xref: /openbmc/linux/mm/slub.c (revision 80ecbd24)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 
37 #include <trace/events/kmem.h>
38 
39 #include "internal.h"
40 
41 /*
42  * Lock order:
43  *   1. slab_mutex (Global Mutex)
44  *   2. node->list_lock
45  *   3. slab_lock(page) (Only on some arches and for debugging)
46  *
47  *   slab_mutex
48  *
49  *   The role of the slab_mutex is to protect the list of all the slabs
50  *   and to synchronize major metadata changes to slab cache structures.
51  *
52  *   The slab_lock is only used for debugging and on arches that do not
53  *   have the ability to do a cmpxchg_double. It only protects the second
54  *   double word in the page struct. Meaning
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->counters	-> Counters of objects
57  *	C. page->frozen		-> frozen state
58  *
59  *   If a slab is frozen then it is exempt from list management. It is not
60  *   on any list. The processor that froze the slab is the one who can
61  *   perform list operations on the page. Other processors may put objects
62  *   onto the freelist but the processor that froze the slab is the only
63  *   one that can retrieve the objects from the page's freelist.
64  *
65  *   The list_lock protects the partial and full list on each node and
66  *   the partial slab counter. If taken then no new slabs may be added or
67  *   removed from the lists nor make the number of partial slabs be modified.
68  *   (Note that the total number of slabs is an atomic value that may be
69  *   modified without taking the list lock).
70  *
71  *   The list_lock is a centralized lock and thus we avoid taking it as
72  *   much as possible. As long as SLUB does not have to handle partial
73  *   slabs, operations can continue without any centralized lock. F.e.
74  *   allocating a long series of objects that fill up slabs does not require
75  *   the list lock.
76  *   Interrupts are disabled during allocation and deallocation in order to
77  *   make the slab allocator safe to use in the context of an irq. In addition
78  *   interrupts are disabled to ensure that the processor does not change
79  *   while handling per_cpu slabs, due to kernel preemption.
80  *
81  * SLUB assigns one slab for allocation to each processor.
82  * Allocations only occur from these slabs called cpu slabs.
83  *
84  * Slabs with free elements are kept on a partial list and during regular
85  * operations no list for full slabs is used. If an object in a full slab is
86  * freed then the slab will show up again on the partial lists.
87  * We track full slabs for debugging purposes though because otherwise we
88  * cannot scan all objects.
89  *
90  * Slabs are freed when they become empty. Teardown and setup is
91  * minimal so we rely on the page allocators per cpu caches for
92  * fast frees and allocs.
93  *
94  * Overloading of page flags that are otherwise used for LRU management.
95  *
96  * PageActive 		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * PageError		Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 	return 0;
123 #endif
124 }
125 
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 	return !kmem_cache_debug(s);
130 #else
131 	return false;
132 #endif
133 }
134 
135 /*
136  * Issues still to be resolved:
137  *
138  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139  *
140  * - Variable sizing of the per node arrays
141  */
142 
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145 
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148 
149 /*
150  * Mininum number of partial slabs. These will be left on the partial
151  * lists even if they are empty. kmem_cache_shrink may reclaim them.
152  */
153 #define MIN_PARTIAL 5
154 
155 /*
156  * Maximum number of desirable partial slabs.
157  * The existence of more partial slabs makes kmem_cache_shrink
158  * sort the partial list by the number of objects in the.
159  */
160 #define MAX_PARTIAL 10
161 
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 				SLAB_POISON | SLAB_STORE_USER)
164 
165 /*
166  * Debugging flags that require metadata to be stored in the slab.  These get
167  * disabled when slub_debug=O is used and a cache's min order increases with
168  * metadata.
169  */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171 
172 /*
173  * Set of flags that will prevent slab merging
174  */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 		SLAB_FAILSLAB)
178 
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 		SLAB_CACHE_DMA | SLAB_NOTRACK)
181 
182 #define OO_SHIFT	16
183 #define OO_MASK		((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185 
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON		0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
189 
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193 
194 /*
195  * Tracking user of a slab.
196  */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 	unsigned long addr;	/* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
202 #endif
203 	int cpu;		/* Was running on cpu */
204 	int pid;		/* Pid context */
205 	unsigned long when;	/* When did the operation occur */
206 };
207 
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209 
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void sysfs_slab_remove(struct kmem_cache *);
214 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
215 #else
216 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
217 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
218 							{ return 0; }
219 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220 
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
222 #endif
223 
224 static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 {
226 #ifdef CONFIG_SLUB_STATS
227 	__this_cpu_inc(s->cpu_slab->stat[si]);
228 #endif
229 }
230 
231 /********************************************************************
232  * 			Core slab cache functions
233  *******************************************************************/
234 
235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236 {
237 	return s->node[node];
238 }
239 
240 /* Verify that a pointer has an address that is valid within a slab page */
241 static inline int check_valid_pointer(struct kmem_cache *s,
242 				struct page *page, const void *object)
243 {
244 	void *base;
245 
246 	if (!object)
247 		return 1;
248 
249 	base = page_address(page);
250 	if (object < base || object >= base + page->objects * s->size ||
251 		(object - base) % s->size) {
252 		return 0;
253 	}
254 
255 	return 1;
256 }
257 
258 static inline void *get_freepointer(struct kmem_cache *s, void *object)
259 {
260 	return *(void **)(object + s->offset);
261 }
262 
263 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
264 {
265 	prefetch(object + s->offset);
266 }
267 
268 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269 {
270 	void *p;
271 
272 #ifdef CONFIG_DEBUG_PAGEALLOC
273 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274 #else
275 	p = get_freepointer(s, object);
276 #endif
277 	return p;
278 }
279 
280 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281 {
282 	*(void **)(object + s->offset) = fp;
283 }
284 
285 /* Loop over all objects in a slab */
286 #define for_each_object(__p, __s, __addr, __objects) \
287 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 			__p += (__s)->size)
289 
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292 {
293 	return (p - addr) / s->size;
294 }
295 
296 static inline size_t slab_ksize(const struct kmem_cache *s)
297 {
298 #ifdef CONFIG_SLUB_DEBUG
299 	/*
300 	 * Debugging requires use of the padding between object
301 	 * and whatever may come after it.
302 	 */
303 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304 		return s->object_size;
305 
306 #endif
307 	/*
308 	 * If we have the need to store the freelist pointer
309 	 * back there or track user information then we can
310 	 * only use the space before that information.
311 	 */
312 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 		return s->inuse;
314 	/*
315 	 * Else we can use all the padding etc for the allocation
316 	 */
317 	return s->size;
318 }
319 
320 static inline int order_objects(int order, unsigned long size, int reserved)
321 {
322 	return ((PAGE_SIZE << order) - reserved) / size;
323 }
324 
325 static inline struct kmem_cache_order_objects oo_make(int order,
326 		unsigned long size, int reserved)
327 {
328 	struct kmem_cache_order_objects x = {
329 		(order << OO_SHIFT) + order_objects(order, size, reserved)
330 	};
331 
332 	return x;
333 }
334 
335 static inline int oo_order(struct kmem_cache_order_objects x)
336 {
337 	return x.x >> OO_SHIFT;
338 }
339 
340 static inline int oo_objects(struct kmem_cache_order_objects x)
341 {
342 	return x.x & OO_MASK;
343 }
344 
345 /*
346  * Per slab locking using the pagelock
347  */
348 static __always_inline void slab_lock(struct page *page)
349 {
350 	bit_spin_lock(PG_locked, &page->flags);
351 }
352 
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 	__bit_spin_unlock(PG_locked, &page->flags);
356 }
357 
358 /* Interrupts must be disabled (for the fallback code to work right) */
359 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
360 		void *freelist_old, unsigned long counters_old,
361 		void *freelist_new, unsigned long counters_new,
362 		const char *n)
363 {
364 	VM_BUG_ON(!irqs_disabled());
365 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
366     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
367 	if (s->flags & __CMPXCHG_DOUBLE) {
368 		if (cmpxchg_double(&page->freelist, &page->counters,
369 			freelist_old, counters_old,
370 			freelist_new, counters_new))
371 		return 1;
372 	} else
373 #endif
374 	{
375 		slab_lock(page);
376 		if (page->freelist == freelist_old && page->counters == counters_old) {
377 			page->freelist = freelist_new;
378 			page->counters = counters_new;
379 			slab_unlock(page);
380 			return 1;
381 		}
382 		slab_unlock(page);
383 	}
384 
385 	cpu_relax();
386 	stat(s, CMPXCHG_DOUBLE_FAIL);
387 
388 #ifdef SLUB_DEBUG_CMPXCHG
389 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
390 #endif
391 
392 	return 0;
393 }
394 
395 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
396 		void *freelist_old, unsigned long counters_old,
397 		void *freelist_new, unsigned long counters_new,
398 		const char *n)
399 {
400 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
401     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
402 	if (s->flags & __CMPXCHG_DOUBLE) {
403 		if (cmpxchg_double(&page->freelist, &page->counters,
404 			freelist_old, counters_old,
405 			freelist_new, counters_new))
406 		return 1;
407 	} else
408 #endif
409 	{
410 		unsigned long flags;
411 
412 		local_irq_save(flags);
413 		slab_lock(page);
414 		if (page->freelist == freelist_old && page->counters == counters_old) {
415 			page->freelist = freelist_new;
416 			page->counters = counters_new;
417 			slab_unlock(page);
418 			local_irq_restore(flags);
419 			return 1;
420 		}
421 		slab_unlock(page);
422 		local_irq_restore(flags);
423 	}
424 
425 	cpu_relax();
426 	stat(s, CMPXCHG_DOUBLE_FAIL);
427 
428 #ifdef SLUB_DEBUG_CMPXCHG
429 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
430 #endif
431 
432 	return 0;
433 }
434 
435 #ifdef CONFIG_SLUB_DEBUG
436 /*
437  * Determine a map of object in use on a page.
438  *
439  * Node listlock must be held to guarantee that the page does
440  * not vanish from under us.
441  */
442 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
443 {
444 	void *p;
445 	void *addr = page_address(page);
446 
447 	for (p = page->freelist; p; p = get_freepointer(s, p))
448 		set_bit(slab_index(p, s, addr), map);
449 }
450 
451 /*
452  * Debug settings:
453  */
454 #ifdef CONFIG_SLUB_DEBUG_ON
455 static int slub_debug = DEBUG_DEFAULT_FLAGS;
456 #else
457 static int slub_debug;
458 #endif
459 
460 static char *slub_debug_slabs;
461 static int disable_higher_order_debug;
462 
463 /*
464  * Object debugging
465  */
466 static void print_section(char *text, u8 *addr, unsigned int length)
467 {
468 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
469 			length, 1);
470 }
471 
472 static struct track *get_track(struct kmem_cache *s, void *object,
473 	enum track_item alloc)
474 {
475 	struct track *p;
476 
477 	if (s->offset)
478 		p = object + s->offset + sizeof(void *);
479 	else
480 		p = object + s->inuse;
481 
482 	return p + alloc;
483 }
484 
485 static void set_track(struct kmem_cache *s, void *object,
486 			enum track_item alloc, unsigned long addr)
487 {
488 	struct track *p = get_track(s, object, alloc);
489 
490 	if (addr) {
491 #ifdef CONFIG_STACKTRACE
492 		struct stack_trace trace;
493 		int i;
494 
495 		trace.nr_entries = 0;
496 		trace.max_entries = TRACK_ADDRS_COUNT;
497 		trace.entries = p->addrs;
498 		trace.skip = 3;
499 		save_stack_trace(&trace);
500 
501 		/* See rant in lockdep.c */
502 		if (trace.nr_entries != 0 &&
503 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
504 			trace.nr_entries--;
505 
506 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
507 			p->addrs[i] = 0;
508 #endif
509 		p->addr = addr;
510 		p->cpu = smp_processor_id();
511 		p->pid = current->pid;
512 		p->when = jiffies;
513 	} else
514 		memset(p, 0, sizeof(struct track));
515 }
516 
517 static void init_tracking(struct kmem_cache *s, void *object)
518 {
519 	if (!(s->flags & SLAB_STORE_USER))
520 		return;
521 
522 	set_track(s, object, TRACK_FREE, 0UL);
523 	set_track(s, object, TRACK_ALLOC, 0UL);
524 }
525 
526 static void print_track(const char *s, struct track *t)
527 {
528 	if (!t->addr)
529 		return;
530 
531 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
532 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
533 #ifdef CONFIG_STACKTRACE
534 	{
535 		int i;
536 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
537 			if (t->addrs[i])
538 				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
539 			else
540 				break;
541 	}
542 #endif
543 }
544 
545 static void print_tracking(struct kmem_cache *s, void *object)
546 {
547 	if (!(s->flags & SLAB_STORE_USER))
548 		return;
549 
550 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
551 	print_track("Freed", get_track(s, object, TRACK_FREE));
552 }
553 
554 static void print_page_info(struct page *page)
555 {
556 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
557 		page, page->objects, page->inuse, page->freelist, page->flags);
558 
559 }
560 
561 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
562 {
563 	va_list args;
564 	char buf[100];
565 
566 	va_start(args, fmt);
567 	vsnprintf(buf, sizeof(buf), fmt, args);
568 	va_end(args);
569 	printk(KERN_ERR "========================================"
570 			"=====================================\n");
571 	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
572 	printk(KERN_ERR "----------------------------------------"
573 			"-------------------------------------\n\n");
574 
575 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
576 }
577 
578 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
579 {
580 	va_list args;
581 	char buf[100];
582 
583 	va_start(args, fmt);
584 	vsnprintf(buf, sizeof(buf), fmt, args);
585 	va_end(args);
586 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
587 }
588 
589 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
590 {
591 	unsigned int off;	/* Offset of last byte */
592 	u8 *addr = page_address(page);
593 
594 	print_tracking(s, p);
595 
596 	print_page_info(page);
597 
598 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
599 			p, p - addr, get_freepointer(s, p));
600 
601 	if (p > addr + 16)
602 		print_section("Bytes b4 ", p - 16, 16);
603 
604 	print_section("Object ", p, min_t(unsigned long, s->object_size,
605 				PAGE_SIZE));
606 	if (s->flags & SLAB_RED_ZONE)
607 		print_section("Redzone ", p + s->object_size,
608 			s->inuse - s->object_size);
609 
610 	if (s->offset)
611 		off = s->offset + sizeof(void *);
612 	else
613 		off = s->inuse;
614 
615 	if (s->flags & SLAB_STORE_USER)
616 		off += 2 * sizeof(struct track);
617 
618 	if (off != s->size)
619 		/* Beginning of the filler is the free pointer */
620 		print_section("Padding ", p + off, s->size - off);
621 
622 	dump_stack();
623 }
624 
625 static void object_err(struct kmem_cache *s, struct page *page,
626 			u8 *object, char *reason)
627 {
628 	slab_bug(s, "%s", reason);
629 	print_trailer(s, page, object);
630 }
631 
632 static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
633 {
634 	va_list args;
635 	char buf[100];
636 
637 	va_start(args, fmt);
638 	vsnprintf(buf, sizeof(buf), fmt, args);
639 	va_end(args);
640 	slab_bug(s, "%s", buf);
641 	print_page_info(page);
642 	dump_stack();
643 }
644 
645 static void init_object(struct kmem_cache *s, void *object, u8 val)
646 {
647 	u8 *p = object;
648 
649 	if (s->flags & __OBJECT_POISON) {
650 		memset(p, POISON_FREE, s->object_size - 1);
651 		p[s->object_size - 1] = POISON_END;
652 	}
653 
654 	if (s->flags & SLAB_RED_ZONE)
655 		memset(p + s->object_size, val, s->inuse - s->object_size);
656 }
657 
658 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
659 						void *from, void *to)
660 {
661 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
662 	memset(from, data, to - from);
663 }
664 
665 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
666 			u8 *object, char *what,
667 			u8 *start, unsigned int value, unsigned int bytes)
668 {
669 	u8 *fault;
670 	u8 *end;
671 
672 	fault = memchr_inv(start, value, bytes);
673 	if (!fault)
674 		return 1;
675 
676 	end = start + bytes;
677 	while (end > fault && end[-1] == value)
678 		end--;
679 
680 	slab_bug(s, "%s overwritten", what);
681 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
682 					fault, end - 1, fault[0], value);
683 	print_trailer(s, page, object);
684 
685 	restore_bytes(s, what, value, fault, end);
686 	return 0;
687 }
688 
689 /*
690  * Object layout:
691  *
692  * object address
693  * 	Bytes of the object to be managed.
694  * 	If the freepointer may overlay the object then the free
695  * 	pointer is the first word of the object.
696  *
697  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
698  * 	0xa5 (POISON_END)
699  *
700  * object + s->object_size
701  * 	Padding to reach word boundary. This is also used for Redzoning.
702  * 	Padding is extended by another word if Redzoning is enabled and
703  * 	object_size == inuse.
704  *
705  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
706  * 	0xcc (RED_ACTIVE) for objects in use.
707  *
708  * object + s->inuse
709  * 	Meta data starts here.
710  *
711  * 	A. Free pointer (if we cannot overwrite object on free)
712  * 	B. Tracking data for SLAB_STORE_USER
713  * 	C. Padding to reach required alignment boundary or at mininum
714  * 		one word if debugging is on to be able to detect writes
715  * 		before the word boundary.
716  *
717  *	Padding is done using 0x5a (POISON_INUSE)
718  *
719  * object + s->size
720  * 	Nothing is used beyond s->size.
721  *
722  * If slabcaches are merged then the object_size and inuse boundaries are mostly
723  * ignored. And therefore no slab options that rely on these boundaries
724  * may be used with merged slabcaches.
725  */
726 
727 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
728 {
729 	unsigned long off = s->inuse;	/* The end of info */
730 
731 	if (s->offset)
732 		/* Freepointer is placed after the object. */
733 		off += sizeof(void *);
734 
735 	if (s->flags & SLAB_STORE_USER)
736 		/* We also have user information there */
737 		off += 2 * sizeof(struct track);
738 
739 	if (s->size == off)
740 		return 1;
741 
742 	return check_bytes_and_report(s, page, p, "Object padding",
743 				p + off, POISON_INUSE, s->size - off);
744 }
745 
746 /* Check the pad bytes at the end of a slab page */
747 static int slab_pad_check(struct kmem_cache *s, struct page *page)
748 {
749 	u8 *start;
750 	u8 *fault;
751 	u8 *end;
752 	int length;
753 	int remainder;
754 
755 	if (!(s->flags & SLAB_POISON))
756 		return 1;
757 
758 	start = page_address(page);
759 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
760 	end = start + length;
761 	remainder = length % s->size;
762 	if (!remainder)
763 		return 1;
764 
765 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
766 	if (!fault)
767 		return 1;
768 	while (end > fault && end[-1] == POISON_INUSE)
769 		end--;
770 
771 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
772 	print_section("Padding ", end - remainder, remainder);
773 
774 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
775 	return 0;
776 }
777 
778 static int check_object(struct kmem_cache *s, struct page *page,
779 					void *object, u8 val)
780 {
781 	u8 *p = object;
782 	u8 *endobject = object + s->object_size;
783 
784 	if (s->flags & SLAB_RED_ZONE) {
785 		if (!check_bytes_and_report(s, page, object, "Redzone",
786 			endobject, val, s->inuse - s->object_size))
787 			return 0;
788 	} else {
789 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
790 			check_bytes_and_report(s, page, p, "Alignment padding",
791 				endobject, POISON_INUSE, s->inuse - s->object_size);
792 		}
793 	}
794 
795 	if (s->flags & SLAB_POISON) {
796 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
797 			(!check_bytes_and_report(s, page, p, "Poison", p,
798 					POISON_FREE, s->object_size - 1) ||
799 			 !check_bytes_and_report(s, page, p, "Poison",
800 				p + s->object_size - 1, POISON_END, 1)))
801 			return 0;
802 		/*
803 		 * check_pad_bytes cleans up on its own.
804 		 */
805 		check_pad_bytes(s, page, p);
806 	}
807 
808 	if (!s->offset && val == SLUB_RED_ACTIVE)
809 		/*
810 		 * Object and freepointer overlap. Cannot check
811 		 * freepointer while object is allocated.
812 		 */
813 		return 1;
814 
815 	/* Check free pointer validity */
816 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
817 		object_err(s, page, p, "Freepointer corrupt");
818 		/*
819 		 * No choice but to zap it and thus lose the remainder
820 		 * of the free objects in this slab. May cause
821 		 * another error because the object count is now wrong.
822 		 */
823 		set_freepointer(s, p, NULL);
824 		return 0;
825 	}
826 	return 1;
827 }
828 
829 static int check_slab(struct kmem_cache *s, struct page *page)
830 {
831 	int maxobj;
832 
833 	VM_BUG_ON(!irqs_disabled());
834 
835 	if (!PageSlab(page)) {
836 		slab_err(s, page, "Not a valid slab page");
837 		return 0;
838 	}
839 
840 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
841 	if (page->objects > maxobj) {
842 		slab_err(s, page, "objects %u > max %u",
843 			s->name, page->objects, maxobj);
844 		return 0;
845 	}
846 	if (page->inuse > page->objects) {
847 		slab_err(s, page, "inuse %u > max %u",
848 			s->name, page->inuse, page->objects);
849 		return 0;
850 	}
851 	/* Slab_pad_check fixes things up after itself */
852 	slab_pad_check(s, page);
853 	return 1;
854 }
855 
856 /*
857  * Determine if a certain object on a page is on the freelist. Must hold the
858  * slab lock to guarantee that the chains are in a consistent state.
859  */
860 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
861 {
862 	int nr = 0;
863 	void *fp;
864 	void *object = NULL;
865 	unsigned long max_objects;
866 
867 	fp = page->freelist;
868 	while (fp && nr <= page->objects) {
869 		if (fp == search)
870 			return 1;
871 		if (!check_valid_pointer(s, page, fp)) {
872 			if (object) {
873 				object_err(s, page, object,
874 					"Freechain corrupt");
875 				set_freepointer(s, object, NULL);
876 				break;
877 			} else {
878 				slab_err(s, page, "Freepointer corrupt");
879 				page->freelist = NULL;
880 				page->inuse = page->objects;
881 				slab_fix(s, "Freelist cleared");
882 				return 0;
883 			}
884 			break;
885 		}
886 		object = fp;
887 		fp = get_freepointer(s, object);
888 		nr++;
889 	}
890 
891 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
892 	if (max_objects > MAX_OBJS_PER_PAGE)
893 		max_objects = MAX_OBJS_PER_PAGE;
894 
895 	if (page->objects != max_objects) {
896 		slab_err(s, page, "Wrong number of objects. Found %d but "
897 			"should be %d", page->objects, max_objects);
898 		page->objects = max_objects;
899 		slab_fix(s, "Number of objects adjusted.");
900 	}
901 	if (page->inuse != page->objects - nr) {
902 		slab_err(s, page, "Wrong object count. Counter is %d but "
903 			"counted were %d", page->inuse, page->objects - nr);
904 		page->inuse = page->objects - nr;
905 		slab_fix(s, "Object count adjusted.");
906 	}
907 	return search == NULL;
908 }
909 
910 static void trace(struct kmem_cache *s, struct page *page, void *object,
911 								int alloc)
912 {
913 	if (s->flags & SLAB_TRACE) {
914 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
915 			s->name,
916 			alloc ? "alloc" : "free",
917 			object, page->inuse,
918 			page->freelist);
919 
920 		if (!alloc)
921 			print_section("Object ", (void *)object, s->object_size);
922 
923 		dump_stack();
924 	}
925 }
926 
927 /*
928  * Hooks for other subsystems that check memory allocations. In a typical
929  * production configuration these hooks all should produce no code at all.
930  */
931 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
932 {
933 	flags &= gfp_allowed_mask;
934 	lockdep_trace_alloc(flags);
935 	might_sleep_if(flags & __GFP_WAIT);
936 
937 	return should_failslab(s->object_size, flags, s->flags);
938 }
939 
940 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
941 {
942 	flags &= gfp_allowed_mask;
943 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
944 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
945 }
946 
947 static inline void slab_free_hook(struct kmem_cache *s, void *x)
948 {
949 	kmemleak_free_recursive(x, s->flags);
950 
951 	/*
952 	 * Trouble is that we may no longer disable interupts in the fast path
953 	 * So in order to make the debug calls that expect irqs to be
954 	 * disabled we need to disable interrupts temporarily.
955 	 */
956 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
957 	{
958 		unsigned long flags;
959 
960 		local_irq_save(flags);
961 		kmemcheck_slab_free(s, x, s->object_size);
962 		debug_check_no_locks_freed(x, s->object_size);
963 		local_irq_restore(flags);
964 	}
965 #endif
966 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
967 		debug_check_no_obj_freed(x, s->object_size);
968 }
969 
970 /*
971  * Tracking of fully allocated slabs for debugging purposes.
972  *
973  * list_lock must be held.
974  */
975 static void add_full(struct kmem_cache *s,
976 	struct kmem_cache_node *n, struct page *page)
977 {
978 	if (!(s->flags & SLAB_STORE_USER))
979 		return;
980 
981 	list_add(&page->lru, &n->full);
982 }
983 
984 /*
985  * list_lock must be held.
986  */
987 static void remove_full(struct kmem_cache *s, struct page *page)
988 {
989 	if (!(s->flags & SLAB_STORE_USER))
990 		return;
991 
992 	list_del(&page->lru);
993 }
994 
995 /* Tracking of the number of slabs for debugging purposes */
996 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
997 {
998 	struct kmem_cache_node *n = get_node(s, node);
999 
1000 	return atomic_long_read(&n->nr_slabs);
1001 }
1002 
1003 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1004 {
1005 	return atomic_long_read(&n->nr_slabs);
1006 }
1007 
1008 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1009 {
1010 	struct kmem_cache_node *n = get_node(s, node);
1011 
1012 	/*
1013 	 * May be called early in order to allocate a slab for the
1014 	 * kmem_cache_node structure. Solve the chicken-egg
1015 	 * dilemma by deferring the increment of the count during
1016 	 * bootstrap (see early_kmem_cache_node_alloc).
1017 	 */
1018 	if (likely(n)) {
1019 		atomic_long_inc(&n->nr_slabs);
1020 		atomic_long_add(objects, &n->total_objects);
1021 	}
1022 }
1023 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1024 {
1025 	struct kmem_cache_node *n = get_node(s, node);
1026 
1027 	atomic_long_dec(&n->nr_slabs);
1028 	atomic_long_sub(objects, &n->total_objects);
1029 }
1030 
1031 /* Object debug checks for alloc/free paths */
1032 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1033 								void *object)
1034 {
1035 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1036 		return;
1037 
1038 	init_object(s, object, SLUB_RED_INACTIVE);
1039 	init_tracking(s, object);
1040 }
1041 
1042 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1043 					void *object, unsigned long addr)
1044 {
1045 	if (!check_slab(s, page))
1046 		goto bad;
1047 
1048 	if (!check_valid_pointer(s, page, object)) {
1049 		object_err(s, page, object, "Freelist Pointer check fails");
1050 		goto bad;
1051 	}
1052 
1053 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1054 		goto bad;
1055 
1056 	/* Success perform special debug activities for allocs */
1057 	if (s->flags & SLAB_STORE_USER)
1058 		set_track(s, object, TRACK_ALLOC, addr);
1059 	trace(s, page, object, 1);
1060 	init_object(s, object, SLUB_RED_ACTIVE);
1061 	return 1;
1062 
1063 bad:
1064 	if (PageSlab(page)) {
1065 		/*
1066 		 * If this is a slab page then lets do the best we can
1067 		 * to avoid issues in the future. Marking all objects
1068 		 * as used avoids touching the remaining objects.
1069 		 */
1070 		slab_fix(s, "Marking all objects used");
1071 		page->inuse = page->objects;
1072 		page->freelist = NULL;
1073 	}
1074 	return 0;
1075 }
1076 
1077 static noinline struct kmem_cache_node *free_debug_processing(
1078 	struct kmem_cache *s, struct page *page, void *object,
1079 	unsigned long addr, unsigned long *flags)
1080 {
1081 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1082 
1083 	spin_lock_irqsave(&n->list_lock, *flags);
1084 	slab_lock(page);
1085 
1086 	if (!check_slab(s, page))
1087 		goto fail;
1088 
1089 	if (!check_valid_pointer(s, page, object)) {
1090 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1091 		goto fail;
1092 	}
1093 
1094 	if (on_freelist(s, page, object)) {
1095 		object_err(s, page, object, "Object already free");
1096 		goto fail;
1097 	}
1098 
1099 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1100 		goto out;
1101 
1102 	if (unlikely(s != page->slab_cache)) {
1103 		if (!PageSlab(page)) {
1104 			slab_err(s, page, "Attempt to free object(0x%p) "
1105 				"outside of slab", object);
1106 		} else if (!page->slab_cache) {
1107 			printk(KERN_ERR
1108 				"SLUB <none>: no slab for object 0x%p.\n",
1109 						object);
1110 			dump_stack();
1111 		} else
1112 			object_err(s, page, object,
1113 					"page slab pointer corrupt.");
1114 		goto fail;
1115 	}
1116 
1117 	if (s->flags & SLAB_STORE_USER)
1118 		set_track(s, object, TRACK_FREE, addr);
1119 	trace(s, page, object, 0);
1120 	init_object(s, object, SLUB_RED_INACTIVE);
1121 out:
1122 	slab_unlock(page);
1123 	/*
1124 	 * Keep node_lock to preserve integrity
1125 	 * until the object is actually freed
1126 	 */
1127 	return n;
1128 
1129 fail:
1130 	slab_unlock(page);
1131 	spin_unlock_irqrestore(&n->list_lock, *flags);
1132 	slab_fix(s, "Object at 0x%p not freed", object);
1133 	return NULL;
1134 }
1135 
1136 static int __init setup_slub_debug(char *str)
1137 {
1138 	slub_debug = DEBUG_DEFAULT_FLAGS;
1139 	if (*str++ != '=' || !*str)
1140 		/*
1141 		 * No options specified. Switch on full debugging.
1142 		 */
1143 		goto out;
1144 
1145 	if (*str == ',')
1146 		/*
1147 		 * No options but restriction on slabs. This means full
1148 		 * debugging for slabs matching a pattern.
1149 		 */
1150 		goto check_slabs;
1151 
1152 	if (tolower(*str) == 'o') {
1153 		/*
1154 		 * Avoid enabling debugging on caches if its minimum order
1155 		 * would increase as a result.
1156 		 */
1157 		disable_higher_order_debug = 1;
1158 		goto out;
1159 	}
1160 
1161 	slub_debug = 0;
1162 	if (*str == '-')
1163 		/*
1164 		 * Switch off all debugging measures.
1165 		 */
1166 		goto out;
1167 
1168 	/*
1169 	 * Determine which debug features should be switched on
1170 	 */
1171 	for (; *str && *str != ','; str++) {
1172 		switch (tolower(*str)) {
1173 		case 'f':
1174 			slub_debug |= SLAB_DEBUG_FREE;
1175 			break;
1176 		case 'z':
1177 			slub_debug |= SLAB_RED_ZONE;
1178 			break;
1179 		case 'p':
1180 			slub_debug |= SLAB_POISON;
1181 			break;
1182 		case 'u':
1183 			slub_debug |= SLAB_STORE_USER;
1184 			break;
1185 		case 't':
1186 			slub_debug |= SLAB_TRACE;
1187 			break;
1188 		case 'a':
1189 			slub_debug |= SLAB_FAILSLAB;
1190 			break;
1191 		default:
1192 			printk(KERN_ERR "slub_debug option '%c' "
1193 				"unknown. skipped\n", *str);
1194 		}
1195 	}
1196 
1197 check_slabs:
1198 	if (*str == ',')
1199 		slub_debug_slabs = str + 1;
1200 out:
1201 	return 1;
1202 }
1203 
1204 __setup("slub_debug", setup_slub_debug);
1205 
1206 static unsigned long kmem_cache_flags(unsigned long object_size,
1207 	unsigned long flags, const char *name,
1208 	void (*ctor)(void *))
1209 {
1210 	/*
1211 	 * Enable debugging if selected on the kernel commandline.
1212 	 */
1213 	if (slub_debug && (!slub_debug_slabs ||
1214 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1215 		flags |= slub_debug;
1216 
1217 	return flags;
1218 }
1219 #else
1220 static inline void setup_object_debug(struct kmem_cache *s,
1221 			struct page *page, void *object) {}
1222 
1223 static inline int alloc_debug_processing(struct kmem_cache *s,
1224 	struct page *page, void *object, unsigned long addr) { return 0; }
1225 
1226 static inline struct kmem_cache_node *free_debug_processing(
1227 	struct kmem_cache *s, struct page *page, void *object,
1228 	unsigned long addr, unsigned long *flags) { return NULL; }
1229 
1230 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1231 			{ return 1; }
1232 static inline int check_object(struct kmem_cache *s, struct page *page,
1233 			void *object, u8 val) { return 1; }
1234 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1235 					struct page *page) {}
1236 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1237 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1238 	unsigned long flags, const char *name,
1239 	void (*ctor)(void *))
1240 {
1241 	return flags;
1242 }
1243 #define slub_debug 0
1244 
1245 #define disable_higher_order_debug 0
1246 
1247 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1248 							{ return 0; }
1249 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1250 							{ return 0; }
1251 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1252 							int objects) {}
1253 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1254 							int objects) {}
1255 
1256 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1257 							{ return 0; }
1258 
1259 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1260 		void *object) {}
1261 
1262 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1263 
1264 #endif /* CONFIG_SLUB_DEBUG */
1265 
1266 /*
1267  * Slab allocation and freeing
1268  */
1269 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1270 					struct kmem_cache_order_objects oo)
1271 {
1272 	int order = oo_order(oo);
1273 
1274 	flags |= __GFP_NOTRACK;
1275 
1276 	if (node == NUMA_NO_NODE)
1277 		return alloc_pages(flags, order);
1278 	else
1279 		return alloc_pages_exact_node(node, flags, order);
1280 }
1281 
1282 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1283 {
1284 	struct page *page;
1285 	struct kmem_cache_order_objects oo = s->oo;
1286 	gfp_t alloc_gfp;
1287 
1288 	flags &= gfp_allowed_mask;
1289 
1290 	if (flags & __GFP_WAIT)
1291 		local_irq_enable();
1292 
1293 	flags |= s->allocflags;
1294 
1295 	/*
1296 	 * Let the initial higher-order allocation fail under memory pressure
1297 	 * so we fall-back to the minimum order allocation.
1298 	 */
1299 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1300 
1301 	page = alloc_slab_page(alloc_gfp, node, oo);
1302 	if (unlikely(!page)) {
1303 		oo = s->min;
1304 		/*
1305 		 * Allocation may have failed due to fragmentation.
1306 		 * Try a lower order alloc if possible
1307 		 */
1308 		page = alloc_slab_page(flags, node, oo);
1309 
1310 		if (page)
1311 			stat(s, ORDER_FALLBACK);
1312 	}
1313 
1314 	if (kmemcheck_enabled && page
1315 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1316 		int pages = 1 << oo_order(oo);
1317 
1318 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1319 
1320 		/*
1321 		 * Objects from caches that have a constructor don't get
1322 		 * cleared when they're allocated, so we need to do it here.
1323 		 */
1324 		if (s->ctor)
1325 			kmemcheck_mark_uninitialized_pages(page, pages);
1326 		else
1327 			kmemcheck_mark_unallocated_pages(page, pages);
1328 	}
1329 
1330 	if (flags & __GFP_WAIT)
1331 		local_irq_disable();
1332 	if (!page)
1333 		return NULL;
1334 
1335 	page->objects = oo_objects(oo);
1336 	mod_zone_page_state(page_zone(page),
1337 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1338 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1339 		1 << oo_order(oo));
1340 
1341 	return page;
1342 }
1343 
1344 static void setup_object(struct kmem_cache *s, struct page *page,
1345 				void *object)
1346 {
1347 	setup_object_debug(s, page, object);
1348 	if (unlikely(s->ctor))
1349 		s->ctor(object);
1350 }
1351 
1352 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1353 {
1354 	struct page *page;
1355 	void *start;
1356 	void *last;
1357 	void *p;
1358 	int order;
1359 
1360 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1361 
1362 	page = allocate_slab(s,
1363 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1364 	if (!page)
1365 		goto out;
1366 
1367 	order = compound_order(page);
1368 	inc_slabs_node(s, page_to_nid(page), page->objects);
1369 	memcg_bind_pages(s, order);
1370 	page->slab_cache = s;
1371 	__SetPageSlab(page);
1372 	if (page->pfmemalloc)
1373 		SetPageSlabPfmemalloc(page);
1374 
1375 	start = page_address(page);
1376 
1377 	if (unlikely(s->flags & SLAB_POISON))
1378 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1379 
1380 	last = start;
1381 	for_each_object(p, s, start, page->objects) {
1382 		setup_object(s, page, last);
1383 		set_freepointer(s, last, p);
1384 		last = p;
1385 	}
1386 	setup_object(s, page, last);
1387 	set_freepointer(s, last, NULL);
1388 
1389 	page->freelist = start;
1390 	page->inuse = page->objects;
1391 	page->frozen = 1;
1392 out:
1393 	return page;
1394 }
1395 
1396 static void __free_slab(struct kmem_cache *s, struct page *page)
1397 {
1398 	int order = compound_order(page);
1399 	int pages = 1 << order;
1400 
1401 	if (kmem_cache_debug(s)) {
1402 		void *p;
1403 
1404 		slab_pad_check(s, page);
1405 		for_each_object(p, s, page_address(page),
1406 						page->objects)
1407 			check_object(s, page, p, SLUB_RED_INACTIVE);
1408 	}
1409 
1410 	kmemcheck_free_shadow(page, compound_order(page));
1411 
1412 	mod_zone_page_state(page_zone(page),
1413 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1414 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1415 		-pages);
1416 
1417 	__ClearPageSlabPfmemalloc(page);
1418 	__ClearPageSlab(page);
1419 
1420 	memcg_release_pages(s, order);
1421 	page_mapcount_reset(page);
1422 	if (current->reclaim_state)
1423 		current->reclaim_state->reclaimed_slab += pages;
1424 	__free_memcg_kmem_pages(page, order);
1425 }
1426 
1427 #define need_reserve_slab_rcu						\
1428 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1429 
1430 static void rcu_free_slab(struct rcu_head *h)
1431 {
1432 	struct page *page;
1433 
1434 	if (need_reserve_slab_rcu)
1435 		page = virt_to_head_page(h);
1436 	else
1437 		page = container_of((struct list_head *)h, struct page, lru);
1438 
1439 	__free_slab(page->slab_cache, page);
1440 }
1441 
1442 static void free_slab(struct kmem_cache *s, struct page *page)
1443 {
1444 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1445 		struct rcu_head *head;
1446 
1447 		if (need_reserve_slab_rcu) {
1448 			int order = compound_order(page);
1449 			int offset = (PAGE_SIZE << order) - s->reserved;
1450 
1451 			VM_BUG_ON(s->reserved != sizeof(*head));
1452 			head = page_address(page) + offset;
1453 		} else {
1454 			/*
1455 			 * RCU free overloads the RCU head over the LRU
1456 			 */
1457 			head = (void *)&page->lru;
1458 		}
1459 
1460 		call_rcu(head, rcu_free_slab);
1461 	} else
1462 		__free_slab(s, page);
1463 }
1464 
1465 static void discard_slab(struct kmem_cache *s, struct page *page)
1466 {
1467 	dec_slabs_node(s, page_to_nid(page), page->objects);
1468 	free_slab(s, page);
1469 }
1470 
1471 /*
1472  * Management of partially allocated slabs.
1473  *
1474  * list_lock must be held.
1475  */
1476 static inline void add_partial(struct kmem_cache_node *n,
1477 				struct page *page, int tail)
1478 {
1479 	n->nr_partial++;
1480 	if (tail == DEACTIVATE_TO_TAIL)
1481 		list_add_tail(&page->lru, &n->partial);
1482 	else
1483 		list_add(&page->lru, &n->partial);
1484 }
1485 
1486 /*
1487  * list_lock must be held.
1488  */
1489 static inline void remove_partial(struct kmem_cache_node *n,
1490 					struct page *page)
1491 {
1492 	list_del(&page->lru);
1493 	n->nr_partial--;
1494 }
1495 
1496 /*
1497  * Remove slab from the partial list, freeze it and
1498  * return the pointer to the freelist.
1499  *
1500  * Returns a list of objects or NULL if it fails.
1501  *
1502  * Must hold list_lock since we modify the partial list.
1503  */
1504 static inline void *acquire_slab(struct kmem_cache *s,
1505 		struct kmem_cache_node *n, struct page *page,
1506 		int mode, int *objects)
1507 {
1508 	void *freelist;
1509 	unsigned long counters;
1510 	struct page new;
1511 
1512 	/*
1513 	 * Zap the freelist and set the frozen bit.
1514 	 * The old freelist is the list of objects for the
1515 	 * per cpu allocation list.
1516 	 */
1517 	freelist = page->freelist;
1518 	counters = page->counters;
1519 	new.counters = counters;
1520 	*objects = new.objects - new.inuse;
1521 	if (mode) {
1522 		new.inuse = page->objects;
1523 		new.freelist = NULL;
1524 	} else {
1525 		new.freelist = freelist;
1526 	}
1527 
1528 	VM_BUG_ON(new.frozen);
1529 	new.frozen = 1;
1530 
1531 	if (!__cmpxchg_double_slab(s, page,
1532 			freelist, counters,
1533 			new.freelist, new.counters,
1534 			"acquire_slab"))
1535 		return NULL;
1536 
1537 	remove_partial(n, page);
1538 	WARN_ON(!freelist);
1539 	return freelist;
1540 }
1541 
1542 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1543 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1544 
1545 /*
1546  * Try to allocate a partial slab from a specific node.
1547  */
1548 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1549 				struct kmem_cache_cpu *c, gfp_t flags)
1550 {
1551 	struct page *page, *page2;
1552 	void *object = NULL;
1553 	int available = 0;
1554 	int objects;
1555 
1556 	/*
1557 	 * Racy check. If we mistakenly see no partial slabs then we
1558 	 * just allocate an empty slab. If we mistakenly try to get a
1559 	 * partial slab and there is none available then get_partials()
1560 	 * will return NULL.
1561 	 */
1562 	if (!n || !n->nr_partial)
1563 		return NULL;
1564 
1565 	spin_lock(&n->list_lock);
1566 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1567 		void *t;
1568 
1569 		if (!pfmemalloc_match(page, flags))
1570 			continue;
1571 
1572 		t = acquire_slab(s, n, page, object == NULL, &objects);
1573 		if (!t)
1574 			break;
1575 
1576 		available += objects;
1577 		if (!object) {
1578 			c->page = page;
1579 			stat(s, ALLOC_FROM_PARTIAL);
1580 			object = t;
1581 		} else {
1582 			put_cpu_partial(s, page, 0);
1583 			stat(s, CPU_PARTIAL_NODE);
1584 		}
1585 		if (!kmem_cache_has_cpu_partial(s)
1586 			|| available > s->cpu_partial / 2)
1587 			break;
1588 
1589 	}
1590 	spin_unlock(&n->list_lock);
1591 	return object;
1592 }
1593 
1594 /*
1595  * Get a page from somewhere. Search in increasing NUMA distances.
1596  */
1597 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1598 		struct kmem_cache_cpu *c)
1599 {
1600 #ifdef CONFIG_NUMA
1601 	struct zonelist *zonelist;
1602 	struct zoneref *z;
1603 	struct zone *zone;
1604 	enum zone_type high_zoneidx = gfp_zone(flags);
1605 	void *object;
1606 	unsigned int cpuset_mems_cookie;
1607 
1608 	/*
1609 	 * The defrag ratio allows a configuration of the tradeoffs between
1610 	 * inter node defragmentation and node local allocations. A lower
1611 	 * defrag_ratio increases the tendency to do local allocations
1612 	 * instead of attempting to obtain partial slabs from other nodes.
1613 	 *
1614 	 * If the defrag_ratio is set to 0 then kmalloc() always
1615 	 * returns node local objects. If the ratio is higher then kmalloc()
1616 	 * may return off node objects because partial slabs are obtained
1617 	 * from other nodes and filled up.
1618 	 *
1619 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1620 	 * defrag_ratio = 1000) then every (well almost) allocation will
1621 	 * first attempt to defrag slab caches on other nodes. This means
1622 	 * scanning over all nodes to look for partial slabs which may be
1623 	 * expensive if we do it every time we are trying to find a slab
1624 	 * with available objects.
1625 	 */
1626 	if (!s->remote_node_defrag_ratio ||
1627 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1628 		return NULL;
1629 
1630 	do {
1631 		cpuset_mems_cookie = get_mems_allowed();
1632 		zonelist = node_zonelist(slab_node(), flags);
1633 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1634 			struct kmem_cache_node *n;
1635 
1636 			n = get_node(s, zone_to_nid(zone));
1637 
1638 			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1639 					n->nr_partial > s->min_partial) {
1640 				object = get_partial_node(s, n, c, flags);
1641 				if (object) {
1642 					/*
1643 					 * Return the object even if
1644 					 * put_mems_allowed indicated that
1645 					 * the cpuset mems_allowed was
1646 					 * updated in parallel. It's a
1647 					 * harmless race between the alloc
1648 					 * and the cpuset update.
1649 					 */
1650 					put_mems_allowed(cpuset_mems_cookie);
1651 					return object;
1652 				}
1653 			}
1654 		}
1655 	} while (!put_mems_allowed(cpuset_mems_cookie));
1656 #endif
1657 	return NULL;
1658 }
1659 
1660 /*
1661  * Get a partial page, lock it and return it.
1662  */
1663 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1664 		struct kmem_cache_cpu *c)
1665 {
1666 	void *object;
1667 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1668 
1669 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1670 	if (object || node != NUMA_NO_NODE)
1671 		return object;
1672 
1673 	return get_any_partial(s, flags, c);
1674 }
1675 
1676 #ifdef CONFIG_PREEMPT
1677 /*
1678  * Calculate the next globally unique transaction for disambiguiation
1679  * during cmpxchg. The transactions start with the cpu number and are then
1680  * incremented by CONFIG_NR_CPUS.
1681  */
1682 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1683 #else
1684 /*
1685  * No preemption supported therefore also no need to check for
1686  * different cpus.
1687  */
1688 #define TID_STEP 1
1689 #endif
1690 
1691 static inline unsigned long next_tid(unsigned long tid)
1692 {
1693 	return tid + TID_STEP;
1694 }
1695 
1696 static inline unsigned int tid_to_cpu(unsigned long tid)
1697 {
1698 	return tid % TID_STEP;
1699 }
1700 
1701 static inline unsigned long tid_to_event(unsigned long tid)
1702 {
1703 	return tid / TID_STEP;
1704 }
1705 
1706 static inline unsigned int init_tid(int cpu)
1707 {
1708 	return cpu;
1709 }
1710 
1711 static inline void note_cmpxchg_failure(const char *n,
1712 		const struct kmem_cache *s, unsigned long tid)
1713 {
1714 #ifdef SLUB_DEBUG_CMPXCHG
1715 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1716 
1717 	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1718 
1719 #ifdef CONFIG_PREEMPT
1720 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1721 		printk("due to cpu change %d -> %d\n",
1722 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1723 	else
1724 #endif
1725 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1726 		printk("due to cpu running other code. Event %ld->%ld\n",
1727 			tid_to_event(tid), tid_to_event(actual_tid));
1728 	else
1729 		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1730 			actual_tid, tid, next_tid(tid));
1731 #endif
1732 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1733 }
1734 
1735 static void init_kmem_cache_cpus(struct kmem_cache *s)
1736 {
1737 	int cpu;
1738 
1739 	for_each_possible_cpu(cpu)
1740 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1741 }
1742 
1743 /*
1744  * Remove the cpu slab
1745  */
1746 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1747 {
1748 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1749 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1750 	int lock = 0;
1751 	enum slab_modes l = M_NONE, m = M_NONE;
1752 	void *nextfree;
1753 	int tail = DEACTIVATE_TO_HEAD;
1754 	struct page new;
1755 	struct page old;
1756 
1757 	if (page->freelist) {
1758 		stat(s, DEACTIVATE_REMOTE_FREES);
1759 		tail = DEACTIVATE_TO_TAIL;
1760 	}
1761 
1762 	/*
1763 	 * Stage one: Free all available per cpu objects back
1764 	 * to the page freelist while it is still frozen. Leave the
1765 	 * last one.
1766 	 *
1767 	 * There is no need to take the list->lock because the page
1768 	 * is still frozen.
1769 	 */
1770 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1771 		void *prior;
1772 		unsigned long counters;
1773 
1774 		do {
1775 			prior = page->freelist;
1776 			counters = page->counters;
1777 			set_freepointer(s, freelist, prior);
1778 			new.counters = counters;
1779 			new.inuse--;
1780 			VM_BUG_ON(!new.frozen);
1781 
1782 		} while (!__cmpxchg_double_slab(s, page,
1783 			prior, counters,
1784 			freelist, new.counters,
1785 			"drain percpu freelist"));
1786 
1787 		freelist = nextfree;
1788 	}
1789 
1790 	/*
1791 	 * Stage two: Ensure that the page is unfrozen while the
1792 	 * list presence reflects the actual number of objects
1793 	 * during unfreeze.
1794 	 *
1795 	 * We setup the list membership and then perform a cmpxchg
1796 	 * with the count. If there is a mismatch then the page
1797 	 * is not unfrozen but the page is on the wrong list.
1798 	 *
1799 	 * Then we restart the process which may have to remove
1800 	 * the page from the list that we just put it on again
1801 	 * because the number of objects in the slab may have
1802 	 * changed.
1803 	 */
1804 redo:
1805 
1806 	old.freelist = page->freelist;
1807 	old.counters = page->counters;
1808 	VM_BUG_ON(!old.frozen);
1809 
1810 	/* Determine target state of the slab */
1811 	new.counters = old.counters;
1812 	if (freelist) {
1813 		new.inuse--;
1814 		set_freepointer(s, freelist, old.freelist);
1815 		new.freelist = freelist;
1816 	} else
1817 		new.freelist = old.freelist;
1818 
1819 	new.frozen = 0;
1820 
1821 	if (!new.inuse && n->nr_partial > s->min_partial)
1822 		m = M_FREE;
1823 	else if (new.freelist) {
1824 		m = M_PARTIAL;
1825 		if (!lock) {
1826 			lock = 1;
1827 			/*
1828 			 * Taking the spinlock removes the possiblity
1829 			 * that acquire_slab() will see a slab page that
1830 			 * is frozen
1831 			 */
1832 			spin_lock(&n->list_lock);
1833 		}
1834 	} else {
1835 		m = M_FULL;
1836 		if (kmem_cache_debug(s) && !lock) {
1837 			lock = 1;
1838 			/*
1839 			 * This also ensures that the scanning of full
1840 			 * slabs from diagnostic functions will not see
1841 			 * any frozen slabs.
1842 			 */
1843 			spin_lock(&n->list_lock);
1844 		}
1845 	}
1846 
1847 	if (l != m) {
1848 
1849 		if (l == M_PARTIAL)
1850 
1851 			remove_partial(n, page);
1852 
1853 		else if (l == M_FULL)
1854 
1855 			remove_full(s, page);
1856 
1857 		if (m == M_PARTIAL) {
1858 
1859 			add_partial(n, page, tail);
1860 			stat(s, tail);
1861 
1862 		} else if (m == M_FULL) {
1863 
1864 			stat(s, DEACTIVATE_FULL);
1865 			add_full(s, n, page);
1866 
1867 		}
1868 	}
1869 
1870 	l = m;
1871 	if (!__cmpxchg_double_slab(s, page,
1872 				old.freelist, old.counters,
1873 				new.freelist, new.counters,
1874 				"unfreezing slab"))
1875 		goto redo;
1876 
1877 	if (lock)
1878 		spin_unlock(&n->list_lock);
1879 
1880 	if (m == M_FREE) {
1881 		stat(s, DEACTIVATE_EMPTY);
1882 		discard_slab(s, page);
1883 		stat(s, FREE_SLAB);
1884 	}
1885 }
1886 
1887 /*
1888  * Unfreeze all the cpu partial slabs.
1889  *
1890  * This function must be called with interrupts disabled
1891  * for the cpu using c (or some other guarantee must be there
1892  * to guarantee no concurrent accesses).
1893  */
1894 static void unfreeze_partials(struct kmem_cache *s,
1895 		struct kmem_cache_cpu *c)
1896 {
1897 #ifdef CONFIG_SLUB_CPU_PARTIAL
1898 	struct kmem_cache_node *n = NULL, *n2 = NULL;
1899 	struct page *page, *discard_page = NULL;
1900 
1901 	while ((page = c->partial)) {
1902 		struct page new;
1903 		struct page old;
1904 
1905 		c->partial = page->next;
1906 
1907 		n2 = get_node(s, page_to_nid(page));
1908 		if (n != n2) {
1909 			if (n)
1910 				spin_unlock(&n->list_lock);
1911 
1912 			n = n2;
1913 			spin_lock(&n->list_lock);
1914 		}
1915 
1916 		do {
1917 
1918 			old.freelist = page->freelist;
1919 			old.counters = page->counters;
1920 			VM_BUG_ON(!old.frozen);
1921 
1922 			new.counters = old.counters;
1923 			new.freelist = old.freelist;
1924 
1925 			new.frozen = 0;
1926 
1927 		} while (!__cmpxchg_double_slab(s, page,
1928 				old.freelist, old.counters,
1929 				new.freelist, new.counters,
1930 				"unfreezing slab"));
1931 
1932 		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1933 			page->next = discard_page;
1934 			discard_page = page;
1935 		} else {
1936 			add_partial(n, page, DEACTIVATE_TO_TAIL);
1937 			stat(s, FREE_ADD_PARTIAL);
1938 		}
1939 	}
1940 
1941 	if (n)
1942 		spin_unlock(&n->list_lock);
1943 
1944 	while (discard_page) {
1945 		page = discard_page;
1946 		discard_page = discard_page->next;
1947 
1948 		stat(s, DEACTIVATE_EMPTY);
1949 		discard_slab(s, page);
1950 		stat(s, FREE_SLAB);
1951 	}
1952 #endif
1953 }
1954 
1955 /*
1956  * Put a page that was just frozen (in __slab_free) into a partial page
1957  * slot if available. This is done without interrupts disabled and without
1958  * preemption disabled. The cmpxchg is racy and may put the partial page
1959  * onto a random cpus partial slot.
1960  *
1961  * If we did not find a slot then simply move all the partials to the
1962  * per node partial list.
1963  */
1964 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1965 {
1966 #ifdef CONFIG_SLUB_CPU_PARTIAL
1967 	struct page *oldpage;
1968 	int pages;
1969 	int pobjects;
1970 
1971 	do {
1972 		pages = 0;
1973 		pobjects = 0;
1974 		oldpage = this_cpu_read(s->cpu_slab->partial);
1975 
1976 		if (oldpage) {
1977 			pobjects = oldpage->pobjects;
1978 			pages = oldpage->pages;
1979 			if (drain && pobjects > s->cpu_partial) {
1980 				unsigned long flags;
1981 				/*
1982 				 * partial array is full. Move the existing
1983 				 * set to the per node partial list.
1984 				 */
1985 				local_irq_save(flags);
1986 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
1987 				local_irq_restore(flags);
1988 				oldpage = NULL;
1989 				pobjects = 0;
1990 				pages = 0;
1991 				stat(s, CPU_PARTIAL_DRAIN);
1992 			}
1993 		}
1994 
1995 		pages++;
1996 		pobjects += page->objects - page->inuse;
1997 
1998 		page->pages = pages;
1999 		page->pobjects = pobjects;
2000 		page->next = oldpage;
2001 
2002 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
2003 #endif
2004 }
2005 
2006 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2007 {
2008 	stat(s, CPUSLAB_FLUSH);
2009 	deactivate_slab(s, c->page, c->freelist);
2010 
2011 	c->tid = next_tid(c->tid);
2012 	c->page = NULL;
2013 	c->freelist = NULL;
2014 }
2015 
2016 /*
2017  * Flush cpu slab.
2018  *
2019  * Called from IPI handler with interrupts disabled.
2020  */
2021 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2022 {
2023 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2024 
2025 	if (likely(c)) {
2026 		if (c->page)
2027 			flush_slab(s, c);
2028 
2029 		unfreeze_partials(s, c);
2030 	}
2031 }
2032 
2033 static void flush_cpu_slab(void *d)
2034 {
2035 	struct kmem_cache *s = d;
2036 
2037 	__flush_cpu_slab(s, smp_processor_id());
2038 }
2039 
2040 static bool has_cpu_slab(int cpu, void *info)
2041 {
2042 	struct kmem_cache *s = info;
2043 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2044 
2045 	return c->page || c->partial;
2046 }
2047 
2048 static void flush_all(struct kmem_cache *s)
2049 {
2050 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2051 }
2052 
2053 /*
2054  * Check if the objects in a per cpu structure fit numa
2055  * locality expectations.
2056  */
2057 static inline int node_match(struct page *page, int node)
2058 {
2059 #ifdef CONFIG_NUMA
2060 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2061 		return 0;
2062 #endif
2063 	return 1;
2064 }
2065 
2066 static int count_free(struct page *page)
2067 {
2068 	return page->objects - page->inuse;
2069 }
2070 
2071 static unsigned long count_partial(struct kmem_cache_node *n,
2072 					int (*get_count)(struct page *))
2073 {
2074 	unsigned long flags;
2075 	unsigned long x = 0;
2076 	struct page *page;
2077 
2078 	spin_lock_irqsave(&n->list_lock, flags);
2079 	list_for_each_entry(page, &n->partial, lru)
2080 		x += get_count(page);
2081 	spin_unlock_irqrestore(&n->list_lock, flags);
2082 	return x;
2083 }
2084 
2085 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2086 {
2087 #ifdef CONFIG_SLUB_DEBUG
2088 	return atomic_long_read(&n->total_objects);
2089 #else
2090 	return 0;
2091 #endif
2092 }
2093 
2094 static noinline void
2095 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2096 {
2097 	int node;
2098 
2099 	printk(KERN_WARNING
2100 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2101 		nid, gfpflags);
2102 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2103 		"default order: %d, min order: %d\n", s->name, s->object_size,
2104 		s->size, oo_order(s->oo), oo_order(s->min));
2105 
2106 	if (oo_order(s->min) > get_order(s->object_size))
2107 		printk(KERN_WARNING "  %s debugging increased min order, use "
2108 		       "slub_debug=O to disable.\n", s->name);
2109 
2110 	for_each_online_node(node) {
2111 		struct kmem_cache_node *n = get_node(s, node);
2112 		unsigned long nr_slabs;
2113 		unsigned long nr_objs;
2114 		unsigned long nr_free;
2115 
2116 		if (!n)
2117 			continue;
2118 
2119 		nr_free  = count_partial(n, count_free);
2120 		nr_slabs = node_nr_slabs(n);
2121 		nr_objs  = node_nr_objs(n);
2122 
2123 		printk(KERN_WARNING
2124 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2125 			node, nr_slabs, nr_objs, nr_free);
2126 	}
2127 }
2128 
2129 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2130 			int node, struct kmem_cache_cpu **pc)
2131 {
2132 	void *freelist;
2133 	struct kmem_cache_cpu *c = *pc;
2134 	struct page *page;
2135 
2136 	freelist = get_partial(s, flags, node, c);
2137 
2138 	if (freelist)
2139 		return freelist;
2140 
2141 	page = new_slab(s, flags, node);
2142 	if (page) {
2143 		c = __this_cpu_ptr(s->cpu_slab);
2144 		if (c->page)
2145 			flush_slab(s, c);
2146 
2147 		/*
2148 		 * No other reference to the page yet so we can
2149 		 * muck around with it freely without cmpxchg
2150 		 */
2151 		freelist = page->freelist;
2152 		page->freelist = NULL;
2153 
2154 		stat(s, ALLOC_SLAB);
2155 		c->page = page;
2156 		*pc = c;
2157 	} else
2158 		freelist = NULL;
2159 
2160 	return freelist;
2161 }
2162 
2163 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2164 {
2165 	if (unlikely(PageSlabPfmemalloc(page)))
2166 		return gfp_pfmemalloc_allowed(gfpflags);
2167 
2168 	return true;
2169 }
2170 
2171 /*
2172  * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2173  * or deactivate the page.
2174  *
2175  * The page is still frozen if the return value is not NULL.
2176  *
2177  * If this function returns NULL then the page has been unfrozen.
2178  *
2179  * This function must be called with interrupt disabled.
2180  */
2181 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2182 {
2183 	struct page new;
2184 	unsigned long counters;
2185 	void *freelist;
2186 
2187 	do {
2188 		freelist = page->freelist;
2189 		counters = page->counters;
2190 
2191 		new.counters = counters;
2192 		VM_BUG_ON(!new.frozen);
2193 
2194 		new.inuse = page->objects;
2195 		new.frozen = freelist != NULL;
2196 
2197 	} while (!__cmpxchg_double_slab(s, page,
2198 		freelist, counters,
2199 		NULL, new.counters,
2200 		"get_freelist"));
2201 
2202 	return freelist;
2203 }
2204 
2205 /*
2206  * Slow path. The lockless freelist is empty or we need to perform
2207  * debugging duties.
2208  *
2209  * Processing is still very fast if new objects have been freed to the
2210  * regular freelist. In that case we simply take over the regular freelist
2211  * as the lockless freelist and zap the regular freelist.
2212  *
2213  * If that is not working then we fall back to the partial lists. We take the
2214  * first element of the freelist as the object to allocate now and move the
2215  * rest of the freelist to the lockless freelist.
2216  *
2217  * And if we were unable to get a new slab from the partial slab lists then
2218  * we need to allocate a new slab. This is the slowest path since it involves
2219  * a call to the page allocator and the setup of a new slab.
2220  */
2221 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2222 			  unsigned long addr, struct kmem_cache_cpu *c)
2223 {
2224 	void *freelist;
2225 	struct page *page;
2226 	unsigned long flags;
2227 
2228 	local_irq_save(flags);
2229 #ifdef CONFIG_PREEMPT
2230 	/*
2231 	 * We may have been preempted and rescheduled on a different
2232 	 * cpu before disabling interrupts. Need to reload cpu area
2233 	 * pointer.
2234 	 */
2235 	c = this_cpu_ptr(s->cpu_slab);
2236 #endif
2237 
2238 	page = c->page;
2239 	if (!page)
2240 		goto new_slab;
2241 redo:
2242 
2243 	if (unlikely(!node_match(page, node))) {
2244 		stat(s, ALLOC_NODE_MISMATCH);
2245 		deactivate_slab(s, page, c->freelist);
2246 		c->page = NULL;
2247 		c->freelist = NULL;
2248 		goto new_slab;
2249 	}
2250 
2251 	/*
2252 	 * By rights, we should be searching for a slab page that was
2253 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2254 	 * information when the page leaves the per-cpu allocator
2255 	 */
2256 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2257 		deactivate_slab(s, page, c->freelist);
2258 		c->page = NULL;
2259 		c->freelist = NULL;
2260 		goto new_slab;
2261 	}
2262 
2263 	/* must check again c->freelist in case of cpu migration or IRQ */
2264 	freelist = c->freelist;
2265 	if (freelist)
2266 		goto load_freelist;
2267 
2268 	stat(s, ALLOC_SLOWPATH);
2269 
2270 	freelist = get_freelist(s, page);
2271 
2272 	if (!freelist) {
2273 		c->page = NULL;
2274 		stat(s, DEACTIVATE_BYPASS);
2275 		goto new_slab;
2276 	}
2277 
2278 	stat(s, ALLOC_REFILL);
2279 
2280 load_freelist:
2281 	/*
2282 	 * freelist is pointing to the list of objects to be used.
2283 	 * page is pointing to the page from which the objects are obtained.
2284 	 * That page must be frozen for per cpu allocations to work.
2285 	 */
2286 	VM_BUG_ON(!c->page->frozen);
2287 	c->freelist = get_freepointer(s, freelist);
2288 	c->tid = next_tid(c->tid);
2289 	local_irq_restore(flags);
2290 	return freelist;
2291 
2292 new_slab:
2293 
2294 	if (c->partial) {
2295 		page = c->page = c->partial;
2296 		c->partial = page->next;
2297 		stat(s, CPU_PARTIAL_ALLOC);
2298 		c->freelist = NULL;
2299 		goto redo;
2300 	}
2301 
2302 	freelist = new_slab_objects(s, gfpflags, node, &c);
2303 
2304 	if (unlikely(!freelist)) {
2305 		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2306 			slab_out_of_memory(s, gfpflags, node);
2307 
2308 		local_irq_restore(flags);
2309 		return NULL;
2310 	}
2311 
2312 	page = c->page;
2313 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2314 		goto load_freelist;
2315 
2316 	/* Only entered in the debug case */
2317 	if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2318 		goto new_slab;	/* Slab failed checks. Next slab needed */
2319 
2320 	deactivate_slab(s, page, get_freepointer(s, freelist));
2321 	c->page = NULL;
2322 	c->freelist = NULL;
2323 	local_irq_restore(flags);
2324 	return freelist;
2325 }
2326 
2327 /*
2328  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2329  * have the fastpath folded into their functions. So no function call
2330  * overhead for requests that can be satisfied on the fastpath.
2331  *
2332  * The fastpath works by first checking if the lockless freelist can be used.
2333  * If not then __slab_alloc is called for slow processing.
2334  *
2335  * Otherwise we can simply pick the next object from the lockless free list.
2336  */
2337 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2338 		gfp_t gfpflags, int node, unsigned long addr)
2339 {
2340 	void **object;
2341 	struct kmem_cache_cpu *c;
2342 	struct page *page;
2343 	unsigned long tid;
2344 
2345 	if (slab_pre_alloc_hook(s, gfpflags))
2346 		return NULL;
2347 
2348 	s = memcg_kmem_get_cache(s, gfpflags);
2349 redo:
2350 	/*
2351 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2352 	 * enabled. We may switch back and forth between cpus while
2353 	 * reading from one cpu area. That does not matter as long
2354 	 * as we end up on the original cpu again when doing the cmpxchg.
2355 	 *
2356 	 * Preemption is disabled for the retrieval of the tid because that
2357 	 * must occur from the current processor. We cannot allow rescheduling
2358 	 * on a different processor between the determination of the pointer
2359 	 * and the retrieval of the tid.
2360 	 */
2361 	preempt_disable();
2362 	c = __this_cpu_ptr(s->cpu_slab);
2363 
2364 	/*
2365 	 * The transaction ids are globally unique per cpu and per operation on
2366 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2367 	 * occurs on the right processor and that there was no operation on the
2368 	 * linked list in between.
2369 	 */
2370 	tid = c->tid;
2371 	preempt_enable();
2372 
2373 	object = c->freelist;
2374 	page = c->page;
2375 	if (unlikely(!object || !page || !node_match(page, node)))
2376 		object = __slab_alloc(s, gfpflags, node, addr, c);
2377 
2378 	else {
2379 		void *next_object = get_freepointer_safe(s, object);
2380 
2381 		/*
2382 		 * The cmpxchg will only match if there was no additional
2383 		 * operation and if we are on the right processor.
2384 		 *
2385 		 * The cmpxchg does the following atomically (without lock semantics!)
2386 		 * 1. Relocate first pointer to the current per cpu area.
2387 		 * 2. Verify that tid and freelist have not been changed
2388 		 * 3. If they were not changed replace tid and freelist
2389 		 *
2390 		 * Since this is without lock semantics the protection is only against
2391 		 * code executing on this cpu *not* from access by other cpus.
2392 		 */
2393 		if (unlikely(!this_cpu_cmpxchg_double(
2394 				s->cpu_slab->freelist, s->cpu_slab->tid,
2395 				object, tid,
2396 				next_object, next_tid(tid)))) {
2397 
2398 			note_cmpxchg_failure("slab_alloc", s, tid);
2399 			goto redo;
2400 		}
2401 		prefetch_freepointer(s, next_object);
2402 		stat(s, ALLOC_FASTPATH);
2403 	}
2404 
2405 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2406 		memset(object, 0, s->object_size);
2407 
2408 	slab_post_alloc_hook(s, gfpflags, object);
2409 
2410 	return object;
2411 }
2412 
2413 static __always_inline void *slab_alloc(struct kmem_cache *s,
2414 		gfp_t gfpflags, unsigned long addr)
2415 {
2416 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2417 }
2418 
2419 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2420 {
2421 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2422 
2423 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2424 
2425 	return ret;
2426 }
2427 EXPORT_SYMBOL(kmem_cache_alloc);
2428 
2429 #ifdef CONFIG_TRACING
2430 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2431 {
2432 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2433 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2434 	return ret;
2435 }
2436 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2437 
2438 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2439 {
2440 	void *ret = kmalloc_order(size, flags, order);
2441 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2442 	return ret;
2443 }
2444 EXPORT_SYMBOL(kmalloc_order_trace);
2445 #endif
2446 
2447 #ifdef CONFIG_NUMA
2448 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2449 {
2450 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2451 
2452 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2453 				    s->object_size, s->size, gfpflags, node);
2454 
2455 	return ret;
2456 }
2457 EXPORT_SYMBOL(kmem_cache_alloc_node);
2458 
2459 #ifdef CONFIG_TRACING
2460 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2461 				    gfp_t gfpflags,
2462 				    int node, size_t size)
2463 {
2464 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2465 
2466 	trace_kmalloc_node(_RET_IP_, ret,
2467 			   size, s->size, gfpflags, node);
2468 	return ret;
2469 }
2470 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2471 #endif
2472 #endif
2473 
2474 /*
2475  * Slow patch handling. This may still be called frequently since objects
2476  * have a longer lifetime than the cpu slabs in most processing loads.
2477  *
2478  * So we still attempt to reduce cache line usage. Just take the slab
2479  * lock and free the item. If there is no additional partial page
2480  * handling required then we can return immediately.
2481  */
2482 static void __slab_free(struct kmem_cache *s, struct page *page,
2483 			void *x, unsigned long addr)
2484 {
2485 	void *prior;
2486 	void **object = (void *)x;
2487 	int was_frozen;
2488 	struct page new;
2489 	unsigned long counters;
2490 	struct kmem_cache_node *n = NULL;
2491 	unsigned long uninitialized_var(flags);
2492 
2493 	stat(s, FREE_SLOWPATH);
2494 
2495 	if (kmem_cache_debug(s) &&
2496 		!(n = free_debug_processing(s, page, x, addr, &flags)))
2497 		return;
2498 
2499 	do {
2500 		if (unlikely(n)) {
2501 			spin_unlock_irqrestore(&n->list_lock, flags);
2502 			n = NULL;
2503 		}
2504 		prior = page->freelist;
2505 		counters = page->counters;
2506 		set_freepointer(s, object, prior);
2507 		new.counters = counters;
2508 		was_frozen = new.frozen;
2509 		new.inuse--;
2510 		if ((!new.inuse || !prior) && !was_frozen) {
2511 
2512 			if (kmem_cache_has_cpu_partial(s) && !prior)
2513 
2514 				/*
2515 				 * Slab was on no list before and will be partially empty
2516 				 * We can defer the list move and instead freeze it.
2517 				 */
2518 				new.frozen = 1;
2519 
2520 			else { /* Needs to be taken off a list */
2521 
2522 	                        n = get_node(s, page_to_nid(page));
2523 				/*
2524 				 * Speculatively acquire the list_lock.
2525 				 * If the cmpxchg does not succeed then we may
2526 				 * drop the list_lock without any processing.
2527 				 *
2528 				 * Otherwise the list_lock will synchronize with
2529 				 * other processors updating the list of slabs.
2530 				 */
2531 				spin_lock_irqsave(&n->list_lock, flags);
2532 
2533 			}
2534 		}
2535 
2536 	} while (!cmpxchg_double_slab(s, page,
2537 		prior, counters,
2538 		object, new.counters,
2539 		"__slab_free"));
2540 
2541 	if (likely(!n)) {
2542 
2543 		/*
2544 		 * If we just froze the page then put it onto the
2545 		 * per cpu partial list.
2546 		 */
2547 		if (new.frozen && !was_frozen) {
2548 			put_cpu_partial(s, page, 1);
2549 			stat(s, CPU_PARTIAL_FREE);
2550 		}
2551 		/*
2552 		 * The list lock was not taken therefore no list
2553 		 * activity can be necessary.
2554 		 */
2555                 if (was_frozen)
2556                         stat(s, FREE_FROZEN);
2557                 return;
2558         }
2559 
2560 	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2561 		goto slab_empty;
2562 
2563 	/*
2564 	 * Objects left in the slab. If it was not on the partial list before
2565 	 * then add it.
2566 	 */
2567 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2568 		if (kmem_cache_debug(s))
2569 			remove_full(s, page);
2570 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2571 		stat(s, FREE_ADD_PARTIAL);
2572 	}
2573 	spin_unlock_irqrestore(&n->list_lock, flags);
2574 	return;
2575 
2576 slab_empty:
2577 	if (prior) {
2578 		/*
2579 		 * Slab on the partial list.
2580 		 */
2581 		remove_partial(n, page);
2582 		stat(s, FREE_REMOVE_PARTIAL);
2583 	} else
2584 		/* Slab must be on the full list */
2585 		remove_full(s, page);
2586 
2587 	spin_unlock_irqrestore(&n->list_lock, flags);
2588 	stat(s, FREE_SLAB);
2589 	discard_slab(s, page);
2590 }
2591 
2592 /*
2593  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2594  * can perform fastpath freeing without additional function calls.
2595  *
2596  * The fastpath is only possible if we are freeing to the current cpu slab
2597  * of this processor. This typically the case if we have just allocated
2598  * the item before.
2599  *
2600  * If fastpath is not possible then fall back to __slab_free where we deal
2601  * with all sorts of special processing.
2602  */
2603 static __always_inline void slab_free(struct kmem_cache *s,
2604 			struct page *page, void *x, unsigned long addr)
2605 {
2606 	void **object = (void *)x;
2607 	struct kmem_cache_cpu *c;
2608 	unsigned long tid;
2609 
2610 	slab_free_hook(s, x);
2611 
2612 redo:
2613 	/*
2614 	 * Determine the currently cpus per cpu slab.
2615 	 * The cpu may change afterward. However that does not matter since
2616 	 * data is retrieved via this pointer. If we are on the same cpu
2617 	 * during the cmpxchg then the free will succedd.
2618 	 */
2619 	preempt_disable();
2620 	c = __this_cpu_ptr(s->cpu_slab);
2621 
2622 	tid = c->tid;
2623 	preempt_enable();
2624 
2625 	if (likely(page == c->page)) {
2626 		set_freepointer(s, object, c->freelist);
2627 
2628 		if (unlikely(!this_cpu_cmpxchg_double(
2629 				s->cpu_slab->freelist, s->cpu_slab->tid,
2630 				c->freelist, tid,
2631 				object, next_tid(tid)))) {
2632 
2633 			note_cmpxchg_failure("slab_free", s, tid);
2634 			goto redo;
2635 		}
2636 		stat(s, FREE_FASTPATH);
2637 	} else
2638 		__slab_free(s, page, x, addr);
2639 
2640 }
2641 
2642 void kmem_cache_free(struct kmem_cache *s, void *x)
2643 {
2644 	s = cache_from_obj(s, x);
2645 	if (!s)
2646 		return;
2647 	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2648 	trace_kmem_cache_free(_RET_IP_, x);
2649 }
2650 EXPORT_SYMBOL(kmem_cache_free);
2651 
2652 /*
2653  * Object placement in a slab is made very easy because we always start at
2654  * offset 0. If we tune the size of the object to the alignment then we can
2655  * get the required alignment by putting one properly sized object after
2656  * another.
2657  *
2658  * Notice that the allocation order determines the sizes of the per cpu
2659  * caches. Each processor has always one slab available for allocations.
2660  * Increasing the allocation order reduces the number of times that slabs
2661  * must be moved on and off the partial lists and is therefore a factor in
2662  * locking overhead.
2663  */
2664 
2665 /*
2666  * Mininum / Maximum order of slab pages. This influences locking overhead
2667  * and slab fragmentation. A higher order reduces the number of partial slabs
2668  * and increases the number of allocations possible without having to
2669  * take the list_lock.
2670  */
2671 static int slub_min_order;
2672 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2673 static int slub_min_objects;
2674 
2675 /*
2676  * Merge control. If this is set then no merging of slab caches will occur.
2677  * (Could be removed. This was introduced to pacify the merge skeptics.)
2678  */
2679 static int slub_nomerge;
2680 
2681 /*
2682  * Calculate the order of allocation given an slab object size.
2683  *
2684  * The order of allocation has significant impact on performance and other
2685  * system components. Generally order 0 allocations should be preferred since
2686  * order 0 does not cause fragmentation in the page allocator. Larger objects
2687  * be problematic to put into order 0 slabs because there may be too much
2688  * unused space left. We go to a higher order if more than 1/16th of the slab
2689  * would be wasted.
2690  *
2691  * In order to reach satisfactory performance we must ensure that a minimum
2692  * number of objects is in one slab. Otherwise we may generate too much
2693  * activity on the partial lists which requires taking the list_lock. This is
2694  * less a concern for large slabs though which are rarely used.
2695  *
2696  * slub_max_order specifies the order where we begin to stop considering the
2697  * number of objects in a slab as critical. If we reach slub_max_order then
2698  * we try to keep the page order as low as possible. So we accept more waste
2699  * of space in favor of a small page order.
2700  *
2701  * Higher order allocations also allow the placement of more objects in a
2702  * slab and thereby reduce object handling overhead. If the user has
2703  * requested a higher mininum order then we start with that one instead of
2704  * the smallest order which will fit the object.
2705  */
2706 static inline int slab_order(int size, int min_objects,
2707 				int max_order, int fract_leftover, int reserved)
2708 {
2709 	int order;
2710 	int rem;
2711 	int min_order = slub_min_order;
2712 
2713 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2714 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2715 
2716 	for (order = max(min_order,
2717 				fls(min_objects * size - 1) - PAGE_SHIFT);
2718 			order <= max_order; order++) {
2719 
2720 		unsigned long slab_size = PAGE_SIZE << order;
2721 
2722 		if (slab_size < min_objects * size + reserved)
2723 			continue;
2724 
2725 		rem = (slab_size - reserved) % size;
2726 
2727 		if (rem <= slab_size / fract_leftover)
2728 			break;
2729 
2730 	}
2731 
2732 	return order;
2733 }
2734 
2735 static inline int calculate_order(int size, int reserved)
2736 {
2737 	int order;
2738 	int min_objects;
2739 	int fraction;
2740 	int max_objects;
2741 
2742 	/*
2743 	 * Attempt to find best configuration for a slab. This
2744 	 * works by first attempting to generate a layout with
2745 	 * the best configuration and backing off gradually.
2746 	 *
2747 	 * First we reduce the acceptable waste in a slab. Then
2748 	 * we reduce the minimum objects required in a slab.
2749 	 */
2750 	min_objects = slub_min_objects;
2751 	if (!min_objects)
2752 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2753 	max_objects = order_objects(slub_max_order, size, reserved);
2754 	min_objects = min(min_objects, max_objects);
2755 
2756 	while (min_objects > 1) {
2757 		fraction = 16;
2758 		while (fraction >= 4) {
2759 			order = slab_order(size, min_objects,
2760 					slub_max_order, fraction, reserved);
2761 			if (order <= slub_max_order)
2762 				return order;
2763 			fraction /= 2;
2764 		}
2765 		min_objects--;
2766 	}
2767 
2768 	/*
2769 	 * We were unable to place multiple objects in a slab. Now
2770 	 * lets see if we can place a single object there.
2771 	 */
2772 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2773 	if (order <= slub_max_order)
2774 		return order;
2775 
2776 	/*
2777 	 * Doh this slab cannot be placed using slub_max_order.
2778 	 */
2779 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2780 	if (order < MAX_ORDER)
2781 		return order;
2782 	return -ENOSYS;
2783 }
2784 
2785 static void
2786 init_kmem_cache_node(struct kmem_cache_node *n)
2787 {
2788 	n->nr_partial = 0;
2789 	spin_lock_init(&n->list_lock);
2790 	INIT_LIST_HEAD(&n->partial);
2791 #ifdef CONFIG_SLUB_DEBUG
2792 	atomic_long_set(&n->nr_slabs, 0);
2793 	atomic_long_set(&n->total_objects, 0);
2794 	INIT_LIST_HEAD(&n->full);
2795 #endif
2796 }
2797 
2798 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2799 {
2800 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2801 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2802 
2803 	/*
2804 	 * Must align to double word boundary for the double cmpxchg
2805 	 * instructions to work; see __pcpu_double_call_return_bool().
2806 	 */
2807 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2808 				     2 * sizeof(void *));
2809 
2810 	if (!s->cpu_slab)
2811 		return 0;
2812 
2813 	init_kmem_cache_cpus(s);
2814 
2815 	return 1;
2816 }
2817 
2818 static struct kmem_cache *kmem_cache_node;
2819 
2820 /*
2821  * No kmalloc_node yet so do it by hand. We know that this is the first
2822  * slab on the node for this slabcache. There are no concurrent accesses
2823  * possible.
2824  *
2825  * Note that this function only works on the kmalloc_node_cache
2826  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2827  * memory on a fresh node that has no slab structures yet.
2828  */
2829 static void early_kmem_cache_node_alloc(int node)
2830 {
2831 	struct page *page;
2832 	struct kmem_cache_node *n;
2833 
2834 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2835 
2836 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2837 
2838 	BUG_ON(!page);
2839 	if (page_to_nid(page) != node) {
2840 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2841 				"node %d\n", node);
2842 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2843 				"in order to be able to continue\n");
2844 	}
2845 
2846 	n = page->freelist;
2847 	BUG_ON(!n);
2848 	page->freelist = get_freepointer(kmem_cache_node, n);
2849 	page->inuse = 1;
2850 	page->frozen = 0;
2851 	kmem_cache_node->node[node] = n;
2852 #ifdef CONFIG_SLUB_DEBUG
2853 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2854 	init_tracking(kmem_cache_node, n);
2855 #endif
2856 	init_kmem_cache_node(n);
2857 	inc_slabs_node(kmem_cache_node, node, page->objects);
2858 
2859 	add_partial(n, page, DEACTIVATE_TO_HEAD);
2860 }
2861 
2862 static void free_kmem_cache_nodes(struct kmem_cache *s)
2863 {
2864 	int node;
2865 
2866 	for_each_node_state(node, N_NORMAL_MEMORY) {
2867 		struct kmem_cache_node *n = s->node[node];
2868 
2869 		if (n)
2870 			kmem_cache_free(kmem_cache_node, n);
2871 
2872 		s->node[node] = NULL;
2873 	}
2874 }
2875 
2876 static int init_kmem_cache_nodes(struct kmem_cache *s)
2877 {
2878 	int node;
2879 
2880 	for_each_node_state(node, N_NORMAL_MEMORY) {
2881 		struct kmem_cache_node *n;
2882 
2883 		if (slab_state == DOWN) {
2884 			early_kmem_cache_node_alloc(node);
2885 			continue;
2886 		}
2887 		n = kmem_cache_alloc_node(kmem_cache_node,
2888 						GFP_KERNEL, node);
2889 
2890 		if (!n) {
2891 			free_kmem_cache_nodes(s);
2892 			return 0;
2893 		}
2894 
2895 		s->node[node] = n;
2896 		init_kmem_cache_node(n);
2897 	}
2898 	return 1;
2899 }
2900 
2901 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2902 {
2903 	if (min < MIN_PARTIAL)
2904 		min = MIN_PARTIAL;
2905 	else if (min > MAX_PARTIAL)
2906 		min = MAX_PARTIAL;
2907 	s->min_partial = min;
2908 }
2909 
2910 /*
2911  * calculate_sizes() determines the order and the distribution of data within
2912  * a slab object.
2913  */
2914 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2915 {
2916 	unsigned long flags = s->flags;
2917 	unsigned long size = s->object_size;
2918 	int order;
2919 
2920 	/*
2921 	 * Round up object size to the next word boundary. We can only
2922 	 * place the free pointer at word boundaries and this determines
2923 	 * the possible location of the free pointer.
2924 	 */
2925 	size = ALIGN(size, sizeof(void *));
2926 
2927 #ifdef CONFIG_SLUB_DEBUG
2928 	/*
2929 	 * Determine if we can poison the object itself. If the user of
2930 	 * the slab may touch the object after free or before allocation
2931 	 * then we should never poison the object itself.
2932 	 */
2933 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2934 			!s->ctor)
2935 		s->flags |= __OBJECT_POISON;
2936 	else
2937 		s->flags &= ~__OBJECT_POISON;
2938 
2939 
2940 	/*
2941 	 * If we are Redzoning then check if there is some space between the
2942 	 * end of the object and the free pointer. If not then add an
2943 	 * additional word to have some bytes to store Redzone information.
2944 	 */
2945 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2946 		size += sizeof(void *);
2947 #endif
2948 
2949 	/*
2950 	 * With that we have determined the number of bytes in actual use
2951 	 * by the object. This is the potential offset to the free pointer.
2952 	 */
2953 	s->inuse = size;
2954 
2955 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2956 		s->ctor)) {
2957 		/*
2958 		 * Relocate free pointer after the object if it is not
2959 		 * permitted to overwrite the first word of the object on
2960 		 * kmem_cache_free.
2961 		 *
2962 		 * This is the case if we do RCU, have a constructor or
2963 		 * destructor or are poisoning the objects.
2964 		 */
2965 		s->offset = size;
2966 		size += sizeof(void *);
2967 	}
2968 
2969 #ifdef CONFIG_SLUB_DEBUG
2970 	if (flags & SLAB_STORE_USER)
2971 		/*
2972 		 * Need to store information about allocs and frees after
2973 		 * the object.
2974 		 */
2975 		size += 2 * sizeof(struct track);
2976 
2977 	if (flags & SLAB_RED_ZONE)
2978 		/*
2979 		 * Add some empty padding so that we can catch
2980 		 * overwrites from earlier objects rather than let
2981 		 * tracking information or the free pointer be
2982 		 * corrupted if a user writes before the start
2983 		 * of the object.
2984 		 */
2985 		size += sizeof(void *);
2986 #endif
2987 
2988 	/*
2989 	 * SLUB stores one object immediately after another beginning from
2990 	 * offset 0. In order to align the objects we have to simply size
2991 	 * each object to conform to the alignment.
2992 	 */
2993 	size = ALIGN(size, s->align);
2994 	s->size = size;
2995 	if (forced_order >= 0)
2996 		order = forced_order;
2997 	else
2998 		order = calculate_order(size, s->reserved);
2999 
3000 	if (order < 0)
3001 		return 0;
3002 
3003 	s->allocflags = 0;
3004 	if (order)
3005 		s->allocflags |= __GFP_COMP;
3006 
3007 	if (s->flags & SLAB_CACHE_DMA)
3008 		s->allocflags |= GFP_DMA;
3009 
3010 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3011 		s->allocflags |= __GFP_RECLAIMABLE;
3012 
3013 	/*
3014 	 * Determine the number of objects per slab
3015 	 */
3016 	s->oo = oo_make(order, size, s->reserved);
3017 	s->min = oo_make(get_order(size), size, s->reserved);
3018 	if (oo_objects(s->oo) > oo_objects(s->max))
3019 		s->max = s->oo;
3020 
3021 	return !!oo_objects(s->oo);
3022 }
3023 
3024 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3025 {
3026 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3027 	s->reserved = 0;
3028 
3029 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3030 		s->reserved = sizeof(struct rcu_head);
3031 
3032 	if (!calculate_sizes(s, -1))
3033 		goto error;
3034 	if (disable_higher_order_debug) {
3035 		/*
3036 		 * Disable debugging flags that store metadata if the min slab
3037 		 * order increased.
3038 		 */
3039 		if (get_order(s->size) > get_order(s->object_size)) {
3040 			s->flags &= ~DEBUG_METADATA_FLAGS;
3041 			s->offset = 0;
3042 			if (!calculate_sizes(s, -1))
3043 				goto error;
3044 		}
3045 	}
3046 
3047 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3048     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3049 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3050 		/* Enable fast mode */
3051 		s->flags |= __CMPXCHG_DOUBLE;
3052 #endif
3053 
3054 	/*
3055 	 * The larger the object size is, the more pages we want on the partial
3056 	 * list to avoid pounding the page allocator excessively.
3057 	 */
3058 	set_min_partial(s, ilog2(s->size) / 2);
3059 
3060 	/*
3061 	 * cpu_partial determined the maximum number of objects kept in the
3062 	 * per cpu partial lists of a processor.
3063 	 *
3064 	 * Per cpu partial lists mainly contain slabs that just have one
3065 	 * object freed. If they are used for allocation then they can be
3066 	 * filled up again with minimal effort. The slab will never hit the
3067 	 * per node partial lists and therefore no locking will be required.
3068 	 *
3069 	 * This setting also determines
3070 	 *
3071 	 * A) The number of objects from per cpu partial slabs dumped to the
3072 	 *    per node list when we reach the limit.
3073 	 * B) The number of objects in cpu partial slabs to extract from the
3074 	 *    per node list when we run out of per cpu objects. We only fetch 50%
3075 	 *    to keep some capacity around for frees.
3076 	 */
3077 	if (!kmem_cache_has_cpu_partial(s))
3078 		s->cpu_partial = 0;
3079 	else if (s->size >= PAGE_SIZE)
3080 		s->cpu_partial = 2;
3081 	else if (s->size >= 1024)
3082 		s->cpu_partial = 6;
3083 	else if (s->size >= 256)
3084 		s->cpu_partial = 13;
3085 	else
3086 		s->cpu_partial = 30;
3087 
3088 #ifdef CONFIG_NUMA
3089 	s->remote_node_defrag_ratio = 1000;
3090 #endif
3091 	if (!init_kmem_cache_nodes(s))
3092 		goto error;
3093 
3094 	if (alloc_kmem_cache_cpus(s))
3095 		return 0;
3096 
3097 	free_kmem_cache_nodes(s);
3098 error:
3099 	if (flags & SLAB_PANIC)
3100 		panic("Cannot create slab %s size=%lu realsize=%u "
3101 			"order=%u offset=%u flags=%lx\n",
3102 			s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
3103 			s->offset, flags);
3104 	return -EINVAL;
3105 }
3106 
3107 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3108 							const char *text)
3109 {
3110 #ifdef CONFIG_SLUB_DEBUG
3111 	void *addr = page_address(page);
3112 	void *p;
3113 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3114 				     sizeof(long), GFP_ATOMIC);
3115 	if (!map)
3116 		return;
3117 	slab_err(s, page, text, s->name);
3118 	slab_lock(page);
3119 
3120 	get_map(s, page, map);
3121 	for_each_object(p, s, addr, page->objects) {
3122 
3123 		if (!test_bit(slab_index(p, s, addr), map)) {
3124 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3125 							p, p - addr);
3126 			print_tracking(s, p);
3127 		}
3128 	}
3129 	slab_unlock(page);
3130 	kfree(map);
3131 #endif
3132 }
3133 
3134 /*
3135  * Attempt to free all partial slabs on a node.
3136  * This is called from kmem_cache_close(). We must be the last thread
3137  * using the cache and therefore we do not need to lock anymore.
3138  */
3139 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3140 {
3141 	struct page *page, *h;
3142 
3143 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3144 		if (!page->inuse) {
3145 			remove_partial(n, page);
3146 			discard_slab(s, page);
3147 		} else {
3148 			list_slab_objects(s, page,
3149 			"Objects remaining in %s on kmem_cache_close()");
3150 		}
3151 	}
3152 }
3153 
3154 /*
3155  * Release all resources used by a slab cache.
3156  */
3157 static inline int kmem_cache_close(struct kmem_cache *s)
3158 {
3159 	int node;
3160 
3161 	flush_all(s);
3162 	/* Attempt to free all objects */
3163 	for_each_node_state(node, N_NORMAL_MEMORY) {
3164 		struct kmem_cache_node *n = get_node(s, node);
3165 
3166 		free_partial(s, n);
3167 		if (n->nr_partial || slabs_node(s, node))
3168 			return 1;
3169 	}
3170 	free_percpu(s->cpu_slab);
3171 	free_kmem_cache_nodes(s);
3172 	return 0;
3173 }
3174 
3175 int __kmem_cache_shutdown(struct kmem_cache *s)
3176 {
3177 	int rc = kmem_cache_close(s);
3178 
3179 	if (!rc) {
3180 		/*
3181 		 * We do the same lock strategy around sysfs_slab_add, see
3182 		 * __kmem_cache_create. Because this is pretty much the last
3183 		 * operation we do and the lock will be released shortly after
3184 		 * that in slab_common.c, we could just move sysfs_slab_remove
3185 		 * to a later point in common code. We should do that when we
3186 		 * have a common sysfs framework for all allocators.
3187 		 */
3188 		mutex_unlock(&slab_mutex);
3189 		sysfs_slab_remove(s);
3190 		mutex_lock(&slab_mutex);
3191 	}
3192 
3193 	return rc;
3194 }
3195 
3196 /********************************************************************
3197  *		Kmalloc subsystem
3198  *******************************************************************/
3199 
3200 static int __init setup_slub_min_order(char *str)
3201 {
3202 	get_option(&str, &slub_min_order);
3203 
3204 	return 1;
3205 }
3206 
3207 __setup("slub_min_order=", setup_slub_min_order);
3208 
3209 static int __init setup_slub_max_order(char *str)
3210 {
3211 	get_option(&str, &slub_max_order);
3212 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3213 
3214 	return 1;
3215 }
3216 
3217 __setup("slub_max_order=", setup_slub_max_order);
3218 
3219 static int __init setup_slub_min_objects(char *str)
3220 {
3221 	get_option(&str, &slub_min_objects);
3222 
3223 	return 1;
3224 }
3225 
3226 __setup("slub_min_objects=", setup_slub_min_objects);
3227 
3228 static int __init setup_slub_nomerge(char *str)
3229 {
3230 	slub_nomerge = 1;
3231 	return 1;
3232 }
3233 
3234 __setup("slub_nomerge", setup_slub_nomerge);
3235 
3236 void *__kmalloc(size_t size, gfp_t flags)
3237 {
3238 	struct kmem_cache *s;
3239 	void *ret;
3240 
3241 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3242 		return kmalloc_large(size, flags);
3243 
3244 	s = kmalloc_slab(size, flags);
3245 
3246 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3247 		return s;
3248 
3249 	ret = slab_alloc(s, flags, _RET_IP_);
3250 
3251 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3252 
3253 	return ret;
3254 }
3255 EXPORT_SYMBOL(__kmalloc);
3256 
3257 #ifdef CONFIG_NUMA
3258 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3259 {
3260 	struct page *page;
3261 	void *ptr = NULL;
3262 
3263 	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3264 	page = alloc_pages_node(node, flags, get_order(size));
3265 	if (page)
3266 		ptr = page_address(page);
3267 
3268 	kmemleak_alloc(ptr, size, 1, flags);
3269 	return ptr;
3270 }
3271 
3272 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3273 {
3274 	struct kmem_cache *s;
3275 	void *ret;
3276 
3277 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3278 		ret = kmalloc_large_node(size, flags, node);
3279 
3280 		trace_kmalloc_node(_RET_IP_, ret,
3281 				   size, PAGE_SIZE << get_order(size),
3282 				   flags, node);
3283 
3284 		return ret;
3285 	}
3286 
3287 	s = kmalloc_slab(size, flags);
3288 
3289 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3290 		return s;
3291 
3292 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3293 
3294 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3295 
3296 	return ret;
3297 }
3298 EXPORT_SYMBOL(__kmalloc_node);
3299 #endif
3300 
3301 size_t ksize(const void *object)
3302 {
3303 	struct page *page;
3304 
3305 	if (unlikely(object == ZERO_SIZE_PTR))
3306 		return 0;
3307 
3308 	page = virt_to_head_page(object);
3309 
3310 	if (unlikely(!PageSlab(page))) {
3311 		WARN_ON(!PageCompound(page));
3312 		return PAGE_SIZE << compound_order(page);
3313 	}
3314 
3315 	return slab_ksize(page->slab_cache);
3316 }
3317 EXPORT_SYMBOL(ksize);
3318 
3319 #ifdef CONFIG_SLUB_DEBUG
3320 bool verify_mem_not_deleted(const void *x)
3321 {
3322 	struct page *page;
3323 	void *object = (void *)x;
3324 	unsigned long flags;
3325 	bool rv;
3326 
3327 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3328 		return false;
3329 
3330 	local_irq_save(flags);
3331 
3332 	page = virt_to_head_page(x);
3333 	if (unlikely(!PageSlab(page))) {
3334 		/* maybe it was from stack? */
3335 		rv = true;
3336 		goto out_unlock;
3337 	}
3338 
3339 	slab_lock(page);
3340 	if (on_freelist(page->slab_cache, page, object)) {
3341 		object_err(page->slab_cache, page, object, "Object is on free-list");
3342 		rv = false;
3343 	} else {
3344 		rv = true;
3345 	}
3346 	slab_unlock(page);
3347 
3348 out_unlock:
3349 	local_irq_restore(flags);
3350 	return rv;
3351 }
3352 EXPORT_SYMBOL(verify_mem_not_deleted);
3353 #endif
3354 
3355 void kfree(const void *x)
3356 {
3357 	struct page *page;
3358 	void *object = (void *)x;
3359 
3360 	trace_kfree(_RET_IP_, x);
3361 
3362 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3363 		return;
3364 
3365 	page = virt_to_head_page(x);
3366 	if (unlikely(!PageSlab(page))) {
3367 		BUG_ON(!PageCompound(page));
3368 		kmemleak_free(x);
3369 		__free_memcg_kmem_pages(page, compound_order(page));
3370 		return;
3371 	}
3372 	slab_free(page->slab_cache, page, object, _RET_IP_);
3373 }
3374 EXPORT_SYMBOL(kfree);
3375 
3376 /*
3377  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3378  * the remaining slabs by the number of items in use. The slabs with the
3379  * most items in use come first. New allocations will then fill those up
3380  * and thus they can be removed from the partial lists.
3381  *
3382  * The slabs with the least items are placed last. This results in them
3383  * being allocated from last increasing the chance that the last objects
3384  * are freed in them.
3385  */
3386 int kmem_cache_shrink(struct kmem_cache *s)
3387 {
3388 	int node;
3389 	int i;
3390 	struct kmem_cache_node *n;
3391 	struct page *page;
3392 	struct page *t;
3393 	int objects = oo_objects(s->max);
3394 	struct list_head *slabs_by_inuse =
3395 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3396 	unsigned long flags;
3397 
3398 	if (!slabs_by_inuse)
3399 		return -ENOMEM;
3400 
3401 	flush_all(s);
3402 	for_each_node_state(node, N_NORMAL_MEMORY) {
3403 		n = get_node(s, node);
3404 
3405 		if (!n->nr_partial)
3406 			continue;
3407 
3408 		for (i = 0; i < objects; i++)
3409 			INIT_LIST_HEAD(slabs_by_inuse + i);
3410 
3411 		spin_lock_irqsave(&n->list_lock, flags);
3412 
3413 		/*
3414 		 * Build lists indexed by the items in use in each slab.
3415 		 *
3416 		 * Note that concurrent frees may occur while we hold the
3417 		 * list_lock. page->inuse here is the upper limit.
3418 		 */
3419 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3420 			list_move(&page->lru, slabs_by_inuse + page->inuse);
3421 			if (!page->inuse)
3422 				n->nr_partial--;
3423 		}
3424 
3425 		/*
3426 		 * Rebuild the partial list with the slabs filled up most
3427 		 * first and the least used slabs at the end.
3428 		 */
3429 		for (i = objects - 1; i > 0; i--)
3430 			list_splice(slabs_by_inuse + i, n->partial.prev);
3431 
3432 		spin_unlock_irqrestore(&n->list_lock, flags);
3433 
3434 		/* Release empty slabs */
3435 		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3436 			discard_slab(s, page);
3437 	}
3438 
3439 	kfree(slabs_by_inuse);
3440 	return 0;
3441 }
3442 EXPORT_SYMBOL(kmem_cache_shrink);
3443 
3444 static int slab_mem_going_offline_callback(void *arg)
3445 {
3446 	struct kmem_cache *s;
3447 
3448 	mutex_lock(&slab_mutex);
3449 	list_for_each_entry(s, &slab_caches, list)
3450 		kmem_cache_shrink(s);
3451 	mutex_unlock(&slab_mutex);
3452 
3453 	return 0;
3454 }
3455 
3456 static void slab_mem_offline_callback(void *arg)
3457 {
3458 	struct kmem_cache_node *n;
3459 	struct kmem_cache *s;
3460 	struct memory_notify *marg = arg;
3461 	int offline_node;
3462 
3463 	offline_node = marg->status_change_nid_normal;
3464 
3465 	/*
3466 	 * If the node still has available memory. we need kmem_cache_node
3467 	 * for it yet.
3468 	 */
3469 	if (offline_node < 0)
3470 		return;
3471 
3472 	mutex_lock(&slab_mutex);
3473 	list_for_each_entry(s, &slab_caches, list) {
3474 		n = get_node(s, offline_node);
3475 		if (n) {
3476 			/*
3477 			 * if n->nr_slabs > 0, slabs still exist on the node
3478 			 * that is going down. We were unable to free them,
3479 			 * and offline_pages() function shouldn't call this
3480 			 * callback. So, we must fail.
3481 			 */
3482 			BUG_ON(slabs_node(s, offline_node));
3483 
3484 			s->node[offline_node] = NULL;
3485 			kmem_cache_free(kmem_cache_node, n);
3486 		}
3487 	}
3488 	mutex_unlock(&slab_mutex);
3489 }
3490 
3491 static int slab_mem_going_online_callback(void *arg)
3492 {
3493 	struct kmem_cache_node *n;
3494 	struct kmem_cache *s;
3495 	struct memory_notify *marg = arg;
3496 	int nid = marg->status_change_nid_normal;
3497 	int ret = 0;
3498 
3499 	/*
3500 	 * If the node's memory is already available, then kmem_cache_node is
3501 	 * already created. Nothing to do.
3502 	 */
3503 	if (nid < 0)
3504 		return 0;
3505 
3506 	/*
3507 	 * We are bringing a node online. No memory is available yet. We must
3508 	 * allocate a kmem_cache_node structure in order to bring the node
3509 	 * online.
3510 	 */
3511 	mutex_lock(&slab_mutex);
3512 	list_for_each_entry(s, &slab_caches, list) {
3513 		/*
3514 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3515 		 *      since memory is not yet available from the node that
3516 		 *      is brought up.
3517 		 */
3518 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3519 		if (!n) {
3520 			ret = -ENOMEM;
3521 			goto out;
3522 		}
3523 		init_kmem_cache_node(n);
3524 		s->node[nid] = n;
3525 	}
3526 out:
3527 	mutex_unlock(&slab_mutex);
3528 	return ret;
3529 }
3530 
3531 static int slab_memory_callback(struct notifier_block *self,
3532 				unsigned long action, void *arg)
3533 {
3534 	int ret = 0;
3535 
3536 	switch (action) {
3537 	case MEM_GOING_ONLINE:
3538 		ret = slab_mem_going_online_callback(arg);
3539 		break;
3540 	case MEM_GOING_OFFLINE:
3541 		ret = slab_mem_going_offline_callback(arg);
3542 		break;
3543 	case MEM_OFFLINE:
3544 	case MEM_CANCEL_ONLINE:
3545 		slab_mem_offline_callback(arg);
3546 		break;
3547 	case MEM_ONLINE:
3548 	case MEM_CANCEL_OFFLINE:
3549 		break;
3550 	}
3551 	if (ret)
3552 		ret = notifier_from_errno(ret);
3553 	else
3554 		ret = NOTIFY_OK;
3555 	return ret;
3556 }
3557 
3558 static struct notifier_block slab_memory_callback_nb = {
3559 	.notifier_call = slab_memory_callback,
3560 	.priority = SLAB_CALLBACK_PRI,
3561 };
3562 
3563 /********************************************************************
3564  *			Basic setup of slabs
3565  *******************************************************************/
3566 
3567 /*
3568  * Used for early kmem_cache structures that were allocated using
3569  * the page allocator. Allocate them properly then fix up the pointers
3570  * that may be pointing to the wrong kmem_cache structure.
3571  */
3572 
3573 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3574 {
3575 	int node;
3576 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3577 
3578 	memcpy(s, static_cache, kmem_cache->object_size);
3579 
3580 	/*
3581 	 * This runs very early, and only the boot processor is supposed to be
3582 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3583 	 * IPIs around.
3584 	 */
3585 	__flush_cpu_slab(s, smp_processor_id());
3586 	for_each_node_state(node, N_NORMAL_MEMORY) {
3587 		struct kmem_cache_node *n = get_node(s, node);
3588 		struct page *p;
3589 
3590 		if (n) {
3591 			list_for_each_entry(p, &n->partial, lru)
3592 				p->slab_cache = s;
3593 
3594 #ifdef CONFIG_SLUB_DEBUG
3595 			list_for_each_entry(p, &n->full, lru)
3596 				p->slab_cache = s;
3597 #endif
3598 		}
3599 	}
3600 	list_add(&s->list, &slab_caches);
3601 	return s;
3602 }
3603 
3604 void __init kmem_cache_init(void)
3605 {
3606 	static __initdata struct kmem_cache boot_kmem_cache,
3607 		boot_kmem_cache_node;
3608 
3609 	if (debug_guardpage_minorder())
3610 		slub_max_order = 0;
3611 
3612 	kmem_cache_node = &boot_kmem_cache_node;
3613 	kmem_cache = &boot_kmem_cache;
3614 
3615 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3616 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3617 
3618 	register_hotmemory_notifier(&slab_memory_callback_nb);
3619 
3620 	/* Able to allocate the per node structures */
3621 	slab_state = PARTIAL;
3622 
3623 	create_boot_cache(kmem_cache, "kmem_cache",
3624 			offsetof(struct kmem_cache, node) +
3625 				nr_node_ids * sizeof(struct kmem_cache_node *),
3626 		       SLAB_HWCACHE_ALIGN);
3627 
3628 	kmem_cache = bootstrap(&boot_kmem_cache);
3629 
3630 	/*
3631 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3632 	 * kmem_cache_node is separately allocated so no need to
3633 	 * update any list pointers.
3634 	 */
3635 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3636 
3637 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3638 	create_kmalloc_caches(0);
3639 
3640 #ifdef CONFIG_SMP
3641 	register_cpu_notifier(&slab_notifier);
3642 #endif
3643 
3644 	printk(KERN_INFO
3645 		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3646 		" CPUs=%d, Nodes=%d\n",
3647 		cache_line_size(),
3648 		slub_min_order, slub_max_order, slub_min_objects,
3649 		nr_cpu_ids, nr_node_ids);
3650 }
3651 
3652 void __init kmem_cache_init_late(void)
3653 {
3654 }
3655 
3656 /*
3657  * Find a mergeable slab cache
3658  */
3659 static int slab_unmergeable(struct kmem_cache *s)
3660 {
3661 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3662 		return 1;
3663 
3664 	if (s->ctor)
3665 		return 1;
3666 
3667 	/*
3668 	 * We may have set a slab to be unmergeable during bootstrap.
3669 	 */
3670 	if (s->refcount < 0)
3671 		return 1;
3672 
3673 	return 0;
3674 }
3675 
3676 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3677 		size_t align, unsigned long flags, const char *name,
3678 		void (*ctor)(void *))
3679 {
3680 	struct kmem_cache *s;
3681 
3682 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3683 		return NULL;
3684 
3685 	if (ctor)
3686 		return NULL;
3687 
3688 	size = ALIGN(size, sizeof(void *));
3689 	align = calculate_alignment(flags, align, size);
3690 	size = ALIGN(size, align);
3691 	flags = kmem_cache_flags(size, flags, name, NULL);
3692 
3693 	list_for_each_entry(s, &slab_caches, list) {
3694 		if (slab_unmergeable(s))
3695 			continue;
3696 
3697 		if (size > s->size)
3698 			continue;
3699 
3700 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3701 				continue;
3702 		/*
3703 		 * Check if alignment is compatible.
3704 		 * Courtesy of Adrian Drzewiecki
3705 		 */
3706 		if ((s->size & ~(align - 1)) != s->size)
3707 			continue;
3708 
3709 		if (s->size - size >= sizeof(void *))
3710 			continue;
3711 
3712 		if (!cache_match_memcg(s, memcg))
3713 			continue;
3714 
3715 		return s;
3716 	}
3717 	return NULL;
3718 }
3719 
3720 struct kmem_cache *
3721 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3722 		   size_t align, unsigned long flags, void (*ctor)(void *))
3723 {
3724 	struct kmem_cache *s;
3725 
3726 	s = find_mergeable(memcg, size, align, flags, name, ctor);
3727 	if (s) {
3728 		s->refcount++;
3729 		/*
3730 		 * Adjust the object sizes so that we clear
3731 		 * the complete object on kzalloc.
3732 		 */
3733 		s->object_size = max(s->object_size, (int)size);
3734 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3735 
3736 		if (sysfs_slab_alias(s, name)) {
3737 			s->refcount--;
3738 			s = NULL;
3739 		}
3740 	}
3741 
3742 	return s;
3743 }
3744 
3745 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3746 {
3747 	int err;
3748 
3749 	err = kmem_cache_open(s, flags);
3750 	if (err)
3751 		return err;
3752 
3753 	/* Mutex is not taken during early boot */
3754 	if (slab_state <= UP)
3755 		return 0;
3756 
3757 	memcg_propagate_slab_attrs(s);
3758 	mutex_unlock(&slab_mutex);
3759 	err = sysfs_slab_add(s);
3760 	mutex_lock(&slab_mutex);
3761 
3762 	if (err)
3763 		kmem_cache_close(s);
3764 
3765 	return err;
3766 }
3767 
3768 #ifdef CONFIG_SMP
3769 /*
3770  * Use the cpu notifier to insure that the cpu slabs are flushed when
3771  * necessary.
3772  */
3773 static int slab_cpuup_callback(struct notifier_block *nfb,
3774 		unsigned long action, void *hcpu)
3775 {
3776 	long cpu = (long)hcpu;
3777 	struct kmem_cache *s;
3778 	unsigned long flags;
3779 
3780 	switch (action) {
3781 	case CPU_UP_CANCELED:
3782 	case CPU_UP_CANCELED_FROZEN:
3783 	case CPU_DEAD:
3784 	case CPU_DEAD_FROZEN:
3785 		mutex_lock(&slab_mutex);
3786 		list_for_each_entry(s, &slab_caches, list) {
3787 			local_irq_save(flags);
3788 			__flush_cpu_slab(s, cpu);
3789 			local_irq_restore(flags);
3790 		}
3791 		mutex_unlock(&slab_mutex);
3792 		break;
3793 	default:
3794 		break;
3795 	}
3796 	return NOTIFY_OK;
3797 }
3798 
3799 static struct notifier_block slab_notifier = {
3800 	.notifier_call = slab_cpuup_callback
3801 };
3802 
3803 #endif
3804 
3805 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3806 {
3807 	struct kmem_cache *s;
3808 	void *ret;
3809 
3810 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3811 		return kmalloc_large(size, gfpflags);
3812 
3813 	s = kmalloc_slab(size, gfpflags);
3814 
3815 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3816 		return s;
3817 
3818 	ret = slab_alloc(s, gfpflags, caller);
3819 
3820 	/* Honor the call site pointer we received. */
3821 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3822 
3823 	return ret;
3824 }
3825 
3826 #ifdef CONFIG_NUMA
3827 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3828 					int node, unsigned long caller)
3829 {
3830 	struct kmem_cache *s;
3831 	void *ret;
3832 
3833 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3834 		ret = kmalloc_large_node(size, gfpflags, node);
3835 
3836 		trace_kmalloc_node(caller, ret,
3837 				   size, PAGE_SIZE << get_order(size),
3838 				   gfpflags, node);
3839 
3840 		return ret;
3841 	}
3842 
3843 	s = kmalloc_slab(size, gfpflags);
3844 
3845 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3846 		return s;
3847 
3848 	ret = slab_alloc_node(s, gfpflags, node, caller);
3849 
3850 	/* Honor the call site pointer we received. */
3851 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3852 
3853 	return ret;
3854 }
3855 #endif
3856 
3857 #ifdef CONFIG_SYSFS
3858 static int count_inuse(struct page *page)
3859 {
3860 	return page->inuse;
3861 }
3862 
3863 static int count_total(struct page *page)
3864 {
3865 	return page->objects;
3866 }
3867 #endif
3868 
3869 #ifdef CONFIG_SLUB_DEBUG
3870 static int validate_slab(struct kmem_cache *s, struct page *page,
3871 						unsigned long *map)
3872 {
3873 	void *p;
3874 	void *addr = page_address(page);
3875 
3876 	if (!check_slab(s, page) ||
3877 			!on_freelist(s, page, NULL))
3878 		return 0;
3879 
3880 	/* Now we know that a valid freelist exists */
3881 	bitmap_zero(map, page->objects);
3882 
3883 	get_map(s, page, map);
3884 	for_each_object(p, s, addr, page->objects) {
3885 		if (test_bit(slab_index(p, s, addr), map))
3886 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3887 				return 0;
3888 	}
3889 
3890 	for_each_object(p, s, addr, page->objects)
3891 		if (!test_bit(slab_index(p, s, addr), map))
3892 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3893 				return 0;
3894 	return 1;
3895 }
3896 
3897 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3898 						unsigned long *map)
3899 {
3900 	slab_lock(page);
3901 	validate_slab(s, page, map);
3902 	slab_unlock(page);
3903 }
3904 
3905 static int validate_slab_node(struct kmem_cache *s,
3906 		struct kmem_cache_node *n, unsigned long *map)
3907 {
3908 	unsigned long count = 0;
3909 	struct page *page;
3910 	unsigned long flags;
3911 
3912 	spin_lock_irqsave(&n->list_lock, flags);
3913 
3914 	list_for_each_entry(page, &n->partial, lru) {
3915 		validate_slab_slab(s, page, map);
3916 		count++;
3917 	}
3918 	if (count != n->nr_partial)
3919 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3920 			"counter=%ld\n", s->name, count, n->nr_partial);
3921 
3922 	if (!(s->flags & SLAB_STORE_USER))
3923 		goto out;
3924 
3925 	list_for_each_entry(page, &n->full, lru) {
3926 		validate_slab_slab(s, page, map);
3927 		count++;
3928 	}
3929 	if (count != atomic_long_read(&n->nr_slabs))
3930 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3931 			"counter=%ld\n", s->name, count,
3932 			atomic_long_read(&n->nr_slabs));
3933 
3934 out:
3935 	spin_unlock_irqrestore(&n->list_lock, flags);
3936 	return count;
3937 }
3938 
3939 static long validate_slab_cache(struct kmem_cache *s)
3940 {
3941 	int node;
3942 	unsigned long count = 0;
3943 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3944 				sizeof(unsigned long), GFP_KERNEL);
3945 
3946 	if (!map)
3947 		return -ENOMEM;
3948 
3949 	flush_all(s);
3950 	for_each_node_state(node, N_NORMAL_MEMORY) {
3951 		struct kmem_cache_node *n = get_node(s, node);
3952 
3953 		count += validate_slab_node(s, n, map);
3954 	}
3955 	kfree(map);
3956 	return count;
3957 }
3958 /*
3959  * Generate lists of code addresses where slabcache objects are allocated
3960  * and freed.
3961  */
3962 
3963 struct location {
3964 	unsigned long count;
3965 	unsigned long addr;
3966 	long long sum_time;
3967 	long min_time;
3968 	long max_time;
3969 	long min_pid;
3970 	long max_pid;
3971 	DECLARE_BITMAP(cpus, NR_CPUS);
3972 	nodemask_t nodes;
3973 };
3974 
3975 struct loc_track {
3976 	unsigned long max;
3977 	unsigned long count;
3978 	struct location *loc;
3979 };
3980 
3981 static void free_loc_track(struct loc_track *t)
3982 {
3983 	if (t->max)
3984 		free_pages((unsigned long)t->loc,
3985 			get_order(sizeof(struct location) * t->max));
3986 }
3987 
3988 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3989 {
3990 	struct location *l;
3991 	int order;
3992 
3993 	order = get_order(sizeof(struct location) * max);
3994 
3995 	l = (void *)__get_free_pages(flags, order);
3996 	if (!l)
3997 		return 0;
3998 
3999 	if (t->count) {
4000 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4001 		free_loc_track(t);
4002 	}
4003 	t->max = max;
4004 	t->loc = l;
4005 	return 1;
4006 }
4007 
4008 static int add_location(struct loc_track *t, struct kmem_cache *s,
4009 				const struct track *track)
4010 {
4011 	long start, end, pos;
4012 	struct location *l;
4013 	unsigned long caddr;
4014 	unsigned long age = jiffies - track->when;
4015 
4016 	start = -1;
4017 	end = t->count;
4018 
4019 	for ( ; ; ) {
4020 		pos = start + (end - start + 1) / 2;
4021 
4022 		/*
4023 		 * There is nothing at "end". If we end up there
4024 		 * we need to add something to before end.
4025 		 */
4026 		if (pos == end)
4027 			break;
4028 
4029 		caddr = t->loc[pos].addr;
4030 		if (track->addr == caddr) {
4031 
4032 			l = &t->loc[pos];
4033 			l->count++;
4034 			if (track->when) {
4035 				l->sum_time += age;
4036 				if (age < l->min_time)
4037 					l->min_time = age;
4038 				if (age > l->max_time)
4039 					l->max_time = age;
4040 
4041 				if (track->pid < l->min_pid)
4042 					l->min_pid = track->pid;
4043 				if (track->pid > l->max_pid)
4044 					l->max_pid = track->pid;
4045 
4046 				cpumask_set_cpu(track->cpu,
4047 						to_cpumask(l->cpus));
4048 			}
4049 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4050 			return 1;
4051 		}
4052 
4053 		if (track->addr < caddr)
4054 			end = pos;
4055 		else
4056 			start = pos;
4057 	}
4058 
4059 	/*
4060 	 * Not found. Insert new tracking element.
4061 	 */
4062 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4063 		return 0;
4064 
4065 	l = t->loc + pos;
4066 	if (pos < t->count)
4067 		memmove(l + 1, l,
4068 			(t->count - pos) * sizeof(struct location));
4069 	t->count++;
4070 	l->count = 1;
4071 	l->addr = track->addr;
4072 	l->sum_time = age;
4073 	l->min_time = age;
4074 	l->max_time = age;
4075 	l->min_pid = track->pid;
4076 	l->max_pid = track->pid;
4077 	cpumask_clear(to_cpumask(l->cpus));
4078 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4079 	nodes_clear(l->nodes);
4080 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4081 	return 1;
4082 }
4083 
4084 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4085 		struct page *page, enum track_item alloc,
4086 		unsigned long *map)
4087 {
4088 	void *addr = page_address(page);
4089 	void *p;
4090 
4091 	bitmap_zero(map, page->objects);
4092 	get_map(s, page, map);
4093 
4094 	for_each_object(p, s, addr, page->objects)
4095 		if (!test_bit(slab_index(p, s, addr), map))
4096 			add_location(t, s, get_track(s, p, alloc));
4097 }
4098 
4099 static int list_locations(struct kmem_cache *s, char *buf,
4100 					enum track_item alloc)
4101 {
4102 	int len = 0;
4103 	unsigned long i;
4104 	struct loc_track t = { 0, 0, NULL };
4105 	int node;
4106 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4107 				     sizeof(unsigned long), GFP_KERNEL);
4108 
4109 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4110 				     GFP_TEMPORARY)) {
4111 		kfree(map);
4112 		return sprintf(buf, "Out of memory\n");
4113 	}
4114 	/* Push back cpu slabs */
4115 	flush_all(s);
4116 
4117 	for_each_node_state(node, N_NORMAL_MEMORY) {
4118 		struct kmem_cache_node *n = get_node(s, node);
4119 		unsigned long flags;
4120 		struct page *page;
4121 
4122 		if (!atomic_long_read(&n->nr_slabs))
4123 			continue;
4124 
4125 		spin_lock_irqsave(&n->list_lock, flags);
4126 		list_for_each_entry(page, &n->partial, lru)
4127 			process_slab(&t, s, page, alloc, map);
4128 		list_for_each_entry(page, &n->full, lru)
4129 			process_slab(&t, s, page, alloc, map);
4130 		spin_unlock_irqrestore(&n->list_lock, flags);
4131 	}
4132 
4133 	for (i = 0; i < t.count; i++) {
4134 		struct location *l = &t.loc[i];
4135 
4136 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4137 			break;
4138 		len += sprintf(buf + len, "%7ld ", l->count);
4139 
4140 		if (l->addr)
4141 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4142 		else
4143 			len += sprintf(buf + len, "<not-available>");
4144 
4145 		if (l->sum_time != l->min_time) {
4146 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4147 				l->min_time,
4148 				(long)div_u64(l->sum_time, l->count),
4149 				l->max_time);
4150 		} else
4151 			len += sprintf(buf + len, " age=%ld",
4152 				l->min_time);
4153 
4154 		if (l->min_pid != l->max_pid)
4155 			len += sprintf(buf + len, " pid=%ld-%ld",
4156 				l->min_pid, l->max_pid);
4157 		else
4158 			len += sprintf(buf + len, " pid=%ld",
4159 				l->min_pid);
4160 
4161 		if (num_online_cpus() > 1 &&
4162 				!cpumask_empty(to_cpumask(l->cpus)) &&
4163 				len < PAGE_SIZE - 60) {
4164 			len += sprintf(buf + len, " cpus=");
4165 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4166 						 to_cpumask(l->cpus));
4167 		}
4168 
4169 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4170 				len < PAGE_SIZE - 60) {
4171 			len += sprintf(buf + len, " nodes=");
4172 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4173 					l->nodes);
4174 		}
4175 
4176 		len += sprintf(buf + len, "\n");
4177 	}
4178 
4179 	free_loc_track(&t);
4180 	kfree(map);
4181 	if (!t.count)
4182 		len += sprintf(buf, "No data\n");
4183 	return len;
4184 }
4185 #endif
4186 
4187 #ifdef SLUB_RESILIENCY_TEST
4188 static void resiliency_test(void)
4189 {
4190 	u8 *p;
4191 
4192 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4193 
4194 	printk(KERN_ERR "SLUB resiliency testing\n");
4195 	printk(KERN_ERR "-----------------------\n");
4196 	printk(KERN_ERR "A. Corruption after allocation\n");
4197 
4198 	p = kzalloc(16, GFP_KERNEL);
4199 	p[16] = 0x12;
4200 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4201 			" 0x12->0x%p\n\n", p + 16);
4202 
4203 	validate_slab_cache(kmalloc_caches[4]);
4204 
4205 	/* Hmmm... The next two are dangerous */
4206 	p = kzalloc(32, GFP_KERNEL);
4207 	p[32 + sizeof(void *)] = 0x34;
4208 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4209 			" 0x34 -> -0x%p\n", p);
4210 	printk(KERN_ERR
4211 		"If allocated object is overwritten then not detectable\n\n");
4212 
4213 	validate_slab_cache(kmalloc_caches[5]);
4214 	p = kzalloc(64, GFP_KERNEL);
4215 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4216 	*p = 0x56;
4217 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4218 									p);
4219 	printk(KERN_ERR
4220 		"If allocated object is overwritten then not detectable\n\n");
4221 	validate_slab_cache(kmalloc_caches[6]);
4222 
4223 	printk(KERN_ERR "\nB. Corruption after free\n");
4224 	p = kzalloc(128, GFP_KERNEL);
4225 	kfree(p);
4226 	*p = 0x78;
4227 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4228 	validate_slab_cache(kmalloc_caches[7]);
4229 
4230 	p = kzalloc(256, GFP_KERNEL);
4231 	kfree(p);
4232 	p[50] = 0x9a;
4233 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4234 			p);
4235 	validate_slab_cache(kmalloc_caches[8]);
4236 
4237 	p = kzalloc(512, GFP_KERNEL);
4238 	kfree(p);
4239 	p[512] = 0xab;
4240 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4241 	validate_slab_cache(kmalloc_caches[9]);
4242 }
4243 #else
4244 #ifdef CONFIG_SYSFS
4245 static void resiliency_test(void) {};
4246 #endif
4247 #endif
4248 
4249 #ifdef CONFIG_SYSFS
4250 enum slab_stat_type {
4251 	SL_ALL,			/* All slabs */
4252 	SL_PARTIAL,		/* Only partially allocated slabs */
4253 	SL_CPU,			/* Only slabs used for cpu caches */
4254 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4255 	SL_TOTAL		/* Determine object capacity not slabs */
4256 };
4257 
4258 #define SO_ALL		(1 << SL_ALL)
4259 #define SO_PARTIAL	(1 << SL_PARTIAL)
4260 #define SO_CPU		(1 << SL_CPU)
4261 #define SO_OBJECTS	(1 << SL_OBJECTS)
4262 #define SO_TOTAL	(1 << SL_TOTAL)
4263 
4264 static ssize_t show_slab_objects(struct kmem_cache *s,
4265 			    char *buf, unsigned long flags)
4266 {
4267 	unsigned long total = 0;
4268 	int node;
4269 	int x;
4270 	unsigned long *nodes;
4271 	unsigned long *per_cpu;
4272 
4273 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4274 	if (!nodes)
4275 		return -ENOMEM;
4276 	per_cpu = nodes + nr_node_ids;
4277 
4278 	if (flags & SO_CPU) {
4279 		int cpu;
4280 
4281 		for_each_possible_cpu(cpu) {
4282 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4283 			int node;
4284 			struct page *page;
4285 
4286 			page = ACCESS_ONCE(c->page);
4287 			if (!page)
4288 				continue;
4289 
4290 			node = page_to_nid(page);
4291 			if (flags & SO_TOTAL)
4292 				x = page->objects;
4293 			else if (flags & SO_OBJECTS)
4294 				x = page->inuse;
4295 			else
4296 				x = 1;
4297 
4298 			total += x;
4299 			nodes[node] += x;
4300 
4301 			page = ACCESS_ONCE(c->partial);
4302 			if (page) {
4303 				x = page->pobjects;
4304 				total += x;
4305 				nodes[node] += x;
4306 			}
4307 
4308 			per_cpu[node]++;
4309 		}
4310 	}
4311 
4312 	lock_memory_hotplug();
4313 #ifdef CONFIG_SLUB_DEBUG
4314 	if (flags & SO_ALL) {
4315 		for_each_node_state(node, N_NORMAL_MEMORY) {
4316 			struct kmem_cache_node *n = get_node(s, node);
4317 
4318 		if (flags & SO_TOTAL)
4319 			x = atomic_long_read(&n->total_objects);
4320 		else if (flags & SO_OBJECTS)
4321 			x = atomic_long_read(&n->total_objects) -
4322 				count_partial(n, count_free);
4323 
4324 			else
4325 				x = atomic_long_read(&n->nr_slabs);
4326 			total += x;
4327 			nodes[node] += x;
4328 		}
4329 
4330 	} else
4331 #endif
4332 	if (flags & SO_PARTIAL) {
4333 		for_each_node_state(node, N_NORMAL_MEMORY) {
4334 			struct kmem_cache_node *n = get_node(s, node);
4335 
4336 			if (flags & SO_TOTAL)
4337 				x = count_partial(n, count_total);
4338 			else if (flags & SO_OBJECTS)
4339 				x = count_partial(n, count_inuse);
4340 			else
4341 				x = n->nr_partial;
4342 			total += x;
4343 			nodes[node] += x;
4344 		}
4345 	}
4346 	x = sprintf(buf, "%lu", total);
4347 #ifdef CONFIG_NUMA
4348 	for_each_node_state(node, N_NORMAL_MEMORY)
4349 		if (nodes[node])
4350 			x += sprintf(buf + x, " N%d=%lu",
4351 					node, nodes[node]);
4352 #endif
4353 	unlock_memory_hotplug();
4354 	kfree(nodes);
4355 	return x + sprintf(buf + x, "\n");
4356 }
4357 
4358 #ifdef CONFIG_SLUB_DEBUG
4359 static int any_slab_objects(struct kmem_cache *s)
4360 {
4361 	int node;
4362 
4363 	for_each_online_node(node) {
4364 		struct kmem_cache_node *n = get_node(s, node);
4365 
4366 		if (!n)
4367 			continue;
4368 
4369 		if (atomic_long_read(&n->total_objects))
4370 			return 1;
4371 	}
4372 	return 0;
4373 }
4374 #endif
4375 
4376 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4377 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4378 
4379 struct slab_attribute {
4380 	struct attribute attr;
4381 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4382 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4383 };
4384 
4385 #define SLAB_ATTR_RO(_name) \
4386 	static struct slab_attribute _name##_attr = \
4387 	__ATTR(_name, 0400, _name##_show, NULL)
4388 
4389 #define SLAB_ATTR(_name) \
4390 	static struct slab_attribute _name##_attr =  \
4391 	__ATTR(_name, 0600, _name##_show, _name##_store)
4392 
4393 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4394 {
4395 	return sprintf(buf, "%d\n", s->size);
4396 }
4397 SLAB_ATTR_RO(slab_size);
4398 
4399 static ssize_t align_show(struct kmem_cache *s, char *buf)
4400 {
4401 	return sprintf(buf, "%d\n", s->align);
4402 }
4403 SLAB_ATTR_RO(align);
4404 
4405 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4406 {
4407 	return sprintf(buf, "%d\n", s->object_size);
4408 }
4409 SLAB_ATTR_RO(object_size);
4410 
4411 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4412 {
4413 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4414 }
4415 SLAB_ATTR_RO(objs_per_slab);
4416 
4417 static ssize_t order_store(struct kmem_cache *s,
4418 				const char *buf, size_t length)
4419 {
4420 	unsigned long order;
4421 	int err;
4422 
4423 	err = strict_strtoul(buf, 10, &order);
4424 	if (err)
4425 		return err;
4426 
4427 	if (order > slub_max_order || order < slub_min_order)
4428 		return -EINVAL;
4429 
4430 	calculate_sizes(s, order);
4431 	return length;
4432 }
4433 
4434 static ssize_t order_show(struct kmem_cache *s, char *buf)
4435 {
4436 	return sprintf(buf, "%d\n", oo_order(s->oo));
4437 }
4438 SLAB_ATTR(order);
4439 
4440 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4441 {
4442 	return sprintf(buf, "%lu\n", s->min_partial);
4443 }
4444 
4445 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4446 				 size_t length)
4447 {
4448 	unsigned long min;
4449 	int err;
4450 
4451 	err = strict_strtoul(buf, 10, &min);
4452 	if (err)
4453 		return err;
4454 
4455 	set_min_partial(s, min);
4456 	return length;
4457 }
4458 SLAB_ATTR(min_partial);
4459 
4460 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4461 {
4462 	return sprintf(buf, "%u\n", s->cpu_partial);
4463 }
4464 
4465 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4466 				 size_t length)
4467 {
4468 	unsigned long objects;
4469 	int err;
4470 
4471 	err = strict_strtoul(buf, 10, &objects);
4472 	if (err)
4473 		return err;
4474 	if (objects && !kmem_cache_has_cpu_partial(s))
4475 		return -EINVAL;
4476 
4477 	s->cpu_partial = objects;
4478 	flush_all(s);
4479 	return length;
4480 }
4481 SLAB_ATTR(cpu_partial);
4482 
4483 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4484 {
4485 	if (!s->ctor)
4486 		return 0;
4487 	return sprintf(buf, "%pS\n", s->ctor);
4488 }
4489 SLAB_ATTR_RO(ctor);
4490 
4491 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4492 {
4493 	return sprintf(buf, "%d\n", s->refcount - 1);
4494 }
4495 SLAB_ATTR_RO(aliases);
4496 
4497 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4498 {
4499 	return show_slab_objects(s, buf, SO_PARTIAL);
4500 }
4501 SLAB_ATTR_RO(partial);
4502 
4503 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4504 {
4505 	return show_slab_objects(s, buf, SO_CPU);
4506 }
4507 SLAB_ATTR_RO(cpu_slabs);
4508 
4509 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4510 {
4511 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4512 }
4513 SLAB_ATTR_RO(objects);
4514 
4515 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4516 {
4517 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4518 }
4519 SLAB_ATTR_RO(objects_partial);
4520 
4521 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4522 {
4523 	int objects = 0;
4524 	int pages = 0;
4525 	int cpu;
4526 	int len;
4527 
4528 	for_each_online_cpu(cpu) {
4529 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4530 
4531 		if (page) {
4532 			pages += page->pages;
4533 			objects += page->pobjects;
4534 		}
4535 	}
4536 
4537 	len = sprintf(buf, "%d(%d)", objects, pages);
4538 
4539 #ifdef CONFIG_SMP
4540 	for_each_online_cpu(cpu) {
4541 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4542 
4543 		if (page && len < PAGE_SIZE - 20)
4544 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4545 				page->pobjects, page->pages);
4546 	}
4547 #endif
4548 	return len + sprintf(buf + len, "\n");
4549 }
4550 SLAB_ATTR_RO(slabs_cpu_partial);
4551 
4552 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4553 {
4554 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4555 }
4556 
4557 static ssize_t reclaim_account_store(struct kmem_cache *s,
4558 				const char *buf, size_t length)
4559 {
4560 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4561 	if (buf[0] == '1')
4562 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4563 	return length;
4564 }
4565 SLAB_ATTR(reclaim_account);
4566 
4567 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4568 {
4569 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4570 }
4571 SLAB_ATTR_RO(hwcache_align);
4572 
4573 #ifdef CONFIG_ZONE_DMA
4574 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4575 {
4576 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4577 }
4578 SLAB_ATTR_RO(cache_dma);
4579 #endif
4580 
4581 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4582 {
4583 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4584 }
4585 SLAB_ATTR_RO(destroy_by_rcu);
4586 
4587 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4588 {
4589 	return sprintf(buf, "%d\n", s->reserved);
4590 }
4591 SLAB_ATTR_RO(reserved);
4592 
4593 #ifdef CONFIG_SLUB_DEBUG
4594 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4595 {
4596 	return show_slab_objects(s, buf, SO_ALL);
4597 }
4598 SLAB_ATTR_RO(slabs);
4599 
4600 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4601 {
4602 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4603 }
4604 SLAB_ATTR_RO(total_objects);
4605 
4606 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4607 {
4608 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4609 }
4610 
4611 static ssize_t sanity_checks_store(struct kmem_cache *s,
4612 				const char *buf, size_t length)
4613 {
4614 	s->flags &= ~SLAB_DEBUG_FREE;
4615 	if (buf[0] == '1') {
4616 		s->flags &= ~__CMPXCHG_DOUBLE;
4617 		s->flags |= SLAB_DEBUG_FREE;
4618 	}
4619 	return length;
4620 }
4621 SLAB_ATTR(sanity_checks);
4622 
4623 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4624 {
4625 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4626 }
4627 
4628 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4629 							size_t length)
4630 {
4631 	s->flags &= ~SLAB_TRACE;
4632 	if (buf[0] == '1') {
4633 		s->flags &= ~__CMPXCHG_DOUBLE;
4634 		s->flags |= SLAB_TRACE;
4635 	}
4636 	return length;
4637 }
4638 SLAB_ATTR(trace);
4639 
4640 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4641 {
4642 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4643 }
4644 
4645 static ssize_t red_zone_store(struct kmem_cache *s,
4646 				const char *buf, size_t length)
4647 {
4648 	if (any_slab_objects(s))
4649 		return -EBUSY;
4650 
4651 	s->flags &= ~SLAB_RED_ZONE;
4652 	if (buf[0] == '1') {
4653 		s->flags &= ~__CMPXCHG_DOUBLE;
4654 		s->flags |= SLAB_RED_ZONE;
4655 	}
4656 	calculate_sizes(s, -1);
4657 	return length;
4658 }
4659 SLAB_ATTR(red_zone);
4660 
4661 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4662 {
4663 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4664 }
4665 
4666 static ssize_t poison_store(struct kmem_cache *s,
4667 				const char *buf, size_t length)
4668 {
4669 	if (any_slab_objects(s))
4670 		return -EBUSY;
4671 
4672 	s->flags &= ~SLAB_POISON;
4673 	if (buf[0] == '1') {
4674 		s->flags &= ~__CMPXCHG_DOUBLE;
4675 		s->flags |= SLAB_POISON;
4676 	}
4677 	calculate_sizes(s, -1);
4678 	return length;
4679 }
4680 SLAB_ATTR(poison);
4681 
4682 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4683 {
4684 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4685 }
4686 
4687 static ssize_t store_user_store(struct kmem_cache *s,
4688 				const char *buf, size_t length)
4689 {
4690 	if (any_slab_objects(s))
4691 		return -EBUSY;
4692 
4693 	s->flags &= ~SLAB_STORE_USER;
4694 	if (buf[0] == '1') {
4695 		s->flags &= ~__CMPXCHG_DOUBLE;
4696 		s->flags |= SLAB_STORE_USER;
4697 	}
4698 	calculate_sizes(s, -1);
4699 	return length;
4700 }
4701 SLAB_ATTR(store_user);
4702 
4703 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4704 {
4705 	return 0;
4706 }
4707 
4708 static ssize_t validate_store(struct kmem_cache *s,
4709 			const char *buf, size_t length)
4710 {
4711 	int ret = -EINVAL;
4712 
4713 	if (buf[0] == '1') {
4714 		ret = validate_slab_cache(s);
4715 		if (ret >= 0)
4716 			ret = length;
4717 	}
4718 	return ret;
4719 }
4720 SLAB_ATTR(validate);
4721 
4722 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4723 {
4724 	if (!(s->flags & SLAB_STORE_USER))
4725 		return -ENOSYS;
4726 	return list_locations(s, buf, TRACK_ALLOC);
4727 }
4728 SLAB_ATTR_RO(alloc_calls);
4729 
4730 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4731 {
4732 	if (!(s->flags & SLAB_STORE_USER))
4733 		return -ENOSYS;
4734 	return list_locations(s, buf, TRACK_FREE);
4735 }
4736 SLAB_ATTR_RO(free_calls);
4737 #endif /* CONFIG_SLUB_DEBUG */
4738 
4739 #ifdef CONFIG_FAILSLAB
4740 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4741 {
4742 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4743 }
4744 
4745 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4746 							size_t length)
4747 {
4748 	s->flags &= ~SLAB_FAILSLAB;
4749 	if (buf[0] == '1')
4750 		s->flags |= SLAB_FAILSLAB;
4751 	return length;
4752 }
4753 SLAB_ATTR(failslab);
4754 #endif
4755 
4756 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4757 {
4758 	return 0;
4759 }
4760 
4761 static ssize_t shrink_store(struct kmem_cache *s,
4762 			const char *buf, size_t length)
4763 {
4764 	if (buf[0] == '1') {
4765 		int rc = kmem_cache_shrink(s);
4766 
4767 		if (rc)
4768 			return rc;
4769 	} else
4770 		return -EINVAL;
4771 	return length;
4772 }
4773 SLAB_ATTR(shrink);
4774 
4775 #ifdef CONFIG_NUMA
4776 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4777 {
4778 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4779 }
4780 
4781 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4782 				const char *buf, size_t length)
4783 {
4784 	unsigned long ratio;
4785 	int err;
4786 
4787 	err = strict_strtoul(buf, 10, &ratio);
4788 	if (err)
4789 		return err;
4790 
4791 	if (ratio <= 100)
4792 		s->remote_node_defrag_ratio = ratio * 10;
4793 
4794 	return length;
4795 }
4796 SLAB_ATTR(remote_node_defrag_ratio);
4797 #endif
4798 
4799 #ifdef CONFIG_SLUB_STATS
4800 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4801 {
4802 	unsigned long sum  = 0;
4803 	int cpu;
4804 	int len;
4805 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4806 
4807 	if (!data)
4808 		return -ENOMEM;
4809 
4810 	for_each_online_cpu(cpu) {
4811 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4812 
4813 		data[cpu] = x;
4814 		sum += x;
4815 	}
4816 
4817 	len = sprintf(buf, "%lu", sum);
4818 
4819 #ifdef CONFIG_SMP
4820 	for_each_online_cpu(cpu) {
4821 		if (data[cpu] && len < PAGE_SIZE - 20)
4822 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4823 	}
4824 #endif
4825 	kfree(data);
4826 	return len + sprintf(buf + len, "\n");
4827 }
4828 
4829 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4830 {
4831 	int cpu;
4832 
4833 	for_each_online_cpu(cpu)
4834 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4835 }
4836 
4837 #define STAT_ATTR(si, text) 					\
4838 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4839 {								\
4840 	return show_stat(s, buf, si);				\
4841 }								\
4842 static ssize_t text##_store(struct kmem_cache *s,		\
4843 				const char *buf, size_t length)	\
4844 {								\
4845 	if (buf[0] != '0')					\
4846 		return -EINVAL;					\
4847 	clear_stat(s, si);					\
4848 	return length;						\
4849 }								\
4850 SLAB_ATTR(text);						\
4851 
4852 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4853 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4854 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4855 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4856 STAT_ATTR(FREE_FROZEN, free_frozen);
4857 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4858 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4859 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4860 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4861 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4862 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4863 STAT_ATTR(FREE_SLAB, free_slab);
4864 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4865 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4866 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4867 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4868 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4869 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4870 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4871 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4872 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4873 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4874 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4875 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4876 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4877 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4878 #endif
4879 
4880 static struct attribute *slab_attrs[] = {
4881 	&slab_size_attr.attr,
4882 	&object_size_attr.attr,
4883 	&objs_per_slab_attr.attr,
4884 	&order_attr.attr,
4885 	&min_partial_attr.attr,
4886 	&cpu_partial_attr.attr,
4887 	&objects_attr.attr,
4888 	&objects_partial_attr.attr,
4889 	&partial_attr.attr,
4890 	&cpu_slabs_attr.attr,
4891 	&ctor_attr.attr,
4892 	&aliases_attr.attr,
4893 	&align_attr.attr,
4894 	&hwcache_align_attr.attr,
4895 	&reclaim_account_attr.attr,
4896 	&destroy_by_rcu_attr.attr,
4897 	&shrink_attr.attr,
4898 	&reserved_attr.attr,
4899 	&slabs_cpu_partial_attr.attr,
4900 #ifdef CONFIG_SLUB_DEBUG
4901 	&total_objects_attr.attr,
4902 	&slabs_attr.attr,
4903 	&sanity_checks_attr.attr,
4904 	&trace_attr.attr,
4905 	&red_zone_attr.attr,
4906 	&poison_attr.attr,
4907 	&store_user_attr.attr,
4908 	&validate_attr.attr,
4909 	&alloc_calls_attr.attr,
4910 	&free_calls_attr.attr,
4911 #endif
4912 #ifdef CONFIG_ZONE_DMA
4913 	&cache_dma_attr.attr,
4914 #endif
4915 #ifdef CONFIG_NUMA
4916 	&remote_node_defrag_ratio_attr.attr,
4917 #endif
4918 #ifdef CONFIG_SLUB_STATS
4919 	&alloc_fastpath_attr.attr,
4920 	&alloc_slowpath_attr.attr,
4921 	&free_fastpath_attr.attr,
4922 	&free_slowpath_attr.attr,
4923 	&free_frozen_attr.attr,
4924 	&free_add_partial_attr.attr,
4925 	&free_remove_partial_attr.attr,
4926 	&alloc_from_partial_attr.attr,
4927 	&alloc_slab_attr.attr,
4928 	&alloc_refill_attr.attr,
4929 	&alloc_node_mismatch_attr.attr,
4930 	&free_slab_attr.attr,
4931 	&cpuslab_flush_attr.attr,
4932 	&deactivate_full_attr.attr,
4933 	&deactivate_empty_attr.attr,
4934 	&deactivate_to_head_attr.attr,
4935 	&deactivate_to_tail_attr.attr,
4936 	&deactivate_remote_frees_attr.attr,
4937 	&deactivate_bypass_attr.attr,
4938 	&order_fallback_attr.attr,
4939 	&cmpxchg_double_fail_attr.attr,
4940 	&cmpxchg_double_cpu_fail_attr.attr,
4941 	&cpu_partial_alloc_attr.attr,
4942 	&cpu_partial_free_attr.attr,
4943 	&cpu_partial_node_attr.attr,
4944 	&cpu_partial_drain_attr.attr,
4945 #endif
4946 #ifdef CONFIG_FAILSLAB
4947 	&failslab_attr.attr,
4948 #endif
4949 
4950 	NULL
4951 };
4952 
4953 static struct attribute_group slab_attr_group = {
4954 	.attrs = slab_attrs,
4955 };
4956 
4957 static ssize_t slab_attr_show(struct kobject *kobj,
4958 				struct attribute *attr,
4959 				char *buf)
4960 {
4961 	struct slab_attribute *attribute;
4962 	struct kmem_cache *s;
4963 	int err;
4964 
4965 	attribute = to_slab_attr(attr);
4966 	s = to_slab(kobj);
4967 
4968 	if (!attribute->show)
4969 		return -EIO;
4970 
4971 	err = attribute->show(s, buf);
4972 
4973 	return err;
4974 }
4975 
4976 static ssize_t slab_attr_store(struct kobject *kobj,
4977 				struct attribute *attr,
4978 				const char *buf, size_t len)
4979 {
4980 	struct slab_attribute *attribute;
4981 	struct kmem_cache *s;
4982 	int err;
4983 
4984 	attribute = to_slab_attr(attr);
4985 	s = to_slab(kobj);
4986 
4987 	if (!attribute->store)
4988 		return -EIO;
4989 
4990 	err = attribute->store(s, buf, len);
4991 #ifdef CONFIG_MEMCG_KMEM
4992 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4993 		int i;
4994 
4995 		mutex_lock(&slab_mutex);
4996 		if (s->max_attr_size < len)
4997 			s->max_attr_size = len;
4998 
4999 		/*
5000 		 * This is a best effort propagation, so this function's return
5001 		 * value will be determined by the parent cache only. This is
5002 		 * basically because not all attributes will have a well
5003 		 * defined semantics for rollbacks - most of the actions will
5004 		 * have permanent effects.
5005 		 *
5006 		 * Returning the error value of any of the children that fail
5007 		 * is not 100 % defined, in the sense that users seeing the
5008 		 * error code won't be able to know anything about the state of
5009 		 * the cache.
5010 		 *
5011 		 * Only returning the error code for the parent cache at least
5012 		 * has well defined semantics. The cache being written to
5013 		 * directly either failed or succeeded, in which case we loop
5014 		 * through the descendants with best-effort propagation.
5015 		 */
5016 		for_each_memcg_cache_index(i) {
5017 			struct kmem_cache *c = cache_from_memcg(s, i);
5018 			if (c)
5019 				attribute->store(c, buf, len);
5020 		}
5021 		mutex_unlock(&slab_mutex);
5022 	}
5023 #endif
5024 	return err;
5025 }
5026 
5027 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5028 {
5029 #ifdef CONFIG_MEMCG_KMEM
5030 	int i;
5031 	char *buffer = NULL;
5032 
5033 	if (!is_root_cache(s))
5034 		return;
5035 
5036 	/*
5037 	 * This mean this cache had no attribute written. Therefore, no point
5038 	 * in copying default values around
5039 	 */
5040 	if (!s->max_attr_size)
5041 		return;
5042 
5043 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5044 		char mbuf[64];
5045 		char *buf;
5046 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5047 
5048 		if (!attr || !attr->store || !attr->show)
5049 			continue;
5050 
5051 		/*
5052 		 * It is really bad that we have to allocate here, so we will
5053 		 * do it only as a fallback. If we actually allocate, though,
5054 		 * we can just use the allocated buffer until the end.
5055 		 *
5056 		 * Most of the slub attributes will tend to be very small in
5057 		 * size, but sysfs allows buffers up to a page, so they can
5058 		 * theoretically happen.
5059 		 */
5060 		if (buffer)
5061 			buf = buffer;
5062 		else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5063 			buf = mbuf;
5064 		else {
5065 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5066 			if (WARN_ON(!buffer))
5067 				continue;
5068 			buf = buffer;
5069 		}
5070 
5071 		attr->show(s->memcg_params->root_cache, buf);
5072 		attr->store(s, buf, strlen(buf));
5073 	}
5074 
5075 	if (buffer)
5076 		free_page((unsigned long)buffer);
5077 #endif
5078 }
5079 
5080 static const struct sysfs_ops slab_sysfs_ops = {
5081 	.show = slab_attr_show,
5082 	.store = slab_attr_store,
5083 };
5084 
5085 static struct kobj_type slab_ktype = {
5086 	.sysfs_ops = &slab_sysfs_ops,
5087 };
5088 
5089 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5090 {
5091 	struct kobj_type *ktype = get_ktype(kobj);
5092 
5093 	if (ktype == &slab_ktype)
5094 		return 1;
5095 	return 0;
5096 }
5097 
5098 static const struct kset_uevent_ops slab_uevent_ops = {
5099 	.filter = uevent_filter,
5100 };
5101 
5102 static struct kset *slab_kset;
5103 
5104 #define ID_STR_LENGTH 64
5105 
5106 /* Create a unique string id for a slab cache:
5107  *
5108  * Format	:[flags-]size
5109  */
5110 static char *create_unique_id(struct kmem_cache *s)
5111 {
5112 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5113 	char *p = name;
5114 
5115 	BUG_ON(!name);
5116 
5117 	*p++ = ':';
5118 	/*
5119 	 * First flags affecting slabcache operations. We will only
5120 	 * get here for aliasable slabs so we do not need to support
5121 	 * too many flags. The flags here must cover all flags that
5122 	 * are matched during merging to guarantee that the id is
5123 	 * unique.
5124 	 */
5125 	if (s->flags & SLAB_CACHE_DMA)
5126 		*p++ = 'd';
5127 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5128 		*p++ = 'a';
5129 	if (s->flags & SLAB_DEBUG_FREE)
5130 		*p++ = 'F';
5131 	if (!(s->flags & SLAB_NOTRACK))
5132 		*p++ = 't';
5133 	if (p != name + 1)
5134 		*p++ = '-';
5135 	p += sprintf(p, "%07d", s->size);
5136 
5137 #ifdef CONFIG_MEMCG_KMEM
5138 	if (!is_root_cache(s))
5139 		p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
5140 #endif
5141 
5142 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5143 	return name;
5144 }
5145 
5146 static int sysfs_slab_add(struct kmem_cache *s)
5147 {
5148 	int err;
5149 	const char *name;
5150 	int unmergeable = slab_unmergeable(s);
5151 
5152 	if (unmergeable) {
5153 		/*
5154 		 * Slabcache can never be merged so we can use the name proper.
5155 		 * This is typically the case for debug situations. In that
5156 		 * case we can catch duplicate names easily.
5157 		 */
5158 		sysfs_remove_link(&slab_kset->kobj, s->name);
5159 		name = s->name;
5160 	} else {
5161 		/*
5162 		 * Create a unique name for the slab as a target
5163 		 * for the symlinks.
5164 		 */
5165 		name = create_unique_id(s);
5166 	}
5167 
5168 	s->kobj.kset = slab_kset;
5169 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5170 	if (err) {
5171 		kobject_put(&s->kobj);
5172 		return err;
5173 	}
5174 
5175 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5176 	if (err) {
5177 		kobject_del(&s->kobj);
5178 		kobject_put(&s->kobj);
5179 		return err;
5180 	}
5181 	kobject_uevent(&s->kobj, KOBJ_ADD);
5182 	if (!unmergeable) {
5183 		/* Setup first alias */
5184 		sysfs_slab_alias(s, s->name);
5185 		kfree(name);
5186 	}
5187 	return 0;
5188 }
5189 
5190 static void sysfs_slab_remove(struct kmem_cache *s)
5191 {
5192 	if (slab_state < FULL)
5193 		/*
5194 		 * Sysfs has not been setup yet so no need to remove the
5195 		 * cache from sysfs.
5196 		 */
5197 		return;
5198 
5199 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5200 	kobject_del(&s->kobj);
5201 	kobject_put(&s->kobj);
5202 }
5203 
5204 /*
5205  * Need to buffer aliases during bootup until sysfs becomes
5206  * available lest we lose that information.
5207  */
5208 struct saved_alias {
5209 	struct kmem_cache *s;
5210 	const char *name;
5211 	struct saved_alias *next;
5212 };
5213 
5214 static struct saved_alias *alias_list;
5215 
5216 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5217 {
5218 	struct saved_alias *al;
5219 
5220 	if (slab_state == FULL) {
5221 		/*
5222 		 * If we have a leftover link then remove it.
5223 		 */
5224 		sysfs_remove_link(&slab_kset->kobj, name);
5225 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5226 	}
5227 
5228 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5229 	if (!al)
5230 		return -ENOMEM;
5231 
5232 	al->s = s;
5233 	al->name = name;
5234 	al->next = alias_list;
5235 	alias_list = al;
5236 	return 0;
5237 }
5238 
5239 static int __init slab_sysfs_init(void)
5240 {
5241 	struct kmem_cache *s;
5242 	int err;
5243 
5244 	mutex_lock(&slab_mutex);
5245 
5246 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5247 	if (!slab_kset) {
5248 		mutex_unlock(&slab_mutex);
5249 		printk(KERN_ERR "Cannot register slab subsystem.\n");
5250 		return -ENOSYS;
5251 	}
5252 
5253 	slab_state = FULL;
5254 
5255 	list_for_each_entry(s, &slab_caches, list) {
5256 		err = sysfs_slab_add(s);
5257 		if (err)
5258 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5259 						" to sysfs\n", s->name);
5260 	}
5261 
5262 	while (alias_list) {
5263 		struct saved_alias *al = alias_list;
5264 
5265 		alias_list = alias_list->next;
5266 		err = sysfs_slab_alias(al->s, al->name);
5267 		if (err)
5268 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5269 					" %s to sysfs\n", al->name);
5270 		kfree(al);
5271 	}
5272 
5273 	mutex_unlock(&slab_mutex);
5274 	resiliency_test();
5275 	return 0;
5276 }
5277 
5278 __initcall(slab_sysfs_init);
5279 #endif /* CONFIG_SYSFS */
5280 
5281 /*
5282  * The /proc/slabinfo ABI
5283  */
5284 #ifdef CONFIG_SLABINFO
5285 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5286 {
5287 	unsigned long nr_slabs = 0;
5288 	unsigned long nr_objs = 0;
5289 	unsigned long nr_free = 0;
5290 	int node;
5291 
5292 	for_each_online_node(node) {
5293 		struct kmem_cache_node *n = get_node(s, node);
5294 
5295 		if (!n)
5296 			continue;
5297 
5298 		nr_slabs += node_nr_slabs(n);
5299 		nr_objs += node_nr_objs(n);
5300 		nr_free += count_partial(n, count_free);
5301 	}
5302 
5303 	sinfo->active_objs = nr_objs - nr_free;
5304 	sinfo->num_objs = nr_objs;
5305 	sinfo->active_slabs = nr_slabs;
5306 	sinfo->num_slabs = nr_slabs;
5307 	sinfo->objects_per_slab = oo_objects(s->oo);
5308 	sinfo->cache_order = oo_order(s->oo);
5309 }
5310 
5311 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5312 {
5313 }
5314 
5315 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5316 		       size_t count, loff_t *ppos)
5317 {
5318 	return -EIO;
5319 }
5320 #endif /* CONFIG_SLABINFO */
5321