xref: /openbmc/linux/mm/slub.c (revision 6cd70754)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/kfence.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
38 
39 #include <trace/events/kmem.h>
40 
41 #include "internal.h"
42 
43 /*
44  * Lock order:
45  *   1. slab_mutex (Global Mutex)
46  *   2. node->list_lock
47  *   3. slab_lock(page) (Only on some arches and for debugging)
48  *
49  *   slab_mutex
50  *
51  *   The role of the slab_mutex is to protect the list of all the slabs
52  *   and to synchronize major metadata changes to slab cache structures.
53  *
54  *   The slab_lock is only used for debugging and on arches that do not
55  *   have the ability to do a cmpxchg_double. It only protects:
56  *	A. page->freelist	-> List of object free in a page
57  *	B. page->inuse		-> Number of objects in use
58  *	C. page->objects	-> Number of objects in page
59  *	D. page->frozen		-> frozen state
60  *
61  *   If a slab is frozen then it is exempt from list management. It is not
62  *   on any list except per cpu partial list. The processor that froze the
63  *   slab is the one who can perform list operations on the page. Other
64  *   processors may put objects onto the freelist but the processor that
65  *   froze the slab is the only one that can retrieve the objects from the
66  *   page's freelist.
67  *
68  *   The list_lock protects the partial and full list on each node and
69  *   the partial slab counter. If taken then no new slabs may be added or
70  *   removed from the lists nor make the number of partial slabs be modified.
71  *   (Note that the total number of slabs is an atomic value that may be
72  *   modified without taking the list lock).
73  *
74  *   The list_lock is a centralized lock and thus we avoid taking it as
75  *   much as possible. As long as SLUB does not have to handle partial
76  *   slabs, operations can continue without any centralized lock. F.e.
77  *   allocating a long series of objects that fill up slabs does not require
78  *   the list lock.
79  *   Interrupts are disabled during allocation and deallocation in order to
80  *   make the slab allocator safe to use in the context of an irq. In addition
81  *   interrupts are disabled to ensure that the processor does not change
82  *   while handling per_cpu slabs, due to kernel preemption.
83  *
84  * SLUB assigns one slab for allocation to each processor.
85  * Allocations only occur from these slabs called cpu slabs.
86  *
87  * Slabs with free elements are kept on a partial list and during regular
88  * operations no list for full slabs is used. If an object in a full slab is
89  * freed then the slab will show up again on the partial lists.
90  * We track full slabs for debugging purposes though because otherwise we
91  * cannot scan all objects.
92  *
93  * Slabs are freed when they become empty. Teardown and setup is
94  * minimal so we rely on the page allocators per cpu caches for
95  * fast frees and allocs.
96  *
97  * page->frozen		The slab is frozen and exempt from list processing.
98  * 			This means that the slab is dedicated to a purpose
99  * 			such as satisfying allocations for a specific
100  * 			processor. Objects may be freed in the slab while
101  * 			it is frozen but slab_free will then skip the usual
102  * 			list operations. It is up to the processor holding
103  * 			the slab to integrate the slab into the slab lists
104  * 			when the slab is no longer needed.
105  *
106  * 			One use of this flag is to mark slabs that are
107  * 			used for allocations. Then such a slab becomes a cpu
108  * 			slab. The cpu slab may be equipped with an additional
109  * 			freelist that allows lockless access to
110  * 			free objects in addition to the regular freelist
111  * 			that requires the slab lock.
112  *
113  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
114  * 			options set. This moves	slab handling out of
115  * 			the fast path and disables lockless freelists.
116  */
117 
118 #ifdef CONFIG_SLUB_DEBUG
119 #ifdef CONFIG_SLUB_DEBUG_ON
120 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
121 #else
122 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
123 #endif
124 #endif
125 
126 static inline bool kmem_cache_debug(struct kmem_cache *s)
127 {
128 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
129 }
130 
131 void *fixup_red_left(struct kmem_cache *s, void *p)
132 {
133 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
134 		p += s->red_left_pad;
135 
136 	return p;
137 }
138 
139 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
140 {
141 #ifdef CONFIG_SLUB_CPU_PARTIAL
142 	return !kmem_cache_debug(s);
143 #else
144 	return false;
145 #endif
146 }
147 
148 /*
149  * Issues still to be resolved:
150  *
151  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
152  *
153  * - Variable sizing of the per node arrays
154  */
155 
156 /* Enable to test recovery from slab corruption on boot */
157 #undef SLUB_RESILIENCY_TEST
158 
159 /* Enable to log cmpxchg failures */
160 #undef SLUB_DEBUG_CMPXCHG
161 
162 /*
163  * Mininum number of partial slabs. These will be left on the partial
164  * lists even if they are empty. kmem_cache_shrink may reclaim them.
165  */
166 #define MIN_PARTIAL 5
167 
168 /*
169  * Maximum number of desirable partial slabs.
170  * The existence of more partial slabs makes kmem_cache_shrink
171  * sort the partial list by the number of objects in use.
172  */
173 #define MAX_PARTIAL 10
174 
175 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
176 				SLAB_POISON | SLAB_STORE_USER)
177 
178 /*
179  * These debug flags cannot use CMPXCHG because there might be consistency
180  * issues when checking or reading debug information
181  */
182 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 				SLAB_TRACE)
184 
185 
186 /*
187  * Debugging flags that require metadata to be stored in the slab.  These get
188  * disabled when slub_debug=O is used and a cache's min order increases with
189  * metadata.
190  */
191 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
192 
193 #define OO_SHIFT	16
194 #define OO_MASK		((1 << OO_SHIFT) - 1)
195 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
196 
197 /* Internal SLUB flags */
198 /* Poison object */
199 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
200 /* Use cmpxchg_double */
201 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
202 
203 /*
204  * Tracking user of a slab.
205  */
206 #define TRACK_ADDRS_COUNT 16
207 struct track {
208 	unsigned long addr;	/* Called from address */
209 #ifdef CONFIG_STACKTRACE
210 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
211 #endif
212 	int cpu;		/* Was running on cpu */
213 	int pid;		/* Pid context */
214 	unsigned long when;	/* When did the operation occur */
215 };
216 
217 enum track_item { TRACK_ALLOC, TRACK_FREE };
218 
219 #ifdef CONFIG_SYSFS
220 static int sysfs_slab_add(struct kmem_cache *);
221 static int sysfs_slab_alias(struct kmem_cache *, const char *);
222 #else
223 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 							{ return 0; }
226 #endif
227 
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 	/*
232 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 	 * avoid this_cpu_add()'s irq-disable overhead.
234 	 */
235 	raw_cpu_inc(s->cpu_slab->stat[si]);
236 #endif
237 }
238 
239 /*
240  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
241  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
242  * differ during memory hotplug/hotremove operations.
243  * Protected by slab_mutex.
244  */
245 static nodemask_t slab_nodes;
246 
247 /********************************************************************
248  * 			Core slab cache functions
249  *******************************************************************/
250 
251 /*
252  * Returns freelist pointer (ptr). With hardening, this is obfuscated
253  * with an XOR of the address where the pointer is held and a per-cache
254  * random number.
255  */
256 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
257 				 unsigned long ptr_addr)
258 {
259 #ifdef CONFIG_SLAB_FREELIST_HARDENED
260 	/*
261 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
262 	 * Normally, this doesn't cause any issues, as both set_freepointer()
263 	 * and get_freepointer() are called with a pointer with the same tag.
264 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
265 	 * example, when __free_slub() iterates over objects in a cache, it
266 	 * passes untagged pointers to check_object(). check_object() in turns
267 	 * calls get_freepointer() with an untagged pointer, which causes the
268 	 * freepointer to be restored incorrectly.
269 	 */
270 	return (void *)((unsigned long)ptr ^ s->random ^
271 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
272 #else
273 	return ptr;
274 #endif
275 }
276 
277 /* Returns the freelist pointer recorded at location ptr_addr. */
278 static inline void *freelist_dereference(const struct kmem_cache *s,
279 					 void *ptr_addr)
280 {
281 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
282 			    (unsigned long)ptr_addr);
283 }
284 
285 static inline void *get_freepointer(struct kmem_cache *s, void *object)
286 {
287 	object = kasan_reset_tag(object);
288 	return freelist_dereference(s, object + s->offset);
289 }
290 
291 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
292 {
293 	prefetch(object + s->offset);
294 }
295 
296 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
297 {
298 	unsigned long freepointer_addr;
299 	void *p;
300 
301 	if (!debug_pagealloc_enabled_static())
302 		return get_freepointer(s, object);
303 
304 	freepointer_addr = (unsigned long)object + s->offset;
305 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
306 	return freelist_ptr(s, p, freepointer_addr);
307 }
308 
309 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
310 {
311 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
312 
313 #ifdef CONFIG_SLAB_FREELIST_HARDENED
314 	BUG_ON(object == fp); /* naive detection of double free or corruption */
315 #endif
316 
317 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
318 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
319 }
320 
321 /* Loop over all objects in a slab */
322 #define for_each_object(__p, __s, __addr, __objects) \
323 	for (__p = fixup_red_left(__s, __addr); \
324 		__p < (__addr) + (__objects) * (__s)->size; \
325 		__p += (__s)->size)
326 
327 static inline unsigned int order_objects(unsigned int order, unsigned int size)
328 {
329 	return ((unsigned int)PAGE_SIZE << order) / size;
330 }
331 
332 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
333 		unsigned int size)
334 {
335 	struct kmem_cache_order_objects x = {
336 		(order << OO_SHIFT) + order_objects(order, size)
337 	};
338 
339 	return x;
340 }
341 
342 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
343 {
344 	return x.x >> OO_SHIFT;
345 }
346 
347 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
348 {
349 	return x.x & OO_MASK;
350 }
351 
352 /*
353  * Per slab locking using the pagelock
354  */
355 static __always_inline void slab_lock(struct page *page)
356 {
357 	VM_BUG_ON_PAGE(PageTail(page), page);
358 	bit_spin_lock(PG_locked, &page->flags);
359 }
360 
361 static __always_inline void slab_unlock(struct page *page)
362 {
363 	VM_BUG_ON_PAGE(PageTail(page), page);
364 	__bit_spin_unlock(PG_locked, &page->flags);
365 }
366 
367 /* Interrupts must be disabled (for the fallback code to work right) */
368 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
369 		void *freelist_old, unsigned long counters_old,
370 		void *freelist_new, unsigned long counters_new,
371 		const char *n)
372 {
373 	VM_BUG_ON(!irqs_disabled());
374 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
375     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
376 	if (s->flags & __CMPXCHG_DOUBLE) {
377 		if (cmpxchg_double(&page->freelist, &page->counters,
378 				   freelist_old, counters_old,
379 				   freelist_new, counters_new))
380 			return true;
381 	} else
382 #endif
383 	{
384 		slab_lock(page);
385 		if (page->freelist == freelist_old &&
386 					page->counters == counters_old) {
387 			page->freelist = freelist_new;
388 			page->counters = counters_new;
389 			slab_unlock(page);
390 			return true;
391 		}
392 		slab_unlock(page);
393 	}
394 
395 	cpu_relax();
396 	stat(s, CMPXCHG_DOUBLE_FAIL);
397 
398 #ifdef SLUB_DEBUG_CMPXCHG
399 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
400 #endif
401 
402 	return false;
403 }
404 
405 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 		void *freelist_old, unsigned long counters_old,
407 		void *freelist_new, unsigned long counters_new,
408 		const char *n)
409 {
410 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
412 	if (s->flags & __CMPXCHG_DOUBLE) {
413 		if (cmpxchg_double(&page->freelist, &page->counters,
414 				   freelist_old, counters_old,
415 				   freelist_new, counters_new))
416 			return true;
417 	} else
418 #endif
419 	{
420 		unsigned long flags;
421 
422 		local_irq_save(flags);
423 		slab_lock(page);
424 		if (page->freelist == freelist_old &&
425 					page->counters == counters_old) {
426 			page->freelist = freelist_new;
427 			page->counters = counters_new;
428 			slab_unlock(page);
429 			local_irq_restore(flags);
430 			return true;
431 		}
432 		slab_unlock(page);
433 		local_irq_restore(flags);
434 	}
435 
436 	cpu_relax();
437 	stat(s, CMPXCHG_DOUBLE_FAIL);
438 
439 #ifdef SLUB_DEBUG_CMPXCHG
440 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
441 #endif
442 
443 	return false;
444 }
445 
446 #ifdef CONFIG_SLUB_DEBUG
447 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
448 static DEFINE_SPINLOCK(object_map_lock);
449 
450 /*
451  * Determine a map of object in use on a page.
452  *
453  * Node listlock must be held to guarantee that the page does
454  * not vanish from under us.
455  */
456 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
457 	__acquires(&object_map_lock)
458 {
459 	void *p;
460 	void *addr = page_address(page);
461 
462 	VM_BUG_ON(!irqs_disabled());
463 
464 	spin_lock(&object_map_lock);
465 
466 	bitmap_zero(object_map, page->objects);
467 
468 	for (p = page->freelist; p; p = get_freepointer(s, p))
469 		set_bit(__obj_to_index(s, addr, p), object_map);
470 
471 	return object_map;
472 }
473 
474 static void put_map(unsigned long *map) __releases(&object_map_lock)
475 {
476 	VM_BUG_ON(map != object_map);
477 	spin_unlock(&object_map_lock);
478 }
479 
480 static inline unsigned int size_from_object(struct kmem_cache *s)
481 {
482 	if (s->flags & SLAB_RED_ZONE)
483 		return s->size - s->red_left_pad;
484 
485 	return s->size;
486 }
487 
488 static inline void *restore_red_left(struct kmem_cache *s, void *p)
489 {
490 	if (s->flags & SLAB_RED_ZONE)
491 		p -= s->red_left_pad;
492 
493 	return p;
494 }
495 
496 /*
497  * Debug settings:
498  */
499 #if defined(CONFIG_SLUB_DEBUG_ON)
500 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
501 #else
502 static slab_flags_t slub_debug;
503 #endif
504 
505 static char *slub_debug_string;
506 static int disable_higher_order_debug;
507 
508 /*
509  * slub is about to manipulate internal object metadata.  This memory lies
510  * outside the range of the allocated object, so accessing it would normally
511  * be reported by kasan as a bounds error.  metadata_access_enable() is used
512  * to tell kasan that these accesses are OK.
513  */
514 static inline void metadata_access_enable(void)
515 {
516 	kasan_disable_current();
517 }
518 
519 static inline void metadata_access_disable(void)
520 {
521 	kasan_enable_current();
522 }
523 
524 /*
525  * Object debugging
526  */
527 
528 /* Verify that a pointer has an address that is valid within a slab page */
529 static inline int check_valid_pointer(struct kmem_cache *s,
530 				struct page *page, void *object)
531 {
532 	void *base;
533 
534 	if (!object)
535 		return 1;
536 
537 	base = page_address(page);
538 	object = kasan_reset_tag(object);
539 	object = restore_red_left(s, object);
540 	if (object < base || object >= base + page->objects * s->size ||
541 		(object - base) % s->size) {
542 		return 0;
543 	}
544 
545 	return 1;
546 }
547 
548 static void print_section(char *level, char *text, u8 *addr,
549 			  unsigned int length)
550 {
551 	metadata_access_enable();
552 	print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
553 			16, 1, addr, length, 1);
554 	metadata_access_disable();
555 }
556 
557 /*
558  * See comment in calculate_sizes().
559  */
560 static inline bool freeptr_outside_object(struct kmem_cache *s)
561 {
562 	return s->offset >= s->inuse;
563 }
564 
565 /*
566  * Return offset of the end of info block which is inuse + free pointer if
567  * not overlapping with object.
568  */
569 static inline unsigned int get_info_end(struct kmem_cache *s)
570 {
571 	if (freeptr_outside_object(s))
572 		return s->inuse + sizeof(void *);
573 	else
574 		return s->inuse;
575 }
576 
577 static struct track *get_track(struct kmem_cache *s, void *object,
578 	enum track_item alloc)
579 {
580 	struct track *p;
581 
582 	p = object + get_info_end(s);
583 
584 	return kasan_reset_tag(p + alloc);
585 }
586 
587 static void set_track(struct kmem_cache *s, void *object,
588 			enum track_item alloc, unsigned long addr)
589 {
590 	struct track *p = get_track(s, object, alloc);
591 
592 	if (addr) {
593 #ifdef CONFIG_STACKTRACE
594 		unsigned int nr_entries;
595 
596 		metadata_access_enable();
597 		nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
598 					      TRACK_ADDRS_COUNT, 3);
599 		metadata_access_disable();
600 
601 		if (nr_entries < TRACK_ADDRS_COUNT)
602 			p->addrs[nr_entries] = 0;
603 #endif
604 		p->addr = addr;
605 		p->cpu = smp_processor_id();
606 		p->pid = current->pid;
607 		p->when = jiffies;
608 	} else {
609 		memset(p, 0, sizeof(struct track));
610 	}
611 }
612 
613 static void init_tracking(struct kmem_cache *s, void *object)
614 {
615 	if (!(s->flags & SLAB_STORE_USER))
616 		return;
617 
618 	set_track(s, object, TRACK_FREE, 0UL);
619 	set_track(s, object, TRACK_ALLOC, 0UL);
620 }
621 
622 static void print_track(const char *s, struct track *t, unsigned long pr_time)
623 {
624 	if (!t->addr)
625 		return;
626 
627 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
628 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
629 #ifdef CONFIG_STACKTRACE
630 	{
631 		int i;
632 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
633 			if (t->addrs[i])
634 				pr_err("\t%pS\n", (void *)t->addrs[i]);
635 			else
636 				break;
637 	}
638 #endif
639 }
640 
641 void print_tracking(struct kmem_cache *s, void *object)
642 {
643 	unsigned long pr_time = jiffies;
644 	if (!(s->flags & SLAB_STORE_USER))
645 		return;
646 
647 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
648 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
649 }
650 
651 static void print_page_info(struct page *page)
652 {
653 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
654 	       page, page->objects, page->inuse, page->freelist, page->flags);
655 
656 }
657 
658 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
659 {
660 	struct va_format vaf;
661 	va_list args;
662 
663 	va_start(args, fmt);
664 	vaf.fmt = fmt;
665 	vaf.va = &args;
666 	pr_err("=============================================================================\n");
667 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
668 	pr_err("-----------------------------------------------------------------------------\n\n");
669 
670 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
671 	va_end(args);
672 }
673 
674 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
675 {
676 	struct va_format vaf;
677 	va_list args;
678 
679 	va_start(args, fmt);
680 	vaf.fmt = fmt;
681 	vaf.va = &args;
682 	pr_err("FIX %s: %pV\n", s->name, &vaf);
683 	va_end(args);
684 }
685 
686 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
687 			       void **freelist, void *nextfree)
688 {
689 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
690 	    !check_valid_pointer(s, page, nextfree) && freelist) {
691 		object_err(s, page, *freelist, "Freechain corrupt");
692 		*freelist = NULL;
693 		slab_fix(s, "Isolate corrupted freechain");
694 		return true;
695 	}
696 
697 	return false;
698 }
699 
700 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
701 {
702 	unsigned int off;	/* Offset of last byte */
703 	u8 *addr = page_address(page);
704 
705 	print_tracking(s, p);
706 
707 	print_page_info(page);
708 
709 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
710 	       p, p - addr, get_freepointer(s, p));
711 
712 	if (s->flags & SLAB_RED_ZONE)
713 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
714 			      s->red_left_pad);
715 	else if (p > addr + 16)
716 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
717 
718 	print_section(KERN_ERR, "Object ", p,
719 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
720 	if (s->flags & SLAB_RED_ZONE)
721 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
722 			s->inuse - s->object_size);
723 
724 	off = get_info_end(s);
725 
726 	if (s->flags & SLAB_STORE_USER)
727 		off += 2 * sizeof(struct track);
728 
729 	off += kasan_metadata_size(s);
730 
731 	if (off != size_from_object(s))
732 		/* Beginning of the filler is the free pointer */
733 		print_section(KERN_ERR, "Padding ", p + off,
734 			      size_from_object(s) - off);
735 
736 	dump_stack();
737 }
738 
739 void object_err(struct kmem_cache *s, struct page *page,
740 			u8 *object, char *reason)
741 {
742 	slab_bug(s, "%s", reason);
743 	print_trailer(s, page, object);
744 }
745 
746 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
747 			const char *fmt, ...)
748 {
749 	va_list args;
750 	char buf[100];
751 
752 	va_start(args, fmt);
753 	vsnprintf(buf, sizeof(buf), fmt, args);
754 	va_end(args);
755 	slab_bug(s, "%s", buf);
756 	print_page_info(page);
757 	dump_stack();
758 }
759 
760 static void init_object(struct kmem_cache *s, void *object, u8 val)
761 {
762 	u8 *p = kasan_reset_tag(object);
763 
764 	if (s->flags & SLAB_RED_ZONE)
765 		memset(p - s->red_left_pad, val, s->red_left_pad);
766 
767 	if (s->flags & __OBJECT_POISON) {
768 		memset(p, POISON_FREE, s->object_size - 1);
769 		p[s->object_size - 1] = POISON_END;
770 	}
771 
772 	if (s->flags & SLAB_RED_ZONE)
773 		memset(p + s->object_size, val, s->inuse - s->object_size);
774 }
775 
776 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
777 						void *from, void *to)
778 {
779 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
780 	memset(from, data, to - from);
781 }
782 
783 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
784 			u8 *object, char *what,
785 			u8 *start, unsigned int value, unsigned int bytes)
786 {
787 	u8 *fault;
788 	u8 *end;
789 	u8 *addr = page_address(page);
790 
791 	metadata_access_enable();
792 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
793 	metadata_access_disable();
794 	if (!fault)
795 		return 1;
796 
797 	end = start + bytes;
798 	while (end > fault && end[-1] == value)
799 		end--;
800 
801 	slab_bug(s, "%s overwritten", what);
802 	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
803 					fault, end - 1, fault - addr,
804 					fault[0], value);
805 	print_trailer(s, page, object);
806 
807 	restore_bytes(s, what, value, fault, end);
808 	return 0;
809 }
810 
811 /*
812  * Object layout:
813  *
814  * object address
815  * 	Bytes of the object to be managed.
816  * 	If the freepointer may overlay the object then the free
817  *	pointer is at the middle of the object.
818  *
819  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
820  * 	0xa5 (POISON_END)
821  *
822  * object + s->object_size
823  * 	Padding to reach word boundary. This is also used for Redzoning.
824  * 	Padding is extended by another word if Redzoning is enabled and
825  * 	object_size == inuse.
826  *
827  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
828  * 	0xcc (RED_ACTIVE) for objects in use.
829  *
830  * object + s->inuse
831  * 	Meta data starts here.
832  *
833  * 	A. Free pointer (if we cannot overwrite object on free)
834  * 	B. Tracking data for SLAB_STORE_USER
835  * 	C. Padding to reach required alignment boundary or at mininum
836  * 		one word if debugging is on to be able to detect writes
837  * 		before the word boundary.
838  *
839  *	Padding is done using 0x5a (POISON_INUSE)
840  *
841  * object + s->size
842  * 	Nothing is used beyond s->size.
843  *
844  * If slabcaches are merged then the object_size and inuse boundaries are mostly
845  * ignored. And therefore no slab options that rely on these boundaries
846  * may be used with merged slabcaches.
847  */
848 
849 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
850 {
851 	unsigned long off = get_info_end(s);	/* The end of info */
852 
853 	if (s->flags & SLAB_STORE_USER)
854 		/* We also have user information there */
855 		off += 2 * sizeof(struct track);
856 
857 	off += kasan_metadata_size(s);
858 
859 	if (size_from_object(s) == off)
860 		return 1;
861 
862 	return check_bytes_and_report(s, page, p, "Object padding",
863 			p + off, POISON_INUSE, size_from_object(s) - off);
864 }
865 
866 /* Check the pad bytes at the end of a slab page */
867 static int slab_pad_check(struct kmem_cache *s, struct page *page)
868 {
869 	u8 *start;
870 	u8 *fault;
871 	u8 *end;
872 	u8 *pad;
873 	int length;
874 	int remainder;
875 
876 	if (!(s->flags & SLAB_POISON))
877 		return 1;
878 
879 	start = page_address(page);
880 	length = page_size(page);
881 	end = start + length;
882 	remainder = length % s->size;
883 	if (!remainder)
884 		return 1;
885 
886 	pad = end - remainder;
887 	metadata_access_enable();
888 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
889 	metadata_access_disable();
890 	if (!fault)
891 		return 1;
892 	while (end > fault && end[-1] == POISON_INUSE)
893 		end--;
894 
895 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
896 			fault, end - 1, fault - start);
897 	print_section(KERN_ERR, "Padding ", pad, remainder);
898 
899 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
900 	return 0;
901 }
902 
903 static int check_object(struct kmem_cache *s, struct page *page,
904 					void *object, u8 val)
905 {
906 	u8 *p = object;
907 	u8 *endobject = object + s->object_size;
908 
909 	if (s->flags & SLAB_RED_ZONE) {
910 		if (!check_bytes_and_report(s, page, object, "Redzone",
911 			object - s->red_left_pad, val, s->red_left_pad))
912 			return 0;
913 
914 		if (!check_bytes_and_report(s, page, object, "Redzone",
915 			endobject, val, s->inuse - s->object_size))
916 			return 0;
917 	} else {
918 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
919 			check_bytes_and_report(s, page, p, "Alignment padding",
920 				endobject, POISON_INUSE,
921 				s->inuse - s->object_size);
922 		}
923 	}
924 
925 	if (s->flags & SLAB_POISON) {
926 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
927 			(!check_bytes_and_report(s, page, p, "Poison", p,
928 					POISON_FREE, s->object_size - 1) ||
929 			 !check_bytes_and_report(s, page, p, "Poison",
930 				p + s->object_size - 1, POISON_END, 1)))
931 			return 0;
932 		/*
933 		 * check_pad_bytes cleans up on its own.
934 		 */
935 		check_pad_bytes(s, page, p);
936 	}
937 
938 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
939 		/*
940 		 * Object and freepointer overlap. Cannot check
941 		 * freepointer while object is allocated.
942 		 */
943 		return 1;
944 
945 	/* Check free pointer validity */
946 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
947 		object_err(s, page, p, "Freepointer corrupt");
948 		/*
949 		 * No choice but to zap it and thus lose the remainder
950 		 * of the free objects in this slab. May cause
951 		 * another error because the object count is now wrong.
952 		 */
953 		set_freepointer(s, p, NULL);
954 		return 0;
955 	}
956 	return 1;
957 }
958 
959 static int check_slab(struct kmem_cache *s, struct page *page)
960 {
961 	int maxobj;
962 
963 	VM_BUG_ON(!irqs_disabled());
964 
965 	if (!PageSlab(page)) {
966 		slab_err(s, page, "Not a valid slab page");
967 		return 0;
968 	}
969 
970 	maxobj = order_objects(compound_order(page), s->size);
971 	if (page->objects > maxobj) {
972 		slab_err(s, page, "objects %u > max %u",
973 			page->objects, maxobj);
974 		return 0;
975 	}
976 	if (page->inuse > page->objects) {
977 		slab_err(s, page, "inuse %u > max %u",
978 			page->inuse, page->objects);
979 		return 0;
980 	}
981 	/* Slab_pad_check fixes things up after itself */
982 	slab_pad_check(s, page);
983 	return 1;
984 }
985 
986 /*
987  * Determine if a certain object on a page is on the freelist. Must hold the
988  * slab lock to guarantee that the chains are in a consistent state.
989  */
990 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
991 {
992 	int nr = 0;
993 	void *fp;
994 	void *object = NULL;
995 	int max_objects;
996 
997 	fp = page->freelist;
998 	while (fp && nr <= page->objects) {
999 		if (fp == search)
1000 			return 1;
1001 		if (!check_valid_pointer(s, page, fp)) {
1002 			if (object) {
1003 				object_err(s, page, object,
1004 					"Freechain corrupt");
1005 				set_freepointer(s, object, NULL);
1006 			} else {
1007 				slab_err(s, page, "Freepointer corrupt");
1008 				page->freelist = NULL;
1009 				page->inuse = page->objects;
1010 				slab_fix(s, "Freelist cleared");
1011 				return 0;
1012 			}
1013 			break;
1014 		}
1015 		object = fp;
1016 		fp = get_freepointer(s, object);
1017 		nr++;
1018 	}
1019 
1020 	max_objects = order_objects(compound_order(page), s->size);
1021 	if (max_objects > MAX_OBJS_PER_PAGE)
1022 		max_objects = MAX_OBJS_PER_PAGE;
1023 
1024 	if (page->objects != max_objects) {
1025 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1026 			 page->objects, max_objects);
1027 		page->objects = max_objects;
1028 		slab_fix(s, "Number of objects adjusted.");
1029 	}
1030 	if (page->inuse != page->objects - nr) {
1031 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1032 			 page->inuse, page->objects - nr);
1033 		page->inuse = page->objects - nr;
1034 		slab_fix(s, "Object count adjusted.");
1035 	}
1036 	return search == NULL;
1037 }
1038 
1039 static void trace(struct kmem_cache *s, struct page *page, void *object,
1040 								int alloc)
1041 {
1042 	if (s->flags & SLAB_TRACE) {
1043 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1044 			s->name,
1045 			alloc ? "alloc" : "free",
1046 			object, page->inuse,
1047 			page->freelist);
1048 
1049 		if (!alloc)
1050 			print_section(KERN_INFO, "Object ", (void *)object,
1051 					s->object_size);
1052 
1053 		dump_stack();
1054 	}
1055 }
1056 
1057 /*
1058  * Tracking of fully allocated slabs for debugging purposes.
1059  */
1060 static void add_full(struct kmem_cache *s,
1061 	struct kmem_cache_node *n, struct page *page)
1062 {
1063 	if (!(s->flags & SLAB_STORE_USER))
1064 		return;
1065 
1066 	lockdep_assert_held(&n->list_lock);
1067 	list_add(&page->slab_list, &n->full);
1068 }
1069 
1070 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1071 {
1072 	if (!(s->flags & SLAB_STORE_USER))
1073 		return;
1074 
1075 	lockdep_assert_held(&n->list_lock);
1076 	list_del(&page->slab_list);
1077 }
1078 
1079 /* Tracking of the number of slabs for debugging purposes */
1080 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1081 {
1082 	struct kmem_cache_node *n = get_node(s, node);
1083 
1084 	return atomic_long_read(&n->nr_slabs);
1085 }
1086 
1087 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1088 {
1089 	return atomic_long_read(&n->nr_slabs);
1090 }
1091 
1092 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1093 {
1094 	struct kmem_cache_node *n = get_node(s, node);
1095 
1096 	/*
1097 	 * May be called early in order to allocate a slab for the
1098 	 * kmem_cache_node structure. Solve the chicken-egg
1099 	 * dilemma by deferring the increment of the count during
1100 	 * bootstrap (see early_kmem_cache_node_alloc).
1101 	 */
1102 	if (likely(n)) {
1103 		atomic_long_inc(&n->nr_slabs);
1104 		atomic_long_add(objects, &n->total_objects);
1105 	}
1106 }
1107 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1108 {
1109 	struct kmem_cache_node *n = get_node(s, node);
1110 
1111 	atomic_long_dec(&n->nr_slabs);
1112 	atomic_long_sub(objects, &n->total_objects);
1113 }
1114 
1115 /* Object debug checks for alloc/free paths */
1116 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1117 								void *object)
1118 {
1119 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1120 		return;
1121 
1122 	init_object(s, object, SLUB_RED_INACTIVE);
1123 	init_tracking(s, object);
1124 }
1125 
1126 static
1127 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1128 {
1129 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1130 		return;
1131 
1132 	metadata_access_enable();
1133 	memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1134 	metadata_access_disable();
1135 }
1136 
1137 static inline int alloc_consistency_checks(struct kmem_cache *s,
1138 					struct page *page, void *object)
1139 {
1140 	if (!check_slab(s, page))
1141 		return 0;
1142 
1143 	if (!check_valid_pointer(s, page, object)) {
1144 		object_err(s, page, object, "Freelist Pointer check fails");
1145 		return 0;
1146 	}
1147 
1148 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1149 		return 0;
1150 
1151 	return 1;
1152 }
1153 
1154 static noinline int alloc_debug_processing(struct kmem_cache *s,
1155 					struct page *page,
1156 					void *object, unsigned long addr)
1157 {
1158 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1159 		if (!alloc_consistency_checks(s, page, object))
1160 			goto bad;
1161 	}
1162 
1163 	/* Success perform special debug activities for allocs */
1164 	if (s->flags & SLAB_STORE_USER)
1165 		set_track(s, object, TRACK_ALLOC, addr);
1166 	trace(s, page, object, 1);
1167 	init_object(s, object, SLUB_RED_ACTIVE);
1168 	return 1;
1169 
1170 bad:
1171 	if (PageSlab(page)) {
1172 		/*
1173 		 * If this is a slab page then lets do the best we can
1174 		 * to avoid issues in the future. Marking all objects
1175 		 * as used avoids touching the remaining objects.
1176 		 */
1177 		slab_fix(s, "Marking all objects used");
1178 		page->inuse = page->objects;
1179 		page->freelist = NULL;
1180 	}
1181 	return 0;
1182 }
1183 
1184 static inline int free_consistency_checks(struct kmem_cache *s,
1185 		struct page *page, void *object, unsigned long addr)
1186 {
1187 	if (!check_valid_pointer(s, page, object)) {
1188 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1189 		return 0;
1190 	}
1191 
1192 	if (on_freelist(s, page, object)) {
1193 		object_err(s, page, object, "Object already free");
1194 		return 0;
1195 	}
1196 
1197 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1198 		return 0;
1199 
1200 	if (unlikely(s != page->slab_cache)) {
1201 		if (!PageSlab(page)) {
1202 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1203 				 object);
1204 		} else if (!page->slab_cache) {
1205 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1206 			       object);
1207 			dump_stack();
1208 		} else
1209 			object_err(s, page, object,
1210 					"page slab pointer corrupt.");
1211 		return 0;
1212 	}
1213 	return 1;
1214 }
1215 
1216 /* Supports checking bulk free of a constructed freelist */
1217 static noinline int free_debug_processing(
1218 	struct kmem_cache *s, struct page *page,
1219 	void *head, void *tail, int bulk_cnt,
1220 	unsigned long addr)
1221 {
1222 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1223 	void *object = head;
1224 	int cnt = 0;
1225 	unsigned long flags;
1226 	int ret = 0;
1227 
1228 	spin_lock_irqsave(&n->list_lock, flags);
1229 	slab_lock(page);
1230 
1231 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1232 		if (!check_slab(s, page))
1233 			goto out;
1234 	}
1235 
1236 next_object:
1237 	cnt++;
1238 
1239 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1240 		if (!free_consistency_checks(s, page, object, addr))
1241 			goto out;
1242 	}
1243 
1244 	if (s->flags & SLAB_STORE_USER)
1245 		set_track(s, object, TRACK_FREE, addr);
1246 	trace(s, page, object, 0);
1247 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1248 	init_object(s, object, SLUB_RED_INACTIVE);
1249 
1250 	/* Reached end of constructed freelist yet? */
1251 	if (object != tail) {
1252 		object = get_freepointer(s, object);
1253 		goto next_object;
1254 	}
1255 	ret = 1;
1256 
1257 out:
1258 	if (cnt != bulk_cnt)
1259 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1260 			 bulk_cnt, cnt);
1261 
1262 	slab_unlock(page);
1263 	spin_unlock_irqrestore(&n->list_lock, flags);
1264 	if (!ret)
1265 		slab_fix(s, "Object at 0x%p not freed", object);
1266 	return ret;
1267 }
1268 
1269 /*
1270  * Parse a block of slub_debug options. Blocks are delimited by ';'
1271  *
1272  * @str:    start of block
1273  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1274  * @slabs:  return start of list of slabs, or NULL when there's no list
1275  * @init:   assume this is initial parsing and not per-kmem-create parsing
1276  *
1277  * returns the start of next block if there's any, or NULL
1278  */
1279 static char *
1280 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1281 {
1282 	bool higher_order_disable = false;
1283 
1284 	/* Skip any completely empty blocks */
1285 	while (*str && *str == ';')
1286 		str++;
1287 
1288 	if (*str == ',') {
1289 		/*
1290 		 * No options but restriction on slabs. This means full
1291 		 * debugging for slabs matching a pattern.
1292 		 */
1293 		*flags = DEBUG_DEFAULT_FLAGS;
1294 		goto check_slabs;
1295 	}
1296 	*flags = 0;
1297 
1298 	/* Determine which debug features should be switched on */
1299 	for (; *str && *str != ',' && *str != ';'; str++) {
1300 		switch (tolower(*str)) {
1301 		case '-':
1302 			*flags = 0;
1303 			break;
1304 		case 'f':
1305 			*flags |= SLAB_CONSISTENCY_CHECKS;
1306 			break;
1307 		case 'z':
1308 			*flags |= SLAB_RED_ZONE;
1309 			break;
1310 		case 'p':
1311 			*flags |= SLAB_POISON;
1312 			break;
1313 		case 'u':
1314 			*flags |= SLAB_STORE_USER;
1315 			break;
1316 		case 't':
1317 			*flags |= SLAB_TRACE;
1318 			break;
1319 		case 'a':
1320 			*flags |= SLAB_FAILSLAB;
1321 			break;
1322 		case 'o':
1323 			/*
1324 			 * Avoid enabling debugging on caches if its minimum
1325 			 * order would increase as a result.
1326 			 */
1327 			higher_order_disable = true;
1328 			break;
1329 		default:
1330 			if (init)
1331 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1332 		}
1333 	}
1334 check_slabs:
1335 	if (*str == ',')
1336 		*slabs = ++str;
1337 	else
1338 		*slabs = NULL;
1339 
1340 	/* Skip over the slab list */
1341 	while (*str && *str != ';')
1342 		str++;
1343 
1344 	/* Skip any completely empty blocks */
1345 	while (*str && *str == ';')
1346 		str++;
1347 
1348 	if (init && higher_order_disable)
1349 		disable_higher_order_debug = 1;
1350 
1351 	if (*str)
1352 		return str;
1353 	else
1354 		return NULL;
1355 }
1356 
1357 static int __init setup_slub_debug(char *str)
1358 {
1359 	slab_flags_t flags;
1360 	char *saved_str;
1361 	char *slab_list;
1362 	bool global_slub_debug_changed = false;
1363 	bool slab_list_specified = false;
1364 
1365 	slub_debug = DEBUG_DEFAULT_FLAGS;
1366 	if (*str++ != '=' || !*str)
1367 		/*
1368 		 * No options specified. Switch on full debugging.
1369 		 */
1370 		goto out;
1371 
1372 	saved_str = str;
1373 	while (str) {
1374 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1375 
1376 		if (!slab_list) {
1377 			slub_debug = flags;
1378 			global_slub_debug_changed = true;
1379 		} else {
1380 			slab_list_specified = true;
1381 		}
1382 	}
1383 
1384 	/*
1385 	 * For backwards compatibility, a single list of flags with list of
1386 	 * slabs means debugging is only enabled for those slabs, so the global
1387 	 * slub_debug should be 0. We can extended that to multiple lists as
1388 	 * long as there is no option specifying flags without a slab list.
1389 	 */
1390 	if (slab_list_specified) {
1391 		if (!global_slub_debug_changed)
1392 			slub_debug = 0;
1393 		slub_debug_string = saved_str;
1394 	}
1395 out:
1396 	if (slub_debug != 0 || slub_debug_string)
1397 		static_branch_enable(&slub_debug_enabled);
1398 	if ((static_branch_unlikely(&init_on_alloc) ||
1399 	     static_branch_unlikely(&init_on_free)) &&
1400 	    (slub_debug & SLAB_POISON))
1401 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1402 	return 1;
1403 }
1404 
1405 __setup("slub_debug", setup_slub_debug);
1406 
1407 /*
1408  * kmem_cache_flags - apply debugging options to the cache
1409  * @object_size:	the size of an object without meta data
1410  * @flags:		flags to set
1411  * @name:		name of the cache
1412  *
1413  * Debug option(s) are applied to @flags. In addition to the debug
1414  * option(s), if a slab name (or multiple) is specified i.e.
1415  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1416  * then only the select slabs will receive the debug option(s).
1417  */
1418 slab_flags_t kmem_cache_flags(unsigned int object_size,
1419 	slab_flags_t flags, const char *name)
1420 {
1421 	char *iter;
1422 	size_t len;
1423 	char *next_block;
1424 	slab_flags_t block_flags;
1425 	slab_flags_t slub_debug_local = slub_debug;
1426 
1427 	/*
1428 	 * If the slab cache is for debugging (e.g. kmemleak) then
1429 	 * don't store user (stack trace) information by default,
1430 	 * but let the user enable it via the command line below.
1431 	 */
1432 	if (flags & SLAB_NOLEAKTRACE)
1433 		slub_debug_local &= ~SLAB_STORE_USER;
1434 
1435 	len = strlen(name);
1436 	next_block = slub_debug_string;
1437 	/* Go through all blocks of debug options, see if any matches our slab's name */
1438 	while (next_block) {
1439 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1440 		if (!iter)
1441 			continue;
1442 		/* Found a block that has a slab list, search it */
1443 		while (*iter) {
1444 			char *end, *glob;
1445 			size_t cmplen;
1446 
1447 			end = strchrnul(iter, ',');
1448 			if (next_block && next_block < end)
1449 				end = next_block - 1;
1450 
1451 			glob = strnchr(iter, end - iter, '*');
1452 			if (glob)
1453 				cmplen = glob - iter;
1454 			else
1455 				cmplen = max_t(size_t, len, (end - iter));
1456 
1457 			if (!strncmp(name, iter, cmplen)) {
1458 				flags |= block_flags;
1459 				return flags;
1460 			}
1461 
1462 			if (!*end || *end == ';')
1463 				break;
1464 			iter = end + 1;
1465 		}
1466 	}
1467 
1468 	return flags | slub_debug_local;
1469 }
1470 #else /* !CONFIG_SLUB_DEBUG */
1471 static inline void setup_object_debug(struct kmem_cache *s,
1472 			struct page *page, void *object) {}
1473 static inline
1474 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1475 
1476 static inline int alloc_debug_processing(struct kmem_cache *s,
1477 	struct page *page, void *object, unsigned long addr) { return 0; }
1478 
1479 static inline int free_debug_processing(
1480 	struct kmem_cache *s, struct page *page,
1481 	void *head, void *tail, int bulk_cnt,
1482 	unsigned long addr) { return 0; }
1483 
1484 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1485 			{ return 1; }
1486 static inline int check_object(struct kmem_cache *s, struct page *page,
1487 			void *object, u8 val) { return 1; }
1488 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1489 					struct page *page) {}
1490 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1491 					struct page *page) {}
1492 slab_flags_t kmem_cache_flags(unsigned int object_size,
1493 	slab_flags_t flags, const char *name)
1494 {
1495 	return flags;
1496 }
1497 #define slub_debug 0
1498 
1499 #define disable_higher_order_debug 0
1500 
1501 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1502 							{ return 0; }
1503 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1504 							{ return 0; }
1505 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1506 							int objects) {}
1507 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1508 							int objects) {}
1509 
1510 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1511 			       void **freelist, void *nextfree)
1512 {
1513 	return false;
1514 }
1515 #endif /* CONFIG_SLUB_DEBUG */
1516 
1517 /*
1518  * Hooks for other subsystems that check memory allocations. In a typical
1519  * production configuration these hooks all should produce no code at all.
1520  */
1521 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1522 {
1523 	ptr = kasan_kmalloc_large(ptr, size, flags);
1524 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1525 	kmemleak_alloc(ptr, size, 1, flags);
1526 	return ptr;
1527 }
1528 
1529 static __always_inline void kfree_hook(void *x)
1530 {
1531 	kmemleak_free(x);
1532 	kasan_kfree_large(x);
1533 }
1534 
1535 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1536 {
1537 	kmemleak_free_recursive(x, s->flags);
1538 
1539 	/*
1540 	 * Trouble is that we may no longer disable interrupts in the fast path
1541 	 * So in order to make the debug calls that expect irqs to be
1542 	 * disabled we need to disable interrupts temporarily.
1543 	 */
1544 #ifdef CONFIG_LOCKDEP
1545 	{
1546 		unsigned long flags;
1547 
1548 		local_irq_save(flags);
1549 		debug_check_no_locks_freed(x, s->object_size);
1550 		local_irq_restore(flags);
1551 	}
1552 #endif
1553 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1554 		debug_check_no_obj_freed(x, s->object_size);
1555 
1556 	/* Use KCSAN to help debug racy use-after-free. */
1557 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1558 		__kcsan_check_access(x, s->object_size,
1559 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1560 
1561 	/* KASAN might put x into memory quarantine, delaying its reuse */
1562 	return kasan_slab_free(s, x);
1563 }
1564 
1565 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1566 					   void **head, void **tail)
1567 {
1568 
1569 	void *object;
1570 	void *next = *head;
1571 	void *old_tail = *tail ? *tail : *head;
1572 	int rsize;
1573 
1574 	if (is_kfence_address(next)) {
1575 		slab_free_hook(s, next);
1576 		return true;
1577 	}
1578 
1579 	/* Head and tail of the reconstructed freelist */
1580 	*head = NULL;
1581 	*tail = NULL;
1582 
1583 	do {
1584 		object = next;
1585 		next = get_freepointer(s, object);
1586 
1587 		if (slab_want_init_on_free(s)) {
1588 			/*
1589 			 * Clear the object and the metadata, but don't touch
1590 			 * the redzone.
1591 			 */
1592 			memset(kasan_reset_tag(object), 0, s->object_size);
1593 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1594 							   : 0;
1595 			memset((char *)kasan_reset_tag(object) + s->inuse, 0,
1596 			       s->size - s->inuse - rsize);
1597 
1598 		}
1599 		/* If object's reuse doesn't have to be delayed */
1600 		if (!slab_free_hook(s, object)) {
1601 			/* Move object to the new freelist */
1602 			set_freepointer(s, object, *head);
1603 			*head = object;
1604 			if (!*tail)
1605 				*tail = object;
1606 		}
1607 	} while (object != old_tail);
1608 
1609 	if (*head == *tail)
1610 		*tail = NULL;
1611 
1612 	return *head != NULL;
1613 }
1614 
1615 static void *setup_object(struct kmem_cache *s, struct page *page,
1616 				void *object)
1617 {
1618 	setup_object_debug(s, page, object);
1619 	object = kasan_init_slab_obj(s, object);
1620 	if (unlikely(s->ctor)) {
1621 		kasan_unpoison_object_data(s, object);
1622 		s->ctor(object);
1623 		kasan_poison_object_data(s, object);
1624 	}
1625 	return object;
1626 }
1627 
1628 /*
1629  * Slab allocation and freeing
1630  */
1631 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1632 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1633 {
1634 	struct page *page;
1635 	unsigned int order = oo_order(oo);
1636 
1637 	if (node == NUMA_NO_NODE)
1638 		page = alloc_pages(flags, order);
1639 	else
1640 		page = __alloc_pages_node(node, flags, order);
1641 
1642 	return page;
1643 }
1644 
1645 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1646 /* Pre-initialize the random sequence cache */
1647 static int init_cache_random_seq(struct kmem_cache *s)
1648 {
1649 	unsigned int count = oo_objects(s->oo);
1650 	int err;
1651 
1652 	/* Bailout if already initialised */
1653 	if (s->random_seq)
1654 		return 0;
1655 
1656 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1657 	if (err) {
1658 		pr_err("SLUB: Unable to initialize free list for %s\n",
1659 			s->name);
1660 		return err;
1661 	}
1662 
1663 	/* Transform to an offset on the set of pages */
1664 	if (s->random_seq) {
1665 		unsigned int i;
1666 
1667 		for (i = 0; i < count; i++)
1668 			s->random_seq[i] *= s->size;
1669 	}
1670 	return 0;
1671 }
1672 
1673 /* Initialize each random sequence freelist per cache */
1674 static void __init init_freelist_randomization(void)
1675 {
1676 	struct kmem_cache *s;
1677 
1678 	mutex_lock(&slab_mutex);
1679 
1680 	list_for_each_entry(s, &slab_caches, list)
1681 		init_cache_random_seq(s);
1682 
1683 	mutex_unlock(&slab_mutex);
1684 }
1685 
1686 /* Get the next entry on the pre-computed freelist randomized */
1687 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1688 				unsigned long *pos, void *start,
1689 				unsigned long page_limit,
1690 				unsigned long freelist_count)
1691 {
1692 	unsigned int idx;
1693 
1694 	/*
1695 	 * If the target page allocation failed, the number of objects on the
1696 	 * page might be smaller than the usual size defined by the cache.
1697 	 */
1698 	do {
1699 		idx = s->random_seq[*pos];
1700 		*pos += 1;
1701 		if (*pos >= freelist_count)
1702 			*pos = 0;
1703 	} while (unlikely(idx >= page_limit));
1704 
1705 	return (char *)start + idx;
1706 }
1707 
1708 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1709 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1710 {
1711 	void *start;
1712 	void *cur;
1713 	void *next;
1714 	unsigned long idx, pos, page_limit, freelist_count;
1715 
1716 	if (page->objects < 2 || !s->random_seq)
1717 		return false;
1718 
1719 	freelist_count = oo_objects(s->oo);
1720 	pos = get_random_int() % freelist_count;
1721 
1722 	page_limit = page->objects * s->size;
1723 	start = fixup_red_left(s, page_address(page));
1724 
1725 	/* First entry is used as the base of the freelist */
1726 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1727 				freelist_count);
1728 	cur = setup_object(s, page, cur);
1729 	page->freelist = cur;
1730 
1731 	for (idx = 1; idx < page->objects; idx++) {
1732 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1733 			freelist_count);
1734 		next = setup_object(s, page, next);
1735 		set_freepointer(s, cur, next);
1736 		cur = next;
1737 	}
1738 	set_freepointer(s, cur, NULL);
1739 
1740 	return true;
1741 }
1742 #else
1743 static inline int init_cache_random_seq(struct kmem_cache *s)
1744 {
1745 	return 0;
1746 }
1747 static inline void init_freelist_randomization(void) { }
1748 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1749 {
1750 	return false;
1751 }
1752 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1753 
1754 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1755 {
1756 	struct page *page;
1757 	struct kmem_cache_order_objects oo = s->oo;
1758 	gfp_t alloc_gfp;
1759 	void *start, *p, *next;
1760 	int idx;
1761 	bool shuffle;
1762 
1763 	flags &= gfp_allowed_mask;
1764 
1765 	if (gfpflags_allow_blocking(flags))
1766 		local_irq_enable();
1767 
1768 	flags |= s->allocflags;
1769 
1770 	/*
1771 	 * Let the initial higher-order allocation fail under memory pressure
1772 	 * so we fall-back to the minimum order allocation.
1773 	 */
1774 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1775 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1776 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1777 
1778 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1779 	if (unlikely(!page)) {
1780 		oo = s->min;
1781 		alloc_gfp = flags;
1782 		/*
1783 		 * Allocation may have failed due to fragmentation.
1784 		 * Try a lower order alloc if possible
1785 		 */
1786 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1787 		if (unlikely(!page))
1788 			goto out;
1789 		stat(s, ORDER_FALLBACK);
1790 	}
1791 
1792 	page->objects = oo_objects(oo);
1793 
1794 	account_slab_page(page, oo_order(oo), s, flags);
1795 
1796 	page->slab_cache = s;
1797 	__SetPageSlab(page);
1798 	if (page_is_pfmemalloc(page))
1799 		SetPageSlabPfmemalloc(page);
1800 
1801 	kasan_poison_slab(page);
1802 
1803 	start = page_address(page);
1804 
1805 	setup_page_debug(s, page, start);
1806 
1807 	shuffle = shuffle_freelist(s, page);
1808 
1809 	if (!shuffle) {
1810 		start = fixup_red_left(s, start);
1811 		start = setup_object(s, page, start);
1812 		page->freelist = start;
1813 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1814 			next = p + s->size;
1815 			next = setup_object(s, page, next);
1816 			set_freepointer(s, p, next);
1817 			p = next;
1818 		}
1819 		set_freepointer(s, p, NULL);
1820 	}
1821 
1822 	page->inuse = page->objects;
1823 	page->frozen = 1;
1824 
1825 out:
1826 	if (gfpflags_allow_blocking(flags))
1827 		local_irq_disable();
1828 	if (!page)
1829 		return NULL;
1830 
1831 	inc_slabs_node(s, page_to_nid(page), page->objects);
1832 
1833 	return page;
1834 }
1835 
1836 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1837 {
1838 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1839 		flags = kmalloc_fix_flags(flags);
1840 
1841 	return allocate_slab(s,
1842 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1843 }
1844 
1845 static void __free_slab(struct kmem_cache *s, struct page *page)
1846 {
1847 	int order = compound_order(page);
1848 	int pages = 1 << order;
1849 
1850 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1851 		void *p;
1852 
1853 		slab_pad_check(s, page);
1854 		for_each_object(p, s, page_address(page),
1855 						page->objects)
1856 			check_object(s, page, p, SLUB_RED_INACTIVE);
1857 	}
1858 
1859 	__ClearPageSlabPfmemalloc(page);
1860 	__ClearPageSlab(page);
1861 	/* In union with page->mapping where page allocator expects NULL */
1862 	page->slab_cache = NULL;
1863 	if (current->reclaim_state)
1864 		current->reclaim_state->reclaimed_slab += pages;
1865 	unaccount_slab_page(page, order, s);
1866 	__free_pages(page, order);
1867 }
1868 
1869 static void rcu_free_slab(struct rcu_head *h)
1870 {
1871 	struct page *page = container_of(h, struct page, rcu_head);
1872 
1873 	__free_slab(page->slab_cache, page);
1874 }
1875 
1876 static void free_slab(struct kmem_cache *s, struct page *page)
1877 {
1878 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1879 		call_rcu(&page->rcu_head, rcu_free_slab);
1880 	} else
1881 		__free_slab(s, page);
1882 }
1883 
1884 static void discard_slab(struct kmem_cache *s, struct page *page)
1885 {
1886 	dec_slabs_node(s, page_to_nid(page), page->objects);
1887 	free_slab(s, page);
1888 }
1889 
1890 /*
1891  * Management of partially allocated slabs.
1892  */
1893 static inline void
1894 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1895 {
1896 	n->nr_partial++;
1897 	if (tail == DEACTIVATE_TO_TAIL)
1898 		list_add_tail(&page->slab_list, &n->partial);
1899 	else
1900 		list_add(&page->slab_list, &n->partial);
1901 }
1902 
1903 static inline void add_partial(struct kmem_cache_node *n,
1904 				struct page *page, int tail)
1905 {
1906 	lockdep_assert_held(&n->list_lock);
1907 	__add_partial(n, page, tail);
1908 }
1909 
1910 static inline void remove_partial(struct kmem_cache_node *n,
1911 					struct page *page)
1912 {
1913 	lockdep_assert_held(&n->list_lock);
1914 	list_del(&page->slab_list);
1915 	n->nr_partial--;
1916 }
1917 
1918 /*
1919  * Remove slab from the partial list, freeze it and
1920  * return the pointer to the freelist.
1921  *
1922  * Returns a list of objects or NULL if it fails.
1923  */
1924 static inline void *acquire_slab(struct kmem_cache *s,
1925 		struct kmem_cache_node *n, struct page *page,
1926 		int mode, int *objects)
1927 {
1928 	void *freelist;
1929 	unsigned long counters;
1930 	struct page new;
1931 
1932 	lockdep_assert_held(&n->list_lock);
1933 
1934 	/*
1935 	 * Zap the freelist and set the frozen bit.
1936 	 * The old freelist is the list of objects for the
1937 	 * per cpu allocation list.
1938 	 */
1939 	freelist = page->freelist;
1940 	counters = page->counters;
1941 	new.counters = counters;
1942 	*objects = new.objects - new.inuse;
1943 	if (mode) {
1944 		new.inuse = page->objects;
1945 		new.freelist = NULL;
1946 	} else {
1947 		new.freelist = freelist;
1948 	}
1949 
1950 	VM_BUG_ON(new.frozen);
1951 	new.frozen = 1;
1952 
1953 	if (!__cmpxchg_double_slab(s, page,
1954 			freelist, counters,
1955 			new.freelist, new.counters,
1956 			"acquire_slab"))
1957 		return NULL;
1958 
1959 	remove_partial(n, page);
1960 	WARN_ON(!freelist);
1961 	return freelist;
1962 }
1963 
1964 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1965 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1966 
1967 /*
1968  * Try to allocate a partial slab from a specific node.
1969  */
1970 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1971 				struct kmem_cache_cpu *c, gfp_t flags)
1972 {
1973 	struct page *page, *page2;
1974 	void *object = NULL;
1975 	unsigned int available = 0;
1976 	int objects;
1977 
1978 	/*
1979 	 * Racy check. If we mistakenly see no partial slabs then we
1980 	 * just allocate an empty slab. If we mistakenly try to get a
1981 	 * partial slab and there is none available then get_partial()
1982 	 * will return NULL.
1983 	 */
1984 	if (!n || !n->nr_partial)
1985 		return NULL;
1986 
1987 	spin_lock(&n->list_lock);
1988 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1989 		void *t;
1990 
1991 		if (!pfmemalloc_match(page, flags))
1992 			continue;
1993 
1994 		t = acquire_slab(s, n, page, object == NULL, &objects);
1995 		if (!t)
1996 			break;
1997 
1998 		available += objects;
1999 		if (!object) {
2000 			c->page = page;
2001 			stat(s, ALLOC_FROM_PARTIAL);
2002 			object = t;
2003 		} else {
2004 			put_cpu_partial(s, page, 0);
2005 			stat(s, CPU_PARTIAL_NODE);
2006 		}
2007 		if (!kmem_cache_has_cpu_partial(s)
2008 			|| available > slub_cpu_partial(s) / 2)
2009 			break;
2010 
2011 	}
2012 	spin_unlock(&n->list_lock);
2013 	return object;
2014 }
2015 
2016 /*
2017  * Get a page from somewhere. Search in increasing NUMA distances.
2018  */
2019 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2020 		struct kmem_cache_cpu *c)
2021 {
2022 #ifdef CONFIG_NUMA
2023 	struct zonelist *zonelist;
2024 	struct zoneref *z;
2025 	struct zone *zone;
2026 	enum zone_type highest_zoneidx = gfp_zone(flags);
2027 	void *object;
2028 	unsigned int cpuset_mems_cookie;
2029 
2030 	/*
2031 	 * The defrag ratio allows a configuration of the tradeoffs between
2032 	 * inter node defragmentation and node local allocations. A lower
2033 	 * defrag_ratio increases the tendency to do local allocations
2034 	 * instead of attempting to obtain partial slabs from other nodes.
2035 	 *
2036 	 * If the defrag_ratio is set to 0 then kmalloc() always
2037 	 * returns node local objects. If the ratio is higher then kmalloc()
2038 	 * may return off node objects because partial slabs are obtained
2039 	 * from other nodes and filled up.
2040 	 *
2041 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2042 	 * (which makes defrag_ratio = 1000) then every (well almost)
2043 	 * allocation will first attempt to defrag slab caches on other nodes.
2044 	 * This means scanning over all nodes to look for partial slabs which
2045 	 * may be expensive if we do it every time we are trying to find a slab
2046 	 * with available objects.
2047 	 */
2048 	if (!s->remote_node_defrag_ratio ||
2049 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2050 		return NULL;
2051 
2052 	do {
2053 		cpuset_mems_cookie = read_mems_allowed_begin();
2054 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2055 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2056 			struct kmem_cache_node *n;
2057 
2058 			n = get_node(s, zone_to_nid(zone));
2059 
2060 			if (n && cpuset_zone_allowed(zone, flags) &&
2061 					n->nr_partial > s->min_partial) {
2062 				object = get_partial_node(s, n, c, flags);
2063 				if (object) {
2064 					/*
2065 					 * Don't check read_mems_allowed_retry()
2066 					 * here - if mems_allowed was updated in
2067 					 * parallel, that was a harmless race
2068 					 * between allocation and the cpuset
2069 					 * update
2070 					 */
2071 					return object;
2072 				}
2073 			}
2074 		}
2075 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2076 #endif	/* CONFIG_NUMA */
2077 	return NULL;
2078 }
2079 
2080 /*
2081  * Get a partial page, lock it and return it.
2082  */
2083 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2084 		struct kmem_cache_cpu *c)
2085 {
2086 	void *object;
2087 	int searchnode = node;
2088 
2089 	if (node == NUMA_NO_NODE)
2090 		searchnode = numa_mem_id();
2091 
2092 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
2093 	if (object || node != NUMA_NO_NODE)
2094 		return object;
2095 
2096 	return get_any_partial(s, flags, c);
2097 }
2098 
2099 #ifdef CONFIG_PREEMPTION
2100 /*
2101  * Calculate the next globally unique transaction for disambiguation
2102  * during cmpxchg. The transactions start with the cpu number and are then
2103  * incremented by CONFIG_NR_CPUS.
2104  */
2105 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2106 #else
2107 /*
2108  * No preemption supported therefore also no need to check for
2109  * different cpus.
2110  */
2111 #define TID_STEP 1
2112 #endif
2113 
2114 static inline unsigned long next_tid(unsigned long tid)
2115 {
2116 	return tid + TID_STEP;
2117 }
2118 
2119 #ifdef SLUB_DEBUG_CMPXCHG
2120 static inline unsigned int tid_to_cpu(unsigned long tid)
2121 {
2122 	return tid % TID_STEP;
2123 }
2124 
2125 static inline unsigned long tid_to_event(unsigned long tid)
2126 {
2127 	return tid / TID_STEP;
2128 }
2129 #endif
2130 
2131 static inline unsigned int init_tid(int cpu)
2132 {
2133 	return cpu;
2134 }
2135 
2136 static inline void note_cmpxchg_failure(const char *n,
2137 		const struct kmem_cache *s, unsigned long tid)
2138 {
2139 #ifdef SLUB_DEBUG_CMPXCHG
2140 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2141 
2142 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2143 
2144 #ifdef CONFIG_PREEMPTION
2145 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2146 		pr_warn("due to cpu change %d -> %d\n",
2147 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2148 	else
2149 #endif
2150 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2151 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2152 			tid_to_event(tid), tid_to_event(actual_tid));
2153 	else
2154 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2155 			actual_tid, tid, next_tid(tid));
2156 #endif
2157 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2158 }
2159 
2160 static void init_kmem_cache_cpus(struct kmem_cache *s)
2161 {
2162 	int cpu;
2163 
2164 	for_each_possible_cpu(cpu)
2165 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2166 }
2167 
2168 /*
2169  * Remove the cpu slab
2170  */
2171 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2172 				void *freelist, struct kmem_cache_cpu *c)
2173 {
2174 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2175 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2176 	int lock = 0, free_delta = 0;
2177 	enum slab_modes l = M_NONE, m = M_NONE;
2178 	void *nextfree, *freelist_iter, *freelist_tail;
2179 	int tail = DEACTIVATE_TO_HEAD;
2180 	struct page new;
2181 	struct page old;
2182 
2183 	if (page->freelist) {
2184 		stat(s, DEACTIVATE_REMOTE_FREES);
2185 		tail = DEACTIVATE_TO_TAIL;
2186 	}
2187 
2188 	/*
2189 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2190 	 * remember the last object in freelist_tail for later splicing.
2191 	 */
2192 	freelist_tail = NULL;
2193 	freelist_iter = freelist;
2194 	while (freelist_iter) {
2195 		nextfree = get_freepointer(s, freelist_iter);
2196 
2197 		/*
2198 		 * If 'nextfree' is invalid, it is possible that the object at
2199 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2200 		 * starting at 'freelist_iter' by skipping them.
2201 		 */
2202 		if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2203 			break;
2204 
2205 		freelist_tail = freelist_iter;
2206 		free_delta++;
2207 
2208 		freelist_iter = nextfree;
2209 	}
2210 
2211 	/*
2212 	 * Stage two: Unfreeze the page while splicing the per-cpu
2213 	 * freelist to the head of page's freelist.
2214 	 *
2215 	 * Ensure that the page is unfrozen while the list presence
2216 	 * reflects the actual number of objects during unfreeze.
2217 	 *
2218 	 * We setup the list membership and then perform a cmpxchg
2219 	 * with the count. If there is a mismatch then the page
2220 	 * is not unfrozen but the page is on the wrong list.
2221 	 *
2222 	 * Then we restart the process which may have to remove
2223 	 * the page from the list that we just put it on again
2224 	 * because the number of objects in the slab may have
2225 	 * changed.
2226 	 */
2227 redo:
2228 
2229 	old.freelist = READ_ONCE(page->freelist);
2230 	old.counters = READ_ONCE(page->counters);
2231 	VM_BUG_ON(!old.frozen);
2232 
2233 	/* Determine target state of the slab */
2234 	new.counters = old.counters;
2235 	if (freelist_tail) {
2236 		new.inuse -= free_delta;
2237 		set_freepointer(s, freelist_tail, old.freelist);
2238 		new.freelist = freelist;
2239 	} else
2240 		new.freelist = old.freelist;
2241 
2242 	new.frozen = 0;
2243 
2244 	if (!new.inuse && n->nr_partial >= s->min_partial)
2245 		m = M_FREE;
2246 	else if (new.freelist) {
2247 		m = M_PARTIAL;
2248 		if (!lock) {
2249 			lock = 1;
2250 			/*
2251 			 * Taking the spinlock removes the possibility
2252 			 * that acquire_slab() will see a slab page that
2253 			 * is frozen
2254 			 */
2255 			spin_lock(&n->list_lock);
2256 		}
2257 	} else {
2258 		m = M_FULL;
2259 		if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2260 			lock = 1;
2261 			/*
2262 			 * This also ensures that the scanning of full
2263 			 * slabs from diagnostic functions will not see
2264 			 * any frozen slabs.
2265 			 */
2266 			spin_lock(&n->list_lock);
2267 		}
2268 	}
2269 
2270 	if (l != m) {
2271 		if (l == M_PARTIAL)
2272 			remove_partial(n, page);
2273 		else if (l == M_FULL)
2274 			remove_full(s, n, page);
2275 
2276 		if (m == M_PARTIAL)
2277 			add_partial(n, page, tail);
2278 		else if (m == M_FULL)
2279 			add_full(s, n, page);
2280 	}
2281 
2282 	l = m;
2283 	if (!__cmpxchg_double_slab(s, page,
2284 				old.freelist, old.counters,
2285 				new.freelist, new.counters,
2286 				"unfreezing slab"))
2287 		goto redo;
2288 
2289 	if (lock)
2290 		spin_unlock(&n->list_lock);
2291 
2292 	if (m == M_PARTIAL)
2293 		stat(s, tail);
2294 	else if (m == M_FULL)
2295 		stat(s, DEACTIVATE_FULL);
2296 	else if (m == M_FREE) {
2297 		stat(s, DEACTIVATE_EMPTY);
2298 		discard_slab(s, page);
2299 		stat(s, FREE_SLAB);
2300 	}
2301 
2302 	c->page = NULL;
2303 	c->freelist = NULL;
2304 }
2305 
2306 /*
2307  * Unfreeze all the cpu partial slabs.
2308  *
2309  * This function must be called with interrupts disabled
2310  * for the cpu using c (or some other guarantee must be there
2311  * to guarantee no concurrent accesses).
2312  */
2313 static void unfreeze_partials(struct kmem_cache *s,
2314 		struct kmem_cache_cpu *c)
2315 {
2316 #ifdef CONFIG_SLUB_CPU_PARTIAL
2317 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2318 	struct page *page, *discard_page = NULL;
2319 
2320 	while ((page = slub_percpu_partial(c))) {
2321 		struct page new;
2322 		struct page old;
2323 
2324 		slub_set_percpu_partial(c, page);
2325 
2326 		n2 = get_node(s, page_to_nid(page));
2327 		if (n != n2) {
2328 			if (n)
2329 				spin_unlock(&n->list_lock);
2330 
2331 			n = n2;
2332 			spin_lock(&n->list_lock);
2333 		}
2334 
2335 		do {
2336 
2337 			old.freelist = page->freelist;
2338 			old.counters = page->counters;
2339 			VM_BUG_ON(!old.frozen);
2340 
2341 			new.counters = old.counters;
2342 			new.freelist = old.freelist;
2343 
2344 			new.frozen = 0;
2345 
2346 		} while (!__cmpxchg_double_slab(s, page,
2347 				old.freelist, old.counters,
2348 				new.freelist, new.counters,
2349 				"unfreezing slab"));
2350 
2351 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2352 			page->next = discard_page;
2353 			discard_page = page;
2354 		} else {
2355 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2356 			stat(s, FREE_ADD_PARTIAL);
2357 		}
2358 	}
2359 
2360 	if (n)
2361 		spin_unlock(&n->list_lock);
2362 
2363 	while (discard_page) {
2364 		page = discard_page;
2365 		discard_page = discard_page->next;
2366 
2367 		stat(s, DEACTIVATE_EMPTY);
2368 		discard_slab(s, page);
2369 		stat(s, FREE_SLAB);
2370 	}
2371 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2372 }
2373 
2374 /*
2375  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2376  * partial page slot if available.
2377  *
2378  * If we did not find a slot then simply move all the partials to the
2379  * per node partial list.
2380  */
2381 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2382 {
2383 #ifdef CONFIG_SLUB_CPU_PARTIAL
2384 	struct page *oldpage;
2385 	int pages;
2386 	int pobjects;
2387 
2388 	preempt_disable();
2389 	do {
2390 		pages = 0;
2391 		pobjects = 0;
2392 		oldpage = this_cpu_read(s->cpu_slab->partial);
2393 
2394 		if (oldpage) {
2395 			pobjects = oldpage->pobjects;
2396 			pages = oldpage->pages;
2397 			if (drain && pobjects > slub_cpu_partial(s)) {
2398 				unsigned long flags;
2399 				/*
2400 				 * partial array is full. Move the existing
2401 				 * set to the per node partial list.
2402 				 */
2403 				local_irq_save(flags);
2404 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2405 				local_irq_restore(flags);
2406 				oldpage = NULL;
2407 				pobjects = 0;
2408 				pages = 0;
2409 				stat(s, CPU_PARTIAL_DRAIN);
2410 			}
2411 		}
2412 
2413 		pages++;
2414 		pobjects += page->objects - page->inuse;
2415 
2416 		page->pages = pages;
2417 		page->pobjects = pobjects;
2418 		page->next = oldpage;
2419 
2420 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2421 								!= oldpage);
2422 	if (unlikely(!slub_cpu_partial(s))) {
2423 		unsigned long flags;
2424 
2425 		local_irq_save(flags);
2426 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2427 		local_irq_restore(flags);
2428 	}
2429 	preempt_enable();
2430 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2431 }
2432 
2433 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2434 {
2435 	stat(s, CPUSLAB_FLUSH);
2436 	deactivate_slab(s, c->page, c->freelist, c);
2437 
2438 	c->tid = next_tid(c->tid);
2439 }
2440 
2441 /*
2442  * Flush cpu slab.
2443  *
2444  * Called from IPI handler with interrupts disabled.
2445  */
2446 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2447 {
2448 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2449 
2450 	if (c->page)
2451 		flush_slab(s, c);
2452 
2453 	unfreeze_partials(s, c);
2454 }
2455 
2456 static void flush_cpu_slab(void *d)
2457 {
2458 	struct kmem_cache *s = d;
2459 
2460 	__flush_cpu_slab(s, smp_processor_id());
2461 }
2462 
2463 static bool has_cpu_slab(int cpu, void *info)
2464 {
2465 	struct kmem_cache *s = info;
2466 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2467 
2468 	return c->page || slub_percpu_partial(c);
2469 }
2470 
2471 static void flush_all(struct kmem_cache *s)
2472 {
2473 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2474 }
2475 
2476 /*
2477  * Use the cpu notifier to insure that the cpu slabs are flushed when
2478  * necessary.
2479  */
2480 static int slub_cpu_dead(unsigned int cpu)
2481 {
2482 	struct kmem_cache *s;
2483 	unsigned long flags;
2484 
2485 	mutex_lock(&slab_mutex);
2486 	list_for_each_entry(s, &slab_caches, list) {
2487 		local_irq_save(flags);
2488 		__flush_cpu_slab(s, cpu);
2489 		local_irq_restore(flags);
2490 	}
2491 	mutex_unlock(&slab_mutex);
2492 	return 0;
2493 }
2494 
2495 /*
2496  * Check if the objects in a per cpu structure fit numa
2497  * locality expectations.
2498  */
2499 static inline int node_match(struct page *page, int node)
2500 {
2501 #ifdef CONFIG_NUMA
2502 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2503 		return 0;
2504 #endif
2505 	return 1;
2506 }
2507 
2508 #ifdef CONFIG_SLUB_DEBUG
2509 static int count_free(struct page *page)
2510 {
2511 	return page->objects - page->inuse;
2512 }
2513 
2514 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2515 {
2516 	return atomic_long_read(&n->total_objects);
2517 }
2518 #endif /* CONFIG_SLUB_DEBUG */
2519 
2520 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2521 static unsigned long count_partial(struct kmem_cache_node *n,
2522 					int (*get_count)(struct page *))
2523 {
2524 	unsigned long flags;
2525 	unsigned long x = 0;
2526 	struct page *page;
2527 
2528 	spin_lock_irqsave(&n->list_lock, flags);
2529 	list_for_each_entry(page, &n->partial, slab_list)
2530 		x += get_count(page);
2531 	spin_unlock_irqrestore(&n->list_lock, flags);
2532 	return x;
2533 }
2534 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2535 
2536 static noinline void
2537 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2538 {
2539 #ifdef CONFIG_SLUB_DEBUG
2540 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2541 				      DEFAULT_RATELIMIT_BURST);
2542 	int node;
2543 	struct kmem_cache_node *n;
2544 
2545 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2546 		return;
2547 
2548 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2549 		nid, gfpflags, &gfpflags);
2550 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2551 		s->name, s->object_size, s->size, oo_order(s->oo),
2552 		oo_order(s->min));
2553 
2554 	if (oo_order(s->min) > get_order(s->object_size))
2555 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2556 			s->name);
2557 
2558 	for_each_kmem_cache_node(s, node, n) {
2559 		unsigned long nr_slabs;
2560 		unsigned long nr_objs;
2561 		unsigned long nr_free;
2562 
2563 		nr_free  = count_partial(n, count_free);
2564 		nr_slabs = node_nr_slabs(n);
2565 		nr_objs  = node_nr_objs(n);
2566 
2567 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2568 			node, nr_slabs, nr_objs, nr_free);
2569 	}
2570 #endif
2571 }
2572 
2573 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2574 			int node, struct kmem_cache_cpu **pc)
2575 {
2576 	void *freelist;
2577 	struct kmem_cache_cpu *c = *pc;
2578 	struct page *page;
2579 
2580 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2581 
2582 	freelist = get_partial(s, flags, node, c);
2583 
2584 	if (freelist)
2585 		return freelist;
2586 
2587 	page = new_slab(s, flags, node);
2588 	if (page) {
2589 		c = raw_cpu_ptr(s->cpu_slab);
2590 		if (c->page)
2591 			flush_slab(s, c);
2592 
2593 		/*
2594 		 * No other reference to the page yet so we can
2595 		 * muck around with it freely without cmpxchg
2596 		 */
2597 		freelist = page->freelist;
2598 		page->freelist = NULL;
2599 
2600 		stat(s, ALLOC_SLAB);
2601 		c->page = page;
2602 		*pc = c;
2603 	}
2604 
2605 	return freelist;
2606 }
2607 
2608 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2609 {
2610 	if (unlikely(PageSlabPfmemalloc(page)))
2611 		return gfp_pfmemalloc_allowed(gfpflags);
2612 
2613 	return true;
2614 }
2615 
2616 /*
2617  * Check the page->freelist of a page and either transfer the freelist to the
2618  * per cpu freelist or deactivate the page.
2619  *
2620  * The page is still frozen if the return value is not NULL.
2621  *
2622  * If this function returns NULL then the page has been unfrozen.
2623  *
2624  * This function must be called with interrupt disabled.
2625  */
2626 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2627 {
2628 	struct page new;
2629 	unsigned long counters;
2630 	void *freelist;
2631 
2632 	do {
2633 		freelist = page->freelist;
2634 		counters = page->counters;
2635 
2636 		new.counters = counters;
2637 		VM_BUG_ON(!new.frozen);
2638 
2639 		new.inuse = page->objects;
2640 		new.frozen = freelist != NULL;
2641 
2642 	} while (!__cmpxchg_double_slab(s, page,
2643 		freelist, counters,
2644 		NULL, new.counters,
2645 		"get_freelist"));
2646 
2647 	return freelist;
2648 }
2649 
2650 /*
2651  * Slow path. The lockless freelist is empty or we need to perform
2652  * debugging duties.
2653  *
2654  * Processing is still very fast if new objects have been freed to the
2655  * regular freelist. In that case we simply take over the regular freelist
2656  * as the lockless freelist and zap the regular freelist.
2657  *
2658  * If that is not working then we fall back to the partial lists. We take the
2659  * first element of the freelist as the object to allocate now and move the
2660  * rest of the freelist to the lockless freelist.
2661  *
2662  * And if we were unable to get a new slab from the partial slab lists then
2663  * we need to allocate a new slab. This is the slowest path since it involves
2664  * a call to the page allocator and the setup of a new slab.
2665  *
2666  * Version of __slab_alloc to use when we know that interrupts are
2667  * already disabled (which is the case for bulk allocation).
2668  */
2669 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2670 			  unsigned long addr, struct kmem_cache_cpu *c)
2671 {
2672 	void *freelist;
2673 	struct page *page;
2674 
2675 	stat(s, ALLOC_SLOWPATH);
2676 
2677 	page = c->page;
2678 	if (!page) {
2679 		/*
2680 		 * if the node is not online or has no normal memory, just
2681 		 * ignore the node constraint
2682 		 */
2683 		if (unlikely(node != NUMA_NO_NODE &&
2684 			     !node_isset(node, slab_nodes)))
2685 			node = NUMA_NO_NODE;
2686 		goto new_slab;
2687 	}
2688 redo:
2689 
2690 	if (unlikely(!node_match(page, node))) {
2691 		/*
2692 		 * same as above but node_match() being false already
2693 		 * implies node != NUMA_NO_NODE
2694 		 */
2695 		if (!node_isset(node, slab_nodes)) {
2696 			node = NUMA_NO_NODE;
2697 			goto redo;
2698 		} else {
2699 			stat(s, ALLOC_NODE_MISMATCH);
2700 			deactivate_slab(s, page, c->freelist, c);
2701 			goto new_slab;
2702 		}
2703 	}
2704 
2705 	/*
2706 	 * By rights, we should be searching for a slab page that was
2707 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2708 	 * information when the page leaves the per-cpu allocator
2709 	 */
2710 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2711 		deactivate_slab(s, page, c->freelist, c);
2712 		goto new_slab;
2713 	}
2714 
2715 	/* must check again c->freelist in case of cpu migration or IRQ */
2716 	freelist = c->freelist;
2717 	if (freelist)
2718 		goto load_freelist;
2719 
2720 	freelist = get_freelist(s, page);
2721 
2722 	if (!freelist) {
2723 		c->page = NULL;
2724 		stat(s, DEACTIVATE_BYPASS);
2725 		goto new_slab;
2726 	}
2727 
2728 	stat(s, ALLOC_REFILL);
2729 
2730 load_freelist:
2731 	/*
2732 	 * freelist is pointing to the list of objects to be used.
2733 	 * page is pointing to the page from which the objects are obtained.
2734 	 * That page must be frozen for per cpu allocations to work.
2735 	 */
2736 	VM_BUG_ON(!c->page->frozen);
2737 	c->freelist = get_freepointer(s, freelist);
2738 	c->tid = next_tid(c->tid);
2739 	return freelist;
2740 
2741 new_slab:
2742 
2743 	if (slub_percpu_partial(c)) {
2744 		page = c->page = slub_percpu_partial(c);
2745 		slub_set_percpu_partial(c, page);
2746 		stat(s, CPU_PARTIAL_ALLOC);
2747 		goto redo;
2748 	}
2749 
2750 	freelist = new_slab_objects(s, gfpflags, node, &c);
2751 
2752 	if (unlikely(!freelist)) {
2753 		slab_out_of_memory(s, gfpflags, node);
2754 		return NULL;
2755 	}
2756 
2757 	page = c->page;
2758 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2759 		goto load_freelist;
2760 
2761 	/* Only entered in the debug case */
2762 	if (kmem_cache_debug(s) &&
2763 			!alloc_debug_processing(s, page, freelist, addr))
2764 		goto new_slab;	/* Slab failed checks. Next slab needed */
2765 
2766 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2767 	return freelist;
2768 }
2769 
2770 /*
2771  * Another one that disabled interrupt and compensates for possible
2772  * cpu changes by refetching the per cpu area pointer.
2773  */
2774 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2775 			  unsigned long addr, struct kmem_cache_cpu *c)
2776 {
2777 	void *p;
2778 	unsigned long flags;
2779 
2780 	local_irq_save(flags);
2781 #ifdef CONFIG_PREEMPTION
2782 	/*
2783 	 * We may have been preempted and rescheduled on a different
2784 	 * cpu before disabling interrupts. Need to reload cpu area
2785 	 * pointer.
2786 	 */
2787 	c = this_cpu_ptr(s->cpu_slab);
2788 #endif
2789 
2790 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2791 	local_irq_restore(flags);
2792 	return p;
2793 }
2794 
2795 /*
2796  * If the object has been wiped upon free, make sure it's fully initialized by
2797  * zeroing out freelist pointer.
2798  */
2799 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2800 						   void *obj)
2801 {
2802 	if (unlikely(slab_want_init_on_free(s)) && obj)
2803 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2804 			0, sizeof(void *));
2805 }
2806 
2807 /*
2808  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2809  * have the fastpath folded into their functions. So no function call
2810  * overhead for requests that can be satisfied on the fastpath.
2811  *
2812  * The fastpath works by first checking if the lockless freelist can be used.
2813  * If not then __slab_alloc is called for slow processing.
2814  *
2815  * Otherwise we can simply pick the next object from the lockless free list.
2816  */
2817 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2818 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
2819 {
2820 	void *object;
2821 	struct kmem_cache_cpu *c;
2822 	struct page *page;
2823 	unsigned long tid;
2824 	struct obj_cgroup *objcg = NULL;
2825 
2826 	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2827 	if (!s)
2828 		return NULL;
2829 
2830 	object = kfence_alloc(s, orig_size, gfpflags);
2831 	if (unlikely(object))
2832 		goto out;
2833 
2834 redo:
2835 	/*
2836 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2837 	 * enabled. We may switch back and forth between cpus while
2838 	 * reading from one cpu area. That does not matter as long
2839 	 * as we end up on the original cpu again when doing the cmpxchg.
2840 	 *
2841 	 * We should guarantee that tid and kmem_cache are retrieved on
2842 	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2843 	 * to check if it is matched or not.
2844 	 */
2845 	do {
2846 		tid = this_cpu_read(s->cpu_slab->tid);
2847 		c = raw_cpu_ptr(s->cpu_slab);
2848 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2849 		 unlikely(tid != READ_ONCE(c->tid)));
2850 
2851 	/*
2852 	 * Irqless object alloc/free algorithm used here depends on sequence
2853 	 * of fetching cpu_slab's data. tid should be fetched before anything
2854 	 * on c to guarantee that object and page associated with previous tid
2855 	 * won't be used with current tid. If we fetch tid first, object and
2856 	 * page could be one associated with next tid and our alloc/free
2857 	 * request will be failed. In this case, we will retry. So, no problem.
2858 	 */
2859 	barrier();
2860 
2861 	/*
2862 	 * The transaction ids are globally unique per cpu and per operation on
2863 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2864 	 * occurs on the right processor and that there was no operation on the
2865 	 * linked list in between.
2866 	 */
2867 
2868 	object = c->freelist;
2869 	page = c->page;
2870 	if (unlikely(!object || !page || !node_match(page, node))) {
2871 		object = __slab_alloc(s, gfpflags, node, addr, c);
2872 	} else {
2873 		void *next_object = get_freepointer_safe(s, object);
2874 
2875 		/*
2876 		 * The cmpxchg will only match if there was no additional
2877 		 * operation and if we are on the right processor.
2878 		 *
2879 		 * The cmpxchg does the following atomically (without lock
2880 		 * semantics!)
2881 		 * 1. Relocate first pointer to the current per cpu area.
2882 		 * 2. Verify that tid and freelist have not been changed
2883 		 * 3. If they were not changed replace tid and freelist
2884 		 *
2885 		 * Since this is without lock semantics the protection is only
2886 		 * against code executing on this cpu *not* from access by
2887 		 * other cpus.
2888 		 */
2889 		if (unlikely(!this_cpu_cmpxchg_double(
2890 				s->cpu_slab->freelist, s->cpu_slab->tid,
2891 				object, tid,
2892 				next_object, next_tid(tid)))) {
2893 
2894 			note_cmpxchg_failure("slab_alloc", s, tid);
2895 			goto redo;
2896 		}
2897 		prefetch_freepointer(s, next_object);
2898 		stat(s, ALLOC_FASTPATH);
2899 	}
2900 
2901 	maybe_wipe_obj_freeptr(s, object);
2902 
2903 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2904 		memset(kasan_reset_tag(object), 0, s->object_size);
2905 
2906 out:
2907 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
2908 
2909 	return object;
2910 }
2911 
2912 static __always_inline void *slab_alloc(struct kmem_cache *s,
2913 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
2914 {
2915 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2916 }
2917 
2918 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2919 {
2920 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
2921 
2922 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2923 				s->size, gfpflags);
2924 
2925 	return ret;
2926 }
2927 EXPORT_SYMBOL(kmem_cache_alloc);
2928 
2929 #ifdef CONFIG_TRACING
2930 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2931 {
2932 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
2933 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2934 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2935 	return ret;
2936 }
2937 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2938 #endif
2939 
2940 #ifdef CONFIG_NUMA
2941 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2942 {
2943 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
2944 
2945 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2946 				    s->object_size, s->size, gfpflags, node);
2947 
2948 	return ret;
2949 }
2950 EXPORT_SYMBOL(kmem_cache_alloc_node);
2951 
2952 #ifdef CONFIG_TRACING
2953 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2954 				    gfp_t gfpflags,
2955 				    int node, size_t size)
2956 {
2957 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
2958 
2959 	trace_kmalloc_node(_RET_IP_, ret,
2960 			   size, s->size, gfpflags, node);
2961 
2962 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2963 	return ret;
2964 }
2965 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2966 #endif
2967 #endif	/* CONFIG_NUMA */
2968 
2969 /*
2970  * Slow path handling. This may still be called frequently since objects
2971  * have a longer lifetime than the cpu slabs in most processing loads.
2972  *
2973  * So we still attempt to reduce cache line usage. Just take the slab
2974  * lock and free the item. If there is no additional partial page
2975  * handling required then we can return immediately.
2976  */
2977 static void __slab_free(struct kmem_cache *s, struct page *page,
2978 			void *head, void *tail, int cnt,
2979 			unsigned long addr)
2980 
2981 {
2982 	void *prior;
2983 	int was_frozen;
2984 	struct page new;
2985 	unsigned long counters;
2986 	struct kmem_cache_node *n = NULL;
2987 	unsigned long flags;
2988 
2989 	stat(s, FREE_SLOWPATH);
2990 
2991 	if (kfence_free(head))
2992 		return;
2993 
2994 	if (kmem_cache_debug(s) &&
2995 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2996 		return;
2997 
2998 	do {
2999 		if (unlikely(n)) {
3000 			spin_unlock_irqrestore(&n->list_lock, flags);
3001 			n = NULL;
3002 		}
3003 		prior = page->freelist;
3004 		counters = page->counters;
3005 		set_freepointer(s, tail, prior);
3006 		new.counters = counters;
3007 		was_frozen = new.frozen;
3008 		new.inuse -= cnt;
3009 		if ((!new.inuse || !prior) && !was_frozen) {
3010 
3011 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3012 
3013 				/*
3014 				 * Slab was on no list before and will be
3015 				 * partially empty
3016 				 * We can defer the list move and instead
3017 				 * freeze it.
3018 				 */
3019 				new.frozen = 1;
3020 
3021 			} else { /* Needs to be taken off a list */
3022 
3023 				n = get_node(s, page_to_nid(page));
3024 				/*
3025 				 * Speculatively acquire the list_lock.
3026 				 * If the cmpxchg does not succeed then we may
3027 				 * drop the list_lock without any processing.
3028 				 *
3029 				 * Otherwise the list_lock will synchronize with
3030 				 * other processors updating the list of slabs.
3031 				 */
3032 				spin_lock_irqsave(&n->list_lock, flags);
3033 
3034 			}
3035 		}
3036 
3037 	} while (!cmpxchg_double_slab(s, page,
3038 		prior, counters,
3039 		head, new.counters,
3040 		"__slab_free"));
3041 
3042 	if (likely(!n)) {
3043 
3044 		if (likely(was_frozen)) {
3045 			/*
3046 			 * The list lock was not taken therefore no list
3047 			 * activity can be necessary.
3048 			 */
3049 			stat(s, FREE_FROZEN);
3050 		} else if (new.frozen) {
3051 			/*
3052 			 * If we just froze the page then put it onto the
3053 			 * per cpu partial list.
3054 			 */
3055 			put_cpu_partial(s, page, 1);
3056 			stat(s, CPU_PARTIAL_FREE);
3057 		}
3058 
3059 		return;
3060 	}
3061 
3062 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3063 		goto slab_empty;
3064 
3065 	/*
3066 	 * Objects left in the slab. If it was not on the partial list before
3067 	 * then add it.
3068 	 */
3069 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3070 		remove_full(s, n, page);
3071 		add_partial(n, page, DEACTIVATE_TO_TAIL);
3072 		stat(s, FREE_ADD_PARTIAL);
3073 	}
3074 	spin_unlock_irqrestore(&n->list_lock, flags);
3075 	return;
3076 
3077 slab_empty:
3078 	if (prior) {
3079 		/*
3080 		 * Slab on the partial list.
3081 		 */
3082 		remove_partial(n, page);
3083 		stat(s, FREE_REMOVE_PARTIAL);
3084 	} else {
3085 		/* Slab must be on the full list */
3086 		remove_full(s, n, page);
3087 	}
3088 
3089 	spin_unlock_irqrestore(&n->list_lock, flags);
3090 	stat(s, FREE_SLAB);
3091 	discard_slab(s, page);
3092 }
3093 
3094 /*
3095  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3096  * can perform fastpath freeing without additional function calls.
3097  *
3098  * The fastpath is only possible if we are freeing to the current cpu slab
3099  * of this processor. This typically the case if we have just allocated
3100  * the item before.
3101  *
3102  * If fastpath is not possible then fall back to __slab_free where we deal
3103  * with all sorts of special processing.
3104  *
3105  * Bulk free of a freelist with several objects (all pointing to the
3106  * same page) possible by specifying head and tail ptr, plus objects
3107  * count (cnt). Bulk free indicated by tail pointer being set.
3108  */
3109 static __always_inline void do_slab_free(struct kmem_cache *s,
3110 				struct page *page, void *head, void *tail,
3111 				int cnt, unsigned long addr)
3112 {
3113 	void *tail_obj = tail ? : head;
3114 	struct kmem_cache_cpu *c;
3115 	unsigned long tid;
3116 
3117 	memcg_slab_free_hook(s, &head, 1);
3118 redo:
3119 	/*
3120 	 * Determine the currently cpus per cpu slab.
3121 	 * The cpu may change afterward. However that does not matter since
3122 	 * data is retrieved via this pointer. If we are on the same cpu
3123 	 * during the cmpxchg then the free will succeed.
3124 	 */
3125 	do {
3126 		tid = this_cpu_read(s->cpu_slab->tid);
3127 		c = raw_cpu_ptr(s->cpu_slab);
3128 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3129 		 unlikely(tid != READ_ONCE(c->tid)));
3130 
3131 	/* Same with comment on barrier() in slab_alloc_node() */
3132 	barrier();
3133 
3134 	if (likely(page == c->page)) {
3135 		void **freelist = READ_ONCE(c->freelist);
3136 
3137 		set_freepointer(s, tail_obj, freelist);
3138 
3139 		if (unlikely(!this_cpu_cmpxchg_double(
3140 				s->cpu_slab->freelist, s->cpu_slab->tid,
3141 				freelist, tid,
3142 				head, next_tid(tid)))) {
3143 
3144 			note_cmpxchg_failure("slab_free", s, tid);
3145 			goto redo;
3146 		}
3147 		stat(s, FREE_FASTPATH);
3148 	} else
3149 		__slab_free(s, page, head, tail_obj, cnt, addr);
3150 
3151 }
3152 
3153 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3154 				      void *head, void *tail, int cnt,
3155 				      unsigned long addr)
3156 {
3157 	/*
3158 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3159 	 * to remove objects, whose reuse must be delayed.
3160 	 */
3161 	if (slab_free_freelist_hook(s, &head, &tail))
3162 		do_slab_free(s, page, head, tail, cnt, addr);
3163 }
3164 
3165 #ifdef CONFIG_KASAN_GENERIC
3166 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3167 {
3168 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3169 }
3170 #endif
3171 
3172 void kmem_cache_free(struct kmem_cache *s, void *x)
3173 {
3174 	s = cache_from_obj(s, x);
3175 	if (!s)
3176 		return;
3177 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3178 	trace_kmem_cache_free(_RET_IP_, x, s->name);
3179 }
3180 EXPORT_SYMBOL(kmem_cache_free);
3181 
3182 struct detached_freelist {
3183 	struct page *page;
3184 	void *tail;
3185 	void *freelist;
3186 	int cnt;
3187 	struct kmem_cache *s;
3188 };
3189 
3190 /*
3191  * This function progressively scans the array with free objects (with
3192  * a limited look ahead) and extract objects belonging to the same
3193  * page.  It builds a detached freelist directly within the given
3194  * page/objects.  This can happen without any need for
3195  * synchronization, because the objects are owned by running process.
3196  * The freelist is build up as a single linked list in the objects.
3197  * The idea is, that this detached freelist can then be bulk
3198  * transferred to the real freelist(s), but only requiring a single
3199  * synchronization primitive.  Look ahead in the array is limited due
3200  * to performance reasons.
3201  */
3202 static inline
3203 int build_detached_freelist(struct kmem_cache *s, size_t size,
3204 			    void **p, struct detached_freelist *df)
3205 {
3206 	size_t first_skipped_index = 0;
3207 	int lookahead = 3;
3208 	void *object;
3209 	struct page *page;
3210 
3211 	/* Always re-init detached_freelist */
3212 	df->page = NULL;
3213 
3214 	do {
3215 		object = p[--size];
3216 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3217 	} while (!object && size);
3218 
3219 	if (!object)
3220 		return 0;
3221 
3222 	page = virt_to_head_page(object);
3223 	if (!s) {
3224 		/* Handle kalloc'ed objects */
3225 		if (unlikely(!PageSlab(page))) {
3226 			BUG_ON(!PageCompound(page));
3227 			kfree_hook(object);
3228 			__free_pages(page, compound_order(page));
3229 			p[size] = NULL; /* mark object processed */
3230 			return size;
3231 		}
3232 		/* Derive kmem_cache from object */
3233 		df->s = page->slab_cache;
3234 	} else {
3235 		df->s = cache_from_obj(s, object); /* Support for memcg */
3236 	}
3237 
3238 	if (is_kfence_address(object)) {
3239 		slab_free_hook(df->s, object);
3240 		__kfence_free(object);
3241 		p[size] = NULL; /* mark object processed */
3242 		return size;
3243 	}
3244 
3245 	/* Start new detached freelist */
3246 	df->page = page;
3247 	set_freepointer(df->s, object, NULL);
3248 	df->tail = object;
3249 	df->freelist = object;
3250 	p[size] = NULL; /* mark object processed */
3251 	df->cnt = 1;
3252 
3253 	while (size) {
3254 		object = p[--size];
3255 		if (!object)
3256 			continue; /* Skip processed objects */
3257 
3258 		/* df->page is always set at this point */
3259 		if (df->page == virt_to_head_page(object)) {
3260 			/* Opportunity build freelist */
3261 			set_freepointer(df->s, object, df->freelist);
3262 			df->freelist = object;
3263 			df->cnt++;
3264 			p[size] = NULL; /* mark object processed */
3265 
3266 			continue;
3267 		}
3268 
3269 		/* Limit look ahead search */
3270 		if (!--lookahead)
3271 			break;
3272 
3273 		if (!first_skipped_index)
3274 			first_skipped_index = size + 1;
3275 	}
3276 
3277 	return first_skipped_index;
3278 }
3279 
3280 /* Note that interrupts must be enabled when calling this function. */
3281 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3282 {
3283 	if (WARN_ON(!size))
3284 		return;
3285 
3286 	memcg_slab_free_hook(s, p, size);
3287 	do {
3288 		struct detached_freelist df;
3289 
3290 		size = build_detached_freelist(s, size, p, &df);
3291 		if (!df.page)
3292 			continue;
3293 
3294 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3295 	} while (likely(size));
3296 }
3297 EXPORT_SYMBOL(kmem_cache_free_bulk);
3298 
3299 /* Note that interrupts must be enabled when calling this function. */
3300 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3301 			  void **p)
3302 {
3303 	struct kmem_cache_cpu *c;
3304 	int i;
3305 	struct obj_cgroup *objcg = NULL;
3306 
3307 	/* memcg and kmem_cache debug support */
3308 	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3309 	if (unlikely(!s))
3310 		return false;
3311 	/*
3312 	 * Drain objects in the per cpu slab, while disabling local
3313 	 * IRQs, which protects against PREEMPT and interrupts
3314 	 * handlers invoking normal fastpath.
3315 	 */
3316 	local_irq_disable();
3317 	c = this_cpu_ptr(s->cpu_slab);
3318 
3319 	for (i = 0; i < size; i++) {
3320 		void *object = kfence_alloc(s, s->object_size, flags);
3321 
3322 		if (unlikely(object)) {
3323 			p[i] = object;
3324 			continue;
3325 		}
3326 
3327 		object = c->freelist;
3328 		if (unlikely(!object)) {
3329 			/*
3330 			 * We may have removed an object from c->freelist using
3331 			 * the fastpath in the previous iteration; in that case,
3332 			 * c->tid has not been bumped yet.
3333 			 * Since ___slab_alloc() may reenable interrupts while
3334 			 * allocating memory, we should bump c->tid now.
3335 			 */
3336 			c->tid = next_tid(c->tid);
3337 
3338 			/*
3339 			 * Invoking slow path likely have side-effect
3340 			 * of re-populating per CPU c->freelist
3341 			 */
3342 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3343 					    _RET_IP_, c);
3344 			if (unlikely(!p[i]))
3345 				goto error;
3346 
3347 			c = this_cpu_ptr(s->cpu_slab);
3348 			maybe_wipe_obj_freeptr(s, p[i]);
3349 
3350 			continue; /* goto for-loop */
3351 		}
3352 		c->freelist = get_freepointer(s, object);
3353 		p[i] = object;
3354 		maybe_wipe_obj_freeptr(s, p[i]);
3355 	}
3356 	c->tid = next_tid(c->tid);
3357 	local_irq_enable();
3358 
3359 	/* Clear memory outside IRQ disabled fastpath loop */
3360 	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3361 		int j;
3362 
3363 		for (j = 0; j < i; j++)
3364 			memset(kasan_reset_tag(p[j]), 0, s->object_size);
3365 	}
3366 
3367 	/* memcg and kmem_cache debug support */
3368 	slab_post_alloc_hook(s, objcg, flags, size, p);
3369 	return i;
3370 error:
3371 	local_irq_enable();
3372 	slab_post_alloc_hook(s, objcg, flags, i, p);
3373 	__kmem_cache_free_bulk(s, i, p);
3374 	return 0;
3375 }
3376 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3377 
3378 
3379 /*
3380  * Object placement in a slab is made very easy because we always start at
3381  * offset 0. If we tune the size of the object to the alignment then we can
3382  * get the required alignment by putting one properly sized object after
3383  * another.
3384  *
3385  * Notice that the allocation order determines the sizes of the per cpu
3386  * caches. Each processor has always one slab available for allocations.
3387  * Increasing the allocation order reduces the number of times that slabs
3388  * must be moved on and off the partial lists and is therefore a factor in
3389  * locking overhead.
3390  */
3391 
3392 /*
3393  * Mininum / Maximum order of slab pages. This influences locking overhead
3394  * and slab fragmentation. A higher order reduces the number of partial slabs
3395  * and increases the number of allocations possible without having to
3396  * take the list_lock.
3397  */
3398 static unsigned int slub_min_order;
3399 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3400 static unsigned int slub_min_objects;
3401 
3402 /*
3403  * Calculate the order of allocation given an slab object size.
3404  *
3405  * The order of allocation has significant impact on performance and other
3406  * system components. Generally order 0 allocations should be preferred since
3407  * order 0 does not cause fragmentation in the page allocator. Larger objects
3408  * be problematic to put into order 0 slabs because there may be too much
3409  * unused space left. We go to a higher order if more than 1/16th of the slab
3410  * would be wasted.
3411  *
3412  * In order to reach satisfactory performance we must ensure that a minimum
3413  * number of objects is in one slab. Otherwise we may generate too much
3414  * activity on the partial lists which requires taking the list_lock. This is
3415  * less a concern for large slabs though which are rarely used.
3416  *
3417  * slub_max_order specifies the order where we begin to stop considering the
3418  * number of objects in a slab as critical. If we reach slub_max_order then
3419  * we try to keep the page order as low as possible. So we accept more waste
3420  * of space in favor of a small page order.
3421  *
3422  * Higher order allocations also allow the placement of more objects in a
3423  * slab and thereby reduce object handling overhead. If the user has
3424  * requested a higher mininum order then we start with that one instead of
3425  * the smallest order which will fit the object.
3426  */
3427 static inline unsigned int slab_order(unsigned int size,
3428 		unsigned int min_objects, unsigned int max_order,
3429 		unsigned int fract_leftover)
3430 {
3431 	unsigned int min_order = slub_min_order;
3432 	unsigned int order;
3433 
3434 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3435 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3436 
3437 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3438 			order <= max_order; order++) {
3439 
3440 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3441 		unsigned int rem;
3442 
3443 		rem = slab_size % size;
3444 
3445 		if (rem <= slab_size / fract_leftover)
3446 			break;
3447 	}
3448 
3449 	return order;
3450 }
3451 
3452 static inline int calculate_order(unsigned int size)
3453 {
3454 	unsigned int order;
3455 	unsigned int min_objects;
3456 	unsigned int max_objects;
3457 	unsigned int nr_cpus;
3458 
3459 	/*
3460 	 * Attempt to find best configuration for a slab. This
3461 	 * works by first attempting to generate a layout with
3462 	 * the best configuration and backing off gradually.
3463 	 *
3464 	 * First we increase the acceptable waste in a slab. Then
3465 	 * we reduce the minimum objects required in a slab.
3466 	 */
3467 	min_objects = slub_min_objects;
3468 	if (!min_objects) {
3469 		/*
3470 		 * Some architectures will only update present cpus when
3471 		 * onlining them, so don't trust the number if it's just 1. But
3472 		 * we also don't want to use nr_cpu_ids always, as on some other
3473 		 * architectures, there can be many possible cpus, but never
3474 		 * onlined. Here we compromise between trying to avoid too high
3475 		 * order on systems that appear larger than they are, and too
3476 		 * low order on systems that appear smaller than they are.
3477 		 */
3478 		nr_cpus = num_present_cpus();
3479 		if (nr_cpus <= 1)
3480 			nr_cpus = nr_cpu_ids;
3481 		min_objects = 4 * (fls(nr_cpus) + 1);
3482 	}
3483 	max_objects = order_objects(slub_max_order, size);
3484 	min_objects = min(min_objects, max_objects);
3485 
3486 	while (min_objects > 1) {
3487 		unsigned int fraction;
3488 
3489 		fraction = 16;
3490 		while (fraction >= 4) {
3491 			order = slab_order(size, min_objects,
3492 					slub_max_order, fraction);
3493 			if (order <= slub_max_order)
3494 				return order;
3495 			fraction /= 2;
3496 		}
3497 		min_objects--;
3498 	}
3499 
3500 	/*
3501 	 * We were unable to place multiple objects in a slab. Now
3502 	 * lets see if we can place a single object there.
3503 	 */
3504 	order = slab_order(size, 1, slub_max_order, 1);
3505 	if (order <= slub_max_order)
3506 		return order;
3507 
3508 	/*
3509 	 * Doh this slab cannot be placed using slub_max_order.
3510 	 */
3511 	order = slab_order(size, 1, MAX_ORDER, 1);
3512 	if (order < MAX_ORDER)
3513 		return order;
3514 	return -ENOSYS;
3515 }
3516 
3517 static void
3518 init_kmem_cache_node(struct kmem_cache_node *n)
3519 {
3520 	n->nr_partial = 0;
3521 	spin_lock_init(&n->list_lock);
3522 	INIT_LIST_HEAD(&n->partial);
3523 #ifdef CONFIG_SLUB_DEBUG
3524 	atomic_long_set(&n->nr_slabs, 0);
3525 	atomic_long_set(&n->total_objects, 0);
3526 	INIT_LIST_HEAD(&n->full);
3527 #endif
3528 }
3529 
3530 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3531 {
3532 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3533 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3534 
3535 	/*
3536 	 * Must align to double word boundary for the double cmpxchg
3537 	 * instructions to work; see __pcpu_double_call_return_bool().
3538 	 */
3539 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3540 				     2 * sizeof(void *));
3541 
3542 	if (!s->cpu_slab)
3543 		return 0;
3544 
3545 	init_kmem_cache_cpus(s);
3546 
3547 	return 1;
3548 }
3549 
3550 static struct kmem_cache *kmem_cache_node;
3551 
3552 /*
3553  * No kmalloc_node yet so do it by hand. We know that this is the first
3554  * slab on the node for this slabcache. There are no concurrent accesses
3555  * possible.
3556  *
3557  * Note that this function only works on the kmem_cache_node
3558  * when allocating for the kmem_cache_node. This is used for bootstrapping
3559  * memory on a fresh node that has no slab structures yet.
3560  */
3561 static void early_kmem_cache_node_alloc(int node)
3562 {
3563 	struct page *page;
3564 	struct kmem_cache_node *n;
3565 
3566 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3567 
3568 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3569 
3570 	BUG_ON(!page);
3571 	if (page_to_nid(page) != node) {
3572 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3573 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3574 	}
3575 
3576 	n = page->freelist;
3577 	BUG_ON(!n);
3578 #ifdef CONFIG_SLUB_DEBUG
3579 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3580 	init_tracking(kmem_cache_node, n);
3581 #endif
3582 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL);
3583 	page->freelist = get_freepointer(kmem_cache_node, n);
3584 	page->inuse = 1;
3585 	page->frozen = 0;
3586 	kmem_cache_node->node[node] = n;
3587 	init_kmem_cache_node(n);
3588 	inc_slabs_node(kmem_cache_node, node, page->objects);
3589 
3590 	/*
3591 	 * No locks need to be taken here as it has just been
3592 	 * initialized and there is no concurrent access.
3593 	 */
3594 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3595 }
3596 
3597 static void free_kmem_cache_nodes(struct kmem_cache *s)
3598 {
3599 	int node;
3600 	struct kmem_cache_node *n;
3601 
3602 	for_each_kmem_cache_node(s, node, n) {
3603 		s->node[node] = NULL;
3604 		kmem_cache_free(kmem_cache_node, n);
3605 	}
3606 }
3607 
3608 void __kmem_cache_release(struct kmem_cache *s)
3609 {
3610 	cache_random_seq_destroy(s);
3611 	free_percpu(s->cpu_slab);
3612 	free_kmem_cache_nodes(s);
3613 }
3614 
3615 static int init_kmem_cache_nodes(struct kmem_cache *s)
3616 {
3617 	int node;
3618 
3619 	for_each_node_mask(node, slab_nodes) {
3620 		struct kmem_cache_node *n;
3621 
3622 		if (slab_state == DOWN) {
3623 			early_kmem_cache_node_alloc(node);
3624 			continue;
3625 		}
3626 		n = kmem_cache_alloc_node(kmem_cache_node,
3627 						GFP_KERNEL, node);
3628 
3629 		if (!n) {
3630 			free_kmem_cache_nodes(s);
3631 			return 0;
3632 		}
3633 
3634 		init_kmem_cache_node(n);
3635 		s->node[node] = n;
3636 	}
3637 	return 1;
3638 }
3639 
3640 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3641 {
3642 	if (min < MIN_PARTIAL)
3643 		min = MIN_PARTIAL;
3644 	else if (min > MAX_PARTIAL)
3645 		min = MAX_PARTIAL;
3646 	s->min_partial = min;
3647 }
3648 
3649 static void set_cpu_partial(struct kmem_cache *s)
3650 {
3651 #ifdef CONFIG_SLUB_CPU_PARTIAL
3652 	/*
3653 	 * cpu_partial determined the maximum number of objects kept in the
3654 	 * per cpu partial lists of a processor.
3655 	 *
3656 	 * Per cpu partial lists mainly contain slabs that just have one
3657 	 * object freed. If they are used for allocation then they can be
3658 	 * filled up again with minimal effort. The slab will never hit the
3659 	 * per node partial lists and therefore no locking will be required.
3660 	 *
3661 	 * This setting also determines
3662 	 *
3663 	 * A) The number of objects from per cpu partial slabs dumped to the
3664 	 *    per node list when we reach the limit.
3665 	 * B) The number of objects in cpu partial slabs to extract from the
3666 	 *    per node list when we run out of per cpu objects. We only fetch
3667 	 *    50% to keep some capacity around for frees.
3668 	 */
3669 	if (!kmem_cache_has_cpu_partial(s))
3670 		slub_set_cpu_partial(s, 0);
3671 	else if (s->size >= PAGE_SIZE)
3672 		slub_set_cpu_partial(s, 2);
3673 	else if (s->size >= 1024)
3674 		slub_set_cpu_partial(s, 6);
3675 	else if (s->size >= 256)
3676 		slub_set_cpu_partial(s, 13);
3677 	else
3678 		slub_set_cpu_partial(s, 30);
3679 #endif
3680 }
3681 
3682 /*
3683  * calculate_sizes() determines the order and the distribution of data within
3684  * a slab object.
3685  */
3686 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3687 {
3688 	slab_flags_t flags = s->flags;
3689 	unsigned int size = s->object_size;
3690 	unsigned int freepointer_area;
3691 	unsigned int order;
3692 
3693 	/*
3694 	 * Round up object size to the next word boundary. We can only
3695 	 * place the free pointer at word boundaries and this determines
3696 	 * the possible location of the free pointer.
3697 	 */
3698 	size = ALIGN(size, sizeof(void *));
3699 	/*
3700 	 * This is the area of the object where a freepointer can be
3701 	 * safely written. If redzoning adds more to the inuse size, we
3702 	 * can't use that portion for writing the freepointer, so
3703 	 * s->offset must be limited within this for the general case.
3704 	 */
3705 	freepointer_area = size;
3706 
3707 #ifdef CONFIG_SLUB_DEBUG
3708 	/*
3709 	 * Determine if we can poison the object itself. If the user of
3710 	 * the slab may touch the object after free or before allocation
3711 	 * then we should never poison the object itself.
3712 	 */
3713 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3714 			!s->ctor)
3715 		s->flags |= __OBJECT_POISON;
3716 	else
3717 		s->flags &= ~__OBJECT_POISON;
3718 
3719 
3720 	/*
3721 	 * If we are Redzoning then check if there is some space between the
3722 	 * end of the object and the free pointer. If not then add an
3723 	 * additional word to have some bytes to store Redzone information.
3724 	 */
3725 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3726 		size += sizeof(void *);
3727 #endif
3728 
3729 	/*
3730 	 * With that we have determined the number of bytes in actual use
3731 	 * by the object. This is the potential offset to the free pointer.
3732 	 */
3733 	s->inuse = size;
3734 
3735 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3736 		s->ctor)) {
3737 		/*
3738 		 * Relocate free pointer after the object if it is not
3739 		 * permitted to overwrite the first word of the object on
3740 		 * kmem_cache_free.
3741 		 *
3742 		 * This is the case if we do RCU, have a constructor or
3743 		 * destructor or are poisoning the objects.
3744 		 *
3745 		 * The assumption that s->offset >= s->inuse means free
3746 		 * pointer is outside of the object is used in the
3747 		 * freeptr_outside_object() function. If that is no
3748 		 * longer true, the function needs to be modified.
3749 		 */
3750 		s->offset = size;
3751 		size += sizeof(void *);
3752 	} else if (freepointer_area > sizeof(void *)) {
3753 		/*
3754 		 * Store freelist pointer near middle of object to keep
3755 		 * it away from the edges of the object to avoid small
3756 		 * sized over/underflows from neighboring allocations.
3757 		 */
3758 		s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
3759 	}
3760 
3761 #ifdef CONFIG_SLUB_DEBUG
3762 	if (flags & SLAB_STORE_USER)
3763 		/*
3764 		 * Need to store information about allocs and frees after
3765 		 * the object.
3766 		 */
3767 		size += 2 * sizeof(struct track);
3768 #endif
3769 
3770 	kasan_cache_create(s, &size, &s->flags);
3771 #ifdef CONFIG_SLUB_DEBUG
3772 	if (flags & SLAB_RED_ZONE) {
3773 		/*
3774 		 * Add some empty padding so that we can catch
3775 		 * overwrites from earlier objects rather than let
3776 		 * tracking information or the free pointer be
3777 		 * corrupted if a user writes before the start
3778 		 * of the object.
3779 		 */
3780 		size += sizeof(void *);
3781 
3782 		s->red_left_pad = sizeof(void *);
3783 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3784 		size += s->red_left_pad;
3785 	}
3786 #endif
3787 
3788 	/*
3789 	 * SLUB stores one object immediately after another beginning from
3790 	 * offset 0. In order to align the objects we have to simply size
3791 	 * each object to conform to the alignment.
3792 	 */
3793 	size = ALIGN(size, s->align);
3794 	s->size = size;
3795 	s->reciprocal_size = reciprocal_value(size);
3796 	if (forced_order >= 0)
3797 		order = forced_order;
3798 	else
3799 		order = calculate_order(size);
3800 
3801 	if ((int)order < 0)
3802 		return 0;
3803 
3804 	s->allocflags = 0;
3805 	if (order)
3806 		s->allocflags |= __GFP_COMP;
3807 
3808 	if (s->flags & SLAB_CACHE_DMA)
3809 		s->allocflags |= GFP_DMA;
3810 
3811 	if (s->flags & SLAB_CACHE_DMA32)
3812 		s->allocflags |= GFP_DMA32;
3813 
3814 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3815 		s->allocflags |= __GFP_RECLAIMABLE;
3816 
3817 	/*
3818 	 * Determine the number of objects per slab
3819 	 */
3820 	s->oo = oo_make(order, size);
3821 	s->min = oo_make(get_order(size), size);
3822 	if (oo_objects(s->oo) > oo_objects(s->max))
3823 		s->max = s->oo;
3824 
3825 	return !!oo_objects(s->oo);
3826 }
3827 
3828 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3829 {
3830 	s->flags = kmem_cache_flags(s->size, flags, s->name);
3831 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3832 	s->random = get_random_long();
3833 #endif
3834 
3835 	if (!calculate_sizes(s, -1))
3836 		goto error;
3837 	if (disable_higher_order_debug) {
3838 		/*
3839 		 * Disable debugging flags that store metadata if the min slab
3840 		 * order increased.
3841 		 */
3842 		if (get_order(s->size) > get_order(s->object_size)) {
3843 			s->flags &= ~DEBUG_METADATA_FLAGS;
3844 			s->offset = 0;
3845 			if (!calculate_sizes(s, -1))
3846 				goto error;
3847 		}
3848 	}
3849 
3850 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3851     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3852 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3853 		/* Enable fast mode */
3854 		s->flags |= __CMPXCHG_DOUBLE;
3855 #endif
3856 
3857 	/*
3858 	 * The larger the object size is, the more pages we want on the partial
3859 	 * list to avoid pounding the page allocator excessively.
3860 	 */
3861 	set_min_partial(s, ilog2(s->size) / 2);
3862 
3863 	set_cpu_partial(s);
3864 
3865 #ifdef CONFIG_NUMA
3866 	s->remote_node_defrag_ratio = 1000;
3867 #endif
3868 
3869 	/* Initialize the pre-computed randomized freelist if slab is up */
3870 	if (slab_state >= UP) {
3871 		if (init_cache_random_seq(s))
3872 			goto error;
3873 	}
3874 
3875 	if (!init_kmem_cache_nodes(s))
3876 		goto error;
3877 
3878 	if (alloc_kmem_cache_cpus(s))
3879 		return 0;
3880 
3881 	free_kmem_cache_nodes(s);
3882 error:
3883 	return -EINVAL;
3884 }
3885 
3886 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3887 			      const char *text)
3888 {
3889 #ifdef CONFIG_SLUB_DEBUG
3890 	void *addr = page_address(page);
3891 	unsigned long *map;
3892 	void *p;
3893 
3894 	slab_err(s, page, text, s->name);
3895 	slab_lock(page);
3896 
3897 	map = get_map(s, page);
3898 	for_each_object(p, s, addr, page->objects) {
3899 
3900 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
3901 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3902 			print_tracking(s, p);
3903 		}
3904 	}
3905 	put_map(map);
3906 	slab_unlock(page);
3907 #endif
3908 }
3909 
3910 /*
3911  * Attempt to free all partial slabs on a node.
3912  * This is called from __kmem_cache_shutdown(). We must take list_lock
3913  * because sysfs file might still access partial list after the shutdowning.
3914  */
3915 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3916 {
3917 	LIST_HEAD(discard);
3918 	struct page *page, *h;
3919 
3920 	BUG_ON(irqs_disabled());
3921 	spin_lock_irq(&n->list_lock);
3922 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3923 		if (!page->inuse) {
3924 			remove_partial(n, page);
3925 			list_add(&page->slab_list, &discard);
3926 		} else {
3927 			list_slab_objects(s, page,
3928 			  "Objects remaining in %s on __kmem_cache_shutdown()");
3929 		}
3930 	}
3931 	spin_unlock_irq(&n->list_lock);
3932 
3933 	list_for_each_entry_safe(page, h, &discard, slab_list)
3934 		discard_slab(s, page);
3935 }
3936 
3937 bool __kmem_cache_empty(struct kmem_cache *s)
3938 {
3939 	int node;
3940 	struct kmem_cache_node *n;
3941 
3942 	for_each_kmem_cache_node(s, node, n)
3943 		if (n->nr_partial || slabs_node(s, node))
3944 			return false;
3945 	return true;
3946 }
3947 
3948 /*
3949  * Release all resources used by a slab cache.
3950  */
3951 int __kmem_cache_shutdown(struct kmem_cache *s)
3952 {
3953 	int node;
3954 	struct kmem_cache_node *n;
3955 
3956 	flush_all(s);
3957 	/* Attempt to free all objects */
3958 	for_each_kmem_cache_node(s, node, n) {
3959 		free_partial(s, n);
3960 		if (n->nr_partial || slabs_node(s, node))
3961 			return 1;
3962 	}
3963 	return 0;
3964 }
3965 
3966 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3967 {
3968 	void *base;
3969 	int __maybe_unused i;
3970 	unsigned int objnr;
3971 	void *objp;
3972 	void *objp0;
3973 	struct kmem_cache *s = page->slab_cache;
3974 	struct track __maybe_unused *trackp;
3975 
3976 	kpp->kp_ptr = object;
3977 	kpp->kp_page = page;
3978 	kpp->kp_slab_cache = s;
3979 	base = page_address(page);
3980 	objp0 = kasan_reset_tag(object);
3981 #ifdef CONFIG_SLUB_DEBUG
3982 	objp = restore_red_left(s, objp0);
3983 #else
3984 	objp = objp0;
3985 #endif
3986 	objnr = obj_to_index(s, page, objp);
3987 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
3988 	objp = base + s->size * objnr;
3989 	kpp->kp_objp = objp;
3990 	if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
3991 	    !(s->flags & SLAB_STORE_USER))
3992 		return;
3993 #ifdef CONFIG_SLUB_DEBUG
3994 	trackp = get_track(s, objp, TRACK_ALLOC);
3995 	kpp->kp_ret = (void *)trackp->addr;
3996 #ifdef CONFIG_STACKTRACE
3997 	for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
3998 		kpp->kp_stack[i] = (void *)trackp->addrs[i];
3999 		if (!kpp->kp_stack[i])
4000 			break;
4001 	}
4002 #endif
4003 #endif
4004 }
4005 
4006 /********************************************************************
4007  *		Kmalloc subsystem
4008  *******************************************************************/
4009 
4010 static int __init setup_slub_min_order(char *str)
4011 {
4012 	get_option(&str, (int *)&slub_min_order);
4013 
4014 	return 1;
4015 }
4016 
4017 __setup("slub_min_order=", setup_slub_min_order);
4018 
4019 static int __init setup_slub_max_order(char *str)
4020 {
4021 	get_option(&str, (int *)&slub_max_order);
4022 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4023 
4024 	return 1;
4025 }
4026 
4027 __setup("slub_max_order=", setup_slub_max_order);
4028 
4029 static int __init setup_slub_min_objects(char *str)
4030 {
4031 	get_option(&str, (int *)&slub_min_objects);
4032 
4033 	return 1;
4034 }
4035 
4036 __setup("slub_min_objects=", setup_slub_min_objects);
4037 
4038 void *__kmalloc(size_t size, gfp_t flags)
4039 {
4040 	struct kmem_cache *s;
4041 	void *ret;
4042 
4043 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4044 		return kmalloc_large(size, flags);
4045 
4046 	s = kmalloc_slab(size, flags);
4047 
4048 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4049 		return s;
4050 
4051 	ret = slab_alloc(s, flags, _RET_IP_, size);
4052 
4053 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4054 
4055 	ret = kasan_kmalloc(s, ret, size, flags);
4056 
4057 	return ret;
4058 }
4059 EXPORT_SYMBOL(__kmalloc);
4060 
4061 #ifdef CONFIG_NUMA
4062 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4063 {
4064 	struct page *page;
4065 	void *ptr = NULL;
4066 	unsigned int order = get_order(size);
4067 
4068 	flags |= __GFP_COMP;
4069 	page = alloc_pages_node(node, flags, order);
4070 	if (page) {
4071 		ptr = page_address(page);
4072 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4073 				      PAGE_SIZE << order);
4074 	}
4075 
4076 	return kmalloc_large_node_hook(ptr, size, flags);
4077 }
4078 
4079 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4080 {
4081 	struct kmem_cache *s;
4082 	void *ret;
4083 
4084 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4085 		ret = kmalloc_large_node(size, flags, node);
4086 
4087 		trace_kmalloc_node(_RET_IP_, ret,
4088 				   size, PAGE_SIZE << get_order(size),
4089 				   flags, node);
4090 
4091 		return ret;
4092 	}
4093 
4094 	s = kmalloc_slab(size, flags);
4095 
4096 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4097 		return s;
4098 
4099 	ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4100 
4101 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4102 
4103 	ret = kasan_kmalloc(s, ret, size, flags);
4104 
4105 	return ret;
4106 }
4107 EXPORT_SYMBOL(__kmalloc_node);
4108 #endif	/* CONFIG_NUMA */
4109 
4110 #ifdef CONFIG_HARDENED_USERCOPY
4111 /*
4112  * Rejects incorrectly sized objects and objects that are to be copied
4113  * to/from userspace but do not fall entirely within the containing slab
4114  * cache's usercopy region.
4115  *
4116  * Returns NULL if check passes, otherwise const char * to name of cache
4117  * to indicate an error.
4118  */
4119 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4120 			 bool to_user)
4121 {
4122 	struct kmem_cache *s;
4123 	unsigned int offset;
4124 	size_t object_size;
4125 	bool is_kfence = is_kfence_address(ptr);
4126 
4127 	ptr = kasan_reset_tag(ptr);
4128 
4129 	/* Find object and usable object size. */
4130 	s = page->slab_cache;
4131 
4132 	/* Reject impossible pointers. */
4133 	if (ptr < page_address(page))
4134 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4135 			       to_user, 0, n);
4136 
4137 	/* Find offset within object. */
4138 	if (is_kfence)
4139 		offset = ptr - kfence_object_start(ptr);
4140 	else
4141 		offset = (ptr - page_address(page)) % s->size;
4142 
4143 	/* Adjust for redzone and reject if within the redzone. */
4144 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4145 		if (offset < s->red_left_pad)
4146 			usercopy_abort("SLUB object in left red zone",
4147 				       s->name, to_user, offset, n);
4148 		offset -= s->red_left_pad;
4149 	}
4150 
4151 	/* Allow address range falling entirely within usercopy region. */
4152 	if (offset >= s->useroffset &&
4153 	    offset - s->useroffset <= s->usersize &&
4154 	    n <= s->useroffset - offset + s->usersize)
4155 		return;
4156 
4157 	/*
4158 	 * If the copy is still within the allocated object, produce
4159 	 * a warning instead of rejecting the copy. This is intended
4160 	 * to be a temporary method to find any missing usercopy
4161 	 * whitelists.
4162 	 */
4163 	object_size = slab_ksize(s);
4164 	if (usercopy_fallback &&
4165 	    offset <= object_size && n <= object_size - offset) {
4166 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
4167 		return;
4168 	}
4169 
4170 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4171 }
4172 #endif /* CONFIG_HARDENED_USERCOPY */
4173 
4174 size_t __ksize(const void *object)
4175 {
4176 	struct page *page;
4177 
4178 	if (unlikely(object == ZERO_SIZE_PTR))
4179 		return 0;
4180 
4181 	page = virt_to_head_page(object);
4182 
4183 	if (unlikely(!PageSlab(page))) {
4184 		WARN_ON(!PageCompound(page));
4185 		return page_size(page);
4186 	}
4187 
4188 	return slab_ksize(page->slab_cache);
4189 }
4190 EXPORT_SYMBOL(__ksize);
4191 
4192 void kfree(const void *x)
4193 {
4194 	struct page *page;
4195 	void *object = (void *)x;
4196 
4197 	trace_kfree(_RET_IP_, x);
4198 
4199 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4200 		return;
4201 
4202 	page = virt_to_head_page(x);
4203 	if (unlikely(!PageSlab(page))) {
4204 		unsigned int order = compound_order(page);
4205 
4206 		BUG_ON(!PageCompound(page));
4207 		kfree_hook(object);
4208 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4209 				      -(PAGE_SIZE << order));
4210 		__free_pages(page, order);
4211 		return;
4212 	}
4213 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4214 }
4215 EXPORT_SYMBOL(kfree);
4216 
4217 #define SHRINK_PROMOTE_MAX 32
4218 
4219 /*
4220  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4221  * up most to the head of the partial lists. New allocations will then
4222  * fill those up and thus they can be removed from the partial lists.
4223  *
4224  * The slabs with the least items are placed last. This results in them
4225  * being allocated from last increasing the chance that the last objects
4226  * are freed in them.
4227  */
4228 int __kmem_cache_shrink(struct kmem_cache *s)
4229 {
4230 	int node;
4231 	int i;
4232 	struct kmem_cache_node *n;
4233 	struct page *page;
4234 	struct page *t;
4235 	struct list_head discard;
4236 	struct list_head promote[SHRINK_PROMOTE_MAX];
4237 	unsigned long flags;
4238 	int ret = 0;
4239 
4240 	flush_all(s);
4241 	for_each_kmem_cache_node(s, node, n) {
4242 		INIT_LIST_HEAD(&discard);
4243 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4244 			INIT_LIST_HEAD(promote + i);
4245 
4246 		spin_lock_irqsave(&n->list_lock, flags);
4247 
4248 		/*
4249 		 * Build lists of slabs to discard or promote.
4250 		 *
4251 		 * Note that concurrent frees may occur while we hold the
4252 		 * list_lock. page->inuse here is the upper limit.
4253 		 */
4254 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4255 			int free = page->objects - page->inuse;
4256 
4257 			/* Do not reread page->inuse */
4258 			barrier();
4259 
4260 			/* We do not keep full slabs on the list */
4261 			BUG_ON(free <= 0);
4262 
4263 			if (free == page->objects) {
4264 				list_move(&page->slab_list, &discard);
4265 				n->nr_partial--;
4266 			} else if (free <= SHRINK_PROMOTE_MAX)
4267 				list_move(&page->slab_list, promote + free - 1);
4268 		}
4269 
4270 		/*
4271 		 * Promote the slabs filled up most to the head of the
4272 		 * partial list.
4273 		 */
4274 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4275 			list_splice(promote + i, &n->partial);
4276 
4277 		spin_unlock_irqrestore(&n->list_lock, flags);
4278 
4279 		/* Release empty slabs */
4280 		list_for_each_entry_safe(page, t, &discard, slab_list)
4281 			discard_slab(s, page);
4282 
4283 		if (slabs_node(s, node))
4284 			ret = 1;
4285 	}
4286 
4287 	return ret;
4288 }
4289 
4290 static int slab_mem_going_offline_callback(void *arg)
4291 {
4292 	struct kmem_cache *s;
4293 
4294 	mutex_lock(&slab_mutex);
4295 	list_for_each_entry(s, &slab_caches, list)
4296 		__kmem_cache_shrink(s);
4297 	mutex_unlock(&slab_mutex);
4298 
4299 	return 0;
4300 }
4301 
4302 static void slab_mem_offline_callback(void *arg)
4303 {
4304 	struct memory_notify *marg = arg;
4305 	int offline_node;
4306 
4307 	offline_node = marg->status_change_nid_normal;
4308 
4309 	/*
4310 	 * If the node still has available memory. we need kmem_cache_node
4311 	 * for it yet.
4312 	 */
4313 	if (offline_node < 0)
4314 		return;
4315 
4316 	mutex_lock(&slab_mutex);
4317 	node_clear(offline_node, slab_nodes);
4318 	/*
4319 	 * We no longer free kmem_cache_node structures here, as it would be
4320 	 * racy with all get_node() users, and infeasible to protect them with
4321 	 * slab_mutex.
4322 	 */
4323 	mutex_unlock(&slab_mutex);
4324 }
4325 
4326 static int slab_mem_going_online_callback(void *arg)
4327 {
4328 	struct kmem_cache_node *n;
4329 	struct kmem_cache *s;
4330 	struct memory_notify *marg = arg;
4331 	int nid = marg->status_change_nid_normal;
4332 	int ret = 0;
4333 
4334 	/*
4335 	 * If the node's memory is already available, then kmem_cache_node is
4336 	 * already created. Nothing to do.
4337 	 */
4338 	if (nid < 0)
4339 		return 0;
4340 
4341 	/*
4342 	 * We are bringing a node online. No memory is available yet. We must
4343 	 * allocate a kmem_cache_node structure in order to bring the node
4344 	 * online.
4345 	 */
4346 	mutex_lock(&slab_mutex);
4347 	list_for_each_entry(s, &slab_caches, list) {
4348 		/*
4349 		 * The structure may already exist if the node was previously
4350 		 * onlined and offlined.
4351 		 */
4352 		if (get_node(s, nid))
4353 			continue;
4354 		/*
4355 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4356 		 *      since memory is not yet available from the node that
4357 		 *      is brought up.
4358 		 */
4359 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4360 		if (!n) {
4361 			ret = -ENOMEM;
4362 			goto out;
4363 		}
4364 		init_kmem_cache_node(n);
4365 		s->node[nid] = n;
4366 	}
4367 	/*
4368 	 * Any cache created after this point will also have kmem_cache_node
4369 	 * initialized for the new node.
4370 	 */
4371 	node_set(nid, slab_nodes);
4372 out:
4373 	mutex_unlock(&slab_mutex);
4374 	return ret;
4375 }
4376 
4377 static int slab_memory_callback(struct notifier_block *self,
4378 				unsigned long action, void *arg)
4379 {
4380 	int ret = 0;
4381 
4382 	switch (action) {
4383 	case MEM_GOING_ONLINE:
4384 		ret = slab_mem_going_online_callback(arg);
4385 		break;
4386 	case MEM_GOING_OFFLINE:
4387 		ret = slab_mem_going_offline_callback(arg);
4388 		break;
4389 	case MEM_OFFLINE:
4390 	case MEM_CANCEL_ONLINE:
4391 		slab_mem_offline_callback(arg);
4392 		break;
4393 	case MEM_ONLINE:
4394 	case MEM_CANCEL_OFFLINE:
4395 		break;
4396 	}
4397 	if (ret)
4398 		ret = notifier_from_errno(ret);
4399 	else
4400 		ret = NOTIFY_OK;
4401 	return ret;
4402 }
4403 
4404 static struct notifier_block slab_memory_callback_nb = {
4405 	.notifier_call = slab_memory_callback,
4406 	.priority = SLAB_CALLBACK_PRI,
4407 };
4408 
4409 /********************************************************************
4410  *			Basic setup of slabs
4411  *******************************************************************/
4412 
4413 /*
4414  * Used for early kmem_cache structures that were allocated using
4415  * the page allocator. Allocate them properly then fix up the pointers
4416  * that may be pointing to the wrong kmem_cache structure.
4417  */
4418 
4419 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4420 {
4421 	int node;
4422 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4423 	struct kmem_cache_node *n;
4424 
4425 	memcpy(s, static_cache, kmem_cache->object_size);
4426 
4427 	/*
4428 	 * This runs very early, and only the boot processor is supposed to be
4429 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4430 	 * IPIs around.
4431 	 */
4432 	__flush_cpu_slab(s, smp_processor_id());
4433 	for_each_kmem_cache_node(s, node, n) {
4434 		struct page *p;
4435 
4436 		list_for_each_entry(p, &n->partial, slab_list)
4437 			p->slab_cache = s;
4438 
4439 #ifdef CONFIG_SLUB_DEBUG
4440 		list_for_each_entry(p, &n->full, slab_list)
4441 			p->slab_cache = s;
4442 #endif
4443 	}
4444 	list_add(&s->list, &slab_caches);
4445 	return s;
4446 }
4447 
4448 void __init kmem_cache_init(void)
4449 {
4450 	static __initdata struct kmem_cache boot_kmem_cache,
4451 		boot_kmem_cache_node;
4452 	int node;
4453 
4454 	if (debug_guardpage_minorder())
4455 		slub_max_order = 0;
4456 
4457 	kmem_cache_node = &boot_kmem_cache_node;
4458 	kmem_cache = &boot_kmem_cache;
4459 
4460 	/*
4461 	 * Initialize the nodemask for which we will allocate per node
4462 	 * structures. Here we don't need taking slab_mutex yet.
4463 	 */
4464 	for_each_node_state(node, N_NORMAL_MEMORY)
4465 		node_set(node, slab_nodes);
4466 
4467 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4468 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4469 
4470 	register_hotmemory_notifier(&slab_memory_callback_nb);
4471 
4472 	/* Able to allocate the per node structures */
4473 	slab_state = PARTIAL;
4474 
4475 	create_boot_cache(kmem_cache, "kmem_cache",
4476 			offsetof(struct kmem_cache, node) +
4477 				nr_node_ids * sizeof(struct kmem_cache_node *),
4478 		       SLAB_HWCACHE_ALIGN, 0, 0);
4479 
4480 	kmem_cache = bootstrap(&boot_kmem_cache);
4481 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4482 
4483 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4484 	setup_kmalloc_cache_index_table();
4485 	create_kmalloc_caches(0);
4486 
4487 	/* Setup random freelists for each cache */
4488 	init_freelist_randomization();
4489 
4490 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4491 				  slub_cpu_dead);
4492 
4493 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4494 		cache_line_size(),
4495 		slub_min_order, slub_max_order, slub_min_objects,
4496 		nr_cpu_ids, nr_node_ids);
4497 }
4498 
4499 void __init kmem_cache_init_late(void)
4500 {
4501 }
4502 
4503 struct kmem_cache *
4504 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4505 		   slab_flags_t flags, void (*ctor)(void *))
4506 {
4507 	struct kmem_cache *s;
4508 
4509 	s = find_mergeable(size, align, flags, name, ctor);
4510 	if (s) {
4511 		s->refcount++;
4512 
4513 		/*
4514 		 * Adjust the object sizes so that we clear
4515 		 * the complete object on kzalloc.
4516 		 */
4517 		s->object_size = max(s->object_size, size);
4518 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4519 
4520 		if (sysfs_slab_alias(s, name)) {
4521 			s->refcount--;
4522 			s = NULL;
4523 		}
4524 	}
4525 
4526 	return s;
4527 }
4528 
4529 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4530 {
4531 	int err;
4532 
4533 	err = kmem_cache_open(s, flags);
4534 	if (err)
4535 		return err;
4536 
4537 	/* Mutex is not taken during early boot */
4538 	if (slab_state <= UP)
4539 		return 0;
4540 
4541 	err = sysfs_slab_add(s);
4542 	if (err)
4543 		__kmem_cache_release(s);
4544 
4545 	return err;
4546 }
4547 
4548 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4549 {
4550 	struct kmem_cache *s;
4551 	void *ret;
4552 
4553 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4554 		return kmalloc_large(size, gfpflags);
4555 
4556 	s = kmalloc_slab(size, gfpflags);
4557 
4558 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4559 		return s;
4560 
4561 	ret = slab_alloc(s, gfpflags, caller, size);
4562 
4563 	/* Honor the call site pointer we received. */
4564 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4565 
4566 	return ret;
4567 }
4568 EXPORT_SYMBOL(__kmalloc_track_caller);
4569 
4570 #ifdef CONFIG_NUMA
4571 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4572 					int node, unsigned long caller)
4573 {
4574 	struct kmem_cache *s;
4575 	void *ret;
4576 
4577 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4578 		ret = kmalloc_large_node(size, gfpflags, node);
4579 
4580 		trace_kmalloc_node(caller, ret,
4581 				   size, PAGE_SIZE << get_order(size),
4582 				   gfpflags, node);
4583 
4584 		return ret;
4585 	}
4586 
4587 	s = kmalloc_slab(size, gfpflags);
4588 
4589 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4590 		return s;
4591 
4592 	ret = slab_alloc_node(s, gfpflags, node, caller, size);
4593 
4594 	/* Honor the call site pointer we received. */
4595 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4596 
4597 	return ret;
4598 }
4599 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4600 #endif
4601 
4602 #ifdef CONFIG_SYSFS
4603 static int count_inuse(struct page *page)
4604 {
4605 	return page->inuse;
4606 }
4607 
4608 static int count_total(struct page *page)
4609 {
4610 	return page->objects;
4611 }
4612 #endif
4613 
4614 #ifdef CONFIG_SLUB_DEBUG
4615 static void validate_slab(struct kmem_cache *s, struct page *page)
4616 {
4617 	void *p;
4618 	void *addr = page_address(page);
4619 	unsigned long *map;
4620 
4621 	slab_lock(page);
4622 
4623 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4624 		goto unlock;
4625 
4626 	/* Now we know that a valid freelist exists */
4627 	map = get_map(s, page);
4628 	for_each_object(p, s, addr, page->objects) {
4629 		u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4630 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4631 
4632 		if (!check_object(s, page, p, val))
4633 			break;
4634 	}
4635 	put_map(map);
4636 unlock:
4637 	slab_unlock(page);
4638 }
4639 
4640 static int validate_slab_node(struct kmem_cache *s,
4641 		struct kmem_cache_node *n)
4642 {
4643 	unsigned long count = 0;
4644 	struct page *page;
4645 	unsigned long flags;
4646 
4647 	spin_lock_irqsave(&n->list_lock, flags);
4648 
4649 	list_for_each_entry(page, &n->partial, slab_list) {
4650 		validate_slab(s, page);
4651 		count++;
4652 	}
4653 	if (count != n->nr_partial)
4654 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4655 		       s->name, count, n->nr_partial);
4656 
4657 	if (!(s->flags & SLAB_STORE_USER))
4658 		goto out;
4659 
4660 	list_for_each_entry(page, &n->full, slab_list) {
4661 		validate_slab(s, page);
4662 		count++;
4663 	}
4664 	if (count != atomic_long_read(&n->nr_slabs))
4665 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4666 		       s->name, count, atomic_long_read(&n->nr_slabs));
4667 
4668 out:
4669 	spin_unlock_irqrestore(&n->list_lock, flags);
4670 	return count;
4671 }
4672 
4673 static long validate_slab_cache(struct kmem_cache *s)
4674 {
4675 	int node;
4676 	unsigned long count = 0;
4677 	struct kmem_cache_node *n;
4678 
4679 	flush_all(s);
4680 	for_each_kmem_cache_node(s, node, n)
4681 		count += validate_slab_node(s, n);
4682 
4683 	return count;
4684 }
4685 /*
4686  * Generate lists of code addresses where slabcache objects are allocated
4687  * and freed.
4688  */
4689 
4690 struct location {
4691 	unsigned long count;
4692 	unsigned long addr;
4693 	long long sum_time;
4694 	long min_time;
4695 	long max_time;
4696 	long min_pid;
4697 	long max_pid;
4698 	DECLARE_BITMAP(cpus, NR_CPUS);
4699 	nodemask_t nodes;
4700 };
4701 
4702 struct loc_track {
4703 	unsigned long max;
4704 	unsigned long count;
4705 	struct location *loc;
4706 };
4707 
4708 static void free_loc_track(struct loc_track *t)
4709 {
4710 	if (t->max)
4711 		free_pages((unsigned long)t->loc,
4712 			get_order(sizeof(struct location) * t->max));
4713 }
4714 
4715 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4716 {
4717 	struct location *l;
4718 	int order;
4719 
4720 	order = get_order(sizeof(struct location) * max);
4721 
4722 	l = (void *)__get_free_pages(flags, order);
4723 	if (!l)
4724 		return 0;
4725 
4726 	if (t->count) {
4727 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4728 		free_loc_track(t);
4729 	}
4730 	t->max = max;
4731 	t->loc = l;
4732 	return 1;
4733 }
4734 
4735 static int add_location(struct loc_track *t, struct kmem_cache *s,
4736 				const struct track *track)
4737 {
4738 	long start, end, pos;
4739 	struct location *l;
4740 	unsigned long caddr;
4741 	unsigned long age = jiffies - track->when;
4742 
4743 	start = -1;
4744 	end = t->count;
4745 
4746 	for ( ; ; ) {
4747 		pos = start + (end - start + 1) / 2;
4748 
4749 		/*
4750 		 * There is nothing at "end". If we end up there
4751 		 * we need to add something to before end.
4752 		 */
4753 		if (pos == end)
4754 			break;
4755 
4756 		caddr = t->loc[pos].addr;
4757 		if (track->addr == caddr) {
4758 
4759 			l = &t->loc[pos];
4760 			l->count++;
4761 			if (track->when) {
4762 				l->sum_time += age;
4763 				if (age < l->min_time)
4764 					l->min_time = age;
4765 				if (age > l->max_time)
4766 					l->max_time = age;
4767 
4768 				if (track->pid < l->min_pid)
4769 					l->min_pid = track->pid;
4770 				if (track->pid > l->max_pid)
4771 					l->max_pid = track->pid;
4772 
4773 				cpumask_set_cpu(track->cpu,
4774 						to_cpumask(l->cpus));
4775 			}
4776 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4777 			return 1;
4778 		}
4779 
4780 		if (track->addr < caddr)
4781 			end = pos;
4782 		else
4783 			start = pos;
4784 	}
4785 
4786 	/*
4787 	 * Not found. Insert new tracking element.
4788 	 */
4789 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4790 		return 0;
4791 
4792 	l = t->loc + pos;
4793 	if (pos < t->count)
4794 		memmove(l + 1, l,
4795 			(t->count - pos) * sizeof(struct location));
4796 	t->count++;
4797 	l->count = 1;
4798 	l->addr = track->addr;
4799 	l->sum_time = age;
4800 	l->min_time = age;
4801 	l->max_time = age;
4802 	l->min_pid = track->pid;
4803 	l->max_pid = track->pid;
4804 	cpumask_clear(to_cpumask(l->cpus));
4805 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4806 	nodes_clear(l->nodes);
4807 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4808 	return 1;
4809 }
4810 
4811 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4812 		struct page *page, enum track_item alloc)
4813 {
4814 	void *addr = page_address(page);
4815 	void *p;
4816 	unsigned long *map;
4817 
4818 	map = get_map(s, page);
4819 	for_each_object(p, s, addr, page->objects)
4820 		if (!test_bit(__obj_to_index(s, addr, p), map))
4821 			add_location(t, s, get_track(s, p, alloc));
4822 	put_map(map);
4823 }
4824 
4825 static int list_locations(struct kmem_cache *s, char *buf,
4826 			  enum track_item alloc)
4827 {
4828 	int len = 0;
4829 	unsigned long i;
4830 	struct loc_track t = { 0, 0, NULL };
4831 	int node;
4832 	struct kmem_cache_node *n;
4833 
4834 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4835 			     GFP_KERNEL)) {
4836 		return sysfs_emit(buf, "Out of memory\n");
4837 	}
4838 	/* Push back cpu slabs */
4839 	flush_all(s);
4840 
4841 	for_each_kmem_cache_node(s, node, n) {
4842 		unsigned long flags;
4843 		struct page *page;
4844 
4845 		if (!atomic_long_read(&n->nr_slabs))
4846 			continue;
4847 
4848 		spin_lock_irqsave(&n->list_lock, flags);
4849 		list_for_each_entry(page, &n->partial, slab_list)
4850 			process_slab(&t, s, page, alloc);
4851 		list_for_each_entry(page, &n->full, slab_list)
4852 			process_slab(&t, s, page, alloc);
4853 		spin_unlock_irqrestore(&n->list_lock, flags);
4854 	}
4855 
4856 	for (i = 0; i < t.count; i++) {
4857 		struct location *l = &t.loc[i];
4858 
4859 		len += sysfs_emit_at(buf, len, "%7ld ", l->count);
4860 
4861 		if (l->addr)
4862 			len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
4863 		else
4864 			len += sysfs_emit_at(buf, len, "<not-available>");
4865 
4866 		if (l->sum_time != l->min_time)
4867 			len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
4868 					     l->min_time,
4869 					     (long)div_u64(l->sum_time,
4870 							   l->count),
4871 					     l->max_time);
4872 		else
4873 			len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
4874 
4875 		if (l->min_pid != l->max_pid)
4876 			len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
4877 					     l->min_pid, l->max_pid);
4878 		else
4879 			len += sysfs_emit_at(buf, len, " pid=%ld",
4880 					     l->min_pid);
4881 
4882 		if (num_online_cpus() > 1 &&
4883 		    !cpumask_empty(to_cpumask(l->cpus)))
4884 			len += sysfs_emit_at(buf, len, " cpus=%*pbl",
4885 					     cpumask_pr_args(to_cpumask(l->cpus)));
4886 
4887 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
4888 			len += sysfs_emit_at(buf, len, " nodes=%*pbl",
4889 					     nodemask_pr_args(&l->nodes));
4890 
4891 		len += sysfs_emit_at(buf, len, "\n");
4892 	}
4893 
4894 	free_loc_track(&t);
4895 	if (!t.count)
4896 		len += sysfs_emit_at(buf, len, "No data\n");
4897 
4898 	return len;
4899 }
4900 #endif	/* CONFIG_SLUB_DEBUG */
4901 
4902 #ifdef SLUB_RESILIENCY_TEST
4903 static void __init resiliency_test(void)
4904 {
4905 	u8 *p;
4906 	int type = KMALLOC_NORMAL;
4907 
4908 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4909 
4910 	pr_err("SLUB resiliency testing\n");
4911 	pr_err("-----------------------\n");
4912 	pr_err("A. Corruption after allocation\n");
4913 
4914 	p = kzalloc(16, GFP_KERNEL);
4915 	p[16] = 0x12;
4916 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4917 	       p + 16);
4918 
4919 	validate_slab_cache(kmalloc_caches[type][4]);
4920 
4921 	/* Hmmm... The next two are dangerous */
4922 	p = kzalloc(32, GFP_KERNEL);
4923 	p[32 + sizeof(void *)] = 0x34;
4924 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4925 	       p);
4926 	pr_err("If allocated object is overwritten then not detectable\n\n");
4927 
4928 	validate_slab_cache(kmalloc_caches[type][5]);
4929 	p = kzalloc(64, GFP_KERNEL);
4930 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4931 	*p = 0x56;
4932 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4933 	       p);
4934 	pr_err("If allocated object is overwritten then not detectable\n\n");
4935 	validate_slab_cache(kmalloc_caches[type][6]);
4936 
4937 	pr_err("\nB. Corruption after free\n");
4938 	p = kzalloc(128, GFP_KERNEL);
4939 	kfree(p);
4940 	*p = 0x78;
4941 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4942 	validate_slab_cache(kmalloc_caches[type][7]);
4943 
4944 	p = kzalloc(256, GFP_KERNEL);
4945 	kfree(p);
4946 	p[50] = 0x9a;
4947 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4948 	validate_slab_cache(kmalloc_caches[type][8]);
4949 
4950 	p = kzalloc(512, GFP_KERNEL);
4951 	kfree(p);
4952 	p[512] = 0xab;
4953 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4954 	validate_slab_cache(kmalloc_caches[type][9]);
4955 }
4956 #else
4957 #ifdef CONFIG_SYSFS
4958 static void resiliency_test(void) {};
4959 #endif
4960 #endif	/* SLUB_RESILIENCY_TEST */
4961 
4962 #ifdef CONFIG_SYSFS
4963 enum slab_stat_type {
4964 	SL_ALL,			/* All slabs */
4965 	SL_PARTIAL,		/* Only partially allocated slabs */
4966 	SL_CPU,			/* Only slabs used for cpu caches */
4967 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4968 	SL_TOTAL		/* Determine object capacity not slabs */
4969 };
4970 
4971 #define SO_ALL		(1 << SL_ALL)
4972 #define SO_PARTIAL	(1 << SL_PARTIAL)
4973 #define SO_CPU		(1 << SL_CPU)
4974 #define SO_OBJECTS	(1 << SL_OBJECTS)
4975 #define SO_TOTAL	(1 << SL_TOTAL)
4976 
4977 static ssize_t show_slab_objects(struct kmem_cache *s,
4978 				 char *buf, unsigned long flags)
4979 {
4980 	unsigned long total = 0;
4981 	int node;
4982 	int x;
4983 	unsigned long *nodes;
4984 	int len = 0;
4985 
4986 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4987 	if (!nodes)
4988 		return -ENOMEM;
4989 
4990 	if (flags & SO_CPU) {
4991 		int cpu;
4992 
4993 		for_each_possible_cpu(cpu) {
4994 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4995 							       cpu);
4996 			int node;
4997 			struct page *page;
4998 
4999 			page = READ_ONCE(c->page);
5000 			if (!page)
5001 				continue;
5002 
5003 			node = page_to_nid(page);
5004 			if (flags & SO_TOTAL)
5005 				x = page->objects;
5006 			else if (flags & SO_OBJECTS)
5007 				x = page->inuse;
5008 			else
5009 				x = 1;
5010 
5011 			total += x;
5012 			nodes[node] += x;
5013 
5014 			page = slub_percpu_partial_read_once(c);
5015 			if (page) {
5016 				node = page_to_nid(page);
5017 				if (flags & SO_TOTAL)
5018 					WARN_ON_ONCE(1);
5019 				else if (flags & SO_OBJECTS)
5020 					WARN_ON_ONCE(1);
5021 				else
5022 					x = page->pages;
5023 				total += x;
5024 				nodes[node] += x;
5025 			}
5026 		}
5027 	}
5028 
5029 	/*
5030 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5031 	 * already held which will conflict with an existing lock order:
5032 	 *
5033 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5034 	 *
5035 	 * We don't really need mem_hotplug_lock (to hold off
5036 	 * slab_mem_going_offline_callback) here because slab's memory hot
5037 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5038 	 */
5039 
5040 #ifdef CONFIG_SLUB_DEBUG
5041 	if (flags & SO_ALL) {
5042 		struct kmem_cache_node *n;
5043 
5044 		for_each_kmem_cache_node(s, node, n) {
5045 
5046 			if (flags & SO_TOTAL)
5047 				x = atomic_long_read(&n->total_objects);
5048 			else if (flags & SO_OBJECTS)
5049 				x = atomic_long_read(&n->total_objects) -
5050 					count_partial(n, count_free);
5051 			else
5052 				x = atomic_long_read(&n->nr_slabs);
5053 			total += x;
5054 			nodes[node] += x;
5055 		}
5056 
5057 	} else
5058 #endif
5059 	if (flags & SO_PARTIAL) {
5060 		struct kmem_cache_node *n;
5061 
5062 		for_each_kmem_cache_node(s, node, n) {
5063 			if (flags & SO_TOTAL)
5064 				x = count_partial(n, count_total);
5065 			else if (flags & SO_OBJECTS)
5066 				x = count_partial(n, count_inuse);
5067 			else
5068 				x = n->nr_partial;
5069 			total += x;
5070 			nodes[node] += x;
5071 		}
5072 	}
5073 
5074 	len += sysfs_emit_at(buf, len, "%lu", total);
5075 #ifdef CONFIG_NUMA
5076 	for (node = 0; node < nr_node_ids; node++) {
5077 		if (nodes[node])
5078 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5079 					     node, nodes[node]);
5080 	}
5081 #endif
5082 	len += sysfs_emit_at(buf, len, "\n");
5083 	kfree(nodes);
5084 
5085 	return len;
5086 }
5087 
5088 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5089 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5090 
5091 struct slab_attribute {
5092 	struct attribute attr;
5093 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5094 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5095 };
5096 
5097 #define SLAB_ATTR_RO(_name) \
5098 	static struct slab_attribute _name##_attr = \
5099 	__ATTR(_name, 0400, _name##_show, NULL)
5100 
5101 #define SLAB_ATTR(_name) \
5102 	static struct slab_attribute _name##_attr =  \
5103 	__ATTR(_name, 0600, _name##_show, _name##_store)
5104 
5105 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5106 {
5107 	return sysfs_emit(buf, "%u\n", s->size);
5108 }
5109 SLAB_ATTR_RO(slab_size);
5110 
5111 static ssize_t align_show(struct kmem_cache *s, char *buf)
5112 {
5113 	return sysfs_emit(buf, "%u\n", s->align);
5114 }
5115 SLAB_ATTR_RO(align);
5116 
5117 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5118 {
5119 	return sysfs_emit(buf, "%u\n", s->object_size);
5120 }
5121 SLAB_ATTR_RO(object_size);
5122 
5123 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5124 {
5125 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5126 }
5127 SLAB_ATTR_RO(objs_per_slab);
5128 
5129 static ssize_t order_show(struct kmem_cache *s, char *buf)
5130 {
5131 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5132 }
5133 SLAB_ATTR_RO(order);
5134 
5135 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5136 {
5137 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5138 }
5139 
5140 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5141 				 size_t length)
5142 {
5143 	unsigned long min;
5144 	int err;
5145 
5146 	err = kstrtoul(buf, 10, &min);
5147 	if (err)
5148 		return err;
5149 
5150 	set_min_partial(s, min);
5151 	return length;
5152 }
5153 SLAB_ATTR(min_partial);
5154 
5155 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5156 {
5157 	return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5158 }
5159 
5160 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5161 				 size_t length)
5162 {
5163 	unsigned int objects;
5164 	int err;
5165 
5166 	err = kstrtouint(buf, 10, &objects);
5167 	if (err)
5168 		return err;
5169 	if (objects && !kmem_cache_has_cpu_partial(s))
5170 		return -EINVAL;
5171 
5172 	slub_set_cpu_partial(s, objects);
5173 	flush_all(s);
5174 	return length;
5175 }
5176 SLAB_ATTR(cpu_partial);
5177 
5178 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5179 {
5180 	if (!s->ctor)
5181 		return 0;
5182 	return sysfs_emit(buf, "%pS\n", s->ctor);
5183 }
5184 SLAB_ATTR_RO(ctor);
5185 
5186 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5187 {
5188 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5189 }
5190 SLAB_ATTR_RO(aliases);
5191 
5192 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5193 {
5194 	return show_slab_objects(s, buf, SO_PARTIAL);
5195 }
5196 SLAB_ATTR_RO(partial);
5197 
5198 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5199 {
5200 	return show_slab_objects(s, buf, SO_CPU);
5201 }
5202 SLAB_ATTR_RO(cpu_slabs);
5203 
5204 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5205 {
5206 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5207 }
5208 SLAB_ATTR_RO(objects);
5209 
5210 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5211 {
5212 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5213 }
5214 SLAB_ATTR_RO(objects_partial);
5215 
5216 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5217 {
5218 	int objects = 0;
5219 	int pages = 0;
5220 	int cpu;
5221 	int len = 0;
5222 
5223 	for_each_online_cpu(cpu) {
5224 		struct page *page;
5225 
5226 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5227 
5228 		if (page) {
5229 			pages += page->pages;
5230 			objects += page->pobjects;
5231 		}
5232 	}
5233 
5234 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5235 
5236 #ifdef CONFIG_SMP
5237 	for_each_online_cpu(cpu) {
5238 		struct page *page;
5239 
5240 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5241 		if (page)
5242 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5243 					     cpu, page->pobjects, page->pages);
5244 	}
5245 #endif
5246 	len += sysfs_emit_at(buf, len, "\n");
5247 
5248 	return len;
5249 }
5250 SLAB_ATTR_RO(slabs_cpu_partial);
5251 
5252 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5253 {
5254 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5255 }
5256 SLAB_ATTR_RO(reclaim_account);
5257 
5258 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5259 {
5260 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5261 }
5262 SLAB_ATTR_RO(hwcache_align);
5263 
5264 #ifdef CONFIG_ZONE_DMA
5265 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5266 {
5267 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5268 }
5269 SLAB_ATTR_RO(cache_dma);
5270 #endif
5271 
5272 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5273 {
5274 	return sysfs_emit(buf, "%u\n", s->usersize);
5275 }
5276 SLAB_ATTR_RO(usersize);
5277 
5278 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5279 {
5280 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5281 }
5282 SLAB_ATTR_RO(destroy_by_rcu);
5283 
5284 #ifdef CONFIG_SLUB_DEBUG
5285 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5286 {
5287 	return show_slab_objects(s, buf, SO_ALL);
5288 }
5289 SLAB_ATTR_RO(slabs);
5290 
5291 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5292 {
5293 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5294 }
5295 SLAB_ATTR_RO(total_objects);
5296 
5297 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5298 {
5299 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5300 }
5301 SLAB_ATTR_RO(sanity_checks);
5302 
5303 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5304 {
5305 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5306 }
5307 SLAB_ATTR_RO(trace);
5308 
5309 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5310 {
5311 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5312 }
5313 
5314 SLAB_ATTR_RO(red_zone);
5315 
5316 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5317 {
5318 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5319 }
5320 
5321 SLAB_ATTR_RO(poison);
5322 
5323 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5324 {
5325 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5326 }
5327 
5328 SLAB_ATTR_RO(store_user);
5329 
5330 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5331 {
5332 	return 0;
5333 }
5334 
5335 static ssize_t validate_store(struct kmem_cache *s,
5336 			const char *buf, size_t length)
5337 {
5338 	int ret = -EINVAL;
5339 
5340 	if (buf[0] == '1') {
5341 		ret = validate_slab_cache(s);
5342 		if (ret >= 0)
5343 			ret = length;
5344 	}
5345 	return ret;
5346 }
5347 SLAB_ATTR(validate);
5348 
5349 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5350 {
5351 	if (!(s->flags & SLAB_STORE_USER))
5352 		return -ENOSYS;
5353 	return list_locations(s, buf, TRACK_ALLOC);
5354 }
5355 SLAB_ATTR_RO(alloc_calls);
5356 
5357 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5358 {
5359 	if (!(s->flags & SLAB_STORE_USER))
5360 		return -ENOSYS;
5361 	return list_locations(s, buf, TRACK_FREE);
5362 }
5363 SLAB_ATTR_RO(free_calls);
5364 #endif /* CONFIG_SLUB_DEBUG */
5365 
5366 #ifdef CONFIG_FAILSLAB
5367 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5368 {
5369 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5370 }
5371 SLAB_ATTR_RO(failslab);
5372 #endif
5373 
5374 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5375 {
5376 	return 0;
5377 }
5378 
5379 static ssize_t shrink_store(struct kmem_cache *s,
5380 			const char *buf, size_t length)
5381 {
5382 	if (buf[0] == '1')
5383 		kmem_cache_shrink(s);
5384 	else
5385 		return -EINVAL;
5386 	return length;
5387 }
5388 SLAB_ATTR(shrink);
5389 
5390 #ifdef CONFIG_NUMA
5391 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5392 {
5393 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5394 }
5395 
5396 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5397 				const char *buf, size_t length)
5398 {
5399 	unsigned int ratio;
5400 	int err;
5401 
5402 	err = kstrtouint(buf, 10, &ratio);
5403 	if (err)
5404 		return err;
5405 	if (ratio > 100)
5406 		return -ERANGE;
5407 
5408 	s->remote_node_defrag_ratio = ratio * 10;
5409 
5410 	return length;
5411 }
5412 SLAB_ATTR(remote_node_defrag_ratio);
5413 #endif
5414 
5415 #ifdef CONFIG_SLUB_STATS
5416 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5417 {
5418 	unsigned long sum  = 0;
5419 	int cpu;
5420 	int len = 0;
5421 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5422 
5423 	if (!data)
5424 		return -ENOMEM;
5425 
5426 	for_each_online_cpu(cpu) {
5427 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5428 
5429 		data[cpu] = x;
5430 		sum += x;
5431 	}
5432 
5433 	len += sysfs_emit_at(buf, len, "%lu", sum);
5434 
5435 #ifdef CONFIG_SMP
5436 	for_each_online_cpu(cpu) {
5437 		if (data[cpu])
5438 			len += sysfs_emit_at(buf, len, " C%d=%u",
5439 					     cpu, data[cpu]);
5440 	}
5441 #endif
5442 	kfree(data);
5443 	len += sysfs_emit_at(buf, len, "\n");
5444 
5445 	return len;
5446 }
5447 
5448 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5449 {
5450 	int cpu;
5451 
5452 	for_each_online_cpu(cpu)
5453 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5454 }
5455 
5456 #define STAT_ATTR(si, text) 					\
5457 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5458 {								\
5459 	return show_stat(s, buf, si);				\
5460 }								\
5461 static ssize_t text##_store(struct kmem_cache *s,		\
5462 				const char *buf, size_t length)	\
5463 {								\
5464 	if (buf[0] != '0')					\
5465 		return -EINVAL;					\
5466 	clear_stat(s, si);					\
5467 	return length;						\
5468 }								\
5469 SLAB_ATTR(text);						\
5470 
5471 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5472 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5473 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5474 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5475 STAT_ATTR(FREE_FROZEN, free_frozen);
5476 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5477 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5478 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5479 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5480 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5481 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5482 STAT_ATTR(FREE_SLAB, free_slab);
5483 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5484 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5485 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5486 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5487 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5488 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5489 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5490 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5491 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5492 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5493 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5494 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5495 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5496 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5497 #endif	/* CONFIG_SLUB_STATS */
5498 
5499 static struct attribute *slab_attrs[] = {
5500 	&slab_size_attr.attr,
5501 	&object_size_attr.attr,
5502 	&objs_per_slab_attr.attr,
5503 	&order_attr.attr,
5504 	&min_partial_attr.attr,
5505 	&cpu_partial_attr.attr,
5506 	&objects_attr.attr,
5507 	&objects_partial_attr.attr,
5508 	&partial_attr.attr,
5509 	&cpu_slabs_attr.attr,
5510 	&ctor_attr.attr,
5511 	&aliases_attr.attr,
5512 	&align_attr.attr,
5513 	&hwcache_align_attr.attr,
5514 	&reclaim_account_attr.attr,
5515 	&destroy_by_rcu_attr.attr,
5516 	&shrink_attr.attr,
5517 	&slabs_cpu_partial_attr.attr,
5518 #ifdef CONFIG_SLUB_DEBUG
5519 	&total_objects_attr.attr,
5520 	&slabs_attr.attr,
5521 	&sanity_checks_attr.attr,
5522 	&trace_attr.attr,
5523 	&red_zone_attr.attr,
5524 	&poison_attr.attr,
5525 	&store_user_attr.attr,
5526 	&validate_attr.attr,
5527 	&alloc_calls_attr.attr,
5528 	&free_calls_attr.attr,
5529 #endif
5530 #ifdef CONFIG_ZONE_DMA
5531 	&cache_dma_attr.attr,
5532 #endif
5533 #ifdef CONFIG_NUMA
5534 	&remote_node_defrag_ratio_attr.attr,
5535 #endif
5536 #ifdef CONFIG_SLUB_STATS
5537 	&alloc_fastpath_attr.attr,
5538 	&alloc_slowpath_attr.attr,
5539 	&free_fastpath_attr.attr,
5540 	&free_slowpath_attr.attr,
5541 	&free_frozen_attr.attr,
5542 	&free_add_partial_attr.attr,
5543 	&free_remove_partial_attr.attr,
5544 	&alloc_from_partial_attr.attr,
5545 	&alloc_slab_attr.attr,
5546 	&alloc_refill_attr.attr,
5547 	&alloc_node_mismatch_attr.attr,
5548 	&free_slab_attr.attr,
5549 	&cpuslab_flush_attr.attr,
5550 	&deactivate_full_attr.attr,
5551 	&deactivate_empty_attr.attr,
5552 	&deactivate_to_head_attr.attr,
5553 	&deactivate_to_tail_attr.attr,
5554 	&deactivate_remote_frees_attr.attr,
5555 	&deactivate_bypass_attr.attr,
5556 	&order_fallback_attr.attr,
5557 	&cmpxchg_double_fail_attr.attr,
5558 	&cmpxchg_double_cpu_fail_attr.attr,
5559 	&cpu_partial_alloc_attr.attr,
5560 	&cpu_partial_free_attr.attr,
5561 	&cpu_partial_node_attr.attr,
5562 	&cpu_partial_drain_attr.attr,
5563 #endif
5564 #ifdef CONFIG_FAILSLAB
5565 	&failslab_attr.attr,
5566 #endif
5567 	&usersize_attr.attr,
5568 
5569 	NULL
5570 };
5571 
5572 static const struct attribute_group slab_attr_group = {
5573 	.attrs = slab_attrs,
5574 };
5575 
5576 static ssize_t slab_attr_show(struct kobject *kobj,
5577 				struct attribute *attr,
5578 				char *buf)
5579 {
5580 	struct slab_attribute *attribute;
5581 	struct kmem_cache *s;
5582 	int err;
5583 
5584 	attribute = to_slab_attr(attr);
5585 	s = to_slab(kobj);
5586 
5587 	if (!attribute->show)
5588 		return -EIO;
5589 
5590 	err = attribute->show(s, buf);
5591 
5592 	return err;
5593 }
5594 
5595 static ssize_t slab_attr_store(struct kobject *kobj,
5596 				struct attribute *attr,
5597 				const char *buf, size_t len)
5598 {
5599 	struct slab_attribute *attribute;
5600 	struct kmem_cache *s;
5601 	int err;
5602 
5603 	attribute = to_slab_attr(attr);
5604 	s = to_slab(kobj);
5605 
5606 	if (!attribute->store)
5607 		return -EIO;
5608 
5609 	err = attribute->store(s, buf, len);
5610 	return err;
5611 }
5612 
5613 static void kmem_cache_release(struct kobject *k)
5614 {
5615 	slab_kmem_cache_release(to_slab(k));
5616 }
5617 
5618 static const struct sysfs_ops slab_sysfs_ops = {
5619 	.show = slab_attr_show,
5620 	.store = slab_attr_store,
5621 };
5622 
5623 static struct kobj_type slab_ktype = {
5624 	.sysfs_ops = &slab_sysfs_ops,
5625 	.release = kmem_cache_release,
5626 };
5627 
5628 static struct kset *slab_kset;
5629 
5630 static inline struct kset *cache_kset(struct kmem_cache *s)
5631 {
5632 	return slab_kset;
5633 }
5634 
5635 #define ID_STR_LENGTH 64
5636 
5637 /* Create a unique string id for a slab cache:
5638  *
5639  * Format	:[flags-]size
5640  */
5641 static char *create_unique_id(struct kmem_cache *s)
5642 {
5643 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5644 	char *p = name;
5645 
5646 	BUG_ON(!name);
5647 
5648 	*p++ = ':';
5649 	/*
5650 	 * First flags affecting slabcache operations. We will only
5651 	 * get here for aliasable slabs so we do not need to support
5652 	 * too many flags. The flags here must cover all flags that
5653 	 * are matched during merging to guarantee that the id is
5654 	 * unique.
5655 	 */
5656 	if (s->flags & SLAB_CACHE_DMA)
5657 		*p++ = 'd';
5658 	if (s->flags & SLAB_CACHE_DMA32)
5659 		*p++ = 'D';
5660 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5661 		*p++ = 'a';
5662 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5663 		*p++ = 'F';
5664 	if (s->flags & SLAB_ACCOUNT)
5665 		*p++ = 'A';
5666 	if (p != name + 1)
5667 		*p++ = '-';
5668 	p += sprintf(p, "%07u", s->size);
5669 
5670 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5671 	return name;
5672 }
5673 
5674 static int sysfs_slab_add(struct kmem_cache *s)
5675 {
5676 	int err;
5677 	const char *name;
5678 	struct kset *kset = cache_kset(s);
5679 	int unmergeable = slab_unmergeable(s);
5680 
5681 	if (!kset) {
5682 		kobject_init(&s->kobj, &slab_ktype);
5683 		return 0;
5684 	}
5685 
5686 	if (!unmergeable && disable_higher_order_debug &&
5687 			(slub_debug & DEBUG_METADATA_FLAGS))
5688 		unmergeable = 1;
5689 
5690 	if (unmergeable) {
5691 		/*
5692 		 * Slabcache can never be merged so we can use the name proper.
5693 		 * This is typically the case for debug situations. In that
5694 		 * case we can catch duplicate names easily.
5695 		 */
5696 		sysfs_remove_link(&slab_kset->kobj, s->name);
5697 		name = s->name;
5698 	} else {
5699 		/*
5700 		 * Create a unique name for the slab as a target
5701 		 * for the symlinks.
5702 		 */
5703 		name = create_unique_id(s);
5704 	}
5705 
5706 	s->kobj.kset = kset;
5707 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5708 	if (err)
5709 		goto out;
5710 
5711 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5712 	if (err)
5713 		goto out_del_kobj;
5714 
5715 	if (!unmergeable) {
5716 		/* Setup first alias */
5717 		sysfs_slab_alias(s, s->name);
5718 	}
5719 out:
5720 	if (!unmergeable)
5721 		kfree(name);
5722 	return err;
5723 out_del_kobj:
5724 	kobject_del(&s->kobj);
5725 	goto out;
5726 }
5727 
5728 void sysfs_slab_unlink(struct kmem_cache *s)
5729 {
5730 	if (slab_state >= FULL)
5731 		kobject_del(&s->kobj);
5732 }
5733 
5734 void sysfs_slab_release(struct kmem_cache *s)
5735 {
5736 	if (slab_state >= FULL)
5737 		kobject_put(&s->kobj);
5738 }
5739 
5740 /*
5741  * Need to buffer aliases during bootup until sysfs becomes
5742  * available lest we lose that information.
5743  */
5744 struct saved_alias {
5745 	struct kmem_cache *s;
5746 	const char *name;
5747 	struct saved_alias *next;
5748 };
5749 
5750 static struct saved_alias *alias_list;
5751 
5752 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5753 {
5754 	struct saved_alias *al;
5755 
5756 	if (slab_state == FULL) {
5757 		/*
5758 		 * If we have a leftover link then remove it.
5759 		 */
5760 		sysfs_remove_link(&slab_kset->kobj, name);
5761 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5762 	}
5763 
5764 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5765 	if (!al)
5766 		return -ENOMEM;
5767 
5768 	al->s = s;
5769 	al->name = name;
5770 	al->next = alias_list;
5771 	alias_list = al;
5772 	return 0;
5773 }
5774 
5775 static int __init slab_sysfs_init(void)
5776 {
5777 	struct kmem_cache *s;
5778 	int err;
5779 
5780 	mutex_lock(&slab_mutex);
5781 
5782 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5783 	if (!slab_kset) {
5784 		mutex_unlock(&slab_mutex);
5785 		pr_err("Cannot register slab subsystem.\n");
5786 		return -ENOSYS;
5787 	}
5788 
5789 	slab_state = FULL;
5790 
5791 	list_for_each_entry(s, &slab_caches, list) {
5792 		err = sysfs_slab_add(s);
5793 		if (err)
5794 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5795 			       s->name);
5796 	}
5797 
5798 	while (alias_list) {
5799 		struct saved_alias *al = alias_list;
5800 
5801 		alias_list = alias_list->next;
5802 		err = sysfs_slab_alias(al->s, al->name);
5803 		if (err)
5804 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5805 			       al->name);
5806 		kfree(al);
5807 	}
5808 
5809 	mutex_unlock(&slab_mutex);
5810 	resiliency_test();
5811 	return 0;
5812 }
5813 
5814 __initcall(slab_sysfs_init);
5815 #endif /* CONFIG_SYSFS */
5816 
5817 /*
5818  * The /proc/slabinfo ABI
5819  */
5820 #ifdef CONFIG_SLUB_DEBUG
5821 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5822 {
5823 	unsigned long nr_slabs = 0;
5824 	unsigned long nr_objs = 0;
5825 	unsigned long nr_free = 0;
5826 	int node;
5827 	struct kmem_cache_node *n;
5828 
5829 	for_each_kmem_cache_node(s, node, n) {
5830 		nr_slabs += node_nr_slabs(n);
5831 		nr_objs += node_nr_objs(n);
5832 		nr_free += count_partial(n, count_free);
5833 	}
5834 
5835 	sinfo->active_objs = nr_objs - nr_free;
5836 	sinfo->num_objs = nr_objs;
5837 	sinfo->active_slabs = nr_slabs;
5838 	sinfo->num_slabs = nr_slabs;
5839 	sinfo->objects_per_slab = oo_objects(s->oo);
5840 	sinfo->cache_order = oo_order(s->oo);
5841 }
5842 
5843 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5844 {
5845 }
5846 
5847 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5848 		       size_t count, loff_t *ppos)
5849 {
5850 	return -EIO;
5851 }
5852 #endif /* CONFIG_SLUB_DEBUG */
5853