1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kmemcheck.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 37 #include <trace/events/kmem.h> 38 39 #include "internal.h" 40 41 /* 42 * Lock order: 43 * 1. slab_mutex (Global Mutex) 44 * 2. node->list_lock 45 * 3. slab_lock(page) (Only on some arches and for debugging) 46 * 47 * slab_mutex 48 * 49 * The role of the slab_mutex is to protect the list of all the slabs 50 * and to synchronize major metadata changes to slab cache structures. 51 * 52 * The slab_lock is only used for debugging and on arches that do not 53 * have the ability to do a cmpxchg_double. It only protects the second 54 * double word in the page struct. Meaning 55 * A. page->freelist -> List of object free in a page 56 * B. page->counters -> Counters of objects 57 * C. page->frozen -> frozen state 58 * 59 * If a slab is frozen then it is exempt from list management. It is not 60 * on any list. The processor that froze the slab is the one who can 61 * perform list operations on the page. Other processors may put objects 62 * onto the freelist but the processor that froze the slab is the only 63 * one that can retrieve the objects from the page's freelist. 64 * 65 * The list_lock protects the partial and full list on each node and 66 * the partial slab counter. If taken then no new slabs may be added or 67 * removed from the lists nor make the number of partial slabs be modified. 68 * (Note that the total number of slabs is an atomic value that may be 69 * modified without taking the list lock). 70 * 71 * The list_lock is a centralized lock and thus we avoid taking it as 72 * much as possible. As long as SLUB does not have to handle partial 73 * slabs, operations can continue without any centralized lock. F.e. 74 * allocating a long series of objects that fill up slabs does not require 75 * the list lock. 76 * Interrupts are disabled during allocation and deallocation in order to 77 * make the slab allocator safe to use in the context of an irq. In addition 78 * interrupts are disabled to ensure that the processor does not change 79 * while handling per_cpu slabs, due to kernel preemption. 80 * 81 * SLUB assigns one slab for allocation to each processor. 82 * Allocations only occur from these slabs called cpu slabs. 83 * 84 * Slabs with free elements are kept on a partial list and during regular 85 * operations no list for full slabs is used. If an object in a full slab is 86 * freed then the slab will show up again on the partial lists. 87 * We track full slabs for debugging purposes though because otherwise we 88 * cannot scan all objects. 89 * 90 * Slabs are freed when they become empty. Teardown and setup is 91 * minimal so we rely on the page allocators per cpu caches for 92 * fast frees and allocs. 93 * 94 * Overloading of page flags that are otherwise used for LRU management. 95 * 96 * PageActive The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * PageError Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 static inline int kmem_cache_debug(struct kmem_cache *s) 118 { 119 #ifdef CONFIG_SLUB_DEBUG 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 121 #else 122 return 0; 123 #endif 124 } 125 126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 127 { 128 #ifdef CONFIG_SLUB_CPU_PARTIAL 129 return !kmem_cache_debug(s); 130 #else 131 return false; 132 #endif 133 } 134 135 /* 136 * Issues still to be resolved: 137 * 138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 139 * 140 * - Variable sizing of the per node arrays 141 */ 142 143 /* Enable to test recovery from slab corruption on boot */ 144 #undef SLUB_RESILIENCY_TEST 145 146 /* Enable to log cmpxchg failures */ 147 #undef SLUB_DEBUG_CMPXCHG 148 149 /* 150 * Mininum number of partial slabs. These will be left on the partial 151 * lists even if they are empty. kmem_cache_shrink may reclaim them. 152 */ 153 #define MIN_PARTIAL 5 154 155 /* 156 * Maximum number of desirable partial slabs. 157 * The existence of more partial slabs makes kmem_cache_shrink 158 * sort the partial list by the number of objects in use. 159 */ 160 #define MAX_PARTIAL 10 161 162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 163 SLAB_POISON | SLAB_STORE_USER) 164 165 /* 166 * Debugging flags that require metadata to be stored in the slab. These get 167 * disabled when slub_debug=O is used and a cache's min order increases with 168 * metadata. 169 */ 170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 171 172 #define OO_SHIFT 16 173 #define OO_MASK ((1 << OO_SHIFT) - 1) 174 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 175 176 /* Internal SLUB flags */ 177 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 178 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 179 180 #ifdef CONFIG_SMP 181 static struct notifier_block slab_notifier; 182 #endif 183 184 /* 185 * Tracking user of a slab. 186 */ 187 #define TRACK_ADDRS_COUNT 16 188 struct track { 189 unsigned long addr; /* Called from address */ 190 #ifdef CONFIG_STACKTRACE 191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 192 #endif 193 int cpu; /* Was running on cpu */ 194 int pid; /* Pid context */ 195 unsigned long when; /* When did the operation occur */ 196 }; 197 198 enum track_item { TRACK_ALLOC, TRACK_FREE }; 199 200 #ifdef CONFIG_SYSFS 201 static int sysfs_slab_add(struct kmem_cache *); 202 static int sysfs_slab_alias(struct kmem_cache *, const char *); 203 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 204 #else 205 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 206 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 207 { return 0; } 208 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 209 #endif 210 211 static inline void stat(const struct kmem_cache *s, enum stat_item si) 212 { 213 #ifdef CONFIG_SLUB_STATS 214 /* 215 * The rmw is racy on a preemptible kernel but this is acceptable, so 216 * avoid this_cpu_add()'s irq-disable overhead. 217 */ 218 raw_cpu_inc(s->cpu_slab->stat[si]); 219 #endif 220 } 221 222 /******************************************************************** 223 * Core slab cache functions 224 *******************************************************************/ 225 226 /* Verify that a pointer has an address that is valid within a slab page */ 227 static inline int check_valid_pointer(struct kmem_cache *s, 228 struct page *page, const void *object) 229 { 230 void *base; 231 232 if (!object) 233 return 1; 234 235 base = page_address(page); 236 if (object < base || object >= base + page->objects * s->size || 237 (object - base) % s->size) { 238 return 0; 239 } 240 241 return 1; 242 } 243 244 static inline void *get_freepointer(struct kmem_cache *s, void *object) 245 { 246 return *(void **)(object + s->offset); 247 } 248 249 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 250 { 251 prefetch(object + s->offset); 252 } 253 254 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 255 { 256 void *p; 257 258 #ifdef CONFIG_DEBUG_PAGEALLOC 259 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 260 #else 261 p = get_freepointer(s, object); 262 #endif 263 return p; 264 } 265 266 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 267 { 268 *(void **)(object + s->offset) = fp; 269 } 270 271 /* Loop over all objects in a slab */ 272 #define for_each_object(__p, __s, __addr, __objects) \ 273 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 274 __p += (__s)->size) 275 276 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 277 for (__p = (__addr), __idx = 1; __idx <= __objects;\ 278 __p += (__s)->size, __idx++) 279 280 /* Determine object index from a given position */ 281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 282 { 283 return (p - addr) / s->size; 284 } 285 286 static inline size_t slab_ksize(const struct kmem_cache *s) 287 { 288 #ifdef CONFIG_SLUB_DEBUG 289 /* 290 * Debugging requires use of the padding between object 291 * and whatever may come after it. 292 */ 293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 294 return s->object_size; 295 296 #endif 297 /* 298 * If we have the need to store the freelist pointer 299 * back there or track user information then we can 300 * only use the space before that information. 301 */ 302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 303 return s->inuse; 304 /* 305 * Else we can use all the padding etc for the allocation 306 */ 307 return s->size; 308 } 309 310 static inline int order_objects(int order, unsigned long size, int reserved) 311 { 312 return ((PAGE_SIZE << order) - reserved) / size; 313 } 314 315 static inline struct kmem_cache_order_objects oo_make(int order, 316 unsigned long size, int reserved) 317 { 318 struct kmem_cache_order_objects x = { 319 (order << OO_SHIFT) + order_objects(order, size, reserved) 320 }; 321 322 return x; 323 } 324 325 static inline int oo_order(struct kmem_cache_order_objects x) 326 { 327 return x.x >> OO_SHIFT; 328 } 329 330 static inline int oo_objects(struct kmem_cache_order_objects x) 331 { 332 return x.x & OO_MASK; 333 } 334 335 /* 336 * Per slab locking using the pagelock 337 */ 338 static __always_inline void slab_lock(struct page *page) 339 { 340 bit_spin_lock(PG_locked, &page->flags); 341 } 342 343 static __always_inline void slab_unlock(struct page *page) 344 { 345 __bit_spin_unlock(PG_locked, &page->flags); 346 } 347 348 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 349 { 350 struct page tmp; 351 tmp.counters = counters_new; 352 /* 353 * page->counters can cover frozen/inuse/objects as well 354 * as page->_count. If we assign to ->counters directly 355 * we run the risk of losing updates to page->_count, so 356 * be careful and only assign to the fields we need. 357 */ 358 page->frozen = tmp.frozen; 359 page->inuse = tmp.inuse; 360 page->objects = tmp.objects; 361 } 362 363 /* Interrupts must be disabled (for the fallback code to work right) */ 364 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 365 void *freelist_old, unsigned long counters_old, 366 void *freelist_new, unsigned long counters_new, 367 const char *n) 368 { 369 VM_BUG_ON(!irqs_disabled()); 370 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 372 if (s->flags & __CMPXCHG_DOUBLE) { 373 if (cmpxchg_double(&page->freelist, &page->counters, 374 freelist_old, counters_old, 375 freelist_new, counters_new)) 376 return 1; 377 } else 378 #endif 379 { 380 slab_lock(page); 381 if (page->freelist == freelist_old && 382 page->counters == counters_old) { 383 page->freelist = freelist_new; 384 set_page_slub_counters(page, counters_new); 385 slab_unlock(page); 386 return 1; 387 } 388 slab_unlock(page); 389 } 390 391 cpu_relax(); 392 stat(s, CMPXCHG_DOUBLE_FAIL); 393 394 #ifdef SLUB_DEBUG_CMPXCHG 395 pr_info("%s %s: cmpxchg double redo ", n, s->name); 396 #endif 397 398 return 0; 399 } 400 401 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 402 void *freelist_old, unsigned long counters_old, 403 void *freelist_new, unsigned long counters_new, 404 const char *n) 405 { 406 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 408 if (s->flags & __CMPXCHG_DOUBLE) { 409 if (cmpxchg_double(&page->freelist, &page->counters, 410 freelist_old, counters_old, 411 freelist_new, counters_new)) 412 return 1; 413 } else 414 #endif 415 { 416 unsigned long flags; 417 418 local_irq_save(flags); 419 slab_lock(page); 420 if (page->freelist == freelist_old && 421 page->counters == counters_old) { 422 page->freelist = freelist_new; 423 set_page_slub_counters(page, counters_new); 424 slab_unlock(page); 425 local_irq_restore(flags); 426 return 1; 427 } 428 slab_unlock(page); 429 local_irq_restore(flags); 430 } 431 432 cpu_relax(); 433 stat(s, CMPXCHG_DOUBLE_FAIL); 434 435 #ifdef SLUB_DEBUG_CMPXCHG 436 pr_info("%s %s: cmpxchg double redo ", n, s->name); 437 #endif 438 439 return 0; 440 } 441 442 #ifdef CONFIG_SLUB_DEBUG 443 /* 444 * Determine a map of object in use on a page. 445 * 446 * Node listlock must be held to guarantee that the page does 447 * not vanish from under us. 448 */ 449 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 450 { 451 void *p; 452 void *addr = page_address(page); 453 454 for (p = page->freelist; p; p = get_freepointer(s, p)) 455 set_bit(slab_index(p, s, addr), map); 456 } 457 458 /* 459 * Debug settings: 460 */ 461 #ifdef CONFIG_SLUB_DEBUG_ON 462 static int slub_debug = DEBUG_DEFAULT_FLAGS; 463 #else 464 static int slub_debug; 465 #endif 466 467 static char *slub_debug_slabs; 468 static int disable_higher_order_debug; 469 470 /* 471 * Object debugging 472 */ 473 static void print_section(char *text, u8 *addr, unsigned int length) 474 { 475 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 476 length, 1); 477 } 478 479 static struct track *get_track(struct kmem_cache *s, void *object, 480 enum track_item alloc) 481 { 482 struct track *p; 483 484 if (s->offset) 485 p = object + s->offset + sizeof(void *); 486 else 487 p = object + s->inuse; 488 489 return p + alloc; 490 } 491 492 static void set_track(struct kmem_cache *s, void *object, 493 enum track_item alloc, unsigned long addr) 494 { 495 struct track *p = get_track(s, object, alloc); 496 497 if (addr) { 498 #ifdef CONFIG_STACKTRACE 499 struct stack_trace trace; 500 int i; 501 502 trace.nr_entries = 0; 503 trace.max_entries = TRACK_ADDRS_COUNT; 504 trace.entries = p->addrs; 505 trace.skip = 3; 506 save_stack_trace(&trace); 507 508 /* See rant in lockdep.c */ 509 if (trace.nr_entries != 0 && 510 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 511 trace.nr_entries--; 512 513 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 514 p->addrs[i] = 0; 515 #endif 516 p->addr = addr; 517 p->cpu = smp_processor_id(); 518 p->pid = current->pid; 519 p->when = jiffies; 520 } else 521 memset(p, 0, sizeof(struct track)); 522 } 523 524 static void init_tracking(struct kmem_cache *s, void *object) 525 { 526 if (!(s->flags & SLAB_STORE_USER)) 527 return; 528 529 set_track(s, object, TRACK_FREE, 0UL); 530 set_track(s, object, TRACK_ALLOC, 0UL); 531 } 532 533 static void print_track(const char *s, struct track *t) 534 { 535 if (!t->addr) 536 return; 537 538 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 539 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 540 #ifdef CONFIG_STACKTRACE 541 { 542 int i; 543 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 544 if (t->addrs[i]) 545 pr_err("\t%pS\n", (void *)t->addrs[i]); 546 else 547 break; 548 } 549 #endif 550 } 551 552 static void print_tracking(struct kmem_cache *s, void *object) 553 { 554 if (!(s->flags & SLAB_STORE_USER)) 555 return; 556 557 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 558 print_track("Freed", get_track(s, object, TRACK_FREE)); 559 } 560 561 static void print_page_info(struct page *page) 562 { 563 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 564 page, page->objects, page->inuse, page->freelist, page->flags); 565 566 } 567 568 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 569 { 570 struct va_format vaf; 571 va_list args; 572 573 va_start(args, fmt); 574 vaf.fmt = fmt; 575 vaf.va = &args; 576 pr_err("=============================================================================\n"); 577 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 578 pr_err("-----------------------------------------------------------------------------\n\n"); 579 580 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 581 va_end(args); 582 } 583 584 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 585 { 586 struct va_format vaf; 587 va_list args; 588 589 va_start(args, fmt); 590 vaf.fmt = fmt; 591 vaf.va = &args; 592 pr_err("FIX %s: %pV\n", s->name, &vaf); 593 va_end(args); 594 } 595 596 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 597 { 598 unsigned int off; /* Offset of last byte */ 599 u8 *addr = page_address(page); 600 601 print_tracking(s, p); 602 603 print_page_info(page); 604 605 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 606 p, p - addr, get_freepointer(s, p)); 607 608 if (p > addr + 16) 609 print_section("Bytes b4 ", p - 16, 16); 610 611 print_section("Object ", p, min_t(unsigned long, s->object_size, 612 PAGE_SIZE)); 613 if (s->flags & SLAB_RED_ZONE) 614 print_section("Redzone ", p + s->object_size, 615 s->inuse - s->object_size); 616 617 if (s->offset) 618 off = s->offset + sizeof(void *); 619 else 620 off = s->inuse; 621 622 if (s->flags & SLAB_STORE_USER) 623 off += 2 * sizeof(struct track); 624 625 if (off != s->size) 626 /* Beginning of the filler is the free pointer */ 627 print_section("Padding ", p + off, s->size - off); 628 629 dump_stack(); 630 } 631 632 static void object_err(struct kmem_cache *s, struct page *page, 633 u8 *object, char *reason) 634 { 635 slab_bug(s, "%s", reason); 636 print_trailer(s, page, object); 637 } 638 639 static void slab_err(struct kmem_cache *s, struct page *page, 640 const char *fmt, ...) 641 { 642 va_list args; 643 char buf[100]; 644 645 va_start(args, fmt); 646 vsnprintf(buf, sizeof(buf), fmt, args); 647 va_end(args); 648 slab_bug(s, "%s", buf); 649 print_page_info(page); 650 dump_stack(); 651 } 652 653 static void init_object(struct kmem_cache *s, void *object, u8 val) 654 { 655 u8 *p = object; 656 657 if (s->flags & __OBJECT_POISON) { 658 memset(p, POISON_FREE, s->object_size - 1); 659 p[s->object_size - 1] = POISON_END; 660 } 661 662 if (s->flags & SLAB_RED_ZONE) 663 memset(p + s->object_size, val, s->inuse - s->object_size); 664 } 665 666 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 667 void *from, void *to) 668 { 669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 670 memset(from, data, to - from); 671 } 672 673 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 674 u8 *object, char *what, 675 u8 *start, unsigned int value, unsigned int bytes) 676 { 677 u8 *fault; 678 u8 *end; 679 680 fault = memchr_inv(start, value, bytes); 681 if (!fault) 682 return 1; 683 684 end = start + bytes; 685 while (end > fault && end[-1] == value) 686 end--; 687 688 slab_bug(s, "%s overwritten", what); 689 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 690 fault, end - 1, fault[0], value); 691 print_trailer(s, page, object); 692 693 restore_bytes(s, what, value, fault, end); 694 return 0; 695 } 696 697 /* 698 * Object layout: 699 * 700 * object address 701 * Bytes of the object to be managed. 702 * If the freepointer may overlay the object then the free 703 * pointer is the first word of the object. 704 * 705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 706 * 0xa5 (POISON_END) 707 * 708 * object + s->object_size 709 * Padding to reach word boundary. This is also used for Redzoning. 710 * Padding is extended by another word if Redzoning is enabled and 711 * object_size == inuse. 712 * 713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 714 * 0xcc (RED_ACTIVE) for objects in use. 715 * 716 * object + s->inuse 717 * Meta data starts here. 718 * 719 * A. Free pointer (if we cannot overwrite object on free) 720 * B. Tracking data for SLAB_STORE_USER 721 * C. Padding to reach required alignment boundary or at mininum 722 * one word if debugging is on to be able to detect writes 723 * before the word boundary. 724 * 725 * Padding is done using 0x5a (POISON_INUSE) 726 * 727 * object + s->size 728 * Nothing is used beyond s->size. 729 * 730 * If slabcaches are merged then the object_size and inuse boundaries are mostly 731 * ignored. And therefore no slab options that rely on these boundaries 732 * may be used with merged slabcaches. 733 */ 734 735 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 736 { 737 unsigned long off = s->inuse; /* The end of info */ 738 739 if (s->offset) 740 /* Freepointer is placed after the object. */ 741 off += sizeof(void *); 742 743 if (s->flags & SLAB_STORE_USER) 744 /* We also have user information there */ 745 off += 2 * sizeof(struct track); 746 747 if (s->size == off) 748 return 1; 749 750 return check_bytes_and_report(s, page, p, "Object padding", 751 p + off, POISON_INUSE, s->size - off); 752 } 753 754 /* Check the pad bytes at the end of a slab page */ 755 static int slab_pad_check(struct kmem_cache *s, struct page *page) 756 { 757 u8 *start; 758 u8 *fault; 759 u8 *end; 760 int length; 761 int remainder; 762 763 if (!(s->flags & SLAB_POISON)) 764 return 1; 765 766 start = page_address(page); 767 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 768 end = start + length; 769 remainder = length % s->size; 770 if (!remainder) 771 return 1; 772 773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 774 if (!fault) 775 return 1; 776 while (end > fault && end[-1] == POISON_INUSE) 777 end--; 778 779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 780 print_section("Padding ", end - remainder, remainder); 781 782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 783 return 0; 784 } 785 786 static int check_object(struct kmem_cache *s, struct page *page, 787 void *object, u8 val) 788 { 789 u8 *p = object; 790 u8 *endobject = object + s->object_size; 791 792 if (s->flags & SLAB_RED_ZONE) { 793 if (!check_bytes_and_report(s, page, object, "Redzone", 794 endobject, val, s->inuse - s->object_size)) 795 return 0; 796 } else { 797 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 798 check_bytes_and_report(s, page, p, "Alignment padding", 799 endobject, POISON_INUSE, 800 s->inuse - s->object_size); 801 } 802 } 803 804 if (s->flags & SLAB_POISON) { 805 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 806 (!check_bytes_and_report(s, page, p, "Poison", p, 807 POISON_FREE, s->object_size - 1) || 808 !check_bytes_and_report(s, page, p, "Poison", 809 p + s->object_size - 1, POISON_END, 1))) 810 return 0; 811 /* 812 * check_pad_bytes cleans up on its own. 813 */ 814 check_pad_bytes(s, page, p); 815 } 816 817 if (!s->offset && val == SLUB_RED_ACTIVE) 818 /* 819 * Object and freepointer overlap. Cannot check 820 * freepointer while object is allocated. 821 */ 822 return 1; 823 824 /* Check free pointer validity */ 825 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 826 object_err(s, page, p, "Freepointer corrupt"); 827 /* 828 * No choice but to zap it and thus lose the remainder 829 * of the free objects in this slab. May cause 830 * another error because the object count is now wrong. 831 */ 832 set_freepointer(s, p, NULL); 833 return 0; 834 } 835 return 1; 836 } 837 838 static int check_slab(struct kmem_cache *s, struct page *page) 839 { 840 int maxobj; 841 842 VM_BUG_ON(!irqs_disabled()); 843 844 if (!PageSlab(page)) { 845 slab_err(s, page, "Not a valid slab page"); 846 return 0; 847 } 848 849 maxobj = order_objects(compound_order(page), s->size, s->reserved); 850 if (page->objects > maxobj) { 851 slab_err(s, page, "objects %u > max %u", 852 s->name, page->objects, maxobj); 853 return 0; 854 } 855 if (page->inuse > page->objects) { 856 slab_err(s, page, "inuse %u > max %u", 857 s->name, page->inuse, page->objects); 858 return 0; 859 } 860 /* Slab_pad_check fixes things up after itself */ 861 slab_pad_check(s, page); 862 return 1; 863 } 864 865 /* 866 * Determine if a certain object on a page is on the freelist. Must hold the 867 * slab lock to guarantee that the chains are in a consistent state. 868 */ 869 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 870 { 871 int nr = 0; 872 void *fp; 873 void *object = NULL; 874 unsigned long max_objects; 875 876 fp = page->freelist; 877 while (fp && nr <= page->objects) { 878 if (fp == search) 879 return 1; 880 if (!check_valid_pointer(s, page, fp)) { 881 if (object) { 882 object_err(s, page, object, 883 "Freechain corrupt"); 884 set_freepointer(s, object, NULL); 885 } else { 886 slab_err(s, page, "Freepointer corrupt"); 887 page->freelist = NULL; 888 page->inuse = page->objects; 889 slab_fix(s, "Freelist cleared"); 890 return 0; 891 } 892 break; 893 } 894 object = fp; 895 fp = get_freepointer(s, object); 896 nr++; 897 } 898 899 max_objects = order_objects(compound_order(page), s->size, s->reserved); 900 if (max_objects > MAX_OBJS_PER_PAGE) 901 max_objects = MAX_OBJS_PER_PAGE; 902 903 if (page->objects != max_objects) { 904 slab_err(s, page, "Wrong number of objects. Found %d but " 905 "should be %d", page->objects, max_objects); 906 page->objects = max_objects; 907 slab_fix(s, "Number of objects adjusted."); 908 } 909 if (page->inuse != page->objects - nr) { 910 slab_err(s, page, "Wrong object count. Counter is %d but " 911 "counted were %d", page->inuse, page->objects - nr); 912 page->inuse = page->objects - nr; 913 slab_fix(s, "Object count adjusted."); 914 } 915 return search == NULL; 916 } 917 918 static void trace(struct kmem_cache *s, struct page *page, void *object, 919 int alloc) 920 { 921 if (s->flags & SLAB_TRACE) { 922 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 923 s->name, 924 alloc ? "alloc" : "free", 925 object, page->inuse, 926 page->freelist); 927 928 if (!alloc) 929 print_section("Object ", (void *)object, 930 s->object_size); 931 932 dump_stack(); 933 } 934 } 935 936 /* 937 * Tracking of fully allocated slabs for debugging purposes. 938 */ 939 static void add_full(struct kmem_cache *s, 940 struct kmem_cache_node *n, struct page *page) 941 { 942 if (!(s->flags & SLAB_STORE_USER)) 943 return; 944 945 lockdep_assert_held(&n->list_lock); 946 list_add(&page->lru, &n->full); 947 } 948 949 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 950 { 951 if (!(s->flags & SLAB_STORE_USER)) 952 return; 953 954 lockdep_assert_held(&n->list_lock); 955 list_del(&page->lru); 956 } 957 958 /* Tracking of the number of slabs for debugging purposes */ 959 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 960 { 961 struct kmem_cache_node *n = get_node(s, node); 962 963 return atomic_long_read(&n->nr_slabs); 964 } 965 966 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 967 { 968 return atomic_long_read(&n->nr_slabs); 969 } 970 971 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 972 { 973 struct kmem_cache_node *n = get_node(s, node); 974 975 /* 976 * May be called early in order to allocate a slab for the 977 * kmem_cache_node structure. Solve the chicken-egg 978 * dilemma by deferring the increment of the count during 979 * bootstrap (see early_kmem_cache_node_alloc). 980 */ 981 if (likely(n)) { 982 atomic_long_inc(&n->nr_slabs); 983 atomic_long_add(objects, &n->total_objects); 984 } 985 } 986 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 987 { 988 struct kmem_cache_node *n = get_node(s, node); 989 990 atomic_long_dec(&n->nr_slabs); 991 atomic_long_sub(objects, &n->total_objects); 992 } 993 994 /* Object debug checks for alloc/free paths */ 995 static void setup_object_debug(struct kmem_cache *s, struct page *page, 996 void *object) 997 { 998 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 999 return; 1000 1001 init_object(s, object, SLUB_RED_INACTIVE); 1002 init_tracking(s, object); 1003 } 1004 1005 static noinline int alloc_debug_processing(struct kmem_cache *s, 1006 struct page *page, 1007 void *object, unsigned long addr) 1008 { 1009 if (!check_slab(s, page)) 1010 goto bad; 1011 1012 if (!check_valid_pointer(s, page, object)) { 1013 object_err(s, page, object, "Freelist Pointer check fails"); 1014 goto bad; 1015 } 1016 1017 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1018 goto bad; 1019 1020 /* Success perform special debug activities for allocs */ 1021 if (s->flags & SLAB_STORE_USER) 1022 set_track(s, object, TRACK_ALLOC, addr); 1023 trace(s, page, object, 1); 1024 init_object(s, object, SLUB_RED_ACTIVE); 1025 return 1; 1026 1027 bad: 1028 if (PageSlab(page)) { 1029 /* 1030 * If this is a slab page then lets do the best we can 1031 * to avoid issues in the future. Marking all objects 1032 * as used avoids touching the remaining objects. 1033 */ 1034 slab_fix(s, "Marking all objects used"); 1035 page->inuse = page->objects; 1036 page->freelist = NULL; 1037 } 1038 return 0; 1039 } 1040 1041 static noinline struct kmem_cache_node *free_debug_processing( 1042 struct kmem_cache *s, struct page *page, void *object, 1043 unsigned long addr, unsigned long *flags) 1044 { 1045 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1046 1047 spin_lock_irqsave(&n->list_lock, *flags); 1048 slab_lock(page); 1049 1050 if (!check_slab(s, page)) 1051 goto fail; 1052 1053 if (!check_valid_pointer(s, page, object)) { 1054 slab_err(s, page, "Invalid object pointer 0x%p", object); 1055 goto fail; 1056 } 1057 1058 if (on_freelist(s, page, object)) { 1059 object_err(s, page, object, "Object already free"); 1060 goto fail; 1061 } 1062 1063 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1064 goto out; 1065 1066 if (unlikely(s != page->slab_cache)) { 1067 if (!PageSlab(page)) { 1068 slab_err(s, page, "Attempt to free object(0x%p) " 1069 "outside of slab", object); 1070 } else if (!page->slab_cache) { 1071 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1072 object); 1073 dump_stack(); 1074 } else 1075 object_err(s, page, object, 1076 "page slab pointer corrupt."); 1077 goto fail; 1078 } 1079 1080 if (s->flags & SLAB_STORE_USER) 1081 set_track(s, object, TRACK_FREE, addr); 1082 trace(s, page, object, 0); 1083 init_object(s, object, SLUB_RED_INACTIVE); 1084 out: 1085 slab_unlock(page); 1086 /* 1087 * Keep node_lock to preserve integrity 1088 * until the object is actually freed 1089 */ 1090 return n; 1091 1092 fail: 1093 slab_unlock(page); 1094 spin_unlock_irqrestore(&n->list_lock, *flags); 1095 slab_fix(s, "Object at 0x%p not freed", object); 1096 return NULL; 1097 } 1098 1099 static int __init setup_slub_debug(char *str) 1100 { 1101 slub_debug = DEBUG_DEFAULT_FLAGS; 1102 if (*str++ != '=' || !*str) 1103 /* 1104 * No options specified. Switch on full debugging. 1105 */ 1106 goto out; 1107 1108 if (*str == ',') 1109 /* 1110 * No options but restriction on slabs. This means full 1111 * debugging for slabs matching a pattern. 1112 */ 1113 goto check_slabs; 1114 1115 if (tolower(*str) == 'o') { 1116 /* 1117 * Avoid enabling debugging on caches if its minimum order 1118 * would increase as a result. 1119 */ 1120 disable_higher_order_debug = 1; 1121 goto out; 1122 } 1123 1124 slub_debug = 0; 1125 if (*str == '-') 1126 /* 1127 * Switch off all debugging measures. 1128 */ 1129 goto out; 1130 1131 /* 1132 * Determine which debug features should be switched on 1133 */ 1134 for (; *str && *str != ','; str++) { 1135 switch (tolower(*str)) { 1136 case 'f': 1137 slub_debug |= SLAB_DEBUG_FREE; 1138 break; 1139 case 'z': 1140 slub_debug |= SLAB_RED_ZONE; 1141 break; 1142 case 'p': 1143 slub_debug |= SLAB_POISON; 1144 break; 1145 case 'u': 1146 slub_debug |= SLAB_STORE_USER; 1147 break; 1148 case 't': 1149 slub_debug |= SLAB_TRACE; 1150 break; 1151 case 'a': 1152 slub_debug |= SLAB_FAILSLAB; 1153 break; 1154 default: 1155 pr_err("slub_debug option '%c' unknown. skipped\n", 1156 *str); 1157 } 1158 } 1159 1160 check_slabs: 1161 if (*str == ',') 1162 slub_debug_slabs = str + 1; 1163 out: 1164 return 1; 1165 } 1166 1167 __setup("slub_debug", setup_slub_debug); 1168 1169 unsigned long kmem_cache_flags(unsigned long object_size, 1170 unsigned long flags, const char *name, 1171 void (*ctor)(void *)) 1172 { 1173 /* 1174 * Enable debugging if selected on the kernel commandline. 1175 */ 1176 if (slub_debug && (!slub_debug_slabs || (name && 1177 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1178 flags |= slub_debug; 1179 1180 return flags; 1181 } 1182 #else 1183 static inline void setup_object_debug(struct kmem_cache *s, 1184 struct page *page, void *object) {} 1185 1186 static inline int alloc_debug_processing(struct kmem_cache *s, 1187 struct page *page, void *object, unsigned long addr) { return 0; } 1188 1189 static inline struct kmem_cache_node *free_debug_processing( 1190 struct kmem_cache *s, struct page *page, void *object, 1191 unsigned long addr, unsigned long *flags) { return NULL; } 1192 1193 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1194 { return 1; } 1195 static inline int check_object(struct kmem_cache *s, struct page *page, 1196 void *object, u8 val) { return 1; } 1197 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1198 struct page *page) {} 1199 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1200 struct page *page) {} 1201 unsigned long kmem_cache_flags(unsigned long object_size, 1202 unsigned long flags, const char *name, 1203 void (*ctor)(void *)) 1204 { 1205 return flags; 1206 } 1207 #define slub_debug 0 1208 1209 #define disable_higher_order_debug 0 1210 1211 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1212 { return 0; } 1213 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1214 { return 0; } 1215 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1216 int objects) {} 1217 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1218 int objects) {} 1219 1220 #endif /* CONFIG_SLUB_DEBUG */ 1221 1222 /* 1223 * Hooks for other subsystems that check memory allocations. In a typical 1224 * production configuration these hooks all should produce no code at all. 1225 */ 1226 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1227 { 1228 kmemleak_alloc(ptr, size, 1, flags); 1229 } 1230 1231 static inline void kfree_hook(const void *x) 1232 { 1233 kmemleak_free(x); 1234 } 1235 1236 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 1237 { 1238 flags &= gfp_allowed_mask; 1239 lockdep_trace_alloc(flags); 1240 might_sleep_if(flags & __GFP_WAIT); 1241 1242 return should_failslab(s->object_size, flags, s->flags); 1243 } 1244 1245 static inline void slab_post_alloc_hook(struct kmem_cache *s, 1246 gfp_t flags, void *object) 1247 { 1248 flags &= gfp_allowed_mask; 1249 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 1250 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); 1251 } 1252 1253 static inline void slab_free_hook(struct kmem_cache *s, void *x) 1254 { 1255 kmemleak_free_recursive(x, s->flags); 1256 1257 /* 1258 * Trouble is that we may no longer disable interrupts in the fast path 1259 * So in order to make the debug calls that expect irqs to be 1260 * disabled we need to disable interrupts temporarily. 1261 */ 1262 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 1263 { 1264 unsigned long flags; 1265 1266 local_irq_save(flags); 1267 kmemcheck_slab_free(s, x, s->object_size); 1268 debug_check_no_locks_freed(x, s->object_size); 1269 local_irq_restore(flags); 1270 } 1271 #endif 1272 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1273 debug_check_no_obj_freed(x, s->object_size); 1274 } 1275 1276 /* 1277 * Slab allocation and freeing 1278 */ 1279 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1280 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1281 { 1282 struct page *page; 1283 int order = oo_order(oo); 1284 1285 flags |= __GFP_NOTRACK; 1286 1287 if (memcg_charge_slab(s, flags, order)) 1288 return NULL; 1289 1290 if (node == NUMA_NO_NODE) 1291 page = alloc_pages(flags, order); 1292 else 1293 page = alloc_pages_exact_node(node, flags, order); 1294 1295 if (!page) 1296 memcg_uncharge_slab(s, order); 1297 1298 return page; 1299 } 1300 1301 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1302 { 1303 struct page *page; 1304 struct kmem_cache_order_objects oo = s->oo; 1305 gfp_t alloc_gfp; 1306 1307 flags &= gfp_allowed_mask; 1308 1309 if (flags & __GFP_WAIT) 1310 local_irq_enable(); 1311 1312 flags |= s->allocflags; 1313 1314 /* 1315 * Let the initial higher-order allocation fail under memory pressure 1316 * so we fall-back to the minimum order allocation. 1317 */ 1318 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1319 1320 page = alloc_slab_page(s, alloc_gfp, node, oo); 1321 if (unlikely(!page)) { 1322 oo = s->min; 1323 alloc_gfp = flags; 1324 /* 1325 * Allocation may have failed due to fragmentation. 1326 * Try a lower order alloc if possible 1327 */ 1328 page = alloc_slab_page(s, alloc_gfp, node, oo); 1329 1330 if (page) 1331 stat(s, ORDER_FALLBACK); 1332 } 1333 1334 if (kmemcheck_enabled && page 1335 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1336 int pages = 1 << oo_order(oo); 1337 1338 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1339 1340 /* 1341 * Objects from caches that have a constructor don't get 1342 * cleared when they're allocated, so we need to do it here. 1343 */ 1344 if (s->ctor) 1345 kmemcheck_mark_uninitialized_pages(page, pages); 1346 else 1347 kmemcheck_mark_unallocated_pages(page, pages); 1348 } 1349 1350 if (flags & __GFP_WAIT) 1351 local_irq_disable(); 1352 if (!page) 1353 return NULL; 1354 1355 page->objects = oo_objects(oo); 1356 mod_zone_page_state(page_zone(page), 1357 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1358 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1359 1 << oo_order(oo)); 1360 1361 return page; 1362 } 1363 1364 static void setup_object(struct kmem_cache *s, struct page *page, 1365 void *object) 1366 { 1367 setup_object_debug(s, page, object); 1368 if (unlikely(s->ctor)) 1369 s->ctor(object); 1370 } 1371 1372 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1373 { 1374 struct page *page; 1375 void *start; 1376 void *p; 1377 int order; 1378 int idx; 1379 1380 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1381 1382 page = allocate_slab(s, 1383 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1384 if (!page) 1385 goto out; 1386 1387 order = compound_order(page); 1388 inc_slabs_node(s, page_to_nid(page), page->objects); 1389 page->slab_cache = s; 1390 __SetPageSlab(page); 1391 if (page->pfmemalloc) 1392 SetPageSlabPfmemalloc(page); 1393 1394 start = page_address(page); 1395 1396 if (unlikely(s->flags & SLAB_POISON)) 1397 memset(start, POISON_INUSE, PAGE_SIZE << order); 1398 1399 for_each_object_idx(p, idx, s, start, page->objects) { 1400 setup_object(s, page, p); 1401 if (likely(idx < page->objects)) 1402 set_freepointer(s, p, p + s->size); 1403 else 1404 set_freepointer(s, p, NULL); 1405 } 1406 1407 page->freelist = start; 1408 page->inuse = page->objects; 1409 page->frozen = 1; 1410 out: 1411 return page; 1412 } 1413 1414 static void __free_slab(struct kmem_cache *s, struct page *page) 1415 { 1416 int order = compound_order(page); 1417 int pages = 1 << order; 1418 1419 if (kmem_cache_debug(s)) { 1420 void *p; 1421 1422 slab_pad_check(s, page); 1423 for_each_object(p, s, page_address(page), 1424 page->objects) 1425 check_object(s, page, p, SLUB_RED_INACTIVE); 1426 } 1427 1428 kmemcheck_free_shadow(page, compound_order(page)); 1429 1430 mod_zone_page_state(page_zone(page), 1431 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1432 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1433 -pages); 1434 1435 __ClearPageSlabPfmemalloc(page); 1436 __ClearPageSlab(page); 1437 1438 page_mapcount_reset(page); 1439 if (current->reclaim_state) 1440 current->reclaim_state->reclaimed_slab += pages; 1441 __free_pages(page, order); 1442 memcg_uncharge_slab(s, order); 1443 } 1444 1445 #define need_reserve_slab_rcu \ 1446 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1447 1448 static void rcu_free_slab(struct rcu_head *h) 1449 { 1450 struct page *page; 1451 1452 if (need_reserve_slab_rcu) 1453 page = virt_to_head_page(h); 1454 else 1455 page = container_of((struct list_head *)h, struct page, lru); 1456 1457 __free_slab(page->slab_cache, page); 1458 } 1459 1460 static void free_slab(struct kmem_cache *s, struct page *page) 1461 { 1462 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1463 struct rcu_head *head; 1464 1465 if (need_reserve_slab_rcu) { 1466 int order = compound_order(page); 1467 int offset = (PAGE_SIZE << order) - s->reserved; 1468 1469 VM_BUG_ON(s->reserved != sizeof(*head)); 1470 head = page_address(page) + offset; 1471 } else { 1472 /* 1473 * RCU free overloads the RCU head over the LRU 1474 */ 1475 head = (void *)&page->lru; 1476 } 1477 1478 call_rcu(head, rcu_free_slab); 1479 } else 1480 __free_slab(s, page); 1481 } 1482 1483 static void discard_slab(struct kmem_cache *s, struct page *page) 1484 { 1485 dec_slabs_node(s, page_to_nid(page), page->objects); 1486 free_slab(s, page); 1487 } 1488 1489 /* 1490 * Management of partially allocated slabs. 1491 */ 1492 static inline void 1493 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1494 { 1495 n->nr_partial++; 1496 if (tail == DEACTIVATE_TO_TAIL) 1497 list_add_tail(&page->lru, &n->partial); 1498 else 1499 list_add(&page->lru, &n->partial); 1500 } 1501 1502 static inline void add_partial(struct kmem_cache_node *n, 1503 struct page *page, int tail) 1504 { 1505 lockdep_assert_held(&n->list_lock); 1506 __add_partial(n, page, tail); 1507 } 1508 1509 static inline void 1510 __remove_partial(struct kmem_cache_node *n, struct page *page) 1511 { 1512 list_del(&page->lru); 1513 n->nr_partial--; 1514 } 1515 1516 static inline void remove_partial(struct kmem_cache_node *n, 1517 struct page *page) 1518 { 1519 lockdep_assert_held(&n->list_lock); 1520 __remove_partial(n, page); 1521 } 1522 1523 /* 1524 * Remove slab from the partial list, freeze it and 1525 * return the pointer to the freelist. 1526 * 1527 * Returns a list of objects or NULL if it fails. 1528 */ 1529 static inline void *acquire_slab(struct kmem_cache *s, 1530 struct kmem_cache_node *n, struct page *page, 1531 int mode, int *objects) 1532 { 1533 void *freelist; 1534 unsigned long counters; 1535 struct page new; 1536 1537 lockdep_assert_held(&n->list_lock); 1538 1539 /* 1540 * Zap the freelist and set the frozen bit. 1541 * The old freelist is the list of objects for the 1542 * per cpu allocation list. 1543 */ 1544 freelist = page->freelist; 1545 counters = page->counters; 1546 new.counters = counters; 1547 *objects = new.objects - new.inuse; 1548 if (mode) { 1549 new.inuse = page->objects; 1550 new.freelist = NULL; 1551 } else { 1552 new.freelist = freelist; 1553 } 1554 1555 VM_BUG_ON(new.frozen); 1556 new.frozen = 1; 1557 1558 if (!__cmpxchg_double_slab(s, page, 1559 freelist, counters, 1560 new.freelist, new.counters, 1561 "acquire_slab")) 1562 return NULL; 1563 1564 remove_partial(n, page); 1565 WARN_ON(!freelist); 1566 return freelist; 1567 } 1568 1569 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1570 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1571 1572 /* 1573 * Try to allocate a partial slab from a specific node. 1574 */ 1575 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1576 struct kmem_cache_cpu *c, gfp_t flags) 1577 { 1578 struct page *page, *page2; 1579 void *object = NULL; 1580 int available = 0; 1581 int objects; 1582 1583 /* 1584 * Racy check. If we mistakenly see no partial slabs then we 1585 * just allocate an empty slab. If we mistakenly try to get a 1586 * partial slab and there is none available then get_partials() 1587 * will return NULL. 1588 */ 1589 if (!n || !n->nr_partial) 1590 return NULL; 1591 1592 spin_lock(&n->list_lock); 1593 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1594 void *t; 1595 1596 if (!pfmemalloc_match(page, flags)) 1597 continue; 1598 1599 t = acquire_slab(s, n, page, object == NULL, &objects); 1600 if (!t) 1601 break; 1602 1603 available += objects; 1604 if (!object) { 1605 c->page = page; 1606 stat(s, ALLOC_FROM_PARTIAL); 1607 object = t; 1608 } else { 1609 put_cpu_partial(s, page, 0); 1610 stat(s, CPU_PARTIAL_NODE); 1611 } 1612 if (!kmem_cache_has_cpu_partial(s) 1613 || available > s->cpu_partial / 2) 1614 break; 1615 1616 } 1617 spin_unlock(&n->list_lock); 1618 return object; 1619 } 1620 1621 /* 1622 * Get a page from somewhere. Search in increasing NUMA distances. 1623 */ 1624 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1625 struct kmem_cache_cpu *c) 1626 { 1627 #ifdef CONFIG_NUMA 1628 struct zonelist *zonelist; 1629 struct zoneref *z; 1630 struct zone *zone; 1631 enum zone_type high_zoneidx = gfp_zone(flags); 1632 void *object; 1633 unsigned int cpuset_mems_cookie; 1634 1635 /* 1636 * The defrag ratio allows a configuration of the tradeoffs between 1637 * inter node defragmentation and node local allocations. A lower 1638 * defrag_ratio increases the tendency to do local allocations 1639 * instead of attempting to obtain partial slabs from other nodes. 1640 * 1641 * If the defrag_ratio is set to 0 then kmalloc() always 1642 * returns node local objects. If the ratio is higher then kmalloc() 1643 * may return off node objects because partial slabs are obtained 1644 * from other nodes and filled up. 1645 * 1646 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1647 * defrag_ratio = 1000) then every (well almost) allocation will 1648 * first attempt to defrag slab caches on other nodes. This means 1649 * scanning over all nodes to look for partial slabs which may be 1650 * expensive if we do it every time we are trying to find a slab 1651 * with available objects. 1652 */ 1653 if (!s->remote_node_defrag_ratio || 1654 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1655 return NULL; 1656 1657 do { 1658 cpuset_mems_cookie = read_mems_allowed_begin(); 1659 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1660 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1661 struct kmem_cache_node *n; 1662 1663 n = get_node(s, zone_to_nid(zone)); 1664 1665 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1666 n->nr_partial > s->min_partial) { 1667 object = get_partial_node(s, n, c, flags); 1668 if (object) { 1669 /* 1670 * Don't check read_mems_allowed_retry() 1671 * here - if mems_allowed was updated in 1672 * parallel, that was a harmless race 1673 * between allocation and the cpuset 1674 * update 1675 */ 1676 return object; 1677 } 1678 } 1679 } 1680 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1681 #endif 1682 return NULL; 1683 } 1684 1685 /* 1686 * Get a partial page, lock it and return it. 1687 */ 1688 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1689 struct kmem_cache_cpu *c) 1690 { 1691 void *object; 1692 int searchnode = node; 1693 1694 if (node == NUMA_NO_NODE) 1695 searchnode = numa_mem_id(); 1696 else if (!node_present_pages(node)) 1697 searchnode = node_to_mem_node(node); 1698 1699 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1700 if (object || node != NUMA_NO_NODE) 1701 return object; 1702 1703 return get_any_partial(s, flags, c); 1704 } 1705 1706 #ifdef CONFIG_PREEMPT 1707 /* 1708 * Calculate the next globally unique transaction for disambiguiation 1709 * during cmpxchg. The transactions start with the cpu number and are then 1710 * incremented by CONFIG_NR_CPUS. 1711 */ 1712 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1713 #else 1714 /* 1715 * No preemption supported therefore also no need to check for 1716 * different cpus. 1717 */ 1718 #define TID_STEP 1 1719 #endif 1720 1721 static inline unsigned long next_tid(unsigned long tid) 1722 { 1723 return tid + TID_STEP; 1724 } 1725 1726 static inline unsigned int tid_to_cpu(unsigned long tid) 1727 { 1728 return tid % TID_STEP; 1729 } 1730 1731 static inline unsigned long tid_to_event(unsigned long tid) 1732 { 1733 return tid / TID_STEP; 1734 } 1735 1736 static inline unsigned int init_tid(int cpu) 1737 { 1738 return cpu; 1739 } 1740 1741 static inline void note_cmpxchg_failure(const char *n, 1742 const struct kmem_cache *s, unsigned long tid) 1743 { 1744 #ifdef SLUB_DEBUG_CMPXCHG 1745 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1746 1747 pr_info("%s %s: cmpxchg redo ", n, s->name); 1748 1749 #ifdef CONFIG_PREEMPT 1750 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1751 pr_warn("due to cpu change %d -> %d\n", 1752 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1753 else 1754 #endif 1755 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1756 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1757 tid_to_event(tid), tid_to_event(actual_tid)); 1758 else 1759 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1760 actual_tid, tid, next_tid(tid)); 1761 #endif 1762 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1763 } 1764 1765 static void init_kmem_cache_cpus(struct kmem_cache *s) 1766 { 1767 int cpu; 1768 1769 for_each_possible_cpu(cpu) 1770 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1771 } 1772 1773 /* 1774 * Remove the cpu slab 1775 */ 1776 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1777 void *freelist) 1778 { 1779 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1780 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1781 int lock = 0; 1782 enum slab_modes l = M_NONE, m = M_NONE; 1783 void *nextfree; 1784 int tail = DEACTIVATE_TO_HEAD; 1785 struct page new; 1786 struct page old; 1787 1788 if (page->freelist) { 1789 stat(s, DEACTIVATE_REMOTE_FREES); 1790 tail = DEACTIVATE_TO_TAIL; 1791 } 1792 1793 /* 1794 * Stage one: Free all available per cpu objects back 1795 * to the page freelist while it is still frozen. Leave the 1796 * last one. 1797 * 1798 * There is no need to take the list->lock because the page 1799 * is still frozen. 1800 */ 1801 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1802 void *prior; 1803 unsigned long counters; 1804 1805 do { 1806 prior = page->freelist; 1807 counters = page->counters; 1808 set_freepointer(s, freelist, prior); 1809 new.counters = counters; 1810 new.inuse--; 1811 VM_BUG_ON(!new.frozen); 1812 1813 } while (!__cmpxchg_double_slab(s, page, 1814 prior, counters, 1815 freelist, new.counters, 1816 "drain percpu freelist")); 1817 1818 freelist = nextfree; 1819 } 1820 1821 /* 1822 * Stage two: Ensure that the page is unfrozen while the 1823 * list presence reflects the actual number of objects 1824 * during unfreeze. 1825 * 1826 * We setup the list membership and then perform a cmpxchg 1827 * with the count. If there is a mismatch then the page 1828 * is not unfrozen but the page is on the wrong list. 1829 * 1830 * Then we restart the process which may have to remove 1831 * the page from the list that we just put it on again 1832 * because the number of objects in the slab may have 1833 * changed. 1834 */ 1835 redo: 1836 1837 old.freelist = page->freelist; 1838 old.counters = page->counters; 1839 VM_BUG_ON(!old.frozen); 1840 1841 /* Determine target state of the slab */ 1842 new.counters = old.counters; 1843 if (freelist) { 1844 new.inuse--; 1845 set_freepointer(s, freelist, old.freelist); 1846 new.freelist = freelist; 1847 } else 1848 new.freelist = old.freelist; 1849 1850 new.frozen = 0; 1851 1852 if (!new.inuse && n->nr_partial >= s->min_partial) 1853 m = M_FREE; 1854 else if (new.freelist) { 1855 m = M_PARTIAL; 1856 if (!lock) { 1857 lock = 1; 1858 /* 1859 * Taking the spinlock removes the possiblity 1860 * that acquire_slab() will see a slab page that 1861 * is frozen 1862 */ 1863 spin_lock(&n->list_lock); 1864 } 1865 } else { 1866 m = M_FULL; 1867 if (kmem_cache_debug(s) && !lock) { 1868 lock = 1; 1869 /* 1870 * This also ensures that the scanning of full 1871 * slabs from diagnostic functions will not see 1872 * any frozen slabs. 1873 */ 1874 spin_lock(&n->list_lock); 1875 } 1876 } 1877 1878 if (l != m) { 1879 1880 if (l == M_PARTIAL) 1881 1882 remove_partial(n, page); 1883 1884 else if (l == M_FULL) 1885 1886 remove_full(s, n, page); 1887 1888 if (m == M_PARTIAL) { 1889 1890 add_partial(n, page, tail); 1891 stat(s, tail); 1892 1893 } else if (m == M_FULL) { 1894 1895 stat(s, DEACTIVATE_FULL); 1896 add_full(s, n, page); 1897 1898 } 1899 } 1900 1901 l = m; 1902 if (!__cmpxchg_double_slab(s, page, 1903 old.freelist, old.counters, 1904 new.freelist, new.counters, 1905 "unfreezing slab")) 1906 goto redo; 1907 1908 if (lock) 1909 spin_unlock(&n->list_lock); 1910 1911 if (m == M_FREE) { 1912 stat(s, DEACTIVATE_EMPTY); 1913 discard_slab(s, page); 1914 stat(s, FREE_SLAB); 1915 } 1916 } 1917 1918 /* 1919 * Unfreeze all the cpu partial slabs. 1920 * 1921 * This function must be called with interrupts disabled 1922 * for the cpu using c (or some other guarantee must be there 1923 * to guarantee no concurrent accesses). 1924 */ 1925 static void unfreeze_partials(struct kmem_cache *s, 1926 struct kmem_cache_cpu *c) 1927 { 1928 #ifdef CONFIG_SLUB_CPU_PARTIAL 1929 struct kmem_cache_node *n = NULL, *n2 = NULL; 1930 struct page *page, *discard_page = NULL; 1931 1932 while ((page = c->partial)) { 1933 struct page new; 1934 struct page old; 1935 1936 c->partial = page->next; 1937 1938 n2 = get_node(s, page_to_nid(page)); 1939 if (n != n2) { 1940 if (n) 1941 spin_unlock(&n->list_lock); 1942 1943 n = n2; 1944 spin_lock(&n->list_lock); 1945 } 1946 1947 do { 1948 1949 old.freelist = page->freelist; 1950 old.counters = page->counters; 1951 VM_BUG_ON(!old.frozen); 1952 1953 new.counters = old.counters; 1954 new.freelist = old.freelist; 1955 1956 new.frozen = 0; 1957 1958 } while (!__cmpxchg_double_slab(s, page, 1959 old.freelist, old.counters, 1960 new.freelist, new.counters, 1961 "unfreezing slab")); 1962 1963 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 1964 page->next = discard_page; 1965 discard_page = page; 1966 } else { 1967 add_partial(n, page, DEACTIVATE_TO_TAIL); 1968 stat(s, FREE_ADD_PARTIAL); 1969 } 1970 } 1971 1972 if (n) 1973 spin_unlock(&n->list_lock); 1974 1975 while (discard_page) { 1976 page = discard_page; 1977 discard_page = discard_page->next; 1978 1979 stat(s, DEACTIVATE_EMPTY); 1980 discard_slab(s, page); 1981 stat(s, FREE_SLAB); 1982 } 1983 #endif 1984 } 1985 1986 /* 1987 * Put a page that was just frozen (in __slab_free) into a partial page 1988 * slot if available. This is done without interrupts disabled and without 1989 * preemption disabled. The cmpxchg is racy and may put the partial page 1990 * onto a random cpus partial slot. 1991 * 1992 * If we did not find a slot then simply move all the partials to the 1993 * per node partial list. 1994 */ 1995 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 1996 { 1997 #ifdef CONFIG_SLUB_CPU_PARTIAL 1998 struct page *oldpage; 1999 int pages; 2000 int pobjects; 2001 2002 do { 2003 pages = 0; 2004 pobjects = 0; 2005 oldpage = this_cpu_read(s->cpu_slab->partial); 2006 2007 if (oldpage) { 2008 pobjects = oldpage->pobjects; 2009 pages = oldpage->pages; 2010 if (drain && pobjects > s->cpu_partial) { 2011 unsigned long flags; 2012 /* 2013 * partial array is full. Move the existing 2014 * set to the per node partial list. 2015 */ 2016 local_irq_save(flags); 2017 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2018 local_irq_restore(flags); 2019 oldpage = NULL; 2020 pobjects = 0; 2021 pages = 0; 2022 stat(s, CPU_PARTIAL_DRAIN); 2023 } 2024 } 2025 2026 pages++; 2027 pobjects += page->objects - page->inuse; 2028 2029 page->pages = pages; 2030 page->pobjects = pobjects; 2031 page->next = oldpage; 2032 2033 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2034 != oldpage); 2035 #endif 2036 } 2037 2038 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2039 { 2040 stat(s, CPUSLAB_FLUSH); 2041 deactivate_slab(s, c->page, c->freelist); 2042 2043 c->tid = next_tid(c->tid); 2044 c->page = NULL; 2045 c->freelist = NULL; 2046 } 2047 2048 /* 2049 * Flush cpu slab. 2050 * 2051 * Called from IPI handler with interrupts disabled. 2052 */ 2053 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2054 { 2055 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2056 2057 if (likely(c)) { 2058 if (c->page) 2059 flush_slab(s, c); 2060 2061 unfreeze_partials(s, c); 2062 } 2063 } 2064 2065 static void flush_cpu_slab(void *d) 2066 { 2067 struct kmem_cache *s = d; 2068 2069 __flush_cpu_slab(s, smp_processor_id()); 2070 } 2071 2072 static bool has_cpu_slab(int cpu, void *info) 2073 { 2074 struct kmem_cache *s = info; 2075 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2076 2077 return c->page || c->partial; 2078 } 2079 2080 static void flush_all(struct kmem_cache *s) 2081 { 2082 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2083 } 2084 2085 /* 2086 * Check if the objects in a per cpu structure fit numa 2087 * locality expectations. 2088 */ 2089 static inline int node_match(struct page *page, int node) 2090 { 2091 #ifdef CONFIG_NUMA 2092 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2093 return 0; 2094 #endif 2095 return 1; 2096 } 2097 2098 #ifdef CONFIG_SLUB_DEBUG 2099 static int count_free(struct page *page) 2100 { 2101 return page->objects - page->inuse; 2102 } 2103 2104 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2105 { 2106 return atomic_long_read(&n->total_objects); 2107 } 2108 #endif /* CONFIG_SLUB_DEBUG */ 2109 2110 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2111 static unsigned long count_partial(struct kmem_cache_node *n, 2112 int (*get_count)(struct page *)) 2113 { 2114 unsigned long flags; 2115 unsigned long x = 0; 2116 struct page *page; 2117 2118 spin_lock_irqsave(&n->list_lock, flags); 2119 list_for_each_entry(page, &n->partial, lru) 2120 x += get_count(page); 2121 spin_unlock_irqrestore(&n->list_lock, flags); 2122 return x; 2123 } 2124 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2125 2126 static noinline void 2127 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2128 { 2129 #ifdef CONFIG_SLUB_DEBUG 2130 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2131 DEFAULT_RATELIMIT_BURST); 2132 int node; 2133 struct kmem_cache_node *n; 2134 2135 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2136 return; 2137 2138 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2139 nid, gfpflags); 2140 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2141 s->name, s->object_size, s->size, oo_order(s->oo), 2142 oo_order(s->min)); 2143 2144 if (oo_order(s->min) > get_order(s->object_size)) 2145 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2146 s->name); 2147 2148 for_each_kmem_cache_node(s, node, n) { 2149 unsigned long nr_slabs; 2150 unsigned long nr_objs; 2151 unsigned long nr_free; 2152 2153 nr_free = count_partial(n, count_free); 2154 nr_slabs = node_nr_slabs(n); 2155 nr_objs = node_nr_objs(n); 2156 2157 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2158 node, nr_slabs, nr_objs, nr_free); 2159 } 2160 #endif 2161 } 2162 2163 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2164 int node, struct kmem_cache_cpu **pc) 2165 { 2166 void *freelist; 2167 struct kmem_cache_cpu *c = *pc; 2168 struct page *page; 2169 2170 freelist = get_partial(s, flags, node, c); 2171 2172 if (freelist) 2173 return freelist; 2174 2175 page = new_slab(s, flags, node); 2176 if (page) { 2177 c = raw_cpu_ptr(s->cpu_slab); 2178 if (c->page) 2179 flush_slab(s, c); 2180 2181 /* 2182 * No other reference to the page yet so we can 2183 * muck around with it freely without cmpxchg 2184 */ 2185 freelist = page->freelist; 2186 page->freelist = NULL; 2187 2188 stat(s, ALLOC_SLAB); 2189 c->page = page; 2190 *pc = c; 2191 } else 2192 freelist = NULL; 2193 2194 return freelist; 2195 } 2196 2197 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2198 { 2199 if (unlikely(PageSlabPfmemalloc(page))) 2200 return gfp_pfmemalloc_allowed(gfpflags); 2201 2202 return true; 2203 } 2204 2205 /* 2206 * Check the page->freelist of a page and either transfer the freelist to the 2207 * per cpu freelist or deactivate the page. 2208 * 2209 * The page is still frozen if the return value is not NULL. 2210 * 2211 * If this function returns NULL then the page has been unfrozen. 2212 * 2213 * This function must be called with interrupt disabled. 2214 */ 2215 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2216 { 2217 struct page new; 2218 unsigned long counters; 2219 void *freelist; 2220 2221 do { 2222 freelist = page->freelist; 2223 counters = page->counters; 2224 2225 new.counters = counters; 2226 VM_BUG_ON(!new.frozen); 2227 2228 new.inuse = page->objects; 2229 new.frozen = freelist != NULL; 2230 2231 } while (!__cmpxchg_double_slab(s, page, 2232 freelist, counters, 2233 NULL, new.counters, 2234 "get_freelist")); 2235 2236 return freelist; 2237 } 2238 2239 /* 2240 * Slow path. The lockless freelist is empty or we need to perform 2241 * debugging duties. 2242 * 2243 * Processing is still very fast if new objects have been freed to the 2244 * regular freelist. In that case we simply take over the regular freelist 2245 * as the lockless freelist and zap the regular freelist. 2246 * 2247 * If that is not working then we fall back to the partial lists. We take the 2248 * first element of the freelist as the object to allocate now and move the 2249 * rest of the freelist to the lockless freelist. 2250 * 2251 * And if we were unable to get a new slab from the partial slab lists then 2252 * we need to allocate a new slab. This is the slowest path since it involves 2253 * a call to the page allocator and the setup of a new slab. 2254 */ 2255 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2256 unsigned long addr, struct kmem_cache_cpu *c) 2257 { 2258 void *freelist; 2259 struct page *page; 2260 unsigned long flags; 2261 2262 local_irq_save(flags); 2263 #ifdef CONFIG_PREEMPT 2264 /* 2265 * We may have been preempted and rescheduled on a different 2266 * cpu before disabling interrupts. Need to reload cpu area 2267 * pointer. 2268 */ 2269 c = this_cpu_ptr(s->cpu_slab); 2270 #endif 2271 2272 page = c->page; 2273 if (!page) 2274 goto new_slab; 2275 redo: 2276 2277 if (unlikely(!node_match(page, node))) { 2278 int searchnode = node; 2279 2280 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2281 searchnode = node_to_mem_node(node); 2282 2283 if (unlikely(!node_match(page, searchnode))) { 2284 stat(s, ALLOC_NODE_MISMATCH); 2285 deactivate_slab(s, page, c->freelist); 2286 c->page = NULL; 2287 c->freelist = NULL; 2288 goto new_slab; 2289 } 2290 } 2291 2292 /* 2293 * By rights, we should be searching for a slab page that was 2294 * PFMEMALLOC but right now, we are losing the pfmemalloc 2295 * information when the page leaves the per-cpu allocator 2296 */ 2297 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2298 deactivate_slab(s, page, c->freelist); 2299 c->page = NULL; 2300 c->freelist = NULL; 2301 goto new_slab; 2302 } 2303 2304 /* must check again c->freelist in case of cpu migration or IRQ */ 2305 freelist = c->freelist; 2306 if (freelist) 2307 goto load_freelist; 2308 2309 freelist = get_freelist(s, page); 2310 2311 if (!freelist) { 2312 c->page = NULL; 2313 stat(s, DEACTIVATE_BYPASS); 2314 goto new_slab; 2315 } 2316 2317 stat(s, ALLOC_REFILL); 2318 2319 load_freelist: 2320 /* 2321 * freelist is pointing to the list of objects to be used. 2322 * page is pointing to the page from which the objects are obtained. 2323 * That page must be frozen for per cpu allocations to work. 2324 */ 2325 VM_BUG_ON(!c->page->frozen); 2326 c->freelist = get_freepointer(s, freelist); 2327 c->tid = next_tid(c->tid); 2328 local_irq_restore(flags); 2329 return freelist; 2330 2331 new_slab: 2332 2333 if (c->partial) { 2334 page = c->page = c->partial; 2335 c->partial = page->next; 2336 stat(s, CPU_PARTIAL_ALLOC); 2337 c->freelist = NULL; 2338 goto redo; 2339 } 2340 2341 freelist = new_slab_objects(s, gfpflags, node, &c); 2342 2343 if (unlikely(!freelist)) { 2344 slab_out_of_memory(s, gfpflags, node); 2345 local_irq_restore(flags); 2346 return NULL; 2347 } 2348 2349 page = c->page; 2350 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2351 goto load_freelist; 2352 2353 /* Only entered in the debug case */ 2354 if (kmem_cache_debug(s) && 2355 !alloc_debug_processing(s, page, freelist, addr)) 2356 goto new_slab; /* Slab failed checks. Next slab needed */ 2357 2358 deactivate_slab(s, page, get_freepointer(s, freelist)); 2359 c->page = NULL; 2360 c->freelist = NULL; 2361 local_irq_restore(flags); 2362 return freelist; 2363 } 2364 2365 /* 2366 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2367 * have the fastpath folded into their functions. So no function call 2368 * overhead for requests that can be satisfied on the fastpath. 2369 * 2370 * The fastpath works by first checking if the lockless freelist can be used. 2371 * If not then __slab_alloc is called for slow processing. 2372 * 2373 * Otherwise we can simply pick the next object from the lockless free list. 2374 */ 2375 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2376 gfp_t gfpflags, int node, unsigned long addr) 2377 { 2378 void **object; 2379 struct kmem_cache_cpu *c; 2380 struct page *page; 2381 unsigned long tid; 2382 2383 if (slab_pre_alloc_hook(s, gfpflags)) 2384 return NULL; 2385 2386 s = memcg_kmem_get_cache(s, gfpflags); 2387 redo: 2388 /* 2389 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2390 * enabled. We may switch back and forth between cpus while 2391 * reading from one cpu area. That does not matter as long 2392 * as we end up on the original cpu again when doing the cmpxchg. 2393 * 2394 * Preemption is disabled for the retrieval of the tid because that 2395 * must occur from the current processor. We cannot allow rescheduling 2396 * on a different processor between the determination of the pointer 2397 * and the retrieval of the tid. 2398 */ 2399 preempt_disable(); 2400 c = this_cpu_ptr(s->cpu_slab); 2401 2402 /* 2403 * The transaction ids are globally unique per cpu and per operation on 2404 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2405 * occurs on the right processor and that there was no operation on the 2406 * linked list in between. 2407 */ 2408 tid = c->tid; 2409 preempt_enable(); 2410 2411 object = c->freelist; 2412 page = c->page; 2413 if (unlikely(!object || !node_match(page, node))) { 2414 object = __slab_alloc(s, gfpflags, node, addr, c); 2415 stat(s, ALLOC_SLOWPATH); 2416 } else { 2417 void *next_object = get_freepointer_safe(s, object); 2418 2419 /* 2420 * The cmpxchg will only match if there was no additional 2421 * operation and if we are on the right processor. 2422 * 2423 * The cmpxchg does the following atomically (without lock 2424 * semantics!) 2425 * 1. Relocate first pointer to the current per cpu area. 2426 * 2. Verify that tid and freelist have not been changed 2427 * 3. If they were not changed replace tid and freelist 2428 * 2429 * Since this is without lock semantics the protection is only 2430 * against code executing on this cpu *not* from access by 2431 * other cpus. 2432 */ 2433 if (unlikely(!this_cpu_cmpxchg_double( 2434 s->cpu_slab->freelist, s->cpu_slab->tid, 2435 object, tid, 2436 next_object, next_tid(tid)))) { 2437 2438 note_cmpxchg_failure("slab_alloc", s, tid); 2439 goto redo; 2440 } 2441 prefetch_freepointer(s, next_object); 2442 stat(s, ALLOC_FASTPATH); 2443 } 2444 2445 if (unlikely(gfpflags & __GFP_ZERO) && object) 2446 memset(object, 0, s->object_size); 2447 2448 slab_post_alloc_hook(s, gfpflags, object); 2449 2450 return object; 2451 } 2452 2453 static __always_inline void *slab_alloc(struct kmem_cache *s, 2454 gfp_t gfpflags, unsigned long addr) 2455 { 2456 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2457 } 2458 2459 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2460 { 2461 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2462 2463 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2464 s->size, gfpflags); 2465 2466 return ret; 2467 } 2468 EXPORT_SYMBOL(kmem_cache_alloc); 2469 2470 #ifdef CONFIG_TRACING 2471 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2472 { 2473 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2474 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2475 return ret; 2476 } 2477 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2478 #endif 2479 2480 #ifdef CONFIG_NUMA 2481 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2482 { 2483 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2484 2485 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2486 s->object_size, s->size, gfpflags, node); 2487 2488 return ret; 2489 } 2490 EXPORT_SYMBOL(kmem_cache_alloc_node); 2491 2492 #ifdef CONFIG_TRACING 2493 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2494 gfp_t gfpflags, 2495 int node, size_t size) 2496 { 2497 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2498 2499 trace_kmalloc_node(_RET_IP_, ret, 2500 size, s->size, gfpflags, node); 2501 return ret; 2502 } 2503 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2504 #endif 2505 #endif 2506 2507 /* 2508 * Slow patch handling. This may still be called frequently since objects 2509 * have a longer lifetime than the cpu slabs in most processing loads. 2510 * 2511 * So we still attempt to reduce cache line usage. Just take the slab 2512 * lock and free the item. If there is no additional partial page 2513 * handling required then we can return immediately. 2514 */ 2515 static void __slab_free(struct kmem_cache *s, struct page *page, 2516 void *x, unsigned long addr) 2517 { 2518 void *prior; 2519 void **object = (void *)x; 2520 int was_frozen; 2521 struct page new; 2522 unsigned long counters; 2523 struct kmem_cache_node *n = NULL; 2524 unsigned long uninitialized_var(flags); 2525 2526 stat(s, FREE_SLOWPATH); 2527 2528 if (kmem_cache_debug(s) && 2529 !(n = free_debug_processing(s, page, x, addr, &flags))) 2530 return; 2531 2532 do { 2533 if (unlikely(n)) { 2534 spin_unlock_irqrestore(&n->list_lock, flags); 2535 n = NULL; 2536 } 2537 prior = page->freelist; 2538 counters = page->counters; 2539 set_freepointer(s, object, prior); 2540 new.counters = counters; 2541 was_frozen = new.frozen; 2542 new.inuse--; 2543 if ((!new.inuse || !prior) && !was_frozen) { 2544 2545 if (kmem_cache_has_cpu_partial(s) && !prior) { 2546 2547 /* 2548 * Slab was on no list before and will be 2549 * partially empty 2550 * We can defer the list move and instead 2551 * freeze it. 2552 */ 2553 new.frozen = 1; 2554 2555 } else { /* Needs to be taken off a list */ 2556 2557 n = get_node(s, page_to_nid(page)); 2558 /* 2559 * Speculatively acquire the list_lock. 2560 * If the cmpxchg does not succeed then we may 2561 * drop the list_lock without any processing. 2562 * 2563 * Otherwise the list_lock will synchronize with 2564 * other processors updating the list of slabs. 2565 */ 2566 spin_lock_irqsave(&n->list_lock, flags); 2567 2568 } 2569 } 2570 2571 } while (!cmpxchg_double_slab(s, page, 2572 prior, counters, 2573 object, new.counters, 2574 "__slab_free")); 2575 2576 if (likely(!n)) { 2577 2578 /* 2579 * If we just froze the page then put it onto the 2580 * per cpu partial list. 2581 */ 2582 if (new.frozen && !was_frozen) { 2583 put_cpu_partial(s, page, 1); 2584 stat(s, CPU_PARTIAL_FREE); 2585 } 2586 /* 2587 * The list lock was not taken therefore no list 2588 * activity can be necessary. 2589 */ 2590 if (was_frozen) 2591 stat(s, FREE_FROZEN); 2592 return; 2593 } 2594 2595 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2596 goto slab_empty; 2597 2598 /* 2599 * Objects left in the slab. If it was not on the partial list before 2600 * then add it. 2601 */ 2602 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2603 if (kmem_cache_debug(s)) 2604 remove_full(s, n, page); 2605 add_partial(n, page, DEACTIVATE_TO_TAIL); 2606 stat(s, FREE_ADD_PARTIAL); 2607 } 2608 spin_unlock_irqrestore(&n->list_lock, flags); 2609 return; 2610 2611 slab_empty: 2612 if (prior) { 2613 /* 2614 * Slab on the partial list. 2615 */ 2616 remove_partial(n, page); 2617 stat(s, FREE_REMOVE_PARTIAL); 2618 } else { 2619 /* Slab must be on the full list */ 2620 remove_full(s, n, page); 2621 } 2622 2623 spin_unlock_irqrestore(&n->list_lock, flags); 2624 stat(s, FREE_SLAB); 2625 discard_slab(s, page); 2626 } 2627 2628 /* 2629 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2630 * can perform fastpath freeing without additional function calls. 2631 * 2632 * The fastpath is only possible if we are freeing to the current cpu slab 2633 * of this processor. This typically the case if we have just allocated 2634 * the item before. 2635 * 2636 * If fastpath is not possible then fall back to __slab_free where we deal 2637 * with all sorts of special processing. 2638 */ 2639 static __always_inline void slab_free(struct kmem_cache *s, 2640 struct page *page, void *x, unsigned long addr) 2641 { 2642 void **object = (void *)x; 2643 struct kmem_cache_cpu *c; 2644 unsigned long tid; 2645 2646 slab_free_hook(s, x); 2647 2648 redo: 2649 /* 2650 * Determine the currently cpus per cpu slab. 2651 * The cpu may change afterward. However that does not matter since 2652 * data is retrieved via this pointer. If we are on the same cpu 2653 * during the cmpxchg then the free will succedd. 2654 */ 2655 preempt_disable(); 2656 c = this_cpu_ptr(s->cpu_slab); 2657 2658 tid = c->tid; 2659 preempt_enable(); 2660 2661 if (likely(page == c->page)) { 2662 set_freepointer(s, object, c->freelist); 2663 2664 if (unlikely(!this_cpu_cmpxchg_double( 2665 s->cpu_slab->freelist, s->cpu_slab->tid, 2666 c->freelist, tid, 2667 object, next_tid(tid)))) { 2668 2669 note_cmpxchg_failure("slab_free", s, tid); 2670 goto redo; 2671 } 2672 stat(s, FREE_FASTPATH); 2673 } else 2674 __slab_free(s, page, x, addr); 2675 2676 } 2677 2678 void kmem_cache_free(struct kmem_cache *s, void *x) 2679 { 2680 s = cache_from_obj(s, x); 2681 if (!s) 2682 return; 2683 slab_free(s, virt_to_head_page(x), x, _RET_IP_); 2684 trace_kmem_cache_free(_RET_IP_, x); 2685 } 2686 EXPORT_SYMBOL(kmem_cache_free); 2687 2688 /* 2689 * Object placement in a slab is made very easy because we always start at 2690 * offset 0. If we tune the size of the object to the alignment then we can 2691 * get the required alignment by putting one properly sized object after 2692 * another. 2693 * 2694 * Notice that the allocation order determines the sizes of the per cpu 2695 * caches. Each processor has always one slab available for allocations. 2696 * Increasing the allocation order reduces the number of times that slabs 2697 * must be moved on and off the partial lists and is therefore a factor in 2698 * locking overhead. 2699 */ 2700 2701 /* 2702 * Mininum / Maximum order of slab pages. This influences locking overhead 2703 * and slab fragmentation. A higher order reduces the number of partial slabs 2704 * and increases the number of allocations possible without having to 2705 * take the list_lock. 2706 */ 2707 static int slub_min_order; 2708 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2709 static int slub_min_objects; 2710 2711 /* 2712 * Calculate the order of allocation given an slab object size. 2713 * 2714 * The order of allocation has significant impact on performance and other 2715 * system components. Generally order 0 allocations should be preferred since 2716 * order 0 does not cause fragmentation in the page allocator. Larger objects 2717 * be problematic to put into order 0 slabs because there may be too much 2718 * unused space left. We go to a higher order if more than 1/16th of the slab 2719 * would be wasted. 2720 * 2721 * In order to reach satisfactory performance we must ensure that a minimum 2722 * number of objects is in one slab. Otherwise we may generate too much 2723 * activity on the partial lists which requires taking the list_lock. This is 2724 * less a concern for large slabs though which are rarely used. 2725 * 2726 * slub_max_order specifies the order where we begin to stop considering the 2727 * number of objects in a slab as critical. If we reach slub_max_order then 2728 * we try to keep the page order as low as possible. So we accept more waste 2729 * of space in favor of a small page order. 2730 * 2731 * Higher order allocations also allow the placement of more objects in a 2732 * slab and thereby reduce object handling overhead. If the user has 2733 * requested a higher mininum order then we start with that one instead of 2734 * the smallest order which will fit the object. 2735 */ 2736 static inline int slab_order(int size, int min_objects, 2737 int max_order, int fract_leftover, int reserved) 2738 { 2739 int order; 2740 int rem; 2741 int min_order = slub_min_order; 2742 2743 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2744 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2745 2746 for (order = max(min_order, 2747 fls(min_objects * size - 1) - PAGE_SHIFT); 2748 order <= max_order; order++) { 2749 2750 unsigned long slab_size = PAGE_SIZE << order; 2751 2752 if (slab_size < min_objects * size + reserved) 2753 continue; 2754 2755 rem = (slab_size - reserved) % size; 2756 2757 if (rem <= slab_size / fract_leftover) 2758 break; 2759 2760 } 2761 2762 return order; 2763 } 2764 2765 static inline int calculate_order(int size, int reserved) 2766 { 2767 int order; 2768 int min_objects; 2769 int fraction; 2770 int max_objects; 2771 2772 /* 2773 * Attempt to find best configuration for a slab. This 2774 * works by first attempting to generate a layout with 2775 * the best configuration and backing off gradually. 2776 * 2777 * First we reduce the acceptable waste in a slab. Then 2778 * we reduce the minimum objects required in a slab. 2779 */ 2780 min_objects = slub_min_objects; 2781 if (!min_objects) 2782 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2783 max_objects = order_objects(slub_max_order, size, reserved); 2784 min_objects = min(min_objects, max_objects); 2785 2786 while (min_objects > 1) { 2787 fraction = 16; 2788 while (fraction >= 4) { 2789 order = slab_order(size, min_objects, 2790 slub_max_order, fraction, reserved); 2791 if (order <= slub_max_order) 2792 return order; 2793 fraction /= 2; 2794 } 2795 min_objects--; 2796 } 2797 2798 /* 2799 * We were unable to place multiple objects in a slab. Now 2800 * lets see if we can place a single object there. 2801 */ 2802 order = slab_order(size, 1, slub_max_order, 1, reserved); 2803 if (order <= slub_max_order) 2804 return order; 2805 2806 /* 2807 * Doh this slab cannot be placed using slub_max_order. 2808 */ 2809 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2810 if (order < MAX_ORDER) 2811 return order; 2812 return -ENOSYS; 2813 } 2814 2815 static void 2816 init_kmem_cache_node(struct kmem_cache_node *n) 2817 { 2818 n->nr_partial = 0; 2819 spin_lock_init(&n->list_lock); 2820 INIT_LIST_HEAD(&n->partial); 2821 #ifdef CONFIG_SLUB_DEBUG 2822 atomic_long_set(&n->nr_slabs, 0); 2823 atomic_long_set(&n->total_objects, 0); 2824 INIT_LIST_HEAD(&n->full); 2825 #endif 2826 } 2827 2828 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2829 { 2830 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2831 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 2832 2833 /* 2834 * Must align to double word boundary for the double cmpxchg 2835 * instructions to work; see __pcpu_double_call_return_bool(). 2836 */ 2837 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2838 2 * sizeof(void *)); 2839 2840 if (!s->cpu_slab) 2841 return 0; 2842 2843 init_kmem_cache_cpus(s); 2844 2845 return 1; 2846 } 2847 2848 static struct kmem_cache *kmem_cache_node; 2849 2850 /* 2851 * No kmalloc_node yet so do it by hand. We know that this is the first 2852 * slab on the node for this slabcache. There are no concurrent accesses 2853 * possible. 2854 * 2855 * Note that this function only works on the kmem_cache_node 2856 * when allocating for the kmem_cache_node. This is used for bootstrapping 2857 * memory on a fresh node that has no slab structures yet. 2858 */ 2859 static void early_kmem_cache_node_alloc(int node) 2860 { 2861 struct page *page; 2862 struct kmem_cache_node *n; 2863 2864 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2865 2866 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2867 2868 BUG_ON(!page); 2869 if (page_to_nid(page) != node) { 2870 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 2871 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 2872 } 2873 2874 n = page->freelist; 2875 BUG_ON(!n); 2876 page->freelist = get_freepointer(kmem_cache_node, n); 2877 page->inuse = 1; 2878 page->frozen = 0; 2879 kmem_cache_node->node[node] = n; 2880 #ifdef CONFIG_SLUB_DEBUG 2881 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2882 init_tracking(kmem_cache_node, n); 2883 #endif 2884 init_kmem_cache_node(n); 2885 inc_slabs_node(kmem_cache_node, node, page->objects); 2886 2887 /* 2888 * No locks need to be taken here as it has just been 2889 * initialized and there is no concurrent access. 2890 */ 2891 __add_partial(n, page, DEACTIVATE_TO_HEAD); 2892 } 2893 2894 static void free_kmem_cache_nodes(struct kmem_cache *s) 2895 { 2896 int node; 2897 struct kmem_cache_node *n; 2898 2899 for_each_kmem_cache_node(s, node, n) { 2900 kmem_cache_free(kmem_cache_node, n); 2901 s->node[node] = NULL; 2902 } 2903 } 2904 2905 static int init_kmem_cache_nodes(struct kmem_cache *s) 2906 { 2907 int node; 2908 2909 for_each_node_state(node, N_NORMAL_MEMORY) { 2910 struct kmem_cache_node *n; 2911 2912 if (slab_state == DOWN) { 2913 early_kmem_cache_node_alloc(node); 2914 continue; 2915 } 2916 n = kmem_cache_alloc_node(kmem_cache_node, 2917 GFP_KERNEL, node); 2918 2919 if (!n) { 2920 free_kmem_cache_nodes(s); 2921 return 0; 2922 } 2923 2924 s->node[node] = n; 2925 init_kmem_cache_node(n); 2926 } 2927 return 1; 2928 } 2929 2930 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2931 { 2932 if (min < MIN_PARTIAL) 2933 min = MIN_PARTIAL; 2934 else if (min > MAX_PARTIAL) 2935 min = MAX_PARTIAL; 2936 s->min_partial = min; 2937 } 2938 2939 /* 2940 * calculate_sizes() determines the order and the distribution of data within 2941 * a slab object. 2942 */ 2943 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2944 { 2945 unsigned long flags = s->flags; 2946 unsigned long size = s->object_size; 2947 int order; 2948 2949 /* 2950 * Round up object size to the next word boundary. We can only 2951 * place the free pointer at word boundaries and this determines 2952 * the possible location of the free pointer. 2953 */ 2954 size = ALIGN(size, sizeof(void *)); 2955 2956 #ifdef CONFIG_SLUB_DEBUG 2957 /* 2958 * Determine if we can poison the object itself. If the user of 2959 * the slab may touch the object after free or before allocation 2960 * then we should never poison the object itself. 2961 */ 2962 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2963 !s->ctor) 2964 s->flags |= __OBJECT_POISON; 2965 else 2966 s->flags &= ~__OBJECT_POISON; 2967 2968 2969 /* 2970 * If we are Redzoning then check if there is some space between the 2971 * end of the object and the free pointer. If not then add an 2972 * additional word to have some bytes to store Redzone information. 2973 */ 2974 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 2975 size += sizeof(void *); 2976 #endif 2977 2978 /* 2979 * With that we have determined the number of bytes in actual use 2980 * by the object. This is the potential offset to the free pointer. 2981 */ 2982 s->inuse = size; 2983 2984 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2985 s->ctor)) { 2986 /* 2987 * Relocate free pointer after the object if it is not 2988 * permitted to overwrite the first word of the object on 2989 * kmem_cache_free. 2990 * 2991 * This is the case if we do RCU, have a constructor or 2992 * destructor or are poisoning the objects. 2993 */ 2994 s->offset = size; 2995 size += sizeof(void *); 2996 } 2997 2998 #ifdef CONFIG_SLUB_DEBUG 2999 if (flags & SLAB_STORE_USER) 3000 /* 3001 * Need to store information about allocs and frees after 3002 * the object. 3003 */ 3004 size += 2 * sizeof(struct track); 3005 3006 if (flags & SLAB_RED_ZONE) 3007 /* 3008 * Add some empty padding so that we can catch 3009 * overwrites from earlier objects rather than let 3010 * tracking information or the free pointer be 3011 * corrupted if a user writes before the start 3012 * of the object. 3013 */ 3014 size += sizeof(void *); 3015 #endif 3016 3017 /* 3018 * SLUB stores one object immediately after another beginning from 3019 * offset 0. In order to align the objects we have to simply size 3020 * each object to conform to the alignment. 3021 */ 3022 size = ALIGN(size, s->align); 3023 s->size = size; 3024 if (forced_order >= 0) 3025 order = forced_order; 3026 else 3027 order = calculate_order(size, s->reserved); 3028 3029 if (order < 0) 3030 return 0; 3031 3032 s->allocflags = 0; 3033 if (order) 3034 s->allocflags |= __GFP_COMP; 3035 3036 if (s->flags & SLAB_CACHE_DMA) 3037 s->allocflags |= GFP_DMA; 3038 3039 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3040 s->allocflags |= __GFP_RECLAIMABLE; 3041 3042 /* 3043 * Determine the number of objects per slab 3044 */ 3045 s->oo = oo_make(order, size, s->reserved); 3046 s->min = oo_make(get_order(size), size, s->reserved); 3047 if (oo_objects(s->oo) > oo_objects(s->max)) 3048 s->max = s->oo; 3049 3050 return !!oo_objects(s->oo); 3051 } 3052 3053 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3054 { 3055 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3056 s->reserved = 0; 3057 3058 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3059 s->reserved = sizeof(struct rcu_head); 3060 3061 if (!calculate_sizes(s, -1)) 3062 goto error; 3063 if (disable_higher_order_debug) { 3064 /* 3065 * Disable debugging flags that store metadata if the min slab 3066 * order increased. 3067 */ 3068 if (get_order(s->size) > get_order(s->object_size)) { 3069 s->flags &= ~DEBUG_METADATA_FLAGS; 3070 s->offset = 0; 3071 if (!calculate_sizes(s, -1)) 3072 goto error; 3073 } 3074 } 3075 3076 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3077 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3078 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3079 /* Enable fast mode */ 3080 s->flags |= __CMPXCHG_DOUBLE; 3081 #endif 3082 3083 /* 3084 * The larger the object size is, the more pages we want on the partial 3085 * list to avoid pounding the page allocator excessively. 3086 */ 3087 set_min_partial(s, ilog2(s->size) / 2); 3088 3089 /* 3090 * cpu_partial determined the maximum number of objects kept in the 3091 * per cpu partial lists of a processor. 3092 * 3093 * Per cpu partial lists mainly contain slabs that just have one 3094 * object freed. If they are used for allocation then they can be 3095 * filled up again with minimal effort. The slab will never hit the 3096 * per node partial lists and therefore no locking will be required. 3097 * 3098 * This setting also determines 3099 * 3100 * A) The number of objects from per cpu partial slabs dumped to the 3101 * per node list when we reach the limit. 3102 * B) The number of objects in cpu partial slabs to extract from the 3103 * per node list when we run out of per cpu objects. We only fetch 3104 * 50% to keep some capacity around for frees. 3105 */ 3106 if (!kmem_cache_has_cpu_partial(s)) 3107 s->cpu_partial = 0; 3108 else if (s->size >= PAGE_SIZE) 3109 s->cpu_partial = 2; 3110 else if (s->size >= 1024) 3111 s->cpu_partial = 6; 3112 else if (s->size >= 256) 3113 s->cpu_partial = 13; 3114 else 3115 s->cpu_partial = 30; 3116 3117 #ifdef CONFIG_NUMA 3118 s->remote_node_defrag_ratio = 1000; 3119 #endif 3120 if (!init_kmem_cache_nodes(s)) 3121 goto error; 3122 3123 if (alloc_kmem_cache_cpus(s)) 3124 return 0; 3125 3126 free_kmem_cache_nodes(s); 3127 error: 3128 if (flags & SLAB_PANIC) 3129 panic("Cannot create slab %s size=%lu realsize=%u " 3130 "order=%u offset=%u flags=%lx\n", 3131 s->name, (unsigned long)s->size, s->size, 3132 oo_order(s->oo), s->offset, flags); 3133 return -EINVAL; 3134 } 3135 3136 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3137 const char *text) 3138 { 3139 #ifdef CONFIG_SLUB_DEBUG 3140 void *addr = page_address(page); 3141 void *p; 3142 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3143 sizeof(long), GFP_ATOMIC); 3144 if (!map) 3145 return; 3146 slab_err(s, page, text, s->name); 3147 slab_lock(page); 3148 3149 get_map(s, page, map); 3150 for_each_object(p, s, addr, page->objects) { 3151 3152 if (!test_bit(slab_index(p, s, addr), map)) { 3153 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3154 print_tracking(s, p); 3155 } 3156 } 3157 slab_unlock(page); 3158 kfree(map); 3159 #endif 3160 } 3161 3162 /* 3163 * Attempt to free all partial slabs on a node. 3164 * This is called from kmem_cache_close(). We must be the last thread 3165 * using the cache and therefore we do not need to lock anymore. 3166 */ 3167 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3168 { 3169 struct page *page, *h; 3170 3171 list_for_each_entry_safe(page, h, &n->partial, lru) { 3172 if (!page->inuse) { 3173 __remove_partial(n, page); 3174 discard_slab(s, page); 3175 } else { 3176 list_slab_objects(s, page, 3177 "Objects remaining in %s on kmem_cache_close()"); 3178 } 3179 } 3180 } 3181 3182 /* 3183 * Release all resources used by a slab cache. 3184 */ 3185 static inline int kmem_cache_close(struct kmem_cache *s) 3186 { 3187 int node; 3188 struct kmem_cache_node *n; 3189 3190 flush_all(s); 3191 /* Attempt to free all objects */ 3192 for_each_kmem_cache_node(s, node, n) { 3193 free_partial(s, n); 3194 if (n->nr_partial || slabs_node(s, node)) 3195 return 1; 3196 } 3197 free_percpu(s->cpu_slab); 3198 free_kmem_cache_nodes(s); 3199 return 0; 3200 } 3201 3202 int __kmem_cache_shutdown(struct kmem_cache *s) 3203 { 3204 return kmem_cache_close(s); 3205 } 3206 3207 /******************************************************************** 3208 * Kmalloc subsystem 3209 *******************************************************************/ 3210 3211 static int __init setup_slub_min_order(char *str) 3212 { 3213 get_option(&str, &slub_min_order); 3214 3215 return 1; 3216 } 3217 3218 __setup("slub_min_order=", setup_slub_min_order); 3219 3220 static int __init setup_slub_max_order(char *str) 3221 { 3222 get_option(&str, &slub_max_order); 3223 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3224 3225 return 1; 3226 } 3227 3228 __setup("slub_max_order=", setup_slub_max_order); 3229 3230 static int __init setup_slub_min_objects(char *str) 3231 { 3232 get_option(&str, &slub_min_objects); 3233 3234 return 1; 3235 } 3236 3237 __setup("slub_min_objects=", setup_slub_min_objects); 3238 3239 void *__kmalloc(size_t size, gfp_t flags) 3240 { 3241 struct kmem_cache *s; 3242 void *ret; 3243 3244 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3245 return kmalloc_large(size, flags); 3246 3247 s = kmalloc_slab(size, flags); 3248 3249 if (unlikely(ZERO_OR_NULL_PTR(s))) 3250 return s; 3251 3252 ret = slab_alloc(s, flags, _RET_IP_); 3253 3254 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3255 3256 return ret; 3257 } 3258 EXPORT_SYMBOL(__kmalloc); 3259 3260 #ifdef CONFIG_NUMA 3261 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3262 { 3263 struct page *page; 3264 void *ptr = NULL; 3265 3266 flags |= __GFP_COMP | __GFP_NOTRACK; 3267 page = alloc_kmem_pages_node(node, flags, get_order(size)); 3268 if (page) 3269 ptr = page_address(page); 3270 3271 kmalloc_large_node_hook(ptr, size, flags); 3272 return ptr; 3273 } 3274 3275 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3276 { 3277 struct kmem_cache *s; 3278 void *ret; 3279 3280 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3281 ret = kmalloc_large_node(size, flags, node); 3282 3283 trace_kmalloc_node(_RET_IP_, ret, 3284 size, PAGE_SIZE << get_order(size), 3285 flags, node); 3286 3287 return ret; 3288 } 3289 3290 s = kmalloc_slab(size, flags); 3291 3292 if (unlikely(ZERO_OR_NULL_PTR(s))) 3293 return s; 3294 3295 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3296 3297 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3298 3299 return ret; 3300 } 3301 EXPORT_SYMBOL(__kmalloc_node); 3302 #endif 3303 3304 size_t ksize(const void *object) 3305 { 3306 struct page *page; 3307 3308 if (unlikely(object == ZERO_SIZE_PTR)) 3309 return 0; 3310 3311 page = virt_to_head_page(object); 3312 3313 if (unlikely(!PageSlab(page))) { 3314 WARN_ON(!PageCompound(page)); 3315 return PAGE_SIZE << compound_order(page); 3316 } 3317 3318 return slab_ksize(page->slab_cache); 3319 } 3320 EXPORT_SYMBOL(ksize); 3321 3322 void kfree(const void *x) 3323 { 3324 struct page *page; 3325 void *object = (void *)x; 3326 3327 trace_kfree(_RET_IP_, x); 3328 3329 if (unlikely(ZERO_OR_NULL_PTR(x))) 3330 return; 3331 3332 page = virt_to_head_page(x); 3333 if (unlikely(!PageSlab(page))) { 3334 BUG_ON(!PageCompound(page)); 3335 kfree_hook(x); 3336 __free_kmem_pages(page, compound_order(page)); 3337 return; 3338 } 3339 slab_free(page->slab_cache, page, object, _RET_IP_); 3340 } 3341 EXPORT_SYMBOL(kfree); 3342 3343 /* 3344 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 3345 * the remaining slabs by the number of items in use. The slabs with the 3346 * most items in use come first. New allocations will then fill those up 3347 * and thus they can be removed from the partial lists. 3348 * 3349 * The slabs with the least items are placed last. This results in them 3350 * being allocated from last increasing the chance that the last objects 3351 * are freed in them. 3352 */ 3353 int __kmem_cache_shrink(struct kmem_cache *s) 3354 { 3355 int node; 3356 int i; 3357 struct kmem_cache_node *n; 3358 struct page *page; 3359 struct page *t; 3360 int objects = oo_objects(s->max); 3361 struct list_head *slabs_by_inuse = 3362 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 3363 unsigned long flags; 3364 3365 if (!slabs_by_inuse) 3366 return -ENOMEM; 3367 3368 flush_all(s); 3369 for_each_kmem_cache_node(s, node, n) { 3370 if (!n->nr_partial) 3371 continue; 3372 3373 for (i = 0; i < objects; i++) 3374 INIT_LIST_HEAD(slabs_by_inuse + i); 3375 3376 spin_lock_irqsave(&n->list_lock, flags); 3377 3378 /* 3379 * Build lists indexed by the items in use in each slab. 3380 * 3381 * Note that concurrent frees may occur while we hold the 3382 * list_lock. page->inuse here is the upper limit. 3383 */ 3384 list_for_each_entry_safe(page, t, &n->partial, lru) { 3385 list_move(&page->lru, slabs_by_inuse + page->inuse); 3386 if (!page->inuse) 3387 n->nr_partial--; 3388 } 3389 3390 /* 3391 * Rebuild the partial list with the slabs filled up most 3392 * first and the least used slabs at the end. 3393 */ 3394 for (i = objects - 1; i > 0; i--) 3395 list_splice(slabs_by_inuse + i, n->partial.prev); 3396 3397 spin_unlock_irqrestore(&n->list_lock, flags); 3398 3399 /* Release empty slabs */ 3400 list_for_each_entry_safe(page, t, slabs_by_inuse, lru) 3401 discard_slab(s, page); 3402 } 3403 3404 kfree(slabs_by_inuse); 3405 return 0; 3406 } 3407 3408 static int slab_mem_going_offline_callback(void *arg) 3409 { 3410 struct kmem_cache *s; 3411 3412 mutex_lock(&slab_mutex); 3413 list_for_each_entry(s, &slab_caches, list) 3414 __kmem_cache_shrink(s); 3415 mutex_unlock(&slab_mutex); 3416 3417 return 0; 3418 } 3419 3420 static void slab_mem_offline_callback(void *arg) 3421 { 3422 struct kmem_cache_node *n; 3423 struct kmem_cache *s; 3424 struct memory_notify *marg = arg; 3425 int offline_node; 3426 3427 offline_node = marg->status_change_nid_normal; 3428 3429 /* 3430 * If the node still has available memory. we need kmem_cache_node 3431 * for it yet. 3432 */ 3433 if (offline_node < 0) 3434 return; 3435 3436 mutex_lock(&slab_mutex); 3437 list_for_each_entry(s, &slab_caches, list) { 3438 n = get_node(s, offline_node); 3439 if (n) { 3440 /* 3441 * if n->nr_slabs > 0, slabs still exist on the node 3442 * that is going down. We were unable to free them, 3443 * and offline_pages() function shouldn't call this 3444 * callback. So, we must fail. 3445 */ 3446 BUG_ON(slabs_node(s, offline_node)); 3447 3448 s->node[offline_node] = NULL; 3449 kmem_cache_free(kmem_cache_node, n); 3450 } 3451 } 3452 mutex_unlock(&slab_mutex); 3453 } 3454 3455 static int slab_mem_going_online_callback(void *arg) 3456 { 3457 struct kmem_cache_node *n; 3458 struct kmem_cache *s; 3459 struct memory_notify *marg = arg; 3460 int nid = marg->status_change_nid_normal; 3461 int ret = 0; 3462 3463 /* 3464 * If the node's memory is already available, then kmem_cache_node is 3465 * already created. Nothing to do. 3466 */ 3467 if (nid < 0) 3468 return 0; 3469 3470 /* 3471 * We are bringing a node online. No memory is available yet. We must 3472 * allocate a kmem_cache_node structure in order to bring the node 3473 * online. 3474 */ 3475 mutex_lock(&slab_mutex); 3476 list_for_each_entry(s, &slab_caches, list) { 3477 /* 3478 * XXX: kmem_cache_alloc_node will fallback to other nodes 3479 * since memory is not yet available from the node that 3480 * is brought up. 3481 */ 3482 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3483 if (!n) { 3484 ret = -ENOMEM; 3485 goto out; 3486 } 3487 init_kmem_cache_node(n); 3488 s->node[nid] = n; 3489 } 3490 out: 3491 mutex_unlock(&slab_mutex); 3492 return ret; 3493 } 3494 3495 static int slab_memory_callback(struct notifier_block *self, 3496 unsigned long action, void *arg) 3497 { 3498 int ret = 0; 3499 3500 switch (action) { 3501 case MEM_GOING_ONLINE: 3502 ret = slab_mem_going_online_callback(arg); 3503 break; 3504 case MEM_GOING_OFFLINE: 3505 ret = slab_mem_going_offline_callback(arg); 3506 break; 3507 case MEM_OFFLINE: 3508 case MEM_CANCEL_ONLINE: 3509 slab_mem_offline_callback(arg); 3510 break; 3511 case MEM_ONLINE: 3512 case MEM_CANCEL_OFFLINE: 3513 break; 3514 } 3515 if (ret) 3516 ret = notifier_from_errno(ret); 3517 else 3518 ret = NOTIFY_OK; 3519 return ret; 3520 } 3521 3522 static struct notifier_block slab_memory_callback_nb = { 3523 .notifier_call = slab_memory_callback, 3524 .priority = SLAB_CALLBACK_PRI, 3525 }; 3526 3527 /******************************************************************** 3528 * Basic setup of slabs 3529 *******************************************************************/ 3530 3531 /* 3532 * Used for early kmem_cache structures that were allocated using 3533 * the page allocator. Allocate them properly then fix up the pointers 3534 * that may be pointing to the wrong kmem_cache structure. 3535 */ 3536 3537 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 3538 { 3539 int node; 3540 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 3541 struct kmem_cache_node *n; 3542 3543 memcpy(s, static_cache, kmem_cache->object_size); 3544 3545 /* 3546 * This runs very early, and only the boot processor is supposed to be 3547 * up. Even if it weren't true, IRQs are not up so we couldn't fire 3548 * IPIs around. 3549 */ 3550 __flush_cpu_slab(s, smp_processor_id()); 3551 for_each_kmem_cache_node(s, node, n) { 3552 struct page *p; 3553 3554 list_for_each_entry(p, &n->partial, lru) 3555 p->slab_cache = s; 3556 3557 #ifdef CONFIG_SLUB_DEBUG 3558 list_for_each_entry(p, &n->full, lru) 3559 p->slab_cache = s; 3560 #endif 3561 } 3562 list_add(&s->list, &slab_caches); 3563 return s; 3564 } 3565 3566 void __init kmem_cache_init(void) 3567 { 3568 static __initdata struct kmem_cache boot_kmem_cache, 3569 boot_kmem_cache_node; 3570 3571 if (debug_guardpage_minorder()) 3572 slub_max_order = 0; 3573 3574 kmem_cache_node = &boot_kmem_cache_node; 3575 kmem_cache = &boot_kmem_cache; 3576 3577 create_boot_cache(kmem_cache_node, "kmem_cache_node", 3578 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 3579 3580 register_hotmemory_notifier(&slab_memory_callback_nb); 3581 3582 /* Able to allocate the per node structures */ 3583 slab_state = PARTIAL; 3584 3585 create_boot_cache(kmem_cache, "kmem_cache", 3586 offsetof(struct kmem_cache, node) + 3587 nr_node_ids * sizeof(struct kmem_cache_node *), 3588 SLAB_HWCACHE_ALIGN); 3589 3590 kmem_cache = bootstrap(&boot_kmem_cache); 3591 3592 /* 3593 * Allocate kmem_cache_node properly from the kmem_cache slab. 3594 * kmem_cache_node is separately allocated so no need to 3595 * update any list pointers. 3596 */ 3597 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 3598 3599 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3600 create_kmalloc_caches(0); 3601 3602 #ifdef CONFIG_SMP 3603 register_cpu_notifier(&slab_notifier); 3604 #endif 3605 3606 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n", 3607 cache_line_size(), 3608 slub_min_order, slub_max_order, slub_min_objects, 3609 nr_cpu_ids, nr_node_ids); 3610 } 3611 3612 void __init kmem_cache_init_late(void) 3613 { 3614 } 3615 3616 struct kmem_cache * 3617 __kmem_cache_alias(const char *name, size_t size, size_t align, 3618 unsigned long flags, void (*ctor)(void *)) 3619 { 3620 struct kmem_cache *s; 3621 3622 s = find_mergeable(size, align, flags, name, ctor); 3623 if (s) { 3624 int i; 3625 struct kmem_cache *c; 3626 3627 s->refcount++; 3628 3629 /* 3630 * Adjust the object sizes so that we clear 3631 * the complete object on kzalloc. 3632 */ 3633 s->object_size = max(s->object_size, (int)size); 3634 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3635 3636 for_each_memcg_cache_index(i) { 3637 c = cache_from_memcg_idx(s, i); 3638 if (!c) 3639 continue; 3640 c->object_size = s->object_size; 3641 c->inuse = max_t(int, c->inuse, 3642 ALIGN(size, sizeof(void *))); 3643 } 3644 3645 if (sysfs_slab_alias(s, name)) { 3646 s->refcount--; 3647 s = NULL; 3648 } 3649 } 3650 3651 return s; 3652 } 3653 3654 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 3655 { 3656 int err; 3657 3658 err = kmem_cache_open(s, flags); 3659 if (err) 3660 return err; 3661 3662 /* Mutex is not taken during early boot */ 3663 if (slab_state <= UP) 3664 return 0; 3665 3666 memcg_propagate_slab_attrs(s); 3667 err = sysfs_slab_add(s); 3668 if (err) 3669 kmem_cache_close(s); 3670 3671 return err; 3672 } 3673 3674 #ifdef CONFIG_SMP 3675 /* 3676 * Use the cpu notifier to insure that the cpu slabs are flushed when 3677 * necessary. 3678 */ 3679 static int slab_cpuup_callback(struct notifier_block *nfb, 3680 unsigned long action, void *hcpu) 3681 { 3682 long cpu = (long)hcpu; 3683 struct kmem_cache *s; 3684 unsigned long flags; 3685 3686 switch (action) { 3687 case CPU_UP_CANCELED: 3688 case CPU_UP_CANCELED_FROZEN: 3689 case CPU_DEAD: 3690 case CPU_DEAD_FROZEN: 3691 mutex_lock(&slab_mutex); 3692 list_for_each_entry(s, &slab_caches, list) { 3693 local_irq_save(flags); 3694 __flush_cpu_slab(s, cpu); 3695 local_irq_restore(flags); 3696 } 3697 mutex_unlock(&slab_mutex); 3698 break; 3699 default: 3700 break; 3701 } 3702 return NOTIFY_OK; 3703 } 3704 3705 static struct notifier_block slab_notifier = { 3706 .notifier_call = slab_cpuup_callback 3707 }; 3708 3709 #endif 3710 3711 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3712 { 3713 struct kmem_cache *s; 3714 void *ret; 3715 3716 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3717 return kmalloc_large(size, gfpflags); 3718 3719 s = kmalloc_slab(size, gfpflags); 3720 3721 if (unlikely(ZERO_OR_NULL_PTR(s))) 3722 return s; 3723 3724 ret = slab_alloc(s, gfpflags, caller); 3725 3726 /* Honor the call site pointer we received. */ 3727 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3728 3729 return ret; 3730 } 3731 3732 #ifdef CONFIG_NUMA 3733 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3734 int node, unsigned long caller) 3735 { 3736 struct kmem_cache *s; 3737 void *ret; 3738 3739 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3740 ret = kmalloc_large_node(size, gfpflags, node); 3741 3742 trace_kmalloc_node(caller, ret, 3743 size, PAGE_SIZE << get_order(size), 3744 gfpflags, node); 3745 3746 return ret; 3747 } 3748 3749 s = kmalloc_slab(size, gfpflags); 3750 3751 if (unlikely(ZERO_OR_NULL_PTR(s))) 3752 return s; 3753 3754 ret = slab_alloc_node(s, gfpflags, node, caller); 3755 3756 /* Honor the call site pointer we received. */ 3757 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3758 3759 return ret; 3760 } 3761 #endif 3762 3763 #ifdef CONFIG_SYSFS 3764 static int count_inuse(struct page *page) 3765 { 3766 return page->inuse; 3767 } 3768 3769 static int count_total(struct page *page) 3770 { 3771 return page->objects; 3772 } 3773 #endif 3774 3775 #ifdef CONFIG_SLUB_DEBUG 3776 static int validate_slab(struct kmem_cache *s, struct page *page, 3777 unsigned long *map) 3778 { 3779 void *p; 3780 void *addr = page_address(page); 3781 3782 if (!check_slab(s, page) || 3783 !on_freelist(s, page, NULL)) 3784 return 0; 3785 3786 /* Now we know that a valid freelist exists */ 3787 bitmap_zero(map, page->objects); 3788 3789 get_map(s, page, map); 3790 for_each_object(p, s, addr, page->objects) { 3791 if (test_bit(slab_index(p, s, addr), map)) 3792 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 3793 return 0; 3794 } 3795 3796 for_each_object(p, s, addr, page->objects) 3797 if (!test_bit(slab_index(p, s, addr), map)) 3798 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 3799 return 0; 3800 return 1; 3801 } 3802 3803 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3804 unsigned long *map) 3805 { 3806 slab_lock(page); 3807 validate_slab(s, page, map); 3808 slab_unlock(page); 3809 } 3810 3811 static int validate_slab_node(struct kmem_cache *s, 3812 struct kmem_cache_node *n, unsigned long *map) 3813 { 3814 unsigned long count = 0; 3815 struct page *page; 3816 unsigned long flags; 3817 3818 spin_lock_irqsave(&n->list_lock, flags); 3819 3820 list_for_each_entry(page, &n->partial, lru) { 3821 validate_slab_slab(s, page, map); 3822 count++; 3823 } 3824 if (count != n->nr_partial) 3825 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 3826 s->name, count, n->nr_partial); 3827 3828 if (!(s->flags & SLAB_STORE_USER)) 3829 goto out; 3830 3831 list_for_each_entry(page, &n->full, lru) { 3832 validate_slab_slab(s, page, map); 3833 count++; 3834 } 3835 if (count != atomic_long_read(&n->nr_slabs)) 3836 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 3837 s->name, count, atomic_long_read(&n->nr_slabs)); 3838 3839 out: 3840 spin_unlock_irqrestore(&n->list_lock, flags); 3841 return count; 3842 } 3843 3844 static long validate_slab_cache(struct kmem_cache *s) 3845 { 3846 int node; 3847 unsigned long count = 0; 3848 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3849 sizeof(unsigned long), GFP_KERNEL); 3850 struct kmem_cache_node *n; 3851 3852 if (!map) 3853 return -ENOMEM; 3854 3855 flush_all(s); 3856 for_each_kmem_cache_node(s, node, n) 3857 count += validate_slab_node(s, n, map); 3858 kfree(map); 3859 return count; 3860 } 3861 /* 3862 * Generate lists of code addresses where slabcache objects are allocated 3863 * and freed. 3864 */ 3865 3866 struct location { 3867 unsigned long count; 3868 unsigned long addr; 3869 long long sum_time; 3870 long min_time; 3871 long max_time; 3872 long min_pid; 3873 long max_pid; 3874 DECLARE_BITMAP(cpus, NR_CPUS); 3875 nodemask_t nodes; 3876 }; 3877 3878 struct loc_track { 3879 unsigned long max; 3880 unsigned long count; 3881 struct location *loc; 3882 }; 3883 3884 static void free_loc_track(struct loc_track *t) 3885 { 3886 if (t->max) 3887 free_pages((unsigned long)t->loc, 3888 get_order(sizeof(struct location) * t->max)); 3889 } 3890 3891 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3892 { 3893 struct location *l; 3894 int order; 3895 3896 order = get_order(sizeof(struct location) * max); 3897 3898 l = (void *)__get_free_pages(flags, order); 3899 if (!l) 3900 return 0; 3901 3902 if (t->count) { 3903 memcpy(l, t->loc, sizeof(struct location) * t->count); 3904 free_loc_track(t); 3905 } 3906 t->max = max; 3907 t->loc = l; 3908 return 1; 3909 } 3910 3911 static int add_location(struct loc_track *t, struct kmem_cache *s, 3912 const struct track *track) 3913 { 3914 long start, end, pos; 3915 struct location *l; 3916 unsigned long caddr; 3917 unsigned long age = jiffies - track->when; 3918 3919 start = -1; 3920 end = t->count; 3921 3922 for ( ; ; ) { 3923 pos = start + (end - start + 1) / 2; 3924 3925 /* 3926 * There is nothing at "end". If we end up there 3927 * we need to add something to before end. 3928 */ 3929 if (pos == end) 3930 break; 3931 3932 caddr = t->loc[pos].addr; 3933 if (track->addr == caddr) { 3934 3935 l = &t->loc[pos]; 3936 l->count++; 3937 if (track->when) { 3938 l->sum_time += age; 3939 if (age < l->min_time) 3940 l->min_time = age; 3941 if (age > l->max_time) 3942 l->max_time = age; 3943 3944 if (track->pid < l->min_pid) 3945 l->min_pid = track->pid; 3946 if (track->pid > l->max_pid) 3947 l->max_pid = track->pid; 3948 3949 cpumask_set_cpu(track->cpu, 3950 to_cpumask(l->cpus)); 3951 } 3952 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3953 return 1; 3954 } 3955 3956 if (track->addr < caddr) 3957 end = pos; 3958 else 3959 start = pos; 3960 } 3961 3962 /* 3963 * Not found. Insert new tracking element. 3964 */ 3965 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3966 return 0; 3967 3968 l = t->loc + pos; 3969 if (pos < t->count) 3970 memmove(l + 1, l, 3971 (t->count - pos) * sizeof(struct location)); 3972 t->count++; 3973 l->count = 1; 3974 l->addr = track->addr; 3975 l->sum_time = age; 3976 l->min_time = age; 3977 l->max_time = age; 3978 l->min_pid = track->pid; 3979 l->max_pid = track->pid; 3980 cpumask_clear(to_cpumask(l->cpus)); 3981 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 3982 nodes_clear(l->nodes); 3983 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3984 return 1; 3985 } 3986 3987 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3988 struct page *page, enum track_item alloc, 3989 unsigned long *map) 3990 { 3991 void *addr = page_address(page); 3992 void *p; 3993 3994 bitmap_zero(map, page->objects); 3995 get_map(s, page, map); 3996 3997 for_each_object(p, s, addr, page->objects) 3998 if (!test_bit(slab_index(p, s, addr), map)) 3999 add_location(t, s, get_track(s, p, alloc)); 4000 } 4001 4002 static int list_locations(struct kmem_cache *s, char *buf, 4003 enum track_item alloc) 4004 { 4005 int len = 0; 4006 unsigned long i; 4007 struct loc_track t = { 0, 0, NULL }; 4008 int node; 4009 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4010 sizeof(unsigned long), GFP_KERNEL); 4011 struct kmem_cache_node *n; 4012 4013 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4014 GFP_TEMPORARY)) { 4015 kfree(map); 4016 return sprintf(buf, "Out of memory\n"); 4017 } 4018 /* Push back cpu slabs */ 4019 flush_all(s); 4020 4021 for_each_kmem_cache_node(s, node, n) { 4022 unsigned long flags; 4023 struct page *page; 4024 4025 if (!atomic_long_read(&n->nr_slabs)) 4026 continue; 4027 4028 spin_lock_irqsave(&n->list_lock, flags); 4029 list_for_each_entry(page, &n->partial, lru) 4030 process_slab(&t, s, page, alloc, map); 4031 list_for_each_entry(page, &n->full, lru) 4032 process_slab(&t, s, page, alloc, map); 4033 spin_unlock_irqrestore(&n->list_lock, flags); 4034 } 4035 4036 for (i = 0; i < t.count; i++) { 4037 struct location *l = &t.loc[i]; 4038 4039 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4040 break; 4041 len += sprintf(buf + len, "%7ld ", l->count); 4042 4043 if (l->addr) 4044 len += sprintf(buf + len, "%pS", (void *)l->addr); 4045 else 4046 len += sprintf(buf + len, "<not-available>"); 4047 4048 if (l->sum_time != l->min_time) { 4049 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4050 l->min_time, 4051 (long)div_u64(l->sum_time, l->count), 4052 l->max_time); 4053 } else 4054 len += sprintf(buf + len, " age=%ld", 4055 l->min_time); 4056 4057 if (l->min_pid != l->max_pid) 4058 len += sprintf(buf + len, " pid=%ld-%ld", 4059 l->min_pid, l->max_pid); 4060 else 4061 len += sprintf(buf + len, " pid=%ld", 4062 l->min_pid); 4063 4064 if (num_online_cpus() > 1 && 4065 !cpumask_empty(to_cpumask(l->cpus)) && 4066 len < PAGE_SIZE - 60) { 4067 len += sprintf(buf + len, " cpus="); 4068 len += cpulist_scnprintf(buf + len, 4069 PAGE_SIZE - len - 50, 4070 to_cpumask(l->cpus)); 4071 } 4072 4073 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4074 len < PAGE_SIZE - 60) { 4075 len += sprintf(buf + len, " nodes="); 4076 len += nodelist_scnprintf(buf + len, 4077 PAGE_SIZE - len - 50, 4078 l->nodes); 4079 } 4080 4081 len += sprintf(buf + len, "\n"); 4082 } 4083 4084 free_loc_track(&t); 4085 kfree(map); 4086 if (!t.count) 4087 len += sprintf(buf, "No data\n"); 4088 return len; 4089 } 4090 #endif 4091 4092 #ifdef SLUB_RESILIENCY_TEST 4093 static void __init resiliency_test(void) 4094 { 4095 u8 *p; 4096 4097 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4098 4099 pr_err("SLUB resiliency testing\n"); 4100 pr_err("-----------------------\n"); 4101 pr_err("A. Corruption after allocation\n"); 4102 4103 p = kzalloc(16, GFP_KERNEL); 4104 p[16] = 0x12; 4105 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4106 p + 16); 4107 4108 validate_slab_cache(kmalloc_caches[4]); 4109 4110 /* Hmmm... The next two are dangerous */ 4111 p = kzalloc(32, GFP_KERNEL); 4112 p[32 + sizeof(void *)] = 0x34; 4113 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4114 p); 4115 pr_err("If allocated object is overwritten then not detectable\n\n"); 4116 4117 validate_slab_cache(kmalloc_caches[5]); 4118 p = kzalloc(64, GFP_KERNEL); 4119 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4120 *p = 0x56; 4121 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4122 p); 4123 pr_err("If allocated object is overwritten then not detectable\n\n"); 4124 validate_slab_cache(kmalloc_caches[6]); 4125 4126 pr_err("\nB. Corruption after free\n"); 4127 p = kzalloc(128, GFP_KERNEL); 4128 kfree(p); 4129 *p = 0x78; 4130 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4131 validate_slab_cache(kmalloc_caches[7]); 4132 4133 p = kzalloc(256, GFP_KERNEL); 4134 kfree(p); 4135 p[50] = 0x9a; 4136 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4137 validate_slab_cache(kmalloc_caches[8]); 4138 4139 p = kzalloc(512, GFP_KERNEL); 4140 kfree(p); 4141 p[512] = 0xab; 4142 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4143 validate_slab_cache(kmalloc_caches[9]); 4144 } 4145 #else 4146 #ifdef CONFIG_SYSFS 4147 static void resiliency_test(void) {}; 4148 #endif 4149 #endif 4150 4151 #ifdef CONFIG_SYSFS 4152 enum slab_stat_type { 4153 SL_ALL, /* All slabs */ 4154 SL_PARTIAL, /* Only partially allocated slabs */ 4155 SL_CPU, /* Only slabs used for cpu caches */ 4156 SL_OBJECTS, /* Determine allocated objects not slabs */ 4157 SL_TOTAL /* Determine object capacity not slabs */ 4158 }; 4159 4160 #define SO_ALL (1 << SL_ALL) 4161 #define SO_PARTIAL (1 << SL_PARTIAL) 4162 #define SO_CPU (1 << SL_CPU) 4163 #define SO_OBJECTS (1 << SL_OBJECTS) 4164 #define SO_TOTAL (1 << SL_TOTAL) 4165 4166 static ssize_t show_slab_objects(struct kmem_cache *s, 4167 char *buf, unsigned long flags) 4168 { 4169 unsigned long total = 0; 4170 int node; 4171 int x; 4172 unsigned long *nodes; 4173 4174 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4175 if (!nodes) 4176 return -ENOMEM; 4177 4178 if (flags & SO_CPU) { 4179 int cpu; 4180 4181 for_each_possible_cpu(cpu) { 4182 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4183 cpu); 4184 int node; 4185 struct page *page; 4186 4187 page = ACCESS_ONCE(c->page); 4188 if (!page) 4189 continue; 4190 4191 node = page_to_nid(page); 4192 if (flags & SO_TOTAL) 4193 x = page->objects; 4194 else if (flags & SO_OBJECTS) 4195 x = page->inuse; 4196 else 4197 x = 1; 4198 4199 total += x; 4200 nodes[node] += x; 4201 4202 page = ACCESS_ONCE(c->partial); 4203 if (page) { 4204 node = page_to_nid(page); 4205 if (flags & SO_TOTAL) 4206 WARN_ON_ONCE(1); 4207 else if (flags & SO_OBJECTS) 4208 WARN_ON_ONCE(1); 4209 else 4210 x = page->pages; 4211 total += x; 4212 nodes[node] += x; 4213 } 4214 } 4215 } 4216 4217 get_online_mems(); 4218 #ifdef CONFIG_SLUB_DEBUG 4219 if (flags & SO_ALL) { 4220 struct kmem_cache_node *n; 4221 4222 for_each_kmem_cache_node(s, node, n) { 4223 4224 if (flags & SO_TOTAL) 4225 x = atomic_long_read(&n->total_objects); 4226 else if (flags & SO_OBJECTS) 4227 x = atomic_long_read(&n->total_objects) - 4228 count_partial(n, count_free); 4229 else 4230 x = atomic_long_read(&n->nr_slabs); 4231 total += x; 4232 nodes[node] += x; 4233 } 4234 4235 } else 4236 #endif 4237 if (flags & SO_PARTIAL) { 4238 struct kmem_cache_node *n; 4239 4240 for_each_kmem_cache_node(s, node, n) { 4241 if (flags & SO_TOTAL) 4242 x = count_partial(n, count_total); 4243 else if (flags & SO_OBJECTS) 4244 x = count_partial(n, count_inuse); 4245 else 4246 x = n->nr_partial; 4247 total += x; 4248 nodes[node] += x; 4249 } 4250 } 4251 x = sprintf(buf, "%lu", total); 4252 #ifdef CONFIG_NUMA 4253 for (node = 0; node < nr_node_ids; node++) 4254 if (nodes[node]) 4255 x += sprintf(buf + x, " N%d=%lu", 4256 node, nodes[node]); 4257 #endif 4258 put_online_mems(); 4259 kfree(nodes); 4260 return x + sprintf(buf + x, "\n"); 4261 } 4262 4263 #ifdef CONFIG_SLUB_DEBUG 4264 static int any_slab_objects(struct kmem_cache *s) 4265 { 4266 int node; 4267 struct kmem_cache_node *n; 4268 4269 for_each_kmem_cache_node(s, node, n) 4270 if (atomic_long_read(&n->total_objects)) 4271 return 1; 4272 4273 return 0; 4274 } 4275 #endif 4276 4277 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4278 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4279 4280 struct slab_attribute { 4281 struct attribute attr; 4282 ssize_t (*show)(struct kmem_cache *s, char *buf); 4283 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4284 }; 4285 4286 #define SLAB_ATTR_RO(_name) \ 4287 static struct slab_attribute _name##_attr = \ 4288 __ATTR(_name, 0400, _name##_show, NULL) 4289 4290 #define SLAB_ATTR(_name) \ 4291 static struct slab_attribute _name##_attr = \ 4292 __ATTR(_name, 0600, _name##_show, _name##_store) 4293 4294 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4295 { 4296 return sprintf(buf, "%d\n", s->size); 4297 } 4298 SLAB_ATTR_RO(slab_size); 4299 4300 static ssize_t align_show(struct kmem_cache *s, char *buf) 4301 { 4302 return sprintf(buf, "%d\n", s->align); 4303 } 4304 SLAB_ATTR_RO(align); 4305 4306 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4307 { 4308 return sprintf(buf, "%d\n", s->object_size); 4309 } 4310 SLAB_ATTR_RO(object_size); 4311 4312 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4313 { 4314 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4315 } 4316 SLAB_ATTR_RO(objs_per_slab); 4317 4318 static ssize_t order_store(struct kmem_cache *s, 4319 const char *buf, size_t length) 4320 { 4321 unsigned long order; 4322 int err; 4323 4324 err = kstrtoul(buf, 10, &order); 4325 if (err) 4326 return err; 4327 4328 if (order > slub_max_order || order < slub_min_order) 4329 return -EINVAL; 4330 4331 calculate_sizes(s, order); 4332 return length; 4333 } 4334 4335 static ssize_t order_show(struct kmem_cache *s, char *buf) 4336 { 4337 return sprintf(buf, "%d\n", oo_order(s->oo)); 4338 } 4339 SLAB_ATTR(order); 4340 4341 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4342 { 4343 return sprintf(buf, "%lu\n", s->min_partial); 4344 } 4345 4346 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4347 size_t length) 4348 { 4349 unsigned long min; 4350 int err; 4351 4352 err = kstrtoul(buf, 10, &min); 4353 if (err) 4354 return err; 4355 4356 set_min_partial(s, min); 4357 return length; 4358 } 4359 SLAB_ATTR(min_partial); 4360 4361 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4362 { 4363 return sprintf(buf, "%u\n", s->cpu_partial); 4364 } 4365 4366 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4367 size_t length) 4368 { 4369 unsigned long objects; 4370 int err; 4371 4372 err = kstrtoul(buf, 10, &objects); 4373 if (err) 4374 return err; 4375 if (objects && !kmem_cache_has_cpu_partial(s)) 4376 return -EINVAL; 4377 4378 s->cpu_partial = objects; 4379 flush_all(s); 4380 return length; 4381 } 4382 SLAB_ATTR(cpu_partial); 4383 4384 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4385 { 4386 if (!s->ctor) 4387 return 0; 4388 return sprintf(buf, "%pS\n", s->ctor); 4389 } 4390 SLAB_ATTR_RO(ctor); 4391 4392 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4393 { 4394 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4395 } 4396 SLAB_ATTR_RO(aliases); 4397 4398 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4399 { 4400 return show_slab_objects(s, buf, SO_PARTIAL); 4401 } 4402 SLAB_ATTR_RO(partial); 4403 4404 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4405 { 4406 return show_slab_objects(s, buf, SO_CPU); 4407 } 4408 SLAB_ATTR_RO(cpu_slabs); 4409 4410 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4411 { 4412 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4413 } 4414 SLAB_ATTR_RO(objects); 4415 4416 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4417 { 4418 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4419 } 4420 SLAB_ATTR_RO(objects_partial); 4421 4422 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4423 { 4424 int objects = 0; 4425 int pages = 0; 4426 int cpu; 4427 int len; 4428 4429 for_each_online_cpu(cpu) { 4430 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4431 4432 if (page) { 4433 pages += page->pages; 4434 objects += page->pobjects; 4435 } 4436 } 4437 4438 len = sprintf(buf, "%d(%d)", objects, pages); 4439 4440 #ifdef CONFIG_SMP 4441 for_each_online_cpu(cpu) { 4442 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4443 4444 if (page && len < PAGE_SIZE - 20) 4445 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4446 page->pobjects, page->pages); 4447 } 4448 #endif 4449 return len + sprintf(buf + len, "\n"); 4450 } 4451 SLAB_ATTR_RO(slabs_cpu_partial); 4452 4453 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4454 { 4455 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4456 } 4457 4458 static ssize_t reclaim_account_store(struct kmem_cache *s, 4459 const char *buf, size_t length) 4460 { 4461 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4462 if (buf[0] == '1') 4463 s->flags |= SLAB_RECLAIM_ACCOUNT; 4464 return length; 4465 } 4466 SLAB_ATTR(reclaim_account); 4467 4468 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4469 { 4470 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4471 } 4472 SLAB_ATTR_RO(hwcache_align); 4473 4474 #ifdef CONFIG_ZONE_DMA 4475 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4476 { 4477 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4478 } 4479 SLAB_ATTR_RO(cache_dma); 4480 #endif 4481 4482 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4483 { 4484 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4485 } 4486 SLAB_ATTR_RO(destroy_by_rcu); 4487 4488 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4489 { 4490 return sprintf(buf, "%d\n", s->reserved); 4491 } 4492 SLAB_ATTR_RO(reserved); 4493 4494 #ifdef CONFIG_SLUB_DEBUG 4495 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4496 { 4497 return show_slab_objects(s, buf, SO_ALL); 4498 } 4499 SLAB_ATTR_RO(slabs); 4500 4501 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4502 { 4503 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4504 } 4505 SLAB_ATTR_RO(total_objects); 4506 4507 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4508 { 4509 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4510 } 4511 4512 static ssize_t sanity_checks_store(struct kmem_cache *s, 4513 const char *buf, size_t length) 4514 { 4515 s->flags &= ~SLAB_DEBUG_FREE; 4516 if (buf[0] == '1') { 4517 s->flags &= ~__CMPXCHG_DOUBLE; 4518 s->flags |= SLAB_DEBUG_FREE; 4519 } 4520 return length; 4521 } 4522 SLAB_ATTR(sanity_checks); 4523 4524 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4525 { 4526 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4527 } 4528 4529 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4530 size_t length) 4531 { 4532 /* 4533 * Tracing a merged cache is going to give confusing results 4534 * as well as cause other issues like converting a mergeable 4535 * cache into an umergeable one. 4536 */ 4537 if (s->refcount > 1) 4538 return -EINVAL; 4539 4540 s->flags &= ~SLAB_TRACE; 4541 if (buf[0] == '1') { 4542 s->flags &= ~__CMPXCHG_DOUBLE; 4543 s->flags |= SLAB_TRACE; 4544 } 4545 return length; 4546 } 4547 SLAB_ATTR(trace); 4548 4549 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4550 { 4551 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4552 } 4553 4554 static ssize_t red_zone_store(struct kmem_cache *s, 4555 const char *buf, size_t length) 4556 { 4557 if (any_slab_objects(s)) 4558 return -EBUSY; 4559 4560 s->flags &= ~SLAB_RED_ZONE; 4561 if (buf[0] == '1') { 4562 s->flags &= ~__CMPXCHG_DOUBLE; 4563 s->flags |= SLAB_RED_ZONE; 4564 } 4565 calculate_sizes(s, -1); 4566 return length; 4567 } 4568 SLAB_ATTR(red_zone); 4569 4570 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4571 { 4572 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4573 } 4574 4575 static ssize_t poison_store(struct kmem_cache *s, 4576 const char *buf, size_t length) 4577 { 4578 if (any_slab_objects(s)) 4579 return -EBUSY; 4580 4581 s->flags &= ~SLAB_POISON; 4582 if (buf[0] == '1') { 4583 s->flags &= ~__CMPXCHG_DOUBLE; 4584 s->flags |= SLAB_POISON; 4585 } 4586 calculate_sizes(s, -1); 4587 return length; 4588 } 4589 SLAB_ATTR(poison); 4590 4591 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4592 { 4593 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4594 } 4595 4596 static ssize_t store_user_store(struct kmem_cache *s, 4597 const char *buf, size_t length) 4598 { 4599 if (any_slab_objects(s)) 4600 return -EBUSY; 4601 4602 s->flags &= ~SLAB_STORE_USER; 4603 if (buf[0] == '1') { 4604 s->flags &= ~__CMPXCHG_DOUBLE; 4605 s->flags |= SLAB_STORE_USER; 4606 } 4607 calculate_sizes(s, -1); 4608 return length; 4609 } 4610 SLAB_ATTR(store_user); 4611 4612 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4613 { 4614 return 0; 4615 } 4616 4617 static ssize_t validate_store(struct kmem_cache *s, 4618 const char *buf, size_t length) 4619 { 4620 int ret = -EINVAL; 4621 4622 if (buf[0] == '1') { 4623 ret = validate_slab_cache(s); 4624 if (ret >= 0) 4625 ret = length; 4626 } 4627 return ret; 4628 } 4629 SLAB_ATTR(validate); 4630 4631 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4632 { 4633 if (!(s->flags & SLAB_STORE_USER)) 4634 return -ENOSYS; 4635 return list_locations(s, buf, TRACK_ALLOC); 4636 } 4637 SLAB_ATTR_RO(alloc_calls); 4638 4639 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4640 { 4641 if (!(s->flags & SLAB_STORE_USER)) 4642 return -ENOSYS; 4643 return list_locations(s, buf, TRACK_FREE); 4644 } 4645 SLAB_ATTR_RO(free_calls); 4646 #endif /* CONFIG_SLUB_DEBUG */ 4647 4648 #ifdef CONFIG_FAILSLAB 4649 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4650 { 4651 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4652 } 4653 4654 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4655 size_t length) 4656 { 4657 if (s->refcount > 1) 4658 return -EINVAL; 4659 4660 s->flags &= ~SLAB_FAILSLAB; 4661 if (buf[0] == '1') 4662 s->flags |= SLAB_FAILSLAB; 4663 return length; 4664 } 4665 SLAB_ATTR(failslab); 4666 #endif 4667 4668 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4669 { 4670 return 0; 4671 } 4672 4673 static ssize_t shrink_store(struct kmem_cache *s, 4674 const char *buf, size_t length) 4675 { 4676 if (buf[0] == '1') { 4677 int rc = kmem_cache_shrink(s); 4678 4679 if (rc) 4680 return rc; 4681 } else 4682 return -EINVAL; 4683 return length; 4684 } 4685 SLAB_ATTR(shrink); 4686 4687 #ifdef CONFIG_NUMA 4688 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4689 { 4690 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4691 } 4692 4693 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4694 const char *buf, size_t length) 4695 { 4696 unsigned long ratio; 4697 int err; 4698 4699 err = kstrtoul(buf, 10, &ratio); 4700 if (err) 4701 return err; 4702 4703 if (ratio <= 100) 4704 s->remote_node_defrag_ratio = ratio * 10; 4705 4706 return length; 4707 } 4708 SLAB_ATTR(remote_node_defrag_ratio); 4709 #endif 4710 4711 #ifdef CONFIG_SLUB_STATS 4712 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4713 { 4714 unsigned long sum = 0; 4715 int cpu; 4716 int len; 4717 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4718 4719 if (!data) 4720 return -ENOMEM; 4721 4722 for_each_online_cpu(cpu) { 4723 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4724 4725 data[cpu] = x; 4726 sum += x; 4727 } 4728 4729 len = sprintf(buf, "%lu", sum); 4730 4731 #ifdef CONFIG_SMP 4732 for_each_online_cpu(cpu) { 4733 if (data[cpu] && len < PAGE_SIZE - 20) 4734 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4735 } 4736 #endif 4737 kfree(data); 4738 return len + sprintf(buf + len, "\n"); 4739 } 4740 4741 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4742 { 4743 int cpu; 4744 4745 for_each_online_cpu(cpu) 4746 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4747 } 4748 4749 #define STAT_ATTR(si, text) \ 4750 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4751 { \ 4752 return show_stat(s, buf, si); \ 4753 } \ 4754 static ssize_t text##_store(struct kmem_cache *s, \ 4755 const char *buf, size_t length) \ 4756 { \ 4757 if (buf[0] != '0') \ 4758 return -EINVAL; \ 4759 clear_stat(s, si); \ 4760 return length; \ 4761 } \ 4762 SLAB_ATTR(text); \ 4763 4764 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4765 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4766 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4767 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4768 STAT_ATTR(FREE_FROZEN, free_frozen); 4769 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4770 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4771 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4772 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4773 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4774 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 4775 STAT_ATTR(FREE_SLAB, free_slab); 4776 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4777 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4778 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4779 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4780 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4781 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4782 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 4783 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4784 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 4785 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 4786 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 4787 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 4788 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 4789 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 4790 #endif 4791 4792 static struct attribute *slab_attrs[] = { 4793 &slab_size_attr.attr, 4794 &object_size_attr.attr, 4795 &objs_per_slab_attr.attr, 4796 &order_attr.attr, 4797 &min_partial_attr.attr, 4798 &cpu_partial_attr.attr, 4799 &objects_attr.attr, 4800 &objects_partial_attr.attr, 4801 &partial_attr.attr, 4802 &cpu_slabs_attr.attr, 4803 &ctor_attr.attr, 4804 &aliases_attr.attr, 4805 &align_attr.attr, 4806 &hwcache_align_attr.attr, 4807 &reclaim_account_attr.attr, 4808 &destroy_by_rcu_attr.attr, 4809 &shrink_attr.attr, 4810 &reserved_attr.attr, 4811 &slabs_cpu_partial_attr.attr, 4812 #ifdef CONFIG_SLUB_DEBUG 4813 &total_objects_attr.attr, 4814 &slabs_attr.attr, 4815 &sanity_checks_attr.attr, 4816 &trace_attr.attr, 4817 &red_zone_attr.attr, 4818 &poison_attr.attr, 4819 &store_user_attr.attr, 4820 &validate_attr.attr, 4821 &alloc_calls_attr.attr, 4822 &free_calls_attr.attr, 4823 #endif 4824 #ifdef CONFIG_ZONE_DMA 4825 &cache_dma_attr.attr, 4826 #endif 4827 #ifdef CONFIG_NUMA 4828 &remote_node_defrag_ratio_attr.attr, 4829 #endif 4830 #ifdef CONFIG_SLUB_STATS 4831 &alloc_fastpath_attr.attr, 4832 &alloc_slowpath_attr.attr, 4833 &free_fastpath_attr.attr, 4834 &free_slowpath_attr.attr, 4835 &free_frozen_attr.attr, 4836 &free_add_partial_attr.attr, 4837 &free_remove_partial_attr.attr, 4838 &alloc_from_partial_attr.attr, 4839 &alloc_slab_attr.attr, 4840 &alloc_refill_attr.attr, 4841 &alloc_node_mismatch_attr.attr, 4842 &free_slab_attr.attr, 4843 &cpuslab_flush_attr.attr, 4844 &deactivate_full_attr.attr, 4845 &deactivate_empty_attr.attr, 4846 &deactivate_to_head_attr.attr, 4847 &deactivate_to_tail_attr.attr, 4848 &deactivate_remote_frees_attr.attr, 4849 &deactivate_bypass_attr.attr, 4850 &order_fallback_attr.attr, 4851 &cmpxchg_double_fail_attr.attr, 4852 &cmpxchg_double_cpu_fail_attr.attr, 4853 &cpu_partial_alloc_attr.attr, 4854 &cpu_partial_free_attr.attr, 4855 &cpu_partial_node_attr.attr, 4856 &cpu_partial_drain_attr.attr, 4857 #endif 4858 #ifdef CONFIG_FAILSLAB 4859 &failslab_attr.attr, 4860 #endif 4861 4862 NULL 4863 }; 4864 4865 static struct attribute_group slab_attr_group = { 4866 .attrs = slab_attrs, 4867 }; 4868 4869 static ssize_t slab_attr_show(struct kobject *kobj, 4870 struct attribute *attr, 4871 char *buf) 4872 { 4873 struct slab_attribute *attribute; 4874 struct kmem_cache *s; 4875 int err; 4876 4877 attribute = to_slab_attr(attr); 4878 s = to_slab(kobj); 4879 4880 if (!attribute->show) 4881 return -EIO; 4882 4883 err = attribute->show(s, buf); 4884 4885 return err; 4886 } 4887 4888 static ssize_t slab_attr_store(struct kobject *kobj, 4889 struct attribute *attr, 4890 const char *buf, size_t len) 4891 { 4892 struct slab_attribute *attribute; 4893 struct kmem_cache *s; 4894 int err; 4895 4896 attribute = to_slab_attr(attr); 4897 s = to_slab(kobj); 4898 4899 if (!attribute->store) 4900 return -EIO; 4901 4902 err = attribute->store(s, buf, len); 4903 #ifdef CONFIG_MEMCG_KMEM 4904 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 4905 int i; 4906 4907 mutex_lock(&slab_mutex); 4908 if (s->max_attr_size < len) 4909 s->max_attr_size = len; 4910 4911 /* 4912 * This is a best effort propagation, so this function's return 4913 * value will be determined by the parent cache only. This is 4914 * basically because not all attributes will have a well 4915 * defined semantics for rollbacks - most of the actions will 4916 * have permanent effects. 4917 * 4918 * Returning the error value of any of the children that fail 4919 * is not 100 % defined, in the sense that users seeing the 4920 * error code won't be able to know anything about the state of 4921 * the cache. 4922 * 4923 * Only returning the error code for the parent cache at least 4924 * has well defined semantics. The cache being written to 4925 * directly either failed or succeeded, in which case we loop 4926 * through the descendants with best-effort propagation. 4927 */ 4928 for_each_memcg_cache_index(i) { 4929 struct kmem_cache *c = cache_from_memcg_idx(s, i); 4930 if (c) 4931 attribute->store(c, buf, len); 4932 } 4933 mutex_unlock(&slab_mutex); 4934 } 4935 #endif 4936 return err; 4937 } 4938 4939 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 4940 { 4941 #ifdef CONFIG_MEMCG_KMEM 4942 int i; 4943 char *buffer = NULL; 4944 struct kmem_cache *root_cache; 4945 4946 if (is_root_cache(s)) 4947 return; 4948 4949 root_cache = s->memcg_params->root_cache; 4950 4951 /* 4952 * This mean this cache had no attribute written. Therefore, no point 4953 * in copying default values around 4954 */ 4955 if (!root_cache->max_attr_size) 4956 return; 4957 4958 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 4959 char mbuf[64]; 4960 char *buf; 4961 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 4962 4963 if (!attr || !attr->store || !attr->show) 4964 continue; 4965 4966 /* 4967 * It is really bad that we have to allocate here, so we will 4968 * do it only as a fallback. If we actually allocate, though, 4969 * we can just use the allocated buffer until the end. 4970 * 4971 * Most of the slub attributes will tend to be very small in 4972 * size, but sysfs allows buffers up to a page, so they can 4973 * theoretically happen. 4974 */ 4975 if (buffer) 4976 buf = buffer; 4977 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 4978 buf = mbuf; 4979 else { 4980 buffer = (char *) get_zeroed_page(GFP_KERNEL); 4981 if (WARN_ON(!buffer)) 4982 continue; 4983 buf = buffer; 4984 } 4985 4986 attr->show(root_cache, buf); 4987 attr->store(s, buf, strlen(buf)); 4988 } 4989 4990 if (buffer) 4991 free_page((unsigned long)buffer); 4992 #endif 4993 } 4994 4995 static void kmem_cache_release(struct kobject *k) 4996 { 4997 slab_kmem_cache_release(to_slab(k)); 4998 } 4999 5000 static const struct sysfs_ops slab_sysfs_ops = { 5001 .show = slab_attr_show, 5002 .store = slab_attr_store, 5003 }; 5004 5005 static struct kobj_type slab_ktype = { 5006 .sysfs_ops = &slab_sysfs_ops, 5007 .release = kmem_cache_release, 5008 }; 5009 5010 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5011 { 5012 struct kobj_type *ktype = get_ktype(kobj); 5013 5014 if (ktype == &slab_ktype) 5015 return 1; 5016 return 0; 5017 } 5018 5019 static const struct kset_uevent_ops slab_uevent_ops = { 5020 .filter = uevent_filter, 5021 }; 5022 5023 static struct kset *slab_kset; 5024 5025 static inline struct kset *cache_kset(struct kmem_cache *s) 5026 { 5027 #ifdef CONFIG_MEMCG_KMEM 5028 if (!is_root_cache(s)) 5029 return s->memcg_params->root_cache->memcg_kset; 5030 #endif 5031 return slab_kset; 5032 } 5033 5034 #define ID_STR_LENGTH 64 5035 5036 /* Create a unique string id for a slab cache: 5037 * 5038 * Format :[flags-]size 5039 */ 5040 static char *create_unique_id(struct kmem_cache *s) 5041 { 5042 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5043 char *p = name; 5044 5045 BUG_ON(!name); 5046 5047 *p++ = ':'; 5048 /* 5049 * First flags affecting slabcache operations. We will only 5050 * get here for aliasable slabs so we do not need to support 5051 * too many flags. The flags here must cover all flags that 5052 * are matched during merging to guarantee that the id is 5053 * unique. 5054 */ 5055 if (s->flags & SLAB_CACHE_DMA) 5056 *p++ = 'd'; 5057 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5058 *p++ = 'a'; 5059 if (s->flags & SLAB_DEBUG_FREE) 5060 *p++ = 'F'; 5061 if (!(s->flags & SLAB_NOTRACK)) 5062 *p++ = 't'; 5063 if (p != name + 1) 5064 *p++ = '-'; 5065 p += sprintf(p, "%07d", s->size); 5066 5067 BUG_ON(p > name + ID_STR_LENGTH - 1); 5068 return name; 5069 } 5070 5071 static int sysfs_slab_add(struct kmem_cache *s) 5072 { 5073 int err; 5074 const char *name; 5075 int unmergeable = slab_unmergeable(s); 5076 5077 if (unmergeable) { 5078 /* 5079 * Slabcache can never be merged so we can use the name proper. 5080 * This is typically the case for debug situations. In that 5081 * case we can catch duplicate names easily. 5082 */ 5083 sysfs_remove_link(&slab_kset->kobj, s->name); 5084 name = s->name; 5085 } else { 5086 /* 5087 * Create a unique name for the slab as a target 5088 * for the symlinks. 5089 */ 5090 name = create_unique_id(s); 5091 } 5092 5093 s->kobj.kset = cache_kset(s); 5094 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5095 if (err) 5096 goto out_put_kobj; 5097 5098 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5099 if (err) 5100 goto out_del_kobj; 5101 5102 #ifdef CONFIG_MEMCG_KMEM 5103 if (is_root_cache(s)) { 5104 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5105 if (!s->memcg_kset) { 5106 err = -ENOMEM; 5107 goto out_del_kobj; 5108 } 5109 } 5110 #endif 5111 5112 kobject_uevent(&s->kobj, KOBJ_ADD); 5113 if (!unmergeable) { 5114 /* Setup first alias */ 5115 sysfs_slab_alias(s, s->name); 5116 } 5117 out: 5118 if (!unmergeable) 5119 kfree(name); 5120 return err; 5121 out_del_kobj: 5122 kobject_del(&s->kobj); 5123 out_put_kobj: 5124 kobject_put(&s->kobj); 5125 goto out; 5126 } 5127 5128 void sysfs_slab_remove(struct kmem_cache *s) 5129 { 5130 if (slab_state < FULL) 5131 /* 5132 * Sysfs has not been setup yet so no need to remove the 5133 * cache from sysfs. 5134 */ 5135 return; 5136 5137 #ifdef CONFIG_MEMCG_KMEM 5138 kset_unregister(s->memcg_kset); 5139 #endif 5140 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5141 kobject_del(&s->kobj); 5142 kobject_put(&s->kobj); 5143 } 5144 5145 /* 5146 * Need to buffer aliases during bootup until sysfs becomes 5147 * available lest we lose that information. 5148 */ 5149 struct saved_alias { 5150 struct kmem_cache *s; 5151 const char *name; 5152 struct saved_alias *next; 5153 }; 5154 5155 static struct saved_alias *alias_list; 5156 5157 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5158 { 5159 struct saved_alias *al; 5160 5161 if (slab_state == FULL) { 5162 /* 5163 * If we have a leftover link then remove it. 5164 */ 5165 sysfs_remove_link(&slab_kset->kobj, name); 5166 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5167 } 5168 5169 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5170 if (!al) 5171 return -ENOMEM; 5172 5173 al->s = s; 5174 al->name = name; 5175 al->next = alias_list; 5176 alias_list = al; 5177 return 0; 5178 } 5179 5180 static int __init slab_sysfs_init(void) 5181 { 5182 struct kmem_cache *s; 5183 int err; 5184 5185 mutex_lock(&slab_mutex); 5186 5187 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5188 if (!slab_kset) { 5189 mutex_unlock(&slab_mutex); 5190 pr_err("Cannot register slab subsystem.\n"); 5191 return -ENOSYS; 5192 } 5193 5194 slab_state = FULL; 5195 5196 list_for_each_entry(s, &slab_caches, list) { 5197 err = sysfs_slab_add(s); 5198 if (err) 5199 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5200 s->name); 5201 } 5202 5203 while (alias_list) { 5204 struct saved_alias *al = alias_list; 5205 5206 alias_list = alias_list->next; 5207 err = sysfs_slab_alias(al->s, al->name); 5208 if (err) 5209 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5210 al->name); 5211 kfree(al); 5212 } 5213 5214 mutex_unlock(&slab_mutex); 5215 resiliency_test(); 5216 return 0; 5217 } 5218 5219 __initcall(slab_sysfs_init); 5220 #endif /* CONFIG_SYSFS */ 5221 5222 /* 5223 * The /proc/slabinfo ABI 5224 */ 5225 #ifdef CONFIG_SLABINFO 5226 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5227 { 5228 unsigned long nr_slabs = 0; 5229 unsigned long nr_objs = 0; 5230 unsigned long nr_free = 0; 5231 int node; 5232 struct kmem_cache_node *n; 5233 5234 for_each_kmem_cache_node(s, node, n) { 5235 nr_slabs += node_nr_slabs(n); 5236 nr_objs += node_nr_objs(n); 5237 nr_free += count_partial(n, count_free); 5238 } 5239 5240 sinfo->active_objs = nr_objs - nr_free; 5241 sinfo->num_objs = nr_objs; 5242 sinfo->active_slabs = nr_slabs; 5243 sinfo->num_slabs = nr_slabs; 5244 sinfo->objects_per_slab = oo_objects(s->oo); 5245 sinfo->cache_order = oo_order(s->oo); 5246 } 5247 5248 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5249 { 5250 } 5251 5252 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5253 size_t count, loff_t *ppos) 5254 { 5255 return -EIO; 5256 } 5257 #endif /* CONFIG_SLABINFO */ 5258