}
432 
433 	cpu_relax();
434 	stat(s, CMPXCHG_DOUBLE_FAIL);
435 
436 #ifdef SLUB_DEBUG_CMPXCHG
437 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439 
440 	return 0;
441 }
442 
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445  * Determine a map of object in use on a page.
446  *
447  * Node listlock must be held to guarantee that the page does
448  * not vanish from under us.
449  */
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 	void *p;
453 	void *addr = page_address(page);
454 
455 	for (p = page->freelist; p; p = get_freepointer(s, p))
456 		set_bit(slab_index(p, s, addr), map);
457 }
458 
459 /*
460  * Debug settings:
461  */
462 #ifdef CONFIG_SLUB_DEBUG_ON
463 static int slub_debug = DEBUG_DEFAULT_FLAGS;
464 #else
465 static int slub_debug;
466 #endif
467 
468 static char *slub_debug_slabs;
469 static int disable_higher_order_debug;
470 
471 /*
472  * slub is about to manipulate internal object metadata.  This memory lies
473  * outside the range of the allocated object, so accessing it would normally
474  * be reported by kasan as a bounds error.  metadata_access_enable() is used
475  * to tell kasan that these accesses are OK.
476  */
477 static inline void metadata_access_enable(void)
478 {
479 	kasan_disable_current();
480 }
481 
482 static inline void metadata_access_disable(void)
483 {
484 	kasan_enable_current();
485 }
486 
487 /*
488  * Object debugging
489  */
490 static void print_section(char *text, u8 *addr, unsigned int length)
491 {
492 	metadata_access_enable();
493 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
494 			length, 1);
495 	metadata_access_disable();
496 }
497 
498 static struct track *get_track(struct kmem_cache *s, void *object,
499 	enum track_item alloc)
500 {
501 	struct track *p;
502 
503 	if (s->offset)
504 		p = object + s->offset + sizeof(void *);
505 	else
506 		p = object + s->inuse;
507 
508 	return p + alloc;
509 }
510 
511 static void set_track(struct kmem_cache *s, void *object,
512 			enum track_item alloc, unsigned long addr)
513 {
514 	struct track *p = get_track(s, object, alloc);
515 
516 	if (addr) {
517 #ifdef CONFIG_STACKTRACE
518 		struct stack_trace trace;
519 		int i;
520 
521 		trace.nr_entries = 0;
522 		trace.max_entries = TRACK_ADDRS_COUNT;
523 		trace.entries = p->addrs;
524 		trace.skip = 3;
525 		metadata_access_enable();
526 		save_stack_trace(&trace);
527 		metadata_access_disable();
528 
529 		/* See rant in lockdep.c */
530 		if (trace.nr_entries != 0 &&
531 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532 			trace.nr_entries--;
533 
534 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535 			p->addrs[i] = 0;
536 #endif
537 		p->addr = addr;
538 		p->cpu = smp_processor_id();
539 		p->pid = current->pid;
540 		p->when = jiffies;
541 	} else
542 		memset(p, 0, sizeof(struct track));
543 }
544 
545 static void init_tracking(struct kmem_cache *s, void *object)
546 {
547 	if (!(s->flags & SLAB_STORE_USER))
548 		return;
549 
550 	set_track(s, object, TRACK_FREE, 0UL);
551 	set_track(s, object, TRACK_ALLOC, 0UL);
552 }
553 
554 static void print_track(const char *s, struct track *t)
555 {
556 	if (!t->addr)
557 		return;
558 
559 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
560 	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
561 #ifdef CONFIG_STACKTRACE
562 	{
563 		int i;
564 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565 			if (t->addrs[i])
566 				pr_err("\t%pS\n", (void *)t->addrs[i]);
567 			else
568 				break;
569 	}
570 #endif
571 }
572 
573 static void print_tracking(struct kmem_cache *s, void *object)
574 {
575 	if (!(s->flags & SLAB_STORE_USER))
576 		return;
577 
578 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579 	print_track("Freed", get_track(s, object, TRACK_FREE));
580 }
581 
582 static void print_page_info(struct page *page)
583 {
584 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585 	       page, page->objects, page->inuse, page->freelist, page->flags);
586 
587 }
588 
589 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
590 {
591 	struct va_format vaf;
592 	va_list args;
593 
594 	va_start(args, fmt);
595 	vaf.fmt = fmt;
596 	vaf.va = &args;
597 	pr_err("=============================================================================\n");
598 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
599 	pr_err("-----------------------------------------------------------------------------\n\n");
600 
601 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
602 	va_end(args);
603 }
604 
605 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
606 {
607 	struct va_format vaf;
608 	va_list args;
609 
610 	va_start(args, fmt);
611 	vaf.fmt = fmt;
612 	vaf.va = &args;
613 	pr_err("FIX %s: %pV\n", s->name, &vaf);
614 	va_end(args);
615 }
616 
617 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
618 {
619 	unsigned int off;	/* Offset of last byte */
620 	u8 *addr = page_address(page);
621 
622 	print_tracking(s, p);
623 
624 	print_page_info(page);
625 
626 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
627 	       p, p - addr, get_freepointer(s, p));
628 
629 	if (p > addr + 16)
630 		print_section("Bytes b4 ", p - 16, 16);
631 
632 	print_section("Object ", p, min_t(unsigned long, s->object_size,
633 				PAGE_SIZE));
634 	if (s->flags & SLAB_RED_ZONE)
635 		print_section("Redzone ", p + s->object_size,
636 			s->inuse - s->object_size);
637 
638 	if (s->offset)
639 		off = s->offset + sizeof(void *);
640 	else
641 		off = s->inuse;
642 
643 	if (s->flags & SLAB_STORE_USER)
644 		off += 2 * sizeof(struct track);
645 
646 	if (off != s->size)
647 		/* Beginning of the filler is the free pointer */
648 		print_section("Padding ", p + off, s->size - off);
649 
650 	dump_stack();
651 }
652 
653 void object_err(struct kmem_cache *s, struct page *page,
654 			u8 *object, char *reason)
655 {
656 	slab_bug(s, "%s", reason);
657 	print_trailer(s, page, object);
658 }
659 
660 static void slab_err(struct kmem_cache *s, struct page *page,
661 			const char *fmt, ...)
662 {
663 	va_list args;
664 	char buf[100];
665 
666 	va_start(args, fmt);
667 	vsnprintf(buf, sizeof(buf), fmt, args);
668 	va_end(args);
669 	slab_bug(s, "%s", buf);
670 	print_page_info(page);
671 	dump_stack();
672 }
673 
674 static void init_object(struct kmem_cache *s, void *object, u8 val)
675 {
676 	u8 *p = object;
677 
678 	if (s->flags & __OBJECT_POISON) {
679 		memset(p, POISON_FREE, s->object_size - 1);
680 		p[s->object_size - 1] = POISON_END;
681 	}
682 
683 	if (s->flags & SLAB_RED_ZONE)
684 		memset(p + s->object_size, val, s->inuse - s->object_size);
685 }
686 
687 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
688 						void *from, void *to)
689 {
690 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
691 	memset(from, data, to - from);
692 }
693 
694 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
695 			u8 *object, char *what,
696 			u8 *start, unsigned int value, unsigned int bytes)
697 {
698 	u8 *fault;
699 	u8 *end;
700 
701 	metadata_access_enable();
702 	fault = memchr_inv(start, value, bytes);
703 	metadata_access_disable();
704 	if (!fault)
705 		return 1;
706 
707 	end = start + bytes;
708 	while (end > fault && end[-1] == value)
709 		end--;
710 
711 	slab_bug(s, "%s overwritten", what);
712 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
713 					fault, end - 1, fault[0], value);
714 	print_trailer(s, page, object);
715 
716 	restore_bytes(s, what, value, fault, end);
717 	return 0;
718 }
719 
720 /*
721  * Object layout:
722  *
723  * object address
724  * 	Bytes of the object to be managed.
725  * 	If the freepointer may overlay the object then the free
726  * 	pointer is the first word of the object.
727  *
728  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
729  * 	0xa5 (POISON_END)
730  *
731  * object + s->object_size
732  * 	Padding to reach word boundary. This is also used for Redzoning.
733  * 	Padding is extended by another word if Redzoning is enabled and
734  * 	object_size == inuse.
735  *
736  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
737  * 	0xcc (RED_ACTIVE) for objects in use.
738  *
739  * object + s->inuse
740  * 	Meta data starts here.
741  *
742  * 	A. Free pointer (if we cannot overwrite object on free)
743  * 	B. Tracking data for SLAB_STORE_USER
744  * 	C. Padding to reach required alignment boundary or at mininum
745  * 		one word if debugging is on to be able to detect writes
746  * 		before the word boundary.
747  *
748  *	Padding is done using 0x5a (POISON_INUSE)
749  *
750  * object + s->size
751  * 	Nothing is used beyond s->size.
752  *
753  * If slabcaches are merged then the object_size and inuse boundaries are mostly
754  * ignored. And therefore no slab options that rely on these boundaries
755  * may be used with merged slabcaches.
756  */
757 
758 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
759 {
760 	unsigned long off = s->inuse;	/* The end of info */
761 
762 	if (s->offset)
763 		/* Freepointer is placed after the object. */
764 		off += sizeof(void *);
765 
766 	if (s->flags & SLAB_STORE_USER)
767 		/* We also have user information there */
768 		off += 2 * sizeof(struct track);
769 
770 	if (s->size == off)
771 		return 1;
772 
773 	return check_bytes_and_report(s, page, p, "Object padding",
774 				p + off, POISON_INUSE, s->size - off);
775 }
776 
777 /* Check the pad bytes at the end of a slab page */
778 static int slab_pad_check(struct kmem_cache *s, struct page *page)
779 {
780 	u8 *start;
781 	u8 *fault;
782 	u8 *end;
783 	int length;
784 	int remainder;
785 
786 	if (!(s->flags & SLAB_POISON))
787 		return 1;
788 
789 	start = page_address(page);
790 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
791 	end = start + length;
792 	remainder = length % s->size;
793 	if (!remainder)
794 		return 1;
795 
796 	metadata_access_enable();
797 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
798 	metadata_access_disable();
799 	if (!fault)
800 		return 1;
801 	while (end > fault && end[-1] == POISON_INUSE)
802 		end--;
803 
804 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
805 	print_section("Padding ", end - remainder, remainder);
806 
807 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
808 	return 0;
809 }
810 
811 static int check_object(struct kmem_cache *s, struct page *page,
812 					void *object, u8 val)
813 {
814 	u8 *p = object;
815 	u8 *endobject = object + s->object_size;
816 
817 	if (s->flags & SLAB_RED_ZONE) {
818 		if (!check_bytes_and_report(s, page, object, "Redzone",
819 			endobject, val, s->inuse - s->object_size))
820 			return 0;
821 	} else {
822 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
823 			check_bytes_and_report(s, page, p, "Alignment padding",
824 				endobject, POISON_INUSE,
825 				s->inuse - s->object_size);
826 		}
827 	}
828 
829 	if (s->flags & SLAB_POISON) {
830 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
831 			(!check_bytes_and_report(s, page, p, "Poison", p,
832 					POISON_FREE, s->object_size - 1) ||
833 			 !check_bytes_and_report(s, page, p, "Poison",
834 				p + s->object_size - 1, POISON_END, 1)))
835 			return 0;
836 		/*
837 		 * check_pad_bytes cleans up on its own.
838 		 */
839 		check_pad_bytes(s, page, p);
840 	}
841 
842 	if (!s->offset && val == SLUB_RED_ACTIVE)
843 		/*
844 		 * Object and freepointer overlap. Cannot check
845 		 * freepointer while object is allocated.
846 		 */
847 		return 1;
848 
849 	/* Check free pointer validity */
850 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
851 		object_err(s, page, p, "Freepointer corrupt");
852 		/*
853 		 * No choice but to zap it and thus lose the remainder
854 		 * of the free objects in this slab. May cause
855 		 * another error because the object count is now wrong.
856 		 */
857 		set_freepointer(s, p, NULL);
858 		return 0;
859 	}
860 	return 1;
861 }
862 
863 static int check_slab(struct kmem_cache *s, struct page *page)
864 {
865 	int maxobj;
866 
867 	VM_BUG_ON(!irqs_disabled());
868 
869 	if (!PageSlab(page)) {
870 		slab_err(s, page, "Not a valid slab page");
871 		return 0;
872 	}
873 
874 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
875 	if (page->objects > maxobj) {
876 		slab_err(s, page, "objects %u > max %u",
877 			page->objects, maxobj);
878 		return 0;
879 	}
880 	if (page->inuse > page->objects) {
881 		slab_err(s, page, "inuse %u > max %u",
882 			page->inuse, page->objects);
883 		return 0;
884 	}
885 	/* Slab_pad_check fixes things up after itself */
886 	slab_pad_check(s, page);
887 	return 1;
888 }
889 
890 /*
891  * Determine if a certain object on a page is on the freelist. Must hold the
892  * slab lock to guarantee that the chains are in a consistent state.
893  */
894 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
895 {
896 	int nr = 0;
897 	void *fp;
898 	void *object = NULL;
899 	int max_objects;
900 
901 	fp = page->freelist;
902 	while (fp && nr <= page->objects) {
903 		if (fp == search)
904 			return 1;
905 		if (!check_valid_pointer(s, page, fp)) {
906 			if (object) {
907 				object_err(s, page, object,
908 					"Freechain corrupt");
909 				set_freepointer(s, object, NULL);
910 			} else {
911 				slab_err(s, page, "Freepointer corrupt");
912 				page->freelist = NULL;
913 				page->inuse = page->objects;
914 				slab_fix(s, "Freelist cleared");
915 				return 0;
916 			}
917 			break;
918 		}
919 		object = fp;
920 		fp = get_freepointer(s, object);
921 		nr++;
922 	}
923 
924 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
925 	if (max_objects > MAX_OBJS_PER_PAGE)
926 		max_objects = MAX_OBJS_PER_PAGE;
927 
928 	if (page->objects != max_objects) {
929 		slab_err(s, page, "Wrong number of objects. Found %d but "
930 			"should be %d", page->objects, max_objects);
931 		page->objects = max_objects;
932 		slab_fix(s, "Number of objects adjusted.");
933 	}
934 	if (page->inuse != page->objects - nr) {
935 		slab_err(s, page, "Wrong object count. Counter is %d but "
936 			"counted were %d", page->inuse, page->objects - nr);
937 		page->inuse = page->objects - nr;
938 		slab_fix(s, "Object count adjusted.");
939 	}
940 	return search == NULL;
941 }
942 
943 static void trace(struct kmem_cache *s, struct page *page, void *object,
944 								int alloc)
945 {
946 	if (s->flags & SLAB_TRACE) {
947 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
948 			s->name,
949 			alloc ? "alloc" : "free",
950 			object, page->inuse,
951 			page->freelist);
952 
953 		if (!alloc)
954 			print_section("Object ", (void *)object,
955 					s->object_size);
956 
957 		dump_stack();
958 	}
959 }
960 
961 /*
962  * Tracking of fully allocated slabs for debugging purposes.
963  */
964 static void add_full(struct kmem_cache *s,
965 	struct kmem_cache_node *n, struct page *page)
966 {
967 	if (!(s->flags & SLAB_STORE_USER))
968 		return;
969 
970 	lockdep_assert_held(&n->list_lock);
971 	list_add(&page->lru, &n->full);
972 }
973 
974 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
975 {
976 	if (!(s->flags & SLAB_STORE_USER))
977 		return;
978 
979 	lockdep_assert_held(&n->list_lock);
980 	list_del(&page->lru);
981 }
982 
983 /* Tracking of the number of slabs for debugging purposes */
984 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
985 {
986 	struct kmem_cache_node *n = get_node(s, node);
987 
988 	return atomic_long_read(&n->nr_slabs);
989 }
990 
991 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
992 {
993 	return atomic_long_read(&n->nr_slabs);
994 }
995 
996 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
997 {
998 	struct kmem_cache_node *n = get_node(s, node);
999 
1000 	/*
1001 	 * May be called early in order to allocate a slab for the
1002 	 * kmem_cache_node structure. Solve the chicken-egg
1003 	 * dilemma by deferring the increment of the count during
1004 	 * bootstrap (see early_kmem_cache_node_alloc).
1005 	 */
1006 	if (likely(n)) {
1007 		atomic_long_inc(&n->nr_slabs);
1008 		atomic_long_add(objects, &n->total_objects);
1009 	}
1010 }
1011 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1012 {
1013 	struct kmem_cache_node *n = get_node(s, node);
1014 
1015 	atomic_long_dec(&n->nr_slabs);
1016 	atomic_long_sub(objects, &n->total_objects);
1017 }
1018 
1019 /* Object debug checks for alloc/free paths */
1020 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1021 								void *object)
1022 {
1023 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1024 		return;
1025 
1026 	init_object(s, object, SLUB_RED_INACTIVE);
1027 	init_tracking(s, object);
1028 }
1029 
1030 static noinline int alloc_debug_processing(struct kmem_cache *s,
1031 					struct page *page,
1032 					void *object, unsigned long addr)
1033 {
1034 	if (!check_slab(s, page))
1035 		goto bad;
1036 
1037 	if (!check_valid_pointer(s, page, object)) {
1038 		object_err(s, page, object, "Freelist Pointer check fails");
1039 		goto bad;
1040 	}
1041 
1042 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1043 		goto bad;
1044 
1045 	/* Success perform special debug activities for allocs */
1046 	if (s->flags & SLAB_STORE_USER)
1047 		set_track(s, object, TRACK_ALLOC, addr);
1048 	trace(s, page, object, 1);
1049 	init_object(s, object, SLUB_RED_ACTIVE);
1050 	return 1;
1051 
1052 bad:
1053 	if (PageSlab(page)) {
1054 		/*
1055 		 * If this is a slab page then lets do the best we can
1056 		 * to avoid issues in the future. Marking all objects
1057 		 * as used avoids touching the remaining objects.
1058 		 */
1059 		slab_fix(s, "Marking all objects used");
1060 		page->inuse = page->objects;
1061 		page->freelist = NULL;
1062 	}
1063 	return 0;
1064 }
1065 
1066 static noinline struct kmem_cache_node *free_debug_processing(
1067 	struct kmem_cache *s, struct page *page, void *object,
1068 	unsigned long addr, unsigned long *flags)
1069 {
1070 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1071 
1072 	spin_lock_irqsave(&n->list_lock, *flags);
1073 	slab_lock(page);
1074 
1075 	if (!check_slab(s, page))
1076 		goto fail;
1077 
1078 	if (!check_valid_pointer(s, page, object)) {
1079 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1080 		goto fail;
1081 	}
1082 
1083 	if (on_freelist(s, page, object)) {
1084 		object_err(s, page, object, "Object already free");
1085 		goto fail;
1086 	}
1087 
1088 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1089 		goto out;
1090 
1091 	if (unlikely(s != page->slab_cache)) {
1092 		if (!PageSlab(page)) {
1093 			slab_err(s, page, "Attempt to free object(0x%p) "
1094 				"outside of slab", object);
1095 		} else if (!page->slab_cache) {
1096 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1097 			       object);
1098 			dump_stack();
1099 		} else
1100 			object_err(s, page, object,
1101 					"page slab pointer corrupt.");
1102 		goto fail;
1103 	}
1104 
1105 	if (s->flags & SLAB_STORE_USER)
1106 		set_track(s, object, TRACK_FREE, addr);
1107 	trace(s, page, object, 0);
1108 	init_object(s, object, SLUB_RED_INACTIVE);
1109 out:
1110 	slab_unlock(page);
1111 	/*
1112 	 * Keep node_lock to preserve integrity
1113 	 * until the object is actually freed
1114 	 */
1115 	return n;
1116 
1117 fail:
1118 	slab_unlock(page);
1119 	spin_unlock_irqrestore(&n->list_lock, *flags);
1120 	slab_fix(s, "Object at 0x%p not freed", object);
1121 	return NULL;
1122 }
1123 
1124 static int __init setup_slub_debug(char *str)
1125 {
1126 	slub_debug = DEBUG_DEFAULT_FLAGS;
1127 	if (*str++ != '=' || !*str)
1128 		/*
1129 		 * No options specified. Switch on full debugging.
1130 		 */
1131 		goto out;
1132 
1133 	if (*str == ',')
1134 		/*
1135 		 * No options but restriction on slabs. This means full
1136 		 * debugging for slabs matching a pattern.
1137 		 */
1138 		goto check_slabs;
1139 
1140 	if (tolower(*str) == 'o') {
1141 		/*
1142 		 * Avoid enabling debugging on caches if its minimum order
1143 		 * would increase as a result.
1144 		 */
1145 		disable_higher_order_debug = 1;
1146 		goto out;
1147 	}
1148 
1149 	slub_debug = 0;
1150 	if (*str == '-')
1151 		/*
1152 		 * Switch off all debugging measures.
1153 		 */
1154 		goto out;
1155 
1156 	/*
1157 	 * Determine which debug features should be switched on
1158 	 */
1159 	for (; *str && *str != ','; str++) {
1160 		switch (tolower(*str)) {
1161 		case 'f':
1162 			slub_debug |= SLAB_DEBUG_FREE;
1163 			break;
1164 		case 'z':
1165 			slub_debug |= SLAB_RED_ZONE;
1166 			break;
1167 		case 'p':
1168 			slub_debug |= SLAB_POISON;
1169 			break;
1170 		case 'u':
1171 			slub_debug |= SLAB_STORE_USER;
1172 			break;
1173 		case 't':
1174 			slub_debug |= SLAB_TRACE;
1175 			break;
1176 		case 'a':
1177 			slub_debug |= SLAB_FAILSLAB;
1178 			break;
1179 		default:
1180 			pr_err("slub_debug option '%c' unknown. skipped\n",
1181 			       *str);
1182 		}
1183 	}
1184 
1185 check_slabs:
1186 	if (*str == ',')
1187 		slub_debug_slabs = str + 1;
1188 out:
1189 	return 1;
1190 }
1191 
1192 __setup("slub_debug", setup_slub_debug);
1193 
1194 unsigned long kmem_cache_flags(unsigned long object_size,
1195 	unsigned long flags, const char *name,
1196 	void (*ctor)(void *))
1197 {
1198 	/*
1199 	 * Enable debugging if selected on the kernel commandline.
1200 	 */
1201 	if (slub_debug && (!slub_debug_slabs || (name &&
1202 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1203 		flags |= slub_debug;
1204 
1205 	return flags;
1206 }
1207 #else
1208 static inline void setup_object_debug(struct kmem_cache *s,
1209 			struct page *page, void *object) {}
1210 
1211 static inline int alloc_debug_processing(struct kmem_cache *s,
1212 	struct page *page, void *object, unsigned long addr) { return 0; }
1213 
1214 static inline struct kmem_cache_node *free_debug_processing(
1215 	struct kmem_cache *s, struct page *page, void *object,
1216 	unsigned long addr, unsigned long *flags) { return NULL; }
1217 
1218 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1219 			{ return 1; }
1220 static inline int check_object(struct kmem_cache *s, struct page *page,
1221 			void *object, u8 val) { return 1; }
1222 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1223 					struct page *page) {}
1224 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 					struct page *page) {}
1226 unsigned long kmem_cache_flags(unsigned long object_size,
1227 	unsigned long flags, const char *name,
1228 	void (*ctor)(void *))
1229 {
1230 	return flags;
1231 }
1232 #define slub_debug 0
1233 
1234 #define disable_higher_order_debug 0
1235 
1236 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1237 							{ return 0; }
1238 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1239 							{ return 0; }
1240 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1241 							int objects) {}
1242 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1243 							int objects) {}
1244 
1245 #endif /* CONFIG_SLUB_DEBUG */
1246 
1247 /*
1248  * Hooks for other subsystems that check memory allocations. In a typical
1249  * production configuration these hooks all should produce no code at all.
1250  */
1251 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1252 {
1253 	kmemleak_alloc(ptr, size, 1, flags);
1254 	kasan_kmalloc_large(ptr, size);
1255 }
1256 
1257 static inline void kfree_hook(const void *x)
1258 {
1259 	kmemleak_free(x);
1260 	kasan_kfree_large(x);
1261 }
1262 
1263 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1264 						     gfp_t flags)
1265 {
1266 	flags &= gfp_allowed_mask;
1267 	lockdep_trace_alloc(flags);
1268 	might_sleep_if(flags & __GFP_WAIT);
1269 
1270 	if (should_failslab(s->object_size, flags, s->flags))
1271 		return NULL;
1272 
1273 	return memcg_kmem_get_cache(s, flags);
1274 }
1275 
1276 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1277 					gfp_t flags, void *object)
1278 {
1279 	flags &= gfp_allowed_mask;
1280 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1281 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1282 	memcg_kmem_put_cache(s);
1283 	kasan_slab_alloc(s, object);
1284 }
1285 
1286 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1287 {
1288 	kmemleak_free_recursive(x, s->flags);
1289 
1290 	/*
1291 	 * Trouble is that we may no longer disable interrupts in the fast path
1292 	 * So in order to make the debug calls that expect irqs to be
1293 	 * disabled we need to disable interrupts temporarily.
1294 	 */
1295 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1296 	{
1297 		unsigned long flags;
1298 
1299 		local_irq_save(flags);
1300 		kmemcheck_slab_free(s, x, s->object_size);
1301 		debug_check_no_locks_freed(x, s->object_size);
1302 		local_irq_restore(flags);
1303 	}
1304 #endif
1305 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1306 		debug_check_no_obj_freed(x, s->object_size);
1307 
1308 	kasan_slab_free(s, x);
1309 }
1310 
1311 /*
1312  * Slab allocation and freeing
1313  */
1314 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1315 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1316 {
1317 	struct page *page;
1318 	int order = oo_order(oo);
1319 
1320 	flags |= __GFP_NOTRACK;
1321 
1322 	if (memcg_charge_slab(s, flags, order))
1323 		return NULL;
1324 
1325 	if (node == NUMA_NO_NODE)
1326 		page = alloc_pages(flags, order);
1327 	else
1328 		page = alloc_pages_exact_node(node, flags, order);
1329 
1330 	if (!page)
1331 		memcg_uncharge_slab(s, order);
1332 
1333 	return page;
1334 }
1335 
1336 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1337 {
1338 	struct page *page;
1339 	struct kmem_cache_order_objects oo = s->oo;
1340 	gfp_t alloc_gfp;
1341 
1342 	flags &= gfp_allowed_mask;
1343 
1344 	if (flags & __GFP_WAIT)
1345 		local_irq_enable();
1346 
1347 	flags |= s->allocflags;
1348 
1349 	/*
1350 	 * Let the initial higher-order allocation fail under memory pressure
1351 	 * so we fall-back to the minimum order allocation.
1352 	 */
1353 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1354 
1355 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1356 	if (unlikely(!page)) {
1357 		oo = s->min;
1358 		alloc_gfp = flags;
1359 		/*
1360 		 * Allocation may have failed due to fragmentation.
1361 		 * Try a lower order alloc if possible
1362 		 */
1363 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1364 
1365 		if (page)
1366 			stat(s, ORDER_FALLBACK);
1367 	}
1368 
1369 	if (kmemcheck_enabled && page
1370 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1371 		int pages = 1 << oo_order(oo);
1372 
1373 		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1374 
1375 		/*
1376 		 * Objects from caches that have a constructor don't get
1377 		 * cleared when they're allocated, so we need to do it here.
1378 		 */
1379 		if (s->ctor)
1380 			kmemcheck_mark_uninitialized_pages(page, pages);
1381 		else
1382 			kmemcheck_mark_unallocated_pages(page, pages);
1383 	}
1384 
1385 	if (flags & __GFP_WAIT)
1386 		local_irq_disable();
1387 	if (!page)
1388 		return NULL;
1389 
1390 	page->objects = oo_objects(oo);
1391 	mod_zone_page_state(page_zone(page),
1392 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1393 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1394 		1 << oo_order(oo));
1395 
1396 	return page;
1397 }
1398 
1399 static void setup_object(struct kmem_cache *s, struct page *page,
1400 				void *object)
1401 {
1402 	setup_object_debug(s, page, object);
1403 	if (unlikely(s->ctor)) {
1404 		kasan_unpoison_object_data(s, object);
1405 		s->ctor(object);
1406 		kasan_poison_object_data(s, object);
1407 	}
1408 }
1409 
1410 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1411 {
1412 	struct page *page;
1413 	void *start;
1414 	void *p;
1415 	int order;
1416 	int idx;
1417 
1418 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1419 		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1420 		BUG();
1421 	}
1422 
1423 	page = allocate_slab(s,
1424 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1425 	if (!page)
1426 		goto out;
1427 
1428 	order = compound_order(page);
1429 	inc_slabs_node(s, page_to_nid(page), page->objects);
1430 	page->slab_cache = s;
1431 	__SetPageSlab(page);
1432 	if (page->pfmemalloc)
1433 		SetPageSlabPfmemalloc(page);
1434 
1435 	start = page_address(page);
1436 
1437 	if (unlikely(s->flags & SLAB_POISON))
1438 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1439 
1440 	kasan_poison_slab(page);
1441 
1442 	for_each_object_idx(p, idx, s, start, page->objects) {
1443 		setup_object(s, page, p);
1444 		if (likely(idx < page->objects))
1445 			set_freepointer(s, p, p + s->size);
1446 		else
1447 			set_freepointer(s, p, NULL);
1448 	}
1449 
1450 	page->freelist = start;
1451 	page->inuse = page->objects;
1452 	page->frozen = 1;
1453 out:
1454 	return page;
1455 }
1456 
1457 static void __free_slab(struct kmem_cache *s, struct page *page)
1458 {
1459 	int order = compound_order(page);
1460 	int pages = 1 << order;
1461 
1462 	if (kmem_cache_debug(s)) {
1463 		void *p;
1464 
1465 		slab_pad_check(s, page);
1466 		for_each_object(p, s, page_address(page),
1467 						page->objects)
1468 			check_object(s, page, p, SLUB_RED_INACTIVE);
1469 	}
1470 
1471 	kmemcheck_free_shadow(page, compound_order(page));
1472 
1473 	mod_zone_page_state(page_zone(page),
1474 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1475 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1476 		-pages);
1477 
1478 	__ClearPageSlabPfmemalloc(page);
1479 	__ClearPageSlab(page);
1480 
1481 	page_mapcount_reset(page);
1482 	if (current->reclaim_state)
1483 		current->reclaim_state->reclaimed_slab += pages;
1484 	__free_pages(page, order);
1485 	memcg_uncharge_slab(s, order);
1486 }
1487 
1488 #define need_reserve_slab_rcu						\
1489 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1490 
1491 static void rcu_free_slab(struct rcu_head *h)
1492 {
1493 	struct page *page;
1494 
1495 	if (need_reserve_slab_rcu)
1496 		page = virt_to_head_page(h);
1497 	else
1498 		page = container_of((struct list_head *)h, struct page, lru);
1499 
1500 	__free_slab(page->slab_cache, page);
1501 }
1502 
1503 static void free_slab(struct kmem_cache *s, struct page *page)
1504 {
1505 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1506 		struct rcu_head *head;
1507 
1508 		if (need_reserve_slab_rcu) {
1509 			int order = compound_order(page);
1510 			int offset = (PAGE_SIZE << order) - s->reserved;
1511 
1512 			VM_BUG_ON(s->reserved != sizeof(*head));
1513 			head = page_address(page) + offset;
1514 		} else {
1515 			/*
1516 			 * RCU free overloads the RCU head over the LRU
1517 			 */
1518 			head = (void *)&page->lru;
1519 		}
1520 
1521 		call_rcu(head, rcu_free_slab);
1522 	} else
1523 		__free_slab(s, page);
1524 }
1525 
1526 static void discard_slab(struct kmem_cache *s, struct page *page)
1527 {
1528 	dec_slabs_node(s, page_to_nid(page), page->objects);
1529 	free_slab(s, page);
1530 }
1531 
1532 /*
1533  * Management of partially allocated slabs.
1534  */
1535 static inline void
1536 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1537 {
1538 	n->nr_partial++;
1539 	if (tail == DEACTIVATE_TO_TAIL)
1540 		list_add_tail(&page->lru, &n->partial);
1541 	else
1542 		list_add(&page->lru, &n->partial);
1543 }
1544 
1545 static inline void add_partial(struct kmem_cache_node *n,
1546 				struct page *page, int tail)
1547 {
1548 	lockdep_assert_held(&n->list_lock);
1549 	__add_partial(n, page, tail);
1550 }
1551 
1552 static inline void
1553 __remove_partial(struct kmem_cache_node *n, struct page *page)
1554 {
1555 	list_del(&page->lru);
1556 	n->nr_partial--;
1557 }
1558 
1559 static inline void remove_partial(struct kmem_cache_node *n,
1560 					struct page *page)
1561 {
1562 	lockdep_assert_held(&n->list_lock);
1563 	__remove_partial(n, page);
1564 }
1565 
1566 /*
1567  * Remove slab from the partial list, freeze it and
1568  * return the pointer to the freelist.
1569  *
1570  * Returns a list of objects or NULL if it fails.
1571  */
1572 static inline void *acquire_slab(struct kmem_cache *s,
1573 		struct kmem_cache_node *n, struct page *page,
1574 		int mode, int *objects)
1575 {
1576 	void *freelist;
1577 	unsigned long counters;
1578 	struct page new;
1579 
1580 	lockdep_assert_held(&n->list_lock);
1581 
1582 	/*
1583 	 * Zap the freelist and set the frozen bit.
1584 	 * The old freelist is the list of objects for the
1585 	 * per cpu allocation list.
1586 	 */
1587 	freelist = page->freelist;
1588 	counters = page->counters;
1589 	new.counters = counters;
1590 	*objects = new.objects - new.inuse;
1591 	if (mode) {
1592 		new.inuse = page->objects;
1593 		new.freelist = NULL;
1594 	} else {
1595 		new.freelist = freelist;
1596 	}
1597 
1598 	VM_BUG_ON(new.frozen);
1599 	new.frozen = 1;
1600 
1601 	if (!__cmpxchg_double_slab(s, page,
1602 			freelist, counters,
1603 			new.freelist, new.counters,
1604 			"acquire_slab"))
1605 		return NULL;
1606 
1607 	remove_partial(n, page);
1608 	WARN_ON(!freelist);
1609 	return freelist;
1610 }
1611 
1612 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1613 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1614 
1615 /*
1616  * Try to allocate a partial slab from a specific node.
1617  */
1618 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1619 				struct kmem_cache_cpu *c, gfp_t flags)
1620 {
1621 	struct page *page, *page2;
1622 	void *object = NULL;
1623 	int available = 0;
1624 	int objects;
1625 
1626 	/*
1627 	 * Racy check. If we mistakenly see no partial slabs then we
1628 	 * just allocate an empty slab. If we mistakenly try to get a
1629 	 * partial slab and there is none available then get_partials()
1630 	 * will return NULL.
1631 	 */
1632 	if (!n || !n->nr_partial)
1633 		return NULL;
1634 
1635 	spin_lock(&n->list_lock);
1636 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1637 		void *t;
1638 
1639 		if (!pfmemalloc_match(page, flags))
1640 			continue;
1641 
1642 		t = acquire_slab(s, n, page, object == NULL, &objects);
1643 		if (!t)
1644 			break;
1645 
1646 		available += objects;
1647 		if (!object) {
1648 			c->page = page;
1649 			stat(s, ALLOC_FROM_PARTIAL);
1650 			object = t;
1651 		} else {
1652 			put_cpu_partial(s, page, 0);
1653 			stat(s, CPU_PARTIAL_NODE);
1654 		}
1655 		if (!kmem_cache_has_cpu_partial(s)
1656 			|| available > s->cpu_partial / 2)
1657 			break;
1658 
1659 	}
1660 	spin_unlock(&n->list_lock);
1661 	return object;
1662 }
1663 
1664 /*
1665  * Get a page from somewhere. Search in increasing NUMA distances.
1666  */
1667 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1668 		struct kmem_cache_cpu *c)
1669 {
1670 #ifdef CONFIG_NUMA
1671 	struct zonelist *zonelist;
1672 	struct zoneref *z;
1673 	struct zone *zone;
1674 	enum zone_type high_zoneidx = gfp_zone(flags);
1675 	void *object;
1676 	unsigned int cpuset_mems_cookie;
1677 
1678 	/*
1679 	 * The defrag ratio allows a configuration of the tradeoffs between
1680 	 * inter node defragmentation and node local allocations. A lower
1681 	 * defrag_ratio increases the tendency to do local allocations
1682 	 * instead of attempting to obtain partial slabs from other nodes.
1683 	 *
1684 	 * If the defrag_ratio is set to 0 then kmalloc() always
1685 	 * returns node local objects. If the ratio is higher then kmalloc()
1686 	 * may return off node objects because partial slabs are obtained
1687 	 * from other nodes and filled up.
1688 	 *
1689 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1690 	 * defrag_ratio = 1000) then every (well almost) allocation will
1691 	 * first attempt to defrag slab caches on other nodes. This means
1692 	 * scanning over all nodes to look for partial slabs which may be
1693 	 * expensive if we do it every time we are trying to find a slab
1694 	 * with available objects.
1695 	 */
1696 	if (!s->remote_node_defrag_ratio ||
1697 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1698 		return NULL;
1699 
1700 	do {
1701 		cpuset_mems_cookie = read_mems_allowed_begin();
1702 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1703 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1704 			struct kmem_cache_node *n;
1705 
1706 			n = get_node(s, zone_to_nid(zone));
1707 
1708 			if (n && cpuset_zone_allowed(zone, flags) &&
1709 					n->nr_partial > s->min_partial) {
1710 				object = get_partial_node(s, n, c, flags);
1711 				if (object) {
1712 					/*
1713 					 * Don't check read_mems_allowed_retry()
1714 					 * here - if mems_allowed was updated in
1715 					 * parallel, that was a harmless race
1716 					 * between allocation and the cpuset
1717 					 * update
1718 					 */
1719 					return object;
1720 				}
1721 			}
1722 		}
1723 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1724 #endif
1725 	return NULL;
1726 }
1727 
1728 /*
1729  * Get a partial page, lock it and return it.
1730  */
1731 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1732 		struct kmem_cache_cpu *c)
1733 {
1734 	void *object;
1735 	int searchnode = node;
1736 
1737 	if (node == NUMA_NO_NODE)
1738 		searchnode = numa_mem_id();
1739 	else if (!node_present_pages(node))
1740 		searchnode = node_to_mem_node(node);
1741 
1742 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1743 	if (object || node != NUMA_NO_NODE)
1744 		return object;
1745 
1746 	return get_any_partial(s, flags, c);
1747 }
1748 
1749 #ifdef CONFIG_PREEMPT
1750 /*
1751  * Calculate the next globally unique transaction for disambiguiation
1752  * during cmpxchg. The transactions start with the cpu number and are then
1753  * incremented by CONFIG_NR_CPUS.
1754  */
1755 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1756 #else
1757 /*
1758  * No preemption supported therefore also no need to check for
1759  * different cpus.
1760  */
1761 #define TID_STEP 1
1762 #endif
1763 
1764 static inline unsigned long next_tid(unsigned long tid)
1765 {
1766 	return tid + TID_STEP;
1767 }
1768 
1769 static inline unsigned int tid_to_cpu(unsigned long tid)
1770 {
1771 	return tid % TID_STEP;
1772 }
1773 
1774 static inline unsigned long tid_to_event(unsigned long tid)
1775 {
1776 	return tid / TID_STEP;
1777 }
1778 
1779 static inline unsigned int init_tid(int cpu)
1780 {
1781 	return cpu;
1782 }
1783 
1784 static inline void note_cmpxchg_failure(const char *n,
1785 		const struct kmem_cache *s, unsigned long tid)
1786 {
1787 #ifdef SLUB_DEBUG_CMPXCHG
1788 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1789 
1790 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1791 
1792 #ifdef CONFIG_PREEMPT
1793 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1794 		pr_warn("due to cpu change %d -> %d\n",
1795 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1796 	else
1797 #endif
1798 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1799 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1800 			tid_to_event(tid), tid_to_event(actual_tid));
1801 	else
1802 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1803 			actual_tid, tid, next_tid(tid));
1804 #endif
1805 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1806 }
1807 
1808 static void init_kmem_cache_cpus(struct kmem_cache *s)
1809 {
1810 	int cpu;
1811 
1812 	for_each_possible_cpu(cpu)
1813 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1814 }
1815 
1816 /*
1817  * Remove the cpu slab
1818  */
1819 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1820 				void *freelist)
1821 {
1822 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1823 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1824 	int lock = 0;
1825 	enum slab_modes l = M_NONE, m = M_NONE;
1826 	void *nextfree;
1827 	int tail = DEACTIVATE_TO_HEAD;
1828 	struct page new;
1829 	struct page old;
1830 
1831 	if (page->freelist) {
1832 		stat(s, DEACTIVATE_REMOTE_FREES);
1833 		tail = DEACTIVATE_TO_TAIL;
1834 	}
1835 
1836 	/*
1837 	 * Stage one: Free all available per cpu objects back
1838 	 * to the page freelist while it is still frozen. Leave the
1839 	 * last one.
1840 	 *
1841 	 * There is no need to take the list->lock because the page
1842 	 * is still frozen.
1843 	 */
1844 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1845 		void *prior;
1846 		unsigned long counters;
1847 
1848 		do {
1849 			prior = page->freelist;
1850 			counters = page->counters;
1851 			set_freepointer(s, freelist, prior);
1852 			new.counters = counters;
1853 			new.inuse--;
1854 			VM_BUG_ON(!new.frozen);
1855 
1856 		} while (!__cmpxchg_double_slab(s, page,
1857 			prior, counters,
1858 			freelist, new.counters,
1859 			"drain percpu freelist"));
1860 
1861 		freelist = nextfree;
1862 	}
1863 
1864 	/*
1865 	 * Stage two: Ensure that the page is unfrozen while the
1866 	 * list presence reflects the actual number of objects
1867 	 * during unfreeze.
1868 	 *
1869 	 * We setup the list membership and then perform a cmpxchg
1870 	 * with the count. If there is a mismatch then the page
1871 	 * is not unfrozen but the page is on the wrong list.
1872 	 *
1873 	 * Then we restart the process which may have to remove
1874 	 * the page from the list that we just put it on again
1875 	 * because the number of objects in the slab may have
1876 	 * changed.
1877 	 */
1878 redo:
1879 
1880 	old.freelist = page->freelist;
1881 	old.counters = page->counters;
1882 	VM_BUG_ON(!old.frozen);
1883 
1884 	/* Determine target state of the slab */
1885 	new.counters = old.counters;
1886 	if (freelist) {
1887 		new.inuse--;
1888 		set_freepointer(s, freelist, old.freelist);
1889 		new.freelist = freelist;
1890 	} else
1891 		new.freelist = old.freelist;
1892 
1893 	new.frozen = 0;
1894 
1895 	if (!new.inuse && n->nr_partial >= s->min_partial)
1896 		m = M_FREE;
1897 	else if (new.freelist) {
1898 		m = M_PARTIAL;
1899 		if (!lock) {
1900 			lock = 1;
1901 			/*
1902 			 * Taking the spinlock removes the possiblity
1903 			 * that acquire_slab() will see a slab page that
1904 			 * is frozen
1905 			 */
1906 			spin_lock(&n->list_lock);
1907 		}
1908 	} else {
1909 		m = M_FULL;
1910 		if (kmem_cache_debug(s) && !lock) {
1911 			lock = 1;
1912 			/*
1913 			 * This also ensures that the scanning of full
1914 			 * slabs from diagnostic functions will not see
1915 			 * any frozen slabs.
1916 			 */
1917 			spin_lock(&n->list_lock);
1918 		}
1919 	}
1920 
1921 	if (l != m) {
1922 
1923 		if (l == M_PARTIAL)
1924 
1925 			remove_partial(n, page);
1926 
1927 		else if (l == M_FULL)
1928 
1929 			remove_full(s, n, page);
1930 
1931 		if (m == M_PARTIAL) {
1932 
1933 			add_partial(n, page, tail);
1934 			stat(s, tail);
1935 
1936 		} else if (m == M_FULL) {
1937 
1938 			stat(s, DEACTIVATE_FULL);
1939 			add_full(s, n, page);
1940 
1941 		}
1942 	}
1943 
1944 	l = m;
1945 	if (!__cmpxchg_double_slab(s, page,
1946 				old.freelist, old.counters,
1947 				new.freelist, new.counters,
1948 				"unfreezing slab"))
1949 		goto redo;
1950 
1951 	if (lock)
1952 		spin_unlock(&n->list_lock);
1953 
1954 	if (m == M_FREE) {
1955 		stat(s, DEACTIVATE_EMPTY);
1956 		discard_slab(s, page);
1957 		stat(s, FREE_SLAB);
1958 	}
1959 }
1960 
1961 /*
1962  * Unfreeze all the cpu partial slabs.
1963  *
1964  * This function must be called with interrupts disabled
1965  * for the cpu using c (or some other guarantee must be there
1966  * to guarantee no concurrent accesses).
1967  */
1968 static void unfreeze_partials(struct kmem_cache *s,
1969 		struct kmem_cache_cpu *c)
1970 {
1971 #ifdef CONFIG_SLUB_CPU_PARTIAL
1972 	struct kmem_cache_node *n = NULL, *n2 = NULL;
1973 	struct page *page, *discard_page = NULL;
1974 
1975 	while ((page = c->partial)) {
1976 		struct page new;
1977 		struct page old;
1978 
1979 		c->partial = page->next;
1980 
1981 		n2 = get_node(s, page_to_nid(page));
1982 		if (n != n2) {
1983 			if (n)
1984 				spin_unlock(&n->list_lock);
1985 
1986 			n = n2;
1987 			spin_lock(&n->list_lock);
1988 		}
1989 
1990 		do {
1991 
1992 			old.freelist = page->freelist;
1993 			old.counters = page->counters;
1994 			VM_BUG_ON(!old.frozen);
1995 
1996 			new.counters = old.counters;
1997 			new.freelist = old.freelist;
1998 
1999 			new.frozen = 0;
2000 
2001 		} while (!__cmpxchg_double_slab(s, page,
2002 				old.freelist, old.counters,
2003 				new.freelist, new.counters,
2004 				"unfreezing slab"));
2005 
2006 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2007 			page->next = discard_page;
2008 			discard_page = page;
2009 		} else {
2010 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2011 			stat(s, FREE_ADD_PARTIAL);
2012 		}
2013 	}
2014 
2015 	if (n)
2016 		spin_unlock(&n->list_lock);
2017 
2018 	while (discard_page) {
2019 		page = discard_page;
2020 		discard_page = discard_page->next;
2021 
2022 		stat(s, DEACTIVATE_EMPTY);
2023 		discard_slab(s, page);
2024 		stat(s, FREE_SLAB);
2025 	}
2026 #endif
2027 }
2028 
2029 /*
2030  * Put a page that was just frozen (in __slab_free) into a partial page
2031  * slot if available. This is done without interrupts disabled and without
2032  * preemption disabled. The cmpxchg is racy and may put the partial page
2033  * onto a random cpus partial slot.
2034  *
2035  * If we did not find a slot then simply move all the partials to the
2036  * per node partial list.
2037  */
2038 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2039 {
2040 #ifdef CONFIG_SLUB_CPU_PARTIAL
2041 	struct page *oldpage;
2042 	int pages;
2043 	int pobjects;
2044 
2045 	preempt_disable();
2046 	do {
2047 		pages = 0;
2048 		pobjects = 0;
2049 		oldpage = this_cpu_read(s->cpu_slab->partial);
2050 
2051 		if (oldpage) {
2052 			pobjects = oldpage->pobjects;
2053 			pages = oldpage->pages;
2054 			if (drain && pobjects > s->cpu_partial) {
2055 				unsigned long flags;
2056 				/*
2057 				 * partial array is full. Move the existing
2058 				 * set to the per node partial list.
2059 				 */
2060 				local_irq_save(flags);
2061 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2062 				local_irq_restore(flags);
2063 				oldpage = NULL;
2064 				pobjects = 0;
2065 				pages = 0;
2066 				stat(s, CPU_PARTIAL_DRAIN);
2067 			}
2068 		}
2069 
2070 		pages++;
2071 		pobjects += page->objects - page->inuse;
2072 
2073 		page->pages = pages;
2074 		page->pobjects = pobjects;
2075 		page->next = oldpage;
2076 
2077 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2078 								!= oldpage);
2079 	if (unlikely(!s->cpu_partial)) {
2080 		unsigned long flags;
2081 
2082 		local_irq_save(flags);
2083 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2084 		local_irq_restore(flags);
2085 	}
2086 	preempt_enable();
2087 #endif
2088 }
2089 
2090 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2091 {
2092 	stat(s, CPUSLAB_FLUSH);
2093 	deactivate_slab(s, c->page, c->freelist);
2094 
2095 	c->tid = next_tid(c->tid);
2096 	c->page = NULL;
2097 	c->freelist = NULL;
2098 }
2099 
2100 /*
2101  * Flush cpu slab.
2102  *
2103  * Called from IPI handler with interrupts disabled.
2104  */
2105 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2106 {
2107 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2108 
2109 	if (likely(c)) {
2110 		if (c->page)
2111 			flush_slab(s, c);
2112 
2113 		unfreeze_partials(s, c);
2114 	}
2115 }
2116 
2117 static void flush_cpu_slab(void *d)
2118 {
2119 	struct kmem_cache *s = d;
2120 
2121 	__flush_cpu_slab(s, smp_processor_id());
2122 }
2123 
2124 static bool has_cpu_slab(int cpu, void *info)
2125 {
2126 	struct kmem_cache *s = info;
2127 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2128 
2129 	return c->page || c->partial;
2130 }
2131 
2132 static void flush_all(struct kmem_cache *s)
2133 {
2134 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2135 }
2136 
2137 /*
2138  * Check if the objects in a per cpu structure fit numa
2139  * locality expectations.
2140  */
2141 static inline int node_match(struct page *page, int node)
2142 {
2143 #ifdef CONFIG_NUMA
2144 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2145 		return 0;
2146 #endif
2147 	return 1;
2148 }
2149 
2150 #ifdef CONFIG_SLUB_DEBUG
2151 static int count_free(struct page *page)
2152 {
2153 	return page->objects - page->inuse;
2154 }
2155 
2156 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2157 {
2158 	return atomic_long_read(&n->total_objects);
2159 }
2160 #endif /* CONFIG_SLUB_DEBUG */
2161 
2162 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2163 static unsigned long count_partial(struct kmem_cache_node *n,
2164 					int (*get_count)(struct page *))
2165 {
2166 	unsigned long flags;
2167 	unsigned long x = 0;
2168 	struct page *page;
2169 
2170 	spin_lock_irqsave(&n->list_lock, flags);
2171 	list_for_each_entry(page, &n->partial, lru)
2172 		x += get_count(page);
2173 	spin_unlock_irqrestore(&n->list_lock, flags);
2174 	return x;
2175 }
2176 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2177 
2178 static noinline void
2179 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2180 {
2181 #ifdef CONFIG_SLUB_DEBUG
2182 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2183 				      DEFAULT_RATELIMIT_BURST);
2184 	int node;
2185 	struct kmem_cache_node *n;
2186 
2187 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2188 		return;
2189 
2190 	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2191 		nid, gfpflags);
2192 	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2193 		s->name, s->object_size, s->size, oo_order(s->oo),
2194 		oo_order(s->min));
2195 
2196 	if (oo_order(s->min) > get_order(s->object_size))
2197 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2198 			s->name);
2199 
2200 	for_each_kmem_cache_node(s, node, n) {
2201 		unsigned long nr_slabs;
2202 		unsigned long nr_objs;
2203 		unsigned long nr_free;
2204 
2205 		nr_free  = count_partial(n, count_free);
2206 		nr_slabs = node_nr_slabs(n);
2207 		nr_objs  = node_nr_objs(n);
2208 
2209 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2210 			node, nr_slabs, nr_objs, nr_free);
2211 	}
2212 #endif
2213 }
2214 
2215 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2216 			int node, struct kmem_cache_cpu **pc)
2217 {
2218 	void *freelist;
2219 	struct kmem_cache_cpu *c = *pc;
2220 	struct page *page;
2221 
2222 	freelist = get_partial(s, flags, node, c);
2223 
2224 	if (freelist)
2225 		return freelist;
2226 
2227 	page = new_slab(s, flags, node);
2228 	if (page) {
2229 		c = raw_cpu_ptr(s->cpu_slab);
2230 		if (c->page)
2231 			flush_slab(s, c);
2232 
2233 		/*
2234 		 * No other reference to the page yet so we can
2235 		 * muck around with it freely without cmpxchg
2236 		 */
2237 		freelist = page->freelist;
2238 		page->freelist = NULL;
2239 
2240 		stat(s, ALLOC_SLAB);
2241 		c->page = page;
2242 		*pc = c;
2243 	} else
2244 		freelist = NULL;
2245 
2246 	return freelist;
2247 }
2248 
2249 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2250 {
2251 	if (unlikely(PageSlabPfmemalloc(page)))
2252 		return gfp_pfmemalloc_allowed(gfpflags);
2253 
2254 	return true;
2255 }
2256 
2257 /*
2258  * Check the page->freelist of a page and either transfer the freelist to the
2259  * per cpu freelist or deactivate the page.
2260  *
2261  * The page is still frozen if the return value is not NULL.
2262  *
2263  * If this function returns NULL then the page has been unfrozen.
2264  *
2265  * This function must be called with interrupt disabled.
2266  */
2267 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2268 {
2269 	struct page new;
2270 	unsigned long counters;
2271 	void *freelist;
2272 
2273 	do {
2274 		freelist = page->freelist;
2275 		counters = page->counters;
2276 
2277 		new.counters = counters;
2278 		VM_BUG_ON(!new.frozen);
2279 
2280 		new.inuse = page->objects;
2281 		new.frozen = freelist != NULL;
2282 
2283 	} while (!__cmpxchg_double_slab(s, page,
2284 		freelist, counters,
2285 		NULL, new.counters,
2286 		"get_freelist"));
2287 
2288 	return freelist;
2289 }
2290 
2291 /*
2292  * Slow path. The lockless freelist is empty or we need to perform
2293  * debugging duties.
2294  *
2295  * Processing is still very fast if new objects have been freed to the
2296  * regular freelist. In that case we simply take over the regular freelist
2297  * as the lockless freelist and zap the regular freelist.
2298  *
2299  * If that is not working then we fall back to the partial lists. We take the
2300  * first element of the freelist as the object to allocate now and move the
2301  * rest of the freelist to the lockless freelist.
2302  *
2303  * And if we were unable to get a new slab from the partial slab lists then
2304  * we need to allocate a new slab. This is the slowest path since it involves
2305  * a call to the page allocator and the setup of a new slab.
2306  */
2307 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2308 			  unsigned long addr, struct kmem_cache_cpu *c)
2309 {
2310 	void *freelist;
2311 	struct page *page;
2312 	unsigned long flags;
2313 
2314 	local_irq_save(flags);
2315 #ifdef CONFIG_PREEMPT
2316 	/*
2317 	 * We may have been preempted and rescheduled on a different
2318 	 * cpu before disabling interrupts. Need to reload cpu area
2319 	 * pointer.
2320 	 */
2321 	c = this_cpu_ptr(s->cpu_slab);
2322 #endif
2323 
2324 	page = c->page;
2325 	if (!page)
2326 		goto new_slab;
2327 redo:
2328 
2329 	if (unlikely(!node_match(page, node))) {
2330 		int searchnode = node;
2331 
2332 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2333 			searchnode = node_to_mem_node(node);
2334 
2335 		if (unlikely(!node_match(page, searchnode))) {
2336 			stat(s, ALLOC_NODE_MISMATCH);
2337 			deactivate_slab(s, page, c->freelist);
2338 			c->page = NULL;
2339 			c->freelist = NULL;
2340 			goto new_slab;
2341 		}
2342 	}
2343 
2344 	/*
2345 	 * By rights, we should be searching for a slab page that was
2346 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2347 	 * information when the page leaves the per-cpu allocator
2348 	 */
2349 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2350 		deactivate_slab(s, page, c->freelist);
2351 		c->page = NULL;
2352 		c->freelist = NULL;
2353 		goto new_slab;
2354 	}
2355 
2356 	/* must check again c->freelist in case of cpu migration or IRQ */
2357 	freelist = c->freelist;
2358 	if (freelist)
2359 		goto load_freelist;
2360 
2361 	freelist = get_freelist(s, page);
2362 
2363 	if (!freelist) {
2364 		c->page = NULL;
2365 		stat(s, DEACTIVATE_BYPASS);
2366 		goto new_slab;
2367 	}
2368 
2369 	stat(s, ALLOC_REFILL);
2370 
2371 load_freelist:
2372 	/*
2373 	 * freelist is pointing to the list of objects to be used.
2374 	 * page is pointing to the page from which the objects are obtained.
2375 	 * That page must be frozen for per cpu allocations to work.
2376 	 */
2377 	VM_BUG_ON(!c->page->frozen);
2378 	c->freelist = get_freepointer(s, freelist);
2379 	c->tid = next_tid(c->tid);
2380 	local_irq_restore(flags);
2381 	return freelist;
2382 
2383 new_slab:
2384 
2385 	if (c->partial) {
2386 		page = c->page = c->partial;
2387 		c->partial = page->next;
2388 		stat(s, CPU_PARTIAL_ALLOC);
2389 		c->freelist = NULL;
2390 		goto redo;
2391 	}
2392 
2393 	freelist = new_slab_objects(s, gfpflags, node, &c);
2394 
2395 	if (unlikely(!freelist)) {
2396 		slab_out_of_memory(s, gfpflags, node);
2397 		local_irq_restore(flags);
2398 		return NULL;
2399 	}
2400 
2401 	page = c->page;
2402 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2403 		goto load_freelist;
2404 
2405 	/* Only entered in the debug case */
2406 	if (kmem_cache_debug(s) &&
2407 			!alloc_debug_processing(s, page, freelist, addr))
2408 		goto new_slab;	/* Slab failed checks. Next slab needed */
2409 
2410 	deactivate_slab(s, page, get_freepointer(s, freelist));
2411 	c->page = NULL;
2412 	c->freelist = NULL;
2413 	local_irq_restore(flags);
2414 	return freelist;
2415 }
2416 
2417 /*
2418  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2419  * have the fastpath folded into their functions. So no function call
2420  * overhead for requests that can be satisfied on the fastpath.
2421  *
2422  * The fastpath works by first checking if the lockless freelist can be used.
2423  * If not then __slab_alloc is called for slow processing.
2424  *
2425  * Otherwise we can simply pick the next object from the lockless free list.
2426  */
2427 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2428 		gfp_t gfpflags, int node, unsigned long addr)
2429 {
2430 	void **object;
2431 	struct kmem_cache_cpu *c;
2432 	struct page *page;
2433 	unsigned long tid;
2434 
2435 	s = slab_pre_alloc_hook(s, gfpflags);
2436 	if (!s)
2437 		return NULL;
2438 redo:
2439 	/*
2440 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2441 	 * enabled. We may switch back and forth between cpus while
2442 	 * reading from one cpu area. That does not matter as long
2443 	 * as we end up on the original cpu again when doing the cmpxchg.
2444 	 *
2445 	 * We should guarantee that tid and kmem_cache are retrieved on
2446 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2447 	 * to check if it is matched or not.
2448 	 */
2449 	do {
2450 		tid = this_cpu_read(s->cpu_slab->tid);
2451 		c = raw_cpu_ptr(s->cpu_slab);
2452 	} while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
2453 
2454 	/*
2455 	 * Irqless object alloc/free algorithm used here depends on sequence
2456 	 * of fetching cpu_slab's data. tid should be fetched before anything
2457 	 * on c to guarantee that object and page associated with previous tid
2458 	 * won't be used with current tid. If we fetch tid first, object and
2459 	 * page could be one associated with next tid and our alloc/free
2460 	 * request will be failed. In this case, we will retry. So, no problem.
2461 	 */
2462 	barrier();
2463 
2464 	/*
2465 	 * The transaction ids are globally unique per cpu and per operation on
2466 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2467 	 * occurs on the right processor and that there was no operation on the
2468 	 * linked list in between.
2469 	 */
2470 
2471 	object = c->freelist;
2472 	page = c->page;
2473 	if (unlikely(!object || !node_match(page, node))) {
2474 		object = __slab_alloc(s, gfpflags, node, addr, c);
2475 		stat(s, ALLOC_SLOWPATH);
2476 	} else {
2477 		void *next_object = get_freepointer_safe(s, object);
2478 
2479 		/*
2480 		 * The cmpxchg will only match if there was no additional
2481 		 * operation and if we are on the right processor.
2482 		 *
2483 		 * The cmpxchg does the following atomically (without lock
2484 		 * semantics!)
2485 		 * 1. Relocate first pointer to the current per cpu area.
2486 		 * 2. Verify that tid and freelist have not been changed
2487 		 * 3. If they were not changed replace tid and freelist
2488 		 *
2489 		 * Since this is without lock semantics the protection is only
2490 		 * against code executing on this cpu *not* from access by
2491 		 * other cpus.
2492 		 */
2493 		if (unlikely(!this_cpu_cmpxchg_double(
2494 				s->cpu_slab->freelist, s->cpu_slab->tid,
2495 				object, tid,
2496 				next_object, next_tid(tid)))) {
2497 
2498 			note_cmpxchg_failure("slab_alloc", s, tid);
2499 			goto redo;
2500 		}
2501 		prefetch_freepointer(s, next_object);
2502 		stat(s, ALLOC_FASTPATH);
2503 	}
2504 
2505 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2506 		memset(object, 0, s->object_size);
2507 
2508 	slab_post_alloc_hook(s, gfpflags, object);
2509 
2510 	return object;
2511 }
2512 
2513 static __always_inline void *slab_alloc(struct kmem_cache *s,
2514 		gfp_t gfpflags, unsigned long addr)
2515 {
2516 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2517 }
2518 
2519 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2520 {
2521 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2522 
2523 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2524 				s->size, gfpflags);
2525 
2526 	return ret;
2527 }
2528 EXPORT_SYMBOL(kmem_cache_alloc);
2529 
2530 #ifdef CONFIG_TRACING
2531 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2532 {
2533 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2534 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2535 	kasan_kmalloc(s, ret, size);
2536 	return ret;
2537 }
2538 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2539 #endif
2540 
2541 #ifdef CONFIG_NUMA
2542 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2543 {
2544 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2545 
2546 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2547 				    s->object_size, s->size, gfpflags, node);
2548 
2549 	return ret;
2550 }
2551 EXPORT_SYMBOL(kmem_cache_alloc_node);
2552 
2553 #ifdef CONFIG_TRACING
2554 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2555 				    gfp_t gfpflags,
2556 				    int node, size_t size)
2557 {
2558 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2559 
2560 	trace_kmalloc_node(_RET_IP_, ret,
2561 			   size, s->size, gfpflags, node);
2562 
2563 	kasan_kmalloc(s, ret, size);
2564 	return ret;
2565 }
2566 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2567 #endif
2568 #endif
2569 
2570 /*
2571  * Slow path handling. This may still be called frequently since objects
2572  * have a longer lifetime than the cpu slabs in most processing loads.
2573  *
2574  * So we still attempt to reduce cache line usage. Just take the slab
2575  * lock and free the item. If there is no additional partial page
2576  * handling required then we can return immediately.
2577  */
2578 static void __slab_free(struct kmem_cache *s, struct page *page,
2579 			void *x, unsigned long addr)
2580 {
2581 	void *prior;
2582 	void **object = (void *)x;
2583 	int was_frozen;
2584 	struct page new;
2585 	unsigned long counters;
2586 	struct kmem_cache_node *n = NULL;
2587 	unsigned long uninitialized_var(flags);
2588 
2589 	stat(s, FREE_SLOWPATH);
2590 
2591 	if (kmem_cache_debug(s) &&
2592 		!(n = free_debug_processing(s, page, x, addr, &flags)))
2593 		return;
2594 
2595 	do {
2596 		if (unlikely(n)) {
2597 			spin_unlock_irqrestore(&n->list_lock, flags);
2598 			n = NULL;
2599 		}
2600 		prior = page->freelist;
2601 		counters = page->counters;
2602 		set_freepointer(s, object, prior);
2603 		new.counters = counters;
2604 		was_frozen = new.frozen;
2605 		new.inuse--;
2606 		if ((!new.inuse || !prior) && !was_frozen) {
2607 
2608 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2609 
2610 				/*
2611 				 * Slab was on no list before and will be
2612 				 * partially empty
2613 				 * We can defer the list move and instead
2614 				 * freeze it.
2615 				 */
2616 				new.frozen = 1;
2617 
2618 			} else { /* Needs to be taken off a list */
2619 
2620 				n = get_node(s, page_to_nid(page));
2621 				/*
2622 				 * Speculatively acquire the list_lock.
2623 				 * If the cmpxchg does not succeed then we may
2624 				 * drop the list_lock without any processing.
2625 				 *
2626 				 * Otherwise the list_lock will synchronize with
2627 				 * other processors updating the list of slabs.
2628 				 */
2629 				spin_lock_irqsave(&n->list_lock, flags);
2630 
2631 			}
2632 		}
2633 
2634 	} while (!cmpxchg_double_slab(s, page,
2635 		prior, counters,
2636 		object, new.counters,
2637 		"__slab_free"));
2638 
2639 	if (likely(!n)) {
2640 
2641 		/*
2642 		 * If we just froze the page then put it onto the
2643 		 * per cpu partial list.
2644 		 */
2645 		if (new.frozen && !was_frozen) {
2646 			put_cpu_partial(s, page, 1);
2647 			stat(s, CPU_PARTIAL_FREE);
2648 		}
2649 		/*
2650 		 * The list lock was not taken therefore no list
2651 		 * activity can be necessary.
2652 		 */
2653 		if (was_frozen)
2654 			stat(s, FREE_FROZEN);
2655 		return;
2656 	}
2657 
2658 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2659 		goto slab_empty;
2660 
2661 	/*
2662 	 * Objects left in the slab. If it was not on the partial list before
2663 	 * then add it.
2664 	 */
2665 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2666 		if (kmem_cache_debug(s))
2667 			remove_full(s, n, page);
2668 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2669 		stat(s, FREE_ADD_PARTIAL);
2670 	}
2671 	spin_unlock_irqrestore(&n->list_lock, flags);
2672 	return;
2673 
2674 slab_empty:
2675 	if (prior) {
2676 		/*
2677 		 * Slab on the partial list.
2678 		 */
2679 		remove_partial(n, page);
2680 		stat(s, FREE_REMOVE_PARTIAL);
2681 	} else {
2682 		/* Slab must be on the full list */
2683 		remove_full(s, n, page);
2684 	}
2685 
2686 	spin_unlock_irqrestore(&n->list_lock, flags);
2687 	stat(s, FREE_SLAB);
2688 	discard_slab(s, page);
2689 }
2690 
2691 /*
2692  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2693  * can perform fastpath freeing without additional function calls.
2694  *
2695  * The fastpath is only possible if we are freeing to the current cpu slab
2696  * of this processor. This typically the case if we have just allocated
2697  * the item before.
2698  *
2699  * If fastpath is not possible then fall back to __slab_free where we deal
2700  * with all sorts of special processing.
2701  */
2702 static __always_inline void slab_free(struct kmem_cache *s,
2703 			struct page *page, void *x, unsigned long addr)
2704 {
2705 	void **object = (void *)x;
2706 	struct kmem_cache_cpu *c;
2707 	unsigned long tid;
2708 
2709 	slab_free_hook(s, x);
2710 
2711 redo:
2712 	/*
2713 	 * Determine the currently cpus per cpu slab.
2714 	 * The cpu may change afterward. However that does not matter since
2715 	 * data is retrieved via this pointer. If we are on the same cpu
2716 	 * during the cmpxchg then the free will succedd.
2717 	 */
2718 	do {
2719 		tid = this_cpu_read(s->cpu_slab->tid);
2720 		c = raw_cpu_ptr(s->cpu_slab);
2721 	} while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
2722 
2723 	/* Same with comment on barrier() in slab_alloc_node() */
2724 	barrier();
2725 
2726 	if (likely(page == c->page)) {
2727 		set_freepointer(s, object, c->freelist);
2728 
2729 		if (unlikely(!this_cpu_cmpxchg_double(
2730 				s->cpu_slab->freelist, s->cpu_slab->tid,
2731 				c->freelist, tid,
2732 				object, next_tid(tid)))) {
2733 
2734 			note_cmpxchg_failure("slab_free", s, tid);
2735 			goto redo;
2736 		}
2737 		stat(s, FREE_FASTPATH);
2738 	} else
2739 		__slab_free(s, page, x, addr);
2740 
2741 }
2742 
2743 void kmem_cache_free(struct kmem_cache *s, void *x)
2744 {
2745 	s = cache_from_obj(s, x);
2746 	if (!s)
2747 		return;
2748 	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2749 	trace_kmem_cache_free(_RET_IP_, x);
2750 }
2751 EXPORT_SYMBOL(kmem_cache_free);
2752 
2753 /*
2754  * Object placement in a slab is made very easy because we always start at
2755  * offset 0. If we tune the size of the object to the alignment then we can
2756  * get the required alignment by putting one properly sized object after
2757  * another.
2758  *
2759  * Notice that the allocation order determines the sizes of the per cpu
2760  * caches. Each processor has always one slab available for allocations.
2761  * Increasing the allocation order reduces the number of times that slabs
2762  * must be moved on and off the partial lists and is therefore a factor in
2763  * locking overhead.
2764  */
2765 
2766 /*
2767  * Mininum / Maximum order of slab pages. This influences locking overhead
2768  * and slab fragmentation. A higher order reduces the number of partial slabs
2769  * and increases the number of allocations possible without having to
2770  * take the list_lock.
2771  */
2772 static int slub_min_order;
2773 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2774 static int slub_min_objects;
2775 
2776 /*
2777  * Calculate the order of allocation given an slab object size.
2778  *
2779  * The order of allocation has significant impact on performance and other
2780  * system components. Generally order 0 allocations should be preferred since
2781  * order 0 does not cause fragmentation in the page allocator. Larger objects
2782  * be problematic to put into order 0 slabs because there may be too much
2783  * unused space left. We go to a higher order if more than 1/16th of the slab
2784  * would be wasted.
2785  *
2786  * In order to reach satisfactory performance we must ensure that a minimum
2787  * number of objects is in one slab. Otherwise we may generate too much
2788  * activity on the partial lists which requires taking the list_lock. This is
2789  * less a concern for large slabs though which are rarely used.
2790  *
2791  * slub_max_order specifies the order where we begin to stop considering the
2792  * number of objects in a slab as critical. If we reach slub_max_order then
2793  * we try to keep the page order as low as possible. So we accept more waste
2794  * of space in favor of a small page order.
2795  *
2796  * Higher order allocations also allow the placement of more objects in a
2797  * slab and thereby reduce object handling overhead. If the user has
2798  * requested a higher mininum order then we start with that one instead of
2799  * the smallest order which will fit the object.
2800  */
2801 static inline int slab_order(int size, int min_objects,
2802 				int max_order, int fract_leftover, int reserved)
2803 {
2804 	int order;
2805 	int rem;
2806 	int min_order = slub_min_order;
2807 
2808 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2809 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2810 
2811 	for (order = max(min_order,
2812 				fls(min_objects * size - 1) - PAGE_SHIFT);
2813 			order <= max_order; order++) {
2814 
2815 		unsigned long slab_size = PAGE_SIZE << order;
2816 
2817 		if (slab_size < min_objects * size + reserved)
2818 			continue;
2819 
2820 		rem = (slab_size - reserved) % size;
2821 
2822 		if (rem <= slab_size / fract_leftover)
2823 			break;
2824 
2825 	}
2826 
2827 	return order;
2828 }
2829 
2830 static inline int calculate_order(int size, int reserved)
2831 {
2832 	int order;
2833 	int min_objects;
2834 	int fraction;
2835 	int max_objects;
2836 
2837 	/*
2838 	 * Attempt to find best configuration for a slab. This
2839 	 * works by first attempting to generate a layout with
2840 	 * the best configuration and backing off gradually.
2841 	 *
2842 	 * First we reduce the acceptable waste in a slab. Then
2843 	 * we reduce the minimum objects required in a slab.
2844 	 */
2845 	min_objects = slub_min_objects;
2846 	if (!min_objects)
2847 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2848 	max_objects = order_objects(slub_max_order, size, reserved);
2849 	min_objects = min(min_objects, max_objects);
2850 
2851 	while (min_objects > 1) {
2852 		fraction = 16;
2853 		while (fraction >= 4) {
2854 			order = slab_order(size, min_objects,
2855 					slub_max_order, fraction, reserved);
2856 			if (order <= slub_max_order)
2857 				return order;
2858 			fraction /= 2;
2859 		}
2860 		min_objects--;
2861 	}
2862 
2863 	/*
2864 	 * We were unable to place multiple objects in a slab. Now
2865 	 * lets see if we can place a single object there.
2866 	 */
2867 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2868 	if (order <= slub_max_order)
2869 		return order;
2870 
2871 	/*
2872 	 * Doh this slab cannot be placed using slub_max_order.
2873 	 */
2874 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2875 	if (order < MAX_ORDER)
2876 		return order;
2877 	return -ENOSYS;
2878 }
2879 
2880 static void
2881 init_kmem_cache_node(struct kmem_cache_node *n)
2882 {
2883 	n->nr_partial = 0;
2884 	spin_lock_init(&n->list_lock);
2885 	INIT_LIST_HEAD(&n->partial);
2886 #ifdef CONFIG_SLUB_DEBUG
2887 	atomic_long_set(&n->nr_slabs, 0);
2888 	atomic_long_set(&n->total_objects, 0);
2889 	INIT_LIST_HEAD(&n->full);
2890 #endif
2891 }
2892 
2893 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2894 {
2895 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2896 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2897 
2898 	/*
2899 	 * Must align to double word boundary for the double cmpxchg
2900 	 * instructions to work; see __pcpu_double_call_return_bool().
2901 	 */
2902 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2903 				     2 * sizeof(void *));
2904 
2905 	if (!s->cpu_slab)
2906 		return 0;
2907 
2908 	init_kmem_cache_cpus(s);
2909 
2910 	return 1;
2911 }
2912 
2913 static struct kmem_cache *kmem_cache_node;
2914 
2915 /*
2916  * No kmalloc_node yet so do it by hand. We know that this is the first
2917  * slab on the node for this slabcache. There are no concurrent accesses
2918  * possible.
2919  *
2920  * Note that this function only works on the kmem_cache_node
2921  * when allocating for the kmem_cache_node. This is used for bootstrapping
2922  * memory on a fresh node that has no slab structures yet.
2923  */
2924 static void early_kmem_cache_node_alloc(int node)
2925 {
2926 	struct page *page;
2927 	struct kmem_cache_node *n;
2928 
2929 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2930 
2931 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2932 
2933 	BUG_ON(!page);
2934 	if (page_to_nid(page) != node) {
2935 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2936 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2937 	}
2938 
2939 	n = page->freelist;
2940 	BUG_ON(!n);
2941 	page->freelist = get_freepointer(kmem_cache_node, n);
2942 	page->inuse = 1;
2943 	page->frozen = 0;
2944 	kmem_cache_node->node[node] = n;
2945 #ifdef CONFIG_SLUB_DEBUG
2946 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2947 	init_tracking(kmem_cache_node, n);
2948 #endif
2949 	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
2950 	init_kmem_cache_node(n);
2951 	inc_slabs_node(kmem_cache_node, node, page->objects);
2952 
2953 	/*
2954 	 * No locks need to be taken here as it has just been
2955 	 * initialized and there is no concurrent access.
2956 	 */
2957 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
2958 }
2959 
2960 static void free_kmem_cache_nodes(struct kmem_cache *s)
2961 {
2962 	int node;
2963 	struct kmem_cache_node *n;
2964 
2965 	for_each_kmem_cache_node(s, node, n) {
2966 		kmem_cache_free(kmem_cache_node, n);
2967 		s->node[node] = NULL;
2968 	}
2969 }
2970 
2971 static int init_kmem_cache_nodes(struct kmem_cache *s)
2972 {
2973 	int node;
2974 
2975 	for_each_node_state(node, N_NORMAL_MEMORY) {
2976 		struct kmem_cache_node *n;
2977 
2978 		if (slab_state == DOWN) {
2979 			early_kmem_cache_node_alloc(node);
2980 			continue;
2981 		}
2982 		n = kmem_cache_alloc_node(kmem_cache_node,
2983 						GFP_KERNEL, node);
2984 
2985 		if (!n) {
2986 			free_kmem_cache_nodes(s);
2987 			return 0;
2988 		}
2989 
2990 		s->node[node] = n;
2991 		init_kmem_cache_node(n);
2992 	}
2993 	return 1;
2994 }
2995 
2996 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2997 {
2998 	if (min < MIN_PARTIAL)
2999 		min = MIN_PARTIAL;
3000 	else if (min > MAX_PARTIAL)
3001 		min = MAX_PARTIAL;
3002 	s->min_partial = min;
3003 }
3004 
3005 /*
3006  * calculate_sizes() determines the order and the distribution of data within
3007  * a slab object.
3008  */
3009 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3010 {
3011 	unsigned long flags = s->flags;
3012 	unsigned long size = s->object_size;
3013 	int order;
3014 
3015 	/*
3016 	 * Round up object size to the next word boundary. We can only
3017 	 * place the free pointer at word boundaries and this determines
3018 	 * the possible location of the free pointer.
3019 	 */
3020 	size = ALIGN(size, sizeof(void *));
3021 
3022 #ifdef CONFIG_SLUB_DEBUG
3023 	/*
3024 	 * Determine if we can poison the object itself. If the user of
3025 	 * the slab may touch the object after free or before allocation
3026 	 * then we should never poison the object itself.
3027 	 */
3028 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3029 			!s->ctor)
3030 		s->flags |= __OBJECT_POISON;
3031 	else
3032 		s->flags &= ~__OBJECT_POISON;
3033 
3034 
3035 	/*
3036 	 * If we are Redzoning then check if there is some space between the
3037 	 * end of the object and the free pointer. If not then add an
3038 	 * additional word to have some bytes to store Redzone information.
3039 	 */
3040 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3041 		size += sizeof(void *);
3042 #endif
3043 
3044 	/*
3045 	 * With that we have determined the number of bytes in actual use
3046 	 * by the object. This is the potential offset to the free pointer.
3047 	 */
3048 	s->inuse = size;
3049 
3050 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3051 		s->ctor)) {
3052 		/*
3053 		 * Relocate free pointer after the object if it is not
3054 		 * permitted to overwrite the first word of the object on
3055 		 * kmem_cache_free.
3056 		 *
3057 		 * This is the case if we do RCU, have a constructor or
3058 		 * destructor or are poisoning the objects.
3059 		 */
3060 		s->offset = size;
3061 		size += sizeof(void *);
3062 	}
3063 
3064 #ifdef CONFIG_SLUB_DEBUG
3065 	if (flags & SLAB_STORE_USER)
3066 		/*
3067 		 * Need to store information about allocs and frees after
3068 		 * the object.
3069 		 */
3070 		size += 2 * sizeof(struct track);
3071 
3072 	if (flags & SLAB_RED_ZONE)
3073 		/*
3074 		 * Add some empty padding so that we can catch
3075 		 * overwrites from earlier objects rather than let
3076 		 * tracking information or the free pointer be
3077 		 * corrupted if a user writes before the start
3078 		 * of the object.
3079 		 */
3080 		size += sizeof(void *);
3081 #endif
3082 
3083 	/*
3084 	 * SLUB stores one object immediately after another beginning from
3085 	 * offset 0. In order to align the objects we have to simply size
3086 	 * each object to conform to the alignment.
3087 	 */
3088 	size = ALIGN(size, s->align);
3089 	s->size = size;
3090 	if (forced_order >= 0)
3091 		order = forced_order;
3092 	else
3093 		order = calculate_order(size, s->reserved);
3094 
3095 	if (order < 0)
3096 		return 0;
3097 
3098 	s->allocflags = 0;
3099 	if (order)
3100 		s->allocflags |= __GFP_COMP;
3101 
3102 	if (s->flags & SLAB_CACHE_DMA)
3103 		s->allocflags |= GFP_DMA;
3104 
3105 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3106 		s->allocflags |= __GFP_RECLAIMABLE;
3107 
3108 	/*
3109 	 * Determine the number of objects per slab
3110 	 */
3111 	s->oo = oo_make(order, size, s->reserved);
3112 	s->min = oo_make(get_order(size), size, s->reserved);
3113 	if (oo_objects(s->oo) > oo_objects(s->max))
3114 		s->max = s->oo;
3115 
3116 	return !!oo_objects(s->oo);
3117 }
3118 
3119 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3120 {
3121 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3122 	s->reserved = 0;
3123 
3124 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3125 		s->reserved = sizeof(struct rcu_head);
3126 
3127 	if (!calculate_sizes(s, -1))
3128 		goto error;
3129 	if (disable_higher_order_debug) {
3130 		/*
3131 		 * Disable debugging flags that store metadata if the min slab
3132 		 * order increased.
3133 		 */
3134 		if (get_order(s->size) > get_order(s->object_size)) {
3135 			s->flags &= ~DEBUG_METADATA_FLAGS;
3136 			s->offset = 0;
3137 			if (!calculate_sizes(s, -1))
3138 				goto error;
3139 		}
3140 	}
3141 
3142 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3143     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3144 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3145 		/* Enable fast mode */
3146 		s->flags |= __CMPXCHG_DOUBLE;
3147 #endif
3148 
3149 	/*
3150 	 * The larger the object size is, the more pages we want on the partial
3151 	 * list to avoid pounding the page allocator excessively.
3152 	 */
3153 	set_min_partial(s, ilog2(s->size) / 2);
3154 
3155 	/*
3156 	 * cpu_partial determined the maximum number of objects kept in the
3157 	 * per cpu partial lists of a processor.
3158 	 *
3159 	 * Per cpu partial lists mainly contain slabs that just have one
3160 	 * object freed. If they are used for allocation then they can be
3161 	 * filled up again with minimal effort. The slab will never hit the
3162 	 * per node partial lists and therefore no locking will be required.
3163 	 *
3164 	 * This setting also determines
3165 	 *
3166 	 * A) The number of objects from per cpu partial slabs dumped to the
3167 	 *    per node list when we reach the limit.
3168 	 * B) The number of objects in cpu partial slabs to extract from the
3169 	 *    per node list when we run out of per cpu objects. We only fetch
3170 	 *    50% to keep some capacity around for frees.
3171 	 */
3172 	if (!kmem_cache_has_cpu_partial(s))
3173 		s->cpu_partial = 0;
3174 	else if (s->size >= PAGE_SIZE)
3175 		s->cpu_partial = 2;
3176 	else if (s->size >= 1024)
3177 		s->cpu_partial = 6;
3178 	else if (s->size >= 256)
3179 		s->cpu_partial = 13;
3180 	else
3181 		s->cpu_partial = 30;
3182 
3183 #ifdef CONFIG_NUMA
3184 	s->remote_node_defrag_ratio = 1000;
3185 #endif
3186 	if (!init_kmem_cache_nodes(s))
3187 		goto error;
3188 
3189 	if (alloc_kmem_cache_cpus(s))
3190 		return 0;
3191 
3192 	free_kmem_cache_nodes(s);
3193 error:
3194 	if (flags & SLAB_PANIC)
3195 		panic("Cannot create slab %s size=%lu realsize=%u "
3196 			"order=%u offset=%u flags=%lx\n",
3197 			s->name, (unsigned long)s->size, s->size,
3198 			oo_order(s->oo), s->offset, flags);
3199 	return -EINVAL;
3200 }
3201 
3202 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3203 							const char *text)
3204 {
3205 #ifdef CONFIG_SLUB_DEBUG
3206 	void *addr = page_address(page);
3207 	void *p;
3208 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3209 				     sizeof(long), GFP_ATOMIC);
3210 	if (!map)
3211 		return;
3212 	slab_err(s, page, text, s->name);
3213 	slab_lock(page);
3214 
3215 	get_map(s, page, map);
3216 	for_each_object(p, s, addr, page->objects) {
3217 
3218 		if (!test_bit(slab_index(p, s, addr), map)) {
3219 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3220 			print_tracking(s, p);
3221 		}
3222 	}
3223 	slab_unlock(page);
3224 	kfree(map);
3225 #endif
3226 }
3227 
3228 /*
3229  * Attempt to free all partial slabs on a node.
3230  * This is called from kmem_cache_close(). We must be the last thread
3231  * using the cache and therefore we do not need to lock anymore.
3232  */
3233 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3234 {
3235 	struct page *page, *h;
3236 
3237 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3238 		if (!page->inuse) {
3239 			__remove_partial(n, page);
3240 			discard_slab(s, page);
3241 		} else {
3242 			list_slab_objects(s, page,
3243 			"Objects remaining in %s on kmem_cache_close()");
3244 		}
3245 	}
3246 }
3247 
3248 /*
3249  * Release all resources used by a slab cache.
3250  */
3251 static inline int kmem_cache_close(struct kmem_cache *s)
3252 {
3253 	int node;
3254 	struct kmem_cache_node *n;
3255 
3256 	flush_all(s);
3257 	/* Attempt to free all objects */
3258 	for_each_kmem_cache_node(s, node, n) {
3259 		free_partial(s, n);
3260 		if (n->nr_partial || slabs_node(s, node))
3261 			return 1;
3262 	}
3263 	free_percpu(s->cpu_slab);
3264 	free_kmem_cache_nodes(s);
3265 	return 0;
3266 }
3267 
3268 int __kmem_cache_shutdown(struct kmem_cache *s)
3269 {
3270 	return kmem_cache_close(s);
3271 }
3272 
3273 /********************************************************************
3274  *		Kmalloc subsystem
3275  *******************************************************************/
3276 
3277 static int __init setup_slub_min_order(char *str)
3278 {
3279 	get_option(&str, &slub_min_order);
3280 
3281 	return 1;
3282 }
3283 
3284 __setup("slub_min_order=", setup_slub_min_order);
3285 
3286 static int __init setup_slub_max_order(char *str)
3287 {
3288 	get_option(&str, &slub_max_order);
3289 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3290 
3291 	return 1;
3292 }
3293 
3294 __setup("slub_max_order=", setup_slub_max_order);
3295 
3296 static int __init setup_slub_min_objects(char *str)
3297 {
3298 	get_option(&str, &slub_min_objects);
3299 
3300 	return 1;
3301 }
3302 
3303 __setup("slub_min_objects=", setup_slub_min_objects);
3304 
3305 void *__kmalloc(size_t size, gfp_t flags)
3306 {
3307 	struct kmem_cache *s;
3308 	void *ret;
3309 
3310 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3311 		return kmalloc_large(size, flags);
3312 
3313 	s = kmalloc_slab(size, flags);
3314 
3315 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3316 		return s;
3317 
3318 	ret = slab_alloc(s, flags, _RET_IP_);
3319 
3320 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3321 
3322 	kasan_kmalloc(s, ret, size);
3323 
3324 	return ret;
3325 }
3326 EXPORT_SYMBOL(__kmalloc);
3327 
3328 #ifdef CONFIG_NUMA
3329 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3330 {
3331 	struct page *page;
3332 	void *ptr = NULL;
3333 
3334 	flags |= __GFP_COMP | __GFP_NOTRACK;
3335 	page = alloc_kmem_pages_node(node, flags, get_order(size));
3336 	if (page)
3337 		ptr = page_address(page);
3338 
3339 	kmalloc_large_node_hook(ptr, size, flags);
3340 	return ptr;
3341 }
3342 
3343 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3344 {
3345 	struct kmem_cache *s;
3346 	void *ret;
3347 
3348 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3349 		ret = kmalloc_large_node(size, flags, node);
3350 
3351 		trace_kmalloc_node(_RET_IP_, ret,
3352 				   size, PAGE_SIZE << get_order(size),
3353 				   flags, node);
3354 
3355 		return ret;
3356 	}
3357 
3358 	s = kmalloc_slab(size, flags);
3359 
3360 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3361 		return s;
3362 
3363 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3364 
3365 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3366 
3367 	kasan_kmalloc(s, ret, size);
3368 
3369 	return ret;
3370 }
3371 EXPORT_SYMBOL(__kmalloc_node);
3372 #endif
3373 
3374 static size_t __ksize(const void *object)
3375 {
3376 	struct page *page;
3377 
3378 	if (unlikely(object == ZERO_SIZE_PTR))
3379 		return 0;
3380 
3381 	page = virt_to_head_page(object);
3382 
3383 	if (unlikely(!PageSlab(page))) {
3384 		WARN_ON(!PageCompound(page));
3385 		return PAGE_SIZE << compound_order(page);
3386 	}
3387 
3388 	return slab_ksize(page->slab_cache);
3389 }
3390 
3391 size_t ksize(const void *object)
3392 {
3393 	size_t size = __ksize(object);
3394 	/* We assume that ksize callers could use whole allocated area,
3395 	   so we need unpoison this area. */
3396 	kasan_krealloc(object, size);
3397 	return size;
3398 }
3399 EXPORT_SYMBOL(ksize);
3400 
3401 void kfree(const void *x)
3402 {
3403 	struct page *page;
3404 	void *object = (void *)x;
3405 
3406 	trace_kfree(_RET_IP_, x);
3407 
3408 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3409 		return;
3410 
3411 	page = virt_to_head_page(x);
3412 	if (unlikely(!PageSlab(page))) {
3413 		BUG_ON(!PageCompound(page));
3414 		kfree_hook(x);
3415 		__free_kmem_pages(page, compound_order(page));
3416 		return;
3417 	}
3418 	slab_free(page->slab_cache, page, object, _RET_IP_);
3419 }
3420 EXPORT_SYMBOL(kfree);
3421 
3422 #define SHRINK_PROMOTE_MAX 32
3423 
3424 /*
3425  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3426  * up most to the head of the partial lists. New allocations will then
3427  * fill those up and thus they can be removed from the partial lists.
3428  *
3429  * The slabs with the least items are placed last. This results in them
3430  * being allocated from last increasing the chance that the last objects
3431  * are freed in them.
3432  */
3433 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3434 {
3435 	int node;
3436 	int i;
3437 	struct kmem_cache_node *n;
3438 	struct page *page;
3439 	struct page *t;
3440 	struct list_head discard;
3441 	struct list_head promote[SHRINK_PROMOTE_MAX];
3442 	unsigned long flags;
3443 	int ret = 0;
3444 
3445 	if (deactivate) {
3446 		/*
3447 		 * Disable empty slabs caching. Used to avoid pinning offline
3448 		 * memory cgroups by kmem pages that can be freed.
3449 		 */
3450 		s->cpu_partial = 0;
3451 		s->min_partial = 0;
3452 
3453 		/*
3454 		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3455 		 * so we have to make sure the change is visible.
3456 		 */
3457 		kick_all_cpus_sync();
3458 	}
3459 
3460 	flush_all(s);
3461 	for_each_kmem_cache_node(s, node, n) {
3462 		INIT_LIST_HEAD(&discard);
3463 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3464 			INIT_LIST_HEAD(promote + i);
3465 
3466 		spin_lock_irqsave(&n->list_lock, flags);
3467 
3468 		/*
3469 		 * Build lists of slabs to discard or promote.
3470 		 *
3471 		 * Note that concurrent frees may occur while we hold the
3472 		 * list_lock. page->inuse here is the upper limit.
3473 		 */
3474 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3475 			int free = page->objects - page->inuse;
3476 
3477 			/* Do not reread page->inuse */
3478 			barrier();
3479 
3480 			/* We do not keep full slabs on the list */
3481 			BUG_ON(free <= 0);
3482 
3483 			if (free == page->objects) {
3484 				list_move(&page->lru, &discard);
3485 				n->nr_partial--;
3486 			} else if (free <= SHRINK_PROMOTE_MAX)
3487 				list_move(&page->lru, promote + free - 1);
3488 		}
3489 
3490 		/*
3491 		 * Promote the slabs filled up most to the head of the
3492 		 * partial list.
3493 		 */
3494 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3495 			list_splice(promote + i, &n->partial);
3496 
3497 		spin_unlock_irqrestore(&n->list_lock, flags);
3498 
3499 		/* Release empty slabs */
3500 		list_for_each_entry_safe(page, t, &discard, lru)
3501 			discard_slab(s, page);
3502 
3503 		if (slabs_node(s, node))
3504 			ret = 1;
3505 	}
3506 
3507 	return ret;
3508 }
3509 
3510 static int slab_mem_going_offline_callback(void *arg)
3511 {
3512 	struct kmem_cache *s;
3513 
3514 	mutex_lock(&slab_mutex);
3515 	list_for_each_entry(s, &slab_caches, list)
3516 		__kmem_cache_shrink(s, false);
3517 	mutex_unlock(&slab_mutex);
3518 
3519 	return 0;
3520 }
3521 
3522 static void slab_mem_offline_callback(void *arg)
3523 {
3524 	struct kmem_cache_node *n;
3525 	struct kmem_cache *s;
3526 	struct memory_notify *marg = arg;
3527 	int offline_node;
3528 
3529 	offline_node = marg->status_change_nid_normal;
3530 
3531 	/*
3532 	 * If the node still has available memory. we need kmem_cache_node
3533 	 * for it yet.
3534 	 */
3535 	if (offline_node < 0)
3536 		return;
3537 
3538 	mutex_lock(&slab_mutex);
3539 	list_for_each_entry(s, &slab_caches, list) {
3540 		n = get_node(s, offline_node);
3541 		if (n) {
3542 			/*
3543 			 * if n->nr_slabs > 0, slabs still exist on the node
3544 			 * that is going down. We were unable to free them,
3545 			 * and offline_pages() function shouldn't call this
3546 			 * callback. So, we must fail.
3547 			 */
3548 			BUG_ON(slabs_node(s, offline_node));
3549 
3550 			s->node[offline_node] = NULL;
3551 			kmem_cache_free(kmem_cache_node, n);
3552 		}
3553 	}
3554 	mutex_unlock(&slab_mutex);
3555 }
3556 
3557 static int slab_mem_going_online_callback(void *arg)
3558 {
3559 	struct kmem_cache_node *n;
3560 	struct kmem_cache *s;
3561 	struct memory_notify *marg = arg;
3562 	int nid = marg->status_change_nid_normal;
3563 	int ret = 0;
3564 
3565 	/*
3566 	 * If the node's memory is already available, then kmem_cache_node is
3567 	 * already created. Nothing to do.
3568 	 */
3569 	if (nid < 0)
3570 		return 0;
3571 
3572 	/*
3573 	 * We are bringing a node online. No memory is available yet. We must
3574 	 * allocate a kmem_cache_node structure in order to bring the node
3575 	 * online.
3576 	 */
3577 	mutex_lock(&slab_mutex);
3578 	list_for_each_entry(s, &slab_caches, list) {
3579 		/*
3580 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3581 		 *      since memory is not yet available from the node that
3582 		 *      is brought up.
3583 		 */
3584 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3585 		if (!n) {
3586 			ret = -ENOMEM;
3587 			goto out;
3588 		}
3589 		init_kmem_cache_node(n);
3590 		s->node[nid] = n;
3591 	}
3592 out:
3593 	mutex_unlock(&slab_mutex);
3594 	return ret;
3595 }
3596 
3597 static int slab_memory_callback(struct notifier_block *self,
3598 				unsigned long action, void *arg)
3599 {
3600 	int ret = 0;
3601 
3602 	switch (action) {
3603 	case MEM_GOING_ONLINE:
3604 		ret = slab_mem_going_online_callback(arg);
3605 		break;
3606 	case MEM_GOING_OFFLINE:
3607 		ret = slab_mem_going_offline_callback(arg);
3608 		break;
3609 	case MEM_OFFLINE:
3610 	case MEM_CANCEL_ONLINE:
3611 		slab_mem_offline_callback(arg);
3612 		break;
3613 	case MEM_ONLINE:
3614 	case MEM_CANCEL_OFFLINE:
3615 		break;
3616 	}
3617 	if (ret)
3618 		ret = notifier_from_errno(ret);
3619 	else
3620 		ret = NOTIFY_OK;
3621 	return ret;
3622 }
3623 
3624 static struct notifier_block slab_memory_callback_nb = {
3625 	.notifier_call = slab_memory_callback,
3626 	.priority = SLAB_CALLBACK_PRI,
3627 };
3628 
3629 /********************************************************************
3630  *			Basic setup of slabs
3631  *******************************************************************/
3632 
3633 /*
3634  * Used for early kmem_cache structures that were allocated using
3635  * the page allocator. Allocate them properly then fix up the pointers
3636  * that may be pointing to the wrong kmem_cache structure.
3637  */
3638 
3639 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3640 {
3641 	int node;
3642 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3643 	struct kmem_cache_node *n;
3644 
3645 	memcpy(s, static_cache, kmem_cache->object_size);
3646 
3647 	/*
3648 	 * This runs very early, and only the boot processor is supposed to be
3649 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3650 	 * IPIs around.
3651 	 */
3652 	__flush_cpu_slab(s, smp_processor_id());
3653 	for_each_kmem_cache_node(s, node, n) {
3654 		struct page *p;
3655 
3656 		list_for_each_entry(p, &n->partial, lru)
3657 			p->slab_cache = s;
3658 
3659 #ifdef CONFIG_SLUB_DEBUG
3660 		list_for_each_entry(p, &n->full, lru)
3661 			p->slab_cache = s;
3662 #endif
3663 	}
3664 	slab_init_memcg_params(s);
3665 	list_add(&s->list, &slab_caches);
3666 	return s;
3667 }
3668 
3669 void __init kmem_cache_init(void)
3670 {
3671 	static __initdata struct kmem_cache boot_kmem_cache,
3672 		boot_kmem_cache_node;
3673 
3674 	if (debug_guardpage_minorder())
3675 		slub_max_order = 0;
3676 
3677 	kmem_cache_node = &boot_kmem_cache_node;
3678 	kmem_cache = &boot_kmem_cache;
3679 
3680 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3681 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3682 
3683 	register_hotmemory_notifier(&slab_memory_callback_nb);
3684 
3685 	/* Able to allocate the per node structures */
3686 	slab_state = PARTIAL;
3687 
3688 	create_boot_cache(kmem_cache, "kmem_cache",
3689 			offsetof(struct kmem_cache, node) +
3690 				nr_node_ids * sizeof(struct kmem_cache_node *),
3691 		       SLAB_HWCACHE_ALIGN);
3692 
3693 	kmem_cache = bootstrap(&boot_kmem_cache);
3694 
3695 	/*
3696 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3697 	 * kmem_cache_node is separately allocated so no need to
3698 	 * update any list pointers.
3699 	 */
3700 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3701 
3702 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3703 	create_kmalloc_caches(0);
3704 
3705 #ifdef CONFIG_SMP
3706 	register_cpu_notifier(&slab_notifier);
3707 #endif
3708 
3709 	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3710 		cache_line_size(),
3711 		slub_min_order, slub_max_order, slub_min_objects,
3712 		nr_cpu_ids, nr_node_ids);
3713 }
3714 
3715 void __init kmem_cache_init_late(void)
3716 {
3717 }
3718 
3719 struct kmem_cache *
3720 __kmem_cache_alias(const char *name, size_t size, size_t align,
3721 		   unsigned long flags, void (*ctor)(void *))
3722 {
3723 	struct kmem_cache *s, *c;
3724 
3725 	s = find_mergeable(size, align, flags, name, ctor);
3726 	if (s) {
3727 		s->refcount++;
3728 
3729 		/*
3730 		 * Adjust the object sizes so that we clear
3731 		 * the complete object on kzalloc.
3732 		 */
3733 		s->object_size = max(s->object_size, (int)size);
3734 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3735 
3736 		for_each_memcg_cache(c, s) {
3737 			c->object_size = s->object_size;
3738 			c->inuse = max_t(int, c->inuse,
3739 					 ALIGN(size, sizeof(void *)));
3740 		}
3741 
3742 		if (sysfs_slab_alias(s, name)) {
3743 			s->refcount--;
3744 			s = NULL;
3745 		}
3746 	}
3747 
3748 	return s;
3749 }
3750 
3751 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3752 {
3753 	int err;
3754 
3755 	err = kmem_cache_open(s, flags);
3756 	if (err)
3757 		return err;
3758 
3759 	/* Mutex is not taken during early boot */
3760 	if (slab_state <= UP)
3761 		return 0;
3762 
3763 	memcg_propagate_slab_attrs(s);
3764 	err = sysfs_slab_add(s);
3765 	if (err)
3766 		kmem_cache_close(s);
3767 
3768 	return err;
3769 }
3770 
3771 #ifdef CONFIG_SMP
3772 /*
3773  * Use the cpu notifier to insure that the cpu slabs are flushed when
3774  * necessary.
3775  */
3776 static int slab_cpuup_callback(struct notifier_block *nfb,
3777 		unsigned long action, void *hcpu)
3778 {
3779 	long cpu = (long)hcpu;
3780 	struct kmem_cache *s;
3781 	unsigned long flags;
3782 
3783 	switch (action) {
3784 	case CPU_UP_CANCELED:
3785 	case CPU_UP_CANCELED_FROZEN:
3786 	case CPU_DEAD:
3787 	case CPU_DEAD_FROZEN:
3788 		mutex_lock(&slab_mutex);
3789 		list_for_each_entry(s, &slab_caches, list) {
3790 			local_irq_save(flags);
3791 			__flush_cpu_slab(s, cpu);
3792 			local_irq_restore(flags);
3793 		}
3794 		mutex_unlock(&slab_mutex);
3795 		break;
3796 	default:
3797 		break;
3798 	}
3799 	return NOTIFY_OK;
3800 }
3801 
3802 static struct notifier_block slab_notifier = {
3803 	.notifier_call = slab_cpuup_callback
3804 };
3805 
3806 #endif
3807 
3808 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3809 {
3810 	struct kmem_cache *s;
3811 	void *ret;
3812 
3813 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3814 		return kmalloc_large(size, gfpflags);
3815 
3816 	s = kmalloc_slab(size, gfpflags);
3817 
3818 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3819 		return s;
3820 
3821 	ret = slab_alloc(s, gfpflags, caller);
3822 
3823 	/* Honor the call site pointer we received. */
3824 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3825 
3826 	return ret;
3827 }
3828 
3829 #ifdef CONFIG_NUMA
3830 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3831 					int node, unsigned long caller)
3832 {
3833 	struct kmem_cache *s;
3834 	void *ret;
3835 
3836 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3837 		ret = kmalloc_large_node(size, gfpflags, node);
3838 
3839 		trace_kmalloc_node(caller, ret,
3840 				   size, PAGE_SIZE << get_order(size),
3841 				   gfpflags, node);
3842 
3843 		return ret;
3844 	}
3845 
3846 	s = kmalloc_slab(size, gfpflags);
3847 
3848 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3849 		return s;
3850 
3851 	ret = slab_alloc_node(s, gfpflags, node, caller);
3852 
3853 	/* Honor the call site pointer we received. */
3854 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3855 
3856 	return ret;
3857 }
3858 #endif
3859 
3860 #ifdef CONFIG_SYSFS
3861 static int count_inuse(struct page *page)
3862 {
3863 	return page->inuse;
3864 }
3865 
3866 static int count_total(struct page *page)
3867 {
3868 	return page->objects;
3869 }
3870 #endif
3871 
3872 #ifdef CONFIG_SLUB_DEBUG
3873 static int validate_slab(struct kmem_cache *s, struct page *page,
3874 						unsigned long *map)
3875 {
3876 	void *p;
3877 	void *addr = page_address(page);
3878 
3879 	if (!check_slab(s, page) ||
3880 			!on_freelist(s, page, NULL))
3881 		return 0;
3882 
3883 	/* Now we know that a valid freelist exists */
3884 	bitmap_zero(map, page->objects);
3885 
3886 	get_map(s, page, map);
3887 	for_each_object(p, s, addr, page->objects) {
3888 		if (test_bit(slab_index(p, s, addr), map))
3889 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3890 				return 0;
3891 	}
3892 
3893 	for_each_object(p, s, addr, page->objects)
3894 		if (!test_bit(slab_index(p, s, addr), map))
3895 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3896 				return 0;
3897 	return 1;
3898 }
3899 
3900 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3901 						unsigned long *map)
3902 {
3903 	slab_lock(page);
3904 	validate_slab(s, page, map);
3905 	slab_unlock(page);
3906 }
3907 
3908 static int validate_slab_node(struct kmem_cache *s,
3909 		struct kmem_cache_node *n, unsigned long *map)
3910 {
3911 	unsigned long count = 0;
3912 	struct page *page;
3913 	unsigned long flags;
3914 
3915 	spin_lock_irqsave(&n->list_lock, flags);
3916 
3917 	list_for_each_entry(page, &n->partial, lru) {
3918 		validate_slab_slab(s, page, map);
3919 		count++;
3920 	}
3921 	if (count != n->nr_partial)
3922 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3923 		       s->name, count, n->nr_partial);
3924 
3925 	if (!(s->flags & SLAB_STORE_USER))
3926 		goto out;
3927 
3928 	list_for_each_entry(page, &n->full, lru) {
3929 		validate_slab_slab(s, page, map);
3930 		count++;
3931 	}
3932 	if (count != atomic_long_read(&n->nr_slabs))
3933 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3934 		       s->name, count, atomic_long_read(&n->nr_slabs));
3935 
3936 out:
3937 	spin_unlock_irqrestore(&n->list_lock, flags);
3938 	return count;
3939 }
3940 
3941 static long validate_slab_cache(struct kmem_cache *s)
3942 {
3943 	int node;
3944 	unsigned long count = 0;
3945 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3946 				sizeof(unsigned long), GFP_KERNEL);
3947 	struct kmem_cache_node *n;
3948 
3949 	if (!map)
3950 		return -ENOMEM;
3951 
3952 	flush_all(s);
3953 	for_each_kmem_cache_node(s, node, n)
3954 		count += validate_slab_node(s, n, map);
3955 	kfree(map);
3956 	return count;
3957 }
3958 /*
3959  * Generate lists of code addresses where slabcache objects are allocated
3960  * and freed.
3961  */
3962 
3963 struct location {
3964 	unsigned long count;
3965 	unsigned long addr;
3966 	long long sum_time;
3967 	long min_time;
3968 	long max_time;
3969 	long min_pid;
3970 	long max_pid;
3971 	DECLARE_BITMAP(cpus, NR_CPUS);
3972 	nodemask_t nodes;
3973 };
3974 
3975 struct loc_track {
3976 	unsigned long max;
3977 	unsigned long count;
3978 	struct location *loc;
3979 };
3980 
3981 static void free_loc_track(struct loc_track *t)
3982 {
3983 	if (t->max)
3984 		free_pages((unsigned long)t->loc,
3985 			get_order(sizeof(struct location) * t->max));
3986 }
3987 
3988 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3989 {
3990 	struct location *l;
3991 	int order;
3992 
3993 	order = get_order(sizeof(struct location) * max);
3994 
3995 	l = (void *)__get_free_pages(flags, order);
3996 	if (!l)
3997 		return 0;
3998 
3999 	if (t->count) {
4000 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4001 		free_loc_track(t);
4002 	}
4003 	t->max = max;
4004 	t->loc = l;
4005 	return 1;
4006 }
4007 
4008 static int add_location(struct loc_track *t, struct kmem_cache *s,
4009 				const struct track *track)
4010 {
4011 	long start, end, pos;
4012 	struct location *l;
4013 	unsigned long caddr;
4014 	unsigned long age = jiffies - track->when;
4015 
4016 	start = -1;
4017 	end = t->count;
4018 
4019 	for ( ; ; ) {
4020 		pos = start + (end - start + 1) / 2;
4021 
4022 		/*
4023 		 * There is nothing at "end". If we end up there
4024 		 * we need to add something to before end.
4025 		 */
4026 		if (pos == end)
4027 			break;
4028 
4029 		caddr = t->loc[pos].addr;
4030 		if (track->addr == caddr) {
4031 
4032 			l = &t->loc[pos];
4033 			l->count++;
4034 			if (track->when) {
4035 				l->sum_time += age;
4036 				if (age < l->min_time)
4037 					l->min_time = age;
4038 				if (age > l->max_time)
4039 					l->max_time = age;
4040 
4041 				if (track->pid < l->min_pid)
4042 					l->min_pid = track->pid;
4043 				if (track->pid > l->max_pid)
4044 					l->max_pid = track->pid;
4045 
4046 				cpumask_set_cpu(track->cpu,
4047 						to_cpumask(l->cpus));
4048 			}
4049 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4050 			return 1;
4051 		}
4052 
4053 		if (track->addr < caddr)
4054 			end = pos;
4055 		else
4056 			start = pos;
4057 	}
4058 
4059 	/*
4060 	 * Not found. Insert new tracking element.
4061 	 */
4062 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4063 		return 0;
4064 
4065 	l = t->loc + pos;
4066 	if (pos < t->count)
4067 		memmove(l + 1, l,
4068 			(t->count - pos) * sizeof(struct location));
4069 	t->count++;
4070 	l->count = 1;
4071 	l->addr = track->addr;
4072 	l->sum_time = age;
4073 	l->min_time = age;
4074 	l->max_time = age;
4075 	l->min_pid = track->pid;
4076 	l->max_pid = track->pid;
4077 	cpumask_clear(to_cpumask(l->cpus));
4078 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4079 	nodes_clear(l->nodes);
4080 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4081 	return 1;
4082 }
4083 
4084 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4085 		struct page *page, enum track_item alloc,
4086 		unsigned long *map)
4087 {
4088 	void *addr = page_address(page);
4089 	void *p;
4090 
4091 	bitmap_zero(map, page->objects);
4092 	get_map(s, page, map);
4093 
4094 	for_each_object(p, s, addr, page->objects)
4095 		if (!test_bit(slab_index(p, s, addr), map))
4096 			add_location(t, s, get_track(s, p, alloc));
4097 }
4098 
4099 static int list_locations(struct kmem_cache *s, char *buf,
4100 					enum track_item alloc)
4101 {
4102 	int len = 0;
4103 	unsigned long i;
4104 	struct loc_track t = { 0, 0, NULL };
4105 	int node;
4106 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4107 				     sizeof(unsigned long), GFP_KERNEL);
4108 	struct kmem_cache_node *n;
4109 
4110 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4111 				     GFP_TEMPORARY)) {
4112 		kfree(map);
4113 		return sprintf(buf, "Out of memory\n");
4114 	}
4115 	/* Push back cpu slabs */
4116 	flush_all(s);
4117 
4118 	for_each_kmem_cache_node(s, node, n) {
4119 		unsigned long flags;
4120 		struct page *page;
4121 
4122 		if (!atomic_long_read(&n->nr_slabs))
4123 			continue;
4124 
4125 		spin_lock_irqsave(&n->list_lock, flags);
4126 		list_for_each_entry(page, &n->partial, lru)
4127 			process_slab(&t, s, page, alloc, map);
4128 		list_for_each_entry(page, &n->full, lru)
4129 			process_slab(&t, s, page, alloc, map);
4130 		spin_unlock_irqrestore(&n->list_lock, flags);
4131 	}
4132 
4133 	for (i = 0; i < t.count; i++) {
4134 		struct location *l = &t.loc[i];
4135 
4136 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4137 			break;
4138 		len += sprintf(buf + len, "%7ld ", l->count);
4139 
4140 		if (l->addr)
4141 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4142 		else
4143 			len += sprintf(buf + len, "<not-available>");
4144 
4145 		if (l->sum_time != l->min_time) {
4146 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4147 				l->min_time,
4148 				(long)div_u64(l->sum_time, l->count),
4149 				l->max_time);
4150 		} else
4151 			len += sprintf(buf + len, " age=%ld",
4152 				l->min_time);
4153 
4154 		if (l->min_pid != l->max_pid)
4155 			len += sprintf(buf + len, " pid=%ld-%ld",
4156 				l->min_pid, l->max_pid);
4157 		else
4158 			len += sprintf(buf + len, " pid=%ld",
4159 				l->min_pid);
4160 
4161 		if (num_online_cpus() > 1 &&
4162 				!cpumask_empty(to_cpumask(l->cpus)) &&
4163 				len < PAGE_SIZE - 60)
4164 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4165 					 " cpus=%*pbl",
4166 					 cpumask_pr_args(to_cpumask(l->cpus)));
4167 
4168 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4169 				len < PAGE_SIZE - 60)
4170 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4171 					 " nodes=%*pbl",
4172 					 nodemask_pr_args(&l->nodes));
4173 
4174 		len += sprintf(buf + len, "\n");
4175 	}
4176 
4177 	free_loc_track(&t);
4178 	kfree(map);
4179 	if (!t.count)
4180 		len += sprintf(buf, "No data\n");
4181 	return len;
4182 }
4183 #endif
4184 
4185 #ifdef SLUB_RESILIENCY_TEST
4186 static void __init resiliency_test(void)
4187 {
4188 	u8 *p;
4189 
4190 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4191 
4192 	pr_err("SLUB resiliency testing\n");
4193 	pr_err("-----------------------\n");
4194 	pr_err("A. Corruption after allocation\n");
4195 
4196 	p = kzalloc(16, GFP_KERNEL);
4197 	p[16] = 0x12;
4198 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4199 	       p + 16);
4200 
4201 	validate_slab_cache(kmalloc_caches[4]);
4202 
4203 	/* Hmmm... The next two are dangerous */
4204 	p = kzalloc(32, GFP_KERNEL);
4205 	p[32 + sizeof(void *)] = 0x34;
4206 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4207 	       p);
4208 	pr_err("If allocated object is overwritten then not detectable\n\n");
4209 
4210 	validate_slab_cache(kmalloc_caches[5]);
4211 	p = kzalloc(64, GFP_KERNEL);
4212 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4213 	*p = 0x56;
4214 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4215 	       p);
4216 	pr_err("If allocated object is overwritten then not detectable\n\n");
4217 	validate_slab_cache(kmalloc_caches[6]);
4218 
4219 	pr_err("\nB. Corruption after free\n");
4220 	p = kzalloc(128, GFP_KERNEL);
4221 	kfree(p);
4222 	*p = 0x78;
4223 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4224 	validate_slab_cache(kmalloc_caches[7]);
4225 
4226 	p = kzalloc(256, GFP_KERNEL);
4227 	kfree(p);
4228 	p[50] = 0x9a;
4229 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4230 	validate_slab_cache(kmalloc_caches[8]);
4231 
4232 	p = kzalloc(512, GFP_KERNEL);
4233 	kfree(p);
4234 	p[512] = 0xab;
4235 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4236 	validate_slab_cache(kmalloc_caches[9]);
4237 }
4238 #else
4239 #ifdef CONFIG_SYSFS
4240 static void resiliency_test(void) {};
4241 #endif
4242 #endif
4243 
4244 #ifdef CONFIG_SYSFS
4245 enum slab_stat_type {
4246 	SL_ALL,			/* All slabs */
4247 	SL_PARTIAL,		/* Only partially allocated slabs */
4248 	SL_CPU,			/* Only slabs used for cpu caches */
4249 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4250 	SL_TOTAL		/* Determine object capacity not slabs */
4251 };
4252 
4253 #define SO_ALL		(1 << SL_ALL)
4254 #define SO_PARTIAL	(1 << SL_PARTIAL)
4255 #define SO_CPU		(1 << SL_CPU)
4256 #define SO_OBJECTS	(1 << SL_OBJECTS)
4257 #define SO_TOTAL	(1 << SL_TOTAL)
4258 
4259 static ssize_t show_slab_objects(struct kmem_cache *s,
4260 			    char *buf, unsigned long flags)
4261 {
4262 	unsigned long total = 0;
4263 	int node;
4264 	int x;
4265 	unsigned long *nodes;
4266 
4267 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4268 	if (!nodes)
4269 		return -ENOMEM;
4270 
4271 	if (flags & SO_CPU) {
4272 		int cpu;
4273 
4274 		for_each_possible_cpu(cpu) {
4275 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4276 							       cpu);
4277 			int node;
4278 			struct page *page;
4279 
4280 			page = ACCESS_ONCE(c->page);
4281 			if (!page)
4282 				continue;
4283 
4284 			node = page_to_nid(page);
4285 			if (flags & SO_TOTAL)
4286 				x = page->objects;
4287 			else if (flags & SO_OBJECTS)
4288 				x = page->inuse;
4289 			else
4290 				x = 1;
4291 
4292 			total += x;
4293 			nodes[node] += x;
4294 
4295 			page = ACCESS_ONCE(c->partial);
4296 			if (page) {
4297 				node = page_to_nid(page);
4298 				if (flags & SO_TOTAL)
4299 					WARN_ON_ONCE(1);
4300 				else if (flags & SO_OBJECTS)
4301 					WARN_ON_ONCE(1);
4302 				else
4303 					x = page->pages;
4304 				total += x;
4305 				nodes[node] += x;
4306 			}
4307 		}
4308 	}
4309 
4310 	get_online_mems();
4311 #ifdef CONFIG_SLUB_DEBUG
4312 	if (flags & SO_ALL) {
4313 		struct kmem_cache_node *n;
4314 
4315 		for_each_kmem_cache_node(s, node, n) {
4316 
4317 			if (flags & SO_TOTAL)
4318 				x = atomic_long_read(&n->total_objects);
4319 			else if (flags & SO_OBJECTS)
4320 				x = atomic_long_read(&n->total_objects) -
4321 					count_partial(n, count_free);
4322 			else
4323 				x = atomic_long_read(&n->nr_slabs);
4324 			total += x;
4325 			nodes[node] += x;
4326 		}
4327 
4328 	} else
4329 #endif
4330 	if (flags & SO_PARTIAL) {
4331 		struct kmem_cache_node *n;
4332 
4333 		for_each_kmem_cache_node(s, node, n) {
4334 			if (flags & SO_TOTAL)
4335 				x = count_partial(n, count_total);
4336 			else if (flags & SO_OBJECTS)
4337 				x = count_partial(n, count_inuse);
4338 			else
4339 				x = n->nr_partial;
4340 			total += x;
4341 			nodes[node] += x;
4342 		}
4343 	}
4344 	x = sprintf(buf, "%lu", total);
4345 #ifdef CONFIG_NUMA
4346 	for (node = 0; node < nr_node_ids; node++)
4347 		if (nodes[node])
4348 			x += sprintf(buf + x, " N%d=%lu",
4349 					node, nodes[node]);
4350 #endif
4351 	put_online_mems();
4352 	kfree(nodes);
4353 	return x + sprintf(buf + x, "\n");
4354 }
4355 
4356 #ifdef CONFIG_SLUB_DEBUG
4357 static int any_slab_objects(struct kmem_cache *s)
4358 {
4359 	int node;
4360 	struct kmem_cache_node *n;
4361 
4362 	for_each_kmem_cache_node(s, node, n)
4363 		if (atomic_long_read(&n->total_objects))
4364 			return 1;
4365 
4366 	return 0;
4367 }
4368 #endif
4369 
4370 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4371 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4372 
4373 struct slab_attribute {
4374 	struct attribute attr;
4375 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4376 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4377 };
4378 
4379 #define SLAB_ATTR_RO(_name) \
4380 	static struct slab_attribute _name##_attr = \
4381 	__ATTR(_name, 0400, _name##_show, NULL)
4382 
4383 #define SLAB_ATTR(_name) \
4384 	static struct slab_attribute _name##_attr =  \
4385 	__ATTR(_name, 0600, _name##_show, _name##_store)
4386 
4387 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4388 {
4389 	return sprintf(buf, "%d\n", s->size);
4390 }
4391 SLAB_ATTR_RO(slab_size);
4392 
4393 static ssize_t align_show(struct kmem_cache *s, char *buf)
4394 {
4395 	return sprintf(buf, "%d\n", s->align);
4396 }
4397 SLAB_ATTR_RO(align);
4398 
4399 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4400 {
4401 	return sprintf(buf, "%d\n", s->object_size);
4402 }
4403 SLAB_ATTR_RO(object_size);
4404 
4405 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4406 {
4407 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4408 }
4409 SLAB_ATTR_RO(objs_per_slab);
4410 
4411 static ssize_t order_store(struct kmem_cache *s,
4412 				const char *buf, size_t length)
4413 {
4414 	unsigned long order;
4415 	int err;
4416 
4417 	err = kstrtoul(buf, 10, &order);
4418 	if (err)
4419 		return err;
4420 
4421 	if (order > slub_max_order || order < slub_min_order)
4422 		return -EINVAL;
4423 
4424 	calculate_sizes(s, order);
4425 	return length;
4426 }
4427 
4428 static ssize_t order_show(struct kmem_cache *s, char *buf)
4429 {
4430 	return sprintf(buf, "%d\n", oo_order(s->oo));
4431 }
4432 SLAB_ATTR(order);
4433 
4434 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4435 {
4436 	return sprintf(buf, "%lu\n", s->min_partial);
4437 }
4438 
4439 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4440 				 size_t length)
4441 {
4442 	unsigned long min;
4443 	int err;
4444 
4445 	err = kstrtoul(buf, 10, &min);
4446 	if (err)
4447 		return err;
4448 
4449 	set_min_partial(s, min);
4450 	return length;
4451 }
4452 SLAB_ATTR(min_partial);
4453 
4454 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4455 {
4456 	return sprintf(buf, "%u\n", s->cpu_partial);
4457 }
4458 
4459 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4460 				 size_t length)
4461 {
4462 	unsigned long objects;
4463 	int err;
4464 
4465 	err = kstrtoul(buf, 10, &objects);
4466 	if (err)
4467 		return err;
4468 	if (objects && !kmem_cache_has_cpu_partial(s))
4469 		return -EINVAL;
4470 
4471 	s->cpu_partial = objects;
4472 	flush_all(s);
4473 	return length;
4474 }
4475 SLAB_ATTR(cpu_partial);
4476 
4477 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4478 {
4479 	if (!s->ctor)
4480 		return 0;
4481 	return sprintf(buf, "%pS\n", s->ctor);
4482 }
4483 SLAB_ATTR_RO(ctor);
4484 
4485 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4486 {
4487 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4488 }
4489 SLAB_ATTR_RO(aliases);
4490 
4491 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4492 {
4493 	return show_slab_objects(s, buf, SO_PARTIAL);
4494 }
4495 SLAB_ATTR_RO(partial);
4496 
4497 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4498 {
4499 	return show_slab_objects(s, buf, SO_CPU);
4500 }
4501 SLAB_ATTR_RO(cpu_slabs);
4502 
4503 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4504 {
4505 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4506 }
4507 SLAB_ATTR_RO(objects);
4508 
4509 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4510 {
4511 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4512 }
4513 SLAB_ATTR_RO(objects_partial);
4514 
4515 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4516 {
4517 	int objects = 0;
4518 	int pages = 0;
4519 	int cpu;
4520 	int len;
4521 
4522 	for_each_online_cpu(cpu) {
4523 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4524 
4525 		if (page) {
4526 			pages += page->pages;
4527 			objects += page->pobjects;
4528 		}
4529 	}
4530 
4531 	len = sprintf(buf, "%d(%d)", objects, pages);
4532 
4533 #ifdef CONFIG_SMP
4534 	for_each_online_cpu(cpu) {
4535 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4536 
4537 		if (page && len < PAGE_SIZE - 20)
4538 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4539 				page->pobjects, page->pages);
4540 	}
4541 #endif
4542 	return len + sprintf(buf + len, "\n");
4543 }
4544 SLAB_ATTR_RO(slabs_cpu_partial);
4545 
4546 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4547 {
4548 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4549 }
4550 
4551 static ssize_t reclaim_account_store(struct kmem_cache *s,
4552 				const char *buf, size_t length)
4553 {
4554 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4555 	if (buf[0] == '1')
4556 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4557 	return length;
4558 }
4559 SLAB_ATTR(reclaim_account);
4560 
4561 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4562 {
4563 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4564 }
4565 SLAB_ATTR_RO(hwcache_align);
4566 
4567 #ifdef CONFIG_ZONE_DMA
4568 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4569 {
4570 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4571 }
4572 SLAB_ATTR_RO(cache_dma);
4573 #endif
4574 
4575 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4576 {
4577 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4578 }
4579 SLAB_ATTR_RO(destroy_by_rcu);
4580 
4581 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4582 {
4583 	return sprintf(buf, "%d\n", s->reserved);
4584 }
4585 SLAB_ATTR_RO(reserved);
4586 
4587 #ifdef CONFIG_SLUB_DEBUG
4588 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4589 {
4590 	return show_slab_objects(s, buf, SO_ALL);
4591 }
4592 SLAB_ATTR_RO(slabs);
4593 
4594 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4595 {
4596 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4597 }
4598 SLAB_ATTR_RO(total_objects);
4599 
4600 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4601 {
4602 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4603 }
4604 
4605 static ssize_t sanity_checks_store(struct kmem_cache *s,
4606 				const char *buf, size_t length)
4607 {
4608 	s->flags &= ~SLAB_DEBUG_FREE;
4609 	if (buf[0] == '1') {
4610 		s->flags &= ~__CMPXCHG_DOUBLE;
4611 		s->flags |= SLAB_DEBUG_FREE;
4612 	}
4613 	return length;
4614 }
4615 SLAB_ATTR(sanity_checks);
4616 
4617 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4618 {
4619 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4620 }
4621 
4622 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4623 							size_t length)
4624 {
4625 	/*
4626 	 * Tracing a merged cache is going to give confusing results
4627 	 * as well as cause other issues like converting a mergeable
4628 	 * cache into an umergeable one.
4629 	 */
4630 	if (s->refcount > 1)
4631 		return -EINVAL;
4632 
4633 	s->flags &= ~SLAB_TRACE;
4634 	if (buf[0] == '1') {
4635 		s->flags &= ~__CMPXCHG_DOUBLE;
4636 		s->flags |= SLAB_TRACE;
4637 	}
4638 	return length;
4639 }
4640 SLAB_ATTR(trace);
4641 
4642 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4643 {
4644 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4645 }
4646 
4647 static ssize_t red_zone_store(struct kmem_cache *s,
4648 				const char *buf, size_t length)
4649 {
4650 	if (any_slab_objects(s))
4651 		return -EBUSY;
4652 
4653 	s->flags &= ~SLAB_RED_ZONE;
4654 	if (buf[0] == '1') {
4655 		s->flags &= ~__CMPXCHG_DOUBLE;
4656 		s->flags |= SLAB_RED_ZONE;
4657 	}
4658 	calculate_sizes(s, -1);
4659 	return length;
4660 }
4661 SLAB_ATTR(red_zone);
4662 
4663 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4664 {
4665 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4666 }
4667 
4668 static ssize_t poison_store(struct kmem_cache *s,
4669 				const char *buf, size_t length)
4670 {
4671 	if (any_slab_objects(s))
4672 		return -EBUSY;
4673 
4674 	s->flags &= ~SLAB_POISON;
4675 	if (buf[0] == '1') {
4676 		s->flags &= ~__CMPXCHG_DOUBLE;
4677 		s->flags |= SLAB_POISON;
4678 	}
4679 	calculate_sizes(s, -1);
4680 	return length;
4681 }
4682 SLAB_ATTR(poison);
4683 
4684 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4685 {
4686 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4687 }
4688 
4689 static ssize_t store_user_store(struct kmem_cache *s,
4690 				const char *buf, size_t length)
4691 {
4692 	if (any_slab_objects(s))
4693 		return -EBUSY;
4694 
4695 	s->flags &= ~SLAB_STORE_USER;
4696 	if (buf[0] == '1') {
4697 		s->flags &= ~__CMPXCHG_DOUBLE;
4698 		s->flags |= SLAB_STORE_USER;
4699 	}
4700 	calculate_sizes(s, -1);
4701 	return length;
4702 }
4703 SLAB_ATTR(store_user);
4704 
4705 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4706 {
4707 	return 0;
4708 }
4709 
4710 static ssize_t validate_store(struct kmem_cache *s,
4711 			const char *buf, size_t length)
4712 {
4713 	int ret = -EINVAL;
4714 
4715 	if (buf[0] == '1') {
4716 		ret = validate_slab_cache(s);
4717 		if (ret >= 0)
4718 			ret = length;
4719 	}
4720 	return ret;
4721 }
4722 SLAB_ATTR(validate);
4723 
4724 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4725 {
4726 	if (!(s->flags & SLAB_STORE_USER))
4727 		return -ENOSYS;
4728 	return list_locations(s, buf, TRACK_ALLOC);
4729 }
4730 SLAB_ATTR_RO(alloc_calls);
4731 
4732 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4733 {
4734 	if (!(s->flags & SLAB_STORE_USER))
4735 		return -ENOSYS;
4736 	return list_locations(s, buf, TRACK_FREE);
4737 }
4738 SLAB_ATTR_RO(free_calls);
4739 #endif /* CONFIG_SLUB_DEBUG */
4740 
4741 #ifdef CONFIG_FAILSLAB
4742 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4743 {
4744 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4745 }
4746 
4747 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4748 							size_t length)
4749 {
4750 	if (s->refcount > 1)
4751 		return -EINVAL;
4752 
4753 	s->flags &= ~SLAB_FAILSLAB;
4754 	if (buf[0] == '1')
4755 		s->flags |= SLAB_FAILSLAB;
4756 	return length;
4757 }
4758 SLAB_ATTR(failslab);
4759 #endif
4760 
4761 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4762 {
4763 	return 0;
4764 }
4765 
4766 static ssize_t shrink_store(struct kmem_cache *s,
4767 			const char *buf, size_t length)
4768 {
4769 	if (buf[0] == '1')
4770 		kmem_cache_shrink(s);
4771 	else
4772 		return -EINVAL;
4773 	return length;
4774 }
4775 SLAB_ATTR(shrink);
4776 
4777 #ifdef CONFIG_NUMA
4778 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4779 {
4780 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4781 }
4782 
4783 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4784 				const char *buf, size_t length)
4785 {
4786 	unsigned long ratio;
4787 	int err;
4788 
4789 	err = kstrtoul(buf, 10, &ratio);
4790 	if (err)
4791 		return err;
4792 
4793 	if (ratio <= 100)
4794 		s->remote_node_defrag_ratio = ratio * 10;
4795 
4796 	return length;
4797 }
4798 SLAB_ATTR(remote_node_defrag_ratio);
4799 #endif
4800 
4801 #ifdef CONFIG_SLUB_STATS
4802 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4803 {
4804 	unsigned long sum  = 0;
4805 	int cpu;
4806 	int len;
4807 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4808 
4809 	if (!data)
4810 		return -ENOMEM;
4811 
4812 	for_each_online_cpu(cpu) {
4813 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4814 
4815 		data[cpu] = x;
4816 		sum += x;
4817 	}
4818 
4819 	len = sprintf(buf, "%lu", sum);
4820 
4821 #ifdef CONFIG_SMP
4822 	for_each_online_cpu(cpu) {
4823 		if (data[cpu] && len < PAGE_SIZE - 20)
4824 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4825 	}
4826 #endif
4827 	kfree(data);
4828 	return len + sprintf(buf + len, "\n");
4829 }
4830 
4831 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4832 {
4833 	int cpu;
4834 
4835 	for_each_online_cpu(cpu)
4836 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4837 }
4838 
4839 #define STAT_ATTR(si, text) 					\
4840 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4841 {								\
4842 	return show_stat(s, buf, si);				\
4843 }								\
4844 static ssize_t text##_store(struct kmem_cache *s,		\
4845 				const char *buf, size_t length)	\
4846 {								\
4847 	if (buf[0] != '0')					\
4848 		return -EINVAL;					\
4849 	clear_stat(s, si);					\
4850 	return length;						\
4851 }								\
4852 SLAB_ATTR(text);						\
4853 
4854 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4855 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4856 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4857 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4858 STAT_ATTR(FREE_FROZEN, free_frozen);
4859 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4860 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4861 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4862 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4863 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4864 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4865 STAT_ATTR(FREE_SLAB, free_slab);
4866 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4867 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4868 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4869 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4870 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4871 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4872 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4873 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4874 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4875 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4876 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4877 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4878 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4879 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4880 #endif
4881 
4882 static struct attribute *slab_attrs[] = {
4883 	&slab_size_attr.attr,
4884 	&object_size_attr.attr,
4885 	&objs_per_slab_attr.attr,
4886 	&order_attr.attr,
4887 	&min_partial_attr.attr,
4888 	&cpu_partial_attr.attr,
4889 	&objects_attr.attr,
4890 	&objects_partial_attr.attr,
4891 	&partial_attr.attr,
4892 	&cpu_slabs_attr.attr,
4893 	&ctor_attr.attr,
4894 	&aliases_attr.attr,
4895 	&align_attr.attr,
4896 	&hwcache_align_attr.attr,
4897 	&reclaim_account_attr.attr,
4898 	&destroy_by_rcu_attr.attr,
4899 	&shrink_attr.attr,
4900 	&reserved_attr.attr,
4901 	&slabs_cpu_partial_attr.attr,
4902 #ifdef CONFIG_SLUB_DEBUG
4903 	&total_objects_attr.attr,
4904 	&slabs_attr.attr,
4905 	&sanity_checks_attr.attr,
4906 	&trace_attr.attr,
4907 	&red_zone_attr.attr,
4908 	&poison_attr.attr,
4909 	&store_user_attr.attr,
4910 	&validate_attr.attr,
4911 	&alloc_calls_attr.attr,
4912 	&free_calls_attr.attr,
4913 #endif
4914 #ifdef CONFIG_ZONE_DMA
4915 	&cache_dma_attr.attr,
4916 #endif
4917 #ifdef CONFIG_NUMA
4918 	&remote_node_defrag_ratio_attr.attr,
4919 #endif
4920 #ifdef CONFIG_SLUB_STATS
4921 	&alloc_fastpath_attr.attr,
4922 	&alloc_slowpath_attr.attr,
4923 	&free_fastpath_attr.attr,
4924 	&free_slowpath_attr.attr,
4925 	&free_frozen_attr.attr,
4926 	&free_add_partial_attr.attr,
4927 	&free_remove_partial_attr.attr,
4928 	&alloc_from_partial_attr.attr,
4929 	&alloc_slab_attr.attr,
4930 	&alloc_refill_attr.attr,
4931 	&alloc_node_mismatch_attr.attr,
4932 	&free_slab_attr.attr,
4933 	&cpuslab_flush_attr.attr,
4934 	&deactivate_full_attr.attr,
4935 	&deactivate_empty_attr.attr,
4936 	&deactivate_to_head_attr.attr,
4937 	&deactivate_to_tail_attr.attr,
4938 	&deactivate_remote_frees_attr.attr,
4939 	&deactivate_bypass_attr.attr,
4940 	&order_fallback_attr.attr,
4941 	&cmpxchg_double_fail_attr.attr,
4942 	&cmpxchg_double_cpu_fail_attr.attr,
4943 	&cpu_partial_alloc_attr.attr,
4944 	&cpu_partial_free_attr.attr,
4945 	&cpu_partial_node_attr.attr,
4946 	&cpu_partial_drain_attr.attr,
4947 #endif
4948 #ifdef CONFIG_FAILSLAB
4949 	&failslab_attr.attr,
4950 #endif
4951 
4952 	NULL
4953 };
4954 
4955 static struct attribute_group slab_attr_group = {
4956 	.attrs = slab_attrs,
4957 };
4958 
4959 static ssize_t slab_attr_show(struct kobject *kobj,
4960 				struct attribute *attr,
4961 				char *buf)
4962 {
4963 	struct slab_attribute *attribute;
4964 	struct kmem_cache *s;
4965 	int err;
4966 
4967 	attribute = to_slab_attr(attr);
4968 	s = to_slab(kobj);
4969 
4970 	if (!attribute->show)
4971 		return -EIO;
4972 
4973 	err = attribute->show(s, buf);
4974 
4975 	return err;
4976 }
4977 
4978 static ssize_t slab_attr_store(struct kobject *kobj,
4979 				struct attribute *attr,
4980 				const char *buf, size_t len)
4981 {
4982 	struct slab_attribute *attribute;
4983 	struct kmem_cache *s;
4984 	int err;
4985 
4986 	attribute = to_slab_attr(attr);
4987 	s = to_slab(kobj);
4988 
4989 	if (!attribute->store)
4990 		return -EIO;
4991 
4992 	err = attribute->store(s, buf, len);
4993 #ifdef CONFIG_MEMCG_KMEM
4994 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4995 		struct kmem_cache *c;
4996 
4997 		mutex_lock(&slab_mutex);
4998 		if (s->max_attr_size < len)
4999 			s->max_attr_size = len;
5000 
5001 		/*
5002 		 * This is a best effort propagation, so this function's return
5003 		 * value will be determined by the parent cache only. This is
5004 		 * basically because not all attributes will have a well
5005 		 * defined semantics for rollbacks - most of the actions will
5006 		 * have permanent effects.
5007 		 *
5008 		 * Returning the error value of any of the children that fail
5009 		 * is not 100 % defined, in the sense that users seeing the
5010 		 * error code won't be able to know anything about the state of
5011 		 * the cache.
5012 		 *
5013 		 * Only returning the error code for the parent cache at least
5014 		 * has well defined semantics. The cache being written to
5015 		 * directly either failed or succeeded, in which case we loop
5016 		 * through the descendants with best-effort propagation.
5017 		 */
5018 		for_each_memcg_cache(c, s)
5019 			attribute->store(c, buf, len);
5020 		mutex_unlock(&slab_mutex);
5021 	}
5022 #endif
5023 	return err;
5024 }
5025 
5026 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5027 {
5028 #ifdef CONFIG_MEMCG_KMEM
5029 	int i;
5030 	char *buffer = NULL;
5031 	struct kmem_cache *root_cache;
5032 
5033 	if (is_root_cache(s))
5034 		return;
5035 
5036 	root_cache = s->memcg_params.root_cache;
5037 
5038 	/*
5039 	 * This mean this cache had no attribute written. Therefore, no point
5040 	 * in copying default values around
5041 	 */
5042 	if (!root_cache->max_attr_size)
5043 		return;
5044 
5045 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5046 		char mbuf[64];
5047 		char *buf;
5048 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5049 
5050 		if (!attr || !attr->store || !attr->show)
5051 			continue;
5052 
5053 		/*
5054 		 * It is really bad that we have to allocate here, so we will
5055 		 * do it only as a fallback. If we actually allocate, though,
5056 		 * we can just use the allocated buffer until the end.
5057 		 *
5058 		 * Most of the slub attributes will tend to be very small in
5059 		 * size, but sysfs allows buffers up to a page, so they can
5060 		 * theoretically happen.
5061 		 */
5062 		if (buffer)
5063 			buf = buffer;
5064 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5065 			buf = mbuf;
5066 		else {
5067 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5068 			if (WARN_ON(!buffer))
5069 				continue;
5070 			buf = buffer;
5071 		}
5072 
5073 		attr->show(root_cache, buf);
5074 		attr->store(s, buf, strlen(buf));
5075 	}
5076 
5077 	if (buffer)
5078 		free_page((unsigned long)buffer);
5079 #endif
5080 }
5081 
5082 static void kmem_cache_release(struct kobject *k)
5083 {
5084 	slab_kmem_cache_release(to_slab(k));
5085 }
5086 
5087 static const struct sysfs_ops slab_sysfs_ops = {
5088 	.show = slab_attr_show,
5089 	.store = slab_attr_store,
5090 };
5091 
5092 static struct kobj_type slab_ktype = {
5093 	.sysfs_ops = &slab_sysfs_ops,
5094 	.release = kmem_cache_release,
5095 };
5096 
5097 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5098 {
5099 	struct kobj_type *ktype = get_ktype(kobj);
5100 
5101 	if (ktype == &slab_ktype)
5102 		return 1;
5103 	return 0;
5104 }
5105 
5106 static const struct kset_uevent_ops slab_uevent_ops = {
5107 	.filter = uevent_filter,
5108 };
5109 
5110 static struct kset *slab_kset;
5111 
5112 static inline struct kset *cache_kset(struct kmem_cache *s)
5113 {
5114 #ifdef CONFIG_MEMCG_KMEM
5115 	if (!is_root_cache(s))
5116 		return s->memcg_params.root_cache->memcg_kset;
5117 #endif
5118 	return slab_kset;
5119 }
5120 
5121 #define ID_STR_LENGTH 64
5122 
5123 /* Create a unique string id for a slab cache:
5124  *
5125  * Format	:[flags-]size
5126  */
5127 static char *create_unique_id(struct kmem_cache *s)
5128 {
5129 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5130 	char *p = name;
5131 
5132 	BUG_ON(!name);
5133 
5134 	*p++ = ':';
5135 	/*
5136 	 * First flags affecting slabcache operations. We will only
5137 	 * get here for aliasable slabs so we do not need to support
5138 	 * too many flags. The flags here must cover all flags that
5139 	 * are matched during merging to guarantee that the id is
5140 	 * unique.
5141 	 */
5142 	if (s->flags & SLAB_CACHE_DMA)
5143 		*p++ = 'd';
5144 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5145 		*p++ = 'a';
5146 	if (s->flags & SLAB_DEBUG_FREE)
5147 		*p++ = 'F';
5148 	if (!(s->flags & SLAB_NOTRACK))
5149 		*p++ = 't';
5150 	if (p != name + 1)
5151 		*p++ = '-';
5152 	p += sprintf(p, "%07d", s->size);
5153 
5154 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5155 	return name;
5156 }
5157 
5158 static int sysfs_slab_add(struct kmem_cache *s)
5159 {
5160 	int err;
5161 	const char *name;
5162 	int unmergeable = slab_unmergeable(s);
5163 
5164 	if (unmergeable) {
5165 		/*
5166 		 * Slabcache can never be merged so we can use the name proper.
5167 		 * This is typically the case for debug situations. In that
5168 		 * case we can catch duplicate names easily.
5169 		 */
5170 		sysfs_remove_link(&slab_kset->kobj, s->name);
5171 		name = s->name;
5172 	} else {
5173 		/*
5174 		 * Create a unique name for the slab as a target
5175 		 * for the symlinks.
5176 		 */
5177 		name = create_unique_id(s);
5178 	}
5179 
5180 	s->kobj.kset = cache_kset(s);
5181 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5182 	if (err)
5183 		goto out_put_kobj;
5184 
5185 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5186 	if (err)
5187 		goto out_del_kobj;
5188 
5189 #ifdef CONFIG_MEMCG_KMEM
5190 	if (is_root_cache(s)) {
5191 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5192 		if (!s->memcg_kset) {
5193 			err = -ENOMEM;
5194 			goto out_del_kobj;
5195 		}
5196 	}
5197 #endif
5198 
5199 	kobject_uevent(&s->kobj, KOBJ_ADD);
5200 	if (!unmergeable) {
5201 		/* Setup first alias */
5202 		sysfs_slab_alias(s, s->name);
5203 	}
5204 out:
5205 	if (!unmergeable)
5206 		kfree(name);
5207 	return err;
5208 out_del_kobj:
5209 	kobject_del(&s->kobj);
5210 out_put_kobj:
5211 	kobject_put(&s->kobj);
5212 	goto out;
5213 }
5214 
5215 void sysfs_slab_remove(struct kmem_cache *s)
5216 {
5217 	if (slab_state < FULL)
5218 		/*
5219 		 * Sysfs has not been setup yet so no need to remove the
5220 		 * cache from sysfs.
5221 		 */
5222 		return;
5223 
5224 #ifdef CONFIG_MEMCG_KMEM
5225 	kset_unregister(s->memcg_kset);
5226 #endif
5227 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5228 	kobject_del(&s->kobj);
5229 	kobject_put(&s->kobj);
5230 }
5231 
5232 /*
5233  * Need to buffer aliases during bootup until sysfs becomes
5234  * available lest we lose that information.
5235  */
5236 struct saved_alias {
5237 	struct kmem_cache *s;
5238 	const char *name;
5239 	struct saved_alias *next;
5240 };
5241 
5242 static struct saved_alias *alias_list;
5243 
5244 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5245 {
5246 	struct saved_alias *al;
5247 
5248 	if (slab_state == FULL) {
5249 		/*
5250 		 * If we have a leftover link then remove it.
5251 		 */
5252 		sysfs_remove_link(&slab_kset->kobj, name);
5253 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5254 	}
5255 
5256 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5257 	if (!al)
5258 		return -ENOMEM;
5259 
5260 	al->s = s;
5261 	al->name = name;
5262 	al->next = alias_list;
5263 	alias_list = al;
5264 	return 0;
5265 }
5266 
5267 static int __init slab_sysfs_init(void)
5268 {
5269 	struct kmem_cache *s;
5270 	int err;
5271 
5272 	mutex_lock(&slab_mutex);
5273 
5274 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5275 	if (!slab_kset) {
5276 		mutex_unlock(&slab_mutex);
5277 		pr_err("Cannot register slab subsystem.\n");
5278 		return -ENOSYS;
5279 	}
5280 
5281 	slab_state = FULL;
5282 
5283 	list_for_each_entry(s, &slab_caches, list) {
5284 		err = sysfs_slab_add(s);
5285 		if (err)
5286 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5287 			       s->name);
5288 	}
5289 
5290 	while (alias_list) {
5291 		struct saved_alias *al = alias_list;
5292 
5293 		alias_list = alias_list->next;
5294 		err = sysfs_slab_alias(al->s, al->name);
5295 		if (err)
5296 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5297 			       al->name);
5298 		kfree(al);
5299 	}
5300 
5301 	mutex_unlock(&slab_mutex);
5302 	resiliency_test();
5303 	return 0;
5304 }
5305 
5306 __initcall(slab_sysfs_init);
5307 #endif /* CONFIG_SYSFS */
5308 
5309 /*
5310  * The /proc/slabinfo ABI
5311  */
5312 #ifdef CONFIG_SLABINFO
5313 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5314 {
5315 	unsigned long nr_slabs = 0;
5316 	unsigned long nr_objs = 0;
5317 	unsigned long nr_free = 0;
5318 	int node;
5319 	struct kmem_cache_node *n;
5320 
5321 	for_each_kmem_cache_node(s, node, n) {
5322 		nr_slabs += node_nr_slabs(n);
5323 		nr_objs += node_nr_objs(n);
5324 		nr_free += count_partial(n, count_free);
5325 	}
5326 
5327 	sinfo->active_objs = nr_objs - nr_free;
5328 	sinfo->num_objs = nr_objs;
5329 	sinfo->active_slabs = nr_slabs;
5330 	sinfo->num_slabs = nr_slabs;
5331 	sinfo->objects_per_slab = oo_objects(s->oo);
5332 	sinfo->cache_order = oo_order(s->oo);
5333 }
5334 
5335 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5336 {
5337 }
5338 
5339 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5340 		       size_t count, loff_t *ppos)
5341 {
5342 	return -EIO;
5343 }
5344 #endif /* CONFIG_SLABINFO */
5345