xref: /openbmc/linux/mm/slub.c (revision 66a28915)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list except per cpu partial list. The processor that froze the
62  *   slab is the one who can perform list operations on the page. Other
63  *   processors may put objects onto the freelist but the processor that
64  *   froze the slab is the only one that can retrieve the objects from the
65  *   page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * page->frozen		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 #ifdef CONFIG_SLUB_DEBUG
118 #ifdef CONFIG_SLUB_DEBUG_ON
119 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
120 #else
121 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
122 #endif
123 #endif
124 
125 static inline bool kmem_cache_debug(struct kmem_cache *s)
126 {
127 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
128 }
129 
130 void *fixup_red_left(struct kmem_cache *s, void *p)
131 {
132 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
133 		p += s->red_left_pad;
134 
135 	return p;
136 }
137 
138 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
139 {
140 #ifdef CONFIG_SLUB_CPU_PARTIAL
141 	return !kmem_cache_debug(s);
142 #else
143 	return false;
144 #endif
145 }
146 
147 /*
148  * Issues still to be resolved:
149  *
150  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
151  *
152  * - Variable sizing of the per node arrays
153  */
154 
155 /* Enable to test recovery from slab corruption on boot */
156 #undef SLUB_RESILIENCY_TEST
157 
158 /* Enable to log cmpxchg failures */
159 #undef SLUB_DEBUG_CMPXCHG
160 
161 /*
162  * Mininum number of partial slabs. These will be left on the partial
163  * lists even if they are empty. kmem_cache_shrink may reclaim them.
164  */
165 #define MIN_PARTIAL 5
166 
167 /*
168  * Maximum number of desirable partial slabs.
169  * The existence of more partial slabs makes kmem_cache_shrink
170  * sort the partial list by the number of objects in use.
171  */
172 #define MAX_PARTIAL 10
173 
174 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
175 				SLAB_POISON | SLAB_STORE_USER)
176 
177 /*
178  * These debug flags cannot use CMPXCHG because there might be consistency
179  * issues when checking or reading debug information
180  */
181 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 				SLAB_TRACE)
183 
184 
185 /*
186  * Debugging flags that require metadata to be stored in the slab.  These get
187  * disabled when slub_debug=O is used and a cache's min order increases with
188  * metadata.
189  */
190 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
191 
192 #define OO_SHIFT	16
193 #define OO_MASK		((1 << OO_SHIFT) - 1)
194 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
195 
196 /* Internal SLUB flags */
197 /* Poison object */
198 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
199 /* Use cmpxchg_double */
200 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
201 
202 /*
203  * Tracking user of a slab.
204  */
205 #define TRACK_ADDRS_COUNT 16
206 struct track {
207 	unsigned long addr;	/* Called from address */
208 #ifdef CONFIG_STACKTRACE
209 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
210 #endif
211 	int cpu;		/* Was running on cpu */
212 	int pid;		/* Pid context */
213 	unsigned long when;	/* When did the operation occur */
214 };
215 
216 enum track_item { TRACK_ALLOC, TRACK_FREE };
217 
218 #ifdef CONFIG_SYSFS
219 static int sysfs_slab_add(struct kmem_cache *);
220 static int sysfs_slab_alias(struct kmem_cache *, const char *);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 							{ return 0; }
225 #endif
226 
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 {
229 #ifdef CONFIG_SLUB_STATS
230 	/*
231 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 	 * avoid this_cpu_add()'s irq-disable overhead.
233 	 */
234 	raw_cpu_inc(s->cpu_slab->stat[si]);
235 #endif
236 }
237 
238 /********************************************************************
239  * 			Core slab cache functions
240  *******************************************************************/
241 
242 /*
243  * Returns freelist pointer (ptr). With hardening, this is obfuscated
244  * with an XOR of the address where the pointer is held and a per-cache
245  * random number.
246  */
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 				 unsigned long ptr_addr)
249 {
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
251 	/*
252 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
253 	 * Normally, this doesn't cause any issues, as both set_freepointer()
254 	 * and get_freepointer() are called with a pointer with the same tag.
255 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 	 * example, when __free_slub() iterates over objects in a cache, it
257 	 * passes untagged pointers to check_object(). check_object() in turns
258 	 * calls get_freepointer() with an untagged pointer, which causes the
259 	 * freepointer to be restored incorrectly.
260 	 */
261 	return (void *)((unsigned long)ptr ^ s->random ^
262 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
263 #else
264 	return ptr;
265 #endif
266 }
267 
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache *s,
270 					 void *ptr_addr)
271 {
272 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 			    (unsigned long)ptr_addr);
274 }
275 
276 static inline void *get_freepointer(struct kmem_cache *s, void *object)
277 {
278 	object = kasan_reset_tag(object);
279 	return freelist_dereference(s, object + s->offset);
280 }
281 
282 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
283 {
284 	prefetch(object + s->offset);
285 }
286 
287 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
288 {
289 	unsigned long freepointer_addr;
290 	void *p;
291 
292 	if (!debug_pagealloc_enabled_static())
293 		return get_freepointer(s, object);
294 
295 	freepointer_addr = (unsigned long)object + s->offset;
296 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
297 	return freelist_ptr(s, p, freepointer_addr);
298 }
299 
300 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301 {
302 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
303 
304 #ifdef CONFIG_SLAB_FREELIST_HARDENED
305 	BUG_ON(object == fp); /* naive detection of double free or corruption */
306 #endif
307 
308 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
309 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
310 }
311 
312 /* Loop over all objects in a slab */
313 #define for_each_object(__p, __s, __addr, __objects) \
314 	for (__p = fixup_red_left(__s, __addr); \
315 		__p < (__addr) + (__objects) * (__s)->size; \
316 		__p += (__s)->size)
317 
318 static inline unsigned int order_objects(unsigned int order, unsigned int size)
319 {
320 	return ((unsigned int)PAGE_SIZE << order) / size;
321 }
322 
323 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
324 		unsigned int size)
325 {
326 	struct kmem_cache_order_objects x = {
327 		(order << OO_SHIFT) + order_objects(order, size)
328 	};
329 
330 	return x;
331 }
332 
333 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
334 {
335 	return x.x >> OO_SHIFT;
336 }
337 
338 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
339 {
340 	return x.x & OO_MASK;
341 }
342 
343 /*
344  * Per slab locking using the pagelock
345  */
346 static __always_inline void slab_lock(struct page *page)
347 {
348 	VM_BUG_ON_PAGE(PageTail(page), page);
349 	bit_spin_lock(PG_locked, &page->flags);
350 }
351 
352 static __always_inline void slab_unlock(struct page *page)
353 {
354 	VM_BUG_ON_PAGE(PageTail(page), page);
355 	__bit_spin_unlock(PG_locked, &page->flags);
356 }
357 
358 /* Interrupts must be disabled (for the fallback code to work right) */
359 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
360 		void *freelist_old, unsigned long counters_old,
361 		void *freelist_new, unsigned long counters_new,
362 		const char *n)
363 {
364 	VM_BUG_ON(!irqs_disabled());
365 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
366     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
367 	if (s->flags & __CMPXCHG_DOUBLE) {
368 		if (cmpxchg_double(&page->freelist, &page->counters,
369 				   freelist_old, counters_old,
370 				   freelist_new, counters_new))
371 			return true;
372 	} else
373 #endif
374 	{
375 		slab_lock(page);
376 		if (page->freelist == freelist_old &&
377 					page->counters == counters_old) {
378 			page->freelist = freelist_new;
379 			page->counters = counters_new;
380 			slab_unlock(page);
381 			return true;
382 		}
383 		slab_unlock(page);
384 	}
385 
386 	cpu_relax();
387 	stat(s, CMPXCHG_DOUBLE_FAIL);
388 
389 #ifdef SLUB_DEBUG_CMPXCHG
390 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
391 #endif
392 
393 	return false;
394 }
395 
396 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
397 		void *freelist_old, unsigned long counters_old,
398 		void *freelist_new, unsigned long counters_new,
399 		const char *n)
400 {
401 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
402     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
403 	if (s->flags & __CMPXCHG_DOUBLE) {
404 		if (cmpxchg_double(&page->freelist, &page->counters,
405 				   freelist_old, counters_old,
406 				   freelist_new, counters_new))
407 			return true;
408 	} else
409 #endif
410 	{
411 		unsigned long flags;
412 
413 		local_irq_save(flags);
414 		slab_lock(page);
415 		if (page->freelist == freelist_old &&
416 					page->counters == counters_old) {
417 			page->freelist = freelist_new;
418 			page->counters = counters_new;
419 			slab_unlock(page);
420 			local_irq_restore(flags);
421 			return true;
422 		}
423 		slab_unlock(page);
424 		local_irq_restore(flags);
425 	}
426 
427 	cpu_relax();
428 	stat(s, CMPXCHG_DOUBLE_FAIL);
429 
430 #ifdef SLUB_DEBUG_CMPXCHG
431 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
432 #endif
433 
434 	return false;
435 }
436 
437 #ifdef CONFIG_SLUB_DEBUG
438 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
439 static DEFINE_SPINLOCK(object_map_lock);
440 
441 /*
442  * Determine a map of object in use on a page.
443  *
444  * Node listlock must be held to guarantee that the page does
445  * not vanish from under us.
446  */
447 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
448 	__acquires(&object_map_lock)
449 {
450 	void *p;
451 	void *addr = page_address(page);
452 
453 	VM_BUG_ON(!irqs_disabled());
454 
455 	spin_lock(&object_map_lock);
456 
457 	bitmap_zero(object_map, page->objects);
458 
459 	for (p = page->freelist; p; p = get_freepointer(s, p))
460 		set_bit(__obj_to_index(s, addr, p), object_map);
461 
462 	return object_map;
463 }
464 
465 static void put_map(unsigned long *map) __releases(&object_map_lock)
466 {
467 	VM_BUG_ON(map != object_map);
468 	spin_unlock(&object_map_lock);
469 }
470 
471 static inline unsigned int size_from_object(struct kmem_cache *s)
472 {
473 	if (s->flags & SLAB_RED_ZONE)
474 		return s->size - s->red_left_pad;
475 
476 	return s->size;
477 }
478 
479 static inline void *restore_red_left(struct kmem_cache *s, void *p)
480 {
481 	if (s->flags & SLAB_RED_ZONE)
482 		p -= s->red_left_pad;
483 
484 	return p;
485 }
486 
487 /*
488  * Debug settings:
489  */
490 #if defined(CONFIG_SLUB_DEBUG_ON)
491 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
492 #else
493 static slab_flags_t slub_debug;
494 #endif
495 
496 static char *slub_debug_string;
497 static int disable_higher_order_debug;
498 
499 /*
500  * slub is about to manipulate internal object metadata.  This memory lies
501  * outside the range of the allocated object, so accessing it would normally
502  * be reported by kasan as a bounds error.  metadata_access_enable() is used
503  * to tell kasan that these accesses are OK.
504  */
505 static inline void metadata_access_enable(void)
506 {
507 	kasan_disable_current();
508 }
509 
510 static inline void metadata_access_disable(void)
511 {
512 	kasan_enable_current();
513 }
514 
515 /*
516  * Object debugging
517  */
518 
519 /* Verify that a pointer has an address that is valid within a slab page */
520 static inline int check_valid_pointer(struct kmem_cache *s,
521 				struct page *page, void *object)
522 {
523 	void *base;
524 
525 	if (!object)
526 		return 1;
527 
528 	base = page_address(page);
529 	object = kasan_reset_tag(object);
530 	object = restore_red_left(s, object);
531 	if (object < base || object >= base + page->objects * s->size ||
532 		(object - base) % s->size) {
533 		return 0;
534 	}
535 
536 	return 1;
537 }
538 
539 static void print_section(char *level, char *text, u8 *addr,
540 			  unsigned int length)
541 {
542 	metadata_access_enable();
543 	print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
544 			16, 1, addr, length, 1);
545 	metadata_access_disable();
546 }
547 
548 /*
549  * See comment in calculate_sizes().
550  */
551 static inline bool freeptr_outside_object(struct kmem_cache *s)
552 {
553 	return s->offset >= s->inuse;
554 }
555 
556 /*
557  * Return offset of the end of info block which is inuse + free pointer if
558  * not overlapping with object.
559  */
560 static inline unsigned int get_info_end(struct kmem_cache *s)
561 {
562 	if (freeptr_outside_object(s))
563 		return s->inuse + sizeof(void *);
564 	else
565 		return s->inuse;
566 }
567 
568 static struct track *get_track(struct kmem_cache *s, void *object,
569 	enum track_item alloc)
570 {
571 	struct track *p;
572 
573 	p = object + get_info_end(s);
574 
575 	return kasan_reset_tag(p + alloc);
576 }
577 
578 static void set_track(struct kmem_cache *s, void *object,
579 			enum track_item alloc, unsigned long addr)
580 {
581 	struct track *p = get_track(s, object, alloc);
582 
583 	if (addr) {
584 #ifdef CONFIG_STACKTRACE
585 		unsigned int nr_entries;
586 
587 		metadata_access_enable();
588 		nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
589 					      TRACK_ADDRS_COUNT, 3);
590 		metadata_access_disable();
591 
592 		if (nr_entries < TRACK_ADDRS_COUNT)
593 			p->addrs[nr_entries] = 0;
594 #endif
595 		p->addr = addr;
596 		p->cpu = smp_processor_id();
597 		p->pid = current->pid;
598 		p->when = jiffies;
599 	} else {
600 		memset(p, 0, sizeof(struct track));
601 	}
602 }
603 
604 static void init_tracking(struct kmem_cache *s, void *object)
605 {
606 	if (!(s->flags & SLAB_STORE_USER))
607 		return;
608 
609 	set_track(s, object, TRACK_FREE, 0UL);
610 	set_track(s, object, TRACK_ALLOC, 0UL);
611 }
612 
613 static void print_track(const char *s, struct track *t, unsigned long pr_time)
614 {
615 	if (!t->addr)
616 		return;
617 
618 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
619 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
620 #ifdef CONFIG_STACKTRACE
621 	{
622 		int i;
623 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
624 			if (t->addrs[i])
625 				pr_err("\t%pS\n", (void *)t->addrs[i]);
626 			else
627 				break;
628 	}
629 #endif
630 }
631 
632 void print_tracking(struct kmem_cache *s, void *object)
633 {
634 	unsigned long pr_time = jiffies;
635 	if (!(s->flags & SLAB_STORE_USER))
636 		return;
637 
638 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
639 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
640 }
641 
642 static void print_page_info(struct page *page)
643 {
644 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
645 	       page, page->objects, page->inuse, page->freelist, page->flags);
646 
647 }
648 
649 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
650 {
651 	struct va_format vaf;
652 	va_list args;
653 
654 	va_start(args, fmt);
655 	vaf.fmt = fmt;
656 	vaf.va = &args;
657 	pr_err("=============================================================================\n");
658 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
659 	pr_err("-----------------------------------------------------------------------------\n\n");
660 
661 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
662 	va_end(args);
663 }
664 
665 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
666 {
667 	struct va_format vaf;
668 	va_list args;
669 
670 	va_start(args, fmt);
671 	vaf.fmt = fmt;
672 	vaf.va = &args;
673 	pr_err("FIX %s: %pV\n", s->name, &vaf);
674 	va_end(args);
675 }
676 
677 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
678 			       void **freelist, void *nextfree)
679 {
680 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
681 	    !check_valid_pointer(s, page, nextfree) && freelist) {
682 		object_err(s, page, *freelist, "Freechain corrupt");
683 		*freelist = NULL;
684 		slab_fix(s, "Isolate corrupted freechain");
685 		return true;
686 	}
687 
688 	return false;
689 }
690 
691 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
692 {
693 	unsigned int off;	/* Offset of last byte */
694 	u8 *addr = page_address(page);
695 
696 	print_tracking(s, p);
697 
698 	print_page_info(page);
699 
700 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
701 	       p, p - addr, get_freepointer(s, p));
702 
703 	if (s->flags & SLAB_RED_ZONE)
704 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
705 			      s->red_left_pad);
706 	else if (p > addr + 16)
707 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
708 
709 	print_section(KERN_ERR, "Object ", p,
710 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
711 	if (s->flags & SLAB_RED_ZONE)
712 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
713 			s->inuse - s->object_size);
714 
715 	off = get_info_end(s);
716 
717 	if (s->flags & SLAB_STORE_USER)
718 		off += 2 * sizeof(struct track);
719 
720 	off += kasan_metadata_size(s);
721 
722 	if (off != size_from_object(s))
723 		/* Beginning of the filler is the free pointer */
724 		print_section(KERN_ERR, "Padding ", p + off,
725 			      size_from_object(s) - off);
726 
727 	dump_stack();
728 }
729 
730 void object_err(struct kmem_cache *s, struct page *page,
731 			u8 *object, char *reason)
732 {
733 	slab_bug(s, "%s", reason);
734 	print_trailer(s, page, object);
735 }
736 
737 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
738 			const char *fmt, ...)
739 {
740 	va_list args;
741 	char buf[100];
742 
743 	va_start(args, fmt);
744 	vsnprintf(buf, sizeof(buf), fmt, args);
745 	va_end(args);
746 	slab_bug(s, "%s", buf);
747 	print_page_info(page);
748 	dump_stack();
749 }
750 
751 static void init_object(struct kmem_cache *s, void *object, u8 val)
752 {
753 	u8 *p = kasan_reset_tag(object);
754 
755 	if (s->flags & SLAB_RED_ZONE)
756 		memset(p - s->red_left_pad, val, s->red_left_pad);
757 
758 	if (s->flags & __OBJECT_POISON) {
759 		memset(p, POISON_FREE, s->object_size - 1);
760 		p[s->object_size - 1] = POISON_END;
761 	}
762 
763 	if (s->flags & SLAB_RED_ZONE)
764 		memset(p + s->object_size, val, s->inuse - s->object_size);
765 }
766 
767 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
768 						void *from, void *to)
769 {
770 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
771 	memset(from, data, to - from);
772 }
773 
774 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
775 			u8 *object, char *what,
776 			u8 *start, unsigned int value, unsigned int bytes)
777 {
778 	u8 *fault;
779 	u8 *end;
780 	u8 *addr = page_address(page);
781 
782 	metadata_access_enable();
783 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
784 	metadata_access_disable();
785 	if (!fault)
786 		return 1;
787 
788 	end = start + bytes;
789 	while (end > fault && end[-1] == value)
790 		end--;
791 
792 	slab_bug(s, "%s overwritten", what);
793 	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
794 					fault, end - 1, fault - addr,
795 					fault[0], value);
796 	print_trailer(s, page, object);
797 
798 	restore_bytes(s, what, value, fault, end);
799 	return 0;
800 }
801 
802 /*
803  * Object layout:
804  *
805  * object address
806  * 	Bytes of the object to be managed.
807  * 	If the freepointer may overlay the object then the free
808  *	pointer is at the middle of the object.
809  *
810  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
811  * 	0xa5 (POISON_END)
812  *
813  * object + s->object_size
814  * 	Padding to reach word boundary. This is also used for Redzoning.
815  * 	Padding is extended by another word if Redzoning is enabled and
816  * 	object_size == inuse.
817  *
818  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
819  * 	0xcc (RED_ACTIVE) for objects in use.
820  *
821  * object + s->inuse
822  * 	Meta data starts here.
823  *
824  * 	A. Free pointer (if we cannot overwrite object on free)
825  * 	B. Tracking data for SLAB_STORE_USER
826  * 	C. Padding to reach required alignment boundary or at mininum
827  * 		one word if debugging is on to be able to detect writes
828  * 		before the word boundary.
829  *
830  *	Padding is done using 0x5a (POISON_INUSE)
831  *
832  * object + s->size
833  * 	Nothing is used beyond s->size.
834  *
835  * If slabcaches are merged then the object_size and inuse boundaries are mostly
836  * ignored. And therefore no slab options that rely on these boundaries
837  * may be used with merged slabcaches.
838  */
839 
840 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
841 {
842 	unsigned long off = get_info_end(s);	/* The end of info */
843 
844 	if (s->flags & SLAB_STORE_USER)
845 		/* We also have user information there */
846 		off += 2 * sizeof(struct track);
847 
848 	off += kasan_metadata_size(s);
849 
850 	if (size_from_object(s) == off)
851 		return 1;
852 
853 	return check_bytes_and_report(s, page, p, "Object padding",
854 			p + off, POISON_INUSE, size_from_object(s) - off);
855 }
856 
857 /* Check the pad bytes at the end of a slab page */
858 static int slab_pad_check(struct kmem_cache *s, struct page *page)
859 {
860 	u8 *start;
861 	u8 *fault;
862 	u8 *end;
863 	u8 *pad;
864 	int length;
865 	int remainder;
866 
867 	if (!(s->flags & SLAB_POISON))
868 		return 1;
869 
870 	start = page_address(page);
871 	length = page_size(page);
872 	end = start + length;
873 	remainder = length % s->size;
874 	if (!remainder)
875 		return 1;
876 
877 	pad = end - remainder;
878 	metadata_access_enable();
879 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
880 	metadata_access_disable();
881 	if (!fault)
882 		return 1;
883 	while (end > fault && end[-1] == POISON_INUSE)
884 		end--;
885 
886 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
887 			fault, end - 1, fault - start);
888 	print_section(KERN_ERR, "Padding ", pad, remainder);
889 
890 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
891 	return 0;
892 }
893 
894 static int check_object(struct kmem_cache *s, struct page *page,
895 					void *object, u8 val)
896 {
897 	u8 *p = object;
898 	u8 *endobject = object + s->object_size;
899 
900 	if (s->flags & SLAB_RED_ZONE) {
901 		if (!check_bytes_and_report(s, page, object, "Redzone",
902 			object - s->red_left_pad, val, s->red_left_pad))
903 			return 0;
904 
905 		if (!check_bytes_and_report(s, page, object, "Redzone",
906 			endobject, val, s->inuse - s->object_size))
907 			return 0;
908 	} else {
909 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
910 			check_bytes_and_report(s, page, p, "Alignment padding",
911 				endobject, POISON_INUSE,
912 				s->inuse - s->object_size);
913 		}
914 	}
915 
916 	if (s->flags & SLAB_POISON) {
917 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
918 			(!check_bytes_and_report(s, page, p, "Poison", p,
919 					POISON_FREE, s->object_size - 1) ||
920 			 !check_bytes_and_report(s, page, p, "Poison",
921 				p + s->object_size - 1, POISON_END, 1)))
922 			return 0;
923 		/*
924 		 * check_pad_bytes cleans up on its own.
925 		 */
926 		check_pad_bytes(s, page, p);
927 	}
928 
929 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
930 		/*
931 		 * Object and freepointer overlap. Cannot check
932 		 * freepointer while object is allocated.
933 		 */
934 		return 1;
935 
936 	/* Check free pointer validity */
937 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
938 		object_err(s, page, p, "Freepointer corrupt");
939 		/*
940 		 * No choice but to zap it and thus lose the remainder
941 		 * of the free objects in this slab. May cause
942 		 * another error because the object count is now wrong.
943 		 */
944 		set_freepointer(s, p, NULL);
945 		return 0;
946 	}
947 	return 1;
948 }
949 
950 static int check_slab(struct kmem_cache *s, struct page *page)
951 {
952 	int maxobj;
953 
954 	VM_BUG_ON(!irqs_disabled());
955 
956 	if (!PageSlab(page)) {
957 		slab_err(s, page, "Not a valid slab page");
958 		return 0;
959 	}
960 
961 	maxobj = order_objects(compound_order(page), s->size);
962 	if (page->objects > maxobj) {
963 		slab_err(s, page, "objects %u > max %u",
964 			page->objects, maxobj);
965 		return 0;
966 	}
967 	if (page->inuse > page->objects) {
968 		slab_err(s, page, "inuse %u > max %u",
969 			page->inuse, page->objects);
970 		return 0;
971 	}
972 	/* Slab_pad_check fixes things up after itself */
973 	slab_pad_check(s, page);
974 	return 1;
975 }
976 
977 /*
978  * Determine if a certain object on a page is on the freelist. Must hold the
979  * slab lock to guarantee that the chains are in a consistent state.
980  */
981 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
982 {
983 	int nr = 0;
984 	void *fp;
985 	void *object = NULL;
986 	int max_objects;
987 
988 	fp = page->freelist;
989 	while (fp && nr <= page->objects) {
990 		if (fp == search)
991 			return 1;
992 		if (!check_valid_pointer(s, page, fp)) {
993 			if (object) {
994 				object_err(s, page, object,
995 					"Freechain corrupt");
996 				set_freepointer(s, object, NULL);
997 			} else {
998 				slab_err(s, page, "Freepointer corrupt");
999 				page->freelist = NULL;
1000 				page->inuse = page->objects;
1001 				slab_fix(s, "Freelist cleared");
1002 				return 0;
1003 			}
1004 			break;
1005 		}
1006 		object = fp;
1007 		fp = get_freepointer(s, object);
1008 		nr++;
1009 	}
1010 
1011 	max_objects = order_objects(compound_order(page), s->size);
1012 	if (max_objects > MAX_OBJS_PER_PAGE)
1013 		max_objects = MAX_OBJS_PER_PAGE;
1014 
1015 	if (page->objects != max_objects) {
1016 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1017 			 page->objects, max_objects);
1018 		page->objects = max_objects;
1019 		slab_fix(s, "Number of objects adjusted.");
1020 	}
1021 	if (page->inuse != page->objects - nr) {
1022 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1023 			 page->inuse, page->objects - nr);
1024 		page->inuse = page->objects - nr;
1025 		slab_fix(s, "Object count adjusted.");
1026 	}
1027 	return search == NULL;
1028 }
1029 
1030 static void trace(struct kmem_cache *s, struct page *page, void *object,
1031 								int alloc)
1032 {
1033 	if (s->flags & SLAB_TRACE) {
1034 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1035 			s->name,
1036 			alloc ? "alloc" : "free",
1037 			object, page->inuse,
1038 			page->freelist);
1039 
1040 		if (!alloc)
1041 			print_section(KERN_INFO, "Object ", (void *)object,
1042 					s->object_size);
1043 
1044 		dump_stack();
1045 	}
1046 }
1047 
1048 /*
1049  * Tracking of fully allocated slabs for debugging purposes.
1050  */
1051 static void add_full(struct kmem_cache *s,
1052 	struct kmem_cache_node *n, struct page *page)
1053 {
1054 	if (!(s->flags & SLAB_STORE_USER))
1055 		return;
1056 
1057 	lockdep_assert_held(&n->list_lock);
1058 	list_add(&page->slab_list, &n->full);
1059 }
1060 
1061 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1062 {
1063 	if (!(s->flags & SLAB_STORE_USER))
1064 		return;
1065 
1066 	lockdep_assert_held(&n->list_lock);
1067 	list_del(&page->slab_list);
1068 }
1069 
1070 /* Tracking of the number of slabs for debugging purposes */
1071 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1072 {
1073 	struct kmem_cache_node *n = get_node(s, node);
1074 
1075 	return atomic_long_read(&n->nr_slabs);
1076 }
1077 
1078 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1079 {
1080 	return atomic_long_read(&n->nr_slabs);
1081 }
1082 
1083 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1084 {
1085 	struct kmem_cache_node *n = get_node(s, node);
1086 
1087 	/*
1088 	 * May be called early in order to allocate a slab for the
1089 	 * kmem_cache_node structure. Solve the chicken-egg
1090 	 * dilemma by deferring the increment of the count during
1091 	 * bootstrap (see early_kmem_cache_node_alloc).
1092 	 */
1093 	if (likely(n)) {
1094 		atomic_long_inc(&n->nr_slabs);
1095 		atomic_long_add(objects, &n->total_objects);
1096 	}
1097 }
1098 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1099 {
1100 	struct kmem_cache_node *n = get_node(s, node);
1101 
1102 	atomic_long_dec(&n->nr_slabs);
1103 	atomic_long_sub(objects, &n->total_objects);
1104 }
1105 
1106 /* Object debug checks for alloc/free paths */
1107 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1108 								void *object)
1109 {
1110 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1111 		return;
1112 
1113 	init_object(s, object, SLUB_RED_INACTIVE);
1114 	init_tracking(s, object);
1115 }
1116 
1117 static
1118 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1119 {
1120 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1121 		return;
1122 
1123 	metadata_access_enable();
1124 	memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1125 	metadata_access_disable();
1126 }
1127 
1128 static inline int alloc_consistency_checks(struct kmem_cache *s,
1129 					struct page *page, void *object)
1130 {
1131 	if (!check_slab(s, page))
1132 		return 0;
1133 
1134 	if (!check_valid_pointer(s, page, object)) {
1135 		object_err(s, page, object, "Freelist Pointer check fails");
1136 		return 0;
1137 	}
1138 
1139 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1140 		return 0;
1141 
1142 	return 1;
1143 }
1144 
1145 static noinline int alloc_debug_processing(struct kmem_cache *s,
1146 					struct page *page,
1147 					void *object, unsigned long addr)
1148 {
1149 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1150 		if (!alloc_consistency_checks(s, page, object))
1151 			goto bad;
1152 	}
1153 
1154 	/* Success perform special debug activities for allocs */
1155 	if (s->flags & SLAB_STORE_USER)
1156 		set_track(s, object, TRACK_ALLOC, addr);
1157 	trace(s, page, object, 1);
1158 	init_object(s, object, SLUB_RED_ACTIVE);
1159 	return 1;
1160 
1161 bad:
1162 	if (PageSlab(page)) {
1163 		/*
1164 		 * If this is a slab page then lets do the best we can
1165 		 * to avoid issues in the future. Marking all objects
1166 		 * as used avoids touching the remaining objects.
1167 		 */
1168 		slab_fix(s, "Marking all objects used");
1169 		page->inuse = page->objects;
1170 		page->freelist = NULL;
1171 	}
1172 	return 0;
1173 }
1174 
1175 static inline int free_consistency_checks(struct kmem_cache *s,
1176 		struct page *page, void *object, unsigned long addr)
1177 {
1178 	if (!check_valid_pointer(s, page, object)) {
1179 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1180 		return 0;
1181 	}
1182 
1183 	if (on_freelist(s, page, object)) {
1184 		object_err(s, page, object, "Object already free");
1185 		return 0;
1186 	}
1187 
1188 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1189 		return 0;
1190 
1191 	if (unlikely(s != page->slab_cache)) {
1192 		if (!PageSlab(page)) {
1193 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1194 				 object);
1195 		} else if (!page->slab_cache) {
1196 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1197 			       object);
1198 			dump_stack();
1199 		} else
1200 			object_err(s, page, object,
1201 					"page slab pointer corrupt.");
1202 		return 0;
1203 	}
1204 	return 1;
1205 }
1206 
1207 /* Supports checking bulk free of a constructed freelist */
1208 static noinline int free_debug_processing(
1209 	struct kmem_cache *s, struct page *page,
1210 	void *head, void *tail, int bulk_cnt,
1211 	unsigned long addr)
1212 {
1213 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1214 	void *object = head;
1215 	int cnt = 0;
1216 	unsigned long flags;
1217 	int ret = 0;
1218 
1219 	spin_lock_irqsave(&n->list_lock, flags);
1220 	slab_lock(page);
1221 
1222 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1223 		if (!check_slab(s, page))
1224 			goto out;
1225 	}
1226 
1227 next_object:
1228 	cnt++;
1229 
1230 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1231 		if (!free_consistency_checks(s, page, object, addr))
1232 			goto out;
1233 	}
1234 
1235 	if (s->flags & SLAB_STORE_USER)
1236 		set_track(s, object, TRACK_FREE, addr);
1237 	trace(s, page, object, 0);
1238 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1239 	init_object(s, object, SLUB_RED_INACTIVE);
1240 
1241 	/* Reached end of constructed freelist yet? */
1242 	if (object != tail) {
1243 		object = get_freepointer(s, object);
1244 		goto next_object;
1245 	}
1246 	ret = 1;
1247 
1248 out:
1249 	if (cnt != bulk_cnt)
1250 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1251 			 bulk_cnt, cnt);
1252 
1253 	slab_unlock(page);
1254 	spin_unlock_irqrestore(&n->list_lock, flags);
1255 	if (!ret)
1256 		slab_fix(s, "Object at 0x%p not freed", object);
1257 	return ret;
1258 }
1259 
1260 /*
1261  * Parse a block of slub_debug options. Blocks are delimited by ';'
1262  *
1263  * @str:    start of block
1264  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1265  * @slabs:  return start of list of slabs, or NULL when there's no list
1266  * @init:   assume this is initial parsing and not per-kmem-create parsing
1267  *
1268  * returns the start of next block if there's any, or NULL
1269  */
1270 static char *
1271 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1272 {
1273 	bool higher_order_disable = false;
1274 
1275 	/* Skip any completely empty blocks */
1276 	while (*str && *str == ';')
1277 		str++;
1278 
1279 	if (*str == ',') {
1280 		/*
1281 		 * No options but restriction on slabs. This means full
1282 		 * debugging for slabs matching a pattern.
1283 		 */
1284 		*flags = DEBUG_DEFAULT_FLAGS;
1285 		goto check_slabs;
1286 	}
1287 	*flags = 0;
1288 
1289 	/* Determine which debug features should be switched on */
1290 	for (; *str && *str != ',' && *str != ';'; str++) {
1291 		switch (tolower(*str)) {
1292 		case '-':
1293 			*flags = 0;
1294 			break;
1295 		case 'f':
1296 			*flags |= SLAB_CONSISTENCY_CHECKS;
1297 			break;
1298 		case 'z':
1299 			*flags |= SLAB_RED_ZONE;
1300 			break;
1301 		case 'p':
1302 			*flags |= SLAB_POISON;
1303 			break;
1304 		case 'u':
1305 			*flags |= SLAB_STORE_USER;
1306 			break;
1307 		case 't':
1308 			*flags |= SLAB_TRACE;
1309 			break;
1310 		case 'a':
1311 			*flags |= SLAB_FAILSLAB;
1312 			break;
1313 		case 'o':
1314 			/*
1315 			 * Avoid enabling debugging on caches if its minimum
1316 			 * order would increase as a result.
1317 			 */
1318 			higher_order_disable = true;
1319 			break;
1320 		default:
1321 			if (init)
1322 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1323 		}
1324 	}
1325 check_slabs:
1326 	if (*str == ',')
1327 		*slabs = ++str;
1328 	else
1329 		*slabs = NULL;
1330 
1331 	/* Skip over the slab list */
1332 	while (*str && *str != ';')
1333 		str++;
1334 
1335 	/* Skip any completely empty blocks */
1336 	while (*str && *str == ';')
1337 		str++;
1338 
1339 	if (init && higher_order_disable)
1340 		disable_higher_order_debug = 1;
1341 
1342 	if (*str)
1343 		return str;
1344 	else
1345 		return NULL;
1346 }
1347 
1348 static int __init setup_slub_debug(char *str)
1349 {
1350 	slab_flags_t flags;
1351 	char *saved_str;
1352 	char *slab_list;
1353 	bool global_slub_debug_changed = false;
1354 	bool slab_list_specified = false;
1355 
1356 	slub_debug = DEBUG_DEFAULT_FLAGS;
1357 	if (*str++ != '=' || !*str)
1358 		/*
1359 		 * No options specified. Switch on full debugging.
1360 		 */
1361 		goto out;
1362 
1363 	saved_str = str;
1364 	while (str) {
1365 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1366 
1367 		if (!slab_list) {
1368 			slub_debug = flags;
1369 			global_slub_debug_changed = true;
1370 		} else {
1371 			slab_list_specified = true;
1372 		}
1373 	}
1374 
1375 	/*
1376 	 * For backwards compatibility, a single list of flags with list of
1377 	 * slabs means debugging is only enabled for those slabs, so the global
1378 	 * slub_debug should be 0. We can extended that to multiple lists as
1379 	 * long as there is no option specifying flags without a slab list.
1380 	 */
1381 	if (slab_list_specified) {
1382 		if (!global_slub_debug_changed)
1383 			slub_debug = 0;
1384 		slub_debug_string = saved_str;
1385 	}
1386 out:
1387 	if (slub_debug != 0 || slub_debug_string)
1388 		static_branch_enable(&slub_debug_enabled);
1389 	if ((static_branch_unlikely(&init_on_alloc) ||
1390 	     static_branch_unlikely(&init_on_free)) &&
1391 	    (slub_debug & SLAB_POISON))
1392 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1393 	return 1;
1394 }
1395 
1396 __setup("slub_debug", setup_slub_debug);
1397 
1398 /*
1399  * kmem_cache_flags - apply debugging options to the cache
1400  * @object_size:	the size of an object without meta data
1401  * @flags:		flags to set
1402  * @name:		name of the cache
1403  * @ctor:		constructor function
1404  *
1405  * Debug option(s) are applied to @flags. In addition to the debug
1406  * option(s), if a slab name (or multiple) is specified i.e.
1407  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1408  * then only the select slabs will receive the debug option(s).
1409  */
1410 slab_flags_t kmem_cache_flags(unsigned int object_size,
1411 	slab_flags_t flags, const char *name,
1412 	void (*ctor)(void *))
1413 {
1414 	char *iter;
1415 	size_t len;
1416 	char *next_block;
1417 	slab_flags_t block_flags;
1418 
1419 	len = strlen(name);
1420 	next_block = slub_debug_string;
1421 	/* Go through all blocks of debug options, see if any matches our slab's name */
1422 	while (next_block) {
1423 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1424 		if (!iter)
1425 			continue;
1426 		/* Found a block that has a slab list, search it */
1427 		while (*iter) {
1428 			char *end, *glob;
1429 			size_t cmplen;
1430 
1431 			end = strchrnul(iter, ',');
1432 			if (next_block && next_block < end)
1433 				end = next_block - 1;
1434 
1435 			glob = strnchr(iter, end - iter, '*');
1436 			if (glob)
1437 				cmplen = glob - iter;
1438 			else
1439 				cmplen = max_t(size_t, len, (end - iter));
1440 
1441 			if (!strncmp(name, iter, cmplen)) {
1442 				flags |= block_flags;
1443 				return flags;
1444 			}
1445 
1446 			if (!*end || *end == ';')
1447 				break;
1448 			iter = end + 1;
1449 		}
1450 	}
1451 
1452 	return flags | slub_debug;
1453 }
1454 #else /* !CONFIG_SLUB_DEBUG */
1455 static inline void setup_object_debug(struct kmem_cache *s,
1456 			struct page *page, void *object) {}
1457 static inline
1458 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1459 
1460 static inline int alloc_debug_processing(struct kmem_cache *s,
1461 	struct page *page, void *object, unsigned long addr) { return 0; }
1462 
1463 static inline int free_debug_processing(
1464 	struct kmem_cache *s, struct page *page,
1465 	void *head, void *tail, int bulk_cnt,
1466 	unsigned long addr) { return 0; }
1467 
1468 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1469 			{ return 1; }
1470 static inline int check_object(struct kmem_cache *s, struct page *page,
1471 			void *object, u8 val) { return 1; }
1472 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1473 					struct page *page) {}
1474 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1475 					struct page *page) {}
1476 slab_flags_t kmem_cache_flags(unsigned int object_size,
1477 	slab_flags_t flags, const char *name,
1478 	void (*ctor)(void *))
1479 {
1480 	return flags;
1481 }
1482 #define slub_debug 0
1483 
1484 #define disable_higher_order_debug 0
1485 
1486 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1487 							{ return 0; }
1488 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1489 							{ return 0; }
1490 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1491 							int objects) {}
1492 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1493 							int objects) {}
1494 
1495 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1496 			       void **freelist, void *nextfree)
1497 {
1498 	return false;
1499 }
1500 #endif /* CONFIG_SLUB_DEBUG */
1501 
1502 /*
1503  * Hooks for other subsystems that check memory allocations. In a typical
1504  * production configuration these hooks all should produce no code at all.
1505  */
1506 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1507 {
1508 	ptr = kasan_kmalloc_large(ptr, size, flags);
1509 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1510 	kmemleak_alloc(ptr, size, 1, flags);
1511 	return ptr;
1512 }
1513 
1514 static __always_inline void kfree_hook(void *x)
1515 {
1516 	kmemleak_free(x);
1517 	kasan_kfree_large(x, _RET_IP_);
1518 }
1519 
1520 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1521 {
1522 	kmemleak_free_recursive(x, s->flags);
1523 
1524 	/*
1525 	 * Trouble is that we may no longer disable interrupts in the fast path
1526 	 * So in order to make the debug calls that expect irqs to be
1527 	 * disabled we need to disable interrupts temporarily.
1528 	 */
1529 #ifdef CONFIG_LOCKDEP
1530 	{
1531 		unsigned long flags;
1532 
1533 		local_irq_save(flags);
1534 		debug_check_no_locks_freed(x, s->object_size);
1535 		local_irq_restore(flags);
1536 	}
1537 #endif
1538 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1539 		debug_check_no_obj_freed(x, s->object_size);
1540 
1541 	/* Use KCSAN to help debug racy use-after-free. */
1542 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1543 		__kcsan_check_access(x, s->object_size,
1544 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1545 
1546 	/* KASAN might put x into memory quarantine, delaying its reuse */
1547 	return kasan_slab_free(s, x, _RET_IP_);
1548 }
1549 
1550 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1551 					   void **head, void **tail)
1552 {
1553 
1554 	void *object;
1555 	void *next = *head;
1556 	void *old_tail = *tail ? *tail : *head;
1557 	int rsize;
1558 
1559 	/* Head and tail of the reconstructed freelist */
1560 	*head = NULL;
1561 	*tail = NULL;
1562 
1563 	do {
1564 		object = next;
1565 		next = get_freepointer(s, object);
1566 
1567 		if (slab_want_init_on_free(s)) {
1568 			/*
1569 			 * Clear the object and the metadata, but don't touch
1570 			 * the redzone.
1571 			 */
1572 			memset(kasan_reset_tag(object), 0, s->object_size);
1573 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1574 							   : 0;
1575 			memset((char *)kasan_reset_tag(object) + s->inuse, 0,
1576 			       s->size - s->inuse - rsize);
1577 
1578 		}
1579 		/* If object's reuse doesn't have to be delayed */
1580 		if (!slab_free_hook(s, object)) {
1581 			/* Move object to the new freelist */
1582 			set_freepointer(s, object, *head);
1583 			*head = object;
1584 			if (!*tail)
1585 				*tail = object;
1586 		}
1587 	} while (object != old_tail);
1588 
1589 	if (*head == *tail)
1590 		*tail = NULL;
1591 
1592 	return *head != NULL;
1593 }
1594 
1595 static void *setup_object(struct kmem_cache *s, struct page *page,
1596 				void *object)
1597 {
1598 	setup_object_debug(s, page, object);
1599 	object = kasan_init_slab_obj(s, object);
1600 	if (unlikely(s->ctor)) {
1601 		kasan_unpoison_object_data(s, object);
1602 		s->ctor(object);
1603 		kasan_poison_object_data(s, object);
1604 	}
1605 	return object;
1606 }
1607 
1608 /*
1609  * Slab allocation and freeing
1610  */
1611 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1612 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1613 {
1614 	struct page *page;
1615 	unsigned int order = oo_order(oo);
1616 
1617 	if (node == NUMA_NO_NODE)
1618 		page = alloc_pages(flags, order);
1619 	else
1620 		page = __alloc_pages_node(node, flags, order);
1621 
1622 	if (page)
1623 		account_slab_page(page, order, s);
1624 
1625 	return page;
1626 }
1627 
1628 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1629 /* Pre-initialize the random sequence cache */
1630 static int init_cache_random_seq(struct kmem_cache *s)
1631 {
1632 	unsigned int count = oo_objects(s->oo);
1633 	int err;
1634 
1635 	/* Bailout if already initialised */
1636 	if (s->random_seq)
1637 		return 0;
1638 
1639 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1640 	if (err) {
1641 		pr_err("SLUB: Unable to initialize free list for %s\n",
1642 			s->name);
1643 		return err;
1644 	}
1645 
1646 	/* Transform to an offset on the set of pages */
1647 	if (s->random_seq) {
1648 		unsigned int i;
1649 
1650 		for (i = 0; i < count; i++)
1651 			s->random_seq[i] *= s->size;
1652 	}
1653 	return 0;
1654 }
1655 
1656 /* Initialize each random sequence freelist per cache */
1657 static void __init init_freelist_randomization(void)
1658 {
1659 	struct kmem_cache *s;
1660 
1661 	mutex_lock(&slab_mutex);
1662 
1663 	list_for_each_entry(s, &slab_caches, list)
1664 		init_cache_random_seq(s);
1665 
1666 	mutex_unlock(&slab_mutex);
1667 }
1668 
1669 /* Get the next entry on the pre-computed freelist randomized */
1670 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1671 				unsigned long *pos, void *start,
1672 				unsigned long page_limit,
1673 				unsigned long freelist_count)
1674 {
1675 	unsigned int idx;
1676 
1677 	/*
1678 	 * If the target page allocation failed, the number of objects on the
1679 	 * page might be smaller than the usual size defined by the cache.
1680 	 */
1681 	do {
1682 		idx = s->random_seq[*pos];
1683 		*pos += 1;
1684 		if (*pos >= freelist_count)
1685 			*pos = 0;
1686 	} while (unlikely(idx >= page_limit));
1687 
1688 	return (char *)start + idx;
1689 }
1690 
1691 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1692 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1693 {
1694 	void *start;
1695 	void *cur;
1696 	void *next;
1697 	unsigned long idx, pos, page_limit, freelist_count;
1698 
1699 	if (page->objects < 2 || !s->random_seq)
1700 		return false;
1701 
1702 	freelist_count = oo_objects(s->oo);
1703 	pos = get_random_int() % freelist_count;
1704 
1705 	page_limit = page->objects * s->size;
1706 	start = fixup_red_left(s, page_address(page));
1707 
1708 	/* First entry is used as the base of the freelist */
1709 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1710 				freelist_count);
1711 	cur = setup_object(s, page, cur);
1712 	page->freelist = cur;
1713 
1714 	for (idx = 1; idx < page->objects; idx++) {
1715 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1716 			freelist_count);
1717 		next = setup_object(s, page, next);
1718 		set_freepointer(s, cur, next);
1719 		cur = next;
1720 	}
1721 	set_freepointer(s, cur, NULL);
1722 
1723 	return true;
1724 }
1725 #else
1726 static inline int init_cache_random_seq(struct kmem_cache *s)
1727 {
1728 	return 0;
1729 }
1730 static inline void init_freelist_randomization(void) { }
1731 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1732 {
1733 	return false;
1734 }
1735 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1736 
1737 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1738 {
1739 	struct page *page;
1740 	struct kmem_cache_order_objects oo = s->oo;
1741 	gfp_t alloc_gfp;
1742 	void *start, *p, *next;
1743 	int idx;
1744 	bool shuffle;
1745 
1746 	flags &= gfp_allowed_mask;
1747 
1748 	if (gfpflags_allow_blocking(flags))
1749 		local_irq_enable();
1750 
1751 	flags |= s->allocflags;
1752 
1753 	/*
1754 	 * Let the initial higher-order allocation fail under memory pressure
1755 	 * so we fall-back to the minimum order allocation.
1756 	 */
1757 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1758 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1759 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1760 
1761 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1762 	if (unlikely(!page)) {
1763 		oo = s->min;
1764 		alloc_gfp = flags;
1765 		/*
1766 		 * Allocation may have failed due to fragmentation.
1767 		 * Try a lower order alloc if possible
1768 		 */
1769 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1770 		if (unlikely(!page))
1771 			goto out;
1772 		stat(s, ORDER_FALLBACK);
1773 	}
1774 
1775 	page->objects = oo_objects(oo);
1776 
1777 	page->slab_cache = s;
1778 	__SetPageSlab(page);
1779 	if (page_is_pfmemalloc(page))
1780 		SetPageSlabPfmemalloc(page);
1781 
1782 	kasan_poison_slab(page);
1783 
1784 	start = page_address(page);
1785 
1786 	setup_page_debug(s, page, start);
1787 
1788 	shuffle = shuffle_freelist(s, page);
1789 
1790 	if (!shuffle) {
1791 		start = fixup_red_left(s, start);
1792 		start = setup_object(s, page, start);
1793 		page->freelist = start;
1794 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1795 			next = p + s->size;
1796 			next = setup_object(s, page, next);
1797 			set_freepointer(s, p, next);
1798 			p = next;
1799 		}
1800 		set_freepointer(s, p, NULL);
1801 	}
1802 
1803 	page->inuse = page->objects;
1804 	page->frozen = 1;
1805 
1806 out:
1807 	if (gfpflags_allow_blocking(flags))
1808 		local_irq_disable();
1809 	if (!page)
1810 		return NULL;
1811 
1812 	inc_slabs_node(s, page_to_nid(page), page->objects);
1813 
1814 	return page;
1815 }
1816 
1817 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1818 {
1819 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1820 		flags = kmalloc_fix_flags(flags);
1821 
1822 	return allocate_slab(s,
1823 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1824 }
1825 
1826 static void __free_slab(struct kmem_cache *s, struct page *page)
1827 {
1828 	int order = compound_order(page);
1829 	int pages = 1 << order;
1830 
1831 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1832 		void *p;
1833 
1834 		slab_pad_check(s, page);
1835 		for_each_object(p, s, page_address(page),
1836 						page->objects)
1837 			check_object(s, page, p, SLUB_RED_INACTIVE);
1838 	}
1839 
1840 	__ClearPageSlabPfmemalloc(page);
1841 	__ClearPageSlab(page);
1842 	/* In union with page->mapping where page allocator expects NULL */
1843 	page->slab_cache = NULL;
1844 	if (current->reclaim_state)
1845 		current->reclaim_state->reclaimed_slab += pages;
1846 	unaccount_slab_page(page, order, s);
1847 	__free_pages(page, order);
1848 }
1849 
1850 static void rcu_free_slab(struct rcu_head *h)
1851 {
1852 	struct page *page = container_of(h, struct page, rcu_head);
1853 
1854 	__free_slab(page->slab_cache, page);
1855 }
1856 
1857 static void free_slab(struct kmem_cache *s, struct page *page)
1858 {
1859 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1860 		call_rcu(&page->rcu_head, rcu_free_slab);
1861 	} else
1862 		__free_slab(s, page);
1863 }
1864 
1865 static void discard_slab(struct kmem_cache *s, struct page *page)
1866 {
1867 	dec_slabs_node(s, page_to_nid(page), page->objects);
1868 	free_slab(s, page);
1869 }
1870 
1871 /*
1872  * Management of partially allocated slabs.
1873  */
1874 static inline void
1875 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1876 {
1877 	n->nr_partial++;
1878 	if (tail == DEACTIVATE_TO_TAIL)
1879 		list_add_tail(&page->slab_list, &n->partial);
1880 	else
1881 		list_add(&page->slab_list, &n->partial);
1882 }
1883 
1884 static inline void add_partial(struct kmem_cache_node *n,
1885 				struct page *page, int tail)
1886 {
1887 	lockdep_assert_held(&n->list_lock);
1888 	__add_partial(n, page, tail);
1889 }
1890 
1891 static inline void remove_partial(struct kmem_cache_node *n,
1892 					struct page *page)
1893 {
1894 	lockdep_assert_held(&n->list_lock);
1895 	list_del(&page->slab_list);
1896 	n->nr_partial--;
1897 }
1898 
1899 /*
1900  * Remove slab from the partial list, freeze it and
1901  * return the pointer to the freelist.
1902  *
1903  * Returns a list of objects or NULL if it fails.
1904  */
1905 static inline void *acquire_slab(struct kmem_cache *s,
1906 		struct kmem_cache_node *n, struct page *page,
1907 		int mode, int *objects)
1908 {
1909 	void *freelist;
1910 	unsigned long counters;
1911 	struct page new;
1912 
1913 	lockdep_assert_held(&n->list_lock);
1914 
1915 	/*
1916 	 * Zap the freelist and set the frozen bit.
1917 	 * The old freelist is the list of objects for the
1918 	 * per cpu allocation list.
1919 	 */
1920 	freelist = page->freelist;
1921 	counters = page->counters;
1922 	new.counters = counters;
1923 	*objects = new.objects - new.inuse;
1924 	if (mode) {
1925 		new.inuse = page->objects;
1926 		new.freelist = NULL;
1927 	} else {
1928 		new.freelist = freelist;
1929 	}
1930 
1931 	VM_BUG_ON(new.frozen);
1932 	new.frozen = 1;
1933 
1934 	if (!__cmpxchg_double_slab(s, page,
1935 			freelist, counters,
1936 			new.freelist, new.counters,
1937 			"acquire_slab"))
1938 		return NULL;
1939 
1940 	remove_partial(n, page);
1941 	WARN_ON(!freelist);
1942 	return freelist;
1943 }
1944 
1945 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1946 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1947 
1948 /*
1949  * Try to allocate a partial slab from a specific node.
1950  */
1951 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1952 				struct kmem_cache_cpu *c, gfp_t flags)
1953 {
1954 	struct page *page, *page2;
1955 	void *object = NULL;
1956 	unsigned int available = 0;
1957 	int objects;
1958 
1959 	/*
1960 	 * Racy check. If we mistakenly see no partial slabs then we
1961 	 * just allocate an empty slab. If we mistakenly try to get a
1962 	 * partial slab and there is none available then get_partial()
1963 	 * will return NULL.
1964 	 */
1965 	if (!n || !n->nr_partial)
1966 		return NULL;
1967 
1968 	spin_lock(&n->list_lock);
1969 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1970 		void *t;
1971 
1972 		if (!pfmemalloc_match(page, flags))
1973 			continue;
1974 
1975 		t = acquire_slab(s, n, page, object == NULL, &objects);
1976 		if (!t)
1977 			break;
1978 
1979 		available += objects;
1980 		if (!object) {
1981 			c->page = page;
1982 			stat(s, ALLOC_FROM_PARTIAL);
1983 			object = t;
1984 		} else {
1985 			put_cpu_partial(s, page, 0);
1986 			stat(s, CPU_PARTIAL_NODE);
1987 		}
1988 		if (!kmem_cache_has_cpu_partial(s)
1989 			|| available > slub_cpu_partial(s) / 2)
1990 			break;
1991 
1992 	}
1993 	spin_unlock(&n->list_lock);
1994 	return object;
1995 }
1996 
1997 /*
1998  * Get a page from somewhere. Search in increasing NUMA distances.
1999  */
2000 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2001 		struct kmem_cache_cpu *c)
2002 {
2003 #ifdef CONFIG_NUMA
2004 	struct zonelist *zonelist;
2005 	struct zoneref *z;
2006 	struct zone *zone;
2007 	enum zone_type highest_zoneidx = gfp_zone(flags);
2008 	void *object;
2009 	unsigned int cpuset_mems_cookie;
2010 
2011 	/*
2012 	 * The defrag ratio allows a configuration of the tradeoffs between
2013 	 * inter node defragmentation and node local allocations. A lower
2014 	 * defrag_ratio increases the tendency to do local allocations
2015 	 * instead of attempting to obtain partial slabs from other nodes.
2016 	 *
2017 	 * If the defrag_ratio is set to 0 then kmalloc() always
2018 	 * returns node local objects. If the ratio is higher then kmalloc()
2019 	 * may return off node objects because partial slabs are obtained
2020 	 * from other nodes and filled up.
2021 	 *
2022 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2023 	 * (which makes defrag_ratio = 1000) then every (well almost)
2024 	 * allocation will first attempt to defrag slab caches on other nodes.
2025 	 * This means scanning over all nodes to look for partial slabs which
2026 	 * may be expensive if we do it every time we are trying to find a slab
2027 	 * with available objects.
2028 	 */
2029 	if (!s->remote_node_defrag_ratio ||
2030 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2031 		return NULL;
2032 
2033 	do {
2034 		cpuset_mems_cookie = read_mems_allowed_begin();
2035 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2036 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2037 			struct kmem_cache_node *n;
2038 
2039 			n = get_node(s, zone_to_nid(zone));
2040 
2041 			if (n && cpuset_zone_allowed(zone, flags) &&
2042 					n->nr_partial > s->min_partial) {
2043 				object = get_partial_node(s, n, c, flags);
2044 				if (object) {
2045 					/*
2046 					 * Don't check read_mems_allowed_retry()
2047 					 * here - if mems_allowed was updated in
2048 					 * parallel, that was a harmless race
2049 					 * between allocation and the cpuset
2050 					 * update
2051 					 */
2052 					return object;
2053 				}
2054 			}
2055 		}
2056 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2057 #endif	/* CONFIG_NUMA */
2058 	return NULL;
2059 }
2060 
2061 /*
2062  * Get a partial page, lock it and return it.
2063  */
2064 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2065 		struct kmem_cache_cpu *c)
2066 {
2067 	void *object;
2068 	int searchnode = node;
2069 
2070 	if (node == NUMA_NO_NODE)
2071 		searchnode = numa_mem_id();
2072 
2073 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
2074 	if (object || node != NUMA_NO_NODE)
2075 		return object;
2076 
2077 	return get_any_partial(s, flags, c);
2078 }
2079 
2080 #ifdef CONFIG_PREEMPTION
2081 /*
2082  * Calculate the next globally unique transaction for disambiguation
2083  * during cmpxchg. The transactions start with the cpu number and are then
2084  * incremented by CONFIG_NR_CPUS.
2085  */
2086 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2087 #else
2088 /*
2089  * No preemption supported therefore also no need to check for
2090  * different cpus.
2091  */
2092 #define TID_STEP 1
2093 #endif
2094 
2095 static inline unsigned long next_tid(unsigned long tid)
2096 {
2097 	return tid + TID_STEP;
2098 }
2099 
2100 #ifdef SLUB_DEBUG_CMPXCHG
2101 static inline unsigned int tid_to_cpu(unsigned long tid)
2102 {
2103 	return tid % TID_STEP;
2104 }
2105 
2106 static inline unsigned long tid_to_event(unsigned long tid)
2107 {
2108 	return tid / TID_STEP;
2109 }
2110 #endif
2111 
2112 static inline unsigned int init_tid(int cpu)
2113 {
2114 	return cpu;
2115 }
2116 
2117 static inline void note_cmpxchg_failure(const char *n,
2118 		const struct kmem_cache *s, unsigned long tid)
2119 {
2120 #ifdef SLUB_DEBUG_CMPXCHG
2121 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2122 
2123 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2124 
2125 #ifdef CONFIG_PREEMPTION
2126 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2127 		pr_warn("due to cpu change %d -> %d\n",
2128 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2129 	else
2130 #endif
2131 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2132 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2133 			tid_to_event(tid), tid_to_event(actual_tid));
2134 	else
2135 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2136 			actual_tid, tid, next_tid(tid));
2137 #endif
2138 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2139 }
2140 
2141 static void init_kmem_cache_cpus(struct kmem_cache *s)
2142 {
2143 	int cpu;
2144 
2145 	for_each_possible_cpu(cpu)
2146 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2147 }
2148 
2149 /*
2150  * Remove the cpu slab
2151  */
2152 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2153 				void *freelist, struct kmem_cache_cpu *c)
2154 {
2155 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2156 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2157 	int lock = 0;
2158 	enum slab_modes l = M_NONE, m = M_NONE;
2159 	void *nextfree;
2160 	int tail = DEACTIVATE_TO_HEAD;
2161 	struct page new;
2162 	struct page old;
2163 
2164 	if (page->freelist) {
2165 		stat(s, DEACTIVATE_REMOTE_FREES);
2166 		tail = DEACTIVATE_TO_TAIL;
2167 	}
2168 
2169 	/*
2170 	 * Stage one: Free all available per cpu objects back
2171 	 * to the page freelist while it is still frozen. Leave the
2172 	 * last one.
2173 	 *
2174 	 * There is no need to take the list->lock because the page
2175 	 * is still frozen.
2176 	 */
2177 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2178 		void *prior;
2179 		unsigned long counters;
2180 
2181 		/*
2182 		 * If 'nextfree' is invalid, it is possible that the object at
2183 		 * 'freelist' is already corrupted.  So isolate all objects
2184 		 * starting at 'freelist'.
2185 		 */
2186 		if (freelist_corrupted(s, page, &freelist, nextfree))
2187 			break;
2188 
2189 		do {
2190 			prior = page->freelist;
2191 			counters = page->counters;
2192 			set_freepointer(s, freelist, prior);
2193 			new.counters = counters;
2194 			new.inuse--;
2195 			VM_BUG_ON(!new.frozen);
2196 
2197 		} while (!__cmpxchg_double_slab(s, page,
2198 			prior, counters,
2199 			freelist, new.counters,
2200 			"drain percpu freelist"));
2201 
2202 		freelist = nextfree;
2203 	}
2204 
2205 	/*
2206 	 * Stage two: Ensure that the page is unfrozen while the
2207 	 * list presence reflects the actual number of objects
2208 	 * during unfreeze.
2209 	 *
2210 	 * We setup the list membership and then perform a cmpxchg
2211 	 * with the count. If there is a mismatch then the page
2212 	 * is not unfrozen but the page is on the wrong list.
2213 	 *
2214 	 * Then we restart the process which may have to remove
2215 	 * the page from the list that we just put it on again
2216 	 * because the number of objects in the slab may have
2217 	 * changed.
2218 	 */
2219 redo:
2220 
2221 	old.freelist = page->freelist;
2222 	old.counters = page->counters;
2223 	VM_BUG_ON(!old.frozen);
2224 
2225 	/* Determine target state of the slab */
2226 	new.counters = old.counters;
2227 	if (freelist) {
2228 		new.inuse--;
2229 		set_freepointer(s, freelist, old.freelist);
2230 		new.freelist = freelist;
2231 	} else
2232 		new.freelist = old.freelist;
2233 
2234 	new.frozen = 0;
2235 
2236 	if (!new.inuse && n->nr_partial >= s->min_partial)
2237 		m = M_FREE;
2238 	else if (new.freelist) {
2239 		m = M_PARTIAL;
2240 		if (!lock) {
2241 			lock = 1;
2242 			/*
2243 			 * Taking the spinlock removes the possibility
2244 			 * that acquire_slab() will see a slab page that
2245 			 * is frozen
2246 			 */
2247 			spin_lock(&n->list_lock);
2248 		}
2249 	} else {
2250 		m = M_FULL;
2251 		if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2252 			lock = 1;
2253 			/*
2254 			 * This also ensures that the scanning of full
2255 			 * slabs from diagnostic functions will not see
2256 			 * any frozen slabs.
2257 			 */
2258 			spin_lock(&n->list_lock);
2259 		}
2260 	}
2261 
2262 	if (l != m) {
2263 		if (l == M_PARTIAL)
2264 			remove_partial(n, page);
2265 		else if (l == M_FULL)
2266 			remove_full(s, n, page);
2267 
2268 		if (m == M_PARTIAL)
2269 			add_partial(n, page, tail);
2270 		else if (m == M_FULL)
2271 			add_full(s, n, page);
2272 	}
2273 
2274 	l = m;
2275 	if (!__cmpxchg_double_slab(s, page,
2276 				old.freelist, old.counters,
2277 				new.freelist, new.counters,
2278 				"unfreezing slab"))
2279 		goto redo;
2280 
2281 	if (lock)
2282 		spin_unlock(&n->list_lock);
2283 
2284 	if (m == M_PARTIAL)
2285 		stat(s, tail);
2286 	else if (m == M_FULL)
2287 		stat(s, DEACTIVATE_FULL);
2288 	else if (m == M_FREE) {
2289 		stat(s, DEACTIVATE_EMPTY);
2290 		discard_slab(s, page);
2291 		stat(s, FREE_SLAB);
2292 	}
2293 
2294 	c->page = NULL;
2295 	c->freelist = NULL;
2296 }
2297 
2298 /*
2299  * Unfreeze all the cpu partial slabs.
2300  *
2301  * This function must be called with interrupts disabled
2302  * for the cpu using c (or some other guarantee must be there
2303  * to guarantee no concurrent accesses).
2304  */
2305 static void unfreeze_partials(struct kmem_cache *s,
2306 		struct kmem_cache_cpu *c)
2307 {
2308 #ifdef CONFIG_SLUB_CPU_PARTIAL
2309 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2310 	struct page *page, *discard_page = NULL;
2311 
2312 	while ((page = slub_percpu_partial(c))) {
2313 		struct page new;
2314 		struct page old;
2315 
2316 		slub_set_percpu_partial(c, page);
2317 
2318 		n2 = get_node(s, page_to_nid(page));
2319 		if (n != n2) {
2320 			if (n)
2321 				spin_unlock(&n->list_lock);
2322 
2323 			n = n2;
2324 			spin_lock(&n->list_lock);
2325 		}
2326 
2327 		do {
2328 
2329 			old.freelist = page->freelist;
2330 			old.counters = page->counters;
2331 			VM_BUG_ON(!old.frozen);
2332 
2333 			new.counters = old.counters;
2334 			new.freelist = old.freelist;
2335 
2336 			new.frozen = 0;
2337 
2338 		} while (!__cmpxchg_double_slab(s, page,
2339 				old.freelist, old.counters,
2340 				new.freelist, new.counters,
2341 				"unfreezing slab"));
2342 
2343 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2344 			page->next = discard_page;
2345 			discard_page = page;
2346 		} else {
2347 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2348 			stat(s, FREE_ADD_PARTIAL);
2349 		}
2350 	}
2351 
2352 	if (n)
2353 		spin_unlock(&n->list_lock);
2354 
2355 	while (discard_page) {
2356 		page = discard_page;
2357 		discard_page = discard_page->next;
2358 
2359 		stat(s, DEACTIVATE_EMPTY);
2360 		discard_slab(s, page);
2361 		stat(s, FREE_SLAB);
2362 	}
2363 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2364 }
2365 
2366 /*
2367  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2368  * partial page slot if available.
2369  *
2370  * If we did not find a slot then simply move all the partials to the
2371  * per node partial list.
2372  */
2373 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2374 {
2375 #ifdef CONFIG_SLUB_CPU_PARTIAL
2376 	struct page *oldpage;
2377 	int pages;
2378 	int pobjects;
2379 
2380 	preempt_disable();
2381 	do {
2382 		pages = 0;
2383 		pobjects = 0;
2384 		oldpage = this_cpu_read(s->cpu_slab->partial);
2385 
2386 		if (oldpage) {
2387 			pobjects = oldpage->pobjects;
2388 			pages = oldpage->pages;
2389 			if (drain && pobjects > slub_cpu_partial(s)) {
2390 				unsigned long flags;
2391 				/*
2392 				 * partial array is full. Move the existing
2393 				 * set to the per node partial list.
2394 				 */
2395 				local_irq_save(flags);
2396 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2397 				local_irq_restore(flags);
2398 				oldpage = NULL;
2399 				pobjects = 0;
2400 				pages = 0;
2401 				stat(s, CPU_PARTIAL_DRAIN);
2402 			}
2403 		}
2404 
2405 		pages++;
2406 		pobjects += page->objects - page->inuse;
2407 
2408 		page->pages = pages;
2409 		page->pobjects = pobjects;
2410 		page->next = oldpage;
2411 
2412 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2413 								!= oldpage);
2414 	if (unlikely(!slub_cpu_partial(s))) {
2415 		unsigned long flags;
2416 
2417 		local_irq_save(flags);
2418 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2419 		local_irq_restore(flags);
2420 	}
2421 	preempt_enable();
2422 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2423 }
2424 
2425 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2426 {
2427 	stat(s, CPUSLAB_FLUSH);
2428 	deactivate_slab(s, c->page, c->freelist, c);
2429 
2430 	c->tid = next_tid(c->tid);
2431 }
2432 
2433 /*
2434  * Flush cpu slab.
2435  *
2436  * Called from IPI handler with interrupts disabled.
2437  */
2438 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2439 {
2440 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2441 
2442 	if (c->page)
2443 		flush_slab(s, c);
2444 
2445 	unfreeze_partials(s, c);
2446 }
2447 
2448 static void flush_cpu_slab(void *d)
2449 {
2450 	struct kmem_cache *s = d;
2451 
2452 	__flush_cpu_slab(s, smp_processor_id());
2453 }
2454 
2455 static bool has_cpu_slab(int cpu, void *info)
2456 {
2457 	struct kmem_cache *s = info;
2458 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2459 
2460 	return c->page || slub_percpu_partial(c);
2461 }
2462 
2463 static void flush_all(struct kmem_cache *s)
2464 {
2465 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2466 }
2467 
2468 /*
2469  * Use the cpu notifier to insure that the cpu slabs are flushed when
2470  * necessary.
2471  */
2472 static int slub_cpu_dead(unsigned int cpu)
2473 {
2474 	struct kmem_cache *s;
2475 	unsigned long flags;
2476 
2477 	mutex_lock(&slab_mutex);
2478 	list_for_each_entry(s, &slab_caches, list) {
2479 		local_irq_save(flags);
2480 		__flush_cpu_slab(s, cpu);
2481 		local_irq_restore(flags);
2482 	}
2483 	mutex_unlock(&slab_mutex);
2484 	return 0;
2485 }
2486 
2487 /*
2488  * Check if the objects in a per cpu structure fit numa
2489  * locality expectations.
2490  */
2491 static inline int node_match(struct page *page, int node)
2492 {
2493 #ifdef CONFIG_NUMA
2494 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2495 		return 0;
2496 #endif
2497 	return 1;
2498 }
2499 
2500 #ifdef CONFIG_SLUB_DEBUG
2501 static int count_free(struct page *page)
2502 {
2503 	return page->objects - page->inuse;
2504 }
2505 
2506 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2507 {
2508 	return atomic_long_read(&n->total_objects);
2509 }
2510 #endif /* CONFIG_SLUB_DEBUG */
2511 
2512 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2513 static unsigned long count_partial(struct kmem_cache_node *n,
2514 					int (*get_count)(struct page *))
2515 {
2516 	unsigned long flags;
2517 	unsigned long x = 0;
2518 	struct page *page;
2519 
2520 	spin_lock_irqsave(&n->list_lock, flags);
2521 	list_for_each_entry(page, &n->partial, slab_list)
2522 		x += get_count(page);
2523 	spin_unlock_irqrestore(&n->list_lock, flags);
2524 	return x;
2525 }
2526 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2527 
2528 static noinline void
2529 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2530 {
2531 #ifdef CONFIG_SLUB_DEBUG
2532 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2533 				      DEFAULT_RATELIMIT_BURST);
2534 	int node;
2535 	struct kmem_cache_node *n;
2536 
2537 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2538 		return;
2539 
2540 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2541 		nid, gfpflags, &gfpflags);
2542 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2543 		s->name, s->object_size, s->size, oo_order(s->oo),
2544 		oo_order(s->min));
2545 
2546 	if (oo_order(s->min) > get_order(s->object_size))
2547 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2548 			s->name);
2549 
2550 	for_each_kmem_cache_node(s, node, n) {
2551 		unsigned long nr_slabs;
2552 		unsigned long nr_objs;
2553 		unsigned long nr_free;
2554 
2555 		nr_free  = count_partial(n, count_free);
2556 		nr_slabs = node_nr_slabs(n);
2557 		nr_objs  = node_nr_objs(n);
2558 
2559 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2560 			node, nr_slabs, nr_objs, nr_free);
2561 	}
2562 #endif
2563 }
2564 
2565 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2566 			int node, struct kmem_cache_cpu **pc)
2567 {
2568 	void *freelist;
2569 	struct kmem_cache_cpu *c = *pc;
2570 	struct page *page;
2571 
2572 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2573 
2574 	freelist = get_partial(s, flags, node, c);
2575 
2576 	if (freelist)
2577 		return freelist;
2578 
2579 	page = new_slab(s, flags, node);
2580 	if (page) {
2581 		c = raw_cpu_ptr(s->cpu_slab);
2582 		if (c->page)
2583 			flush_slab(s, c);
2584 
2585 		/*
2586 		 * No other reference to the page yet so we can
2587 		 * muck around with it freely without cmpxchg
2588 		 */
2589 		freelist = page->freelist;
2590 		page->freelist = NULL;
2591 
2592 		stat(s, ALLOC_SLAB);
2593 		c->page = page;
2594 		*pc = c;
2595 	}
2596 
2597 	return freelist;
2598 }
2599 
2600 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2601 {
2602 	if (unlikely(PageSlabPfmemalloc(page)))
2603 		return gfp_pfmemalloc_allowed(gfpflags);
2604 
2605 	return true;
2606 }
2607 
2608 /*
2609  * Check the page->freelist of a page and either transfer the freelist to the
2610  * per cpu freelist or deactivate the page.
2611  *
2612  * The page is still frozen if the return value is not NULL.
2613  *
2614  * If this function returns NULL then the page has been unfrozen.
2615  *
2616  * This function must be called with interrupt disabled.
2617  */
2618 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2619 {
2620 	struct page new;
2621 	unsigned long counters;
2622 	void *freelist;
2623 
2624 	do {
2625 		freelist = page->freelist;
2626 		counters = page->counters;
2627 
2628 		new.counters = counters;
2629 		VM_BUG_ON(!new.frozen);
2630 
2631 		new.inuse = page->objects;
2632 		new.frozen = freelist != NULL;
2633 
2634 	} while (!__cmpxchg_double_slab(s, page,
2635 		freelist, counters,
2636 		NULL, new.counters,
2637 		"get_freelist"));
2638 
2639 	return freelist;
2640 }
2641 
2642 /*
2643  * Slow path. The lockless freelist is empty or we need to perform
2644  * debugging duties.
2645  *
2646  * Processing is still very fast if new objects have been freed to the
2647  * regular freelist. In that case we simply take over the regular freelist
2648  * as the lockless freelist and zap the regular freelist.
2649  *
2650  * If that is not working then we fall back to the partial lists. We take the
2651  * first element of the freelist as the object to allocate now and move the
2652  * rest of the freelist to the lockless freelist.
2653  *
2654  * And if we were unable to get a new slab from the partial slab lists then
2655  * we need to allocate a new slab. This is the slowest path since it involves
2656  * a call to the page allocator and the setup of a new slab.
2657  *
2658  * Version of __slab_alloc to use when we know that interrupts are
2659  * already disabled (which is the case for bulk allocation).
2660  */
2661 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2662 			  unsigned long addr, struct kmem_cache_cpu *c)
2663 {
2664 	void *freelist;
2665 	struct page *page;
2666 
2667 	stat(s, ALLOC_SLOWPATH);
2668 
2669 	page = c->page;
2670 	if (!page) {
2671 		/*
2672 		 * if the node is not online or has no normal memory, just
2673 		 * ignore the node constraint
2674 		 */
2675 		if (unlikely(node != NUMA_NO_NODE &&
2676 			     !node_state(node, N_NORMAL_MEMORY)))
2677 			node = NUMA_NO_NODE;
2678 		goto new_slab;
2679 	}
2680 redo:
2681 
2682 	if (unlikely(!node_match(page, node))) {
2683 		/*
2684 		 * same as above but node_match() being false already
2685 		 * implies node != NUMA_NO_NODE
2686 		 */
2687 		if (!node_state(node, N_NORMAL_MEMORY)) {
2688 			node = NUMA_NO_NODE;
2689 			goto redo;
2690 		} else {
2691 			stat(s, ALLOC_NODE_MISMATCH);
2692 			deactivate_slab(s, page, c->freelist, c);
2693 			goto new_slab;
2694 		}
2695 	}
2696 
2697 	/*
2698 	 * By rights, we should be searching for a slab page that was
2699 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2700 	 * information when the page leaves the per-cpu allocator
2701 	 */
2702 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2703 		deactivate_slab(s, page, c->freelist, c);
2704 		goto new_slab;
2705 	}
2706 
2707 	/* must check again c->freelist in case of cpu migration or IRQ */
2708 	freelist = c->freelist;
2709 	if (freelist)
2710 		goto load_freelist;
2711 
2712 	freelist = get_freelist(s, page);
2713 
2714 	if (!freelist) {
2715 		c->page = NULL;
2716 		stat(s, DEACTIVATE_BYPASS);
2717 		goto new_slab;
2718 	}
2719 
2720 	stat(s, ALLOC_REFILL);
2721 
2722 load_freelist:
2723 	/*
2724 	 * freelist is pointing to the list of objects to be used.
2725 	 * page is pointing to the page from which the objects are obtained.
2726 	 * That page must be frozen for per cpu allocations to work.
2727 	 */
2728 	VM_BUG_ON(!c->page->frozen);
2729 	c->freelist = get_freepointer(s, freelist);
2730 	c->tid = next_tid(c->tid);
2731 	return freelist;
2732 
2733 new_slab:
2734 
2735 	if (slub_percpu_partial(c)) {
2736 		page = c->page = slub_percpu_partial(c);
2737 		slub_set_percpu_partial(c, page);
2738 		stat(s, CPU_PARTIAL_ALLOC);
2739 		goto redo;
2740 	}
2741 
2742 	freelist = new_slab_objects(s, gfpflags, node, &c);
2743 
2744 	if (unlikely(!freelist)) {
2745 		slab_out_of_memory(s, gfpflags, node);
2746 		return NULL;
2747 	}
2748 
2749 	page = c->page;
2750 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2751 		goto load_freelist;
2752 
2753 	/* Only entered in the debug case */
2754 	if (kmem_cache_debug(s) &&
2755 			!alloc_debug_processing(s, page, freelist, addr))
2756 		goto new_slab;	/* Slab failed checks. Next slab needed */
2757 
2758 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2759 	return freelist;
2760 }
2761 
2762 /*
2763  * Another one that disabled interrupt and compensates for possible
2764  * cpu changes by refetching the per cpu area pointer.
2765  */
2766 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2767 			  unsigned long addr, struct kmem_cache_cpu *c)
2768 {
2769 	void *p;
2770 	unsigned long flags;
2771 
2772 	local_irq_save(flags);
2773 #ifdef CONFIG_PREEMPTION
2774 	/*
2775 	 * We may have been preempted and rescheduled on a different
2776 	 * cpu before disabling interrupts. Need to reload cpu area
2777 	 * pointer.
2778 	 */
2779 	c = this_cpu_ptr(s->cpu_slab);
2780 #endif
2781 
2782 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2783 	local_irq_restore(flags);
2784 	return p;
2785 }
2786 
2787 /*
2788  * If the object has been wiped upon free, make sure it's fully initialized by
2789  * zeroing out freelist pointer.
2790  */
2791 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2792 						   void *obj)
2793 {
2794 	if (unlikely(slab_want_init_on_free(s)) && obj)
2795 		memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2796 }
2797 
2798 /*
2799  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2800  * have the fastpath folded into their functions. So no function call
2801  * overhead for requests that can be satisfied on the fastpath.
2802  *
2803  * The fastpath works by first checking if the lockless freelist can be used.
2804  * If not then __slab_alloc is called for slow processing.
2805  *
2806  * Otherwise we can simply pick the next object from the lockless free list.
2807  */
2808 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2809 		gfp_t gfpflags, int node, unsigned long addr)
2810 {
2811 	void *object;
2812 	struct kmem_cache_cpu *c;
2813 	struct page *page;
2814 	unsigned long tid;
2815 	struct obj_cgroup *objcg = NULL;
2816 
2817 	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2818 	if (!s)
2819 		return NULL;
2820 redo:
2821 	/*
2822 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2823 	 * enabled. We may switch back and forth between cpus while
2824 	 * reading from one cpu area. That does not matter as long
2825 	 * as we end up on the original cpu again when doing the cmpxchg.
2826 	 *
2827 	 * We should guarantee that tid and kmem_cache are retrieved on
2828 	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2829 	 * to check if it is matched or not.
2830 	 */
2831 	do {
2832 		tid = this_cpu_read(s->cpu_slab->tid);
2833 		c = raw_cpu_ptr(s->cpu_slab);
2834 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2835 		 unlikely(tid != READ_ONCE(c->tid)));
2836 
2837 	/*
2838 	 * Irqless object alloc/free algorithm used here depends on sequence
2839 	 * of fetching cpu_slab's data. tid should be fetched before anything
2840 	 * on c to guarantee that object and page associated with previous tid
2841 	 * won't be used with current tid. If we fetch tid first, object and
2842 	 * page could be one associated with next tid and our alloc/free
2843 	 * request will be failed. In this case, we will retry. So, no problem.
2844 	 */
2845 	barrier();
2846 
2847 	/*
2848 	 * The transaction ids are globally unique per cpu and per operation on
2849 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2850 	 * occurs on the right processor and that there was no operation on the
2851 	 * linked list in between.
2852 	 */
2853 
2854 	object = c->freelist;
2855 	page = c->page;
2856 	if (unlikely(!object || !page || !node_match(page, node))) {
2857 		object = __slab_alloc(s, gfpflags, node, addr, c);
2858 	} else {
2859 		void *next_object = get_freepointer_safe(s, object);
2860 
2861 		/*
2862 		 * The cmpxchg will only match if there was no additional
2863 		 * operation and if we are on the right processor.
2864 		 *
2865 		 * The cmpxchg does the following atomically (without lock
2866 		 * semantics!)
2867 		 * 1. Relocate first pointer to the current per cpu area.
2868 		 * 2. Verify that tid and freelist have not been changed
2869 		 * 3. If they were not changed replace tid and freelist
2870 		 *
2871 		 * Since this is without lock semantics the protection is only
2872 		 * against code executing on this cpu *not* from access by
2873 		 * other cpus.
2874 		 */
2875 		if (unlikely(!this_cpu_cmpxchg_double(
2876 				s->cpu_slab->freelist, s->cpu_slab->tid,
2877 				object, tid,
2878 				next_object, next_tid(tid)))) {
2879 
2880 			note_cmpxchg_failure("slab_alloc", s, tid);
2881 			goto redo;
2882 		}
2883 		prefetch_freepointer(s, next_object);
2884 		stat(s, ALLOC_FASTPATH);
2885 	}
2886 
2887 	maybe_wipe_obj_freeptr(s, kasan_reset_tag(object));
2888 
2889 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2890 		memset(kasan_reset_tag(object), 0, s->object_size);
2891 
2892 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
2893 
2894 	return object;
2895 }
2896 
2897 static __always_inline void *slab_alloc(struct kmem_cache *s,
2898 		gfp_t gfpflags, unsigned long addr)
2899 {
2900 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2901 }
2902 
2903 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2904 {
2905 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2906 
2907 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2908 				s->size, gfpflags);
2909 
2910 	return ret;
2911 }
2912 EXPORT_SYMBOL(kmem_cache_alloc);
2913 
2914 #ifdef CONFIG_TRACING
2915 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2916 {
2917 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2918 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2919 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2920 	return ret;
2921 }
2922 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2923 #endif
2924 
2925 #ifdef CONFIG_NUMA
2926 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2927 {
2928 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2929 
2930 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2931 				    s->object_size, s->size, gfpflags, node);
2932 
2933 	return ret;
2934 }
2935 EXPORT_SYMBOL(kmem_cache_alloc_node);
2936 
2937 #ifdef CONFIG_TRACING
2938 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2939 				    gfp_t gfpflags,
2940 				    int node, size_t size)
2941 {
2942 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2943 
2944 	trace_kmalloc_node(_RET_IP_, ret,
2945 			   size, s->size, gfpflags, node);
2946 
2947 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2948 	return ret;
2949 }
2950 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2951 #endif
2952 #endif	/* CONFIG_NUMA */
2953 
2954 /*
2955  * Slow path handling. This may still be called frequently since objects
2956  * have a longer lifetime than the cpu slabs in most processing loads.
2957  *
2958  * So we still attempt to reduce cache line usage. Just take the slab
2959  * lock and free the item. If there is no additional partial page
2960  * handling required then we can return immediately.
2961  */
2962 static void __slab_free(struct kmem_cache *s, struct page *page,
2963 			void *head, void *tail, int cnt,
2964 			unsigned long addr)
2965 
2966 {
2967 	void *prior;
2968 	int was_frozen;
2969 	struct page new;
2970 	unsigned long counters;
2971 	struct kmem_cache_node *n = NULL;
2972 	unsigned long flags;
2973 
2974 	stat(s, FREE_SLOWPATH);
2975 
2976 	if (kmem_cache_debug(s) &&
2977 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2978 		return;
2979 
2980 	do {
2981 		if (unlikely(n)) {
2982 			spin_unlock_irqrestore(&n->list_lock, flags);
2983 			n = NULL;
2984 		}
2985 		prior = page->freelist;
2986 		counters = page->counters;
2987 		set_freepointer(s, tail, prior);
2988 		new.counters = counters;
2989 		was_frozen = new.frozen;
2990 		new.inuse -= cnt;
2991 		if ((!new.inuse || !prior) && !was_frozen) {
2992 
2993 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2994 
2995 				/*
2996 				 * Slab was on no list before and will be
2997 				 * partially empty
2998 				 * We can defer the list move and instead
2999 				 * freeze it.
3000 				 */
3001 				new.frozen = 1;
3002 
3003 			} else { /* Needs to be taken off a list */
3004 
3005 				n = get_node(s, page_to_nid(page));
3006 				/*
3007 				 * Speculatively acquire the list_lock.
3008 				 * If the cmpxchg does not succeed then we may
3009 				 * drop the list_lock without any processing.
3010 				 *
3011 				 * Otherwise the list_lock will synchronize with
3012 				 * other processors updating the list of slabs.
3013 				 */
3014 				spin_lock_irqsave(&n->list_lock, flags);
3015 
3016 			}
3017 		}
3018 
3019 	} while (!cmpxchg_double_slab(s, page,
3020 		prior, counters,
3021 		head, new.counters,
3022 		"__slab_free"));
3023 
3024 	if (likely(!n)) {
3025 
3026 		if (likely(was_frozen)) {
3027 			/*
3028 			 * The list lock was not taken therefore no list
3029 			 * activity can be necessary.
3030 			 */
3031 			stat(s, FREE_FROZEN);
3032 		} else if (new.frozen) {
3033 			/*
3034 			 * If we just froze the page then put it onto the
3035 			 * per cpu partial list.
3036 			 */
3037 			put_cpu_partial(s, page, 1);
3038 			stat(s, CPU_PARTIAL_FREE);
3039 		}
3040 
3041 		return;
3042 	}
3043 
3044 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3045 		goto slab_empty;
3046 
3047 	/*
3048 	 * Objects left in the slab. If it was not on the partial list before
3049 	 * then add it.
3050 	 */
3051 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3052 		remove_full(s, n, page);
3053 		add_partial(n, page, DEACTIVATE_TO_TAIL);
3054 		stat(s, FREE_ADD_PARTIAL);
3055 	}
3056 	spin_unlock_irqrestore(&n->list_lock, flags);
3057 	return;
3058 
3059 slab_empty:
3060 	if (prior) {
3061 		/*
3062 		 * Slab on the partial list.
3063 		 */
3064 		remove_partial(n, page);
3065 		stat(s, FREE_REMOVE_PARTIAL);
3066 	} else {
3067 		/* Slab must be on the full list */
3068 		remove_full(s, n, page);
3069 	}
3070 
3071 	spin_unlock_irqrestore(&n->list_lock, flags);
3072 	stat(s, FREE_SLAB);
3073 	discard_slab(s, page);
3074 }
3075 
3076 /*
3077  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3078  * can perform fastpath freeing without additional function calls.
3079  *
3080  * The fastpath is only possible if we are freeing to the current cpu slab
3081  * of this processor. This typically the case if we have just allocated
3082  * the item before.
3083  *
3084  * If fastpath is not possible then fall back to __slab_free where we deal
3085  * with all sorts of special processing.
3086  *
3087  * Bulk free of a freelist with several objects (all pointing to the
3088  * same page) possible by specifying head and tail ptr, plus objects
3089  * count (cnt). Bulk free indicated by tail pointer being set.
3090  */
3091 static __always_inline void do_slab_free(struct kmem_cache *s,
3092 				struct page *page, void *head, void *tail,
3093 				int cnt, unsigned long addr)
3094 {
3095 	void *tail_obj = tail ? : head;
3096 	struct kmem_cache_cpu *c;
3097 	unsigned long tid;
3098 
3099 	memcg_slab_free_hook(s, &head, 1);
3100 redo:
3101 	/*
3102 	 * Determine the currently cpus per cpu slab.
3103 	 * The cpu may change afterward. However that does not matter since
3104 	 * data is retrieved via this pointer. If we are on the same cpu
3105 	 * during the cmpxchg then the free will succeed.
3106 	 */
3107 	do {
3108 		tid = this_cpu_read(s->cpu_slab->tid);
3109 		c = raw_cpu_ptr(s->cpu_slab);
3110 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3111 		 unlikely(tid != READ_ONCE(c->tid)));
3112 
3113 	/* Same with comment on barrier() in slab_alloc_node() */
3114 	barrier();
3115 
3116 	if (likely(page == c->page)) {
3117 		void **freelist = READ_ONCE(c->freelist);
3118 
3119 		set_freepointer(s, tail_obj, freelist);
3120 
3121 		if (unlikely(!this_cpu_cmpxchg_double(
3122 				s->cpu_slab->freelist, s->cpu_slab->tid,
3123 				freelist, tid,
3124 				head, next_tid(tid)))) {
3125 
3126 			note_cmpxchg_failure("slab_free", s, tid);
3127 			goto redo;
3128 		}
3129 		stat(s, FREE_FASTPATH);
3130 	} else
3131 		__slab_free(s, page, head, tail_obj, cnt, addr);
3132 
3133 }
3134 
3135 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3136 				      void *head, void *tail, int cnt,
3137 				      unsigned long addr)
3138 {
3139 	/*
3140 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3141 	 * to remove objects, whose reuse must be delayed.
3142 	 */
3143 	if (slab_free_freelist_hook(s, &head, &tail))
3144 		do_slab_free(s, page, head, tail, cnt, addr);
3145 }
3146 
3147 #ifdef CONFIG_KASAN_GENERIC
3148 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3149 {
3150 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3151 }
3152 #endif
3153 
3154 void kmem_cache_free(struct kmem_cache *s, void *x)
3155 {
3156 	s = cache_from_obj(s, x);
3157 	if (!s)
3158 		return;
3159 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3160 	trace_kmem_cache_free(_RET_IP_, x);
3161 }
3162 EXPORT_SYMBOL(kmem_cache_free);
3163 
3164 struct detached_freelist {
3165 	struct page *page;
3166 	void *tail;
3167 	void *freelist;
3168 	int cnt;
3169 	struct kmem_cache *s;
3170 };
3171 
3172 /*
3173  * This function progressively scans the array with free objects (with
3174  * a limited look ahead) and extract objects belonging to the same
3175  * page.  It builds a detached freelist directly within the given
3176  * page/objects.  This can happen without any need for
3177  * synchronization, because the objects are owned by running process.
3178  * The freelist is build up as a single linked list in the objects.
3179  * The idea is, that this detached freelist can then be bulk
3180  * transferred to the real freelist(s), but only requiring a single
3181  * synchronization primitive.  Look ahead in the array is limited due
3182  * to performance reasons.
3183  */
3184 static inline
3185 int build_detached_freelist(struct kmem_cache *s, size_t size,
3186 			    void **p, struct detached_freelist *df)
3187 {
3188 	size_t first_skipped_index = 0;
3189 	int lookahead = 3;
3190 	void *object;
3191 	struct page *page;
3192 
3193 	/* Always re-init detached_freelist */
3194 	df->page = NULL;
3195 
3196 	do {
3197 		object = p[--size];
3198 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3199 	} while (!object && size);
3200 
3201 	if (!object)
3202 		return 0;
3203 
3204 	page = virt_to_head_page(object);
3205 	if (!s) {
3206 		/* Handle kalloc'ed objects */
3207 		if (unlikely(!PageSlab(page))) {
3208 			BUG_ON(!PageCompound(page));
3209 			kfree_hook(object);
3210 			__free_pages(page, compound_order(page));
3211 			p[size] = NULL; /* mark object processed */
3212 			return size;
3213 		}
3214 		/* Derive kmem_cache from object */
3215 		df->s = page->slab_cache;
3216 	} else {
3217 		df->s = cache_from_obj(s, object); /* Support for memcg */
3218 	}
3219 
3220 	/* Start new detached freelist */
3221 	df->page = page;
3222 	set_freepointer(df->s, object, NULL);
3223 	df->tail = object;
3224 	df->freelist = object;
3225 	p[size] = NULL; /* mark object processed */
3226 	df->cnt = 1;
3227 
3228 	while (size) {
3229 		object = p[--size];
3230 		if (!object)
3231 			continue; /* Skip processed objects */
3232 
3233 		/* df->page is always set at this point */
3234 		if (df->page == virt_to_head_page(object)) {
3235 			/* Opportunity build freelist */
3236 			set_freepointer(df->s, object, df->freelist);
3237 			df->freelist = object;
3238 			df->cnt++;
3239 			p[size] = NULL; /* mark object processed */
3240 
3241 			continue;
3242 		}
3243 
3244 		/* Limit look ahead search */
3245 		if (!--lookahead)
3246 			break;
3247 
3248 		if (!first_skipped_index)
3249 			first_skipped_index = size + 1;
3250 	}
3251 
3252 	return first_skipped_index;
3253 }
3254 
3255 /* Note that interrupts must be enabled when calling this function. */
3256 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3257 {
3258 	if (WARN_ON(!size))
3259 		return;
3260 
3261 	memcg_slab_free_hook(s, p, size);
3262 	do {
3263 		struct detached_freelist df;
3264 
3265 		size = build_detached_freelist(s, size, p, &df);
3266 		if (!df.page)
3267 			continue;
3268 
3269 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3270 	} while (likely(size));
3271 }
3272 EXPORT_SYMBOL(kmem_cache_free_bulk);
3273 
3274 /* Note that interrupts must be enabled when calling this function. */
3275 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3276 			  void **p)
3277 {
3278 	struct kmem_cache_cpu *c;
3279 	int i;
3280 	struct obj_cgroup *objcg = NULL;
3281 
3282 	/* memcg and kmem_cache debug support */
3283 	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3284 	if (unlikely(!s))
3285 		return false;
3286 	/*
3287 	 * Drain objects in the per cpu slab, while disabling local
3288 	 * IRQs, which protects against PREEMPT and interrupts
3289 	 * handlers invoking normal fastpath.
3290 	 */
3291 	local_irq_disable();
3292 	c = this_cpu_ptr(s->cpu_slab);
3293 
3294 	for (i = 0; i < size; i++) {
3295 		void *object = c->freelist;
3296 
3297 		if (unlikely(!object)) {
3298 			/*
3299 			 * We may have removed an object from c->freelist using
3300 			 * the fastpath in the previous iteration; in that case,
3301 			 * c->tid has not been bumped yet.
3302 			 * Since ___slab_alloc() may reenable interrupts while
3303 			 * allocating memory, we should bump c->tid now.
3304 			 */
3305 			c->tid = next_tid(c->tid);
3306 
3307 			/*
3308 			 * Invoking slow path likely have side-effect
3309 			 * of re-populating per CPU c->freelist
3310 			 */
3311 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3312 					    _RET_IP_, c);
3313 			if (unlikely(!p[i]))
3314 				goto error;
3315 
3316 			c = this_cpu_ptr(s->cpu_slab);
3317 			maybe_wipe_obj_freeptr(s, p[i]);
3318 
3319 			continue; /* goto for-loop */
3320 		}
3321 		c->freelist = get_freepointer(s, object);
3322 		p[i] = object;
3323 		maybe_wipe_obj_freeptr(s, p[i]);
3324 	}
3325 	c->tid = next_tid(c->tid);
3326 	local_irq_enable();
3327 
3328 	/* Clear memory outside IRQ disabled fastpath loop */
3329 	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3330 		int j;
3331 
3332 		for (j = 0; j < i; j++)
3333 			memset(p[j], 0, s->object_size);
3334 	}
3335 
3336 	/* memcg and kmem_cache debug support */
3337 	slab_post_alloc_hook(s, objcg, flags, size, p);
3338 	return i;
3339 error:
3340 	local_irq_enable();
3341 	slab_post_alloc_hook(s, objcg, flags, i, p);
3342 	__kmem_cache_free_bulk(s, i, p);
3343 	return 0;
3344 }
3345 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3346 
3347 
3348 /*
3349  * Object placement in a slab is made very easy because we always start at
3350  * offset 0. If we tune the size of the object to the alignment then we can
3351  * get the required alignment by putting one properly sized object after
3352  * another.
3353  *
3354  * Notice that the allocation order determines the sizes of the per cpu
3355  * caches. Each processor has always one slab available for allocations.
3356  * Increasing the allocation order reduces the number of times that slabs
3357  * must be moved on and off the partial lists and is therefore a factor in
3358  * locking overhead.
3359  */
3360 
3361 /*
3362  * Mininum / Maximum order of slab pages. This influences locking overhead
3363  * and slab fragmentation. A higher order reduces the number of partial slabs
3364  * and increases the number of allocations possible without having to
3365  * take the list_lock.
3366  */
3367 static unsigned int slub_min_order;
3368 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3369 static unsigned int slub_min_objects;
3370 
3371 /*
3372  * Calculate the order of allocation given an slab object size.
3373  *
3374  * The order of allocation has significant impact on performance and other
3375  * system components. Generally order 0 allocations should be preferred since
3376  * order 0 does not cause fragmentation in the page allocator. Larger objects
3377  * be problematic to put into order 0 slabs because there may be too much
3378  * unused space left. We go to a higher order if more than 1/16th of the slab
3379  * would be wasted.
3380  *
3381  * In order to reach satisfactory performance we must ensure that a minimum
3382  * number of objects is in one slab. Otherwise we may generate too much
3383  * activity on the partial lists which requires taking the list_lock. This is
3384  * less a concern for large slabs though which are rarely used.
3385  *
3386  * slub_max_order specifies the order where we begin to stop considering the
3387  * number of objects in a slab as critical. If we reach slub_max_order then
3388  * we try to keep the page order as low as possible. So we accept more waste
3389  * of space in favor of a small page order.
3390  *
3391  * Higher order allocations also allow the placement of more objects in a
3392  * slab and thereby reduce object handling overhead. If the user has
3393  * requested a higher mininum order then we start with that one instead of
3394  * the smallest order which will fit the object.
3395  */
3396 static inline unsigned int slab_order(unsigned int size,
3397 		unsigned int min_objects, unsigned int max_order,
3398 		unsigned int fract_leftover)
3399 {
3400 	unsigned int min_order = slub_min_order;
3401 	unsigned int order;
3402 
3403 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3404 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3405 
3406 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3407 			order <= max_order; order++) {
3408 
3409 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3410 		unsigned int rem;
3411 
3412 		rem = slab_size % size;
3413 
3414 		if (rem <= slab_size / fract_leftover)
3415 			break;
3416 	}
3417 
3418 	return order;
3419 }
3420 
3421 static inline int calculate_order(unsigned int size)
3422 {
3423 	unsigned int order;
3424 	unsigned int min_objects;
3425 	unsigned int max_objects;
3426 
3427 	/*
3428 	 * Attempt to find best configuration for a slab. This
3429 	 * works by first attempting to generate a layout with
3430 	 * the best configuration and backing off gradually.
3431 	 *
3432 	 * First we increase the acceptable waste in a slab. Then
3433 	 * we reduce the minimum objects required in a slab.
3434 	 */
3435 	min_objects = slub_min_objects;
3436 	if (!min_objects)
3437 		min_objects = 4 * (fls(num_online_cpus()) + 1);
3438 	max_objects = order_objects(slub_max_order, size);
3439 	min_objects = min(min_objects, max_objects);
3440 
3441 	while (min_objects > 1) {
3442 		unsigned int fraction;
3443 
3444 		fraction = 16;
3445 		while (fraction >= 4) {
3446 			order = slab_order(size, min_objects,
3447 					slub_max_order, fraction);
3448 			if (order <= slub_max_order)
3449 				return order;
3450 			fraction /= 2;
3451 		}
3452 		min_objects--;
3453 	}
3454 
3455 	/*
3456 	 * We were unable to place multiple objects in a slab. Now
3457 	 * lets see if we can place a single object there.
3458 	 */
3459 	order = slab_order(size, 1, slub_max_order, 1);
3460 	if (order <= slub_max_order)
3461 		return order;
3462 
3463 	/*
3464 	 * Doh this slab cannot be placed using slub_max_order.
3465 	 */
3466 	order = slab_order(size, 1, MAX_ORDER, 1);
3467 	if (order < MAX_ORDER)
3468 		return order;
3469 	return -ENOSYS;
3470 }
3471 
3472 static void
3473 init_kmem_cache_node(struct kmem_cache_node *n)
3474 {
3475 	n->nr_partial = 0;
3476 	spin_lock_init(&n->list_lock);
3477 	INIT_LIST_HEAD(&n->partial);
3478 #ifdef CONFIG_SLUB_DEBUG
3479 	atomic_long_set(&n->nr_slabs, 0);
3480 	atomic_long_set(&n->total_objects, 0);
3481 	INIT_LIST_HEAD(&n->full);
3482 #endif
3483 }
3484 
3485 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3486 {
3487 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3488 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3489 
3490 	/*
3491 	 * Must align to double word boundary for the double cmpxchg
3492 	 * instructions to work; see __pcpu_double_call_return_bool().
3493 	 */
3494 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3495 				     2 * sizeof(void *));
3496 
3497 	if (!s->cpu_slab)
3498 		return 0;
3499 
3500 	init_kmem_cache_cpus(s);
3501 
3502 	return 1;
3503 }
3504 
3505 static struct kmem_cache *kmem_cache_node;
3506 
3507 /*
3508  * No kmalloc_node yet so do it by hand. We know that this is the first
3509  * slab on the node for this slabcache. There are no concurrent accesses
3510  * possible.
3511  *
3512  * Note that this function only works on the kmem_cache_node
3513  * when allocating for the kmem_cache_node. This is used for bootstrapping
3514  * memory on a fresh node that has no slab structures yet.
3515  */
3516 static void early_kmem_cache_node_alloc(int node)
3517 {
3518 	struct page *page;
3519 	struct kmem_cache_node *n;
3520 
3521 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3522 
3523 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3524 
3525 	BUG_ON(!page);
3526 	if (page_to_nid(page) != node) {
3527 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3528 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3529 	}
3530 
3531 	n = page->freelist;
3532 	BUG_ON(!n);
3533 #ifdef CONFIG_SLUB_DEBUG
3534 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3535 	init_tracking(kmem_cache_node, n);
3536 #endif
3537 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3538 		      GFP_KERNEL);
3539 	page->freelist = get_freepointer(kmem_cache_node, n);
3540 	page->inuse = 1;
3541 	page->frozen = 0;
3542 	kmem_cache_node->node[node] = n;
3543 	init_kmem_cache_node(n);
3544 	inc_slabs_node(kmem_cache_node, node, page->objects);
3545 
3546 	/*
3547 	 * No locks need to be taken here as it has just been
3548 	 * initialized and there is no concurrent access.
3549 	 */
3550 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3551 }
3552 
3553 static void free_kmem_cache_nodes(struct kmem_cache *s)
3554 {
3555 	int node;
3556 	struct kmem_cache_node *n;
3557 
3558 	for_each_kmem_cache_node(s, node, n) {
3559 		s->node[node] = NULL;
3560 		kmem_cache_free(kmem_cache_node, n);
3561 	}
3562 }
3563 
3564 void __kmem_cache_release(struct kmem_cache *s)
3565 {
3566 	cache_random_seq_destroy(s);
3567 	free_percpu(s->cpu_slab);
3568 	free_kmem_cache_nodes(s);
3569 }
3570 
3571 static int init_kmem_cache_nodes(struct kmem_cache *s)
3572 {
3573 	int node;
3574 
3575 	for_each_node_state(node, N_NORMAL_MEMORY) {
3576 		struct kmem_cache_node *n;
3577 
3578 		if (slab_state == DOWN) {
3579 			early_kmem_cache_node_alloc(node);
3580 			continue;
3581 		}
3582 		n = kmem_cache_alloc_node(kmem_cache_node,
3583 						GFP_KERNEL, node);
3584 
3585 		if (!n) {
3586 			free_kmem_cache_nodes(s);
3587 			return 0;
3588 		}
3589 
3590 		init_kmem_cache_node(n);
3591 		s->node[node] = n;
3592 	}
3593 	return 1;
3594 }
3595 
3596 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3597 {
3598 	if (min < MIN_PARTIAL)
3599 		min = MIN_PARTIAL;
3600 	else if (min > MAX_PARTIAL)
3601 		min = MAX_PARTIAL;
3602 	s->min_partial = min;
3603 }
3604 
3605 static void set_cpu_partial(struct kmem_cache *s)
3606 {
3607 #ifdef CONFIG_SLUB_CPU_PARTIAL
3608 	/*
3609 	 * cpu_partial determined the maximum number of objects kept in the
3610 	 * per cpu partial lists of a processor.
3611 	 *
3612 	 * Per cpu partial lists mainly contain slabs that just have one
3613 	 * object freed. If they are used for allocation then they can be
3614 	 * filled up again with minimal effort. The slab will never hit the
3615 	 * per node partial lists and therefore no locking will be required.
3616 	 *
3617 	 * This setting also determines
3618 	 *
3619 	 * A) The number of objects from per cpu partial slabs dumped to the
3620 	 *    per node list when we reach the limit.
3621 	 * B) The number of objects in cpu partial slabs to extract from the
3622 	 *    per node list when we run out of per cpu objects. We only fetch
3623 	 *    50% to keep some capacity around for frees.
3624 	 */
3625 	if (!kmem_cache_has_cpu_partial(s))
3626 		slub_set_cpu_partial(s, 0);
3627 	else if (s->size >= PAGE_SIZE)
3628 		slub_set_cpu_partial(s, 2);
3629 	else if (s->size >= 1024)
3630 		slub_set_cpu_partial(s, 6);
3631 	else if (s->size >= 256)
3632 		slub_set_cpu_partial(s, 13);
3633 	else
3634 		slub_set_cpu_partial(s, 30);
3635 #endif
3636 }
3637 
3638 /*
3639  * calculate_sizes() determines the order and the distribution of data within
3640  * a slab object.
3641  */
3642 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3643 {
3644 	slab_flags_t flags = s->flags;
3645 	unsigned int size = s->object_size;
3646 	unsigned int freepointer_area;
3647 	unsigned int order;
3648 
3649 	/*
3650 	 * Round up object size to the next word boundary. We can only
3651 	 * place the free pointer at word boundaries and this determines
3652 	 * the possible location of the free pointer.
3653 	 */
3654 	size = ALIGN(size, sizeof(void *));
3655 	/*
3656 	 * This is the area of the object where a freepointer can be
3657 	 * safely written. If redzoning adds more to the inuse size, we
3658 	 * can't use that portion for writing the freepointer, so
3659 	 * s->offset must be limited within this for the general case.
3660 	 */
3661 	freepointer_area = size;
3662 
3663 #ifdef CONFIG_SLUB_DEBUG
3664 	/*
3665 	 * Determine if we can poison the object itself. If the user of
3666 	 * the slab may touch the object after free or before allocation
3667 	 * then we should never poison the object itself.
3668 	 */
3669 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3670 			!s->ctor)
3671 		s->flags |= __OBJECT_POISON;
3672 	else
3673 		s->flags &= ~__OBJECT_POISON;
3674 
3675 
3676 	/*
3677 	 * If we are Redzoning then check if there is some space between the
3678 	 * end of the object and the free pointer. If not then add an
3679 	 * additional word to have some bytes to store Redzone information.
3680 	 */
3681 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3682 		size += sizeof(void *);
3683 #endif
3684 
3685 	/*
3686 	 * With that we have determined the number of bytes in actual use
3687 	 * by the object. This is the potential offset to the free pointer.
3688 	 */
3689 	s->inuse = size;
3690 
3691 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3692 		s->ctor)) {
3693 		/*
3694 		 * Relocate free pointer after the object if it is not
3695 		 * permitted to overwrite the first word of the object on
3696 		 * kmem_cache_free.
3697 		 *
3698 		 * This is the case if we do RCU, have a constructor or
3699 		 * destructor or are poisoning the objects.
3700 		 *
3701 		 * The assumption that s->offset >= s->inuse means free
3702 		 * pointer is outside of the object is used in the
3703 		 * freeptr_outside_object() function. If that is no
3704 		 * longer true, the function needs to be modified.
3705 		 */
3706 		s->offset = size;
3707 		size += sizeof(void *);
3708 	} else if (freepointer_area > sizeof(void *)) {
3709 		/*
3710 		 * Store freelist pointer near middle of object to keep
3711 		 * it away from the edges of the object to avoid small
3712 		 * sized over/underflows from neighboring allocations.
3713 		 */
3714 		s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
3715 	}
3716 
3717 #ifdef CONFIG_SLUB_DEBUG
3718 	if (flags & SLAB_STORE_USER)
3719 		/*
3720 		 * Need to store information about allocs and frees after
3721 		 * the object.
3722 		 */
3723 		size += 2 * sizeof(struct track);
3724 #endif
3725 
3726 	kasan_cache_create(s, &size, &s->flags);
3727 #ifdef CONFIG_SLUB_DEBUG
3728 	if (flags & SLAB_RED_ZONE) {
3729 		/*
3730 		 * Add some empty padding so that we can catch
3731 		 * overwrites from earlier objects rather than let
3732 		 * tracking information or the free pointer be
3733 		 * corrupted if a user writes before the start
3734 		 * of the object.
3735 		 */
3736 		size += sizeof(void *);
3737 
3738 		s->red_left_pad = sizeof(void *);
3739 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3740 		size += s->red_left_pad;
3741 	}
3742 #endif
3743 
3744 	/*
3745 	 * SLUB stores one object immediately after another beginning from
3746 	 * offset 0. In order to align the objects we have to simply size
3747 	 * each object to conform to the alignment.
3748 	 */
3749 	size = ALIGN(size, s->align);
3750 	s->size = size;
3751 	s->reciprocal_size = reciprocal_value(size);
3752 	if (forced_order >= 0)
3753 		order = forced_order;
3754 	else
3755 		order = calculate_order(size);
3756 
3757 	if ((int)order < 0)
3758 		return 0;
3759 
3760 	s->allocflags = 0;
3761 	if (order)
3762 		s->allocflags |= __GFP_COMP;
3763 
3764 	if (s->flags & SLAB_CACHE_DMA)
3765 		s->allocflags |= GFP_DMA;
3766 
3767 	if (s->flags & SLAB_CACHE_DMA32)
3768 		s->allocflags |= GFP_DMA32;
3769 
3770 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3771 		s->allocflags |= __GFP_RECLAIMABLE;
3772 
3773 	/*
3774 	 * Determine the number of objects per slab
3775 	 */
3776 	s->oo = oo_make(order, size);
3777 	s->min = oo_make(get_order(size), size);
3778 	if (oo_objects(s->oo) > oo_objects(s->max))
3779 		s->max = s->oo;
3780 
3781 	return !!oo_objects(s->oo);
3782 }
3783 
3784 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3785 {
3786 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3787 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3788 	s->random = get_random_long();
3789 #endif
3790 
3791 	if (!calculate_sizes(s, -1))
3792 		goto error;
3793 	if (disable_higher_order_debug) {
3794 		/*
3795 		 * Disable debugging flags that store metadata if the min slab
3796 		 * order increased.
3797 		 */
3798 		if (get_order(s->size) > get_order(s->object_size)) {
3799 			s->flags &= ~DEBUG_METADATA_FLAGS;
3800 			s->offset = 0;
3801 			if (!calculate_sizes(s, -1))
3802 				goto error;
3803 		}
3804 	}
3805 
3806 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3807     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3808 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3809 		/* Enable fast mode */
3810 		s->flags |= __CMPXCHG_DOUBLE;
3811 #endif
3812 
3813 	/*
3814 	 * The larger the object size is, the more pages we want on the partial
3815 	 * list to avoid pounding the page allocator excessively.
3816 	 */
3817 	set_min_partial(s, ilog2(s->size) / 2);
3818 
3819 	set_cpu_partial(s);
3820 
3821 #ifdef CONFIG_NUMA
3822 	s->remote_node_defrag_ratio = 1000;
3823 #endif
3824 
3825 	/* Initialize the pre-computed randomized freelist if slab is up */
3826 	if (slab_state >= UP) {
3827 		if (init_cache_random_seq(s))
3828 			goto error;
3829 	}
3830 
3831 	if (!init_kmem_cache_nodes(s))
3832 		goto error;
3833 
3834 	if (alloc_kmem_cache_cpus(s))
3835 		return 0;
3836 
3837 	free_kmem_cache_nodes(s);
3838 error:
3839 	return -EINVAL;
3840 }
3841 
3842 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3843 			      const char *text)
3844 {
3845 #ifdef CONFIG_SLUB_DEBUG
3846 	void *addr = page_address(page);
3847 	unsigned long *map;
3848 	void *p;
3849 
3850 	slab_err(s, page, text, s->name);
3851 	slab_lock(page);
3852 
3853 	map = get_map(s, page);
3854 	for_each_object(p, s, addr, page->objects) {
3855 
3856 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
3857 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3858 			print_tracking(s, p);
3859 		}
3860 	}
3861 	put_map(map);
3862 	slab_unlock(page);
3863 #endif
3864 }
3865 
3866 /*
3867  * Attempt to free all partial slabs on a node.
3868  * This is called from __kmem_cache_shutdown(). We must take list_lock
3869  * because sysfs file might still access partial list after the shutdowning.
3870  */
3871 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3872 {
3873 	LIST_HEAD(discard);
3874 	struct page *page, *h;
3875 
3876 	BUG_ON(irqs_disabled());
3877 	spin_lock_irq(&n->list_lock);
3878 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3879 		if (!page->inuse) {
3880 			remove_partial(n, page);
3881 			list_add(&page->slab_list, &discard);
3882 		} else {
3883 			list_slab_objects(s, page,
3884 			  "Objects remaining in %s on __kmem_cache_shutdown()");
3885 		}
3886 	}
3887 	spin_unlock_irq(&n->list_lock);
3888 
3889 	list_for_each_entry_safe(page, h, &discard, slab_list)
3890 		discard_slab(s, page);
3891 }
3892 
3893 bool __kmem_cache_empty(struct kmem_cache *s)
3894 {
3895 	int node;
3896 	struct kmem_cache_node *n;
3897 
3898 	for_each_kmem_cache_node(s, node, n)
3899 		if (n->nr_partial || slabs_node(s, node))
3900 			return false;
3901 	return true;
3902 }
3903 
3904 /*
3905  * Release all resources used by a slab cache.
3906  */
3907 int __kmem_cache_shutdown(struct kmem_cache *s)
3908 {
3909 	int node;
3910 	struct kmem_cache_node *n;
3911 
3912 	flush_all(s);
3913 	/* Attempt to free all objects */
3914 	for_each_kmem_cache_node(s, node, n) {
3915 		free_partial(s, n);
3916 		if (n->nr_partial || slabs_node(s, node))
3917 			return 1;
3918 	}
3919 	return 0;
3920 }
3921 
3922 /********************************************************************
3923  *		Kmalloc subsystem
3924  *******************************************************************/
3925 
3926 static int __init setup_slub_min_order(char *str)
3927 {
3928 	get_option(&str, (int *)&slub_min_order);
3929 
3930 	return 1;
3931 }
3932 
3933 __setup("slub_min_order=", setup_slub_min_order);
3934 
3935 static int __init setup_slub_max_order(char *str)
3936 {
3937 	get_option(&str, (int *)&slub_max_order);
3938 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3939 
3940 	return 1;
3941 }
3942 
3943 __setup("slub_max_order=", setup_slub_max_order);
3944 
3945 static int __init setup_slub_min_objects(char *str)
3946 {
3947 	get_option(&str, (int *)&slub_min_objects);
3948 
3949 	return 1;
3950 }
3951 
3952 __setup("slub_min_objects=", setup_slub_min_objects);
3953 
3954 void *__kmalloc(size_t size, gfp_t flags)
3955 {
3956 	struct kmem_cache *s;
3957 	void *ret;
3958 
3959 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3960 		return kmalloc_large(size, flags);
3961 
3962 	s = kmalloc_slab(size, flags);
3963 
3964 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3965 		return s;
3966 
3967 	ret = slab_alloc(s, flags, _RET_IP_);
3968 
3969 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3970 
3971 	ret = kasan_kmalloc(s, ret, size, flags);
3972 
3973 	return ret;
3974 }
3975 EXPORT_SYMBOL(__kmalloc);
3976 
3977 #ifdef CONFIG_NUMA
3978 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3979 {
3980 	struct page *page;
3981 	void *ptr = NULL;
3982 	unsigned int order = get_order(size);
3983 
3984 	flags |= __GFP_COMP;
3985 	page = alloc_pages_node(node, flags, order);
3986 	if (page) {
3987 		ptr = page_address(page);
3988 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
3989 				    PAGE_SIZE << order);
3990 	}
3991 
3992 	return kmalloc_large_node_hook(ptr, size, flags);
3993 }
3994 
3995 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3996 {
3997 	struct kmem_cache *s;
3998 	void *ret;
3999 
4000 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4001 		ret = kmalloc_large_node(size, flags, node);
4002 
4003 		trace_kmalloc_node(_RET_IP_, ret,
4004 				   size, PAGE_SIZE << get_order(size),
4005 				   flags, node);
4006 
4007 		return ret;
4008 	}
4009 
4010 	s = kmalloc_slab(size, flags);
4011 
4012 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4013 		return s;
4014 
4015 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
4016 
4017 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4018 
4019 	ret = kasan_kmalloc(s, ret, size, flags);
4020 
4021 	return ret;
4022 }
4023 EXPORT_SYMBOL(__kmalloc_node);
4024 #endif	/* CONFIG_NUMA */
4025 
4026 #ifdef CONFIG_HARDENED_USERCOPY
4027 /*
4028  * Rejects incorrectly sized objects and objects that are to be copied
4029  * to/from userspace but do not fall entirely within the containing slab
4030  * cache's usercopy region.
4031  *
4032  * Returns NULL if check passes, otherwise const char * to name of cache
4033  * to indicate an error.
4034  */
4035 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4036 			 bool to_user)
4037 {
4038 	struct kmem_cache *s;
4039 	unsigned int offset;
4040 	size_t object_size;
4041 
4042 	ptr = kasan_reset_tag(ptr);
4043 
4044 	/* Find object and usable object size. */
4045 	s = page->slab_cache;
4046 
4047 	/* Reject impossible pointers. */
4048 	if (ptr < page_address(page))
4049 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4050 			       to_user, 0, n);
4051 
4052 	/* Find offset within object. */
4053 	offset = (ptr - page_address(page)) % s->size;
4054 
4055 	/* Adjust for redzone and reject if within the redzone. */
4056 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4057 		if (offset < s->red_left_pad)
4058 			usercopy_abort("SLUB object in left red zone",
4059 				       s->name, to_user, offset, n);
4060 		offset -= s->red_left_pad;
4061 	}
4062 
4063 	/* Allow address range falling entirely within usercopy region. */
4064 	if (offset >= s->useroffset &&
4065 	    offset - s->useroffset <= s->usersize &&
4066 	    n <= s->useroffset - offset + s->usersize)
4067 		return;
4068 
4069 	/*
4070 	 * If the copy is still within the allocated object, produce
4071 	 * a warning instead of rejecting the copy. This is intended
4072 	 * to be a temporary method to find any missing usercopy
4073 	 * whitelists.
4074 	 */
4075 	object_size = slab_ksize(s);
4076 	if (usercopy_fallback &&
4077 	    offset <= object_size && n <= object_size - offset) {
4078 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
4079 		return;
4080 	}
4081 
4082 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4083 }
4084 #endif /* CONFIG_HARDENED_USERCOPY */
4085 
4086 size_t __ksize(const void *object)
4087 {
4088 	struct page *page;
4089 
4090 	if (unlikely(object == ZERO_SIZE_PTR))
4091 		return 0;
4092 
4093 	page = virt_to_head_page(object);
4094 
4095 	if (unlikely(!PageSlab(page))) {
4096 		WARN_ON(!PageCompound(page));
4097 		return page_size(page);
4098 	}
4099 
4100 	return slab_ksize(page->slab_cache);
4101 }
4102 EXPORT_SYMBOL(__ksize);
4103 
4104 void kfree(const void *x)
4105 {
4106 	struct page *page;
4107 	void *object = (void *)x;
4108 
4109 	trace_kfree(_RET_IP_, x);
4110 
4111 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4112 		return;
4113 
4114 	page = virt_to_head_page(x);
4115 	if (unlikely(!PageSlab(page))) {
4116 		unsigned int order = compound_order(page);
4117 
4118 		BUG_ON(!PageCompound(page));
4119 		kfree_hook(object);
4120 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
4121 				    -(PAGE_SIZE << order));
4122 		__free_pages(page, order);
4123 		return;
4124 	}
4125 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4126 }
4127 EXPORT_SYMBOL(kfree);
4128 
4129 #define SHRINK_PROMOTE_MAX 32
4130 
4131 /*
4132  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4133  * up most to the head of the partial lists. New allocations will then
4134  * fill those up and thus they can be removed from the partial lists.
4135  *
4136  * The slabs with the least items are placed last. This results in them
4137  * being allocated from last increasing the chance that the last objects
4138  * are freed in them.
4139  */
4140 int __kmem_cache_shrink(struct kmem_cache *s)
4141 {
4142 	int node;
4143 	int i;
4144 	struct kmem_cache_node *n;
4145 	struct page *page;
4146 	struct page *t;
4147 	struct list_head discard;
4148 	struct list_head promote[SHRINK_PROMOTE_MAX];
4149 	unsigned long flags;
4150 	int ret = 0;
4151 
4152 	flush_all(s);
4153 	for_each_kmem_cache_node(s, node, n) {
4154 		INIT_LIST_HEAD(&discard);
4155 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4156 			INIT_LIST_HEAD(promote + i);
4157 
4158 		spin_lock_irqsave(&n->list_lock, flags);
4159 
4160 		/*
4161 		 * Build lists of slabs to discard or promote.
4162 		 *
4163 		 * Note that concurrent frees may occur while we hold the
4164 		 * list_lock. page->inuse here is the upper limit.
4165 		 */
4166 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4167 			int free = page->objects - page->inuse;
4168 
4169 			/* Do not reread page->inuse */
4170 			barrier();
4171 
4172 			/* We do not keep full slabs on the list */
4173 			BUG_ON(free <= 0);
4174 
4175 			if (free == page->objects) {
4176 				list_move(&page->slab_list, &discard);
4177 				n->nr_partial--;
4178 			} else if (free <= SHRINK_PROMOTE_MAX)
4179 				list_move(&page->slab_list, promote + free - 1);
4180 		}
4181 
4182 		/*
4183 		 * Promote the slabs filled up most to the head of the
4184 		 * partial list.
4185 		 */
4186 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4187 			list_splice(promote + i, &n->partial);
4188 
4189 		spin_unlock_irqrestore(&n->list_lock, flags);
4190 
4191 		/* Release empty slabs */
4192 		list_for_each_entry_safe(page, t, &discard, slab_list)
4193 			discard_slab(s, page);
4194 
4195 		if (slabs_node(s, node))
4196 			ret = 1;
4197 	}
4198 
4199 	return ret;
4200 }
4201 
4202 static int slab_mem_going_offline_callback(void *arg)
4203 {
4204 	struct kmem_cache *s;
4205 
4206 	mutex_lock(&slab_mutex);
4207 	list_for_each_entry(s, &slab_caches, list)
4208 		__kmem_cache_shrink(s);
4209 	mutex_unlock(&slab_mutex);
4210 
4211 	return 0;
4212 }
4213 
4214 static void slab_mem_offline_callback(void *arg)
4215 {
4216 	struct kmem_cache_node *n;
4217 	struct kmem_cache *s;
4218 	struct memory_notify *marg = arg;
4219 	int offline_node;
4220 
4221 	offline_node = marg->status_change_nid_normal;
4222 
4223 	/*
4224 	 * If the node still has available memory. we need kmem_cache_node
4225 	 * for it yet.
4226 	 */
4227 	if (offline_node < 0)
4228 		return;
4229 
4230 	mutex_lock(&slab_mutex);
4231 	list_for_each_entry(s, &slab_caches, list) {
4232 		n = get_node(s, offline_node);
4233 		if (n) {
4234 			/*
4235 			 * if n->nr_slabs > 0, slabs still exist on the node
4236 			 * that is going down. We were unable to free them,
4237 			 * and offline_pages() function shouldn't call this
4238 			 * callback. So, we must fail.
4239 			 */
4240 			BUG_ON(slabs_node(s, offline_node));
4241 
4242 			s->node[offline_node] = NULL;
4243 			kmem_cache_free(kmem_cache_node, n);
4244 		}
4245 	}
4246 	mutex_unlock(&slab_mutex);
4247 }
4248 
4249 static int slab_mem_going_online_callback(void *arg)
4250 {
4251 	struct kmem_cache_node *n;
4252 	struct kmem_cache *s;
4253 	struct memory_notify *marg = arg;
4254 	int nid = marg->status_change_nid_normal;
4255 	int ret = 0;
4256 
4257 	/*
4258 	 * If the node's memory is already available, then kmem_cache_node is
4259 	 * already created. Nothing to do.
4260 	 */
4261 	if (nid < 0)
4262 		return 0;
4263 
4264 	/*
4265 	 * We are bringing a node online. No memory is available yet. We must
4266 	 * allocate a kmem_cache_node structure in order to bring the node
4267 	 * online.
4268 	 */
4269 	mutex_lock(&slab_mutex);
4270 	list_for_each_entry(s, &slab_caches, list) {
4271 		/*
4272 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4273 		 *      since memory is not yet available from the node that
4274 		 *      is brought up.
4275 		 */
4276 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4277 		if (!n) {
4278 			ret = -ENOMEM;
4279 			goto out;
4280 		}
4281 		init_kmem_cache_node(n);
4282 		s->node[nid] = n;
4283 	}
4284 out:
4285 	mutex_unlock(&slab_mutex);
4286 	return ret;
4287 }
4288 
4289 static int slab_memory_callback(struct notifier_block *self,
4290 				unsigned long action, void *arg)
4291 {
4292 	int ret = 0;
4293 
4294 	switch (action) {
4295 	case MEM_GOING_ONLINE:
4296 		ret = slab_mem_going_online_callback(arg);
4297 		break;
4298 	case MEM_GOING_OFFLINE:
4299 		ret = slab_mem_going_offline_callback(arg);
4300 		break;
4301 	case MEM_OFFLINE:
4302 	case MEM_CANCEL_ONLINE:
4303 		slab_mem_offline_callback(arg);
4304 		break;
4305 	case MEM_ONLINE:
4306 	case MEM_CANCEL_OFFLINE:
4307 		break;
4308 	}
4309 	if (ret)
4310 		ret = notifier_from_errno(ret);
4311 	else
4312 		ret = NOTIFY_OK;
4313 	return ret;
4314 }
4315 
4316 static struct notifier_block slab_memory_callback_nb = {
4317 	.notifier_call = slab_memory_callback,
4318 	.priority = SLAB_CALLBACK_PRI,
4319 };
4320 
4321 /********************************************************************
4322  *			Basic setup of slabs
4323  *******************************************************************/
4324 
4325 /*
4326  * Used for early kmem_cache structures that were allocated using
4327  * the page allocator. Allocate them properly then fix up the pointers
4328  * that may be pointing to the wrong kmem_cache structure.
4329  */
4330 
4331 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4332 {
4333 	int node;
4334 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4335 	struct kmem_cache_node *n;
4336 
4337 	memcpy(s, static_cache, kmem_cache->object_size);
4338 
4339 	/*
4340 	 * This runs very early, and only the boot processor is supposed to be
4341 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4342 	 * IPIs around.
4343 	 */
4344 	__flush_cpu_slab(s, smp_processor_id());
4345 	for_each_kmem_cache_node(s, node, n) {
4346 		struct page *p;
4347 
4348 		list_for_each_entry(p, &n->partial, slab_list)
4349 			p->slab_cache = s;
4350 
4351 #ifdef CONFIG_SLUB_DEBUG
4352 		list_for_each_entry(p, &n->full, slab_list)
4353 			p->slab_cache = s;
4354 #endif
4355 	}
4356 	list_add(&s->list, &slab_caches);
4357 	return s;
4358 }
4359 
4360 void __init kmem_cache_init(void)
4361 {
4362 	static __initdata struct kmem_cache boot_kmem_cache,
4363 		boot_kmem_cache_node;
4364 
4365 	if (debug_guardpage_minorder())
4366 		slub_max_order = 0;
4367 
4368 	kmem_cache_node = &boot_kmem_cache_node;
4369 	kmem_cache = &boot_kmem_cache;
4370 
4371 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4372 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4373 
4374 	register_hotmemory_notifier(&slab_memory_callback_nb);
4375 
4376 	/* Able to allocate the per node structures */
4377 	slab_state = PARTIAL;
4378 
4379 	create_boot_cache(kmem_cache, "kmem_cache",
4380 			offsetof(struct kmem_cache, node) +
4381 				nr_node_ids * sizeof(struct kmem_cache_node *),
4382 		       SLAB_HWCACHE_ALIGN, 0, 0);
4383 
4384 	kmem_cache = bootstrap(&boot_kmem_cache);
4385 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4386 
4387 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4388 	setup_kmalloc_cache_index_table();
4389 	create_kmalloc_caches(0);
4390 
4391 	/* Setup random freelists for each cache */
4392 	init_freelist_randomization();
4393 
4394 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4395 				  slub_cpu_dead);
4396 
4397 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4398 		cache_line_size(),
4399 		slub_min_order, slub_max_order, slub_min_objects,
4400 		nr_cpu_ids, nr_node_ids);
4401 }
4402 
4403 void __init kmem_cache_init_late(void)
4404 {
4405 }
4406 
4407 struct kmem_cache *
4408 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4409 		   slab_flags_t flags, void (*ctor)(void *))
4410 {
4411 	struct kmem_cache *s;
4412 
4413 	s = find_mergeable(size, align, flags, name, ctor);
4414 	if (s) {
4415 		s->refcount++;
4416 
4417 		/*
4418 		 * Adjust the object sizes so that we clear
4419 		 * the complete object on kzalloc.
4420 		 */
4421 		s->object_size = max(s->object_size, size);
4422 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4423 
4424 		if (sysfs_slab_alias(s, name)) {
4425 			s->refcount--;
4426 			s = NULL;
4427 		}
4428 	}
4429 
4430 	return s;
4431 }
4432 
4433 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4434 {
4435 	int err;
4436 
4437 	err = kmem_cache_open(s, flags);
4438 	if (err)
4439 		return err;
4440 
4441 	/* Mutex is not taken during early boot */
4442 	if (slab_state <= UP)
4443 		return 0;
4444 
4445 	err = sysfs_slab_add(s);
4446 	if (err)
4447 		__kmem_cache_release(s);
4448 
4449 	return err;
4450 }
4451 
4452 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4453 {
4454 	struct kmem_cache *s;
4455 	void *ret;
4456 
4457 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4458 		return kmalloc_large(size, gfpflags);
4459 
4460 	s = kmalloc_slab(size, gfpflags);
4461 
4462 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4463 		return s;
4464 
4465 	ret = slab_alloc(s, gfpflags, caller);
4466 
4467 	/* Honor the call site pointer we received. */
4468 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4469 
4470 	return ret;
4471 }
4472 EXPORT_SYMBOL(__kmalloc_track_caller);
4473 
4474 #ifdef CONFIG_NUMA
4475 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4476 					int node, unsigned long caller)
4477 {
4478 	struct kmem_cache *s;
4479 	void *ret;
4480 
4481 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4482 		ret = kmalloc_large_node(size, gfpflags, node);
4483 
4484 		trace_kmalloc_node(caller, ret,
4485 				   size, PAGE_SIZE << get_order(size),
4486 				   gfpflags, node);
4487 
4488 		return ret;
4489 	}
4490 
4491 	s = kmalloc_slab(size, gfpflags);
4492 
4493 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4494 		return s;
4495 
4496 	ret = slab_alloc_node(s, gfpflags, node, caller);
4497 
4498 	/* Honor the call site pointer we received. */
4499 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4500 
4501 	return ret;
4502 }
4503 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4504 #endif
4505 
4506 #ifdef CONFIG_SYSFS
4507 static int count_inuse(struct page *page)
4508 {
4509 	return page->inuse;
4510 }
4511 
4512 static int count_total(struct page *page)
4513 {
4514 	return page->objects;
4515 }
4516 #endif
4517 
4518 #ifdef CONFIG_SLUB_DEBUG
4519 static void validate_slab(struct kmem_cache *s, struct page *page)
4520 {
4521 	void *p;
4522 	void *addr = page_address(page);
4523 	unsigned long *map;
4524 
4525 	slab_lock(page);
4526 
4527 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4528 		goto unlock;
4529 
4530 	/* Now we know that a valid freelist exists */
4531 	map = get_map(s, page);
4532 	for_each_object(p, s, addr, page->objects) {
4533 		u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4534 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4535 
4536 		if (!check_object(s, page, p, val))
4537 			break;
4538 	}
4539 	put_map(map);
4540 unlock:
4541 	slab_unlock(page);
4542 }
4543 
4544 static int validate_slab_node(struct kmem_cache *s,
4545 		struct kmem_cache_node *n)
4546 {
4547 	unsigned long count = 0;
4548 	struct page *page;
4549 	unsigned long flags;
4550 
4551 	spin_lock_irqsave(&n->list_lock, flags);
4552 
4553 	list_for_each_entry(page, &n->partial, slab_list) {
4554 		validate_slab(s, page);
4555 		count++;
4556 	}
4557 	if (count != n->nr_partial)
4558 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4559 		       s->name, count, n->nr_partial);
4560 
4561 	if (!(s->flags & SLAB_STORE_USER))
4562 		goto out;
4563 
4564 	list_for_each_entry(page, &n->full, slab_list) {
4565 		validate_slab(s, page);
4566 		count++;
4567 	}
4568 	if (count != atomic_long_read(&n->nr_slabs))
4569 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4570 		       s->name, count, atomic_long_read(&n->nr_slabs));
4571 
4572 out:
4573 	spin_unlock_irqrestore(&n->list_lock, flags);
4574 	return count;
4575 }
4576 
4577 static long validate_slab_cache(struct kmem_cache *s)
4578 {
4579 	int node;
4580 	unsigned long count = 0;
4581 	struct kmem_cache_node *n;
4582 
4583 	flush_all(s);
4584 	for_each_kmem_cache_node(s, node, n)
4585 		count += validate_slab_node(s, n);
4586 
4587 	return count;
4588 }
4589 /*
4590  * Generate lists of code addresses where slabcache objects are allocated
4591  * and freed.
4592  */
4593 
4594 struct location {
4595 	unsigned long count;
4596 	unsigned long addr;
4597 	long long sum_time;
4598 	long min_time;
4599 	long max_time;
4600 	long min_pid;
4601 	long max_pid;
4602 	DECLARE_BITMAP(cpus, NR_CPUS);
4603 	nodemask_t nodes;
4604 };
4605 
4606 struct loc_track {
4607 	unsigned long max;
4608 	unsigned long count;
4609 	struct location *loc;
4610 };
4611 
4612 static void free_loc_track(struct loc_track *t)
4613 {
4614 	if (t->max)
4615 		free_pages((unsigned long)t->loc,
4616 			get_order(sizeof(struct location) * t->max));
4617 }
4618 
4619 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4620 {
4621 	struct location *l;
4622 	int order;
4623 
4624 	order = get_order(sizeof(struct location) * max);
4625 
4626 	l = (void *)__get_free_pages(flags, order);
4627 	if (!l)
4628 		return 0;
4629 
4630 	if (t->count) {
4631 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4632 		free_loc_track(t);
4633 	}
4634 	t->max = max;
4635 	t->loc = l;
4636 	return 1;
4637 }
4638 
4639 static int add_location(struct loc_track *t, struct kmem_cache *s,
4640 				const struct track *track)
4641 {
4642 	long start, end, pos;
4643 	struct location *l;
4644 	unsigned long caddr;
4645 	unsigned long age = jiffies - track->when;
4646 
4647 	start = -1;
4648 	end = t->count;
4649 
4650 	for ( ; ; ) {
4651 		pos = start + (end - start + 1) / 2;
4652 
4653 		/*
4654 		 * There is nothing at "end". If we end up there
4655 		 * we need to add something to before end.
4656 		 */
4657 		if (pos == end)
4658 			break;
4659 
4660 		caddr = t->loc[pos].addr;
4661 		if (track->addr == caddr) {
4662 
4663 			l = &t->loc[pos];
4664 			l->count++;
4665 			if (track->when) {
4666 				l->sum_time += age;
4667 				if (age < l->min_time)
4668 					l->min_time = age;
4669 				if (age > l->max_time)
4670 					l->max_time = age;
4671 
4672 				if (track->pid < l->min_pid)
4673 					l->min_pid = track->pid;
4674 				if (track->pid > l->max_pid)
4675 					l->max_pid = track->pid;
4676 
4677 				cpumask_set_cpu(track->cpu,
4678 						to_cpumask(l->cpus));
4679 			}
4680 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4681 			return 1;
4682 		}
4683 
4684 		if (track->addr < caddr)
4685 			end = pos;
4686 		else
4687 			start = pos;
4688 	}
4689 
4690 	/*
4691 	 * Not found. Insert new tracking element.
4692 	 */
4693 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4694 		return 0;
4695 
4696 	l = t->loc + pos;
4697 	if (pos < t->count)
4698 		memmove(l + 1, l,
4699 			(t->count - pos) * sizeof(struct location));
4700 	t->count++;
4701 	l->count = 1;
4702 	l->addr = track->addr;
4703 	l->sum_time = age;
4704 	l->min_time = age;
4705 	l->max_time = age;
4706 	l->min_pid = track->pid;
4707 	l->max_pid = track->pid;
4708 	cpumask_clear(to_cpumask(l->cpus));
4709 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4710 	nodes_clear(l->nodes);
4711 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4712 	return 1;
4713 }
4714 
4715 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4716 		struct page *page, enum track_item alloc)
4717 {
4718 	void *addr = page_address(page);
4719 	void *p;
4720 	unsigned long *map;
4721 
4722 	map = get_map(s, page);
4723 	for_each_object(p, s, addr, page->objects)
4724 		if (!test_bit(__obj_to_index(s, addr, p), map))
4725 			add_location(t, s, get_track(s, p, alloc));
4726 	put_map(map);
4727 }
4728 
4729 static int list_locations(struct kmem_cache *s, char *buf,
4730 			  enum track_item alloc)
4731 {
4732 	int len = 0;
4733 	unsigned long i;
4734 	struct loc_track t = { 0, 0, NULL };
4735 	int node;
4736 	struct kmem_cache_node *n;
4737 
4738 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4739 			     GFP_KERNEL)) {
4740 		return sysfs_emit(buf, "Out of memory\n");
4741 	}
4742 	/* Push back cpu slabs */
4743 	flush_all(s);
4744 
4745 	for_each_kmem_cache_node(s, node, n) {
4746 		unsigned long flags;
4747 		struct page *page;
4748 
4749 		if (!atomic_long_read(&n->nr_slabs))
4750 			continue;
4751 
4752 		spin_lock_irqsave(&n->list_lock, flags);
4753 		list_for_each_entry(page, &n->partial, slab_list)
4754 			process_slab(&t, s, page, alloc);
4755 		list_for_each_entry(page, &n->full, slab_list)
4756 			process_slab(&t, s, page, alloc);
4757 		spin_unlock_irqrestore(&n->list_lock, flags);
4758 	}
4759 
4760 	for (i = 0; i < t.count; i++) {
4761 		struct location *l = &t.loc[i];
4762 
4763 		len += sysfs_emit_at(buf, len, "%7ld ", l->count);
4764 
4765 		if (l->addr)
4766 			len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
4767 		else
4768 			len += sysfs_emit_at(buf, len, "<not-available>");
4769 
4770 		if (l->sum_time != l->min_time)
4771 			len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
4772 					     l->min_time,
4773 					     (long)div_u64(l->sum_time,
4774 							   l->count),
4775 					     l->max_time);
4776 		else
4777 			len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
4778 
4779 		if (l->min_pid != l->max_pid)
4780 			len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
4781 					     l->min_pid, l->max_pid);
4782 		else
4783 			len += sysfs_emit_at(buf, len, " pid=%ld",
4784 					     l->min_pid);
4785 
4786 		if (num_online_cpus() > 1 &&
4787 		    !cpumask_empty(to_cpumask(l->cpus)))
4788 			len += sysfs_emit_at(buf, len, " cpus=%*pbl",
4789 					     cpumask_pr_args(to_cpumask(l->cpus)));
4790 
4791 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
4792 			len += sysfs_emit_at(buf, len, " nodes=%*pbl",
4793 					     nodemask_pr_args(&l->nodes));
4794 
4795 		len += sysfs_emit_at(buf, len, "\n");
4796 	}
4797 
4798 	free_loc_track(&t);
4799 	if (!t.count)
4800 		len += sysfs_emit_at(buf, len, "No data\n");
4801 
4802 	return len;
4803 }
4804 #endif	/* CONFIG_SLUB_DEBUG */
4805 
4806 #ifdef SLUB_RESILIENCY_TEST
4807 static void __init resiliency_test(void)
4808 {
4809 	u8 *p;
4810 	int type = KMALLOC_NORMAL;
4811 
4812 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4813 
4814 	pr_err("SLUB resiliency testing\n");
4815 	pr_err("-----------------------\n");
4816 	pr_err("A. Corruption after allocation\n");
4817 
4818 	p = kzalloc(16, GFP_KERNEL);
4819 	p[16] = 0x12;
4820 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4821 	       p + 16);
4822 
4823 	validate_slab_cache(kmalloc_caches[type][4]);
4824 
4825 	/* Hmmm... The next two are dangerous */
4826 	p = kzalloc(32, GFP_KERNEL);
4827 	p[32 + sizeof(void *)] = 0x34;
4828 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4829 	       p);
4830 	pr_err("If allocated object is overwritten then not detectable\n\n");
4831 
4832 	validate_slab_cache(kmalloc_caches[type][5]);
4833 	p = kzalloc(64, GFP_KERNEL);
4834 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4835 	*p = 0x56;
4836 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4837 	       p);
4838 	pr_err("If allocated object is overwritten then not detectable\n\n");
4839 	validate_slab_cache(kmalloc_caches[type][6]);
4840 
4841 	pr_err("\nB. Corruption after free\n");
4842 	p = kzalloc(128, GFP_KERNEL);
4843 	kfree(p);
4844 	*p = 0x78;
4845 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4846 	validate_slab_cache(kmalloc_caches[type][7]);
4847 
4848 	p = kzalloc(256, GFP_KERNEL);
4849 	kfree(p);
4850 	p[50] = 0x9a;
4851 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4852 	validate_slab_cache(kmalloc_caches[type][8]);
4853 
4854 	p = kzalloc(512, GFP_KERNEL);
4855 	kfree(p);
4856 	p[512] = 0xab;
4857 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4858 	validate_slab_cache(kmalloc_caches[type][9]);
4859 }
4860 #else
4861 #ifdef CONFIG_SYSFS
4862 static void resiliency_test(void) {};
4863 #endif
4864 #endif	/* SLUB_RESILIENCY_TEST */
4865 
4866 #ifdef CONFIG_SYSFS
4867 enum slab_stat_type {
4868 	SL_ALL,			/* All slabs */
4869 	SL_PARTIAL,		/* Only partially allocated slabs */
4870 	SL_CPU,			/* Only slabs used for cpu caches */
4871 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4872 	SL_TOTAL		/* Determine object capacity not slabs */
4873 };
4874 
4875 #define SO_ALL		(1 << SL_ALL)
4876 #define SO_PARTIAL	(1 << SL_PARTIAL)
4877 #define SO_CPU		(1 << SL_CPU)
4878 #define SO_OBJECTS	(1 << SL_OBJECTS)
4879 #define SO_TOTAL	(1 << SL_TOTAL)
4880 
4881 #ifdef CONFIG_MEMCG
4882 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4883 
4884 static int __init setup_slub_memcg_sysfs(char *str)
4885 {
4886 	int v;
4887 
4888 	if (get_option(&str, &v) > 0)
4889 		memcg_sysfs_enabled = v;
4890 
4891 	return 1;
4892 }
4893 
4894 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4895 #endif
4896 
4897 static ssize_t show_slab_objects(struct kmem_cache *s,
4898 				 char *buf, unsigned long flags)
4899 {
4900 	unsigned long total = 0;
4901 	int node;
4902 	int x;
4903 	unsigned long *nodes;
4904 	int len = 0;
4905 
4906 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4907 	if (!nodes)
4908 		return -ENOMEM;
4909 
4910 	if (flags & SO_CPU) {
4911 		int cpu;
4912 
4913 		for_each_possible_cpu(cpu) {
4914 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4915 							       cpu);
4916 			int node;
4917 			struct page *page;
4918 
4919 			page = READ_ONCE(c->page);
4920 			if (!page)
4921 				continue;
4922 
4923 			node = page_to_nid(page);
4924 			if (flags & SO_TOTAL)
4925 				x = page->objects;
4926 			else if (flags & SO_OBJECTS)
4927 				x = page->inuse;
4928 			else
4929 				x = 1;
4930 
4931 			total += x;
4932 			nodes[node] += x;
4933 
4934 			page = slub_percpu_partial_read_once(c);
4935 			if (page) {
4936 				node = page_to_nid(page);
4937 				if (flags & SO_TOTAL)
4938 					WARN_ON_ONCE(1);
4939 				else if (flags & SO_OBJECTS)
4940 					WARN_ON_ONCE(1);
4941 				else
4942 					x = page->pages;
4943 				total += x;
4944 				nodes[node] += x;
4945 			}
4946 		}
4947 	}
4948 
4949 	/*
4950 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4951 	 * already held which will conflict with an existing lock order:
4952 	 *
4953 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4954 	 *
4955 	 * We don't really need mem_hotplug_lock (to hold off
4956 	 * slab_mem_going_offline_callback) here because slab's memory hot
4957 	 * unplug code doesn't destroy the kmem_cache->node[] data.
4958 	 */
4959 
4960 #ifdef CONFIG_SLUB_DEBUG
4961 	if (flags & SO_ALL) {
4962 		struct kmem_cache_node *n;
4963 
4964 		for_each_kmem_cache_node(s, node, n) {
4965 
4966 			if (flags & SO_TOTAL)
4967 				x = atomic_long_read(&n->total_objects);
4968 			else if (flags & SO_OBJECTS)
4969 				x = atomic_long_read(&n->total_objects) -
4970 					count_partial(n, count_free);
4971 			else
4972 				x = atomic_long_read(&n->nr_slabs);
4973 			total += x;
4974 			nodes[node] += x;
4975 		}
4976 
4977 	} else
4978 #endif
4979 	if (flags & SO_PARTIAL) {
4980 		struct kmem_cache_node *n;
4981 
4982 		for_each_kmem_cache_node(s, node, n) {
4983 			if (flags & SO_TOTAL)
4984 				x = count_partial(n, count_total);
4985 			else if (flags & SO_OBJECTS)
4986 				x = count_partial(n, count_inuse);
4987 			else
4988 				x = n->nr_partial;
4989 			total += x;
4990 			nodes[node] += x;
4991 		}
4992 	}
4993 
4994 	len += sysfs_emit_at(buf, len, "%lu", total);
4995 #ifdef CONFIG_NUMA
4996 	for (node = 0; node < nr_node_ids; node++) {
4997 		if (nodes[node])
4998 			len += sysfs_emit_at(buf, len, " N%d=%lu",
4999 					     node, nodes[node]);
5000 	}
5001 #endif
5002 	len += sysfs_emit_at(buf, len, "\n");
5003 	kfree(nodes);
5004 
5005 	return len;
5006 }
5007 
5008 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5009 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5010 
5011 struct slab_attribute {
5012 	struct attribute attr;
5013 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5014 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5015 };
5016 
5017 #define SLAB_ATTR_RO(_name) \
5018 	static struct slab_attribute _name##_attr = \
5019 	__ATTR(_name, 0400, _name##_show, NULL)
5020 
5021 #define SLAB_ATTR(_name) \
5022 	static struct slab_attribute _name##_attr =  \
5023 	__ATTR(_name, 0600, _name##_show, _name##_store)
5024 
5025 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5026 {
5027 	return sysfs_emit(buf, "%u\n", s->size);
5028 }
5029 SLAB_ATTR_RO(slab_size);
5030 
5031 static ssize_t align_show(struct kmem_cache *s, char *buf)
5032 {
5033 	return sysfs_emit(buf, "%u\n", s->align);
5034 }
5035 SLAB_ATTR_RO(align);
5036 
5037 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5038 {
5039 	return sysfs_emit(buf, "%u\n", s->object_size);
5040 }
5041 SLAB_ATTR_RO(object_size);
5042 
5043 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5044 {
5045 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5046 }
5047 SLAB_ATTR_RO(objs_per_slab);
5048 
5049 static ssize_t order_show(struct kmem_cache *s, char *buf)
5050 {
5051 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5052 }
5053 SLAB_ATTR_RO(order);
5054 
5055 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5056 {
5057 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5058 }
5059 
5060 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5061 				 size_t length)
5062 {
5063 	unsigned long min;
5064 	int err;
5065 
5066 	err = kstrtoul(buf, 10, &min);
5067 	if (err)
5068 		return err;
5069 
5070 	set_min_partial(s, min);
5071 	return length;
5072 }
5073 SLAB_ATTR(min_partial);
5074 
5075 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5076 {
5077 	return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5078 }
5079 
5080 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5081 				 size_t length)
5082 {
5083 	unsigned int objects;
5084 	int err;
5085 
5086 	err = kstrtouint(buf, 10, &objects);
5087 	if (err)
5088 		return err;
5089 	if (objects && !kmem_cache_has_cpu_partial(s))
5090 		return -EINVAL;
5091 
5092 	slub_set_cpu_partial(s, objects);
5093 	flush_all(s);
5094 	return length;
5095 }
5096 SLAB_ATTR(cpu_partial);
5097 
5098 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5099 {
5100 	if (!s->ctor)
5101 		return 0;
5102 	return sysfs_emit(buf, "%pS\n", s->ctor);
5103 }
5104 SLAB_ATTR_RO(ctor);
5105 
5106 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5107 {
5108 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5109 }
5110 SLAB_ATTR_RO(aliases);
5111 
5112 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5113 {
5114 	return show_slab_objects(s, buf, SO_PARTIAL);
5115 }
5116 SLAB_ATTR_RO(partial);
5117 
5118 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5119 {
5120 	return show_slab_objects(s, buf, SO_CPU);
5121 }
5122 SLAB_ATTR_RO(cpu_slabs);
5123 
5124 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5125 {
5126 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5127 }
5128 SLAB_ATTR_RO(objects);
5129 
5130 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5131 {
5132 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5133 }
5134 SLAB_ATTR_RO(objects_partial);
5135 
5136 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5137 {
5138 	int objects = 0;
5139 	int pages = 0;
5140 	int cpu;
5141 	int len = 0;
5142 
5143 	for_each_online_cpu(cpu) {
5144 		struct page *page;
5145 
5146 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5147 
5148 		if (page) {
5149 			pages += page->pages;
5150 			objects += page->pobjects;
5151 		}
5152 	}
5153 
5154 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5155 
5156 #ifdef CONFIG_SMP
5157 	for_each_online_cpu(cpu) {
5158 		struct page *page;
5159 
5160 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5161 		if (page)
5162 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5163 					     cpu, page->pobjects, page->pages);
5164 	}
5165 #endif
5166 	len += sysfs_emit_at(buf, len, "\n");
5167 
5168 	return len;
5169 }
5170 SLAB_ATTR_RO(slabs_cpu_partial);
5171 
5172 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5173 {
5174 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5175 }
5176 SLAB_ATTR_RO(reclaim_account);
5177 
5178 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5179 {
5180 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5181 }
5182 SLAB_ATTR_RO(hwcache_align);
5183 
5184 #ifdef CONFIG_ZONE_DMA
5185 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5186 {
5187 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5188 }
5189 SLAB_ATTR_RO(cache_dma);
5190 #endif
5191 
5192 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5193 {
5194 	return sysfs_emit(buf, "%u\n", s->usersize);
5195 }
5196 SLAB_ATTR_RO(usersize);
5197 
5198 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5199 {
5200 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5201 }
5202 SLAB_ATTR_RO(destroy_by_rcu);
5203 
5204 #ifdef CONFIG_SLUB_DEBUG
5205 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5206 {
5207 	return show_slab_objects(s, buf, SO_ALL);
5208 }
5209 SLAB_ATTR_RO(slabs);
5210 
5211 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5212 {
5213 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5214 }
5215 SLAB_ATTR_RO(total_objects);
5216 
5217 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5218 {
5219 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5220 }
5221 SLAB_ATTR_RO(sanity_checks);
5222 
5223 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5224 {
5225 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5226 }
5227 SLAB_ATTR_RO(trace);
5228 
5229 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5230 {
5231 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5232 }
5233 
5234 SLAB_ATTR_RO(red_zone);
5235 
5236 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5237 {
5238 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5239 }
5240 
5241 SLAB_ATTR_RO(poison);
5242 
5243 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5244 {
5245 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5246 }
5247 
5248 SLAB_ATTR_RO(store_user);
5249 
5250 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5251 {
5252 	return 0;
5253 }
5254 
5255 static ssize_t validate_store(struct kmem_cache *s,
5256 			const char *buf, size_t length)
5257 {
5258 	int ret = -EINVAL;
5259 
5260 	if (buf[0] == '1') {
5261 		ret = validate_slab_cache(s);
5262 		if (ret >= 0)
5263 			ret = length;
5264 	}
5265 	return ret;
5266 }
5267 SLAB_ATTR(validate);
5268 
5269 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5270 {
5271 	if (!(s->flags & SLAB_STORE_USER))
5272 		return -ENOSYS;
5273 	return list_locations(s, buf, TRACK_ALLOC);
5274 }
5275 SLAB_ATTR_RO(alloc_calls);
5276 
5277 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5278 {
5279 	if (!(s->flags & SLAB_STORE_USER))
5280 		return -ENOSYS;
5281 	return list_locations(s, buf, TRACK_FREE);
5282 }
5283 SLAB_ATTR_RO(free_calls);
5284 #endif /* CONFIG_SLUB_DEBUG */
5285 
5286 #ifdef CONFIG_FAILSLAB
5287 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5288 {
5289 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5290 }
5291 SLAB_ATTR_RO(failslab);
5292 #endif
5293 
5294 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5295 {
5296 	return 0;
5297 }
5298 
5299 static ssize_t shrink_store(struct kmem_cache *s,
5300 			const char *buf, size_t length)
5301 {
5302 	if (buf[0] == '1')
5303 		kmem_cache_shrink(s);
5304 	else
5305 		return -EINVAL;
5306 	return length;
5307 }
5308 SLAB_ATTR(shrink);
5309 
5310 #ifdef CONFIG_NUMA
5311 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5312 {
5313 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5314 }
5315 
5316 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5317 				const char *buf, size_t length)
5318 {
5319 	unsigned int ratio;
5320 	int err;
5321 
5322 	err = kstrtouint(buf, 10, &ratio);
5323 	if (err)
5324 		return err;
5325 	if (ratio > 100)
5326 		return -ERANGE;
5327 
5328 	s->remote_node_defrag_ratio = ratio * 10;
5329 
5330 	return length;
5331 }
5332 SLAB_ATTR(remote_node_defrag_ratio);
5333 #endif
5334 
5335 #ifdef CONFIG_SLUB_STATS
5336 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5337 {
5338 	unsigned long sum  = 0;
5339 	int cpu;
5340 	int len = 0;
5341 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5342 
5343 	if (!data)
5344 		return -ENOMEM;
5345 
5346 	for_each_online_cpu(cpu) {
5347 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5348 
5349 		data[cpu] = x;
5350 		sum += x;
5351 	}
5352 
5353 	len += sysfs_emit_at(buf, len, "%lu", sum);
5354 
5355 #ifdef CONFIG_SMP
5356 	for_each_online_cpu(cpu) {
5357 		if (data[cpu])
5358 			len += sysfs_emit_at(buf, len, " C%d=%u",
5359 					     cpu, data[cpu]);
5360 	}
5361 #endif
5362 	kfree(data);
5363 	len += sysfs_emit_at(buf, len, "\n");
5364 
5365 	return len;
5366 }
5367 
5368 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5369 {
5370 	int cpu;
5371 
5372 	for_each_online_cpu(cpu)
5373 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5374 }
5375 
5376 #define STAT_ATTR(si, text) 					\
5377 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5378 {								\
5379 	return show_stat(s, buf, si);				\
5380 }								\
5381 static ssize_t text##_store(struct kmem_cache *s,		\
5382 				const char *buf, size_t length)	\
5383 {								\
5384 	if (buf[0] != '0')					\
5385 		return -EINVAL;					\
5386 	clear_stat(s, si);					\
5387 	return length;						\
5388 }								\
5389 SLAB_ATTR(text);						\
5390 
5391 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5392 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5393 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5394 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5395 STAT_ATTR(FREE_FROZEN, free_frozen);
5396 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5397 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5398 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5399 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5400 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5401 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5402 STAT_ATTR(FREE_SLAB, free_slab);
5403 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5404 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5405 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5406 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5407 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5408 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5409 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5410 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5411 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5412 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5413 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5414 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5415 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5416 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5417 #endif	/* CONFIG_SLUB_STATS */
5418 
5419 static struct attribute *slab_attrs[] = {
5420 	&slab_size_attr.attr,
5421 	&object_size_attr.attr,
5422 	&objs_per_slab_attr.attr,
5423 	&order_attr.attr,
5424 	&min_partial_attr.attr,
5425 	&cpu_partial_attr.attr,
5426 	&objects_attr.attr,
5427 	&objects_partial_attr.attr,
5428 	&partial_attr.attr,
5429 	&cpu_slabs_attr.attr,
5430 	&ctor_attr.attr,
5431 	&aliases_attr.attr,
5432 	&align_attr.attr,
5433 	&hwcache_align_attr.attr,
5434 	&reclaim_account_attr.attr,
5435 	&destroy_by_rcu_attr.attr,
5436 	&shrink_attr.attr,
5437 	&slabs_cpu_partial_attr.attr,
5438 #ifdef CONFIG_SLUB_DEBUG
5439 	&total_objects_attr.attr,
5440 	&slabs_attr.attr,
5441 	&sanity_checks_attr.attr,
5442 	&trace_attr.attr,
5443 	&red_zone_attr.attr,
5444 	&poison_attr.attr,
5445 	&store_user_attr.attr,
5446 	&validate_attr.attr,
5447 	&alloc_calls_attr.attr,
5448 	&free_calls_attr.attr,
5449 #endif
5450 #ifdef CONFIG_ZONE_DMA
5451 	&cache_dma_attr.attr,
5452 #endif
5453 #ifdef CONFIG_NUMA
5454 	&remote_node_defrag_ratio_attr.attr,
5455 #endif
5456 #ifdef CONFIG_SLUB_STATS
5457 	&alloc_fastpath_attr.attr,
5458 	&alloc_slowpath_attr.attr,
5459 	&free_fastpath_attr.attr,
5460 	&free_slowpath_attr.attr,
5461 	&free_frozen_attr.attr,
5462 	&free_add_partial_attr.attr,
5463 	&free_remove_partial_attr.attr,
5464 	&alloc_from_partial_attr.attr,
5465 	&alloc_slab_attr.attr,
5466 	&alloc_refill_attr.attr,
5467 	&alloc_node_mismatch_attr.attr,
5468 	&free_slab_attr.attr,
5469 	&cpuslab_flush_attr.attr,
5470 	&deactivate_full_attr.attr,
5471 	&deactivate_empty_attr.attr,
5472 	&deactivate_to_head_attr.attr,
5473 	&deactivate_to_tail_attr.attr,
5474 	&deactivate_remote_frees_attr.attr,
5475 	&deactivate_bypass_attr.attr,
5476 	&order_fallback_attr.attr,
5477 	&cmpxchg_double_fail_attr.attr,
5478 	&cmpxchg_double_cpu_fail_attr.attr,
5479 	&cpu_partial_alloc_attr.attr,
5480 	&cpu_partial_free_attr.attr,
5481 	&cpu_partial_node_attr.attr,
5482 	&cpu_partial_drain_attr.attr,
5483 #endif
5484 #ifdef CONFIG_FAILSLAB
5485 	&failslab_attr.attr,
5486 #endif
5487 	&usersize_attr.attr,
5488 
5489 	NULL
5490 };
5491 
5492 static const struct attribute_group slab_attr_group = {
5493 	.attrs = slab_attrs,
5494 };
5495 
5496 static ssize_t slab_attr_show(struct kobject *kobj,
5497 				struct attribute *attr,
5498 				char *buf)
5499 {
5500 	struct slab_attribute *attribute;
5501 	struct kmem_cache *s;
5502 	int err;
5503 
5504 	attribute = to_slab_attr(attr);
5505 	s = to_slab(kobj);
5506 
5507 	if (!attribute->show)
5508 		return -EIO;
5509 
5510 	err = attribute->show(s, buf);
5511 
5512 	return err;
5513 }
5514 
5515 static ssize_t slab_attr_store(struct kobject *kobj,
5516 				struct attribute *attr,
5517 				const char *buf, size_t len)
5518 {
5519 	struct slab_attribute *attribute;
5520 	struct kmem_cache *s;
5521 	int err;
5522 
5523 	attribute = to_slab_attr(attr);
5524 	s = to_slab(kobj);
5525 
5526 	if (!attribute->store)
5527 		return -EIO;
5528 
5529 	err = attribute->store(s, buf, len);
5530 	return err;
5531 }
5532 
5533 static void kmem_cache_release(struct kobject *k)
5534 {
5535 	slab_kmem_cache_release(to_slab(k));
5536 }
5537 
5538 static const struct sysfs_ops slab_sysfs_ops = {
5539 	.show = slab_attr_show,
5540 	.store = slab_attr_store,
5541 };
5542 
5543 static struct kobj_type slab_ktype = {
5544 	.sysfs_ops = &slab_sysfs_ops,
5545 	.release = kmem_cache_release,
5546 };
5547 
5548 static struct kset *slab_kset;
5549 
5550 static inline struct kset *cache_kset(struct kmem_cache *s)
5551 {
5552 	return slab_kset;
5553 }
5554 
5555 #define ID_STR_LENGTH 64
5556 
5557 /* Create a unique string id for a slab cache:
5558  *
5559  * Format	:[flags-]size
5560  */
5561 static char *create_unique_id(struct kmem_cache *s)
5562 {
5563 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5564 	char *p = name;
5565 
5566 	BUG_ON(!name);
5567 
5568 	*p++ = ':';
5569 	/*
5570 	 * First flags affecting slabcache operations. We will only
5571 	 * get here for aliasable slabs so we do not need to support
5572 	 * too many flags. The flags here must cover all flags that
5573 	 * are matched during merging to guarantee that the id is
5574 	 * unique.
5575 	 */
5576 	if (s->flags & SLAB_CACHE_DMA)
5577 		*p++ = 'd';
5578 	if (s->flags & SLAB_CACHE_DMA32)
5579 		*p++ = 'D';
5580 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5581 		*p++ = 'a';
5582 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5583 		*p++ = 'F';
5584 	if (s->flags & SLAB_ACCOUNT)
5585 		*p++ = 'A';
5586 	if (p != name + 1)
5587 		*p++ = '-';
5588 	p += sprintf(p, "%07u", s->size);
5589 
5590 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5591 	return name;
5592 }
5593 
5594 static int sysfs_slab_add(struct kmem_cache *s)
5595 {
5596 	int err;
5597 	const char *name;
5598 	struct kset *kset = cache_kset(s);
5599 	int unmergeable = slab_unmergeable(s);
5600 
5601 	if (!kset) {
5602 		kobject_init(&s->kobj, &slab_ktype);
5603 		return 0;
5604 	}
5605 
5606 	if (!unmergeable && disable_higher_order_debug &&
5607 			(slub_debug & DEBUG_METADATA_FLAGS))
5608 		unmergeable = 1;
5609 
5610 	if (unmergeable) {
5611 		/*
5612 		 * Slabcache can never be merged so we can use the name proper.
5613 		 * This is typically the case for debug situations. In that
5614 		 * case we can catch duplicate names easily.
5615 		 */
5616 		sysfs_remove_link(&slab_kset->kobj, s->name);
5617 		name = s->name;
5618 	} else {
5619 		/*
5620 		 * Create a unique name for the slab as a target
5621 		 * for the symlinks.
5622 		 */
5623 		name = create_unique_id(s);
5624 	}
5625 
5626 	s->kobj.kset = kset;
5627 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5628 	if (err) {
5629 		kobject_put(&s->kobj);
5630 		goto out;
5631 	}
5632 
5633 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5634 	if (err)
5635 		goto out_del_kobj;
5636 
5637 	if (!unmergeable) {
5638 		/* Setup first alias */
5639 		sysfs_slab_alias(s, s->name);
5640 	}
5641 out:
5642 	if (!unmergeable)
5643 		kfree(name);
5644 	return err;
5645 out_del_kobj:
5646 	kobject_del(&s->kobj);
5647 	goto out;
5648 }
5649 
5650 void sysfs_slab_unlink(struct kmem_cache *s)
5651 {
5652 	if (slab_state >= FULL)
5653 		kobject_del(&s->kobj);
5654 }
5655 
5656 void sysfs_slab_release(struct kmem_cache *s)
5657 {
5658 	if (slab_state >= FULL)
5659 		kobject_put(&s->kobj);
5660 }
5661 
5662 /*
5663  * Need to buffer aliases during bootup until sysfs becomes
5664  * available lest we lose that information.
5665  */
5666 struct saved_alias {
5667 	struct kmem_cache *s;
5668 	const char *name;
5669 	struct saved_alias *next;
5670 };
5671 
5672 static struct saved_alias *alias_list;
5673 
5674 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5675 {
5676 	struct saved_alias *al;
5677 
5678 	if (slab_state == FULL) {
5679 		/*
5680 		 * If we have a leftover link then remove it.
5681 		 */
5682 		sysfs_remove_link(&slab_kset->kobj, name);
5683 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5684 	}
5685 
5686 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5687 	if (!al)
5688 		return -ENOMEM;
5689 
5690 	al->s = s;
5691 	al->name = name;
5692 	al->next = alias_list;
5693 	alias_list = al;
5694 	return 0;
5695 }
5696 
5697 static int __init slab_sysfs_init(void)
5698 {
5699 	struct kmem_cache *s;
5700 	int err;
5701 
5702 	mutex_lock(&slab_mutex);
5703 
5704 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5705 	if (!slab_kset) {
5706 		mutex_unlock(&slab_mutex);
5707 		pr_err("Cannot register slab subsystem.\n");
5708 		return -ENOSYS;
5709 	}
5710 
5711 	slab_state = FULL;
5712 
5713 	list_for_each_entry(s, &slab_caches, list) {
5714 		err = sysfs_slab_add(s);
5715 		if (err)
5716 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5717 			       s->name);
5718 	}
5719 
5720 	while (alias_list) {
5721 		struct saved_alias *al = alias_list;
5722 
5723 		alias_list = alias_list->next;
5724 		err = sysfs_slab_alias(al->s, al->name);
5725 		if (err)
5726 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5727 			       al->name);
5728 		kfree(al);
5729 	}
5730 
5731 	mutex_unlock(&slab_mutex);
5732 	resiliency_test();
5733 	return 0;
5734 }
5735 
5736 __initcall(slab_sysfs_init);
5737 #endif /* CONFIG_SYSFS */
5738 
5739 /*
5740  * The /proc/slabinfo ABI
5741  */
5742 #ifdef CONFIG_SLUB_DEBUG
5743 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5744 {
5745 	unsigned long nr_slabs = 0;
5746 	unsigned long nr_objs = 0;
5747 	unsigned long nr_free = 0;
5748 	int node;
5749 	struct kmem_cache_node *n;
5750 
5751 	for_each_kmem_cache_node(s, node, n) {
5752 		nr_slabs += node_nr_slabs(n);
5753 		nr_objs += node_nr_objs(n);
5754 		nr_free += count_partial(n, count_free);
5755 	}
5756 
5757 	sinfo->active_objs = nr_objs - nr_free;
5758 	sinfo->num_objs = nr_objs;
5759 	sinfo->active_slabs = nr_slabs;
5760 	sinfo->num_slabs = nr_slabs;
5761 	sinfo->objects_per_slab = oo_objects(s->oo);
5762 	sinfo->cache_order = oo_order(s->oo);
5763 }
5764 
5765 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5766 {
5767 }
5768 
5769 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5770 		       size_t count, loff_t *ppos)
5771 {
5772 	return -EIO;
5773 }
5774 #endif /* CONFIG_SLUB_DEBUG */
5775