1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/kfence.h> 32 #include <linux/memory.h> 33 #include <linux/math64.h> 34 #include <linux/fault-inject.h> 35 #include <linux/stacktrace.h> 36 #include <linux/prefetch.h> 37 #include <linux/memcontrol.h> 38 #include <linux/random.h> 39 #include <kunit/test.h> 40 41 #include <linux/debugfs.h> 42 #include <trace/events/kmem.h> 43 44 #include "internal.h" 45 46 /* 47 * Lock order: 48 * 1. slab_mutex (Global Mutex) 49 * 2. node->list_lock 50 * 3. slab_lock(page) (Only on some arches and for debugging) 51 * 52 * slab_mutex 53 * 54 * The role of the slab_mutex is to protect the list of all the slabs 55 * and to synchronize major metadata changes to slab cache structures. 56 * 57 * The slab_lock is only used for debugging and on arches that do not 58 * have the ability to do a cmpxchg_double. It only protects: 59 * A. page->freelist -> List of object free in a page 60 * B. page->inuse -> Number of objects in use 61 * C. page->objects -> Number of objects in page 62 * D. page->frozen -> frozen state 63 * 64 * If a slab is frozen then it is exempt from list management. It is not 65 * on any list except per cpu partial list. The processor that froze the 66 * slab is the one who can perform list operations on the page. Other 67 * processors may put objects onto the freelist but the processor that 68 * froze the slab is the only one that can retrieve the objects from the 69 * page's freelist. 70 * 71 * The list_lock protects the partial and full list on each node and 72 * the partial slab counter. If taken then no new slabs may be added or 73 * removed from the lists nor make the number of partial slabs be modified. 74 * (Note that the total number of slabs is an atomic value that may be 75 * modified without taking the list lock). 76 * 77 * The list_lock is a centralized lock and thus we avoid taking it as 78 * much as possible. As long as SLUB does not have to handle partial 79 * slabs, operations can continue without any centralized lock. F.e. 80 * allocating a long series of objects that fill up slabs does not require 81 * the list lock. 82 * Interrupts are disabled during allocation and deallocation in order to 83 * make the slab allocator safe to use in the context of an irq. In addition 84 * interrupts are disabled to ensure that the processor does not change 85 * while handling per_cpu slabs, due to kernel preemption. 86 * 87 * SLUB assigns one slab for allocation to each processor. 88 * Allocations only occur from these slabs called cpu slabs. 89 * 90 * Slabs with free elements are kept on a partial list and during regular 91 * operations no list for full slabs is used. If an object in a full slab is 92 * freed then the slab will show up again on the partial lists. 93 * We track full slabs for debugging purposes though because otherwise we 94 * cannot scan all objects. 95 * 96 * Slabs are freed when they become empty. Teardown and setup is 97 * minimal so we rely on the page allocators per cpu caches for 98 * fast frees and allocs. 99 * 100 * page->frozen The slab is frozen and exempt from list processing. 101 * This means that the slab is dedicated to a purpose 102 * such as satisfying allocations for a specific 103 * processor. Objects may be freed in the slab while 104 * it is frozen but slab_free will then skip the usual 105 * list operations. It is up to the processor holding 106 * the slab to integrate the slab into the slab lists 107 * when the slab is no longer needed. 108 * 109 * One use of this flag is to mark slabs that are 110 * used for allocations. Then such a slab becomes a cpu 111 * slab. The cpu slab may be equipped with an additional 112 * freelist that allows lockless access to 113 * free objects in addition to the regular freelist 114 * that requires the slab lock. 115 * 116 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 117 * options set. This moves slab handling out of 118 * the fast path and disables lockless freelists. 119 */ 120 121 #ifdef CONFIG_SLUB_DEBUG 122 #ifdef CONFIG_SLUB_DEBUG_ON 123 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 124 #else 125 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 126 #endif 127 #endif /* CONFIG_SLUB_DEBUG */ 128 129 static inline bool kmem_cache_debug(struct kmem_cache *s) 130 { 131 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 132 } 133 134 void *fixup_red_left(struct kmem_cache *s, void *p) 135 { 136 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 137 p += s->red_left_pad; 138 139 return p; 140 } 141 142 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 143 { 144 #ifdef CONFIG_SLUB_CPU_PARTIAL 145 return !kmem_cache_debug(s); 146 #else 147 return false; 148 #endif 149 } 150 151 /* 152 * Issues still to be resolved: 153 * 154 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 155 * 156 * - Variable sizing of the per node arrays 157 */ 158 159 /* Enable to log cmpxchg failures */ 160 #undef SLUB_DEBUG_CMPXCHG 161 162 /* 163 * Minimum number of partial slabs. These will be left on the partial 164 * lists even if they are empty. kmem_cache_shrink may reclaim them. 165 */ 166 #define MIN_PARTIAL 5 167 168 /* 169 * Maximum number of desirable partial slabs. 170 * The existence of more partial slabs makes kmem_cache_shrink 171 * sort the partial list by the number of objects in use. 172 */ 173 #define MAX_PARTIAL 10 174 175 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 176 SLAB_POISON | SLAB_STORE_USER) 177 178 /* 179 * These debug flags cannot use CMPXCHG because there might be consistency 180 * issues when checking or reading debug information 181 */ 182 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 183 SLAB_TRACE) 184 185 186 /* 187 * Debugging flags that require metadata to be stored in the slab. These get 188 * disabled when slub_debug=O is used and a cache's min order increases with 189 * metadata. 190 */ 191 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 192 193 #define OO_SHIFT 16 194 #define OO_MASK ((1 << OO_SHIFT) - 1) 195 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 196 197 /* Internal SLUB flags */ 198 /* Poison object */ 199 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 200 /* Use cmpxchg_double */ 201 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 202 203 /* 204 * Tracking user of a slab. 205 */ 206 #define TRACK_ADDRS_COUNT 16 207 struct track { 208 unsigned long addr; /* Called from address */ 209 #ifdef CONFIG_STACKTRACE 210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 211 #endif 212 int cpu; /* Was running on cpu */ 213 int pid; /* Pid context */ 214 unsigned long when; /* When did the operation occur */ 215 }; 216 217 enum track_item { TRACK_ALLOC, TRACK_FREE }; 218 219 #ifdef CONFIG_SYSFS 220 static int sysfs_slab_add(struct kmem_cache *); 221 static int sysfs_slab_alias(struct kmem_cache *, const char *); 222 #else 223 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 224 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 225 { return 0; } 226 #endif 227 228 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 229 static void debugfs_slab_add(struct kmem_cache *); 230 #else 231 static inline void debugfs_slab_add(struct kmem_cache *s) { } 232 #endif 233 234 static inline void stat(const struct kmem_cache *s, enum stat_item si) 235 { 236 #ifdef CONFIG_SLUB_STATS 237 /* 238 * The rmw is racy on a preemptible kernel but this is acceptable, so 239 * avoid this_cpu_add()'s irq-disable overhead. 240 */ 241 raw_cpu_inc(s->cpu_slab->stat[si]); 242 #endif 243 } 244 245 /* 246 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 247 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 248 * differ during memory hotplug/hotremove operations. 249 * Protected by slab_mutex. 250 */ 251 static nodemask_t slab_nodes; 252 253 /******************************************************************** 254 * Core slab cache functions 255 *******************************************************************/ 256 257 /* 258 * Returns freelist pointer (ptr). With hardening, this is obfuscated 259 * with an XOR of the address where the pointer is held and a per-cache 260 * random number. 261 */ 262 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 263 unsigned long ptr_addr) 264 { 265 #ifdef CONFIG_SLAB_FREELIST_HARDENED 266 /* 267 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. 268 * Normally, this doesn't cause any issues, as both set_freepointer() 269 * and get_freepointer() are called with a pointer with the same tag. 270 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 271 * example, when __free_slub() iterates over objects in a cache, it 272 * passes untagged pointers to check_object(). check_object() in turns 273 * calls get_freepointer() with an untagged pointer, which causes the 274 * freepointer to be restored incorrectly. 275 */ 276 return (void *)((unsigned long)ptr ^ s->random ^ 277 swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); 278 #else 279 return ptr; 280 #endif 281 } 282 283 /* Returns the freelist pointer recorded at location ptr_addr. */ 284 static inline void *freelist_dereference(const struct kmem_cache *s, 285 void *ptr_addr) 286 { 287 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 288 (unsigned long)ptr_addr); 289 } 290 291 static inline void *get_freepointer(struct kmem_cache *s, void *object) 292 { 293 object = kasan_reset_tag(object); 294 return freelist_dereference(s, object + s->offset); 295 } 296 297 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 298 { 299 prefetch(object + s->offset); 300 } 301 302 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 303 { 304 unsigned long freepointer_addr; 305 void *p; 306 307 if (!debug_pagealloc_enabled_static()) 308 return get_freepointer(s, object); 309 310 object = kasan_reset_tag(object); 311 freepointer_addr = (unsigned long)object + s->offset; 312 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); 313 return freelist_ptr(s, p, freepointer_addr); 314 } 315 316 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 317 { 318 unsigned long freeptr_addr = (unsigned long)object + s->offset; 319 320 #ifdef CONFIG_SLAB_FREELIST_HARDENED 321 BUG_ON(object == fp); /* naive detection of double free or corruption */ 322 #endif 323 324 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 325 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 326 } 327 328 /* Loop over all objects in a slab */ 329 #define for_each_object(__p, __s, __addr, __objects) \ 330 for (__p = fixup_red_left(__s, __addr); \ 331 __p < (__addr) + (__objects) * (__s)->size; \ 332 __p += (__s)->size) 333 334 static inline unsigned int order_objects(unsigned int order, unsigned int size) 335 { 336 return ((unsigned int)PAGE_SIZE << order) / size; 337 } 338 339 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 340 unsigned int size) 341 { 342 struct kmem_cache_order_objects x = { 343 (order << OO_SHIFT) + order_objects(order, size) 344 }; 345 346 return x; 347 } 348 349 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 350 { 351 return x.x >> OO_SHIFT; 352 } 353 354 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 355 { 356 return x.x & OO_MASK; 357 } 358 359 /* 360 * Per slab locking using the pagelock 361 */ 362 static __always_inline void slab_lock(struct page *page) 363 { 364 VM_BUG_ON_PAGE(PageTail(page), page); 365 bit_spin_lock(PG_locked, &page->flags); 366 } 367 368 static __always_inline void slab_unlock(struct page *page) 369 { 370 VM_BUG_ON_PAGE(PageTail(page), page); 371 __bit_spin_unlock(PG_locked, &page->flags); 372 } 373 374 /* Interrupts must be disabled (for the fallback code to work right) */ 375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 376 void *freelist_old, unsigned long counters_old, 377 void *freelist_new, unsigned long counters_new, 378 const char *n) 379 { 380 VM_BUG_ON(!irqs_disabled()); 381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 383 if (s->flags & __CMPXCHG_DOUBLE) { 384 if (cmpxchg_double(&page->freelist, &page->counters, 385 freelist_old, counters_old, 386 freelist_new, counters_new)) 387 return true; 388 } else 389 #endif 390 { 391 slab_lock(page); 392 if (page->freelist == freelist_old && 393 page->counters == counters_old) { 394 page->freelist = freelist_new; 395 page->counters = counters_new; 396 slab_unlock(page); 397 return true; 398 } 399 slab_unlock(page); 400 } 401 402 cpu_relax(); 403 stat(s, CMPXCHG_DOUBLE_FAIL); 404 405 #ifdef SLUB_DEBUG_CMPXCHG 406 pr_info("%s %s: cmpxchg double redo ", n, s->name); 407 #endif 408 409 return false; 410 } 411 412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 413 void *freelist_old, unsigned long counters_old, 414 void *freelist_new, unsigned long counters_new, 415 const char *n) 416 { 417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 419 if (s->flags & __CMPXCHG_DOUBLE) { 420 if (cmpxchg_double(&page->freelist, &page->counters, 421 freelist_old, counters_old, 422 freelist_new, counters_new)) 423 return true; 424 } else 425 #endif 426 { 427 unsigned long flags; 428 429 local_irq_save(flags); 430 slab_lock(page); 431 if (page->freelist == freelist_old && 432 page->counters == counters_old) { 433 page->freelist = freelist_new; 434 page->counters = counters_new; 435 slab_unlock(page); 436 local_irq_restore(flags); 437 return true; 438 } 439 slab_unlock(page); 440 local_irq_restore(flags); 441 } 442 443 cpu_relax(); 444 stat(s, CMPXCHG_DOUBLE_FAIL); 445 446 #ifdef SLUB_DEBUG_CMPXCHG 447 pr_info("%s %s: cmpxchg double redo ", n, s->name); 448 #endif 449 450 return false; 451 } 452 453 #ifdef CONFIG_SLUB_DEBUG 454 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 455 static DEFINE_SPINLOCK(object_map_lock); 456 457 #if IS_ENABLED(CONFIG_KUNIT) 458 static bool slab_add_kunit_errors(void) 459 { 460 struct kunit_resource *resource; 461 462 if (likely(!current->kunit_test)) 463 return false; 464 465 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 466 if (!resource) 467 return false; 468 469 (*(int *)resource->data)++; 470 kunit_put_resource(resource); 471 return true; 472 } 473 #else 474 static inline bool slab_add_kunit_errors(void) { return false; } 475 #endif 476 477 /* 478 * Determine a map of object in use on a page. 479 * 480 * Node listlock must be held to guarantee that the page does 481 * not vanish from under us. 482 */ 483 static unsigned long *get_map(struct kmem_cache *s, struct page *page) 484 __acquires(&object_map_lock) 485 { 486 void *p; 487 void *addr = page_address(page); 488 489 VM_BUG_ON(!irqs_disabled()); 490 491 spin_lock(&object_map_lock); 492 493 bitmap_zero(object_map, page->objects); 494 495 for (p = page->freelist; p; p = get_freepointer(s, p)) 496 set_bit(__obj_to_index(s, addr, p), object_map); 497 498 return object_map; 499 } 500 501 static void put_map(unsigned long *map) __releases(&object_map_lock) 502 { 503 VM_BUG_ON(map != object_map); 504 spin_unlock(&object_map_lock); 505 } 506 507 static inline unsigned int size_from_object(struct kmem_cache *s) 508 { 509 if (s->flags & SLAB_RED_ZONE) 510 return s->size - s->red_left_pad; 511 512 return s->size; 513 } 514 515 static inline void *restore_red_left(struct kmem_cache *s, void *p) 516 { 517 if (s->flags & SLAB_RED_ZONE) 518 p -= s->red_left_pad; 519 520 return p; 521 } 522 523 /* 524 * Debug settings: 525 */ 526 #if defined(CONFIG_SLUB_DEBUG_ON) 527 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 528 #else 529 static slab_flags_t slub_debug; 530 #endif 531 532 static char *slub_debug_string; 533 static int disable_higher_order_debug; 534 535 /* 536 * slub is about to manipulate internal object metadata. This memory lies 537 * outside the range of the allocated object, so accessing it would normally 538 * be reported by kasan as a bounds error. metadata_access_enable() is used 539 * to tell kasan that these accesses are OK. 540 */ 541 static inline void metadata_access_enable(void) 542 { 543 kasan_disable_current(); 544 } 545 546 static inline void metadata_access_disable(void) 547 { 548 kasan_enable_current(); 549 } 550 551 /* 552 * Object debugging 553 */ 554 555 /* Verify that a pointer has an address that is valid within a slab page */ 556 static inline int check_valid_pointer(struct kmem_cache *s, 557 struct page *page, void *object) 558 { 559 void *base; 560 561 if (!object) 562 return 1; 563 564 base = page_address(page); 565 object = kasan_reset_tag(object); 566 object = restore_red_left(s, object); 567 if (object < base || object >= base + page->objects * s->size || 568 (object - base) % s->size) { 569 return 0; 570 } 571 572 return 1; 573 } 574 575 static void print_section(char *level, char *text, u8 *addr, 576 unsigned int length) 577 { 578 metadata_access_enable(); 579 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS, 580 16, 1, addr, length, 1); 581 metadata_access_disable(); 582 } 583 584 /* 585 * See comment in calculate_sizes(). 586 */ 587 static inline bool freeptr_outside_object(struct kmem_cache *s) 588 { 589 return s->offset >= s->inuse; 590 } 591 592 /* 593 * Return offset of the end of info block which is inuse + free pointer if 594 * not overlapping with object. 595 */ 596 static inline unsigned int get_info_end(struct kmem_cache *s) 597 { 598 if (freeptr_outside_object(s)) 599 return s->inuse + sizeof(void *); 600 else 601 return s->inuse; 602 } 603 604 static struct track *get_track(struct kmem_cache *s, void *object, 605 enum track_item alloc) 606 { 607 struct track *p; 608 609 p = object + get_info_end(s); 610 611 return kasan_reset_tag(p + alloc); 612 } 613 614 static void set_track(struct kmem_cache *s, void *object, 615 enum track_item alloc, unsigned long addr) 616 { 617 struct track *p = get_track(s, object, alloc); 618 619 if (addr) { 620 #ifdef CONFIG_STACKTRACE 621 unsigned int nr_entries; 622 623 metadata_access_enable(); 624 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs), 625 TRACK_ADDRS_COUNT, 3); 626 metadata_access_disable(); 627 628 if (nr_entries < TRACK_ADDRS_COUNT) 629 p->addrs[nr_entries] = 0; 630 #endif 631 p->addr = addr; 632 p->cpu = smp_processor_id(); 633 p->pid = current->pid; 634 p->when = jiffies; 635 } else { 636 memset(p, 0, sizeof(struct track)); 637 } 638 } 639 640 static void init_tracking(struct kmem_cache *s, void *object) 641 { 642 if (!(s->flags & SLAB_STORE_USER)) 643 return; 644 645 set_track(s, object, TRACK_FREE, 0UL); 646 set_track(s, object, TRACK_ALLOC, 0UL); 647 } 648 649 static void print_track(const char *s, struct track *t, unsigned long pr_time) 650 { 651 if (!t->addr) 652 return; 653 654 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 655 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 656 #ifdef CONFIG_STACKTRACE 657 { 658 int i; 659 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 660 if (t->addrs[i]) 661 pr_err("\t%pS\n", (void *)t->addrs[i]); 662 else 663 break; 664 } 665 #endif 666 } 667 668 void print_tracking(struct kmem_cache *s, void *object) 669 { 670 unsigned long pr_time = jiffies; 671 if (!(s->flags & SLAB_STORE_USER)) 672 return; 673 674 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 675 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 676 } 677 678 static void print_page_info(struct page *page) 679 { 680 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n", 681 page, page->objects, page->inuse, page->freelist, 682 page->flags, &page->flags); 683 684 } 685 686 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 687 { 688 struct va_format vaf; 689 va_list args; 690 691 va_start(args, fmt); 692 vaf.fmt = fmt; 693 vaf.va = &args; 694 pr_err("=============================================================================\n"); 695 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 696 pr_err("-----------------------------------------------------------------------------\n\n"); 697 va_end(args); 698 } 699 700 __printf(2, 3) 701 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 702 { 703 struct va_format vaf; 704 va_list args; 705 706 if (slab_add_kunit_errors()) 707 return; 708 709 va_start(args, fmt); 710 vaf.fmt = fmt; 711 vaf.va = &args; 712 pr_err("FIX %s: %pV\n", s->name, &vaf); 713 va_end(args); 714 } 715 716 static bool freelist_corrupted(struct kmem_cache *s, struct page *page, 717 void **freelist, void *nextfree) 718 { 719 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 720 !check_valid_pointer(s, page, nextfree) && freelist) { 721 object_err(s, page, *freelist, "Freechain corrupt"); 722 *freelist = NULL; 723 slab_fix(s, "Isolate corrupted freechain"); 724 return true; 725 } 726 727 return false; 728 } 729 730 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 731 { 732 unsigned int off; /* Offset of last byte */ 733 u8 *addr = page_address(page); 734 735 print_tracking(s, p); 736 737 print_page_info(page); 738 739 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 740 p, p - addr, get_freepointer(s, p)); 741 742 if (s->flags & SLAB_RED_ZONE) 743 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 744 s->red_left_pad); 745 else if (p > addr + 16) 746 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 747 748 print_section(KERN_ERR, "Object ", p, 749 min_t(unsigned int, s->object_size, PAGE_SIZE)); 750 if (s->flags & SLAB_RED_ZONE) 751 print_section(KERN_ERR, "Redzone ", p + s->object_size, 752 s->inuse - s->object_size); 753 754 off = get_info_end(s); 755 756 if (s->flags & SLAB_STORE_USER) 757 off += 2 * sizeof(struct track); 758 759 off += kasan_metadata_size(s); 760 761 if (off != size_from_object(s)) 762 /* Beginning of the filler is the free pointer */ 763 print_section(KERN_ERR, "Padding ", p + off, 764 size_from_object(s) - off); 765 766 dump_stack(); 767 } 768 769 void object_err(struct kmem_cache *s, struct page *page, 770 u8 *object, char *reason) 771 { 772 if (slab_add_kunit_errors()) 773 return; 774 775 slab_bug(s, "%s", reason); 776 print_trailer(s, page, object); 777 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 778 } 779 780 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 781 const char *fmt, ...) 782 { 783 va_list args; 784 char buf[100]; 785 786 if (slab_add_kunit_errors()) 787 return; 788 789 va_start(args, fmt); 790 vsnprintf(buf, sizeof(buf), fmt, args); 791 va_end(args); 792 slab_bug(s, "%s", buf); 793 print_page_info(page); 794 dump_stack(); 795 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 796 } 797 798 static void init_object(struct kmem_cache *s, void *object, u8 val) 799 { 800 u8 *p = kasan_reset_tag(object); 801 802 if (s->flags & SLAB_RED_ZONE) 803 memset(p - s->red_left_pad, val, s->red_left_pad); 804 805 if (s->flags & __OBJECT_POISON) { 806 memset(p, POISON_FREE, s->object_size - 1); 807 p[s->object_size - 1] = POISON_END; 808 } 809 810 if (s->flags & SLAB_RED_ZONE) 811 memset(p + s->object_size, val, s->inuse - s->object_size); 812 } 813 814 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 815 void *from, void *to) 816 { 817 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 818 memset(from, data, to - from); 819 } 820 821 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 822 u8 *object, char *what, 823 u8 *start, unsigned int value, unsigned int bytes) 824 { 825 u8 *fault; 826 u8 *end; 827 u8 *addr = page_address(page); 828 829 metadata_access_enable(); 830 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 831 metadata_access_disable(); 832 if (!fault) 833 return 1; 834 835 end = start + bytes; 836 while (end > fault && end[-1] == value) 837 end--; 838 839 if (slab_add_kunit_errors()) 840 goto skip_bug_print; 841 842 slab_bug(s, "%s overwritten", what); 843 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 844 fault, end - 1, fault - addr, 845 fault[0], value); 846 print_trailer(s, page, object); 847 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 848 849 skip_bug_print: 850 restore_bytes(s, what, value, fault, end); 851 return 0; 852 } 853 854 /* 855 * Object layout: 856 * 857 * object address 858 * Bytes of the object to be managed. 859 * If the freepointer may overlay the object then the free 860 * pointer is at the middle of the object. 861 * 862 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 863 * 0xa5 (POISON_END) 864 * 865 * object + s->object_size 866 * Padding to reach word boundary. This is also used for Redzoning. 867 * Padding is extended by another word if Redzoning is enabled and 868 * object_size == inuse. 869 * 870 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 871 * 0xcc (RED_ACTIVE) for objects in use. 872 * 873 * object + s->inuse 874 * Meta data starts here. 875 * 876 * A. Free pointer (if we cannot overwrite object on free) 877 * B. Tracking data for SLAB_STORE_USER 878 * C. Padding to reach required alignment boundary or at minimum 879 * one word if debugging is on to be able to detect writes 880 * before the word boundary. 881 * 882 * Padding is done using 0x5a (POISON_INUSE) 883 * 884 * object + s->size 885 * Nothing is used beyond s->size. 886 * 887 * If slabcaches are merged then the object_size and inuse boundaries are mostly 888 * ignored. And therefore no slab options that rely on these boundaries 889 * may be used with merged slabcaches. 890 */ 891 892 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 893 { 894 unsigned long off = get_info_end(s); /* The end of info */ 895 896 if (s->flags & SLAB_STORE_USER) 897 /* We also have user information there */ 898 off += 2 * sizeof(struct track); 899 900 off += kasan_metadata_size(s); 901 902 if (size_from_object(s) == off) 903 return 1; 904 905 return check_bytes_and_report(s, page, p, "Object padding", 906 p + off, POISON_INUSE, size_from_object(s) - off); 907 } 908 909 /* Check the pad bytes at the end of a slab page */ 910 static int slab_pad_check(struct kmem_cache *s, struct page *page) 911 { 912 u8 *start; 913 u8 *fault; 914 u8 *end; 915 u8 *pad; 916 int length; 917 int remainder; 918 919 if (!(s->flags & SLAB_POISON)) 920 return 1; 921 922 start = page_address(page); 923 length = page_size(page); 924 end = start + length; 925 remainder = length % s->size; 926 if (!remainder) 927 return 1; 928 929 pad = end - remainder; 930 metadata_access_enable(); 931 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 932 metadata_access_disable(); 933 if (!fault) 934 return 1; 935 while (end > fault && end[-1] == POISON_INUSE) 936 end--; 937 938 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu", 939 fault, end - 1, fault - start); 940 print_section(KERN_ERR, "Padding ", pad, remainder); 941 942 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 943 return 0; 944 } 945 946 static int check_object(struct kmem_cache *s, struct page *page, 947 void *object, u8 val) 948 { 949 u8 *p = object; 950 u8 *endobject = object + s->object_size; 951 952 if (s->flags & SLAB_RED_ZONE) { 953 if (!check_bytes_and_report(s, page, object, "Left Redzone", 954 object - s->red_left_pad, val, s->red_left_pad)) 955 return 0; 956 957 if (!check_bytes_and_report(s, page, object, "Right Redzone", 958 endobject, val, s->inuse - s->object_size)) 959 return 0; 960 } else { 961 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 962 check_bytes_and_report(s, page, p, "Alignment padding", 963 endobject, POISON_INUSE, 964 s->inuse - s->object_size); 965 } 966 } 967 968 if (s->flags & SLAB_POISON) { 969 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 970 (!check_bytes_and_report(s, page, p, "Poison", p, 971 POISON_FREE, s->object_size - 1) || 972 !check_bytes_and_report(s, page, p, "End Poison", 973 p + s->object_size - 1, POISON_END, 1))) 974 return 0; 975 /* 976 * check_pad_bytes cleans up on its own. 977 */ 978 check_pad_bytes(s, page, p); 979 } 980 981 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 982 /* 983 * Object and freepointer overlap. Cannot check 984 * freepointer while object is allocated. 985 */ 986 return 1; 987 988 /* Check free pointer validity */ 989 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 990 object_err(s, page, p, "Freepointer corrupt"); 991 /* 992 * No choice but to zap it and thus lose the remainder 993 * of the free objects in this slab. May cause 994 * another error because the object count is now wrong. 995 */ 996 set_freepointer(s, p, NULL); 997 return 0; 998 } 999 return 1; 1000 } 1001 1002 static int check_slab(struct kmem_cache *s, struct page *page) 1003 { 1004 int maxobj; 1005 1006 VM_BUG_ON(!irqs_disabled()); 1007 1008 if (!PageSlab(page)) { 1009 slab_err(s, page, "Not a valid slab page"); 1010 return 0; 1011 } 1012 1013 maxobj = order_objects(compound_order(page), s->size); 1014 if (page->objects > maxobj) { 1015 slab_err(s, page, "objects %u > max %u", 1016 page->objects, maxobj); 1017 return 0; 1018 } 1019 if (page->inuse > page->objects) { 1020 slab_err(s, page, "inuse %u > max %u", 1021 page->inuse, page->objects); 1022 return 0; 1023 } 1024 /* Slab_pad_check fixes things up after itself */ 1025 slab_pad_check(s, page); 1026 return 1; 1027 } 1028 1029 /* 1030 * Determine if a certain object on a page is on the freelist. Must hold the 1031 * slab lock to guarantee that the chains are in a consistent state. 1032 */ 1033 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 1034 { 1035 int nr = 0; 1036 void *fp; 1037 void *object = NULL; 1038 int max_objects; 1039 1040 fp = page->freelist; 1041 while (fp && nr <= page->objects) { 1042 if (fp == search) 1043 return 1; 1044 if (!check_valid_pointer(s, page, fp)) { 1045 if (object) { 1046 object_err(s, page, object, 1047 "Freechain corrupt"); 1048 set_freepointer(s, object, NULL); 1049 } else { 1050 slab_err(s, page, "Freepointer corrupt"); 1051 page->freelist = NULL; 1052 page->inuse = page->objects; 1053 slab_fix(s, "Freelist cleared"); 1054 return 0; 1055 } 1056 break; 1057 } 1058 object = fp; 1059 fp = get_freepointer(s, object); 1060 nr++; 1061 } 1062 1063 max_objects = order_objects(compound_order(page), s->size); 1064 if (max_objects > MAX_OBJS_PER_PAGE) 1065 max_objects = MAX_OBJS_PER_PAGE; 1066 1067 if (page->objects != max_objects) { 1068 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 1069 page->objects, max_objects); 1070 page->objects = max_objects; 1071 slab_fix(s, "Number of objects adjusted"); 1072 } 1073 if (page->inuse != page->objects - nr) { 1074 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 1075 page->inuse, page->objects - nr); 1076 page->inuse = page->objects - nr; 1077 slab_fix(s, "Object count adjusted"); 1078 } 1079 return search == NULL; 1080 } 1081 1082 static void trace(struct kmem_cache *s, struct page *page, void *object, 1083 int alloc) 1084 { 1085 if (s->flags & SLAB_TRACE) { 1086 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1087 s->name, 1088 alloc ? "alloc" : "free", 1089 object, page->inuse, 1090 page->freelist); 1091 1092 if (!alloc) 1093 print_section(KERN_INFO, "Object ", (void *)object, 1094 s->object_size); 1095 1096 dump_stack(); 1097 } 1098 } 1099 1100 /* 1101 * Tracking of fully allocated slabs for debugging purposes. 1102 */ 1103 static void add_full(struct kmem_cache *s, 1104 struct kmem_cache_node *n, struct page *page) 1105 { 1106 if (!(s->flags & SLAB_STORE_USER)) 1107 return; 1108 1109 lockdep_assert_held(&n->list_lock); 1110 list_add(&page->slab_list, &n->full); 1111 } 1112 1113 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1114 { 1115 if (!(s->flags & SLAB_STORE_USER)) 1116 return; 1117 1118 lockdep_assert_held(&n->list_lock); 1119 list_del(&page->slab_list); 1120 } 1121 1122 /* Tracking of the number of slabs for debugging purposes */ 1123 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1124 { 1125 struct kmem_cache_node *n = get_node(s, node); 1126 1127 return atomic_long_read(&n->nr_slabs); 1128 } 1129 1130 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1131 { 1132 return atomic_long_read(&n->nr_slabs); 1133 } 1134 1135 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1136 { 1137 struct kmem_cache_node *n = get_node(s, node); 1138 1139 /* 1140 * May be called early in order to allocate a slab for the 1141 * kmem_cache_node structure. Solve the chicken-egg 1142 * dilemma by deferring the increment of the count during 1143 * bootstrap (see early_kmem_cache_node_alloc). 1144 */ 1145 if (likely(n)) { 1146 atomic_long_inc(&n->nr_slabs); 1147 atomic_long_add(objects, &n->total_objects); 1148 } 1149 } 1150 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1151 { 1152 struct kmem_cache_node *n = get_node(s, node); 1153 1154 atomic_long_dec(&n->nr_slabs); 1155 atomic_long_sub(objects, &n->total_objects); 1156 } 1157 1158 /* Object debug checks for alloc/free paths */ 1159 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1160 void *object) 1161 { 1162 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1163 return; 1164 1165 init_object(s, object, SLUB_RED_INACTIVE); 1166 init_tracking(s, object); 1167 } 1168 1169 static 1170 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) 1171 { 1172 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1173 return; 1174 1175 metadata_access_enable(); 1176 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page)); 1177 metadata_access_disable(); 1178 } 1179 1180 static inline int alloc_consistency_checks(struct kmem_cache *s, 1181 struct page *page, void *object) 1182 { 1183 if (!check_slab(s, page)) 1184 return 0; 1185 1186 if (!check_valid_pointer(s, page, object)) { 1187 object_err(s, page, object, "Freelist Pointer check fails"); 1188 return 0; 1189 } 1190 1191 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1192 return 0; 1193 1194 return 1; 1195 } 1196 1197 static noinline int alloc_debug_processing(struct kmem_cache *s, 1198 struct page *page, 1199 void *object, unsigned long addr) 1200 { 1201 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1202 if (!alloc_consistency_checks(s, page, object)) 1203 goto bad; 1204 } 1205 1206 /* Success perform special debug activities for allocs */ 1207 if (s->flags & SLAB_STORE_USER) 1208 set_track(s, object, TRACK_ALLOC, addr); 1209 trace(s, page, object, 1); 1210 init_object(s, object, SLUB_RED_ACTIVE); 1211 return 1; 1212 1213 bad: 1214 if (PageSlab(page)) { 1215 /* 1216 * If this is a slab page then lets do the best we can 1217 * to avoid issues in the future. Marking all objects 1218 * as used avoids touching the remaining objects. 1219 */ 1220 slab_fix(s, "Marking all objects used"); 1221 page->inuse = page->objects; 1222 page->freelist = NULL; 1223 } 1224 return 0; 1225 } 1226 1227 static inline int free_consistency_checks(struct kmem_cache *s, 1228 struct page *page, void *object, unsigned long addr) 1229 { 1230 if (!check_valid_pointer(s, page, object)) { 1231 slab_err(s, page, "Invalid object pointer 0x%p", object); 1232 return 0; 1233 } 1234 1235 if (on_freelist(s, page, object)) { 1236 object_err(s, page, object, "Object already free"); 1237 return 0; 1238 } 1239 1240 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1241 return 0; 1242 1243 if (unlikely(s != page->slab_cache)) { 1244 if (!PageSlab(page)) { 1245 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1246 object); 1247 } else if (!page->slab_cache) { 1248 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1249 object); 1250 dump_stack(); 1251 } else 1252 object_err(s, page, object, 1253 "page slab pointer corrupt."); 1254 return 0; 1255 } 1256 return 1; 1257 } 1258 1259 /* Supports checking bulk free of a constructed freelist */ 1260 static noinline int free_debug_processing( 1261 struct kmem_cache *s, struct page *page, 1262 void *head, void *tail, int bulk_cnt, 1263 unsigned long addr) 1264 { 1265 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1266 void *object = head; 1267 int cnt = 0; 1268 unsigned long flags; 1269 int ret = 0; 1270 1271 spin_lock_irqsave(&n->list_lock, flags); 1272 slab_lock(page); 1273 1274 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1275 if (!check_slab(s, page)) 1276 goto out; 1277 } 1278 1279 next_object: 1280 cnt++; 1281 1282 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1283 if (!free_consistency_checks(s, page, object, addr)) 1284 goto out; 1285 } 1286 1287 if (s->flags & SLAB_STORE_USER) 1288 set_track(s, object, TRACK_FREE, addr); 1289 trace(s, page, object, 0); 1290 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1291 init_object(s, object, SLUB_RED_INACTIVE); 1292 1293 /* Reached end of constructed freelist yet? */ 1294 if (object != tail) { 1295 object = get_freepointer(s, object); 1296 goto next_object; 1297 } 1298 ret = 1; 1299 1300 out: 1301 if (cnt != bulk_cnt) 1302 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1303 bulk_cnt, cnt); 1304 1305 slab_unlock(page); 1306 spin_unlock_irqrestore(&n->list_lock, flags); 1307 if (!ret) 1308 slab_fix(s, "Object at 0x%p not freed", object); 1309 return ret; 1310 } 1311 1312 /* 1313 * Parse a block of slub_debug options. Blocks are delimited by ';' 1314 * 1315 * @str: start of block 1316 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1317 * @slabs: return start of list of slabs, or NULL when there's no list 1318 * @init: assume this is initial parsing and not per-kmem-create parsing 1319 * 1320 * returns the start of next block if there's any, or NULL 1321 */ 1322 static char * 1323 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1324 { 1325 bool higher_order_disable = false; 1326 1327 /* Skip any completely empty blocks */ 1328 while (*str && *str == ';') 1329 str++; 1330 1331 if (*str == ',') { 1332 /* 1333 * No options but restriction on slabs. This means full 1334 * debugging for slabs matching a pattern. 1335 */ 1336 *flags = DEBUG_DEFAULT_FLAGS; 1337 goto check_slabs; 1338 } 1339 *flags = 0; 1340 1341 /* Determine which debug features should be switched on */ 1342 for (; *str && *str != ',' && *str != ';'; str++) { 1343 switch (tolower(*str)) { 1344 case '-': 1345 *flags = 0; 1346 break; 1347 case 'f': 1348 *flags |= SLAB_CONSISTENCY_CHECKS; 1349 break; 1350 case 'z': 1351 *flags |= SLAB_RED_ZONE; 1352 break; 1353 case 'p': 1354 *flags |= SLAB_POISON; 1355 break; 1356 case 'u': 1357 *flags |= SLAB_STORE_USER; 1358 break; 1359 case 't': 1360 *flags |= SLAB_TRACE; 1361 break; 1362 case 'a': 1363 *flags |= SLAB_FAILSLAB; 1364 break; 1365 case 'o': 1366 /* 1367 * Avoid enabling debugging on caches if its minimum 1368 * order would increase as a result. 1369 */ 1370 higher_order_disable = true; 1371 break; 1372 default: 1373 if (init) 1374 pr_err("slub_debug option '%c' unknown. skipped\n", *str); 1375 } 1376 } 1377 check_slabs: 1378 if (*str == ',') 1379 *slabs = ++str; 1380 else 1381 *slabs = NULL; 1382 1383 /* Skip over the slab list */ 1384 while (*str && *str != ';') 1385 str++; 1386 1387 /* Skip any completely empty blocks */ 1388 while (*str && *str == ';') 1389 str++; 1390 1391 if (init && higher_order_disable) 1392 disable_higher_order_debug = 1; 1393 1394 if (*str) 1395 return str; 1396 else 1397 return NULL; 1398 } 1399 1400 static int __init setup_slub_debug(char *str) 1401 { 1402 slab_flags_t flags; 1403 char *saved_str; 1404 char *slab_list; 1405 bool global_slub_debug_changed = false; 1406 bool slab_list_specified = false; 1407 1408 slub_debug = DEBUG_DEFAULT_FLAGS; 1409 if (*str++ != '=' || !*str) 1410 /* 1411 * No options specified. Switch on full debugging. 1412 */ 1413 goto out; 1414 1415 saved_str = str; 1416 while (str) { 1417 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1418 1419 if (!slab_list) { 1420 slub_debug = flags; 1421 global_slub_debug_changed = true; 1422 } else { 1423 slab_list_specified = true; 1424 } 1425 } 1426 1427 /* 1428 * For backwards compatibility, a single list of flags with list of 1429 * slabs means debugging is only enabled for those slabs, so the global 1430 * slub_debug should be 0. We can extended that to multiple lists as 1431 * long as there is no option specifying flags without a slab list. 1432 */ 1433 if (slab_list_specified) { 1434 if (!global_slub_debug_changed) 1435 slub_debug = 0; 1436 slub_debug_string = saved_str; 1437 } 1438 out: 1439 if (slub_debug != 0 || slub_debug_string) 1440 static_branch_enable(&slub_debug_enabled); 1441 else 1442 static_branch_disable(&slub_debug_enabled); 1443 if ((static_branch_unlikely(&init_on_alloc) || 1444 static_branch_unlikely(&init_on_free)) && 1445 (slub_debug & SLAB_POISON)) 1446 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1447 return 1; 1448 } 1449 1450 __setup("slub_debug", setup_slub_debug); 1451 1452 /* 1453 * kmem_cache_flags - apply debugging options to the cache 1454 * @object_size: the size of an object without meta data 1455 * @flags: flags to set 1456 * @name: name of the cache 1457 * 1458 * Debug option(s) are applied to @flags. In addition to the debug 1459 * option(s), if a slab name (or multiple) is specified i.e. 1460 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1461 * then only the select slabs will receive the debug option(s). 1462 */ 1463 slab_flags_t kmem_cache_flags(unsigned int object_size, 1464 slab_flags_t flags, const char *name) 1465 { 1466 char *iter; 1467 size_t len; 1468 char *next_block; 1469 slab_flags_t block_flags; 1470 slab_flags_t slub_debug_local = slub_debug; 1471 1472 /* 1473 * If the slab cache is for debugging (e.g. kmemleak) then 1474 * don't store user (stack trace) information by default, 1475 * but let the user enable it via the command line below. 1476 */ 1477 if (flags & SLAB_NOLEAKTRACE) 1478 slub_debug_local &= ~SLAB_STORE_USER; 1479 1480 len = strlen(name); 1481 next_block = slub_debug_string; 1482 /* Go through all blocks of debug options, see if any matches our slab's name */ 1483 while (next_block) { 1484 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1485 if (!iter) 1486 continue; 1487 /* Found a block that has a slab list, search it */ 1488 while (*iter) { 1489 char *end, *glob; 1490 size_t cmplen; 1491 1492 end = strchrnul(iter, ','); 1493 if (next_block && next_block < end) 1494 end = next_block - 1; 1495 1496 glob = strnchr(iter, end - iter, '*'); 1497 if (glob) 1498 cmplen = glob - iter; 1499 else 1500 cmplen = max_t(size_t, len, (end - iter)); 1501 1502 if (!strncmp(name, iter, cmplen)) { 1503 flags |= block_flags; 1504 return flags; 1505 } 1506 1507 if (!*end || *end == ';') 1508 break; 1509 iter = end + 1; 1510 } 1511 } 1512 1513 return flags | slub_debug_local; 1514 } 1515 #else /* !CONFIG_SLUB_DEBUG */ 1516 static inline void setup_object_debug(struct kmem_cache *s, 1517 struct page *page, void *object) {} 1518 static inline 1519 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} 1520 1521 static inline int alloc_debug_processing(struct kmem_cache *s, 1522 struct page *page, void *object, unsigned long addr) { return 0; } 1523 1524 static inline int free_debug_processing( 1525 struct kmem_cache *s, struct page *page, 1526 void *head, void *tail, int bulk_cnt, 1527 unsigned long addr) { return 0; } 1528 1529 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1530 { return 1; } 1531 static inline int check_object(struct kmem_cache *s, struct page *page, 1532 void *object, u8 val) { return 1; } 1533 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1534 struct page *page) {} 1535 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1536 struct page *page) {} 1537 slab_flags_t kmem_cache_flags(unsigned int object_size, 1538 slab_flags_t flags, const char *name) 1539 { 1540 return flags; 1541 } 1542 #define slub_debug 0 1543 1544 #define disable_higher_order_debug 0 1545 1546 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1547 { return 0; } 1548 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1549 { return 0; } 1550 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1551 int objects) {} 1552 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1553 int objects) {} 1554 1555 static bool freelist_corrupted(struct kmem_cache *s, struct page *page, 1556 void **freelist, void *nextfree) 1557 { 1558 return false; 1559 } 1560 #endif /* CONFIG_SLUB_DEBUG */ 1561 1562 /* 1563 * Hooks for other subsystems that check memory allocations. In a typical 1564 * production configuration these hooks all should produce no code at all. 1565 */ 1566 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1567 { 1568 ptr = kasan_kmalloc_large(ptr, size, flags); 1569 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1570 kmemleak_alloc(ptr, size, 1, flags); 1571 return ptr; 1572 } 1573 1574 static __always_inline void kfree_hook(void *x) 1575 { 1576 kmemleak_free(x); 1577 kasan_kfree_large(x); 1578 } 1579 1580 static __always_inline bool slab_free_hook(struct kmem_cache *s, 1581 void *x, bool init) 1582 { 1583 kmemleak_free_recursive(x, s->flags); 1584 1585 /* 1586 * Trouble is that we may no longer disable interrupts in the fast path 1587 * So in order to make the debug calls that expect irqs to be 1588 * disabled we need to disable interrupts temporarily. 1589 */ 1590 #ifdef CONFIG_LOCKDEP 1591 { 1592 unsigned long flags; 1593 1594 local_irq_save(flags); 1595 debug_check_no_locks_freed(x, s->object_size); 1596 local_irq_restore(flags); 1597 } 1598 #endif 1599 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1600 debug_check_no_obj_freed(x, s->object_size); 1601 1602 /* Use KCSAN to help debug racy use-after-free. */ 1603 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 1604 __kcsan_check_access(x, s->object_size, 1605 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 1606 1607 /* 1608 * As memory initialization might be integrated into KASAN, 1609 * kasan_slab_free and initialization memset's must be 1610 * kept together to avoid discrepancies in behavior. 1611 * 1612 * The initialization memset's clear the object and the metadata, 1613 * but don't touch the SLAB redzone. 1614 */ 1615 if (init) { 1616 int rsize; 1617 1618 if (!kasan_has_integrated_init()) 1619 memset(kasan_reset_tag(x), 0, s->object_size); 1620 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 1621 memset((char *)kasan_reset_tag(x) + s->inuse, 0, 1622 s->size - s->inuse - rsize); 1623 } 1624 /* KASAN might put x into memory quarantine, delaying its reuse. */ 1625 return kasan_slab_free(s, x, init); 1626 } 1627 1628 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1629 void **head, void **tail) 1630 { 1631 1632 void *object; 1633 void *next = *head; 1634 void *old_tail = *tail ? *tail : *head; 1635 1636 if (is_kfence_address(next)) { 1637 slab_free_hook(s, next, false); 1638 return true; 1639 } 1640 1641 /* Head and tail of the reconstructed freelist */ 1642 *head = NULL; 1643 *tail = NULL; 1644 1645 do { 1646 object = next; 1647 next = get_freepointer(s, object); 1648 1649 /* If object's reuse doesn't have to be delayed */ 1650 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { 1651 /* Move object to the new freelist */ 1652 set_freepointer(s, object, *head); 1653 *head = object; 1654 if (!*tail) 1655 *tail = object; 1656 } 1657 } while (object != old_tail); 1658 1659 if (*head == *tail) 1660 *tail = NULL; 1661 1662 return *head != NULL; 1663 } 1664 1665 static void *setup_object(struct kmem_cache *s, struct page *page, 1666 void *object) 1667 { 1668 setup_object_debug(s, page, object); 1669 object = kasan_init_slab_obj(s, object); 1670 if (unlikely(s->ctor)) { 1671 kasan_unpoison_object_data(s, object); 1672 s->ctor(object); 1673 kasan_poison_object_data(s, object); 1674 } 1675 return object; 1676 } 1677 1678 /* 1679 * Slab allocation and freeing 1680 */ 1681 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1682 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1683 { 1684 struct page *page; 1685 unsigned int order = oo_order(oo); 1686 1687 if (node == NUMA_NO_NODE) 1688 page = alloc_pages(flags, order); 1689 else 1690 page = __alloc_pages_node(node, flags, order); 1691 1692 return page; 1693 } 1694 1695 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1696 /* Pre-initialize the random sequence cache */ 1697 static int init_cache_random_seq(struct kmem_cache *s) 1698 { 1699 unsigned int count = oo_objects(s->oo); 1700 int err; 1701 1702 /* Bailout if already initialised */ 1703 if (s->random_seq) 1704 return 0; 1705 1706 err = cache_random_seq_create(s, count, GFP_KERNEL); 1707 if (err) { 1708 pr_err("SLUB: Unable to initialize free list for %s\n", 1709 s->name); 1710 return err; 1711 } 1712 1713 /* Transform to an offset on the set of pages */ 1714 if (s->random_seq) { 1715 unsigned int i; 1716 1717 for (i = 0; i < count; i++) 1718 s->random_seq[i] *= s->size; 1719 } 1720 return 0; 1721 } 1722 1723 /* Initialize each random sequence freelist per cache */ 1724 static void __init init_freelist_randomization(void) 1725 { 1726 struct kmem_cache *s; 1727 1728 mutex_lock(&slab_mutex); 1729 1730 list_for_each_entry(s, &slab_caches, list) 1731 init_cache_random_seq(s); 1732 1733 mutex_unlock(&slab_mutex); 1734 } 1735 1736 /* Get the next entry on the pre-computed freelist randomized */ 1737 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1738 unsigned long *pos, void *start, 1739 unsigned long page_limit, 1740 unsigned long freelist_count) 1741 { 1742 unsigned int idx; 1743 1744 /* 1745 * If the target page allocation failed, the number of objects on the 1746 * page might be smaller than the usual size defined by the cache. 1747 */ 1748 do { 1749 idx = s->random_seq[*pos]; 1750 *pos += 1; 1751 if (*pos >= freelist_count) 1752 *pos = 0; 1753 } while (unlikely(idx >= page_limit)); 1754 1755 return (char *)start + idx; 1756 } 1757 1758 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1759 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1760 { 1761 void *start; 1762 void *cur; 1763 void *next; 1764 unsigned long idx, pos, page_limit, freelist_count; 1765 1766 if (page->objects < 2 || !s->random_seq) 1767 return false; 1768 1769 freelist_count = oo_objects(s->oo); 1770 pos = get_random_int() % freelist_count; 1771 1772 page_limit = page->objects * s->size; 1773 start = fixup_red_left(s, page_address(page)); 1774 1775 /* First entry is used as the base of the freelist */ 1776 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1777 freelist_count); 1778 cur = setup_object(s, page, cur); 1779 page->freelist = cur; 1780 1781 for (idx = 1; idx < page->objects; idx++) { 1782 next = next_freelist_entry(s, page, &pos, start, page_limit, 1783 freelist_count); 1784 next = setup_object(s, page, next); 1785 set_freepointer(s, cur, next); 1786 cur = next; 1787 } 1788 set_freepointer(s, cur, NULL); 1789 1790 return true; 1791 } 1792 #else 1793 static inline int init_cache_random_seq(struct kmem_cache *s) 1794 { 1795 return 0; 1796 } 1797 static inline void init_freelist_randomization(void) { } 1798 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1799 { 1800 return false; 1801 } 1802 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1803 1804 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1805 { 1806 struct page *page; 1807 struct kmem_cache_order_objects oo = s->oo; 1808 gfp_t alloc_gfp; 1809 void *start, *p, *next; 1810 int idx; 1811 bool shuffle; 1812 1813 flags &= gfp_allowed_mask; 1814 1815 if (gfpflags_allow_blocking(flags)) 1816 local_irq_enable(); 1817 1818 flags |= s->allocflags; 1819 1820 /* 1821 * Let the initial higher-order allocation fail under memory pressure 1822 * so we fall-back to the minimum order allocation. 1823 */ 1824 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1825 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1826 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1827 1828 page = alloc_slab_page(s, alloc_gfp, node, oo); 1829 if (unlikely(!page)) { 1830 oo = s->min; 1831 alloc_gfp = flags; 1832 /* 1833 * Allocation may have failed due to fragmentation. 1834 * Try a lower order alloc if possible 1835 */ 1836 page = alloc_slab_page(s, alloc_gfp, node, oo); 1837 if (unlikely(!page)) 1838 goto out; 1839 stat(s, ORDER_FALLBACK); 1840 } 1841 1842 page->objects = oo_objects(oo); 1843 1844 account_slab_page(page, oo_order(oo), s, flags); 1845 1846 page->slab_cache = s; 1847 __SetPageSlab(page); 1848 if (page_is_pfmemalloc(page)) 1849 SetPageSlabPfmemalloc(page); 1850 1851 kasan_poison_slab(page); 1852 1853 start = page_address(page); 1854 1855 setup_page_debug(s, page, start); 1856 1857 shuffle = shuffle_freelist(s, page); 1858 1859 if (!shuffle) { 1860 start = fixup_red_left(s, start); 1861 start = setup_object(s, page, start); 1862 page->freelist = start; 1863 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1864 next = p + s->size; 1865 next = setup_object(s, page, next); 1866 set_freepointer(s, p, next); 1867 p = next; 1868 } 1869 set_freepointer(s, p, NULL); 1870 } 1871 1872 page->inuse = page->objects; 1873 page->frozen = 1; 1874 1875 out: 1876 if (gfpflags_allow_blocking(flags)) 1877 local_irq_disable(); 1878 if (!page) 1879 return NULL; 1880 1881 inc_slabs_node(s, page_to_nid(page), page->objects); 1882 1883 return page; 1884 } 1885 1886 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1887 { 1888 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 1889 flags = kmalloc_fix_flags(flags); 1890 1891 return allocate_slab(s, 1892 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1893 } 1894 1895 static void __free_slab(struct kmem_cache *s, struct page *page) 1896 { 1897 int order = compound_order(page); 1898 int pages = 1 << order; 1899 1900 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 1901 void *p; 1902 1903 slab_pad_check(s, page); 1904 for_each_object(p, s, page_address(page), 1905 page->objects) 1906 check_object(s, page, p, SLUB_RED_INACTIVE); 1907 } 1908 1909 __ClearPageSlabPfmemalloc(page); 1910 __ClearPageSlab(page); 1911 /* In union with page->mapping where page allocator expects NULL */ 1912 page->slab_cache = NULL; 1913 if (current->reclaim_state) 1914 current->reclaim_state->reclaimed_slab += pages; 1915 unaccount_slab_page(page, order, s); 1916 __free_pages(page, order); 1917 } 1918 1919 static void rcu_free_slab(struct rcu_head *h) 1920 { 1921 struct page *page = container_of(h, struct page, rcu_head); 1922 1923 __free_slab(page->slab_cache, page); 1924 } 1925 1926 static void free_slab(struct kmem_cache *s, struct page *page) 1927 { 1928 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1929 call_rcu(&page->rcu_head, rcu_free_slab); 1930 } else 1931 __free_slab(s, page); 1932 } 1933 1934 static void discard_slab(struct kmem_cache *s, struct page *page) 1935 { 1936 dec_slabs_node(s, page_to_nid(page), page->objects); 1937 free_slab(s, page); 1938 } 1939 1940 /* 1941 * Management of partially allocated slabs. 1942 */ 1943 static inline void 1944 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1945 { 1946 n->nr_partial++; 1947 if (tail == DEACTIVATE_TO_TAIL) 1948 list_add_tail(&page->slab_list, &n->partial); 1949 else 1950 list_add(&page->slab_list, &n->partial); 1951 } 1952 1953 static inline void add_partial(struct kmem_cache_node *n, 1954 struct page *page, int tail) 1955 { 1956 lockdep_assert_held(&n->list_lock); 1957 __add_partial(n, page, tail); 1958 } 1959 1960 static inline void remove_partial(struct kmem_cache_node *n, 1961 struct page *page) 1962 { 1963 lockdep_assert_held(&n->list_lock); 1964 list_del(&page->slab_list); 1965 n->nr_partial--; 1966 } 1967 1968 /* 1969 * Remove slab from the partial list, freeze it and 1970 * return the pointer to the freelist. 1971 * 1972 * Returns a list of objects or NULL if it fails. 1973 */ 1974 static inline void *acquire_slab(struct kmem_cache *s, 1975 struct kmem_cache_node *n, struct page *page, 1976 int mode, int *objects) 1977 { 1978 void *freelist; 1979 unsigned long counters; 1980 struct page new; 1981 1982 lockdep_assert_held(&n->list_lock); 1983 1984 /* 1985 * Zap the freelist and set the frozen bit. 1986 * The old freelist is the list of objects for the 1987 * per cpu allocation list. 1988 */ 1989 freelist = page->freelist; 1990 counters = page->counters; 1991 new.counters = counters; 1992 *objects = new.objects - new.inuse; 1993 if (mode) { 1994 new.inuse = page->objects; 1995 new.freelist = NULL; 1996 } else { 1997 new.freelist = freelist; 1998 } 1999 2000 VM_BUG_ON(new.frozen); 2001 new.frozen = 1; 2002 2003 if (!__cmpxchg_double_slab(s, page, 2004 freelist, counters, 2005 new.freelist, new.counters, 2006 "acquire_slab")) 2007 return NULL; 2008 2009 remove_partial(n, page); 2010 WARN_ON(!freelist); 2011 return freelist; 2012 } 2013 2014 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 2015 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 2016 2017 /* 2018 * Try to allocate a partial slab from a specific node. 2019 */ 2020 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 2021 struct kmem_cache_cpu *c, gfp_t flags) 2022 { 2023 struct page *page, *page2; 2024 void *object = NULL; 2025 unsigned int available = 0; 2026 int objects; 2027 2028 /* 2029 * Racy check. If we mistakenly see no partial slabs then we 2030 * just allocate an empty slab. If we mistakenly try to get a 2031 * partial slab and there is none available then get_partial() 2032 * will return NULL. 2033 */ 2034 if (!n || !n->nr_partial) 2035 return NULL; 2036 2037 spin_lock(&n->list_lock); 2038 list_for_each_entry_safe(page, page2, &n->partial, slab_list) { 2039 void *t; 2040 2041 if (!pfmemalloc_match(page, flags)) 2042 continue; 2043 2044 t = acquire_slab(s, n, page, object == NULL, &objects); 2045 if (!t) 2046 break; 2047 2048 available += objects; 2049 if (!object) { 2050 c->page = page; 2051 stat(s, ALLOC_FROM_PARTIAL); 2052 object = t; 2053 } else { 2054 put_cpu_partial(s, page, 0); 2055 stat(s, CPU_PARTIAL_NODE); 2056 } 2057 if (!kmem_cache_has_cpu_partial(s) 2058 || available > slub_cpu_partial(s) / 2) 2059 break; 2060 2061 } 2062 spin_unlock(&n->list_lock); 2063 return object; 2064 } 2065 2066 /* 2067 * Get a page from somewhere. Search in increasing NUMA distances. 2068 */ 2069 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 2070 struct kmem_cache_cpu *c) 2071 { 2072 #ifdef CONFIG_NUMA 2073 struct zonelist *zonelist; 2074 struct zoneref *z; 2075 struct zone *zone; 2076 enum zone_type highest_zoneidx = gfp_zone(flags); 2077 void *object; 2078 unsigned int cpuset_mems_cookie; 2079 2080 /* 2081 * The defrag ratio allows a configuration of the tradeoffs between 2082 * inter node defragmentation and node local allocations. A lower 2083 * defrag_ratio increases the tendency to do local allocations 2084 * instead of attempting to obtain partial slabs from other nodes. 2085 * 2086 * If the defrag_ratio is set to 0 then kmalloc() always 2087 * returns node local objects. If the ratio is higher then kmalloc() 2088 * may return off node objects because partial slabs are obtained 2089 * from other nodes and filled up. 2090 * 2091 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2092 * (which makes defrag_ratio = 1000) then every (well almost) 2093 * allocation will first attempt to defrag slab caches on other nodes. 2094 * This means scanning over all nodes to look for partial slabs which 2095 * may be expensive if we do it every time we are trying to find a slab 2096 * with available objects. 2097 */ 2098 if (!s->remote_node_defrag_ratio || 2099 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2100 return NULL; 2101 2102 do { 2103 cpuset_mems_cookie = read_mems_allowed_begin(); 2104 zonelist = node_zonelist(mempolicy_slab_node(), flags); 2105 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2106 struct kmem_cache_node *n; 2107 2108 n = get_node(s, zone_to_nid(zone)); 2109 2110 if (n && cpuset_zone_allowed(zone, flags) && 2111 n->nr_partial > s->min_partial) { 2112 object = get_partial_node(s, n, c, flags); 2113 if (object) { 2114 /* 2115 * Don't check read_mems_allowed_retry() 2116 * here - if mems_allowed was updated in 2117 * parallel, that was a harmless race 2118 * between allocation and the cpuset 2119 * update 2120 */ 2121 return object; 2122 } 2123 } 2124 } 2125 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2126 #endif /* CONFIG_NUMA */ 2127 return NULL; 2128 } 2129 2130 /* 2131 * Get a partial page, lock it and return it. 2132 */ 2133 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 2134 struct kmem_cache_cpu *c) 2135 { 2136 void *object; 2137 int searchnode = node; 2138 2139 if (node == NUMA_NO_NODE) 2140 searchnode = numa_mem_id(); 2141 2142 object = get_partial_node(s, get_node(s, searchnode), c, flags); 2143 if (object || node != NUMA_NO_NODE) 2144 return object; 2145 2146 return get_any_partial(s, flags, c); 2147 } 2148 2149 #ifdef CONFIG_PREEMPTION 2150 /* 2151 * Calculate the next globally unique transaction for disambiguation 2152 * during cmpxchg. The transactions start with the cpu number and are then 2153 * incremented by CONFIG_NR_CPUS. 2154 */ 2155 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2156 #else 2157 /* 2158 * No preemption supported therefore also no need to check for 2159 * different cpus. 2160 */ 2161 #define TID_STEP 1 2162 #endif 2163 2164 static inline unsigned long next_tid(unsigned long tid) 2165 { 2166 return tid + TID_STEP; 2167 } 2168 2169 #ifdef SLUB_DEBUG_CMPXCHG 2170 static inline unsigned int tid_to_cpu(unsigned long tid) 2171 { 2172 return tid % TID_STEP; 2173 } 2174 2175 static inline unsigned long tid_to_event(unsigned long tid) 2176 { 2177 return tid / TID_STEP; 2178 } 2179 #endif 2180 2181 static inline unsigned int init_tid(int cpu) 2182 { 2183 return cpu; 2184 } 2185 2186 static inline void note_cmpxchg_failure(const char *n, 2187 const struct kmem_cache *s, unsigned long tid) 2188 { 2189 #ifdef SLUB_DEBUG_CMPXCHG 2190 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2191 2192 pr_info("%s %s: cmpxchg redo ", n, s->name); 2193 2194 #ifdef CONFIG_PREEMPTION 2195 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2196 pr_warn("due to cpu change %d -> %d\n", 2197 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2198 else 2199 #endif 2200 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2201 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2202 tid_to_event(tid), tid_to_event(actual_tid)); 2203 else 2204 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2205 actual_tid, tid, next_tid(tid)); 2206 #endif 2207 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2208 } 2209 2210 static void init_kmem_cache_cpus(struct kmem_cache *s) 2211 { 2212 int cpu; 2213 2214 for_each_possible_cpu(cpu) 2215 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2216 } 2217 2218 /* 2219 * Remove the cpu slab 2220 */ 2221 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2222 void *freelist, struct kmem_cache_cpu *c) 2223 { 2224 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2225 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2226 int lock = 0, free_delta = 0; 2227 enum slab_modes l = M_NONE, m = M_NONE; 2228 void *nextfree, *freelist_iter, *freelist_tail; 2229 int tail = DEACTIVATE_TO_HEAD; 2230 struct page new; 2231 struct page old; 2232 2233 if (page->freelist) { 2234 stat(s, DEACTIVATE_REMOTE_FREES); 2235 tail = DEACTIVATE_TO_TAIL; 2236 } 2237 2238 /* 2239 * Stage one: Count the objects on cpu's freelist as free_delta and 2240 * remember the last object in freelist_tail for later splicing. 2241 */ 2242 freelist_tail = NULL; 2243 freelist_iter = freelist; 2244 while (freelist_iter) { 2245 nextfree = get_freepointer(s, freelist_iter); 2246 2247 /* 2248 * If 'nextfree' is invalid, it is possible that the object at 2249 * 'freelist_iter' is already corrupted. So isolate all objects 2250 * starting at 'freelist_iter' by skipping them. 2251 */ 2252 if (freelist_corrupted(s, page, &freelist_iter, nextfree)) 2253 break; 2254 2255 freelist_tail = freelist_iter; 2256 free_delta++; 2257 2258 freelist_iter = nextfree; 2259 } 2260 2261 /* 2262 * Stage two: Unfreeze the page while splicing the per-cpu 2263 * freelist to the head of page's freelist. 2264 * 2265 * Ensure that the page is unfrozen while the list presence 2266 * reflects the actual number of objects during unfreeze. 2267 * 2268 * We setup the list membership and then perform a cmpxchg 2269 * with the count. If there is a mismatch then the page 2270 * is not unfrozen but the page is on the wrong list. 2271 * 2272 * Then we restart the process which may have to remove 2273 * the page from the list that we just put it on again 2274 * because the number of objects in the slab may have 2275 * changed. 2276 */ 2277 redo: 2278 2279 old.freelist = READ_ONCE(page->freelist); 2280 old.counters = READ_ONCE(page->counters); 2281 VM_BUG_ON(!old.frozen); 2282 2283 /* Determine target state of the slab */ 2284 new.counters = old.counters; 2285 if (freelist_tail) { 2286 new.inuse -= free_delta; 2287 set_freepointer(s, freelist_tail, old.freelist); 2288 new.freelist = freelist; 2289 } else 2290 new.freelist = old.freelist; 2291 2292 new.frozen = 0; 2293 2294 if (!new.inuse && n->nr_partial >= s->min_partial) 2295 m = M_FREE; 2296 else if (new.freelist) { 2297 m = M_PARTIAL; 2298 if (!lock) { 2299 lock = 1; 2300 /* 2301 * Taking the spinlock removes the possibility 2302 * that acquire_slab() will see a slab page that 2303 * is frozen 2304 */ 2305 spin_lock(&n->list_lock); 2306 } 2307 } else { 2308 m = M_FULL; 2309 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) { 2310 lock = 1; 2311 /* 2312 * This also ensures that the scanning of full 2313 * slabs from diagnostic functions will not see 2314 * any frozen slabs. 2315 */ 2316 spin_lock(&n->list_lock); 2317 } 2318 } 2319 2320 if (l != m) { 2321 if (l == M_PARTIAL) 2322 remove_partial(n, page); 2323 else if (l == M_FULL) 2324 remove_full(s, n, page); 2325 2326 if (m == M_PARTIAL) 2327 add_partial(n, page, tail); 2328 else if (m == M_FULL) 2329 add_full(s, n, page); 2330 } 2331 2332 l = m; 2333 if (!__cmpxchg_double_slab(s, page, 2334 old.freelist, old.counters, 2335 new.freelist, new.counters, 2336 "unfreezing slab")) 2337 goto redo; 2338 2339 if (lock) 2340 spin_unlock(&n->list_lock); 2341 2342 if (m == M_PARTIAL) 2343 stat(s, tail); 2344 else if (m == M_FULL) 2345 stat(s, DEACTIVATE_FULL); 2346 else if (m == M_FREE) { 2347 stat(s, DEACTIVATE_EMPTY); 2348 discard_slab(s, page); 2349 stat(s, FREE_SLAB); 2350 } 2351 2352 c->page = NULL; 2353 c->freelist = NULL; 2354 } 2355 2356 /* 2357 * Unfreeze all the cpu partial slabs. 2358 * 2359 * This function must be called with interrupts disabled 2360 * for the cpu using c (or some other guarantee must be there 2361 * to guarantee no concurrent accesses). 2362 */ 2363 static void unfreeze_partials(struct kmem_cache *s, 2364 struct kmem_cache_cpu *c) 2365 { 2366 #ifdef CONFIG_SLUB_CPU_PARTIAL 2367 struct kmem_cache_node *n = NULL, *n2 = NULL; 2368 struct page *page, *discard_page = NULL; 2369 2370 while ((page = slub_percpu_partial(c))) { 2371 struct page new; 2372 struct page old; 2373 2374 slub_set_percpu_partial(c, page); 2375 2376 n2 = get_node(s, page_to_nid(page)); 2377 if (n != n2) { 2378 if (n) 2379 spin_unlock(&n->list_lock); 2380 2381 n = n2; 2382 spin_lock(&n->list_lock); 2383 } 2384 2385 do { 2386 2387 old.freelist = page->freelist; 2388 old.counters = page->counters; 2389 VM_BUG_ON(!old.frozen); 2390 2391 new.counters = old.counters; 2392 new.freelist = old.freelist; 2393 2394 new.frozen = 0; 2395 2396 } while (!__cmpxchg_double_slab(s, page, 2397 old.freelist, old.counters, 2398 new.freelist, new.counters, 2399 "unfreezing slab")); 2400 2401 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2402 page->next = discard_page; 2403 discard_page = page; 2404 } else { 2405 add_partial(n, page, DEACTIVATE_TO_TAIL); 2406 stat(s, FREE_ADD_PARTIAL); 2407 } 2408 } 2409 2410 if (n) 2411 spin_unlock(&n->list_lock); 2412 2413 while (discard_page) { 2414 page = discard_page; 2415 discard_page = discard_page->next; 2416 2417 stat(s, DEACTIVATE_EMPTY); 2418 discard_slab(s, page); 2419 stat(s, FREE_SLAB); 2420 } 2421 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2422 } 2423 2424 /* 2425 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2426 * partial page slot if available. 2427 * 2428 * If we did not find a slot then simply move all the partials to the 2429 * per node partial list. 2430 */ 2431 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2432 { 2433 #ifdef CONFIG_SLUB_CPU_PARTIAL 2434 struct page *oldpage; 2435 int pages; 2436 int pobjects; 2437 2438 preempt_disable(); 2439 do { 2440 pages = 0; 2441 pobjects = 0; 2442 oldpage = this_cpu_read(s->cpu_slab->partial); 2443 2444 if (oldpage) { 2445 pobjects = oldpage->pobjects; 2446 pages = oldpage->pages; 2447 if (drain && pobjects > slub_cpu_partial(s)) { 2448 unsigned long flags; 2449 /* 2450 * partial array is full. Move the existing 2451 * set to the per node partial list. 2452 */ 2453 local_irq_save(flags); 2454 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2455 local_irq_restore(flags); 2456 oldpage = NULL; 2457 pobjects = 0; 2458 pages = 0; 2459 stat(s, CPU_PARTIAL_DRAIN); 2460 } 2461 } 2462 2463 pages++; 2464 pobjects += page->objects - page->inuse; 2465 2466 page->pages = pages; 2467 page->pobjects = pobjects; 2468 page->next = oldpage; 2469 2470 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2471 != oldpage); 2472 if (unlikely(!slub_cpu_partial(s))) { 2473 unsigned long flags; 2474 2475 local_irq_save(flags); 2476 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2477 local_irq_restore(flags); 2478 } 2479 preempt_enable(); 2480 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2481 } 2482 2483 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2484 { 2485 stat(s, CPUSLAB_FLUSH); 2486 deactivate_slab(s, c->page, c->freelist, c); 2487 2488 c->tid = next_tid(c->tid); 2489 } 2490 2491 /* 2492 * Flush cpu slab. 2493 * 2494 * Called from IPI handler with interrupts disabled. 2495 */ 2496 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2497 { 2498 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2499 2500 if (c->page) 2501 flush_slab(s, c); 2502 2503 unfreeze_partials(s, c); 2504 } 2505 2506 static void flush_cpu_slab(void *d) 2507 { 2508 struct kmem_cache *s = d; 2509 2510 __flush_cpu_slab(s, smp_processor_id()); 2511 } 2512 2513 static bool has_cpu_slab(int cpu, void *info) 2514 { 2515 struct kmem_cache *s = info; 2516 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2517 2518 return c->page || slub_percpu_partial(c); 2519 } 2520 2521 static void flush_all(struct kmem_cache *s) 2522 { 2523 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1); 2524 } 2525 2526 /* 2527 * Use the cpu notifier to insure that the cpu slabs are flushed when 2528 * necessary. 2529 */ 2530 static int slub_cpu_dead(unsigned int cpu) 2531 { 2532 struct kmem_cache *s; 2533 unsigned long flags; 2534 2535 mutex_lock(&slab_mutex); 2536 list_for_each_entry(s, &slab_caches, list) { 2537 local_irq_save(flags); 2538 __flush_cpu_slab(s, cpu); 2539 local_irq_restore(flags); 2540 } 2541 mutex_unlock(&slab_mutex); 2542 return 0; 2543 } 2544 2545 /* 2546 * Check if the objects in a per cpu structure fit numa 2547 * locality expectations. 2548 */ 2549 static inline int node_match(struct page *page, int node) 2550 { 2551 #ifdef CONFIG_NUMA 2552 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2553 return 0; 2554 #endif 2555 return 1; 2556 } 2557 2558 #ifdef CONFIG_SLUB_DEBUG 2559 static int count_free(struct page *page) 2560 { 2561 return page->objects - page->inuse; 2562 } 2563 2564 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2565 { 2566 return atomic_long_read(&n->total_objects); 2567 } 2568 #endif /* CONFIG_SLUB_DEBUG */ 2569 2570 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2571 static unsigned long count_partial(struct kmem_cache_node *n, 2572 int (*get_count)(struct page *)) 2573 { 2574 unsigned long flags; 2575 unsigned long x = 0; 2576 struct page *page; 2577 2578 spin_lock_irqsave(&n->list_lock, flags); 2579 list_for_each_entry(page, &n->partial, slab_list) 2580 x += get_count(page); 2581 spin_unlock_irqrestore(&n->list_lock, flags); 2582 return x; 2583 } 2584 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2585 2586 static noinline void 2587 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2588 { 2589 #ifdef CONFIG_SLUB_DEBUG 2590 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2591 DEFAULT_RATELIMIT_BURST); 2592 int node; 2593 struct kmem_cache_node *n; 2594 2595 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2596 return; 2597 2598 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2599 nid, gfpflags, &gfpflags); 2600 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2601 s->name, s->object_size, s->size, oo_order(s->oo), 2602 oo_order(s->min)); 2603 2604 if (oo_order(s->min) > get_order(s->object_size)) 2605 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2606 s->name); 2607 2608 for_each_kmem_cache_node(s, node, n) { 2609 unsigned long nr_slabs; 2610 unsigned long nr_objs; 2611 unsigned long nr_free; 2612 2613 nr_free = count_partial(n, count_free); 2614 nr_slabs = node_nr_slabs(n); 2615 nr_objs = node_nr_objs(n); 2616 2617 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2618 node, nr_slabs, nr_objs, nr_free); 2619 } 2620 #endif 2621 } 2622 2623 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2624 int node, struct kmem_cache_cpu **pc) 2625 { 2626 void *freelist; 2627 struct kmem_cache_cpu *c = *pc; 2628 struct page *page; 2629 2630 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2631 2632 freelist = get_partial(s, flags, node, c); 2633 2634 if (freelist) 2635 return freelist; 2636 2637 page = new_slab(s, flags, node); 2638 if (page) { 2639 c = raw_cpu_ptr(s->cpu_slab); 2640 if (c->page) 2641 flush_slab(s, c); 2642 2643 /* 2644 * No other reference to the page yet so we can 2645 * muck around with it freely without cmpxchg 2646 */ 2647 freelist = page->freelist; 2648 page->freelist = NULL; 2649 2650 stat(s, ALLOC_SLAB); 2651 c->page = page; 2652 *pc = c; 2653 } 2654 2655 return freelist; 2656 } 2657 2658 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2659 { 2660 if (unlikely(PageSlabPfmemalloc(page))) 2661 return gfp_pfmemalloc_allowed(gfpflags); 2662 2663 return true; 2664 } 2665 2666 /* 2667 * Check the page->freelist of a page and either transfer the freelist to the 2668 * per cpu freelist or deactivate the page. 2669 * 2670 * The page is still frozen if the return value is not NULL. 2671 * 2672 * If this function returns NULL then the page has been unfrozen. 2673 * 2674 * This function must be called with interrupt disabled. 2675 */ 2676 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2677 { 2678 struct page new; 2679 unsigned long counters; 2680 void *freelist; 2681 2682 do { 2683 freelist = page->freelist; 2684 counters = page->counters; 2685 2686 new.counters = counters; 2687 VM_BUG_ON(!new.frozen); 2688 2689 new.inuse = page->objects; 2690 new.frozen = freelist != NULL; 2691 2692 } while (!__cmpxchg_double_slab(s, page, 2693 freelist, counters, 2694 NULL, new.counters, 2695 "get_freelist")); 2696 2697 return freelist; 2698 } 2699 2700 /* 2701 * Slow path. The lockless freelist is empty or we need to perform 2702 * debugging duties. 2703 * 2704 * Processing is still very fast if new objects have been freed to the 2705 * regular freelist. In that case we simply take over the regular freelist 2706 * as the lockless freelist and zap the regular freelist. 2707 * 2708 * If that is not working then we fall back to the partial lists. We take the 2709 * first element of the freelist as the object to allocate now and move the 2710 * rest of the freelist to the lockless freelist. 2711 * 2712 * And if we were unable to get a new slab from the partial slab lists then 2713 * we need to allocate a new slab. This is the slowest path since it involves 2714 * a call to the page allocator and the setup of a new slab. 2715 * 2716 * Version of __slab_alloc to use when we know that interrupts are 2717 * already disabled (which is the case for bulk allocation). 2718 */ 2719 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2720 unsigned long addr, struct kmem_cache_cpu *c) 2721 { 2722 void *freelist; 2723 struct page *page; 2724 2725 stat(s, ALLOC_SLOWPATH); 2726 2727 page = c->page; 2728 if (!page) { 2729 /* 2730 * if the node is not online or has no normal memory, just 2731 * ignore the node constraint 2732 */ 2733 if (unlikely(node != NUMA_NO_NODE && 2734 !node_isset(node, slab_nodes))) 2735 node = NUMA_NO_NODE; 2736 goto new_slab; 2737 } 2738 redo: 2739 2740 if (unlikely(!node_match(page, node))) { 2741 /* 2742 * same as above but node_match() being false already 2743 * implies node != NUMA_NO_NODE 2744 */ 2745 if (!node_isset(node, slab_nodes)) { 2746 node = NUMA_NO_NODE; 2747 goto redo; 2748 } else { 2749 stat(s, ALLOC_NODE_MISMATCH); 2750 deactivate_slab(s, page, c->freelist, c); 2751 goto new_slab; 2752 } 2753 } 2754 2755 /* 2756 * By rights, we should be searching for a slab page that was 2757 * PFMEMALLOC but right now, we are losing the pfmemalloc 2758 * information when the page leaves the per-cpu allocator 2759 */ 2760 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2761 deactivate_slab(s, page, c->freelist, c); 2762 goto new_slab; 2763 } 2764 2765 /* must check again c->freelist in case of cpu migration or IRQ */ 2766 freelist = c->freelist; 2767 if (freelist) 2768 goto load_freelist; 2769 2770 freelist = get_freelist(s, page); 2771 2772 if (!freelist) { 2773 c->page = NULL; 2774 stat(s, DEACTIVATE_BYPASS); 2775 goto new_slab; 2776 } 2777 2778 stat(s, ALLOC_REFILL); 2779 2780 load_freelist: 2781 /* 2782 * freelist is pointing to the list of objects to be used. 2783 * page is pointing to the page from which the objects are obtained. 2784 * That page must be frozen for per cpu allocations to work. 2785 */ 2786 VM_BUG_ON(!c->page->frozen); 2787 c->freelist = get_freepointer(s, freelist); 2788 c->tid = next_tid(c->tid); 2789 return freelist; 2790 2791 new_slab: 2792 2793 if (slub_percpu_partial(c)) { 2794 page = c->page = slub_percpu_partial(c); 2795 slub_set_percpu_partial(c, page); 2796 stat(s, CPU_PARTIAL_ALLOC); 2797 goto redo; 2798 } 2799 2800 freelist = new_slab_objects(s, gfpflags, node, &c); 2801 2802 if (unlikely(!freelist)) { 2803 slab_out_of_memory(s, gfpflags, node); 2804 return NULL; 2805 } 2806 2807 page = c->page; 2808 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2809 goto load_freelist; 2810 2811 /* Only entered in the debug case */ 2812 if (kmem_cache_debug(s) && 2813 !alloc_debug_processing(s, page, freelist, addr)) 2814 goto new_slab; /* Slab failed checks. Next slab needed */ 2815 2816 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2817 return freelist; 2818 } 2819 2820 /* 2821 * Another one that disabled interrupt and compensates for possible 2822 * cpu changes by refetching the per cpu area pointer. 2823 */ 2824 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2825 unsigned long addr, struct kmem_cache_cpu *c) 2826 { 2827 void *p; 2828 unsigned long flags; 2829 2830 local_irq_save(flags); 2831 #ifdef CONFIG_PREEMPTION 2832 /* 2833 * We may have been preempted and rescheduled on a different 2834 * cpu before disabling interrupts. Need to reload cpu area 2835 * pointer. 2836 */ 2837 c = this_cpu_ptr(s->cpu_slab); 2838 #endif 2839 2840 p = ___slab_alloc(s, gfpflags, node, addr, c); 2841 local_irq_restore(flags); 2842 return p; 2843 } 2844 2845 /* 2846 * If the object has been wiped upon free, make sure it's fully initialized by 2847 * zeroing out freelist pointer. 2848 */ 2849 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 2850 void *obj) 2851 { 2852 if (unlikely(slab_want_init_on_free(s)) && obj) 2853 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 2854 0, sizeof(void *)); 2855 } 2856 2857 /* 2858 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2859 * have the fastpath folded into their functions. So no function call 2860 * overhead for requests that can be satisfied on the fastpath. 2861 * 2862 * The fastpath works by first checking if the lockless freelist can be used. 2863 * If not then __slab_alloc is called for slow processing. 2864 * 2865 * Otherwise we can simply pick the next object from the lockless free list. 2866 */ 2867 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2868 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 2869 { 2870 void *object; 2871 struct kmem_cache_cpu *c; 2872 struct page *page; 2873 unsigned long tid; 2874 struct obj_cgroup *objcg = NULL; 2875 bool init = false; 2876 2877 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags); 2878 if (!s) 2879 return NULL; 2880 2881 object = kfence_alloc(s, orig_size, gfpflags); 2882 if (unlikely(object)) 2883 goto out; 2884 2885 redo: 2886 /* 2887 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2888 * enabled. We may switch back and forth between cpus while 2889 * reading from one cpu area. That does not matter as long 2890 * as we end up on the original cpu again when doing the cmpxchg. 2891 * 2892 * We should guarantee that tid and kmem_cache are retrieved on 2893 * the same cpu. It could be different if CONFIG_PREEMPTION so we need 2894 * to check if it is matched or not. 2895 */ 2896 do { 2897 tid = this_cpu_read(s->cpu_slab->tid); 2898 c = raw_cpu_ptr(s->cpu_slab); 2899 } while (IS_ENABLED(CONFIG_PREEMPTION) && 2900 unlikely(tid != READ_ONCE(c->tid))); 2901 2902 /* 2903 * Irqless object alloc/free algorithm used here depends on sequence 2904 * of fetching cpu_slab's data. tid should be fetched before anything 2905 * on c to guarantee that object and page associated with previous tid 2906 * won't be used with current tid. If we fetch tid first, object and 2907 * page could be one associated with next tid and our alloc/free 2908 * request will be failed. In this case, we will retry. So, no problem. 2909 */ 2910 barrier(); 2911 2912 /* 2913 * The transaction ids are globally unique per cpu and per operation on 2914 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2915 * occurs on the right processor and that there was no operation on the 2916 * linked list in between. 2917 */ 2918 2919 object = c->freelist; 2920 page = c->page; 2921 if (unlikely(!object || !page || !node_match(page, node))) { 2922 object = __slab_alloc(s, gfpflags, node, addr, c); 2923 } else { 2924 void *next_object = get_freepointer_safe(s, object); 2925 2926 /* 2927 * The cmpxchg will only match if there was no additional 2928 * operation and if we are on the right processor. 2929 * 2930 * The cmpxchg does the following atomically (without lock 2931 * semantics!) 2932 * 1. Relocate first pointer to the current per cpu area. 2933 * 2. Verify that tid and freelist have not been changed 2934 * 3. If they were not changed replace tid and freelist 2935 * 2936 * Since this is without lock semantics the protection is only 2937 * against code executing on this cpu *not* from access by 2938 * other cpus. 2939 */ 2940 if (unlikely(!this_cpu_cmpxchg_double( 2941 s->cpu_slab->freelist, s->cpu_slab->tid, 2942 object, tid, 2943 next_object, next_tid(tid)))) { 2944 2945 note_cmpxchg_failure("slab_alloc", s, tid); 2946 goto redo; 2947 } 2948 prefetch_freepointer(s, next_object); 2949 stat(s, ALLOC_FASTPATH); 2950 } 2951 2952 maybe_wipe_obj_freeptr(s, object); 2953 init = slab_want_init_on_alloc(gfpflags, s); 2954 2955 out: 2956 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init); 2957 2958 return object; 2959 } 2960 2961 static __always_inline void *slab_alloc(struct kmem_cache *s, 2962 gfp_t gfpflags, unsigned long addr, size_t orig_size) 2963 { 2964 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size); 2965 } 2966 2967 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2968 { 2969 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size); 2970 2971 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2972 s->size, gfpflags); 2973 2974 return ret; 2975 } 2976 EXPORT_SYMBOL(kmem_cache_alloc); 2977 2978 #ifdef CONFIG_TRACING 2979 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2980 { 2981 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size); 2982 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2983 ret = kasan_kmalloc(s, ret, size, gfpflags); 2984 return ret; 2985 } 2986 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2987 #endif 2988 2989 #ifdef CONFIG_NUMA 2990 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2991 { 2992 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size); 2993 2994 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2995 s->object_size, s->size, gfpflags, node); 2996 2997 return ret; 2998 } 2999 EXPORT_SYMBOL(kmem_cache_alloc_node); 3000 3001 #ifdef CONFIG_TRACING 3002 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 3003 gfp_t gfpflags, 3004 int node, size_t size) 3005 { 3006 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size); 3007 3008 trace_kmalloc_node(_RET_IP_, ret, 3009 size, s->size, gfpflags, node); 3010 3011 ret = kasan_kmalloc(s, ret, size, gfpflags); 3012 return ret; 3013 } 3014 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3015 #endif 3016 #endif /* CONFIG_NUMA */ 3017 3018 /* 3019 * Slow path handling. This may still be called frequently since objects 3020 * have a longer lifetime than the cpu slabs in most processing loads. 3021 * 3022 * So we still attempt to reduce cache line usage. Just take the slab 3023 * lock and free the item. If there is no additional partial page 3024 * handling required then we can return immediately. 3025 */ 3026 static void __slab_free(struct kmem_cache *s, struct page *page, 3027 void *head, void *tail, int cnt, 3028 unsigned long addr) 3029 3030 { 3031 void *prior; 3032 int was_frozen; 3033 struct page new; 3034 unsigned long counters; 3035 struct kmem_cache_node *n = NULL; 3036 unsigned long flags; 3037 3038 stat(s, FREE_SLOWPATH); 3039 3040 if (kfence_free(head)) 3041 return; 3042 3043 if (kmem_cache_debug(s) && 3044 !free_debug_processing(s, page, head, tail, cnt, addr)) 3045 return; 3046 3047 do { 3048 if (unlikely(n)) { 3049 spin_unlock_irqrestore(&n->list_lock, flags); 3050 n = NULL; 3051 } 3052 prior = page->freelist; 3053 counters = page->counters; 3054 set_freepointer(s, tail, prior); 3055 new.counters = counters; 3056 was_frozen = new.frozen; 3057 new.inuse -= cnt; 3058 if ((!new.inuse || !prior) && !was_frozen) { 3059 3060 if (kmem_cache_has_cpu_partial(s) && !prior) { 3061 3062 /* 3063 * Slab was on no list before and will be 3064 * partially empty 3065 * We can defer the list move and instead 3066 * freeze it. 3067 */ 3068 new.frozen = 1; 3069 3070 } else { /* Needs to be taken off a list */ 3071 3072 n = get_node(s, page_to_nid(page)); 3073 /* 3074 * Speculatively acquire the list_lock. 3075 * If the cmpxchg does not succeed then we may 3076 * drop the list_lock without any processing. 3077 * 3078 * Otherwise the list_lock will synchronize with 3079 * other processors updating the list of slabs. 3080 */ 3081 spin_lock_irqsave(&n->list_lock, flags); 3082 3083 } 3084 } 3085 3086 } while (!cmpxchg_double_slab(s, page, 3087 prior, counters, 3088 head, new.counters, 3089 "__slab_free")); 3090 3091 if (likely(!n)) { 3092 3093 if (likely(was_frozen)) { 3094 /* 3095 * The list lock was not taken therefore no list 3096 * activity can be necessary. 3097 */ 3098 stat(s, FREE_FROZEN); 3099 } else if (new.frozen) { 3100 /* 3101 * If we just froze the page then put it onto the 3102 * per cpu partial list. 3103 */ 3104 put_cpu_partial(s, page, 1); 3105 stat(s, CPU_PARTIAL_FREE); 3106 } 3107 3108 return; 3109 } 3110 3111 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 3112 goto slab_empty; 3113 3114 /* 3115 * Objects left in the slab. If it was not on the partial list before 3116 * then add it. 3117 */ 3118 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 3119 remove_full(s, n, page); 3120 add_partial(n, page, DEACTIVATE_TO_TAIL); 3121 stat(s, FREE_ADD_PARTIAL); 3122 } 3123 spin_unlock_irqrestore(&n->list_lock, flags); 3124 return; 3125 3126 slab_empty: 3127 if (prior) { 3128 /* 3129 * Slab on the partial list. 3130 */ 3131 remove_partial(n, page); 3132 stat(s, FREE_REMOVE_PARTIAL); 3133 } else { 3134 /* Slab must be on the full list */ 3135 remove_full(s, n, page); 3136 } 3137 3138 spin_unlock_irqrestore(&n->list_lock, flags); 3139 stat(s, FREE_SLAB); 3140 discard_slab(s, page); 3141 } 3142 3143 /* 3144 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3145 * can perform fastpath freeing without additional function calls. 3146 * 3147 * The fastpath is only possible if we are freeing to the current cpu slab 3148 * of this processor. This typically the case if we have just allocated 3149 * the item before. 3150 * 3151 * If fastpath is not possible then fall back to __slab_free where we deal 3152 * with all sorts of special processing. 3153 * 3154 * Bulk free of a freelist with several objects (all pointing to the 3155 * same page) possible by specifying head and tail ptr, plus objects 3156 * count (cnt). Bulk free indicated by tail pointer being set. 3157 */ 3158 static __always_inline void do_slab_free(struct kmem_cache *s, 3159 struct page *page, void *head, void *tail, 3160 int cnt, unsigned long addr) 3161 { 3162 void *tail_obj = tail ? : head; 3163 struct kmem_cache_cpu *c; 3164 unsigned long tid; 3165 3166 memcg_slab_free_hook(s, &head, 1); 3167 redo: 3168 /* 3169 * Determine the currently cpus per cpu slab. 3170 * The cpu may change afterward. However that does not matter since 3171 * data is retrieved via this pointer. If we are on the same cpu 3172 * during the cmpxchg then the free will succeed. 3173 */ 3174 do { 3175 tid = this_cpu_read(s->cpu_slab->tid); 3176 c = raw_cpu_ptr(s->cpu_slab); 3177 } while (IS_ENABLED(CONFIG_PREEMPTION) && 3178 unlikely(tid != READ_ONCE(c->tid))); 3179 3180 /* Same with comment on barrier() in slab_alloc_node() */ 3181 barrier(); 3182 3183 if (likely(page == c->page)) { 3184 void **freelist = READ_ONCE(c->freelist); 3185 3186 set_freepointer(s, tail_obj, freelist); 3187 3188 if (unlikely(!this_cpu_cmpxchg_double( 3189 s->cpu_slab->freelist, s->cpu_slab->tid, 3190 freelist, tid, 3191 head, next_tid(tid)))) { 3192 3193 note_cmpxchg_failure("slab_free", s, tid); 3194 goto redo; 3195 } 3196 stat(s, FREE_FASTPATH); 3197 } else 3198 __slab_free(s, page, head, tail_obj, cnt, addr); 3199 3200 } 3201 3202 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 3203 void *head, void *tail, int cnt, 3204 unsigned long addr) 3205 { 3206 /* 3207 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3208 * to remove objects, whose reuse must be delayed. 3209 */ 3210 if (slab_free_freelist_hook(s, &head, &tail)) 3211 do_slab_free(s, page, head, tail, cnt, addr); 3212 } 3213 3214 #ifdef CONFIG_KASAN_GENERIC 3215 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3216 { 3217 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3218 } 3219 #endif 3220 3221 void kmem_cache_free(struct kmem_cache *s, void *x) 3222 { 3223 s = cache_from_obj(s, x); 3224 if (!s) 3225 return; 3226 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3227 trace_kmem_cache_free(_RET_IP_, x, s->name); 3228 } 3229 EXPORT_SYMBOL(kmem_cache_free); 3230 3231 struct detached_freelist { 3232 struct page *page; 3233 void *tail; 3234 void *freelist; 3235 int cnt; 3236 struct kmem_cache *s; 3237 }; 3238 3239 /* 3240 * This function progressively scans the array with free objects (with 3241 * a limited look ahead) and extract objects belonging to the same 3242 * page. It builds a detached freelist directly within the given 3243 * page/objects. This can happen without any need for 3244 * synchronization, because the objects are owned by running process. 3245 * The freelist is build up as a single linked list in the objects. 3246 * The idea is, that this detached freelist can then be bulk 3247 * transferred to the real freelist(s), but only requiring a single 3248 * synchronization primitive. Look ahead in the array is limited due 3249 * to performance reasons. 3250 */ 3251 static inline 3252 int build_detached_freelist(struct kmem_cache *s, size_t size, 3253 void **p, struct detached_freelist *df) 3254 { 3255 size_t first_skipped_index = 0; 3256 int lookahead = 3; 3257 void *object; 3258 struct page *page; 3259 3260 /* Always re-init detached_freelist */ 3261 df->page = NULL; 3262 3263 do { 3264 object = p[--size]; 3265 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3266 } while (!object && size); 3267 3268 if (!object) 3269 return 0; 3270 3271 page = virt_to_head_page(object); 3272 if (!s) { 3273 /* Handle kalloc'ed objects */ 3274 if (unlikely(!PageSlab(page))) { 3275 BUG_ON(!PageCompound(page)); 3276 kfree_hook(object); 3277 __free_pages(page, compound_order(page)); 3278 p[size] = NULL; /* mark object processed */ 3279 return size; 3280 } 3281 /* Derive kmem_cache from object */ 3282 df->s = page->slab_cache; 3283 } else { 3284 df->s = cache_from_obj(s, object); /* Support for memcg */ 3285 } 3286 3287 if (is_kfence_address(object)) { 3288 slab_free_hook(df->s, object, false); 3289 __kfence_free(object); 3290 p[size] = NULL; /* mark object processed */ 3291 return size; 3292 } 3293 3294 /* Start new detached freelist */ 3295 df->page = page; 3296 set_freepointer(df->s, object, NULL); 3297 df->tail = object; 3298 df->freelist = object; 3299 p[size] = NULL; /* mark object processed */ 3300 df->cnt = 1; 3301 3302 while (size) { 3303 object = p[--size]; 3304 if (!object) 3305 continue; /* Skip processed objects */ 3306 3307 /* df->page is always set at this point */ 3308 if (df->page == virt_to_head_page(object)) { 3309 /* Opportunity build freelist */ 3310 set_freepointer(df->s, object, df->freelist); 3311 df->freelist = object; 3312 df->cnt++; 3313 p[size] = NULL; /* mark object processed */ 3314 3315 continue; 3316 } 3317 3318 /* Limit look ahead search */ 3319 if (!--lookahead) 3320 break; 3321 3322 if (!first_skipped_index) 3323 first_skipped_index = size + 1; 3324 } 3325 3326 return first_skipped_index; 3327 } 3328 3329 /* Note that interrupts must be enabled when calling this function. */ 3330 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3331 { 3332 if (WARN_ON(!size)) 3333 return; 3334 3335 memcg_slab_free_hook(s, p, size); 3336 do { 3337 struct detached_freelist df; 3338 3339 size = build_detached_freelist(s, size, p, &df); 3340 if (!df.page) 3341 continue; 3342 3343 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_); 3344 } while (likely(size)); 3345 } 3346 EXPORT_SYMBOL(kmem_cache_free_bulk); 3347 3348 /* Note that interrupts must be enabled when calling this function. */ 3349 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3350 void **p) 3351 { 3352 struct kmem_cache_cpu *c; 3353 int i; 3354 struct obj_cgroup *objcg = NULL; 3355 3356 /* memcg and kmem_cache debug support */ 3357 s = slab_pre_alloc_hook(s, &objcg, size, flags); 3358 if (unlikely(!s)) 3359 return false; 3360 /* 3361 * Drain objects in the per cpu slab, while disabling local 3362 * IRQs, which protects against PREEMPT and interrupts 3363 * handlers invoking normal fastpath. 3364 */ 3365 local_irq_disable(); 3366 c = this_cpu_ptr(s->cpu_slab); 3367 3368 for (i = 0; i < size; i++) { 3369 void *object = kfence_alloc(s, s->object_size, flags); 3370 3371 if (unlikely(object)) { 3372 p[i] = object; 3373 continue; 3374 } 3375 3376 object = c->freelist; 3377 if (unlikely(!object)) { 3378 /* 3379 * We may have removed an object from c->freelist using 3380 * the fastpath in the previous iteration; in that case, 3381 * c->tid has not been bumped yet. 3382 * Since ___slab_alloc() may reenable interrupts while 3383 * allocating memory, we should bump c->tid now. 3384 */ 3385 c->tid = next_tid(c->tid); 3386 3387 /* 3388 * Invoking slow path likely have side-effect 3389 * of re-populating per CPU c->freelist 3390 */ 3391 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3392 _RET_IP_, c); 3393 if (unlikely(!p[i])) 3394 goto error; 3395 3396 c = this_cpu_ptr(s->cpu_slab); 3397 maybe_wipe_obj_freeptr(s, p[i]); 3398 3399 continue; /* goto for-loop */ 3400 } 3401 c->freelist = get_freepointer(s, object); 3402 p[i] = object; 3403 maybe_wipe_obj_freeptr(s, p[i]); 3404 } 3405 c->tid = next_tid(c->tid); 3406 local_irq_enable(); 3407 3408 /* 3409 * memcg and kmem_cache debug support and memory initialization. 3410 * Done outside of the IRQ disabled fastpath loop. 3411 */ 3412 slab_post_alloc_hook(s, objcg, flags, size, p, 3413 slab_want_init_on_alloc(flags, s)); 3414 return i; 3415 error: 3416 local_irq_enable(); 3417 slab_post_alloc_hook(s, objcg, flags, i, p, false); 3418 __kmem_cache_free_bulk(s, i, p); 3419 return 0; 3420 } 3421 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3422 3423 3424 /* 3425 * Object placement in a slab is made very easy because we always start at 3426 * offset 0. If we tune the size of the object to the alignment then we can 3427 * get the required alignment by putting one properly sized object after 3428 * another. 3429 * 3430 * Notice that the allocation order determines the sizes of the per cpu 3431 * caches. Each processor has always one slab available for allocations. 3432 * Increasing the allocation order reduces the number of times that slabs 3433 * must be moved on and off the partial lists and is therefore a factor in 3434 * locking overhead. 3435 */ 3436 3437 /* 3438 * Minimum / Maximum order of slab pages. This influences locking overhead 3439 * and slab fragmentation. A higher order reduces the number of partial slabs 3440 * and increases the number of allocations possible without having to 3441 * take the list_lock. 3442 */ 3443 static unsigned int slub_min_order; 3444 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3445 static unsigned int slub_min_objects; 3446 3447 /* 3448 * Calculate the order of allocation given an slab object size. 3449 * 3450 * The order of allocation has significant impact on performance and other 3451 * system components. Generally order 0 allocations should be preferred since 3452 * order 0 does not cause fragmentation in the page allocator. Larger objects 3453 * be problematic to put into order 0 slabs because there may be too much 3454 * unused space left. We go to a higher order if more than 1/16th of the slab 3455 * would be wasted. 3456 * 3457 * In order to reach satisfactory performance we must ensure that a minimum 3458 * number of objects is in one slab. Otherwise we may generate too much 3459 * activity on the partial lists which requires taking the list_lock. This is 3460 * less a concern for large slabs though which are rarely used. 3461 * 3462 * slub_max_order specifies the order where we begin to stop considering the 3463 * number of objects in a slab as critical. If we reach slub_max_order then 3464 * we try to keep the page order as low as possible. So we accept more waste 3465 * of space in favor of a small page order. 3466 * 3467 * Higher order allocations also allow the placement of more objects in a 3468 * slab and thereby reduce object handling overhead. If the user has 3469 * requested a higher minimum order then we start with that one instead of 3470 * the smallest order which will fit the object. 3471 */ 3472 static inline unsigned int slab_order(unsigned int size, 3473 unsigned int min_objects, unsigned int max_order, 3474 unsigned int fract_leftover) 3475 { 3476 unsigned int min_order = slub_min_order; 3477 unsigned int order; 3478 3479 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3480 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3481 3482 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3483 order <= max_order; order++) { 3484 3485 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3486 unsigned int rem; 3487 3488 rem = slab_size % size; 3489 3490 if (rem <= slab_size / fract_leftover) 3491 break; 3492 } 3493 3494 return order; 3495 } 3496 3497 static inline int calculate_order(unsigned int size) 3498 { 3499 unsigned int order; 3500 unsigned int min_objects; 3501 unsigned int max_objects; 3502 unsigned int nr_cpus; 3503 3504 /* 3505 * Attempt to find best configuration for a slab. This 3506 * works by first attempting to generate a layout with 3507 * the best configuration and backing off gradually. 3508 * 3509 * First we increase the acceptable waste in a slab. Then 3510 * we reduce the minimum objects required in a slab. 3511 */ 3512 min_objects = slub_min_objects; 3513 if (!min_objects) { 3514 /* 3515 * Some architectures will only update present cpus when 3516 * onlining them, so don't trust the number if it's just 1. But 3517 * we also don't want to use nr_cpu_ids always, as on some other 3518 * architectures, there can be many possible cpus, but never 3519 * onlined. Here we compromise between trying to avoid too high 3520 * order on systems that appear larger than they are, and too 3521 * low order on systems that appear smaller than they are. 3522 */ 3523 nr_cpus = num_present_cpus(); 3524 if (nr_cpus <= 1) 3525 nr_cpus = nr_cpu_ids; 3526 min_objects = 4 * (fls(nr_cpus) + 1); 3527 } 3528 max_objects = order_objects(slub_max_order, size); 3529 min_objects = min(min_objects, max_objects); 3530 3531 while (min_objects > 1) { 3532 unsigned int fraction; 3533 3534 fraction = 16; 3535 while (fraction >= 4) { 3536 order = slab_order(size, min_objects, 3537 slub_max_order, fraction); 3538 if (order <= slub_max_order) 3539 return order; 3540 fraction /= 2; 3541 } 3542 min_objects--; 3543 } 3544 3545 /* 3546 * We were unable to place multiple objects in a slab. Now 3547 * lets see if we can place a single object there. 3548 */ 3549 order = slab_order(size, 1, slub_max_order, 1); 3550 if (order <= slub_max_order) 3551 return order; 3552 3553 /* 3554 * Doh this slab cannot be placed using slub_max_order. 3555 */ 3556 order = slab_order(size, 1, MAX_ORDER, 1); 3557 if (order < MAX_ORDER) 3558 return order; 3559 return -ENOSYS; 3560 } 3561 3562 static void 3563 init_kmem_cache_node(struct kmem_cache_node *n) 3564 { 3565 n->nr_partial = 0; 3566 spin_lock_init(&n->list_lock); 3567 INIT_LIST_HEAD(&n->partial); 3568 #ifdef CONFIG_SLUB_DEBUG 3569 atomic_long_set(&n->nr_slabs, 0); 3570 atomic_long_set(&n->total_objects, 0); 3571 INIT_LIST_HEAD(&n->full); 3572 #endif 3573 } 3574 3575 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3576 { 3577 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3578 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3579 3580 /* 3581 * Must align to double word boundary for the double cmpxchg 3582 * instructions to work; see __pcpu_double_call_return_bool(). 3583 */ 3584 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3585 2 * sizeof(void *)); 3586 3587 if (!s->cpu_slab) 3588 return 0; 3589 3590 init_kmem_cache_cpus(s); 3591 3592 return 1; 3593 } 3594 3595 static struct kmem_cache *kmem_cache_node; 3596 3597 /* 3598 * No kmalloc_node yet so do it by hand. We know that this is the first 3599 * slab on the node for this slabcache. There are no concurrent accesses 3600 * possible. 3601 * 3602 * Note that this function only works on the kmem_cache_node 3603 * when allocating for the kmem_cache_node. This is used for bootstrapping 3604 * memory on a fresh node that has no slab structures yet. 3605 */ 3606 static void early_kmem_cache_node_alloc(int node) 3607 { 3608 struct page *page; 3609 struct kmem_cache_node *n; 3610 3611 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3612 3613 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3614 3615 BUG_ON(!page); 3616 if (page_to_nid(page) != node) { 3617 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3618 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3619 } 3620 3621 n = page->freelist; 3622 BUG_ON(!n); 3623 #ifdef CONFIG_SLUB_DEBUG 3624 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3625 init_tracking(kmem_cache_node, n); 3626 #endif 3627 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 3628 page->freelist = get_freepointer(kmem_cache_node, n); 3629 page->inuse = 1; 3630 page->frozen = 0; 3631 kmem_cache_node->node[node] = n; 3632 init_kmem_cache_node(n); 3633 inc_slabs_node(kmem_cache_node, node, page->objects); 3634 3635 /* 3636 * No locks need to be taken here as it has just been 3637 * initialized and there is no concurrent access. 3638 */ 3639 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3640 } 3641 3642 static void free_kmem_cache_nodes(struct kmem_cache *s) 3643 { 3644 int node; 3645 struct kmem_cache_node *n; 3646 3647 for_each_kmem_cache_node(s, node, n) { 3648 s->node[node] = NULL; 3649 kmem_cache_free(kmem_cache_node, n); 3650 } 3651 } 3652 3653 void __kmem_cache_release(struct kmem_cache *s) 3654 { 3655 cache_random_seq_destroy(s); 3656 free_percpu(s->cpu_slab); 3657 free_kmem_cache_nodes(s); 3658 } 3659 3660 static int init_kmem_cache_nodes(struct kmem_cache *s) 3661 { 3662 int node; 3663 3664 for_each_node_mask(node, slab_nodes) { 3665 struct kmem_cache_node *n; 3666 3667 if (slab_state == DOWN) { 3668 early_kmem_cache_node_alloc(node); 3669 continue; 3670 } 3671 n = kmem_cache_alloc_node(kmem_cache_node, 3672 GFP_KERNEL, node); 3673 3674 if (!n) { 3675 free_kmem_cache_nodes(s); 3676 return 0; 3677 } 3678 3679 init_kmem_cache_node(n); 3680 s->node[node] = n; 3681 } 3682 return 1; 3683 } 3684 3685 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3686 { 3687 if (min < MIN_PARTIAL) 3688 min = MIN_PARTIAL; 3689 else if (min > MAX_PARTIAL) 3690 min = MAX_PARTIAL; 3691 s->min_partial = min; 3692 } 3693 3694 static void set_cpu_partial(struct kmem_cache *s) 3695 { 3696 #ifdef CONFIG_SLUB_CPU_PARTIAL 3697 /* 3698 * cpu_partial determined the maximum number of objects kept in the 3699 * per cpu partial lists of a processor. 3700 * 3701 * Per cpu partial lists mainly contain slabs that just have one 3702 * object freed. If they are used for allocation then they can be 3703 * filled up again with minimal effort. The slab will never hit the 3704 * per node partial lists and therefore no locking will be required. 3705 * 3706 * This setting also determines 3707 * 3708 * A) The number of objects from per cpu partial slabs dumped to the 3709 * per node list when we reach the limit. 3710 * B) The number of objects in cpu partial slabs to extract from the 3711 * per node list when we run out of per cpu objects. We only fetch 3712 * 50% to keep some capacity around for frees. 3713 */ 3714 if (!kmem_cache_has_cpu_partial(s)) 3715 slub_set_cpu_partial(s, 0); 3716 else if (s->size >= PAGE_SIZE) 3717 slub_set_cpu_partial(s, 2); 3718 else if (s->size >= 1024) 3719 slub_set_cpu_partial(s, 6); 3720 else if (s->size >= 256) 3721 slub_set_cpu_partial(s, 13); 3722 else 3723 slub_set_cpu_partial(s, 30); 3724 #endif 3725 } 3726 3727 /* 3728 * calculate_sizes() determines the order and the distribution of data within 3729 * a slab object. 3730 */ 3731 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3732 { 3733 slab_flags_t flags = s->flags; 3734 unsigned int size = s->object_size; 3735 unsigned int order; 3736 3737 /* 3738 * Round up object size to the next word boundary. We can only 3739 * place the free pointer at word boundaries and this determines 3740 * the possible location of the free pointer. 3741 */ 3742 size = ALIGN(size, sizeof(void *)); 3743 3744 #ifdef CONFIG_SLUB_DEBUG 3745 /* 3746 * Determine if we can poison the object itself. If the user of 3747 * the slab may touch the object after free or before allocation 3748 * then we should never poison the object itself. 3749 */ 3750 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3751 !s->ctor) 3752 s->flags |= __OBJECT_POISON; 3753 else 3754 s->flags &= ~__OBJECT_POISON; 3755 3756 3757 /* 3758 * If we are Redzoning then check if there is some space between the 3759 * end of the object and the free pointer. If not then add an 3760 * additional word to have some bytes to store Redzone information. 3761 */ 3762 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3763 size += sizeof(void *); 3764 #endif 3765 3766 /* 3767 * With that we have determined the number of bytes in actual use 3768 * by the object and redzoning. 3769 */ 3770 s->inuse = size; 3771 3772 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3773 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || 3774 s->ctor) { 3775 /* 3776 * Relocate free pointer after the object if it is not 3777 * permitted to overwrite the first word of the object on 3778 * kmem_cache_free. 3779 * 3780 * This is the case if we do RCU, have a constructor or 3781 * destructor, are poisoning the objects, or are 3782 * redzoning an object smaller than sizeof(void *). 3783 * 3784 * The assumption that s->offset >= s->inuse means free 3785 * pointer is outside of the object is used in the 3786 * freeptr_outside_object() function. If that is no 3787 * longer true, the function needs to be modified. 3788 */ 3789 s->offset = size; 3790 size += sizeof(void *); 3791 } else { 3792 /* 3793 * Store freelist pointer near middle of object to keep 3794 * it away from the edges of the object to avoid small 3795 * sized over/underflows from neighboring allocations. 3796 */ 3797 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 3798 } 3799 3800 #ifdef CONFIG_SLUB_DEBUG 3801 if (flags & SLAB_STORE_USER) 3802 /* 3803 * Need to store information about allocs and frees after 3804 * the object. 3805 */ 3806 size += 2 * sizeof(struct track); 3807 #endif 3808 3809 kasan_cache_create(s, &size, &s->flags); 3810 #ifdef CONFIG_SLUB_DEBUG 3811 if (flags & SLAB_RED_ZONE) { 3812 /* 3813 * Add some empty padding so that we can catch 3814 * overwrites from earlier objects rather than let 3815 * tracking information or the free pointer be 3816 * corrupted if a user writes before the start 3817 * of the object. 3818 */ 3819 size += sizeof(void *); 3820 3821 s->red_left_pad = sizeof(void *); 3822 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3823 size += s->red_left_pad; 3824 } 3825 #endif 3826 3827 /* 3828 * SLUB stores one object immediately after another beginning from 3829 * offset 0. In order to align the objects we have to simply size 3830 * each object to conform to the alignment. 3831 */ 3832 size = ALIGN(size, s->align); 3833 s->size = size; 3834 s->reciprocal_size = reciprocal_value(size); 3835 if (forced_order >= 0) 3836 order = forced_order; 3837 else 3838 order = calculate_order(size); 3839 3840 if ((int)order < 0) 3841 return 0; 3842 3843 s->allocflags = 0; 3844 if (order) 3845 s->allocflags |= __GFP_COMP; 3846 3847 if (s->flags & SLAB_CACHE_DMA) 3848 s->allocflags |= GFP_DMA; 3849 3850 if (s->flags & SLAB_CACHE_DMA32) 3851 s->allocflags |= GFP_DMA32; 3852 3853 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3854 s->allocflags |= __GFP_RECLAIMABLE; 3855 3856 /* 3857 * Determine the number of objects per slab 3858 */ 3859 s->oo = oo_make(order, size); 3860 s->min = oo_make(get_order(size), size); 3861 if (oo_objects(s->oo) > oo_objects(s->max)) 3862 s->max = s->oo; 3863 3864 return !!oo_objects(s->oo); 3865 } 3866 3867 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3868 { 3869 s->flags = kmem_cache_flags(s->size, flags, s->name); 3870 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3871 s->random = get_random_long(); 3872 #endif 3873 3874 if (!calculate_sizes(s, -1)) 3875 goto error; 3876 if (disable_higher_order_debug) { 3877 /* 3878 * Disable debugging flags that store metadata if the min slab 3879 * order increased. 3880 */ 3881 if (get_order(s->size) > get_order(s->object_size)) { 3882 s->flags &= ~DEBUG_METADATA_FLAGS; 3883 s->offset = 0; 3884 if (!calculate_sizes(s, -1)) 3885 goto error; 3886 } 3887 } 3888 3889 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3890 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3891 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3892 /* Enable fast mode */ 3893 s->flags |= __CMPXCHG_DOUBLE; 3894 #endif 3895 3896 /* 3897 * The larger the object size is, the more pages we want on the partial 3898 * list to avoid pounding the page allocator excessively. 3899 */ 3900 set_min_partial(s, ilog2(s->size) / 2); 3901 3902 set_cpu_partial(s); 3903 3904 #ifdef CONFIG_NUMA 3905 s->remote_node_defrag_ratio = 1000; 3906 #endif 3907 3908 /* Initialize the pre-computed randomized freelist if slab is up */ 3909 if (slab_state >= UP) { 3910 if (init_cache_random_seq(s)) 3911 goto error; 3912 } 3913 3914 if (!init_kmem_cache_nodes(s)) 3915 goto error; 3916 3917 if (alloc_kmem_cache_cpus(s)) 3918 return 0; 3919 3920 free_kmem_cache_nodes(s); 3921 error: 3922 return -EINVAL; 3923 } 3924 3925 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3926 const char *text) 3927 { 3928 #ifdef CONFIG_SLUB_DEBUG 3929 void *addr = page_address(page); 3930 unsigned long *map; 3931 void *p; 3932 3933 slab_err(s, page, text, s->name); 3934 slab_lock(page); 3935 3936 map = get_map(s, page); 3937 for_each_object(p, s, addr, page->objects) { 3938 3939 if (!test_bit(__obj_to_index(s, addr, p), map)) { 3940 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 3941 print_tracking(s, p); 3942 } 3943 } 3944 put_map(map); 3945 slab_unlock(page); 3946 #endif 3947 } 3948 3949 /* 3950 * Attempt to free all partial slabs on a node. 3951 * This is called from __kmem_cache_shutdown(). We must take list_lock 3952 * because sysfs file might still access partial list after the shutdowning. 3953 */ 3954 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3955 { 3956 LIST_HEAD(discard); 3957 struct page *page, *h; 3958 3959 BUG_ON(irqs_disabled()); 3960 spin_lock_irq(&n->list_lock); 3961 list_for_each_entry_safe(page, h, &n->partial, slab_list) { 3962 if (!page->inuse) { 3963 remove_partial(n, page); 3964 list_add(&page->slab_list, &discard); 3965 } else { 3966 list_slab_objects(s, page, 3967 "Objects remaining in %s on __kmem_cache_shutdown()"); 3968 } 3969 } 3970 spin_unlock_irq(&n->list_lock); 3971 3972 list_for_each_entry_safe(page, h, &discard, slab_list) 3973 discard_slab(s, page); 3974 } 3975 3976 bool __kmem_cache_empty(struct kmem_cache *s) 3977 { 3978 int node; 3979 struct kmem_cache_node *n; 3980 3981 for_each_kmem_cache_node(s, node, n) 3982 if (n->nr_partial || slabs_node(s, node)) 3983 return false; 3984 return true; 3985 } 3986 3987 /* 3988 * Release all resources used by a slab cache. 3989 */ 3990 int __kmem_cache_shutdown(struct kmem_cache *s) 3991 { 3992 int node; 3993 struct kmem_cache_node *n; 3994 3995 flush_all(s); 3996 /* Attempt to free all objects */ 3997 for_each_kmem_cache_node(s, node, n) { 3998 free_partial(s, n); 3999 if (n->nr_partial || slabs_node(s, node)) 4000 return 1; 4001 } 4002 return 0; 4003 } 4004 4005 #ifdef CONFIG_PRINTK 4006 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page) 4007 { 4008 void *base; 4009 int __maybe_unused i; 4010 unsigned int objnr; 4011 void *objp; 4012 void *objp0; 4013 struct kmem_cache *s = page->slab_cache; 4014 struct track __maybe_unused *trackp; 4015 4016 kpp->kp_ptr = object; 4017 kpp->kp_page = page; 4018 kpp->kp_slab_cache = s; 4019 base = page_address(page); 4020 objp0 = kasan_reset_tag(object); 4021 #ifdef CONFIG_SLUB_DEBUG 4022 objp = restore_red_left(s, objp0); 4023 #else 4024 objp = objp0; 4025 #endif 4026 objnr = obj_to_index(s, page, objp); 4027 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 4028 objp = base + s->size * objnr; 4029 kpp->kp_objp = objp; 4030 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) || 4031 !(s->flags & SLAB_STORE_USER)) 4032 return; 4033 #ifdef CONFIG_SLUB_DEBUG 4034 objp = fixup_red_left(s, objp); 4035 trackp = get_track(s, objp, TRACK_ALLOC); 4036 kpp->kp_ret = (void *)trackp->addr; 4037 #ifdef CONFIG_STACKTRACE 4038 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) { 4039 kpp->kp_stack[i] = (void *)trackp->addrs[i]; 4040 if (!kpp->kp_stack[i]) 4041 break; 4042 } 4043 4044 trackp = get_track(s, objp, TRACK_FREE); 4045 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) { 4046 kpp->kp_free_stack[i] = (void *)trackp->addrs[i]; 4047 if (!kpp->kp_free_stack[i]) 4048 break; 4049 } 4050 #endif 4051 #endif 4052 } 4053 #endif 4054 4055 /******************************************************************** 4056 * Kmalloc subsystem 4057 *******************************************************************/ 4058 4059 static int __init setup_slub_min_order(char *str) 4060 { 4061 get_option(&str, (int *)&slub_min_order); 4062 4063 return 1; 4064 } 4065 4066 __setup("slub_min_order=", setup_slub_min_order); 4067 4068 static int __init setup_slub_max_order(char *str) 4069 { 4070 get_option(&str, (int *)&slub_max_order); 4071 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 4072 4073 return 1; 4074 } 4075 4076 __setup("slub_max_order=", setup_slub_max_order); 4077 4078 static int __init setup_slub_min_objects(char *str) 4079 { 4080 get_option(&str, (int *)&slub_min_objects); 4081 4082 return 1; 4083 } 4084 4085 __setup("slub_min_objects=", setup_slub_min_objects); 4086 4087 void *__kmalloc(size_t size, gfp_t flags) 4088 { 4089 struct kmem_cache *s; 4090 void *ret; 4091 4092 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4093 return kmalloc_large(size, flags); 4094 4095 s = kmalloc_slab(size, flags); 4096 4097 if (unlikely(ZERO_OR_NULL_PTR(s))) 4098 return s; 4099 4100 ret = slab_alloc(s, flags, _RET_IP_, size); 4101 4102 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 4103 4104 ret = kasan_kmalloc(s, ret, size, flags); 4105 4106 return ret; 4107 } 4108 EXPORT_SYMBOL(__kmalloc); 4109 4110 #ifdef CONFIG_NUMA 4111 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 4112 { 4113 struct page *page; 4114 void *ptr = NULL; 4115 unsigned int order = get_order(size); 4116 4117 flags |= __GFP_COMP; 4118 page = alloc_pages_node(node, flags, order); 4119 if (page) { 4120 ptr = page_address(page); 4121 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, 4122 PAGE_SIZE << order); 4123 } 4124 4125 return kmalloc_large_node_hook(ptr, size, flags); 4126 } 4127 4128 void *__kmalloc_node(size_t size, gfp_t flags, int node) 4129 { 4130 struct kmem_cache *s; 4131 void *ret; 4132 4133 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4134 ret = kmalloc_large_node(size, flags, node); 4135 4136 trace_kmalloc_node(_RET_IP_, ret, 4137 size, PAGE_SIZE << get_order(size), 4138 flags, node); 4139 4140 return ret; 4141 } 4142 4143 s = kmalloc_slab(size, flags); 4144 4145 if (unlikely(ZERO_OR_NULL_PTR(s))) 4146 return s; 4147 4148 ret = slab_alloc_node(s, flags, node, _RET_IP_, size); 4149 4150 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 4151 4152 ret = kasan_kmalloc(s, ret, size, flags); 4153 4154 return ret; 4155 } 4156 EXPORT_SYMBOL(__kmalloc_node); 4157 #endif /* CONFIG_NUMA */ 4158 4159 #ifdef CONFIG_HARDENED_USERCOPY 4160 /* 4161 * Rejects incorrectly sized objects and objects that are to be copied 4162 * to/from userspace but do not fall entirely within the containing slab 4163 * cache's usercopy region. 4164 * 4165 * Returns NULL if check passes, otherwise const char * to name of cache 4166 * to indicate an error. 4167 */ 4168 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 4169 bool to_user) 4170 { 4171 struct kmem_cache *s; 4172 unsigned int offset; 4173 size_t object_size; 4174 bool is_kfence = is_kfence_address(ptr); 4175 4176 ptr = kasan_reset_tag(ptr); 4177 4178 /* Find object and usable object size. */ 4179 s = page->slab_cache; 4180 4181 /* Reject impossible pointers. */ 4182 if (ptr < page_address(page)) 4183 usercopy_abort("SLUB object not in SLUB page?!", NULL, 4184 to_user, 0, n); 4185 4186 /* Find offset within object. */ 4187 if (is_kfence) 4188 offset = ptr - kfence_object_start(ptr); 4189 else 4190 offset = (ptr - page_address(page)) % s->size; 4191 4192 /* Adjust for redzone and reject if within the redzone. */ 4193 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 4194 if (offset < s->red_left_pad) 4195 usercopy_abort("SLUB object in left red zone", 4196 s->name, to_user, offset, n); 4197 offset -= s->red_left_pad; 4198 } 4199 4200 /* Allow address range falling entirely within usercopy region. */ 4201 if (offset >= s->useroffset && 4202 offset - s->useroffset <= s->usersize && 4203 n <= s->useroffset - offset + s->usersize) 4204 return; 4205 4206 /* 4207 * If the copy is still within the allocated object, produce 4208 * a warning instead of rejecting the copy. This is intended 4209 * to be a temporary method to find any missing usercopy 4210 * whitelists. 4211 */ 4212 object_size = slab_ksize(s); 4213 if (usercopy_fallback && 4214 offset <= object_size && n <= object_size - offset) { 4215 usercopy_warn("SLUB object", s->name, to_user, offset, n); 4216 return; 4217 } 4218 4219 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4220 } 4221 #endif /* CONFIG_HARDENED_USERCOPY */ 4222 4223 size_t __ksize(const void *object) 4224 { 4225 struct page *page; 4226 4227 if (unlikely(object == ZERO_SIZE_PTR)) 4228 return 0; 4229 4230 page = virt_to_head_page(object); 4231 4232 if (unlikely(!PageSlab(page))) { 4233 WARN_ON(!PageCompound(page)); 4234 return page_size(page); 4235 } 4236 4237 return slab_ksize(page->slab_cache); 4238 } 4239 EXPORT_SYMBOL(__ksize); 4240 4241 void kfree(const void *x) 4242 { 4243 struct page *page; 4244 void *object = (void *)x; 4245 4246 trace_kfree(_RET_IP_, x); 4247 4248 if (unlikely(ZERO_OR_NULL_PTR(x))) 4249 return; 4250 4251 page = virt_to_head_page(x); 4252 if (unlikely(!PageSlab(page))) { 4253 unsigned int order = compound_order(page); 4254 4255 BUG_ON(!PageCompound(page)); 4256 kfree_hook(object); 4257 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, 4258 -(PAGE_SIZE << order)); 4259 __free_pages(page, order); 4260 return; 4261 } 4262 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 4263 } 4264 EXPORT_SYMBOL(kfree); 4265 4266 #define SHRINK_PROMOTE_MAX 32 4267 4268 /* 4269 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4270 * up most to the head of the partial lists. New allocations will then 4271 * fill those up and thus they can be removed from the partial lists. 4272 * 4273 * The slabs with the least items are placed last. This results in them 4274 * being allocated from last increasing the chance that the last objects 4275 * are freed in them. 4276 */ 4277 int __kmem_cache_shrink(struct kmem_cache *s) 4278 { 4279 int node; 4280 int i; 4281 struct kmem_cache_node *n; 4282 struct page *page; 4283 struct page *t; 4284 struct list_head discard; 4285 struct list_head promote[SHRINK_PROMOTE_MAX]; 4286 unsigned long flags; 4287 int ret = 0; 4288 4289 flush_all(s); 4290 for_each_kmem_cache_node(s, node, n) { 4291 INIT_LIST_HEAD(&discard); 4292 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4293 INIT_LIST_HEAD(promote + i); 4294 4295 spin_lock_irqsave(&n->list_lock, flags); 4296 4297 /* 4298 * Build lists of slabs to discard or promote. 4299 * 4300 * Note that concurrent frees may occur while we hold the 4301 * list_lock. page->inuse here is the upper limit. 4302 */ 4303 list_for_each_entry_safe(page, t, &n->partial, slab_list) { 4304 int free = page->objects - page->inuse; 4305 4306 /* Do not reread page->inuse */ 4307 barrier(); 4308 4309 /* We do not keep full slabs on the list */ 4310 BUG_ON(free <= 0); 4311 4312 if (free == page->objects) { 4313 list_move(&page->slab_list, &discard); 4314 n->nr_partial--; 4315 } else if (free <= SHRINK_PROMOTE_MAX) 4316 list_move(&page->slab_list, promote + free - 1); 4317 } 4318 4319 /* 4320 * Promote the slabs filled up most to the head of the 4321 * partial list. 4322 */ 4323 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4324 list_splice(promote + i, &n->partial); 4325 4326 spin_unlock_irqrestore(&n->list_lock, flags); 4327 4328 /* Release empty slabs */ 4329 list_for_each_entry_safe(page, t, &discard, slab_list) 4330 discard_slab(s, page); 4331 4332 if (slabs_node(s, node)) 4333 ret = 1; 4334 } 4335 4336 return ret; 4337 } 4338 4339 static int slab_mem_going_offline_callback(void *arg) 4340 { 4341 struct kmem_cache *s; 4342 4343 mutex_lock(&slab_mutex); 4344 list_for_each_entry(s, &slab_caches, list) 4345 __kmem_cache_shrink(s); 4346 mutex_unlock(&slab_mutex); 4347 4348 return 0; 4349 } 4350 4351 static void slab_mem_offline_callback(void *arg) 4352 { 4353 struct memory_notify *marg = arg; 4354 int offline_node; 4355 4356 offline_node = marg->status_change_nid_normal; 4357 4358 /* 4359 * If the node still has available memory. we need kmem_cache_node 4360 * for it yet. 4361 */ 4362 if (offline_node < 0) 4363 return; 4364 4365 mutex_lock(&slab_mutex); 4366 node_clear(offline_node, slab_nodes); 4367 /* 4368 * We no longer free kmem_cache_node structures here, as it would be 4369 * racy with all get_node() users, and infeasible to protect them with 4370 * slab_mutex. 4371 */ 4372 mutex_unlock(&slab_mutex); 4373 } 4374 4375 static int slab_mem_going_online_callback(void *arg) 4376 { 4377 struct kmem_cache_node *n; 4378 struct kmem_cache *s; 4379 struct memory_notify *marg = arg; 4380 int nid = marg->status_change_nid_normal; 4381 int ret = 0; 4382 4383 /* 4384 * If the node's memory is already available, then kmem_cache_node is 4385 * already created. Nothing to do. 4386 */ 4387 if (nid < 0) 4388 return 0; 4389 4390 /* 4391 * We are bringing a node online. No memory is available yet. We must 4392 * allocate a kmem_cache_node structure in order to bring the node 4393 * online. 4394 */ 4395 mutex_lock(&slab_mutex); 4396 list_for_each_entry(s, &slab_caches, list) { 4397 /* 4398 * The structure may already exist if the node was previously 4399 * onlined and offlined. 4400 */ 4401 if (get_node(s, nid)) 4402 continue; 4403 /* 4404 * XXX: kmem_cache_alloc_node will fallback to other nodes 4405 * since memory is not yet available from the node that 4406 * is brought up. 4407 */ 4408 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4409 if (!n) { 4410 ret = -ENOMEM; 4411 goto out; 4412 } 4413 init_kmem_cache_node(n); 4414 s->node[nid] = n; 4415 } 4416 /* 4417 * Any cache created after this point will also have kmem_cache_node 4418 * initialized for the new node. 4419 */ 4420 node_set(nid, slab_nodes); 4421 out: 4422 mutex_unlock(&slab_mutex); 4423 return ret; 4424 } 4425 4426 static int slab_memory_callback(struct notifier_block *self, 4427 unsigned long action, void *arg) 4428 { 4429 int ret = 0; 4430 4431 switch (action) { 4432 case MEM_GOING_ONLINE: 4433 ret = slab_mem_going_online_callback(arg); 4434 break; 4435 case MEM_GOING_OFFLINE: 4436 ret = slab_mem_going_offline_callback(arg); 4437 break; 4438 case MEM_OFFLINE: 4439 case MEM_CANCEL_ONLINE: 4440 slab_mem_offline_callback(arg); 4441 break; 4442 case MEM_ONLINE: 4443 case MEM_CANCEL_OFFLINE: 4444 break; 4445 } 4446 if (ret) 4447 ret = notifier_from_errno(ret); 4448 else 4449 ret = NOTIFY_OK; 4450 return ret; 4451 } 4452 4453 static struct notifier_block slab_memory_callback_nb = { 4454 .notifier_call = slab_memory_callback, 4455 .priority = SLAB_CALLBACK_PRI, 4456 }; 4457 4458 /******************************************************************** 4459 * Basic setup of slabs 4460 *******************************************************************/ 4461 4462 /* 4463 * Used for early kmem_cache structures that were allocated using 4464 * the page allocator. Allocate them properly then fix up the pointers 4465 * that may be pointing to the wrong kmem_cache structure. 4466 */ 4467 4468 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4469 { 4470 int node; 4471 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4472 struct kmem_cache_node *n; 4473 4474 memcpy(s, static_cache, kmem_cache->object_size); 4475 4476 /* 4477 * This runs very early, and only the boot processor is supposed to be 4478 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4479 * IPIs around. 4480 */ 4481 __flush_cpu_slab(s, smp_processor_id()); 4482 for_each_kmem_cache_node(s, node, n) { 4483 struct page *p; 4484 4485 list_for_each_entry(p, &n->partial, slab_list) 4486 p->slab_cache = s; 4487 4488 #ifdef CONFIG_SLUB_DEBUG 4489 list_for_each_entry(p, &n->full, slab_list) 4490 p->slab_cache = s; 4491 #endif 4492 } 4493 list_add(&s->list, &slab_caches); 4494 return s; 4495 } 4496 4497 void __init kmem_cache_init(void) 4498 { 4499 static __initdata struct kmem_cache boot_kmem_cache, 4500 boot_kmem_cache_node; 4501 int node; 4502 4503 if (debug_guardpage_minorder()) 4504 slub_max_order = 0; 4505 4506 /* Print slub debugging pointers without hashing */ 4507 if (__slub_debug_enabled()) 4508 no_hash_pointers_enable(NULL); 4509 4510 kmem_cache_node = &boot_kmem_cache_node; 4511 kmem_cache = &boot_kmem_cache; 4512 4513 /* 4514 * Initialize the nodemask for which we will allocate per node 4515 * structures. Here we don't need taking slab_mutex yet. 4516 */ 4517 for_each_node_state(node, N_NORMAL_MEMORY) 4518 node_set(node, slab_nodes); 4519 4520 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4521 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4522 4523 register_hotmemory_notifier(&slab_memory_callback_nb); 4524 4525 /* Able to allocate the per node structures */ 4526 slab_state = PARTIAL; 4527 4528 create_boot_cache(kmem_cache, "kmem_cache", 4529 offsetof(struct kmem_cache, node) + 4530 nr_node_ids * sizeof(struct kmem_cache_node *), 4531 SLAB_HWCACHE_ALIGN, 0, 0); 4532 4533 kmem_cache = bootstrap(&boot_kmem_cache); 4534 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4535 4536 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4537 setup_kmalloc_cache_index_table(); 4538 create_kmalloc_caches(0); 4539 4540 /* Setup random freelists for each cache */ 4541 init_freelist_randomization(); 4542 4543 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4544 slub_cpu_dead); 4545 4546 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4547 cache_line_size(), 4548 slub_min_order, slub_max_order, slub_min_objects, 4549 nr_cpu_ids, nr_node_ids); 4550 } 4551 4552 void __init kmem_cache_init_late(void) 4553 { 4554 } 4555 4556 struct kmem_cache * 4557 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4558 slab_flags_t flags, void (*ctor)(void *)) 4559 { 4560 struct kmem_cache *s; 4561 4562 s = find_mergeable(size, align, flags, name, ctor); 4563 if (s) { 4564 s->refcount++; 4565 4566 /* 4567 * Adjust the object sizes so that we clear 4568 * the complete object on kzalloc. 4569 */ 4570 s->object_size = max(s->object_size, size); 4571 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4572 4573 if (sysfs_slab_alias(s, name)) { 4574 s->refcount--; 4575 s = NULL; 4576 } 4577 } 4578 4579 return s; 4580 } 4581 4582 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4583 { 4584 int err; 4585 4586 err = kmem_cache_open(s, flags); 4587 if (err) 4588 return err; 4589 4590 /* Mutex is not taken during early boot */ 4591 if (slab_state <= UP) 4592 return 0; 4593 4594 err = sysfs_slab_add(s); 4595 if (err) 4596 __kmem_cache_release(s); 4597 4598 if (s->flags & SLAB_STORE_USER) 4599 debugfs_slab_add(s); 4600 4601 return err; 4602 } 4603 4604 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4605 { 4606 struct kmem_cache *s; 4607 void *ret; 4608 4609 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4610 return kmalloc_large(size, gfpflags); 4611 4612 s = kmalloc_slab(size, gfpflags); 4613 4614 if (unlikely(ZERO_OR_NULL_PTR(s))) 4615 return s; 4616 4617 ret = slab_alloc(s, gfpflags, caller, size); 4618 4619 /* Honor the call site pointer we received. */ 4620 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4621 4622 return ret; 4623 } 4624 EXPORT_SYMBOL(__kmalloc_track_caller); 4625 4626 #ifdef CONFIG_NUMA 4627 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4628 int node, unsigned long caller) 4629 { 4630 struct kmem_cache *s; 4631 void *ret; 4632 4633 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4634 ret = kmalloc_large_node(size, gfpflags, node); 4635 4636 trace_kmalloc_node(caller, ret, 4637 size, PAGE_SIZE << get_order(size), 4638 gfpflags, node); 4639 4640 return ret; 4641 } 4642 4643 s = kmalloc_slab(size, gfpflags); 4644 4645 if (unlikely(ZERO_OR_NULL_PTR(s))) 4646 return s; 4647 4648 ret = slab_alloc_node(s, gfpflags, node, caller, size); 4649 4650 /* Honor the call site pointer we received. */ 4651 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4652 4653 return ret; 4654 } 4655 EXPORT_SYMBOL(__kmalloc_node_track_caller); 4656 #endif 4657 4658 #ifdef CONFIG_SYSFS 4659 static int count_inuse(struct page *page) 4660 { 4661 return page->inuse; 4662 } 4663 4664 static int count_total(struct page *page) 4665 { 4666 return page->objects; 4667 } 4668 #endif 4669 4670 #ifdef CONFIG_SLUB_DEBUG 4671 static void validate_slab(struct kmem_cache *s, struct page *page) 4672 { 4673 void *p; 4674 void *addr = page_address(page); 4675 unsigned long *map; 4676 4677 slab_lock(page); 4678 4679 if (!check_slab(s, page) || !on_freelist(s, page, NULL)) 4680 goto unlock; 4681 4682 /* Now we know that a valid freelist exists */ 4683 map = get_map(s, page); 4684 for_each_object(p, s, addr, page->objects) { 4685 u8 val = test_bit(__obj_to_index(s, addr, p), map) ? 4686 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 4687 4688 if (!check_object(s, page, p, val)) 4689 break; 4690 } 4691 put_map(map); 4692 unlock: 4693 slab_unlock(page); 4694 } 4695 4696 static int validate_slab_node(struct kmem_cache *s, 4697 struct kmem_cache_node *n) 4698 { 4699 unsigned long count = 0; 4700 struct page *page; 4701 unsigned long flags; 4702 4703 spin_lock_irqsave(&n->list_lock, flags); 4704 4705 list_for_each_entry(page, &n->partial, slab_list) { 4706 validate_slab(s, page); 4707 count++; 4708 } 4709 if (count != n->nr_partial) { 4710 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4711 s->name, count, n->nr_partial); 4712 slab_add_kunit_errors(); 4713 } 4714 4715 if (!(s->flags & SLAB_STORE_USER)) 4716 goto out; 4717 4718 list_for_each_entry(page, &n->full, slab_list) { 4719 validate_slab(s, page); 4720 count++; 4721 } 4722 if (count != atomic_long_read(&n->nr_slabs)) { 4723 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4724 s->name, count, atomic_long_read(&n->nr_slabs)); 4725 slab_add_kunit_errors(); 4726 } 4727 4728 out: 4729 spin_unlock_irqrestore(&n->list_lock, flags); 4730 return count; 4731 } 4732 4733 long validate_slab_cache(struct kmem_cache *s) 4734 { 4735 int node; 4736 unsigned long count = 0; 4737 struct kmem_cache_node *n; 4738 4739 flush_all(s); 4740 for_each_kmem_cache_node(s, node, n) 4741 count += validate_slab_node(s, n); 4742 4743 return count; 4744 } 4745 EXPORT_SYMBOL(validate_slab_cache); 4746 4747 #ifdef CONFIG_DEBUG_FS 4748 /* 4749 * Generate lists of code addresses where slabcache objects are allocated 4750 * and freed. 4751 */ 4752 4753 struct location { 4754 unsigned long count; 4755 unsigned long addr; 4756 long long sum_time; 4757 long min_time; 4758 long max_time; 4759 long min_pid; 4760 long max_pid; 4761 DECLARE_BITMAP(cpus, NR_CPUS); 4762 nodemask_t nodes; 4763 }; 4764 4765 struct loc_track { 4766 unsigned long max; 4767 unsigned long count; 4768 struct location *loc; 4769 }; 4770 4771 static struct dentry *slab_debugfs_root; 4772 4773 static void free_loc_track(struct loc_track *t) 4774 { 4775 if (t->max) 4776 free_pages((unsigned long)t->loc, 4777 get_order(sizeof(struct location) * t->max)); 4778 } 4779 4780 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4781 { 4782 struct location *l; 4783 int order; 4784 4785 order = get_order(sizeof(struct location) * max); 4786 4787 l = (void *)__get_free_pages(flags, order); 4788 if (!l) 4789 return 0; 4790 4791 if (t->count) { 4792 memcpy(l, t->loc, sizeof(struct location) * t->count); 4793 free_loc_track(t); 4794 } 4795 t->max = max; 4796 t->loc = l; 4797 return 1; 4798 } 4799 4800 static int add_location(struct loc_track *t, struct kmem_cache *s, 4801 const struct track *track) 4802 { 4803 long start, end, pos; 4804 struct location *l; 4805 unsigned long caddr; 4806 unsigned long age = jiffies - track->when; 4807 4808 start = -1; 4809 end = t->count; 4810 4811 for ( ; ; ) { 4812 pos = start + (end - start + 1) / 2; 4813 4814 /* 4815 * There is nothing at "end". If we end up there 4816 * we need to add something to before end. 4817 */ 4818 if (pos == end) 4819 break; 4820 4821 caddr = t->loc[pos].addr; 4822 if (track->addr == caddr) { 4823 4824 l = &t->loc[pos]; 4825 l->count++; 4826 if (track->when) { 4827 l->sum_time += age; 4828 if (age < l->min_time) 4829 l->min_time = age; 4830 if (age > l->max_time) 4831 l->max_time = age; 4832 4833 if (track->pid < l->min_pid) 4834 l->min_pid = track->pid; 4835 if (track->pid > l->max_pid) 4836 l->max_pid = track->pid; 4837 4838 cpumask_set_cpu(track->cpu, 4839 to_cpumask(l->cpus)); 4840 } 4841 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4842 return 1; 4843 } 4844 4845 if (track->addr < caddr) 4846 end = pos; 4847 else 4848 start = pos; 4849 } 4850 4851 /* 4852 * Not found. Insert new tracking element. 4853 */ 4854 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4855 return 0; 4856 4857 l = t->loc + pos; 4858 if (pos < t->count) 4859 memmove(l + 1, l, 4860 (t->count - pos) * sizeof(struct location)); 4861 t->count++; 4862 l->count = 1; 4863 l->addr = track->addr; 4864 l->sum_time = age; 4865 l->min_time = age; 4866 l->max_time = age; 4867 l->min_pid = track->pid; 4868 l->max_pid = track->pid; 4869 cpumask_clear(to_cpumask(l->cpus)); 4870 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4871 nodes_clear(l->nodes); 4872 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4873 return 1; 4874 } 4875 4876 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4877 struct page *page, enum track_item alloc) 4878 { 4879 void *addr = page_address(page); 4880 void *p; 4881 unsigned long *map; 4882 4883 map = get_map(s, page); 4884 for_each_object(p, s, addr, page->objects) 4885 if (!test_bit(__obj_to_index(s, addr, p), map)) 4886 add_location(t, s, get_track(s, p, alloc)); 4887 put_map(map); 4888 } 4889 #endif /* CONFIG_DEBUG_FS */ 4890 #endif /* CONFIG_SLUB_DEBUG */ 4891 4892 #ifdef CONFIG_SYSFS 4893 enum slab_stat_type { 4894 SL_ALL, /* All slabs */ 4895 SL_PARTIAL, /* Only partially allocated slabs */ 4896 SL_CPU, /* Only slabs used for cpu caches */ 4897 SL_OBJECTS, /* Determine allocated objects not slabs */ 4898 SL_TOTAL /* Determine object capacity not slabs */ 4899 }; 4900 4901 #define SO_ALL (1 << SL_ALL) 4902 #define SO_PARTIAL (1 << SL_PARTIAL) 4903 #define SO_CPU (1 << SL_CPU) 4904 #define SO_OBJECTS (1 << SL_OBJECTS) 4905 #define SO_TOTAL (1 << SL_TOTAL) 4906 4907 static ssize_t show_slab_objects(struct kmem_cache *s, 4908 char *buf, unsigned long flags) 4909 { 4910 unsigned long total = 0; 4911 int node; 4912 int x; 4913 unsigned long *nodes; 4914 int len = 0; 4915 4916 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4917 if (!nodes) 4918 return -ENOMEM; 4919 4920 if (flags & SO_CPU) { 4921 int cpu; 4922 4923 for_each_possible_cpu(cpu) { 4924 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4925 cpu); 4926 int node; 4927 struct page *page; 4928 4929 page = READ_ONCE(c->page); 4930 if (!page) 4931 continue; 4932 4933 node = page_to_nid(page); 4934 if (flags & SO_TOTAL) 4935 x = page->objects; 4936 else if (flags & SO_OBJECTS) 4937 x = page->inuse; 4938 else 4939 x = 1; 4940 4941 total += x; 4942 nodes[node] += x; 4943 4944 page = slub_percpu_partial_read_once(c); 4945 if (page) { 4946 node = page_to_nid(page); 4947 if (flags & SO_TOTAL) 4948 WARN_ON_ONCE(1); 4949 else if (flags & SO_OBJECTS) 4950 WARN_ON_ONCE(1); 4951 else 4952 x = page->pages; 4953 total += x; 4954 nodes[node] += x; 4955 } 4956 } 4957 } 4958 4959 /* 4960 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 4961 * already held which will conflict with an existing lock order: 4962 * 4963 * mem_hotplug_lock->slab_mutex->kernfs_mutex 4964 * 4965 * We don't really need mem_hotplug_lock (to hold off 4966 * slab_mem_going_offline_callback) here because slab's memory hot 4967 * unplug code doesn't destroy the kmem_cache->node[] data. 4968 */ 4969 4970 #ifdef CONFIG_SLUB_DEBUG 4971 if (flags & SO_ALL) { 4972 struct kmem_cache_node *n; 4973 4974 for_each_kmem_cache_node(s, node, n) { 4975 4976 if (flags & SO_TOTAL) 4977 x = atomic_long_read(&n->total_objects); 4978 else if (flags & SO_OBJECTS) 4979 x = atomic_long_read(&n->total_objects) - 4980 count_partial(n, count_free); 4981 else 4982 x = atomic_long_read(&n->nr_slabs); 4983 total += x; 4984 nodes[node] += x; 4985 } 4986 4987 } else 4988 #endif 4989 if (flags & SO_PARTIAL) { 4990 struct kmem_cache_node *n; 4991 4992 for_each_kmem_cache_node(s, node, n) { 4993 if (flags & SO_TOTAL) 4994 x = count_partial(n, count_total); 4995 else if (flags & SO_OBJECTS) 4996 x = count_partial(n, count_inuse); 4997 else 4998 x = n->nr_partial; 4999 total += x; 5000 nodes[node] += x; 5001 } 5002 } 5003 5004 len += sysfs_emit_at(buf, len, "%lu", total); 5005 #ifdef CONFIG_NUMA 5006 for (node = 0; node < nr_node_ids; node++) { 5007 if (nodes[node]) 5008 len += sysfs_emit_at(buf, len, " N%d=%lu", 5009 node, nodes[node]); 5010 } 5011 #endif 5012 len += sysfs_emit_at(buf, len, "\n"); 5013 kfree(nodes); 5014 5015 return len; 5016 } 5017 5018 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 5019 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5020 5021 struct slab_attribute { 5022 struct attribute attr; 5023 ssize_t (*show)(struct kmem_cache *s, char *buf); 5024 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5025 }; 5026 5027 #define SLAB_ATTR_RO(_name) \ 5028 static struct slab_attribute _name##_attr = \ 5029 __ATTR(_name, 0400, _name##_show, NULL) 5030 5031 #define SLAB_ATTR(_name) \ 5032 static struct slab_attribute _name##_attr = \ 5033 __ATTR(_name, 0600, _name##_show, _name##_store) 5034 5035 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5036 { 5037 return sysfs_emit(buf, "%u\n", s->size); 5038 } 5039 SLAB_ATTR_RO(slab_size); 5040 5041 static ssize_t align_show(struct kmem_cache *s, char *buf) 5042 { 5043 return sysfs_emit(buf, "%u\n", s->align); 5044 } 5045 SLAB_ATTR_RO(align); 5046 5047 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5048 { 5049 return sysfs_emit(buf, "%u\n", s->object_size); 5050 } 5051 SLAB_ATTR_RO(object_size); 5052 5053 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5054 { 5055 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 5056 } 5057 SLAB_ATTR_RO(objs_per_slab); 5058 5059 static ssize_t order_show(struct kmem_cache *s, char *buf) 5060 { 5061 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 5062 } 5063 SLAB_ATTR_RO(order); 5064 5065 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5066 { 5067 return sysfs_emit(buf, "%lu\n", s->min_partial); 5068 } 5069 5070 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5071 size_t length) 5072 { 5073 unsigned long min; 5074 int err; 5075 5076 err = kstrtoul(buf, 10, &min); 5077 if (err) 5078 return err; 5079 5080 set_min_partial(s, min); 5081 return length; 5082 } 5083 SLAB_ATTR(min_partial); 5084 5085 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5086 { 5087 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s)); 5088 } 5089 5090 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5091 size_t length) 5092 { 5093 unsigned int objects; 5094 int err; 5095 5096 err = kstrtouint(buf, 10, &objects); 5097 if (err) 5098 return err; 5099 if (objects && !kmem_cache_has_cpu_partial(s)) 5100 return -EINVAL; 5101 5102 slub_set_cpu_partial(s, objects); 5103 flush_all(s); 5104 return length; 5105 } 5106 SLAB_ATTR(cpu_partial); 5107 5108 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5109 { 5110 if (!s->ctor) 5111 return 0; 5112 return sysfs_emit(buf, "%pS\n", s->ctor); 5113 } 5114 SLAB_ATTR_RO(ctor); 5115 5116 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5117 { 5118 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5119 } 5120 SLAB_ATTR_RO(aliases); 5121 5122 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5123 { 5124 return show_slab_objects(s, buf, SO_PARTIAL); 5125 } 5126 SLAB_ATTR_RO(partial); 5127 5128 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5129 { 5130 return show_slab_objects(s, buf, SO_CPU); 5131 } 5132 SLAB_ATTR_RO(cpu_slabs); 5133 5134 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5135 { 5136 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5137 } 5138 SLAB_ATTR_RO(objects); 5139 5140 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5141 { 5142 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5143 } 5144 SLAB_ATTR_RO(objects_partial); 5145 5146 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5147 { 5148 int objects = 0; 5149 int pages = 0; 5150 int cpu; 5151 int len = 0; 5152 5153 for_each_online_cpu(cpu) { 5154 struct page *page; 5155 5156 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5157 5158 if (page) { 5159 pages += page->pages; 5160 objects += page->pobjects; 5161 } 5162 } 5163 5164 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages); 5165 5166 #ifdef CONFIG_SMP 5167 for_each_online_cpu(cpu) { 5168 struct page *page; 5169 5170 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5171 if (page) 5172 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 5173 cpu, page->pobjects, page->pages); 5174 } 5175 #endif 5176 len += sysfs_emit_at(buf, len, "\n"); 5177 5178 return len; 5179 } 5180 SLAB_ATTR_RO(slabs_cpu_partial); 5181 5182 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5183 { 5184 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5185 } 5186 SLAB_ATTR_RO(reclaim_account); 5187 5188 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5189 { 5190 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5191 } 5192 SLAB_ATTR_RO(hwcache_align); 5193 5194 #ifdef CONFIG_ZONE_DMA 5195 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5196 { 5197 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5198 } 5199 SLAB_ATTR_RO(cache_dma); 5200 #endif 5201 5202 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5203 { 5204 return sysfs_emit(buf, "%u\n", s->usersize); 5205 } 5206 SLAB_ATTR_RO(usersize); 5207 5208 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5209 { 5210 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5211 } 5212 SLAB_ATTR_RO(destroy_by_rcu); 5213 5214 #ifdef CONFIG_SLUB_DEBUG 5215 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5216 { 5217 return show_slab_objects(s, buf, SO_ALL); 5218 } 5219 SLAB_ATTR_RO(slabs); 5220 5221 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5222 { 5223 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5224 } 5225 SLAB_ATTR_RO(total_objects); 5226 5227 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5228 { 5229 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5230 } 5231 SLAB_ATTR_RO(sanity_checks); 5232 5233 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5234 { 5235 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5236 } 5237 SLAB_ATTR_RO(trace); 5238 5239 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5240 { 5241 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5242 } 5243 5244 SLAB_ATTR_RO(red_zone); 5245 5246 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5247 { 5248 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5249 } 5250 5251 SLAB_ATTR_RO(poison); 5252 5253 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5254 { 5255 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5256 } 5257 5258 SLAB_ATTR_RO(store_user); 5259 5260 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5261 { 5262 return 0; 5263 } 5264 5265 static ssize_t validate_store(struct kmem_cache *s, 5266 const char *buf, size_t length) 5267 { 5268 int ret = -EINVAL; 5269 5270 if (buf[0] == '1') { 5271 ret = validate_slab_cache(s); 5272 if (ret >= 0) 5273 ret = length; 5274 } 5275 return ret; 5276 } 5277 SLAB_ATTR(validate); 5278 5279 #endif /* CONFIG_SLUB_DEBUG */ 5280 5281 #ifdef CONFIG_FAILSLAB 5282 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5283 { 5284 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5285 } 5286 SLAB_ATTR_RO(failslab); 5287 #endif 5288 5289 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5290 { 5291 return 0; 5292 } 5293 5294 static ssize_t shrink_store(struct kmem_cache *s, 5295 const char *buf, size_t length) 5296 { 5297 if (buf[0] == '1') 5298 kmem_cache_shrink(s); 5299 else 5300 return -EINVAL; 5301 return length; 5302 } 5303 SLAB_ATTR(shrink); 5304 5305 #ifdef CONFIG_NUMA 5306 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5307 { 5308 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5309 } 5310 5311 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5312 const char *buf, size_t length) 5313 { 5314 unsigned int ratio; 5315 int err; 5316 5317 err = kstrtouint(buf, 10, &ratio); 5318 if (err) 5319 return err; 5320 if (ratio > 100) 5321 return -ERANGE; 5322 5323 s->remote_node_defrag_ratio = ratio * 10; 5324 5325 return length; 5326 } 5327 SLAB_ATTR(remote_node_defrag_ratio); 5328 #endif 5329 5330 #ifdef CONFIG_SLUB_STATS 5331 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5332 { 5333 unsigned long sum = 0; 5334 int cpu; 5335 int len = 0; 5336 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5337 5338 if (!data) 5339 return -ENOMEM; 5340 5341 for_each_online_cpu(cpu) { 5342 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5343 5344 data[cpu] = x; 5345 sum += x; 5346 } 5347 5348 len += sysfs_emit_at(buf, len, "%lu", sum); 5349 5350 #ifdef CONFIG_SMP 5351 for_each_online_cpu(cpu) { 5352 if (data[cpu]) 5353 len += sysfs_emit_at(buf, len, " C%d=%u", 5354 cpu, data[cpu]); 5355 } 5356 #endif 5357 kfree(data); 5358 len += sysfs_emit_at(buf, len, "\n"); 5359 5360 return len; 5361 } 5362 5363 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5364 { 5365 int cpu; 5366 5367 for_each_online_cpu(cpu) 5368 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5369 } 5370 5371 #define STAT_ATTR(si, text) \ 5372 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5373 { \ 5374 return show_stat(s, buf, si); \ 5375 } \ 5376 static ssize_t text##_store(struct kmem_cache *s, \ 5377 const char *buf, size_t length) \ 5378 { \ 5379 if (buf[0] != '0') \ 5380 return -EINVAL; \ 5381 clear_stat(s, si); \ 5382 return length; \ 5383 } \ 5384 SLAB_ATTR(text); \ 5385 5386 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5387 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5388 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5389 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5390 STAT_ATTR(FREE_FROZEN, free_frozen); 5391 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5392 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5393 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5394 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5395 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5396 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5397 STAT_ATTR(FREE_SLAB, free_slab); 5398 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5399 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5400 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5401 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5402 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5403 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5404 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5405 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5406 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5407 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5408 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5409 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5410 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5411 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5412 #endif /* CONFIG_SLUB_STATS */ 5413 5414 static struct attribute *slab_attrs[] = { 5415 &slab_size_attr.attr, 5416 &object_size_attr.attr, 5417 &objs_per_slab_attr.attr, 5418 &order_attr.attr, 5419 &min_partial_attr.attr, 5420 &cpu_partial_attr.attr, 5421 &objects_attr.attr, 5422 &objects_partial_attr.attr, 5423 &partial_attr.attr, 5424 &cpu_slabs_attr.attr, 5425 &ctor_attr.attr, 5426 &aliases_attr.attr, 5427 &align_attr.attr, 5428 &hwcache_align_attr.attr, 5429 &reclaim_account_attr.attr, 5430 &destroy_by_rcu_attr.attr, 5431 &shrink_attr.attr, 5432 &slabs_cpu_partial_attr.attr, 5433 #ifdef CONFIG_SLUB_DEBUG 5434 &total_objects_attr.attr, 5435 &slabs_attr.attr, 5436 &sanity_checks_attr.attr, 5437 &trace_attr.attr, 5438 &red_zone_attr.attr, 5439 &poison_attr.attr, 5440 &store_user_attr.attr, 5441 &validate_attr.attr, 5442 #endif 5443 #ifdef CONFIG_ZONE_DMA 5444 &cache_dma_attr.attr, 5445 #endif 5446 #ifdef CONFIG_NUMA 5447 &remote_node_defrag_ratio_attr.attr, 5448 #endif 5449 #ifdef CONFIG_SLUB_STATS 5450 &alloc_fastpath_attr.attr, 5451 &alloc_slowpath_attr.attr, 5452 &free_fastpath_attr.attr, 5453 &free_slowpath_attr.attr, 5454 &free_frozen_attr.attr, 5455 &free_add_partial_attr.attr, 5456 &free_remove_partial_attr.attr, 5457 &alloc_from_partial_attr.attr, 5458 &alloc_slab_attr.attr, 5459 &alloc_refill_attr.attr, 5460 &alloc_node_mismatch_attr.attr, 5461 &free_slab_attr.attr, 5462 &cpuslab_flush_attr.attr, 5463 &deactivate_full_attr.attr, 5464 &deactivate_empty_attr.attr, 5465 &deactivate_to_head_attr.attr, 5466 &deactivate_to_tail_attr.attr, 5467 &deactivate_remote_frees_attr.attr, 5468 &deactivate_bypass_attr.attr, 5469 &order_fallback_attr.attr, 5470 &cmpxchg_double_fail_attr.attr, 5471 &cmpxchg_double_cpu_fail_attr.attr, 5472 &cpu_partial_alloc_attr.attr, 5473 &cpu_partial_free_attr.attr, 5474 &cpu_partial_node_attr.attr, 5475 &cpu_partial_drain_attr.attr, 5476 #endif 5477 #ifdef CONFIG_FAILSLAB 5478 &failslab_attr.attr, 5479 #endif 5480 &usersize_attr.attr, 5481 5482 NULL 5483 }; 5484 5485 static const struct attribute_group slab_attr_group = { 5486 .attrs = slab_attrs, 5487 }; 5488 5489 static ssize_t slab_attr_show(struct kobject *kobj, 5490 struct attribute *attr, 5491 char *buf) 5492 { 5493 struct slab_attribute *attribute; 5494 struct kmem_cache *s; 5495 int err; 5496 5497 attribute = to_slab_attr(attr); 5498 s = to_slab(kobj); 5499 5500 if (!attribute->show) 5501 return -EIO; 5502 5503 err = attribute->show(s, buf); 5504 5505 return err; 5506 } 5507 5508 static ssize_t slab_attr_store(struct kobject *kobj, 5509 struct attribute *attr, 5510 const char *buf, size_t len) 5511 { 5512 struct slab_attribute *attribute; 5513 struct kmem_cache *s; 5514 int err; 5515 5516 attribute = to_slab_attr(attr); 5517 s = to_slab(kobj); 5518 5519 if (!attribute->store) 5520 return -EIO; 5521 5522 err = attribute->store(s, buf, len); 5523 return err; 5524 } 5525 5526 static void kmem_cache_release(struct kobject *k) 5527 { 5528 slab_kmem_cache_release(to_slab(k)); 5529 } 5530 5531 static const struct sysfs_ops slab_sysfs_ops = { 5532 .show = slab_attr_show, 5533 .store = slab_attr_store, 5534 }; 5535 5536 static struct kobj_type slab_ktype = { 5537 .sysfs_ops = &slab_sysfs_ops, 5538 .release = kmem_cache_release, 5539 }; 5540 5541 static struct kset *slab_kset; 5542 5543 static inline struct kset *cache_kset(struct kmem_cache *s) 5544 { 5545 return slab_kset; 5546 } 5547 5548 #define ID_STR_LENGTH 64 5549 5550 /* Create a unique string id for a slab cache: 5551 * 5552 * Format :[flags-]size 5553 */ 5554 static char *create_unique_id(struct kmem_cache *s) 5555 { 5556 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5557 char *p = name; 5558 5559 BUG_ON(!name); 5560 5561 *p++ = ':'; 5562 /* 5563 * First flags affecting slabcache operations. We will only 5564 * get here for aliasable slabs so we do not need to support 5565 * too many flags. The flags here must cover all flags that 5566 * are matched during merging to guarantee that the id is 5567 * unique. 5568 */ 5569 if (s->flags & SLAB_CACHE_DMA) 5570 *p++ = 'd'; 5571 if (s->flags & SLAB_CACHE_DMA32) 5572 *p++ = 'D'; 5573 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5574 *p++ = 'a'; 5575 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5576 *p++ = 'F'; 5577 if (s->flags & SLAB_ACCOUNT) 5578 *p++ = 'A'; 5579 if (p != name + 1) 5580 *p++ = '-'; 5581 p += sprintf(p, "%07u", s->size); 5582 5583 BUG_ON(p > name + ID_STR_LENGTH - 1); 5584 return name; 5585 } 5586 5587 static int sysfs_slab_add(struct kmem_cache *s) 5588 { 5589 int err; 5590 const char *name; 5591 struct kset *kset = cache_kset(s); 5592 int unmergeable = slab_unmergeable(s); 5593 5594 if (!kset) { 5595 kobject_init(&s->kobj, &slab_ktype); 5596 return 0; 5597 } 5598 5599 if (!unmergeable && disable_higher_order_debug && 5600 (slub_debug & DEBUG_METADATA_FLAGS)) 5601 unmergeable = 1; 5602 5603 if (unmergeable) { 5604 /* 5605 * Slabcache can never be merged so we can use the name proper. 5606 * This is typically the case for debug situations. In that 5607 * case we can catch duplicate names easily. 5608 */ 5609 sysfs_remove_link(&slab_kset->kobj, s->name); 5610 name = s->name; 5611 } else { 5612 /* 5613 * Create a unique name for the slab as a target 5614 * for the symlinks. 5615 */ 5616 name = create_unique_id(s); 5617 } 5618 5619 s->kobj.kset = kset; 5620 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5621 if (err) 5622 goto out; 5623 5624 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5625 if (err) 5626 goto out_del_kobj; 5627 5628 if (!unmergeable) { 5629 /* Setup first alias */ 5630 sysfs_slab_alias(s, s->name); 5631 } 5632 out: 5633 if (!unmergeable) 5634 kfree(name); 5635 return err; 5636 out_del_kobj: 5637 kobject_del(&s->kobj); 5638 goto out; 5639 } 5640 5641 void sysfs_slab_unlink(struct kmem_cache *s) 5642 { 5643 if (slab_state >= FULL) 5644 kobject_del(&s->kobj); 5645 } 5646 5647 void sysfs_slab_release(struct kmem_cache *s) 5648 { 5649 if (slab_state >= FULL) 5650 kobject_put(&s->kobj); 5651 } 5652 5653 /* 5654 * Need to buffer aliases during bootup until sysfs becomes 5655 * available lest we lose that information. 5656 */ 5657 struct saved_alias { 5658 struct kmem_cache *s; 5659 const char *name; 5660 struct saved_alias *next; 5661 }; 5662 5663 static struct saved_alias *alias_list; 5664 5665 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5666 { 5667 struct saved_alias *al; 5668 5669 if (slab_state == FULL) { 5670 /* 5671 * If we have a leftover link then remove it. 5672 */ 5673 sysfs_remove_link(&slab_kset->kobj, name); 5674 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5675 } 5676 5677 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5678 if (!al) 5679 return -ENOMEM; 5680 5681 al->s = s; 5682 al->name = name; 5683 al->next = alias_list; 5684 alias_list = al; 5685 return 0; 5686 } 5687 5688 static int __init slab_sysfs_init(void) 5689 { 5690 struct kmem_cache *s; 5691 int err; 5692 5693 mutex_lock(&slab_mutex); 5694 5695 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 5696 if (!slab_kset) { 5697 mutex_unlock(&slab_mutex); 5698 pr_err("Cannot register slab subsystem.\n"); 5699 return -ENOSYS; 5700 } 5701 5702 slab_state = FULL; 5703 5704 list_for_each_entry(s, &slab_caches, list) { 5705 err = sysfs_slab_add(s); 5706 if (err) 5707 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5708 s->name); 5709 } 5710 5711 while (alias_list) { 5712 struct saved_alias *al = alias_list; 5713 5714 alias_list = alias_list->next; 5715 err = sysfs_slab_alias(al->s, al->name); 5716 if (err) 5717 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5718 al->name); 5719 kfree(al); 5720 } 5721 5722 mutex_unlock(&slab_mutex); 5723 return 0; 5724 } 5725 5726 __initcall(slab_sysfs_init); 5727 #endif /* CONFIG_SYSFS */ 5728 5729 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 5730 static int slab_debugfs_show(struct seq_file *seq, void *v) 5731 { 5732 5733 struct location *l; 5734 unsigned int idx = *(unsigned int *)v; 5735 struct loc_track *t = seq->private; 5736 5737 if (idx < t->count) { 5738 l = &t->loc[idx]; 5739 5740 seq_printf(seq, "%7ld ", l->count); 5741 5742 if (l->addr) 5743 seq_printf(seq, "%pS", (void *)l->addr); 5744 else 5745 seq_puts(seq, "<not-available>"); 5746 5747 if (l->sum_time != l->min_time) { 5748 seq_printf(seq, " age=%ld/%llu/%ld", 5749 l->min_time, div_u64(l->sum_time, l->count), 5750 l->max_time); 5751 } else 5752 seq_printf(seq, " age=%ld", l->min_time); 5753 5754 if (l->min_pid != l->max_pid) 5755 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 5756 else 5757 seq_printf(seq, " pid=%ld", 5758 l->min_pid); 5759 5760 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 5761 seq_printf(seq, " cpus=%*pbl", 5762 cpumask_pr_args(to_cpumask(l->cpus))); 5763 5764 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 5765 seq_printf(seq, " nodes=%*pbl", 5766 nodemask_pr_args(&l->nodes)); 5767 5768 seq_puts(seq, "\n"); 5769 } 5770 5771 if (!idx && !t->count) 5772 seq_puts(seq, "No data\n"); 5773 5774 return 0; 5775 } 5776 5777 static void slab_debugfs_stop(struct seq_file *seq, void *v) 5778 { 5779 } 5780 5781 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 5782 { 5783 struct loc_track *t = seq->private; 5784 5785 v = ppos; 5786 ++*ppos; 5787 if (*ppos <= t->count) 5788 return v; 5789 5790 return NULL; 5791 } 5792 5793 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 5794 { 5795 return ppos; 5796 } 5797 5798 static const struct seq_operations slab_debugfs_sops = { 5799 .start = slab_debugfs_start, 5800 .next = slab_debugfs_next, 5801 .stop = slab_debugfs_stop, 5802 .show = slab_debugfs_show, 5803 }; 5804 5805 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 5806 { 5807 5808 struct kmem_cache_node *n; 5809 enum track_item alloc; 5810 int node; 5811 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 5812 sizeof(struct loc_track)); 5813 struct kmem_cache *s = file_inode(filep)->i_private; 5814 5815 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 5816 alloc = TRACK_ALLOC; 5817 else 5818 alloc = TRACK_FREE; 5819 5820 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) 5821 return -ENOMEM; 5822 5823 /* Push back cpu slabs */ 5824 flush_all(s); 5825 5826 for_each_kmem_cache_node(s, node, n) { 5827 unsigned long flags; 5828 struct page *page; 5829 5830 if (!atomic_long_read(&n->nr_slabs)) 5831 continue; 5832 5833 spin_lock_irqsave(&n->list_lock, flags); 5834 list_for_each_entry(page, &n->partial, slab_list) 5835 process_slab(t, s, page, alloc); 5836 list_for_each_entry(page, &n->full, slab_list) 5837 process_slab(t, s, page, alloc); 5838 spin_unlock_irqrestore(&n->list_lock, flags); 5839 } 5840 5841 return 0; 5842 } 5843 5844 static int slab_debug_trace_release(struct inode *inode, struct file *file) 5845 { 5846 struct seq_file *seq = file->private_data; 5847 struct loc_track *t = seq->private; 5848 5849 free_loc_track(t); 5850 return seq_release_private(inode, file); 5851 } 5852 5853 static const struct file_operations slab_debugfs_fops = { 5854 .open = slab_debug_trace_open, 5855 .read = seq_read, 5856 .llseek = seq_lseek, 5857 .release = slab_debug_trace_release, 5858 }; 5859 5860 static void debugfs_slab_add(struct kmem_cache *s) 5861 { 5862 struct dentry *slab_cache_dir; 5863 5864 if (unlikely(!slab_debugfs_root)) 5865 return; 5866 5867 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 5868 5869 debugfs_create_file("alloc_traces", 0400, 5870 slab_cache_dir, s, &slab_debugfs_fops); 5871 5872 debugfs_create_file("free_traces", 0400, 5873 slab_cache_dir, s, &slab_debugfs_fops); 5874 } 5875 5876 void debugfs_slab_release(struct kmem_cache *s) 5877 { 5878 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root)); 5879 } 5880 5881 static int __init slab_debugfs_init(void) 5882 { 5883 struct kmem_cache *s; 5884 5885 slab_debugfs_root = debugfs_create_dir("slab", NULL); 5886 5887 list_for_each_entry(s, &slab_caches, list) 5888 if (s->flags & SLAB_STORE_USER) 5889 debugfs_slab_add(s); 5890 5891 return 0; 5892 5893 } 5894 __initcall(slab_debugfs_init); 5895 #endif 5896 /* 5897 * The /proc/slabinfo ABI 5898 */ 5899 #ifdef CONFIG_SLUB_DEBUG 5900 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5901 { 5902 unsigned long nr_slabs = 0; 5903 unsigned long nr_objs = 0; 5904 unsigned long nr_free = 0; 5905 int node; 5906 struct kmem_cache_node *n; 5907 5908 for_each_kmem_cache_node(s, node, n) { 5909 nr_slabs += node_nr_slabs(n); 5910 nr_objs += node_nr_objs(n); 5911 nr_free += count_partial(n, count_free); 5912 } 5913 5914 sinfo->active_objs = nr_objs - nr_free; 5915 sinfo->num_objs = nr_objs; 5916 sinfo->active_slabs = nr_slabs; 5917 sinfo->num_slabs = nr_slabs; 5918 sinfo->objects_per_slab = oo_objects(s->oo); 5919 sinfo->cache_order = oo_order(s->oo); 5920 } 5921 5922 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5923 { 5924 } 5925 5926 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5927 size_t count, loff_t *ppos) 5928 { 5929 return -EIO; 5930 } 5931 #endif /* CONFIG_SLUB_DEBUG */ 5932