1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks and only 6 * uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/swap.h> /* struct reclaim_state */ 13 #include <linux/module.h> 14 #include <linux/bit_spinlock.h> 15 #include <linux/interrupt.h> 16 #include <linux/bitops.h> 17 #include <linux/slab.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/kmemcheck.h> 21 #include <linux/cpu.h> 22 #include <linux/cpuset.h> 23 #include <linux/mempolicy.h> 24 #include <linux/ctype.h> 25 #include <linux/debugobjects.h> 26 #include <linux/kallsyms.h> 27 #include <linux/memory.h> 28 #include <linux/math64.h> 29 #include <linux/fault-inject.h> 30 #include <linux/stacktrace.h> 31 32 #include <trace/events/kmem.h> 33 34 /* 35 * Lock order: 36 * 1. slab_lock(page) 37 * 2. slab->list_lock 38 * 39 * The slab_lock protects operations on the object of a particular 40 * slab and its metadata in the page struct. If the slab lock 41 * has been taken then no allocations nor frees can be performed 42 * on the objects in the slab nor can the slab be added or removed 43 * from the partial or full lists since this would mean modifying 44 * the page_struct of the slab. 45 * 46 * The list_lock protects the partial and full list on each node and 47 * the partial slab counter. If taken then no new slabs may be added or 48 * removed from the lists nor make the number of partial slabs be modified. 49 * (Note that the total number of slabs is an atomic value that may be 50 * modified without taking the list lock). 51 * 52 * The list_lock is a centralized lock and thus we avoid taking it as 53 * much as possible. As long as SLUB does not have to handle partial 54 * slabs, operations can continue without any centralized lock. F.e. 55 * allocating a long series of objects that fill up slabs does not require 56 * the list lock. 57 * 58 * The lock order is sometimes inverted when we are trying to get a slab 59 * off a list. We take the list_lock and then look for a page on the list 60 * to use. While we do that objects in the slabs may be freed. We can 61 * only operate on the slab if we have also taken the slab_lock. So we use 62 * a slab_trylock() on the slab. If trylock was successful then no frees 63 * can occur anymore and we can use the slab for allocations etc. If the 64 * slab_trylock() does not succeed then frees are in progress in the slab and 65 * we must stay away from it for a while since we may cause a bouncing 66 * cacheline if we try to acquire the lock. So go onto the next slab. 67 * If all pages are busy then we may allocate a new slab instead of reusing 68 * a partial slab. A new slab has no one operating on it and thus there is 69 * no danger of cacheline contention. 70 * 71 * Interrupts are disabled during allocation and deallocation in order to 72 * make the slab allocator safe to use in the context of an irq. In addition 73 * interrupts are disabled to ensure that the processor does not change 74 * while handling per_cpu slabs, due to kernel preemption. 75 * 76 * SLUB assigns one slab for allocation to each processor. 77 * Allocations only occur from these slabs called cpu slabs. 78 * 79 * Slabs with free elements are kept on a partial list and during regular 80 * operations no list for full slabs is used. If an object in a full slab is 81 * freed then the slab will show up again on the partial lists. 82 * We track full slabs for debugging purposes though because otherwise we 83 * cannot scan all objects. 84 * 85 * Slabs are freed when they become empty. Teardown and setup is 86 * minimal so we rely on the page allocators per cpu caches for 87 * fast frees and allocs. 88 * 89 * Overloading of page flags that are otherwise used for LRU management. 90 * 91 * PageActive The slab is frozen and exempt from list processing. 92 * This means that the slab is dedicated to a purpose 93 * such as satisfying allocations for a specific 94 * processor. Objects may be freed in the slab while 95 * it is frozen but slab_free will then skip the usual 96 * list operations. It is up to the processor holding 97 * the slab to integrate the slab into the slab lists 98 * when the slab is no longer needed. 99 * 100 * One use of this flag is to mark slabs that are 101 * used for allocations. Then such a slab becomes a cpu 102 * slab. The cpu slab may be equipped with an additional 103 * freelist that allows lockless access to 104 * free objects in addition to the regular freelist 105 * that requires the slab lock. 106 * 107 * PageError Slab requires special handling due to debug 108 * options set. This moves slab handling out of 109 * the fast path and disables lockless freelists. 110 */ 111 112 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 113 SLAB_TRACE | SLAB_DEBUG_FREE) 114 115 static inline int kmem_cache_debug(struct kmem_cache *s) 116 { 117 #ifdef CONFIG_SLUB_DEBUG 118 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 119 #else 120 return 0; 121 #endif 122 } 123 124 /* 125 * Issues still to be resolved: 126 * 127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 128 * 129 * - Variable sizing of the per node arrays 130 */ 131 132 /* Enable to test recovery from slab corruption on boot */ 133 #undef SLUB_RESILIENCY_TEST 134 135 /* 136 * Mininum number of partial slabs. These will be left on the partial 137 * lists even if they are empty. kmem_cache_shrink may reclaim them. 138 */ 139 #define MIN_PARTIAL 5 140 141 /* 142 * Maximum number of desirable partial slabs. 143 * The existence of more partial slabs makes kmem_cache_shrink 144 * sort the partial list by the number of objects in the. 145 */ 146 #define MAX_PARTIAL 10 147 148 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 149 SLAB_POISON | SLAB_STORE_USER) 150 151 /* 152 * Debugging flags that require metadata to be stored in the slab. These get 153 * disabled when slub_debug=O is used and a cache's min order increases with 154 * metadata. 155 */ 156 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 157 158 /* 159 * Set of flags that will prevent slab merging 160 */ 161 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 162 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 163 SLAB_FAILSLAB) 164 165 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 166 SLAB_CACHE_DMA | SLAB_NOTRACK) 167 168 #define OO_SHIFT 16 169 #define OO_MASK ((1 << OO_SHIFT) - 1) 170 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ 171 172 /* Internal SLUB flags */ 173 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 174 175 static int kmem_size = sizeof(struct kmem_cache); 176 177 #ifdef CONFIG_SMP 178 static struct notifier_block slab_notifier; 179 #endif 180 181 static enum { 182 DOWN, /* No slab functionality available */ 183 PARTIAL, /* Kmem_cache_node works */ 184 UP, /* Everything works but does not show up in sysfs */ 185 SYSFS /* Sysfs up */ 186 } slab_state = DOWN; 187 188 /* A list of all slab caches on the system */ 189 static DECLARE_RWSEM(slub_lock); 190 static LIST_HEAD(slab_caches); 191 192 /* 193 * Tracking user of a slab. 194 */ 195 #define TRACK_ADDRS_COUNT 16 196 struct track { 197 unsigned long addr; /* Called from address */ 198 #ifdef CONFIG_STACKTRACE 199 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 200 #endif 201 int cpu; /* Was running on cpu */ 202 int pid; /* Pid context */ 203 unsigned long when; /* When did the operation occur */ 204 }; 205 206 enum track_item { TRACK_ALLOC, TRACK_FREE }; 207 208 #ifdef CONFIG_SYSFS 209 static int sysfs_slab_add(struct kmem_cache *); 210 static int sysfs_slab_alias(struct kmem_cache *, const char *); 211 static void sysfs_slab_remove(struct kmem_cache *); 212 213 #else 214 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 215 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 216 { return 0; } 217 static inline void sysfs_slab_remove(struct kmem_cache *s) 218 { 219 kfree(s->name); 220 kfree(s); 221 } 222 223 #endif 224 225 static inline void stat(const struct kmem_cache *s, enum stat_item si) 226 { 227 #ifdef CONFIG_SLUB_STATS 228 __this_cpu_inc(s->cpu_slab->stat[si]); 229 #endif 230 } 231 232 /******************************************************************** 233 * Core slab cache functions 234 *******************************************************************/ 235 236 int slab_is_available(void) 237 { 238 return slab_state >= UP; 239 } 240 241 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 242 { 243 return s->node[node]; 244 } 245 246 /* Verify that a pointer has an address that is valid within a slab page */ 247 static inline int check_valid_pointer(struct kmem_cache *s, 248 struct page *page, const void *object) 249 { 250 void *base; 251 252 if (!object) 253 return 1; 254 255 base = page_address(page); 256 if (object < base || object >= base + page->objects * s->size || 257 (object - base) % s->size) { 258 return 0; 259 } 260 261 return 1; 262 } 263 264 static inline void *get_freepointer(struct kmem_cache *s, void *object) 265 { 266 return *(void **)(object + s->offset); 267 } 268 269 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 270 { 271 void *p; 272 273 #ifdef CONFIG_DEBUG_PAGEALLOC 274 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 275 #else 276 p = get_freepointer(s, object); 277 #endif 278 return p; 279 } 280 281 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 282 { 283 *(void **)(object + s->offset) = fp; 284 } 285 286 /* Loop over all objects in a slab */ 287 #define for_each_object(__p, __s, __addr, __objects) \ 288 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 289 __p += (__s)->size) 290 291 /* Determine object index from a given position */ 292 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 293 { 294 return (p - addr) / s->size; 295 } 296 297 static inline size_t slab_ksize(const struct kmem_cache *s) 298 { 299 #ifdef CONFIG_SLUB_DEBUG 300 /* 301 * Debugging requires use of the padding between object 302 * and whatever may come after it. 303 */ 304 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 305 return s->objsize; 306 307 #endif 308 /* 309 * If we have the need to store the freelist pointer 310 * back there or track user information then we can 311 * only use the space before that information. 312 */ 313 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 314 return s->inuse; 315 /* 316 * Else we can use all the padding etc for the allocation 317 */ 318 return s->size; 319 } 320 321 static inline int order_objects(int order, unsigned long size, int reserved) 322 { 323 return ((PAGE_SIZE << order) - reserved) / size; 324 } 325 326 static inline struct kmem_cache_order_objects oo_make(int order, 327 unsigned long size, int reserved) 328 { 329 struct kmem_cache_order_objects x = { 330 (order << OO_SHIFT) + order_objects(order, size, reserved) 331 }; 332 333 return x; 334 } 335 336 static inline int oo_order(struct kmem_cache_order_objects x) 337 { 338 return x.x >> OO_SHIFT; 339 } 340 341 static inline int oo_objects(struct kmem_cache_order_objects x) 342 { 343 return x.x & OO_MASK; 344 } 345 346 #ifdef CONFIG_SLUB_DEBUG 347 /* 348 * Determine a map of object in use on a page. 349 * 350 * Slab lock or node listlock must be held to guarantee that the page does 351 * not vanish from under us. 352 */ 353 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 354 { 355 void *p; 356 void *addr = page_address(page); 357 358 for (p = page->freelist; p; p = get_freepointer(s, p)) 359 set_bit(slab_index(p, s, addr), map); 360 } 361 362 /* 363 * Debug settings: 364 */ 365 #ifdef CONFIG_SLUB_DEBUG_ON 366 static int slub_debug = DEBUG_DEFAULT_FLAGS; 367 #else 368 static int slub_debug; 369 #endif 370 371 static char *slub_debug_slabs; 372 static int disable_higher_order_debug; 373 374 /* 375 * Object debugging 376 */ 377 static void print_section(char *text, u8 *addr, unsigned int length) 378 { 379 int i, offset; 380 int newline = 1; 381 char ascii[17]; 382 383 ascii[16] = 0; 384 385 for (i = 0; i < length; i++) { 386 if (newline) { 387 printk(KERN_ERR "%8s 0x%p: ", text, addr + i); 388 newline = 0; 389 } 390 printk(KERN_CONT " %02x", addr[i]); 391 offset = i % 16; 392 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; 393 if (offset == 15) { 394 printk(KERN_CONT " %s\n", ascii); 395 newline = 1; 396 } 397 } 398 if (!newline) { 399 i %= 16; 400 while (i < 16) { 401 printk(KERN_CONT " "); 402 ascii[i] = ' '; 403 i++; 404 } 405 printk(KERN_CONT " %s\n", ascii); 406 } 407 } 408 409 static struct track *get_track(struct kmem_cache *s, void *object, 410 enum track_item alloc) 411 { 412 struct track *p; 413 414 if (s->offset) 415 p = object + s->offset + sizeof(void *); 416 else 417 p = object + s->inuse; 418 419 return p + alloc; 420 } 421 422 static void set_track(struct kmem_cache *s, void *object, 423 enum track_item alloc, unsigned long addr) 424 { 425 struct track *p = get_track(s, object, alloc); 426 427 if (addr) { 428 #ifdef CONFIG_STACKTRACE 429 struct stack_trace trace; 430 int i; 431 432 trace.nr_entries = 0; 433 trace.max_entries = TRACK_ADDRS_COUNT; 434 trace.entries = p->addrs; 435 trace.skip = 3; 436 save_stack_trace(&trace); 437 438 /* See rant in lockdep.c */ 439 if (trace.nr_entries != 0 && 440 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 441 trace.nr_entries--; 442 443 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 444 p->addrs[i] = 0; 445 #endif 446 p->addr = addr; 447 p->cpu = smp_processor_id(); 448 p->pid = current->pid; 449 p->when = jiffies; 450 } else 451 memset(p, 0, sizeof(struct track)); 452 } 453 454 static void init_tracking(struct kmem_cache *s, void *object) 455 { 456 if (!(s->flags & SLAB_STORE_USER)) 457 return; 458 459 set_track(s, object, TRACK_FREE, 0UL); 460 set_track(s, object, TRACK_ALLOC, 0UL); 461 } 462 463 static void print_track(const char *s, struct track *t) 464 { 465 if (!t->addr) 466 return; 467 468 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 469 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 470 #ifdef CONFIG_STACKTRACE 471 { 472 int i; 473 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 474 if (t->addrs[i]) 475 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]); 476 else 477 break; 478 } 479 #endif 480 } 481 482 static void print_tracking(struct kmem_cache *s, void *object) 483 { 484 if (!(s->flags & SLAB_STORE_USER)) 485 return; 486 487 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 488 print_track("Freed", get_track(s, object, TRACK_FREE)); 489 } 490 491 static void print_page_info(struct page *page) 492 { 493 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 494 page, page->objects, page->inuse, page->freelist, page->flags); 495 496 } 497 498 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 499 { 500 va_list args; 501 char buf[100]; 502 503 va_start(args, fmt); 504 vsnprintf(buf, sizeof(buf), fmt, args); 505 va_end(args); 506 printk(KERN_ERR "========================================" 507 "=====================================\n"); 508 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 509 printk(KERN_ERR "----------------------------------------" 510 "-------------------------------------\n\n"); 511 } 512 513 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 514 { 515 va_list args; 516 char buf[100]; 517 518 va_start(args, fmt); 519 vsnprintf(buf, sizeof(buf), fmt, args); 520 va_end(args); 521 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 522 } 523 524 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 525 { 526 unsigned int off; /* Offset of last byte */ 527 u8 *addr = page_address(page); 528 529 print_tracking(s, p); 530 531 print_page_info(page); 532 533 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 534 p, p - addr, get_freepointer(s, p)); 535 536 if (p > addr + 16) 537 print_section("Bytes b4", p - 16, 16); 538 539 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); 540 541 if (s->flags & SLAB_RED_ZONE) 542 print_section("Redzone", p + s->objsize, 543 s->inuse - s->objsize); 544 545 if (s->offset) 546 off = s->offset + sizeof(void *); 547 else 548 off = s->inuse; 549 550 if (s->flags & SLAB_STORE_USER) 551 off += 2 * sizeof(struct track); 552 553 if (off != s->size) 554 /* Beginning of the filler is the free pointer */ 555 print_section("Padding", p + off, s->size - off); 556 557 dump_stack(); 558 } 559 560 static void object_err(struct kmem_cache *s, struct page *page, 561 u8 *object, char *reason) 562 { 563 slab_bug(s, "%s", reason); 564 print_trailer(s, page, object); 565 } 566 567 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 568 { 569 va_list args; 570 char buf[100]; 571 572 va_start(args, fmt); 573 vsnprintf(buf, sizeof(buf), fmt, args); 574 va_end(args); 575 slab_bug(s, "%s", buf); 576 print_page_info(page); 577 dump_stack(); 578 } 579 580 static void init_object(struct kmem_cache *s, void *object, u8 val) 581 { 582 u8 *p = object; 583 584 if (s->flags & __OBJECT_POISON) { 585 memset(p, POISON_FREE, s->objsize - 1); 586 p[s->objsize - 1] = POISON_END; 587 } 588 589 if (s->flags & SLAB_RED_ZONE) 590 memset(p + s->objsize, val, s->inuse - s->objsize); 591 } 592 593 static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes) 594 { 595 while (bytes) { 596 if (*start != value) 597 return start; 598 start++; 599 bytes--; 600 } 601 return NULL; 602 } 603 604 static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes) 605 { 606 u64 value64; 607 unsigned int words, prefix; 608 609 if (bytes <= 16) 610 return check_bytes8(start, value, bytes); 611 612 value64 = value | value << 8 | value << 16 | value << 24; 613 value64 = value64 | value64 << 32; 614 prefix = 8 - ((unsigned long)start) % 8; 615 616 if (prefix) { 617 u8 *r = check_bytes8(start, value, prefix); 618 if (r) 619 return r; 620 start += prefix; 621 bytes -= prefix; 622 } 623 624 words = bytes / 8; 625 626 while (words) { 627 if (*(u64 *)start != value64) 628 return check_bytes8(start, value, 8); 629 start += 8; 630 words--; 631 } 632 633 return check_bytes8(start, value, bytes % 8); 634 } 635 636 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 637 void *from, void *to) 638 { 639 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 640 memset(from, data, to - from); 641 } 642 643 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 644 u8 *object, char *what, 645 u8 *start, unsigned int value, unsigned int bytes) 646 { 647 u8 *fault; 648 u8 *end; 649 650 fault = check_bytes(start, value, bytes); 651 if (!fault) 652 return 1; 653 654 end = start + bytes; 655 while (end > fault && end[-1] == value) 656 end--; 657 658 slab_bug(s, "%s overwritten", what); 659 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 660 fault, end - 1, fault[0], value); 661 print_trailer(s, page, object); 662 663 restore_bytes(s, what, value, fault, end); 664 return 0; 665 } 666 667 /* 668 * Object layout: 669 * 670 * object address 671 * Bytes of the object to be managed. 672 * If the freepointer may overlay the object then the free 673 * pointer is the first word of the object. 674 * 675 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 676 * 0xa5 (POISON_END) 677 * 678 * object + s->objsize 679 * Padding to reach word boundary. This is also used for Redzoning. 680 * Padding is extended by another word if Redzoning is enabled and 681 * objsize == inuse. 682 * 683 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 684 * 0xcc (RED_ACTIVE) for objects in use. 685 * 686 * object + s->inuse 687 * Meta data starts here. 688 * 689 * A. Free pointer (if we cannot overwrite object on free) 690 * B. Tracking data for SLAB_STORE_USER 691 * C. Padding to reach required alignment boundary or at mininum 692 * one word if debugging is on to be able to detect writes 693 * before the word boundary. 694 * 695 * Padding is done using 0x5a (POISON_INUSE) 696 * 697 * object + s->size 698 * Nothing is used beyond s->size. 699 * 700 * If slabcaches are merged then the objsize and inuse boundaries are mostly 701 * ignored. And therefore no slab options that rely on these boundaries 702 * may be used with merged slabcaches. 703 */ 704 705 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 706 { 707 unsigned long off = s->inuse; /* The end of info */ 708 709 if (s->offset) 710 /* Freepointer is placed after the object. */ 711 off += sizeof(void *); 712 713 if (s->flags & SLAB_STORE_USER) 714 /* We also have user information there */ 715 off += 2 * sizeof(struct track); 716 717 if (s->size == off) 718 return 1; 719 720 return check_bytes_and_report(s, page, p, "Object padding", 721 p + off, POISON_INUSE, s->size - off); 722 } 723 724 /* Check the pad bytes at the end of a slab page */ 725 static int slab_pad_check(struct kmem_cache *s, struct page *page) 726 { 727 u8 *start; 728 u8 *fault; 729 u8 *end; 730 int length; 731 int remainder; 732 733 if (!(s->flags & SLAB_POISON)) 734 return 1; 735 736 start = page_address(page); 737 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 738 end = start + length; 739 remainder = length % s->size; 740 if (!remainder) 741 return 1; 742 743 fault = check_bytes(end - remainder, POISON_INUSE, remainder); 744 if (!fault) 745 return 1; 746 while (end > fault && end[-1] == POISON_INUSE) 747 end--; 748 749 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 750 print_section("Padding", end - remainder, remainder); 751 752 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 753 return 0; 754 } 755 756 static int check_object(struct kmem_cache *s, struct page *page, 757 void *object, u8 val) 758 { 759 u8 *p = object; 760 u8 *endobject = object + s->objsize; 761 762 if (s->flags & SLAB_RED_ZONE) { 763 if (!check_bytes_and_report(s, page, object, "Redzone", 764 endobject, val, s->inuse - s->objsize)) 765 return 0; 766 } else { 767 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { 768 check_bytes_and_report(s, page, p, "Alignment padding", 769 endobject, POISON_INUSE, s->inuse - s->objsize); 770 } 771 } 772 773 if (s->flags & SLAB_POISON) { 774 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 775 (!check_bytes_and_report(s, page, p, "Poison", p, 776 POISON_FREE, s->objsize - 1) || 777 !check_bytes_and_report(s, page, p, "Poison", 778 p + s->objsize - 1, POISON_END, 1))) 779 return 0; 780 /* 781 * check_pad_bytes cleans up on its own. 782 */ 783 check_pad_bytes(s, page, p); 784 } 785 786 if (!s->offset && val == SLUB_RED_ACTIVE) 787 /* 788 * Object and freepointer overlap. Cannot check 789 * freepointer while object is allocated. 790 */ 791 return 1; 792 793 /* Check free pointer validity */ 794 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 795 object_err(s, page, p, "Freepointer corrupt"); 796 /* 797 * No choice but to zap it and thus lose the remainder 798 * of the free objects in this slab. May cause 799 * another error because the object count is now wrong. 800 */ 801 set_freepointer(s, p, NULL); 802 return 0; 803 } 804 return 1; 805 } 806 807 static int check_slab(struct kmem_cache *s, struct page *page) 808 { 809 int maxobj; 810 811 VM_BUG_ON(!irqs_disabled()); 812 813 if (!PageSlab(page)) { 814 slab_err(s, page, "Not a valid slab page"); 815 return 0; 816 } 817 818 maxobj = order_objects(compound_order(page), s->size, s->reserved); 819 if (page->objects > maxobj) { 820 slab_err(s, page, "objects %u > max %u", 821 s->name, page->objects, maxobj); 822 return 0; 823 } 824 if (page->inuse > page->objects) { 825 slab_err(s, page, "inuse %u > max %u", 826 s->name, page->inuse, page->objects); 827 return 0; 828 } 829 /* Slab_pad_check fixes things up after itself */ 830 slab_pad_check(s, page); 831 return 1; 832 } 833 834 /* 835 * Determine if a certain object on a page is on the freelist. Must hold the 836 * slab lock to guarantee that the chains are in a consistent state. 837 */ 838 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 839 { 840 int nr = 0; 841 void *fp = page->freelist; 842 void *object = NULL; 843 unsigned long max_objects; 844 845 while (fp && nr <= page->objects) { 846 if (fp == search) 847 return 1; 848 if (!check_valid_pointer(s, page, fp)) { 849 if (object) { 850 object_err(s, page, object, 851 "Freechain corrupt"); 852 set_freepointer(s, object, NULL); 853 break; 854 } else { 855 slab_err(s, page, "Freepointer corrupt"); 856 page->freelist = NULL; 857 page->inuse = page->objects; 858 slab_fix(s, "Freelist cleared"); 859 return 0; 860 } 861 break; 862 } 863 object = fp; 864 fp = get_freepointer(s, object); 865 nr++; 866 } 867 868 max_objects = order_objects(compound_order(page), s->size, s->reserved); 869 if (max_objects > MAX_OBJS_PER_PAGE) 870 max_objects = MAX_OBJS_PER_PAGE; 871 872 if (page->objects != max_objects) { 873 slab_err(s, page, "Wrong number of objects. Found %d but " 874 "should be %d", page->objects, max_objects); 875 page->objects = max_objects; 876 slab_fix(s, "Number of objects adjusted."); 877 } 878 if (page->inuse != page->objects - nr) { 879 slab_err(s, page, "Wrong object count. Counter is %d but " 880 "counted were %d", page->inuse, page->objects - nr); 881 page->inuse = page->objects - nr; 882 slab_fix(s, "Object count adjusted."); 883 } 884 return search == NULL; 885 } 886 887 static void trace(struct kmem_cache *s, struct page *page, void *object, 888 int alloc) 889 { 890 if (s->flags & SLAB_TRACE) { 891 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 892 s->name, 893 alloc ? "alloc" : "free", 894 object, page->inuse, 895 page->freelist); 896 897 if (!alloc) 898 print_section("Object", (void *)object, s->objsize); 899 900 dump_stack(); 901 } 902 } 903 904 /* 905 * Hooks for other subsystems that check memory allocations. In a typical 906 * production configuration these hooks all should produce no code at all. 907 */ 908 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 909 { 910 flags &= gfp_allowed_mask; 911 lockdep_trace_alloc(flags); 912 might_sleep_if(flags & __GFP_WAIT); 913 914 return should_failslab(s->objsize, flags, s->flags); 915 } 916 917 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object) 918 { 919 flags &= gfp_allowed_mask; 920 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 921 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags); 922 } 923 924 static inline void slab_free_hook(struct kmem_cache *s, void *x) 925 { 926 kmemleak_free_recursive(x, s->flags); 927 928 /* 929 * Trouble is that we may no longer disable interupts in the fast path 930 * So in order to make the debug calls that expect irqs to be 931 * disabled we need to disable interrupts temporarily. 932 */ 933 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 934 { 935 unsigned long flags; 936 937 local_irq_save(flags); 938 kmemcheck_slab_free(s, x, s->objsize); 939 debug_check_no_locks_freed(x, s->objsize); 940 local_irq_restore(flags); 941 } 942 #endif 943 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 944 debug_check_no_obj_freed(x, s->objsize); 945 } 946 947 /* 948 * Tracking of fully allocated slabs for debugging purposes. 949 */ 950 static void add_full(struct kmem_cache_node *n, struct page *page) 951 { 952 spin_lock(&n->list_lock); 953 list_add(&page->lru, &n->full); 954 spin_unlock(&n->list_lock); 955 } 956 957 static void remove_full(struct kmem_cache *s, struct page *page) 958 { 959 struct kmem_cache_node *n; 960 961 if (!(s->flags & SLAB_STORE_USER)) 962 return; 963 964 n = get_node(s, page_to_nid(page)); 965 966 spin_lock(&n->list_lock); 967 list_del(&page->lru); 968 spin_unlock(&n->list_lock); 969 } 970 971 /* Tracking of the number of slabs for debugging purposes */ 972 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 973 { 974 struct kmem_cache_node *n = get_node(s, node); 975 976 return atomic_long_read(&n->nr_slabs); 977 } 978 979 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 980 { 981 return atomic_long_read(&n->nr_slabs); 982 } 983 984 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 985 { 986 struct kmem_cache_node *n = get_node(s, node); 987 988 /* 989 * May be called early in order to allocate a slab for the 990 * kmem_cache_node structure. Solve the chicken-egg 991 * dilemma by deferring the increment of the count during 992 * bootstrap (see early_kmem_cache_node_alloc). 993 */ 994 if (n) { 995 atomic_long_inc(&n->nr_slabs); 996 atomic_long_add(objects, &n->total_objects); 997 } 998 } 999 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1000 { 1001 struct kmem_cache_node *n = get_node(s, node); 1002 1003 atomic_long_dec(&n->nr_slabs); 1004 atomic_long_sub(objects, &n->total_objects); 1005 } 1006 1007 /* Object debug checks for alloc/free paths */ 1008 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1009 void *object) 1010 { 1011 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1012 return; 1013 1014 init_object(s, object, SLUB_RED_INACTIVE); 1015 init_tracking(s, object); 1016 } 1017 1018 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page, 1019 void *object, unsigned long addr) 1020 { 1021 if (!check_slab(s, page)) 1022 goto bad; 1023 1024 if (!on_freelist(s, page, object)) { 1025 object_err(s, page, object, "Object already allocated"); 1026 goto bad; 1027 } 1028 1029 if (!check_valid_pointer(s, page, object)) { 1030 object_err(s, page, object, "Freelist Pointer check fails"); 1031 goto bad; 1032 } 1033 1034 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1035 goto bad; 1036 1037 /* Success perform special debug activities for allocs */ 1038 if (s->flags & SLAB_STORE_USER) 1039 set_track(s, object, TRACK_ALLOC, addr); 1040 trace(s, page, object, 1); 1041 init_object(s, object, SLUB_RED_ACTIVE); 1042 return 1; 1043 1044 bad: 1045 if (PageSlab(page)) { 1046 /* 1047 * If this is a slab page then lets do the best we can 1048 * to avoid issues in the future. Marking all objects 1049 * as used avoids touching the remaining objects. 1050 */ 1051 slab_fix(s, "Marking all objects used"); 1052 page->inuse = page->objects; 1053 page->freelist = NULL; 1054 } 1055 return 0; 1056 } 1057 1058 static noinline int free_debug_processing(struct kmem_cache *s, 1059 struct page *page, void *object, unsigned long addr) 1060 { 1061 if (!check_slab(s, page)) 1062 goto fail; 1063 1064 if (!check_valid_pointer(s, page, object)) { 1065 slab_err(s, page, "Invalid object pointer 0x%p", object); 1066 goto fail; 1067 } 1068 1069 if (on_freelist(s, page, object)) { 1070 object_err(s, page, object, "Object already free"); 1071 goto fail; 1072 } 1073 1074 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1075 return 0; 1076 1077 if (unlikely(s != page->slab)) { 1078 if (!PageSlab(page)) { 1079 slab_err(s, page, "Attempt to free object(0x%p) " 1080 "outside of slab", object); 1081 } else if (!page->slab) { 1082 printk(KERN_ERR 1083 "SLUB <none>: no slab for object 0x%p.\n", 1084 object); 1085 dump_stack(); 1086 } else 1087 object_err(s, page, object, 1088 "page slab pointer corrupt."); 1089 goto fail; 1090 } 1091 1092 /* Special debug activities for freeing objects */ 1093 if (!PageSlubFrozen(page) && !page->freelist) 1094 remove_full(s, page); 1095 if (s->flags & SLAB_STORE_USER) 1096 set_track(s, object, TRACK_FREE, addr); 1097 trace(s, page, object, 0); 1098 init_object(s, object, SLUB_RED_INACTIVE); 1099 return 1; 1100 1101 fail: 1102 slab_fix(s, "Object at 0x%p not freed", object); 1103 return 0; 1104 } 1105 1106 static int __init setup_slub_debug(char *str) 1107 { 1108 slub_debug = DEBUG_DEFAULT_FLAGS; 1109 if (*str++ != '=' || !*str) 1110 /* 1111 * No options specified. Switch on full debugging. 1112 */ 1113 goto out; 1114 1115 if (*str == ',') 1116 /* 1117 * No options but restriction on slabs. This means full 1118 * debugging for slabs matching a pattern. 1119 */ 1120 goto check_slabs; 1121 1122 if (tolower(*str) == 'o') { 1123 /* 1124 * Avoid enabling debugging on caches if its minimum order 1125 * would increase as a result. 1126 */ 1127 disable_higher_order_debug = 1; 1128 goto out; 1129 } 1130 1131 slub_debug = 0; 1132 if (*str == '-') 1133 /* 1134 * Switch off all debugging measures. 1135 */ 1136 goto out; 1137 1138 /* 1139 * Determine which debug features should be switched on 1140 */ 1141 for (; *str && *str != ','; str++) { 1142 switch (tolower(*str)) { 1143 case 'f': 1144 slub_debug |= SLAB_DEBUG_FREE; 1145 break; 1146 case 'z': 1147 slub_debug |= SLAB_RED_ZONE; 1148 break; 1149 case 'p': 1150 slub_debug |= SLAB_POISON; 1151 break; 1152 case 'u': 1153 slub_debug |= SLAB_STORE_USER; 1154 break; 1155 case 't': 1156 slub_debug |= SLAB_TRACE; 1157 break; 1158 case 'a': 1159 slub_debug |= SLAB_FAILSLAB; 1160 break; 1161 default: 1162 printk(KERN_ERR "slub_debug option '%c' " 1163 "unknown. skipped\n", *str); 1164 } 1165 } 1166 1167 check_slabs: 1168 if (*str == ',') 1169 slub_debug_slabs = str + 1; 1170 out: 1171 return 1; 1172 } 1173 1174 __setup("slub_debug", setup_slub_debug); 1175 1176 static unsigned long kmem_cache_flags(unsigned long objsize, 1177 unsigned long flags, const char *name, 1178 void (*ctor)(void *)) 1179 { 1180 /* 1181 * Enable debugging if selected on the kernel commandline. 1182 */ 1183 if (slub_debug && (!slub_debug_slabs || 1184 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) 1185 flags |= slub_debug; 1186 1187 return flags; 1188 } 1189 #else 1190 static inline void setup_object_debug(struct kmem_cache *s, 1191 struct page *page, void *object) {} 1192 1193 static inline int alloc_debug_processing(struct kmem_cache *s, 1194 struct page *page, void *object, unsigned long addr) { return 0; } 1195 1196 static inline int free_debug_processing(struct kmem_cache *s, 1197 struct page *page, void *object, unsigned long addr) { return 0; } 1198 1199 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1200 { return 1; } 1201 static inline int check_object(struct kmem_cache *s, struct page *page, 1202 void *object, u8 val) { return 1; } 1203 static inline void add_full(struct kmem_cache_node *n, struct page *page) {} 1204 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1205 unsigned long flags, const char *name, 1206 void (*ctor)(void *)) 1207 { 1208 return flags; 1209 } 1210 #define slub_debug 0 1211 1212 #define disable_higher_order_debug 0 1213 1214 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1215 { return 0; } 1216 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1217 { return 0; } 1218 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1219 int objects) {} 1220 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1221 int objects) {} 1222 1223 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 1224 { return 0; } 1225 1226 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 1227 void *object) {} 1228 1229 static inline void slab_free_hook(struct kmem_cache *s, void *x) {} 1230 1231 #endif /* CONFIG_SLUB_DEBUG */ 1232 1233 /* 1234 * Slab allocation and freeing 1235 */ 1236 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1237 struct kmem_cache_order_objects oo) 1238 { 1239 int order = oo_order(oo); 1240 1241 flags |= __GFP_NOTRACK; 1242 1243 if (node == NUMA_NO_NODE) 1244 return alloc_pages(flags, order); 1245 else 1246 return alloc_pages_exact_node(node, flags, order); 1247 } 1248 1249 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1250 { 1251 struct page *page; 1252 struct kmem_cache_order_objects oo = s->oo; 1253 gfp_t alloc_gfp; 1254 1255 flags |= s->allocflags; 1256 1257 /* 1258 * Let the initial higher-order allocation fail under memory pressure 1259 * so we fall-back to the minimum order allocation. 1260 */ 1261 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1262 1263 page = alloc_slab_page(alloc_gfp, node, oo); 1264 if (unlikely(!page)) { 1265 oo = s->min; 1266 /* 1267 * Allocation may have failed due to fragmentation. 1268 * Try a lower order alloc if possible 1269 */ 1270 page = alloc_slab_page(flags, node, oo); 1271 if (!page) 1272 return NULL; 1273 1274 stat(s, ORDER_FALLBACK); 1275 } 1276 1277 if (kmemcheck_enabled 1278 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1279 int pages = 1 << oo_order(oo); 1280 1281 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1282 1283 /* 1284 * Objects from caches that have a constructor don't get 1285 * cleared when they're allocated, so we need to do it here. 1286 */ 1287 if (s->ctor) 1288 kmemcheck_mark_uninitialized_pages(page, pages); 1289 else 1290 kmemcheck_mark_unallocated_pages(page, pages); 1291 } 1292 1293 page->objects = oo_objects(oo); 1294 mod_zone_page_state(page_zone(page), 1295 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1296 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1297 1 << oo_order(oo)); 1298 1299 return page; 1300 } 1301 1302 static void setup_object(struct kmem_cache *s, struct page *page, 1303 void *object) 1304 { 1305 setup_object_debug(s, page, object); 1306 if (unlikely(s->ctor)) 1307 s->ctor(object); 1308 } 1309 1310 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1311 { 1312 struct page *page; 1313 void *start; 1314 void *last; 1315 void *p; 1316 1317 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1318 1319 page = allocate_slab(s, 1320 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1321 if (!page) 1322 goto out; 1323 1324 inc_slabs_node(s, page_to_nid(page), page->objects); 1325 page->slab = s; 1326 page->flags |= 1 << PG_slab; 1327 1328 start = page_address(page); 1329 1330 if (unlikely(s->flags & SLAB_POISON)) 1331 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1332 1333 last = start; 1334 for_each_object(p, s, start, page->objects) { 1335 setup_object(s, page, last); 1336 set_freepointer(s, last, p); 1337 last = p; 1338 } 1339 setup_object(s, page, last); 1340 set_freepointer(s, last, NULL); 1341 1342 page->freelist = start; 1343 page->inuse = 0; 1344 out: 1345 return page; 1346 } 1347 1348 static void __free_slab(struct kmem_cache *s, struct page *page) 1349 { 1350 int order = compound_order(page); 1351 int pages = 1 << order; 1352 1353 if (kmem_cache_debug(s)) { 1354 void *p; 1355 1356 slab_pad_check(s, page); 1357 for_each_object(p, s, page_address(page), 1358 page->objects) 1359 check_object(s, page, p, SLUB_RED_INACTIVE); 1360 } 1361 1362 kmemcheck_free_shadow(page, compound_order(page)); 1363 1364 mod_zone_page_state(page_zone(page), 1365 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1366 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1367 -pages); 1368 1369 __ClearPageSlab(page); 1370 reset_page_mapcount(page); 1371 if (current->reclaim_state) 1372 current->reclaim_state->reclaimed_slab += pages; 1373 __free_pages(page, order); 1374 } 1375 1376 #define need_reserve_slab_rcu \ 1377 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1378 1379 static void rcu_free_slab(struct rcu_head *h) 1380 { 1381 struct page *page; 1382 1383 if (need_reserve_slab_rcu) 1384 page = virt_to_head_page(h); 1385 else 1386 page = container_of((struct list_head *)h, struct page, lru); 1387 1388 __free_slab(page->slab, page); 1389 } 1390 1391 static void free_slab(struct kmem_cache *s, struct page *page) 1392 { 1393 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1394 struct rcu_head *head; 1395 1396 if (need_reserve_slab_rcu) { 1397 int order = compound_order(page); 1398 int offset = (PAGE_SIZE << order) - s->reserved; 1399 1400 VM_BUG_ON(s->reserved != sizeof(*head)); 1401 head = page_address(page) + offset; 1402 } else { 1403 /* 1404 * RCU free overloads the RCU head over the LRU 1405 */ 1406 head = (void *)&page->lru; 1407 } 1408 1409 call_rcu(head, rcu_free_slab); 1410 } else 1411 __free_slab(s, page); 1412 } 1413 1414 static void discard_slab(struct kmem_cache *s, struct page *page) 1415 { 1416 dec_slabs_node(s, page_to_nid(page), page->objects); 1417 free_slab(s, page); 1418 } 1419 1420 /* 1421 * Per slab locking using the pagelock 1422 */ 1423 static __always_inline void slab_lock(struct page *page) 1424 { 1425 bit_spin_lock(PG_locked, &page->flags); 1426 } 1427 1428 static __always_inline void slab_unlock(struct page *page) 1429 { 1430 __bit_spin_unlock(PG_locked, &page->flags); 1431 } 1432 1433 static __always_inline int slab_trylock(struct page *page) 1434 { 1435 int rc = 1; 1436 1437 rc = bit_spin_trylock(PG_locked, &page->flags); 1438 return rc; 1439 } 1440 1441 /* 1442 * Management of partially allocated slabs 1443 */ 1444 static void add_partial(struct kmem_cache_node *n, 1445 struct page *page, int tail) 1446 { 1447 spin_lock(&n->list_lock); 1448 n->nr_partial++; 1449 if (tail) 1450 list_add_tail(&page->lru, &n->partial); 1451 else 1452 list_add(&page->lru, &n->partial); 1453 spin_unlock(&n->list_lock); 1454 } 1455 1456 static inline void __remove_partial(struct kmem_cache_node *n, 1457 struct page *page) 1458 { 1459 list_del(&page->lru); 1460 n->nr_partial--; 1461 } 1462 1463 static void remove_partial(struct kmem_cache *s, struct page *page) 1464 { 1465 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1466 1467 spin_lock(&n->list_lock); 1468 __remove_partial(n, page); 1469 spin_unlock(&n->list_lock); 1470 } 1471 1472 /* 1473 * Lock slab and remove from the partial list. 1474 * 1475 * Must hold list_lock. 1476 */ 1477 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, 1478 struct page *page) 1479 { 1480 if (slab_trylock(page)) { 1481 __remove_partial(n, page); 1482 __SetPageSlubFrozen(page); 1483 return 1; 1484 } 1485 return 0; 1486 } 1487 1488 /* 1489 * Try to allocate a partial slab from a specific node. 1490 */ 1491 static struct page *get_partial_node(struct kmem_cache_node *n) 1492 { 1493 struct page *page; 1494 1495 /* 1496 * Racy check. If we mistakenly see no partial slabs then we 1497 * just allocate an empty slab. If we mistakenly try to get a 1498 * partial slab and there is none available then get_partials() 1499 * will return NULL. 1500 */ 1501 if (!n || !n->nr_partial) 1502 return NULL; 1503 1504 spin_lock(&n->list_lock); 1505 list_for_each_entry(page, &n->partial, lru) 1506 if (lock_and_freeze_slab(n, page)) 1507 goto out; 1508 page = NULL; 1509 out: 1510 spin_unlock(&n->list_lock); 1511 return page; 1512 } 1513 1514 /* 1515 * Get a page from somewhere. Search in increasing NUMA distances. 1516 */ 1517 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) 1518 { 1519 #ifdef CONFIG_NUMA 1520 struct zonelist *zonelist; 1521 struct zoneref *z; 1522 struct zone *zone; 1523 enum zone_type high_zoneidx = gfp_zone(flags); 1524 struct page *page; 1525 1526 /* 1527 * The defrag ratio allows a configuration of the tradeoffs between 1528 * inter node defragmentation and node local allocations. A lower 1529 * defrag_ratio increases the tendency to do local allocations 1530 * instead of attempting to obtain partial slabs from other nodes. 1531 * 1532 * If the defrag_ratio is set to 0 then kmalloc() always 1533 * returns node local objects. If the ratio is higher then kmalloc() 1534 * may return off node objects because partial slabs are obtained 1535 * from other nodes and filled up. 1536 * 1537 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1538 * defrag_ratio = 1000) then every (well almost) allocation will 1539 * first attempt to defrag slab caches on other nodes. This means 1540 * scanning over all nodes to look for partial slabs which may be 1541 * expensive if we do it every time we are trying to find a slab 1542 * with available objects. 1543 */ 1544 if (!s->remote_node_defrag_ratio || 1545 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1546 return NULL; 1547 1548 get_mems_allowed(); 1549 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 1550 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1551 struct kmem_cache_node *n; 1552 1553 n = get_node(s, zone_to_nid(zone)); 1554 1555 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1556 n->nr_partial > s->min_partial) { 1557 page = get_partial_node(n); 1558 if (page) { 1559 put_mems_allowed(); 1560 return page; 1561 } 1562 } 1563 } 1564 put_mems_allowed(); 1565 #endif 1566 return NULL; 1567 } 1568 1569 /* 1570 * Get a partial page, lock it and return it. 1571 */ 1572 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) 1573 { 1574 struct page *page; 1575 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; 1576 1577 page = get_partial_node(get_node(s, searchnode)); 1578 if (page || node != NUMA_NO_NODE) 1579 return page; 1580 1581 return get_any_partial(s, flags); 1582 } 1583 1584 /* 1585 * Move a page back to the lists. 1586 * 1587 * Must be called with the slab lock held. 1588 * 1589 * On exit the slab lock will have been dropped. 1590 */ 1591 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) 1592 __releases(bitlock) 1593 { 1594 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1595 1596 __ClearPageSlubFrozen(page); 1597 if (page->inuse) { 1598 1599 if (page->freelist) { 1600 add_partial(n, page, tail); 1601 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); 1602 } else { 1603 stat(s, DEACTIVATE_FULL); 1604 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER)) 1605 add_full(n, page); 1606 } 1607 slab_unlock(page); 1608 } else { 1609 stat(s, DEACTIVATE_EMPTY); 1610 if (n->nr_partial < s->min_partial) { 1611 /* 1612 * Adding an empty slab to the partial slabs in order 1613 * to avoid page allocator overhead. This slab needs 1614 * to come after the other slabs with objects in 1615 * so that the others get filled first. That way the 1616 * size of the partial list stays small. 1617 * 1618 * kmem_cache_shrink can reclaim any empty slabs from 1619 * the partial list. 1620 */ 1621 add_partial(n, page, 1); 1622 slab_unlock(page); 1623 } else { 1624 slab_unlock(page); 1625 stat(s, FREE_SLAB); 1626 discard_slab(s, page); 1627 } 1628 } 1629 } 1630 1631 #ifdef CONFIG_PREEMPT 1632 /* 1633 * Calculate the next globally unique transaction for disambiguiation 1634 * during cmpxchg. The transactions start with the cpu number and are then 1635 * incremented by CONFIG_NR_CPUS. 1636 */ 1637 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1638 #else 1639 /* 1640 * No preemption supported therefore also no need to check for 1641 * different cpus. 1642 */ 1643 #define TID_STEP 1 1644 #endif 1645 1646 static inline unsigned long next_tid(unsigned long tid) 1647 { 1648 return tid + TID_STEP; 1649 } 1650 1651 static inline unsigned int tid_to_cpu(unsigned long tid) 1652 { 1653 return tid % TID_STEP; 1654 } 1655 1656 static inline unsigned long tid_to_event(unsigned long tid) 1657 { 1658 return tid / TID_STEP; 1659 } 1660 1661 static inline unsigned int init_tid(int cpu) 1662 { 1663 return cpu; 1664 } 1665 1666 static inline void note_cmpxchg_failure(const char *n, 1667 const struct kmem_cache *s, unsigned long tid) 1668 { 1669 #ifdef SLUB_DEBUG_CMPXCHG 1670 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1671 1672 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); 1673 1674 #ifdef CONFIG_PREEMPT 1675 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1676 printk("due to cpu change %d -> %d\n", 1677 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1678 else 1679 #endif 1680 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1681 printk("due to cpu running other code. Event %ld->%ld\n", 1682 tid_to_event(tid), tid_to_event(actual_tid)); 1683 else 1684 printk("for unknown reason: actual=%lx was=%lx target=%lx\n", 1685 actual_tid, tid, next_tid(tid)); 1686 #endif 1687 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1688 } 1689 1690 void init_kmem_cache_cpus(struct kmem_cache *s) 1691 { 1692 int cpu; 1693 1694 for_each_possible_cpu(cpu) 1695 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1696 } 1697 /* 1698 * Remove the cpu slab 1699 */ 1700 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1701 __releases(bitlock) 1702 { 1703 struct page *page = c->page; 1704 int tail = 1; 1705 1706 if (page->freelist) 1707 stat(s, DEACTIVATE_REMOTE_FREES); 1708 /* 1709 * Merge cpu freelist into slab freelist. Typically we get here 1710 * because both freelists are empty. So this is unlikely 1711 * to occur. 1712 */ 1713 while (unlikely(c->freelist)) { 1714 void **object; 1715 1716 tail = 0; /* Hot objects. Put the slab first */ 1717 1718 /* Retrieve object from cpu_freelist */ 1719 object = c->freelist; 1720 c->freelist = get_freepointer(s, c->freelist); 1721 1722 /* And put onto the regular freelist */ 1723 set_freepointer(s, object, page->freelist); 1724 page->freelist = object; 1725 page->inuse--; 1726 } 1727 c->page = NULL; 1728 c->tid = next_tid(c->tid); 1729 unfreeze_slab(s, page, tail); 1730 } 1731 1732 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1733 { 1734 stat(s, CPUSLAB_FLUSH); 1735 slab_lock(c->page); 1736 deactivate_slab(s, c); 1737 } 1738 1739 /* 1740 * Flush cpu slab. 1741 * 1742 * Called from IPI handler with interrupts disabled. 1743 */ 1744 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1745 { 1746 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 1747 1748 if (likely(c && c->page)) 1749 flush_slab(s, c); 1750 } 1751 1752 static void flush_cpu_slab(void *d) 1753 { 1754 struct kmem_cache *s = d; 1755 1756 __flush_cpu_slab(s, smp_processor_id()); 1757 } 1758 1759 static void flush_all(struct kmem_cache *s) 1760 { 1761 on_each_cpu(flush_cpu_slab, s, 1); 1762 } 1763 1764 /* 1765 * Check if the objects in a per cpu structure fit numa 1766 * locality expectations. 1767 */ 1768 static inline int node_match(struct kmem_cache_cpu *c, int node) 1769 { 1770 #ifdef CONFIG_NUMA 1771 if (node != NUMA_NO_NODE && c->node != node) 1772 return 0; 1773 #endif 1774 return 1; 1775 } 1776 1777 static int count_free(struct page *page) 1778 { 1779 return page->objects - page->inuse; 1780 } 1781 1782 static unsigned long count_partial(struct kmem_cache_node *n, 1783 int (*get_count)(struct page *)) 1784 { 1785 unsigned long flags; 1786 unsigned long x = 0; 1787 struct page *page; 1788 1789 spin_lock_irqsave(&n->list_lock, flags); 1790 list_for_each_entry(page, &n->partial, lru) 1791 x += get_count(page); 1792 spin_unlock_irqrestore(&n->list_lock, flags); 1793 return x; 1794 } 1795 1796 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 1797 { 1798 #ifdef CONFIG_SLUB_DEBUG 1799 return atomic_long_read(&n->total_objects); 1800 #else 1801 return 0; 1802 #endif 1803 } 1804 1805 static noinline void 1806 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 1807 { 1808 int node; 1809 1810 printk(KERN_WARNING 1811 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 1812 nid, gfpflags); 1813 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 1814 "default order: %d, min order: %d\n", s->name, s->objsize, 1815 s->size, oo_order(s->oo), oo_order(s->min)); 1816 1817 if (oo_order(s->min) > get_order(s->objsize)) 1818 printk(KERN_WARNING " %s debugging increased min order, use " 1819 "slub_debug=O to disable.\n", s->name); 1820 1821 for_each_online_node(node) { 1822 struct kmem_cache_node *n = get_node(s, node); 1823 unsigned long nr_slabs; 1824 unsigned long nr_objs; 1825 unsigned long nr_free; 1826 1827 if (!n) 1828 continue; 1829 1830 nr_free = count_partial(n, count_free); 1831 nr_slabs = node_nr_slabs(n); 1832 nr_objs = node_nr_objs(n); 1833 1834 printk(KERN_WARNING 1835 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 1836 node, nr_slabs, nr_objs, nr_free); 1837 } 1838 } 1839 1840 /* 1841 * Slow path. The lockless freelist is empty or we need to perform 1842 * debugging duties. 1843 * 1844 * Interrupts are disabled. 1845 * 1846 * Processing is still very fast if new objects have been freed to the 1847 * regular freelist. In that case we simply take over the regular freelist 1848 * as the lockless freelist and zap the regular freelist. 1849 * 1850 * If that is not working then we fall back to the partial lists. We take the 1851 * first element of the freelist as the object to allocate now and move the 1852 * rest of the freelist to the lockless freelist. 1853 * 1854 * And if we were unable to get a new slab from the partial slab lists then 1855 * we need to allocate a new slab. This is the slowest path since it involves 1856 * a call to the page allocator and the setup of a new slab. 1857 */ 1858 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 1859 unsigned long addr, struct kmem_cache_cpu *c) 1860 { 1861 void **object; 1862 struct page *page; 1863 unsigned long flags; 1864 1865 local_irq_save(flags); 1866 #ifdef CONFIG_PREEMPT 1867 /* 1868 * We may have been preempted and rescheduled on a different 1869 * cpu before disabling interrupts. Need to reload cpu area 1870 * pointer. 1871 */ 1872 c = this_cpu_ptr(s->cpu_slab); 1873 #endif 1874 1875 /* We handle __GFP_ZERO in the caller */ 1876 gfpflags &= ~__GFP_ZERO; 1877 1878 page = c->page; 1879 if (!page) 1880 goto new_slab; 1881 1882 slab_lock(page); 1883 if (unlikely(!node_match(c, node))) 1884 goto another_slab; 1885 1886 stat(s, ALLOC_REFILL); 1887 1888 load_freelist: 1889 object = page->freelist; 1890 if (unlikely(!object)) 1891 goto another_slab; 1892 if (kmem_cache_debug(s)) 1893 goto debug; 1894 1895 c->freelist = get_freepointer(s, object); 1896 page->inuse = page->objects; 1897 page->freelist = NULL; 1898 1899 slab_unlock(page); 1900 c->tid = next_tid(c->tid); 1901 local_irq_restore(flags); 1902 stat(s, ALLOC_SLOWPATH); 1903 return object; 1904 1905 another_slab: 1906 deactivate_slab(s, c); 1907 1908 new_slab: 1909 page = get_partial(s, gfpflags, node); 1910 if (page) { 1911 stat(s, ALLOC_FROM_PARTIAL); 1912 c->node = page_to_nid(page); 1913 c->page = page; 1914 goto load_freelist; 1915 } 1916 1917 gfpflags &= gfp_allowed_mask; 1918 if (gfpflags & __GFP_WAIT) 1919 local_irq_enable(); 1920 1921 page = new_slab(s, gfpflags, node); 1922 1923 if (gfpflags & __GFP_WAIT) 1924 local_irq_disable(); 1925 1926 if (page) { 1927 c = __this_cpu_ptr(s->cpu_slab); 1928 stat(s, ALLOC_SLAB); 1929 if (c->page) 1930 flush_slab(s, c); 1931 1932 slab_lock(page); 1933 __SetPageSlubFrozen(page); 1934 c->node = page_to_nid(page); 1935 c->page = page; 1936 goto load_freelist; 1937 } 1938 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 1939 slab_out_of_memory(s, gfpflags, node); 1940 local_irq_restore(flags); 1941 return NULL; 1942 debug: 1943 if (!alloc_debug_processing(s, page, object, addr)) 1944 goto another_slab; 1945 1946 page->inuse++; 1947 page->freelist = get_freepointer(s, object); 1948 deactivate_slab(s, c); 1949 c->page = NULL; 1950 c->node = NUMA_NO_NODE; 1951 local_irq_restore(flags); 1952 return object; 1953 } 1954 1955 /* 1956 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 1957 * have the fastpath folded into their functions. So no function call 1958 * overhead for requests that can be satisfied on the fastpath. 1959 * 1960 * The fastpath works by first checking if the lockless freelist can be used. 1961 * If not then __slab_alloc is called for slow processing. 1962 * 1963 * Otherwise we can simply pick the next object from the lockless free list. 1964 */ 1965 static __always_inline void *slab_alloc(struct kmem_cache *s, 1966 gfp_t gfpflags, int node, unsigned long addr) 1967 { 1968 void **object; 1969 struct kmem_cache_cpu *c; 1970 unsigned long tid; 1971 1972 if (slab_pre_alloc_hook(s, gfpflags)) 1973 return NULL; 1974 1975 redo: 1976 1977 /* 1978 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 1979 * enabled. We may switch back and forth between cpus while 1980 * reading from one cpu area. That does not matter as long 1981 * as we end up on the original cpu again when doing the cmpxchg. 1982 */ 1983 c = __this_cpu_ptr(s->cpu_slab); 1984 1985 /* 1986 * The transaction ids are globally unique per cpu and per operation on 1987 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 1988 * occurs on the right processor and that there was no operation on the 1989 * linked list in between. 1990 */ 1991 tid = c->tid; 1992 barrier(); 1993 1994 object = c->freelist; 1995 if (unlikely(!object || !node_match(c, node))) 1996 1997 object = __slab_alloc(s, gfpflags, node, addr, c); 1998 1999 else { 2000 /* 2001 * The cmpxchg will only match if there was no additional 2002 * operation and if we are on the right processor. 2003 * 2004 * The cmpxchg does the following atomically (without lock semantics!) 2005 * 1. Relocate first pointer to the current per cpu area. 2006 * 2. Verify that tid and freelist have not been changed 2007 * 3. If they were not changed replace tid and freelist 2008 * 2009 * Since this is without lock semantics the protection is only against 2010 * code executing on this cpu *not* from access by other cpus. 2011 */ 2012 if (unlikely(!irqsafe_cpu_cmpxchg_double( 2013 s->cpu_slab->freelist, s->cpu_slab->tid, 2014 object, tid, 2015 get_freepointer_safe(s, object), next_tid(tid)))) { 2016 2017 note_cmpxchg_failure("slab_alloc", s, tid); 2018 goto redo; 2019 } 2020 stat(s, ALLOC_FASTPATH); 2021 } 2022 2023 if (unlikely(gfpflags & __GFP_ZERO) && object) 2024 memset(object, 0, s->objsize); 2025 2026 slab_post_alloc_hook(s, gfpflags, object); 2027 2028 return object; 2029 } 2030 2031 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2032 { 2033 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); 2034 2035 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); 2036 2037 return ret; 2038 } 2039 EXPORT_SYMBOL(kmem_cache_alloc); 2040 2041 #ifdef CONFIG_TRACING 2042 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2043 { 2044 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); 2045 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2046 return ret; 2047 } 2048 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2049 2050 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 2051 { 2052 void *ret = kmalloc_order(size, flags, order); 2053 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 2054 return ret; 2055 } 2056 EXPORT_SYMBOL(kmalloc_order_trace); 2057 #endif 2058 2059 #ifdef CONFIG_NUMA 2060 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2061 { 2062 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 2063 2064 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2065 s->objsize, s->size, gfpflags, node); 2066 2067 return ret; 2068 } 2069 EXPORT_SYMBOL(kmem_cache_alloc_node); 2070 2071 #ifdef CONFIG_TRACING 2072 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2073 gfp_t gfpflags, 2074 int node, size_t size) 2075 { 2076 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 2077 2078 trace_kmalloc_node(_RET_IP_, ret, 2079 size, s->size, gfpflags, node); 2080 return ret; 2081 } 2082 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2083 #endif 2084 #endif 2085 2086 /* 2087 * Slow patch handling. This may still be called frequently since objects 2088 * have a longer lifetime than the cpu slabs in most processing loads. 2089 * 2090 * So we still attempt to reduce cache line usage. Just take the slab 2091 * lock and free the item. If there is no additional partial page 2092 * handling required then we can return immediately. 2093 */ 2094 static void __slab_free(struct kmem_cache *s, struct page *page, 2095 void *x, unsigned long addr) 2096 { 2097 void *prior; 2098 void **object = (void *)x; 2099 unsigned long flags; 2100 2101 local_irq_save(flags); 2102 slab_lock(page); 2103 stat(s, FREE_SLOWPATH); 2104 2105 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr)) 2106 goto out_unlock; 2107 2108 prior = page->freelist; 2109 set_freepointer(s, object, prior); 2110 page->freelist = object; 2111 page->inuse--; 2112 2113 if (unlikely(PageSlubFrozen(page))) { 2114 stat(s, FREE_FROZEN); 2115 goto out_unlock; 2116 } 2117 2118 if (unlikely(!page->inuse)) 2119 goto slab_empty; 2120 2121 /* 2122 * Objects left in the slab. If it was not on the partial list before 2123 * then add it. 2124 */ 2125 if (unlikely(!prior)) { 2126 add_partial(get_node(s, page_to_nid(page)), page, 1); 2127 stat(s, FREE_ADD_PARTIAL); 2128 } 2129 2130 out_unlock: 2131 slab_unlock(page); 2132 local_irq_restore(flags); 2133 return; 2134 2135 slab_empty: 2136 if (prior) { 2137 /* 2138 * Slab still on the partial list. 2139 */ 2140 remove_partial(s, page); 2141 stat(s, FREE_REMOVE_PARTIAL); 2142 } 2143 slab_unlock(page); 2144 local_irq_restore(flags); 2145 stat(s, FREE_SLAB); 2146 discard_slab(s, page); 2147 } 2148 2149 /* 2150 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2151 * can perform fastpath freeing without additional function calls. 2152 * 2153 * The fastpath is only possible if we are freeing to the current cpu slab 2154 * of this processor. This typically the case if we have just allocated 2155 * the item before. 2156 * 2157 * If fastpath is not possible then fall back to __slab_free where we deal 2158 * with all sorts of special processing. 2159 */ 2160 static __always_inline void slab_free(struct kmem_cache *s, 2161 struct page *page, void *x, unsigned long addr) 2162 { 2163 void **object = (void *)x; 2164 struct kmem_cache_cpu *c; 2165 unsigned long tid; 2166 2167 slab_free_hook(s, x); 2168 2169 redo: 2170 2171 /* 2172 * Determine the currently cpus per cpu slab. 2173 * The cpu may change afterward. However that does not matter since 2174 * data is retrieved via this pointer. If we are on the same cpu 2175 * during the cmpxchg then the free will succedd. 2176 */ 2177 c = __this_cpu_ptr(s->cpu_slab); 2178 2179 tid = c->tid; 2180 barrier(); 2181 2182 if (likely(page == c->page)) { 2183 set_freepointer(s, object, c->freelist); 2184 2185 if (unlikely(!irqsafe_cpu_cmpxchg_double( 2186 s->cpu_slab->freelist, s->cpu_slab->tid, 2187 c->freelist, tid, 2188 object, next_tid(tid)))) { 2189 2190 note_cmpxchg_failure("slab_free", s, tid); 2191 goto redo; 2192 } 2193 stat(s, FREE_FASTPATH); 2194 } else 2195 __slab_free(s, page, x, addr); 2196 2197 } 2198 2199 void kmem_cache_free(struct kmem_cache *s, void *x) 2200 { 2201 struct page *page; 2202 2203 page = virt_to_head_page(x); 2204 2205 slab_free(s, page, x, _RET_IP_); 2206 2207 trace_kmem_cache_free(_RET_IP_, x); 2208 } 2209 EXPORT_SYMBOL(kmem_cache_free); 2210 2211 /* 2212 * Object placement in a slab is made very easy because we always start at 2213 * offset 0. If we tune the size of the object to the alignment then we can 2214 * get the required alignment by putting one properly sized object after 2215 * another. 2216 * 2217 * Notice that the allocation order determines the sizes of the per cpu 2218 * caches. Each processor has always one slab available for allocations. 2219 * Increasing the allocation order reduces the number of times that slabs 2220 * must be moved on and off the partial lists and is therefore a factor in 2221 * locking overhead. 2222 */ 2223 2224 /* 2225 * Mininum / Maximum order of slab pages. This influences locking overhead 2226 * and slab fragmentation. A higher order reduces the number of partial slabs 2227 * and increases the number of allocations possible without having to 2228 * take the list_lock. 2229 */ 2230 static int slub_min_order; 2231 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2232 static int slub_min_objects; 2233 2234 /* 2235 * Merge control. If this is set then no merging of slab caches will occur. 2236 * (Could be removed. This was introduced to pacify the merge skeptics.) 2237 */ 2238 static int slub_nomerge; 2239 2240 /* 2241 * Calculate the order of allocation given an slab object size. 2242 * 2243 * The order of allocation has significant impact on performance and other 2244 * system components. Generally order 0 allocations should be preferred since 2245 * order 0 does not cause fragmentation in the page allocator. Larger objects 2246 * be problematic to put into order 0 slabs because there may be too much 2247 * unused space left. We go to a higher order if more than 1/16th of the slab 2248 * would be wasted. 2249 * 2250 * In order to reach satisfactory performance we must ensure that a minimum 2251 * number of objects is in one slab. Otherwise we may generate too much 2252 * activity on the partial lists which requires taking the list_lock. This is 2253 * less a concern for large slabs though which are rarely used. 2254 * 2255 * slub_max_order specifies the order where we begin to stop considering the 2256 * number of objects in a slab as critical. If we reach slub_max_order then 2257 * we try to keep the page order as low as possible. So we accept more waste 2258 * of space in favor of a small page order. 2259 * 2260 * Higher order allocations also allow the placement of more objects in a 2261 * slab and thereby reduce object handling overhead. If the user has 2262 * requested a higher mininum order then we start with that one instead of 2263 * the smallest order which will fit the object. 2264 */ 2265 static inline int slab_order(int size, int min_objects, 2266 int max_order, int fract_leftover, int reserved) 2267 { 2268 int order; 2269 int rem; 2270 int min_order = slub_min_order; 2271 2272 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2273 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2274 2275 for (order = max(min_order, 2276 fls(min_objects * size - 1) - PAGE_SHIFT); 2277 order <= max_order; order++) { 2278 2279 unsigned long slab_size = PAGE_SIZE << order; 2280 2281 if (slab_size < min_objects * size + reserved) 2282 continue; 2283 2284 rem = (slab_size - reserved) % size; 2285 2286 if (rem <= slab_size / fract_leftover) 2287 break; 2288 2289 } 2290 2291 return order; 2292 } 2293 2294 static inline int calculate_order(int size, int reserved) 2295 { 2296 int order; 2297 int min_objects; 2298 int fraction; 2299 int max_objects; 2300 2301 /* 2302 * Attempt to find best configuration for a slab. This 2303 * works by first attempting to generate a layout with 2304 * the best configuration and backing off gradually. 2305 * 2306 * First we reduce the acceptable waste in a slab. Then 2307 * we reduce the minimum objects required in a slab. 2308 */ 2309 min_objects = slub_min_objects; 2310 if (!min_objects) 2311 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2312 max_objects = order_objects(slub_max_order, size, reserved); 2313 min_objects = min(min_objects, max_objects); 2314 2315 while (min_objects > 1) { 2316 fraction = 16; 2317 while (fraction >= 4) { 2318 order = slab_order(size, min_objects, 2319 slub_max_order, fraction, reserved); 2320 if (order <= slub_max_order) 2321 return order; 2322 fraction /= 2; 2323 } 2324 min_objects--; 2325 } 2326 2327 /* 2328 * We were unable to place multiple objects in a slab. Now 2329 * lets see if we can place a single object there. 2330 */ 2331 order = slab_order(size, 1, slub_max_order, 1, reserved); 2332 if (order <= slub_max_order) 2333 return order; 2334 2335 /* 2336 * Doh this slab cannot be placed using slub_max_order. 2337 */ 2338 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2339 if (order < MAX_ORDER) 2340 return order; 2341 return -ENOSYS; 2342 } 2343 2344 /* 2345 * Figure out what the alignment of the objects will be. 2346 */ 2347 static unsigned long calculate_alignment(unsigned long flags, 2348 unsigned long align, unsigned long size) 2349 { 2350 /* 2351 * If the user wants hardware cache aligned objects then follow that 2352 * suggestion if the object is sufficiently large. 2353 * 2354 * The hardware cache alignment cannot override the specified 2355 * alignment though. If that is greater then use it. 2356 */ 2357 if (flags & SLAB_HWCACHE_ALIGN) { 2358 unsigned long ralign = cache_line_size(); 2359 while (size <= ralign / 2) 2360 ralign /= 2; 2361 align = max(align, ralign); 2362 } 2363 2364 if (align < ARCH_SLAB_MINALIGN) 2365 align = ARCH_SLAB_MINALIGN; 2366 2367 return ALIGN(align, sizeof(void *)); 2368 } 2369 2370 static void 2371 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) 2372 { 2373 n->nr_partial = 0; 2374 spin_lock_init(&n->list_lock); 2375 INIT_LIST_HEAD(&n->partial); 2376 #ifdef CONFIG_SLUB_DEBUG 2377 atomic_long_set(&n->nr_slabs, 0); 2378 atomic_long_set(&n->total_objects, 0); 2379 INIT_LIST_HEAD(&n->full); 2380 #endif 2381 } 2382 2383 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2384 { 2385 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2386 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu)); 2387 2388 /* 2389 * Must align to double word boundary for the double cmpxchg 2390 * instructions to work; see __pcpu_double_call_return_bool(). 2391 */ 2392 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2393 2 * sizeof(void *)); 2394 2395 if (!s->cpu_slab) 2396 return 0; 2397 2398 init_kmem_cache_cpus(s); 2399 2400 return 1; 2401 } 2402 2403 static struct kmem_cache *kmem_cache_node; 2404 2405 /* 2406 * No kmalloc_node yet so do it by hand. We know that this is the first 2407 * slab on the node for this slabcache. There are no concurrent accesses 2408 * possible. 2409 * 2410 * Note that this function only works on the kmalloc_node_cache 2411 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2412 * memory on a fresh node that has no slab structures yet. 2413 */ 2414 static void early_kmem_cache_node_alloc(int node) 2415 { 2416 struct page *page; 2417 struct kmem_cache_node *n; 2418 unsigned long flags; 2419 2420 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2421 2422 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2423 2424 BUG_ON(!page); 2425 if (page_to_nid(page) != node) { 2426 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2427 "node %d\n", node); 2428 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2429 "in order to be able to continue\n"); 2430 } 2431 2432 n = page->freelist; 2433 BUG_ON(!n); 2434 page->freelist = get_freepointer(kmem_cache_node, n); 2435 page->inuse++; 2436 kmem_cache_node->node[node] = n; 2437 #ifdef CONFIG_SLUB_DEBUG 2438 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2439 init_tracking(kmem_cache_node, n); 2440 #endif 2441 init_kmem_cache_node(n, kmem_cache_node); 2442 inc_slabs_node(kmem_cache_node, node, page->objects); 2443 2444 /* 2445 * lockdep requires consistent irq usage for each lock 2446 * so even though there cannot be a race this early in 2447 * the boot sequence, we still disable irqs. 2448 */ 2449 local_irq_save(flags); 2450 add_partial(n, page, 0); 2451 local_irq_restore(flags); 2452 } 2453 2454 static void free_kmem_cache_nodes(struct kmem_cache *s) 2455 { 2456 int node; 2457 2458 for_each_node_state(node, N_NORMAL_MEMORY) { 2459 struct kmem_cache_node *n = s->node[node]; 2460 2461 if (n) 2462 kmem_cache_free(kmem_cache_node, n); 2463 2464 s->node[node] = NULL; 2465 } 2466 } 2467 2468 static int init_kmem_cache_nodes(struct kmem_cache *s) 2469 { 2470 int node; 2471 2472 for_each_node_state(node, N_NORMAL_MEMORY) { 2473 struct kmem_cache_node *n; 2474 2475 if (slab_state == DOWN) { 2476 early_kmem_cache_node_alloc(node); 2477 continue; 2478 } 2479 n = kmem_cache_alloc_node(kmem_cache_node, 2480 GFP_KERNEL, node); 2481 2482 if (!n) { 2483 free_kmem_cache_nodes(s); 2484 return 0; 2485 } 2486 2487 s->node[node] = n; 2488 init_kmem_cache_node(n, s); 2489 } 2490 return 1; 2491 } 2492 2493 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2494 { 2495 if (min < MIN_PARTIAL) 2496 min = MIN_PARTIAL; 2497 else if (min > MAX_PARTIAL) 2498 min = MAX_PARTIAL; 2499 s->min_partial = min; 2500 } 2501 2502 /* 2503 * calculate_sizes() determines the order and the distribution of data within 2504 * a slab object. 2505 */ 2506 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2507 { 2508 unsigned long flags = s->flags; 2509 unsigned long size = s->objsize; 2510 unsigned long align = s->align; 2511 int order; 2512 2513 /* 2514 * Round up object size to the next word boundary. We can only 2515 * place the free pointer at word boundaries and this determines 2516 * the possible location of the free pointer. 2517 */ 2518 size = ALIGN(size, sizeof(void *)); 2519 2520 #ifdef CONFIG_SLUB_DEBUG 2521 /* 2522 * Determine if we can poison the object itself. If the user of 2523 * the slab may touch the object after free or before allocation 2524 * then we should never poison the object itself. 2525 */ 2526 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2527 !s->ctor) 2528 s->flags |= __OBJECT_POISON; 2529 else 2530 s->flags &= ~__OBJECT_POISON; 2531 2532 2533 /* 2534 * If we are Redzoning then check if there is some space between the 2535 * end of the object and the free pointer. If not then add an 2536 * additional word to have some bytes to store Redzone information. 2537 */ 2538 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2539 size += sizeof(void *); 2540 #endif 2541 2542 /* 2543 * With that we have determined the number of bytes in actual use 2544 * by the object. This is the potential offset to the free pointer. 2545 */ 2546 s->inuse = size; 2547 2548 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2549 s->ctor)) { 2550 /* 2551 * Relocate free pointer after the object if it is not 2552 * permitted to overwrite the first word of the object on 2553 * kmem_cache_free. 2554 * 2555 * This is the case if we do RCU, have a constructor or 2556 * destructor or are poisoning the objects. 2557 */ 2558 s->offset = size; 2559 size += sizeof(void *); 2560 } 2561 2562 #ifdef CONFIG_SLUB_DEBUG 2563 if (flags & SLAB_STORE_USER) 2564 /* 2565 * Need to store information about allocs and frees after 2566 * the object. 2567 */ 2568 size += 2 * sizeof(struct track); 2569 2570 if (flags & SLAB_RED_ZONE) 2571 /* 2572 * Add some empty padding so that we can catch 2573 * overwrites from earlier objects rather than let 2574 * tracking information or the free pointer be 2575 * corrupted if a user writes before the start 2576 * of the object. 2577 */ 2578 size += sizeof(void *); 2579 #endif 2580 2581 /* 2582 * Determine the alignment based on various parameters that the 2583 * user specified and the dynamic determination of cache line size 2584 * on bootup. 2585 */ 2586 align = calculate_alignment(flags, align, s->objsize); 2587 s->align = align; 2588 2589 /* 2590 * SLUB stores one object immediately after another beginning from 2591 * offset 0. In order to align the objects we have to simply size 2592 * each object to conform to the alignment. 2593 */ 2594 size = ALIGN(size, align); 2595 s->size = size; 2596 if (forced_order >= 0) 2597 order = forced_order; 2598 else 2599 order = calculate_order(size, s->reserved); 2600 2601 if (order < 0) 2602 return 0; 2603 2604 s->allocflags = 0; 2605 if (order) 2606 s->allocflags |= __GFP_COMP; 2607 2608 if (s->flags & SLAB_CACHE_DMA) 2609 s->allocflags |= SLUB_DMA; 2610 2611 if (s->flags & SLAB_RECLAIM_ACCOUNT) 2612 s->allocflags |= __GFP_RECLAIMABLE; 2613 2614 /* 2615 * Determine the number of objects per slab 2616 */ 2617 s->oo = oo_make(order, size, s->reserved); 2618 s->min = oo_make(get_order(size), size, s->reserved); 2619 if (oo_objects(s->oo) > oo_objects(s->max)) 2620 s->max = s->oo; 2621 2622 return !!oo_objects(s->oo); 2623 2624 } 2625 2626 static int kmem_cache_open(struct kmem_cache *s, 2627 const char *name, size_t size, 2628 size_t align, unsigned long flags, 2629 void (*ctor)(void *)) 2630 { 2631 memset(s, 0, kmem_size); 2632 s->name = name; 2633 s->ctor = ctor; 2634 s->objsize = size; 2635 s->align = align; 2636 s->flags = kmem_cache_flags(size, flags, name, ctor); 2637 s->reserved = 0; 2638 2639 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 2640 s->reserved = sizeof(struct rcu_head); 2641 2642 if (!calculate_sizes(s, -1)) 2643 goto error; 2644 if (disable_higher_order_debug) { 2645 /* 2646 * Disable debugging flags that store metadata if the min slab 2647 * order increased. 2648 */ 2649 if (get_order(s->size) > get_order(s->objsize)) { 2650 s->flags &= ~DEBUG_METADATA_FLAGS; 2651 s->offset = 0; 2652 if (!calculate_sizes(s, -1)) 2653 goto error; 2654 } 2655 } 2656 2657 /* 2658 * The larger the object size is, the more pages we want on the partial 2659 * list to avoid pounding the page allocator excessively. 2660 */ 2661 set_min_partial(s, ilog2(s->size)); 2662 s->refcount = 1; 2663 #ifdef CONFIG_NUMA 2664 s->remote_node_defrag_ratio = 1000; 2665 #endif 2666 if (!init_kmem_cache_nodes(s)) 2667 goto error; 2668 2669 if (alloc_kmem_cache_cpus(s)) 2670 return 1; 2671 2672 free_kmem_cache_nodes(s); 2673 error: 2674 if (flags & SLAB_PANIC) 2675 panic("Cannot create slab %s size=%lu realsize=%u " 2676 "order=%u offset=%u flags=%lx\n", 2677 s->name, (unsigned long)size, s->size, oo_order(s->oo), 2678 s->offset, flags); 2679 return 0; 2680 } 2681 2682 /* 2683 * Determine the size of a slab object 2684 */ 2685 unsigned int kmem_cache_size(struct kmem_cache *s) 2686 { 2687 return s->objsize; 2688 } 2689 EXPORT_SYMBOL(kmem_cache_size); 2690 2691 static void list_slab_objects(struct kmem_cache *s, struct page *page, 2692 const char *text) 2693 { 2694 #ifdef CONFIG_SLUB_DEBUG 2695 void *addr = page_address(page); 2696 void *p; 2697 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 2698 sizeof(long), GFP_ATOMIC); 2699 if (!map) 2700 return; 2701 slab_err(s, page, "%s", text); 2702 slab_lock(page); 2703 2704 get_map(s, page, map); 2705 for_each_object(p, s, addr, page->objects) { 2706 2707 if (!test_bit(slab_index(p, s, addr), map)) { 2708 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 2709 p, p - addr); 2710 print_tracking(s, p); 2711 } 2712 } 2713 slab_unlock(page); 2714 kfree(map); 2715 #endif 2716 } 2717 2718 /* 2719 * Attempt to free all partial slabs on a node. 2720 */ 2721 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 2722 { 2723 unsigned long flags; 2724 struct page *page, *h; 2725 2726 spin_lock_irqsave(&n->list_lock, flags); 2727 list_for_each_entry_safe(page, h, &n->partial, lru) { 2728 if (!page->inuse) { 2729 __remove_partial(n, page); 2730 discard_slab(s, page); 2731 } else { 2732 list_slab_objects(s, page, 2733 "Objects remaining on kmem_cache_close()"); 2734 } 2735 } 2736 spin_unlock_irqrestore(&n->list_lock, flags); 2737 } 2738 2739 /* 2740 * Release all resources used by a slab cache. 2741 */ 2742 static inline int kmem_cache_close(struct kmem_cache *s) 2743 { 2744 int node; 2745 2746 flush_all(s); 2747 free_percpu(s->cpu_slab); 2748 /* Attempt to free all objects */ 2749 for_each_node_state(node, N_NORMAL_MEMORY) { 2750 struct kmem_cache_node *n = get_node(s, node); 2751 2752 free_partial(s, n); 2753 if (n->nr_partial || slabs_node(s, node)) 2754 return 1; 2755 } 2756 free_kmem_cache_nodes(s); 2757 return 0; 2758 } 2759 2760 /* 2761 * Close a cache and release the kmem_cache structure 2762 * (must be used for caches created using kmem_cache_create) 2763 */ 2764 void kmem_cache_destroy(struct kmem_cache *s) 2765 { 2766 down_write(&slub_lock); 2767 s->refcount--; 2768 if (!s->refcount) { 2769 list_del(&s->list); 2770 if (kmem_cache_close(s)) { 2771 printk(KERN_ERR "SLUB %s: %s called for cache that " 2772 "still has objects.\n", s->name, __func__); 2773 dump_stack(); 2774 } 2775 if (s->flags & SLAB_DESTROY_BY_RCU) 2776 rcu_barrier(); 2777 sysfs_slab_remove(s); 2778 } 2779 up_write(&slub_lock); 2780 } 2781 EXPORT_SYMBOL(kmem_cache_destroy); 2782 2783 /******************************************************************** 2784 * Kmalloc subsystem 2785 *******************************************************************/ 2786 2787 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; 2788 EXPORT_SYMBOL(kmalloc_caches); 2789 2790 static struct kmem_cache *kmem_cache; 2791 2792 #ifdef CONFIG_ZONE_DMA 2793 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT]; 2794 #endif 2795 2796 static int __init setup_slub_min_order(char *str) 2797 { 2798 get_option(&str, &slub_min_order); 2799 2800 return 1; 2801 } 2802 2803 __setup("slub_min_order=", setup_slub_min_order); 2804 2805 static int __init setup_slub_max_order(char *str) 2806 { 2807 get_option(&str, &slub_max_order); 2808 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 2809 2810 return 1; 2811 } 2812 2813 __setup("slub_max_order=", setup_slub_max_order); 2814 2815 static int __init setup_slub_min_objects(char *str) 2816 { 2817 get_option(&str, &slub_min_objects); 2818 2819 return 1; 2820 } 2821 2822 __setup("slub_min_objects=", setup_slub_min_objects); 2823 2824 static int __init setup_slub_nomerge(char *str) 2825 { 2826 slub_nomerge = 1; 2827 return 1; 2828 } 2829 2830 __setup("slub_nomerge", setup_slub_nomerge); 2831 2832 static struct kmem_cache *__init create_kmalloc_cache(const char *name, 2833 int size, unsigned int flags) 2834 { 2835 struct kmem_cache *s; 2836 2837 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 2838 2839 /* 2840 * This function is called with IRQs disabled during early-boot on 2841 * single CPU so there's no need to take slub_lock here. 2842 */ 2843 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN, 2844 flags, NULL)) 2845 goto panic; 2846 2847 list_add(&s->list, &slab_caches); 2848 return s; 2849 2850 panic: 2851 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 2852 return NULL; 2853 } 2854 2855 /* 2856 * Conversion table for small slabs sizes / 8 to the index in the 2857 * kmalloc array. This is necessary for slabs < 192 since we have non power 2858 * of two cache sizes there. The size of larger slabs can be determined using 2859 * fls. 2860 */ 2861 static s8 size_index[24] = { 2862 3, /* 8 */ 2863 4, /* 16 */ 2864 5, /* 24 */ 2865 5, /* 32 */ 2866 6, /* 40 */ 2867 6, /* 48 */ 2868 6, /* 56 */ 2869 6, /* 64 */ 2870 1, /* 72 */ 2871 1, /* 80 */ 2872 1, /* 88 */ 2873 1, /* 96 */ 2874 7, /* 104 */ 2875 7, /* 112 */ 2876 7, /* 120 */ 2877 7, /* 128 */ 2878 2, /* 136 */ 2879 2, /* 144 */ 2880 2, /* 152 */ 2881 2, /* 160 */ 2882 2, /* 168 */ 2883 2, /* 176 */ 2884 2, /* 184 */ 2885 2 /* 192 */ 2886 }; 2887 2888 static inline int size_index_elem(size_t bytes) 2889 { 2890 return (bytes - 1) / 8; 2891 } 2892 2893 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 2894 { 2895 int index; 2896 2897 if (size <= 192) { 2898 if (!size) 2899 return ZERO_SIZE_PTR; 2900 2901 index = size_index[size_index_elem(size)]; 2902 } else 2903 index = fls(size - 1); 2904 2905 #ifdef CONFIG_ZONE_DMA 2906 if (unlikely((flags & SLUB_DMA))) 2907 return kmalloc_dma_caches[index]; 2908 2909 #endif 2910 return kmalloc_caches[index]; 2911 } 2912 2913 void *__kmalloc(size_t size, gfp_t flags) 2914 { 2915 struct kmem_cache *s; 2916 void *ret; 2917 2918 if (unlikely(size > SLUB_MAX_SIZE)) 2919 return kmalloc_large(size, flags); 2920 2921 s = get_slab(size, flags); 2922 2923 if (unlikely(ZERO_OR_NULL_PTR(s))) 2924 return s; 2925 2926 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_); 2927 2928 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 2929 2930 return ret; 2931 } 2932 EXPORT_SYMBOL(__kmalloc); 2933 2934 #ifdef CONFIG_NUMA 2935 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 2936 { 2937 struct page *page; 2938 void *ptr = NULL; 2939 2940 flags |= __GFP_COMP | __GFP_NOTRACK; 2941 page = alloc_pages_node(node, flags, get_order(size)); 2942 if (page) 2943 ptr = page_address(page); 2944 2945 kmemleak_alloc(ptr, size, 1, flags); 2946 return ptr; 2947 } 2948 2949 void *__kmalloc_node(size_t size, gfp_t flags, int node) 2950 { 2951 struct kmem_cache *s; 2952 void *ret; 2953 2954 if (unlikely(size > SLUB_MAX_SIZE)) { 2955 ret = kmalloc_large_node(size, flags, node); 2956 2957 trace_kmalloc_node(_RET_IP_, ret, 2958 size, PAGE_SIZE << get_order(size), 2959 flags, node); 2960 2961 return ret; 2962 } 2963 2964 s = get_slab(size, flags); 2965 2966 if (unlikely(ZERO_OR_NULL_PTR(s))) 2967 return s; 2968 2969 ret = slab_alloc(s, flags, node, _RET_IP_); 2970 2971 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 2972 2973 return ret; 2974 } 2975 EXPORT_SYMBOL(__kmalloc_node); 2976 #endif 2977 2978 size_t ksize(const void *object) 2979 { 2980 struct page *page; 2981 2982 if (unlikely(object == ZERO_SIZE_PTR)) 2983 return 0; 2984 2985 page = virt_to_head_page(object); 2986 2987 if (unlikely(!PageSlab(page))) { 2988 WARN_ON(!PageCompound(page)); 2989 return PAGE_SIZE << compound_order(page); 2990 } 2991 2992 return slab_ksize(page->slab); 2993 } 2994 EXPORT_SYMBOL(ksize); 2995 2996 #ifdef CONFIG_SLUB_DEBUG 2997 bool verify_mem_not_deleted(const void *x) 2998 { 2999 struct page *page; 3000 void *object = (void *)x; 3001 unsigned long flags; 3002 bool rv; 3003 3004 if (unlikely(ZERO_OR_NULL_PTR(x))) 3005 return false; 3006 3007 local_irq_save(flags); 3008 3009 page = virt_to_head_page(x); 3010 if (unlikely(!PageSlab(page))) { 3011 /* maybe it was from stack? */ 3012 rv = true; 3013 goto out_unlock; 3014 } 3015 3016 slab_lock(page); 3017 if (on_freelist(page->slab, page, object)) { 3018 object_err(page->slab, page, object, "Object is on free-list"); 3019 rv = false; 3020 } else { 3021 rv = true; 3022 } 3023 slab_unlock(page); 3024 3025 out_unlock: 3026 local_irq_restore(flags); 3027 return rv; 3028 } 3029 EXPORT_SYMBOL(verify_mem_not_deleted); 3030 #endif 3031 3032 void kfree(const void *x) 3033 { 3034 struct page *page; 3035 void *object = (void *)x; 3036 3037 trace_kfree(_RET_IP_, x); 3038 3039 if (unlikely(ZERO_OR_NULL_PTR(x))) 3040 return; 3041 3042 page = virt_to_head_page(x); 3043 if (unlikely(!PageSlab(page))) { 3044 BUG_ON(!PageCompound(page)); 3045 kmemleak_free(x); 3046 put_page(page); 3047 return; 3048 } 3049 slab_free(page->slab, page, object, _RET_IP_); 3050 } 3051 EXPORT_SYMBOL(kfree); 3052 3053 /* 3054 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 3055 * the remaining slabs by the number of items in use. The slabs with the 3056 * most items in use come first. New allocations will then fill those up 3057 * and thus they can be removed from the partial lists. 3058 * 3059 * The slabs with the least items are placed last. This results in them 3060 * being allocated from last increasing the chance that the last objects 3061 * are freed in them. 3062 */ 3063 int kmem_cache_shrink(struct kmem_cache *s) 3064 { 3065 int node; 3066 int i; 3067 struct kmem_cache_node *n; 3068 struct page *page; 3069 struct page *t; 3070 int objects = oo_objects(s->max); 3071 struct list_head *slabs_by_inuse = 3072 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 3073 unsigned long flags; 3074 3075 if (!slabs_by_inuse) 3076 return -ENOMEM; 3077 3078 flush_all(s); 3079 for_each_node_state(node, N_NORMAL_MEMORY) { 3080 n = get_node(s, node); 3081 3082 if (!n->nr_partial) 3083 continue; 3084 3085 for (i = 0; i < objects; i++) 3086 INIT_LIST_HEAD(slabs_by_inuse + i); 3087 3088 spin_lock_irqsave(&n->list_lock, flags); 3089 3090 /* 3091 * Build lists indexed by the items in use in each slab. 3092 * 3093 * Note that concurrent frees may occur while we hold the 3094 * list_lock. page->inuse here is the upper limit. 3095 */ 3096 list_for_each_entry_safe(page, t, &n->partial, lru) { 3097 if (!page->inuse && slab_trylock(page)) { 3098 /* 3099 * Must hold slab lock here because slab_free 3100 * may have freed the last object and be 3101 * waiting to release the slab. 3102 */ 3103 __remove_partial(n, page); 3104 slab_unlock(page); 3105 discard_slab(s, page); 3106 } else { 3107 list_move(&page->lru, 3108 slabs_by_inuse + page->inuse); 3109 } 3110 } 3111 3112 /* 3113 * Rebuild the partial list with the slabs filled up most 3114 * first and the least used slabs at the end. 3115 */ 3116 for (i = objects - 1; i >= 0; i--) 3117 list_splice(slabs_by_inuse + i, n->partial.prev); 3118 3119 spin_unlock_irqrestore(&n->list_lock, flags); 3120 } 3121 3122 kfree(slabs_by_inuse); 3123 return 0; 3124 } 3125 EXPORT_SYMBOL(kmem_cache_shrink); 3126 3127 #if defined(CONFIG_MEMORY_HOTPLUG) 3128 static int slab_mem_going_offline_callback(void *arg) 3129 { 3130 struct kmem_cache *s; 3131 3132 down_read(&slub_lock); 3133 list_for_each_entry(s, &slab_caches, list) 3134 kmem_cache_shrink(s); 3135 up_read(&slub_lock); 3136 3137 return 0; 3138 } 3139 3140 static void slab_mem_offline_callback(void *arg) 3141 { 3142 struct kmem_cache_node *n; 3143 struct kmem_cache *s; 3144 struct memory_notify *marg = arg; 3145 int offline_node; 3146 3147 offline_node = marg->status_change_nid; 3148 3149 /* 3150 * If the node still has available memory. we need kmem_cache_node 3151 * for it yet. 3152 */ 3153 if (offline_node < 0) 3154 return; 3155 3156 down_read(&slub_lock); 3157 list_for_each_entry(s, &slab_caches, list) { 3158 n = get_node(s, offline_node); 3159 if (n) { 3160 /* 3161 * if n->nr_slabs > 0, slabs still exist on the node 3162 * that is going down. We were unable to free them, 3163 * and offline_pages() function shouldn't call this 3164 * callback. So, we must fail. 3165 */ 3166 BUG_ON(slabs_node(s, offline_node)); 3167 3168 s->node[offline_node] = NULL; 3169 kmem_cache_free(kmem_cache_node, n); 3170 } 3171 } 3172 up_read(&slub_lock); 3173 } 3174 3175 static int slab_mem_going_online_callback(void *arg) 3176 { 3177 struct kmem_cache_node *n; 3178 struct kmem_cache *s; 3179 struct memory_notify *marg = arg; 3180 int nid = marg->status_change_nid; 3181 int ret = 0; 3182 3183 /* 3184 * If the node's memory is already available, then kmem_cache_node is 3185 * already created. Nothing to do. 3186 */ 3187 if (nid < 0) 3188 return 0; 3189 3190 /* 3191 * We are bringing a node online. No memory is available yet. We must 3192 * allocate a kmem_cache_node structure in order to bring the node 3193 * online. 3194 */ 3195 down_read(&slub_lock); 3196 list_for_each_entry(s, &slab_caches, list) { 3197 /* 3198 * XXX: kmem_cache_alloc_node will fallback to other nodes 3199 * since memory is not yet available from the node that 3200 * is brought up. 3201 */ 3202 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3203 if (!n) { 3204 ret = -ENOMEM; 3205 goto out; 3206 } 3207 init_kmem_cache_node(n, s); 3208 s->node[nid] = n; 3209 } 3210 out: 3211 up_read(&slub_lock); 3212 return ret; 3213 } 3214 3215 static int slab_memory_callback(struct notifier_block *self, 3216 unsigned long action, void *arg) 3217 { 3218 int ret = 0; 3219 3220 switch (action) { 3221 case MEM_GOING_ONLINE: 3222 ret = slab_mem_going_online_callback(arg); 3223 break; 3224 case MEM_GOING_OFFLINE: 3225 ret = slab_mem_going_offline_callback(arg); 3226 break; 3227 case MEM_OFFLINE: 3228 case MEM_CANCEL_ONLINE: 3229 slab_mem_offline_callback(arg); 3230 break; 3231 case MEM_ONLINE: 3232 case MEM_CANCEL_OFFLINE: 3233 break; 3234 } 3235 if (ret) 3236 ret = notifier_from_errno(ret); 3237 else 3238 ret = NOTIFY_OK; 3239 return ret; 3240 } 3241 3242 #endif /* CONFIG_MEMORY_HOTPLUG */ 3243 3244 /******************************************************************** 3245 * Basic setup of slabs 3246 *******************************************************************/ 3247 3248 /* 3249 * Used for early kmem_cache structures that were allocated using 3250 * the page allocator 3251 */ 3252 3253 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s) 3254 { 3255 int node; 3256 3257 list_add(&s->list, &slab_caches); 3258 s->refcount = -1; 3259 3260 for_each_node_state(node, N_NORMAL_MEMORY) { 3261 struct kmem_cache_node *n = get_node(s, node); 3262 struct page *p; 3263 3264 if (n) { 3265 list_for_each_entry(p, &n->partial, lru) 3266 p->slab = s; 3267 3268 #ifdef CONFIG_SLUB_DEBUG 3269 list_for_each_entry(p, &n->full, lru) 3270 p->slab = s; 3271 #endif 3272 } 3273 } 3274 } 3275 3276 void __init kmem_cache_init(void) 3277 { 3278 int i; 3279 int caches = 0; 3280 struct kmem_cache *temp_kmem_cache; 3281 int order; 3282 struct kmem_cache *temp_kmem_cache_node; 3283 unsigned long kmalloc_size; 3284 3285 kmem_size = offsetof(struct kmem_cache, node) + 3286 nr_node_ids * sizeof(struct kmem_cache_node *); 3287 3288 /* Allocate two kmem_caches from the page allocator */ 3289 kmalloc_size = ALIGN(kmem_size, cache_line_size()); 3290 order = get_order(2 * kmalloc_size); 3291 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order); 3292 3293 /* 3294 * Must first have the slab cache available for the allocations of the 3295 * struct kmem_cache_node's. There is special bootstrap code in 3296 * kmem_cache_open for slab_state == DOWN. 3297 */ 3298 kmem_cache_node = (void *)kmem_cache + kmalloc_size; 3299 3300 kmem_cache_open(kmem_cache_node, "kmem_cache_node", 3301 sizeof(struct kmem_cache_node), 3302 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3303 3304 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 3305 3306 /* Able to allocate the per node structures */ 3307 slab_state = PARTIAL; 3308 3309 temp_kmem_cache = kmem_cache; 3310 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size, 3311 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3312 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3313 memcpy(kmem_cache, temp_kmem_cache, kmem_size); 3314 3315 /* 3316 * Allocate kmem_cache_node properly from the kmem_cache slab. 3317 * kmem_cache_node is separately allocated so no need to 3318 * update any list pointers. 3319 */ 3320 temp_kmem_cache_node = kmem_cache_node; 3321 3322 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3323 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size); 3324 3325 kmem_cache_bootstrap_fixup(kmem_cache_node); 3326 3327 caches++; 3328 kmem_cache_bootstrap_fixup(kmem_cache); 3329 caches++; 3330 /* Free temporary boot structure */ 3331 free_pages((unsigned long)temp_kmem_cache, order); 3332 3333 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3334 3335 /* 3336 * Patch up the size_index table if we have strange large alignment 3337 * requirements for the kmalloc array. This is only the case for 3338 * MIPS it seems. The standard arches will not generate any code here. 3339 * 3340 * Largest permitted alignment is 256 bytes due to the way we 3341 * handle the index determination for the smaller caches. 3342 * 3343 * Make sure that nothing crazy happens if someone starts tinkering 3344 * around with ARCH_KMALLOC_MINALIGN 3345 */ 3346 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3347 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3348 3349 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 3350 int elem = size_index_elem(i); 3351 if (elem >= ARRAY_SIZE(size_index)) 3352 break; 3353 size_index[elem] = KMALLOC_SHIFT_LOW; 3354 } 3355 3356 if (KMALLOC_MIN_SIZE == 64) { 3357 /* 3358 * The 96 byte size cache is not used if the alignment 3359 * is 64 byte. 3360 */ 3361 for (i = 64 + 8; i <= 96; i += 8) 3362 size_index[size_index_elem(i)] = 7; 3363 } else if (KMALLOC_MIN_SIZE == 128) { 3364 /* 3365 * The 192 byte sized cache is not used if the alignment 3366 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3367 * instead. 3368 */ 3369 for (i = 128 + 8; i <= 192; i += 8) 3370 size_index[size_index_elem(i)] = 8; 3371 } 3372 3373 /* Caches that are not of the two-to-the-power-of size */ 3374 if (KMALLOC_MIN_SIZE <= 32) { 3375 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0); 3376 caches++; 3377 } 3378 3379 if (KMALLOC_MIN_SIZE <= 64) { 3380 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0); 3381 caches++; 3382 } 3383 3384 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3385 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0); 3386 caches++; 3387 } 3388 3389 slab_state = UP; 3390 3391 /* Provide the correct kmalloc names now that the caches are up */ 3392 if (KMALLOC_MIN_SIZE <= 32) { 3393 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT); 3394 BUG_ON(!kmalloc_caches[1]->name); 3395 } 3396 3397 if (KMALLOC_MIN_SIZE <= 64) { 3398 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT); 3399 BUG_ON(!kmalloc_caches[2]->name); 3400 } 3401 3402 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3403 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); 3404 3405 BUG_ON(!s); 3406 kmalloc_caches[i]->name = s; 3407 } 3408 3409 #ifdef CONFIG_SMP 3410 register_cpu_notifier(&slab_notifier); 3411 #endif 3412 3413 #ifdef CONFIG_ZONE_DMA 3414 for (i = 0; i < SLUB_PAGE_SHIFT; i++) { 3415 struct kmem_cache *s = kmalloc_caches[i]; 3416 3417 if (s && s->size) { 3418 char *name = kasprintf(GFP_NOWAIT, 3419 "dma-kmalloc-%d", s->objsize); 3420 3421 BUG_ON(!name); 3422 kmalloc_dma_caches[i] = create_kmalloc_cache(name, 3423 s->objsize, SLAB_CACHE_DMA); 3424 } 3425 } 3426 #endif 3427 printk(KERN_INFO 3428 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3429 " CPUs=%d, Nodes=%d\n", 3430 caches, cache_line_size(), 3431 slub_min_order, slub_max_order, slub_min_objects, 3432 nr_cpu_ids, nr_node_ids); 3433 } 3434 3435 void __init kmem_cache_init_late(void) 3436 { 3437 } 3438 3439 /* 3440 * Find a mergeable slab cache 3441 */ 3442 static int slab_unmergeable(struct kmem_cache *s) 3443 { 3444 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3445 return 1; 3446 3447 if (s->ctor) 3448 return 1; 3449 3450 /* 3451 * We may have set a slab to be unmergeable during bootstrap. 3452 */ 3453 if (s->refcount < 0) 3454 return 1; 3455 3456 return 0; 3457 } 3458 3459 static struct kmem_cache *find_mergeable(size_t size, 3460 size_t align, unsigned long flags, const char *name, 3461 void (*ctor)(void *)) 3462 { 3463 struct kmem_cache *s; 3464 3465 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3466 return NULL; 3467 3468 if (ctor) 3469 return NULL; 3470 3471 size = ALIGN(size, sizeof(void *)); 3472 align = calculate_alignment(flags, align, size); 3473 size = ALIGN(size, align); 3474 flags = kmem_cache_flags(size, flags, name, NULL); 3475 3476 list_for_each_entry(s, &slab_caches, list) { 3477 if (slab_unmergeable(s)) 3478 continue; 3479 3480 if (size > s->size) 3481 continue; 3482 3483 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3484 continue; 3485 /* 3486 * Check if alignment is compatible. 3487 * Courtesy of Adrian Drzewiecki 3488 */ 3489 if ((s->size & ~(align - 1)) != s->size) 3490 continue; 3491 3492 if (s->size - size >= sizeof(void *)) 3493 continue; 3494 3495 return s; 3496 } 3497 return NULL; 3498 } 3499 3500 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 3501 size_t align, unsigned long flags, void (*ctor)(void *)) 3502 { 3503 struct kmem_cache *s; 3504 char *n; 3505 3506 if (WARN_ON(!name)) 3507 return NULL; 3508 3509 down_write(&slub_lock); 3510 s = find_mergeable(size, align, flags, name, ctor); 3511 if (s) { 3512 s->refcount++; 3513 /* 3514 * Adjust the object sizes so that we clear 3515 * the complete object on kzalloc. 3516 */ 3517 s->objsize = max(s->objsize, (int)size); 3518 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3519 3520 if (sysfs_slab_alias(s, name)) { 3521 s->refcount--; 3522 goto err; 3523 } 3524 up_write(&slub_lock); 3525 return s; 3526 } 3527 3528 n = kstrdup(name, GFP_KERNEL); 3529 if (!n) 3530 goto err; 3531 3532 s = kmalloc(kmem_size, GFP_KERNEL); 3533 if (s) { 3534 if (kmem_cache_open(s, n, 3535 size, align, flags, ctor)) { 3536 list_add(&s->list, &slab_caches); 3537 if (sysfs_slab_add(s)) { 3538 list_del(&s->list); 3539 kfree(n); 3540 kfree(s); 3541 goto err; 3542 } 3543 up_write(&slub_lock); 3544 return s; 3545 } 3546 kfree(n); 3547 kfree(s); 3548 } 3549 err: 3550 up_write(&slub_lock); 3551 3552 if (flags & SLAB_PANIC) 3553 panic("Cannot create slabcache %s\n", name); 3554 else 3555 s = NULL; 3556 return s; 3557 } 3558 EXPORT_SYMBOL(kmem_cache_create); 3559 3560 #ifdef CONFIG_SMP 3561 /* 3562 * Use the cpu notifier to insure that the cpu slabs are flushed when 3563 * necessary. 3564 */ 3565 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3566 unsigned long action, void *hcpu) 3567 { 3568 long cpu = (long)hcpu; 3569 struct kmem_cache *s; 3570 unsigned long flags; 3571 3572 switch (action) { 3573 case CPU_UP_CANCELED: 3574 case CPU_UP_CANCELED_FROZEN: 3575 case CPU_DEAD: 3576 case CPU_DEAD_FROZEN: 3577 down_read(&slub_lock); 3578 list_for_each_entry(s, &slab_caches, list) { 3579 local_irq_save(flags); 3580 __flush_cpu_slab(s, cpu); 3581 local_irq_restore(flags); 3582 } 3583 up_read(&slub_lock); 3584 break; 3585 default: 3586 break; 3587 } 3588 return NOTIFY_OK; 3589 } 3590 3591 static struct notifier_block __cpuinitdata slab_notifier = { 3592 .notifier_call = slab_cpuup_callback 3593 }; 3594 3595 #endif 3596 3597 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3598 { 3599 struct kmem_cache *s; 3600 void *ret; 3601 3602 if (unlikely(size > SLUB_MAX_SIZE)) 3603 return kmalloc_large(size, gfpflags); 3604 3605 s = get_slab(size, gfpflags); 3606 3607 if (unlikely(ZERO_OR_NULL_PTR(s))) 3608 return s; 3609 3610 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller); 3611 3612 /* Honor the call site pointer we received. */ 3613 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3614 3615 return ret; 3616 } 3617 3618 #ifdef CONFIG_NUMA 3619 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3620 int node, unsigned long caller) 3621 { 3622 struct kmem_cache *s; 3623 void *ret; 3624 3625 if (unlikely(size > SLUB_MAX_SIZE)) { 3626 ret = kmalloc_large_node(size, gfpflags, node); 3627 3628 trace_kmalloc_node(caller, ret, 3629 size, PAGE_SIZE << get_order(size), 3630 gfpflags, node); 3631 3632 return ret; 3633 } 3634 3635 s = get_slab(size, gfpflags); 3636 3637 if (unlikely(ZERO_OR_NULL_PTR(s))) 3638 return s; 3639 3640 ret = slab_alloc(s, gfpflags, node, caller); 3641 3642 /* Honor the call site pointer we received. */ 3643 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3644 3645 return ret; 3646 } 3647 #endif 3648 3649 #ifdef CONFIG_SYSFS 3650 static int count_inuse(struct page *page) 3651 { 3652 return page->inuse; 3653 } 3654 3655 static int count_total(struct page *page) 3656 { 3657 return page->objects; 3658 } 3659 #endif 3660 3661 #ifdef CONFIG_SLUB_DEBUG 3662 static int validate_slab(struct kmem_cache *s, struct page *page, 3663 unsigned long *map) 3664 { 3665 void *p; 3666 void *addr = page_address(page); 3667 3668 if (!check_slab(s, page) || 3669 !on_freelist(s, page, NULL)) 3670 return 0; 3671 3672 /* Now we know that a valid freelist exists */ 3673 bitmap_zero(map, page->objects); 3674 3675 get_map(s, page, map); 3676 for_each_object(p, s, addr, page->objects) { 3677 if (test_bit(slab_index(p, s, addr), map)) 3678 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 3679 return 0; 3680 } 3681 3682 for_each_object(p, s, addr, page->objects) 3683 if (!test_bit(slab_index(p, s, addr), map)) 3684 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 3685 return 0; 3686 return 1; 3687 } 3688 3689 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3690 unsigned long *map) 3691 { 3692 if (slab_trylock(page)) { 3693 validate_slab(s, page, map); 3694 slab_unlock(page); 3695 } else 3696 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", 3697 s->name, page); 3698 } 3699 3700 static int validate_slab_node(struct kmem_cache *s, 3701 struct kmem_cache_node *n, unsigned long *map) 3702 { 3703 unsigned long count = 0; 3704 struct page *page; 3705 unsigned long flags; 3706 3707 spin_lock_irqsave(&n->list_lock, flags); 3708 3709 list_for_each_entry(page, &n->partial, lru) { 3710 validate_slab_slab(s, page, map); 3711 count++; 3712 } 3713 if (count != n->nr_partial) 3714 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3715 "counter=%ld\n", s->name, count, n->nr_partial); 3716 3717 if (!(s->flags & SLAB_STORE_USER)) 3718 goto out; 3719 3720 list_for_each_entry(page, &n->full, lru) { 3721 validate_slab_slab(s, page, map); 3722 count++; 3723 } 3724 if (count != atomic_long_read(&n->nr_slabs)) 3725 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3726 "counter=%ld\n", s->name, count, 3727 atomic_long_read(&n->nr_slabs)); 3728 3729 out: 3730 spin_unlock_irqrestore(&n->list_lock, flags); 3731 return count; 3732 } 3733 3734 static long validate_slab_cache(struct kmem_cache *s) 3735 { 3736 int node; 3737 unsigned long count = 0; 3738 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3739 sizeof(unsigned long), GFP_KERNEL); 3740 3741 if (!map) 3742 return -ENOMEM; 3743 3744 flush_all(s); 3745 for_each_node_state(node, N_NORMAL_MEMORY) { 3746 struct kmem_cache_node *n = get_node(s, node); 3747 3748 count += validate_slab_node(s, n, map); 3749 } 3750 kfree(map); 3751 return count; 3752 } 3753 /* 3754 * Generate lists of code addresses where slabcache objects are allocated 3755 * and freed. 3756 */ 3757 3758 struct location { 3759 unsigned long count; 3760 unsigned long addr; 3761 long long sum_time; 3762 long min_time; 3763 long max_time; 3764 long min_pid; 3765 long max_pid; 3766 DECLARE_BITMAP(cpus, NR_CPUS); 3767 nodemask_t nodes; 3768 }; 3769 3770 struct loc_track { 3771 unsigned long max; 3772 unsigned long count; 3773 struct location *loc; 3774 }; 3775 3776 static void free_loc_track(struct loc_track *t) 3777 { 3778 if (t->max) 3779 free_pages((unsigned long)t->loc, 3780 get_order(sizeof(struct location) * t->max)); 3781 } 3782 3783 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3784 { 3785 struct location *l; 3786 int order; 3787 3788 order = get_order(sizeof(struct location) * max); 3789 3790 l = (void *)__get_free_pages(flags, order); 3791 if (!l) 3792 return 0; 3793 3794 if (t->count) { 3795 memcpy(l, t->loc, sizeof(struct location) * t->count); 3796 free_loc_track(t); 3797 } 3798 t->max = max; 3799 t->loc = l; 3800 return 1; 3801 } 3802 3803 static int add_location(struct loc_track *t, struct kmem_cache *s, 3804 const struct track *track) 3805 { 3806 long start, end, pos; 3807 struct location *l; 3808 unsigned long caddr; 3809 unsigned long age = jiffies - track->when; 3810 3811 start = -1; 3812 end = t->count; 3813 3814 for ( ; ; ) { 3815 pos = start + (end - start + 1) / 2; 3816 3817 /* 3818 * There is nothing at "end". If we end up there 3819 * we need to add something to before end. 3820 */ 3821 if (pos == end) 3822 break; 3823 3824 caddr = t->loc[pos].addr; 3825 if (track->addr == caddr) { 3826 3827 l = &t->loc[pos]; 3828 l->count++; 3829 if (track->when) { 3830 l->sum_time += age; 3831 if (age < l->min_time) 3832 l->min_time = age; 3833 if (age > l->max_time) 3834 l->max_time = age; 3835 3836 if (track->pid < l->min_pid) 3837 l->min_pid = track->pid; 3838 if (track->pid > l->max_pid) 3839 l->max_pid = track->pid; 3840 3841 cpumask_set_cpu(track->cpu, 3842 to_cpumask(l->cpus)); 3843 } 3844 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3845 return 1; 3846 } 3847 3848 if (track->addr < caddr) 3849 end = pos; 3850 else 3851 start = pos; 3852 } 3853 3854 /* 3855 * Not found. Insert new tracking element. 3856 */ 3857 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3858 return 0; 3859 3860 l = t->loc + pos; 3861 if (pos < t->count) 3862 memmove(l + 1, l, 3863 (t->count - pos) * sizeof(struct location)); 3864 t->count++; 3865 l->count = 1; 3866 l->addr = track->addr; 3867 l->sum_time = age; 3868 l->min_time = age; 3869 l->max_time = age; 3870 l->min_pid = track->pid; 3871 l->max_pid = track->pid; 3872 cpumask_clear(to_cpumask(l->cpus)); 3873 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 3874 nodes_clear(l->nodes); 3875 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3876 return 1; 3877 } 3878 3879 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3880 struct page *page, enum track_item alloc, 3881 unsigned long *map) 3882 { 3883 void *addr = page_address(page); 3884 void *p; 3885 3886 bitmap_zero(map, page->objects); 3887 get_map(s, page, map); 3888 3889 for_each_object(p, s, addr, page->objects) 3890 if (!test_bit(slab_index(p, s, addr), map)) 3891 add_location(t, s, get_track(s, p, alloc)); 3892 } 3893 3894 static int list_locations(struct kmem_cache *s, char *buf, 3895 enum track_item alloc) 3896 { 3897 int len = 0; 3898 unsigned long i; 3899 struct loc_track t = { 0, 0, NULL }; 3900 int node; 3901 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3902 sizeof(unsigned long), GFP_KERNEL); 3903 3904 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 3905 GFP_TEMPORARY)) { 3906 kfree(map); 3907 return sprintf(buf, "Out of memory\n"); 3908 } 3909 /* Push back cpu slabs */ 3910 flush_all(s); 3911 3912 for_each_node_state(node, N_NORMAL_MEMORY) { 3913 struct kmem_cache_node *n = get_node(s, node); 3914 unsigned long flags; 3915 struct page *page; 3916 3917 if (!atomic_long_read(&n->nr_slabs)) 3918 continue; 3919 3920 spin_lock_irqsave(&n->list_lock, flags); 3921 list_for_each_entry(page, &n->partial, lru) 3922 process_slab(&t, s, page, alloc, map); 3923 list_for_each_entry(page, &n->full, lru) 3924 process_slab(&t, s, page, alloc, map); 3925 spin_unlock_irqrestore(&n->list_lock, flags); 3926 } 3927 3928 for (i = 0; i < t.count; i++) { 3929 struct location *l = &t.loc[i]; 3930 3931 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 3932 break; 3933 len += sprintf(buf + len, "%7ld ", l->count); 3934 3935 if (l->addr) 3936 len += sprintf(buf + len, "%pS", (void *)l->addr); 3937 else 3938 len += sprintf(buf + len, "<not-available>"); 3939 3940 if (l->sum_time != l->min_time) { 3941 len += sprintf(buf + len, " age=%ld/%ld/%ld", 3942 l->min_time, 3943 (long)div_u64(l->sum_time, l->count), 3944 l->max_time); 3945 } else 3946 len += sprintf(buf + len, " age=%ld", 3947 l->min_time); 3948 3949 if (l->min_pid != l->max_pid) 3950 len += sprintf(buf + len, " pid=%ld-%ld", 3951 l->min_pid, l->max_pid); 3952 else 3953 len += sprintf(buf + len, " pid=%ld", 3954 l->min_pid); 3955 3956 if (num_online_cpus() > 1 && 3957 !cpumask_empty(to_cpumask(l->cpus)) && 3958 len < PAGE_SIZE - 60) { 3959 len += sprintf(buf + len, " cpus="); 3960 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3961 to_cpumask(l->cpus)); 3962 } 3963 3964 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 3965 len < PAGE_SIZE - 60) { 3966 len += sprintf(buf + len, " nodes="); 3967 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3968 l->nodes); 3969 } 3970 3971 len += sprintf(buf + len, "\n"); 3972 } 3973 3974 free_loc_track(&t); 3975 kfree(map); 3976 if (!t.count) 3977 len += sprintf(buf, "No data\n"); 3978 return len; 3979 } 3980 #endif 3981 3982 #ifdef SLUB_RESILIENCY_TEST 3983 static void resiliency_test(void) 3984 { 3985 u8 *p; 3986 3987 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10); 3988 3989 printk(KERN_ERR "SLUB resiliency testing\n"); 3990 printk(KERN_ERR "-----------------------\n"); 3991 printk(KERN_ERR "A. Corruption after allocation\n"); 3992 3993 p = kzalloc(16, GFP_KERNEL); 3994 p[16] = 0x12; 3995 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 3996 " 0x12->0x%p\n\n", p + 16); 3997 3998 validate_slab_cache(kmalloc_caches[4]); 3999 4000 /* Hmmm... The next two are dangerous */ 4001 p = kzalloc(32, GFP_KERNEL); 4002 p[32 + sizeof(void *)] = 0x34; 4003 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 4004 " 0x34 -> -0x%p\n", p); 4005 printk(KERN_ERR 4006 "If allocated object is overwritten then not detectable\n\n"); 4007 4008 validate_slab_cache(kmalloc_caches[5]); 4009 p = kzalloc(64, GFP_KERNEL); 4010 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4011 *p = 0x56; 4012 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4013 p); 4014 printk(KERN_ERR 4015 "If allocated object is overwritten then not detectable\n\n"); 4016 validate_slab_cache(kmalloc_caches[6]); 4017 4018 printk(KERN_ERR "\nB. Corruption after free\n"); 4019 p = kzalloc(128, GFP_KERNEL); 4020 kfree(p); 4021 *p = 0x78; 4022 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4023 validate_slab_cache(kmalloc_caches[7]); 4024 4025 p = kzalloc(256, GFP_KERNEL); 4026 kfree(p); 4027 p[50] = 0x9a; 4028 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 4029 p); 4030 validate_slab_cache(kmalloc_caches[8]); 4031 4032 p = kzalloc(512, GFP_KERNEL); 4033 kfree(p); 4034 p[512] = 0xab; 4035 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4036 validate_slab_cache(kmalloc_caches[9]); 4037 } 4038 #else 4039 #ifdef CONFIG_SYSFS 4040 static void resiliency_test(void) {}; 4041 #endif 4042 #endif 4043 4044 #ifdef CONFIG_SYSFS 4045 enum slab_stat_type { 4046 SL_ALL, /* All slabs */ 4047 SL_PARTIAL, /* Only partially allocated slabs */ 4048 SL_CPU, /* Only slabs used for cpu caches */ 4049 SL_OBJECTS, /* Determine allocated objects not slabs */ 4050 SL_TOTAL /* Determine object capacity not slabs */ 4051 }; 4052 4053 #define SO_ALL (1 << SL_ALL) 4054 #define SO_PARTIAL (1 << SL_PARTIAL) 4055 #define SO_CPU (1 << SL_CPU) 4056 #define SO_OBJECTS (1 << SL_OBJECTS) 4057 #define SO_TOTAL (1 << SL_TOTAL) 4058 4059 static ssize_t show_slab_objects(struct kmem_cache *s, 4060 char *buf, unsigned long flags) 4061 { 4062 unsigned long total = 0; 4063 int node; 4064 int x; 4065 unsigned long *nodes; 4066 unsigned long *per_cpu; 4067 4068 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4069 if (!nodes) 4070 return -ENOMEM; 4071 per_cpu = nodes + nr_node_ids; 4072 4073 if (flags & SO_CPU) { 4074 int cpu; 4075 4076 for_each_possible_cpu(cpu) { 4077 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 4078 4079 if (!c || c->node < 0) 4080 continue; 4081 4082 if (c->page) { 4083 if (flags & SO_TOTAL) 4084 x = c->page->objects; 4085 else if (flags & SO_OBJECTS) 4086 x = c->page->inuse; 4087 else 4088 x = 1; 4089 4090 total += x; 4091 nodes[c->node] += x; 4092 } 4093 per_cpu[c->node]++; 4094 } 4095 } 4096 4097 lock_memory_hotplug(); 4098 #ifdef CONFIG_SLUB_DEBUG 4099 if (flags & SO_ALL) { 4100 for_each_node_state(node, N_NORMAL_MEMORY) { 4101 struct kmem_cache_node *n = get_node(s, node); 4102 4103 if (flags & SO_TOTAL) 4104 x = atomic_long_read(&n->total_objects); 4105 else if (flags & SO_OBJECTS) 4106 x = atomic_long_read(&n->total_objects) - 4107 count_partial(n, count_free); 4108 4109 else 4110 x = atomic_long_read(&n->nr_slabs); 4111 total += x; 4112 nodes[node] += x; 4113 } 4114 4115 } else 4116 #endif 4117 if (flags & SO_PARTIAL) { 4118 for_each_node_state(node, N_NORMAL_MEMORY) { 4119 struct kmem_cache_node *n = get_node(s, node); 4120 4121 if (flags & SO_TOTAL) 4122 x = count_partial(n, count_total); 4123 else if (flags & SO_OBJECTS) 4124 x = count_partial(n, count_inuse); 4125 else 4126 x = n->nr_partial; 4127 total += x; 4128 nodes[node] += x; 4129 } 4130 } 4131 x = sprintf(buf, "%lu", total); 4132 #ifdef CONFIG_NUMA 4133 for_each_node_state(node, N_NORMAL_MEMORY) 4134 if (nodes[node]) 4135 x += sprintf(buf + x, " N%d=%lu", 4136 node, nodes[node]); 4137 #endif 4138 unlock_memory_hotplug(); 4139 kfree(nodes); 4140 return x + sprintf(buf + x, "\n"); 4141 } 4142 4143 #ifdef CONFIG_SLUB_DEBUG 4144 static int any_slab_objects(struct kmem_cache *s) 4145 { 4146 int node; 4147 4148 for_each_online_node(node) { 4149 struct kmem_cache_node *n = get_node(s, node); 4150 4151 if (!n) 4152 continue; 4153 4154 if (atomic_long_read(&n->total_objects)) 4155 return 1; 4156 } 4157 return 0; 4158 } 4159 #endif 4160 4161 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4162 #define to_slab(n) container_of(n, struct kmem_cache, kobj); 4163 4164 struct slab_attribute { 4165 struct attribute attr; 4166 ssize_t (*show)(struct kmem_cache *s, char *buf); 4167 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4168 }; 4169 4170 #define SLAB_ATTR_RO(_name) \ 4171 static struct slab_attribute _name##_attr = __ATTR_RO(_name) 4172 4173 #define SLAB_ATTR(_name) \ 4174 static struct slab_attribute _name##_attr = \ 4175 __ATTR(_name, 0644, _name##_show, _name##_store) 4176 4177 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4178 { 4179 return sprintf(buf, "%d\n", s->size); 4180 } 4181 SLAB_ATTR_RO(slab_size); 4182 4183 static ssize_t align_show(struct kmem_cache *s, char *buf) 4184 { 4185 return sprintf(buf, "%d\n", s->align); 4186 } 4187 SLAB_ATTR_RO(align); 4188 4189 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4190 { 4191 return sprintf(buf, "%d\n", s->objsize); 4192 } 4193 SLAB_ATTR_RO(object_size); 4194 4195 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4196 { 4197 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4198 } 4199 SLAB_ATTR_RO(objs_per_slab); 4200 4201 static ssize_t order_store(struct kmem_cache *s, 4202 const char *buf, size_t length) 4203 { 4204 unsigned long order; 4205 int err; 4206 4207 err = strict_strtoul(buf, 10, &order); 4208 if (err) 4209 return err; 4210 4211 if (order > slub_max_order || order < slub_min_order) 4212 return -EINVAL; 4213 4214 calculate_sizes(s, order); 4215 return length; 4216 } 4217 4218 static ssize_t order_show(struct kmem_cache *s, char *buf) 4219 { 4220 return sprintf(buf, "%d\n", oo_order(s->oo)); 4221 } 4222 SLAB_ATTR(order); 4223 4224 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4225 { 4226 return sprintf(buf, "%lu\n", s->min_partial); 4227 } 4228 4229 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4230 size_t length) 4231 { 4232 unsigned long min; 4233 int err; 4234 4235 err = strict_strtoul(buf, 10, &min); 4236 if (err) 4237 return err; 4238 4239 set_min_partial(s, min); 4240 return length; 4241 } 4242 SLAB_ATTR(min_partial); 4243 4244 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4245 { 4246 if (!s->ctor) 4247 return 0; 4248 return sprintf(buf, "%pS\n", s->ctor); 4249 } 4250 SLAB_ATTR_RO(ctor); 4251 4252 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4253 { 4254 return sprintf(buf, "%d\n", s->refcount - 1); 4255 } 4256 SLAB_ATTR_RO(aliases); 4257 4258 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4259 { 4260 return show_slab_objects(s, buf, SO_PARTIAL); 4261 } 4262 SLAB_ATTR_RO(partial); 4263 4264 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4265 { 4266 return show_slab_objects(s, buf, SO_CPU); 4267 } 4268 SLAB_ATTR_RO(cpu_slabs); 4269 4270 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4271 { 4272 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4273 } 4274 SLAB_ATTR_RO(objects); 4275 4276 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4277 { 4278 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4279 } 4280 SLAB_ATTR_RO(objects_partial); 4281 4282 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4283 { 4284 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4285 } 4286 4287 static ssize_t reclaim_account_store(struct kmem_cache *s, 4288 const char *buf, size_t length) 4289 { 4290 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4291 if (buf[0] == '1') 4292 s->flags |= SLAB_RECLAIM_ACCOUNT; 4293 return length; 4294 } 4295 SLAB_ATTR(reclaim_account); 4296 4297 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4298 { 4299 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4300 } 4301 SLAB_ATTR_RO(hwcache_align); 4302 4303 #ifdef CONFIG_ZONE_DMA 4304 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4305 { 4306 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4307 } 4308 SLAB_ATTR_RO(cache_dma); 4309 #endif 4310 4311 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4312 { 4313 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4314 } 4315 SLAB_ATTR_RO(destroy_by_rcu); 4316 4317 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4318 { 4319 return sprintf(buf, "%d\n", s->reserved); 4320 } 4321 SLAB_ATTR_RO(reserved); 4322 4323 #ifdef CONFIG_SLUB_DEBUG 4324 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4325 { 4326 return show_slab_objects(s, buf, SO_ALL); 4327 } 4328 SLAB_ATTR_RO(slabs); 4329 4330 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4331 { 4332 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4333 } 4334 SLAB_ATTR_RO(total_objects); 4335 4336 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4337 { 4338 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4339 } 4340 4341 static ssize_t sanity_checks_store(struct kmem_cache *s, 4342 const char *buf, size_t length) 4343 { 4344 s->flags &= ~SLAB_DEBUG_FREE; 4345 if (buf[0] == '1') 4346 s->flags |= SLAB_DEBUG_FREE; 4347 return length; 4348 } 4349 SLAB_ATTR(sanity_checks); 4350 4351 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4352 { 4353 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4354 } 4355 4356 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4357 size_t length) 4358 { 4359 s->flags &= ~SLAB_TRACE; 4360 if (buf[0] == '1') 4361 s->flags |= SLAB_TRACE; 4362 return length; 4363 } 4364 SLAB_ATTR(trace); 4365 4366 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4367 { 4368 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4369 } 4370 4371 static ssize_t red_zone_store(struct kmem_cache *s, 4372 const char *buf, size_t length) 4373 { 4374 if (any_slab_objects(s)) 4375 return -EBUSY; 4376 4377 s->flags &= ~SLAB_RED_ZONE; 4378 if (buf[0] == '1') 4379 s->flags |= SLAB_RED_ZONE; 4380 calculate_sizes(s, -1); 4381 return length; 4382 } 4383 SLAB_ATTR(red_zone); 4384 4385 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4386 { 4387 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4388 } 4389 4390 static ssize_t poison_store(struct kmem_cache *s, 4391 const char *buf, size_t length) 4392 { 4393 if (any_slab_objects(s)) 4394 return -EBUSY; 4395 4396 s->flags &= ~SLAB_POISON; 4397 if (buf[0] == '1') 4398 s->flags |= SLAB_POISON; 4399 calculate_sizes(s, -1); 4400 return length; 4401 } 4402 SLAB_ATTR(poison); 4403 4404 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4405 { 4406 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4407 } 4408 4409 static ssize_t store_user_store(struct kmem_cache *s, 4410 const char *buf, size_t length) 4411 { 4412 if (any_slab_objects(s)) 4413 return -EBUSY; 4414 4415 s->flags &= ~SLAB_STORE_USER; 4416 if (buf[0] == '1') 4417 s->flags |= SLAB_STORE_USER; 4418 calculate_sizes(s, -1); 4419 return length; 4420 } 4421 SLAB_ATTR(store_user); 4422 4423 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4424 { 4425 return 0; 4426 } 4427 4428 static ssize_t validate_store(struct kmem_cache *s, 4429 const char *buf, size_t length) 4430 { 4431 int ret = -EINVAL; 4432 4433 if (buf[0] == '1') { 4434 ret = validate_slab_cache(s); 4435 if (ret >= 0) 4436 ret = length; 4437 } 4438 return ret; 4439 } 4440 SLAB_ATTR(validate); 4441 4442 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4443 { 4444 if (!(s->flags & SLAB_STORE_USER)) 4445 return -ENOSYS; 4446 return list_locations(s, buf, TRACK_ALLOC); 4447 } 4448 SLAB_ATTR_RO(alloc_calls); 4449 4450 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4451 { 4452 if (!(s->flags & SLAB_STORE_USER)) 4453 return -ENOSYS; 4454 return list_locations(s, buf, TRACK_FREE); 4455 } 4456 SLAB_ATTR_RO(free_calls); 4457 #endif /* CONFIG_SLUB_DEBUG */ 4458 4459 #ifdef CONFIG_FAILSLAB 4460 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4461 { 4462 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4463 } 4464 4465 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4466 size_t length) 4467 { 4468 s->flags &= ~SLAB_FAILSLAB; 4469 if (buf[0] == '1') 4470 s->flags |= SLAB_FAILSLAB; 4471 return length; 4472 } 4473 SLAB_ATTR(failslab); 4474 #endif 4475 4476 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4477 { 4478 return 0; 4479 } 4480 4481 static ssize_t shrink_store(struct kmem_cache *s, 4482 const char *buf, size_t length) 4483 { 4484 if (buf[0] == '1') { 4485 int rc = kmem_cache_shrink(s); 4486 4487 if (rc) 4488 return rc; 4489 } else 4490 return -EINVAL; 4491 return length; 4492 } 4493 SLAB_ATTR(shrink); 4494 4495 #ifdef CONFIG_NUMA 4496 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4497 { 4498 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4499 } 4500 4501 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4502 const char *buf, size_t length) 4503 { 4504 unsigned long ratio; 4505 int err; 4506 4507 err = strict_strtoul(buf, 10, &ratio); 4508 if (err) 4509 return err; 4510 4511 if (ratio <= 100) 4512 s->remote_node_defrag_ratio = ratio * 10; 4513 4514 return length; 4515 } 4516 SLAB_ATTR(remote_node_defrag_ratio); 4517 #endif 4518 4519 #ifdef CONFIG_SLUB_STATS 4520 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4521 { 4522 unsigned long sum = 0; 4523 int cpu; 4524 int len; 4525 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4526 4527 if (!data) 4528 return -ENOMEM; 4529 4530 for_each_online_cpu(cpu) { 4531 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4532 4533 data[cpu] = x; 4534 sum += x; 4535 } 4536 4537 len = sprintf(buf, "%lu", sum); 4538 4539 #ifdef CONFIG_SMP 4540 for_each_online_cpu(cpu) { 4541 if (data[cpu] && len < PAGE_SIZE - 20) 4542 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4543 } 4544 #endif 4545 kfree(data); 4546 return len + sprintf(buf + len, "\n"); 4547 } 4548 4549 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4550 { 4551 int cpu; 4552 4553 for_each_online_cpu(cpu) 4554 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4555 } 4556 4557 #define STAT_ATTR(si, text) \ 4558 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4559 { \ 4560 return show_stat(s, buf, si); \ 4561 } \ 4562 static ssize_t text##_store(struct kmem_cache *s, \ 4563 const char *buf, size_t length) \ 4564 { \ 4565 if (buf[0] != '0') \ 4566 return -EINVAL; \ 4567 clear_stat(s, si); \ 4568 return length; \ 4569 } \ 4570 SLAB_ATTR(text); \ 4571 4572 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4573 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4574 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4575 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4576 STAT_ATTR(FREE_FROZEN, free_frozen); 4577 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4578 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4579 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4580 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4581 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4582 STAT_ATTR(FREE_SLAB, free_slab); 4583 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4584 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4585 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4586 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4587 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4588 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4589 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4590 #endif 4591 4592 static struct attribute *slab_attrs[] = { 4593 &slab_size_attr.attr, 4594 &object_size_attr.attr, 4595 &objs_per_slab_attr.attr, 4596 &order_attr.attr, 4597 &min_partial_attr.attr, 4598 &objects_attr.attr, 4599 &objects_partial_attr.attr, 4600 &partial_attr.attr, 4601 &cpu_slabs_attr.attr, 4602 &ctor_attr.attr, 4603 &aliases_attr.attr, 4604 &align_attr.attr, 4605 &hwcache_align_attr.attr, 4606 &reclaim_account_attr.attr, 4607 &destroy_by_rcu_attr.attr, 4608 &shrink_attr.attr, 4609 &reserved_attr.attr, 4610 #ifdef CONFIG_SLUB_DEBUG 4611 &total_objects_attr.attr, 4612 &slabs_attr.attr, 4613 &sanity_checks_attr.attr, 4614 &trace_attr.attr, 4615 &red_zone_attr.attr, 4616 &poison_attr.attr, 4617 &store_user_attr.attr, 4618 &validate_attr.attr, 4619 &alloc_calls_attr.attr, 4620 &free_calls_attr.attr, 4621 #endif 4622 #ifdef CONFIG_ZONE_DMA 4623 &cache_dma_attr.attr, 4624 #endif 4625 #ifdef CONFIG_NUMA 4626 &remote_node_defrag_ratio_attr.attr, 4627 #endif 4628 #ifdef CONFIG_SLUB_STATS 4629 &alloc_fastpath_attr.attr, 4630 &alloc_slowpath_attr.attr, 4631 &free_fastpath_attr.attr, 4632 &free_slowpath_attr.attr, 4633 &free_frozen_attr.attr, 4634 &free_add_partial_attr.attr, 4635 &free_remove_partial_attr.attr, 4636 &alloc_from_partial_attr.attr, 4637 &alloc_slab_attr.attr, 4638 &alloc_refill_attr.attr, 4639 &free_slab_attr.attr, 4640 &cpuslab_flush_attr.attr, 4641 &deactivate_full_attr.attr, 4642 &deactivate_empty_attr.attr, 4643 &deactivate_to_head_attr.attr, 4644 &deactivate_to_tail_attr.attr, 4645 &deactivate_remote_frees_attr.attr, 4646 &order_fallback_attr.attr, 4647 #endif 4648 #ifdef CONFIG_FAILSLAB 4649 &failslab_attr.attr, 4650 #endif 4651 4652 NULL 4653 }; 4654 4655 static struct attribute_group slab_attr_group = { 4656 .attrs = slab_attrs, 4657 }; 4658 4659 static ssize_t slab_attr_show(struct kobject *kobj, 4660 struct attribute *attr, 4661 char *buf) 4662 { 4663 struct slab_attribute *attribute; 4664 struct kmem_cache *s; 4665 int err; 4666 4667 attribute = to_slab_attr(attr); 4668 s = to_slab(kobj); 4669 4670 if (!attribute->show) 4671 return -EIO; 4672 4673 err = attribute->show(s, buf); 4674 4675 return err; 4676 } 4677 4678 static ssize_t slab_attr_store(struct kobject *kobj, 4679 struct attribute *attr, 4680 const char *buf, size_t len) 4681 { 4682 struct slab_attribute *attribute; 4683 struct kmem_cache *s; 4684 int err; 4685 4686 attribute = to_slab_attr(attr); 4687 s = to_slab(kobj); 4688 4689 if (!attribute->store) 4690 return -EIO; 4691 4692 err = attribute->store(s, buf, len); 4693 4694 return err; 4695 } 4696 4697 static void kmem_cache_release(struct kobject *kobj) 4698 { 4699 struct kmem_cache *s = to_slab(kobj); 4700 4701 kfree(s->name); 4702 kfree(s); 4703 } 4704 4705 static const struct sysfs_ops slab_sysfs_ops = { 4706 .show = slab_attr_show, 4707 .store = slab_attr_store, 4708 }; 4709 4710 static struct kobj_type slab_ktype = { 4711 .sysfs_ops = &slab_sysfs_ops, 4712 .release = kmem_cache_release 4713 }; 4714 4715 static int uevent_filter(struct kset *kset, struct kobject *kobj) 4716 { 4717 struct kobj_type *ktype = get_ktype(kobj); 4718 4719 if (ktype == &slab_ktype) 4720 return 1; 4721 return 0; 4722 } 4723 4724 static const struct kset_uevent_ops slab_uevent_ops = { 4725 .filter = uevent_filter, 4726 }; 4727 4728 static struct kset *slab_kset; 4729 4730 #define ID_STR_LENGTH 64 4731 4732 /* Create a unique string id for a slab cache: 4733 * 4734 * Format :[flags-]size 4735 */ 4736 static char *create_unique_id(struct kmem_cache *s) 4737 { 4738 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 4739 char *p = name; 4740 4741 BUG_ON(!name); 4742 4743 *p++ = ':'; 4744 /* 4745 * First flags affecting slabcache operations. We will only 4746 * get here for aliasable slabs so we do not need to support 4747 * too many flags. The flags here must cover all flags that 4748 * are matched during merging to guarantee that the id is 4749 * unique. 4750 */ 4751 if (s->flags & SLAB_CACHE_DMA) 4752 *p++ = 'd'; 4753 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4754 *p++ = 'a'; 4755 if (s->flags & SLAB_DEBUG_FREE) 4756 *p++ = 'F'; 4757 if (!(s->flags & SLAB_NOTRACK)) 4758 *p++ = 't'; 4759 if (p != name + 1) 4760 *p++ = '-'; 4761 p += sprintf(p, "%07d", s->size); 4762 BUG_ON(p > name + ID_STR_LENGTH - 1); 4763 return name; 4764 } 4765 4766 static int sysfs_slab_add(struct kmem_cache *s) 4767 { 4768 int err; 4769 const char *name; 4770 int unmergeable; 4771 4772 if (slab_state < SYSFS) 4773 /* Defer until later */ 4774 return 0; 4775 4776 unmergeable = slab_unmergeable(s); 4777 if (unmergeable) { 4778 /* 4779 * Slabcache can never be merged so we can use the name proper. 4780 * This is typically the case for debug situations. In that 4781 * case we can catch duplicate names easily. 4782 */ 4783 sysfs_remove_link(&slab_kset->kobj, s->name); 4784 name = s->name; 4785 } else { 4786 /* 4787 * Create a unique name for the slab as a target 4788 * for the symlinks. 4789 */ 4790 name = create_unique_id(s); 4791 } 4792 4793 s->kobj.kset = slab_kset; 4794 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 4795 if (err) { 4796 kobject_put(&s->kobj); 4797 return err; 4798 } 4799 4800 err = sysfs_create_group(&s->kobj, &slab_attr_group); 4801 if (err) { 4802 kobject_del(&s->kobj); 4803 kobject_put(&s->kobj); 4804 return err; 4805 } 4806 kobject_uevent(&s->kobj, KOBJ_ADD); 4807 if (!unmergeable) { 4808 /* Setup first alias */ 4809 sysfs_slab_alias(s, s->name); 4810 kfree(name); 4811 } 4812 return 0; 4813 } 4814 4815 static void sysfs_slab_remove(struct kmem_cache *s) 4816 { 4817 if (slab_state < SYSFS) 4818 /* 4819 * Sysfs has not been setup yet so no need to remove the 4820 * cache from sysfs. 4821 */ 4822 return; 4823 4824 kobject_uevent(&s->kobj, KOBJ_REMOVE); 4825 kobject_del(&s->kobj); 4826 kobject_put(&s->kobj); 4827 } 4828 4829 /* 4830 * Need to buffer aliases during bootup until sysfs becomes 4831 * available lest we lose that information. 4832 */ 4833 struct saved_alias { 4834 struct kmem_cache *s; 4835 const char *name; 4836 struct saved_alias *next; 4837 }; 4838 4839 static struct saved_alias *alias_list; 4840 4841 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 4842 { 4843 struct saved_alias *al; 4844 4845 if (slab_state == SYSFS) { 4846 /* 4847 * If we have a leftover link then remove it. 4848 */ 4849 sysfs_remove_link(&slab_kset->kobj, name); 4850 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 4851 } 4852 4853 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 4854 if (!al) 4855 return -ENOMEM; 4856 4857 al->s = s; 4858 al->name = name; 4859 al->next = alias_list; 4860 alias_list = al; 4861 return 0; 4862 } 4863 4864 static int __init slab_sysfs_init(void) 4865 { 4866 struct kmem_cache *s; 4867 int err; 4868 4869 down_write(&slub_lock); 4870 4871 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 4872 if (!slab_kset) { 4873 up_write(&slub_lock); 4874 printk(KERN_ERR "Cannot register slab subsystem.\n"); 4875 return -ENOSYS; 4876 } 4877 4878 slab_state = SYSFS; 4879 4880 list_for_each_entry(s, &slab_caches, list) { 4881 err = sysfs_slab_add(s); 4882 if (err) 4883 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 4884 " to sysfs\n", s->name); 4885 } 4886 4887 while (alias_list) { 4888 struct saved_alias *al = alias_list; 4889 4890 alias_list = alias_list->next; 4891 err = sysfs_slab_alias(al->s, al->name); 4892 if (err) 4893 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 4894 " %s to sysfs\n", s->name); 4895 kfree(al); 4896 } 4897 4898 up_write(&slub_lock); 4899 resiliency_test(); 4900 return 0; 4901 } 4902 4903 __initcall(slab_sysfs_init); 4904 #endif /* CONFIG_SYSFS */ 4905 4906 /* 4907 * The /proc/slabinfo ABI 4908 */ 4909 #ifdef CONFIG_SLABINFO 4910 static void print_slabinfo_header(struct seq_file *m) 4911 { 4912 seq_puts(m, "slabinfo - version: 2.1\n"); 4913 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4914 "<objperslab> <pagesperslab>"); 4915 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4916 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4917 seq_putc(m, '\n'); 4918 } 4919 4920 static void *s_start(struct seq_file *m, loff_t *pos) 4921 { 4922 loff_t n = *pos; 4923 4924 down_read(&slub_lock); 4925 if (!n) 4926 print_slabinfo_header(m); 4927 4928 return seq_list_start(&slab_caches, *pos); 4929 } 4930 4931 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4932 { 4933 return seq_list_next(p, &slab_caches, pos); 4934 } 4935 4936 static void s_stop(struct seq_file *m, void *p) 4937 { 4938 up_read(&slub_lock); 4939 } 4940 4941 static int s_show(struct seq_file *m, void *p) 4942 { 4943 unsigned long nr_partials = 0; 4944 unsigned long nr_slabs = 0; 4945 unsigned long nr_inuse = 0; 4946 unsigned long nr_objs = 0; 4947 unsigned long nr_free = 0; 4948 struct kmem_cache *s; 4949 int node; 4950 4951 s = list_entry(p, struct kmem_cache, list); 4952 4953 for_each_online_node(node) { 4954 struct kmem_cache_node *n = get_node(s, node); 4955 4956 if (!n) 4957 continue; 4958 4959 nr_partials += n->nr_partial; 4960 nr_slabs += atomic_long_read(&n->nr_slabs); 4961 nr_objs += atomic_long_read(&n->total_objects); 4962 nr_free += count_partial(n, count_free); 4963 } 4964 4965 nr_inuse = nr_objs - nr_free; 4966 4967 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 4968 nr_objs, s->size, oo_objects(s->oo), 4969 (1 << oo_order(s->oo))); 4970 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 4971 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 4972 0UL); 4973 seq_putc(m, '\n'); 4974 return 0; 4975 } 4976 4977 static const struct seq_operations slabinfo_op = { 4978 .start = s_start, 4979 .next = s_next, 4980 .stop = s_stop, 4981 .show = s_show, 4982 }; 4983 4984 static int slabinfo_open(struct inode *inode, struct file *file) 4985 { 4986 return seq_open(file, &slabinfo_op); 4987 } 4988 4989 static const struct file_operations proc_slabinfo_operations = { 4990 .open = slabinfo_open, 4991 .read = seq_read, 4992 .llseek = seq_lseek, 4993 .release = seq_release, 4994 }; 4995 4996 static int __init slab_proc_init(void) 4997 { 4998 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations); 4999 return 0; 5000 } 5001 module_init(slab_proc_init); 5002 #endif /* CONFIG_SLABINFO */ 5003