xref: /openbmc/linux/mm/slub.c (revision 664a722b)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects the second
55  *   double word in the page struct. Meaning
56  *	A. page->freelist	-> List of object free in a page
57  *	B. page->counters	-> Counters of objects
58  *	C. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list. The processor that froze the slab is the one who can
62  *   perform list operations on the page. Other processors may put objects
63  *   onto the freelist but the processor that froze the slab is the only
64  *   one that can retrieve the objects from the page's freelist.
65  *
66  *   The list_lock protects the partial and full list on each node and
67  *   the partial slab counter. If taken then no new slabs may be added or
68  *   removed from the lists nor make the number of partial slabs be modified.
69  *   (Note that the total number of slabs is an atomic value that may be
70  *   modified without taking the list lock).
71  *
72  *   The list_lock is a centralized lock and thus we avoid taking it as
73  *   much as possible. As long as SLUB does not have to handle partial
74  *   slabs, operations can continue without any centralized lock. F.e.
75  *   allocating a long series of objects that fill up slabs does not require
76  *   the list lock.
77  *   Interrupts are disabled during allocation and deallocation in order to
78  *   make the slab allocator safe to use in the context of an irq. In addition
79  *   interrupts are disabled to ensure that the processor does not change
80  *   while handling per_cpu slabs, due to kernel preemption.
81  *
82  * SLUB assigns one slab for allocation to each processor.
83  * Allocations only occur from these slabs called cpu slabs.
84  *
85  * Slabs with free elements are kept on a partial list and during regular
86  * operations no list for full slabs is used. If an object in a full slab is
87  * freed then the slab will show up again on the partial lists.
88  * We track full slabs for debugging purposes though because otherwise we
89  * cannot scan all objects.
90  *
91  * Slabs are freed when they become empty. Teardown and setup is
92  * minimal so we rely on the page allocators per cpu caches for
93  * fast frees and allocs.
94  *
95  * Overloading of page flags that are otherwise used for LRU management.
96  *
97  * PageActive 		The slab is frozen and exempt from list processing.
98  * 			This means that the slab is dedicated to a purpose
99  * 			such as satisfying allocations for a specific
100  * 			processor. Objects may be freed in the slab while
101  * 			it is frozen but slab_free will then skip the usual
102  * 			list operations. It is up to the processor holding
103  * 			the slab to integrate the slab into the slab lists
104  * 			when the slab is no longer needed.
105  *
106  * 			One use of this flag is to mark slabs that are
107  * 			used for allocations. Then such a slab becomes a cpu
108  * 			slab. The cpu slab may be equipped with an additional
109  * 			freelist that allows lockless access to
110  * 			free objects in addition to the regular freelist
111  * 			that requires the slab lock.
112  *
113  * PageError		Slab requires special handling due to debug
114  * 			options set. This moves	slab handling out of
115  * 			the fast path and disables lockless freelists.
116  */
117 
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 	return 0;
124 #endif
125 }
126 
127 void *fixup_red_left(struct kmem_cache *s, void *p)
128 {
129 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 		p += s->red_left_pad;
131 
132 	return p;
133 }
134 
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136 {
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 	return !kmem_cache_debug(s);
139 #else
140 	return false;
141 #endif
142 }
143 
144 /*
145  * Issues still to be resolved:
146  *
147  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148  *
149  * - Variable sizing of the per node arrays
150  */
151 
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
154 
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
157 
158 /*
159  * Mininum number of partial slabs. These will be left on the partial
160  * lists even if they are empty. kmem_cache_shrink may reclaim them.
161  */
162 #define MIN_PARTIAL 5
163 
164 /*
165  * Maximum number of desirable partial slabs.
166  * The existence of more partial slabs makes kmem_cache_shrink
167  * sort the partial list by the number of objects in use.
168  */
169 #define MAX_PARTIAL 10
170 
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 				SLAB_POISON | SLAB_STORE_USER)
173 
174 /*
175  * These debug flags cannot use CMPXCHG because there might be consistency
176  * issues when checking or reading debug information
177  */
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 				SLAB_TRACE)
180 
181 
182 /*
183  * Debugging flags that require metadata to be stored in the slab.  These get
184  * disabled when slub_debug=O is used and a cache's min order increases with
185  * metadata.
186  */
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188 
189 #define OO_SHIFT	16
190 #define OO_MASK		((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
192 
193 /* Internal SLUB flags */
194 #define __OBJECT_POISON		0x80000000UL /* Poison object */
195 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
196 
197 /*
198  * Tracking user of a slab.
199  */
200 #define TRACK_ADDRS_COUNT 16
201 struct track {
202 	unsigned long addr;	/* Called from address */
203 #ifdef CONFIG_STACKTRACE
204 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
205 #endif
206 	int cpu;		/* Was running on cpu */
207 	int pid;		/* Pid context */
208 	unsigned long when;	/* When did the operation occur */
209 };
210 
211 enum track_item { TRACK_ALLOC, TRACK_FREE };
212 
213 #ifdef CONFIG_SYSFS
214 static int sysfs_slab_add(struct kmem_cache *);
215 static int sysfs_slab_alias(struct kmem_cache *, const char *);
216 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
217 #else
218 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220 							{ return 0; }
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
222 #endif
223 
224 static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 {
226 #ifdef CONFIG_SLUB_STATS
227 	/*
228 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
229 	 * avoid this_cpu_add()'s irq-disable overhead.
230 	 */
231 	raw_cpu_inc(s->cpu_slab->stat[si]);
232 #endif
233 }
234 
235 /********************************************************************
236  * 			Core slab cache functions
237  *******************************************************************/
238 
239 static inline void *get_freepointer(struct kmem_cache *s, void *object)
240 {
241 	return *(void **)(object + s->offset);
242 }
243 
244 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
245 {
246 	prefetch(object + s->offset);
247 }
248 
249 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
250 {
251 	void *p;
252 
253 	if (!debug_pagealloc_enabled())
254 		return get_freepointer(s, object);
255 
256 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
257 	return p;
258 }
259 
260 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
261 {
262 	*(void **)(object + s->offset) = fp;
263 }
264 
265 /* Loop over all objects in a slab */
266 #define for_each_object(__p, __s, __addr, __objects) \
267 	for (__p = fixup_red_left(__s, __addr); \
268 		__p < (__addr) + (__objects) * (__s)->size; \
269 		__p += (__s)->size)
270 
271 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
272 	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
273 		__idx <= __objects; \
274 		__p += (__s)->size, __idx++)
275 
276 /* Determine object index from a given position */
277 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
278 {
279 	return (p - addr) / s->size;
280 }
281 
282 static inline int order_objects(int order, unsigned long size, int reserved)
283 {
284 	return ((PAGE_SIZE << order) - reserved) / size;
285 }
286 
287 static inline struct kmem_cache_order_objects oo_make(int order,
288 		unsigned long size, int reserved)
289 {
290 	struct kmem_cache_order_objects x = {
291 		(order << OO_SHIFT) + order_objects(order, size, reserved)
292 	};
293 
294 	return x;
295 }
296 
297 static inline int oo_order(struct kmem_cache_order_objects x)
298 {
299 	return x.x >> OO_SHIFT;
300 }
301 
302 static inline int oo_objects(struct kmem_cache_order_objects x)
303 {
304 	return x.x & OO_MASK;
305 }
306 
307 /*
308  * Per slab locking using the pagelock
309  */
310 static __always_inline void slab_lock(struct page *page)
311 {
312 	VM_BUG_ON_PAGE(PageTail(page), page);
313 	bit_spin_lock(PG_locked, &page->flags);
314 }
315 
316 static __always_inline void slab_unlock(struct page *page)
317 {
318 	VM_BUG_ON_PAGE(PageTail(page), page);
319 	__bit_spin_unlock(PG_locked, &page->flags);
320 }
321 
322 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
323 {
324 	struct page tmp;
325 	tmp.counters = counters_new;
326 	/*
327 	 * page->counters can cover frozen/inuse/objects as well
328 	 * as page->_refcount.  If we assign to ->counters directly
329 	 * we run the risk of losing updates to page->_refcount, so
330 	 * be careful and only assign to the fields we need.
331 	 */
332 	page->frozen  = tmp.frozen;
333 	page->inuse   = tmp.inuse;
334 	page->objects = tmp.objects;
335 }
336 
337 /* Interrupts must be disabled (for the fallback code to work right) */
338 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
339 		void *freelist_old, unsigned long counters_old,
340 		void *freelist_new, unsigned long counters_new,
341 		const char *n)
342 {
343 	VM_BUG_ON(!irqs_disabled());
344 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
345     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
346 	if (s->flags & __CMPXCHG_DOUBLE) {
347 		if (cmpxchg_double(&page->freelist, &page->counters,
348 				   freelist_old, counters_old,
349 				   freelist_new, counters_new))
350 			return true;
351 	} else
352 #endif
353 	{
354 		slab_lock(page);
355 		if (page->freelist == freelist_old &&
356 					page->counters == counters_old) {
357 			page->freelist = freelist_new;
358 			set_page_slub_counters(page, counters_new);
359 			slab_unlock(page);
360 			return true;
361 		}
362 		slab_unlock(page);
363 	}
364 
365 	cpu_relax();
366 	stat(s, CMPXCHG_DOUBLE_FAIL);
367 
368 #ifdef SLUB_DEBUG_CMPXCHG
369 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
370 #endif
371 
372 	return false;
373 }
374 
375 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 		void *freelist_old, unsigned long counters_old,
377 		void *freelist_new, unsigned long counters_new,
378 		const char *n)
379 {
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 	if (s->flags & __CMPXCHG_DOUBLE) {
383 		if (cmpxchg_double(&page->freelist, &page->counters,
384 				   freelist_old, counters_old,
385 				   freelist_new, counters_new))
386 			return true;
387 	} else
388 #endif
389 	{
390 		unsigned long flags;
391 
392 		local_irq_save(flags);
393 		slab_lock(page);
394 		if (page->freelist == freelist_old &&
395 					page->counters == counters_old) {
396 			page->freelist = freelist_new;
397 			set_page_slub_counters(page, counters_new);
398 			slab_unlock(page);
399 			local_irq_restore(flags);
400 			return true;
401 		}
402 		slab_unlock(page);
403 		local_irq_restore(flags);
404 	}
405 
406 	cpu_relax();
407 	stat(s, CMPXCHG_DOUBLE_FAIL);
408 
409 #ifdef SLUB_DEBUG_CMPXCHG
410 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
411 #endif
412 
413 	return false;
414 }
415 
416 #ifdef CONFIG_SLUB_DEBUG
417 /*
418  * Determine a map of object in use on a page.
419  *
420  * Node listlock must be held to guarantee that the page does
421  * not vanish from under us.
422  */
423 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
424 {
425 	void *p;
426 	void *addr = page_address(page);
427 
428 	for (p = page->freelist; p; p = get_freepointer(s, p))
429 		set_bit(slab_index(p, s, addr), map);
430 }
431 
432 static inline int size_from_object(struct kmem_cache *s)
433 {
434 	if (s->flags & SLAB_RED_ZONE)
435 		return s->size - s->red_left_pad;
436 
437 	return s->size;
438 }
439 
440 static inline void *restore_red_left(struct kmem_cache *s, void *p)
441 {
442 	if (s->flags & SLAB_RED_ZONE)
443 		p -= s->red_left_pad;
444 
445 	return p;
446 }
447 
448 /*
449  * Debug settings:
450  */
451 #if defined(CONFIG_SLUB_DEBUG_ON)
452 static int slub_debug = DEBUG_DEFAULT_FLAGS;
453 #else
454 static int slub_debug;
455 #endif
456 
457 static char *slub_debug_slabs;
458 static int disable_higher_order_debug;
459 
460 /*
461  * slub is about to manipulate internal object metadata.  This memory lies
462  * outside the range of the allocated object, so accessing it would normally
463  * be reported by kasan as a bounds error.  metadata_access_enable() is used
464  * to tell kasan that these accesses are OK.
465  */
466 static inline void metadata_access_enable(void)
467 {
468 	kasan_disable_current();
469 }
470 
471 static inline void metadata_access_disable(void)
472 {
473 	kasan_enable_current();
474 }
475 
476 /*
477  * Object debugging
478  */
479 
480 /* Verify that a pointer has an address that is valid within a slab page */
481 static inline int check_valid_pointer(struct kmem_cache *s,
482 				struct page *page, void *object)
483 {
484 	void *base;
485 
486 	if (!object)
487 		return 1;
488 
489 	base = page_address(page);
490 	object = restore_red_left(s, object);
491 	if (object < base || object >= base + page->objects * s->size ||
492 		(object - base) % s->size) {
493 		return 0;
494 	}
495 
496 	return 1;
497 }
498 
499 static void print_section(char *level, char *text, u8 *addr,
500 			  unsigned int length)
501 {
502 	metadata_access_enable();
503 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
504 			length, 1);
505 	metadata_access_disable();
506 }
507 
508 static struct track *get_track(struct kmem_cache *s, void *object,
509 	enum track_item alloc)
510 {
511 	struct track *p;
512 
513 	if (s->offset)
514 		p = object + s->offset + sizeof(void *);
515 	else
516 		p = object + s->inuse;
517 
518 	return p + alloc;
519 }
520 
521 static void set_track(struct kmem_cache *s, void *object,
522 			enum track_item alloc, unsigned long addr)
523 {
524 	struct track *p = get_track(s, object, alloc);
525 
526 	if (addr) {
527 #ifdef CONFIG_STACKTRACE
528 		struct stack_trace trace;
529 		int i;
530 
531 		trace.nr_entries = 0;
532 		trace.max_entries = TRACK_ADDRS_COUNT;
533 		trace.entries = p->addrs;
534 		trace.skip = 3;
535 		metadata_access_enable();
536 		save_stack_trace(&trace);
537 		metadata_access_disable();
538 
539 		/* See rant in lockdep.c */
540 		if (trace.nr_entries != 0 &&
541 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
542 			trace.nr_entries--;
543 
544 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
545 			p->addrs[i] = 0;
546 #endif
547 		p->addr = addr;
548 		p->cpu = smp_processor_id();
549 		p->pid = current->pid;
550 		p->when = jiffies;
551 	} else
552 		memset(p, 0, sizeof(struct track));
553 }
554 
555 static void init_tracking(struct kmem_cache *s, void *object)
556 {
557 	if (!(s->flags & SLAB_STORE_USER))
558 		return;
559 
560 	set_track(s, object, TRACK_FREE, 0UL);
561 	set_track(s, object, TRACK_ALLOC, 0UL);
562 }
563 
564 static void print_track(const char *s, struct track *t)
565 {
566 	if (!t->addr)
567 		return;
568 
569 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
570 	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
571 #ifdef CONFIG_STACKTRACE
572 	{
573 		int i;
574 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
575 			if (t->addrs[i])
576 				pr_err("\t%pS\n", (void *)t->addrs[i]);
577 			else
578 				break;
579 	}
580 #endif
581 }
582 
583 static void print_tracking(struct kmem_cache *s, void *object)
584 {
585 	if (!(s->flags & SLAB_STORE_USER))
586 		return;
587 
588 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
589 	print_track("Freed", get_track(s, object, TRACK_FREE));
590 }
591 
592 static void print_page_info(struct page *page)
593 {
594 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
595 	       page, page->objects, page->inuse, page->freelist, page->flags);
596 
597 }
598 
599 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
600 {
601 	struct va_format vaf;
602 	va_list args;
603 
604 	va_start(args, fmt);
605 	vaf.fmt = fmt;
606 	vaf.va = &args;
607 	pr_err("=============================================================================\n");
608 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
609 	pr_err("-----------------------------------------------------------------------------\n\n");
610 
611 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
612 	va_end(args);
613 }
614 
615 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
616 {
617 	struct va_format vaf;
618 	va_list args;
619 
620 	va_start(args, fmt);
621 	vaf.fmt = fmt;
622 	vaf.va = &args;
623 	pr_err("FIX %s: %pV\n", s->name, &vaf);
624 	va_end(args);
625 }
626 
627 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
628 {
629 	unsigned int off;	/* Offset of last byte */
630 	u8 *addr = page_address(page);
631 
632 	print_tracking(s, p);
633 
634 	print_page_info(page);
635 
636 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
637 	       p, p - addr, get_freepointer(s, p));
638 
639 	if (s->flags & SLAB_RED_ZONE)
640 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
641 			      s->red_left_pad);
642 	else if (p > addr + 16)
643 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
644 
645 	print_section(KERN_ERR, "Object ", p,
646 		      min_t(unsigned long, s->object_size, PAGE_SIZE));
647 	if (s->flags & SLAB_RED_ZONE)
648 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
649 			s->inuse - s->object_size);
650 
651 	if (s->offset)
652 		off = s->offset + sizeof(void *);
653 	else
654 		off = s->inuse;
655 
656 	if (s->flags & SLAB_STORE_USER)
657 		off += 2 * sizeof(struct track);
658 
659 	off += kasan_metadata_size(s);
660 
661 	if (off != size_from_object(s))
662 		/* Beginning of the filler is the free pointer */
663 		print_section(KERN_ERR, "Padding ", p + off,
664 			      size_from_object(s) - off);
665 
666 	dump_stack();
667 }
668 
669 void object_err(struct kmem_cache *s, struct page *page,
670 			u8 *object, char *reason)
671 {
672 	slab_bug(s, "%s", reason);
673 	print_trailer(s, page, object);
674 }
675 
676 static void slab_err(struct kmem_cache *s, struct page *page,
677 			const char *fmt, ...)
678 {
679 	va_list args;
680 	char buf[100];
681 
682 	va_start(args, fmt);
683 	vsnprintf(buf, sizeof(buf), fmt, args);
684 	va_end(args);
685 	slab_bug(s, "%s", buf);
686 	print_page_info(page);
687 	dump_stack();
688 }
689 
690 static void init_object(struct kmem_cache *s, void *object, u8 val)
691 {
692 	u8 *p = object;
693 
694 	if (s->flags & SLAB_RED_ZONE)
695 		memset(p - s->red_left_pad, val, s->red_left_pad);
696 
697 	if (s->flags & __OBJECT_POISON) {
698 		memset(p, POISON_FREE, s->object_size - 1);
699 		p[s->object_size - 1] = POISON_END;
700 	}
701 
702 	if (s->flags & SLAB_RED_ZONE)
703 		memset(p + s->object_size, val, s->inuse - s->object_size);
704 }
705 
706 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
707 						void *from, void *to)
708 {
709 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
710 	memset(from, data, to - from);
711 }
712 
713 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
714 			u8 *object, char *what,
715 			u8 *start, unsigned int value, unsigned int bytes)
716 {
717 	u8 *fault;
718 	u8 *end;
719 
720 	metadata_access_enable();
721 	fault = memchr_inv(start, value, bytes);
722 	metadata_access_disable();
723 	if (!fault)
724 		return 1;
725 
726 	end = start + bytes;
727 	while (end > fault && end[-1] == value)
728 		end--;
729 
730 	slab_bug(s, "%s overwritten", what);
731 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
732 					fault, end - 1, fault[0], value);
733 	print_trailer(s, page, object);
734 
735 	restore_bytes(s, what, value, fault, end);
736 	return 0;
737 }
738 
739 /*
740  * Object layout:
741  *
742  * object address
743  * 	Bytes of the object to be managed.
744  * 	If the freepointer may overlay the object then the free
745  * 	pointer is the first word of the object.
746  *
747  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
748  * 	0xa5 (POISON_END)
749  *
750  * object + s->object_size
751  * 	Padding to reach word boundary. This is also used for Redzoning.
752  * 	Padding is extended by another word if Redzoning is enabled and
753  * 	object_size == inuse.
754  *
755  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
756  * 	0xcc (RED_ACTIVE) for objects in use.
757  *
758  * object + s->inuse
759  * 	Meta data starts here.
760  *
761  * 	A. Free pointer (if we cannot overwrite object on free)
762  * 	B. Tracking data for SLAB_STORE_USER
763  * 	C. Padding to reach required alignment boundary or at mininum
764  * 		one word if debugging is on to be able to detect writes
765  * 		before the word boundary.
766  *
767  *	Padding is done using 0x5a (POISON_INUSE)
768  *
769  * object + s->size
770  * 	Nothing is used beyond s->size.
771  *
772  * If slabcaches are merged then the object_size and inuse boundaries are mostly
773  * ignored. And therefore no slab options that rely on these boundaries
774  * may be used with merged slabcaches.
775  */
776 
777 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
778 {
779 	unsigned long off = s->inuse;	/* The end of info */
780 
781 	if (s->offset)
782 		/* Freepointer is placed after the object. */
783 		off += sizeof(void *);
784 
785 	if (s->flags & SLAB_STORE_USER)
786 		/* We also have user information there */
787 		off += 2 * sizeof(struct track);
788 
789 	off += kasan_metadata_size(s);
790 
791 	if (size_from_object(s) == off)
792 		return 1;
793 
794 	return check_bytes_and_report(s, page, p, "Object padding",
795 			p + off, POISON_INUSE, size_from_object(s) - off);
796 }
797 
798 /* Check the pad bytes at the end of a slab page */
799 static int slab_pad_check(struct kmem_cache *s, struct page *page)
800 {
801 	u8 *start;
802 	u8 *fault;
803 	u8 *end;
804 	int length;
805 	int remainder;
806 
807 	if (!(s->flags & SLAB_POISON))
808 		return 1;
809 
810 	start = page_address(page);
811 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
812 	end = start + length;
813 	remainder = length % s->size;
814 	if (!remainder)
815 		return 1;
816 
817 	metadata_access_enable();
818 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
819 	metadata_access_disable();
820 	if (!fault)
821 		return 1;
822 	while (end > fault && end[-1] == POISON_INUSE)
823 		end--;
824 
825 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
826 	print_section(KERN_ERR, "Padding ", end - remainder, remainder);
827 
828 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
829 	return 0;
830 }
831 
832 static int check_object(struct kmem_cache *s, struct page *page,
833 					void *object, u8 val)
834 {
835 	u8 *p = object;
836 	u8 *endobject = object + s->object_size;
837 
838 	if (s->flags & SLAB_RED_ZONE) {
839 		if (!check_bytes_and_report(s, page, object, "Redzone",
840 			object - s->red_left_pad, val, s->red_left_pad))
841 			return 0;
842 
843 		if (!check_bytes_and_report(s, page, object, "Redzone",
844 			endobject, val, s->inuse - s->object_size))
845 			return 0;
846 	} else {
847 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
848 			check_bytes_and_report(s, page, p, "Alignment padding",
849 				endobject, POISON_INUSE,
850 				s->inuse - s->object_size);
851 		}
852 	}
853 
854 	if (s->flags & SLAB_POISON) {
855 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
856 			(!check_bytes_and_report(s, page, p, "Poison", p,
857 					POISON_FREE, s->object_size - 1) ||
858 			 !check_bytes_and_report(s, page, p, "Poison",
859 				p + s->object_size - 1, POISON_END, 1)))
860 			return 0;
861 		/*
862 		 * check_pad_bytes cleans up on its own.
863 		 */
864 		check_pad_bytes(s, page, p);
865 	}
866 
867 	if (!s->offset && val == SLUB_RED_ACTIVE)
868 		/*
869 		 * Object and freepointer overlap. Cannot check
870 		 * freepointer while object is allocated.
871 		 */
872 		return 1;
873 
874 	/* Check free pointer validity */
875 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
876 		object_err(s, page, p, "Freepointer corrupt");
877 		/*
878 		 * No choice but to zap it and thus lose the remainder
879 		 * of the free objects in this slab. May cause
880 		 * another error because the object count is now wrong.
881 		 */
882 		set_freepointer(s, p, NULL);
883 		return 0;
884 	}
885 	return 1;
886 }
887 
888 static int check_slab(struct kmem_cache *s, struct page *page)
889 {
890 	int maxobj;
891 
892 	VM_BUG_ON(!irqs_disabled());
893 
894 	if (!PageSlab(page)) {
895 		slab_err(s, page, "Not a valid slab page");
896 		return 0;
897 	}
898 
899 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
900 	if (page->objects > maxobj) {
901 		slab_err(s, page, "objects %u > max %u",
902 			page->objects, maxobj);
903 		return 0;
904 	}
905 	if (page->inuse > page->objects) {
906 		slab_err(s, page, "inuse %u > max %u",
907 			page->inuse, page->objects);
908 		return 0;
909 	}
910 	/* Slab_pad_check fixes things up after itself */
911 	slab_pad_check(s, page);
912 	return 1;
913 }
914 
915 /*
916  * Determine if a certain object on a page is on the freelist. Must hold the
917  * slab lock to guarantee that the chains are in a consistent state.
918  */
919 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
920 {
921 	int nr = 0;
922 	void *fp;
923 	void *object = NULL;
924 	int max_objects;
925 
926 	fp = page->freelist;
927 	while (fp && nr <= page->objects) {
928 		if (fp == search)
929 			return 1;
930 		if (!check_valid_pointer(s, page, fp)) {
931 			if (object) {
932 				object_err(s, page, object,
933 					"Freechain corrupt");
934 				set_freepointer(s, object, NULL);
935 			} else {
936 				slab_err(s, page, "Freepointer corrupt");
937 				page->freelist = NULL;
938 				page->inuse = page->objects;
939 				slab_fix(s, "Freelist cleared");
940 				return 0;
941 			}
942 			break;
943 		}
944 		object = fp;
945 		fp = get_freepointer(s, object);
946 		nr++;
947 	}
948 
949 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
950 	if (max_objects > MAX_OBJS_PER_PAGE)
951 		max_objects = MAX_OBJS_PER_PAGE;
952 
953 	if (page->objects != max_objects) {
954 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
955 			 page->objects, max_objects);
956 		page->objects = max_objects;
957 		slab_fix(s, "Number of objects adjusted.");
958 	}
959 	if (page->inuse != page->objects - nr) {
960 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
961 			 page->inuse, page->objects - nr);
962 		page->inuse = page->objects - nr;
963 		slab_fix(s, "Object count adjusted.");
964 	}
965 	return search == NULL;
966 }
967 
968 static void trace(struct kmem_cache *s, struct page *page, void *object,
969 								int alloc)
970 {
971 	if (s->flags & SLAB_TRACE) {
972 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
973 			s->name,
974 			alloc ? "alloc" : "free",
975 			object, page->inuse,
976 			page->freelist);
977 
978 		if (!alloc)
979 			print_section(KERN_INFO, "Object ", (void *)object,
980 					s->object_size);
981 
982 		dump_stack();
983 	}
984 }
985 
986 /*
987  * Tracking of fully allocated slabs for debugging purposes.
988  */
989 static void add_full(struct kmem_cache *s,
990 	struct kmem_cache_node *n, struct page *page)
991 {
992 	if (!(s->flags & SLAB_STORE_USER))
993 		return;
994 
995 	lockdep_assert_held(&n->list_lock);
996 	list_add(&page->lru, &n->full);
997 }
998 
999 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1000 {
1001 	if (!(s->flags & SLAB_STORE_USER))
1002 		return;
1003 
1004 	lockdep_assert_held(&n->list_lock);
1005 	list_del(&page->lru);
1006 }
1007 
1008 /* Tracking of the number of slabs for debugging purposes */
1009 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1010 {
1011 	struct kmem_cache_node *n = get_node(s, node);
1012 
1013 	return atomic_long_read(&n->nr_slabs);
1014 }
1015 
1016 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1017 {
1018 	return atomic_long_read(&n->nr_slabs);
1019 }
1020 
1021 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1022 {
1023 	struct kmem_cache_node *n = get_node(s, node);
1024 
1025 	/*
1026 	 * May be called early in order to allocate a slab for the
1027 	 * kmem_cache_node structure. Solve the chicken-egg
1028 	 * dilemma by deferring the increment of the count during
1029 	 * bootstrap (see early_kmem_cache_node_alloc).
1030 	 */
1031 	if (likely(n)) {
1032 		atomic_long_inc(&n->nr_slabs);
1033 		atomic_long_add(objects, &n->total_objects);
1034 	}
1035 }
1036 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1037 {
1038 	struct kmem_cache_node *n = get_node(s, node);
1039 
1040 	atomic_long_dec(&n->nr_slabs);
1041 	atomic_long_sub(objects, &n->total_objects);
1042 }
1043 
1044 /* Object debug checks for alloc/free paths */
1045 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1046 								void *object)
1047 {
1048 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1049 		return;
1050 
1051 	init_object(s, object, SLUB_RED_INACTIVE);
1052 	init_tracking(s, object);
1053 }
1054 
1055 static inline int alloc_consistency_checks(struct kmem_cache *s,
1056 					struct page *page,
1057 					void *object, unsigned long addr)
1058 {
1059 	if (!check_slab(s, page))
1060 		return 0;
1061 
1062 	if (!check_valid_pointer(s, page, object)) {
1063 		object_err(s, page, object, "Freelist Pointer check fails");
1064 		return 0;
1065 	}
1066 
1067 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1068 		return 0;
1069 
1070 	return 1;
1071 }
1072 
1073 static noinline int alloc_debug_processing(struct kmem_cache *s,
1074 					struct page *page,
1075 					void *object, unsigned long addr)
1076 {
1077 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1078 		if (!alloc_consistency_checks(s, page, object, addr))
1079 			goto bad;
1080 	}
1081 
1082 	/* Success perform special debug activities for allocs */
1083 	if (s->flags & SLAB_STORE_USER)
1084 		set_track(s, object, TRACK_ALLOC, addr);
1085 	trace(s, page, object, 1);
1086 	init_object(s, object, SLUB_RED_ACTIVE);
1087 	return 1;
1088 
1089 bad:
1090 	if (PageSlab(page)) {
1091 		/*
1092 		 * If this is a slab page then lets do the best we can
1093 		 * to avoid issues in the future. Marking all objects
1094 		 * as used avoids touching the remaining objects.
1095 		 */
1096 		slab_fix(s, "Marking all objects used");
1097 		page->inuse = page->objects;
1098 		page->freelist = NULL;
1099 	}
1100 	return 0;
1101 }
1102 
1103 static inline int free_consistency_checks(struct kmem_cache *s,
1104 		struct page *page, void *object, unsigned long addr)
1105 {
1106 	if (!check_valid_pointer(s, page, object)) {
1107 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1108 		return 0;
1109 	}
1110 
1111 	if (on_freelist(s, page, object)) {
1112 		object_err(s, page, object, "Object already free");
1113 		return 0;
1114 	}
1115 
1116 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1117 		return 0;
1118 
1119 	if (unlikely(s != page->slab_cache)) {
1120 		if (!PageSlab(page)) {
1121 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1122 				 object);
1123 		} else if (!page->slab_cache) {
1124 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1125 			       object);
1126 			dump_stack();
1127 		} else
1128 			object_err(s, page, object,
1129 					"page slab pointer corrupt.");
1130 		return 0;
1131 	}
1132 	return 1;
1133 }
1134 
1135 /* Supports checking bulk free of a constructed freelist */
1136 static noinline int free_debug_processing(
1137 	struct kmem_cache *s, struct page *page,
1138 	void *head, void *tail, int bulk_cnt,
1139 	unsigned long addr)
1140 {
1141 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1142 	void *object = head;
1143 	int cnt = 0;
1144 	unsigned long uninitialized_var(flags);
1145 	int ret = 0;
1146 
1147 	spin_lock_irqsave(&n->list_lock, flags);
1148 	slab_lock(page);
1149 
1150 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1151 		if (!check_slab(s, page))
1152 			goto out;
1153 	}
1154 
1155 next_object:
1156 	cnt++;
1157 
1158 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1159 		if (!free_consistency_checks(s, page, object, addr))
1160 			goto out;
1161 	}
1162 
1163 	if (s->flags & SLAB_STORE_USER)
1164 		set_track(s, object, TRACK_FREE, addr);
1165 	trace(s, page, object, 0);
1166 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1167 	init_object(s, object, SLUB_RED_INACTIVE);
1168 
1169 	/* Reached end of constructed freelist yet? */
1170 	if (object != tail) {
1171 		object = get_freepointer(s, object);
1172 		goto next_object;
1173 	}
1174 	ret = 1;
1175 
1176 out:
1177 	if (cnt != bulk_cnt)
1178 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1179 			 bulk_cnt, cnt);
1180 
1181 	slab_unlock(page);
1182 	spin_unlock_irqrestore(&n->list_lock, flags);
1183 	if (!ret)
1184 		slab_fix(s, "Object at 0x%p not freed", object);
1185 	return ret;
1186 }
1187 
1188 static int __init setup_slub_debug(char *str)
1189 {
1190 	slub_debug = DEBUG_DEFAULT_FLAGS;
1191 	if (*str++ != '=' || !*str)
1192 		/*
1193 		 * No options specified. Switch on full debugging.
1194 		 */
1195 		goto out;
1196 
1197 	if (*str == ',')
1198 		/*
1199 		 * No options but restriction on slabs. This means full
1200 		 * debugging for slabs matching a pattern.
1201 		 */
1202 		goto check_slabs;
1203 
1204 	slub_debug = 0;
1205 	if (*str == '-')
1206 		/*
1207 		 * Switch off all debugging measures.
1208 		 */
1209 		goto out;
1210 
1211 	/*
1212 	 * Determine which debug features should be switched on
1213 	 */
1214 	for (; *str && *str != ','; str++) {
1215 		switch (tolower(*str)) {
1216 		case 'f':
1217 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1218 			break;
1219 		case 'z':
1220 			slub_debug |= SLAB_RED_ZONE;
1221 			break;
1222 		case 'p':
1223 			slub_debug |= SLAB_POISON;
1224 			break;
1225 		case 'u':
1226 			slub_debug |= SLAB_STORE_USER;
1227 			break;
1228 		case 't':
1229 			slub_debug |= SLAB_TRACE;
1230 			break;
1231 		case 'a':
1232 			slub_debug |= SLAB_FAILSLAB;
1233 			break;
1234 		case 'o':
1235 			/*
1236 			 * Avoid enabling debugging on caches if its minimum
1237 			 * order would increase as a result.
1238 			 */
1239 			disable_higher_order_debug = 1;
1240 			break;
1241 		default:
1242 			pr_err("slub_debug option '%c' unknown. skipped\n",
1243 			       *str);
1244 		}
1245 	}
1246 
1247 check_slabs:
1248 	if (*str == ',')
1249 		slub_debug_slabs = str + 1;
1250 out:
1251 	return 1;
1252 }
1253 
1254 __setup("slub_debug", setup_slub_debug);
1255 
1256 unsigned long kmem_cache_flags(unsigned long object_size,
1257 	unsigned long flags, const char *name,
1258 	void (*ctor)(void *))
1259 {
1260 	/*
1261 	 * Enable debugging if selected on the kernel commandline.
1262 	 */
1263 	if (slub_debug && (!slub_debug_slabs || (name &&
1264 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1265 		flags |= slub_debug;
1266 
1267 	return flags;
1268 }
1269 #else /* !CONFIG_SLUB_DEBUG */
1270 static inline void setup_object_debug(struct kmem_cache *s,
1271 			struct page *page, void *object) {}
1272 
1273 static inline int alloc_debug_processing(struct kmem_cache *s,
1274 	struct page *page, void *object, unsigned long addr) { return 0; }
1275 
1276 static inline int free_debug_processing(
1277 	struct kmem_cache *s, struct page *page,
1278 	void *head, void *tail, int bulk_cnt,
1279 	unsigned long addr) { return 0; }
1280 
1281 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1282 			{ return 1; }
1283 static inline int check_object(struct kmem_cache *s, struct page *page,
1284 			void *object, u8 val) { return 1; }
1285 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1286 					struct page *page) {}
1287 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1288 					struct page *page) {}
1289 unsigned long kmem_cache_flags(unsigned long object_size,
1290 	unsigned long flags, const char *name,
1291 	void (*ctor)(void *))
1292 {
1293 	return flags;
1294 }
1295 #define slub_debug 0
1296 
1297 #define disable_higher_order_debug 0
1298 
1299 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1300 							{ return 0; }
1301 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1302 							{ return 0; }
1303 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1304 							int objects) {}
1305 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1306 							int objects) {}
1307 
1308 #endif /* CONFIG_SLUB_DEBUG */
1309 
1310 /*
1311  * Hooks for other subsystems that check memory allocations. In a typical
1312  * production configuration these hooks all should produce no code at all.
1313  */
1314 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1315 {
1316 	kmemleak_alloc(ptr, size, 1, flags);
1317 	kasan_kmalloc_large(ptr, size, flags);
1318 }
1319 
1320 static inline void kfree_hook(const void *x)
1321 {
1322 	kmemleak_free(x);
1323 	kasan_kfree_large(x);
1324 }
1325 
1326 static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1327 {
1328 	void *freeptr;
1329 
1330 	kmemleak_free_recursive(x, s->flags);
1331 
1332 	/*
1333 	 * Trouble is that we may no longer disable interrupts in the fast path
1334 	 * So in order to make the debug calls that expect irqs to be
1335 	 * disabled we need to disable interrupts temporarily.
1336 	 */
1337 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1338 	{
1339 		unsigned long flags;
1340 
1341 		local_irq_save(flags);
1342 		kmemcheck_slab_free(s, x, s->object_size);
1343 		debug_check_no_locks_freed(x, s->object_size);
1344 		local_irq_restore(flags);
1345 	}
1346 #endif
1347 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1348 		debug_check_no_obj_freed(x, s->object_size);
1349 
1350 	freeptr = get_freepointer(s, x);
1351 	/*
1352 	 * kasan_slab_free() may put x into memory quarantine, delaying its
1353 	 * reuse. In this case the object's freelist pointer is changed.
1354 	 */
1355 	kasan_slab_free(s, x);
1356 	return freeptr;
1357 }
1358 
1359 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1360 					   void *head, void *tail)
1361 {
1362 /*
1363  * Compiler cannot detect this function can be removed if slab_free_hook()
1364  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1365  */
1366 #if defined(CONFIG_KMEMCHECK) ||		\
1367 	defined(CONFIG_LOCKDEP)	||		\
1368 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1369 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1370 	defined(CONFIG_KASAN)
1371 
1372 	void *object = head;
1373 	void *tail_obj = tail ? : head;
1374 	void *freeptr;
1375 
1376 	do {
1377 		freeptr = slab_free_hook(s, object);
1378 	} while ((object != tail_obj) && (object = freeptr));
1379 #endif
1380 }
1381 
1382 static void setup_object(struct kmem_cache *s, struct page *page,
1383 				void *object)
1384 {
1385 	setup_object_debug(s, page, object);
1386 	kasan_init_slab_obj(s, object);
1387 	if (unlikely(s->ctor)) {
1388 		kasan_unpoison_object_data(s, object);
1389 		s->ctor(object);
1390 		kasan_poison_object_data(s, object);
1391 	}
1392 }
1393 
1394 /*
1395  * Slab allocation and freeing
1396  */
1397 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1398 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1399 {
1400 	struct page *page;
1401 	int order = oo_order(oo);
1402 
1403 	flags |= __GFP_NOTRACK;
1404 
1405 	if (node == NUMA_NO_NODE)
1406 		page = alloc_pages(flags, order);
1407 	else
1408 		page = __alloc_pages_node(node, flags, order);
1409 
1410 	if (page && memcg_charge_slab(page, flags, order, s)) {
1411 		__free_pages(page, order);
1412 		page = NULL;
1413 	}
1414 
1415 	return page;
1416 }
1417 
1418 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1419 /* Pre-initialize the random sequence cache */
1420 static int init_cache_random_seq(struct kmem_cache *s)
1421 {
1422 	int err;
1423 	unsigned long i, count = oo_objects(s->oo);
1424 
1425 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1426 	if (err) {
1427 		pr_err("SLUB: Unable to initialize free list for %s\n",
1428 			s->name);
1429 		return err;
1430 	}
1431 
1432 	/* Transform to an offset on the set of pages */
1433 	if (s->random_seq) {
1434 		for (i = 0; i < count; i++)
1435 			s->random_seq[i] *= s->size;
1436 	}
1437 	return 0;
1438 }
1439 
1440 /* Initialize each random sequence freelist per cache */
1441 static void __init init_freelist_randomization(void)
1442 {
1443 	struct kmem_cache *s;
1444 
1445 	mutex_lock(&slab_mutex);
1446 
1447 	list_for_each_entry(s, &slab_caches, list)
1448 		init_cache_random_seq(s);
1449 
1450 	mutex_unlock(&slab_mutex);
1451 }
1452 
1453 /* Get the next entry on the pre-computed freelist randomized */
1454 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1455 				unsigned long *pos, void *start,
1456 				unsigned long page_limit,
1457 				unsigned long freelist_count)
1458 {
1459 	unsigned int idx;
1460 
1461 	/*
1462 	 * If the target page allocation failed, the number of objects on the
1463 	 * page might be smaller than the usual size defined by the cache.
1464 	 */
1465 	do {
1466 		idx = s->random_seq[*pos];
1467 		*pos += 1;
1468 		if (*pos >= freelist_count)
1469 			*pos = 0;
1470 	} while (unlikely(idx >= page_limit));
1471 
1472 	return (char *)start + idx;
1473 }
1474 
1475 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1476 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1477 {
1478 	void *start;
1479 	void *cur;
1480 	void *next;
1481 	unsigned long idx, pos, page_limit, freelist_count;
1482 
1483 	if (page->objects < 2 || !s->random_seq)
1484 		return false;
1485 
1486 	freelist_count = oo_objects(s->oo);
1487 	pos = get_random_int() % freelist_count;
1488 
1489 	page_limit = page->objects * s->size;
1490 	start = fixup_red_left(s, page_address(page));
1491 
1492 	/* First entry is used as the base of the freelist */
1493 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1494 				freelist_count);
1495 	page->freelist = cur;
1496 
1497 	for (idx = 1; idx < page->objects; idx++) {
1498 		setup_object(s, page, cur);
1499 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1500 			freelist_count);
1501 		set_freepointer(s, cur, next);
1502 		cur = next;
1503 	}
1504 	setup_object(s, page, cur);
1505 	set_freepointer(s, cur, NULL);
1506 
1507 	return true;
1508 }
1509 #else
1510 static inline int init_cache_random_seq(struct kmem_cache *s)
1511 {
1512 	return 0;
1513 }
1514 static inline void init_freelist_randomization(void) { }
1515 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1516 {
1517 	return false;
1518 }
1519 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1520 
1521 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1522 {
1523 	struct page *page;
1524 	struct kmem_cache_order_objects oo = s->oo;
1525 	gfp_t alloc_gfp;
1526 	void *start, *p;
1527 	int idx, order;
1528 	bool shuffle;
1529 
1530 	flags &= gfp_allowed_mask;
1531 
1532 	if (gfpflags_allow_blocking(flags))
1533 		local_irq_enable();
1534 
1535 	flags |= s->allocflags;
1536 
1537 	/*
1538 	 * Let the initial higher-order allocation fail under memory pressure
1539 	 * so we fall-back to the minimum order allocation.
1540 	 */
1541 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1542 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1543 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1544 
1545 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1546 	if (unlikely(!page)) {
1547 		oo = s->min;
1548 		alloc_gfp = flags;
1549 		/*
1550 		 * Allocation may have failed due to fragmentation.
1551 		 * Try a lower order alloc if possible
1552 		 */
1553 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1554 		if (unlikely(!page))
1555 			goto out;
1556 		stat(s, ORDER_FALLBACK);
1557 	}
1558 
1559 	if (kmemcheck_enabled &&
1560 	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1561 		int pages = 1 << oo_order(oo);
1562 
1563 		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1564 
1565 		/*
1566 		 * Objects from caches that have a constructor don't get
1567 		 * cleared when they're allocated, so we need to do it here.
1568 		 */
1569 		if (s->ctor)
1570 			kmemcheck_mark_uninitialized_pages(page, pages);
1571 		else
1572 			kmemcheck_mark_unallocated_pages(page, pages);
1573 	}
1574 
1575 	page->objects = oo_objects(oo);
1576 
1577 	order = compound_order(page);
1578 	page->slab_cache = s;
1579 	__SetPageSlab(page);
1580 	if (page_is_pfmemalloc(page))
1581 		SetPageSlabPfmemalloc(page);
1582 
1583 	start = page_address(page);
1584 
1585 	if (unlikely(s->flags & SLAB_POISON))
1586 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1587 
1588 	kasan_poison_slab(page);
1589 
1590 	shuffle = shuffle_freelist(s, page);
1591 
1592 	if (!shuffle) {
1593 		for_each_object_idx(p, idx, s, start, page->objects) {
1594 			setup_object(s, page, p);
1595 			if (likely(idx < page->objects))
1596 				set_freepointer(s, p, p + s->size);
1597 			else
1598 				set_freepointer(s, p, NULL);
1599 		}
1600 		page->freelist = fixup_red_left(s, start);
1601 	}
1602 
1603 	page->inuse = page->objects;
1604 	page->frozen = 1;
1605 
1606 out:
1607 	if (gfpflags_allow_blocking(flags))
1608 		local_irq_disable();
1609 	if (!page)
1610 		return NULL;
1611 
1612 	mod_zone_page_state(page_zone(page),
1613 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1614 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1615 		1 << oo_order(oo));
1616 
1617 	inc_slabs_node(s, page_to_nid(page), page->objects);
1618 
1619 	return page;
1620 }
1621 
1622 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1623 {
1624 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1625 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1626 		flags &= ~GFP_SLAB_BUG_MASK;
1627 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1628 				invalid_mask, &invalid_mask, flags, &flags);
1629 	}
1630 
1631 	return allocate_slab(s,
1632 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1633 }
1634 
1635 static void __free_slab(struct kmem_cache *s, struct page *page)
1636 {
1637 	int order = compound_order(page);
1638 	int pages = 1 << order;
1639 
1640 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1641 		void *p;
1642 
1643 		slab_pad_check(s, page);
1644 		for_each_object(p, s, page_address(page),
1645 						page->objects)
1646 			check_object(s, page, p, SLUB_RED_INACTIVE);
1647 	}
1648 
1649 	kmemcheck_free_shadow(page, compound_order(page));
1650 
1651 	mod_zone_page_state(page_zone(page),
1652 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1653 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1654 		-pages);
1655 
1656 	__ClearPageSlabPfmemalloc(page);
1657 	__ClearPageSlab(page);
1658 
1659 	page_mapcount_reset(page);
1660 	if (current->reclaim_state)
1661 		current->reclaim_state->reclaimed_slab += pages;
1662 	memcg_uncharge_slab(page, order, s);
1663 	__free_pages(page, order);
1664 }
1665 
1666 #define need_reserve_slab_rcu						\
1667 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1668 
1669 static void rcu_free_slab(struct rcu_head *h)
1670 {
1671 	struct page *page;
1672 
1673 	if (need_reserve_slab_rcu)
1674 		page = virt_to_head_page(h);
1675 	else
1676 		page = container_of((struct list_head *)h, struct page, lru);
1677 
1678 	__free_slab(page->slab_cache, page);
1679 }
1680 
1681 static void free_slab(struct kmem_cache *s, struct page *page)
1682 {
1683 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1684 		struct rcu_head *head;
1685 
1686 		if (need_reserve_slab_rcu) {
1687 			int order = compound_order(page);
1688 			int offset = (PAGE_SIZE << order) - s->reserved;
1689 
1690 			VM_BUG_ON(s->reserved != sizeof(*head));
1691 			head = page_address(page) + offset;
1692 		} else {
1693 			head = &page->rcu_head;
1694 		}
1695 
1696 		call_rcu(head, rcu_free_slab);
1697 	} else
1698 		__free_slab(s, page);
1699 }
1700 
1701 static void discard_slab(struct kmem_cache *s, struct page *page)
1702 {
1703 	dec_slabs_node(s, page_to_nid(page), page->objects);
1704 	free_slab(s, page);
1705 }
1706 
1707 /*
1708  * Management of partially allocated slabs.
1709  */
1710 static inline void
1711 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1712 {
1713 	n->nr_partial++;
1714 	if (tail == DEACTIVATE_TO_TAIL)
1715 		list_add_tail(&page->lru, &n->partial);
1716 	else
1717 		list_add(&page->lru, &n->partial);
1718 }
1719 
1720 static inline void add_partial(struct kmem_cache_node *n,
1721 				struct page *page, int tail)
1722 {
1723 	lockdep_assert_held(&n->list_lock);
1724 	__add_partial(n, page, tail);
1725 }
1726 
1727 static inline void remove_partial(struct kmem_cache_node *n,
1728 					struct page *page)
1729 {
1730 	lockdep_assert_held(&n->list_lock);
1731 	list_del(&page->lru);
1732 	n->nr_partial--;
1733 }
1734 
1735 /*
1736  * Remove slab from the partial list, freeze it and
1737  * return the pointer to the freelist.
1738  *
1739  * Returns a list of objects or NULL if it fails.
1740  */
1741 static inline void *acquire_slab(struct kmem_cache *s,
1742 		struct kmem_cache_node *n, struct page *page,
1743 		int mode, int *objects)
1744 {
1745 	void *freelist;
1746 	unsigned long counters;
1747 	struct page new;
1748 
1749 	lockdep_assert_held(&n->list_lock);
1750 
1751 	/*
1752 	 * Zap the freelist and set the frozen bit.
1753 	 * The old freelist is the list of objects for the
1754 	 * per cpu allocation list.
1755 	 */
1756 	freelist = page->freelist;
1757 	counters = page->counters;
1758 	new.counters = counters;
1759 	*objects = new.objects - new.inuse;
1760 	if (mode) {
1761 		new.inuse = page->objects;
1762 		new.freelist = NULL;
1763 	} else {
1764 		new.freelist = freelist;
1765 	}
1766 
1767 	VM_BUG_ON(new.frozen);
1768 	new.frozen = 1;
1769 
1770 	if (!__cmpxchg_double_slab(s, page,
1771 			freelist, counters,
1772 			new.freelist, new.counters,
1773 			"acquire_slab"))
1774 		return NULL;
1775 
1776 	remove_partial(n, page);
1777 	WARN_ON(!freelist);
1778 	return freelist;
1779 }
1780 
1781 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1782 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1783 
1784 /*
1785  * Try to allocate a partial slab from a specific node.
1786  */
1787 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1788 				struct kmem_cache_cpu *c, gfp_t flags)
1789 {
1790 	struct page *page, *page2;
1791 	void *object = NULL;
1792 	int available = 0;
1793 	int objects;
1794 
1795 	/*
1796 	 * Racy check. If we mistakenly see no partial slabs then we
1797 	 * just allocate an empty slab. If we mistakenly try to get a
1798 	 * partial slab and there is none available then get_partials()
1799 	 * will return NULL.
1800 	 */
1801 	if (!n || !n->nr_partial)
1802 		return NULL;
1803 
1804 	spin_lock(&n->list_lock);
1805 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1806 		void *t;
1807 
1808 		if (!pfmemalloc_match(page, flags))
1809 			continue;
1810 
1811 		t = acquire_slab(s, n, page, object == NULL, &objects);
1812 		if (!t)
1813 			break;
1814 
1815 		available += objects;
1816 		if (!object) {
1817 			c->page = page;
1818 			stat(s, ALLOC_FROM_PARTIAL);
1819 			object = t;
1820 		} else {
1821 			put_cpu_partial(s, page, 0);
1822 			stat(s, CPU_PARTIAL_NODE);
1823 		}
1824 		if (!kmem_cache_has_cpu_partial(s)
1825 			|| available > s->cpu_partial / 2)
1826 			break;
1827 
1828 	}
1829 	spin_unlock(&n->list_lock);
1830 	return object;
1831 }
1832 
1833 /*
1834  * Get a page from somewhere. Search in increasing NUMA distances.
1835  */
1836 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1837 		struct kmem_cache_cpu *c)
1838 {
1839 #ifdef CONFIG_NUMA
1840 	struct zonelist *zonelist;
1841 	struct zoneref *z;
1842 	struct zone *zone;
1843 	enum zone_type high_zoneidx = gfp_zone(flags);
1844 	void *object;
1845 	unsigned int cpuset_mems_cookie;
1846 
1847 	/*
1848 	 * The defrag ratio allows a configuration of the tradeoffs between
1849 	 * inter node defragmentation and node local allocations. A lower
1850 	 * defrag_ratio increases the tendency to do local allocations
1851 	 * instead of attempting to obtain partial slabs from other nodes.
1852 	 *
1853 	 * If the defrag_ratio is set to 0 then kmalloc() always
1854 	 * returns node local objects. If the ratio is higher then kmalloc()
1855 	 * may return off node objects because partial slabs are obtained
1856 	 * from other nodes and filled up.
1857 	 *
1858 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1859 	 * (which makes defrag_ratio = 1000) then every (well almost)
1860 	 * allocation will first attempt to defrag slab caches on other nodes.
1861 	 * This means scanning over all nodes to look for partial slabs which
1862 	 * may be expensive if we do it every time we are trying to find a slab
1863 	 * with available objects.
1864 	 */
1865 	if (!s->remote_node_defrag_ratio ||
1866 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1867 		return NULL;
1868 
1869 	do {
1870 		cpuset_mems_cookie = read_mems_allowed_begin();
1871 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1872 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1873 			struct kmem_cache_node *n;
1874 
1875 			n = get_node(s, zone_to_nid(zone));
1876 
1877 			if (n && cpuset_zone_allowed(zone, flags) &&
1878 					n->nr_partial > s->min_partial) {
1879 				object = get_partial_node(s, n, c, flags);
1880 				if (object) {
1881 					/*
1882 					 * Don't check read_mems_allowed_retry()
1883 					 * here - if mems_allowed was updated in
1884 					 * parallel, that was a harmless race
1885 					 * between allocation and the cpuset
1886 					 * update
1887 					 */
1888 					return object;
1889 				}
1890 			}
1891 		}
1892 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1893 #endif
1894 	return NULL;
1895 }
1896 
1897 /*
1898  * Get a partial page, lock it and return it.
1899  */
1900 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1901 		struct kmem_cache_cpu *c)
1902 {
1903 	void *object;
1904 	int searchnode = node;
1905 
1906 	if (node == NUMA_NO_NODE)
1907 		searchnode = numa_mem_id();
1908 	else if (!node_present_pages(node))
1909 		searchnode = node_to_mem_node(node);
1910 
1911 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1912 	if (object || node != NUMA_NO_NODE)
1913 		return object;
1914 
1915 	return get_any_partial(s, flags, c);
1916 }
1917 
1918 #ifdef CONFIG_PREEMPT
1919 /*
1920  * Calculate the next globally unique transaction for disambiguiation
1921  * during cmpxchg. The transactions start with the cpu number and are then
1922  * incremented by CONFIG_NR_CPUS.
1923  */
1924 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1925 #else
1926 /*
1927  * No preemption supported therefore also no need to check for
1928  * different cpus.
1929  */
1930 #define TID_STEP 1
1931 #endif
1932 
1933 static inline unsigned long next_tid(unsigned long tid)
1934 {
1935 	return tid + TID_STEP;
1936 }
1937 
1938 static inline unsigned int tid_to_cpu(unsigned long tid)
1939 {
1940 	return tid % TID_STEP;
1941 }
1942 
1943 static inline unsigned long tid_to_event(unsigned long tid)
1944 {
1945 	return tid / TID_STEP;
1946 }
1947 
1948 static inline unsigned int init_tid(int cpu)
1949 {
1950 	return cpu;
1951 }
1952 
1953 static inline void note_cmpxchg_failure(const char *n,
1954 		const struct kmem_cache *s, unsigned long tid)
1955 {
1956 #ifdef SLUB_DEBUG_CMPXCHG
1957 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1958 
1959 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1960 
1961 #ifdef CONFIG_PREEMPT
1962 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1963 		pr_warn("due to cpu change %d -> %d\n",
1964 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1965 	else
1966 #endif
1967 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1968 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1969 			tid_to_event(tid), tid_to_event(actual_tid));
1970 	else
1971 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1972 			actual_tid, tid, next_tid(tid));
1973 #endif
1974 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1975 }
1976 
1977 static void init_kmem_cache_cpus(struct kmem_cache *s)
1978 {
1979 	int cpu;
1980 
1981 	for_each_possible_cpu(cpu)
1982 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1983 }
1984 
1985 /*
1986  * Remove the cpu slab
1987  */
1988 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1989 				void *freelist)
1990 {
1991 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1992 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1993 	int lock = 0;
1994 	enum slab_modes l = M_NONE, m = M_NONE;
1995 	void *nextfree;
1996 	int tail = DEACTIVATE_TO_HEAD;
1997 	struct page new;
1998 	struct page old;
1999 
2000 	if (page->freelist) {
2001 		stat(s, DEACTIVATE_REMOTE_FREES);
2002 		tail = DEACTIVATE_TO_TAIL;
2003 	}
2004 
2005 	/*
2006 	 * Stage one: Free all available per cpu objects back
2007 	 * to the page freelist while it is still frozen. Leave the
2008 	 * last one.
2009 	 *
2010 	 * There is no need to take the list->lock because the page
2011 	 * is still frozen.
2012 	 */
2013 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2014 		void *prior;
2015 		unsigned long counters;
2016 
2017 		do {
2018 			prior = page->freelist;
2019 			counters = page->counters;
2020 			set_freepointer(s, freelist, prior);
2021 			new.counters = counters;
2022 			new.inuse--;
2023 			VM_BUG_ON(!new.frozen);
2024 
2025 		} while (!__cmpxchg_double_slab(s, page,
2026 			prior, counters,
2027 			freelist, new.counters,
2028 			"drain percpu freelist"));
2029 
2030 		freelist = nextfree;
2031 	}
2032 
2033 	/*
2034 	 * Stage two: Ensure that the page is unfrozen while the
2035 	 * list presence reflects the actual number of objects
2036 	 * during unfreeze.
2037 	 *
2038 	 * We setup the list membership and then perform a cmpxchg
2039 	 * with the count. If there is a mismatch then the page
2040 	 * is not unfrozen but the page is on the wrong list.
2041 	 *
2042 	 * Then we restart the process which may have to remove
2043 	 * the page from the list that we just put it on again
2044 	 * because the number of objects in the slab may have
2045 	 * changed.
2046 	 */
2047 redo:
2048 
2049 	old.freelist = page->freelist;
2050 	old.counters = page->counters;
2051 	VM_BUG_ON(!old.frozen);
2052 
2053 	/* Determine target state of the slab */
2054 	new.counters = old.counters;
2055 	if (freelist) {
2056 		new.inuse--;
2057 		set_freepointer(s, freelist, old.freelist);
2058 		new.freelist = freelist;
2059 	} else
2060 		new.freelist = old.freelist;
2061 
2062 	new.frozen = 0;
2063 
2064 	if (!new.inuse && n->nr_partial >= s->min_partial)
2065 		m = M_FREE;
2066 	else if (new.freelist) {
2067 		m = M_PARTIAL;
2068 		if (!lock) {
2069 			lock = 1;
2070 			/*
2071 			 * Taking the spinlock removes the possiblity
2072 			 * that acquire_slab() will see a slab page that
2073 			 * is frozen
2074 			 */
2075 			spin_lock(&n->list_lock);
2076 		}
2077 	} else {
2078 		m = M_FULL;
2079 		if (kmem_cache_debug(s) && !lock) {
2080 			lock = 1;
2081 			/*
2082 			 * This also ensures that the scanning of full
2083 			 * slabs from diagnostic functions will not see
2084 			 * any frozen slabs.
2085 			 */
2086 			spin_lock(&n->list_lock);
2087 		}
2088 	}
2089 
2090 	if (l != m) {
2091 
2092 		if (l == M_PARTIAL)
2093 
2094 			remove_partial(n, page);
2095 
2096 		else if (l == M_FULL)
2097 
2098 			remove_full(s, n, page);
2099 
2100 		if (m == M_PARTIAL) {
2101 
2102 			add_partial(n, page, tail);
2103 			stat(s, tail);
2104 
2105 		} else if (m == M_FULL) {
2106 
2107 			stat(s, DEACTIVATE_FULL);
2108 			add_full(s, n, page);
2109 
2110 		}
2111 	}
2112 
2113 	l = m;
2114 	if (!__cmpxchg_double_slab(s, page,
2115 				old.freelist, old.counters,
2116 				new.freelist, new.counters,
2117 				"unfreezing slab"))
2118 		goto redo;
2119 
2120 	if (lock)
2121 		spin_unlock(&n->list_lock);
2122 
2123 	if (m == M_FREE) {
2124 		stat(s, DEACTIVATE_EMPTY);
2125 		discard_slab(s, page);
2126 		stat(s, FREE_SLAB);
2127 	}
2128 }
2129 
2130 /*
2131  * Unfreeze all the cpu partial slabs.
2132  *
2133  * This function must be called with interrupts disabled
2134  * for the cpu using c (or some other guarantee must be there
2135  * to guarantee no concurrent accesses).
2136  */
2137 static void unfreeze_partials(struct kmem_cache *s,
2138 		struct kmem_cache_cpu *c)
2139 {
2140 #ifdef CONFIG_SLUB_CPU_PARTIAL
2141 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2142 	struct page *page, *discard_page = NULL;
2143 
2144 	while ((page = c->partial)) {
2145 		struct page new;
2146 		struct page old;
2147 
2148 		c->partial = page->next;
2149 
2150 		n2 = get_node(s, page_to_nid(page));
2151 		if (n != n2) {
2152 			if (n)
2153 				spin_unlock(&n->list_lock);
2154 
2155 			n = n2;
2156 			spin_lock(&n->list_lock);
2157 		}
2158 
2159 		do {
2160 
2161 			old.freelist = page->freelist;
2162 			old.counters = page->counters;
2163 			VM_BUG_ON(!old.frozen);
2164 
2165 			new.counters = old.counters;
2166 			new.freelist = old.freelist;
2167 
2168 			new.frozen = 0;
2169 
2170 		} while (!__cmpxchg_double_slab(s, page,
2171 				old.freelist, old.counters,
2172 				new.freelist, new.counters,
2173 				"unfreezing slab"));
2174 
2175 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2176 			page->next = discard_page;
2177 			discard_page = page;
2178 		} else {
2179 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2180 			stat(s, FREE_ADD_PARTIAL);
2181 		}
2182 	}
2183 
2184 	if (n)
2185 		spin_unlock(&n->list_lock);
2186 
2187 	while (discard_page) {
2188 		page = discard_page;
2189 		discard_page = discard_page->next;
2190 
2191 		stat(s, DEACTIVATE_EMPTY);
2192 		discard_slab(s, page);
2193 		stat(s, FREE_SLAB);
2194 	}
2195 #endif
2196 }
2197 
2198 /*
2199  * Put a page that was just frozen (in __slab_free) into a partial page
2200  * slot if available. This is done without interrupts disabled and without
2201  * preemption disabled. The cmpxchg is racy and may put the partial page
2202  * onto a random cpus partial slot.
2203  *
2204  * If we did not find a slot then simply move all the partials to the
2205  * per node partial list.
2206  */
2207 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2208 {
2209 #ifdef CONFIG_SLUB_CPU_PARTIAL
2210 	struct page *oldpage;
2211 	int pages;
2212 	int pobjects;
2213 
2214 	preempt_disable();
2215 	do {
2216 		pages = 0;
2217 		pobjects = 0;
2218 		oldpage = this_cpu_read(s->cpu_slab->partial);
2219 
2220 		if (oldpage) {
2221 			pobjects = oldpage->pobjects;
2222 			pages = oldpage->pages;
2223 			if (drain && pobjects > s->cpu_partial) {
2224 				unsigned long flags;
2225 				/*
2226 				 * partial array is full. Move the existing
2227 				 * set to the per node partial list.
2228 				 */
2229 				local_irq_save(flags);
2230 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2231 				local_irq_restore(flags);
2232 				oldpage = NULL;
2233 				pobjects = 0;
2234 				pages = 0;
2235 				stat(s, CPU_PARTIAL_DRAIN);
2236 			}
2237 		}
2238 
2239 		pages++;
2240 		pobjects += page->objects - page->inuse;
2241 
2242 		page->pages = pages;
2243 		page->pobjects = pobjects;
2244 		page->next = oldpage;
2245 
2246 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2247 								!= oldpage);
2248 	if (unlikely(!s->cpu_partial)) {
2249 		unsigned long flags;
2250 
2251 		local_irq_save(flags);
2252 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2253 		local_irq_restore(flags);
2254 	}
2255 	preempt_enable();
2256 #endif
2257 }
2258 
2259 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2260 {
2261 	stat(s, CPUSLAB_FLUSH);
2262 	deactivate_slab(s, c->page, c->freelist);
2263 
2264 	c->tid = next_tid(c->tid);
2265 	c->page = NULL;
2266 	c->freelist = NULL;
2267 }
2268 
2269 /*
2270  * Flush cpu slab.
2271  *
2272  * Called from IPI handler with interrupts disabled.
2273  */
2274 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2275 {
2276 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2277 
2278 	if (likely(c)) {
2279 		if (c->page)
2280 			flush_slab(s, c);
2281 
2282 		unfreeze_partials(s, c);
2283 	}
2284 }
2285 
2286 static void flush_cpu_slab(void *d)
2287 {
2288 	struct kmem_cache *s = d;
2289 
2290 	__flush_cpu_slab(s, smp_processor_id());
2291 }
2292 
2293 static bool has_cpu_slab(int cpu, void *info)
2294 {
2295 	struct kmem_cache *s = info;
2296 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2297 
2298 	return c->page || c->partial;
2299 }
2300 
2301 static void flush_all(struct kmem_cache *s)
2302 {
2303 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2304 }
2305 
2306 /*
2307  * Use the cpu notifier to insure that the cpu slabs are flushed when
2308  * necessary.
2309  */
2310 static int slub_cpu_dead(unsigned int cpu)
2311 {
2312 	struct kmem_cache *s;
2313 	unsigned long flags;
2314 
2315 	mutex_lock(&slab_mutex);
2316 	list_for_each_entry(s, &slab_caches, list) {
2317 		local_irq_save(flags);
2318 		__flush_cpu_slab(s, cpu);
2319 		local_irq_restore(flags);
2320 	}
2321 	mutex_unlock(&slab_mutex);
2322 	return 0;
2323 }
2324 
2325 /*
2326  * Check if the objects in a per cpu structure fit numa
2327  * locality expectations.
2328  */
2329 static inline int node_match(struct page *page, int node)
2330 {
2331 #ifdef CONFIG_NUMA
2332 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2333 		return 0;
2334 #endif
2335 	return 1;
2336 }
2337 
2338 #ifdef CONFIG_SLUB_DEBUG
2339 static int count_free(struct page *page)
2340 {
2341 	return page->objects - page->inuse;
2342 }
2343 
2344 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2345 {
2346 	return atomic_long_read(&n->total_objects);
2347 }
2348 #endif /* CONFIG_SLUB_DEBUG */
2349 
2350 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2351 static unsigned long count_partial(struct kmem_cache_node *n,
2352 					int (*get_count)(struct page *))
2353 {
2354 	unsigned long flags;
2355 	unsigned long x = 0;
2356 	struct page *page;
2357 
2358 	spin_lock_irqsave(&n->list_lock, flags);
2359 	list_for_each_entry(page, &n->partial, lru)
2360 		x += get_count(page);
2361 	spin_unlock_irqrestore(&n->list_lock, flags);
2362 	return x;
2363 }
2364 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2365 
2366 static noinline void
2367 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2368 {
2369 #ifdef CONFIG_SLUB_DEBUG
2370 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2371 				      DEFAULT_RATELIMIT_BURST);
2372 	int node;
2373 	struct kmem_cache_node *n;
2374 
2375 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2376 		return;
2377 
2378 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2379 		nid, gfpflags, &gfpflags);
2380 	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2381 		s->name, s->object_size, s->size, oo_order(s->oo),
2382 		oo_order(s->min));
2383 
2384 	if (oo_order(s->min) > get_order(s->object_size))
2385 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2386 			s->name);
2387 
2388 	for_each_kmem_cache_node(s, node, n) {
2389 		unsigned long nr_slabs;
2390 		unsigned long nr_objs;
2391 		unsigned long nr_free;
2392 
2393 		nr_free  = count_partial(n, count_free);
2394 		nr_slabs = node_nr_slabs(n);
2395 		nr_objs  = node_nr_objs(n);
2396 
2397 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2398 			node, nr_slabs, nr_objs, nr_free);
2399 	}
2400 #endif
2401 }
2402 
2403 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2404 			int node, struct kmem_cache_cpu **pc)
2405 {
2406 	void *freelist;
2407 	struct kmem_cache_cpu *c = *pc;
2408 	struct page *page;
2409 
2410 	freelist = get_partial(s, flags, node, c);
2411 
2412 	if (freelist)
2413 		return freelist;
2414 
2415 	page = new_slab(s, flags, node);
2416 	if (page) {
2417 		c = raw_cpu_ptr(s->cpu_slab);
2418 		if (c->page)
2419 			flush_slab(s, c);
2420 
2421 		/*
2422 		 * No other reference to the page yet so we can
2423 		 * muck around with it freely without cmpxchg
2424 		 */
2425 		freelist = page->freelist;
2426 		page->freelist = NULL;
2427 
2428 		stat(s, ALLOC_SLAB);
2429 		c->page = page;
2430 		*pc = c;
2431 	} else
2432 		freelist = NULL;
2433 
2434 	return freelist;
2435 }
2436 
2437 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2438 {
2439 	if (unlikely(PageSlabPfmemalloc(page)))
2440 		return gfp_pfmemalloc_allowed(gfpflags);
2441 
2442 	return true;
2443 }
2444 
2445 /*
2446  * Check the page->freelist of a page and either transfer the freelist to the
2447  * per cpu freelist or deactivate the page.
2448  *
2449  * The page is still frozen if the return value is not NULL.
2450  *
2451  * If this function returns NULL then the page has been unfrozen.
2452  *
2453  * This function must be called with interrupt disabled.
2454  */
2455 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2456 {
2457 	struct page new;
2458 	unsigned long counters;
2459 	void *freelist;
2460 
2461 	do {
2462 		freelist = page->freelist;
2463 		counters = page->counters;
2464 
2465 		new.counters = counters;
2466 		VM_BUG_ON(!new.frozen);
2467 
2468 		new.inuse = page->objects;
2469 		new.frozen = freelist != NULL;
2470 
2471 	} while (!__cmpxchg_double_slab(s, page,
2472 		freelist, counters,
2473 		NULL, new.counters,
2474 		"get_freelist"));
2475 
2476 	return freelist;
2477 }
2478 
2479 /*
2480  * Slow path. The lockless freelist is empty or we need to perform
2481  * debugging duties.
2482  *
2483  * Processing is still very fast if new objects have been freed to the
2484  * regular freelist. In that case we simply take over the regular freelist
2485  * as the lockless freelist and zap the regular freelist.
2486  *
2487  * If that is not working then we fall back to the partial lists. We take the
2488  * first element of the freelist as the object to allocate now and move the
2489  * rest of the freelist to the lockless freelist.
2490  *
2491  * And if we were unable to get a new slab from the partial slab lists then
2492  * we need to allocate a new slab. This is the slowest path since it involves
2493  * a call to the page allocator and the setup of a new slab.
2494  *
2495  * Version of __slab_alloc to use when we know that interrupts are
2496  * already disabled (which is the case for bulk allocation).
2497  */
2498 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2499 			  unsigned long addr, struct kmem_cache_cpu *c)
2500 {
2501 	void *freelist;
2502 	struct page *page;
2503 
2504 	page = c->page;
2505 	if (!page)
2506 		goto new_slab;
2507 redo:
2508 
2509 	if (unlikely(!node_match(page, node))) {
2510 		int searchnode = node;
2511 
2512 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2513 			searchnode = node_to_mem_node(node);
2514 
2515 		if (unlikely(!node_match(page, searchnode))) {
2516 			stat(s, ALLOC_NODE_MISMATCH);
2517 			deactivate_slab(s, page, c->freelist);
2518 			c->page = NULL;
2519 			c->freelist = NULL;
2520 			goto new_slab;
2521 		}
2522 	}
2523 
2524 	/*
2525 	 * By rights, we should be searching for a slab page that was
2526 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2527 	 * information when the page leaves the per-cpu allocator
2528 	 */
2529 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2530 		deactivate_slab(s, page, c->freelist);
2531 		c->page = NULL;
2532 		c->freelist = NULL;
2533 		goto new_slab;
2534 	}
2535 
2536 	/* must check again c->freelist in case of cpu migration or IRQ */
2537 	freelist = c->freelist;
2538 	if (freelist)
2539 		goto load_freelist;
2540 
2541 	freelist = get_freelist(s, page);
2542 
2543 	if (!freelist) {
2544 		c->page = NULL;
2545 		stat(s, DEACTIVATE_BYPASS);
2546 		goto new_slab;
2547 	}
2548 
2549 	stat(s, ALLOC_REFILL);
2550 
2551 load_freelist:
2552 	/*
2553 	 * freelist is pointing to the list of objects to be used.
2554 	 * page is pointing to the page from which the objects are obtained.
2555 	 * That page must be frozen for per cpu allocations to work.
2556 	 */
2557 	VM_BUG_ON(!c->page->frozen);
2558 	c->freelist = get_freepointer(s, freelist);
2559 	c->tid = next_tid(c->tid);
2560 	return freelist;
2561 
2562 new_slab:
2563 
2564 	if (c->partial) {
2565 		page = c->page = c->partial;
2566 		c->partial = page->next;
2567 		stat(s, CPU_PARTIAL_ALLOC);
2568 		c->freelist = NULL;
2569 		goto redo;
2570 	}
2571 
2572 	freelist = new_slab_objects(s, gfpflags, node, &c);
2573 
2574 	if (unlikely(!freelist)) {
2575 		slab_out_of_memory(s, gfpflags, node);
2576 		return NULL;
2577 	}
2578 
2579 	page = c->page;
2580 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2581 		goto load_freelist;
2582 
2583 	/* Only entered in the debug case */
2584 	if (kmem_cache_debug(s) &&
2585 			!alloc_debug_processing(s, page, freelist, addr))
2586 		goto new_slab;	/* Slab failed checks. Next slab needed */
2587 
2588 	deactivate_slab(s, page, get_freepointer(s, freelist));
2589 	c->page = NULL;
2590 	c->freelist = NULL;
2591 	return freelist;
2592 }
2593 
2594 /*
2595  * Another one that disabled interrupt and compensates for possible
2596  * cpu changes by refetching the per cpu area pointer.
2597  */
2598 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2599 			  unsigned long addr, struct kmem_cache_cpu *c)
2600 {
2601 	void *p;
2602 	unsigned long flags;
2603 
2604 	local_irq_save(flags);
2605 #ifdef CONFIG_PREEMPT
2606 	/*
2607 	 * We may have been preempted and rescheduled on a different
2608 	 * cpu before disabling interrupts. Need to reload cpu area
2609 	 * pointer.
2610 	 */
2611 	c = this_cpu_ptr(s->cpu_slab);
2612 #endif
2613 
2614 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2615 	local_irq_restore(flags);
2616 	return p;
2617 }
2618 
2619 /*
2620  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2621  * have the fastpath folded into their functions. So no function call
2622  * overhead for requests that can be satisfied on the fastpath.
2623  *
2624  * The fastpath works by first checking if the lockless freelist can be used.
2625  * If not then __slab_alloc is called for slow processing.
2626  *
2627  * Otherwise we can simply pick the next object from the lockless free list.
2628  */
2629 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2630 		gfp_t gfpflags, int node, unsigned long addr)
2631 {
2632 	void *object;
2633 	struct kmem_cache_cpu *c;
2634 	struct page *page;
2635 	unsigned long tid;
2636 
2637 	s = slab_pre_alloc_hook(s, gfpflags);
2638 	if (!s)
2639 		return NULL;
2640 redo:
2641 	/*
2642 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2643 	 * enabled. We may switch back and forth between cpus while
2644 	 * reading from one cpu area. That does not matter as long
2645 	 * as we end up on the original cpu again when doing the cmpxchg.
2646 	 *
2647 	 * We should guarantee that tid and kmem_cache are retrieved on
2648 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2649 	 * to check if it is matched or not.
2650 	 */
2651 	do {
2652 		tid = this_cpu_read(s->cpu_slab->tid);
2653 		c = raw_cpu_ptr(s->cpu_slab);
2654 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2655 		 unlikely(tid != READ_ONCE(c->tid)));
2656 
2657 	/*
2658 	 * Irqless object alloc/free algorithm used here depends on sequence
2659 	 * of fetching cpu_slab's data. tid should be fetched before anything
2660 	 * on c to guarantee that object and page associated with previous tid
2661 	 * won't be used with current tid. If we fetch tid first, object and
2662 	 * page could be one associated with next tid and our alloc/free
2663 	 * request will be failed. In this case, we will retry. So, no problem.
2664 	 */
2665 	barrier();
2666 
2667 	/*
2668 	 * The transaction ids are globally unique per cpu and per operation on
2669 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2670 	 * occurs on the right processor and that there was no operation on the
2671 	 * linked list in between.
2672 	 */
2673 
2674 	object = c->freelist;
2675 	page = c->page;
2676 	if (unlikely(!object || !node_match(page, node))) {
2677 		object = __slab_alloc(s, gfpflags, node, addr, c);
2678 		stat(s, ALLOC_SLOWPATH);
2679 	} else {
2680 		void *next_object = get_freepointer_safe(s, object);
2681 
2682 		/*
2683 		 * The cmpxchg will only match if there was no additional
2684 		 * operation and if we are on the right processor.
2685 		 *
2686 		 * The cmpxchg does the following atomically (without lock
2687 		 * semantics!)
2688 		 * 1. Relocate first pointer to the current per cpu area.
2689 		 * 2. Verify that tid and freelist have not been changed
2690 		 * 3. If they were not changed replace tid and freelist
2691 		 *
2692 		 * Since this is without lock semantics the protection is only
2693 		 * against code executing on this cpu *not* from access by
2694 		 * other cpus.
2695 		 */
2696 		if (unlikely(!this_cpu_cmpxchg_double(
2697 				s->cpu_slab->freelist, s->cpu_slab->tid,
2698 				object, tid,
2699 				next_object, next_tid(tid)))) {
2700 
2701 			note_cmpxchg_failure("slab_alloc", s, tid);
2702 			goto redo;
2703 		}
2704 		prefetch_freepointer(s, next_object);
2705 		stat(s, ALLOC_FASTPATH);
2706 	}
2707 
2708 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2709 		memset(object, 0, s->object_size);
2710 
2711 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2712 
2713 	return object;
2714 }
2715 
2716 static __always_inline void *slab_alloc(struct kmem_cache *s,
2717 		gfp_t gfpflags, unsigned long addr)
2718 {
2719 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2720 }
2721 
2722 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2723 {
2724 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2725 
2726 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2727 				s->size, gfpflags);
2728 
2729 	return ret;
2730 }
2731 EXPORT_SYMBOL(kmem_cache_alloc);
2732 
2733 #ifdef CONFIG_TRACING
2734 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2735 {
2736 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2737 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2738 	kasan_kmalloc(s, ret, size, gfpflags);
2739 	return ret;
2740 }
2741 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2742 #endif
2743 
2744 #ifdef CONFIG_NUMA
2745 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2746 {
2747 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2748 
2749 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2750 				    s->object_size, s->size, gfpflags, node);
2751 
2752 	return ret;
2753 }
2754 EXPORT_SYMBOL(kmem_cache_alloc_node);
2755 
2756 #ifdef CONFIG_TRACING
2757 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2758 				    gfp_t gfpflags,
2759 				    int node, size_t size)
2760 {
2761 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2762 
2763 	trace_kmalloc_node(_RET_IP_, ret,
2764 			   size, s->size, gfpflags, node);
2765 
2766 	kasan_kmalloc(s, ret, size, gfpflags);
2767 	return ret;
2768 }
2769 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2770 #endif
2771 #endif
2772 
2773 /*
2774  * Slow path handling. This may still be called frequently since objects
2775  * have a longer lifetime than the cpu slabs in most processing loads.
2776  *
2777  * So we still attempt to reduce cache line usage. Just take the slab
2778  * lock and free the item. If there is no additional partial page
2779  * handling required then we can return immediately.
2780  */
2781 static void __slab_free(struct kmem_cache *s, struct page *page,
2782 			void *head, void *tail, int cnt,
2783 			unsigned long addr)
2784 
2785 {
2786 	void *prior;
2787 	int was_frozen;
2788 	struct page new;
2789 	unsigned long counters;
2790 	struct kmem_cache_node *n = NULL;
2791 	unsigned long uninitialized_var(flags);
2792 
2793 	stat(s, FREE_SLOWPATH);
2794 
2795 	if (kmem_cache_debug(s) &&
2796 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2797 		return;
2798 
2799 	do {
2800 		if (unlikely(n)) {
2801 			spin_unlock_irqrestore(&n->list_lock, flags);
2802 			n = NULL;
2803 		}
2804 		prior = page->freelist;
2805 		counters = page->counters;
2806 		set_freepointer(s, tail, prior);
2807 		new.counters = counters;
2808 		was_frozen = new.frozen;
2809 		new.inuse -= cnt;
2810 		if ((!new.inuse || !prior) && !was_frozen) {
2811 
2812 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2813 
2814 				/*
2815 				 * Slab was on no list before and will be
2816 				 * partially empty
2817 				 * We can defer the list move and instead
2818 				 * freeze it.
2819 				 */
2820 				new.frozen = 1;
2821 
2822 			} else { /* Needs to be taken off a list */
2823 
2824 				n = get_node(s, page_to_nid(page));
2825 				/*
2826 				 * Speculatively acquire the list_lock.
2827 				 * If the cmpxchg does not succeed then we may
2828 				 * drop the list_lock without any processing.
2829 				 *
2830 				 * Otherwise the list_lock will synchronize with
2831 				 * other processors updating the list of slabs.
2832 				 */
2833 				spin_lock_irqsave(&n->list_lock, flags);
2834 
2835 			}
2836 		}
2837 
2838 	} while (!cmpxchg_double_slab(s, page,
2839 		prior, counters,
2840 		head, new.counters,
2841 		"__slab_free"));
2842 
2843 	if (likely(!n)) {
2844 
2845 		/*
2846 		 * If we just froze the page then put it onto the
2847 		 * per cpu partial list.
2848 		 */
2849 		if (new.frozen && !was_frozen) {
2850 			put_cpu_partial(s, page, 1);
2851 			stat(s, CPU_PARTIAL_FREE);
2852 		}
2853 		/*
2854 		 * The list lock was not taken therefore no list
2855 		 * activity can be necessary.
2856 		 */
2857 		if (was_frozen)
2858 			stat(s, FREE_FROZEN);
2859 		return;
2860 	}
2861 
2862 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2863 		goto slab_empty;
2864 
2865 	/*
2866 	 * Objects left in the slab. If it was not on the partial list before
2867 	 * then add it.
2868 	 */
2869 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2870 		if (kmem_cache_debug(s))
2871 			remove_full(s, n, page);
2872 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2873 		stat(s, FREE_ADD_PARTIAL);
2874 	}
2875 	spin_unlock_irqrestore(&n->list_lock, flags);
2876 	return;
2877 
2878 slab_empty:
2879 	if (prior) {
2880 		/*
2881 		 * Slab on the partial list.
2882 		 */
2883 		remove_partial(n, page);
2884 		stat(s, FREE_REMOVE_PARTIAL);
2885 	} else {
2886 		/* Slab must be on the full list */
2887 		remove_full(s, n, page);
2888 	}
2889 
2890 	spin_unlock_irqrestore(&n->list_lock, flags);
2891 	stat(s, FREE_SLAB);
2892 	discard_slab(s, page);
2893 }
2894 
2895 /*
2896  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2897  * can perform fastpath freeing without additional function calls.
2898  *
2899  * The fastpath is only possible if we are freeing to the current cpu slab
2900  * of this processor. This typically the case if we have just allocated
2901  * the item before.
2902  *
2903  * If fastpath is not possible then fall back to __slab_free where we deal
2904  * with all sorts of special processing.
2905  *
2906  * Bulk free of a freelist with several objects (all pointing to the
2907  * same page) possible by specifying head and tail ptr, plus objects
2908  * count (cnt). Bulk free indicated by tail pointer being set.
2909  */
2910 static __always_inline void do_slab_free(struct kmem_cache *s,
2911 				struct page *page, void *head, void *tail,
2912 				int cnt, unsigned long addr)
2913 {
2914 	void *tail_obj = tail ? : head;
2915 	struct kmem_cache_cpu *c;
2916 	unsigned long tid;
2917 redo:
2918 	/*
2919 	 * Determine the currently cpus per cpu slab.
2920 	 * The cpu may change afterward. However that does not matter since
2921 	 * data is retrieved via this pointer. If we are on the same cpu
2922 	 * during the cmpxchg then the free will succeed.
2923 	 */
2924 	do {
2925 		tid = this_cpu_read(s->cpu_slab->tid);
2926 		c = raw_cpu_ptr(s->cpu_slab);
2927 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2928 		 unlikely(tid != READ_ONCE(c->tid)));
2929 
2930 	/* Same with comment on barrier() in slab_alloc_node() */
2931 	barrier();
2932 
2933 	if (likely(page == c->page)) {
2934 		set_freepointer(s, tail_obj, c->freelist);
2935 
2936 		if (unlikely(!this_cpu_cmpxchg_double(
2937 				s->cpu_slab->freelist, s->cpu_slab->tid,
2938 				c->freelist, tid,
2939 				head, next_tid(tid)))) {
2940 
2941 			note_cmpxchg_failure("slab_free", s, tid);
2942 			goto redo;
2943 		}
2944 		stat(s, FREE_FASTPATH);
2945 	} else
2946 		__slab_free(s, page, head, tail_obj, cnt, addr);
2947 
2948 }
2949 
2950 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2951 				      void *head, void *tail, int cnt,
2952 				      unsigned long addr)
2953 {
2954 	slab_free_freelist_hook(s, head, tail);
2955 	/*
2956 	 * slab_free_freelist_hook() could have put the items into quarantine.
2957 	 * If so, no need to free them.
2958 	 */
2959 	if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU))
2960 		return;
2961 	do_slab_free(s, page, head, tail, cnt, addr);
2962 }
2963 
2964 #ifdef CONFIG_KASAN
2965 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2966 {
2967 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2968 }
2969 #endif
2970 
2971 void kmem_cache_free(struct kmem_cache *s, void *x)
2972 {
2973 	s = cache_from_obj(s, x);
2974 	if (!s)
2975 		return;
2976 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2977 	trace_kmem_cache_free(_RET_IP_, x);
2978 }
2979 EXPORT_SYMBOL(kmem_cache_free);
2980 
2981 struct detached_freelist {
2982 	struct page *page;
2983 	void *tail;
2984 	void *freelist;
2985 	int cnt;
2986 	struct kmem_cache *s;
2987 };
2988 
2989 /*
2990  * This function progressively scans the array with free objects (with
2991  * a limited look ahead) and extract objects belonging to the same
2992  * page.  It builds a detached freelist directly within the given
2993  * page/objects.  This can happen without any need for
2994  * synchronization, because the objects are owned by running process.
2995  * The freelist is build up as a single linked list in the objects.
2996  * The idea is, that this detached freelist can then be bulk
2997  * transferred to the real freelist(s), but only requiring a single
2998  * synchronization primitive.  Look ahead in the array is limited due
2999  * to performance reasons.
3000  */
3001 static inline
3002 int build_detached_freelist(struct kmem_cache *s, size_t size,
3003 			    void **p, struct detached_freelist *df)
3004 {
3005 	size_t first_skipped_index = 0;
3006 	int lookahead = 3;
3007 	void *object;
3008 	struct page *page;
3009 
3010 	/* Always re-init detached_freelist */
3011 	df->page = NULL;
3012 
3013 	do {
3014 		object = p[--size];
3015 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3016 	} while (!object && size);
3017 
3018 	if (!object)
3019 		return 0;
3020 
3021 	page = virt_to_head_page(object);
3022 	if (!s) {
3023 		/* Handle kalloc'ed objects */
3024 		if (unlikely(!PageSlab(page))) {
3025 			BUG_ON(!PageCompound(page));
3026 			kfree_hook(object);
3027 			__free_pages(page, compound_order(page));
3028 			p[size] = NULL; /* mark object processed */
3029 			return size;
3030 		}
3031 		/* Derive kmem_cache from object */
3032 		df->s = page->slab_cache;
3033 	} else {
3034 		df->s = cache_from_obj(s, object); /* Support for memcg */
3035 	}
3036 
3037 	/* Start new detached freelist */
3038 	df->page = page;
3039 	set_freepointer(df->s, object, NULL);
3040 	df->tail = object;
3041 	df->freelist = object;
3042 	p[size] = NULL; /* mark object processed */
3043 	df->cnt = 1;
3044 
3045 	while (size) {
3046 		object = p[--size];
3047 		if (!object)
3048 			continue; /* Skip processed objects */
3049 
3050 		/* df->page is always set at this point */
3051 		if (df->page == virt_to_head_page(object)) {
3052 			/* Opportunity build freelist */
3053 			set_freepointer(df->s, object, df->freelist);
3054 			df->freelist = object;
3055 			df->cnt++;
3056 			p[size] = NULL; /* mark object processed */
3057 
3058 			continue;
3059 		}
3060 
3061 		/* Limit look ahead search */
3062 		if (!--lookahead)
3063 			break;
3064 
3065 		if (!first_skipped_index)
3066 			first_skipped_index = size + 1;
3067 	}
3068 
3069 	return first_skipped_index;
3070 }
3071 
3072 /* Note that interrupts must be enabled when calling this function. */
3073 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3074 {
3075 	if (WARN_ON(!size))
3076 		return;
3077 
3078 	do {
3079 		struct detached_freelist df;
3080 
3081 		size = build_detached_freelist(s, size, p, &df);
3082 		if (!df.page)
3083 			continue;
3084 
3085 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3086 	} while (likely(size));
3087 }
3088 EXPORT_SYMBOL(kmem_cache_free_bulk);
3089 
3090 /* Note that interrupts must be enabled when calling this function. */
3091 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3092 			  void **p)
3093 {
3094 	struct kmem_cache_cpu *c;
3095 	int i;
3096 
3097 	/* memcg and kmem_cache debug support */
3098 	s = slab_pre_alloc_hook(s, flags);
3099 	if (unlikely(!s))
3100 		return false;
3101 	/*
3102 	 * Drain objects in the per cpu slab, while disabling local
3103 	 * IRQs, which protects against PREEMPT and interrupts
3104 	 * handlers invoking normal fastpath.
3105 	 */
3106 	local_irq_disable();
3107 	c = this_cpu_ptr(s->cpu_slab);
3108 
3109 	for (i = 0; i < size; i++) {
3110 		void *object = c->freelist;
3111 
3112 		if (unlikely(!object)) {
3113 			/*
3114 			 * Invoking slow path likely have side-effect
3115 			 * of re-populating per CPU c->freelist
3116 			 */
3117 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3118 					    _RET_IP_, c);
3119 			if (unlikely(!p[i]))
3120 				goto error;
3121 
3122 			c = this_cpu_ptr(s->cpu_slab);
3123 			continue; /* goto for-loop */
3124 		}
3125 		c->freelist = get_freepointer(s, object);
3126 		p[i] = object;
3127 	}
3128 	c->tid = next_tid(c->tid);
3129 	local_irq_enable();
3130 
3131 	/* Clear memory outside IRQ disabled fastpath loop */
3132 	if (unlikely(flags & __GFP_ZERO)) {
3133 		int j;
3134 
3135 		for (j = 0; j < i; j++)
3136 			memset(p[j], 0, s->object_size);
3137 	}
3138 
3139 	/* memcg and kmem_cache debug support */
3140 	slab_post_alloc_hook(s, flags, size, p);
3141 	return i;
3142 error:
3143 	local_irq_enable();
3144 	slab_post_alloc_hook(s, flags, i, p);
3145 	__kmem_cache_free_bulk(s, i, p);
3146 	return 0;
3147 }
3148 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3149 
3150 
3151 /*
3152  * Object placement in a slab is made very easy because we always start at
3153  * offset 0. If we tune the size of the object to the alignment then we can
3154  * get the required alignment by putting one properly sized object after
3155  * another.
3156  *
3157  * Notice that the allocation order determines the sizes of the per cpu
3158  * caches. Each processor has always one slab available for allocations.
3159  * Increasing the allocation order reduces the number of times that slabs
3160  * must be moved on and off the partial lists and is therefore a factor in
3161  * locking overhead.
3162  */
3163 
3164 /*
3165  * Mininum / Maximum order of slab pages. This influences locking overhead
3166  * and slab fragmentation. A higher order reduces the number of partial slabs
3167  * and increases the number of allocations possible without having to
3168  * take the list_lock.
3169  */
3170 static int slub_min_order;
3171 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3172 static int slub_min_objects;
3173 
3174 /*
3175  * Calculate the order of allocation given an slab object size.
3176  *
3177  * The order of allocation has significant impact on performance and other
3178  * system components. Generally order 0 allocations should be preferred since
3179  * order 0 does not cause fragmentation in the page allocator. Larger objects
3180  * be problematic to put into order 0 slabs because there may be too much
3181  * unused space left. We go to a higher order if more than 1/16th of the slab
3182  * would be wasted.
3183  *
3184  * In order to reach satisfactory performance we must ensure that a minimum
3185  * number of objects is in one slab. Otherwise we may generate too much
3186  * activity on the partial lists which requires taking the list_lock. This is
3187  * less a concern for large slabs though which are rarely used.
3188  *
3189  * slub_max_order specifies the order where we begin to stop considering the
3190  * number of objects in a slab as critical. If we reach slub_max_order then
3191  * we try to keep the page order as low as possible. So we accept more waste
3192  * of space in favor of a small page order.
3193  *
3194  * Higher order allocations also allow the placement of more objects in a
3195  * slab and thereby reduce object handling overhead. If the user has
3196  * requested a higher mininum order then we start with that one instead of
3197  * the smallest order which will fit the object.
3198  */
3199 static inline int slab_order(int size, int min_objects,
3200 				int max_order, int fract_leftover, int reserved)
3201 {
3202 	int order;
3203 	int rem;
3204 	int min_order = slub_min_order;
3205 
3206 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3207 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3208 
3209 	for (order = max(min_order, get_order(min_objects * size + reserved));
3210 			order <= max_order; order++) {
3211 
3212 		unsigned long slab_size = PAGE_SIZE << order;
3213 
3214 		rem = (slab_size - reserved) % size;
3215 
3216 		if (rem <= slab_size / fract_leftover)
3217 			break;
3218 	}
3219 
3220 	return order;
3221 }
3222 
3223 static inline int calculate_order(int size, int reserved)
3224 {
3225 	int order;
3226 	int min_objects;
3227 	int fraction;
3228 	int max_objects;
3229 
3230 	/*
3231 	 * Attempt to find best configuration for a slab. This
3232 	 * works by first attempting to generate a layout with
3233 	 * the best configuration and backing off gradually.
3234 	 *
3235 	 * First we increase the acceptable waste in a slab. Then
3236 	 * we reduce the minimum objects required in a slab.
3237 	 */
3238 	min_objects = slub_min_objects;
3239 	if (!min_objects)
3240 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3241 	max_objects = order_objects(slub_max_order, size, reserved);
3242 	min_objects = min(min_objects, max_objects);
3243 
3244 	while (min_objects > 1) {
3245 		fraction = 16;
3246 		while (fraction >= 4) {
3247 			order = slab_order(size, min_objects,
3248 					slub_max_order, fraction, reserved);
3249 			if (order <= slub_max_order)
3250 				return order;
3251 			fraction /= 2;
3252 		}
3253 		min_objects--;
3254 	}
3255 
3256 	/*
3257 	 * We were unable to place multiple objects in a slab. Now
3258 	 * lets see if we can place a single object there.
3259 	 */
3260 	order = slab_order(size, 1, slub_max_order, 1, reserved);
3261 	if (order <= slub_max_order)
3262 		return order;
3263 
3264 	/*
3265 	 * Doh this slab cannot be placed using slub_max_order.
3266 	 */
3267 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3268 	if (order < MAX_ORDER)
3269 		return order;
3270 	return -ENOSYS;
3271 }
3272 
3273 static void
3274 init_kmem_cache_node(struct kmem_cache_node *n)
3275 {
3276 	n->nr_partial = 0;
3277 	spin_lock_init(&n->list_lock);
3278 	INIT_LIST_HEAD(&n->partial);
3279 #ifdef CONFIG_SLUB_DEBUG
3280 	atomic_long_set(&n->nr_slabs, 0);
3281 	atomic_long_set(&n->total_objects, 0);
3282 	INIT_LIST_HEAD(&n->full);
3283 #endif
3284 }
3285 
3286 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3287 {
3288 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3289 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3290 
3291 	/*
3292 	 * Must align to double word boundary for the double cmpxchg
3293 	 * instructions to work; see __pcpu_double_call_return_bool().
3294 	 */
3295 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3296 				     2 * sizeof(void *));
3297 
3298 	if (!s->cpu_slab)
3299 		return 0;
3300 
3301 	init_kmem_cache_cpus(s);
3302 
3303 	return 1;
3304 }
3305 
3306 static struct kmem_cache *kmem_cache_node;
3307 
3308 /*
3309  * No kmalloc_node yet so do it by hand. We know that this is the first
3310  * slab on the node for this slabcache. There are no concurrent accesses
3311  * possible.
3312  *
3313  * Note that this function only works on the kmem_cache_node
3314  * when allocating for the kmem_cache_node. This is used for bootstrapping
3315  * memory on a fresh node that has no slab structures yet.
3316  */
3317 static void early_kmem_cache_node_alloc(int node)
3318 {
3319 	struct page *page;
3320 	struct kmem_cache_node *n;
3321 
3322 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3323 
3324 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3325 
3326 	BUG_ON(!page);
3327 	if (page_to_nid(page) != node) {
3328 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3329 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3330 	}
3331 
3332 	n = page->freelist;
3333 	BUG_ON(!n);
3334 	page->freelist = get_freepointer(kmem_cache_node, n);
3335 	page->inuse = 1;
3336 	page->frozen = 0;
3337 	kmem_cache_node->node[node] = n;
3338 #ifdef CONFIG_SLUB_DEBUG
3339 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3340 	init_tracking(kmem_cache_node, n);
3341 #endif
3342 	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3343 		      GFP_KERNEL);
3344 	init_kmem_cache_node(n);
3345 	inc_slabs_node(kmem_cache_node, node, page->objects);
3346 
3347 	/*
3348 	 * No locks need to be taken here as it has just been
3349 	 * initialized and there is no concurrent access.
3350 	 */
3351 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3352 }
3353 
3354 static void free_kmem_cache_nodes(struct kmem_cache *s)
3355 {
3356 	int node;
3357 	struct kmem_cache_node *n;
3358 
3359 	for_each_kmem_cache_node(s, node, n) {
3360 		kmem_cache_free(kmem_cache_node, n);
3361 		s->node[node] = NULL;
3362 	}
3363 }
3364 
3365 void __kmem_cache_release(struct kmem_cache *s)
3366 {
3367 	cache_random_seq_destroy(s);
3368 	free_percpu(s->cpu_slab);
3369 	free_kmem_cache_nodes(s);
3370 }
3371 
3372 static int init_kmem_cache_nodes(struct kmem_cache *s)
3373 {
3374 	int node;
3375 
3376 	for_each_node_state(node, N_NORMAL_MEMORY) {
3377 		struct kmem_cache_node *n;
3378 
3379 		if (slab_state == DOWN) {
3380 			early_kmem_cache_node_alloc(node);
3381 			continue;
3382 		}
3383 		n = kmem_cache_alloc_node(kmem_cache_node,
3384 						GFP_KERNEL, node);
3385 
3386 		if (!n) {
3387 			free_kmem_cache_nodes(s);
3388 			return 0;
3389 		}
3390 
3391 		s->node[node] = n;
3392 		init_kmem_cache_node(n);
3393 	}
3394 	return 1;
3395 }
3396 
3397 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3398 {
3399 	if (min < MIN_PARTIAL)
3400 		min = MIN_PARTIAL;
3401 	else if (min > MAX_PARTIAL)
3402 		min = MAX_PARTIAL;
3403 	s->min_partial = min;
3404 }
3405 
3406 /*
3407  * calculate_sizes() determines the order and the distribution of data within
3408  * a slab object.
3409  */
3410 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3411 {
3412 	unsigned long flags = s->flags;
3413 	size_t size = s->object_size;
3414 	int order;
3415 
3416 	/*
3417 	 * Round up object size to the next word boundary. We can only
3418 	 * place the free pointer at word boundaries and this determines
3419 	 * the possible location of the free pointer.
3420 	 */
3421 	size = ALIGN(size, sizeof(void *));
3422 
3423 #ifdef CONFIG_SLUB_DEBUG
3424 	/*
3425 	 * Determine if we can poison the object itself. If the user of
3426 	 * the slab may touch the object after free or before allocation
3427 	 * then we should never poison the object itself.
3428 	 */
3429 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3430 			!s->ctor)
3431 		s->flags |= __OBJECT_POISON;
3432 	else
3433 		s->flags &= ~__OBJECT_POISON;
3434 
3435 
3436 	/*
3437 	 * If we are Redzoning then check if there is some space between the
3438 	 * end of the object and the free pointer. If not then add an
3439 	 * additional word to have some bytes to store Redzone information.
3440 	 */
3441 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3442 		size += sizeof(void *);
3443 #endif
3444 
3445 	/*
3446 	 * With that we have determined the number of bytes in actual use
3447 	 * by the object. This is the potential offset to the free pointer.
3448 	 */
3449 	s->inuse = size;
3450 
3451 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3452 		s->ctor)) {
3453 		/*
3454 		 * Relocate free pointer after the object if it is not
3455 		 * permitted to overwrite the first word of the object on
3456 		 * kmem_cache_free.
3457 		 *
3458 		 * This is the case if we do RCU, have a constructor or
3459 		 * destructor or are poisoning the objects.
3460 		 */
3461 		s->offset = size;
3462 		size += sizeof(void *);
3463 	}
3464 
3465 #ifdef CONFIG_SLUB_DEBUG
3466 	if (flags & SLAB_STORE_USER)
3467 		/*
3468 		 * Need to store information about allocs and frees after
3469 		 * the object.
3470 		 */
3471 		size += 2 * sizeof(struct track);
3472 #endif
3473 
3474 	kasan_cache_create(s, &size, &s->flags);
3475 #ifdef CONFIG_SLUB_DEBUG
3476 	if (flags & SLAB_RED_ZONE) {
3477 		/*
3478 		 * Add some empty padding so that we can catch
3479 		 * overwrites from earlier objects rather than let
3480 		 * tracking information or the free pointer be
3481 		 * corrupted if a user writes before the start
3482 		 * of the object.
3483 		 */
3484 		size += sizeof(void *);
3485 
3486 		s->red_left_pad = sizeof(void *);
3487 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3488 		size += s->red_left_pad;
3489 	}
3490 #endif
3491 
3492 	/*
3493 	 * SLUB stores one object immediately after another beginning from
3494 	 * offset 0. In order to align the objects we have to simply size
3495 	 * each object to conform to the alignment.
3496 	 */
3497 	size = ALIGN(size, s->align);
3498 	s->size = size;
3499 	if (forced_order >= 0)
3500 		order = forced_order;
3501 	else
3502 		order = calculate_order(size, s->reserved);
3503 
3504 	if (order < 0)
3505 		return 0;
3506 
3507 	s->allocflags = 0;
3508 	if (order)
3509 		s->allocflags |= __GFP_COMP;
3510 
3511 	if (s->flags & SLAB_CACHE_DMA)
3512 		s->allocflags |= GFP_DMA;
3513 
3514 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3515 		s->allocflags |= __GFP_RECLAIMABLE;
3516 
3517 	/*
3518 	 * Determine the number of objects per slab
3519 	 */
3520 	s->oo = oo_make(order, size, s->reserved);
3521 	s->min = oo_make(get_order(size), size, s->reserved);
3522 	if (oo_objects(s->oo) > oo_objects(s->max))
3523 		s->max = s->oo;
3524 
3525 	return !!oo_objects(s->oo);
3526 }
3527 
3528 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3529 {
3530 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3531 	s->reserved = 0;
3532 
3533 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3534 		s->reserved = sizeof(struct rcu_head);
3535 
3536 	if (!calculate_sizes(s, -1))
3537 		goto error;
3538 	if (disable_higher_order_debug) {
3539 		/*
3540 		 * Disable debugging flags that store metadata if the min slab
3541 		 * order increased.
3542 		 */
3543 		if (get_order(s->size) > get_order(s->object_size)) {
3544 			s->flags &= ~DEBUG_METADATA_FLAGS;
3545 			s->offset = 0;
3546 			if (!calculate_sizes(s, -1))
3547 				goto error;
3548 		}
3549 	}
3550 
3551 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3552     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3553 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3554 		/* Enable fast mode */
3555 		s->flags |= __CMPXCHG_DOUBLE;
3556 #endif
3557 
3558 	/*
3559 	 * The larger the object size is, the more pages we want on the partial
3560 	 * list to avoid pounding the page allocator excessively.
3561 	 */
3562 	set_min_partial(s, ilog2(s->size) / 2);
3563 
3564 	/*
3565 	 * cpu_partial determined the maximum number of objects kept in the
3566 	 * per cpu partial lists of a processor.
3567 	 *
3568 	 * Per cpu partial lists mainly contain slabs that just have one
3569 	 * object freed. If they are used for allocation then they can be
3570 	 * filled up again with minimal effort. The slab will never hit the
3571 	 * per node partial lists and therefore no locking will be required.
3572 	 *
3573 	 * This setting also determines
3574 	 *
3575 	 * A) The number of objects from per cpu partial slabs dumped to the
3576 	 *    per node list when we reach the limit.
3577 	 * B) The number of objects in cpu partial slabs to extract from the
3578 	 *    per node list when we run out of per cpu objects. We only fetch
3579 	 *    50% to keep some capacity around for frees.
3580 	 */
3581 	if (!kmem_cache_has_cpu_partial(s))
3582 		s->cpu_partial = 0;
3583 	else if (s->size >= PAGE_SIZE)
3584 		s->cpu_partial = 2;
3585 	else if (s->size >= 1024)
3586 		s->cpu_partial = 6;
3587 	else if (s->size >= 256)
3588 		s->cpu_partial = 13;
3589 	else
3590 		s->cpu_partial = 30;
3591 
3592 #ifdef CONFIG_NUMA
3593 	s->remote_node_defrag_ratio = 1000;
3594 #endif
3595 
3596 	/* Initialize the pre-computed randomized freelist if slab is up */
3597 	if (slab_state >= UP) {
3598 		if (init_cache_random_seq(s))
3599 			goto error;
3600 	}
3601 
3602 	if (!init_kmem_cache_nodes(s))
3603 		goto error;
3604 
3605 	if (alloc_kmem_cache_cpus(s))
3606 		return 0;
3607 
3608 	free_kmem_cache_nodes(s);
3609 error:
3610 	if (flags & SLAB_PANIC)
3611 		panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3612 		      s->name, (unsigned long)s->size, s->size,
3613 		      oo_order(s->oo), s->offset, flags);
3614 	return -EINVAL;
3615 }
3616 
3617 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3618 							const char *text)
3619 {
3620 #ifdef CONFIG_SLUB_DEBUG
3621 	void *addr = page_address(page);
3622 	void *p;
3623 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3624 				     sizeof(long), GFP_ATOMIC);
3625 	if (!map)
3626 		return;
3627 	slab_err(s, page, text, s->name);
3628 	slab_lock(page);
3629 
3630 	get_map(s, page, map);
3631 	for_each_object(p, s, addr, page->objects) {
3632 
3633 		if (!test_bit(slab_index(p, s, addr), map)) {
3634 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3635 			print_tracking(s, p);
3636 		}
3637 	}
3638 	slab_unlock(page);
3639 	kfree(map);
3640 #endif
3641 }
3642 
3643 /*
3644  * Attempt to free all partial slabs on a node.
3645  * This is called from __kmem_cache_shutdown(). We must take list_lock
3646  * because sysfs file might still access partial list after the shutdowning.
3647  */
3648 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3649 {
3650 	LIST_HEAD(discard);
3651 	struct page *page, *h;
3652 
3653 	BUG_ON(irqs_disabled());
3654 	spin_lock_irq(&n->list_lock);
3655 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3656 		if (!page->inuse) {
3657 			remove_partial(n, page);
3658 			list_add(&page->lru, &discard);
3659 		} else {
3660 			list_slab_objects(s, page,
3661 			"Objects remaining in %s on __kmem_cache_shutdown()");
3662 		}
3663 	}
3664 	spin_unlock_irq(&n->list_lock);
3665 
3666 	list_for_each_entry_safe(page, h, &discard, lru)
3667 		discard_slab(s, page);
3668 }
3669 
3670 /*
3671  * Release all resources used by a slab cache.
3672  */
3673 int __kmem_cache_shutdown(struct kmem_cache *s)
3674 {
3675 	int node;
3676 	struct kmem_cache_node *n;
3677 
3678 	flush_all(s);
3679 	/* Attempt to free all objects */
3680 	for_each_kmem_cache_node(s, node, n) {
3681 		free_partial(s, n);
3682 		if (n->nr_partial || slabs_node(s, node))
3683 			return 1;
3684 	}
3685 	return 0;
3686 }
3687 
3688 /********************************************************************
3689  *		Kmalloc subsystem
3690  *******************************************************************/
3691 
3692 static int __init setup_slub_min_order(char *str)
3693 {
3694 	get_option(&str, &slub_min_order);
3695 
3696 	return 1;
3697 }
3698 
3699 __setup("slub_min_order=", setup_slub_min_order);
3700 
3701 static int __init setup_slub_max_order(char *str)
3702 {
3703 	get_option(&str, &slub_max_order);
3704 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3705 
3706 	return 1;
3707 }
3708 
3709 __setup("slub_max_order=", setup_slub_max_order);
3710 
3711 static int __init setup_slub_min_objects(char *str)
3712 {
3713 	get_option(&str, &slub_min_objects);
3714 
3715 	return 1;
3716 }
3717 
3718 __setup("slub_min_objects=", setup_slub_min_objects);
3719 
3720 void *__kmalloc(size_t size, gfp_t flags)
3721 {
3722 	struct kmem_cache *s;
3723 	void *ret;
3724 
3725 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3726 		return kmalloc_large(size, flags);
3727 
3728 	s = kmalloc_slab(size, flags);
3729 
3730 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3731 		return s;
3732 
3733 	ret = slab_alloc(s, flags, _RET_IP_);
3734 
3735 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3736 
3737 	kasan_kmalloc(s, ret, size, flags);
3738 
3739 	return ret;
3740 }
3741 EXPORT_SYMBOL(__kmalloc);
3742 
3743 #ifdef CONFIG_NUMA
3744 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3745 {
3746 	struct page *page;
3747 	void *ptr = NULL;
3748 
3749 	flags |= __GFP_COMP | __GFP_NOTRACK;
3750 	page = alloc_pages_node(node, flags, get_order(size));
3751 	if (page)
3752 		ptr = page_address(page);
3753 
3754 	kmalloc_large_node_hook(ptr, size, flags);
3755 	return ptr;
3756 }
3757 
3758 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3759 {
3760 	struct kmem_cache *s;
3761 	void *ret;
3762 
3763 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3764 		ret = kmalloc_large_node(size, flags, node);
3765 
3766 		trace_kmalloc_node(_RET_IP_, ret,
3767 				   size, PAGE_SIZE << get_order(size),
3768 				   flags, node);
3769 
3770 		return ret;
3771 	}
3772 
3773 	s = kmalloc_slab(size, flags);
3774 
3775 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3776 		return s;
3777 
3778 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3779 
3780 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3781 
3782 	kasan_kmalloc(s, ret, size, flags);
3783 
3784 	return ret;
3785 }
3786 EXPORT_SYMBOL(__kmalloc_node);
3787 #endif
3788 
3789 #ifdef CONFIG_HARDENED_USERCOPY
3790 /*
3791  * Rejects objects that are incorrectly sized.
3792  *
3793  * Returns NULL if check passes, otherwise const char * to name of cache
3794  * to indicate an error.
3795  */
3796 const char *__check_heap_object(const void *ptr, unsigned long n,
3797 				struct page *page)
3798 {
3799 	struct kmem_cache *s;
3800 	unsigned long offset;
3801 	size_t object_size;
3802 
3803 	/* Find object and usable object size. */
3804 	s = page->slab_cache;
3805 	object_size = slab_ksize(s);
3806 
3807 	/* Reject impossible pointers. */
3808 	if (ptr < page_address(page))
3809 		return s->name;
3810 
3811 	/* Find offset within object. */
3812 	offset = (ptr - page_address(page)) % s->size;
3813 
3814 	/* Adjust for redzone and reject if within the redzone. */
3815 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3816 		if (offset < s->red_left_pad)
3817 			return s->name;
3818 		offset -= s->red_left_pad;
3819 	}
3820 
3821 	/* Allow address range falling entirely within object size. */
3822 	if (offset <= object_size && n <= object_size - offset)
3823 		return NULL;
3824 
3825 	return s->name;
3826 }
3827 #endif /* CONFIG_HARDENED_USERCOPY */
3828 
3829 static size_t __ksize(const void *object)
3830 {
3831 	struct page *page;
3832 
3833 	if (unlikely(object == ZERO_SIZE_PTR))
3834 		return 0;
3835 
3836 	page = virt_to_head_page(object);
3837 
3838 	if (unlikely(!PageSlab(page))) {
3839 		WARN_ON(!PageCompound(page));
3840 		return PAGE_SIZE << compound_order(page);
3841 	}
3842 
3843 	return slab_ksize(page->slab_cache);
3844 }
3845 
3846 size_t ksize(const void *object)
3847 {
3848 	size_t size = __ksize(object);
3849 	/* We assume that ksize callers could use whole allocated area,
3850 	 * so we need to unpoison this area.
3851 	 */
3852 	kasan_unpoison_shadow(object, size);
3853 	return size;
3854 }
3855 EXPORT_SYMBOL(ksize);
3856 
3857 void kfree(const void *x)
3858 {
3859 	struct page *page;
3860 	void *object = (void *)x;
3861 
3862 	trace_kfree(_RET_IP_, x);
3863 
3864 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3865 		return;
3866 
3867 	page = virt_to_head_page(x);
3868 	if (unlikely(!PageSlab(page))) {
3869 		BUG_ON(!PageCompound(page));
3870 		kfree_hook(x);
3871 		__free_pages(page, compound_order(page));
3872 		return;
3873 	}
3874 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3875 }
3876 EXPORT_SYMBOL(kfree);
3877 
3878 #define SHRINK_PROMOTE_MAX 32
3879 
3880 /*
3881  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3882  * up most to the head of the partial lists. New allocations will then
3883  * fill those up and thus they can be removed from the partial lists.
3884  *
3885  * The slabs with the least items are placed last. This results in them
3886  * being allocated from last increasing the chance that the last objects
3887  * are freed in them.
3888  */
3889 int __kmem_cache_shrink(struct kmem_cache *s)
3890 {
3891 	int node;
3892 	int i;
3893 	struct kmem_cache_node *n;
3894 	struct page *page;
3895 	struct page *t;
3896 	struct list_head discard;
3897 	struct list_head promote[SHRINK_PROMOTE_MAX];
3898 	unsigned long flags;
3899 	int ret = 0;
3900 
3901 	flush_all(s);
3902 	for_each_kmem_cache_node(s, node, n) {
3903 		INIT_LIST_HEAD(&discard);
3904 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3905 			INIT_LIST_HEAD(promote + i);
3906 
3907 		spin_lock_irqsave(&n->list_lock, flags);
3908 
3909 		/*
3910 		 * Build lists of slabs to discard or promote.
3911 		 *
3912 		 * Note that concurrent frees may occur while we hold the
3913 		 * list_lock. page->inuse here is the upper limit.
3914 		 */
3915 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3916 			int free = page->objects - page->inuse;
3917 
3918 			/* Do not reread page->inuse */
3919 			barrier();
3920 
3921 			/* We do not keep full slabs on the list */
3922 			BUG_ON(free <= 0);
3923 
3924 			if (free == page->objects) {
3925 				list_move(&page->lru, &discard);
3926 				n->nr_partial--;
3927 			} else if (free <= SHRINK_PROMOTE_MAX)
3928 				list_move(&page->lru, promote + free - 1);
3929 		}
3930 
3931 		/*
3932 		 * Promote the slabs filled up most to the head of the
3933 		 * partial list.
3934 		 */
3935 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3936 			list_splice(promote + i, &n->partial);
3937 
3938 		spin_unlock_irqrestore(&n->list_lock, flags);
3939 
3940 		/* Release empty slabs */
3941 		list_for_each_entry_safe(page, t, &discard, lru)
3942 			discard_slab(s, page);
3943 
3944 		if (slabs_node(s, node))
3945 			ret = 1;
3946 	}
3947 
3948 	return ret;
3949 }
3950 
3951 static int slab_mem_going_offline_callback(void *arg)
3952 {
3953 	struct kmem_cache *s;
3954 
3955 	mutex_lock(&slab_mutex);
3956 	list_for_each_entry(s, &slab_caches, list)
3957 		__kmem_cache_shrink(s);
3958 	mutex_unlock(&slab_mutex);
3959 
3960 	return 0;
3961 }
3962 
3963 static void slab_mem_offline_callback(void *arg)
3964 {
3965 	struct kmem_cache_node *n;
3966 	struct kmem_cache *s;
3967 	struct memory_notify *marg = arg;
3968 	int offline_node;
3969 
3970 	offline_node = marg->status_change_nid_normal;
3971 
3972 	/*
3973 	 * If the node still has available memory. we need kmem_cache_node
3974 	 * for it yet.
3975 	 */
3976 	if (offline_node < 0)
3977 		return;
3978 
3979 	mutex_lock(&slab_mutex);
3980 	list_for_each_entry(s, &slab_caches, list) {
3981 		n = get_node(s, offline_node);
3982 		if (n) {
3983 			/*
3984 			 * if n->nr_slabs > 0, slabs still exist on the node
3985 			 * that is going down. We were unable to free them,
3986 			 * and offline_pages() function shouldn't call this
3987 			 * callback. So, we must fail.
3988 			 */
3989 			BUG_ON(slabs_node(s, offline_node));
3990 
3991 			s->node[offline_node] = NULL;
3992 			kmem_cache_free(kmem_cache_node, n);
3993 		}
3994 	}
3995 	mutex_unlock(&slab_mutex);
3996 }
3997 
3998 static int slab_mem_going_online_callback(void *arg)
3999 {
4000 	struct kmem_cache_node *n;
4001 	struct kmem_cache *s;
4002 	struct memory_notify *marg = arg;
4003 	int nid = marg->status_change_nid_normal;
4004 	int ret = 0;
4005 
4006 	/*
4007 	 * If the node's memory is already available, then kmem_cache_node is
4008 	 * already created. Nothing to do.
4009 	 */
4010 	if (nid < 0)
4011 		return 0;
4012 
4013 	/*
4014 	 * We are bringing a node online. No memory is available yet. We must
4015 	 * allocate a kmem_cache_node structure in order to bring the node
4016 	 * online.
4017 	 */
4018 	mutex_lock(&slab_mutex);
4019 	list_for_each_entry(s, &slab_caches, list) {
4020 		/*
4021 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4022 		 *      since memory is not yet available from the node that
4023 		 *      is brought up.
4024 		 */
4025 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4026 		if (!n) {
4027 			ret = -ENOMEM;
4028 			goto out;
4029 		}
4030 		init_kmem_cache_node(n);
4031 		s->node[nid] = n;
4032 	}
4033 out:
4034 	mutex_unlock(&slab_mutex);
4035 	return ret;
4036 }
4037 
4038 static int slab_memory_callback(struct notifier_block *self,
4039 				unsigned long action, void *arg)
4040 {
4041 	int ret = 0;
4042 
4043 	switch (action) {
4044 	case MEM_GOING_ONLINE:
4045 		ret = slab_mem_going_online_callback(arg);
4046 		break;
4047 	case MEM_GOING_OFFLINE:
4048 		ret = slab_mem_going_offline_callback(arg);
4049 		break;
4050 	case MEM_OFFLINE:
4051 	case MEM_CANCEL_ONLINE:
4052 		slab_mem_offline_callback(arg);
4053 		break;
4054 	case MEM_ONLINE:
4055 	case MEM_CANCEL_OFFLINE:
4056 		break;
4057 	}
4058 	if (ret)
4059 		ret = notifier_from_errno(ret);
4060 	else
4061 		ret = NOTIFY_OK;
4062 	return ret;
4063 }
4064 
4065 static struct notifier_block slab_memory_callback_nb = {
4066 	.notifier_call = slab_memory_callback,
4067 	.priority = SLAB_CALLBACK_PRI,
4068 };
4069 
4070 /********************************************************************
4071  *			Basic setup of slabs
4072  *******************************************************************/
4073 
4074 /*
4075  * Used for early kmem_cache structures that were allocated using
4076  * the page allocator. Allocate them properly then fix up the pointers
4077  * that may be pointing to the wrong kmem_cache structure.
4078  */
4079 
4080 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4081 {
4082 	int node;
4083 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4084 	struct kmem_cache_node *n;
4085 
4086 	memcpy(s, static_cache, kmem_cache->object_size);
4087 
4088 	/*
4089 	 * This runs very early, and only the boot processor is supposed to be
4090 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4091 	 * IPIs around.
4092 	 */
4093 	__flush_cpu_slab(s, smp_processor_id());
4094 	for_each_kmem_cache_node(s, node, n) {
4095 		struct page *p;
4096 
4097 		list_for_each_entry(p, &n->partial, lru)
4098 			p->slab_cache = s;
4099 
4100 #ifdef CONFIG_SLUB_DEBUG
4101 		list_for_each_entry(p, &n->full, lru)
4102 			p->slab_cache = s;
4103 #endif
4104 	}
4105 	slab_init_memcg_params(s);
4106 	list_add(&s->list, &slab_caches);
4107 	return s;
4108 }
4109 
4110 void __init kmem_cache_init(void)
4111 {
4112 	static __initdata struct kmem_cache boot_kmem_cache,
4113 		boot_kmem_cache_node;
4114 
4115 	if (debug_guardpage_minorder())
4116 		slub_max_order = 0;
4117 
4118 	kmem_cache_node = &boot_kmem_cache_node;
4119 	kmem_cache = &boot_kmem_cache;
4120 
4121 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4122 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4123 
4124 	register_hotmemory_notifier(&slab_memory_callback_nb);
4125 
4126 	/* Able to allocate the per node structures */
4127 	slab_state = PARTIAL;
4128 
4129 	create_boot_cache(kmem_cache, "kmem_cache",
4130 			offsetof(struct kmem_cache, node) +
4131 				nr_node_ids * sizeof(struct kmem_cache_node *),
4132 		       SLAB_HWCACHE_ALIGN);
4133 
4134 	kmem_cache = bootstrap(&boot_kmem_cache);
4135 
4136 	/*
4137 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
4138 	 * kmem_cache_node is separately allocated so no need to
4139 	 * update any list pointers.
4140 	 */
4141 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4142 
4143 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4144 	setup_kmalloc_cache_index_table();
4145 	create_kmalloc_caches(0);
4146 
4147 	/* Setup random freelists for each cache */
4148 	init_freelist_randomization();
4149 
4150 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4151 				  slub_cpu_dead);
4152 
4153 	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4154 		cache_line_size(),
4155 		slub_min_order, slub_max_order, slub_min_objects,
4156 		nr_cpu_ids, nr_node_ids);
4157 }
4158 
4159 void __init kmem_cache_init_late(void)
4160 {
4161 }
4162 
4163 struct kmem_cache *
4164 __kmem_cache_alias(const char *name, size_t size, size_t align,
4165 		   unsigned long flags, void (*ctor)(void *))
4166 {
4167 	struct kmem_cache *s, *c;
4168 
4169 	s = find_mergeable(size, align, flags, name, ctor);
4170 	if (s) {
4171 		s->refcount++;
4172 
4173 		/*
4174 		 * Adjust the object sizes so that we clear
4175 		 * the complete object on kzalloc.
4176 		 */
4177 		s->object_size = max(s->object_size, (int)size);
4178 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4179 
4180 		for_each_memcg_cache(c, s) {
4181 			c->object_size = s->object_size;
4182 			c->inuse = max_t(int, c->inuse,
4183 					 ALIGN(size, sizeof(void *)));
4184 		}
4185 
4186 		if (sysfs_slab_alias(s, name)) {
4187 			s->refcount--;
4188 			s = NULL;
4189 		}
4190 	}
4191 
4192 	return s;
4193 }
4194 
4195 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4196 {
4197 	int err;
4198 
4199 	err = kmem_cache_open(s, flags);
4200 	if (err)
4201 		return err;
4202 
4203 	/* Mutex is not taken during early boot */
4204 	if (slab_state <= UP)
4205 		return 0;
4206 
4207 	memcg_propagate_slab_attrs(s);
4208 	err = sysfs_slab_add(s);
4209 	if (err)
4210 		__kmem_cache_release(s);
4211 
4212 	return err;
4213 }
4214 
4215 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4216 {
4217 	struct kmem_cache *s;
4218 	void *ret;
4219 
4220 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4221 		return kmalloc_large(size, gfpflags);
4222 
4223 	s = kmalloc_slab(size, gfpflags);
4224 
4225 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4226 		return s;
4227 
4228 	ret = slab_alloc(s, gfpflags, caller);
4229 
4230 	/* Honor the call site pointer we received. */
4231 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4232 
4233 	return ret;
4234 }
4235 
4236 #ifdef CONFIG_NUMA
4237 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4238 					int node, unsigned long caller)
4239 {
4240 	struct kmem_cache *s;
4241 	void *ret;
4242 
4243 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4244 		ret = kmalloc_large_node(size, gfpflags, node);
4245 
4246 		trace_kmalloc_node(caller, ret,
4247 				   size, PAGE_SIZE << get_order(size),
4248 				   gfpflags, node);
4249 
4250 		return ret;
4251 	}
4252 
4253 	s = kmalloc_slab(size, gfpflags);
4254 
4255 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4256 		return s;
4257 
4258 	ret = slab_alloc_node(s, gfpflags, node, caller);
4259 
4260 	/* Honor the call site pointer we received. */
4261 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4262 
4263 	return ret;
4264 }
4265 #endif
4266 
4267 #ifdef CONFIG_SYSFS
4268 static int count_inuse(struct page *page)
4269 {
4270 	return page->inuse;
4271 }
4272 
4273 static int count_total(struct page *page)
4274 {
4275 	return page->objects;
4276 }
4277 #endif
4278 
4279 #ifdef CONFIG_SLUB_DEBUG
4280 static int validate_slab(struct kmem_cache *s, struct page *page,
4281 						unsigned long *map)
4282 {
4283 	void *p;
4284 	void *addr = page_address(page);
4285 
4286 	if (!check_slab(s, page) ||
4287 			!on_freelist(s, page, NULL))
4288 		return 0;
4289 
4290 	/* Now we know that a valid freelist exists */
4291 	bitmap_zero(map, page->objects);
4292 
4293 	get_map(s, page, map);
4294 	for_each_object(p, s, addr, page->objects) {
4295 		if (test_bit(slab_index(p, s, addr), map))
4296 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4297 				return 0;
4298 	}
4299 
4300 	for_each_object(p, s, addr, page->objects)
4301 		if (!test_bit(slab_index(p, s, addr), map))
4302 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4303 				return 0;
4304 	return 1;
4305 }
4306 
4307 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4308 						unsigned long *map)
4309 {
4310 	slab_lock(page);
4311 	validate_slab(s, page, map);
4312 	slab_unlock(page);
4313 }
4314 
4315 static int validate_slab_node(struct kmem_cache *s,
4316 		struct kmem_cache_node *n, unsigned long *map)
4317 {
4318 	unsigned long count = 0;
4319 	struct page *page;
4320 	unsigned long flags;
4321 
4322 	spin_lock_irqsave(&n->list_lock, flags);
4323 
4324 	list_for_each_entry(page, &n->partial, lru) {
4325 		validate_slab_slab(s, page, map);
4326 		count++;
4327 	}
4328 	if (count != n->nr_partial)
4329 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4330 		       s->name, count, n->nr_partial);
4331 
4332 	if (!(s->flags & SLAB_STORE_USER))
4333 		goto out;
4334 
4335 	list_for_each_entry(page, &n->full, lru) {
4336 		validate_slab_slab(s, page, map);
4337 		count++;
4338 	}
4339 	if (count != atomic_long_read(&n->nr_slabs))
4340 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4341 		       s->name, count, atomic_long_read(&n->nr_slabs));
4342 
4343 out:
4344 	spin_unlock_irqrestore(&n->list_lock, flags);
4345 	return count;
4346 }
4347 
4348 static long validate_slab_cache(struct kmem_cache *s)
4349 {
4350 	int node;
4351 	unsigned long count = 0;
4352 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4353 				sizeof(unsigned long), GFP_KERNEL);
4354 	struct kmem_cache_node *n;
4355 
4356 	if (!map)
4357 		return -ENOMEM;
4358 
4359 	flush_all(s);
4360 	for_each_kmem_cache_node(s, node, n)
4361 		count += validate_slab_node(s, n, map);
4362 	kfree(map);
4363 	return count;
4364 }
4365 /*
4366  * Generate lists of code addresses where slabcache objects are allocated
4367  * and freed.
4368  */
4369 
4370 struct location {
4371 	unsigned long count;
4372 	unsigned long addr;
4373 	long long sum_time;
4374 	long min_time;
4375 	long max_time;
4376 	long min_pid;
4377 	long max_pid;
4378 	DECLARE_BITMAP(cpus, NR_CPUS);
4379 	nodemask_t nodes;
4380 };
4381 
4382 struct loc_track {
4383 	unsigned long max;
4384 	unsigned long count;
4385 	struct location *loc;
4386 };
4387 
4388 static void free_loc_track(struct loc_track *t)
4389 {
4390 	if (t->max)
4391 		free_pages((unsigned long)t->loc,
4392 			get_order(sizeof(struct location) * t->max));
4393 }
4394 
4395 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4396 {
4397 	struct location *l;
4398 	int order;
4399 
4400 	order = get_order(sizeof(struct location) * max);
4401 
4402 	l = (void *)__get_free_pages(flags, order);
4403 	if (!l)
4404 		return 0;
4405 
4406 	if (t->count) {
4407 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4408 		free_loc_track(t);
4409 	}
4410 	t->max = max;
4411 	t->loc = l;
4412 	return 1;
4413 }
4414 
4415 static int add_location(struct loc_track *t, struct kmem_cache *s,
4416 				const struct track *track)
4417 {
4418 	long start, end, pos;
4419 	struct location *l;
4420 	unsigned long caddr;
4421 	unsigned long age = jiffies - track->when;
4422 
4423 	start = -1;
4424 	end = t->count;
4425 
4426 	for ( ; ; ) {
4427 		pos = start + (end - start + 1) / 2;
4428 
4429 		/*
4430 		 * There is nothing at "end". If we end up there
4431 		 * we need to add something to before end.
4432 		 */
4433 		if (pos == end)
4434 			break;
4435 
4436 		caddr = t->loc[pos].addr;
4437 		if (track->addr == caddr) {
4438 
4439 			l = &t->loc[pos];
4440 			l->count++;
4441 			if (track->when) {
4442 				l->sum_time += age;
4443 				if (age < l->min_time)
4444 					l->min_time = age;
4445 				if (age > l->max_time)
4446 					l->max_time = age;
4447 
4448 				if (track->pid < l->min_pid)
4449 					l->min_pid = track->pid;
4450 				if (track->pid > l->max_pid)
4451 					l->max_pid = track->pid;
4452 
4453 				cpumask_set_cpu(track->cpu,
4454 						to_cpumask(l->cpus));
4455 			}
4456 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4457 			return 1;
4458 		}
4459 
4460 		if (track->addr < caddr)
4461 			end = pos;
4462 		else
4463 			start = pos;
4464 	}
4465 
4466 	/*
4467 	 * Not found. Insert new tracking element.
4468 	 */
4469 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4470 		return 0;
4471 
4472 	l = t->loc + pos;
4473 	if (pos < t->count)
4474 		memmove(l + 1, l,
4475 			(t->count - pos) * sizeof(struct location));
4476 	t->count++;
4477 	l->count = 1;
4478 	l->addr = track->addr;
4479 	l->sum_time = age;
4480 	l->min_time = age;
4481 	l->max_time = age;
4482 	l->min_pid = track->pid;
4483 	l->max_pid = track->pid;
4484 	cpumask_clear(to_cpumask(l->cpus));
4485 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4486 	nodes_clear(l->nodes);
4487 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4488 	return 1;
4489 }
4490 
4491 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4492 		struct page *page, enum track_item alloc,
4493 		unsigned long *map)
4494 {
4495 	void *addr = page_address(page);
4496 	void *p;
4497 
4498 	bitmap_zero(map, page->objects);
4499 	get_map(s, page, map);
4500 
4501 	for_each_object(p, s, addr, page->objects)
4502 		if (!test_bit(slab_index(p, s, addr), map))
4503 			add_location(t, s, get_track(s, p, alloc));
4504 }
4505 
4506 static int list_locations(struct kmem_cache *s, char *buf,
4507 					enum track_item alloc)
4508 {
4509 	int len = 0;
4510 	unsigned long i;
4511 	struct loc_track t = { 0, 0, NULL };
4512 	int node;
4513 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4514 				     sizeof(unsigned long), GFP_KERNEL);
4515 	struct kmem_cache_node *n;
4516 
4517 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4518 				     GFP_TEMPORARY)) {
4519 		kfree(map);
4520 		return sprintf(buf, "Out of memory\n");
4521 	}
4522 	/* Push back cpu slabs */
4523 	flush_all(s);
4524 
4525 	for_each_kmem_cache_node(s, node, n) {
4526 		unsigned long flags;
4527 		struct page *page;
4528 
4529 		if (!atomic_long_read(&n->nr_slabs))
4530 			continue;
4531 
4532 		spin_lock_irqsave(&n->list_lock, flags);
4533 		list_for_each_entry(page, &n->partial, lru)
4534 			process_slab(&t, s, page, alloc, map);
4535 		list_for_each_entry(page, &n->full, lru)
4536 			process_slab(&t, s, page, alloc, map);
4537 		spin_unlock_irqrestore(&n->list_lock, flags);
4538 	}
4539 
4540 	for (i = 0; i < t.count; i++) {
4541 		struct location *l = &t.loc[i];
4542 
4543 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4544 			break;
4545 		len += sprintf(buf + len, "%7ld ", l->count);
4546 
4547 		if (l->addr)
4548 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4549 		else
4550 			len += sprintf(buf + len, "<not-available>");
4551 
4552 		if (l->sum_time != l->min_time) {
4553 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4554 				l->min_time,
4555 				(long)div_u64(l->sum_time, l->count),
4556 				l->max_time);
4557 		} else
4558 			len += sprintf(buf + len, " age=%ld",
4559 				l->min_time);
4560 
4561 		if (l->min_pid != l->max_pid)
4562 			len += sprintf(buf + len, " pid=%ld-%ld",
4563 				l->min_pid, l->max_pid);
4564 		else
4565 			len += sprintf(buf + len, " pid=%ld",
4566 				l->min_pid);
4567 
4568 		if (num_online_cpus() > 1 &&
4569 				!cpumask_empty(to_cpumask(l->cpus)) &&
4570 				len < PAGE_SIZE - 60)
4571 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4572 					 " cpus=%*pbl",
4573 					 cpumask_pr_args(to_cpumask(l->cpus)));
4574 
4575 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4576 				len < PAGE_SIZE - 60)
4577 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4578 					 " nodes=%*pbl",
4579 					 nodemask_pr_args(&l->nodes));
4580 
4581 		len += sprintf(buf + len, "\n");
4582 	}
4583 
4584 	free_loc_track(&t);
4585 	kfree(map);
4586 	if (!t.count)
4587 		len += sprintf(buf, "No data\n");
4588 	return len;
4589 }
4590 #endif
4591 
4592 #ifdef SLUB_RESILIENCY_TEST
4593 static void __init resiliency_test(void)
4594 {
4595 	u8 *p;
4596 
4597 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4598 
4599 	pr_err("SLUB resiliency testing\n");
4600 	pr_err("-----------------------\n");
4601 	pr_err("A. Corruption after allocation\n");
4602 
4603 	p = kzalloc(16, GFP_KERNEL);
4604 	p[16] = 0x12;
4605 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4606 	       p + 16);
4607 
4608 	validate_slab_cache(kmalloc_caches[4]);
4609 
4610 	/* Hmmm... The next two are dangerous */
4611 	p = kzalloc(32, GFP_KERNEL);
4612 	p[32 + sizeof(void *)] = 0x34;
4613 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4614 	       p);
4615 	pr_err("If allocated object is overwritten then not detectable\n\n");
4616 
4617 	validate_slab_cache(kmalloc_caches[5]);
4618 	p = kzalloc(64, GFP_KERNEL);
4619 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4620 	*p = 0x56;
4621 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4622 	       p);
4623 	pr_err("If allocated object is overwritten then not detectable\n\n");
4624 	validate_slab_cache(kmalloc_caches[6]);
4625 
4626 	pr_err("\nB. Corruption after free\n");
4627 	p = kzalloc(128, GFP_KERNEL);
4628 	kfree(p);
4629 	*p = 0x78;
4630 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4631 	validate_slab_cache(kmalloc_caches[7]);
4632 
4633 	p = kzalloc(256, GFP_KERNEL);
4634 	kfree(p);
4635 	p[50] = 0x9a;
4636 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4637 	validate_slab_cache(kmalloc_caches[8]);
4638 
4639 	p = kzalloc(512, GFP_KERNEL);
4640 	kfree(p);
4641 	p[512] = 0xab;
4642 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4643 	validate_slab_cache(kmalloc_caches[9]);
4644 }
4645 #else
4646 #ifdef CONFIG_SYSFS
4647 static void resiliency_test(void) {};
4648 #endif
4649 #endif
4650 
4651 #ifdef CONFIG_SYSFS
4652 enum slab_stat_type {
4653 	SL_ALL,			/* All slabs */
4654 	SL_PARTIAL,		/* Only partially allocated slabs */
4655 	SL_CPU,			/* Only slabs used for cpu caches */
4656 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4657 	SL_TOTAL		/* Determine object capacity not slabs */
4658 };
4659 
4660 #define SO_ALL		(1 << SL_ALL)
4661 #define SO_PARTIAL	(1 << SL_PARTIAL)
4662 #define SO_CPU		(1 << SL_CPU)
4663 #define SO_OBJECTS	(1 << SL_OBJECTS)
4664 #define SO_TOTAL	(1 << SL_TOTAL)
4665 
4666 static ssize_t show_slab_objects(struct kmem_cache *s,
4667 			    char *buf, unsigned long flags)
4668 {
4669 	unsigned long total = 0;
4670 	int node;
4671 	int x;
4672 	unsigned long *nodes;
4673 
4674 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4675 	if (!nodes)
4676 		return -ENOMEM;
4677 
4678 	if (flags & SO_CPU) {
4679 		int cpu;
4680 
4681 		for_each_possible_cpu(cpu) {
4682 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4683 							       cpu);
4684 			int node;
4685 			struct page *page;
4686 
4687 			page = READ_ONCE(c->page);
4688 			if (!page)
4689 				continue;
4690 
4691 			node = page_to_nid(page);
4692 			if (flags & SO_TOTAL)
4693 				x = page->objects;
4694 			else if (flags & SO_OBJECTS)
4695 				x = page->inuse;
4696 			else
4697 				x = 1;
4698 
4699 			total += x;
4700 			nodes[node] += x;
4701 
4702 			page = READ_ONCE(c->partial);
4703 			if (page) {
4704 				node = page_to_nid(page);
4705 				if (flags & SO_TOTAL)
4706 					WARN_ON_ONCE(1);
4707 				else if (flags & SO_OBJECTS)
4708 					WARN_ON_ONCE(1);
4709 				else
4710 					x = page->pages;
4711 				total += x;
4712 				nodes[node] += x;
4713 			}
4714 		}
4715 	}
4716 
4717 	get_online_mems();
4718 #ifdef CONFIG_SLUB_DEBUG
4719 	if (flags & SO_ALL) {
4720 		struct kmem_cache_node *n;
4721 
4722 		for_each_kmem_cache_node(s, node, n) {
4723 
4724 			if (flags & SO_TOTAL)
4725 				x = atomic_long_read(&n->total_objects);
4726 			else if (flags & SO_OBJECTS)
4727 				x = atomic_long_read(&n->total_objects) -
4728 					count_partial(n, count_free);
4729 			else
4730 				x = atomic_long_read(&n->nr_slabs);
4731 			total += x;
4732 			nodes[node] += x;
4733 		}
4734 
4735 	} else
4736 #endif
4737 	if (flags & SO_PARTIAL) {
4738 		struct kmem_cache_node *n;
4739 
4740 		for_each_kmem_cache_node(s, node, n) {
4741 			if (flags & SO_TOTAL)
4742 				x = count_partial(n, count_total);
4743 			else if (flags & SO_OBJECTS)
4744 				x = count_partial(n, count_inuse);
4745 			else
4746 				x = n->nr_partial;
4747 			total += x;
4748 			nodes[node] += x;
4749 		}
4750 	}
4751 	x = sprintf(buf, "%lu", total);
4752 #ifdef CONFIG_NUMA
4753 	for (node = 0; node < nr_node_ids; node++)
4754 		if (nodes[node])
4755 			x += sprintf(buf + x, " N%d=%lu",
4756 					node, nodes[node]);
4757 #endif
4758 	put_online_mems();
4759 	kfree(nodes);
4760 	return x + sprintf(buf + x, "\n");
4761 }
4762 
4763 #ifdef CONFIG_SLUB_DEBUG
4764 static int any_slab_objects(struct kmem_cache *s)
4765 {
4766 	int node;
4767 	struct kmem_cache_node *n;
4768 
4769 	for_each_kmem_cache_node(s, node, n)
4770 		if (atomic_long_read(&n->total_objects))
4771 			return 1;
4772 
4773 	return 0;
4774 }
4775 #endif
4776 
4777 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4778 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4779 
4780 struct slab_attribute {
4781 	struct attribute attr;
4782 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4783 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4784 };
4785 
4786 #define SLAB_ATTR_RO(_name) \
4787 	static struct slab_attribute _name##_attr = \
4788 	__ATTR(_name, 0400, _name##_show, NULL)
4789 
4790 #define SLAB_ATTR(_name) \
4791 	static struct slab_attribute _name##_attr =  \
4792 	__ATTR(_name, 0600, _name##_show, _name##_store)
4793 
4794 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4795 {
4796 	return sprintf(buf, "%d\n", s->size);
4797 }
4798 SLAB_ATTR_RO(slab_size);
4799 
4800 static ssize_t align_show(struct kmem_cache *s, char *buf)
4801 {
4802 	return sprintf(buf, "%d\n", s->align);
4803 }
4804 SLAB_ATTR_RO(align);
4805 
4806 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4807 {
4808 	return sprintf(buf, "%d\n", s->object_size);
4809 }
4810 SLAB_ATTR_RO(object_size);
4811 
4812 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4813 {
4814 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4815 }
4816 SLAB_ATTR_RO(objs_per_slab);
4817 
4818 static ssize_t order_store(struct kmem_cache *s,
4819 				const char *buf, size_t length)
4820 {
4821 	unsigned long order;
4822 	int err;
4823 
4824 	err = kstrtoul(buf, 10, &order);
4825 	if (err)
4826 		return err;
4827 
4828 	if (order > slub_max_order || order < slub_min_order)
4829 		return -EINVAL;
4830 
4831 	calculate_sizes(s, order);
4832 	return length;
4833 }
4834 
4835 static ssize_t order_show(struct kmem_cache *s, char *buf)
4836 {
4837 	return sprintf(buf, "%d\n", oo_order(s->oo));
4838 }
4839 SLAB_ATTR(order);
4840 
4841 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4842 {
4843 	return sprintf(buf, "%lu\n", s->min_partial);
4844 }
4845 
4846 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4847 				 size_t length)
4848 {
4849 	unsigned long min;
4850 	int err;
4851 
4852 	err = kstrtoul(buf, 10, &min);
4853 	if (err)
4854 		return err;
4855 
4856 	set_min_partial(s, min);
4857 	return length;
4858 }
4859 SLAB_ATTR(min_partial);
4860 
4861 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4862 {
4863 	return sprintf(buf, "%u\n", s->cpu_partial);
4864 }
4865 
4866 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4867 				 size_t length)
4868 {
4869 	unsigned long objects;
4870 	int err;
4871 
4872 	err = kstrtoul(buf, 10, &objects);
4873 	if (err)
4874 		return err;
4875 	if (objects && !kmem_cache_has_cpu_partial(s))
4876 		return -EINVAL;
4877 
4878 	s->cpu_partial = objects;
4879 	flush_all(s);
4880 	return length;
4881 }
4882 SLAB_ATTR(cpu_partial);
4883 
4884 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4885 {
4886 	if (!s->ctor)
4887 		return 0;
4888 	return sprintf(buf, "%pS\n", s->ctor);
4889 }
4890 SLAB_ATTR_RO(ctor);
4891 
4892 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4893 {
4894 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4895 }
4896 SLAB_ATTR_RO(aliases);
4897 
4898 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4899 {
4900 	return show_slab_objects(s, buf, SO_PARTIAL);
4901 }
4902 SLAB_ATTR_RO(partial);
4903 
4904 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4905 {
4906 	return show_slab_objects(s, buf, SO_CPU);
4907 }
4908 SLAB_ATTR_RO(cpu_slabs);
4909 
4910 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4911 {
4912 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4913 }
4914 SLAB_ATTR_RO(objects);
4915 
4916 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4917 {
4918 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4919 }
4920 SLAB_ATTR_RO(objects_partial);
4921 
4922 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4923 {
4924 	int objects = 0;
4925 	int pages = 0;
4926 	int cpu;
4927 	int len;
4928 
4929 	for_each_online_cpu(cpu) {
4930 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4931 
4932 		if (page) {
4933 			pages += page->pages;
4934 			objects += page->pobjects;
4935 		}
4936 	}
4937 
4938 	len = sprintf(buf, "%d(%d)", objects, pages);
4939 
4940 #ifdef CONFIG_SMP
4941 	for_each_online_cpu(cpu) {
4942 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4943 
4944 		if (page && len < PAGE_SIZE - 20)
4945 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4946 				page->pobjects, page->pages);
4947 	}
4948 #endif
4949 	return len + sprintf(buf + len, "\n");
4950 }
4951 SLAB_ATTR_RO(slabs_cpu_partial);
4952 
4953 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4954 {
4955 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4956 }
4957 
4958 static ssize_t reclaim_account_store(struct kmem_cache *s,
4959 				const char *buf, size_t length)
4960 {
4961 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4962 	if (buf[0] == '1')
4963 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4964 	return length;
4965 }
4966 SLAB_ATTR(reclaim_account);
4967 
4968 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4969 {
4970 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4971 }
4972 SLAB_ATTR_RO(hwcache_align);
4973 
4974 #ifdef CONFIG_ZONE_DMA
4975 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4976 {
4977 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4978 }
4979 SLAB_ATTR_RO(cache_dma);
4980 #endif
4981 
4982 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4983 {
4984 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4985 }
4986 SLAB_ATTR_RO(destroy_by_rcu);
4987 
4988 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4989 {
4990 	return sprintf(buf, "%d\n", s->reserved);
4991 }
4992 SLAB_ATTR_RO(reserved);
4993 
4994 #ifdef CONFIG_SLUB_DEBUG
4995 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4996 {
4997 	return show_slab_objects(s, buf, SO_ALL);
4998 }
4999 SLAB_ATTR_RO(slabs);
5000 
5001 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5002 {
5003 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5004 }
5005 SLAB_ATTR_RO(total_objects);
5006 
5007 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5008 {
5009 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5010 }
5011 
5012 static ssize_t sanity_checks_store(struct kmem_cache *s,
5013 				const char *buf, size_t length)
5014 {
5015 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5016 	if (buf[0] == '1') {
5017 		s->flags &= ~__CMPXCHG_DOUBLE;
5018 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5019 	}
5020 	return length;
5021 }
5022 SLAB_ATTR(sanity_checks);
5023 
5024 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5025 {
5026 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5027 }
5028 
5029 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5030 							size_t length)
5031 {
5032 	/*
5033 	 * Tracing a merged cache is going to give confusing results
5034 	 * as well as cause other issues like converting a mergeable
5035 	 * cache into an umergeable one.
5036 	 */
5037 	if (s->refcount > 1)
5038 		return -EINVAL;
5039 
5040 	s->flags &= ~SLAB_TRACE;
5041 	if (buf[0] == '1') {
5042 		s->flags &= ~__CMPXCHG_DOUBLE;
5043 		s->flags |= SLAB_TRACE;
5044 	}
5045 	return length;
5046 }
5047 SLAB_ATTR(trace);
5048 
5049 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5050 {
5051 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5052 }
5053 
5054 static ssize_t red_zone_store(struct kmem_cache *s,
5055 				const char *buf, size_t length)
5056 {
5057 	if (any_slab_objects(s))
5058 		return -EBUSY;
5059 
5060 	s->flags &= ~SLAB_RED_ZONE;
5061 	if (buf[0] == '1') {
5062 		s->flags |= SLAB_RED_ZONE;
5063 	}
5064 	calculate_sizes(s, -1);
5065 	return length;
5066 }
5067 SLAB_ATTR(red_zone);
5068 
5069 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5070 {
5071 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5072 }
5073 
5074 static ssize_t poison_store(struct kmem_cache *s,
5075 				const char *buf, size_t length)
5076 {
5077 	if (any_slab_objects(s))
5078 		return -EBUSY;
5079 
5080 	s->flags &= ~SLAB_POISON;
5081 	if (buf[0] == '1') {
5082 		s->flags |= SLAB_POISON;
5083 	}
5084 	calculate_sizes(s, -1);
5085 	return length;
5086 }
5087 SLAB_ATTR(poison);
5088 
5089 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5090 {
5091 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5092 }
5093 
5094 static ssize_t store_user_store(struct kmem_cache *s,
5095 				const char *buf, size_t length)
5096 {
5097 	if (any_slab_objects(s))
5098 		return -EBUSY;
5099 
5100 	s->flags &= ~SLAB_STORE_USER;
5101 	if (buf[0] == '1') {
5102 		s->flags &= ~__CMPXCHG_DOUBLE;
5103 		s->flags |= SLAB_STORE_USER;
5104 	}
5105 	calculate_sizes(s, -1);
5106 	return length;
5107 }
5108 SLAB_ATTR(store_user);
5109 
5110 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5111 {
5112 	return 0;
5113 }
5114 
5115 static ssize_t validate_store(struct kmem_cache *s,
5116 			const char *buf, size_t length)
5117 {
5118 	int ret = -EINVAL;
5119 
5120 	if (buf[0] == '1') {
5121 		ret = validate_slab_cache(s);
5122 		if (ret >= 0)
5123 			ret = length;
5124 	}
5125 	return ret;
5126 }
5127 SLAB_ATTR(validate);
5128 
5129 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5130 {
5131 	if (!(s->flags & SLAB_STORE_USER))
5132 		return -ENOSYS;
5133 	return list_locations(s, buf, TRACK_ALLOC);
5134 }
5135 SLAB_ATTR_RO(alloc_calls);
5136 
5137 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5138 {
5139 	if (!(s->flags & SLAB_STORE_USER))
5140 		return -ENOSYS;
5141 	return list_locations(s, buf, TRACK_FREE);
5142 }
5143 SLAB_ATTR_RO(free_calls);
5144 #endif /* CONFIG_SLUB_DEBUG */
5145 
5146 #ifdef CONFIG_FAILSLAB
5147 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5148 {
5149 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5150 }
5151 
5152 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5153 							size_t length)
5154 {
5155 	if (s->refcount > 1)
5156 		return -EINVAL;
5157 
5158 	s->flags &= ~SLAB_FAILSLAB;
5159 	if (buf[0] == '1')
5160 		s->flags |= SLAB_FAILSLAB;
5161 	return length;
5162 }
5163 SLAB_ATTR(failslab);
5164 #endif
5165 
5166 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5167 {
5168 	return 0;
5169 }
5170 
5171 static ssize_t shrink_store(struct kmem_cache *s,
5172 			const char *buf, size_t length)
5173 {
5174 	if (buf[0] == '1')
5175 		kmem_cache_shrink(s);
5176 	else
5177 		return -EINVAL;
5178 	return length;
5179 }
5180 SLAB_ATTR(shrink);
5181 
5182 #ifdef CONFIG_NUMA
5183 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5184 {
5185 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5186 }
5187 
5188 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5189 				const char *buf, size_t length)
5190 {
5191 	unsigned long ratio;
5192 	int err;
5193 
5194 	err = kstrtoul(buf, 10, &ratio);
5195 	if (err)
5196 		return err;
5197 
5198 	if (ratio <= 100)
5199 		s->remote_node_defrag_ratio = ratio * 10;
5200 
5201 	return length;
5202 }
5203 SLAB_ATTR(remote_node_defrag_ratio);
5204 #endif
5205 
5206 #ifdef CONFIG_SLUB_STATS
5207 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5208 {
5209 	unsigned long sum  = 0;
5210 	int cpu;
5211 	int len;
5212 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5213 
5214 	if (!data)
5215 		return -ENOMEM;
5216 
5217 	for_each_online_cpu(cpu) {
5218 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5219 
5220 		data[cpu] = x;
5221 		sum += x;
5222 	}
5223 
5224 	len = sprintf(buf, "%lu", sum);
5225 
5226 #ifdef CONFIG_SMP
5227 	for_each_online_cpu(cpu) {
5228 		if (data[cpu] && len < PAGE_SIZE - 20)
5229 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5230 	}
5231 #endif
5232 	kfree(data);
5233 	return len + sprintf(buf + len, "\n");
5234 }
5235 
5236 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5237 {
5238 	int cpu;
5239 
5240 	for_each_online_cpu(cpu)
5241 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5242 }
5243 
5244 #define STAT_ATTR(si, text) 					\
5245 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5246 {								\
5247 	return show_stat(s, buf, si);				\
5248 }								\
5249 static ssize_t text##_store(struct kmem_cache *s,		\
5250 				const char *buf, size_t length)	\
5251 {								\
5252 	if (buf[0] != '0')					\
5253 		return -EINVAL;					\
5254 	clear_stat(s, si);					\
5255 	return length;						\
5256 }								\
5257 SLAB_ATTR(text);						\
5258 
5259 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5260 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5261 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5262 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5263 STAT_ATTR(FREE_FROZEN, free_frozen);
5264 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5265 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5266 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5267 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5268 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5269 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5270 STAT_ATTR(FREE_SLAB, free_slab);
5271 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5272 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5273 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5274 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5275 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5276 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5277 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5278 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5279 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5280 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5281 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5282 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5283 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5284 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5285 #endif
5286 
5287 static struct attribute *slab_attrs[] = {
5288 	&slab_size_attr.attr,
5289 	&object_size_attr.attr,
5290 	&objs_per_slab_attr.attr,
5291 	&order_attr.attr,
5292 	&min_partial_attr.attr,
5293 	&cpu_partial_attr.attr,
5294 	&objects_attr.attr,
5295 	&objects_partial_attr.attr,
5296 	&partial_attr.attr,
5297 	&cpu_slabs_attr.attr,
5298 	&ctor_attr.attr,
5299 	&aliases_attr.attr,
5300 	&align_attr.attr,
5301 	&hwcache_align_attr.attr,
5302 	&reclaim_account_attr.attr,
5303 	&destroy_by_rcu_attr.attr,
5304 	&shrink_attr.attr,
5305 	&reserved_attr.attr,
5306 	&slabs_cpu_partial_attr.attr,
5307 #ifdef CONFIG_SLUB_DEBUG
5308 	&total_objects_attr.attr,
5309 	&slabs_attr.attr,
5310 	&sanity_checks_attr.attr,
5311 	&trace_attr.attr,
5312 	&red_zone_attr.attr,
5313 	&poison_attr.attr,
5314 	&store_user_attr.attr,
5315 	&validate_attr.attr,
5316 	&alloc_calls_attr.attr,
5317 	&free_calls_attr.attr,
5318 #endif
5319 #ifdef CONFIG_ZONE_DMA
5320 	&cache_dma_attr.attr,
5321 #endif
5322 #ifdef CONFIG_NUMA
5323 	&remote_node_defrag_ratio_attr.attr,
5324 #endif
5325 #ifdef CONFIG_SLUB_STATS
5326 	&alloc_fastpath_attr.attr,
5327 	&alloc_slowpath_attr.attr,
5328 	&free_fastpath_attr.attr,
5329 	&free_slowpath_attr.attr,
5330 	&free_frozen_attr.attr,
5331 	&free_add_partial_attr.attr,
5332 	&free_remove_partial_attr.attr,
5333 	&alloc_from_partial_attr.attr,
5334 	&alloc_slab_attr.attr,
5335 	&alloc_refill_attr.attr,
5336 	&alloc_node_mismatch_attr.attr,
5337 	&free_slab_attr.attr,
5338 	&cpuslab_flush_attr.attr,
5339 	&deactivate_full_attr.attr,
5340 	&deactivate_empty_attr.attr,
5341 	&deactivate_to_head_attr.attr,
5342 	&deactivate_to_tail_attr.attr,
5343 	&deactivate_remote_frees_attr.attr,
5344 	&deactivate_bypass_attr.attr,
5345 	&order_fallback_attr.attr,
5346 	&cmpxchg_double_fail_attr.attr,
5347 	&cmpxchg_double_cpu_fail_attr.attr,
5348 	&cpu_partial_alloc_attr.attr,
5349 	&cpu_partial_free_attr.attr,
5350 	&cpu_partial_node_attr.attr,
5351 	&cpu_partial_drain_attr.attr,
5352 #endif
5353 #ifdef CONFIG_FAILSLAB
5354 	&failslab_attr.attr,
5355 #endif
5356 
5357 	NULL
5358 };
5359 
5360 static struct attribute_group slab_attr_group = {
5361 	.attrs = slab_attrs,
5362 };
5363 
5364 static ssize_t slab_attr_show(struct kobject *kobj,
5365 				struct attribute *attr,
5366 				char *buf)
5367 {
5368 	struct slab_attribute *attribute;
5369 	struct kmem_cache *s;
5370 	int err;
5371 
5372 	attribute = to_slab_attr(attr);
5373 	s = to_slab(kobj);
5374 
5375 	if (!attribute->show)
5376 		return -EIO;
5377 
5378 	err = attribute->show(s, buf);
5379 
5380 	return err;
5381 }
5382 
5383 static ssize_t slab_attr_store(struct kobject *kobj,
5384 				struct attribute *attr,
5385 				const char *buf, size_t len)
5386 {
5387 	struct slab_attribute *attribute;
5388 	struct kmem_cache *s;
5389 	int err;
5390 
5391 	attribute = to_slab_attr(attr);
5392 	s = to_slab(kobj);
5393 
5394 	if (!attribute->store)
5395 		return -EIO;
5396 
5397 	err = attribute->store(s, buf, len);
5398 #ifdef CONFIG_MEMCG
5399 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5400 		struct kmem_cache *c;
5401 
5402 		mutex_lock(&slab_mutex);
5403 		if (s->max_attr_size < len)
5404 			s->max_attr_size = len;
5405 
5406 		/*
5407 		 * This is a best effort propagation, so this function's return
5408 		 * value will be determined by the parent cache only. This is
5409 		 * basically because not all attributes will have a well
5410 		 * defined semantics for rollbacks - most of the actions will
5411 		 * have permanent effects.
5412 		 *
5413 		 * Returning the error value of any of the children that fail
5414 		 * is not 100 % defined, in the sense that users seeing the
5415 		 * error code won't be able to know anything about the state of
5416 		 * the cache.
5417 		 *
5418 		 * Only returning the error code for the parent cache at least
5419 		 * has well defined semantics. The cache being written to
5420 		 * directly either failed or succeeded, in which case we loop
5421 		 * through the descendants with best-effort propagation.
5422 		 */
5423 		for_each_memcg_cache(c, s)
5424 			attribute->store(c, buf, len);
5425 		mutex_unlock(&slab_mutex);
5426 	}
5427 #endif
5428 	return err;
5429 }
5430 
5431 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5432 {
5433 #ifdef CONFIG_MEMCG
5434 	int i;
5435 	char *buffer = NULL;
5436 	struct kmem_cache *root_cache;
5437 
5438 	if (is_root_cache(s))
5439 		return;
5440 
5441 	root_cache = s->memcg_params.root_cache;
5442 
5443 	/*
5444 	 * This mean this cache had no attribute written. Therefore, no point
5445 	 * in copying default values around
5446 	 */
5447 	if (!root_cache->max_attr_size)
5448 		return;
5449 
5450 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5451 		char mbuf[64];
5452 		char *buf;
5453 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5454 
5455 		if (!attr || !attr->store || !attr->show)
5456 			continue;
5457 
5458 		/*
5459 		 * It is really bad that we have to allocate here, so we will
5460 		 * do it only as a fallback. If we actually allocate, though,
5461 		 * we can just use the allocated buffer until the end.
5462 		 *
5463 		 * Most of the slub attributes will tend to be very small in
5464 		 * size, but sysfs allows buffers up to a page, so they can
5465 		 * theoretically happen.
5466 		 */
5467 		if (buffer)
5468 			buf = buffer;
5469 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5470 			buf = mbuf;
5471 		else {
5472 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5473 			if (WARN_ON(!buffer))
5474 				continue;
5475 			buf = buffer;
5476 		}
5477 
5478 		attr->show(root_cache, buf);
5479 		attr->store(s, buf, strlen(buf));
5480 	}
5481 
5482 	if (buffer)
5483 		free_page((unsigned long)buffer);
5484 #endif
5485 }
5486 
5487 static void kmem_cache_release(struct kobject *k)
5488 {
5489 	slab_kmem_cache_release(to_slab(k));
5490 }
5491 
5492 static const struct sysfs_ops slab_sysfs_ops = {
5493 	.show = slab_attr_show,
5494 	.store = slab_attr_store,
5495 };
5496 
5497 static struct kobj_type slab_ktype = {
5498 	.sysfs_ops = &slab_sysfs_ops,
5499 	.release = kmem_cache_release,
5500 };
5501 
5502 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5503 {
5504 	struct kobj_type *ktype = get_ktype(kobj);
5505 
5506 	if (ktype == &slab_ktype)
5507 		return 1;
5508 	return 0;
5509 }
5510 
5511 static const struct kset_uevent_ops slab_uevent_ops = {
5512 	.filter = uevent_filter,
5513 };
5514 
5515 static struct kset *slab_kset;
5516 
5517 static inline struct kset *cache_kset(struct kmem_cache *s)
5518 {
5519 #ifdef CONFIG_MEMCG
5520 	if (!is_root_cache(s))
5521 		return s->memcg_params.root_cache->memcg_kset;
5522 #endif
5523 	return slab_kset;
5524 }
5525 
5526 #define ID_STR_LENGTH 64
5527 
5528 /* Create a unique string id for a slab cache:
5529  *
5530  * Format	:[flags-]size
5531  */
5532 static char *create_unique_id(struct kmem_cache *s)
5533 {
5534 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5535 	char *p = name;
5536 
5537 	BUG_ON(!name);
5538 
5539 	*p++ = ':';
5540 	/*
5541 	 * First flags affecting slabcache operations. We will only
5542 	 * get here for aliasable slabs so we do not need to support
5543 	 * too many flags. The flags here must cover all flags that
5544 	 * are matched during merging to guarantee that the id is
5545 	 * unique.
5546 	 */
5547 	if (s->flags & SLAB_CACHE_DMA)
5548 		*p++ = 'd';
5549 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5550 		*p++ = 'a';
5551 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5552 		*p++ = 'F';
5553 	if (!(s->flags & SLAB_NOTRACK))
5554 		*p++ = 't';
5555 	if (s->flags & SLAB_ACCOUNT)
5556 		*p++ = 'A';
5557 	if (p != name + 1)
5558 		*p++ = '-';
5559 	p += sprintf(p, "%07d", s->size);
5560 
5561 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5562 	return name;
5563 }
5564 
5565 static int sysfs_slab_add(struct kmem_cache *s)
5566 {
5567 	int err;
5568 	const char *name;
5569 	int unmergeable = slab_unmergeable(s);
5570 
5571 	if (unmergeable) {
5572 		/*
5573 		 * Slabcache can never be merged so we can use the name proper.
5574 		 * This is typically the case for debug situations. In that
5575 		 * case we can catch duplicate names easily.
5576 		 */
5577 		sysfs_remove_link(&slab_kset->kobj, s->name);
5578 		name = s->name;
5579 	} else {
5580 		/*
5581 		 * Create a unique name for the slab as a target
5582 		 * for the symlinks.
5583 		 */
5584 		name = create_unique_id(s);
5585 	}
5586 
5587 	s->kobj.kset = cache_kset(s);
5588 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5589 	if (err)
5590 		goto out;
5591 
5592 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5593 	if (err)
5594 		goto out_del_kobj;
5595 
5596 #ifdef CONFIG_MEMCG
5597 	if (is_root_cache(s)) {
5598 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5599 		if (!s->memcg_kset) {
5600 			err = -ENOMEM;
5601 			goto out_del_kobj;
5602 		}
5603 	}
5604 #endif
5605 
5606 	kobject_uevent(&s->kobj, KOBJ_ADD);
5607 	if (!unmergeable) {
5608 		/* Setup first alias */
5609 		sysfs_slab_alias(s, s->name);
5610 	}
5611 out:
5612 	if (!unmergeable)
5613 		kfree(name);
5614 	return err;
5615 out_del_kobj:
5616 	kobject_del(&s->kobj);
5617 	goto out;
5618 }
5619 
5620 void sysfs_slab_remove(struct kmem_cache *s)
5621 {
5622 	if (slab_state < FULL)
5623 		/*
5624 		 * Sysfs has not been setup yet so no need to remove the
5625 		 * cache from sysfs.
5626 		 */
5627 		return;
5628 
5629 #ifdef CONFIG_MEMCG
5630 	kset_unregister(s->memcg_kset);
5631 #endif
5632 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5633 	kobject_del(&s->kobj);
5634 	kobject_put(&s->kobj);
5635 }
5636 
5637 /*
5638  * Need to buffer aliases during bootup until sysfs becomes
5639  * available lest we lose that information.
5640  */
5641 struct saved_alias {
5642 	struct kmem_cache *s;
5643 	const char *name;
5644 	struct saved_alias *next;
5645 };
5646 
5647 static struct saved_alias *alias_list;
5648 
5649 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5650 {
5651 	struct saved_alias *al;
5652 
5653 	if (slab_state == FULL) {
5654 		/*
5655 		 * If we have a leftover link then remove it.
5656 		 */
5657 		sysfs_remove_link(&slab_kset->kobj, name);
5658 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5659 	}
5660 
5661 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5662 	if (!al)
5663 		return -ENOMEM;
5664 
5665 	al->s = s;
5666 	al->name = name;
5667 	al->next = alias_list;
5668 	alias_list = al;
5669 	return 0;
5670 }
5671 
5672 static int __init slab_sysfs_init(void)
5673 {
5674 	struct kmem_cache *s;
5675 	int err;
5676 
5677 	mutex_lock(&slab_mutex);
5678 
5679 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5680 	if (!slab_kset) {
5681 		mutex_unlock(&slab_mutex);
5682 		pr_err("Cannot register slab subsystem.\n");
5683 		return -ENOSYS;
5684 	}
5685 
5686 	slab_state = FULL;
5687 
5688 	list_for_each_entry(s, &slab_caches, list) {
5689 		err = sysfs_slab_add(s);
5690 		if (err)
5691 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5692 			       s->name);
5693 	}
5694 
5695 	while (alias_list) {
5696 		struct saved_alias *al = alias_list;
5697 
5698 		alias_list = alias_list->next;
5699 		err = sysfs_slab_alias(al->s, al->name);
5700 		if (err)
5701 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5702 			       al->name);
5703 		kfree(al);
5704 	}
5705 
5706 	mutex_unlock(&slab_mutex);
5707 	resiliency_test();
5708 	return 0;
5709 }
5710 
5711 __initcall(slab_sysfs_init);
5712 #endif /* CONFIG_SYSFS */
5713 
5714 /*
5715  * The /proc/slabinfo ABI
5716  */
5717 #ifdef CONFIG_SLABINFO
5718 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5719 {
5720 	unsigned long nr_slabs = 0;
5721 	unsigned long nr_objs = 0;
5722 	unsigned long nr_free = 0;
5723 	int node;
5724 	struct kmem_cache_node *n;
5725 
5726 	for_each_kmem_cache_node(s, node, n) {
5727 		nr_slabs += node_nr_slabs(n);
5728 		nr_objs += node_nr_objs(n);
5729 		nr_free += count_partial(n, count_free);
5730 	}
5731 
5732 	sinfo->active_objs = nr_objs - nr_free;
5733 	sinfo->num_objs = nr_objs;
5734 	sinfo->active_slabs = nr_slabs;
5735 	sinfo->num_slabs = nr_slabs;
5736 	sinfo->objects_per_slab = oo_objects(s->oo);
5737 	sinfo->cache_order = oo_order(s->oo);
5738 }
5739 
5740 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5741 {
5742 }
5743 
5744 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5745 		       size_t count, loff_t *ppos)
5746 {
5747 	return -EIO;
5748 }
5749 #endif /* CONFIG_SLABINFO */
5750