1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/stackdepot.h> 30 #include <linux/debugobjects.h> 31 #include <linux/kallsyms.h> 32 #include <linux/kfence.h> 33 #include <linux/memory.h> 34 #include <linux/math64.h> 35 #include <linux/fault-inject.h> 36 #include <linux/stacktrace.h> 37 #include <linux/prefetch.h> 38 #include <linux/memcontrol.h> 39 #include <linux/random.h> 40 #include <kunit/test.h> 41 #include <linux/sort.h> 42 43 #include <linux/debugfs.h> 44 #include <trace/events/kmem.h> 45 46 #include "internal.h" 47 48 /* 49 * Lock order: 50 * 1. slab_mutex (Global Mutex) 51 * 2. node->list_lock (Spinlock) 52 * 3. kmem_cache->cpu_slab->lock (Local lock) 53 * 4. slab_lock(slab) (Only on some arches or for debugging) 54 * 5. object_map_lock (Only for debugging) 55 * 56 * slab_mutex 57 * 58 * The role of the slab_mutex is to protect the list of all the slabs 59 * and to synchronize major metadata changes to slab cache structures. 60 * Also synchronizes memory hotplug callbacks. 61 * 62 * slab_lock 63 * 64 * The slab_lock is a wrapper around the page lock, thus it is a bit 65 * spinlock. 66 * 67 * The slab_lock is only used for debugging and on arches that do not 68 * have the ability to do a cmpxchg_double. It only protects: 69 * A. slab->freelist -> List of free objects in a slab 70 * B. slab->inuse -> Number of objects in use 71 * C. slab->objects -> Number of objects in slab 72 * D. slab->frozen -> frozen state 73 * 74 * Frozen slabs 75 * 76 * If a slab is frozen then it is exempt from list management. It is not 77 * on any list except per cpu partial list. The processor that froze the 78 * slab is the one who can perform list operations on the slab. Other 79 * processors may put objects onto the freelist but the processor that 80 * froze the slab is the only one that can retrieve the objects from the 81 * slab's freelist. 82 * 83 * list_lock 84 * 85 * The list_lock protects the partial and full list on each node and 86 * the partial slab counter. If taken then no new slabs may be added or 87 * removed from the lists nor make the number of partial slabs be modified. 88 * (Note that the total number of slabs is an atomic value that may be 89 * modified without taking the list lock). 90 * 91 * The list_lock is a centralized lock and thus we avoid taking it as 92 * much as possible. As long as SLUB does not have to handle partial 93 * slabs, operations can continue without any centralized lock. F.e. 94 * allocating a long series of objects that fill up slabs does not require 95 * the list lock. 96 * 97 * cpu_slab->lock local lock 98 * 99 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 100 * except the stat counters. This is a percpu structure manipulated only by 101 * the local cpu, so the lock protects against being preempted or interrupted 102 * by an irq. Fast path operations rely on lockless operations instead. 103 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus 104 * prevent the lockless operations), so fastpath operations also need to take 105 * the lock and are no longer lockless. 106 * 107 * lockless fastpaths 108 * 109 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 110 * are fully lockless when satisfied from the percpu slab (and when 111 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 112 * They also don't disable preemption or migration or irqs. They rely on 113 * the transaction id (tid) field to detect being preempted or moved to 114 * another cpu. 115 * 116 * irq, preemption, migration considerations 117 * 118 * Interrupts are disabled as part of list_lock or local_lock operations, or 119 * around the slab_lock operation, in order to make the slab allocator safe 120 * to use in the context of an irq. 121 * 122 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 123 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 124 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 125 * doesn't have to be revalidated in each section protected by the local lock. 126 * 127 * SLUB assigns one slab for allocation to each processor. 128 * Allocations only occur from these slabs called cpu slabs. 129 * 130 * Slabs with free elements are kept on a partial list and during regular 131 * operations no list for full slabs is used. If an object in a full slab is 132 * freed then the slab will show up again on the partial lists. 133 * We track full slabs for debugging purposes though because otherwise we 134 * cannot scan all objects. 135 * 136 * Slabs are freed when they become empty. Teardown and setup is 137 * minimal so we rely on the page allocators per cpu caches for 138 * fast frees and allocs. 139 * 140 * slab->frozen The slab is frozen and exempt from list processing. 141 * This means that the slab is dedicated to a purpose 142 * such as satisfying allocations for a specific 143 * processor. Objects may be freed in the slab while 144 * it is frozen but slab_free will then skip the usual 145 * list operations. It is up to the processor holding 146 * the slab to integrate the slab into the slab lists 147 * when the slab is no longer needed. 148 * 149 * One use of this flag is to mark slabs that are 150 * used for allocations. Then such a slab becomes a cpu 151 * slab. The cpu slab may be equipped with an additional 152 * freelist that allows lockless access to 153 * free objects in addition to the regular freelist 154 * that requires the slab lock. 155 * 156 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 157 * options set. This moves slab handling out of 158 * the fast path and disables lockless freelists. 159 */ 160 161 /* 162 * We could simply use migrate_disable()/enable() but as long as it's a 163 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 164 */ 165 #ifndef CONFIG_PREEMPT_RT 166 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 167 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 168 #else 169 #define slub_get_cpu_ptr(var) \ 170 ({ \ 171 migrate_disable(); \ 172 this_cpu_ptr(var); \ 173 }) 174 #define slub_put_cpu_ptr(var) \ 175 do { \ 176 (void)(var); \ 177 migrate_enable(); \ 178 } while (0) 179 #endif 180 181 #ifdef CONFIG_SLUB_DEBUG 182 #ifdef CONFIG_SLUB_DEBUG_ON 183 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 184 #else 185 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 186 #endif 187 #endif /* CONFIG_SLUB_DEBUG */ 188 189 static inline bool kmem_cache_debug(struct kmem_cache *s) 190 { 191 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 192 } 193 194 void *fixup_red_left(struct kmem_cache *s, void *p) 195 { 196 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 197 p += s->red_left_pad; 198 199 return p; 200 } 201 202 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 203 { 204 #ifdef CONFIG_SLUB_CPU_PARTIAL 205 return !kmem_cache_debug(s); 206 #else 207 return false; 208 #endif 209 } 210 211 /* 212 * Issues still to be resolved: 213 * 214 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 215 * 216 * - Variable sizing of the per node arrays 217 */ 218 219 /* Enable to log cmpxchg failures */ 220 #undef SLUB_DEBUG_CMPXCHG 221 222 /* 223 * Minimum number of partial slabs. These will be left on the partial 224 * lists even if they are empty. kmem_cache_shrink may reclaim them. 225 */ 226 #define MIN_PARTIAL 5 227 228 /* 229 * Maximum number of desirable partial slabs. 230 * The existence of more partial slabs makes kmem_cache_shrink 231 * sort the partial list by the number of objects in use. 232 */ 233 #define MAX_PARTIAL 10 234 235 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 236 SLAB_POISON | SLAB_STORE_USER) 237 238 /* 239 * These debug flags cannot use CMPXCHG because there might be consistency 240 * issues when checking or reading debug information 241 */ 242 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 243 SLAB_TRACE) 244 245 246 /* 247 * Debugging flags that require metadata to be stored in the slab. These get 248 * disabled when slub_debug=O is used and a cache's min order increases with 249 * metadata. 250 */ 251 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 252 253 #define OO_SHIFT 16 254 #define OO_MASK ((1 << OO_SHIFT) - 1) 255 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 256 257 /* Internal SLUB flags */ 258 /* Poison object */ 259 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 260 /* Use cmpxchg_double */ 261 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 262 263 /* 264 * Tracking user of a slab. 265 */ 266 #define TRACK_ADDRS_COUNT 16 267 struct track { 268 unsigned long addr; /* Called from address */ 269 #ifdef CONFIG_STACKDEPOT 270 depot_stack_handle_t handle; 271 #endif 272 int cpu; /* Was running on cpu */ 273 int pid; /* Pid context */ 274 unsigned long when; /* When did the operation occur */ 275 }; 276 277 enum track_item { TRACK_ALLOC, TRACK_FREE }; 278 279 #ifdef CONFIG_SYSFS 280 static int sysfs_slab_add(struct kmem_cache *); 281 static int sysfs_slab_alias(struct kmem_cache *, const char *); 282 #else 283 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 284 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 285 { return 0; } 286 #endif 287 288 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 289 static void debugfs_slab_add(struct kmem_cache *); 290 #else 291 static inline void debugfs_slab_add(struct kmem_cache *s) { } 292 #endif 293 294 static inline void stat(const struct kmem_cache *s, enum stat_item si) 295 { 296 #ifdef CONFIG_SLUB_STATS 297 /* 298 * The rmw is racy on a preemptible kernel but this is acceptable, so 299 * avoid this_cpu_add()'s irq-disable overhead. 300 */ 301 raw_cpu_inc(s->cpu_slab->stat[si]); 302 #endif 303 } 304 305 /* 306 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 307 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 308 * differ during memory hotplug/hotremove operations. 309 * Protected by slab_mutex. 310 */ 311 static nodemask_t slab_nodes; 312 313 /******************************************************************** 314 * Core slab cache functions 315 *******************************************************************/ 316 317 /* 318 * Returns freelist pointer (ptr). With hardening, this is obfuscated 319 * with an XOR of the address where the pointer is held and a per-cache 320 * random number. 321 */ 322 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 323 unsigned long ptr_addr) 324 { 325 #ifdef CONFIG_SLAB_FREELIST_HARDENED 326 /* 327 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. 328 * Normally, this doesn't cause any issues, as both set_freepointer() 329 * and get_freepointer() are called with a pointer with the same tag. 330 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 331 * example, when __free_slub() iterates over objects in a cache, it 332 * passes untagged pointers to check_object(). check_object() in turns 333 * calls get_freepointer() with an untagged pointer, which causes the 334 * freepointer to be restored incorrectly. 335 */ 336 return (void *)((unsigned long)ptr ^ s->random ^ 337 swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); 338 #else 339 return ptr; 340 #endif 341 } 342 343 /* Returns the freelist pointer recorded at location ptr_addr. */ 344 static inline void *freelist_dereference(const struct kmem_cache *s, 345 void *ptr_addr) 346 { 347 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 348 (unsigned long)ptr_addr); 349 } 350 351 static inline void *get_freepointer(struct kmem_cache *s, void *object) 352 { 353 object = kasan_reset_tag(object); 354 return freelist_dereference(s, object + s->offset); 355 } 356 357 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 358 { 359 prefetchw(object + s->offset); 360 } 361 362 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 363 { 364 unsigned long freepointer_addr; 365 void *p; 366 367 if (!debug_pagealloc_enabled_static()) 368 return get_freepointer(s, object); 369 370 object = kasan_reset_tag(object); 371 freepointer_addr = (unsigned long)object + s->offset; 372 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); 373 return freelist_ptr(s, p, freepointer_addr); 374 } 375 376 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 377 { 378 unsigned long freeptr_addr = (unsigned long)object + s->offset; 379 380 #ifdef CONFIG_SLAB_FREELIST_HARDENED 381 BUG_ON(object == fp); /* naive detection of double free or corruption */ 382 #endif 383 384 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 385 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 386 } 387 388 /* Loop over all objects in a slab */ 389 #define for_each_object(__p, __s, __addr, __objects) \ 390 for (__p = fixup_red_left(__s, __addr); \ 391 __p < (__addr) + (__objects) * (__s)->size; \ 392 __p += (__s)->size) 393 394 static inline unsigned int order_objects(unsigned int order, unsigned int size) 395 { 396 return ((unsigned int)PAGE_SIZE << order) / size; 397 } 398 399 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 400 unsigned int size) 401 { 402 struct kmem_cache_order_objects x = { 403 (order << OO_SHIFT) + order_objects(order, size) 404 }; 405 406 return x; 407 } 408 409 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 410 { 411 return x.x >> OO_SHIFT; 412 } 413 414 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 415 { 416 return x.x & OO_MASK; 417 } 418 419 #ifdef CONFIG_SLUB_CPU_PARTIAL 420 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 421 { 422 unsigned int nr_slabs; 423 424 s->cpu_partial = nr_objects; 425 426 /* 427 * We take the number of objects but actually limit the number of 428 * slabs on the per cpu partial list, in order to limit excessive 429 * growth of the list. For simplicity we assume that the slabs will 430 * be half-full. 431 */ 432 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 433 s->cpu_partial_slabs = nr_slabs; 434 } 435 #else 436 static inline void 437 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 438 { 439 } 440 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 441 442 /* 443 * Per slab locking using the pagelock 444 */ 445 static __always_inline void __slab_lock(struct slab *slab) 446 { 447 struct page *page = slab_page(slab); 448 449 VM_BUG_ON_PAGE(PageTail(page), page); 450 bit_spin_lock(PG_locked, &page->flags); 451 } 452 453 static __always_inline void __slab_unlock(struct slab *slab) 454 { 455 struct page *page = slab_page(slab); 456 457 VM_BUG_ON_PAGE(PageTail(page), page); 458 __bit_spin_unlock(PG_locked, &page->flags); 459 } 460 461 static __always_inline void slab_lock(struct slab *slab, unsigned long *flags) 462 { 463 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 464 local_irq_save(*flags); 465 __slab_lock(slab); 466 } 467 468 static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags) 469 { 470 __slab_unlock(slab); 471 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 472 local_irq_restore(*flags); 473 } 474 475 /* 476 * Interrupts must be disabled (for the fallback code to work right), typically 477 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different 478 * so we disable interrupts as part of slab_[un]lock(). 479 */ 480 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, 481 void *freelist_old, unsigned long counters_old, 482 void *freelist_new, unsigned long counters_new, 483 const char *n) 484 { 485 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 486 lockdep_assert_irqs_disabled(); 487 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 488 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 489 if (s->flags & __CMPXCHG_DOUBLE) { 490 if (cmpxchg_double(&slab->freelist, &slab->counters, 491 freelist_old, counters_old, 492 freelist_new, counters_new)) 493 return true; 494 } else 495 #endif 496 { 497 /* init to 0 to prevent spurious warnings */ 498 unsigned long flags = 0; 499 500 slab_lock(slab, &flags); 501 if (slab->freelist == freelist_old && 502 slab->counters == counters_old) { 503 slab->freelist = freelist_new; 504 slab->counters = counters_new; 505 slab_unlock(slab, &flags); 506 return true; 507 } 508 slab_unlock(slab, &flags); 509 } 510 511 cpu_relax(); 512 stat(s, CMPXCHG_DOUBLE_FAIL); 513 514 #ifdef SLUB_DEBUG_CMPXCHG 515 pr_info("%s %s: cmpxchg double redo ", n, s->name); 516 #endif 517 518 return false; 519 } 520 521 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, 522 void *freelist_old, unsigned long counters_old, 523 void *freelist_new, unsigned long counters_new, 524 const char *n) 525 { 526 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 527 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 528 if (s->flags & __CMPXCHG_DOUBLE) { 529 if (cmpxchg_double(&slab->freelist, &slab->counters, 530 freelist_old, counters_old, 531 freelist_new, counters_new)) 532 return true; 533 } else 534 #endif 535 { 536 unsigned long flags; 537 538 local_irq_save(flags); 539 __slab_lock(slab); 540 if (slab->freelist == freelist_old && 541 slab->counters == counters_old) { 542 slab->freelist = freelist_new; 543 slab->counters = counters_new; 544 __slab_unlock(slab); 545 local_irq_restore(flags); 546 return true; 547 } 548 __slab_unlock(slab); 549 local_irq_restore(flags); 550 } 551 552 cpu_relax(); 553 stat(s, CMPXCHG_DOUBLE_FAIL); 554 555 #ifdef SLUB_DEBUG_CMPXCHG 556 pr_info("%s %s: cmpxchg double redo ", n, s->name); 557 #endif 558 559 return false; 560 } 561 562 #ifdef CONFIG_SLUB_DEBUG 563 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 564 static DEFINE_RAW_SPINLOCK(object_map_lock); 565 566 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 567 struct slab *slab) 568 { 569 void *addr = slab_address(slab); 570 void *p; 571 572 bitmap_zero(obj_map, slab->objects); 573 574 for (p = slab->freelist; p; p = get_freepointer(s, p)) 575 set_bit(__obj_to_index(s, addr, p), obj_map); 576 } 577 578 #if IS_ENABLED(CONFIG_KUNIT) 579 static bool slab_add_kunit_errors(void) 580 { 581 struct kunit_resource *resource; 582 583 if (likely(!current->kunit_test)) 584 return false; 585 586 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 587 if (!resource) 588 return false; 589 590 (*(int *)resource->data)++; 591 kunit_put_resource(resource); 592 return true; 593 } 594 #else 595 static inline bool slab_add_kunit_errors(void) { return false; } 596 #endif 597 598 /* 599 * Determine a map of objects in use in a slab. 600 * 601 * Node listlock must be held to guarantee that the slab does 602 * not vanish from under us. 603 */ 604 static unsigned long *get_map(struct kmem_cache *s, struct slab *slab) 605 __acquires(&object_map_lock) 606 { 607 VM_BUG_ON(!irqs_disabled()); 608 609 raw_spin_lock(&object_map_lock); 610 611 __fill_map(object_map, s, slab); 612 613 return object_map; 614 } 615 616 static void put_map(unsigned long *map) __releases(&object_map_lock) 617 { 618 VM_BUG_ON(map != object_map); 619 raw_spin_unlock(&object_map_lock); 620 } 621 622 static inline unsigned int size_from_object(struct kmem_cache *s) 623 { 624 if (s->flags & SLAB_RED_ZONE) 625 return s->size - s->red_left_pad; 626 627 return s->size; 628 } 629 630 static inline void *restore_red_left(struct kmem_cache *s, void *p) 631 { 632 if (s->flags & SLAB_RED_ZONE) 633 p -= s->red_left_pad; 634 635 return p; 636 } 637 638 /* 639 * Debug settings: 640 */ 641 #if defined(CONFIG_SLUB_DEBUG_ON) 642 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 643 #else 644 static slab_flags_t slub_debug; 645 #endif 646 647 static char *slub_debug_string; 648 static int disable_higher_order_debug; 649 650 /* 651 * slub is about to manipulate internal object metadata. This memory lies 652 * outside the range of the allocated object, so accessing it would normally 653 * be reported by kasan as a bounds error. metadata_access_enable() is used 654 * to tell kasan that these accesses are OK. 655 */ 656 static inline void metadata_access_enable(void) 657 { 658 kasan_disable_current(); 659 } 660 661 static inline void metadata_access_disable(void) 662 { 663 kasan_enable_current(); 664 } 665 666 /* 667 * Object debugging 668 */ 669 670 /* Verify that a pointer has an address that is valid within a slab page */ 671 static inline int check_valid_pointer(struct kmem_cache *s, 672 struct slab *slab, void *object) 673 { 674 void *base; 675 676 if (!object) 677 return 1; 678 679 base = slab_address(slab); 680 object = kasan_reset_tag(object); 681 object = restore_red_left(s, object); 682 if (object < base || object >= base + slab->objects * s->size || 683 (object - base) % s->size) { 684 return 0; 685 } 686 687 return 1; 688 } 689 690 static void print_section(char *level, char *text, u8 *addr, 691 unsigned int length) 692 { 693 metadata_access_enable(); 694 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 695 16, 1, kasan_reset_tag((void *)addr), length, 1); 696 metadata_access_disable(); 697 } 698 699 /* 700 * See comment in calculate_sizes(). 701 */ 702 static inline bool freeptr_outside_object(struct kmem_cache *s) 703 { 704 return s->offset >= s->inuse; 705 } 706 707 /* 708 * Return offset of the end of info block which is inuse + free pointer if 709 * not overlapping with object. 710 */ 711 static inline unsigned int get_info_end(struct kmem_cache *s) 712 { 713 if (freeptr_outside_object(s)) 714 return s->inuse + sizeof(void *); 715 else 716 return s->inuse; 717 } 718 719 static struct track *get_track(struct kmem_cache *s, void *object, 720 enum track_item alloc) 721 { 722 struct track *p; 723 724 p = object + get_info_end(s); 725 726 return kasan_reset_tag(p + alloc); 727 } 728 729 #ifdef CONFIG_STACKDEPOT 730 static noinline depot_stack_handle_t set_track_prepare(void) 731 { 732 depot_stack_handle_t handle; 733 unsigned long entries[TRACK_ADDRS_COUNT]; 734 unsigned int nr_entries; 735 736 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 737 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 738 739 return handle; 740 } 741 #else 742 static inline depot_stack_handle_t set_track_prepare(void) 743 { 744 return 0; 745 } 746 #endif 747 748 static void set_track_update(struct kmem_cache *s, void *object, 749 enum track_item alloc, unsigned long addr, 750 depot_stack_handle_t handle) 751 { 752 struct track *p = get_track(s, object, alloc); 753 754 #ifdef CONFIG_STACKDEPOT 755 p->handle = handle; 756 #endif 757 p->addr = addr; 758 p->cpu = smp_processor_id(); 759 p->pid = current->pid; 760 p->when = jiffies; 761 } 762 763 static __always_inline void set_track(struct kmem_cache *s, void *object, 764 enum track_item alloc, unsigned long addr) 765 { 766 depot_stack_handle_t handle = set_track_prepare(); 767 768 set_track_update(s, object, alloc, addr, handle); 769 } 770 771 static void init_tracking(struct kmem_cache *s, void *object) 772 { 773 struct track *p; 774 775 if (!(s->flags & SLAB_STORE_USER)) 776 return; 777 778 p = get_track(s, object, TRACK_ALLOC); 779 memset(p, 0, 2*sizeof(struct track)); 780 } 781 782 static void print_track(const char *s, struct track *t, unsigned long pr_time) 783 { 784 depot_stack_handle_t handle __maybe_unused; 785 786 if (!t->addr) 787 return; 788 789 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 790 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 791 #ifdef CONFIG_STACKDEPOT 792 handle = READ_ONCE(t->handle); 793 if (handle) 794 stack_depot_print(handle); 795 else 796 pr_err("object allocation/free stack trace missing\n"); 797 #endif 798 } 799 800 void print_tracking(struct kmem_cache *s, void *object) 801 { 802 unsigned long pr_time = jiffies; 803 if (!(s->flags & SLAB_STORE_USER)) 804 return; 805 806 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 807 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 808 } 809 810 static void print_slab_info(const struct slab *slab) 811 { 812 struct folio *folio = (struct folio *)slab_folio(slab); 813 814 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 815 slab, slab->objects, slab->inuse, slab->freelist, 816 folio_flags(folio, 0)); 817 } 818 819 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 820 { 821 struct va_format vaf; 822 va_list args; 823 824 va_start(args, fmt); 825 vaf.fmt = fmt; 826 vaf.va = &args; 827 pr_err("=============================================================================\n"); 828 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 829 pr_err("-----------------------------------------------------------------------------\n\n"); 830 va_end(args); 831 } 832 833 __printf(2, 3) 834 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 835 { 836 struct va_format vaf; 837 va_list args; 838 839 if (slab_add_kunit_errors()) 840 return; 841 842 va_start(args, fmt); 843 vaf.fmt = fmt; 844 vaf.va = &args; 845 pr_err("FIX %s: %pV\n", s->name, &vaf); 846 va_end(args); 847 } 848 849 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 850 { 851 unsigned int off; /* Offset of last byte */ 852 u8 *addr = slab_address(slab); 853 854 print_tracking(s, p); 855 856 print_slab_info(slab); 857 858 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 859 p, p - addr, get_freepointer(s, p)); 860 861 if (s->flags & SLAB_RED_ZONE) 862 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 863 s->red_left_pad); 864 else if (p > addr + 16) 865 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 866 867 print_section(KERN_ERR, "Object ", p, 868 min_t(unsigned int, s->object_size, PAGE_SIZE)); 869 if (s->flags & SLAB_RED_ZONE) 870 print_section(KERN_ERR, "Redzone ", p + s->object_size, 871 s->inuse - s->object_size); 872 873 off = get_info_end(s); 874 875 if (s->flags & SLAB_STORE_USER) 876 off += 2 * sizeof(struct track); 877 878 off += kasan_metadata_size(s); 879 880 if (off != size_from_object(s)) 881 /* Beginning of the filler is the free pointer */ 882 print_section(KERN_ERR, "Padding ", p + off, 883 size_from_object(s) - off); 884 885 dump_stack(); 886 } 887 888 static void object_err(struct kmem_cache *s, struct slab *slab, 889 u8 *object, char *reason) 890 { 891 if (slab_add_kunit_errors()) 892 return; 893 894 slab_bug(s, "%s", reason); 895 print_trailer(s, slab, object); 896 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 897 } 898 899 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 900 void **freelist, void *nextfree) 901 { 902 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 903 !check_valid_pointer(s, slab, nextfree) && freelist) { 904 object_err(s, slab, *freelist, "Freechain corrupt"); 905 *freelist = NULL; 906 slab_fix(s, "Isolate corrupted freechain"); 907 return true; 908 } 909 910 return false; 911 } 912 913 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 914 const char *fmt, ...) 915 { 916 va_list args; 917 char buf[100]; 918 919 if (slab_add_kunit_errors()) 920 return; 921 922 va_start(args, fmt); 923 vsnprintf(buf, sizeof(buf), fmt, args); 924 va_end(args); 925 slab_bug(s, "%s", buf); 926 print_slab_info(slab); 927 dump_stack(); 928 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 929 } 930 931 static void init_object(struct kmem_cache *s, void *object, u8 val) 932 { 933 u8 *p = kasan_reset_tag(object); 934 935 if (s->flags & SLAB_RED_ZONE) 936 memset(p - s->red_left_pad, val, s->red_left_pad); 937 938 if (s->flags & __OBJECT_POISON) { 939 memset(p, POISON_FREE, s->object_size - 1); 940 p[s->object_size - 1] = POISON_END; 941 } 942 943 if (s->flags & SLAB_RED_ZONE) 944 memset(p + s->object_size, val, s->inuse - s->object_size); 945 } 946 947 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 948 void *from, void *to) 949 { 950 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 951 memset(from, data, to - from); 952 } 953 954 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 955 u8 *object, char *what, 956 u8 *start, unsigned int value, unsigned int bytes) 957 { 958 u8 *fault; 959 u8 *end; 960 u8 *addr = slab_address(slab); 961 962 metadata_access_enable(); 963 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 964 metadata_access_disable(); 965 if (!fault) 966 return 1; 967 968 end = start + bytes; 969 while (end > fault && end[-1] == value) 970 end--; 971 972 if (slab_add_kunit_errors()) 973 goto skip_bug_print; 974 975 slab_bug(s, "%s overwritten", what); 976 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 977 fault, end - 1, fault - addr, 978 fault[0], value); 979 print_trailer(s, slab, object); 980 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 981 982 skip_bug_print: 983 restore_bytes(s, what, value, fault, end); 984 return 0; 985 } 986 987 /* 988 * Object layout: 989 * 990 * object address 991 * Bytes of the object to be managed. 992 * If the freepointer may overlay the object then the free 993 * pointer is at the middle of the object. 994 * 995 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 996 * 0xa5 (POISON_END) 997 * 998 * object + s->object_size 999 * Padding to reach word boundary. This is also used for Redzoning. 1000 * Padding is extended by another word if Redzoning is enabled and 1001 * object_size == inuse. 1002 * 1003 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 1004 * 0xcc (RED_ACTIVE) for objects in use. 1005 * 1006 * object + s->inuse 1007 * Meta data starts here. 1008 * 1009 * A. Free pointer (if we cannot overwrite object on free) 1010 * B. Tracking data for SLAB_STORE_USER 1011 * C. Padding to reach required alignment boundary or at minimum 1012 * one word if debugging is on to be able to detect writes 1013 * before the word boundary. 1014 * 1015 * Padding is done using 0x5a (POISON_INUSE) 1016 * 1017 * object + s->size 1018 * Nothing is used beyond s->size. 1019 * 1020 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1021 * ignored. And therefore no slab options that rely on these boundaries 1022 * may be used with merged slabcaches. 1023 */ 1024 1025 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1026 { 1027 unsigned long off = get_info_end(s); /* The end of info */ 1028 1029 if (s->flags & SLAB_STORE_USER) 1030 /* We also have user information there */ 1031 off += 2 * sizeof(struct track); 1032 1033 off += kasan_metadata_size(s); 1034 1035 if (size_from_object(s) == off) 1036 return 1; 1037 1038 return check_bytes_and_report(s, slab, p, "Object padding", 1039 p + off, POISON_INUSE, size_from_object(s) - off); 1040 } 1041 1042 /* Check the pad bytes at the end of a slab page */ 1043 static void slab_pad_check(struct kmem_cache *s, struct slab *slab) 1044 { 1045 u8 *start; 1046 u8 *fault; 1047 u8 *end; 1048 u8 *pad; 1049 int length; 1050 int remainder; 1051 1052 if (!(s->flags & SLAB_POISON)) 1053 return; 1054 1055 start = slab_address(slab); 1056 length = slab_size(slab); 1057 end = start + length; 1058 remainder = length % s->size; 1059 if (!remainder) 1060 return; 1061 1062 pad = end - remainder; 1063 metadata_access_enable(); 1064 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1065 metadata_access_disable(); 1066 if (!fault) 1067 return; 1068 while (end > fault && end[-1] == POISON_INUSE) 1069 end--; 1070 1071 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1072 fault, end - 1, fault - start); 1073 print_section(KERN_ERR, "Padding ", pad, remainder); 1074 1075 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1076 } 1077 1078 static int check_object(struct kmem_cache *s, struct slab *slab, 1079 void *object, u8 val) 1080 { 1081 u8 *p = object; 1082 u8 *endobject = object + s->object_size; 1083 1084 if (s->flags & SLAB_RED_ZONE) { 1085 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1086 object - s->red_left_pad, val, s->red_left_pad)) 1087 return 0; 1088 1089 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1090 endobject, val, s->inuse - s->object_size)) 1091 return 0; 1092 } else { 1093 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1094 check_bytes_and_report(s, slab, p, "Alignment padding", 1095 endobject, POISON_INUSE, 1096 s->inuse - s->object_size); 1097 } 1098 } 1099 1100 if (s->flags & SLAB_POISON) { 1101 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 1102 (!check_bytes_and_report(s, slab, p, "Poison", p, 1103 POISON_FREE, s->object_size - 1) || 1104 !check_bytes_and_report(s, slab, p, "End Poison", 1105 p + s->object_size - 1, POISON_END, 1))) 1106 return 0; 1107 /* 1108 * check_pad_bytes cleans up on its own. 1109 */ 1110 check_pad_bytes(s, slab, p); 1111 } 1112 1113 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 1114 /* 1115 * Object and freepointer overlap. Cannot check 1116 * freepointer while object is allocated. 1117 */ 1118 return 1; 1119 1120 /* Check free pointer validity */ 1121 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { 1122 object_err(s, slab, p, "Freepointer corrupt"); 1123 /* 1124 * No choice but to zap it and thus lose the remainder 1125 * of the free objects in this slab. May cause 1126 * another error because the object count is now wrong. 1127 */ 1128 set_freepointer(s, p, NULL); 1129 return 0; 1130 } 1131 return 1; 1132 } 1133 1134 static int check_slab(struct kmem_cache *s, struct slab *slab) 1135 { 1136 int maxobj; 1137 1138 if (!folio_test_slab(slab_folio(slab))) { 1139 slab_err(s, slab, "Not a valid slab page"); 1140 return 0; 1141 } 1142 1143 maxobj = order_objects(slab_order(slab), s->size); 1144 if (slab->objects > maxobj) { 1145 slab_err(s, slab, "objects %u > max %u", 1146 slab->objects, maxobj); 1147 return 0; 1148 } 1149 if (slab->inuse > slab->objects) { 1150 slab_err(s, slab, "inuse %u > max %u", 1151 slab->inuse, slab->objects); 1152 return 0; 1153 } 1154 /* Slab_pad_check fixes things up after itself */ 1155 slab_pad_check(s, slab); 1156 return 1; 1157 } 1158 1159 /* 1160 * Determine if a certain object in a slab is on the freelist. Must hold the 1161 * slab lock to guarantee that the chains are in a consistent state. 1162 */ 1163 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1164 { 1165 int nr = 0; 1166 void *fp; 1167 void *object = NULL; 1168 int max_objects; 1169 1170 fp = slab->freelist; 1171 while (fp && nr <= slab->objects) { 1172 if (fp == search) 1173 return 1; 1174 if (!check_valid_pointer(s, slab, fp)) { 1175 if (object) { 1176 object_err(s, slab, object, 1177 "Freechain corrupt"); 1178 set_freepointer(s, object, NULL); 1179 } else { 1180 slab_err(s, slab, "Freepointer corrupt"); 1181 slab->freelist = NULL; 1182 slab->inuse = slab->objects; 1183 slab_fix(s, "Freelist cleared"); 1184 return 0; 1185 } 1186 break; 1187 } 1188 object = fp; 1189 fp = get_freepointer(s, object); 1190 nr++; 1191 } 1192 1193 max_objects = order_objects(slab_order(slab), s->size); 1194 if (max_objects > MAX_OBJS_PER_PAGE) 1195 max_objects = MAX_OBJS_PER_PAGE; 1196 1197 if (slab->objects != max_objects) { 1198 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1199 slab->objects, max_objects); 1200 slab->objects = max_objects; 1201 slab_fix(s, "Number of objects adjusted"); 1202 } 1203 if (slab->inuse != slab->objects - nr) { 1204 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1205 slab->inuse, slab->objects - nr); 1206 slab->inuse = slab->objects - nr; 1207 slab_fix(s, "Object count adjusted"); 1208 } 1209 return search == NULL; 1210 } 1211 1212 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1213 int alloc) 1214 { 1215 if (s->flags & SLAB_TRACE) { 1216 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1217 s->name, 1218 alloc ? "alloc" : "free", 1219 object, slab->inuse, 1220 slab->freelist); 1221 1222 if (!alloc) 1223 print_section(KERN_INFO, "Object ", (void *)object, 1224 s->object_size); 1225 1226 dump_stack(); 1227 } 1228 } 1229 1230 /* 1231 * Tracking of fully allocated slabs for debugging purposes. 1232 */ 1233 static void add_full(struct kmem_cache *s, 1234 struct kmem_cache_node *n, struct slab *slab) 1235 { 1236 if (!(s->flags & SLAB_STORE_USER)) 1237 return; 1238 1239 lockdep_assert_held(&n->list_lock); 1240 list_add(&slab->slab_list, &n->full); 1241 } 1242 1243 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1244 { 1245 if (!(s->flags & SLAB_STORE_USER)) 1246 return; 1247 1248 lockdep_assert_held(&n->list_lock); 1249 list_del(&slab->slab_list); 1250 } 1251 1252 /* Tracking of the number of slabs for debugging purposes */ 1253 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1254 { 1255 struct kmem_cache_node *n = get_node(s, node); 1256 1257 return atomic_long_read(&n->nr_slabs); 1258 } 1259 1260 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1261 { 1262 return atomic_long_read(&n->nr_slabs); 1263 } 1264 1265 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1266 { 1267 struct kmem_cache_node *n = get_node(s, node); 1268 1269 /* 1270 * May be called early in order to allocate a slab for the 1271 * kmem_cache_node structure. Solve the chicken-egg 1272 * dilemma by deferring the increment of the count during 1273 * bootstrap (see early_kmem_cache_node_alloc). 1274 */ 1275 if (likely(n)) { 1276 atomic_long_inc(&n->nr_slabs); 1277 atomic_long_add(objects, &n->total_objects); 1278 } 1279 } 1280 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1281 { 1282 struct kmem_cache_node *n = get_node(s, node); 1283 1284 atomic_long_dec(&n->nr_slabs); 1285 atomic_long_sub(objects, &n->total_objects); 1286 } 1287 1288 /* Object debug checks for alloc/free paths */ 1289 static void setup_object_debug(struct kmem_cache *s, void *object) 1290 { 1291 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1292 return; 1293 1294 init_object(s, object, SLUB_RED_INACTIVE); 1295 init_tracking(s, object); 1296 } 1297 1298 static 1299 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1300 { 1301 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1302 return; 1303 1304 metadata_access_enable(); 1305 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1306 metadata_access_disable(); 1307 } 1308 1309 static inline int alloc_consistency_checks(struct kmem_cache *s, 1310 struct slab *slab, void *object) 1311 { 1312 if (!check_slab(s, slab)) 1313 return 0; 1314 1315 if (!check_valid_pointer(s, slab, object)) { 1316 object_err(s, slab, object, "Freelist Pointer check fails"); 1317 return 0; 1318 } 1319 1320 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1321 return 0; 1322 1323 return 1; 1324 } 1325 1326 static noinline int alloc_debug_processing(struct kmem_cache *s, 1327 struct slab *slab, 1328 void *object, unsigned long addr) 1329 { 1330 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1331 if (!alloc_consistency_checks(s, slab, object)) 1332 goto bad; 1333 } 1334 1335 /* Success perform special debug activities for allocs */ 1336 if (s->flags & SLAB_STORE_USER) 1337 set_track(s, object, TRACK_ALLOC, addr); 1338 trace(s, slab, object, 1); 1339 init_object(s, object, SLUB_RED_ACTIVE); 1340 return 1; 1341 1342 bad: 1343 if (folio_test_slab(slab_folio(slab))) { 1344 /* 1345 * If this is a slab page then lets do the best we can 1346 * to avoid issues in the future. Marking all objects 1347 * as used avoids touching the remaining objects. 1348 */ 1349 slab_fix(s, "Marking all objects used"); 1350 slab->inuse = slab->objects; 1351 slab->freelist = NULL; 1352 } 1353 return 0; 1354 } 1355 1356 static inline int free_consistency_checks(struct kmem_cache *s, 1357 struct slab *slab, void *object, unsigned long addr) 1358 { 1359 if (!check_valid_pointer(s, slab, object)) { 1360 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1361 return 0; 1362 } 1363 1364 if (on_freelist(s, slab, object)) { 1365 object_err(s, slab, object, "Object already free"); 1366 return 0; 1367 } 1368 1369 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1370 return 0; 1371 1372 if (unlikely(s != slab->slab_cache)) { 1373 if (!folio_test_slab(slab_folio(slab))) { 1374 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1375 object); 1376 } else if (!slab->slab_cache) { 1377 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1378 object); 1379 dump_stack(); 1380 } else 1381 object_err(s, slab, object, 1382 "page slab pointer corrupt."); 1383 return 0; 1384 } 1385 return 1; 1386 } 1387 1388 /* Supports checking bulk free of a constructed freelist */ 1389 static noinline int free_debug_processing( 1390 struct kmem_cache *s, struct slab *slab, 1391 void *head, void *tail, int bulk_cnt, 1392 unsigned long addr) 1393 { 1394 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 1395 void *object = head; 1396 int cnt = 0; 1397 unsigned long flags, flags2; 1398 int ret = 0; 1399 depot_stack_handle_t handle = 0; 1400 1401 if (s->flags & SLAB_STORE_USER) 1402 handle = set_track_prepare(); 1403 1404 spin_lock_irqsave(&n->list_lock, flags); 1405 slab_lock(slab, &flags2); 1406 1407 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1408 if (!check_slab(s, slab)) 1409 goto out; 1410 } 1411 1412 next_object: 1413 cnt++; 1414 1415 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1416 if (!free_consistency_checks(s, slab, object, addr)) 1417 goto out; 1418 } 1419 1420 if (s->flags & SLAB_STORE_USER) 1421 set_track_update(s, object, TRACK_FREE, addr, handle); 1422 trace(s, slab, object, 0); 1423 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1424 init_object(s, object, SLUB_RED_INACTIVE); 1425 1426 /* Reached end of constructed freelist yet? */ 1427 if (object != tail) { 1428 object = get_freepointer(s, object); 1429 goto next_object; 1430 } 1431 ret = 1; 1432 1433 out: 1434 if (cnt != bulk_cnt) 1435 slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n", 1436 bulk_cnt, cnt); 1437 1438 slab_unlock(slab, &flags2); 1439 spin_unlock_irqrestore(&n->list_lock, flags); 1440 if (!ret) 1441 slab_fix(s, "Object at 0x%p not freed", object); 1442 return ret; 1443 } 1444 1445 /* 1446 * Parse a block of slub_debug options. Blocks are delimited by ';' 1447 * 1448 * @str: start of block 1449 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1450 * @slabs: return start of list of slabs, or NULL when there's no list 1451 * @init: assume this is initial parsing and not per-kmem-create parsing 1452 * 1453 * returns the start of next block if there's any, or NULL 1454 */ 1455 static char * 1456 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1457 { 1458 bool higher_order_disable = false; 1459 1460 /* Skip any completely empty blocks */ 1461 while (*str && *str == ';') 1462 str++; 1463 1464 if (*str == ',') { 1465 /* 1466 * No options but restriction on slabs. This means full 1467 * debugging for slabs matching a pattern. 1468 */ 1469 *flags = DEBUG_DEFAULT_FLAGS; 1470 goto check_slabs; 1471 } 1472 *flags = 0; 1473 1474 /* Determine which debug features should be switched on */ 1475 for (; *str && *str != ',' && *str != ';'; str++) { 1476 switch (tolower(*str)) { 1477 case '-': 1478 *flags = 0; 1479 break; 1480 case 'f': 1481 *flags |= SLAB_CONSISTENCY_CHECKS; 1482 break; 1483 case 'z': 1484 *flags |= SLAB_RED_ZONE; 1485 break; 1486 case 'p': 1487 *flags |= SLAB_POISON; 1488 break; 1489 case 'u': 1490 *flags |= SLAB_STORE_USER; 1491 break; 1492 case 't': 1493 *flags |= SLAB_TRACE; 1494 break; 1495 case 'a': 1496 *flags |= SLAB_FAILSLAB; 1497 break; 1498 case 'o': 1499 /* 1500 * Avoid enabling debugging on caches if its minimum 1501 * order would increase as a result. 1502 */ 1503 higher_order_disable = true; 1504 break; 1505 default: 1506 if (init) 1507 pr_err("slub_debug option '%c' unknown. skipped\n", *str); 1508 } 1509 } 1510 check_slabs: 1511 if (*str == ',') 1512 *slabs = ++str; 1513 else 1514 *slabs = NULL; 1515 1516 /* Skip over the slab list */ 1517 while (*str && *str != ';') 1518 str++; 1519 1520 /* Skip any completely empty blocks */ 1521 while (*str && *str == ';') 1522 str++; 1523 1524 if (init && higher_order_disable) 1525 disable_higher_order_debug = 1; 1526 1527 if (*str) 1528 return str; 1529 else 1530 return NULL; 1531 } 1532 1533 static int __init setup_slub_debug(char *str) 1534 { 1535 slab_flags_t flags; 1536 slab_flags_t global_flags; 1537 char *saved_str; 1538 char *slab_list; 1539 bool global_slub_debug_changed = false; 1540 bool slab_list_specified = false; 1541 1542 global_flags = DEBUG_DEFAULT_FLAGS; 1543 if (*str++ != '=' || !*str) 1544 /* 1545 * No options specified. Switch on full debugging. 1546 */ 1547 goto out; 1548 1549 saved_str = str; 1550 while (str) { 1551 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1552 1553 if (!slab_list) { 1554 global_flags = flags; 1555 global_slub_debug_changed = true; 1556 } else { 1557 slab_list_specified = true; 1558 if (flags & SLAB_STORE_USER) 1559 stack_depot_want_early_init(); 1560 } 1561 } 1562 1563 /* 1564 * For backwards compatibility, a single list of flags with list of 1565 * slabs means debugging is only changed for those slabs, so the global 1566 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1567 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1568 * long as there is no option specifying flags without a slab list. 1569 */ 1570 if (slab_list_specified) { 1571 if (!global_slub_debug_changed) 1572 global_flags = slub_debug; 1573 slub_debug_string = saved_str; 1574 } 1575 out: 1576 slub_debug = global_flags; 1577 if (slub_debug & SLAB_STORE_USER) 1578 stack_depot_want_early_init(); 1579 if (slub_debug != 0 || slub_debug_string) 1580 static_branch_enable(&slub_debug_enabled); 1581 else 1582 static_branch_disable(&slub_debug_enabled); 1583 if ((static_branch_unlikely(&init_on_alloc) || 1584 static_branch_unlikely(&init_on_free)) && 1585 (slub_debug & SLAB_POISON)) 1586 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1587 return 1; 1588 } 1589 1590 __setup("slub_debug", setup_slub_debug); 1591 1592 /* 1593 * kmem_cache_flags - apply debugging options to the cache 1594 * @object_size: the size of an object without meta data 1595 * @flags: flags to set 1596 * @name: name of the cache 1597 * 1598 * Debug option(s) are applied to @flags. In addition to the debug 1599 * option(s), if a slab name (or multiple) is specified i.e. 1600 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1601 * then only the select slabs will receive the debug option(s). 1602 */ 1603 slab_flags_t kmem_cache_flags(unsigned int object_size, 1604 slab_flags_t flags, const char *name) 1605 { 1606 char *iter; 1607 size_t len; 1608 char *next_block; 1609 slab_flags_t block_flags; 1610 slab_flags_t slub_debug_local = slub_debug; 1611 1612 if (flags & SLAB_NO_USER_FLAGS) 1613 return flags; 1614 1615 /* 1616 * If the slab cache is for debugging (e.g. kmemleak) then 1617 * don't store user (stack trace) information by default, 1618 * but let the user enable it via the command line below. 1619 */ 1620 if (flags & SLAB_NOLEAKTRACE) 1621 slub_debug_local &= ~SLAB_STORE_USER; 1622 1623 len = strlen(name); 1624 next_block = slub_debug_string; 1625 /* Go through all blocks of debug options, see if any matches our slab's name */ 1626 while (next_block) { 1627 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1628 if (!iter) 1629 continue; 1630 /* Found a block that has a slab list, search it */ 1631 while (*iter) { 1632 char *end, *glob; 1633 size_t cmplen; 1634 1635 end = strchrnul(iter, ','); 1636 if (next_block && next_block < end) 1637 end = next_block - 1; 1638 1639 glob = strnchr(iter, end - iter, '*'); 1640 if (glob) 1641 cmplen = glob - iter; 1642 else 1643 cmplen = max_t(size_t, len, (end - iter)); 1644 1645 if (!strncmp(name, iter, cmplen)) { 1646 flags |= block_flags; 1647 return flags; 1648 } 1649 1650 if (!*end || *end == ';') 1651 break; 1652 iter = end + 1; 1653 } 1654 } 1655 1656 return flags | slub_debug_local; 1657 } 1658 #else /* !CONFIG_SLUB_DEBUG */ 1659 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1660 static inline 1661 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1662 1663 static inline int alloc_debug_processing(struct kmem_cache *s, 1664 struct slab *slab, void *object, unsigned long addr) { return 0; } 1665 1666 static inline int free_debug_processing( 1667 struct kmem_cache *s, struct slab *slab, 1668 void *head, void *tail, int bulk_cnt, 1669 unsigned long addr) { return 0; } 1670 1671 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1672 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1673 void *object, u8 val) { return 1; } 1674 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1675 struct slab *slab) {} 1676 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1677 struct slab *slab) {} 1678 slab_flags_t kmem_cache_flags(unsigned int object_size, 1679 slab_flags_t flags, const char *name) 1680 { 1681 return flags; 1682 } 1683 #define slub_debug 0 1684 1685 #define disable_higher_order_debug 0 1686 1687 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1688 { return 0; } 1689 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1690 { return 0; } 1691 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1692 int objects) {} 1693 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1694 int objects) {} 1695 1696 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1697 void **freelist, void *nextfree) 1698 { 1699 return false; 1700 } 1701 #endif /* CONFIG_SLUB_DEBUG */ 1702 1703 /* 1704 * Hooks for other subsystems that check memory allocations. In a typical 1705 * production configuration these hooks all should produce no code at all. 1706 */ 1707 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1708 { 1709 ptr = kasan_kmalloc_large(ptr, size, flags); 1710 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1711 kmemleak_alloc(ptr, size, 1, flags); 1712 return ptr; 1713 } 1714 1715 static __always_inline void kfree_hook(void *x) 1716 { 1717 kmemleak_free(x); 1718 kasan_kfree_large(x); 1719 } 1720 1721 static __always_inline bool slab_free_hook(struct kmem_cache *s, 1722 void *x, bool init) 1723 { 1724 kmemleak_free_recursive(x, s->flags); 1725 1726 debug_check_no_locks_freed(x, s->object_size); 1727 1728 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1729 debug_check_no_obj_freed(x, s->object_size); 1730 1731 /* Use KCSAN to help debug racy use-after-free. */ 1732 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 1733 __kcsan_check_access(x, s->object_size, 1734 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 1735 1736 /* 1737 * As memory initialization might be integrated into KASAN, 1738 * kasan_slab_free and initialization memset's must be 1739 * kept together to avoid discrepancies in behavior. 1740 * 1741 * The initialization memset's clear the object and the metadata, 1742 * but don't touch the SLAB redzone. 1743 */ 1744 if (init) { 1745 int rsize; 1746 1747 if (!kasan_has_integrated_init()) 1748 memset(kasan_reset_tag(x), 0, s->object_size); 1749 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 1750 memset((char *)kasan_reset_tag(x) + s->inuse, 0, 1751 s->size - s->inuse - rsize); 1752 } 1753 /* KASAN might put x into memory quarantine, delaying its reuse. */ 1754 return kasan_slab_free(s, x, init); 1755 } 1756 1757 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1758 void **head, void **tail, 1759 int *cnt) 1760 { 1761 1762 void *object; 1763 void *next = *head; 1764 void *old_tail = *tail ? *tail : *head; 1765 1766 if (is_kfence_address(next)) { 1767 slab_free_hook(s, next, false); 1768 return true; 1769 } 1770 1771 /* Head and tail of the reconstructed freelist */ 1772 *head = NULL; 1773 *tail = NULL; 1774 1775 do { 1776 object = next; 1777 next = get_freepointer(s, object); 1778 1779 /* If object's reuse doesn't have to be delayed */ 1780 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { 1781 /* Move object to the new freelist */ 1782 set_freepointer(s, object, *head); 1783 *head = object; 1784 if (!*tail) 1785 *tail = object; 1786 } else { 1787 /* 1788 * Adjust the reconstructed freelist depth 1789 * accordingly if object's reuse is delayed. 1790 */ 1791 --(*cnt); 1792 } 1793 } while (object != old_tail); 1794 1795 if (*head == *tail) 1796 *tail = NULL; 1797 1798 return *head != NULL; 1799 } 1800 1801 static void *setup_object(struct kmem_cache *s, void *object) 1802 { 1803 setup_object_debug(s, object); 1804 object = kasan_init_slab_obj(s, object); 1805 if (unlikely(s->ctor)) { 1806 kasan_unpoison_object_data(s, object); 1807 s->ctor(object); 1808 kasan_poison_object_data(s, object); 1809 } 1810 return object; 1811 } 1812 1813 /* 1814 * Slab allocation and freeing 1815 */ 1816 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 1817 struct kmem_cache_order_objects oo) 1818 { 1819 struct folio *folio; 1820 struct slab *slab; 1821 unsigned int order = oo_order(oo); 1822 1823 if (node == NUMA_NO_NODE) 1824 folio = (struct folio *)alloc_pages(flags, order); 1825 else 1826 folio = (struct folio *)__alloc_pages_node(node, flags, order); 1827 1828 if (!folio) 1829 return NULL; 1830 1831 slab = folio_slab(folio); 1832 __folio_set_slab(folio); 1833 if (page_is_pfmemalloc(folio_page(folio, 0))) 1834 slab_set_pfmemalloc(slab); 1835 1836 return slab; 1837 } 1838 1839 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1840 /* Pre-initialize the random sequence cache */ 1841 static int init_cache_random_seq(struct kmem_cache *s) 1842 { 1843 unsigned int count = oo_objects(s->oo); 1844 int err; 1845 1846 /* Bailout if already initialised */ 1847 if (s->random_seq) 1848 return 0; 1849 1850 err = cache_random_seq_create(s, count, GFP_KERNEL); 1851 if (err) { 1852 pr_err("SLUB: Unable to initialize free list for %s\n", 1853 s->name); 1854 return err; 1855 } 1856 1857 /* Transform to an offset on the set of pages */ 1858 if (s->random_seq) { 1859 unsigned int i; 1860 1861 for (i = 0; i < count; i++) 1862 s->random_seq[i] *= s->size; 1863 } 1864 return 0; 1865 } 1866 1867 /* Initialize each random sequence freelist per cache */ 1868 static void __init init_freelist_randomization(void) 1869 { 1870 struct kmem_cache *s; 1871 1872 mutex_lock(&slab_mutex); 1873 1874 list_for_each_entry(s, &slab_caches, list) 1875 init_cache_random_seq(s); 1876 1877 mutex_unlock(&slab_mutex); 1878 } 1879 1880 /* Get the next entry on the pre-computed freelist randomized */ 1881 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab, 1882 unsigned long *pos, void *start, 1883 unsigned long page_limit, 1884 unsigned long freelist_count) 1885 { 1886 unsigned int idx; 1887 1888 /* 1889 * If the target page allocation failed, the number of objects on the 1890 * page might be smaller than the usual size defined by the cache. 1891 */ 1892 do { 1893 idx = s->random_seq[*pos]; 1894 *pos += 1; 1895 if (*pos >= freelist_count) 1896 *pos = 0; 1897 } while (unlikely(idx >= page_limit)); 1898 1899 return (char *)start + idx; 1900 } 1901 1902 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1903 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1904 { 1905 void *start; 1906 void *cur; 1907 void *next; 1908 unsigned long idx, pos, page_limit, freelist_count; 1909 1910 if (slab->objects < 2 || !s->random_seq) 1911 return false; 1912 1913 freelist_count = oo_objects(s->oo); 1914 pos = get_random_int() % freelist_count; 1915 1916 page_limit = slab->objects * s->size; 1917 start = fixup_red_left(s, slab_address(slab)); 1918 1919 /* First entry is used as the base of the freelist */ 1920 cur = next_freelist_entry(s, slab, &pos, start, page_limit, 1921 freelist_count); 1922 cur = setup_object(s, cur); 1923 slab->freelist = cur; 1924 1925 for (idx = 1; idx < slab->objects; idx++) { 1926 next = next_freelist_entry(s, slab, &pos, start, page_limit, 1927 freelist_count); 1928 next = setup_object(s, next); 1929 set_freepointer(s, cur, next); 1930 cur = next; 1931 } 1932 set_freepointer(s, cur, NULL); 1933 1934 return true; 1935 } 1936 #else 1937 static inline int init_cache_random_seq(struct kmem_cache *s) 1938 { 1939 return 0; 1940 } 1941 static inline void init_freelist_randomization(void) { } 1942 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1943 { 1944 return false; 1945 } 1946 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1947 1948 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1949 { 1950 struct slab *slab; 1951 struct kmem_cache_order_objects oo = s->oo; 1952 gfp_t alloc_gfp; 1953 void *start, *p, *next; 1954 int idx; 1955 bool shuffle; 1956 1957 flags &= gfp_allowed_mask; 1958 1959 flags |= s->allocflags; 1960 1961 /* 1962 * Let the initial higher-order allocation fail under memory pressure 1963 * so we fall-back to the minimum order allocation. 1964 */ 1965 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1966 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1967 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 1968 1969 slab = alloc_slab_page(alloc_gfp, node, oo); 1970 if (unlikely(!slab)) { 1971 oo = s->min; 1972 alloc_gfp = flags; 1973 /* 1974 * Allocation may have failed due to fragmentation. 1975 * Try a lower order alloc if possible 1976 */ 1977 slab = alloc_slab_page(alloc_gfp, node, oo); 1978 if (unlikely(!slab)) 1979 goto out; 1980 stat(s, ORDER_FALLBACK); 1981 } 1982 1983 slab->objects = oo_objects(oo); 1984 1985 account_slab(slab, oo_order(oo), s, flags); 1986 1987 slab->slab_cache = s; 1988 1989 kasan_poison_slab(slab); 1990 1991 start = slab_address(slab); 1992 1993 setup_slab_debug(s, slab, start); 1994 1995 shuffle = shuffle_freelist(s, slab); 1996 1997 if (!shuffle) { 1998 start = fixup_red_left(s, start); 1999 start = setup_object(s, start); 2000 slab->freelist = start; 2001 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2002 next = p + s->size; 2003 next = setup_object(s, next); 2004 set_freepointer(s, p, next); 2005 p = next; 2006 } 2007 set_freepointer(s, p, NULL); 2008 } 2009 2010 slab->inuse = slab->objects; 2011 slab->frozen = 1; 2012 2013 out: 2014 if (!slab) 2015 return NULL; 2016 2017 inc_slabs_node(s, slab_nid(slab), slab->objects); 2018 2019 return slab; 2020 } 2021 2022 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2023 { 2024 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2025 flags = kmalloc_fix_flags(flags); 2026 2027 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2028 2029 return allocate_slab(s, 2030 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2031 } 2032 2033 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2034 { 2035 struct folio *folio = slab_folio(slab); 2036 int order = folio_order(folio); 2037 int pages = 1 << order; 2038 2039 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2040 void *p; 2041 2042 slab_pad_check(s, slab); 2043 for_each_object(p, s, slab_address(slab), slab->objects) 2044 check_object(s, slab, p, SLUB_RED_INACTIVE); 2045 } 2046 2047 __slab_clear_pfmemalloc(slab); 2048 __folio_clear_slab(folio); 2049 folio->mapping = NULL; 2050 if (current->reclaim_state) 2051 current->reclaim_state->reclaimed_slab += pages; 2052 unaccount_slab(slab, order, s); 2053 __free_pages(folio_page(folio, 0), order); 2054 } 2055 2056 static void rcu_free_slab(struct rcu_head *h) 2057 { 2058 struct slab *slab = container_of(h, struct slab, rcu_head); 2059 2060 __free_slab(slab->slab_cache, slab); 2061 } 2062 2063 static void free_slab(struct kmem_cache *s, struct slab *slab) 2064 { 2065 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 2066 call_rcu(&slab->rcu_head, rcu_free_slab); 2067 } else 2068 __free_slab(s, slab); 2069 } 2070 2071 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2072 { 2073 dec_slabs_node(s, slab_nid(slab), slab->objects); 2074 free_slab(s, slab); 2075 } 2076 2077 /* 2078 * Management of partially allocated slabs. 2079 */ 2080 static inline void 2081 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2082 { 2083 n->nr_partial++; 2084 if (tail == DEACTIVATE_TO_TAIL) 2085 list_add_tail(&slab->slab_list, &n->partial); 2086 else 2087 list_add(&slab->slab_list, &n->partial); 2088 } 2089 2090 static inline void add_partial(struct kmem_cache_node *n, 2091 struct slab *slab, int tail) 2092 { 2093 lockdep_assert_held(&n->list_lock); 2094 __add_partial(n, slab, tail); 2095 } 2096 2097 static inline void remove_partial(struct kmem_cache_node *n, 2098 struct slab *slab) 2099 { 2100 lockdep_assert_held(&n->list_lock); 2101 list_del(&slab->slab_list); 2102 n->nr_partial--; 2103 } 2104 2105 /* 2106 * Remove slab from the partial list, freeze it and 2107 * return the pointer to the freelist. 2108 * 2109 * Returns a list of objects or NULL if it fails. 2110 */ 2111 static inline void *acquire_slab(struct kmem_cache *s, 2112 struct kmem_cache_node *n, struct slab *slab, 2113 int mode) 2114 { 2115 void *freelist; 2116 unsigned long counters; 2117 struct slab new; 2118 2119 lockdep_assert_held(&n->list_lock); 2120 2121 /* 2122 * Zap the freelist and set the frozen bit. 2123 * The old freelist is the list of objects for the 2124 * per cpu allocation list. 2125 */ 2126 freelist = slab->freelist; 2127 counters = slab->counters; 2128 new.counters = counters; 2129 if (mode) { 2130 new.inuse = slab->objects; 2131 new.freelist = NULL; 2132 } else { 2133 new.freelist = freelist; 2134 } 2135 2136 VM_BUG_ON(new.frozen); 2137 new.frozen = 1; 2138 2139 if (!__cmpxchg_double_slab(s, slab, 2140 freelist, counters, 2141 new.freelist, new.counters, 2142 "acquire_slab")) 2143 return NULL; 2144 2145 remove_partial(n, slab); 2146 WARN_ON(!freelist); 2147 return freelist; 2148 } 2149 2150 #ifdef CONFIG_SLUB_CPU_PARTIAL 2151 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2152 #else 2153 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2154 int drain) { } 2155 #endif 2156 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2157 2158 /* 2159 * Try to allocate a partial slab from a specific node. 2160 */ 2161 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 2162 struct slab **ret_slab, gfp_t gfpflags) 2163 { 2164 struct slab *slab, *slab2; 2165 void *object = NULL; 2166 unsigned long flags; 2167 unsigned int partial_slabs = 0; 2168 2169 /* 2170 * Racy check. If we mistakenly see no partial slabs then we 2171 * just allocate an empty slab. If we mistakenly try to get a 2172 * partial slab and there is none available then get_partial() 2173 * will return NULL. 2174 */ 2175 if (!n || !n->nr_partial) 2176 return NULL; 2177 2178 spin_lock_irqsave(&n->list_lock, flags); 2179 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2180 void *t; 2181 2182 if (!pfmemalloc_match(slab, gfpflags)) 2183 continue; 2184 2185 t = acquire_slab(s, n, slab, object == NULL); 2186 if (!t) 2187 break; 2188 2189 if (!object) { 2190 *ret_slab = slab; 2191 stat(s, ALLOC_FROM_PARTIAL); 2192 object = t; 2193 } else { 2194 put_cpu_partial(s, slab, 0); 2195 stat(s, CPU_PARTIAL_NODE); 2196 partial_slabs++; 2197 } 2198 #ifdef CONFIG_SLUB_CPU_PARTIAL 2199 if (!kmem_cache_has_cpu_partial(s) 2200 || partial_slabs > s->cpu_partial_slabs / 2) 2201 break; 2202 #else 2203 break; 2204 #endif 2205 2206 } 2207 spin_unlock_irqrestore(&n->list_lock, flags); 2208 return object; 2209 } 2210 2211 /* 2212 * Get a slab from somewhere. Search in increasing NUMA distances. 2213 */ 2214 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 2215 struct slab **ret_slab) 2216 { 2217 #ifdef CONFIG_NUMA 2218 struct zonelist *zonelist; 2219 struct zoneref *z; 2220 struct zone *zone; 2221 enum zone_type highest_zoneidx = gfp_zone(flags); 2222 void *object; 2223 unsigned int cpuset_mems_cookie; 2224 2225 /* 2226 * The defrag ratio allows a configuration of the tradeoffs between 2227 * inter node defragmentation and node local allocations. A lower 2228 * defrag_ratio increases the tendency to do local allocations 2229 * instead of attempting to obtain partial slabs from other nodes. 2230 * 2231 * If the defrag_ratio is set to 0 then kmalloc() always 2232 * returns node local objects. If the ratio is higher then kmalloc() 2233 * may return off node objects because partial slabs are obtained 2234 * from other nodes and filled up. 2235 * 2236 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2237 * (which makes defrag_ratio = 1000) then every (well almost) 2238 * allocation will first attempt to defrag slab caches on other nodes. 2239 * This means scanning over all nodes to look for partial slabs which 2240 * may be expensive if we do it every time we are trying to find a slab 2241 * with available objects. 2242 */ 2243 if (!s->remote_node_defrag_ratio || 2244 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2245 return NULL; 2246 2247 do { 2248 cpuset_mems_cookie = read_mems_allowed_begin(); 2249 zonelist = node_zonelist(mempolicy_slab_node(), flags); 2250 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2251 struct kmem_cache_node *n; 2252 2253 n = get_node(s, zone_to_nid(zone)); 2254 2255 if (n && cpuset_zone_allowed(zone, flags) && 2256 n->nr_partial > s->min_partial) { 2257 object = get_partial_node(s, n, ret_slab, flags); 2258 if (object) { 2259 /* 2260 * Don't check read_mems_allowed_retry() 2261 * here - if mems_allowed was updated in 2262 * parallel, that was a harmless race 2263 * between allocation and the cpuset 2264 * update 2265 */ 2266 return object; 2267 } 2268 } 2269 } 2270 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2271 #endif /* CONFIG_NUMA */ 2272 return NULL; 2273 } 2274 2275 /* 2276 * Get a partial slab, lock it and return it. 2277 */ 2278 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 2279 struct slab **ret_slab) 2280 { 2281 void *object; 2282 int searchnode = node; 2283 2284 if (node == NUMA_NO_NODE) 2285 searchnode = numa_mem_id(); 2286 2287 object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags); 2288 if (object || node != NUMA_NO_NODE) 2289 return object; 2290 2291 return get_any_partial(s, flags, ret_slab); 2292 } 2293 2294 #ifdef CONFIG_PREEMPTION 2295 /* 2296 * Calculate the next globally unique transaction for disambiguation 2297 * during cmpxchg. The transactions start with the cpu number and are then 2298 * incremented by CONFIG_NR_CPUS. 2299 */ 2300 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2301 #else 2302 /* 2303 * No preemption supported therefore also no need to check for 2304 * different cpus. 2305 */ 2306 #define TID_STEP 1 2307 #endif 2308 2309 static inline unsigned long next_tid(unsigned long tid) 2310 { 2311 return tid + TID_STEP; 2312 } 2313 2314 #ifdef SLUB_DEBUG_CMPXCHG 2315 static inline unsigned int tid_to_cpu(unsigned long tid) 2316 { 2317 return tid % TID_STEP; 2318 } 2319 2320 static inline unsigned long tid_to_event(unsigned long tid) 2321 { 2322 return tid / TID_STEP; 2323 } 2324 #endif 2325 2326 static inline unsigned int init_tid(int cpu) 2327 { 2328 return cpu; 2329 } 2330 2331 static inline void note_cmpxchg_failure(const char *n, 2332 const struct kmem_cache *s, unsigned long tid) 2333 { 2334 #ifdef SLUB_DEBUG_CMPXCHG 2335 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2336 2337 pr_info("%s %s: cmpxchg redo ", n, s->name); 2338 2339 #ifdef CONFIG_PREEMPTION 2340 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2341 pr_warn("due to cpu change %d -> %d\n", 2342 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2343 else 2344 #endif 2345 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2346 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2347 tid_to_event(tid), tid_to_event(actual_tid)); 2348 else 2349 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2350 actual_tid, tid, next_tid(tid)); 2351 #endif 2352 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2353 } 2354 2355 static void init_kmem_cache_cpus(struct kmem_cache *s) 2356 { 2357 int cpu; 2358 struct kmem_cache_cpu *c; 2359 2360 for_each_possible_cpu(cpu) { 2361 c = per_cpu_ptr(s->cpu_slab, cpu); 2362 local_lock_init(&c->lock); 2363 c->tid = init_tid(cpu); 2364 } 2365 } 2366 2367 /* 2368 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2369 * unfreezes the slabs and puts it on the proper list. 2370 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2371 * by the caller. 2372 */ 2373 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2374 void *freelist) 2375 { 2376 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST }; 2377 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2378 int free_delta = 0; 2379 enum slab_modes mode = M_NONE; 2380 void *nextfree, *freelist_iter, *freelist_tail; 2381 int tail = DEACTIVATE_TO_HEAD; 2382 unsigned long flags = 0; 2383 struct slab new; 2384 struct slab old; 2385 2386 if (slab->freelist) { 2387 stat(s, DEACTIVATE_REMOTE_FREES); 2388 tail = DEACTIVATE_TO_TAIL; 2389 } 2390 2391 /* 2392 * Stage one: Count the objects on cpu's freelist as free_delta and 2393 * remember the last object in freelist_tail for later splicing. 2394 */ 2395 freelist_tail = NULL; 2396 freelist_iter = freelist; 2397 while (freelist_iter) { 2398 nextfree = get_freepointer(s, freelist_iter); 2399 2400 /* 2401 * If 'nextfree' is invalid, it is possible that the object at 2402 * 'freelist_iter' is already corrupted. So isolate all objects 2403 * starting at 'freelist_iter' by skipping them. 2404 */ 2405 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2406 break; 2407 2408 freelist_tail = freelist_iter; 2409 free_delta++; 2410 2411 freelist_iter = nextfree; 2412 } 2413 2414 /* 2415 * Stage two: Unfreeze the slab while splicing the per-cpu 2416 * freelist to the head of slab's freelist. 2417 * 2418 * Ensure that the slab is unfrozen while the list presence 2419 * reflects the actual number of objects during unfreeze. 2420 * 2421 * We first perform cmpxchg holding lock and insert to list 2422 * when it succeed. If there is mismatch then the slab is not 2423 * unfrozen and number of objects in the slab may have changed. 2424 * Then release lock and retry cmpxchg again. 2425 */ 2426 redo: 2427 2428 old.freelist = READ_ONCE(slab->freelist); 2429 old.counters = READ_ONCE(slab->counters); 2430 VM_BUG_ON(!old.frozen); 2431 2432 /* Determine target state of the slab */ 2433 new.counters = old.counters; 2434 if (freelist_tail) { 2435 new.inuse -= free_delta; 2436 set_freepointer(s, freelist_tail, old.freelist); 2437 new.freelist = freelist; 2438 } else 2439 new.freelist = old.freelist; 2440 2441 new.frozen = 0; 2442 2443 if (!new.inuse && n->nr_partial >= s->min_partial) { 2444 mode = M_FREE; 2445 } else if (new.freelist) { 2446 mode = M_PARTIAL; 2447 /* 2448 * Taking the spinlock removes the possibility that 2449 * acquire_slab() will see a slab that is frozen 2450 */ 2451 spin_lock_irqsave(&n->list_lock, flags); 2452 } else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) { 2453 mode = M_FULL; 2454 /* 2455 * This also ensures that the scanning of full 2456 * slabs from diagnostic functions will not see 2457 * any frozen slabs. 2458 */ 2459 spin_lock_irqsave(&n->list_lock, flags); 2460 } else { 2461 mode = M_FULL_NOLIST; 2462 } 2463 2464 2465 if (!cmpxchg_double_slab(s, slab, 2466 old.freelist, old.counters, 2467 new.freelist, new.counters, 2468 "unfreezing slab")) { 2469 if (mode == M_PARTIAL || mode == M_FULL) 2470 spin_unlock_irqrestore(&n->list_lock, flags); 2471 goto redo; 2472 } 2473 2474 2475 if (mode == M_PARTIAL) { 2476 add_partial(n, slab, tail); 2477 spin_unlock_irqrestore(&n->list_lock, flags); 2478 stat(s, tail); 2479 } else if (mode == M_FREE) { 2480 stat(s, DEACTIVATE_EMPTY); 2481 discard_slab(s, slab); 2482 stat(s, FREE_SLAB); 2483 } else if (mode == M_FULL) { 2484 add_full(s, n, slab); 2485 spin_unlock_irqrestore(&n->list_lock, flags); 2486 stat(s, DEACTIVATE_FULL); 2487 } else if (mode == M_FULL_NOLIST) { 2488 stat(s, DEACTIVATE_FULL); 2489 } 2490 } 2491 2492 #ifdef CONFIG_SLUB_CPU_PARTIAL 2493 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab) 2494 { 2495 struct kmem_cache_node *n = NULL, *n2 = NULL; 2496 struct slab *slab, *slab_to_discard = NULL; 2497 unsigned long flags = 0; 2498 2499 while (partial_slab) { 2500 struct slab new; 2501 struct slab old; 2502 2503 slab = partial_slab; 2504 partial_slab = slab->next; 2505 2506 n2 = get_node(s, slab_nid(slab)); 2507 if (n != n2) { 2508 if (n) 2509 spin_unlock_irqrestore(&n->list_lock, flags); 2510 2511 n = n2; 2512 spin_lock_irqsave(&n->list_lock, flags); 2513 } 2514 2515 do { 2516 2517 old.freelist = slab->freelist; 2518 old.counters = slab->counters; 2519 VM_BUG_ON(!old.frozen); 2520 2521 new.counters = old.counters; 2522 new.freelist = old.freelist; 2523 2524 new.frozen = 0; 2525 2526 } while (!__cmpxchg_double_slab(s, slab, 2527 old.freelist, old.counters, 2528 new.freelist, new.counters, 2529 "unfreezing slab")); 2530 2531 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2532 slab->next = slab_to_discard; 2533 slab_to_discard = slab; 2534 } else { 2535 add_partial(n, slab, DEACTIVATE_TO_TAIL); 2536 stat(s, FREE_ADD_PARTIAL); 2537 } 2538 } 2539 2540 if (n) 2541 spin_unlock_irqrestore(&n->list_lock, flags); 2542 2543 while (slab_to_discard) { 2544 slab = slab_to_discard; 2545 slab_to_discard = slab_to_discard->next; 2546 2547 stat(s, DEACTIVATE_EMPTY); 2548 discard_slab(s, slab); 2549 stat(s, FREE_SLAB); 2550 } 2551 } 2552 2553 /* 2554 * Unfreeze all the cpu partial slabs. 2555 */ 2556 static void unfreeze_partials(struct kmem_cache *s) 2557 { 2558 struct slab *partial_slab; 2559 unsigned long flags; 2560 2561 local_lock_irqsave(&s->cpu_slab->lock, flags); 2562 partial_slab = this_cpu_read(s->cpu_slab->partial); 2563 this_cpu_write(s->cpu_slab->partial, NULL); 2564 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2565 2566 if (partial_slab) 2567 __unfreeze_partials(s, partial_slab); 2568 } 2569 2570 static void unfreeze_partials_cpu(struct kmem_cache *s, 2571 struct kmem_cache_cpu *c) 2572 { 2573 struct slab *partial_slab; 2574 2575 partial_slab = slub_percpu_partial(c); 2576 c->partial = NULL; 2577 2578 if (partial_slab) 2579 __unfreeze_partials(s, partial_slab); 2580 } 2581 2582 /* 2583 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a 2584 * partial slab slot if available. 2585 * 2586 * If we did not find a slot then simply move all the partials to the 2587 * per node partial list. 2588 */ 2589 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 2590 { 2591 struct slab *oldslab; 2592 struct slab *slab_to_unfreeze = NULL; 2593 unsigned long flags; 2594 int slabs = 0; 2595 2596 local_lock_irqsave(&s->cpu_slab->lock, flags); 2597 2598 oldslab = this_cpu_read(s->cpu_slab->partial); 2599 2600 if (oldslab) { 2601 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 2602 /* 2603 * Partial array is full. Move the existing set to the 2604 * per node partial list. Postpone the actual unfreezing 2605 * outside of the critical section. 2606 */ 2607 slab_to_unfreeze = oldslab; 2608 oldslab = NULL; 2609 } else { 2610 slabs = oldslab->slabs; 2611 } 2612 } 2613 2614 slabs++; 2615 2616 slab->slabs = slabs; 2617 slab->next = oldslab; 2618 2619 this_cpu_write(s->cpu_slab->partial, slab); 2620 2621 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2622 2623 if (slab_to_unfreeze) { 2624 __unfreeze_partials(s, slab_to_unfreeze); 2625 stat(s, CPU_PARTIAL_DRAIN); 2626 } 2627 } 2628 2629 #else /* CONFIG_SLUB_CPU_PARTIAL */ 2630 2631 static inline void unfreeze_partials(struct kmem_cache *s) { } 2632 static inline void unfreeze_partials_cpu(struct kmem_cache *s, 2633 struct kmem_cache_cpu *c) { } 2634 2635 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2636 2637 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2638 { 2639 unsigned long flags; 2640 struct slab *slab; 2641 void *freelist; 2642 2643 local_lock_irqsave(&s->cpu_slab->lock, flags); 2644 2645 slab = c->slab; 2646 freelist = c->freelist; 2647 2648 c->slab = NULL; 2649 c->freelist = NULL; 2650 c->tid = next_tid(c->tid); 2651 2652 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2653 2654 if (slab) { 2655 deactivate_slab(s, slab, freelist); 2656 stat(s, CPUSLAB_FLUSH); 2657 } 2658 } 2659 2660 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2661 { 2662 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2663 void *freelist = c->freelist; 2664 struct slab *slab = c->slab; 2665 2666 c->slab = NULL; 2667 c->freelist = NULL; 2668 c->tid = next_tid(c->tid); 2669 2670 if (slab) { 2671 deactivate_slab(s, slab, freelist); 2672 stat(s, CPUSLAB_FLUSH); 2673 } 2674 2675 unfreeze_partials_cpu(s, c); 2676 } 2677 2678 struct slub_flush_work { 2679 struct work_struct work; 2680 struct kmem_cache *s; 2681 bool skip; 2682 }; 2683 2684 /* 2685 * Flush cpu slab. 2686 * 2687 * Called from CPU work handler with migration disabled. 2688 */ 2689 static void flush_cpu_slab(struct work_struct *w) 2690 { 2691 struct kmem_cache *s; 2692 struct kmem_cache_cpu *c; 2693 struct slub_flush_work *sfw; 2694 2695 sfw = container_of(w, struct slub_flush_work, work); 2696 2697 s = sfw->s; 2698 c = this_cpu_ptr(s->cpu_slab); 2699 2700 if (c->slab) 2701 flush_slab(s, c); 2702 2703 unfreeze_partials(s); 2704 } 2705 2706 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 2707 { 2708 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2709 2710 return c->slab || slub_percpu_partial(c); 2711 } 2712 2713 static DEFINE_MUTEX(flush_lock); 2714 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 2715 2716 static void flush_all_cpus_locked(struct kmem_cache *s) 2717 { 2718 struct slub_flush_work *sfw; 2719 unsigned int cpu; 2720 2721 lockdep_assert_cpus_held(); 2722 mutex_lock(&flush_lock); 2723 2724 for_each_online_cpu(cpu) { 2725 sfw = &per_cpu(slub_flush, cpu); 2726 if (!has_cpu_slab(cpu, s)) { 2727 sfw->skip = true; 2728 continue; 2729 } 2730 INIT_WORK(&sfw->work, flush_cpu_slab); 2731 sfw->skip = false; 2732 sfw->s = s; 2733 schedule_work_on(cpu, &sfw->work); 2734 } 2735 2736 for_each_online_cpu(cpu) { 2737 sfw = &per_cpu(slub_flush, cpu); 2738 if (sfw->skip) 2739 continue; 2740 flush_work(&sfw->work); 2741 } 2742 2743 mutex_unlock(&flush_lock); 2744 } 2745 2746 static void flush_all(struct kmem_cache *s) 2747 { 2748 cpus_read_lock(); 2749 flush_all_cpus_locked(s); 2750 cpus_read_unlock(); 2751 } 2752 2753 /* 2754 * Use the cpu notifier to insure that the cpu slabs are flushed when 2755 * necessary. 2756 */ 2757 static int slub_cpu_dead(unsigned int cpu) 2758 { 2759 struct kmem_cache *s; 2760 2761 mutex_lock(&slab_mutex); 2762 list_for_each_entry(s, &slab_caches, list) 2763 __flush_cpu_slab(s, cpu); 2764 mutex_unlock(&slab_mutex); 2765 return 0; 2766 } 2767 2768 /* 2769 * Check if the objects in a per cpu structure fit numa 2770 * locality expectations. 2771 */ 2772 static inline int node_match(struct slab *slab, int node) 2773 { 2774 #ifdef CONFIG_NUMA 2775 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 2776 return 0; 2777 #endif 2778 return 1; 2779 } 2780 2781 #ifdef CONFIG_SLUB_DEBUG 2782 static int count_free(struct slab *slab) 2783 { 2784 return slab->objects - slab->inuse; 2785 } 2786 2787 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2788 { 2789 return atomic_long_read(&n->total_objects); 2790 } 2791 #endif /* CONFIG_SLUB_DEBUG */ 2792 2793 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2794 static unsigned long count_partial(struct kmem_cache_node *n, 2795 int (*get_count)(struct slab *)) 2796 { 2797 unsigned long flags; 2798 unsigned long x = 0; 2799 struct slab *slab; 2800 2801 spin_lock_irqsave(&n->list_lock, flags); 2802 list_for_each_entry(slab, &n->partial, slab_list) 2803 x += get_count(slab); 2804 spin_unlock_irqrestore(&n->list_lock, flags); 2805 return x; 2806 } 2807 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2808 2809 static noinline void 2810 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2811 { 2812 #ifdef CONFIG_SLUB_DEBUG 2813 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2814 DEFAULT_RATELIMIT_BURST); 2815 int node; 2816 struct kmem_cache_node *n; 2817 2818 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2819 return; 2820 2821 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2822 nid, gfpflags, &gfpflags); 2823 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2824 s->name, s->object_size, s->size, oo_order(s->oo), 2825 oo_order(s->min)); 2826 2827 if (oo_order(s->min) > get_order(s->object_size)) 2828 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2829 s->name); 2830 2831 for_each_kmem_cache_node(s, node, n) { 2832 unsigned long nr_slabs; 2833 unsigned long nr_objs; 2834 unsigned long nr_free; 2835 2836 nr_free = count_partial(n, count_free); 2837 nr_slabs = node_nr_slabs(n); 2838 nr_objs = node_nr_objs(n); 2839 2840 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2841 node, nr_slabs, nr_objs, nr_free); 2842 } 2843 #endif 2844 } 2845 2846 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 2847 { 2848 if (unlikely(slab_test_pfmemalloc(slab))) 2849 return gfp_pfmemalloc_allowed(gfpflags); 2850 2851 return true; 2852 } 2853 2854 /* 2855 * Check the slab->freelist and either transfer the freelist to the 2856 * per cpu freelist or deactivate the slab. 2857 * 2858 * The slab is still frozen if the return value is not NULL. 2859 * 2860 * If this function returns NULL then the slab has been unfrozen. 2861 */ 2862 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 2863 { 2864 struct slab new; 2865 unsigned long counters; 2866 void *freelist; 2867 2868 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 2869 2870 do { 2871 freelist = slab->freelist; 2872 counters = slab->counters; 2873 2874 new.counters = counters; 2875 VM_BUG_ON(!new.frozen); 2876 2877 new.inuse = slab->objects; 2878 new.frozen = freelist != NULL; 2879 2880 } while (!__cmpxchg_double_slab(s, slab, 2881 freelist, counters, 2882 NULL, new.counters, 2883 "get_freelist")); 2884 2885 return freelist; 2886 } 2887 2888 /* 2889 * Slow path. The lockless freelist is empty or we need to perform 2890 * debugging duties. 2891 * 2892 * Processing is still very fast if new objects have been freed to the 2893 * regular freelist. In that case we simply take over the regular freelist 2894 * as the lockless freelist and zap the regular freelist. 2895 * 2896 * If that is not working then we fall back to the partial lists. We take the 2897 * first element of the freelist as the object to allocate now and move the 2898 * rest of the freelist to the lockless freelist. 2899 * 2900 * And if we were unable to get a new slab from the partial slab lists then 2901 * we need to allocate a new slab. This is the slowest path since it involves 2902 * a call to the page allocator and the setup of a new slab. 2903 * 2904 * Version of __slab_alloc to use when we know that preemption is 2905 * already disabled (which is the case for bulk allocation). 2906 */ 2907 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2908 unsigned long addr, struct kmem_cache_cpu *c) 2909 { 2910 void *freelist; 2911 struct slab *slab; 2912 unsigned long flags; 2913 2914 stat(s, ALLOC_SLOWPATH); 2915 2916 reread_slab: 2917 2918 slab = READ_ONCE(c->slab); 2919 if (!slab) { 2920 /* 2921 * if the node is not online or has no normal memory, just 2922 * ignore the node constraint 2923 */ 2924 if (unlikely(node != NUMA_NO_NODE && 2925 !node_isset(node, slab_nodes))) 2926 node = NUMA_NO_NODE; 2927 goto new_slab; 2928 } 2929 redo: 2930 2931 if (unlikely(!node_match(slab, node))) { 2932 /* 2933 * same as above but node_match() being false already 2934 * implies node != NUMA_NO_NODE 2935 */ 2936 if (!node_isset(node, slab_nodes)) { 2937 node = NUMA_NO_NODE; 2938 } else { 2939 stat(s, ALLOC_NODE_MISMATCH); 2940 goto deactivate_slab; 2941 } 2942 } 2943 2944 /* 2945 * By rights, we should be searching for a slab page that was 2946 * PFMEMALLOC but right now, we are losing the pfmemalloc 2947 * information when the page leaves the per-cpu allocator 2948 */ 2949 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 2950 goto deactivate_slab; 2951 2952 /* must check again c->slab in case we got preempted and it changed */ 2953 local_lock_irqsave(&s->cpu_slab->lock, flags); 2954 if (unlikely(slab != c->slab)) { 2955 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2956 goto reread_slab; 2957 } 2958 freelist = c->freelist; 2959 if (freelist) 2960 goto load_freelist; 2961 2962 freelist = get_freelist(s, slab); 2963 2964 if (!freelist) { 2965 c->slab = NULL; 2966 c->tid = next_tid(c->tid); 2967 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2968 stat(s, DEACTIVATE_BYPASS); 2969 goto new_slab; 2970 } 2971 2972 stat(s, ALLOC_REFILL); 2973 2974 load_freelist: 2975 2976 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 2977 2978 /* 2979 * freelist is pointing to the list of objects to be used. 2980 * slab is pointing to the slab from which the objects are obtained. 2981 * That slab must be frozen for per cpu allocations to work. 2982 */ 2983 VM_BUG_ON(!c->slab->frozen); 2984 c->freelist = get_freepointer(s, freelist); 2985 c->tid = next_tid(c->tid); 2986 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2987 return freelist; 2988 2989 deactivate_slab: 2990 2991 local_lock_irqsave(&s->cpu_slab->lock, flags); 2992 if (slab != c->slab) { 2993 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2994 goto reread_slab; 2995 } 2996 freelist = c->freelist; 2997 c->slab = NULL; 2998 c->freelist = NULL; 2999 c->tid = next_tid(c->tid); 3000 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3001 deactivate_slab(s, slab, freelist); 3002 3003 new_slab: 3004 3005 if (slub_percpu_partial(c)) { 3006 local_lock_irqsave(&s->cpu_slab->lock, flags); 3007 if (unlikely(c->slab)) { 3008 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3009 goto reread_slab; 3010 } 3011 if (unlikely(!slub_percpu_partial(c))) { 3012 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3013 /* we were preempted and partial list got empty */ 3014 goto new_objects; 3015 } 3016 3017 slab = c->slab = slub_percpu_partial(c); 3018 slub_set_percpu_partial(c, slab); 3019 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3020 stat(s, CPU_PARTIAL_ALLOC); 3021 goto redo; 3022 } 3023 3024 new_objects: 3025 3026 freelist = get_partial(s, gfpflags, node, &slab); 3027 if (freelist) 3028 goto check_new_slab; 3029 3030 slub_put_cpu_ptr(s->cpu_slab); 3031 slab = new_slab(s, gfpflags, node); 3032 c = slub_get_cpu_ptr(s->cpu_slab); 3033 3034 if (unlikely(!slab)) { 3035 slab_out_of_memory(s, gfpflags, node); 3036 return NULL; 3037 } 3038 3039 /* 3040 * No other reference to the slab yet so we can 3041 * muck around with it freely without cmpxchg 3042 */ 3043 freelist = slab->freelist; 3044 slab->freelist = NULL; 3045 3046 stat(s, ALLOC_SLAB); 3047 3048 check_new_slab: 3049 3050 if (kmem_cache_debug(s)) { 3051 if (!alloc_debug_processing(s, slab, freelist, addr)) { 3052 /* Slab failed checks. Next slab needed */ 3053 goto new_slab; 3054 } else { 3055 /* 3056 * For debug case, we don't load freelist so that all 3057 * allocations go through alloc_debug_processing() 3058 */ 3059 goto return_single; 3060 } 3061 } 3062 3063 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3064 /* 3065 * For !pfmemalloc_match() case we don't load freelist so that 3066 * we don't make further mismatched allocations easier. 3067 */ 3068 goto return_single; 3069 3070 retry_load_slab: 3071 3072 local_lock_irqsave(&s->cpu_slab->lock, flags); 3073 if (unlikely(c->slab)) { 3074 void *flush_freelist = c->freelist; 3075 struct slab *flush_slab = c->slab; 3076 3077 c->slab = NULL; 3078 c->freelist = NULL; 3079 c->tid = next_tid(c->tid); 3080 3081 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3082 3083 deactivate_slab(s, flush_slab, flush_freelist); 3084 3085 stat(s, CPUSLAB_FLUSH); 3086 3087 goto retry_load_slab; 3088 } 3089 c->slab = slab; 3090 3091 goto load_freelist; 3092 3093 return_single: 3094 3095 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3096 return freelist; 3097 } 3098 3099 /* 3100 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3101 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3102 * pointer. 3103 */ 3104 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3105 unsigned long addr, struct kmem_cache_cpu *c) 3106 { 3107 void *p; 3108 3109 #ifdef CONFIG_PREEMPT_COUNT 3110 /* 3111 * We may have been preempted and rescheduled on a different 3112 * cpu before disabling preemption. Need to reload cpu area 3113 * pointer. 3114 */ 3115 c = slub_get_cpu_ptr(s->cpu_slab); 3116 #endif 3117 3118 p = ___slab_alloc(s, gfpflags, node, addr, c); 3119 #ifdef CONFIG_PREEMPT_COUNT 3120 slub_put_cpu_ptr(s->cpu_slab); 3121 #endif 3122 return p; 3123 } 3124 3125 /* 3126 * If the object has been wiped upon free, make sure it's fully initialized by 3127 * zeroing out freelist pointer. 3128 */ 3129 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3130 void *obj) 3131 { 3132 if (unlikely(slab_want_init_on_free(s)) && obj) 3133 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3134 0, sizeof(void *)); 3135 } 3136 3137 /* 3138 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 3139 * have the fastpath folded into their functions. So no function call 3140 * overhead for requests that can be satisfied on the fastpath. 3141 * 3142 * The fastpath works by first checking if the lockless freelist can be used. 3143 * If not then __slab_alloc is called for slow processing. 3144 * 3145 * Otherwise we can simply pick the next object from the lockless free list. 3146 */ 3147 static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 3148 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3149 { 3150 void *object; 3151 struct kmem_cache_cpu *c; 3152 struct slab *slab; 3153 unsigned long tid; 3154 struct obj_cgroup *objcg = NULL; 3155 bool init = false; 3156 3157 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags); 3158 if (!s) 3159 return NULL; 3160 3161 object = kfence_alloc(s, orig_size, gfpflags); 3162 if (unlikely(object)) 3163 goto out; 3164 3165 redo: 3166 /* 3167 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3168 * enabled. We may switch back and forth between cpus while 3169 * reading from one cpu area. That does not matter as long 3170 * as we end up on the original cpu again when doing the cmpxchg. 3171 * 3172 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3173 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3174 * the tid. If we are preempted and switched to another cpu between the 3175 * two reads, it's OK as the two are still associated with the same cpu 3176 * and cmpxchg later will validate the cpu. 3177 */ 3178 c = raw_cpu_ptr(s->cpu_slab); 3179 tid = READ_ONCE(c->tid); 3180 3181 /* 3182 * Irqless object alloc/free algorithm used here depends on sequence 3183 * of fetching cpu_slab's data. tid should be fetched before anything 3184 * on c to guarantee that object and slab associated with previous tid 3185 * won't be used with current tid. If we fetch tid first, object and 3186 * slab could be one associated with next tid and our alloc/free 3187 * request will be failed. In this case, we will retry. So, no problem. 3188 */ 3189 barrier(); 3190 3191 /* 3192 * The transaction ids are globally unique per cpu and per operation on 3193 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3194 * occurs on the right processor and that there was no operation on the 3195 * linked list in between. 3196 */ 3197 3198 object = c->freelist; 3199 slab = c->slab; 3200 /* 3201 * We cannot use the lockless fastpath on PREEMPT_RT because if a 3202 * slowpath has taken the local_lock_irqsave(), it is not protected 3203 * against a fast path operation in an irq handler. So we need to take 3204 * the slow path which uses local_lock. It is still relatively fast if 3205 * there is a suitable cpu freelist. 3206 */ 3207 if (IS_ENABLED(CONFIG_PREEMPT_RT) || 3208 unlikely(!object || !slab || !node_match(slab, node))) { 3209 object = __slab_alloc(s, gfpflags, node, addr, c); 3210 } else { 3211 void *next_object = get_freepointer_safe(s, object); 3212 3213 /* 3214 * The cmpxchg will only match if there was no additional 3215 * operation and if we are on the right processor. 3216 * 3217 * The cmpxchg does the following atomically (without lock 3218 * semantics!) 3219 * 1. Relocate first pointer to the current per cpu area. 3220 * 2. Verify that tid and freelist have not been changed 3221 * 3. If they were not changed replace tid and freelist 3222 * 3223 * Since this is without lock semantics the protection is only 3224 * against code executing on this cpu *not* from access by 3225 * other cpus. 3226 */ 3227 if (unlikely(!this_cpu_cmpxchg_double( 3228 s->cpu_slab->freelist, s->cpu_slab->tid, 3229 object, tid, 3230 next_object, next_tid(tid)))) { 3231 3232 note_cmpxchg_failure("slab_alloc", s, tid); 3233 goto redo; 3234 } 3235 prefetch_freepointer(s, next_object); 3236 stat(s, ALLOC_FASTPATH); 3237 } 3238 3239 maybe_wipe_obj_freeptr(s, object); 3240 init = slab_want_init_on_alloc(gfpflags, s); 3241 3242 out: 3243 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init); 3244 3245 return object; 3246 } 3247 3248 static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru, 3249 gfp_t gfpflags, unsigned long addr, size_t orig_size) 3250 { 3251 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size); 3252 } 3253 3254 static __always_inline 3255 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3256 gfp_t gfpflags) 3257 { 3258 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size); 3259 3260 trace_kmem_cache_alloc(_RET_IP_, ret, s, s->object_size, 3261 s->size, gfpflags); 3262 3263 return ret; 3264 } 3265 3266 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 3267 { 3268 return __kmem_cache_alloc_lru(s, NULL, gfpflags); 3269 } 3270 EXPORT_SYMBOL(kmem_cache_alloc); 3271 3272 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3273 gfp_t gfpflags) 3274 { 3275 return __kmem_cache_alloc_lru(s, lru, gfpflags); 3276 } 3277 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3278 3279 #ifdef CONFIG_TRACING 3280 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 3281 { 3282 void *ret = slab_alloc(s, NULL, gfpflags, _RET_IP_, size); 3283 trace_kmalloc(_RET_IP_, ret, s, size, s->size, gfpflags); 3284 ret = kasan_kmalloc(s, ret, size, gfpflags); 3285 return ret; 3286 } 3287 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3288 #endif 3289 3290 #ifdef CONFIG_NUMA 3291 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 3292 { 3293 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 3294 3295 trace_kmem_cache_alloc_node(_RET_IP_, ret, s, 3296 s->object_size, s->size, gfpflags, node); 3297 3298 return ret; 3299 } 3300 EXPORT_SYMBOL(kmem_cache_alloc_node); 3301 3302 #ifdef CONFIG_TRACING 3303 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 3304 gfp_t gfpflags, 3305 int node, size_t size) 3306 { 3307 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 3308 3309 trace_kmalloc_node(_RET_IP_, ret, s, 3310 size, s->size, gfpflags, node); 3311 3312 ret = kasan_kmalloc(s, ret, size, gfpflags); 3313 return ret; 3314 } 3315 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3316 #endif 3317 #endif /* CONFIG_NUMA */ 3318 3319 /* 3320 * Slow path handling. This may still be called frequently since objects 3321 * have a longer lifetime than the cpu slabs in most processing loads. 3322 * 3323 * So we still attempt to reduce cache line usage. Just take the slab 3324 * lock and free the item. If there is no additional partial slab 3325 * handling required then we can return immediately. 3326 */ 3327 static void __slab_free(struct kmem_cache *s, struct slab *slab, 3328 void *head, void *tail, int cnt, 3329 unsigned long addr) 3330 3331 { 3332 void *prior; 3333 int was_frozen; 3334 struct slab new; 3335 unsigned long counters; 3336 struct kmem_cache_node *n = NULL; 3337 unsigned long flags; 3338 3339 stat(s, FREE_SLOWPATH); 3340 3341 if (kfence_free(head)) 3342 return; 3343 3344 if (kmem_cache_debug(s) && 3345 !free_debug_processing(s, slab, head, tail, cnt, addr)) 3346 return; 3347 3348 do { 3349 if (unlikely(n)) { 3350 spin_unlock_irqrestore(&n->list_lock, flags); 3351 n = NULL; 3352 } 3353 prior = slab->freelist; 3354 counters = slab->counters; 3355 set_freepointer(s, tail, prior); 3356 new.counters = counters; 3357 was_frozen = new.frozen; 3358 new.inuse -= cnt; 3359 if ((!new.inuse || !prior) && !was_frozen) { 3360 3361 if (kmem_cache_has_cpu_partial(s) && !prior) { 3362 3363 /* 3364 * Slab was on no list before and will be 3365 * partially empty 3366 * We can defer the list move and instead 3367 * freeze it. 3368 */ 3369 new.frozen = 1; 3370 3371 } else { /* Needs to be taken off a list */ 3372 3373 n = get_node(s, slab_nid(slab)); 3374 /* 3375 * Speculatively acquire the list_lock. 3376 * If the cmpxchg does not succeed then we may 3377 * drop the list_lock without any processing. 3378 * 3379 * Otherwise the list_lock will synchronize with 3380 * other processors updating the list of slabs. 3381 */ 3382 spin_lock_irqsave(&n->list_lock, flags); 3383 3384 } 3385 } 3386 3387 } while (!cmpxchg_double_slab(s, slab, 3388 prior, counters, 3389 head, new.counters, 3390 "__slab_free")); 3391 3392 if (likely(!n)) { 3393 3394 if (likely(was_frozen)) { 3395 /* 3396 * The list lock was not taken therefore no list 3397 * activity can be necessary. 3398 */ 3399 stat(s, FREE_FROZEN); 3400 } else if (new.frozen) { 3401 /* 3402 * If we just froze the slab then put it onto the 3403 * per cpu partial list. 3404 */ 3405 put_cpu_partial(s, slab, 1); 3406 stat(s, CPU_PARTIAL_FREE); 3407 } 3408 3409 return; 3410 } 3411 3412 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 3413 goto slab_empty; 3414 3415 /* 3416 * Objects left in the slab. If it was not on the partial list before 3417 * then add it. 3418 */ 3419 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 3420 remove_full(s, n, slab); 3421 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3422 stat(s, FREE_ADD_PARTIAL); 3423 } 3424 spin_unlock_irqrestore(&n->list_lock, flags); 3425 return; 3426 3427 slab_empty: 3428 if (prior) { 3429 /* 3430 * Slab on the partial list. 3431 */ 3432 remove_partial(n, slab); 3433 stat(s, FREE_REMOVE_PARTIAL); 3434 } else { 3435 /* Slab must be on the full list */ 3436 remove_full(s, n, slab); 3437 } 3438 3439 spin_unlock_irqrestore(&n->list_lock, flags); 3440 stat(s, FREE_SLAB); 3441 discard_slab(s, slab); 3442 } 3443 3444 /* 3445 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3446 * can perform fastpath freeing without additional function calls. 3447 * 3448 * The fastpath is only possible if we are freeing to the current cpu slab 3449 * of this processor. This typically the case if we have just allocated 3450 * the item before. 3451 * 3452 * If fastpath is not possible then fall back to __slab_free where we deal 3453 * with all sorts of special processing. 3454 * 3455 * Bulk free of a freelist with several objects (all pointing to the 3456 * same slab) possible by specifying head and tail ptr, plus objects 3457 * count (cnt). Bulk free indicated by tail pointer being set. 3458 */ 3459 static __always_inline void do_slab_free(struct kmem_cache *s, 3460 struct slab *slab, void *head, void *tail, 3461 int cnt, unsigned long addr) 3462 { 3463 void *tail_obj = tail ? : head; 3464 struct kmem_cache_cpu *c; 3465 unsigned long tid; 3466 3467 redo: 3468 /* 3469 * Determine the currently cpus per cpu slab. 3470 * The cpu may change afterward. However that does not matter since 3471 * data is retrieved via this pointer. If we are on the same cpu 3472 * during the cmpxchg then the free will succeed. 3473 */ 3474 c = raw_cpu_ptr(s->cpu_slab); 3475 tid = READ_ONCE(c->tid); 3476 3477 /* Same with comment on barrier() in slab_alloc_node() */ 3478 barrier(); 3479 3480 if (likely(slab == c->slab)) { 3481 #ifndef CONFIG_PREEMPT_RT 3482 void **freelist = READ_ONCE(c->freelist); 3483 3484 set_freepointer(s, tail_obj, freelist); 3485 3486 if (unlikely(!this_cpu_cmpxchg_double( 3487 s->cpu_slab->freelist, s->cpu_slab->tid, 3488 freelist, tid, 3489 head, next_tid(tid)))) { 3490 3491 note_cmpxchg_failure("slab_free", s, tid); 3492 goto redo; 3493 } 3494 #else /* CONFIG_PREEMPT_RT */ 3495 /* 3496 * We cannot use the lockless fastpath on PREEMPT_RT because if 3497 * a slowpath has taken the local_lock_irqsave(), it is not 3498 * protected against a fast path operation in an irq handler. So 3499 * we need to take the local_lock. We shouldn't simply defer to 3500 * __slab_free() as that wouldn't use the cpu freelist at all. 3501 */ 3502 void **freelist; 3503 3504 local_lock(&s->cpu_slab->lock); 3505 c = this_cpu_ptr(s->cpu_slab); 3506 if (unlikely(slab != c->slab)) { 3507 local_unlock(&s->cpu_slab->lock); 3508 goto redo; 3509 } 3510 tid = c->tid; 3511 freelist = c->freelist; 3512 3513 set_freepointer(s, tail_obj, freelist); 3514 c->freelist = head; 3515 c->tid = next_tid(tid); 3516 3517 local_unlock(&s->cpu_slab->lock); 3518 #endif 3519 stat(s, FREE_FASTPATH); 3520 } else 3521 __slab_free(s, slab, head, tail_obj, cnt, addr); 3522 3523 } 3524 3525 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab, 3526 void *head, void *tail, void **p, int cnt, 3527 unsigned long addr) 3528 { 3529 memcg_slab_free_hook(s, slab, p, cnt); 3530 /* 3531 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3532 * to remove objects, whose reuse must be delayed. 3533 */ 3534 if (slab_free_freelist_hook(s, &head, &tail, &cnt)) 3535 do_slab_free(s, slab, head, tail, cnt, addr); 3536 } 3537 3538 #ifdef CONFIG_KASAN_GENERIC 3539 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3540 { 3541 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr); 3542 } 3543 #endif 3544 3545 void kmem_cache_free(struct kmem_cache *s, void *x) 3546 { 3547 s = cache_from_obj(s, x); 3548 if (!s) 3549 return; 3550 trace_kmem_cache_free(_RET_IP_, x, s->name); 3551 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_); 3552 } 3553 EXPORT_SYMBOL(kmem_cache_free); 3554 3555 struct detached_freelist { 3556 struct slab *slab; 3557 void *tail; 3558 void *freelist; 3559 int cnt; 3560 struct kmem_cache *s; 3561 }; 3562 3563 static inline void free_large_kmalloc(struct folio *folio, void *object) 3564 { 3565 unsigned int order = folio_order(folio); 3566 3567 if (WARN_ON_ONCE(order == 0)) 3568 pr_warn_once("object pointer: 0x%p\n", object); 3569 3570 kfree_hook(object); 3571 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B, 3572 -(PAGE_SIZE << order)); 3573 __free_pages(folio_page(folio, 0), order); 3574 } 3575 3576 /* 3577 * This function progressively scans the array with free objects (with 3578 * a limited look ahead) and extract objects belonging to the same 3579 * slab. It builds a detached freelist directly within the given 3580 * slab/objects. This can happen without any need for 3581 * synchronization, because the objects are owned by running process. 3582 * The freelist is build up as a single linked list in the objects. 3583 * The idea is, that this detached freelist can then be bulk 3584 * transferred to the real freelist(s), but only requiring a single 3585 * synchronization primitive. Look ahead in the array is limited due 3586 * to performance reasons. 3587 */ 3588 static inline 3589 int build_detached_freelist(struct kmem_cache *s, size_t size, 3590 void **p, struct detached_freelist *df) 3591 { 3592 int lookahead = 3; 3593 void *object; 3594 struct folio *folio; 3595 size_t same; 3596 3597 object = p[--size]; 3598 folio = virt_to_folio(object); 3599 if (!s) { 3600 /* Handle kalloc'ed objects */ 3601 if (unlikely(!folio_test_slab(folio))) { 3602 free_large_kmalloc(folio, object); 3603 df->slab = NULL; 3604 return size; 3605 } 3606 /* Derive kmem_cache from object */ 3607 df->slab = folio_slab(folio); 3608 df->s = df->slab->slab_cache; 3609 } else { 3610 df->slab = folio_slab(folio); 3611 df->s = cache_from_obj(s, object); /* Support for memcg */ 3612 } 3613 3614 /* Start new detached freelist */ 3615 df->tail = object; 3616 df->freelist = object; 3617 df->cnt = 1; 3618 3619 if (is_kfence_address(object)) 3620 return size; 3621 3622 set_freepointer(df->s, object, NULL); 3623 3624 same = size; 3625 while (size) { 3626 object = p[--size]; 3627 /* df->slab is always set at this point */ 3628 if (df->slab == virt_to_slab(object)) { 3629 /* Opportunity build freelist */ 3630 set_freepointer(df->s, object, df->freelist); 3631 df->freelist = object; 3632 df->cnt++; 3633 same--; 3634 if (size != same) 3635 swap(p[size], p[same]); 3636 continue; 3637 } 3638 3639 /* Limit look ahead search */ 3640 if (!--lookahead) 3641 break; 3642 } 3643 3644 return same; 3645 } 3646 3647 /* Note that interrupts must be enabled when calling this function. */ 3648 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3649 { 3650 if (!size) 3651 return; 3652 3653 do { 3654 struct detached_freelist df; 3655 3656 size = build_detached_freelist(s, size, p, &df); 3657 if (!df.slab) 3658 continue; 3659 3660 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt, 3661 _RET_IP_); 3662 } while (likely(size)); 3663 } 3664 EXPORT_SYMBOL(kmem_cache_free_bulk); 3665 3666 /* Note that interrupts must be enabled when calling this function. */ 3667 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3668 void **p) 3669 { 3670 struct kmem_cache_cpu *c; 3671 int i; 3672 struct obj_cgroup *objcg = NULL; 3673 3674 /* memcg and kmem_cache debug support */ 3675 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 3676 if (unlikely(!s)) 3677 return false; 3678 /* 3679 * Drain objects in the per cpu slab, while disabling local 3680 * IRQs, which protects against PREEMPT and interrupts 3681 * handlers invoking normal fastpath. 3682 */ 3683 c = slub_get_cpu_ptr(s->cpu_slab); 3684 local_lock_irq(&s->cpu_slab->lock); 3685 3686 for (i = 0; i < size; i++) { 3687 void *object = kfence_alloc(s, s->object_size, flags); 3688 3689 if (unlikely(object)) { 3690 p[i] = object; 3691 continue; 3692 } 3693 3694 object = c->freelist; 3695 if (unlikely(!object)) { 3696 /* 3697 * We may have removed an object from c->freelist using 3698 * the fastpath in the previous iteration; in that case, 3699 * c->tid has not been bumped yet. 3700 * Since ___slab_alloc() may reenable interrupts while 3701 * allocating memory, we should bump c->tid now. 3702 */ 3703 c->tid = next_tid(c->tid); 3704 3705 local_unlock_irq(&s->cpu_slab->lock); 3706 3707 /* 3708 * Invoking slow path likely have side-effect 3709 * of re-populating per CPU c->freelist 3710 */ 3711 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3712 _RET_IP_, c); 3713 if (unlikely(!p[i])) 3714 goto error; 3715 3716 c = this_cpu_ptr(s->cpu_slab); 3717 maybe_wipe_obj_freeptr(s, p[i]); 3718 3719 local_lock_irq(&s->cpu_slab->lock); 3720 3721 continue; /* goto for-loop */ 3722 } 3723 c->freelist = get_freepointer(s, object); 3724 p[i] = object; 3725 maybe_wipe_obj_freeptr(s, p[i]); 3726 } 3727 c->tid = next_tid(c->tid); 3728 local_unlock_irq(&s->cpu_slab->lock); 3729 slub_put_cpu_ptr(s->cpu_slab); 3730 3731 /* 3732 * memcg and kmem_cache debug support and memory initialization. 3733 * Done outside of the IRQ disabled fastpath loop. 3734 */ 3735 slab_post_alloc_hook(s, objcg, flags, size, p, 3736 slab_want_init_on_alloc(flags, s)); 3737 return i; 3738 error: 3739 slub_put_cpu_ptr(s->cpu_slab); 3740 slab_post_alloc_hook(s, objcg, flags, i, p, false); 3741 kmem_cache_free_bulk(s, i, p); 3742 return 0; 3743 } 3744 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3745 3746 3747 /* 3748 * Object placement in a slab is made very easy because we always start at 3749 * offset 0. If we tune the size of the object to the alignment then we can 3750 * get the required alignment by putting one properly sized object after 3751 * another. 3752 * 3753 * Notice that the allocation order determines the sizes of the per cpu 3754 * caches. Each processor has always one slab available for allocations. 3755 * Increasing the allocation order reduces the number of times that slabs 3756 * must be moved on and off the partial lists and is therefore a factor in 3757 * locking overhead. 3758 */ 3759 3760 /* 3761 * Minimum / Maximum order of slab pages. This influences locking overhead 3762 * and slab fragmentation. A higher order reduces the number of partial slabs 3763 * and increases the number of allocations possible without having to 3764 * take the list_lock. 3765 */ 3766 static unsigned int slub_min_order; 3767 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3768 static unsigned int slub_min_objects; 3769 3770 /* 3771 * Calculate the order of allocation given an slab object size. 3772 * 3773 * The order of allocation has significant impact on performance and other 3774 * system components. Generally order 0 allocations should be preferred since 3775 * order 0 does not cause fragmentation in the page allocator. Larger objects 3776 * be problematic to put into order 0 slabs because there may be too much 3777 * unused space left. We go to a higher order if more than 1/16th of the slab 3778 * would be wasted. 3779 * 3780 * In order to reach satisfactory performance we must ensure that a minimum 3781 * number of objects is in one slab. Otherwise we may generate too much 3782 * activity on the partial lists which requires taking the list_lock. This is 3783 * less a concern for large slabs though which are rarely used. 3784 * 3785 * slub_max_order specifies the order where we begin to stop considering the 3786 * number of objects in a slab as critical. If we reach slub_max_order then 3787 * we try to keep the page order as low as possible. So we accept more waste 3788 * of space in favor of a small page order. 3789 * 3790 * Higher order allocations also allow the placement of more objects in a 3791 * slab and thereby reduce object handling overhead. If the user has 3792 * requested a higher minimum order then we start with that one instead of 3793 * the smallest order which will fit the object. 3794 */ 3795 static inline unsigned int calc_slab_order(unsigned int size, 3796 unsigned int min_objects, unsigned int max_order, 3797 unsigned int fract_leftover) 3798 { 3799 unsigned int min_order = slub_min_order; 3800 unsigned int order; 3801 3802 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3803 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3804 3805 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3806 order <= max_order; order++) { 3807 3808 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3809 unsigned int rem; 3810 3811 rem = slab_size % size; 3812 3813 if (rem <= slab_size / fract_leftover) 3814 break; 3815 } 3816 3817 return order; 3818 } 3819 3820 static inline int calculate_order(unsigned int size) 3821 { 3822 unsigned int order; 3823 unsigned int min_objects; 3824 unsigned int max_objects; 3825 unsigned int nr_cpus; 3826 3827 /* 3828 * Attempt to find best configuration for a slab. This 3829 * works by first attempting to generate a layout with 3830 * the best configuration and backing off gradually. 3831 * 3832 * First we increase the acceptable waste in a slab. Then 3833 * we reduce the minimum objects required in a slab. 3834 */ 3835 min_objects = slub_min_objects; 3836 if (!min_objects) { 3837 /* 3838 * Some architectures will only update present cpus when 3839 * onlining them, so don't trust the number if it's just 1. But 3840 * we also don't want to use nr_cpu_ids always, as on some other 3841 * architectures, there can be many possible cpus, but never 3842 * onlined. Here we compromise between trying to avoid too high 3843 * order on systems that appear larger than they are, and too 3844 * low order on systems that appear smaller than they are. 3845 */ 3846 nr_cpus = num_present_cpus(); 3847 if (nr_cpus <= 1) 3848 nr_cpus = nr_cpu_ids; 3849 min_objects = 4 * (fls(nr_cpus) + 1); 3850 } 3851 max_objects = order_objects(slub_max_order, size); 3852 min_objects = min(min_objects, max_objects); 3853 3854 while (min_objects > 1) { 3855 unsigned int fraction; 3856 3857 fraction = 16; 3858 while (fraction >= 4) { 3859 order = calc_slab_order(size, min_objects, 3860 slub_max_order, fraction); 3861 if (order <= slub_max_order) 3862 return order; 3863 fraction /= 2; 3864 } 3865 min_objects--; 3866 } 3867 3868 /* 3869 * We were unable to place multiple objects in a slab. Now 3870 * lets see if we can place a single object there. 3871 */ 3872 order = calc_slab_order(size, 1, slub_max_order, 1); 3873 if (order <= slub_max_order) 3874 return order; 3875 3876 /* 3877 * Doh this slab cannot be placed using slub_max_order. 3878 */ 3879 order = calc_slab_order(size, 1, MAX_ORDER, 1); 3880 if (order < MAX_ORDER) 3881 return order; 3882 return -ENOSYS; 3883 } 3884 3885 static void 3886 init_kmem_cache_node(struct kmem_cache_node *n) 3887 { 3888 n->nr_partial = 0; 3889 spin_lock_init(&n->list_lock); 3890 INIT_LIST_HEAD(&n->partial); 3891 #ifdef CONFIG_SLUB_DEBUG 3892 atomic_long_set(&n->nr_slabs, 0); 3893 atomic_long_set(&n->total_objects, 0); 3894 INIT_LIST_HEAD(&n->full); 3895 #endif 3896 } 3897 3898 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3899 { 3900 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3901 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3902 3903 /* 3904 * Must align to double word boundary for the double cmpxchg 3905 * instructions to work; see __pcpu_double_call_return_bool(). 3906 */ 3907 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3908 2 * sizeof(void *)); 3909 3910 if (!s->cpu_slab) 3911 return 0; 3912 3913 init_kmem_cache_cpus(s); 3914 3915 return 1; 3916 } 3917 3918 static struct kmem_cache *kmem_cache_node; 3919 3920 /* 3921 * No kmalloc_node yet so do it by hand. We know that this is the first 3922 * slab on the node for this slabcache. There are no concurrent accesses 3923 * possible. 3924 * 3925 * Note that this function only works on the kmem_cache_node 3926 * when allocating for the kmem_cache_node. This is used for bootstrapping 3927 * memory on a fresh node that has no slab structures yet. 3928 */ 3929 static void early_kmem_cache_node_alloc(int node) 3930 { 3931 struct slab *slab; 3932 struct kmem_cache_node *n; 3933 3934 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3935 3936 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3937 3938 BUG_ON(!slab); 3939 if (slab_nid(slab) != node) { 3940 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3941 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3942 } 3943 3944 n = slab->freelist; 3945 BUG_ON(!n); 3946 #ifdef CONFIG_SLUB_DEBUG 3947 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3948 init_tracking(kmem_cache_node, n); 3949 #endif 3950 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 3951 slab->freelist = get_freepointer(kmem_cache_node, n); 3952 slab->inuse = 1; 3953 slab->frozen = 0; 3954 kmem_cache_node->node[node] = n; 3955 init_kmem_cache_node(n); 3956 inc_slabs_node(kmem_cache_node, node, slab->objects); 3957 3958 /* 3959 * No locks need to be taken here as it has just been 3960 * initialized and there is no concurrent access. 3961 */ 3962 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 3963 } 3964 3965 static void free_kmem_cache_nodes(struct kmem_cache *s) 3966 { 3967 int node; 3968 struct kmem_cache_node *n; 3969 3970 for_each_kmem_cache_node(s, node, n) { 3971 s->node[node] = NULL; 3972 kmem_cache_free(kmem_cache_node, n); 3973 } 3974 } 3975 3976 void __kmem_cache_release(struct kmem_cache *s) 3977 { 3978 cache_random_seq_destroy(s); 3979 free_percpu(s->cpu_slab); 3980 free_kmem_cache_nodes(s); 3981 } 3982 3983 static int init_kmem_cache_nodes(struct kmem_cache *s) 3984 { 3985 int node; 3986 3987 for_each_node_mask(node, slab_nodes) { 3988 struct kmem_cache_node *n; 3989 3990 if (slab_state == DOWN) { 3991 early_kmem_cache_node_alloc(node); 3992 continue; 3993 } 3994 n = kmem_cache_alloc_node(kmem_cache_node, 3995 GFP_KERNEL, node); 3996 3997 if (!n) { 3998 free_kmem_cache_nodes(s); 3999 return 0; 4000 } 4001 4002 init_kmem_cache_node(n); 4003 s->node[node] = n; 4004 } 4005 return 1; 4006 } 4007 4008 static void set_cpu_partial(struct kmem_cache *s) 4009 { 4010 #ifdef CONFIG_SLUB_CPU_PARTIAL 4011 unsigned int nr_objects; 4012 4013 /* 4014 * cpu_partial determined the maximum number of objects kept in the 4015 * per cpu partial lists of a processor. 4016 * 4017 * Per cpu partial lists mainly contain slabs that just have one 4018 * object freed. If they are used for allocation then they can be 4019 * filled up again with minimal effort. The slab will never hit the 4020 * per node partial lists and therefore no locking will be required. 4021 * 4022 * For backwards compatibility reasons, this is determined as number 4023 * of objects, even though we now limit maximum number of pages, see 4024 * slub_set_cpu_partial() 4025 */ 4026 if (!kmem_cache_has_cpu_partial(s)) 4027 nr_objects = 0; 4028 else if (s->size >= PAGE_SIZE) 4029 nr_objects = 6; 4030 else if (s->size >= 1024) 4031 nr_objects = 24; 4032 else if (s->size >= 256) 4033 nr_objects = 52; 4034 else 4035 nr_objects = 120; 4036 4037 slub_set_cpu_partial(s, nr_objects); 4038 #endif 4039 } 4040 4041 /* 4042 * calculate_sizes() determines the order and the distribution of data within 4043 * a slab object. 4044 */ 4045 static int calculate_sizes(struct kmem_cache *s) 4046 { 4047 slab_flags_t flags = s->flags; 4048 unsigned int size = s->object_size; 4049 unsigned int order; 4050 4051 /* 4052 * Round up object size to the next word boundary. We can only 4053 * place the free pointer at word boundaries and this determines 4054 * the possible location of the free pointer. 4055 */ 4056 size = ALIGN(size, sizeof(void *)); 4057 4058 #ifdef CONFIG_SLUB_DEBUG 4059 /* 4060 * Determine if we can poison the object itself. If the user of 4061 * the slab may touch the object after free or before allocation 4062 * then we should never poison the object itself. 4063 */ 4064 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 4065 !s->ctor) 4066 s->flags |= __OBJECT_POISON; 4067 else 4068 s->flags &= ~__OBJECT_POISON; 4069 4070 4071 /* 4072 * If we are Redzoning then check if there is some space between the 4073 * end of the object and the free pointer. If not then add an 4074 * additional word to have some bytes to store Redzone information. 4075 */ 4076 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 4077 size += sizeof(void *); 4078 #endif 4079 4080 /* 4081 * With that we have determined the number of bytes in actual use 4082 * by the object and redzoning. 4083 */ 4084 s->inuse = size; 4085 4086 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 4087 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || 4088 s->ctor) { 4089 /* 4090 * Relocate free pointer after the object if it is not 4091 * permitted to overwrite the first word of the object on 4092 * kmem_cache_free. 4093 * 4094 * This is the case if we do RCU, have a constructor or 4095 * destructor, are poisoning the objects, or are 4096 * redzoning an object smaller than sizeof(void *). 4097 * 4098 * The assumption that s->offset >= s->inuse means free 4099 * pointer is outside of the object is used in the 4100 * freeptr_outside_object() function. If that is no 4101 * longer true, the function needs to be modified. 4102 */ 4103 s->offset = size; 4104 size += sizeof(void *); 4105 } else { 4106 /* 4107 * Store freelist pointer near middle of object to keep 4108 * it away from the edges of the object to avoid small 4109 * sized over/underflows from neighboring allocations. 4110 */ 4111 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 4112 } 4113 4114 #ifdef CONFIG_SLUB_DEBUG 4115 if (flags & SLAB_STORE_USER) 4116 /* 4117 * Need to store information about allocs and frees after 4118 * the object. 4119 */ 4120 size += 2 * sizeof(struct track); 4121 #endif 4122 4123 kasan_cache_create(s, &size, &s->flags); 4124 #ifdef CONFIG_SLUB_DEBUG 4125 if (flags & SLAB_RED_ZONE) { 4126 /* 4127 * Add some empty padding so that we can catch 4128 * overwrites from earlier objects rather than let 4129 * tracking information or the free pointer be 4130 * corrupted if a user writes before the start 4131 * of the object. 4132 */ 4133 size += sizeof(void *); 4134 4135 s->red_left_pad = sizeof(void *); 4136 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 4137 size += s->red_left_pad; 4138 } 4139 #endif 4140 4141 /* 4142 * SLUB stores one object immediately after another beginning from 4143 * offset 0. In order to align the objects we have to simply size 4144 * each object to conform to the alignment. 4145 */ 4146 size = ALIGN(size, s->align); 4147 s->size = size; 4148 s->reciprocal_size = reciprocal_value(size); 4149 order = calculate_order(size); 4150 4151 if ((int)order < 0) 4152 return 0; 4153 4154 s->allocflags = 0; 4155 if (order) 4156 s->allocflags |= __GFP_COMP; 4157 4158 if (s->flags & SLAB_CACHE_DMA) 4159 s->allocflags |= GFP_DMA; 4160 4161 if (s->flags & SLAB_CACHE_DMA32) 4162 s->allocflags |= GFP_DMA32; 4163 4164 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4165 s->allocflags |= __GFP_RECLAIMABLE; 4166 4167 /* 4168 * Determine the number of objects per slab 4169 */ 4170 s->oo = oo_make(order, size); 4171 s->min = oo_make(get_order(size), size); 4172 4173 return !!oo_objects(s->oo); 4174 } 4175 4176 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 4177 { 4178 s->flags = kmem_cache_flags(s->size, flags, s->name); 4179 #ifdef CONFIG_SLAB_FREELIST_HARDENED 4180 s->random = get_random_long(); 4181 #endif 4182 4183 if (!calculate_sizes(s)) 4184 goto error; 4185 if (disable_higher_order_debug) { 4186 /* 4187 * Disable debugging flags that store metadata if the min slab 4188 * order increased. 4189 */ 4190 if (get_order(s->size) > get_order(s->object_size)) { 4191 s->flags &= ~DEBUG_METADATA_FLAGS; 4192 s->offset = 0; 4193 if (!calculate_sizes(s)) 4194 goto error; 4195 } 4196 } 4197 4198 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 4199 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 4200 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 4201 /* Enable fast mode */ 4202 s->flags |= __CMPXCHG_DOUBLE; 4203 #endif 4204 4205 /* 4206 * The larger the object size is, the more slabs we want on the partial 4207 * list to avoid pounding the page allocator excessively. 4208 */ 4209 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 4210 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 4211 4212 set_cpu_partial(s); 4213 4214 #ifdef CONFIG_NUMA 4215 s->remote_node_defrag_ratio = 1000; 4216 #endif 4217 4218 /* Initialize the pre-computed randomized freelist if slab is up */ 4219 if (slab_state >= UP) { 4220 if (init_cache_random_seq(s)) 4221 goto error; 4222 } 4223 4224 if (!init_kmem_cache_nodes(s)) 4225 goto error; 4226 4227 if (alloc_kmem_cache_cpus(s)) 4228 return 0; 4229 4230 error: 4231 __kmem_cache_release(s); 4232 return -EINVAL; 4233 } 4234 4235 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 4236 const char *text) 4237 { 4238 #ifdef CONFIG_SLUB_DEBUG 4239 void *addr = slab_address(slab); 4240 unsigned long flags; 4241 unsigned long *map; 4242 void *p; 4243 4244 slab_err(s, slab, text, s->name); 4245 slab_lock(slab, &flags); 4246 4247 map = get_map(s, slab); 4248 for_each_object(p, s, addr, slab->objects) { 4249 4250 if (!test_bit(__obj_to_index(s, addr, p), map)) { 4251 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 4252 print_tracking(s, p); 4253 } 4254 } 4255 put_map(map); 4256 slab_unlock(slab, &flags); 4257 #endif 4258 } 4259 4260 /* 4261 * Attempt to free all partial slabs on a node. 4262 * This is called from __kmem_cache_shutdown(). We must take list_lock 4263 * because sysfs file might still access partial list after the shutdowning. 4264 */ 4265 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 4266 { 4267 LIST_HEAD(discard); 4268 struct slab *slab, *h; 4269 4270 BUG_ON(irqs_disabled()); 4271 spin_lock_irq(&n->list_lock); 4272 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 4273 if (!slab->inuse) { 4274 remove_partial(n, slab); 4275 list_add(&slab->slab_list, &discard); 4276 } else { 4277 list_slab_objects(s, slab, 4278 "Objects remaining in %s on __kmem_cache_shutdown()"); 4279 } 4280 } 4281 spin_unlock_irq(&n->list_lock); 4282 4283 list_for_each_entry_safe(slab, h, &discard, slab_list) 4284 discard_slab(s, slab); 4285 } 4286 4287 bool __kmem_cache_empty(struct kmem_cache *s) 4288 { 4289 int node; 4290 struct kmem_cache_node *n; 4291 4292 for_each_kmem_cache_node(s, node, n) 4293 if (n->nr_partial || slabs_node(s, node)) 4294 return false; 4295 return true; 4296 } 4297 4298 /* 4299 * Release all resources used by a slab cache. 4300 */ 4301 int __kmem_cache_shutdown(struct kmem_cache *s) 4302 { 4303 int node; 4304 struct kmem_cache_node *n; 4305 4306 flush_all_cpus_locked(s); 4307 /* Attempt to free all objects */ 4308 for_each_kmem_cache_node(s, node, n) { 4309 free_partial(s, n); 4310 if (n->nr_partial || slabs_node(s, node)) 4311 return 1; 4312 } 4313 return 0; 4314 } 4315 4316 #ifdef CONFIG_PRINTK 4317 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 4318 { 4319 void *base; 4320 int __maybe_unused i; 4321 unsigned int objnr; 4322 void *objp; 4323 void *objp0; 4324 struct kmem_cache *s = slab->slab_cache; 4325 struct track __maybe_unused *trackp; 4326 4327 kpp->kp_ptr = object; 4328 kpp->kp_slab = slab; 4329 kpp->kp_slab_cache = s; 4330 base = slab_address(slab); 4331 objp0 = kasan_reset_tag(object); 4332 #ifdef CONFIG_SLUB_DEBUG 4333 objp = restore_red_left(s, objp0); 4334 #else 4335 objp = objp0; 4336 #endif 4337 objnr = obj_to_index(s, slab, objp); 4338 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 4339 objp = base + s->size * objnr; 4340 kpp->kp_objp = objp; 4341 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 4342 || (objp - base) % s->size) || 4343 !(s->flags & SLAB_STORE_USER)) 4344 return; 4345 #ifdef CONFIG_SLUB_DEBUG 4346 objp = fixup_red_left(s, objp); 4347 trackp = get_track(s, objp, TRACK_ALLOC); 4348 kpp->kp_ret = (void *)trackp->addr; 4349 #ifdef CONFIG_STACKDEPOT 4350 { 4351 depot_stack_handle_t handle; 4352 unsigned long *entries; 4353 unsigned int nr_entries; 4354 4355 handle = READ_ONCE(trackp->handle); 4356 if (handle) { 4357 nr_entries = stack_depot_fetch(handle, &entries); 4358 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4359 kpp->kp_stack[i] = (void *)entries[i]; 4360 } 4361 4362 trackp = get_track(s, objp, TRACK_FREE); 4363 handle = READ_ONCE(trackp->handle); 4364 if (handle) { 4365 nr_entries = stack_depot_fetch(handle, &entries); 4366 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4367 kpp->kp_free_stack[i] = (void *)entries[i]; 4368 } 4369 } 4370 #endif 4371 #endif 4372 } 4373 #endif 4374 4375 /******************************************************************** 4376 * Kmalloc subsystem 4377 *******************************************************************/ 4378 4379 static int __init setup_slub_min_order(char *str) 4380 { 4381 get_option(&str, (int *)&slub_min_order); 4382 4383 return 1; 4384 } 4385 4386 __setup("slub_min_order=", setup_slub_min_order); 4387 4388 static int __init setup_slub_max_order(char *str) 4389 { 4390 get_option(&str, (int *)&slub_max_order); 4391 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 4392 4393 return 1; 4394 } 4395 4396 __setup("slub_max_order=", setup_slub_max_order); 4397 4398 static int __init setup_slub_min_objects(char *str) 4399 { 4400 get_option(&str, (int *)&slub_min_objects); 4401 4402 return 1; 4403 } 4404 4405 __setup("slub_min_objects=", setup_slub_min_objects); 4406 4407 void *__kmalloc(size_t size, gfp_t flags) 4408 { 4409 struct kmem_cache *s; 4410 void *ret; 4411 4412 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4413 return kmalloc_large(size, flags); 4414 4415 s = kmalloc_slab(size, flags); 4416 4417 if (unlikely(ZERO_OR_NULL_PTR(s))) 4418 return s; 4419 4420 ret = slab_alloc(s, NULL, flags, _RET_IP_, size); 4421 4422 trace_kmalloc(_RET_IP_, ret, s, size, s->size, flags); 4423 4424 ret = kasan_kmalloc(s, ret, size, flags); 4425 4426 return ret; 4427 } 4428 EXPORT_SYMBOL(__kmalloc); 4429 4430 #ifdef CONFIG_NUMA 4431 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 4432 { 4433 struct page *page; 4434 void *ptr = NULL; 4435 unsigned int order = get_order(size); 4436 4437 flags |= __GFP_COMP; 4438 page = alloc_pages_node(node, flags, order); 4439 if (page) { 4440 ptr = page_address(page); 4441 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, 4442 PAGE_SIZE << order); 4443 } 4444 4445 return kmalloc_large_node_hook(ptr, size, flags); 4446 } 4447 4448 void *__kmalloc_node(size_t size, gfp_t flags, int node) 4449 { 4450 struct kmem_cache *s; 4451 void *ret; 4452 4453 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4454 ret = kmalloc_large_node(size, flags, node); 4455 4456 trace_kmalloc_node(_RET_IP_, ret, NULL, 4457 size, PAGE_SIZE << get_order(size), 4458 flags, node); 4459 4460 return ret; 4461 } 4462 4463 s = kmalloc_slab(size, flags); 4464 4465 if (unlikely(ZERO_OR_NULL_PTR(s))) 4466 return s; 4467 4468 ret = slab_alloc_node(s, NULL, flags, node, _RET_IP_, size); 4469 4470 trace_kmalloc_node(_RET_IP_, ret, s, size, s->size, flags, node); 4471 4472 ret = kasan_kmalloc(s, ret, size, flags); 4473 4474 return ret; 4475 } 4476 EXPORT_SYMBOL(__kmalloc_node); 4477 #endif /* CONFIG_NUMA */ 4478 4479 #ifdef CONFIG_HARDENED_USERCOPY 4480 /* 4481 * Rejects incorrectly sized objects and objects that are to be copied 4482 * to/from userspace but do not fall entirely within the containing slab 4483 * cache's usercopy region. 4484 * 4485 * Returns NULL if check passes, otherwise const char * to name of cache 4486 * to indicate an error. 4487 */ 4488 void __check_heap_object(const void *ptr, unsigned long n, 4489 const struct slab *slab, bool to_user) 4490 { 4491 struct kmem_cache *s; 4492 unsigned int offset; 4493 bool is_kfence = is_kfence_address(ptr); 4494 4495 ptr = kasan_reset_tag(ptr); 4496 4497 /* Find object and usable object size. */ 4498 s = slab->slab_cache; 4499 4500 /* Reject impossible pointers. */ 4501 if (ptr < slab_address(slab)) 4502 usercopy_abort("SLUB object not in SLUB page?!", NULL, 4503 to_user, 0, n); 4504 4505 /* Find offset within object. */ 4506 if (is_kfence) 4507 offset = ptr - kfence_object_start(ptr); 4508 else 4509 offset = (ptr - slab_address(slab)) % s->size; 4510 4511 /* Adjust for redzone and reject if within the redzone. */ 4512 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 4513 if (offset < s->red_left_pad) 4514 usercopy_abort("SLUB object in left red zone", 4515 s->name, to_user, offset, n); 4516 offset -= s->red_left_pad; 4517 } 4518 4519 /* Allow address range falling entirely within usercopy region. */ 4520 if (offset >= s->useroffset && 4521 offset - s->useroffset <= s->usersize && 4522 n <= s->useroffset - offset + s->usersize) 4523 return; 4524 4525 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4526 } 4527 #endif /* CONFIG_HARDENED_USERCOPY */ 4528 4529 size_t __ksize(const void *object) 4530 { 4531 struct folio *folio; 4532 4533 if (unlikely(object == ZERO_SIZE_PTR)) 4534 return 0; 4535 4536 folio = virt_to_folio(object); 4537 4538 if (unlikely(!folio_test_slab(folio))) 4539 return folio_size(folio); 4540 4541 return slab_ksize(folio_slab(folio)->slab_cache); 4542 } 4543 EXPORT_SYMBOL(__ksize); 4544 4545 void kfree(const void *x) 4546 { 4547 struct folio *folio; 4548 struct slab *slab; 4549 void *object = (void *)x; 4550 4551 trace_kfree(_RET_IP_, x); 4552 4553 if (unlikely(ZERO_OR_NULL_PTR(x))) 4554 return; 4555 4556 folio = virt_to_folio(x); 4557 if (unlikely(!folio_test_slab(folio))) { 4558 free_large_kmalloc(folio, object); 4559 return; 4560 } 4561 slab = folio_slab(folio); 4562 slab_free(slab->slab_cache, slab, object, NULL, &object, 1, _RET_IP_); 4563 } 4564 EXPORT_SYMBOL(kfree); 4565 4566 #define SHRINK_PROMOTE_MAX 32 4567 4568 /* 4569 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4570 * up most to the head of the partial lists. New allocations will then 4571 * fill those up and thus they can be removed from the partial lists. 4572 * 4573 * The slabs with the least items are placed last. This results in them 4574 * being allocated from last increasing the chance that the last objects 4575 * are freed in them. 4576 */ 4577 static int __kmem_cache_do_shrink(struct kmem_cache *s) 4578 { 4579 int node; 4580 int i; 4581 struct kmem_cache_node *n; 4582 struct slab *slab; 4583 struct slab *t; 4584 struct list_head discard; 4585 struct list_head promote[SHRINK_PROMOTE_MAX]; 4586 unsigned long flags; 4587 int ret = 0; 4588 4589 for_each_kmem_cache_node(s, node, n) { 4590 INIT_LIST_HEAD(&discard); 4591 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4592 INIT_LIST_HEAD(promote + i); 4593 4594 spin_lock_irqsave(&n->list_lock, flags); 4595 4596 /* 4597 * Build lists of slabs to discard or promote. 4598 * 4599 * Note that concurrent frees may occur while we hold the 4600 * list_lock. slab->inuse here is the upper limit. 4601 */ 4602 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 4603 int free = slab->objects - slab->inuse; 4604 4605 /* Do not reread slab->inuse */ 4606 barrier(); 4607 4608 /* We do not keep full slabs on the list */ 4609 BUG_ON(free <= 0); 4610 4611 if (free == slab->objects) { 4612 list_move(&slab->slab_list, &discard); 4613 n->nr_partial--; 4614 } else if (free <= SHRINK_PROMOTE_MAX) 4615 list_move(&slab->slab_list, promote + free - 1); 4616 } 4617 4618 /* 4619 * Promote the slabs filled up most to the head of the 4620 * partial list. 4621 */ 4622 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4623 list_splice(promote + i, &n->partial); 4624 4625 spin_unlock_irqrestore(&n->list_lock, flags); 4626 4627 /* Release empty slabs */ 4628 list_for_each_entry_safe(slab, t, &discard, slab_list) 4629 discard_slab(s, slab); 4630 4631 if (slabs_node(s, node)) 4632 ret = 1; 4633 } 4634 4635 return ret; 4636 } 4637 4638 int __kmem_cache_shrink(struct kmem_cache *s) 4639 { 4640 flush_all(s); 4641 return __kmem_cache_do_shrink(s); 4642 } 4643 4644 static int slab_mem_going_offline_callback(void *arg) 4645 { 4646 struct kmem_cache *s; 4647 4648 mutex_lock(&slab_mutex); 4649 list_for_each_entry(s, &slab_caches, list) { 4650 flush_all_cpus_locked(s); 4651 __kmem_cache_do_shrink(s); 4652 } 4653 mutex_unlock(&slab_mutex); 4654 4655 return 0; 4656 } 4657 4658 static void slab_mem_offline_callback(void *arg) 4659 { 4660 struct memory_notify *marg = arg; 4661 int offline_node; 4662 4663 offline_node = marg->status_change_nid_normal; 4664 4665 /* 4666 * If the node still has available memory. we need kmem_cache_node 4667 * for it yet. 4668 */ 4669 if (offline_node < 0) 4670 return; 4671 4672 mutex_lock(&slab_mutex); 4673 node_clear(offline_node, slab_nodes); 4674 /* 4675 * We no longer free kmem_cache_node structures here, as it would be 4676 * racy with all get_node() users, and infeasible to protect them with 4677 * slab_mutex. 4678 */ 4679 mutex_unlock(&slab_mutex); 4680 } 4681 4682 static int slab_mem_going_online_callback(void *arg) 4683 { 4684 struct kmem_cache_node *n; 4685 struct kmem_cache *s; 4686 struct memory_notify *marg = arg; 4687 int nid = marg->status_change_nid_normal; 4688 int ret = 0; 4689 4690 /* 4691 * If the node's memory is already available, then kmem_cache_node is 4692 * already created. Nothing to do. 4693 */ 4694 if (nid < 0) 4695 return 0; 4696 4697 /* 4698 * We are bringing a node online. No memory is available yet. We must 4699 * allocate a kmem_cache_node structure in order to bring the node 4700 * online. 4701 */ 4702 mutex_lock(&slab_mutex); 4703 list_for_each_entry(s, &slab_caches, list) { 4704 /* 4705 * The structure may already exist if the node was previously 4706 * onlined and offlined. 4707 */ 4708 if (get_node(s, nid)) 4709 continue; 4710 /* 4711 * XXX: kmem_cache_alloc_node will fallback to other nodes 4712 * since memory is not yet available from the node that 4713 * is brought up. 4714 */ 4715 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4716 if (!n) { 4717 ret = -ENOMEM; 4718 goto out; 4719 } 4720 init_kmem_cache_node(n); 4721 s->node[nid] = n; 4722 } 4723 /* 4724 * Any cache created after this point will also have kmem_cache_node 4725 * initialized for the new node. 4726 */ 4727 node_set(nid, slab_nodes); 4728 out: 4729 mutex_unlock(&slab_mutex); 4730 return ret; 4731 } 4732 4733 static int slab_memory_callback(struct notifier_block *self, 4734 unsigned long action, void *arg) 4735 { 4736 int ret = 0; 4737 4738 switch (action) { 4739 case MEM_GOING_ONLINE: 4740 ret = slab_mem_going_online_callback(arg); 4741 break; 4742 case MEM_GOING_OFFLINE: 4743 ret = slab_mem_going_offline_callback(arg); 4744 break; 4745 case MEM_OFFLINE: 4746 case MEM_CANCEL_ONLINE: 4747 slab_mem_offline_callback(arg); 4748 break; 4749 case MEM_ONLINE: 4750 case MEM_CANCEL_OFFLINE: 4751 break; 4752 } 4753 if (ret) 4754 ret = notifier_from_errno(ret); 4755 else 4756 ret = NOTIFY_OK; 4757 return ret; 4758 } 4759 4760 static struct notifier_block slab_memory_callback_nb = { 4761 .notifier_call = slab_memory_callback, 4762 .priority = SLAB_CALLBACK_PRI, 4763 }; 4764 4765 /******************************************************************** 4766 * Basic setup of slabs 4767 *******************************************************************/ 4768 4769 /* 4770 * Used for early kmem_cache structures that were allocated using 4771 * the page allocator. Allocate them properly then fix up the pointers 4772 * that may be pointing to the wrong kmem_cache structure. 4773 */ 4774 4775 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4776 { 4777 int node; 4778 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4779 struct kmem_cache_node *n; 4780 4781 memcpy(s, static_cache, kmem_cache->object_size); 4782 4783 /* 4784 * This runs very early, and only the boot processor is supposed to be 4785 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4786 * IPIs around. 4787 */ 4788 __flush_cpu_slab(s, smp_processor_id()); 4789 for_each_kmem_cache_node(s, node, n) { 4790 struct slab *p; 4791 4792 list_for_each_entry(p, &n->partial, slab_list) 4793 p->slab_cache = s; 4794 4795 #ifdef CONFIG_SLUB_DEBUG 4796 list_for_each_entry(p, &n->full, slab_list) 4797 p->slab_cache = s; 4798 #endif 4799 } 4800 list_add(&s->list, &slab_caches); 4801 return s; 4802 } 4803 4804 void __init kmem_cache_init(void) 4805 { 4806 static __initdata struct kmem_cache boot_kmem_cache, 4807 boot_kmem_cache_node; 4808 int node; 4809 4810 if (debug_guardpage_minorder()) 4811 slub_max_order = 0; 4812 4813 /* Print slub debugging pointers without hashing */ 4814 if (__slub_debug_enabled()) 4815 no_hash_pointers_enable(NULL); 4816 4817 kmem_cache_node = &boot_kmem_cache_node; 4818 kmem_cache = &boot_kmem_cache; 4819 4820 /* 4821 * Initialize the nodemask for which we will allocate per node 4822 * structures. Here we don't need taking slab_mutex yet. 4823 */ 4824 for_each_node_state(node, N_NORMAL_MEMORY) 4825 node_set(node, slab_nodes); 4826 4827 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4828 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4829 4830 register_hotmemory_notifier(&slab_memory_callback_nb); 4831 4832 /* Able to allocate the per node structures */ 4833 slab_state = PARTIAL; 4834 4835 create_boot_cache(kmem_cache, "kmem_cache", 4836 offsetof(struct kmem_cache, node) + 4837 nr_node_ids * sizeof(struct kmem_cache_node *), 4838 SLAB_HWCACHE_ALIGN, 0, 0); 4839 4840 kmem_cache = bootstrap(&boot_kmem_cache); 4841 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4842 4843 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4844 setup_kmalloc_cache_index_table(); 4845 create_kmalloc_caches(0); 4846 4847 /* Setup random freelists for each cache */ 4848 init_freelist_randomization(); 4849 4850 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4851 slub_cpu_dead); 4852 4853 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4854 cache_line_size(), 4855 slub_min_order, slub_max_order, slub_min_objects, 4856 nr_cpu_ids, nr_node_ids); 4857 } 4858 4859 void __init kmem_cache_init_late(void) 4860 { 4861 } 4862 4863 struct kmem_cache * 4864 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4865 slab_flags_t flags, void (*ctor)(void *)) 4866 { 4867 struct kmem_cache *s; 4868 4869 s = find_mergeable(size, align, flags, name, ctor); 4870 if (s) { 4871 if (sysfs_slab_alias(s, name)) 4872 return NULL; 4873 4874 s->refcount++; 4875 4876 /* 4877 * Adjust the object sizes so that we clear 4878 * the complete object on kzalloc. 4879 */ 4880 s->object_size = max(s->object_size, size); 4881 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4882 } 4883 4884 return s; 4885 } 4886 4887 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4888 { 4889 int err; 4890 4891 err = kmem_cache_open(s, flags); 4892 if (err) 4893 return err; 4894 4895 /* Mutex is not taken during early boot */ 4896 if (slab_state <= UP) 4897 return 0; 4898 4899 err = sysfs_slab_add(s); 4900 if (err) { 4901 __kmem_cache_release(s); 4902 return err; 4903 } 4904 4905 if (s->flags & SLAB_STORE_USER) 4906 debugfs_slab_add(s); 4907 4908 return 0; 4909 } 4910 4911 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4912 { 4913 struct kmem_cache *s; 4914 void *ret; 4915 4916 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4917 return kmalloc_large(size, gfpflags); 4918 4919 s = kmalloc_slab(size, gfpflags); 4920 4921 if (unlikely(ZERO_OR_NULL_PTR(s))) 4922 return s; 4923 4924 ret = slab_alloc(s, NULL, gfpflags, caller, size); 4925 4926 /* Honor the call site pointer we received. */ 4927 trace_kmalloc(caller, ret, s, size, s->size, gfpflags); 4928 4929 return ret; 4930 } 4931 EXPORT_SYMBOL(__kmalloc_track_caller); 4932 4933 #ifdef CONFIG_NUMA 4934 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4935 int node, unsigned long caller) 4936 { 4937 struct kmem_cache *s; 4938 void *ret; 4939 4940 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4941 ret = kmalloc_large_node(size, gfpflags, node); 4942 4943 trace_kmalloc_node(caller, ret, NULL, 4944 size, PAGE_SIZE << get_order(size), 4945 gfpflags, node); 4946 4947 return ret; 4948 } 4949 4950 s = kmalloc_slab(size, gfpflags); 4951 4952 if (unlikely(ZERO_OR_NULL_PTR(s))) 4953 return s; 4954 4955 ret = slab_alloc_node(s, NULL, gfpflags, node, caller, size); 4956 4957 /* Honor the call site pointer we received. */ 4958 trace_kmalloc_node(caller, ret, s, size, s->size, gfpflags, node); 4959 4960 return ret; 4961 } 4962 EXPORT_SYMBOL(__kmalloc_node_track_caller); 4963 #endif 4964 4965 #ifdef CONFIG_SYSFS 4966 static int count_inuse(struct slab *slab) 4967 { 4968 return slab->inuse; 4969 } 4970 4971 static int count_total(struct slab *slab) 4972 { 4973 return slab->objects; 4974 } 4975 #endif 4976 4977 #ifdef CONFIG_SLUB_DEBUG 4978 static void validate_slab(struct kmem_cache *s, struct slab *slab, 4979 unsigned long *obj_map) 4980 { 4981 void *p; 4982 void *addr = slab_address(slab); 4983 unsigned long flags; 4984 4985 slab_lock(slab, &flags); 4986 4987 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 4988 goto unlock; 4989 4990 /* Now we know that a valid freelist exists */ 4991 __fill_map(obj_map, s, slab); 4992 for_each_object(p, s, addr, slab->objects) { 4993 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 4994 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 4995 4996 if (!check_object(s, slab, p, val)) 4997 break; 4998 } 4999 unlock: 5000 slab_unlock(slab, &flags); 5001 } 5002 5003 static int validate_slab_node(struct kmem_cache *s, 5004 struct kmem_cache_node *n, unsigned long *obj_map) 5005 { 5006 unsigned long count = 0; 5007 struct slab *slab; 5008 unsigned long flags; 5009 5010 spin_lock_irqsave(&n->list_lock, flags); 5011 5012 list_for_each_entry(slab, &n->partial, slab_list) { 5013 validate_slab(s, slab, obj_map); 5014 count++; 5015 } 5016 if (count != n->nr_partial) { 5017 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 5018 s->name, count, n->nr_partial); 5019 slab_add_kunit_errors(); 5020 } 5021 5022 if (!(s->flags & SLAB_STORE_USER)) 5023 goto out; 5024 5025 list_for_each_entry(slab, &n->full, slab_list) { 5026 validate_slab(s, slab, obj_map); 5027 count++; 5028 } 5029 if (count != atomic_long_read(&n->nr_slabs)) { 5030 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 5031 s->name, count, atomic_long_read(&n->nr_slabs)); 5032 slab_add_kunit_errors(); 5033 } 5034 5035 out: 5036 spin_unlock_irqrestore(&n->list_lock, flags); 5037 return count; 5038 } 5039 5040 long validate_slab_cache(struct kmem_cache *s) 5041 { 5042 int node; 5043 unsigned long count = 0; 5044 struct kmem_cache_node *n; 5045 unsigned long *obj_map; 5046 5047 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 5048 if (!obj_map) 5049 return -ENOMEM; 5050 5051 flush_all(s); 5052 for_each_kmem_cache_node(s, node, n) 5053 count += validate_slab_node(s, n, obj_map); 5054 5055 bitmap_free(obj_map); 5056 5057 return count; 5058 } 5059 EXPORT_SYMBOL(validate_slab_cache); 5060 5061 #ifdef CONFIG_DEBUG_FS 5062 /* 5063 * Generate lists of code addresses where slabcache objects are allocated 5064 * and freed. 5065 */ 5066 5067 struct location { 5068 depot_stack_handle_t handle; 5069 unsigned long count; 5070 unsigned long addr; 5071 long long sum_time; 5072 long min_time; 5073 long max_time; 5074 long min_pid; 5075 long max_pid; 5076 DECLARE_BITMAP(cpus, NR_CPUS); 5077 nodemask_t nodes; 5078 }; 5079 5080 struct loc_track { 5081 unsigned long max; 5082 unsigned long count; 5083 struct location *loc; 5084 loff_t idx; 5085 }; 5086 5087 static struct dentry *slab_debugfs_root; 5088 5089 static void free_loc_track(struct loc_track *t) 5090 { 5091 if (t->max) 5092 free_pages((unsigned long)t->loc, 5093 get_order(sizeof(struct location) * t->max)); 5094 } 5095 5096 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 5097 { 5098 struct location *l; 5099 int order; 5100 5101 order = get_order(sizeof(struct location) * max); 5102 5103 l = (void *)__get_free_pages(flags, order); 5104 if (!l) 5105 return 0; 5106 5107 if (t->count) { 5108 memcpy(l, t->loc, sizeof(struct location) * t->count); 5109 free_loc_track(t); 5110 } 5111 t->max = max; 5112 t->loc = l; 5113 return 1; 5114 } 5115 5116 static int add_location(struct loc_track *t, struct kmem_cache *s, 5117 const struct track *track) 5118 { 5119 long start, end, pos; 5120 struct location *l; 5121 unsigned long caddr, chandle; 5122 unsigned long age = jiffies - track->when; 5123 depot_stack_handle_t handle = 0; 5124 5125 #ifdef CONFIG_STACKDEPOT 5126 handle = READ_ONCE(track->handle); 5127 #endif 5128 start = -1; 5129 end = t->count; 5130 5131 for ( ; ; ) { 5132 pos = start + (end - start + 1) / 2; 5133 5134 /* 5135 * There is nothing at "end". If we end up there 5136 * we need to add something to before end. 5137 */ 5138 if (pos == end) 5139 break; 5140 5141 caddr = t->loc[pos].addr; 5142 chandle = t->loc[pos].handle; 5143 if ((track->addr == caddr) && (handle == chandle)) { 5144 5145 l = &t->loc[pos]; 5146 l->count++; 5147 if (track->when) { 5148 l->sum_time += age; 5149 if (age < l->min_time) 5150 l->min_time = age; 5151 if (age > l->max_time) 5152 l->max_time = age; 5153 5154 if (track->pid < l->min_pid) 5155 l->min_pid = track->pid; 5156 if (track->pid > l->max_pid) 5157 l->max_pid = track->pid; 5158 5159 cpumask_set_cpu(track->cpu, 5160 to_cpumask(l->cpus)); 5161 } 5162 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5163 return 1; 5164 } 5165 5166 if (track->addr < caddr) 5167 end = pos; 5168 else if (track->addr == caddr && handle < chandle) 5169 end = pos; 5170 else 5171 start = pos; 5172 } 5173 5174 /* 5175 * Not found. Insert new tracking element. 5176 */ 5177 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 5178 return 0; 5179 5180 l = t->loc + pos; 5181 if (pos < t->count) 5182 memmove(l + 1, l, 5183 (t->count - pos) * sizeof(struct location)); 5184 t->count++; 5185 l->count = 1; 5186 l->addr = track->addr; 5187 l->sum_time = age; 5188 l->min_time = age; 5189 l->max_time = age; 5190 l->min_pid = track->pid; 5191 l->max_pid = track->pid; 5192 l->handle = handle; 5193 cpumask_clear(to_cpumask(l->cpus)); 5194 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 5195 nodes_clear(l->nodes); 5196 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5197 return 1; 5198 } 5199 5200 static void process_slab(struct loc_track *t, struct kmem_cache *s, 5201 struct slab *slab, enum track_item alloc, 5202 unsigned long *obj_map) 5203 { 5204 void *addr = slab_address(slab); 5205 void *p; 5206 5207 __fill_map(obj_map, s, slab); 5208 5209 for_each_object(p, s, addr, slab->objects) 5210 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 5211 add_location(t, s, get_track(s, p, alloc)); 5212 } 5213 #endif /* CONFIG_DEBUG_FS */ 5214 #endif /* CONFIG_SLUB_DEBUG */ 5215 5216 #ifdef CONFIG_SYSFS 5217 enum slab_stat_type { 5218 SL_ALL, /* All slabs */ 5219 SL_PARTIAL, /* Only partially allocated slabs */ 5220 SL_CPU, /* Only slabs used for cpu caches */ 5221 SL_OBJECTS, /* Determine allocated objects not slabs */ 5222 SL_TOTAL /* Determine object capacity not slabs */ 5223 }; 5224 5225 #define SO_ALL (1 << SL_ALL) 5226 #define SO_PARTIAL (1 << SL_PARTIAL) 5227 #define SO_CPU (1 << SL_CPU) 5228 #define SO_OBJECTS (1 << SL_OBJECTS) 5229 #define SO_TOTAL (1 << SL_TOTAL) 5230 5231 static ssize_t show_slab_objects(struct kmem_cache *s, 5232 char *buf, unsigned long flags) 5233 { 5234 unsigned long total = 0; 5235 int node; 5236 int x; 5237 unsigned long *nodes; 5238 int len = 0; 5239 5240 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 5241 if (!nodes) 5242 return -ENOMEM; 5243 5244 if (flags & SO_CPU) { 5245 int cpu; 5246 5247 for_each_possible_cpu(cpu) { 5248 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 5249 cpu); 5250 int node; 5251 struct slab *slab; 5252 5253 slab = READ_ONCE(c->slab); 5254 if (!slab) 5255 continue; 5256 5257 node = slab_nid(slab); 5258 if (flags & SO_TOTAL) 5259 x = slab->objects; 5260 else if (flags & SO_OBJECTS) 5261 x = slab->inuse; 5262 else 5263 x = 1; 5264 5265 total += x; 5266 nodes[node] += x; 5267 5268 #ifdef CONFIG_SLUB_CPU_PARTIAL 5269 slab = slub_percpu_partial_read_once(c); 5270 if (slab) { 5271 node = slab_nid(slab); 5272 if (flags & SO_TOTAL) 5273 WARN_ON_ONCE(1); 5274 else if (flags & SO_OBJECTS) 5275 WARN_ON_ONCE(1); 5276 else 5277 x = slab->slabs; 5278 total += x; 5279 nodes[node] += x; 5280 } 5281 #endif 5282 } 5283 } 5284 5285 /* 5286 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 5287 * already held which will conflict with an existing lock order: 5288 * 5289 * mem_hotplug_lock->slab_mutex->kernfs_mutex 5290 * 5291 * We don't really need mem_hotplug_lock (to hold off 5292 * slab_mem_going_offline_callback) here because slab's memory hot 5293 * unplug code doesn't destroy the kmem_cache->node[] data. 5294 */ 5295 5296 #ifdef CONFIG_SLUB_DEBUG 5297 if (flags & SO_ALL) { 5298 struct kmem_cache_node *n; 5299 5300 for_each_kmem_cache_node(s, node, n) { 5301 5302 if (flags & SO_TOTAL) 5303 x = atomic_long_read(&n->total_objects); 5304 else if (flags & SO_OBJECTS) 5305 x = atomic_long_read(&n->total_objects) - 5306 count_partial(n, count_free); 5307 else 5308 x = atomic_long_read(&n->nr_slabs); 5309 total += x; 5310 nodes[node] += x; 5311 } 5312 5313 } else 5314 #endif 5315 if (flags & SO_PARTIAL) { 5316 struct kmem_cache_node *n; 5317 5318 for_each_kmem_cache_node(s, node, n) { 5319 if (flags & SO_TOTAL) 5320 x = count_partial(n, count_total); 5321 else if (flags & SO_OBJECTS) 5322 x = count_partial(n, count_inuse); 5323 else 5324 x = n->nr_partial; 5325 total += x; 5326 nodes[node] += x; 5327 } 5328 } 5329 5330 len += sysfs_emit_at(buf, len, "%lu", total); 5331 #ifdef CONFIG_NUMA 5332 for (node = 0; node < nr_node_ids; node++) { 5333 if (nodes[node]) 5334 len += sysfs_emit_at(buf, len, " N%d=%lu", 5335 node, nodes[node]); 5336 } 5337 #endif 5338 len += sysfs_emit_at(buf, len, "\n"); 5339 kfree(nodes); 5340 5341 return len; 5342 } 5343 5344 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 5345 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5346 5347 struct slab_attribute { 5348 struct attribute attr; 5349 ssize_t (*show)(struct kmem_cache *s, char *buf); 5350 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5351 }; 5352 5353 #define SLAB_ATTR_RO(_name) \ 5354 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 5355 5356 #define SLAB_ATTR(_name) \ 5357 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 5358 5359 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5360 { 5361 return sysfs_emit(buf, "%u\n", s->size); 5362 } 5363 SLAB_ATTR_RO(slab_size); 5364 5365 static ssize_t align_show(struct kmem_cache *s, char *buf) 5366 { 5367 return sysfs_emit(buf, "%u\n", s->align); 5368 } 5369 SLAB_ATTR_RO(align); 5370 5371 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5372 { 5373 return sysfs_emit(buf, "%u\n", s->object_size); 5374 } 5375 SLAB_ATTR_RO(object_size); 5376 5377 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5378 { 5379 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 5380 } 5381 SLAB_ATTR_RO(objs_per_slab); 5382 5383 static ssize_t order_show(struct kmem_cache *s, char *buf) 5384 { 5385 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 5386 } 5387 SLAB_ATTR_RO(order); 5388 5389 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5390 { 5391 return sysfs_emit(buf, "%lu\n", s->min_partial); 5392 } 5393 5394 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5395 size_t length) 5396 { 5397 unsigned long min; 5398 int err; 5399 5400 err = kstrtoul(buf, 10, &min); 5401 if (err) 5402 return err; 5403 5404 s->min_partial = min; 5405 return length; 5406 } 5407 SLAB_ATTR(min_partial); 5408 5409 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5410 { 5411 unsigned int nr_partial = 0; 5412 #ifdef CONFIG_SLUB_CPU_PARTIAL 5413 nr_partial = s->cpu_partial; 5414 #endif 5415 5416 return sysfs_emit(buf, "%u\n", nr_partial); 5417 } 5418 5419 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5420 size_t length) 5421 { 5422 unsigned int objects; 5423 int err; 5424 5425 err = kstrtouint(buf, 10, &objects); 5426 if (err) 5427 return err; 5428 if (objects && !kmem_cache_has_cpu_partial(s)) 5429 return -EINVAL; 5430 5431 slub_set_cpu_partial(s, objects); 5432 flush_all(s); 5433 return length; 5434 } 5435 SLAB_ATTR(cpu_partial); 5436 5437 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5438 { 5439 if (!s->ctor) 5440 return 0; 5441 return sysfs_emit(buf, "%pS\n", s->ctor); 5442 } 5443 SLAB_ATTR_RO(ctor); 5444 5445 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5446 { 5447 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5448 } 5449 SLAB_ATTR_RO(aliases); 5450 5451 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5452 { 5453 return show_slab_objects(s, buf, SO_PARTIAL); 5454 } 5455 SLAB_ATTR_RO(partial); 5456 5457 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5458 { 5459 return show_slab_objects(s, buf, SO_CPU); 5460 } 5461 SLAB_ATTR_RO(cpu_slabs); 5462 5463 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5464 { 5465 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5466 } 5467 SLAB_ATTR_RO(objects); 5468 5469 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5470 { 5471 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5472 } 5473 SLAB_ATTR_RO(objects_partial); 5474 5475 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5476 { 5477 int objects = 0; 5478 int slabs = 0; 5479 int cpu __maybe_unused; 5480 int len = 0; 5481 5482 #ifdef CONFIG_SLUB_CPU_PARTIAL 5483 for_each_online_cpu(cpu) { 5484 struct slab *slab; 5485 5486 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5487 5488 if (slab) 5489 slabs += slab->slabs; 5490 } 5491 #endif 5492 5493 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 5494 objects = (slabs * oo_objects(s->oo)) / 2; 5495 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 5496 5497 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP) 5498 for_each_online_cpu(cpu) { 5499 struct slab *slab; 5500 5501 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5502 if (slab) { 5503 slabs = READ_ONCE(slab->slabs); 5504 objects = (slabs * oo_objects(s->oo)) / 2; 5505 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 5506 cpu, objects, slabs); 5507 } 5508 } 5509 #endif 5510 len += sysfs_emit_at(buf, len, "\n"); 5511 5512 return len; 5513 } 5514 SLAB_ATTR_RO(slabs_cpu_partial); 5515 5516 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5517 { 5518 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5519 } 5520 SLAB_ATTR_RO(reclaim_account); 5521 5522 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5523 { 5524 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5525 } 5526 SLAB_ATTR_RO(hwcache_align); 5527 5528 #ifdef CONFIG_ZONE_DMA 5529 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5530 { 5531 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5532 } 5533 SLAB_ATTR_RO(cache_dma); 5534 #endif 5535 5536 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5537 { 5538 return sysfs_emit(buf, "%u\n", s->usersize); 5539 } 5540 SLAB_ATTR_RO(usersize); 5541 5542 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5543 { 5544 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5545 } 5546 SLAB_ATTR_RO(destroy_by_rcu); 5547 5548 #ifdef CONFIG_SLUB_DEBUG 5549 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5550 { 5551 return show_slab_objects(s, buf, SO_ALL); 5552 } 5553 SLAB_ATTR_RO(slabs); 5554 5555 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5556 { 5557 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5558 } 5559 SLAB_ATTR_RO(total_objects); 5560 5561 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5562 { 5563 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5564 } 5565 SLAB_ATTR_RO(sanity_checks); 5566 5567 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5568 { 5569 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5570 } 5571 SLAB_ATTR_RO(trace); 5572 5573 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5574 { 5575 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5576 } 5577 5578 SLAB_ATTR_RO(red_zone); 5579 5580 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5581 { 5582 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5583 } 5584 5585 SLAB_ATTR_RO(poison); 5586 5587 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5588 { 5589 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5590 } 5591 5592 SLAB_ATTR_RO(store_user); 5593 5594 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5595 { 5596 return 0; 5597 } 5598 5599 static ssize_t validate_store(struct kmem_cache *s, 5600 const char *buf, size_t length) 5601 { 5602 int ret = -EINVAL; 5603 5604 if (buf[0] == '1') { 5605 ret = validate_slab_cache(s); 5606 if (ret >= 0) 5607 ret = length; 5608 } 5609 return ret; 5610 } 5611 SLAB_ATTR(validate); 5612 5613 #endif /* CONFIG_SLUB_DEBUG */ 5614 5615 #ifdef CONFIG_FAILSLAB 5616 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5617 { 5618 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5619 } 5620 SLAB_ATTR_RO(failslab); 5621 #endif 5622 5623 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5624 { 5625 return 0; 5626 } 5627 5628 static ssize_t shrink_store(struct kmem_cache *s, 5629 const char *buf, size_t length) 5630 { 5631 if (buf[0] == '1') 5632 kmem_cache_shrink(s); 5633 else 5634 return -EINVAL; 5635 return length; 5636 } 5637 SLAB_ATTR(shrink); 5638 5639 #ifdef CONFIG_NUMA 5640 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5641 { 5642 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5643 } 5644 5645 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5646 const char *buf, size_t length) 5647 { 5648 unsigned int ratio; 5649 int err; 5650 5651 err = kstrtouint(buf, 10, &ratio); 5652 if (err) 5653 return err; 5654 if (ratio > 100) 5655 return -ERANGE; 5656 5657 s->remote_node_defrag_ratio = ratio * 10; 5658 5659 return length; 5660 } 5661 SLAB_ATTR(remote_node_defrag_ratio); 5662 #endif 5663 5664 #ifdef CONFIG_SLUB_STATS 5665 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5666 { 5667 unsigned long sum = 0; 5668 int cpu; 5669 int len = 0; 5670 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5671 5672 if (!data) 5673 return -ENOMEM; 5674 5675 for_each_online_cpu(cpu) { 5676 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5677 5678 data[cpu] = x; 5679 sum += x; 5680 } 5681 5682 len += sysfs_emit_at(buf, len, "%lu", sum); 5683 5684 #ifdef CONFIG_SMP 5685 for_each_online_cpu(cpu) { 5686 if (data[cpu]) 5687 len += sysfs_emit_at(buf, len, " C%d=%u", 5688 cpu, data[cpu]); 5689 } 5690 #endif 5691 kfree(data); 5692 len += sysfs_emit_at(buf, len, "\n"); 5693 5694 return len; 5695 } 5696 5697 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5698 { 5699 int cpu; 5700 5701 for_each_online_cpu(cpu) 5702 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5703 } 5704 5705 #define STAT_ATTR(si, text) \ 5706 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5707 { \ 5708 return show_stat(s, buf, si); \ 5709 } \ 5710 static ssize_t text##_store(struct kmem_cache *s, \ 5711 const char *buf, size_t length) \ 5712 { \ 5713 if (buf[0] != '0') \ 5714 return -EINVAL; \ 5715 clear_stat(s, si); \ 5716 return length; \ 5717 } \ 5718 SLAB_ATTR(text); \ 5719 5720 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5721 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5722 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5723 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5724 STAT_ATTR(FREE_FROZEN, free_frozen); 5725 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5726 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5727 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5728 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5729 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5730 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5731 STAT_ATTR(FREE_SLAB, free_slab); 5732 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5733 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5734 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5735 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5736 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5737 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5738 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5739 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5740 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5741 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5742 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5743 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5744 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5745 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5746 #endif /* CONFIG_SLUB_STATS */ 5747 5748 static struct attribute *slab_attrs[] = { 5749 &slab_size_attr.attr, 5750 &object_size_attr.attr, 5751 &objs_per_slab_attr.attr, 5752 &order_attr.attr, 5753 &min_partial_attr.attr, 5754 &cpu_partial_attr.attr, 5755 &objects_attr.attr, 5756 &objects_partial_attr.attr, 5757 &partial_attr.attr, 5758 &cpu_slabs_attr.attr, 5759 &ctor_attr.attr, 5760 &aliases_attr.attr, 5761 &align_attr.attr, 5762 &hwcache_align_attr.attr, 5763 &reclaim_account_attr.attr, 5764 &destroy_by_rcu_attr.attr, 5765 &shrink_attr.attr, 5766 &slabs_cpu_partial_attr.attr, 5767 #ifdef CONFIG_SLUB_DEBUG 5768 &total_objects_attr.attr, 5769 &slabs_attr.attr, 5770 &sanity_checks_attr.attr, 5771 &trace_attr.attr, 5772 &red_zone_attr.attr, 5773 &poison_attr.attr, 5774 &store_user_attr.attr, 5775 &validate_attr.attr, 5776 #endif 5777 #ifdef CONFIG_ZONE_DMA 5778 &cache_dma_attr.attr, 5779 #endif 5780 #ifdef CONFIG_NUMA 5781 &remote_node_defrag_ratio_attr.attr, 5782 #endif 5783 #ifdef CONFIG_SLUB_STATS 5784 &alloc_fastpath_attr.attr, 5785 &alloc_slowpath_attr.attr, 5786 &free_fastpath_attr.attr, 5787 &free_slowpath_attr.attr, 5788 &free_frozen_attr.attr, 5789 &free_add_partial_attr.attr, 5790 &free_remove_partial_attr.attr, 5791 &alloc_from_partial_attr.attr, 5792 &alloc_slab_attr.attr, 5793 &alloc_refill_attr.attr, 5794 &alloc_node_mismatch_attr.attr, 5795 &free_slab_attr.attr, 5796 &cpuslab_flush_attr.attr, 5797 &deactivate_full_attr.attr, 5798 &deactivate_empty_attr.attr, 5799 &deactivate_to_head_attr.attr, 5800 &deactivate_to_tail_attr.attr, 5801 &deactivate_remote_frees_attr.attr, 5802 &deactivate_bypass_attr.attr, 5803 &order_fallback_attr.attr, 5804 &cmpxchg_double_fail_attr.attr, 5805 &cmpxchg_double_cpu_fail_attr.attr, 5806 &cpu_partial_alloc_attr.attr, 5807 &cpu_partial_free_attr.attr, 5808 &cpu_partial_node_attr.attr, 5809 &cpu_partial_drain_attr.attr, 5810 #endif 5811 #ifdef CONFIG_FAILSLAB 5812 &failslab_attr.attr, 5813 #endif 5814 &usersize_attr.attr, 5815 5816 NULL 5817 }; 5818 5819 static const struct attribute_group slab_attr_group = { 5820 .attrs = slab_attrs, 5821 }; 5822 5823 static ssize_t slab_attr_show(struct kobject *kobj, 5824 struct attribute *attr, 5825 char *buf) 5826 { 5827 struct slab_attribute *attribute; 5828 struct kmem_cache *s; 5829 int err; 5830 5831 attribute = to_slab_attr(attr); 5832 s = to_slab(kobj); 5833 5834 if (!attribute->show) 5835 return -EIO; 5836 5837 err = attribute->show(s, buf); 5838 5839 return err; 5840 } 5841 5842 static ssize_t slab_attr_store(struct kobject *kobj, 5843 struct attribute *attr, 5844 const char *buf, size_t len) 5845 { 5846 struct slab_attribute *attribute; 5847 struct kmem_cache *s; 5848 int err; 5849 5850 attribute = to_slab_attr(attr); 5851 s = to_slab(kobj); 5852 5853 if (!attribute->store) 5854 return -EIO; 5855 5856 err = attribute->store(s, buf, len); 5857 return err; 5858 } 5859 5860 static void kmem_cache_release(struct kobject *k) 5861 { 5862 slab_kmem_cache_release(to_slab(k)); 5863 } 5864 5865 static const struct sysfs_ops slab_sysfs_ops = { 5866 .show = slab_attr_show, 5867 .store = slab_attr_store, 5868 }; 5869 5870 static struct kobj_type slab_ktype = { 5871 .sysfs_ops = &slab_sysfs_ops, 5872 .release = kmem_cache_release, 5873 }; 5874 5875 static struct kset *slab_kset; 5876 5877 static inline struct kset *cache_kset(struct kmem_cache *s) 5878 { 5879 return slab_kset; 5880 } 5881 5882 #define ID_STR_LENGTH 64 5883 5884 /* Create a unique string id for a slab cache: 5885 * 5886 * Format :[flags-]size 5887 */ 5888 static char *create_unique_id(struct kmem_cache *s) 5889 { 5890 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5891 char *p = name; 5892 5893 BUG_ON(!name); 5894 5895 *p++ = ':'; 5896 /* 5897 * First flags affecting slabcache operations. We will only 5898 * get here for aliasable slabs so we do not need to support 5899 * too many flags. The flags here must cover all flags that 5900 * are matched during merging to guarantee that the id is 5901 * unique. 5902 */ 5903 if (s->flags & SLAB_CACHE_DMA) 5904 *p++ = 'd'; 5905 if (s->flags & SLAB_CACHE_DMA32) 5906 *p++ = 'D'; 5907 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5908 *p++ = 'a'; 5909 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5910 *p++ = 'F'; 5911 if (s->flags & SLAB_ACCOUNT) 5912 *p++ = 'A'; 5913 if (p != name + 1) 5914 *p++ = '-'; 5915 p += sprintf(p, "%07u", s->size); 5916 5917 BUG_ON(p > name + ID_STR_LENGTH - 1); 5918 return name; 5919 } 5920 5921 static int sysfs_slab_add(struct kmem_cache *s) 5922 { 5923 int err; 5924 const char *name; 5925 struct kset *kset = cache_kset(s); 5926 int unmergeable = slab_unmergeable(s); 5927 5928 if (!kset) { 5929 kobject_init(&s->kobj, &slab_ktype); 5930 return 0; 5931 } 5932 5933 if (!unmergeable && disable_higher_order_debug && 5934 (slub_debug & DEBUG_METADATA_FLAGS)) 5935 unmergeable = 1; 5936 5937 if (unmergeable) { 5938 /* 5939 * Slabcache can never be merged so we can use the name proper. 5940 * This is typically the case for debug situations. In that 5941 * case we can catch duplicate names easily. 5942 */ 5943 sysfs_remove_link(&slab_kset->kobj, s->name); 5944 name = s->name; 5945 } else { 5946 /* 5947 * Create a unique name for the slab as a target 5948 * for the symlinks. 5949 */ 5950 name = create_unique_id(s); 5951 } 5952 5953 s->kobj.kset = kset; 5954 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5955 if (err) 5956 goto out; 5957 5958 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5959 if (err) 5960 goto out_del_kobj; 5961 5962 if (!unmergeable) { 5963 /* Setup first alias */ 5964 sysfs_slab_alias(s, s->name); 5965 } 5966 out: 5967 if (!unmergeable) 5968 kfree(name); 5969 return err; 5970 out_del_kobj: 5971 kobject_del(&s->kobj); 5972 goto out; 5973 } 5974 5975 void sysfs_slab_unlink(struct kmem_cache *s) 5976 { 5977 if (slab_state >= FULL) 5978 kobject_del(&s->kobj); 5979 } 5980 5981 void sysfs_slab_release(struct kmem_cache *s) 5982 { 5983 if (slab_state >= FULL) 5984 kobject_put(&s->kobj); 5985 } 5986 5987 /* 5988 * Need to buffer aliases during bootup until sysfs becomes 5989 * available lest we lose that information. 5990 */ 5991 struct saved_alias { 5992 struct kmem_cache *s; 5993 const char *name; 5994 struct saved_alias *next; 5995 }; 5996 5997 static struct saved_alias *alias_list; 5998 5999 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 6000 { 6001 struct saved_alias *al; 6002 6003 if (slab_state == FULL) { 6004 /* 6005 * If we have a leftover link then remove it. 6006 */ 6007 sysfs_remove_link(&slab_kset->kobj, name); 6008 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 6009 } 6010 6011 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 6012 if (!al) 6013 return -ENOMEM; 6014 6015 al->s = s; 6016 al->name = name; 6017 al->next = alias_list; 6018 alias_list = al; 6019 return 0; 6020 } 6021 6022 static int __init slab_sysfs_init(void) 6023 { 6024 struct kmem_cache *s; 6025 int err; 6026 6027 mutex_lock(&slab_mutex); 6028 6029 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 6030 if (!slab_kset) { 6031 mutex_unlock(&slab_mutex); 6032 pr_err("Cannot register slab subsystem.\n"); 6033 return -ENOSYS; 6034 } 6035 6036 slab_state = FULL; 6037 6038 list_for_each_entry(s, &slab_caches, list) { 6039 err = sysfs_slab_add(s); 6040 if (err) 6041 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 6042 s->name); 6043 } 6044 6045 while (alias_list) { 6046 struct saved_alias *al = alias_list; 6047 6048 alias_list = alias_list->next; 6049 err = sysfs_slab_alias(al->s, al->name); 6050 if (err) 6051 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 6052 al->name); 6053 kfree(al); 6054 } 6055 6056 mutex_unlock(&slab_mutex); 6057 return 0; 6058 } 6059 6060 __initcall(slab_sysfs_init); 6061 #endif /* CONFIG_SYSFS */ 6062 6063 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 6064 static int slab_debugfs_show(struct seq_file *seq, void *v) 6065 { 6066 struct loc_track *t = seq->private; 6067 struct location *l; 6068 unsigned long idx; 6069 6070 idx = (unsigned long) t->idx; 6071 if (idx < t->count) { 6072 l = &t->loc[idx]; 6073 6074 seq_printf(seq, "%7ld ", l->count); 6075 6076 if (l->addr) 6077 seq_printf(seq, "%pS", (void *)l->addr); 6078 else 6079 seq_puts(seq, "<not-available>"); 6080 6081 if (l->sum_time != l->min_time) { 6082 seq_printf(seq, " age=%ld/%llu/%ld", 6083 l->min_time, div_u64(l->sum_time, l->count), 6084 l->max_time); 6085 } else 6086 seq_printf(seq, " age=%ld", l->min_time); 6087 6088 if (l->min_pid != l->max_pid) 6089 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 6090 else 6091 seq_printf(seq, " pid=%ld", 6092 l->min_pid); 6093 6094 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 6095 seq_printf(seq, " cpus=%*pbl", 6096 cpumask_pr_args(to_cpumask(l->cpus))); 6097 6098 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 6099 seq_printf(seq, " nodes=%*pbl", 6100 nodemask_pr_args(&l->nodes)); 6101 6102 #ifdef CONFIG_STACKDEPOT 6103 { 6104 depot_stack_handle_t handle; 6105 unsigned long *entries; 6106 unsigned int nr_entries, j; 6107 6108 handle = READ_ONCE(l->handle); 6109 if (handle) { 6110 nr_entries = stack_depot_fetch(handle, &entries); 6111 seq_puts(seq, "\n"); 6112 for (j = 0; j < nr_entries; j++) 6113 seq_printf(seq, " %pS\n", (void *)entries[j]); 6114 } 6115 } 6116 #endif 6117 seq_puts(seq, "\n"); 6118 } 6119 6120 if (!idx && !t->count) 6121 seq_puts(seq, "No data\n"); 6122 6123 return 0; 6124 } 6125 6126 static void slab_debugfs_stop(struct seq_file *seq, void *v) 6127 { 6128 } 6129 6130 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 6131 { 6132 struct loc_track *t = seq->private; 6133 6134 t->idx = ++(*ppos); 6135 if (*ppos <= t->count) 6136 return ppos; 6137 6138 return NULL; 6139 } 6140 6141 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 6142 { 6143 struct location *loc1 = (struct location *)a; 6144 struct location *loc2 = (struct location *)b; 6145 6146 if (loc1->count > loc2->count) 6147 return -1; 6148 else 6149 return 1; 6150 } 6151 6152 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 6153 { 6154 struct loc_track *t = seq->private; 6155 6156 t->idx = *ppos; 6157 return ppos; 6158 } 6159 6160 static const struct seq_operations slab_debugfs_sops = { 6161 .start = slab_debugfs_start, 6162 .next = slab_debugfs_next, 6163 .stop = slab_debugfs_stop, 6164 .show = slab_debugfs_show, 6165 }; 6166 6167 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 6168 { 6169 6170 struct kmem_cache_node *n; 6171 enum track_item alloc; 6172 int node; 6173 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 6174 sizeof(struct loc_track)); 6175 struct kmem_cache *s = file_inode(filep)->i_private; 6176 unsigned long *obj_map; 6177 6178 if (!t) 6179 return -ENOMEM; 6180 6181 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6182 if (!obj_map) { 6183 seq_release_private(inode, filep); 6184 return -ENOMEM; 6185 } 6186 6187 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 6188 alloc = TRACK_ALLOC; 6189 else 6190 alloc = TRACK_FREE; 6191 6192 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 6193 bitmap_free(obj_map); 6194 seq_release_private(inode, filep); 6195 return -ENOMEM; 6196 } 6197 6198 for_each_kmem_cache_node(s, node, n) { 6199 unsigned long flags; 6200 struct slab *slab; 6201 6202 if (!atomic_long_read(&n->nr_slabs)) 6203 continue; 6204 6205 spin_lock_irqsave(&n->list_lock, flags); 6206 list_for_each_entry(slab, &n->partial, slab_list) 6207 process_slab(t, s, slab, alloc, obj_map); 6208 list_for_each_entry(slab, &n->full, slab_list) 6209 process_slab(t, s, slab, alloc, obj_map); 6210 spin_unlock_irqrestore(&n->list_lock, flags); 6211 } 6212 6213 /* Sort locations by count */ 6214 sort_r(t->loc, t->count, sizeof(struct location), 6215 cmp_loc_by_count, NULL, NULL); 6216 6217 bitmap_free(obj_map); 6218 return 0; 6219 } 6220 6221 static int slab_debug_trace_release(struct inode *inode, struct file *file) 6222 { 6223 struct seq_file *seq = file->private_data; 6224 struct loc_track *t = seq->private; 6225 6226 free_loc_track(t); 6227 return seq_release_private(inode, file); 6228 } 6229 6230 static const struct file_operations slab_debugfs_fops = { 6231 .open = slab_debug_trace_open, 6232 .read = seq_read, 6233 .llseek = seq_lseek, 6234 .release = slab_debug_trace_release, 6235 }; 6236 6237 static void debugfs_slab_add(struct kmem_cache *s) 6238 { 6239 struct dentry *slab_cache_dir; 6240 6241 if (unlikely(!slab_debugfs_root)) 6242 return; 6243 6244 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 6245 6246 debugfs_create_file("alloc_traces", 0400, 6247 slab_cache_dir, s, &slab_debugfs_fops); 6248 6249 debugfs_create_file("free_traces", 0400, 6250 slab_cache_dir, s, &slab_debugfs_fops); 6251 } 6252 6253 void debugfs_slab_release(struct kmem_cache *s) 6254 { 6255 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root)); 6256 } 6257 6258 static int __init slab_debugfs_init(void) 6259 { 6260 struct kmem_cache *s; 6261 6262 slab_debugfs_root = debugfs_create_dir("slab", NULL); 6263 6264 list_for_each_entry(s, &slab_caches, list) 6265 if (s->flags & SLAB_STORE_USER) 6266 debugfs_slab_add(s); 6267 6268 return 0; 6269 6270 } 6271 __initcall(slab_debugfs_init); 6272 #endif 6273 /* 6274 * The /proc/slabinfo ABI 6275 */ 6276 #ifdef CONFIG_SLUB_DEBUG 6277 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 6278 { 6279 unsigned long nr_slabs = 0; 6280 unsigned long nr_objs = 0; 6281 unsigned long nr_free = 0; 6282 int node; 6283 struct kmem_cache_node *n; 6284 6285 for_each_kmem_cache_node(s, node, n) { 6286 nr_slabs += node_nr_slabs(n); 6287 nr_objs += node_nr_objs(n); 6288 nr_free += count_partial(n, count_free); 6289 } 6290 6291 sinfo->active_objs = nr_objs - nr_free; 6292 sinfo->num_objs = nr_objs; 6293 sinfo->active_slabs = nr_slabs; 6294 sinfo->num_slabs = nr_slabs; 6295 sinfo->objects_per_slab = oo_objects(s->oo); 6296 sinfo->cache_order = oo_order(s->oo); 6297 } 6298 6299 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 6300 { 6301 } 6302 6303 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 6304 size_t count, loff_t *ppos) 6305 { 6306 return -EIO; 6307 } 6308 #endif /* CONFIG_SLUB_DEBUG */ 6309