xref: /openbmc/linux/mm/slub.c (revision 69868c3b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/kfence.h>
32 #include <linux/memory.h>
33 #include <linux/math64.h>
34 #include <linux/fault-inject.h>
35 #include <linux/stacktrace.h>
36 #include <linux/prefetch.h>
37 #include <linux/memcontrol.h>
38 #include <linux/random.h>
39 #include <kunit/test.h>
40 
41 #include <linux/debugfs.h>
42 #include <trace/events/kmem.h>
43 
44 #include "internal.h"
45 
46 /*
47  * Lock order:
48  *   1. slab_mutex (Global Mutex)
49  *   2. node->list_lock
50  *   3. slab_lock(page) (Only on some arches and for debugging)
51  *
52  *   slab_mutex
53  *
54  *   The role of the slab_mutex is to protect the list of all the slabs
55  *   and to synchronize major metadata changes to slab cache structures.
56  *
57  *   The slab_lock is only used for debugging and on arches that do not
58  *   have the ability to do a cmpxchg_double. It only protects:
59  *	A. page->freelist	-> List of object free in a page
60  *	B. page->inuse		-> Number of objects in use
61  *	C. page->objects	-> Number of objects in page
62  *	D. page->frozen		-> frozen state
63  *
64  *   If a slab is frozen then it is exempt from list management. It is not
65  *   on any list except per cpu partial list. The processor that froze the
66  *   slab is the one who can perform list operations on the page. Other
67  *   processors may put objects onto the freelist but the processor that
68  *   froze the slab is the only one that can retrieve the objects from the
69  *   page's freelist.
70  *
71  *   The list_lock protects the partial and full list on each node and
72  *   the partial slab counter. If taken then no new slabs may be added or
73  *   removed from the lists nor make the number of partial slabs be modified.
74  *   (Note that the total number of slabs is an atomic value that may be
75  *   modified without taking the list lock).
76  *
77  *   The list_lock is a centralized lock and thus we avoid taking it as
78  *   much as possible. As long as SLUB does not have to handle partial
79  *   slabs, operations can continue without any centralized lock. F.e.
80  *   allocating a long series of objects that fill up slabs does not require
81  *   the list lock.
82  *   Interrupts are disabled during allocation and deallocation in order to
83  *   make the slab allocator safe to use in the context of an irq. In addition
84  *   interrupts are disabled to ensure that the processor does not change
85  *   while handling per_cpu slabs, due to kernel preemption.
86  *
87  * SLUB assigns one slab for allocation to each processor.
88  * Allocations only occur from these slabs called cpu slabs.
89  *
90  * Slabs with free elements are kept on a partial list and during regular
91  * operations no list for full slabs is used. If an object in a full slab is
92  * freed then the slab will show up again on the partial lists.
93  * We track full slabs for debugging purposes though because otherwise we
94  * cannot scan all objects.
95  *
96  * Slabs are freed when they become empty. Teardown and setup is
97  * minimal so we rely on the page allocators per cpu caches for
98  * fast frees and allocs.
99  *
100  * page->frozen		The slab is frozen and exempt from list processing.
101  * 			This means that the slab is dedicated to a purpose
102  * 			such as satisfying allocations for a specific
103  * 			processor. Objects may be freed in the slab while
104  * 			it is frozen but slab_free will then skip the usual
105  * 			list operations. It is up to the processor holding
106  * 			the slab to integrate the slab into the slab lists
107  * 			when the slab is no longer needed.
108  *
109  * 			One use of this flag is to mark slabs that are
110  * 			used for allocations. Then such a slab becomes a cpu
111  * 			slab. The cpu slab may be equipped with an additional
112  * 			freelist that allows lockless access to
113  * 			free objects in addition to the regular freelist
114  * 			that requires the slab lock.
115  *
116  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
117  * 			options set. This moves	slab handling out of
118  * 			the fast path and disables lockless freelists.
119  */
120 
121 #ifdef CONFIG_SLUB_DEBUG
122 #ifdef CONFIG_SLUB_DEBUG_ON
123 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
124 #else
125 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
126 #endif
127 #endif		/* CONFIG_SLUB_DEBUG */
128 
129 static inline bool kmem_cache_debug(struct kmem_cache *s)
130 {
131 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
132 }
133 
134 void *fixup_red_left(struct kmem_cache *s, void *p)
135 {
136 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
137 		p += s->red_left_pad;
138 
139 	return p;
140 }
141 
142 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
143 {
144 #ifdef CONFIG_SLUB_CPU_PARTIAL
145 	return !kmem_cache_debug(s);
146 #else
147 	return false;
148 #endif
149 }
150 
151 /*
152  * Issues still to be resolved:
153  *
154  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
155  *
156  * - Variable sizing of the per node arrays
157  */
158 
159 /* Enable to log cmpxchg failures */
160 #undef SLUB_DEBUG_CMPXCHG
161 
162 /*
163  * Minimum number of partial slabs. These will be left on the partial
164  * lists even if they are empty. kmem_cache_shrink may reclaim them.
165  */
166 #define MIN_PARTIAL 5
167 
168 /*
169  * Maximum number of desirable partial slabs.
170  * The existence of more partial slabs makes kmem_cache_shrink
171  * sort the partial list by the number of objects in use.
172  */
173 #define MAX_PARTIAL 10
174 
175 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
176 				SLAB_POISON | SLAB_STORE_USER)
177 
178 /*
179  * These debug flags cannot use CMPXCHG because there might be consistency
180  * issues when checking or reading debug information
181  */
182 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 				SLAB_TRACE)
184 
185 
186 /*
187  * Debugging flags that require metadata to be stored in the slab.  These get
188  * disabled when slub_debug=O is used and a cache's min order increases with
189  * metadata.
190  */
191 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
192 
193 #define OO_SHIFT	16
194 #define OO_MASK		((1 << OO_SHIFT) - 1)
195 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
196 
197 /* Internal SLUB flags */
198 /* Poison object */
199 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
200 /* Use cmpxchg_double */
201 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
202 
203 /*
204  * Tracking user of a slab.
205  */
206 #define TRACK_ADDRS_COUNT 16
207 struct track {
208 	unsigned long addr;	/* Called from address */
209 #ifdef CONFIG_STACKTRACE
210 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
211 #endif
212 	int cpu;		/* Was running on cpu */
213 	int pid;		/* Pid context */
214 	unsigned long when;	/* When did the operation occur */
215 };
216 
217 enum track_item { TRACK_ALLOC, TRACK_FREE };
218 
219 #ifdef CONFIG_SYSFS
220 static int sysfs_slab_add(struct kmem_cache *);
221 static int sysfs_slab_alias(struct kmem_cache *, const char *);
222 #else
223 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 							{ return 0; }
226 #endif
227 
228 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
229 static void debugfs_slab_add(struct kmem_cache *);
230 #else
231 static inline void debugfs_slab_add(struct kmem_cache *s) { }
232 #endif
233 
234 static inline void stat(const struct kmem_cache *s, enum stat_item si)
235 {
236 #ifdef CONFIG_SLUB_STATS
237 	/*
238 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
239 	 * avoid this_cpu_add()'s irq-disable overhead.
240 	 */
241 	raw_cpu_inc(s->cpu_slab->stat[si]);
242 #endif
243 }
244 
245 /*
246  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
247  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
248  * differ during memory hotplug/hotremove operations.
249  * Protected by slab_mutex.
250  */
251 static nodemask_t slab_nodes;
252 
253 /********************************************************************
254  * 			Core slab cache functions
255  *******************************************************************/
256 
257 /*
258  * Returns freelist pointer (ptr). With hardening, this is obfuscated
259  * with an XOR of the address where the pointer is held and a per-cache
260  * random number.
261  */
262 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
263 				 unsigned long ptr_addr)
264 {
265 #ifdef CONFIG_SLAB_FREELIST_HARDENED
266 	/*
267 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
268 	 * Normally, this doesn't cause any issues, as both set_freepointer()
269 	 * and get_freepointer() are called with a pointer with the same tag.
270 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
271 	 * example, when __free_slub() iterates over objects in a cache, it
272 	 * passes untagged pointers to check_object(). check_object() in turns
273 	 * calls get_freepointer() with an untagged pointer, which causes the
274 	 * freepointer to be restored incorrectly.
275 	 */
276 	return (void *)((unsigned long)ptr ^ s->random ^
277 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
278 #else
279 	return ptr;
280 #endif
281 }
282 
283 /* Returns the freelist pointer recorded at location ptr_addr. */
284 static inline void *freelist_dereference(const struct kmem_cache *s,
285 					 void *ptr_addr)
286 {
287 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
288 			    (unsigned long)ptr_addr);
289 }
290 
291 static inline void *get_freepointer(struct kmem_cache *s, void *object)
292 {
293 	object = kasan_reset_tag(object);
294 	return freelist_dereference(s, object + s->offset);
295 }
296 
297 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
298 {
299 	prefetch(object + s->offset);
300 }
301 
302 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
303 {
304 	unsigned long freepointer_addr;
305 	void *p;
306 
307 	if (!debug_pagealloc_enabled_static())
308 		return get_freepointer(s, object);
309 
310 	object = kasan_reset_tag(object);
311 	freepointer_addr = (unsigned long)object + s->offset;
312 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
313 	return freelist_ptr(s, p, freepointer_addr);
314 }
315 
316 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
317 {
318 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
319 
320 #ifdef CONFIG_SLAB_FREELIST_HARDENED
321 	BUG_ON(object == fp); /* naive detection of double free or corruption */
322 #endif
323 
324 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
325 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
326 }
327 
328 /* Loop over all objects in a slab */
329 #define for_each_object(__p, __s, __addr, __objects) \
330 	for (__p = fixup_red_left(__s, __addr); \
331 		__p < (__addr) + (__objects) * (__s)->size; \
332 		__p += (__s)->size)
333 
334 static inline unsigned int order_objects(unsigned int order, unsigned int size)
335 {
336 	return ((unsigned int)PAGE_SIZE << order) / size;
337 }
338 
339 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
340 		unsigned int size)
341 {
342 	struct kmem_cache_order_objects x = {
343 		(order << OO_SHIFT) + order_objects(order, size)
344 	};
345 
346 	return x;
347 }
348 
349 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
350 {
351 	return x.x >> OO_SHIFT;
352 }
353 
354 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
355 {
356 	return x.x & OO_MASK;
357 }
358 
359 /*
360  * Per slab locking using the pagelock
361  */
362 static __always_inline void slab_lock(struct page *page)
363 {
364 	VM_BUG_ON_PAGE(PageTail(page), page);
365 	bit_spin_lock(PG_locked, &page->flags);
366 }
367 
368 static __always_inline void slab_unlock(struct page *page)
369 {
370 	VM_BUG_ON_PAGE(PageTail(page), page);
371 	__bit_spin_unlock(PG_locked, &page->flags);
372 }
373 
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 		void *freelist_old, unsigned long counters_old,
377 		void *freelist_new, unsigned long counters_new,
378 		const char *n)
379 {
380 	VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 	if (s->flags & __CMPXCHG_DOUBLE) {
384 		if (cmpxchg_double(&page->freelist, &page->counters,
385 				   freelist_old, counters_old,
386 				   freelist_new, counters_new))
387 			return true;
388 	} else
389 #endif
390 	{
391 		slab_lock(page);
392 		if (page->freelist == freelist_old &&
393 					page->counters == counters_old) {
394 			page->freelist = freelist_new;
395 			page->counters = counters_new;
396 			slab_unlock(page);
397 			return true;
398 		}
399 		slab_unlock(page);
400 	}
401 
402 	cpu_relax();
403 	stat(s, CMPXCHG_DOUBLE_FAIL);
404 
405 #ifdef SLUB_DEBUG_CMPXCHG
406 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
407 #endif
408 
409 	return false;
410 }
411 
412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 		void *freelist_old, unsigned long counters_old,
414 		void *freelist_new, unsigned long counters_new,
415 		const char *n)
416 {
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 	if (s->flags & __CMPXCHG_DOUBLE) {
420 		if (cmpxchg_double(&page->freelist, &page->counters,
421 				   freelist_old, counters_old,
422 				   freelist_new, counters_new))
423 			return true;
424 	} else
425 #endif
426 	{
427 		unsigned long flags;
428 
429 		local_irq_save(flags);
430 		slab_lock(page);
431 		if (page->freelist == freelist_old &&
432 					page->counters == counters_old) {
433 			page->freelist = freelist_new;
434 			page->counters = counters_new;
435 			slab_unlock(page);
436 			local_irq_restore(flags);
437 			return true;
438 		}
439 		slab_unlock(page);
440 		local_irq_restore(flags);
441 	}
442 
443 	cpu_relax();
444 	stat(s, CMPXCHG_DOUBLE_FAIL);
445 
446 #ifdef SLUB_DEBUG_CMPXCHG
447 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
448 #endif
449 
450 	return false;
451 }
452 
453 #ifdef CONFIG_SLUB_DEBUG
454 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
455 static DEFINE_SPINLOCK(object_map_lock);
456 
457 #if IS_ENABLED(CONFIG_KUNIT)
458 static bool slab_add_kunit_errors(void)
459 {
460 	struct kunit_resource *resource;
461 
462 	if (likely(!current->kunit_test))
463 		return false;
464 
465 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
466 	if (!resource)
467 		return false;
468 
469 	(*(int *)resource->data)++;
470 	kunit_put_resource(resource);
471 	return true;
472 }
473 #else
474 static inline bool slab_add_kunit_errors(void) { return false; }
475 #endif
476 
477 /*
478  * Determine a map of object in use on a page.
479  *
480  * Node listlock must be held to guarantee that the page does
481  * not vanish from under us.
482  */
483 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
484 	__acquires(&object_map_lock)
485 {
486 	void *p;
487 	void *addr = page_address(page);
488 
489 	VM_BUG_ON(!irqs_disabled());
490 
491 	spin_lock(&object_map_lock);
492 
493 	bitmap_zero(object_map, page->objects);
494 
495 	for (p = page->freelist; p; p = get_freepointer(s, p))
496 		set_bit(__obj_to_index(s, addr, p), object_map);
497 
498 	return object_map;
499 }
500 
501 static void put_map(unsigned long *map) __releases(&object_map_lock)
502 {
503 	VM_BUG_ON(map != object_map);
504 	spin_unlock(&object_map_lock);
505 }
506 
507 static inline unsigned int size_from_object(struct kmem_cache *s)
508 {
509 	if (s->flags & SLAB_RED_ZONE)
510 		return s->size - s->red_left_pad;
511 
512 	return s->size;
513 }
514 
515 static inline void *restore_red_left(struct kmem_cache *s, void *p)
516 {
517 	if (s->flags & SLAB_RED_ZONE)
518 		p -= s->red_left_pad;
519 
520 	return p;
521 }
522 
523 /*
524  * Debug settings:
525  */
526 #if defined(CONFIG_SLUB_DEBUG_ON)
527 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
528 #else
529 static slab_flags_t slub_debug;
530 #endif
531 
532 static char *slub_debug_string;
533 static int disable_higher_order_debug;
534 
535 /*
536  * slub is about to manipulate internal object metadata.  This memory lies
537  * outside the range of the allocated object, so accessing it would normally
538  * be reported by kasan as a bounds error.  metadata_access_enable() is used
539  * to tell kasan that these accesses are OK.
540  */
541 static inline void metadata_access_enable(void)
542 {
543 	kasan_disable_current();
544 }
545 
546 static inline void metadata_access_disable(void)
547 {
548 	kasan_enable_current();
549 }
550 
551 /*
552  * Object debugging
553  */
554 
555 /* Verify that a pointer has an address that is valid within a slab page */
556 static inline int check_valid_pointer(struct kmem_cache *s,
557 				struct page *page, void *object)
558 {
559 	void *base;
560 
561 	if (!object)
562 		return 1;
563 
564 	base = page_address(page);
565 	object = kasan_reset_tag(object);
566 	object = restore_red_left(s, object);
567 	if (object < base || object >= base + page->objects * s->size ||
568 		(object - base) % s->size) {
569 		return 0;
570 	}
571 
572 	return 1;
573 }
574 
575 static void print_section(char *level, char *text, u8 *addr,
576 			  unsigned int length)
577 {
578 	metadata_access_enable();
579 	print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
580 			16, 1, addr, length, 1);
581 	metadata_access_disable();
582 }
583 
584 /*
585  * See comment in calculate_sizes().
586  */
587 static inline bool freeptr_outside_object(struct kmem_cache *s)
588 {
589 	return s->offset >= s->inuse;
590 }
591 
592 /*
593  * Return offset of the end of info block which is inuse + free pointer if
594  * not overlapping with object.
595  */
596 static inline unsigned int get_info_end(struct kmem_cache *s)
597 {
598 	if (freeptr_outside_object(s))
599 		return s->inuse + sizeof(void *);
600 	else
601 		return s->inuse;
602 }
603 
604 static struct track *get_track(struct kmem_cache *s, void *object,
605 	enum track_item alloc)
606 {
607 	struct track *p;
608 
609 	p = object + get_info_end(s);
610 
611 	return kasan_reset_tag(p + alloc);
612 }
613 
614 static void set_track(struct kmem_cache *s, void *object,
615 			enum track_item alloc, unsigned long addr)
616 {
617 	struct track *p = get_track(s, object, alloc);
618 
619 	if (addr) {
620 #ifdef CONFIG_STACKTRACE
621 		unsigned int nr_entries;
622 
623 		metadata_access_enable();
624 		nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
625 					      TRACK_ADDRS_COUNT, 3);
626 		metadata_access_disable();
627 
628 		if (nr_entries < TRACK_ADDRS_COUNT)
629 			p->addrs[nr_entries] = 0;
630 #endif
631 		p->addr = addr;
632 		p->cpu = smp_processor_id();
633 		p->pid = current->pid;
634 		p->when = jiffies;
635 	} else {
636 		memset(p, 0, sizeof(struct track));
637 	}
638 }
639 
640 static void init_tracking(struct kmem_cache *s, void *object)
641 {
642 	if (!(s->flags & SLAB_STORE_USER))
643 		return;
644 
645 	set_track(s, object, TRACK_FREE, 0UL);
646 	set_track(s, object, TRACK_ALLOC, 0UL);
647 }
648 
649 static void print_track(const char *s, struct track *t, unsigned long pr_time)
650 {
651 	if (!t->addr)
652 		return;
653 
654 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
655 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
656 #ifdef CONFIG_STACKTRACE
657 	{
658 		int i;
659 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
660 			if (t->addrs[i])
661 				pr_err("\t%pS\n", (void *)t->addrs[i]);
662 			else
663 				break;
664 	}
665 #endif
666 }
667 
668 void print_tracking(struct kmem_cache *s, void *object)
669 {
670 	unsigned long pr_time = jiffies;
671 	if (!(s->flags & SLAB_STORE_USER))
672 		return;
673 
674 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
675 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
676 }
677 
678 static void print_page_info(struct page *page)
679 {
680 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
681 	       page, page->objects, page->inuse, page->freelist,
682 	       page->flags, &page->flags);
683 
684 }
685 
686 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
687 {
688 	struct va_format vaf;
689 	va_list args;
690 
691 	va_start(args, fmt);
692 	vaf.fmt = fmt;
693 	vaf.va = &args;
694 	pr_err("=============================================================================\n");
695 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
696 	pr_err("-----------------------------------------------------------------------------\n\n");
697 	va_end(args);
698 }
699 
700 __printf(2, 3)
701 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
702 {
703 	struct va_format vaf;
704 	va_list args;
705 
706 	if (slab_add_kunit_errors())
707 		return;
708 
709 	va_start(args, fmt);
710 	vaf.fmt = fmt;
711 	vaf.va = &args;
712 	pr_err("FIX %s: %pV\n", s->name, &vaf);
713 	va_end(args);
714 }
715 
716 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
717 			       void **freelist, void *nextfree)
718 {
719 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
720 	    !check_valid_pointer(s, page, nextfree) && freelist) {
721 		object_err(s, page, *freelist, "Freechain corrupt");
722 		*freelist = NULL;
723 		slab_fix(s, "Isolate corrupted freechain");
724 		return true;
725 	}
726 
727 	return false;
728 }
729 
730 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
731 {
732 	unsigned int off;	/* Offset of last byte */
733 	u8 *addr = page_address(page);
734 
735 	print_tracking(s, p);
736 
737 	print_page_info(page);
738 
739 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
740 	       p, p - addr, get_freepointer(s, p));
741 
742 	if (s->flags & SLAB_RED_ZONE)
743 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
744 			      s->red_left_pad);
745 	else if (p > addr + 16)
746 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
747 
748 	print_section(KERN_ERR,         "Object   ", p,
749 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
750 	if (s->flags & SLAB_RED_ZONE)
751 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
752 			s->inuse - s->object_size);
753 
754 	off = get_info_end(s);
755 
756 	if (s->flags & SLAB_STORE_USER)
757 		off += 2 * sizeof(struct track);
758 
759 	off += kasan_metadata_size(s);
760 
761 	if (off != size_from_object(s))
762 		/* Beginning of the filler is the free pointer */
763 		print_section(KERN_ERR, "Padding  ", p + off,
764 			      size_from_object(s) - off);
765 
766 	dump_stack();
767 }
768 
769 void object_err(struct kmem_cache *s, struct page *page,
770 			u8 *object, char *reason)
771 {
772 	if (slab_add_kunit_errors())
773 		return;
774 
775 	slab_bug(s, "%s", reason);
776 	print_trailer(s, page, object);
777 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
778 }
779 
780 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
781 			const char *fmt, ...)
782 {
783 	va_list args;
784 	char buf[100];
785 
786 	if (slab_add_kunit_errors())
787 		return;
788 
789 	va_start(args, fmt);
790 	vsnprintf(buf, sizeof(buf), fmt, args);
791 	va_end(args);
792 	slab_bug(s, "%s", buf);
793 	print_page_info(page);
794 	dump_stack();
795 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
796 }
797 
798 static void init_object(struct kmem_cache *s, void *object, u8 val)
799 {
800 	u8 *p = kasan_reset_tag(object);
801 
802 	if (s->flags & SLAB_RED_ZONE)
803 		memset(p - s->red_left_pad, val, s->red_left_pad);
804 
805 	if (s->flags & __OBJECT_POISON) {
806 		memset(p, POISON_FREE, s->object_size - 1);
807 		p[s->object_size - 1] = POISON_END;
808 	}
809 
810 	if (s->flags & SLAB_RED_ZONE)
811 		memset(p + s->object_size, val, s->inuse - s->object_size);
812 }
813 
814 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
815 						void *from, void *to)
816 {
817 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
818 	memset(from, data, to - from);
819 }
820 
821 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
822 			u8 *object, char *what,
823 			u8 *start, unsigned int value, unsigned int bytes)
824 {
825 	u8 *fault;
826 	u8 *end;
827 	u8 *addr = page_address(page);
828 
829 	metadata_access_enable();
830 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
831 	metadata_access_disable();
832 	if (!fault)
833 		return 1;
834 
835 	end = start + bytes;
836 	while (end > fault && end[-1] == value)
837 		end--;
838 
839 	if (slab_add_kunit_errors())
840 		goto skip_bug_print;
841 
842 	slab_bug(s, "%s overwritten", what);
843 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
844 					fault, end - 1, fault - addr,
845 					fault[0], value);
846 	print_trailer(s, page, object);
847 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
848 
849 skip_bug_print:
850 	restore_bytes(s, what, value, fault, end);
851 	return 0;
852 }
853 
854 /*
855  * Object layout:
856  *
857  * object address
858  * 	Bytes of the object to be managed.
859  * 	If the freepointer may overlay the object then the free
860  *	pointer is at the middle of the object.
861  *
862  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
863  * 	0xa5 (POISON_END)
864  *
865  * object + s->object_size
866  * 	Padding to reach word boundary. This is also used for Redzoning.
867  * 	Padding is extended by another word if Redzoning is enabled and
868  * 	object_size == inuse.
869  *
870  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
871  * 	0xcc (RED_ACTIVE) for objects in use.
872  *
873  * object + s->inuse
874  * 	Meta data starts here.
875  *
876  * 	A. Free pointer (if we cannot overwrite object on free)
877  * 	B. Tracking data for SLAB_STORE_USER
878  *	C. Padding to reach required alignment boundary or at minimum
879  * 		one word if debugging is on to be able to detect writes
880  * 		before the word boundary.
881  *
882  *	Padding is done using 0x5a (POISON_INUSE)
883  *
884  * object + s->size
885  * 	Nothing is used beyond s->size.
886  *
887  * If slabcaches are merged then the object_size and inuse boundaries are mostly
888  * ignored. And therefore no slab options that rely on these boundaries
889  * may be used with merged slabcaches.
890  */
891 
892 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
893 {
894 	unsigned long off = get_info_end(s);	/* The end of info */
895 
896 	if (s->flags & SLAB_STORE_USER)
897 		/* We also have user information there */
898 		off += 2 * sizeof(struct track);
899 
900 	off += kasan_metadata_size(s);
901 
902 	if (size_from_object(s) == off)
903 		return 1;
904 
905 	return check_bytes_and_report(s, page, p, "Object padding",
906 			p + off, POISON_INUSE, size_from_object(s) - off);
907 }
908 
909 /* Check the pad bytes at the end of a slab page */
910 static int slab_pad_check(struct kmem_cache *s, struct page *page)
911 {
912 	u8 *start;
913 	u8 *fault;
914 	u8 *end;
915 	u8 *pad;
916 	int length;
917 	int remainder;
918 
919 	if (!(s->flags & SLAB_POISON))
920 		return 1;
921 
922 	start = page_address(page);
923 	length = page_size(page);
924 	end = start + length;
925 	remainder = length % s->size;
926 	if (!remainder)
927 		return 1;
928 
929 	pad = end - remainder;
930 	metadata_access_enable();
931 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
932 	metadata_access_disable();
933 	if (!fault)
934 		return 1;
935 	while (end > fault && end[-1] == POISON_INUSE)
936 		end--;
937 
938 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
939 			fault, end - 1, fault - start);
940 	print_section(KERN_ERR, "Padding ", pad, remainder);
941 
942 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
943 	return 0;
944 }
945 
946 static int check_object(struct kmem_cache *s, struct page *page,
947 					void *object, u8 val)
948 {
949 	u8 *p = object;
950 	u8 *endobject = object + s->object_size;
951 
952 	if (s->flags & SLAB_RED_ZONE) {
953 		if (!check_bytes_and_report(s, page, object, "Left Redzone",
954 			object - s->red_left_pad, val, s->red_left_pad))
955 			return 0;
956 
957 		if (!check_bytes_and_report(s, page, object, "Right Redzone",
958 			endobject, val, s->inuse - s->object_size))
959 			return 0;
960 	} else {
961 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
962 			check_bytes_and_report(s, page, p, "Alignment padding",
963 				endobject, POISON_INUSE,
964 				s->inuse - s->object_size);
965 		}
966 	}
967 
968 	if (s->flags & SLAB_POISON) {
969 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
970 			(!check_bytes_and_report(s, page, p, "Poison", p,
971 					POISON_FREE, s->object_size - 1) ||
972 			 !check_bytes_and_report(s, page, p, "End Poison",
973 				p + s->object_size - 1, POISON_END, 1)))
974 			return 0;
975 		/*
976 		 * check_pad_bytes cleans up on its own.
977 		 */
978 		check_pad_bytes(s, page, p);
979 	}
980 
981 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
982 		/*
983 		 * Object and freepointer overlap. Cannot check
984 		 * freepointer while object is allocated.
985 		 */
986 		return 1;
987 
988 	/* Check free pointer validity */
989 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
990 		object_err(s, page, p, "Freepointer corrupt");
991 		/*
992 		 * No choice but to zap it and thus lose the remainder
993 		 * of the free objects in this slab. May cause
994 		 * another error because the object count is now wrong.
995 		 */
996 		set_freepointer(s, p, NULL);
997 		return 0;
998 	}
999 	return 1;
1000 }
1001 
1002 static int check_slab(struct kmem_cache *s, struct page *page)
1003 {
1004 	int maxobj;
1005 
1006 	VM_BUG_ON(!irqs_disabled());
1007 
1008 	if (!PageSlab(page)) {
1009 		slab_err(s, page, "Not a valid slab page");
1010 		return 0;
1011 	}
1012 
1013 	maxobj = order_objects(compound_order(page), s->size);
1014 	if (page->objects > maxobj) {
1015 		slab_err(s, page, "objects %u > max %u",
1016 			page->objects, maxobj);
1017 		return 0;
1018 	}
1019 	if (page->inuse > page->objects) {
1020 		slab_err(s, page, "inuse %u > max %u",
1021 			page->inuse, page->objects);
1022 		return 0;
1023 	}
1024 	/* Slab_pad_check fixes things up after itself */
1025 	slab_pad_check(s, page);
1026 	return 1;
1027 }
1028 
1029 /*
1030  * Determine if a certain object on a page is on the freelist. Must hold the
1031  * slab lock to guarantee that the chains are in a consistent state.
1032  */
1033 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1034 {
1035 	int nr = 0;
1036 	void *fp;
1037 	void *object = NULL;
1038 	int max_objects;
1039 
1040 	fp = page->freelist;
1041 	while (fp && nr <= page->objects) {
1042 		if (fp == search)
1043 			return 1;
1044 		if (!check_valid_pointer(s, page, fp)) {
1045 			if (object) {
1046 				object_err(s, page, object,
1047 					"Freechain corrupt");
1048 				set_freepointer(s, object, NULL);
1049 			} else {
1050 				slab_err(s, page, "Freepointer corrupt");
1051 				page->freelist = NULL;
1052 				page->inuse = page->objects;
1053 				slab_fix(s, "Freelist cleared");
1054 				return 0;
1055 			}
1056 			break;
1057 		}
1058 		object = fp;
1059 		fp = get_freepointer(s, object);
1060 		nr++;
1061 	}
1062 
1063 	max_objects = order_objects(compound_order(page), s->size);
1064 	if (max_objects > MAX_OBJS_PER_PAGE)
1065 		max_objects = MAX_OBJS_PER_PAGE;
1066 
1067 	if (page->objects != max_objects) {
1068 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1069 			 page->objects, max_objects);
1070 		page->objects = max_objects;
1071 		slab_fix(s, "Number of objects adjusted");
1072 	}
1073 	if (page->inuse != page->objects - nr) {
1074 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1075 			 page->inuse, page->objects - nr);
1076 		page->inuse = page->objects - nr;
1077 		slab_fix(s, "Object count adjusted");
1078 	}
1079 	return search == NULL;
1080 }
1081 
1082 static void trace(struct kmem_cache *s, struct page *page, void *object,
1083 								int alloc)
1084 {
1085 	if (s->flags & SLAB_TRACE) {
1086 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1087 			s->name,
1088 			alloc ? "alloc" : "free",
1089 			object, page->inuse,
1090 			page->freelist);
1091 
1092 		if (!alloc)
1093 			print_section(KERN_INFO, "Object ", (void *)object,
1094 					s->object_size);
1095 
1096 		dump_stack();
1097 	}
1098 }
1099 
1100 /*
1101  * Tracking of fully allocated slabs for debugging purposes.
1102  */
1103 static void add_full(struct kmem_cache *s,
1104 	struct kmem_cache_node *n, struct page *page)
1105 {
1106 	if (!(s->flags & SLAB_STORE_USER))
1107 		return;
1108 
1109 	lockdep_assert_held(&n->list_lock);
1110 	list_add(&page->slab_list, &n->full);
1111 }
1112 
1113 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1114 {
1115 	if (!(s->flags & SLAB_STORE_USER))
1116 		return;
1117 
1118 	lockdep_assert_held(&n->list_lock);
1119 	list_del(&page->slab_list);
1120 }
1121 
1122 /* Tracking of the number of slabs for debugging purposes */
1123 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1124 {
1125 	struct kmem_cache_node *n = get_node(s, node);
1126 
1127 	return atomic_long_read(&n->nr_slabs);
1128 }
1129 
1130 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1131 {
1132 	return atomic_long_read(&n->nr_slabs);
1133 }
1134 
1135 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1136 {
1137 	struct kmem_cache_node *n = get_node(s, node);
1138 
1139 	/*
1140 	 * May be called early in order to allocate a slab for the
1141 	 * kmem_cache_node structure. Solve the chicken-egg
1142 	 * dilemma by deferring the increment of the count during
1143 	 * bootstrap (see early_kmem_cache_node_alloc).
1144 	 */
1145 	if (likely(n)) {
1146 		atomic_long_inc(&n->nr_slabs);
1147 		atomic_long_add(objects, &n->total_objects);
1148 	}
1149 }
1150 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1151 {
1152 	struct kmem_cache_node *n = get_node(s, node);
1153 
1154 	atomic_long_dec(&n->nr_slabs);
1155 	atomic_long_sub(objects, &n->total_objects);
1156 }
1157 
1158 /* Object debug checks for alloc/free paths */
1159 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1160 								void *object)
1161 {
1162 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1163 		return;
1164 
1165 	init_object(s, object, SLUB_RED_INACTIVE);
1166 	init_tracking(s, object);
1167 }
1168 
1169 static
1170 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1171 {
1172 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1173 		return;
1174 
1175 	metadata_access_enable();
1176 	memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1177 	metadata_access_disable();
1178 }
1179 
1180 static inline int alloc_consistency_checks(struct kmem_cache *s,
1181 					struct page *page, void *object)
1182 {
1183 	if (!check_slab(s, page))
1184 		return 0;
1185 
1186 	if (!check_valid_pointer(s, page, object)) {
1187 		object_err(s, page, object, "Freelist Pointer check fails");
1188 		return 0;
1189 	}
1190 
1191 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1192 		return 0;
1193 
1194 	return 1;
1195 }
1196 
1197 static noinline int alloc_debug_processing(struct kmem_cache *s,
1198 					struct page *page,
1199 					void *object, unsigned long addr)
1200 {
1201 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1202 		if (!alloc_consistency_checks(s, page, object))
1203 			goto bad;
1204 	}
1205 
1206 	/* Success perform special debug activities for allocs */
1207 	if (s->flags & SLAB_STORE_USER)
1208 		set_track(s, object, TRACK_ALLOC, addr);
1209 	trace(s, page, object, 1);
1210 	init_object(s, object, SLUB_RED_ACTIVE);
1211 	return 1;
1212 
1213 bad:
1214 	if (PageSlab(page)) {
1215 		/*
1216 		 * If this is a slab page then lets do the best we can
1217 		 * to avoid issues in the future. Marking all objects
1218 		 * as used avoids touching the remaining objects.
1219 		 */
1220 		slab_fix(s, "Marking all objects used");
1221 		page->inuse = page->objects;
1222 		page->freelist = NULL;
1223 	}
1224 	return 0;
1225 }
1226 
1227 static inline int free_consistency_checks(struct kmem_cache *s,
1228 		struct page *page, void *object, unsigned long addr)
1229 {
1230 	if (!check_valid_pointer(s, page, object)) {
1231 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1232 		return 0;
1233 	}
1234 
1235 	if (on_freelist(s, page, object)) {
1236 		object_err(s, page, object, "Object already free");
1237 		return 0;
1238 	}
1239 
1240 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1241 		return 0;
1242 
1243 	if (unlikely(s != page->slab_cache)) {
1244 		if (!PageSlab(page)) {
1245 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1246 				 object);
1247 		} else if (!page->slab_cache) {
1248 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1249 			       object);
1250 			dump_stack();
1251 		} else
1252 			object_err(s, page, object,
1253 					"page slab pointer corrupt.");
1254 		return 0;
1255 	}
1256 	return 1;
1257 }
1258 
1259 /* Supports checking bulk free of a constructed freelist */
1260 static noinline int free_debug_processing(
1261 	struct kmem_cache *s, struct page *page,
1262 	void *head, void *tail, int bulk_cnt,
1263 	unsigned long addr)
1264 {
1265 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1266 	void *object = head;
1267 	int cnt = 0;
1268 	unsigned long flags;
1269 	int ret = 0;
1270 
1271 	spin_lock_irqsave(&n->list_lock, flags);
1272 	slab_lock(page);
1273 
1274 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1275 		if (!check_slab(s, page))
1276 			goto out;
1277 	}
1278 
1279 next_object:
1280 	cnt++;
1281 
1282 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1283 		if (!free_consistency_checks(s, page, object, addr))
1284 			goto out;
1285 	}
1286 
1287 	if (s->flags & SLAB_STORE_USER)
1288 		set_track(s, object, TRACK_FREE, addr);
1289 	trace(s, page, object, 0);
1290 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1291 	init_object(s, object, SLUB_RED_INACTIVE);
1292 
1293 	/* Reached end of constructed freelist yet? */
1294 	if (object != tail) {
1295 		object = get_freepointer(s, object);
1296 		goto next_object;
1297 	}
1298 	ret = 1;
1299 
1300 out:
1301 	if (cnt != bulk_cnt)
1302 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1303 			 bulk_cnt, cnt);
1304 
1305 	slab_unlock(page);
1306 	spin_unlock_irqrestore(&n->list_lock, flags);
1307 	if (!ret)
1308 		slab_fix(s, "Object at 0x%p not freed", object);
1309 	return ret;
1310 }
1311 
1312 /*
1313  * Parse a block of slub_debug options. Blocks are delimited by ';'
1314  *
1315  * @str:    start of block
1316  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1317  * @slabs:  return start of list of slabs, or NULL when there's no list
1318  * @init:   assume this is initial parsing and not per-kmem-create parsing
1319  *
1320  * returns the start of next block if there's any, or NULL
1321  */
1322 static char *
1323 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1324 {
1325 	bool higher_order_disable = false;
1326 
1327 	/* Skip any completely empty blocks */
1328 	while (*str && *str == ';')
1329 		str++;
1330 
1331 	if (*str == ',') {
1332 		/*
1333 		 * No options but restriction on slabs. This means full
1334 		 * debugging for slabs matching a pattern.
1335 		 */
1336 		*flags = DEBUG_DEFAULT_FLAGS;
1337 		goto check_slabs;
1338 	}
1339 	*flags = 0;
1340 
1341 	/* Determine which debug features should be switched on */
1342 	for (; *str && *str != ',' && *str != ';'; str++) {
1343 		switch (tolower(*str)) {
1344 		case '-':
1345 			*flags = 0;
1346 			break;
1347 		case 'f':
1348 			*flags |= SLAB_CONSISTENCY_CHECKS;
1349 			break;
1350 		case 'z':
1351 			*flags |= SLAB_RED_ZONE;
1352 			break;
1353 		case 'p':
1354 			*flags |= SLAB_POISON;
1355 			break;
1356 		case 'u':
1357 			*flags |= SLAB_STORE_USER;
1358 			break;
1359 		case 't':
1360 			*flags |= SLAB_TRACE;
1361 			break;
1362 		case 'a':
1363 			*flags |= SLAB_FAILSLAB;
1364 			break;
1365 		case 'o':
1366 			/*
1367 			 * Avoid enabling debugging on caches if its minimum
1368 			 * order would increase as a result.
1369 			 */
1370 			higher_order_disable = true;
1371 			break;
1372 		default:
1373 			if (init)
1374 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1375 		}
1376 	}
1377 check_slabs:
1378 	if (*str == ',')
1379 		*slabs = ++str;
1380 	else
1381 		*slabs = NULL;
1382 
1383 	/* Skip over the slab list */
1384 	while (*str && *str != ';')
1385 		str++;
1386 
1387 	/* Skip any completely empty blocks */
1388 	while (*str && *str == ';')
1389 		str++;
1390 
1391 	if (init && higher_order_disable)
1392 		disable_higher_order_debug = 1;
1393 
1394 	if (*str)
1395 		return str;
1396 	else
1397 		return NULL;
1398 }
1399 
1400 static int __init setup_slub_debug(char *str)
1401 {
1402 	slab_flags_t flags;
1403 	char *saved_str;
1404 	char *slab_list;
1405 	bool global_slub_debug_changed = false;
1406 	bool slab_list_specified = false;
1407 
1408 	slub_debug = DEBUG_DEFAULT_FLAGS;
1409 	if (*str++ != '=' || !*str)
1410 		/*
1411 		 * No options specified. Switch on full debugging.
1412 		 */
1413 		goto out;
1414 
1415 	saved_str = str;
1416 	while (str) {
1417 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1418 
1419 		if (!slab_list) {
1420 			slub_debug = flags;
1421 			global_slub_debug_changed = true;
1422 		} else {
1423 			slab_list_specified = true;
1424 		}
1425 	}
1426 
1427 	/*
1428 	 * For backwards compatibility, a single list of flags with list of
1429 	 * slabs means debugging is only enabled for those slabs, so the global
1430 	 * slub_debug should be 0. We can extended that to multiple lists as
1431 	 * long as there is no option specifying flags without a slab list.
1432 	 */
1433 	if (slab_list_specified) {
1434 		if (!global_slub_debug_changed)
1435 			slub_debug = 0;
1436 		slub_debug_string = saved_str;
1437 	}
1438 out:
1439 	if (slub_debug != 0 || slub_debug_string)
1440 		static_branch_enable(&slub_debug_enabled);
1441 	else
1442 		static_branch_disable(&slub_debug_enabled);
1443 	if ((static_branch_unlikely(&init_on_alloc) ||
1444 	     static_branch_unlikely(&init_on_free)) &&
1445 	    (slub_debug & SLAB_POISON))
1446 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1447 	return 1;
1448 }
1449 
1450 __setup("slub_debug", setup_slub_debug);
1451 
1452 /*
1453  * kmem_cache_flags - apply debugging options to the cache
1454  * @object_size:	the size of an object without meta data
1455  * @flags:		flags to set
1456  * @name:		name of the cache
1457  *
1458  * Debug option(s) are applied to @flags. In addition to the debug
1459  * option(s), if a slab name (or multiple) is specified i.e.
1460  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1461  * then only the select slabs will receive the debug option(s).
1462  */
1463 slab_flags_t kmem_cache_flags(unsigned int object_size,
1464 	slab_flags_t flags, const char *name)
1465 {
1466 	char *iter;
1467 	size_t len;
1468 	char *next_block;
1469 	slab_flags_t block_flags;
1470 	slab_flags_t slub_debug_local = slub_debug;
1471 
1472 	/*
1473 	 * If the slab cache is for debugging (e.g. kmemleak) then
1474 	 * don't store user (stack trace) information by default,
1475 	 * but let the user enable it via the command line below.
1476 	 */
1477 	if (flags & SLAB_NOLEAKTRACE)
1478 		slub_debug_local &= ~SLAB_STORE_USER;
1479 
1480 	len = strlen(name);
1481 	next_block = slub_debug_string;
1482 	/* Go through all blocks of debug options, see if any matches our slab's name */
1483 	while (next_block) {
1484 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1485 		if (!iter)
1486 			continue;
1487 		/* Found a block that has a slab list, search it */
1488 		while (*iter) {
1489 			char *end, *glob;
1490 			size_t cmplen;
1491 
1492 			end = strchrnul(iter, ',');
1493 			if (next_block && next_block < end)
1494 				end = next_block - 1;
1495 
1496 			glob = strnchr(iter, end - iter, '*');
1497 			if (glob)
1498 				cmplen = glob - iter;
1499 			else
1500 				cmplen = max_t(size_t, len, (end - iter));
1501 
1502 			if (!strncmp(name, iter, cmplen)) {
1503 				flags |= block_flags;
1504 				return flags;
1505 			}
1506 
1507 			if (!*end || *end == ';')
1508 				break;
1509 			iter = end + 1;
1510 		}
1511 	}
1512 
1513 	return flags | slub_debug_local;
1514 }
1515 #else /* !CONFIG_SLUB_DEBUG */
1516 static inline void setup_object_debug(struct kmem_cache *s,
1517 			struct page *page, void *object) {}
1518 static inline
1519 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1520 
1521 static inline int alloc_debug_processing(struct kmem_cache *s,
1522 	struct page *page, void *object, unsigned long addr) { return 0; }
1523 
1524 static inline int free_debug_processing(
1525 	struct kmem_cache *s, struct page *page,
1526 	void *head, void *tail, int bulk_cnt,
1527 	unsigned long addr) { return 0; }
1528 
1529 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1530 			{ return 1; }
1531 static inline int check_object(struct kmem_cache *s, struct page *page,
1532 			void *object, u8 val) { return 1; }
1533 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1534 					struct page *page) {}
1535 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1536 					struct page *page) {}
1537 slab_flags_t kmem_cache_flags(unsigned int object_size,
1538 	slab_flags_t flags, const char *name)
1539 {
1540 	return flags;
1541 }
1542 #define slub_debug 0
1543 
1544 #define disable_higher_order_debug 0
1545 
1546 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1547 							{ return 0; }
1548 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1549 							{ return 0; }
1550 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1551 							int objects) {}
1552 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1553 							int objects) {}
1554 
1555 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1556 			       void **freelist, void *nextfree)
1557 {
1558 	return false;
1559 }
1560 #endif /* CONFIG_SLUB_DEBUG */
1561 
1562 /*
1563  * Hooks for other subsystems that check memory allocations. In a typical
1564  * production configuration these hooks all should produce no code at all.
1565  */
1566 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1567 {
1568 	ptr = kasan_kmalloc_large(ptr, size, flags);
1569 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1570 	kmemleak_alloc(ptr, size, 1, flags);
1571 	return ptr;
1572 }
1573 
1574 static __always_inline void kfree_hook(void *x)
1575 {
1576 	kmemleak_free(x);
1577 	kasan_kfree_large(x);
1578 }
1579 
1580 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1581 						void *x, bool init)
1582 {
1583 	kmemleak_free_recursive(x, s->flags);
1584 
1585 	/*
1586 	 * Trouble is that we may no longer disable interrupts in the fast path
1587 	 * So in order to make the debug calls that expect irqs to be
1588 	 * disabled we need to disable interrupts temporarily.
1589 	 */
1590 #ifdef CONFIG_LOCKDEP
1591 	{
1592 		unsigned long flags;
1593 
1594 		local_irq_save(flags);
1595 		debug_check_no_locks_freed(x, s->object_size);
1596 		local_irq_restore(flags);
1597 	}
1598 #endif
1599 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1600 		debug_check_no_obj_freed(x, s->object_size);
1601 
1602 	/* Use KCSAN to help debug racy use-after-free. */
1603 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1604 		__kcsan_check_access(x, s->object_size,
1605 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1606 
1607 	/*
1608 	 * As memory initialization might be integrated into KASAN,
1609 	 * kasan_slab_free and initialization memset's must be
1610 	 * kept together to avoid discrepancies in behavior.
1611 	 *
1612 	 * The initialization memset's clear the object and the metadata,
1613 	 * but don't touch the SLAB redzone.
1614 	 */
1615 	if (init) {
1616 		int rsize;
1617 
1618 		if (!kasan_has_integrated_init())
1619 			memset(kasan_reset_tag(x), 0, s->object_size);
1620 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1621 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1622 		       s->size - s->inuse - rsize);
1623 	}
1624 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1625 	return kasan_slab_free(s, x, init);
1626 }
1627 
1628 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1629 					   void **head, void **tail)
1630 {
1631 
1632 	void *object;
1633 	void *next = *head;
1634 	void *old_tail = *tail ? *tail : *head;
1635 
1636 	if (is_kfence_address(next)) {
1637 		slab_free_hook(s, next, false);
1638 		return true;
1639 	}
1640 
1641 	/* Head and tail of the reconstructed freelist */
1642 	*head = NULL;
1643 	*tail = NULL;
1644 
1645 	do {
1646 		object = next;
1647 		next = get_freepointer(s, object);
1648 
1649 		/* If object's reuse doesn't have to be delayed */
1650 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1651 			/* Move object to the new freelist */
1652 			set_freepointer(s, object, *head);
1653 			*head = object;
1654 			if (!*tail)
1655 				*tail = object;
1656 		}
1657 	} while (object != old_tail);
1658 
1659 	if (*head == *tail)
1660 		*tail = NULL;
1661 
1662 	return *head != NULL;
1663 }
1664 
1665 static void *setup_object(struct kmem_cache *s, struct page *page,
1666 				void *object)
1667 {
1668 	setup_object_debug(s, page, object);
1669 	object = kasan_init_slab_obj(s, object);
1670 	if (unlikely(s->ctor)) {
1671 		kasan_unpoison_object_data(s, object);
1672 		s->ctor(object);
1673 		kasan_poison_object_data(s, object);
1674 	}
1675 	return object;
1676 }
1677 
1678 /*
1679  * Slab allocation and freeing
1680  */
1681 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1682 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1683 {
1684 	struct page *page;
1685 	unsigned int order = oo_order(oo);
1686 
1687 	if (node == NUMA_NO_NODE)
1688 		page = alloc_pages(flags, order);
1689 	else
1690 		page = __alloc_pages_node(node, flags, order);
1691 
1692 	return page;
1693 }
1694 
1695 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1696 /* Pre-initialize the random sequence cache */
1697 static int init_cache_random_seq(struct kmem_cache *s)
1698 {
1699 	unsigned int count = oo_objects(s->oo);
1700 	int err;
1701 
1702 	/* Bailout if already initialised */
1703 	if (s->random_seq)
1704 		return 0;
1705 
1706 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1707 	if (err) {
1708 		pr_err("SLUB: Unable to initialize free list for %s\n",
1709 			s->name);
1710 		return err;
1711 	}
1712 
1713 	/* Transform to an offset on the set of pages */
1714 	if (s->random_seq) {
1715 		unsigned int i;
1716 
1717 		for (i = 0; i < count; i++)
1718 			s->random_seq[i] *= s->size;
1719 	}
1720 	return 0;
1721 }
1722 
1723 /* Initialize each random sequence freelist per cache */
1724 static void __init init_freelist_randomization(void)
1725 {
1726 	struct kmem_cache *s;
1727 
1728 	mutex_lock(&slab_mutex);
1729 
1730 	list_for_each_entry(s, &slab_caches, list)
1731 		init_cache_random_seq(s);
1732 
1733 	mutex_unlock(&slab_mutex);
1734 }
1735 
1736 /* Get the next entry on the pre-computed freelist randomized */
1737 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1738 				unsigned long *pos, void *start,
1739 				unsigned long page_limit,
1740 				unsigned long freelist_count)
1741 {
1742 	unsigned int idx;
1743 
1744 	/*
1745 	 * If the target page allocation failed, the number of objects on the
1746 	 * page might be smaller than the usual size defined by the cache.
1747 	 */
1748 	do {
1749 		idx = s->random_seq[*pos];
1750 		*pos += 1;
1751 		if (*pos >= freelist_count)
1752 			*pos = 0;
1753 	} while (unlikely(idx >= page_limit));
1754 
1755 	return (char *)start + idx;
1756 }
1757 
1758 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1759 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1760 {
1761 	void *start;
1762 	void *cur;
1763 	void *next;
1764 	unsigned long idx, pos, page_limit, freelist_count;
1765 
1766 	if (page->objects < 2 || !s->random_seq)
1767 		return false;
1768 
1769 	freelist_count = oo_objects(s->oo);
1770 	pos = get_random_int() % freelist_count;
1771 
1772 	page_limit = page->objects * s->size;
1773 	start = fixup_red_left(s, page_address(page));
1774 
1775 	/* First entry is used as the base of the freelist */
1776 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1777 				freelist_count);
1778 	cur = setup_object(s, page, cur);
1779 	page->freelist = cur;
1780 
1781 	for (idx = 1; idx < page->objects; idx++) {
1782 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1783 			freelist_count);
1784 		next = setup_object(s, page, next);
1785 		set_freepointer(s, cur, next);
1786 		cur = next;
1787 	}
1788 	set_freepointer(s, cur, NULL);
1789 
1790 	return true;
1791 }
1792 #else
1793 static inline int init_cache_random_seq(struct kmem_cache *s)
1794 {
1795 	return 0;
1796 }
1797 static inline void init_freelist_randomization(void) { }
1798 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1799 {
1800 	return false;
1801 }
1802 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1803 
1804 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1805 {
1806 	struct page *page;
1807 	struct kmem_cache_order_objects oo = s->oo;
1808 	gfp_t alloc_gfp;
1809 	void *start, *p, *next;
1810 	int idx;
1811 	bool shuffle;
1812 
1813 	flags &= gfp_allowed_mask;
1814 
1815 	if (gfpflags_allow_blocking(flags))
1816 		local_irq_enable();
1817 
1818 	flags |= s->allocflags;
1819 
1820 	/*
1821 	 * Let the initial higher-order allocation fail under memory pressure
1822 	 * so we fall-back to the minimum order allocation.
1823 	 */
1824 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1825 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1826 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1827 
1828 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1829 	if (unlikely(!page)) {
1830 		oo = s->min;
1831 		alloc_gfp = flags;
1832 		/*
1833 		 * Allocation may have failed due to fragmentation.
1834 		 * Try a lower order alloc if possible
1835 		 */
1836 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1837 		if (unlikely(!page))
1838 			goto out;
1839 		stat(s, ORDER_FALLBACK);
1840 	}
1841 
1842 	page->objects = oo_objects(oo);
1843 
1844 	account_slab_page(page, oo_order(oo), s, flags);
1845 
1846 	page->slab_cache = s;
1847 	__SetPageSlab(page);
1848 	if (page_is_pfmemalloc(page))
1849 		SetPageSlabPfmemalloc(page);
1850 
1851 	kasan_poison_slab(page);
1852 
1853 	start = page_address(page);
1854 
1855 	setup_page_debug(s, page, start);
1856 
1857 	shuffle = shuffle_freelist(s, page);
1858 
1859 	if (!shuffle) {
1860 		start = fixup_red_left(s, start);
1861 		start = setup_object(s, page, start);
1862 		page->freelist = start;
1863 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1864 			next = p + s->size;
1865 			next = setup_object(s, page, next);
1866 			set_freepointer(s, p, next);
1867 			p = next;
1868 		}
1869 		set_freepointer(s, p, NULL);
1870 	}
1871 
1872 	page->inuse = page->objects;
1873 	page->frozen = 1;
1874 
1875 out:
1876 	if (gfpflags_allow_blocking(flags))
1877 		local_irq_disable();
1878 	if (!page)
1879 		return NULL;
1880 
1881 	inc_slabs_node(s, page_to_nid(page), page->objects);
1882 
1883 	return page;
1884 }
1885 
1886 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1887 {
1888 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1889 		flags = kmalloc_fix_flags(flags);
1890 
1891 	return allocate_slab(s,
1892 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1893 }
1894 
1895 static void __free_slab(struct kmem_cache *s, struct page *page)
1896 {
1897 	int order = compound_order(page);
1898 	int pages = 1 << order;
1899 
1900 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1901 		void *p;
1902 
1903 		slab_pad_check(s, page);
1904 		for_each_object(p, s, page_address(page),
1905 						page->objects)
1906 			check_object(s, page, p, SLUB_RED_INACTIVE);
1907 	}
1908 
1909 	__ClearPageSlabPfmemalloc(page);
1910 	__ClearPageSlab(page);
1911 	/* In union with page->mapping where page allocator expects NULL */
1912 	page->slab_cache = NULL;
1913 	if (current->reclaim_state)
1914 		current->reclaim_state->reclaimed_slab += pages;
1915 	unaccount_slab_page(page, order, s);
1916 	__free_pages(page, order);
1917 }
1918 
1919 static void rcu_free_slab(struct rcu_head *h)
1920 {
1921 	struct page *page = container_of(h, struct page, rcu_head);
1922 
1923 	__free_slab(page->slab_cache, page);
1924 }
1925 
1926 static void free_slab(struct kmem_cache *s, struct page *page)
1927 {
1928 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1929 		call_rcu(&page->rcu_head, rcu_free_slab);
1930 	} else
1931 		__free_slab(s, page);
1932 }
1933 
1934 static void discard_slab(struct kmem_cache *s, struct page *page)
1935 {
1936 	dec_slabs_node(s, page_to_nid(page), page->objects);
1937 	free_slab(s, page);
1938 }
1939 
1940 /*
1941  * Management of partially allocated slabs.
1942  */
1943 static inline void
1944 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1945 {
1946 	n->nr_partial++;
1947 	if (tail == DEACTIVATE_TO_TAIL)
1948 		list_add_tail(&page->slab_list, &n->partial);
1949 	else
1950 		list_add(&page->slab_list, &n->partial);
1951 }
1952 
1953 static inline void add_partial(struct kmem_cache_node *n,
1954 				struct page *page, int tail)
1955 {
1956 	lockdep_assert_held(&n->list_lock);
1957 	__add_partial(n, page, tail);
1958 }
1959 
1960 static inline void remove_partial(struct kmem_cache_node *n,
1961 					struct page *page)
1962 {
1963 	lockdep_assert_held(&n->list_lock);
1964 	list_del(&page->slab_list);
1965 	n->nr_partial--;
1966 }
1967 
1968 /*
1969  * Remove slab from the partial list, freeze it and
1970  * return the pointer to the freelist.
1971  *
1972  * Returns a list of objects or NULL if it fails.
1973  */
1974 static inline void *acquire_slab(struct kmem_cache *s,
1975 		struct kmem_cache_node *n, struct page *page,
1976 		int mode, int *objects)
1977 {
1978 	void *freelist;
1979 	unsigned long counters;
1980 	struct page new;
1981 
1982 	lockdep_assert_held(&n->list_lock);
1983 
1984 	/*
1985 	 * Zap the freelist and set the frozen bit.
1986 	 * The old freelist is the list of objects for the
1987 	 * per cpu allocation list.
1988 	 */
1989 	freelist = page->freelist;
1990 	counters = page->counters;
1991 	new.counters = counters;
1992 	*objects = new.objects - new.inuse;
1993 	if (mode) {
1994 		new.inuse = page->objects;
1995 		new.freelist = NULL;
1996 	} else {
1997 		new.freelist = freelist;
1998 	}
1999 
2000 	VM_BUG_ON(new.frozen);
2001 	new.frozen = 1;
2002 
2003 	if (!__cmpxchg_double_slab(s, page,
2004 			freelist, counters,
2005 			new.freelist, new.counters,
2006 			"acquire_slab"))
2007 		return NULL;
2008 
2009 	remove_partial(n, page);
2010 	WARN_ON(!freelist);
2011 	return freelist;
2012 }
2013 
2014 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
2015 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
2016 
2017 /*
2018  * Try to allocate a partial slab from a specific node.
2019  */
2020 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2021 				struct kmem_cache_cpu *c, gfp_t flags)
2022 {
2023 	struct page *page, *page2;
2024 	void *object = NULL;
2025 	unsigned int available = 0;
2026 	int objects;
2027 
2028 	/*
2029 	 * Racy check. If we mistakenly see no partial slabs then we
2030 	 * just allocate an empty slab. If we mistakenly try to get a
2031 	 * partial slab and there is none available then get_partial()
2032 	 * will return NULL.
2033 	 */
2034 	if (!n || !n->nr_partial)
2035 		return NULL;
2036 
2037 	spin_lock(&n->list_lock);
2038 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
2039 		void *t;
2040 
2041 		if (!pfmemalloc_match(page, flags))
2042 			continue;
2043 
2044 		t = acquire_slab(s, n, page, object == NULL, &objects);
2045 		if (!t)
2046 			break;
2047 
2048 		available += objects;
2049 		if (!object) {
2050 			c->page = page;
2051 			stat(s, ALLOC_FROM_PARTIAL);
2052 			object = t;
2053 		} else {
2054 			put_cpu_partial(s, page, 0);
2055 			stat(s, CPU_PARTIAL_NODE);
2056 		}
2057 		if (!kmem_cache_has_cpu_partial(s)
2058 			|| available > slub_cpu_partial(s) / 2)
2059 			break;
2060 
2061 	}
2062 	spin_unlock(&n->list_lock);
2063 	return object;
2064 }
2065 
2066 /*
2067  * Get a page from somewhere. Search in increasing NUMA distances.
2068  */
2069 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2070 		struct kmem_cache_cpu *c)
2071 {
2072 #ifdef CONFIG_NUMA
2073 	struct zonelist *zonelist;
2074 	struct zoneref *z;
2075 	struct zone *zone;
2076 	enum zone_type highest_zoneidx = gfp_zone(flags);
2077 	void *object;
2078 	unsigned int cpuset_mems_cookie;
2079 
2080 	/*
2081 	 * The defrag ratio allows a configuration of the tradeoffs between
2082 	 * inter node defragmentation and node local allocations. A lower
2083 	 * defrag_ratio increases the tendency to do local allocations
2084 	 * instead of attempting to obtain partial slabs from other nodes.
2085 	 *
2086 	 * If the defrag_ratio is set to 0 then kmalloc() always
2087 	 * returns node local objects. If the ratio is higher then kmalloc()
2088 	 * may return off node objects because partial slabs are obtained
2089 	 * from other nodes and filled up.
2090 	 *
2091 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2092 	 * (which makes defrag_ratio = 1000) then every (well almost)
2093 	 * allocation will first attempt to defrag slab caches on other nodes.
2094 	 * This means scanning over all nodes to look for partial slabs which
2095 	 * may be expensive if we do it every time we are trying to find a slab
2096 	 * with available objects.
2097 	 */
2098 	if (!s->remote_node_defrag_ratio ||
2099 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2100 		return NULL;
2101 
2102 	do {
2103 		cpuset_mems_cookie = read_mems_allowed_begin();
2104 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2105 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2106 			struct kmem_cache_node *n;
2107 
2108 			n = get_node(s, zone_to_nid(zone));
2109 
2110 			if (n && cpuset_zone_allowed(zone, flags) &&
2111 					n->nr_partial > s->min_partial) {
2112 				object = get_partial_node(s, n, c, flags);
2113 				if (object) {
2114 					/*
2115 					 * Don't check read_mems_allowed_retry()
2116 					 * here - if mems_allowed was updated in
2117 					 * parallel, that was a harmless race
2118 					 * between allocation and the cpuset
2119 					 * update
2120 					 */
2121 					return object;
2122 				}
2123 			}
2124 		}
2125 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2126 #endif	/* CONFIG_NUMA */
2127 	return NULL;
2128 }
2129 
2130 /*
2131  * Get a partial page, lock it and return it.
2132  */
2133 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2134 		struct kmem_cache_cpu *c)
2135 {
2136 	void *object;
2137 	int searchnode = node;
2138 
2139 	if (node == NUMA_NO_NODE)
2140 		searchnode = numa_mem_id();
2141 
2142 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
2143 	if (object || node != NUMA_NO_NODE)
2144 		return object;
2145 
2146 	return get_any_partial(s, flags, c);
2147 }
2148 
2149 #ifdef CONFIG_PREEMPTION
2150 /*
2151  * Calculate the next globally unique transaction for disambiguation
2152  * during cmpxchg. The transactions start with the cpu number and are then
2153  * incremented by CONFIG_NR_CPUS.
2154  */
2155 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2156 #else
2157 /*
2158  * No preemption supported therefore also no need to check for
2159  * different cpus.
2160  */
2161 #define TID_STEP 1
2162 #endif
2163 
2164 static inline unsigned long next_tid(unsigned long tid)
2165 {
2166 	return tid + TID_STEP;
2167 }
2168 
2169 #ifdef SLUB_DEBUG_CMPXCHG
2170 static inline unsigned int tid_to_cpu(unsigned long tid)
2171 {
2172 	return tid % TID_STEP;
2173 }
2174 
2175 static inline unsigned long tid_to_event(unsigned long tid)
2176 {
2177 	return tid / TID_STEP;
2178 }
2179 #endif
2180 
2181 static inline unsigned int init_tid(int cpu)
2182 {
2183 	return cpu;
2184 }
2185 
2186 static inline void note_cmpxchg_failure(const char *n,
2187 		const struct kmem_cache *s, unsigned long tid)
2188 {
2189 #ifdef SLUB_DEBUG_CMPXCHG
2190 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2191 
2192 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2193 
2194 #ifdef CONFIG_PREEMPTION
2195 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2196 		pr_warn("due to cpu change %d -> %d\n",
2197 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2198 	else
2199 #endif
2200 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2201 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2202 			tid_to_event(tid), tid_to_event(actual_tid));
2203 	else
2204 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2205 			actual_tid, tid, next_tid(tid));
2206 #endif
2207 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2208 }
2209 
2210 static void init_kmem_cache_cpus(struct kmem_cache *s)
2211 {
2212 	int cpu;
2213 
2214 	for_each_possible_cpu(cpu)
2215 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2216 }
2217 
2218 /*
2219  * Remove the cpu slab
2220  */
2221 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2222 				void *freelist, struct kmem_cache_cpu *c)
2223 {
2224 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2225 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2226 	int lock = 0, free_delta = 0;
2227 	enum slab_modes l = M_NONE, m = M_NONE;
2228 	void *nextfree, *freelist_iter, *freelist_tail;
2229 	int tail = DEACTIVATE_TO_HEAD;
2230 	struct page new;
2231 	struct page old;
2232 
2233 	if (page->freelist) {
2234 		stat(s, DEACTIVATE_REMOTE_FREES);
2235 		tail = DEACTIVATE_TO_TAIL;
2236 	}
2237 
2238 	/*
2239 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2240 	 * remember the last object in freelist_tail for later splicing.
2241 	 */
2242 	freelist_tail = NULL;
2243 	freelist_iter = freelist;
2244 	while (freelist_iter) {
2245 		nextfree = get_freepointer(s, freelist_iter);
2246 
2247 		/*
2248 		 * If 'nextfree' is invalid, it is possible that the object at
2249 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2250 		 * starting at 'freelist_iter' by skipping them.
2251 		 */
2252 		if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2253 			break;
2254 
2255 		freelist_tail = freelist_iter;
2256 		free_delta++;
2257 
2258 		freelist_iter = nextfree;
2259 	}
2260 
2261 	/*
2262 	 * Stage two: Unfreeze the page while splicing the per-cpu
2263 	 * freelist to the head of page's freelist.
2264 	 *
2265 	 * Ensure that the page is unfrozen while the list presence
2266 	 * reflects the actual number of objects during unfreeze.
2267 	 *
2268 	 * We setup the list membership and then perform a cmpxchg
2269 	 * with the count. If there is a mismatch then the page
2270 	 * is not unfrozen but the page is on the wrong list.
2271 	 *
2272 	 * Then we restart the process which may have to remove
2273 	 * the page from the list that we just put it on again
2274 	 * because the number of objects in the slab may have
2275 	 * changed.
2276 	 */
2277 redo:
2278 
2279 	old.freelist = READ_ONCE(page->freelist);
2280 	old.counters = READ_ONCE(page->counters);
2281 	VM_BUG_ON(!old.frozen);
2282 
2283 	/* Determine target state of the slab */
2284 	new.counters = old.counters;
2285 	if (freelist_tail) {
2286 		new.inuse -= free_delta;
2287 		set_freepointer(s, freelist_tail, old.freelist);
2288 		new.freelist = freelist;
2289 	} else
2290 		new.freelist = old.freelist;
2291 
2292 	new.frozen = 0;
2293 
2294 	if (!new.inuse && n->nr_partial >= s->min_partial)
2295 		m = M_FREE;
2296 	else if (new.freelist) {
2297 		m = M_PARTIAL;
2298 		if (!lock) {
2299 			lock = 1;
2300 			/*
2301 			 * Taking the spinlock removes the possibility
2302 			 * that acquire_slab() will see a slab page that
2303 			 * is frozen
2304 			 */
2305 			spin_lock(&n->list_lock);
2306 		}
2307 	} else {
2308 		m = M_FULL;
2309 		if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2310 			lock = 1;
2311 			/*
2312 			 * This also ensures that the scanning of full
2313 			 * slabs from diagnostic functions will not see
2314 			 * any frozen slabs.
2315 			 */
2316 			spin_lock(&n->list_lock);
2317 		}
2318 	}
2319 
2320 	if (l != m) {
2321 		if (l == M_PARTIAL)
2322 			remove_partial(n, page);
2323 		else if (l == M_FULL)
2324 			remove_full(s, n, page);
2325 
2326 		if (m == M_PARTIAL)
2327 			add_partial(n, page, tail);
2328 		else if (m == M_FULL)
2329 			add_full(s, n, page);
2330 	}
2331 
2332 	l = m;
2333 	if (!__cmpxchg_double_slab(s, page,
2334 				old.freelist, old.counters,
2335 				new.freelist, new.counters,
2336 				"unfreezing slab"))
2337 		goto redo;
2338 
2339 	if (lock)
2340 		spin_unlock(&n->list_lock);
2341 
2342 	if (m == M_PARTIAL)
2343 		stat(s, tail);
2344 	else if (m == M_FULL)
2345 		stat(s, DEACTIVATE_FULL);
2346 	else if (m == M_FREE) {
2347 		stat(s, DEACTIVATE_EMPTY);
2348 		discard_slab(s, page);
2349 		stat(s, FREE_SLAB);
2350 	}
2351 
2352 	c->page = NULL;
2353 	c->freelist = NULL;
2354 }
2355 
2356 /*
2357  * Unfreeze all the cpu partial slabs.
2358  *
2359  * This function must be called with interrupts disabled
2360  * for the cpu using c (or some other guarantee must be there
2361  * to guarantee no concurrent accesses).
2362  */
2363 static void unfreeze_partials(struct kmem_cache *s,
2364 		struct kmem_cache_cpu *c)
2365 {
2366 #ifdef CONFIG_SLUB_CPU_PARTIAL
2367 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2368 	struct page *page, *discard_page = NULL;
2369 
2370 	while ((page = slub_percpu_partial(c))) {
2371 		struct page new;
2372 		struct page old;
2373 
2374 		slub_set_percpu_partial(c, page);
2375 
2376 		n2 = get_node(s, page_to_nid(page));
2377 		if (n != n2) {
2378 			if (n)
2379 				spin_unlock(&n->list_lock);
2380 
2381 			n = n2;
2382 			spin_lock(&n->list_lock);
2383 		}
2384 
2385 		do {
2386 
2387 			old.freelist = page->freelist;
2388 			old.counters = page->counters;
2389 			VM_BUG_ON(!old.frozen);
2390 
2391 			new.counters = old.counters;
2392 			new.freelist = old.freelist;
2393 
2394 			new.frozen = 0;
2395 
2396 		} while (!__cmpxchg_double_slab(s, page,
2397 				old.freelist, old.counters,
2398 				new.freelist, new.counters,
2399 				"unfreezing slab"));
2400 
2401 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2402 			page->next = discard_page;
2403 			discard_page = page;
2404 		} else {
2405 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2406 			stat(s, FREE_ADD_PARTIAL);
2407 		}
2408 	}
2409 
2410 	if (n)
2411 		spin_unlock(&n->list_lock);
2412 
2413 	while (discard_page) {
2414 		page = discard_page;
2415 		discard_page = discard_page->next;
2416 
2417 		stat(s, DEACTIVATE_EMPTY);
2418 		discard_slab(s, page);
2419 		stat(s, FREE_SLAB);
2420 	}
2421 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2422 }
2423 
2424 /*
2425  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2426  * partial page slot if available.
2427  *
2428  * If we did not find a slot then simply move all the partials to the
2429  * per node partial list.
2430  */
2431 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2432 {
2433 #ifdef CONFIG_SLUB_CPU_PARTIAL
2434 	struct page *oldpage;
2435 	int pages;
2436 	int pobjects;
2437 
2438 	preempt_disable();
2439 	do {
2440 		pages = 0;
2441 		pobjects = 0;
2442 		oldpage = this_cpu_read(s->cpu_slab->partial);
2443 
2444 		if (oldpage) {
2445 			pobjects = oldpage->pobjects;
2446 			pages = oldpage->pages;
2447 			if (drain && pobjects > slub_cpu_partial(s)) {
2448 				unsigned long flags;
2449 				/*
2450 				 * partial array is full. Move the existing
2451 				 * set to the per node partial list.
2452 				 */
2453 				local_irq_save(flags);
2454 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2455 				local_irq_restore(flags);
2456 				oldpage = NULL;
2457 				pobjects = 0;
2458 				pages = 0;
2459 				stat(s, CPU_PARTIAL_DRAIN);
2460 			}
2461 		}
2462 
2463 		pages++;
2464 		pobjects += page->objects - page->inuse;
2465 
2466 		page->pages = pages;
2467 		page->pobjects = pobjects;
2468 		page->next = oldpage;
2469 
2470 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2471 								!= oldpage);
2472 	if (unlikely(!slub_cpu_partial(s))) {
2473 		unsigned long flags;
2474 
2475 		local_irq_save(flags);
2476 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2477 		local_irq_restore(flags);
2478 	}
2479 	preempt_enable();
2480 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2481 }
2482 
2483 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2484 {
2485 	stat(s, CPUSLAB_FLUSH);
2486 	deactivate_slab(s, c->page, c->freelist, c);
2487 
2488 	c->tid = next_tid(c->tid);
2489 }
2490 
2491 /*
2492  * Flush cpu slab.
2493  *
2494  * Called from IPI handler with interrupts disabled.
2495  */
2496 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2497 {
2498 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2499 
2500 	if (c->page)
2501 		flush_slab(s, c);
2502 
2503 	unfreeze_partials(s, c);
2504 }
2505 
2506 static void flush_cpu_slab(void *d)
2507 {
2508 	struct kmem_cache *s = d;
2509 
2510 	__flush_cpu_slab(s, smp_processor_id());
2511 }
2512 
2513 static bool has_cpu_slab(int cpu, void *info)
2514 {
2515 	struct kmem_cache *s = info;
2516 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2517 
2518 	return c->page || slub_percpu_partial(c);
2519 }
2520 
2521 static void flush_all(struct kmem_cache *s)
2522 {
2523 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2524 }
2525 
2526 /*
2527  * Use the cpu notifier to insure that the cpu slabs are flushed when
2528  * necessary.
2529  */
2530 static int slub_cpu_dead(unsigned int cpu)
2531 {
2532 	struct kmem_cache *s;
2533 	unsigned long flags;
2534 
2535 	mutex_lock(&slab_mutex);
2536 	list_for_each_entry(s, &slab_caches, list) {
2537 		local_irq_save(flags);
2538 		__flush_cpu_slab(s, cpu);
2539 		local_irq_restore(flags);
2540 	}
2541 	mutex_unlock(&slab_mutex);
2542 	return 0;
2543 }
2544 
2545 /*
2546  * Check if the objects in a per cpu structure fit numa
2547  * locality expectations.
2548  */
2549 static inline int node_match(struct page *page, int node)
2550 {
2551 #ifdef CONFIG_NUMA
2552 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2553 		return 0;
2554 #endif
2555 	return 1;
2556 }
2557 
2558 #ifdef CONFIG_SLUB_DEBUG
2559 static int count_free(struct page *page)
2560 {
2561 	return page->objects - page->inuse;
2562 }
2563 
2564 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2565 {
2566 	return atomic_long_read(&n->total_objects);
2567 }
2568 #endif /* CONFIG_SLUB_DEBUG */
2569 
2570 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2571 static unsigned long count_partial(struct kmem_cache_node *n,
2572 					int (*get_count)(struct page *))
2573 {
2574 	unsigned long flags;
2575 	unsigned long x = 0;
2576 	struct page *page;
2577 
2578 	spin_lock_irqsave(&n->list_lock, flags);
2579 	list_for_each_entry(page, &n->partial, slab_list)
2580 		x += get_count(page);
2581 	spin_unlock_irqrestore(&n->list_lock, flags);
2582 	return x;
2583 }
2584 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2585 
2586 static noinline void
2587 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2588 {
2589 #ifdef CONFIG_SLUB_DEBUG
2590 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2591 				      DEFAULT_RATELIMIT_BURST);
2592 	int node;
2593 	struct kmem_cache_node *n;
2594 
2595 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2596 		return;
2597 
2598 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2599 		nid, gfpflags, &gfpflags);
2600 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2601 		s->name, s->object_size, s->size, oo_order(s->oo),
2602 		oo_order(s->min));
2603 
2604 	if (oo_order(s->min) > get_order(s->object_size))
2605 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2606 			s->name);
2607 
2608 	for_each_kmem_cache_node(s, node, n) {
2609 		unsigned long nr_slabs;
2610 		unsigned long nr_objs;
2611 		unsigned long nr_free;
2612 
2613 		nr_free  = count_partial(n, count_free);
2614 		nr_slabs = node_nr_slabs(n);
2615 		nr_objs  = node_nr_objs(n);
2616 
2617 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2618 			node, nr_slabs, nr_objs, nr_free);
2619 	}
2620 #endif
2621 }
2622 
2623 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2624 			int node, struct kmem_cache_cpu **pc)
2625 {
2626 	void *freelist;
2627 	struct kmem_cache_cpu *c = *pc;
2628 	struct page *page;
2629 
2630 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2631 
2632 	freelist = get_partial(s, flags, node, c);
2633 
2634 	if (freelist)
2635 		return freelist;
2636 
2637 	page = new_slab(s, flags, node);
2638 	if (page) {
2639 		c = raw_cpu_ptr(s->cpu_slab);
2640 		if (c->page)
2641 			flush_slab(s, c);
2642 
2643 		/*
2644 		 * No other reference to the page yet so we can
2645 		 * muck around with it freely without cmpxchg
2646 		 */
2647 		freelist = page->freelist;
2648 		page->freelist = NULL;
2649 
2650 		stat(s, ALLOC_SLAB);
2651 		c->page = page;
2652 		*pc = c;
2653 	}
2654 
2655 	return freelist;
2656 }
2657 
2658 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2659 {
2660 	if (unlikely(PageSlabPfmemalloc(page)))
2661 		return gfp_pfmemalloc_allowed(gfpflags);
2662 
2663 	return true;
2664 }
2665 
2666 /*
2667  * Check the page->freelist of a page and either transfer the freelist to the
2668  * per cpu freelist or deactivate the page.
2669  *
2670  * The page is still frozen if the return value is not NULL.
2671  *
2672  * If this function returns NULL then the page has been unfrozen.
2673  *
2674  * This function must be called with interrupt disabled.
2675  */
2676 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2677 {
2678 	struct page new;
2679 	unsigned long counters;
2680 	void *freelist;
2681 
2682 	do {
2683 		freelist = page->freelist;
2684 		counters = page->counters;
2685 
2686 		new.counters = counters;
2687 		VM_BUG_ON(!new.frozen);
2688 
2689 		new.inuse = page->objects;
2690 		new.frozen = freelist != NULL;
2691 
2692 	} while (!__cmpxchg_double_slab(s, page,
2693 		freelist, counters,
2694 		NULL, new.counters,
2695 		"get_freelist"));
2696 
2697 	return freelist;
2698 }
2699 
2700 /*
2701  * Slow path. The lockless freelist is empty or we need to perform
2702  * debugging duties.
2703  *
2704  * Processing is still very fast if new objects have been freed to the
2705  * regular freelist. In that case we simply take over the regular freelist
2706  * as the lockless freelist and zap the regular freelist.
2707  *
2708  * If that is not working then we fall back to the partial lists. We take the
2709  * first element of the freelist as the object to allocate now and move the
2710  * rest of the freelist to the lockless freelist.
2711  *
2712  * And if we were unable to get a new slab from the partial slab lists then
2713  * we need to allocate a new slab. This is the slowest path since it involves
2714  * a call to the page allocator and the setup of a new slab.
2715  *
2716  * Version of __slab_alloc to use when we know that interrupts are
2717  * already disabled (which is the case for bulk allocation).
2718  */
2719 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2720 			  unsigned long addr, struct kmem_cache_cpu *c)
2721 {
2722 	void *freelist;
2723 	struct page *page;
2724 
2725 	stat(s, ALLOC_SLOWPATH);
2726 
2727 	page = c->page;
2728 	if (!page) {
2729 		/*
2730 		 * if the node is not online or has no normal memory, just
2731 		 * ignore the node constraint
2732 		 */
2733 		if (unlikely(node != NUMA_NO_NODE &&
2734 			     !node_isset(node, slab_nodes)))
2735 			node = NUMA_NO_NODE;
2736 		goto new_slab;
2737 	}
2738 redo:
2739 
2740 	if (unlikely(!node_match(page, node))) {
2741 		/*
2742 		 * same as above but node_match() being false already
2743 		 * implies node != NUMA_NO_NODE
2744 		 */
2745 		if (!node_isset(node, slab_nodes)) {
2746 			node = NUMA_NO_NODE;
2747 			goto redo;
2748 		} else {
2749 			stat(s, ALLOC_NODE_MISMATCH);
2750 			deactivate_slab(s, page, c->freelist, c);
2751 			goto new_slab;
2752 		}
2753 	}
2754 
2755 	/*
2756 	 * By rights, we should be searching for a slab page that was
2757 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2758 	 * information when the page leaves the per-cpu allocator
2759 	 */
2760 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2761 		deactivate_slab(s, page, c->freelist, c);
2762 		goto new_slab;
2763 	}
2764 
2765 	/* must check again c->freelist in case of cpu migration or IRQ */
2766 	freelist = c->freelist;
2767 	if (freelist)
2768 		goto load_freelist;
2769 
2770 	freelist = get_freelist(s, page);
2771 
2772 	if (!freelist) {
2773 		c->page = NULL;
2774 		stat(s, DEACTIVATE_BYPASS);
2775 		goto new_slab;
2776 	}
2777 
2778 	stat(s, ALLOC_REFILL);
2779 
2780 load_freelist:
2781 	/*
2782 	 * freelist is pointing to the list of objects to be used.
2783 	 * page is pointing to the page from which the objects are obtained.
2784 	 * That page must be frozen for per cpu allocations to work.
2785 	 */
2786 	VM_BUG_ON(!c->page->frozen);
2787 	c->freelist = get_freepointer(s, freelist);
2788 	c->tid = next_tid(c->tid);
2789 	return freelist;
2790 
2791 new_slab:
2792 
2793 	if (slub_percpu_partial(c)) {
2794 		page = c->page = slub_percpu_partial(c);
2795 		slub_set_percpu_partial(c, page);
2796 		stat(s, CPU_PARTIAL_ALLOC);
2797 		goto redo;
2798 	}
2799 
2800 	freelist = new_slab_objects(s, gfpflags, node, &c);
2801 
2802 	if (unlikely(!freelist)) {
2803 		slab_out_of_memory(s, gfpflags, node);
2804 		return NULL;
2805 	}
2806 
2807 	page = c->page;
2808 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2809 		goto load_freelist;
2810 
2811 	/* Only entered in the debug case */
2812 	if (kmem_cache_debug(s) &&
2813 			!alloc_debug_processing(s, page, freelist, addr))
2814 		goto new_slab;	/* Slab failed checks. Next slab needed */
2815 
2816 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2817 	return freelist;
2818 }
2819 
2820 /*
2821  * Another one that disabled interrupt and compensates for possible
2822  * cpu changes by refetching the per cpu area pointer.
2823  */
2824 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2825 			  unsigned long addr, struct kmem_cache_cpu *c)
2826 {
2827 	void *p;
2828 	unsigned long flags;
2829 
2830 	local_irq_save(flags);
2831 #ifdef CONFIG_PREEMPTION
2832 	/*
2833 	 * We may have been preempted and rescheduled on a different
2834 	 * cpu before disabling interrupts. Need to reload cpu area
2835 	 * pointer.
2836 	 */
2837 	c = this_cpu_ptr(s->cpu_slab);
2838 #endif
2839 
2840 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2841 	local_irq_restore(flags);
2842 	return p;
2843 }
2844 
2845 /*
2846  * If the object has been wiped upon free, make sure it's fully initialized by
2847  * zeroing out freelist pointer.
2848  */
2849 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2850 						   void *obj)
2851 {
2852 	if (unlikely(slab_want_init_on_free(s)) && obj)
2853 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2854 			0, sizeof(void *));
2855 }
2856 
2857 /*
2858  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2859  * have the fastpath folded into their functions. So no function call
2860  * overhead for requests that can be satisfied on the fastpath.
2861  *
2862  * The fastpath works by first checking if the lockless freelist can be used.
2863  * If not then __slab_alloc is called for slow processing.
2864  *
2865  * Otherwise we can simply pick the next object from the lockless free list.
2866  */
2867 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2868 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
2869 {
2870 	void *object;
2871 	struct kmem_cache_cpu *c;
2872 	struct page *page;
2873 	unsigned long tid;
2874 	struct obj_cgroup *objcg = NULL;
2875 	bool init = false;
2876 
2877 	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2878 	if (!s)
2879 		return NULL;
2880 
2881 	object = kfence_alloc(s, orig_size, gfpflags);
2882 	if (unlikely(object))
2883 		goto out;
2884 
2885 redo:
2886 	/*
2887 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2888 	 * enabled. We may switch back and forth between cpus while
2889 	 * reading from one cpu area. That does not matter as long
2890 	 * as we end up on the original cpu again when doing the cmpxchg.
2891 	 *
2892 	 * We should guarantee that tid and kmem_cache are retrieved on
2893 	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2894 	 * to check if it is matched or not.
2895 	 */
2896 	do {
2897 		tid = this_cpu_read(s->cpu_slab->tid);
2898 		c = raw_cpu_ptr(s->cpu_slab);
2899 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2900 		 unlikely(tid != READ_ONCE(c->tid)));
2901 
2902 	/*
2903 	 * Irqless object alloc/free algorithm used here depends on sequence
2904 	 * of fetching cpu_slab's data. tid should be fetched before anything
2905 	 * on c to guarantee that object and page associated with previous tid
2906 	 * won't be used with current tid. If we fetch tid first, object and
2907 	 * page could be one associated with next tid and our alloc/free
2908 	 * request will be failed. In this case, we will retry. So, no problem.
2909 	 */
2910 	barrier();
2911 
2912 	/*
2913 	 * The transaction ids are globally unique per cpu and per operation on
2914 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2915 	 * occurs on the right processor and that there was no operation on the
2916 	 * linked list in between.
2917 	 */
2918 
2919 	object = c->freelist;
2920 	page = c->page;
2921 	if (unlikely(!object || !page || !node_match(page, node))) {
2922 		object = __slab_alloc(s, gfpflags, node, addr, c);
2923 	} else {
2924 		void *next_object = get_freepointer_safe(s, object);
2925 
2926 		/*
2927 		 * The cmpxchg will only match if there was no additional
2928 		 * operation and if we are on the right processor.
2929 		 *
2930 		 * The cmpxchg does the following atomically (without lock
2931 		 * semantics!)
2932 		 * 1. Relocate first pointer to the current per cpu area.
2933 		 * 2. Verify that tid and freelist have not been changed
2934 		 * 3. If they were not changed replace tid and freelist
2935 		 *
2936 		 * Since this is without lock semantics the protection is only
2937 		 * against code executing on this cpu *not* from access by
2938 		 * other cpus.
2939 		 */
2940 		if (unlikely(!this_cpu_cmpxchg_double(
2941 				s->cpu_slab->freelist, s->cpu_slab->tid,
2942 				object, tid,
2943 				next_object, next_tid(tid)))) {
2944 
2945 			note_cmpxchg_failure("slab_alloc", s, tid);
2946 			goto redo;
2947 		}
2948 		prefetch_freepointer(s, next_object);
2949 		stat(s, ALLOC_FASTPATH);
2950 	}
2951 
2952 	maybe_wipe_obj_freeptr(s, object);
2953 	init = slab_want_init_on_alloc(gfpflags, s);
2954 
2955 out:
2956 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
2957 
2958 	return object;
2959 }
2960 
2961 static __always_inline void *slab_alloc(struct kmem_cache *s,
2962 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
2963 {
2964 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2965 }
2966 
2967 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2968 {
2969 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
2970 
2971 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2972 				s->size, gfpflags);
2973 
2974 	return ret;
2975 }
2976 EXPORT_SYMBOL(kmem_cache_alloc);
2977 
2978 #ifdef CONFIG_TRACING
2979 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2980 {
2981 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
2982 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2983 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2984 	return ret;
2985 }
2986 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2987 #endif
2988 
2989 #ifdef CONFIG_NUMA
2990 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2991 {
2992 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
2993 
2994 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2995 				    s->object_size, s->size, gfpflags, node);
2996 
2997 	return ret;
2998 }
2999 EXPORT_SYMBOL(kmem_cache_alloc_node);
3000 
3001 #ifdef CONFIG_TRACING
3002 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3003 				    gfp_t gfpflags,
3004 				    int node, size_t size)
3005 {
3006 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
3007 
3008 	trace_kmalloc_node(_RET_IP_, ret,
3009 			   size, s->size, gfpflags, node);
3010 
3011 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3012 	return ret;
3013 }
3014 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3015 #endif
3016 #endif	/* CONFIG_NUMA */
3017 
3018 /*
3019  * Slow path handling. This may still be called frequently since objects
3020  * have a longer lifetime than the cpu slabs in most processing loads.
3021  *
3022  * So we still attempt to reduce cache line usage. Just take the slab
3023  * lock and free the item. If there is no additional partial page
3024  * handling required then we can return immediately.
3025  */
3026 static void __slab_free(struct kmem_cache *s, struct page *page,
3027 			void *head, void *tail, int cnt,
3028 			unsigned long addr)
3029 
3030 {
3031 	void *prior;
3032 	int was_frozen;
3033 	struct page new;
3034 	unsigned long counters;
3035 	struct kmem_cache_node *n = NULL;
3036 	unsigned long flags;
3037 
3038 	stat(s, FREE_SLOWPATH);
3039 
3040 	if (kfence_free(head))
3041 		return;
3042 
3043 	if (kmem_cache_debug(s) &&
3044 	    !free_debug_processing(s, page, head, tail, cnt, addr))
3045 		return;
3046 
3047 	do {
3048 		if (unlikely(n)) {
3049 			spin_unlock_irqrestore(&n->list_lock, flags);
3050 			n = NULL;
3051 		}
3052 		prior = page->freelist;
3053 		counters = page->counters;
3054 		set_freepointer(s, tail, prior);
3055 		new.counters = counters;
3056 		was_frozen = new.frozen;
3057 		new.inuse -= cnt;
3058 		if ((!new.inuse || !prior) && !was_frozen) {
3059 
3060 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3061 
3062 				/*
3063 				 * Slab was on no list before and will be
3064 				 * partially empty
3065 				 * We can defer the list move and instead
3066 				 * freeze it.
3067 				 */
3068 				new.frozen = 1;
3069 
3070 			} else { /* Needs to be taken off a list */
3071 
3072 				n = get_node(s, page_to_nid(page));
3073 				/*
3074 				 * Speculatively acquire the list_lock.
3075 				 * If the cmpxchg does not succeed then we may
3076 				 * drop the list_lock without any processing.
3077 				 *
3078 				 * Otherwise the list_lock will synchronize with
3079 				 * other processors updating the list of slabs.
3080 				 */
3081 				spin_lock_irqsave(&n->list_lock, flags);
3082 
3083 			}
3084 		}
3085 
3086 	} while (!cmpxchg_double_slab(s, page,
3087 		prior, counters,
3088 		head, new.counters,
3089 		"__slab_free"));
3090 
3091 	if (likely(!n)) {
3092 
3093 		if (likely(was_frozen)) {
3094 			/*
3095 			 * The list lock was not taken therefore no list
3096 			 * activity can be necessary.
3097 			 */
3098 			stat(s, FREE_FROZEN);
3099 		} else if (new.frozen) {
3100 			/*
3101 			 * If we just froze the page then put it onto the
3102 			 * per cpu partial list.
3103 			 */
3104 			put_cpu_partial(s, page, 1);
3105 			stat(s, CPU_PARTIAL_FREE);
3106 		}
3107 
3108 		return;
3109 	}
3110 
3111 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3112 		goto slab_empty;
3113 
3114 	/*
3115 	 * Objects left in the slab. If it was not on the partial list before
3116 	 * then add it.
3117 	 */
3118 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3119 		remove_full(s, n, page);
3120 		add_partial(n, page, DEACTIVATE_TO_TAIL);
3121 		stat(s, FREE_ADD_PARTIAL);
3122 	}
3123 	spin_unlock_irqrestore(&n->list_lock, flags);
3124 	return;
3125 
3126 slab_empty:
3127 	if (prior) {
3128 		/*
3129 		 * Slab on the partial list.
3130 		 */
3131 		remove_partial(n, page);
3132 		stat(s, FREE_REMOVE_PARTIAL);
3133 	} else {
3134 		/* Slab must be on the full list */
3135 		remove_full(s, n, page);
3136 	}
3137 
3138 	spin_unlock_irqrestore(&n->list_lock, flags);
3139 	stat(s, FREE_SLAB);
3140 	discard_slab(s, page);
3141 }
3142 
3143 /*
3144  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3145  * can perform fastpath freeing without additional function calls.
3146  *
3147  * The fastpath is only possible if we are freeing to the current cpu slab
3148  * of this processor. This typically the case if we have just allocated
3149  * the item before.
3150  *
3151  * If fastpath is not possible then fall back to __slab_free where we deal
3152  * with all sorts of special processing.
3153  *
3154  * Bulk free of a freelist with several objects (all pointing to the
3155  * same page) possible by specifying head and tail ptr, plus objects
3156  * count (cnt). Bulk free indicated by tail pointer being set.
3157  */
3158 static __always_inline void do_slab_free(struct kmem_cache *s,
3159 				struct page *page, void *head, void *tail,
3160 				int cnt, unsigned long addr)
3161 {
3162 	void *tail_obj = tail ? : head;
3163 	struct kmem_cache_cpu *c;
3164 	unsigned long tid;
3165 
3166 	memcg_slab_free_hook(s, &head, 1);
3167 redo:
3168 	/*
3169 	 * Determine the currently cpus per cpu slab.
3170 	 * The cpu may change afterward. However that does not matter since
3171 	 * data is retrieved via this pointer. If we are on the same cpu
3172 	 * during the cmpxchg then the free will succeed.
3173 	 */
3174 	do {
3175 		tid = this_cpu_read(s->cpu_slab->tid);
3176 		c = raw_cpu_ptr(s->cpu_slab);
3177 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3178 		 unlikely(tid != READ_ONCE(c->tid)));
3179 
3180 	/* Same with comment on barrier() in slab_alloc_node() */
3181 	barrier();
3182 
3183 	if (likely(page == c->page)) {
3184 		void **freelist = READ_ONCE(c->freelist);
3185 
3186 		set_freepointer(s, tail_obj, freelist);
3187 
3188 		if (unlikely(!this_cpu_cmpxchg_double(
3189 				s->cpu_slab->freelist, s->cpu_slab->tid,
3190 				freelist, tid,
3191 				head, next_tid(tid)))) {
3192 
3193 			note_cmpxchg_failure("slab_free", s, tid);
3194 			goto redo;
3195 		}
3196 		stat(s, FREE_FASTPATH);
3197 	} else
3198 		__slab_free(s, page, head, tail_obj, cnt, addr);
3199 
3200 }
3201 
3202 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3203 				      void *head, void *tail, int cnt,
3204 				      unsigned long addr)
3205 {
3206 	/*
3207 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3208 	 * to remove objects, whose reuse must be delayed.
3209 	 */
3210 	if (slab_free_freelist_hook(s, &head, &tail))
3211 		do_slab_free(s, page, head, tail, cnt, addr);
3212 }
3213 
3214 #ifdef CONFIG_KASAN_GENERIC
3215 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3216 {
3217 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3218 }
3219 #endif
3220 
3221 void kmem_cache_free(struct kmem_cache *s, void *x)
3222 {
3223 	s = cache_from_obj(s, x);
3224 	if (!s)
3225 		return;
3226 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3227 	trace_kmem_cache_free(_RET_IP_, x, s->name);
3228 }
3229 EXPORT_SYMBOL(kmem_cache_free);
3230 
3231 struct detached_freelist {
3232 	struct page *page;
3233 	void *tail;
3234 	void *freelist;
3235 	int cnt;
3236 	struct kmem_cache *s;
3237 };
3238 
3239 /*
3240  * This function progressively scans the array with free objects (with
3241  * a limited look ahead) and extract objects belonging to the same
3242  * page.  It builds a detached freelist directly within the given
3243  * page/objects.  This can happen without any need for
3244  * synchronization, because the objects are owned by running process.
3245  * The freelist is build up as a single linked list in the objects.
3246  * The idea is, that this detached freelist can then be bulk
3247  * transferred to the real freelist(s), but only requiring a single
3248  * synchronization primitive.  Look ahead in the array is limited due
3249  * to performance reasons.
3250  */
3251 static inline
3252 int build_detached_freelist(struct kmem_cache *s, size_t size,
3253 			    void **p, struct detached_freelist *df)
3254 {
3255 	size_t first_skipped_index = 0;
3256 	int lookahead = 3;
3257 	void *object;
3258 	struct page *page;
3259 
3260 	/* Always re-init detached_freelist */
3261 	df->page = NULL;
3262 
3263 	do {
3264 		object = p[--size];
3265 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3266 	} while (!object && size);
3267 
3268 	if (!object)
3269 		return 0;
3270 
3271 	page = virt_to_head_page(object);
3272 	if (!s) {
3273 		/* Handle kalloc'ed objects */
3274 		if (unlikely(!PageSlab(page))) {
3275 			BUG_ON(!PageCompound(page));
3276 			kfree_hook(object);
3277 			__free_pages(page, compound_order(page));
3278 			p[size] = NULL; /* mark object processed */
3279 			return size;
3280 		}
3281 		/* Derive kmem_cache from object */
3282 		df->s = page->slab_cache;
3283 	} else {
3284 		df->s = cache_from_obj(s, object); /* Support for memcg */
3285 	}
3286 
3287 	if (is_kfence_address(object)) {
3288 		slab_free_hook(df->s, object, false);
3289 		__kfence_free(object);
3290 		p[size] = NULL; /* mark object processed */
3291 		return size;
3292 	}
3293 
3294 	/* Start new detached freelist */
3295 	df->page = page;
3296 	set_freepointer(df->s, object, NULL);
3297 	df->tail = object;
3298 	df->freelist = object;
3299 	p[size] = NULL; /* mark object processed */
3300 	df->cnt = 1;
3301 
3302 	while (size) {
3303 		object = p[--size];
3304 		if (!object)
3305 			continue; /* Skip processed objects */
3306 
3307 		/* df->page is always set at this point */
3308 		if (df->page == virt_to_head_page(object)) {
3309 			/* Opportunity build freelist */
3310 			set_freepointer(df->s, object, df->freelist);
3311 			df->freelist = object;
3312 			df->cnt++;
3313 			p[size] = NULL; /* mark object processed */
3314 
3315 			continue;
3316 		}
3317 
3318 		/* Limit look ahead search */
3319 		if (!--lookahead)
3320 			break;
3321 
3322 		if (!first_skipped_index)
3323 			first_skipped_index = size + 1;
3324 	}
3325 
3326 	return first_skipped_index;
3327 }
3328 
3329 /* Note that interrupts must be enabled when calling this function. */
3330 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3331 {
3332 	if (WARN_ON(!size))
3333 		return;
3334 
3335 	memcg_slab_free_hook(s, p, size);
3336 	do {
3337 		struct detached_freelist df;
3338 
3339 		size = build_detached_freelist(s, size, p, &df);
3340 		if (!df.page)
3341 			continue;
3342 
3343 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3344 	} while (likely(size));
3345 }
3346 EXPORT_SYMBOL(kmem_cache_free_bulk);
3347 
3348 /* Note that interrupts must be enabled when calling this function. */
3349 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3350 			  void **p)
3351 {
3352 	struct kmem_cache_cpu *c;
3353 	int i;
3354 	struct obj_cgroup *objcg = NULL;
3355 
3356 	/* memcg and kmem_cache debug support */
3357 	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3358 	if (unlikely(!s))
3359 		return false;
3360 	/*
3361 	 * Drain objects in the per cpu slab, while disabling local
3362 	 * IRQs, which protects against PREEMPT and interrupts
3363 	 * handlers invoking normal fastpath.
3364 	 */
3365 	local_irq_disable();
3366 	c = this_cpu_ptr(s->cpu_slab);
3367 
3368 	for (i = 0; i < size; i++) {
3369 		void *object = kfence_alloc(s, s->object_size, flags);
3370 
3371 		if (unlikely(object)) {
3372 			p[i] = object;
3373 			continue;
3374 		}
3375 
3376 		object = c->freelist;
3377 		if (unlikely(!object)) {
3378 			/*
3379 			 * We may have removed an object from c->freelist using
3380 			 * the fastpath in the previous iteration; in that case,
3381 			 * c->tid has not been bumped yet.
3382 			 * Since ___slab_alloc() may reenable interrupts while
3383 			 * allocating memory, we should bump c->tid now.
3384 			 */
3385 			c->tid = next_tid(c->tid);
3386 
3387 			/*
3388 			 * Invoking slow path likely have side-effect
3389 			 * of re-populating per CPU c->freelist
3390 			 */
3391 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3392 					    _RET_IP_, c);
3393 			if (unlikely(!p[i]))
3394 				goto error;
3395 
3396 			c = this_cpu_ptr(s->cpu_slab);
3397 			maybe_wipe_obj_freeptr(s, p[i]);
3398 
3399 			continue; /* goto for-loop */
3400 		}
3401 		c->freelist = get_freepointer(s, object);
3402 		p[i] = object;
3403 		maybe_wipe_obj_freeptr(s, p[i]);
3404 	}
3405 	c->tid = next_tid(c->tid);
3406 	local_irq_enable();
3407 
3408 	/*
3409 	 * memcg and kmem_cache debug support and memory initialization.
3410 	 * Done outside of the IRQ disabled fastpath loop.
3411 	 */
3412 	slab_post_alloc_hook(s, objcg, flags, size, p,
3413 				slab_want_init_on_alloc(flags, s));
3414 	return i;
3415 error:
3416 	local_irq_enable();
3417 	slab_post_alloc_hook(s, objcg, flags, i, p, false);
3418 	__kmem_cache_free_bulk(s, i, p);
3419 	return 0;
3420 }
3421 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3422 
3423 
3424 /*
3425  * Object placement in a slab is made very easy because we always start at
3426  * offset 0. If we tune the size of the object to the alignment then we can
3427  * get the required alignment by putting one properly sized object after
3428  * another.
3429  *
3430  * Notice that the allocation order determines the sizes of the per cpu
3431  * caches. Each processor has always one slab available for allocations.
3432  * Increasing the allocation order reduces the number of times that slabs
3433  * must be moved on and off the partial lists and is therefore a factor in
3434  * locking overhead.
3435  */
3436 
3437 /*
3438  * Minimum / Maximum order of slab pages. This influences locking overhead
3439  * and slab fragmentation. A higher order reduces the number of partial slabs
3440  * and increases the number of allocations possible without having to
3441  * take the list_lock.
3442  */
3443 static unsigned int slub_min_order;
3444 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3445 static unsigned int slub_min_objects;
3446 
3447 /*
3448  * Calculate the order of allocation given an slab object size.
3449  *
3450  * The order of allocation has significant impact on performance and other
3451  * system components. Generally order 0 allocations should be preferred since
3452  * order 0 does not cause fragmentation in the page allocator. Larger objects
3453  * be problematic to put into order 0 slabs because there may be too much
3454  * unused space left. We go to a higher order if more than 1/16th of the slab
3455  * would be wasted.
3456  *
3457  * In order to reach satisfactory performance we must ensure that a minimum
3458  * number of objects is in one slab. Otherwise we may generate too much
3459  * activity on the partial lists which requires taking the list_lock. This is
3460  * less a concern for large slabs though which are rarely used.
3461  *
3462  * slub_max_order specifies the order where we begin to stop considering the
3463  * number of objects in a slab as critical. If we reach slub_max_order then
3464  * we try to keep the page order as low as possible. So we accept more waste
3465  * of space in favor of a small page order.
3466  *
3467  * Higher order allocations also allow the placement of more objects in a
3468  * slab and thereby reduce object handling overhead. If the user has
3469  * requested a higher minimum order then we start with that one instead of
3470  * the smallest order which will fit the object.
3471  */
3472 static inline unsigned int slab_order(unsigned int size,
3473 		unsigned int min_objects, unsigned int max_order,
3474 		unsigned int fract_leftover)
3475 {
3476 	unsigned int min_order = slub_min_order;
3477 	unsigned int order;
3478 
3479 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3480 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3481 
3482 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3483 			order <= max_order; order++) {
3484 
3485 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3486 		unsigned int rem;
3487 
3488 		rem = slab_size % size;
3489 
3490 		if (rem <= slab_size / fract_leftover)
3491 			break;
3492 	}
3493 
3494 	return order;
3495 }
3496 
3497 static inline int calculate_order(unsigned int size)
3498 {
3499 	unsigned int order;
3500 	unsigned int min_objects;
3501 	unsigned int max_objects;
3502 	unsigned int nr_cpus;
3503 
3504 	/*
3505 	 * Attempt to find best configuration for a slab. This
3506 	 * works by first attempting to generate a layout with
3507 	 * the best configuration and backing off gradually.
3508 	 *
3509 	 * First we increase the acceptable waste in a slab. Then
3510 	 * we reduce the minimum objects required in a slab.
3511 	 */
3512 	min_objects = slub_min_objects;
3513 	if (!min_objects) {
3514 		/*
3515 		 * Some architectures will only update present cpus when
3516 		 * onlining them, so don't trust the number if it's just 1. But
3517 		 * we also don't want to use nr_cpu_ids always, as on some other
3518 		 * architectures, there can be many possible cpus, but never
3519 		 * onlined. Here we compromise between trying to avoid too high
3520 		 * order on systems that appear larger than they are, and too
3521 		 * low order on systems that appear smaller than they are.
3522 		 */
3523 		nr_cpus = num_present_cpus();
3524 		if (nr_cpus <= 1)
3525 			nr_cpus = nr_cpu_ids;
3526 		min_objects = 4 * (fls(nr_cpus) + 1);
3527 	}
3528 	max_objects = order_objects(slub_max_order, size);
3529 	min_objects = min(min_objects, max_objects);
3530 
3531 	while (min_objects > 1) {
3532 		unsigned int fraction;
3533 
3534 		fraction = 16;
3535 		while (fraction >= 4) {
3536 			order = slab_order(size, min_objects,
3537 					slub_max_order, fraction);
3538 			if (order <= slub_max_order)
3539 				return order;
3540 			fraction /= 2;
3541 		}
3542 		min_objects--;
3543 	}
3544 
3545 	/*
3546 	 * We were unable to place multiple objects in a slab. Now
3547 	 * lets see if we can place a single object there.
3548 	 */
3549 	order = slab_order(size, 1, slub_max_order, 1);
3550 	if (order <= slub_max_order)
3551 		return order;
3552 
3553 	/*
3554 	 * Doh this slab cannot be placed using slub_max_order.
3555 	 */
3556 	order = slab_order(size, 1, MAX_ORDER, 1);
3557 	if (order < MAX_ORDER)
3558 		return order;
3559 	return -ENOSYS;
3560 }
3561 
3562 static void
3563 init_kmem_cache_node(struct kmem_cache_node *n)
3564 {
3565 	n->nr_partial = 0;
3566 	spin_lock_init(&n->list_lock);
3567 	INIT_LIST_HEAD(&n->partial);
3568 #ifdef CONFIG_SLUB_DEBUG
3569 	atomic_long_set(&n->nr_slabs, 0);
3570 	atomic_long_set(&n->total_objects, 0);
3571 	INIT_LIST_HEAD(&n->full);
3572 #endif
3573 }
3574 
3575 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3576 {
3577 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3578 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3579 
3580 	/*
3581 	 * Must align to double word boundary for the double cmpxchg
3582 	 * instructions to work; see __pcpu_double_call_return_bool().
3583 	 */
3584 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3585 				     2 * sizeof(void *));
3586 
3587 	if (!s->cpu_slab)
3588 		return 0;
3589 
3590 	init_kmem_cache_cpus(s);
3591 
3592 	return 1;
3593 }
3594 
3595 static struct kmem_cache *kmem_cache_node;
3596 
3597 /*
3598  * No kmalloc_node yet so do it by hand. We know that this is the first
3599  * slab on the node for this slabcache. There are no concurrent accesses
3600  * possible.
3601  *
3602  * Note that this function only works on the kmem_cache_node
3603  * when allocating for the kmem_cache_node. This is used for bootstrapping
3604  * memory on a fresh node that has no slab structures yet.
3605  */
3606 static void early_kmem_cache_node_alloc(int node)
3607 {
3608 	struct page *page;
3609 	struct kmem_cache_node *n;
3610 
3611 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3612 
3613 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3614 
3615 	BUG_ON(!page);
3616 	if (page_to_nid(page) != node) {
3617 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3618 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3619 	}
3620 
3621 	n = page->freelist;
3622 	BUG_ON(!n);
3623 #ifdef CONFIG_SLUB_DEBUG
3624 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3625 	init_tracking(kmem_cache_node, n);
3626 #endif
3627 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3628 	page->freelist = get_freepointer(kmem_cache_node, n);
3629 	page->inuse = 1;
3630 	page->frozen = 0;
3631 	kmem_cache_node->node[node] = n;
3632 	init_kmem_cache_node(n);
3633 	inc_slabs_node(kmem_cache_node, node, page->objects);
3634 
3635 	/*
3636 	 * No locks need to be taken here as it has just been
3637 	 * initialized and there is no concurrent access.
3638 	 */
3639 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3640 }
3641 
3642 static void free_kmem_cache_nodes(struct kmem_cache *s)
3643 {
3644 	int node;
3645 	struct kmem_cache_node *n;
3646 
3647 	for_each_kmem_cache_node(s, node, n) {
3648 		s->node[node] = NULL;
3649 		kmem_cache_free(kmem_cache_node, n);
3650 	}
3651 }
3652 
3653 void __kmem_cache_release(struct kmem_cache *s)
3654 {
3655 	cache_random_seq_destroy(s);
3656 	free_percpu(s->cpu_slab);
3657 	free_kmem_cache_nodes(s);
3658 }
3659 
3660 static int init_kmem_cache_nodes(struct kmem_cache *s)
3661 {
3662 	int node;
3663 
3664 	for_each_node_mask(node, slab_nodes) {
3665 		struct kmem_cache_node *n;
3666 
3667 		if (slab_state == DOWN) {
3668 			early_kmem_cache_node_alloc(node);
3669 			continue;
3670 		}
3671 		n = kmem_cache_alloc_node(kmem_cache_node,
3672 						GFP_KERNEL, node);
3673 
3674 		if (!n) {
3675 			free_kmem_cache_nodes(s);
3676 			return 0;
3677 		}
3678 
3679 		init_kmem_cache_node(n);
3680 		s->node[node] = n;
3681 	}
3682 	return 1;
3683 }
3684 
3685 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3686 {
3687 	if (min < MIN_PARTIAL)
3688 		min = MIN_PARTIAL;
3689 	else if (min > MAX_PARTIAL)
3690 		min = MAX_PARTIAL;
3691 	s->min_partial = min;
3692 }
3693 
3694 static void set_cpu_partial(struct kmem_cache *s)
3695 {
3696 #ifdef CONFIG_SLUB_CPU_PARTIAL
3697 	/*
3698 	 * cpu_partial determined the maximum number of objects kept in the
3699 	 * per cpu partial lists of a processor.
3700 	 *
3701 	 * Per cpu partial lists mainly contain slabs that just have one
3702 	 * object freed. If they are used for allocation then they can be
3703 	 * filled up again with minimal effort. The slab will never hit the
3704 	 * per node partial lists and therefore no locking will be required.
3705 	 *
3706 	 * This setting also determines
3707 	 *
3708 	 * A) The number of objects from per cpu partial slabs dumped to the
3709 	 *    per node list when we reach the limit.
3710 	 * B) The number of objects in cpu partial slabs to extract from the
3711 	 *    per node list when we run out of per cpu objects. We only fetch
3712 	 *    50% to keep some capacity around for frees.
3713 	 */
3714 	if (!kmem_cache_has_cpu_partial(s))
3715 		slub_set_cpu_partial(s, 0);
3716 	else if (s->size >= PAGE_SIZE)
3717 		slub_set_cpu_partial(s, 2);
3718 	else if (s->size >= 1024)
3719 		slub_set_cpu_partial(s, 6);
3720 	else if (s->size >= 256)
3721 		slub_set_cpu_partial(s, 13);
3722 	else
3723 		slub_set_cpu_partial(s, 30);
3724 #endif
3725 }
3726 
3727 /*
3728  * calculate_sizes() determines the order and the distribution of data within
3729  * a slab object.
3730  */
3731 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3732 {
3733 	slab_flags_t flags = s->flags;
3734 	unsigned int size = s->object_size;
3735 	unsigned int order;
3736 
3737 	/*
3738 	 * Round up object size to the next word boundary. We can only
3739 	 * place the free pointer at word boundaries and this determines
3740 	 * the possible location of the free pointer.
3741 	 */
3742 	size = ALIGN(size, sizeof(void *));
3743 
3744 #ifdef CONFIG_SLUB_DEBUG
3745 	/*
3746 	 * Determine if we can poison the object itself. If the user of
3747 	 * the slab may touch the object after free or before allocation
3748 	 * then we should never poison the object itself.
3749 	 */
3750 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3751 			!s->ctor)
3752 		s->flags |= __OBJECT_POISON;
3753 	else
3754 		s->flags &= ~__OBJECT_POISON;
3755 
3756 
3757 	/*
3758 	 * If we are Redzoning then check if there is some space between the
3759 	 * end of the object and the free pointer. If not then add an
3760 	 * additional word to have some bytes to store Redzone information.
3761 	 */
3762 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3763 		size += sizeof(void *);
3764 #endif
3765 
3766 	/*
3767 	 * With that we have determined the number of bytes in actual use
3768 	 * by the object and redzoning.
3769 	 */
3770 	s->inuse = size;
3771 
3772 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3773 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3774 	    s->ctor) {
3775 		/*
3776 		 * Relocate free pointer after the object if it is not
3777 		 * permitted to overwrite the first word of the object on
3778 		 * kmem_cache_free.
3779 		 *
3780 		 * This is the case if we do RCU, have a constructor or
3781 		 * destructor, are poisoning the objects, or are
3782 		 * redzoning an object smaller than sizeof(void *).
3783 		 *
3784 		 * The assumption that s->offset >= s->inuse means free
3785 		 * pointer is outside of the object is used in the
3786 		 * freeptr_outside_object() function. If that is no
3787 		 * longer true, the function needs to be modified.
3788 		 */
3789 		s->offset = size;
3790 		size += sizeof(void *);
3791 	} else {
3792 		/*
3793 		 * Store freelist pointer near middle of object to keep
3794 		 * it away from the edges of the object to avoid small
3795 		 * sized over/underflows from neighboring allocations.
3796 		 */
3797 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
3798 	}
3799 
3800 #ifdef CONFIG_SLUB_DEBUG
3801 	if (flags & SLAB_STORE_USER)
3802 		/*
3803 		 * Need to store information about allocs and frees after
3804 		 * the object.
3805 		 */
3806 		size += 2 * sizeof(struct track);
3807 #endif
3808 
3809 	kasan_cache_create(s, &size, &s->flags);
3810 #ifdef CONFIG_SLUB_DEBUG
3811 	if (flags & SLAB_RED_ZONE) {
3812 		/*
3813 		 * Add some empty padding so that we can catch
3814 		 * overwrites from earlier objects rather than let
3815 		 * tracking information or the free pointer be
3816 		 * corrupted if a user writes before the start
3817 		 * of the object.
3818 		 */
3819 		size += sizeof(void *);
3820 
3821 		s->red_left_pad = sizeof(void *);
3822 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3823 		size += s->red_left_pad;
3824 	}
3825 #endif
3826 
3827 	/*
3828 	 * SLUB stores one object immediately after another beginning from
3829 	 * offset 0. In order to align the objects we have to simply size
3830 	 * each object to conform to the alignment.
3831 	 */
3832 	size = ALIGN(size, s->align);
3833 	s->size = size;
3834 	s->reciprocal_size = reciprocal_value(size);
3835 	if (forced_order >= 0)
3836 		order = forced_order;
3837 	else
3838 		order = calculate_order(size);
3839 
3840 	if ((int)order < 0)
3841 		return 0;
3842 
3843 	s->allocflags = 0;
3844 	if (order)
3845 		s->allocflags |= __GFP_COMP;
3846 
3847 	if (s->flags & SLAB_CACHE_DMA)
3848 		s->allocflags |= GFP_DMA;
3849 
3850 	if (s->flags & SLAB_CACHE_DMA32)
3851 		s->allocflags |= GFP_DMA32;
3852 
3853 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3854 		s->allocflags |= __GFP_RECLAIMABLE;
3855 
3856 	/*
3857 	 * Determine the number of objects per slab
3858 	 */
3859 	s->oo = oo_make(order, size);
3860 	s->min = oo_make(get_order(size), size);
3861 	if (oo_objects(s->oo) > oo_objects(s->max))
3862 		s->max = s->oo;
3863 
3864 	return !!oo_objects(s->oo);
3865 }
3866 
3867 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3868 {
3869 	s->flags = kmem_cache_flags(s->size, flags, s->name);
3870 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3871 	s->random = get_random_long();
3872 #endif
3873 
3874 	if (!calculate_sizes(s, -1))
3875 		goto error;
3876 	if (disable_higher_order_debug) {
3877 		/*
3878 		 * Disable debugging flags that store metadata if the min slab
3879 		 * order increased.
3880 		 */
3881 		if (get_order(s->size) > get_order(s->object_size)) {
3882 			s->flags &= ~DEBUG_METADATA_FLAGS;
3883 			s->offset = 0;
3884 			if (!calculate_sizes(s, -1))
3885 				goto error;
3886 		}
3887 	}
3888 
3889 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3890     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3891 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3892 		/* Enable fast mode */
3893 		s->flags |= __CMPXCHG_DOUBLE;
3894 #endif
3895 
3896 	/*
3897 	 * The larger the object size is, the more pages we want on the partial
3898 	 * list to avoid pounding the page allocator excessively.
3899 	 */
3900 	set_min_partial(s, ilog2(s->size) / 2);
3901 
3902 	set_cpu_partial(s);
3903 
3904 #ifdef CONFIG_NUMA
3905 	s->remote_node_defrag_ratio = 1000;
3906 #endif
3907 
3908 	/* Initialize the pre-computed randomized freelist if slab is up */
3909 	if (slab_state >= UP) {
3910 		if (init_cache_random_seq(s))
3911 			goto error;
3912 	}
3913 
3914 	if (!init_kmem_cache_nodes(s))
3915 		goto error;
3916 
3917 	if (alloc_kmem_cache_cpus(s))
3918 		return 0;
3919 
3920 	free_kmem_cache_nodes(s);
3921 error:
3922 	return -EINVAL;
3923 }
3924 
3925 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3926 			      const char *text)
3927 {
3928 #ifdef CONFIG_SLUB_DEBUG
3929 	void *addr = page_address(page);
3930 	unsigned long *map;
3931 	void *p;
3932 
3933 	slab_err(s, page, text, s->name);
3934 	slab_lock(page);
3935 
3936 	map = get_map(s, page);
3937 	for_each_object(p, s, addr, page->objects) {
3938 
3939 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
3940 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
3941 			print_tracking(s, p);
3942 		}
3943 	}
3944 	put_map(map);
3945 	slab_unlock(page);
3946 #endif
3947 }
3948 
3949 /*
3950  * Attempt to free all partial slabs on a node.
3951  * This is called from __kmem_cache_shutdown(). We must take list_lock
3952  * because sysfs file might still access partial list after the shutdowning.
3953  */
3954 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3955 {
3956 	LIST_HEAD(discard);
3957 	struct page *page, *h;
3958 
3959 	BUG_ON(irqs_disabled());
3960 	spin_lock_irq(&n->list_lock);
3961 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3962 		if (!page->inuse) {
3963 			remove_partial(n, page);
3964 			list_add(&page->slab_list, &discard);
3965 		} else {
3966 			list_slab_objects(s, page,
3967 			  "Objects remaining in %s on __kmem_cache_shutdown()");
3968 		}
3969 	}
3970 	spin_unlock_irq(&n->list_lock);
3971 
3972 	list_for_each_entry_safe(page, h, &discard, slab_list)
3973 		discard_slab(s, page);
3974 }
3975 
3976 bool __kmem_cache_empty(struct kmem_cache *s)
3977 {
3978 	int node;
3979 	struct kmem_cache_node *n;
3980 
3981 	for_each_kmem_cache_node(s, node, n)
3982 		if (n->nr_partial || slabs_node(s, node))
3983 			return false;
3984 	return true;
3985 }
3986 
3987 /*
3988  * Release all resources used by a slab cache.
3989  */
3990 int __kmem_cache_shutdown(struct kmem_cache *s)
3991 {
3992 	int node;
3993 	struct kmem_cache_node *n;
3994 
3995 	flush_all(s);
3996 	/* Attempt to free all objects */
3997 	for_each_kmem_cache_node(s, node, n) {
3998 		free_partial(s, n);
3999 		if (n->nr_partial || slabs_node(s, node))
4000 			return 1;
4001 	}
4002 	return 0;
4003 }
4004 
4005 #ifdef CONFIG_PRINTK
4006 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4007 {
4008 	void *base;
4009 	int __maybe_unused i;
4010 	unsigned int objnr;
4011 	void *objp;
4012 	void *objp0;
4013 	struct kmem_cache *s = page->slab_cache;
4014 	struct track __maybe_unused *trackp;
4015 
4016 	kpp->kp_ptr = object;
4017 	kpp->kp_page = page;
4018 	kpp->kp_slab_cache = s;
4019 	base = page_address(page);
4020 	objp0 = kasan_reset_tag(object);
4021 #ifdef CONFIG_SLUB_DEBUG
4022 	objp = restore_red_left(s, objp0);
4023 #else
4024 	objp = objp0;
4025 #endif
4026 	objnr = obj_to_index(s, page, objp);
4027 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4028 	objp = base + s->size * objnr;
4029 	kpp->kp_objp = objp;
4030 	if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4031 	    !(s->flags & SLAB_STORE_USER))
4032 		return;
4033 #ifdef CONFIG_SLUB_DEBUG
4034 	objp = fixup_red_left(s, objp);
4035 	trackp = get_track(s, objp, TRACK_ALLOC);
4036 	kpp->kp_ret = (void *)trackp->addr;
4037 #ifdef CONFIG_STACKTRACE
4038 	for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4039 		kpp->kp_stack[i] = (void *)trackp->addrs[i];
4040 		if (!kpp->kp_stack[i])
4041 			break;
4042 	}
4043 
4044 	trackp = get_track(s, objp, TRACK_FREE);
4045 	for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4046 		kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4047 		if (!kpp->kp_free_stack[i])
4048 			break;
4049 	}
4050 #endif
4051 #endif
4052 }
4053 #endif
4054 
4055 /********************************************************************
4056  *		Kmalloc subsystem
4057  *******************************************************************/
4058 
4059 static int __init setup_slub_min_order(char *str)
4060 {
4061 	get_option(&str, (int *)&slub_min_order);
4062 
4063 	return 1;
4064 }
4065 
4066 __setup("slub_min_order=", setup_slub_min_order);
4067 
4068 static int __init setup_slub_max_order(char *str)
4069 {
4070 	get_option(&str, (int *)&slub_max_order);
4071 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4072 
4073 	return 1;
4074 }
4075 
4076 __setup("slub_max_order=", setup_slub_max_order);
4077 
4078 static int __init setup_slub_min_objects(char *str)
4079 {
4080 	get_option(&str, (int *)&slub_min_objects);
4081 
4082 	return 1;
4083 }
4084 
4085 __setup("slub_min_objects=", setup_slub_min_objects);
4086 
4087 void *__kmalloc(size_t size, gfp_t flags)
4088 {
4089 	struct kmem_cache *s;
4090 	void *ret;
4091 
4092 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4093 		return kmalloc_large(size, flags);
4094 
4095 	s = kmalloc_slab(size, flags);
4096 
4097 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4098 		return s;
4099 
4100 	ret = slab_alloc(s, flags, _RET_IP_, size);
4101 
4102 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4103 
4104 	ret = kasan_kmalloc(s, ret, size, flags);
4105 
4106 	return ret;
4107 }
4108 EXPORT_SYMBOL(__kmalloc);
4109 
4110 #ifdef CONFIG_NUMA
4111 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4112 {
4113 	struct page *page;
4114 	void *ptr = NULL;
4115 	unsigned int order = get_order(size);
4116 
4117 	flags |= __GFP_COMP;
4118 	page = alloc_pages_node(node, flags, order);
4119 	if (page) {
4120 		ptr = page_address(page);
4121 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4122 				      PAGE_SIZE << order);
4123 	}
4124 
4125 	return kmalloc_large_node_hook(ptr, size, flags);
4126 }
4127 
4128 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4129 {
4130 	struct kmem_cache *s;
4131 	void *ret;
4132 
4133 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4134 		ret = kmalloc_large_node(size, flags, node);
4135 
4136 		trace_kmalloc_node(_RET_IP_, ret,
4137 				   size, PAGE_SIZE << get_order(size),
4138 				   flags, node);
4139 
4140 		return ret;
4141 	}
4142 
4143 	s = kmalloc_slab(size, flags);
4144 
4145 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4146 		return s;
4147 
4148 	ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4149 
4150 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4151 
4152 	ret = kasan_kmalloc(s, ret, size, flags);
4153 
4154 	return ret;
4155 }
4156 EXPORT_SYMBOL(__kmalloc_node);
4157 #endif	/* CONFIG_NUMA */
4158 
4159 #ifdef CONFIG_HARDENED_USERCOPY
4160 /*
4161  * Rejects incorrectly sized objects and objects that are to be copied
4162  * to/from userspace but do not fall entirely within the containing slab
4163  * cache's usercopy region.
4164  *
4165  * Returns NULL if check passes, otherwise const char * to name of cache
4166  * to indicate an error.
4167  */
4168 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4169 			 bool to_user)
4170 {
4171 	struct kmem_cache *s;
4172 	unsigned int offset;
4173 	size_t object_size;
4174 	bool is_kfence = is_kfence_address(ptr);
4175 
4176 	ptr = kasan_reset_tag(ptr);
4177 
4178 	/* Find object and usable object size. */
4179 	s = page->slab_cache;
4180 
4181 	/* Reject impossible pointers. */
4182 	if (ptr < page_address(page))
4183 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4184 			       to_user, 0, n);
4185 
4186 	/* Find offset within object. */
4187 	if (is_kfence)
4188 		offset = ptr - kfence_object_start(ptr);
4189 	else
4190 		offset = (ptr - page_address(page)) % s->size;
4191 
4192 	/* Adjust for redzone and reject if within the redzone. */
4193 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4194 		if (offset < s->red_left_pad)
4195 			usercopy_abort("SLUB object in left red zone",
4196 				       s->name, to_user, offset, n);
4197 		offset -= s->red_left_pad;
4198 	}
4199 
4200 	/* Allow address range falling entirely within usercopy region. */
4201 	if (offset >= s->useroffset &&
4202 	    offset - s->useroffset <= s->usersize &&
4203 	    n <= s->useroffset - offset + s->usersize)
4204 		return;
4205 
4206 	/*
4207 	 * If the copy is still within the allocated object, produce
4208 	 * a warning instead of rejecting the copy. This is intended
4209 	 * to be a temporary method to find any missing usercopy
4210 	 * whitelists.
4211 	 */
4212 	object_size = slab_ksize(s);
4213 	if (usercopy_fallback &&
4214 	    offset <= object_size && n <= object_size - offset) {
4215 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
4216 		return;
4217 	}
4218 
4219 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4220 }
4221 #endif /* CONFIG_HARDENED_USERCOPY */
4222 
4223 size_t __ksize(const void *object)
4224 {
4225 	struct page *page;
4226 
4227 	if (unlikely(object == ZERO_SIZE_PTR))
4228 		return 0;
4229 
4230 	page = virt_to_head_page(object);
4231 
4232 	if (unlikely(!PageSlab(page))) {
4233 		WARN_ON(!PageCompound(page));
4234 		return page_size(page);
4235 	}
4236 
4237 	return slab_ksize(page->slab_cache);
4238 }
4239 EXPORT_SYMBOL(__ksize);
4240 
4241 void kfree(const void *x)
4242 {
4243 	struct page *page;
4244 	void *object = (void *)x;
4245 
4246 	trace_kfree(_RET_IP_, x);
4247 
4248 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4249 		return;
4250 
4251 	page = virt_to_head_page(x);
4252 	if (unlikely(!PageSlab(page))) {
4253 		unsigned int order = compound_order(page);
4254 
4255 		BUG_ON(!PageCompound(page));
4256 		kfree_hook(object);
4257 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4258 				      -(PAGE_SIZE << order));
4259 		__free_pages(page, order);
4260 		return;
4261 	}
4262 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4263 }
4264 EXPORT_SYMBOL(kfree);
4265 
4266 #define SHRINK_PROMOTE_MAX 32
4267 
4268 /*
4269  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4270  * up most to the head of the partial lists. New allocations will then
4271  * fill those up and thus they can be removed from the partial lists.
4272  *
4273  * The slabs with the least items are placed last. This results in them
4274  * being allocated from last increasing the chance that the last objects
4275  * are freed in them.
4276  */
4277 int __kmem_cache_shrink(struct kmem_cache *s)
4278 {
4279 	int node;
4280 	int i;
4281 	struct kmem_cache_node *n;
4282 	struct page *page;
4283 	struct page *t;
4284 	struct list_head discard;
4285 	struct list_head promote[SHRINK_PROMOTE_MAX];
4286 	unsigned long flags;
4287 	int ret = 0;
4288 
4289 	flush_all(s);
4290 	for_each_kmem_cache_node(s, node, n) {
4291 		INIT_LIST_HEAD(&discard);
4292 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4293 			INIT_LIST_HEAD(promote + i);
4294 
4295 		spin_lock_irqsave(&n->list_lock, flags);
4296 
4297 		/*
4298 		 * Build lists of slabs to discard or promote.
4299 		 *
4300 		 * Note that concurrent frees may occur while we hold the
4301 		 * list_lock. page->inuse here is the upper limit.
4302 		 */
4303 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4304 			int free = page->objects - page->inuse;
4305 
4306 			/* Do not reread page->inuse */
4307 			barrier();
4308 
4309 			/* We do not keep full slabs on the list */
4310 			BUG_ON(free <= 0);
4311 
4312 			if (free == page->objects) {
4313 				list_move(&page->slab_list, &discard);
4314 				n->nr_partial--;
4315 			} else if (free <= SHRINK_PROMOTE_MAX)
4316 				list_move(&page->slab_list, promote + free - 1);
4317 		}
4318 
4319 		/*
4320 		 * Promote the slabs filled up most to the head of the
4321 		 * partial list.
4322 		 */
4323 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4324 			list_splice(promote + i, &n->partial);
4325 
4326 		spin_unlock_irqrestore(&n->list_lock, flags);
4327 
4328 		/* Release empty slabs */
4329 		list_for_each_entry_safe(page, t, &discard, slab_list)
4330 			discard_slab(s, page);
4331 
4332 		if (slabs_node(s, node))
4333 			ret = 1;
4334 	}
4335 
4336 	return ret;
4337 }
4338 
4339 static int slab_mem_going_offline_callback(void *arg)
4340 {
4341 	struct kmem_cache *s;
4342 
4343 	mutex_lock(&slab_mutex);
4344 	list_for_each_entry(s, &slab_caches, list)
4345 		__kmem_cache_shrink(s);
4346 	mutex_unlock(&slab_mutex);
4347 
4348 	return 0;
4349 }
4350 
4351 static void slab_mem_offline_callback(void *arg)
4352 {
4353 	struct memory_notify *marg = arg;
4354 	int offline_node;
4355 
4356 	offline_node = marg->status_change_nid_normal;
4357 
4358 	/*
4359 	 * If the node still has available memory. we need kmem_cache_node
4360 	 * for it yet.
4361 	 */
4362 	if (offline_node < 0)
4363 		return;
4364 
4365 	mutex_lock(&slab_mutex);
4366 	node_clear(offline_node, slab_nodes);
4367 	/*
4368 	 * We no longer free kmem_cache_node structures here, as it would be
4369 	 * racy with all get_node() users, and infeasible to protect them with
4370 	 * slab_mutex.
4371 	 */
4372 	mutex_unlock(&slab_mutex);
4373 }
4374 
4375 static int slab_mem_going_online_callback(void *arg)
4376 {
4377 	struct kmem_cache_node *n;
4378 	struct kmem_cache *s;
4379 	struct memory_notify *marg = arg;
4380 	int nid = marg->status_change_nid_normal;
4381 	int ret = 0;
4382 
4383 	/*
4384 	 * If the node's memory is already available, then kmem_cache_node is
4385 	 * already created. Nothing to do.
4386 	 */
4387 	if (nid < 0)
4388 		return 0;
4389 
4390 	/*
4391 	 * We are bringing a node online. No memory is available yet. We must
4392 	 * allocate a kmem_cache_node structure in order to bring the node
4393 	 * online.
4394 	 */
4395 	mutex_lock(&slab_mutex);
4396 	list_for_each_entry(s, &slab_caches, list) {
4397 		/*
4398 		 * The structure may already exist if the node was previously
4399 		 * onlined and offlined.
4400 		 */
4401 		if (get_node(s, nid))
4402 			continue;
4403 		/*
4404 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4405 		 *      since memory is not yet available from the node that
4406 		 *      is brought up.
4407 		 */
4408 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4409 		if (!n) {
4410 			ret = -ENOMEM;
4411 			goto out;
4412 		}
4413 		init_kmem_cache_node(n);
4414 		s->node[nid] = n;
4415 	}
4416 	/*
4417 	 * Any cache created after this point will also have kmem_cache_node
4418 	 * initialized for the new node.
4419 	 */
4420 	node_set(nid, slab_nodes);
4421 out:
4422 	mutex_unlock(&slab_mutex);
4423 	return ret;
4424 }
4425 
4426 static int slab_memory_callback(struct notifier_block *self,
4427 				unsigned long action, void *arg)
4428 {
4429 	int ret = 0;
4430 
4431 	switch (action) {
4432 	case MEM_GOING_ONLINE:
4433 		ret = slab_mem_going_online_callback(arg);
4434 		break;
4435 	case MEM_GOING_OFFLINE:
4436 		ret = slab_mem_going_offline_callback(arg);
4437 		break;
4438 	case MEM_OFFLINE:
4439 	case MEM_CANCEL_ONLINE:
4440 		slab_mem_offline_callback(arg);
4441 		break;
4442 	case MEM_ONLINE:
4443 	case MEM_CANCEL_OFFLINE:
4444 		break;
4445 	}
4446 	if (ret)
4447 		ret = notifier_from_errno(ret);
4448 	else
4449 		ret = NOTIFY_OK;
4450 	return ret;
4451 }
4452 
4453 static struct notifier_block slab_memory_callback_nb = {
4454 	.notifier_call = slab_memory_callback,
4455 	.priority = SLAB_CALLBACK_PRI,
4456 };
4457 
4458 /********************************************************************
4459  *			Basic setup of slabs
4460  *******************************************************************/
4461 
4462 /*
4463  * Used for early kmem_cache structures that were allocated using
4464  * the page allocator. Allocate them properly then fix up the pointers
4465  * that may be pointing to the wrong kmem_cache structure.
4466  */
4467 
4468 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4469 {
4470 	int node;
4471 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4472 	struct kmem_cache_node *n;
4473 
4474 	memcpy(s, static_cache, kmem_cache->object_size);
4475 
4476 	/*
4477 	 * This runs very early, and only the boot processor is supposed to be
4478 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4479 	 * IPIs around.
4480 	 */
4481 	__flush_cpu_slab(s, smp_processor_id());
4482 	for_each_kmem_cache_node(s, node, n) {
4483 		struct page *p;
4484 
4485 		list_for_each_entry(p, &n->partial, slab_list)
4486 			p->slab_cache = s;
4487 
4488 #ifdef CONFIG_SLUB_DEBUG
4489 		list_for_each_entry(p, &n->full, slab_list)
4490 			p->slab_cache = s;
4491 #endif
4492 	}
4493 	list_add(&s->list, &slab_caches);
4494 	return s;
4495 }
4496 
4497 void __init kmem_cache_init(void)
4498 {
4499 	static __initdata struct kmem_cache boot_kmem_cache,
4500 		boot_kmem_cache_node;
4501 	int node;
4502 
4503 	if (debug_guardpage_minorder())
4504 		slub_max_order = 0;
4505 
4506 	/* Print slub debugging pointers without hashing */
4507 	if (__slub_debug_enabled())
4508 		no_hash_pointers_enable(NULL);
4509 
4510 	kmem_cache_node = &boot_kmem_cache_node;
4511 	kmem_cache = &boot_kmem_cache;
4512 
4513 	/*
4514 	 * Initialize the nodemask for which we will allocate per node
4515 	 * structures. Here we don't need taking slab_mutex yet.
4516 	 */
4517 	for_each_node_state(node, N_NORMAL_MEMORY)
4518 		node_set(node, slab_nodes);
4519 
4520 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4521 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4522 
4523 	register_hotmemory_notifier(&slab_memory_callback_nb);
4524 
4525 	/* Able to allocate the per node structures */
4526 	slab_state = PARTIAL;
4527 
4528 	create_boot_cache(kmem_cache, "kmem_cache",
4529 			offsetof(struct kmem_cache, node) +
4530 				nr_node_ids * sizeof(struct kmem_cache_node *),
4531 		       SLAB_HWCACHE_ALIGN, 0, 0);
4532 
4533 	kmem_cache = bootstrap(&boot_kmem_cache);
4534 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4535 
4536 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4537 	setup_kmalloc_cache_index_table();
4538 	create_kmalloc_caches(0);
4539 
4540 	/* Setup random freelists for each cache */
4541 	init_freelist_randomization();
4542 
4543 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4544 				  slub_cpu_dead);
4545 
4546 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4547 		cache_line_size(),
4548 		slub_min_order, slub_max_order, slub_min_objects,
4549 		nr_cpu_ids, nr_node_ids);
4550 }
4551 
4552 void __init kmem_cache_init_late(void)
4553 {
4554 }
4555 
4556 struct kmem_cache *
4557 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4558 		   slab_flags_t flags, void (*ctor)(void *))
4559 {
4560 	struct kmem_cache *s;
4561 
4562 	s = find_mergeable(size, align, flags, name, ctor);
4563 	if (s) {
4564 		s->refcount++;
4565 
4566 		/*
4567 		 * Adjust the object sizes so that we clear
4568 		 * the complete object on kzalloc.
4569 		 */
4570 		s->object_size = max(s->object_size, size);
4571 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4572 
4573 		if (sysfs_slab_alias(s, name)) {
4574 			s->refcount--;
4575 			s = NULL;
4576 		}
4577 	}
4578 
4579 	return s;
4580 }
4581 
4582 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4583 {
4584 	int err;
4585 
4586 	err = kmem_cache_open(s, flags);
4587 	if (err)
4588 		return err;
4589 
4590 	/* Mutex is not taken during early boot */
4591 	if (slab_state <= UP)
4592 		return 0;
4593 
4594 	err = sysfs_slab_add(s);
4595 	if (err)
4596 		__kmem_cache_release(s);
4597 
4598 	if (s->flags & SLAB_STORE_USER)
4599 		debugfs_slab_add(s);
4600 
4601 	return err;
4602 }
4603 
4604 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4605 {
4606 	struct kmem_cache *s;
4607 	void *ret;
4608 
4609 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4610 		return kmalloc_large(size, gfpflags);
4611 
4612 	s = kmalloc_slab(size, gfpflags);
4613 
4614 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4615 		return s;
4616 
4617 	ret = slab_alloc(s, gfpflags, caller, size);
4618 
4619 	/* Honor the call site pointer we received. */
4620 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4621 
4622 	return ret;
4623 }
4624 EXPORT_SYMBOL(__kmalloc_track_caller);
4625 
4626 #ifdef CONFIG_NUMA
4627 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4628 					int node, unsigned long caller)
4629 {
4630 	struct kmem_cache *s;
4631 	void *ret;
4632 
4633 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4634 		ret = kmalloc_large_node(size, gfpflags, node);
4635 
4636 		trace_kmalloc_node(caller, ret,
4637 				   size, PAGE_SIZE << get_order(size),
4638 				   gfpflags, node);
4639 
4640 		return ret;
4641 	}
4642 
4643 	s = kmalloc_slab(size, gfpflags);
4644 
4645 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4646 		return s;
4647 
4648 	ret = slab_alloc_node(s, gfpflags, node, caller, size);
4649 
4650 	/* Honor the call site pointer we received. */
4651 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4652 
4653 	return ret;
4654 }
4655 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4656 #endif
4657 
4658 #ifdef CONFIG_SYSFS
4659 static int count_inuse(struct page *page)
4660 {
4661 	return page->inuse;
4662 }
4663 
4664 static int count_total(struct page *page)
4665 {
4666 	return page->objects;
4667 }
4668 #endif
4669 
4670 #ifdef CONFIG_SLUB_DEBUG
4671 static void validate_slab(struct kmem_cache *s, struct page *page)
4672 {
4673 	void *p;
4674 	void *addr = page_address(page);
4675 	unsigned long *map;
4676 
4677 	slab_lock(page);
4678 
4679 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4680 		goto unlock;
4681 
4682 	/* Now we know that a valid freelist exists */
4683 	map = get_map(s, page);
4684 	for_each_object(p, s, addr, page->objects) {
4685 		u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4686 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4687 
4688 		if (!check_object(s, page, p, val))
4689 			break;
4690 	}
4691 	put_map(map);
4692 unlock:
4693 	slab_unlock(page);
4694 }
4695 
4696 static int validate_slab_node(struct kmem_cache *s,
4697 		struct kmem_cache_node *n)
4698 {
4699 	unsigned long count = 0;
4700 	struct page *page;
4701 	unsigned long flags;
4702 
4703 	spin_lock_irqsave(&n->list_lock, flags);
4704 
4705 	list_for_each_entry(page, &n->partial, slab_list) {
4706 		validate_slab(s, page);
4707 		count++;
4708 	}
4709 	if (count != n->nr_partial) {
4710 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4711 		       s->name, count, n->nr_partial);
4712 		slab_add_kunit_errors();
4713 	}
4714 
4715 	if (!(s->flags & SLAB_STORE_USER))
4716 		goto out;
4717 
4718 	list_for_each_entry(page, &n->full, slab_list) {
4719 		validate_slab(s, page);
4720 		count++;
4721 	}
4722 	if (count != atomic_long_read(&n->nr_slabs)) {
4723 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4724 		       s->name, count, atomic_long_read(&n->nr_slabs));
4725 		slab_add_kunit_errors();
4726 	}
4727 
4728 out:
4729 	spin_unlock_irqrestore(&n->list_lock, flags);
4730 	return count;
4731 }
4732 
4733 long validate_slab_cache(struct kmem_cache *s)
4734 {
4735 	int node;
4736 	unsigned long count = 0;
4737 	struct kmem_cache_node *n;
4738 
4739 	flush_all(s);
4740 	for_each_kmem_cache_node(s, node, n)
4741 		count += validate_slab_node(s, n);
4742 
4743 	return count;
4744 }
4745 EXPORT_SYMBOL(validate_slab_cache);
4746 
4747 #ifdef CONFIG_DEBUG_FS
4748 /*
4749  * Generate lists of code addresses where slabcache objects are allocated
4750  * and freed.
4751  */
4752 
4753 struct location {
4754 	unsigned long count;
4755 	unsigned long addr;
4756 	long long sum_time;
4757 	long min_time;
4758 	long max_time;
4759 	long min_pid;
4760 	long max_pid;
4761 	DECLARE_BITMAP(cpus, NR_CPUS);
4762 	nodemask_t nodes;
4763 };
4764 
4765 struct loc_track {
4766 	unsigned long max;
4767 	unsigned long count;
4768 	struct location *loc;
4769 };
4770 
4771 static struct dentry *slab_debugfs_root;
4772 
4773 static void free_loc_track(struct loc_track *t)
4774 {
4775 	if (t->max)
4776 		free_pages((unsigned long)t->loc,
4777 			get_order(sizeof(struct location) * t->max));
4778 }
4779 
4780 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4781 {
4782 	struct location *l;
4783 	int order;
4784 
4785 	order = get_order(sizeof(struct location) * max);
4786 
4787 	l = (void *)__get_free_pages(flags, order);
4788 	if (!l)
4789 		return 0;
4790 
4791 	if (t->count) {
4792 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4793 		free_loc_track(t);
4794 	}
4795 	t->max = max;
4796 	t->loc = l;
4797 	return 1;
4798 }
4799 
4800 static int add_location(struct loc_track *t, struct kmem_cache *s,
4801 				const struct track *track)
4802 {
4803 	long start, end, pos;
4804 	struct location *l;
4805 	unsigned long caddr;
4806 	unsigned long age = jiffies - track->when;
4807 
4808 	start = -1;
4809 	end = t->count;
4810 
4811 	for ( ; ; ) {
4812 		pos = start + (end - start + 1) / 2;
4813 
4814 		/*
4815 		 * There is nothing at "end". If we end up there
4816 		 * we need to add something to before end.
4817 		 */
4818 		if (pos == end)
4819 			break;
4820 
4821 		caddr = t->loc[pos].addr;
4822 		if (track->addr == caddr) {
4823 
4824 			l = &t->loc[pos];
4825 			l->count++;
4826 			if (track->when) {
4827 				l->sum_time += age;
4828 				if (age < l->min_time)
4829 					l->min_time = age;
4830 				if (age > l->max_time)
4831 					l->max_time = age;
4832 
4833 				if (track->pid < l->min_pid)
4834 					l->min_pid = track->pid;
4835 				if (track->pid > l->max_pid)
4836 					l->max_pid = track->pid;
4837 
4838 				cpumask_set_cpu(track->cpu,
4839 						to_cpumask(l->cpus));
4840 			}
4841 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4842 			return 1;
4843 		}
4844 
4845 		if (track->addr < caddr)
4846 			end = pos;
4847 		else
4848 			start = pos;
4849 	}
4850 
4851 	/*
4852 	 * Not found. Insert new tracking element.
4853 	 */
4854 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4855 		return 0;
4856 
4857 	l = t->loc + pos;
4858 	if (pos < t->count)
4859 		memmove(l + 1, l,
4860 			(t->count - pos) * sizeof(struct location));
4861 	t->count++;
4862 	l->count = 1;
4863 	l->addr = track->addr;
4864 	l->sum_time = age;
4865 	l->min_time = age;
4866 	l->max_time = age;
4867 	l->min_pid = track->pid;
4868 	l->max_pid = track->pid;
4869 	cpumask_clear(to_cpumask(l->cpus));
4870 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4871 	nodes_clear(l->nodes);
4872 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4873 	return 1;
4874 }
4875 
4876 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4877 		struct page *page, enum track_item alloc)
4878 {
4879 	void *addr = page_address(page);
4880 	void *p;
4881 	unsigned long *map;
4882 
4883 	map = get_map(s, page);
4884 	for_each_object(p, s, addr, page->objects)
4885 		if (!test_bit(__obj_to_index(s, addr, p), map))
4886 			add_location(t, s, get_track(s, p, alloc));
4887 	put_map(map);
4888 }
4889 #endif  /* CONFIG_DEBUG_FS   */
4890 #endif	/* CONFIG_SLUB_DEBUG */
4891 
4892 #ifdef CONFIG_SYSFS
4893 enum slab_stat_type {
4894 	SL_ALL,			/* All slabs */
4895 	SL_PARTIAL,		/* Only partially allocated slabs */
4896 	SL_CPU,			/* Only slabs used for cpu caches */
4897 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4898 	SL_TOTAL		/* Determine object capacity not slabs */
4899 };
4900 
4901 #define SO_ALL		(1 << SL_ALL)
4902 #define SO_PARTIAL	(1 << SL_PARTIAL)
4903 #define SO_CPU		(1 << SL_CPU)
4904 #define SO_OBJECTS	(1 << SL_OBJECTS)
4905 #define SO_TOTAL	(1 << SL_TOTAL)
4906 
4907 static ssize_t show_slab_objects(struct kmem_cache *s,
4908 				 char *buf, unsigned long flags)
4909 {
4910 	unsigned long total = 0;
4911 	int node;
4912 	int x;
4913 	unsigned long *nodes;
4914 	int len = 0;
4915 
4916 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4917 	if (!nodes)
4918 		return -ENOMEM;
4919 
4920 	if (flags & SO_CPU) {
4921 		int cpu;
4922 
4923 		for_each_possible_cpu(cpu) {
4924 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4925 							       cpu);
4926 			int node;
4927 			struct page *page;
4928 
4929 			page = READ_ONCE(c->page);
4930 			if (!page)
4931 				continue;
4932 
4933 			node = page_to_nid(page);
4934 			if (flags & SO_TOTAL)
4935 				x = page->objects;
4936 			else if (flags & SO_OBJECTS)
4937 				x = page->inuse;
4938 			else
4939 				x = 1;
4940 
4941 			total += x;
4942 			nodes[node] += x;
4943 
4944 			page = slub_percpu_partial_read_once(c);
4945 			if (page) {
4946 				node = page_to_nid(page);
4947 				if (flags & SO_TOTAL)
4948 					WARN_ON_ONCE(1);
4949 				else if (flags & SO_OBJECTS)
4950 					WARN_ON_ONCE(1);
4951 				else
4952 					x = page->pages;
4953 				total += x;
4954 				nodes[node] += x;
4955 			}
4956 		}
4957 	}
4958 
4959 	/*
4960 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4961 	 * already held which will conflict with an existing lock order:
4962 	 *
4963 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4964 	 *
4965 	 * We don't really need mem_hotplug_lock (to hold off
4966 	 * slab_mem_going_offline_callback) here because slab's memory hot
4967 	 * unplug code doesn't destroy the kmem_cache->node[] data.
4968 	 */
4969 
4970 #ifdef CONFIG_SLUB_DEBUG
4971 	if (flags & SO_ALL) {
4972 		struct kmem_cache_node *n;
4973 
4974 		for_each_kmem_cache_node(s, node, n) {
4975 
4976 			if (flags & SO_TOTAL)
4977 				x = atomic_long_read(&n->total_objects);
4978 			else if (flags & SO_OBJECTS)
4979 				x = atomic_long_read(&n->total_objects) -
4980 					count_partial(n, count_free);
4981 			else
4982 				x = atomic_long_read(&n->nr_slabs);
4983 			total += x;
4984 			nodes[node] += x;
4985 		}
4986 
4987 	} else
4988 #endif
4989 	if (flags & SO_PARTIAL) {
4990 		struct kmem_cache_node *n;
4991 
4992 		for_each_kmem_cache_node(s, node, n) {
4993 			if (flags & SO_TOTAL)
4994 				x = count_partial(n, count_total);
4995 			else if (flags & SO_OBJECTS)
4996 				x = count_partial(n, count_inuse);
4997 			else
4998 				x = n->nr_partial;
4999 			total += x;
5000 			nodes[node] += x;
5001 		}
5002 	}
5003 
5004 	len += sysfs_emit_at(buf, len, "%lu", total);
5005 #ifdef CONFIG_NUMA
5006 	for (node = 0; node < nr_node_ids; node++) {
5007 		if (nodes[node])
5008 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5009 					     node, nodes[node]);
5010 	}
5011 #endif
5012 	len += sysfs_emit_at(buf, len, "\n");
5013 	kfree(nodes);
5014 
5015 	return len;
5016 }
5017 
5018 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5019 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5020 
5021 struct slab_attribute {
5022 	struct attribute attr;
5023 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5024 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5025 };
5026 
5027 #define SLAB_ATTR_RO(_name) \
5028 	static struct slab_attribute _name##_attr = \
5029 	__ATTR(_name, 0400, _name##_show, NULL)
5030 
5031 #define SLAB_ATTR(_name) \
5032 	static struct slab_attribute _name##_attr =  \
5033 	__ATTR(_name, 0600, _name##_show, _name##_store)
5034 
5035 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5036 {
5037 	return sysfs_emit(buf, "%u\n", s->size);
5038 }
5039 SLAB_ATTR_RO(slab_size);
5040 
5041 static ssize_t align_show(struct kmem_cache *s, char *buf)
5042 {
5043 	return sysfs_emit(buf, "%u\n", s->align);
5044 }
5045 SLAB_ATTR_RO(align);
5046 
5047 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5048 {
5049 	return sysfs_emit(buf, "%u\n", s->object_size);
5050 }
5051 SLAB_ATTR_RO(object_size);
5052 
5053 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5054 {
5055 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5056 }
5057 SLAB_ATTR_RO(objs_per_slab);
5058 
5059 static ssize_t order_show(struct kmem_cache *s, char *buf)
5060 {
5061 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5062 }
5063 SLAB_ATTR_RO(order);
5064 
5065 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5066 {
5067 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5068 }
5069 
5070 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5071 				 size_t length)
5072 {
5073 	unsigned long min;
5074 	int err;
5075 
5076 	err = kstrtoul(buf, 10, &min);
5077 	if (err)
5078 		return err;
5079 
5080 	set_min_partial(s, min);
5081 	return length;
5082 }
5083 SLAB_ATTR(min_partial);
5084 
5085 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5086 {
5087 	return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5088 }
5089 
5090 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5091 				 size_t length)
5092 {
5093 	unsigned int objects;
5094 	int err;
5095 
5096 	err = kstrtouint(buf, 10, &objects);
5097 	if (err)
5098 		return err;
5099 	if (objects && !kmem_cache_has_cpu_partial(s))
5100 		return -EINVAL;
5101 
5102 	slub_set_cpu_partial(s, objects);
5103 	flush_all(s);
5104 	return length;
5105 }
5106 SLAB_ATTR(cpu_partial);
5107 
5108 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5109 {
5110 	if (!s->ctor)
5111 		return 0;
5112 	return sysfs_emit(buf, "%pS\n", s->ctor);
5113 }
5114 SLAB_ATTR_RO(ctor);
5115 
5116 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5117 {
5118 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5119 }
5120 SLAB_ATTR_RO(aliases);
5121 
5122 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5123 {
5124 	return show_slab_objects(s, buf, SO_PARTIAL);
5125 }
5126 SLAB_ATTR_RO(partial);
5127 
5128 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5129 {
5130 	return show_slab_objects(s, buf, SO_CPU);
5131 }
5132 SLAB_ATTR_RO(cpu_slabs);
5133 
5134 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5135 {
5136 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5137 }
5138 SLAB_ATTR_RO(objects);
5139 
5140 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5141 {
5142 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5143 }
5144 SLAB_ATTR_RO(objects_partial);
5145 
5146 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5147 {
5148 	int objects = 0;
5149 	int pages = 0;
5150 	int cpu;
5151 	int len = 0;
5152 
5153 	for_each_online_cpu(cpu) {
5154 		struct page *page;
5155 
5156 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5157 
5158 		if (page) {
5159 			pages += page->pages;
5160 			objects += page->pobjects;
5161 		}
5162 	}
5163 
5164 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5165 
5166 #ifdef CONFIG_SMP
5167 	for_each_online_cpu(cpu) {
5168 		struct page *page;
5169 
5170 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5171 		if (page)
5172 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5173 					     cpu, page->pobjects, page->pages);
5174 	}
5175 #endif
5176 	len += sysfs_emit_at(buf, len, "\n");
5177 
5178 	return len;
5179 }
5180 SLAB_ATTR_RO(slabs_cpu_partial);
5181 
5182 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5183 {
5184 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5185 }
5186 SLAB_ATTR_RO(reclaim_account);
5187 
5188 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5189 {
5190 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5191 }
5192 SLAB_ATTR_RO(hwcache_align);
5193 
5194 #ifdef CONFIG_ZONE_DMA
5195 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5196 {
5197 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5198 }
5199 SLAB_ATTR_RO(cache_dma);
5200 #endif
5201 
5202 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5203 {
5204 	return sysfs_emit(buf, "%u\n", s->usersize);
5205 }
5206 SLAB_ATTR_RO(usersize);
5207 
5208 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5209 {
5210 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5211 }
5212 SLAB_ATTR_RO(destroy_by_rcu);
5213 
5214 #ifdef CONFIG_SLUB_DEBUG
5215 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5216 {
5217 	return show_slab_objects(s, buf, SO_ALL);
5218 }
5219 SLAB_ATTR_RO(slabs);
5220 
5221 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5222 {
5223 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5224 }
5225 SLAB_ATTR_RO(total_objects);
5226 
5227 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5228 {
5229 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5230 }
5231 SLAB_ATTR_RO(sanity_checks);
5232 
5233 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5234 {
5235 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5236 }
5237 SLAB_ATTR_RO(trace);
5238 
5239 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5240 {
5241 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5242 }
5243 
5244 SLAB_ATTR_RO(red_zone);
5245 
5246 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5247 {
5248 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5249 }
5250 
5251 SLAB_ATTR_RO(poison);
5252 
5253 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5254 {
5255 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5256 }
5257 
5258 SLAB_ATTR_RO(store_user);
5259 
5260 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5261 {
5262 	return 0;
5263 }
5264 
5265 static ssize_t validate_store(struct kmem_cache *s,
5266 			const char *buf, size_t length)
5267 {
5268 	int ret = -EINVAL;
5269 
5270 	if (buf[0] == '1') {
5271 		ret = validate_slab_cache(s);
5272 		if (ret >= 0)
5273 			ret = length;
5274 	}
5275 	return ret;
5276 }
5277 SLAB_ATTR(validate);
5278 
5279 #endif /* CONFIG_SLUB_DEBUG */
5280 
5281 #ifdef CONFIG_FAILSLAB
5282 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5283 {
5284 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5285 }
5286 SLAB_ATTR_RO(failslab);
5287 #endif
5288 
5289 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5290 {
5291 	return 0;
5292 }
5293 
5294 static ssize_t shrink_store(struct kmem_cache *s,
5295 			const char *buf, size_t length)
5296 {
5297 	if (buf[0] == '1')
5298 		kmem_cache_shrink(s);
5299 	else
5300 		return -EINVAL;
5301 	return length;
5302 }
5303 SLAB_ATTR(shrink);
5304 
5305 #ifdef CONFIG_NUMA
5306 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5307 {
5308 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5309 }
5310 
5311 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5312 				const char *buf, size_t length)
5313 {
5314 	unsigned int ratio;
5315 	int err;
5316 
5317 	err = kstrtouint(buf, 10, &ratio);
5318 	if (err)
5319 		return err;
5320 	if (ratio > 100)
5321 		return -ERANGE;
5322 
5323 	s->remote_node_defrag_ratio = ratio * 10;
5324 
5325 	return length;
5326 }
5327 SLAB_ATTR(remote_node_defrag_ratio);
5328 #endif
5329 
5330 #ifdef CONFIG_SLUB_STATS
5331 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5332 {
5333 	unsigned long sum  = 0;
5334 	int cpu;
5335 	int len = 0;
5336 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5337 
5338 	if (!data)
5339 		return -ENOMEM;
5340 
5341 	for_each_online_cpu(cpu) {
5342 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5343 
5344 		data[cpu] = x;
5345 		sum += x;
5346 	}
5347 
5348 	len += sysfs_emit_at(buf, len, "%lu", sum);
5349 
5350 #ifdef CONFIG_SMP
5351 	for_each_online_cpu(cpu) {
5352 		if (data[cpu])
5353 			len += sysfs_emit_at(buf, len, " C%d=%u",
5354 					     cpu, data[cpu]);
5355 	}
5356 #endif
5357 	kfree(data);
5358 	len += sysfs_emit_at(buf, len, "\n");
5359 
5360 	return len;
5361 }
5362 
5363 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5364 {
5365 	int cpu;
5366 
5367 	for_each_online_cpu(cpu)
5368 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5369 }
5370 
5371 #define STAT_ATTR(si, text) 					\
5372 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5373 {								\
5374 	return show_stat(s, buf, si);				\
5375 }								\
5376 static ssize_t text##_store(struct kmem_cache *s,		\
5377 				const char *buf, size_t length)	\
5378 {								\
5379 	if (buf[0] != '0')					\
5380 		return -EINVAL;					\
5381 	clear_stat(s, si);					\
5382 	return length;						\
5383 }								\
5384 SLAB_ATTR(text);						\
5385 
5386 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5387 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5388 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5389 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5390 STAT_ATTR(FREE_FROZEN, free_frozen);
5391 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5392 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5393 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5394 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5395 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5396 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5397 STAT_ATTR(FREE_SLAB, free_slab);
5398 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5399 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5400 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5401 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5402 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5403 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5404 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5405 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5406 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5407 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5408 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5409 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5410 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5411 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5412 #endif	/* CONFIG_SLUB_STATS */
5413 
5414 static struct attribute *slab_attrs[] = {
5415 	&slab_size_attr.attr,
5416 	&object_size_attr.attr,
5417 	&objs_per_slab_attr.attr,
5418 	&order_attr.attr,
5419 	&min_partial_attr.attr,
5420 	&cpu_partial_attr.attr,
5421 	&objects_attr.attr,
5422 	&objects_partial_attr.attr,
5423 	&partial_attr.attr,
5424 	&cpu_slabs_attr.attr,
5425 	&ctor_attr.attr,
5426 	&aliases_attr.attr,
5427 	&align_attr.attr,
5428 	&hwcache_align_attr.attr,
5429 	&reclaim_account_attr.attr,
5430 	&destroy_by_rcu_attr.attr,
5431 	&shrink_attr.attr,
5432 	&slabs_cpu_partial_attr.attr,
5433 #ifdef CONFIG_SLUB_DEBUG
5434 	&total_objects_attr.attr,
5435 	&slabs_attr.attr,
5436 	&sanity_checks_attr.attr,
5437 	&trace_attr.attr,
5438 	&red_zone_attr.attr,
5439 	&poison_attr.attr,
5440 	&store_user_attr.attr,
5441 	&validate_attr.attr,
5442 #endif
5443 #ifdef CONFIG_ZONE_DMA
5444 	&cache_dma_attr.attr,
5445 #endif
5446 #ifdef CONFIG_NUMA
5447 	&remote_node_defrag_ratio_attr.attr,
5448 #endif
5449 #ifdef CONFIG_SLUB_STATS
5450 	&alloc_fastpath_attr.attr,
5451 	&alloc_slowpath_attr.attr,
5452 	&free_fastpath_attr.attr,
5453 	&free_slowpath_attr.attr,
5454 	&free_frozen_attr.attr,
5455 	&free_add_partial_attr.attr,
5456 	&free_remove_partial_attr.attr,
5457 	&alloc_from_partial_attr.attr,
5458 	&alloc_slab_attr.attr,
5459 	&alloc_refill_attr.attr,
5460 	&alloc_node_mismatch_attr.attr,
5461 	&free_slab_attr.attr,
5462 	&cpuslab_flush_attr.attr,
5463 	&deactivate_full_attr.attr,
5464 	&deactivate_empty_attr.attr,
5465 	&deactivate_to_head_attr.attr,
5466 	&deactivate_to_tail_attr.attr,
5467 	&deactivate_remote_frees_attr.attr,
5468 	&deactivate_bypass_attr.attr,
5469 	&order_fallback_attr.attr,
5470 	&cmpxchg_double_fail_attr.attr,
5471 	&cmpxchg_double_cpu_fail_attr.attr,
5472 	&cpu_partial_alloc_attr.attr,
5473 	&cpu_partial_free_attr.attr,
5474 	&cpu_partial_node_attr.attr,
5475 	&cpu_partial_drain_attr.attr,
5476 #endif
5477 #ifdef CONFIG_FAILSLAB
5478 	&failslab_attr.attr,
5479 #endif
5480 	&usersize_attr.attr,
5481 
5482 	NULL
5483 };
5484 
5485 static const struct attribute_group slab_attr_group = {
5486 	.attrs = slab_attrs,
5487 };
5488 
5489 static ssize_t slab_attr_show(struct kobject *kobj,
5490 				struct attribute *attr,
5491 				char *buf)
5492 {
5493 	struct slab_attribute *attribute;
5494 	struct kmem_cache *s;
5495 	int err;
5496 
5497 	attribute = to_slab_attr(attr);
5498 	s = to_slab(kobj);
5499 
5500 	if (!attribute->show)
5501 		return -EIO;
5502 
5503 	err = attribute->show(s, buf);
5504 
5505 	return err;
5506 }
5507 
5508 static ssize_t slab_attr_store(struct kobject *kobj,
5509 				struct attribute *attr,
5510 				const char *buf, size_t len)
5511 {
5512 	struct slab_attribute *attribute;
5513 	struct kmem_cache *s;
5514 	int err;
5515 
5516 	attribute = to_slab_attr(attr);
5517 	s = to_slab(kobj);
5518 
5519 	if (!attribute->store)
5520 		return -EIO;
5521 
5522 	err = attribute->store(s, buf, len);
5523 	return err;
5524 }
5525 
5526 static void kmem_cache_release(struct kobject *k)
5527 {
5528 	slab_kmem_cache_release(to_slab(k));
5529 }
5530 
5531 static const struct sysfs_ops slab_sysfs_ops = {
5532 	.show = slab_attr_show,
5533 	.store = slab_attr_store,
5534 };
5535 
5536 static struct kobj_type slab_ktype = {
5537 	.sysfs_ops = &slab_sysfs_ops,
5538 	.release = kmem_cache_release,
5539 };
5540 
5541 static struct kset *slab_kset;
5542 
5543 static inline struct kset *cache_kset(struct kmem_cache *s)
5544 {
5545 	return slab_kset;
5546 }
5547 
5548 #define ID_STR_LENGTH 64
5549 
5550 /* Create a unique string id for a slab cache:
5551  *
5552  * Format	:[flags-]size
5553  */
5554 static char *create_unique_id(struct kmem_cache *s)
5555 {
5556 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5557 	char *p = name;
5558 
5559 	BUG_ON(!name);
5560 
5561 	*p++ = ':';
5562 	/*
5563 	 * First flags affecting slabcache operations. We will only
5564 	 * get here for aliasable slabs so we do not need to support
5565 	 * too many flags. The flags here must cover all flags that
5566 	 * are matched during merging to guarantee that the id is
5567 	 * unique.
5568 	 */
5569 	if (s->flags & SLAB_CACHE_DMA)
5570 		*p++ = 'd';
5571 	if (s->flags & SLAB_CACHE_DMA32)
5572 		*p++ = 'D';
5573 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5574 		*p++ = 'a';
5575 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5576 		*p++ = 'F';
5577 	if (s->flags & SLAB_ACCOUNT)
5578 		*p++ = 'A';
5579 	if (p != name + 1)
5580 		*p++ = '-';
5581 	p += sprintf(p, "%07u", s->size);
5582 
5583 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5584 	return name;
5585 }
5586 
5587 static int sysfs_slab_add(struct kmem_cache *s)
5588 {
5589 	int err;
5590 	const char *name;
5591 	struct kset *kset = cache_kset(s);
5592 	int unmergeable = slab_unmergeable(s);
5593 
5594 	if (!kset) {
5595 		kobject_init(&s->kobj, &slab_ktype);
5596 		return 0;
5597 	}
5598 
5599 	if (!unmergeable && disable_higher_order_debug &&
5600 			(slub_debug & DEBUG_METADATA_FLAGS))
5601 		unmergeable = 1;
5602 
5603 	if (unmergeable) {
5604 		/*
5605 		 * Slabcache can never be merged so we can use the name proper.
5606 		 * This is typically the case for debug situations. In that
5607 		 * case we can catch duplicate names easily.
5608 		 */
5609 		sysfs_remove_link(&slab_kset->kobj, s->name);
5610 		name = s->name;
5611 	} else {
5612 		/*
5613 		 * Create a unique name for the slab as a target
5614 		 * for the symlinks.
5615 		 */
5616 		name = create_unique_id(s);
5617 	}
5618 
5619 	s->kobj.kset = kset;
5620 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5621 	if (err)
5622 		goto out;
5623 
5624 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5625 	if (err)
5626 		goto out_del_kobj;
5627 
5628 	if (!unmergeable) {
5629 		/* Setup first alias */
5630 		sysfs_slab_alias(s, s->name);
5631 	}
5632 out:
5633 	if (!unmergeable)
5634 		kfree(name);
5635 	return err;
5636 out_del_kobj:
5637 	kobject_del(&s->kobj);
5638 	goto out;
5639 }
5640 
5641 void sysfs_slab_unlink(struct kmem_cache *s)
5642 {
5643 	if (slab_state >= FULL)
5644 		kobject_del(&s->kobj);
5645 }
5646 
5647 void sysfs_slab_release(struct kmem_cache *s)
5648 {
5649 	if (slab_state >= FULL)
5650 		kobject_put(&s->kobj);
5651 }
5652 
5653 /*
5654  * Need to buffer aliases during bootup until sysfs becomes
5655  * available lest we lose that information.
5656  */
5657 struct saved_alias {
5658 	struct kmem_cache *s;
5659 	const char *name;
5660 	struct saved_alias *next;
5661 };
5662 
5663 static struct saved_alias *alias_list;
5664 
5665 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5666 {
5667 	struct saved_alias *al;
5668 
5669 	if (slab_state == FULL) {
5670 		/*
5671 		 * If we have a leftover link then remove it.
5672 		 */
5673 		sysfs_remove_link(&slab_kset->kobj, name);
5674 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5675 	}
5676 
5677 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5678 	if (!al)
5679 		return -ENOMEM;
5680 
5681 	al->s = s;
5682 	al->name = name;
5683 	al->next = alias_list;
5684 	alias_list = al;
5685 	return 0;
5686 }
5687 
5688 static int __init slab_sysfs_init(void)
5689 {
5690 	struct kmem_cache *s;
5691 	int err;
5692 
5693 	mutex_lock(&slab_mutex);
5694 
5695 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5696 	if (!slab_kset) {
5697 		mutex_unlock(&slab_mutex);
5698 		pr_err("Cannot register slab subsystem.\n");
5699 		return -ENOSYS;
5700 	}
5701 
5702 	slab_state = FULL;
5703 
5704 	list_for_each_entry(s, &slab_caches, list) {
5705 		err = sysfs_slab_add(s);
5706 		if (err)
5707 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5708 			       s->name);
5709 	}
5710 
5711 	while (alias_list) {
5712 		struct saved_alias *al = alias_list;
5713 
5714 		alias_list = alias_list->next;
5715 		err = sysfs_slab_alias(al->s, al->name);
5716 		if (err)
5717 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5718 			       al->name);
5719 		kfree(al);
5720 	}
5721 
5722 	mutex_unlock(&slab_mutex);
5723 	return 0;
5724 }
5725 
5726 __initcall(slab_sysfs_init);
5727 #endif /* CONFIG_SYSFS */
5728 
5729 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
5730 static int slab_debugfs_show(struct seq_file *seq, void *v)
5731 {
5732 
5733 	struct location *l;
5734 	unsigned int idx = *(unsigned int *)v;
5735 	struct loc_track *t = seq->private;
5736 
5737 	if (idx < t->count) {
5738 		l = &t->loc[idx];
5739 
5740 		seq_printf(seq, "%7ld ", l->count);
5741 
5742 		if (l->addr)
5743 			seq_printf(seq, "%pS", (void *)l->addr);
5744 		else
5745 			seq_puts(seq, "<not-available>");
5746 
5747 		if (l->sum_time != l->min_time) {
5748 			seq_printf(seq, " age=%ld/%llu/%ld",
5749 				l->min_time, div_u64(l->sum_time, l->count),
5750 				l->max_time);
5751 		} else
5752 			seq_printf(seq, " age=%ld", l->min_time);
5753 
5754 		if (l->min_pid != l->max_pid)
5755 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
5756 		else
5757 			seq_printf(seq, " pid=%ld",
5758 				l->min_pid);
5759 
5760 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
5761 			seq_printf(seq, " cpus=%*pbl",
5762 				 cpumask_pr_args(to_cpumask(l->cpus)));
5763 
5764 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
5765 			seq_printf(seq, " nodes=%*pbl",
5766 				 nodemask_pr_args(&l->nodes));
5767 
5768 		seq_puts(seq, "\n");
5769 	}
5770 
5771 	if (!idx && !t->count)
5772 		seq_puts(seq, "No data\n");
5773 
5774 	return 0;
5775 }
5776 
5777 static void slab_debugfs_stop(struct seq_file *seq, void *v)
5778 {
5779 }
5780 
5781 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
5782 {
5783 	struct loc_track *t = seq->private;
5784 
5785 	v = ppos;
5786 	++*ppos;
5787 	if (*ppos <= t->count)
5788 		return v;
5789 
5790 	return NULL;
5791 }
5792 
5793 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
5794 {
5795 	return ppos;
5796 }
5797 
5798 static const struct seq_operations slab_debugfs_sops = {
5799 	.start  = slab_debugfs_start,
5800 	.next   = slab_debugfs_next,
5801 	.stop   = slab_debugfs_stop,
5802 	.show   = slab_debugfs_show,
5803 };
5804 
5805 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
5806 {
5807 
5808 	struct kmem_cache_node *n;
5809 	enum track_item alloc;
5810 	int node;
5811 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
5812 						sizeof(struct loc_track));
5813 	struct kmem_cache *s = file_inode(filep)->i_private;
5814 
5815 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
5816 		alloc = TRACK_ALLOC;
5817 	else
5818 		alloc = TRACK_FREE;
5819 
5820 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL))
5821 		return -ENOMEM;
5822 
5823 	/* Push back cpu slabs */
5824 	flush_all(s);
5825 
5826 	for_each_kmem_cache_node(s, node, n) {
5827 		unsigned long flags;
5828 		struct page *page;
5829 
5830 		if (!atomic_long_read(&n->nr_slabs))
5831 			continue;
5832 
5833 		spin_lock_irqsave(&n->list_lock, flags);
5834 		list_for_each_entry(page, &n->partial, slab_list)
5835 			process_slab(t, s, page, alloc);
5836 		list_for_each_entry(page, &n->full, slab_list)
5837 			process_slab(t, s, page, alloc);
5838 		spin_unlock_irqrestore(&n->list_lock, flags);
5839 	}
5840 
5841 	return 0;
5842 }
5843 
5844 static int slab_debug_trace_release(struct inode *inode, struct file *file)
5845 {
5846 	struct seq_file *seq = file->private_data;
5847 	struct loc_track *t = seq->private;
5848 
5849 	free_loc_track(t);
5850 	return seq_release_private(inode, file);
5851 }
5852 
5853 static const struct file_operations slab_debugfs_fops = {
5854 	.open    = slab_debug_trace_open,
5855 	.read    = seq_read,
5856 	.llseek  = seq_lseek,
5857 	.release = slab_debug_trace_release,
5858 };
5859 
5860 static void debugfs_slab_add(struct kmem_cache *s)
5861 {
5862 	struct dentry *slab_cache_dir;
5863 
5864 	if (unlikely(!slab_debugfs_root))
5865 		return;
5866 
5867 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
5868 
5869 	debugfs_create_file("alloc_traces", 0400,
5870 		slab_cache_dir, s, &slab_debugfs_fops);
5871 
5872 	debugfs_create_file("free_traces", 0400,
5873 		slab_cache_dir, s, &slab_debugfs_fops);
5874 }
5875 
5876 void debugfs_slab_release(struct kmem_cache *s)
5877 {
5878 	debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
5879 }
5880 
5881 static int __init slab_debugfs_init(void)
5882 {
5883 	struct kmem_cache *s;
5884 
5885 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
5886 
5887 	list_for_each_entry(s, &slab_caches, list)
5888 		if (s->flags & SLAB_STORE_USER)
5889 			debugfs_slab_add(s);
5890 
5891 	return 0;
5892 
5893 }
5894 __initcall(slab_debugfs_init);
5895 #endif
5896 /*
5897  * The /proc/slabinfo ABI
5898  */
5899 #ifdef CONFIG_SLUB_DEBUG
5900 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5901 {
5902 	unsigned long nr_slabs = 0;
5903 	unsigned long nr_objs = 0;
5904 	unsigned long nr_free = 0;
5905 	int node;
5906 	struct kmem_cache_node *n;
5907 
5908 	for_each_kmem_cache_node(s, node, n) {
5909 		nr_slabs += node_nr_slabs(n);
5910 		nr_objs += node_nr_objs(n);
5911 		nr_free += count_partial(n, count_free);
5912 	}
5913 
5914 	sinfo->active_objs = nr_objs - nr_free;
5915 	sinfo->num_objs = nr_objs;
5916 	sinfo->active_slabs = nr_slabs;
5917 	sinfo->num_slabs = nr_slabs;
5918 	sinfo->objects_per_slab = oo_objects(s->oo);
5919 	sinfo->cache_order = oo_order(s->oo);
5920 }
5921 
5922 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5923 {
5924 }
5925 
5926 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5927 		       size_t count, loff_t *ppos)
5928 {
5929 	return -EIO;
5930 }
5931 #endif /* CONFIG_SLUB_DEBUG */
5932