1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks and only 6 * uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/swap.h> /* struct reclaim_state */ 13 #include <linux/module.h> 14 #include <linux/bit_spinlock.h> 15 #include <linux/interrupt.h> 16 #include <linux/bitops.h> 17 #include <linux/slab.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <trace/kmemtrace.h> 21 #include <linux/cpu.h> 22 #include <linux/cpuset.h> 23 #include <linux/mempolicy.h> 24 #include <linux/ctype.h> 25 #include <linux/debugobjects.h> 26 #include <linux/kallsyms.h> 27 #include <linux/memory.h> 28 #include <linux/math64.h> 29 #include <linux/fault-inject.h> 30 31 /* 32 * Lock order: 33 * 1. slab_lock(page) 34 * 2. slab->list_lock 35 * 36 * The slab_lock protects operations on the object of a particular 37 * slab and its metadata in the page struct. If the slab lock 38 * has been taken then no allocations nor frees can be performed 39 * on the objects in the slab nor can the slab be added or removed 40 * from the partial or full lists since this would mean modifying 41 * the page_struct of the slab. 42 * 43 * The list_lock protects the partial and full list on each node and 44 * the partial slab counter. If taken then no new slabs may be added or 45 * removed from the lists nor make the number of partial slabs be modified. 46 * (Note that the total number of slabs is an atomic value that may be 47 * modified without taking the list lock). 48 * 49 * The list_lock is a centralized lock and thus we avoid taking it as 50 * much as possible. As long as SLUB does not have to handle partial 51 * slabs, operations can continue without any centralized lock. F.e. 52 * allocating a long series of objects that fill up slabs does not require 53 * the list lock. 54 * 55 * The lock order is sometimes inverted when we are trying to get a slab 56 * off a list. We take the list_lock and then look for a page on the list 57 * to use. While we do that objects in the slabs may be freed. We can 58 * only operate on the slab if we have also taken the slab_lock. So we use 59 * a slab_trylock() on the slab. If trylock was successful then no frees 60 * can occur anymore and we can use the slab for allocations etc. If the 61 * slab_trylock() does not succeed then frees are in progress in the slab and 62 * we must stay away from it for a while since we may cause a bouncing 63 * cacheline if we try to acquire the lock. So go onto the next slab. 64 * If all pages are busy then we may allocate a new slab instead of reusing 65 * a partial slab. A new slab has noone operating on it and thus there is 66 * no danger of cacheline contention. 67 * 68 * Interrupts are disabled during allocation and deallocation in order to 69 * make the slab allocator safe to use in the context of an irq. In addition 70 * interrupts are disabled to ensure that the processor does not change 71 * while handling per_cpu slabs, due to kernel preemption. 72 * 73 * SLUB assigns one slab for allocation to each processor. 74 * Allocations only occur from these slabs called cpu slabs. 75 * 76 * Slabs with free elements are kept on a partial list and during regular 77 * operations no list for full slabs is used. If an object in a full slab is 78 * freed then the slab will show up again on the partial lists. 79 * We track full slabs for debugging purposes though because otherwise we 80 * cannot scan all objects. 81 * 82 * Slabs are freed when they become empty. Teardown and setup is 83 * minimal so we rely on the page allocators per cpu caches for 84 * fast frees and allocs. 85 * 86 * Overloading of page flags that are otherwise used for LRU management. 87 * 88 * PageActive The slab is frozen and exempt from list processing. 89 * This means that the slab is dedicated to a purpose 90 * such as satisfying allocations for a specific 91 * processor. Objects may be freed in the slab while 92 * it is frozen but slab_free will then skip the usual 93 * list operations. It is up to the processor holding 94 * the slab to integrate the slab into the slab lists 95 * when the slab is no longer needed. 96 * 97 * One use of this flag is to mark slabs that are 98 * used for allocations. Then such a slab becomes a cpu 99 * slab. The cpu slab may be equipped with an additional 100 * freelist that allows lockless access to 101 * free objects in addition to the regular freelist 102 * that requires the slab lock. 103 * 104 * PageError Slab requires special handling due to debug 105 * options set. This moves slab handling out of 106 * the fast path and disables lockless freelists. 107 */ 108 109 #ifdef CONFIG_SLUB_DEBUG 110 #define SLABDEBUG 1 111 #else 112 #define SLABDEBUG 0 113 #endif 114 115 /* 116 * Issues still to be resolved: 117 * 118 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 119 * 120 * - Variable sizing of the per node arrays 121 */ 122 123 /* Enable to test recovery from slab corruption on boot */ 124 #undef SLUB_RESILIENCY_TEST 125 126 /* 127 * Mininum number of partial slabs. These will be left on the partial 128 * lists even if they are empty. kmem_cache_shrink may reclaim them. 129 */ 130 #define MIN_PARTIAL 5 131 132 /* 133 * Maximum number of desirable partial slabs. 134 * The existence of more partial slabs makes kmem_cache_shrink 135 * sort the partial list by the number of objects in the. 136 */ 137 #define MAX_PARTIAL 10 138 139 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 140 SLAB_POISON | SLAB_STORE_USER) 141 142 /* 143 * Set of flags that will prevent slab merging 144 */ 145 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 146 SLAB_TRACE | SLAB_DESTROY_BY_RCU) 147 148 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 149 SLAB_CACHE_DMA) 150 151 #ifndef ARCH_KMALLOC_MINALIGN 152 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 153 #endif 154 155 #ifndef ARCH_SLAB_MINALIGN 156 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 157 #endif 158 159 #define OO_SHIFT 16 160 #define OO_MASK ((1 << OO_SHIFT) - 1) 161 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ 162 163 /* Internal SLUB flags */ 164 #define __OBJECT_POISON 0x80000000 /* Poison object */ 165 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ 166 167 static int kmem_size = sizeof(struct kmem_cache); 168 169 #ifdef CONFIG_SMP 170 static struct notifier_block slab_notifier; 171 #endif 172 173 static enum { 174 DOWN, /* No slab functionality available */ 175 PARTIAL, /* kmem_cache_open() works but kmalloc does not */ 176 UP, /* Everything works but does not show up in sysfs */ 177 SYSFS /* Sysfs up */ 178 } slab_state = DOWN; 179 180 /* A list of all slab caches on the system */ 181 static DECLARE_RWSEM(slub_lock); 182 static LIST_HEAD(slab_caches); 183 184 /* 185 * Tracking user of a slab. 186 */ 187 struct track { 188 unsigned long addr; /* Called from address */ 189 int cpu; /* Was running on cpu */ 190 int pid; /* Pid context */ 191 unsigned long when; /* When did the operation occur */ 192 }; 193 194 enum track_item { TRACK_ALLOC, TRACK_FREE }; 195 196 #ifdef CONFIG_SLUB_DEBUG 197 static int sysfs_slab_add(struct kmem_cache *); 198 static int sysfs_slab_alias(struct kmem_cache *, const char *); 199 static void sysfs_slab_remove(struct kmem_cache *); 200 201 #else 202 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 203 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 204 { return 0; } 205 static inline void sysfs_slab_remove(struct kmem_cache *s) 206 { 207 kfree(s); 208 } 209 210 #endif 211 212 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si) 213 { 214 #ifdef CONFIG_SLUB_STATS 215 c->stat[si]++; 216 #endif 217 } 218 219 /******************************************************************** 220 * Core slab cache functions 221 *******************************************************************/ 222 223 int slab_is_available(void) 224 { 225 return slab_state >= UP; 226 } 227 228 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 229 { 230 #ifdef CONFIG_NUMA 231 return s->node[node]; 232 #else 233 return &s->local_node; 234 #endif 235 } 236 237 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu) 238 { 239 #ifdef CONFIG_SMP 240 return s->cpu_slab[cpu]; 241 #else 242 return &s->cpu_slab; 243 #endif 244 } 245 246 /* Verify that a pointer has an address that is valid within a slab page */ 247 static inline int check_valid_pointer(struct kmem_cache *s, 248 struct page *page, const void *object) 249 { 250 void *base; 251 252 if (!object) 253 return 1; 254 255 base = page_address(page); 256 if (object < base || object >= base + page->objects * s->size || 257 (object - base) % s->size) { 258 return 0; 259 } 260 261 return 1; 262 } 263 264 /* 265 * Slow version of get and set free pointer. 266 * 267 * This version requires touching the cache lines of kmem_cache which 268 * we avoid to do in the fast alloc free paths. There we obtain the offset 269 * from the page struct. 270 */ 271 static inline void *get_freepointer(struct kmem_cache *s, void *object) 272 { 273 return *(void **)(object + s->offset); 274 } 275 276 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 277 { 278 *(void **)(object + s->offset) = fp; 279 } 280 281 /* Loop over all objects in a slab */ 282 #define for_each_object(__p, __s, __addr, __objects) \ 283 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 284 __p += (__s)->size) 285 286 /* Scan freelist */ 287 #define for_each_free_object(__p, __s, __free) \ 288 for (__p = (__free); __p; __p = get_freepointer((__s), __p)) 289 290 /* Determine object index from a given position */ 291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 292 { 293 return (p - addr) / s->size; 294 } 295 296 static inline struct kmem_cache_order_objects oo_make(int order, 297 unsigned long size) 298 { 299 struct kmem_cache_order_objects x = { 300 (order << OO_SHIFT) + (PAGE_SIZE << order) / size 301 }; 302 303 return x; 304 } 305 306 static inline int oo_order(struct kmem_cache_order_objects x) 307 { 308 return x.x >> OO_SHIFT; 309 } 310 311 static inline int oo_objects(struct kmem_cache_order_objects x) 312 { 313 return x.x & OO_MASK; 314 } 315 316 #ifdef CONFIG_SLUB_DEBUG 317 /* 318 * Debug settings: 319 */ 320 #ifdef CONFIG_SLUB_DEBUG_ON 321 static int slub_debug = DEBUG_DEFAULT_FLAGS; 322 #else 323 static int slub_debug; 324 #endif 325 326 static char *slub_debug_slabs; 327 328 /* 329 * Object debugging 330 */ 331 static void print_section(char *text, u8 *addr, unsigned int length) 332 { 333 int i, offset; 334 int newline = 1; 335 char ascii[17]; 336 337 ascii[16] = 0; 338 339 for (i = 0; i < length; i++) { 340 if (newline) { 341 printk(KERN_ERR "%8s 0x%p: ", text, addr + i); 342 newline = 0; 343 } 344 printk(KERN_CONT " %02x", addr[i]); 345 offset = i % 16; 346 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; 347 if (offset == 15) { 348 printk(KERN_CONT " %s\n", ascii); 349 newline = 1; 350 } 351 } 352 if (!newline) { 353 i %= 16; 354 while (i < 16) { 355 printk(KERN_CONT " "); 356 ascii[i] = ' '; 357 i++; 358 } 359 printk(KERN_CONT " %s\n", ascii); 360 } 361 } 362 363 static struct track *get_track(struct kmem_cache *s, void *object, 364 enum track_item alloc) 365 { 366 struct track *p; 367 368 if (s->offset) 369 p = object + s->offset + sizeof(void *); 370 else 371 p = object + s->inuse; 372 373 return p + alloc; 374 } 375 376 static void set_track(struct kmem_cache *s, void *object, 377 enum track_item alloc, unsigned long addr) 378 { 379 struct track *p = get_track(s, object, alloc); 380 381 if (addr) { 382 p->addr = addr; 383 p->cpu = smp_processor_id(); 384 p->pid = current->pid; 385 p->when = jiffies; 386 } else 387 memset(p, 0, sizeof(struct track)); 388 } 389 390 static void init_tracking(struct kmem_cache *s, void *object) 391 { 392 if (!(s->flags & SLAB_STORE_USER)) 393 return; 394 395 set_track(s, object, TRACK_FREE, 0UL); 396 set_track(s, object, TRACK_ALLOC, 0UL); 397 } 398 399 static void print_track(const char *s, struct track *t) 400 { 401 if (!t->addr) 402 return; 403 404 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 405 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 406 } 407 408 static void print_tracking(struct kmem_cache *s, void *object) 409 { 410 if (!(s->flags & SLAB_STORE_USER)) 411 return; 412 413 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 414 print_track("Freed", get_track(s, object, TRACK_FREE)); 415 } 416 417 static void print_page_info(struct page *page) 418 { 419 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 420 page, page->objects, page->inuse, page->freelist, page->flags); 421 422 } 423 424 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 425 { 426 va_list args; 427 char buf[100]; 428 429 va_start(args, fmt); 430 vsnprintf(buf, sizeof(buf), fmt, args); 431 va_end(args); 432 printk(KERN_ERR "========================================" 433 "=====================================\n"); 434 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 435 printk(KERN_ERR "----------------------------------------" 436 "-------------------------------------\n\n"); 437 } 438 439 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 440 { 441 va_list args; 442 char buf[100]; 443 444 va_start(args, fmt); 445 vsnprintf(buf, sizeof(buf), fmt, args); 446 va_end(args); 447 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 448 } 449 450 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 451 { 452 unsigned int off; /* Offset of last byte */ 453 u8 *addr = page_address(page); 454 455 print_tracking(s, p); 456 457 print_page_info(page); 458 459 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 460 p, p - addr, get_freepointer(s, p)); 461 462 if (p > addr + 16) 463 print_section("Bytes b4", p - 16, 16); 464 465 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); 466 467 if (s->flags & SLAB_RED_ZONE) 468 print_section("Redzone", p + s->objsize, 469 s->inuse - s->objsize); 470 471 if (s->offset) 472 off = s->offset + sizeof(void *); 473 else 474 off = s->inuse; 475 476 if (s->flags & SLAB_STORE_USER) 477 off += 2 * sizeof(struct track); 478 479 if (off != s->size) 480 /* Beginning of the filler is the free pointer */ 481 print_section("Padding", p + off, s->size - off); 482 483 dump_stack(); 484 } 485 486 static void object_err(struct kmem_cache *s, struct page *page, 487 u8 *object, char *reason) 488 { 489 slab_bug(s, "%s", reason); 490 print_trailer(s, page, object); 491 } 492 493 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 494 { 495 va_list args; 496 char buf[100]; 497 498 va_start(args, fmt); 499 vsnprintf(buf, sizeof(buf), fmt, args); 500 va_end(args); 501 slab_bug(s, "%s", buf); 502 print_page_info(page); 503 dump_stack(); 504 } 505 506 static void init_object(struct kmem_cache *s, void *object, int active) 507 { 508 u8 *p = object; 509 510 if (s->flags & __OBJECT_POISON) { 511 memset(p, POISON_FREE, s->objsize - 1); 512 p[s->objsize - 1] = POISON_END; 513 } 514 515 if (s->flags & SLAB_RED_ZONE) 516 memset(p + s->objsize, 517 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, 518 s->inuse - s->objsize); 519 } 520 521 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) 522 { 523 while (bytes) { 524 if (*start != (u8)value) 525 return start; 526 start++; 527 bytes--; 528 } 529 return NULL; 530 } 531 532 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 533 void *from, void *to) 534 { 535 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 536 memset(from, data, to - from); 537 } 538 539 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 540 u8 *object, char *what, 541 u8 *start, unsigned int value, unsigned int bytes) 542 { 543 u8 *fault; 544 u8 *end; 545 546 fault = check_bytes(start, value, bytes); 547 if (!fault) 548 return 1; 549 550 end = start + bytes; 551 while (end > fault && end[-1] == value) 552 end--; 553 554 slab_bug(s, "%s overwritten", what); 555 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 556 fault, end - 1, fault[0], value); 557 print_trailer(s, page, object); 558 559 restore_bytes(s, what, value, fault, end); 560 return 0; 561 } 562 563 /* 564 * Object layout: 565 * 566 * object address 567 * Bytes of the object to be managed. 568 * If the freepointer may overlay the object then the free 569 * pointer is the first word of the object. 570 * 571 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 572 * 0xa5 (POISON_END) 573 * 574 * object + s->objsize 575 * Padding to reach word boundary. This is also used for Redzoning. 576 * Padding is extended by another word if Redzoning is enabled and 577 * objsize == inuse. 578 * 579 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 580 * 0xcc (RED_ACTIVE) for objects in use. 581 * 582 * object + s->inuse 583 * Meta data starts here. 584 * 585 * A. Free pointer (if we cannot overwrite object on free) 586 * B. Tracking data for SLAB_STORE_USER 587 * C. Padding to reach required alignment boundary or at mininum 588 * one word if debugging is on to be able to detect writes 589 * before the word boundary. 590 * 591 * Padding is done using 0x5a (POISON_INUSE) 592 * 593 * object + s->size 594 * Nothing is used beyond s->size. 595 * 596 * If slabcaches are merged then the objsize and inuse boundaries are mostly 597 * ignored. And therefore no slab options that rely on these boundaries 598 * may be used with merged slabcaches. 599 */ 600 601 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 602 { 603 unsigned long off = s->inuse; /* The end of info */ 604 605 if (s->offset) 606 /* Freepointer is placed after the object. */ 607 off += sizeof(void *); 608 609 if (s->flags & SLAB_STORE_USER) 610 /* We also have user information there */ 611 off += 2 * sizeof(struct track); 612 613 if (s->size == off) 614 return 1; 615 616 return check_bytes_and_report(s, page, p, "Object padding", 617 p + off, POISON_INUSE, s->size - off); 618 } 619 620 /* Check the pad bytes at the end of a slab page */ 621 static int slab_pad_check(struct kmem_cache *s, struct page *page) 622 { 623 u8 *start; 624 u8 *fault; 625 u8 *end; 626 int length; 627 int remainder; 628 629 if (!(s->flags & SLAB_POISON)) 630 return 1; 631 632 start = page_address(page); 633 length = (PAGE_SIZE << compound_order(page)); 634 end = start + length; 635 remainder = length % s->size; 636 if (!remainder) 637 return 1; 638 639 fault = check_bytes(end - remainder, POISON_INUSE, remainder); 640 if (!fault) 641 return 1; 642 while (end > fault && end[-1] == POISON_INUSE) 643 end--; 644 645 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 646 print_section("Padding", end - remainder, remainder); 647 648 restore_bytes(s, "slab padding", POISON_INUSE, start, end); 649 return 0; 650 } 651 652 static int check_object(struct kmem_cache *s, struct page *page, 653 void *object, int active) 654 { 655 u8 *p = object; 656 u8 *endobject = object + s->objsize; 657 658 if (s->flags & SLAB_RED_ZONE) { 659 unsigned int red = 660 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; 661 662 if (!check_bytes_and_report(s, page, object, "Redzone", 663 endobject, red, s->inuse - s->objsize)) 664 return 0; 665 } else { 666 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { 667 check_bytes_and_report(s, page, p, "Alignment padding", 668 endobject, POISON_INUSE, s->inuse - s->objsize); 669 } 670 } 671 672 if (s->flags & SLAB_POISON) { 673 if (!active && (s->flags & __OBJECT_POISON) && 674 (!check_bytes_and_report(s, page, p, "Poison", p, 675 POISON_FREE, s->objsize - 1) || 676 !check_bytes_and_report(s, page, p, "Poison", 677 p + s->objsize - 1, POISON_END, 1))) 678 return 0; 679 /* 680 * check_pad_bytes cleans up on its own. 681 */ 682 check_pad_bytes(s, page, p); 683 } 684 685 if (!s->offset && active) 686 /* 687 * Object and freepointer overlap. Cannot check 688 * freepointer while object is allocated. 689 */ 690 return 1; 691 692 /* Check free pointer validity */ 693 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 694 object_err(s, page, p, "Freepointer corrupt"); 695 /* 696 * No choice but to zap it and thus lose the remainder 697 * of the free objects in this slab. May cause 698 * another error because the object count is now wrong. 699 */ 700 set_freepointer(s, p, NULL); 701 return 0; 702 } 703 return 1; 704 } 705 706 static int check_slab(struct kmem_cache *s, struct page *page) 707 { 708 int maxobj; 709 710 VM_BUG_ON(!irqs_disabled()); 711 712 if (!PageSlab(page)) { 713 slab_err(s, page, "Not a valid slab page"); 714 return 0; 715 } 716 717 maxobj = (PAGE_SIZE << compound_order(page)) / s->size; 718 if (page->objects > maxobj) { 719 slab_err(s, page, "objects %u > max %u", 720 s->name, page->objects, maxobj); 721 return 0; 722 } 723 if (page->inuse > page->objects) { 724 slab_err(s, page, "inuse %u > max %u", 725 s->name, page->inuse, page->objects); 726 return 0; 727 } 728 /* Slab_pad_check fixes things up after itself */ 729 slab_pad_check(s, page); 730 return 1; 731 } 732 733 /* 734 * Determine if a certain object on a page is on the freelist. Must hold the 735 * slab lock to guarantee that the chains are in a consistent state. 736 */ 737 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 738 { 739 int nr = 0; 740 void *fp = page->freelist; 741 void *object = NULL; 742 unsigned long max_objects; 743 744 while (fp && nr <= page->objects) { 745 if (fp == search) 746 return 1; 747 if (!check_valid_pointer(s, page, fp)) { 748 if (object) { 749 object_err(s, page, object, 750 "Freechain corrupt"); 751 set_freepointer(s, object, NULL); 752 break; 753 } else { 754 slab_err(s, page, "Freepointer corrupt"); 755 page->freelist = NULL; 756 page->inuse = page->objects; 757 slab_fix(s, "Freelist cleared"); 758 return 0; 759 } 760 break; 761 } 762 object = fp; 763 fp = get_freepointer(s, object); 764 nr++; 765 } 766 767 max_objects = (PAGE_SIZE << compound_order(page)) / s->size; 768 if (max_objects > MAX_OBJS_PER_PAGE) 769 max_objects = MAX_OBJS_PER_PAGE; 770 771 if (page->objects != max_objects) { 772 slab_err(s, page, "Wrong number of objects. Found %d but " 773 "should be %d", page->objects, max_objects); 774 page->objects = max_objects; 775 slab_fix(s, "Number of objects adjusted."); 776 } 777 if (page->inuse != page->objects - nr) { 778 slab_err(s, page, "Wrong object count. Counter is %d but " 779 "counted were %d", page->inuse, page->objects - nr); 780 page->inuse = page->objects - nr; 781 slab_fix(s, "Object count adjusted."); 782 } 783 return search == NULL; 784 } 785 786 static void trace(struct kmem_cache *s, struct page *page, void *object, 787 int alloc) 788 { 789 if (s->flags & SLAB_TRACE) { 790 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 791 s->name, 792 alloc ? "alloc" : "free", 793 object, page->inuse, 794 page->freelist); 795 796 if (!alloc) 797 print_section("Object", (void *)object, s->objsize); 798 799 dump_stack(); 800 } 801 } 802 803 /* 804 * Tracking of fully allocated slabs for debugging purposes. 805 */ 806 static void add_full(struct kmem_cache_node *n, struct page *page) 807 { 808 spin_lock(&n->list_lock); 809 list_add(&page->lru, &n->full); 810 spin_unlock(&n->list_lock); 811 } 812 813 static void remove_full(struct kmem_cache *s, struct page *page) 814 { 815 struct kmem_cache_node *n; 816 817 if (!(s->flags & SLAB_STORE_USER)) 818 return; 819 820 n = get_node(s, page_to_nid(page)); 821 822 spin_lock(&n->list_lock); 823 list_del(&page->lru); 824 spin_unlock(&n->list_lock); 825 } 826 827 /* Tracking of the number of slabs for debugging purposes */ 828 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 829 { 830 struct kmem_cache_node *n = get_node(s, node); 831 832 return atomic_long_read(&n->nr_slabs); 833 } 834 835 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 836 { 837 struct kmem_cache_node *n = get_node(s, node); 838 839 /* 840 * May be called early in order to allocate a slab for the 841 * kmem_cache_node structure. Solve the chicken-egg 842 * dilemma by deferring the increment of the count during 843 * bootstrap (see early_kmem_cache_node_alloc). 844 */ 845 if (!NUMA_BUILD || n) { 846 atomic_long_inc(&n->nr_slabs); 847 atomic_long_add(objects, &n->total_objects); 848 } 849 } 850 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 851 { 852 struct kmem_cache_node *n = get_node(s, node); 853 854 atomic_long_dec(&n->nr_slabs); 855 atomic_long_sub(objects, &n->total_objects); 856 } 857 858 /* Object debug checks for alloc/free paths */ 859 static void setup_object_debug(struct kmem_cache *s, struct page *page, 860 void *object) 861 { 862 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 863 return; 864 865 init_object(s, object, 0); 866 init_tracking(s, object); 867 } 868 869 static int alloc_debug_processing(struct kmem_cache *s, struct page *page, 870 void *object, unsigned long addr) 871 { 872 if (!check_slab(s, page)) 873 goto bad; 874 875 if (!on_freelist(s, page, object)) { 876 object_err(s, page, object, "Object already allocated"); 877 goto bad; 878 } 879 880 if (!check_valid_pointer(s, page, object)) { 881 object_err(s, page, object, "Freelist Pointer check fails"); 882 goto bad; 883 } 884 885 if (!check_object(s, page, object, 0)) 886 goto bad; 887 888 /* Success perform special debug activities for allocs */ 889 if (s->flags & SLAB_STORE_USER) 890 set_track(s, object, TRACK_ALLOC, addr); 891 trace(s, page, object, 1); 892 init_object(s, object, 1); 893 return 1; 894 895 bad: 896 if (PageSlab(page)) { 897 /* 898 * If this is a slab page then lets do the best we can 899 * to avoid issues in the future. Marking all objects 900 * as used avoids touching the remaining objects. 901 */ 902 slab_fix(s, "Marking all objects used"); 903 page->inuse = page->objects; 904 page->freelist = NULL; 905 } 906 return 0; 907 } 908 909 static int free_debug_processing(struct kmem_cache *s, struct page *page, 910 void *object, unsigned long addr) 911 { 912 if (!check_slab(s, page)) 913 goto fail; 914 915 if (!check_valid_pointer(s, page, object)) { 916 slab_err(s, page, "Invalid object pointer 0x%p", object); 917 goto fail; 918 } 919 920 if (on_freelist(s, page, object)) { 921 object_err(s, page, object, "Object already free"); 922 goto fail; 923 } 924 925 if (!check_object(s, page, object, 1)) 926 return 0; 927 928 if (unlikely(s != page->slab)) { 929 if (!PageSlab(page)) { 930 slab_err(s, page, "Attempt to free object(0x%p) " 931 "outside of slab", object); 932 } else if (!page->slab) { 933 printk(KERN_ERR 934 "SLUB <none>: no slab for object 0x%p.\n", 935 object); 936 dump_stack(); 937 } else 938 object_err(s, page, object, 939 "page slab pointer corrupt."); 940 goto fail; 941 } 942 943 /* Special debug activities for freeing objects */ 944 if (!PageSlubFrozen(page) && !page->freelist) 945 remove_full(s, page); 946 if (s->flags & SLAB_STORE_USER) 947 set_track(s, object, TRACK_FREE, addr); 948 trace(s, page, object, 0); 949 init_object(s, object, 0); 950 return 1; 951 952 fail: 953 slab_fix(s, "Object at 0x%p not freed", object); 954 return 0; 955 } 956 957 static int __init setup_slub_debug(char *str) 958 { 959 slub_debug = DEBUG_DEFAULT_FLAGS; 960 if (*str++ != '=' || !*str) 961 /* 962 * No options specified. Switch on full debugging. 963 */ 964 goto out; 965 966 if (*str == ',') 967 /* 968 * No options but restriction on slabs. This means full 969 * debugging for slabs matching a pattern. 970 */ 971 goto check_slabs; 972 973 slub_debug = 0; 974 if (*str == '-') 975 /* 976 * Switch off all debugging measures. 977 */ 978 goto out; 979 980 /* 981 * Determine which debug features should be switched on 982 */ 983 for (; *str && *str != ','; str++) { 984 switch (tolower(*str)) { 985 case 'f': 986 slub_debug |= SLAB_DEBUG_FREE; 987 break; 988 case 'z': 989 slub_debug |= SLAB_RED_ZONE; 990 break; 991 case 'p': 992 slub_debug |= SLAB_POISON; 993 break; 994 case 'u': 995 slub_debug |= SLAB_STORE_USER; 996 break; 997 case 't': 998 slub_debug |= SLAB_TRACE; 999 break; 1000 default: 1001 printk(KERN_ERR "slub_debug option '%c' " 1002 "unknown. skipped\n", *str); 1003 } 1004 } 1005 1006 check_slabs: 1007 if (*str == ',') 1008 slub_debug_slabs = str + 1; 1009 out: 1010 return 1; 1011 } 1012 1013 __setup("slub_debug", setup_slub_debug); 1014 1015 static unsigned long kmem_cache_flags(unsigned long objsize, 1016 unsigned long flags, const char *name, 1017 void (*ctor)(void *)) 1018 { 1019 /* 1020 * Enable debugging if selected on the kernel commandline. 1021 */ 1022 if (slub_debug && (!slub_debug_slabs || 1023 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0)) 1024 flags |= slub_debug; 1025 1026 return flags; 1027 } 1028 #else 1029 static inline void setup_object_debug(struct kmem_cache *s, 1030 struct page *page, void *object) {} 1031 1032 static inline int alloc_debug_processing(struct kmem_cache *s, 1033 struct page *page, void *object, unsigned long addr) { return 0; } 1034 1035 static inline int free_debug_processing(struct kmem_cache *s, 1036 struct page *page, void *object, unsigned long addr) { return 0; } 1037 1038 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1039 { return 1; } 1040 static inline int check_object(struct kmem_cache *s, struct page *page, 1041 void *object, int active) { return 1; } 1042 static inline void add_full(struct kmem_cache_node *n, struct page *page) {} 1043 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1044 unsigned long flags, const char *name, 1045 void (*ctor)(void *)) 1046 { 1047 return flags; 1048 } 1049 #define slub_debug 0 1050 1051 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1052 { return 0; } 1053 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1054 int objects) {} 1055 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1056 int objects) {} 1057 #endif 1058 1059 /* 1060 * Slab allocation and freeing 1061 */ 1062 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1063 struct kmem_cache_order_objects oo) 1064 { 1065 int order = oo_order(oo); 1066 1067 if (node == -1) 1068 return alloc_pages(flags, order); 1069 else 1070 return alloc_pages_node(node, flags, order); 1071 } 1072 1073 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1074 { 1075 struct page *page; 1076 struct kmem_cache_order_objects oo = s->oo; 1077 1078 flags |= s->allocflags; 1079 1080 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node, 1081 oo); 1082 if (unlikely(!page)) { 1083 oo = s->min; 1084 /* 1085 * Allocation may have failed due to fragmentation. 1086 * Try a lower order alloc if possible 1087 */ 1088 page = alloc_slab_page(flags, node, oo); 1089 if (!page) 1090 return NULL; 1091 1092 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK); 1093 } 1094 page->objects = oo_objects(oo); 1095 mod_zone_page_state(page_zone(page), 1096 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1097 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1098 1 << oo_order(oo)); 1099 1100 return page; 1101 } 1102 1103 static void setup_object(struct kmem_cache *s, struct page *page, 1104 void *object) 1105 { 1106 setup_object_debug(s, page, object); 1107 if (unlikely(s->ctor)) 1108 s->ctor(object); 1109 } 1110 1111 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1112 { 1113 struct page *page; 1114 void *start; 1115 void *last; 1116 void *p; 1117 1118 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1119 1120 page = allocate_slab(s, 1121 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1122 if (!page) 1123 goto out; 1124 1125 inc_slabs_node(s, page_to_nid(page), page->objects); 1126 page->slab = s; 1127 page->flags |= 1 << PG_slab; 1128 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | 1129 SLAB_STORE_USER | SLAB_TRACE)) 1130 __SetPageSlubDebug(page); 1131 1132 start = page_address(page); 1133 1134 if (unlikely(s->flags & SLAB_POISON)) 1135 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1136 1137 last = start; 1138 for_each_object(p, s, start, page->objects) { 1139 setup_object(s, page, last); 1140 set_freepointer(s, last, p); 1141 last = p; 1142 } 1143 setup_object(s, page, last); 1144 set_freepointer(s, last, NULL); 1145 1146 page->freelist = start; 1147 page->inuse = 0; 1148 out: 1149 return page; 1150 } 1151 1152 static void __free_slab(struct kmem_cache *s, struct page *page) 1153 { 1154 int order = compound_order(page); 1155 int pages = 1 << order; 1156 1157 if (unlikely(SLABDEBUG && PageSlubDebug(page))) { 1158 void *p; 1159 1160 slab_pad_check(s, page); 1161 for_each_object(p, s, page_address(page), 1162 page->objects) 1163 check_object(s, page, p, 0); 1164 __ClearPageSlubDebug(page); 1165 } 1166 1167 mod_zone_page_state(page_zone(page), 1168 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1169 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1170 -pages); 1171 1172 __ClearPageSlab(page); 1173 reset_page_mapcount(page); 1174 if (current->reclaim_state) 1175 current->reclaim_state->reclaimed_slab += pages; 1176 __free_pages(page, order); 1177 } 1178 1179 static void rcu_free_slab(struct rcu_head *h) 1180 { 1181 struct page *page; 1182 1183 page = container_of((struct list_head *)h, struct page, lru); 1184 __free_slab(page->slab, page); 1185 } 1186 1187 static void free_slab(struct kmem_cache *s, struct page *page) 1188 { 1189 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1190 /* 1191 * RCU free overloads the RCU head over the LRU 1192 */ 1193 struct rcu_head *head = (void *)&page->lru; 1194 1195 call_rcu(head, rcu_free_slab); 1196 } else 1197 __free_slab(s, page); 1198 } 1199 1200 static void discard_slab(struct kmem_cache *s, struct page *page) 1201 { 1202 dec_slabs_node(s, page_to_nid(page), page->objects); 1203 free_slab(s, page); 1204 } 1205 1206 /* 1207 * Per slab locking using the pagelock 1208 */ 1209 static __always_inline void slab_lock(struct page *page) 1210 { 1211 bit_spin_lock(PG_locked, &page->flags); 1212 } 1213 1214 static __always_inline void slab_unlock(struct page *page) 1215 { 1216 __bit_spin_unlock(PG_locked, &page->flags); 1217 } 1218 1219 static __always_inline int slab_trylock(struct page *page) 1220 { 1221 int rc = 1; 1222 1223 rc = bit_spin_trylock(PG_locked, &page->flags); 1224 return rc; 1225 } 1226 1227 /* 1228 * Management of partially allocated slabs 1229 */ 1230 static void add_partial(struct kmem_cache_node *n, 1231 struct page *page, int tail) 1232 { 1233 spin_lock(&n->list_lock); 1234 n->nr_partial++; 1235 if (tail) 1236 list_add_tail(&page->lru, &n->partial); 1237 else 1238 list_add(&page->lru, &n->partial); 1239 spin_unlock(&n->list_lock); 1240 } 1241 1242 static void remove_partial(struct kmem_cache *s, struct page *page) 1243 { 1244 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1245 1246 spin_lock(&n->list_lock); 1247 list_del(&page->lru); 1248 n->nr_partial--; 1249 spin_unlock(&n->list_lock); 1250 } 1251 1252 /* 1253 * Lock slab and remove from the partial list. 1254 * 1255 * Must hold list_lock. 1256 */ 1257 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, 1258 struct page *page) 1259 { 1260 if (slab_trylock(page)) { 1261 list_del(&page->lru); 1262 n->nr_partial--; 1263 __SetPageSlubFrozen(page); 1264 return 1; 1265 } 1266 return 0; 1267 } 1268 1269 /* 1270 * Try to allocate a partial slab from a specific node. 1271 */ 1272 static struct page *get_partial_node(struct kmem_cache_node *n) 1273 { 1274 struct page *page; 1275 1276 /* 1277 * Racy check. If we mistakenly see no partial slabs then we 1278 * just allocate an empty slab. If we mistakenly try to get a 1279 * partial slab and there is none available then get_partials() 1280 * will return NULL. 1281 */ 1282 if (!n || !n->nr_partial) 1283 return NULL; 1284 1285 spin_lock(&n->list_lock); 1286 list_for_each_entry(page, &n->partial, lru) 1287 if (lock_and_freeze_slab(n, page)) 1288 goto out; 1289 page = NULL; 1290 out: 1291 spin_unlock(&n->list_lock); 1292 return page; 1293 } 1294 1295 /* 1296 * Get a page from somewhere. Search in increasing NUMA distances. 1297 */ 1298 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) 1299 { 1300 #ifdef CONFIG_NUMA 1301 struct zonelist *zonelist; 1302 struct zoneref *z; 1303 struct zone *zone; 1304 enum zone_type high_zoneidx = gfp_zone(flags); 1305 struct page *page; 1306 1307 /* 1308 * The defrag ratio allows a configuration of the tradeoffs between 1309 * inter node defragmentation and node local allocations. A lower 1310 * defrag_ratio increases the tendency to do local allocations 1311 * instead of attempting to obtain partial slabs from other nodes. 1312 * 1313 * If the defrag_ratio is set to 0 then kmalloc() always 1314 * returns node local objects. If the ratio is higher then kmalloc() 1315 * may return off node objects because partial slabs are obtained 1316 * from other nodes and filled up. 1317 * 1318 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1319 * defrag_ratio = 1000) then every (well almost) allocation will 1320 * first attempt to defrag slab caches on other nodes. This means 1321 * scanning over all nodes to look for partial slabs which may be 1322 * expensive if we do it every time we are trying to find a slab 1323 * with available objects. 1324 */ 1325 if (!s->remote_node_defrag_ratio || 1326 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1327 return NULL; 1328 1329 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 1330 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1331 struct kmem_cache_node *n; 1332 1333 n = get_node(s, zone_to_nid(zone)); 1334 1335 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1336 n->nr_partial > s->min_partial) { 1337 page = get_partial_node(n); 1338 if (page) 1339 return page; 1340 } 1341 } 1342 #endif 1343 return NULL; 1344 } 1345 1346 /* 1347 * Get a partial page, lock it and return it. 1348 */ 1349 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) 1350 { 1351 struct page *page; 1352 int searchnode = (node == -1) ? numa_node_id() : node; 1353 1354 page = get_partial_node(get_node(s, searchnode)); 1355 if (page || (flags & __GFP_THISNODE)) 1356 return page; 1357 1358 return get_any_partial(s, flags); 1359 } 1360 1361 /* 1362 * Move a page back to the lists. 1363 * 1364 * Must be called with the slab lock held. 1365 * 1366 * On exit the slab lock will have been dropped. 1367 */ 1368 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) 1369 { 1370 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1371 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id()); 1372 1373 __ClearPageSlubFrozen(page); 1374 if (page->inuse) { 1375 1376 if (page->freelist) { 1377 add_partial(n, page, tail); 1378 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); 1379 } else { 1380 stat(c, DEACTIVATE_FULL); 1381 if (SLABDEBUG && PageSlubDebug(page) && 1382 (s->flags & SLAB_STORE_USER)) 1383 add_full(n, page); 1384 } 1385 slab_unlock(page); 1386 } else { 1387 stat(c, DEACTIVATE_EMPTY); 1388 if (n->nr_partial < s->min_partial) { 1389 /* 1390 * Adding an empty slab to the partial slabs in order 1391 * to avoid page allocator overhead. This slab needs 1392 * to come after the other slabs with objects in 1393 * so that the others get filled first. That way the 1394 * size of the partial list stays small. 1395 * 1396 * kmem_cache_shrink can reclaim any empty slabs from 1397 * the partial list. 1398 */ 1399 add_partial(n, page, 1); 1400 slab_unlock(page); 1401 } else { 1402 slab_unlock(page); 1403 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB); 1404 discard_slab(s, page); 1405 } 1406 } 1407 } 1408 1409 /* 1410 * Remove the cpu slab 1411 */ 1412 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1413 { 1414 struct page *page = c->page; 1415 int tail = 1; 1416 1417 if (page->freelist) 1418 stat(c, DEACTIVATE_REMOTE_FREES); 1419 /* 1420 * Merge cpu freelist into slab freelist. Typically we get here 1421 * because both freelists are empty. So this is unlikely 1422 * to occur. 1423 */ 1424 while (unlikely(c->freelist)) { 1425 void **object; 1426 1427 tail = 0; /* Hot objects. Put the slab first */ 1428 1429 /* Retrieve object from cpu_freelist */ 1430 object = c->freelist; 1431 c->freelist = c->freelist[c->offset]; 1432 1433 /* And put onto the regular freelist */ 1434 object[c->offset] = page->freelist; 1435 page->freelist = object; 1436 page->inuse--; 1437 } 1438 c->page = NULL; 1439 unfreeze_slab(s, page, tail); 1440 } 1441 1442 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1443 { 1444 stat(c, CPUSLAB_FLUSH); 1445 slab_lock(c->page); 1446 deactivate_slab(s, c); 1447 } 1448 1449 /* 1450 * Flush cpu slab. 1451 * 1452 * Called from IPI handler with interrupts disabled. 1453 */ 1454 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1455 { 1456 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 1457 1458 if (likely(c && c->page)) 1459 flush_slab(s, c); 1460 } 1461 1462 static void flush_cpu_slab(void *d) 1463 { 1464 struct kmem_cache *s = d; 1465 1466 __flush_cpu_slab(s, smp_processor_id()); 1467 } 1468 1469 static void flush_all(struct kmem_cache *s) 1470 { 1471 on_each_cpu(flush_cpu_slab, s, 1); 1472 } 1473 1474 /* 1475 * Check if the objects in a per cpu structure fit numa 1476 * locality expectations. 1477 */ 1478 static inline int node_match(struct kmem_cache_cpu *c, int node) 1479 { 1480 #ifdef CONFIG_NUMA 1481 if (node != -1 && c->node != node) 1482 return 0; 1483 #endif 1484 return 1; 1485 } 1486 1487 /* 1488 * Slow path. The lockless freelist is empty or we need to perform 1489 * debugging duties. 1490 * 1491 * Interrupts are disabled. 1492 * 1493 * Processing is still very fast if new objects have been freed to the 1494 * regular freelist. In that case we simply take over the regular freelist 1495 * as the lockless freelist and zap the regular freelist. 1496 * 1497 * If that is not working then we fall back to the partial lists. We take the 1498 * first element of the freelist as the object to allocate now and move the 1499 * rest of the freelist to the lockless freelist. 1500 * 1501 * And if we were unable to get a new slab from the partial slab lists then 1502 * we need to allocate a new slab. This is the slowest path since it involves 1503 * a call to the page allocator and the setup of a new slab. 1504 */ 1505 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 1506 unsigned long addr, struct kmem_cache_cpu *c) 1507 { 1508 void **object; 1509 struct page *new; 1510 1511 /* We handle __GFP_ZERO in the caller */ 1512 gfpflags &= ~__GFP_ZERO; 1513 1514 if (!c->page) 1515 goto new_slab; 1516 1517 slab_lock(c->page); 1518 if (unlikely(!node_match(c, node))) 1519 goto another_slab; 1520 1521 stat(c, ALLOC_REFILL); 1522 1523 load_freelist: 1524 object = c->page->freelist; 1525 if (unlikely(!object)) 1526 goto another_slab; 1527 if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) 1528 goto debug; 1529 1530 c->freelist = object[c->offset]; 1531 c->page->inuse = c->page->objects; 1532 c->page->freelist = NULL; 1533 c->node = page_to_nid(c->page); 1534 unlock_out: 1535 slab_unlock(c->page); 1536 stat(c, ALLOC_SLOWPATH); 1537 return object; 1538 1539 another_slab: 1540 deactivate_slab(s, c); 1541 1542 new_slab: 1543 new = get_partial(s, gfpflags, node); 1544 if (new) { 1545 c->page = new; 1546 stat(c, ALLOC_FROM_PARTIAL); 1547 goto load_freelist; 1548 } 1549 1550 if (gfpflags & __GFP_WAIT) 1551 local_irq_enable(); 1552 1553 new = new_slab(s, gfpflags, node); 1554 1555 if (gfpflags & __GFP_WAIT) 1556 local_irq_disable(); 1557 1558 if (new) { 1559 c = get_cpu_slab(s, smp_processor_id()); 1560 stat(c, ALLOC_SLAB); 1561 if (c->page) 1562 flush_slab(s, c); 1563 slab_lock(new); 1564 __SetPageSlubFrozen(new); 1565 c->page = new; 1566 goto load_freelist; 1567 } 1568 return NULL; 1569 debug: 1570 if (!alloc_debug_processing(s, c->page, object, addr)) 1571 goto another_slab; 1572 1573 c->page->inuse++; 1574 c->page->freelist = object[c->offset]; 1575 c->node = -1; 1576 goto unlock_out; 1577 } 1578 1579 /* 1580 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 1581 * have the fastpath folded into their functions. So no function call 1582 * overhead for requests that can be satisfied on the fastpath. 1583 * 1584 * The fastpath works by first checking if the lockless freelist can be used. 1585 * If not then __slab_alloc is called for slow processing. 1586 * 1587 * Otherwise we can simply pick the next object from the lockless free list. 1588 */ 1589 static __always_inline void *slab_alloc(struct kmem_cache *s, 1590 gfp_t gfpflags, int node, unsigned long addr) 1591 { 1592 void **object; 1593 struct kmem_cache_cpu *c; 1594 unsigned long flags; 1595 unsigned int objsize; 1596 1597 lockdep_trace_alloc(gfpflags); 1598 might_sleep_if(gfpflags & __GFP_WAIT); 1599 1600 if (should_failslab(s->objsize, gfpflags)) 1601 return NULL; 1602 1603 local_irq_save(flags); 1604 c = get_cpu_slab(s, smp_processor_id()); 1605 objsize = c->objsize; 1606 if (unlikely(!c->freelist || !node_match(c, node))) 1607 1608 object = __slab_alloc(s, gfpflags, node, addr, c); 1609 1610 else { 1611 object = c->freelist; 1612 c->freelist = object[c->offset]; 1613 stat(c, ALLOC_FASTPATH); 1614 } 1615 local_irq_restore(flags); 1616 1617 if (unlikely((gfpflags & __GFP_ZERO) && object)) 1618 memset(object, 0, objsize); 1619 1620 return object; 1621 } 1622 1623 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 1624 { 1625 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_); 1626 1627 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); 1628 1629 return ret; 1630 } 1631 EXPORT_SYMBOL(kmem_cache_alloc); 1632 1633 #ifdef CONFIG_KMEMTRACE 1634 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags) 1635 { 1636 return slab_alloc(s, gfpflags, -1, _RET_IP_); 1637 } 1638 EXPORT_SYMBOL(kmem_cache_alloc_notrace); 1639 #endif 1640 1641 #ifdef CONFIG_NUMA 1642 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 1643 { 1644 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 1645 1646 trace_kmem_cache_alloc_node(_RET_IP_, ret, 1647 s->objsize, s->size, gfpflags, node); 1648 1649 return ret; 1650 } 1651 EXPORT_SYMBOL(kmem_cache_alloc_node); 1652 #endif 1653 1654 #ifdef CONFIG_KMEMTRACE 1655 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s, 1656 gfp_t gfpflags, 1657 int node) 1658 { 1659 return slab_alloc(s, gfpflags, node, _RET_IP_); 1660 } 1661 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace); 1662 #endif 1663 1664 /* 1665 * Slow patch handling. This may still be called frequently since objects 1666 * have a longer lifetime than the cpu slabs in most processing loads. 1667 * 1668 * So we still attempt to reduce cache line usage. Just take the slab 1669 * lock and free the item. If there is no additional partial page 1670 * handling required then we can return immediately. 1671 */ 1672 static void __slab_free(struct kmem_cache *s, struct page *page, 1673 void *x, unsigned long addr, unsigned int offset) 1674 { 1675 void *prior; 1676 void **object = (void *)x; 1677 struct kmem_cache_cpu *c; 1678 1679 c = get_cpu_slab(s, raw_smp_processor_id()); 1680 stat(c, FREE_SLOWPATH); 1681 slab_lock(page); 1682 1683 if (unlikely(SLABDEBUG && PageSlubDebug(page))) 1684 goto debug; 1685 1686 checks_ok: 1687 prior = object[offset] = page->freelist; 1688 page->freelist = object; 1689 page->inuse--; 1690 1691 if (unlikely(PageSlubFrozen(page))) { 1692 stat(c, FREE_FROZEN); 1693 goto out_unlock; 1694 } 1695 1696 if (unlikely(!page->inuse)) 1697 goto slab_empty; 1698 1699 /* 1700 * Objects left in the slab. If it was not on the partial list before 1701 * then add it. 1702 */ 1703 if (unlikely(!prior)) { 1704 add_partial(get_node(s, page_to_nid(page)), page, 1); 1705 stat(c, FREE_ADD_PARTIAL); 1706 } 1707 1708 out_unlock: 1709 slab_unlock(page); 1710 return; 1711 1712 slab_empty: 1713 if (prior) { 1714 /* 1715 * Slab still on the partial list. 1716 */ 1717 remove_partial(s, page); 1718 stat(c, FREE_REMOVE_PARTIAL); 1719 } 1720 slab_unlock(page); 1721 stat(c, FREE_SLAB); 1722 discard_slab(s, page); 1723 return; 1724 1725 debug: 1726 if (!free_debug_processing(s, page, x, addr)) 1727 goto out_unlock; 1728 goto checks_ok; 1729 } 1730 1731 /* 1732 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 1733 * can perform fastpath freeing without additional function calls. 1734 * 1735 * The fastpath is only possible if we are freeing to the current cpu slab 1736 * of this processor. This typically the case if we have just allocated 1737 * the item before. 1738 * 1739 * If fastpath is not possible then fall back to __slab_free where we deal 1740 * with all sorts of special processing. 1741 */ 1742 static __always_inline void slab_free(struct kmem_cache *s, 1743 struct page *page, void *x, unsigned long addr) 1744 { 1745 void **object = (void *)x; 1746 struct kmem_cache_cpu *c; 1747 unsigned long flags; 1748 1749 local_irq_save(flags); 1750 c = get_cpu_slab(s, smp_processor_id()); 1751 debug_check_no_locks_freed(object, c->objsize); 1752 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1753 debug_check_no_obj_freed(object, c->objsize); 1754 if (likely(page == c->page && c->node >= 0)) { 1755 object[c->offset] = c->freelist; 1756 c->freelist = object; 1757 stat(c, FREE_FASTPATH); 1758 } else 1759 __slab_free(s, page, x, addr, c->offset); 1760 1761 local_irq_restore(flags); 1762 } 1763 1764 void kmem_cache_free(struct kmem_cache *s, void *x) 1765 { 1766 struct page *page; 1767 1768 page = virt_to_head_page(x); 1769 1770 slab_free(s, page, x, _RET_IP_); 1771 1772 trace_kmem_cache_free(_RET_IP_, x); 1773 } 1774 EXPORT_SYMBOL(kmem_cache_free); 1775 1776 /* Figure out on which slab page the object resides */ 1777 static struct page *get_object_page(const void *x) 1778 { 1779 struct page *page = virt_to_head_page(x); 1780 1781 if (!PageSlab(page)) 1782 return NULL; 1783 1784 return page; 1785 } 1786 1787 /* 1788 * Object placement in a slab is made very easy because we always start at 1789 * offset 0. If we tune the size of the object to the alignment then we can 1790 * get the required alignment by putting one properly sized object after 1791 * another. 1792 * 1793 * Notice that the allocation order determines the sizes of the per cpu 1794 * caches. Each processor has always one slab available for allocations. 1795 * Increasing the allocation order reduces the number of times that slabs 1796 * must be moved on and off the partial lists and is therefore a factor in 1797 * locking overhead. 1798 */ 1799 1800 /* 1801 * Mininum / Maximum order of slab pages. This influences locking overhead 1802 * and slab fragmentation. A higher order reduces the number of partial slabs 1803 * and increases the number of allocations possible without having to 1804 * take the list_lock. 1805 */ 1806 static int slub_min_order; 1807 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 1808 static int slub_min_objects; 1809 1810 /* 1811 * Merge control. If this is set then no merging of slab caches will occur. 1812 * (Could be removed. This was introduced to pacify the merge skeptics.) 1813 */ 1814 static int slub_nomerge; 1815 1816 /* 1817 * Calculate the order of allocation given an slab object size. 1818 * 1819 * The order of allocation has significant impact on performance and other 1820 * system components. Generally order 0 allocations should be preferred since 1821 * order 0 does not cause fragmentation in the page allocator. Larger objects 1822 * be problematic to put into order 0 slabs because there may be too much 1823 * unused space left. We go to a higher order if more than 1/16th of the slab 1824 * would be wasted. 1825 * 1826 * In order to reach satisfactory performance we must ensure that a minimum 1827 * number of objects is in one slab. Otherwise we may generate too much 1828 * activity on the partial lists which requires taking the list_lock. This is 1829 * less a concern for large slabs though which are rarely used. 1830 * 1831 * slub_max_order specifies the order where we begin to stop considering the 1832 * number of objects in a slab as critical. If we reach slub_max_order then 1833 * we try to keep the page order as low as possible. So we accept more waste 1834 * of space in favor of a small page order. 1835 * 1836 * Higher order allocations also allow the placement of more objects in a 1837 * slab and thereby reduce object handling overhead. If the user has 1838 * requested a higher mininum order then we start with that one instead of 1839 * the smallest order which will fit the object. 1840 */ 1841 static inline int slab_order(int size, int min_objects, 1842 int max_order, int fract_leftover) 1843 { 1844 int order; 1845 int rem; 1846 int min_order = slub_min_order; 1847 1848 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE) 1849 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 1850 1851 for (order = max(min_order, 1852 fls(min_objects * size - 1) - PAGE_SHIFT); 1853 order <= max_order; order++) { 1854 1855 unsigned long slab_size = PAGE_SIZE << order; 1856 1857 if (slab_size < min_objects * size) 1858 continue; 1859 1860 rem = slab_size % size; 1861 1862 if (rem <= slab_size / fract_leftover) 1863 break; 1864 1865 } 1866 1867 return order; 1868 } 1869 1870 static inline int calculate_order(int size) 1871 { 1872 int order; 1873 int min_objects; 1874 int fraction; 1875 int max_objects; 1876 1877 /* 1878 * Attempt to find best configuration for a slab. This 1879 * works by first attempting to generate a layout with 1880 * the best configuration and backing off gradually. 1881 * 1882 * First we reduce the acceptable waste in a slab. Then 1883 * we reduce the minimum objects required in a slab. 1884 */ 1885 min_objects = slub_min_objects; 1886 if (!min_objects) 1887 min_objects = 4 * (fls(nr_cpu_ids) + 1); 1888 max_objects = (PAGE_SIZE << slub_max_order)/size; 1889 min_objects = min(min_objects, max_objects); 1890 1891 while (min_objects > 1) { 1892 fraction = 16; 1893 while (fraction >= 4) { 1894 order = slab_order(size, min_objects, 1895 slub_max_order, fraction); 1896 if (order <= slub_max_order) 1897 return order; 1898 fraction /= 2; 1899 } 1900 min_objects --; 1901 } 1902 1903 /* 1904 * We were unable to place multiple objects in a slab. Now 1905 * lets see if we can place a single object there. 1906 */ 1907 order = slab_order(size, 1, slub_max_order, 1); 1908 if (order <= slub_max_order) 1909 return order; 1910 1911 /* 1912 * Doh this slab cannot be placed using slub_max_order. 1913 */ 1914 order = slab_order(size, 1, MAX_ORDER, 1); 1915 if (order < MAX_ORDER) 1916 return order; 1917 return -ENOSYS; 1918 } 1919 1920 /* 1921 * Figure out what the alignment of the objects will be. 1922 */ 1923 static unsigned long calculate_alignment(unsigned long flags, 1924 unsigned long align, unsigned long size) 1925 { 1926 /* 1927 * If the user wants hardware cache aligned objects then follow that 1928 * suggestion if the object is sufficiently large. 1929 * 1930 * The hardware cache alignment cannot override the specified 1931 * alignment though. If that is greater then use it. 1932 */ 1933 if (flags & SLAB_HWCACHE_ALIGN) { 1934 unsigned long ralign = cache_line_size(); 1935 while (size <= ralign / 2) 1936 ralign /= 2; 1937 align = max(align, ralign); 1938 } 1939 1940 if (align < ARCH_SLAB_MINALIGN) 1941 align = ARCH_SLAB_MINALIGN; 1942 1943 return ALIGN(align, sizeof(void *)); 1944 } 1945 1946 static void init_kmem_cache_cpu(struct kmem_cache *s, 1947 struct kmem_cache_cpu *c) 1948 { 1949 c->page = NULL; 1950 c->freelist = NULL; 1951 c->node = 0; 1952 c->offset = s->offset / sizeof(void *); 1953 c->objsize = s->objsize; 1954 #ifdef CONFIG_SLUB_STATS 1955 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned)); 1956 #endif 1957 } 1958 1959 static void 1960 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) 1961 { 1962 n->nr_partial = 0; 1963 spin_lock_init(&n->list_lock); 1964 INIT_LIST_HEAD(&n->partial); 1965 #ifdef CONFIG_SLUB_DEBUG 1966 atomic_long_set(&n->nr_slabs, 0); 1967 atomic_long_set(&n->total_objects, 0); 1968 INIT_LIST_HEAD(&n->full); 1969 #endif 1970 } 1971 1972 #ifdef CONFIG_SMP 1973 /* 1974 * Per cpu array for per cpu structures. 1975 * 1976 * The per cpu array places all kmem_cache_cpu structures from one processor 1977 * close together meaning that it becomes possible that multiple per cpu 1978 * structures are contained in one cacheline. This may be particularly 1979 * beneficial for the kmalloc caches. 1980 * 1981 * A desktop system typically has around 60-80 slabs. With 100 here we are 1982 * likely able to get per cpu structures for all caches from the array defined 1983 * here. We must be able to cover all kmalloc caches during bootstrap. 1984 * 1985 * If the per cpu array is exhausted then fall back to kmalloc 1986 * of individual cachelines. No sharing is possible then. 1987 */ 1988 #define NR_KMEM_CACHE_CPU 100 1989 1990 static DEFINE_PER_CPU(struct kmem_cache_cpu, 1991 kmem_cache_cpu)[NR_KMEM_CACHE_CPU]; 1992 1993 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); 1994 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS); 1995 1996 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s, 1997 int cpu, gfp_t flags) 1998 { 1999 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu); 2000 2001 if (c) 2002 per_cpu(kmem_cache_cpu_free, cpu) = 2003 (void *)c->freelist; 2004 else { 2005 /* Table overflow: So allocate ourselves */ 2006 c = kmalloc_node( 2007 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()), 2008 flags, cpu_to_node(cpu)); 2009 if (!c) 2010 return NULL; 2011 } 2012 2013 init_kmem_cache_cpu(s, c); 2014 return c; 2015 } 2016 2017 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu) 2018 { 2019 if (c < per_cpu(kmem_cache_cpu, cpu) || 2020 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) { 2021 kfree(c); 2022 return; 2023 } 2024 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu); 2025 per_cpu(kmem_cache_cpu_free, cpu) = c; 2026 } 2027 2028 static void free_kmem_cache_cpus(struct kmem_cache *s) 2029 { 2030 int cpu; 2031 2032 for_each_online_cpu(cpu) { 2033 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 2034 2035 if (c) { 2036 s->cpu_slab[cpu] = NULL; 2037 free_kmem_cache_cpu(c, cpu); 2038 } 2039 } 2040 } 2041 2042 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2043 { 2044 int cpu; 2045 2046 for_each_online_cpu(cpu) { 2047 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 2048 2049 if (c) 2050 continue; 2051 2052 c = alloc_kmem_cache_cpu(s, cpu, flags); 2053 if (!c) { 2054 free_kmem_cache_cpus(s); 2055 return 0; 2056 } 2057 s->cpu_slab[cpu] = c; 2058 } 2059 return 1; 2060 } 2061 2062 /* 2063 * Initialize the per cpu array. 2064 */ 2065 static void init_alloc_cpu_cpu(int cpu) 2066 { 2067 int i; 2068 2069 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once))) 2070 return; 2071 2072 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--) 2073 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu); 2074 2075 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)); 2076 } 2077 2078 static void __init init_alloc_cpu(void) 2079 { 2080 int cpu; 2081 2082 for_each_online_cpu(cpu) 2083 init_alloc_cpu_cpu(cpu); 2084 } 2085 2086 #else 2087 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {} 2088 static inline void init_alloc_cpu(void) {} 2089 2090 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2091 { 2092 init_kmem_cache_cpu(s, &s->cpu_slab); 2093 return 1; 2094 } 2095 #endif 2096 2097 #ifdef CONFIG_NUMA 2098 /* 2099 * No kmalloc_node yet so do it by hand. We know that this is the first 2100 * slab on the node for this slabcache. There are no concurrent accesses 2101 * possible. 2102 * 2103 * Note that this function only works on the kmalloc_node_cache 2104 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2105 * memory on a fresh node that has no slab structures yet. 2106 */ 2107 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node) 2108 { 2109 struct page *page; 2110 struct kmem_cache_node *n; 2111 unsigned long flags; 2112 2113 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); 2114 2115 page = new_slab(kmalloc_caches, gfpflags, node); 2116 2117 BUG_ON(!page); 2118 if (page_to_nid(page) != node) { 2119 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2120 "node %d\n", node); 2121 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2122 "in order to be able to continue\n"); 2123 } 2124 2125 n = page->freelist; 2126 BUG_ON(!n); 2127 page->freelist = get_freepointer(kmalloc_caches, n); 2128 page->inuse++; 2129 kmalloc_caches->node[node] = n; 2130 #ifdef CONFIG_SLUB_DEBUG 2131 init_object(kmalloc_caches, n, 1); 2132 init_tracking(kmalloc_caches, n); 2133 #endif 2134 init_kmem_cache_node(n, kmalloc_caches); 2135 inc_slabs_node(kmalloc_caches, node, page->objects); 2136 2137 /* 2138 * lockdep requires consistent irq usage for each lock 2139 * so even though there cannot be a race this early in 2140 * the boot sequence, we still disable irqs. 2141 */ 2142 local_irq_save(flags); 2143 add_partial(n, page, 0); 2144 local_irq_restore(flags); 2145 } 2146 2147 static void free_kmem_cache_nodes(struct kmem_cache *s) 2148 { 2149 int node; 2150 2151 for_each_node_state(node, N_NORMAL_MEMORY) { 2152 struct kmem_cache_node *n = s->node[node]; 2153 if (n && n != &s->local_node) 2154 kmem_cache_free(kmalloc_caches, n); 2155 s->node[node] = NULL; 2156 } 2157 } 2158 2159 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2160 { 2161 int node; 2162 int local_node; 2163 2164 if (slab_state >= UP) 2165 local_node = page_to_nid(virt_to_page(s)); 2166 else 2167 local_node = 0; 2168 2169 for_each_node_state(node, N_NORMAL_MEMORY) { 2170 struct kmem_cache_node *n; 2171 2172 if (local_node == node) 2173 n = &s->local_node; 2174 else { 2175 if (slab_state == DOWN) { 2176 early_kmem_cache_node_alloc(gfpflags, node); 2177 continue; 2178 } 2179 n = kmem_cache_alloc_node(kmalloc_caches, 2180 gfpflags, node); 2181 2182 if (!n) { 2183 free_kmem_cache_nodes(s); 2184 return 0; 2185 } 2186 2187 } 2188 s->node[node] = n; 2189 init_kmem_cache_node(n, s); 2190 } 2191 return 1; 2192 } 2193 #else 2194 static void free_kmem_cache_nodes(struct kmem_cache *s) 2195 { 2196 } 2197 2198 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2199 { 2200 init_kmem_cache_node(&s->local_node, s); 2201 return 1; 2202 } 2203 #endif 2204 2205 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2206 { 2207 if (min < MIN_PARTIAL) 2208 min = MIN_PARTIAL; 2209 else if (min > MAX_PARTIAL) 2210 min = MAX_PARTIAL; 2211 s->min_partial = min; 2212 } 2213 2214 /* 2215 * calculate_sizes() determines the order and the distribution of data within 2216 * a slab object. 2217 */ 2218 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2219 { 2220 unsigned long flags = s->flags; 2221 unsigned long size = s->objsize; 2222 unsigned long align = s->align; 2223 int order; 2224 2225 /* 2226 * Round up object size to the next word boundary. We can only 2227 * place the free pointer at word boundaries and this determines 2228 * the possible location of the free pointer. 2229 */ 2230 size = ALIGN(size, sizeof(void *)); 2231 2232 #ifdef CONFIG_SLUB_DEBUG 2233 /* 2234 * Determine if we can poison the object itself. If the user of 2235 * the slab may touch the object after free or before allocation 2236 * then we should never poison the object itself. 2237 */ 2238 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2239 !s->ctor) 2240 s->flags |= __OBJECT_POISON; 2241 else 2242 s->flags &= ~__OBJECT_POISON; 2243 2244 2245 /* 2246 * If we are Redzoning then check if there is some space between the 2247 * end of the object and the free pointer. If not then add an 2248 * additional word to have some bytes to store Redzone information. 2249 */ 2250 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2251 size += sizeof(void *); 2252 #endif 2253 2254 /* 2255 * With that we have determined the number of bytes in actual use 2256 * by the object. This is the potential offset to the free pointer. 2257 */ 2258 s->inuse = size; 2259 2260 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2261 s->ctor)) { 2262 /* 2263 * Relocate free pointer after the object if it is not 2264 * permitted to overwrite the first word of the object on 2265 * kmem_cache_free. 2266 * 2267 * This is the case if we do RCU, have a constructor or 2268 * destructor or are poisoning the objects. 2269 */ 2270 s->offset = size; 2271 size += sizeof(void *); 2272 } 2273 2274 #ifdef CONFIG_SLUB_DEBUG 2275 if (flags & SLAB_STORE_USER) 2276 /* 2277 * Need to store information about allocs and frees after 2278 * the object. 2279 */ 2280 size += 2 * sizeof(struct track); 2281 2282 if (flags & SLAB_RED_ZONE) 2283 /* 2284 * Add some empty padding so that we can catch 2285 * overwrites from earlier objects rather than let 2286 * tracking information or the free pointer be 2287 * corrupted if a user writes before the start 2288 * of the object. 2289 */ 2290 size += sizeof(void *); 2291 #endif 2292 2293 /* 2294 * Determine the alignment based on various parameters that the 2295 * user specified and the dynamic determination of cache line size 2296 * on bootup. 2297 */ 2298 align = calculate_alignment(flags, align, s->objsize); 2299 2300 /* 2301 * SLUB stores one object immediately after another beginning from 2302 * offset 0. In order to align the objects we have to simply size 2303 * each object to conform to the alignment. 2304 */ 2305 size = ALIGN(size, align); 2306 s->size = size; 2307 if (forced_order >= 0) 2308 order = forced_order; 2309 else 2310 order = calculate_order(size); 2311 2312 if (order < 0) 2313 return 0; 2314 2315 s->allocflags = 0; 2316 if (order) 2317 s->allocflags |= __GFP_COMP; 2318 2319 if (s->flags & SLAB_CACHE_DMA) 2320 s->allocflags |= SLUB_DMA; 2321 2322 if (s->flags & SLAB_RECLAIM_ACCOUNT) 2323 s->allocflags |= __GFP_RECLAIMABLE; 2324 2325 /* 2326 * Determine the number of objects per slab 2327 */ 2328 s->oo = oo_make(order, size); 2329 s->min = oo_make(get_order(size), size); 2330 if (oo_objects(s->oo) > oo_objects(s->max)) 2331 s->max = s->oo; 2332 2333 return !!oo_objects(s->oo); 2334 2335 } 2336 2337 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, 2338 const char *name, size_t size, 2339 size_t align, unsigned long flags, 2340 void (*ctor)(void *)) 2341 { 2342 memset(s, 0, kmem_size); 2343 s->name = name; 2344 s->ctor = ctor; 2345 s->objsize = size; 2346 s->align = align; 2347 s->flags = kmem_cache_flags(size, flags, name, ctor); 2348 2349 if (!calculate_sizes(s, -1)) 2350 goto error; 2351 2352 /* 2353 * The larger the object size is, the more pages we want on the partial 2354 * list to avoid pounding the page allocator excessively. 2355 */ 2356 set_min_partial(s, ilog2(s->size)); 2357 s->refcount = 1; 2358 #ifdef CONFIG_NUMA 2359 s->remote_node_defrag_ratio = 1000; 2360 #endif 2361 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) 2362 goto error; 2363 2364 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) 2365 return 1; 2366 free_kmem_cache_nodes(s); 2367 error: 2368 if (flags & SLAB_PANIC) 2369 panic("Cannot create slab %s size=%lu realsize=%u " 2370 "order=%u offset=%u flags=%lx\n", 2371 s->name, (unsigned long)size, s->size, oo_order(s->oo), 2372 s->offset, flags); 2373 return 0; 2374 } 2375 2376 /* 2377 * Check if a given pointer is valid 2378 */ 2379 int kmem_ptr_validate(struct kmem_cache *s, const void *object) 2380 { 2381 struct page *page; 2382 2383 page = get_object_page(object); 2384 2385 if (!page || s != page->slab) 2386 /* No slab or wrong slab */ 2387 return 0; 2388 2389 if (!check_valid_pointer(s, page, object)) 2390 return 0; 2391 2392 /* 2393 * We could also check if the object is on the slabs freelist. 2394 * But this would be too expensive and it seems that the main 2395 * purpose of kmem_ptr_valid() is to check if the object belongs 2396 * to a certain slab. 2397 */ 2398 return 1; 2399 } 2400 EXPORT_SYMBOL(kmem_ptr_validate); 2401 2402 /* 2403 * Determine the size of a slab object 2404 */ 2405 unsigned int kmem_cache_size(struct kmem_cache *s) 2406 { 2407 return s->objsize; 2408 } 2409 EXPORT_SYMBOL(kmem_cache_size); 2410 2411 const char *kmem_cache_name(struct kmem_cache *s) 2412 { 2413 return s->name; 2414 } 2415 EXPORT_SYMBOL(kmem_cache_name); 2416 2417 static void list_slab_objects(struct kmem_cache *s, struct page *page, 2418 const char *text) 2419 { 2420 #ifdef CONFIG_SLUB_DEBUG 2421 void *addr = page_address(page); 2422 void *p; 2423 DECLARE_BITMAP(map, page->objects); 2424 2425 bitmap_zero(map, page->objects); 2426 slab_err(s, page, "%s", text); 2427 slab_lock(page); 2428 for_each_free_object(p, s, page->freelist) 2429 set_bit(slab_index(p, s, addr), map); 2430 2431 for_each_object(p, s, addr, page->objects) { 2432 2433 if (!test_bit(slab_index(p, s, addr), map)) { 2434 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 2435 p, p - addr); 2436 print_tracking(s, p); 2437 } 2438 } 2439 slab_unlock(page); 2440 #endif 2441 } 2442 2443 /* 2444 * Attempt to free all partial slabs on a node. 2445 */ 2446 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 2447 { 2448 unsigned long flags; 2449 struct page *page, *h; 2450 2451 spin_lock_irqsave(&n->list_lock, flags); 2452 list_for_each_entry_safe(page, h, &n->partial, lru) { 2453 if (!page->inuse) { 2454 list_del(&page->lru); 2455 discard_slab(s, page); 2456 n->nr_partial--; 2457 } else { 2458 list_slab_objects(s, page, 2459 "Objects remaining on kmem_cache_close()"); 2460 } 2461 } 2462 spin_unlock_irqrestore(&n->list_lock, flags); 2463 } 2464 2465 /* 2466 * Release all resources used by a slab cache. 2467 */ 2468 static inline int kmem_cache_close(struct kmem_cache *s) 2469 { 2470 int node; 2471 2472 flush_all(s); 2473 2474 /* Attempt to free all objects */ 2475 free_kmem_cache_cpus(s); 2476 for_each_node_state(node, N_NORMAL_MEMORY) { 2477 struct kmem_cache_node *n = get_node(s, node); 2478 2479 free_partial(s, n); 2480 if (n->nr_partial || slabs_node(s, node)) 2481 return 1; 2482 } 2483 free_kmem_cache_nodes(s); 2484 return 0; 2485 } 2486 2487 /* 2488 * Close a cache and release the kmem_cache structure 2489 * (must be used for caches created using kmem_cache_create) 2490 */ 2491 void kmem_cache_destroy(struct kmem_cache *s) 2492 { 2493 down_write(&slub_lock); 2494 s->refcount--; 2495 if (!s->refcount) { 2496 list_del(&s->list); 2497 up_write(&slub_lock); 2498 if (kmem_cache_close(s)) { 2499 printk(KERN_ERR "SLUB %s: %s called for cache that " 2500 "still has objects.\n", s->name, __func__); 2501 dump_stack(); 2502 } 2503 sysfs_slab_remove(s); 2504 } else 2505 up_write(&slub_lock); 2506 } 2507 EXPORT_SYMBOL(kmem_cache_destroy); 2508 2509 /******************************************************************** 2510 * Kmalloc subsystem 2511 *******************************************************************/ 2512 2513 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned; 2514 EXPORT_SYMBOL(kmalloc_caches); 2515 2516 static int __init setup_slub_min_order(char *str) 2517 { 2518 get_option(&str, &slub_min_order); 2519 2520 return 1; 2521 } 2522 2523 __setup("slub_min_order=", setup_slub_min_order); 2524 2525 static int __init setup_slub_max_order(char *str) 2526 { 2527 get_option(&str, &slub_max_order); 2528 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 2529 2530 return 1; 2531 } 2532 2533 __setup("slub_max_order=", setup_slub_max_order); 2534 2535 static int __init setup_slub_min_objects(char *str) 2536 { 2537 get_option(&str, &slub_min_objects); 2538 2539 return 1; 2540 } 2541 2542 __setup("slub_min_objects=", setup_slub_min_objects); 2543 2544 static int __init setup_slub_nomerge(char *str) 2545 { 2546 slub_nomerge = 1; 2547 return 1; 2548 } 2549 2550 __setup("slub_nomerge", setup_slub_nomerge); 2551 2552 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, 2553 const char *name, int size, gfp_t gfp_flags) 2554 { 2555 unsigned int flags = 0; 2556 2557 if (gfp_flags & SLUB_DMA) 2558 flags = SLAB_CACHE_DMA; 2559 2560 down_write(&slub_lock); 2561 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, 2562 flags, NULL)) 2563 goto panic; 2564 2565 list_add(&s->list, &slab_caches); 2566 up_write(&slub_lock); 2567 if (sysfs_slab_add(s)) 2568 goto panic; 2569 return s; 2570 2571 panic: 2572 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 2573 } 2574 2575 #ifdef CONFIG_ZONE_DMA 2576 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT]; 2577 2578 static void sysfs_add_func(struct work_struct *w) 2579 { 2580 struct kmem_cache *s; 2581 2582 down_write(&slub_lock); 2583 list_for_each_entry(s, &slab_caches, list) { 2584 if (s->flags & __SYSFS_ADD_DEFERRED) { 2585 s->flags &= ~__SYSFS_ADD_DEFERRED; 2586 sysfs_slab_add(s); 2587 } 2588 } 2589 up_write(&slub_lock); 2590 } 2591 2592 static DECLARE_WORK(sysfs_add_work, sysfs_add_func); 2593 2594 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) 2595 { 2596 struct kmem_cache *s; 2597 char *text; 2598 size_t realsize; 2599 2600 s = kmalloc_caches_dma[index]; 2601 if (s) 2602 return s; 2603 2604 /* Dynamically create dma cache */ 2605 if (flags & __GFP_WAIT) 2606 down_write(&slub_lock); 2607 else { 2608 if (!down_write_trylock(&slub_lock)) 2609 goto out; 2610 } 2611 2612 if (kmalloc_caches_dma[index]) 2613 goto unlock_out; 2614 2615 realsize = kmalloc_caches[index].objsize; 2616 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", 2617 (unsigned int)realsize); 2618 s = kmalloc(kmem_size, flags & ~SLUB_DMA); 2619 2620 if (!s || !text || !kmem_cache_open(s, flags, text, 2621 realsize, ARCH_KMALLOC_MINALIGN, 2622 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) { 2623 kfree(s); 2624 kfree(text); 2625 goto unlock_out; 2626 } 2627 2628 list_add(&s->list, &slab_caches); 2629 kmalloc_caches_dma[index] = s; 2630 2631 schedule_work(&sysfs_add_work); 2632 2633 unlock_out: 2634 up_write(&slub_lock); 2635 out: 2636 return kmalloc_caches_dma[index]; 2637 } 2638 #endif 2639 2640 /* 2641 * Conversion table for small slabs sizes / 8 to the index in the 2642 * kmalloc array. This is necessary for slabs < 192 since we have non power 2643 * of two cache sizes there. The size of larger slabs can be determined using 2644 * fls. 2645 */ 2646 static s8 size_index[24] = { 2647 3, /* 8 */ 2648 4, /* 16 */ 2649 5, /* 24 */ 2650 5, /* 32 */ 2651 6, /* 40 */ 2652 6, /* 48 */ 2653 6, /* 56 */ 2654 6, /* 64 */ 2655 1, /* 72 */ 2656 1, /* 80 */ 2657 1, /* 88 */ 2658 1, /* 96 */ 2659 7, /* 104 */ 2660 7, /* 112 */ 2661 7, /* 120 */ 2662 7, /* 128 */ 2663 2, /* 136 */ 2664 2, /* 144 */ 2665 2, /* 152 */ 2666 2, /* 160 */ 2667 2, /* 168 */ 2668 2, /* 176 */ 2669 2, /* 184 */ 2670 2 /* 192 */ 2671 }; 2672 2673 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 2674 { 2675 int index; 2676 2677 if (size <= 192) { 2678 if (!size) 2679 return ZERO_SIZE_PTR; 2680 2681 index = size_index[(size - 1) / 8]; 2682 } else 2683 index = fls(size - 1); 2684 2685 #ifdef CONFIG_ZONE_DMA 2686 if (unlikely((flags & SLUB_DMA))) 2687 return dma_kmalloc_cache(index, flags); 2688 2689 #endif 2690 return &kmalloc_caches[index]; 2691 } 2692 2693 void *__kmalloc(size_t size, gfp_t flags) 2694 { 2695 struct kmem_cache *s; 2696 void *ret; 2697 2698 if (unlikely(size > SLUB_MAX_SIZE)) 2699 return kmalloc_large(size, flags); 2700 2701 s = get_slab(size, flags); 2702 2703 if (unlikely(ZERO_OR_NULL_PTR(s))) 2704 return s; 2705 2706 ret = slab_alloc(s, flags, -1, _RET_IP_); 2707 2708 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 2709 2710 return ret; 2711 } 2712 EXPORT_SYMBOL(__kmalloc); 2713 2714 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 2715 { 2716 struct page *page = alloc_pages_node(node, flags | __GFP_COMP, 2717 get_order(size)); 2718 2719 if (page) 2720 return page_address(page); 2721 else 2722 return NULL; 2723 } 2724 2725 #ifdef CONFIG_NUMA 2726 void *__kmalloc_node(size_t size, gfp_t flags, int node) 2727 { 2728 struct kmem_cache *s; 2729 void *ret; 2730 2731 if (unlikely(size > SLUB_MAX_SIZE)) { 2732 ret = kmalloc_large_node(size, flags, node); 2733 2734 trace_kmalloc_node(_RET_IP_, ret, 2735 size, PAGE_SIZE << get_order(size), 2736 flags, node); 2737 2738 return ret; 2739 } 2740 2741 s = get_slab(size, flags); 2742 2743 if (unlikely(ZERO_OR_NULL_PTR(s))) 2744 return s; 2745 2746 ret = slab_alloc(s, flags, node, _RET_IP_); 2747 2748 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 2749 2750 return ret; 2751 } 2752 EXPORT_SYMBOL(__kmalloc_node); 2753 #endif 2754 2755 size_t ksize(const void *object) 2756 { 2757 struct page *page; 2758 struct kmem_cache *s; 2759 2760 if (unlikely(object == ZERO_SIZE_PTR)) 2761 return 0; 2762 2763 page = virt_to_head_page(object); 2764 2765 if (unlikely(!PageSlab(page))) { 2766 WARN_ON(!PageCompound(page)); 2767 return PAGE_SIZE << compound_order(page); 2768 } 2769 s = page->slab; 2770 2771 #ifdef CONFIG_SLUB_DEBUG 2772 /* 2773 * Debugging requires use of the padding between object 2774 * and whatever may come after it. 2775 */ 2776 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 2777 return s->objsize; 2778 2779 #endif 2780 /* 2781 * If we have the need to store the freelist pointer 2782 * back there or track user information then we can 2783 * only use the space before that information. 2784 */ 2785 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 2786 return s->inuse; 2787 /* 2788 * Else we can use all the padding etc for the allocation 2789 */ 2790 return s->size; 2791 } 2792 EXPORT_SYMBOL(ksize); 2793 2794 void kfree(const void *x) 2795 { 2796 struct page *page; 2797 void *object = (void *)x; 2798 2799 trace_kfree(_RET_IP_, x); 2800 2801 if (unlikely(ZERO_OR_NULL_PTR(x))) 2802 return; 2803 2804 page = virt_to_head_page(x); 2805 if (unlikely(!PageSlab(page))) { 2806 BUG_ON(!PageCompound(page)); 2807 put_page(page); 2808 return; 2809 } 2810 slab_free(page->slab, page, object, _RET_IP_); 2811 } 2812 EXPORT_SYMBOL(kfree); 2813 2814 /* 2815 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 2816 * the remaining slabs by the number of items in use. The slabs with the 2817 * most items in use come first. New allocations will then fill those up 2818 * and thus they can be removed from the partial lists. 2819 * 2820 * The slabs with the least items are placed last. This results in them 2821 * being allocated from last increasing the chance that the last objects 2822 * are freed in them. 2823 */ 2824 int kmem_cache_shrink(struct kmem_cache *s) 2825 { 2826 int node; 2827 int i; 2828 struct kmem_cache_node *n; 2829 struct page *page; 2830 struct page *t; 2831 int objects = oo_objects(s->max); 2832 struct list_head *slabs_by_inuse = 2833 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 2834 unsigned long flags; 2835 2836 if (!slabs_by_inuse) 2837 return -ENOMEM; 2838 2839 flush_all(s); 2840 for_each_node_state(node, N_NORMAL_MEMORY) { 2841 n = get_node(s, node); 2842 2843 if (!n->nr_partial) 2844 continue; 2845 2846 for (i = 0; i < objects; i++) 2847 INIT_LIST_HEAD(slabs_by_inuse + i); 2848 2849 spin_lock_irqsave(&n->list_lock, flags); 2850 2851 /* 2852 * Build lists indexed by the items in use in each slab. 2853 * 2854 * Note that concurrent frees may occur while we hold the 2855 * list_lock. page->inuse here is the upper limit. 2856 */ 2857 list_for_each_entry_safe(page, t, &n->partial, lru) { 2858 if (!page->inuse && slab_trylock(page)) { 2859 /* 2860 * Must hold slab lock here because slab_free 2861 * may have freed the last object and be 2862 * waiting to release the slab. 2863 */ 2864 list_del(&page->lru); 2865 n->nr_partial--; 2866 slab_unlock(page); 2867 discard_slab(s, page); 2868 } else { 2869 list_move(&page->lru, 2870 slabs_by_inuse + page->inuse); 2871 } 2872 } 2873 2874 /* 2875 * Rebuild the partial list with the slabs filled up most 2876 * first and the least used slabs at the end. 2877 */ 2878 for (i = objects - 1; i >= 0; i--) 2879 list_splice(slabs_by_inuse + i, n->partial.prev); 2880 2881 spin_unlock_irqrestore(&n->list_lock, flags); 2882 } 2883 2884 kfree(slabs_by_inuse); 2885 return 0; 2886 } 2887 EXPORT_SYMBOL(kmem_cache_shrink); 2888 2889 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 2890 static int slab_mem_going_offline_callback(void *arg) 2891 { 2892 struct kmem_cache *s; 2893 2894 down_read(&slub_lock); 2895 list_for_each_entry(s, &slab_caches, list) 2896 kmem_cache_shrink(s); 2897 up_read(&slub_lock); 2898 2899 return 0; 2900 } 2901 2902 static void slab_mem_offline_callback(void *arg) 2903 { 2904 struct kmem_cache_node *n; 2905 struct kmem_cache *s; 2906 struct memory_notify *marg = arg; 2907 int offline_node; 2908 2909 offline_node = marg->status_change_nid; 2910 2911 /* 2912 * If the node still has available memory. we need kmem_cache_node 2913 * for it yet. 2914 */ 2915 if (offline_node < 0) 2916 return; 2917 2918 down_read(&slub_lock); 2919 list_for_each_entry(s, &slab_caches, list) { 2920 n = get_node(s, offline_node); 2921 if (n) { 2922 /* 2923 * if n->nr_slabs > 0, slabs still exist on the node 2924 * that is going down. We were unable to free them, 2925 * and offline_pages() function shoudn't call this 2926 * callback. So, we must fail. 2927 */ 2928 BUG_ON(slabs_node(s, offline_node)); 2929 2930 s->node[offline_node] = NULL; 2931 kmem_cache_free(kmalloc_caches, n); 2932 } 2933 } 2934 up_read(&slub_lock); 2935 } 2936 2937 static int slab_mem_going_online_callback(void *arg) 2938 { 2939 struct kmem_cache_node *n; 2940 struct kmem_cache *s; 2941 struct memory_notify *marg = arg; 2942 int nid = marg->status_change_nid; 2943 int ret = 0; 2944 2945 /* 2946 * If the node's memory is already available, then kmem_cache_node is 2947 * already created. Nothing to do. 2948 */ 2949 if (nid < 0) 2950 return 0; 2951 2952 /* 2953 * We are bringing a node online. No memory is available yet. We must 2954 * allocate a kmem_cache_node structure in order to bring the node 2955 * online. 2956 */ 2957 down_read(&slub_lock); 2958 list_for_each_entry(s, &slab_caches, list) { 2959 /* 2960 * XXX: kmem_cache_alloc_node will fallback to other nodes 2961 * since memory is not yet available from the node that 2962 * is brought up. 2963 */ 2964 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); 2965 if (!n) { 2966 ret = -ENOMEM; 2967 goto out; 2968 } 2969 init_kmem_cache_node(n, s); 2970 s->node[nid] = n; 2971 } 2972 out: 2973 up_read(&slub_lock); 2974 return ret; 2975 } 2976 2977 static int slab_memory_callback(struct notifier_block *self, 2978 unsigned long action, void *arg) 2979 { 2980 int ret = 0; 2981 2982 switch (action) { 2983 case MEM_GOING_ONLINE: 2984 ret = slab_mem_going_online_callback(arg); 2985 break; 2986 case MEM_GOING_OFFLINE: 2987 ret = slab_mem_going_offline_callback(arg); 2988 break; 2989 case MEM_OFFLINE: 2990 case MEM_CANCEL_ONLINE: 2991 slab_mem_offline_callback(arg); 2992 break; 2993 case MEM_ONLINE: 2994 case MEM_CANCEL_OFFLINE: 2995 break; 2996 } 2997 if (ret) 2998 ret = notifier_from_errno(ret); 2999 else 3000 ret = NOTIFY_OK; 3001 return ret; 3002 } 3003 3004 #endif /* CONFIG_MEMORY_HOTPLUG */ 3005 3006 /******************************************************************** 3007 * Basic setup of slabs 3008 *******************************************************************/ 3009 3010 void __init kmem_cache_init(void) 3011 { 3012 int i; 3013 int caches = 0; 3014 3015 init_alloc_cpu(); 3016 3017 #ifdef CONFIG_NUMA 3018 /* 3019 * Must first have the slab cache available for the allocations of the 3020 * struct kmem_cache_node's. There is special bootstrap code in 3021 * kmem_cache_open for slab_state == DOWN. 3022 */ 3023 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", 3024 sizeof(struct kmem_cache_node), GFP_KERNEL); 3025 kmalloc_caches[0].refcount = -1; 3026 caches++; 3027 3028 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 3029 #endif 3030 3031 /* Able to allocate the per node structures */ 3032 slab_state = PARTIAL; 3033 3034 /* Caches that are not of the two-to-the-power-of size */ 3035 if (KMALLOC_MIN_SIZE <= 64) { 3036 create_kmalloc_cache(&kmalloc_caches[1], 3037 "kmalloc-96", 96, GFP_KERNEL); 3038 caches++; 3039 create_kmalloc_cache(&kmalloc_caches[2], 3040 "kmalloc-192", 192, GFP_KERNEL); 3041 caches++; 3042 } 3043 3044 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3045 create_kmalloc_cache(&kmalloc_caches[i], 3046 "kmalloc", 1 << i, GFP_KERNEL); 3047 caches++; 3048 } 3049 3050 3051 /* 3052 * Patch up the size_index table if we have strange large alignment 3053 * requirements for the kmalloc array. This is only the case for 3054 * MIPS it seems. The standard arches will not generate any code here. 3055 * 3056 * Largest permitted alignment is 256 bytes due to the way we 3057 * handle the index determination for the smaller caches. 3058 * 3059 * Make sure that nothing crazy happens if someone starts tinkering 3060 * around with ARCH_KMALLOC_MINALIGN 3061 */ 3062 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3063 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3064 3065 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) 3066 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; 3067 3068 if (KMALLOC_MIN_SIZE == 128) { 3069 /* 3070 * The 192 byte sized cache is not used if the alignment 3071 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3072 * instead. 3073 */ 3074 for (i = 128 + 8; i <= 192; i += 8) 3075 size_index[(i - 1) / 8] = 8; 3076 } 3077 3078 slab_state = UP; 3079 3080 /* Provide the correct kmalloc names now that the caches are up */ 3081 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) 3082 kmalloc_caches[i]. name = 3083 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); 3084 3085 #ifdef CONFIG_SMP 3086 register_cpu_notifier(&slab_notifier); 3087 kmem_size = offsetof(struct kmem_cache, cpu_slab) + 3088 nr_cpu_ids * sizeof(struct kmem_cache_cpu *); 3089 #else 3090 kmem_size = sizeof(struct kmem_cache); 3091 #endif 3092 3093 printk(KERN_INFO 3094 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3095 " CPUs=%d, Nodes=%d\n", 3096 caches, cache_line_size(), 3097 slub_min_order, slub_max_order, slub_min_objects, 3098 nr_cpu_ids, nr_node_ids); 3099 } 3100 3101 /* 3102 * Find a mergeable slab cache 3103 */ 3104 static int slab_unmergeable(struct kmem_cache *s) 3105 { 3106 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3107 return 1; 3108 3109 if (s->ctor) 3110 return 1; 3111 3112 /* 3113 * We may have set a slab to be unmergeable during bootstrap. 3114 */ 3115 if (s->refcount < 0) 3116 return 1; 3117 3118 return 0; 3119 } 3120 3121 static struct kmem_cache *find_mergeable(size_t size, 3122 size_t align, unsigned long flags, const char *name, 3123 void (*ctor)(void *)) 3124 { 3125 struct kmem_cache *s; 3126 3127 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3128 return NULL; 3129 3130 if (ctor) 3131 return NULL; 3132 3133 size = ALIGN(size, sizeof(void *)); 3134 align = calculate_alignment(flags, align, size); 3135 size = ALIGN(size, align); 3136 flags = kmem_cache_flags(size, flags, name, NULL); 3137 3138 list_for_each_entry(s, &slab_caches, list) { 3139 if (slab_unmergeable(s)) 3140 continue; 3141 3142 if (size > s->size) 3143 continue; 3144 3145 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3146 continue; 3147 /* 3148 * Check if alignment is compatible. 3149 * Courtesy of Adrian Drzewiecki 3150 */ 3151 if ((s->size & ~(align - 1)) != s->size) 3152 continue; 3153 3154 if (s->size - size >= sizeof(void *)) 3155 continue; 3156 3157 return s; 3158 } 3159 return NULL; 3160 } 3161 3162 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 3163 size_t align, unsigned long flags, void (*ctor)(void *)) 3164 { 3165 struct kmem_cache *s; 3166 3167 down_write(&slub_lock); 3168 s = find_mergeable(size, align, flags, name, ctor); 3169 if (s) { 3170 int cpu; 3171 3172 s->refcount++; 3173 /* 3174 * Adjust the object sizes so that we clear 3175 * the complete object on kzalloc. 3176 */ 3177 s->objsize = max(s->objsize, (int)size); 3178 3179 /* 3180 * And then we need to update the object size in the 3181 * per cpu structures 3182 */ 3183 for_each_online_cpu(cpu) 3184 get_cpu_slab(s, cpu)->objsize = s->objsize; 3185 3186 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3187 up_write(&slub_lock); 3188 3189 if (sysfs_slab_alias(s, name)) { 3190 down_write(&slub_lock); 3191 s->refcount--; 3192 up_write(&slub_lock); 3193 goto err; 3194 } 3195 return s; 3196 } 3197 3198 s = kmalloc(kmem_size, GFP_KERNEL); 3199 if (s) { 3200 if (kmem_cache_open(s, GFP_KERNEL, name, 3201 size, align, flags, ctor)) { 3202 list_add(&s->list, &slab_caches); 3203 up_write(&slub_lock); 3204 if (sysfs_slab_add(s)) { 3205 down_write(&slub_lock); 3206 list_del(&s->list); 3207 up_write(&slub_lock); 3208 kfree(s); 3209 goto err; 3210 } 3211 return s; 3212 } 3213 kfree(s); 3214 } 3215 up_write(&slub_lock); 3216 3217 err: 3218 if (flags & SLAB_PANIC) 3219 panic("Cannot create slabcache %s\n", name); 3220 else 3221 s = NULL; 3222 return s; 3223 } 3224 EXPORT_SYMBOL(kmem_cache_create); 3225 3226 #ifdef CONFIG_SMP 3227 /* 3228 * Use the cpu notifier to insure that the cpu slabs are flushed when 3229 * necessary. 3230 */ 3231 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3232 unsigned long action, void *hcpu) 3233 { 3234 long cpu = (long)hcpu; 3235 struct kmem_cache *s; 3236 unsigned long flags; 3237 3238 switch (action) { 3239 case CPU_UP_PREPARE: 3240 case CPU_UP_PREPARE_FROZEN: 3241 init_alloc_cpu_cpu(cpu); 3242 down_read(&slub_lock); 3243 list_for_each_entry(s, &slab_caches, list) 3244 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu, 3245 GFP_KERNEL); 3246 up_read(&slub_lock); 3247 break; 3248 3249 case CPU_UP_CANCELED: 3250 case CPU_UP_CANCELED_FROZEN: 3251 case CPU_DEAD: 3252 case CPU_DEAD_FROZEN: 3253 down_read(&slub_lock); 3254 list_for_each_entry(s, &slab_caches, list) { 3255 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3256 3257 local_irq_save(flags); 3258 __flush_cpu_slab(s, cpu); 3259 local_irq_restore(flags); 3260 free_kmem_cache_cpu(c, cpu); 3261 s->cpu_slab[cpu] = NULL; 3262 } 3263 up_read(&slub_lock); 3264 break; 3265 default: 3266 break; 3267 } 3268 return NOTIFY_OK; 3269 } 3270 3271 static struct notifier_block __cpuinitdata slab_notifier = { 3272 .notifier_call = slab_cpuup_callback 3273 }; 3274 3275 #endif 3276 3277 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3278 { 3279 struct kmem_cache *s; 3280 void *ret; 3281 3282 if (unlikely(size > SLUB_MAX_SIZE)) 3283 return kmalloc_large(size, gfpflags); 3284 3285 s = get_slab(size, gfpflags); 3286 3287 if (unlikely(ZERO_OR_NULL_PTR(s))) 3288 return s; 3289 3290 ret = slab_alloc(s, gfpflags, -1, caller); 3291 3292 /* Honor the call site pointer we recieved. */ 3293 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3294 3295 return ret; 3296 } 3297 3298 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3299 int node, unsigned long caller) 3300 { 3301 struct kmem_cache *s; 3302 void *ret; 3303 3304 if (unlikely(size > SLUB_MAX_SIZE)) 3305 return kmalloc_large_node(size, gfpflags, node); 3306 3307 s = get_slab(size, gfpflags); 3308 3309 if (unlikely(ZERO_OR_NULL_PTR(s))) 3310 return s; 3311 3312 ret = slab_alloc(s, gfpflags, node, caller); 3313 3314 /* Honor the call site pointer we recieved. */ 3315 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3316 3317 return ret; 3318 } 3319 3320 #ifdef CONFIG_SLUB_DEBUG 3321 static unsigned long count_partial(struct kmem_cache_node *n, 3322 int (*get_count)(struct page *)) 3323 { 3324 unsigned long flags; 3325 unsigned long x = 0; 3326 struct page *page; 3327 3328 spin_lock_irqsave(&n->list_lock, flags); 3329 list_for_each_entry(page, &n->partial, lru) 3330 x += get_count(page); 3331 spin_unlock_irqrestore(&n->list_lock, flags); 3332 return x; 3333 } 3334 3335 static int count_inuse(struct page *page) 3336 { 3337 return page->inuse; 3338 } 3339 3340 static int count_total(struct page *page) 3341 { 3342 return page->objects; 3343 } 3344 3345 static int count_free(struct page *page) 3346 { 3347 return page->objects - page->inuse; 3348 } 3349 3350 static int validate_slab(struct kmem_cache *s, struct page *page, 3351 unsigned long *map) 3352 { 3353 void *p; 3354 void *addr = page_address(page); 3355 3356 if (!check_slab(s, page) || 3357 !on_freelist(s, page, NULL)) 3358 return 0; 3359 3360 /* Now we know that a valid freelist exists */ 3361 bitmap_zero(map, page->objects); 3362 3363 for_each_free_object(p, s, page->freelist) { 3364 set_bit(slab_index(p, s, addr), map); 3365 if (!check_object(s, page, p, 0)) 3366 return 0; 3367 } 3368 3369 for_each_object(p, s, addr, page->objects) 3370 if (!test_bit(slab_index(p, s, addr), map)) 3371 if (!check_object(s, page, p, 1)) 3372 return 0; 3373 return 1; 3374 } 3375 3376 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3377 unsigned long *map) 3378 { 3379 if (slab_trylock(page)) { 3380 validate_slab(s, page, map); 3381 slab_unlock(page); 3382 } else 3383 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", 3384 s->name, page); 3385 3386 if (s->flags & DEBUG_DEFAULT_FLAGS) { 3387 if (!PageSlubDebug(page)) 3388 printk(KERN_ERR "SLUB %s: SlubDebug not set " 3389 "on slab 0x%p\n", s->name, page); 3390 } else { 3391 if (PageSlubDebug(page)) 3392 printk(KERN_ERR "SLUB %s: SlubDebug set on " 3393 "slab 0x%p\n", s->name, page); 3394 } 3395 } 3396 3397 static int validate_slab_node(struct kmem_cache *s, 3398 struct kmem_cache_node *n, unsigned long *map) 3399 { 3400 unsigned long count = 0; 3401 struct page *page; 3402 unsigned long flags; 3403 3404 spin_lock_irqsave(&n->list_lock, flags); 3405 3406 list_for_each_entry(page, &n->partial, lru) { 3407 validate_slab_slab(s, page, map); 3408 count++; 3409 } 3410 if (count != n->nr_partial) 3411 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3412 "counter=%ld\n", s->name, count, n->nr_partial); 3413 3414 if (!(s->flags & SLAB_STORE_USER)) 3415 goto out; 3416 3417 list_for_each_entry(page, &n->full, lru) { 3418 validate_slab_slab(s, page, map); 3419 count++; 3420 } 3421 if (count != atomic_long_read(&n->nr_slabs)) 3422 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3423 "counter=%ld\n", s->name, count, 3424 atomic_long_read(&n->nr_slabs)); 3425 3426 out: 3427 spin_unlock_irqrestore(&n->list_lock, flags); 3428 return count; 3429 } 3430 3431 static long validate_slab_cache(struct kmem_cache *s) 3432 { 3433 int node; 3434 unsigned long count = 0; 3435 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3436 sizeof(unsigned long), GFP_KERNEL); 3437 3438 if (!map) 3439 return -ENOMEM; 3440 3441 flush_all(s); 3442 for_each_node_state(node, N_NORMAL_MEMORY) { 3443 struct kmem_cache_node *n = get_node(s, node); 3444 3445 count += validate_slab_node(s, n, map); 3446 } 3447 kfree(map); 3448 return count; 3449 } 3450 3451 #ifdef SLUB_RESILIENCY_TEST 3452 static void resiliency_test(void) 3453 { 3454 u8 *p; 3455 3456 printk(KERN_ERR "SLUB resiliency testing\n"); 3457 printk(KERN_ERR "-----------------------\n"); 3458 printk(KERN_ERR "A. Corruption after allocation\n"); 3459 3460 p = kzalloc(16, GFP_KERNEL); 3461 p[16] = 0x12; 3462 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 3463 " 0x12->0x%p\n\n", p + 16); 3464 3465 validate_slab_cache(kmalloc_caches + 4); 3466 3467 /* Hmmm... The next two are dangerous */ 3468 p = kzalloc(32, GFP_KERNEL); 3469 p[32 + sizeof(void *)] = 0x34; 3470 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 3471 " 0x34 -> -0x%p\n", p); 3472 printk(KERN_ERR 3473 "If allocated object is overwritten then not detectable\n\n"); 3474 3475 validate_slab_cache(kmalloc_caches + 5); 3476 p = kzalloc(64, GFP_KERNEL); 3477 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 3478 *p = 0x56; 3479 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 3480 p); 3481 printk(KERN_ERR 3482 "If allocated object is overwritten then not detectable\n\n"); 3483 validate_slab_cache(kmalloc_caches + 6); 3484 3485 printk(KERN_ERR "\nB. Corruption after free\n"); 3486 p = kzalloc(128, GFP_KERNEL); 3487 kfree(p); 3488 *p = 0x78; 3489 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 3490 validate_slab_cache(kmalloc_caches + 7); 3491 3492 p = kzalloc(256, GFP_KERNEL); 3493 kfree(p); 3494 p[50] = 0x9a; 3495 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 3496 p); 3497 validate_slab_cache(kmalloc_caches + 8); 3498 3499 p = kzalloc(512, GFP_KERNEL); 3500 kfree(p); 3501 p[512] = 0xab; 3502 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 3503 validate_slab_cache(kmalloc_caches + 9); 3504 } 3505 #else 3506 static void resiliency_test(void) {}; 3507 #endif 3508 3509 /* 3510 * Generate lists of code addresses where slabcache objects are allocated 3511 * and freed. 3512 */ 3513 3514 struct location { 3515 unsigned long count; 3516 unsigned long addr; 3517 long long sum_time; 3518 long min_time; 3519 long max_time; 3520 long min_pid; 3521 long max_pid; 3522 DECLARE_BITMAP(cpus, NR_CPUS); 3523 nodemask_t nodes; 3524 }; 3525 3526 struct loc_track { 3527 unsigned long max; 3528 unsigned long count; 3529 struct location *loc; 3530 }; 3531 3532 static void free_loc_track(struct loc_track *t) 3533 { 3534 if (t->max) 3535 free_pages((unsigned long)t->loc, 3536 get_order(sizeof(struct location) * t->max)); 3537 } 3538 3539 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3540 { 3541 struct location *l; 3542 int order; 3543 3544 order = get_order(sizeof(struct location) * max); 3545 3546 l = (void *)__get_free_pages(flags, order); 3547 if (!l) 3548 return 0; 3549 3550 if (t->count) { 3551 memcpy(l, t->loc, sizeof(struct location) * t->count); 3552 free_loc_track(t); 3553 } 3554 t->max = max; 3555 t->loc = l; 3556 return 1; 3557 } 3558 3559 static int add_location(struct loc_track *t, struct kmem_cache *s, 3560 const struct track *track) 3561 { 3562 long start, end, pos; 3563 struct location *l; 3564 unsigned long caddr; 3565 unsigned long age = jiffies - track->when; 3566 3567 start = -1; 3568 end = t->count; 3569 3570 for ( ; ; ) { 3571 pos = start + (end - start + 1) / 2; 3572 3573 /* 3574 * There is nothing at "end". If we end up there 3575 * we need to add something to before end. 3576 */ 3577 if (pos == end) 3578 break; 3579 3580 caddr = t->loc[pos].addr; 3581 if (track->addr == caddr) { 3582 3583 l = &t->loc[pos]; 3584 l->count++; 3585 if (track->when) { 3586 l->sum_time += age; 3587 if (age < l->min_time) 3588 l->min_time = age; 3589 if (age > l->max_time) 3590 l->max_time = age; 3591 3592 if (track->pid < l->min_pid) 3593 l->min_pid = track->pid; 3594 if (track->pid > l->max_pid) 3595 l->max_pid = track->pid; 3596 3597 cpumask_set_cpu(track->cpu, 3598 to_cpumask(l->cpus)); 3599 } 3600 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3601 return 1; 3602 } 3603 3604 if (track->addr < caddr) 3605 end = pos; 3606 else 3607 start = pos; 3608 } 3609 3610 /* 3611 * Not found. Insert new tracking element. 3612 */ 3613 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3614 return 0; 3615 3616 l = t->loc + pos; 3617 if (pos < t->count) 3618 memmove(l + 1, l, 3619 (t->count - pos) * sizeof(struct location)); 3620 t->count++; 3621 l->count = 1; 3622 l->addr = track->addr; 3623 l->sum_time = age; 3624 l->min_time = age; 3625 l->max_time = age; 3626 l->min_pid = track->pid; 3627 l->max_pid = track->pid; 3628 cpumask_clear(to_cpumask(l->cpus)); 3629 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 3630 nodes_clear(l->nodes); 3631 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3632 return 1; 3633 } 3634 3635 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3636 struct page *page, enum track_item alloc) 3637 { 3638 void *addr = page_address(page); 3639 DECLARE_BITMAP(map, page->objects); 3640 void *p; 3641 3642 bitmap_zero(map, page->objects); 3643 for_each_free_object(p, s, page->freelist) 3644 set_bit(slab_index(p, s, addr), map); 3645 3646 for_each_object(p, s, addr, page->objects) 3647 if (!test_bit(slab_index(p, s, addr), map)) 3648 add_location(t, s, get_track(s, p, alloc)); 3649 } 3650 3651 static int list_locations(struct kmem_cache *s, char *buf, 3652 enum track_item alloc) 3653 { 3654 int len = 0; 3655 unsigned long i; 3656 struct loc_track t = { 0, 0, NULL }; 3657 int node; 3658 3659 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 3660 GFP_TEMPORARY)) 3661 return sprintf(buf, "Out of memory\n"); 3662 3663 /* Push back cpu slabs */ 3664 flush_all(s); 3665 3666 for_each_node_state(node, N_NORMAL_MEMORY) { 3667 struct kmem_cache_node *n = get_node(s, node); 3668 unsigned long flags; 3669 struct page *page; 3670 3671 if (!atomic_long_read(&n->nr_slabs)) 3672 continue; 3673 3674 spin_lock_irqsave(&n->list_lock, flags); 3675 list_for_each_entry(page, &n->partial, lru) 3676 process_slab(&t, s, page, alloc); 3677 list_for_each_entry(page, &n->full, lru) 3678 process_slab(&t, s, page, alloc); 3679 spin_unlock_irqrestore(&n->list_lock, flags); 3680 } 3681 3682 for (i = 0; i < t.count; i++) { 3683 struct location *l = &t.loc[i]; 3684 3685 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 3686 break; 3687 len += sprintf(buf + len, "%7ld ", l->count); 3688 3689 if (l->addr) 3690 len += sprint_symbol(buf + len, (unsigned long)l->addr); 3691 else 3692 len += sprintf(buf + len, "<not-available>"); 3693 3694 if (l->sum_time != l->min_time) { 3695 len += sprintf(buf + len, " age=%ld/%ld/%ld", 3696 l->min_time, 3697 (long)div_u64(l->sum_time, l->count), 3698 l->max_time); 3699 } else 3700 len += sprintf(buf + len, " age=%ld", 3701 l->min_time); 3702 3703 if (l->min_pid != l->max_pid) 3704 len += sprintf(buf + len, " pid=%ld-%ld", 3705 l->min_pid, l->max_pid); 3706 else 3707 len += sprintf(buf + len, " pid=%ld", 3708 l->min_pid); 3709 3710 if (num_online_cpus() > 1 && 3711 !cpumask_empty(to_cpumask(l->cpus)) && 3712 len < PAGE_SIZE - 60) { 3713 len += sprintf(buf + len, " cpus="); 3714 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3715 to_cpumask(l->cpus)); 3716 } 3717 3718 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) && 3719 len < PAGE_SIZE - 60) { 3720 len += sprintf(buf + len, " nodes="); 3721 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3722 l->nodes); 3723 } 3724 3725 len += sprintf(buf + len, "\n"); 3726 } 3727 3728 free_loc_track(&t); 3729 if (!t.count) 3730 len += sprintf(buf, "No data\n"); 3731 return len; 3732 } 3733 3734 enum slab_stat_type { 3735 SL_ALL, /* All slabs */ 3736 SL_PARTIAL, /* Only partially allocated slabs */ 3737 SL_CPU, /* Only slabs used for cpu caches */ 3738 SL_OBJECTS, /* Determine allocated objects not slabs */ 3739 SL_TOTAL /* Determine object capacity not slabs */ 3740 }; 3741 3742 #define SO_ALL (1 << SL_ALL) 3743 #define SO_PARTIAL (1 << SL_PARTIAL) 3744 #define SO_CPU (1 << SL_CPU) 3745 #define SO_OBJECTS (1 << SL_OBJECTS) 3746 #define SO_TOTAL (1 << SL_TOTAL) 3747 3748 static ssize_t show_slab_objects(struct kmem_cache *s, 3749 char *buf, unsigned long flags) 3750 { 3751 unsigned long total = 0; 3752 int node; 3753 int x; 3754 unsigned long *nodes; 3755 unsigned long *per_cpu; 3756 3757 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 3758 if (!nodes) 3759 return -ENOMEM; 3760 per_cpu = nodes + nr_node_ids; 3761 3762 if (flags & SO_CPU) { 3763 int cpu; 3764 3765 for_each_possible_cpu(cpu) { 3766 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3767 3768 if (!c || c->node < 0) 3769 continue; 3770 3771 if (c->page) { 3772 if (flags & SO_TOTAL) 3773 x = c->page->objects; 3774 else if (flags & SO_OBJECTS) 3775 x = c->page->inuse; 3776 else 3777 x = 1; 3778 3779 total += x; 3780 nodes[c->node] += x; 3781 } 3782 per_cpu[c->node]++; 3783 } 3784 } 3785 3786 if (flags & SO_ALL) { 3787 for_each_node_state(node, N_NORMAL_MEMORY) { 3788 struct kmem_cache_node *n = get_node(s, node); 3789 3790 if (flags & SO_TOTAL) 3791 x = atomic_long_read(&n->total_objects); 3792 else if (flags & SO_OBJECTS) 3793 x = atomic_long_read(&n->total_objects) - 3794 count_partial(n, count_free); 3795 3796 else 3797 x = atomic_long_read(&n->nr_slabs); 3798 total += x; 3799 nodes[node] += x; 3800 } 3801 3802 } else if (flags & SO_PARTIAL) { 3803 for_each_node_state(node, N_NORMAL_MEMORY) { 3804 struct kmem_cache_node *n = get_node(s, node); 3805 3806 if (flags & SO_TOTAL) 3807 x = count_partial(n, count_total); 3808 else if (flags & SO_OBJECTS) 3809 x = count_partial(n, count_inuse); 3810 else 3811 x = n->nr_partial; 3812 total += x; 3813 nodes[node] += x; 3814 } 3815 } 3816 x = sprintf(buf, "%lu", total); 3817 #ifdef CONFIG_NUMA 3818 for_each_node_state(node, N_NORMAL_MEMORY) 3819 if (nodes[node]) 3820 x += sprintf(buf + x, " N%d=%lu", 3821 node, nodes[node]); 3822 #endif 3823 kfree(nodes); 3824 return x + sprintf(buf + x, "\n"); 3825 } 3826 3827 static int any_slab_objects(struct kmem_cache *s) 3828 { 3829 int node; 3830 3831 for_each_online_node(node) { 3832 struct kmem_cache_node *n = get_node(s, node); 3833 3834 if (!n) 3835 continue; 3836 3837 if (atomic_long_read(&n->total_objects)) 3838 return 1; 3839 } 3840 return 0; 3841 } 3842 3843 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 3844 #define to_slab(n) container_of(n, struct kmem_cache, kobj); 3845 3846 struct slab_attribute { 3847 struct attribute attr; 3848 ssize_t (*show)(struct kmem_cache *s, char *buf); 3849 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 3850 }; 3851 3852 #define SLAB_ATTR_RO(_name) \ 3853 static struct slab_attribute _name##_attr = __ATTR_RO(_name) 3854 3855 #define SLAB_ATTR(_name) \ 3856 static struct slab_attribute _name##_attr = \ 3857 __ATTR(_name, 0644, _name##_show, _name##_store) 3858 3859 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 3860 { 3861 return sprintf(buf, "%d\n", s->size); 3862 } 3863 SLAB_ATTR_RO(slab_size); 3864 3865 static ssize_t align_show(struct kmem_cache *s, char *buf) 3866 { 3867 return sprintf(buf, "%d\n", s->align); 3868 } 3869 SLAB_ATTR_RO(align); 3870 3871 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 3872 { 3873 return sprintf(buf, "%d\n", s->objsize); 3874 } 3875 SLAB_ATTR_RO(object_size); 3876 3877 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 3878 { 3879 return sprintf(buf, "%d\n", oo_objects(s->oo)); 3880 } 3881 SLAB_ATTR_RO(objs_per_slab); 3882 3883 static ssize_t order_store(struct kmem_cache *s, 3884 const char *buf, size_t length) 3885 { 3886 unsigned long order; 3887 int err; 3888 3889 err = strict_strtoul(buf, 10, &order); 3890 if (err) 3891 return err; 3892 3893 if (order > slub_max_order || order < slub_min_order) 3894 return -EINVAL; 3895 3896 calculate_sizes(s, order); 3897 return length; 3898 } 3899 3900 static ssize_t order_show(struct kmem_cache *s, char *buf) 3901 { 3902 return sprintf(buf, "%d\n", oo_order(s->oo)); 3903 } 3904 SLAB_ATTR(order); 3905 3906 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 3907 { 3908 return sprintf(buf, "%lu\n", s->min_partial); 3909 } 3910 3911 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 3912 size_t length) 3913 { 3914 unsigned long min; 3915 int err; 3916 3917 err = strict_strtoul(buf, 10, &min); 3918 if (err) 3919 return err; 3920 3921 set_min_partial(s, min); 3922 return length; 3923 } 3924 SLAB_ATTR(min_partial); 3925 3926 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 3927 { 3928 if (s->ctor) { 3929 int n = sprint_symbol(buf, (unsigned long)s->ctor); 3930 3931 return n + sprintf(buf + n, "\n"); 3932 } 3933 return 0; 3934 } 3935 SLAB_ATTR_RO(ctor); 3936 3937 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 3938 { 3939 return sprintf(buf, "%d\n", s->refcount - 1); 3940 } 3941 SLAB_ATTR_RO(aliases); 3942 3943 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 3944 { 3945 return show_slab_objects(s, buf, SO_ALL); 3946 } 3947 SLAB_ATTR_RO(slabs); 3948 3949 static ssize_t partial_show(struct kmem_cache *s, char *buf) 3950 { 3951 return show_slab_objects(s, buf, SO_PARTIAL); 3952 } 3953 SLAB_ATTR_RO(partial); 3954 3955 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 3956 { 3957 return show_slab_objects(s, buf, SO_CPU); 3958 } 3959 SLAB_ATTR_RO(cpu_slabs); 3960 3961 static ssize_t objects_show(struct kmem_cache *s, char *buf) 3962 { 3963 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 3964 } 3965 SLAB_ATTR_RO(objects); 3966 3967 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 3968 { 3969 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 3970 } 3971 SLAB_ATTR_RO(objects_partial); 3972 3973 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 3974 { 3975 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 3976 } 3977 SLAB_ATTR_RO(total_objects); 3978 3979 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 3980 { 3981 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 3982 } 3983 3984 static ssize_t sanity_checks_store(struct kmem_cache *s, 3985 const char *buf, size_t length) 3986 { 3987 s->flags &= ~SLAB_DEBUG_FREE; 3988 if (buf[0] == '1') 3989 s->flags |= SLAB_DEBUG_FREE; 3990 return length; 3991 } 3992 SLAB_ATTR(sanity_checks); 3993 3994 static ssize_t trace_show(struct kmem_cache *s, char *buf) 3995 { 3996 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 3997 } 3998 3999 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4000 size_t length) 4001 { 4002 s->flags &= ~SLAB_TRACE; 4003 if (buf[0] == '1') 4004 s->flags |= SLAB_TRACE; 4005 return length; 4006 } 4007 SLAB_ATTR(trace); 4008 4009 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4010 { 4011 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4012 } 4013 4014 static ssize_t reclaim_account_store(struct kmem_cache *s, 4015 const char *buf, size_t length) 4016 { 4017 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4018 if (buf[0] == '1') 4019 s->flags |= SLAB_RECLAIM_ACCOUNT; 4020 return length; 4021 } 4022 SLAB_ATTR(reclaim_account); 4023 4024 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4025 { 4026 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4027 } 4028 SLAB_ATTR_RO(hwcache_align); 4029 4030 #ifdef CONFIG_ZONE_DMA 4031 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4032 { 4033 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4034 } 4035 SLAB_ATTR_RO(cache_dma); 4036 #endif 4037 4038 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4039 { 4040 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4041 } 4042 SLAB_ATTR_RO(destroy_by_rcu); 4043 4044 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4045 { 4046 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4047 } 4048 4049 static ssize_t red_zone_store(struct kmem_cache *s, 4050 const char *buf, size_t length) 4051 { 4052 if (any_slab_objects(s)) 4053 return -EBUSY; 4054 4055 s->flags &= ~SLAB_RED_ZONE; 4056 if (buf[0] == '1') 4057 s->flags |= SLAB_RED_ZONE; 4058 calculate_sizes(s, -1); 4059 return length; 4060 } 4061 SLAB_ATTR(red_zone); 4062 4063 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4064 { 4065 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4066 } 4067 4068 static ssize_t poison_store(struct kmem_cache *s, 4069 const char *buf, size_t length) 4070 { 4071 if (any_slab_objects(s)) 4072 return -EBUSY; 4073 4074 s->flags &= ~SLAB_POISON; 4075 if (buf[0] == '1') 4076 s->flags |= SLAB_POISON; 4077 calculate_sizes(s, -1); 4078 return length; 4079 } 4080 SLAB_ATTR(poison); 4081 4082 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4083 { 4084 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4085 } 4086 4087 static ssize_t store_user_store(struct kmem_cache *s, 4088 const char *buf, size_t length) 4089 { 4090 if (any_slab_objects(s)) 4091 return -EBUSY; 4092 4093 s->flags &= ~SLAB_STORE_USER; 4094 if (buf[0] == '1') 4095 s->flags |= SLAB_STORE_USER; 4096 calculate_sizes(s, -1); 4097 return length; 4098 } 4099 SLAB_ATTR(store_user); 4100 4101 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4102 { 4103 return 0; 4104 } 4105 4106 static ssize_t validate_store(struct kmem_cache *s, 4107 const char *buf, size_t length) 4108 { 4109 int ret = -EINVAL; 4110 4111 if (buf[0] == '1') { 4112 ret = validate_slab_cache(s); 4113 if (ret >= 0) 4114 ret = length; 4115 } 4116 return ret; 4117 } 4118 SLAB_ATTR(validate); 4119 4120 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4121 { 4122 return 0; 4123 } 4124 4125 static ssize_t shrink_store(struct kmem_cache *s, 4126 const char *buf, size_t length) 4127 { 4128 if (buf[0] == '1') { 4129 int rc = kmem_cache_shrink(s); 4130 4131 if (rc) 4132 return rc; 4133 } else 4134 return -EINVAL; 4135 return length; 4136 } 4137 SLAB_ATTR(shrink); 4138 4139 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4140 { 4141 if (!(s->flags & SLAB_STORE_USER)) 4142 return -ENOSYS; 4143 return list_locations(s, buf, TRACK_ALLOC); 4144 } 4145 SLAB_ATTR_RO(alloc_calls); 4146 4147 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4148 { 4149 if (!(s->flags & SLAB_STORE_USER)) 4150 return -ENOSYS; 4151 return list_locations(s, buf, TRACK_FREE); 4152 } 4153 SLAB_ATTR_RO(free_calls); 4154 4155 #ifdef CONFIG_NUMA 4156 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4157 { 4158 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4159 } 4160 4161 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4162 const char *buf, size_t length) 4163 { 4164 unsigned long ratio; 4165 int err; 4166 4167 err = strict_strtoul(buf, 10, &ratio); 4168 if (err) 4169 return err; 4170 4171 if (ratio <= 100) 4172 s->remote_node_defrag_ratio = ratio * 10; 4173 4174 return length; 4175 } 4176 SLAB_ATTR(remote_node_defrag_ratio); 4177 #endif 4178 4179 #ifdef CONFIG_SLUB_STATS 4180 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4181 { 4182 unsigned long sum = 0; 4183 int cpu; 4184 int len; 4185 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4186 4187 if (!data) 4188 return -ENOMEM; 4189 4190 for_each_online_cpu(cpu) { 4191 unsigned x = get_cpu_slab(s, cpu)->stat[si]; 4192 4193 data[cpu] = x; 4194 sum += x; 4195 } 4196 4197 len = sprintf(buf, "%lu", sum); 4198 4199 #ifdef CONFIG_SMP 4200 for_each_online_cpu(cpu) { 4201 if (data[cpu] && len < PAGE_SIZE - 20) 4202 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4203 } 4204 #endif 4205 kfree(data); 4206 return len + sprintf(buf + len, "\n"); 4207 } 4208 4209 #define STAT_ATTR(si, text) \ 4210 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4211 { \ 4212 return show_stat(s, buf, si); \ 4213 } \ 4214 SLAB_ATTR_RO(text); \ 4215 4216 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4217 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4218 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4219 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4220 STAT_ATTR(FREE_FROZEN, free_frozen); 4221 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4222 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4223 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4224 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4225 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4226 STAT_ATTR(FREE_SLAB, free_slab); 4227 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4228 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4229 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4230 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4231 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4232 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4233 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4234 #endif 4235 4236 static struct attribute *slab_attrs[] = { 4237 &slab_size_attr.attr, 4238 &object_size_attr.attr, 4239 &objs_per_slab_attr.attr, 4240 &order_attr.attr, 4241 &min_partial_attr.attr, 4242 &objects_attr.attr, 4243 &objects_partial_attr.attr, 4244 &total_objects_attr.attr, 4245 &slabs_attr.attr, 4246 &partial_attr.attr, 4247 &cpu_slabs_attr.attr, 4248 &ctor_attr.attr, 4249 &aliases_attr.attr, 4250 &align_attr.attr, 4251 &sanity_checks_attr.attr, 4252 &trace_attr.attr, 4253 &hwcache_align_attr.attr, 4254 &reclaim_account_attr.attr, 4255 &destroy_by_rcu_attr.attr, 4256 &red_zone_attr.attr, 4257 &poison_attr.attr, 4258 &store_user_attr.attr, 4259 &validate_attr.attr, 4260 &shrink_attr.attr, 4261 &alloc_calls_attr.attr, 4262 &free_calls_attr.attr, 4263 #ifdef CONFIG_ZONE_DMA 4264 &cache_dma_attr.attr, 4265 #endif 4266 #ifdef CONFIG_NUMA 4267 &remote_node_defrag_ratio_attr.attr, 4268 #endif 4269 #ifdef CONFIG_SLUB_STATS 4270 &alloc_fastpath_attr.attr, 4271 &alloc_slowpath_attr.attr, 4272 &free_fastpath_attr.attr, 4273 &free_slowpath_attr.attr, 4274 &free_frozen_attr.attr, 4275 &free_add_partial_attr.attr, 4276 &free_remove_partial_attr.attr, 4277 &alloc_from_partial_attr.attr, 4278 &alloc_slab_attr.attr, 4279 &alloc_refill_attr.attr, 4280 &free_slab_attr.attr, 4281 &cpuslab_flush_attr.attr, 4282 &deactivate_full_attr.attr, 4283 &deactivate_empty_attr.attr, 4284 &deactivate_to_head_attr.attr, 4285 &deactivate_to_tail_attr.attr, 4286 &deactivate_remote_frees_attr.attr, 4287 &order_fallback_attr.attr, 4288 #endif 4289 NULL 4290 }; 4291 4292 static struct attribute_group slab_attr_group = { 4293 .attrs = slab_attrs, 4294 }; 4295 4296 static ssize_t slab_attr_show(struct kobject *kobj, 4297 struct attribute *attr, 4298 char *buf) 4299 { 4300 struct slab_attribute *attribute; 4301 struct kmem_cache *s; 4302 int err; 4303 4304 attribute = to_slab_attr(attr); 4305 s = to_slab(kobj); 4306 4307 if (!attribute->show) 4308 return -EIO; 4309 4310 err = attribute->show(s, buf); 4311 4312 return err; 4313 } 4314 4315 static ssize_t slab_attr_store(struct kobject *kobj, 4316 struct attribute *attr, 4317 const char *buf, size_t len) 4318 { 4319 struct slab_attribute *attribute; 4320 struct kmem_cache *s; 4321 int err; 4322 4323 attribute = to_slab_attr(attr); 4324 s = to_slab(kobj); 4325 4326 if (!attribute->store) 4327 return -EIO; 4328 4329 err = attribute->store(s, buf, len); 4330 4331 return err; 4332 } 4333 4334 static void kmem_cache_release(struct kobject *kobj) 4335 { 4336 struct kmem_cache *s = to_slab(kobj); 4337 4338 kfree(s); 4339 } 4340 4341 static struct sysfs_ops slab_sysfs_ops = { 4342 .show = slab_attr_show, 4343 .store = slab_attr_store, 4344 }; 4345 4346 static struct kobj_type slab_ktype = { 4347 .sysfs_ops = &slab_sysfs_ops, 4348 .release = kmem_cache_release 4349 }; 4350 4351 static int uevent_filter(struct kset *kset, struct kobject *kobj) 4352 { 4353 struct kobj_type *ktype = get_ktype(kobj); 4354 4355 if (ktype == &slab_ktype) 4356 return 1; 4357 return 0; 4358 } 4359 4360 static struct kset_uevent_ops slab_uevent_ops = { 4361 .filter = uevent_filter, 4362 }; 4363 4364 static struct kset *slab_kset; 4365 4366 #define ID_STR_LENGTH 64 4367 4368 /* Create a unique string id for a slab cache: 4369 * 4370 * Format :[flags-]size 4371 */ 4372 static char *create_unique_id(struct kmem_cache *s) 4373 { 4374 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 4375 char *p = name; 4376 4377 BUG_ON(!name); 4378 4379 *p++ = ':'; 4380 /* 4381 * First flags affecting slabcache operations. We will only 4382 * get here for aliasable slabs so we do not need to support 4383 * too many flags. The flags here must cover all flags that 4384 * are matched during merging to guarantee that the id is 4385 * unique. 4386 */ 4387 if (s->flags & SLAB_CACHE_DMA) 4388 *p++ = 'd'; 4389 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4390 *p++ = 'a'; 4391 if (s->flags & SLAB_DEBUG_FREE) 4392 *p++ = 'F'; 4393 if (p != name + 1) 4394 *p++ = '-'; 4395 p += sprintf(p, "%07d", s->size); 4396 BUG_ON(p > name + ID_STR_LENGTH - 1); 4397 return name; 4398 } 4399 4400 static int sysfs_slab_add(struct kmem_cache *s) 4401 { 4402 int err; 4403 const char *name; 4404 int unmergeable; 4405 4406 if (slab_state < SYSFS) 4407 /* Defer until later */ 4408 return 0; 4409 4410 unmergeable = slab_unmergeable(s); 4411 if (unmergeable) { 4412 /* 4413 * Slabcache can never be merged so we can use the name proper. 4414 * This is typically the case for debug situations. In that 4415 * case we can catch duplicate names easily. 4416 */ 4417 sysfs_remove_link(&slab_kset->kobj, s->name); 4418 name = s->name; 4419 } else { 4420 /* 4421 * Create a unique name for the slab as a target 4422 * for the symlinks. 4423 */ 4424 name = create_unique_id(s); 4425 } 4426 4427 s->kobj.kset = slab_kset; 4428 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 4429 if (err) { 4430 kobject_put(&s->kobj); 4431 return err; 4432 } 4433 4434 err = sysfs_create_group(&s->kobj, &slab_attr_group); 4435 if (err) 4436 return err; 4437 kobject_uevent(&s->kobj, KOBJ_ADD); 4438 if (!unmergeable) { 4439 /* Setup first alias */ 4440 sysfs_slab_alias(s, s->name); 4441 kfree(name); 4442 } 4443 return 0; 4444 } 4445 4446 static void sysfs_slab_remove(struct kmem_cache *s) 4447 { 4448 kobject_uevent(&s->kobj, KOBJ_REMOVE); 4449 kobject_del(&s->kobj); 4450 kobject_put(&s->kobj); 4451 } 4452 4453 /* 4454 * Need to buffer aliases during bootup until sysfs becomes 4455 * available lest we lose that information. 4456 */ 4457 struct saved_alias { 4458 struct kmem_cache *s; 4459 const char *name; 4460 struct saved_alias *next; 4461 }; 4462 4463 static struct saved_alias *alias_list; 4464 4465 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 4466 { 4467 struct saved_alias *al; 4468 4469 if (slab_state == SYSFS) { 4470 /* 4471 * If we have a leftover link then remove it. 4472 */ 4473 sysfs_remove_link(&slab_kset->kobj, name); 4474 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 4475 } 4476 4477 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 4478 if (!al) 4479 return -ENOMEM; 4480 4481 al->s = s; 4482 al->name = name; 4483 al->next = alias_list; 4484 alias_list = al; 4485 return 0; 4486 } 4487 4488 static int __init slab_sysfs_init(void) 4489 { 4490 struct kmem_cache *s; 4491 int err; 4492 4493 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 4494 if (!slab_kset) { 4495 printk(KERN_ERR "Cannot register slab subsystem.\n"); 4496 return -ENOSYS; 4497 } 4498 4499 slab_state = SYSFS; 4500 4501 list_for_each_entry(s, &slab_caches, list) { 4502 err = sysfs_slab_add(s); 4503 if (err) 4504 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 4505 " to sysfs\n", s->name); 4506 } 4507 4508 while (alias_list) { 4509 struct saved_alias *al = alias_list; 4510 4511 alias_list = alias_list->next; 4512 err = sysfs_slab_alias(al->s, al->name); 4513 if (err) 4514 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 4515 " %s to sysfs\n", s->name); 4516 kfree(al); 4517 } 4518 4519 resiliency_test(); 4520 return 0; 4521 } 4522 4523 __initcall(slab_sysfs_init); 4524 #endif 4525 4526 /* 4527 * The /proc/slabinfo ABI 4528 */ 4529 #ifdef CONFIG_SLABINFO 4530 static void print_slabinfo_header(struct seq_file *m) 4531 { 4532 seq_puts(m, "slabinfo - version: 2.1\n"); 4533 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4534 "<objperslab> <pagesperslab>"); 4535 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4536 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4537 seq_putc(m, '\n'); 4538 } 4539 4540 static void *s_start(struct seq_file *m, loff_t *pos) 4541 { 4542 loff_t n = *pos; 4543 4544 down_read(&slub_lock); 4545 if (!n) 4546 print_slabinfo_header(m); 4547 4548 return seq_list_start(&slab_caches, *pos); 4549 } 4550 4551 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4552 { 4553 return seq_list_next(p, &slab_caches, pos); 4554 } 4555 4556 static void s_stop(struct seq_file *m, void *p) 4557 { 4558 up_read(&slub_lock); 4559 } 4560 4561 static int s_show(struct seq_file *m, void *p) 4562 { 4563 unsigned long nr_partials = 0; 4564 unsigned long nr_slabs = 0; 4565 unsigned long nr_inuse = 0; 4566 unsigned long nr_objs = 0; 4567 unsigned long nr_free = 0; 4568 struct kmem_cache *s; 4569 int node; 4570 4571 s = list_entry(p, struct kmem_cache, list); 4572 4573 for_each_online_node(node) { 4574 struct kmem_cache_node *n = get_node(s, node); 4575 4576 if (!n) 4577 continue; 4578 4579 nr_partials += n->nr_partial; 4580 nr_slabs += atomic_long_read(&n->nr_slabs); 4581 nr_objs += atomic_long_read(&n->total_objects); 4582 nr_free += count_partial(n, count_free); 4583 } 4584 4585 nr_inuse = nr_objs - nr_free; 4586 4587 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 4588 nr_objs, s->size, oo_objects(s->oo), 4589 (1 << oo_order(s->oo))); 4590 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 4591 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 4592 0UL); 4593 seq_putc(m, '\n'); 4594 return 0; 4595 } 4596 4597 static const struct seq_operations slabinfo_op = { 4598 .start = s_start, 4599 .next = s_next, 4600 .stop = s_stop, 4601 .show = s_show, 4602 }; 4603 4604 static int slabinfo_open(struct inode *inode, struct file *file) 4605 { 4606 return seq_open(file, &slabinfo_op); 4607 } 4608 4609 static const struct file_operations proc_slabinfo_operations = { 4610 .open = slabinfo_open, 4611 .read = seq_read, 4612 .llseek = seq_lseek, 4613 .release = seq_release, 4614 }; 4615 4616 static int __init slab_proc_init(void) 4617 { 4618 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations); 4619 return 0; 4620 } 4621 module_init(slab_proc_init); 4622 #endif /* CONFIG_SLABINFO */ 4623