1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks and only 6 * uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/swap.h> /* struct reclaim_state */ 13 #include <linux/module.h> 14 #include <linux/bit_spinlock.h> 15 #include <linux/interrupt.h> 16 #include <linux/bitops.h> 17 #include <linux/slab.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/kmemtrace.h> 21 #include <linux/cpu.h> 22 #include <linux/cpuset.h> 23 #include <linux/kmemleak.h> 24 #include <linux/mempolicy.h> 25 #include <linux/ctype.h> 26 #include <linux/debugobjects.h> 27 #include <linux/kallsyms.h> 28 #include <linux/memory.h> 29 #include <linux/math64.h> 30 #include <linux/fault-inject.h> 31 32 /* 33 * Lock order: 34 * 1. slab_lock(page) 35 * 2. slab->list_lock 36 * 37 * The slab_lock protects operations on the object of a particular 38 * slab and its metadata in the page struct. If the slab lock 39 * has been taken then no allocations nor frees can be performed 40 * on the objects in the slab nor can the slab be added or removed 41 * from the partial or full lists since this would mean modifying 42 * the page_struct of the slab. 43 * 44 * The list_lock protects the partial and full list on each node and 45 * the partial slab counter. If taken then no new slabs may be added or 46 * removed from the lists nor make the number of partial slabs be modified. 47 * (Note that the total number of slabs is an atomic value that may be 48 * modified without taking the list lock). 49 * 50 * The list_lock is a centralized lock and thus we avoid taking it as 51 * much as possible. As long as SLUB does not have to handle partial 52 * slabs, operations can continue without any centralized lock. F.e. 53 * allocating a long series of objects that fill up slabs does not require 54 * the list lock. 55 * 56 * The lock order is sometimes inverted when we are trying to get a slab 57 * off a list. We take the list_lock and then look for a page on the list 58 * to use. While we do that objects in the slabs may be freed. We can 59 * only operate on the slab if we have also taken the slab_lock. So we use 60 * a slab_trylock() on the slab. If trylock was successful then no frees 61 * can occur anymore and we can use the slab for allocations etc. If the 62 * slab_trylock() does not succeed then frees are in progress in the slab and 63 * we must stay away from it for a while since we may cause a bouncing 64 * cacheline if we try to acquire the lock. So go onto the next slab. 65 * If all pages are busy then we may allocate a new slab instead of reusing 66 * a partial slab. A new slab has noone operating on it and thus there is 67 * no danger of cacheline contention. 68 * 69 * Interrupts are disabled during allocation and deallocation in order to 70 * make the slab allocator safe to use in the context of an irq. In addition 71 * interrupts are disabled to ensure that the processor does not change 72 * while handling per_cpu slabs, due to kernel preemption. 73 * 74 * SLUB assigns one slab for allocation to each processor. 75 * Allocations only occur from these slabs called cpu slabs. 76 * 77 * Slabs with free elements are kept on a partial list and during regular 78 * operations no list for full slabs is used. If an object in a full slab is 79 * freed then the slab will show up again on the partial lists. 80 * We track full slabs for debugging purposes though because otherwise we 81 * cannot scan all objects. 82 * 83 * Slabs are freed when they become empty. Teardown and setup is 84 * minimal so we rely on the page allocators per cpu caches for 85 * fast frees and allocs. 86 * 87 * Overloading of page flags that are otherwise used for LRU management. 88 * 89 * PageActive The slab is frozen and exempt from list processing. 90 * This means that the slab is dedicated to a purpose 91 * such as satisfying allocations for a specific 92 * processor. Objects may be freed in the slab while 93 * it is frozen but slab_free will then skip the usual 94 * list operations. It is up to the processor holding 95 * the slab to integrate the slab into the slab lists 96 * when the slab is no longer needed. 97 * 98 * One use of this flag is to mark slabs that are 99 * used for allocations. Then such a slab becomes a cpu 100 * slab. The cpu slab may be equipped with an additional 101 * freelist that allows lockless access to 102 * free objects in addition to the regular freelist 103 * that requires the slab lock. 104 * 105 * PageError Slab requires special handling due to debug 106 * options set. This moves slab handling out of 107 * the fast path and disables lockless freelists. 108 */ 109 110 #ifdef CONFIG_SLUB_DEBUG 111 #define SLABDEBUG 1 112 #else 113 #define SLABDEBUG 0 114 #endif 115 116 /* 117 * Issues still to be resolved: 118 * 119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 120 * 121 * - Variable sizing of the per node arrays 122 */ 123 124 /* Enable to test recovery from slab corruption on boot */ 125 #undef SLUB_RESILIENCY_TEST 126 127 /* 128 * Mininum number of partial slabs. These will be left on the partial 129 * lists even if they are empty. kmem_cache_shrink may reclaim them. 130 */ 131 #define MIN_PARTIAL 5 132 133 /* 134 * Maximum number of desirable partial slabs. 135 * The existence of more partial slabs makes kmem_cache_shrink 136 * sort the partial list by the number of objects in the. 137 */ 138 #define MAX_PARTIAL 10 139 140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 141 SLAB_POISON | SLAB_STORE_USER) 142 143 /* 144 * Set of flags that will prevent slab merging 145 */ 146 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 147 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE) 148 149 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 150 SLAB_CACHE_DMA) 151 152 #ifndef ARCH_KMALLOC_MINALIGN 153 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 154 #endif 155 156 #ifndef ARCH_SLAB_MINALIGN 157 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 158 #endif 159 160 #define OO_SHIFT 16 161 #define OO_MASK ((1 << OO_SHIFT) - 1) 162 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ 163 164 /* Internal SLUB flags */ 165 #define __OBJECT_POISON 0x80000000 /* Poison object */ 166 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ 167 168 static int kmem_size = sizeof(struct kmem_cache); 169 170 #ifdef CONFIG_SMP 171 static struct notifier_block slab_notifier; 172 #endif 173 174 static enum { 175 DOWN, /* No slab functionality available */ 176 PARTIAL, /* kmem_cache_open() works but kmalloc does not */ 177 UP, /* Everything works but does not show up in sysfs */ 178 SYSFS /* Sysfs up */ 179 } slab_state = DOWN; 180 181 /* A list of all slab caches on the system */ 182 static DECLARE_RWSEM(slub_lock); 183 static LIST_HEAD(slab_caches); 184 185 /* 186 * Tracking user of a slab. 187 */ 188 struct track { 189 unsigned long addr; /* Called from address */ 190 int cpu; /* Was running on cpu */ 191 int pid; /* Pid context */ 192 unsigned long when; /* When did the operation occur */ 193 }; 194 195 enum track_item { TRACK_ALLOC, TRACK_FREE }; 196 197 #ifdef CONFIG_SLUB_DEBUG 198 static int sysfs_slab_add(struct kmem_cache *); 199 static int sysfs_slab_alias(struct kmem_cache *, const char *); 200 static void sysfs_slab_remove(struct kmem_cache *); 201 202 #else 203 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 204 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 205 { return 0; } 206 static inline void sysfs_slab_remove(struct kmem_cache *s) 207 { 208 kfree(s); 209 } 210 211 #endif 212 213 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si) 214 { 215 #ifdef CONFIG_SLUB_STATS 216 c->stat[si]++; 217 #endif 218 } 219 220 /******************************************************************** 221 * Core slab cache functions 222 *******************************************************************/ 223 224 int slab_is_available(void) 225 { 226 return slab_state >= UP; 227 } 228 229 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 230 { 231 #ifdef CONFIG_NUMA 232 return s->node[node]; 233 #else 234 return &s->local_node; 235 #endif 236 } 237 238 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu) 239 { 240 #ifdef CONFIG_SMP 241 return s->cpu_slab[cpu]; 242 #else 243 return &s->cpu_slab; 244 #endif 245 } 246 247 /* Verify that a pointer has an address that is valid within a slab page */ 248 static inline int check_valid_pointer(struct kmem_cache *s, 249 struct page *page, const void *object) 250 { 251 void *base; 252 253 if (!object) 254 return 1; 255 256 base = page_address(page); 257 if (object < base || object >= base + page->objects * s->size || 258 (object - base) % s->size) { 259 return 0; 260 } 261 262 return 1; 263 } 264 265 /* 266 * Slow version of get and set free pointer. 267 * 268 * This version requires touching the cache lines of kmem_cache which 269 * we avoid to do in the fast alloc free paths. There we obtain the offset 270 * from the page struct. 271 */ 272 static inline void *get_freepointer(struct kmem_cache *s, void *object) 273 { 274 return *(void **)(object + s->offset); 275 } 276 277 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 278 { 279 *(void **)(object + s->offset) = fp; 280 } 281 282 /* Loop over all objects in a slab */ 283 #define for_each_object(__p, __s, __addr, __objects) \ 284 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 285 __p += (__s)->size) 286 287 /* Scan freelist */ 288 #define for_each_free_object(__p, __s, __free) \ 289 for (__p = (__free); __p; __p = get_freepointer((__s), __p)) 290 291 /* Determine object index from a given position */ 292 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 293 { 294 return (p - addr) / s->size; 295 } 296 297 static inline struct kmem_cache_order_objects oo_make(int order, 298 unsigned long size) 299 { 300 struct kmem_cache_order_objects x = { 301 (order << OO_SHIFT) + (PAGE_SIZE << order) / size 302 }; 303 304 return x; 305 } 306 307 static inline int oo_order(struct kmem_cache_order_objects x) 308 { 309 return x.x >> OO_SHIFT; 310 } 311 312 static inline int oo_objects(struct kmem_cache_order_objects x) 313 { 314 return x.x & OO_MASK; 315 } 316 317 #ifdef CONFIG_SLUB_DEBUG 318 /* 319 * Debug settings: 320 */ 321 #ifdef CONFIG_SLUB_DEBUG_ON 322 static int slub_debug = DEBUG_DEFAULT_FLAGS; 323 #else 324 static int slub_debug; 325 #endif 326 327 static char *slub_debug_slabs; 328 329 /* 330 * Object debugging 331 */ 332 static void print_section(char *text, u8 *addr, unsigned int length) 333 { 334 int i, offset; 335 int newline = 1; 336 char ascii[17]; 337 338 ascii[16] = 0; 339 340 for (i = 0; i < length; i++) { 341 if (newline) { 342 printk(KERN_ERR "%8s 0x%p: ", text, addr + i); 343 newline = 0; 344 } 345 printk(KERN_CONT " %02x", addr[i]); 346 offset = i % 16; 347 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; 348 if (offset == 15) { 349 printk(KERN_CONT " %s\n", ascii); 350 newline = 1; 351 } 352 } 353 if (!newline) { 354 i %= 16; 355 while (i < 16) { 356 printk(KERN_CONT " "); 357 ascii[i] = ' '; 358 i++; 359 } 360 printk(KERN_CONT " %s\n", ascii); 361 } 362 } 363 364 static struct track *get_track(struct kmem_cache *s, void *object, 365 enum track_item alloc) 366 { 367 struct track *p; 368 369 if (s->offset) 370 p = object + s->offset + sizeof(void *); 371 else 372 p = object + s->inuse; 373 374 return p + alloc; 375 } 376 377 static void set_track(struct kmem_cache *s, void *object, 378 enum track_item alloc, unsigned long addr) 379 { 380 struct track *p = get_track(s, object, alloc); 381 382 if (addr) { 383 p->addr = addr; 384 p->cpu = smp_processor_id(); 385 p->pid = current->pid; 386 p->when = jiffies; 387 } else 388 memset(p, 0, sizeof(struct track)); 389 } 390 391 static void init_tracking(struct kmem_cache *s, void *object) 392 { 393 if (!(s->flags & SLAB_STORE_USER)) 394 return; 395 396 set_track(s, object, TRACK_FREE, 0UL); 397 set_track(s, object, TRACK_ALLOC, 0UL); 398 } 399 400 static void print_track(const char *s, struct track *t) 401 { 402 if (!t->addr) 403 return; 404 405 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 406 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 407 } 408 409 static void print_tracking(struct kmem_cache *s, void *object) 410 { 411 if (!(s->flags & SLAB_STORE_USER)) 412 return; 413 414 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 415 print_track("Freed", get_track(s, object, TRACK_FREE)); 416 } 417 418 static void print_page_info(struct page *page) 419 { 420 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 421 page, page->objects, page->inuse, page->freelist, page->flags); 422 423 } 424 425 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 426 { 427 va_list args; 428 char buf[100]; 429 430 va_start(args, fmt); 431 vsnprintf(buf, sizeof(buf), fmt, args); 432 va_end(args); 433 printk(KERN_ERR "========================================" 434 "=====================================\n"); 435 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 436 printk(KERN_ERR "----------------------------------------" 437 "-------------------------------------\n\n"); 438 } 439 440 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 441 { 442 va_list args; 443 char buf[100]; 444 445 va_start(args, fmt); 446 vsnprintf(buf, sizeof(buf), fmt, args); 447 va_end(args); 448 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 449 } 450 451 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 452 { 453 unsigned int off; /* Offset of last byte */ 454 u8 *addr = page_address(page); 455 456 print_tracking(s, p); 457 458 print_page_info(page); 459 460 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 461 p, p - addr, get_freepointer(s, p)); 462 463 if (p > addr + 16) 464 print_section("Bytes b4", p - 16, 16); 465 466 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); 467 468 if (s->flags & SLAB_RED_ZONE) 469 print_section("Redzone", p + s->objsize, 470 s->inuse - s->objsize); 471 472 if (s->offset) 473 off = s->offset + sizeof(void *); 474 else 475 off = s->inuse; 476 477 if (s->flags & SLAB_STORE_USER) 478 off += 2 * sizeof(struct track); 479 480 if (off != s->size) 481 /* Beginning of the filler is the free pointer */ 482 print_section("Padding", p + off, s->size - off); 483 484 dump_stack(); 485 } 486 487 static void object_err(struct kmem_cache *s, struct page *page, 488 u8 *object, char *reason) 489 { 490 slab_bug(s, "%s", reason); 491 print_trailer(s, page, object); 492 } 493 494 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 495 { 496 va_list args; 497 char buf[100]; 498 499 va_start(args, fmt); 500 vsnprintf(buf, sizeof(buf), fmt, args); 501 va_end(args); 502 slab_bug(s, "%s", buf); 503 print_page_info(page); 504 dump_stack(); 505 } 506 507 static void init_object(struct kmem_cache *s, void *object, int active) 508 { 509 u8 *p = object; 510 511 if (s->flags & __OBJECT_POISON) { 512 memset(p, POISON_FREE, s->objsize - 1); 513 p[s->objsize - 1] = POISON_END; 514 } 515 516 if (s->flags & SLAB_RED_ZONE) 517 memset(p + s->objsize, 518 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, 519 s->inuse - s->objsize); 520 } 521 522 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) 523 { 524 while (bytes) { 525 if (*start != (u8)value) 526 return start; 527 start++; 528 bytes--; 529 } 530 return NULL; 531 } 532 533 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 534 void *from, void *to) 535 { 536 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 537 memset(from, data, to - from); 538 } 539 540 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 541 u8 *object, char *what, 542 u8 *start, unsigned int value, unsigned int bytes) 543 { 544 u8 *fault; 545 u8 *end; 546 547 fault = check_bytes(start, value, bytes); 548 if (!fault) 549 return 1; 550 551 end = start + bytes; 552 while (end > fault && end[-1] == value) 553 end--; 554 555 slab_bug(s, "%s overwritten", what); 556 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 557 fault, end - 1, fault[0], value); 558 print_trailer(s, page, object); 559 560 restore_bytes(s, what, value, fault, end); 561 return 0; 562 } 563 564 /* 565 * Object layout: 566 * 567 * object address 568 * Bytes of the object to be managed. 569 * If the freepointer may overlay the object then the free 570 * pointer is the first word of the object. 571 * 572 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 573 * 0xa5 (POISON_END) 574 * 575 * object + s->objsize 576 * Padding to reach word boundary. This is also used for Redzoning. 577 * Padding is extended by another word if Redzoning is enabled and 578 * objsize == inuse. 579 * 580 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 581 * 0xcc (RED_ACTIVE) for objects in use. 582 * 583 * object + s->inuse 584 * Meta data starts here. 585 * 586 * A. Free pointer (if we cannot overwrite object on free) 587 * B. Tracking data for SLAB_STORE_USER 588 * C. Padding to reach required alignment boundary or at mininum 589 * one word if debugging is on to be able to detect writes 590 * before the word boundary. 591 * 592 * Padding is done using 0x5a (POISON_INUSE) 593 * 594 * object + s->size 595 * Nothing is used beyond s->size. 596 * 597 * If slabcaches are merged then the objsize and inuse boundaries are mostly 598 * ignored. And therefore no slab options that rely on these boundaries 599 * may be used with merged slabcaches. 600 */ 601 602 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 603 { 604 unsigned long off = s->inuse; /* The end of info */ 605 606 if (s->offset) 607 /* Freepointer is placed after the object. */ 608 off += sizeof(void *); 609 610 if (s->flags & SLAB_STORE_USER) 611 /* We also have user information there */ 612 off += 2 * sizeof(struct track); 613 614 if (s->size == off) 615 return 1; 616 617 return check_bytes_and_report(s, page, p, "Object padding", 618 p + off, POISON_INUSE, s->size - off); 619 } 620 621 /* Check the pad bytes at the end of a slab page */ 622 static int slab_pad_check(struct kmem_cache *s, struct page *page) 623 { 624 u8 *start; 625 u8 *fault; 626 u8 *end; 627 int length; 628 int remainder; 629 630 if (!(s->flags & SLAB_POISON)) 631 return 1; 632 633 start = page_address(page); 634 length = (PAGE_SIZE << compound_order(page)); 635 end = start + length; 636 remainder = length % s->size; 637 if (!remainder) 638 return 1; 639 640 fault = check_bytes(end - remainder, POISON_INUSE, remainder); 641 if (!fault) 642 return 1; 643 while (end > fault && end[-1] == POISON_INUSE) 644 end--; 645 646 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 647 print_section("Padding", end - remainder, remainder); 648 649 restore_bytes(s, "slab padding", POISON_INUSE, start, end); 650 return 0; 651 } 652 653 static int check_object(struct kmem_cache *s, struct page *page, 654 void *object, int active) 655 { 656 u8 *p = object; 657 u8 *endobject = object + s->objsize; 658 659 if (s->flags & SLAB_RED_ZONE) { 660 unsigned int red = 661 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; 662 663 if (!check_bytes_and_report(s, page, object, "Redzone", 664 endobject, red, s->inuse - s->objsize)) 665 return 0; 666 } else { 667 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { 668 check_bytes_and_report(s, page, p, "Alignment padding", 669 endobject, POISON_INUSE, s->inuse - s->objsize); 670 } 671 } 672 673 if (s->flags & SLAB_POISON) { 674 if (!active && (s->flags & __OBJECT_POISON) && 675 (!check_bytes_and_report(s, page, p, "Poison", p, 676 POISON_FREE, s->objsize - 1) || 677 !check_bytes_and_report(s, page, p, "Poison", 678 p + s->objsize - 1, POISON_END, 1))) 679 return 0; 680 /* 681 * check_pad_bytes cleans up on its own. 682 */ 683 check_pad_bytes(s, page, p); 684 } 685 686 if (!s->offset && active) 687 /* 688 * Object and freepointer overlap. Cannot check 689 * freepointer while object is allocated. 690 */ 691 return 1; 692 693 /* Check free pointer validity */ 694 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 695 object_err(s, page, p, "Freepointer corrupt"); 696 /* 697 * No choice but to zap it and thus lose the remainder 698 * of the free objects in this slab. May cause 699 * another error because the object count is now wrong. 700 */ 701 set_freepointer(s, p, NULL); 702 return 0; 703 } 704 return 1; 705 } 706 707 static int check_slab(struct kmem_cache *s, struct page *page) 708 { 709 int maxobj; 710 711 VM_BUG_ON(!irqs_disabled()); 712 713 if (!PageSlab(page)) { 714 slab_err(s, page, "Not a valid slab page"); 715 return 0; 716 } 717 718 maxobj = (PAGE_SIZE << compound_order(page)) / s->size; 719 if (page->objects > maxobj) { 720 slab_err(s, page, "objects %u > max %u", 721 s->name, page->objects, maxobj); 722 return 0; 723 } 724 if (page->inuse > page->objects) { 725 slab_err(s, page, "inuse %u > max %u", 726 s->name, page->inuse, page->objects); 727 return 0; 728 } 729 /* Slab_pad_check fixes things up after itself */ 730 slab_pad_check(s, page); 731 return 1; 732 } 733 734 /* 735 * Determine if a certain object on a page is on the freelist. Must hold the 736 * slab lock to guarantee that the chains are in a consistent state. 737 */ 738 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 739 { 740 int nr = 0; 741 void *fp = page->freelist; 742 void *object = NULL; 743 unsigned long max_objects; 744 745 while (fp && nr <= page->objects) { 746 if (fp == search) 747 return 1; 748 if (!check_valid_pointer(s, page, fp)) { 749 if (object) { 750 object_err(s, page, object, 751 "Freechain corrupt"); 752 set_freepointer(s, object, NULL); 753 break; 754 } else { 755 slab_err(s, page, "Freepointer corrupt"); 756 page->freelist = NULL; 757 page->inuse = page->objects; 758 slab_fix(s, "Freelist cleared"); 759 return 0; 760 } 761 break; 762 } 763 object = fp; 764 fp = get_freepointer(s, object); 765 nr++; 766 } 767 768 max_objects = (PAGE_SIZE << compound_order(page)) / s->size; 769 if (max_objects > MAX_OBJS_PER_PAGE) 770 max_objects = MAX_OBJS_PER_PAGE; 771 772 if (page->objects != max_objects) { 773 slab_err(s, page, "Wrong number of objects. Found %d but " 774 "should be %d", page->objects, max_objects); 775 page->objects = max_objects; 776 slab_fix(s, "Number of objects adjusted."); 777 } 778 if (page->inuse != page->objects - nr) { 779 slab_err(s, page, "Wrong object count. Counter is %d but " 780 "counted were %d", page->inuse, page->objects - nr); 781 page->inuse = page->objects - nr; 782 slab_fix(s, "Object count adjusted."); 783 } 784 return search == NULL; 785 } 786 787 static void trace(struct kmem_cache *s, struct page *page, void *object, 788 int alloc) 789 { 790 if (s->flags & SLAB_TRACE) { 791 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 792 s->name, 793 alloc ? "alloc" : "free", 794 object, page->inuse, 795 page->freelist); 796 797 if (!alloc) 798 print_section("Object", (void *)object, s->objsize); 799 800 dump_stack(); 801 } 802 } 803 804 /* 805 * Tracking of fully allocated slabs for debugging purposes. 806 */ 807 static void add_full(struct kmem_cache_node *n, struct page *page) 808 { 809 spin_lock(&n->list_lock); 810 list_add(&page->lru, &n->full); 811 spin_unlock(&n->list_lock); 812 } 813 814 static void remove_full(struct kmem_cache *s, struct page *page) 815 { 816 struct kmem_cache_node *n; 817 818 if (!(s->flags & SLAB_STORE_USER)) 819 return; 820 821 n = get_node(s, page_to_nid(page)); 822 823 spin_lock(&n->list_lock); 824 list_del(&page->lru); 825 spin_unlock(&n->list_lock); 826 } 827 828 /* Tracking of the number of slabs for debugging purposes */ 829 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 830 { 831 struct kmem_cache_node *n = get_node(s, node); 832 833 return atomic_long_read(&n->nr_slabs); 834 } 835 836 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 837 { 838 struct kmem_cache_node *n = get_node(s, node); 839 840 /* 841 * May be called early in order to allocate a slab for the 842 * kmem_cache_node structure. Solve the chicken-egg 843 * dilemma by deferring the increment of the count during 844 * bootstrap (see early_kmem_cache_node_alloc). 845 */ 846 if (!NUMA_BUILD || n) { 847 atomic_long_inc(&n->nr_slabs); 848 atomic_long_add(objects, &n->total_objects); 849 } 850 } 851 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 852 { 853 struct kmem_cache_node *n = get_node(s, node); 854 855 atomic_long_dec(&n->nr_slabs); 856 atomic_long_sub(objects, &n->total_objects); 857 } 858 859 /* Object debug checks for alloc/free paths */ 860 static void setup_object_debug(struct kmem_cache *s, struct page *page, 861 void *object) 862 { 863 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 864 return; 865 866 init_object(s, object, 0); 867 init_tracking(s, object); 868 } 869 870 static int alloc_debug_processing(struct kmem_cache *s, struct page *page, 871 void *object, unsigned long addr) 872 { 873 if (!check_slab(s, page)) 874 goto bad; 875 876 if (!on_freelist(s, page, object)) { 877 object_err(s, page, object, "Object already allocated"); 878 goto bad; 879 } 880 881 if (!check_valid_pointer(s, page, object)) { 882 object_err(s, page, object, "Freelist Pointer check fails"); 883 goto bad; 884 } 885 886 if (!check_object(s, page, object, 0)) 887 goto bad; 888 889 /* Success perform special debug activities for allocs */ 890 if (s->flags & SLAB_STORE_USER) 891 set_track(s, object, TRACK_ALLOC, addr); 892 trace(s, page, object, 1); 893 init_object(s, object, 1); 894 return 1; 895 896 bad: 897 if (PageSlab(page)) { 898 /* 899 * If this is a slab page then lets do the best we can 900 * to avoid issues in the future. Marking all objects 901 * as used avoids touching the remaining objects. 902 */ 903 slab_fix(s, "Marking all objects used"); 904 page->inuse = page->objects; 905 page->freelist = NULL; 906 } 907 return 0; 908 } 909 910 static int free_debug_processing(struct kmem_cache *s, struct page *page, 911 void *object, unsigned long addr) 912 { 913 if (!check_slab(s, page)) 914 goto fail; 915 916 if (!check_valid_pointer(s, page, object)) { 917 slab_err(s, page, "Invalid object pointer 0x%p", object); 918 goto fail; 919 } 920 921 if (on_freelist(s, page, object)) { 922 object_err(s, page, object, "Object already free"); 923 goto fail; 924 } 925 926 if (!check_object(s, page, object, 1)) 927 return 0; 928 929 if (unlikely(s != page->slab)) { 930 if (!PageSlab(page)) { 931 slab_err(s, page, "Attempt to free object(0x%p) " 932 "outside of slab", object); 933 } else if (!page->slab) { 934 printk(KERN_ERR 935 "SLUB <none>: no slab for object 0x%p.\n", 936 object); 937 dump_stack(); 938 } else 939 object_err(s, page, object, 940 "page slab pointer corrupt."); 941 goto fail; 942 } 943 944 /* Special debug activities for freeing objects */ 945 if (!PageSlubFrozen(page) && !page->freelist) 946 remove_full(s, page); 947 if (s->flags & SLAB_STORE_USER) 948 set_track(s, object, TRACK_FREE, addr); 949 trace(s, page, object, 0); 950 init_object(s, object, 0); 951 return 1; 952 953 fail: 954 slab_fix(s, "Object at 0x%p not freed", object); 955 return 0; 956 } 957 958 static int __init setup_slub_debug(char *str) 959 { 960 slub_debug = DEBUG_DEFAULT_FLAGS; 961 if (*str++ != '=' || !*str) 962 /* 963 * No options specified. Switch on full debugging. 964 */ 965 goto out; 966 967 if (*str == ',') 968 /* 969 * No options but restriction on slabs. This means full 970 * debugging for slabs matching a pattern. 971 */ 972 goto check_slabs; 973 974 slub_debug = 0; 975 if (*str == '-') 976 /* 977 * Switch off all debugging measures. 978 */ 979 goto out; 980 981 /* 982 * Determine which debug features should be switched on 983 */ 984 for (; *str && *str != ','; str++) { 985 switch (tolower(*str)) { 986 case 'f': 987 slub_debug |= SLAB_DEBUG_FREE; 988 break; 989 case 'z': 990 slub_debug |= SLAB_RED_ZONE; 991 break; 992 case 'p': 993 slub_debug |= SLAB_POISON; 994 break; 995 case 'u': 996 slub_debug |= SLAB_STORE_USER; 997 break; 998 case 't': 999 slub_debug |= SLAB_TRACE; 1000 break; 1001 default: 1002 printk(KERN_ERR "slub_debug option '%c' " 1003 "unknown. skipped\n", *str); 1004 } 1005 } 1006 1007 check_slabs: 1008 if (*str == ',') 1009 slub_debug_slabs = str + 1; 1010 out: 1011 return 1; 1012 } 1013 1014 __setup("slub_debug", setup_slub_debug); 1015 1016 static unsigned long kmem_cache_flags(unsigned long objsize, 1017 unsigned long flags, const char *name, 1018 void (*ctor)(void *)) 1019 { 1020 /* 1021 * Enable debugging if selected on the kernel commandline. 1022 */ 1023 if (slub_debug && (!slub_debug_slabs || 1024 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0)) 1025 flags |= slub_debug; 1026 1027 return flags; 1028 } 1029 #else 1030 static inline void setup_object_debug(struct kmem_cache *s, 1031 struct page *page, void *object) {} 1032 1033 static inline int alloc_debug_processing(struct kmem_cache *s, 1034 struct page *page, void *object, unsigned long addr) { return 0; } 1035 1036 static inline int free_debug_processing(struct kmem_cache *s, 1037 struct page *page, void *object, unsigned long addr) { return 0; } 1038 1039 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1040 { return 1; } 1041 static inline int check_object(struct kmem_cache *s, struct page *page, 1042 void *object, int active) { return 1; } 1043 static inline void add_full(struct kmem_cache_node *n, struct page *page) {} 1044 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1045 unsigned long flags, const char *name, 1046 void (*ctor)(void *)) 1047 { 1048 return flags; 1049 } 1050 #define slub_debug 0 1051 1052 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1053 { return 0; } 1054 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1055 int objects) {} 1056 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1057 int objects) {} 1058 #endif 1059 1060 /* 1061 * Slab allocation and freeing 1062 */ 1063 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1064 struct kmem_cache_order_objects oo) 1065 { 1066 int order = oo_order(oo); 1067 1068 if (node == -1) 1069 return alloc_pages(flags, order); 1070 else 1071 return alloc_pages_node(node, flags, order); 1072 } 1073 1074 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1075 { 1076 struct page *page; 1077 struct kmem_cache_order_objects oo = s->oo; 1078 1079 flags |= s->allocflags; 1080 1081 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node, 1082 oo); 1083 if (unlikely(!page)) { 1084 oo = s->min; 1085 /* 1086 * Allocation may have failed due to fragmentation. 1087 * Try a lower order alloc if possible 1088 */ 1089 page = alloc_slab_page(flags, node, oo); 1090 if (!page) 1091 return NULL; 1092 1093 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK); 1094 } 1095 page->objects = oo_objects(oo); 1096 mod_zone_page_state(page_zone(page), 1097 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1098 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1099 1 << oo_order(oo)); 1100 1101 return page; 1102 } 1103 1104 static void setup_object(struct kmem_cache *s, struct page *page, 1105 void *object) 1106 { 1107 setup_object_debug(s, page, object); 1108 if (unlikely(s->ctor)) 1109 s->ctor(object); 1110 } 1111 1112 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1113 { 1114 struct page *page; 1115 void *start; 1116 void *last; 1117 void *p; 1118 1119 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1120 1121 page = allocate_slab(s, 1122 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1123 if (!page) 1124 goto out; 1125 1126 inc_slabs_node(s, page_to_nid(page), page->objects); 1127 page->slab = s; 1128 page->flags |= 1 << PG_slab; 1129 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | 1130 SLAB_STORE_USER | SLAB_TRACE)) 1131 __SetPageSlubDebug(page); 1132 1133 start = page_address(page); 1134 1135 if (unlikely(s->flags & SLAB_POISON)) 1136 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1137 1138 last = start; 1139 for_each_object(p, s, start, page->objects) { 1140 setup_object(s, page, last); 1141 set_freepointer(s, last, p); 1142 last = p; 1143 } 1144 setup_object(s, page, last); 1145 set_freepointer(s, last, NULL); 1146 1147 page->freelist = start; 1148 page->inuse = 0; 1149 out: 1150 return page; 1151 } 1152 1153 static void __free_slab(struct kmem_cache *s, struct page *page) 1154 { 1155 int order = compound_order(page); 1156 int pages = 1 << order; 1157 1158 if (unlikely(SLABDEBUG && PageSlubDebug(page))) { 1159 void *p; 1160 1161 slab_pad_check(s, page); 1162 for_each_object(p, s, page_address(page), 1163 page->objects) 1164 check_object(s, page, p, 0); 1165 __ClearPageSlubDebug(page); 1166 } 1167 1168 mod_zone_page_state(page_zone(page), 1169 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1170 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1171 -pages); 1172 1173 __ClearPageSlab(page); 1174 reset_page_mapcount(page); 1175 if (current->reclaim_state) 1176 current->reclaim_state->reclaimed_slab += pages; 1177 __free_pages(page, order); 1178 } 1179 1180 static void rcu_free_slab(struct rcu_head *h) 1181 { 1182 struct page *page; 1183 1184 page = container_of((struct list_head *)h, struct page, lru); 1185 __free_slab(page->slab, page); 1186 } 1187 1188 static void free_slab(struct kmem_cache *s, struct page *page) 1189 { 1190 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1191 /* 1192 * RCU free overloads the RCU head over the LRU 1193 */ 1194 struct rcu_head *head = (void *)&page->lru; 1195 1196 call_rcu(head, rcu_free_slab); 1197 } else 1198 __free_slab(s, page); 1199 } 1200 1201 static void discard_slab(struct kmem_cache *s, struct page *page) 1202 { 1203 dec_slabs_node(s, page_to_nid(page), page->objects); 1204 free_slab(s, page); 1205 } 1206 1207 /* 1208 * Per slab locking using the pagelock 1209 */ 1210 static __always_inline void slab_lock(struct page *page) 1211 { 1212 bit_spin_lock(PG_locked, &page->flags); 1213 } 1214 1215 static __always_inline void slab_unlock(struct page *page) 1216 { 1217 __bit_spin_unlock(PG_locked, &page->flags); 1218 } 1219 1220 static __always_inline int slab_trylock(struct page *page) 1221 { 1222 int rc = 1; 1223 1224 rc = bit_spin_trylock(PG_locked, &page->flags); 1225 return rc; 1226 } 1227 1228 /* 1229 * Management of partially allocated slabs 1230 */ 1231 static void add_partial(struct kmem_cache_node *n, 1232 struct page *page, int tail) 1233 { 1234 spin_lock(&n->list_lock); 1235 n->nr_partial++; 1236 if (tail) 1237 list_add_tail(&page->lru, &n->partial); 1238 else 1239 list_add(&page->lru, &n->partial); 1240 spin_unlock(&n->list_lock); 1241 } 1242 1243 static void remove_partial(struct kmem_cache *s, struct page *page) 1244 { 1245 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1246 1247 spin_lock(&n->list_lock); 1248 list_del(&page->lru); 1249 n->nr_partial--; 1250 spin_unlock(&n->list_lock); 1251 } 1252 1253 /* 1254 * Lock slab and remove from the partial list. 1255 * 1256 * Must hold list_lock. 1257 */ 1258 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, 1259 struct page *page) 1260 { 1261 if (slab_trylock(page)) { 1262 list_del(&page->lru); 1263 n->nr_partial--; 1264 __SetPageSlubFrozen(page); 1265 return 1; 1266 } 1267 return 0; 1268 } 1269 1270 /* 1271 * Try to allocate a partial slab from a specific node. 1272 */ 1273 static struct page *get_partial_node(struct kmem_cache_node *n) 1274 { 1275 struct page *page; 1276 1277 /* 1278 * Racy check. If we mistakenly see no partial slabs then we 1279 * just allocate an empty slab. If we mistakenly try to get a 1280 * partial slab and there is none available then get_partials() 1281 * will return NULL. 1282 */ 1283 if (!n || !n->nr_partial) 1284 return NULL; 1285 1286 spin_lock(&n->list_lock); 1287 list_for_each_entry(page, &n->partial, lru) 1288 if (lock_and_freeze_slab(n, page)) 1289 goto out; 1290 page = NULL; 1291 out: 1292 spin_unlock(&n->list_lock); 1293 return page; 1294 } 1295 1296 /* 1297 * Get a page from somewhere. Search in increasing NUMA distances. 1298 */ 1299 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) 1300 { 1301 #ifdef CONFIG_NUMA 1302 struct zonelist *zonelist; 1303 struct zoneref *z; 1304 struct zone *zone; 1305 enum zone_type high_zoneidx = gfp_zone(flags); 1306 struct page *page; 1307 1308 /* 1309 * The defrag ratio allows a configuration of the tradeoffs between 1310 * inter node defragmentation and node local allocations. A lower 1311 * defrag_ratio increases the tendency to do local allocations 1312 * instead of attempting to obtain partial slabs from other nodes. 1313 * 1314 * If the defrag_ratio is set to 0 then kmalloc() always 1315 * returns node local objects. If the ratio is higher then kmalloc() 1316 * may return off node objects because partial slabs are obtained 1317 * from other nodes and filled up. 1318 * 1319 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1320 * defrag_ratio = 1000) then every (well almost) allocation will 1321 * first attempt to defrag slab caches on other nodes. This means 1322 * scanning over all nodes to look for partial slabs which may be 1323 * expensive if we do it every time we are trying to find a slab 1324 * with available objects. 1325 */ 1326 if (!s->remote_node_defrag_ratio || 1327 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1328 return NULL; 1329 1330 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 1331 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1332 struct kmem_cache_node *n; 1333 1334 n = get_node(s, zone_to_nid(zone)); 1335 1336 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1337 n->nr_partial > s->min_partial) { 1338 page = get_partial_node(n); 1339 if (page) 1340 return page; 1341 } 1342 } 1343 #endif 1344 return NULL; 1345 } 1346 1347 /* 1348 * Get a partial page, lock it and return it. 1349 */ 1350 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) 1351 { 1352 struct page *page; 1353 int searchnode = (node == -1) ? numa_node_id() : node; 1354 1355 page = get_partial_node(get_node(s, searchnode)); 1356 if (page || (flags & __GFP_THISNODE)) 1357 return page; 1358 1359 return get_any_partial(s, flags); 1360 } 1361 1362 /* 1363 * Move a page back to the lists. 1364 * 1365 * Must be called with the slab lock held. 1366 * 1367 * On exit the slab lock will have been dropped. 1368 */ 1369 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) 1370 { 1371 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1372 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id()); 1373 1374 __ClearPageSlubFrozen(page); 1375 if (page->inuse) { 1376 1377 if (page->freelist) { 1378 add_partial(n, page, tail); 1379 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); 1380 } else { 1381 stat(c, DEACTIVATE_FULL); 1382 if (SLABDEBUG && PageSlubDebug(page) && 1383 (s->flags & SLAB_STORE_USER)) 1384 add_full(n, page); 1385 } 1386 slab_unlock(page); 1387 } else { 1388 stat(c, DEACTIVATE_EMPTY); 1389 if (n->nr_partial < s->min_partial) { 1390 /* 1391 * Adding an empty slab to the partial slabs in order 1392 * to avoid page allocator overhead. This slab needs 1393 * to come after the other slabs with objects in 1394 * so that the others get filled first. That way the 1395 * size of the partial list stays small. 1396 * 1397 * kmem_cache_shrink can reclaim any empty slabs from 1398 * the partial list. 1399 */ 1400 add_partial(n, page, 1); 1401 slab_unlock(page); 1402 } else { 1403 slab_unlock(page); 1404 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB); 1405 discard_slab(s, page); 1406 } 1407 } 1408 } 1409 1410 /* 1411 * Remove the cpu slab 1412 */ 1413 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1414 { 1415 struct page *page = c->page; 1416 int tail = 1; 1417 1418 if (page->freelist) 1419 stat(c, DEACTIVATE_REMOTE_FREES); 1420 /* 1421 * Merge cpu freelist into slab freelist. Typically we get here 1422 * because both freelists are empty. So this is unlikely 1423 * to occur. 1424 */ 1425 while (unlikely(c->freelist)) { 1426 void **object; 1427 1428 tail = 0; /* Hot objects. Put the slab first */ 1429 1430 /* Retrieve object from cpu_freelist */ 1431 object = c->freelist; 1432 c->freelist = c->freelist[c->offset]; 1433 1434 /* And put onto the regular freelist */ 1435 object[c->offset] = page->freelist; 1436 page->freelist = object; 1437 page->inuse--; 1438 } 1439 c->page = NULL; 1440 unfreeze_slab(s, page, tail); 1441 } 1442 1443 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1444 { 1445 stat(c, CPUSLAB_FLUSH); 1446 slab_lock(c->page); 1447 deactivate_slab(s, c); 1448 } 1449 1450 /* 1451 * Flush cpu slab. 1452 * 1453 * Called from IPI handler with interrupts disabled. 1454 */ 1455 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1456 { 1457 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 1458 1459 if (likely(c && c->page)) 1460 flush_slab(s, c); 1461 } 1462 1463 static void flush_cpu_slab(void *d) 1464 { 1465 struct kmem_cache *s = d; 1466 1467 __flush_cpu_slab(s, smp_processor_id()); 1468 } 1469 1470 static void flush_all(struct kmem_cache *s) 1471 { 1472 on_each_cpu(flush_cpu_slab, s, 1); 1473 } 1474 1475 /* 1476 * Check if the objects in a per cpu structure fit numa 1477 * locality expectations. 1478 */ 1479 static inline int node_match(struct kmem_cache_cpu *c, int node) 1480 { 1481 #ifdef CONFIG_NUMA 1482 if (node != -1 && c->node != node) 1483 return 0; 1484 #endif 1485 return 1; 1486 } 1487 1488 /* 1489 * Slow path. The lockless freelist is empty or we need to perform 1490 * debugging duties. 1491 * 1492 * Interrupts are disabled. 1493 * 1494 * Processing is still very fast if new objects have been freed to the 1495 * regular freelist. In that case we simply take over the regular freelist 1496 * as the lockless freelist and zap the regular freelist. 1497 * 1498 * If that is not working then we fall back to the partial lists. We take the 1499 * first element of the freelist as the object to allocate now and move the 1500 * rest of the freelist to the lockless freelist. 1501 * 1502 * And if we were unable to get a new slab from the partial slab lists then 1503 * we need to allocate a new slab. This is the slowest path since it involves 1504 * a call to the page allocator and the setup of a new slab. 1505 */ 1506 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 1507 unsigned long addr, struct kmem_cache_cpu *c) 1508 { 1509 void **object; 1510 struct page *new; 1511 1512 /* We handle __GFP_ZERO in the caller */ 1513 gfpflags &= ~__GFP_ZERO; 1514 1515 if (!c->page) 1516 goto new_slab; 1517 1518 slab_lock(c->page); 1519 if (unlikely(!node_match(c, node))) 1520 goto another_slab; 1521 1522 stat(c, ALLOC_REFILL); 1523 1524 load_freelist: 1525 object = c->page->freelist; 1526 if (unlikely(!object)) 1527 goto another_slab; 1528 if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) 1529 goto debug; 1530 1531 c->freelist = object[c->offset]; 1532 c->page->inuse = c->page->objects; 1533 c->page->freelist = NULL; 1534 c->node = page_to_nid(c->page); 1535 unlock_out: 1536 slab_unlock(c->page); 1537 stat(c, ALLOC_SLOWPATH); 1538 return object; 1539 1540 another_slab: 1541 deactivate_slab(s, c); 1542 1543 new_slab: 1544 new = get_partial(s, gfpflags, node); 1545 if (new) { 1546 c->page = new; 1547 stat(c, ALLOC_FROM_PARTIAL); 1548 goto load_freelist; 1549 } 1550 1551 if (gfpflags & __GFP_WAIT) 1552 local_irq_enable(); 1553 1554 new = new_slab(s, gfpflags, node); 1555 1556 if (gfpflags & __GFP_WAIT) 1557 local_irq_disable(); 1558 1559 if (new) { 1560 c = get_cpu_slab(s, smp_processor_id()); 1561 stat(c, ALLOC_SLAB); 1562 if (c->page) 1563 flush_slab(s, c); 1564 slab_lock(new); 1565 __SetPageSlubFrozen(new); 1566 c->page = new; 1567 goto load_freelist; 1568 } 1569 return NULL; 1570 debug: 1571 if (!alloc_debug_processing(s, c->page, object, addr)) 1572 goto another_slab; 1573 1574 c->page->inuse++; 1575 c->page->freelist = object[c->offset]; 1576 c->node = -1; 1577 goto unlock_out; 1578 } 1579 1580 /* 1581 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 1582 * have the fastpath folded into their functions. So no function call 1583 * overhead for requests that can be satisfied on the fastpath. 1584 * 1585 * The fastpath works by first checking if the lockless freelist can be used. 1586 * If not then __slab_alloc is called for slow processing. 1587 * 1588 * Otherwise we can simply pick the next object from the lockless free list. 1589 */ 1590 static __always_inline void *slab_alloc(struct kmem_cache *s, 1591 gfp_t gfpflags, int node, unsigned long addr) 1592 { 1593 void **object; 1594 struct kmem_cache_cpu *c; 1595 unsigned long flags; 1596 unsigned int objsize; 1597 1598 lockdep_trace_alloc(gfpflags); 1599 might_sleep_if(gfpflags & __GFP_WAIT); 1600 1601 if (should_failslab(s->objsize, gfpflags)) 1602 return NULL; 1603 1604 local_irq_save(flags); 1605 c = get_cpu_slab(s, smp_processor_id()); 1606 objsize = c->objsize; 1607 if (unlikely(!c->freelist || !node_match(c, node))) 1608 1609 object = __slab_alloc(s, gfpflags, node, addr, c); 1610 1611 else { 1612 object = c->freelist; 1613 c->freelist = object[c->offset]; 1614 stat(c, ALLOC_FASTPATH); 1615 } 1616 local_irq_restore(flags); 1617 1618 if (unlikely((gfpflags & __GFP_ZERO) && object)) 1619 memset(object, 0, objsize); 1620 1621 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags); 1622 return object; 1623 } 1624 1625 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 1626 { 1627 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_); 1628 1629 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); 1630 1631 return ret; 1632 } 1633 EXPORT_SYMBOL(kmem_cache_alloc); 1634 1635 #ifdef CONFIG_KMEMTRACE 1636 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags) 1637 { 1638 return slab_alloc(s, gfpflags, -1, _RET_IP_); 1639 } 1640 EXPORT_SYMBOL(kmem_cache_alloc_notrace); 1641 #endif 1642 1643 #ifdef CONFIG_NUMA 1644 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 1645 { 1646 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 1647 1648 trace_kmem_cache_alloc_node(_RET_IP_, ret, 1649 s->objsize, s->size, gfpflags, node); 1650 1651 return ret; 1652 } 1653 EXPORT_SYMBOL(kmem_cache_alloc_node); 1654 #endif 1655 1656 #ifdef CONFIG_KMEMTRACE 1657 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s, 1658 gfp_t gfpflags, 1659 int node) 1660 { 1661 return slab_alloc(s, gfpflags, node, _RET_IP_); 1662 } 1663 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace); 1664 #endif 1665 1666 /* 1667 * Slow patch handling. This may still be called frequently since objects 1668 * have a longer lifetime than the cpu slabs in most processing loads. 1669 * 1670 * So we still attempt to reduce cache line usage. Just take the slab 1671 * lock and free the item. If there is no additional partial page 1672 * handling required then we can return immediately. 1673 */ 1674 static void __slab_free(struct kmem_cache *s, struct page *page, 1675 void *x, unsigned long addr, unsigned int offset) 1676 { 1677 void *prior; 1678 void **object = (void *)x; 1679 struct kmem_cache_cpu *c; 1680 1681 c = get_cpu_slab(s, raw_smp_processor_id()); 1682 stat(c, FREE_SLOWPATH); 1683 slab_lock(page); 1684 1685 if (unlikely(SLABDEBUG && PageSlubDebug(page))) 1686 goto debug; 1687 1688 checks_ok: 1689 prior = object[offset] = page->freelist; 1690 page->freelist = object; 1691 page->inuse--; 1692 1693 if (unlikely(PageSlubFrozen(page))) { 1694 stat(c, FREE_FROZEN); 1695 goto out_unlock; 1696 } 1697 1698 if (unlikely(!page->inuse)) 1699 goto slab_empty; 1700 1701 /* 1702 * Objects left in the slab. If it was not on the partial list before 1703 * then add it. 1704 */ 1705 if (unlikely(!prior)) { 1706 add_partial(get_node(s, page_to_nid(page)), page, 1); 1707 stat(c, FREE_ADD_PARTIAL); 1708 } 1709 1710 out_unlock: 1711 slab_unlock(page); 1712 return; 1713 1714 slab_empty: 1715 if (prior) { 1716 /* 1717 * Slab still on the partial list. 1718 */ 1719 remove_partial(s, page); 1720 stat(c, FREE_REMOVE_PARTIAL); 1721 } 1722 slab_unlock(page); 1723 stat(c, FREE_SLAB); 1724 discard_slab(s, page); 1725 return; 1726 1727 debug: 1728 if (!free_debug_processing(s, page, x, addr)) 1729 goto out_unlock; 1730 goto checks_ok; 1731 } 1732 1733 /* 1734 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 1735 * can perform fastpath freeing without additional function calls. 1736 * 1737 * The fastpath is only possible if we are freeing to the current cpu slab 1738 * of this processor. This typically the case if we have just allocated 1739 * the item before. 1740 * 1741 * If fastpath is not possible then fall back to __slab_free where we deal 1742 * with all sorts of special processing. 1743 */ 1744 static __always_inline void slab_free(struct kmem_cache *s, 1745 struct page *page, void *x, unsigned long addr) 1746 { 1747 void **object = (void *)x; 1748 struct kmem_cache_cpu *c; 1749 unsigned long flags; 1750 1751 kmemleak_free_recursive(x, s->flags); 1752 local_irq_save(flags); 1753 c = get_cpu_slab(s, smp_processor_id()); 1754 debug_check_no_locks_freed(object, c->objsize); 1755 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1756 debug_check_no_obj_freed(object, c->objsize); 1757 if (likely(page == c->page && c->node >= 0)) { 1758 object[c->offset] = c->freelist; 1759 c->freelist = object; 1760 stat(c, FREE_FASTPATH); 1761 } else 1762 __slab_free(s, page, x, addr, c->offset); 1763 1764 local_irq_restore(flags); 1765 } 1766 1767 void kmem_cache_free(struct kmem_cache *s, void *x) 1768 { 1769 struct page *page; 1770 1771 page = virt_to_head_page(x); 1772 1773 slab_free(s, page, x, _RET_IP_); 1774 1775 trace_kmem_cache_free(_RET_IP_, x); 1776 } 1777 EXPORT_SYMBOL(kmem_cache_free); 1778 1779 /* Figure out on which slab page the object resides */ 1780 static struct page *get_object_page(const void *x) 1781 { 1782 struct page *page = virt_to_head_page(x); 1783 1784 if (!PageSlab(page)) 1785 return NULL; 1786 1787 return page; 1788 } 1789 1790 /* 1791 * Object placement in a slab is made very easy because we always start at 1792 * offset 0. If we tune the size of the object to the alignment then we can 1793 * get the required alignment by putting one properly sized object after 1794 * another. 1795 * 1796 * Notice that the allocation order determines the sizes of the per cpu 1797 * caches. Each processor has always one slab available for allocations. 1798 * Increasing the allocation order reduces the number of times that slabs 1799 * must be moved on and off the partial lists and is therefore a factor in 1800 * locking overhead. 1801 */ 1802 1803 /* 1804 * Mininum / Maximum order of slab pages. This influences locking overhead 1805 * and slab fragmentation. A higher order reduces the number of partial slabs 1806 * and increases the number of allocations possible without having to 1807 * take the list_lock. 1808 */ 1809 static int slub_min_order; 1810 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 1811 static int slub_min_objects; 1812 1813 /* 1814 * Merge control. If this is set then no merging of slab caches will occur. 1815 * (Could be removed. This was introduced to pacify the merge skeptics.) 1816 */ 1817 static int slub_nomerge; 1818 1819 /* 1820 * Calculate the order of allocation given an slab object size. 1821 * 1822 * The order of allocation has significant impact on performance and other 1823 * system components. Generally order 0 allocations should be preferred since 1824 * order 0 does not cause fragmentation in the page allocator. Larger objects 1825 * be problematic to put into order 0 slabs because there may be too much 1826 * unused space left. We go to a higher order if more than 1/16th of the slab 1827 * would be wasted. 1828 * 1829 * In order to reach satisfactory performance we must ensure that a minimum 1830 * number of objects is in one slab. Otherwise we may generate too much 1831 * activity on the partial lists which requires taking the list_lock. This is 1832 * less a concern for large slabs though which are rarely used. 1833 * 1834 * slub_max_order specifies the order where we begin to stop considering the 1835 * number of objects in a slab as critical. If we reach slub_max_order then 1836 * we try to keep the page order as low as possible. So we accept more waste 1837 * of space in favor of a small page order. 1838 * 1839 * Higher order allocations also allow the placement of more objects in a 1840 * slab and thereby reduce object handling overhead. If the user has 1841 * requested a higher mininum order then we start with that one instead of 1842 * the smallest order which will fit the object. 1843 */ 1844 static inline int slab_order(int size, int min_objects, 1845 int max_order, int fract_leftover) 1846 { 1847 int order; 1848 int rem; 1849 int min_order = slub_min_order; 1850 1851 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE) 1852 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 1853 1854 for (order = max(min_order, 1855 fls(min_objects * size - 1) - PAGE_SHIFT); 1856 order <= max_order; order++) { 1857 1858 unsigned long slab_size = PAGE_SIZE << order; 1859 1860 if (slab_size < min_objects * size) 1861 continue; 1862 1863 rem = slab_size % size; 1864 1865 if (rem <= slab_size / fract_leftover) 1866 break; 1867 1868 } 1869 1870 return order; 1871 } 1872 1873 static inline int calculate_order(int size) 1874 { 1875 int order; 1876 int min_objects; 1877 int fraction; 1878 int max_objects; 1879 1880 /* 1881 * Attempt to find best configuration for a slab. This 1882 * works by first attempting to generate a layout with 1883 * the best configuration and backing off gradually. 1884 * 1885 * First we reduce the acceptable waste in a slab. Then 1886 * we reduce the minimum objects required in a slab. 1887 */ 1888 min_objects = slub_min_objects; 1889 if (!min_objects) 1890 min_objects = 4 * (fls(nr_cpu_ids) + 1); 1891 max_objects = (PAGE_SIZE << slub_max_order)/size; 1892 min_objects = min(min_objects, max_objects); 1893 1894 while (min_objects > 1) { 1895 fraction = 16; 1896 while (fraction >= 4) { 1897 order = slab_order(size, min_objects, 1898 slub_max_order, fraction); 1899 if (order <= slub_max_order) 1900 return order; 1901 fraction /= 2; 1902 } 1903 min_objects --; 1904 } 1905 1906 /* 1907 * We were unable to place multiple objects in a slab. Now 1908 * lets see if we can place a single object there. 1909 */ 1910 order = slab_order(size, 1, slub_max_order, 1); 1911 if (order <= slub_max_order) 1912 return order; 1913 1914 /* 1915 * Doh this slab cannot be placed using slub_max_order. 1916 */ 1917 order = slab_order(size, 1, MAX_ORDER, 1); 1918 if (order < MAX_ORDER) 1919 return order; 1920 return -ENOSYS; 1921 } 1922 1923 /* 1924 * Figure out what the alignment of the objects will be. 1925 */ 1926 static unsigned long calculate_alignment(unsigned long flags, 1927 unsigned long align, unsigned long size) 1928 { 1929 /* 1930 * If the user wants hardware cache aligned objects then follow that 1931 * suggestion if the object is sufficiently large. 1932 * 1933 * The hardware cache alignment cannot override the specified 1934 * alignment though. If that is greater then use it. 1935 */ 1936 if (flags & SLAB_HWCACHE_ALIGN) { 1937 unsigned long ralign = cache_line_size(); 1938 while (size <= ralign / 2) 1939 ralign /= 2; 1940 align = max(align, ralign); 1941 } 1942 1943 if (align < ARCH_SLAB_MINALIGN) 1944 align = ARCH_SLAB_MINALIGN; 1945 1946 return ALIGN(align, sizeof(void *)); 1947 } 1948 1949 static void init_kmem_cache_cpu(struct kmem_cache *s, 1950 struct kmem_cache_cpu *c) 1951 { 1952 c->page = NULL; 1953 c->freelist = NULL; 1954 c->node = 0; 1955 c->offset = s->offset / sizeof(void *); 1956 c->objsize = s->objsize; 1957 #ifdef CONFIG_SLUB_STATS 1958 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned)); 1959 #endif 1960 } 1961 1962 static void 1963 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) 1964 { 1965 n->nr_partial = 0; 1966 spin_lock_init(&n->list_lock); 1967 INIT_LIST_HEAD(&n->partial); 1968 #ifdef CONFIG_SLUB_DEBUG 1969 atomic_long_set(&n->nr_slabs, 0); 1970 atomic_long_set(&n->total_objects, 0); 1971 INIT_LIST_HEAD(&n->full); 1972 #endif 1973 } 1974 1975 #ifdef CONFIG_SMP 1976 /* 1977 * Per cpu array for per cpu structures. 1978 * 1979 * The per cpu array places all kmem_cache_cpu structures from one processor 1980 * close together meaning that it becomes possible that multiple per cpu 1981 * structures are contained in one cacheline. This may be particularly 1982 * beneficial for the kmalloc caches. 1983 * 1984 * A desktop system typically has around 60-80 slabs. With 100 here we are 1985 * likely able to get per cpu structures for all caches from the array defined 1986 * here. We must be able to cover all kmalloc caches during bootstrap. 1987 * 1988 * If the per cpu array is exhausted then fall back to kmalloc 1989 * of individual cachelines. No sharing is possible then. 1990 */ 1991 #define NR_KMEM_CACHE_CPU 100 1992 1993 static DEFINE_PER_CPU(struct kmem_cache_cpu, 1994 kmem_cache_cpu)[NR_KMEM_CACHE_CPU]; 1995 1996 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); 1997 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS); 1998 1999 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s, 2000 int cpu, gfp_t flags) 2001 { 2002 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu); 2003 2004 if (c) 2005 per_cpu(kmem_cache_cpu_free, cpu) = 2006 (void *)c->freelist; 2007 else { 2008 /* Table overflow: So allocate ourselves */ 2009 c = kmalloc_node( 2010 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()), 2011 flags, cpu_to_node(cpu)); 2012 if (!c) 2013 return NULL; 2014 } 2015 2016 init_kmem_cache_cpu(s, c); 2017 return c; 2018 } 2019 2020 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu) 2021 { 2022 if (c < per_cpu(kmem_cache_cpu, cpu) || 2023 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) { 2024 kfree(c); 2025 return; 2026 } 2027 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu); 2028 per_cpu(kmem_cache_cpu_free, cpu) = c; 2029 } 2030 2031 static void free_kmem_cache_cpus(struct kmem_cache *s) 2032 { 2033 int cpu; 2034 2035 for_each_online_cpu(cpu) { 2036 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 2037 2038 if (c) { 2039 s->cpu_slab[cpu] = NULL; 2040 free_kmem_cache_cpu(c, cpu); 2041 } 2042 } 2043 } 2044 2045 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2046 { 2047 int cpu; 2048 2049 for_each_online_cpu(cpu) { 2050 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 2051 2052 if (c) 2053 continue; 2054 2055 c = alloc_kmem_cache_cpu(s, cpu, flags); 2056 if (!c) { 2057 free_kmem_cache_cpus(s); 2058 return 0; 2059 } 2060 s->cpu_slab[cpu] = c; 2061 } 2062 return 1; 2063 } 2064 2065 /* 2066 * Initialize the per cpu array. 2067 */ 2068 static void init_alloc_cpu_cpu(int cpu) 2069 { 2070 int i; 2071 2072 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once))) 2073 return; 2074 2075 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--) 2076 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu); 2077 2078 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)); 2079 } 2080 2081 static void __init init_alloc_cpu(void) 2082 { 2083 int cpu; 2084 2085 for_each_online_cpu(cpu) 2086 init_alloc_cpu_cpu(cpu); 2087 } 2088 2089 #else 2090 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {} 2091 static inline void init_alloc_cpu(void) {} 2092 2093 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2094 { 2095 init_kmem_cache_cpu(s, &s->cpu_slab); 2096 return 1; 2097 } 2098 #endif 2099 2100 #ifdef CONFIG_NUMA 2101 /* 2102 * No kmalloc_node yet so do it by hand. We know that this is the first 2103 * slab on the node for this slabcache. There are no concurrent accesses 2104 * possible. 2105 * 2106 * Note that this function only works on the kmalloc_node_cache 2107 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2108 * memory on a fresh node that has no slab structures yet. 2109 */ 2110 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node) 2111 { 2112 struct page *page; 2113 struct kmem_cache_node *n; 2114 unsigned long flags; 2115 2116 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); 2117 2118 page = new_slab(kmalloc_caches, gfpflags, node); 2119 2120 BUG_ON(!page); 2121 if (page_to_nid(page) != node) { 2122 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2123 "node %d\n", node); 2124 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2125 "in order to be able to continue\n"); 2126 } 2127 2128 n = page->freelist; 2129 BUG_ON(!n); 2130 page->freelist = get_freepointer(kmalloc_caches, n); 2131 page->inuse++; 2132 kmalloc_caches->node[node] = n; 2133 #ifdef CONFIG_SLUB_DEBUG 2134 init_object(kmalloc_caches, n, 1); 2135 init_tracking(kmalloc_caches, n); 2136 #endif 2137 init_kmem_cache_node(n, kmalloc_caches); 2138 inc_slabs_node(kmalloc_caches, node, page->objects); 2139 2140 /* 2141 * lockdep requires consistent irq usage for each lock 2142 * so even though there cannot be a race this early in 2143 * the boot sequence, we still disable irqs. 2144 */ 2145 local_irq_save(flags); 2146 add_partial(n, page, 0); 2147 local_irq_restore(flags); 2148 } 2149 2150 static void free_kmem_cache_nodes(struct kmem_cache *s) 2151 { 2152 int node; 2153 2154 for_each_node_state(node, N_NORMAL_MEMORY) { 2155 struct kmem_cache_node *n = s->node[node]; 2156 if (n && n != &s->local_node) 2157 kmem_cache_free(kmalloc_caches, n); 2158 s->node[node] = NULL; 2159 } 2160 } 2161 2162 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2163 { 2164 int node; 2165 int local_node; 2166 2167 if (slab_state >= UP) 2168 local_node = page_to_nid(virt_to_page(s)); 2169 else 2170 local_node = 0; 2171 2172 for_each_node_state(node, N_NORMAL_MEMORY) { 2173 struct kmem_cache_node *n; 2174 2175 if (local_node == node) 2176 n = &s->local_node; 2177 else { 2178 if (slab_state == DOWN) { 2179 early_kmem_cache_node_alloc(gfpflags, node); 2180 continue; 2181 } 2182 n = kmem_cache_alloc_node(kmalloc_caches, 2183 gfpflags, node); 2184 2185 if (!n) { 2186 free_kmem_cache_nodes(s); 2187 return 0; 2188 } 2189 2190 } 2191 s->node[node] = n; 2192 init_kmem_cache_node(n, s); 2193 } 2194 return 1; 2195 } 2196 #else 2197 static void free_kmem_cache_nodes(struct kmem_cache *s) 2198 { 2199 } 2200 2201 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2202 { 2203 init_kmem_cache_node(&s->local_node, s); 2204 return 1; 2205 } 2206 #endif 2207 2208 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2209 { 2210 if (min < MIN_PARTIAL) 2211 min = MIN_PARTIAL; 2212 else if (min > MAX_PARTIAL) 2213 min = MAX_PARTIAL; 2214 s->min_partial = min; 2215 } 2216 2217 /* 2218 * calculate_sizes() determines the order and the distribution of data within 2219 * a slab object. 2220 */ 2221 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2222 { 2223 unsigned long flags = s->flags; 2224 unsigned long size = s->objsize; 2225 unsigned long align = s->align; 2226 int order; 2227 2228 /* 2229 * Round up object size to the next word boundary. We can only 2230 * place the free pointer at word boundaries and this determines 2231 * the possible location of the free pointer. 2232 */ 2233 size = ALIGN(size, sizeof(void *)); 2234 2235 #ifdef CONFIG_SLUB_DEBUG 2236 /* 2237 * Determine if we can poison the object itself. If the user of 2238 * the slab may touch the object after free or before allocation 2239 * then we should never poison the object itself. 2240 */ 2241 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2242 !s->ctor) 2243 s->flags |= __OBJECT_POISON; 2244 else 2245 s->flags &= ~__OBJECT_POISON; 2246 2247 2248 /* 2249 * If we are Redzoning then check if there is some space between the 2250 * end of the object and the free pointer. If not then add an 2251 * additional word to have some bytes to store Redzone information. 2252 */ 2253 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2254 size += sizeof(void *); 2255 #endif 2256 2257 /* 2258 * With that we have determined the number of bytes in actual use 2259 * by the object. This is the potential offset to the free pointer. 2260 */ 2261 s->inuse = size; 2262 2263 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2264 s->ctor)) { 2265 /* 2266 * Relocate free pointer after the object if it is not 2267 * permitted to overwrite the first word of the object on 2268 * kmem_cache_free. 2269 * 2270 * This is the case if we do RCU, have a constructor or 2271 * destructor or are poisoning the objects. 2272 */ 2273 s->offset = size; 2274 size += sizeof(void *); 2275 } 2276 2277 #ifdef CONFIG_SLUB_DEBUG 2278 if (flags & SLAB_STORE_USER) 2279 /* 2280 * Need to store information about allocs and frees after 2281 * the object. 2282 */ 2283 size += 2 * sizeof(struct track); 2284 2285 if (flags & SLAB_RED_ZONE) 2286 /* 2287 * Add some empty padding so that we can catch 2288 * overwrites from earlier objects rather than let 2289 * tracking information or the free pointer be 2290 * corrupted if a user writes before the start 2291 * of the object. 2292 */ 2293 size += sizeof(void *); 2294 #endif 2295 2296 /* 2297 * Determine the alignment based on various parameters that the 2298 * user specified and the dynamic determination of cache line size 2299 * on bootup. 2300 */ 2301 align = calculate_alignment(flags, align, s->objsize); 2302 2303 /* 2304 * SLUB stores one object immediately after another beginning from 2305 * offset 0. In order to align the objects we have to simply size 2306 * each object to conform to the alignment. 2307 */ 2308 size = ALIGN(size, align); 2309 s->size = size; 2310 if (forced_order >= 0) 2311 order = forced_order; 2312 else 2313 order = calculate_order(size); 2314 2315 if (order < 0) 2316 return 0; 2317 2318 s->allocflags = 0; 2319 if (order) 2320 s->allocflags |= __GFP_COMP; 2321 2322 if (s->flags & SLAB_CACHE_DMA) 2323 s->allocflags |= SLUB_DMA; 2324 2325 if (s->flags & SLAB_RECLAIM_ACCOUNT) 2326 s->allocflags |= __GFP_RECLAIMABLE; 2327 2328 /* 2329 * Determine the number of objects per slab 2330 */ 2331 s->oo = oo_make(order, size); 2332 s->min = oo_make(get_order(size), size); 2333 if (oo_objects(s->oo) > oo_objects(s->max)) 2334 s->max = s->oo; 2335 2336 return !!oo_objects(s->oo); 2337 2338 } 2339 2340 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, 2341 const char *name, size_t size, 2342 size_t align, unsigned long flags, 2343 void (*ctor)(void *)) 2344 { 2345 memset(s, 0, kmem_size); 2346 s->name = name; 2347 s->ctor = ctor; 2348 s->objsize = size; 2349 s->align = align; 2350 s->flags = kmem_cache_flags(size, flags, name, ctor); 2351 2352 if (!calculate_sizes(s, -1)) 2353 goto error; 2354 2355 /* 2356 * The larger the object size is, the more pages we want on the partial 2357 * list to avoid pounding the page allocator excessively. 2358 */ 2359 set_min_partial(s, ilog2(s->size)); 2360 s->refcount = 1; 2361 #ifdef CONFIG_NUMA 2362 s->remote_node_defrag_ratio = 1000; 2363 #endif 2364 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) 2365 goto error; 2366 2367 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) 2368 return 1; 2369 free_kmem_cache_nodes(s); 2370 error: 2371 if (flags & SLAB_PANIC) 2372 panic("Cannot create slab %s size=%lu realsize=%u " 2373 "order=%u offset=%u flags=%lx\n", 2374 s->name, (unsigned long)size, s->size, oo_order(s->oo), 2375 s->offset, flags); 2376 return 0; 2377 } 2378 2379 /* 2380 * Check if a given pointer is valid 2381 */ 2382 int kmem_ptr_validate(struct kmem_cache *s, const void *object) 2383 { 2384 struct page *page; 2385 2386 page = get_object_page(object); 2387 2388 if (!page || s != page->slab) 2389 /* No slab or wrong slab */ 2390 return 0; 2391 2392 if (!check_valid_pointer(s, page, object)) 2393 return 0; 2394 2395 /* 2396 * We could also check if the object is on the slabs freelist. 2397 * But this would be too expensive and it seems that the main 2398 * purpose of kmem_ptr_valid() is to check if the object belongs 2399 * to a certain slab. 2400 */ 2401 return 1; 2402 } 2403 EXPORT_SYMBOL(kmem_ptr_validate); 2404 2405 /* 2406 * Determine the size of a slab object 2407 */ 2408 unsigned int kmem_cache_size(struct kmem_cache *s) 2409 { 2410 return s->objsize; 2411 } 2412 EXPORT_SYMBOL(kmem_cache_size); 2413 2414 const char *kmem_cache_name(struct kmem_cache *s) 2415 { 2416 return s->name; 2417 } 2418 EXPORT_SYMBOL(kmem_cache_name); 2419 2420 static void list_slab_objects(struct kmem_cache *s, struct page *page, 2421 const char *text) 2422 { 2423 #ifdef CONFIG_SLUB_DEBUG 2424 void *addr = page_address(page); 2425 void *p; 2426 DECLARE_BITMAP(map, page->objects); 2427 2428 bitmap_zero(map, page->objects); 2429 slab_err(s, page, "%s", text); 2430 slab_lock(page); 2431 for_each_free_object(p, s, page->freelist) 2432 set_bit(slab_index(p, s, addr), map); 2433 2434 for_each_object(p, s, addr, page->objects) { 2435 2436 if (!test_bit(slab_index(p, s, addr), map)) { 2437 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 2438 p, p - addr); 2439 print_tracking(s, p); 2440 } 2441 } 2442 slab_unlock(page); 2443 #endif 2444 } 2445 2446 /* 2447 * Attempt to free all partial slabs on a node. 2448 */ 2449 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 2450 { 2451 unsigned long flags; 2452 struct page *page, *h; 2453 2454 spin_lock_irqsave(&n->list_lock, flags); 2455 list_for_each_entry_safe(page, h, &n->partial, lru) { 2456 if (!page->inuse) { 2457 list_del(&page->lru); 2458 discard_slab(s, page); 2459 n->nr_partial--; 2460 } else { 2461 list_slab_objects(s, page, 2462 "Objects remaining on kmem_cache_close()"); 2463 } 2464 } 2465 spin_unlock_irqrestore(&n->list_lock, flags); 2466 } 2467 2468 /* 2469 * Release all resources used by a slab cache. 2470 */ 2471 static inline int kmem_cache_close(struct kmem_cache *s) 2472 { 2473 int node; 2474 2475 flush_all(s); 2476 2477 /* Attempt to free all objects */ 2478 free_kmem_cache_cpus(s); 2479 for_each_node_state(node, N_NORMAL_MEMORY) { 2480 struct kmem_cache_node *n = get_node(s, node); 2481 2482 free_partial(s, n); 2483 if (n->nr_partial || slabs_node(s, node)) 2484 return 1; 2485 } 2486 free_kmem_cache_nodes(s); 2487 return 0; 2488 } 2489 2490 /* 2491 * Close a cache and release the kmem_cache structure 2492 * (must be used for caches created using kmem_cache_create) 2493 */ 2494 void kmem_cache_destroy(struct kmem_cache *s) 2495 { 2496 down_write(&slub_lock); 2497 s->refcount--; 2498 if (!s->refcount) { 2499 list_del(&s->list); 2500 up_write(&slub_lock); 2501 if (kmem_cache_close(s)) { 2502 printk(KERN_ERR "SLUB %s: %s called for cache that " 2503 "still has objects.\n", s->name, __func__); 2504 dump_stack(); 2505 } 2506 sysfs_slab_remove(s); 2507 } else 2508 up_write(&slub_lock); 2509 } 2510 EXPORT_SYMBOL(kmem_cache_destroy); 2511 2512 /******************************************************************** 2513 * Kmalloc subsystem 2514 *******************************************************************/ 2515 2516 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned; 2517 EXPORT_SYMBOL(kmalloc_caches); 2518 2519 static int __init setup_slub_min_order(char *str) 2520 { 2521 get_option(&str, &slub_min_order); 2522 2523 return 1; 2524 } 2525 2526 __setup("slub_min_order=", setup_slub_min_order); 2527 2528 static int __init setup_slub_max_order(char *str) 2529 { 2530 get_option(&str, &slub_max_order); 2531 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 2532 2533 return 1; 2534 } 2535 2536 __setup("slub_max_order=", setup_slub_max_order); 2537 2538 static int __init setup_slub_min_objects(char *str) 2539 { 2540 get_option(&str, &slub_min_objects); 2541 2542 return 1; 2543 } 2544 2545 __setup("slub_min_objects=", setup_slub_min_objects); 2546 2547 static int __init setup_slub_nomerge(char *str) 2548 { 2549 slub_nomerge = 1; 2550 return 1; 2551 } 2552 2553 __setup("slub_nomerge", setup_slub_nomerge); 2554 2555 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, 2556 const char *name, int size, gfp_t gfp_flags) 2557 { 2558 unsigned int flags = 0; 2559 2560 if (gfp_flags & SLUB_DMA) 2561 flags = SLAB_CACHE_DMA; 2562 2563 /* 2564 * This function is called with IRQs disabled during early-boot on 2565 * single CPU so there's no need to take slub_lock here. 2566 */ 2567 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, 2568 flags, NULL)) 2569 goto panic; 2570 2571 list_add(&s->list, &slab_caches); 2572 2573 if (sysfs_slab_add(s)) 2574 goto panic; 2575 return s; 2576 2577 panic: 2578 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 2579 } 2580 2581 #ifdef CONFIG_ZONE_DMA 2582 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT]; 2583 2584 static void sysfs_add_func(struct work_struct *w) 2585 { 2586 struct kmem_cache *s; 2587 2588 down_write(&slub_lock); 2589 list_for_each_entry(s, &slab_caches, list) { 2590 if (s->flags & __SYSFS_ADD_DEFERRED) { 2591 s->flags &= ~__SYSFS_ADD_DEFERRED; 2592 sysfs_slab_add(s); 2593 } 2594 } 2595 up_write(&slub_lock); 2596 } 2597 2598 static DECLARE_WORK(sysfs_add_work, sysfs_add_func); 2599 2600 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) 2601 { 2602 struct kmem_cache *s; 2603 char *text; 2604 size_t realsize; 2605 2606 s = kmalloc_caches_dma[index]; 2607 if (s) 2608 return s; 2609 2610 /* Dynamically create dma cache */ 2611 if (flags & __GFP_WAIT) 2612 down_write(&slub_lock); 2613 else { 2614 if (!down_write_trylock(&slub_lock)) 2615 goto out; 2616 } 2617 2618 if (kmalloc_caches_dma[index]) 2619 goto unlock_out; 2620 2621 realsize = kmalloc_caches[index].objsize; 2622 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", 2623 (unsigned int)realsize); 2624 s = kmalloc(kmem_size, flags & ~SLUB_DMA); 2625 2626 if (!s || !text || !kmem_cache_open(s, flags, text, 2627 realsize, ARCH_KMALLOC_MINALIGN, 2628 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) { 2629 kfree(s); 2630 kfree(text); 2631 goto unlock_out; 2632 } 2633 2634 list_add(&s->list, &slab_caches); 2635 kmalloc_caches_dma[index] = s; 2636 2637 schedule_work(&sysfs_add_work); 2638 2639 unlock_out: 2640 up_write(&slub_lock); 2641 out: 2642 return kmalloc_caches_dma[index]; 2643 } 2644 #endif 2645 2646 /* 2647 * Conversion table for small slabs sizes / 8 to the index in the 2648 * kmalloc array. This is necessary for slabs < 192 since we have non power 2649 * of two cache sizes there. The size of larger slabs can be determined using 2650 * fls. 2651 */ 2652 static s8 size_index[24] = { 2653 3, /* 8 */ 2654 4, /* 16 */ 2655 5, /* 24 */ 2656 5, /* 32 */ 2657 6, /* 40 */ 2658 6, /* 48 */ 2659 6, /* 56 */ 2660 6, /* 64 */ 2661 1, /* 72 */ 2662 1, /* 80 */ 2663 1, /* 88 */ 2664 1, /* 96 */ 2665 7, /* 104 */ 2666 7, /* 112 */ 2667 7, /* 120 */ 2668 7, /* 128 */ 2669 2, /* 136 */ 2670 2, /* 144 */ 2671 2, /* 152 */ 2672 2, /* 160 */ 2673 2, /* 168 */ 2674 2, /* 176 */ 2675 2, /* 184 */ 2676 2 /* 192 */ 2677 }; 2678 2679 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 2680 { 2681 int index; 2682 2683 if (size <= 192) { 2684 if (!size) 2685 return ZERO_SIZE_PTR; 2686 2687 index = size_index[(size - 1) / 8]; 2688 } else 2689 index = fls(size - 1); 2690 2691 #ifdef CONFIG_ZONE_DMA 2692 if (unlikely((flags & SLUB_DMA))) 2693 return dma_kmalloc_cache(index, flags); 2694 2695 #endif 2696 return &kmalloc_caches[index]; 2697 } 2698 2699 void *__kmalloc(size_t size, gfp_t flags) 2700 { 2701 struct kmem_cache *s; 2702 void *ret; 2703 2704 if (unlikely(size > SLUB_MAX_SIZE)) 2705 return kmalloc_large(size, flags); 2706 2707 s = get_slab(size, flags); 2708 2709 if (unlikely(ZERO_OR_NULL_PTR(s))) 2710 return s; 2711 2712 ret = slab_alloc(s, flags, -1, _RET_IP_); 2713 2714 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 2715 2716 return ret; 2717 } 2718 EXPORT_SYMBOL(__kmalloc); 2719 2720 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 2721 { 2722 struct page *page = alloc_pages_node(node, flags | __GFP_COMP, 2723 get_order(size)); 2724 2725 if (page) 2726 return page_address(page); 2727 else 2728 return NULL; 2729 } 2730 2731 #ifdef CONFIG_NUMA 2732 void *__kmalloc_node(size_t size, gfp_t flags, int node) 2733 { 2734 struct kmem_cache *s; 2735 void *ret; 2736 2737 if (unlikely(size > SLUB_MAX_SIZE)) { 2738 ret = kmalloc_large_node(size, flags, node); 2739 2740 trace_kmalloc_node(_RET_IP_, ret, 2741 size, PAGE_SIZE << get_order(size), 2742 flags, node); 2743 2744 return ret; 2745 } 2746 2747 s = get_slab(size, flags); 2748 2749 if (unlikely(ZERO_OR_NULL_PTR(s))) 2750 return s; 2751 2752 ret = slab_alloc(s, flags, node, _RET_IP_); 2753 2754 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 2755 2756 return ret; 2757 } 2758 EXPORT_SYMBOL(__kmalloc_node); 2759 #endif 2760 2761 size_t ksize(const void *object) 2762 { 2763 struct page *page; 2764 struct kmem_cache *s; 2765 2766 if (unlikely(object == ZERO_SIZE_PTR)) 2767 return 0; 2768 2769 page = virt_to_head_page(object); 2770 2771 if (unlikely(!PageSlab(page))) { 2772 WARN_ON(!PageCompound(page)); 2773 return PAGE_SIZE << compound_order(page); 2774 } 2775 s = page->slab; 2776 2777 #ifdef CONFIG_SLUB_DEBUG 2778 /* 2779 * Debugging requires use of the padding between object 2780 * and whatever may come after it. 2781 */ 2782 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 2783 return s->objsize; 2784 2785 #endif 2786 /* 2787 * If we have the need to store the freelist pointer 2788 * back there or track user information then we can 2789 * only use the space before that information. 2790 */ 2791 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 2792 return s->inuse; 2793 /* 2794 * Else we can use all the padding etc for the allocation 2795 */ 2796 return s->size; 2797 } 2798 EXPORT_SYMBOL(ksize); 2799 2800 void kfree(const void *x) 2801 { 2802 struct page *page; 2803 void *object = (void *)x; 2804 2805 trace_kfree(_RET_IP_, x); 2806 2807 if (unlikely(ZERO_OR_NULL_PTR(x))) 2808 return; 2809 2810 page = virt_to_head_page(x); 2811 if (unlikely(!PageSlab(page))) { 2812 BUG_ON(!PageCompound(page)); 2813 put_page(page); 2814 return; 2815 } 2816 slab_free(page->slab, page, object, _RET_IP_); 2817 } 2818 EXPORT_SYMBOL(kfree); 2819 2820 /* 2821 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 2822 * the remaining slabs by the number of items in use. The slabs with the 2823 * most items in use come first. New allocations will then fill those up 2824 * and thus they can be removed from the partial lists. 2825 * 2826 * The slabs with the least items are placed last. This results in them 2827 * being allocated from last increasing the chance that the last objects 2828 * are freed in them. 2829 */ 2830 int kmem_cache_shrink(struct kmem_cache *s) 2831 { 2832 int node; 2833 int i; 2834 struct kmem_cache_node *n; 2835 struct page *page; 2836 struct page *t; 2837 int objects = oo_objects(s->max); 2838 struct list_head *slabs_by_inuse = 2839 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 2840 unsigned long flags; 2841 2842 if (!slabs_by_inuse) 2843 return -ENOMEM; 2844 2845 flush_all(s); 2846 for_each_node_state(node, N_NORMAL_MEMORY) { 2847 n = get_node(s, node); 2848 2849 if (!n->nr_partial) 2850 continue; 2851 2852 for (i = 0; i < objects; i++) 2853 INIT_LIST_HEAD(slabs_by_inuse + i); 2854 2855 spin_lock_irqsave(&n->list_lock, flags); 2856 2857 /* 2858 * Build lists indexed by the items in use in each slab. 2859 * 2860 * Note that concurrent frees may occur while we hold the 2861 * list_lock. page->inuse here is the upper limit. 2862 */ 2863 list_for_each_entry_safe(page, t, &n->partial, lru) { 2864 if (!page->inuse && slab_trylock(page)) { 2865 /* 2866 * Must hold slab lock here because slab_free 2867 * may have freed the last object and be 2868 * waiting to release the slab. 2869 */ 2870 list_del(&page->lru); 2871 n->nr_partial--; 2872 slab_unlock(page); 2873 discard_slab(s, page); 2874 } else { 2875 list_move(&page->lru, 2876 slabs_by_inuse + page->inuse); 2877 } 2878 } 2879 2880 /* 2881 * Rebuild the partial list with the slabs filled up most 2882 * first and the least used slabs at the end. 2883 */ 2884 for (i = objects - 1; i >= 0; i--) 2885 list_splice(slabs_by_inuse + i, n->partial.prev); 2886 2887 spin_unlock_irqrestore(&n->list_lock, flags); 2888 } 2889 2890 kfree(slabs_by_inuse); 2891 return 0; 2892 } 2893 EXPORT_SYMBOL(kmem_cache_shrink); 2894 2895 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 2896 static int slab_mem_going_offline_callback(void *arg) 2897 { 2898 struct kmem_cache *s; 2899 2900 down_read(&slub_lock); 2901 list_for_each_entry(s, &slab_caches, list) 2902 kmem_cache_shrink(s); 2903 up_read(&slub_lock); 2904 2905 return 0; 2906 } 2907 2908 static void slab_mem_offline_callback(void *arg) 2909 { 2910 struct kmem_cache_node *n; 2911 struct kmem_cache *s; 2912 struct memory_notify *marg = arg; 2913 int offline_node; 2914 2915 offline_node = marg->status_change_nid; 2916 2917 /* 2918 * If the node still has available memory. we need kmem_cache_node 2919 * for it yet. 2920 */ 2921 if (offline_node < 0) 2922 return; 2923 2924 down_read(&slub_lock); 2925 list_for_each_entry(s, &slab_caches, list) { 2926 n = get_node(s, offline_node); 2927 if (n) { 2928 /* 2929 * if n->nr_slabs > 0, slabs still exist on the node 2930 * that is going down. We were unable to free them, 2931 * and offline_pages() function shoudn't call this 2932 * callback. So, we must fail. 2933 */ 2934 BUG_ON(slabs_node(s, offline_node)); 2935 2936 s->node[offline_node] = NULL; 2937 kmem_cache_free(kmalloc_caches, n); 2938 } 2939 } 2940 up_read(&slub_lock); 2941 } 2942 2943 static int slab_mem_going_online_callback(void *arg) 2944 { 2945 struct kmem_cache_node *n; 2946 struct kmem_cache *s; 2947 struct memory_notify *marg = arg; 2948 int nid = marg->status_change_nid; 2949 int ret = 0; 2950 2951 /* 2952 * If the node's memory is already available, then kmem_cache_node is 2953 * already created. Nothing to do. 2954 */ 2955 if (nid < 0) 2956 return 0; 2957 2958 /* 2959 * We are bringing a node online. No memory is available yet. We must 2960 * allocate a kmem_cache_node structure in order to bring the node 2961 * online. 2962 */ 2963 down_read(&slub_lock); 2964 list_for_each_entry(s, &slab_caches, list) { 2965 /* 2966 * XXX: kmem_cache_alloc_node will fallback to other nodes 2967 * since memory is not yet available from the node that 2968 * is brought up. 2969 */ 2970 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); 2971 if (!n) { 2972 ret = -ENOMEM; 2973 goto out; 2974 } 2975 init_kmem_cache_node(n, s); 2976 s->node[nid] = n; 2977 } 2978 out: 2979 up_read(&slub_lock); 2980 return ret; 2981 } 2982 2983 static int slab_memory_callback(struct notifier_block *self, 2984 unsigned long action, void *arg) 2985 { 2986 int ret = 0; 2987 2988 switch (action) { 2989 case MEM_GOING_ONLINE: 2990 ret = slab_mem_going_online_callback(arg); 2991 break; 2992 case MEM_GOING_OFFLINE: 2993 ret = slab_mem_going_offline_callback(arg); 2994 break; 2995 case MEM_OFFLINE: 2996 case MEM_CANCEL_ONLINE: 2997 slab_mem_offline_callback(arg); 2998 break; 2999 case MEM_ONLINE: 3000 case MEM_CANCEL_OFFLINE: 3001 break; 3002 } 3003 if (ret) 3004 ret = notifier_from_errno(ret); 3005 else 3006 ret = NOTIFY_OK; 3007 return ret; 3008 } 3009 3010 #endif /* CONFIG_MEMORY_HOTPLUG */ 3011 3012 /******************************************************************** 3013 * Basic setup of slabs 3014 *******************************************************************/ 3015 3016 void __init kmem_cache_init(void) 3017 { 3018 int i; 3019 int caches = 0; 3020 3021 init_alloc_cpu(); 3022 3023 #ifdef CONFIG_NUMA 3024 /* 3025 * Must first have the slab cache available for the allocations of the 3026 * struct kmem_cache_node's. There is special bootstrap code in 3027 * kmem_cache_open for slab_state == DOWN. 3028 */ 3029 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", 3030 sizeof(struct kmem_cache_node), GFP_NOWAIT); 3031 kmalloc_caches[0].refcount = -1; 3032 caches++; 3033 3034 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 3035 #endif 3036 3037 /* Able to allocate the per node structures */ 3038 slab_state = PARTIAL; 3039 3040 /* Caches that are not of the two-to-the-power-of size */ 3041 if (KMALLOC_MIN_SIZE <= 64) { 3042 create_kmalloc_cache(&kmalloc_caches[1], 3043 "kmalloc-96", 96, GFP_NOWAIT); 3044 caches++; 3045 create_kmalloc_cache(&kmalloc_caches[2], 3046 "kmalloc-192", 192, GFP_NOWAIT); 3047 caches++; 3048 } 3049 3050 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3051 create_kmalloc_cache(&kmalloc_caches[i], 3052 "kmalloc", 1 << i, GFP_NOWAIT); 3053 caches++; 3054 } 3055 3056 3057 /* 3058 * Patch up the size_index table if we have strange large alignment 3059 * requirements for the kmalloc array. This is only the case for 3060 * MIPS it seems. The standard arches will not generate any code here. 3061 * 3062 * Largest permitted alignment is 256 bytes due to the way we 3063 * handle the index determination for the smaller caches. 3064 * 3065 * Make sure that nothing crazy happens if someone starts tinkering 3066 * around with ARCH_KMALLOC_MINALIGN 3067 */ 3068 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3069 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3070 3071 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) 3072 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; 3073 3074 if (KMALLOC_MIN_SIZE == 128) { 3075 /* 3076 * The 192 byte sized cache is not used if the alignment 3077 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3078 * instead. 3079 */ 3080 for (i = 128 + 8; i <= 192; i += 8) 3081 size_index[(i - 1) / 8] = 8; 3082 } 3083 3084 slab_state = UP; 3085 3086 /* Provide the correct kmalloc names now that the caches are up */ 3087 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) 3088 kmalloc_caches[i]. name = 3089 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); 3090 3091 #ifdef CONFIG_SMP 3092 register_cpu_notifier(&slab_notifier); 3093 kmem_size = offsetof(struct kmem_cache, cpu_slab) + 3094 nr_cpu_ids * sizeof(struct kmem_cache_cpu *); 3095 #else 3096 kmem_size = sizeof(struct kmem_cache); 3097 #endif 3098 3099 printk(KERN_INFO 3100 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3101 " CPUs=%d, Nodes=%d\n", 3102 caches, cache_line_size(), 3103 slub_min_order, slub_max_order, slub_min_objects, 3104 nr_cpu_ids, nr_node_ids); 3105 } 3106 3107 /* 3108 * Find a mergeable slab cache 3109 */ 3110 static int slab_unmergeable(struct kmem_cache *s) 3111 { 3112 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3113 return 1; 3114 3115 if (s->ctor) 3116 return 1; 3117 3118 /* 3119 * We may have set a slab to be unmergeable during bootstrap. 3120 */ 3121 if (s->refcount < 0) 3122 return 1; 3123 3124 return 0; 3125 } 3126 3127 static struct kmem_cache *find_mergeable(size_t size, 3128 size_t align, unsigned long flags, const char *name, 3129 void (*ctor)(void *)) 3130 { 3131 struct kmem_cache *s; 3132 3133 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3134 return NULL; 3135 3136 if (ctor) 3137 return NULL; 3138 3139 size = ALIGN(size, sizeof(void *)); 3140 align = calculate_alignment(flags, align, size); 3141 size = ALIGN(size, align); 3142 flags = kmem_cache_flags(size, flags, name, NULL); 3143 3144 list_for_each_entry(s, &slab_caches, list) { 3145 if (slab_unmergeable(s)) 3146 continue; 3147 3148 if (size > s->size) 3149 continue; 3150 3151 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3152 continue; 3153 /* 3154 * Check if alignment is compatible. 3155 * Courtesy of Adrian Drzewiecki 3156 */ 3157 if ((s->size & ~(align - 1)) != s->size) 3158 continue; 3159 3160 if (s->size - size >= sizeof(void *)) 3161 continue; 3162 3163 return s; 3164 } 3165 return NULL; 3166 } 3167 3168 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 3169 size_t align, unsigned long flags, void (*ctor)(void *)) 3170 { 3171 struct kmem_cache *s; 3172 3173 down_write(&slub_lock); 3174 s = find_mergeable(size, align, flags, name, ctor); 3175 if (s) { 3176 int cpu; 3177 3178 s->refcount++; 3179 /* 3180 * Adjust the object sizes so that we clear 3181 * the complete object on kzalloc. 3182 */ 3183 s->objsize = max(s->objsize, (int)size); 3184 3185 /* 3186 * And then we need to update the object size in the 3187 * per cpu structures 3188 */ 3189 for_each_online_cpu(cpu) 3190 get_cpu_slab(s, cpu)->objsize = s->objsize; 3191 3192 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3193 up_write(&slub_lock); 3194 3195 if (sysfs_slab_alias(s, name)) { 3196 down_write(&slub_lock); 3197 s->refcount--; 3198 up_write(&slub_lock); 3199 goto err; 3200 } 3201 return s; 3202 } 3203 3204 s = kmalloc(kmem_size, GFP_KERNEL); 3205 if (s) { 3206 if (kmem_cache_open(s, GFP_KERNEL, name, 3207 size, align, flags, ctor)) { 3208 list_add(&s->list, &slab_caches); 3209 up_write(&slub_lock); 3210 if (sysfs_slab_add(s)) { 3211 down_write(&slub_lock); 3212 list_del(&s->list); 3213 up_write(&slub_lock); 3214 kfree(s); 3215 goto err; 3216 } 3217 return s; 3218 } 3219 kfree(s); 3220 } 3221 up_write(&slub_lock); 3222 3223 err: 3224 if (flags & SLAB_PANIC) 3225 panic("Cannot create slabcache %s\n", name); 3226 else 3227 s = NULL; 3228 return s; 3229 } 3230 EXPORT_SYMBOL(kmem_cache_create); 3231 3232 #ifdef CONFIG_SMP 3233 /* 3234 * Use the cpu notifier to insure that the cpu slabs are flushed when 3235 * necessary. 3236 */ 3237 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3238 unsigned long action, void *hcpu) 3239 { 3240 long cpu = (long)hcpu; 3241 struct kmem_cache *s; 3242 unsigned long flags; 3243 3244 switch (action) { 3245 case CPU_UP_PREPARE: 3246 case CPU_UP_PREPARE_FROZEN: 3247 init_alloc_cpu_cpu(cpu); 3248 down_read(&slub_lock); 3249 list_for_each_entry(s, &slab_caches, list) 3250 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu, 3251 GFP_KERNEL); 3252 up_read(&slub_lock); 3253 break; 3254 3255 case CPU_UP_CANCELED: 3256 case CPU_UP_CANCELED_FROZEN: 3257 case CPU_DEAD: 3258 case CPU_DEAD_FROZEN: 3259 down_read(&slub_lock); 3260 list_for_each_entry(s, &slab_caches, list) { 3261 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3262 3263 local_irq_save(flags); 3264 __flush_cpu_slab(s, cpu); 3265 local_irq_restore(flags); 3266 free_kmem_cache_cpu(c, cpu); 3267 s->cpu_slab[cpu] = NULL; 3268 } 3269 up_read(&slub_lock); 3270 break; 3271 default: 3272 break; 3273 } 3274 return NOTIFY_OK; 3275 } 3276 3277 static struct notifier_block __cpuinitdata slab_notifier = { 3278 .notifier_call = slab_cpuup_callback 3279 }; 3280 3281 #endif 3282 3283 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3284 { 3285 struct kmem_cache *s; 3286 void *ret; 3287 3288 if (unlikely(size > SLUB_MAX_SIZE)) 3289 return kmalloc_large(size, gfpflags); 3290 3291 s = get_slab(size, gfpflags); 3292 3293 if (unlikely(ZERO_OR_NULL_PTR(s))) 3294 return s; 3295 3296 ret = slab_alloc(s, gfpflags, -1, caller); 3297 3298 /* Honor the call site pointer we recieved. */ 3299 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3300 3301 return ret; 3302 } 3303 3304 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3305 int node, unsigned long caller) 3306 { 3307 struct kmem_cache *s; 3308 void *ret; 3309 3310 if (unlikely(size > SLUB_MAX_SIZE)) 3311 return kmalloc_large_node(size, gfpflags, node); 3312 3313 s = get_slab(size, gfpflags); 3314 3315 if (unlikely(ZERO_OR_NULL_PTR(s))) 3316 return s; 3317 3318 ret = slab_alloc(s, gfpflags, node, caller); 3319 3320 /* Honor the call site pointer we recieved. */ 3321 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3322 3323 return ret; 3324 } 3325 3326 #ifdef CONFIG_SLUB_DEBUG 3327 static unsigned long count_partial(struct kmem_cache_node *n, 3328 int (*get_count)(struct page *)) 3329 { 3330 unsigned long flags; 3331 unsigned long x = 0; 3332 struct page *page; 3333 3334 spin_lock_irqsave(&n->list_lock, flags); 3335 list_for_each_entry(page, &n->partial, lru) 3336 x += get_count(page); 3337 spin_unlock_irqrestore(&n->list_lock, flags); 3338 return x; 3339 } 3340 3341 static int count_inuse(struct page *page) 3342 { 3343 return page->inuse; 3344 } 3345 3346 static int count_total(struct page *page) 3347 { 3348 return page->objects; 3349 } 3350 3351 static int count_free(struct page *page) 3352 { 3353 return page->objects - page->inuse; 3354 } 3355 3356 static int validate_slab(struct kmem_cache *s, struct page *page, 3357 unsigned long *map) 3358 { 3359 void *p; 3360 void *addr = page_address(page); 3361 3362 if (!check_slab(s, page) || 3363 !on_freelist(s, page, NULL)) 3364 return 0; 3365 3366 /* Now we know that a valid freelist exists */ 3367 bitmap_zero(map, page->objects); 3368 3369 for_each_free_object(p, s, page->freelist) { 3370 set_bit(slab_index(p, s, addr), map); 3371 if (!check_object(s, page, p, 0)) 3372 return 0; 3373 } 3374 3375 for_each_object(p, s, addr, page->objects) 3376 if (!test_bit(slab_index(p, s, addr), map)) 3377 if (!check_object(s, page, p, 1)) 3378 return 0; 3379 return 1; 3380 } 3381 3382 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3383 unsigned long *map) 3384 { 3385 if (slab_trylock(page)) { 3386 validate_slab(s, page, map); 3387 slab_unlock(page); 3388 } else 3389 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", 3390 s->name, page); 3391 3392 if (s->flags & DEBUG_DEFAULT_FLAGS) { 3393 if (!PageSlubDebug(page)) 3394 printk(KERN_ERR "SLUB %s: SlubDebug not set " 3395 "on slab 0x%p\n", s->name, page); 3396 } else { 3397 if (PageSlubDebug(page)) 3398 printk(KERN_ERR "SLUB %s: SlubDebug set on " 3399 "slab 0x%p\n", s->name, page); 3400 } 3401 } 3402 3403 static int validate_slab_node(struct kmem_cache *s, 3404 struct kmem_cache_node *n, unsigned long *map) 3405 { 3406 unsigned long count = 0; 3407 struct page *page; 3408 unsigned long flags; 3409 3410 spin_lock_irqsave(&n->list_lock, flags); 3411 3412 list_for_each_entry(page, &n->partial, lru) { 3413 validate_slab_slab(s, page, map); 3414 count++; 3415 } 3416 if (count != n->nr_partial) 3417 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3418 "counter=%ld\n", s->name, count, n->nr_partial); 3419 3420 if (!(s->flags & SLAB_STORE_USER)) 3421 goto out; 3422 3423 list_for_each_entry(page, &n->full, lru) { 3424 validate_slab_slab(s, page, map); 3425 count++; 3426 } 3427 if (count != atomic_long_read(&n->nr_slabs)) 3428 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3429 "counter=%ld\n", s->name, count, 3430 atomic_long_read(&n->nr_slabs)); 3431 3432 out: 3433 spin_unlock_irqrestore(&n->list_lock, flags); 3434 return count; 3435 } 3436 3437 static long validate_slab_cache(struct kmem_cache *s) 3438 { 3439 int node; 3440 unsigned long count = 0; 3441 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3442 sizeof(unsigned long), GFP_KERNEL); 3443 3444 if (!map) 3445 return -ENOMEM; 3446 3447 flush_all(s); 3448 for_each_node_state(node, N_NORMAL_MEMORY) { 3449 struct kmem_cache_node *n = get_node(s, node); 3450 3451 count += validate_slab_node(s, n, map); 3452 } 3453 kfree(map); 3454 return count; 3455 } 3456 3457 #ifdef SLUB_RESILIENCY_TEST 3458 static void resiliency_test(void) 3459 { 3460 u8 *p; 3461 3462 printk(KERN_ERR "SLUB resiliency testing\n"); 3463 printk(KERN_ERR "-----------------------\n"); 3464 printk(KERN_ERR "A. Corruption after allocation\n"); 3465 3466 p = kzalloc(16, GFP_KERNEL); 3467 p[16] = 0x12; 3468 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 3469 " 0x12->0x%p\n\n", p + 16); 3470 3471 validate_slab_cache(kmalloc_caches + 4); 3472 3473 /* Hmmm... The next two are dangerous */ 3474 p = kzalloc(32, GFP_KERNEL); 3475 p[32 + sizeof(void *)] = 0x34; 3476 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 3477 " 0x34 -> -0x%p\n", p); 3478 printk(KERN_ERR 3479 "If allocated object is overwritten then not detectable\n\n"); 3480 3481 validate_slab_cache(kmalloc_caches + 5); 3482 p = kzalloc(64, GFP_KERNEL); 3483 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 3484 *p = 0x56; 3485 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 3486 p); 3487 printk(KERN_ERR 3488 "If allocated object is overwritten then not detectable\n\n"); 3489 validate_slab_cache(kmalloc_caches + 6); 3490 3491 printk(KERN_ERR "\nB. Corruption after free\n"); 3492 p = kzalloc(128, GFP_KERNEL); 3493 kfree(p); 3494 *p = 0x78; 3495 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 3496 validate_slab_cache(kmalloc_caches + 7); 3497 3498 p = kzalloc(256, GFP_KERNEL); 3499 kfree(p); 3500 p[50] = 0x9a; 3501 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 3502 p); 3503 validate_slab_cache(kmalloc_caches + 8); 3504 3505 p = kzalloc(512, GFP_KERNEL); 3506 kfree(p); 3507 p[512] = 0xab; 3508 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 3509 validate_slab_cache(kmalloc_caches + 9); 3510 } 3511 #else 3512 static void resiliency_test(void) {}; 3513 #endif 3514 3515 /* 3516 * Generate lists of code addresses where slabcache objects are allocated 3517 * and freed. 3518 */ 3519 3520 struct location { 3521 unsigned long count; 3522 unsigned long addr; 3523 long long sum_time; 3524 long min_time; 3525 long max_time; 3526 long min_pid; 3527 long max_pid; 3528 DECLARE_BITMAP(cpus, NR_CPUS); 3529 nodemask_t nodes; 3530 }; 3531 3532 struct loc_track { 3533 unsigned long max; 3534 unsigned long count; 3535 struct location *loc; 3536 }; 3537 3538 static void free_loc_track(struct loc_track *t) 3539 { 3540 if (t->max) 3541 free_pages((unsigned long)t->loc, 3542 get_order(sizeof(struct location) * t->max)); 3543 } 3544 3545 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3546 { 3547 struct location *l; 3548 int order; 3549 3550 order = get_order(sizeof(struct location) * max); 3551 3552 l = (void *)__get_free_pages(flags, order); 3553 if (!l) 3554 return 0; 3555 3556 if (t->count) { 3557 memcpy(l, t->loc, sizeof(struct location) * t->count); 3558 free_loc_track(t); 3559 } 3560 t->max = max; 3561 t->loc = l; 3562 return 1; 3563 } 3564 3565 static int add_location(struct loc_track *t, struct kmem_cache *s, 3566 const struct track *track) 3567 { 3568 long start, end, pos; 3569 struct location *l; 3570 unsigned long caddr; 3571 unsigned long age = jiffies - track->when; 3572 3573 start = -1; 3574 end = t->count; 3575 3576 for ( ; ; ) { 3577 pos = start + (end - start + 1) / 2; 3578 3579 /* 3580 * There is nothing at "end". If we end up there 3581 * we need to add something to before end. 3582 */ 3583 if (pos == end) 3584 break; 3585 3586 caddr = t->loc[pos].addr; 3587 if (track->addr == caddr) { 3588 3589 l = &t->loc[pos]; 3590 l->count++; 3591 if (track->when) { 3592 l->sum_time += age; 3593 if (age < l->min_time) 3594 l->min_time = age; 3595 if (age > l->max_time) 3596 l->max_time = age; 3597 3598 if (track->pid < l->min_pid) 3599 l->min_pid = track->pid; 3600 if (track->pid > l->max_pid) 3601 l->max_pid = track->pid; 3602 3603 cpumask_set_cpu(track->cpu, 3604 to_cpumask(l->cpus)); 3605 } 3606 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3607 return 1; 3608 } 3609 3610 if (track->addr < caddr) 3611 end = pos; 3612 else 3613 start = pos; 3614 } 3615 3616 /* 3617 * Not found. Insert new tracking element. 3618 */ 3619 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3620 return 0; 3621 3622 l = t->loc + pos; 3623 if (pos < t->count) 3624 memmove(l + 1, l, 3625 (t->count - pos) * sizeof(struct location)); 3626 t->count++; 3627 l->count = 1; 3628 l->addr = track->addr; 3629 l->sum_time = age; 3630 l->min_time = age; 3631 l->max_time = age; 3632 l->min_pid = track->pid; 3633 l->max_pid = track->pid; 3634 cpumask_clear(to_cpumask(l->cpus)); 3635 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 3636 nodes_clear(l->nodes); 3637 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3638 return 1; 3639 } 3640 3641 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3642 struct page *page, enum track_item alloc) 3643 { 3644 void *addr = page_address(page); 3645 DECLARE_BITMAP(map, page->objects); 3646 void *p; 3647 3648 bitmap_zero(map, page->objects); 3649 for_each_free_object(p, s, page->freelist) 3650 set_bit(slab_index(p, s, addr), map); 3651 3652 for_each_object(p, s, addr, page->objects) 3653 if (!test_bit(slab_index(p, s, addr), map)) 3654 add_location(t, s, get_track(s, p, alloc)); 3655 } 3656 3657 static int list_locations(struct kmem_cache *s, char *buf, 3658 enum track_item alloc) 3659 { 3660 int len = 0; 3661 unsigned long i; 3662 struct loc_track t = { 0, 0, NULL }; 3663 int node; 3664 3665 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 3666 GFP_TEMPORARY)) 3667 return sprintf(buf, "Out of memory\n"); 3668 3669 /* Push back cpu slabs */ 3670 flush_all(s); 3671 3672 for_each_node_state(node, N_NORMAL_MEMORY) { 3673 struct kmem_cache_node *n = get_node(s, node); 3674 unsigned long flags; 3675 struct page *page; 3676 3677 if (!atomic_long_read(&n->nr_slabs)) 3678 continue; 3679 3680 spin_lock_irqsave(&n->list_lock, flags); 3681 list_for_each_entry(page, &n->partial, lru) 3682 process_slab(&t, s, page, alloc); 3683 list_for_each_entry(page, &n->full, lru) 3684 process_slab(&t, s, page, alloc); 3685 spin_unlock_irqrestore(&n->list_lock, flags); 3686 } 3687 3688 for (i = 0; i < t.count; i++) { 3689 struct location *l = &t.loc[i]; 3690 3691 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 3692 break; 3693 len += sprintf(buf + len, "%7ld ", l->count); 3694 3695 if (l->addr) 3696 len += sprint_symbol(buf + len, (unsigned long)l->addr); 3697 else 3698 len += sprintf(buf + len, "<not-available>"); 3699 3700 if (l->sum_time != l->min_time) { 3701 len += sprintf(buf + len, " age=%ld/%ld/%ld", 3702 l->min_time, 3703 (long)div_u64(l->sum_time, l->count), 3704 l->max_time); 3705 } else 3706 len += sprintf(buf + len, " age=%ld", 3707 l->min_time); 3708 3709 if (l->min_pid != l->max_pid) 3710 len += sprintf(buf + len, " pid=%ld-%ld", 3711 l->min_pid, l->max_pid); 3712 else 3713 len += sprintf(buf + len, " pid=%ld", 3714 l->min_pid); 3715 3716 if (num_online_cpus() > 1 && 3717 !cpumask_empty(to_cpumask(l->cpus)) && 3718 len < PAGE_SIZE - 60) { 3719 len += sprintf(buf + len, " cpus="); 3720 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3721 to_cpumask(l->cpus)); 3722 } 3723 3724 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) && 3725 len < PAGE_SIZE - 60) { 3726 len += sprintf(buf + len, " nodes="); 3727 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3728 l->nodes); 3729 } 3730 3731 len += sprintf(buf + len, "\n"); 3732 } 3733 3734 free_loc_track(&t); 3735 if (!t.count) 3736 len += sprintf(buf, "No data\n"); 3737 return len; 3738 } 3739 3740 enum slab_stat_type { 3741 SL_ALL, /* All slabs */ 3742 SL_PARTIAL, /* Only partially allocated slabs */ 3743 SL_CPU, /* Only slabs used for cpu caches */ 3744 SL_OBJECTS, /* Determine allocated objects not slabs */ 3745 SL_TOTAL /* Determine object capacity not slabs */ 3746 }; 3747 3748 #define SO_ALL (1 << SL_ALL) 3749 #define SO_PARTIAL (1 << SL_PARTIAL) 3750 #define SO_CPU (1 << SL_CPU) 3751 #define SO_OBJECTS (1 << SL_OBJECTS) 3752 #define SO_TOTAL (1 << SL_TOTAL) 3753 3754 static ssize_t show_slab_objects(struct kmem_cache *s, 3755 char *buf, unsigned long flags) 3756 { 3757 unsigned long total = 0; 3758 int node; 3759 int x; 3760 unsigned long *nodes; 3761 unsigned long *per_cpu; 3762 3763 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 3764 if (!nodes) 3765 return -ENOMEM; 3766 per_cpu = nodes + nr_node_ids; 3767 3768 if (flags & SO_CPU) { 3769 int cpu; 3770 3771 for_each_possible_cpu(cpu) { 3772 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3773 3774 if (!c || c->node < 0) 3775 continue; 3776 3777 if (c->page) { 3778 if (flags & SO_TOTAL) 3779 x = c->page->objects; 3780 else if (flags & SO_OBJECTS) 3781 x = c->page->inuse; 3782 else 3783 x = 1; 3784 3785 total += x; 3786 nodes[c->node] += x; 3787 } 3788 per_cpu[c->node]++; 3789 } 3790 } 3791 3792 if (flags & SO_ALL) { 3793 for_each_node_state(node, N_NORMAL_MEMORY) { 3794 struct kmem_cache_node *n = get_node(s, node); 3795 3796 if (flags & SO_TOTAL) 3797 x = atomic_long_read(&n->total_objects); 3798 else if (flags & SO_OBJECTS) 3799 x = atomic_long_read(&n->total_objects) - 3800 count_partial(n, count_free); 3801 3802 else 3803 x = atomic_long_read(&n->nr_slabs); 3804 total += x; 3805 nodes[node] += x; 3806 } 3807 3808 } else if (flags & SO_PARTIAL) { 3809 for_each_node_state(node, N_NORMAL_MEMORY) { 3810 struct kmem_cache_node *n = get_node(s, node); 3811 3812 if (flags & SO_TOTAL) 3813 x = count_partial(n, count_total); 3814 else if (flags & SO_OBJECTS) 3815 x = count_partial(n, count_inuse); 3816 else 3817 x = n->nr_partial; 3818 total += x; 3819 nodes[node] += x; 3820 } 3821 } 3822 x = sprintf(buf, "%lu", total); 3823 #ifdef CONFIG_NUMA 3824 for_each_node_state(node, N_NORMAL_MEMORY) 3825 if (nodes[node]) 3826 x += sprintf(buf + x, " N%d=%lu", 3827 node, nodes[node]); 3828 #endif 3829 kfree(nodes); 3830 return x + sprintf(buf + x, "\n"); 3831 } 3832 3833 static int any_slab_objects(struct kmem_cache *s) 3834 { 3835 int node; 3836 3837 for_each_online_node(node) { 3838 struct kmem_cache_node *n = get_node(s, node); 3839 3840 if (!n) 3841 continue; 3842 3843 if (atomic_long_read(&n->total_objects)) 3844 return 1; 3845 } 3846 return 0; 3847 } 3848 3849 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 3850 #define to_slab(n) container_of(n, struct kmem_cache, kobj); 3851 3852 struct slab_attribute { 3853 struct attribute attr; 3854 ssize_t (*show)(struct kmem_cache *s, char *buf); 3855 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 3856 }; 3857 3858 #define SLAB_ATTR_RO(_name) \ 3859 static struct slab_attribute _name##_attr = __ATTR_RO(_name) 3860 3861 #define SLAB_ATTR(_name) \ 3862 static struct slab_attribute _name##_attr = \ 3863 __ATTR(_name, 0644, _name##_show, _name##_store) 3864 3865 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 3866 { 3867 return sprintf(buf, "%d\n", s->size); 3868 } 3869 SLAB_ATTR_RO(slab_size); 3870 3871 static ssize_t align_show(struct kmem_cache *s, char *buf) 3872 { 3873 return sprintf(buf, "%d\n", s->align); 3874 } 3875 SLAB_ATTR_RO(align); 3876 3877 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 3878 { 3879 return sprintf(buf, "%d\n", s->objsize); 3880 } 3881 SLAB_ATTR_RO(object_size); 3882 3883 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 3884 { 3885 return sprintf(buf, "%d\n", oo_objects(s->oo)); 3886 } 3887 SLAB_ATTR_RO(objs_per_slab); 3888 3889 static ssize_t order_store(struct kmem_cache *s, 3890 const char *buf, size_t length) 3891 { 3892 unsigned long order; 3893 int err; 3894 3895 err = strict_strtoul(buf, 10, &order); 3896 if (err) 3897 return err; 3898 3899 if (order > slub_max_order || order < slub_min_order) 3900 return -EINVAL; 3901 3902 calculate_sizes(s, order); 3903 return length; 3904 } 3905 3906 static ssize_t order_show(struct kmem_cache *s, char *buf) 3907 { 3908 return sprintf(buf, "%d\n", oo_order(s->oo)); 3909 } 3910 SLAB_ATTR(order); 3911 3912 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 3913 { 3914 return sprintf(buf, "%lu\n", s->min_partial); 3915 } 3916 3917 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 3918 size_t length) 3919 { 3920 unsigned long min; 3921 int err; 3922 3923 err = strict_strtoul(buf, 10, &min); 3924 if (err) 3925 return err; 3926 3927 set_min_partial(s, min); 3928 return length; 3929 } 3930 SLAB_ATTR(min_partial); 3931 3932 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 3933 { 3934 if (s->ctor) { 3935 int n = sprint_symbol(buf, (unsigned long)s->ctor); 3936 3937 return n + sprintf(buf + n, "\n"); 3938 } 3939 return 0; 3940 } 3941 SLAB_ATTR_RO(ctor); 3942 3943 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 3944 { 3945 return sprintf(buf, "%d\n", s->refcount - 1); 3946 } 3947 SLAB_ATTR_RO(aliases); 3948 3949 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 3950 { 3951 return show_slab_objects(s, buf, SO_ALL); 3952 } 3953 SLAB_ATTR_RO(slabs); 3954 3955 static ssize_t partial_show(struct kmem_cache *s, char *buf) 3956 { 3957 return show_slab_objects(s, buf, SO_PARTIAL); 3958 } 3959 SLAB_ATTR_RO(partial); 3960 3961 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 3962 { 3963 return show_slab_objects(s, buf, SO_CPU); 3964 } 3965 SLAB_ATTR_RO(cpu_slabs); 3966 3967 static ssize_t objects_show(struct kmem_cache *s, char *buf) 3968 { 3969 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 3970 } 3971 SLAB_ATTR_RO(objects); 3972 3973 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 3974 { 3975 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 3976 } 3977 SLAB_ATTR_RO(objects_partial); 3978 3979 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 3980 { 3981 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 3982 } 3983 SLAB_ATTR_RO(total_objects); 3984 3985 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 3986 { 3987 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 3988 } 3989 3990 static ssize_t sanity_checks_store(struct kmem_cache *s, 3991 const char *buf, size_t length) 3992 { 3993 s->flags &= ~SLAB_DEBUG_FREE; 3994 if (buf[0] == '1') 3995 s->flags |= SLAB_DEBUG_FREE; 3996 return length; 3997 } 3998 SLAB_ATTR(sanity_checks); 3999 4000 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4001 { 4002 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4003 } 4004 4005 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4006 size_t length) 4007 { 4008 s->flags &= ~SLAB_TRACE; 4009 if (buf[0] == '1') 4010 s->flags |= SLAB_TRACE; 4011 return length; 4012 } 4013 SLAB_ATTR(trace); 4014 4015 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4016 { 4017 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4018 } 4019 4020 static ssize_t reclaim_account_store(struct kmem_cache *s, 4021 const char *buf, size_t length) 4022 { 4023 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4024 if (buf[0] == '1') 4025 s->flags |= SLAB_RECLAIM_ACCOUNT; 4026 return length; 4027 } 4028 SLAB_ATTR(reclaim_account); 4029 4030 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4031 { 4032 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4033 } 4034 SLAB_ATTR_RO(hwcache_align); 4035 4036 #ifdef CONFIG_ZONE_DMA 4037 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4038 { 4039 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4040 } 4041 SLAB_ATTR_RO(cache_dma); 4042 #endif 4043 4044 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4045 { 4046 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4047 } 4048 SLAB_ATTR_RO(destroy_by_rcu); 4049 4050 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4051 { 4052 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4053 } 4054 4055 static ssize_t red_zone_store(struct kmem_cache *s, 4056 const char *buf, size_t length) 4057 { 4058 if (any_slab_objects(s)) 4059 return -EBUSY; 4060 4061 s->flags &= ~SLAB_RED_ZONE; 4062 if (buf[0] == '1') 4063 s->flags |= SLAB_RED_ZONE; 4064 calculate_sizes(s, -1); 4065 return length; 4066 } 4067 SLAB_ATTR(red_zone); 4068 4069 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4070 { 4071 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4072 } 4073 4074 static ssize_t poison_store(struct kmem_cache *s, 4075 const char *buf, size_t length) 4076 { 4077 if (any_slab_objects(s)) 4078 return -EBUSY; 4079 4080 s->flags &= ~SLAB_POISON; 4081 if (buf[0] == '1') 4082 s->flags |= SLAB_POISON; 4083 calculate_sizes(s, -1); 4084 return length; 4085 } 4086 SLAB_ATTR(poison); 4087 4088 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4089 { 4090 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4091 } 4092 4093 static ssize_t store_user_store(struct kmem_cache *s, 4094 const char *buf, size_t length) 4095 { 4096 if (any_slab_objects(s)) 4097 return -EBUSY; 4098 4099 s->flags &= ~SLAB_STORE_USER; 4100 if (buf[0] == '1') 4101 s->flags |= SLAB_STORE_USER; 4102 calculate_sizes(s, -1); 4103 return length; 4104 } 4105 SLAB_ATTR(store_user); 4106 4107 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4108 { 4109 return 0; 4110 } 4111 4112 static ssize_t validate_store(struct kmem_cache *s, 4113 const char *buf, size_t length) 4114 { 4115 int ret = -EINVAL; 4116 4117 if (buf[0] == '1') { 4118 ret = validate_slab_cache(s); 4119 if (ret >= 0) 4120 ret = length; 4121 } 4122 return ret; 4123 } 4124 SLAB_ATTR(validate); 4125 4126 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4127 { 4128 return 0; 4129 } 4130 4131 static ssize_t shrink_store(struct kmem_cache *s, 4132 const char *buf, size_t length) 4133 { 4134 if (buf[0] == '1') { 4135 int rc = kmem_cache_shrink(s); 4136 4137 if (rc) 4138 return rc; 4139 } else 4140 return -EINVAL; 4141 return length; 4142 } 4143 SLAB_ATTR(shrink); 4144 4145 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4146 { 4147 if (!(s->flags & SLAB_STORE_USER)) 4148 return -ENOSYS; 4149 return list_locations(s, buf, TRACK_ALLOC); 4150 } 4151 SLAB_ATTR_RO(alloc_calls); 4152 4153 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4154 { 4155 if (!(s->flags & SLAB_STORE_USER)) 4156 return -ENOSYS; 4157 return list_locations(s, buf, TRACK_FREE); 4158 } 4159 SLAB_ATTR_RO(free_calls); 4160 4161 #ifdef CONFIG_NUMA 4162 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4163 { 4164 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4165 } 4166 4167 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4168 const char *buf, size_t length) 4169 { 4170 unsigned long ratio; 4171 int err; 4172 4173 err = strict_strtoul(buf, 10, &ratio); 4174 if (err) 4175 return err; 4176 4177 if (ratio <= 100) 4178 s->remote_node_defrag_ratio = ratio * 10; 4179 4180 return length; 4181 } 4182 SLAB_ATTR(remote_node_defrag_ratio); 4183 #endif 4184 4185 #ifdef CONFIG_SLUB_STATS 4186 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4187 { 4188 unsigned long sum = 0; 4189 int cpu; 4190 int len; 4191 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4192 4193 if (!data) 4194 return -ENOMEM; 4195 4196 for_each_online_cpu(cpu) { 4197 unsigned x = get_cpu_slab(s, cpu)->stat[si]; 4198 4199 data[cpu] = x; 4200 sum += x; 4201 } 4202 4203 len = sprintf(buf, "%lu", sum); 4204 4205 #ifdef CONFIG_SMP 4206 for_each_online_cpu(cpu) { 4207 if (data[cpu] && len < PAGE_SIZE - 20) 4208 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4209 } 4210 #endif 4211 kfree(data); 4212 return len + sprintf(buf + len, "\n"); 4213 } 4214 4215 #define STAT_ATTR(si, text) \ 4216 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4217 { \ 4218 return show_stat(s, buf, si); \ 4219 } \ 4220 SLAB_ATTR_RO(text); \ 4221 4222 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4223 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4224 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4225 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4226 STAT_ATTR(FREE_FROZEN, free_frozen); 4227 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4228 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4229 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4230 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4231 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4232 STAT_ATTR(FREE_SLAB, free_slab); 4233 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4234 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4235 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4236 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4237 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4238 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4239 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4240 #endif 4241 4242 static struct attribute *slab_attrs[] = { 4243 &slab_size_attr.attr, 4244 &object_size_attr.attr, 4245 &objs_per_slab_attr.attr, 4246 &order_attr.attr, 4247 &min_partial_attr.attr, 4248 &objects_attr.attr, 4249 &objects_partial_attr.attr, 4250 &total_objects_attr.attr, 4251 &slabs_attr.attr, 4252 &partial_attr.attr, 4253 &cpu_slabs_attr.attr, 4254 &ctor_attr.attr, 4255 &aliases_attr.attr, 4256 &align_attr.attr, 4257 &sanity_checks_attr.attr, 4258 &trace_attr.attr, 4259 &hwcache_align_attr.attr, 4260 &reclaim_account_attr.attr, 4261 &destroy_by_rcu_attr.attr, 4262 &red_zone_attr.attr, 4263 &poison_attr.attr, 4264 &store_user_attr.attr, 4265 &validate_attr.attr, 4266 &shrink_attr.attr, 4267 &alloc_calls_attr.attr, 4268 &free_calls_attr.attr, 4269 #ifdef CONFIG_ZONE_DMA 4270 &cache_dma_attr.attr, 4271 #endif 4272 #ifdef CONFIG_NUMA 4273 &remote_node_defrag_ratio_attr.attr, 4274 #endif 4275 #ifdef CONFIG_SLUB_STATS 4276 &alloc_fastpath_attr.attr, 4277 &alloc_slowpath_attr.attr, 4278 &free_fastpath_attr.attr, 4279 &free_slowpath_attr.attr, 4280 &free_frozen_attr.attr, 4281 &free_add_partial_attr.attr, 4282 &free_remove_partial_attr.attr, 4283 &alloc_from_partial_attr.attr, 4284 &alloc_slab_attr.attr, 4285 &alloc_refill_attr.attr, 4286 &free_slab_attr.attr, 4287 &cpuslab_flush_attr.attr, 4288 &deactivate_full_attr.attr, 4289 &deactivate_empty_attr.attr, 4290 &deactivate_to_head_attr.attr, 4291 &deactivate_to_tail_attr.attr, 4292 &deactivate_remote_frees_attr.attr, 4293 &order_fallback_attr.attr, 4294 #endif 4295 NULL 4296 }; 4297 4298 static struct attribute_group slab_attr_group = { 4299 .attrs = slab_attrs, 4300 }; 4301 4302 static ssize_t slab_attr_show(struct kobject *kobj, 4303 struct attribute *attr, 4304 char *buf) 4305 { 4306 struct slab_attribute *attribute; 4307 struct kmem_cache *s; 4308 int err; 4309 4310 attribute = to_slab_attr(attr); 4311 s = to_slab(kobj); 4312 4313 if (!attribute->show) 4314 return -EIO; 4315 4316 err = attribute->show(s, buf); 4317 4318 return err; 4319 } 4320 4321 static ssize_t slab_attr_store(struct kobject *kobj, 4322 struct attribute *attr, 4323 const char *buf, size_t len) 4324 { 4325 struct slab_attribute *attribute; 4326 struct kmem_cache *s; 4327 int err; 4328 4329 attribute = to_slab_attr(attr); 4330 s = to_slab(kobj); 4331 4332 if (!attribute->store) 4333 return -EIO; 4334 4335 err = attribute->store(s, buf, len); 4336 4337 return err; 4338 } 4339 4340 static void kmem_cache_release(struct kobject *kobj) 4341 { 4342 struct kmem_cache *s = to_slab(kobj); 4343 4344 kfree(s); 4345 } 4346 4347 static struct sysfs_ops slab_sysfs_ops = { 4348 .show = slab_attr_show, 4349 .store = slab_attr_store, 4350 }; 4351 4352 static struct kobj_type slab_ktype = { 4353 .sysfs_ops = &slab_sysfs_ops, 4354 .release = kmem_cache_release 4355 }; 4356 4357 static int uevent_filter(struct kset *kset, struct kobject *kobj) 4358 { 4359 struct kobj_type *ktype = get_ktype(kobj); 4360 4361 if (ktype == &slab_ktype) 4362 return 1; 4363 return 0; 4364 } 4365 4366 static struct kset_uevent_ops slab_uevent_ops = { 4367 .filter = uevent_filter, 4368 }; 4369 4370 static struct kset *slab_kset; 4371 4372 #define ID_STR_LENGTH 64 4373 4374 /* Create a unique string id for a slab cache: 4375 * 4376 * Format :[flags-]size 4377 */ 4378 static char *create_unique_id(struct kmem_cache *s) 4379 { 4380 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 4381 char *p = name; 4382 4383 BUG_ON(!name); 4384 4385 *p++ = ':'; 4386 /* 4387 * First flags affecting slabcache operations. We will only 4388 * get here for aliasable slabs so we do not need to support 4389 * too many flags. The flags here must cover all flags that 4390 * are matched during merging to guarantee that the id is 4391 * unique. 4392 */ 4393 if (s->flags & SLAB_CACHE_DMA) 4394 *p++ = 'd'; 4395 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4396 *p++ = 'a'; 4397 if (s->flags & SLAB_DEBUG_FREE) 4398 *p++ = 'F'; 4399 if (p != name + 1) 4400 *p++ = '-'; 4401 p += sprintf(p, "%07d", s->size); 4402 BUG_ON(p > name + ID_STR_LENGTH - 1); 4403 return name; 4404 } 4405 4406 static int sysfs_slab_add(struct kmem_cache *s) 4407 { 4408 int err; 4409 const char *name; 4410 int unmergeable; 4411 4412 if (slab_state < SYSFS) 4413 /* Defer until later */ 4414 return 0; 4415 4416 unmergeable = slab_unmergeable(s); 4417 if (unmergeable) { 4418 /* 4419 * Slabcache can never be merged so we can use the name proper. 4420 * This is typically the case for debug situations. In that 4421 * case we can catch duplicate names easily. 4422 */ 4423 sysfs_remove_link(&slab_kset->kobj, s->name); 4424 name = s->name; 4425 } else { 4426 /* 4427 * Create a unique name for the slab as a target 4428 * for the symlinks. 4429 */ 4430 name = create_unique_id(s); 4431 } 4432 4433 s->kobj.kset = slab_kset; 4434 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 4435 if (err) { 4436 kobject_put(&s->kobj); 4437 return err; 4438 } 4439 4440 err = sysfs_create_group(&s->kobj, &slab_attr_group); 4441 if (err) 4442 return err; 4443 kobject_uevent(&s->kobj, KOBJ_ADD); 4444 if (!unmergeable) { 4445 /* Setup first alias */ 4446 sysfs_slab_alias(s, s->name); 4447 kfree(name); 4448 } 4449 return 0; 4450 } 4451 4452 static void sysfs_slab_remove(struct kmem_cache *s) 4453 { 4454 kobject_uevent(&s->kobj, KOBJ_REMOVE); 4455 kobject_del(&s->kobj); 4456 kobject_put(&s->kobj); 4457 } 4458 4459 /* 4460 * Need to buffer aliases during bootup until sysfs becomes 4461 * available lest we lose that information. 4462 */ 4463 struct saved_alias { 4464 struct kmem_cache *s; 4465 const char *name; 4466 struct saved_alias *next; 4467 }; 4468 4469 static struct saved_alias *alias_list; 4470 4471 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 4472 { 4473 struct saved_alias *al; 4474 4475 if (slab_state == SYSFS) { 4476 /* 4477 * If we have a leftover link then remove it. 4478 */ 4479 sysfs_remove_link(&slab_kset->kobj, name); 4480 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 4481 } 4482 4483 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 4484 if (!al) 4485 return -ENOMEM; 4486 4487 al->s = s; 4488 al->name = name; 4489 al->next = alias_list; 4490 alias_list = al; 4491 return 0; 4492 } 4493 4494 static int __init slab_sysfs_init(void) 4495 { 4496 struct kmem_cache *s; 4497 int err; 4498 4499 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 4500 if (!slab_kset) { 4501 printk(KERN_ERR "Cannot register slab subsystem.\n"); 4502 return -ENOSYS; 4503 } 4504 4505 slab_state = SYSFS; 4506 4507 list_for_each_entry(s, &slab_caches, list) { 4508 err = sysfs_slab_add(s); 4509 if (err) 4510 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 4511 " to sysfs\n", s->name); 4512 } 4513 4514 while (alias_list) { 4515 struct saved_alias *al = alias_list; 4516 4517 alias_list = alias_list->next; 4518 err = sysfs_slab_alias(al->s, al->name); 4519 if (err) 4520 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 4521 " %s to sysfs\n", s->name); 4522 kfree(al); 4523 } 4524 4525 resiliency_test(); 4526 return 0; 4527 } 4528 4529 __initcall(slab_sysfs_init); 4530 #endif 4531 4532 /* 4533 * The /proc/slabinfo ABI 4534 */ 4535 #ifdef CONFIG_SLABINFO 4536 static void print_slabinfo_header(struct seq_file *m) 4537 { 4538 seq_puts(m, "slabinfo - version: 2.1\n"); 4539 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4540 "<objperslab> <pagesperslab>"); 4541 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4542 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4543 seq_putc(m, '\n'); 4544 } 4545 4546 static void *s_start(struct seq_file *m, loff_t *pos) 4547 { 4548 loff_t n = *pos; 4549 4550 down_read(&slub_lock); 4551 if (!n) 4552 print_slabinfo_header(m); 4553 4554 return seq_list_start(&slab_caches, *pos); 4555 } 4556 4557 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4558 { 4559 return seq_list_next(p, &slab_caches, pos); 4560 } 4561 4562 static void s_stop(struct seq_file *m, void *p) 4563 { 4564 up_read(&slub_lock); 4565 } 4566 4567 static int s_show(struct seq_file *m, void *p) 4568 { 4569 unsigned long nr_partials = 0; 4570 unsigned long nr_slabs = 0; 4571 unsigned long nr_inuse = 0; 4572 unsigned long nr_objs = 0; 4573 unsigned long nr_free = 0; 4574 struct kmem_cache *s; 4575 int node; 4576 4577 s = list_entry(p, struct kmem_cache, list); 4578 4579 for_each_online_node(node) { 4580 struct kmem_cache_node *n = get_node(s, node); 4581 4582 if (!n) 4583 continue; 4584 4585 nr_partials += n->nr_partial; 4586 nr_slabs += atomic_long_read(&n->nr_slabs); 4587 nr_objs += atomic_long_read(&n->total_objects); 4588 nr_free += count_partial(n, count_free); 4589 } 4590 4591 nr_inuse = nr_objs - nr_free; 4592 4593 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 4594 nr_objs, s->size, oo_objects(s->oo), 4595 (1 << oo_order(s->oo))); 4596 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 4597 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 4598 0UL); 4599 seq_putc(m, '\n'); 4600 return 0; 4601 } 4602 4603 static const struct seq_operations slabinfo_op = { 4604 .start = s_start, 4605 .next = s_next, 4606 .stop = s_stop, 4607 .show = s_show, 4608 }; 4609 4610 static int slabinfo_open(struct inode *inode, struct file *file) 4611 { 4612 return seq_open(file, &slabinfo_op); 4613 } 4614 4615 static const struct file_operations proc_slabinfo_operations = { 4616 .open = slabinfo_open, 4617 .read = seq_read, 4618 .llseek = seq_lseek, 4619 .release = seq_release, 4620 }; 4621 4622 static int __init slab_proc_init(void) 4623 { 4624 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations); 4625 return 0; 4626 } 4627 module_init(slab_proc_init); 4628 #endif /* CONFIG_SLABINFO */ 4629