1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks and only 6 * uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/swap.h> /* struct reclaim_state */ 13 #include <linux/module.h> 14 #include <linux/bit_spinlock.h> 15 #include <linux/interrupt.h> 16 #include <linux/bitops.h> 17 #include <linux/slab.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/kmemtrace.h> 21 #include <linux/kmemcheck.h> 22 #include <linux/cpu.h> 23 #include <linux/cpuset.h> 24 #include <linux/mempolicy.h> 25 #include <linux/ctype.h> 26 #include <linux/debugobjects.h> 27 #include <linux/kallsyms.h> 28 #include <linux/memory.h> 29 #include <linux/math64.h> 30 #include <linux/fault-inject.h> 31 32 /* 33 * Lock order: 34 * 1. slab_lock(page) 35 * 2. slab->list_lock 36 * 37 * The slab_lock protects operations on the object of a particular 38 * slab and its metadata in the page struct. If the slab lock 39 * has been taken then no allocations nor frees can be performed 40 * on the objects in the slab nor can the slab be added or removed 41 * from the partial or full lists since this would mean modifying 42 * the page_struct of the slab. 43 * 44 * The list_lock protects the partial and full list on each node and 45 * the partial slab counter. If taken then no new slabs may be added or 46 * removed from the lists nor make the number of partial slabs be modified. 47 * (Note that the total number of slabs is an atomic value that may be 48 * modified without taking the list lock). 49 * 50 * The list_lock is a centralized lock and thus we avoid taking it as 51 * much as possible. As long as SLUB does not have to handle partial 52 * slabs, operations can continue without any centralized lock. F.e. 53 * allocating a long series of objects that fill up slabs does not require 54 * the list lock. 55 * 56 * The lock order is sometimes inverted when we are trying to get a slab 57 * off a list. We take the list_lock and then look for a page on the list 58 * to use. While we do that objects in the slabs may be freed. We can 59 * only operate on the slab if we have also taken the slab_lock. So we use 60 * a slab_trylock() on the slab. If trylock was successful then no frees 61 * can occur anymore and we can use the slab for allocations etc. If the 62 * slab_trylock() does not succeed then frees are in progress in the slab and 63 * we must stay away from it for a while since we may cause a bouncing 64 * cacheline if we try to acquire the lock. So go onto the next slab. 65 * If all pages are busy then we may allocate a new slab instead of reusing 66 * a partial slab. A new slab has noone operating on it and thus there is 67 * no danger of cacheline contention. 68 * 69 * Interrupts are disabled during allocation and deallocation in order to 70 * make the slab allocator safe to use in the context of an irq. In addition 71 * interrupts are disabled to ensure that the processor does not change 72 * while handling per_cpu slabs, due to kernel preemption. 73 * 74 * SLUB assigns one slab for allocation to each processor. 75 * Allocations only occur from these slabs called cpu slabs. 76 * 77 * Slabs with free elements are kept on a partial list and during regular 78 * operations no list for full slabs is used. If an object in a full slab is 79 * freed then the slab will show up again on the partial lists. 80 * We track full slabs for debugging purposes though because otherwise we 81 * cannot scan all objects. 82 * 83 * Slabs are freed when they become empty. Teardown and setup is 84 * minimal so we rely on the page allocators per cpu caches for 85 * fast frees and allocs. 86 * 87 * Overloading of page flags that are otherwise used for LRU management. 88 * 89 * PageActive The slab is frozen and exempt from list processing. 90 * This means that the slab is dedicated to a purpose 91 * such as satisfying allocations for a specific 92 * processor. Objects may be freed in the slab while 93 * it is frozen but slab_free will then skip the usual 94 * list operations. It is up to the processor holding 95 * the slab to integrate the slab into the slab lists 96 * when the slab is no longer needed. 97 * 98 * One use of this flag is to mark slabs that are 99 * used for allocations. Then such a slab becomes a cpu 100 * slab. The cpu slab may be equipped with an additional 101 * freelist that allows lockless access to 102 * free objects in addition to the regular freelist 103 * that requires the slab lock. 104 * 105 * PageError Slab requires special handling due to debug 106 * options set. This moves slab handling out of 107 * the fast path and disables lockless freelists. 108 */ 109 110 #ifdef CONFIG_SLUB_DEBUG 111 #define SLABDEBUG 1 112 #else 113 #define SLABDEBUG 0 114 #endif 115 116 /* 117 * Issues still to be resolved: 118 * 119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 120 * 121 * - Variable sizing of the per node arrays 122 */ 123 124 /* Enable to test recovery from slab corruption on boot */ 125 #undef SLUB_RESILIENCY_TEST 126 127 /* 128 * Mininum number of partial slabs. These will be left on the partial 129 * lists even if they are empty. kmem_cache_shrink may reclaim them. 130 */ 131 #define MIN_PARTIAL 5 132 133 /* 134 * Maximum number of desirable partial slabs. 135 * The existence of more partial slabs makes kmem_cache_shrink 136 * sort the partial list by the number of objects in the. 137 */ 138 #define MAX_PARTIAL 10 139 140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 141 SLAB_POISON | SLAB_STORE_USER) 142 143 /* 144 * Debugging flags that require metadata to be stored in the slab. These get 145 * disabled when slub_debug=O is used and a cache's min order increases with 146 * metadata. 147 */ 148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 149 150 /* 151 * Set of flags that will prevent slab merging 152 */ 153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE) 155 156 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 157 SLAB_CACHE_DMA | SLAB_NOTRACK) 158 159 #ifndef ARCH_KMALLOC_MINALIGN 160 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 161 #endif 162 163 #ifndef ARCH_SLAB_MINALIGN 164 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 165 #endif 166 167 #define OO_SHIFT 16 168 #define OO_MASK ((1 << OO_SHIFT) - 1) 169 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ 170 171 /* Internal SLUB flags */ 172 #define __OBJECT_POISON 0x80000000 /* Poison object */ 173 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ 174 175 static int kmem_size = sizeof(struct kmem_cache); 176 177 #ifdef CONFIG_SMP 178 static struct notifier_block slab_notifier; 179 #endif 180 181 static enum { 182 DOWN, /* No slab functionality available */ 183 PARTIAL, /* kmem_cache_open() works but kmalloc does not */ 184 UP, /* Everything works but does not show up in sysfs */ 185 SYSFS /* Sysfs up */ 186 } slab_state = DOWN; 187 188 /* A list of all slab caches on the system */ 189 static DECLARE_RWSEM(slub_lock); 190 static LIST_HEAD(slab_caches); 191 192 /* 193 * Tracking user of a slab. 194 */ 195 struct track { 196 unsigned long addr; /* Called from address */ 197 int cpu; /* Was running on cpu */ 198 int pid; /* Pid context */ 199 unsigned long when; /* When did the operation occur */ 200 }; 201 202 enum track_item { TRACK_ALLOC, TRACK_FREE }; 203 204 #ifdef CONFIG_SLUB_DEBUG 205 static int sysfs_slab_add(struct kmem_cache *); 206 static int sysfs_slab_alias(struct kmem_cache *, const char *); 207 static void sysfs_slab_remove(struct kmem_cache *); 208 209 #else 210 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 211 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 212 { return 0; } 213 static inline void sysfs_slab_remove(struct kmem_cache *s) 214 { 215 kfree(s); 216 } 217 218 #endif 219 220 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si) 221 { 222 #ifdef CONFIG_SLUB_STATS 223 c->stat[si]++; 224 #endif 225 } 226 227 /******************************************************************** 228 * Core slab cache functions 229 *******************************************************************/ 230 231 int slab_is_available(void) 232 { 233 return slab_state >= UP; 234 } 235 236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 237 { 238 #ifdef CONFIG_NUMA 239 return s->node[node]; 240 #else 241 return &s->local_node; 242 #endif 243 } 244 245 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu) 246 { 247 #ifdef CONFIG_SMP 248 return s->cpu_slab[cpu]; 249 #else 250 return &s->cpu_slab; 251 #endif 252 } 253 254 /* Verify that a pointer has an address that is valid within a slab page */ 255 static inline int check_valid_pointer(struct kmem_cache *s, 256 struct page *page, const void *object) 257 { 258 void *base; 259 260 if (!object) 261 return 1; 262 263 base = page_address(page); 264 if (object < base || object >= base + page->objects * s->size || 265 (object - base) % s->size) { 266 return 0; 267 } 268 269 return 1; 270 } 271 272 /* 273 * Slow version of get and set free pointer. 274 * 275 * This version requires touching the cache lines of kmem_cache which 276 * we avoid to do in the fast alloc free paths. There we obtain the offset 277 * from the page struct. 278 */ 279 static inline void *get_freepointer(struct kmem_cache *s, void *object) 280 { 281 return *(void **)(object + s->offset); 282 } 283 284 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 285 { 286 *(void **)(object + s->offset) = fp; 287 } 288 289 /* Loop over all objects in a slab */ 290 #define for_each_object(__p, __s, __addr, __objects) \ 291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 292 __p += (__s)->size) 293 294 /* Scan freelist */ 295 #define for_each_free_object(__p, __s, __free) \ 296 for (__p = (__free); __p; __p = get_freepointer((__s), __p)) 297 298 /* Determine object index from a given position */ 299 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 300 { 301 return (p - addr) / s->size; 302 } 303 304 static inline struct kmem_cache_order_objects oo_make(int order, 305 unsigned long size) 306 { 307 struct kmem_cache_order_objects x = { 308 (order << OO_SHIFT) + (PAGE_SIZE << order) / size 309 }; 310 311 return x; 312 } 313 314 static inline int oo_order(struct kmem_cache_order_objects x) 315 { 316 return x.x >> OO_SHIFT; 317 } 318 319 static inline int oo_objects(struct kmem_cache_order_objects x) 320 { 321 return x.x & OO_MASK; 322 } 323 324 #ifdef CONFIG_SLUB_DEBUG 325 /* 326 * Debug settings: 327 */ 328 #ifdef CONFIG_SLUB_DEBUG_ON 329 static int slub_debug = DEBUG_DEFAULT_FLAGS; 330 #else 331 static int slub_debug; 332 #endif 333 334 static char *slub_debug_slabs; 335 static int disable_higher_order_debug; 336 337 /* 338 * Object debugging 339 */ 340 static void print_section(char *text, u8 *addr, unsigned int length) 341 { 342 int i, offset; 343 int newline = 1; 344 char ascii[17]; 345 346 ascii[16] = 0; 347 348 for (i = 0; i < length; i++) { 349 if (newline) { 350 printk(KERN_ERR "%8s 0x%p: ", text, addr + i); 351 newline = 0; 352 } 353 printk(KERN_CONT " %02x", addr[i]); 354 offset = i % 16; 355 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; 356 if (offset == 15) { 357 printk(KERN_CONT " %s\n", ascii); 358 newline = 1; 359 } 360 } 361 if (!newline) { 362 i %= 16; 363 while (i < 16) { 364 printk(KERN_CONT " "); 365 ascii[i] = ' '; 366 i++; 367 } 368 printk(KERN_CONT " %s\n", ascii); 369 } 370 } 371 372 static struct track *get_track(struct kmem_cache *s, void *object, 373 enum track_item alloc) 374 { 375 struct track *p; 376 377 if (s->offset) 378 p = object + s->offset + sizeof(void *); 379 else 380 p = object + s->inuse; 381 382 return p + alloc; 383 } 384 385 static void set_track(struct kmem_cache *s, void *object, 386 enum track_item alloc, unsigned long addr) 387 { 388 struct track *p = get_track(s, object, alloc); 389 390 if (addr) { 391 p->addr = addr; 392 p->cpu = smp_processor_id(); 393 p->pid = current->pid; 394 p->when = jiffies; 395 } else 396 memset(p, 0, sizeof(struct track)); 397 } 398 399 static void init_tracking(struct kmem_cache *s, void *object) 400 { 401 if (!(s->flags & SLAB_STORE_USER)) 402 return; 403 404 set_track(s, object, TRACK_FREE, 0UL); 405 set_track(s, object, TRACK_ALLOC, 0UL); 406 } 407 408 static void print_track(const char *s, struct track *t) 409 { 410 if (!t->addr) 411 return; 412 413 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 414 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 415 } 416 417 static void print_tracking(struct kmem_cache *s, void *object) 418 { 419 if (!(s->flags & SLAB_STORE_USER)) 420 return; 421 422 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 423 print_track("Freed", get_track(s, object, TRACK_FREE)); 424 } 425 426 static void print_page_info(struct page *page) 427 { 428 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 429 page, page->objects, page->inuse, page->freelist, page->flags); 430 431 } 432 433 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 434 { 435 va_list args; 436 char buf[100]; 437 438 va_start(args, fmt); 439 vsnprintf(buf, sizeof(buf), fmt, args); 440 va_end(args); 441 printk(KERN_ERR "========================================" 442 "=====================================\n"); 443 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 444 printk(KERN_ERR "----------------------------------------" 445 "-------------------------------------\n\n"); 446 } 447 448 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 449 { 450 va_list args; 451 char buf[100]; 452 453 va_start(args, fmt); 454 vsnprintf(buf, sizeof(buf), fmt, args); 455 va_end(args); 456 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 457 } 458 459 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 460 { 461 unsigned int off; /* Offset of last byte */ 462 u8 *addr = page_address(page); 463 464 print_tracking(s, p); 465 466 print_page_info(page); 467 468 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 469 p, p - addr, get_freepointer(s, p)); 470 471 if (p > addr + 16) 472 print_section("Bytes b4", p - 16, 16); 473 474 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); 475 476 if (s->flags & SLAB_RED_ZONE) 477 print_section("Redzone", p + s->objsize, 478 s->inuse - s->objsize); 479 480 if (s->offset) 481 off = s->offset + sizeof(void *); 482 else 483 off = s->inuse; 484 485 if (s->flags & SLAB_STORE_USER) 486 off += 2 * sizeof(struct track); 487 488 if (off != s->size) 489 /* Beginning of the filler is the free pointer */ 490 print_section("Padding", p + off, s->size - off); 491 492 dump_stack(); 493 } 494 495 static void object_err(struct kmem_cache *s, struct page *page, 496 u8 *object, char *reason) 497 { 498 slab_bug(s, "%s", reason); 499 print_trailer(s, page, object); 500 } 501 502 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 503 { 504 va_list args; 505 char buf[100]; 506 507 va_start(args, fmt); 508 vsnprintf(buf, sizeof(buf), fmt, args); 509 va_end(args); 510 slab_bug(s, "%s", buf); 511 print_page_info(page); 512 dump_stack(); 513 } 514 515 static void init_object(struct kmem_cache *s, void *object, int active) 516 { 517 u8 *p = object; 518 519 if (s->flags & __OBJECT_POISON) { 520 memset(p, POISON_FREE, s->objsize - 1); 521 p[s->objsize - 1] = POISON_END; 522 } 523 524 if (s->flags & SLAB_RED_ZONE) 525 memset(p + s->objsize, 526 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, 527 s->inuse - s->objsize); 528 } 529 530 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) 531 { 532 while (bytes) { 533 if (*start != (u8)value) 534 return start; 535 start++; 536 bytes--; 537 } 538 return NULL; 539 } 540 541 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 542 void *from, void *to) 543 { 544 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 545 memset(from, data, to - from); 546 } 547 548 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 549 u8 *object, char *what, 550 u8 *start, unsigned int value, unsigned int bytes) 551 { 552 u8 *fault; 553 u8 *end; 554 555 fault = check_bytes(start, value, bytes); 556 if (!fault) 557 return 1; 558 559 end = start + bytes; 560 while (end > fault && end[-1] == value) 561 end--; 562 563 slab_bug(s, "%s overwritten", what); 564 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 565 fault, end - 1, fault[0], value); 566 print_trailer(s, page, object); 567 568 restore_bytes(s, what, value, fault, end); 569 return 0; 570 } 571 572 /* 573 * Object layout: 574 * 575 * object address 576 * Bytes of the object to be managed. 577 * If the freepointer may overlay the object then the free 578 * pointer is the first word of the object. 579 * 580 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 581 * 0xa5 (POISON_END) 582 * 583 * object + s->objsize 584 * Padding to reach word boundary. This is also used for Redzoning. 585 * Padding is extended by another word if Redzoning is enabled and 586 * objsize == inuse. 587 * 588 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 589 * 0xcc (RED_ACTIVE) for objects in use. 590 * 591 * object + s->inuse 592 * Meta data starts here. 593 * 594 * A. Free pointer (if we cannot overwrite object on free) 595 * B. Tracking data for SLAB_STORE_USER 596 * C. Padding to reach required alignment boundary or at mininum 597 * one word if debugging is on to be able to detect writes 598 * before the word boundary. 599 * 600 * Padding is done using 0x5a (POISON_INUSE) 601 * 602 * object + s->size 603 * Nothing is used beyond s->size. 604 * 605 * If slabcaches are merged then the objsize and inuse boundaries are mostly 606 * ignored. And therefore no slab options that rely on these boundaries 607 * may be used with merged slabcaches. 608 */ 609 610 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 611 { 612 unsigned long off = s->inuse; /* The end of info */ 613 614 if (s->offset) 615 /* Freepointer is placed after the object. */ 616 off += sizeof(void *); 617 618 if (s->flags & SLAB_STORE_USER) 619 /* We also have user information there */ 620 off += 2 * sizeof(struct track); 621 622 if (s->size == off) 623 return 1; 624 625 return check_bytes_and_report(s, page, p, "Object padding", 626 p + off, POISON_INUSE, s->size - off); 627 } 628 629 /* Check the pad bytes at the end of a slab page */ 630 static int slab_pad_check(struct kmem_cache *s, struct page *page) 631 { 632 u8 *start; 633 u8 *fault; 634 u8 *end; 635 int length; 636 int remainder; 637 638 if (!(s->flags & SLAB_POISON)) 639 return 1; 640 641 start = page_address(page); 642 length = (PAGE_SIZE << compound_order(page)); 643 end = start + length; 644 remainder = length % s->size; 645 if (!remainder) 646 return 1; 647 648 fault = check_bytes(end - remainder, POISON_INUSE, remainder); 649 if (!fault) 650 return 1; 651 while (end > fault && end[-1] == POISON_INUSE) 652 end--; 653 654 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 655 print_section("Padding", end - remainder, remainder); 656 657 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 658 return 0; 659 } 660 661 static int check_object(struct kmem_cache *s, struct page *page, 662 void *object, int active) 663 { 664 u8 *p = object; 665 u8 *endobject = object + s->objsize; 666 667 if (s->flags & SLAB_RED_ZONE) { 668 unsigned int red = 669 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; 670 671 if (!check_bytes_and_report(s, page, object, "Redzone", 672 endobject, red, s->inuse - s->objsize)) 673 return 0; 674 } else { 675 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { 676 check_bytes_and_report(s, page, p, "Alignment padding", 677 endobject, POISON_INUSE, s->inuse - s->objsize); 678 } 679 } 680 681 if (s->flags & SLAB_POISON) { 682 if (!active && (s->flags & __OBJECT_POISON) && 683 (!check_bytes_and_report(s, page, p, "Poison", p, 684 POISON_FREE, s->objsize - 1) || 685 !check_bytes_and_report(s, page, p, "Poison", 686 p + s->objsize - 1, POISON_END, 1))) 687 return 0; 688 /* 689 * check_pad_bytes cleans up on its own. 690 */ 691 check_pad_bytes(s, page, p); 692 } 693 694 if (!s->offset && active) 695 /* 696 * Object and freepointer overlap. Cannot check 697 * freepointer while object is allocated. 698 */ 699 return 1; 700 701 /* Check free pointer validity */ 702 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 703 object_err(s, page, p, "Freepointer corrupt"); 704 /* 705 * No choice but to zap it and thus lose the remainder 706 * of the free objects in this slab. May cause 707 * another error because the object count is now wrong. 708 */ 709 set_freepointer(s, p, NULL); 710 return 0; 711 } 712 return 1; 713 } 714 715 static int check_slab(struct kmem_cache *s, struct page *page) 716 { 717 int maxobj; 718 719 VM_BUG_ON(!irqs_disabled()); 720 721 if (!PageSlab(page)) { 722 slab_err(s, page, "Not a valid slab page"); 723 return 0; 724 } 725 726 maxobj = (PAGE_SIZE << compound_order(page)) / s->size; 727 if (page->objects > maxobj) { 728 slab_err(s, page, "objects %u > max %u", 729 s->name, page->objects, maxobj); 730 return 0; 731 } 732 if (page->inuse > page->objects) { 733 slab_err(s, page, "inuse %u > max %u", 734 s->name, page->inuse, page->objects); 735 return 0; 736 } 737 /* Slab_pad_check fixes things up after itself */ 738 slab_pad_check(s, page); 739 return 1; 740 } 741 742 /* 743 * Determine if a certain object on a page is on the freelist. Must hold the 744 * slab lock to guarantee that the chains are in a consistent state. 745 */ 746 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 747 { 748 int nr = 0; 749 void *fp = page->freelist; 750 void *object = NULL; 751 unsigned long max_objects; 752 753 while (fp && nr <= page->objects) { 754 if (fp == search) 755 return 1; 756 if (!check_valid_pointer(s, page, fp)) { 757 if (object) { 758 object_err(s, page, object, 759 "Freechain corrupt"); 760 set_freepointer(s, object, NULL); 761 break; 762 } else { 763 slab_err(s, page, "Freepointer corrupt"); 764 page->freelist = NULL; 765 page->inuse = page->objects; 766 slab_fix(s, "Freelist cleared"); 767 return 0; 768 } 769 break; 770 } 771 object = fp; 772 fp = get_freepointer(s, object); 773 nr++; 774 } 775 776 max_objects = (PAGE_SIZE << compound_order(page)) / s->size; 777 if (max_objects > MAX_OBJS_PER_PAGE) 778 max_objects = MAX_OBJS_PER_PAGE; 779 780 if (page->objects != max_objects) { 781 slab_err(s, page, "Wrong number of objects. Found %d but " 782 "should be %d", page->objects, max_objects); 783 page->objects = max_objects; 784 slab_fix(s, "Number of objects adjusted."); 785 } 786 if (page->inuse != page->objects - nr) { 787 slab_err(s, page, "Wrong object count. Counter is %d but " 788 "counted were %d", page->inuse, page->objects - nr); 789 page->inuse = page->objects - nr; 790 slab_fix(s, "Object count adjusted."); 791 } 792 return search == NULL; 793 } 794 795 static void trace(struct kmem_cache *s, struct page *page, void *object, 796 int alloc) 797 { 798 if (s->flags & SLAB_TRACE) { 799 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 800 s->name, 801 alloc ? "alloc" : "free", 802 object, page->inuse, 803 page->freelist); 804 805 if (!alloc) 806 print_section("Object", (void *)object, s->objsize); 807 808 dump_stack(); 809 } 810 } 811 812 /* 813 * Tracking of fully allocated slabs for debugging purposes. 814 */ 815 static void add_full(struct kmem_cache_node *n, struct page *page) 816 { 817 spin_lock(&n->list_lock); 818 list_add(&page->lru, &n->full); 819 spin_unlock(&n->list_lock); 820 } 821 822 static void remove_full(struct kmem_cache *s, struct page *page) 823 { 824 struct kmem_cache_node *n; 825 826 if (!(s->flags & SLAB_STORE_USER)) 827 return; 828 829 n = get_node(s, page_to_nid(page)); 830 831 spin_lock(&n->list_lock); 832 list_del(&page->lru); 833 spin_unlock(&n->list_lock); 834 } 835 836 /* Tracking of the number of slabs for debugging purposes */ 837 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 838 { 839 struct kmem_cache_node *n = get_node(s, node); 840 841 return atomic_long_read(&n->nr_slabs); 842 } 843 844 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 845 { 846 return atomic_long_read(&n->nr_slabs); 847 } 848 849 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 850 { 851 struct kmem_cache_node *n = get_node(s, node); 852 853 /* 854 * May be called early in order to allocate a slab for the 855 * kmem_cache_node structure. Solve the chicken-egg 856 * dilemma by deferring the increment of the count during 857 * bootstrap (see early_kmem_cache_node_alloc). 858 */ 859 if (!NUMA_BUILD || n) { 860 atomic_long_inc(&n->nr_slabs); 861 atomic_long_add(objects, &n->total_objects); 862 } 863 } 864 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 865 { 866 struct kmem_cache_node *n = get_node(s, node); 867 868 atomic_long_dec(&n->nr_slabs); 869 atomic_long_sub(objects, &n->total_objects); 870 } 871 872 /* Object debug checks for alloc/free paths */ 873 static void setup_object_debug(struct kmem_cache *s, struct page *page, 874 void *object) 875 { 876 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 877 return; 878 879 init_object(s, object, 0); 880 init_tracking(s, object); 881 } 882 883 static int alloc_debug_processing(struct kmem_cache *s, struct page *page, 884 void *object, unsigned long addr) 885 { 886 if (!check_slab(s, page)) 887 goto bad; 888 889 if (!on_freelist(s, page, object)) { 890 object_err(s, page, object, "Object already allocated"); 891 goto bad; 892 } 893 894 if (!check_valid_pointer(s, page, object)) { 895 object_err(s, page, object, "Freelist Pointer check fails"); 896 goto bad; 897 } 898 899 if (!check_object(s, page, object, 0)) 900 goto bad; 901 902 /* Success perform special debug activities for allocs */ 903 if (s->flags & SLAB_STORE_USER) 904 set_track(s, object, TRACK_ALLOC, addr); 905 trace(s, page, object, 1); 906 init_object(s, object, 1); 907 return 1; 908 909 bad: 910 if (PageSlab(page)) { 911 /* 912 * If this is a slab page then lets do the best we can 913 * to avoid issues in the future. Marking all objects 914 * as used avoids touching the remaining objects. 915 */ 916 slab_fix(s, "Marking all objects used"); 917 page->inuse = page->objects; 918 page->freelist = NULL; 919 } 920 return 0; 921 } 922 923 static int free_debug_processing(struct kmem_cache *s, struct page *page, 924 void *object, unsigned long addr) 925 { 926 if (!check_slab(s, page)) 927 goto fail; 928 929 if (!check_valid_pointer(s, page, object)) { 930 slab_err(s, page, "Invalid object pointer 0x%p", object); 931 goto fail; 932 } 933 934 if (on_freelist(s, page, object)) { 935 object_err(s, page, object, "Object already free"); 936 goto fail; 937 } 938 939 if (!check_object(s, page, object, 1)) 940 return 0; 941 942 if (unlikely(s != page->slab)) { 943 if (!PageSlab(page)) { 944 slab_err(s, page, "Attempt to free object(0x%p) " 945 "outside of slab", object); 946 } else if (!page->slab) { 947 printk(KERN_ERR 948 "SLUB <none>: no slab for object 0x%p.\n", 949 object); 950 dump_stack(); 951 } else 952 object_err(s, page, object, 953 "page slab pointer corrupt."); 954 goto fail; 955 } 956 957 /* Special debug activities for freeing objects */ 958 if (!PageSlubFrozen(page) && !page->freelist) 959 remove_full(s, page); 960 if (s->flags & SLAB_STORE_USER) 961 set_track(s, object, TRACK_FREE, addr); 962 trace(s, page, object, 0); 963 init_object(s, object, 0); 964 return 1; 965 966 fail: 967 slab_fix(s, "Object at 0x%p not freed", object); 968 return 0; 969 } 970 971 static int __init setup_slub_debug(char *str) 972 { 973 slub_debug = DEBUG_DEFAULT_FLAGS; 974 if (*str++ != '=' || !*str) 975 /* 976 * No options specified. Switch on full debugging. 977 */ 978 goto out; 979 980 if (*str == ',') 981 /* 982 * No options but restriction on slabs. This means full 983 * debugging for slabs matching a pattern. 984 */ 985 goto check_slabs; 986 987 if (tolower(*str) == 'o') { 988 /* 989 * Avoid enabling debugging on caches if its minimum order 990 * would increase as a result. 991 */ 992 disable_higher_order_debug = 1; 993 goto out; 994 } 995 996 slub_debug = 0; 997 if (*str == '-') 998 /* 999 * Switch off all debugging measures. 1000 */ 1001 goto out; 1002 1003 /* 1004 * Determine which debug features should be switched on 1005 */ 1006 for (; *str && *str != ','; str++) { 1007 switch (tolower(*str)) { 1008 case 'f': 1009 slub_debug |= SLAB_DEBUG_FREE; 1010 break; 1011 case 'z': 1012 slub_debug |= SLAB_RED_ZONE; 1013 break; 1014 case 'p': 1015 slub_debug |= SLAB_POISON; 1016 break; 1017 case 'u': 1018 slub_debug |= SLAB_STORE_USER; 1019 break; 1020 case 't': 1021 slub_debug |= SLAB_TRACE; 1022 break; 1023 default: 1024 printk(KERN_ERR "slub_debug option '%c' " 1025 "unknown. skipped\n", *str); 1026 } 1027 } 1028 1029 check_slabs: 1030 if (*str == ',') 1031 slub_debug_slabs = str + 1; 1032 out: 1033 return 1; 1034 } 1035 1036 __setup("slub_debug", setup_slub_debug); 1037 1038 static unsigned long kmem_cache_flags(unsigned long objsize, 1039 unsigned long flags, const char *name, 1040 void (*ctor)(void *)) 1041 { 1042 /* 1043 * Enable debugging if selected on the kernel commandline. 1044 */ 1045 if (slub_debug && (!slub_debug_slabs || 1046 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) 1047 flags |= slub_debug; 1048 1049 return flags; 1050 } 1051 #else 1052 static inline void setup_object_debug(struct kmem_cache *s, 1053 struct page *page, void *object) {} 1054 1055 static inline int alloc_debug_processing(struct kmem_cache *s, 1056 struct page *page, void *object, unsigned long addr) { return 0; } 1057 1058 static inline int free_debug_processing(struct kmem_cache *s, 1059 struct page *page, void *object, unsigned long addr) { return 0; } 1060 1061 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1062 { return 1; } 1063 static inline int check_object(struct kmem_cache *s, struct page *page, 1064 void *object, int active) { return 1; } 1065 static inline void add_full(struct kmem_cache_node *n, struct page *page) {} 1066 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1067 unsigned long flags, const char *name, 1068 void (*ctor)(void *)) 1069 { 1070 return flags; 1071 } 1072 #define slub_debug 0 1073 1074 #define disable_higher_order_debug 0 1075 1076 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1077 { return 0; } 1078 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1079 { return 0; } 1080 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1081 int objects) {} 1082 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1083 int objects) {} 1084 #endif 1085 1086 /* 1087 * Slab allocation and freeing 1088 */ 1089 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1090 struct kmem_cache_order_objects oo) 1091 { 1092 int order = oo_order(oo); 1093 1094 flags |= __GFP_NOTRACK; 1095 1096 if (node == -1) 1097 return alloc_pages(flags, order); 1098 else 1099 return alloc_pages_node(node, flags, order); 1100 } 1101 1102 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1103 { 1104 struct page *page; 1105 struct kmem_cache_order_objects oo = s->oo; 1106 gfp_t alloc_gfp; 1107 1108 flags |= s->allocflags; 1109 1110 /* 1111 * Let the initial higher-order allocation fail under memory pressure 1112 * so we fall-back to the minimum order allocation. 1113 */ 1114 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1115 1116 page = alloc_slab_page(alloc_gfp, node, oo); 1117 if (unlikely(!page)) { 1118 oo = s->min; 1119 /* 1120 * Allocation may have failed due to fragmentation. 1121 * Try a lower order alloc if possible 1122 */ 1123 page = alloc_slab_page(flags, node, oo); 1124 if (!page) 1125 return NULL; 1126 1127 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK); 1128 } 1129 1130 if (kmemcheck_enabled 1131 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1132 int pages = 1 << oo_order(oo); 1133 1134 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1135 1136 /* 1137 * Objects from caches that have a constructor don't get 1138 * cleared when they're allocated, so we need to do it here. 1139 */ 1140 if (s->ctor) 1141 kmemcheck_mark_uninitialized_pages(page, pages); 1142 else 1143 kmemcheck_mark_unallocated_pages(page, pages); 1144 } 1145 1146 page->objects = oo_objects(oo); 1147 mod_zone_page_state(page_zone(page), 1148 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1149 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1150 1 << oo_order(oo)); 1151 1152 return page; 1153 } 1154 1155 static void setup_object(struct kmem_cache *s, struct page *page, 1156 void *object) 1157 { 1158 setup_object_debug(s, page, object); 1159 if (unlikely(s->ctor)) 1160 s->ctor(object); 1161 } 1162 1163 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1164 { 1165 struct page *page; 1166 void *start; 1167 void *last; 1168 void *p; 1169 1170 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1171 1172 page = allocate_slab(s, 1173 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1174 if (!page) 1175 goto out; 1176 1177 inc_slabs_node(s, page_to_nid(page), page->objects); 1178 page->slab = s; 1179 page->flags |= 1 << PG_slab; 1180 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | 1181 SLAB_STORE_USER | SLAB_TRACE)) 1182 __SetPageSlubDebug(page); 1183 1184 start = page_address(page); 1185 1186 if (unlikely(s->flags & SLAB_POISON)) 1187 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1188 1189 last = start; 1190 for_each_object(p, s, start, page->objects) { 1191 setup_object(s, page, last); 1192 set_freepointer(s, last, p); 1193 last = p; 1194 } 1195 setup_object(s, page, last); 1196 set_freepointer(s, last, NULL); 1197 1198 page->freelist = start; 1199 page->inuse = 0; 1200 out: 1201 return page; 1202 } 1203 1204 static void __free_slab(struct kmem_cache *s, struct page *page) 1205 { 1206 int order = compound_order(page); 1207 int pages = 1 << order; 1208 1209 if (unlikely(SLABDEBUG && PageSlubDebug(page))) { 1210 void *p; 1211 1212 slab_pad_check(s, page); 1213 for_each_object(p, s, page_address(page), 1214 page->objects) 1215 check_object(s, page, p, 0); 1216 __ClearPageSlubDebug(page); 1217 } 1218 1219 kmemcheck_free_shadow(page, compound_order(page)); 1220 1221 mod_zone_page_state(page_zone(page), 1222 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1223 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1224 -pages); 1225 1226 __ClearPageSlab(page); 1227 reset_page_mapcount(page); 1228 if (current->reclaim_state) 1229 current->reclaim_state->reclaimed_slab += pages; 1230 __free_pages(page, order); 1231 } 1232 1233 static void rcu_free_slab(struct rcu_head *h) 1234 { 1235 struct page *page; 1236 1237 page = container_of((struct list_head *)h, struct page, lru); 1238 __free_slab(page->slab, page); 1239 } 1240 1241 static void free_slab(struct kmem_cache *s, struct page *page) 1242 { 1243 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1244 /* 1245 * RCU free overloads the RCU head over the LRU 1246 */ 1247 struct rcu_head *head = (void *)&page->lru; 1248 1249 call_rcu(head, rcu_free_slab); 1250 } else 1251 __free_slab(s, page); 1252 } 1253 1254 static void discard_slab(struct kmem_cache *s, struct page *page) 1255 { 1256 dec_slabs_node(s, page_to_nid(page), page->objects); 1257 free_slab(s, page); 1258 } 1259 1260 /* 1261 * Per slab locking using the pagelock 1262 */ 1263 static __always_inline void slab_lock(struct page *page) 1264 { 1265 bit_spin_lock(PG_locked, &page->flags); 1266 } 1267 1268 static __always_inline void slab_unlock(struct page *page) 1269 { 1270 __bit_spin_unlock(PG_locked, &page->flags); 1271 } 1272 1273 static __always_inline int slab_trylock(struct page *page) 1274 { 1275 int rc = 1; 1276 1277 rc = bit_spin_trylock(PG_locked, &page->flags); 1278 return rc; 1279 } 1280 1281 /* 1282 * Management of partially allocated slabs 1283 */ 1284 static void add_partial(struct kmem_cache_node *n, 1285 struct page *page, int tail) 1286 { 1287 spin_lock(&n->list_lock); 1288 n->nr_partial++; 1289 if (tail) 1290 list_add_tail(&page->lru, &n->partial); 1291 else 1292 list_add(&page->lru, &n->partial); 1293 spin_unlock(&n->list_lock); 1294 } 1295 1296 static void remove_partial(struct kmem_cache *s, struct page *page) 1297 { 1298 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1299 1300 spin_lock(&n->list_lock); 1301 list_del(&page->lru); 1302 n->nr_partial--; 1303 spin_unlock(&n->list_lock); 1304 } 1305 1306 /* 1307 * Lock slab and remove from the partial list. 1308 * 1309 * Must hold list_lock. 1310 */ 1311 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, 1312 struct page *page) 1313 { 1314 if (slab_trylock(page)) { 1315 list_del(&page->lru); 1316 n->nr_partial--; 1317 __SetPageSlubFrozen(page); 1318 return 1; 1319 } 1320 return 0; 1321 } 1322 1323 /* 1324 * Try to allocate a partial slab from a specific node. 1325 */ 1326 static struct page *get_partial_node(struct kmem_cache_node *n) 1327 { 1328 struct page *page; 1329 1330 /* 1331 * Racy check. If we mistakenly see no partial slabs then we 1332 * just allocate an empty slab. If we mistakenly try to get a 1333 * partial slab and there is none available then get_partials() 1334 * will return NULL. 1335 */ 1336 if (!n || !n->nr_partial) 1337 return NULL; 1338 1339 spin_lock(&n->list_lock); 1340 list_for_each_entry(page, &n->partial, lru) 1341 if (lock_and_freeze_slab(n, page)) 1342 goto out; 1343 page = NULL; 1344 out: 1345 spin_unlock(&n->list_lock); 1346 return page; 1347 } 1348 1349 /* 1350 * Get a page from somewhere. Search in increasing NUMA distances. 1351 */ 1352 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) 1353 { 1354 #ifdef CONFIG_NUMA 1355 struct zonelist *zonelist; 1356 struct zoneref *z; 1357 struct zone *zone; 1358 enum zone_type high_zoneidx = gfp_zone(flags); 1359 struct page *page; 1360 1361 /* 1362 * The defrag ratio allows a configuration of the tradeoffs between 1363 * inter node defragmentation and node local allocations. A lower 1364 * defrag_ratio increases the tendency to do local allocations 1365 * instead of attempting to obtain partial slabs from other nodes. 1366 * 1367 * If the defrag_ratio is set to 0 then kmalloc() always 1368 * returns node local objects. If the ratio is higher then kmalloc() 1369 * may return off node objects because partial slabs are obtained 1370 * from other nodes and filled up. 1371 * 1372 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1373 * defrag_ratio = 1000) then every (well almost) allocation will 1374 * first attempt to defrag slab caches on other nodes. This means 1375 * scanning over all nodes to look for partial slabs which may be 1376 * expensive if we do it every time we are trying to find a slab 1377 * with available objects. 1378 */ 1379 if (!s->remote_node_defrag_ratio || 1380 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1381 return NULL; 1382 1383 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 1384 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1385 struct kmem_cache_node *n; 1386 1387 n = get_node(s, zone_to_nid(zone)); 1388 1389 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1390 n->nr_partial > s->min_partial) { 1391 page = get_partial_node(n); 1392 if (page) 1393 return page; 1394 } 1395 } 1396 #endif 1397 return NULL; 1398 } 1399 1400 /* 1401 * Get a partial page, lock it and return it. 1402 */ 1403 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) 1404 { 1405 struct page *page; 1406 int searchnode = (node == -1) ? numa_node_id() : node; 1407 1408 page = get_partial_node(get_node(s, searchnode)); 1409 if (page || (flags & __GFP_THISNODE)) 1410 return page; 1411 1412 return get_any_partial(s, flags); 1413 } 1414 1415 /* 1416 * Move a page back to the lists. 1417 * 1418 * Must be called with the slab lock held. 1419 * 1420 * On exit the slab lock will have been dropped. 1421 */ 1422 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) 1423 { 1424 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1425 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id()); 1426 1427 __ClearPageSlubFrozen(page); 1428 if (page->inuse) { 1429 1430 if (page->freelist) { 1431 add_partial(n, page, tail); 1432 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); 1433 } else { 1434 stat(c, DEACTIVATE_FULL); 1435 if (SLABDEBUG && PageSlubDebug(page) && 1436 (s->flags & SLAB_STORE_USER)) 1437 add_full(n, page); 1438 } 1439 slab_unlock(page); 1440 } else { 1441 stat(c, DEACTIVATE_EMPTY); 1442 if (n->nr_partial < s->min_partial) { 1443 /* 1444 * Adding an empty slab to the partial slabs in order 1445 * to avoid page allocator overhead. This slab needs 1446 * to come after the other slabs with objects in 1447 * so that the others get filled first. That way the 1448 * size of the partial list stays small. 1449 * 1450 * kmem_cache_shrink can reclaim any empty slabs from 1451 * the partial list. 1452 */ 1453 add_partial(n, page, 1); 1454 slab_unlock(page); 1455 } else { 1456 slab_unlock(page); 1457 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB); 1458 discard_slab(s, page); 1459 } 1460 } 1461 } 1462 1463 /* 1464 * Remove the cpu slab 1465 */ 1466 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1467 { 1468 struct page *page = c->page; 1469 int tail = 1; 1470 1471 if (page->freelist) 1472 stat(c, DEACTIVATE_REMOTE_FREES); 1473 /* 1474 * Merge cpu freelist into slab freelist. Typically we get here 1475 * because both freelists are empty. So this is unlikely 1476 * to occur. 1477 */ 1478 while (unlikely(c->freelist)) { 1479 void **object; 1480 1481 tail = 0; /* Hot objects. Put the slab first */ 1482 1483 /* Retrieve object from cpu_freelist */ 1484 object = c->freelist; 1485 c->freelist = c->freelist[c->offset]; 1486 1487 /* And put onto the regular freelist */ 1488 object[c->offset] = page->freelist; 1489 page->freelist = object; 1490 page->inuse--; 1491 } 1492 c->page = NULL; 1493 unfreeze_slab(s, page, tail); 1494 } 1495 1496 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1497 { 1498 stat(c, CPUSLAB_FLUSH); 1499 slab_lock(c->page); 1500 deactivate_slab(s, c); 1501 } 1502 1503 /* 1504 * Flush cpu slab. 1505 * 1506 * Called from IPI handler with interrupts disabled. 1507 */ 1508 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1509 { 1510 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 1511 1512 if (likely(c && c->page)) 1513 flush_slab(s, c); 1514 } 1515 1516 static void flush_cpu_slab(void *d) 1517 { 1518 struct kmem_cache *s = d; 1519 1520 __flush_cpu_slab(s, smp_processor_id()); 1521 } 1522 1523 static void flush_all(struct kmem_cache *s) 1524 { 1525 on_each_cpu(flush_cpu_slab, s, 1); 1526 } 1527 1528 /* 1529 * Check if the objects in a per cpu structure fit numa 1530 * locality expectations. 1531 */ 1532 static inline int node_match(struct kmem_cache_cpu *c, int node) 1533 { 1534 #ifdef CONFIG_NUMA 1535 if (node != -1 && c->node != node) 1536 return 0; 1537 #endif 1538 return 1; 1539 } 1540 1541 static int count_free(struct page *page) 1542 { 1543 return page->objects - page->inuse; 1544 } 1545 1546 static unsigned long count_partial(struct kmem_cache_node *n, 1547 int (*get_count)(struct page *)) 1548 { 1549 unsigned long flags; 1550 unsigned long x = 0; 1551 struct page *page; 1552 1553 spin_lock_irqsave(&n->list_lock, flags); 1554 list_for_each_entry(page, &n->partial, lru) 1555 x += get_count(page); 1556 spin_unlock_irqrestore(&n->list_lock, flags); 1557 return x; 1558 } 1559 1560 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 1561 { 1562 #ifdef CONFIG_SLUB_DEBUG 1563 return atomic_long_read(&n->total_objects); 1564 #else 1565 return 0; 1566 #endif 1567 } 1568 1569 static noinline void 1570 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 1571 { 1572 int node; 1573 1574 printk(KERN_WARNING 1575 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 1576 nid, gfpflags); 1577 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 1578 "default order: %d, min order: %d\n", s->name, s->objsize, 1579 s->size, oo_order(s->oo), oo_order(s->min)); 1580 1581 if (oo_order(s->min) > get_order(s->objsize)) 1582 printk(KERN_WARNING " %s debugging increased min order, use " 1583 "slub_debug=O to disable.\n", s->name); 1584 1585 for_each_online_node(node) { 1586 struct kmem_cache_node *n = get_node(s, node); 1587 unsigned long nr_slabs; 1588 unsigned long nr_objs; 1589 unsigned long nr_free; 1590 1591 if (!n) 1592 continue; 1593 1594 nr_free = count_partial(n, count_free); 1595 nr_slabs = node_nr_slabs(n); 1596 nr_objs = node_nr_objs(n); 1597 1598 printk(KERN_WARNING 1599 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 1600 node, nr_slabs, nr_objs, nr_free); 1601 } 1602 } 1603 1604 /* 1605 * Slow path. The lockless freelist is empty or we need to perform 1606 * debugging duties. 1607 * 1608 * Interrupts are disabled. 1609 * 1610 * Processing is still very fast if new objects have been freed to the 1611 * regular freelist. In that case we simply take over the regular freelist 1612 * as the lockless freelist and zap the regular freelist. 1613 * 1614 * If that is not working then we fall back to the partial lists. We take the 1615 * first element of the freelist as the object to allocate now and move the 1616 * rest of the freelist to the lockless freelist. 1617 * 1618 * And if we were unable to get a new slab from the partial slab lists then 1619 * we need to allocate a new slab. This is the slowest path since it involves 1620 * a call to the page allocator and the setup of a new slab. 1621 */ 1622 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 1623 unsigned long addr, struct kmem_cache_cpu *c) 1624 { 1625 void **object; 1626 struct page *new; 1627 1628 /* We handle __GFP_ZERO in the caller */ 1629 gfpflags &= ~__GFP_ZERO; 1630 1631 if (!c->page) 1632 goto new_slab; 1633 1634 slab_lock(c->page); 1635 if (unlikely(!node_match(c, node))) 1636 goto another_slab; 1637 1638 stat(c, ALLOC_REFILL); 1639 1640 load_freelist: 1641 object = c->page->freelist; 1642 if (unlikely(!object)) 1643 goto another_slab; 1644 if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) 1645 goto debug; 1646 1647 c->freelist = object[c->offset]; 1648 c->page->inuse = c->page->objects; 1649 c->page->freelist = NULL; 1650 c->node = page_to_nid(c->page); 1651 unlock_out: 1652 slab_unlock(c->page); 1653 stat(c, ALLOC_SLOWPATH); 1654 return object; 1655 1656 another_slab: 1657 deactivate_slab(s, c); 1658 1659 new_slab: 1660 new = get_partial(s, gfpflags, node); 1661 if (new) { 1662 c->page = new; 1663 stat(c, ALLOC_FROM_PARTIAL); 1664 goto load_freelist; 1665 } 1666 1667 if (gfpflags & __GFP_WAIT) 1668 local_irq_enable(); 1669 1670 new = new_slab(s, gfpflags, node); 1671 1672 if (gfpflags & __GFP_WAIT) 1673 local_irq_disable(); 1674 1675 if (new) { 1676 c = get_cpu_slab(s, smp_processor_id()); 1677 stat(c, ALLOC_SLAB); 1678 if (c->page) 1679 flush_slab(s, c); 1680 slab_lock(new); 1681 __SetPageSlubFrozen(new); 1682 c->page = new; 1683 goto load_freelist; 1684 } 1685 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 1686 slab_out_of_memory(s, gfpflags, node); 1687 return NULL; 1688 debug: 1689 if (!alloc_debug_processing(s, c->page, object, addr)) 1690 goto another_slab; 1691 1692 c->page->inuse++; 1693 c->page->freelist = object[c->offset]; 1694 c->node = -1; 1695 goto unlock_out; 1696 } 1697 1698 /* 1699 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 1700 * have the fastpath folded into their functions. So no function call 1701 * overhead for requests that can be satisfied on the fastpath. 1702 * 1703 * The fastpath works by first checking if the lockless freelist can be used. 1704 * If not then __slab_alloc is called for slow processing. 1705 * 1706 * Otherwise we can simply pick the next object from the lockless free list. 1707 */ 1708 static __always_inline void *slab_alloc(struct kmem_cache *s, 1709 gfp_t gfpflags, int node, unsigned long addr) 1710 { 1711 void **object; 1712 struct kmem_cache_cpu *c; 1713 unsigned long flags; 1714 unsigned int objsize; 1715 1716 gfpflags &= gfp_allowed_mask; 1717 1718 lockdep_trace_alloc(gfpflags); 1719 might_sleep_if(gfpflags & __GFP_WAIT); 1720 1721 if (should_failslab(s->objsize, gfpflags)) 1722 return NULL; 1723 1724 local_irq_save(flags); 1725 c = get_cpu_slab(s, smp_processor_id()); 1726 objsize = c->objsize; 1727 if (unlikely(!c->freelist || !node_match(c, node))) 1728 1729 object = __slab_alloc(s, gfpflags, node, addr, c); 1730 1731 else { 1732 object = c->freelist; 1733 c->freelist = object[c->offset]; 1734 stat(c, ALLOC_FASTPATH); 1735 } 1736 local_irq_restore(flags); 1737 1738 if (unlikely(gfpflags & __GFP_ZERO) && object) 1739 memset(object, 0, objsize); 1740 1741 kmemcheck_slab_alloc(s, gfpflags, object, c->objsize); 1742 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags); 1743 1744 return object; 1745 } 1746 1747 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 1748 { 1749 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_); 1750 1751 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); 1752 1753 return ret; 1754 } 1755 EXPORT_SYMBOL(kmem_cache_alloc); 1756 1757 #ifdef CONFIG_TRACING 1758 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags) 1759 { 1760 return slab_alloc(s, gfpflags, -1, _RET_IP_); 1761 } 1762 EXPORT_SYMBOL(kmem_cache_alloc_notrace); 1763 #endif 1764 1765 #ifdef CONFIG_NUMA 1766 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 1767 { 1768 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 1769 1770 trace_kmem_cache_alloc_node(_RET_IP_, ret, 1771 s->objsize, s->size, gfpflags, node); 1772 1773 return ret; 1774 } 1775 EXPORT_SYMBOL(kmem_cache_alloc_node); 1776 #endif 1777 1778 #ifdef CONFIG_TRACING 1779 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s, 1780 gfp_t gfpflags, 1781 int node) 1782 { 1783 return slab_alloc(s, gfpflags, node, _RET_IP_); 1784 } 1785 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace); 1786 #endif 1787 1788 /* 1789 * Slow patch handling. This may still be called frequently since objects 1790 * have a longer lifetime than the cpu slabs in most processing loads. 1791 * 1792 * So we still attempt to reduce cache line usage. Just take the slab 1793 * lock and free the item. If there is no additional partial page 1794 * handling required then we can return immediately. 1795 */ 1796 static void __slab_free(struct kmem_cache *s, struct page *page, 1797 void *x, unsigned long addr, unsigned int offset) 1798 { 1799 void *prior; 1800 void **object = (void *)x; 1801 struct kmem_cache_cpu *c; 1802 1803 c = get_cpu_slab(s, raw_smp_processor_id()); 1804 stat(c, FREE_SLOWPATH); 1805 slab_lock(page); 1806 1807 if (unlikely(SLABDEBUG && PageSlubDebug(page))) 1808 goto debug; 1809 1810 checks_ok: 1811 prior = object[offset] = page->freelist; 1812 page->freelist = object; 1813 page->inuse--; 1814 1815 if (unlikely(PageSlubFrozen(page))) { 1816 stat(c, FREE_FROZEN); 1817 goto out_unlock; 1818 } 1819 1820 if (unlikely(!page->inuse)) 1821 goto slab_empty; 1822 1823 /* 1824 * Objects left in the slab. If it was not on the partial list before 1825 * then add it. 1826 */ 1827 if (unlikely(!prior)) { 1828 add_partial(get_node(s, page_to_nid(page)), page, 1); 1829 stat(c, FREE_ADD_PARTIAL); 1830 } 1831 1832 out_unlock: 1833 slab_unlock(page); 1834 return; 1835 1836 slab_empty: 1837 if (prior) { 1838 /* 1839 * Slab still on the partial list. 1840 */ 1841 remove_partial(s, page); 1842 stat(c, FREE_REMOVE_PARTIAL); 1843 } 1844 slab_unlock(page); 1845 stat(c, FREE_SLAB); 1846 discard_slab(s, page); 1847 return; 1848 1849 debug: 1850 if (!free_debug_processing(s, page, x, addr)) 1851 goto out_unlock; 1852 goto checks_ok; 1853 } 1854 1855 /* 1856 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 1857 * can perform fastpath freeing without additional function calls. 1858 * 1859 * The fastpath is only possible if we are freeing to the current cpu slab 1860 * of this processor. This typically the case if we have just allocated 1861 * the item before. 1862 * 1863 * If fastpath is not possible then fall back to __slab_free where we deal 1864 * with all sorts of special processing. 1865 */ 1866 static __always_inline void slab_free(struct kmem_cache *s, 1867 struct page *page, void *x, unsigned long addr) 1868 { 1869 void **object = (void *)x; 1870 struct kmem_cache_cpu *c; 1871 unsigned long flags; 1872 1873 kmemleak_free_recursive(x, s->flags); 1874 local_irq_save(flags); 1875 c = get_cpu_slab(s, smp_processor_id()); 1876 kmemcheck_slab_free(s, object, c->objsize); 1877 debug_check_no_locks_freed(object, c->objsize); 1878 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1879 debug_check_no_obj_freed(object, c->objsize); 1880 if (likely(page == c->page && c->node >= 0)) { 1881 object[c->offset] = c->freelist; 1882 c->freelist = object; 1883 stat(c, FREE_FASTPATH); 1884 } else 1885 __slab_free(s, page, x, addr, c->offset); 1886 1887 local_irq_restore(flags); 1888 } 1889 1890 void kmem_cache_free(struct kmem_cache *s, void *x) 1891 { 1892 struct page *page; 1893 1894 page = virt_to_head_page(x); 1895 1896 slab_free(s, page, x, _RET_IP_); 1897 1898 trace_kmem_cache_free(_RET_IP_, x); 1899 } 1900 EXPORT_SYMBOL(kmem_cache_free); 1901 1902 /* Figure out on which slab page the object resides */ 1903 static struct page *get_object_page(const void *x) 1904 { 1905 struct page *page = virt_to_head_page(x); 1906 1907 if (!PageSlab(page)) 1908 return NULL; 1909 1910 return page; 1911 } 1912 1913 /* 1914 * Object placement in a slab is made very easy because we always start at 1915 * offset 0. If we tune the size of the object to the alignment then we can 1916 * get the required alignment by putting one properly sized object after 1917 * another. 1918 * 1919 * Notice that the allocation order determines the sizes of the per cpu 1920 * caches. Each processor has always one slab available for allocations. 1921 * Increasing the allocation order reduces the number of times that slabs 1922 * must be moved on and off the partial lists and is therefore a factor in 1923 * locking overhead. 1924 */ 1925 1926 /* 1927 * Mininum / Maximum order of slab pages. This influences locking overhead 1928 * and slab fragmentation. A higher order reduces the number of partial slabs 1929 * and increases the number of allocations possible without having to 1930 * take the list_lock. 1931 */ 1932 static int slub_min_order; 1933 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 1934 static int slub_min_objects; 1935 1936 /* 1937 * Merge control. If this is set then no merging of slab caches will occur. 1938 * (Could be removed. This was introduced to pacify the merge skeptics.) 1939 */ 1940 static int slub_nomerge; 1941 1942 /* 1943 * Calculate the order of allocation given an slab object size. 1944 * 1945 * The order of allocation has significant impact on performance and other 1946 * system components. Generally order 0 allocations should be preferred since 1947 * order 0 does not cause fragmentation in the page allocator. Larger objects 1948 * be problematic to put into order 0 slabs because there may be too much 1949 * unused space left. We go to a higher order if more than 1/16th of the slab 1950 * would be wasted. 1951 * 1952 * In order to reach satisfactory performance we must ensure that a minimum 1953 * number of objects is in one slab. Otherwise we may generate too much 1954 * activity on the partial lists which requires taking the list_lock. This is 1955 * less a concern for large slabs though which are rarely used. 1956 * 1957 * slub_max_order specifies the order where we begin to stop considering the 1958 * number of objects in a slab as critical. If we reach slub_max_order then 1959 * we try to keep the page order as low as possible. So we accept more waste 1960 * of space in favor of a small page order. 1961 * 1962 * Higher order allocations also allow the placement of more objects in a 1963 * slab and thereby reduce object handling overhead. If the user has 1964 * requested a higher mininum order then we start with that one instead of 1965 * the smallest order which will fit the object. 1966 */ 1967 static inline int slab_order(int size, int min_objects, 1968 int max_order, int fract_leftover) 1969 { 1970 int order; 1971 int rem; 1972 int min_order = slub_min_order; 1973 1974 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE) 1975 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 1976 1977 for (order = max(min_order, 1978 fls(min_objects * size - 1) - PAGE_SHIFT); 1979 order <= max_order; order++) { 1980 1981 unsigned long slab_size = PAGE_SIZE << order; 1982 1983 if (slab_size < min_objects * size) 1984 continue; 1985 1986 rem = slab_size % size; 1987 1988 if (rem <= slab_size / fract_leftover) 1989 break; 1990 1991 } 1992 1993 return order; 1994 } 1995 1996 static inline int calculate_order(int size) 1997 { 1998 int order; 1999 int min_objects; 2000 int fraction; 2001 int max_objects; 2002 2003 /* 2004 * Attempt to find best configuration for a slab. This 2005 * works by first attempting to generate a layout with 2006 * the best configuration and backing off gradually. 2007 * 2008 * First we reduce the acceptable waste in a slab. Then 2009 * we reduce the minimum objects required in a slab. 2010 */ 2011 min_objects = slub_min_objects; 2012 if (!min_objects) 2013 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2014 max_objects = (PAGE_SIZE << slub_max_order)/size; 2015 min_objects = min(min_objects, max_objects); 2016 2017 while (min_objects > 1) { 2018 fraction = 16; 2019 while (fraction >= 4) { 2020 order = slab_order(size, min_objects, 2021 slub_max_order, fraction); 2022 if (order <= slub_max_order) 2023 return order; 2024 fraction /= 2; 2025 } 2026 min_objects--; 2027 } 2028 2029 /* 2030 * We were unable to place multiple objects in a slab. Now 2031 * lets see if we can place a single object there. 2032 */ 2033 order = slab_order(size, 1, slub_max_order, 1); 2034 if (order <= slub_max_order) 2035 return order; 2036 2037 /* 2038 * Doh this slab cannot be placed using slub_max_order. 2039 */ 2040 order = slab_order(size, 1, MAX_ORDER, 1); 2041 if (order < MAX_ORDER) 2042 return order; 2043 return -ENOSYS; 2044 } 2045 2046 /* 2047 * Figure out what the alignment of the objects will be. 2048 */ 2049 static unsigned long calculate_alignment(unsigned long flags, 2050 unsigned long align, unsigned long size) 2051 { 2052 /* 2053 * If the user wants hardware cache aligned objects then follow that 2054 * suggestion if the object is sufficiently large. 2055 * 2056 * The hardware cache alignment cannot override the specified 2057 * alignment though. If that is greater then use it. 2058 */ 2059 if (flags & SLAB_HWCACHE_ALIGN) { 2060 unsigned long ralign = cache_line_size(); 2061 while (size <= ralign / 2) 2062 ralign /= 2; 2063 align = max(align, ralign); 2064 } 2065 2066 if (align < ARCH_SLAB_MINALIGN) 2067 align = ARCH_SLAB_MINALIGN; 2068 2069 return ALIGN(align, sizeof(void *)); 2070 } 2071 2072 static void init_kmem_cache_cpu(struct kmem_cache *s, 2073 struct kmem_cache_cpu *c) 2074 { 2075 c->page = NULL; 2076 c->freelist = NULL; 2077 c->node = 0; 2078 c->offset = s->offset / sizeof(void *); 2079 c->objsize = s->objsize; 2080 #ifdef CONFIG_SLUB_STATS 2081 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned)); 2082 #endif 2083 } 2084 2085 static void 2086 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) 2087 { 2088 n->nr_partial = 0; 2089 spin_lock_init(&n->list_lock); 2090 INIT_LIST_HEAD(&n->partial); 2091 #ifdef CONFIG_SLUB_DEBUG 2092 atomic_long_set(&n->nr_slabs, 0); 2093 atomic_long_set(&n->total_objects, 0); 2094 INIT_LIST_HEAD(&n->full); 2095 #endif 2096 } 2097 2098 #ifdef CONFIG_SMP 2099 /* 2100 * Per cpu array for per cpu structures. 2101 * 2102 * The per cpu array places all kmem_cache_cpu structures from one processor 2103 * close together meaning that it becomes possible that multiple per cpu 2104 * structures are contained in one cacheline. This may be particularly 2105 * beneficial for the kmalloc caches. 2106 * 2107 * A desktop system typically has around 60-80 slabs. With 100 here we are 2108 * likely able to get per cpu structures for all caches from the array defined 2109 * here. We must be able to cover all kmalloc caches during bootstrap. 2110 * 2111 * If the per cpu array is exhausted then fall back to kmalloc 2112 * of individual cachelines. No sharing is possible then. 2113 */ 2114 #define NR_KMEM_CACHE_CPU 100 2115 2116 static DEFINE_PER_CPU(struct kmem_cache_cpu [NR_KMEM_CACHE_CPU], 2117 kmem_cache_cpu); 2118 2119 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); 2120 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS); 2121 2122 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s, 2123 int cpu, gfp_t flags) 2124 { 2125 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu); 2126 2127 if (c) 2128 per_cpu(kmem_cache_cpu_free, cpu) = 2129 (void *)c->freelist; 2130 else { 2131 /* Table overflow: So allocate ourselves */ 2132 c = kmalloc_node( 2133 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()), 2134 flags, cpu_to_node(cpu)); 2135 if (!c) 2136 return NULL; 2137 } 2138 2139 init_kmem_cache_cpu(s, c); 2140 return c; 2141 } 2142 2143 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu) 2144 { 2145 if (c < per_cpu(kmem_cache_cpu, cpu) || 2146 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) { 2147 kfree(c); 2148 return; 2149 } 2150 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu); 2151 per_cpu(kmem_cache_cpu_free, cpu) = c; 2152 } 2153 2154 static void free_kmem_cache_cpus(struct kmem_cache *s) 2155 { 2156 int cpu; 2157 2158 for_each_online_cpu(cpu) { 2159 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 2160 2161 if (c) { 2162 s->cpu_slab[cpu] = NULL; 2163 free_kmem_cache_cpu(c, cpu); 2164 } 2165 } 2166 } 2167 2168 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2169 { 2170 int cpu; 2171 2172 for_each_online_cpu(cpu) { 2173 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 2174 2175 if (c) 2176 continue; 2177 2178 c = alloc_kmem_cache_cpu(s, cpu, flags); 2179 if (!c) { 2180 free_kmem_cache_cpus(s); 2181 return 0; 2182 } 2183 s->cpu_slab[cpu] = c; 2184 } 2185 return 1; 2186 } 2187 2188 /* 2189 * Initialize the per cpu array. 2190 */ 2191 static void init_alloc_cpu_cpu(int cpu) 2192 { 2193 int i; 2194 2195 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once))) 2196 return; 2197 2198 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--) 2199 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu); 2200 2201 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)); 2202 } 2203 2204 static void __init init_alloc_cpu(void) 2205 { 2206 int cpu; 2207 2208 for_each_online_cpu(cpu) 2209 init_alloc_cpu_cpu(cpu); 2210 } 2211 2212 #else 2213 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {} 2214 static inline void init_alloc_cpu(void) {} 2215 2216 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2217 { 2218 init_kmem_cache_cpu(s, &s->cpu_slab); 2219 return 1; 2220 } 2221 #endif 2222 2223 #ifdef CONFIG_NUMA 2224 /* 2225 * No kmalloc_node yet so do it by hand. We know that this is the first 2226 * slab on the node for this slabcache. There are no concurrent accesses 2227 * possible. 2228 * 2229 * Note that this function only works on the kmalloc_node_cache 2230 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2231 * memory on a fresh node that has no slab structures yet. 2232 */ 2233 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node) 2234 { 2235 struct page *page; 2236 struct kmem_cache_node *n; 2237 unsigned long flags; 2238 2239 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); 2240 2241 page = new_slab(kmalloc_caches, gfpflags, node); 2242 2243 BUG_ON(!page); 2244 if (page_to_nid(page) != node) { 2245 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2246 "node %d\n", node); 2247 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2248 "in order to be able to continue\n"); 2249 } 2250 2251 n = page->freelist; 2252 BUG_ON(!n); 2253 page->freelist = get_freepointer(kmalloc_caches, n); 2254 page->inuse++; 2255 kmalloc_caches->node[node] = n; 2256 #ifdef CONFIG_SLUB_DEBUG 2257 init_object(kmalloc_caches, n, 1); 2258 init_tracking(kmalloc_caches, n); 2259 #endif 2260 init_kmem_cache_node(n, kmalloc_caches); 2261 inc_slabs_node(kmalloc_caches, node, page->objects); 2262 2263 /* 2264 * lockdep requires consistent irq usage for each lock 2265 * so even though there cannot be a race this early in 2266 * the boot sequence, we still disable irqs. 2267 */ 2268 local_irq_save(flags); 2269 add_partial(n, page, 0); 2270 local_irq_restore(flags); 2271 } 2272 2273 static void free_kmem_cache_nodes(struct kmem_cache *s) 2274 { 2275 int node; 2276 2277 for_each_node_state(node, N_NORMAL_MEMORY) { 2278 struct kmem_cache_node *n = s->node[node]; 2279 if (n && n != &s->local_node) 2280 kmem_cache_free(kmalloc_caches, n); 2281 s->node[node] = NULL; 2282 } 2283 } 2284 2285 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2286 { 2287 int node; 2288 int local_node; 2289 2290 if (slab_state >= UP) 2291 local_node = page_to_nid(virt_to_page(s)); 2292 else 2293 local_node = 0; 2294 2295 for_each_node_state(node, N_NORMAL_MEMORY) { 2296 struct kmem_cache_node *n; 2297 2298 if (local_node == node) 2299 n = &s->local_node; 2300 else { 2301 if (slab_state == DOWN) { 2302 early_kmem_cache_node_alloc(gfpflags, node); 2303 continue; 2304 } 2305 n = kmem_cache_alloc_node(kmalloc_caches, 2306 gfpflags, node); 2307 2308 if (!n) { 2309 free_kmem_cache_nodes(s); 2310 return 0; 2311 } 2312 2313 } 2314 s->node[node] = n; 2315 init_kmem_cache_node(n, s); 2316 } 2317 return 1; 2318 } 2319 #else 2320 static void free_kmem_cache_nodes(struct kmem_cache *s) 2321 { 2322 } 2323 2324 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2325 { 2326 init_kmem_cache_node(&s->local_node, s); 2327 return 1; 2328 } 2329 #endif 2330 2331 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2332 { 2333 if (min < MIN_PARTIAL) 2334 min = MIN_PARTIAL; 2335 else if (min > MAX_PARTIAL) 2336 min = MAX_PARTIAL; 2337 s->min_partial = min; 2338 } 2339 2340 /* 2341 * calculate_sizes() determines the order and the distribution of data within 2342 * a slab object. 2343 */ 2344 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2345 { 2346 unsigned long flags = s->flags; 2347 unsigned long size = s->objsize; 2348 unsigned long align = s->align; 2349 int order; 2350 2351 /* 2352 * Round up object size to the next word boundary. We can only 2353 * place the free pointer at word boundaries and this determines 2354 * the possible location of the free pointer. 2355 */ 2356 size = ALIGN(size, sizeof(void *)); 2357 2358 #ifdef CONFIG_SLUB_DEBUG 2359 /* 2360 * Determine if we can poison the object itself. If the user of 2361 * the slab may touch the object after free or before allocation 2362 * then we should never poison the object itself. 2363 */ 2364 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2365 !s->ctor) 2366 s->flags |= __OBJECT_POISON; 2367 else 2368 s->flags &= ~__OBJECT_POISON; 2369 2370 2371 /* 2372 * If we are Redzoning then check if there is some space between the 2373 * end of the object and the free pointer. If not then add an 2374 * additional word to have some bytes to store Redzone information. 2375 */ 2376 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2377 size += sizeof(void *); 2378 #endif 2379 2380 /* 2381 * With that we have determined the number of bytes in actual use 2382 * by the object. This is the potential offset to the free pointer. 2383 */ 2384 s->inuse = size; 2385 2386 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2387 s->ctor)) { 2388 /* 2389 * Relocate free pointer after the object if it is not 2390 * permitted to overwrite the first word of the object on 2391 * kmem_cache_free. 2392 * 2393 * This is the case if we do RCU, have a constructor or 2394 * destructor or are poisoning the objects. 2395 */ 2396 s->offset = size; 2397 size += sizeof(void *); 2398 } 2399 2400 #ifdef CONFIG_SLUB_DEBUG 2401 if (flags & SLAB_STORE_USER) 2402 /* 2403 * Need to store information about allocs and frees after 2404 * the object. 2405 */ 2406 size += 2 * sizeof(struct track); 2407 2408 if (flags & SLAB_RED_ZONE) 2409 /* 2410 * Add some empty padding so that we can catch 2411 * overwrites from earlier objects rather than let 2412 * tracking information or the free pointer be 2413 * corrupted if a user writes before the start 2414 * of the object. 2415 */ 2416 size += sizeof(void *); 2417 #endif 2418 2419 /* 2420 * Determine the alignment based on various parameters that the 2421 * user specified and the dynamic determination of cache line size 2422 * on bootup. 2423 */ 2424 align = calculate_alignment(flags, align, s->objsize); 2425 s->align = align; 2426 2427 /* 2428 * SLUB stores one object immediately after another beginning from 2429 * offset 0. In order to align the objects we have to simply size 2430 * each object to conform to the alignment. 2431 */ 2432 size = ALIGN(size, align); 2433 s->size = size; 2434 if (forced_order >= 0) 2435 order = forced_order; 2436 else 2437 order = calculate_order(size); 2438 2439 if (order < 0) 2440 return 0; 2441 2442 s->allocflags = 0; 2443 if (order) 2444 s->allocflags |= __GFP_COMP; 2445 2446 if (s->flags & SLAB_CACHE_DMA) 2447 s->allocflags |= SLUB_DMA; 2448 2449 if (s->flags & SLAB_RECLAIM_ACCOUNT) 2450 s->allocflags |= __GFP_RECLAIMABLE; 2451 2452 /* 2453 * Determine the number of objects per slab 2454 */ 2455 s->oo = oo_make(order, size); 2456 s->min = oo_make(get_order(size), size); 2457 if (oo_objects(s->oo) > oo_objects(s->max)) 2458 s->max = s->oo; 2459 2460 return !!oo_objects(s->oo); 2461 2462 } 2463 2464 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, 2465 const char *name, size_t size, 2466 size_t align, unsigned long flags, 2467 void (*ctor)(void *)) 2468 { 2469 memset(s, 0, kmem_size); 2470 s->name = name; 2471 s->ctor = ctor; 2472 s->objsize = size; 2473 s->align = align; 2474 s->flags = kmem_cache_flags(size, flags, name, ctor); 2475 2476 if (!calculate_sizes(s, -1)) 2477 goto error; 2478 if (disable_higher_order_debug) { 2479 /* 2480 * Disable debugging flags that store metadata if the min slab 2481 * order increased. 2482 */ 2483 if (get_order(s->size) > get_order(s->objsize)) { 2484 s->flags &= ~DEBUG_METADATA_FLAGS; 2485 s->offset = 0; 2486 if (!calculate_sizes(s, -1)) 2487 goto error; 2488 } 2489 } 2490 2491 /* 2492 * The larger the object size is, the more pages we want on the partial 2493 * list to avoid pounding the page allocator excessively. 2494 */ 2495 set_min_partial(s, ilog2(s->size)); 2496 s->refcount = 1; 2497 #ifdef CONFIG_NUMA 2498 s->remote_node_defrag_ratio = 1000; 2499 #endif 2500 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) 2501 goto error; 2502 2503 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) 2504 return 1; 2505 free_kmem_cache_nodes(s); 2506 error: 2507 if (flags & SLAB_PANIC) 2508 panic("Cannot create slab %s size=%lu realsize=%u " 2509 "order=%u offset=%u flags=%lx\n", 2510 s->name, (unsigned long)size, s->size, oo_order(s->oo), 2511 s->offset, flags); 2512 return 0; 2513 } 2514 2515 /* 2516 * Check if a given pointer is valid 2517 */ 2518 int kmem_ptr_validate(struct kmem_cache *s, const void *object) 2519 { 2520 struct page *page; 2521 2522 page = get_object_page(object); 2523 2524 if (!page || s != page->slab) 2525 /* No slab or wrong slab */ 2526 return 0; 2527 2528 if (!check_valid_pointer(s, page, object)) 2529 return 0; 2530 2531 /* 2532 * We could also check if the object is on the slabs freelist. 2533 * But this would be too expensive and it seems that the main 2534 * purpose of kmem_ptr_valid() is to check if the object belongs 2535 * to a certain slab. 2536 */ 2537 return 1; 2538 } 2539 EXPORT_SYMBOL(kmem_ptr_validate); 2540 2541 /* 2542 * Determine the size of a slab object 2543 */ 2544 unsigned int kmem_cache_size(struct kmem_cache *s) 2545 { 2546 return s->objsize; 2547 } 2548 EXPORT_SYMBOL(kmem_cache_size); 2549 2550 const char *kmem_cache_name(struct kmem_cache *s) 2551 { 2552 return s->name; 2553 } 2554 EXPORT_SYMBOL(kmem_cache_name); 2555 2556 static void list_slab_objects(struct kmem_cache *s, struct page *page, 2557 const char *text) 2558 { 2559 #ifdef CONFIG_SLUB_DEBUG 2560 void *addr = page_address(page); 2561 void *p; 2562 DECLARE_BITMAP(map, page->objects); 2563 2564 bitmap_zero(map, page->objects); 2565 slab_err(s, page, "%s", text); 2566 slab_lock(page); 2567 for_each_free_object(p, s, page->freelist) 2568 set_bit(slab_index(p, s, addr), map); 2569 2570 for_each_object(p, s, addr, page->objects) { 2571 2572 if (!test_bit(slab_index(p, s, addr), map)) { 2573 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 2574 p, p - addr); 2575 print_tracking(s, p); 2576 } 2577 } 2578 slab_unlock(page); 2579 #endif 2580 } 2581 2582 /* 2583 * Attempt to free all partial slabs on a node. 2584 */ 2585 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 2586 { 2587 unsigned long flags; 2588 struct page *page, *h; 2589 2590 spin_lock_irqsave(&n->list_lock, flags); 2591 list_for_each_entry_safe(page, h, &n->partial, lru) { 2592 if (!page->inuse) { 2593 list_del(&page->lru); 2594 discard_slab(s, page); 2595 n->nr_partial--; 2596 } else { 2597 list_slab_objects(s, page, 2598 "Objects remaining on kmem_cache_close()"); 2599 } 2600 } 2601 spin_unlock_irqrestore(&n->list_lock, flags); 2602 } 2603 2604 /* 2605 * Release all resources used by a slab cache. 2606 */ 2607 static inline int kmem_cache_close(struct kmem_cache *s) 2608 { 2609 int node; 2610 2611 flush_all(s); 2612 2613 /* Attempt to free all objects */ 2614 free_kmem_cache_cpus(s); 2615 for_each_node_state(node, N_NORMAL_MEMORY) { 2616 struct kmem_cache_node *n = get_node(s, node); 2617 2618 free_partial(s, n); 2619 if (n->nr_partial || slabs_node(s, node)) 2620 return 1; 2621 } 2622 free_kmem_cache_nodes(s); 2623 return 0; 2624 } 2625 2626 /* 2627 * Close a cache and release the kmem_cache structure 2628 * (must be used for caches created using kmem_cache_create) 2629 */ 2630 void kmem_cache_destroy(struct kmem_cache *s) 2631 { 2632 down_write(&slub_lock); 2633 s->refcount--; 2634 if (!s->refcount) { 2635 list_del(&s->list); 2636 up_write(&slub_lock); 2637 if (kmem_cache_close(s)) { 2638 printk(KERN_ERR "SLUB %s: %s called for cache that " 2639 "still has objects.\n", s->name, __func__); 2640 dump_stack(); 2641 } 2642 if (s->flags & SLAB_DESTROY_BY_RCU) 2643 rcu_barrier(); 2644 sysfs_slab_remove(s); 2645 } else 2646 up_write(&slub_lock); 2647 } 2648 EXPORT_SYMBOL(kmem_cache_destroy); 2649 2650 /******************************************************************** 2651 * Kmalloc subsystem 2652 *******************************************************************/ 2653 2654 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned; 2655 EXPORT_SYMBOL(kmalloc_caches); 2656 2657 static int __init setup_slub_min_order(char *str) 2658 { 2659 get_option(&str, &slub_min_order); 2660 2661 return 1; 2662 } 2663 2664 __setup("slub_min_order=", setup_slub_min_order); 2665 2666 static int __init setup_slub_max_order(char *str) 2667 { 2668 get_option(&str, &slub_max_order); 2669 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 2670 2671 return 1; 2672 } 2673 2674 __setup("slub_max_order=", setup_slub_max_order); 2675 2676 static int __init setup_slub_min_objects(char *str) 2677 { 2678 get_option(&str, &slub_min_objects); 2679 2680 return 1; 2681 } 2682 2683 __setup("slub_min_objects=", setup_slub_min_objects); 2684 2685 static int __init setup_slub_nomerge(char *str) 2686 { 2687 slub_nomerge = 1; 2688 return 1; 2689 } 2690 2691 __setup("slub_nomerge", setup_slub_nomerge); 2692 2693 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, 2694 const char *name, int size, gfp_t gfp_flags) 2695 { 2696 unsigned int flags = 0; 2697 2698 if (gfp_flags & SLUB_DMA) 2699 flags = SLAB_CACHE_DMA; 2700 2701 /* 2702 * This function is called with IRQs disabled during early-boot on 2703 * single CPU so there's no need to take slub_lock here. 2704 */ 2705 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, 2706 flags, NULL)) 2707 goto panic; 2708 2709 list_add(&s->list, &slab_caches); 2710 2711 if (sysfs_slab_add(s)) 2712 goto panic; 2713 return s; 2714 2715 panic: 2716 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 2717 } 2718 2719 #ifdef CONFIG_ZONE_DMA 2720 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT]; 2721 2722 static void sysfs_add_func(struct work_struct *w) 2723 { 2724 struct kmem_cache *s; 2725 2726 down_write(&slub_lock); 2727 list_for_each_entry(s, &slab_caches, list) { 2728 if (s->flags & __SYSFS_ADD_DEFERRED) { 2729 s->flags &= ~__SYSFS_ADD_DEFERRED; 2730 sysfs_slab_add(s); 2731 } 2732 } 2733 up_write(&slub_lock); 2734 } 2735 2736 static DECLARE_WORK(sysfs_add_work, sysfs_add_func); 2737 2738 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) 2739 { 2740 struct kmem_cache *s; 2741 char *text; 2742 size_t realsize; 2743 unsigned long slabflags; 2744 2745 s = kmalloc_caches_dma[index]; 2746 if (s) 2747 return s; 2748 2749 /* Dynamically create dma cache */ 2750 if (flags & __GFP_WAIT) 2751 down_write(&slub_lock); 2752 else { 2753 if (!down_write_trylock(&slub_lock)) 2754 goto out; 2755 } 2756 2757 if (kmalloc_caches_dma[index]) 2758 goto unlock_out; 2759 2760 realsize = kmalloc_caches[index].objsize; 2761 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", 2762 (unsigned int)realsize); 2763 s = kmalloc(kmem_size, flags & ~SLUB_DMA); 2764 2765 /* 2766 * Must defer sysfs creation to a workqueue because we don't know 2767 * what context we are called from. Before sysfs comes up, we don't 2768 * need to do anything because our sysfs initcall will start by 2769 * adding all existing slabs to sysfs. 2770 */ 2771 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK; 2772 if (slab_state >= SYSFS) 2773 slabflags |= __SYSFS_ADD_DEFERRED; 2774 2775 if (!s || !text || !kmem_cache_open(s, flags, text, 2776 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) { 2777 kfree(s); 2778 kfree(text); 2779 goto unlock_out; 2780 } 2781 2782 list_add(&s->list, &slab_caches); 2783 kmalloc_caches_dma[index] = s; 2784 2785 if (slab_state >= SYSFS) 2786 schedule_work(&sysfs_add_work); 2787 2788 unlock_out: 2789 up_write(&slub_lock); 2790 out: 2791 return kmalloc_caches_dma[index]; 2792 } 2793 #endif 2794 2795 /* 2796 * Conversion table for small slabs sizes / 8 to the index in the 2797 * kmalloc array. This is necessary for slabs < 192 since we have non power 2798 * of two cache sizes there. The size of larger slabs can be determined using 2799 * fls. 2800 */ 2801 static s8 size_index[24] = { 2802 3, /* 8 */ 2803 4, /* 16 */ 2804 5, /* 24 */ 2805 5, /* 32 */ 2806 6, /* 40 */ 2807 6, /* 48 */ 2808 6, /* 56 */ 2809 6, /* 64 */ 2810 1, /* 72 */ 2811 1, /* 80 */ 2812 1, /* 88 */ 2813 1, /* 96 */ 2814 7, /* 104 */ 2815 7, /* 112 */ 2816 7, /* 120 */ 2817 7, /* 128 */ 2818 2, /* 136 */ 2819 2, /* 144 */ 2820 2, /* 152 */ 2821 2, /* 160 */ 2822 2, /* 168 */ 2823 2, /* 176 */ 2824 2, /* 184 */ 2825 2 /* 192 */ 2826 }; 2827 2828 static inline int size_index_elem(size_t bytes) 2829 { 2830 return (bytes - 1) / 8; 2831 } 2832 2833 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 2834 { 2835 int index; 2836 2837 if (size <= 192) { 2838 if (!size) 2839 return ZERO_SIZE_PTR; 2840 2841 index = size_index[size_index_elem(size)]; 2842 } else 2843 index = fls(size - 1); 2844 2845 #ifdef CONFIG_ZONE_DMA 2846 if (unlikely((flags & SLUB_DMA))) 2847 return dma_kmalloc_cache(index, flags); 2848 2849 #endif 2850 return &kmalloc_caches[index]; 2851 } 2852 2853 void *__kmalloc(size_t size, gfp_t flags) 2854 { 2855 struct kmem_cache *s; 2856 void *ret; 2857 2858 if (unlikely(size > SLUB_MAX_SIZE)) 2859 return kmalloc_large(size, flags); 2860 2861 s = get_slab(size, flags); 2862 2863 if (unlikely(ZERO_OR_NULL_PTR(s))) 2864 return s; 2865 2866 ret = slab_alloc(s, flags, -1, _RET_IP_); 2867 2868 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 2869 2870 return ret; 2871 } 2872 EXPORT_SYMBOL(__kmalloc); 2873 2874 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 2875 { 2876 struct page *page; 2877 void *ptr = NULL; 2878 2879 flags |= __GFP_COMP | __GFP_NOTRACK; 2880 page = alloc_pages_node(node, flags, get_order(size)); 2881 if (page) 2882 ptr = page_address(page); 2883 2884 kmemleak_alloc(ptr, size, 1, flags); 2885 return ptr; 2886 } 2887 2888 #ifdef CONFIG_NUMA 2889 void *__kmalloc_node(size_t size, gfp_t flags, int node) 2890 { 2891 struct kmem_cache *s; 2892 void *ret; 2893 2894 if (unlikely(size > SLUB_MAX_SIZE)) { 2895 ret = kmalloc_large_node(size, flags, node); 2896 2897 trace_kmalloc_node(_RET_IP_, ret, 2898 size, PAGE_SIZE << get_order(size), 2899 flags, node); 2900 2901 return ret; 2902 } 2903 2904 s = get_slab(size, flags); 2905 2906 if (unlikely(ZERO_OR_NULL_PTR(s))) 2907 return s; 2908 2909 ret = slab_alloc(s, flags, node, _RET_IP_); 2910 2911 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 2912 2913 return ret; 2914 } 2915 EXPORT_SYMBOL(__kmalloc_node); 2916 #endif 2917 2918 size_t ksize(const void *object) 2919 { 2920 struct page *page; 2921 struct kmem_cache *s; 2922 2923 if (unlikely(object == ZERO_SIZE_PTR)) 2924 return 0; 2925 2926 page = virt_to_head_page(object); 2927 2928 if (unlikely(!PageSlab(page))) { 2929 WARN_ON(!PageCompound(page)); 2930 return PAGE_SIZE << compound_order(page); 2931 } 2932 s = page->slab; 2933 2934 #ifdef CONFIG_SLUB_DEBUG 2935 /* 2936 * Debugging requires use of the padding between object 2937 * and whatever may come after it. 2938 */ 2939 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 2940 return s->objsize; 2941 2942 #endif 2943 /* 2944 * If we have the need to store the freelist pointer 2945 * back there or track user information then we can 2946 * only use the space before that information. 2947 */ 2948 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 2949 return s->inuse; 2950 /* 2951 * Else we can use all the padding etc for the allocation 2952 */ 2953 return s->size; 2954 } 2955 EXPORT_SYMBOL(ksize); 2956 2957 void kfree(const void *x) 2958 { 2959 struct page *page; 2960 void *object = (void *)x; 2961 2962 trace_kfree(_RET_IP_, x); 2963 2964 if (unlikely(ZERO_OR_NULL_PTR(x))) 2965 return; 2966 2967 page = virt_to_head_page(x); 2968 if (unlikely(!PageSlab(page))) { 2969 BUG_ON(!PageCompound(page)); 2970 kmemleak_free(x); 2971 put_page(page); 2972 return; 2973 } 2974 slab_free(page->slab, page, object, _RET_IP_); 2975 } 2976 EXPORT_SYMBOL(kfree); 2977 2978 /* 2979 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 2980 * the remaining slabs by the number of items in use. The slabs with the 2981 * most items in use come first. New allocations will then fill those up 2982 * and thus they can be removed from the partial lists. 2983 * 2984 * The slabs with the least items are placed last. This results in them 2985 * being allocated from last increasing the chance that the last objects 2986 * are freed in them. 2987 */ 2988 int kmem_cache_shrink(struct kmem_cache *s) 2989 { 2990 int node; 2991 int i; 2992 struct kmem_cache_node *n; 2993 struct page *page; 2994 struct page *t; 2995 int objects = oo_objects(s->max); 2996 struct list_head *slabs_by_inuse = 2997 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 2998 unsigned long flags; 2999 3000 if (!slabs_by_inuse) 3001 return -ENOMEM; 3002 3003 flush_all(s); 3004 for_each_node_state(node, N_NORMAL_MEMORY) { 3005 n = get_node(s, node); 3006 3007 if (!n->nr_partial) 3008 continue; 3009 3010 for (i = 0; i < objects; i++) 3011 INIT_LIST_HEAD(slabs_by_inuse + i); 3012 3013 spin_lock_irqsave(&n->list_lock, flags); 3014 3015 /* 3016 * Build lists indexed by the items in use in each slab. 3017 * 3018 * Note that concurrent frees may occur while we hold the 3019 * list_lock. page->inuse here is the upper limit. 3020 */ 3021 list_for_each_entry_safe(page, t, &n->partial, lru) { 3022 if (!page->inuse && slab_trylock(page)) { 3023 /* 3024 * Must hold slab lock here because slab_free 3025 * may have freed the last object and be 3026 * waiting to release the slab. 3027 */ 3028 list_del(&page->lru); 3029 n->nr_partial--; 3030 slab_unlock(page); 3031 discard_slab(s, page); 3032 } else { 3033 list_move(&page->lru, 3034 slabs_by_inuse + page->inuse); 3035 } 3036 } 3037 3038 /* 3039 * Rebuild the partial list with the slabs filled up most 3040 * first and the least used slabs at the end. 3041 */ 3042 for (i = objects - 1; i >= 0; i--) 3043 list_splice(slabs_by_inuse + i, n->partial.prev); 3044 3045 spin_unlock_irqrestore(&n->list_lock, flags); 3046 } 3047 3048 kfree(slabs_by_inuse); 3049 return 0; 3050 } 3051 EXPORT_SYMBOL(kmem_cache_shrink); 3052 3053 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 3054 static int slab_mem_going_offline_callback(void *arg) 3055 { 3056 struct kmem_cache *s; 3057 3058 down_read(&slub_lock); 3059 list_for_each_entry(s, &slab_caches, list) 3060 kmem_cache_shrink(s); 3061 up_read(&slub_lock); 3062 3063 return 0; 3064 } 3065 3066 static void slab_mem_offline_callback(void *arg) 3067 { 3068 struct kmem_cache_node *n; 3069 struct kmem_cache *s; 3070 struct memory_notify *marg = arg; 3071 int offline_node; 3072 3073 offline_node = marg->status_change_nid; 3074 3075 /* 3076 * If the node still has available memory. we need kmem_cache_node 3077 * for it yet. 3078 */ 3079 if (offline_node < 0) 3080 return; 3081 3082 down_read(&slub_lock); 3083 list_for_each_entry(s, &slab_caches, list) { 3084 n = get_node(s, offline_node); 3085 if (n) { 3086 /* 3087 * if n->nr_slabs > 0, slabs still exist on the node 3088 * that is going down. We were unable to free them, 3089 * and offline_pages() function shoudn't call this 3090 * callback. So, we must fail. 3091 */ 3092 BUG_ON(slabs_node(s, offline_node)); 3093 3094 s->node[offline_node] = NULL; 3095 kmem_cache_free(kmalloc_caches, n); 3096 } 3097 } 3098 up_read(&slub_lock); 3099 } 3100 3101 static int slab_mem_going_online_callback(void *arg) 3102 { 3103 struct kmem_cache_node *n; 3104 struct kmem_cache *s; 3105 struct memory_notify *marg = arg; 3106 int nid = marg->status_change_nid; 3107 int ret = 0; 3108 3109 /* 3110 * If the node's memory is already available, then kmem_cache_node is 3111 * already created. Nothing to do. 3112 */ 3113 if (nid < 0) 3114 return 0; 3115 3116 /* 3117 * We are bringing a node online. No memory is available yet. We must 3118 * allocate a kmem_cache_node structure in order to bring the node 3119 * online. 3120 */ 3121 down_read(&slub_lock); 3122 list_for_each_entry(s, &slab_caches, list) { 3123 /* 3124 * XXX: kmem_cache_alloc_node will fallback to other nodes 3125 * since memory is not yet available from the node that 3126 * is brought up. 3127 */ 3128 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); 3129 if (!n) { 3130 ret = -ENOMEM; 3131 goto out; 3132 } 3133 init_kmem_cache_node(n, s); 3134 s->node[nid] = n; 3135 } 3136 out: 3137 up_read(&slub_lock); 3138 return ret; 3139 } 3140 3141 static int slab_memory_callback(struct notifier_block *self, 3142 unsigned long action, void *arg) 3143 { 3144 int ret = 0; 3145 3146 switch (action) { 3147 case MEM_GOING_ONLINE: 3148 ret = slab_mem_going_online_callback(arg); 3149 break; 3150 case MEM_GOING_OFFLINE: 3151 ret = slab_mem_going_offline_callback(arg); 3152 break; 3153 case MEM_OFFLINE: 3154 case MEM_CANCEL_ONLINE: 3155 slab_mem_offline_callback(arg); 3156 break; 3157 case MEM_ONLINE: 3158 case MEM_CANCEL_OFFLINE: 3159 break; 3160 } 3161 if (ret) 3162 ret = notifier_from_errno(ret); 3163 else 3164 ret = NOTIFY_OK; 3165 return ret; 3166 } 3167 3168 #endif /* CONFIG_MEMORY_HOTPLUG */ 3169 3170 /******************************************************************** 3171 * Basic setup of slabs 3172 *******************************************************************/ 3173 3174 void __init kmem_cache_init(void) 3175 { 3176 int i; 3177 int caches = 0; 3178 3179 init_alloc_cpu(); 3180 3181 #ifdef CONFIG_NUMA 3182 /* 3183 * Must first have the slab cache available for the allocations of the 3184 * struct kmem_cache_node's. There is special bootstrap code in 3185 * kmem_cache_open for slab_state == DOWN. 3186 */ 3187 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", 3188 sizeof(struct kmem_cache_node), GFP_NOWAIT); 3189 kmalloc_caches[0].refcount = -1; 3190 caches++; 3191 3192 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 3193 #endif 3194 3195 /* Able to allocate the per node structures */ 3196 slab_state = PARTIAL; 3197 3198 /* Caches that are not of the two-to-the-power-of size */ 3199 if (KMALLOC_MIN_SIZE <= 32) { 3200 create_kmalloc_cache(&kmalloc_caches[1], 3201 "kmalloc-96", 96, GFP_NOWAIT); 3202 caches++; 3203 } 3204 if (KMALLOC_MIN_SIZE <= 64) { 3205 create_kmalloc_cache(&kmalloc_caches[2], 3206 "kmalloc-192", 192, GFP_NOWAIT); 3207 caches++; 3208 } 3209 3210 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3211 create_kmalloc_cache(&kmalloc_caches[i], 3212 "kmalloc", 1 << i, GFP_NOWAIT); 3213 caches++; 3214 } 3215 3216 3217 /* 3218 * Patch up the size_index table if we have strange large alignment 3219 * requirements for the kmalloc array. This is only the case for 3220 * MIPS it seems. The standard arches will not generate any code here. 3221 * 3222 * Largest permitted alignment is 256 bytes due to the way we 3223 * handle the index determination for the smaller caches. 3224 * 3225 * Make sure that nothing crazy happens if someone starts tinkering 3226 * around with ARCH_KMALLOC_MINALIGN 3227 */ 3228 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3229 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3230 3231 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 3232 int elem = size_index_elem(i); 3233 if (elem >= ARRAY_SIZE(size_index)) 3234 break; 3235 size_index[elem] = KMALLOC_SHIFT_LOW; 3236 } 3237 3238 if (KMALLOC_MIN_SIZE == 64) { 3239 /* 3240 * The 96 byte size cache is not used if the alignment 3241 * is 64 byte. 3242 */ 3243 for (i = 64 + 8; i <= 96; i += 8) 3244 size_index[size_index_elem(i)] = 7; 3245 } else if (KMALLOC_MIN_SIZE == 128) { 3246 /* 3247 * The 192 byte sized cache is not used if the alignment 3248 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3249 * instead. 3250 */ 3251 for (i = 128 + 8; i <= 192; i += 8) 3252 size_index[size_index_elem(i)] = 8; 3253 } 3254 3255 slab_state = UP; 3256 3257 /* Provide the correct kmalloc names now that the caches are up */ 3258 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) 3259 kmalloc_caches[i]. name = 3260 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); 3261 3262 #ifdef CONFIG_SMP 3263 register_cpu_notifier(&slab_notifier); 3264 kmem_size = offsetof(struct kmem_cache, cpu_slab) + 3265 nr_cpu_ids * sizeof(struct kmem_cache_cpu *); 3266 #else 3267 kmem_size = sizeof(struct kmem_cache); 3268 #endif 3269 3270 printk(KERN_INFO 3271 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3272 " CPUs=%d, Nodes=%d\n", 3273 caches, cache_line_size(), 3274 slub_min_order, slub_max_order, slub_min_objects, 3275 nr_cpu_ids, nr_node_ids); 3276 } 3277 3278 void __init kmem_cache_init_late(void) 3279 { 3280 } 3281 3282 /* 3283 * Find a mergeable slab cache 3284 */ 3285 static int slab_unmergeable(struct kmem_cache *s) 3286 { 3287 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3288 return 1; 3289 3290 if (s->ctor) 3291 return 1; 3292 3293 /* 3294 * We may have set a slab to be unmergeable during bootstrap. 3295 */ 3296 if (s->refcount < 0) 3297 return 1; 3298 3299 return 0; 3300 } 3301 3302 static struct kmem_cache *find_mergeable(size_t size, 3303 size_t align, unsigned long flags, const char *name, 3304 void (*ctor)(void *)) 3305 { 3306 struct kmem_cache *s; 3307 3308 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3309 return NULL; 3310 3311 if (ctor) 3312 return NULL; 3313 3314 size = ALIGN(size, sizeof(void *)); 3315 align = calculate_alignment(flags, align, size); 3316 size = ALIGN(size, align); 3317 flags = kmem_cache_flags(size, flags, name, NULL); 3318 3319 list_for_each_entry(s, &slab_caches, list) { 3320 if (slab_unmergeable(s)) 3321 continue; 3322 3323 if (size > s->size) 3324 continue; 3325 3326 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3327 continue; 3328 /* 3329 * Check if alignment is compatible. 3330 * Courtesy of Adrian Drzewiecki 3331 */ 3332 if ((s->size & ~(align - 1)) != s->size) 3333 continue; 3334 3335 if (s->size - size >= sizeof(void *)) 3336 continue; 3337 3338 return s; 3339 } 3340 return NULL; 3341 } 3342 3343 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 3344 size_t align, unsigned long flags, void (*ctor)(void *)) 3345 { 3346 struct kmem_cache *s; 3347 3348 if (WARN_ON(!name)) 3349 return NULL; 3350 3351 down_write(&slub_lock); 3352 s = find_mergeable(size, align, flags, name, ctor); 3353 if (s) { 3354 int cpu; 3355 3356 s->refcount++; 3357 /* 3358 * Adjust the object sizes so that we clear 3359 * the complete object on kzalloc. 3360 */ 3361 s->objsize = max(s->objsize, (int)size); 3362 3363 /* 3364 * And then we need to update the object size in the 3365 * per cpu structures 3366 */ 3367 for_each_online_cpu(cpu) 3368 get_cpu_slab(s, cpu)->objsize = s->objsize; 3369 3370 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3371 up_write(&slub_lock); 3372 3373 if (sysfs_slab_alias(s, name)) { 3374 down_write(&slub_lock); 3375 s->refcount--; 3376 up_write(&slub_lock); 3377 goto err; 3378 } 3379 return s; 3380 } 3381 3382 s = kmalloc(kmem_size, GFP_KERNEL); 3383 if (s) { 3384 if (kmem_cache_open(s, GFP_KERNEL, name, 3385 size, align, flags, ctor)) { 3386 list_add(&s->list, &slab_caches); 3387 up_write(&slub_lock); 3388 if (sysfs_slab_add(s)) { 3389 down_write(&slub_lock); 3390 list_del(&s->list); 3391 up_write(&slub_lock); 3392 kfree(s); 3393 goto err; 3394 } 3395 return s; 3396 } 3397 kfree(s); 3398 } 3399 up_write(&slub_lock); 3400 3401 err: 3402 if (flags & SLAB_PANIC) 3403 panic("Cannot create slabcache %s\n", name); 3404 else 3405 s = NULL; 3406 return s; 3407 } 3408 EXPORT_SYMBOL(kmem_cache_create); 3409 3410 #ifdef CONFIG_SMP 3411 /* 3412 * Use the cpu notifier to insure that the cpu slabs are flushed when 3413 * necessary. 3414 */ 3415 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3416 unsigned long action, void *hcpu) 3417 { 3418 long cpu = (long)hcpu; 3419 struct kmem_cache *s; 3420 unsigned long flags; 3421 3422 switch (action) { 3423 case CPU_UP_PREPARE: 3424 case CPU_UP_PREPARE_FROZEN: 3425 init_alloc_cpu_cpu(cpu); 3426 down_read(&slub_lock); 3427 list_for_each_entry(s, &slab_caches, list) 3428 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu, 3429 GFP_KERNEL); 3430 up_read(&slub_lock); 3431 break; 3432 3433 case CPU_UP_CANCELED: 3434 case CPU_UP_CANCELED_FROZEN: 3435 case CPU_DEAD: 3436 case CPU_DEAD_FROZEN: 3437 down_read(&slub_lock); 3438 list_for_each_entry(s, &slab_caches, list) { 3439 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3440 3441 local_irq_save(flags); 3442 __flush_cpu_slab(s, cpu); 3443 local_irq_restore(flags); 3444 free_kmem_cache_cpu(c, cpu); 3445 s->cpu_slab[cpu] = NULL; 3446 } 3447 up_read(&slub_lock); 3448 break; 3449 default: 3450 break; 3451 } 3452 return NOTIFY_OK; 3453 } 3454 3455 static struct notifier_block __cpuinitdata slab_notifier = { 3456 .notifier_call = slab_cpuup_callback 3457 }; 3458 3459 #endif 3460 3461 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3462 { 3463 struct kmem_cache *s; 3464 void *ret; 3465 3466 if (unlikely(size > SLUB_MAX_SIZE)) 3467 return kmalloc_large(size, gfpflags); 3468 3469 s = get_slab(size, gfpflags); 3470 3471 if (unlikely(ZERO_OR_NULL_PTR(s))) 3472 return s; 3473 3474 ret = slab_alloc(s, gfpflags, -1, caller); 3475 3476 /* Honor the call site pointer we recieved. */ 3477 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3478 3479 return ret; 3480 } 3481 3482 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3483 int node, unsigned long caller) 3484 { 3485 struct kmem_cache *s; 3486 void *ret; 3487 3488 if (unlikely(size > SLUB_MAX_SIZE)) 3489 return kmalloc_large_node(size, gfpflags, node); 3490 3491 s = get_slab(size, gfpflags); 3492 3493 if (unlikely(ZERO_OR_NULL_PTR(s))) 3494 return s; 3495 3496 ret = slab_alloc(s, gfpflags, node, caller); 3497 3498 /* Honor the call site pointer we recieved. */ 3499 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3500 3501 return ret; 3502 } 3503 3504 #ifdef CONFIG_SLUB_DEBUG 3505 static int count_inuse(struct page *page) 3506 { 3507 return page->inuse; 3508 } 3509 3510 static int count_total(struct page *page) 3511 { 3512 return page->objects; 3513 } 3514 3515 static int validate_slab(struct kmem_cache *s, struct page *page, 3516 unsigned long *map) 3517 { 3518 void *p; 3519 void *addr = page_address(page); 3520 3521 if (!check_slab(s, page) || 3522 !on_freelist(s, page, NULL)) 3523 return 0; 3524 3525 /* Now we know that a valid freelist exists */ 3526 bitmap_zero(map, page->objects); 3527 3528 for_each_free_object(p, s, page->freelist) { 3529 set_bit(slab_index(p, s, addr), map); 3530 if (!check_object(s, page, p, 0)) 3531 return 0; 3532 } 3533 3534 for_each_object(p, s, addr, page->objects) 3535 if (!test_bit(slab_index(p, s, addr), map)) 3536 if (!check_object(s, page, p, 1)) 3537 return 0; 3538 return 1; 3539 } 3540 3541 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3542 unsigned long *map) 3543 { 3544 if (slab_trylock(page)) { 3545 validate_slab(s, page, map); 3546 slab_unlock(page); 3547 } else 3548 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", 3549 s->name, page); 3550 3551 if (s->flags & DEBUG_DEFAULT_FLAGS) { 3552 if (!PageSlubDebug(page)) 3553 printk(KERN_ERR "SLUB %s: SlubDebug not set " 3554 "on slab 0x%p\n", s->name, page); 3555 } else { 3556 if (PageSlubDebug(page)) 3557 printk(KERN_ERR "SLUB %s: SlubDebug set on " 3558 "slab 0x%p\n", s->name, page); 3559 } 3560 } 3561 3562 static int validate_slab_node(struct kmem_cache *s, 3563 struct kmem_cache_node *n, unsigned long *map) 3564 { 3565 unsigned long count = 0; 3566 struct page *page; 3567 unsigned long flags; 3568 3569 spin_lock_irqsave(&n->list_lock, flags); 3570 3571 list_for_each_entry(page, &n->partial, lru) { 3572 validate_slab_slab(s, page, map); 3573 count++; 3574 } 3575 if (count != n->nr_partial) 3576 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3577 "counter=%ld\n", s->name, count, n->nr_partial); 3578 3579 if (!(s->flags & SLAB_STORE_USER)) 3580 goto out; 3581 3582 list_for_each_entry(page, &n->full, lru) { 3583 validate_slab_slab(s, page, map); 3584 count++; 3585 } 3586 if (count != atomic_long_read(&n->nr_slabs)) 3587 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3588 "counter=%ld\n", s->name, count, 3589 atomic_long_read(&n->nr_slabs)); 3590 3591 out: 3592 spin_unlock_irqrestore(&n->list_lock, flags); 3593 return count; 3594 } 3595 3596 static long validate_slab_cache(struct kmem_cache *s) 3597 { 3598 int node; 3599 unsigned long count = 0; 3600 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3601 sizeof(unsigned long), GFP_KERNEL); 3602 3603 if (!map) 3604 return -ENOMEM; 3605 3606 flush_all(s); 3607 for_each_node_state(node, N_NORMAL_MEMORY) { 3608 struct kmem_cache_node *n = get_node(s, node); 3609 3610 count += validate_slab_node(s, n, map); 3611 } 3612 kfree(map); 3613 return count; 3614 } 3615 3616 #ifdef SLUB_RESILIENCY_TEST 3617 static void resiliency_test(void) 3618 { 3619 u8 *p; 3620 3621 printk(KERN_ERR "SLUB resiliency testing\n"); 3622 printk(KERN_ERR "-----------------------\n"); 3623 printk(KERN_ERR "A. Corruption after allocation\n"); 3624 3625 p = kzalloc(16, GFP_KERNEL); 3626 p[16] = 0x12; 3627 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 3628 " 0x12->0x%p\n\n", p + 16); 3629 3630 validate_slab_cache(kmalloc_caches + 4); 3631 3632 /* Hmmm... The next two are dangerous */ 3633 p = kzalloc(32, GFP_KERNEL); 3634 p[32 + sizeof(void *)] = 0x34; 3635 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 3636 " 0x34 -> -0x%p\n", p); 3637 printk(KERN_ERR 3638 "If allocated object is overwritten then not detectable\n\n"); 3639 3640 validate_slab_cache(kmalloc_caches + 5); 3641 p = kzalloc(64, GFP_KERNEL); 3642 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 3643 *p = 0x56; 3644 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 3645 p); 3646 printk(KERN_ERR 3647 "If allocated object is overwritten then not detectable\n\n"); 3648 validate_slab_cache(kmalloc_caches + 6); 3649 3650 printk(KERN_ERR "\nB. Corruption after free\n"); 3651 p = kzalloc(128, GFP_KERNEL); 3652 kfree(p); 3653 *p = 0x78; 3654 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 3655 validate_slab_cache(kmalloc_caches + 7); 3656 3657 p = kzalloc(256, GFP_KERNEL); 3658 kfree(p); 3659 p[50] = 0x9a; 3660 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 3661 p); 3662 validate_slab_cache(kmalloc_caches + 8); 3663 3664 p = kzalloc(512, GFP_KERNEL); 3665 kfree(p); 3666 p[512] = 0xab; 3667 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 3668 validate_slab_cache(kmalloc_caches + 9); 3669 } 3670 #else 3671 static void resiliency_test(void) {}; 3672 #endif 3673 3674 /* 3675 * Generate lists of code addresses where slabcache objects are allocated 3676 * and freed. 3677 */ 3678 3679 struct location { 3680 unsigned long count; 3681 unsigned long addr; 3682 long long sum_time; 3683 long min_time; 3684 long max_time; 3685 long min_pid; 3686 long max_pid; 3687 DECLARE_BITMAP(cpus, NR_CPUS); 3688 nodemask_t nodes; 3689 }; 3690 3691 struct loc_track { 3692 unsigned long max; 3693 unsigned long count; 3694 struct location *loc; 3695 }; 3696 3697 static void free_loc_track(struct loc_track *t) 3698 { 3699 if (t->max) 3700 free_pages((unsigned long)t->loc, 3701 get_order(sizeof(struct location) * t->max)); 3702 } 3703 3704 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3705 { 3706 struct location *l; 3707 int order; 3708 3709 order = get_order(sizeof(struct location) * max); 3710 3711 l = (void *)__get_free_pages(flags, order); 3712 if (!l) 3713 return 0; 3714 3715 if (t->count) { 3716 memcpy(l, t->loc, sizeof(struct location) * t->count); 3717 free_loc_track(t); 3718 } 3719 t->max = max; 3720 t->loc = l; 3721 return 1; 3722 } 3723 3724 static int add_location(struct loc_track *t, struct kmem_cache *s, 3725 const struct track *track) 3726 { 3727 long start, end, pos; 3728 struct location *l; 3729 unsigned long caddr; 3730 unsigned long age = jiffies - track->when; 3731 3732 start = -1; 3733 end = t->count; 3734 3735 for ( ; ; ) { 3736 pos = start + (end - start + 1) / 2; 3737 3738 /* 3739 * There is nothing at "end". If we end up there 3740 * we need to add something to before end. 3741 */ 3742 if (pos == end) 3743 break; 3744 3745 caddr = t->loc[pos].addr; 3746 if (track->addr == caddr) { 3747 3748 l = &t->loc[pos]; 3749 l->count++; 3750 if (track->when) { 3751 l->sum_time += age; 3752 if (age < l->min_time) 3753 l->min_time = age; 3754 if (age > l->max_time) 3755 l->max_time = age; 3756 3757 if (track->pid < l->min_pid) 3758 l->min_pid = track->pid; 3759 if (track->pid > l->max_pid) 3760 l->max_pid = track->pid; 3761 3762 cpumask_set_cpu(track->cpu, 3763 to_cpumask(l->cpus)); 3764 } 3765 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3766 return 1; 3767 } 3768 3769 if (track->addr < caddr) 3770 end = pos; 3771 else 3772 start = pos; 3773 } 3774 3775 /* 3776 * Not found. Insert new tracking element. 3777 */ 3778 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3779 return 0; 3780 3781 l = t->loc + pos; 3782 if (pos < t->count) 3783 memmove(l + 1, l, 3784 (t->count - pos) * sizeof(struct location)); 3785 t->count++; 3786 l->count = 1; 3787 l->addr = track->addr; 3788 l->sum_time = age; 3789 l->min_time = age; 3790 l->max_time = age; 3791 l->min_pid = track->pid; 3792 l->max_pid = track->pid; 3793 cpumask_clear(to_cpumask(l->cpus)); 3794 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 3795 nodes_clear(l->nodes); 3796 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3797 return 1; 3798 } 3799 3800 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3801 struct page *page, enum track_item alloc) 3802 { 3803 void *addr = page_address(page); 3804 DECLARE_BITMAP(map, page->objects); 3805 void *p; 3806 3807 bitmap_zero(map, page->objects); 3808 for_each_free_object(p, s, page->freelist) 3809 set_bit(slab_index(p, s, addr), map); 3810 3811 for_each_object(p, s, addr, page->objects) 3812 if (!test_bit(slab_index(p, s, addr), map)) 3813 add_location(t, s, get_track(s, p, alloc)); 3814 } 3815 3816 static int list_locations(struct kmem_cache *s, char *buf, 3817 enum track_item alloc) 3818 { 3819 int len = 0; 3820 unsigned long i; 3821 struct loc_track t = { 0, 0, NULL }; 3822 int node; 3823 3824 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 3825 GFP_TEMPORARY)) 3826 return sprintf(buf, "Out of memory\n"); 3827 3828 /* Push back cpu slabs */ 3829 flush_all(s); 3830 3831 for_each_node_state(node, N_NORMAL_MEMORY) { 3832 struct kmem_cache_node *n = get_node(s, node); 3833 unsigned long flags; 3834 struct page *page; 3835 3836 if (!atomic_long_read(&n->nr_slabs)) 3837 continue; 3838 3839 spin_lock_irqsave(&n->list_lock, flags); 3840 list_for_each_entry(page, &n->partial, lru) 3841 process_slab(&t, s, page, alloc); 3842 list_for_each_entry(page, &n->full, lru) 3843 process_slab(&t, s, page, alloc); 3844 spin_unlock_irqrestore(&n->list_lock, flags); 3845 } 3846 3847 for (i = 0; i < t.count; i++) { 3848 struct location *l = &t.loc[i]; 3849 3850 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 3851 break; 3852 len += sprintf(buf + len, "%7ld ", l->count); 3853 3854 if (l->addr) 3855 len += sprint_symbol(buf + len, (unsigned long)l->addr); 3856 else 3857 len += sprintf(buf + len, "<not-available>"); 3858 3859 if (l->sum_time != l->min_time) { 3860 len += sprintf(buf + len, " age=%ld/%ld/%ld", 3861 l->min_time, 3862 (long)div_u64(l->sum_time, l->count), 3863 l->max_time); 3864 } else 3865 len += sprintf(buf + len, " age=%ld", 3866 l->min_time); 3867 3868 if (l->min_pid != l->max_pid) 3869 len += sprintf(buf + len, " pid=%ld-%ld", 3870 l->min_pid, l->max_pid); 3871 else 3872 len += sprintf(buf + len, " pid=%ld", 3873 l->min_pid); 3874 3875 if (num_online_cpus() > 1 && 3876 !cpumask_empty(to_cpumask(l->cpus)) && 3877 len < PAGE_SIZE - 60) { 3878 len += sprintf(buf + len, " cpus="); 3879 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3880 to_cpumask(l->cpus)); 3881 } 3882 3883 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 3884 len < PAGE_SIZE - 60) { 3885 len += sprintf(buf + len, " nodes="); 3886 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3887 l->nodes); 3888 } 3889 3890 len += sprintf(buf + len, "\n"); 3891 } 3892 3893 free_loc_track(&t); 3894 if (!t.count) 3895 len += sprintf(buf, "No data\n"); 3896 return len; 3897 } 3898 3899 enum slab_stat_type { 3900 SL_ALL, /* All slabs */ 3901 SL_PARTIAL, /* Only partially allocated slabs */ 3902 SL_CPU, /* Only slabs used for cpu caches */ 3903 SL_OBJECTS, /* Determine allocated objects not slabs */ 3904 SL_TOTAL /* Determine object capacity not slabs */ 3905 }; 3906 3907 #define SO_ALL (1 << SL_ALL) 3908 #define SO_PARTIAL (1 << SL_PARTIAL) 3909 #define SO_CPU (1 << SL_CPU) 3910 #define SO_OBJECTS (1 << SL_OBJECTS) 3911 #define SO_TOTAL (1 << SL_TOTAL) 3912 3913 static ssize_t show_slab_objects(struct kmem_cache *s, 3914 char *buf, unsigned long flags) 3915 { 3916 unsigned long total = 0; 3917 int node; 3918 int x; 3919 unsigned long *nodes; 3920 unsigned long *per_cpu; 3921 3922 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 3923 if (!nodes) 3924 return -ENOMEM; 3925 per_cpu = nodes + nr_node_ids; 3926 3927 if (flags & SO_CPU) { 3928 int cpu; 3929 3930 for_each_possible_cpu(cpu) { 3931 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3932 3933 if (!c || c->node < 0) 3934 continue; 3935 3936 if (c->page) { 3937 if (flags & SO_TOTAL) 3938 x = c->page->objects; 3939 else if (flags & SO_OBJECTS) 3940 x = c->page->inuse; 3941 else 3942 x = 1; 3943 3944 total += x; 3945 nodes[c->node] += x; 3946 } 3947 per_cpu[c->node]++; 3948 } 3949 } 3950 3951 if (flags & SO_ALL) { 3952 for_each_node_state(node, N_NORMAL_MEMORY) { 3953 struct kmem_cache_node *n = get_node(s, node); 3954 3955 if (flags & SO_TOTAL) 3956 x = atomic_long_read(&n->total_objects); 3957 else if (flags & SO_OBJECTS) 3958 x = atomic_long_read(&n->total_objects) - 3959 count_partial(n, count_free); 3960 3961 else 3962 x = atomic_long_read(&n->nr_slabs); 3963 total += x; 3964 nodes[node] += x; 3965 } 3966 3967 } else if (flags & SO_PARTIAL) { 3968 for_each_node_state(node, N_NORMAL_MEMORY) { 3969 struct kmem_cache_node *n = get_node(s, node); 3970 3971 if (flags & SO_TOTAL) 3972 x = count_partial(n, count_total); 3973 else if (flags & SO_OBJECTS) 3974 x = count_partial(n, count_inuse); 3975 else 3976 x = n->nr_partial; 3977 total += x; 3978 nodes[node] += x; 3979 } 3980 } 3981 x = sprintf(buf, "%lu", total); 3982 #ifdef CONFIG_NUMA 3983 for_each_node_state(node, N_NORMAL_MEMORY) 3984 if (nodes[node]) 3985 x += sprintf(buf + x, " N%d=%lu", 3986 node, nodes[node]); 3987 #endif 3988 kfree(nodes); 3989 return x + sprintf(buf + x, "\n"); 3990 } 3991 3992 static int any_slab_objects(struct kmem_cache *s) 3993 { 3994 int node; 3995 3996 for_each_online_node(node) { 3997 struct kmem_cache_node *n = get_node(s, node); 3998 3999 if (!n) 4000 continue; 4001 4002 if (atomic_long_read(&n->total_objects)) 4003 return 1; 4004 } 4005 return 0; 4006 } 4007 4008 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4009 #define to_slab(n) container_of(n, struct kmem_cache, kobj); 4010 4011 struct slab_attribute { 4012 struct attribute attr; 4013 ssize_t (*show)(struct kmem_cache *s, char *buf); 4014 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4015 }; 4016 4017 #define SLAB_ATTR_RO(_name) \ 4018 static struct slab_attribute _name##_attr = __ATTR_RO(_name) 4019 4020 #define SLAB_ATTR(_name) \ 4021 static struct slab_attribute _name##_attr = \ 4022 __ATTR(_name, 0644, _name##_show, _name##_store) 4023 4024 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4025 { 4026 return sprintf(buf, "%d\n", s->size); 4027 } 4028 SLAB_ATTR_RO(slab_size); 4029 4030 static ssize_t align_show(struct kmem_cache *s, char *buf) 4031 { 4032 return sprintf(buf, "%d\n", s->align); 4033 } 4034 SLAB_ATTR_RO(align); 4035 4036 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4037 { 4038 return sprintf(buf, "%d\n", s->objsize); 4039 } 4040 SLAB_ATTR_RO(object_size); 4041 4042 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4043 { 4044 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4045 } 4046 SLAB_ATTR_RO(objs_per_slab); 4047 4048 static ssize_t order_store(struct kmem_cache *s, 4049 const char *buf, size_t length) 4050 { 4051 unsigned long order; 4052 int err; 4053 4054 err = strict_strtoul(buf, 10, &order); 4055 if (err) 4056 return err; 4057 4058 if (order > slub_max_order || order < slub_min_order) 4059 return -EINVAL; 4060 4061 calculate_sizes(s, order); 4062 return length; 4063 } 4064 4065 static ssize_t order_show(struct kmem_cache *s, char *buf) 4066 { 4067 return sprintf(buf, "%d\n", oo_order(s->oo)); 4068 } 4069 SLAB_ATTR(order); 4070 4071 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4072 { 4073 return sprintf(buf, "%lu\n", s->min_partial); 4074 } 4075 4076 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4077 size_t length) 4078 { 4079 unsigned long min; 4080 int err; 4081 4082 err = strict_strtoul(buf, 10, &min); 4083 if (err) 4084 return err; 4085 4086 set_min_partial(s, min); 4087 return length; 4088 } 4089 SLAB_ATTR(min_partial); 4090 4091 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4092 { 4093 if (s->ctor) { 4094 int n = sprint_symbol(buf, (unsigned long)s->ctor); 4095 4096 return n + sprintf(buf + n, "\n"); 4097 } 4098 return 0; 4099 } 4100 SLAB_ATTR_RO(ctor); 4101 4102 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4103 { 4104 return sprintf(buf, "%d\n", s->refcount - 1); 4105 } 4106 SLAB_ATTR_RO(aliases); 4107 4108 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4109 { 4110 return show_slab_objects(s, buf, SO_ALL); 4111 } 4112 SLAB_ATTR_RO(slabs); 4113 4114 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4115 { 4116 return show_slab_objects(s, buf, SO_PARTIAL); 4117 } 4118 SLAB_ATTR_RO(partial); 4119 4120 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4121 { 4122 return show_slab_objects(s, buf, SO_CPU); 4123 } 4124 SLAB_ATTR_RO(cpu_slabs); 4125 4126 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4127 { 4128 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4129 } 4130 SLAB_ATTR_RO(objects); 4131 4132 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4133 { 4134 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4135 } 4136 SLAB_ATTR_RO(objects_partial); 4137 4138 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4139 { 4140 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4141 } 4142 SLAB_ATTR_RO(total_objects); 4143 4144 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4145 { 4146 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4147 } 4148 4149 static ssize_t sanity_checks_store(struct kmem_cache *s, 4150 const char *buf, size_t length) 4151 { 4152 s->flags &= ~SLAB_DEBUG_FREE; 4153 if (buf[0] == '1') 4154 s->flags |= SLAB_DEBUG_FREE; 4155 return length; 4156 } 4157 SLAB_ATTR(sanity_checks); 4158 4159 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4160 { 4161 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4162 } 4163 4164 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4165 size_t length) 4166 { 4167 s->flags &= ~SLAB_TRACE; 4168 if (buf[0] == '1') 4169 s->flags |= SLAB_TRACE; 4170 return length; 4171 } 4172 SLAB_ATTR(trace); 4173 4174 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4175 { 4176 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4177 } 4178 4179 static ssize_t reclaim_account_store(struct kmem_cache *s, 4180 const char *buf, size_t length) 4181 { 4182 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4183 if (buf[0] == '1') 4184 s->flags |= SLAB_RECLAIM_ACCOUNT; 4185 return length; 4186 } 4187 SLAB_ATTR(reclaim_account); 4188 4189 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4190 { 4191 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4192 } 4193 SLAB_ATTR_RO(hwcache_align); 4194 4195 #ifdef CONFIG_ZONE_DMA 4196 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4197 { 4198 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4199 } 4200 SLAB_ATTR_RO(cache_dma); 4201 #endif 4202 4203 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4204 { 4205 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4206 } 4207 SLAB_ATTR_RO(destroy_by_rcu); 4208 4209 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4210 { 4211 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4212 } 4213 4214 static ssize_t red_zone_store(struct kmem_cache *s, 4215 const char *buf, size_t length) 4216 { 4217 if (any_slab_objects(s)) 4218 return -EBUSY; 4219 4220 s->flags &= ~SLAB_RED_ZONE; 4221 if (buf[0] == '1') 4222 s->flags |= SLAB_RED_ZONE; 4223 calculate_sizes(s, -1); 4224 return length; 4225 } 4226 SLAB_ATTR(red_zone); 4227 4228 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4229 { 4230 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4231 } 4232 4233 static ssize_t poison_store(struct kmem_cache *s, 4234 const char *buf, size_t length) 4235 { 4236 if (any_slab_objects(s)) 4237 return -EBUSY; 4238 4239 s->flags &= ~SLAB_POISON; 4240 if (buf[0] == '1') 4241 s->flags |= SLAB_POISON; 4242 calculate_sizes(s, -1); 4243 return length; 4244 } 4245 SLAB_ATTR(poison); 4246 4247 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4248 { 4249 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4250 } 4251 4252 static ssize_t store_user_store(struct kmem_cache *s, 4253 const char *buf, size_t length) 4254 { 4255 if (any_slab_objects(s)) 4256 return -EBUSY; 4257 4258 s->flags &= ~SLAB_STORE_USER; 4259 if (buf[0] == '1') 4260 s->flags |= SLAB_STORE_USER; 4261 calculate_sizes(s, -1); 4262 return length; 4263 } 4264 SLAB_ATTR(store_user); 4265 4266 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4267 { 4268 return 0; 4269 } 4270 4271 static ssize_t validate_store(struct kmem_cache *s, 4272 const char *buf, size_t length) 4273 { 4274 int ret = -EINVAL; 4275 4276 if (buf[0] == '1') { 4277 ret = validate_slab_cache(s); 4278 if (ret >= 0) 4279 ret = length; 4280 } 4281 return ret; 4282 } 4283 SLAB_ATTR(validate); 4284 4285 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4286 { 4287 return 0; 4288 } 4289 4290 static ssize_t shrink_store(struct kmem_cache *s, 4291 const char *buf, size_t length) 4292 { 4293 if (buf[0] == '1') { 4294 int rc = kmem_cache_shrink(s); 4295 4296 if (rc) 4297 return rc; 4298 } else 4299 return -EINVAL; 4300 return length; 4301 } 4302 SLAB_ATTR(shrink); 4303 4304 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4305 { 4306 if (!(s->flags & SLAB_STORE_USER)) 4307 return -ENOSYS; 4308 return list_locations(s, buf, TRACK_ALLOC); 4309 } 4310 SLAB_ATTR_RO(alloc_calls); 4311 4312 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4313 { 4314 if (!(s->flags & SLAB_STORE_USER)) 4315 return -ENOSYS; 4316 return list_locations(s, buf, TRACK_FREE); 4317 } 4318 SLAB_ATTR_RO(free_calls); 4319 4320 #ifdef CONFIG_NUMA 4321 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4322 { 4323 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4324 } 4325 4326 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4327 const char *buf, size_t length) 4328 { 4329 unsigned long ratio; 4330 int err; 4331 4332 err = strict_strtoul(buf, 10, &ratio); 4333 if (err) 4334 return err; 4335 4336 if (ratio <= 100) 4337 s->remote_node_defrag_ratio = ratio * 10; 4338 4339 return length; 4340 } 4341 SLAB_ATTR(remote_node_defrag_ratio); 4342 #endif 4343 4344 #ifdef CONFIG_SLUB_STATS 4345 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4346 { 4347 unsigned long sum = 0; 4348 int cpu; 4349 int len; 4350 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4351 4352 if (!data) 4353 return -ENOMEM; 4354 4355 for_each_online_cpu(cpu) { 4356 unsigned x = get_cpu_slab(s, cpu)->stat[si]; 4357 4358 data[cpu] = x; 4359 sum += x; 4360 } 4361 4362 len = sprintf(buf, "%lu", sum); 4363 4364 #ifdef CONFIG_SMP 4365 for_each_online_cpu(cpu) { 4366 if (data[cpu] && len < PAGE_SIZE - 20) 4367 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4368 } 4369 #endif 4370 kfree(data); 4371 return len + sprintf(buf + len, "\n"); 4372 } 4373 4374 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4375 { 4376 int cpu; 4377 4378 for_each_online_cpu(cpu) 4379 get_cpu_slab(s, cpu)->stat[si] = 0; 4380 } 4381 4382 #define STAT_ATTR(si, text) \ 4383 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4384 { \ 4385 return show_stat(s, buf, si); \ 4386 } \ 4387 static ssize_t text##_store(struct kmem_cache *s, \ 4388 const char *buf, size_t length) \ 4389 { \ 4390 if (buf[0] != '0') \ 4391 return -EINVAL; \ 4392 clear_stat(s, si); \ 4393 return length; \ 4394 } \ 4395 SLAB_ATTR(text); \ 4396 4397 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4398 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4399 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4400 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4401 STAT_ATTR(FREE_FROZEN, free_frozen); 4402 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4403 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4404 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4405 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4406 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4407 STAT_ATTR(FREE_SLAB, free_slab); 4408 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4409 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4410 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4411 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4412 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4413 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4414 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4415 #endif 4416 4417 static struct attribute *slab_attrs[] = { 4418 &slab_size_attr.attr, 4419 &object_size_attr.attr, 4420 &objs_per_slab_attr.attr, 4421 &order_attr.attr, 4422 &min_partial_attr.attr, 4423 &objects_attr.attr, 4424 &objects_partial_attr.attr, 4425 &total_objects_attr.attr, 4426 &slabs_attr.attr, 4427 &partial_attr.attr, 4428 &cpu_slabs_attr.attr, 4429 &ctor_attr.attr, 4430 &aliases_attr.attr, 4431 &align_attr.attr, 4432 &sanity_checks_attr.attr, 4433 &trace_attr.attr, 4434 &hwcache_align_attr.attr, 4435 &reclaim_account_attr.attr, 4436 &destroy_by_rcu_attr.attr, 4437 &red_zone_attr.attr, 4438 &poison_attr.attr, 4439 &store_user_attr.attr, 4440 &validate_attr.attr, 4441 &shrink_attr.attr, 4442 &alloc_calls_attr.attr, 4443 &free_calls_attr.attr, 4444 #ifdef CONFIG_ZONE_DMA 4445 &cache_dma_attr.attr, 4446 #endif 4447 #ifdef CONFIG_NUMA 4448 &remote_node_defrag_ratio_attr.attr, 4449 #endif 4450 #ifdef CONFIG_SLUB_STATS 4451 &alloc_fastpath_attr.attr, 4452 &alloc_slowpath_attr.attr, 4453 &free_fastpath_attr.attr, 4454 &free_slowpath_attr.attr, 4455 &free_frozen_attr.attr, 4456 &free_add_partial_attr.attr, 4457 &free_remove_partial_attr.attr, 4458 &alloc_from_partial_attr.attr, 4459 &alloc_slab_attr.attr, 4460 &alloc_refill_attr.attr, 4461 &free_slab_attr.attr, 4462 &cpuslab_flush_attr.attr, 4463 &deactivate_full_attr.attr, 4464 &deactivate_empty_attr.attr, 4465 &deactivate_to_head_attr.attr, 4466 &deactivate_to_tail_attr.attr, 4467 &deactivate_remote_frees_attr.attr, 4468 &order_fallback_attr.attr, 4469 #endif 4470 NULL 4471 }; 4472 4473 static struct attribute_group slab_attr_group = { 4474 .attrs = slab_attrs, 4475 }; 4476 4477 static ssize_t slab_attr_show(struct kobject *kobj, 4478 struct attribute *attr, 4479 char *buf) 4480 { 4481 struct slab_attribute *attribute; 4482 struct kmem_cache *s; 4483 int err; 4484 4485 attribute = to_slab_attr(attr); 4486 s = to_slab(kobj); 4487 4488 if (!attribute->show) 4489 return -EIO; 4490 4491 err = attribute->show(s, buf); 4492 4493 return err; 4494 } 4495 4496 static ssize_t slab_attr_store(struct kobject *kobj, 4497 struct attribute *attr, 4498 const char *buf, size_t len) 4499 { 4500 struct slab_attribute *attribute; 4501 struct kmem_cache *s; 4502 int err; 4503 4504 attribute = to_slab_attr(attr); 4505 s = to_slab(kobj); 4506 4507 if (!attribute->store) 4508 return -EIO; 4509 4510 err = attribute->store(s, buf, len); 4511 4512 return err; 4513 } 4514 4515 static void kmem_cache_release(struct kobject *kobj) 4516 { 4517 struct kmem_cache *s = to_slab(kobj); 4518 4519 kfree(s); 4520 } 4521 4522 static struct sysfs_ops slab_sysfs_ops = { 4523 .show = slab_attr_show, 4524 .store = slab_attr_store, 4525 }; 4526 4527 static struct kobj_type slab_ktype = { 4528 .sysfs_ops = &slab_sysfs_ops, 4529 .release = kmem_cache_release 4530 }; 4531 4532 static int uevent_filter(struct kset *kset, struct kobject *kobj) 4533 { 4534 struct kobj_type *ktype = get_ktype(kobj); 4535 4536 if (ktype == &slab_ktype) 4537 return 1; 4538 return 0; 4539 } 4540 4541 static struct kset_uevent_ops slab_uevent_ops = { 4542 .filter = uevent_filter, 4543 }; 4544 4545 static struct kset *slab_kset; 4546 4547 #define ID_STR_LENGTH 64 4548 4549 /* Create a unique string id for a slab cache: 4550 * 4551 * Format :[flags-]size 4552 */ 4553 static char *create_unique_id(struct kmem_cache *s) 4554 { 4555 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 4556 char *p = name; 4557 4558 BUG_ON(!name); 4559 4560 *p++ = ':'; 4561 /* 4562 * First flags affecting slabcache operations. We will only 4563 * get here for aliasable slabs so we do not need to support 4564 * too many flags. The flags here must cover all flags that 4565 * are matched during merging to guarantee that the id is 4566 * unique. 4567 */ 4568 if (s->flags & SLAB_CACHE_DMA) 4569 *p++ = 'd'; 4570 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4571 *p++ = 'a'; 4572 if (s->flags & SLAB_DEBUG_FREE) 4573 *p++ = 'F'; 4574 if (!(s->flags & SLAB_NOTRACK)) 4575 *p++ = 't'; 4576 if (p != name + 1) 4577 *p++ = '-'; 4578 p += sprintf(p, "%07d", s->size); 4579 BUG_ON(p > name + ID_STR_LENGTH - 1); 4580 return name; 4581 } 4582 4583 static int sysfs_slab_add(struct kmem_cache *s) 4584 { 4585 int err; 4586 const char *name; 4587 int unmergeable; 4588 4589 if (slab_state < SYSFS) 4590 /* Defer until later */ 4591 return 0; 4592 4593 unmergeable = slab_unmergeable(s); 4594 if (unmergeable) { 4595 /* 4596 * Slabcache can never be merged so we can use the name proper. 4597 * This is typically the case for debug situations. In that 4598 * case we can catch duplicate names easily. 4599 */ 4600 sysfs_remove_link(&slab_kset->kobj, s->name); 4601 name = s->name; 4602 } else { 4603 /* 4604 * Create a unique name for the slab as a target 4605 * for the symlinks. 4606 */ 4607 name = create_unique_id(s); 4608 } 4609 4610 s->kobj.kset = slab_kset; 4611 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 4612 if (err) { 4613 kobject_put(&s->kobj); 4614 return err; 4615 } 4616 4617 err = sysfs_create_group(&s->kobj, &slab_attr_group); 4618 if (err) { 4619 kobject_del(&s->kobj); 4620 kobject_put(&s->kobj); 4621 return err; 4622 } 4623 kobject_uevent(&s->kobj, KOBJ_ADD); 4624 if (!unmergeable) { 4625 /* Setup first alias */ 4626 sysfs_slab_alias(s, s->name); 4627 kfree(name); 4628 } 4629 return 0; 4630 } 4631 4632 static void sysfs_slab_remove(struct kmem_cache *s) 4633 { 4634 kobject_uevent(&s->kobj, KOBJ_REMOVE); 4635 kobject_del(&s->kobj); 4636 kobject_put(&s->kobj); 4637 } 4638 4639 /* 4640 * Need to buffer aliases during bootup until sysfs becomes 4641 * available lest we lose that information. 4642 */ 4643 struct saved_alias { 4644 struct kmem_cache *s; 4645 const char *name; 4646 struct saved_alias *next; 4647 }; 4648 4649 static struct saved_alias *alias_list; 4650 4651 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 4652 { 4653 struct saved_alias *al; 4654 4655 if (slab_state == SYSFS) { 4656 /* 4657 * If we have a leftover link then remove it. 4658 */ 4659 sysfs_remove_link(&slab_kset->kobj, name); 4660 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 4661 } 4662 4663 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 4664 if (!al) 4665 return -ENOMEM; 4666 4667 al->s = s; 4668 al->name = name; 4669 al->next = alias_list; 4670 alias_list = al; 4671 return 0; 4672 } 4673 4674 static int __init slab_sysfs_init(void) 4675 { 4676 struct kmem_cache *s; 4677 int err; 4678 4679 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 4680 if (!slab_kset) { 4681 printk(KERN_ERR "Cannot register slab subsystem.\n"); 4682 return -ENOSYS; 4683 } 4684 4685 slab_state = SYSFS; 4686 4687 list_for_each_entry(s, &slab_caches, list) { 4688 err = sysfs_slab_add(s); 4689 if (err) 4690 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 4691 " to sysfs\n", s->name); 4692 } 4693 4694 while (alias_list) { 4695 struct saved_alias *al = alias_list; 4696 4697 alias_list = alias_list->next; 4698 err = sysfs_slab_alias(al->s, al->name); 4699 if (err) 4700 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 4701 " %s to sysfs\n", s->name); 4702 kfree(al); 4703 } 4704 4705 resiliency_test(); 4706 return 0; 4707 } 4708 4709 __initcall(slab_sysfs_init); 4710 #endif 4711 4712 /* 4713 * The /proc/slabinfo ABI 4714 */ 4715 #ifdef CONFIG_SLABINFO 4716 static void print_slabinfo_header(struct seq_file *m) 4717 { 4718 seq_puts(m, "slabinfo - version: 2.1\n"); 4719 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4720 "<objperslab> <pagesperslab>"); 4721 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4722 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4723 seq_putc(m, '\n'); 4724 } 4725 4726 static void *s_start(struct seq_file *m, loff_t *pos) 4727 { 4728 loff_t n = *pos; 4729 4730 down_read(&slub_lock); 4731 if (!n) 4732 print_slabinfo_header(m); 4733 4734 return seq_list_start(&slab_caches, *pos); 4735 } 4736 4737 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4738 { 4739 return seq_list_next(p, &slab_caches, pos); 4740 } 4741 4742 static void s_stop(struct seq_file *m, void *p) 4743 { 4744 up_read(&slub_lock); 4745 } 4746 4747 static int s_show(struct seq_file *m, void *p) 4748 { 4749 unsigned long nr_partials = 0; 4750 unsigned long nr_slabs = 0; 4751 unsigned long nr_inuse = 0; 4752 unsigned long nr_objs = 0; 4753 unsigned long nr_free = 0; 4754 struct kmem_cache *s; 4755 int node; 4756 4757 s = list_entry(p, struct kmem_cache, list); 4758 4759 for_each_online_node(node) { 4760 struct kmem_cache_node *n = get_node(s, node); 4761 4762 if (!n) 4763 continue; 4764 4765 nr_partials += n->nr_partial; 4766 nr_slabs += atomic_long_read(&n->nr_slabs); 4767 nr_objs += atomic_long_read(&n->total_objects); 4768 nr_free += count_partial(n, count_free); 4769 } 4770 4771 nr_inuse = nr_objs - nr_free; 4772 4773 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 4774 nr_objs, s->size, oo_objects(s->oo), 4775 (1 << oo_order(s->oo))); 4776 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 4777 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 4778 0UL); 4779 seq_putc(m, '\n'); 4780 return 0; 4781 } 4782 4783 static const struct seq_operations slabinfo_op = { 4784 .start = s_start, 4785 .next = s_next, 4786 .stop = s_stop, 4787 .show = s_show, 4788 }; 4789 4790 static int slabinfo_open(struct inode *inode, struct file *file) 4791 { 4792 return seq_open(file, &slabinfo_op); 4793 } 4794 4795 static const struct file_operations proc_slabinfo_operations = { 4796 .open = slabinfo_open, 4797 .read = seq_read, 4798 .llseek = seq_lseek, 4799 .release = seq_release, 4800 }; 4801 4802 static int __init slab_proc_init(void) 4803 { 4804 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations); 4805 return 0; 4806 } 4807 module_init(slab_proc_init); 4808 #endif /* CONFIG_SLABINFO */ 4809