xref: /openbmc/linux/mm/slub.c (revision 6c33a6f4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list except per cpu partial list. The processor that froze the
62  *   slab is the one who can perform list operations on the page. Other
63  *   processors may put objects onto the freelist but the processor that
64  *   froze the slab is the only one that can retrieve the objects from the
65  *   page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * page->frozen		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 	return 0;
123 #endif
124 }
125 
126 void *fixup_red_left(struct kmem_cache *s, void *p)
127 {
128 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
129 		p += s->red_left_pad;
130 
131 	return p;
132 }
133 
134 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
135 {
136 #ifdef CONFIG_SLUB_CPU_PARTIAL
137 	return !kmem_cache_debug(s);
138 #else
139 	return false;
140 #endif
141 }
142 
143 /*
144  * Issues still to be resolved:
145  *
146  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147  *
148  * - Variable sizing of the per node arrays
149  */
150 
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
153 
154 /* Enable to log cmpxchg failures */
155 #undef SLUB_DEBUG_CMPXCHG
156 
157 /*
158  * Mininum number of partial slabs. These will be left on the partial
159  * lists even if they are empty. kmem_cache_shrink may reclaim them.
160  */
161 #define MIN_PARTIAL 5
162 
163 /*
164  * Maximum number of desirable partial slabs.
165  * The existence of more partial slabs makes kmem_cache_shrink
166  * sort the partial list by the number of objects in use.
167  */
168 #define MAX_PARTIAL 10
169 
170 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
171 				SLAB_POISON | SLAB_STORE_USER)
172 
173 /*
174  * These debug flags cannot use CMPXCHG because there might be consistency
175  * issues when checking or reading debug information
176  */
177 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
178 				SLAB_TRACE)
179 
180 
181 /*
182  * Debugging flags that require metadata to be stored in the slab.  These get
183  * disabled when slub_debug=O is used and a cache's min order increases with
184  * metadata.
185  */
186 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
187 
188 #define OO_SHIFT	16
189 #define OO_MASK		((1 << OO_SHIFT) - 1)
190 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
191 
192 /* Internal SLUB flags */
193 /* Poison object */
194 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
195 /* Use cmpxchg_double */
196 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
197 
198 /*
199  * Tracking user of a slab.
200  */
201 #define TRACK_ADDRS_COUNT 16
202 struct track {
203 	unsigned long addr;	/* Called from address */
204 #ifdef CONFIG_STACKTRACE
205 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
206 #endif
207 	int cpu;		/* Was running on cpu */
208 	int pid;		/* Pid context */
209 	unsigned long when;	/* When did the operation occur */
210 };
211 
212 enum track_item { TRACK_ALLOC, TRACK_FREE };
213 
214 #ifdef CONFIG_SYSFS
215 static int sysfs_slab_add(struct kmem_cache *);
216 static int sysfs_slab_alias(struct kmem_cache *, const char *);
217 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
218 static void sysfs_slab_remove(struct kmem_cache *s);
219 #else
220 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 							{ return 0; }
223 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
224 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
225 #endif
226 
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 {
229 #ifdef CONFIG_SLUB_STATS
230 	/*
231 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 	 * avoid this_cpu_add()'s irq-disable overhead.
233 	 */
234 	raw_cpu_inc(s->cpu_slab->stat[si]);
235 #endif
236 }
237 
238 /********************************************************************
239  * 			Core slab cache functions
240  *******************************************************************/
241 
242 /*
243  * Returns freelist pointer (ptr). With hardening, this is obfuscated
244  * with an XOR of the address where the pointer is held and a per-cache
245  * random number.
246  */
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 				 unsigned long ptr_addr)
249 {
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
251 	/*
252 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 	 * Normally, this doesn't cause any issues, as both set_freepointer()
254 	 * and get_freepointer() are called with a pointer with the same tag.
255 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 	 * example, when __free_slub() iterates over objects in a cache, it
257 	 * passes untagged pointers to check_object(). check_object() in turns
258 	 * calls get_freepointer() with an untagged pointer, which causes the
259 	 * freepointer to be restored incorrectly.
260 	 */
261 	return (void *)((unsigned long)ptr ^ s->random ^
262 			(unsigned long)kasan_reset_tag((void *)ptr_addr));
263 #else
264 	return ptr;
265 #endif
266 }
267 
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache *s,
270 					 void *ptr_addr)
271 {
272 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 			    (unsigned long)ptr_addr);
274 }
275 
276 static inline void *get_freepointer(struct kmem_cache *s, void *object)
277 {
278 	return freelist_dereference(s, object + s->offset);
279 }
280 
281 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
282 {
283 	prefetch(object + s->offset);
284 }
285 
286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
287 {
288 	unsigned long freepointer_addr;
289 	void *p;
290 
291 	if (!debug_pagealloc_enabled_static())
292 		return get_freepointer(s, object);
293 
294 	freepointer_addr = (unsigned long)object + s->offset;
295 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
296 	return freelist_ptr(s, p, freepointer_addr);
297 }
298 
299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
300 {
301 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
302 
303 #ifdef CONFIG_SLAB_FREELIST_HARDENED
304 	BUG_ON(object == fp); /* naive detection of double free or corruption */
305 #endif
306 
307 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
308 }
309 
310 /* Loop over all objects in a slab */
311 #define for_each_object(__p, __s, __addr, __objects) \
312 	for (__p = fixup_red_left(__s, __addr); \
313 		__p < (__addr) + (__objects) * (__s)->size; \
314 		__p += (__s)->size)
315 
316 /* Determine object index from a given position */
317 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
318 {
319 	return (kasan_reset_tag(p) - addr) / s->size;
320 }
321 
322 static inline unsigned int order_objects(unsigned int order, unsigned int size)
323 {
324 	return ((unsigned int)PAGE_SIZE << order) / size;
325 }
326 
327 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
328 		unsigned int size)
329 {
330 	struct kmem_cache_order_objects x = {
331 		(order << OO_SHIFT) + order_objects(order, size)
332 	};
333 
334 	return x;
335 }
336 
337 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
338 {
339 	return x.x >> OO_SHIFT;
340 }
341 
342 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
343 {
344 	return x.x & OO_MASK;
345 }
346 
347 /*
348  * Per slab locking using the pagelock
349  */
350 static __always_inline void slab_lock(struct page *page)
351 {
352 	VM_BUG_ON_PAGE(PageTail(page), page);
353 	bit_spin_lock(PG_locked, &page->flags);
354 }
355 
356 static __always_inline void slab_unlock(struct page *page)
357 {
358 	VM_BUG_ON_PAGE(PageTail(page), page);
359 	__bit_spin_unlock(PG_locked, &page->flags);
360 }
361 
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 		void *freelist_old, unsigned long counters_old,
365 		void *freelist_new, unsigned long counters_new,
366 		const char *n)
367 {
368 	VM_BUG_ON(!irqs_disabled());
369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371 	if (s->flags & __CMPXCHG_DOUBLE) {
372 		if (cmpxchg_double(&page->freelist, &page->counters,
373 				   freelist_old, counters_old,
374 				   freelist_new, counters_new))
375 			return true;
376 	} else
377 #endif
378 	{
379 		slab_lock(page);
380 		if (page->freelist == freelist_old &&
381 					page->counters == counters_old) {
382 			page->freelist = freelist_new;
383 			page->counters = counters_new;
384 			slab_unlock(page);
385 			return true;
386 		}
387 		slab_unlock(page);
388 	}
389 
390 	cpu_relax();
391 	stat(s, CMPXCHG_DOUBLE_FAIL);
392 
393 #ifdef SLUB_DEBUG_CMPXCHG
394 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
395 #endif
396 
397 	return false;
398 }
399 
400 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
401 		void *freelist_old, unsigned long counters_old,
402 		void *freelist_new, unsigned long counters_new,
403 		const char *n)
404 {
405 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
407 	if (s->flags & __CMPXCHG_DOUBLE) {
408 		if (cmpxchg_double(&page->freelist, &page->counters,
409 				   freelist_old, counters_old,
410 				   freelist_new, counters_new))
411 			return true;
412 	} else
413 #endif
414 	{
415 		unsigned long flags;
416 
417 		local_irq_save(flags);
418 		slab_lock(page);
419 		if (page->freelist == freelist_old &&
420 					page->counters == counters_old) {
421 			page->freelist = freelist_new;
422 			page->counters = counters_new;
423 			slab_unlock(page);
424 			local_irq_restore(flags);
425 			return true;
426 		}
427 		slab_unlock(page);
428 		local_irq_restore(flags);
429 	}
430 
431 	cpu_relax();
432 	stat(s, CMPXCHG_DOUBLE_FAIL);
433 
434 #ifdef SLUB_DEBUG_CMPXCHG
435 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
436 #endif
437 
438 	return false;
439 }
440 
441 #ifdef CONFIG_SLUB_DEBUG
442 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
443 static DEFINE_SPINLOCK(object_map_lock);
444 
445 /*
446  * Determine a map of object in use on a page.
447  *
448  * Node listlock must be held to guarantee that the page does
449  * not vanish from under us.
450  */
451 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
452 {
453 	void *p;
454 	void *addr = page_address(page);
455 
456 	VM_BUG_ON(!irqs_disabled());
457 
458 	spin_lock(&object_map_lock);
459 
460 	bitmap_zero(object_map, page->objects);
461 
462 	for (p = page->freelist; p; p = get_freepointer(s, p))
463 		set_bit(slab_index(p, s, addr), object_map);
464 
465 	return object_map;
466 }
467 
468 static void put_map(unsigned long *map)
469 {
470 	VM_BUG_ON(map != object_map);
471 	lockdep_assert_held(&object_map_lock);
472 
473 	spin_unlock(&object_map_lock);
474 }
475 
476 static inline unsigned int size_from_object(struct kmem_cache *s)
477 {
478 	if (s->flags & SLAB_RED_ZONE)
479 		return s->size - s->red_left_pad;
480 
481 	return s->size;
482 }
483 
484 static inline void *restore_red_left(struct kmem_cache *s, void *p)
485 {
486 	if (s->flags & SLAB_RED_ZONE)
487 		p -= s->red_left_pad;
488 
489 	return p;
490 }
491 
492 /*
493  * Debug settings:
494  */
495 #if defined(CONFIG_SLUB_DEBUG_ON)
496 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
497 #else
498 static slab_flags_t slub_debug;
499 #endif
500 
501 static char *slub_debug_slabs;
502 static int disable_higher_order_debug;
503 
504 /*
505  * slub is about to manipulate internal object metadata.  This memory lies
506  * outside the range of the allocated object, so accessing it would normally
507  * be reported by kasan as a bounds error.  metadata_access_enable() is used
508  * to tell kasan that these accesses are OK.
509  */
510 static inline void metadata_access_enable(void)
511 {
512 	kasan_disable_current();
513 }
514 
515 static inline void metadata_access_disable(void)
516 {
517 	kasan_enable_current();
518 }
519 
520 /*
521  * Object debugging
522  */
523 
524 /* Verify that a pointer has an address that is valid within a slab page */
525 static inline int check_valid_pointer(struct kmem_cache *s,
526 				struct page *page, void *object)
527 {
528 	void *base;
529 
530 	if (!object)
531 		return 1;
532 
533 	base = page_address(page);
534 	object = kasan_reset_tag(object);
535 	object = restore_red_left(s, object);
536 	if (object < base || object >= base + page->objects * s->size ||
537 		(object - base) % s->size) {
538 		return 0;
539 	}
540 
541 	return 1;
542 }
543 
544 static void print_section(char *level, char *text, u8 *addr,
545 			  unsigned int length)
546 {
547 	metadata_access_enable();
548 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
549 			length, 1);
550 	metadata_access_disable();
551 }
552 
553 static struct track *get_track(struct kmem_cache *s, void *object,
554 	enum track_item alloc)
555 {
556 	struct track *p;
557 
558 	if (s->offset)
559 		p = object + s->offset + sizeof(void *);
560 	else
561 		p = object + s->inuse;
562 
563 	return p + alloc;
564 }
565 
566 static void set_track(struct kmem_cache *s, void *object,
567 			enum track_item alloc, unsigned long addr)
568 {
569 	struct track *p = get_track(s, object, alloc);
570 
571 	if (addr) {
572 #ifdef CONFIG_STACKTRACE
573 		unsigned int nr_entries;
574 
575 		metadata_access_enable();
576 		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
577 		metadata_access_disable();
578 
579 		if (nr_entries < TRACK_ADDRS_COUNT)
580 			p->addrs[nr_entries] = 0;
581 #endif
582 		p->addr = addr;
583 		p->cpu = smp_processor_id();
584 		p->pid = current->pid;
585 		p->when = jiffies;
586 	} else {
587 		memset(p, 0, sizeof(struct track));
588 	}
589 }
590 
591 static void init_tracking(struct kmem_cache *s, void *object)
592 {
593 	if (!(s->flags & SLAB_STORE_USER))
594 		return;
595 
596 	set_track(s, object, TRACK_FREE, 0UL);
597 	set_track(s, object, TRACK_ALLOC, 0UL);
598 }
599 
600 static void print_track(const char *s, struct track *t, unsigned long pr_time)
601 {
602 	if (!t->addr)
603 		return;
604 
605 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
606 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
607 #ifdef CONFIG_STACKTRACE
608 	{
609 		int i;
610 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
611 			if (t->addrs[i])
612 				pr_err("\t%pS\n", (void *)t->addrs[i]);
613 			else
614 				break;
615 	}
616 #endif
617 }
618 
619 static void print_tracking(struct kmem_cache *s, void *object)
620 {
621 	unsigned long pr_time = jiffies;
622 	if (!(s->flags & SLAB_STORE_USER))
623 		return;
624 
625 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
626 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
627 }
628 
629 static void print_page_info(struct page *page)
630 {
631 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
632 	       page, page->objects, page->inuse, page->freelist, page->flags);
633 
634 }
635 
636 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
637 {
638 	struct va_format vaf;
639 	va_list args;
640 
641 	va_start(args, fmt);
642 	vaf.fmt = fmt;
643 	vaf.va = &args;
644 	pr_err("=============================================================================\n");
645 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
646 	pr_err("-----------------------------------------------------------------------------\n\n");
647 
648 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
649 	va_end(args);
650 }
651 
652 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
653 {
654 	struct va_format vaf;
655 	va_list args;
656 
657 	va_start(args, fmt);
658 	vaf.fmt = fmt;
659 	vaf.va = &args;
660 	pr_err("FIX %s: %pV\n", s->name, &vaf);
661 	va_end(args);
662 }
663 
664 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
665 {
666 	unsigned int off;	/* Offset of last byte */
667 	u8 *addr = page_address(page);
668 
669 	print_tracking(s, p);
670 
671 	print_page_info(page);
672 
673 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
674 	       p, p - addr, get_freepointer(s, p));
675 
676 	if (s->flags & SLAB_RED_ZONE)
677 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
678 			      s->red_left_pad);
679 	else if (p > addr + 16)
680 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
681 
682 	print_section(KERN_ERR, "Object ", p,
683 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
684 	if (s->flags & SLAB_RED_ZONE)
685 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
686 			s->inuse - s->object_size);
687 
688 	if (s->offset)
689 		off = s->offset + sizeof(void *);
690 	else
691 		off = s->inuse;
692 
693 	if (s->flags & SLAB_STORE_USER)
694 		off += 2 * sizeof(struct track);
695 
696 	off += kasan_metadata_size(s);
697 
698 	if (off != size_from_object(s))
699 		/* Beginning of the filler is the free pointer */
700 		print_section(KERN_ERR, "Padding ", p + off,
701 			      size_from_object(s) - off);
702 
703 	dump_stack();
704 }
705 
706 void object_err(struct kmem_cache *s, struct page *page,
707 			u8 *object, char *reason)
708 {
709 	slab_bug(s, "%s", reason);
710 	print_trailer(s, page, object);
711 }
712 
713 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
714 			const char *fmt, ...)
715 {
716 	va_list args;
717 	char buf[100];
718 
719 	va_start(args, fmt);
720 	vsnprintf(buf, sizeof(buf), fmt, args);
721 	va_end(args);
722 	slab_bug(s, "%s", buf);
723 	print_page_info(page);
724 	dump_stack();
725 }
726 
727 static void init_object(struct kmem_cache *s, void *object, u8 val)
728 {
729 	u8 *p = object;
730 
731 	if (s->flags & SLAB_RED_ZONE)
732 		memset(p - s->red_left_pad, val, s->red_left_pad);
733 
734 	if (s->flags & __OBJECT_POISON) {
735 		memset(p, POISON_FREE, s->object_size - 1);
736 		p[s->object_size - 1] = POISON_END;
737 	}
738 
739 	if (s->flags & SLAB_RED_ZONE)
740 		memset(p + s->object_size, val, s->inuse - s->object_size);
741 }
742 
743 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
744 						void *from, void *to)
745 {
746 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
747 	memset(from, data, to - from);
748 }
749 
750 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
751 			u8 *object, char *what,
752 			u8 *start, unsigned int value, unsigned int bytes)
753 {
754 	u8 *fault;
755 	u8 *end;
756 	u8 *addr = page_address(page);
757 
758 	metadata_access_enable();
759 	fault = memchr_inv(start, value, bytes);
760 	metadata_access_disable();
761 	if (!fault)
762 		return 1;
763 
764 	end = start + bytes;
765 	while (end > fault && end[-1] == value)
766 		end--;
767 
768 	slab_bug(s, "%s overwritten", what);
769 	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
770 					fault, end - 1, fault - addr,
771 					fault[0], value);
772 	print_trailer(s, page, object);
773 
774 	restore_bytes(s, what, value, fault, end);
775 	return 0;
776 }
777 
778 /*
779  * Object layout:
780  *
781  * object address
782  * 	Bytes of the object to be managed.
783  * 	If the freepointer may overlay the object then the free
784  * 	pointer is the first word of the object.
785  *
786  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
787  * 	0xa5 (POISON_END)
788  *
789  * object + s->object_size
790  * 	Padding to reach word boundary. This is also used for Redzoning.
791  * 	Padding is extended by another word if Redzoning is enabled and
792  * 	object_size == inuse.
793  *
794  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
795  * 	0xcc (RED_ACTIVE) for objects in use.
796  *
797  * object + s->inuse
798  * 	Meta data starts here.
799  *
800  * 	A. Free pointer (if we cannot overwrite object on free)
801  * 	B. Tracking data for SLAB_STORE_USER
802  * 	C. Padding to reach required alignment boundary or at mininum
803  * 		one word if debugging is on to be able to detect writes
804  * 		before the word boundary.
805  *
806  *	Padding is done using 0x5a (POISON_INUSE)
807  *
808  * object + s->size
809  * 	Nothing is used beyond s->size.
810  *
811  * If slabcaches are merged then the object_size and inuse boundaries are mostly
812  * ignored. And therefore no slab options that rely on these boundaries
813  * may be used with merged slabcaches.
814  */
815 
816 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
817 {
818 	unsigned long off = s->inuse;	/* The end of info */
819 
820 	if (s->offset)
821 		/* Freepointer is placed after the object. */
822 		off += sizeof(void *);
823 
824 	if (s->flags & SLAB_STORE_USER)
825 		/* We also have user information there */
826 		off += 2 * sizeof(struct track);
827 
828 	off += kasan_metadata_size(s);
829 
830 	if (size_from_object(s) == off)
831 		return 1;
832 
833 	return check_bytes_and_report(s, page, p, "Object padding",
834 			p + off, POISON_INUSE, size_from_object(s) - off);
835 }
836 
837 /* Check the pad bytes at the end of a slab page */
838 static int slab_pad_check(struct kmem_cache *s, struct page *page)
839 {
840 	u8 *start;
841 	u8 *fault;
842 	u8 *end;
843 	u8 *pad;
844 	int length;
845 	int remainder;
846 
847 	if (!(s->flags & SLAB_POISON))
848 		return 1;
849 
850 	start = page_address(page);
851 	length = page_size(page);
852 	end = start + length;
853 	remainder = length % s->size;
854 	if (!remainder)
855 		return 1;
856 
857 	pad = end - remainder;
858 	metadata_access_enable();
859 	fault = memchr_inv(pad, POISON_INUSE, remainder);
860 	metadata_access_disable();
861 	if (!fault)
862 		return 1;
863 	while (end > fault && end[-1] == POISON_INUSE)
864 		end--;
865 
866 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
867 			fault, end - 1, fault - start);
868 	print_section(KERN_ERR, "Padding ", pad, remainder);
869 
870 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
871 	return 0;
872 }
873 
874 static int check_object(struct kmem_cache *s, struct page *page,
875 					void *object, u8 val)
876 {
877 	u8 *p = object;
878 	u8 *endobject = object + s->object_size;
879 
880 	if (s->flags & SLAB_RED_ZONE) {
881 		if (!check_bytes_and_report(s, page, object, "Redzone",
882 			object - s->red_left_pad, val, s->red_left_pad))
883 			return 0;
884 
885 		if (!check_bytes_and_report(s, page, object, "Redzone",
886 			endobject, val, s->inuse - s->object_size))
887 			return 0;
888 	} else {
889 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
890 			check_bytes_and_report(s, page, p, "Alignment padding",
891 				endobject, POISON_INUSE,
892 				s->inuse - s->object_size);
893 		}
894 	}
895 
896 	if (s->flags & SLAB_POISON) {
897 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
898 			(!check_bytes_and_report(s, page, p, "Poison", p,
899 					POISON_FREE, s->object_size - 1) ||
900 			 !check_bytes_and_report(s, page, p, "Poison",
901 				p + s->object_size - 1, POISON_END, 1)))
902 			return 0;
903 		/*
904 		 * check_pad_bytes cleans up on its own.
905 		 */
906 		check_pad_bytes(s, page, p);
907 	}
908 
909 	if (!s->offset && val == SLUB_RED_ACTIVE)
910 		/*
911 		 * Object and freepointer overlap. Cannot check
912 		 * freepointer while object is allocated.
913 		 */
914 		return 1;
915 
916 	/* Check free pointer validity */
917 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
918 		object_err(s, page, p, "Freepointer corrupt");
919 		/*
920 		 * No choice but to zap it and thus lose the remainder
921 		 * of the free objects in this slab. May cause
922 		 * another error because the object count is now wrong.
923 		 */
924 		set_freepointer(s, p, NULL);
925 		return 0;
926 	}
927 	return 1;
928 }
929 
930 static int check_slab(struct kmem_cache *s, struct page *page)
931 {
932 	int maxobj;
933 
934 	VM_BUG_ON(!irqs_disabled());
935 
936 	if (!PageSlab(page)) {
937 		slab_err(s, page, "Not a valid slab page");
938 		return 0;
939 	}
940 
941 	maxobj = order_objects(compound_order(page), s->size);
942 	if (page->objects > maxobj) {
943 		slab_err(s, page, "objects %u > max %u",
944 			page->objects, maxobj);
945 		return 0;
946 	}
947 	if (page->inuse > page->objects) {
948 		slab_err(s, page, "inuse %u > max %u",
949 			page->inuse, page->objects);
950 		return 0;
951 	}
952 	/* Slab_pad_check fixes things up after itself */
953 	slab_pad_check(s, page);
954 	return 1;
955 }
956 
957 /*
958  * Determine if a certain object on a page is on the freelist. Must hold the
959  * slab lock to guarantee that the chains are in a consistent state.
960  */
961 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
962 {
963 	int nr = 0;
964 	void *fp;
965 	void *object = NULL;
966 	int max_objects;
967 
968 	fp = page->freelist;
969 	while (fp && nr <= page->objects) {
970 		if (fp == search)
971 			return 1;
972 		if (!check_valid_pointer(s, page, fp)) {
973 			if (object) {
974 				object_err(s, page, object,
975 					"Freechain corrupt");
976 				set_freepointer(s, object, NULL);
977 			} else {
978 				slab_err(s, page, "Freepointer corrupt");
979 				page->freelist = NULL;
980 				page->inuse = page->objects;
981 				slab_fix(s, "Freelist cleared");
982 				return 0;
983 			}
984 			break;
985 		}
986 		object = fp;
987 		fp = get_freepointer(s, object);
988 		nr++;
989 	}
990 
991 	max_objects = order_objects(compound_order(page), s->size);
992 	if (max_objects > MAX_OBJS_PER_PAGE)
993 		max_objects = MAX_OBJS_PER_PAGE;
994 
995 	if (page->objects != max_objects) {
996 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
997 			 page->objects, max_objects);
998 		page->objects = max_objects;
999 		slab_fix(s, "Number of objects adjusted.");
1000 	}
1001 	if (page->inuse != page->objects - nr) {
1002 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1003 			 page->inuse, page->objects - nr);
1004 		page->inuse = page->objects - nr;
1005 		slab_fix(s, "Object count adjusted.");
1006 	}
1007 	return search == NULL;
1008 }
1009 
1010 static void trace(struct kmem_cache *s, struct page *page, void *object,
1011 								int alloc)
1012 {
1013 	if (s->flags & SLAB_TRACE) {
1014 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1015 			s->name,
1016 			alloc ? "alloc" : "free",
1017 			object, page->inuse,
1018 			page->freelist);
1019 
1020 		if (!alloc)
1021 			print_section(KERN_INFO, "Object ", (void *)object,
1022 					s->object_size);
1023 
1024 		dump_stack();
1025 	}
1026 }
1027 
1028 /*
1029  * Tracking of fully allocated slabs for debugging purposes.
1030  */
1031 static void add_full(struct kmem_cache *s,
1032 	struct kmem_cache_node *n, struct page *page)
1033 {
1034 	if (!(s->flags & SLAB_STORE_USER))
1035 		return;
1036 
1037 	lockdep_assert_held(&n->list_lock);
1038 	list_add(&page->slab_list, &n->full);
1039 }
1040 
1041 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1042 {
1043 	if (!(s->flags & SLAB_STORE_USER))
1044 		return;
1045 
1046 	lockdep_assert_held(&n->list_lock);
1047 	list_del(&page->slab_list);
1048 }
1049 
1050 /* Tracking of the number of slabs for debugging purposes */
1051 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1052 {
1053 	struct kmem_cache_node *n = get_node(s, node);
1054 
1055 	return atomic_long_read(&n->nr_slabs);
1056 }
1057 
1058 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1059 {
1060 	return atomic_long_read(&n->nr_slabs);
1061 }
1062 
1063 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1064 {
1065 	struct kmem_cache_node *n = get_node(s, node);
1066 
1067 	/*
1068 	 * May be called early in order to allocate a slab for the
1069 	 * kmem_cache_node structure. Solve the chicken-egg
1070 	 * dilemma by deferring the increment of the count during
1071 	 * bootstrap (see early_kmem_cache_node_alloc).
1072 	 */
1073 	if (likely(n)) {
1074 		atomic_long_inc(&n->nr_slabs);
1075 		atomic_long_add(objects, &n->total_objects);
1076 	}
1077 }
1078 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1079 {
1080 	struct kmem_cache_node *n = get_node(s, node);
1081 
1082 	atomic_long_dec(&n->nr_slabs);
1083 	atomic_long_sub(objects, &n->total_objects);
1084 }
1085 
1086 /* Object debug checks for alloc/free paths */
1087 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1088 								void *object)
1089 {
1090 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1091 		return;
1092 
1093 	init_object(s, object, SLUB_RED_INACTIVE);
1094 	init_tracking(s, object);
1095 }
1096 
1097 static
1098 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1099 {
1100 	if (!(s->flags & SLAB_POISON))
1101 		return;
1102 
1103 	metadata_access_enable();
1104 	memset(addr, POISON_INUSE, page_size(page));
1105 	metadata_access_disable();
1106 }
1107 
1108 static inline int alloc_consistency_checks(struct kmem_cache *s,
1109 					struct page *page, void *object)
1110 {
1111 	if (!check_slab(s, page))
1112 		return 0;
1113 
1114 	if (!check_valid_pointer(s, page, object)) {
1115 		object_err(s, page, object, "Freelist Pointer check fails");
1116 		return 0;
1117 	}
1118 
1119 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1120 		return 0;
1121 
1122 	return 1;
1123 }
1124 
1125 static noinline int alloc_debug_processing(struct kmem_cache *s,
1126 					struct page *page,
1127 					void *object, unsigned long addr)
1128 {
1129 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1130 		if (!alloc_consistency_checks(s, page, object))
1131 			goto bad;
1132 	}
1133 
1134 	/* Success perform special debug activities for allocs */
1135 	if (s->flags & SLAB_STORE_USER)
1136 		set_track(s, object, TRACK_ALLOC, addr);
1137 	trace(s, page, object, 1);
1138 	init_object(s, object, SLUB_RED_ACTIVE);
1139 	return 1;
1140 
1141 bad:
1142 	if (PageSlab(page)) {
1143 		/*
1144 		 * If this is a slab page then lets do the best we can
1145 		 * to avoid issues in the future. Marking all objects
1146 		 * as used avoids touching the remaining objects.
1147 		 */
1148 		slab_fix(s, "Marking all objects used");
1149 		page->inuse = page->objects;
1150 		page->freelist = NULL;
1151 	}
1152 	return 0;
1153 }
1154 
1155 static inline int free_consistency_checks(struct kmem_cache *s,
1156 		struct page *page, void *object, unsigned long addr)
1157 {
1158 	if (!check_valid_pointer(s, page, object)) {
1159 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1160 		return 0;
1161 	}
1162 
1163 	if (on_freelist(s, page, object)) {
1164 		object_err(s, page, object, "Object already free");
1165 		return 0;
1166 	}
1167 
1168 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1169 		return 0;
1170 
1171 	if (unlikely(s != page->slab_cache)) {
1172 		if (!PageSlab(page)) {
1173 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1174 				 object);
1175 		} else if (!page->slab_cache) {
1176 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1177 			       object);
1178 			dump_stack();
1179 		} else
1180 			object_err(s, page, object,
1181 					"page slab pointer corrupt.");
1182 		return 0;
1183 	}
1184 	return 1;
1185 }
1186 
1187 /* Supports checking bulk free of a constructed freelist */
1188 static noinline int free_debug_processing(
1189 	struct kmem_cache *s, struct page *page,
1190 	void *head, void *tail, int bulk_cnt,
1191 	unsigned long addr)
1192 {
1193 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1194 	void *object = head;
1195 	int cnt = 0;
1196 	unsigned long uninitialized_var(flags);
1197 	int ret = 0;
1198 
1199 	spin_lock_irqsave(&n->list_lock, flags);
1200 	slab_lock(page);
1201 
1202 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1203 		if (!check_slab(s, page))
1204 			goto out;
1205 	}
1206 
1207 next_object:
1208 	cnt++;
1209 
1210 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1211 		if (!free_consistency_checks(s, page, object, addr))
1212 			goto out;
1213 	}
1214 
1215 	if (s->flags & SLAB_STORE_USER)
1216 		set_track(s, object, TRACK_FREE, addr);
1217 	trace(s, page, object, 0);
1218 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1219 	init_object(s, object, SLUB_RED_INACTIVE);
1220 
1221 	/* Reached end of constructed freelist yet? */
1222 	if (object != tail) {
1223 		object = get_freepointer(s, object);
1224 		goto next_object;
1225 	}
1226 	ret = 1;
1227 
1228 out:
1229 	if (cnt != bulk_cnt)
1230 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1231 			 bulk_cnt, cnt);
1232 
1233 	slab_unlock(page);
1234 	spin_unlock_irqrestore(&n->list_lock, flags);
1235 	if (!ret)
1236 		slab_fix(s, "Object at 0x%p not freed", object);
1237 	return ret;
1238 }
1239 
1240 static int __init setup_slub_debug(char *str)
1241 {
1242 	slub_debug = DEBUG_DEFAULT_FLAGS;
1243 	if (*str++ != '=' || !*str)
1244 		/*
1245 		 * No options specified. Switch on full debugging.
1246 		 */
1247 		goto out;
1248 
1249 	if (*str == ',')
1250 		/*
1251 		 * No options but restriction on slabs. This means full
1252 		 * debugging for slabs matching a pattern.
1253 		 */
1254 		goto check_slabs;
1255 
1256 	slub_debug = 0;
1257 	if (*str == '-')
1258 		/*
1259 		 * Switch off all debugging measures.
1260 		 */
1261 		goto out;
1262 
1263 	/*
1264 	 * Determine which debug features should be switched on
1265 	 */
1266 	for (; *str && *str != ','; str++) {
1267 		switch (tolower(*str)) {
1268 		case 'f':
1269 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1270 			break;
1271 		case 'z':
1272 			slub_debug |= SLAB_RED_ZONE;
1273 			break;
1274 		case 'p':
1275 			slub_debug |= SLAB_POISON;
1276 			break;
1277 		case 'u':
1278 			slub_debug |= SLAB_STORE_USER;
1279 			break;
1280 		case 't':
1281 			slub_debug |= SLAB_TRACE;
1282 			break;
1283 		case 'a':
1284 			slub_debug |= SLAB_FAILSLAB;
1285 			break;
1286 		case 'o':
1287 			/*
1288 			 * Avoid enabling debugging on caches if its minimum
1289 			 * order would increase as a result.
1290 			 */
1291 			disable_higher_order_debug = 1;
1292 			break;
1293 		default:
1294 			pr_err("slub_debug option '%c' unknown. skipped\n",
1295 			       *str);
1296 		}
1297 	}
1298 
1299 check_slabs:
1300 	if (*str == ',')
1301 		slub_debug_slabs = str + 1;
1302 out:
1303 	if ((static_branch_unlikely(&init_on_alloc) ||
1304 	     static_branch_unlikely(&init_on_free)) &&
1305 	    (slub_debug & SLAB_POISON))
1306 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1307 	return 1;
1308 }
1309 
1310 __setup("slub_debug", setup_slub_debug);
1311 
1312 /*
1313  * kmem_cache_flags - apply debugging options to the cache
1314  * @object_size:	the size of an object without meta data
1315  * @flags:		flags to set
1316  * @name:		name of the cache
1317  * @ctor:		constructor function
1318  *
1319  * Debug option(s) are applied to @flags. In addition to the debug
1320  * option(s), if a slab name (or multiple) is specified i.e.
1321  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1322  * then only the select slabs will receive the debug option(s).
1323  */
1324 slab_flags_t kmem_cache_flags(unsigned int object_size,
1325 	slab_flags_t flags, const char *name,
1326 	void (*ctor)(void *))
1327 {
1328 	char *iter;
1329 	size_t len;
1330 
1331 	/* If slub_debug = 0, it folds into the if conditional. */
1332 	if (!slub_debug_slabs)
1333 		return flags | slub_debug;
1334 
1335 	len = strlen(name);
1336 	iter = slub_debug_slabs;
1337 	while (*iter) {
1338 		char *end, *glob;
1339 		size_t cmplen;
1340 
1341 		end = strchrnul(iter, ',');
1342 
1343 		glob = strnchr(iter, end - iter, '*');
1344 		if (glob)
1345 			cmplen = glob - iter;
1346 		else
1347 			cmplen = max_t(size_t, len, (end - iter));
1348 
1349 		if (!strncmp(name, iter, cmplen)) {
1350 			flags |= slub_debug;
1351 			break;
1352 		}
1353 
1354 		if (!*end)
1355 			break;
1356 		iter = end + 1;
1357 	}
1358 
1359 	return flags;
1360 }
1361 #else /* !CONFIG_SLUB_DEBUG */
1362 static inline void setup_object_debug(struct kmem_cache *s,
1363 			struct page *page, void *object) {}
1364 static inline
1365 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1366 
1367 static inline int alloc_debug_processing(struct kmem_cache *s,
1368 	struct page *page, void *object, unsigned long addr) { return 0; }
1369 
1370 static inline int free_debug_processing(
1371 	struct kmem_cache *s, struct page *page,
1372 	void *head, void *tail, int bulk_cnt,
1373 	unsigned long addr) { return 0; }
1374 
1375 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1376 			{ return 1; }
1377 static inline int check_object(struct kmem_cache *s, struct page *page,
1378 			void *object, u8 val) { return 1; }
1379 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1380 					struct page *page) {}
1381 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1382 					struct page *page) {}
1383 slab_flags_t kmem_cache_flags(unsigned int object_size,
1384 	slab_flags_t flags, const char *name,
1385 	void (*ctor)(void *))
1386 {
1387 	return flags;
1388 }
1389 #define slub_debug 0
1390 
1391 #define disable_higher_order_debug 0
1392 
1393 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1394 							{ return 0; }
1395 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1396 							{ return 0; }
1397 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1398 							int objects) {}
1399 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1400 							int objects) {}
1401 
1402 #endif /* CONFIG_SLUB_DEBUG */
1403 
1404 /*
1405  * Hooks for other subsystems that check memory allocations. In a typical
1406  * production configuration these hooks all should produce no code at all.
1407  */
1408 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1409 {
1410 	ptr = kasan_kmalloc_large(ptr, size, flags);
1411 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1412 	kmemleak_alloc(ptr, size, 1, flags);
1413 	return ptr;
1414 }
1415 
1416 static __always_inline void kfree_hook(void *x)
1417 {
1418 	kmemleak_free(x);
1419 	kasan_kfree_large(x, _RET_IP_);
1420 }
1421 
1422 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1423 {
1424 	kmemleak_free_recursive(x, s->flags);
1425 
1426 	/*
1427 	 * Trouble is that we may no longer disable interrupts in the fast path
1428 	 * So in order to make the debug calls that expect irqs to be
1429 	 * disabled we need to disable interrupts temporarily.
1430 	 */
1431 #ifdef CONFIG_LOCKDEP
1432 	{
1433 		unsigned long flags;
1434 
1435 		local_irq_save(flags);
1436 		debug_check_no_locks_freed(x, s->object_size);
1437 		local_irq_restore(flags);
1438 	}
1439 #endif
1440 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1441 		debug_check_no_obj_freed(x, s->object_size);
1442 
1443 	/* KASAN might put x into memory quarantine, delaying its reuse */
1444 	return kasan_slab_free(s, x, _RET_IP_);
1445 }
1446 
1447 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1448 					   void **head, void **tail)
1449 {
1450 
1451 	void *object;
1452 	void *next = *head;
1453 	void *old_tail = *tail ? *tail : *head;
1454 	int rsize;
1455 
1456 	/* Head and tail of the reconstructed freelist */
1457 	*head = NULL;
1458 	*tail = NULL;
1459 
1460 	do {
1461 		object = next;
1462 		next = get_freepointer(s, object);
1463 
1464 		if (slab_want_init_on_free(s)) {
1465 			/*
1466 			 * Clear the object and the metadata, but don't touch
1467 			 * the redzone.
1468 			 */
1469 			memset(object, 0, s->object_size);
1470 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1471 							   : 0;
1472 			memset((char *)object + s->inuse, 0,
1473 			       s->size - s->inuse - rsize);
1474 
1475 		}
1476 		/* If object's reuse doesn't have to be delayed */
1477 		if (!slab_free_hook(s, object)) {
1478 			/* Move object to the new freelist */
1479 			set_freepointer(s, object, *head);
1480 			*head = object;
1481 			if (!*tail)
1482 				*tail = object;
1483 		}
1484 	} while (object != old_tail);
1485 
1486 	if (*head == *tail)
1487 		*tail = NULL;
1488 
1489 	return *head != NULL;
1490 }
1491 
1492 static void *setup_object(struct kmem_cache *s, struct page *page,
1493 				void *object)
1494 {
1495 	setup_object_debug(s, page, object);
1496 	object = kasan_init_slab_obj(s, object);
1497 	if (unlikely(s->ctor)) {
1498 		kasan_unpoison_object_data(s, object);
1499 		s->ctor(object);
1500 		kasan_poison_object_data(s, object);
1501 	}
1502 	return object;
1503 }
1504 
1505 /*
1506  * Slab allocation and freeing
1507  */
1508 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1509 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1510 {
1511 	struct page *page;
1512 	unsigned int order = oo_order(oo);
1513 
1514 	if (node == NUMA_NO_NODE)
1515 		page = alloc_pages(flags, order);
1516 	else
1517 		page = __alloc_pages_node(node, flags, order);
1518 
1519 	if (page && charge_slab_page(page, flags, order, s)) {
1520 		__free_pages(page, order);
1521 		page = NULL;
1522 	}
1523 
1524 	return page;
1525 }
1526 
1527 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1528 /* Pre-initialize the random sequence cache */
1529 static int init_cache_random_seq(struct kmem_cache *s)
1530 {
1531 	unsigned int count = oo_objects(s->oo);
1532 	int err;
1533 
1534 	/* Bailout if already initialised */
1535 	if (s->random_seq)
1536 		return 0;
1537 
1538 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1539 	if (err) {
1540 		pr_err("SLUB: Unable to initialize free list for %s\n",
1541 			s->name);
1542 		return err;
1543 	}
1544 
1545 	/* Transform to an offset on the set of pages */
1546 	if (s->random_seq) {
1547 		unsigned int i;
1548 
1549 		for (i = 0; i < count; i++)
1550 			s->random_seq[i] *= s->size;
1551 	}
1552 	return 0;
1553 }
1554 
1555 /* Initialize each random sequence freelist per cache */
1556 static void __init init_freelist_randomization(void)
1557 {
1558 	struct kmem_cache *s;
1559 
1560 	mutex_lock(&slab_mutex);
1561 
1562 	list_for_each_entry(s, &slab_caches, list)
1563 		init_cache_random_seq(s);
1564 
1565 	mutex_unlock(&slab_mutex);
1566 }
1567 
1568 /* Get the next entry on the pre-computed freelist randomized */
1569 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1570 				unsigned long *pos, void *start,
1571 				unsigned long page_limit,
1572 				unsigned long freelist_count)
1573 {
1574 	unsigned int idx;
1575 
1576 	/*
1577 	 * If the target page allocation failed, the number of objects on the
1578 	 * page might be smaller than the usual size defined by the cache.
1579 	 */
1580 	do {
1581 		idx = s->random_seq[*pos];
1582 		*pos += 1;
1583 		if (*pos >= freelist_count)
1584 			*pos = 0;
1585 	} while (unlikely(idx >= page_limit));
1586 
1587 	return (char *)start + idx;
1588 }
1589 
1590 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1591 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1592 {
1593 	void *start;
1594 	void *cur;
1595 	void *next;
1596 	unsigned long idx, pos, page_limit, freelist_count;
1597 
1598 	if (page->objects < 2 || !s->random_seq)
1599 		return false;
1600 
1601 	freelist_count = oo_objects(s->oo);
1602 	pos = get_random_int() % freelist_count;
1603 
1604 	page_limit = page->objects * s->size;
1605 	start = fixup_red_left(s, page_address(page));
1606 
1607 	/* First entry is used as the base of the freelist */
1608 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1609 				freelist_count);
1610 	cur = setup_object(s, page, cur);
1611 	page->freelist = cur;
1612 
1613 	for (idx = 1; idx < page->objects; idx++) {
1614 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1615 			freelist_count);
1616 		next = setup_object(s, page, next);
1617 		set_freepointer(s, cur, next);
1618 		cur = next;
1619 	}
1620 	set_freepointer(s, cur, NULL);
1621 
1622 	return true;
1623 }
1624 #else
1625 static inline int init_cache_random_seq(struct kmem_cache *s)
1626 {
1627 	return 0;
1628 }
1629 static inline void init_freelist_randomization(void) { }
1630 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1631 {
1632 	return false;
1633 }
1634 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1635 
1636 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1637 {
1638 	struct page *page;
1639 	struct kmem_cache_order_objects oo = s->oo;
1640 	gfp_t alloc_gfp;
1641 	void *start, *p, *next;
1642 	int idx;
1643 	bool shuffle;
1644 
1645 	flags &= gfp_allowed_mask;
1646 
1647 	if (gfpflags_allow_blocking(flags))
1648 		local_irq_enable();
1649 
1650 	flags |= s->allocflags;
1651 
1652 	/*
1653 	 * Let the initial higher-order allocation fail under memory pressure
1654 	 * so we fall-back to the minimum order allocation.
1655 	 */
1656 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1657 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1658 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1659 
1660 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1661 	if (unlikely(!page)) {
1662 		oo = s->min;
1663 		alloc_gfp = flags;
1664 		/*
1665 		 * Allocation may have failed due to fragmentation.
1666 		 * Try a lower order alloc if possible
1667 		 */
1668 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1669 		if (unlikely(!page))
1670 			goto out;
1671 		stat(s, ORDER_FALLBACK);
1672 	}
1673 
1674 	page->objects = oo_objects(oo);
1675 
1676 	page->slab_cache = s;
1677 	__SetPageSlab(page);
1678 	if (page_is_pfmemalloc(page))
1679 		SetPageSlabPfmemalloc(page);
1680 
1681 	kasan_poison_slab(page);
1682 
1683 	start = page_address(page);
1684 
1685 	setup_page_debug(s, page, start);
1686 
1687 	shuffle = shuffle_freelist(s, page);
1688 
1689 	if (!shuffle) {
1690 		start = fixup_red_left(s, start);
1691 		start = setup_object(s, page, start);
1692 		page->freelist = start;
1693 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1694 			next = p + s->size;
1695 			next = setup_object(s, page, next);
1696 			set_freepointer(s, p, next);
1697 			p = next;
1698 		}
1699 		set_freepointer(s, p, NULL);
1700 	}
1701 
1702 	page->inuse = page->objects;
1703 	page->frozen = 1;
1704 
1705 out:
1706 	if (gfpflags_allow_blocking(flags))
1707 		local_irq_disable();
1708 	if (!page)
1709 		return NULL;
1710 
1711 	inc_slabs_node(s, page_to_nid(page), page->objects);
1712 
1713 	return page;
1714 }
1715 
1716 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1717 {
1718 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1719 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1720 		flags &= ~GFP_SLAB_BUG_MASK;
1721 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1722 				invalid_mask, &invalid_mask, flags, &flags);
1723 		dump_stack();
1724 	}
1725 
1726 	return allocate_slab(s,
1727 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1728 }
1729 
1730 static void __free_slab(struct kmem_cache *s, struct page *page)
1731 {
1732 	int order = compound_order(page);
1733 	int pages = 1 << order;
1734 
1735 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1736 		void *p;
1737 
1738 		slab_pad_check(s, page);
1739 		for_each_object(p, s, page_address(page),
1740 						page->objects)
1741 			check_object(s, page, p, SLUB_RED_INACTIVE);
1742 	}
1743 
1744 	__ClearPageSlabPfmemalloc(page);
1745 	__ClearPageSlab(page);
1746 
1747 	page->mapping = NULL;
1748 	if (current->reclaim_state)
1749 		current->reclaim_state->reclaimed_slab += pages;
1750 	uncharge_slab_page(page, order, s);
1751 	__free_pages(page, order);
1752 }
1753 
1754 static void rcu_free_slab(struct rcu_head *h)
1755 {
1756 	struct page *page = container_of(h, struct page, rcu_head);
1757 
1758 	__free_slab(page->slab_cache, page);
1759 }
1760 
1761 static void free_slab(struct kmem_cache *s, struct page *page)
1762 {
1763 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1764 		call_rcu(&page->rcu_head, rcu_free_slab);
1765 	} else
1766 		__free_slab(s, page);
1767 }
1768 
1769 static void discard_slab(struct kmem_cache *s, struct page *page)
1770 {
1771 	dec_slabs_node(s, page_to_nid(page), page->objects);
1772 	free_slab(s, page);
1773 }
1774 
1775 /*
1776  * Management of partially allocated slabs.
1777  */
1778 static inline void
1779 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1780 {
1781 	n->nr_partial++;
1782 	if (tail == DEACTIVATE_TO_TAIL)
1783 		list_add_tail(&page->slab_list, &n->partial);
1784 	else
1785 		list_add(&page->slab_list, &n->partial);
1786 }
1787 
1788 static inline void add_partial(struct kmem_cache_node *n,
1789 				struct page *page, int tail)
1790 {
1791 	lockdep_assert_held(&n->list_lock);
1792 	__add_partial(n, page, tail);
1793 }
1794 
1795 static inline void remove_partial(struct kmem_cache_node *n,
1796 					struct page *page)
1797 {
1798 	lockdep_assert_held(&n->list_lock);
1799 	list_del(&page->slab_list);
1800 	n->nr_partial--;
1801 }
1802 
1803 /*
1804  * Remove slab from the partial list, freeze it and
1805  * return the pointer to the freelist.
1806  *
1807  * Returns a list of objects or NULL if it fails.
1808  */
1809 static inline void *acquire_slab(struct kmem_cache *s,
1810 		struct kmem_cache_node *n, struct page *page,
1811 		int mode, int *objects)
1812 {
1813 	void *freelist;
1814 	unsigned long counters;
1815 	struct page new;
1816 
1817 	lockdep_assert_held(&n->list_lock);
1818 
1819 	/*
1820 	 * Zap the freelist and set the frozen bit.
1821 	 * The old freelist is the list of objects for the
1822 	 * per cpu allocation list.
1823 	 */
1824 	freelist = page->freelist;
1825 	counters = page->counters;
1826 	new.counters = counters;
1827 	*objects = new.objects - new.inuse;
1828 	if (mode) {
1829 		new.inuse = page->objects;
1830 		new.freelist = NULL;
1831 	} else {
1832 		new.freelist = freelist;
1833 	}
1834 
1835 	VM_BUG_ON(new.frozen);
1836 	new.frozen = 1;
1837 
1838 	if (!__cmpxchg_double_slab(s, page,
1839 			freelist, counters,
1840 			new.freelist, new.counters,
1841 			"acquire_slab"))
1842 		return NULL;
1843 
1844 	remove_partial(n, page);
1845 	WARN_ON(!freelist);
1846 	return freelist;
1847 }
1848 
1849 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1850 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1851 
1852 /*
1853  * Try to allocate a partial slab from a specific node.
1854  */
1855 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1856 				struct kmem_cache_cpu *c, gfp_t flags)
1857 {
1858 	struct page *page, *page2;
1859 	void *object = NULL;
1860 	unsigned int available = 0;
1861 	int objects;
1862 
1863 	/*
1864 	 * Racy check. If we mistakenly see no partial slabs then we
1865 	 * just allocate an empty slab. If we mistakenly try to get a
1866 	 * partial slab and there is none available then get_partials()
1867 	 * will return NULL.
1868 	 */
1869 	if (!n || !n->nr_partial)
1870 		return NULL;
1871 
1872 	spin_lock(&n->list_lock);
1873 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1874 		void *t;
1875 
1876 		if (!pfmemalloc_match(page, flags))
1877 			continue;
1878 
1879 		t = acquire_slab(s, n, page, object == NULL, &objects);
1880 		if (!t)
1881 			break;
1882 
1883 		available += objects;
1884 		if (!object) {
1885 			c->page = page;
1886 			stat(s, ALLOC_FROM_PARTIAL);
1887 			object = t;
1888 		} else {
1889 			put_cpu_partial(s, page, 0);
1890 			stat(s, CPU_PARTIAL_NODE);
1891 		}
1892 		if (!kmem_cache_has_cpu_partial(s)
1893 			|| available > slub_cpu_partial(s) / 2)
1894 			break;
1895 
1896 	}
1897 	spin_unlock(&n->list_lock);
1898 	return object;
1899 }
1900 
1901 /*
1902  * Get a page from somewhere. Search in increasing NUMA distances.
1903  */
1904 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1905 		struct kmem_cache_cpu *c)
1906 {
1907 #ifdef CONFIG_NUMA
1908 	struct zonelist *zonelist;
1909 	struct zoneref *z;
1910 	struct zone *zone;
1911 	enum zone_type high_zoneidx = gfp_zone(flags);
1912 	void *object;
1913 	unsigned int cpuset_mems_cookie;
1914 
1915 	/*
1916 	 * The defrag ratio allows a configuration of the tradeoffs between
1917 	 * inter node defragmentation and node local allocations. A lower
1918 	 * defrag_ratio increases the tendency to do local allocations
1919 	 * instead of attempting to obtain partial slabs from other nodes.
1920 	 *
1921 	 * If the defrag_ratio is set to 0 then kmalloc() always
1922 	 * returns node local objects. If the ratio is higher then kmalloc()
1923 	 * may return off node objects because partial slabs are obtained
1924 	 * from other nodes and filled up.
1925 	 *
1926 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1927 	 * (which makes defrag_ratio = 1000) then every (well almost)
1928 	 * allocation will first attempt to defrag slab caches on other nodes.
1929 	 * This means scanning over all nodes to look for partial slabs which
1930 	 * may be expensive if we do it every time we are trying to find a slab
1931 	 * with available objects.
1932 	 */
1933 	if (!s->remote_node_defrag_ratio ||
1934 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1935 		return NULL;
1936 
1937 	do {
1938 		cpuset_mems_cookie = read_mems_allowed_begin();
1939 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1940 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1941 			struct kmem_cache_node *n;
1942 
1943 			n = get_node(s, zone_to_nid(zone));
1944 
1945 			if (n && cpuset_zone_allowed(zone, flags) &&
1946 					n->nr_partial > s->min_partial) {
1947 				object = get_partial_node(s, n, c, flags);
1948 				if (object) {
1949 					/*
1950 					 * Don't check read_mems_allowed_retry()
1951 					 * here - if mems_allowed was updated in
1952 					 * parallel, that was a harmless race
1953 					 * between allocation and the cpuset
1954 					 * update
1955 					 */
1956 					return object;
1957 				}
1958 			}
1959 		}
1960 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1961 #endif	/* CONFIG_NUMA */
1962 	return NULL;
1963 }
1964 
1965 /*
1966  * Get a partial page, lock it and return it.
1967  */
1968 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1969 		struct kmem_cache_cpu *c)
1970 {
1971 	void *object;
1972 	int searchnode = node;
1973 
1974 	if (node == NUMA_NO_NODE)
1975 		searchnode = numa_mem_id();
1976 
1977 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1978 	if (object || node != NUMA_NO_NODE)
1979 		return object;
1980 
1981 	return get_any_partial(s, flags, c);
1982 }
1983 
1984 #ifdef CONFIG_PREEMPTION
1985 /*
1986  * Calculate the next globally unique transaction for disambiguiation
1987  * during cmpxchg. The transactions start with the cpu number and are then
1988  * incremented by CONFIG_NR_CPUS.
1989  */
1990 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1991 #else
1992 /*
1993  * No preemption supported therefore also no need to check for
1994  * different cpus.
1995  */
1996 #define TID_STEP 1
1997 #endif
1998 
1999 static inline unsigned long next_tid(unsigned long tid)
2000 {
2001 	return tid + TID_STEP;
2002 }
2003 
2004 #ifdef SLUB_DEBUG_CMPXCHG
2005 static inline unsigned int tid_to_cpu(unsigned long tid)
2006 {
2007 	return tid % TID_STEP;
2008 }
2009 
2010 static inline unsigned long tid_to_event(unsigned long tid)
2011 {
2012 	return tid / TID_STEP;
2013 }
2014 #endif
2015 
2016 static inline unsigned int init_tid(int cpu)
2017 {
2018 	return cpu;
2019 }
2020 
2021 static inline void note_cmpxchg_failure(const char *n,
2022 		const struct kmem_cache *s, unsigned long tid)
2023 {
2024 #ifdef SLUB_DEBUG_CMPXCHG
2025 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2026 
2027 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2028 
2029 #ifdef CONFIG_PREEMPTION
2030 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2031 		pr_warn("due to cpu change %d -> %d\n",
2032 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2033 	else
2034 #endif
2035 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2036 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2037 			tid_to_event(tid), tid_to_event(actual_tid));
2038 	else
2039 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2040 			actual_tid, tid, next_tid(tid));
2041 #endif
2042 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2043 }
2044 
2045 static void init_kmem_cache_cpus(struct kmem_cache *s)
2046 {
2047 	int cpu;
2048 
2049 	for_each_possible_cpu(cpu)
2050 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2051 }
2052 
2053 /*
2054  * Remove the cpu slab
2055  */
2056 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2057 				void *freelist, struct kmem_cache_cpu *c)
2058 {
2059 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2060 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2061 	int lock = 0;
2062 	enum slab_modes l = M_NONE, m = M_NONE;
2063 	void *nextfree;
2064 	int tail = DEACTIVATE_TO_HEAD;
2065 	struct page new;
2066 	struct page old;
2067 
2068 	if (page->freelist) {
2069 		stat(s, DEACTIVATE_REMOTE_FREES);
2070 		tail = DEACTIVATE_TO_TAIL;
2071 	}
2072 
2073 	/*
2074 	 * Stage one: Free all available per cpu objects back
2075 	 * to the page freelist while it is still frozen. Leave the
2076 	 * last one.
2077 	 *
2078 	 * There is no need to take the list->lock because the page
2079 	 * is still frozen.
2080 	 */
2081 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2082 		void *prior;
2083 		unsigned long counters;
2084 
2085 		do {
2086 			prior = page->freelist;
2087 			counters = page->counters;
2088 			set_freepointer(s, freelist, prior);
2089 			new.counters = counters;
2090 			new.inuse--;
2091 			VM_BUG_ON(!new.frozen);
2092 
2093 		} while (!__cmpxchg_double_slab(s, page,
2094 			prior, counters,
2095 			freelist, new.counters,
2096 			"drain percpu freelist"));
2097 
2098 		freelist = nextfree;
2099 	}
2100 
2101 	/*
2102 	 * Stage two: Ensure that the page is unfrozen while the
2103 	 * list presence reflects the actual number of objects
2104 	 * during unfreeze.
2105 	 *
2106 	 * We setup the list membership and then perform a cmpxchg
2107 	 * with the count. If there is a mismatch then the page
2108 	 * is not unfrozen but the page is on the wrong list.
2109 	 *
2110 	 * Then we restart the process which may have to remove
2111 	 * the page from the list that we just put it on again
2112 	 * because the number of objects in the slab may have
2113 	 * changed.
2114 	 */
2115 redo:
2116 
2117 	old.freelist = page->freelist;
2118 	old.counters = page->counters;
2119 	VM_BUG_ON(!old.frozen);
2120 
2121 	/* Determine target state of the slab */
2122 	new.counters = old.counters;
2123 	if (freelist) {
2124 		new.inuse--;
2125 		set_freepointer(s, freelist, old.freelist);
2126 		new.freelist = freelist;
2127 	} else
2128 		new.freelist = old.freelist;
2129 
2130 	new.frozen = 0;
2131 
2132 	if (!new.inuse && n->nr_partial >= s->min_partial)
2133 		m = M_FREE;
2134 	else if (new.freelist) {
2135 		m = M_PARTIAL;
2136 		if (!lock) {
2137 			lock = 1;
2138 			/*
2139 			 * Taking the spinlock removes the possibility
2140 			 * that acquire_slab() will see a slab page that
2141 			 * is frozen
2142 			 */
2143 			spin_lock(&n->list_lock);
2144 		}
2145 	} else {
2146 		m = M_FULL;
2147 		if (kmem_cache_debug(s) && !lock) {
2148 			lock = 1;
2149 			/*
2150 			 * This also ensures that the scanning of full
2151 			 * slabs from diagnostic functions will not see
2152 			 * any frozen slabs.
2153 			 */
2154 			spin_lock(&n->list_lock);
2155 		}
2156 	}
2157 
2158 	if (l != m) {
2159 		if (l == M_PARTIAL)
2160 			remove_partial(n, page);
2161 		else if (l == M_FULL)
2162 			remove_full(s, n, page);
2163 
2164 		if (m == M_PARTIAL)
2165 			add_partial(n, page, tail);
2166 		else if (m == M_FULL)
2167 			add_full(s, n, page);
2168 	}
2169 
2170 	l = m;
2171 	if (!__cmpxchg_double_slab(s, page,
2172 				old.freelist, old.counters,
2173 				new.freelist, new.counters,
2174 				"unfreezing slab"))
2175 		goto redo;
2176 
2177 	if (lock)
2178 		spin_unlock(&n->list_lock);
2179 
2180 	if (m == M_PARTIAL)
2181 		stat(s, tail);
2182 	else if (m == M_FULL)
2183 		stat(s, DEACTIVATE_FULL);
2184 	else if (m == M_FREE) {
2185 		stat(s, DEACTIVATE_EMPTY);
2186 		discard_slab(s, page);
2187 		stat(s, FREE_SLAB);
2188 	}
2189 
2190 	c->page = NULL;
2191 	c->freelist = NULL;
2192 }
2193 
2194 /*
2195  * Unfreeze all the cpu partial slabs.
2196  *
2197  * This function must be called with interrupts disabled
2198  * for the cpu using c (or some other guarantee must be there
2199  * to guarantee no concurrent accesses).
2200  */
2201 static void unfreeze_partials(struct kmem_cache *s,
2202 		struct kmem_cache_cpu *c)
2203 {
2204 #ifdef CONFIG_SLUB_CPU_PARTIAL
2205 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2206 	struct page *page, *discard_page = NULL;
2207 
2208 	while ((page = c->partial)) {
2209 		struct page new;
2210 		struct page old;
2211 
2212 		c->partial = page->next;
2213 
2214 		n2 = get_node(s, page_to_nid(page));
2215 		if (n != n2) {
2216 			if (n)
2217 				spin_unlock(&n->list_lock);
2218 
2219 			n = n2;
2220 			spin_lock(&n->list_lock);
2221 		}
2222 
2223 		do {
2224 
2225 			old.freelist = page->freelist;
2226 			old.counters = page->counters;
2227 			VM_BUG_ON(!old.frozen);
2228 
2229 			new.counters = old.counters;
2230 			new.freelist = old.freelist;
2231 
2232 			new.frozen = 0;
2233 
2234 		} while (!__cmpxchg_double_slab(s, page,
2235 				old.freelist, old.counters,
2236 				new.freelist, new.counters,
2237 				"unfreezing slab"));
2238 
2239 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2240 			page->next = discard_page;
2241 			discard_page = page;
2242 		} else {
2243 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2244 			stat(s, FREE_ADD_PARTIAL);
2245 		}
2246 	}
2247 
2248 	if (n)
2249 		spin_unlock(&n->list_lock);
2250 
2251 	while (discard_page) {
2252 		page = discard_page;
2253 		discard_page = discard_page->next;
2254 
2255 		stat(s, DEACTIVATE_EMPTY);
2256 		discard_slab(s, page);
2257 		stat(s, FREE_SLAB);
2258 	}
2259 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2260 }
2261 
2262 /*
2263  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2264  * partial page slot if available.
2265  *
2266  * If we did not find a slot then simply move all the partials to the
2267  * per node partial list.
2268  */
2269 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2270 {
2271 #ifdef CONFIG_SLUB_CPU_PARTIAL
2272 	struct page *oldpage;
2273 	int pages;
2274 	int pobjects;
2275 
2276 	preempt_disable();
2277 	do {
2278 		pages = 0;
2279 		pobjects = 0;
2280 		oldpage = this_cpu_read(s->cpu_slab->partial);
2281 
2282 		if (oldpage) {
2283 			pobjects = oldpage->pobjects;
2284 			pages = oldpage->pages;
2285 			if (drain && pobjects > s->cpu_partial) {
2286 				unsigned long flags;
2287 				/*
2288 				 * partial array is full. Move the existing
2289 				 * set to the per node partial list.
2290 				 */
2291 				local_irq_save(flags);
2292 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2293 				local_irq_restore(flags);
2294 				oldpage = NULL;
2295 				pobjects = 0;
2296 				pages = 0;
2297 				stat(s, CPU_PARTIAL_DRAIN);
2298 			}
2299 		}
2300 
2301 		pages++;
2302 		pobjects += page->objects - page->inuse;
2303 
2304 		page->pages = pages;
2305 		page->pobjects = pobjects;
2306 		page->next = oldpage;
2307 
2308 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2309 								!= oldpage);
2310 	if (unlikely(!s->cpu_partial)) {
2311 		unsigned long flags;
2312 
2313 		local_irq_save(flags);
2314 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2315 		local_irq_restore(flags);
2316 	}
2317 	preempt_enable();
2318 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2319 }
2320 
2321 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2322 {
2323 	stat(s, CPUSLAB_FLUSH);
2324 	deactivate_slab(s, c->page, c->freelist, c);
2325 
2326 	c->tid = next_tid(c->tid);
2327 }
2328 
2329 /*
2330  * Flush cpu slab.
2331  *
2332  * Called from IPI handler with interrupts disabled.
2333  */
2334 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2335 {
2336 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2337 
2338 	if (c->page)
2339 		flush_slab(s, c);
2340 
2341 	unfreeze_partials(s, c);
2342 }
2343 
2344 static void flush_cpu_slab(void *d)
2345 {
2346 	struct kmem_cache *s = d;
2347 
2348 	__flush_cpu_slab(s, smp_processor_id());
2349 }
2350 
2351 static bool has_cpu_slab(int cpu, void *info)
2352 {
2353 	struct kmem_cache *s = info;
2354 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2355 
2356 	return c->page || slub_percpu_partial(c);
2357 }
2358 
2359 static void flush_all(struct kmem_cache *s)
2360 {
2361 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2362 }
2363 
2364 /*
2365  * Use the cpu notifier to insure that the cpu slabs are flushed when
2366  * necessary.
2367  */
2368 static int slub_cpu_dead(unsigned int cpu)
2369 {
2370 	struct kmem_cache *s;
2371 	unsigned long flags;
2372 
2373 	mutex_lock(&slab_mutex);
2374 	list_for_each_entry(s, &slab_caches, list) {
2375 		local_irq_save(flags);
2376 		__flush_cpu_slab(s, cpu);
2377 		local_irq_restore(flags);
2378 	}
2379 	mutex_unlock(&slab_mutex);
2380 	return 0;
2381 }
2382 
2383 /*
2384  * Check if the objects in a per cpu structure fit numa
2385  * locality expectations.
2386  */
2387 static inline int node_match(struct page *page, int node)
2388 {
2389 #ifdef CONFIG_NUMA
2390 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2391 		return 0;
2392 #endif
2393 	return 1;
2394 }
2395 
2396 #ifdef CONFIG_SLUB_DEBUG
2397 static int count_free(struct page *page)
2398 {
2399 	return page->objects - page->inuse;
2400 }
2401 
2402 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2403 {
2404 	return atomic_long_read(&n->total_objects);
2405 }
2406 #endif /* CONFIG_SLUB_DEBUG */
2407 
2408 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2409 static unsigned long count_partial(struct kmem_cache_node *n,
2410 					int (*get_count)(struct page *))
2411 {
2412 	unsigned long flags;
2413 	unsigned long x = 0;
2414 	struct page *page;
2415 
2416 	spin_lock_irqsave(&n->list_lock, flags);
2417 	list_for_each_entry(page, &n->partial, slab_list)
2418 		x += get_count(page);
2419 	spin_unlock_irqrestore(&n->list_lock, flags);
2420 	return x;
2421 }
2422 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2423 
2424 static noinline void
2425 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2426 {
2427 #ifdef CONFIG_SLUB_DEBUG
2428 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2429 				      DEFAULT_RATELIMIT_BURST);
2430 	int node;
2431 	struct kmem_cache_node *n;
2432 
2433 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2434 		return;
2435 
2436 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2437 		nid, gfpflags, &gfpflags);
2438 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2439 		s->name, s->object_size, s->size, oo_order(s->oo),
2440 		oo_order(s->min));
2441 
2442 	if (oo_order(s->min) > get_order(s->object_size))
2443 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2444 			s->name);
2445 
2446 	for_each_kmem_cache_node(s, node, n) {
2447 		unsigned long nr_slabs;
2448 		unsigned long nr_objs;
2449 		unsigned long nr_free;
2450 
2451 		nr_free  = count_partial(n, count_free);
2452 		nr_slabs = node_nr_slabs(n);
2453 		nr_objs  = node_nr_objs(n);
2454 
2455 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2456 			node, nr_slabs, nr_objs, nr_free);
2457 	}
2458 #endif
2459 }
2460 
2461 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2462 			int node, struct kmem_cache_cpu **pc)
2463 {
2464 	void *freelist;
2465 	struct kmem_cache_cpu *c = *pc;
2466 	struct page *page;
2467 
2468 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2469 
2470 	freelist = get_partial(s, flags, node, c);
2471 
2472 	if (freelist)
2473 		return freelist;
2474 
2475 	page = new_slab(s, flags, node);
2476 	if (page) {
2477 		c = raw_cpu_ptr(s->cpu_slab);
2478 		if (c->page)
2479 			flush_slab(s, c);
2480 
2481 		/*
2482 		 * No other reference to the page yet so we can
2483 		 * muck around with it freely without cmpxchg
2484 		 */
2485 		freelist = page->freelist;
2486 		page->freelist = NULL;
2487 
2488 		stat(s, ALLOC_SLAB);
2489 		c->page = page;
2490 		*pc = c;
2491 	}
2492 
2493 	return freelist;
2494 }
2495 
2496 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2497 {
2498 	if (unlikely(PageSlabPfmemalloc(page)))
2499 		return gfp_pfmemalloc_allowed(gfpflags);
2500 
2501 	return true;
2502 }
2503 
2504 /*
2505  * Check the page->freelist of a page and either transfer the freelist to the
2506  * per cpu freelist or deactivate the page.
2507  *
2508  * The page is still frozen if the return value is not NULL.
2509  *
2510  * If this function returns NULL then the page has been unfrozen.
2511  *
2512  * This function must be called with interrupt disabled.
2513  */
2514 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2515 {
2516 	struct page new;
2517 	unsigned long counters;
2518 	void *freelist;
2519 
2520 	do {
2521 		freelist = page->freelist;
2522 		counters = page->counters;
2523 
2524 		new.counters = counters;
2525 		VM_BUG_ON(!new.frozen);
2526 
2527 		new.inuse = page->objects;
2528 		new.frozen = freelist != NULL;
2529 
2530 	} while (!__cmpxchg_double_slab(s, page,
2531 		freelist, counters,
2532 		NULL, new.counters,
2533 		"get_freelist"));
2534 
2535 	return freelist;
2536 }
2537 
2538 /*
2539  * Slow path. The lockless freelist is empty or we need to perform
2540  * debugging duties.
2541  *
2542  * Processing is still very fast if new objects have been freed to the
2543  * regular freelist. In that case we simply take over the regular freelist
2544  * as the lockless freelist and zap the regular freelist.
2545  *
2546  * If that is not working then we fall back to the partial lists. We take the
2547  * first element of the freelist as the object to allocate now and move the
2548  * rest of the freelist to the lockless freelist.
2549  *
2550  * And if we were unable to get a new slab from the partial slab lists then
2551  * we need to allocate a new slab. This is the slowest path since it involves
2552  * a call to the page allocator and the setup of a new slab.
2553  *
2554  * Version of __slab_alloc to use when we know that interrupts are
2555  * already disabled (which is the case for bulk allocation).
2556  */
2557 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2558 			  unsigned long addr, struct kmem_cache_cpu *c)
2559 {
2560 	void *freelist;
2561 	struct page *page;
2562 
2563 	page = c->page;
2564 	if (!page) {
2565 		/*
2566 		 * if the node is not online or has no normal memory, just
2567 		 * ignore the node constraint
2568 		 */
2569 		if (unlikely(node != NUMA_NO_NODE &&
2570 			     !node_state(node, N_NORMAL_MEMORY)))
2571 			node = NUMA_NO_NODE;
2572 		goto new_slab;
2573 	}
2574 redo:
2575 
2576 	if (unlikely(!node_match(page, node))) {
2577 		/*
2578 		 * same as above but node_match() being false already
2579 		 * implies node != NUMA_NO_NODE
2580 		 */
2581 		if (!node_state(node, N_NORMAL_MEMORY)) {
2582 			node = NUMA_NO_NODE;
2583 			goto redo;
2584 		} else {
2585 			stat(s, ALLOC_NODE_MISMATCH);
2586 			deactivate_slab(s, page, c->freelist, c);
2587 			goto new_slab;
2588 		}
2589 	}
2590 
2591 	/*
2592 	 * By rights, we should be searching for a slab page that was
2593 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2594 	 * information when the page leaves the per-cpu allocator
2595 	 */
2596 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2597 		deactivate_slab(s, page, c->freelist, c);
2598 		goto new_slab;
2599 	}
2600 
2601 	/* must check again c->freelist in case of cpu migration or IRQ */
2602 	freelist = c->freelist;
2603 	if (freelist)
2604 		goto load_freelist;
2605 
2606 	freelist = get_freelist(s, page);
2607 
2608 	if (!freelist) {
2609 		c->page = NULL;
2610 		stat(s, DEACTIVATE_BYPASS);
2611 		goto new_slab;
2612 	}
2613 
2614 	stat(s, ALLOC_REFILL);
2615 
2616 load_freelist:
2617 	/*
2618 	 * freelist is pointing to the list of objects to be used.
2619 	 * page is pointing to the page from which the objects are obtained.
2620 	 * That page must be frozen for per cpu allocations to work.
2621 	 */
2622 	VM_BUG_ON(!c->page->frozen);
2623 	c->freelist = get_freepointer(s, freelist);
2624 	c->tid = next_tid(c->tid);
2625 	return freelist;
2626 
2627 new_slab:
2628 
2629 	if (slub_percpu_partial(c)) {
2630 		page = c->page = slub_percpu_partial(c);
2631 		slub_set_percpu_partial(c, page);
2632 		stat(s, CPU_PARTIAL_ALLOC);
2633 		goto redo;
2634 	}
2635 
2636 	freelist = new_slab_objects(s, gfpflags, node, &c);
2637 
2638 	if (unlikely(!freelist)) {
2639 		slab_out_of_memory(s, gfpflags, node);
2640 		return NULL;
2641 	}
2642 
2643 	page = c->page;
2644 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2645 		goto load_freelist;
2646 
2647 	/* Only entered in the debug case */
2648 	if (kmem_cache_debug(s) &&
2649 			!alloc_debug_processing(s, page, freelist, addr))
2650 		goto new_slab;	/* Slab failed checks. Next slab needed */
2651 
2652 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2653 	return freelist;
2654 }
2655 
2656 /*
2657  * Another one that disabled interrupt and compensates for possible
2658  * cpu changes by refetching the per cpu area pointer.
2659  */
2660 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2661 			  unsigned long addr, struct kmem_cache_cpu *c)
2662 {
2663 	void *p;
2664 	unsigned long flags;
2665 
2666 	local_irq_save(flags);
2667 #ifdef CONFIG_PREEMPTION
2668 	/*
2669 	 * We may have been preempted and rescheduled on a different
2670 	 * cpu before disabling interrupts. Need to reload cpu area
2671 	 * pointer.
2672 	 */
2673 	c = this_cpu_ptr(s->cpu_slab);
2674 #endif
2675 
2676 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2677 	local_irq_restore(flags);
2678 	return p;
2679 }
2680 
2681 /*
2682  * If the object has been wiped upon free, make sure it's fully initialized by
2683  * zeroing out freelist pointer.
2684  */
2685 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2686 						   void *obj)
2687 {
2688 	if (unlikely(slab_want_init_on_free(s)) && obj)
2689 		memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2690 }
2691 
2692 /*
2693  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2694  * have the fastpath folded into their functions. So no function call
2695  * overhead for requests that can be satisfied on the fastpath.
2696  *
2697  * The fastpath works by first checking if the lockless freelist can be used.
2698  * If not then __slab_alloc is called for slow processing.
2699  *
2700  * Otherwise we can simply pick the next object from the lockless free list.
2701  */
2702 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2703 		gfp_t gfpflags, int node, unsigned long addr)
2704 {
2705 	void *object;
2706 	struct kmem_cache_cpu *c;
2707 	struct page *page;
2708 	unsigned long tid;
2709 
2710 	s = slab_pre_alloc_hook(s, gfpflags);
2711 	if (!s)
2712 		return NULL;
2713 redo:
2714 	/*
2715 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2716 	 * enabled. We may switch back and forth between cpus while
2717 	 * reading from one cpu area. That does not matter as long
2718 	 * as we end up on the original cpu again when doing the cmpxchg.
2719 	 *
2720 	 * We should guarantee that tid and kmem_cache are retrieved on
2721 	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2722 	 * to check if it is matched or not.
2723 	 */
2724 	do {
2725 		tid = this_cpu_read(s->cpu_slab->tid);
2726 		c = raw_cpu_ptr(s->cpu_slab);
2727 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2728 		 unlikely(tid != READ_ONCE(c->tid)));
2729 
2730 	/*
2731 	 * Irqless object alloc/free algorithm used here depends on sequence
2732 	 * of fetching cpu_slab's data. tid should be fetched before anything
2733 	 * on c to guarantee that object and page associated with previous tid
2734 	 * won't be used with current tid. If we fetch tid first, object and
2735 	 * page could be one associated with next tid and our alloc/free
2736 	 * request will be failed. In this case, we will retry. So, no problem.
2737 	 */
2738 	barrier();
2739 
2740 	/*
2741 	 * The transaction ids are globally unique per cpu and per operation on
2742 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2743 	 * occurs on the right processor and that there was no operation on the
2744 	 * linked list in between.
2745 	 */
2746 
2747 	object = c->freelist;
2748 	page = c->page;
2749 	if (unlikely(!object || !node_match(page, node))) {
2750 		object = __slab_alloc(s, gfpflags, node, addr, c);
2751 		stat(s, ALLOC_SLOWPATH);
2752 	} else {
2753 		void *next_object = get_freepointer_safe(s, object);
2754 
2755 		/*
2756 		 * The cmpxchg will only match if there was no additional
2757 		 * operation and if we are on the right processor.
2758 		 *
2759 		 * The cmpxchg does the following atomically (without lock
2760 		 * semantics!)
2761 		 * 1. Relocate first pointer to the current per cpu area.
2762 		 * 2. Verify that tid and freelist have not been changed
2763 		 * 3. If they were not changed replace tid and freelist
2764 		 *
2765 		 * Since this is without lock semantics the protection is only
2766 		 * against code executing on this cpu *not* from access by
2767 		 * other cpus.
2768 		 */
2769 		if (unlikely(!this_cpu_cmpxchg_double(
2770 				s->cpu_slab->freelist, s->cpu_slab->tid,
2771 				object, tid,
2772 				next_object, next_tid(tid)))) {
2773 
2774 			note_cmpxchg_failure("slab_alloc", s, tid);
2775 			goto redo;
2776 		}
2777 		prefetch_freepointer(s, next_object);
2778 		stat(s, ALLOC_FASTPATH);
2779 	}
2780 
2781 	maybe_wipe_obj_freeptr(s, object);
2782 
2783 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2784 		memset(object, 0, s->object_size);
2785 
2786 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2787 
2788 	return object;
2789 }
2790 
2791 static __always_inline void *slab_alloc(struct kmem_cache *s,
2792 		gfp_t gfpflags, unsigned long addr)
2793 {
2794 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2795 }
2796 
2797 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2798 {
2799 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2800 
2801 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2802 				s->size, gfpflags);
2803 
2804 	return ret;
2805 }
2806 EXPORT_SYMBOL(kmem_cache_alloc);
2807 
2808 #ifdef CONFIG_TRACING
2809 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2810 {
2811 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2812 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2813 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2814 	return ret;
2815 }
2816 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2817 #endif
2818 
2819 #ifdef CONFIG_NUMA
2820 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2821 {
2822 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2823 
2824 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2825 				    s->object_size, s->size, gfpflags, node);
2826 
2827 	return ret;
2828 }
2829 EXPORT_SYMBOL(kmem_cache_alloc_node);
2830 
2831 #ifdef CONFIG_TRACING
2832 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2833 				    gfp_t gfpflags,
2834 				    int node, size_t size)
2835 {
2836 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2837 
2838 	trace_kmalloc_node(_RET_IP_, ret,
2839 			   size, s->size, gfpflags, node);
2840 
2841 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2842 	return ret;
2843 }
2844 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2845 #endif
2846 #endif	/* CONFIG_NUMA */
2847 
2848 /*
2849  * Slow path handling. This may still be called frequently since objects
2850  * have a longer lifetime than the cpu slabs in most processing loads.
2851  *
2852  * So we still attempt to reduce cache line usage. Just take the slab
2853  * lock and free the item. If there is no additional partial page
2854  * handling required then we can return immediately.
2855  */
2856 static void __slab_free(struct kmem_cache *s, struct page *page,
2857 			void *head, void *tail, int cnt,
2858 			unsigned long addr)
2859 
2860 {
2861 	void *prior;
2862 	int was_frozen;
2863 	struct page new;
2864 	unsigned long counters;
2865 	struct kmem_cache_node *n = NULL;
2866 	unsigned long uninitialized_var(flags);
2867 
2868 	stat(s, FREE_SLOWPATH);
2869 
2870 	if (kmem_cache_debug(s) &&
2871 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2872 		return;
2873 
2874 	do {
2875 		if (unlikely(n)) {
2876 			spin_unlock_irqrestore(&n->list_lock, flags);
2877 			n = NULL;
2878 		}
2879 		prior = page->freelist;
2880 		counters = page->counters;
2881 		set_freepointer(s, tail, prior);
2882 		new.counters = counters;
2883 		was_frozen = new.frozen;
2884 		new.inuse -= cnt;
2885 		if ((!new.inuse || !prior) && !was_frozen) {
2886 
2887 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2888 
2889 				/*
2890 				 * Slab was on no list before and will be
2891 				 * partially empty
2892 				 * We can defer the list move and instead
2893 				 * freeze it.
2894 				 */
2895 				new.frozen = 1;
2896 
2897 			} else { /* Needs to be taken off a list */
2898 
2899 				n = get_node(s, page_to_nid(page));
2900 				/*
2901 				 * Speculatively acquire the list_lock.
2902 				 * If the cmpxchg does not succeed then we may
2903 				 * drop the list_lock without any processing.
2904 				 *
2905 				 * Otherwise the list_lock will synchronize with
2906 				 * other processors updating the list of slabs.
2907 				 */
2908 				spin_lock_irqsave(&n->list_lock, flags);
2909 
2910 			}
2911 		}
2912 
2913 	} while (!cmpxchg_double_slab(s, page,
2914 		prior, counters,
2915 		head, new.counters,
2916 		"__slab_free"));
2917 
2918 	if (likely(!n)) {
2919 
2920 		/*
2921 		 * If we just froze the page then put it onto the
2922 		 * per cpu partial list.
2923 		 */
2924 		if (new.frozen && !was_frozen) {
2925 			put_cpu_partial(s, page, 1);
2926 			stat(s, CPU_PARTIAL_FREE);
2927 		}
2928 		/*
2929 		 * The list lock was not taken therefore no list
2930 		 * activity can be necessary.
2931 		 */
2932 		if (was_frozen)
2933 			stat(s, FREE_FROZEN);
2934 		return;
2935 	}
2936 
2937 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2938 		goto slab_empty;
2939 
2940 	/*
2941 	 * Objects left in the slab. If it was not on the partial list before
2942 	 * then add it.
2943 	 */
2944 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2945 		remove_full(s, n, page);
2946 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2947 		stat(s, FREE_ADD_PARTIAL);
2948 	}
2949 	spin_unlock_irqrestore(&n->list_lock, flags);
2950 	return;
2951 
2952 slab_empty:
2953 	if (prior) {
2954 		/*
2955 		 * Slab on the partial list.
2956 		 */
2957 		remove_partial(n, page);
2958 		stat(s, FREE_REMOVE_PARTIAL);
2959 	} else {
2960 		/* Slab must be on the full list */
2961 		remove_full(s, n, page);
2962 	}
2963 
2964 	spin_unlock_irqrestore(&n->list_lock, flags);
2965 	stat(s, FREE_SLAB);
2966 	discard_slab(s, page);
2967 }
2968 
2969 /*
2970  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2971  * can perform fastpath freeing without additional function calls.
2972  *
2973  * The fastpath is only possible if we are freeing to the current cpu slab
2974  * of this processor. This typically the case if we have just allocated
2975  * the item before.
2976  *
2977  * If fastpath is not possible then fall back to __slab_free where we deal
2978  * with all sorts of special processing.
2979  *
2980  * Bulk free of a freelist with several objects (all pointing to the
2981  * same page) possible by specifying head and tail ptr, plus objects
2982  * count (cnt). Bulk free indicated by tail pointer being set.
2983  */
2984 static __always_inline void do_slab_free(struct kmem_cache *s,
2985 				struct page *page, void *head, void *tail,
2986 				int cnt, unsigned long addr)
2987 {
2988 	void *tail_obj = tail ? : head;
2989 	struct kmem_cache_cpu *c;
2990 	unsigned long tid;
2991 redo:
2992 	/*
2993 	 * Determine the currently cpus per cpu slab.
2994 	 * The cpu may change afterward. However that does not matter since
2995 	 * data is retrieved via this pointer. If we are on the same cpu
2996 	 * during the cmpxchg then the free will succeed.
2997 	 */
2998 	do {
2999 		tid = this_cpu_read(s->cpu_slab->tid);
3000 		c = raw_cpu_ptr(s->cpu_slab);
3001 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3002 		 unlikely(tid != READ_ONCE(c->tid)));
3003 
3004 	/* Same with comment on barrier() in slab_alloc_node() */
3005 	barrier();
3006 
3007 	if (likely(page == c->page)) {
3008 		void **freelist = READ_ONCE(c->freelist);
3009 
3010 		set_freepointer(s, tail_obj, freelist);
3011 
3012 		if (unlikely(!this_cpu_cmpxchg_double(
3013 				s->cpu_slab->freelist, s->cpu_slab->tid,
3014 				freelist, tid,
3015 				head, next_tid(tid)))) {
3016 
3017 			note_cmpxchg_failure("slab_free", s, tid);
3018 			goto redo;
3019 		}
3020 		stat(s, FREE_FASTPATH);
3021 	} else
3022 		__slab_free(s, page, head, tail_obj, cnt, addr);
3023 
3024 }
3025 
3026 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3027 				      void *head, void *tail, int cnt,
3028 				      unsigned long addr)
3029 {
3030 	/*
3031 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3032 	 * to remove objects, whose reuse must be delayed.
3033 	 */
3034 	if (slab_free_freelist_hook(s, &head, &tail))
3035 		do_slab_free(s, page, head, tail, cnt, addr);
3036 }
3037 
3038 #ifdef CONFIG_KASAN_GENERIC
3039 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3040 {
3041 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3042 }
3043 #endif
3044 
3045 void kmem_cache_free(struct kmem_cache *s, void *x)
3046 {
3047 	s = cache_from_obj(s, x);
3048 	if (!s)
3049 		return;
3050 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3051 	trace_kmem_cache_free(_RET_IP_, x);
3052 }
3053 EXPORT_SYMBOL(kmem_cache_free);
3054 
3055 struct detached_freelist {
3056 	struct page *page;
3057 	void *tail;
3058 	void *freelist;
3059 	int cnt;
3060 	struct kmem_cache *s;
3061 };
3062 
3063 /*
3064  * This function progressively scans the array with free objects (with
3065  * a limited look ahead) and extract objects belonging to the same
3066  * page.  It builds a detached freelist directly within the given
3067  * page/objects.  This can happen without any need for
3068  * synchronization, because the objects are owned by running process.
3069  * The freelist is build up as a single linked list in the objects.
3070  * The idea is, that this detached freelist can then be bulk
3071  * transferred to the real freelist(s), but only requiring a single
3072  * synchronization primitive.  Look ahead in the array is limited due
3073  * to performance reasons.
3074  */
3075 static inline
3076 int build_detached_freelist(struct kmem_cache *s, size_t size,
3077 			    void **p, struct detached_freelist *df)
3078 {
3079 	size_t first_skipped_index = 0;
3080 	int lookahead = 3;
3081 	void *object;
3082 	struct page *page;
3083 
3084 	/* Always re-init detached_freelist */
3085 	df->page = NULL;
3086 
3087 	do {
3088 		object = p[--size];
3089 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3090 	} while (!object && size);
3091 
3092 	if (!object)
3093 		return 0;
3094 
3095 	page = virt_to_head_page(object);
3096 	if (!s) {
3097 		/* Handle kalloc'ed objects */
3098 		if (unlikely(!PageSlab(page))) {
3099 			BUG_ON(!PageCompound(page));
3100 			kfree_hook(object);
3101 			__free_pages(page, compound_order(page));
3102 			p[size] = NULL; /* mark object processed */
3103 			return size;
3104 		}
3105 		/* Derive kmem_cache from object */
3106 		df->s = page->slab_cache;
3107 	} else {
3108 		df->s = cache_from_obj(s, object); /* Support for memcg */
3109 	}
3110 
3111 	/* Start new detached freelist */
3112 	df->page = page;
3113 	set_freepointer(df->s, object, NULL);
3114 	df->tail = object;
3115 	df->freelist = object;
3116 	p[size] = NULL; /* mark object processed */
3117 	df->cnt = 1;
3118 
3119 	while (size) {
3120 		object = p[--size];
3121 		if (!object)
3122 			continue; /* Skip processed objects */
3123 
3124 		/* df->page is always set at this point */
3125 		if (df->page == virt_to_head_page(object)) {
3126 			/* Opportunity build freelist */
3127 			set_freepointer(df->s, object, df->freelist);
3128 			df->freelist = object;
3129 			df->cnt++;
3130 			p[size] = NULL; /* mark object processed */
3131 
3132 			continue;
3133 		}
3134 
3135 		/* Limit look ahead search */
3136 		if (!--lookahead)
3137 			break;
3138 
3139 		if (!first_skipped_index)
3140 			first_skipped_index = size + 1;
3141 	}
3142 
3143 	return first_skipped_index;
3144 }
3145 
3146 /* Note that interrupts must be enabled when calling this function. */
3147 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3148 {
3149 	if (WARN_ON(!size))
3150 		return;
3151 
3152 	do {
3153 		struct detached_freelist df;
3154 
3155 		size = build_detached_freelist(s, size, p, &df);
3156 		if (!df.page)
3157 			continue;
3158 
3159 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3160 	} while (likely(size));
3161 }
3162 EXPORT_SYMBOL(kmem_cache_free_bulk);
3163 
3164 /* Note that interrupts must be enabled when calling this function. */
3165 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3166 			  void **p)
3167 {
3168 	struct kmem_cache_cpu *c;
3169 	int i;
3170 
3171 	/* memcg and kmem_cache debug support */
3172 	s = slab_pre_alloc_hook(s, flags);
3173 	if (unlikely(!s))
3174 		return false;
3175 	/*
3176 	 * Drain objects in the per cpu slab, while disabling local
3177 	 * IRQs, which protects against PREEMPT and interrupts
3178 	 * handlers invoking normal fastpath.
3179 	 */
3180 	local_irq_disable();
3181 	c = this_cpu_ptr(s->cpu_slab);
3182 
3183 	for (i = 0; i < size; i++) {
3184 		void *object = c->freelist;
3185 
3186 		if (unlikely(!object)) {
3187 			/*
3188 			 * We may have removed an object from c->freelist using
3189 			 * the fastpath in the previous iteration; in that case,
3190 			 * c->tid has not been bumped yet.
3191 			 * Since ___slab_alloc() may reenable interrupts while
3192 			 * allocating memory, we should bump c->tid now.
3193 			 */
3194 			c->tid = next_tid(c->tid);
3195 
3196 			/*
3197 			 * Invoking slow path likely have side-effect
3198 			 * of re-populating per CPU c->freelist
3199 			 */
3200 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3201 					    _RET_IP_, c);
3202 			if (unlikely(!p[i]))
3203 				goto error;
3204 
3205 			c = this_cpu_ptr(s->cpu_slab);
3206 			maybe_wipe_obj_freeptr(s, p[i]);
3207 
3208 			continue; /* goto for-loop */
3209 		}
3210 		c->freelist = get_freepointer(s, object);
3211 		p[i] = object;
3212 		maybe_wipe_obj_freeptr(s, p[i]);
3213 	}
3214 	c->tid = next_tid(c->tid);
3215 	local_irq_enable();
3216 
3217 	/* Clear memory outside IRQ disabled fastpath loop */
3218 	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3219 		int j;
3220 
3221 		for (j = 0; j < i; j++)
3222 			memset(p[j], 0, s->object_size);
3223 	}
3224 
3225 	/* memcg and kmem_cache debug support */
3226 	slab_post_alloc_hook(s, flags, size, p);
3227 	return i;
3228 error:
3229 	local_irq_enable();
3230 	slab_post_alloc_hook(s, flags, i, p);
3231 	__kmem_cache_free_bulk(s, i, p);
3232 	return 0;
3233 }
3234 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3235 
3236 
3237 /*
3238  * Object placement in a slab is made very easy because we always start at
3239  * offset 0. If we tune the size of the object to the alignment then we can
3240  * get the required alignment by putting one properly sized object after
3241  * another.
3242  *
3243  * Notice that the allocation order determines the sizes of the per cpu
3244  * caches. Each processor has always one slab available for allocations.
3245  * Increasing the allocation order reduces the number of times that slabs
3246  * must be moved on and off the partial lists and is therefore a factor in
3247  * locking overhead.
3248  */
3249 
3250 /*
3251  * Mininum / Maximum order of slab pages. This influences locking overhead
3252  * and slab fragmentation. A higher order reduces the number of partial slabs
3253  * and increases the number of allocations possible without having to
3254  * take the list_lock.
3255  */
3256 static unsigned int slub_min_order;
3257 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3258 static unsigned int slub_min_objects;
3259 
3260 /*
3261  * Calculate the order of allocation given an slab object size.
3262  *
3263  * The order of allocation has significant impact on performance and other
3264  * system components. Generally order 0 allocations should be preferred since
3265  * order 0 does not cause fragmentation in the page allocator. Larger objects
3266  * be problematic to put into order 0 slabs because there may be too much
3267  * unused space left. We go to a higher order if more than 1/16th of the slab
3268  * would be wasted.
3269  *
3270  * In order to reach satisfactory performance we must ensure that a minimum
3271  * number of objects is in one slab. Otherwise we may generate too much
3272  * activity on the partial lists which requires taking the list_lock. This is
3273  * less a concern for large slabs though which are rarely used.
3274  *
3275  * slub_max_order specifies the order where we begin to stop considering the
3276  * number of objects in a slab as critical. If we reach slub_max_order then
3277  * we try to keep the page order as low as possible. So we accept more waste
3278  * of space in favor of a small page order.
3279  *
3280  * Higher order allocations also allow the placement of more objects in a
3281  * slab and thereby reduce object handling overhead. If the user has
3282  * requested a higher mininum order then we start with that one instead of
3283  * the smallest order which will fit the object.
3284  */
3285 static inline unsigned int slab_order(unsigned int size,
3286 		unsigned int min_objects, unsigned int max_order,
3287 		unsigned int fract_leftover)
3288 {
3289 	unsigned int min_order = slub_min_order;
3290 	unsigned int order;
3291 
3292 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3293 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3294 
3295 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3296 			order <= max_order; order++) {
3297 
3298 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3299 		unsigned int rem;
3300 
3301 		rem = slab_size % size;
3302 
3303 		if (rem <= slab_size / fract_leftover)
3304 			break;
3305 	}
3306 
3307 	return order;
3308 }
3309 
3310 static inline int calculate_order(unsigned int size)
3311 {
3312 	unsigned int order;
3313 	unsigned int min_objects;
3314 	unsigned int max_objects;
3315 
3316 	/*
3317 	 * Attempt to find best configuration for a slab. This
3318 	 * works by first attempting to generate a layout with
3319 	 * the best configuration and backing off gradually.
3320 	 *
3321 	 * First we increase the acceptable waste in a slab. Then
3322 	 * we reduce the minimum objects required in a slab.
3323 	 */
3324 	min_objects = slub_min_objects;
3325 	if (!min_objects)
3326 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3327 	max_objects = order_objects(slub_max_order, size);
3328 	min_objects = min(min_objects, max_objects);
3329 
3330 	while (min_objects > 1) {
3331 		unsigned int fraction;
3332 
3333 		fraction = 16;
3334 		while (fraction >= 4) {
3335 			order = slab_order(size, min_objects,
3336 					slub_max_order, fraction);
3337 			if (order <= slub_max_order)
3338 				return order;
3339 			fraction /= 2;
3340 		}
3341 		min_objects--;
3342 	}
3343 
3344 	/*
3345 	 * We were unable to place multiple objects in a slab. Now
3346 	 * lets see if we can place a single object there.
3347 	 */
3348 	order = slab_order(size, 1, slub_max_order, 1);
3349 	if (order <= slub_max_order)
3350 		return order;
3351 
3352 	/*
3353 	 * Doh this slab cannot be placed using slub_max_order.
3354 	 */
3355 	order = slab_order(size, 1, MAX_ORDER, 1);
3356 	if (order < MAX_ORDER)
3357 		return order;
3358 	return -ENOSYS;
3359 }
3360 
3361 static void
3362 init_kmem_cache_node(struct kmem_cache_node *n)
3363 {
3364 	n->nr_partial = 0;
3365 	spin_lock_init(&n->list_lock);
3366 	INIT_LIST_HEAD(&n->partial);
3367 #ifdef CONFIG_SLUB_DEBUG
3368 	atomic_long_set(&n->nr_slabs, 0);
3369 	atomic_long_set(&n->total_objects, 0);
3370 	INIT_LIST_HEAD(&n->full);
3371 #endif
3372 }
3373 
3374 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3375 {
3376 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3377 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3378 
3379 	/*
3380 	 * Must align to double word boundary for the double cmpxchg
3381 	 * instructions to work; see __pcpu_double_call_return_bool().
3382 	 */
3383 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3384 				     2 * sizeof(void *));
3385 
3386 	if (!s->cpu_slab)
3387 		return 0;
3388 
3389 	init_kmem_cache_cpus(s);
3390 
3391 	return 1;
3392 }
3393 
3394 static struct kmem_cache *kmem_cache_node;
3395 
3396 /*
3397  * No kmalloc_node yet so do it by hand. We know that this is the first
3398  * slab on the node for this slabcache. There are no concurrent accesses
3399  * possible.
3400  *
3401  * Note that this function only works on the kmem_cache_node
3402  * when allocating for the kmem_cache_node. This is used for bootstrapping
3403  * memory on a fresh node that has no slab structures yet.
3404  */
3405 static void early_kmem_cache_node_alloc(int node)
3406 {
3407 	struct page *page;
3408 	struct kmem_cache_node *n;
3409 
3410 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3411 
3412 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3413 
3414 	BUG_ON(!page);
3415 	if (page_to_nid(page) != node) {
3416 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3417 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3418 	}
3419 
3420 	n = page->freelist;
3421 	BUG_ON(!n);
3422 #ifdef CONFIG_SLUB_DEBUG
3423 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3424 	init_tracking(kmem_cache_node, n);
3425 #endif
3426 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3427 		      GFP_KERNEL);
3428 	page->freelist = get_freepointer(kmem_cache_node, n);
3429 	page->inuse = 1;
3430 	page->frozen = 0;
3431 	kmem_cache_node->node[node] = n;
3432 	init_kmem_cache_node(n);
3433 	inc_slabs_node(kmem_cache_node, node, page->objects);
3434 
3435 	/*
3436 	 * No locks need to be taken here as it has just been
3437 	 * initialized and there is no concurrent access.
3438 	 */
3439 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3440 }
3441 
3442 static void free_kmem_cache_nodes(struct kmem_cache *s)
3443 {
3444 	int node;
3445 	struct kmem_cache_node *n;
3446 
3447 	for_each_kmem_cache_node(s, node, n) {
3448 		s->node[node] = NULL;
3449 		kmem_cache_free(kmem_cache_node, n);
3450 	}
3451 }
3452 
3453 void __kmem_cache_release(struct kmem_cache *s)
3454 {
3455 	cache_random_seq_destroy(s);
3456 	free_percpu(s->cpu_slab);
3457 	free_kmem_cache_nodes(s);
3458 }
3459 
3460 static int init_kmem_cache_nodes(struct kmem_cache *s)
3461 {
3462 	int node;
3463 
3464 	for_each_node_state(node, N_NORMAL_MEMORY) {
3465 		struct kmem_cache_node *n;
3466 
3467 		if (slab_state == DOWN) {
3468 			early_kmem_cache_node_alloc(node);
3469 			continue;
3470 		}
3471 		n = kmem_cache_alloc_node(kmem_cache_node,
3472 						GFP_KERNEL, node);
3473 
3474 		if (!n) {
3475 			free_kmem_cache_nodes(s);
3476 			return 0;
3477 		}
3478 
3479 		init_kmem_cache_node(n);
3480 		s->node[node] = n;
3481 	}
3482 	return 1;
3483 }
3484 
3485 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3486 {
3487 	if (min < MIN_PARTIAL)
3488 		min = MIN_PARTIAL;
3489 	else if (min > MAX_PARTIAL)
3490 		min = MAX_PARTIAL;
3491 	s->min_partial = min;
3492 }
3493 
3494 static void set_cpu_partial(struct kmem_cache *s)
3495 {
3496 #ifdef CONFIG_SLUB_CPU_PARTIAL
3497 	/*
3498 	 * cpu_partial determined the maximum number of objects kept in the
3499 	 * per cpu partial lists of a processor.
3500 	 *
3501 	 * Per cpu partial lists mainly contain slabs that just have one
3502 	 * object freed. If they are used for allocation then they can be
3503 	 * filled up again with minimal effort. The slab will never hit the
3504 	 * per node partial lists and therefore no locking will be required.
3505 	 *
3506 	 * This setting also determines
3507 	 *
3508 	 * A) The number of objects from per cpu partial slabs dumped to the
3509 	 *    per node list when we reach the limit.
3510 	 * B) The number of objects in cpu partial slabs to extract from the
3511 	 *    per node list when we run out of per cpu objects. We only fetch
3512 	 *    50% to keep some capacity around for frees.
3513 	 */
3514 	if (!kmem_cache_has_cpu_partial(s))
3515 		s->cpu_partial = 0;
3516 	else if (s->size >= PAGE_SIZE)
3517 		s->cpu_partial = 2;
3518 	else if (s->size >= 1024)
3519 		s->cpu_partial = 6;
3520 	else if (s->size >= 256)
3521 		s->cpu_partial = 13;
3522 	else
3523 		s->cpu_partial = 30;
3524 #endif
3525 }
3526 
3527 /*
3528  * calculate_sizes() determines the order and the distribution of data within
3529  * a slab object.
3530  */
3531 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3532 {
3533 	slab_flags_t flags = s->flags;
3534 	unsigned int size = s->object_size;
3535 	unsigned int order;
3536 
3537 	/*
3538 	 * Round up object size to the next word boundary. We can only
3539 	 * place the free pointer at word boundaries and this determines
3540 	 * the possible location of the free pointer.
3541 	 */
3542 	size = ALIGN(size, sizeof(void *));
3543 
3544 #ifdef CONFIG_SLUB_DEBUG
3545 	/*
3546 	 * Determine if we can poison the object itself. If the user of
3547 	 * the slab may touch the object after free or before allocation
3548 	 * then we should never poison the object itself.
3549 	 */
3550 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3551 			!s->ctor)
3552 		s->flags |= __OBJECT_POISON;
3553 	else
3554 		s->flags &= ~__OBJECT_POISON;
3555 
3556 
3557 	/*
3558 	 * If we are Redzoning then check if there is some space between the
3559 	 * end of the object and the free pointer. If not then add an
3560 	 * additional word to have some bytes to store Redzone information.
3561 	 */
3562 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3563 		size += sizeof(void *);
3564 #endif
3565 
3566 	/*
3567 	 * With that we have determined the number of bytes in actual use
3568 	 * by the object. This is the potential offset to the free pointer.
3569 	 */
3570 	s->inuse = size;
3571 
3572 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3573 		s->ctor)) {
3574 		/*
3575 		 * Relocate free pointer after the object if it is not
3576 		 * permitted to overwrite the first word of the object on
3577 		 * kmem_cache_free.
3578 		 *
3579 		 * This is the case if we do RCU, have a constructor or
3580 		 * destructor or are poisoning the objects.
3581 		 */
3582 		s->offset = size;
3583 		size += sizeof(void *);
3584 	}
3585 
3586 #ifdef CONFIG_SLUB_DEBUG
3587 	if (flags & SLAB_STORE_USER)
3588 		/*
3589 		 * Need to store information about allocs and frees after
3590 		 * the object.
3591 		 */
3592 		size += 2 * sizeof(struct track);
3593 #endif
3594 
3595 	kasan_cache_create(s, &size, &s->flags);
3596 #ifdef CONFIG_SLUB_DEBUG
3597 	if (flags & SLAB_RED_ZONE) {
3598 		/*
3599 		 * Add some empty padding so that we can catch
3600 		 * overwrites from earlier objects rather than let
3601 		 * tracking information or the free pointer be
3602 		 * corrupted if a user writes before the start
3603 		 * of the object.
3604 		 */
3605 		size += sizeof(void *);
3606 
3607 		s->red_left_pad = sizeof(void *);
3608 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3609 		size += s->red_left_pad;
3610 	}
3611 #endif
3612 
3613 	/*
3614 	 * SLUB stores one object immediately after another beginning from
3615 	 * offset 0. In order to align the objects we have to simply size
3616 	 * each object to conform to the alignment.
3617 	 */
3618 	size = ALIGN(size, s->align);
3619 	s->size = size;
3620 	if (forced_order >= 0)
3621 		order = forced_order;
3622 	else
3623 		order = calculate_order(size);
3624 
3625 	if ((int)order < 0)
3626 		return 0;
3627 
3628 	s->allocflags = 0;
3629 	if (order)
3630 		s->allocflags |= __GFP_COMP;
3631 
3632 	if (s->flags & SLAB_CACHE_DMA)
3633 		s->allocflags |= GFP_DMA;
3634 
3635 	if (s->flags & SLAB_CACHE_DMA32)
3636 		s->allocflags |= GFP_DMA32;
3637 
3638 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3639 		s->allocflags |= __GFP_RECLAIMABLE;
3640 
3641 	/*
3642 	 * Determine the number of objects per slab
3643 	 */
3644 	s->oo = oo_make(order, size);
3645 	s->min = oo_make(get_order(size), size);
3646 	if (oo_objects(s->oo) > oo_objects(s->max))
3647 		s->max = s->oo;
3648 
3649 	return !!oo_objects(s->oo);
3650 }
3651 
3652 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3653 {
3654 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3655 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3656 	s->random = get_random_long();
3657 #endif
3658 
3659 	if (!calculate_sizes(s, -1))
3660 		goto error;
3661 	if (disable_higher_order_debug) {
3662 		/*
3663 		 * Disable debugging flags that store metadata if the min slab
3664 		 * order increased.
3665 		 */
3666 		if (get_order(s->size) > get_order(s->object_size)) {
3667 			s->flags &= ~DEBUG_METADATA_FLAGS;
3668 			s->offset = 0;
3669 			if (!calculate_sizes(s, -1))
3670 				goto error;
3671 		}
3672 	}
3673 
3674 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3675     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3676 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3677 		/* Enable fast mode */
3678 		s->flags |= __CMPXCHG_DOUBLE;
3679 #endif
3680 
3681 	/*
3682 	 * The larger the object size is, the more pages we want on the partial
3683 	 * list to avoid pounding the page allocator excessively.
3684 	 */
3685 	set_min_partial(s, ilog2(s->size) / 2);
3686 
3687 	set_cpu_partial(s);
3688 
3689 #ifdef CONFIG_NUMA
3690 	s->remote_node_defrag_ratio = 1000;
3691 #endif
3692 
3693 	/* Initialize the pre-computed randomized freelist if slab is up */
3694 	if (slab_state >= UP) {
3695 		if (init_cache_random_seq(s))
3696 			goto error;
3697 	}
3698 
3699 	if (!init_kmem_cache_nodes(s))
3700 		goto error;
3701 
3702 	if (alloc_kmem_cache_cpus(s))
3703 		return 0;
3704 
3705 	free_kmem_cache_nodes(s);
3706 error:
3707 	return -EINVAL;
3708 }
3709 
3710 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3711 							const char *text)
3712 {
3713 #ifdef CONFIG_SLUB_DEBUG
3714 	void *addr = page_address(page);
3715 	void *p;
3716 	unsigned long *map;
3717 
3718 	slab_err(s, page, text, s->name);
3719 	slab_lock(page);
3720 
3721 	map = get_map(s, page);
3722 	for_each_object(p, s, addr, page->objects) {
3723 
3724 		if (!test_bit(slab_index(p, s, addr), map)) {
3725 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3726 			print_tracking(s, p);
3727 		}
3728 	}
3729 	put_map(map);
3730 
3731 	slab_unlock(page);
3732 #endif
3733 }
3734 
3735 /*
3736  * Attempt to free all partial slabs on a node.
3737  * This is called from __kmem_cache_shutdown(). We must take list_lock
3738  * because sysfs file might still access partial list after the shutdowning.
3739  */
3740 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3741 {
3742 	LIST_HEAD(discard);
3743 	struct page *page, *h;
3744 
3745 	BUG_ON(irqs_disabled());
3746 	spin_lock_irq(&n->list_lock);
3747 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3748 		if (!page->inuse) {
3749 			remove_partial(n, page);
3750 			list_add(&page->slab_list, &discard);
3751 		} else {
3752 			list_slab_objects(s, page,
3753 			"Objects remaining in %s on __kmem_cache_shutdown()");
3754 		}
3755 	}
3756 	spin_unlock_irq(&n->list_lock);
3757 
3758 	list_for_each_entry_safe(page, h, &discard, slab_list)
3759 		discard_slab(s, page);
3760 }
3761 
3762 bool __kmem_cache_empty(struct kmem_cache *s)
3763 {
3764 	int node;
3765 	struct kmem_cache_node *n;
3766 
3767 	for_each_kmem_cache_node(s, node, n)
3768 		if (n->nr_partial || slabs_node(s, node))
3769 			return false;
3770 	return true;
3771 }
3772 
3773 /*
3774  * Release all resources used by a slab cache.
3775  */
3776 int __kmem_cache_shutdown(struct kmem_cache *s)
3777 {
3778 	int node;
3779 	struct kmem_cache_node *n;
3780 
3781 	flush_all(s);
3782 	/* Attempt to free all objects */
3783 	for_each_kmem_cache_node(s, node, n) {
3784 		free_partial(s, n);
3785 		if (n->nr_partial || slabs_node(s, node))
3786 			return 1;
3787 	}
3788 	sysfs_slab_remove(s);
3789 	return 0;
3790 }
3791 
3792 /********************************************************************
3793  *		Kmalloc subsystem
3794  *******************************************************************/
3795 
3796 static int __init setup_slub_min_order(char *str)
3797 {
3798 	get_option(&str, (int *)&slub_min_order);
3799 
3800 	return 1;
3801 }
3802 
3803 __setup("slub_min_order=", setup_slub_min_order);
3804 
3805 static int __init setup_slub_max_order(char *str)
3806 {
3807 	get_option(&str, (int *)&slub_max_order);
3808 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3809 
3810 	return 1;
3811 }
3812 
3813 __setup("slub_max_order=", setup_slub_max_order);
3814 
3815 static int __init setup_slub_min_objects(char *str)
3816 {
3817 	get_option(&str, (int *)&slub_min_objects);
3818 
3819 	return 1;
3820 }
3821 
3822 __setup("slub_min_objects=", setup_slub_min_objects);
3823 
3824 void *__kmalloc(size_t size, gfp_t flags)
3825 {
3826 	struct kmem_cache *s;
3827 	void *ret;
3828 
3829 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3830 		return kmalloc_large(size, flags);
3831 
3832 	s = kmalloc_slab(size, flags);
3833 
3834 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3835 		return s;
3836 
3837 	ret = slab_alloc(s, flags, _RET_IP_);
3838 
3839 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3840 
3841 	ret = kasan_kmalloc(s, ret, size, flags);
3842 
3843 	return ret;
3844 }
3845 EXPORT_SYMBOL(__kmalloc);
3846 
3847 #ifdef CONFIG_NUMA
3848 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3849 {
3850 	struct page *page;
3851 	void *ptr = NULL;
3852 	unsigned int order = get_order(size);
3853 
3854 	flags |= __GFP_COMP;
3855 	page = alloc_pages_node(node, flags, order);
3856 	if (page) {
3857 		ptr = page_address(page);
3858 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3859 				    1 << order);
3860 	}
3861 
3862 	return kmalloc_large_node_hook(ptr, size, flags);
3863 }
3864 
3865 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3866 {
3867 	struct kmem_cache *s;
3868 	void *ret;
3869 
3870 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3871 		ret = kmalloc_large_node(size, flags, node);
3872 
3873 		trace_kmalloc_node(_RET_IP_, ret,
3874 				   size, PAGE_SIZE << get_order(size),
3875 				   flags, node);
3876 
3877 		return ret;
3878 	}
3879 
3880 	s = kmalloc_slab(size, flags);
3881 
3882 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3883 		return s;
3884 
3885 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3886 
3887 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3888 
3889 	ret = kasan_kmalloc(s, ret, size, flags);
3890 
3891 	return ret;
3892 }
3893 EXPORT_SYMBOL(__kmalloc_node);
3894 #endif	/* CONFIG_NUMA */
3895 
3896 #ifdef CONFIG_HARDENED_USERCOPY
3897 /*
3898  * Rejects incorrectly sized objects and objects that are to be copied
3899  * to/from userspace but do not fall entirely within the containing slab
3900  * cache's usercopy region.
3901  *
3902  * Returns NULL if check passes, otherwise const char * to name of cache
3903  * to indicate an error.
3904  */
3905 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3906 			 bool to_user)
3907 {
3908 	struct kmem_cache *s;
3909 	unsigned int offset;
3910 	size_t object_size;
3911 
3912 	ptr = kasan_reset_tag(ptr);
3913 
3914 	/* Find object and usable object size. */
3915 	s = page->slab_cache;
3916 
3917 	/* Reject impossible pointers. */
3918 	if (ptr < page_address(page))
3919 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3920 			       to_user, 0, n);
3921 
3922 	/* Find offset within object. */
3923 	offset = (ptr - page_address(page)) % s->size;
3924 
3925 	/* Adjust for redzone and reject if within the redzone. */
3926 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3927 		if (offset < s->red_left_pad)
3928 			usercopy_abort("SLUB object in left red zone",
3929 				       s->name, to_user, offset, n);
3930 		offset -= s->red_left_pad;
3931 	}
3932 
3933 	/* Allow address range falling entirely within usercopy region. */
3934 	if (offset >= s->useroffset &&
3935 	    offset - s->useroffset <= s->usersize &&
3936 	    n <= s->useroffset - offset + s->usersize)
3937 		return;
3938 
3939 	/*
3940 	 * If the copy is still within the allocated object, produce
3941 	 * a warning instead of rejecting the copy. This is intended
3942 	 * to be a temporary method to find any missing usercopy
3943 	 * whitelists.
3944 	 */
3945 	object_size = slab_ksize(s);
3946 	if (usercopy_fallback &&
3947 	    offset <= object_size && n <= object_size - offset) {
3948 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3949 		return;
3950 	}
3951 
3952 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3953 }
3954 #endif /* CONFIG_HARDENED_USERCOPY */
3955 
3956 size_t __ksize(const void *object)
3957 {
3958 	struct page *page;
3959 
3960 	if (unlikely(object == ZERO_SIZE_PTR))
3961 		return 0;
3962 
3963 	page = virt_to_head_page(object);
3964 
3965 	if (unlikely(!PageSlab(page))) {
3966 		WARN_ON(!PageCompound(page));
3967 		return page_size(page);
3968 	}
3969 
3970 	return slab_ksize(page->slab_cache);
3971 }
3972 EXPORT_SYMBOL(__ksize);
3973 
3974 void kfree(const void *x)
3975 {
3976 	struct page *page;
3977 	void *object = (void *)x;
3978 
3979 	trace_kfree(_RET_IP_, x);
3980 
3981 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3982 		return;
3983 
3984 	page = virt_to_head_page(x);
3985 	if (unlikely(!PageSlab(page))) {
3986 		unsigned int order = compound_order(page);
3987 
3988 		BUG_ON(!PageCompound(page));
3989 		kfree_hook(object);
3990 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3991 				    -(1 << order));
3992 		__free_pages(page, order);
3993 		return;
3994 	}
3995 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3996 }
3997 EXPORT_SYMBOL(kfree);
3998 
3999 #define SHRINK_PROMOTE_MAX 32
4000 
4001 /*
4002  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4003  * up most to the head of the partial lists. New allocations will then
4004  * fill those up and thus they can be removed from the partial lists.
4005  *
4006  * The slabs with the least items are placed last. This results in them
4007  * being allocated from last increasing the chance that the last objects
4008  * are freed in them.
4009  */
4010 int __kmem_cache_shrink(struct kmem_cache *s)
4011 {
4012 	int node;
4013 	int i;
4014 	struct kmem_cache_node *n;
4015 	struct page *page;
4016 	struct page *t;
4017 	struct list_head discard;
4018 	struct list_head promote[SHRINK_PROMOTE_MAX];
4019 	unsigned long flags;
4020 	int ret = 0;
4021 
4022 	flush_all(s);
4023 	for_each_kmem_cache_node(s, node, n) {
4024 		INIT_LIST_HEAD(&discard);
4025 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4026 			INIT_LIST_HEAD(promote + i);
4027 
4028 		spin_lock_irqsave(&n->list_lock, flags);
4029 
4030 		/*
4031 		 * Build lists of slabs to discard or promote.
4032 		 *
4033 		 * Note that concurrent frees may occur while we hold the
4034 		 * list_lock. page->inuse here is the upper limit.
4035 		 */
4036 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4037 			int free = page->objects - page->inuse;
4038 
4039 			/* Do not reread page->inuse */
4040 			barrier();
4041 
4042 			/* We do not keep full slabs on the list */
4043 			BUG_ON(free <= 0);
4044 
4045 			if (free == page->objects) {
4046 				list_move(&page->slab_list, &discard);
4047 				n->nr_partial--;
4048 			} else if (free <= SHRINK_PROMOTE_MAX)
4049 				list_move(&page->slab_list, promote + free - 1);
4050 		}
4051 
4052 		/*
4053 		 * Promote the slabs filled up most to the head of the
4054 		 * partial list.
4055 		 */
4056 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4057 			list_splice(promote + i, &n->partial);
4058 
4059 		spin_unlock_irqrestore(&n->list_lock, flags);
4060 
4061 		/* Release empty slabs */
4062 		list_for_each_entry_safe(page, t, &discard, slab_list)
4063 			discard_slab(s, page);
4064 
4065 		if (slabs_node(s, node))
4066 			ret = 1;
4067 	}
4068 
4069 	return ret;
4070 }
4071 
4072 #ifdef CONFIG_MEMCG
4073 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4074 {
4075 	/*
4076 	 * Called with all the locks held after a sched RCU grace period.
4077 	 * Even if @s becomes empty after shrinking, we can't know that @s
4078 	 * doesn't have allocations already in-flight and thus can't
4079 	 * destroy @s until the associated memcg is released.
4080 	 *
4081 	 * However, let's remove the sysfs files for empty caches here.
4082 	 * Each cache has a lot of interface files which aren't
4083 	 * particularly useful for empty draining caches; otherwise, we can
4084 	 * easily end up with millions of unnecessary sysfs files on
4085 	 * systems which have a lot of memory and transient cgroups.
4086 	 */
4087 	if (!__kmem_cache_shrink(s))
4088 		sysfs_slab_remove(s);
4089 }
4090 
4091 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4092 {
4093 	/*
4094 	 * Disable empty slabs caching. Used to avoid pinning offline
4095 	 * memory cgroups by kmem pages that can be freed.
4096 	 */
4097 	slub_set_cpu_partial(s, 0);
4098 	s->min_partial = 0;
4099 }
4100 #endif	/* CONFIG_MEMCG */
4101 
4102 static int slab_mem_going_offline_callback(void *arg)
4103 {
4104 	struct kmem_cache *s;
4105 
4106 	mutex_lock(&slab_mutex);
4107 	list_for_each_entry(s, &slab_caches, list)
4108 		__kmem_cache_shrink(s);
4109 	mutex_unlock(&slab_mutex);
4110 
4111 	return 0;
4112 }
4113 
4114 static void slab_mem_offline_callback(void *arg)
4115 {
4116 	struct kmem_cache_node *n;
4117 	struct kmem_cache *s;
4118 	struct memory_notify *marg = arg;
4119 	int offline_node;
4120 
4121 	offline_node = marg->status_change_nid_normal;
4122 
4123 	/*
4124 	 * If the node still has available memory. we need kmem_cache_node
4125 	 * for it yet.
4126 	 */
4127 	if (offline_node < 0)
4128 		return;
4129 
4130 	mutex_lock(&slab_mutex);
4131 	list_for_each_entry(s, &slab_caches, list) {
4132 		n = get_node(s, offline_node);
4133 		if (n) {
4134 			/*
4135 			 * if n->nr_slabs > 0, slabs still exist on the node
4136 			 * that is going down. We were unable to free them,
4137 			 * and offline_pages() function shouldn't call this
4138 			 * callback. So, we must fail.
4139 			 */
4140 			BUG_ON(slabs_node(s, offline_node));
4141 
4142 			s->node[offline_node] = NULL;
4143 			kmem_cache_free(kmem_cache_node, n);
4144 		}
4145 	}
4146 	mutex_unlock(&slab_mutex);
4147 }
4148 
4149 static int slab_mem_going_online_callback(void *arg)
4150 {
4151 	struct kmem_cache_node *n;
4152 	struct kmem_cache *s;
4153 	struct memory_notify *marg = arg;
4154 	int nid = marg->status_change_nid_normal;
4155 	int ret = 0;
4156 
4157 	/*
4158 	 * If the node's memory is already available, then kmem_cache_node is
4159 	 * already created. Nothing to do.
4160 	 */
4161 	if (nid < 0)
4162 		return 0;
4163 
4164 	/*
4165 	 * We are bringing a node online. No memory is available yet. We must
4166 	 * allocate a kmem_cache_node structure in order to bring the node
4167 	 * online.
4168 	 */
4169 	mutex_lock(&slab_mutex);
4170 	list_for_each_entry(s, &slab_caches, list) {
4171 		/*
4172 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4173 		 *      since memory is not yet available from the node that
4174 		 *      is brought up.
4175 		 */
4176 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4177 		if (!n) {
4178 			ret = -ENOMEM;
4179 			goto out;
4180 		}
4181 		init_kmem_cache_node(n);
4182 		s->node[nid] = n;
4183 	}
4184 out:
4185 	mutex_unlock(&slab_mutex);
4186 	return ret;
4187 }
4188 
4189 static int slab_memory_callback(struct notifier_block *self,
4190 				unsigned long action, void *arg)
4191 {
4192 	int ret = 0;
4193 
4194 	switch (action) {
4195 	case MEM_GOING_ONLINE:
4196 		ret = slab_mem_going_online_callback(arg);
4197 		break;
4198 	case MEM_GOING_OFFLINE:
4199 		ret = slab_mem_going_offline_callback(arg);
4200 		break;
4201 	case MEM_OFFLINE:
4202 	case MEM_CANCEL_ONLINE:
4203 		slab_mem_offline_callback(arg);
4204 		break;
4205 	case MEM_ONLINE:
4206 	case MEM_CANCEL_OFFLINE:
4207 		break;
4208 	}
4209 	if (ret)
4210 		ret = notifier_from_errno(ret);
4211 	else
4212 		ret = NOTIFY_OK;
4213 	return ret;
4214 }
4215 
4216 static struct notifier_block slab_memory_callback_nb = {
4217 	.notifier_call = slab_memory_callback,
4218 	.priority = SLAB_CALLBACK_PRI,
4219 };
4220 
4221 /********************************************************************
4222  *			Basic setup of slabs
4223  *******************************************************************/
4224 
4225 /*
4226  * Used for early kmem_cache structures that were allocated using
4227  * the page allocator. Allocate them properly then fix up the pointers
4228  * that may be pointing to the wrong kmem_cache structure.
4229  */
4230 
4231 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4232 {
4233 	int node;
4234 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4235 	struct kmem_cache_node *n;
4236 
4237 	memcpy(s, static_cache, kmem_cache->object_size);
4238 
4239 	/*
4240 	 * This runs very early, and only the boot processor is supposed to be
4241 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4242 	 * IPIs around.
4243 	 */
4244 	__flush_cpu_slab(s, smp_processor_id());
4245 	for_each_kmem_cache_node(s, node, n) {
4246 		struct page *p;
4247 
4248 		list_for_each_entry(p, &n->partial, slab_list)
4249 			p->slab_cache = s;
4250 
4251 #ifdef CONFIG_SLUB_DEBUG
4252 		list_for_each_entry(p, &n->full, slab_list)
4253 			p->slab_cache = s;
4254 #endif
4255 	}
4256 	slab_init_memcg_params(s);
4257 	list_add(&s->list, &slab_caches);
4258 	memcg_link_cache(s, NULL);
4259 	return s;
4260 }
4261 
4262 void __init kmem_cache_init(void)
4263 {
4264 	static __initdata struct kmem_cache boot_kmem_cache,
4265 		boot_kmem_cache_node;
4266 
4267 	if (debug_guardpage_minorder())
4268 		slub_max_order = 0;
4269 
4270 	kmem_cache_node = &boot_kmem_cache_node;
4271 	kmem_cache = &boot_kmem_cache;
4272 
4273 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4274 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4275 
4276 	register_hotmemory_notifier(&slab_memory_callback_nb);
4277 
4278 	/* Able to allocate the per node structures */
4279 	slab_state = PARTIAL;
4280 
4281 	create_boot_cache(kmem_cache, "kmem_cache",
4282 			offsetof(struct kmem_cache, node) +
4283 				nr_node_ids * sizeof(struct kmem_cache_node *),
4284 		       SLAB_HWCACHE_ALIGN, 0, 0);
4285 
4286 	kmem_cache = bootstrap(&boot_kmem_cache);
4287 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4288 
4289 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4290 	setup_kmalloc_cache_index_table();
4291 	create_kmalloc_caches(0);
4292 
4293 	/* Setup random freelists for each cache */
4294 	init_freelist_randomization();
4295 
4296 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4297 				  slub_cpu_dead);
4298 
4299 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4300 		cache_line_size(),
4301 		slub_min_order, slub_max_order, slub_min_objects,
4302 		nr_cpu_ids, nr_node_ids);
4303 }
4304 
4305 void __init kmem_cache_init_late(void)
4306 {
4307 }
4308 
4309 struct kmem_cache *
4310 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4311 		   slab_flags_t flags, void (*ctor)(void *))
4312 {
4313 	struct kmem_cache *s, *c;
4314 
4315 	s = find_mergeable(size, align, flags, name, ctor);
4316 	if (s) {
4317 		s->refcount++;
4318 
4319 		/*
4320 		 * Adjust the object sizes so that we clear
4321 		 * the complete object on kzalloc.
4322 		 */
4323 		s->object_size = max(s->object_size, size);
4324 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4325 
4326 		for_each_memcg_cache(c, s) {
4327 			c->object_size = s->object_size;
4328 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4329 		}
4330 
4331 		if (sysfs_slab_alias(s, name)) {
4332 			s->refcount--;
4333 			s = NULL;
4334 		}
4335 	}
4336 
4337 	return s;
4338 }
4339 
4340 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4341 {
4342 	int err;
4343 
4344 	err = kmem_cache_open(s, flags);
4345 	if (err)
4346 		return err;
4347 
4348 	/* Mutex is not taken during early boot */
4349 	if (slab_state <= UP)
4350 		return 0;
4351 
4352 	memcg_propagate_slab_attrs(s);
4353 	err = sysfs_slab_add(s);
4354 	if (err)
4355 		__kmem_cache_release(s);
4356 
4357 	return err;
4358 }
4359 
4360 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4361 {
4362 	struct kmem_cache *s;
4363 	void *ret;
4364 
4365 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4366 		return kmalloc_large(size, gfpflags);
4367 
4368 	s = kmalloc_slab(size, gfpflags);
4369 
4370 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4371 		return s;
4372 
4373 	ret = slab_alloc(s, gfpflags, caller);
4374 
4375 	/* Honor the call site pointer we received. */
4376 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4377 
4378 	return ret;
4379 }
4380 
4381 #ifdef CONFIG_NUMA
4382 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4383 					int node, unsigned long caller)
4384 {
4385 	struct kmem_cache *s;
4386 	void *ret;
4387 
4388 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4389 		ret = kmalloc_large_node(size, gfpflags, node);
4390 
4391 		trace_kmalloc_node(caller, ret,
4392 				   size, PAGE_SIZE << get_order(size),
4393 				   gfpflags, node);
4394 
4395 		return ret;
4396 	}
4397 
4398 	s = kmalloc_slab(size, gfpflags);
4399 
4400 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4401 		return s;
4402 
4403 	ret = slab_alloc_node(s, gfpflags, node, caller);
4404 
4405 	/* Honor the call site pointer we received. */
4406 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4407 
4408 	return ret;
4409 }
4410 #endif
4411 
4412 #ifdef CONFIG_SYSFS
4413 static int count_inuse(struct page *page)
4414 {
4415 	return page->inuse;
4416 }
4417 
4418 static int count_total(struct page *page)
4419 {
4420 	return page->objects;
4421 }
4422 #endif
4423 
4424 #ifdef CONFIG_SLUB_DEBUG
4425 static void validate_slab(struct kmem_cache *s, struct page *page)
4426 {
4427 	void *p;
4428 	void *addr = page_address(page);
4429 	unsigned long *map;
4430 
4431 	slab_lock(page);
4432 
4433 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4434 		goto unlock;
4435 
4436 	/* Now we know that a valid freelist exists */
4437 	map = get_map(s, page);
4438 	for_each_object(p, s, addr, page->objects) {
4439 		u8 val = test_bit(slab_index(p, s, addr), map) ?
4440 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4441 
4442 		if (!check_object(s, page, p, val))
4443 			break;
4444 	}
4445 	put_map(map);
4446 unlock:
4447 	slab_unlock(page);
4448 }
4449 
4450 static int validate_slab_node(struct kmem_cache *s,
4451 		struct kmem_cache_node *n)
4452 {
4453 	unsigned long count = 0;
4454 	struct page *page;
4455 	unsigned long flags;
4456 
4457 	spin_lock_irqsave(&n->list_lock, flags);
4458 
4459 	list_for_each_entry(page, &n->partial, slab_list) {
4460 		validate_slab(s, page);
4461 		count++;
4462 	}
4463 	if (count != n->nr_partial)
4464 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4465 		       s->name, count, n->nr_partial);
4466 
4467 	if (!(s->flags & SLAB_STORE_USER))
4468 		goto out;
4469 
4470 	list_for_each_entry(page, &n->full, slab_list) {
4471 		validate_slab(s, page);
4472 		count++;
4473 	}
4474 	if (count != atomic_long_read(&n->nr_slabs))
4475 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4476 		       s->name, count, atomic_long_read(&n->nr_slabs));
4477 
4478 out:
4479 	spin_unlock_irqrestore(&n->list_lock, flags);
4480 	return count;
4481 }
4482 
4483 static long validate_slab_cache(struct kmem_cache *s)
4484 {
4485 	int node;
4486 	unsigned long count = 0;
4487 	struct kmem_cache_node *n;
4488 
4489 	flush_all(s);
4490 	for_each_kmem_cache_node(s, node, n)
4491 		count += validate_slab_node(s, n);
4492 
4493 	return count;
4494 }
4495 /*
4496  * Generate lists of code addresses where slabcache objects are allocated
4497  * and freed.
4498  */
4499 
4500 struct location {
4501 	unsigned long count;
4502 	unsigned long addr;
4503 	long long sum_time;
4504 	long min_time;
4505 	long max_time;
4506 	long min_pid;
4507 	long max_pid;
4508 	DECLARE_BITMAP(cpus, NR_CPUS);
4509 	nodemask_t nodes;
4510 };
4511 
4512 struct loc_track {
4513 	unsigned long max;
4514 	unsigned long count;
4515 	struct location *loc;
4516 };
4517 
4518 static void free_loc_track(struct loc_track *t)
4519 {
4520 	if (t->max)
4521 		free_pages((unsigned long)t->loc,
4522 			get_order(sizeof(struct location) * t->max));
4523 }
4524 
4525 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4526 {
4527 	struct location *l;
4528 	int order;
4529 
4530 	order = get_order(sizeof(struct location) * max);
4531 
4532 	l = (void *)__get_free_pages(flags, order);
4533 	if (!l)
4534 		return 0;
4535 
4536 	if (t->count) {
4537 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4538 		free_loc_track(t);
4539 	}
4540 	t->max = max;
4541 	t->loc = l;
4542 	return 1;
4543 }
4544 
4545 static int add_location(struct loc_track *t, struct kmem_cache *s,
4546 				const struct track *track)
4547 {
4548 	long start, end, pos;
4549 	struct location *l;
4550 	unsigned long caddr;
4551 	unsigned long age = jiffies - track->when;
4552 
4553 	start = -1;
4554 	end = t->count;
4555 
4556 	for ( ; ; ) {
4557 		pos = start + (end - start + 1) / 2;
4558 
4559 		/*
4560 		 * There is nothing at "end". If we end up there
4561 		 * we need to add something to before end.
4562 		 */
4563 		if (pos == end)
4564 			break;
4565 
4566 		caddr = t->loc[pos].addr;
4567 		if (track->addr == caddr) {
4568 
4569 			l = &t->loc[pos];
4570 			l->count++;
4571 			if (track->when) {
4572 				l->sum_time += age;
4573 				if (age < l->min_time)
4574 					l->min_time = age;
4575 				if (age > l->max_time)
4576 					l->max_time = age;
4577 
4578 				if (track->pid < l->min_pid)
4579 					l->min_pid = track->pid;
4580 				if (track->pid > l->max_pid)
4581 					l->max_pid = track->pid;
4582 
4583 				cpumask_set_cpu(track->cpu,
4584 						to_cpumask(l->cpus));
4585 			}
4586 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4587 			return 1;
4588 		}
4589 
4590 		if (track->addr < caddr)
4591 			end = pos;
4592 		else
4593 			start = pos;
4594 	}
4595 
4596 	/*
4597 	 * Not found. Insert new tracking element.
4598 	 */
4599 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4600 		return 0;
4601 
4602 	l = t->loc + pos;
4603 	if (pos < t->count)
4604 		memmove(l + 1, l,
4605 			(t->count - pos) * sizeof(struct location));
4606 	t->count++;
4607 	l->count = 1;
4608 	l->addr = track->addr;
4609 	l->sum_time = age;
4610 	l->min_time = age;
4611 	l->max_time = age;
4612 	l->min_pid = track->pid;
4613 	l->max_pid = track->pid;
4614 	cpumask_clear(to_cpumask(l->cpus));
4615 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4616 	nodes_clear(l->nodes);
4617 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4618 	return 1;
4619 }
4620 
4621 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4622 		struct page *page, enum track_item alloc)
4623 {
4624 	void *addr = page_address(page);
4625 	void *p;
4626 	unsigned long *map;
4627 
4628 	map = get_map(s, page);
4629 	for_each_object(p, s, addr, page->objects)
4630 		if (!test_bit(slab_index(p, s, addr), map))
4631 			add_location(t, s, get_track(s, p, alloc));
4632 	put_map(map);
4633 }
4634 
4635 static int list_locations(struct kmem_cache *s, char *buf,
4636 					enum track_item alloc)
4637 {
4638 	int len = 0;
4639 	unsigned long i;
4640 	struct loc_track t = { 0, 0, NULL };
4641 	int node;
4642 	struct kmem_cache_node *n;
4643 
4644 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4645 			     GFP_KERNEL)) {
4646 		return sprintf(buf, "Out of memory\n");
4647 	}
4648 	/* Push back cpu slabs */
4649 	flush_all(s);
4650 
4651 	for_each_kmem_cache_node(s, node, n) {
4652 		unsigned long flags;
4653 		struct page *page;
4654 
4655 		if (!atomic_long_read(&n->nr_slabs))
4656 			continue;
4657 
4658 		spin_lock_irqsave(&n->list_lock, flags);
4659 		list_for_each_entry(page, &n->partial, slab_list)
4660 			process_slab(&t, s, page, alloc);
4661 		list_for_each_entry(page, &n->full, slab_list)
4662 			process_slab(&t, s, page, alloc);
4663 		spin_unlock_irqrestore(&n->list_lock, flags);
4664 	}
4665 
4666 	for (i = 0; i < t.count; i++) {
4667 		struct location *l = &t.loc[i];
4668 
4669 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4670 			break;
4671 		len += sprintf(buf + len, "%7ld ", l->count);
4672 
4673 		if (l->addr)
4674 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4675 		else
4676 			len += sprintf(buf + len, "<not-available>");
4677 
4678 		if (l->sum_time != l->min_time) {
4679 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4680 				l->min_time,
4681 				(long)div_u64(l->sum_time, l->count),
4682 				l->max_time);
4683 		} else
4684 			len += sprintf(buf + len, " age=%ld",
4685 				l->min_time);
4686 
4687 		if (l->min_pid != l->max_pid)
4688 			len += sprintf(buf + len, " pid=%ld-%ld",
4689 				l->min_pid, l->max_pid);
4690 		else
4691 			len += sprintf(buf + len, " pid=%ld",
4692 				l->min_pid);
4693 
4694 		if (num_online_cpus() > 1 &&
4695 				!cpumask_empty(to_cpumask(l->cpus)) &&
4696 				len < PAGE_SIZE - 60)
4697 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4698 					 " cpus=%*pbl",
4699 					 cpumask_pr_args(to_cpumask(l->cpus)));
4700 
4701 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4702 				len < PAGE_SIZE - 60)
4703 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4704 					 " nodes=%*pbl",
4705 					 nodemask_pr_args(&l->nodes));
4706 
4707 		len += sprintf(buf + len, "\n");
4708 	}
4709 
4710 	free_loc_track(&t);
4711 	if (!t.count)
4712 		len += sprintf(buf, "No data\n");
4713 	return len;
4714 }
4715 #endif	/* CONFIG_SLUB_DEBUG */
4716 
4717 #ifdef SLUB_RESILIENCY_TEST
4718 static void __init resiliency_test(void)
4719 {
4720 	u8 *p;
4721 	int type = KMALLOC_NORMAL;
4722 
4723 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4724 
4725 	pr_err("SLUB resiliency testing\n");
4726 	pr_err("-----------------------\n");
4727 	pr_err("A. Corruption after allocation\n");
4728 
4729 	p = kzalloc(16, GFP_KERNEL);
4730 	p[16] = 0x12;
4731 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4732 	       p + 16);
4733 
4734 	validate_slab_cache(kmalloc_caches[type][4]);
4735 
4736 	/* Hmmm... The next two are dangerous */
4737 	p = kzalloc(32, GFP_KERNEL);
4738 	p[32 + sizeof(void *)] = 0x34;
4739 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4740 	       p);
4741 	pr_err("If allocated object is overwritten then not detectable\n\n");
4742 
4743 	validate_slab_cache(kmalloc_caches[type][5]);
4744 	p = kzalloc(64, GFP_KERNEL);
4745 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4746 	*p = 0x56;
4747 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4748 	       p);
4749 	pr_err("If allocated object is overwritten then not detectable\n\n");
4750 	validate_slab_cache(kmalloc_caches[type][6]);
4751 
4752 	pr_err("\nB. Corruption after free\n");
4753 	p = kzalloc(128, GFP_KERNEL);
4754 	kfree(p);
4755 	*p = 0x78;
4756 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4757 	validate_slab_cache(kmalloc_caches[type][7]);
4758 
4759 	p = kzalloc(256, GFP_KERNEL);
4760 	kfree(p);
4761 	p[50] = 0x9a;
4762 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4763 	validate_slab_cache(kmalloc_caches[type][8]);
4764 
4765 	p = kzalloc(512, GFP_KERNEL);
4766 	kfree(p);
4767 	p[512] = 0xab;
4768 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4769 	validate_slab_cache(kmalloc_caches[type][9]);
4770 }
4771 #else
4772 #ifdef CONFIG_SYSFS
4773 static void resiliency_test(void) {};
4774 #endif
4775 #endif	/* SLUB_RESILIENCY_TEST */
4776 
4777 #ifdef CONFIG_SYSFS
4778 enum slab_stat_type {
4779 	SL_ALL,			/* All slabs */
4780 	SL_PARTIAL,		/* Only partially allocated slabs */
4781 	SL_CPU,			/* Only slabs used for cpu caches */
4782 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4783 	SL_TOTAL		/* Determine object capacity not slabs */
4784 };
4785 
4786 #define SO_ALL		(1 << SL_ALL)
4787 #define SO_PARTIAL	(1 << SL_PARTIAL)
4788 #define SO_CPU		(1 << SL_CPU)
4789 #define SO_OBJECTS	(1 << SL_OBJECTS)
4790 #define SO_TOTAL	(1 << SL_TOTAL)
4791 
4792 #ifdef CONFIG_MEMCG
4793 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4794 
4795 static int __init setup_slub_memcg_sysfs(char *str)
4796 {
4797 	int v;
4798 
4799 	if (get_option(&str, &v) > 0)
4800 		memcg_sysfs_enabled = v;
4801 
4802 	return 1;
4803 }
4804 
4805 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4806 #endif
4807 
4808 static ssize_t show_slab_objects(struct kmem_cache *s,
4809 			    char *buf, unsigned long flags)
4810 {
4811 	unsigned long total = 0;
4812 	int node;
4813 	int x;
4814 	unsigned long *nodes;
4815 
4816 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4817 	if (!nodes)
4818 		return -ENOMEM;
4819 
4820 	if (flags & SO_CPU) {
4821 		int cpu;
4822 
4823 		for_each_possible_cpu(cpu) {
4824 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4825 							       cpu);
4826 			int node;
4827 			struct page *page;
4828 
4829 			page = READ_ONCE(c->page);
4830 			if (!page)
4831 				continue;
4832 
4833 			node = page_to_nid(page);
4834 			if (flags & SO_TOTAL)
4835 				x = page->objects;
4836 			else if (flags & SO_OBJECTS)
4837 				x = page->inuse;
4838 			else
4839 				x = 1;
4840 
4841 			total += x;
4842 			nodes[node] += x;
4843 
4844 			page = slub_percpu_partial_read_once(c);
4845 			if (page) {
4846 				node = page_to_nid(page);
4847 				if (flags & SO_TOTAL)
4848 					WARN_ON_ONCE(1);
4849 				else if (flags & SO_OBJECTS)
4850 					WARN_ON_ONCE(1);
4851 				else
4852 					x = page->pages;
4853 				total += x;
4854 				nodes[node] += x;
4855 			}
4856 		}
4857 	}
4858 
4859 	/*
4860 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4861 	 * already held which will conflict with an existing lock order:
4862 	 *
4863 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4864 	 *
4865 	 * We don't really need mem_hotplug_lock (to hold off
4866 	 * slab_mem_going_offline_callback) here because slab's memory hot
4867 	 * unplug code doesn't destroy the kmem_cache->node[] data.
4868 	 */
4869 
4870 #ifdef CONFIG_SLUB_DEBUG
4871 	if (flags & SO_ALL) {
4872 		struct kmem_cache_node *n;
4873 
4874 		for_each_kmem_cache_node(s, node, n) {
4875 
4876 			if (flags & SO_TOTAL)
4877 				x = atomic_long_read(&n->total_objects);
4878 			else if (flags & SO_OBJECTS)
4879 				x = atomic_long_read(&n->total_objects) -
4880 					count_partial(n, count_free);
4881 			else
4882 				x = atomic_long_read(&n->nr_slabs);
4883 			total += x;
4884 			nodes[node] += x;
4885 		}
4886 
4887 	} else
4888 #endif
4889 	if (flags & SO_PARTIAL) {
4890 		struct kmem_cache_node *n;
4891 
4892 		for_each_kmem_cache_node(s, node, n) {
4893 			if (flags & SO_TOTAL)
4894 				x = count_partial(n, count_total);
4895 			else if (flags & SO_OBJECTS)
4896 				x = count_partial(n, count_inuse);
4897 			else
4898 				x = n->nr_partial;
4899 			total += x;
4900 			nodes[node] += x;
4901 		}
4902 	}
4903 	x = sprintf(buf, "%lu", total);
4904 #ifdef CONFIG_NUMA
4905 	for (node = 0; node < nr_node_ids; node++)
4906 		if (nodes[node])
4907 			x += sprintf(buf + x, " N%d=%lu",
4908 					node, nodes[node]);
4909 #endif
4910 	kfree(nodes);
4911 	return x + sprintf(buf + x, "\n");
4912 }
4913 
4914 #ifdef CONFIG_SLUB_DEBUG
4915 static int any_slab_objects(struct kmem_cache *s)
4916 {
4917 	int node;
4918 	struct kmem_cache_node *n;
4919 
4920 	for_each_kmem_cache_node(s, node, n)
4921 		if (atomic_long_read(&n->total_objects))
4922 			return 1;
4923 
4924 	return 0;
4925 }
4926 #endif
4927 
4928 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4929 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4930 
4931 struct slab_attribute {
4932 	struct attribute attr;
4933 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4934 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4935 };
4936 
4937 #define SLAB_ATTR_RO(_name) \
4938 	static struct slab_attribute _name##_attr = \
4939 	__ATTR(_name, 0400, _name##_show, NULL)
4940 
4941 #define SLAB_ATTR(_name) \
4942 	static struct slab_attribute _name##_attr =  \
4943 	__ATTR(_name, 0600, _name##_show, _name##_store)
4944 
4945 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4946 {
4947 	return sprintf(buf, "%u\n", s->size);
4948 }
4949 SLAB_ATTR_RO(slab_size);
4950 
4951 static ssize_t align_show(struct kmem_cache *s, char *buf)
4952 {
4953 	return sprintf(buf, "%u\n", s->align);
4954 }
4955 SLAB_ATTR_RO(align);
4956 
4957 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4958 {
4959 	return sprintf(buf, "%u\n", s->object_size);
4960 }
4961 SLAB_ATTR_RO(object_size);
4962 
4963 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4964 {
4965 	return sprintf(buf, "%u\n", oo_objects(s->oo));
4966 }
4967 SLAB_ATTR_RO(objs_per_slab);
4968 
4969 static ssize_t order_store(struct kmem_cache *s,
4970 				const char *buf, size_t length)
4971 {
4972 	unsigned int order;
4973 	int err;
4974 
4975 	err = kstrtouint(buf, 10, &order);
4976 	if (err)
4977 		return err;
4978 
4979 	if (order > slub_max_order || order < slub_min_order)
4980 		return -EINVAL;
4981 
4982 	calculate_sizes(s, order);
4983 	return length;
4984 }
4985 
4986 static ssize_t order_show(struct kmem_cache *s, char *buf)
4987 {
4988 	return sprintf(buf, "%u\n", oo_order(s->oo));
4989 }
4990 SLAB_ATTR(order);
4991 
4992 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4993 {
4994 	return sprintf(buf, "%lu\n", s->min_partial);
4995 }
4996 
4997 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4998 				 size_t length)
4999 {
5000 	unsigned long min;
5001 	int err;
5002 
5003 	err = kstrtoul(buf, 10, &min);
5004 	if (err)
5005 		return err;
5006 
5007 	set_min_partial(s, min);
5008 	return length;
5009 }
5010 SLAB_ATTR(min_partial);
5011 
5012 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5013 {
5014 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
5015 }
5016 
5017 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5018 				 size_t length)
5019 {
5020 	unsigned int objects;
5021 	int err;
5022 
5023 	err = kstrtouint(buf, 10, &objects);
5024 	if (err)
5025 		return err;
5026 	if (objects && !kmem_cache_has_cpu_partial(s))
5027 		return -EINVAL;
5028 
5029 	slub_set_cpu_partial(s, objects);
5030 	flush_all(s);
5031 	return length;
5032 }
5033 SLAB_ATTR(cpu_partial);
5034 
5035 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5036 {
5037 	if (!s->ctor)
5038 		return 0;
5039 	return sprintf(buf, "%pS\n", s->ctor);
5040 }
5041 SLAB_ATTR_RO(ctor);
5042 
5043 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5044 {
5045 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5046 }
5047 SLAB_ATTR_RO(aliases);
5048 
5049 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5050 {
5051 	return show_slab_objects(s, buf, SO_PARTIAL);
5052 }
5053 SLAB_ATTR_RO(partial);
5054 
5055 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5056 {
5057 	return show_slab_objects(s, buf, SO_CPU);
5058 }
5059 SLAB_ATTR_RO(cpu_slabs);
5060 
5061 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5062 {
5063 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5064 }
5065 SLAB_ATTR_RO(objects);
5066 
5067 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5068 {
5069 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5070 }
5071 SLAB_ATTR_RO(objects_partial);
5072 
5073 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5074 {
5075 	int objects = 0;
5076 	int pages = 0;
5077 	int cpu;
5078 	int len;
5079 
5080 	for_each_online_cpu(cpu) {
5081 		struct page *page;
5082 
5083 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5084 
5085 		if (page) {
5086 			pages += page->pages;
5087 			objects += page->pobjects;
5088 		}
5089 	}
5090 
5091 	len = sprintf(buf, "%d(%d)", objects, pages);
5092 
5093 #ifdef CONFIG_SMP
5094 	for_each_online_cpu(cpu) {
5095 		struct page *page;
5096 
5097 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5098 
5099 		if (page && len < PAGE_SIZE - 20)
5100 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5101 				page->pobjects, page->pages);
5102 	}
5103 #endif
5104 	return len + sprintf(buf + len, "\n");
5105 }
5106 SLAB_ATTR_RO(slabs_cpu_partial);
5107 
5108 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5109 {
5110 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5111 }
5112 
5113 static ssize_t reclaim_account_store(struct kmem_cache *s,
5114 				const char *buf, size_t length)
5115 {
5116 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5117 	if (buf[0] == '1')
5118 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5119 	return length;
5120 }
5121 SLAB_ATTR(reclaim_account);
5122 
5123 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5124 {
5125 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5126 }
5127 SLAB_ATTR_RO(hwcache_align);
5128 
5129 #ifdef CONFIG_ZONE_DMA
5130 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5131 {
5132 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5133 }
5134 SLAB_ATTR_RO(cache_dma);
5135 #endif
5136 
5137 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5138 {
5139 	return sprintf(buf, "%u\n", s->usersize);
5140 }
5141 SLAB_ATTR_RO(usersize);
5142 
5143 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5144 {
5145 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5146 }
5147 SLAB_ATTR_RO(destroy_by_rcu);
5148 
5149 #ifdef CONFIG_SLUB_DEBUG
5150 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5151 {
5152 	return show_slab_objects(s, buf, SO_ALL);
5153 }
5154 SLAB_ATTR_RO(slabs);
5155 
5156 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5157 {
5158 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5159 }
5160 SLAB_ATTR_RO(total_objects);
5161 
5162 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5163 {
5164 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5165 }
5166 
5167 static ssize_t sanity_checks_store(struct kmem_cache *s,
5168 				const char *buf, size_t length)
5169 {
5170 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5171 	if (buf[0] == '1') {
5172 		s->flags &= ~__CMPXCHG_DOUBLE;
5173 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5174 	}
5175 	return length;
5176 }
5177 SLAB_ATTR(sanity_checks);
5178 
5179 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5180 {
5181 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5182 }
5183 
5184 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5185 							size_t length)
5186 {
5187 	/*
5188 	 * Tracing a merged cache is going to give confusing results
5189 	 * as well as cause other issues like converting a mergeable
5190 	 * cache into an umergeable one.
5191 	 */
5192 	if (s->refcount > 1)
5193 		return -EINVAL;
5194 
5195 	s->flags &= ~SLAB_TRACE;
5196 	if (buf[0] == '1') {
5197 		s->flags &= ~__CMPXCHG_DOUBLE;
5198 		s->flags |= SLAB_TRACE;
5199 	}
5200 	return length;
5201 }
5202 SLAB_ATTR(trace);
5203 
5204 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5205 {
5206 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5207 }
5208 
5209 static ssize_t red_zone_store(struct kmem_cache *s,
5210 				const char *buf, size_t length)
5211 {
5212 	if (any_slab_objects(s))
5213 		return -EBUSY;
5214 
5215 	s->flags &= ~SLAB_RED_ZONE;
5216 	if (buf[0] == '1') {
5217 		s->flags |= SLAB_RED_ZONE;
5218 	}
5219 	calculate_sizes(s, -1);
5220 	return length;
5221 }
5222 SLAB_ATTR(red_zone);
5223 
5224 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5225 {
5226 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5227 }
5228 
5229 static ssize_t poison_store(struct kmem_cache *s,
5230 				const char *buf, size_t length)
5231 {
5232 	if (any_slab_objects(s))
5233 		return -EBUSY;
5234 
5235 	s->flags &= ~SLAB_POISON;
5236 	if (buf[0] == '1') {
5237 		s->flags |= SLAB_POISON;
5238 	}
5239 	calculate_sizes(s, -1);
5240 	return length;
5241 }
5242 SLAB_ATTR(poison);
5243 
5244 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5245 {
5246 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5247 }
5248 
5249 static ssize_t store_user_store(struct kmem_cache *s,
5250 				const char *buf, size_t length)
5251 {
5252 	if (any_slab_objects(s))
5253 		return -EBUSY;
5254 
5255 	s->flags &= ~SLAB_STORE_USER;
5256 	if (buf[0] == '1') {
5257 		s->flags &= ~__CMPXCHG_DOUBLE;
5258 		s->flags |= SLAB_STORE_USER;
5259 	}
5260 	calculate_sizes(s, -1);
5261 	return length;
5262 }
5263 SLAB_ATTR(store_user);
5264 
5265 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5266 {
5267 	return 0;
5268 }
5269 
5270 static ssize_t validate_store(struct kmem_cache *s,
5271 			const char *buf, size_t length)
5272 {
5273 	int ret = -EINVAL;
5274 
5275 	if (buf[0] == '1') {
5276 		ret = validate_slab_cache(s);
5277 		if (ret >= 0)
5278 			ret = length;
5279 	}
5280 	return ret;
5281 }
5282 SLAB_ATTR(validate);
5283 
5284 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5285 {
5286 	if (!(s->flags & SLAB_STORE_USER))
5287 		return -ENOSYS;
5288 	return list_locations(s, buf, TRACK_ALLOC);
5289 }
5290 SLAB_ATTR_RO(alloc_calls);
5291 
5292 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5293 {
5294 	if (!(s->flags & SLAB_STORE_USER))
5295 		return -ENOSYS;
5296 	return list_locations(s, buf, TRACK_FREE);
5297 }
5298 SLAB_ATTR_RO(free_calls);
5299 #endif /* CONFIG_SLUB_DEBUG */
5300 
5301 #ifdef CONFIG_FAILSLAB
5302 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5303 {
5304 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5305 }
5306 
5307 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5308 							size_t length)
5309 {
5310 	if (s->refcount > 1)
5311 		return -EINVAL;
5312 
5313 	s->flags &= ~SLAB_FAILSLAB;
5314 	if (buf[0] == '1')
5315 		s->flags |= SLAB_FAILSLAB;
5316 	return length;
5317 }
5318 SLAB_ATTR(failslab);
5319 #endif
5320 
5321 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5322 {
5323 	return 0;
5324 }
5325 
5326 static ssize_t shrink_store(struct kmem_cache *s,
5327 			const char *buf, size_t length)
5328 {
5329 	if (buf[0] == '1')
5330 		kmem_cache_shrink_all(s);
5331 	else
5332 		return -EINVAL;
5333 	return length;
5334 }
5335 SLAB_ATTR(shrink);
5336 
5337 #ifdef CONFIG_NUMA
5338 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5339 {
5340 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5341 }
5342 
5343 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5344 				const char *buf, size_t length)
5345 {
5346 	unsigned int ratio;
5347 	int err;
5348 
5349 	err = kstrtouint(buf, 10, &ratio);
5350 	if (err)
5351 		return err;
5352 	if (ratio > 100)
5353 		return -ERANGE;
5354 
5355 	s->remote_node_defrag_ratio = ratio * 10;
5356 
5357 	return length;
5358 }
5359 SLAB_ATTR(remote_node_defrag_ratio);
5360 #endif
5361 
5362 #ifdef CONFIG_SLUB_STATS
5363 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5364 {
5365 	unsigned long sum  = 0;
5366 	int cpu;
5367 	int len;
5368 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5369 
5370 	if (!data)
5371 		return -ENOMEM;
5372 
5373 	for_each_online_cpu(cpu) {
5374 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5375 
5376 		data[cpu] = x;
5377 		sum += x;
5378 	}
5379 
5380 	len = sprintf(buf, "%lu", sum);
5381 
5382 #ifdef CONFIG_SMP
5383 	for_each_online_cpu(cpu) {
5384 		if (data[cpu] && len < PAGE_SIZE - 20)
5385 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5386 	}
5387 #endif
5388 	kfree(data);
5389 	return len + sprintf(buf + len, "\n");
5390 }
5391 
5392 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5393 {
5394 	int cpu;
5395 
5396 	for_each_online_cpu(cpu)
5397 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5398 }
5399 
5400 #define STAT_ATTR(si, text) 					\
5401 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5402 {								\
5403 	return show_stat(s, buf, si);				\
5404 }								\
5405 static ssize_t text##_store(struct kmem_cache *s,		\
5406 				const char *buf, size_t length)	\
5407 {								\
5408 	if (buf[0] != '0')					\
5409 		return -EINVAL;					\
5410 	clear_stat(s, si);					\
5411 	return length;						\
5412 }								\
5413 SLAB_ATTR(text);						\
5414 
5415 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5416 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5417 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5418 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5419 STAT_ATTR(FREE_FROZEN, free_frozen);
5420 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5421 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5422 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5423 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5424 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5425 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5426 STAT_ATTR(FREE_SLAB, free_slab);
5427 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5428 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5429 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5430 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5431 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5432 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5433 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5434 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5435 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5436 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5437 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5438 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5439 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5440 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5441 #endif	/* CONFIG_SLUB_STATS */
5442 
5443 static struct attribute *slab_attrs[] = {
5444 	&slab_size_attr.attr,
5445 	&object_size_attr.attr,
5446 	&objs_per_slab_attr.attr,
5447 	&order_attr.attr,
5448 	&min_partial_attr.attr,
5449 	&cpu_partial_attr.attr,
5450 	&objects_attr.attr,
5451 	&objects_partial_attr.attr,
5452 	&partial_attr.attr,
5453 	&cpu_slabs_attr.attr,
5454 	&ctor_attr.attr,
5455 	&aliases_attr.attr,
5456 	&align_attr.attr,
5457 	&hwcache_align_attr.attr,
5458 	&reclaim_account_attr.attr,
5459 	&destroy_by_rcu_attr.attr,
5460 	&shrink_attr.attr,
5461 	&slabs_cpu_partial_attr.attr,
5462 #ifdef CONFIG_SLUB_DEBUG
5463 	&total_objects_attr.attr,
5464 	&slabs_attr.attr,
5465 	&sanity_checks_attr.attr,
5466 	&trace_attr.attr,
5467 	&red_zone_attr.attr,
5468 	&poison_attr.attr,
5469 	&store_user_attr.attr,
5470 	&validate_attr.attr,
5471 	&alloc_calls_attr.attr,
5472 	&free_calls_attr.attr,
5473 #endif
5474 #ifdef CONFIG_ZONE_DMA
5475 	&cache_dma_attr.attr,
5476 #endif
5477 #ifdef CONFIG_NUMA
5478 	&remote_node_defrag_ratio_attr.attr,
5479 #endif
5480 #ifdef CONFIG_SLUB_STATS
5481 	&alloc_fastpath_attr.attr,
5482 	&alloc_slowpath_attr.attr,
5483 	&free_fastpath_attr.attr,
5484 	&free_slowpath_attr.attr,
5485 	&free_frozen_attr.attr,
5486 	&free_add_partial_attr.attr,
5487 	&free_remove_partial_attr.attr,
5488 	&alloc_from_partial_attr.attr,
5489 	&alloc_slab_attr.attr,
5490 	&alloc_refill_attr.attr,
5491 	&alloc_node_mismatch_attr.attr,
5492 	&free_slab_attr.attr,
5493 	&cpuslab_flush_attr.attr,
5494 	&deactivate_full_attr.attr,
5495 	&deactivate_empty_attr.attr,
5496 	&deactivate_to_head_attr.attr,
5497 	&deactivate_to_tail_attr.attr,
5498 	&deactivate_remote_frees_attr.attr,
5499 	&deactivate_bypass_attr.attr,
5500 	&order_fallback_attr.attr,
5501 	&cmpxchg_double_fail_attr.attr,
5502 	&cmpxchg_double_cpu_fail_attr.attr,
5503 	&cpu_partial_alloc_attr.attr,
5504 	&cpu_partial_free_attr.attr,
5505 	&cpu_partial_node_attr.attr,
5506 	&cpu_partial_drain_attr.attr,
5507 #endif
5508 #ifdef CONFIG_FAILSLAB
5509 	&failslab_attr.attr,
5510 #endif
5511 	&usersize_attr.attr,
5512 
5513 	NULL
5514 };
5515 
5516 static const struct attribute_group slab_attr_group = {
5517 	.attrs = slab_attrs,
5518 };
5519 
5520 static ssize_t slab_attr_show(struct kobject *kobj,
5521 				struct attribute *attr,
5522 				char *buf)
5523 {
5524 	struct slab_attribute *attribute;
5525 	struct kmem_cache *s;
5526 	int err;
5527 
5528 	attribute = to_slab_attr(attr);
5529 	s = to_slab(kobj);
5530 
5531 	if (!attribute->show)
5532 		return -EIO;
5533 
5534 	err = attribute->show(s, buf);
5535 
5536 	return err;
5537 }
5538 
5539 static ssize_t slab_attr_store(struct kobject *kobj,
5540 				struct attribute *attr,
5541 				const char *buf, size_t len)
5542 {
5543 	struct slab_attribute *attribute;
5544 	struct kmem_cache *s;
5545 	int err;
5546 
5547 	attribute = to_slab_attr(attr);
5548 	s = to_slab(kobj);
5549 
5550 	if (!attribute->store)
5551 		return -EIO;
5552 
5553 	err = attribute->store(s, buf, len);
5554 #ifdef CONFIG_MEMCG
5555 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5556 		struct kmem_cache *c;
5557 
5558 		mutex_lock(&slab_mutex);
5559 		if (s->max_attr_size < len)
5560 			s->max_attr_size = len;
5561 
5562 		/*
5563 		 * This is a best effort propagation, so this function's return
5564 		 * value will be determined by the parent cache only. This is
5565 		 * basically because not all attributes will have a well
5566 		 * defined semantics for rollbacks - most of the actions will
5567 		 * have permanent effects.
5568 		 *
5569 		 * Returning the error value of any of the children that fail
5570 		 * is not 100 % defined, in the sense that users seeing the
5571 		 * error code won't be able to know anything about the state of
5572 		 * the cache.
5573 		 *
5574 		 * Only returning the error code for the parent cache at least
5575 		 * has well defined semantics. The cache being written to
5576 		 * directly either failed or succeeded, in which case we loop
5577 		 * through the descendants with best-effort propagation.
5578 		 */
5579 		for_each_memcg_cache(c, s)
5580 			attribute->store(c, buf, len);
5581 		mutex_unlock(&slab_mutex);
5582 	}
5583 #endif
5584 	return err;
5585 }
5586 
5587 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5588 {
5589 #ifdef CONFIG_MEMCG
5590 	int i;
5591 	char *buffer = NULL;
5592 	struct kmem_cache *root_cache;
5593 
5594 	if (is_root_cache(s))
5595 		return;
5596 
5597 	root_cache = s->memcg_params.root_cache;
5598 
5599 	/*
5600 	 * This mean this cache had no attribute written. Therefore, no point
5601 	 * in copying default values around
5602 	 */
5603 	if (!root_cache->max_attr_size)
5604 		return;
5605 
5606 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5607 		char mbuf[64];
5608 		char *buf;
5609 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5610 		ssize_t len;
5611 
5612 		if (!attr || !attr->store || !attr->show)
5613 			continue;
5614 
5615 		/*
5616 		 * It is really bad that we have to allocate here, so we will
5617 		 * do it only as a fallback. If we actually allocate, though,
5618 		 * we can just use the allocated buffer until the end.
5619 		 *
5620 		 * Most of the slub attributes will tend to be very small in
5621 		 * size, but sysfs allows buffers up to a page, so they can
5622 		 * theoretically happen.
5623 		 */
5624 		if (buffer)
5625 			buf = buffer;
5626 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5627 			buf = mbuf;
5628 		else {
5629 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5630 			if (WARN_ON(!buffer))
5631 				continue;
5632 			buf = buffer;
5633 		}
5634 
5635 		len = attr->show(root_cache, buf);
5636 		if (len > 0)
5637 			attr->store(s, buf, len);
5638 	}
5639 
5640 	if (buffer)
5641 		free_page((unsigned long)buffer);
5642 #endif	/* CONFIG_MEMCG */
5643 }
5644 
5645 static void kmem_cache_release(struct kobject *k)
5646 {
5647 	slab_kmem_cache_release(to_slab(k));
5648 }
5649 
5650 static const struct sysfs_ops slab_sysfs_ops = {
5651 	.show = slab_attr_show,
5652 	.store = slab_attr_store,
5653 };
5654 
5655 static struct kobj_type slab_ktype = {
5656 	.sysfs_ops = &slab_sysfs_ops,
5657 	.release = kmem_cache_release,
5658 };
5659 
5660 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5661 {
5662 	struct kobj_type *ktype = get_ktype(kobj);
5663 
5664 	if (ktype == &slab_ktype)
5665 		return 1;
5666 	return 0;
5667 }
5668 
5669 static const struct kset_uevent_ops slab_uevent_ops = {
5670 	.filter = uevent_filter,
5671 };
5672 
5673 static struct kset *slab_kset;
5674 
5675 static inline struct kset *cache_kset(struct kmem_cache *s)
5676 {
5677 #ifdef CONFIG_MEMCG
5678 	if (!is_root_cache(s))
5679 		return s->memcg_params.root_cache->memcg_kset;
5680 #endif
5681 	return slab_kset;
5682 }
5683 
5684 #define ID_STR_LENGTH 64
5685 
5686 /* Create a unique string id for a slab cache:
5687  *
5688  * Format	:[flags-]size
5689  */
5690 static char *create_unique_id(struct kmem_cache *s)
5691 {
5692 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5693 	char *p = name;
5694 
5695 	BUG_ON(!name);
5696 
5697 	*p++ = ':';
5698 	/*
5699 	 * First flags affecting slabcache operations. We will only
5700 	 * get here for aliasable slabs so we do not need to support
5701 	 * too many flags. The flags here must cover all flags that
5702 	 * are matched during merging to guarantee that the id is
5703 	 * unique.
5704 	 */
5705 	if (s->flags & SLAB_CACHE_DMA)
5706 		*p++ = 'd';
5707 	if (s->flags & SLAB_CACHE_DMA32)
5708 		*p++ = 'D';
5709 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5710 		*p++ = 'a';
5711 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5712 		*p++ = 'F';
5713 	if (s->flags & SLAB_ACCOUNT)
5714 		*p++ = 'A';
5715 	if (p != name + 1)
5716 		*p++ = '-';
5717 	p += sprintf(p, "%07u", s->size);
5718 
5719 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5720 	return name;
5721 }
5722 
5723 static void sysfs_slab_remove_workfn(struct work_struct *work)
5724 {
5725 	struct kmem_cache *s =
5726 		container_of(work, struct kmem_cache, kobj_remove_work);
5727 
5728 	if (!s->kobj.state_in_sysfs)
5729 		/*
5730 		 * For a memcg cache, this may be called during
5731 		 * deactivation and again on shutdown.  Remove only once.
5732 		 * A cache is never shut down before deactivation is
5733 		 * complete, so no need to worry about synchronization.
5734 		 */
5735 		goto out;
5736 
5737 #ifdef CONFIG_MEMCG
5738 	kset_unregister(s->memcg_kset);
5739 #endif
5740 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5741 out:
5742 	kobject_put(&s->kobj);
5743 }
5744 
5745 static int sysfs_slab_add(struct kmem_cache *s)
5746 {
5747 	int err;
5748 	const char *name;
5749 	struct kset *kset = cache_kset(s);
5750 	int unmergeable = slab_unmergeable(s);
5751 
5752 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5753 
5754 	if (!kset) {
5755 		kobject_init(&s->kobj, &slab_ktype);
5756 		return 0;
5757 	}
5758 
5759 	if (!unmergeable && disable_higher_order_debug &&
5760 			(slub_debug & DEBUG_METADATA_FLAGS))
5761 		unmergeable = 1;
5762 
5763 	if (unmergeable) {
5764 		/*
5765 		 * Slabcache can never be merged so we can use the name proper.
5766 		 * This is typically the case for debug situations. In that
5767 		 * case we can catch duplicate names easily.
5768 		 */
5769 		sysfs_remove_link(&slab_kset->kobj, s->name);
5770 		name = s->name;
5771 	} else {
5772 		/*
5773 		 * Create a unique name for the slab as a target
5774 		 * for the symlinks.
5775 		 */
5776 		name = create_unique_id(s);
5777 	}
5778 
5779 	s->kobj.kset = kset;
5780 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5781 	if (err)
5782 		goto out;
5783 
5784 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5785 	if (err)
5786 		goto out_del_kobj;
5787 
5788 #ifdef CONFIG_MEMCG
5789 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5790 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5791 		if (!s->memcg_kset) {
5792 			err = -ENOMEM;
5793 			goto out_del_kobj;
5794 		}
5795 	}
5796 #endif
5797 
5798 	kobject_uevent(&s->kobj, KOBJ_ADD);
5799 	if (!unmergeable) {
5800 		/* Setup first alias */
5801 		sysfs_slab_alias(s, s->name);
5802 	}
5803 out:
5804 	if (!unmergeable)
5805 		kfree(name);
5806 	return err;
5807 out_del_kobj:
5808 	kobject_del(&s->kobj);
5809 	goto out;
5810 }
5811 
5812 static void sysfs_slab_remove(struct kmem_cache *s)
5813 {
5814 	if (slab_state < FULL)
5815 		/*
5816 		 * Sysfs has not been setup yet so no need to remove the
5817 		 * cache from sysfs.
5818 		 */
5819 		return;
5820 
5821 	kobject_get(&s->kobj);
5822 	schedule_work(&s->kobj_remove_work);
5823 }
5824 
5825 void sysfs_slab_unlink(struct kmem_cache *s)
5826 {
5827 	if (slab_state >= FULL)
5828 		kobject_del(&s->kobj);
5829 }
5830 
5831 void sysfs_slab_release(struct kmem_cache *s)
5832 {
5833 	if (slab_state >= FULL)
5834 		kobject_put(&s->kobj);
5835 }
5836 
5837 /*
5838  * Need to buffer aliases during bootup until sysfs becomes
5839  * available lest we lose that information.
5840  */
5841 struct saved_alias {
5842 	struct kmem_cache *s;
5843 	const char *name;
5844 	struct saved_alias *next;
5845 };
5846 
5847 static struct saved_alias *alias_list;
5848 
5849 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5850 {
5851 	struct saved_alias *al;
5852 
5853 	if (slab_state == FULL) {
5854 		/*
5855 		 * If we have a leftover link then remove it.
5856 		 */
5857 		sysfs_remove_link(&slab_kset->kobj, name);
5858 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5859 	}
5860 
5861 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5862 	if (!al)
5863 		return -ENOMEM;
5864 
5865 	al->s = s;
5866 	al->name = name;
5867 	al->next = alias_list;
5868 	alias_list = al;
5869 	return 0;
5870 }
5871 
5872 static int __init slab_sysfs_init(void)
5873 {
5874 	struct kmem_cache *s;
5875 	int err;
5876 
5877 	mutex_lock(&slab_mutex);
5878 
5879 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5880 	if (!slab_kset) {
5881 		mutex_unlock(&slab_mutex);
5882 		pr_err("Cannot register slab subsystem.\n");
5883 		return -ENOSYS;
5884 	}
5885 
5886 	slab_state = FULL;
5887 
5888 	list_for_each_entry(s, &slab_caches, list) {
5889 		err = sysfs_slab_add(s);
5890 		if (err)
5891 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5892 			       s->name);
5893 	}
5894 
5895 	while (alias_list) {
5896 		struct saved_alias *al = alias_list;
5897 
5898 		alias_list = alias_list->next;
5899 		err = sysfs_slab_alias(al->s, al->name);
5900 		if (err)
5901 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5902 			       al->name);
5903 		kfree(al);
5904 	}
5905 
5906 	mutex_unlock(&slab_mutex);
5907 	resiliency_test();
5908 	return 0;
5909 }
5910 
5911 __initcall(slab_sysfs_init);
5912 #endif /* CONFIG_SYSFS */
5913 
5914 /*
5915  * The /proc/slabinfo ABI
5916  */
5917 #ifdef CONFIG_SLUB_DEBUG
5918 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5919 {
5920 	unsigned long nr_slabs = 0;
5921 	unsigned long nr_objs = 0;
5922 	unsigned long nr_free = 0;
5923 	int node;
5924 	struct kmem_cache_node *n;
5925 
5926 	for_each_kmem_cache_node(s, node, n) {
5927 		nr_slabs += node_nr_slabs(n);
5928 		nr_objs += node_nr_objs(n);
5929 		nr_free += count_partial(n, count_free);
5930 	}
5931 
5932 	sinfo->active_objs = nr_objs - nr_free;
5933 	sinfo->num_objs = nr_objs;
5934 	sinfo->active_slabs = nr_slabs;
5935 	sinfo->num_slabs = nr_slabs;
5936 	sinfo->objects_per_slab = oo_objects(s->oo);
5937 	sinfo->cache_order = oo_order(s->oo);
5938 }
5939 
5940 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5941 {
5942 }
5943 
5944 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5945 		       size_t count, loff_t *ppos)
5946 {
5947 	return -EIO;
5948 }
5949 #endif /* CONFIG_SLUB_DEBUG */
5950