xref: /openbmc/linux/mm/slub.c (revision 8b030a57)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list. The processor that froze the slab is the one who can
62  *   perform list operations on the page. Other processors may put objects
63  *   onto the freelist but the processor that froze the slab is the only
64  *   one that can retrieve the objects from the page's freelist.
65  *
66  *   The list_lock protects the partial and full list on each node and
67  *   the partial slab counter. If taken then no new slabs may be added or
68  *   removed from the lists nor make the number of partial slabs be modified.
69  *   (Note that the total number of slabs is an atomic value that may be
70  *   modified without taking the list lock).
71  *
72  *   The list_lock is a centralized lock and thus we avoid taking it as
73  *   much as possible. As long as SLUB does not have to handle partial
74  *   slabs, operations can continue without any centralized lock. F.e.
75  *   allocating a long series of objects that fill up slabs does not require
76  *   the list lock.
77  *   Interrupts are disabled during allocation and deallocation in order to
78  *   make the slab allocator safe to use in the context of an irq. In addition
79  *   interrupts are disabled to ensure that the processor does not change
80  *   while handling per_cpu slabs, due to kernel preemption.
81  *
82  * SLUB assigns one slab for allocation to each processor.
83  * Allocations only occur from these slabs called cpu slabs.
84  *
85  * Slabs with free elements are kept on a partial list and during regular
86  * operations no list for full slabs is used. If an object in a full slab is
87  * freed then the slab will show up again on the partial lists.
88  * We track full slabs for debugging purposes though because otherwise we
89  * cannot scan all objects.
90  *
91  * Slabs are freed when they become empty. Teardown and setup is
92  * minimal so we rely on the page allocators per cpu caches for
93  * fast frees and allocs.
94  *
95  * Overloading of page flags that are otherwise used for LRU management.
96  *
97  * PageActive 		The slab is frozen and exempt from list processing.
98  * 			This means that the slab is dedicated to a purpose
99  * 			such as satisfying allocations for a specific
100  * 			processor. Objects may be freed in the slab while
101  * 			it is frozen but slab_free will then skip the usual
102  * 			list operations. It is up to the processor holding
103  * 			the slab to integrate the slab into the slab lists
104  * 			when the slab is no longer needed.
105  *
106  * 			One use of this flag is to mark slabs that are
107  * 			used for allocations. Then such a slab becomes a cpu
108  * 			slab. The cpu slab may be equipped with an additional
109  * 			freelist that allows lockless access to
110  * 			free objects in addition to the regular freelist
111  * 			that requires the slab lock.
112  *
113  * PageError		Slab requires special handling due to debug
114  * 			options set. This moves	slab handling out of
115  * 			the fast path and disables lockless freelists.
116  */
117 
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 	return 0;
124 #endif
125 }
126 
127 void *fixup_red_left(struct kmem_cache *s, void *p)
128 {
129 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 		p += s->red_left_pad;
131 
132 	return p;
133 }
134 
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136 {
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 	return !kmem_cache_debug(s);
139 #else
140 	return false;
141 #endif
142 }
143 
144 /*
145  * Issues still to be resolved:
146  *
147  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148  *
149  * - Variable sizing of the per node arrays
150  */
151 
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
154 
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
157 
158 /*
159  * Mininum number of partial slabs. These will be left on the partial
160  * lists even if they are empty. kmem_cache_shrink may reclaim them.
161  */
162 #define MIN_PARTIAL 5
163 
164 /*
165  * Maximum number of desirable partial slabs.
166  * The existence of more partial slabs makes kmem_cache_shrink
167  * sort the partial list by the number of objects in use.
168  */
169 #define MAX_PARTIAL 10
170 
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 				SLAB_POISON | SLAB_STORE_USER)
173 
174 /*
175  * These debug flags cannot use CMPXCHG because there might be consistency
176  * issues when checking or reading debug information
177  */
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 				SLAB_TRACE)
180 
181 
182 /*
183  * Debugging flags that require metadata to be stored in the slab.  These get
184  * disabled when slub_debug=O is used and a cache's min order increases with
185  * metadata.
186  */
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188 
189 #define OO_SHIFT	16
190 #define OO_MASK		((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
192 
193 /* Internal SLUB flags */
194 /* Poison object */
195 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
196 /* Use cmpxchg_double */
197 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
198 
199 /*
200  * Tracking user of a slab.
201  */
202 #define TRACK_ADDRS_COUNT 16
203 struct track {
204 	unsigned long addr;	/* Called from address */
205 #ifdef CONFIG_STACKTRACE
206 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
207 #endif
208 	int cpu;		/* Was running on cpu */
209 	int pid;		/* Pid context */
210 	unsigned long when;	/* When did the operation occur */
211 };
212 
213 enum track_item { TRACK_ALLOC, TRACK_FREE };
214 
215 #ifdef CONFIG_SYSFS
216 static int sysfs_slab_add(struct kmem_cache *);
217 static int sysfs_slab_alias(struct kmem_cache *, const char *);
218 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
219 static void sysfs_slab_remove(struct kmem_cache *s);
220 #else
221 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
222 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
223 							{ return 0; }
224 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
225 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
226 #endif
227 
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 	/*
232 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 	 * avoid this_cpu_add()'s irq-disable overhead.
234 	 */
235 	raw_cpu_inc(s->cpu_slab->stat[si]);
236 #endif
237 }
238 
239 /********************************************************************
240  * 			Core slab cache functions
241  *******************************************************************/
242 
243 /*
244  * Returns freelist pointer (ptr). With hardening, this is obfuscated
245  * with an XOR of the address where the pointer is held and a per-cache
246  * random number.
247  */
248 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
249 				 unsigned long ptr_addr)
250 {
251 #ifdef CONFIG_SLAB_FREELIST_HARDENED
252 	/*
253 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
254 	 * Normally, this doesn't cause any issues, as both set_freepointer()
255 	 * and get_freepointer() are called with a pointer with the same tag.
256 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
257 	 * example, when __free_slub() iterates over objects in a cache, it
258 	 * passes untagged pointers to check_object(). check_object() in turns
259 	 * calls get_freepointer() with an untagged pointer, which causes the
260 	 * freepointer to be restored incorrectly.
261 	 */
262 	return (void *)((unsigned long)ptr ^ s->random ^
263 			(unsigned long)kasan_reset_tag((void *)ptr_addr));
264 #else
265 	return ptr;
266 #endif
267 }
268 
269 /* Returns the freelist pointer recorded at location ptr_addr. */
270 static inline void *freelist_dereference(const struct kmem_cache *s,
271 					 void *ptr_addr)
272 {
273 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
274 			    (unsigned long)ptr_addr);
275 }
276 
277 static inline void *get_freepointer(struct kmem_cache *s, void *object)
278 {
279 	return freelist_dereference(s, object + s->offset);
280 }
281 
282 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
283 {
284 	prefetch(object + s->offset);
285 }
286 
287 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
288 {
289 	unsigned long freepointer_addr;
290 	void *p;
291 
292 	if (!debug_pagealloc_enabled())
293 		return get_freepointer(s, object);
294 
295 	freepointer_addr = (unsigned long)object + s->offset;
296 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
297 	return freelist_ptr(s, p, freepointer_addr);
298 }
299 
300 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301 {
302 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
303 
304 #ifdef CONFIG_SLAB_FREELIST_HARDENED
305 	BUG_ON(object == fp); /* naive detection of double free or corruption */
306 #endif
307 
308 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
309 }
310 
311 /* Loop over all objects in a slab */
312 #define for_each_object(__p, __s, __addr, __objects) \
313 	for (__p = fixup_red_left(__s, __addr); \
314 		__p < (__addr) + (__objects) * (__s)->size; \
315 		__p += (__s)->size)
316 
317 /* Determine object index from a given position */
318 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
319 {
320 	return (kasan_reset_tag(p) - addr) / s->size;
321 }
322 
323 static inline unsigned int order_objects(unsigned int order, unsigned int size)
324 {
325 	return ((unsigned int)PAGE_SIZE << order) / size;
326 }
327 
328 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
329 		unsigned int size)
330 {
331 	struct kmem_cache_order_objects x = {
332 		(order << OO_SHIFT) + order_objects(order, size)
333 	};
334 
335 	return x;
336 }
337 
338 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
339 {
340 	return x.x >> OO_SHIFT;
341 }
342 
343 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
344 {
345 	return x.x & OO_MASK;
346 }
347 
348 /*
349  * Per slab locking using the pagelock
350  */
351 static __always_inline void slab_lock(struct page *page)
352 {
353 	VM_BUG_ON_PAGE(PageTail(page), page);
354 	bit_spin_lock(PG_locked, &page->flags);
355 }
356 
357 static __always_inline void slab_unlock(struct page *page)
358 {
359 	VM_BUG_ON_PAGE(PageTail(page), page);
360 	__bit_spin_unlock(PG_locked, &page->flags);
361 }
362 
363 /* Interrupts must be disabled (for the fallback code to work right) */
364 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
365 		void *freelist_old, unsigned long counters_old,
366 		void *freelist_new, unsigned long counters_new,
367 		const char *n)
368 {
369 	VM_BUG_ON(!irqs_disabled());
370 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
371     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
372 	if (s->flags & __CMPXCHG_DOUBLE) {
373 		if (cmpxchg_double(&page->freelist, &page->counters,
374 				   freelist_old, counters_old,
375 				   freelist_new, counters_new))
376 			return true;
377 	} else
378 #endif
379 	{
380 		slab_lock(page);
381 		if (page->freelist == freelist_old &&
382 					page->counters == counters_old) {
383 			page->freelist = freelist_new;
384 			page->counters = counters_new;
385 			slab_unlock(page);
386 			return true;
387 		}
388 		slab_unlock(page);
389 	}
390 
391 	cpu_relax();
392 	stat(s, CMPXCHG_DOUBLE_FAIL);
393 
394 #ifdef SLUB_DEBUG_CMPXCHG
395 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
396 #endif
397 
398 	return false;
399 }
400 
401 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
402 		void *freelist_old, unsigned long counters_old,
403 		void *freelist_new, unsigned long counters_new,
404 		const char *n)
405 {
406 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
407     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
408 	if (s->flags & __CMPXCHG_DOUBLE) {
409 		if (cmpxchg_double(&page->freelist, &page->counters,
410 				   freelist_old, counters_old,
411 				   freelist_new, counters_new))
412 			return true;
413 	} else
414 #endif
415 	{
416 		unsigned long flags;
417 
418 		local_irq_save(flags);
419 		slab_lock(page);
420 		if (page->freelist == freelist_old &&
421 					page->counters == counters_old) {
422 			page->freelist = freelist_new;
423 			page->counters = counters_new;
424 			slab_unlock(page);
425 			local_irq_restore(flags);
426 			return true;
427 		}
428 		slab_unlock(page);
429 		local_irq_restore(flags);
430 	}
431 
432 	cpu_relax();
433 	stat(s, CMPXCHG_DOUBLE_FAIL);
434 
435 #ifdef SLUB_DEBUG_CMPXCHG
436 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
437 #endif
438 
439 	return false;
440 }
441 
442 #ifdef CONFIG_SLUB_DEBUG
443 /*
444  * Determine a map of object in use on a page.
445  *
446  * Node listlock must be held to guarantee that the page does
447  * not vanish from under us.
448  */
449 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
450 {
451 	void *p;
452 	void *addr = page_address(page);
453 
454 	for (p = page->freelist; p; p = get_freepointer(s, p))
455 		set_bit(slab_index(p, s, addr), map);
456 }
457 
458 static inline unsigned int size_from_object(struct kmem_cache *s)
459 {
460 	if (s->flags & SLAB_RED_ZONE)
461 		return s->size - s->red_left_pad;
462 
463 	return s->size;
464 }
465 
466 static inline void *restore_red_left(struct kmem_cache *s, void *p)
467 {
468 	if (s->flags & SLAB_RED_ZONE)
469 		p -= s->red_left_pad;
470 
471 	return p;
472 }
473 
474 /*
475  * Debug settings:
476  */
477 #if defined(CONFIG_SLUB_DEBUG_ON)
478 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
479 #else
480 static slab_flags_t slub_debug;
481 #endif
482 
483 static char *slub_debug_slabs;
484 static int disable_higher_order_debug;
485 
486 /*
487  * slub is about to manipulate internal object metadata.  This memory lies
488  * outside the range of the allocated object, so accessing it would normally
489  * be reported by kasan as a bounds error.  metadata_access_enable() is used
490  * to tell kasan that these accesses are OK.
491  */
492 static inline void metadata_access_enable(void)
493 {
494 	kasan_disable_current();
495 }
496 
497 static inline void metadata_access_disable(void)
498 {
499 	kasan_enable_current();
500 }
501 
502 /*
503  * Object debugging
504  */
505 
506 /* Verify that a pointer has an address that is valid within a slab page */
507 static inline int check_valid_pointer(struct kmem_cache *s,
508 				struct page *page, void *object)
509 {
510 	void *base;
511 
512 	if (!object)
513 		return 1;
514 
515 	base = page_address(page);
516 	object = kasan_reset_tag(object);
517 	object = restore_red_left(s, object);
518 	if (object < base || object >= base + page->objects * s->size ||
519 		(object - base) % s->size) {
520 		return 0;
521 	}
522 
523 	return 1;
524 }
525 
526 static void print_section(char *level, char *text, u8 *addr,
527 			  unsigned int length)
528 {
529 	metadata_access_enable();
530 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
531 			length, 1);
532 	metadata_access_disable();
533 }
534 
535 static struct track *get_track(struct kmem_cache *s, void *object,
536 	enum track_item alloc)
537 {
538 	struct track *p;
539 
540 	if (s->offset)
541 		p = object + s->offset + sizeof(void *);
542 	else
543 		p = object + s->inuse;
544 
545 	return p + alloc;
546 }
547 
548 static void set_track(struct kmem_cache *s, void *object,
549 			enum track_item alloc, unsigned long addr)
550 {
551 	struct track *p = get_track(s, object, alloc);
552 
553 	if (addr) {
554 #ifdef CONFIG_STACKTRACE
555 		struct stack_trace trace;
556 		int i;
557 
558 		trace.nr_entries = 0;
559 		trace.max_entries = TRACK_ADDRS_COUNT;
560 		trace.entries = p->addrs;
561 		trace.skip = 3;
562 		metadata_access_enable();
563 		save_stack_trace(&trace);
564 		metadata_access_disable();
565 
566 		/* See rant in lockdep.c */
567 		if (trace.nr_entries != 0 &&
568 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
569 			trace.nr_entries--;
570 
571 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
572 			p->addrs[i] = 0;
573 #endif
574 		p->addr = addr;
575 		p->cpu = smp_processor_id();
576 		p->pid = current->pid;
577 		p->when = jiffies;
578 	} else
579 		memset(p, 0, sizeof(struct track));
580 }
581 
582 static void init_tracking(struct kmem_cache *s, void *object)
583 {
584 	if (!(s->flags & SLAB_STORE_USER))
585 		return;
586 
587 	set_track(s, object, TRACK_FREE, 0UL);
588 	set_track(s, object, TRACK_ALLOC, 0UL);
589 }
590 
591 static void print_track(const char *s, struct track *t, unsigned long pr_time)
592 {
593 	if (!t->addr)
594 		return;
595 
596 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
597 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
598 #ifdef CONFIG_STACKTRACE
599 	{
600 		int i;
601 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
602 			if (t->addrs[i])
603 				pr_err("\t%pS\n", (void *)t->addrs[i]);
604 			else
605 				break;
606 	}
607 #endif
608 }
609 
610 static void print_tracking(struct kmem_cache *s, void *object)
611 {
612 	unsigned long pr_time = jiffies;
613 	if (!(s->flags & SLAB_STORE_USER))
614 		return;
615 
616 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
617 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
618 }
619 
620 static void print_page_info(struct page *page)
621 {
622 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
623 	       page, page->objects, page->inuse, page->freelist, page->flags);
624 
625 }
626 
627 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
628 {
629 	struct va_format vaf;
630 	va_list args;
631 
632 	va_start(args, fmt);
633 	vaf.fmt = fmt;
634 	vaf.va = &args;
635 	pr_err("=============================================================================\n");
636 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
637 	pr_err("-----------------------------------------------------------------------------\n\n");
638 
639 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
640 	va_end(args);
641 }
642 
643 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
644 {
645 	struct va_format vaf;
646 	va_list args;
647 
648 	va_start(args, fmt);
649 	vaf.fmt = fmt;
650 	vaf.va = &args;
651 	pr_err("FIX %s: %pV\n", s->name, &vaf);
652 	va_end(args);
653 }
654 
655 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
656 {
657 	unsigned int off;	/* Offset of last byte */
658 	u8 *addr = page_address(page);
659 
660 	print_tracking(s, p);
661 
662 	print_page_info(page);
663 
664 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
665 	       p, p - addr, get_freepointer(s, p));
666 
667 	if (s->flags & SLAB_RED_ZONE)
668 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
669 			      s->red_left_pad);
670 	else if (p > addr + 16)
671 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
672 
673 	print_section(KERN_ERR, "Object ", p,
674 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
675 	if (s->flags & SLAB_RED_ZONE)
676 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
677 			s->inuse - s->object_size);
678 
679 	if (s->offset)
680 		off = s->offset + sizeof(void *);
681 	else
682 		off = s->inuse;
683 
684 	if (s->flags & SLAB_STORE_USER)
685 		off += 2 * sizeof(struct track);
686 
687 	off += kasan_metadata_size(s);
688 
689 	if (off != size_from_object(s))
690 		/* Beginning of the filler is the free pointer */
691 		print_section(KERN_ERR, "Padding ", p + off,
692 			      size_from_object(s) - off);
693 
694 	dump_stack();
695 }
696 
697 void object_err(struct kmem_cache *s, struct page *page,
698 			u8 *object, char *reason)
699 {
700 	slab_bug(s, "%s", reason);
701 	print_trailer(s, page, object);
702 }
703 
704 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
705 			const char *fmt, ...)
706 {
707 	va_list args;
708 	char buf[100];
709 
710 	va_start(args, fmt);
711 	vsnprintf(buf, sizeof(buf), fmt, args);
712 	va_end(args);
713 	slab_bug(s, "%s", buf);
714 	print_page_info(page);
715 	dump_stack();
716 }
717 
718 static void init_object(struct kmem_cache *s, void *object, u8 val)
719 {
720 	u8 *p = object;
721 
722 	if (s->flags & SLAB_RED_ZONE)
723 		memset(p - s->red_left_pad, val, s->red_left_pad);
724 
725 	if (s->flags & __OBJECT_POISON) {
726 		memset(p, POISON_FREE, s->object_size - 1);
727 		p[s->object_size - 1] = POISON_END;
728 	}
729 
730 	if (s->flags & SLAB_RED_ZONE)
731 		memset(p + s->object_size, val, s->inuse - s->object_size);
732 }
733 
734 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
735 						void *from, void *to)
736 {
737 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
738 	memset(from, data, to - from);
739 }
740 
741 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
742 			u8 *object, char *what,
743 			u8 *start, unsigned int value, unsigned int bytes)
744 {
745 	u8 *fault;
746 	u8 *end;
747 
748 	metadata_access_enable();
749 	fault = memchr_inv(start, value, bytes);
750 	metadata_access_disable();
751 	if (!fault)
752 		return 1;
753 
754 	end = start + bytes;
755 	while (end > fault && end[-1] == value)
756 		end--;
757 
758 	slab_bug(s, "%s overwritten", what);
759 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
760 					fault, end - 1, fault[0], value);
761 	print_trailer(s, page, object);
762 
763 	restore_bytes(s, what, value, fault, end);
764 	return 0;
765 }
766 
767 /*
768  * Object layout:
769  *
770  * object address
771  * 	Bytes of the object to be managed.
772  * 	If the freepointer may overlay the object then the free
773  * 	pointer is the first word of the object.
774  *
775  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
776  * 	0xa5 (POISON_END)
777  *
778  * object + s->object_size
779  * 	Padding to reach word boundary. This is also used for Redzoning.
780  * 	Padding is extended by another word if Redzoning is enabled and
781  * 	object_size == inuse.
782  *
783  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
784  * 	0xcc (RED_ACTIVE) for objects in use.
785  *
786  * object + s->inuse
787  * 	Meta data starts here.
788  *
789  * 	A. Free pointer (if we cannot overwrite object on free)
790  * 	B. Tracking data for SLAB_STORE_USER
791  * 	C. Padding to reach required alignment boundary or at mininum
792  * 		one word if debugging is on to be able to detect writes
793  * 		before the word boundary.
794  *
795  *	Padding is done using 0x5a (POISON_INUSE)
796  *
797  * object + s->size
798  * 	Nothing is used beyond s->size.
799  *
800  * If slabcaches are merged then the object_size and inuse boundaries are mostly
801  * ignored. And therefore no slab options that rely on these boundaries
802  * may be used with merged slabcaches.
803  */
804 
805 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
806 {
807 	unsigned long off = s->inuse;	/* The end of info */
808 
809 	if (s->offset)
810 		/* Freepointer is placed after the object. */
811 		off += sizeof(void *);
812 
813 	if (s->flags & SLAB_STORE_USER)
814 		/* We also have user information there */
815 		off += 2 * sizeof(struct track);
816 
817 	off += kasan_metadata_size(s);
818 
819 	if (size_from_object(s) == off)
820 		return 1;
821 
822 	return check_bytes_and_report(s, page, p, "Object padding",
823 			p + off, POISON_INUSE, size_from_object(s) - off);
824 }
825 
826 /* Check the pad bytes at the end of a slab page */
827 static int slab_pad_check(struct kmem_cache *s, struct page *page)
828 {
829 	u8 *start;
830 	u8 *fault;
831 	u8 *end;
832 	u8 *pad;
833 	int length;
834 	int remainder;
835 
836 	if (!(s->flags & SLAB_POISON))
837 		return 1;
838 
839 	start = page_address(page);
840 	length = PAGE_SIZE << compound_order(page);
841 	end = start + length;
842 	remainder = length % s->size;
843 	if (!remainder)
844 		return 1;
845 
846 	pad = end - remainder;
847 	metadata_access_enable();
848 	fault = memchr_inv(pad, POISON_INUSE, remainder);
849 	metadata_access_disable();
850 	if (!fault)
851 		return 1;
852 	while (end > fault && end[-1] == POISON_INUSE)
853 		end--;
854 
855 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
856 	print_section(KERN_ERR, "Padding ", pad, remainder);
857 
858 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
859 	return 0;
860 }
861 
862 static int check_object(struct kmem_cache *s, struct page *page,
863 					void *object, u8 val)
864 {
865 	u8 *p = object;
866 	u8 *endobject = object + s->object_size;
867 
868 	if (s->flags & SLAB_RED_ZONE) {
869 		if (!check_bytes_and_report(s, page, object, "Redzone",
870 			object - s->red_left_pad, val, s->red_left_pad))
871 			return 0;
872 
873 		if (!check_bytes_and_report(s, page, object, "Redzone",
874 			endobject, val, s->inuse - s->object_size))
875 			return 0;
876 	} else {
877 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
878 			check_bytes_and_report(s, page, p, "Alignment padding",
879 				endobject, POISON_INUSE,
880 				s->inuse - s->object_size);
881 		}
882 	}
883 
884 	if (s->flags & SLAB_POISON) {
885 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
886 			(!check_bytes_and_report(s, page, p, "Poison", p,
887 					POISON_FREE, s->object_size - 1) ||
888 			 !check_bytes_and_report(s, page, p, "Poison",
889 				p + s->object_size - 1, POISON_END, 1)))
890 			return 0;
891 		/*
892 		 * check_pad_bytes cleans up on its own.
893 		 */
894 		check_pad_bytes(s, page, p);
895 	}
896 
897 	if (!s->offset && val == SLUB_RED_ACTIVE)
898 		/*
899 		 * Object and freepointer overlap. Cannot check
900 		 * freepointer while object is allocated.
901 		 */
902 		return 1;
903 
904 	/* Check free pointer validity */
905 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
906 		object_err(s, page, p, "Freepointer corrupt");
907 		/*
908 		 * No choice but to zap it and thus lose the remainder
909 		 * of the free objects in this slab. May cause
910 		 * another error because the object count is now wrong.
911 		 */
912 		set_freepointer(s, p, NULL);
913 		return 0;
914 	}
915 	return 1;
916 }
917 
918 static int check_slab(struct kmem_cache *s, struct page *page)
919 {
920 	int maxobj;
921 
922 	VM_BUG_ON(!irqs_disabled());
923 
924 	if (!PageSlab(page)) {
925 		slab_err(s, page, "Not a valid slab page");
926 		return 0;
927 	}
928 
929 	maxobj = order_objects(compound_order(page), s->size);
930 	if (page->objects > maxobj) {
931 		slab_err(s, page, "objects %u > max %u",
932 			page->objects, maxobj);
933 		return 0;
934 	}
935 	if (page->inuse > page->objects) {
936 		slab_err(s, page, "inuse %u > max %u",
937 			page->inuse, page->objects);
938 		return 0;
939 	}
940 	/* Slab_pad_check fixes things up after itself */
941 	slab_pad_check(s, page);
942 	return 1;
943 }
944 
945 /*
946  * Determine if a certain object on a page is on the freelist. Must hold the
947  * slab lock to guarantee that the chains are in a consistent state.
948  */
949 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
950 {
951 	int nr = 0;
952 	void *fp;
953 	void *object = NULL;
954 	int max_objects;
955 
956 	fp = page->freelist;
957 	while (fp && nr <= page->objects) {
958 		if (fp == search)
959 			return 1;
960 		if (!check_valid_pointer(s, page, fp)) {
961 			if (object) {
962 				object_err(s, page, object,
963 					"Freechain corrupt");
964 				set_freepointer(s, object, NULL);
965 			} else {
966 				slab_err(s, page, "Freepointer corrupt");
967 				page->freelist = NULL;
968 				page->inuse = page->objects;
969 				slab_fix(s, "Freelist cleared");
970 				return 0;
971 			}
972 			break;
973 		}
974 		object = fp;
975 		fp = get_freepointer(s, object);
976 		nr++;
977 	}
978 
979 	max_objects = order_objects(compound_order(page), s->size);
980 	if (max_objects > MAX_OBJS_PER_PAGE)
981 		max_objects = MAX_OBJS_PER_PAGE;
982 
983 	if (page->objects != max_objects) {
984 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
985 			 page->objects, max_objects);
986 		page->objects = max_objects;
987 		slab_fix(s, "Number of objects adjusted.");
988 	}
989 	if (page->inuse != page->objects - nr) {
990 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
991 			 page->inuse, page->objects - nr);
992 		page->inuse = page->objects - nr;
993 		slab_fix(s, "Object count adjusted.");
994 	}
995 	return search == NULL;
996 }
997 
998 static void trace(struct kmem_cache *s, struct page *page, void *object,
999 								int alloc)
1000 {
1001 	if (s->flags & SLAB_TRACE) {
1002 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1003 			s->name,
1004 			alloc ? "alloc" : "free",
1005 			object, page->inuse,
1006 			page->freelist);
1007 
1008 		if (!alloc)
1009 			print_section(KERN_INFO, "Object ", (void *)object,
1010 					s->object_size);
1011 
1012 		dump_stack();
1013 	}
1014 }
1015 
1016 /*
1017  * Tracking of fully allocated slabs for debugging purposes.
1018  */
1019 static void add_full(struct kmem_cache *s,
1020 	struct kmem_cache_node *n, struct page *page)
1021 {
1022 	if (!(s->flags & SLAB_STORE_USER))
1023 		return;
1024 
1025 	lockdep_assert_held(&n->list_lock);
1026 	list_add(&page->lru, &n->full);
1027 }
1028 
1029 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1030 {
1031 	if (!(s->flags & SLAB_STORE_USER))
1032 		return;
1033 
1034 	lockdep_assert_held(&n->list_lock);
1035 	list_del(&page->lru);
1036 }
1037 
1038 /* Tracking of the number of slabs for debugging purposes */
1039 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1040 {
1041 	struct kmem_cache_node *n = get_node(s, node);
1042 
1043 	return atomic_long_read(&n->nr_slabs);
1044 }
1045 
1046 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1047 {
1048 	return atomic_long_read(&n->nr_slabs);
1049 }
1050 
1051 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1052 {
1053 	struct kmem_cache_node *n = get_node(s, node);
1054 
1055 	/*
1056 	 * May be called early in order to allocate a slab for the
1057 	 * kmem_cache_node structure. Solve the chicken-egg
1058 	 * dilemma by deferring the increment of the count during
1059 	 * bootstrap (see early_kmem_cache_node_alloc).
1060 	 */
1061 	if (likely(n)) {
1062 		atomic_long_inc(&n->nr_slabs);
1063 		atomic_long_add(objects, &n->total_objects);
1064 	}
1065 }
1066 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1067 {
1068 	struct kmem_cache_node *n = get_node(s, node);
1069 
1070 	atomic_long_dec(&n->nr_slabs);
1071 	atomic_long_sub(objects, &n->total_objects);
1072 }
1073 
1074 /* Object debug checks for alloc/free paths */
1075 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1076 								void *object)
1077 {
1078 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1079 		return;
1080 
1081 	init_object(s, object, SLUB_RED_INACTIVE);
1082 	init_tracking(s, object);
1083 }
1084 
1085 static void setup_page_debug(struct kmem_cache *s, void *addr, int order)
1086 {
1087 	if (!(s->flags & SLAB_POISON))
1088 		return;
1089 
1090 	metadata_access_enable();
1091 	memset(addr, POISON_INUSE, PAGE_SIZE << order);
1092 	metadata_access_disable();
1093 }
1094 
1095 static inline int alloc_consistency_checks(struct kmem_cache *s,
1096 					struct page *page,
1097 					void *object, unsigned long addr)
1098 {
1099 	if (!check_slab(s, page))
1100 		return 0;
1101 
1102 	if (!check_valid_pointer(s, page, object)) {
1103 		object_err(s, page, object, "Freelist Pointer check fails");
1104 		return 0;
1105 	}
1106 
1107 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1108 		return 0;
1109 
1110 	return 1;
1111 }
1112 
1113 static noinline int alloc_debug_processing(struct kmem_cache *s,
1114 					struct page *page,
1115 					void *object, unsigned long addr)
1116 {
1117 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1118 		if (!alloc_consistency_checks(s, page, object, addr))
1119 			goto bad;
1120 	}
1121 
1122 	/* Success perform special debug activities for allocs */
1123 	if (s->flags & SLAB_STORE_USER)
1124 		set_track(s, object, TRACK_ALLOC, addr);
1125 	trace(s, page, object, 1);
1126 	init_object(s, object, SLUB_RED_ACTIVE);
1127 	return 1;
1128 
1129 bad:
1130 	if (PageSlab(page)) {
1131 		/*
1132 		 * If this is a slab page then lets do the best we can
1133 		 * to avoid issues in the future. Marking all objects
1134 		 * as used avoids touching the remaining objects.
1135 		 */
1136 		slab_fix(s, "Marking all objects used");
1137 		page->inuse = page->objects;
1138 		page->freelist = NULL;
1139 	}
1140 	return 0;
1141 }
1142 
1143 static inline int free_consistency_checks(struct kmem_cache *s,
1144 		struct page *page, void *object, unsigned long addr)
1145 {
1146 	if (!check_valid_pointer(s, page, object)) {
1147 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1148 		return 0;
1149 	}
1150 
1151 	if (on_freelist(s, page, object)) {
1152 		object_err(s, page, object, "Object already free");
1153 		return 0;
1154 	}
1155 
1156 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1157 		return 0;
1158 
1159 	if (unlikely(s != page->slab_cache)) {
1160 		if (!PageSlab(page)) {
1161 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1162 				 object);
1163 		} else if (!page->slab_cache) {
1164 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1165 			       object);
1166 			dump_stack();
1167 		} else
1168 			object_err(s, page, object,
1169 					"page slab pointer corrupt.");
1170 		return 0;
1171 	}
1172 	return 1;
1173 }
1174 
1175 /* Supports checking bulk free of a constructed freelist */
1176 static noinline int free_debug_processing(
1177 	struct kmem_cache *s, struct page *page,
1178 	void *head, void *tail, int bulk_cnt,
1179 	unsigned long addr)
1180 {
1181 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1182 	void *object = head;
1183 	int cnt = 0;
1184 	unsigned long uninitialized_var(flags);
1185 	int ret = 0;
1186 
1187 	spin_lock_irqsave(&n->list_lock, flags);
1188 	slab_lock(page);
1189 
1190 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1191 		if (!check_slab(s, page))
1192 			goto out;
1193 	}
1194 
1195 next_object:
1196 	cnt++;
1197 
1198 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1199 		if (!free_consistency_checks(s, page, object, addr))
1200 			goto out;
1201 	}
1202 
1203 	if (s->flags & SLAB_STORE_USER)
1204 		set_track(s, object, TRACK_FREE, addr);
1205 	trace(s, page, object, 0);
1206 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1207 	init_object(s, object, SLUB_RED_INACTIVE);
1208 
1209 	/* Reached end of constructed freelist yet? */
1210 	if (object != tail) {
1211 		object = get_freepointer(s, object);
1212 		goto next_object;
1213 	}
1214 	ret = 1;
1215 
1216 out:
1217 	if (cnt != bulk_cnt)
1218 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1219 			 bulk_cnt, cnt);
1220 
1221 	slab_unlock(page);
1222 	spin_unlock_irqrestore(&n->list_lock, flags);
1223 	if (!ret)
1224 		slab_fix(s, "Object at 0x%p not freed", object);
1225 	return ret;
1226 }
1227 
1228 static int __init setup_slub_debug(char *str)
1229 {
1230 	slub_debug = DEBUG_DEFAULT_FLAGS;
1231 	if (*str++ != '=' || !*str)
1232 		/*
1233 		 * No options specified. Switch on full debugging.
1234 		 */
1235 		goto out;
1236 
1237 	if (*str == ',')
1238 		/*
1239 		 * No options but restriction on slabs. This means full
1240 		 * debugging for slabs matching a pattern.
1241 		 */
1242 		goto check_slabs;
1243 
1244 	slub_debug = 0;
1245 	if (*str == '-')
1246 		/*
1247 		 * Switch off all debugging measures.
1248 		 */
1249 		goto out;
1250 
1251 	/*
1252 	 * Determine which debug features should be switched on
1253 	 */
1254 	for (; *str && *str != ','; str++) {
1255 		switch (tolower(*str)) {
1256 		case 'f':
1257 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1258 			break;
1259 		case 'z':
1260 			slub_debug |= SLAB_RED_ZONE;
1261 			break;
1262 		case 'p':
1263 			slub_debug |= SLAB_POISON;
1264 			break;
1265 		case 'u':
1266 			slub_debug |= SLAB_STORE_USER;
1267 			break;
1268 		case 't':
1269 			slub_debug |= SLAB_TRACE;
1270 			break;
1271 		case 'a':
1272 			slub_debug |= SLAB_FAILSLAB;
1273 			break;
1274 		case 'o':
1275 			/*
1276 			 * Avoid enabling debugging on caches if its minimum
1277 			 * order would increase as a result.
1278 			 */
1279 			disable_higher_order_debug = 1;
1280 			break;
1281 		default:
1282 			pr_err("slub_debug option '%c' unknown. skipped\n",
1283 			       *str);
1284 		}
1285 	}
1286 
1287 check_slabs:
1288 	if (*str == ',')
1289 		slub_debug_slabs = str + 1;
1290 out:
1291 	return 1;
1292 }
1293 
1294 __setup("slub_debug", setup_slub_debug);
1295 
1296 /*
1297  * kmem_cache_flags - apply debugging options to the cache
1298  * @object_size:	the size of an object without meta data
1299  * @flags:		flags to set
1300  * @name:		name of the cache
1301  * @ctor:		constructor function
1302  *
1303  * Debug option(s) are applied to @flags. In addition to the debug
1304  * option(s), if a slab name (or multiple) is specified i.e.
1305  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1306  * then only the select slabs will receive the debug option(s).
1307  */
1308 slab_flags_t kmem_cache_flags(unsigned int object_size,
1309 	slab_flags_t flags, const char *name,
1310 	void (*ctor)(void *))
1311 {
1312 	char *iter;
1313 	size_t len;
1314 
1315 	/* If slub_debug = 0, it folds into the if conditional. */
1316 	if (!slub_debug_slabs)
1317 		return flags | slub_debug;
1318 
1319 	len = strlen(name);
1320 	iter = slub_debug_slabs;
1321 	while (*iter) {
1322 		char *end, *glob;
1323 		size_t cmplen;
1324 
1325 		end = strchr(iter, ',');
1326 		if (!end)
1327 			end = iter + strlen(iter);
1328 
1329 		glob = strnchr(iter, end - iter, '*');
1330 		if (glob)
1331 			cmplen = glob - iter;
1332 		else
1333 			cmplen = max_t(size_t, len, (end - iter));
1334 
1335 		if (!strncmp(name, iter, cmplen)) {
1336 			flags |= slub_debug;
1337 			break;
1338 		}
1339 
1340 		if (!*end)
1341 			break;
1342 		iter = end + 1;
1343 	}
1344 
1345 	return flags;
1346 }
1347 #else /* !CONFIG_SLUB_DEBUG */
1348 static inline void setup_object_debug(struct kmem_cache *s,
1349 			struct page *page, void *object) {}
1350 static inline void setup_page_debug(struct kmem_cache *s,
1351 			void *addr, int order) {}
1352 
1353 static inline int alloc_debug_processing(struct kmem_cache *s,
1354 	struct page *page, void *object, unsigned long addr) { return 0; }
1355 
1356 static inline int free_debug_processing(
1357 	struct kmem_cache *s, struct page *page,
1358 	void *head, void *tail, int bulk_cnt,
1359 	unsigned long addr) { return 0; }
1360 
1361 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1362 			{ return 1; }
1363 static inline int check_object(struct kmem_cache *s, struct page *page,
1364 			void *object, u8 val) { return 1; }
1365 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1366 					struct page *page) {}
1367 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1368 					struct page *page) {}
1369 slab_flags_t kmem_cache_flags(unsigned int object_size,
1370 	slab_flags_t flags, const char *name,
1371 	void (*ctor)(void *))
1372 {
1373 	return flags;
1374 }
1375 #define slub_debug 0
1376 
1377 #define disable_higher_order_debug 0
1378 
1379 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1380 							{ return 0; }
1381 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1382 							{ return 0; }
1383 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1384 							int objects) {}
1385 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1386 							int objects) {}
1387 
1388 #endif /* CONFIG_SLUB_DEBUG */
1389 
1390 /*
1391  * Hooks for other subsystems that check memory allocations. In a typical
1392  * production configuration these hooks all should produce no code at all.
1393  */
1394 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1395 {
1396 	ptr = kasan_kmalloc_large(ptr, size, flags);
1397 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1398 	kmemleak_alloc(ptr, size, 1, flags);
1399 	return ptr;
1400 }
1401 
1402 static __always_inline void kfree_hook(void *x)
1403 {
1404 	kmemleak_free(x);
1405 	kasan_kfree_large(x, _RET_IP_);
1406 }
1407 
1408 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1409 {
1410 	kmemleak_free_recursive(x, s->flags);
1411 
1412 	/*
1413 	 * Trouble is that we may no longer disable interrupts in the fast path
1414 	 * So in order to make the debug calls that expect irqs to be
1415 	 * disabled we need to disable interrupts temporarily.
1416 	 */
1417 #ifdef CONFIG_LOCKDEP
1418 	{
1419 		unsigned long flags;
1420 
1421 		local_irq_save(flags);
1422 		debug_check_no_locks_freed(x, s->object_size);
1423 		local_irq_restore(flags);
1424 	}
1425 #endif
1426 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1427 		debug_check_no_obj_freed(x, s->object_size);
1428 
1429 	/* KASAN might put x into memory quarantine, delaying its reuse */
1430 	return kasan_slab_free(s, x, _RET_IP_);
1431 }
1432 
1433 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1434 					   void **head, void **tail)
1435 {
1436 /*
1437  * Compiler cannot detect this function can be removed if slab_free_hook()
1438  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1439  */
1440 #if defined(CONFIG_LOCKDEP)	||		\
1441 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1442 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1443 	defined(CONFIG_KASAN)
1444 
1445 	void *object;
1446 	void *next = *head;
1447 	void *old_tail = *tail ? *tail : *head;
1448 
1449 	/* Head and tail of the reconstructed freelist */
1450 	*head = NULL;
1451 	*tail = NULL;
1452 
1453 	do {
1454 		object = next;
1455 		next = get_freepointer(s, object);
1456 		/* If object's reuse doesn't have to be delayed */
1457 		if (!slab_free_hook(s, object)) {
1458 			/* Move object to the new freelist */
1459 			set_freepointer(s, object, *head);
1460 			*head = object;
1461 			if (!*tail)
1462 				*tail = object;
1463 		}
1464 	} while (object != old_tail);
1465 
1466 	if (*head == *tail)
1467 		*tail = NULL;
1468 
1469 	return *head != NULL;
1470 #else
1471 	return true;
1472 #endif
1473 }
1474 
1475 static void *setup_object(struct kmem_cache *s, struct page *page,
1476 				void *object)
1477 {
1478 	setup_object_debug(s, page, object);
1479 	object = kasan_init_slab_obj(s, object);
1480 	if (unlikely(s->ctor)) {
1481 		kasan_unpoison_object_data(s, object);
1482 		s->ctor(object);
1483 		kasan_poison_object_data(s, object);
1484 	}
1485 	return object;
1486 }
1487 
1488 /*
1489  * Slab allocation and freeing
1490  */
1491 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1492 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1493 {
1494 	struct page *page;
1495 	unsigned int order = oo_order(oo);
1496 
1497 	if (node == NUMA_NO_NODE)
1498 		page = alloc_pages(flags, order);
1499 	else
1500 		page = __alloc_pages_node(node, flags, order);
1501 
1502 	if (page && memcg_charge_slab(page, flags, order, s)) {
1503 		__free_pages(page, order);
1504 		page = NULL;
1505 	}
1506 
1507 	return page;
1508 }
1509 
1510 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1511 /* Pre-initialize the random sequence cache */
1512 static int init_cache_random_seq(struct kmem_cache *s)
1513 {
1514 	unsigned int count = oo_objects(s->oo);
1515 	int err;
1516 
1517 	/* Bailout if already initialised */
1518 	if (s->random_seq)
1519 		return 0;
1520 
1521 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1522 	if (err) {
1523 		pr_err("SLUB: Unable to initialize free list for %s\n",
1524 			s->name);
1525 		return err;
1526 	}
1527 
1528 	/* Transform to an offset on the set of pages */
1529 	if (s->random_seq) {
1530 		unsigned int i;
1531 
1532 		for (i = 0; i < count; i++)
1533 			s->random_seq[i] *= s->size;
1534 	}
1535 	return 0;
1536 }
1537 
1538 /* Initialize each random sequence freelist per cache */
1539 static void __init init_freelist_randomization(void)
1540 {
1541 	struct kmem_cache *s;
1542 
1543 	mutex_lock(&slab_mutex);
1544 
1545 	list_for_each_entry(s, &slab_caches, list)
1546 		init_cache_random_seq(s);
1547 
1548 	mutex_unlock(&slab_mutex);
1549 }
1550 
1551 /* Get the next entry on the pre-computed freelist randomized */
1552 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1553 				unsigned long *pos, void *start,
1554 				unsigned long page_limit,
1555 				unsigned long freelist_count)
1556 {
1557 	unsigned int idx;
1558 
1559 	/*
1560 	 * If the target page allocation failed, the number of objects on the
1561 	 * page might be smaller than the usual size defined by the cache.
1562 	 */
1563 	do {
1564 		idx = s->random_seq[*pos];
1565 		*pos += 1;
1566 		if (*pos >= freelist_count)
1567 			*pos = 0;
1568 	} while (unlikely(idx >= page_limit));
1569 
1570 	return (char *)start + idx;
1571 }
1572 
1573 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1574 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1575 {
1576 	void *start;
1577 	void *cur;
1578 	void *next;
1579 	unsigned long idx, pos, page_limit, freelist_count;
1580 
1581 	if (page->objects < 2 || !s->random_seq)
1582 		return false;
1583 
1584 	freelist_count = oo_objects(s->oo);
1585 	pos = get_random_int() % freelist_count;
1586 
1587 	page_limit = page->objects * s->size;
1588 	start = fixup_red_left(s, page_address(page));
1589 
1590 	/* First entry is used as the base of the freelist */
1591 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1592 				freelist_count);
1593 	cur = setup_object(s, page, cur);
1594 	page->freelist = cur;
1595 
1596 	for (idx = 1; idx < page->objects; idx++) {
1597 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1598 			freelist_count);
1599 		next = setup_object(s, page, next);
1600 		set_freepointer(s, cur, next);
1601 		cur = next;
1602 	}
1603 	set_freepointer(s, cur, NULL);
1604 
1605 	return true;
1606 }
1607 #else
1608 static inline int init_cache_random_seq(struct kmem_cache *s)
1609 {
1610 	return 0;
1611 }
1612 static inline void init_freelist_randomization(void) { }
1613 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1614 {
1615 	return false;
1616 }
1617 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1618 
1619 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1620 {
1621 	struct page *page;
1622 	struct kmem_cache_order_objects oo = s->oo;
1623 	gfp_t alloc_gfp;
1624 	void *start, *p, *next;
1625 	int idx, order;
1626 	bool shuffle;
1627 
1628 	flags &= gfp_allowed_mask;
1629 
1630 	if (gfpflags_allow_blocking(flags))
1631 		local_irq_enable();
1632 
1633 	flags |= s->allocflags;
1634 
1635 	/*
1636 	 * Let the initial higher-order allocation fail under memory pressure
1637 	 * so we fall-back to the minimum order allocation.
1638 	 */
1639 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1640 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1641 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1642 
1643 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1644 	if (unlikely(!page)) {
1645 		oo = s->min;
1646 		alloc_gfp = flags;
1647 		/*
1648 		 * Allocation may have failed due to fragmentation.
1649 		 * Try a lower order alloc if possible
1650 		 */
1651 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1652 		if (unlikely(!page))
1653 			goto out;
1654 		stat(s, ORDER_FALLBACK);
1655 	}
1656 
1657 	page->objects = oo_objects(oo);
1658 
1659 	order = compound_order(page);
1660 	page->slab_cache = s;
1661 	__SetPageSlab(page);
1662 	if (page_is_pfmemalloc(page))
1663 		SetPageSlabPfmemalloc(page);
1664 
1665 	kasan_poison_slab(page);
1666 
1667 	start = page_address(page);
1668 
1669 	setup_page_debug(s, start, order);
1670 
1671 	shuffle = shuffle_freelist(s, page);
1672 
1673 	if (!shuffle) {
1674 		start = fixup_red_left(s, start);
1675 		start = setup_object(s, page, start);
1676 		page->freelist = start;
1677 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1678 			next = p + s->size;
1679 			next = setup_object(s, page, next);
1680 			set_freepointer(s, p, next);
1681 			p = next;
1682 		}
1683 		set_freepointer(s, p, NULL);
1684 	}
1685 
1686 	page->inuse = page->objects;
1687 	page->frozen = 1;
1688 
1689 out:
1690 	if (gfpflags_allow_blocking(flags))
1691 		local_irq_disable();
1692 	if (!page)
1693 		return NULL;
1694 
1695 	mod_lruvec_page_state(page,
1696 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1697 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1698 		1 << oo_order(oo));
1699 
1700 	inc_slabs_node(s, page_to_nid(page), page->objects);
1701 
1702 	return page;
1703 }
1704 
1705 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1706 {
1707 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1708 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1709 		flags &= ~GFP_SLAB_BUG_MASK;
1710 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1711 				invalid_mask, &invalid_mask, flags, &flags);
1712 		dump_stack();
1713 	}
1714 
1715 	return allocate_slab(s,
1716 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1717 }
1718 
1719 static void __free_slab(struct kmem_cache *s, struct page *page)
1720 {
1721 	int order = compound_order(page);
1722 	int pages = 1 << order;
1723 
1724 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1725 		void *p;
1726 
1727 		slab_pad_check(s, page);
1728 		for_each_object(p, s, page_address(page),
1729 						page->objects)
1730 			check_object(s, page, p, SLUB_RED_INACTIVE);
1731 	}
1732 
1733 	mod_lruvec_page_state(page,
1734 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1735 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1736 		-pages);
1737 
1738 	__ClearPageSlabPfmemalloc(page);
1739 	__ClearPageSlab(page);
1740 
1741 	page->mapping = NULL;
1742 	if (current->reclaim_state)
1743 		current->reclaim_state->reclaimed_slab += pages;
1744 	memcg_uncharge_slab(page, order, s);
1745 	__free_pages(page, order);
1746 }
1747 
1748 static void rcu_free_slab(struct rcu_head *h)
1749 {
1750 	struct page *page = container_of(h, struct page, rcu_head);
1751 
1752 	__free_slab(page->slab_cache, page);
1753 }
1754 
1755 static void free_slab(struct kmem_cache *s, struct page *page)
1756 {
1757 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1758 		call_rcu(&page->rcu_head, rcu_free_slab);
1759 	} else
1760 		__free_slab(s, page);
1761 }
1762 
1763 static void discard_slab(struct kmem_cache *s, struct page *page)
1764 {
1765 	dec_slabs_node(s, page_to_nid(page), page->objects);
1766 	free_slab(s, page);
1767 }
1768 
1769 /*
1770  * Management of partially allocated slabs.
1771  */
1772 static inline void
1773 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1774 {
1775 	n->nr_partial++;
1776 	if (tail == DEACTIVATE_TO_TAIL)
1777 		list_add_tail(&page->lru, &n->partial);
1778 	else
1779 		list_add(&page->lru, &n->partial);
1780 }
1781 
1782 static inline void add_partial(struct kmem_cache_node *n,
1783 				struct page *page, int tail)
1784 {
1785 	lockdep_assert_held(&n->list_lock);
1786 	__add_partial(n, page, tail);
1787 }
1788 
1789 static inline void remove_partial(struct kmem_cache_node *n,
1790 					struct page *page)
1791 {
1792 	lockdep_assert_held(&n->list_lock);
1793 	list_del(&page->lru);
1794 	n->nr_partial--;
1795 }
1796 
1797 /*
1798  * Remove slab from the partial list, freeze it and
1799  * return the pointer to the freelist.
1800  *
1801  * Returns a list of objects or NULL if it fails.
1802  */
1803 static inline void *acquire_slab(struct kmem_cache *s,
1804 		struct kmem_cache_node *n, struct page *page,
1805 		int mode, int *objects)
1806 {
1807 	void *freelist;
1808 	unsigned long counters;
1809 	struct page new;
1810 
1811 	lockdep_assert_held(&n->list_lock);
1812 
1813 	/*
1814 	 * Zap the freelist and set the frozen bit.
1815 	 * The old freelist is the list of objects for the
1816 	 * per cpu allocation list.
1817 	 */
1818 	freelist = page->freelist;
1819 	counters = page->counters;
1820 	new.counters = counters;
1821 	*objects = new.objects - new.inuse;
1822 	if (mode) {
1823 		new.inuse = page->objects;
1824 		new.freelist = NULL;
1825 	} else {
1826 		new.freelist = freelist;
1827 	}
1828 
1829 	VM_BUG_ON(new.frozen);
1830 	new.frozen = 1;
1831 
1832 	if (!__cmpxchg_double_slab(s, page,
1833 			freelist, counters,
1834 			new.freelist, new.counters,
1835 			"acquire_slab"))
1836 		return NULL;
1837 
1838 	remove_partial(n, page);
1839 	WARN_ON(!freelist);
1840 	return freelist;
1841 }
1842 
1843 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1844 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1845 
1846 /*
1847  * Try to allocate a partial slab from a specific node.
1848  */
1849 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1850 				struct kmem_cache_cpu *c, gfp_t flags)
1851 {
1852 	struct page *page, *page2;
1853 	void *object = NULL;
1854 	unsigned int available = 0;
1855 	int objects;
1856 
1857 	/*
1858 	 * Racy check. If we mistakenly see no partial slabs then we
1859 	 * just allocate an empty slab. If we mistakenly try to get a
1860 	 * partial slab and there is none available then get_partials()
1861 	 * will return NULL.
1862 	 */
1863 	if (!n || !n->nr_partial)
1864 		return NULL;
1865 
1866 	spin_lock(&n->list_lock);
1867 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1868 		void *t;
1869 
1870 		if (!pfmemalloc_match(page, flags))
1871 			continue;
1872 
1873 		t = acquire_slab(s, n, page, object == NULL, &objects);
1874 		if (!t)
1875 			break;
1876 
1877 		available += objects;
1878 		if (!object) {
1879 			c->page = page;
1880 			stat(s, ALLOC_FROM_PARTIAL);
1881 			object = t;
1882 		} else {
1883 			put_cpu_partial(s, page, 0);
1884 			stat(s, CPU_PARTIAL_NODE);
1885 		}
1886 		if (!kmem_cache_has_cpu_partial(s)
1887 			|| available > slub_cpu_partial(s) / 2)
1888 			break;
1889 
1890 	}
1891 	spin_unlock(&n->list_lock);
1892 	return object;
1893 }
1894 
1895 /*
1896  * Get a page from somewhere. Search in increasing NUMA distances.
1897  */
1898 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1899 		struct kmem_cache_cpu *c)
1900 {
1901 #ifdef CONFIG_NUMA
1902 	struct zonelist *zonelist;
1903 	struct zoneref *z;
1904 	struct zone *zone;
1905 	enum zone_type high_zoneidx = gfp_zone(flags);
1906 	void *object;
1907 	unsigned int cpuset_mems_cookie;
1908 
1909 	/*
1910 	 * The defrag ratio allows a configuration of the tradeoffs between
1911 	 * inter node defragmentation and node local allocations. A lower
1912 	 * defrag_ratio increases the tendency to do local allocations
1913 	 * instead of attempting to obtain partial slabs from other nodes.
1914 	 *
1915 	 * If the defrag_ratio is set to 0 then kmalloc() always
1916 	 * returns node local objects. If the ratio is higher then kmalloc()
1917 	 * may return off node objects because partial slabs are obtained
1918 	 * from other nodes and filled up.
1919 	 *
1920 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1921 	 * (which makes defrag_ratio = 1000) then every (well almost)
1922 	 * allocation will first attempt to defrag slab caches on other nodes.
1923 	 * This means scanning over all nodes to look for partial slabs which
1924 	 * may be expensive if we do it every time we are trying to find a slab
1925 	 * with available objects.
1926 	 */
1927 	if (!s->remote_node_defrag_ratio ||
1928 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1929 		return NULL;
1930 
1931 	do {
1932 		cpuset_mems_cookie = read_mems_allowed_begin();
1933 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1934 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1935 			struct kmem_cache_node *n;
1936 
1937 			n = get_node(s, zone_to_nid(zone));
1938 
1939 			if (n && cpuset_zone_allowed(zone, flags) &&
1940 					n->nr_partial > s->min_partial) {
1941 				object = get_partial_node(s, n, c, flags);
1942 				if (object) {
1943 					/*
1944 					 * Don't check read_mems_allowed_retry()
1945 					 * here - if mems_allowed was updated in
1946 					 * parallel, that was a harmless race
1947 					 * between allocation and the cpuset
1948 					 * update
1949 					 */
1950 					return object;
1951 				}
1952 			}
1953 		}
1954 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1955 #endif
1956 	return NULL;
1957 }
1958 
1959 /*
1960  * Get a partial page, lock it and return it.
1961  */
1962 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1963 		struct kmem_cache_cpu *c)
1964 {
1965 	void *object;
1966 	int searchnode = node;
1967 
1968 	if (node == NUMA_NO_NODE)
1969 		searchnode = numa_mem_id();
1970 	else if (!node_present_pages(node))
1971 		searchnode = node_to_mem_node(node);
1972 
1973 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1974 	if (object || node != NUMA_NO_NODE)
1975 		return object;
1976 
1977 	return get_any_partial(s, flags, c);
1978 }
1979 
1980 #ifdef CONFIG_PREEMPT
1981 /*
1982  * Calculate the next globally unique transaction for disambiguiation
1983  * during cmpxchg. The transactions start with the cpu number and are then
1984  * incremented by CONFIG_NR_CPUS.
1985  */
1986 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1987 #else
1988 /*
1989  * No preemption supported therefore also no need to check for
1990  * different cpus.
1991  */
1992 #define TID_STEP 1
1993 #endif
1994 
1995 static inline unsigned long next_tid(unsigned long tid)
1996 {
1997 	return tid + TID_STEP;
1998 }
1999 
2000 static inline unsigned int tid_to_cpu(unsigned long tid)
2001 {
2002 	return tid % TID_STEP;
2003 }
2004 
2005 static inline unsigned long tid_to_event(unsigned long tid)
2006 {
2007 	return tid / TID_STEP;
2008 }
2009 
2010 static inline unsigned int init_tid(int cpu)
2011 {
2012 	return cpu;
2013 }
2014 
2015 static inline void note_cmpxchg_failure(const char *n,
2016 		const struct kmem_cache *s, unsigned long tid)
2017 {
2018 #ifdef SLUB_DEBUG_CMPXCHG
2019 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2020 
2021 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2022 
2023 #ifdef CONFIG_PREEMPT
2024 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2025 		pr_warn("due to cpu change %d -> %d\n",
2026 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2027 	else
2028 #endif
2029 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2030 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2031 			tid_to_event(tid), tid_to_event(actual_tid));
2032 	else
2033 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2034 			actual_tid, tid, next_tid(tid));
2035 #endif
2036 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2037 }
2038 
2039 static void init_kmem_cache_cpus(struct kmem_cache *s)
2040 {
2041 	int cpu;
2042 
2043 	for_each_possible_cpu(cpu)
2044 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2045 }
2046 
2047 /*
2048  * Remove the cpu slab
2049  */
2050 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2051 				void *freelist, struct kmem_cache_cpu *c)
2052 {
2053 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2054 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2055 	int lock = 0;
2056 	enum slab_modes l = M_NONE, m = M_NONE;
2057 	void *nextfree;
2058 	int tail = DEACTIVATE_TO_HEAD;
2059 	struct page new;
2060 	struct page old;
2061 
2062 	if (page->freelist) {
2063 		stat(s, DEACTIVATE_REMOTE_FREES);
2064 		tail = DEACTIVATE_TO_TAIL;
2065 	}
2066 
2067 	/*
2068 	 * Stage one: Free all available per cpu objects back
2069 	 * to the page freelist while it is still frozen. Leave the
2070 	 * last one.
2071 	 *
2072 	 * There is no need to take the list->lock because the page
2073 	 * is still frozen.
2074 	 */
2075 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2076 		void *prior;
2077 		unsigned long counters;
2078 
2079 		do {
2080 			prior = page->freelist;
2081 			counters = page->counters;
2082 			set_freepointer(s, freelist, prior);
2083 			new.counters = counters;
2084 			new.inuse--;
2085 			VM_BUG_ON(!new.frozen);
2086 
2087 		} while (!__cmpxchg_double_slab(s, page,
2088 			prior, counters,
2089 			freelist, new.counters,
2090 			"drain percpu freelist"));
2091 
2092 		freelist = nextfree;
2093 	}
2094 
2095 	/*
2096 	 * Stage two: Ensure that the page is unfrozen while the
2097 	 * list presence reflects the actual number of objects
2098 	 * during unfreeze.
2099 	 *
2100 	 * We setup the list membership and then perform a cmpxchg
2101 	 * with the count. If there is a mismatch then the page
2102 	 * is not unfrozen but the page is on the wrong list.
2103 	 *
2104 	 * Then we restart the process which may have to remove
2105 	 * the page from the list that we just put it on again
2106 	 * because the number of objects in the slab may have
2107 	 * changed.
2108 	 */
2109 redo:
2110 
2111 	old.freelist = page->freelist;
2112 	old.counters = page->counters;
2113 	VM_BUG_ON(!old.frozen);
2114 
2115 	/* Determine target state of the slab */
2116 	new.counters = old.counters;
2117 	if (freelist) {
2118 		new.inuse--;
2119 		set_freepointer(s, freelist, old.freelist);
2120 		new.freelist = freelist;
2121 	} else
2122 		new.freelist = old.freelist;
2123 
2124 	new.frozen = 0;
2125 
2126 	if (!new.inuse && n->nr_partial >= s->min_partial)
2127 		m = M_FREE;
2128 	else if (new.freelist) {
2129 		m = M_PARTIAL;
2130 		if (!lock) {
2131 			lock = 1;
2132 			/*
2133 			 * Taking the spinlock removes the possiblity
2134 			 * that acquire_slab() will see a slab page that
2135 			 * is frozen
2136 			 */
2137 			spin_lock(&n->list_lock);
2138 		}
2139 	} else {
2140 		m = M_FULL;
2141 		if (kmem_cache_debug(s) && !lock) {
2142 			lock = 1;
2143 			/*
2144 			 * This also ensures that the scanning of full
2145 			 * slabs from diagnostic functions will not see
2146 			 * any frozen slabs.
2147 			 */
2148 			spin_lock(&n->list_lock);
2149 		}
2150 	}
2151 
2152 	if (l != m) {
2153 		if (l == M_PARTIAL)
2154 			remove_partial(n, page);
2155 		else if (l == M_FULL)
2156 			remove_full(s, n, page);
2157 
2158 		if (m == M_PARTIAL)
2159 			add_partial(n, page, tail);
2160 		else if (m == M_FULL)
2161 			add_full(s, n, page);
2162 	}
2163 
2164 	l = m;
2165 	if (!__cmpxchg_double_slab(s, page,
2166 				old.freelist, old.counters,
2167 				new.freelist, new.counters,
2168 				"unfreezing slab"))
2169 		goto redo;
2170 
2171 	if (lock)
2172 		spin_unlock(&n->list_lock);
2173 
2174 	if (m == M_PARTIAL)
2175 		stat(s, tail);
2176 	else if (m == M_FULL)
2177 		stat(s, DEACTIVATE_FULL);
2178 	else if (m == M_FREE) {
2179 		stat(s, DEACTIVATE_EMPTY);
2180 		discard_slab(s, page);
2181 		stat(s, FREE_SLAB);
2182 	}
2183 
2184 	c->page = NULL;
2185 	c->freelist = NULL;
2186 }
2187 
2188 /*
2189  * Unfreeze all the cpu partial slabs.
2190  *
2191  * This function must be called with interrupts disabled
2192  * for the cpu using c (or some other guarantee must be there
2193  * to guarantee no concurrent accesses).
2194  */
2195 static void unfreeze_partials(struct kmem_cache *s,
2196 		struct kmem_cache_cpu *c)
2197 {
2198 #ifdef CONFIG_SLUB_CPU_PARTIAL
2199 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2200 	struct page *page, *discard_page = NULL;
2201 
2202 	while ((page = c->partial)) {
2203 		struct page new;
2204 		struct page old;
2205 
2206 		c->partial = page->next;
2207 
2208 		n2 = get_node(s, page_to_nid(page));
2209 		if (n != n2) {
2210 			if (n)
2211 				spin_unlock(&n->list_lock);
2212 
2213 			n = n2;
2214 			spin_lock(&n->list_lock);
2215 		}
2216 
2217 		do {
2218 
2219 			old.freelist = page->freelist;
2220 			old.counters = page->counters;
2221 			VM_BUG_ON(!old.frozen);
2222 
2223 			new.counters = old.counters;
2224 			new.freelist = old.freelist;
2225 
2226 			new.frozen = 0;
2227 
2228 		} while (!__cmpxchg_double_slab(s, page,
2229 				old.freelist, old.counters,
2230 				new.freelist, new.counters,
2231 				"unfreezing slab"));
2232 
2233 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2234 			page->next = discard_page;
2235 			discard_page = page;
2236 		} else {
2237 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2238 			stat(s, FREE_ADD_PARTIAL);
2239 		}
2240 	}
2241 
2242 	if (n)
2243 		spin_unlock(&n->list_lock);
2244 
2245 	while (discard_page) {
2246 		page = discard_page;
2247 		discard_page = discard_page->next;
2248 
2249 		stat(s, DEACTIVATE_EMPTY);
2250 		discard_slab(s, page);
2251 		stat(s, FREE_SLAB);
2252 	}
2253 #endif
2254 }
2255 
2256 /*
2257  * Put a page that was just frozen (in __slab_free) into a partial page
2258  * slot if available.
2259  *
2260  * If we did not find a slot then simply move all the partials to the
2261  * per node partial list.
2262  */
2263 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2264 {
2265 #ifdef CONFIG_SLUB_CPU_PARTIAL
2266 	struct page *oldpage;
2267 	int pages;
2268 	int pobjects;
2269 
2270 	preempt_disable();
2271 	do {
2272 		pages = 0;
2273 		pobjects = 0;
2274 		oldpage = this_cpu_read(s->cpu_slab->partial);
2275 
2276 		if (oldpage) {
2277 			pobjects = oldpage->pobjects;
2278 			pages = oldpage->pages;
2279 			if (drain && pobjects > s->cpu_partial) {
2280 				unsigned long flags;
2281 				/*
2282 				 * partial array is full. Move the existing
2283 				 * set to the per node partial list.
2284 				 */
2285 				local_irq_save(flags);
2286 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2287 				local_irq_restore(flags);
2288 				oldpage = NULL;
2289 				pobjects = 0;
2290 				pages = 0;
2291 				stat(s, CPU_PARTIAL_DRAIN);
2292 			}
2293 		}
2294 
2295 		pages++;
2296 		pobjects += page->objects - page->inuse;
2297 
2298 		page->pages = pages;
2299 		page->pobjects = pobjects;
2300 		page->next = oldpage;
2301 
2302 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2303 								!= oldpage);
2304 	if (unlikely(!s->cpu_partial)) {
2305 		unsigned long flags;
2306 
2307 		local_irq_save(flags);
2308 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2309 		local_irq_restore(flags);
2310 	}
2311 	preempt_enable();
2312 #endif
2313 }
2314 
2315 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2316 {
2317 	stat(s, CPUSLAB_FLUSH);
2318 	deactivate_slab(s, c->page, c->freelist, c);
2319 
2320 	c->tid = next_tid(c->tid);
2321 }
2322 
2323 /*
2324  * Flush cpu slab.
2325  *
2326  * Called from IPI handler with interrupts disabled.
2327  */
2328 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2329 {
2330 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2331 
2332 	if (c->page)
2333 		flush_slab(s, c);
2334 
2335 	unfreeze_partials(s, c);
2336 }
2337 
2338 static void flush_cpu_slab(void *d)
2339 {
2340 	struct kmem_cache *s = d;
2341 
2342 	__flush_cpu_slab(s, smp_processor_id());
2343 }
2344 
2345 static bool has_cpu_slab(int cpu, void *info)
2346 {
2347 	struct kmem_cache *s = info;
2348 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2349 
2350 	return c->page || slub_percpu_partial(c);
2351 }
2352 
2353 static void flush_all(struct kmem_cache *s)
2354 {
2355 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2356 }
2357 
2358 /*
2359  * Use the cpu notifier to insure that the cpu slabs are flushed when
2360  * necessary.
2361  */
2362 static int slub_cpu_dead(unsigned int cpu)
2363 {
2364 	struct kmem_cache *s;
2365 	unsigned long flags;
2366 
2367 	mutex_lock(&slab_mutex);
2368 	list_for_each_entry(s, &slab_caches, list) {
2369 		local_irq_save(flags);
2370 		__flush_cpu_slab(s, cpu);
2371 		local_irq_restore(flags);
2372 	}
2373 	mutex_unlock(&slab_mutex);
2374 	return 0;
2375 }
2376 
2377 /*
2378  * Check if the objects in a per cpu structure fit numa
2379  * locality expectations.
2380  */
2381 static inline int node_match(struct page *page, int node)
2382 {
2383 #ifdef CONFIG_NUMA
2384 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2385 		return 0;
2386 #endif
2387 	return 1;
2388 }
2389 
2390 #ifdef CONFIG_SLUB_DEBUG
2391 static int count_free(struct page *page)
2392 {
2393 	return page->objects - page->inuse;
2394 }
2395 
2396 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2397 {
2398 	return atomic_long_read(&n->total_objects);
2399 }
2400 #endif /* CONFIG_SLUB_DEBUG */
2401 
2402 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2403 static unsigned long count_partial(struct kmem_cache_node *n,
2404 					int (*get_count)(struct page *))
2405 {
2406 	unsigned long flags;
2407 	unsigned long x = 0;
2408 	struct page *page;
2409 
2410 	spin_lock_irqsave(&n->list_lock, flags);
2411 	list_for_each_entry(page, &n->partial, lru)
2412 		x += get_count(page);
2413 	spin_unlock_irqrestore(&n->list_lock, flags);
2414 	return x;
2415 }
2416 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2417 
2418 static noinline void
2419 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2420 {
2421 #ifdef CONFIG_SLUB_DEBUG
2422 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2423 				      DEFAULT_RATELIMIT_BURST);
2424 	int node;
2425 	struct kmem_cache_node *n;
2426 
2427 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2428 		return;
2429 
2430 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2431 		nid, gfpflags, &gfpflags);
2432 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2433 		s->name, s->object_size, s->size, oo_order(s->oo),
2434 		oo_order(s->min));
2435 
2436 	if (oo_order(s->min) > get_order(s->object_size))
2437 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2438 			s->name);
2439 
2440 	for_each_kmem_cache_node(s, node, n) {
2441 		unsigned long nr_slabs;
2442 		unsigned long nr_objs;
2443 		unsigned long nr_free;
2444 
2445 		nr_free  = count_partial(n, count_free);
2446 		nr_slabs = node_nr_slabs(n);
2447 		nr_objs  = node_nr_objs(n);
2448 
2449 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2450 			node, nr_slabs, nr_objs, nr_free);
2451 	}
2452 #endif
2453 }
2454 
2455 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2456 			int node, struct kmem_cache_cpu **pc)
2457 {
2458 	void *freelist;
2459 	struct kmem_cache_cpu *c = *pc;
2460 	struct page *page;
2461 
2462 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2463 
2464 	freelist = get_partial(s, flags, node, c);
2465 
2466 	if (freelist)
2467 		return freelist;
2468 
2469 	page = new_slab(s, flags, node);
2470 	if (page) {
2471 		c = raw_cpu_ptr(s->cpu_slab);
2472 		if (c->page)
2473 			flush_slab(s, c);
2474 
2475 		/*
2476 		 * No other reference to the page yet so we can
2477 		 * muck around with it freely without cmpxchg
2478 		 */
2479 		freelist = page->freelist;
2480 		page->freelist = NULL;
2481 
2482 		stat(s, ALLOC_SLAB);
2483 		c->page = page;
2484 		*pc = c;
2485 	} else
2486 		freelist = NULL;
2487 
2488 	return freelist;
2489 }
2490 
2491 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2492 {
2493 	if (unlikely(PageSlabPfmemalloc(page)))
2494 		return gfp_pfmemalloc_allowed(gfpflags);
2495 
2496 	return true;
2497 }
2498 
2499 /*
2500  * Check the page->freelist of a page and either transfer the freelist to the
2501  * per cpu freelist or deactivate the page.
2502  *
2503  * The page is still frozen if the return value is not NULL.
2504  *
2505  * If this function returns NULL then the page has been unfrozen.
2506  *
2507  * This function must be called with interrupt disabled.
2508  */
2509 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2510 {
2511 	struct page new;
2512 	unsigned long counters;
2513 	void *freelist;
2514 
2515 	do {
2516 		freelist = page->freelist;
2517 		counters = page->counters;
2518 
2519 		new.counters = counters;
2520 		VM_BUG_ON(!new.frozen);
2521 
2522 		new.inuse = page->objects;
2523 		new.frozen = freelist != NULL;
2524 
2525 	} while (!__cmpxchg_double_slab(s, page,
2526 		freelist, counters,
2527 		NULL, new.counters,
2528 		"get_freelist"));
2529 
2530 	return freelist;
2531 }
2532 
2533 /*
2534  * Slow path. The lockless freelist is empty or we need to perform
2535  * debugging duties.
2536  *
2537  * Processing is still very fast if new objects have been freed to the
2538  * regular freelist. In that case we simply take over the regular freelist
2539  * as the lockless freelist and zap the regular freelist.
2540  *
2541  * If that is not working then we fall back to the partial lists. We take the
2542  * first element of the freelist as the object to allocate now and move the
2543  * rest of the freelist to the lockless freelist.
2544  *
2545  * And if we were unable to get a new slab from the partial slab lists then
2546  * we need to allocate a new slab. This is the slowest path since it involves
2547  * a call to the page allocator and the setup of a new slab.
2548  *
2549  * Version of __slab_alloc to use when we know that interrupts are
2550  * already disabled (which is the case for bulk allocation).
2551  */
2552 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2553 			  unsigned long addr, struct kmem_cache_cpu *c)
2554 {
2555 	void *freelist;
2556 	struct page *page;
2557 
2558 	page = c->page;
2559 	if (!page)
2560 		goto new_slab;
2561 redo:
2562 
2563 	if (unlikely(!node_match(page, node))) {
2564 		int searchnode = node;
2565 
2566 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2567 			searchnode = node_to_mem_node(node);
2568 
2569 		if (unlikely(!node_match(page, searchnode))) {
2570 			stat(s, ALLOC_NODE_MISMATCH);
2571 			deactivate_slab(s, page, c->freelist, c);
2572 			goto new_slab;
2573 		}
2574 	}
2575 
2576 	/*
2577 	 * By rights, we should be searching for a slab page that was
2578 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2579 	 * information when the page leaves the per-cpu allocator
2580 	 */
2581 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2582 		deactivate_slab(s, page, c->freelist, c);
2583 		goto new_slab;
2584 	}
2585 
2586 	/* must check again c->freelist in case of cpu migration or IRQ */
2587 	freelist = c->freelist;
2588 	if (freelist)
2589 		goto load_freelist;
2590 
2591 	freelist = get_freelist(s, page);
2592 
2593 	if (!freelist) {
2594 		c->page = NULL;
2595 		stat(s, DEACTIVATE_BYPASS);
2596 		goto new_slab;
2597 	}
2598 
2599 	stat(s, ALLOC_REFILL);
2600 
2601 load_freelist:
2602 	/*
2603 	 * freelist is pointing to the list of objects to be used.
2604 	 * page is pointing to the page from which the objects are obtained.
2605 	 * That page must be frozen for per cpu allocations to work.
2606 	 */
2607 	VM_BUG_ON(!c->page->frozen);
2608 	c->freelist = get_freepointer(s, freelist);
2609 	c->tid = next_tid(c->tid);
2610 	return freelist;
2611 
2612 new_slab:
2613 
2614 	if (slub_percpu_partial(c)) {
2615 		page = c->page = slub_percpu_partial(c);
2616 		slub_set_percpu_partial(c, page);
2617 		stat(s, CPU_PARTIAL_ALLOC);
2618 		goto redo;
2619 	}
2620 
2621 	freelist = new_slab_objects(s, gfpflags, node, &c);
2622 
2623 	if (unlikely(!freelist)) {
2624 		slab_out_of_memory(s, gfpflags, node);
2625 		return NULL;
2626 	}
2627 
2628 	page = c->page;
2629 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2630 		goto load_freelist;
2631 
2632 	/* Only entered in the debug case */
2633 	if (kmem_cache_debug(s) &&
2634 			!alloc_debug_processing(s, page, freelist, addr))
2635 		goto new_slab;	/* Slab failed checks. Next slab needed */
2636 
2637 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2638 	return freelist;
2639 }
2640 
2641 /*
2642  * Another one that disabled interrupt and compensates for possible
2643  * cpu changes by refetching the per cpu area pointer.
2644  */
2645 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2646 			  unsigned long addr, struct kmem_cache_cpu *c)
2647 {
2648 	void *p;
2649 	unsigned long flags;
2650 
2651 	local_irq_save(flags);
2652 #ifdef CONFIG_PREEMPT
2653 	/*
2654 	 * We may have been preempted and rescheduled on a different
2655 	 * cpu before disabling interrupts. Need to reload cpu area
2656 	 * pointer.
2657 	 */
2658 	c = this_cpu_ptr(s->cpu_slab);
2659 #endif
2660 
2661 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2662 	local_irq_restore(flags);
2663 	return p;
2664 }
2665 
2666 /*
2667  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2668  * have the fastpath folded into their functions. So no function call
2669  * overhead for requests that can be satisfied on the fastpath.
2670  *
2671  * The fastpath works by first checking if the lockless freelist can be used.
2672  * If not then __slab_alloc is called for slow processing.
2673  *
2674  * Otherwise we can simply pick the next object from the lockless free list.
2675  */
2676 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2677 		gfp_t gfpflags, int node, unsigned long addr)
2678 {
2679 	void *object;
2680 	struct kmem_cache_cpu *c;
2681 	struct page *page;
2682 	unsigned long tid;
2683 
2684 	s = slab_pre_alloc_hook(s, gfpflags);
2685 	if (!s)
2686 		return NULL;
2687 redo:
2688 	/*
2689 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2690 	 * enabled. We may switch back and forth between cpus while
2691 	 * reading from one cpu area. That does not matter as long
2692 	 * as we end up on the original cpu again when doing the cmpxchg.
2693 	 *
2694 	 * We should guarantee that tid and kmem_cache are retrieved on
2695 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2696 	 * to check if it is matched or not.
2697 	 */
2698 	do {
2699 		tid = this_cpu_read(s->cpu_slab->tid);
2700 		c = raw_cpu_ptr(s->cpu_slab);
2701 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2702 		 unlikely(tid != READ_ONCE(c->tid)));
2703 
2704 	/*
2705 	 * Irqless object alloc/free algorithm used here depends on sequence
2706 	 * of fetching cpu_slab's data. tid should be fetched before anything
2707 	 * on c to guarantee that object and page associated with previous tid
2708 	 * won't be used with current tid. If we fetch tid first, object and
2709 	 * page could be one associated with next tid and our alloc/free
2710 	 * request will be failed. In this case, we will retry. So, no problem.
2711 	 */
2712 	barrier();
2713 
2714 	/*
2715 	 * The transaction ids are globally unique per cpu and per operation on
2716 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2717 	 * occurs on the right processor and that there was no operation on the
2718 	 * linked list in between.
2719 	 */
2720 
2721 	object = c->freelist;
2722 	page = c->page;
2723 	if (unlikely(!object || !node_match(page, node))) {
2724 		object = __slab_alloc(s, gfpflags, node, addr, c);
2725 		stat(s, ALLOC_SLOWPATH);
2726 	} else {
2727 		void *next_object = get_freepointer_safe(s, object);
2728 
2729 		/*
2730 		 * The cmpxchg will only match if there was no additional
2731 		 * operation and if we are on the right processor.
2732 		 *
2733 		 * The cmpxchg does the following atomically (without lock
2734 		 * semantics!)
2735 		 * 1. Relocate first pointer to the current per cpu area.
2736 		 * 2. Verify that tid and freelist have not been changed
2737 		 * 3. If they were not changed replace tid and freelist
2738 		 *
2739 		 * Since this is without lock semantics the protection is only
2740 		 * against code executing on this cpu *not* from access by
2741 		 * other cpus.
2742 		 */
2743 		if (unlikely(!this_cpu_cmpxchg_double(
2744 				s->cpu_slab->freelist, s->cpu_slab->tid,
2745 				object, tid,
2746 				next_object, next_tid(tid)))) {
2747 
2748 			note_cmpxchg_failure("slab_alloc", s, tid);
2749 			goto redo;
2750 		}
2751 		prefetch_freepointer(s, next_object);
2752 		stat(s, ALLOC_FASTPATH);
2753 	}
2754 
2755 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2756 		memset(object, 0, s->object_size);
2757 
2758 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2759 
2760 	return object;
2761 }
2762 
2763 static __always_inline void *slab_alloc(struct kmem_cache *s,
2764 		gfp_t gfpflags, unsigned long addr)
2765 {
2766 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2767 }
2768 
2769 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2770 {
2771 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2772 
2773 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2774 				s->size, gfpflags);
2775 
2776 	return ret;
2777 }
2778 EXPORT_SYMBOL(kmem_cache_alloc);
2779 
2780 #ifdef CONFIG_TRACING
2781 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2782 {
2783 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2784 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2785 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2786 	return ret;
2787 }
2788 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2789 #endif
2790 
2791 #ifdef CONFIG_NUMA
2792 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2793 {
2794 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2795 
2796 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2797 				    s->object_size, s->size, gfpflags, node);
2798 
2799 	return ret;
2800 }
2801 EXPORT_SYMBOL(kmem_cache_alloc_node);
2802 
2803 #ifdef CONFIG_TRACING
2804 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2805 				    gfp_t gfpflags,
2806 				    int node, size_t size)
2807 {
2808 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2809 
2810 	trace_kmalloc_node(_RET_IP_, ret,
2811 			   size, s->size, gfpflags, node);
2812 
2813 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2814 	return ret;
2815 }
2816 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2817 #endif
2818 #endif
2819 
2820 /*
2821  * Slow path handling. This may still be called frequently since objects
2822  * have a longer lifetime than the cpu slabs in most processing loads.
2823  *
2824  * So we still attempt to reduce cache line usage. Just take the slab
2825  * lock and free the item. If there is no additional partial page
2826  * handling required then we can return immediately.
2827  */
2828 static void __slab_free(struct kmem_cache *s, struct page *page,
2829 			void *head, void *tail, int cnt,
2830 			unsigned long addr)
2831 
2832 {
2833 	void *prior;
2834 	int was_frozen;
2835 	struct page new;
2836 	unsigned long counters;
2837 	struct kmem_cache_node *n = NULL;
2838 	unsigned long uninitialized_var(flags);
2839 
2840 	stat(s, FREE_SLOWPATH);
2841 
2842 	if (kmem_cache_debug(s) &&
2843 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2844 		return;
2845 
2846 	do {
2847 		if (unlikely(n)) {
2848 			spin_unlock_irqrestore(&n->list_lock, flags);
2849 			n = NULL;
2850 		}
2851 		prior = page->freelist;
2852 		counters = page->counters;
2853 		set_freepointer(s, tail, prior);
2854 		new.counters = counters;
2855 		was_frozen = new.frozen;
2856 		new.inuse -= cnt;
2857 		if ((!new.inuse || !prior) && !was_frozen) {
2858 
2859 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2860 
2861 				/*
2862 				 * Slab was on no list before and will be
2863 				 * partially empty
2864 				 * We can defer the list move and instead
2865 				 * freeze it.
2866 				 */
2867 				new.frozen = 1;
2868 
2869 			} else { /* Needs to be taken off a list */
2870 
2871 				n = get_node(s, page_to_nid(page));
2872 				/*
2873 				 * Speculatively acquire the list_lock.
2874 				 * If the cmpxchg does not succeed then we may
2875 				 * drop the list_lock without any processing.
2876 				 *
2877 				 * Otherwise the list_lock will synchronize with
2878 				 * other processors updating the list of slabs.
2879 				 */
2880 				spin_lock_irqsave(&n->list_lock, flags);
2881 
2882 			}
2883 		}
2884 
2885 	} while (!cmpxchg_double_slab(s, page,
2886 		prior, counters,
2887 		head, new.counters,
2888 		"__slab_free"));
2889 
2890 	if (likely(!n)) {
2891 
2892 		/*
2893 		 * If we just froze the page then put it onto the
2894 		 * per cpu partial list.
2895 		 */
2896 		if (new.frozen && !was_frozen) {
2897 			put_cpu_partial(s, page, 1);
2898 			stat(s, CPU_PARTIAL_FREE);
2899 		}
2900 		/*
2901 		 * The list lock was not taken therefore no list
2902 		 * activity can be necessary.
2903 		 */
2904 		if (was_frozen)
2905 			stat(s, FREE_FROZEN);
2906 		return;
2907 	}
2908 
2909 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2910 		goto slab_empty;
2911 
2912 	/*
2913 	 * Objects left in the slab. If it was not on the partial list before
2914 	 * then add it.
2915 	 */
2916 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2917 		if (kmem_cache_debug(s))
2918 			remove_full(s, n, page);
2919 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2920 		stat(s, FREE_ADD_PARTIAL);
2921 	}
2922 	spin_unlock_irqrestore(&n->list_lock, flags);
2923 	return;
2924 
2925 slab_empty:
2926 	if (prior) {
2927 		/*
2928 		 * Slab on the partial list.
2929 		 */
2930 		remove_partial(n, page);
2931 		stat(s, FREE_REMOVE_PARTIAL);
2932 	} else {
2933 		/* Slab must be on the full list */
2934 		remove_full(s, n, page);
2935 	}
2936 
2937 	spin_unlock_irqrestore(&n->list_lock, flags);
2938 	stat(s, FREE_SLAB);
2939 	discard_slab(s, page);
2940 }
2941 
2942 /*
2943  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2944  * can perform fastpath freeing without additional function calls.
2945  *
2946  * The fastpath is only possible if we are freeing to the current cpu slab
2947  * of this processor. This typically the case if we have just allocated
2948  * the item before.
2949  *
2950  * If fastpath is not possible then fall back to __slab_free where we deal
2951  * with all sorts of special processing.
2952  *
2953  * Bulk free of a freelist with several objects (all pointing to the
2954  * same page) possible by specifying head and tail ptr, plus objects
2955  * count (cnt). Bulk free indicated by tail pointer being set.
2956  */
2957 static __always_inline void do_slab_free(struct kmem_cache *s,
2958 				struct page *page, void *head, void *tail,
2959 				int cnt, unsigned long addr)
2960 {
2961 	void *tail_obj = tail ? : head;
2962 	struct kmem_cache_cpu *c;
2963 	unsigned long tid;
2964 redo:
2965 	/*
2966 	 * Determine the currently cpus per cpu slab.
2967 	 * The cpu may change afterward. However that does not matter since
2968 	 * data is retrieved via this pointer. If we are on the same cpu
2969 	 * during the cmpxchg then the free will succeed.
2970 	 */
2971 	do {
2972 		tid = this_cpu_read(s->cpu_slab->tid);
2973 		c = raw_cpu_ptr(s->cpu_slab);
2974 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2975 		 unlikely(tid != READ_ONCE(c->tid)));
2976 
2977 	/* Same with comment on barrier() in slab_alloc_node() */
2978 	barrier();
2979 
2980 	if (likely(page == c->page)) {
2981 		set_freepointer(s, tail_obj, c->freelist);
2982 
2983 		if (unlikely(!this_cpu_cmpxchg_double(
2984 				s->cpu_slab->freelist, s->cpu_slab->tid,
2985 				c->freelist, tid,
2986 				head, next_tid(tid)))) {
2987 
2988 			note_cmpxchg_failure("slab_free", s, tid);
2989 			goto redo;
2990 		}
2991 		stat(s, FREE_FASTPATH);
2992 	} else
2993 		__slab_free(s, page, head, tail_obj, cnt, addr);
2994 
2995 }
2996 
2997 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2998 				      void *head, void *tail, int cnt,
2999 				      unsigned long addr)
3000 {
3001 	/*
3002 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3003 	 * to remove objects, whose reuse must be delayed.
3004 	 */
3005 	if (slab_free_freelist_hook(s, &head, &tail))
3006 		do_slab_free(s, page, head, tail, cnt, addr);
3007 }
3008 
3009 #ifdef CONFIG_KASAN_GENERIC
3010 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3011 {
3012 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3013 }
3014 #endif
3015 
3016 void kmem_cache_free(struct kmem_cache *s, void *x)
3017 {
3018 	s = cache_from_obj(s, x);
3019 	if (!s)
3020 		return;
3021 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3022 	trace_kmem_cache_free(_RET_IP_, x);
3023 }
3024 EXPORT_SYMBOL(kmem_cache_free);
3025 
3026 struct detached_freelist {
3027 	struct page *page;
3028 	void *tail;
3029 	void *freelist;
3030 	int cnt;
3031 	struct kmem_cache *s;
3032 };
3033 
3034 /*
3035  * This function progressively scans the array with free objects (with
3036  * a limited look ahead) and extract objects belonging to the same
3037  * page.  It builds a detached freelist directly within the given
3038  * page/objects.  This can happen without any need for
3039  * synchronization, because the objects are owned by running process.
3040  * The freelist is build up as a single linked list in the objects.
3041  * The idea is, that this detached freelist can then be bulk
3042  * transferred to the real freelist(s), but only requiring a single
3043  * synchronization primitive.  Look ahead in the array is limited due
3044  * to performance reasons.
3045  */
3046 static inline
3047 int build_detached_freelist(struct kmem_cache *s, size_t size,
3048 			    void **p, struct detached_freelist *df)
3049 {
3050 	size_t first_skipped_index = 0;
3051 	int lookahead = 3;
3052 	void *object;
3053 	struct page *page;
3054 
3055 	/* Always re-init detached_freelist */
3056 	df->page = NULL;
3057 
3058 	do {
3059 		object = p[--size];
3060 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3061 	} while (!object && size);
3062 
3063 	if (!object)
3064 		return 0;
3065 
3066 	page = virt_to_head_page(object);
3067 	if (!s) {
3068 		/* Handle kalloc'ed objects */
3069 		if (unlikely(!PageSlab(page))) {
3070 			BUG_ON(!PageCompound(page));
3071 			kfree_hook(object);
3072 			__free_pages(page, compound_order(page));
3073 			p[size] = NULL; /* mark object processed */
3074 			return size;
3075 		}
3076 		/* Derive kmem_cache from object */
3077 		df->s = page->slab_cache;
3078 	} else {
3079 		df->s = cache_from_obj(s, object); /* Support for memcg */
3080 	}
3081 
3082 	/* Start new detached freelist */
3083 	df->page = page;
3084 	set_freepointer(df->s, object, NULL);
3085 	df->tail = object;
3086 	df->freelist = object;
3087 	p[size] = NULL; /* mark object processed */
3088 	df->cnt = 1;
3089 
3090 	while (size) {
3091 		object = p[--size];
3092 		if (!object)
3093 			continue; /* Skip processed objects */
3094 
3095 		/* df->page is always set at this point */
3096 		if (df->page == virt_to_head_page(object)) {
3097 			/* Opportunity build freelist */
3098 			set_freepointer(df->s, object, df->freelist);
3099 			df->freelist = object;
3100 			df->cnt++;
3101 			p[size] = NULL; /* mark object processed */
3102 
3103 			continue;
3104 		}
3105 
3106 		/* Limit look ahead search */
3107 		if (!--lookahead)
3108 			break;
3109 
3110 		if (!first_skipped_index)
3111 			first_skipped_index = size + 1;
3112 	}
3113 
3114 	return first_skipped_index;
3115 }
3116 
3117 /* Note that interrupts must be enabled when calling this function. */
3118 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3119 {
3120 	if (WARN_ON(!size))
3121 		return;
3122 
3123 	do {
3124 		struct detached_freelist df;
3125 
3126 		size = build_detached_freelist(s, size, p, &df);
3127 		if (!df.page)
3128 			continue;
3129 
3130 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3131 	} while (likely(size));
3132 }
3133 EXPORT_SYMBOL(kmem_cache_free_bulk);
3134 
3135 /* Note that interrupts must be enabled when calling this function. */
3136 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3137 			  void **p)
3138 {
3139 	struct kmem_cache_cpu *c;
3140 	int i;
3141 
3142 	/* memcg and kmem_cache debug support */
3143 	s = slab_pre_alloc_hook(s, flags);
3144 	if (unlikely(!s))
3145 		return false;
3146 	/*
3147 	 * Drain objects in the per cpu slab, while disabling local
3148 	 * IRQs, which protects against PREEMPT and interrupts
3149 	 * handlers invoking normal fastpath.
3150 	 */
3151 	local_irq_disable();
3152 	c = this_cpu_ptr(s->cpu_slab);
3153 
3154 	for (i = 0; i < size; i++) {
3155 		void *object = c->freelist;
3156 
3157 		if (unlikely(!object)) {
3158 			/*
3159 			 * Invoking slow path likely have side-effect
3160 			 * of re-populating per CPU c->freelist
3161 			 */
3162 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3163 					    _RET_IP_, c);
3164 			if (unlikely(!p[i]))
3165 				goto error;
3166 
3167 			c = this_cpu_ptr(s->cpu_slab);
3168 			continue; /* goto for-loop */
3169 		}
3170 		c->freelist = get_freepointer(s, object);
3171 		p[i] = object;
3172 	}
3173 	c->tid = next_tid(c->tid);
3174 	local_irq_enable();
3175 
3176 	/* Clear memory outside IRQ disabled fastpath loop */
3177 	if (unlikely(flags & __GFP_ZERO)) {
3178 		int j;
3179 
3180 		for (j = 0; j < i; j++)
3181 			memset(p[j], 0, s->object_size);
3182 	}
3183 
3184 	/* memcg and kmem_cache debug support */
3185 	slab_post_alloc_hook(s, flags, size, p);
3186 	return i;
3187 error:
3188 	local_irq_enable();
3189 	slab_post_alloc_hook(s, flags, i, p);
3190 	__kmem_cache_free_bulk(s, i, p);
3191 	return 0;
3192 }
3193 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3194 
3195 
3196 /*
3197  * Object placement in a slab is made very easy because we always start at
3198  * offset 0. If we tune the size of the object to the alignment then we can
3199  * get the required alignment by putting one properly sized object after
3200  * another.
3201  *
3202  * Notice that the allocation order determines the sizes of the per cpu
3203  * caches. Each processor has always one slab available for allocations.
3204  * Increasing the allocation order reduces the number of times that slabs
3205  * must be moved on and off the partial lists and is therefore a factor in
3206  * locking overhead.
3207  */
3208 
3209 /*
3210  * Mininum / Maximum order of slab pages. This influences locking overhead
3211  * and slab fragmentation. A higher order reduces the number of partial slabs
3212  * and increases the number of allocations possible without having to
3213  * take the list_lock.
3214  */
3215 static unsigned int slub_min_order;
3216 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3217 static unsigned int slub_min_objects;
3218 
3219 /*
3220  * Calculate the order of allocation given an slab object size.
3221  *
3222  * The order of allocation has significant impact on performance and other
3223  * system components. Generally order 0 allocations should be preferred since
3224  * order 0 does not cause fragmentation in the page allocator. Larger objects
3225  * be problematic to put into order 0 slabs because there may be too much
3226  * unused space left. We go to a higher order if more than 1/16th of the slab
3227  * would be wasted.
3228  *
3229  * In order to reach satisfactory performance we must ensure that a minimum
3230  * number of objects is in one slab. Otherwise we may generate too much
3231  * activity on the partial lists which requires taking the list_lock. This is
3232  * less a concern for large slabs though which are rarely used.
3233  *
3234  * slub_max_order specifies the order where we begin to stop considering the
3235  * number of objects in a slab as critical. If we reach slub_max_order then
3236  * we try to keep the page order as low as possible. So we accept more waste
3237  * of space in favor of a small page order.
3238  *
3239  * Higher order allocations also allow the placement of more objects in a
3240  * slab and thereby reduce object handling overhead. If the user has
3241  * requested a higher mininum order then we start with that one instead of
3242  * the smallest order which will fit the object.
3243  */
3244 static inline unsigned int slab_order(unsigned int size,
3245 		unsigned int min_objects, unsigned int max_order,
3246 		unsigned int fract_leftover)
3247 {
3248 	unsigned int min_order = slub_min_order;
3249 	unsigned int order;
3250 
3251 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3252 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3253 
3254 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3255 			order <= max_order; order++) {
3256 
3257 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3258 		unsigned int rem;
3259 
3260 		rem = slab_size % size;
3261 
3262 		if (rem <= slab_size / fract_leftover)
3263 			break;
3264 	}
3265 
3266 	return order;
3267 }
3268 
3269 static inline int calculate_order(unsigned int size)
3270 {
3271 	unsigned int order;
3272 	unsigned int min_objects;
3273 	unsigned int max_objects;
3274 
3275 	/*
3276 	 * Attempt to find best configuration for a slab. This
3277 	 * works by first attempting to generate a layout with
3278 	 * the best configuration and backing off gradually.
3279 	 *
3280 	 * First we increase the acceptable waste in a slab. Then
3281 	 * we reduce the minimum objects required in a slab.
3282 	 */
3283 	min_objects = slub_min_objects;
3284 	if (!min_objects)
3285 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3286 	max_objects = order_objects(slub_max_order, size);
3287 	min_objects = min(min_objects, max_objects);
3288 
3289 	while (min_objects > 1) {
3290 		unsigned int fraction;
3291 
3292 		fraction = 16;
3293 		while (fraction >= 4) {
3294 			order = slab_order(size, min_objects,
3295 					slub_max_order, fraction);
3296 			if (order <= slub_max_order)
3297 				return order;
3298 			fraction /= 2;
3299 		}
3300 		min_objects--;
3301 	}
3302 
3303 	/*
3304 	 * We were unable to place multiple objects in a slab. Now
3305 	 * lets see if we can place a single object there.
3306 	 */
3307 	order = slab_order(size, 1, slub_max_order, 1);
3308 	if (order <= slub_max_order)
3309 		return order;
3310 
3311 	/*
3312 	 * Doh this slab cannot be placed using slub_max_order.
3313 	 */
3314 	order = slab_order(size, 1, MAX_ORDER, 1);
3315 	if (order < MAX_ORDER)
3316 		return order;
3317 	return -ENOSYS;
3318 }
3319 
3320 static void
3321 init_kmem_cache_node(struct kmem_cache_node *n)
3322 {
3323 	n->nr_partial = 0;
3324 	spin_lock_init(&n->list_lock);
3325 	INIT_LIST_HEAD(&n->partial);
3326 #ifdef CONFIG_SLUB_DEBUG
3327 	atomic_long_set(&n->nr_slabs, 0);
3328 	atomic_long_set(&n->total_objects, 0);
3329 	INIT_LIST_HEAD(&n->full);
3330 #endif
3331 }
3332 
3333 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3334 {
3335 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3336 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3337 
3338 	/*
3339 	 * Must align to double word boundary for the double cmpxchg
3340 	 * instructions to work; see __pcpu_double_call_return_bool().
3341 	 */
3342 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3343 				     2 * sizeof(void *));
3344 
3345 	if (!s->cpu_slab)
3346 		return 0;
3347 
3348 	init_kmem_cache_cpus(s);
3349 
3350 	return 1;
3351 }
3352 
3353 static struct kmem_cache *kmem_cache_node;
3354 
3355 /*
3356  * No kmalloc_node yet so do it by hand. We know that this is the first
3357  * slab on the node for this slabcache. There are no concurrent accesses
3358  * possible.
3359  *
3360  * Note that this function only works on the kmem_cache_node
3361  * when allocating for the kmem_cache_node. This is used for bootstrapping
3362  * memory on a fresh node that has no slab structures yet.
3363  */
3364 static void early_kmem_cache_node_alloc(int node)
3365 {
3366 	struct page *page;
3367 	struct kmem_cache_node *n;
3368 
3369 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3370 
3371 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3372 
3373 	BUG_ON(!page);
3374 	if (page_to_nid(page) != node) {
3375 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3376 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3377 	}
3378 
3379 	n = page->freelist;
3380 	BUG_ON(!n);
3381 #ifdef CONFIG_SLUB_DEBUG
3382 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3383 	init_tracking(kmem_cache_node, n);
3384 #endif
3385 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3386 		      GFP_KERNEL);
3387 	page->freelist = get_freepointer(kmem_cache_node, n);
3388 	page->inuse = 1;
3389 	page->frozen = 0;
3390 	kmem_cache_node->node[node] = n;
3391 	init_kmem_cache_node(n);
3392 	inc_slabs_node(kmem_cache_node, node, page->objects);
3393 
3394 	/*
3395 	 * No locks need to be taken here as it has just been
3396 	 * initialized and there is no concurrent access.
3397 	 */
3398 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3399 }
3400 
3401 static void free_kmem_cache_nodes(struct kmem_cache *s)
3402 {
3403 	int node;
3404 	struct kmem_cache_node *n;
3405 
3406 	for_each_kmem_cache_node(s, node, n) {
3407 		s->node[node] = NULL;
3408 		kmem_cache_free(kmem_cache_node, n);
3409 	}
3410 }
3411 
3412 void __kmem_cache_release(struct kmem_cache *s)
3413 {
3414 	cache_random_seq_destroy(s);
3415 	free_percpu(s->cpu_slab);
3416 	free_kmem_cache_nodes(s);
3417 }
3418 
3419 static int init_kmem_cache_nodes(struct kmem_cache *s)
3420 {
3421 	int node;
3422 
3423 	for_each_node_state(node, N_NORMAL_MEMORY) {
3424 		struct kmem_cache_node *n;
3425 
3426 		if (slab_state == DOWN) {
3427 			early_kmem_cache_node_alloc(node);
3428 			continue;
3429 		}
3430 		n = kmem_cache_alloc_node(kmem_cache_node,
3431 						GFP_KERNEL, node);
3432 
3433 		if (!n) {
3434 			free_kmem_cache_nodes(s);
3435 			return 0;
3436 		}
3437 
3438 		init_kmem_cache_node(n);
3439 		s->node[node] = n;
3440 	}
3441 	return 1;
3442 }
3443 
3444 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3445 {
3446 	if (min < MIN_PARTIAL)
3447 		min = MIN_PARTIAL;
3448 	else if (min > MAX_PARTIAL)
3449 		min = MAX_PARTIAL;
3450 	s->min_partial = min;
3451 }
3452 
3453 static void set_cpu_partial(struct kmem_cache *s)
3454 {
3455 #ifdef CONFIG_SLUB_CPU_PARTIAL
3456 	/*
3457 	 * cpu_partial determined the maximum number of objects kept in the
3458 	 * per cpu partial lists of a processor.
3459 	 *
3460 	 * Per cpu partial lists mainly contain slabs that just have one
3461 	 * object freed. If they are used for allocation then they can be
3462 	 * filled up again with minimal effort. The slab will never hit the
3463 	 * per node partial lists and therefore no locking will be required.
3464 	 *
3465 	 * This setting also determines
3466 	 *
3467 	 * A) The number of objects from per cpu partial slabs dumped to the
3468 	 *    per node list when we reach the limit.
3469 	 * B) The number of objects in cpu partial slabs to extract from the
3470 	 *    per node list when we run out of per cpu objects. We only fetch
3471 	 *    50% to keep some capacity around for frees.
3472 	 */
3473 	if (!kmem_cache_has_cpu_partial(s))
3474 		s->cpu_partial = 0;
3475 	else if (s->size >= PAGE_SIZE)
3476 		s->cpu_partial = 2;
3477 	else if (s->size >= 1024)
3478 		s->cpu_partial = 6;
3479 	else if (s->size >= 256)
3480 		s->cpu_partial = 13;
3481 	else
3482 		s->cpu_partial = 30;
3483 #endif
3484 }
3485 
3486 /*
3487  * calculate_sizes() determines the order and the distribution of data within
3488  * a slab object.
3489  */
3490 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3491 {
3492 	slab_flags_t flags = s->flags;
3493 	unsigned int size = s->object_size;
3494 	unsigned int order;
3495 
3496 	/*
3497 	 * Round up object size to the next word boundary. We can only
3498 	 * place the free pointer at word boundaries and this determines
3499 	 * the possible location of the free pointer.
3500 	 */
3501 	size = ALIGN(size, sizeof(void *));
3502 
3503 #ifdef CONFIG_SLUB_DEBUG
3504 	/*
3505 	 * Determine if we can poison the object itself. If the user of
3506 	 * the slab may touch the object after free or before allocation
3507 	 * then we should never poison the object itself.
3508 	 */
3509 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3510 			!s->ctor)
3511 		s->flags |= __OBJECT_POISON;
3512 	else
3513 		s->flags &= ~__OBJECT_POISON;
3514 
3515 
3516 	/*
3517 	 * If we are Redzoning then check if there is some space between the
3518 	 * end of the object and the free pointer. If not then add an
3519 	 * additional word to have some bytes to store Redzone information.
3520 	 */
3521 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3522 		size += sizeof(void *);
3523 #endif
3524 
3525 	/*
3526 	 * With that we have determined the number of bytes in actual use
3527 	 * by the object. This is the potential offset to the free pointer.
3528 	 */
3529 	s->inuse = size;
3530 
3531 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3532 		s->ctor)) {
3533 		/*
3534 		 * Relocate free pointer after the object if it is not
3535 		 * permitted to overwrite the first word of the object on
3536 		 * kmem_cache_free.
3537 		 *
3538 		 * This is the case if we do RCU, have a constructor or
3539 		 * destructor or are poisoning the objects.
3540 		 */
3541 		s->offset = size;
3542 		size += sizeof(void *);
3543 	}
3544 
3545 #ifdef CONFIG_SLUB_DEBUG
3546 	if (flags & SLAB_STORE_USER)
3547 		/*
3548 		 * Need to store information about allocs and frees after
3549 		 * the object.
3550 		 */
3551 		size += 2 * sizeof(struct track);
3552 #endif
3553 
3554 	kasan_cache_create(s, &size, &s->flags);
3555 #ifdef CONFIG_SLUB_DEBUG
3556 	if (flags & SLAB_RED_ZONE) {
3557 		/*
3558 		 * Add some empty padding so that we can catch
3559 		 * overwrites from earlier objects rather than let
3560 		 * tracking information or the free pointer be
3561 		 * corrupted if a user writes before the start
3562 		 * of the object.
3563 		 */
3564 		size += sizeof(void *);
3565 
3566 		s->red_left_pad = sizeof(void *);
3567 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3568 		size += s->red_left_pad;
3569 	}
3570 #endif
3571 
3572 	/*
3573 	 * SLUB stores one object immediately after another beginning from
3574 	 * offset 0. In order to align the objects we have to simply size
3575 	 * each object to conform to the alignment.
3576 	 */
3577 	size = ALIGN(size, s->align);
3578 	s->size = size;
3579 	if (forced_order >= 0)
3580 		order = forced_order;
3581 	else
3582 		order = calculate_order(size);
3583 
3584 	if ((int)order < 0)
3585 		return 0;
3586 
3587 	s->allocflags = 0;
3588 	if (order)
3589 		s->allocflags |= __GFP_COMP;
3590 
3591 	if (s->flags & SLAB_CACHE_DMA)
3592 		s->allocflags |= GFP_DMA;
3593 
3594 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3595 		s->allocflags |= __GFP_RECLAIMABLE;
3596 
3597 	/*
3598 	 * Determine the number of objects per slab
3599 	 */
3600 	s->oo = oo_make(order, size);
3601 	s->min = oo_make(get_order(size), size);
3602 	if (oo_objects(s->oo) > oo_objects(s->max))
3603 		s->max = s->oo;
3604 
3605 	return !!oo_objects(s->oo);
3606 }
3607 
3608 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3609 {
3610 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3611 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3612 	s->random = get_random_long();
3613 #endif
3614 
3615 	if (!calculate_sizes(s, -1))
3616 		goto error;
3617 	if (disable_higher_order_debug) {
3618 		/*
3619 		 * Disable debugging flags that store metadata if the min slab
3620 		 * order increased.
3621 		 */
3622 		if (get_order(s->size) > get_order(s->object_size)) {
3623 			s->flags &= ~DEBUG_METADATA_FLAGS;
3624 			s->offset = 0;
3625 			if (!calculate_sizes(s, -1))
3626 				goto error;
3627 		}
3628 	}
3629 
3630 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3631     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3632 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3633 		/* Enable fast mode */
3634 		s->flags |= __CMPXCHG_DOUBLE;
3635 #endif
3636 
3637 	/*
3638 	 * The larger the object size is, the more pages we want on the partial
3639 	 * list to avoid pounding the page allocator excessively.
3640 	 */
3641 	set_min_partial(s, ilog2(s->size) / 2);
3642 
3643 	set_cpu_partial(s);
3644 
3645 #ifdef CONFIG_NUMA
3646 	s->remote_node_defrag_ratio = 1000;
3647 #endif
3648 
3649 	/* Initialize the pre-computed randomized freelist if slab is up */
3650 	if (slab_state >= UP) {
3651 		if (init_cache_random_seq(s))
3652 			goto error;
3653 	}
3654 
3655 	if (!init_kmem_cache_nodes(s))
3656 		goto error;
3657 
3658 	if (alloc_kmem_cache_cpus(s))
3659 		return 0;
3660 
3661 	free_kmem_cache_nodes(s);
3662 error:
3663 	if (flags & SLAB_PANIC)
3664 		panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3665 		      s->name, s->size, s->size,
3666 		      oo_order(s->oo), s->offset, (unsigned long)flags);
3667 	return -EINVAL;
3668 }
3669 
3670 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3671 							const char *text)
3672 {
3673 #ifdef CONFIG_SLUB_DEBUG
3674 	void *addr = page_address(page);
3675 	void *p;
3676 	unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
3677 	if (!map)
3678 		return;
3679 	slab_err(s, page, text, s->name);
3680 	slab_lock(page);
3681 
3682 	get_map(s, page, map);
3683 	for_each_object(p, s, addr, page->objects) {
3684 
3685 		if (!test_bit(slab_index(p, s, addr), map)) {
3686 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3687 			print_tracking(s, p);
3688 		}
3689 	}
3690 	slab_unlock(page);
3691 	bitmap_free(map);
3692 #endif
3693 }
3694 
3695 /*
3696  * Attempt to free all partial slabs on a node.
3697  * This is called from __kmem_cache_shutdown(). We must take list_lock
3698  * because sysfs file might still access partial list after the shutdowning.
3699  */
3700 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3701 {
3702 	LIST_HEAD(discard);
3703 	struct page *page, *h;
3704 
3705 	BUG_ON(irqs_disabled());
3706 	spin_lock_irq(&n->list_lock);
3707 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3708 		if (!page->inuse) {
3709 			remove_partial(n, page);
3710 			list_add(&page->lru, &discard);
3711 		} else {
3712 			list_slab_objects(s, page,
3713 			"Objects remaining in %s on __kmem_cache_shutdown()");
3714 		}
3715 	}
3716 	spin_unlock_irq(&n->list_lock);
3717 
3718 	list_for_each_entry_safe(page, h, &discard, lru)
3719 		discard_slab(s, page);
3720 }
3721 
3722 bool __kmem_cache_empty(struct kmem_cache *s)
3723 {
3724 	int node;
3725 	struct kmem_cache_node *n;
3726 
3727 	for_each_kmem_cache_node(s, node, n)
3728 		if (n->nr_partial || slabs_node(s, node))
3729 			return false;
3730 	return true;
3731 }
3732 
3733 /*
3734  * Release all resources used by a slab cache.
3735  */
3736 int __kmem_cache_shutdown(struct kmem_cache *s)
3737 {
3738 	int node;
3739 	struct kmem_cache_node *n;
3740 
3741 	flush_all(s);
3742 	/* Attempt to free all objects */
3743 	for_each_kmem_cache_node(s, node, n) {
3744 		free_partial(s, n);
3745 		if (n->nr_partial || slabs_node(s, node))
3746 			return 1;
3747 	}
3748 	sysfs_slab_remove(s);
3749 	return 0;
3750 }
3751 
3752 /********************************************************************
3753  *		Kmalloc subsystem
3754  *******************************************************************/
3755 
3756 static int __init setup_slub_min_order(char *str)
3757 {
3758 	get_option(&str, (int *)&slub_min_order);
3759 
3760 	return 1;
3761 }
3762 
3763 __setup("slub_min_order=", setup_slub_min_order);
3764 
3765 static int __init setup_slub_max_order(char *str)
3766 {
3767 	get_option(&str, (int *)&slub_max_order);
3768 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3769 
3770 	return 1;
3771 }
3772 
3773 __setup("slub_max_order=", setup_slub_max_order);
3774 
3775 static int __init setup_slub_min_objects(char *str)
3776 {
3777 	get_option(&str, (int *)&slub_min_objects);
3778 
3779 	return 1;
3780 }
3781 
3782 __setup("slub_min_objects=", setup_slub_min_objects);
3783 
3784 void *__kmalloc(size_t size, gfp_t flags)
3785 {
3786 	struct kmem_cache *s;
3787 	void *ret;
3788 
3789 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3790 		return kmalloc_large(size, flags);
3791 
3792 	s = kmalloc_slab(size, flags);
3793 
3794 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3795 		return s;
3796 
3797 	ret = slab_alloc(s, flags, _RET_IP_);
3798 
3799 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3800 
3801 	ret = kasan_kmalloc(s, ret, size, flags);
3802 
3803 	return ret;
3804 }
3805 EXPORT_SYMBOL(__kmalloc);
3806 
3807 #ifdef CONFIG_NUMA
3808 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3809 {
3810 	struct page *page;
3811 	void *ptr = NULL;
3812 
3813 	flags |= __GFP_COMP;
3814 	page = alloc_pages_node(node, flags, get_order(size));
3815 	if (page)
3816 		ptr = page_address(page);
3817 
3818 	return kmalloc_large_node_hook(ptr, size, flags);
3819 }
3820 
3821 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3822 {
3823 	struct kmem_cache *s;
3824 	void *ret;
3825 
3826 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3827 		ret = kmalloc_large_node(size, flags, node);
3828 
3829 		trace_kmalloc_node(_RET_IP_, ret,
3830 				   size, PAGE_SIZE << get_order(size),
3831 				   flags, node);
3832 
3833 		return ret;
3834 	}
3835 
3836 	s = kmalloc_slab(size, flags);
3837 
3838 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3839 		return s;
3840 
3841 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3842 
3843 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3844 
3845 	ret = kasan_kmalloc(s, ret, size, flags);
3846 
3847 	return ret;
3848 }
3849 EXPORT_SYMBOL(__kmalloc_node);
3850 #endif
3851 
3852 #ifdef CONFIG_HARDENED_USERCOPY
3853 /*
3854  * Rejects incorrectly sized objects and objects that are to be copied
3855  * to/from userspace but do not fall entirely within the containing slab
3856  * cache's usercopy region.
3857  *
3858  * Returns NULL if check passes, otherwise const char * to name of cache
3859  * to indicate an error.
3860  */
3861 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3862 			 bool to_user)
3863 {
3864 	struct kmem_cache *s;
3865 	unsigned int offset;
3866 	size_t object_size;
3867 
3868 	ptr = kasan_reset_tag(ptr);
3869 
3870 	/* Find object and usable object size. */
3871 	s = page->slab_cache;
3872 
3873 	/* Reject impossible pointers. */
3874 	if (ptr < page_address(page))
3875 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3876 			       to_user, 0, n);
3877 
3878 	/* Find offset within object. */
3879 	offset = (ptr - page_address(page)) % s->size;
3880 
3881 	/* Adjust for redzone and reject if within the redzone. */
3882 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3883 		if (offset < s->red_left_pad)
3884 			usercopy_abort("SLUB object in left red zone",
3885 				       s->name, to_user, offset, n);
3886 		offset -= s->red_left_pad;
3887 	}
3888 
3889 	/* Allow address range falling entirely within usercopy region. */
3890 	if (offset >= s->useroffset &&
3891 	    offset - s->useroffset <= s->usersize &&
3892 	    n <= s->useroffset - offset + s->usersize)
3893 		return;
3894 
3895 	/*
3896 	 * If the copy is still within the allocated object, produce
3897 	 * a warning instead of rejecting the copy. This is intended
3898 	 * to be a temporary method to find any missing usercopy
3899 	 * whitelists.
3900 	 */
3901 	object_size = slab_ksize(s);
3902 	if (usercopy_fallback &&
3903 	    offset <= object_size && n <= object_size - offset) {
3904 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3905 		return;
3906 	}
3907 
3908 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3909 }
3910 #endif /* CONFIG_HARDENED_USERCOPY */
3911 
3912 static size_t __ksize(const void *object)
3913 {
3914 	struct page *page;
3915 
3916 	if (unlikely(object == ZERO_SIZE_PTR))
3917 		return 0;
3918 
3919 	page = virt_to_head_page(object);
3920 
3921 	if (unlikely(!PageSlab(page))) {
3922 		WARN_ON(!PageCompound(page));
3923 		return PAGE_SIZE << compound_order(page);
3924 	}
3925 
3926 	return slab_ksize(page->slab_cache);
3927 }
3928 
3929 size_t ksize(const void *object)
3930 {
3931 	size_t size = __ksize(object);
3932 	/* We assume that ksize callers could use whole allocated area,
3933 	 * so we need to unpoison this area.
3934 	 */
3935 	kasan_unpoison_shadow(object, size);
3936 	return size;
3937 }
3938 EXPORT_SYMBOL(ksize);
3939 
3940 void kfree(const void *x)
3941 {
3942 	struct page *page;
3943 	void *object = (void *)x;
3944 
3945 	trace_kfree(_RET_IP_, x);
3946 
3947 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3948 		return;
3949 
3950 	page = virt_to_head_page(x);
3951 	if (unlikely(!PageSlab(page))) {
3952 		BUG_ON(!PageCompound(page));
3953 		kfree_hook(object);
3954 		__free_pages(page, compound_order(page));
3955 		return;
3956 	}
3957 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3958 }
3959 EXPORT_SYMBOL(kfree);
3960 
3961 #define SHRINK_PROMOTE_MAX 32
3962 
3963 /*
3964  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3965  * up most to the head of the partial lists. New allocations will then
3966  * fill those up and thus they can be removed from the partial lists.
3967  *
3968  * The slabs with the least items are placed last. This results in them
3969  * being allocated from last increasing the chance that the last objects
3970  * are freed in them.
3971  */
3972 int __kmem_cache_shrink(struct kmem_cache *s)
3973 {
3974 	int node;
3975 	int i;
3976 	struct kmem_cache_node *n;
3977 	struct page *page;
3978 	struct page *t;
3979 	struct list_head discard;
3980 	struct list_head promote[SHRINK_PROMOTE_MAX];
3981 	unsigned long flags;
3982 	int ret = 0;
3983 
3984 	flush_all(s);
3985 	for_each_kmem_cache_node(s, node, n) {
3986 		INIT_LIST_HEAD(&discard);
3987 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3988 			INIT_LIST_HEAD(promote + i);
3989 
3990 		spin_lock_irqsave(&n->list_lock, flags);
3991 
3992 		/*
3993 		 * Build lists of slabs to discard or promote.
3994 		 *
3995 		 * Note that concurrent frees may occur while we hold the
3996 		 * list_lock. page->inuse here is the upper limit.
3997 		 */
3998 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3999 			int free = page->objects - page->inuse;
4000 
4001 			/* Do not reread page->inuse */
4002 			barrier();
4003 
4004 			/* We do not keep full slabs on the list */
4005 			BUG_ON(free <= 0);
4006 
4007 			if (free == page->objects) {
4008 				list_move(&page->lru, &discard);
4009 				n->nr_partial--;
4010 			} else if (free <= SHRINK_PROMOTE_MAX)
4011 				list_move(&page->lru, promote + free - 1);
4012 		}
4013 
4014 		/*
4015 		 * Promote the slabs filled up most to the head of the
4016 		 * partial list.
4017 		 */
4018 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4019 			list_splice(promote + i, &n->partial);
4020 
4021 		spin_unlock_irqrestore(&n->list_lock, flags);
4022 
4023 		/* Release empty slabs */
4024 		list_for_each_entry_safe(page, t, &discard, lru)
4025 			discard_slab(s, page);
4026 
4027 		if (slabs_node(s, node))
4028 			ret = 1;
4029 	}
4030 
4031 	return ret;
4032 }
4033 
4034 #ifdef CONFIG_MEMCG
4035 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4036 {
4037 	/*
4038 	 * Called with all the locks held after a sched RCU grace period.
4039 	 * Even if @s becomes empty after shrinking, we can't know that @s
4040 	 * doesn't have allocations already in-flight and thus can't
4041 	 * destroy @s until the associated memcg is released.
4042 	 *
4043 	 * However, let's remove the sysfs files for empty caches here.
4044 	 * Each cache has a lot of interface files which aren't
4045 	 * particularly useful for empty draining caches; otherwise, we can
4046 	 * easily end up with millions of unnecessary sysfs files on
4047 	 * systems which have a lot of memory and transient cgroups.
4048 	 */
4049 	if (!__kmem_cache_shrink(s))
4050 		sysfs_slab_remove(s);
4051 }
4052 
4053 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4054 {
4055 	/*
4056 	 * Disable empty slabs caching. Used to avoid pinning offline
4057 	 * memory cgroups by kmem pages that can be freed.
4058 	 */
4059 	slub_set_cpu_partial(s, 0);
4060 	s->min_partial = 0;
4061 
4062 	/*
4063 	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4064 	 * we have to make sure the change is visible before shrinking.
4065 	 */
4066 	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4067 }
4068 #endif
4069 
4070 static int slab_mem_going_offline_callback(void *arg)
4071 {
4072 	struct kmem_cache *s;
4073 
4074 	mutex_lock(&slab_mutex);
4075 	list_for_each_entry(s, &slab_caches, list)
4076 		__kmem_cache_shrink(s);
4077 	mutex_unlock(&slab_mutex);
4078 
4079 	return 0;
4080 }
4081 
4082 static void slab_mem_offline_callback(void *arg)
4083 {
4084 	struct kmem_cache_node *n;
4085 	struct kmem_cache *s;
4086 	struct memory_notify *marg = arg;
4087 	int offline_node;
4088 
4089 	offline_node = marg->status_change_nid_normal;
4090 
4091 	/*
4092 	 * If the node still has available memory. we need kmem_cache_node
4093 	 * for it yet.
4094 	 */
4095 	if (offline_node < 0)
4096 		return;
4097 
4098 	mutex_lock(&slab_mutex);
4099 	list_for_each_entry(s, &slab_caches, list) {
4100 		n = get_node(s, offline_node);
4101 		if (n) {
4102 			/*
4103 			 * if n->nr_slabs > 0, slabs still exist on the node
4104 			 * that is going down. We were unable to free them,
4105 			 * and offline_pages() function shouldn't call this
4106 			 * callback. So, we must fail.
4107 			 */
4108 			BUG_ON(slabs_node(s, offline_node));
4109 
4110 			s->node[offline_node] = NULL;
4111 			kmem_cache_free(kmem_cache_node, n);
4112 		}
4113 	}
4114 	mutex_unlock(&slab_mutex);
4115 }
4116 
4117 static int slab_mem_going_online_callback(void *arg)
4118 {
4119 	struct kmem_cache_node *n;
4120 	struct kmem_cache *s;
4121 	struct memory_notify *marg = arg;
4122 	int nid = marg->status_change_nid_normal;
4123 	int ret = 0;
4124 
4125 	/*
4126 	 * If the node's memory is already available, then kmem_cache_node is
4127 	 * already created. Nothing to do.
4128 	 */
4129 	if (nid < 0)
4130 		return 0;
4131 
4132 	/*
4133 	 * We are bringing a node online. No memory is available yet. We must
4134 	 * allocate a kmem_cache_node structure in order to bring the node
4135 	 * online.
4136 	 */
4137 	mutex_lock(&slab_mutex);
4138 	list_for_each_entry(s, &slab_caches, list) {
4139 		/*
4140 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4141 		 *      since memory is not yet available from the node that
4142 		 *      is brought up.
4143 		 */
4144 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4145 		if (!n) {
4146 			ret = -ENOMEM;
4147 			goto out;
4148 		}
4149 		init_kmem_cache_node(n);
4150 		s->node[nid] = n;
4151 	}
4152 out:
4153 	mutex_unlock(&slab_mutex);
4154 	return ret;
4155 }
4156 
4157 static int slab_memory_callback(struct notifier_block *self,
4158 				unsigned long action, void *arg)
4159 {
4160 	int ret = 0;
4161 
4162 	switch (action) {
4163 	case MEM_GOING_ONLINE:
4164 		ret = slab_mem_going_online_callback(arg);
4165 		break;
4166 	case MEM_GOING_OFFLINE:
4167 		ret = slab_mem_going_offline_callback(arg);
4168 		break;
4169 	case MEM_OFFLINE:
4170 	case MEM_CANCEL_ONLINE:
4171 		slab_mem_offline_callback(arg);
4172 		break;
4173 	case MEM_ONLINE:
4174 	case MEM_CANCEL_OFFLINE:
4175 		break;
4176 	}
4177 	if (ret)
4178 		ret = notifier_from_errno(ret);
4179 	else
4180 		ret = NOTIFY_OK;
4181 	return ret;
4182 }
4183 
4184 static struct notifier_block slab_memory_callback_nb = {
4185 	.notifier_call = slab_memory_callback,
4186 	.priority = SLAB_CALLBACK_PRI,
4187 };
4188 
4189 /********************************************************************
4190  *			Basic setup of slabs
4191  *******************************************************************/
4192 
4193 /*
4194  * Used for early kmem_cache structures that were allocated using
4195  * the page allocator. Allocate them properly then fix up the pointers
4196  * that may be pointing to the wrong kmem_cache structure.
4197  */
4198 
4199 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4200 {
4201 	int node;
4202 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4203 	struct kmem_cache_node *n;
4204 
4205 	memcpy(s, static_cache, kmem_cache->object_size);
4206 
4207 	/*
4208 	 * This runs very early, and only the boot processor is supposed to be
4209 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4210 	 * IPIs around.
4211 	 */
4212 	__flush_cpu_slab(s, smp_processor_id());
4213 	for_each_kmem_cache_node(s, node, n) {
4214 		struct page *p;
4215 
4216 		list_for_each_entry(p, &n->partial, lru)
4217 			p->slab_cache = s;
4218 
4219 #ifdef CONFIG_SLUB_DEBUG
4220 		list_for_each_entry(p, &n->full, lru)
4221 			p->slab_cache = s;
4222 #endif
4223 	}
4224 	slab_init_memcg_params(s);
4225 	list_add(&s->list, &slab_caches);
4226 	memcg_link_cache(s);
4227 	return s;
4228 }
4229 
4230 void __init kmem_cache_init(void)
4231 {
4232 	static __initdata struct kmem_cache boot_kmem_cache,
4233 		boot_kmem_cache_node;
4234 
4235 	if (debug_guardpage_minorder())
4236 		slub_max_order = 0;
4237 
4238 	kmem_cache_node = &boot_kmem_cache_node;
4239 	kmem_cache = &boot_kmem_cache;
4240 
4241 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4242 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4243 
4244 	register_hotmemory_notifier(&slab_memory_callback_nb);
4245 
4246 	/* Able to allocate the per node structures */
4247 	slab_state = PARTIAL;
4248 
4249 	create_boot_cache(kmem_cache, "kmem_cache",
4250 			offsetof(struct kmem_cache, node) +
4251 				nr_node_ids * sizeof(struct kmem_cache_node *),
4252 		       SLAB_HWCACHE_ALIGN, 0, 0);
4253 
4254 	kmem_cache = bootstrap(&boot_kmem_cache);
4255 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4256 
4257 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4258 	setup_kmalloc_cache_index_table();
4259 	create_kmalloc_caches(0);
4260 
4261 	/* Setup random freelists for each cache */
4262 	init_freelist_randomization();
4263 
4264 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4265 				  slub_cpu_dead);
4266 
4267 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
4268 		cache_line_size(),
4269 		slub_min_order, slub_max_order, slub_min_objects,
4270 		nr_cpu_ids, nr_node_ids);
4271 }
4272 
4273 void __init kmem_cache_init_late(void)
4274 {
4275 }
4276 
4277 struct kmem_cache *
4278 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4279 		   slab_flags_t flags, void (*ctor)(void *))
4280 {
4281 	struct kmem_cache *s, *c;
4282 
4283 	s = find_mergeable(size, align, flags, name, ctor);
4284 	if (s) {
4285 		s->refcount++;
4286 
4287 		/*
4288 		 * Adjust the object sizes so that we clear
4289 		 * the complete object on kzalloc.
4290 		 */
4291 		s->object_size = max(s->object_size, size);
4292 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4293 
4294 		for_each_memcg_cache(c, s) {
4295 			c->object_size = s->object_size;
4296 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4297 		}
4298 
4299 		if (sysfs_slab_alias(s, name)) {
4300 			s->refcount--;
4301 			s = NULL;
4302 		}
4303 	}
4304 
4305 	return s;
4306 }
4307 
4308 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4309 {
4310 	int err;
4311 
4312 	err = kmem_cache_open(s, flags);
4313 	if (err)
4314 		return err;
4315 
4316 	/* Mutex is not taken during early boot */
4317 	if (slab_state <= UP)
4318 		return 0;
4319 
4320 	memcg_propagate_slab_attrs(s);
4321 	err = sysfs_slab_add(s);
4322 	if (err)
4323 		__kmem_cache_release(s);
4324 
4325 	return err;
4326 }
4327 
4328 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4329 {
4330 	struct kmem_cache *s;
4331 	void *ret;
4332 
4333 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4334 		return kmalloc_large(size, gfpflags);
4335 
4336 	s = kmalloc_slab(size, gfpflags);
4337 
4338 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4339 		return s;
4340 
4341 	ret = slab_alloc(s, gfpflags, caller);
4342 
4343 	/* Honor the call site pointer we received. */
4344 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4345 
4346 	return ret;
4347 }
4348 
4349 #ifdef CONFIG_NUMA
4350 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4351 					int node, unsigned long caller)
4352 {
4353 	struct kmem_cache *s;
4354 	void *ret;
4355 
4356 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4357 		ret = kmalloc_large_node(size, gfpflags, node);
4358 
4359 		trace_kmalloc_node(caller, ret,
4360 				   size, PAGE_SIZE << get_order(size),
4361 				   gfpflags, node);
4362 
4363 		return ret;
4364 	}
4365 
4366 	s = kmalloc_slab(size, gfpflags);
4367 
4368 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4369 		return s;
4370 
4371 	ret = slab_alloc_node(s, gfpflags, node, caller);
4372 
4373 	/* Honor the call site pointer we received. */
4374 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4375 
4376 	return ret;
4377 }
4378 #endif
4379 
4380 #ifdef CONFIG_SYSFS
4381 static int count_inuse(struct page *page)
4382 {
4383 	return page->inuse;
4384 }
4385 
4386 static int count_total(struct page *page)
4387 {
4388 	return page->objects;
4389 }
4390 #endif
4391 
4392 #ifdef CONFIG_SLUB_DEBUG
4393 static int validate_slab(struct kmem_cache *s, struct page *page,
4394 						unsigned long *map)
4395 {
4396 	void *p;
4397 	void *addr = page_address(page);
4398 
4399 	if (!check_slab(s, page) ||
4400 			!on_freelist(s, page, NULL))
4401 		return 0;
4402 
4403 	/* Now we know that a valid freelist exists */
4404 	bitmap_zero(map, page->objects);
4405 
4406 	get_map(s, page, map);
4407 	for_each_object(p, s, addr, page->objects) {
4408 		if (test_bit(slab_index(p, s, addr), map))
4409 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4410 				return 0;
4411 	}
4412 
4413 	for_each_object(p, s, addr, page->objects)
4414 		if (!test_bit(slab_index(p, s, addr), map))
4415 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4416 				return 0;
4417 	return 1;
4418 }
4419 
4420 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4421 						unsigned long *map)
4422 {
4423 	slab_lock(page);
4424 	validate_slab(s, page, map);
4425 	slab_unlock(page);
4426 }
4427 
4428 static int validate_slab_node(struct kmem_cache *s,
4429 		struct kmem_cache_node *n, unsigned long *map)
4430 {
4431 	unsigned long count = 0;
4432 	struct page *page;
4433 	unsigned long flags;
4434 
4435 	spin_lock_irqsave(&n->list_lock, flags);
4436 
4437 	list_for_each_entry(page, &n->partial, lru) {
4438 		validate_slab_slab(s, page, map);
4439 		count++;
4440 	}
4441 	if (count != n->nr_partial)
4442 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4443 		       s->name, count, n->nr_partial);
4444 
4445 	if (!(s->flags & SLAB_STORE_USER))
4446 		goto out;
4447 
4448 	list_for_each_entry(page, &n->full, lru) {
4449 		validate_slab_slab(s, page, map);
4450 		count++;
4451 	}
4452 	if (count != atomic_long_read(&n->nr_slabs))
4453 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4454 		       s->name, count, atomic_long_read(&n->nr_slabs));
4455 
4456 out:
4457 	spin_unlock_irqrestore(&n->list_lock, flags);
4458 	return count;
4459 }
4460 
4461 static long validate_slab_cache(struct kmem_cache *s)
4462 {
4463 	int node;
4464 	unsigned long count = 0;
4465 	struct kmem_cache_node *n;
4466 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4467 
4468 	if (!map)
4469 		return -ENOMEM;
4470 
4471 	flush_all(s);
4472 	for_each_kmem_cache_node(s, node, n)
4473 		count += validate_slab_node(s, n, map);
4474 	bitmap_free(map);
4475 	return count;
4476 }
4477 /*
4478  * Generate lists of code addresses where slabcache objects are allocated
4479  * and freed.
4480  */
4481 
4482 struct location {
4483 	unsigned long count;
4484 	unsigned long addr;
4485 	long long sum_time;
4486 	long min_time;
4487 	long max_time;
4488 	long min_pid;
4489 	long max_pid;
4490 	DECLARE_BITMAP(cpus, NR_CPUS);
4491 	nodemask_t nodes;
4492 };
4493 
4494 struct loc_track {
4495 	unsigned long max;
4496 	unsigned long count;
4497 	struct location *loc;
4498 };
4499 
4500 static void free_loc_track(struct loc_track *t)
4501 {
4502 	if (t->max)
4503 		free_pages((unsigned long)t->loc,
4504 			get_order(sizeof(struct location) * t->max));
4505 }
4506 
4507 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4508 {
4509 	struct location *l;
4510 	int order;
4511 
4512 	order = get_order(sizeof(struct location) * max);
4513 
4514 	l = (void *)__get_free_pages(flags, order);
4515 	if (!l)
4516 		return 0;
4517 
4518 	if (t->count) {
4519 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4520 		free_loc_track(t);
4521 	}
4522 	t->max = max;
4523 	t->loc = l;
4524 	return 1;
4525 }
4526 
4527 static int add_location(struct loc_track *t, struct kmem_cache *s,
4528 				const struct track *track)
4529 {
4530 	long start, end, pos;
4531 	struct location *l;
4532 	unsigned long caddr;
4533 	unsigned long age = jiffies - track->when;
4534 
4535 	start = -1;
4536 	end = t->count;
4537 
4538 	for ( ; ; ) {
4539 		pos = start + (end - start + 1) / 2;
4540 
4541 		/*
4542 		 * There is nothing at "end". If we end up there
4543 		 * we need to add something to before end.
4544 		 */
4545 		if (pos == end)
4546 			break;
4547 
4548 		caddr = t->loc[pos].addr;
4549 		if (track->addr == caddr) {
4550 
4551 			l = &t->loc[pos];
4552 			l->count++;
4553 			if (track->when) {
4554 				l->sum_time += age;
4555 				if (age < l->min_time)
4556 					l->min_time = age;
4557 				if (age > l->max_time)
4558 					l->max_time = age;
4559 
4560 				if (track->pid < l->min_pid)
4561 					l->min_pid = track->pid;
4562 				if (track->pid > l->max_pid)
4563 					l->max_pid = track->pid;
4564 
4565 				cpumask_set_cpu(track->cpu,
4566 						to_cpumask(l->cpus));
4567 			}
4568 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4569 			return 1;
4570 		}
4571 
4572 		if (track->addr < caddr)
4573 			end = pos;
4574 		else
4575 			start = pos;
4576 	}
4577 
4578 	/*
4579 	 * Not found. Insert new tracking element.
4580 	 */
4581 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4582 		return 0;
4583 
4584 	l = t->loc + pos;
4585 	if (pos < t->count)
4586 		memmove(l + 1, l,
4587 			(t->count - pos) * sizeof(struct location));
4588 	t->count++;
4589 	l->count = 1;
4590 	l->addr = track->addr;
4591 	l->sum_time = age;
4592 	l->min_time = age;
4593 	l->max_time = age;
4594 	l->min_pid = track->pid;
4595 	l->max_pid = track->pid;
4596 	cpumask_clear(to_cpumask(l->cpus));
4597 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4598 	nodes_clear(l->nodes);
4599 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4600 	return 1;
4601 }
4602 
4603 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4604 		struct page *page, enum track_item alloc,
4605 		unsigned long *map)
4606 {
4607 	void *addr = page_address(page);
4608 	void *p;
4609 
4610 	bitmap_zero(map, page->objects);
4611 	get_map(s, page, map);
4612 
4613 	for_each_object(p, s, addr, page->objects)
4614 		if (!test_bit(slab_index(p, s, addr), map))
4615 			add_location(t, s, get_track(s, p, alloc));
4616 }
4617 
4618 static int list_locations(struct kmem_cache *s, char *buf,
4619 					enum track_item alloc)
4620 {
4621 	int len = 0;
4622 	unsigned long i;
4623 	struct loc_track t = { 0, 0, NULL };
4624 	int node;
4625 	struct kmem_cache_node *n;
4626 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4627 
4628 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4629 				     GFP_KERNEL)) {
4630 		bitmap_free(map);
4631 		return sprintf(buf, "Out of memory\n");
4632 	}
4633 	/* Push back cpu slabs */
4634 	flush_all(s);
4635 
4636 	for_each_kmem_cache_node(s, node, n) {
4637 		unsigned long flags;
4638 		struct page *page;
4639 
4640 		if (!atomic_long_read(&n->nr_slabs))
4641 			continue;
4642 
4643 		spin_lock_irqsave(&n->list_lock, flags);
4644 		list_for_each_entry(page, &n->partial, lru)
4645 			process_slab(&t, s, page, alloc, map);
4646 		list_for_each_entry(page, &n->full, lru)
4647 			process_slab(&t, s, page, alloc, map);
4648 		spin_unlock_irqrestore(&n->list_lock, flags);
4649 	}
4650 
4651 	for (i = 0; i < t.count; i++) {
4652 		struct location *l = &t.loc[i];
4653 
4654 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4655 			break;
4656 		len += sprintf(buf + len, "%7ld ", l->count);
4657 
4658 		if (l->addr)
4659 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4660 		else
4661 			len += sprintf(buf + len, "<not-available>");
4662 
4663 		if (l->sum_time != l->min_time) {
4664 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4665 				l->min_time,
4666 				(long)div_u64(l->sum_time, l->count),
4667 				l->max_time);
4668 		} else
4669 			len += sprintf(buf + len, " age=%ld",
4670 				l->min_time);
4671 
4672 		if (l->min_pid != l->max_pid)
4673 			len += sprintf(buf + len, " pid=%ld-%ld",
4674 				l->min_pid, l->max_pid);
4675 		else
4676 			len += sprintf(buf + len, " pid=%ld",
4677 				l->min_pid);
4678 
4679 		if (num_online_cpus() > 1 &&
4680 				!cpumask_empty(to_cpumask(l->cpus)) &&
4681 				len < PAGE_SIZE - 60)
4682 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4683 					 " cpus=%*pbl",
4684 					 cpumask_pr_args(to_cpumask(l->cpus)));
4685 
4686 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4687 				len < PAGE_SIZE - 60)
4688 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4689 					 " nodes=%*pbl",
4690 					 nodemask_pr_args(&l->nodes));
4691 
4692 		len += sprintf(buf + len, "\n");
4693 	}
4694 
4695 	free_loc_track(&t);
4696 	bitmap_free(map);
4697 	if (!t.count)
4698 		len += sprintf(buf, "No data\n");
4699 	return len;
4700 }
4701 #endif
4702 
4703 #ifdef SLUB_RESILIENCY_TEST
4704 static void __init resiliency_test(void)
4705 {
4706 	u8 *p;
4707 	int type = KMALLOC_NORMAL;
4708 
4709 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4710 
4711 	pr_err("SLUB resiliency testing\n");
4712 	pr_err("-----------------------\n");
4713 	pr_err("A. Corruption after allocation\n");
4714 
4715 	p = kzalloc(16, GFP_KERNEL);
4716 	p[16] = 0x12;
4717 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4718 	       p + 16);
4719 
4720 	validate_slab_cache(kmalloc_caches[type][4]);
4721 
4722 	/* Hmmm... The next two are dangerous */
4723 	p = kzalloc(32, GFP_KERNEL);
4724 	p[32 + sizeof(void *)] = 0x34;
4725 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4726 	       p);
4727 	pr_err("If allocated object is overwritten then not detectable\n\n");
4728 
4729 	validate_slab_cache(kmalloc_caches[type][5]);
4730 	p = kzalloc(64, GFP_KERNEL);
4731 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4732 	*p = 0x56;
4733 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4734 	       p);
4735 	pr_err("If allocated object is overwritten then not detectable\n\n");
4736 	validate_slab_cache(kmalloc_caches[type][6]);
4737 
4738 	pr_err("\nB. Corruption after free\n");
4739 	p = kzalloc(128, GFP_KERNEL);
4740 	kfree(p);
4741 	*p = 0x78;
4742 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4743 	validate_slab_cache(kmalloc_caches[type][7]);
4744 
4745 	p = kzalloc(256, GFP_KERNEL);
4746 	kfree(p);
4747 	p[50] = 0x9a;
4748 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4749 	validate_slab_cache(kmalloc_caches[type][8]);
4750 
4751 	p = kzalloc(512, GFP_KERNEL);
4752 	kfree(p);
4753 	p[512] = 0xab;
4754 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4755 	validate_slab_cache(kmalloc_caches[type][9]);
4756 }
4757 #else
4758 #ifdef CONFIG_SYSFS
4759 static void resiliency_test(void) {};
4760 #endif
4761 #endif
4762 
4763 #ifdef CONFIG_SYSFS
4764 enum slab_stat_type {
4765 	SL_ALL,			/* All slabs */
4766 	SL_PARTIAL,		/* Only partially allocated slabs */
4767 	SL_CPU,			/* Only slabs used for cpu caches */
4768 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4769 	SL_TOTAL		/* Determine object capacity not slabs */
4770 };
4771 
4772 #define SO_ALL		(1 << SL_ALL)
4773 #define SO_PARTIAL	(1 << SL_PARTIAL)
4774 #define SO_CPU		(1 << SL_CPU)
4775 #define SO_OBJECTS	(1 << SL_OBJECTS)
4776 #define SO_TOTAL	(1 << SL_TOTAL)
4777 
4778 #ifdef CONFIG_MEMCG
4779 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4780 
4781 static int __init setup_slub_memcg_sysfs(char *str)
4782 {
4783 	int v;
4784 
4785 	if (get_option(&str, &v) > 0)
4786 		memcg_sysfs_enabled = v;
4787 
4788 	return 1;
4789 }
4790 
4791 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4792 #endif
4793 
4794 static ssize_t show_slab_objects(struct kmem_cache *s,
4795 			    char *buf, unsigned long flags)
4796 {
4797 	unsigned long total = 0;
4798 	int node;
4799 	int x;
4800 	unsigned long *nodes;
4801 
4802 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4803 	if (!nodes)
4804 		return -ENOMEM;
4805 
4806 	if (flags & SO_CPU) {
4807 		int cpu;
4808 
4809 		for_each_possible_cpu(cpu) {
4810 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4811 							       cpu);
4812 			int node;
4813 			struct page *page;
4814 
4815 			page = READ_ONCE(c->page);
4816 			if (!page)
4817 				continue;
4818 
4819 			node = page_to_nid(page);
4820 			if (flags & SO_TOTAL)
4821 				x = page->objects;
4822 			else if (flags & SO_OBJECTS)
4823 				x = page->inuse;
4824 			else
4825 				x = 1;
4826 
4827 			total += x;
4828 			nodes[node] += x;
4829 
4830 			page = slub_percpu_partial_read_once(c);
4831 			if (page) {
4832 				node = page_to_nid(page);
4833 				if (flags & SO_TOTAL)
4834 					WARN_ON_ONCE(1);
4835 				else if (flags & SO_OBJECTS)
4836 					WARN_ON_ONCE(1);
4837 				else
4838 					x = page->pages;
4839 				total += x;
4840 				nodes[node] += x;
4841 			}
4842 		}
4843 	}
4844 
4845 	get_online_mems();
4846 #ifdef CONFIG_SLUB_DEBUG
4847 	if (flags & SO_ALL) {
4848 		struct kmem_cache_node *n;
4849 
4850 		for_each_kmem_cache_node(s, node, n) {
4851 
4852 			if (flags & SO_TOTAL)
4853 				x = atomic_long_read(&n->total_objects);
4854 			else if (flags & SO_OBJECTS)
4855 				x = atomic_long_read(&n->total_objects) -
4856 					count_partial(n, count_free);
4857 			else
4858 				x = atomic_long_read(&n->nr_slabs);
4859 			total += x;
4860 			nodes[node] += x;
4861 		}
4862 
4863 	} else
4864 #endif
4865 	if (flags & SO_PARTIAL) {
4866 		struct kmem_cache_node *n;
4867 
4868 		for_each_kmem_cache_node(s, node, n) {
4869 			if (flags & SO_TOTAL)
4870 				x = count_partial(n, count_total);
4871 			else if (flags & SO_OBJECTS)
4872 				x = count_partial(n, count_inuse);
4873 			else
4874 				x = n->nr_partial;
4875 			total += x;
4876 			nodes[node] += x;
4877 		}
4878 	}
4879 	x = sprintf(buf, "%lu", total);
4880 #ifdef CONFIG_NUMA
4881 	for (node = 0; node < nr_node_ids; node++)
4882 		if (nodes[node])
4883 			x += sprintf(buf + x, " N%d=%lu",
4884 					node, nodes[node]);
4885 #endif
4886 	put_online_mems();
4887 	kfree(nodes);
4888 	return x + sprintf(buf + x, "\n");
4889 }
4890 
4891 #ifdef CONFIG_SLUB_DEBUG
4892 static int any_slab_objects(struct kmem_cache *s)
4893 {
4894 	int node;
4895 	struct kmem_cache_node *n;
4896 
4897 	for_each_kmem_cache_node(s, node, n)
4898 		if (atomic_long_read(&n->total_objects))
4899 			return 1;
4900 
4901 	return 0;
4902 }
4903 #endif
4904 
4905 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4906 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4907 
4908 struct slab_attribute {
4909 	struct attribute attr;
4910 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4911 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4912 };
4913 
4914 #define SLAB_ATTR_RO(_name) \
4915 	static struct slab_attribute _name##_attr = \
4916 	__ATTR(_name, 0400, _name##_show, NULL)
4917 
4918 #define SLAB_ATTR(_name) \
4919 	static struct slab_attribute _name##_attr =  \
4920 	__ATTR(_name, 0600, _name##_show, _name##_store)
4921 
4922 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4923 {
4924 	return sprintf(buf, "%u\n", s->size);
4925 }
4926 SLAB_ATTR_RO(slab_size);
4927 
4928 static ssize_t align_show(struct kmem_cache *s, char *buf)
4929 {
4930 	return sprintf(buf, "%u\n", s->align);
4931 }
4932 SLAB_ATTR_RO(align);
4933 
4934 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4935 {
4936 	return sprintf(buf, "%u\n", s->object_size);
4937 }
4938 SLAB_ATTR_RO(object_size);
4939 
4940 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4941 {
4942 	return sprintf(buf, "%u\n", oo_objects(s->oo));
4943 }
4944 SLAB_ATTR_RO(objs_per_slab);
4945 
4946 static ssize_t order_store(struct kmem_cache *s,
4947 				const char *buf, size_t length)
4948 {
4949 	unsigned int order;
4950 	int err;
4951 
4952 	err = kstrtouint(buf, 10, &order);
4953 	if (err)
4954 		return err;
4955 
4956 	if (order > slub_max_order || order < slub_min_order)
4957 		return -EINVAL;
4958 
4959 	calculate_sizes(s, order);
4960 	return length;
4961 }
4962 
4963 static ssize_t order_show(struct kmem_cache *s, char *buf)
4964 {
4965 	return sprintf(buf, "%u\n", oo_order(s->oo));
4966 }
4967 SLAB_ATTR(order);
4968 
4969 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4970 {
4971 	return sprintf(buf, "%lu\n", s->min_partial);
4972 }
4973 
4974 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4975 				 size_t length)
4976 {
4977 	unsigned long min;
4978 	int err;
4979 
4980 	err = kstrtoul(buf, 10, &min);
4981 	if (err)
4982 		return err;
4983 
4984 	set_min_partial(s, min);
4985 	return length;
4986 }
4987 SLAB_ATTR(min_partial);
4988 
4989 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4990 {
4991 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4992 }
4993 
4994 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4995 				 size_t length)
4996 {
4997 	unsigned int objects;
4998 	int err;
4999 
5000 	err = kstrtouint(buf, 10, &objects);
5001 	if (err)
5002 		return err;
5003 	if (objects && !kmem_cache_has_cpu_partial(s))
5004 		return -EINVAL;
5005 
5006 	slub_set_cpu_partial(s, objects);
5007 	flush_all(s);
5008 	return length;
5009 }
5010 SLAB_ATTR(cpu_partial);
5011 
5012 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5013 {
5014 	if (!s->ctor)
5015 		return 0;
5016 	return sprintf(buf, "%pS\n", s->ctor);
5017 }
5018 SLAB_ATTR_RO(ctor);
5019 
5020 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5021 {
5022 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5023 }
5024 SLAB_ATTR_RO(aliases);
5025 
5026 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5027 {
5028 	return show_slab_objects(s, buf, SO_PARTIAL);
5029 }
5030 SLAB_ATTR_RO(partial);
5031 
5032 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5033 {
5034 	return show_slab_objects(s, buf, SO_CPU);
5035 }
5036 SLAB_ATTR_RO(cpu_slabs);
5037 
5038 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5039 {
5040 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5041 }
5042 SLAB_ATTR_RO(objects);
5043 
5044 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5045 {
5046 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5047 }
5048 SLAB_ATTR_RO(objects_partial);
5049 
5050 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5051 {
5052 	int objects = 0;
5053 	int pages = 0;
5054 	int cpu;
5055 	int len;
5056 
5057 	for_each_online_cpu(cpu) {
5058 		struct page *page;
5059 
5060 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5061 
5062 		if (page) {
5063 			pages += page->pages;
5064 			objects += page->pobjects;
5065 		}
5066 	}
5067 
5068 	len = sprintf(buf, "%d(%d)", objects, pages);
5069 
5070 #ifdef CONFIG_SMP
5071 	for_each_online_cpu(cpu) {
5072 		struct page *page;
5073 
5074 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5075 
5076 		if (page && len < PAGE_SIZE - 20)
5077 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5078 				page->pobjects, page->pages);
5079 	}
5080 #endif
5081 	return len + sprintf(buf + len, "\n");
5082 }
5083 SLAB_ATTR_RO(slabs_cpu_partial);
5084 
5085 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5086 {
5087 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5088 }
5089 
5090 static ssize_t reclaim_account_store(struct kmem_cache *s,
5091 				const char *buf, size_t length)
5092 {
5093 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5094 	if (buf[0] == '1')
5095 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5096 	return length;
5097 }
5098 SLAB_ATTR(reclaim_account);
5099 
5100 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5101 {
5102 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5103 }
5104 SLAB_ATTR_RO(hwcache_align);
5105 
5106 #ifdef CONFIG_ZONE_DMA
5107 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5108 {
5109 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5110 }
5111 SLAB_ATTR_RO(cache_dma);
5112 #endif
5113 
5114 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5115 {
5116 	return sprintf(buf, "%u\n", s->usersize);
5117 }
5118 SLAB_ATTR_RO(usersize);
5119 
5120 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5121 {
5122 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5123 }
5124 SLAB_ATTR_RO(destroy_by_rcu);
5125 
5126 #ifdef CONFIG_SLUB_DEBUG
5127 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5128 {
5129 	return show_slab_objects(s, buf, SO_ALL);
5130 }
5131 SLAB_ATTR_RO(slabs);
5132 
5133 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5134 {
5135 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5136 }
5137 SLAB_ATTR_RO(total_objects);
5138 
5139 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5140 {
5141 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5142 }
5143 
5144 static ssize_t sanity_checks_store(struct kmem_cache *s,
5145 				const char *buf, size_t length)
5146 {
5147 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5148 	if (buf[0] == '1') {
5149 		s->flags &= ~__CMPXCHG_DOUBLE;
5150 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5151 	}
5152 	return length;
5153 }
5154 SLAB_ATTR(sanity_checks);
5155 
5156 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5157 {
5158 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5159 }
5160 
5161 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5162 							size_t length)
5163 {
5164 	/*
5165 	 * Tracing a merged cache is going to give confusing results
5166 	 * as well as cause other issues like converting a mergeable
5167 	 * cache into an umergeable one.
5168 	 */
5169 	if (s->refcount > 1)
5170 		return -EINVAL;
5171 
5172 	s->flags &= ~SLAB_TRACE;
5173 	if (buf[0] == '1') {
5174 		s->flags &= ~__CMPXCHG_DOUBLE;
5175 		s->flags |= SLAB_TRACE;
5176 	}
5177 	return length;
5178 }
5179 SLAB_ATTR(trace);
5180 
5181 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5182 {
5183 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5184 }
5185 
5186 static ssize_t red_zone_store(struct kmem_cache *s,
5187 				const char *buf, size_t length)
5188 {
5189 	if (any_slab_objects(s))
5190 		return -EBUSY;
5191 
5192 	s->flags &= ~SLAB_RED_ZONE;
5193 	if (buf[0] == '1') {
5194 		s->flags |= SLAB_RED_ZONE;
5195 	}
5196 	calculate_sizes(s, -1);
5197 	return length;
5198 }
5199 SLAB_ATTR(red_zone);
5200 
5201 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5202 {
5203 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5204 }
5205 
5206 static ssize_t poison_store(struct kmem_cache *s,
5207 				const char *buf, size_t length)
5208 {
5209 	if (any_slab_objects(s))
5210 		return -EBUSY;
5211 
5212 	s->flags &= ~SLAB_POISON;
5213 	if (buf[0] == '1') {
5214 		s->flags |= SLAB_POISON;
5215 	}
5216 	calculate_sizes(s, -1);
5217 	return length;
5218 }
5219 SLAB_ATTR(poison);
5220 
5221 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5222 {
5223 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5224 }
5225 
5226 static ssize_t store_user_store(struct kmem_cache *s,
5227 				const char *buf, size_t length)
5228 {
5229 	if (any_slab_objects(s))
5230 		return -EBUSY;
5231 
5232 	s->flags &= ~SLAB_STORE_USER;
5233 	if (buf[0] == '1') {
5234 		s->flags &= ~__CMPXCHG_DOUBLE;
5235 		s->flags |= SLAB_STORE_USER;
5236 	}
5237 	calculate_sizes(s, -1);
5238 	return length;
5239 }
5240 SLAB_ATTR(store_user);
5241 
5242 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5243 {
5244 	return 0;
5245 }
5246 
5247 static ssize_t validate_store(struct kmem_cache *s,
5248 			const char *buf, size_t length)
5249 {
5250 	int ret = -EINVAL;
5251 
5252 	if (buf[0] == '1') {
5253 		ret = validate_slab_cache(s);
5254 		if (ret >= 0)
5255 			ret = length;
5256 	}
5257 	return ret;
5258 }
5259 SLAB_ATTR(validate);
5260 
5261 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5262 {
5263 	if (!(s->flags & SLAB_STORE_USER))
5264 		return -ENOSYS;
5265 	return list_locations(s, buf, TRACK_ALLOC);
5266 }
5267 SLAB_ATTR_RO(alloc_calls);
5268 
5269 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5270 {
5271 	if (!(s->flags & SLAB_STORE_USER))
5272 		return -ENOSYS;
5273 	return list_locations(s, buf, TRACK_FREE);
5274 }
5275 SLAB_ATTR_RO(free_calls);
5276 #endif /* CONFIG_SLUB_DEBUG */
5277 
5278 #ifdef CONFIG_FAILSLAB
5279 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5280 {
5281 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5282 }
5283 
5284 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5285 							size_t length)
5286 {
5287 	if (s->refcount > 1)
5288 		return -EINVAL;
5289 
5290 	s->flags &= ~SLAB_FAILSLAB;
5291 	if (buf[0] == '1')
5292 		s->flags |= SLAB_FAILSLAB;
5293 	return length;
5294 }
5295 SLAB_ATTR(failslab);
5296 #endif
5297 
5298 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5299 {
5300 	return 0;
5301 }
5302 
5303 static ssize_t shrink_store(struct kmem_cache *s,
5304 			const char *buf, size_t length)
5305 {
5306 	if (buf[0] == '1')
5307 		kmem_cache_shrink(s);
5308 	else
5309 		return -EINVAL;
5310 	return length;
5311 }
5312 SLAB_ATTR(shrink);
5313 
5314 #ifdef CONFIG_NUMA
5315 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5316 {
5317 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5318 }
5319 
5320 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5321 				const char *buf, size_t length)
5322 {
5323 	unsigned int ratio;
5324 	int err;
5325 
5326 	err = kstrtouint(buf, 10, &ratio);
5327 	if (err)
5328 		return err;
5329 	if (ratio > 100)
5330 		return -ERANGE;
5331 
5332 	s->remote_node_defrag_ratio = ratio * 10;
5333 
5334 	return length;
5335 }
5336 SLAB_ATTR(remote_node_defrag_ratio);
5337 #endif
5338 
5339 #ifdef CONFIG_SLUB_STATS
5340 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5341 {
5342 	unsigned long sum  = 0;
5343 	int cpu;
5344 	int len;
5345 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5346 
5347 	if (!data)
5348 		return -ENOMEM;
5349 
5350 	for_each_online_cpu(cpu) {
5351 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5352 
5353 		data[cpu] = x;
5354 		sum += x;
5355 	}
5356 
5357 	len = sprintf(buf, "%lu", sum);
5358 
5359 #ifdef CONFIG_SMP
5360 	for_each_online_cpu(cpu) {
5361 		if (data[cpu] && len < PAGE_SIZE - 20)
5362 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5363 	}
5364 #endif
5365 	kfree(data);
5366 	return len + sprintf(buf + len, "\n");
5367 }
5368 
5369 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5370 {
5371 	int cpu;
5372 
5373 	for_each_online_cpu(cpu)
5374 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5375 }
5376 
5377 #define STAT_ATTR(si, text) 					\
5378 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5379 {								\
5380 	return show_stat(s, buf, si);				\
5381 }								\
5382 static ssize_t text##_store(struct kmem_cache *s,		\
5383 				const char *buf, size_t length)	\
5384 {								\
5385 	if (buf[0] != '0')					\
5386 		return -EINVAL;					\
5387 	clear_stat(s, si);					\
5388 	return length;						\
5389 }								\
5390 SLAB_ATTR(text);						\
5391 
5392 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5393 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5394 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5395 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5396 STAT_ATTR(FREE_FROZEN, free_frozen);
5397 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5398 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5399 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5400 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5401 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5402 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5403 STAT_ATTR(FREE_SLAB, free_slab);
5404 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5405 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5406 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5407 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5408 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5409 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5410 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5411 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5412 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5413 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5414 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5415 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5416 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5417 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5418 #endif
5419 
5420 static struct attribute *slab_attrs[] = {
5421 	&slab_size_attr.attr,
5422 	&object_size_attr.attr,
5423 	&objs_per_slab_attr.attr,
5424 	&order_attr.attr,
5425 	&min_partial_attr.attr,
5426 	&cpu_partial_attr.attr,
5427 	&objects_attr.attr,
5428 	&objects_partial_attr.attr,
5429 	&partial_attr.attr,
5430 	&cpu_slabs_attr.attr,
5431 	&ctor_attr.attr,
5432 	&aliases_attr.attr,
5433 	&align_attr.attr,
5434 	&hwcache_align_attr.attr,
5435 	&reclaim_account_attr.attr,
5436 	&destroy_by_rcu_attr.attr,
5437 	&shrink_attr.attr,
5438 	&slabs_cpu_partial_attr.attr,
5439 #ifdef CONFIG_SLUB_DEBUG
5440 	&total_objects_attr.attr,
5441 	&slabs_attr.attr,
5442 	&sanity_checks_attr.attr,
5443 	&trace_attr.attr,
5444 	&red_zone_attr.attr,
5445 	&poison_attr.attr,
5446 	&store_user_attr.attr,
5447 	&validate_attr.attr,
5448 	&alloc_calls_attr.attr,
5449 	&free_calls_attr.attr,
5450 #endif
5451 #ifdef CONFIG_ZONE_DMA
5452 	&cache_dma_attr.attr,
5453 #endif
5454 #ifdef CONFIG_NUMA
5455 	&remote_node_defrag_ratio_attr.attr,
5456 #endif
5457 #ifdef CONFIG_SLUB_STATS
5458 	&alloc_fastpath_attr.attr,
5459 	&alloc_slowpath_attr.attr,
5460 	&free_fastpath_attr.attr,
5461 	&free_slowpath_attr.attr,
5462 	&free_frozen_attr.attr,
5463 	&free_add_partial_attr.attr,
5464 	&free_remove_partial_attr.attr,
5465 	&alloc_from_partial_attr.attr,
5466 	&alloc_slab_attr.attr,
5467 	&alloc_refill_attr.attr,
5468 	&alloc_node_mismatch_attr.attr,
5469 	&free_slab_attr.attr,
5470 	&cpuslab_flush_attr.attr,
5471 	&deactivate_full_attr.attr,
5472 	&deactivate_empty_attr.attr,
5473 	&deactivate_to_head_attr.attr,
5474 	&deactivate_to_tail_attr.attr,
5475 	&deactivate_remote_frees_attr.attr,
5476 	&deactivate_bypass_attr.attr,
5477 	&order_fallback_attr.attr,
5478 	&cmpxchg_double_fail_attr.attr,
5479 	&cmpxchg_double_cpu_fail_attr.attr,
5480 	&cpu_partial_alloc_attr.attr,
5481 	&cpu_partial_free_attr.attr,
5482 	&cpu_partial_node_attr.attr,
5483 	&cpu_partial_drain_attr.attr,
5484 #endif
5485 #ifdef CONFIG_FAILSLAB
5486 	&failslab_attr.attr,
5487 #endif
5488 	&usersize_attr.attr,
5489 
5490 	NULL
5491 };
5492 
5493 static const struct attribute_group slab_attr_group = {
5494 	.attrs = slab_attrs,
5495 };
5496 
5497 static ssize_t slab_attr_show(struct kobject *kobj,
5498 				struct attribute *attr,
5499 				char *buf)
5500 {
5501 	struct slab_attribute *attribute;
5502 	struct kmem_cache *s;
5503 	int err;
5504 
5505 	attribute = to_slab_attr(attr);
5506 	s = to_slab(kobj);
5507 
5508 	if (!attribute->show)
5509 		return -EIO;
5510 
5511 	err = attribute->show(s, buf);
5512 
5513 	return err;
5514 }
5515 
5516 static ssize_t slab_attr_store(struct kobject *kobj,
5517 				struct attribute *attr,
5518 				const char *buf, size_t len)
5519 {
5520 	struct slab_attribute *attribute;
5521 	struct kmem_cache *s;
5522 	int err;
5523 
5524 	attribute = to_slab_attr(attr);
5525 	s = to_slab(kobj);
5526 
5527 	if (!attribute->store)
5528 		return -EIO;
5529 
5530 	err = attribute->store(s, buf, len);
5531 #ifdef CONFIG_MEMCG
5532 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5533 		struct kmem_cache *c;
5534 
5535 		mutex_lock(&slab_mutex);
5536 		if (s->max_attr_size < len)
5537 			s->max_attr_size = len;
5538 
5539 		/*
5540 		 * This is a best effort propagation, so this function's return
5541 		 * value will be determined by the parent cache only. This is
5542 		 * basically because not all attributes will have a well
5543 		 * defined semantics for rollbacks - most of the actions will
5544 		 * have permanent effects.
5545 		 *
5546 		 * Returning the error value of any of the children that fail
5547 		 * is not 100 % defined, in the sense that users seeing the
5548 		 * error code won't be able to know anything about the state of
5549 		 * the cache.
5550 		 *
5551 		 * Only returning the error code for the parent cache at least
5552 		 * has well defined semantics. The cache being written to
5553 		 * directly either failed or succeeded, in which case we loop
5554 		 * through the descendants with best-effort propagation.
5555 		 */
5556 		for_each_memcg_cache(c, s)
5557 			attribute->store(c, buf, len);
5558 		mutex_unlock(&slab_mutex);
5559 	}
5560 #endif
5561 	return err;
5562 }
5563 
5564 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5565 {
5566 #ifdef CONFIG_MEMCG
5567 	int i;
5568 	char *buffer = NULL;
5569 	struct kmem_cache *root_cache;
5570 
5571 	if (is_root_cache(s))
5572 		return;
5573 
5574 	root_cache = s->memcg_params.root_cache;
5575 
5576 	/*
5577 	 * This mean this cache had no attribute written. Therefore, no point
5578 	 * in copying default values around
5579 	 */
5580 	if (!root_cache->max_attr_size)
5581 		return;
5582 
5583 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5584 		char mbuf[64];
5585 		char *buf;
5586 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5587 		ssize_t len;
5588 
5589 		if (!attr || !attr->store || !attr->show)
5590 			continue;
5591 
5592 		/*
5593 		 * It is really bad that we have to allocate here, so we will
5594 		 * do it only as a fallback. If we actually allocate, though,
5595 		 * we can just use the allocated buffer until the end.
5596 		 *
5597 		 * Most of the slub attributes will tend to be very small in
5598 		 * size, but sysfs allows buffers up to a page, so they can
5599 		 * theoretically happen.
5600 		 */
5601 		if (buffer)
5602 			buf = buffer;
5603 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5604 			buf = mbuf;
5605 		else {
5606 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5607 			if (WARN_ON(!buffer))
5608 				continue;
5609 			buf = buffer;
5610 		}
5611 
5612 		len = attr->show(root_cache, buf);
5613 		if (len > 0)
5614 			attr->store(s, buf, len);
5615 	}
5616 
5617 	if (buffer)
5618 		free_page((unsigned long)buffer);
5619 #endif
5620 }
5621 
5622 static void kmem_cache_release(struct kobject *k)
5623 {
5624 	slab_kmem_cache_release(to_slab(k));
5625 }
5626 
5627 static const struct sysfs_ops slab_sysfs_ops = {
5628 	.show = slab_attr_show,
5629 	.store = slab_attr_store,
5630 };
5631 
5632 static struct kobj_type slab_ktype = {
5633 	.sysfs_ops = &slab_sysfs_ops,
5634 	.release = kmem_cache_release,
5635 };
5636 
5637 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5638 {
5639 	struct kobj_type *ktype = get_ktype(kobj);
5640 
5641 	if (ktype == &slab_ktype)
5642 		return 1;
5643 	return 0;
5644 }
5645 
5646 static const struct kset_uevent_ops slab_uevent_ops = {
5647 	.filter = uevent_filter,
5648 };
5649 
5650 static struct kset *slab_kset;
5651 
5652 static inline struct kset *cache_kset(struct kmem_cache *s)
5653 {
5654 #ifdef CONFIG_MEMCG
5655 	if (!is_root_cache(s))
5656 		return s->memcg_params.root_cache->memcg_kset;
5657 #endif
5658 	return slab_kset;
5659 }
5660 
5661 #define ID_STR_LENGTH 64
5662 
5663 /* Create a unique string id for a slab cache:
5664  *
5665  * Format	:[flags-]size
5666  */
5667 static char *create_unique_id(struct kmem_cache *s)
5668 {
5669 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5670 	char *p = name;
5671 
5672 	BUG_ON(!name);
5673 
5674 	*p++ = ':';
5675 	/*
5676 	 * First flags affecting slabcache operations. We will only
5677 	 * get here for aliasable slabs so we do not need to support
5678 	 * too many flags. The flags here must cover all flags that
5679 	 * are matched during merging to guarantee that the id is
5680 	 * unique.
5681 	 */
5682 	if (s->flags & SLAB_CACHE_DMA)
5683 		*p++ = 'd';
5684 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5685 		*p++ = 'a';
5686 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5687 		*p++ = 'F';
5688 	if (s->flags & SLAB_ACCOUNT)
5689 		*p++ = 'A';
5690 	if (p != name + 1)
5691 		*p++ = '-';
5692 	p += sprintf(p, "%07u", s->size);
5693 
5694 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5695 	return name;
5696 }
5697 
5698 static void sysfs_slab_remove_workfn(struct work_struct *work)
5699 {
5700 	struct kmem_cache *s =
5701 		container_of(work, struct kmem_cache, kobj_remove_work);
5702 
5703 	if (!s->kobj.state_in_sysfs)
5704 		/*
5705 		 * For a memcg cache, this may be called during
5706 		 * deactivation and again on shutdown.  Remove only once.
5707 		 * A cache is never shut down before deactivation is
5708 		 * complete, so no need to worry about synchronization.
5709 		 */
5710 		goto out;
5711 
5712 #ifdef CONFIG_MEMCG
5713 	kset_unregister(s->memcg_kset);
5714 #endif
5715 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5716 out:
5717 	kobject_put(&s->kobj);
5718 }
5719 
5720 static int sysfs_slab_add(struct kmem_cache *s)
5721 {
5722 	int err;
5723 	const char *name;
5724 	struct kset *kset = cache_kset(s);
5725 	int unmergeable = slab_unmergeable(s);
5726 
5727 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5728 
5729 	if (!kset) {
5730 		kobject_init(&s->kobj, &slab_ktype);
5731 		return 0;
5732 	}
5733 
5734 	if (!unmergeable && disable_higher_order_debug &&
5735 			(slub_debug & DEBUG_METADATA_FLAGS))
5736 		unmergeable = 1;
5737 
5738 	if (unmergeable) {
5739 		/*
5740 		 * Slabcache can never be merged so we can use the name proper.
5741 		 * This is typically the case for debug situations. In that
5742 		 * case we can catch duplicate names easily.
5743 		 */
5744 		sysfs_remove_link(&slab_kset->kobj, s->name);
5745 		name = s->name;
5746 	} else {
5747 		/*
5748 		 * Create a unique name for the slab as a target
5749 		 * for the symlinks.
5750 		 */
5751 		name = create_unique_id(s);
5752 	}
5753 
5754 	s->kobj.kset = kset;
5755 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5756 	if (err)
5757 		goto out;
5758 
5759 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5760 	if (err)
5761 		goto out_del_kobj;
5762 
5763 #ifdef CONFIG_MEMCG
5764 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5765 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5766 		if (!s->memcg_kset) {
5767 			err = -ENOMEM;
5768 			goto out_del_kobj;
5769 		}
5770 	}
5771 #endif
5772 
5773 	kobject_uevent(&s->kobj, KOBJ_ADD);
5774 	if (!unmergeable) {
5775 		/* Setup first alias */
5776 		sysfs_slab_alias(s, s->name);
5777 	}
5778 out:
5779 	if (!unmergeable)
5780 		kfree(name);
5781 	return err;
5782 out_del_kobj:
5783 	kobject_del(&s->kobj);
5784 	goto out;
5785 }
5786 
5787 static void sysfs_slab_remove(struct kmem_cache *s)
5788 {
5789 	if (slab_state < FULL)
5790 		/*
5791 		 * Sysfs has not been setup yet so no need to remove the
5792 		 * cache from sysfs.
5793 		 */
5794 		return;
5795 
5796 	kobject_get(&s->kobj);
5797 	schedule_work(&s->kobj_remove_work);
5798 }
5799 
5800 void sysfs_slab_unlink(struct kmem_cache *s)
5801 {
5802 	if (slab_state >= FULL)
5803 		kobject_del(&s->kobj);
5804 }
5805 
5806 void sysfs_slab_release(struct kmem_cache *s)
5807 {
5808 	if (slab_state >= FULL)
5809 		kobject_put(&s->kobj);
5810 }
5811 
5812 /*
5813  * Need to buffer aliases during bootup until sysfs becomes
5814  * available lest we lose that information.
5815  */
5816 struct saved_alias {
5817 	struct kmem_cache *s;
5818 	const char *name;
5819 	struct saved_alias *next;
5820 };
5821 
5822 static struct saved_alias *alias_list;
5823 
5824 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5825 {
5826 	struct saved_alias *al;
5827 
5828 	if (slab_state == FULL) {
5829 		/*
5830 		 * If we have a leftover link then remove it.
5831 		 */
5832 		sysfs_remove_link(&slab_kset->kobj, name);
5833 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5834 	}
5835 
5836 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5837 	if (!al)
5838 		return -ENOMEM;
5839 
5840 	al->s = s;
5841 	al->name = name;
5842 	al->next = alias_list;
5843 	alias_list = al;
5844 	return 0;
5845 }
5846 
5847 static int __init slab_sysfs_init(void)
5848 {
5849 	struct kmem_cache *s;
5850 	int err;
5851 
5852 	mutex_lock(&slab_mutex);
5853 
5854 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5855 	if (!slab_kset) {
5856 		mutex_unlock(&slab_mutex);
5857 		pr_err("Cannot register slab subsystem.\n");
5858 		return -ENOSYS;
5859 	}
5860 
5861 	slab_state = FULL;
5862 
5863 	list_for_each_entry(s, &slab_caches, list) {
5864 		err = sysfs_slab_add(s);
5865 		if (err)
5866 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5867 			       s->name);
5868 	}
5869 
5870 	while (alias_list) {
5871 		struct saved_alias *al = alias_list;
5872 
5873 		alias_list = alias_list->next;
5874 		err = sysfs_slab_alias(al->s, al->name);
5875 		if (err)
5876 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5877 			       al->name);
5878 		kfree(al);
5879 	}
5880 
5881 	mutex_unlock(&slab_mutex);
5882 	resiliency_test();
5883 	return 0;
5884 }
5885 
5886 __initcall(slab_sysfs_init);
5887 #endif /* CONFIG_SYSFS */
5888 
5889 /*
5890  * The /proc/slabinfo ABI
5891  */
5892 #ifdef CONFIG_SLUB_DEBUG
5893 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5894 {
5895 	unsigned long nr_slabs = 0;
5896 	unsigned long nr_objs = 0;
5897 	unsigned long nr_free = 0;
5898 	int node;
5899 	struct kmem_cache_node *n;
5900 
5901 	for_each_kmem_cache_node(s, node, n) {
5902 		nr_slabs += node_nr_slabs(n);
5903 		nr_objs += node_nr_objs(n);
5904 		nr_free += count_partial(n, count_free);
5905 	}
5906 
5907 	sinfo->active_objs = nr_objs - nr_free;
5908 	sinfo->num_objs = nr_objs;
5909 	sinfo->active_slabs = nr_slabs;
5910 	sinfo->num_slabs = nr_slabs;
5911 	sinfo->objects_per_slab = oo_objects(s->oo);
5912 	sinfo->cache_order = oo_order(s->oo);
5913 }
5914 
5915 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5916 {
5917 }
5918 
5919 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5920 		       size_t count, loff_t *ppos)
5921 {
5922 	return -EIO;
5923 }
5924 #endif /* CONFIG_SLUB_DEBUG */
5925