xref: /openbmc/linux/mm/slub.c (revision 81d67439)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
30 #include <linux/stacktrace.h>
31 
32 #include <trace/events/kmem.h>
33 
34 /*
35  * Lock order:
36  *   1. slab_lock(page)
37  *   2. slab->list_lock
38  *
39  *   The slab_lock protects operations on the object of a particular
40  *   slab and its metadata in the page struct. If the slab lock
41  *   has been taken then no allocations nor frees can be performed
42  *   on the objects in the slab nor can the slab be added or removed
43  *   from the partial or full lists since this would mean modifying
44  *   the page_struct of the slab.
45  *
46  *   The list_lock protects the partial and full list on each node and
47  *   the partial slab counter. If taken then no new slabs may be added or
48  *   removed from the lists nor make the number of partial slabs be modified.
49  *   (Note that the total number of slabs is an atomic value that may be
50  *   modified without taking the list lock).
51  *
52  *   The list_lock is a centralized lock and thus we avoid taking it as
53  *   much as possible. As long as SLUB does not have to handle partial
54  *   slabs, operations can continue without any centralized lock. F.e.
55  *   allocating a long series of objects that fill up slabs does not require
56  *   the list lock.
57  *
58  *   The lock order is sometimes inverted when we are trying to get a slab
59  *   off a list. We take the list_lock and then look for a page on the list
60  *   to use. While we do that objects in the slabs may be freed. We can
61  *   only operate on the slab if we have also taken the slab_lock. So we use
62  *   a slab_trylock() on the slab. If trylock was successful then no frees
63  *   can occur anymore and we can use the slab for allocations etc. If the
64  *   slab_trylock() does not succeed then frees are in progress in the slab and
65  *   we must stay away from it for a while since we may cause a bouncing
66  *   cacheline if we try to acquire the lock. So go onto the next slab.
67  *   If all pages are busy then we may allocate a new slab instead of reusing
68  *   a partial slab. A new slab has no one operating on it and thus there is
69  *   no danger of cacheline contention.
70  *
71  *   Interrupts are disabled during allocation and deallocation in order to
72  *   make the slab allocator safe to use in the context of an irq. In addition
73  *   interrupts are disabled to ensure that the processor does not change
74  *   while handling per_cpu slabs, due to kernel preemption.
75  *
76  * SLUB assigns one slab for allocation to each processor.
77  * Allocations only occur from these slabs called cpu slabs.
78  *
79  * Slabs with free elements are kept on a partial list and during regular
80  * operations no list for full slabs is used. If an object in a full slab is
81  * freed then the slab will show up again on the partial lists.
82  * We track full slabs for debugging purposes though because otherwise we
83  * cannot scan all objects.
84  *
85  * Slabs are freed when they become empty. Teardown and setup is
86  * minimal so we rely on the page allocators per cpu caches for
87  * fast frees and allocs.
88  *
89  * Overloading of page flags that are otherwise used for LRU management.
90  *
91  * PageActive 		The slab is frozen and exempt from list processing.
92  * 			This means that the slab is dedicated to a purpose
93  * 			such as satisfying allocations for a specific
94  * 			processor. Objects may be freed in the slab while
95  * 			it is frozen but slab_free will then skip the usual
96  * 			list operations. It is up to the processor holding
97  * 			the slab to integrate the slab into the slab lists
98  * 			when the slab is no longer needed.
99  *
100  * 			One use of this flag is to mark slabs that are
101  * 			used for allocations. Then such a slab becomes a cpu
102  * 			slab. The cpu slab may be equipped with an additional
103  * 			freelist that allows lockless access to
104  * 			free objects in addition to the regular freelist
105  * 			that requires the slab lock.
106  *
107  * PageError		Slab requires special handling due to debug
108  * 			options set. This moves	slab handling out of
109  * 			the fast path and disables lockless freelists.
110  */
111 
112 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
113 		SLAB_TRACE | SLAB_DEBUG_FREE)
114 
115 static inline int kmem_cache_debug(struct kmem_cache *s)
116 {
117 #ifdef CONFIG_SLUB_DEBUG
118 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
119 #else
120 	return 0;
121 #endif
122 }
123 
124 /*
125  * Issues still to be resolved:
126  *
127  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128  *
129  * - Variable sizing of the per node arrays
130  */
131 
132 /* Enable to test recovery from slab corruption on boot */
133 #undef SLUB_RESILIENCY_TEST
134 
135 /*
136  * Mininum number of partial slabs. These will be left on the partial
137  * lists even if they are empty. kmem_cache_shrink may reclaim them.
138  */
139 #define MIN_PARTIAL 5
140 
141 /*
142  * Maximum number of desirable partial slabs.
143  * The existence of more partial slabs makes kmem_cache_shrink
144  * sort the partial list by the number of objects in the.
145  */
146 #define MAX_PARTIAL 10
147 
148 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
149 				SLAB_POISON | SLAB_STORE_USER)
150 
151 /*
152  * Debugging flags that require metadata to be stored in the slab.  These get
153  * disabled when slub_debug=O is used and a cache's min order increases with
154  * metadata.
155  */
156 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
157 
158 /*
159  * Set of flags that will prevent slab merging
160  */
161 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
162 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
163 		SLAB_FAILSLAB)
164 
165 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
166 		SLAB_CACHE_DMA | SLAB_NOTRACK)
167 
168 #define OO_SHIFT	16
169 #define OO_MASK		((1 << OO_SHIFT) - 1)
170 #define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
171 
172 /* Internal SLUB flags */
173 #define __OBJECT_POISON		0x80000000UL /* Poison object */
174 
175 static int kmem_size = sizeof(struct kmem_cache);
176 
177 #ifdef CONFIG_SMP
178 static struct notifier_block slab_notifier;
179 #endif
180 
181 static enum {
182 	DOWN,		/* No slab functionality available */
183 	PARTIAL,	/* Kmem_cache_node works */
184 	UP,		/* Everything works but does not show up in sysfs */
185 	SYSFS		/* Sysfs up */
186 } slab_state = DOWN;
187 
188 /* A list of all slab caches on the system */
189 static DECLARE_RWSEM(slub_lock);
190 static LIST_HEAD(slab_caches);
191 
192 /*
193  * Tracking user of a slab.
194  */
195 #define TRACK_ADDRS_COUNT 16
196 struct track {
197 	unsigned long addr;	/* Called from address */
198 #ifdef CONFIG_STACKTRACE
199 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
200 #endif
201 	int cpu;		/* Was running on cpu */
202 	int pid;		/* Pid context */
203 	unsigned long when;	/* When did the operation occur */
204 };
205 
206 enum track_item { TRACK_ALLOC, TRACK_FREE };
207 
208 #ifdef CONFIG_SYSFS
209 static int sysfs_slab_add(struct kmem_cache *);
210 static int sysfs_slab_alias(struct kmem_cache *, const char *);
211 static void sysfs_slab_remove(struct kmem_cache *);
212 
213 #else
214 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
215 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
216 							{ return 0; }
217 static inline void sysfs_slab_remove(struct kmem_cache *s)
218 {
219 	kfree(s->name);
220 	kfree(s);
221 }
222 
223 #endif
224 
225 static inline void stat(const struct kmem_cache *s, enum stat_item si)
226 {
227 #ifdef CONFIG_SLUB_STATS
228 	__this_cpu_inc(s->cpu_slab->stat[si]);
229 #endif
230 }
231 
232 /********************************************************************
233  * 			Core slab cache functions
234  *******************************************************************/
235 
236 int slab_is_available(void)
237 {
238 	return slab_state >= UP;
239 }
240 
241 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
242 {
243 	return s->node[node];
244 }
245 
246 /* Verify that a pointer has an address that is valid within a slab page */
247 static inline int check_valid_pointer(struct kmem_cache *s,
248 				struct page *page, const void *object)
249 {
250 	void *base;
251 
252 	if (!object)
253 		return 1;
254 
255 	base = page_address(page);
256 	if (object < base || object >= base + page->objects * s->size ||
257 		(object - base) % s->size) {
258 		return 0;
259 	}
260 
261 	return 1;
262 }
263 
264 static inline void *get_freepointer(struct kmem_cache *s, void *object)
265 {
266 	return *(void **)(object + s->offset);
267 }
268 
269 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
270 {
271 	void *p;
272 
273 #ifdef CONFIG_DEBUG_PAGEALLOC
274 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
275 #else
276 	p = get_freepointer(s, object);
277 #endif
278 	return p;
279 }
280 
281 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
282 {
283 	*(void **)(object + s->offset) = fp;
284 }
285 
286 /* Loop over all objects in a slab */
287 #define for_each_object(__p, __s, __addr, __objects) \
288 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
289 			__p += (__s)->size)
290 
291 /* Determine object index from a given position */
292 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
293 {
294 	return (p - addr) / s->size;
295 }
296 
297 static inline size_t slab_ksize(const struct kmem_cache *s)
298 {
299 #ifdef CONFIG_SLUB_DEBUG
300 	/*
301 	 * Debugging requires use of the padding between object
302 	 * and whatever may come after it.
303 	 */
304 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
305 		return s->objsize;
306 
307 #endif
308 	/*
309 	 * If we have the need to store the freelist pointer
310 	 * back there or track user information then we can
311 	 * only use the space before that information.
312 	 */
313 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
314 		return s->inuse;
315 	/*
316 	 * Else we can use all the padding etc for the allocation
317 	 */
318 	return s->size;
319 }
320 
321 static inline int order_objects(int order, unsigned long size, int reserved)
322 {
323 	return ((PAGE_SIZE << order) - reserved) / size;
324 }
325 
326 static inline struct kmem_cache_order_objects oo_make(int order,
327 		unsigned long size, int reserved)
328 {
329 	struct kmem_cache_order_objects x = {
330 		(order << OO_SHIFT) + order_objects(order, size, reserved)
331 	};
332 
333 	return x;
334 }
335 
336 static inline int oo_order(struct kmem_cache_order_objects x)
337 {
338 	return x.x >> OO_SHIFT;
339 }
340 
341 static inline int oo_objects(struct kmem_cache_order_objects x)
342 {
343 	return x.x & OO_MASK;
344 }
345 
346 #ifdef CONFIG_SLUB_DEBUG
347 /*
348  * Determine a map of object in use on a page.
349  *
350  * Slab lock or node listlock must be held to guarantee that the page does
351  * not vanish from under us.
352  */
353 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
354 {
355 	void *p;
356 	void *addr = page_address(page);
357 
358 	for (p = page->freelist; p; p = get_freepointer(s, p))
359 		set_bit(slab_index(p, s, addr), map);
360 }
361 
362 /*
363  * Debug settings:
364  */
365 #ifdef CONFIG_SLUB_DEBUG_ON
366 static int slub_debug = DEBUG_DEFAULT_FLAGS;
367 #else
368 static int slub_debug;
369 #endif
370 
371 static char *slub_debug_slabs;
372 static int disable_higher_order_debug;
373 
374 /*
375  * Object debugging
376  */
377 static void print_section(char *text, u8 *addr, unsigned int length)
378 {
379 	int i, offset;
380 	int newline = 1;
381 	char ascii[17];
382 
383 	ascii[16] = 0;
384 
385 	for (i = 0; i < length; i++) {
386 		if (newline) {
387 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
388 			newline = 0;
389 		}
390 		printk(KERN_CONT " %02x", addr[i]);
391 		offset = i % 16;
392 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
393 		if (offset == 15) {
394 			printk(KERN_CONT " %s\n", ascii);
395 			newline = 1;
396 		}
397 	}
398 	if (!newline) {
399 		i %= 16;
400 		while (i < 16) {
401 			printk(KERN_CONT "   ");
402 			ascii[i] = ' ';
403 			i++;
404 		}
405 		printk(KERN_CONT " %s\n", ascii);
406 	}
407 }
408 
409 static struct track *get_track(struct kmem_cache *s, void *object,
410 	enum track_item alloc)
411 {
412 	struct track *p;
413 
414 	if (s->offset)
415 		p = object + s->offset + sizeof(void *);
416 	else
417 		p = object + s->inuse;
418 
419 	return p + alloc;
420 }
421 
422 static void set_track(struct kmem_cache *s, void *object,
423 			enum track_item alloc, unsigned long addr)
424 {
425 	struct track *p = get_track(s, object, alloc);
426 
427 	if (addr) {
428 #ifdef CONFIG_STACKTRACE
429 		struct stack_trace trace;
430 		int i;
431 
432 		trace.nr_entries = 0;
433 		trace.max_entries = TRACK_ADDRS_COUNT;
434 		trace.entries = p->addrs;
435 		trace.skip = 3;
436 		save_stack_trace(&trace);
437 
438 		/* See rant in lockdep.c */
439 		if (trace.nr_entries != 0 &&
440 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
441 			trace.nr_entries--;
442 
443 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
444 			p->addrs[i] = 0;
445 #endif
446 		p->addr = addr;
447 		p->cpu = smp_processor_id();
448 		p->pid = current->pid;
449 		p->when = jiffies;
450 	} else
451 		memset(p, 0, sizeof(struct track));
452 }
453 
454 static void init_tracking(struct kmem_cache *s, void *object)
455 {
456 	if (!(s->flags & SLAB_STORE_USER))
457 		return;
458 
459 	set_track(s, object, TRACK_FREE, 0UL);
460 	set_track(s, object, TRACK_ALLOC, 0UL);
461 }
462 
463 static void print_track(const char *s, struct track *t)
464 {
465 	if (!t->addr)
466 		return;
467 
468 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
469 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
470 #ifdef CONFIG_STACKTRACE
471 	{
472 		int i;
473 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
474 			if (t->addrs[i])
475 				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
476 			else
477 				break;
478 	}
479 #endif
480 }
481 
482 static void print_tracking(struct kmem_cache *s, void *object)
483 {
484 	if (!(s->flags & SLAB_STORE_USER))
485 		return;
486 
487 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
488 	print_track("Freed", get_track(s, object, TRACK_FREE));
489 }
490 
491 static void print_page_info(struct page *page)
492 {
493 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
494 		page, page->objects, page->inuse, page->freelist, page->flags);
495 
496 }
497 
498 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
499 {
500 	va_list args;
501 	char buf[100];
502 
503 	va_start(args, fmt);
504 	vsnprintf(buf, sizeof(buf), fmt, args);
505 	va_end(args);
506 	printk(KERN_ERR "========================================"
507 			"=====================================\n");
508 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
509 	printk(KERN_ERR "----------------------------------------"
510 			"-------------------------------------\n\n");
511 }
512 
513 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
514 {
515 	va_list args;
516 	char buf[100];
517 
518 	va_start(args, fmt);
519 	vsnprintf(buf, sizeof(buf), fmt, args);
520 	va_end(args);
521 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
522 }
523 
524 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
525 {
526 	unsigned int off;	/* Offset of last byte */
527 	u8 *addr = page_address(page);
528 
529 	print_tracking(s, p);
530 
531 	print_page_info(page);
532 
533 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
534 			p, p - addr, get_freepointer(s, p));
535 
536 	if (p > addr + 16)
537 		print_section("Bytes b4", p - 16, 16);
538 
539 	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
540 
541 	if (s->flags & SLAB_RED_ZONE)
542 		print_section("Redzone", p + s->objsize,
543 			s->inuse - s->objsize);
544 
545 	if (s->offset)
546 		off = s->offset + sizeof(void *);
547 	else
548 		off = s->inuse;
549 
550 	if (s->flags & SLAB_STORE_USER)
551 		off += 2 * sizeof(struct track);
552 
553 	if (off != s->size)
554 		/* Beginning of the filler is the free pointer */
555 		print_section("Padding", p + off, s->size - off);
556 
557 	dump_stack();
558 }
559 
560 static void object_err(struct kmem_cache *s, struct page *page,
561 			u8 *object, char *reason)
562 {
563 	slab_bug(s, "%s", reason);
564 	print_trailer(s, page, object);
565 }
566 
567 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
568 {
569 	va_list args;
570 	char buf[100];
571 
572 	va_start(args, fmt);
573 	vsnprintf(buf, sizeof(buf), fmt, args);
574 	va_end(args);
575 	slab_bug(s, "%s", buf);
576 	print_page_info(page);
577 	dump_stack();
578 }
579 
580 static void init_object(struct kmem_cache *s, void *object, u8 val)
581 {
582 	u8 *p = object;
583 
584 	if (s->flags & __OBJECT_POISON) {
585 		memset(p, POISON_FREE, s->objsize - 1);
586 		p[s->objsize - 1] = POISON_END;
587 	}
588 
589 	if (s->flags & SLAB_RED_ZONE)
590 		memset(p + s->objsize, val, s->inuse - s->objsize);
591 }
592 
593 static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
594 {
595 	while (bytes) {
596 		if (*start != value)
597 			return start;
598 		start++;
599 		bytes--;
600 	}
601 	return NULL;
602 }
603 
604 static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
605 {
606 	u64 value64;
607 	unsigned int words, prefix;
608 
609 	if (bytes <= 16)
610 		return check_bytes8(start, value, bytes);
611 
612 	value64 = value | value << 8 | value << 16 | value << 24;
613 	value64 = value64 | value64 << 32;
614 	prefix = 8 - ((unsigned long)start) % 8;
615 
616 	if (prefix) {
617 		u8 *r = check_bytes8(start, value, prefix);
618 		if (r)
619 			return r;
620 		start += prefix;
621 		bytes -= prefix;
622 	}
623 
624 	words = bytes / 8;
625 
626 	while (words) {
627 		if (*(u64 *)start != value64)
628 			return check_bytes8(start, value, 8);
629 		start += 8;
630 		words--;
631 	}
632 
633 	return check_bytes8(start, value, bytes % 8);
634 }
635 
636 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
637 						void *from, void *to)
638 {
639 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
640 	memset(from, data, to - from);
641 }
642 
643 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
644 			u8 *object, char *what,
645 			u8 *start, unsigned int value, unsigned int bytes)
646 {
647 	u8 *fault;
648 	u8 *end;
649 
650 	fault = check_bytes(start, value, bytes);
651 	if (!fault)
652 		return 1;
653 
654 	end = start + bytes;
655 	while (end > fault && end[-1] == value)
656 		end--;
657 
658 	slab_bug(s, "%s overwritten", what);
659 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
660 					fault, end - 1, fault[0], value);
661 	print_trailer(s, page, object);
662 
663 	restore_bytes(s, what, value, fault, end);
664 	return 0;
665 }
666 
667 /*
668  * Object layout:
669  *
670  * object address
671  * 	Bytes of the object to be managed.
672  * 	If the freepointer may overlay the object then the free
673  * 	pointer is the first word of the object.
674  *
675  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
676  * 	0xa5 (POISON_END)
677  *
678  * object + s->objsize
679  * 	Padding to reach word boundary. This is also used for Redzoning.
680  * 	Padding is extended by another word if Redzoning is enabled and
681  * 	objsize == inuse.
682  *
683  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
684  * 	0xcc (RED_ACTIVE) for objects in use.
685  *
686  * object + s->inuse
687  * 	Meta data starts here.
688  *
689  * 	A. Free pointer (if we cannot overwrite object on free)
690  * 	B. Tracking data for SLAB_STORE_USER
691  * 	C. Padding to reach required alignment boundary or at mininum
692  * 		one word if debugging is on to be able to detect writes
693  * 		before the word boundary.
694  *
695  *	Padding is done using 0x5a (POISON_INUSE)
696  *
697  * object + s->size
698  * 	Nothing is used beyond s->size.
699  *
700  * If slabcaches are merged then the objsize and inuse boundaries are mostly
701  * ignored. And therefore no slab options that rely on these boundaries
702  * may be used with merged slabcaches.
703  */
704 
705 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
706 {
707 	unsigned long off = s->inuse;	/* The end of info */
708 
709 	if (s->offset)
710 		/* Freepointer is placed after the object. */
711 		off += sizeof(void *);
712 
713 	if (s->flags & SLAB_STORE_USER)
714 		/* We also have user information there */
715 		off += 2 * sizeof(struct track);
716 
717 	if (s->size == off)
718 		return 1;
719 
720 	return check_bytes_and_report(s, page, p, "Object padding",
721 				p + off, POISON_INUSE, s->size - off);
722 }
723 
724 /* Check the pad bytes at the end of a slab page */
725 static int slab_pad_check(struct kmem_cache *s, struct page *page)
726 {
727 	u8 *start;
728 	u8 *fault;
729 	u8 *end;
730 	int length;
731 	int remainder;
732 
733 	if (!(s->flags & SLAB_POISON))
734 		return 1;
735 
736 	start = page_address(page);
737 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
738 	end = start + length;
739 	remainder = length % s->size;
740 	if (!remainder)
741 		return 1;
742 
743 	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
744 	if (!fault)
745 		return 1;
746 	while (end > fault && end[-1] == POISON_INUSE)
747 		end--;
748 
749 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
750 	print_section("Padding", end - remainder, remainder);
751 
752 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
753 	return 0;
754 }
755 
756 static int check_object(struct kmem_cache *s, struct page *page,
757 					void *object, u8 val)
758 {
759 	u8 *p = object;
760 	u8 *endobject = object + s->objsize;
761 
762 	if (s->flags & SLAB_RED_ZONE) {
763 		if (!check_bytes_and_report(s, page, object, "Redzone",
764 			endobject, val, s->inuse - s->objsize))
765 			return 0;
766 	} else {
767 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
768 			check_bytes_and_report(s, page, p, "Alignment padding",
769 				endobject, POISON_INUSE, s->inuse - s->objsize);
770 		}
771 	}
772 
773 	if (s->flags & SLAB_POISON) {
774 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
775 			(!check_bytes_and_report(s, page, p, "Poison", p,
776 					POISON_FREE, s->objsize - 1) ||
777 			 !check_bytes_and_report(s, page, p, "Poison",
778 				p + s->objsize - 1, POISON_END, 1)))
779 			return 0;
780 		/*
781 		 * check_pad_bytes cleans up on its own.
782 		 */
783 		check_pad_bytes(s, page, p);
784 	}
785 
786 	if (!s->offset && val == SLUB_RED_ACTIVE)
787 		/*
788 		 * Object and freepointer overlap. Cannot check
789 		 * freepointer while object is allocated.
790 		 */
791 		return 1;
792 
793 	/* Check free pointer validity */
794 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
795 		object_err(s, page, p, "Freepointer corrupt");
796 		/*
797 		 * No choice but to zap it and thus lose the remainder
798 		 * of the free objects in this slab. May cause
799 		 * another error because the object count is now wrong.
800 		 */
801 		set_freepointer(s, p, NULL);
802 		return 0;
803 	}
804 	return 1;
805 }
806 
807 static int check_slab(struct kmem_cache *s, struct page *page)
808 {
809 	int maxobj;
810 
811 	VM_BUG_ON(!irqs_disabled());
812 
813 	if (!PageSlab(page)) {
814 		slab_err(s, page, "Not a valid slab page");
815 		return 0;
816 	}
817 
818 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
819 	if (page->objects > maxobj) {
820 		slab_err(s, page, "objects %u > max %u",
821 			s->name, page->objects, maxobj);
822 		return 0;
823 	}
824 	if (page->inuse > page->objects) {
825 		slab_err(s, page, "inuse %u > max %u",
826 			s->name, page->inuse, page->objects);
827 		return 0;
828 	}
829 	/* Slab_pad_check fixes things up after itself */
830 	slab_pad_check(s, page);
831 	return 1;
832 }
833 
834 /*
835  * Determine if a certain object on a page is on the freelist. Must hold the
836  * slab lock to guarantee that the chains are in a consistent state.
837  */
838 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
839 {
840 	int nr = 0;
841 	void *fp = page->freelist;
842 	void *object = NULL;
843 	unsigned long max_objects;
844 
845 	while (fp && nr <= page->objects) {
846 		if (fp == search)
847 			return 1;
848 		if (!check_valid_pointer(s, page, fp)) {
849 			if (object) {
850 				object_err(s, page, object,
851 					"Freechain corrupt");
852 				set_freepointer(s, object, NULL);
853 				break;
854 			} else {
855 				slab_err(s, page, "Freepointer corrupt");
856 				page->freelist = NULL;
857 				page->inuse = page->objects;
858 				slab_fix(s, "Freelist cleared");
859 				return 0;
860 			}
861 			break;
862 		}
863 		object = fp;
864 		fp = get_freepointer(s, object);
865 		nr++;
866 	}
867 
868 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
869 	if (max_objects > MAX_OBJS_PER_PAGE)
870 		max_objects = MAX_OBJS_PER_PAGE;
871 
872 	if (page->objects != max_objects) {
873 		slab_err(s, page, "Wrong number of objects. Found %d but "
874 			"should be %d", page->objects, max_objects);
875 		page->objects = max_objects;
876 		slab_fix(s, "Number of objects adjusted.");
877 	}
878 	if (page->inuse != page->objects - nr) {
879 		slab_err(s, page, "Wrong object count. Counter is %d but "
880 			"counted were %d", page->inuse, page->objects - nr);
881 		page->inuse = page->objects - nr;
882 		slab_fix(s, "Object count adjusted.");
883 	}
884 	return search == NULL;
885 }
886 
887 static void trace(struct kmem_cache *s, struct page *page, void *object,
888 								int alloc)
889 {
890 	if (s->flags & SLAB_TRACE) {
891 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
892 			s->name,
893 			alloc ? "alloc" : "free",
894 			object, page->inuse,
895 			page->freelist);
896 
897 		if (!alloc)
898 			print_section("Object", (void *)object, s->objsize);
899 
900 		dump_stack();
901 	}
902 }
903 
904 /*
905  * Hooks for other subsystems that check memory allocations. In a typical
906  * production configuration these hooks all should produce no code at all.
907  */
908 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
909 {
910 	flags &= gfp_allowed_mask;
911 	lockdep_trace_alloc(flags);
912 	might_sleep_if(flags & __GFP_WAIT);
913 
914 	return should_failslab(s->objsize, flags, s->flags);
915 }
916 
917 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
918 {
919 	flags &= gfp_allowed_mask;
920 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
921 	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
922 }
923 
924 static inline void slab_free_hook(struct kmem_cache *s, void *x)
925 {
926 	kmemleak_free_recursive(x, s->flags);
927 
928 	/*
929 	 * Trouble is that we may no longer disable interupts in the fast path
930 	 * So in order to make the debug calls that expect irqs to be
931 	 * disabled we need to disable interrupts temporarily.
932 	 */
933 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
934 	{
935 		unsigned long flags;
936 
937 		local_irq_save(flags);
938 		kmemcheck_slab_free(s, x, s->objsize);
939 		debug_check_no_locks_freed(x, s->objsize);
940 		local_irq_restore(flags);
941 	}
942 #endif
943 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
944 		debug_check_no_obj_freed(x, s->objsize);
945 }
946 
947 /*
948  * Tracking of fully allocated slabs for debugging purposes.
949  */
950 static void add_full(struct kmem_cache_node *n, struct page *page)
951 {
952 	spin_lock(&n->list_lock);
953 	list_add(&page->lru, &n->full);
954 	spin_unlock(&n->list_lock);
955 }
956 
957 static void remove_full(struct kmem_cache *s, struct page *page)
958 {
959 	struct kmem_cache_node *n;
960 
961 	if (!(s->flags & SLAB_STORE_USER))
962 		return;
963 
964 	n = get_node(s, page_to_nid(page));
965 
966 	spin_lock(&n->list_lock);
967 	list_del(&page->lru);
968 	spin_unlock(&n->list_lock);
969 }
970 
971 /* Tracking of the number of slabs for debugging purposes */
972 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
973 {
974 	struct kmem_cache_node *n = get_node(s, node);
975 
976 	return atomic_long_read(&n->nr_slabs);
977 }
978 
979 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
980 {
981 	return atomic_long_read(&n->nr_slabs);
982 }
983 
984 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
985 {
986 	struct kmem_cache_node *n = get_node(s, node);
987 
988 	/*
989 	 * May be called early in order to allocate a slab for the
990 	 * kmem_cache_node structure. Solve the chicken-egg
991 	 * dilemma by deferring the increment of the count during
992 	 * bootstrap (see early_kmem_cache_node_alloc).
993 	 */
994 	if (n) {
995 		atomic_long_inc(&n->nr_slabs);
996 		atomic_long_add(objects, &n->total_objects);
997 	}
998 }
999 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1000 {
1001 	struct kmem_cache_node *n = get_node(s, node);
1002 
1003 	atomic_long_dec(&n->nr_slabs);
1004 	atomic_long_sub(objects, &n->total_objects);
1005 }
1006 
1007 /* Object debug checks for alloc/free paths */
1008 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1009 								void *object)
1010 {
1011 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1012 		return;
1013 
1014 	init_object(s, object, SLUB_RED_INACTIVE);
1015 	init_tracking(s, object);
1016 }
1017 
1018 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1019 					void *object, unsigned long addr)
1020 {
1021 	if (!check_slab(s, page))
1022 		goto bad;
1023 
1024 	if (!on_freelist(s, page, object)) {
1025 		object_err(s, page, object, "Object already allocated");
1026 		goto bad;
1027 	}
1028 
1029 	if (!check_valid_pointer(s, page, object)) {
1030 		object_err(s, page, object, "Freelist Pointer check fails");
1031 		goto bad;
1032 	}
1033 
1034 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1035 		goto bad;
1036 
1037 	/* Success perform special debug activities for allocs */
1038 	if (s->flags & SLAB_STORE_USER)
1039 		set_track(s, object, TRACK_ALLOC, addr);
1040 	trace(s, page, object, 1);
1041 	init_object(s, object, SLUB_RED_ACTIVE);
1042 	return 1;
1043 
1044 bad:
1045 	if (PageSlab(page)) {
1046 		/*
1047 		 * If this is a slab page then lets do the best we can
1048 		 * to avoid issues in the future. Marking all objects
1049 		 * as used avoids touching the remaining objects.
1050 		 */
1051 		slab_fix(s, "Marking all objects used");
1052 		page->inuse = page->objects;
1053 		page->freelist = NULL;
1054 	}
1055 	return 0;
1056 }
1057 
1058 static noinline int free_debug_processing(struct kmem_cache *s,
1059 		 struct page *page, void *object, unsigned long addr)
1060 {
1061 	if (!check_slab(s, page))
1062 		goto fail;
1063 
1064 	if (!check_valid_pointer(s, page, object)) {
1065 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1066 		goto fail;
1067 	}
1068 
1069 	if (on_freelist(s, page, object)) {
1070 		object_err(s, page, object, "Object already free");
1071 		goto fail;
1072 	}
1073 
1074 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1075 		return 0;
1076 
1077 	if (unlikely(s != page->slab)) {
1078 		if (!PageSlab(page)) {
1079 			slab_err(s, page, "Attempt to free object(0x%p) "
1080 				"outside of slab", object);
1081 		} else if (!page->slab) {
1082 			printk(KERN_ERR
1083 				"SLUB <none>: no slab for object 0x%p.\n",
1084 						object);
1085 			dump_stack();
1086 		} else
1087 			object_err(s, page, object,
1088 					"page slab pointer corrupt.");
1089 		goto fail;
1090 	}
1091 
1092 	/* Special debug activities for freeing objects */
1093 	if (!PageSlubFrozen(page) && !page->freelist)
1094 		remove_full(s, page);
1095 	if (s->flags & SLAB_STORE_USER)
1096 		set_track(s, object, TRACK_FREE, addr);
1097 	trace(s, page, object, 0);
1098 	init_object(s, object, SLUB_RED_INACTIVE);
1099 	return 1;
1100 
1101 fail:
1102 	slab_fix(s, "Object at 0x%p not freed", object);
1103 	return 0;
1104 }
1105 
1106 static int __init setup_slub_debug(char *str)
1107 {
1108 	slub_debug = DEBUG_DEFAULT_FLAGS;
1109 	if (*str++ != '=' || !*str)
1110 		/*
1111 		 * No options specified. Switch on full debugging.
1112 		 */
1113 		goto out;
1114 
1115 	if (*str == ',')
1116 		/*
1117 		 * No options but restriction on slabs. This means full
1118 		 * debugging for slabs matching a pattern.
1119 		 */
1120 		goto check_slabs;
1121 
1122 	if (tolower(*str) == 'o') {
1123 		/*
1124 		 * Avoid enabling debugging on caches if its minimum order
1125 		 * would increase as a result.
1126 		 */
1127 		disable_higher_order_debug = 1;
1128 		goto out;
1129 	}
1130 
1131 	slub_debug = 0;
1132 	if (*str == '-')
1133 		/*
1134 		 * Switch off all debugging measures.
1135 		 */
1136 		goto out;
1137 
1138 	/*
1139 	 * Determine which debug features should be switched on
1140 	 */
1141 	for (; *str && *str != ','; str++) {
1142 		switch (tolower(*str)) {
1143 		case 'f':
1144 			slub_debug |= SLAB_DEBUG_FREE;
1145 			break;
1146 		case 'z':
1147 			slub_debug |= SLAB_RED_ZONE;
1148 			break;
1149 		case 'p':
1150 			slub_debug |= SLAB_POISON;
1151 			break;
1152 		case 'u':
1153 			slub_debug |= SLAB_STORE_USER;
1154 			break;
1155 		case 't':
1156 			slub_debug |= SLAB_TRACE;
1157 			break;
1158 		case 'a':
1159 			slub_debug |= SLAB_FAILSLAB;
1160 			break;
1161 		default:
1162 			printk(KERN_ERR "slub_debug option '%c' "
1163 				"unknown. skipped\n", *str);
1164 		}
1165 	}
1166 
1167 check_slabs:
1168 	if (*str == ',')
1169 		slub_debug_slabs = str + 1;
1170 out:
1171 	return 1;
1172 }
1173 
1174 __setup("slub_debug", setup_slub_debug);
1175 
1176 static unsigned long kmem_cache_flags(unsigned long objsize,
1177 	unsigned long flags, const char *name,
1178 	void (*ctor)(void *))
1179 {
1180 	/*
1181 	 * Enable debugging if selected on the kernel commandline.
1182 	 */
1183 	if (slub_debug && (!slub_debug_slabs ||
1184 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1185 		flags |= slub_debug;
1186 
1187 	return flags;
1188 }
1189 #else
1190 static inline void setup_object_debug(struct kmem_cache *s,
1191 			struct page *page, void *object) {}
1192 
1193 static inline int alloc_debug_processing(struct kmem_cache *s,
1194 	struct page *page, void *object, unsigned long addr) { return 0; }
1195 
1196 static inline int free_debug_processing(struct kmem_cache *s,
1197 	struct page *page, void *object, unsigned long addr) { return 0; }
1198 
1199 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1200 			{ return 1; }
1201 static inline int check_object(struct kmem_cache *s, struct page *page,
1202 			void *object, u8 val) { return 1; }
1203 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1204 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1205 	unsigned long flags, const char *name,
1206 	void (*ctor)(void *))
1207 {
1208 	return flags;
1209 }
1210 #define slub_debug 0
1211 
1212 #define disable_higher_order_debug 0
1213 
1214 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1215 							{ return 0; }
1216 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1217 							{ return 0; }
1218 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1219 							int objects) {}
1220 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1221 							int objects) {}
1222 
1223 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1224 							{ return 0; }
1225 
1226 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1227 		void *object) {}
1228 
1229 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1230 
1231 #endif /* CONFIG_SLUB_DEBUG */
1232 
1233 /*
1234  * Slab allocation and freeing
1235  */
1236 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1237 					struct kmem_cache_order_objects oo)
1238 {
1239 	int order = oo_order(oo);
1240 
1241 	flags |= __GFP_NOTRACK;
1242 
1243 	if (node == NUMA_NO_NODE)
1244 		return alloc_pages(flags, order);
1245 	else
1246 		return alloc_pages_exact_node(node, flags, order);
1247 }
1248 
1249 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1250 {
1251 	struct page *page;
1252 	struct kmem_cache_order_objects oo = s->oo;
1253 	gfp_t alloc_gfp;
1254 
1255 	flags |= s->allocflags;
1256 
1257 	/*
1258 	 * Let the initial higher-order allocation fail under memory pressure
1259 	 * so we fall-back to the minimum order allocation.
1260 	 */
1261 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1262 
1263 	page = alloc_slab_page(alloc_gfp, node, oo);
1264 	if (unlikely(!page)) {
1265 		oo = s->min;
1266 		/*
1267 		 * Allocation may have failed due to fragmentation.
1268 		 * Try a lower order alloc if possible
1269 		 */
1270 		page = alloc_slab_page(flags, node, oo);
1271 		if (!page)
1272 			return NULL;
1273 
1274 		stat(s, ORDER_FALLBACK);
1275 	}
1276 
1277 	if (kmemcheck_enabled
1278 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1279 		int pages = 1 << oo_order(oo);
1280 
1281 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1282 
1283 		/*
1284 		 * Objects from caches that have a constructor don't get
1285 		 * cleared when they're allocated, so we need to do it here.
1286 		 */
1287 		if (s->ctor)
1288 			kmemcheck_mark_uninitialized_pages(page, pages);
1289 		else
1290 			kmemcheck_mark_unallocated_pages(page, pages);
1291 	}
1292 
1293 	page->objects = oo_objects(oo);
1294 	mod_zone_page_state(page_zone(page),
1295 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1296 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1297 		1 << oo_order(oo));
1298 
1299 	return page;
1300 }
1301 
1302 static void setup_object(struct kmem_cache *s, struct page *page,
1303 				void *object)
1304 {
1305 	setup_object_debug(s, page, object);
1306 	if (unlikely(s->ctor))
1307 		s->ctor(object);
1308 }
1309 
1310 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1311 {
1312 	struct page *page;
1313 	void *start;
1314 	void *last;
1315 	void *p;
1316 
1317 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1318 
1319 	page = allocate_slab(s,
1320 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1321 	if (!page)
1322 		goto out;
1323 
1324 	inc_slabs_node(s, page_to_nid(page), page->objects);
1325 	page->slab = s;
1326 	page->flags |= 1 << PG_slab;
1327 
1328 	start = page_address(page);
1329 
1330 	if (unlikely(s->flags & SLAB_POISON))
1331 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1332 
1333 	last = start;
1334 	for_each_object(p, s, start, page->objects) {
1335 		setup_object(s, page, last);
1336 		set_freepointer(s, last, p);
1337 		last = p;
1338 	}
1339 	setup_object(s, page, last);
1340 	set_freepointer(s, last, NULL);
1341 
1342 	page->freelist = start;
1343 	page->inuse = 0;
1344 out:
1345 	return page;
1346 }
1347 
1348 static void __free_slab(struct kmem_cache *s, struct page *page)
1349 {
1350 	int order = compound_order(page);
1351 	int pages = 1 << order;
1352 
1353 	if (kmem_cache_debug(s)) {
1354 		void *p;
1355 
1356 		slab_pad_check(s, page);
1357 		for_each_object(p, s, page_address(page),
1358 						page->objects)
1359 			check_object(s, page, p, SLUB_RED_INACTIVE);
1360 	}
1361 
1362 	kmemcheck_free_shadow(page, compound_order(page));
1363 
1364 	mod_zone_page_state(page_zone(page),
1365 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1366 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1367 		-pages);
1368 
1369 	__ClearPageSlab(page);
1370 	reset_page_mapcount(page);
1371 	if (current->reclaim_state)
1372 		current->reclaim_state->reclaimed_slab += pages;
1373 	__free_pages(page, order);
1374 }
1375 
1376 #define need_reserve_slab_rcu						\
1377 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1378 
1379 static void rcu_free_slab(struct rcu_head *h)
1380 {
1381 	struct page *page;
1382 
1383 	if (need_reserve_slab_rcu)
1384 		page = virt_to_head_page(h);
1385 	else
1386 		page = container_of((struct list_head *)h, struct page, lru);
1387 
1388 	__free_slab(page->slab, page);
1389 }
1390 
1391 static void free_slab(struct kmem_cache *s, struct page *page)
1392 {
1393 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1394 		struct rcu_head *head;
1395 
1396 		if (need_reserve_slab_rcu) {
1397 			int order = compound_order(page);
1398 			int offset = (PAGE_SIZE << order) - s->reserved;
1399 
1400 			VM_BUG_ON(s->reserved != sizeof(*head));
1401 			head = page_address(page) + offset;
1402 		} else {
1403 			/*
1404 			 * RCU free overloads the RCU head over the LRU
1405 			 */
1406 			head = (void *)&page->lru;
1407 		}
1408 
1409 		call_rcu(head, rcu_free_slab);
1410 	} else
1411 		__free_slab(s, page);
1412 }
1413 
1414 static void discard_slab(struct kmem_cache *s, struct page *page)
1415 {
1416 	dec_slabs_node(s, page_to_nid(page), page->objects);
1417 	free_slab(s, page);
1418 }
1419 
1420 /*
1421  * Per slab locking using the pagelock
1422  */
1423 static __always_inline void slab_lock(struct page *page)
1424 {
1425 	bit_spin_lock(PG_locked, &page->flags);
1426 }
1427 
1428 static __always_inline void slab_unlock(struct page *page)
1429 {
1430 	__bit_spin_unlock(PG_locked, &page->flags);
1431 }
1432 
1433 static __always_inline int slab_trylock(struct page *page)
1434 {
1435 	int rc = 1;
1436 
1437 	rc = bit_spin_trylock(PG_locked, &page->flags);
1438 	return rc;
1439 }
1440 
1441 /*
1442  * Management of partially allocated slabs
1443  */
1444 static void add_partial(struct kmem_cache_node *n,
1445 				struct page *page, int tail)
1446 {
1447 	spin_lock(&n->list_lock);
1448 	n->nr_partial++;
1449 	if (tail)
1450 		list_add_tail(&page->lru, &n->partial);
1451 	else
1452 		list_add(&page->lru, &n->partial);
1453 	spin_unlock(&n->list_lock);
1454 }
1455 
1456 static inline void __remove_partial(struct kmem_cache_node *n,
1457 					struct page *page)
1458 {
1459 	list_del(&page->lru);
1460 	n->nr_partial--;
1461 }
1462 
1463 static void remove_partial(struct kmem_cache *s, struct page *page)
1464 {
1465 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1466 
1467 	spin_lock(&n->list_lock);
1468 	__remove_partial(n, page);
1469 	spin_unlock(&n->list_lock);
1470 }
1471 
1472 /*
1473  * Lock slab and remove from the partial list.
1474  *
1475  * Must hold list_lock.
1476  */
1477 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1478 							struct page *page)
1479 {
1480 	if (slab_trylock(page)) {
1481 		__remove_partial(n, page);
1482 		__SetPageSlubFrozen(page);
1483 		return 1;
1484 	}
1485 	return 0;
1486 }
1487 
1488 /*
1489  * Try to allocate a partial slab from a specific node.
1490  */
1491 static struct page *get_partial_node(struct kmem_cache_node *n)
1492 {
1493 	struct page *page;
1494 
1495 	/*
1496 	 * Racy check. If we mistakenly see no partial slabs then we
1497 	 * just allocate an empty slab. If we mistakenly try to get a
1498 	 * partial slab and there is none available then get_partials()
1499 	 * will return NULL.
1500 	 */
1501 	if (!n || !n->nr_partial)
1502 		return NULL;
1503 
1504 	spin_lock(&n->list_lock);
1505 	list_for_each_entry(page, &n->partial, lru)
1506 		if (lock_and_freeze_slab(n, page))
1507 			goto out;
1508 	page = NULL;
1509 out:
1510 	spin_unlock(&n->list_lock);
1511 	return page;
1512 }
1513 
1514 /*
1515  * Get a page from somewhere. Search in increasing NUMA distances.
1516  */
1517 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1518 {
1519 #ifdef CONFIG_NUMA
1520 	struct zonelist *zonelist;
1521 	struct zoneref *z;
1522 	struct zone *zone;
1523 	enum zone_type high_zoneidx = gfp_zone(flags);
1524 	struct page *page;
1525 
1526 	/*
1527 	 * The defrag ratio allows a configuration of the tradeoffs between
1528 	 * inter node defragmentation and node local allocations. A lower
1529 	 * defrag_ratio increases the tendency to do local allocations
1530 	 * instead of attempting to obtain partial slabs from other nodes.
1531 	 *
1532 	 * If the defrag_ratio is set to 0 then kmalloc() always
1533 	 * returns node local objects. If the ratio is higher then kmalloc()
1534 	 * may return off node objects because partial slabs are obtained
1535 	 * from other nodes and filled up.
1536 	 *
1537 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1538 	 * defrag_ratio = 1000) then every (well almost) allocation will
1539 	 * first attempt to defrag slab caches on other nodes. This means
1540 	 * scanning over all nodes to look for partial slabs which may be
1541 	 * expensive if we do it every time we are trying to find a slab
1542 	 * with available objects.
1543 	 */
1544 	if (!s->remote_node_defrag_ratio ||
1545 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1546 		return NULL;
1547 
1548 	get_mems_allowed();
1549 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1550 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1551 		struct kmem_cache_node *n;
1552 
1553 		n = get_node(s, zone_to_nid(zone));
1554 
1555 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1556 				n->nr_partial > s->min_partial) {
1557 			page = get_partial_node(n);
1558 			if (page) {
1559 				put_mems_allowed();
1560 				return page;
1561 			}
1562 		}
1563 	}
1564 	put_mems_allowed();
1565 #endif
1566 	return NULL;
1567 }
1568 
1569 /*
1570  * Get a partial page, lock it and return it.
1571  */
1572 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1573 {
1574 	struct page *page;
1575 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1576 
1577 	page = get_partial_node(get_node(s, searchnode));
1578 	if (page || node != NUMA_NO_NODE)
1579 		return page;
1580 
1581 	return get_any_partial(s, flags);
1582 }
1583 
1584 /*
1585  * Move a page back to the lists.
1586  *
1587  * Must be called with the slab lock held.
1588  *
1589  * On exit the slab lock will have been dropped.
1590  */
1591 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1592 	__releases(bitlock)
1593 {
1594 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1595 
1596 	__ClearPageSlubFrozen(page);
1597 	if (page->inuse) {
1598 
1599 		if (page->freelist) {
1600 			add_partial(n, page, tail);
1601 			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1602 		} else {
1603 			stat(s, DEACTIVATE_FULL);
1604 			if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1605 				add_full(n, page);
1606 		}
1607 		slab_unlock(page);
1608 	} else {
1609 		stat(s, DEACTIVATE_EMPTY);
1610 		if (n->nr_partial < s->min_partial) {
1611 			/*
1612 			 * Adding an empty slab to the partial slabs in order
1613 			 * to avoid page allocator overhead. This slab needs
1614 			 * to come after the other slabs with objects in
1615 			 * so that the others get filled first. That way the
1616 			 * size of the partial list stays small.
1617 			 *
1618 			 * kmem_cache_shrink can reclaim any empty slabs from
1619 			 * the partial list.
1620 			 */
1621 			add_partial(n, page, 1);
1622 			slab_unlock(page);
1623 		} else {
1624 			slab_unlock(page);
1625 			stat(s, FREE_SLAB);
1626 			discard_slab(s, page);
1627 		}
1628 	}
1629 }
1630 
1631 #ifdef CONFIG_PREEMPT
1632 /*
1633  * Calculate the next globally unique transaction for disambiguiation
1634  * during cmpxchg. The transactions start with the cpu number and are then
1635  * incremented by CONFIG_NR_CPUS.
1636  */
1637 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1638 #else
1639 /*
1640  * No preemption supported therefore also no need to check for
1641  * different cpus.
1642  */
1643 #define TID_STEP 1
1644 #endif
1645 
1646 static inline unsigned long next_tid(unsigned long tid)
1647 {
1648 	return tid + TID_STEP;
1649 }
1650 
1651 static inline unsigned int tid_to_cpu(unsigned long tid)
1652 {
1653 	return tid % TID_STEP;
1654 }
1655 
1656 static inline unsigned long tid_to_event(unsigned long tid)
1657 {
1658 	return tid / TID_STEP;
1659 }
1660 
1661 static inline unsigned int init_tid(int cpu)
1662 {
1663 	return cpu;
1664 }
1665 
1666 static inline void note_cmpxchg_failure(const char *n,
1667 		const struct kmem_cache *s, unsigned long tid)
1668 {
1669 #ifdef SLUB_DEBUG_CMPXCHG
1670 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1671 
1672 	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1673 
1674 #ifdef CONFIG_PREEMPT
1675 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1676 		printk("due to cpu change %d -> %d\n",
1677 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1678 	else
1679 #endif
1680 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1681 		printk("due to cpu running other code. Event %ld->%ld\n",
1682 			tid_to_event(tid), tid_to_event(actual_tid));
1683 	else
1684 		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1685 			actual_tid, tid, next_tid(tid));
1686 #endif
1687 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1688 }
1689 
1690 void init_kmem_cache_cpus(struct kmem_cache *s)
1691 {
1692 	int cpu;
1693 
1694 	for_each_possible_cpu(cpu)
1695 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1696 }
1697 /*
1698  * Remove the cpu slab
1699  */
1700 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1701 	__releases(bitlock)
1702 {
1703 	struct page *page = c->page;
1704 	int tail = 1;
1705 
1706 	if (page->freelist)
1707 		stat(s, DEACTIVATE_REMOTE_FREES);
1708 	/*
1709 	 * Merge cpu freelist into slab freelist. Typically we get here
1710 	 * because both freelists are empty. So this is unlikely
1711 	 * to occur.
1712 	 */
1713 	while (unlikely(c->freelist)) {
1714 		void **object;
1715 
1716 		tail = 0;	/* Hot objects. Put the slab first */
1717 
1718 		/* Retrieve object from cpu_freelist */
1719 		object = c->freelist;
1720 		c->freelist = get_freepointer(s, c->freelist);
1721 
1722 		/* And put onto the regular freelist */
1723 		set_freepointer(s, object, page->freelist);
1724 		page->freelist = object;
1725 		page->inuse--;
1726 	}
1727 	c->page = NULL;
1728 	c->tid = next_tid(c->tid);
1729 	unfreeze_slab(s, page, tail);
1730 }
1731 
1732 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1733 {
1734 	stat(s, CPUSLAB_FLUSH);
1735 	slab_lock(c->page);
1736 	deactivate_slab(s, c);
1737 }
1738 
1739 /*
1740  * Flush cpu slab.
1741  *
1742  * Called from IPI handler with interrupts disabled.
1743  */
1744 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1745 {
1746 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1747 
1748 	if (likely(c && c->page))
1749 		flush_slab(s, c);
1750 }
1751 
1752 static void flush_cpu_slab(void *d)
1753 {
1754 	struct kmem_cache *s = d;
1755 
1756 	__flush_cpu_slab(s, smp_processor_id());
1757 }
1758 
1759 static void flush_all(struct kmem_cache *s)
1760 {
1761 	on_each_cpu(flush_cpu_slab, s, 1);
1762 }
1763 
1764 /*
1765  * Check if the objects in a per cpu structure fit numa
1766  * locality expectations.
1767  */
1768 static inline int node_match(struct kmem_cache_cpu *c, int node)
1769 {
1770 #ifdef CONFIG_NUMA
1771 	if (node != NUMA_NO_NODE && c->node != node)
1772 		return 0;
1773 #endif
1774 	return 1;
1775 }
1776 
1777 static int count_free(struct page *page)
1778 {
1779 	return page->objects - page->inuse;
1780 }
1781 
1782 static unsigned long count_partial(struct kmem_cache_node *n,
1783 					int (*get_count)(struct page *))
1784 {
1785 	unsigned long flags;
1786 	unsigned long x = 0;
1787 	struct page *page;
1788 
1789 	spin_lock_irqsave(&n->list_lock, flags);
1790 	list_for_each_entry(page, &n->partial, lru)
1791 		x += get_count(page);
1792 	spin_unlock_irqrestore(&n->list_lock, flags);
1793 	return x;
1794 }
1795 
1796 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1797 {
1798 #ifdef CONFIG_SLUB_DEBUG
1799 	return atomic_long_read(&n->total_objects);
1800 #else
1801 	return 0;
1802 #endif
1803 }
1804 
1805 static noinline void
1806 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1807 {
1808 	int node;
1809 
1810 	printk(KERN_WARNING
1811 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1812 		nid, gfpflags);
1813 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
1814 		"default order: %d, min order: %d\n", s->name, s->objsize,
1815 		s->size, oo_order(s->oo), oo_order(s->min));
1816 
1817 	if (oo_order(s->min) > get_order(s->objsize))
1818 		printk(KERN_WARNING "  %s debugging increased min order, use "
1819 		       "slub_debug=O to disable.\n", s->name);
1820 
1821 	for_each_online_node(node) {
1822 		struct kmem_cache_node *n = get_node(s, node);
1823 		unsigned long nr_slabs;
1824 		unsigned long nr_objs;
1825 		unsigned long nr_free;
1826 
1827 		if (!n)
1828 			continue;
1829 
1830 		nr_free  = count_partial(n, count_free);
1831 		nr_slabs = node_nr_slabs(n);
1832 		nr_objs  = node_nr_objs(n);
1833 
1834 		printk(KERN_WARNING
1835 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
1836 			node, nr_slabs, nr_objs, nr_free);
1837 	}
1838 }
1839 
1840 /*
1841  * Slow path. The lockless freelist is empty or we need to perform
1842  * debugging duties.
1843  *
1844  * Interrupts are disabled.
1845  *
1846  * Processing is still very fast if new objects have been freed to the
1847  * regular freelist. In that case we simply take over the regular freelist
1848  * as the lockless freelist and zap the regular freelist.
1849  *
1850  * If that is not working then we fall back to the partial lists. We take the
1851  * first element of the freelist as the object to allocate now and move the
1852  * rest of the freelist to the lockless freelist.
1853  *
1854  * And if we were unable to get a new slab from the partial slab lists then
1855  * we need to allocate a new slab. This is the slowest path since it involves
1856  * a call to the page allocator and the setup of a new slab.
1857  */
1858 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1859 			  unsigned long addr, struct kmem_cache_cpu *c)
1860 {
1861 	void **object;
1862 	struct page *page;
1863 	unsigned long flags;
1864 
1865 	local_irq_save(flags);
1866 #ifdef CONFIG_PREEMPT
1867 	/*
1868 	 * We may have been preempted and rescheduled on a different
1869 	 * cpu before disabling interrupts. Need to reload cpu area
1870 	 * pointer.
1871 	 */
1872 	c = this_cpu_ptr(s->cpu_slab);
1873 #endif
1874 
1875 	/* We handle __GFP_ZERO in the caller */
1876 	gfpflags &= ~__GFP_ZERO;
1877 
1878 	page = c->page;
1879 	if (!page)
1880 		goto new_slab;
1881 
1882 	slab_lock(page);
1883 	if (unlikely(!node_match(c, node)))
1884 		goto another_slab;
1885 
1886 	stat(s, ALLOC_REFILL);
1887 
1888 load_freelist:
1889 	object = page->freelist;
1890 	if (unlikely(!object))
1891 		goto another_slab;
1892 	if (kmem_cache_debug(s))
1893 		goto debug;
1894 
1895 	c->freelist = get_freepointer(s, object);
1896 	page->inuse = page->objects;
1897 	page->freelist = NULL;
1898 
1899 	slab_unlock(page);
1900 	c->tid = next_tid(c->tid);
1901 	local_irq_restore(flags);
1902 	stat(s, ALLOC_SLOWPATH);
1903 	return object;
1904 
1905 another_slab:
1906 	deactivate_slab(s, c);
1907 
1908 new_slab:
1909 	page = get_partial(s, gfpflags, node);
1910 	if (page) {
1911 		stat(s, ALLOC_FROM_PARTIAL);
1912 		c->node = page_to_nid(page);
1913 		c->page = page;
1914 		goto load_freelist;
1915 	}
1916 
1917 	gfpflags &= gfp_allowed_mask;
1918 	if (gfpflags & __GFP_WAIT)
1919 		local_irq_enable();
1920 
1921 	page = new_slab(s, gfpflags, node);
1922 
1923 	if (gfpflags & __GFP_WAIT)
1924 		local_irq_disable();
1925 
1926 	if (page) {
1927 		c = __this_cpu_ptr(s->cpu_slab);
1928 		stat(s, ALLOC_SLAB);
1929 		if (c->page)
1930 			flush_slab(s, c);
1931 
1932 		slab_lock(page);
1933 		__SetPageSlubFrozen(page);
1934 		c->node = page_to_nid(page);
1935 		c->page = page;
1936 		goto load_freelist;
1937 	}
1938 	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1939 		slab_out_of_memory(s, gfpflags, node);
1940 	local_irq_restore(flags);
1941 	return NULL;
1942 debug:
1943 	if (!alloc_debug_processing(s, page, object, addr))
1944 		goto another_slab;
1945 
1946 	page->inuse++;
1947 	page->freelist = get_freepointer(s, object);
1948 	deactivate_slab(s, c);
1949 	c->page = NULL;
1950 	c->node = NUMA_NO_NODE;
1951 	local_irq_restore(flags);
1952 	return object;
1953 }
1954 
1955 /*
1956  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1957  * have the fastpath folded into their functions. So no function call
1958  * overhead for requests that can be satisfied on the fastpath.
1959  *
1960  * The fastpath works by first checking if the lockless freelist can be used.
1961  * If not then __slab_alloc is called for slow processing.
1962  *
1963  * Otherwise we can simply pick the next object from the lockless free list.
1964  */
1965 static __always_inline void *slab_alloc(struct kmem_cache *s,
1966 		gfp_t gfpflags, int node, unsigned long addr)
1967 {
1968 	void **object;
1969 	struct kmem_cache_cpu *c;
1970 	unsigned long tid;
1971 
1972 	if (slab_pre_alloc_hook(s, gfpflags))
1973 		return NULL;
1974 
1975 redo:
1976 
1977 	/*
1978 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1979 	 * enabled. We may switch back and forth between cpus while
1980 	 * reading from one cpu area. That does not matter as long
1981 	 * as we end up on the original cpu again when doing the cmpxchg.
1982 	 */
1983 	c = __this_cpu_ptr(s->cpu_slab);
1984 
1985 	/*
1986 	 * The transaction ids are globally unique per cpu and per operation on
1987 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1988 	 * occurs on the right processor and that there was no operation on the
1989 	 * linked list in between.
1990 	 */
1991 	tid = c->tid;
1992 	barrier();
1993 
1994 	object = c->freelist;
1995 	if (unlikely(!object || !node_match(c, node)))
1996 
1997 		object = __slab_alloc(s, gfpflags, node, addr, c);
1998 
1999 	else {
2000 		/*
2001 		 * The cmpxchg will only match if there was no additional
2002 		 * operation and if we are on the right processor.
2003 		 *
2004 		 * The cmpxchg does the following atomically (without lock semantics!)
2005 		 * 1. Relocate first pointer to the current per cpu area.
2006 		 * 2. Verify that tid and freelist have not been changed
2007 		 * 3. If they were not changed replace tid and freelist
2008 		 *
2009 		 * Since this is without lock semantics the protection is only against
2010 		 * code executing on this cpu *not* from access by other cpus.
2011 		 */
2012 		if (unlikely(!irqsafe_cpu_cmpxchg_double(
2013 				s->cpu_slab->freelist, s->cpu_slab->tid,
2014 				object, tid,
2015 				get_freepointer_safe(s, object), next_tid(tid)))) {
2016 
2017 			note_cmpxchg_failure("slab_alloc", s, tid);
2018 			goto redo;
2019 		}
2020 		stat(s, ALLOC_FASTPATH);
2021 	}
2022 
2023 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2024 		memset(object, 0, s->objsize);
2025 
2026 	slab_post_alloc_hook(s, gfpflags, object);
2027 
2028 	return object;
2029 }
2030 
2031 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2032 {
2033 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2034 
2035 	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2036 
2037 	return ret;
2038 }
2039 EXPORT_SYMBOL(kmem_cache_alloc);
2040 
2041 #ifdef CONFIG_TRACING
2042 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2043 {
2044 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2045 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2046 	return ret;
2047 }
2048 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2049 
2050 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2051 {
2052 	void *ret = kmalloc_order(size, flags, order);
2053 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2054 	return ret;
2055 }
2056 EXPORT_SYMBOL(kmalloc_order_trace);
2057 #endif
2058 
2059 #ifdef CONFIG_NUMA
2060 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2061 {
2062 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2063 
2064 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2065 				    s->objsize, s->size, gfpflags, node);
2066 
2067 	return ret;
2068 }
2069 EXPORT_SYMBOL(kmem_cache_alloc_node);
2070 
2071 #ifdef CONFIG_TRACING
2072 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2073 				    gfp_t gfpflags,
2074 				    int node, size_t size)
2075 {
2076 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2077 
2078 	trace_kmalloc_node(_RET_IP_, ret,
2079 			   size, s->size, gfpflags, node);
2080 	return ret;
2081 }
2082 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2083 #endif
2084 #endif
2085 
2086 /*
2087  * Slow patch handling. This may still be called frequently since objects
2088  * have a longer lifetime than the cpu slabs in most processing loads.
2089  *
2090  * So we still attempt to reduce cache line usage. Just take the slab
2091  * lock and free the item. If there is no additional partial page
2092  * handling required then we can return immediately.
2093  */
2094 static void __slab_free(struct kmem_cache *s, struct page *page,
2095 			void *x, unsigned long addr)
2096 {
2097 	void *prior;
2098 	void **object = (void *)x;
2099 	unsigned long flags;
2100 
2101 	local_irq_save(flags);
2102 	slab_lock(page);
2103 	stat(s, FREE_SLOWPATH);
2104 
2105 	if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2106 		goto out_unlock;
2107 
2108 	prior = page->freelist;
2109 	set_freepointer(s, object, prior);
2110 	page->freelist = object;
2111 	page->inuse--;
2112 
2113 	if (unlikely(PageSlubFrozen(page))) {
2114 		stat(s, FREE_FROZEN);
2115 		goto out_unlock;
2116 	}
2117 
2118 	if (unlikely(!page->inuse))
2119 		goto slab_empty;
2120 
2121 	/*
2122 	 * Objects left in the slab. If it was not on the partial list before
2123 	 * then add it.
2124 	 */
2125 	if (unlikely(!prior)) {
2126 		add_partial(get_node(s, page_to_nid(page)), page, 1);
2127 		stat(s, FREE_ADD_PARTIAL);
2128 	}
2129 
2130 out_unlock:
2131 	slab_unlock(page);
2132 	local_irq_restore(flags);
2133 	return;
2134 
2135 slab_empty:
2136 	if (prior) {
2137 		/*
2138 		 * Slab still on the partial list.
2139 		 */
2140 		remove_partial(s, page);
2141 		stat(s, FREE_REMOVE_PARTIAL);
2142 	}
2143 	slab_unlock(page);
2144 	local_irq_restore(flags);
2145 	stat(s, FREE_SLAB);
2146 	discard_slab(s, page);
2147 }
2148 
2149 /*
2150  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2151  * can perform fastpath freeing without additional function calls.
2152  *
2153  * The fastpath is only possible if we are freeing to the current cpu slab
2154  * of this processor. This typically the case if we have just allocated
2155  * the item before.
2156  *
2157  * If fastpath is not possible then fall back to __slab_free where we deal
2158  * with all sorts of special processing.
2159  */
2160 static __always_inline void slab_free(struct kmem_cache *s,
2161 			struct page *page, void *x, unsigned long addr)
2162 {
2163 	void **object = (void *)x;
2164 	struct kmem_cache_cpu *c;
2165 	unsigned long tid;
2166 
2167 	slab_free_hook(s, x);
2168 
2169 redo:
2170 
2171 	/*
2172 	 * Determine the currently cpus per cpu slab.
2173 	 * The cpu may change afterward. However that does not matter since
2174 	 * data is retrieved via this pointer. If we are on the same cpu
2175 	 * during the cmpxchg then the free will succedd.
2176 	 */
2177 	c = __this_cpu_ptr(s->cpu_slab);
2178 
2179 	tid = c->tid;
2180 	barrier();
2181 
2182 	if (likely(page == c->page)) {
2183 		set_freepointer(s, object, c->freelist);
2184 
2185 		if (unlikely(!irqsafe_cpu_cmpxchg_double(
2186 				s->cpu_slab->freelist, s->cpu_slab->tid,
2187 				c->freelist, tid,
2188 				object, next_tid(tid)))) {
2189 
2190 			note_cmpxchg_failure("slab_free", s, tid);
2191 			goto redo;
2192 		}
2193 		stat(s, FREE_FASTPATH);
2194 	} else
2195 		__slab_free(s, page, x, addr);
2196 
2197 }
2198 
2199 void kmem_cache_free(struct kmem_cache *s, void *x)
2200 {
2201 	struct page *page;
2202 
2203 	page = virt_to_head_page(x);
2204 
2205 	slab_free(s, page, x, _RET_IP_);
2206 
2207 	trace_kmem_cache_free(_RET_IP_, x);
2208 }
2209 EXPORT_SYMBOL(kmem_cache_free);
2210 
2211 /*
2212  * Object placement in a slab is made very easy because we always start at
2213  * offset 0. If we tune the size of the object to the alignment then we can
2214  * get the required alignment by putting one properly sized object after
2215  * another.
2216  *
2217  * Notice that the allocation order determines the sizes of the per cpu
2218  * caches. Each processor has always one slab available for allocations.
2219  * Increasing the allocation order reduces the number of times that slabs
2220  * must be moved on and off the partial lists and is therefore a factor in
2221  * locking overhead.
2222  */
2223 
2224 /*
2225  * Mininum / Maximum order of slab pages. This influences locking overhead
2226  * and slab fragmentation. A higher order reduces the number of partial slabs
2227  * and increases the number of allocations possible without having to
2228  * take the list_lock.
2229  */
2230 static int slub_min_order;
2231 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2232 static int slub_min_objects;
2233 
2234 /*
2235  * Merge control. If this is set then no merging of slab caches will occur.
2236  * (Could be removed. This was introduced to pacify the merge skeptics.)
2237  */
2238 static int slub_nomerge;
2239 
2240 /*
2241  * Calculate the order of allocation given an slab object size.
2242  *
2243  * The order of allocation has significant impact on performance and other
2244  * system components. Generally order 0 allocations should be preferred since
2245  * order 0 does not cause fragmentation in the page allocator. Larger objects
2246  * be problematic to put into order 0 slabs because there may be too much
2247  * unused space left. We go to a higher order if more than 1/16th of the slab
2248  * would be wasted.
2249  *
2250  * In order to reach satisfactory performance we must ensure that a minimum
2251  * number of objects is in one slab. Otherwise we may generate too much
2252  * activity on the partial lists which requires taking the list_lock. This is
2253  * less a concern for large slabs though which are rarely used.
2254  *
2255  * slub_max_order specifies the order where we begin to stop considering the
2256  * number of objects in a slab as critical. If we reach slub_max_order then
2257  * we try to keep the page order as low as possible. So we accept more waste
2258  * of space in favor of a small page order.
2259  *
2260  * Higher order allocations also allow the placement of more objects in a
2261  * slab and thereby reduce object handling overhead. If the user has
2262  * requested a higher mininum order then we start with that one instead of
2263  * the smallest order which will fit the object.
2264  */
2265 static inline int slab_order(int size, int min_objects,
2266 				int max_order, int fract_leftover, int reserved)
2267 {
2268 	int order;
2269 	int rem;
2270 	int min_order = slub_min_order;
2271 
2272 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2273 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2274 
2275 	for (order = max(min_order,
2276 				fls(min_objects * size - 1) - PAGE_SHIFT);
2277 			order <= max_order; order++) {
2278 
2279 		unsigned long slab_size = PAGE_SIZE << order;
2280 
2281 		if (slab_size < min_objects * size + reserved)
2282 			continue;
2283 
2284 		rem = (slab_size - reserved) % size;
2285 
2286 		if (rem <= slab_size / fract_leftover)
2287 			break;
2288 
2289 	}
2290 
2291 	return order;
2292 }
2293 
2294 static inline int calculate_order(int size, int reserved)
2295 {
2296 	int order;
2297 	int min_objects;
2298 	int fraction;
2299 	int max_objects;
2300 
2301 	/*
2302 	 * Attempt to find best configuration for a slab. This
2303 	 * works by first attempting to generate a layout with
2304 	 * the best configuration and backing off gradually.
2305 	 *
2306 	 * First we reduce the acceptable waste in a slab. Then
2307 	 * we reduce the minimum objects required in a slab.
2308 	 */
2309 	min_objects = slub_min_objects;
2310 	if (!min_objects)
2311 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2312 	max_objects = order_objects(slub_max_order, size, reserved);
2313 	min_objects = min(min_objects, max_objects);
2314 
2315 	while (min_objects > 1) {
2316 		fraction = 16;
2317 		while (fraction >= 4) {
2318 			order = slab_order(size, min_objects,
2319 					slub_max_order, fraction, reserved);
2320 			if (order <= slub_max_order)
2321 				return order;
2322 			fraction /= 2;
2323 		}
2324 		min_objects--;
2325 	}
2326 
2327 	/*
2328 	 * We were unable to place multiple objects in a slab. Now
2329 	 * lets see if we can place a single object there.
2330 	 */
2331 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2332 	if (order <= slub_max_order)
2333 		return order;
2334 
2335 	/*
2336 	 * Doh this slab cannot be placed using slub_max_order.
2337 	 */
2338 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2339 	if (order < MAX_ORDER)
2340 		return order;
2341 	return -ENOSYS;
2342 }
2343 
2344 /*
2345  * Figure out what the alignment of the objects will be.
2346  */
2347 static unsigned long calculate_alignment(unsigned long flags,
2348 		unsigned long align, unsigned long size)
2349 {
2350 	/*
2351 	 * If the user wants hardware cache aligned objects then follow that
2352 	 * suggestion if the object is sufficiently large.
2353 	 *
2354 	 * The hardware cache alignment cannot override the specified
2355 	 * alignment though. If that is greater then use it.
2356 	 */
2357 	if (flags & SLAB_HWCACHE_ALIGN) {
2358 		unsigned long ralign = cache_line_size();
2359 		while (size <= ralign / 2)
2360 			ralign /= 2;
2361 		align = max(align, ralign);
2362 	}
2363 
2364 	if (align < ARCH_SLAB_MINALIGN)
2365 		align = ARCH_SLAB_MINALIGN;
2366 
2367 	return ALIGN(align, sizeof(void *));
2368 }
2369 
2370 static void
2371 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2372 {
2373 	n->nr_partial = 0;
2374 	spin_lock_init(&n->list_lock);
2375 	INIT_LIST_HEAD(&n->partial);
2376 #ifdef CONFIG_SLUB_DEBUG
2377 	atomic_long_set(&n->nr_slabs, 0);
2378 	atomic_long_set(&n->total_objects, 0);
2379 	INIT_LIST_HEAD(&n->full);
2380 #endif
2381 }
2382 
2383 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2384 {
2385 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2386 			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2387 
2388 	/*
2389 	 * Must align to double word boundary for the double cmpxchg
2390 	 * instructions to work; see __pcpu_double_call_return_bool().
2391 	 */
2392 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2393 				     2 * sizeof(void *));
2394 
2395 	if (!s->cpu_slab)
2396 		return 0;
2397 
2398 	init_kmem_cache_cpus(s);
2399 
2400 	return 1;
2401 }
2402 
2403 static struct kmem_cache *kmem_cache_node;
2404 
2405 /*
2406  * No kmalloc_node yet so do it by hand. We know that this is the first
2407  * slab on the node for this slabcache. There are no concurrent accesses
2408  * possible.
2409  *
2410  * Note that this function only works on the kmalloc_node_cache
2411  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2412  * memory on a fresh node that has no slab structures yet.
2413  */
2414 static void early_kmem_cache_node_alloc(int node)
2415 {
2416 	struct page *page;
2417 	struct kmem_cache_node *n;
2418 	unsigned long flags;
2419 
2420 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2421 
2422 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2423 
2424 	BUG_ON(!page);
2425 	if (page_to_nid(page) != node) {
2426 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2427 				"node %d\n", node);
2428 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2429 				"in order to be able to continue\n");
2430 	}
2431 
2432 	n = page->freelist;
2433 	BUG_ON(!n);
2434 	page->freelist = get_freepointer(kmem_cache_node, n);
2435 	page->inuse++;
2436 	kmem_cache_node->node[node] = n;
2437 #ifdef CONFIG_SLUB_DEBUG
2438 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2439 	init_tracking(kmem_cache_node, n);
2440 #endif
2441 	init_kmem_cache_node(n, kmem_cache_node);
2442 	inc_slabs_node(kmem_cache_node, node, page->objects);
2443 
2444 	/*
2445 	 * lockdep requires consistent irq usage for each lock
2446 	 * so even though there cannot be a race this early in
2447 	 * the boot sequence, we still disable irqs.
2448 	 */
2449 	local_irq_save(flags);
2450 	add_partial(n, page, 0);
2451 	local_irq_restore(flags);
2452 }
2453 
2454 static void free_kmem_cache_nodes(struct kmem_cache *s)
2455 {
2456 	int node;
2457 
2458 	for_each_node_state(node, N_NORMAL_MEMORY) {
2459 		struct kmem_cache_node *n = s->node[node];
2460 
2461 		if (n)
2462 			kmem_cache_free(kmem_cache_node, n);
2463 
2464 		s->node[node] = NULL;
2465 	}
2466 }
2467 
2468 static int init_kmem_cache_nodes(struct kmem_cache *s)
2469 {
2470 	int node;
2471 
2472 	for_each_node_state(node, N_NORMAL_MEMORY) {
2473 		struct kmem_cache_node *n;
2474 
2475 		if (slab_state == DOWN) {
2476 			early_kmem_cache_node_alloc(node);
2477 			continue;
2478 		}
2479 		n = kmem_cache_alloc_node(kmem_cache_node,
2480 						GFP_KERNEL, node);
2481 
2482 		if (!n) {
2483 			free_kmem_cache_nodes(s);
2484 			return 0;
2485 		}
2486 
2487 		s->node[node] = n;
2488 		init_kmem_cache_node(n, s);
2489 	}
2490 	return 1;
2491 }
2492 
2493 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2494 {
2495 	if (min < MIN_PARTIAL)
2496 		min = MIN_PARTIAL;
2497 	else if (min > MAX_PARTIAL)
2498 		min = MAX_PARTIAL;
2499 	s->min_partial = min;
2500 }
2501 
2502 /*
2503  * calculate_sizes() determines the order and the distribution of data within
2504  * a slab object.
2505  */
2506 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2507 {
2508 	unsigned long flags = s->flags;
2509 	unsigned long size = s->objsize;
2510 	unsigned long align = s->align;
2511 	int order;
2512 
2513 	/*
2514 	 * Round up object size to the next word boundary. We can only
2515 	 * place the free pointer at word boundaries and this determines
2516 	 * the possible location of the free pointer.
2517 	 */
2518 	size = ALIGN(size, sizeof(void *));
2519 
2520 #ifdef CONFIG_SLUB_DEBUG
2521 	/*
2522 	 * Determine if we can poison the object itself. If the user of
2523 	 * the slab may touch the object after free or before allocation
2524 	 * then we should never poison the object itself.
2525 	 */
2526 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2527 			!s->ctor)
2528 		s->flags |= __OBJECT_POISON;
2529 	else
2530 		s->flags &= ~__OBJECT_POISON;
2531 
2532 
2533 	/*
2534 	 * If we are Redzoning then check if there is some space between the
2535 	 * end of the object and the free pointer. If not then add an
2536 	 * additional word to have some bytes to store Redzone information.
2537 	 */
2538 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2539 		size += sizeof(void *);
2540 #endif
2541 
2542 	/*
2543 	 * With that we have determined the number of bytes in actual use
2544 	 * by the object. This is the potential offset to the free pointer.
2545 	 */
2546 	s->inuse = size;
2547 
2548 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2549 		s->ctor)) {
2550 		/*
2551 		 * Relocate free pointer after the object if it is not
2552 		 * permitted to overwrite the first word of the object on
2553 		 * kmem_cache_free.
2554 		 *
2555 		 * This is the case if we do RCU, have a constructor or
2556 		 * destructor or are poisoning the objects.
2557 		 */
2558 		s->offset = size;
2559 		size += sizeof(void *);
2560 	}
2561 
2562 #ifdef CONFIG_SLUB_DEBUG
2563 	if (flags & SLAB_STORE_USER)
2564 		/*
2565 		 * Need to store information about allocs and frees after
2566 		 * the object.
2567 		 */
2568 		size += 2 * sizeof(struct track);
2569 
2570 	if (flags & SLAB_RED_ZONE)
2571 		/*
2572 		 * Add some empty padding so that we can catch
2573 		 * overwrites from earlier objects rather than let
2574 		 * tracking information or the free pointer be
2575 		 * corrupted if a user writes before the start
2576 		 * of the object.
2577 		 */
2578 		size += sizeof(void *);
2579 #endif
2580 
2581 	/*
2582 	 * Determine the alignment based on various parameters that the
2583 	 * user specified and the dynamic determination of cache line size
2584 	 * on bootup.
2585 	 */
2586 	align = calculate_alignment(flags, align, s->objsize);
2587 	s->align = align;
2588 
2589 	/*
2590 	 * SLUB stores one object immediately after another beginning from
2591 	 * offset 0. In order to align the objects we have to simply size
2592 	 * each object to conform to the alignment.
2593 	 */
2594 	size = ALIGN(size, align);
2595 	s->size = size;
2596 	if (forced_order >= 0)
2597 		order = forced_order;
2598 	else
2599 		order = calculate_order(size, s->reserved);
2600 
2601 	if (order < 0)
2602 		return 0;
2603 
2604 	s->allocflags = 0;
2605 	if (order)
2606 		s->allocflags |= __GFP_COMP;
2607 
2608 	if (s->flags & SLAB_CACHE_DMA)
2609 		s->allocflags |= SLUB_DMA;
2610 
2611 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2612 		s->allocflags |= __GFP_RECLAIMABLE;
2613 
2614 	/*
2615 	 * Determine the number of objects per slab
2616 	 */
2617 	s->oo = oo_make(order, size, s->reserved);
2618 	s->min = oo_make(get_order(size), size, s->reserved);
2619 	if (oo_objects(s->oo) > oo_objects(s->max))
2620 		s->max = s->oo;
2621 
2622 	return !!oo_objects(s->oo);
2623 
2624 }
2625 
2626 static int kmem_cache_open(struct kmem_cache *s,
2627 		const char *name, size_t size,
2628 		size_t align, unsigned long flags,
2629 		void (*ctor)(void *))
2630 {
2631 	memset(s, 0, kmem_size);
2632 	s->name = name;
2633 	s->ctor = ctor;
2634 	s->objsize = size;
2635 	s->align = align;
2636 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2637 	s->reserved = 0;
2638 
2639 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2640 		s->reserved = sizeof(struct rcu_head);
2641 
2642 	if (!calculate_sizes(s, -1))
2643 		goto error;
2644 	if (disable_higher_order_debug) {
2645 		/*
2646 		 * Disable debugging flags that store metadata if the min slab
2647 		 * order increased.
2648 		 */
2649 		if (get_order(s->size) > get_order(s->objsize)) {
2650 			s->flags &= ~DEBUG_METADATA_FLAGS;
2651 			s->offset = 0;
2652 			if (!calculate_sizes(s, -1))
2653 				goto error;
2654 		}
2655 	}
2656 
2657 	/*
2658 	 * The larger the object size is, the more pages we want on the partial
2659 	 * list to avoid pounding the page allocator excessively.
2660 	 */
2661 	set_min_partial(s, ilog2(s->size));
2662 	s->refcount = 1;
2663 #ifdef CONFIG_NUMA
2664 	s->remote_node_defrag_ratio = 1000;
2665 #endif
2666 	if (!init_kmem_cache_nodes(s))
2667 		goto error;
2668 
2669 	if (alloc_kmem_cache_cpus(s))
2670 		return 1;
2671 
2672 	free_kmem_cache_nodes(s);
2673 error:
2674 	if (flags & SLAB_PANIC)
2675 		panic("Cannot create slab %s size=%lu realsize=%u "
2676 			"order=%u offset=%u flags=%lx\n",
2677 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2678 			s->offset, flags);
2679 	return 0;
2680 }
2681 
2682 /*
2683  * Determine the size of a slab object
2684  */
2685 unsigned int kmem_cache_size(struct kmem_cache *s)
2686 {
2687 	return s->objsize;
2688 }
2689 EXPORT_SYMBOL(kmem_cache_size);
2690 
2691 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2692 							const char *text)
2693 {
2694 #ifdef CONFIG_SLUB_DEBUG
2695 	void *addr = page_address(page);
2696 	void *p;
2697 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2698 				     sizeof(long), GFP_ATOMIC);
2699 	if (!map)
2700 		return;
2701 	slab_err(s, page, "%s", text);
2702 	slab_lock(page);
2703 
2704 	get_map(s, page, map);
2705 	for_each_object(p, s, addr, page->objects) {
2706 
2707 		if (!test_bit(slab_index(p, s, addr), map)) {
2708 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2709 							p, p - addr);
2710 			print_tracking(s, p);
2711 		}
2712 	}
2713 	slab_unlock(page);
2714 	kfree(map);
2715 #endif
2716 }
2717 
2718 /*
2719  * Attempt to free all partial slabs on a node.
2720  */
2721 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2722 {
2723 	unsigned long flags;
2724 	struct page *page, *h;
2725 
2726 	spin_lock_irqsave(&n->list_lock, flags);
2727 	list_for_each_entry_safe(page, h, &n->partial, lru) {
2728 		if (!page->inuse) {
2729 			__remove_partial(n, page);
2730 			discard_slab(s, page);
2731 		} else {
2732 			list_slab_objects(s, page,
2733 				"Objects remaining on kmem_cache_close()");
2734 		}
2735 	}
2736 	spin_unlock_irqrestore(&n->list_lock, flags);
2737 }
2738 
2739 /*
2740  * Release all resources used by a slab cache.
2741  */
2742 static inline int kmem_cache_close(struct kmem_cache *s)
2743 {
2744 	int node;
2745 
2746 	flush_all(s);
2747 	free_percpu(s->cpu_slab);
2748 	/* Attempt to free all objects */
2749 	for_each_node_state(node, N_NORMAL_MEMORY) {
2750 		struct kmem_cache_node *n = get_node(s, node);
2751 
2752 		free_partial(s, n);
2753 		if (n->nr_partial || slabs_node(s, node))
2754 			return 1;
2755 	}
2756 	free_kmem_cache_nodes(s);
2757 	return 0;
2758 }
2759 
2760 /*
2761  * Close a cache and release the kmem_cache structure
2762  * (must be used for caches created using kmem_cache_create)
2763  */
2764 void kmem_cache_destroy(struct kmem_cache *s)
2765 {
2766 	down_write(&slub_lock);
2767 	s->refcount--;
2768 	if (!s->refcount) {
2769 		list_del(&s->list);
2770 		if (kmem_cache_close(s)) {
2771 			printk(KERN_ERR "SLUB %s: %s called for cache that "
2772 				"still has objects.\n", s->name, __func__);
2773 			dump_stack();
2774 		}
2775 		if (s->flags & SLAB_DESTROY_BY_RCU)
2776 			rcu_barrier();
2777 		sysfs_slab_remove(s);
2778 	}
2779 	up_write(&slub_lock);
2780 }
2781 EXPORT_SYMBOL(kmem_cache_destroy);
2782 
2783 /********************************************************************
2784  *		Kmalloc subsystem
2785  *******************************************************************/
2786 
2787 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2788 EXPORT_SYMBOL(kmalloc_caches);
2789 
2790 static struct kmem_cache *kmem_cache;
2791 
2792 #ifdef CONFIG_ZONE_DMA
2793 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2794 #endif
2795 
2796 static int __init setup_slub_min_order(char *str)
2797 {
2798 	get_option(&str, &slub_min_order);
2799 
2800 	return 1;
2801 }
2802 
2803 __setup("slub_min_order=", setup_slub_min_order);
2804 
2805 static int __init setup_slub_max_order(char *str)
2806 {
2807 	get_option(&str, &slub_max_order);
2808 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2809 
2810 	return 1;
2811 }
2812 
2813 __setup("slub_max_order=", setup_slub_max_order);
2814 
2815 static int __init setup_slub_min_objects(char *str)
2816 {
2817 	get_option(&str, &slub_min_objects);
2818 
2819 	return 1;
2820 }
2821 
2822 __setup("slub_min_objects=", setup_slub_min_objects);
2823 
2824 static int __init setup_slub_nomerge(char *str)
2825 {
2826 	slub_nomerge = 1;
2827 	return 1;
2828 }
2829 
2830 __setup("slub_nomerge", setup_slub_nomerge);
2831 
2832 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2833 						int size, unsigned int flags)
2834 {
2835 	struct kmem_cache *s;
2836 
2837 	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2838 
2839 	/*
2840 	 * This function is called with IRQs disabled during early-boot on
2841 	 * single CPU so there's no need to take slub_lock here.
2842 	 */
2843 	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2844 								flags, NULL))
2845 		goto panic;
2846 
2847 	list_add(&s->list, &slab_caches);
2848 	return s;
2849 
2850 panic:
2851 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2852 	return NULL;
2853 }
2854 
2855 /*
2856  * Conversion table for small slabs sizes / 8 to the index in the
2857  * kmalloc array. This is necessary for slabs < 192 since we have non power
2858  * of two cache sizes there. The size of larger slabs can be determined using
2859  * fls.
2860  */
2861 static s8 size_index[24] = {
2862 	3,	/* 8 */
2863 	4,	/* 16 */
2864 	5,	/* 24 */
2865 	5,	/* 32 */
2866 	6,	/* 40 */
2867 	6,	/* 48 */
2868 	6,	/* 56 */
2869 	6,	/* 64 */
2870 	1,	/* 72 */
2871 	1,	/* 80 */
2872 	1,	/* 88 */
2873 	1,	/* 96 */
2874 	7,	/* 104 */
2875 	7,	/* 112 */
2876 	7,	/* 120 */
2877 	7,	/* 128 */
2878 	2,	/* 136 */
2879 	2,	/* 144 */
2880 	2,	/* 152 */
2881 	2,	/* 160 */
2882 	2,	/* 168 */
2883 	2,	/* 176 */
2884 	2,	/* 184 */
2885 	2	/* 192 */
2886 };
2887 
2888 static inline int size_index_elem(size_t bytes)
2889 {
2890 	return (bytes - 1) / 8;
2891 }
2892 
2893 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2894 {
2895 	int index;
2896 
2897 	if (size <= 192) {
2898 		if (!size)
2899 			return ZERO_SIZE_PTR;
2900 
2901 		index = size_index[size_index_elem(size)];
2902 	} else
2903 		index = fls(size - 1);
2904 
2905 #ifdef CONFIG_ZONE_DMA
2906 	if (unlikely((flags & SLUB_DMA)))
2907 		return kmalloc_dma_caches[index];
2908 
2909 #endif
2910 	return kmalloc_caches[index];
2911 }
2912 
2913 void *__kmalloc(size_t size, gfp_t flags)
2914 {
2915 	struct kmem_cache *s;
2916 	void *ret;
2917 
2918 	if (unlikely(size > SLUB_MAX_SIZE))
2919 		return kmalloc_large(size, flags);
2920 
2921 	s = get_slab(size, flags);
2922 
2923 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2924 		return s;
2925 
2926 	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2927 
2928 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2929 
2930 	return ret;
2931 }
2932 EXPORT_SYMBOL(__kmalloc);
2933 
2934 #ifdef CONFIG_NUMA
2935 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2936 {
2937 	struct page *page;
2938 	void *ptr = NULL;
2939 
2940 	flags |= __GFP_COMP | __GFP_NOTRACK;
2941 	page = alloc_pages_node(node, flags, get_order(size));
2942 	if (page)
2943 		ptr = page_address(page);
2944 
2945 	kmemleak_alloc(ptr, size, 1, flags);
2946 	return ptr;
2947 }
2948 
2949 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2950 {
2951 	struct kmem_cache *s;
2952 	void *ret;
2953 
2954 	if (unlikely(size > SLUB_MAX_SIZE)) {
2955 		ret = kmalloc_large_node(size, flags, node);
2956 
2957 		trace_kmalloc_node(_RET_IP_, ret,
2958 				   size, PAGE_SIZE << get_order(size),
2959 				   flags, node);
2960 
2961 		return ret;
2962 	}
2963 
2964 	s = get_slab(size, flags);
2965 
2966 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2967 		return s;
2968 
2969 	ret = slab_alloc(s, flags, node, _RET_IP_);
2970 
2971 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2972 
2973 	return ret;
2974 }
2975 EXPORT_SYMBOL(__kmalloc_node);
2976 #endif
2977 
2978 size_t ksize(const void *object)
2979 {
2980 	struct page *page;
2981 
2982 	if (unlikely(object == ZERO_SIZE_PTR))
2983 		return 0;
2984 
2985 	page = virt_to_head_page(object);
2986 
2987 	if (unlikely(!PageSlab(page))) {
2988 		WARN_ON(!PageCompound(page));
2989 		return PAGE_SIZE << compound_order(page);
2990 	}
2991 
2992 	return slab_ksize(page->slab);
2993 }
2994 EXPORT_SYMBOL(ksize);
2995 
2996 #ifdef CONFIG_SLUB_DEBUG
2997 bool verify_mem_not_deleted(const void *x)
2998 {
2999 	struct page *page;
3000 	void *object = (void *)x;
3001 	unsigned long flags;
3002 	bool rv;
3003 
3004 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3005 		return false;
3006 
3007 	local_irq_save(flags);
3008 
3009 	page = virt_to_head_page(x);
3010 	if (unlikely(!PageSlab(page))) {
3011 		/* maybe it was from stack? */
3012 		rv = true;
3013 		goto out_unlock;
3014 	}
3015 
3016 	slab_lock(page);
3017 	if (on_freelist(page->slab, page, object)) {
3018 		object_err(page->slab, page, object, "Object is on free-list");
3019 		rv = false;
3020 	} else {
3021 		rv = true;
3022 	}
3023 	slab_unlock(page);
3024 
3025 out_unlock:
3026 	local_irq_restore(flags);
3027 	return rv;
3028 }
3029 EXPORT_SYMBOL(verify_mem_not_deleted);
3030 #endif
3031 
3032 void kfree(const void *x)
3033 {
3034 	struct page *page;
3035 	void *object = (void *)x;
3036 
3037 	trace_kfree(_RET_IP_, x);
3038 
3039 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3040 		return;
3041 
3042 	page = virt_to_head_page(x);
3043 	if (unlikely(!PageSlab(page))) {
3044 		BUG_ON(!PageCompound(page));
3045 		kmemleak_free(x);
3046 		put_page(page);
3047 		return;
3048 	}
3049 	slab_free(page->slab, page, object, _RET_IP_);
3050 }
3051 EXPORT_SYMBOL(kfree);
3052 
3053 /*
3054  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3055  * the remaining slabs by the number of items in use. The slabs with the
3056  * most items in use come first. New allocations will then fill those up
3057  * and thus they can be removed from the partial lists.
3058  *
3059  * The slabs with the least items are placed last. This results in them
3060  * being allocated from last increasing the chance that the last objects
3061  * are freed in them.
3062  */
3063 int kmem_cache_shrink(struct kmem_cache *s)
3064 {
3065 	int node;
3066 	int i;
3067 	struct kmem_cache_node *n;
3068 	struct page *page;
3069 	struct page *t;
3070 	int objects = oo_objects(s->max);
3071 	struct list_head *slabs_by_inuse =
3072 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3073 	unsigned long flags;
3074 
3075 	if (!slabs_by_inuse)
3076 		return -ENOMEM;
3077 
3078 	flush_all(s);
3079 	for_each_node_state(node, N_NORMAL_MEMORY) {
3080 		n = get_node(s, node);
3081 
3082 		if (!n->nr_partial)
3083 			continue;
3084 
3085 		for (i = 0; i < objects; i++)
3086 			INIT_LIST_HEAD(slabs_by_inuse + i);
3087 
3088 		spin_lock_irqsave(&n->list_lock, flags);
3089 
3090 		/*
3091 		 * Build lists indexed by the items in use in each slab.
3092 		 *
3093 		 * Note that concurrent frees may occur while we hold the
3094 		 * list_lock. page->inuse here is the upper limit.
3095 		 */
3096 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3097 			if (!page->inuse && slab_trylock(page)) {
3098 				/*
3099 				 * Must hold slab lock here because slab_free
3100 				 * may have freed the last object and be
3101 				 * waiting to release the slab.
3102 				 */
3103 				__remove_partial(n, page);
3104 				slab_unlock(page);
3105 				discard_slab(s, page);
3106 			} else {
3107 				list_move(&page->lru,
3108 				slabs_by_inuse + page->inuse);
3109 			}
3110 		}
3111 
3112 		/*
3113 		 * Rebuild the partial list with the slabs filled up most
3114 		 * first and the least used slabs at the end.
3115 		 */
3116 		for (i = objects - 1; i >= 0; i--)
3117 			list_splice(slabs_by_inuse + i, n->partial.prev);
3118 
3119 		spin_unlock_irqrestore(&n->list_lock, flags);
3120 	}
3121 
3122 	kfree(slabs_by_inuse);
3123 	return 0;
3124 }
3125 EXPORT_SYMBOL(kmem_cache_shrink);
3126 
3127 #if defined(CONFIG_MEMORY_HOTPLUG)
3128 static int slab_mem_going_offline_callback(void *arg)
3129 {
3130 	struct kmem_cache *s;
3131 
3132 	down_read(&slub_lock);
3133 	list_for_each_entry(s, &slab_caches, list)
3134 		kmem_cache_shrink(s);
3135 	up_read(&slub_lock);
3136 
3137 	return 0;
3138 }
3139 
3140 static void slab_mem_offline_callback(void *arg)
3141 {
3142 	struct kmem_cache_node *n;
3143 	struct kmem_cache *s;
3144 	struct memory_notify *marg = arg;
3145 	int offline_node;
3146 
3147 	offline_node = marg->status_change_nid;
3148 
3149 	/*
3150 	 * If the node still has available memory. we need kmem_cache_node
3151 	 * for it yet.
3152 	 */
3153 	if (offline_node < 0)
3154 		return;
3155 
3156 	down_read(&slub_lock);
3157 	list_for_each_entry(s, &slab_caches, list) {
3158 		n = get_node(s, offline_node);
3159 		if (n) {
3160 			/*
3161 			 * if n->nr_slabs > 0, slabs still exist on the node
3162 			 * that is going down. We were unable to free them,
3163 			 * and offline_pages() function shouldn't call this
3164 			 * callback. So, we must fail.
3165 			 */
3166 			BUG_ON(slabs_node(s, offline_node));
3167 
3168 			s->node[offline_node] = NULL;
3169 			kmem_cache_free(kmem_cache_node, n);
3170 		}
3171 	}
3172 	up_read(&slub_lock);
3173 }
3174 
3175 static int slab_mem_going_online_callback(void *arg)
3176 {
3177 	struct kmem_cache_node *n;
3178 	struct kmem_cache *s;
3179 	struct memory_notify *marg = arg;
3180 	int nid = marg->status_change_nid;
3181 	int ret = 0;
3182 
3183 	/*
3184 	 * If the node's memory is already available, then kmem_cache_node is
3185 	 * already created. Nothing to do.
3186 	 */
3187 	if (nid < 0)
3188 		return 0;
3189 
3190 	/*
3191 	 * We are bringing a node online. No memory is available yet. We must
3192 	 * allocate a kmem_cache_node structure in order to bring the node
3193 	 * online.
3194 	 */
3195 	down_read(&slub_lock);
3196 	list_for_each_entry(s, &slab_caches, list) {
3197 		/*
3198 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3199 		 *      since memory is not yet available from the node that
3200 		 *      is brought up.
3201 		 */
3202 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3203 		if (!n) {
3204 			ret = -ENOMEM;
3205 			goto out;
3206 		}
3207 		init_kmem_cache_node(n, s);
3208 		s->node[nid] = n;
3209 	}
3210 out:
3211 	up_read(&slub_lock);
3212 	return ret;
3213 }
3214 
3215 static int slab_memory_callback(struct notifier_block *self,
3216 				unsigned long action, void *arg)
3217 {
3218 	int ret = 0;
3219 
3220 	switch (action) {
3221 	case MEM_GOING_ONLINE:
3222 		ret = slab_mem_going_online_callback(arg);
3223 		break;
3224 	case MEM_GOING_OFFLINE:
3225 		ret = slab_mem_going_offline_callback(arg);
3226 		break;
3227 	case MEM_OFFLINE:
3228 	case MEM_CANCEL_ONLINE:
3229 		slab_mem_offline_callback(arg);
3230 		break;
3231 	case MEM_ONLINE:
3232 	case MEM_CANCEL_OFFLINE:
3233 		break;
3234 	}
3235 	if (ret)
3236 		ret = notifier_from_errno(ret);
3237 	else
3238 		ret = NOTIFY_OK;
3239 	return ret;
3240 }
3241 
3242 #endif /* CONFIG_MEMORY_HOTPLUG */
3243 
3244 /********************************************************************
3245  *			Basic setup of slabs
3246  *******************************************************************/
3247 
3248 /*
3249  * Used for early kmem_cache structures that were allocated using
3250  * the page allocator
3251  */
3252 
3253 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3254 {
3255 	int node;
3256 
3257 	list_add(&s->list, &slab_caches);
3258 	s->refcount = -1;
3259 
3260 	for_each_node_state(node, N_NORMAL_MEMORY) {
3261 		struct kmem_cache_node *n = get_node(s, node);
3262 		struct page *p;
3263 
3264 		if (n) {
3265 			list_for_each_entry(p, &n->partial, lru)
3266 				p->slab = s;
3267 
3268 #ifdef CONFIG_SLUB_DEBUG
3269 			list_for_each_entry(p, &n->full, lru)
3270 				p->slab = s;
3271 #endif
3272 		}
3273 	}
3274 }
3275 
3276 void __init kmem_cache_init(void)
3277 {
3278 	int i;
3279 	int caches = 0;
3280 	struct kmem_cache *temp_kmem_cache;
3281 	int order;
3282 	struct kmem_cache *temp_kmem_cache_node;
3283 	unsigned long kmalloc_size;
3284 
3285 	kmem_size = offsetof(struct kmem_cache, node) +
3286 				nr_node_ids * sizeof(struct kmem_cache_node *);
3287 
3288 	/* Allocate two kmem_caches from the page allocator */
3289 	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3290 	order = get_order(2 * kmalloc_size);
3291 	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3292 
3293 	/*
3294 	 * Must first have the slab cache available for the allocations of the
3295 	 * struct kmem_cache_node's. There is special bootstrap code in
3296 	 * kmem_cache_open for slab_state == DOWN.
3297 	 */
3298 	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3299 
3300 	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3301 		sizeof(struct kmem_cache_node),
3302 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3303 
3304 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3305 
3306 	/* Able to allocate the per node structures */
3307 	slab_state = PARTIAL;
3308 
3309 	temp_kmem_cache = kmem_cache;
3310 	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3311 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3312 	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3313 	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3314 
3315 	/*
3316 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3317 	 * kmem_cache_node is separately allocated so no need to
3318 	 * update any list pointers.
3319 	 */
3320 	temp_kmem_cache_node = kmem_cache_node;
3321 
3322 	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3323 	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3324 
3325 	kmem_cache_bootstrap_fixup(kmem_cache_node);
3326 
3327 	caches++;
3328 	kmem_cache_bootstrap_fixup(kmem_cache);
3329 	caches++;
3330 	/* Free temporary boot structure */
3331 	free_pages((unsigned long)temp_kmem_cache, order);
3332 
3333 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3334 
3335 	/*
3336 	 * Patch up the size_index table if we have strange large alignment
3337 	 * requirements for the kmalloc array. This is only the case for
3338 	 * MIPS it seems. The standard arches will not generate any code here.
3339 	 *
3340 	 * Largest permitted alignment is 256 bytes due to the way we
3341 	 * handle the index determination for the smaller caches.
3342 	 *
3343 	 * Make sure that nothing crazy happens if someone starts tinkering
3344 	 * around with ARCH_KMALLOC_MINALIGN
3345 	 */
3346 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3347 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3348 
3349 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3350 		int elem = size_index_elem(i);
3351 		if (elem >= ARRAY_SIZE(size_index))
3352 			break;
3353 		size_index[elem] = KMALLOC_SHIFT_LOW;
3354 	}
3355 
3356 	if (KMALLOC_MIN_SIZE == 64) {
3357 		/*
3358 		 * The 96 byte size cache is not used if the alignment
3359 		 * is 64 byte.
3360 		 */
3361 		for (i = 64 + 8; i <= 96; i += 8)
3362 			size_index[size_index_elem(i)] = 7;
3363 	} else if (KMALLOC_MIN_SIZE == 128) {
3364 		/*
3365 		 * The 192 byte sized cache is not used if the alignment
3366 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3367 		 * instead.
3368 		 */
3369 		for (i = 128 + 8; i <= 192; i += 8)
3370 			size_index[size_index_elem(i)] = 8;
3371 	}
3372 
3373 	/* Caches that are not of the two-to-the-power-of size */
3374 	if (KMALLOC_MIN_SIZE <= 32) {
3375 		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3376 		caches++;
3377 	}
3378 
3379 	if (KMALLOC_MIN_SIZE <= 64) {
3380 		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3381 		caches++;
3382 	}
3383 
3384 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3385 		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3386 		caches++;
3387 	}
3388 
3389 	slab_state = UP;
3390 
3391 	/* Provide the correct kmalloc names now that the caches are up */
3392 	if (KMALLOC_MIN_SIZE <= 32) {
3393 		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3394 		BUG_ON(!kmalloc_caches[1]->name);
3395 	}
3396 
3397 	if (KMALLOC_MIN_SIZE <= 64) {
3398 		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3399 		BUG_ON(!kmalloc_caches[2]->name);
3400 	}
3401 
3402 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3403 		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3404 
3405 		BUG_ON(!s);
3406 		kmalloc_caches[i]->name = s;
3407 	}
3408 
3409 #ifdef CONFIG_SMP
3410 	register_cpu_notifier(&slab_notifier);
3411 #endif
3412 
3413 #ifdef CONFIG_ZONE_DMA
3414 	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3415 		struct kmem_cache *s = kmalloc_caches[i];
3416 
3417 		if (s && s->size) {
3418 			char *name = kasprintf(GFP_NOWAIT,
3419 				 "dma-kmalloc-%d", s->objsize);
3420 
3421 			BUG_ON(!name);
3422 			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3423 				s->objsize, SLAB_CACHE_DMA);
3424 		}
3425 	}
3426 #endif
3427 	printk(KERN_INFO
3428 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3429 		" CPUs=%d, Nodes=%d\n",
3430 		caches, cache_line_size(),
3431 		slub_min_order, slub_max_order, slub_min_objects,
3432 		nr_cpu_ids, nr_node_ids);
3433 }
3434 
3435 void __init kmem_cache_init_late(void)
3436 {
3437 }
3438 
3439 /*
3440  * Find a mergeable slab cache
3441  */
3442 static int slab_unmergeable(struct kmem_cache *s)
3443 {
3444 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3445 		return 1;
3446 
3447 	if (s->ctor)
3448 		return 1;
3449 
3450 	/*
3451 	 * We may have set a slab to be unmergeable during bootstrap.
3452 	 */
3453 	if (s->refcount < 0)
3454 		return 1;
3455 
3456 	return 0;
3457 }
3458 
3459 static struct kmem_cache *find_mergeable(size_t size,
3460 		size_t align, unsigned long flags, const char *name,
3461 		void (*ctor)(void *))
3462 {
3463 	struct kmem_cache *s;
3464 
3465 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3466 		return NULL;
3467 
3468 	if (ctor)
3469 		return NULL;
3470 
3471 	size = ALIGN(size, sizeof(void *));
3472 	align = calculate_alignment(flags, align, size);
3473 	size = ALIGN(size, align);
3474 	flags = kmem_cache_flags(size, flags, name, NULL);
3475 
3476 	list_for_each_entry(s, &slab_caches, list) {
3477 		if (slab_unmergeable(s))
3478 			continue;
3479 
3480 		if (size > s->size)
3481 			continue;
3482 
3483 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3484 				continue;
3485 		/*
3486 		 * Check if alignment is compatible.
3487 		 * Courtesy of Adrian Drzewiecki
3488 		 */
3489 		if ((s->size & ~(align - 1)) != s->size)
3490 			continue;
3491 
3492 		if (s->size - size >= sizeof(void *))
3493 			continue;
3494 
3495 		return s;
3496 	}
3497 	return NULL;
3498 }
3499 
3500 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3501 		size_t align, unsigned long flags, void (*ctor)(void *))
3502 {
3503 	struct kmem_cache *s;
3504 	char *n;
3505 
3506 	if (WARN_ON(!name))
3507 		return NULL;
3508 
3509 	down_write(&slub_lock);
3510 	s = find_mergeable(size, align, flags, name, ctor);
3511 	if (s) {
3512 		s->refcount++;
3513 		/*
3514 		 * Adjust the object sizes so that we clear
3515 		 * the complete object on kzalloc.
3516 		 */
3517 		s->objsize = max(s->objsize, (int)size);
3518 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3519 
3520 		if (sysfs_slab_alias(s, name)) {
3521 			s->refcount--;
3522 			goto err;
3523 		}
3524 		up_write(&slub_lock);
3525 		return s;
3526 	}
3527 
3528 	n = kstrdup(name, GFP_KERNEL);
3529 	if (!n)
3530 		goto err;
3531 
3532 	s = kmalloc(kmem_size, GFP_KERNEL);
3533 	if (s) {
3534 		if (kmem_cache_open(s, n,
3535 				size, align, flags, ctor)) {
3536 			list_add(&s->list, &slab_caches);
3537 			if (sysfs_slab_add(s)) {
3538 				list_del(&s->list);
3539 				kfree(n);
3540 				kfree(s);
3541 				goto err;
3542 			}
3543 			up_write(&slub_lock);
3544 			return s;
3545 		}
3546 		kfree(n);
3547 		kfree(s);
3548 	}
3549 err:
3550 	up_write(&slub_lock);
3551 
3552 	if (flags & SLAB_PANIC)
3553 		panic("Cannot create slabcache %s\n", name);
3554 	else
3555 		s = NULL;
3556 	return s;
3557 }
3558 EXPORT_SYMBOL(kmem_cache_create);
3559 
3560 #ifdef CONFIG_SMP
3561 /*
3562  * Use the cpu notifier to insure that the cpu slabs are flushed when
3563  * necessary.
3564  */
3565 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3566 		unsigned long action, void *hcpu)
3567 {
3568 	long cpu = (long)hcpu;
3569 	struct kmem_cache *s;
3570 	unsigned long flags;
3571 
3572 	switch (action) {
3573 	case CPU_UP_CANCELED:
3574 	case CPU_UP_CANCELED_FROZEN:
3575 	case CPU_DEAD:
3576 	case CPU_DEAD_FROZEN:
3577 		down_read(&slub_lock);
3578 		list_for_each_entry(s, &slab_caches, list) {
3579 			local_irq_save(flags);
3580 			__flush_cpu_slab(s, cpu);
3581 			local_irq_restore(flags);
3582 		}
3583 		up_read(&slub_lock);
3584 		break;
3585 	default:
3586 		break;
3587 	}
3588 	return NOTIFY_OK;
3589 }
3590 
3591 static struct notifier_block __cpuinitdata slab_notifier = {
3592 	.notifier_call = slab_cpuup_callback
3593 };
3594 
3595 #endif
3596 
3597 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3598 {
3599 	struct kmem_cache *s;
3600 	void *ret;
3601 
3602 	if (unlikely(size > SLUB_MAX_SIZE))
3603 		return kmalloc_large(size, gfpflags);
3604 
3605 	s = get_slab(size, gfpflags);
3606 
3607 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3608 		return s;
3609 
3610 	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3611 
3612 	/* Honor the call site pointer we received. */
3613 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3614 
3615 	return ret;
3616 }
3617 
3618 #ifdef CONFIG_NUMA
3619 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3620 					int node, unsigned long caller)
3621 {
3622 	struct kmem_cache *s;
3623 	void *ret;
3624 
3625 	if (unlikely(size > SLUB_MAX_SIZE)) {
3626 		ret = kmalloc_large_node(size, gfpflags, node);
3627 
3628 		trace_kmalloc_node(caller, ret,
3629 				   size, PAGE_SIZE << get_order(size),
3630 				   gfpflags, node);
3631 
3632 		return ret;
3633 	}
3634 
3635 	s = get_slab(size, gfpflags);
3636 
3637 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3638 		return s;
3639 
3640 	ret = slab_alloc(s, gfpflags, node, caller);
3641 
3642 	/* Honor the call site pointer we received. */
3643 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3644 
3645 	return ret;
3646 }
3647 #endif
3648 
3649 #ifdef CONFIG_SYSFS
3650 static int count_inuse(struct page *page)
3651 {
3652 	return page->inuse;
3653 }
3654 
3655 static int count_total(struct page *page)
3656 {
3657 	return page->objects;
3658 }
3659 #endif
3660 
3661 #ifdef CONFIG_SLUB_DEBUG
3662 static int validate_slab(struct kmem_cache *s, struct page *page,
3663 						unsigned long *map)
3664 {
3665 	void *p;
3666 	void *addr = page_address(page);
3667 
3668 	if (!check_slab(s, page) ||
3669 			!on_freelist(s, page, NULL))
3670 		return 0;
3671 
3672 	/* Now we know that a valid freelist exists */
3673 	bitmap_zero(map, page->objects);
3674 
3675 	get_map(s, page, map);
3676 	for_each_object(p, s, addr, page->objects) {
3677 		if (test_bit(slab_index(p, s, addr), map))
3678 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3679 				return 0;
3680 	}
3681 
3682 	for_each_object(p, s, addr, page->objects)
3683 		if (!test_bit(slab_index(p, s, addr), map))
3684 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3685 				return 0;
3686 	return 1;
3687 }
3688 
3689 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3690 						unsigned long *map)
3691 {
3692 	if (slab_trylock(page)) {
3693 		validate_slab(s, page, map);
3694 		slab_unlock(page);
3695 	} else
3696 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3697 			s->name, page);
3698 }
3699 
3700 static int validate_slab_node(struct kmem_cache *s,
3701 		struct kmem_cache_node *n, unsigned long *map)
3702 {
3703 	unsigned long count = 0;
3704 	struct page *page;
3705 	unsigned long flags;
3706 
3707 	spin_lock_irqsave(&n->list_lock, flags);
3708 
3709 	list_for_each_entry(page, &n->partial, lru) {
3710 		validate_slab_slab(s, page, map);
3711 		count++;
3712 	}
3713 	if (count != n->nr_partial)
3714 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3715 			"counter=%ld\n", s->name, count, n->nr_partial);
3716 
3717 	if (!(s->flags & SLAB_STORE_USER))
3718 		goto out;
3719 
3720 	list_for_each_entry(page, &n->full, lru) {
3721 		validate_slab_slab(s, page, map);
3722 		count++;
3723 	}
3724 	if (count != atomic_long_read(&n->nr_slabs))
3725 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3726 			"counter=%ld\n", s->name, count,
3727 			atomic_long_read(&n->nr_slabs));
3728 
3729 out:
3730 	spin_unlock_irqrestore(&n->list_lock, flags);
3731 	return count;
3732 }
3733 
3734 static long validate_slab_cache(struct kmem_cache *s)
3735 {
3736 	int node;
3737 	unsigned long count = 0;
3738 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3739 				sizeof(unsigned long), GFP_KERNEL);
3740 
3741 	if (!map)
3742 		return -ENOMEM;
3743 
3744 	flush_all(s);
3745 	for_each_node_state(node, N_NORMAL_MEMORY) {
3746 		struct kmem_cache_node *n = get_node(s, node);
3747 
3748 		count += validate_slab_node(s, n, map);
3749 	}
3750 	kfree(map);
3751 	return count;
3752 }
3753 /*
3754  * Generate lists of code addresses where slabcache objects are allocated
3755  * and freed.
3756  */
3757 
3758 struct location {
3759 	unsigned long count;
3760 	unsigned long addr;
3761 	long long sum_time;
3762 	long min_time;
3763 	long max_time;
3764 	long min_pid;
3765 	long max_pid;
3766 	DECLARE_BITMAP(cpus, NR_CPUS);
3767 	nodemask_t nodes;
3768 };
3769 
3770 struct loc_track {
3771 	unsigned long max;
3772 	unsigned long count;
3773 	struct location *loc;
3774 };
3775 
3776 static void free_loc_track(struct loc_track *t)
3777 {
3778 	if (t->max)
3779 		free_pages((unsigned long)t->loc,
3780 			get_order(sizeof(struct location) * t->max));
3781 }
3782 
3783 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3784 {
3785 	struct location *l;
3786 	int order;
3787 
3788 	order = get_order(sizeof(struct location) * max);
3789 
3790 	l = (void *)__get_free_pages(flags, order);
3791 	if (!l)
3792 		return 0;
3793 
3794 	if (t->count) {
3795 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3796 		free_loc_track(t);
3797 	}
3798 	t->max = max;
3799 	t->loc = l;
3800 	return 1;
3801 }
3802 
3803 static int add_location(struct loc_track *t, struct kmem_cache *s,
3804 				const struct track *track)
3805 {
3806 	long start, end, pos;
3807 	struct location *l;
3808 	unsigned long caddr;
3809 	unsigned long age = jiffies - track->when;
3810 
3811 	start = -1;
3812 	end = t->count;
3813 
3814 	for ( ; ; ) {
3815 		pos = start + (end - start + 1) / 2;
3816 
3817 		/*
3818 		 * There is nothing at "end". If we end up there
3819 		 * we need to add something to before end.
3820 		 */
3821 		if (pos == end)
3822 			break;
3823 
3824 		caddr = t->loc[pos].addr;
3825 		if (track->addr == caddr) {
3826 
3827 			l = &t->loc[pos];
3828 			l->count++;
3829 			if (track->when) {
3830 				l->sum_time += age;
3831 				if (age < l->min_time)
3832 					l->min_time = age;
3833 				if (age > l->max_time)
3834 					l->max_time = age;
3835 
3836 				if (track->pid < l->min_pid)
3837 					l->min_pid = track->pid;
3838 				if (track->pid > l->max_pid)
3839 					l->max_pid = track->pid;
3840 
3841 				cpumask_set_cpu(track->cpu,
3842 						to_cpumask(l->cpus));
3843 			}
3844 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3845 			return 1;
3846 		}
3847 
3848 		if (track->addr < caddr)
3849 			end = pos;
3850 		else
3851 			start = pos;
3852 	}
3853 
3854 	/*
3855 	 * Not found. Insert new tracking element.
3856 	 */
3857 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3858 		return 0;
3859 
3860 	l = t->loc + pos;
3861 	if (pos < t->count)
3862 		memmove(l + 1, l,
3863 			(t->count - pos) * sizeof(struct location));
3864 	t->count++;
3865 	l->count = 1;
3866 	l->addr = track->addr;
3867 	l->sum_time = age;
3868 	l->min_time = age;
3869 	l->max_time = age;
3870 	l->min_pid = track->pid;
3871 	l->max_pid = track->pid;
3872 	cpumask_clear(to_cpumask(l->cpus));
3873 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3874 	nodes_clear(l->nodes);
3875 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3876 	return 1;
3877 }
3878 
3879 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3880 		struct page *page, enum track_item alloc,
3881 		unsigned long *map)
3882 {
3883 	void *addr = page_address(page);
3884 	void *p;
3885 
3886 	bitmap_zero(map, page->objects);
3887 	get_map(s, page, map);
3888 
3889 	for_each_object(p, s, addr, page->objects)
3890 		if (!test_bit(slab_index(p, s, addr), map))
3891 			add_location(t, s, get_track(s, p, alloc));
3892 }
3893 
3894 static int list_locations(struct kmem_cache *s, char *buf,
3895 					enum track_item alloc)
3896 {
3897 	int len = 0;
3898 	unsigned long i;
3899 	struct loc_track t = { 0, 0, NULL };
3900 	int node;
3901 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3902 				     sizeof(unsigned long), GFP_KERNEL);
3903 
3904 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3905 				     GFP_TEMPORARY)) {
3906 		kfree(map);
3907 		return sprintf(buf, "Out of memory\n");
3908 	}
3909 	/* Push back cpu slabs */
3910 	flush_all(s);
3911 
3912 	for_each_node_state(node, N_NORMAL_MEMORY) {
3913 		struct kmem_cache_node *n = get_node(s, node);
3914 		unsigned long flags;
3915 		struct page *page;
3916 
3917 		if (!atomic_long_read(&n->nr_slabs))
3918 			continue;
3919 
3920 		spin_lock_irqsave(&n->list_lock, flags);
3921 		list_for_each_entry(page, &n->partial, lru)
3922 			process_slab(&t, s, page, alloc, map);
3923 		list_for_each_entry(page, &n->full, lru)
3924 			process_slab(&t, s, page, alloc, map);
3925 		spin_unlock_irqrestore(&n->list_lock, flags);
3926 	}
3927 
3928 	for (i = 0; i < t.count; i++) {
3929 		struct location *l = &t.loc[i];
3930 
3931 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3932 			break;
3933 		len += sprintf(buf + len, "%7ld ", l->count);
3934 
3935 		if (l->addr)
3936 			len += sprintf(buf + len, "%pS", (void *)l->addr);
3937 		else
3938 			len += sprintf(buf + len, "<not-available>");
3939 
3940 		if (l->sum_time != l->min_time) {
3941 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3942 				l->min_time,
3943 				(long)div_u64(l->sum_time, l->count),
3944 				l->max_time);
3945 		} else
3946 			len += sprintf(buf + len, " age=%ld",
3947 				l->min_time);
3948 
3949 		if (l->min_pid != l->max_pid)
3950 			len += sprintf(buf + len, " pid=%ld-%ld",
3951 				l->min_pid, l->max_pid);
3952 		else
3953 			len += sprintf(buf + len, " pid=%ld",
3954 				l->min_pid);
3955 
3956 		if (num_online_cpus() > 1 &&
3957 				!cpumask_empty(to_cpumask(l->cpus)) &&
3958 				len < PAGE_SIZE - 60) {
3959 			len += sprintf(buf + len, " cpus=");
3960 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3961 						 to_cpumask(l->cpus));
3962 		}
3963 
3964 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3965 				len < PAGE_SIZE - 60) {
3966 			len += sprintf(buf + len, " nodes=");
3967 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3968 					l->nodes);
3969 		}
3970 
3971 		len += sprintf(buf + len, "\n");
3972 	}
3973 
3974 	free_loc_track(&t);
3975 	kfree(map);
3976 	if (!t.count)
3977 		len += sprintf(buf, "No data\n");
3978 	return len;
3979 }
3980 #endif
3981 
3982 #ifdef SLUB_RESILIENCY_TEST
3983 static void resiliency_test(void)
3984 {
3985 	u8 *p;
3986 
3987 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3988 
3989 	printk(KERN_ERR "SLUB resiliency testing\n");
3990 	printk(KERN_ERR "-----------------------\n");
3991 	printk(KERN_ERR "A. Corruption after allocation\n");
3992 
3993 	p = kzalloc(16, GFP_KERNEL);
3994 	p[16] = 0x12;
3995 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3996 			" 0x12->0x%p\n\n", p + 16);
3997 
3998 	validate_slab_cache(kmalloc_caches[4]);
3999 
4000 	/* Hmmm... The next two are dangerous */
4001 	p = kzalloc(32, GFP_KERNEL);
4002 	p[32 + sizeof(void *)] = 0x34;
4003 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4004 			" 0x34 -> -0x%p\n", p);
4005 	printk(KERN_ERR
4006 		"If allocated object is overwritten then not detectable\n\n");
4007 
4008 	validate_slab_cache(kmalloc_caches[5]);
4009 	p = kzalloc(64, GFP_KERNEL);
4010 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4011 	*p = 0x56;
4012 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4013 									p);
4014 	printk(KERN_ERR
4015 		"If allocated object is overwritten then not detectable\n\n");
4016 	validate_slab_cache(kmalloc_caches[6]);
4017 
4018 	printk(KERN_ERR "\nB. Corruption after free\n");
4019 	p = kzalloc(128, GFP_KERNEL);
4020 	kfree(p);
4021 	*p = 0x78;
4022 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4023 	validate_slab_cache(kmalloc_caches[7]);
4024 
4025 	p = kzalloc(256, GFP_KERNEL);
4026 	kfree(p);
4027 	p[50] = 0x9a;
4028 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4029 			p);
4030 	validate_slab_cache(kmalloc_caches[8]);
4031 
4032 	p = kzalloc(512, GFP_KERNEL);
4033 	kfree(p);
4034 	p[512] = 0xab;
4035 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4036 	validate_slab_cache(kmalloc_caches[9]);
4037 }
4038 #else
4039 #ifdef CONFIG_SYSFS
4040 static void resiliency_test(void) {};
4041 #endif
4042 #endif
4043 
4044 #ifdef CONFIG_SYSFS
4045 enum slab_stat_type {
4046 	SL_ALL,			/* All slabs */
4047 	SL_PARTIAL,		/* Only partially allocated slabs */
4048 	SL_CPU,			/* Only slabs used for cpu caches */
4049 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4050 	SL_TOTAL		/* Determine object capacity not slabs */
4051 };
4052 
4053 #define SO_ALL		(1 << SL_ALL)
4054 #define SO_PARTIAL	(1 << SL_PARTIAL)
4055 #define SO_CPU		(1 << SL_CPU)
4056 #define SO_OBJECTS	(1 << SL_OBJECTS)
4057 #define SO_TOTAL	(1 << SL_TOTAL)
4058 
4059 static ssize_t show_slab_objects(struct kmem_cache *s,
4060 			    char *buf, unsigned long flags)
4061 {
4062 	unsigned long total = 0;
4063 	int node;
4064 	int x;
4065 	unsigned long *nodes;
4066 	unsigned long *per_cpu;
4067 
4068 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4069 	if (!nodes)
4070 		return -ENOMEM;
4071 	per_cpu = nodes + nr_node_ids;
4072 
4073 	if (flags & SO_CPU) {
4074 		int cpu;
4075 
4076 		for_each_possible_cpu(cpu) {
4077 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4078 
4079 			if (!c || c->node < 0)
4080 				continue;
4081 
4082 			if (c->page) {
4083 					if (flags & SO_TOTAL)
4084 						x = c->page->objects;
4085 				else if (flags & SO_OBJECTS)
4086 					x = c->page->inuse;
4087 				else
4088 					x = 1;
4089 
4090 				total += x;
4091 				nodes[c->node] += x;
4092 			}
4093 			per_cpu[c->node]++;
4094 		}
4095 	}
4096 
4097 	lock_memory_hotplug();
4098 #ifdef CONFIG_SLUB_DEBUG
4099 	if (flags & SO_ALL) {
4100 		for_each_node_state(node, N_NORMAL_MEMORY) {
4101 			struct kmem_cache_node *n = get_node(s, node);
4102 
4103 		if (flags & SO_TOTAL)
4104 			x = atomic_long_read(&n->total_objects);
4105 		else if (flags & SO_OBJECTS)
4106 			x = atomic_long_read(&n->total_objects) -
4107 				count_partial(n, count_free);
4108 
4109 			else
4110 				x = atomic_long_read(&n->nr_slabs);
4111 			total += x;
4112 			nodes[node] += x;
4113 		}
4114 
4115 	} else
4116 #endif
4117 	if (flags & SO_PARTIAL) {
4118 		for_each_node_state(node, N_NORMAL_MEMORY) {
4119 			struct kmem_cache_node *n = get_node(s, node);
4120 
4121 			if (flags & SO_TOTAL)
4122 				x = count_partial(n, count_total);
4123 			else if (flags & SO_OBJECTS)
4124 				x = count_partial(n, count_inuse);
4125 			else
4126 				x = n->nr_partial;
4127 			total += x;
4128 			nodes[node] += x;
4129 		}
4130 	}
4131 	x = sprintf(buf, "%lu", total);
4132 #ifdef CONFIG_NUMA
4133 	for_each_node_state(node, N_NORMAL_MEMORY)
4134 		if (nodes[node])
4135 			x += sprintf(buf + x, " N%d=%lu",
4136 					node, nodes[node]);
4137 #endif
4138 	unlock_memory_hotplug();
4139 	kfree(nodes);
4140 	return x + sprintf(buf + x, "\n");
4141 }
4142 
4143 #ifdef CONFIG_SLUB_DEBUG
4144 static int any_slab_objects(struct kmem_cache *s)
4145 {
4146 	int node;
4147 
4148 	for_each_online_node(node) {
4149 		struct kmem_cache_node *n = get_node(s, node);
4150 
4151 		if (!n)
4152 			continue;
4153 
4154 		if (atomic_long_read(&n->total_objects))
4155 			return 1;
4156 	}
4157 	return 0;
4158 }
4159 #endif
4160 
4161 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4162 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
4163 
4164 struct slab_attribute {
4165 	struct attribute attr;
4166 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4167 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4168 };
4169 
4170 #define SLAB_ATTR_RO(_name) \
4171 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4172 
4173 #define SLAB_ATTR(_name) \
4174 	static struct slab_attribute _name##_attr =  \
4175 	__ATTR(_name, 0644, _name##_show, _name##_store)
4176 
4177 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4178 {
4179 	return sprintf(buf, "%d\n", s->size);
4180 }
4181 SLAB_ATTR_RO(slab_size);
4182 
4183 static ssize_t align_show(struct kmem_cache *s, char *buf)
4184 {
4185 	return sprintf(buf, "%d\n", s->align);
4186 }
4187 SLAB_ATTR_RO(align);
4188 
4189 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4190 {
4191 	return sprintf(buf, "%d\n", s->objsize);
4192 }
4193 SLAB_ATTR_RO(object_size);
4194 
4195 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4196 {
4197 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4198 }
4199 SLAB_ATTR_RO(objs_per_slab);
4200 
4201 static ssize_t order_store(struct kmem_cache *s,
4202 				const char *buf, size_t length)
4203 {
4204 	unsigned long order;
4205 	int err;
4206 
4207 	err = strict_strtoul(buf, 10, &order);
4208 	if (err)
4209 		return err;
4210 
4211 	if (order > slub_max_order || order < slub_min_order)
4212 		return -EINVAL;
4213 
4214 	calculate_sizes(s, order);
4215 	return length;
4216 }
4217 
4218 static ssize_t order_show(struct kmem_cache *s, char *buf)
4219 {
4220 	return sprintf(buf, "%d\n", oo_order(s->oo));
4221 }
4222 SLAB_ATTR(order);
4223 
4224 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4225 {
4226 	return sprintf(buf, "%lu\n", s->min_partial);
4227 }
4228 
4229 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4230 				 size_t length)
4231 {
4232 	unsigned long min;
4233 	int err;
4234 
4235 	err = strict_strtoul(buf, 10, &min);
4236 	if (err)
4237 		return err;
4238 
4239 	set_min_partial(s, min);
4240 	return length;
4241 }
4242 SLAB_ATTR(min_partial);
4243 
4244 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4245 {
4246 	if (!s->ctor)
4247 		return 0;
4248 	return sprintf(buf, "%pS\n", s->ctor);
4249 }
4250 SLAB_ATTR_RO(ctor);
4251 
4252 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4253 {
4254 	return sprintf(buf, "%d\n", s->refcount - 1);
4255 }
4256 SLAB_ATTR_RO(aliases);
4257 
4258 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4259 {
4260 	return show_slab_objects(s, buf, SO_PARTIAL);
4261 }
4262 SLAB_ATTR_RO(partial);
4263 
4264 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4265 {
4266 	return show_slab_objects(s, buf, SO_CPU);
4267 }
4268 SLAB_ATTR_RO(cpu_slabs);
4269 
4270 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4271 {
4272 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4273 }
4274 SLAB_ATTR_RO(objects);
4275 
4276 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4277 {
4278 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4279 }
4280 SLAB_ATTR_RO(objects_partial);
4281 
4282 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4283 {
4284 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4285 }
4286 
4287 static ssize_t reclaim_account_store(struct kmem_cache *s,
4288 				const char *buf, size_t length)
4289 {
4290 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4291 	if (buf[0] == '1')
4292 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4293 	return length;
4294 }
4295 SLAB_ATTR(reclaim_account);
4296 
4297 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4298 {
4299 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4300 }
4301 SLAB_ATTR_RO(hwcache_align);
4302 
4303 #ifdef CONFIG_ZONE_DMA
4304 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4305 {
4306 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4307 }
4308 SLAB_ATTR_RO(cache_dma);
4309 #endif
4310 
4311 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4312 {
4313 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4314 }
4315 SLAB_ATTR_RO(destroy_by_rcu);
4316 
4317 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4318 {
4319 	return sprintf(buf, "%d\n", s->reserved);
4320 }
4321 SLAB_ATTR_RO(reserved);
4322 
4323 #ifdef CONFIG_SLUB_DEBUG
4324 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4325 {
4326 	return show_slab_objects(s, buf, SO_ALL);
4327 }
4328 SLAB_ATTR_RO(slabs);
4329 
4330 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4331 {
4332 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4333 }
4334 SLAB_ATTR_RO(total_objects);
4335 
4336 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4337 {
4338 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4339 }
4340 
4341 static ssize_t sanity_checks_store(struct kmem_cache *s,
4342 				const char *buf, size_t length)
4343 {
4344 	s->flags &= ~SLAB_DEBUG_FREE;
4345 	if (buf[0] == '1')
4346 		s->flags |= SLAB_DEBUG_FREE;
4347 	return length;
4348 }
4349 SLAB_ATTR(sanity_checks);
4350 
4351 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4352 {
4353 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4354 }
4355 
4356 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4357 							size_t length)
4358 {
4359 	s->flags &= ~SLAB_TRACE;
4360 	if (buf[0] == '1')
4361 		s->flags |= SLAB_TRACE;
4362 	return length;
4363 }
4364 SLAB_ATTR(trace);
4365 
4366 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4367 {
4368 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4369 }
4370 
4371 static ssize_t red_zone_store(struct kmem_cache *s,
4372 				const char *buf, size_t length)
4373 {
4374 	if (any_slab_objects(s))
4375 		return -EBUSY;
4376 
4377 	s->flags &= ~SLAB_RED_ZONE;
4378 	if (buf[0] == '1')
4379 		s->flags |= SLAB_RED_ZONE;
4380 	calculate_sizes(s, -1);
4381 	return length;
4382 }
4383 SLAB_ATTR(red_zone);
4384 
4385 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4386 {
4387 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4388 }
4389 
4390 static ssize_t poison_store(struct kmem_cache *s,
4391 				const char *buf, size_t length)
4392 {
4393 	if (any_slab_objects(s))
4394 		return -EBUSY;
4395 
4396 	s->flags &= ~SLAB_POISON;
4397 	if (buf[0] == '1')
4398 		s->flags |= SLAB_POISON;
4399 	calculate_sizes(s, -1);
4400 	return length;
4401 }
4402 SLAB_ATTR(poison);
4403 
4404 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4405 {
4406 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4407 }
4408 
4409 static ssize_t store_user_store(struct kmem_cache *s,
4410 				const char *buf, size_t length)
4411 {
4412 	if (any_slab_objects(s))
4413 		return -EBUSY;
4414 
4415 	s->flags &= ~SLAB_STORE_USER;
4416 	if (buf[0] == '1')
4417 		s->flags |= SLAB_STORE_USER;
4418 	calculate_sizes(s, -1);
4419 	return length;
4420 }
4421 SLAB_ATTR(store_user);
4422 
4423 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4424 {
4425 	return 0;
4426 }
4427 
4428 static ssize_t validate_store(struct kmem_cache *s,
4429 			const char *buf, size_t length)
4430 {
4431 	int ret = -EINVAL;
4432 
4433 	if (buf[0] == '1') {
4434 		ret = validate_slab_cache(s);
4435 		if (ret >= 0)
4436 			ret = length;
4437 	}
4438 	return ret;
4439 }
4440 SLAB_ATTR(validate);
4441 
4442 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4443 {
4444 	if (!(s->flags & SLAB_STORE_USER))
4445 		return -ENOSYS;
4446 	return list_locations(s, buf, TRACK_ALLOC);
4447 }
4448 SLAB_ATTR_RO(alloc_calls);
4449 
4450 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4451 {
4452 	if (!(s->flags & SLAB_STORE_USER))
4453 		return -ENOSYS;
4454 	return list_locations(s, buf, TRACK_FREE);
4455 }
4456 SLAB_ATTR_RO(free_calls);
4457 #endif /* CONFIG_SLUB_DEBUG */
4458 
4459 #ifdef CONFIG_FAILSLAB
4460 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4461 {
4462 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4463 }
4464 
4465 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4466 							size_t length)
4467 {
4468 	s->flags &= ~SLAB_FAILSLAB;
4469 	if (buf[0] == '1')
4470 		s->flags |= SLAB_FAILSLAB;
4471 	return length;
4472 }
4473 SLAB_ATTR(failslab);
4474 #endif
4475 
4476 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4477 {
4478 	return 0;
4479 }
4480 
4481 static ssize_t shrink_store(struct kmem_cache *s,
4482 			const char *buf, size_t length)
4483 {
4484 	if (buf[0] == '1') {
4485 		int rc = kmem_cache_shrink(s);
4486 
4487 		if (rc)
4488 			return rc;
4489 	} else
4490 		return -EINVAL;
4491 	return length;
4492 }
4493 SLAB_ATTR(shrink);
4494 
4495 #ifdef CONFIG_NUMA
4496 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4497 {
4498 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4499 }
4500 
4501 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4502 				const char *buf, size_t length)
4503 {
4504 	unsigned long ratio;
4505 	int err;
4506 
4507 	err = strict_strtoul(buf, 10, &ratio);
4508 	if (err)
4509 		return err;
4510 
4511 	if (ratio <= 100)
4512 		s->remote_node_defrag_ratio = ratio * 10;
4513 
4514 	return length;
4515 }
4516 SLAB_ATTR(remote_node_defrag_ratio);
4517 #endif
4518 
4519 #ifdef CONFIG_SLUB_STATS
4520 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4521 {
4522 	unsigned long sum  = 0;
4523 	int cpu;
4524 	int len;
4525 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4526 
4527 	if (!data)
4528 		return -ENOMEM;
4529 
4530 	for_each_online_cpu(cpu) {
4531 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4532 
4533 		data[cpu] = x;
4534 		sum += x;
4535 	}
4536 
4537 	len = sprintf(buf, "%lu", sum);
4538 
4539 #ifdef CONFIG_SMP
4540 	for_each_online_cpu(cpu) {
4541 		if (data[cpu] && len < PAGE_SIZE - 20)
4542 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4543 	}
4544 #endif
4545 	kfree(data);
4546 	return len + sprintf(buf + len, "\n");
4547 }
4548 
4549 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4550 {
4551 	int cpu;
4552 
4553 	for_each_online_cpu(cpu)
4554 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4555 }
4556 
4557 #define STAT_ATTR(si, text) 					\
4558 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4559 {								\
4560 	return show_stat(s, buf, si);				\
4561 }								\
4562 static ssize_t text##_store(struct kmem_cache *s,		\
4563 				const char *buf, size_t length)	\
4564 {								\
4565 	if (buf[0] != '0')					\
4566 		return -EINVAL;					\
4567 	clear_stat(s, si);					\
4568 	return length;						\
4569 }								\
4570 SLAB_ATTR(text);						\
4571 
4572 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4573 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4574 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4575 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4576 STAT_ATTR(FREE_FROZEN, free_frozen);
4577 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4578 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4579 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4580 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4581 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4582 STAT_ATTR(FREE_SLAB, free_slab);
4583 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4584 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4585 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4586 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4587 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4588 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4589 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4590 #endif
4591 
4592 static struct attribute *slab_attrs[] = {
4593 	&slab_size_attr.attr,
4594 	&object_size_attr.attr,
4595 	&objs_per_slab_attr.attr,
4596 	&order_attr.attr,
4597 	&min_partial_attr.attr,
4598 	&objects_attr.attr,
4599 	&objects_partial_attr.attr,
4600 	&partial_attr.attr,
4601 	&cpu_slabs_attr.attr,
4602 	&ctor_attr.attr,
4603 	&aliases_attr.attr,
4604 	&align_attr.attr,
4605 	&hwcache_align_attr.attr,
4606 	&reclaim_account_attr.attr,
4607 	&destroy_by_rcu_attr.attr,
4608 	&shrink_attr.attr,
4609 	&reserved_attr.attr,
4610 #ifdef CONFIG_SLUB_DEBUG
4611 	&total_objects_attr.attr,
4612 	&slabs_attr.attr,
4613 	&sanity_checks_attr.attr,
4614 	&trace_attr.attr,
4615 	&red_zone_attr.attr,
4616 	&poison_attr.attr,
4617 	&store_user_attr.attr,
4618 	&validate_attr.attr,
4619 	&alloc_calls_attr.attr,
4620 	&free_calls_attr.attr,
4621 #endif
4622 #ifdef CONFIG_ZONE_DMA
4623 	&cache_dma_attr.attr,
4624 #endif
4625 #ifdef CONFIG_NUMA
4626 	&remote_node_defrag_ratio_attr.attr,
4627 #endif
4628 #ifdef CONFIG_SLUB_STATS
4629 	&alloc_fastpath_attr.attr,
4630 	&alloc_slowpath_attr.attr,
4631 	&free_fastpath_attr.attr,
4632 	&free_slowpath_attr.attr,
4633 	&free_frozen_attr.attr,
4634 	&free_add_partial_attr.attr,
4635 	&free_remove_partial_attr.attr,
4636 	&alloc_from_partial_attr.attr,
4637 	&alloc_slab_attr.attr,
4638 	&alloc_refill_attr.attr,
4639 	&free_slab_attr.attr,
4640 	&cpuslab_flush_attr.attr,
4641 	&deactivate_full_attr.attr,
4642 	&deactivate_empty_attr.attr,
4643 	&deactivate_to_head_attr.attr,
4644 	&deactivate_to_tail_attr.attr,
4645 	&deactivate_remote_frees_attr.attr,
4646 	&order_fallback_attr.attr,
4647 #endif
4648 #ifdef CONFIG_FAILSLAB
4649 	&failslab_attr.attr,
4650 #endif
4651 
4652 	NULL
4653 };
4654 
4655 static struct attribute_group slab_attr_group = {
4656 	.attrs = slab_attrs,
4657 };
4658 
4659 static ssize_t slab_attr_show(struct kobject *kobj,
4660 				struct attribute *attr,
4661 				char *buf)
4662 {
4663 	struct slab_attribute *attribute;
4664 	struct kmem_cache *s;
4665 	int err;
4666 
4667 	attribute = to_slab_attr(attr);
4668 	s = to_slab(kobj);
4669 
4670 	if (!attribute->show)
4671 		return -EIO;
4672 
4673 	err = attribute->show(s, buf);
4674 
4675 	return err;
4676 }
4677 
4678 static ssize_t slab_attr_store(struct kobject *kobj,
4679 				struct attribute *attr,
4680 				const char *buf, size_t len)
4681 {
4682 	struct slab_attribute *attribute;
4683 	struct kmem_cache *s;
4684 	int err;
4685 
4686 	attribute = to_slab_attr(attr);
4687 	s = to_slab(kobj);
4688 
4689 	if (!attribute->store)
4690 		return -EIO;
4691 
4692 	err = attribute->store(s, buf, len);
4693 
4694 	return err;
4695 }
4696 
4697 static void kmem_cache_release(struct kobject *kobj)
4698 {
4699 	struct kmem_cache *s = to_slab(kobj);
4700 
4701 	kfree(s->name);
4702 	kfree(s);
4703 }
4704 
4705 static const struct sysfs_ops slab_sysfs_ops = {
4706 	.show = slab_attr_show,
4707 	.store = slab_attr_store,
4708 };
4709 
4710 static struct kobj_type slab_ktype = {
4711 	.sysfs_ops = &slab_sysfs_ops,
4712 	.release = kmem_cache_release
4713 };
4714 
4715 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4716 {
4717 	struct kobj_type *ktype = get_ktype(kobj);
4718 
4719 	if (ktype == &slab_ktype)
4720 		return 1;
4721 	return 0;
4722 }
4723 
4724 static const struct kset_uevent_ops slab_uevent_ops = {
4725 	.filter = uevent_filter,
4726 };
4727 
4728 static struct kset *slab_kset;
4729 
4730 #define ID_STR_LENGTH 64
4731 
4732 /* Create a unique string id for a slab cache:
4733  *
4734  * Format	:[flags-]size
4735  */
4736 static char *create_unique_id(struct kmem_cache *s)
4737 {
4738 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4739 	char *p = name;
4740 
4741 	BUG_ON(!name);
4742 
4743 	*p++ = ':';
4744 	/*
4745 	 * First flags affecting slabcache operations. We will only
4746 	 * get here for aliasable slabs so we do not need to support
4747 	 * too many flags. The flags here must cover all flags that
4748 	 * are matched during merging to guarantee that the id is
4749 	 * unique.
4750 	 */
4751 	if (s->flags & SLAB_CACHE_DMA)
4752 		*p++ = 'd';
4753 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4754 		*p++ = 'a';
4755 	if (s->flags & SLAB_DEBUG_FREE)
4756 		*p++ = 'F';
4757 	if (!(s->flags & SLAB_NOTRACK))
4758 		*p++ = 't';
4759 	if (p != name + 1)
4760 		*p++ = '-';
4761 	p += sprintf(p, "%07d", s->size);
4762 	BUG_ON(p > name + ID_STR_LENGTH - 1);
4763 	return name;
4764 }
4765 
4766 static int sysfs_slab_add(struct kmem_cache *s)
4767 {
4768 	int err;
4769 	const char *name;
4770 	int unmergeable;
4771 
4772 	if (slab_state < SYSFS)
4773 		/* Defer until later */
4774 		return 0;
4775 
4776 	unmergeable = slab_unmergeable(s);
4777 	if (unmergeable) {
4778 		/*
4779 		 * Slabcache can never be merged so we can use the name proper.
4780 		 * This is typically the case for debug situations. In that
4781 		 * case we can catch duplicate names easily.
4782 		 */
4783 		sysfs_remove_link(&slab_kset->kobj, s->name);
4784 		name = s->name;
4785 	} else {
4786 		/*
4787 		 * Create a unique name for the slab as a target
4788 		 * for the symlinks.
4789 		 */
4790 		name = create_unique_id(s);
4791 	}
4792 
4793 	s->kobj.kset = slab_kset;
4794 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4795 	if (err) {
4796 		kobject_put(&s->kobj);
4797 		return err;
4798 	}
4799 
4800 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4801 	if (err) {
4802 		kobject_del(&s->kobj);
4803 		kobject_put(&s->kobj);
4804 		return err;
4805 	}
4806 	kobject_uevent(&s->kobj, KOBJ_ADD);
4807 	if (!unmergeable) {
4808 		/* Setup first alias */
4809 		sysfs_slab_alias(s, s->name);
4810 		kfree(name);
4811 	}
4812 	return 0;
4813 }
4814 
4815 static void sysfs_slab_remove(struct kmem_cache *s)
4816 {
4817 	if (slab_state < SYSFS)
4818 		/*
4819 		 * Sysfs has not been setup yet so no need to remove the
4820 		 * cache from sysfs.
4821 		 */
4822 		return;
4823 
4824 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4825 	kobject_del(&s->kobj);
4826 	kobject_put(&s->kobj);
4827 }
4828 
4829 /*
4830  * Need to buffer aliases during bootup until sysfs becomes
4831  * available lest we lose that information.
4832  */
4833 struct saved_alias {
4834 	struct kmem_cache *s;
4835 	const char *name;
4836 	struct saved_alias *next;
4837 };
4838 
4839 static struct saved_alias *alias_list;
4840 
4841 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4842 {
4843 	struct saved_alias *al;
4844 
4845 	if (slab_state == SYSFS) {
4846 		/*
4847 		 * If we have a leftover link then remove it.
4848 		 */
4849 		sysfs_remove_link(&slab_kset->kobj, name);
4850 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4851 	}
4852 
4853 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4854 	if (!al)
4855 		return -ENOMEM;
4856 
4857 	al->s = s;
4858 	al->name = name;
4859 	al->next = alias_list;
4860 	alias_list = al;
4861 	return 0;
4862 }
4863 
4864 static int __init slab_sysfs_init(void)
4865 {
4866 	struct kmem_cache *s;
4867 	int err;
4868 
4869 	down_write(&slub_lock);
4870 
4871 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4872 	if (!slab_kset) {
4873 		up_write(&slub_lock);
4874 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4875 		return -ENOSYS;
4876 	}
4877 
4878 	slab_state = SYSFS;
4879 
4880 	list_for_each_entry(s, &slab_caches, list) {
4881 		err = sysfs_slab_add(s);
4882 		if (err)
4883 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4884 						" to sysfs\n", s->name);
4885 	}
4886 
4887 	while (alias_list) {
4888 		struct saved_alias *al = alias_list;
4889 
4890 		alias_list = alias_list->next;
4891 		err = sysfs_slab_alias(al->s, al->name);
4892 		if (err)
4893 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4894 					" %s to sysfs\n", s->name);
4895 		kfree(al);
4896 	}
4897 
4898 	up_write(&slub_lock);
4899 	resiliency_test();
4900 	return 0;
4901 }
4902 
4903 __initcall(slab_sysfs_init);
4904 #endif /* CONFIG_SYSFS */
4905 
4906 /*
4907  * The /proc/slabinfo ABI
4908  */
4909 #ifdef CONFIG_SLABINFO
4910 static void print_slabinfo_header(struct seq_file *m)
4911 {
4912 	seq_puts(m, "slabinfo - version: 2.1\n");
4913 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4914 		 "<objperslab> <pagesperslab>");
4915 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4916 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4917 	seq_putc(m, '\n');
4918 }
4919 
4920 static void *s_start(struct seq_file *m, loff_t *pos)
4921 {
4922 	loff_t n = *pos;
4923 
4924 	down_read(&slub_lock);
4925 	if (!n)
4926 		print_slabinfo_header(m);
4927 
4928 	return seq_list_start(&slab_caches, *pos);
4929 }
4930 
4931 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4932 {
4933 	return seq_list_next(p, &slab_caches, pos);
4934 }
4935 
4936 static void s_stop(struct seq_file *m, void *p)
4937 {
4938 	up_read(&slub_lock);
4939 }
4940 
4941 static int s_show(struct seq_file *m, void *p)
4942 {
4943 	unsigned long nr_partials = 0;
4944 	unsigned long nr_slabs = 0;
4945 	unsigned long nr_inuse = 0;
4946 	unsigned long nr_objs = 0;
4947 	unsigned long nr_free = 0;
4948 	struct kmem_cache *s;
4949 	int node;
4950 
4951 	s = list_entry(p, struct kmem_cache, list);
4952 
4953 	for_each_online_node(node) {
4954 		struct kmem_cache_node *n = get_node(s, node);
4955 
4956 		if (!n)
4957 			continue;
4958 
4959 		nr_partials += n->nr_partial;
4960 		nr_slabs += atomic_long_read(&n->nr_slabs);
4961 		nr_objs += atomic_long_read(&n->total_objects);
4962 		nr_free += count_partial(n, count_free);
4963 	}
4964 
4965 	nr_inuse = nr_objs - nr_free;
4966 
4967 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4968 		   nr_objs, s->size, oo_objects(s->oo),
4969 		   (1 << oo_order(s->oo)));
4970 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4971 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4972 		   0UL);
4973 	seq_putc(m, '\n');
4974 	return 0;
4975 }
4976 
4977 static const struct seq_operations slabinfo_op = {
4978 	.start = s_start,
4979 	.next = s_next,
4980 	.stop = s_stop,
4981 	.show = s_show,
4982 };
4983 
4984 static int slabinfo_open(struct inode *inode, struct file *file)
4985 {
4986 	return seq_open(file, &slabinfo_op);
4987 }
4988 
4989 static const struct file_operations proc_slabinfo_operations = {
4990 	.open		= slabinfo_open,
4991 	.read		= seq_read,
4992 	.llseek		= seq_lseek,
4993 	.release	= seq_release,
4994 };
4995 
4996 static int __init slab_proc_init(void)
4997 {
4998 	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4999 	return 0;
5000 }
5001 module_init(slab_proc_init);
5002 #endif /* CONFIG_SLABINFO */
5003