1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/kmemcheck.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/memory.h> 32 #include <linux/math64.h> 33 #include <linux/fault-inject.h> 34 #include <linux/stacktrace.h> 35 #include <linux/prefetch.h> 36 #include <linux/memcontrol.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects the second 55 * double word in the page struct. Meaning 56 * A. page->freelist -> List of object free in a page 57 * B. page->counters -> Counters of objects 58 * C. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list. The processor that froze the slab is the one who can 62 * perform list operations on the page. Other processors may put objects 63 * onto the freelist but the processor that froze the slab is the only 64 * one that can retrieve the objects from the page's freelist. 65 * 66 * The list_lock protects the partial and full list on each node and 67 * the partial slab counter. If taken then no new slabs may be added or 68 * removed from the lists nor make the number of partial slabs be modified. 69 * (Note that the total number of slabs is an atomic value that may be 70 * modified without taking the list lock). 71 * 72 * The list_lock is a centralized lock and thus we avoid taking it as 73 * much as possible. As long as SLUB does not have to handle partial 74 * slabs, operations can continue without any centralized lock. F.e. 75 * allocating a long series of objects that fill up slabs does not require 76 * the list lock. 77 * Interrupts are disabled during allocation and deallocation in order to 78 * make the slab allocator safe to use in the context of an irq. In addition 79 * interrupts are disabled to ensure that the processor does not change 80 * while handling per_cpu slabs, due to kernel preemption. 81 * 82 * SLUB assigns one slab for allocation to each processor. 83 * Allocations only occur from these slabs called cpu slabs. 84 * 85 * Slabs with free elements are kept on a partial list and during regular 86 * operations no list for full slabs is used. If an object in a full slab is 87 * freed then the slab will show up again on the partial lists. 88 * We track full slabs for debugging purposes though because otherwise we 89 * cannot scan all objects. 90 * 91 * Slabs are freed when they become empty. Teardown and setup is 92 * minimal so we rely on the page allocators per cpu caches for 93 * fast frees and allocs. 94 * 95 * Overloading of page flags that are otherwise used for LRU management. 96 * 97 * PageActive The slab is frozen and exempt from list processing. 98 * This means that the slab is dedicated to a purpose 99 * such as satisfying allocations for a specific 100 * processor. Objects may be freed in the slab while 101 * it is frozen but slab_free will then skip the usual 102 * list operations. It is up to the processor holding 103 * the slab to integrate the slab into the slab lists 104 * when the slab is no longer needed. 105 * 106 * One use of this flag is to mark slabs that are 107 * used for allocations. Then such a slab becomes a cpu 108 * slab. The cpu slab may be equipped with an additional 109 * freelist that allows lockless access to 110 * free objects in addition to the regular freelist 111 * that requires the slab lock. 112 * 113 * PageError Slab requires special handling due to debug 114 * options set. This moves slab handling out of 115 * the fast path and disables lockless freelists. 116 */ 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 void *fixup_red_left(struct kmem_cache *s, void *p) 128 { 129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 130 p += s->red_left_pad; 131 132 return p; 133 } 134 135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 136 { 137 #ifdef CONFIG_SLUB_CPU_PARTIAL 138 return !kmem_cache_debug(s); 139 #else 140 return false; 141 #endif 142 } 143 144 /* 145 * Issues still to be resolved: 146 * 147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 148 * 149 * - Variable sizing of the per node arrays 150 */ 151 152 /* Enable to test recovery from slab corruption on boot */ 153 #undef SLUB_RESILIENCY_TEST 154 155 /* Enable to log cmpxchg failures */ 156 #undef SLUB_DEBUG_CMPXCHG 157 158 /* 159 * Mininum number of partial slabs. These will be left on the partial 160 * lists even if they are empty. kmem_cache_shrink may reclaim them. 161 */ 162 #define MIN_PARTIAL 5 163 164 /* 165 * Maximum number of desirable partial slabs. 166 * The existence of more partial slabs makes kmem_cache_shrink 167 * sort the partial list by the number of objects in use. 168 */ 169 #define MAX_PARTIAL 10 170 171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 172 SLAB_POISON | SLAB_STORE_USER) 173 174 /* 175 * These debug flags cannot use CMPXCHG because there might be consistency 176 * issues when checking or reading debug information 177 */ 178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 179 SLAB_TRACE) 180 181 182 /* 183 * Debugging flags that require metadata to be stored in the slab. These get 184 * disabled when slub_debug=O is used and a cache's min order increases with 185 * metadata. 186 */ 187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 188 189 #define OO_SHIFT 16 190 #define OO_MASK ((1 << OO_SHIFT) - 1) 191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 192 193 /* Internal SLUB flags */ 194 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 195 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 196 197 /* 198 * Tracking user of a slab. 199 */ 200 #define TRACK_ADDRS_COUNT 16 201 struct track { 202 unsigned long addr; /* Called from address */ 203 #ifdef CONFIG_STACKTRACE 204 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 205 #endif 206 int cpu; /* Was running on cpu */ 207 int pid; /* Pid context */ 208 unsigned long when; /* When did the operation occur */ 209 }; 210 211 enum track_item { TRACK_ALLOC, TRACK_FREE }; 212 213 #ifdef CONFIG_SYSFS 214 static int sysfs_slab_add(struct kmem_cache *); 215 static int sysfs_slab_alias(struct kmem_cache *, const char *); 216 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 217 #else 218 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 219 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 220 { return 0; } 221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 222 #endif 223 224 static inline void stat(const struct kmem_cache *s, enum stat_item si) 225 { 226 #ifdef CONFIG_SLUB_STATS 227 /* 228 * The rmw is racy on a preemptible kernel but this is acceptable, so 229 * avoid this_cpu_add()'s irq-disable overhead. 230 */ 231 raw_cpu_inc(s->cpu_slab->stat[si]); 232 #endif 233 } 234 235 /******************************************************************** 236 * Core slab cache functions 237 *******************************************************************/ 238 239 static inline void *get_freepointer(struct kmem_cache *s, void *object) 240 { 241 return *(void **)(object + s->offset); 242 } 243 244 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 245 { 246 prefetch(object + s->offset); 247 } 248 249 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 250 { 251 void *p; 252 253 if (!debug_pagealloc_enabled()) 254 return get_freepointer(s, object); 255 256 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 257 return p; 258 } 259 260 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 261 { 262 *(void **)(object + s->offset) = fp; 263 } 264 265 /* Loop over all objects in a slab */ 266 #define for_each_object(__p, __s, __addr, __objects) \ 267 for (__p = fixup_red_left(__s, __addr); \ 268 __p < (__addr) + (__objects) * (__s)->size; \ 269 __p += (__s)->size) 270 271 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 272 for (__p = fixup_red_left(__s, __addr), __idx = 1; \ 273 __idx <= __objects; \ 274 __p += (__s)->size, __idx++) 275 276 /* Determine object index from a given position */ 277 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 278 { 279 return (p - addr) / s->size; 280 } 281 282 static inline int order_objects(int order, unsigned long size, int reserved) 283 { 284 return ((PAGE_SIZE << order) - reserved) / size; 285 } 286 287 static inline struct kmem_cache_order_objects oo_make(int order, 288 unsigned long size, int reserved) 289 { 290 struct kmem_cache_order_objects x = { 291 (order << OO_SHIFT) + order_objects(order, size, reserved) 292 }; 293 294 return x; 295 } 296 297 static inline int oo_order(struct kmem_cache_order_objects x) 298 { 299 return x.x >> OO_SHIFT; 300 } 301 302 static inline int oo_objects(struct kmem_cache_order_objects x) 303 { 304 return x.x & OO_MASK; 305 } 306 307 /* 308 * Per slab locking using the pagelock 309 */ 310 static __always_inline void slab_lock(struct page *page) 311 { 312 VM_BUG_ON_PAGE(PageTail(page), page); 313 bit_spin_lock(PG_locked, &page->flags); 314 } 315 316 static __always_inline void slab_unlock(struct page *page) 317 { 318 VM_BUG_ON_PAGE(PageTail(page), page); 319 __bit_spin_unlock(PG_locked, &page->flags); 320 } 321 322 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 323 { 324 struct page tmp; 325 tmp.counters = counters_new; 326 /* 327 * page->counters can cover frozen/inuse/objects as well 328 * as page->_refcount. If we assign to ->counters directly 329 * we run the risk of losing updates to page->_refcount, so 330 * be careful and only assign to the fields we need. 331 */ 332 page->frozen = tmp.frozen; 333 page->inuse = tmp.inuse; 334 page->objects = tmp.objects; 335 } 336 337 /* Interrupts must be disabled (for the fallback code to work right) */ 338 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 339 void *freelist_old, unsigned long counters_old, 340 void *freelist_new, unsigned long counters_new, 341 const char *n) 342 { 343 VM_BUG_ON(!irqs_disabled()); 344 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 345 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 346 if (s->flags & __CMPXCHG_DOUBLE) { 347 if (cmpxchg_double(&page->freelist, &page->counters, 348 freelist_old, counters_old, 349 freelist_new, counters_new)) 350 return true; 351 } else 352 #endif 353 { 354 slab_lock(page); 355 if (page->freelist == freelist_old && 356 page->counters == counters_old) { 357 page->freelist = freelist_new; 358 set_page_slub_counters(page, counters_new); 359 slab_unlock(page); 360 return true; 361 } 362 slab_unlock(page); 363 } 364 365 cpu_relax(); 366 stat(s, CMPXCHG_DOUBLE_FAIL); 367 368 #ifdef SLUB_DEBUG_CMPXCHG 369 pr_info("%s %s: cmpxchg double redo ", n, s->name); 370 #endif 371 372 return false; 373 } 374 375 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 376 void *freelist_old, unsigned long counters_old, 377 void *freelist_new, unsigned long counters_new, 378 const char *n) 379 { 380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 382 if (s->flags & __CMPXCHG_DOUBLE) { 383 if (cmpxchg_double(&page->freelist, &page->counters, 384 freelist_old, counters_old, 385 freelist_new, counters_new)) 386 return true; 387 } else 388 #endif 389 { 390 unsigned long flags; 391 392 local_irq_save(flags); 393 slab_lock(page); 394 if (page->freelist == freelist_old && 395 page->counters == counters_old) { 396 page->freelist = freelist_new; 397 set_page_slub_counters(page, counters_new); 398 slab_unlock(page); 399 local_irq_restore(flags); 400 return true; 401 } 402 slab_unlock(page); 403 local_irq_restore(flags); 404 } 405 406 cpu_relax(); 407 stat(s, CMPXCHG_DOUBLE_FAIL); 408 409 #ifdef SLUB_DEBUG_CMPXCHG 410 pr_info("%s %s: cmpxchg double redo ", n, s->name); 411 #endif 412 413 return false; 414 } 415 416 #ifdef CONFIG_SLUB_DEBUG 417 /* 418 * Determine a map of object in use on a page. 419 * 420 * Node listlock must be held to guarantee that the page does 421 * not vanish from under us. 422 */ 423 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 424 { 425 void *p; 426 void *addr = page_address(page); 427 428 for (p = page->freelist; p; p = get_freepointer(s, p)) 429 set_bit(slab_index(p, s, addr), map); 430 } 431 432 static inline int size_from_object(struct kmem_cache *s) 433 { 434 if (s->flags & SLAB_RED_ZONE) 435 return s->size - s->red_left_pad; 436 437 return s->size; 438 } 439 440 static inline void *restore_red_left(struct kmem_cache *s, void *p) 441 { 442 if (s->flags & SLAB_RED_ZONE) 443 p -= s->red_left_pad; 444 445 return p; 446 } 447 448 /* 449 * Debug settings: 450 */ 451 #if defined(CONFIG_SLUB_DEBUG_ON) 452 static int slub_debug = DEBUG_DEFAULT_FLAGS; 453 #else 454 static int slub_debug; 455 #endif 456 457 static char *slub_debug_slabs; 458 static int disable_higher_order_debug; 459 460 /* 461 * slub is about to manipulate internal object metadata. This memory lies 462 * outside the range of the allocated object, so accessing it would normally 463 * be reported by kasan as a bounds error. metadata_access_enable() is used 464 * to tell kasan that these accesses are OK. 465 */ 466 static inline void metadata_access_enable(void) 467 { 468 kasan_disable_current(); 469 } 470 471 static inline void metadata_access_disable(void) 472 { 473 kasan_enable_current(); 474 } 475 476 /* 477 * Object debugging 478 */ 479 480 /* Verify that a pointer has an address that is valid within a slab page */ 481 static inline int check_valid_pointer(struct kmem_cache *s, 482 struct page *page, void *object) 483 { 484 void *base; 485 486 if (!object) 487 return 1; 488 489 base = page_address(page); 490 object = restore_red_left(s, object); 491 if (object < base || object >= base + page->objects * s->size || 492 (object - base) % s->size) { 493 return 0; 494 } 495 496 return 1; 497 } 498 499 static void print_section(char *text, u8 *addr, unsigned int length) 500 { 501 metadata_access_enable(); 502 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 503 length, 1); 504 metadata_access_disable(); 505 } 506 507 static struct track *get_track(struct kmem_cache *s, void *object, 508 enum track_item alloc) 509 { 510 struct track *p; 511 512 if (s->offset) 513 p = object + s->offset + sizeof(void *); 514 else 515 p = object + s->inuse; 516 517 return p + alloc; 518 } 519 520 static void set_track(struct kmem_cache *s, void *object, 521 enum track_item alloc, unsigned long addr) 522 { 523 struct track *p = get_track(s, object, alloc); 524 525 if (addr) { 526 #ifdef CONFIG_STACKTRACE 527 struct stack_trace trace; 528 int i; 529 530 trace.nr_entries = 0; 531 trace.max_entries = TRACK_ADDRS_COUNT; 532 trace.entries = p->addrs; 533 trace.skip = 3; 534 metadata_access_enable(); 535 save_stack_trace(&trace); 536 metadata_access_disable(); 537 538 /* See rant in lockdep.c */ 539 if (trace.nr_entries != 0 && 540 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 541 trace.nr_entries--; 542 543 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 544 p->addrs[i] = 0; 545 #endif 546 p->addr = addr; 547 p->cpu = smp_processor_id(); 548 p->pid = current->pid; 549 p->when = jiffies; 550 } else 551 memset(p, 0, sizeof(struct track)); 552 } 553 554 static void init_tracking(struct kmem_cache *s, void *object) 555 { 556 if (!(s->flags & SLAB_STORE_USER)) 557 return; 558 559 set_track(s, object, TRACK_FREE, 0UL); 560 set_track(s, object, TRACK_ALLOC, 0UL); 561 } 562 563 static void print_track(const char *s, struct track *t) 564 { 565 if (!t->addr) 566 return; 567 568 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 569 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 570 #ifdef CONFIG_STACKTRACE 571 { 572 int i; 573 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 574 if (t->addrs[i]) 575 pr_err("\t%pS\n", (void *)t->addrs[i]); 576 else 577 break; 578 } 579 #endif 580 } 581 582 static void print_tracking(struct kmem_cache *s, void *object) 583 { 584 if (!(s->flags & SLAB_STORE_USER)) 585 return; 586 587 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 588 print_track("Freed", get_track(s, object, TRACK_FREE)); 589 } 590 591 static void print_page_info(struct page *page) 592 { 593 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 594 page, page->objects, page->inuse, page->freelist, page->flags); 595 596 } 597 598 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 599 { 600 struct va_format vaf; 601 va_list args; 602 603 va_start(args, fmt); 604 vaf.fmt = fmt; 605 vaf.va = &args; 606 pr_err("=============================================================================\n"); 607 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 608 pr_err("-----------------------------------------------------------------------------\n\n"); 609 610 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 611 va_end(args); 612 } 613 614 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 615 { 616 struct va_format vaf; 617 va_list args; 618 619 va_start(args, fmt); 620 vaf.fmt = fmt; 621 vaf.va = &args; 622 pr_err("FIX %s: %pV\n", s->name, &vaf); 623 va_end(args); 624 } 625 626 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 627 { 628 unsigned int off; /* Offset of last byte */ 629 u8 *addr = page_address(page); 630 631 print_tracking(s, p); 632 633 print_page_info(page); 634 635 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 636 p, p - addr, get_freepointer(s, p)); 637 638 if (s->flags & SLAB_RED_ZONE) 639 print_section("Redzone ", p - s->red_left_pad, s->red_left_pad); 640 else if (p > addr + 16) 641 print_section("Bytes b4 ", p - 16, 16); 642 643 print_section("Object ", p, min_t(unsigned long, s->object_size, 644 PAGE_SIZE)); 645 if (s->flags & SLAB_RED_ZONE) 646 print_section("Redzone ", p + s->object_size, 647 s->inuse - s->object_size); 648 649 if (s->offset) 650 off = s->offset + sizeof(void *); 651 else 652 off = s->inuse; 653 654 if (s->flags & SLAB_STORE_USER) 655 off += 2 * sizeof(struct track); 656 657 off += kasan_metadata_size(s); 658 659 if (off != size_from_object(s)) 660 /* Beginning of the filler is the free pointer */ 661 print_section("Padding ", p + off, size_from_object(s) - off); 662 663 dump_stack(); 664 } 665 666 void object_err(struct kmem_cache *s, struct page *page, 667 u8 *object, char *reason) 668 { 669 slab_bug(s, "%s", reason); 670 print_trailer(s, page, object); 671 } 672 673 static void slab_err(struct kmem_cache *s, struct page *page, 674 const char *fmt, ...) 675 { 676 va_list args; 677 char buf[100]; 678 679 va_start(args, fmt); 680 vsnprintf(buf, sizeof(buf), fmt, args); 681 va_end(args); 682 slab_bug(s, "%s", buf); 683 print_page_info(page); 684 dump_stack(); 685 } 686 687 static void init_object(struct kmem_cache *s, void *object, u8 val) 688 { 689 u8 *p = object; 690 691 if (s->flags & SLAB_RED_ZONE) 692 memset(p - s->red_left_pad, val, s->red_left_pad); 693 694 if (s->flags & __OBJECT_POISON) { 695 memset(p, POISON_FREE, s->object_size - 1); 696 p[s->object_size - 1] = POISON_END; 697 } 698 699 if (s->flags & SLAB_RED_ZONE) 700 memset(p + s->object_size, val, s->inuse - s->object_size); 701 } 702 703 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 704 void *from, void *to) 705 { 706 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 707 memset(from, data, to - from); 708 } 709 710 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 711 u8 *object, char *what, 712 u8 *start, unsigned int value, unsigned int bytes) 713 { 714 u8 *fault; 715 u8 *end; 716 717 metadata_access_enable(); 718 fault = memchr_inv(start, value, bytes); 719 metadata_access_disable(); 720 if (!fault) 721 return 1; 722 723 end = start + bytes; 724 while (end > fault && end[-1] == value) 725 end--; 726 727 slab_bug(s, "%s overwritten", what); 728 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 729 fault, end - 1, fault[0], value); 730 print_trailer(s, page, object); 731 732 restore_bytes(s, what, value, fault, end); 733 return 0; 734 } 735 736 /* 737 * Object layout: 738 * 739 * object address 740 * Bytes of the object to be managed. 741 * If the freepointer may overlay the object then the free 742 * pointer is the first word of the object. 743 * 744 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 745 * 0xa5 (POISON_END) 746 * 747 * object + s->object_size 748 * Padding to reach word boundary. This is also used for Redzoning. 749 * Padding is extended by another word if Redzoning is enabled and 750 * object_size == inuse. 751 * 752 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 753 * 0xcc (RED_ACTIVE) for objects in use. 754 * 755 * object + s->inuse 756 * Meta data starts here. 757 * 758 * A. Free pointer (if we cannot overwrite object on free) 759 * B. Tracking data for SLAB_STORE_USER 760 * C. Padding to reach required alignment boundary or at mininum 761 * one word if debugging is on to be able to detect writes 762 * before the word boundary. 763 * 764 * Padding is done using 0x5a (POISON_INUSE) 765 * 766 * object + s->size 767 * Nothing is used beyond s->size. 768 * 769 * If slabcaches are merged then the object_size and inuse boundaries are mostly 770 * ignored. And therefore no slab options that rely on these boundaries 771 * may be used with merged slabcaches. 772 */ 773 774 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 775 { 776 unsigned long off = s->inuse; /* The end of info */ 777 778 if (s->offset) 779 /* Freepointer is placed after the object. */ 780 off += sizeof(void *); 781 782 if (s->flags & SLAB_STORE_USER) 783 /* We also have user information there */ 784 off += 2 * sizeof(struct track); 785 786 off += kasan_metadata_size(s); 787 788 if (size_from_object(s) == off) 789 return 1; 790 791 return check_bytes_and_report(s, page, p, "Object padding", 792 p + off, POISON_INUSE, size_from_object(s) - off); 793 } 794 795 /* Check the pad bytes at the end of a slab page */ 796 static int slab_pad_check(struct kmem_cache *s, struct page *page) 797 { 798 u8 *start; 799 u8 *fault; 800 u8 *end; 801 int length; 802 int remainder; 803 804 if (!(s->flags & SLAB_POISON)) 805 return 1; 806 807 start = page_address(page); 808 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 809 end = start + length; 810 remainder = length % s->size; 811 if (!remainder) 812 return 1; 813 814 metadata_access_enable(); 815 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 816 metadata_access_disable(); 817 if (!fault) 818 return 1; 819 while (end > fault && end[-1] == POISON_INUSE) 820 end--; 821 822 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 823 print_section("Padding ", end - remainder, remainder); 824 825 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 826 return 0; 827 } 828 829 static int check_object(struct kmem_cache *s, struct page *page, 830 void *object, u8 val) 831 { 832 u8 *p = object; 833 u8 *endobject = object + s->object_size; 834 835 if (s->flags & SLAB_RED_ZONE) { 836 if (!check_bytes_and_report(s, page, object, "Redzone", 837 object - s->red_left_pad, val, s->red_left_pad)) 838 return 0; 839 840 if (!check_bytes_and_report(s, page, object, "Redzone", 841 endobject, val, s->inuse - s->object_size)) 842 return 0; 843 } else { 844 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 845 check_bytes_and_report(s, page, p, "Alignment padding", 846 endobject, POISON_INUSE, 847 s->inuse - s->object_size); 848 } 849 } 850 851 if (s->flags & SLAB_POISON) { 852 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 853 (!check_bytes_and_report(s, page, p, "Poison", p, 854 POISON_FREE, s->object_size - 1) || 855 !check_bytes_and_report(s, page, p, "Poison", 856 p + s->object_size - 1, POISON_END, 1))) 857 return 0; 858 /* 859 * check_pad_bytes cleans up on its own. 860 */ 861 check_pad_bytes(s, page, p); 862 } 863 864 if (!s->offset && val == SLUB_RED_ACTIVE) 865 /* 866 * Object and freepointer overlap. Cannot check 867 * freepointer while object is allocated. 868 */ 869 return 1; 870 871 /* Check free pointer validity */ 872 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 873 object_err(s, page, p, "Freepointer corrupt"); 874 /* 875 * No choice but to zap it and thus lose the remainder 876 * of the free objects in this slab. May cause 877 * another error because the object count is now wrong. 878 */ 879 set_freepointer(s, p, NULL); 880 return 0; 881 } 882 return 1; 883 } 884 885 static int check_slab(struct kmem_cache *s, struct page *page) 886 { 887 int maxobj; 888 889 VM_BUG_ON(!irqs_disabled()); 890 891 if (!PageSlab(page)) { 892 slab_err(s, page, "Not a valid slab page"); 893 return 0; 894 } 895 896 maxobj = order_objects(compound_order(page), s->size, s->reserved); 897 if (page->objects > maxobj) { 898 slab_err(s, page, "objects %u > max %u", 899 page->objects, maxobj); 900 return 0; 901 } 902 if (page->inuse > page->objects) { 903 slab_err(s, page, "inuse %u > max %u", 904 page->inuse, page->objects); 905 return 0; 906 } 907 /* Slab_pad_check fixes things up after itself */ 908 slab_pad_check(s, page); 909 return 1; 910 } 911 912 /* 913 * Determine if a certain object on a page is on the freelist. Must hold the 914 * slab lock to guarantee that the chains are in a consistent state. 915 */ 916 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 917 { 918 int nr = 0; 919 void *fp; 920 void *object = NULL; 921 int max_objects; 922 923 fp = page->freelist; 924 while (fp && nr <= page->objects) { 925 if (fp == search) 926 return 1; 927 if (!check_valid_pointer(s, page, fp)) { 928 if (object) { 929 object_err(s, page, object, 930 "Freechain corrupt"); 931 set_freepointer(s, object, NULL); 932 } else { 933 slab_err(s, page, "Freepointer corrupt"); 934 page->freelist = NULL; 935 page->inuse = page->objects; 936 slab_fix(s, "Freelist cleared"); 937 return 0; 938 } 939 break; 940 } 941 object = fp; 942 fp = get_freepointer(s, object); 943 nr++; 944 } 945 946 max_objects = order_objects(compound_order(page), s->size, s->reserved); 947 if (max_objects > MAX_OBJS_PER_PAGE) 948 max_objects = MAX_OBJS_PER_PAGE; 949 950 if (page->objects != max_objects) { 951 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 952 page->objects, max_objects); 953 page->objects = max_objects; 954 slab_fix(s, "Number of objects adjusted."); 955 } 956 if (page->inuse != page->objects - nr) { 957 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 958 page->inuse, page->objects - nr); 959 page->inuse = page->objects - nr; 960 slab_fix(s, "Object count adjusted."); 961 } 962 return search == NULL; 963 } 964 965 static void trace(struct kmem_cache *s, struct page *page, void *object, 966 int alloc) 967 { 968 if (s->flags & SLAB_TRACE) { 969 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 970 s->name, 971 alloc ? "alloc" : "free", 972 object, page->inuse, 973 page->freelist); 974 975 if (!alloc) 976 print_section("Object ", (void *)object, 977 s->object_size); 978 979 dump_stack(); 980 } 981 } 982 983 /* 984 * Tracking of fully allocated slabs for debugging purposes. 985 */ 986 static void add_full(struct kmem_cache *s, 987 struct kmem_cache_node *n, struct page *page) 988 { 989 if (!(s->flags & SLAB_STORE_USER)) 990 return; 991 992 lockdep_assert_held(&n->list_lock); 993 list_add(&page->lru, &n->full); 994 } 995 996 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 997 { 998 if (!(s->flags & SLAB_STORE_USER)) 999 return; 1000 1001 lockdep_assert_held(&n->list_lock); 1002 list_del(&page->lru); 1003 } 1004 1005 /* Tracking of the number of slabs for debugging purposes */ 1006 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1007 { 1008 struct kmem_cache_node *n = get_node(s, node); 1009 1010 return atomic_long_read(&n->nr_slabs); 1011 } 1012 1013 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1014 { 1015 return atomic_long_read(&n->nr_slabs); 1016 } 1017 1018 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1019 { 1020 struct kmem_cache_node *n = get_node(s, node); 1021 1022 /* 1023 * May be called early in order to allocate a slab for the 1024 * kmem_cache_node structure. Solve the chicken-egg 1025 * dilemma by deferring the increment of the count during 1026 * bootstrap (see early_kmem_cache_node_alloc). 1027 */ 1028 if (likely(n)) { 1029 atomic_long_inc(&n->nr_slabs); 1030 atomic_long_add(objects, &n->total_objects); 1031 } 1032 } 1033 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1034 { 1035 struct kmem_cache_node *n = get_node(s, node); 1036 1037 atomic_long_dec(&n->nr_slabs); 1038 atomic_long_sub(objects, &n->total_objects); 1039 } 1040 1041 /* Object debug checks for alloc/free paths */ 1042 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1043 void *object) 1044 { 1045 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1046 return; 1047 1048 init_object(s, object, SLUB_RED_INACTIVE); 1049 init_tracking(s, object); 1050 } 1051 1052 static inline int alloc_consistency_checks(struct kmem_cache *s, 1053 struct page *page, 1054 void *object, unsigned long addr) 1055 { 1056 if (!check_slab(s, page)) 1057 return 0; 1058 1059 if (!check_valid_pointer(s, page, object)) { 1060 object_err(s, page, object, "Freelist Pointer check fails"); 1061 return 0; 1062 } 1063 1064 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1065 return 0; 1066 1067 return 1; 1068 } 1069 1070 static noinline int alloc_debug_processing(struct kmem_cache *s, 1071 struct page *page, 1072 void *object, unsigned long addr) 1073 { 1074 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1075 if (!alloc_consistency_checks(s, page, object, addr)) 1076 goto bad; 1077 } 1078 1079 /* Success perform special debug activities for allocs */ 1080 if (s->flags & SLAB_STORE_USER) 1081 set_track(s, object, TRACK_ALLOC, addr); 1082 trace(s, page, object, 1); 1083 init_object(s, object, SLUB_RED_ACTIVE); 1084 return 1; 1085 1086 bad: 1087 if (PageSlab(page)) { 1088 /* 1089 * If this is a slab page then lets do the best we can 1090 * to avoid issues in the future. Marking all objects 1091 * as used avoids touching the remaining objects. 1092 */ 1093 slab_fix(s, "Marking all objects used"); 1094 page->inuse = page->objects; 1095 page->freelist = NULL; 1096 } 1097 return 0; 1098 } 1099 1100 static inline int free_consistency_checks(struct kmem_cache *s, 1101 struct page *page, void *object, unsigned long addr) 1102 { 1103 if (!check_valid_pointer(s, page, object)) { 1104 slab_err(s, page, "Invalid object pointer 0x%p", object); 1105 return 0; 1106 } 1107 1108 if (on_freelist(s, page, object)) { 1109 object_err(s, page, object, "Object already free"); 1110 return 0; 1111 } 1112 1113 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1114 return 0; 1115 1116 if (unlikely(s != page->slab_cache)) { 1117 if (!PageSlab(page)) { 1118 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1119 object); 1120 } else if (!page->slab_cache) { 1121 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1122 object); 1123 dump_stack(); 1124 } else 1125 object_err(s, page, object, 1126 "page slab pointer corrupt."); 1127 return 0; 1128 } 1129 return 1; 1130 } 1131 1132 /* Supports checking bulk free of a constructed freelist */ 1133 static noinline int free_debug_processing( 1134 struct kmem_cache *s, struct page *page, 1135 void *head, void *tail, int bulk_cnt, 1136 unsigned long addr) 1137 { 1138 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1139 void *object = head; 1140 int cnt = 0; 1141 unsigned long uninitialized_var(flags); 1142 int ret = 0; 1143 1144 spin_lock_irqsave(&n->list_lock, flags); 1145 slab_lock(page); 1146 1147 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1148 if (!check_slab(s, page)) 1149 goto out; 1150 } 1151 1152 next_object: 1153 cnt++; 1154 1155 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1156 if (!free_consistency_checks(s, page, object, addr)) 1157 goto out; 1158 } 1159 1160 if (s->flags & SLAB_STORE_USER) 1161 set_track(s, object, TRACK_FREE, addr); 1162 trace(s, page, object, 0); 1163 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1164 init_object(s, object, SLUB_RED_INACTIVE); 1165 1166 /* Reached end of constructed freelist yet? */ 1167 if (object != tail) { 1168 object = get_freepointer(s, object); 1169 goto next_object; 1170 } 1171 ret = 1; 1172 1173 out: 1174 if (cnt != bulk_cnt) 1175 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1176 bulk_cnt, cnt); 1177 1178 slab_unlock(page); 1179 spin_unlock_irqrestore(&n->list_lock, flags); 1180 if (!ret) 1181 slab_fix(s, "Object at 0x%p not freed", object); 1182 return ret; 1183 } 1184 1185 static int __init setup_slub_debug(char *str) 1186 { 1187 slub_debug = DEBUG_DEFAULT_FLAGS; 1188 if (*str++ != '=' || !*str) 1189 /* 1190 * No options specified. Switch on full debugging. 1191 */ 1192 goto out; 1193 1194 if (*str == ',') 1195 /* 1196 * No options but restriction on slabs. This means full 1197 * debugging for slabs matching a pattern. 1198 */ 1199 goto check_slabs; 1200 1201 slub_debug = 0; 1202 if (*str == '-') 1203 /* 1204 * Switch off all debugging measures. 1205 */ 1206 goto out; 1207 1208 /* 1209 * Determine which debug features should be switched on 1210 */ 1211 for (; *str && *str != ','; str++) { 1212 switch (tolower(*str)) { 1213 case 'f': 1214 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1215 break; 1216 case 'z': 1217 slub_debug |= SLAB_RED_ZONE; 1218 break; 1219 case 'p': 1220 slub_debug |= SLAB_POISON; 1221 break; 1222 case 'u': 1223 slub_debug |= SLAB_STORE_USER; 1224 break; 1225 case 't': 1226 slub_debug |= SLAB_TRACE; 1227 break; 1228 case 'a': 1229 slub_debug |= SLAB_FAILSLAB; 1230 break; 1231 case 'o': 1232 /* 1233 * Avoid enabling debugging on caches if its minimum 1234 * order would increase as a result. 1235 */ 1236 disable_higher_order_debug = 1; 1237 break; 1238 default: 1239 pr_err("slub_debug option '%c' unknown. skipped\n", 1240 *str); 1241 } 1242 } 1243 1244 check_slabs: 1245 if (*str == ',') 1246 slub_debug_slabs = str + 1; 1247 out: 1248 return 1; 1249 } 1250 1251 __setup("slub_debug", setup_slub_debug); 1252 1253 unsigned long kmem_cache_flags(unsigned long object_size, 1254 unsigned long flags, const char *name, 1255 void (*ctor)(void *)) 1256 { 1257 /* 1258 * Enable debugging if selected on the kernel commandline. 1259 */ 1260 if (slub_debug && (!slub_debug_slabs || (name && 1261 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1262 flags |= slub_debug; 1263 1264 return flags; 1265 } 1266 #else /* !CONFIG_SLUB_DEBUG */ 1267 static inline void setup_object_debug(struct kmem_cache *s, 1268 struct page *page, void *object) {} 1269 1270 static inline int alloc_debug_processing(struct kmem_cache *s, 1271 struct page *page, void *object, unsigned long addr) { return 0; } 1272 1273 static inline int free_debug_processing( 1274 struct kmem_cache *s, struct page *page, 1275 void *head, void *tail, int bulk_cnt, 1276 unsigned long addr) { return 0; } 1277 1278 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1279 { return 1; } 1280 static inline int check_object(struct kmem_cache *s, struct page *page, 1281 void *object, u8 val) { return 1; } 1282 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1283 struct page *page) {} 1284 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1285 struct page *page) {} 1286 unsigned long kmem_cache_flags(unsigned long object_size, 1287 unsigned long flags, const char *name, 1288 void (*ctor)(void *)) 1289 { 1290 return flags; 1291 } 1292 #define slub_debug 0 1293 1294 #define disable_higher_order_debug 0 1295 1296 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1297 { return 0; } 1298 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1299 { return 0; } 1300 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1301 int objects) {} 1302 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1303 int objects) {} 1304 1305 #endif /* CONFIG_SLUB_DEBUG */ 1306 1307 /* 1308 * Hooks for other subsystems that check memory allocations. In a typical 1309 * production configuration these hooks all should produce no code at all. 1310 */ 1311 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1312 { 1313 kmemleak_alloc(ptr, size, 1, flags); 1314 kasan_kmalloc_large(ptr, size, flags); 1315 } 1316 1317 static inline void kfree_hook(const void *x) 1318 { 1319 kmemleak_free(x); 1320 kasan_kfree_large(x); 1321 } 1322 1323 static inline void *slab_free_hook(struct kmem_cache *s, void *x) 1324 { 1325 void *freeptr; 1326 1327 kmemleak_free_recursive(x, s->flags); 1328 1329 /* 1330 * Trouble is that we may no longer disable interrupts in the fast path 1331 * So in order to make the debug calls that expect irqs to be 1332 * disabled we need to disable interrupts temporarily. 1333 */ 1334 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 1335 { 1336 unsigned long flags; 1337 1338 local_irq_save(flags); 1339 kmemcheck_slab_free(s, x, s->object_size); 1340 debug_check_no_locks_freed(x, s->object_size); 1341 local_irq_restore(flags); 1342 } 1343 #endif 1344 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1345 debug_check_no_obj_freed(x, s->object_size); 1346 1347 freeptr = get_freepointer(s, x); 1348 /* 1349 * kasan_slab_free() may put x into memory quarantine, delaying its 1350 * reuse. In this case the object's freelist pointer is changed. 1351 */ 1352 kasan_slab_free(s, x); 1353 return freeptr; 1354 } 1355 1356 static inline void slab_free_freelist_hook(struct kmem_cache *s, 1357 void *head, void *tail) 1358 { 1359 /* 1360 * Compiler cannot detect this function can be removed if slab_free_hook() 1361 * evaluates to nothing. Thus, catch all relevant config debug options here. 1362 */ 1363 #if defined(CONFIG_KMEMCHECK) || \ 1364 defined(CONFIG_LOCKDEP) || \ 1365 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1366 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1367 defined(CONFIG_KASAN) 1368 1369 void *object = head; 1370 void *tail_obj = tail ? : head; 1371 void *freeptr; 1372 1373 do { 1374 freeptr = slab_free_hook(s, object); 1375 } while ((object != tail_obj) && (object = freeptr)); 1376 #endif 1377 } 1378 1379 static void setup_object(struct kmem_cache *s, struct page *page, 1380 void *object) 1381 { 1382 setup_object_debug(s, page, object); 1383 kasan_init_slab_obj(s, object); 1384 if (unlikely(s->ctor)) { 1385 kasan_unpoison_object_data(s, object); 1386 s->ctor(object); 1387 kasan_poison_object_data(s, object); 1388 } 1389 } 1390 1391 /* 1392 * Slab allocation and freeing 1393 */ 1394 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1395 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1396 { 1397 struct page *page; 1398 int order = oo_order(oo); 1399 1400 flags |= __GFP_NOTRACK; 1401 1402 if (node == NUMA_NO_NODE) 1403 page = alloc_pages(flags, order); 1404 else 1405 page = __alloc_pages_node(node, flags, order); 1406 1407 if (page && memcg_charge_slab(page, flags, order, s)) { 1408 __free_pages(page, order); 1409 page = NULL; 1410 } 1411 1412 return page; 1413 } 1414 1415 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1416 /* Pre-initialize the random sequence cache */ 1417 static int init_cache_random_seq(struct kmem_cache *s) 1418 { 1419 int err; 1420 unsigned long i, count = oo_objects(s->oo); 1421 1422 err = cache_random_seq_create(s, count, GFP_KERNEL); 1423 if (err) { 1424 pr_err("SLUB: Unable to initialize free list for %s\n", 1425 s->name); 1426 return err; 1427 } 1428 1429 /* Transform to an offset on the set of pages */ 1430 if (s->random_seq) { 1431 for (i = 0; i < count; i++) 1432 s->random_seq[i] *= s->size; 1433 } 1434 return 0; 1435 } 1436 1437 /* Initialize each random sequence freelist per cache */ 1438 static void __init init_freelist_randomization(void) 1439 { 1440 struct kmem_cache *s; 1441 1442 mutex_lock(&slab_mutex); 1443 1444 list_for_each_entry(s, &slab_caches, list) 1445 init_cache_random_seq(s); 1446 1447 mutex_unlock(&slab_mutex); 1448 } 1449 1450 /* Get the next entry on the pre-computed freelist randomized */ 1451 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1452 unsigned long *pos, void *start, 1453 unsigned long page_limit, 1454 unsigned long freelist_count) 1455 { 1456 unsigned int idx; 1457 1458 /* 1459 * If the target page allocation failed, the number of objects on the 1460 * page might be smaller than the usual size defined by the cache. 1461 */ 1462 do { 1463 idx = s->random_seq[*pos]; 1464 *pos += 1; 1465 if (*pos >= freelist_count) 1466 *pos = 0; 1467 } while (unlikely(idx >= page_limit)); 1468 1469 return (char *)start + idx; 1470 } 1471 1472 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1473 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1474 { 1475 void *start; 1476 void *cur; 1477 void *next; 1478 unsigned long idx, pos, page_limit, freelist_count; 1479 1480 if (page->objects < 2 || !s->random_seq) 1481 return false; 1482 1483 freelist_count = oo_objects(s->oo); 1484 pos = get_random_int() % freelist_count; 1485 1486 page_limit = page->objects * s->size; 1487 start = fixup_red_left(s, page_address(page)); 1488 1489 /* First entry is used as the base of the freelist */ 1490 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1491 freelist_count); 1492 page->freelist = cur; 1493 1494 for (idx = 1; idx < page->objects; idx++) { 1495 setup_object(s, page, cur); 1496 next = next_freelist_entry(s, page, &pos, start, page_limit, 1497 freelist_count); 1498 set_freepointer(s, cur, next); 1499 cur = next; 1500 } 1501 setup_object(s, page, cur); 1502 set_freepointer(s, cur, NULL); 1503 1504 return true; 1505 } 1506 #else 1507 static inline int init_cache_random_seq(struct kmem_cache *s) 1508 { 1509 return 0; 1510 } 1511 static inline void init_freelist_randomization(void) { } 1512 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1513 { 1514 return false; 1515 } 1516 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1517 1518 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1519 { 1520 struct page *page; 1521 struct kmem_cache_order_objects oo = s->oo; 1522 gfp_t alloc_gfp; 1523 void *start, *p; 1524 int idx, order; 1525 bool shuffle; 1526 1527 flags &= gfp_allowed_mask; 1528 1529 if (gfpflags_allow_blocking(flags)) 1530 local_irq_enable(); 1531 1532 flags |= s->allocflags; 1533 1534 /* 1535 * Let the initial higher-order allocation fail under memory pressure 1536 * so we fall-back to the minimum order allocation. 1537 */ 1538 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1539 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1540 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1541 1542 page = alloc_slab_page(s, alloc_gfp, node, oo); 1543 if (unlikely(!page)) { 1544 oo = s->min; 1545 alloc_gfp = flags; 1546 /* 1547 * Allocation may have failed due to fragmentation. 1548 * Try a lower order alloc if possible 1549 */ 1550 page = alloc_slab_page(s, alloc_gfp, node, oo); 1551 if (unlikely(!page)) 1552 goto out; 1553 stat(s, ORDER_FALLBACK); 1554 } 1555 1556 if (kmemcheck_enabled && 1557 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1558 int pages = 1 << oo_order(oo); 1559 1560 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1561 1562 /* 1563 * Objects from caches that have a constructor don't get 1564 * cleared when they're allocated, so we need to do it here. 1565 */ 1566 if (s->ctor) 1567 kmemcheck_mark_uninitialized_pages(page, pages); 1568 else 1569 kmemcheck_mark_unallocated_pages(page, pages); 1570 } 1571 1572 page->objects = oo_objects(oo); 1573 1574 order = compound_order(page); 1575 page->slab_cache = s; 1576 __SetPageSlab(page); 1577 if (page_is_pfmemalloc(page)) 1578 SetPageSlabPfmemalloc(page); 1579 1580 start = page_address(page); 1581 1582 if (unlikely(s->flags & SLAB_POISON)) 1583 memset(start, POISON_INUSE, PAGE_SIZE << order); 1584 1585 kasan_poison_slab(page); 1586 1587 shuffle = shuffle_freelist(s, page); 1588 1589 if (!shuffle) { 1590 for_each_object_idx(p, idx, s, start, page->objects) { 1591 setup_object(s, page, p); 1592 if (likely(idx < page->objects)) 1593 set_freepointer(s, p, p + s->size); 1594 else 1595 set_freepointer(s, p, NULL); 1596 } 1597 page->freelist = fixup_red_left(s, start); 1598 } 1599 1600 page->inuse = page->objects; 1601 page->frozen = 1; 1602 1603 out: 1604 if (gfpflags_allow_blocking(flags)) 1605 local_irq_disable(); 1606 if (!page) 1607 return NULL; 1608 1609 mod_zone_page_state(page_zone(page), 1610 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1611 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1612 1 << oo_order(oo)); 1613 1614 inc_slabs_node(s, page_to_nid(page), page->objects); 1615 1616 return page; 1617 } 1618 1619 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1620 { 1621 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1622 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1623 flags &= ~GFP_SLAB_BUG_MASK; 1624 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1625 invalid_mask, &invalid_mask, flags, &flags); 1626 } 1627 1628 return allocate_slab(s, 1629 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1630 } 1631 1632 static void __free_slab(struct kmem_cache *s, struct page *page) 1633 { 1634 int order = compound_order(page); 1635 int pages = 1 << order; 1636 1637 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1638 void *p; 1639 1640 slab_pad_check(s, page); 1641 for_each_object(p, s, page_address(page), 1642 page->objects) 1643 check_object(s, page, p, SLUB_RED_INACTIVE); 1644 } 1645 1646 kmemcheck_free_shadow(page, compound_order(page)); 1647 1648 mod_zone_page_state(page_zone(page), 1649 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1650 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1651 -pages); 1652 1653 __ClearPageSlabPfmemalloc(page); 1654 __ClearPageSlab(page); 1655 1656 page_mapcount_reset(page); 1657 if (current->reclaim_state) 1658 current->reclaim_state->reclaimed_slab += pages; 1659 memcg_uncharge_slab(page, order, s); 1660 __free_pages(page, order); 1661 } 1662 1663 #define need_reserve_slab_rcu \ 1664 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1665 1666 static void rcu_free_slab(struct rcu_head *h) 1667 { 1668 struct page *page; 1669 1670 if (need_reserve_slab_rcu) 1671 page = virt_to_head_page(h); 1672 else 1673 page = container_of((struct list_head *)h, struct page, lru); 1674 1675 __free_slab(page->slab_cache, page); 1676 } 1677 1678 static void free_slab(struct kmem_cache *s, struct page *page) 1679 { 1680 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1681 struct rcu_head *head; 1682 1683 if (need_reserve_slab_rcu) { 1684 int order = compound_order(page); 1685 int offset = (PAGE_SIZE << order) - s->reserved; 1686 1687 VM_BUG_ON(s->reserved != sizeof(*head)); 1688 head = page_address(page) + offset; 1689 } else { 1690 head = &page->rcu_head; 1691 } 1692 1693 call_rcu(head, rcu_free_slab); 1694 } else 1695 __free_slab(s, page); 1696 } 1697 1698 static void discard_slab(struct kmem_cache *s, struct page *page) 1699 { 1700 dec_slabs_node(s, page_to_nid(page), page->objects); 1701 free_slab(s, page); 1702 } 1703 1704 /* 1705 * Management of partially allocated slabs. 1706 */ 1707 static inline void 1708 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1709 { 1710 n->nr_partial++; 1711 if (tail == DEACTIVATE_TO_TAIL) 1712 list_add_tail(&page->lru, &n->partial); 1713 else 1714 list_add(&page->lru, &n->partial); 1715 } 1716 1717 static inline void add_partial(struct kmem_cache_node *n, 1718 struct page *page, int tail) 1719 { 1720 lockdep_assert_held(&n->list_lock); 1721 __add_partial(n, page, tail); 1722 } 1723 1724 static inline void remove_partial(struct kmem_cache_node *n, 1725 struct page *page) 1726 { 1727 lockdep_assert_held(&n->list_lock); 1728 list_del(&page->lru); 1729 n->nr_partial--; 1730 } 1731 1732 /* 1733 * Remove slab from the partial list, freeze it and 1734 * return the pointer to the freelist. 1735 * 1736 * Returns a list of objects or NULL if it fails. 1737 */ 1738 static inline void *acquire_slab(struct kmem_cache *s, 1739 struct kmem_cache_node *n, struct page *page, 1740 int mode, int *objects) 1741 { 1742 void *freelist; 1743 unsigned long counters; 1744 struct page new; 1745 1746 lockdep_assert_held(&n->list_lock); 1747 1748 /* 1749 * Zap the freelist and set the frozen bit. 1750 * The old freelist is the list of objects for the 1751 * per cpu allocation list. 1752 */ 1753 freelist = page->freelist; 1754 counters = page->counters; 1755 new.counters = counters; 1756 *objects = new.objects - new.inuse; 1757 if (mode) { 1758 new.inuse = page->objects; 1759 new.freelist = NULL; 1760 } else { 1761 new.freelist = freelist; 1762 } 1763 1764 VM_BUG_ON(new.frozen); 1765 new.frozen = 1; 1766 1767 if (!__cmpxchg_double_slab(s, page, 1768 freelist, counters, 1769 new.freelist, new.counters, 1770 "acquire_slab")) 1771 return NULL; 1772 1773 remove_partial(n, page); 1774 WARN_ON(!freelist); 1775 return freelist; 1776 } 1777 1778 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1779 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1780 1781 /* 1782 * Try to allocate a partial slab from a specific node. 1783 */ 1784 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1785 struct kmem_cache_cpu *c, gfp_t flags) 1786 { 1787 struct page *page, *page2; 1788 void *object = NULL; 1789 int available = 0; 1790 int objects; 1791 1792 /* 1793 * Racy check. If we mistakenly see no partial slabs then we 1794 * just allocate an empty slab. If we mistakenly try to get a 1795 * partial slab and there is none available then get_partials() 1796 * will return NULL. 1797 */ 1798 if (!n || !n->nr_partial) 1799 return NULL; 1800 1801 spin_lock(&n->list_lock); 1802 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1803 void *t; 1804 1805 if (!pfmemalloc_match(page, flags)) 1806 continue; 1807 1808 t = acquire_slab(s, n, page, object == NULL, &objects); 1809 if (!t) 1810 break; 1811 1812 available += objects; 1813 if (!object) { 1814 c->page = page; 1815 stat(s, ALLOC_FROM_PARTIAL); 1816 object = t; 1817 } else { 1818 put_cpu_partial(s, page, 0); 1819 stat(s, CPU_PARTIAL_NODE); 1820 } 1821 if (!kmem_cache_has_cpu_partial(s) 1822 || available > s->cpu_partial / 2) 1823 break; 1824 1825 } 1826 spin_unlock(&n->list_lock); 1827 return object; 1828 } 1829 1830 /* 1831 * Get a page from somewhere. Search in increasing NUMA distances. 1832 */ 1833 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1834 struct kmem_cache_cpu *c) 1835 { 1836 #ifdef CONFIG_NUMA 1837 struct zonelist *zonelist; 1838 struct zoneref *z; 1839 struct zone *zone; 1840 enum zone_type high_zoneidx = gfp_zone(flags); 1841 void *object; 1842 unsigned int cpuset_mems_cookie; 1843 1844 /* 1845 * The defrag ratio allows a configuration of the tradeoffs between 1846 * inter node defragmentation and node local allocations. A lower 1847 * defrag_ratio increases the tendency to do local allocations 1848 * instead of attempting to obtain partial slabs from other nodes. 1849 * 1850 * If the defrag_ratio is set to 0 then kmalloc() always 1851 * returns node local objects. If the ratio is higher then kmalloc() 1852 * may return off node objects because partial slabs are obtained 1853 * from other nodes and filled up. 1854 * 1855 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1856 * (which makes defrag_ratio = 1000) then every (well almost) 1857 * allocation will first attempt to defrag slab caches on other nodes. 1858 * This means scanning over all nodes to look for partial slabs which 1859 * may be expensive if we do it every time we are trying to find a slab 1860 * with available objects. 1861 */ 1862 if (!s->remote_node_defrag_ratio || 1863 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1864 return NULL; 1865 1866 do { 1867 cpuset_mems_cookie = read_mems_allowed_begin(); 1868 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1869 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1870 struct kmem_cache_node *n; 1871 1872 n = get_node(s, zone_to_nid(zone)); 1873 1874 if (n && cpuset_zone_allowed(zone, flags) && 1875 n->nr_partial > s->min_partial) { 1876 object = get_partial_node(s, n, c, flags); 1877 if (object) { 1878 /* 1879 * Don't check read_mems_allowed_retry() 1880 * here - if mems_allowed was updated in 1881 * parallel, that was a harmless race 1882 * between allocation and the cpuset 1883 * update 1884 */ 1885 return object; 1886 } 1887 } 1888 } 1889 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1890 #endif 1891 return NULL; 1892 } 1893 1894 /* 1895 * Get a partial page, lock it and return it. 1896 */ 1897 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1898 struct kmem_cache_cpu *c) 1899 { 1900 void *object; 1901 int searchnode = node; 1902 1903 if (node == NUMA_NO_NODE) 1904 searchnode = numa_mem_id(); 1905 else if (!node_present_pages(node)) 1906 searchnode = node_to_mem_node(node); 1907 1908 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1909 if (object || node != NUMA_NO_NODE) 1910 return object; 1911 1912 return get_any_partial(s, flags, c); 1913 } 1914 1915 #ifdef CONFIG_PREEMPT 1916 /* 1917 * Calculate the next globally unique transaction for disambiguiation 1918 * during cmpxchg. The transactions start with the cpu number and are then 1919 * incremented by CONFIG_NR_CPUS. 1920 */ 1921 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1922 #else 1923 /* 1924 * No preemption supported therefore also no need to check for 1925 * different cpus. 1926 */ 1927 #define TID_STEP 1 1928 #endif 1929 1930 static inline unsigned long next_tid(unsigned long tid) 1931 { 1932 return tid + TID_STEP; 1933 } 1934 1935 static inline unsigned int tid_to_cpu(unsigned long tid) 1936 { 1937 return tid % TID_STEP; 1938 } 1939 1940 static inline unsigned long tid_to_event(unsigned long tid) 1941 { 1942 return tid / TID_STEP; 1943 } 1944 1945 static inline unsigned int init_tid(int cpu) 1946 { 1947 return cpu; 1948 } 1949 1950 static inline void note_cmpxchg_failure(const char *n, 1951 const struct kmem_cache *s, unsigned long tid) 1952 { 1953 #ifdef SLUB_DEBUG_CMPXCHG 1954 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1955 1956 pr_info("%s %s: cmpxchg redo ", n, s->name); 1957 1958 #ifdef CONFIG_PREEMPT 1959 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1960 pr_warn("due to cpu change %d -> %d\n", 1961 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1962 else 1963 #endif 1964 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1965 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1966 tid_to_event(tid), tid_to_event(actual_tid)); 1967 else 1968 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1969 actual_tid, tid, next_tid(tid)); 1970 #endif 1971 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1972 } 1973 1974 static void init_kmem_cache_cpus(struct kmem_cache *s) 1975 { 1976 int cpu; 1977 1978 for_each_possible_cpu(cpu) 1979 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1980 } 1981 1982 /* 1983 * Remove the cpu slab 1984 */ 1985 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1986 void *freelist) 1987 { 1988 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1989 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1990 int lock = 0; 1991 enum slab_modes l = M_NONE, m = M_NONE; 1992 void *nextfree; 1993 int tail = DEACTIVATE_TO_HEAD; 1994 struct page new; 1995 struct page old; 1996 1997 if (page->freelist) { 1998 stat(s, DEACTIVATE_REMOTE_FREES); 1999 tail = DEACTIVATE_TO_TAIL; 2000 } 2001 2002 /* 2003 * Stage one: Free all available per cpu objects back 2004 * to the page freelist while it is still frozen. Leave the 2005 * last one. 2006 * 2007 * There is no need to take the list->lock because the page 2008 * is still frozen. 2009 */ 2010 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2011 void *prior; 2012 unsigned long counters; 2013 2014 do { 2015 prior = page->freelist; 2016 counters = page->counters; 2017 set_freepointer(s, freelist, prior); 2018 new.counters = counters; 2019 new.inuse--; 2020 VM_BUG_ON(!new.frozen); 2021 2022 } while (!__cmpxchg_double_slab(s, page, 2023 prior, counters, 2024 freelist, new.counters, 2025 "drain percpu freelist")); 2026 2027 freelist = nextfree; 2028 } 2029 2030 /* 2031 * Stage two: Ensure that the page is unfrozen while the 2032 * list presence reflects the actual number of objects 2033 * during unfreeze. 2034 * 2035 * We setup the list membership and then perform a cmpxchg 2036 * with the count. If there is a mismatch then the page 2037 * is not unfrozen but the page is on the wrong list. 2038 * 2039 * Then we restart the process which may have to remove 2040 * the page from the list that we just put it on again 2041 * because the number of objects in the slab may have 2042 * changed. 2043 */ 2044 redo: 2045 2046 old.freelist = page->freelist; 2047 old.counters = page->counters; 2048 VM_BUG_ON(!old.frozen); 2049 2050 /* Determine target state of the slab */ 2051 new.counters = old.counters; 2052 if (freelist) { 2053 new.inuse--; 2054 set_freepointer(s, freelist, old.freelist); 2055 new.freelist = freelist; 2056 } else 2057 new.freelist = old.freelist; 2058 2059 new.frozen = 0; 2060 2061 if (!new.inuse && n->nr_partial >= s->min_partial) 2062 m = M_FREE; 2063 else if (new.freelist) { 2064 m = M_PARTIAL; 2065 if (!lock) { 2066 lock = 1; 2067 /* 2068 * Taking the spinlock removes the possiblity 2069 * that acquire_slab() will see a slab page that 2070 * is frozen 2071 */ 2072 spin_lock(&n->list_lock); 2073 } 2074 } else { 2075 m = M_FULL; 2076 if (kmem_cache_debug(s) && !lock) { 2077 lock = 1; 2078 /* 2079 * This also ensures that the scanning of full 2080 * slabs from diagnostic functions will not see 2081 * any frozen slabs. 2082 */ 2083 spin_lock(&n->list_lock); 2084 } 2085 } 2086 2087 if (l != m) { 2088 2089 if (l == M_PARTIAL) 2090 2091 remove_partial(n, page); 2092 2093 else if (l == M_FULL) 2094 2095 remove_full(s, n, page); 2096 2097 if (m == M_PARTIAL) { 2098 2099 add_partial(n, page, tail); 2100 stat(s, tail); 2101 2102 } else if (m == M_FULL) { 2103 2104 stat(s, DEACTIVATE_FULL); 2105 add_full(s, n, page); 2106 2107 } 2108 } 2109 2110 l = m; 2111 if (!__cmpxchg_double_slab(s, page, 2112 old.freelist, old.counters, 2113 new.freelist, new.counters, 2114 "unfreezing slab")) 2115 goto redo; 2116 2117 if (lock) 2118 spin_unlock(&n->list_lock); 2119 2120 if (m == M_FREE) { 2121 stat(s, DEACTIVATE_EMPTY); 2122 discard_slab(s, page); 2123 stat(s, FREE_SLAB); 2124 } 2125 } 2126 2127 /* 2128 * Unfreeze all the cpu partial slabs. 2129 * 2130 * This function must be called with interrupts disabled 2131 * for the cpu using c (or some other guarantee must be there 2132 * to guarantee no concurrent accesses). 2133 */ 2134 static void unfreeze_partials(struct kmem_cache *s, 2135 struct kmem_cache_cpu *c) 2136 { 2137 #ifdef CONFIG_SLUB_CPU_PARTIAL 2138 struct kmem_cache_node *n = NULL, *n2 = NULL; 2139 struct page *page, *discard_page = NULL; 2140 2141 while ((page = c->partial)) { 2142 struct page new; 2143 struct page old; 2144 2145 c->partial = page->next; 2146 2147 n2 = get_node(s, page_to_nid(page)); 2148 if (n != n2) { 2149 if (n) 2150 spin_unlock(&n->list_lock); 2151 2152 n = n2; 2153 spin_lock(&n->list_lock); 2154 } 2155 2156 do { 2157 2158 old.freelist = page->freelist; 2159 old.counters = page->counters; 2160 VM_BUG_ON(!old.frozen); 2161 2162 new.counters = old.counters; 2163 new.freelist = old.freelist; 2164 2165 new.frozen = 0; 2166 2167 } while (!__cmpxchg_double_slab(s, page, 2168 old.freelist, old.counters, 2169 new.freelist, new.counters, 2170 "unfreezing slab")); 2171 2172 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2173 page->next = discard_page; 2174 discard_page = page; 2175 } else { 2176 add_partial(n, page, DEACTIVATE_TO_TAIL); 2177 stat(s, FREE_ADD_PARTIAL); 2178 } 2179 } 2180 2181 if (n) 2182 spin_unlock(&n->list_lock); 2183 2184 while (discard_page) { 2185 page = discard_page; 2186 discard_page = discard_page->next; 2187 2188 stat(s, DEACTIVATE_EMPTY); 2189 discard_slab(s, page); 2190 stat(s, FREE_SLAB); 2191 } 2192 #endif 2193 } 2194 2195 /* 2196 * Put a page that was just frozen (in __slab_free) into a partial page 2197 * slot if available. This is done without interrupts disabled and without 2198 * preemption disabled. The cmpxchg is racy and may put the partial page 2199 * onto a random cpus partial slot. 2200 * 2201 * If we did not find a slot then simply move all the partials to the 2202 * per node partial list. 2203 */ 2204 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2205 { 2206 #ifdef CONFIG_SLUB_CPU_PARTIAL 2207 struct page *oldpage; 2208 int pages; 2209 int pobjects; 2210 2211 preempt_disable(); 2212 do { 2213 pages = 0; 2214 pobjects = 0; 2215 oldpage = this_cpu_read(s->cpu_slab->partial); 2216 2217 if (oldpage) { 2218 pobjects = oldpage->pobjects; 2219 pages = oldpage->pages; 2220 if (drain && pobjects > s->cpu_partial) { 2221 unsigned long flags; 2222 /* 2223 * partial array is full. Move the existing 2224 * set to the per node partial list. 2225 */ 2226 local_irq_save(flags); 2227 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2228 local_irq_restore(flags); 2229 oldpage = NULL; 2230 pobjects = 0; 2231 pages = 0; 2232 stat(s, CPU_PARTIAL_DRAIN); 2233 } 2234 } 2235 2236 pages++; 2237 pobjects += page->objects - page->inuse; 2238 2239 page->pages = pages; 2240 page->pobjects = pobjects; 2241 page->next = oldpage; 2242 2243 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2244 != oldpage); 2245 if (unlikely(!s->cpu_partial)) { 2246 unsigned long flags; 2247 2248 local_irq_save(flags); 2249 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2250 local_irq_restore(flags); 2251 } 2252 preempt_enable(); 2253 #endif 2254 } 2255 2256 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2257 { 2258 stat(s, CPUSLAB_FLUSH); 2259 deactivate_slab(s, c->page, c->freelist); 2260 2261 c->tid = next_tid(c->tid); 2262 c->page = NULL; 2263 c->freelist = NULL; 2264 } 2265 2266 /* 2267 * Flush cpu slab. 2268 * 2269 * Called from IPI handler with interrupts disabled. 2270 */ 2271 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2272 { 2273 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2274 2275 if (likely(c)) { 2276 if (c->page) 2277 flush_slab(s, c); 2278 2279 unfreeze_partials(s, c); 2280 } 2281 } 2282 2283 static void flush_cpu_slab(void *d) 2284 { 2285 struct kmem_cache *s = d; 2286 2287 __flush_cpu_slab(s, smp_processor_id()); 2288 } 2289 2290 static bool has_cpu_slab(int cpu, void *info) 2291 { 2292 struct kmem_cache *s = info; 2293 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2294 2295 return c->page || c->partial; 2296 } 2297 2298 static void flush_all(struct kmem_cache *s) 2299 { 2300 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2301 } 2302 2303 /* 2304 * Use the cpu notifier to insure that the cpu slabs are flushed when 2305 * necessary. 2306 */ 2307 static int slub_cpu_dead(unsigned int cpu) 2308 { 2309 struct kmem_cache *s; 2310 unsigned long flags; 2311 2312 mutex_lock(&slab_mutex); 2313 list_for_each_entry(s, &slab_caches, list) { 2314 local_irq_save(flags); 2315 __flush_cpu_slab(s, cpu); 2316 local_irq_restore(flags); 2317 } 2318 mutex_unlock(&slab_mutex); 2319 return 0; 2320 } 2321 2322 /* 2323 * Check if the objects in a per cpu structure fit numa 2324 * locality expectations. 2325 */ 2326 static inline int node_match(struct page *page, int node) 2327 { 2328 #ifdef CONFIG_NUMA 2329 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2330 return 0; 2331 #endif 2332 return 1; 2333 } 2334 2335 #ifdef CONFIG_SLUB_DEBUG 2336 static int count_free(struct page *page) 2337 { 2338 return page->objects - page->inuse; 2339 } 2340 2341 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2342 { 2343 return atomic_long_read(&n->total_objects); 2344 } 2345 #endif /* CONFIG_SLUB_DEBUG */ 2346 2347 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2348 static unsigned long count_partial(struct kmem_cache_node *n, 2349 int (*get_count)(struct page *)) 2350 { 2351 unsigned long flags; 2352 unsigned long x = 0; 2353 struct page *page; 2354 2355 spin_lock_irqsave(&n->list_lock, flags); 2356 list_for_each_entry(page, &n->partial, lru) 2357 x += get_count(page); 2358 spin_unlock_irqrestore(&n->list_lock, flags); 2359 return x; 2360 } 2361 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2362 2363 static noinline void 2364 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2365 { 2366 #ifdef CONFIG_SLUB_DEBUG 2367 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2368 DEFAULT_RATELIMIT_BURST); 2369 int node; 2370 struct kmem_cache_node *n; 2371 2372 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2373 return; 2374 2375 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2376 nid, gfpflags, &gfpflags); 2377 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2378 s->name, s->object_size, s->size, oo_order(s->oo), 2379 oo_order(s->min)); 2380 2381 if (oo_order(s->min) > get_order(s->object_size)) 2382 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2383 s->name); 2384 2385 for_each_kmem_cache_node(s, node, n) { 2386 unsigned long nr_slabs; 2387 unsigned long nr_objs; 2388 unsigned long nr_free; 2389 2390 nr_free = count_partial(n, count_free); 2391 nr_slabs = node_nr_slabs(n); 2392 nr_objs = node_nr_objs(n); 2393 2394 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2395 node, nr_slabs, nr_objs, nr_free); 2396 } 2397 #endif 2398 } 2399 2400 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2401 int node, struct kmem_cache_cpu **pc) 2402 { 2403 void *freelist; 2404 struct kmem_cache_cpu *c = *pc; 2405 struct page *page; 2406 2407 freelist = get_partial(s, flags, node, c); 2408 2409 if (freelist) 2410 return freelist; 2411 2412 page = new_slab(s, flags, node); 2413 if (page) { 2414 c = raw_cpu_ptr(s->cpu_slab); 2415 if (c->page) 2416 flush_slab(s, c); 2417 2418 /* 2419 * No other reference to the page yet so we can 2420 * muck around with it freely without cmpxchg 2421 */ 2422 freelist = page->freelist; 2423 page->freelist = NULL; 2424 2425 stat(s, ALLOC_SLAB); 2426 c->page = page; 2427 *pc = c; 2428 } else 2429 freelist = NULL; 2430 2431 return freelist; 2432 } 2433 2434 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2435 { 2436 if (unlikely(PageSlabPfmemalloc(page))) 2437 return gfp_pfmemalloc_allowed(gfpflags); 2438 2439 return true; 2440 } 2441 2442 /* 2443 * Check the page->freelist of a page and either transfer the freelist to the 2444 * per cpu freelist or deactivate the page. 2445 * 2446 * The page is still frozen if the return value is not NULL. 2447 * 2448 * If this function returns NULL then the page has been unfrozen. 2449 * 2450 * This function must be called with interrupt disabled. 2451 */ 2452 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2453 { 2454 struct page new; 2455 unsigned long counters; 2456 void *freelist; 2457 2458 do { 2459 freelist = page->freelist; 2460 counters = page->counters; 2461 2462 new.counters = counters; 2463 VM_BUG_ON(!new.frozen); 2464 2465 new.inuse = page->objects; 2466 new.frozen = freelist != NULL; 2467 2468 } while (!__cmpxchg_double_slab(s, page, 2469 freelist, counters, 2470 NULL, new.counters, 2471 "get_freelist")); 2472 2473 return freelist; 2474 } 2475 2476 /* 2477 * Slow path. The lockless freelist is empty or we need to perform 2478 * debugging duties. 2479 * 2480 * Processing is still very fast if new objects have been freed to the 2481 * regular freelist. In that case we simply take over the regular freelist 2482 * as the lockless freelist and zap the regular freelist. 2483 * 2484 * If that is not working then we fall back to the partial lists. We take the 2485 * first element of the freelist as the object to allocate now and move the 2486 * rest of the freelist to the lockless freelist. 2487 * 2488 * And if we were unable to get a new slab from the partial slab lists then 2489 * we need to allocate a new slab. This is the slowest path since it involves 2490 * a call to the page allocator and the setup of a new slab. 2491 * 2492 * Version of __slab_alloc to use when we know that interrupts are 2493 * already disabled (which is the case for bulk allocation). 2494 */ 2495 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2496 unsigned long addr, struct kmem_cache_cpu *c) 2497 { 2498 void *freelist; 2499 struct page *page; 2500 2501 page = c->page; 2502 if (!page) 2503 goto new_slab; 2504 redo: 2505 2506 if (unlikely(!node_match(page, node))) { 2507 int searchnode = node; 2508 2509 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2510 searchnode = node_to_mem_node(node); 2511 2512 if (unlikely(!node_match(page, searchnode))) { 2513 stat(s, ALLOC_NODE_MISMATCH); 2514 deactivate_slab(s, page, c->freelist); 2515 c->page = NULL; 2516 c->freelist = NULL; 2517 goto new_slab; 2518 } 2519 } 2520 2521 /* 2522 * By rights, we should be searching for a slab page that was 2523 * PFMEMALLOC but right now, we are losing the pfmemalloc 2524 * information when the page leaves the per-cpu allocator 2525 */ 2526 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2527 deactivate_slab(s, page, c->freelist); 2528 c->page = NULL; 2529 c->freelist = NULL; 2530 goto new_slab; 2531 } 2532 2533 /* must check again c->freelist in case of cpu migration or IRQ */ 2534 freelist = c->freelist; 2535 if (freelist) 2536 goto load_freelist; 2537 2538 freelist = get_freelist(s, page); 2539 2540 if (!freelist) { 2541 c->page = NULL; 2542 stat(s, DEACTIVATE_BYPASS); 2543 goto new_slab; 2544 } 2545 2546 stat(s, ALLOC_REFILL); 2547 2548 load_freelist: 2549 /* 2550 * freelist is pointing to the list of objects to be used. 2551 * page is pointing to the page from which the objects are obtained. 2552 * That page must be frozen for per cpu allocations to work. 2553 */ 2554 VM_BUG_ON(!c->page->frozen); 2555 c->freelist = get_freepointer(s, freelist); 2556 c->tid = next_tid(c->tid); 2557 return freelist; 2558 2559 new_slab: 2560 2561 if (c->partial) { 2562 page = c->page = c->partial; 2563 c->partial = page->next; 2564 stat(s, CPU_PARTIAL_ALLOC); 2565 c->freelist = NULL; 2566 goto redo; 2567 } 2568 2569 freelist = new_slab_objects(s, gfpflags, node, &c); 2570 2571 if (unlikely(!freelist)) { 2572 slab_out_of_memory(s, gfpflags, node); 2573 return NULL; 2574 } 2575 2576 page = c->page; 2577 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2578 goto load_freelist; 2579 2580 /* Only entered in the debug case */ 2581 if (kmem_cache_debug(s) && 2582 !alloc_debug_processing(s, page, freelist, addr)) 2583 goto new_slab; /* Slab failed checks. Next slab needed */ 2584 2585 deactivate_slab(s, page, get_freepointer(s, freelist)); 2586 c->page = NULL; 2587 c->freelist = NULL; 2588 return freelist; 2589 } 2590 2591 /* 2592 * Another one that disabled interrupt and compensates for possible 2593 * cpu changes by refetching the per cpu area pointer. 2594 */ 2595 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2596 unsigned long addr, struct kmem_cache_cpu *c) 2597 { 2598 void *p; 2599 unsigned long flags; 2600 2601 local_irq_save(flags); 2602 #ifdef CONFIG_PREEMPT 2603 /* 2604 * We may have been preempted and rescheduled on a different 2605 * cpu before disabling interrupts. Need to reload cpu area 2606 * pointer. 2607 */ 2608 c = this_cpu_ptr(s->cpu_slab); 2609 #endif 2610 2611 p = ___slab_alloc(s, gfpflags, node, addr, c); 2612 local_irq_restore(flags); 2613 return p; 2614 } 2615 2616 /* 2617 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2618 * have the fastpath folded into their functions. So no function call 2619 * overhead for requests that can be satisfied on the fastpath. 2620 * 2621 * The fastpath works by first checking if the lockless freelist can be used. 2622 * If not then __slab_alloc is called for slow processing. 2623 * 2624 * Otherwise we can simply pick the next object from the lockless free list. 2625 */ 2626 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2627 gfp_t gfpflags, int node, unsigned long addr) 2628 { 2629 void *object; 2630 struct kmem_cache_cpu *c; 2631 struct page *page; 2632 unsigned long tid; 2633 2634 s = slab_pre_alloc_hook(s, gfpflags); 2635 if (!s) 2636 return NULL; 2637 redo: 2638 /* 2639 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2640 * enabled. We may switch back and forth between cpus while 2641 * reading from one cpu area. That does not matter as long 2642 * as we end up on the original cpu again when doing the cmpxchg. 2643 * 2644 * We should guarantee that tid and kmem_cache are retrieved on 2645 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2646 * to check if it is matched or not. 2647 */ 2648 do { 2649 tid = this_cpu_read(s->cpu_slab->tid); 2650 c = raw_cpu_ptr(s->cpu_slab); 2651 } while (IS_ENABLED(CONFIG_PREEMPT) && 2652 unlikely(tid != READ_ONCE(c->tid))); 2653 2654 /* 2655 * Irqless object alloc/free algorithm used here depends on sequence 2656 * of fetching cpu_slab's data. tid should be fetched before anything 2657 * on c to guarantee that object and page associated with previous tid 2658 * won't be used with current tid. If we fetch tid first, object and 2659 * page could be one associated with next tid and our alloc/free 2660 * request will be failed. In this case, we will retry. So, no problem. 2661 */ 2662 barrier(); 2663 2664 /* 2665 * The transaction ids are globally unique per cpu and per operation on 2666 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2667 * occurs on the right processor and that there was no operation on the 2668 * linked list in between. 2669 */ 2670 2671 object = c->freelist; 2672 page = c->page; 2673 if (unlikely(!object || !node_match(page, node))) { 2674 object = __slab_alloc(s, gfpflags, node, addr, c); 2675 stat(s, ALLOC_SLOWPATH); 2676 } else { 2677 void *next_object = get_freepointer_safe(s, object); 2678 2679 /* 2680 * The cmpxchg will only match if there was no additional 2681 * operation and if we are on the right processor. 2682 * 2683 * The cmpxchg does the following atomically (without lock 2684 * semantics!) 2685 * 1. Relocate first pointer to the current per cpu area. 2686 * 2. Verify that tid and freelist have not been changed 2687 * 3. If they were not changed replace tid and freelist 2688 * 2689 * Since this is without lock semantics the protection is only 2690 * against code executing on this cpu *not* from access by 2691 * other cpus. 2692 */ 2693 if (unlikely(!this_cpu_cmpxchg_double( 2694 s->cpu_slab->freelist, s->cpu_slab->tid, 2695 object, tid, 2696 next_object, next_tid(tid)))) { 2697 2698 note_cmpxchg_failure("slab_alloc", s, tid); 2699 goto redo; 2700 } 2701 prefetch_freepointer(s, next_object); 2702 stat(s, ALLOC_FASTPATH); 2703 } 2704 2705 if (unlikely(gfpflags & __GFP_ZERO) && object) 2706 memset(object, 0, s->object_size); 2707 2708 slab_post_alloc_hook(s, gfpflags, 1, &object); 2709 2710 return object; 2711 } 2712 2713 static __always_inline void *slab_alloc(struct kmem_cache *s, 2714 gfp_t gfpflags, unsigned long addr) 2715 { 2716 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2717 } 2718 2719 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2720 { 2721 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2722 2723 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2724 s->size, gfpflags); 2725 2726 return ret; 2727 } 2728 EXPORT_SYMBOL(kmem_cache_alloc); 2729 2730 #ifdef CONFIG_TRACING 2731 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2732 { 2733 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2734 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2735 kasan_kmalloc(s, ret, size, gfpflags); 2736 return ret; 2737 } 2738 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2739 #endif 2740 2741 #ifdef CONFIG_NUMA 2742 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2743 { 2744 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2745 2746 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2747 s->object_size, s->size, gfpflags, node); 2748 2749 return ret; 2750 } 2751 EXPORT_SYMBOL(kmem_cache_alloc_node); 2752 2753 #ifdef CONFIG_TRACING 2754 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2755 gfp_t gfpflags, 2756 int node, size_t size) 2757 { 2758 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2759 2760 trace_kmalloc_node(_RET_IP_, ret, 2761 size, s->size, gfpflags, node); 2762 2763 kasan_kmalloc(s, ret, size, gfpflags); 2764 return ret; 2765 } 2766 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2767 #endif 2768 #endif 2769 2770 /* 2771 * Slow path handling. This may still be called frequently since objects 2772 * have a longer lifetime than the cpu slabs in most processing loads. 2773 * 2774 * So we still attempt to reduce cache line usage. Just take the slab 2775 * lock and free the item. If there is no additional partial page 2776 * handling required then we can return immediately. 2777 */ 2778 static void __slab_free(struct kmem_cache *s, struct page *page, 2779 void *head, void *tail, int cnt, 2780 unsigned long addr) 2781 2782 { 2783 void *prior; 2784 int was_frozen; 2785 struct page new; 2786 unsigned long counters; 2787 struct kmem_cache_node *n = NULL; 2788 unsigned long uninitialized_var(flags); 2789 2790 stat(s, FREE_SLOWPATH); 2791 2792 if (kmem_cache_debug(s) && 2793 !free_debug_processing(s, page, head, tail, cnt, addr)) 2794 return; 2795 2796 do { 2797 if (unlikely(n)) { 2798 spin_unlock_irqrestore(&n->list_lock, flags); 2799 n = NULL; 2800 } 2801 prior = page->freelist; 2802 counters = page->counters; 2803 set_freepointer(s, tail, prior); 2804 new.counters = counters; 2805 was_frozen = new.frozen; 2806 new.inuse -= cnt; 2807 if ((!new.inuse || !prior) && !was_frozen) { 2808 2809 if (kmem_cache_has_cpu_partial(s) && !prior) { 2810 2811 /* 2812 * Slab was on no list before and will be 2813 * partially empty 2814 * We can defer the list move and instead 2815 * freeze it. 2816 */ 2817 new.frozen = 1; 2818 2819 } else { /* Needs to be taken off a list */ 2820 2821 n = get_node(s, page_to_nid(page)); 2822 /* 2823 * Speculatively acquire the list_lock. 2824 * If the cmpxchg does not succeed then we may 2825 * drop the list_lock without any processing. 2826 * 2827 * Otherwise the list_lock will synchronize with 2828 * other processors updating the list of slabs. 2829 */ 2830 spin_lock_irqsave(&n->list_lock, flags); 2831 2832 } 2833 } 2834 2835 } while (!cmpxchg_double_slab(s, page, 2836 prior, counters, 2837 head, new.counters, 2838 "__slab_free")); 2839 2840 if (likely(!n)) { 2841 2842 /* 2843 * If we just froze the page then put it onto the 2844 * per cpu partial list. 2845 */ 2846 if (new.frozen && !was_frozen) { 2847 put_cpu_partial(s, page, 1); 2848 stat(s, CPU_PARTIAL_FREE); 2849 } 2850 /* 2851 * The list lock was not taken therefore no list 2852 * activity can be necessary. 2853 */ 2854 if (was_frozen) 2855 stat(s, FREE_FROZEN); 2856 return; 2857 } 2858 2859 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2860 goto slab_empty; 2861 2862 /* 2863 * Objects left in the slab. If it was not on the partial list before 2864 * then add it. 2865 */ 2866 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2867 if (kmem_cache_debug(s)) 2868 remove_full(s, n, page); 2869 add_partial(n, page, DEACTIVATE_TO_TAIL); 2870 stat(s, FREE_ADD_PARTIAL); 2871 } 2872 spin_unlock_irqrestore(&n->list_lock, flags); 2873 return; 2874 2875 slab_empty: 2876 if (prior) { 2877 /* 2878 * Slab on the partial list. 2879 */ 2880 remove_partial(n, page); 2881 stat(s, FREE_REMOVE_PARTIAL); 2882 } else { 2883 /* Slab must be on the full list */ 2884 remove_full(s, n, page); 2885 } 2886 2887 spin_unlock_irqrestore(&n->list_lock, flags); 2888 stat(s, FREE_SLAB); 2889 discard_slab(s, page); 2890 } 2891 2892 /* 2893 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2894 * can perform fastpath freeing without additional function calls. 2895 * 2896 * The fastpath is only possible if we are freeing to the current cpu slab 2897 * of this processor. This typically the case if we have just allocated 2898 * the item before. 2899 * 2900 * If fastpath is not possible then fall back to __slab_free where we deal 2901 * with all sorts of special processing. 2902 * 2903 * Bulk free of a freelist with several objects (all pointing to the 2904 * same page) possible by specifying head and tail ptr, plus objects 2905 * count (cnt). Bulk free indicated by tail pointer being set. 2906 */ 2907 static __always_inline void do_slab_free(struct kmem_cache *s, 2908 struct page *page, void *head, void *tail, 2909 int cnt, unsigned long addr) 2910 { 2911 void *tail_obj = tail ? : head; 2912 struct kmem_cache_cpu *c; 2913 unsigned long tid; 2914 redo: 2915 /* 2916 * Determine the currently cpus per cpu slab. 2917 * The cpu may change afterward. However that does not matter since 2918 * data is retrieved via this pointer. If we are on the same cpu 2919 * during the cmpxchg then the free will succeed. 2920 */ 2921 do { 2922 tid = this_cpu_read(s->cpu_slab->tid); 2923 c = raw_cpu_ptr(s->cpu_slab); 2924 } while (IS_ENABLED(CONFIG_PREEMPT) && 2925 unlikely(tid != READ_ONCE(c->tid))); 2926 2927 /* Same with comment on barrier() in slab_alloc_node() */ 2928 barrier(); 2929 2930 if (likely(page == c->page)) { 2931 set_freepointer(s, tail_obj, c->freelist); 2932 2933 if (unlikely(!this_cpu_cmpxchg_double( 2934 s->cpu_slab->freelist, s->cpu_slab->tid, 2935 c->freelist, tid, 2936 head, next_tid(tid)))) { 2937 2938 note_cmpxchg_failure("slab_free", s, tid); 2939 goto redo; 2940 } 2941 stat(s, FREE_FASTPATH); 2942 } else 2943 __slab_free(s, page, head, tail_obj, cnt, addr); 2944 2945 } 2946 2947 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2948 void *head, void *tail, int cnt, 2949 unsigned long addr) 2950 { 2951 slab_free_freelist_hook(s, head, tail); 2952 /* 2953 * slab_free_freelist_hook() could have put the items into quarantine. 2954 * If so, no need to free them. 2955 */ 2956 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU)) 2957 return; 2958 do_slab_free(s, page, head, tail, cnt, addr); 2959 } 2960 2961 #ifdef CONFIG_KASAN 2962 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 2963 { 2964 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 2965 } 2966 #endif 2967 2968 void kmem_cache_free(struct kmem_cache *s, void *x) 2969 { 2970 s = cache_from_obj(s, x); 2971 if (!s) 2972 return; 2973 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 2974 trace_kmem_cache_free(_RET_IP_, x); 2975 } 2976 EXPORT_SYMBOL(kmem_cache_free); 2977 2978 struct detached_freelist { 2979 struct page *page; 2980 void *tail; 2981 void *freelist; 2982 int cnt; 2983 struct kmem_cache *s; 2984 }; 2985 2986 /* 2987 * This function progressively scans the array with free objects (with 2988 * a limited look ahead) and extract objects belonging to the same 2989 * page. It builds a detached freelist directly within the given 2990 * page/objects. This can happen without any need for 2991 * synchronization, because the objects are owned by running process. 2992 * The freelist is build up as a single linked list in the objects. 2993 * The idea is, that this detached freelist can then be bulk 2994 * transferred to the real freelist(s), but only requiring a single 2995 * synchronization primitive. Look ahead in the array is limited due 2996 * to performance reasons. 2997 */ 2998 static inline 2999 int build_detached_freelist(struct kmem_cache *s, size_t size, 3000 void **p, struct detached_freelist *df) 3001 { 3002 size_t first_skipped_index = 0; 3003 int lookahead = 3; 3004 void *object; 3005 struct page *page; 3006 3007 /* Always re-init detached_freelist */ 3008 df->page = NULL; 3009 3010 do { 3011 object = p[--size]; 3012 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3013 } while (!object && size); 3014 3015 if (!object) 3016 return 0; 3017 3018 page = virt_to_head_page(object); 3019 if (!s) { 3020 /* Handle kalloc'ed objects */ 3021 if (unlikely(!PageSlab(page))) { 3022 BUG_ON(!PageCompound(page)); 3023 kfree_hook(object); 3024 __free_pages(page, compound_order(page)); 3025 p[size] = NULL; /* mark object processed */ 3026 return size; 3027 } 3028 /* Derive kmem_cache from object */ 3029 df->s = page->slab_cache; 3030 } else { 3031 df->s = cache_from_obj(s, object); /* Support for memcg */ 3032 } 3033 3034 /* Start new detached freelist */ 3035 df->page = page; 3036 set_freepointer(df->s, object, NULL); 3037 df->tail = object; 3038 df->freelist = object; 3039 p[size] = NULL; /* mark object processed */ 3040 df->cnt = 1; 3041 3042 while (size) { 3043 object = p[--size]; 3044 if (!object) 3045 continue; /* Skip processed objects */ 3046 3047 /* df->page is always set at this point */ 3048 if (df->page == virt_to_head_page(object)) { 3049 /* Opportunity build freelist */ 3050 set_freepointer(df->s, object, df->freelist); 3051 df->freelist = object; 3052 df->cnt++; 3053 p[size] = NULL; /* mark object processed */ 3054 3055 continue; 3056 } 3057 3058 /* Limit look ahead search */ 3059 if (!--lookahead) 3060 break; 3061 3062 if (!first_skipped_index) 3063 first_skipped_index = size + 1; 3064 } 3065 3066 return first_skipped_index; 3067 } 3068 3069 /* Note that interrupts must be enabled when calling this function. */ 3070 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3071 { 3072 if (WARN_ON(!size)) 3073 return; 3074 3075 do { 3076 struct detached_freelist df; 3077 3078 size = build_detached_freelist(s, size, p, &df); 3079 if (!df.page) 3080 continue; 3081 3082 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3083 } while (likely(size)); 3084 } 3085 EXPORT_SYMBOL(kmem_cache_free_bulk); 3086 3087 /* Note that interrupts must be enabled when calling this function. */ 3088 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3089 void **p) 3090 { 3091 struct kmem_cache_cpu *c; 3092 int i; 3093 3094 /* memcg and kmem_cache debug support */ 3095 s = slab_pre_alloc_hook(s, flags); 3096 if (unlikely(!s)) 3097 return false; 3098 /* 3099 * Drain objects in the per cpu slab, while disabling local 3100 * IRQs, which protects against PREEMPT and interrupts 3101 * handlers invoking normal fastpath. 3102 */ 3103 local_irq_disable(); 3104 c = this_cpu_ptr(s->cpu_slab); 3105 3106 for (i = 0; i < size; i++) { 3107 void *object = c->freelist; 3108 3109 if (unlikely(!object)) { 3110 /* 3111 * Invoking slow path likely have side-effect 3112 * of re-populating per CPU c->freelist 3113 */ 3114 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3115 _RET_IP_, c); 3116 if (unlikely(!p[i])) 3117 goto error; 3118 3119 c = this_cpu_ptr(s->cpu_slab); 3120 continue; /* goto for-loop */ 3121 } 3122 c->freelist = get_freepointer(s, object); 3123 p[i] = object; 3124 } 3125 c->tid = next_tid(c->tid); 3126 local_irq_enable(); 3127 3128 /* Clear memory outside IRQ disabled fastpath loop */ 3129 if (unlikely(flags & __GFP_ZERO)) { 3130 int j; 3131 3132 for (j = 0; j < i; j++) 3133 memset(p[j], 0, s->object_size); 3134 } 3135 3136 /* memcg and kmem_cache debug support */ 3137 slab_post_alloc_hook(s, flags, size, p); 3138 return i; 3139 error: 3140 local_irq_enable(); 3141 slab_post_alloc_hook(s, flags, i, p); 3142 __kmem_cache_free_bulk(s, i, p); 3143 return 0; 3144 } 3145 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3146 3147 3148 /* 3149 * Object placement in a slab is made very easy because we always start at 3150 * offset 0. If we tune the size of the object to the alignment then we can 3151 * get the required alignment by putting one properly sized object after 3152 * another. 3153 * 3154 * Notice that the allocation order determines the sizes of the per cpu 3155 * caches. Each processor has always one slab available for allocations. 3156 * Increasing the allocation order reduces the number of times that slabs 3157 * must be moved on and off the partial lists and is therefore a factor in 3158 * locking overhead. 3159 */ 3160 3161 /* 3162 * Mininum / Maximum order of slab pages. This influences locking overhead 3163 * and slab fragmentation. A higher order reduces the number of partial slabs 3164 * and increases the number of allocations possible without having to 3165 * take the list_lock. 3166 */ 3167 static int slub_min_order; 3168 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3169 static int slub_min_objects; 3170 3171 /* 3172 * Calculate the order of allocation given an slab object size. 3173 * 3174 * The order of allocation has significant impact on performance and other 3175 * system components. Generally order 0 allocations should be preferred since 3176 * order 0 does not cause fragmentation in the page allocator. Larger objects 3177 * be problematic to put into order 0 slabs because there may be too much 3178 * unused space left. We go to a higher order if more than 1/16th of the slab 3179 * would be wasted. 3180 * 3181 * In order to reach satisfactory performance we must ensure that a minimum 3182 * number of objects is in one slab. Otherwise we may generate too much 3183 * activity on the partial lists which requires taking the list_lock. This is 3184 * less a concern for large slabs though which are rarely used. 3185 * 3186 * slub_max_order specifies the order where we begin to stop considering the 3187 * number of objects in a slab as critical. If we reach slub_max_order then 3188 * we try to keep the page order as low as possible. So we accept more waste 3189 * of space in favor of a small page order. 3190 * 3191 * Higher order allocations also allow the placement of more objects in a 3192 * slab and thereby reduce object handling overhead. If the user has 3193 * requested a higher mininum order then we start with that one instead of 3194 * the smallest order which will fit the object. 3195 */ 3196 static inline int slab_order(int size, int min_objects, 3197 int max_order, int fract_leftover, int reserved) 3198 { 3199 int order; 3200 int rem; 3201 int min_order = slub_min_order; 3202 3203 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 3204 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3205 3206 for (order = max(min_order, get_order(min_objects * size + reserved)); 3207 order <= max_order; order++) { 3208 3209 unsigned long slab_size = PAGE_SIZE << order; 3210 3211 rem = (slab_size - reserved) % size; 3212 3213 if (rem <= slab_size / fract_leftover) 3214 break; 3215 } 3216 3217 return order; 3218 } 3219 3220 static inline int calculate_order(int size, int reserved) 3221 { 3222 int order; 3223 int min_objects; 3224 int fraction; 3225 int max_objects; 3226 3227 /* 3228 * Attempt to find best configuration for a slab. This 3229 * works by first attempting to generate a layout with 3230 * the best configuration and backing off gradually. 3231 * 3232 * First we increase the acceptable waste in a slab. Then 3233 * we reduce the minimum objects required in a slab. 3234 */ 3235 min_objects = slub_min_objects; 3236 if (!min_objects) 3237 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3238 max_objects = order_objects(slub_max_order, size, reserved); 3239 min_objects = min(min_objects, max_objects); 3240 3241 while (min_objects > 1) { 3242 fraction = 16; 3243 while (fraction >= 4) { 3244 order = slab_order(size, min_objects, 3245 slub_max_order, fraction, reserved); 3246 if (order <= slub_max_order) 3247 return order; 3248 fraction /= 2; 3249 } 3250 min_objects--; 3251 } 3252 3253 /* 3254 * We were unable to place multiple objects in a slab. Now 3255 * lets see if we can place a single object there. 3256 */ 3257 order = slab_order(size, 1, slub_max_order, 1, reserved); 3258 if (order <= slub_max_order) 3259 return order; 3260 3261 /* 3262 * Doh this slab cannot be placed using slub_max_order. 3263 */ 3264 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 3265 if (order < MAX_ORDER) 3266 return order; 3267 return -ENOSYS; 3268 } 3269 3270 static void 3271 init_kmem_cache_node(struct kmem_cache_node *n) 3272 { 3273 n->nr_partial = 0; 3274 spin_lock_init(&n->list_lock); 3275 INIT_LIST_HEAD(&n->partial); 3276 #ifdef CONFIG_SLUB_DEBUG 3277 atomic_long_set(&n->nr_slabs, 0); 3278 atomic_long_set(&n->total_objects, 0); 3279 INIT_LIST_HEAD(&n->full); 3280 #endif 3281 } 3282 3283 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3284 { 3285 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3286 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3287 3288 /* 3289 * Must align to double word boundary for the double cmpxchg 3290 * instructions to work; see __pcpu_double_call_return_bool(). 3291 */ 3292 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3293 2 * sizeof(void *)); 3294 3295 if (!s->cpu_slab) 3296 return 0; 3297 3298 init_kmem_cache_cpus(s); 3299 3300 return 1; 3301 } 3302 3303 static struct kmem_cache *kmem_cache_node; 3304 3305 /* 3306 * No kmalloc_node yet so do it by hand. We know that this is the first 3307 * slab on the node for this slabcache. There are no concurrent accesses 3308 * possible. 3309 * 3310 * Note that this function only works on the kmem_cache_node 3311 * when allocating for the kmem_cache_node. This is used for bootstrapping 3312 * memory on a fresh node that has no slab structures yet. 3313 */ 3314 static void early_kmem_cache_node_alloc(int node) 3315 { 3316 struct page *page; 3317 struct kmem_cache_node *n; 3318 3319 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3320 3321 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3322 3323 BUG_ON(!page); 3324 if (page_to_nid(page) != node) { 3325 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3326 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3327 } 3328 3329 n = page->freelist; 3330 BUG_ON(!n); 3331 page->freelist = get_freepointer(kmem_cache_node, n); 3332 page->inuse = 1; 3333 page->frozen = 0; 3334 kmem_cache_node->node[node] = n; 3335 #ifdef CONFIG_SLUB_DEBUG 3336 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3337 init_tracking(kmem_cache_node, n); 3338 #endif 3339 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3340 GFP_KERNEL); 3341 init_kmem_cache_node(n); 3342 inc_slabs_node(kmem_cache_node, node, page->objects); 3343 3344 /* 3345 * No locks need to be taken here as it has just been 3346 * initialized and there is no concurrent access. 3347 */ 3348 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3349 } 3350 3351 static void free_kmem_cache_nodes(struct kmem_cache *s) 3352 { 3353 int node; 3354 struct kmem_cache_node *n; 3355 3356 for_each_kmem_cache_node(s, node, n) { 3357 kmem_cache_free(kmem_cache_node, n); 3358 s->node[node] = NULL; 3359 } 3360 } 3361 3362 void __kmem_cache_release(struct kmem_cache *s) 3363 { 3364 cache_random_seq_destroy(s); 3365 free_percpu(s->cpu_slab); 3366 free_kmem_cache_nodes(s); 3367 } 3368 3369 static int init_kmem_cache_nodes(struct kmem_cache *s) 3370 { 3371 int node; 3372 3373 for_each_node_state(node, N_NORMAL_MEMORY) { 3374 struct kmem_cache_node *n; 3375 3376 if (slab_state == DOWN) { 3377 early_kmem_cache_node_alloc(node); 3378 continue; 3379 } 3380 n = kmem_cache_alloc_node(kmem_cache_node, 3381 GFP_KERNEL, node); 3382 3383 if (!n) { 3384 free_kmem_cache_nodes(s); 3385 return 0; 3386 } 3387 3388 s->node[node] = n; 3389 init_kmem_cache_node(n); 3390 } 3391 return 1; 3392 } 3393 3394 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3395 { 3396 if (min < MIN_PARTIAL) 3397 min = MIN_PARTIAL; 3398 else if (min > MAX_PARTIAL) 3399 min = MAX_PARTIAL; 3400 s->min_partial = min; 3401 } 3402 3403 /* 3404 * calculate_sizes() determines the order and the distribution of data within 3405 * a slab object. 3406 */ 3407 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3408 { 3409 unsigned long flags = s->flags; 3410 size_t size = s->object_size; 3411 int order; 3412 3413 /* 3414 * Round up object size to the next word boundary. We can only 3415 * place the free pointer at word boundaries and this determines 3416 * the possible location of the free pointer. 3417 */ 3418 size = ALIGN(size, sizeof(void *)); 3419 3420 #ifdef CONFIG_SLUB_DEBUG 3421 /* 3422 * Determine if we can poison the object itself. If the user of 3423 * the slab may touch the object after free or before allocation 3424 * then we should never poison the object itself. 3425 */ 3426 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 3427 !s->ctor) 3428 s->flags |= __OBJECT_POISON; 3429 else 3430 s->flags &= ~__OBJECT_POISON; 3431 3432 3433 /* 3434 * If we are Redzoning then check if there is some space between the 3435 * end of the object and the free pointer. If not then add an 3436 * additional word to have some bytes to store Redzone information. 3437 */ 3438 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3439 size += sizeof(void *); 3440 #endif 3441 3442 /* 3443 * With that we have determined the number of bytes in actual use 3444 * by the object. This is the potential offset to the free pointer. 3445 */ 3446 s->inuse = size; 3447 3448 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 3449 s->ctor)) { 3450 /* 3451 * Relocate free pointer after the object if it is not 3452 * permitted to overwrite the first word of the object on 3453 * kmem_cache_free. 3454 * 3455 * This is the case if we do RCU, have a constructor or 3456 * destructor or are poisoning the objects. 3457 */ 3458 s->offset = size; 3459 size += sizeof(void *); 3460 } 3461 3462 #ifdef CONFIG_SLUB_DEBUG 3463 if (flags & SLAB_STORE_USER) 3464 /* 3465 * Need to store information about allocs and frees after 3466 * the object. 3467 */ 3468 size += 2 * sizeof(struct track); 3469 #endif 3470 3471 kasan_cache_create(s, &size, &s->flags); 3472 #ifdef CONFIG_SLUB_DEBUG 3473 if (flags & SLAB_RED_ZONE) { 3474 /* 3475 * Add some empty padding so that we can catch 3476 * overwrites from earlier objects rather than let 3477 * tracking information or the free pointer be 3478 * corrupted if a user writes before the start 3479 * of the object. 3480 */ 3481 size += sizeof(void *); 3482 3483 s->red_left_pad = sizeof(void *); 3484 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3485 size += s->red_left_pad; 3486 } 3487 #endif 3488 3489 /* 3490 * SLUB stores one object immediately after another beginning from 3491 * offset 0. In order to align the objects we have to simply size 3492 * each object to conform to the alignment. 3493 */ 3494 size = ALIGN(size, s->align); 3495 s->size = size; 3496 if (forced_order >= 0) 3497 order = forced_order; 3498 else 3499 order = calculate_order(size, s->reserved); 3500 3501 if (order < 0) 3502 return 0; 3503 3504 s->allocflags = 0; 3505 if (order) 3506 s->allocflags |= __GFP_COMP; 3507 3508 if (s->flags & SLAB_CACHE_DMA) 3509 s->allocflags |= GFP_DMA; 3510 3511 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3512 s->allocflags |= __GFP_RECLAIMABLE; 3513 3514 /* 3515 * Determine the number of objects per slab 3516 */ 3517 s->oo = oo_make(order, size, s->reserved); 3518 s->min = oo_make(get_order(size), size, s->reserved); 3519 if (oo_objects(s->oo) > oo_objects(s->max)) 3520 s->max = s->oo; 3521 3522 return !!oo_objects(s->oo); 3523 } 3524 3525 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3526 { 3527 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3528 s->reserved = 0; 3529 3530 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3531 s->reserved = sizeof(struct rcu_head); 3532 3533 if (!calculate_sizes(s, -1)) 3534 goto error; 3535 if (disable_higher_order_debug) { 3536 /* 3537 * Disable debugging flags that store metadata if the min slab 3538 * order increased. 3539 */ 3540 if (get_order(s->size) > get_order(s->object_size)) { 3541 s->flags &= ~DEBUG_METADATA_FLAGS; 3542 s->offset = 0; 3543 if (!calculate_sizes(s, -1)) 3544 goto error; 3545 } 3546 } 3547 3548 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3549 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3550 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3551 /* Enable fast mode */ 3552 s->flags |= __CMPXCHG_DOUBLE; 3553 #endif 3554 3555 /* 3556 * The larger the object size is, the more pages we want on the partial 3557 * list to avoid pounding the page allocator excessively. 3558 */ 3559 set_min_partial(s, ilog2(s->size) / 2); 3560 3561 /* 3562 * cpu_partial determined the maximum number of objects kept in the 3563 * per cpu partial lists of a processor. 3564 * 3565 * Per cpu partial lists mainly contain slabs that just have one 3566 * object freed. If they are used for allocation then they can be 3567 * filled up again with minimal effort. The slab will never hit the 3568 * per node partial lists and therefore no locking will be required. 3569 * 3570 * This setting also determines 3571 * 3572 * A) The number of objects from per cpu partial slabs dumped to the 3573 * per node list when we reach the limit. 3574 * B) The number of objects in cpu partial slabs to extract from the 3575 * per node list when we run out of per cpu objects. We only fetch 3576 * 50% to keep some capacity around for frees. 3577 */ 3578 if (!kmem_cache_has_cpu_partial(s)) 3579 s->cpu_partial = 0; 3580 else if (s->size >= PAGE_SIZE) 3581 s->cpu_partial = 2; 3582 else if (s->size >= 1024) 3583 s->cpu_partial = 6; 3584 else if (s->size >= 256) 3585 s->cpu_partial = 13; 3586 else 3587 s->cpu_partial = 30; 3588 3589 #ifdef CONFIG_NUMA 3590 s->remote_node_defrag_ratio = 1000; 3591 #endif 3592 3593 /* Initialize the pre-computed randomized freelist if slab is up */ 3594 if (slab_state >= UP) { 3595 if (init_cache_random_seq(s)) 3596 goto error; 3597 } 3598 3599 if (!init_kmem_cache_nodes(s)) 3600 goto error; 3601 3602 if (alloc_kmem_cache_cpus(s)) 3603 return 0; 3604 3605 free_kmem_cache_nodes(s); 3606 error: 3607 if (flags & SLAB_PANIC) 3608 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n", 3609 s->name, (unsigned long)s->size, s->size, 3610 oo_order(s->oo), s->offset, flags); 3611 return -EINVAL; 3612 } 3613 3614 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3615 const char *text) 3616 { 3617 #ifdef CONFIG_SLUB_DEBUG 3618 void *addr = page_address(page); 3619 void *p; 3620 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3621 sizeof(long), GFP_ATOMIC); 3622 if (!map) 3623 return; 3624 slab_err(s, page, text, s->name); 3625 slab_lock(page); 3626 3627 get_map(s, page, map); 3628 for_each_object(p, s, addr, page->objects) { 3629 3630 if (!test_bit(slab_index(p, s, addr), map)) { 3631 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3632 print_tracking(s, p); 3633 } 3634 } 3635 slab_unlock(page); 3636 kfree(map); 3637 #endif 3638 } 3639 3640 /* 3641 * Attempt to free all partial slabs on a node. 3642 * This is called from __kmem_cache_shutdown(). We must take list_lock 3643 * because sysfs file might still access partial list after the shutdowning. 3644 */ 3645 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3646 { 3647 LIST_HEAD(discard); 3648 struct page *page, *h; 3649 3650 BUG_ON(irqs_disabled()); 3651 spin_lock_irq(&n->list_lock); 3652 list_for_each_entry_safe(page, h, &n->partial, lru) { 3653 if (!page->inuse) { 3654 remove_partial(n, page); 3655 list_add(&page->lru, &discard); 3656 } else { 3657 list_slab_objects(s, page, 3658 "Objects remaining in %s on __kmem_cache_shutdown()"); 3659 } 3660 } 3661 spin_unlock_irq(&n->list_lock); 3662 3663 list_for_each_entry_safe(page, h, &discard, lru) 3664 discard_slab(s, page); 3665 } 3666 3667 /* 3668 * Release all resources used by a slab cache. 3669 */ 3670 int __kmem_cache_shutdown(struct kmem_cache *s) 3671 { 3672 int node; 3673 struct kmem_cache_node *n; 3674 3675 flush_all(s); 3676 /* Attempt to free all objects */ 3677 for_each_kmem_cache_node(s, node, n) { 3678 free_partial(s, n); 3679 if (n->nr_partial || slabs_node(s, node)) 3680 return 1; 3681 } 3682 return 0; 3683 } 3684 3685 /******************************************************************** 3686 * Kmalloc subsystem 3687 *******************************************************************/ 3688 3689 static int __init setup_slub_min_order(char *str) 3690 { 3691 get_option(&str, &slub_min_order); 3692 3693 return 1; 3694 } 3695 3696 __setup("slub_min_order=", setup_slub_min_order); 3697 3698 static int __init setup_slub_max_order(char *str) 3699 { 3700 get_option(&str, &slub_max_order); 3701 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3702 3703 return 1; 3704 } 3705 3706 __setup("slub_max_order=", setup_slub_max_order); 3707 3708 static int __init setup_slub_min_objects(char *str) 3709 { 3710 get_option(&str, &slub_min_objects); 3711 3712 return 1; 3713 } 3714 3715 __setup("slub_min_objects=", setup_slub_min_objects); 3716 3717 void *__kmalloc(size_t size, gfp_t flags) 3718 { 3719 struct kmem_cache *s; 3720 void *ret; 3721 3722 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3723 return kmalloc_large(size, flags); 3724 3725 s = kmalloc_slab(size, flags); 3726 3727 if (unlikely(ZERO_OR_NULL_PTR(s))) 3728 return s; 3729 3730 ret = slab_alloc(s, flags, _RET_IP_); 3731 3732 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3733 3734 kasan_kmalloc(s, ret, size, flags); 3735 3736 return ret; 3737 } 3738 EXPORT_SYMBOL(__kmalloc); 3739 3740 #ifdef CONFIG_NUMA 3741 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3742 { 3743 struct page *page; 3744 void *ptr = NULL; 3745 3746 flags |= __GFP_COMP | __GFP_NOTRACK; 3747 page = alloc_pages_node(node, flags, get_order(size)); 3748 if (page) 3749 ptr = page_address(page); 3750 3751 kmalloc_large_node_hook(ptr, size, flags); 3752 return ptr; 3753 } 3754 3755 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3756 { 3757 struct kmem_cache *s; 3758 void *ret; 3759 3760 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3761 ret = kmalloc_large_node(size, flags, node); 3762 3763 trace_kmalloc_node(_RET_IP_, ret, 3764 size, PAGE_SIZE << get_order(size), 3765 flags, node); 3766 3767 return ret; 3768 } 3769 3770 s = kmalloc_slab(size, flags); 3771 3772 if (unlikely(ZERO_OR_NULL_PTR(s))) 3773 return s; 3774 3775 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3776 3777 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3778 3779 kasan_kmalloc(s, ret, size, flags); 3780 3781 return ret; 3782 } 3783 EXPORT_SYMBOL(__kmalloc_node); 3784 #endif 3785 3786 #ifdef CONFIG_HARDENED_USERCOPY 3787 /* 3788 * Rejects objects that are incorrectly sized. 3789 * 3790 * Returns NULL if check passes, otherwise const char * to name of cache 3791 * to indicate an error. 3792 */ 3793 const char *__check_heap_object(const void *ptr, unsigned long n, 3794 struct page *page) 3795 { 3796 struct kmem_cache *s; 3797 unsigned long offset; 3798 size_t object_size; 3799 3800 /* Find object and usable object size. */ 3801 s = page->slab_cache; 3802 object_size = slab_ksize(s); 3803 3804 /* Reject impossible pointers. */ 3805 if (ptr < page_address(page)) 3806 return s->name; 3807 3808 /* Find offset within object. */ 3809 offset = (ptr - page_address(page)) % s->size; 3810 3811 /* Adjust for redzone and reject if within the redzone. */ 3812 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3813 if (offset < s->red_left_pad) 3814 return s->name; 3815 offset -= s->red_left_pad; 3816 } 3817 3818 /* Allow address range falling entirely within object size. */ 3819 if (offset <= object_size && n <= object_size - offset) 3820 return NULL; 3821 3822 return s->name; 3823 } 3824 #endif /* CONFIG_HARDENED_USERCOPY */ 3825 3826 static size_t __ksize(const void *object) 3827 { 3828 struct page *page; 3829 3830 if (unlikely(object == ZERO_SIZE_PTR)) 3831 return 0; 3832 3833 page = virt_to_head_page(object); 3834 3835 if (unlikely(!PageSlab(page))) { 3836 WARN_ON(!PageCompound(page)); 3837 return PAGE_SIZE << compound_order(page); 3838 } 3839 3840 return slab_ksize(page->slab_cache); 3841 } 3842 3843 size_t ksize(const void *object) 3844 { 3845 size_t size = __ksize(object); 3846 /* We assume that ksize callers could use whole allocated area, 3847 * so we need to unpoison this area. 3848 */ 3849 kasan_unpoison_shadow(object, size); 3850 return size; 3851 } 3852 EXPORT_SYMBOL(ksize); 3853 3854 void kfree(const void *x) 3855 { 3856 struct page *page; 3857 void *object = (void *)x; 3858 3859 trace_kfree(_RET_IP_, x); 3860 3861 if (unlikely(ZERO_OR_NULL_PTR(x))) 3862 return; 3863 3864 page = virt_to_head_page(x); 3865 if (unlikely(!PageSlab(page))) { 3866 BUG_ON(!PageCompound(page)); 3867 kfree_hook(x); 3868 __free_pages(page, compound_order(page)); 3869 return; 3870 } 3871 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3872 } 3873 EXPORT_SYMBOL(kfree); 3874 3875 #define SHRINK_PROMOTE_MAX 32 3876 3877 /* 3878 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3879 * up most to the head of the partial lists. New allocations will then 3880 * fill those up and thus they can be removed from the partial lists. 3881 * 3882 * The slabs with the least items are placed last. This results in them 3883 * being allocated from last increasing the chance that the last objects 3884 * are freed in them. 3885 */ 3886 int __kmem_cache_shrink(struct kmem_cache *s) 3887 { 3888 int node; 3889 int i; 3890 struct kmem_cache_node *n; 3891 struct page *page; 3892 struct page *t; 3893 struct list_head discard; 3894 struct list_head promote[SHRINK_PROMOTE_MAX]; 3895 unsigned long flags; 3896 int ret = 0; 3897 3898 flush_all(s); 3899 for_each_kmem_cache_node(s, node, n) { 3900 INIT_LIST_HEAD(&discard); 3901 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3902 INIT_LIST_HEAD(promote + i); 3903 3904 spin_lock_irqsave(&n->list_lock, flags); 3905 3906 /* 3907 * Build lists of slabs to discard or promote. 3908 * 3909 * Note that concurrent frees may occur while we hold the 3910 * list_lock. page->inuse here is the upper limit. 3911 */ 3912 list_for_each_entry_safe(page, t, &n->partial, lru) { 3913 int free = page->objects - page->inuse; 3914 3915 /* Do not reread page->inuse */ 3916 barrier(); 3917 3918 /* We do not keep full slabs on the list */ 3919 BUG_ON(free <= 0); 3920 3921 if (free == page->objects) { 3922 list_move(&page->lru, &discard); 3923 n->nr_partial--; 3924 } else if (free <= SHRINK_PROMOTE_MAX) 3925 list_move(&page->lru, promote + free - 1); 3926 } 3927 3928 /* 3929 * Promote the slabs filled up most to the head of the 3930 * partial list. 3931 */ 3932 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 3933 list_splice(promote + i, &n->partial); 3934 3935 spin_unlock_irqrestore(&n->list_lock, flags); 3936 3937 /* Release empty slabs */ 3938 list_for_each_entry_safe(page, t, &discard, lru) 3939 discard_slab(s, page); 3940 3941 if (slabs_node(s, node)) 3942 ret = 1; 3943 } 3944 3945 return ret; 3946 } 3947 3948 static int slab_mem_going_offline_callback(void *arg) 3949 { 3950 struct kmem_cache *s; 3951 3952 mutex_lock(&slab_mutex); 3953 list_for_each_entry(s, &slab_caches, list) 3954 __kmem_cache_shrink(s); 3955 mutex_unlock(&slab_mutex); 3956 3957 return 0; 3958 } 3959 3960 static void slab_mem_offline_callback(void *arg) 3961 { 3962 struct kmem_cache_node *n; 3963 struct kmem_cache *s; 3964 struct memory_notify *marg = arg; 3965 int offline_node; 3966 3967 offline_node = marg->status_change_nid_normal; 3968 3969 /* 3970 * If the node still has available memory. we need kmem_cache_node 3971 * for it yet. 3972 */ 3973 if (offline_node < 0) 3974 return; 3975 3976 mutex_lock(&slab_mutex); 3977 list_for_each_entry(s, &slab_caches, list) { 3978 n = get_node(s, offline_node); 3979 if (n) { 3980 /* 3981 * if n->nr_slabs > 0, slabs still exist on the node 3982 * that is going down. We were unable to free them, 3983 * and offline_pages() function shouldn't call this 3984 * callback. So, we must fail. 3985 */ 3986 BUG_ON(slabs_node(s, offline_node)); 3987 3988 s->node[offline_node] = NULL; 3989 kmem_cache_free(kmem_cache_node, n); 3990 } 3991 } 3992 mutex_unlock(&slab_mutex); 3993 } 3994 3995 static int slab_mem_going_online_callback(void *arg) 3996 { 3997 struct kmem_cache_node *n; 3998 struct kmem_cache *s; 3999 struct memory_notify *marg = arg; 4000 int nid = marg->status_change_nid_normal; 4001 int ret = 0; 4002 4003 /* 4004 * If the node's memory is already available, then kmem_cache_node is 4005 * already created. Nothing to do. 4006 */ 4007 if (nid < 0) 4008 return 0; 4009 4010 /* 4011 * We are bringing a node online. No memory is available yet. We must 4012 * allocate a kmem_cache_node structure in order to bring the node 4013 * online. 4014 */ 4015 mutex_lock(&slab_mutex); 4016 list_for_each_entry(s, &slab_caches, list) { 4017 /* 4018 * XXX: kmem_cache_alloc_node will fallback to other nodes 4019 * since memory is not yet available from the node that 4020 * is brought up. 4021 */ 4022 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4023 if (!n) { 4024 ret = -ENOMEM; 4025 goto out; 4026 } 4027 init_kmem_cache_node(n); 4028 s->node[nid] = n; 4029 } 4030 out: 4031 mutex_unlock(&slab_mutex); 4032 return ret; 4033 } 4034 4035 static int slab_memory_callback(struct notifier_block *self, 4036 unsigned long action, void *arg) 4037 { 4038 int ret = 0; 4039 4040 switch (action) { 4041 case MEM_GOING_ONLINE: 4042 ret = slab_mem_going_online_callback(arg); 4043 break; 4044 case MEM_GOING_OFFLINE: 4045 ret = slab_mem_going_offline_callback(arg); 4046 break; 4047 case MEM_OFFLINE: 4048 case MEM_CANCEL_ONLINE: 4049 slab_mem_offline_callback(arg); 4050 break; 4051 case MEM_ONLINE: 4052 case MEM_CANCEL_OFFLINE: 4053 break; 4054 } 4055 if (ret) 4056 ret = notifier_from_errno(ret); 4057 else 4058 ret = NOTIFY_OK; 4059 return ret; 4060 } 4061 4062 static struct notifier_block slab_memory_callback_nb = { 4063 .notifier_call = slab_memory_callback, 4064 .priority = SLAB_CALLBACK_PRI, 4065 }; 4066 4067 /******************************************************************** 4068 * Basic setup of slabs 4069 *******************************************************************/ 4070 4071 /* 4072 * Used for early kmem_cache structures that were allocated using 4073 * the page allocator. Allocate them properly then fix up the pointers 4074 * that may be pointing to the wrong kmem_cache structure. 4075 */ 4076 4077 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4078 { 4079 int node; 4080 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4081 struct kmem_cache_node *n; 4082 4083 memcpy(s, static_cache, kmem_cache->object_size); 4084 4085 /* 4086 * This runs very early, and only the boot processor is supposed to be 4087 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4088 * IPIs around. 4089 */ 4090 __flush_cpu_slab(s, smp_processor_id()); 4091 for_each_kmem_cache_node(s, node, n) { 4092 struct page *p; 4093 4094 list_for_each_entry(p, &n->partial, lru) 4095 p->slab_cache = s; 4096 4097 #ifdef CONFIG_SLUB_DEBUG 4098 list_for_each_entry(p, &n->full, lru) 4099 p->slab_cache = s; 4100 #endif 4101 } 4102 slab_init_memcg_params(s); 4103 list_add(&s->list, &slab_caches); 4104 return s; 4105 } 4106 4107 void __init kmem_cache_init(void) 4108 { 4109 static __initdata struct kmem_cache boot_kmem_cache, 4110 boot_kmem_cache_node; 4111 4112 if (debug_guardpage_minorder()) 4113 slub_max_order = 0; 4114 4115 kmem_cache_node = &boot_kmem_cache_node; 4116 kmem_cache = &boot_kmem_cache; 4117 4118 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4119 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 4120 4121 register_hotmemory_notifier(&slab_memory_callback_nb); 4122 4123 /* Able to allocate the per node structures */ 4124 slab_state = PARTIAL; 4125 4126 create_boot_cache(kmem_cache, "kmem_cache", 4127 offsetof(struct kmem_cache, node) + 4128 nr_node_ids * sizeof(struct kmem_cache_node *), 4129 SLAB_HWCACHE_ALIGN); 4130 4131 kmem_cache = bootstrap(&boot_kmem_cache); 4132 4133 /* 4134 * Allocate kmem_cache_node properly from the kmem_cache slab. 4135 * kmem_cache_node is separately allocated so no need to 4136 * update any list pointers. 4137 */ 4138 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4139 4140 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4141 setup_kmalloc_cache_index_table(); 4142 create_kmalloc_caches(0); 4143 4144 /* Setup random freelists for each cache */ 4145 init_freelist_randomization(); 4146 4147 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4148 slub_cpu_dead); 4149 4150 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n", 4151 cache_line_size(), 4152 slub_min_order, slub_max_order, slub_min_objects, 4153 nr_cpu_ids, nr_node_ids); 4154 } 4155 4156 void __init kmem_cache_init_late(void) 4157 { 4158 } 4159 4160 struct kmem_cache * 4161 __kmem_cache_alias(const char *name, size_t size, size_t align, 4162 unsigned long flags, void (*ctor)(void *)) 4163 { 4164 struct kmem_cache *s, *c; 4165 4166 s = find_mergeable(size, align, flags, name, ctor); 4167 if (s) { 4168 s->refcount++; 4169 4170 /* 4171 * Adjust the object sizes so that we clear 4172 * the complete object on kzalloc. 4173 */ 4174 s->object_size = max(s->object_size, (int)size); 4175 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 4176 4177 for_each_memcg_cache(c, s) { 4178 c->object_size = s->object_size; 4179 c->inuse = max_t(int, c->inuse, 4180 ALIGN(size, sizeof(void *))); 4181 } 4182 4183 if (sysfs_slab_alias(s, name)) { 4184 s->refcount--; 4185 s = NULL; 4186 } 4187 } 4188 4189 return s; 4190 } 4191 4192 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 4193 { 4194 int err; 4195 4196 err = kmem_cache_open(s, flags); 4197 if (err) 4198 return err; 4199 4200 /* Mutex is not taken during early boot */ 4201 if (slab_state <= UP) 4202 return 0; 4203 4204 memcg_propagate_slab_attrs(s); 4205 err = sysfs_slab_add(s); 4206 if (err) 4207 __kmem_cache_release(s); 4208 4209 return err; 4210 } 4211 4212 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4213 { 4214 struct kmem_cache *s; 4215 void *ret; 4216 4217 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4218 return kmalloc_large(size, gfpflags); 4219 4220 s = kmalloc_slab(size, gfpflags); 4221 4222 if (unlikely(ZERO_OR_NULL_PTR(s))) 4223 return s; 4224 4225 ret = slab_alloc(s, gfpflags, caller); 4226 4227 /* Honor the call site pointer we received. */ 4228 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4229 4230 return ret; 4231 } 4232 4233 #ifdef CONFIG_NUMA 4234 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4235 int node, unsigned long caller) 4236 { 4237 struct kmem_cache *s; 4238 void *ret; 4239 4240 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4241 ret = kmalloc_large_node(size, gfpflags, node); 4242 4243 trace_kmalloc_node(caller, ret, 4244 size, PAGE_SIZE << get_order(size), 4245 gfpflags, node); 4246 4247 return ret; 4248 } 4249 4250 s = kmalloc_slab(size, gfpflags); 4251 4252 if (unlikely(ZERO_OR_NULL_PTR(s))) 4253 return s; 4254 4255 ret = slab_alloc_node(s, gfpflags, node, caller); 4256 4257 /* Honor the call site pointer we received. */ 4258 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4259 4260 return ret; 4261 } 4262 #endif 4263 4264 #ifdef CONFIG_SYSFS 4265 static int count_inuse(struct page *page) 4266 { 4267 return page->inuse; 4268 } 4269 4270 static int count_total(struct page *page) 4271 { 4272 return page->objects; 4273 } 4274 #endif 4275 4276 #ifdef CONFIG_SLUB_DEBUG 4277 static int validate_slab(struct kmem_cache *s, struct page *page, 4278 unsigned long *map) 4279 { 4280 void *p; 4281 void *addr = page_address(page); 4282 4283 if (!check_slab(s, page) || 4284 !on_freelist(s, page, NULL)) 4285 return 0; 4286 4287 /* Now we know that a valid freelist exists */ 4288 bitmap_zero(map, page->objects); 4289 4290 get_map(s, page, map); 4291 for_each_object(p, s, addr, page->objects) { 4292 if (test_bit(slab_index(p, s, addr), map)) 4293 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4294 return 0; 4295 } 4296 4297 for_each_object(p, s, addr, page->objects) 4298 if (!test_bit(slab_index(p, s, addr), map)) 4299 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4300 return 0; 4301 return 1; 4302 } 4303 4304 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4305 unsigned long *map) 4306 { 4307 slab_lock(page); 4308 validate_slab(s, page, map); 4309 slab_unlock(page); 4310 } 4311 4312 static int validate_slab_node(struct kmem_cache *s, 4313 struct kmem_cache_node *n, unsigned long *map) 4314 { 4315 unsigned long count = 0; 4316 struct page *page; 4317 unsigned long flags; 4318 4319 spin_lock_irqsave(&n->list_lock, flags); 4320 4321 list_for_each_entry(page, &n->partial, lru) { 4322 validate_slab_slab(s, page, map); 4323 count++; 4324 } 4325 if (count != n->nr_partial) 4326 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4327 s->name, count, n->nr_partial); 4328 4329 if (!(s->flags & SLAB_STORE_USER)) 4330 goto out; 4331 4332 list_for_each_entry(page, &n->full, lru) { 4333 validate_slab_slab(s, page, map); 4334 count++; 4335 } 4336 if (count != atomic_long_read(&n->nr_slabs)) 4337 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4338 s->name, count, atomic_long_read(&n->nr_slabs)); 4339 4340 out: 4341 spin_unlock_irqrestore(&n->list_lock, flags); 4342 return count; 4343 } 4344 4345 static long validate_slab_cache(struct kmem_cache *s) 4346 { 4347 int node; 4348 unsigned long count = 0; 4349 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4350 sizeof(unsigned long), GFP_KERNEL); 4351 struct kmem_cache_node *n; 4352 4353 if (!map) 4354 return -ENOMEM; 4355 4356 flush_all(s); 4357 for_each_kmem_cache_node(s, node, n) 4358 count += validate_slab_node(s, n, map); 4359 kfree(map); 4360 return count; 4361 } 4362 /* 4363 * Generate lists of code addresses where slabcache objects are allocated 4364 * and freed. 4365 */ 4366 4367 struct location { 4368 unsigned long count; 4369 unsigned long addr; 4370 long long sum_time; 4371 long min_time; 4372 long max_time; 4373 long min_pid; 4374 long max_pid; 4375 DECLARE_BITMAP(cpus, NR_CPUS); 4376 nodemask_t nodes; 4377 }; 4378 4379 struct loc_track { 4380 unsigned long max; 4381 unsigned long count; 4382 struct location *loc; 4383 }; 4384 4385 static void free_loc_track(struct loc_track *t) 4386 { 4387 if (t->max) 4388 free_pages((unsigned long)t->loc, 4389 get_order(sizeof(struct location) * t->max)); 4390 } 4391 4392 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4393 { 4394 struct location *l; 4395 int order; 4396 4397 order = get_order(sizeof(struct location) * max); 4398 4399 l = (void *)__get_free_pages(flags, order); 4400 if (!l) 4401 return 0; 4402 4403 if (t->count) { 4404 memcpy(l, t->loc, sizeof(struct location) * t->count); 4405 free_loc_track(t); 4406 } 4407 t->max = max; 4408 t->loc = l; 4409 return 1; 4410 } 4411 4412 static int add_location(struct loc_track *t, struct kmem_cache *s, 4413 const struct track *track) 4414 { 4415 long start, end, pos; 4416 struct location *l; 4417 unsigned long caddr; 4418 unsigned long age = jiffies - track->when; 4419 4420 start = -1; 4421 end = t->count; 4422 4423 for ( ; ; ) { 4424 pos = start + (end - start + 1) / 2; 4425 4426 /* 4427 * There is nothing at "end". If we end up there 4428 * we need to add something to before end. 4429 */ 4430 if (pos == end) 4431 break; 4432 4433 caddr = t->loc[pos].addr; 4434 if (track->addr == caddr) { 4435 4436 l = &t->loc[pos]; 4437 l->count++; 4438 if (track->when) { 4439 l->sum_time += age; 4440 if (age < l->min_time) 4441 l->min_time = age; 4442 if (age > l->max_time) 4443 l->max_time = age; 4444 4445 if (track->pid < l->min_pid) 4446 l->min_pid = track->pid; 4447 if (track->pid > l->max_pid) 4448 l->max_pid = track->pid; 4449 4450 cpumask_set_cpu(track->cpu, 4451 to_cpumask(l->cpus)); 4452 } 4453 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4454 return 1; 4455 } 4456 4457 if (track->addr < caddr) 4458 end = pos; 4459 else 4460 start = pos; 4461 } 4462 4463 /* 4464 * Not found. Insert new tracking element. 4465 */ 4466 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4467 return 0; 4468 4469 l = t->loc + pos; 4470 if (pos < t->count) 4471 memmove(l + 1, l, 4472 (t->count - pos) * sizeof(struct location)); 4473 t->count++; 4474 l->count = 1; 4475 l->addr = track->addr; 4476 l->sum_time = age; 4477 l->min_time = age; 4478 l->max_time = age; 4479 l->min_pid = track->pid; 4480 l->max_pid = track->pid; 4481 cpumask_clear(to_cpumask(l->cpus)); 4482 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4483 nodes_clear(l->nodes); 4484 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4485 return 1; 4486 } 4487 4488 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4489 struct page *page, enum track_item alloc, 4490 unsigned long *map) 4491 { 4492 void *addr = page_address(page); 4493 void *p; 4494 4495 bitmap_zero(map, page->objects); 4496 get_map(s, page, map); 4497 4498 for_each_object(p, s, addr, page->objects) 4499 if (!test_bit(slab_index(p, s, addr), map)) 4500 add_location(t, s, get_track(s, p, alloc)); 4501 } 4502 4503 static int list_locations(struct kmem_cache *s, char *buf, 4504 enum track_item alloc) 4505 { 4506 int len = 0; 4507 unsigned long i; 4508 struct loc_track t = { 0, 0, NULL }; 4509 int node; 4510 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4511 sizeof(unsigned long), GFP_KERNEL); 4512 struct kmem_cache_node *n; 4513 4514 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4515 GFP_TEMPORARY)) { 4516 kfree(map); 4517 return sprintf(buf, "Out of memory\n"); 4518 } 4519 /* Push back cpu slabs */ 4520 flush_all(s); 4521 4522 for_each_kmem_cache_node(s, node, n) { 4523 unsigned long flags; 4524 struct page *page; 4525 4526 if (!atomic_long_read(&n->nr_slabs)) 4527 continue; 4528 4529 spin_lock_irqsave(&n->list_lock, flags); 4530 list_for_each_entry(page, &n->partial, lru) 4531 process_slab(&t, s, page, alloc, map); 4532 list_for_each_entry(page, &n->full, lru) 4533 process_slab(&t, s, page, alloc, map); 4534 spin_unlock_irqrestore(&n->list_lock, flags); 4535 } 4536 4537 for (i = 0; i < t.count; i++) { 4538 struct location *l = &t.loc[i]; 4539 4540 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4541 break; 4542 len += sprintf(buf + len, "%7ld ", l->count); 4543 4544 if (l->addr) 4545 len += sprintf(buf + len, "%pS", (void *)l->addr); 4546 else 4547 len += sprintf(buf + len, "<not-available>"); 4548 4549 if (l->sum_time != l->min_time) { 4550 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4551 l->min_time, 4552 (long)div_u64(l->sum_time, l->count), 4553 l->max_time); 4554 } else 4555 len += sprintf(buf + len, " age=%ld", 4556 l->min_time); 4557 4558 if (l->min_pid != l->max_pid) 4559 len += sprintf(buf + len, " pid=%ld-%ld", 4560 l->min_pid, l->max_pid); 4561 else 4562 len += sprintf(buf + len, " pid=%ld", 4563 l->min_pid); 4564 4565 if (num_online_cpus() > 1 && 4566 !cpumask_empty(to_cpumask(l->cpus)) && 4567 len < PAGE_SIZE - 60) 4568 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4569 " cpus=%*pbl", 4570 cpumask_pr_args(to_cpumask(l->cpus))); 4571 4572 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4573 len < PAGE_SIZE - 60) 4574 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4575 " nodes=%*pbl", 4576 nodemask_pr_args(&l->nodes)); 4577 4578 len += sprintf(buf + len, "\n"); 4579 } 4580 4581 free_loc_track(&t); 4582 kfree(map); 4583 if (!t.count) 4584 len += sprintf(buf, "No data\n"); 4585 return len; 4586 } 4587 #endif 4588 4589 #ifdef SLUB_RESILIENCY_TEST 4590 static void __init resiliency_test(void) 4591 { 4592 u8 *p; 4593 4594 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4595 4596 pr_err("SLUB resiliency testing\n"); 4597 pr_err("-----------------------\n"); 4598 pr_err("A. Corruption after allocation\n"); 4599 4600 p = kzalloc(16, GFP_KERNEL); 4601 p[16] = 0x12; 4602 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4603 p + 16); 4604 4605 validate_slab_cache(kmalloc_caches[4]); 4606 4607 /* Hmmm... The next two are dangerous */ 4608 p = kzalloc(32, GFP_KERNEL); 4609 p[32 + sizeof(void *)] = 0x34; 4610 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4611 p); 4612 pr_err("If allocated object is overwritten then not detectable\n\n"); 4613 4614 validate_slab_cache(kmalloc_caches[5]); 4615 p = kzalloc(64, GFP_KERNEL); 4616 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4617 *p = 0x56; 4618 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4619 p); 4620 pr_err("If allocated object is overwritten then not detectable\n\n"); 4621 validate_slab_cache(kmalloc_caches[6]); 4622 4623 pr_err("\nB. Corruption after free\n"); 4624 p = kzalloc(128, GFP_KERNEL); 4625 kfree(p); 4626 *p = 0x78; 4627 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4628 validate_slab_cache(kmalloc_caches[7]); 4629 4630 p = kzalloc(256, GFP_KERNEL); 4631 kfree(p); 4632 p[50] = 0x9a; 4633 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4634 validate_slab_cache(kmalloc_caches[8]); 4635 4636 p = kzalloc(512, GFP_KERNEL); 4637 kfree(p); 4638 p[512] = 0xab; 4639 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4640 validate_slab_cache(kmalloc_caches[9]); 4641 } 4642 #else 4643 #ifdef CONFIG_SYSFS 4644 static void resiliency_test(void) {}; 4645 #endif 4646 #endif 4647 4648 #ifdef CONFIG_SYSFS 4649 enum slab_stat_type { 4650 SL_ALL, /* All slabs */ 4651 SL_PARTIAL, /* Only partially allocated slabs */ 4652 SL_CPU, /* Only slabs used for cpu caches */ 4653 SL_OBJECTS, /* Determine allocated objects not slabs */ 4654 SL_TOTAL /* Determine object capacity not slabs */ 4655 }; 4656 4657 #define SO_ALL (1 << SL_ALL) 4658 #define SO_PARTIAL (1 << SL_PARTIAL) 4659 #define SO_CPU (1 << SL_CPU) 4660 #define SO_OBJECTS (1 << SL_OBJECTS) 4661 #define SO_TOTAL (1 << SL_TOTAL) 4662 4663 static ssize_t show_slab_objects(struct kmem_cache *s, 4664 char *buf, unsigned long flags) 4665 { 4666 unsigned long total = 0; 4667 int node; 4668 int x; 4669 unsigned long *nodes; 4670 4671 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4672 if (!nodes) 4673 return -ENOMEM; 4674 4675 if (flags & SO_CPU) { 4676 int cpu; 4677 4678 for_each_possible_cpu(cpu) { 4679 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4680 cpu); 4681 int node; 4682 struct page *page; 4683 4684 page = READ_ONCE(c->page); 4685 if (!page) 4686 continue; 4687 4688 node = page_to_nid(page); 4689 if (flags & SO_TOTAL) 4690 x = page->objects; 4691 else if (flags & SO_OBJECTS) 4692 x = page->inuse; 4693 else 4694 x = 1; 4695 4696 total += x; 4697 nodes[node] += x; 4698 4699 page = READ_ONCE(c->partial); 4700 if (page) { 4701 node = page_to_nid(page); 4702 if (flags & SO_TOTAL) 4703 WARN_ON_ONCE(1); 4704 else if (flags & SO_OBJECTS) 4705 WARN_ON_ONCE(1); 4706 else 4707 x = page->pages; 4708 total += x; 4709 nodes[node] += x; 4710 } 4711 } 4712 } 4713 4714 get_online_mems(); 4715 #ifdef CONFIG_SLUB_DEBUG 4716 if (flags & SO_ALL) { 4717 struct kmem_cache_node *n; 4718 4719 for_each_kmem_cache_node(s, node, n) { 4720 4721 if (flags & SO_TOTAL) 4722 x = atomic_long_read(&n->total_objects); 4723 else if (flags & SO_OBJECTS) 4724 x = atomic_long_read(&n->total_objects) - 4725 count_partial(n, count_free); 4726 else 4727 x = atomic_long_read(&n->nr_slabs); 4728 total += x; 4729 nodes[node] += x; 4730 } 4731 4732 } else 4733 #endif 4734 if (flags & SO_PARTIAL) { 4735 struct kmem_cache_node *n; 4736 4737 for_each_kmem_cache_node(s, node, n) { 4738 if (flags & SO_TOTAL) 4739 x = count_partial(n, count_total); 4740 else if (flags & SO_OBJECTS) 4741 x = count_partial(n, count_inuse); 4742 else 4743 x = n->nr_partial; 4744 total += x; 4745 nodes[node] += x; 4746 } 4747 } 4748 x = sprintf(buf, "%lu", total); 4749 #ifdef CONFIG_NUMA 4750 for (node = 0; node < nr_node_ids; node++) 4751 if (nodes[node]) 4752 x += sprintf(buf + x, " N%d=%lu", 4753 node, nodes[node]); 4754 #endif 4755 put_online_mems(); 4756 kfree(nodes); 4757 return x + sprintf(buf + x, "\n"); 4758 } 4759 4760 #ifdef CONFIG_SLUB_DEBUG 4761 static int any_slab_objects(struct kmem_cache *s) 4762 { 4763 int node; 4764 struct kmem_cache_node *n; 4765 4766 for_each_kmem_cache_node(s, node, n) 4767 if (atomic_long_read(&n->total_objects)) 4768 return 1; 4769 4770 return 0; 4771 } 4772 #endif 4773 4774 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4775 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4776 4777 struct slab_attribute { 4778 struct attribute attr; 4779 ssize_t (*show)(struct kmem_cache *s, char *buf); 4780 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4781 }; 4782 4783 #define SLAB_ATTR_RO(_name) \ 4784 static struct slab_attribute _name##_attr = \ 4785 __ATTR(_name, 0400, _name##_show, NULL) 4786 4787 #define SLAB_ATTR(_name) \ 4788 static struct slab_attribute _name##_attr = \ 4789 __ATTR(_name, 0600, _name##_show, _name##_store) 4790 4791 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4792 { 4793 return sprintf(buf, "%d\n", s->size); 4794 } 4795 SLAB_ATTR_RO(slab_size); 4796 4797 static ssize_t align_show(struct kmem_cache *s, char *buf) 4798 { 4799 return sprintf(buf, "%d\n", s->align); 4800 } 4801 SLAB_ATTR_RO(align); 4802 4803 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4804 { 4805 return sprintf(buf, "%d\n", s->object_size); 4806 } 4807 SLAB_ATTR_RO(object_size); 4808 4809 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4810 { 4811 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4812 } 4813 SLAB_ATTR_RO(objs_per_slab); 4814 4815 static ssize_t order_store(struct kmem_cache *s, 4816 const char *buf, size_t length) 4817 { 4818 unsigned long order; 4819 int err; 4820 4821 err = kstrtoul(buf, 10, &order); 4822 if (err) 4823 return err; 4824 4825 if (order > slub_max_order || order < slub_min_order) 4826 return -EINVAL; 4827 4828 calculate_sizes(s, order); 4829 return length; 4830 } 4831 4832 static ssize_t order_show(struct kmem_cache *s, char *buf) 4833 { 4834 return sprintf(buf, "%d\n", oo_order(s->oo)); 4835 } 4836 SLAB_ATTR(order); 4837 4838 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4839 { 4840 return sprintf(buf, "%lu\n", s->min_partial); 4841 } 4842 4843 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4844 size_t length) 4845 { 4846 unsigned long min; 4847 int err; 4848 4849 err = kstrtoul(buf, 10, &min); 4850 if (err) 4851 return err; 4852 4853 set_min_partial(s, min); 4854 return length; 4855 } 4856 SLAB_ATTR(min_partial); 4857 4858 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4859 { 4860 return sprintf(buf, "%u\n", s->cpu_partial); 4861 } 4862 4863 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4864 size_t length) 4865 { 4866 unsigned long objects; 4867 int err; 4868 4869 err = kstrtoul(buf, 10, &objects); 4870 if (err) 4871 return err; 4872 if (objects && !kmem_cache_has_cpu_partial(s)) 4873 return -EINVAL; 4874 4875 s->cpu_partial = objects; 4876 flush_all(s); 4877 return length; 4878 } 4879 SLAB_ATTR(cpu_partial); 4880 4881 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4882 { 4883 if (!s->ctor) 4884 return 0; 4885 return sprintf(buf, "%pS\n", s->ctor); 4886 } 4887 SLAB_ATTR_RO(ctor); 4888 4889 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4890 { 4891 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4892 } 4893 SLAB_ATTR_RO(aliases); 4894 4895 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4896 { 4897 return show_slab_objects(s, buf, SO_PARTIAL); 4898 } 4899 SLAB_ATTR_RO(partial); 4900 4901 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4902 { 4903 return show_slab_objects(s, buf, SO_CPU); 4904 } 4905 SLAB_ATTR_RO(cpu_slabs); 4906 4907 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4908 { 4909 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4910 } 4911 SLAB_ATTR_RO(objects); 4912 4913 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4914 { 4915 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4916 } 4917 SLAB_ATTR_RO(objects_partial); 4918 4919 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4920 { 4921 int objects = 0; 4922 int pages = 0; 4923 int cpu; 4924 int len; 4925 4926 for_each_online_cpu(cpu) { 4927 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4928 4929 if (page) { 4930 pages += page->pages; 4931 objects += page->pobjects; 4932 } 4933 } 4934 4935 len = sprintf(buf, "%d(%d)", objects, pages); 4936 4937 #ifdef CONFIG_SMP 4938 for_each_online_cpu(cpu) { 4939 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4940 4941 if (page && len < PAGE_SIZE - 20) 4942 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4943 page->pobjects, page->pages); 4944 } 4945 #endif 4946 return len + sprintf(buf + len, "\n"); 4947 } 4948 SLAB_ATTR_RO(slabs_cpu_partial); 4949 4950 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4951 { 4952 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4953 } 4954 4955 static ssize_t reclaim_account_store(struct kmem_cache *s, 4956 const char *buf, size_t length) 4957 { 4958 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4959 if (buf[0] == '1') 4960 s->flags |= SLAB_RECLAIM_ACCOUNT; 4961 return length; 4962 } 4963 SLAB_ATTR(reclaim_account); 4964 4965 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4966 { 4967 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4968 } 4969 SLAB_ATTR_RO(hwcache_align); 4970 4971 #ifdef CONFIG_ZONE_DMA 4972 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4973 { 4974 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4975 } 4976 SLAB_ATTR_RO(cache_dma); 4977 #endif 4978 4979 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4980 { 4981 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4982 } 4983 SLAB_ATTR_RO(destroy_by_rcu); 4984 4985 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4986 { 4987 return sprintf(buf, "%d\n", s->reserved); 4988 } 4989 SLAB_ATTR_RO(reserved); 4990 4991 #ifdef CONFIG_SLUB_DEBUG 4992 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4993 { 4994 return show_slab_objects(s, buf, SO_ALL); 4995 } 4996 SLAB_ATTR_RO(slabs); 4997 4998 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4999 { 5000 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5001 } 5002 SLAB_ATTR_RO(total_objects); 5003 5004 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5005 { 5006 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5007 } 5008 5009 static ssize_t sanity_checks_store(struct kmem_cache *s, 5010 const char *buf, size_t length) 5011 { 5012 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5013 if (buf[0] == '1') { 5014 s->flags &= ~__CMPXCHG_DOUBLE; 5015 s->flags |= SLAB_CONSISTENCY_CHECKS; 5016 } 5017 return length; 5018 } 5019 SLAB_ATTR(sanity_checks); 5020 5021 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5022 { 5023 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5024 } 5025 5026 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5027 size_t length) 5028 { 5029 /* 5030 * Tracing a merged cache is going to give confusing results 5031 * as well as cause other issues like converting a mergeable 5032 * cache into an umergeable one. 5033 */ 5034 if (s->refcount > 1) 5035 return -EINVAL; 5036 5037 s->flags &= ~SLAB_TRACE; 5038 if (buf[0] == '1') { 5039 s->flags &= ~__CMPXCHG_DOUBLE; 5040 s->flags |= SLAB_TRACE; 5041 } 5042 return length; 5043 } 5044 SLAB_ATTR(trace); 5045 5046 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5047 { 5048 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5049 } 5050 5051 static ssize_t red_zone_store(struct kmem_cache *s, 5052 const char *buf, size_t length) 5053 { 5054 if (any_slab_objects(s)) 5055 return -EBUSY; 5056 5057 s->flags &= ~SLAB_RED_ZONE; 5058 if (buf[0] == '1') { 5059 s->flags |= SLAB_RED_ZONE; 5060 } 5061 calculate_sizes(s, -1); 5062 return length; 5063 } 5064 SLAB_ATTR(red_zone); 5065 5066 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5067 { 5068 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5069 } 5070 5071 static ssize_t poison_store(struct kmem_cache *s, 5072 const char *buf, size_t length) 5073 { 5074 if (any_slab_objects(s)) 5075 return -EBUSY; 5076 5077 s->flags &= ~SLAB_POISON; 5078 if (buf[0] == '1') { 5079 s->flags |= SLAB_POISON; 5080 } 5081 calculate_sizes(s, -1); 5082 return length; 5083 } 5084 SLAB_ATTR(poison); 5085 5086 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5087 { 5088 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5089 } 5090 5091 static ssize_t store_user_store(struct kmem_cache *s, 5092 const char *buf, size_t length) 5093 { 5094 if (any_slab_objects(s)) 5095 return -EBUSY; 5096 5097 s->flags &= ~SLAB_STORE_USER; 5098 if (buf[0] == '1') { 5099 s->flags &= ~__CMPXCHG_DOUBLE; 5100 s->flags |= SLAB_STORE_USER; 5101 } 5102 calculate_sizes(s, -1); 5103 return length; 5104 } 5105 SLAB_ATTR(store_user); 5106 5107 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5108 { 5109 return 0; 5110 } 5111 5112 static ssize_t validate_store(struct kmem_cache *s, 5113 const char *buf, size_t length) 5114 { 5115 int ret = -EINVAL; 5116 5117 if (buf[0] == '1') { 5118 ret = validate_slab_cache(s); 5119 if (ret >= 0) 5120 ret = length; 5121 } 5122 return ret; 5123 } 5124 SLAB_ATTR(validate); 5125 5126 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5127 { 5128 if (!(s->flags & SLAB_STORE_USER)) 5129 return -ENOSYS; 5130 return list_locations(s, buf, TRACK_ALLOC); 5131 } 5132 SLAB_ATTR_RO(alloc_calls); 5133 5134 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5135 { 5136 if (!(s->flags & SLAB_STORE_USER)) 5137 return -ENOSYS; 5138 return list_locations(s, buf, TRACK_FREE); 5139 } 5140 SLAB_ATTR_RO(free_calls); 5141 #endif /* CONFIG_SLUB_DEBUG */ 5142 5143 #ifdef CONFIG_FAILSLAB 5144 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5145 { 5146 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5147 } 5148 5149 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5150 size_t length) 5151 { 5152 if (s->refcount > 1) 5153 return -EINVAL; 5154 5155 s->flags &= ~SLAB_FAILSLAB; 5156 if (buf[0] == '1') 5157 s->flags |= SLAB_FAILSLAB; 5158 return length; 5159 } 5160 SLAB_ATTR(failslab); 5161 #endif 5162 5163 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5164 { 5165 return 0; 5166 } 5167 5168 static ssize_t shrink_store(struct kmem_cache *s, 5169 const char *buf, size_t length) 5170 { 5171 if (buf[0] == '1') 5172 kmem_cache_shrink(s); 5173 else 5174 return -EINVAL; 5175 return length; 5176 } 5177 SLAB_ATTR(shrink); 5178 5179 #ifdef CONFIG_NUMA 5180 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5181 { 5182 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 5183 } 5184 5185 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5186 const char *buf, size_t length) 5187 { 5188 unsigned long ratio; 5189 int err; 5190 5191 err = kstrtoul(buf, 10, &ratio); 5192 if (err) 5193 return err; 5194 5195 if (ratio <= 100) 5196 s->remote_node_defrag_ratio = ratio * 10; 5197 5198 return length; 5199 } 5200 SLAB_ATTR(remote_node_defrag_ratio); 5201 #endif 5202 5203 #ifdef CONFIG_SLUB_STATS 5204 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5205 { 5206 unsigned long sum = 0; 5207 int cpu; 5208 int len; 5209 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 5210 5211 if (!data) 5212 return -ENOMEM; 5213 5214 for_each_online_cpu(cpu) { 5215 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5216 5217 data[cpu] = x; 5218 sum += x; 5219 } 5220 5221 len = sprintf(buf, "%lu", sum); 5222 5223 #ifdef CONFIG_SMP 5224 for_each_online_cpu(cpu) { 5225 if (data[cpu] && len < PAGE_SIZE - 20) 5226 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5227 } 5228 #endif 5229 kfree(data); 5230 return len + sprintf(buf + len, "\n"); 5231 } 5232 5233 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5234 { 5235 int cpu; 5236 5237 for_each_online_cpu(cpu) 5238 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5239 } 5240 5241 #define STAT_ATTR(si, text) \ 5242 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5243 { \ 5244 return show_stat(s, buf, si); \ 5245 } \ 5246 static ssize_t text##_store(struct kmem_cache *s, \ 5247 const char *buf, size_t length) \ 5248 { \ 5249 if (buf[0] != '0') \ 5250 return -EINVAL; \ 5251 clear_stat(s, si); \ 5252 return length; \ 5253 } \ 5254 SLAB_ATTR(text); \ 5255 5256 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5257 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5258 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5259 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5260 STAT_ATTR(FREE_FROZEN, free_frozen); 5261 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5262 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5263 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5264 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5265 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5266 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5267 STAT_ATTR(FREE_SLAB, free_slab); 5268 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5269 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5270 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5271 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5272 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5273 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5274 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5275 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5276 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5277 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5278 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5279 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5280 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5281 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5282 #endif 5283 5284 static struct attribute *slab_attrs[] = { 5285 &slab_size_attr.attr, 5286 &object_size_attr.attr, 5287 &objs_per_slab_attr.attr, 5288 &order_attr.attr, 5289 &min_partial_attr.attr, 5290 &cpu_partial_attr.attr, 5291 &objects_attr.attr, 5292 &objects_partial_attr.attr, 5293 &partial_attr.attr, 5294 &cpu_slabs_attr.attr, 5295 &ctor_attr.attr, 5296 &aliases_attr.attr, 5297 &align_attr.attr, 5298 &hwcache_align_attr.attr, 5299 &reclaim_account_attr.attr, 5300 &destroy_by_rcu_attr.attr, 5301 &shrink_attr.attr, 5302 &reserved_attr.attr, 5303 &slabs_cpu_partial_attr.attr, 5304 #ifdef CONFIG_SLUB_DEBUG 5305 &total_objects_attr.attr, 5306 &slabs_attr.attr, 5307 &sanity_checks_attr.attr, 5308 &trace_attr.attr, 5309 &red_zone_attr.attr, 5310 &poison_attr.attr, 5311 &store_user_attr.attr, 5312 &validate_attr.attr, 5313 &alloc_calls_attr.attr, 5314 &free_calls_attr.attr, 5315 #endif 5316 #ifdef CONFIG_ZONE_DMA 5317 &cache_dma_attr.attr, 5318 #endif 5319 #ifdef CONFIG_NUMA 5320 &remote_node_defrag_ratio_attr.attr, 5321 #endif 5322 #ifdef CONFIG_SLUB_STATS 5323 &alloc_fastpath_attr.attr, 5324 &alloc_slowpath_attr.attr, 5325 &free_fastpath_attr.attr, 5326 &free_slowpath_attr.attr, 5327 &free_frozen_attr.attr, 5328 &free_add_partial_attr.attr, 5329 &free_remove_partial_attr.attr, 5330 &alloc_from_partial_attr.attr, 5331 &alloc_slab_attr.attr, 5332 &alloc_refill_attr.attr, 5333 &alloc_node_mismatch_attr.attr, 5334 &free_slab_attr.attr, 5335 &cpuslab_flush_attr.attr, 5336 &deactivate_full_attr.attr, 5337 &deactivate_empty_attr.attr, 5338 &deactivate_to_head_attr.attr, 5339 &deactivate_to_tail_attr.attr, 5340 &deactivate_remote_frees_attr.attr, 5341 &deactivate_bypass_attr.attr, 5342 &order_fallback_attr.attr, 5343 &cmpxchg_double_fail_attr.attr, 5344 &cmpxchg_double_cpu_fail_attr.attr, 5345 &cpu_partial_alloc_attr.attr, 5346 &cpu_partial_free_attr.attr, 5347 &cpu_partial_node_attr.attr, 5348 &cpu_partial_drain_attr.attr, 5349 #endif 5350 #ifdef CONFIG_FAILSLAB 5351 &failslab_attr.attr, 5352 #endif 5353 5354 NULL 5355 }; 5356 5357 static struct attribute_group slab_attr_group = { 5358 .attrs = slab_attrs, 5359 }; 5360 5361 static ssize_t slab_attr_show(struct kobject *kobj, 5362 struct attribute *attr, 5363 char *buf) 5364 { 5365 struct slab_attribute *attribute; 5366 struct kmem_cache *s; 5367 int err; 5368 5369 attribute = to_slab_attr(attr); 5370 s = to_slab(kobj); 5371 5372 if (!attribute->show) 5373 return -EIO; 5374 5375 err = attribute->show(s, buf); 5376 5377 return err; 5378 } 5379 5380 static ssize_t slab_attr_store(struct kobject *kobj, 5381 struct attribute *attr, 5382 const char *buf, size_t len) 5383 { 5384 struct slab_attribute *attribute; 5385 struct kmem_cache *s; 5386 int err; 5387 5388 attribute = to_slab_attr(attr); 5389 s = to_slab(kobj); 5390 5391 if (!attribute->store) 5392 return -EIO; 5393 5394 err = attribute->store(s, buf, len); 5395 #ifdef CONFIG_MEMCG 5396 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5397 struct kmem_cache *c; 5398 5399 mutex_lock(&slab_mutex); 5400 if (s->max_attr_size < len) 5401 s->max_attr_size = len; 5402 5403 /* 5404 * This is a best effort propagation, so this function's return 5405 * value will be determined by the parent cache only. This is 5406 * basically because not all attributes will have a well 5407 * defined semantics for rollbacks - most of the actions will 5408 * have permanent effects. 5409 * 5410 * Returning the error value of any of the children that fail 5411 * is not 100 % defined, in the sense that users seeing the 5412 * error code won't be able to know anything about the state of 5413 * the cache. 5414 * 5415 * Only returning the error code for the parent cache at least 5416 * has well defined semantics. The cache being written to 5417 * directly either failed or succeeded, in which case we loop 5418 * through the descendants with best-effort propagation. 5419 */ 5420 for_each_memcg_cache(c, s) 5421 attribute->store(c, buf, len); 5422 mutex_unlock(&slab_mutex); 5423 } 5424 #endif 5425 return err; 5426 } 5427 5428 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5429 { 5430 #ifdef CONFIG_MEMCG 5431 int i; 5432 char *buffer = NULL; 5433 struct kmem_cache *root_cache; 5434 5435 if (is_root_cache(s)) 5436 return; 5437 5438 root_cache = s->memcg_params.root_cache; 5439 5440 /* 5441 * This mean this cache had no attribute written. Therefore, no point 5442 * in copying default values around 5443 */ 5444 if (!root_cache->max_attr_size) 5445 return; 5446 5447 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5448 char mbuf[64]; 5449 char *buf; 5450 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5451 5452 if (!attr || !attr->store || !attr->show) 5453 continue; 5454 5455 /* 5456 * It is really bad that we have to allocate here, so we will 5457 * do it only as a fallback. If we actually allocate, though, 5458 * we can just use the allocated buffer until the end. 5459 * 5460 * Most of the slub attributes will tend to be very small in 5461 * size, but sysfs allows buffers up to a page, so they can 5462 * theoretically happen. 5463 */ 5464 if (buffer) 5465 buf = buffer; 5466 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5467 buf = mbuf; 5468 else { 5469 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5470 if (WARN_ON(!buffer)) 5471 continue; 5472 buf = buffer; 5473 } 5474 5475 attr->show(root_cache, buf); 5476 attr->store(s, buf, strlen(buf)); 5477 } 5478 5479 if (buffer) 5480 free_page((unsigned long)buffer); 5481 #endif 5482 } 5483 5484 static void kmem_cache_release(struct kobject *k) 5485 { 5486 slab_kmem_cache_release(to_slab(k)); 5487 } 5488 5489 static const struct sysfs_ops slab_sysfs_ops = { 5490 .show = slab_attr_show, 5491 .store = slab_attr_store, 5492 }; 5493 5494 static struct kobj_type slab_ktype = { 5495 .sysfs_ops = &slab_sysfs_ops, 5496 .release = kmem_cache_release, 5497 }; 5498 5499 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5500 { 5501 struct kobj_type *ktype = get_ktype(kobj); 5502 5503 if (ktype == &slab_ktype) 5504 return 1; 5505 return 0; 5506 } 5507 5508 static const struct kset_uevent_ops slab_uevent_ops = { 5509 .filter = uevent_filter, 5510 }; 5511 5512 static struct kset *slab_kset; 5513 5514 static inline struct kset *cache_kset(struct kmem_cache *s) 5515 { 5516 #ifdef CONFIG_MEMCG 5517 if (!is_root_cache(s)) 5518 return s->memcg_params.root_cache->memcg_kset; 5519 #endif 5520 return slab_kset; 5521 } 5522 5523 #define ID_STR_LENGTH 64 5524 5525 /* Create a unique string id for a slab cache: 5526 * 5527 * Format :[flags-]size 5528 */ 5529 static char *create_unique_id(struct kmem_cache *s) 5530 { 5531 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5532 char *p = name; 5533 5534 BUG_ON(!name); 5535 5536 *p++ = ':'; 5537 /* 5538 * First flags affecting slabcache operations. We will only 5539 * get here for aliasable slabs so we do not need to support 5540 * too many flags. The flags here must cover all flags that 5541 * are matched during merging to guarantee that the id is 5542 * unique. 5543 */ 5544 if (s->flags & SLAB_CACHE_DMA) 5545 *p++ = 'd'; 5546 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5547 *p++ = 'a'; 5548 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5549 *p++ = 'F'; 5550 if (!(s->flags & SLAB_NOTRACK)) 5551 *p++ = 't'; 5552 if (s->flags & SLAB_ACCOUNT) 5553 *p++ = 'A'; 5554 if (p != name + 1) 5555 *p++ = '-'; 5556 p += sprintf(p, "%07d", s->size); 5557 5558 BUG_ON(p > name + ID_STR_LENGTH - 1); 5559 return name; 5560 } 5561 5562 static int sysfs_slab_add(struct kmem_cache *s) 5563 { 5564 int err; 5565 const char *name; 5566 int unmergeable = slab_unmergeable(s); 5567 5568 if (unmergeable) { 5569 /* 5570 * Slabcache can never be merged so we can use the name proper. 5571 * This is typically the case for debug situations. In that 5572 * case we can catch duplicate names easily. 5573 */ 5574 sysfs_remove_link(&slab_kset->kobj, s->name); 5575 name = s->name; 5576 } else { 5577 /* 5578 * Create a unique name for the slab as a target 5579 * for the symlinks. 5580 */ 5581 name = create_unique_id(s); 5582 } 5583 5584 s->kobj.kset = cache_kset(s); 5585 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5586 if (err) 5587 goto out; 5588 5589 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5590 if (err) 5591 goto out_del_kobj; 5592 5593 #ifdef CONFIG_MEMCG 5594 if (is_root_cache(s)) { 5595 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5596 if (!s->memcg_kset) { 5597 err = -ENOMEM; 5598 goto out_del_kobj; 5599 } 5600 } 5601 #endif 5602 5603 kobject_uevent(&s->kobj, KOBJ_ADD); 5604 if (!unmergeable) { 5605 /* Setup first alias */ 5606 sysfs_slab_alias(s, s->name); 5607 } 5608 out: 5609 if (!unmergeable) 5610 kfree(name); 5611 return err; 5612 out_del_kobj: 5613 kobject_del(&s->kobj); 5614 goto out; 5615 } 5616 5617 void sysfs_slab_remove(struct kmem_cache *s) 5618 { 5619 if (slab_state < FULL) 5620 /* 5621 * Sysfs has not been setup yet so no need to remove the 5622 * cache from sysfs. 5623 */ 5624 return; 5625 5626 #ifdef CONFIG_MEMCG 5627 kset_unregister(s->memcg_kset); 5628 #endif 5629 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5630 kobject_del(&s->kobj); 5631 kobject_put(&s->kobj); 5632 } 5633 5634 /* 5635 * Need to buffer aliases during bootup until sysfs becomes 5636 * available lest we lose that information. 5637 */ 5638 struct saved_alias { 5639 struct kmem_cache *s; 5640 const char *name; 5641 struct saved_alias *next; 5642 }; 5643 5644 static struct saved_alias *alias_list; 5645 5646 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5647 { 5648 struct saved_alias *al; 5649 5650 if (slab_state == FULL) { 5651 /* 5652 * If we have a leftover link then remove it. 5653 */ 5654 sysfs_remove_link(&slab_kset->kobj, name); 5655 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5656 } 5657 5658 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5659 if (!al) 5660 return -ENOMEM; 5661 5662 al->s = s; 5663 al->name = name; 5664 al->next = alias_list; 5665 alias_list = al; 5666 return 0; 5667 } 5668 5669 static int __init slab_sysfs_init(void) 5670 { 5671 struct kmem_cache *s; 5672 int err; 5673 5674 mutex_lock(&slab_mutex); 5675 5676 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5677 if (!slab_kset) { 5678 mutex_unlock(&slab_mutex); 5679 pr_err("Cannot register slab subsystem.\n"); 5680 return -ENOSYS; 5681 } 5682 5683 slab_state = FULL; 5684 5685 list_for_each_entry(s, &slab_caches, list) { 5686 err = sysfs_slab_add(s); 5687 if (err) 5688 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5689 s->name); 5690 } 5691 5692 while (alias_list) { 5693 struct saved_alias *al = alias_list; 5694 5695 alias_list = alias_list->next; 5696 err = sysfs_slab_alias(al->s, al->name); 5697 if (err) 5698 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5699 al->name); 5700 kfree(al); 5701 } 5702 5703 mutex_unlock(&slab_mutex); 5704 resiliency_test(); 5705 return 0; 5706 } 5707 5708 __initcall(slab_sysfs_init); 5709 #endif /* CONFIG_SYSFS */ 5710 5711 /* 5712 * The /proc/slabinfo ABI 5713 */ 5714 #ifdef CONFIG_SLABINFO 5715 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5716 { 5717 unsigned long nr_slabs = 0; 5718 unsigned long nr_objs = 0; 5719 unsigned long nr_free = 0; 5720 int node; 5721 struct kmem_cache_node *n; 5722 5723 for_each_kmem_cache_node(s, node, n) { 5724 nr_slabs += node_nr_slabs(n); 5725 nr_objs += node_nr_objs(n); 5726 nr_free += count_partial(n, count_free); 5727 } 5728 5729 sinfo->active_objs = nr_objs - nr_free; 5730 sinfo->num_objs = nr_objs; 5731 sinfo->active_slabs = nr_slabs; 5732 sinfo->num_slabs = nr_slabs; 5733 sinfo->objects_per_slab = oo_objects(s->oo); 5734 sinfo->cache_order = oo_order(s->oo); 5735 } 5736 5737 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5738 { 5739 } 5740 5741 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5742 size_t count, loff_t *ppos) 5743 { 5744 return -EIO; 5745 } 5746 #endif /* CONFIG_SLABINFO */ 5747