1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kmemcheck.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 37 #include <trace/events/kmem.h> 38 39 #include "internal.h" 40 41 /* 42 * Lock order: 43 * 1. slab_mutex (Global Mutex) 44 * 2. node->list_lock 45 * 3. slab_lock(page) (Only on some arches and for debugging) 46 * 47 * slab_mutex 48 * 49 * The role of the slab_mutex is to protect the list of all the slabs 50 * and to synchronize major metadata changes to slab cache structures. 51 * 52 * The slab_lock is only used for debugging and on arches that do not 53 * have the ability to do a cmpxchg_double. It only protects the second 54 * double word in the page struct. Meaning 55 * A. page->freelist -> List of object free in a page 56 * B. page->counters -> Counters of objects 57 * C. page->frozen -> frozen state 58 * 59 * If a slab is frozen then it is exempt from list management. It is not 60 * on any list. The processor that froze the slab is the one who can 61 * perform list operations on the page. Other processors may put objects 62 * onto the freelist but the processor that froze the slab is the only 63 * one that can retrieve the objects from the page's freelist. 64 * 65 * The list_lock protects the partial and full list on each node and 66 * the partial slab counter. If taken then no new slabs may be added or 67 * removed from the lists nor make the number of partial slabs be modified. 68 * (Note that the total number of slabs is an atomic value that may be 69 * modified without taking the list lock). 70 * 71 * The list_lock is a centralized lock and thus we avoid taking it as 72 * much as possible. As long as SLUB does not have to handle partial 73 * slabs, operations can continue without any centralized lock. F.e. 74 * allocating a long series of objects that fill up slabs does not require 75 * the list lock. 76 * Interrupts are disabled during allocation and deallocation in order to 77 * make the slab allocator safe to use in the context of an irq. In addition 78 * interrupts are disabled to ensure that the processor does not change 79 * while handling per_cpu slabs, due to kernel preemption. 80 * 81 * SLUB assigns one slab for allocation to each processor. 82 * Allocations only occur from these slabs called cpu slabs. 83 * 84 * Slabs with free elements are kept on a partial list and during regular 85 * operations no list for full slabs is used. If an object in a full slab is 86 * freed then the slab will show up again on the partial lists. 87 * We track full slabs for debugging purposes though because otherwise we 88 * cannot scan all objects. 89 * 90 * Slabs are freed when they become empty. Teardown and setup is 91 * minimal so we rely on the page allocators per cpu caches for 92 * fast frees and allocs. 93 * 94 * Overloading of page flags that are otherwise used for LRU management. 95 * 96 * PageActive The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * PageError Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 static inline int kmem_cache_debug(struct kmem_cache *s) 118 { 119 #ifdef CONFIG_SLUB_DEBUG 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 121 #else 122 return 0; 123 #endif 124 } 125 126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 127 { 128 #ifdef CONFIG_SLUB_CPU_PARTIAL 129 return !kmem_cache_debug(s); 130 #else 131 return false; 132 #endif 133 } 134 135 /* 136 * Issues still to be resolved: 137 * 138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 139 * 140 * - Variable sizing of the per node arrays 141 */ 142 143 /* Enable to test recovery from slab corruption on boot */ 144 #undef SLUB_RESILIENCY_TEST 145 146 /* Enable to log cmpxchg failures */ 147 #undef SLUB_DEBUG_CMPXCHG 148 149 /* 150 * Mininum number of partial slabs. These will be left on the partial 151 * lists even if they are empty. kmem_cache_shrink may reclaim them. 152 */ 153 #define MIN_PARTIAL 5 154 155 /* 156 * Maximum number of desirable partial slabs. 157 * The existence of more partial slabs makes kmem_cache_shrink 158 * sort the partial list by the number of objects in the. 159 */ 160 #define MAX_PARTIAL 10 161 162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 163 SLAB_POISON | SLAB_STORE_USER) 164 165 /* 166 * Debugging flags that require metadata to be stored in the slab. These get 167 * disabled when slub_debug=O is used and a cache's min order increases with 168 * metadata. 169 */ 170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 171 172 /* 173 * Set of flags that will prevent slab merging 174 */ 175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 177 SLAB_FAILSLAB) 178 179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 180 SLAB_CACHE_DMA | SLAB_NOTRACK) 181 182 #define OO_SHIFT 16 183 #define OO_MASK ((1 << OO_SHIFT) - 1) 184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 185 186 /* Internal SLUB flags */ 187 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 189 190 #ifdef CONFIG_SMP 191 static struct notifier_block slab_notifier; 192 #endif 193 194 /* 195 * Tracking user of a slab. 196 */ 197 #define TRACK_ADDRS_COUNT 16 198 struct track { 199 unsigned long addr; /* Called from address */ 200 #ifdef CONFIG_STACKTRACE 201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 202 #endif 203 int cpu; /* Was running on cpu */ 204 int pid; /* Pid context */ 205 unsigned long when; /* When did the operation occur */ 206 }; 207 208 enum track_item { TRACK_ALLOC, TRACK_FREE }; 209 210 #ifdef CONFIG_SYSFS 211 static int sysfs_slab_add(struct kmem_cache *); 212 static int sysfs_slab_alias(struct kmem_cache *, const char *); 213 static void sysfs_slab_remove(struct kmem_cache *); 214 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 215 #else 216 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 217 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 218 { return 0; } 219 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 220 221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 222 #endif 223 224 static inline void stat(const struct kmem_cache *s, enum stat_item si) 225 { 226 #ifdef CONFIG_SLUB_STATS 227 __this_cpu_inc(s->cpu_slab->stat[si]); 228 #endif 229 } 230 231 /******************************************************************** 232 * Core slab cache functions 233 *******************************************************************/ 234 235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 236 { 237 return s->node[node]; 238 } 239 240 /* Verify that a pointer has an address that is valid within a slab page */ 241 static inline int check_valid_pointer(struct kmem_cache *s, 242 struct page *page, const void *object) 243 { 244 void *base; 245 246 if (!object) 247 return 1; 248 249 base = page_address(page); 250 if (object < base || object >= base + page->objects * s->size || 251 (object - base) % s->size) { 252 return 0; 253 } 254 255 return 1; 256 } 257 258 static inline void *get_freepointer(struct kmem_cache *s, void *object) 259 { 260 return *(void **)(object + s->offset); 261 } 262 263 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 264 { 265 prefetch(object + s->offset); 266 } 267 268 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 269 { 270 void *p; 271 272 #ifdef CONFIG_DEBUG_PAGEALLOC 273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 274 #else 275 p = get_freepointer(s, object); 276 #endif 277 return p; 278 } 279 280 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 281 { 282 *(void **)(object + s->offset) = fp; 283 } 284 285 /* Loop over all objects in a slab */ 286 #define for_each_object(__p, __s, __addr, __objects) \ 287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 288 __p += (__s)->size) 289 290 /* Determine object index from a given position */ 291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 292 { 293 return (p - addr) / s->size; 294 } 295 296 static inline size_t slab_ksize(const struct kmem_cache *s) 297 { 298 #ifdef CONFIG_SLUB_DEBUG 299 /* 300 * Debugging requires use of the padding between object 301 * and whatever may come after it. 302 */ 303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 304 return s->object_size; 305 306 #endif 307 /* 308 * If we have the need to store the freelist pointer 309 * back there or track user information then we can 310 * only use the space before that information. 311 */ 312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 313 return s->inuse; 314 /* 315 * Else we can use all the padding etc for the allocation 316 */ 317 return s->size; 318 } 319 320 static inline int order_objects(int order, unsigned long size, int reserved) 321 { 322 return ((PAGE_SIZE << order) - reserved) / size; 323 } 324 325 static inline struct kmem_cache_order_objects oo_make(int order, 326 unsigned long size, int reserved) 327 { 328 struct kmem_cache_order_objects x = { 329 (order << OO_SHIFT) + order_objects(order, size, reserved) 330 }; 331 332 return x; 333 } 334 335 static inline int oo_order(struct kmem_cache_order_objects x) 336 { 337 return x.x >> OO_SHIFT; 338 } 339 340 static inline int oo_objects(struct kmem_cache_order_objects x) 341 { 342 return x.x & OO_MASK; 343 } 344 345 /* 346 * Per slab locking using the pagelock 347 */ 348 static __always_inline void slab_lock(struct page *page) 349 { 350 bit_spin_lock(PG_locked, &page->flags); 351 } 352 353 static __always_inline void slab_unlock(struct page *page) 354 { 355 __bit_spin_unlock(PG_locked, &page->flags); 356 } 357 358 /* Interrupts must be disabled (for the fallback code to work right) */ 359 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 360 void *freelist_old, unsigned long counters_old, 361 void *freelist_new, unsigned long counters_new, 362 const char *n) 363 { 364 VM_BUG_ON(!irqs_disabled()); 365 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 366 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 367 if (s->flags & __CMPXCHG_DOUBLE) { 368 if (cmpxchg_double(&page->freelist, &page->counters, 369 freelist_old, counters_old, 370 freelist_new, counters_new)) 371 return 1; 372 } else 373 #endif 374 { 375 slab_lock(page); 376 if (page->freelist == freelist_old && page->counters == counters_old) { 377 page->freelist = freelist_new; 378 page->counters = counters_new; 379 slab_unlock(page); 380 return 1; 381 } 382 slab_unlock(page); 383 } 384 385 cpu_relax(); 386 stat(s, CMPXCHG_DOUBLE_FAIL); 387 388 #ifdef SLUB_DEBUG_CMPXCHG 389 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 390 #endif 391 392 return 0; 393 } 394 395 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 396 void *freelist_old, unsigned long counters_old, 397 void *freelist_new, unsigned long counters_new, 398 const char *n) 399 { 400 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 401 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 402 if (s->flags & __CMPXCHG_DOUBLE) { 403 if (cmpxchg_double(&page->freelist, &page->counters, 404 freelist_old, counters_old, 405 freelist_new, counters_new)) 406 return 1; 407 } else 408 #endif 409 { 410 unsigned long flags; 411 412 local_irq_save(flags); 413 slab_lock(page); 414 if (page->freelist == freelist_old && page->counters == counters_old) { 415 page->freelist = freelist_new; 416 page->counters = counters_new; 417 slab_unlock(page); 418 local_irq_restore(flags); 419 return 1; 420 } 421 slab_unlock(page); 422 local_irq_restore(flags); 423 } 424 425 cpu_relax(); 426 stat(s, CMPXCHG_DOUBLE_FAIL); 427 428 #ifdef SLUB_DEBUG_CMPXCHG 429 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 430 #endif 431 432 return 0; 433 } 434 435 #ifdef CONFIG_SLUB_DEBUG 436 /* 437 * Determine a map of object in use on a page. 438 * 439 * Node listlock must be held to guarantee that the page does 440 * not vanish from under us. 441 */ 442 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 443 { 444 void *p; 445 void *addr = page_address(page); 446 447 for (p = page->freelist; p; p = get_freepointer(s, p)) 448 set_bit(slab_index(p, s, addr), map); 449 } 450 451 /* 452 * Debug settings: 453 */ 454 #ifdef CONFIG_SLUB_DEBUG_ON 455 static int slub_debug = DEBUG_DEFAULT_FLAGS; 456 #else 457 static int slub_debug; 458 #endif 459 460 static char *slub_debug_slabs; 461 static int disable_higher_order_debug; 462 463 /* 464 * Object debugging 465 */ 466 static void print_section(char *text, u8 *addr, unsigned int length) 467 { 468 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 469 length, 1); 470 } 471 472 static struct track *get_track(struct kmem_cache *s, void *object, 473 enum track_item alloc) 474 { 475 struct track *p; 476 477 if (s->offset) 478 p = object + s->offset + sizeof(void *); 479 else 480 p = object + s->inuse; 481 482 return p + alloc; 483 } 484 485 static void set_track(struct kmem_cache *s, void *object, 486 enum track_item alloc, unsigned long addr) 487 { 488 struct track *p = get_track(s, object, alloc); 489 490 if (addr) { 491 #ifdef CONFIG_STACKTRACE 492 struct stack_trace trace; 493 int i; 494 495 trace.nr_entries = 0; 496 trace.max_entries = TRACK_ADDRS_COUNT; 497 trace.entries = p->addrs; 498 trace.skip = 3; 499 save_stack_trace(&trace); 500 501 /* See rant in lockdep.c */ 502 if (trace.nr_entries != 0 && 503 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 504 trace.nr_entries--; 505 506 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 507 p->addrs[i] = 0; 508 #endif 509 p->addr = addr; 510 p->cpu = smp_processor_id(); 511 p->pid = current->pid; 512 p->when = jiffies; 513 } else 514 memset(p, 0, sizeof(struct track)); 515 } 516 517 static void init_tracking(struct kmem_cache *s, void *object) 518 { 519 if (!(s->flags & SLAB_STORE_USER)) 520 return; 521 522 set_track(s, object, TRACK_FREE, 0UL); 523 set_track(s, object, TRACK_ALLOC, 0UL); 524 } 525 526 static void print_track(const char *s, struct track *t) 527 { 528 if (!t->addr) 529 return; 530 531 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 532 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 533 #ifdef CONFIG_STACKTRACE 534 { 535 int i; 536 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 537 if (t->addrs[i]) 538 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]); 539 else 540 break; 541 } 542 #endif 543 } 544 545 static void print_tracking(struct kmem_cache *s, void *object) 546 { 547 if (!(s->flags & SLAB_STORE_USER)) 548 return; 549 550 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 551 print_track("Freed", get_track(s, object, TRACK_FREE)); 552 } 553 554 static void print_page_info(struct page *page) 555 { 556 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 557 page, page->objects, page->inuse, page->freelist, page->flags); 558 559 } 560 561 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 562 { 563 va_list args; 564 char buf[100]; 565 566 va_start(args, fmt); 567 vsnprintf(buf, sizeof(buf), fmt, args); 568 va_end(args); 569 printk(KERN_ERR "========================================" 570 "=====================================\n"); 571 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf); 572 printk(KERN_ERR "----------------------------------------" 573 "-------------------------------------\n\n"); 574 575 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 576 } 577 578 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 579 { 580 va_list args; 581 char buf[100]; 582 583 va_start(args, fmt); 584 vsnprintf(buf, sizeof(buf), fmt, args); 585 va_end(args); 586 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 587 } 588 589 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 590 { 591 unsigned int off; /* Offset of last byte */ 592 u8 *addr = page_address(page); 593 594 print_tracking(s, p); 595 596 print_page_info(page); 597 598 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 599 p, p - addr, get_freepointer(s, p)); 600 601 if (p > addr + 16) 602 print_section("Bytes b4 ", p - 16, 16); 603 604 print_section("Object ", p, min_t(unsigned long, s->object_size, 605 PAGE_SIZE)); 606 if (s->flags & SLAB_RED_ZONE) 607 print_section("Redzone ", p + s->object_size, 608 s->inuse - s->object_size); 609 610 if (s->offset) 611 off = s->offset + sizeof(void *); 612 else 613 off = s->inuse; 614 615 if (s->flags & SLAB_STORE_USER) 616 off += 2 * sizeof(struct track); 617 618 if (off != s->size) 619 /* Beginning of the filler is the free pointer */ 620 print_section("Padding ", p + off, s->size - off); 621 622 dump_stack(); 623 } 624 625 static void object_err(struct kmem_cache *s, struct page *page, 626 u8 *object, char *reason) 627 { 628 slab_bug(s, "%s", reason); 629 print_trailer(s, page, object); 630 } 631 632 static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...) 633 { 634 va_list args; 635 char buf[100]; 636 637 va_start(args, fmt); 638 vsnprintf(buf, sizeof(buf), fmt, args); 639 va_end(args); 640 slab_bug(s, "%s", buf); 641 print_page_info(page); 642 dump_stack(); 643 } 644 645 static void init_object(struct kmem_cache *s, void *object, u8 val) 646 { 647 u8 *p = object; 648 649 if (s->flags & __OBJECT_POISON) { 650 memset(p, POISON_FREE, s->object_size - 1); 651 p[s->object_size - 1] = POISON_END; 652 } 653 654 if (s->flags & SLAB_RED_ZONE) 655 memset(p + s->object_size, val, s->inuse - s->object_size); 656 } 657 658 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 659 void *from, void *to) 660 { 661 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 662 memset(from, data, to - from); 663 } 664 665 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 666 u8 *object, char *what, 667 u8 *start, unsigned int value, unsigned int bytes) 668 { 669 u8 *fault; 670 u8 *end; 671 672 fault = memchr_inv(start, value, bytes); 673 if (!fault) 674 return 1; 675 676 end = start + bytes; 677 while (end > fault && end[-1] == value) 678 end--; 679 680 slab_bug(s, "%s overwritten", what); 681 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 682 fault, end - 1, fault[0], value); 683 print_trailer(s, page, object); 684 685 restore_bytes(s, what, value, fault, end); 686 return 0; 687 } 688 689 /* 690 * Object layout: 691 * 692 * object address 693 * Bytes of the object to be managed. 694 * If the freepointer may overlay the object then the free 695 * pointer is the first word of the object. 696 * 697 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 698 * 0xa5 (POISON_END) 699 * 700 * object + s->object_size 701 * Padding to reach word boundary. This is also used for Redzoning. 702 * Padding is extended by another word if Redzoning is enabled and 703 * object_size == inuse. 704 * 705 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 706 * 0xcc (RED_ACTIVE) for objects in use. 707 * 708 * object + s->inuse 709 * Meta data starts here. 710 * 711 * A. Free pointer (if we cannot overwrite object on free) 712 * B. Tracking data for SLAB_STORE_USER 713 * C. Padding to reach required alignment boundary or at mininum 714 * one word if debugging is on to be able to detect writes 715 * before the word boundary. 716 * 717 * Padding is done using 0x5a (POISON_INUSE) 718 * 719 * object + s->size 720 * Nothing is used beyond s->size. 721 * 722 * If slabcaches are merged then the object_size and inuse boundaries are mostly 723 * ignored. And therefore no slab options that rely on these boundaries 724 * may be used with merged slabcaches. 725 */ 726 727 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 728 { 729 unsigned long off = s->inuse; /* The end of info */ 730 731 if (s->offset) 732 /* Freepointer is placed after the object. */ 733 off += sizeof(void *); 734 735 if (s->flags & SLAB_STORE_USER) 736 /* We also have user information there */ 737 off += 2 * sizeof(struct track); 738 739 if (s->size == off) 740 return 1; 741 742 return check_bytes_and_report(s, page, p, "Object padding", 743 p + off, POISON_INUSE, s->size - off); 744 } 745 746 /* Check the pad bytes at the end of a slab page */ 747 static int slab_pad_check(struct kmem_cache *s, struct page *page) 748 { 749 u8 *start; 750 u8 *fault; 751 u8 *end; 752 int length; 753 int remainder; 754 755 if (!(s->flags & SLAB_POISON)) 756 return 1; 757 758 start = page_address(page); 759 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 760 end = start + length; 761 remainder = length % s->size; 762 if (!remainder) 763 return 1; 764 765 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 766 if (!fault) 767 return 1; 768 while (end > fault && end[-1] == POISON_INUSE) 769 end--; 770 771 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 772 print_section("Padding ", end - remainder, remainder); 773 774 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 775 return 0; 776 } 777 778 static int check_object(struct kmem_cache *s, struct page *page, 779 void *object, u8 val) 780 { 781 u8 *p = object; 782 u8 *endobject = object + s->object_size; 783 784 if (s->flags & SLAB_RED_ZONE) { 785 if (!check_bytes_and_report(s, page, object, "Redzone", 786 endobject, val, s->inuse - s->object_size)) 787 return 0; 788 } else { 789 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 790 check_bytes_and_report(s, page, p, "Alignment padding", 791 endobject, POISON_INUSE, s->inuse - s->object_size); 792 } 793 } 794 795 if (s->flags & SLAB_POISON) { 796 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 797 (!check_bytes_and_report(s, page, p, "Poison", p, 798 POISON_FREE, s->object_size - 1) || 799 !check_bytes_and_report(s, page, p, "Poison", 800 p + s->object_size - 1, POISON_END, 1))) 801 return 0; 802 /* 803 * check_pad_bytes cleans up on its own. 804 */ 805 check_pad_bytes(s, page, p); 806 } 807 808 if (!s->offset && val == SLUB_RED_ACTIVE) 809 /* 810 * Object and freepointer overlap. Cannot check 811 * freepointer while object is allocated. 812 */ 813 return 1; 814 815 /* Check free pointer validity */ 816 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 817 object_err(s, page, p, "Freepointer corrupt"); 818 /* 819 * No choice but to zap it and thus lose the remainder 820 * of the free objects in this slab. May cause 821 * another error because the object count is now wrong. 822 */ 823 set_freepointer(s, p, NULL); 824 return 0; 825 } 826 return 1; 827 } 828 829 static int check_slab(struct kmem_cache *s, struct page *page) 830 { 831 int maxobj; 832 833 VM_BUG_ON(!irqs_disabled()); 834 835 if (!PageSlab(page)) { 836 slab_err(s, page, "Not a valid slab page"); 837 return 0; 838 } 839 840 maxobj = order_objects(compound_order(page), s->size, s->reserved); 841 if (page->objects > maxobj) { 842 slab_err(s, page, "objects %u > max %u", 843 s->name, page->objects, maxobj); 844 return 0; 845 } 846 if (page->inuse > page->objects) { 847 slab_err(s, page, "inuse %u > max %u", 848 s->name, page->inuse, page->objects); 849 return 0; 850 } 851 /* Slab_pad_check fixes things up after itself */ 852 slab_pad_check(s, page); 853 return 1; 854 } 855 856 /* 857 * Determine if a certain object on a page is on the freelist. Must hold the 858 * slab lock to guarantee that the chains are in a consistent state. 859 */ 860 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 861 { 862 int nr = 0; 863 void *fp; 864 void *object = NULL; 865 unsigned long max_objects; 866 867 fp = page->freelist; 868 while (fp && nr <= page->objects) { 869 if (fp == search) 870 return 1; 871 if (!check_valid_pointer(s, page, fp)) { 872 if (object) { 873 object_err(s, page, object, 874 "Freechain corrupt"); 875 set_freepointer(s, object, NULL); 876 break; 877 } else { 878 slab_err(s, page, "Freepointer corrupt"); 879 page->freelist = NULL; 880 page->inuse = page->objects; 881 slab_fix(s, "Freelist cleared"); 882 return 0; 883 } 884 break; 885 } 886 object = fp; 887 fp = get_freepointer(s, object); 888 nr++; 889 } 890 891 max_objects = order_objects(compound_order(page), s->size, s->reserved); 892 if (max_objects > MAX_OBJS_PER_PAGE) 893 max_objects = MAX_OBJS_PER_PAGE; 894 895 if (page->objects != max_objects) { 896 slab_err(s, page, "Wrong number of objects. Found %d but " 897 "should be %d", page->objects, max_objects); 898 page->objects = max_objects; 899 slab_fix(s, "Number of objects adjusted."); 900 } 901 if (page->inuse != page->objects - nr) { 902 slab_err(s, page, "Wrong object count. Counter is %d but " 903 "counted were %d", page->inuse, page->objects - nr); 904 page->inuse = page->objects - nr; 905 slab_fix(s, "Object count adjusted."); 906 } 907 return search == NULL; 908 } 909 910 static void trace(struct kmem_cache *s, struct page *page, void *object, 911 int alloc) 912 { 913 if (s->flags & SLAB_TRACE) { 914 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 915 s->name, 916 alloc ? "alloc" : "free", 917 object, page->inuse, 918 page->freelist); 919 920 if (!alloc) 921 print_section("Object ", (void *)object, s->object_size); 922 923 dump_stack(); 924 } 925 } 926 927 /* 928 * Hooks for other subsystems that check memory allocations. In a typical 929 * production configuration these hooks all should produce no code at all. 930 */ 931 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 932 { 933 flags &= gfp_allowed_mask; 934 lockdep_trace_alloc(flags); 935 might_sleep_if(flags & __GFP_WAIT); 936 937 return should_failslab(s->object_size, flags, s->flags); 938 } 939 940 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object) 941 { 942 flags &= gfp_allowed_mask; 943 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 944 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); 945 } 946 947 static inline void slab_free_hook(struct kmem_cache *s, void *x) 948 { 949 kmemleak_free_recursive(x, s->flags); 950 951 /* 952 * Trouble is that we may no longer disable interupts in the fast path 953 * So in order to make the debug calls that expect irqs to be 954 * disabled we need to disable interrupts temporarily. 955 */ 956 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 957 { 958 unsigned long flags; 959 960 local_irq_save(flags); 961 kmemcheck_slab_free(s, x, s->object_size); 962 debug_check_no_locks_freed(x, s->object_size); 963 local_irq_restore(flags); 964 } 965 #endif 966 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 967 debug_check_no_obj_freed(x, s->object_size); 968 } 969 970 /* 971 * Tracking of fully allocated slabs for debugging purposes. 972 * 973 * list_lock must be held. 974 */ 975 static void add_full(struct kmem_cache *s, 976 struct kmem_cache_node *n, struct page *page) 977 { 978 if (!(s->flags & SLAB_STORE_USER)) 979 return; 980 981 list_add(&page->lru, &n->full); 982 } 983 984 /* 985 * list_lock must be held. 986 */ 987 static void remove_full(struct kmem_cache *s, struct page *page) 988 { 989 if (!(s->flags & SLAB_STORE_USER)) 990 return; 991 992 list_del(&page->lru); 993 } 994 995 /* Tracking of the number of slabs for debugging purposes */ 996 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 997 { 998 struct kmem_cache_node *n = get_node(s, node); 999 1000 return atomic_long_read(&n->nr_slabs); 1001 } 1002 1003 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1004 { 1005 return atomic_long_read(&n->nr_slabs); 1006 } 1007 1008 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1009 { 1010 struct kmem_cache_node *n = get_node(s, node); 1011 1012 /* 1013 * May be called early in order to allocate a slab for the 1014 * kmem_cache_node structure. Solve the chicken-egg 1015 * dilemma by deferring the increment of the count during 1016 * bootstrap (see early_kmem_cache_node_alloc). 1017 */ 1018 if (likely(n)) { 1019 atomic_long_inc(&n->nr_slabs); 1020 atomic_long_add(objects, &n->total_objects); 1021 } 1022 } 1023 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1024 { 1025 struct kmem_cache_node *n = get_node(s, node); 1026 1027 atomic_long_dec(&n->nr_slabs); 1028 atomic_long_sub(objects, &n->total_objects); 1029 } 1030 1031 /* Object debug checks for alloc/free paths */ 1032 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1033 void *object) 1034 { 1035 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1036 return; 1037 1038 init_object(s, object, SLUB_RED_INACTIVE); 1039 init_tracking(s, object); 1040 } 1041 1042 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page, 1043 void *object, unsigned long addr) 1044 { 1045 if (!check_slab(s, page)) 1046 goto bad; 1047 1048 if (!check_valid_pointer(s, page, object)) { 1049 object_err(s, page, object, "Freelist Pointer check fails"); 1050 goto bad; 1051 } 1052 1053 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1054 goto bad; 1055 1056 /* Success perform special debug activities for allocs */ 1057 if (s->flags & SLAB_STORE_USER) 1058 set_track(s, object, TRACK_ALLOC, addr); 1059 trace(s, page, object, 1); 1060 init_object(s, object, SLUB_RED_ACTIVE); 1061 return 1; 1062 1063 bad: 1064 if (PageSlab(page)) { 1065 /* 1066 * If this is a slab page then lets do the best we can 1067 * to avoid issues in the future. Marking all objects 1068 * as used avoids touching the remaining objects. 1069 */ 1070 slab_fix(s, "Marking all objects used"); 1071 page->inuse = page->objects; 1072 page->freelist = NULL; 1073 } 1074 return 0; 1075 } 1076 1077 static noinline struct kmem_cache_node *free_debug_processing( 1078 struct kmem_cache *s, struct page *page, void *object, 1079 unsigned long addr, unsigned long *flags) 1080 { 1081 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1082 1083 spin_lock_irqsave(&n->list_lock, *flags); 1084 slab_lock(page); 1085 1086 if (!check_slab(s, page)) 1087 goto fail; 1088 1089 if (!check_valid_pointer(s, page, object)) { 1090 slab_err(s, page, "Invalid object pointer 0x%p", object); 1091 goto fail; 1092 } 1093 1094 if (on_freelist(s, page, object)) { 1095 object_err(s, page, object, "Object already free"); 1096 goto fail; 1097 } 1098 1099 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1100 goto out; 1101 1102 if (unlikely(s != page->slab_cache)) { 1103 if (!PageSlab(page)) { 1104 slab_err(s, page, "Attempt to free object(0x%p) " 1105 "outside of slab", object); 1106 } else if (!page->slab_cache) { 1107 printk(KERN_ERR 1108 "SLUB <none>: no slab for object 0x%p.\n", 1109 object); 1110 dump_stack(); 1111 } else 1112 object_err(s, page, object, 1113 "page slab pointer corrupt."); 1114 goto fail; 1115 } 1116 1117 if (s->flags & SLAB_STORE_USER) 1118 set_track(s, object, TRACK_FREE, addr); 1119 trace(s, page, object, 0); 1120 init_object(s, object, SLUB_RED_INACTIVE); 1121 out: 1122 slab_unlock(page); 1123 /* 1124 * Keep node_lock to preserve integrity 1125 * until the object is actually freed 1126 */ 1127 return n; 1128 1129 fail: 1130 slab_unlock(page); 1131 spin_unlock_irqrestore(&n->list_lock, *flags); 1132 slab_fix(s, "Object at 0x%p not freed", object); 1133 return NULL; 1134 } 1135 1136 static int __init setup_slub_debug(char *str) 1137 { 1138 slub_debug = DEBUG_DEFAULT_FLAGS; 1139 if (*str++ != '=' || !*str) 1140 /* 1141 * No options specified. Switch on full debugging. 1142 */ 1143 goto out; 1144 1145 if (*str == ',') 1146 /* 1147 * No options but restriction on slabs. This means full 1148 * debugging for slabs matching a pattern. 1149 */ 1150 goto check_slabs; 1151 1152 if (tolower(*str) == 'o') { 1153 /* 1154 * Avoid enabling debugging on caches if its minimum order 1155 * would increase as a result. 1156 */ 1157 disable_higher_order_debug = 1; 1158 goto out; 1159 } 1160 1161 slub_debug = 0; 1162 if (*str == '-') 1163 /* 1164 * Switch off all debugging measures. 1165 */ 1166 goto out; 1167 1168 /* 1169 * Determine which debug features should be switched on 1170 */ 1171 for (; *str && *str != ','; str++) { 1172 switch (tolower(*str)) { 1173 case 'f': 1174 slub_debug |= SLAB_DEBUG_FREE; 1175 break; 1176 case 'z': 1177 slub_debug |= SLAB_RED_ZONE; 1178 break; 1179 case 'p': 1180 slub_debug |= SLAB_POISON; 1181 break; 1182 case 'u': 1183 slub_debug |= SLAB_STORE_USER; 1184 break; 1185 case 't': 1186 slub_debug |= SLAB_TRACE; 1187 break; 1188 case 'a': 1189 slub_debug |= SLAB_FAILSLAB; 1190 break; 1191 default: 1192 printk(KERN_ERR "slub_debug option '%c' " 1193 "unknown. skipped\n", *str); 1194 } 1195 } 1196 1197 check_slabs: 1198 if (*str == ',') 1199 slub_debug_slabs = str + 1; 1200 out: 1201 return 1; 1202 } 1203 1204 __setup("slub_debug", setup_slub_debug); 1205 1206 static unsigned long kmem_cache_flags(unsigned long object_size, 1207 unsigned long flags, const char *name, 1208 void (*ctor)(void *)) 1209 { 1210 /* 1211 * Enable debugging if selected on the kernel commandline. 1212 */ 1213 if (slub_debug && (!slub_debug_slabs || 1214 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) 1215 flags |= slub_debug; 1216 1217 return flags; 1218 } 1219 #else 1220 static inline void setup_object_debug(struct kmem_cache *s, 1221 struct page *page, void *object) {} 1222 1223 static inline int alloc_debug_processing(struct kmem_cache *s, 1224 struct page *page, void *object, unsigned long addr) { return 0; } 1225 1226 static inline struct kmem_cache_node *free_debug_processing( 1227 struct kmem_cache *s, struct page *page, void *object, 1228 unsigned long addr, unsigned long *flags) { return NULL; } 1229 1230 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1231 { return 1; } 1232 static inline int check_object(struct kmem_cache *s, struct page *page, 1233 void *object, u8 val) { return 1; } 1234 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1235 struct page *page) {} 1236 static inline void remove_full(struct kmem_cache *s, struct page *page) {} 1237 static inline unsigned long kmem_cache_flags(unsigned long object_size, 1238 unsigned long flags, const char *name, 1239 void (*ctor)(void *)) 1240 { 1241 return flags; 1242 } 1243 #define slub_debug 0 1244 1245 #define disable_higher_order_debug 0 1246 1247 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1248 { return 0; } 1249 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1250 { return 0; } 1251 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1252 int objects) {} 1253 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1254 int objects) {} 1255 1256 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 1257 { return 0; } 1258 1259 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 1260 void *object) {} 1261 1262 static inline void slab_free_hook(struct kmem_cache *s, void *x) {} 1263 1264 #endif /* CONFIG_SLUB_DEBUG */ 1265 1266 /* 1267 * Slab allocation and freeing 1268 */ 1269 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1270 struct kmem_cache_order_objects oo) 1271 { 1272 int order = oo_order(oo); 1273 1274 flags |= __GFP_NOTRACK; 1275 1276 if (node == NUMA_NO_NODE) 1277 return alloc_pages(flags, order); 1278 else 1279 return alloc_pages_exact_node(node, flags, order); 1280 } 1281 1282 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1283 { 1284 struct page *page; 1285 struct kmem_cache_order_objects oo = s->oo; 1286 gfp_t alloc_gfp; 1287 1288 flags &= gfp_allowed_mask; 1289 1290 if (flags & __GFP_WAIT) 1291 local_irq_enable(); 1292 1293 flags |= s->allocflags; 1294 1295 /* 1296 * Let the initial higher-order allocation fail under memory pressure 1297 * so we fall-back to the minimum order allocation. 1298 */ 1299 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1300 1301 page = alloc_slab_page(alloc_gfp, node, oo); 1302 if (unlikely(!page)) { 1303 oo = s->min; 1304 /* 1305 * Allocation may have failed due to fragmentation. 1306 * Try a lower order alloc if possible 1307 */ 1308 page = alloc_slab_page(flags, node, oo); 1309 1310 if (page) 1311 stat(s, ORDER_FALLBACK); 1312 } 1313 1314 if (kmemcheck_enabled && page 1315 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1316 int pages = 1 << oo_order(oo); 1317 1318 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1319 1320 /* 1321 * Objects from caches that have a constructor don't get 1322 * cleared when they're allocated, so we need to do it here. 1323 */ 1324 if (s->ctor) 1325 kmemcheck_mark_uninitialized_pages(page, pages); 1326 else 1327 kmemcheck_mark_unallocated_pages(page, pages); 1328 } 1329 1330 if (flags & __GFP_WAIT) 1331 local_irq_disable(); 1332 if (!page) 1333 return NULL; 1334 1335 page->objects = oo_objects(oo); 1336 mod_zone_page_state(page_zone(page), 1337 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1338 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1339 1 << oo_order(oo)); 1340 1341 return page; 1342 } 1343 1344 static void setup_object(struct kmem_cache *s, struct page *page, 1345 void *object) 1346 { 1347 setup_object_debug(s, page, object); 1348 if (unlikely(s->ctor)) 1349 s->ctor(object); 1350 } 1351 1352 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1353 { 1354 struct page *page; 1355 void *start; 1356 void *last; 1357 void *p; 1358 int order; 1359 1360 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1361 1362 page = allocate_slab(s, 1363 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1364 if (!page) 1365 goto out; 1366 1367 order = compound_order(page); 1368 inc_slabs_node(s, page_to_nid(page), page->objects); 1369 memcg_bind_pages(s, order); 1370 page->slab_cache = s; 1371 __SetPageSlab(page); 1372 if (page->pfmemalloc) 1373 SetPageSlabPfmemalloc(page); 1374 1375 start = page_address(page); 1376 1377 if (unlikely(s->flags & SLAB_POISON)) 1378 memset(start, POISON_INUSE, PAGE_SIZE << order); 1379 1380 last = start; 1381 for_each_object(p, s, start, page->objects) { 1382 setup_object(s, page, last); 1383 set_freepointer(s, last, p); 1384 last = p; 1385 } 1386 setup_object(s, page, last); 1387 set_freepointer(s, last, NULL); 1388 1389 page->freelist = start; 1390 page->inuse = page->objects; 1391 page->frozen = 1; 1392 out: 1393 return page; 1394 } 1395 1396 static void __free_slab(struct kmem_cache *s, struct page *page) 1397 { 1398 int order = compound_order(page); 1399 int pages = 1 << order; 1400 1401 if (kmem_cache_debug(s)) { 1402 void *p; 1403 1404 slab_pad_check(s, page); 1405 for_each_object(p, s, page_address(page), 1406 page->objects) 1407 check_object(s, page, p, SLUB_RED_INACTIVE); 1408 } 1409 1410 kmemcheck_free_shadow(page, compound_order(page)); 1411 1412 mod_zone_page_state(page_zone(page), 1413 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1414 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1415 -pages); 1416 1417 __ClearPageSlabPfmemalloc(page); 1418 __ClearPageSlab(page); 1419 1420 memcg_release_pages(s, order); 1421 page_mapcount_reset(page); 1422 if (current->reclaim_state) 1423 current->reclaim_state->reclaimed_slab += pages; 1424 __free_memcg_kmem_pages(page, order); 1425 } 1426 1427 #define need_reserve_slab_rcu \ 1428 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1429 1430 static void rcu_free_slab(struct rcu_head *h) 1431 { 1432 struct page *page; 1433 1434 if (need_reserve_slab_rcu) 1435 page = virt_to_head_page(h); 1436 else 1437 page = container_of((struct list_head *)h, struct page, lru); 1438 1439 __free_slab(page->slab_cache, page); 1440 } 1441 1442 static void free_slab(struct kmem_cache *s, struct page *page) 1443 { 1444 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1445 struct rcu_head *head; 1446 1447 if (need_reserve_slab_rcu) { 1448 int order = compound_order(page); 1449 int offset = (PAGE_SIZE << order) - s->reserved; 1450 1451 VM_BUG_ON(s->reserved != sizeof(*head)); 1452 head = page_address(page) + offset; 1453 } else { 1454 /* 1455 * RCU free overloads the RCU head over the LRU 1456 */ 1457 head = (void *)&page->lru; 1458 } 1459 1460 call_rcu(head, rcu_free_slab); 1461 } else 1462 __free_slab(s, page); 1463 } 1464 1465 static void discard_slab(struct kmem_cache *s, struct page *page) 1466 { 1467 dec_slabs_node(s, page_to_nid(page), page->objects); 1468 free_slab(s, page); 1469 } 1470 1471 /* 1472 * Management of partially allocated slabs. 1473 * 1474 * list_lock must be held. 1475 */ 1476 static inline void add_partial(struct kmem_cache_node *n, 1477 struct page *page, int tail) 1478 { 1479 n->nr_partial++; 1480 if (tail == DEACTIVATE_TO_TAIL) 1481 list_add_tail(&page->lru, &n->partial); 1482 else 1483 list_add(&page->lru, &n->partial); 1484 } 1485 1486 /* 1487 * list_lock must be held. 1488 */ 1489 static inline void remove_partial(struct kmem_cache_node *n, 1490 struct page *page) 1491 { 1492 list_del(&page->lru); 1493 n->nr_partial--; 1494 } 1495 1496 /* 1497 * Remove slab from the partial list, freeze it and 1498 * return the pointer to the freelist. 1499 * 1500 * Returns a list of objects or NULL if it fails. 1501 * 1502 * Must hold list_lock since we modify the partial list. 1503 */ 1504 static inline void *acquire_slab(struct kmem_cache *s, 1505 struct kmem_cache_node *n, struct page *page, 1506 int mode, int *objects) 1507 { 1508 void *freelist; 1509 unsigned long counters; 1510 struct page new; 1511 1512 /* 1513 * Zap the freelist and set the frozen bit. 1514 * The old freelist is the list of objects for the 1515 * per cpu allocation list. 1516 */ 1517 freelist = page->freelist; 1518 counters = page->counters; 1519 new.counters = counters; 1520 *objects = new.objects - new.inuse; 1521 if (mode) { 1522 new.inuse = page->objects; 1523 new.freelist = NULL; 1524 } else { 1525 new.freelist = freelist; 1526 } 1527 1528 VM_BUG_ON(new.frozen); 1529 new.frozen = 1; 1530 1531 if (!__cmpxchg_double_slab(s, page, 1532 freelist, counters, 1533 new.freelist, new.counters, 1534 "acquire_slab")) 1535 return NULL; 1536 1537 remove_partial(n, page); 1538 WARN_ON(!freelist); 1539 return freelist; 1540 } 1541 1542 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1543 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1544 1545 /* 1546 * Try to allocate a partial slab from a specific node. 1547 */ 1548 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1549 struct kmem_cache_cpu *c, gfp_t flags) 1550 { 1551 struct page *page, *page2; 1552 void *object = NULL; 1553 int available = 0; 1554 int objects; 1555 1556 /* 1557 * Racy check. If we mistakenly see no partial slabs then we 1558 * just allocate an empty slab. If we mistakenly try to get a 1559 * partial slab and there is none available then get_partials() 1560 * will return NULL. 1561 */ 1562 if (!n || !n->nr_partial) 1563 return NULL; 1564 1565 spin_lock(&n->list_lock); 1566 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1567 void *t; 1568 1569 if (!pfmemalloc_match(page, flags)) 1570 continue; 1571 1572 t = acquire_slab(s, n, page, object == NULL, &objects); 1573 if (!t) 1574 break; 1575 1576 available += objects; 1577 if (!object) { 1578 c->page = page; 1579 stat(s, ALLOC_FROM_PARTIAL); 1580 object = t; 1581 } else { 1582 put_cpu_partial(s, page, 0); 1583 stat(s, CPU_PARTIAL_NODE); 1584 } 1585 if (!kmem_cache_has_cpu_partial(s) 1586 || available > s->cpu_partial / 2) 1587 break; 1588 1589 } 1590 spin_unlock(&n->list_lock); 1591 return object; 1592 } 1593 1594 /* 1595 * Get a page from somewhere. Search in increasing NUMA distances. 1596 */ 1597 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1598 struct kmem_cache_cpu *c) 1599 { 1600 #ifdef CONFIG_NUMA 1601 struct zonelist *zonelist; 1602 struct zoneref *z; 1603 struct zone *zone; 1604 enum zone_type high_zoneidx = gfp_zone(flags); 1605 void *object; 1606 unsigned int cpuset_mems_cookie; 1607 1608 /* 1609 * The defrag ratio allows a configuration of the tradeoffs between 1610 * inter node defragmentation and node local allocations. A lower 1611 * defrag_ratio increases the tendency to do local allocations 1612 * instead of attempting to obtain partial slabs from other nodes. 1613 * 1614 * If the defrag_ratio is set to 0 then kmalloc() always 1615 * returns node local objects. If the ratio is higher then kmalloc() 1616 * may return off node objects because partial slabs are obtained 1617 * from other nodes and filled up. 1618 * 1619 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1620 * defrag_ratio = 1000) then every (well almost) allocation will 1621 * first attempt to defrag slab caches on other nodes. This means 1622 * scanning over all nodes to look for partial slabs which may be 1623 * expensive if we do it every time we are trying to find a slab 1624 * with available objects. 1625 */ 1626 if (!s->remote_node_defrag_ratio || 1627 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1628 return NULL; 1629 1630 do { 1631 cpuset_mems_cookie = get_mems_allowed(); 1632 zonelist = node_zonelist(slab_node(), flags); 1633 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1634 struct kmem_cache_node *n; 1635 1636 n = get_node(s, zone_to_nid(zone)); 1637 1638 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1639 n->nr_partial > s->min_partial) { 1640 object = get_partial_node(s, n, c, flags); 1641 if (object) { 1642 /* 1643 * Return the object even if 1644 * put_mems_allowed indicated that 1645 * the cpuset mems_allowed was 1646 * updated in parallel. It's a 1647 * harmless race between the alloc 1648 * and the cpuset update. 1649 */ 1650 put_mems_allowed(cpuset_mems_cookie); 1651 return object; 1652 } 1653 } 1654 } 1655 } while (!put_mems_allowed(cpuset_mems_cookie)); 1656 #endif 1657 return NULL; 1658 } 1659 1660 /* 1661 * Get a partial page, lock it and return it. 1662 */ 1663 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1664 struct kmem_cache_cpu *c) 1665 { 1666 void *object; 1667 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; 1668 1669 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1670 if (object || node != NUMA_NO_NODE) 1671 return object; 1672 1673 return get_any_partial(s, flags, c); 1674 } 1675 1676 #ifdef CONFIG_PREEMPT 1677 /* 1678 * Calculate the next globally unique transaction for disambiguiation 1679 * during cmpxchg. The transactions start with the cpu number and are then 1680 * incremented by CONFIG_NR_CPUS. 1681 */ 1682 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1683 #else 1684 /* 1685 * No preemption supported therefore also no need to check for 1686 * different cpus. 1687 */ 1688 #define TID_STEP 1 1689 #endif 1690 1691 static inline unsigned long next_tid(unsigned long tid) 1692 { 1693 return tid + TID_STEP; 1694 } 1695 1696 static inline unsigned int tid_to_cpu(unsigned long tid) 1697 { 1698 return tid % TID_STEP; 1699 } 1700 1701 static inline unsigned long tid_to_event(unsigned long tid) 1702 { 1703 return tid / TID_STEP; 1704 } 1705 1706 static inline unsigned int init_tid(int cpu) 1707 { 1708 return cpu; 1709 } 1710 1711 static inline void note_cmpxchg_failure(const char *n, 1712 const struct kmem_cache *s, unsigned long tid) 1713 { 1714 #ifdef SLUB_DEBUG_CMPXCHG 1715 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1716 1717 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); 1718 1719 #ifdef CONFIG_PREEMPT 1720 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1721 printk("due to cpu change %d -> %d\n", 1722 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1723 else 1724 #endif 1725 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1726 printk("due to cpu running other code. Event %ld->%ld\n", 1727 tid_to_event(tid), tid_to_event(actual_tid)); 1728 else 1729 printk("for unknown reason: actual=%lx was=%lx target=%lx\n", 1730 actual_tid, tid, next_tid(tid)); 1731 #endif 1732 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1733 } 1734 1735 static void init_kmem_cache_cpus(struct kmem_cache *s) 1736 { 1737 int cpu; 1738 1739 for_each_possible_cpu(cpu) 1740 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1741 } 1742 1743 /* 1744 * Remove the cpu slab 1745 */ 1746 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist) 1747 { 1748 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1749 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1750 int lock = 0; 1751 enum slab_modes l = M_NONE, m = M_NONE; 1752 void *nextfree; 1753 int tail = DEACTIVATE_TO_HEAD; 1754 struct page new; 1755 struct page old; 1756 1757 if (page->freelist) { 1758 stat(s, DEACTIVATE_REMOTE_FREES); 1759 tail = DEACTIVATE_TO_TAIL; 1760 } 1761 1762 /* 1763 * Stage one: Free all available per cpu objects back 1764 * to the page freelist while it is still frozen. Leave the 1765 * last one. 1766 * 1767 * There is no need to take the list->lock because the page 1768 * is still frozen. 1769 */ 1770 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1771 void *prior; 1772 unsigned long counters; 1773 1774 do { 1775 prior = page->freelist; 1776 counters = page->counters; 1777 set_freepointer(s, freelist, prior); 1778 new.counters = counters; 1779 new.inuse--; 1780 VM_BUG_ON(!new.frozen); 1781 1782 } while (!__cmpxchg_double_slab(s, page, 1783 prior, counters, 1784 freelist, new.counters, 1785 "drain percpu freelist")); 1786 1787 freelist = nextfree; 1788 } 1789 1790 /* 1791 * Stage two: Ensure that the page is unfrozen while the 1792 * list presence reflects the actual number of objects 1793 * during unfreeze. 1794 * 1795 * We setup the list membership and then perform a cmpxchg 1796 * with the count. If there is a mismatch then the page 1797 * is not unfrozen but the page is on the wrong list. 1798 * 1799 * Then we restart the process which may have to remove 1800 * the page from the list that we just put it on again 1801 * because the number of objects in the slab may have 1802 * changed. 1803 */ 1804 redo: 1805 1806 old.freelist = page->freelist; 1807 old.counters = page->counters; 1808 VM_BUG_ON(!old.frozen); 1809 1810 /* Determine target state of the slab */ 1811 new.counters = old.counters; 1812 if (freelist) { 1813 new.inuse--; 1814 set_freepointer(s, freelist, old.freelist); 1815 new.freelist = freelist; 1816 } else 1817 new.freelist = old.freelist; 1818 1819 new.frozen = 0; 1820 1821 if (!new.inuse && n->nr_partial > s->min_partial) 1822 m = M_FREE; 1823 else if (new.freelist) { 1824 m = M_PARTIAL; 1825 if (!lock) { 1826 lock = 1; 1827 /* 1828 * Taking the spinlock removes the possiblity 1829 * that acquire_slab() will see a slab page that 1830 * is frozen 1831 */ 1832 spin_lock(&n->list_lock); 1833 } 1834 } else { 1835 m = M_FULL; 1836 if (kmem_cache_debug(s) && !lock) { 1837 lock = 1; 1838 /* 1839 * This also ensures that the scanning of full 1840 * slabs from diagnostic functions will not see 1841 * any frozen slabs. 1842 */ 1843 spin_lock(&n->list_lock); 1844 } 1845 } 1846 1847 if (l != m) { 1848 1849 if (l == M_PARTIAL) 1850 1851 remove_partial(n, page); 1852 1853 else if (l == M_FULL) 1854 1855 remove_full(s, page); 1856 1857 if (m == M_PARTIAL) { 1858 1859 add_partial(n, page, tail); 1860 stat(s, tail); 1861 1862 } else if (m == M_FULL) { 1863 1864 stat(s, DEACTIVATE_FULL); 1865 add_full(s, n, page); 1866 1867 } 1868 } 1869 1870 l = m; 1871 if (!__cmpxchg_double_slab(s, page, 1872 old.freelist, old.counters, 1873 new.freelist, new.counters, 1874 "unfreezing slab")) 1875 goto redo; 1876 1877 if (lock) 1878 spin_unlock(&n->list_lock); 1879 1880 if (m == M_FREE) { 1881 stat(s, DEACTIVATE_EMPTY); 1882 discard_slab(s, page); 1883 stat(s, FREE_SLAB); 1884 } 1885 } 1886 1887 /* 1888 * Unfreeze all the cpu partial slabs. 1889 * 1890 * This function must be called with interrupts disabled 1891 * for the cpu using c (or some other guarantee must be there 1892 * to guarantee no concurrent accesses). 1893 */ 1894 static void unfreeze_partials(struct kmem_cache *s, 1895 struct kmem_cache_cpu *c) 1896 { 1897 #ifdef CONFIG_SLUB_CPU_PARTIAL 1898 struct kmem_cache_node *n = NULL, *n2 = NULL; 1899 struct page *page, *discard_page = NULL; 1900 1901 while ((page = c->partial)) { 1902 struct page new; 1903 struct page old; 1904 1905 c->partial = page->next; 1906 1907 n2 = get_node(s, page_to_nid(page)); 1908 if (n != n2) { 1909 if (n) 1910 spin_unlock(&n->list_lock); 1911 1912 n = n2; 1913 spin_lock(&n->list_lock); 1914 } 1915 1916 do { 1917 1918 old.freelist = page->freelist; 1919 old.counters = page->counters; 1920 VM_BUG_ON(!old.frozen); 1921 1922 new.counters = old.counters; 1923 new.freelist = old.freelist; 1924 1925 new.frozen = 0; 1926 1927 } while (!__cmpxchg_double_slab(s, page, 1928 old.freelist, old.counters, 1929 new.freelist, new.counters, 1930 "unfreezing slab")); 1931 1932 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) { 1933 page->next = discard_page; 1934 discard_page = page; 1935 } else { 1936 add_partial(n, page, DEACTIVATE_TO_TAIL); 1937 stat(s, FREE_ADD_PARTIAL); 1938 } 1939 } 1940 1941 if (n) 1942 spin_unlock(&n->list_lock); 1943 1944 while (discard_page) { 1945 page = discard_page; 1946 discard_page = discard_page->next; 1947 1948 stat(s, DEACTIVATE_EMPTY); 1949 discard_slab(s, page); 1950 stat(s, FREE_SLAB); 1951 } 1952 #endif 1953 } 1954 1955 /* 1956 * Put a page that was just frozen (in __slab_free) into a partial page 1957 * slot if available. This is done without interrupts disabled and without 1958 * preemption disabled. The cmpxchg is racy and may put the partial page 1959 * onto a random cpus partial slot. 1960 * 1961 * If we did not find a slot then simply move all the partials to the 1962 * per node partial list. 1963 */ 1964 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 1965 { 1966 #ifdef CONFIG_SLUB_CPU_PARTIAL 1967 struct page *oldpage; 1968 int pages; 1969 int pobjects; 1970 1971 do { 1972 pages = 0; 1973 pobjects = 0; 1974 oldpage = this_cpu_read(s->cpu_slab->partial); 1975 1976 if (oldpage) { 1977 pobjects = oldpage->pobjects; 1978 pages = oldpage->pages; 1979 if (drain && pobjects > s->cpu_partial) { 1980 unsigned long flags; 1981 /* 1982 * partial array is full. Move the existing 1983 * set to the per node partial list. 1984 */ 1985 local_irq_save(flags); 1986 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 1987 local_irq_restore(flags); 1988 oldpage = NULL; 1989 pobjects = 0; 1990 pages = 0; 1991 stat(s, CPU_PARTIAL_DRAIN); 1992 } 1993 } 1994 1995 pages++; 1996 pobjects += page->objects - page->inuse; 1997 1998 page->pages = pages; 1999 page->pobjects = pobjects; 2000 page->next = oldpage; 2001 2002 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); 2003 #endif 2004 } 2005 2006 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2007 { 2008 stat(s, CPUSLAB_FLUSH); 2009 deactivate_slab(s, c->page, c->freelist); 2010 2011 c->tid = next_tid(c->tid); 2012 c->page = NULL; 2013 c->freelist = NULL; 2014 } 2015 2016 /* 2017 * Flush cpu slab. 2018 * 2019 * Called from IPI handler with interrupts disabled. 2020 */ 2021 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2022 { 2023 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2024 2025 if (likely(c)) { 2026 if (c->page) 2027 flush_slab(s, c); 2028 2029 unfreeze_partials(s, c); 2030 } 2031 } 2032 2033 static void flush_cpu_slab(void *d) 2034 { 2035 struct kmem_cache *s = d; 2036 2037 __flush_cpu_slab(s, smp_processor_id()); 2038 } 2039 2040 static bool has_cpu_slab(int cpu, void *info) 2041 { 2042 struct kmem_cache *s = info; 2043 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2044 2045 return c->page || c->partial; 2046 } 2047 2048 static void flush_all(struct kmem_cache *s) 2049 { 2050 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2051 } 2052 2053 /* 2054 * Check if the objects in a per cpu structure fit numa 2055 * locality expectations. 2056 */ 2057 static inline int node_match(struct page *page, int node) 2058 { 2059 #ifdef CONFIG_NUMA 2060 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2061 return 0; 2062 #endif 2063 return 1; 2064 } 2065 2066 static int count_free(struct page *page) 2067 { 2068 return page->objects - page->inuse; 2069 } 2070 2071 static unsigned long count_partial(struct kmem_cache_node *n, 2072 int (*get_count)(struct page *)) 2073 { 2074 unsigned long flags; 2075 unsigned long x = 0; 2076 struct page *page; 2077 2078 spin_lock_irqsave(&n->list_lock, flags); 2079 list_for_each_entry(page, &n->partial, lru) 2080 x += get_count(page); 2081 spin_unlock_irqrestore(&n->list_lock, flags); 2082 return x; 2083 } 2084 2085 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2086 { 2087 #ifdef CONFIG_SLUB_DEBUG 2088 return atomic_long_read(&n->total_objects); 2089 #else 2090 return 0; 2091 #endif 2092 } 2093 2094 static noinline void 2095 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2096 { 2097 int node; 2098 2099 printk(KERN_WARNING 2100 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2101 nid, gfpflags); 2102 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 2103 "default order: %d, min order: %d\n", s->name, s->object_size, 2104 s->size, oo_order(s->oo), oo_order(s->min)); 2105 2106 if (oo_order(s->min) > get_order(s->object_size)) 2107 printk(KERN_WARNING " %s debugging increased min order, use " 2108 "slub_debug=O to disable.\n", s->name); 2109 2110 for_each_online_node(node) { 2111 struct kmem_cache_node *n = get_node(s, node); 2112 unsigned long nr_slabs; 2113 unsigned long nr_objs; 2114 unsigned long nr_free; 2115 2116 if (!n) 2117 continue; 2118 2119 nr_free = count_partial(n, count_free); 2120 nr_slabs = node_nr_slabs(n); 2121 nr_objs = node_nr_objs(n); 2122 2123 printk(KERN_WARNING 2124 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 2125 node, nr_slabs, nr_objs, nr_free); 2126 } 2127 } 2128 2129 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2130 int node, struct kmem_cache_cpu **pc) 2131 { 2132 void *freelist; 2133 struct kmem_cache_cpu *c = *pc; 2134 struct page *page; 2135 2136 freelist = get_partial(s, flags, node, c); 2137 2138 if (freelist) 2139 return freelist; 2140 2141 page = new_slab(s, flags, node); 2142 if (page) { 2143 c = __this_cpu_ptr(s->cpu_slab); 2144 if (c->page) 2145 flush_slab(s, c); 2146 2147 /* 2148 * No other reference to the page yet so we can 2149 * muck around with it freely without cmpxchg 2150 */ 2151 freelist = page->freelist; 2152 page->freelist = NULL; 2153 2154 stat(s, ALLOC_SLAB); 2155 c->page = page; 2156 *pc = c; 2157 } else 2158 freelist = NULL; 2159 2160 return freelist; 2161 } 2162 2163 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2164 { 2165 if (unlikely(PageSlabPfmemalloc(page))) 2166 return gfp_pfmemalloc_allowed(gfpflags); 2167 2168 return true; 2169 } 2170 2171 /* 2172 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist 2173 * or deactivate the page. 2174 * 2175 * The page is still frozen if the return value is not NULL. 2176 * 2177 * If this function returns NULL then the page has been unfrozen. 2178 * 2179 * This function must be called with interrupt disabled. 2180 */ 2181 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2182 { 2183 struct page new; 2184 unsigned long counters; 2185 void *freelist; 2186 2187 do { 2188 freelist = page->freelist; 2189 counters = page->counters; 2190 2191 new.counters = counters; 2192 VM_BUG_ON(!new.frozen); 2193 2194 new.inuse = page->objects; 2195 new.frozen = freelist != NULL; 2196 2197 } while (!__cmpxchg_double_slab(s, page, 2198 freelist, counters, 2199 NULL, new.counters, 2200 "get_freelist")); 2201 2202 return freelist; 2203 } 2204 2205 /* 2206 * Slow path. The lockless freelist is empty or we need to perform 2207 * debugging duties. 2208 * 2209 * Processing is still very fast if new objects have been freed to the 2210 * regular freelist. In that case we simply take over the regular freelist 2211 * as the lockless freelist and zap the regular freelist. 2212 * 2213 * If that is not working then we fall back to the partial lists. We take the 2214 * first element of the freelist as the object to allocate now and move the 2215 * rest of the freelist to the lockless freelist. 2216 * 2217 * And if we were unable to get a new slab from the partial slab lists then 2218 * we need to allocate a new slab. This is the slowest path since it involves 2219 * a call to the page allocator and the setup of a new slab. 2220 */ 2221 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2222 unsigned long addr, struct kmem_cache_cpu *c) 2223 { 2224 void *freelist; 2225 struct page *page; 2226 unsigned long flags; 2227 2228 local_irq_save(flags); 2229 #ifdef CONFIG_PREEMPT 2230 /* 2231 * We may have been preempted and rescheduled on a different 2232 * cpu before disabling interrupts. Need to reload cpu area 2233 * pointer. 2234 */ 2235 c = this_cpu_ptr(s->cpu_slab); 2236 #endif 2237 2238 page = c->page; 2239 if (!page) 2240 goto new_slab; 2241 redo: 2242 2243 if (unlikely(!node_match(page, node))) { 2244 stat(s, ALLOC_NODE_MISMATCH); 2245 deactivate_slab(s, page, c->freelist); 2246 c->page = NULL; 2247 c->freelist = NULL; 2248 goto new_slab; 2249 } 2250 2251 /* 2252 * By rights, we should be searching for a slab page that was 2253 * PFMEMALLOC but right now, we are losing the pfmemalloc 2254 * information when the page leaves the per-cpu allocator 2255 */ 2256 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2257 deactivate_slab(s, page, c->freelist); 2258 c->page = NULL; 2259 c->freelist = NULL; 2260 goto new_slab; 2261 } 2262 2263 /* must check again c->freelist in case of cpu migration or IRQ */ 2264 freelist = c->freelist; 2265 if (freelist) 2266 goto load_freelist; 2267 2268 stat(s, ALLOC_SLOWPATH); 2269 2270 freelist = get_freelist(s, page); 2271 2272 if (!freelist) { 2273 c->page = NULL; 2274 stat(s, DEACTIVATE_BYPASS); 2275 goto new_slab; 2276 } 2277 2278 stat(s, ALLOC_REFILL); 2279 2280 load_freelist: 2281 /* 2282 * freelist is pointing to the list of objects to be used. 2283 * page is pointing to the page from which the objects are obtained. 2284 * That page must be frozen for per cpu allocations to work. 2285 */ 2286 VM_BUG_ON(!c->page->frozen); 2287 c->freelist = get_freepointer(s, freelist); 2288 c->tid = next_tid(c->tid); 2289 local_irq_restore(flags); 2290 return freelist; 2291 2292 new_slab: 2293 2294 if (c->partial) { 2295 page = c->page = c->partial; 2296 c->partial = page->next; 2297 stat(s, CPU_PARTIAL_ALLOC); 2298 c->freelist = NULL; 2299 goto redo; 2300 } 2301 2302 freelist = new_slab_objects(s, gfpflags, node, &c); 2303 2304 if (unlikely(!freelist)) { 2305 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 2306 slab_out_of_memory(s, gfpflags, node); 2307 2308 local_irq_restore(flags); 2309 return NULL; 2310 } 2311 2312 page = c->page; 2313 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2314 goto load_freelist; 2315 2316 /* Only entered in the debug case */ 2317 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr)) 2318 goto new_slab; /* Slab failed checks. Next slab needed */ 2319 2320 deactivate_slab(s, page, get_freepointer(s, freelist)); 2321 c->page = NULL; 2322 c->freelist = NULL; 2323 local_irq_restore(flags); 2324 return freelist; 2325 } 2326 2327 /* 2328 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2329 * have the fastpath folded into their functions. So no function call 2330 * overhead for requests that can be satisfied on the fastpath. 2331 * 2332 * The fastpath works by first checking if the lockless freelist can be used. 2333 * If not then __slab_alloc is called for slow processing. 2334 * 2335 * Otherwise we can simply pick the next object from the lockless free list. 2336 */ 2337 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2338 gfp_t gfpflags, int node, unsigned long addr) 2339 { 2340 void **object; 2341 struct kmem_cache_cpu *c; 2342 struct page *page; 2343 unsigned long tid; 2344 2345 if (slab_pre_alloc_hook(s, gfpflags)) 2346 return NULL; 2347 2348 s = memcg_kmem_get_cache(s, gfpflags); 2349 redo: 2350 /* 2351 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2352 * enabled. We may switch back and forth between cpus while 2353 * reading from one cpu area. That does not matter as long 2354 * as we end up on the original cpu again when doing the cmpxchg. 2355 * 2356 * Preemption is disabled for the retrieval of the tid because that 2357 * must occur from the current processor. We cannot allow rescheduling 2358 * on a different processor between the determination of the pointer 2359 * and the retrieval of the tid. 2360 */ 2361 preempt_disable(); 2362 c = __this_cpu_ptr(s->cpu_slab); 2363 2364 /* 2365 * The transaction ids are globally unique per cpu and per operation on 2366 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2367 * occurs on the right processor and that there was no operation on the 2368 * linked list in between. 2369 */ 2370 tid = c->tid; 2371 preempt_enable(); 2372 2373 object = c->freelist; 2374 page = c->page; 2375 if (unlikely(!object || !page || !node_match(page, node))) 2376 object = __slab_alloc(s, gfpflags, node, addr, c); 2377 2378 else { 2379 void *next_object = get_freepointer_safe(s, object); 2380 2381 /* 2382 * The cmpxchg will only match if there was no additional 2383 * operation and if we are on the right processor. 2384 * 2385 * The cmpxchg does the following atomically (without lock semantics!) 2386 * 1. Relocate first pointer to the current per cpu area. 2387 * 2. Verify that tid and freelist have not been changed 2388 * 3. If they were not changed replace tid and freelist 2389 * 2390 * Since this is without lock semantics the protection is only against 2391 * code executing on this cpu *not* from access by other cpus. 2392 */ 2393 if (unlikely(!this_cpu_cmpxchg_double( 2394 s->cpu_slab->freelist, s->cpu_slab->tid, 2395 object, tid, 2396 next_object, next_tid(tid)))) { 2397 2398 note_cmpxchg_failure("slab_alloc", s, tid); 2399 goto redo; 2400 } 2401 prefetch_freepointer(s, next_object); 2402 stat(s, ALLOC_FASTPATH); 2403 } 2404 2405 if (unlikely(gfpflags & __GFP_ZERO) && object) 2406 memset(object, 0, s->object_size); 2407 2408 slab_post_alloc_hook(s, gfpflags, object); 2409 2410 return object; 2411 } 2412 2413 static __always_inline void *slab_alloc(struct kmem_cache *s, 2414 gfp_t gfpflags, unsigned long addr) 2415 { 2416 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2417 } 2418 2419 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2420 { 2421 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2422 2423 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags); 2424 2425 return ret; 2426 } 2427 EXPORT_SYMBOL(kmem_cache_alloc); 2428 2429 #ifdef CONFIG_TRACING 2430 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2431 { 2432 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2433 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2434 return ret; 2435 } 2436 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2437 2438 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 2439 { 2440 void *ret = kmalloc_order(size, flags, order); 2441 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 2442 return ret; 2443 } 2444 EXPORT_SYMBOL(kmalloc_order_trace); 2445 #endif 2446 2447 #ifdef CONFIG_NUMA 2448 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2449 { 2450 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2451 2452 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2453 s->object_size, s->size, gfpflags, node); 2454 2455 return ret; 2456 } 2457 EXPORT_SYMBOL(kmem_cache_alloc_node); 2458 2459 #ifdef CONFIG_TRACING 2460 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2461 gfp_t gfpflags, 2462 int node, size_t size) 2463 { 2464 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2465 2466 trace_kmalloc_node(_RET_IP_, ret, 2467 size, s->size, gfpflags, node); 2468 return ret; 2469 } 2470 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2471 #endif 2472 #endif 2473 2474 /* 2475 * Slow patch handling. This may still be called frequently since objects 2476 * have a longer lifetime than the cpu slabs in most processing loads. 2477 * 2478 * So we still attempt to reduce cache line usage. Just take the slab 2479 * lock and free the item. If there is no additional partial page 2480 * handling required then we can return immediately. 2481 */ 2482 static void __slab_free(struct kmem_cache *s, struct page *page, 2483 void *x, unsigned long addr) 2484 { 2485 void *prior; 2486 void **object = (void *)x; 2487 int was_frozen; 2488 struct page new; 2489 unsigned long counters; 2490 struct kmem_cache_node *n = NULL; 2491 unsigned long uninitialized_var(flags); 2492 2493 stat(s, FREE_SLOWPATH); 2494 2495 if (kmem_cache_debug(s) && 2496 !(n = free_debug_processing(s, page, x, addr, &flags))) 2497 return; 2498 2499 do { 2500 if (unlikely(n)) { 2501 spin_unlock_irqrestore(&n->list_lock, flags); 2502 n = NULL; 2503 } 2504 prior = page->freelist; 2505 counters = page->counters; 2506 set_freepointer(s, object, prior); 2507 new.counters = counters; 2508 was_frozen = new.frozen; 2509 new.inuse--; 2510 if ((!new.inuse || !prior) && !was_frozen) { 2511 2512 if (kmem_cache_has_cpu_partial(s) && !prior) 2513 2514 /* 2515 * Slab was on no list before and will be partially empty 2516 * We can defer the list move and instead freeze it. 2517 */ 2518 new.frozen = 1; 2519 2520 else { /* Needs to be taken off a list */ 2521 2522 n = get_node(s, page_to_nid(page)); 2523 /* 2524 * Speculatively acquire the list_lock. 2525 * If the cmpxchg does not succeed then we may 2526 * drop the list_lock without any processing. 2527 * 2528 * Otherwise the list_lock will synchronize with 2529 * other processors updating the list of slabs. 2530 */ 2531 spin_lock_irqsave(&n->list_lock, flags); 2532 2533 } 2534 } 2535 2536 } while (!cmpxchg_double_slab(s, page, 2537 prior, counters, 2538 object, new.counters, 2539 "__slab_free")); 2540 2541 if (likely(!n)) { 2542 2543 /* 2544 * If we just froze the page then put it onto the 2545 * per cpu partial list. 2546 */ 2547 if (new.frozen && !was_frozen) { 2548 put_cpu_partial(s, page, 1); 2549 stat(s, CPU_PARTIAL_FREE); 2550 } 2551 /* 2552 * The list lock was not taken therefore no list 2553 * activity can be necessary. 2554 */ 2555 if (was_frozen) 2556 stat(s, FREE_FROZEN); 2557 return; 2558 } 2559 2560 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) 2561 goto slab_empty; 2562 2563 /* 2564 * Objects left in the slab. If it was not on the partial list before 2565 * then add it. 2566 */ 2567 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2568 if (kmem_cache_debug(s)) 2569 remove_full(s, page); 2570 add_partial(n, page, DEACTIVATE_TO_TAIL); 2571 stat(s, FREE_ADD_PARTIAL); 2572 } 2573 spin_unlock_irqrestore(&n->list_lock, flags); 2574 return; 2575 2576 slab_empty: 2577 if (prior) { 2578 /* 2579 * Slab on the partial list. 2580 */ 2581 remove_partial(n, page); 2582 stat(s, FREE_REMOVE_PARTIAL); 2583 } else 2584 /* Slab must be on the full list */ 2585 remove_full(s, page); 2586 2587 spin_unlock_irqrestore(&n->list_lock, flags); 2588 stat(s, FREE_SLAB); 2589 discard_slab(s, page); 2590 } 2591 2592 /* 2593 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2594 * can perform fastpath freeing without additional function calls. 2595 * 2596 * The fastpath is only possible if we are freeing to the current cpu slab 2597 * of this processor. This typically the case if we have just allocated 2598 * the item before. 2599 * 2600 * If fastpath is not possible then fall back to __slab_free where we deal 2601 * with all sorts of special processing. 2602 */ 2603 static __always_inline void slab_free(struct kmem_cache *s, 2604 struct page *page, void *x, unsigned long addr) 2605 { 2606 void **object = (void *)x; 2607 struct kmem_cache_cpu *c; 2608 unsigned long tid; 2609 2610 slab_free_hook(s, x); 2611 2612 redo: 2613 /* 2614 * Determine the currently cpus per cpu slab. 2615 * The cpu may change afterward. However that does not matter since 2616 * data is retrieved via this pointer. If we are on the same cpu 2617 * during the cmpxchg then the free will succedd. 2618 */ 2619 preempt_disable(); 2620 c = __this_cpu_ptr(s->cpu_slab); 2621 2622 tid = c->tid; 2623 preempt_enable(); 2624 2625 if (likely(page == c->page)) { 2626 set_freepointer(s, object, c->freelist); 2627 2628 if (unlikely(!this_cpu_cmpxchg_double( 2629 s->cpu_slab->freelist, s->cpu_slab->tid, 2630 c->freelist, tid, 2631 object, next_tid(tid)))) { 2632 2633 note_cmpxchg_failure("slab_free", s, tid); 2634 goto redo; 2635 } 2636 stat(s, FREE_FASTPATH); 2637 } else 2638 __slab_free(s, page, x, addr); 2639 2640 } 2641 2642 void kmem_cache_free(struct kmem_cache *s, void *x) 2643 { 2644 s = cache_from_obj(s, x); 2645 if (!s) 2646 return; 2647 slab_free(s, virt_to_head_page(x), x, _RET_IP_); 2648 trace_kmem_cache_free(_RET_IP_, x); 2649 } 2650 EXPORT_SYMBOL(kmem_cache_free); 2651 2652 /* 2653 * Object placement in a slab is made very easy because we always start at 2654 * offset 0. If we tune the size of the object to the alignment then we can 2655 * get the required alignment by putting one properly sized object after 2656 * another. 2657 * 2658 * Notice that the allocation order determines the sizes of the per cpu 2659 * caches. Each processor has always one slab available for allocations. 2660 * Increasing the allocation order reduces the number of times that slabs 2661 * must be moved on and off the partial lists and is therefore a factor in 2662 * locking overhead. 2663 */ 2664 2665 /* 2666 * Mininum / Maximum order of slab pages. This influences locking overhead 2667 * and slab fragmentation. A higher order reduces the number of partial slabs 2668 * and increases the number of allocations possible without having to 2669 * take the list_lock. 2670 */ 2671 static int slub_min_order; 2672 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2673 static int slub_min_objects; 2674 2675 /* 2676 * Merge control. If this is set then no merging of slab caches will occur. 2677 * (Could be removed. This was introduced to pacify the merge skeptics.) 2678 */ 2679 static int slub_nomerge; 2680 2681 /* 2682 * Calculate the order of allocation given an slab object size. 2683 * 2684 * The order of allocation has significant impact on performance and other 2685 * system components. Generally order 0 allocations should be preferred since 2686 * order 0 does not cause fragmentation in the page allocator. Larger objects 2687 * be problematic to put into order 0 slabs because there may be too much 2688 * unused space left. We go to a higher order if more than 1/16th of the slab 2689 * would be wasted. 2690 * 2691 * In order to reach satisfactory performance we must ensure that a minimum 2692 * number of objects is in one slab. Otherwise we may generate too much 2693 * activity on the partial lists which requires taking the list_lock. This is 2694 * less a concern for large slabs though which are rarely used. 2695 * 2696 * slub_max_order specifies the order where we begin to stop considering the 2697 * number of objects in a slab as critical. If we reach slub_max_order then 2698 * we try to keep the page order as low as possible. So we accept more waste 2699 * of space in favor of a small page order. 2700 * 2701 * Higher order allocations also allow the placement of more objects in a 2702 * slab and thereby reduce object handling overhead. If the user has 2703 * requested a higher mininum order then we start with that one instead of 2704 * the smallest order which will fit the object. 2705 */ 2706 static inline int slab_order(int size, int min_objects, 2707 int max_order, int fract_leftover, int reserved) 2708 { 2709 int order; 2710 int rem; 2711 int min_order = slub_min_order; 2712 2713 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2714 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2715 2716 for (order = max(min_order, 2717 fls(min_objects * size - 1) - PAGE_SHIFT); 2718 order <= max_order; order++) { 2719 2720 unsigned long slab_size = PAGE_SIZE << order; 2721 2722 if (slab_size < min_objects * size + reserved) 2723 continue; 2724 2725 rem = (slab_size - reserved) % size; 2726 2727 if (rem <= slab_size / fract_leftover) 2728 break; 2729 2730 } 2731 2732 return order; 2733 } 2734 2735 static inline int calculate_order(int size, int reserved) 2736 { 2737 int order; 2738 int min_objects; 2739 int fraction; 2740 int max_objects; 2741 2742 /* 2743 * Attempt to find best configuration for a slab. This 2744 * works by first attempting to generate a layout with 2745 * the best configuration and backing off gradually. 2746 * 2747 * First we reduce the acceptable waste in a slab. Then 2748 * we reduce the minimum objects required in a slab. 2749 */ 2750 min_objects = slub_min_objects; 2751 if (!min_objects) 2752 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2753 max_objects = order_objects(slub_max_order, size, reserved); 2754 min_objects = min(min_objects, max_objects); 2755 2756 while (min_objects > 1) { 2757 fraction = 16; 2758 while (fraction >= 4) { 2759 order = slab_order(size, min_objects, 2760 slub_max_order, fraction, reserved); 2761 if (order <= slub_max_order) 2762 return order; 2763 fraction /= 2; 2764 } 2765 min_objects--; 2766 } 2767 2768 /* 2769 * We were unable to place multiple objects in a slab. Now 2770 * lets see if we can place a single object there. 2771 */ 2772 order = slab_order(size, 1, slub_max_order, 1, reserved); 2773 if (order <= slub_max_order) 2774 return order; 2775 2776 /* 2777 * Doh this slab cannot be placed using slub_max_order. 2778 */ 2779 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2780 if (order < MAX_ORDER) 2781 return order; 2782 return -ENOSYS; 2783 } 2784 2785 static void 2786 init_kmem_cache_node(struct kmem_cache_node *n) 2787 { 2788 n->nr_partial = 0; 2789 spin_lock_init(&n->list_lock); 2790 INIT_LIST_HEAD(&n->partial); 2791 #ifdef CONFIG_SLUB_DEBUG 2792 atomic_long_set(&n->nr_slabs, 0); 2793 atomic_long_set(&n->total_objects, 0); 2794 INIT_LIST_HEAD(&n->full); 2795 #endif 2796 } 2797 2798 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2799 { 2800 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2801 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 2802 2803 /* 2804 * Must align to double word boundary for the double cmpxchg 2805 * instructions to work; see __pcpu_double_call_return_bool(). 2806 */ 2807 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2808 2 * sizeof(void *)); 2809 2810 if (!s->cpu_slab) 2811 return 0; 2812 2813 init_kmem_cache_cpus(s); 2814 2815 return 1; 2816 } 2817 2818 static struct kmem_cache *kmem_cache_node; 2819 2820 /* 2821 * No kmalloc_node yet so do it by hand. We know that this is the first 2822 * slab on the node for this slabcache. There are no concurrent accesses 2823 * possible. 2824 * 2825 * Note that this function only works on the kmalloc_node_cache 2826 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2827 * memory on a fresh node that has no slab structures yet. 2828 */ 2829 static void early_kmem_cache_node_alloc(int node) 2830 { 2831 struct page *page; 2832 struct kmem_cache_node *n; 2833 2834 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2835 2836 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2837 2838 BUG_ON(!page); 2839 if (page_to_nid(page) != node) { 2840 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2841 "node %d\n", node); 2842 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2843 "in order to be able to continue\n"); 2844 } 2845 2846 n = page->freelist; 2847 BUG_ON(!n); 2848 page->freelist = get_freepointer(kmem_cache_node, n); 2849 page->inuse = 1; 2850 page->frozen = 0; 2851 kmem_cache_node->node[node] = n; 2852 #ifdef CONFIG_SLUB_DEBUG 2853 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2854 init_tracking(kmem_cache_node, n); 2855 #endif 2856 init_kmem_cache_node(n); 2857 inc_slabs_node(kmem_cache_node, node, page->objects); 2858 2859 add_partial(n, page, DEACTIVATE_TO_HEAD); 2860 } 2861 2862 static void free_kmem_cache_nodes(struct kmem_cache *s) 2863 { 2864 int node; 2865 2866 for_each_node_state(node, N_NORMAL_MEMORY) { 2867 struct kmem_cache_node *n = s->node[node]; 2868 2869 if (n) 2870 kmem_cache_free(kmem_cache_node, n); 2871 2872 s->node[node] = NULL; 2873 } 2874 } 2875 2876 static int init_kmem_cache_nodes(struct kmem_cache *s) 2877 { 2878 int node; 2879 2880 for_each_node_state(node, N_NORMAL_MEMORY) { 2881 struct kmem_cache_node *n; 2882 2883 if (slab_state == DOWN) { 2884 early_kmem_cache_node_alloc(node); 2885 continue; 2886 } 2887 n = kmem_cache_alloc_node(kmem_cache_node, 2888 GFP_KERNEL, node); 2889 2890 if (!n) { 2891 free_kmem_cache_nodes(s); 2892 return 0; 2893 } 2894 2895 s->node[node] = n; 2896 init_kmem_cache_node(n); 2897 } 2898 return 1; 2899 } 2900 2901 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2902 { 2903 if (min < MIN_PARTIAL) 2904 min = MIN_PARTIAL; 2905 else if (min > MAX_PARTIAL) 2906 min = MAX_PARTIAL; 2907 s->min_partial = min; 2908 } 2909 2910 /* 2911 * calculate_sizes() determines the order and the distribution of data within 2912 * a slab object. 2913 */ 2914 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2915 { 2916 unsigned long flags = s->flags; 2917 unsigned long size = s->object_size; 2918 int order; 2919 2920 /* 2921 * Round up object size to the next word boundary. We can only 2922 * place the free pointer at word boundaries and this determines 2923 * the possible location of the free pointer. 2924 */ 2925 size = ALIGN(size, sizeof(void *)); 2926 2927 #ifdef CONFIG_SLUB_DEBUG 2928 /* 2929 * Determine if we can poison the object itself. If the user of 2930 * the slab may touch the object after free or before allocation 2931 * then we should never poison the object itself. 2932 */ 2933 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2934 !s->ctor) 2935 s->flags |= __OBJECT_POISON; 2936 else 2937 s->flags &= ~__OBJECT_POISON; 2938 2939 2940 /* 2941 * If we are Redzoning then check if there is some space between the 2942 * end of the object and the free pointer. If not then add an 2943 * additional word to have some bytes to store Redzone information. 2944 */ 2945 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 2946 size += sizeof(void *); 2947 #endif 2948 2949 /* 2950 * With that we have determined the number of bytes in actual use 2951 * by the object. This is the potential offset to the free pointer. 2952 */ 2953 s->inuse = size; 2954 2955 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2956 s->ctor)) { 2957 /* 2958 * Relocate free pointer after the object if it is not 2959 * permitted to overwrite the first word of the object on 2960 * kmem_cache_free. 2961 * 2962 * This is the case if we do RCU, have a constructor or 2963 * destructor or are poisoning the objects. 2964 */ 2965 s->offset = size; 2966 size += sizeof(void *); 2967 } 2968 2969 #ifdef CONFIG_SLUB_DEBUG 2970 if (flags & SLAB_STORE_USER) 2971 /* 2972 * Need to store information about allocs and frees after 2973 * the object. 2974 */ 2975 size += 2 * sizeof(struct track); 2976 2977 if (flags & SLAB_RED_ZONE) 2978 /* 2979 * Add some empty padding so that we can catch 2980 * overwrites from earlier objects rather than let 2981 * tracking information or the free pointer be 2982 * corrupted if a user writes before the start 2983 * of the object. 2984 */ 2985 size += sizeof(void *); 2986 #endif 2987 2988 /* 2989 * SLUB stores one object immediately after another beginning from 2990 * offset 0. In order to align the objects we have to simply size 2991 * each object to conform to the alignment. 2992 */ 2993 size = ALIGN(size, s->align); 2994 s->size = size; 2995 if (forced_order >= 0) 2996 order = forced_order; 2997 else 2998 order = calculate_order(size, s->reserved); 2999 3000 if (order < 0) 3001 return 0; 3002 3003 s->allocflags = 0; 3004 if (order) 3005 s->allocflags |= __GFP_COMP; 3006 3007 if (s->flags & SLAB_CACHE_DMA) 3008 s->allocflags |= GFP_DMA; 3009 3010 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3011 s->allocflags |= __GFP_RECLAIMABLE; 3012 3013 /* 3014 * Determine the number of objects per slab 3015 */ 3016 s->oo = oo_make(order, size, s->reserved); 3017 s->min = oo_make(get_order(size), size, s->reserved); 3018 if (oo_objects(s->oo) > oo_objects(s->max)) 3019 s->max = s->oo; 3020 3021 return !!oo_objects(s->oo); 3022 } 3023 3024 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3025 { 3026 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3027 s->reserved = 0; 3028 3029 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3030 s->reserved = sizeof(struct rcu_head); 3031 3032 if (!calculate_sizes(s, -1)) 3033 goto error; 3034 if (disable_higher_order_debug) { 3035 /* 3036 * Disable debugging flags that store metadata if the min slab 3037 * order increased. 3038 */ 3039 if (get_order(s->size) > get_order(s->object_size)) { 3040 s->flags &= ~DEBUG_METADATA_FLAGS; 3041 s->offset = 0; 3042 if (!calculate_sizes(s, -1)) 3043 goto error; 3044 } 3045 } 3046 3047 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3048 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3049 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3050 /* Enable fast mode */ 3051 s->flags |= __CMPXCHG_DOUBLE; 3052 #endif 3053 3054 /* 3055 * The larger the object size is, the more pages we want on the partial 3056 * list to avoid pounding the page allocator excessively. 3057 */ 3058 set_min_partial(s, ilog2(s->size) / 2); 3059 3060 /* 3061 * cpu_partial determined the maximum number of objects kept in the 3062 * per cpu partial lists of a processor. 3063 * 3064 * Per cpu partial lists mainly contain slabs that just have one 3065 * object freed. If they are used for allocation then they can be 3066 * filled up again with minimal effort. The slab will never hit the 3067 * per node partial lists and therefore no locking will be required. 3068 * 3069 * This setting also determines 3070 * 3071 * A) The number of objects from per cpu partial slabs dumped to the 3072 * per node list when we reach the limit. 3073 * B) The number of objects in cpu partial slabs to extract from the 3074 * per node list when we run out of per cpu objects. We only fetch 50% 3075 * to keep some capacity around for frees. 3076 */ 3077 if (!kmem_cache_has_cpu_partial(s)) 3078 s->cpu_partial = 0; 3079 else if (s->size >= PAGE_SIZE) 3080 s->cpu_partial = 2; 3081 else if (s->size >= 1024) 3082 s->cpu_partial = 6; 3083 else if (s->size >= 256) 3084 s->cpu_partial = 13; 3085 else 3086 s->cpu_partial = 30; 3087 3088 #ifdef CONFIG_NUMA 3089 s->remote_node_defrag_ratio = 1000; 3090 #endif 3091 if (!init_kmem_cache_nodes(s)) 3092 goto error; 3093 3094 if (alloc_kmem_cache_cpus(s)) 3095 return 0; 3096 3097 free_kmem_cache_nodes(s); 3098 error: 3099 if (flags & SLAB_PANIC) 3100 panic("Cannot create slab %s size=%lu realsize=%u " 3101 "order=%u offset=%u flags=%lx\n", 3102 s->name, (unsigned long)s->size, s->size, oo_order(s->oo), 3103 s->offset, flags); 3104 return -EINVAL; 3105 } 3106 3107 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3108 const char *text) 3109 { 3110 #ifdef CONFIG_SLUB_DEBUG 3111 void *addr = page_address(page); 3112 void *p; 3113 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3114 sizeof(long), GFP_ATOMIC); 3115 if (!map) 3116 return; 3117 slab_err(s, page, text, s->name); 3118 slab_lock(page); 3119 3120 get_map(s, page, map); 3121 for_each_object(p, s, addr, page->objects) { 3122 3123 if (!test_bit(slab_index(p, s, addr), map)) { 3124 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 3125 p, p - addr); 3126 print_tracking(s, p); 3127 } 3128 } 3129 slab_unlock(page); 3130 kfree(map); 3131 #endif 3132 } 3133 3134 /* 3135 * Attempt to free all partial slabs on a node. 3136 * This is called from kmem_cache_close(). We must be the last thread 3137 * using the cache and therefore we do not need to lock anymore. 3138 */ 3139 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3140 { 3141 struct page *page, *h; 3142 3143 list_for_each_entry_safe(page, h, &n->partial, lru) { 3144 if (!page->inuse) { 3145 remove_partial(n, page); 3146 discard_slab(s, page); 3147 } else { 3148 list_slab_objects(s, page, 3149 "Objects remaining in %s on kmem_cache_close()"); 3150 } 3151 } 3152 } 3153 3154 /* 3155 * Release all resources used by a slab cache. 3156 */ 3157 static inline int kmem_cache_close(struct kmem_cache *s) 3158 { 3159 int node; 3160 3161 flush_all(s); 3162 /* Attempt to free all objects */ 3163 for_each_node_state(node, N_NORMAL_MEMORY) { 3164 struct kmem_cache_node *n = get_node(s, node); 3165 3166 free_partial(s, n); 3167 if (n->nr_partial || slabs_node(s, node)) 3168 return 1; 3169 } 3170 free_percpu(s->cpu_slab); 3171 free_kmem_cache_nodes(s); 3172 return 0; 3173 } 3174 3175 int __kmem_cache_shutdown(struct kmem_cache *s) 3176 { 3177 int rc = kmem_cache_close(s); 3178 3179 if (!rc) { 3180 /* 3181 * We do the same lock strategy around sysfs_slab_add, see 3182 * __kmem_cache_create. Because this is pretty much the last 3183 * operation we do and the lock will be released shortly after 3184 * that in slab_common.c, we could just move sysfs_slab_remove 3185 * to a later point in common code. We should do that when we 3186 * have a common sysfs framework for all allocators. 3187 */ 3188 mutex_unlock(&slab_mutex); 3189 sysfs_slab_remove(s); 3190 mutex_lock(&slab_mutex); 3191 } 3192 3193 return rc; 3194 } 3195 3196 /******************************************************************** 3197 * Kmalloc subsystem 3198 *******************************************************************/ 3199 3200 static int __init setup_slub_min_order(char *str) 3201 { 3202 get_option(&str, &slub_min_order); 3203 3204 return 1; 3205 } 3206 3207 __setup("slub_min_order=", setup_slub_min_order); 3208 3209 static int __init setup_slub_max_order(char *str) 3210 { 3211 get_option(&str, &slub_max_order); 3212 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3213 3214 return 1; 3215 } 3216 3217 __setup("slub_max_order=", setup_slub_max_order); 3218 3219 static int __init setup_slub_min_objects(char *str) 3220 { 3221 get_option(&str, &slub_min_objects); 3222 3223 return 1; 3224 } 3225 3226 __setup("slub_min_objects=", setup_slub_min_objects); 3227 3228 static int __init setup_slub_nomerge(char *str) 3229 { 3230 slub_nomerge = 1; 3231 return 1; 3232 } 3233 3234 __setup("slub_nomerge", setup_slub_nomerge); 3235 3236 void *__kmalloc(size_t size, gfp_t flags) 3237 { 3238 struct kmem_cache *s; 3239 void *ret; 3240 3241 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3242 return kmalloc_large(size, flags); 3243 3244 s = kmalloc_slab(size, flags); 3245 3246 if (unlikely(ZERO_OR_NULL_PTR(s))) 3247 return s; 3248 3249 ret = slab_alloc(s, flags, _RET_IP_); 3250 3251 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3252 3253 return ret; 3254 } 3255 EXPORT_SYMBOL(__kmalloc); 3256 3257 #ifdef CONFIG_NUMA 3258 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3259 { 3260 struct page *page; 3261 void *ptr = NULL; 3262 3263 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG; 3264 page = alloc_pages_node(node, flags, get_order(size)); 3265 if (page) 3266 ptr = page_address(page); 3267 3268 kmemleak_alloc(ptr, size, 1, flags); 3269 return ptr; 3270 } 3271 3272 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3273 { 3274 struct kmem_cache *s; 3275 void *ret; 3276 3277 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3278 ret = kmalloc_large_node(size, flags, node); 3279 3280 trace_kmalloc_node(_RET_IP_, ret, 3281 size, PAGE_SIZE << get_order(size), 3282 flags, node); 3283 3284 return ret; 3285 } 3286 3287 s = kmalloc_slab(size, flags); 3288 3289 if (unlikely(ZERO_OR_NULL_PTR(s))) 3290 return s; 3291 3292 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3293 3294 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3295 3296 return ret; 3297 } 3298 EXPORT_SYMBOL(__kmalloc_node); 3299 #endif 3300 3301 size_t ksize(const void *object) 3302 { 3303 struct page *page; 3304 3305 if (unlikely(object == ZERO_SIZE_PTR)) 3306 return 0; 3307 3308 page = virt_to_head_page(object); 3309 3310 if (unlikely(!PageSlab(page))) { 3311 WARN_ON(!PageCompound(page)); 3312 return PAGE_SIZE << compound_order(page); 3313 } 3314 3315 return slab_ksize(page->slab_cache); 3316 } 3317 EXPORT_SYMBOL(ksize); 3318 3319 #ifdef CONFIG_SLUB_DEBUG 3320 bool verify_mem_not_deleted(const void *x) 3321 { 3322 struct page *page; 3323 void *object = (void *)x; 3324 unsigned long flags; 3325 bool rv; 3326 3327 if (unlikely(ZERO_OR_NULL_PTR(x))) 3328 return false; 3329 3330 local_irq_save(flags); 3331 3332 page = virt_to_head_page(x); 3333 if (unlikely(!PageSlab(page))) { 3334 /* maybe it was from stack? */ 3335 rv = true; 3336 goto out_unlock; 3337 } 3338 3339 slab_lock(page); 3340 if (on_freelist(page->slab_cache, page, object)) { 3341 object_err(page->slab_cache, page, object, "Object is on free-list"); 3342 rv = false; 3343 } else { 3344 rv = true; 3345 } 3346 slab_unlock(page); 3347 3348 out_unlock: 3349 local_irq_restore(flags); 3350 return rv; 3351 } 3352 EXPORT_SYMBOL(verify_mem_not_deleted); 3353 #endif 3354 3355 void kfree(const void *x) 3356 { 3357 struct page *page; 3358 void *object = (void *)x; 3359 3360 trace_kfree(_RET_IP_, x); 3361 3362 if (unlikely(ZERO_OR_NULL_PTR(x))) 3363 return; 3364 3365 page = virt_to_head_page(x); 3366 if (unlikely(!PageSlab(page))) { 3367 BUG_ON(!PageCompound(page)); 3368 kmemleak_free(x); 3369 __free_memcg_kmem_pages(page, compound_order(page)); 3370 return; 3371 } 3372 slab_free(page->slab_cache, page, object, _RET_IP_); 3373 } 3374 EXPORT_SYMBOL(kfree); 3375 3376 /* 3377 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 3378 * the remaining slabs by the number of items in use. The slabs with the 3379 * most items in use come first. New allocations will then fill those up 3380 * and thus they can be removed from the partial lists. 3381 * 3382 * The slabs with the least items are placed last. This results in them 3383 * being allocated from last increasing the chance that the last objects 3384 * are freed in them. 3385 */ 3386 int kmem_cache_shrink(struct kmem_cache *s) 3387 { 3388 int node; 3389 int i; 3390 struct kmem_cache_node *n; 3391 struct page *page; 3392 struct page *t; 3393 int objects = oo_objects(s->max); 3394 struct list_head *slabs_by_inuse = 3395 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 3396 unsigned long flags; 3397 3398 if (!slabs_by_inuse) 3399 return -ENOMEM; 3400 3401 flush_all(s); 3402 for_each_node_state(node, N_NORMAL_MEMORY) { 3403 n = get_node(s, node); 3404 3405 if (!n->nr_partial) 3406 continue; 3407 3408 for (i = 0; i < objects; i++) 3409 INIT_LIST_HEAD(slabs_by_inuse + i); 3410 3411 spin_lock_irqsave(&n->list_lock, flags); 3412 3413 /* 3414 * Build lists indexed by the items in use in each slab. 3415 * 3416 * Note that concurrent frees may occur while we hold the 3417 * list_lock. page->inuse here is the upper limit. 3418 */ 3419 list_for_each_entry_safe(page, t, &n->partial, lru) { 3420 list_move(&page->lru, slabs_by_inuse + page->inuse); 3421 if (!page->inuse) 3422 n->nr_partial--; 3423 } 3424 3425 /* 3426 * Rebuild the partial list with the slabs filled up most 3427 * first and the least used slabs at the end. 3428 */ 3429 for (i = objects - 1; i > 0; i--) 3430 list_splice(slabs_by_inuse + i, n->partial.prev); 3431 3432 spin_unlock_irqrestore(&n->list_lock, flags); 3433 3434 /* Release empty slabs */ 3435 list_for_each_entry_safe(page, t, slabs_by_inuse, lru) 3436 discard_slab(s, page); 3437 } 3438 3439 kfree(slabs_by_inuse); 3440 return 0; 3441 } 3442 EXPORT_SYMBOL(kmem_cache_shrink); 3443 3444 static int slab_mem_going_offline_callback(void *arg) 3445 { 3446 struct kmem_cache *s; 3447 3448 mutex_lock(&slab_mutex); 3449 list_for_each_entry(s, &slab_caches, list) 3450 kmem_cache_shrink(s); 3451 mutex_unlock(&slab_mutex); 3452 3453 return 0; 3454 } 3455 3456 static void slab_mem_offline_callback(void *arg) 3457 { 3458 struct kmem_cache_node *n; 3459 struct kmem_cache *s; 3460 struct memory_notify *marg = arg; 3461 int offline_node; 3462 3463 offline_node = marg->status_change_nid_normal; 3464 3465 /* 3466 * If the node still has available memory. we need kmem_cache_node 3467 * for it yet. 3468 */ 3469 if (offline_node < 0) 3470 return; 3471 3472 mutex_lock(&slab_mutex); 3473 list_for_each_entry(s, &slab_caches, list) { 3474 n = get_node(s, offline_node); 3475 if (n) { 3476 /* 3477 * if n->nr_slabs > 0, slabs still exist on the node 3478 * that is going down. We were unable to free them, 3479 * and offline_pages() function shouldn't call this 3480 * callback. So, we must fail. 3481 */ 3482 BUG_ON(slabs_node(s, offline_node)); 3483 3484 s->node[offline_node] = NULL; 3485 kmem_cache_free(kmem_cache_node, n); 3486 } 3487 } 3488 mutex_unlock(&slab_mutex); 3489 } 3490 3491 static int slab_mem_going_online_callback(void *arg) 3492 { 3493 struct kmem_cache_node *n; 3494 struct kmem_cache *s; 3495 struct memory_notify *marg = arg; 3496 int nid = marg->status_change_nid_normal; 3497 int ret = 0; 3498 3499 /* 3500 * If the node's memory is already available, then kmem_cache_node is 3501 * already created. Nothing to do. 3502 */ 3503 if (nid < 0) 3504 return 0; 3505 3506 /* 3507 * We are bringing a node online. No memory is available yet. We must 3508 * allocate a kmem_cache_node structure in order to bring the node 3509 * online. 3510 */ 3511 mutex_lock(&slab_mutex); 3512 list_for_each_entry(s, &slab_caches, list) { 3513 /* 3514 * XXX: kmem_cache_alloc_node will fallback to other nodes 3515 * since memory is not yet available from the node that 3516 * is brought up. 3517 */ 3518 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3519 if (!n) { 3520 ret = -ENOMEM; 3521 goto out; 3522 } 3523 init_kmem_cache_node(n); 3524 s->node[nid] = n; 3525 } 3526 out: 3527 mutex_unlock(&slab_mutex); 3528 return ret; 3529 } 3530 3531 static int slab_memory_callback(struct notifier_block *self, 3532 unsigned long action, void *arg) 3533 { 3534 int ret = 0; 3535 3536 switch (action) { 3537 case MEM_GOING_ONLINE: 3538 ret = slab_mem_going_online_callback(arg); 3539 break; 3540 case MEM_GOING_OFFLINE: 3541 ret = slab_mem_going_offline_callback(arg); 3542 break; 3543 case MEM_OFFLINE: 3544 case MEM_CANCEL_ONLINE: 3545 slab_mem_offline_callback(arg); 3546 break; 3547 case MEM_ONLINE: 3548 case MEM_CANCEL_OFFLINE: 3549 break; 3550 } 3551 if (ret) 3552 ret = notifier_from_errno(ret); 3553 else 3554 ret = NOTIFY_OK; 3555 return ret; 3556 } 3557 3558 static struct notifier_block slab_memory_callback_nb = { 3559 .notifier_call = slab_memory_callback, 3560 .priority = SLAB_CALLBACK_PRI, 3561 }; 3562 3563 /******************************************************************** 3564 * Basic setup of slabs 3565 *******************************************************************/ 3566 3567 /* 3568 * Used for early kmem_cache structures that were allocated using 3569 * the page allocator. Allocate them properly then fix up the pointers 3570 * that may be pointing to the wrong kmem_cache structure. 3571 */ 3572 3573 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 3574 { 3575 int node; 3576 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 3577 3578 memcpy(s, static_cache, kmem_cache->object_size); 3579 3580 /* 3581 * This runs very early, and only the boot processor is supposed to be 3582 * up. Even if it weren't true, IRQs are not up so we couldn't fire 3583 * IPIs around. 3584 */ 3585 __flush_cpu_slab(s, smp_processor_id()); 3586 for_each_node_state(node, N_NORMAL_MEMORY) { 3587 struct kmem_cache_node *n = get_node(s, node); 3588 struct page *p; 3589 3590 if (n) { 3591 list_for_each_entry(p, &n->partial, lru) 3592 p->slab_cache = s; 3593 3594 #ifdef CONFIG_SLUB_DEBUG 3595 list_for_each_entry(p, &n->full, lru) 3596 p->slab_cache = s; 3597 #endif 3598 } 3599 } 3600 list_add(&s->list, &slab_caches); 3601 return s; 3602 } 3603 3604 void __init kmem_cache_init(void) 3605 { 3606 static __initdata struct kmem_cache boot_kmem_cache, 3607 boot_kmem_cache_node; 3608 3609 if (debug_guardpage_minorder()) 3610 slub_max_order = 0; 3611 3612 kmem_cache_node = &boot_kmem_cache_node; 3613 kmem_cache = &boot_kmem_cache; 3614 3615 create_boot_cache(kmem_cache_node, "kmem_cache_node", 3616 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 3617 3618 register_hotmemory_notifier(&slab_memory_callback_nb); 3619 3620 /* Able to allocate the per node structures */ 3621 slab_state = PARTIAL; 3622 3623 create_boot_cache(kmem_cache, "kmem_cache", 3624 offsetof(struct kmem_cache, node) + 3625 nr_node_ids * sizeof(struct kmem_cache_node *), 3626 SLAB_HWCACHE_ALIGN); 3627 3628 kmem_cache = bootstrap(&boot_kmem_cache); 3629 3630 /* 3631 * Allocate kmem_cache_node properly from the kmem_cache slab. 3632 * kmem_cache_node is separately allocated so no need to 3633 * update any list pointers. 3634 */ 3635 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 3636 3637 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3638 create_kmalloc_caches(0); 3639 3640 #ifdef CONFIG_SMP 3641 register_cpu_notifier(&slab_notifier); 3642 #endif 3643 3644 printk(KERN_INFO 3645 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d," 3646 " CPUs=%d, Nodes=%d\n", 3647 cache_line_size(), 3648 slub_min_order, slub_max_order, slub_min_objects, 3649 nr_cpu_ids, nr_node_ids); 3650 } 3651 3652 void __init kmem_cache_init_late(void) 3653 { 3654 } 3655 3656 /* 3657 * Find a mergeable slab cache 3658 */ 3659 static int slab_unmergeable(struct kmem_cache *s) 3660 { 3661 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3662 return 1; 3663 3664 if (s->ctor) 3665 return 1; 3666 3667 /* 3668 * We may have set a slab to be unmergeable during bootstrap. 3669 */ 3670 if (s->refcount < 0) 3671 return 1; 3672 3673 return 0; 3674 } 3675 3676 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size, 3677 size_t align, unsigned long flags, const char *name, 3678 void (*ctor)(void *)) 3679 { 3680 struct kmem_cache *s; 3681 3682 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3683 return NULL; 3684 3685 if (ctor) 3686 return NULL; 3687 3688 size = ALIGN(size, sizeof(void *)); 3689 align = calculate_alignment(flags, align, size); 3690 size = ALIGN(size, align); 3691 flags = kmem_cache_flags(size, flags, name, NULL); 3692 3693 list_for_each_entry(s, &slab_caches, list) { 3694 if (slab_unmergeable(s)) 3695 continue; 3696 3697 if (size > s->size) 3698 continue; 3699 3700 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3701 continue; 3702 /* 3703 * Check if alignment is compatible. 3704 * Courtesy of Adrian Drzewiecki 3705 */ 3706 if ((s->size & ~(align - 1)) != s->size) 3707 continue; 3708 3709 if (s->size - size >= sizeof(void *)) 3710 continue; 3711 3712 if (!cache_match_memcg(s, memcg)) 3713 continue; 3714 3715 return s; 3716 } 3717 return NULL; 3718 } 3719 3720 struct kmem_cache * 3721 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size, 3722 size_t align, unsigned long flags, void (*ctor)(void *)) 3723 { 3724 struct kmem_cache *s; 3725 3726 s = find_mergeable(memcg, size, align, flags, name, ctor); 3727 if (s) { 3728 s->refcount++; 3729 /* 3730 * Adjust the object sizes so that we clear 3731 * the complete object on kzalloc. 3732 */ 3733 s->object_size = max(s->object_size, (int)size); 3734 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3735 3736 if (sysfs_slab_alias(s, name)) { 3737 s->refcount--; 3738 s = NULL; 3739 } 3740 } 3741 3742 return s; 3743 } 3744 3745 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 3746 { 3747 int err; 3748 3749 err = kmem_cache_open(s, flags); 3750 if (err) 3751 return err; 3752 3753 /* Mutex is not taken during early boot */ 3754 if (slab_state <= UP) 3755 return 0; 3756 3757 memcg_propagate_slab_attrs(s); 3758 mutex_unlock(&slab_mutex); 3759 err = sysfs_slab_add(s); 3760 mutex_lock(&slab_mutex); 3761 3762 if (err) 3763 kmem_cache_close(s); 3764 3765 return err; 3766 } 3767 3768 #ifdef CONFIG_SMP 3769 /* 3770 * Use the cpu notifier to insure that the cpu slabs are flushed when 3771 * necessary. 3772 */ 3773 static int slab_cpuup_callback(struct notifier_block *nfb, 3774 unsigned long action, void *hcpu) 3775 { 3776 long cpu = (long)hcpu; 3777 struct kmem_cache *s; 3778 unsigned long flags; 3779 3780 switch (action) { 3781 case CPU_UP_CANCELED: 3782 case CPU_UP_CANCELED_FROZEN: 3783 case CPU_DEAD: 3784 case CPU_DEAD_FROZEN: 3785 mutex_lock(&slab_mutex); 3786 list_for_each_entry(s, &slab_caches, list) { 3787 local_irq_save(flags); 3788 __flush_cpu_slab(s, cpu); 3789 local_irq_restore(flags); 3790 } 3791 mutex_unlock(&slab_mutex); 3792 break; 3793 default: 3794 break; 3795 } 3796 return NOTIFY_OK; 3797 } 3798 3799 static struct notifier_block slab_notifier = { 3800 .notifier_call = slab_cpuup_callback 3801 }; 3802 3803 #endif 3804 3805 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3806 { 3807 struct kmem_cache *s; 3808 void *ret; 3809 3810 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3811 return kmalloc_large(size, gfpflags); 3812 3813 s = kmalloc_slab(size, gfpflags); 3814 3815 if (unlikely(ZERO_OR_NULL_PTR(s))) 3816 return s; 3817 3818 ret = slab_alloc(s, gfpflags, caller); 3819 3820 /* Honor the call site pointer we received. */ 3821 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3822 3823 return ret; 3824 } 3825 3826 #ifdef CONFIG_NUMA 3827 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3828 int node, unsigned long caller) 3829 { 3830 struct kmem_cache *s; 3831 void *ret; 3832 3833 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3834 ret = kmalloc_large_node(size, gfpflags, node); 3835 3836 trace_kmalloc_node(caller, ret, 3837 size, PAGE_SIZE << get_order(size), 3838 gfpflags, node); 3839 3840 return ret; 3841 } 3842 3843 s = kmalloc_slab(size, gfpflags); 3844 3845 if (unlikely(ZERO_OR_NULL_PTR(s))) 3846 return s; 3847 3848 ret = slab_alloc_node(s, gfpflags, node, caller); 3849 3850 /* Honor the call site pointer we received. */ 3851 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3852 3853 return ret; 3854 } 3855 #endif 3856 3857 #ifdef CONFIG_SYSFS 3858 static int count_inuse(struct page *page) 3859 { 3860 return page->inuse; 3861 } 3862 3863 static int count_total(struct page *page) 3864 { 3865 return page->objects; 3866 } 3867 #endif 3868 3869 #ifdef CONFIG_SLUB_DEBUG 3870 static int validate_slab(struct kmem_cache *s, struct page *page, 3871 unsigned long *map) 3872 { 3873 void *p; 3874 void *addr = page_address(page); 3875 3876 if (!check_slab(s, page) || 3877 !on_freelist(s, page, NULL)) 3878 return 0; 3879 3880 /* Now we know that a valid freelist exists */ 3881 bitmap_zero(map, page->objects); 3882 3883 get_map(s, page, map); 3884 for_each_object(p, s, addr, page->objects) { 3885 if (test_bit(slab_index(p, s, addr), map)) 3886 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 3887 return 0; 3888 } 3889 3890 for_each_object(p, s, addr, page->objects) 3891 if (!test_bit(slab_index(p, s, addr), map)) 3892 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 3893 return 0; 3894 return 1; 3895 } 3896 3897 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3898 unsigned long *map) 3899 { 3900 slab_lock(page); 3901 validate_slab(s, page, map); 3902 slab_unlock(page); 3903 } 3904 3905 static int validate_slab_node(struct kmem_cache *s, 3906 struct kmem_cache_node *n, unsigned long *map) 3907 { 3908 unsigned long count = 0; 3909 struct page *page; 3910 unsigned long flags; 3911 3912 spin_lock_irqsave(&n->list_lock, flags); 3913 3914 list_for_each_entry(page, &n->partial, lru) { 3915 validate_slab_slab(s, page, map); 3916 count++; 3917 } 3918 if (count != n->nr_partial) 3919 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3920 "counter=%ld\n", s->name, count, n->nr_partial); 3921 3922 if (!(s->flags & SLAB_STORE_USER)) 3923 goto out; 3924 3925 list_for_each_entry(page, &n->full, lru) { 3926 validate_slab_slab(s, page, map); 3927 count++; 3928 } 3929 if (count != atomic_long_read(&n->nr_slabs)) 3930 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3931 "counter=%ld\n", s->name, count, 3932 atomic_long_read(&n->nr_slabs)); 3933 3934 out: 3935 spin_unlock_irqrestore(&n->list_lock, flags); 3936 return count; 3937 } 3938 3939 static long validate_slab_cache(struct kmem_cache *s) 3940 { 3941 int node; 3942 unsigned long count = 0; 3943 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3944 sizeof(unsigned long), GFP_KERNEL); 3945 3946 if (!map) 3947 return -ENOMEM; 3948 3949 flush_all(s); 3950 for_each_node_state(node, N_NORMAL_MEMORY) { 3951 struct kmem_cache_node *n = get_node(s, node); 3952 3953 count += validate_slab_node(s, n, map); 3954 } 3955 kfree(map); 3956 return count; 3957 } 3958 /* 3959 * Generate lists of code addresses where slabcache objects are allocated 3960 * and freed. 3961 */ 3962 3963 struct location { 3964 unsigned long count; 3965 unsigned long addr; 3966 long long sum_time; 3967 long min_time; 3968 long max_time; 3969 long min_pid; 3970 long max_pid; 3971 DECLARE_BITMAP(cpus, NR_CPUS); 3972 nodemask_t nodes; 3973 }; 3974 3975 struct loc_track { 3976 unsigned long max; 3977 unsigned long count; 3978 struct location *loc; 3979 }; 3980 3981 static void free_loc_track(struct loc_track *t) 3982 { 3983 if (t->max) 3984 free_pages((unsigned long)t->loc, 3985 get_order(sizeof(struct location) * t->max)); 3986 } 3987 3988 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3989 { 3990 struct location *l; 3991 int order; 3992 3993 order = get_order(sizeof(struct location) * max); 3994 3995 l = (void *)__get_free_pages(flags, order); 3996 if (!l) 3997 return 0; 3998 3999 if (t->count) { 4000 memcpy(l, t->loc, sizeof(struct location) * t->count); 4001 free_loc_track(t); 4002 } 4003 t->max = max; 4004 t->loc = l; 4005 return 1; 4006 } 4007 4008 static int add_location(struct loc_track *t, struct kmem_cache *s, 4009 const struct track *track) 4010 { 4011 long start, end, pos; 4012 struct location *l; 4013 unsigned long caddr; 4014 unsigned long age = jiffies - track->when; 4015 4016 start = -1; 4017 end = t->count; 4018 4019 for ( ; ; ) { 4020 pos = start + (end - start + 1) / 2; 4021 4022 /* 4023 * There is nothing at "end". If we end up there 4024 * we need to add something to before end. 4025 */ 4026 if (pos == end) 4027 break; 4028 4029 caddr = t->loc[pos].addr; 4030 if (track->addr == caddr) { 4031 4032 l = &t->loc[pos]; 4033 l->count++; 4034 if (track->when) { 4035 l->sum_time += age; 4036 if (age < l->min_time) 4037 l->min_time = age; 4038 if (age > l->max_time) 4039 l->max_time = age; 4040 4041 if (track->pid < l->min_pid) 4042 l->min_pid = track->pid; 4043 if (track->pid > l->max_pid) 4044 l->max_pid = track->pid; 4045 4046 cpumask_set_cpu(track->cpu, 4047 to_cpumask(l->cpus)); 4048 } 4049 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4050 return 1; 4051 } 4052 4053 if (track->addr < caddr) 4054 end = pos; 4055 else 4056 start = pos; 4057 } 4058 4059 /* 4060 * Not found. Insert new tracking element. 4061 */ 4062 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4063 return 0; 4064 4065 l = t->loc + pos; 4066 if (pos < t->count) 4067 memmove(l + 1, l, 4068 (t->count - pos) * sizeof(struct location)); 4069 t->count++; 4070 l->count = 1; 4071 l->addr = track->addr; 4072 l->sum_time = age; 4073 l->min_time = age; 4074 l->max_time = age; 4075 l->min_pid = track->pid; 4076 l->max_pid = track->pid; 4077 cpumask_clear(to_cpumask(l->cpus)); 4078 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4079 nodes_clear(l->nodes); 4080 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4081 return 1; 4082 } 4083 4084 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4085 struct page *page, enum track_item alloc, 4086 unsigned long *map) 4087 { 4088 void *addr = page_address(page); 4089 void *p; 4090 4091 bitmap_zero(map, page->objects); 4092 get_map(s, page, map); 4093 4094 for_each_object(p, s, addr, page->objects) 4095 if (!test_bit(slab_index(p, s, addr), map)) 4096 add_location(t, s, get_track(s, p, alloc)); 4097 } 4098 4099 static int list_locations(struct kmem_cache *s, char *buf, 4100 enum track_item alloc) 4101 { 4102 int len = 0; 4103 unsigned long i; 4104 struct loc_track t = { 0, 0, NULL }; 4105 int node; 4106 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4107 sizeof(unsigned long), GFP_KERNEL); 4108 4109 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4110 GFP_TEMPORARY)) { 4111 kfree(map); 4112 return sprintf(buf, "Out of memory\n"); 4113 } 4114 /* Push back cpu slabs */ 4115 flush_all(s); 4116 4117 for_each_node_state(node, N_NORMAL_MEMORY) { 4118 struct kmem_cache_node *n = get_node(s, node); 4119 unsigned long flags; 4120 struct page *page; 4121 4122 if (!atomic_long_read(&n->nr_slabs)) 4123 continue; 4124 4125 spin_lock_irqsave(&n->list_lock, flags); 4126 list_for_each_entry(page, &n->partial, lru) 4127 process_slab(&t, s, page, alloc, map); 4128 list_for_each_entry(page, &n->full, lru) 4129 process_slab(&t, s, page, alloc, map); 4130 spin_unlock_irqrestore(&n->list_lock, flags); 4131 } 4132 4133 for (i = 0; i < t.count; i++) { 4134 struct location *l = &t.loc[i]; 4135 4136 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4137 break; 4138 len += sprintf(buf + len, "%7ld ", l->count); 4139 4140 if (l->addr) 4141 len += sprintf(buf + len, "%pS", (void *)l->addr); 4142 else 4143 len += sprintf(buf + len, "<not-available>"); 4144 4145 if (l->sum_time != l->min_time) { 4146 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4147 l->min_time, 4148 (long)div_u64(l->sum_time, l->count), 4149 l->max_time); 4150 } else 4151 len += sprintf(buf + len, " age=%ld", 4152 l->min_time); 4153 4154 if (l->min_pid != l->max_pid) 4155 len += sprintf(buf + len, " pid=%ld-%ld", 4156 l->min_pid, l->max_pid); 4157 else 4158 len += sprintf(buf + len, " pid=%ld", 4159 l->min_pid); 4160 4161 if (num_online_cpus() > 1 && 4162 !cpumask_empty(to_cpumask(l->cpus)) && 4163 len < PAGE_SIZE - 60) { 4164 len += sprintf(buf + len, " cpus="); 4165 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4166 to_cpumask(l->cpus)); 4167 } 4168 4169 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4170 len < PAGE_SIZE - 60) { 4171 len += sprintf(buf + len, " nodes="); 4172 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4173 l->nodes); 4174 } 4175 4176 len += sprintf(buf + len, "\n"); 4177 } 4178 4179 free_loc_track(&t); 4180 kfree(map); 4181 if (!t.count) 4182 len += sprintf(buf, "No data\n"); 4183 return len; 4184 } 4185 #endif 4186 4187 #ifdef SLUB_RESILIENCY_TEST 4188 static void resiliency_test(void) 4189 { 4190 u8 *p; 4191 4192 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4193 4194 printk(KERN_ERR "SLUB resiliency testing\n"); 4195 printk(KERN_ERR "-----------------------\n"); 4196 printk(KERN_ERR "A. Corruption after allocation\n"); 4197 4198 p = kzalloc(16, GFP_KERNEL); 4199 p[16] = 0x12; 4200 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 4201 " 0x12->0x%p\n\n", p + 16); 4202 4203 validate_slab_cache(kmalloc_caches[4]); 4204 4205 /* Hmmm... The next two are dangerous */ 4206 p = kzalloc(32, GFP_KERNEL); 4207 p[32 + sizeof(void *)] = 0x34; 4208 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 4209 " 0x34 -> -0x%p\n", p); 4210 printk(KERN_ERR 4211 "If allocated object is overwritten then not detectable\n\n"); 4212 4213 validate_slab_cache(kmalloc_caches[5]); 4214 p = kzalloc(64, GFP_KERNEL); 4215 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4216 *p = 0x56; 4217 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4218 p); 4219 printk(KERN_ERR 4220 "If allocated object is overwritten then not detectable\n\n"); 4221 validate_slab_cache(kmalloc_caches[6]); 4222 4223 printk(KERN_ERR "\nB. Corruption after free\n"); 4224 p = kzalloc(128, GFP_KERNEL); 4225 kfree(p); 4226 *p = 0x78; 4227 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4228 validate_slab_cache(kmalloc_caches[7]); 4229 4230 p = kzalloc(256, GFP_KERNEL); 4231 kfree(p); 4232 p[50] = 0x9a; 4233 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 4234 p); 4235 validate_slab_cache(kmalloc_caches[8]); 4236 4237 p = kzalloc(512, GFP_KERNEL); 4238 kfree(p); 4239 p[512] = 0xab; 4240 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4241 validate_slab_cache(kmalloc_caches[9]); 4242 } 4243 #else 4244 #ifdef CONFIG_SYSFS 4245 static void resiliency_test(void) {}; 4246 #endif 4247 #endif 4248 4249 #ifdef CONFIG_SYSFS 4250 enum slab_stat_type { 4251 SL_ALL, /* All slabs */ 4252 SL_PARTIAL, /* Only partially allocated slabs */ 4253 SL_CPU, /* Only slabs used for cpu caches */ 4254 SL_OBJECTS, /* Determine allocated objects not slabs */ 4255 SL_TOTAL /* Determine object capacity not slabs */ 4256 }; 4257 4258 #define SO_ALL (1 << SL_ALL) 4259 #define SO_PARTIAL (1 << SL_PARTIAL) 4260 #define SO_CPU (1 << SL_CPU) 4261 #define SO_OBJECTS (1 << SL_OBJECTS) 4262 #define SO_TOTAL (1 << SL_TOTAL) 4263 4264 static ssize_t show_slab_objects(struct kmem_cache *s, 4265 char *buf, unsigned long flags) 4266 { 4267 unsigned long total = 0; 4268 int node; 4269 int x; 4270 unsigned long *nodes; 4271 unsigned long *per_cpu; 4272 4273 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4274 if (!nodes) 4275 return -ENOMEM; 4276 per_cpu = nodes + nr_node_ids; 4277 4278 if (flags & SO_CPU) { 4279 int cpu; 4280 4281 for_each_possible_cpu(cpu) { 4282 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 4283 int node; 4284 struct page *page; 4285 4286 page = ACCESS_ONCE(c->page); 4287 if (!page) 4288 continue; 4289 4290 node = page_to_nid(page); 4291 if (flags & SO_TOTAL) 4292 x = page->objects; 4293 else if (flags & SO_OBJECTS) 4294 x = page->inuse; 4295 else 4296 x = 1; 4297 4298 total += x; 4299 nodes[node] += x; 4300 4301 page = ACCESS_ONCE(c->partial); 4302 if (page) { 4303 x = page->pobjects; 4304 total += x; 4305 nodes[node] += x; 4306 } 4307 4308 per_cpu[node]++; 4309 } 4310 } 4311 4312 lock_memory_hotplug(); 4313 #ifdef CONFIG_SLUB_DEBUG 4314 if (flags & SO_ALL) { 4315 for_each_node_state(node, N_NORMAL_MEMORY) { 4316 struct kmem_cache_node *n = get_node(s, node); 4317 4318 if (flags & SO_TOTAL) 4319 x = atomic_long_read(&n->total_objects); 4320 else if (flags & SO_OBJECTS) 4321 x = atomic_long_read(&n->total_objects) - 4322 count_partial(n, count_free); 4323 4324 else 4325 x = atomic_long_read(&n->nr_slabs); 4326 total += x; 4327 nodes[node] += x; 4328 } 4329 4330 } else 4331 #endif 4332 if (flags & SO_PARTIAL) { 4333 for_each_node_state(node, N_NORMAL_MEMORY) { 4334 struct kmem_cache_node *n = get_node(s, node); 4335 4336 if (flags & SO_TOTAL) 4337 x = count_partial(n, count_total); 4338 else if (flags & SO_OBJECTS) 4339 x = count_partial(n, count_inuse); 4340 else 4341 x = n->nr_partial; 4342 total += x; 4343 nodes[node] += x; 4344 } 4345 } 4346 x = sprintf(buf, "%lu", total); 4347 #ifdef CONFIG_NUMA 4348 for_each_node_state(node, N_NORMAL_MEMORY) 4349 if (nodes[node]) 4350 x += sprintf(buf + x, " N%d=%lu", 4351 node, nodes[node]); 4352 #endif 4353 unlock_memory_hotplug(); 4354 kfree(nodes); 4355 return x + sprintf(buf + x, "\n"); 4356 } 4357 4358 #ifdef CONFIG_SLUB_DEBUG 4359 static int any_slab_objects(struct kmem_cache *s) 4360 { 4361 int node; 4362 4363 for_each_online_node(node) { 4364 struct kmem_cache_node *n = get_node(s, node); 4365 4366 if (!n) 4367 continue; 4368 4369 if (atomic_long_read(&n->total_objects)) 4370 return 1; 4371 } 4372 return 0; 4373 } 4374 #endif 4375 4376 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4377 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4378 4379 struct slab_attribute { 4380 struct attribute attr; 4381 ssize_t (*show)(struct kmem_cache *s, char *buf); 4382 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4383 }; 4384 4385 #define SLAB_ATTR_RO(_name) \ 4386 static struct slab_attribute _name##_attr = \ 4387 __ATTR(_name, 0400, _name##_show, NULL) 4388 4389 #define SLAB_ATTR(_name) \ 4390 static struct slab_attribute _name##_attr = \ 4391 __ATTR(_name, 0600, _name##_show, _name##_store) 4392 4393 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4394 { 4395 return sprintf(buf, "%d\n", s->size); 4396 } 4397 SLAB_ATTR_RO(slab_size); 4398 4399 static ssize_t align_show(struct kmem_cache *s, char *buf) 4400 { 4401 return sprintf(buf, "%d\n", s->align); 4402 } 4403 SLAB_ATTR_RO(align); 4404 4405 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4406 { 4407 return sprintf(buf, "%d\n", s->object_size); 4408 } 4409 SLAB_ATTR_RO(object_size); 4410 4411 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4412 { 4413 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4414 } 4415 SLAB_ATTR_RO(objs_per_slab); 4416 4417 static ssize_t order_store(struct kmem_cache *s, 4418 const char *buf, size_t length) 4419 { 4420 unsigned long order; 4421 int err; 4422 4423 err = strict_strtoul(buf, 10, &order); 4424 if (err) 4425 return err; 4426 4427 if (order > slub_max_order || order < slub_min_order) 4428 return -EINVAL; 4429 4430 calculate_sizes(s, order); 4431 return length; 4432 } 4433 4434 static ssize_t order_show(struct kmem_cache *s, char *buf) 4435 { 4436 return sprintf(buf, "%d\n", oo_order(s->oo)); 4437 } 4438 SLAB_ATTR(order); 4439 4440 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4441 { 4442 return sprintf(buf, "%lu\n", s->min_partial); 4443 } 4444 4445 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4446 size_t length) 4447 { 4448 unsigned long min; 4449 int err; 4450 4451 err = strict_strtoul(buf, 10, &min); 4452 if (err) 4453 return err; 4454 4455 set_min_partial(s, min); 4456 return length; 4457 } 4458 SLAB_ATTR(min_partial); 4459 4460 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4461 { 4462 return sprintf(buf, "%u\n", s->cpu_partial); 4463 } 4464 4465 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4466 size_t length) 4467 { 4468 unsigned long objects; 4469 int err; 4470 4471 err = strict_strtoul(buf, 10, &objects); 4472 if (err) 4473 return err; 4474 if (objects && !kmem_cache_has_cpu_partial(s)) 4475 return -EINVAL; 4476 4477 s->cpu_partial = objects; 4478 flush_all(s); 4479 return length; 4480 } 4481 SLAB_ATTR(cpu_partial); 4482 4483 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4484 { 4485 if (!s->ctor) 4486 return 0; 4487 return sprintf(buf, "%pS\n", s->ctor); 4488 } 4489 SLAB_ATTR_RO(ctor); 4490 4491 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4492 { 4493 return sprintf(buf, "%d\n", s->refcount - 1); 4494 } 4495 SLAB_ATTR_RO(aliases); 4496 4497 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4498 { 4499 return show_slab_objects(s, buf, SO_PARTIAL); 4500 } 4501 SLAB_ATTR_RO(partial); 4502 4503 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4504 { 4505 return show_slab_objects(s, buf, SO_CPU); 4506 } 4507 SLAB_ATTR_RO(cpu_slabs); 4508 4509 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4510 { 4511 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4512 } 4513 SLAB_ATTR_RO(objects); 4514 4515 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4516 { 4517 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4518 } 4519 SLAB_ATTR_RO(objects_partial); 4520 4521 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4522 { 4523 int objects = 0; 4524 int pages = 0; 4525 int cpu; 4526 int len; 4527 4528 for_each_online_cpu(cpu) { 4529 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4530 4531 if (page) { 4532 pages += page->pages; 4533 objects += page->pobjects; 4534 } 4535 } 4536 4537 len = sprintf(buf, "%d(%d)", objects, pages); 4538 4539 #ifdef CONFIG_SMP 4540 for_each_online_cpu(cpu) { 4541 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4542 4543 if (page && len < PAGE_SIZE - 20) 4544 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4545 page->pobjects, page->pages); 4546 } 4547 #endif 4548 return len + sprintf(buf + len, "\n"); 4549 } 4550 SLAB_ATTR_RO(slabs_cpu_partial); 4551 4552 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4553 { 4554 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4555 } 4556 4557 static ssize_t reclaim_account_store(struct kmem_cache *s, 4558 const char *buf, size_t length) 4559 { 4560 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4561 if (buf[0] == '1') 4562 s->flags |= SLAB_RECLAIM_ACCOUNT; 4563 return length; 4564 } 4565 SLAB_ATTR(reclaim_account); 4566 4567 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4568 { 4569 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4570 } 4571 SLAB_ATTR_RO(hwcache_align); 4572 4573 #ifdef CONFIG_ZONE_DMA 4574 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4575 { 4576 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4577 } 4578 SLAB_ATTR_RO(cache_dma); 4579 #endif 4580 4581 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4582 { 4583 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4584 } 4585 SLAB_ATTR_RO(destroy_by_rcu); 4586 4587 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4588 { 4589 return sprintf(buf, "%d\n", s->reserved); 4590 } 4591 SLAB_ATTR_RO(reserved); 4592 4593 #ifdef CONFIG_SLUB_DEBUG 4594 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4595 { 4596 return show_slab_objects(s, buf, SO_ALL); 4597 } 4598 SLAB_ATTR_RO(slabs); 4599 4600 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4601 { 4602 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4603 } 4604 SLAB_ATTR_RO(total_objects); 4605 4606 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4607 { 4608 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4609 } 4610 4611 static ssize_t sanity_checks_store(struct kmem_cache *s, 4612 const char *buf, size_t length) 4613 { 4614 s->flags &= ~SLAB_DEBUG_FREE; 4615 if (buf[0] == '1') { 4616 s->flags &= ~__CMPXCHG_DOUBLE; 4617 s->flags |= SLAB_DEBUG_FREE; 4618 } 4619 return length; 4620 } 4621 SLAB_ATTR(sanity_checks); 4622 4623 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4624 { 4625 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4626 } 4627 4628 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4629 size_t length) 4630 { 4631 s->flags &= ~SLAB_TRACE; 4632 if (buf[0] == '1') { 4633 s->flags &= ~__CMPXCHG_DOUBLE; 4634 s->flags |= SLAB_TRACE; 4635 } 4636 return length; 4637 } 4638 SLAB_ATTR(trace); 4639 4640 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4641 { 4642 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4643 } 4644 4645 static ssize_t red_zone_store(struct kmem_cache *s, 4646 const char *buf, size_t length) 4647 { 4648 if (any_slab_objects(s)) 4649 return -EBUSY; 4650 4651 s->flags &= ~SLAB_RED_ZONE; 4652 if (buf[0] == '1') { 4653 s->flags &= ~__CMPXCHG_DOUBLE; 4654 s->flags |= SLAB_RED_ZONE; 4655 } 4656 calculate_sizes(s, -1); 4657 return length; 4658 } 4659 SLAB_ATTR(red_zone); 4660 4661 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4662 { 4663 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4664 } 4665 4666 static ssize_t poison_store(struct kmem_cache *s, 4667 const char *buf, size_t length) 4668 { 4669 if (any_slab_objects(s)) 4670 return -EBUSY; 4671 4672 s->flags &= ~SLAB_POISON; 4673 if (buf[0] == '1') { 4674 s->flags &= ~__CMPXCHG_DOUBLE; 4675 s->flags |= SLAB_POISON; 4676 } 4677 calculate_sizes(s, -1); 4678 return length; 4679 } 4680 SLAB_ATTR(poison); 4681 4682 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4683 { 4684 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4685 } 4686 4687 static ssize_t store_user_store(struct kmem_cache *s, 4688 const char *buf, size_t length) 4689 { 4690 if (any_slab_objects(s)) 4691 return -EBUSY; 4692 4693 s->flags &= ~SLAB_STORE_USER; 4694 if (buf[0] == '1') { 4695 s->flags &= ~__CMPXCHG_DOUBLE; 4696 s->flags |= SLAB_STORE_USER; 4697 } 4698 calculate_sizes(s, -1); 4699 return length; 4700 } 4701 SLAB_ATTR(store_user); 4702 4703 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4704 { 4705 return 0; 4706 } 4707 4708 static ssize_t validate_store(struct kmem_cache *s, 4709 const char *buf, size_t length) 4710 { 4711 int ret = -EINVAL; 4712 4713 if (buf[0] == '1') { 4714 ret = validate_slab_cache(s); 4715 if (ret >= 0) 4716 ret = length; 4717 } 4718 return ret; 4719 } 4720 SLAB_ATTR(validate); 4721 4722 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4723 { 4724 if (!(s->flags & SLAB_STORE_USER)) 4725 return -ENOSYS; 4726 return list_locations(s, buf, TRACK_ALLOC); 4727 } 4728 SLAB_ATTR_RO(alloc_calls); 4729 4730 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4731 { 4732 if (!(s->flags & SLAB_STORE_USER)) 4733 return -ENOSYS; 4734 return list_locations(s, buf, TRACK_FREE); 4735 } 4736 SLAB_ATTR_RO(free_calls); 4737 #endif /* CONFIG_SLUB_DEBUG */ 4738 4739 #ifdef CONFIG_FAILSLAB 4740 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4741 { 4742 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4743 } 4744 4745 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4746 size_t length) 4747 { 4748 s->flags &= ~SLAB_FAILSLAB; 4749 if (buf[0] == '1') 4750 s->flags |= SLAB_FAILSLAB; 4751 return length; 4752 } 4753 SLAB_ATTR(failslab); 4754 #endif 4755 4756 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4757 { 4758 return 0; 4759 } 4760 4761 static ssize_t shrink_store(struct kmem_cache *s, 4762 const char *buf, size_t length) 4763 { 4764 if (buf[0] == '1') { 4765 int rc = kmem_cache_shrink(s); 4766 4767 if (rc) 4768 return rc; 4769 } else 4770 return -EINVAL; 4771 return length; 4772 } 4773 SLAB_ATTR(shrink); 4774 4775 #ifdef CONFIG_NUMA 4776 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4777 { 4778 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4779 } 4780 4781 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4782 const char *buf, size_t length) 4783 { 4784 unsigned long ratio; 4785 int err; 4786 4787 err = strict_strtoul(buf, 10, &ratio); 4788 if (err) 4789 return err; 4790 4791 if (ratio <= 100) 4792 s->remote_node_defrag_ratio = ratio * 10; 4793 4794 return length; 4795 } 4796 SLAB_ATTR(remote_node_defrag_ratio); 4797 #endif 4798 4799 #ifdef CONFIG_SLUB_STATS 4800 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4801 { 4802 unsigned long sum = 0; 4803 int cpu; 4804 int len; 4805 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4806 4807 if (!data) 4808 return -ENOMEM; 4809 4810 for_each_online_cpu(cpu) { 4811 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4812 4813 data[cpu] = x; 4814 sum += x; 4815 } 4816 4817 len = sprintf(buf, "%lu", sum); 4818 4819 #ifdef CONFIG_SMP 4820 for_each_online_cpu(cpu) { 4821 if (data[cpu] && len < PAGE_SIZE - 20) 4822 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4823 } 4824 #endif 4825 kfree(data); 4826 return len + sprintf(buf + len, "\n"); 4827 } 4828 4829 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4830 { 4831 int cpu; 4832 4833 for_each_online_cpu(cpu) 4834 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4835 } 4836 4837 #define STAT_ATTR(si, text) \ 4838 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4839 { \ 4840 return show_stat(s, buf, si); \ 4841 } \ 4842 static ssize_t text##_store(struct kmem_cache *s, \ 4843 const char *buf, size_t length) \ 4844 { \ 4845 if (buf[0] != '0') \ 4846 return -EINVAL; \ 4847 clear_stat(s, si); \ 4848 return length; \ 4849 } \ 4850 SLAB_ATTR(text); \ 4851 4852 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4853 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4854 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4855 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4856 STAT_ATTR(FREE_FROZEN, free_frozen); 4857 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4858 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4859 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4860 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4861 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4862 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 4863 STAT_ATTR(FREE_SLAB, free_slab); 4864 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4865 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4866 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4867 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4868 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4869 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4870 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 4871 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4872 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 4873 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 4874 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 4875 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 4876 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 4877 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 4878 #endif 4879 4880 static struct attribute *slab_attrs[] = { 4881 &slab_size_attr.attr, 4882 &object_size_attr.attr, 4883 &objs_per_slab_attr.attr, 4884 &order_attr.attr, 4885 &min_partial_attr.attr, 4886 &cpu_partial_attr.attr, 4887 &objects_attr.attr, 4888 &objects_partial_attr.attr, 4889 &partial_attr.attr, 4890 &cpu_slabs_attr.attr, 4891 &ctor_attr.attr, 4892 &aliases_attr.attr, 4893 &align_attr.attr, 4894 &hwcache_align_attr.attr, 4895 &reclaim_account_attr.attr, 4896 &destroy_by_rcu_attr.attr, 4897 &shrink_attr.attr, 4898 &reserved_attr.attr, 4899 &slabs_cpu_partial_attr.attr, 4900 #ifdef CONFIG_SLUB_DEBUG 4901 &total_objects_attr.attr, 4902 &slabs_attr.attr, 4903 &sanity_checks_attr.attr, 4904 &trace_attr.attr, 4905 &red_zone_attr.attr, 4906 &poison_attr.attr, 4907 &store_user_attr.attr, 4908 &validate_attr.attr, 4909 &alloc_calls_attr.attr, 4910 &free_calls_attr.attr, 4911 #endif 4912 #ifdef CONFIG_ZONE_DMA 4913 &cache_dma_attr.attr, 4914 #endif 4915 #ifdef CONFIG_NUMA 4916 &remote_node_defrag_ratio_attr.attr, 4917 #endif 4918 #ifdef CONFIG_SLUB_STATS 4919 &alloc_fastpath_attr.attr, 4920 &alloc_slowpath_attr.attr, 4921 &free_fastpath_attr.attr, 4922 &free_slowpath_attr.attr, 4923 &free_frozen_attr.attr, 4924 &free_add_partial_attr.attr, 4925 &free_remove_partial_attr.attr, 4926 &alloc_from_partial_attr.attr, 4927 &alloc_slab_attr.attr, 4928 &alloc_refill_attr.attr, 4929 &alloc_node_mismatch_attr.attr, 4930 &free_slab_attr.attr, 4931 &cpuslab_flush_attr.attr, 4932 &deactivate_full_attr.attr, 4933 &deactivate_empty_attr.attr, 4934 &deactivate_to_head_attr.attr, 4935 &deactivate_to_tail_attr.attr, 4936 &deactivate_remote_frees_attr.attr, 4937 &deactivate_bypass_attr.attr, 4938 &order_fallback_attr.attr, 4939 &cmpxchg_double_fail_attr.attr, 4940 &cmpxchg_double_cpu_fail_attr.attr, 4941 &cpu_partial_alloc_attr.attr, 4942 &cpu_partial_free_attr.attr, 4943 &cpu_partial_node_attr.attr, 4944 &cpu_partial_drain_attr.attr, 4945 #endif 4946 #ifdef CONFIG_FAILSLAB 4947 &failslab_attr.attr, 4948 #endif 4949 4950 NULL 4951 }; 4952 4953 static struct attribute_group slab_attr_group = { 4954 .attrs = slab_attrs, 4955 }; 4956 4957 static ssize_t slab_attr_show(struct kobject *kobj, 4958 struct attribute *attr, 4959 char *buf) 4960 { 4961 struct slab_attribute *attribute; 4962 struct kmem_cache *s; 4963 int err; 4964 4965 attribute = to_slab_attr(attr); 4966 s = to_slab(kobj); 4967 4968 if (!attribute->show) 4969 return -EIO; 4970 4971 err = attribute->show(s, buf); 4972 4973 return err; 4974 } 4975 4976 static ssize_t slab_attr_store(struct kobject *kobj, 4977 struct attribute *attr, 4978 const char *buf, size_t len) 4979 { 4980 struct slab_attribute *attribute; 4981 struct kmem_cache *s; 4982 int err; 4983 4984 attribute = to_slab_attr(attr); 4985 s = to_slab(kobj); 4986 4987 if (!attribute->store) 4988 return -EIO; 4989 4990 err = attribute->store(s, buf, len); 4991 #ifdef CONFIG_MEMCG_KMEM 4992 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 4993 int i; 4994 4995 mutex_lock(&slab_mutex); 4996 if (s->max_attr_size < len) 4997 s->max_attr_size = len; 4998 4999 /* 5000 * This is a best effort propagation, so this function's return 5001 * value will be determined by the parent cache only. This is 5002 * basically because not all attributes will have a well 5003 * defined semantics for rollbacks - most of the actions will 5004 * have permanent effects. 5005 * 5006 * Returning the error value of any of the children that fail 5007 * is not 100 % defined, in the sense that users seeing the 5008 * error code won't be able to know anything about the state of 5009 * the cache. 5010 * 5011 * Only returning the error code for the parent cache at least 5012 * has well defined semantics. The cache being written to 5013 * directly either failed or succeeded, in which case we loop 5014 * through the descendants with best-effort propagation. 5015 */ 5016 for_each_memcg_cache_index(i) { 5017 struct kmem_cache *c = cache_from_memcg(s, i); 5018 if (c) 5019 attribute->store(c, buf, len); 5020 } 5021 mutex_unlock(&slab_mutex); 5022 } 5023 #endif 5024 return err; 5025 } 5026 5027 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5028 { 5029 #ifdef CONFIG_MEMCG_KMEM 5030 int i; 5031 char *buffer = NULL; 5032 5033 if (!is_root_cache(s)) 5034 return; 5035 5036 /* 5037 * This mean this cache had no attribute written. Therefore, no point 5038 * in copying default values around 5039 */ 5040 if (!s->max_attr_size) 5041 return; 5042 5043 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5044 char mbuf[64]; 5045 char *buf; 5046 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5047 5048 if (!attr || !attr->store || !attr->show) 5049 continue; 5050 5051 /* 5052 * It is really bad that we have to allocate here, so we will 5053 * do it only as a fallback. If we actually allocate, though, 5054 * we can just use the allocated buffer until the end. 5055 * 5056 * Most of the slub attributes will tend to be very small in 5057 * size, but sysfs allows buffers up to a page, so they can 5058 * theoretically happen. 5059 */ 5060 if (buffer) 5061 buf = buffer; 5062 else if (s->max_attr_size < ARRAY_SIZE(mbuf)) 5063 buf = mbuf; 5064 else { 5065 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5066 if (WARN_ON(!buffer)) 5067 continue; 5068 buf = buffer; 5069 } 5070 5071 attr->show(s->memcg_params->root_cache, buf); 5072 attr->store(s, buf, strlen(buf)); 5073 } 5074 5075 if (buffer) 5076 free_page((unsigned long)buffer); 5077 #endif 5078 } 5079 5080 static const struct sysfs_ops slab_sysfs_ops = { 5081 .show = slab_attr_show, 5082 .store = slab_attr_store, 5083 }; 5084 5085 static struct kobj_type slab_ktype = { 5086 .sysfs_ops = &slab_sysfs_ops, 5087 }; 5088 5089 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5090 { 5091 struct kobj_type *ktype = get_ktype(kobj); 5092 5093 if (ktype == &slab_ktype) 5094 return 1; 5095 return 0; 5096 } 5097 5098 static const struct kset_uevent_ops slab_uevent_ops = { 5099 .filter = uevent_filter, 5100 }; 5101 5102 static struct kset *slab_kset; 5103 5104 #define ID_STR_LENGTH 64 5105 5106 /* Create a unique string id for a slab cache: 5107 * 5108 * Format :[flags-]size 5109 */ 5110 static char *create_unique_id(struct kmem_cache *s) 5111 { 5112 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5113 char *p = name; 5114 5115 BUG_ON(!name); 5116 5117 *p++ = ':'; 5118 /* 5119 * First flags affecting slabcache operations. We will only 5120 * get here for aliasable slabs so we do not need to support 5121 * too many flags. The flags here must cover all flags that 5122 * are matched during merging to guarantee that the id is 5123 * unique. 5124 */ 5125 if (s->flags & SLAB_CACHE_DMA) 5126 *p++ = 'd'; 5127 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5128 *p++ = 'a'; 5129 if (s->flags & SLAB_DEBUG_FREE) 5130 *p++ = 'F'; 5131 if (!(s->flags & SLAB_NOTRACK)) 5132 *p++ = 't'; 5133 if (p != name + 1) 5134 *p++ = '-'; 5135 p += sprintf(p, "%07d", s->size); 5136 5137 #ifdef CONFIG_MEMCG_KMEM 5138 if (!is_root_cache(s)) 5139 p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg)); 5140 #endif 5141 5142 BUG_ON(p > name + ID_STR_LENGTH - 1); 5143 return name; 5144 } 5145 5146 static int sysfs_slab_add(struct kmem_cache *s) 5147 { 5148 int err; 5149 const char *name; 5150 int unmergeable = slab_unmergeable(s); 5151 5152 if (unmergeable) { 5153 /* 5154 * Slabcache can never be merged so we can use the name proper. 5155 * This is typically the case for debug situations. In that 5156 * case we can catch duplicate names easily. 5157 */ 5158 sysfs_remove_link(&slab_kset->kobj, s->name); 5159 name = s->name; 5160 } else { 5161 /* 5162 * Create a unique name for the slab as a target 5163 * for the symlinks. 5164 */ 5165 name = create_unique_id(s); 5166 } 5167 5168 s->kobj.kset = slab_kset; 5169 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 5170 if (err) { 5171 kobject_put(&s->kobj); 5172 return err; 5173 } 5174 5175 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5176 if (err) { 5177 kobject_del(&s->kobj); 5178 kobject_put(&s->kobj); 5179 return err; 5180 } 5181 kobject_uevent(&s->kobj, KOBJ_ADD); 5182 if (!unmergeable) { 5183 /* Setup first alias */ 5184 sysfs_slab_alias(s, s->name); 5185 kfree(name); 5186 } 5187 return 0; 5188 } 5189 5190 static void sysfs_slab_remove(struct kmem_cache *s) 5191 { 5192 if (slab_state < FULL) 5193 /* 5194 * Sysfs has not been setup yet so no need to remove the 5195 * cache from sysfs. 5196 */ 5197 return; 5198 5199 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5200 kobject_del(&s->kobj); 5201 kobject_put(&s->kobj); 5202 } 5203 5204 /* 5205 * Need to buffer aliases during bootup until sysfs becomes 5206 * available lest we lose that information. 5207 */ 5208 struct saved_alias { 5209 struct kmem_cache *s; 5210 const char *name; 5211 struct saved_alias *next; 5212 }; 5213 5214 static struct saved_alias *alias_list; 5215 5216 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5217 { 5218 struct saved_alias *al; 5219 5220 if (slab_state == FULL) { 5221 /* 5222 * If we have a leftover link then remove it. 5223 */ 5224 sysfs_remove_link(&slab_kset->kobj, name); 5225 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5226 } 5227 5228 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5229 if (!al) 5230 return -ENOMEM; 5231 5232 al->s = s; 5233 al->name = name; 5234 al->next = alias_list; 5235 alias_list = al; 5236 return 0; 5237 } 5238 5239 static int __init slab_sysfs_init(void) 5240 { 5241 struct kmem_cache *s; 5242 int err; 5243 5244 mutex_lock(&slab_mutex); 5245 5246 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5247 if (!slab_kset) { 5248 mutex_unlock(&slab_mutex); 5249 printk(KERN_ERR "Cannot register slab subsystem.\n"); 5250 return -ENOSYS; 5251 } 5252 5253 slab_state = FULL; 5254 5255 list_for_each_entry(s, &slab_caches, list) { 5256 err = sysfs_slab_add(s); 5257 if (err) 5258 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 5259 " to sysfs\n", s->name); 5260 } 5261 5262 while (alias_list) { 5263 struct saved_alias *al = alias_list; 5264 5265 alias_list = alias_list->next; 5266 err = sysfs_slab_alias(al->s, al->name); 5267 if (err) 5268 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 5269 " %s to sysfs\n", al->name); 5270 kfree(al); 5271 } 5272 5273 mutex_unlock(&slab_mutex); 5274 resiliency_test(); 5275 return 0; 5276 } 5277 5278 __initcall(slab_sysfs_init); 5279 #endif /* CONFIG_SYSFS */ 5280 5281 /* 5282 * The /proc/slabinfo ABI 5283 */ 5284 #ifdef CONFIG_SLABINFO 5285 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5286 { 5287 unsigned long nr_slabs = 0; 5288 unsigned long nr_objs = 0; 5289 unsigned long nr_free = 0; 5290 int node; 5291 5292 for_each_online_node(node) { 5293 struct kmem_cache_node *n = get_node(s, node); 5294 5295 if (!n) 5296 continue; 5297 5298 nr_slabs += node_nr_slabs(n); 5299 nr_objs += node_nr_objs(n); 5300 nr_free += count_partial(n, count_free); 5301 } 5302 5303 sinfo->active_objs = nr_objs - nr_free; 5304 sinfo->num_objs = nr_objs; 5305 sinfo->active_slabs = nr_slabs; 5306 sinfo->num_slabs = nr_slabs; 5307 sinfo->objects_per_slab = oo_objects(s->oo); 5308 sinfo->cache_order = oo_order(s->oo); 5309 } 5310 5311 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5312 { 5313 } 5314 5315 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5316 size_t count, loff_t *ppos) 5317 { 5318 return -EIO; 5319 } 5320 #endif /* CONFIG_SLABINFO */ 5321