xref: /openbmc/linux/mm/slub.c (revision 62e7ca52)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 
37 #include <trace/events/kmem.h>
38 
39 #include "internal.h"
40 
41 /*
42  * Lock order:
43  *   1. slab_mutex (Global Mutex)
44  *   2. node->list_lock
45  *   3. slab_lock(page) (Only on some arches and for debugging)
46  *
47  *   slab_mutex
48  *
49  *   The role of the slab_mutex is to protect the list of all the slabs
50  *   and to synchronize major metadata changes to slab cache structures.
51  *
52  *   The slab_lock is only used for debugging and on arches that do not
53  *   have the ability to do a cmpxchg_double. It only protects the second
54  *   double word in the page struct. Meaning
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->counters	-> Counters of objects
57  *	C. page->frozen		-> frozen state
58  *
59  *   If a slab is frozen then it is exempt from list management. It is not
60  *   on any list. The processor that froze the slab is the one who can
61  *   perform list operations on the page. Other processors may put objects
62  *   onto the freelist but the processor that froze the slab is the only
63  *   one that can retrieve the objects from the page's freelist.
64  *
65  *   The list_lock protects the partial and full list on each node and
66  *   the partial slab counter. If taken then no new slabs may be added or
67  *   removed from the lists nor make the number of partial slabs be modified.
68  *   (Note that the total number of slabs is an atomic value that may be
69  *   modified without taking the list lock).
70  *
71  *   The list_lock is a centralized lock and thus we avoid taking it as
72  *   much as possible. As long as SLUB does not have to handle partial
73  *   slabs, operations can continue without any centralized lock. F.e.
74  *   allocating a long series of objects that fill up slabs does not require
75  *   the list lock.
76  *   Interrupts are disabled during allocation and deallocation in order to
77  *   make the slab allocator safe to use in the context of an irq. In addition
78  *   interrupts are disabled to ensure that the processor does not change
79  *   while handling per_cpu slabs, due to kernel preemption.
80  *
81  * SLUB assigns one slab for allocation to each processor.
82  * Allocations only occur from these slabs called cpu slabs.
83  *
84  * Slabs with free elements are kept on a partial list and during regular
85  * operations no list for full slabs is used. If an object in a full slab is
86  * freed then the slab will show up again on the partial lists.
87  * We track full slabs for debugging purposes though because otherwise we
88  * cannot scan all objects.
89  *
90  * Slabs are freed when they become empty. Teardown and setup is
91  * minimal so we rely on the page allocators per cpu caches for
92  * fast frees and allocs.
93  *
94  * Overloading of page flags that are otherwise used for LRU management.
95  *
96  * PageActive 		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * PageError		Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 	return 0;
123 #endif
124 }
125 
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 	return !kmem_cache_debug(s);
130 #else
131 	return false;
132 #endif
133 }
134 
135 /*
136  * Issues still to be resolved:
137  *
138  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139  *
140  * - Variable sizing of the per node arrays
141  */
142 
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145 
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148 
149 /*
150  * Mininum number of partial slabs. These will be left on the partial
151  * lists even if they are empty. kmem_cache_shrink may reclaim them.
152  */
153 #define MIN_PARTIAL 5
154 
155 /*
156  * Maximum number of desirable partial slabs.
157  * The existence of more partial slabs makes kmem_cache_shrink
158  * sort the partial list by the number of objects in use.
159  */
160 #define MAX_PARTIAL 10
161 
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 				SLAB_POISON | SLAB_STORE_USER)
164 
165 /*
166  * Debugging flags that require metadata to be stored in the slab.  These get
167  * disabled when slub_debug=O is used and a cache's min order increases with
168  * metadata.
169  */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171 
172 /*
173  * Set of flags that will prevent slab merging
174  */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 		SLAB_FAILSLAB)
178 
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 		SLAB_CACHE_DMA | SLAB_NOTRACK)
181 
182 #define OO_SHIFT	16
183 #define OO_MASK		((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185 
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON		0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
189 
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193 
194 /*
195  * Tracking user of a slab.
196  */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 	unsigned long addr;	/* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
202 #endif
203 	int cpu;		/* Was running on cpu */
204 	int pid;		/* Pid context */
205 	unsigned long when;	/* When did the operation occur */
206 };
207 
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209 
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
214 #else
215 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
216 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
217 							{ return 0; }
218 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
219 #endif
220 
221 static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 {
223 #ifdef CONFIG_SLUB_STATS
224 	/*
225 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
226 	 * avoid this_cpu_add()'s irq-disable overhead.
227 	 */
228 	raw_cpu_inc(s->cpu_slab->stat[si]);
229 #endif
230 }
231 
232 /********************************************************************
233  * 			Core slab cache functions
234  *******************************************************************/
235 
236 /* Verify that a pointer has an address that is valid within a slab page */
237 static inline int check_valid_pointer(struct kmem_cache *s,
238 				struct page *page, const void *object)
239 {
240 	void *base;
241 
242 	if (!object)
243 		return 1;
244 
245 	base = page_address(page);
246 	if (object < base || object >= base + page->objects * s->size ||
247 		(object - base) % s->size) {
248 		return 0;
249 	}
250 
251 	return 1;
252 }
253 
254 static inline void *get_freepointer(struct kmem_cache *s, void *object)
255 {
256 	return *(void **)(object + s->offset);
257 }
258 
259 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
260 {
261 	prefetch(object + s->offset);
262 }
263 
264 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
265 {
266 	void *p;
267 
268 #ifdef CONFIG_DEBUG_PAGEALLOC
269 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
270 #else
271 	p = get_freepointer(s, object);
272 #endif
273 	return p;
274 }
275 
276 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
277 {
278 	*(void **)(object + s->offset) = fp;
279 }
280 
281 /* Loop over all objects in a slab */
282 #define for_each_object(__p, __s, __addr, __objects) \
283 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
284 			__p += (__s)->size)
285 
286 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
287 	for (__p = (__addr), __idx = 1; __idx <= __objects;\
288 			__p += (__s)->size, __idx++)
289 
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292 {
293 	return (p - addr) / s->size;
294 }
295 
296 static inline size_t slab_ksize(const struct kmem_cache *s)
297 {
298 #ifdef CONFIG_SLUB_DEBUG
299 	/*
300 	 * Debugging requires use of the padding between object
301 	 * and whatever may come after it.
302 	 */
303 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304 		return s->object_size;
305 
306 #endif
307 	/*
308 	 * If we have the need to store the freelist pointer
309 	 * back there or track user information then we can
310 	 * only use the space before that information.
311 	 */
312 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 		return s->inuse;
314 	/*
315 	 * Else we can use all the padding etc for the allocation
316 	 */
317 	return s->size;
318 }
319 
320 static inline int order_objects(int order, unsigned long size, int reserved)
321 {
322 	return ((PAGE_SIZE << order) - reserved) / size;
323 }
324 
325 static inline struct kmem_cache_order_objects oo_make(int order,
326 		unsigned long size, int reserved)
327 {
328 	struct kmem_cache_order_objects x = {
329 		(order << OO_SHIFT) + order_objects(order, size, reserved)
330 	};
331 
332 	return x;
333 }
334 
335 static inline int oo_order(struct kmem_cache_order_objects x)
336 {
337 	return x.x >> OO_SHIFT;
338 }
339 
340 static inline int oo_objects(struct kmem_cache_order_objects x)
341 {
342 	return x.x & OO_MASK;
343 }
344 
345 /*
346  * Per slab locking using the pagelock
347  */
348 static __always_inline void slab_lock(struct page *page)
349 {
350 	bit_spin_lock(PG_locked, &page->flags);
351 }
352 
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 	__bit_spin_unlock(PG_locked, &page->flags);
356 }
357 
358 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
359 {
360 	struct page tmp;
361 	tmp.counters = counters_new;
362 	/*
363 	 * page->counters can cover frozen/inuse/objects as well
364 	 * as page->_count.  If we assign to ->counters directly
365 	 * we run the risk of losing updates to page->_count, so
366 	 * be careful and only assign to the fields we need.
367 	 */
368 	page->frozen  = tmp.frozen;
369 	page->inuse   = tmp.inuse;
370 	page->objects = tmp.objects;
371 }
372 
373 /* Interrupts must be disabled (for the fallback code to work right) */
374 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
375 		void *freelist_old, unsigned long counters_old,
376 		void *freelist_new, unsigned long counters_new,
377 		const char *n)
378 {
379 	VM_BUG_ON(!irqs_disabled());
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 	if (s->flags & __CMPXCHG_DOUBLE) {
383 		if (cmpxchg_double(&page->freelist, &page->counters,
384 				   freelist_old, counters_old,
385 				   freelist_new, counters_new))
386 			return 1;
387 	} else
388 #endif
389 	{
390 		slab_lock(page);
391 		if (page->freelist == freelist_old &&
392 					page->counters == counters_old) {
393 			page->freelist = freelist_new;
394 			set_page_slub_counters(page, counters_new);
395 			slab_unlock(page);
396 			return 1;
397 		}
398 		slab_unlock(page);
399 	}
400 
401 	cpu_relax();
402 	stat(s, CMPXCHG_DOUBLE_FAIL);
403 
404 #ifdef SLUB_DEBUG_CMPXCHG
405 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
406 #endif
407 
408 	return 0;
409 }
410 
411 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
412 		void *freelist_old, unsigned long counters_old,
413 		void *freelist_new, unsigned long counters_new,
414 		const char *n)
415 {
416 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
417     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
418 	if (s->flags & __CMPXCHG_DOUBLE) {
419 		if (cmpxchg_double(&page->freelist, &page->counters,
420 				   freelist_old, counters_old,
421 				   freelist_new, counters_new))
422 			return 1;
423 	} else
424 #endif
425 	{
426 		unsigned long flags;
427 
428 		local_irq_save(flags);
429 		slab_lock(page);
430 		if (page->freelist == freelist_old &&
431 					page->counters == counters_old) {
432 			page->freelist = freelist_new;
433 			set_page_slub_counters(page, counters_new);
434 			slab_unlock(page);
435 			local_irq_restore(flags);
436 			return 1;
437 		}
438 		slab_unlock(page);
439 		local_irq_restore(flags);
440 	}
441 
442 	cpu_relax();
443 	stat(s, CMPXCHG_DOUBLE_FAIL);
444 
445 #ifdef SLUB_DEBUG_CMPXCHG
446 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
447 #endif
448 
449 	return 0;
450 }
451 
452 #ifdef CONFIG_SLUB_DEBUG
453 /*
454  * Determine a map of object in use on a page.
455  *
456  * Node listlock must be held to guarantee that the page does
457  * not vanish from under us.
458  */
459 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
460 {
461 	void *p;
462 	void *addr = page_address(page);
463 
464 	for (p = page->freelist; p; p = get_freepointer(s, p))
465 		set_bit(slab_index(p, s, addr), map);
466 }
467 
468 /*
469  * Debug settings:
470  */
471 #ifdef CONFIG_SLUB_DEBUG_ON
472 static int slub_debug = DEBUG_DEFAULT_FLAGS;
473 #else
474 static int slub_debug;
475 #endif
476 
477 static char *slub_debug_slabs;
478 static int disable_higher_order_debug;
479 
480 /*
481  * Object debugging
482  */
483 static void print_section(char *text, u8 *addr, unsigned int length)
484 {
485 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
486 			length, 1);
487 }
488 
489 static struct track *get_track(struct kmem_cache *s, void *object,
490 	enum track_item alloc)
491 {
492 	struct track *p;
493 
494 	if (s->offset)
495 		p = object + s->offset + sizeof(void *);
496 	else
497 		p = object + s->inuse;
498 
499 	return p + alloc;
500 }
501 
502 static void set_track(struct kmem_cache *s, void *object,
503 			enum track_item alloc, unsigned long addr)
504 {
505 	struct track *p = get_track(s, object, alloc);
506 
507 	if (addr) {
508 #ifdef CONFIG_STACKTRACE
509 		struct stack_trace trace;
510 		int i;
511 
512 		trace.nr_entries = 0;
513 		trace.max_entries = TRACK_ADDRS_COUNT;
514 		trace.entries = p->addrs;
515 		trace.skip = 3;
516 		save_stack_trace(&trace);
517 
518 		/* See rant in lockdep.c */
519 		if (trace.nr_entries != 0 &&
520 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
521 			trace.nr_entries--;
522 
523 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
524 			p->addrs[i] = 0;
525 #endif
526 		p->addr = addr;
527 		p->cpu = smp_processor_id();
528 		p->pid = current->pid;
529 		p->when = jiffies;
530 	} else
531 		memset(p, 0, sizeof(struct track));
532 }
533 
534 static void init_tracking(struct kmem_cache *s, void *object)
535 {
536 	if (!(s->flags & SLAB_STORE_USER))
537 		return;
538 
539 	set_track(s, object, TRACK_FREE, 0UL);
540 	set_track(s, object, TRACK_ALLOC, 0UL);
541 }
542 
543 static void print_track(const char *s, struct track *t)
544 {
545 	if (!t->addr)
546 		return;
547 
548 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
549 	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
550 #ifdef CONFIG_STACKTRACE
551 	{
552 		int i;
553 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
554 			if (t->addrs[i])
555 				pr_err("\t%pS\n", (void *)t->addrs[i]);
556 			else
557 				break;
558 	}
559 #endif
560 }
561 
562 static void print_tracking(struct kmem_cache *s, void *object)
563 {
564 	if (!(s->flags & SLAB_STORE_USER))
565 		return;
566 
567 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
568 	print_track("Freed", get_track(s, object, TRACK_FREE));
569 }
570 
571 static void print_page_info(struct page *page)
572 {
573 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
574 	       page, page->objects, page->inuse, page->freelist, page->flags);
575 
576 }
577 
578 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
579 {
580 	struct va_format vaf;
581 	va_list args;
582 
583 	va_start(args, fmt);
584 	vaf.fmt = fmt;
585 	vaf.va = &args;
586 	pr_err("=============================================================================\n");
587 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
588 	pr_err("-----------------------------------------------------------------------------\n\n");
589 
590 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
591 	va_end(args);
592 }
593 
594 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
595 {
596 	struct va_format vaf;
597 	va_list args;
598 
599 	va_start(args, fmt);
600 	vaf.fmt = fmt;
601 	vaf.va = &args;
602 	pr_err("FIX %s: %pV\n", s->name, &vaf);
603 	va_end(args);
604 }
605 
606 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
607 {
608 	unsigned int off;	/* Offset of last byte */
609 	u8 *addr = page_address(page);
610 
611 	print_tracking(s, p);
612 
613 	print_page_info(page);
614 
615 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
616 	       p, p - addr, get_freepointer(s, p));
617 
618 	if (p > addr + 16)
619 		print_section("Bytes b4 ", p - 16, 16);
620 
621 	print_section("Object ", p, min_t(unsigned long, s->object_size,
622 				PAGE_SIZE));
623 	if (s->flags & SLAB_RED_ZONE)
624 		print_section("Redzone ", p + s->object_size,
625 			s->inuse - s->object_size);
626 
627 	if (s->offset)
628 		off = s->offset + sizeof(void *);
629 	else
630 		off = s->inuse;
631 
632 	if (s->flags & SLAB_STORE_USER)
633 		off += 2 * sizeof(struct track);
634 
635 	if (off != s->size)
636 		/* Beginning of the filler is the free pointer */
637 		print_section("Padding ", p + off, s->size - off);
638 
639 	dump_stack();
640 }
641 
642 static void object_err(struct kmem_cache *s, struct page *page,
643 			u8 *object, char *reason)
644 {
645 	slab_bug(s, "%s", reason);
646 	print_trailer(s, page, object);
647 }
648 
649 static void slab_err(struct kmem_cache *s, struct page *page,
650 			const char *fmt, ...)
651 {
652 	va_list args;
653 	char buf[100];
654 
655 	va_start(args, fmt);
656 	vsnprintf(buf, sizeof(buf), fmt, args);
657 	va_end(args);
658 	slab_bug(s, "%s", buf);
659 	print_page_info(page);
660 	dump_stack();
661 }
662 
663 static void init_object(struct kmem_cache *s, void *object, u8 val)
664 {
665 	u8 *p = object;
666 
667 	if (s->flags & __OBJECT_POISON) {
668 		memset(p, POISON_FREE, s->object_size - 1);
669 		p[s->object_size - 1] = POISON_END;
670 	}
671 
672 	if (s->flags & SLAB_RED_ZONE)
673 		memset(p + s->object_size, val, s->inuse - s->object_size);
674 }
675 
676 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
677 						void *from, void *to)
678 {
679 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
680 	memset(from, data, to - from);
681 }
682 
683 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
684 			u8 *object, char *what,
685 			u8 *start, unsigned int value, unsigned int bytes)
686 {
687 	u8 *fault;
688 	u8 *end;
689 
690 	fault = memchr_inv(start, value, bytes);
691 	if (!fault)
692 		return 1;
693 
694 	end = start + bytes;
695 	while (end > fault && end[-1] == value)
696 		end--;
697 
698 	slab_bug(s, "%s overwritten", what);
699 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
700 					fault, end - 1, fault[0], value);
701 	print_trailer(s, page, object);
702 
703 	restore_bytes(s, what, value, fault, end);
704 	return 0;
705 }
706 
707 /*
708  * Object layout:
709  *
710  * object address
711  * 	Bytes of the object to be managed.
712  * 	If the freepointer may overlay the object then the free
713  * 	pointer is the first word of the object.
714  *
715  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
716  * 	0xa5 (POISON_END)
717  *
718  * object + s->object_size
719  * 	Padding to reach word boundary. This is also used for Redzoning.
720  * 	Padding is extended by another word if Redzoning is enabled and
721  * 	object_size == inuse.
722  *
723  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
724  * 	0xcc (RED_ACTIVE) for objects in use.
725  *
726  * object + s->inuse
727  * 	Meta data starts here.
728  *
729  * 	A. Free pointer (if we cannot overwrite object on free)
730  * 	B. Tracking data for SLAB_STORE_USER
731  * 	C. Padding to reach required alignment boundary or at mininum
732  * 		one word if debugging is on to be able to detect writes
733  * 		before the word boundary.
734  *
735  *	Padding is done using 0x5a (POISON_INUSE)
736  *
737  * object + s->size
738  * 	Nothing is used beyond s->size.
739  *
740  * If slabcaches are merged then the object_size and inuse boundaries are mostly
741  * ignored. And therefore no slab options that rely on these boundaries
742  * may be used with merged slabcaches.
743  */
744 
745 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
746 {
747 	unsigned long off = s->inuse;	/* The end of info */
748 
749 	if (s->offset)
750 		/* Freepointer is placed after the object. */
751 		off += sizeof(void *);
752 
753 	if (s->flags & SLAB_STORE_USER)
754 		/* We also have user information there */
755 		off += 2 * sizeof(struct track);
756 
757 	if (s->size == off)
758 		return 1;
759 
760 	return check_bytes_and_report(s, page, p, "Object padding",
761 				p + off, POISON_INUSE, s->size - off);
762 }
763 
764 /* Check the pad bytes at the end of a slab page */
765 static int slab_pad_check(struct kmem_cache *s, struct page *page)
766 {
767 	u8 *start;
768 	u8 *fault;
769 	u8 *end;
770 	int length;
771 	int remainder;
772 
773 	if (!(s->flags & SLAB_POISON))
774 		return 1;
775 
776 	start = page_address(page);
777 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
778 	end = start + length;
779 	remainder = length % s->size;
780 	if (!remainder)
781 		return 1;
782 
783 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
784 	if (!fault)
785 		return 1;
786 	while (end > fault && end[-1] == POISON_INUSE)
787 		end--;
788 
789 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
790 	print_section("Padding ", end - remainder, remainder);
791 
792 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
793 	return 0;
794 }
795 
796 static int check_object(struct kmem_cache *s, struct page *page,
797 					void *object, u8 val)
798 {
799 	u8 *p = object;
800 	u8 *endobject = object + s->object_size;
801 
802 	if (s->flags & SLAB_RED_ZONE) {
803 		if (!check_bytes_and_report(s, page, object, "Redzone",
804 			endobject, val, s->inuse - s->object_size))
805 			return 0;
806 	} else {
807 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
808 			check_bytes_and_report(s, page, p, "Alignment padding",
809 				endobject, POISON_INUSE,
810 				s->inuse - s->object_size);
811 		}
812 	}
813 
814 	if (s->flags & SLAB_POISON) {
815 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
816 			(!check_bytes_and_report(s, page, p, "Poison", p,
817 					POISON_FREE, s->object_size - 1) ||
818 			 !check_bytes_and_report(s, page, p, "Poison",
819 				p + s->object_size - 1, POISON_END, 1)))
820 			return 0;
821 		/*
822 		 * check_pad_bytes cleans up on its own.
823 		 */
824 		check_pad_bytes(s, page, p);
825 	}
826 
827 	if (!s->offset && val == SLUB_RED_ACTIVE)
828 		/*
829 		 * Object and freepointer overlap. Cannot check
830 		 * freepointer while object is allocated.
831 		 */
832 		return 1;
833 
834 	/* Check free pointer validity */
835 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
836 		object_err(s, page, p, "Freepointer corrupt");
837 		/*
838 		 * No choice but to zap it and thus lose the remainder
839 		 * of the free objects in this slab. May cause
840 		 * another error because the object count is now wrong.
841 		 */
842 		set_freepointer(s, p, NULL);
843 		return 0;
844 	}
845 	return 1;
846 }
847 
848 static int check_slab(struct kmem_cache *s, struct page *page)
849 {
850 	int maxobj;
851 
852 	VM_BUG_ON(!irqs_disabled());
853 
854 	if (!PageSlab(page)) {
855 		slab_err(s, page, "Not a valid slab page");
856 		return 0;
857 	}
858 
859 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
860 	if (page->objects > maxobj) {
861 		slab_err(s, page, "objects %u > max %u",
862 			s->name, page->objects, maxobj);
863 		return 0;
864 	}
865 	if (page->inuse > page->objects) {
866 		slab_err(s, page, "inuse %u > max %u",
867 			s->name, page->inuse, page->objects);
868 		return 0;
869 	}
870 	/* Slab_pad_check fixes things up after itself */
871 	slab_pad_check(s, page);
872 	return 1;
873 }
874 
875 /*
876  * Determine if a certain object on a page is on the freelist. Must hold the
877  * slab lock to guarantee that the chains are in a consistent state.
878  */
879 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
880 {
881 	int nr = 0;
882 	void *fp;
883 	void *object = NULL;
884 	unsigned long max_objects;
885 
886 	fp = page->freelist;
887 	while (fp && nr <= page->objects) {
888 		if (fp == search)
889 			return 1;
890 		if (!check_valid_pointer(s, page, fp)) {
891 			if (object) {
892 				object_err(s, page, object,
893 					"Freechain corrupt");
894 				set_freepointer(s, object, NULL);
895 			} else {
896 				slab_err(s, page, "Freepointer corrupt");
897 				page->freelist = NULL;
898 				page->inuse = page->objects;
899 				slab_fix(s, "Freelist cleared");
900 				return 0;
901 			}
902 			break;
903 		}
904 		object = fp;
905 		fp = get_freepointer(s, object);
906 		nr++;
907 	}
908 
909 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
910 	if (max_objects > MAX_OBJS_PER_PAGE)
911 		max_objects = MAX_OBJS_PER_PAGE;
912 
913 	if (page->objects != max_objects) {
914 		slab_err(s, page, "Wrong number of objects. Found %d but "
915 			"should be %d", page->objects, max_objects);
916 		page->objects = max_objects;
917 		slab_fix(s, "Number of objects adjusted.");
918 	}
919 	if (page->inuse != page->objects - nr) {
920 		slab_err(s, page, "Wrong object count. Counter is %d but "
921 			"counted were %d", page->inuse, page->objects - nr);
922 		page->inuse = page->objects - nr;
923 		slab_fix(s, "Object count adjusted.");
924 	}
925 	return search == NULL;
926 }
927 
928 static void trace(struct kmem_cache *s, struct page *page, void *object,
929 								int alloc)
930 {
931 	if (s->flags & SLAB_TRACE) {
932 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
933 			s->name,
934 			alloc ? "alloc" : "free",
935 			object, page->inuse,
936 			page->freelist);
937 
938 		if (!alloc)
939 			print_section("Object ", (void *)object,
940 					s->object_size);
941 
942 		dump_stack();
943 	}
944 }
945 
946 /*
947  * Tracking of fully allocated slabs for debugging purposes.
948  */
949 static void add_full(struct kmem_cache *s,
950 	struct kmem_cache_node *n, struct page *page)
951 {
952 	if (!(s->flags & SLAB_STORE_USER))
953 		return;
954 
955 	lockdep_assert_held(&n->list_lock);
956 	list_add(&page->lru, &n->full);
957 }
958 
959 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
960 {
961 	if (!(s->flags & SLAB_STORE_USER))
962 		return;
963 
964 	lockdep_assert_held(&n->list_lock);
965 	list_del(&page->lru);
966 }
967 
968 /* Tracking of the number of slabs for debugging purposes */
969 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
970 {
971 	struct kmem_cache_node *n = get_node(s, node);
972 
973 	return atomic_long_read(&n->nr_slabs);
974 }
975 
976 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
977 {
978 	return atomic_long_read(&n->nr_slabs);
979 }
980 
981 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
982 {
983 	struct kmem_cache_node *n = get_node(s, node);
984 
985 	/*
986 	 * May be called early in order to allocate a slab for the
987 	 * kmem_cache_node structure. Solve the chicken-egg
988 	 * dilemma by deferring the increment of the count during
989 	 * bootstrap (see early_kmem_cache_node_alloc).
990 	 */
991 	if (likely(n)) {
992 		atomic_long_inc(&n->nr_slabs);
993 		atomic_long_add(objects, &n->total_objects);
994 	}
995 }
996 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
997 {
998 	struct kmem_cache_node *n = get_node(s, node);
999 
1000 	atomic_long_dec(&n->nr_slabs);
1001 	atomic_long_sub(objects, &n->total_objects);
1002 }
1003 
1004 /* Object debug checks for alloc/free paths */
1005 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1006 								void *object)
1007 {
1008 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1009 		return;
1010 
1011 	init_object(s, object, SLUB_RED_INACTIVE);
1012 	init_tracking(s, object);
1013 }
1014 
1015 static noinline int alloc_debug_processing(struct kmem_cache *s,
1016 					struct page *page,
1017 					void *object, unsigned long addr)
1018 {
1019 	if (!check_slab(s, page))
1020 		goto bad;
1021 
1022 	if (!check_valid_pointer(s, page, object)) {
1023 		object_err(s, page, object, "Freelist Pointer check fails");
1024 		goto bad;
1025 	}
1026 
1027 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1028 		goto bad;
1029 
1030 	/* Success perform special debug activities for allocs */
1031 	if (s->flags & SLAB_STORE_USER)
1032 		set_track(s, object, TRACK_ALLOC, addr);
1033 	trace(s, page, object, 1);
1034 	init_object(s, object, SLUB_RED_ACTIVE);
1035 	return 1;
1036 
1037 bad:
1038 	if (PageSlab(page)) {
1039 		/*
1040 		 * If this is a slab page then lets do the best we can
1041 		 * to avoid issues in the future. Marking all objects
1042 		 * as used avoids touching the remaining objects.
1043 		 */
1044 		slab_fix(s, "Marking all objects used");
1045 		page->inuse = page->objects;
1046 		page->freelist = NULL;
1047 	}
1048 	return 0;
1049 }
1050 
1051 static noinline struct kmem_cache_node *free_debug_processing(
1052 	struct kmem_cache *s, struct page *page, void *object,
1053 	unsigned long addr, unsigned long *flags)
1054 {
1055 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1056 
1057 	spin_lock_irqsave(&n->list_lock, *flags);
1058 	slab_lock(page);
1059 
1060 	if (!check_slab(s, page))
1061 		goto fail;
1062 
1063 	if (!check_valid_pointer(s, page, object)) {
1064 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1065 		goto fail;
1066 	}
1067 
1068 	if (on_freelist(s, page, object)) {
1069 		object_err(s, page, object, "Object already free");
1070 		goto fail;
1071 	}
1072 
1073 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1074 		goto out;
1075 
1076 	if (unlikely(s != page->slab_cache)) {
1077 		if (!PageSlab(page)) {
1078 			slab_err(s, page, "Attempt to free object(0x%p) "
1079 				"outside of slab", object);
1080 		} else if (!page->slab_cache) {
1081 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1082 			       object);
1083 			dump_stack();
1084 		} else
1085 			object_err(s, page, object,
1086 					"page slab pointer corrupt.");
1087 		goto fail;
1088 	}
1089 
1090 	if (s->flags & SLAB_STORE_USER)
1091 		set_track(s, object, TRACK_FREE, addr);
1092 	trace(s, page, object, 0);
1093 	init_object(s, object, SLUB_RED_INACTIVE);
1094 out:
1095 	slab_unlock(page);
1096 	/*
1097 	 * Keep node_lock to preserve integrity
1098 	 * until the object is actually freed
1099 	 */
1100 	return n;
1101 
1102 fail:
1103 	slab_unlock(page);
1104 	spin_unlock_irqrestore(&n->list_lock, *flags);
1105 	slab_fix(s, "Object at 0x%p not freed", object);
1106 	return NULL;
1107 }
1108 
1109 static int __init setup_slub_debug(char *str)
1110 {
1111 	slub_debug = DEBUG_DEFAULT_FLAGS;
1112 	if (*str++ != '=' || !*str)
1113 		/*
1114 		 * No options specified. Switch on full debugging.
1115 		 */
1116 		goto out;
1117 
1118 	if (*str == ',')
1119 		/*
1120 		 * No options but restriction on slabs. This means full
1121 		 * debugging for slabs matching a pattern.
1122 		 */
1123 		goto check_slabs;
1124 
1125 	if (tolower(*str) == 'o') {
1126 		/*
1127 		 * Avoid enabling debugging on caches if its minimum order
1128 		 * would increase as a result.
1129 		 */
1130 		disable_higher_order_debug = 1;
1131 		goto out;
1132 	}
1133 
1134 	slub_debug = 0;
1135 	if (*str == '-')
1136 		/*
1137 		 * Switch off all debugging measures.
1138 		 */
1139 		goto out;
1140 
1141 	/*
1142 	 * Determine which debug features should be switched on
1143 	 */
1144 	for (; *str && *str != ','; str++) {
1145 		switch (tolower(*str)) {
1146 		case 'f':
1147 			slub_debug |= SLAB_DEBUG_FREE;
1148 			break;
1149 		case 'z':
1150 			slub_debug |= SLAB_RED_ZONE;
1151 			break;
1152 		case 'p':
1153 			slub_debug |= SLAB_POISON;
1154 			break;
1155 		case 'u':
1156 			slub_debug |= SLAB_STORE_USER;
1157 			break;
1158 		case 't':
1159 			slub_debug |= SLAB_TRACE;
1160 			break;
1161 		case 'a':
1162 			slub_debug |= SLAB_FAILSLAB;
1163 			break;
1164 		default:
1165 			pr_err("slub_debug option '%c' unknown. skipped\n",
1166 			       *str);
1167 		}
1168 	}
1169 
1170 check_slabs:
1171 	if (*str == ',')
1172 		slub_debug_slabs = str + 1;
1173 out:
1174 	return 1;
1175 }
1176 
1177 __setup("slub_debug", setup_slub_debug);
1178 
1179 static unsigned long kmem_cache_flags(unsigned long object_size,
1180 	unsigned long flags, const char *name,
1181 	void (*ctor)(void *))
1182 {
1183 	/*
1184 	 * Enable debugging if selected on the kernel commandline.
1185 	 */
1186 	if (slub_debug && (!slub_debug_slabs || (name &&
1187 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1188 		flags |= slub_debug;
1189 
1190 	return flags;
1191 }
1192 #else
1193 static inline void setup_object_debug(struct kmem_cache *s,
1194 			struct page *page, void *object) {}
1195 
1196 static inline int alloc_debug_processing(struct kmem_cache *s,
1197 	struct page *page, void *object, unsigned long addr) { return 0; }
1198 
1199 static inline struct kmem_cache_node *free_debug_processing(
1200 	struct kmem_cache *s, struct page *page, void *object,
1201 	unsigned long addr, unsigned long *flags) { return NULL; }
1202 
1203 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1204 			{ return 1; }
1205 static inline int check_object(struct kmem_cache *s, struct page *page,
1206 			void *object, u8 val) { return 1; }
1207 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1208 					struct page *page) {}
1209 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1210 					struct page *page) {}
1211 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1212 	unsigned long flags, const char *name,
1213 	void (*ctor)(void *))
1214 {
1215 	return flags;
1216 }
1217 #define slub_debug 0
1218 
1219 #define disable_higher_order_debug 0
1220 
1221 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1222 							{ return 0; }
1223 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1224 							{ return 0; }
1225 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1226 							int objects) {}
1227 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1228 							int objects) {}
1229 
1230 #endif /* CONFIG_SLUB_DEBUG */
1231 
1232 /*
1233  * Hooks for other subsystems that check memory allocations. In a typical
1234  * production configuration these hooks all should produce no code at all.
1235  */
1236 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1237 {
1238 	kmemleak_alloc(ptr, size, 1, flags);
1239 }
1240 
1241 static inline void kfree_hook(const void *x)
1242 {
1243 	kmemleak_free(x);
1244 }
1245 
1246 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1247 {
1248 	flags &= gfp_allowed_mask;
1249 	lockdep_trace_alloc(flags);
1250 	might_sleep_if(flags & __GFP_WAIT);
1251 
1252 	return should_failslab(s->object_size, flags, s->flags);
1253 }
1254 
1255 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1256 					gfp_t flags, void *object)
1257 {
1258 	flags &= gfp_allowed_mask;
1259 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1260 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1261 }
1262 
1263 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1264 {
1265 	kmemleak_free_recursive(x, s->flags);
1266 
1267 	/*
1268 	 * Trouble is that we may no longer disable interrupts in the fast path
1269 	 * So in order to make the debug calls that expect irqs to be
1270 	 * disabled we need to disable interrupts temporarily.
1271 	 */
1272 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1273 	{
1274 		unsigned long flags;
1275 
1276 		local_irq_save(flags);
1277 		kmemcheck_slab_free(s, x, s->object_size);
1278 		debug_check_no_locks_freed(x, s->object_size);
1279 		local_irq_restore(flags);
1280 	}
1281 #endif
1282 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1283 		debug_check_no_obj_freed(x, s->object_size);
1284 }
1285 
1286 /*
1287  * Slab allocation and freeing
1288  */
1289 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1290 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1291 {
1292 	struct page *page;
1293 	int order = oo_order(oo);
1294 
1295 	flags |= __GFP_NOTRACK;
1296 
1297 	if (memcg_charge_slab(s, flags, order))
1298 		return NULL;
1299 
1300 	if (node == NUMA_NO_NODE)
1301 		page = alloc_pages(flags, order);
1302 	else
1303 		page = alloc_pages_exact_node(node, flags, order);
1304 
1305 	if (!page)
1306 		memcg_uncharge_slab(s, order);
1307 
1308 	return page;
1309 }
1310 
1311 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1312 {
1313 	struct page *page;
1314 	struct kmem_cache_order_objects oo = s->oo;
1315 	gfp_t alloc_gfp;
1316 
1317 	flags &= gfp_allowed_mask;
1318 
1319 	if (flags & __GFP_WAIT)
1320 		local_irq_enable();
1321 
1322 	flags |= s->allocflags;
1323 
1324 	/*
1325 	 * Let the initial higher-order allocation fail under memory pressure
1326 	 * so we fall-back to the minimum order allocation.
1327 	 */
1328 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1329 
1330 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1331 	if (unlikely(!page)) {
1332 		oo = s->min;
1333 		alloc_gfp = flags;
1334 		/*
1335 		 * Allocation may have failed due to fragmentation.
1336 		 * Try a lower order alloc if possible
1337 		 */
1338 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1339 
1340 		if (page)
1341 			stat(s, ORDER_FALLBACK);
1342 	}
1343 
1344 	if (kmemcheck_enabled && page
1345 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1346 		int pages = 1 << oo_order(oo);
1347 
1348 		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1349 
1350 		/*
1351 		 * Objects from caches that have a constructor don't get
1352 		 * cleared when they're allocated, so we need to do it here.
1353 		 */
1354 		if (s->ctor)
1355 			kmemcheck_mark_uninitialized_pages(page, pages);
1356 		else
1357 			kmemcheck_mark_unallocated_pages(page, pages);
1358 	}
1359 
1360 	if (flags & __GFP_WAIT)
1361 		local_irq_disable();
1362 	if (!page)
1363 		return NULL;
1364 
1365 	page->objects = oo_objects(oo);
1366 	mod_zone_page_state(page_zone(page),
1367 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1368 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1369 		1 << oo_order(oo));
1370 
1371 	return page;
1372 }
1373 
1374 static void setup_object(struct kmem_cache *s, struct page *page,
1375 				void *object)
1376 {
1377 	setup_object_debug(s, page, object);
1378 	if (unlikely(s->ctor))
1379 		s->ctor(object);
1380 }
1381 
1382 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1383 {
1384 	struct page *page;
1385 	void *start;
1386 	void *p;
1387 	int order;
1388 	int idx;
1389 
1390 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1391 
1392 	page = allocate_slab(s,
1393 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1394 	if (!page)
1395 		goto out;
1396 
1397 	order = compound_order(page);
1398 	inc_slabs_node(s, page_to_nid(page), page->objects);
1399 	page->slab_cache = s;
1400 	__SetPageSlab(page);
1401 	if (page->pfmemalloc)
1402 		SetPageSlabPfmemalloc(page);
1403 
1404 	start = page_address(page);
1405 
1406 	if (unlikely(s->flags & SLAB_POISON))
1407 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1408 
1409 	for_each_object_idx(p, idx, s, start, page->objects) {
1410 		setup_object(s, page, p);
1411 		if (likely(idx < page->objects))
1412 			set_freepointer(s, p, p + s->size);
1413 		else
1414 			set_freepointer(s, p, NULL);
1415 	}
1416 
1417 	page->freelist = start;
1418 	page->inuse = page->objects;
1419 	page->frozen = 1;
1420 out:
1421 	return page;
1422 }
1423 
1424 static void __free_slab(struct kmem_cache *s, struct page *page)
1425 {
1426 	int order = compound_order(page);
1427 	int pages = 1 << order;
1428 
1429 	if (kmem_cache_debug(s)) {
1430 		void *p;
1431 
1432 		slab_pad_check(s, page);
1433 		for_each_object(p, s, page_address(page),
1434 						page->objects)
1435 			check_object(s, page, p, SLUB_RED_INACTIVE);
1436 	}
1437 
1438 	kmemcheck_free_shadow(page, compound_order(page));
1439 
1440 	mod_zone_page_state(page_zone(page),
1441 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1442 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1443 		-pages);
1444 
1445 	__ClearPageSlabPfmemalloc(page);
1446 	__ClearPageSlab(page);
1447 
1448 	page_mapcount_reset(page);
1449 	if (current->reclaim_state)
1450 		current->reclaim_state->reclaimed_slab += pages;
1451 	__free_pages(page, order);
1452 	memcg_uncharge_slab(s, order);
1453 }
1454 
1455 #define need_reserve_slab_rcu						\
1456 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1457 
1458 static void rcu_free_slab(struct rcu_head *h)
1459 {
1460 	struct page *page;
1461 
1462 	if (need_reserve_slab_rcu)
1463 		page = virt_to_head_page(h);
1464 	else
1465 		page = container_of((struct list_head *)h, struct page, lru);
1466 
1467 	__free_slab(page->slab_cache, page);
1468 }
1469 
1470 static void free_slab(struct kmem_cache *s, struct page *page)
1471 {
1472 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1473 		struct rcu_head *head;
1474 
1475 		if (need_reserve_slab_rcu) {
1476 			int order = compound_order(page);
1477 			int offset = (PAGE_SIZE << order) - s->reserved;
1478 
1479 			VM_BUG_ON(s->reserved != sizeof(*head));
1480 			head = page_address(page) + offset;
1481 		} else {
1482 			/*
1483 			 * RCU free overloads the RCU head over the LRU
1484 			 */
1485 			head = (void *)&page->lru;
1486 		}
1487 
1488 		call_rcu(head, rcu_free_slab);
1489 	} else
1490 		__free_slab(s, page);
1491 }
1492 
1493 static void discard_slab(struct kmem_cache *s, struct page *page)
1494 {
1495 	dec_slabs_node(s, page_to_nid(page), page->objects);
1496 	free_slab(s, page);
1497 }
1498 
1499 /*
1500  * Management of partially allocated slabs.
1501  */
1502 static inline void
1503 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1504 {
1505 	n->nr_partial++;
1506 	if (tail == DEACTIVATE_TO_TAIL)
1507 		list_add_tail(&page->lru, &n->partial);
1508 	else
1509 		list_add(&page->lru, &n->partial);
1510 }
1511 
1512 static inline void add_partial(struct kmem_cache_node *n,
1513 				struct page *page, int tail)
1514 {
1515 	lockdep_assert_held(&n->list_lock);
1516 	__add_partial(n, page, tail);
1517 }
1518 
1519 static inline void
1520 __remove_partial(struct kmem_cache_node *n, struct page *page)
1521 {
1522 	list_del(&page->lru);
1523 	n->nr_partial--;
1524 }
1525 
1526 static inline void remove_partial(struct kmem_cache_node *n,
1527 					struct page *page)
1528 {
1529 	lockdep_assert_held(&n->list_lock);
1530 	__remove_partial(n, page);
1531 }
1532 
1533 /*
1534  * Remove slab from the partial list, freeze it and
1535  * return the pointer to the freelist.
1536  *
1537  * Returns a list of objects or NULL if it fails.
1538  */
1539 static inline void *acquire_slab(struct kmem_cache *s,
1540 		struct kmem_cache_node *n, struct page *page,
1541 		int mode, int *objects)
1542 {
1543 	void *freelist;
1544 	unsigned long counters;
1545 	struct page new;
1546 
1547 	lockdep_assert_held(&n->list_lock);
1548 
1549 	/*
1550 	 * Zap the freelist and set the frozen bit.
1551 	 * The old freelist is the list of objects for the
1552 	 * per cpu allocation list.
1553 	 */
1554 	freelist = page->freelist;
1555 	counters = page->counters;
1556 	new.counters = counters;
1557 	*objects = new.objects - new.inuse;
1558 	if (mode) {
1559 		new.inuse = page->objects;
1560 		new.freelist = NULL;
1561 	} else {
1562 		new.freelist = freelist;
1563 	}
1564 
1565 	VM_BUG_ON(new.frozen);
1566 	new.frozen = 1;
1567 
1568 	if (!__cmpxchg_double_slab(s, page,
1569 			freelist, counters,
1570 			new.freelist, new.counters,
1571 			"acquire_slab"))
1572 		return NULL;
1573 
1574 	remove_partial(n, page);
1575 	WARN_ON(!freelist);
1576 	return freelist;
1577 }
1578 
1579 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1580 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1581 
1582 /*
1583  * Try to allocate a partial slab from a specific node.
1584  */
1585 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1586 				struct kmem_cache_cpu *c, gfp_t flags)
1587 {
1588 	struct page *page, *page2;
1589 	void *object = NULL;
1590 	int available = 0;
1591 	int objects;
1592 
1593 	/*
1594 	 * Racy check. If we mistakenly see no partial slabs then we
1595 	 * just allocate an empty slab. If we mistakenly try to get a
1596 	 * partial slab and there is none available then get_partials()
1597 	 * will return NULL.
1598 	 */
1599 	if (!n || !n->nr_partial)
1600 		return NULL;
1601 
1602 	spin_lock(&n->list_lock);
1603 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1604 		void *t;
1605 
1606 		if (!pfmemalloc_match(page, flags))
1607 			continue;
1608 
1609 		t = acquire_slab(s, n, page, object == NULL, &objects);
1610 		if (!t)
1611 			break;
1612 
1613 		available += objects;
1614 		if (!object) {
1615 			c->page = page;
1616 			stat(s, ALLOC_FROM_PARTIAL);
1617 			object = t;
1618 		} else {
1619 			put_cpu_partial(s, page, 0);
1620 			stat(s, CPU_PARTIAL_NODE);
1621 		}
1622 		if (!kmem_cache_has_cpu_partial(s)
1623 			|| available > s->cpu_partial / 2)
1624 			break;
1625 
1626 	}
1627 	spin_unlock(&n->list_lock);
1628 	return object;
1629 }
1630 
1631 /*
1632  * Get a page from somewhere. Search in increasing NUMA distances.
1633  */
1634 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1635 		struct kmem_cache_cpu *c)
1636 {
1637 #ifdef CONFIG_NUMA
1638 	struct zonelist *zonelist;
1639 	struct zoneref *z;
1640 	struct zone *zone;
1641 	enum zone_type high_zoneidx = gfp_zone(flags);
1642 	void *object;
1643 	unsigned int cpuset_mems_cookie;
1644 
1645 	/*
1646 	 * The defrag ratio allows a configuration of the tradeoffs between
1647 	 * inter node defragmentation and node local allocations. A lower
1648 	 * defrag_ratio increases the tendency to do local allocations
1649 	 * instead of attempting to obtain partial slabs from other nodes.
1650 	 *
1651 	 * If the defrag_ratio is set to 0 then kmalloc() always
1652 	 * returns node local objects. If the ratio is higher then kmalloc()
1653 	 * may return off node objects because partial slabs are obtained
1654 	 * from other nodes and filled up.
1655 	 *
1656 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1657 	 * defrag_ratio = 1000) then every (well almost) allocation will
1658 	 * first attempt to defrag slab caches on other nodes. This means
1659 	 * scanning over all nodes to look for partial slabs which may be
1660 	 * expensive if we do it every time we are trying to find a slab
1661 	 * with available objects.
1662 	 */
1663 	if (!s->remote_node_defrag_ratio ||
1664 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1665 		return NULL;
1666 
1667 	do {
1668 		cpuset_mems_cookie = read_mems_allowed_begin();
1669 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1670 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1671 			struct kmem_cache_node *n;
1672 
1673 			n = get_node(s, zone_to_nid(zone));
1674 
1675 			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1676 					n->nr_partial > s->min_partial) {
1677 				object = get_partial_node(s, n, c, flags);
1678 				if (object) {
1679 					/*
1680 					 * Don't check read_mems_allowed_retry()
1681 					 * here - if mems_allowed was updated in
1682 					 * parallel, that was a harmless race
1683 					 * between allocation and the cpuset
1684 					 * update
1685 					 */
1686 					return object;
1687 				}
1688 			}
1689 		}
1690 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1691 #endif
1692 	return NULL;
1693 }
1694 
1695 /*
1696  * Get a partial page, lock it and return it.
1697  */
1698 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1699 		struct kmem_cache_cpu *c)
1700 {
1701 	void *object;
1702 	int searchnode = (node == NUMA_NO_NODE) ? numa_mem_id() : node;
1703 
1704 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1705 	if (object || node != NUMA_NO_NODE)
1706 		return object;
1707 
1708 	return get_any_partial(s, flags, c);
1709 }
1710 
1711 #ifdef CONFIG_PREEMPT
1712 /*
1713  * Calculate the next globally unique transaction for disambiguiation
1714  * during cmpxchg. The transactions start with the cpu number and are then
1715  * incremented by CONFIG_NR_CPUS.
1716  */
1717 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1718 #else
1719 /*
1720  * No preemption supported therefore also no need to check for
1721  * different cpus.
1722  */
1723 #define TID_STEP 1
1724 #endif
1725 
1726 static inline unsigned long next_tid(unsigned long tid)
1727 {
1728 	return tid + TID_STEP;
1729 }
1730 
1731 static inline unsigned int tid_to_cpu(unsigned long tid)
1732 {
1733 	return tid % TID_STEP;
1734 }
1735 
1736 static inline unsigned long tid_to_event(unsigned long tid)
1737 {
1738 	return tid / TID_STEP;
1739 }
1740 
1741 static inline unsigned int init_tid(int cpu)
1742 {
1743 	return cpu;
1744 }
1745 
1746 static inline void note_cmpxchg_failure(const char *n,
1747 		const struct kmem_cache *s, unsigned long tid)
1748 {
1749 #ifdef SLUB_DEBUG_CMPXCHG
1750 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1751 
1752 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1753 
1754 #ifdef CONFIG_PREEMPT
1755 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1756 		pr_warn("due to cpu change %d -> %d\n",
1757 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1758 	else
1759 #endif
1760 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1761 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1762 			tid_to_event(tid), tid_to_event(actual_tid));
1763 	else
1764 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1765 			actual_tid, tid, next_tid(tid));
1766 #endif
1767 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1768 }
1769 
1770 static void init_kmem_cache_cpus(struct kmem_cache *s)
1771 {
1772 	int cpu;
1773 
1774 	for_each_possible_cpu(cpu)
1775 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1776 }
1777 
1778 /*
1779  * Remove the cpu slab
1780  */
1781 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1782 				void *freelist)
1783 {
1784 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1785 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1786 	int lock = 0;
1787 	enum slab_modes l = M_NONE, m = M_NONE;
1788 	void *nextfree;
1789 	int tail = DEACTIVATE_TO_HEAD;
1790 	struct page new;
1791 	struct page old;
1792 
1793 	if (page->freelist) {
1794 		stat(s, DEACTIVATE_REMOTE_FREES);
1795 		tail = DEACTIVATE_TO_TAIL;
1796 	}
1797 
1798 	/*
1799 	 * Stage one: Free all available per cpu objects back
1800 	 * to the page freelist while it is still frozen. Leave the
1801 	 * last one.
1802 	 *
1803 	 * There is no need to take the list->lock because the page
1804 	 * is still frozen.
1805 	 */
1806 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1807 		void *prior;
1808 		unsigned long counters;
1809 
1810 		do {
1811 			prior = page->freelist;
1812 			counters = page->counters;
1813 			set_freepointer(s, freelist, prior);
1814 			new.counters = counters;
1815 			new.inuse--;
1816 			VM_BUG_ON(!new.frozen);
1817 
1818 		} while (!__cmpxchg_double_slab(s, page,
1819 			prior, counters,
1820 			freelist, new.counters,
1821 			"drain percpu freelist"));
1822 
1823 		freelist = nextfree;
1824 	}
1825 
1826 	/*
1827 	 * Stage two: Ensure that the page is unfrozen while the
1828 	 * list presence reflects the actual number of objects
1829 	 * during unfreeze.
1830 	 *
1831 	 * We setup the list membership and then perform a cmpxchg
1832 	 * with the count. If there is a mismatch then the page
1833 	 * is not unfrozen but the page is on the wrong list.
1834 	 *
1835 	 * Then we restart the process which may have to remove
1836 	 * the page from the list that we just put it on again
1837 	 * because the number of objects in the slab may have
1838 	 * changed.
1839 	 */
1840 redo:
1841 
1842 	old.freelist = page->freelist;
1843 	old.counters = page->counters;
1844 	VM_BUG_ON(!old.frozen);
1845 
1846 	/* Determine target state of the slab */
1847 	new.counters = old.counters;
1848 	if (freelist) {
1849 		new.inuse--;
1850 		set_freepointer(s, freelist, old.freelist);
1851 		new.freelist = freelist;
1852 	} else
1853 		new.freelist = old.freelist;
1854 
1855 	new.frozen = 0;
1856 
1857 	if (!new.inuse && n->nr_partial >= s->min_partial)
1858 		m = M_FREE;
1859 	else if (new.freelist) {
1860 		m = M_PARTIAL;
1861 		if (!lock) {
1862 			lock = 1;
1863 			/*
1864 			 * Taking the spinlock removes the possiblity
1865 			 * that acquire_slab() will see a slab page that
1866 			 * is frozen
1867 			 */
1868 			spin_lock(&n->list_lock);
1869 		}
1870 	} else {
1871 		m = M_FULL;
1872 		if (kmem_cache_debug(s) && !lock) {
1873 			lock = 1;
1874 			/*
1875 			 * This also ensures that the scanning of full
1876 			 * slabs from diagnostic functions will not see
1877 			 * any frozen slabs.
1878 			 */
1879 			spin_lock(&n->list_lock);
1880 		}
1881 	}
1882 
1883 	if (l != m) {
1884 
1885 		if (l == M_PARTIAL)
1886 
1887 			remove_partial(n, page);
1888 
1889 		else if (l == M_FULL)
1890 
1891 			remove_full(s, n, page);
1892 
1893 		if (m == M_PARTIAL) {
1894 
1895 			add_partial(n, page, tail);
1896 			stat(s, tail);
1897 
1898 		} else if (m == M_FULL) {
1899 
1900 			stat(s, DEACTIVATE_FULL);
1901 			add_full(s, n, page);
1902 
1903 		}
1904 	}
1905 
1906 	l = m;
1907 	if (!__cmpxchg_double_slab(s, page,
1908 				old.freelist, old.counters,
1909 				new.freelist, new.counters,
1910 				"unfreezing slab"))
1911 		goto redo;
1912 
1913 	if (lock)
1914 		spin_unlock(&n->list_lock);
1915 
1916 	if (m == M_FREE) {
1917 		stat(s, DEACTIVATE_EMPTY);
1918 		discard_slab(s, page);
1919 		stat(s, FREE_SLAB);
1920 	}
1921 }
1922 
1923 /*
1924  * Unfreeze all the cpu partial slabs.
1925  *
1926  * This function must be called with interrupts disabled
1927  * for the cpu using c (or some other guarantee must be there
1928  * to guarantee no concurrent accesses).
1929  */
1930 static void unfreeze_partials(struct kmem_cache *s,
1931 		struct kmem_cache_cpu *c)
1932 {
1933 #ifdef CONFIG_SLUB_CPU_PARTIAL
1934 	struct kmem_cache_node *n = NULL, *n2 = NULL;
1935 	struct page *page, *discard_page = NULL;
1936 
1937 	while ((page = c->partial)) {
1938 		struct page new;
1939 		struct page old;
1940 
1941 		c->partial = page->next;
1942 
1943 		n2 = get_node(s, page_to_nid(page));
1944 		if (n != n2) {
1945 			if (n)
1946 				spin_unlock(&n->list_lock);
1947 
1948 			n = n2;
1949 			spin_lock(&n->list_lock);
1950 		}
1951 
1952 		do {
1953 
1954 			old.freelist = page->freelist;
1955 			old.counters = page->counters;
1956 			VM_BUG_ON(!old.frozen);
1957 
1958 			new.counters = old.counters;
1959 			new.freelist = old.freelist;
1960 
1961 			new.frozen = 0;
1962 
1963 		} while (!__cmpxchg_double_slab(s, page,
1964 				old.freelist, old.counters,
1965 				new.freelist, new.counters,
1966 				"unfreezing slab"));
1967 
1968 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1969 			page->next = discard_page;
1970 			discard_page = page;
1971 		} else {
1972 			add_partial(n, page, DEACTIVATE_TO_TAIL);
1973 			stat(s, FREE_ADD_PARTIAL);
1974 		}
1975 	}
1976 
1977 	if (n)
1978 		spin_unlock(&n->list_lock);
1979 
1980 	while (discard_page) {
1981 		page = discard_page;
1982 		discard_page = discard_page->next;
1983 
1984 		stat(s, DEACTIVATE_EMPTY);
1985 		discard_slab(s, page);
1986 		stat(s, FREE_SLAB);
1987 	}
1988 #endif
1989 }
1990 
1991 /*
1992  * Put a page that was just frozen (in __slab_free) into a partial page
1993  * slot if available. This is done without interrupts disabled and without
1994  * preemption disabled. The cmpxchg is racy and may put the partial page
1995  * onto a random cpus partial slot.
1996  *
1997  * If we did not find a slot then simply move all the partials to the
1998  * per node partial list.
1999  */
2000 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2001 {
2002 #ifdef CONFIG_SLUB_CPU_PARTIAL
2003 	struct page *oldpage;
2004 	int pages;
2005 	int pobjects;
2006 
2007 	do {
2008 		pages = 0;
2009 		pobjects = 0;
2010 		oldpage = this_cpu_read(s->cpu_slab->partial);
2011 
2012 		if (oldpage) {
2013 			pobjects = oldpage->pobjects;
2014 			pages = oldpage->pages;
2015 			if (drain && pobjects > s->cpu_partial) {
2016 				unsigned long flags;
2017 				/*
2018 				 * partial array is full. Move the existing
2019 				 * set to the per node partial list.
2020 				 */
2021 				local_irq_save(flags);
2022 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2023 				local_irq_restore(flags);
2024 				oldpage = NULL;
2025 				pobjects = 0;
2026 				pages = 0;
2027 				stat(s, CPU_PARTIAL_DRAIN);
2028 			}
2029 		}
2030 
2031 		pages++;
2032 		pobjects += page->objects - page->inuse;
2033 
2034 		page->pages = pages;
2035 		page->pobjects = pobjects;
2036 		page->next = oldpage;
2037 
2038 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2039 								!= oldpage);
2040 #endif
2041 }
2042 
2043 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2044 {
2045 	stat(s, CPUSLAB_FLUSH);
2046 	deactivate_slab(s, c->page, c->freelist);
2047 
2048 	c->tid = next_tid(c->tid);
2049 	c->page = NULL;
2050 	c->freelist = NULL;
2051 }
2052 
2053 /*
2054  * Flush cpu slab.
2055  *
2056  * Called from IPI handler with interrupts disabled.
2057  */
2058 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2059 {
2060 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2061 
2062 	if (likely(c)) {
2063 		if (c->page)
2064 			flush_slab(s, c);
2065 
2066 		unfreeze_partials(s, c);
2067 	}
2068 }
2069 
2070 static void flush_cpu_slab(void *d)
2071 {
2072 	struct kmem_cache *s = d;
2073 
2074 	__flush_cpu_slab(s, smp_processor_id());
2075 }
2076 
2077 static bool has_cpu_slab(int cpu, void *info)
2078 {
2079 	struct kmem_cache *s = info;
2080 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2081 
2082 	return c->page || c->partial;
2083 }
2084 
2085 static void flush_all(struct kmem_cache *s)
2086 {
2087 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2088 }
2089 
2090 /*
2091  * Check if the objects in a per cpu structure fit numa
2092  * locality expectations.
2093  */
2094 static inline int node_match(struct page *page, int node)
2095 {
2096 #ifdef CONFIG_NUMA
2097 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2098 		return 0;
2099 #endif
2100 	return 1;
2101 }
2102 
2103 #ifdef CONFIG_SLUB_DEBUG
2104 static int count_free(struct page *page)
2105 {
2106 	return page->objects - page->inuse;
2107 }
2108 
2109 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2110 {
2111 	return atomic_long_read(&n->total_objects);
2112 }
2113 #endif /* CONFIG_SLUB_DEBUG */
2114 
2115 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2116 static unsigned long count_partial(struct kmem_cache_node *n,
2117 					int (*get_count)(struct page *))
2118 {
2119 	unsigned long flags;
2120 	unsigned long x = 0;
2121 	struct page *page;
2122 
2123 	spin_lock_irqsave(&n->list_lock, flags);
2124 	list_for_each_entry(page, &n->partial, lru)
2125 		x += get_count(page);
2126 	spin_unlock_irqrestore(&n->list_lock, flags);
2127 	return x;
2128 }
2129 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2130 
2131 static noinline void
2132 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2133 {
2134 #ifdef CONFIG_SLUB_DEBUG
2135 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2136 				      DEFAULT_RATELIMIT_BURST);
2137 	int node;
2138 	struct kmem_cache_node *n;
2139 
2140 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2141 		return;
2142 
2143 	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2144 		nid, gfpflags);
2145 	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2146 		s->name, s->object_size, s->size, oo_order(s->oo),
2147 		oo_order(s->min));
2148 
2149 	if (oo_order(s->min) > get_order(s->object_size))
2150 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2151 			s->name);
2152 
2153 	for_each_kmem_cache_node(s, node, n) {
2154 		unsigned long nr_slabs;
2155 		unsigned long nr_objs;
2156 		unsigned long nr_free;
2157 
2158 		nr_free  = count_partial(n, count_free);
2159 		nr_slabs = node_nr_slabs(n);
2160 		nr_objs  = node_nr_objs(n);
2161 
2162 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2163 			node, nr_slabs, nr_objs, nr_free);
2164 	}
2165 #endif
2166 }
2167 
2168 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2169 			int node, struct kmem_cache_cpu **pc)
2170 {
2171 	void *freelist;
2172 	struct kmem_cache_cpu *c = *pc;
2173 	struct page *page;
2174 
2175 	freelist = get_partial(s, flags, node, c);
2176 
2177 	if (freelist)
2178 		return freelist;
2179 
2180 	page = new_slab(s, flags, node);
2181 	if (page) {
2182 		c = raw_cpu_ptr(s->cpu_slab);
2183 		if (c->page)
2184 			flush_slab(s, c);
2185 
2186 		/*
2187 		 * No other reference to the page yet so we can
2188 		 * muck around with it freely without cmpxchg
2189 		 */
2190 		freelist = page->freelist;
2191 		page->freelist = NULL;
2192 
2193 		stat(s, ALLOC_SLAB);
2194 		c->page = page;
2195 		*pc = c;
2196 	} else
2197 		freelist = NULL;
2198 
2199 	return freelist;
2200 }
2201 
2202 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2203 {
2204 	if (unlikely(PageSlabPfmemalloc(page)))
2205 		return gfp_pfmemalloc_allowed(gfpflags);
2206 
2207 	return true;
2208 }
2209 
2210 /*
2211  * Check the page->freelist of a page and either transfer the freelist to the
2212  * per cpu freelist or deactivate the page.
2213  *
2214  * The page is still frozen if the return value is not NULL.
2215  *
2216  * If this function returns NULL then the page has been unfrozen.
2217  *
2218  * This function must be called with interrupt disabled.
2219  */
2220 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2221 {
2222 	struct page new;
2223 	unsigned long counters;
2224 	void *freelist;
2225 
2226 	do {
2227 		freelist = page->freelist;
2228 		counters = page->counters;
2229 
2230 		new.counters = counters;
2231 		VM_BUG_ON(!new.frozen);
2232 
2233 		new.inuse = page->objects;
2234 		new.frozen = freelist != NULL;
2235 
2236 	} while (!__cmpxchg_double_slab(s, page,
2237 		freelist, counters,
2238 		NULL, new.counters,
2239 		"get_freelist"));
2240 
2241 	return freelist;
2242 }
2243 
2244 /*
2245  * Slow path. The lockless freelist is empty or we need to perform
2246  * debugging duties.
2247  *
2248  * Processing is still very fast if new objects have been freed to the
2249  * regular freelist. In that case we simply take over the regular freelist
2250  * as the lockless freelist and zap the regular freelist.
2251  *
2252  * If that is not working then we fall back to the partial lists. We take the
2253  * first element of the freelist as the object to allocate now and move the
2254  * rest of the freelist to the lockless freelist.
2255  *
2256  * And if we were unable to get a new slab from the partial slab lists then
2257  * we need to allocate a new slab. This is the slowest path since it involves
2258  * a call to the page allocator and the setup of a new slab.
2259  */
2260 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2261 			  unsigned long addr, struct kmem_cache_cpu *c)
2262 {
2263 	void *freelist;
2264 	struct page *page;
2265 	unsigned long flags;
2266 
2267 	local_irq_save(flags);
2268 #ifdef CONFIG_PREEMPT
2269 	/*
2270 	 * We may have been preempted and rescheduled on a different
2271 	 * cpu before disabling interrupts. Need to reload cpu area
2272 	 * pointer.
2273 	 */
2274 	c = this_cpu_ptr(s->cpu_slab);
2275 #endif
2276 
2277 	page = c->page;
2278 	if (!page)
2279 		goto new_slab;
2280 redo:
2281 
2282 	if (unlikely(!node_match(page, node))) {
2283 		stat(s, ALLOC_NODE_MISMATCH);
2284 		deactivate_slab(s, page, c->freelist);
2285 		c->page = NULL;
2286 		c->freelist = NULL;
2287 		goto new_slab;
2288 	}
2289 
2290 	/*
2291 	 * By rights, we should be searching for a slab page that was
2292 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2293 	 * information when the page leaves the per-cpu allocator
2294 	 */
2295 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2296 		deactivate_slab(s, page, c->freelist);
2297 		c->page = NULL;
2298 		c->freelist = NULL;
2299 		goto new_slab;
2300 	}
2301 
2302 	/* must check again c->freelist in case of cpu migration or IRQ */
2303 	freelist = c->freelist;
2304 	if (freelist)
2305 		goto load_freelist;
2306 
2307 	freelist = get_freelist(s, page);
2308 
2309 	if (!freelist) {
2310 		c->page = NULL;
2311 		stat(s, DEACTIVATE_BYPASS);
2312 		goto new_slab;
2313 	}
2314 
2315 	stat(s, ALLOC_REFILL);
2316 
2317 load_freelist:
2318 	/*
2319 	 * freelist is pointing to the list of objects to be used.
2320 	 * page is pointing to the page from which the objects are obtained.
2321 	 * That page must be frozen for per cpu allocations to work.
2322 	 */
2323 	VM_BUG_ON(!c->page->frozen);
2324 	c->freelist = get_freepointer(s, freelist);
2325 	c->tid = next_tid(c->tid);
2326 	local_irq_restore(flags);
2327 	return freelist;
2328 
2329 new_slab:
2330 
2331 	if (c->partial) {
2332 		page = c->page = c->partial;
2333 		c->partial = page->next;
2334 		stat(s, CPU_PARTIAL_ALLOC);
2335 		c->freelist = NULL;
2336 		goto redo;
2337 	}
2338 
2339 	freelist = new_slab_objects(s, gfpflags, node, &c);
2340 
2341 	if (unlikely(!freelist)) {
2342 		slab_out_of_memory(s, gfpflags, node);
2343 		local_irq_restore(flags);
2344 		return NULL;
2345 	}
2346 
2347 	page = c->page;
2348 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2349 		goto load_freelist;
2350 
2351 	/* Only entered in the debug case */
2352 	if (kmem_cache_debug(s) &&
2353 			!alloc_debug_processing(s, page, freelist, addr))
2354 		goto new_slab;	/* Slab failed checks. Next slab needed */
2355 
2356 	deactivate_slab(s, page, get_freepointer(s, freelist));
2357 	c->page = NULL;
2358 	c->freelist = NULL;
2359 	local_irq_restore(flags);
2360 	return freelist;
2361 }
2362 
2363 /*
2364  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2365  * have the fastpath folded into their functions. So no function call
2366  * overhead for requests that can be satisfied on the fastpath.
2367  *
2368  * The fastpath works by first checking if the lockless freelist can be used.
2369  * If not then __slab_alloc is called for slow processing.
2370  *
2371  * Otherwise we can simply pick the next object from the lockless free list.
2372  */
2373 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2374 		gfp_t gfpflags, int node, unsigned long addr)
2375 {
2376 	void **object;
2377 	struct kmem_cache_cpu *c;
2378 	struct page *page;
2379 	unsigned long tid;
2380 
2381 	if (slab_pre_alloc_hook(s, gfpflags))
2382 		return NULL;
2383 
2384 	s = memcg_kmem_get_cache(s, gfpflags);
2385 redo:
2386 	/*
2387 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2388 	 * enabled. We may switch back and forth between cpus while
2389 	 * reading from one cpu area. That does not matter as long
2390 	 * as we end up on the original cpu again when doing the cmpxchg.
2391 	 *
2392 	 * Preemption is disabled for the retrieval of the tid because that
2393 	 * must occur from the current processor. We cannot allow rescheduling
2394 	 * on a different processor between the determination of the pointer
2395 	 * and the retrieval of the tid.
2396 	 */
2397 	preempt_disable();
2398 	c = this_cpu_ptr(s->cpu_slab);
2399 
2400 	/*
2401 	 * The transaction ids are globally unique per cpu and per operation on
2402 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2403 	 * occurs on the right processor and that there was no operation on the
2404 	 * linked list in between.
2405 	 */
2406 	tid = c->tid;
2407 	preempt_enable();
2408 
2409 	object = c->freelist;
2410 	page = c->page;
2411 	if (unlikely(!object || !node_match(page, node))) {
2412 		object = __slab_alloc(s, gfpflags, node, addr, c);
2413 		stat(s, ALLOC_SLOWPATH);
2414 	} else {
2415 		void *next_object = get_freepointer_safe(s, object);
2416 
2417 		/*
2418 		 * The cmpxchg will only match if there was no additional
2419 		 * operation and if we are on the right processor.
2420 		 *
2421 		 * The cmpxchg does the following atomically (without lock
2422 		 * semantics!)
2423 		 * 1. Relocate first pointer to the current per cpu area.
2424 		 * 2. Verify that tid and freelist have not been changed
2425 		 * 3. If they were not changed replace tid and freelist
2426 		 *
2427 		 * Since this is without lock semantics the protection is only
2428 		 * against code executing on this cpu *not* from access by
2429 		 * other cpus.
2430 		 */
2431 		if (unlikely(!this_cpu_cmpxchg_double(
2432 				s->cpu_slab->freelist, s->cpu_slab->tid,
2433 				object, tid,
2434 				next_object, next_tid(tid)))) {
2435 
2436 			note_cmpxchg_failure("slab_alloc", s, tid);
2437 			goto redo;
2438 		}
2439 		prefetch_freepointer(s, next_object);
2440 		stat(s, ALLOC_FASTPATH);
2441 	}
2442 
2443 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2444 		memset(object, 0, s->object_size);
2445 
2446 	slab_post_alloc_hook(s, gfpflags, object);
2447 
2448 	return object;
2449 }
2450 
2451 static __always_inline void *slab_alloc(struct kmem_cache *s,
2452 		gfp_t gfpflags, unsigned long addr)
2453 {
2454 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2455 }
2456 
2457 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2458 {
2459 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2460 
2461 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2462 				s->size, gfpflags);
2463 
2464 	return ret;
2465 }
2466 EXPORT_SYMBOL(kmem_cache_alloc);
2467 
2468 #ifdef CONFIG_TRACING
2469 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2470 {
2471 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2472 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2473 	return ret;
2474 }
2475 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2476 #endif
2477 
2478 #ifdef CONFIG_NUMA
2479 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2480 {
2481 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2482 
2483 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2484 				    s->object_size, s->size, gfpflags, node);
2485 
2486 	return ret;
2487 }
2488 EXPORT_SYMBOL(kmem_cache_alloc_node);
2489 
2490 #ifdef CONFIG_TRACING
2491 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2492 				    gfp_t gfpflags,
2493 				    int node, size_t size)
2494 {
2495 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2496 
2497 	trace_kmalloc_node(_RET_IP_, ret,
2498 			   size, s->size, gfpflags, node);
2499 	return ret;
2500 }
2501 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2502 #endif
2503 #endif
2504 
2505 /*
2506  * Slow patch handling. This may still be called frequently since objects
2507  * have a longer lifetime than the cpu slabs in most processing loads.
2508  *
2509  * So we still attempt to reduce cache line usage. Just take the slab
2510  * lock and free the item. If there is no additional partial page
2511  * handling required then we can return immediately.
2512  */
2513 static void __slab_free(struct kmem_cache *s, struct page *page,
2514 			void *x, unsigned long addr)
2515 {
2516 	void *prior;
2517 	void **object = (void *)x;
2518 	int was_frozen;
2519 	struct page new;
2520 	unsigned long counters;
2521 	struct kmem_cache_node *n = NULL;
2522 	unsigned long uninitialized_var(flags);
2523 
2524 	stat(s, FREE_SLOWPATH);
2525 
2526 	if (kmem_cache_debug(s) &&
2527 		!(n = free_debug_processing(s, page, x, addr, &flags)))
2528 		return;
2529 
2530 	do {
2531 		if (unlikely(n)) {
2532 			spin_unlock_irqrestore(&n->list_lock, flags);
2533 			n = NULL;
2534 		}
2535 		prior = page->freelist;
2536 		counters = page->counters;
2537 		set_freepointer(s, object, prior);
2538 		new.counters = counters;
2539 		was_frozen = new.frozen;
2540 		new.inuse--;
2541 		if ((!new.inuse || !prior) && !was_frozen) {
2542 
2543 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2544 
2545 				/*
2546 				 * Slab was on no list before and will be
2547 				 * partially empty
2548 				 * We can defer the list move and instead
2549 				 * freeze it.
2550 				 */
2551 				new.frozen = 1;
2552 
2553 			} else { /* Needs to be taken off a list */
2554 
2555 	                        n = get_node(s, page_to_nid(page));
2556 				/*
2557 				 * Speculatively acquire the list_lock.
2558 				 * If the cmpxchg does not succeed then we may
2559 				 * drop the list_lock without any processing.
2560 				 *
2561 				 * Otherwise the list_lock will synchronize with
2562 				 * other processors updating the list of slabs.
2563 				 */
2564 				spin_lock_irqsave(&n->list_lock, flags);
2565 
2566 			}
2567 		}
2568 
2569 	} while (!cmpxchg_double_slab(s, page,
2570 		prior, counters,
2571 		object, new.counters,
2572 		"__slab_free"));
2573 
2574 	if (likely(!n)) {
2575 
2576 		/*
2577 		 * If we just froze the page then put it onto the
2578 		 * per cpu partial list.
2579 		 */
2580 		if (new.frozen && !was_frozen) {
2581 			put_cpu_partial(s, page, 1);
2582 			stat(s, CPU_PARTIAL_FREE);
2583 		}
2584 		/*
2585 		 * The list lock was not taken therefore no list
2586 		 * activity can be necessary.
2587 		 */
2588                 if (was_frozen)
2589                         stat(s, FREE_FROZEN);
2590                 return;
2591         }
2592 
2593 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2594 		goto slab_empty;
2595 
2596 	/*
2597 	 * Objects left in the slab. If it was not on the partial list before
2598 	 * then add it.
2599 	 */
2600 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2601 		if (kmem_cache_debug(s))
2602 			remove_full(s, n, page);
2603 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2604 		stat(s, FREE_ADD_PARTIAL);
2605 	}
2606 	spin_unlock_irqrestore(&n->list_lock, flags);
2607 	return;
2608 
2609 slab_empty:
2610 	if (prior) {
2611 		/*
2612 		 * Slab on the partial list.
2613 		 */
2614 		remove_partial(n, page);
2615 		stat(s, FREE_REMOVE_PARTIAL);
2616 	} else {
2617 		/* Slab must be on the full list */
2618 		remove_full(s, n, page);
2619 	}
2620 
2621 	spin_unlock_irqrestore(&n->list_lock, flags);
2622 	stat(s, FREE_SLAB);
2623 	discard_slab(s, page);
2624 }
2625 
2626 /*
2627  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2628  * can perform fastpath freeing without additional function calls.
2629  *
2630  * The fastpath is only possible if we are freeing to the current cpu slab
2631  * of this processor. This typically the case if we have just allocated
2632  * the item before.
2633  *
2634  * If fastpath is not possible then fall back to __slab_free where we deal
2635  * with all sorts of special processing.
2636  */
2637 static __always_inline void slab_free(struct kmem_cache *s,
2638 			struct page *page, void *x, unsigned long addr)
2639 {
2640 	void **object = (void *)x;
2641 	struct kmem_cache_cpu *c;
2642 	unsigned long tid;
2643 
2644 	slab_free_hook(s, x);
2645 
2646 redo:
2647 	/*
2648 	 * Determine the currently cpus per cpu slab.
2649 	 * The cpu may change afterward. However that does not matter since
2650 	 * data is retrieved via this pointer. If we are on the same cpu
2651 	 * during the cmpxchg then the free will succedd.
2652 	 */
2653 	preempt_disable();
2654 	c = this_cpu_ptr(s->cpu_slab);
2655 
2656 	tid = c->tid;
2657 	preempt_enable();
2658 
2659 	if (likely(page == c->page)) {
2660 		set_freepointer(s, object, c->freelist);
2661 
2662 		if (unlikely(!this_cpu_cmpxchg_double(
2663 				s->cpu_slab->freelist, s->cpu_slab->tid,
2664 				c->freelist, tid,
2665 				object, next_tid(tid)))) {
2666 
2667 			note_cmpxchg_failure("slab_free", s, tid);
2668 			goto redo;
2669 		}
2670 		stat(s, FREE_FASTPATH);
2671 	} else
2672 		__slab_free(s, page, x, addr);
2673 
2674 }
2675 
2676 void kmem_cache_free(struct kmem_cache *s, void *x)
2677 {
2678 	s = cache_from_obj(s, x);
2679 	if (!s)
2680 		return;
2681 	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2682 	trace_kmem_cache_free(_RET_IP_, x);
2683 }
2684 EXPORT_SYMBOL(kmem_cache_free);
2685 
2686 /*
2687  * Object placement in a slab is made very easy because we always start at
2688  * offset 0. If we tune the size of the object to the alignment then we can
2689  * get the required alignment by putting one properly sized object after
2690  * another.
2691  *
2692  * Notice that the allocation order determines the sizes of the per cpu
2693  * caches. Each processor has always one slab available for allocations.
2694  * Increasing the allocation order reduces the number of times that slabs
2695  * must be moved on and off the partial lists and is therefore a factor in
2696  * locking overhead.
2697  */
2698 
2699 /*
2700  * Mininum / Maximum order of slab pages. This influences locking overhead
2701  * and slab fragmentation. A higher order reduces the number of partial slabs
2702  * and increases the number of allocations possible without having to
2703  * take the list_lock.
2704  */
2705 static int slub_min_order;
2706 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2707 static int slub_min_objects;
2708 
2709 /*
2710  * Merge control. If this is set then no merging of slab caches will occur.
2711  * (Could be removed. This was introduced to pacify the merge skeptics.)
2712  */
2713 static int slub_nomerge;
2714 
2715 /*
2716  * Calculate the order of allocation given an slab object size.
2717  *
2718  * The order of allocation has significant impact on performance and other
2719  * system components. Generally order 0 allocations should be preferred since
2720  * order 0 does not cause fragmentation in the page allocator. Larger objects
2721  * be problematic to put into order 0 slabs because there may be too much
2722  * unused space left. We go to a higher order if more than 1/16th of the slab
2723  * would be wasted.
2724  *
2725  * In order to reach satisfactory performance we must ensure that a minimum
2726  * number of objects is in one slab. Otherwise we may generate too much
2727  * activity on the partial lists which requires taking the list_lock. This is
2728  * less a concern for large slabs though which are rarely used.
2729  *
2730  * slub_max_order specifies the order where we begin to stop considering the
2731  * number of objects in a slab as critical. If we reach slub_max_order then
2732  * we try to keep the page order as low as possible. So we accept more waste
2733  * of space in favor of a small page order.
2734  *
2735  * Higher order allocations also allow the placement of more objects in a
2736  * slab and thereby reduce object handling overhead. If the user has
2737  * requested a higher mininum order then we start with that one instead of
2738  * the smallest order which will fit the object.
2739  */
2740 static inline int slab_order(int size, int min_objects,
2741 				int max_order, int fract_leftover, int reserved)
2742 {
2743 	int order;
2744 	int rem;
2745 	int min_order = slub_min_order;
2746 
2747 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2748 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2749 
2750 	for (order = max(min_order,
2751 				fls(min_objects * size - 1) - PAGE_SHIFT);
2752 			order <= max_order; order++) {
2753 
2754 		unsigned long slab_size = PAGE_SIZE << order;
2755 
2756 		if (slab_size < min_objects * size + reserved)
2757 			continue;
2758 
2759 		rem = (slab_size - reserved) % size;
2760 
2761 		if (rem <= slab_size / fract_leftover)
2762 			break;
2763 
2764 	}
2765 
2766 	return order;
2767 }
2768 
2769 static inline int calculate_order(int size, int reserved)
2770 {
2771 	int order;
2772 	int min_objects;
2773 	int fraction;
2774 	int max_objects;
2775 
2776 	/*
2777 	 * Attempt to find best configuration for a slab. This
2778 	 * works by first attempting to generate a layout with
2779 	 * the best configuration and backing off gradually.
2780 	 *
2781 	 * First we reduce the acceptable waste in a slab. Then
2782 	 * we reduce the minimum objects required in a slab.
2783 	 */
2784 	min_objects = slub_min_objects;
2785 	if (!min_objects)
2786 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2787 	max_objects = order_objects(slub_max_order, size, reserved);
2788 	min_objects = min(min_objects, max_objects);
2789 
2790 	while (min_objects > 1) {
2791 		fraction = 16;
2792 		while (fraction >= 4) {
2793 			order = slab_order(size, min_objects,
2794 					slub_max_order, fraction, reserved);
2795 			if (order <= slub_max_order)
2796 				return order;
2797 			fraction /= 2;
2798 		}
2799 		min_objects--;
2800 	}
2801 
2802 	/*
2803 	 * We were unable to place multiple objects in a slab. Now
2804 	 * lets see if we can place a single object there.
2805 	 */
2806 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2807 	if (order <= slub_max_order)
2808 		return order;
2809 
2810 	/*
2811 	 * Doh this slab cannot be placed using slub_max_order.
2812 	 */
2813 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2814 	if (order < MAX_ORDER)
2815 		return order;
2816 	return -ENOSYS;
2817 }
2818 
2819 static void
2820 init_kmem_cache_node(struct kmem_cache_node *n)
2821 {
2822 	n->nr_partial = 0;
2823 	spin_lock_init(&n->list_lock);
2824 	INIT_LIST_HEAD(&n->partial);
2825 #ifdef CONFIG_SLUB_DEBUG
2826 	atomic_long_set(&n->nr_slabs, 0);
2827 	atomic_long_set(&n->total_objects, 0);
2828 	INIT_LIST_HEAD(&n->full);
2829 #endif
2830 }
2831 
2832 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2833 {
2834 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2835 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2836 
2837 	/*
2838 	 * Must align to double word boundary for the double cmpxchg
2839 	 * instructions to work; see __pcpu_double_call_return_bool().
2840 	 */
2841 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2842 				     2 * sizeof(void *));
2843 
2844 	if (!s->cpu_slab)
2845 		return 0;
2846 
2847 	init_kmem_cache_cpus(s);
2848 
2849 	return 1;
2850 }
2851 
2852 static struct kmem_cache *kmem_cache_node;
2853 
2854 /*
2855  * No kmalloc_node yet so do it by hand. We know that this is the first
2856  * slab on the node for this slabcache. There are no concurrent accesses
2857  * possible.
2858  *
2859  * Note that this function only works on the kmem_cache_node
2860  * when allocating for the kmem_cache_node. This is used for bootstrapping
2861  * memory on a fresh node that has no slab structures yet.
2862  */
2863 static void early_kmem_cache_node_alloc(int node)
2864 {
2865 	struct page *page;
2866 	struct kmem_cache_node *n;
2867 
2868 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2869 
2870 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2871 
2872 	BUG_ON(!page);
2873 	if (page_to_nid(page) != node) {
2874 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2875 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2876 	}
2877 
2878 	n = page->freelist;
2879 	BUG_ON(!n);
2880 	page->freelist = get_freepointer(kmem_cache_node, n);
2881 	page->inuse = 1;
2882 	page->frozen = 0;
2883 	kmem_cache_node->node[node] = n;
2884 #ifdef CONFIG_SLUB_DEBUG
2885 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2886 	init_tracking(kmem_cache_node, n);
2887 #endif
2888 	init_kmem_cache_node(n);
2889 	inc_slabs_node(kmem_cache_node, node, page->objects);
2890 
2891 	/*
2892 	 * No locks need to be taken here as it has just been
2893 	 * initialized and there is no concurrent access.
2894 	 */
2895 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
2896 }
2897 
2898 static void free_kmem_cache_nodes(struct kmem_cache *s)
2899 {
2900 	int node;
2901 	struct kmem_cache_node *n;
2902 
2903 	for_each_kmem_cache_node(s, node, n) {
2904 		kmem_cache_free(kmem_cache_node, n);
2905 		s->node[node] = NULL;
2906 	}
2907 }
2908 
2909 static int init_kmem_cache_nodes(struct kmem_cache *s)
2910 {
2911 	int node;
2912 
2913 	for_each_node_state(node, N_NORMAL_MEMORY) {
2914 		struct kmem_cache_node *n;
2915 
2916 		if (slab_state == DOWN) {
2917 			early_kmem_cache_node_alloc(node);
2918 			continue;
2919 		}
2920 		n = kmem_cache_alloc_node(kmem_cache_node,
2921 						GFP_KERNEL, node);
2922 
2923 		if (!n) {
2924 			free_kmem_cache_nodes(s);
2925 			return 0;
2926 		}
2927 
2928 		s->node[node] = n;
2929 		init_kmem_cache_node(n);
2930 	}
2931 	return 1;
2932 }
2933 
2934 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2935 {
2936 	if (min < MIN_PARTIAL)
2937 		min = MIN_PARTIAL;
2938 	else if (min > MAX_PARTIAL)
2939 		min = MAX_PARTIAL;
2940 	s->min_partial = min;
2941 }
2942 
2943 /*
2944  * calculate_sizes() determines the order and the distribution of data within
2945  * a slab object.
2946  */
2947 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2948 {
2949 	unsigned long flags = s->flags;
2950 	unsigned long size = s->object_size;
2951 	int order;
2952 
2953 	/*
2954 	 * Round up object size to the next word boundary. We can only
2955 	 * place the free pointer at word boundaries and this determines
2956 	 * the possible location of the free pointer.
2957 	 */
2958 	size = ALIGN(size, sizeof(void *));
2959 
2960 #ifdef CONFIG_SLUB_DEBUG
2961 	/*
2962 	 * Determine if we can poison the object itself. If the user of
2963 	 * the slab may touch the object after free or before allocation
2964 	 * then we should never poison the object itself.
2965 	 */
2966 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2967 			!s->ctor)
2968 		s->flags |= __OBJECT_POISON;
2969 	else
2970 		s->flags &= ~__OBJECT_POISON;
2971 
2972 
2973 	/*
2974 	 * If we are Redzoning then check if there is some space between the
2975 	 * end of the object and the free pointer. If not then add an
2976 	 * additional word to have some bytes to store Redzone information.
2977 	 */
2978 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2979 		size += sizeof(void *);
2980 #endif
2981 
2982 	/*
2983 	 * With that we have determined the number of bytes in actual use
2984 	 * by the object. This is the potential offset to the free pointer.
2985 	 */
2986 	s->inuse = size;
2987 
2988 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2989 		s->ctor)) {
2990 		/*
2991 		 * Relocate free pointer after the object if it is not
2992 		 * permitted to overwrite the first word of the object on
2993 		 * kmem_cache_free.
2994 		 *
2995 		 * This is the case if we do RCU, have a constructor or
2996 		 * destructor or are poisoning the objects.
2997 		 */
2998 		s->offset = size;
2999 		size += sizeof(void *);
3000 	}
3001 
3002 #ifdef CONFIG_SLUB_DEBUG
3003 	if (flags & SLAB_STORE_USER)
3004 		/*
3005 		 * Need to store information about allocs and frees after
3006 		 * the object.
3007 		 */
3008 		size += 2 * sizeof(struct track);
3009 
3010 	if (flags & SLAB_RED_ZONE)
3011 		/*
3012 		 * Add some empty padding so that we can catch
3013 		 * overwrites from earlier objects rather than let
3014 		 * tracking information or the free pointer be
3015 		 * corrupted if a user writes before the start
3016 		 * of the object.
3017 		 */
3018 		size += sizeof(void *);
3019 #endif
3020 
3021 	/*
3022 	 * SLUB stores one object immediately after another beginning from
3023 	 * offset 0. In order to align the objects we have to simply size
3024 	 * each object to conform to the alignment.
3025 	 */
3026 	size = ALIGN(size, s->align);
3027 	s->size = size;
3028 	if (forced_order >= 0)
3029 		order = forced_order;
3030 	else
3031 		order = calculate_order(size, s->reserved);
3032 
3033 	if (order < 0)
3034 		return 0;
3035 
3036 	s->allocflags = 0;
3037 	if (order)
3038 		s->allocflags |= __GFP_COMP;
3039 
3040 	if (s->flags & SLAB_CACHE_DMA)
3041 		s->allocflags |= GFP_DMA;
3042 
3043 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3044 		s->allocflags |= __GFP_RECLAIMABLE;
3045 
3046 	/*
3047 	 * Determine the number of objects per slab
3048 	 */
3049 	s->oo = oo_make(order, size, s->reserved);
3050 	s->min = oo_make(get_order(size), size, s->reserved);
3051 	if (oo_objects(s->oo) > oo_objects(s->max))
3052 		s->max = s->oo;
3053 
3054 	return !!oo_objects(s->oo);
3055 }
3056 
3057 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3058 {
3059 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3060 	s->reserved = 0;
3061 
3062 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3063 		s->reserved = sizeof(struct rcu_head);
3064 
3065 	if (!calculate_sizes(s, -1))
3066 		goto error;
3067 	if (disable_higher_order_debug) {
3068 		/*
3069 		 * Disable debugging flags that store metadata if the min slab
3070 		 * order increased.
3071 		 */
3072 		if (get_order(s->size) > get_order(s->object_size)) {
3073 			s->flags &= ~DEBUG_METADATA_FLAGS;
3074 			s->offset = 0;
3075 			if (!calculate_sizes(s, -1))
3076 				goto error;
3077 		}
3078 	}
3079 
3080 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3081     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3082 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3083 		/* Enable fast mode */
3084 		s->flags |= __CMPXCHG_DOUBLE;
3085 #endif
3086 
3087 	/*
3088 	 * The larger the object size is, the more pages we want on the partial
3089 	 * list to avoid pounding the page allocator excessively.
3090 	 */
3091 	set_min_partial(s, ilog2(s->size) / 2);
3092 
3093 	/*
3094 	 * cpu_partial determined the maximum number of objects kept in the
3095 	 * per cpu partial lists of a processor.
3096 	 *
3097 	 * Per cpu partial lists mainly contain slabs that just have one
3098 	 * object freed. If they are used for allocation then they can be
3099 	 * filled up again with minimal effort. The slab will never hit the
3100 	 * per node partial lists and therefore no locking will be required.
3101 	 *
3102 	 * This setting also determines
3103 	 *
3104 	 * A) The number of objects from per cpu partial slabs dumped to the
3105 	 *    per node list when we reach the limit.
3106 	 * B) The number of objects in cpu partial slabs to extract from the
3107 	 *    per node list when we run out of per cpu objects. We only fetch
3108 	 *    50% to keep some capacity around for frees.
3109 	 */
3110 	if (!kmem_cache_has_cpu_partial(s))
3111 		s->cpu_partial = 0;
3112 	else if (s->size >= PAGE_SIZE)
3113 		s->cpu_partial = 2;
3114 	else if (s->size >= 1024)
3115 		s->cpu_partial = 6;
3116 	else if (s->size >= 256)
3117 		s->cpu_partial = 13;
3118 	else
3119 		s->cpu_partial = 30;
3120 
3121 #ifdef CONFIG_NUMA
3122 	s->remote_node_defrag_ratio = 1000;
3123 #endif
3124 	if (!init_kmem_cache_nodes(s))
3125 		goto error;
3126 
3127 	if (alloc_kmem_cache_cpus(s))
3128 		return 0;
3129 
3130 	free_kmem_cache_nodes(s);
3131 error:
3132 	if (flags & SLAB_PANIC)
3133 		panic("Cannot create slab %s size=%lu realsize=%u "
3134 			"order=%u offset=%u flags=%lx\n",
3135 			s->name, (unsigned long)s->size, s->size,
3136 			oo_order(s->oo), s->offset, flags);
3137 	return -EINVAL;
3138 }
3139 
3140 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3141 							const char *text)
3142 {
3143 #ifdef CONFIG_SLUB_DEBUG
3144 	void *addr = page_address(page);
3145 	void *p;
3146 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3147 				     sizeof(long), GFP_ATOMIC);
3148 	if (!map)
3149 		return;
3150 	slab_err(s, page, text, s->name);
3151 	slab_lock(page);
3152 
3153 	get_map(s, page, map);
3154 	for_each_object(p, s, addr, page->objects) {
3155 
3156 		if (!test_bit(slab_index(p, s, addr), map)) {
3157 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3158 			print_tracking(s, p);
3159 		}
3160 	}
3161 	slab_unlock(page);
3162 	kfree(map);
3163 #endif
3164 }
3165 
3166 /*
3167  * Attempt to free all partial slabs on a node.
3168  * This is called from kmem_cache_close(). We must be the last thread
3169  * using the cache and therefore we do not need to lock anymore.
3170  */
3171 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3172 {
3173 	struct page *page, *h;
3174 
3175 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3176 		if (!page->inuse) {
3177 			__remove_partial(n, page);
3178 			discard_slab(s, page);
3179 		} else {
3180 			list_slab_objects(s, page,
3181 			"Objects remaining in %s on kmem_cache_close()");
3182 		}
3183 	}
3184 }
3185 
3186 /*
3187  * Release all resources used by a slab cache.
3188  */
3189 static inline int kmem_cache_close(struct kmem_cache *s)
3190 {
3191 	int node;
3192 	struct kmem_cache_node *n;
3193 
3194 	flush_all(s);
3195 	/* Attempt to free all objects */
3196 	for_each_kmem_cache_node(s, node, n) {
3197 		free_partial(s, n);
3198 		if (n->nr_partial || slabs_node(s, node))
3199 			return 1;
3200 	}
3201 	free_percpu(s->cpu_slab);
3202 	free_kmem_cache_nodes(s);
3203 	return 0;
3204 }
3205 
3206 int __kmem_cache_shutdown(struct kmem_cache *s)
3207 {
3208 	return kmem_cache_close(s);
3209 }
3210 
3211 /********************************************************************
3212  *		Kmalloc subsystem
3213  *******************************************************************/
3214 
3215 static int __init setup_slub_min_order(char *str)
3216 {
3217 	get_option(&str, &slub_min_order);
3218 
3219 	return 1;
3220 }
3221 
3222 __setup("slub_min_order=", setup_slub_min_order);
3223 
3224 static int __init setup_slub_max_order(char *str)
3225 {
3226 	get_option(&str, &slub_max_order);
3227 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3228 
3229 	return 1;
3230 }
3231 
3232 __setup("slub_max_order=", setup_slub_max_order);
3233 
3234 static int __init setup_slub_min_objects(char *str)
3235 {
3236 	get_option(&str, &slub_min_objects);
3237 
3238 	return 1;
3239 }
3240 
3241 __setup("slub_min_objects=", setup_slub_min_objects);
3242 
3243 static int __init setup_slub_nomerge(char *str)
3244 {
3245 	slub_nomerge = 1;
3246 	return 1;
3247 }
3248 
3249 __setup("slub_nomerge", setup_slub_nomerge);
3250 
3251 void *__kmalloc(size_t size, gfp_t flags)
3252 {
3253 	struct kmem_cache *s;
3254 	void *ret;
3255 
3256 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3257 		return kmalloc_large(size, flags);
3258 
3259 	s = kmalloc_slab(size, flags);
3260 
3261 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3262 		return s;
3263 
3264 	ret = slab_alloc(s, flags, _RET_IP_);
3265 
3266 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3267 
3268 	return ret;
3269 }
3270 EXPORT_SYMBOL(__kmalloc);
3271 
3272 #ifdef CONFIG_NUMA
3273 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3274 {
3275 	struct page *page;
3276 	void *ptr = NULL;
3277 
3278 	flags |= __GFP_COMP | __GFP_NOTRACK;
3279 	page = alloc_kmem_pages_node(node, flags, get_order(size));
3280 	if (page)
3281 		ptr = page_address(page);
3282 
3283 	kmalloc_large_node_hook(ptr, size, flags);
3284 	return ptr;
3285 }
3286 
3287 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3288 {
3289 	struct kmem_cache *s;
3290 	void *ret;
3291 
3292 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3293 		ret = kmalloc_large_node(size, flags, node);
3294 
3295 		trace_kmalloc_node(_RET_IP_, ret,
3296 				   size, PAGE_SIZE << get_order(size),
3297 				   flags, node);
3298 
3299 		return ret;
3300 	}
3301 
3302 	s = kmalloc_slab(size, flags);
3303 
3304 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3305 		return s;
3306 
3307 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3308 
3309 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3310 
3311 	return ret;
3312 }
3313 EXPORT_SYMBOL(__kmalloc_node);
3314 #endif
3315 
3316 size_t ksize(const void *object)
3317 {
3318 	struct page *page;
3319 
3320 	if (unlikely(object == ZERO_SIZE_PTR))
3321 		return 0;
3322 
3323 	page = virt_to_head_page(object);
3324 
3325 	if (unlikely(!PageSlab(page))) {
3326 		WARN_ON(!PageCompound(page));
3327 		return PAGE_SIZE << compound_order(page);
3328 	}
3329 
3330 	return slab_ksize(page->slab_cache);
3331 }
3332 EXPORT_SYMBOL(ksize);
3333 
3334 void kfree(const void *x)
3335 {
3336 	struct page *page;
3337 	void *object = (void *)x;
3338 
3339 	trace_kfree(_RET_IP_, x);
3340 
3341 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3342 		return;
3343 
3344 	page = virt_to_head_page(x);
3345 	if (unlikely(!PageSlab(page))) {
3346 		BUG_ON(!PageCompound(page));
3347 		kfree_hook(x);
3348 		__free_kmem_pages(page, compound_order(page));
3349 		return;
3350 	}
3351 	slab_free(page->slab_cache, page, object, _RET_IP_);
3352 }
3353 EXPORT_SYMBOL(kfree);
3354 
3355 /*
3356  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3357  * the remaining slabs by the number of items in use. The slabs with the
3358  * most items in use come first. New allocations will then fill those up
3359  * and thus they can be removed from the partial lists.
3360  *
3361  * The slabs with the least items are placed last. This results in them
3362  * being allocated from last increasing the chance that the last objects
3363  * are freed in them.
3364  */
3365 int __kmem_cache_shrink(struct kmem_cache *s)
3366 {
3367 	int node;
3368 	int i;
3369 	struct kmem_cache_node *n;
3370 	struct page *page;
3371 	struct page *t;
3372 	int objects = oo_objects(s->max);
3373 	struct list_head *slabs_by_inuse =
3374 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3375 	unsigned long flags;
3376 
3377 	if (!slabs_by_inuse)
3378 		return -ENOMEM;
3379 
3380 	flush_all(s);
3381 	for_each_kmem_cache_node(s, node, n) {
3382 		if (!n->nr_partial)
3383 			continue;
3384 
3385 		for (i = 0; i < objects; i++)
3386 			INIT_LIST_HEAD(slabs_by_inuse + i);
3387 
3388 		spin_lock_irqsave(&n->list_lock, flags);
3389 
3390 		/*
3391 		 * Build lists indexed by the items in use in each slab.
3392 		 *
3393 		 * Note that concurrent frees may occur while we hold the
3394 		 * list_lock. page->inuse here is the upper limit.
3395 		 */
3396 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3397 			list_move(&page->lru, slabs_by_inuse + page->inuse);
3398 			if (!page->inuse)
3399 				n->nr_partial--;
3400 		}
3401 
3402 		/*
3403 		 * Rebuild the partial list with the slabs filled up most
3404 		 * first and the least used slabs at the end.
3405 		 */
3406 		for (i = objects - 1; i > 0; i--)
3407 			list_splice(slabs_by_inuse + i, n->partial.prev);
3408 
3409 		spin_unlock_irqrestore(&n->list_lock, flags);
3410 
3411 		/* Release empty slabs */
3412 		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3413 			discard_slab(s, page);
3414 	}
3415 
3416 	kfree(slabs_by_inuse);
3417 	return 0;
3418 }
3419 
3420 static int slab_mem_going_offline_callback(void *arg)
3421 {
3422 	struct kmem_cache *s;
3423 
3424 	mutex_lock(&slab_mutex);
3425 	list_for_each_entry(s, &slab_caches, list)
3426 		__kmem_cache_shrink(s);
3427 	mutex_unlock(&slab_mutex);
3428 
3429 	return 0;
3430 }
3431 
3432 static void slab_mem_offline_callback(void *arg)
3433 {
3434 	struct kmem_cache_node *n;
3435 	struct kmem_cache *s;
3436 	struct memory_notify *marg = arg;
3437 	int offline_node;
3438 
3439 	offline_node = marg->status_change_nid_normal;
3440 
3441 	/*
3442 	 * If the node still has available memory. we need kmem_cache_node
3443 	 * for it yet.
3444 	 */
3445 	if (offline_node < 0)
3446 		return;
3447 
3448 	mutex_lock(&slab_mutex);
3449 	list_for_each_entry(s, &slab_caches, list) {
3450 		n = get_node(s, offline_node);
3451 		if (n) {
3452 			/*
3453 			 * if n->nr_slabs > 0, slabs still exist on the node
3454 			 * that is going down. We were unable to free them,
3455 			 * and offline_pages() function shouldn't call this
3456 			 * callback. So, we must fail.
3457 			 */
3458 			BUG_ON(slabs_node(s, offline_node));
3459 
3460 			s->node[offline_node] = NULL;
3461 			kmem_cache_free(kmem_cache_node, n);
3462 		}
3463 	}
3464 	mutex_unlock(&slab_mutex);
3465 }
3466 
3467 static int slab_mem_going_online_callback(void *arg)
3468 {
3469 	struct kmem_cache_node *n;
3470 	struct kmem_cache *s;
3471 	struct memory_notify *marg = arg;
3472 	int nid = marg->status_change_nid_normal;
3473 	int ret = 0;
3474 
3475 	/*
3476 	 * If the node's memory is already available, then kmem_cache_node is
3477 	 * already created. Nothing to do.
3478 	 */
3479 	if (nid < 0)
3480 		return 0;
3481 
3482 	/*
3483 	 * We are bringing a node online. No memory is available yet. We must
3484 	 * allocate a kmem_cache_node structure in order to bring the node
3485 	 * online.
3486 	 */
3487 	mutex_lock(&slab_mutex);
3488 	list_for_each_entry(s, &slab_caches, list) {
3489 		/*
3490 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3491 		 *      since memory is not yet available from the node that
3492 		 *      is brought up.
3493 		 */
3494 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3495 		if (!n) {
3496 			ret = -ENOMEM;
3497 			goto out;
3498 		}
3499 		init_kmem_cache_node(n);
3500 		s->node[nid] = n;
3501 	}
3502 out:
3503 	mutex_unlock(&slab_mutex);
3504 	return ret;
3505 }
3506 
3507 static int slab_memory_callback(struct notifier_block *self,
3508 				unsigned long action, void *arg)
3509 {
3510 	int ret = 0;
3511 
3512 	switch (action) {
3513 	case MEM_GOING_ONLINE:
3514 		ret = slab_mem_going_online_callback(arg);
3515 		break;
3516 	case MEM_GOING_OFFLINE:
3517 		ret = slab_mem_going_offline_callback(arg);
3518 		break;
3519 	case MEM_OFFLINE:
3520 	case MEM_CANCEL_ONLINE:
3521 		slab_mem_offline_callback(arg);
3522 		break;
3523 	case MEM_ONLINE:
3524 	case MEM_CANCEL_OFFLINE:
3525 		break;
3526 	}
3527 	if (ret)
3528 		ret = notifier_from_errno(ret);
3529 	else
3530 		ret = NOTIFY_OK;
3531 	return ret;
3532 }
3533 
3534 static struct notifier_block slab_memory_callback_nb = {
3535 	.notifier_call = slab_memory_callback,
3536 	.priority = SLAB_CALLBACK_PRI,
3537 };
3538 
3539 /********************************************************************
3540  *			Basic setup of slabs
3541  *******************************************************************/
3542 
3543 /*
3544  * Used for early kmem_cache structures that were allocated using
3545  * the page allocator. Allocate them properly then fix up the pointers
3546  * that may be pointing to the wrong kmem_cache structure.
3547  */
3548 
3549 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3550 {
3551 	int node;
3552 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3553 	struct kmem_cache_node *n;
3554 
3555 	memcpy(s, static_cache, kmem_cache->object_size);
3556 
3557 	/*
3558 	 * This runs very early, and only the boot processor is supposed to be
3559 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3560 	 * IPIs around.
3561 	 */
3562 	__flush_cpu_slab(s, smp_processor_id());
3563 	for_each_kmem_cache_node(s, node, n) {
3564 		struct page *p;
3565 
3566 		list_for_each_entry(p, &n->partial, lru)
3567 			p->slab_cache = s;
3568 
3569 #ifdef CONFIG_SLUB_DEBUG
3570 		list_for_each_entry(p, &n->full, lru)
3571 			p->slab_cache = s;
3572 #endif
3573 	}
3574 	list_add(&s->list, &slab_caches);
3575 	return s;
3576 }
3577 
3578 void __init kmem_cache_init(void)
3579 {
3580 	static __initdata struct kmem_cache boot_kmem_cache,
3581 		boot_kmem_cache_node;
3582 
3583 	if (debug_guardpage_minorder())
3584 		slub_max_order = 0;
3585 
3586 	kmem_cache_node = &boot_kmem_cache_node;
3587 	kmem_cache = &boot_kmem_cache;
3588 
3589 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3590 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3591 
3592 	register_hotmemory_notifier(&slab_memory_callback_nb);
3593 
3594 	/* Able to allocate the per node structures */
3595 	slab_state = PARTIAL;
3596 
3597 	create_boot_cache(kmem_cache, "kmem_cache",
3598 			offsetof(struct kmem_cache, node) +
3599 				nr_node_ids * sizeof(struct kmem_cache_node *),
3600 		       SLAB_HWCACHE_ALIGN);
3601 
3602 	kmem_cache = bootstrap(&boot_kmem_cache);
3603 
3604 	/*
3605 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3606 	 * kmem_cache_node is separately allocated so no need to
3607 	 * update any list pointers.
3608 	 */
3609 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3610 
3611 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3612 	create_kmalloc_caches(0);
3613 
3614 #ifdef CONFIG_SMP
3615 	register_cpu_notifier(&slab_notifier);
3616 #endif
3617 
3618 	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3619 		cache_line_size(),
3620 		slub_min_order, slub_max_order, slub_min_objects,
3621 		nr_cpu_ids, nr_node_ids);
3622 }
3623 
3624 void __init kmem_cache_init_late(void)
3625 {
3626 }
3627 
3628 /*
3629  * Find a mergeable slab cache
3630  */
3631 static int slab_unmergeable(struct kmem_cache *s)
3632 {
3633 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3634 		return 1;
3635 
3636 	if (!is_root_cache(s))
3637 		return 1;
3638 
3639 	if (s->ctor)
3640 		return 1;
3641 
3642 	/*
3643 	 * We may have set a slab to be unmergeable during bootstrap.
3644 	 */
3645 	if (s->refcount < 0)
3646 		return 1;
3647 
3648 	return 0;
3649 }
3650 
3651 static struct kmem_cache *find_mergeable(size_t size, size_t align,
3652 		unsigned long flags, const char *name, void (*ctor)(void *))
3653 {
3654 	struct kmem_cache *s;
3655 
3656 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3657 		return NULL;
3658 
3659 	if (ctor)
3660 		return NULL;
3661 
3662 	size = ALIGN(size, sizeof(void *));
3663 	align = calculate_alignment(flags, align, size);
3664 	size = ALIGN(size, align);
3665 	flags = kmem_cache_flags(size, flags, name, NULL);
3666 
3667 	list_for_each_entry(s, &slab_caches, list) {
3668 		if (slab_unmergeable(s))
3669 			continue;
3670 
3671 		if (size > s->size)
3672 			continue;
3673 
3674 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3675 			continue;
3676 		/*
3677 		 * Check if alignment is compatible.
3678 		 * Courtesy of Adrian Drzewiecki
3679 		 */
3680 		if ((s->size & ~(align - 1)) != s->size)
3681 			continue;
3682 
3683 		if (s->size - size >= sizeof(void *))
3684 			continue;
3685 
3686 		return s;
3687 	}
3688 	return NULL;
3689 }
3690 
3691 struct kmem_cache *
3692 __kmem_cache_alias(const char *name, size_t size, size_t align,
3693 		   unsigned long flags, void (*ctor)(void *))
3694 {
3695 	struct kmem_cache *s;
3696 
3697 	s = find_mergeable(size, align, flags, name, ctor);
3698 	if (s) {
3699 		int i;
3700 		struct kmem_cache *c;
3701 
3702 		s->refcount++;
3703 
3704 		/*
3705 		 * Adjust the object sizes so that we clear
3706 		 * the complete object on kzalloc.
3707 		 */
3708 		s->object_size = max(s->object_size, (int)size);
3709 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3710 
3711 		for_each_memcg_cache_index(i) {
3712 			c = cache_from_memcg_idx(s, i);
3713 			if (!c)
3714 				continue;
3715 			c->object_size = s->object_size;
3716 			c->inuse = max_t(int, c->inuse,
3717 					 ALIGN(size, sizeof(void *)));
3718 		}
3719 
3720 		if (sysfs_slab_alias(s, name)) {
3721 			s->refcount--;
3722 			s = NULL;
3723 		}
3724 	}
3725 
3726 	return s;
3727 }
3728 
3729 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3730 {
3731 	int err;
3732 
3733 	err = kmem_cache_open(s, flags);
3734 	if (err)
3735 		return err;
3736 
3737 	/* Mutex is not taken during early boot */
3738 	if (slab_state <= UP)
3739 		return 0;
3740 
3741 	memcg_propagate_slab_attrs(s);
3742 	err = sysfs_slab_add(s);
3743 	if (err)
3744 		kmem_cache_close(s);
3745 
3746 	return err;
3747 }
3748 
3749 #ifdef CONFIG_SMP
3750 /*
3751  * Use the cpu notifier to insure that the cpu slabs are flushed when
3752  * necessary.
3753  */
3754 static int slab_cpuup_callback(struct notifier_block *nfb,
3755 		unsigned long action, void *hcpu)
3756 {
3757 	long cpu = (long)hcpu;
3758 	struct kmem_cache *s;
3759 	unsigned long flags;
3760 
3761 	switch (action) {
3762 	case CPU_UP_CANCELED:
3763 	case CPU_UP_CANCELED_FROZEN:
3764 	case CPU_DEAD:
3765 	case CPU_DEAD_FROZEN:
3766 		mutex_lock(&slab_mutex);
3767 		list_for_each_entry(s, &slab_caches, list) {
3768 			local_irq_save(flags);
3769 			__flush_cpu_slab(s, cpu);
3770 			local_irq_restore(flags);
3771 		}
3772 		mutex_unlock(&slab_mutex);
3773 		break;
3774 	default:
3775 		break;
3776 	}
3777 	return NOTIFY_OK;
3778 }
3779 
3780 static struct notifier_block slab_notifier = {
3781 	.notifier_call = slab_cpuup_callback
3782 };
3783 
3784 #endif
3785 
3786 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3787 {
3788 	struct kmem_cache *s;
3789 	void *ret;
3790 
3791 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3792 		return kmalloc_large(size, gfpflags);
3793 
3794 	s = kmalloc_slab(size, gfpflags);
3795 
3796 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3797 		return s;
3798 
3799 	ret = slab_alloc(s, gfpflags, caller);
3800 
3801 	/* Honor the call site pointer we received. */
3802 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3803 
3804 	return ret;
3805 }
3806 
3807 #ifdef CONFIG_NUMA
3808 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3809 					int node, unsigned long caller)
3810 {
3811 	struct kmem_cache *s;
3812 	void *ret;
3813 
3814 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3815 		ret = kmalloc_large_node(size, gfpflags, node);
3816 
3817 		trace_kmalloc_node(caller, ret,
3818 				   size, PAGE_SIZE << get_order(size),
3819 				   gfpflags, node);
3820 
3821 		return ret;
3822 	}
3823 
3824 	s = kmalloc_slab(size, gfpflags);
3825 
3826 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3827 		return s;
3828 
3829 	ret = slab_alloc_node(s, gfpflags, node, caller);
3830 
3831 	/* Honor the call site pointer we received. */
3832 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3833 
3834 	return ret;
3835 }
3836 #endif
3837 
3838 #ifdef CONFIG_SYSFS
3839 static int count_inuse(struct page *page)
3840 {
3841 	return page->inuse;
3842 }
3843 
3844 static int count_total(struct page *page)
3845 {
3846 	return page->objects;
3847 }
3848 #endif
3849 
3850 #ifdef CONFIG_SLUB_DEBUG
3851 static int validate_slab(struct kmem_cache *s, struct page *page,
3852 						unsigned long *map)
3853 {
3854 	void *p;
3855 	void *addr = page_address(page);
3856 
3857 	if (!check_slab(s, page) ||
3858 			!on_freelist(s, page, NULL))
3859 		return 0;
3860 
3861 	/* Now we know that a valid freelist exists */
3862 	bitmap_zero(map, page->objects);
3863 
3864 	get_map(s, page, map);
3865 	for_each_object(p, s, addr, page->objects) {
3866 		if (test_bit(slab_index(p, s, addr), map))
3867 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3868 				return 0;
3869 	}
3870 
3871 	for_each_object(p, s, addr, page->objects)
3872 		if (!test_bit(slab_index(p, s, addr), map))
3873 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3874 				return 0;
3875 	return 1;
3876 }
3877 
3878 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3879 						unsigned long *map)
3880 {
3881 	slab_lock(page);
3882 	validate_slab(s, page, map);
3883 	slab_unlock(page);
3884 }
3885 
3886 static int validate_slab_node(struct kmem_cache *s,
3887 		struct kmem_cache_node *n, unsigned long *map)
3888 {
3889 	unsigned long count = 0;
3890 	struct page *page;
3891 	unsigned long flags;
3892 
3893 	spin_lock_irqsave(&n->list_lock, flags);
3894 
3895 	list_for_each_entry(page, &n->partial, lru) {
3896 		validate_slab_slab(s, page, map);
3897 		count++;
3898 	}
3899 	if (count != n->nr_partial)
3900 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3901 		       s->name, count, n->nr_partial);
3902 
3903 	if (!(s->flags & SLAB_STORE_USER))
3904 		goto out;
3905 
3906 	list_for_each_entry(page, &n->full, lru) {
3907 		validate_slab_slab(s, page, map);
3908 		count++;
3909 	}
3910 	if (count != atomic_long_read(&n->nr_slabs))
3911 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3912 		       s->name, count, atomic_long_read(&n->nr_slabs));
3913 
3914 out:
3915 	spin_unlock_irqrestore(&n->list_lock, flags);
3916 	return count;
3917 }
3918 
3919 static long validate_slab_cache(struct kmem_cache *s)
3920 {
3921 	int node;
3922 	unsigned long count = 0;
3923 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3924 				sizeof(unsigned long), GFP_KERNEL);
3925 	struct kmem_cache_node *n;
3926 
3927 	if (!map)
3928 		return -ENOMEM;
3929 
3930 	flush_all(s);
3931 	for_each_kmem_cache_node(s, node, n)
3932 		count += validate_slab_node(s, n, map);
3933 	kfree(map);
3934 	return count;
3935 }
3936 /*
3937  * Generate lists of code addresses where slabcache objects are allocated
3938  * and freed.
3939  */
3940 
3941 struct location {
3942 	unsigned long count;
3943 	unsigned long addr;
3944 	long long sum_time;
3945 	long min_time;
3946 	long max_time;
3947 	long min_pid;
3948 	long max_pid;
3949 	DECLARE_BITMAP(cpus, NR_CPUS);
3950 	nodemask_t nodes;
3951 };
3952 
3953 struct loc_track {
3954 	unsigned long max;
3955 	unsigned long count;
3956 	struct location *loc;
3957 };
3958 
3959 static void free_loc_track(struct loc_track *t)
3960 {
3961 	if (t->max)
3962 		free_pages((unsigned long)t->loc,
3963 			get_order(sizeof(struct location) * t->max));
3964 }
3965 
3966 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3967 {
3968 	struct location *l;
3969 	int order;
3970 
3971 	order = get_order(sizeof(struct location) * max);
3972 
3973 	l = (void *)__get_free_pages(flags, order);
3974 	if (!l)
3975 		return 0;
3976 
3977 	if (t->count) {
3978 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3979 		free_loc_track(t);
3980 	}
3981 	t->max = max;
3982 	t->loc = l;
3983 	return 1;
3984 }
3985 
3986 static int add_location(struct loc_track *t, struct kmem_cache *s,
3987 				const struct track *track)
3988 {
3989 	long start, end, pos;
3990 	struct location *l;
3991 	unsigned long caddr;
3992 	unsigned long age = jiffies - track->when;
3993 
3994 	start = -1;
3995 	end = t->count;
3996 
3997 	for ( ; ; ) {
3998 		pos = start + (end - start + 1) / 2;
3999 
4000 		/*
4001 		 * There is nothing at "end". If we end up there
4002 		 * we need to add something to before end.
4003 		 */
4004 		if (pos == end)
4005 			break;
4006 
4007 		caddr = t->loc[pos].addr;
4008 		if (track->addr == caddr) {
4009 
4010 			l = &t->loc[pos];
4011 			l->count++;
4012 			if (track->when) {
4013 				l->sum_time += age;
4014 				if (age < l->min_time)
4015 					l->min_time = age;
4016 				if (age > l->max_time)
4017 					l->max_time = age;
4018 
4019 				if (track->pid < l->min_pid)
4020 					l->min_pid = track->pid;
4021 				if (track->pid > l->max_pid)
4022 					l->max_pid = track->pid;
4023 
4024 				cpumask_set_cpu(track->cpu,
4025 						to_cpumask(l->cpus));
4026 			}
4027 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4028 			return 1;
4029 		}
4030 
4031 		if (track->addr < caddr)
4032 			end = pos;
4033 		else
4034 			start = pos;
4035 	}
4036 
4037 	/*
4038 	 * Not found. Insert new tracking element.
4039 	 */
4040 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4041 		return 0;
4042 
4043 	l = t->loc + pos;
4044 	if (pos < t->count)
4045 		memmove(l + 1, l,
4046 			(t->count - pos) * sizeof(struct location));
4047 	t->count++;
4048 	l->count = 1;
4049 	l->addr = track->addr;
4050 	l->sum_time = age;
4051 	l->min_time = age;
4052 	l->max_time = age;
4053 	l->min_pid = track->pid;
4054 	l->max_pid = track->pid;
4055 	cpumask_clear(to_cpumask(l->cpus));
4056 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4057 	nodes_clear(l->nodes);
4058 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4059 	return 1;
4060 }
4061 
4062 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4063 		struct page *page, enum track_item alloc,
4064 		unsigned long *map)
4065 {
4066 	void *addr = page_address(page);
4067 	void *p;
4068 
4069 	bitmap_zero(map, page->objects);
4070 	get_map(s, page, map);
4071 
4072 	for_each_object(p, s, addr, page->objects)
4073 		if (!test_bit(slab_index(p, s, addr), map))
4074 			add_location(t, s, get_track(s, p, alloc));
4075 }
4076 
4077 static int list_locations(struct kmem_cache *s, char *buf,
4078 					enum track_item alloc)
4079 {
4080 	int len = 0;
4081 	unsigned long i;
4082 	struct loc_track t = { 0, 0, NULL };
4083 	int node;
4084 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4085 				     sizeof(unsigned long), GFP_KERNEL);
4086 	struct kmem_cache_node *n;
4087 
4088 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4089 				     GFP_TEMPORARY)) {
4090 		kfree(map);
4091 		return sprintf(buf, "Out of memory\n");
4092 	}
4093 	/* Push back cpu slabs */
4094 	flush_all(s);
4095 
4096 	for_each_kmem_cache_node(s, node, n) {
4097 		unsigned long flags;
4098 		struct page *page;
4099 
4100 		if (!atomic_long_read(&n->nr_slabs))
4101 			continue;
4102 
4103 		spin_lock_irqsave(&n->list_lock, flags);
4104 		list_for_each_entry(page, &n->partial, lru)
4105 			process_slab(&t, s, page, alloc, map);
4106 		list_for_each_entry(page, &n->full, lru)
4107 			process_slab(&t, s, page, alloc, map);
4108 		spin_unlock_irqrestore(&n->list_lock, flags);
4109 	}
4110 
4111 	for (i = 0; i < t.count; i++) {
4112 		struct location *l = &t.loc[i];
4113 
4114 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4115 			break;
4116 		len += sprintf(buf + len, "%7ld ", l->count);
4117 
4118 		if (l->addr)
4119 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4120 		else
4121 			len += sprintf(buf + len, "<not-available>");
4122 
4123 		if (l->sum_time != l->min_time) {
4124 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4125 				l->min_time,
4126 				(long)div_u64(l->sum_time, l->count),
4127 				l->max_time);
4128 		} else
4129 			len += sprintf(buf + len, " age=%ld",
4130 				l->min_time);
4131 
4132 		if (l->min_pid != l->max_pid)
4133 			len += sprintf(buf + len, " pid=%ld-%ld",
4134 				l->min_pid, l->max_pid);
4135 		else
4136 			len += sprintf(buf + len, " pid=%ld",
4137 				l->min_pid);
4138 
4139 		if (num_online_cpus() > 1 &&
4140 				!cpumask_empty(to_cpumask(l->cpus)) &&
4141 				len < PAGE_SIZE - 60) {
4142 			len += sprintf(buf + len, " cpus=");
4143 			len += cpulist_scnprintf(buf + len,
4144 						 PAGE_SIZE - len - 50,
4145 						 to_cpumask(l->cpus));
4146 		}
4147 
4148 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4149 				len < PAGE_SIZE - 60) {
4150 			len += sprintf(buf + len, " nodes=");
4151 			len += nodelist_scnprintf(buf + len,
4152 						  PAGE_SIZE - len - 50,
4153 						  l->nodes);
4154 		}
4155 
4156 		len += sprintf(buf + len, "\n");
4157 	}
4158 
4159 	free_loc_track(&t);
4160 	kfree(map);
4161 	if (!t.count)
4162 		len += sprintf(buf, "No data\n");
4163 	return len;
4164 }
4165 #endif
4166 
4167 #ifdef SLUB_RESILIENCY_TEST
4168 static void __init resiliency_test(void)
4169 {
4170 	u8 *p;
4171 
4172 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4173 
4174 	pr_err("SLUB resiliency testing\n");
4175 	pr_err("-----------------------\n");
4176 	pr_err("A. Corruption after allocation\n");
4177 
4178 	p = kzalloc(16, GFP_KERNEL);
4179 	p[16] = 0x12;
4180 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4181 	       p + 16);
4182 
4183 	validate_slab_cache(kmalloc_caches[4]);
4184 
4185 	/* Hmmm... The next two are dangerous */
4186 	p = kzalloc(32, GFP_KERNEL);
4187 	p[32 + sizeof(void *)] = 0x34;
4188 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4189 	       p);
4190 	pr_err("If allocated object is overwritten then not detectable\n\n");
4191 
4192 	validate_slab_cache(kmalloc_caches[5]);
4193 	p = kzalloc(64, GFP_KERNEL);
4194 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4195 	*p = 0x56;
4196 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4197 	       p);
4198 	pr_err("If allocated object is overwritten then not detectable\n\n");
4199 	validate_slab_cache(kmalloc_caches[6]);
4200 
4201 	pr_err("\nB. Corruption after free\n");
4202 	p = kzalloc(128, GFP_KERNEL);
4203 	kfree(p);
4204 	*p = 0x78;
4205 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4206 	validate_slab_cache(kmalloc_caches[7]);
4207 
4208 	p = kzalloc(256, GFP_KERNEL);
4209 	kfree(p);
4210 	p[50] = 0x9a;
4211 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4212 	validate_slab_cache(kmalloc_caches[8]);
4213 
4214 	p = kzalloc(512, GFP_KERNEL);
4215 	kfree(p);
4216 	p[512] = 0xab;
4217 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4218 	validate_slab_cache(kmalloc_caches[9]);
4219 }
4220 #else
4221 #ifdef CONFIG_SYSFS
4222 static void resiliency_test(void) {};
4223 #endif
4224 #endif
4225 
4226 #ifdef CONFIG_SYSFS
4227 enum slab_stat_type {
4228 	SL_ALL,			/* All slabs */
4229 	SL_PARTIAL,		/* Only partially allocated slabs */
4230 	SL_CPU,			/* Only slabs used for cpu caches */
4231 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4232 	SL_TOTAL		/* Determine object capacity not slabs */
4233 };
4234 
4235 #define SO_ALL		(1 << SL_ALL)
4236 #define SO_PARTIAL	(1 << SL_PARTIAL)
4237 #define SO_CPU		(1 << SL_CPU)
4238 #define SO_OBJECTS	(1 << SL_OBJECTS)
4239 #define SO_TOTAL	(1 << SL_TOTAL)
4240 
4241 static ssize_t show_slab_objects(struct kmem_cache *s,
4242 			    char *buf, unsigned long flags)
4243 {
4244 	unsigned long total = 0;
4245 	int node;
4246 	int x;
4247 	unsigned long *nodes;
4248 
4249 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4250 	if (!nodes)
4251 		return -ENOMEM;
4252 
4253 	if (flags & SO_CPU) {
4254 		int cpu;
4255 
4256 		for_each_possible_cpu(cpu) {
4257 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4258 							       cpu);
4259 			int node;
4260 			struct page *page;
4261 
4262 			page = ACCESS_ONCE(c->page);
4263 			if (!page)
4264 				continue;
4265 
4266 			node = page_to_nid(page);
4267 			if (flags & SO_TOTAL)
4268 				x = page->objects;
4269 			else if (flags & SO_OBJECTS)
4270 				x = page->inuse;
4271 			else
4272 				x = 1;
4273 
4274 			total += x;
4275 			nodes[node] += x;
4276 
4277 			page = ACCESS_ONCE(c->partial);
4278 			if (page) {
4279 				node = page_to_nid(page);
4280 				if (flags & SO_TOTAL)
4281 					WARN_ON_ONCE(1);
4282 				else if (flags & SO_OBJECTS)
4283 					WARN_ON_ONCE(1);
4284 				else
4285 					x = page->pages;
4286 				total += x;
4287 				nodes[node] += x;
4288 			}
4289 		}
4290 	}
4291 
4292 	get_online_mems();
4293 #ifdef CONFIG_SLUB_DEBUG
4294 	if (flags & SO_ALL) {
4295 		struct kmem_cache_node *n;
4296 
4297 		for_each_kmem_cache_node(s, node, n) {
4298 
4299 			if (flags & SO_TOTAL)
4300 				x = atomic_long_read(&n->total_objects);
4301 			else if (flags & SO_OBJECTS)
4302 				x = atomic_long_read(&n->total_objects) -
4303 					count_partial(n, count_free);
4304 			else
4305 				x = atomic_long_read(&n->nr_slabs);
4306 			total += x;
4307 			nodes[node] += x;
4308 		}
4309 
4310 	} else
4311 #endif
4312 	if (flags & SO_PARTIAL) {
4313 		struct kmem_cache_node *n;
4314 
4315 		for_each_kmem_cache_node(s, node, n) {
4316 			if (flags & SO_TOTAL)
4317 				x = count_partial(n, count_total);
4318 			else if (flags & SO_OBJECTS)
4319 				x = count_partial(n, count_inuse);
4320 			else
4321 				x = n->nr_partial;
4322 			total += x;
4323 			nodes[node] += x;
4324 		}
4325 	}
4326 	x = sprintf(buf, "%lu", total);
4327 #ifdef CONFIG_NUMA
4328 	for (node = 0; node < nr_node_ids; node++)
4329 		if (nodes[node])
4330 			x += sprintf(buf + x, " N%d=%lu",
4331 					node, nodes[node]);
4332 #endif
4333 	put_online_mems();
4334 	kfree(nodes);
4335 	return x + sprintf(buf + x, "\n");
4336 }
4337 
4338 #ifdef CONFIG_SLUB_DEBUG
4339 static int any_slab_objects(struct kmem_cache *s)
4340 {
4341 	int node;
4342 	struct kmem_cache_node *n;
4343 
4344 	for_each_kmem_cache_node(s, node, n)
4345 		if (atomic_long_read(&n->total_objects))
4346 			return 1;
4347 
4348 	return 0;
4349 }
4350 #endif
4351 
4352 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4353 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4354 
4355 struct slab_attribute {
4356 	struct attribute attr;
4357 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4358 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4359 };
4360 
4361 #define SLAB_ATTR_RO(_name) \
4362 	static struct slab_attribute _name##_attr = \
4363 	__ATTR(_name, 0400, _name##_show, NULL)
4364 
4365 #define SLAB_ATTR(_name) \
4366 	static struct slab_attribute _name##_attr =  \
4367 	__ATTR(_name, 0600, _name##_show, _name##_store)
4368 
4369 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4370 {
4371 	return sprintf(buf, "%d\n", s->size);
4372 }
4373 SLAB_ATTR_RO(slab_size);
4374 
4375 static ssize_t align_show(struct kmem_cache *s, char *buf)
4376 {
4377 	return sprintf(buf, "%d\n", s->align);
4378 }
4379 SLAB_ATTR_RO(align);
4380 
4381 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4382 {
4383 	return sprintf(buf, "%d\n", s->object_size);
4384 }
4385 SLAB_ATTR_RO(object_size);
4386 
4387 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4388 {
4389 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4390 }
4391 SLAB_ATTR_RO(objs_per_slab);
4392 
4393 static ssize_t order_store(struct kmem_cache *s,
4394 				const char *buf, size_t length)
4395 {
4396 	unsigned long order;
4397 	int err;
4398 
4399 	err = kstrtoul(buf, 10, &order);
4400 	if (err)
4401 		return err;
4402 
4403 	if (order > slub_max_order || order < slub_min_order)
4404 		return -EINVAL;
4405 
4406 	calculate_sizes(s, order);
4407 	return length;
4408 }
4409 
4410 static ssize_t order_show(struct kmem_cache *s, char *buf)
4411 {
4412 	return sprintf(buf, "%d\n", oo_order(s->oo));
4413 }
4414 SLAB_ATTR(order);
4415 
4416 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4417 {
4418 	return sprintf(buf, "%lu\n", s->min_partial);
4419 }
4420 
4421 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4422 				 size_t length)
4423 {
4424 	unsigned long min;
4425 	int err;
4426 
4427 	err = kstrtoul(buf, 10, &min);
4428 	if (err)
4429 		return err;
4430 
4431 	set_min_partial(s, min);
4432 	return length;
4433 }
4434 SLAB_ATTR(min_partial);
4435 
4436 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4437 {
4438 	return sprintf(buf, "%u\n", s->cpu_partial);
4439 }
4440 
4441 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4442 				 size_t length)
4443 {
4444 	unsigned long objects;
4445 	int err;
4446 
4447 	err = kstrtoul(buf, 10, &objects);
4448 	if (err)
4449 		return err;
4450 	if (objects && !kmem_cache_has_cpu_partial(s))
4451 		return -EINVAL;
4452 
4453 	s->cpu_partial = objects;
4454 	flush_all(s);
4455 	return length;
4456 }
4457 SLAB_ATTR(cpu_partial);
4458 
4459 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4460 {
4461 	if (!s->ctor)
4462 		return 0;
4463 	return sprintf(buf, "%pS\n", s->ctor);
4464 }
4465 SLAB_ATTR_RO(ctor);
4466 
4467 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4468 {
4469 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4470 }
4471 SLAB_ATTR_RO(aliases);
4472 
4473 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4474 {
4475 	return show_slab_objects(s, buf, SO_PARTIAL);
4476 }
4477 SLAB_ATTR_RO(partial);
4478 
4479 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4480 {
4481 	return show_slab_objects(s, buf, SO_CPU);
4482 }
4483 SLAB_ATTR_RO(cpu_slabs);
4484 
4485 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4486 {
4487 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4488 }
4489 SLAB_ATTR_RO(objects);
4490 
4491 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4492 {
4493 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4494 }
4495 SLAB_ATTR_RO(objects_partial);
4496 
4497 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4498 {
4499 	int objects = 0;
4500 	int pages = 0;
4501 	int cpu;
4502 	int len;
4503 
4504 	for_each_online_cpu(cpu) {
4505 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4506 
4507 		if (page) {
4508 			pages += page->pages;
4509 			objects += page->pobjects;
4510 		}
4511 	}
4512 
4513 	len = sprintf(buf, "%d(%d)", objects, pages);
4514 
4515 #ifdef CONFIG_SMP
4516 	for_each_online_cpu(cpu) {
4517 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4518 
4519 		if (page && len < PAGE_SIZE - 20)
4520 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4521 				page->pobjects, page->pages);
4522 	}
4523 #endif
4524 	return len + sprintf(buf + len, "\n");
4525 }
4526 SLAB_ATTR_RO(slabs_cpu_partial);
4527 
4528 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4529 {
4530 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4531 }
4532 
4533 static ssize_t reclaim_account_store(struct kmem_cache *s,
4534 				const char *buf, size_t length)
4535 {
4536 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4537 	if (buf[0] == '1')
4538 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4539 	return length;
4540 }
4541 SLAB_ATTR(reclaim_account);
4542 
4543 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4544 {
4545 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4546 }
4547 SLAB_ATTR_RO(hwcache_align);
4548 
4549 #ifdef CONFIG_ZONE_DMA
4550 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4551 {
4552 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4553 }
4554 SLAB_ATTR_RO(cache_dma);
4555 #endif
4556 
4557 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4558 {
4559 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4560 }
4561 SLAB_ATTR_RO(destroy_by_rcu);
4562 
4563 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4564 {
4565 	return sprintf(buf, "%d\n", s->reserved);
4566 }
4567 SLAB_ATTR_RO(reserved);
4568 
4569 #ifdef CONFIG_SLUB_DEBUG
4570 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4571 {
4572 	return show_slab_objects(s, buf, SO_ALL);
4573 }
4574 SLAB_ATTR_RO(slabs);
4575 
4576 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4577 {
4578 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4579 }
4580 SLAB_ATTR_RO(total_objects);
4581 
4582 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4583 {
4584 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4585 }
4586 
4587 static ssize_t sanity_checks_store(struct kmem_cache *s,
4588 				const char *buf, size_t length)
4589 {
4590 	s->flags &= ~SLAB_DEBUG_FREE;
4591 	if (buf[0] == '1') {
4592 		s->flags &= ~__CMPXCHG_DOUBLE;
4593 		s->flags |= SLAB_DEBUG_FREE;
4594 	}
4595 	return length;
4596 }
4597 SLAB_ATTR(sanity_checks);
4598 
4599 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4600 {
4601 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4602 }
4603 
4604 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4605 							size_t length)
4606 {
4607 	s->flags &= ~SLAB_TRACE;
4608 	if (buf[0] == '1') {
4609 		s->flags &= ~__CMPXCHG_DOUBLE;
4610 		s->flags |= SLAB_TRACE;
4611 	}
4612 	return length;
4613 }
4614 SLAB_ATTR(trace);
4615 
4616 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4617 {
4618 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4619 }
4620 
4621 static ssize_t red_zone_store(struct kmem_cache *s,
4622 				const char *buf, size_t length)
4623 {
4624 	if (any_slab_objects(s))
4625 		return -EBUSY;
4626 
4627 	s->flags &= ~SLAB_RED_ZONE;
4628 	if (buf[0] == '1') {
4629 		s->flags &= ~__CMPXCHG_DOUBLE;
4630 		s->flags |= SLAB_RED_ZONE;
4631 	}
4632 	calculate_sizes(s, -1);
4633 	return length;
4634 }
4635 SLAB_ATTR(red_zone);
4636 
4637 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4638 {
4639 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4640 }
4641 
4642 static ssize_t poison_store(struct kmem_cache *s,
4643 				const char *buf, size_t length)
4644 {
4645 	if (any_slab_objects(s))
4646 		return -EBUSY;
4647 
4648 	s->flags &= ~SLAB_POISON;
4649 	if (buf[0] == '1') {
4650 		s->flags &= ~__CMPXCHG_DOUBLE;
4651 		s->flags |= SLAB_POISON;
4652 	}
4653 	calculate_sizes(s, -1);
4654 	return length;
4655 }
4656 SLAB_ATTR(poison);
4657 
4658 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4659 {
4660 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4661 }
4662 
4663 static ssize_t store_user_store(struct kmem_cache *s,
4664 				const char *buf, size_t length)
4665 {
4666 	if (any_slab_objects(s))
4667 		return -EBUSY;
4668 
4669 	s->flags &= ~SLAB_STORE_USER;
4670 	if (buf[0] == '1') {
4671 		s->flags &= ~__CMPXCHG_DOUBLE;
4672 		s->flags |= SLAB_STORE_USER;
4673 	}
4674 	calculate_sizes(s, -1);
4675 	return length;
4676 }
4677 SLAB_ATTR(store_user);
4678 
4679 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4680 {
4681 	return 0;
4682 }
4683 
4684 static ssize_t validate_store(struct kmem_cache *s,
4685 			const char *buf, size_t length)
4686 {
4687 	int ret = -EINVAL;
4688 
4689 	if (buf[0] == '1') {
4690 		ret = validate_slab_cache(s);
4691 		if (ret >= 0)
4692 			ret = length;
4693 	}
4694 	return ret;
4695 }
4696 SLAB_ATTR(validate);
4697 
4698 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4699 {
4700 	if (!(s->flags & SLAB_STORE_USER))
4701 		return -ENOSYS;
4702 	return list_locations(s, buf, TRACK_ALLOC);
4703 }
4704 SLAB_ATTR_RO(alloc_calls);
4705 
4706 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4707 {
4708 	if (!(s->flags & SLAB_STORE_USER))
4709 		return -ENOSYS;
4710 	return list_locations(s, buf, TRACK_FREE);
4711 }
4712 SLAB_ATTR_RO(free_calls);
4713 #endif /* CONFIG_SLUB_DEBUG */
4714 
4715 #ifdef CONFIG_FAILSLAB
4716 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4717 {
4718 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4719 }
4720 
4721 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4722 							size_t length)
4723 {
4724 	s->flags &= ~SLAB_FAILSLAB;
4725 	if (buf[0] == '1')
4726 		s->flags |= SLAB_FAILSLAB;
4727 	return length;
4728 }
4729 SLAB_ATTR(failslab);
4730 #endif
4731 
4732 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4733 {
4734 	return 0;
4735 }
4736 
4737 static ssize_t shrink_store(struct kmem_cache *s,
4738 			const char *buf, size_t length)
4739 {
4740 	if (buf[0] == '1') {
4741 		int rc = kmem_cache_shrink(s);
4742 
4743 		if (rc)
4744 			return rc;
4745 	} else
4746 		return -EINVAL;
4747 	return length;
4748 }
4749 SLAB_ATTR(shrink);
4750 
4751 #ifdef CONFIG_NUMA
4752 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4753 {
4754 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4755 }
4756 
4757 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4758 				const char *buf, size_t length)
4759 {
4760 	unsigned long ratio;
4761 	int err;
4762 
4763 	err = kstrtoul(buf, 10, &ratio);
4764 	if (err)
4765 		return err;
4766 
4767 	if (ratio <= 100)
4768 		s->remote_node_defrag_ratio = ratio * 10;
4769 
4770 	return length;
4771 }
4772 SLAB_ATTR(remote_node_defrag_ratio);
4773 #endif
4774 
4775 #ifdef CONFIG_SLUB_STATS
4776 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4777 {
4778 	unsigned long sum  = 0;
4779 	int cpu;
4780 	int len;
4781 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4782 
4783 	if (!data)
4784 		return -ENOMEM;
4785 
4786 	for_each_online_cpu(cpu) {
4787 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4788 
4789 		data[cpu] = x;
4790 		sum += x;
4791 	}
4792 
4793 	len = sprintf(buf, "%lu", sum);
4794 
4795 #ifdef CONFIG_SMP
4796 	for_each_online_cpu(cpu) {
4797 		if (data[cpu] && len < PAGE_SIZE - 20)
4798 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4799 	}
4800 #endif
4801 	kfree(data);
4802 	return len + sprintf(buf + len, "\n");
4803 }
4804 
4805 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4806 {
4807 	int cpu;
4808 
4809 	for_each_online_cpu(cpu)
4810 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4811 }
4812 
4813 #define STAT_ATTR(si, text) 					\
4814 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4815 {								\
4816 	return show_stat(s, buf, si);				\
4817 }								\
4818 static ssize_t text##_store(struct kmem_cache *s,		\
4819 				const char *buf, size_t length)	\
4820 {								\
4821 	if (buf[0] != '0')					\
4822 		return -EINVAL;					\
4823 	clear_stat(s, si);					\
4824 	return length;						\
4825 }								\
4826 SLAB_ATTR(text);						\
4827 
4828 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4829 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4830 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4831 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4832 STAT_ATTR(FREE_FROZEN, free_frozen);
4833 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4834 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4835 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4836 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4837 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4838 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4839 STAT_ATTR(FREE_SLAB, free_slab);
4840 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4841 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4842 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4843 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4844 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4845 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4846 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4847 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4848 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4849 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4850 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4851 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4852 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4853 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4854 #endif
4855 
4856 static struct attribute *slab_attrs[] = {
4857 	&slab_size_attr.attr,
4858 	&object_size_attr.attr,
4859 	&objs_per_slab_attr.attr,
4860 	&order_attr.attr,
4861 	&min_partial_attr.attr,
4862 	&cpu_partial_attr.attr,
4863 	&objects_attr.attr,
4864 	&objects_partial_attr.attr,
4865 	&partial_attr.attr,
4866 	&cpu_slabs_attr.attr,
4867 	&ctor_attr.attr,
4868 	&aliases_attr.attr,
4869 	&align_attr.attr,
4870 	&hwcache_align_attr.attr,
4871 	&reclaim_account_attr.attr,
4872 	&destroy_by_rcu_attr.attr,
4873 	&shrink_attr.attr,
4874 	&reserved_attr.attr,
4875 	&slabs_cpu_partial_attr.attr,
4876 #ifdef CONFIG_SLUB_DEBUG
4877 	&total_objects_attr.attr,
4878 	&slabs_attr.attr,
4879 	&sanity_checks_attr.attr,
4880 	&trace_attr.attr,
4881 	&red_zone_attr.attr,
4882 	&poison_attr.attr,
4883 	&store_user_attr.attr,
4884 	&validate_attr.attr,
4885 	&alloc_calls_attr.attr,
4886 	&free_calls_attr.attr,
4887 #endif
4888 #ifdef CONFIG_ZONE_DMA
4889 	&cache_dma_attr.attr,
4890 #endif
4891 #ifdef CONFIG_NUMA
4892 	&remote_node_defrag_ratio_attr.attr,
4893 #endif
4894 #ifdef CONFIG_SLUB_STATS
4895 	&alloc_fastpath_attr.attr,
4896 	&alloc_slowpath_attr.attr,
4897 	&free_fastpath_attr.attr,
4898 	&free_slowpath_attr.attr,
4899 	&free_frozen_attr.attr,
4900 	&free_add_partial_attr.attr,
4901 	&free_remove_partial_attr.attr,
4902 	&alloc_from_partial_attr.attr,
4903 	&alloc_slab_attr.attr,
4904 	&alloc_refill_attr.attr,
4905 	&alloc_node_mismatch_attr.attr,
4906 	&free_slab_attr.attr,
4907 	&cpuslab_flush_attr.attr,
4908 	&deactivate_full_attr.attr,
4909 	&deactivate_empty_attr.attr,
4910 	&deactivate_to_head_attr.attr,
4911 	&deactivate_to_tail_attr.attr,
4912 	&deactivate_remote_frees_attr.attr,
4913 	&deactivate_bypass_attr.attr,
4914 	&order_fallback_attr.attr,
4915 	&cmpxchg_double_fail_attr.attr,
4916 	&cmpxchg_double_cpu_fail_attr.attr,
4917 	&cpu_partial_alloc_attr.attr,
4918 	&cpu_partial_free_attr.attr,
4919 	&cpu_partial_node_attr.attr,
4920 	&cpu_partial_drain_attr.attr,
4921 #endif
4922 #ifdef CONFIG_FAILSLAB
4923 	&failslab_attr.attr,
4924 #endif
4925 
4926 	NULL
4927 };
4928 
4929 static struct attribute_group slab_attr_group = {
4930 	.attrs = slab_attrs,
4931 };
4932 
4933 static ssize_t slab_attr_show(struct kobject *kobj,
4934 				struct attribute *attr,
4935 				char *buf)
4936 {
4937 	struct slab_attribute *attribute;
4938 	struct kmem_cache *s;
4939 	int err;
4940 
4941 	attribute = to_slab_attr(attr);
4942 	s = to_slab(kobj);
4943 
4944 	if (!attribute->show)
4945 		return -EIO;
4946 
4947 	err = attribute->show(s, buf);
4948 
4949 	return err;
4950 }
4951 
4952 static ssize_t slab_attr_store(struct kobject *kobj,
4953 				struct attribute *attr,
4954 				const char *buf, size_t len)
4955 {
4956 	struct slab_attribute *attribute;
4957 	struct kmem_cache *s;
4958 	int err;
4959 
4960 	attribute = to_slab_attr(attr);
4961 	s = to_slab(kobj);
4962 
4963 	if (!attribute->store)
4964 		return -EIO;
4965 
4966 	err = attribute->store(s, buf, len);
4967 #ifdef CONFIG_MEMCG_KMEM
4968 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4969 		int i;
4970 
4971 		mutex_lock(&slab_mutex);
4972 		if (s->max_attr_size < len)
4973 			s->max_attr_size = len;
4974 
4975 		/*
4976 		 * This is a best effort propagation, so this function's return
4977 		 * value will be determined by the parent cache only. This is
4978 		 * basically because not all attributes will have a well
4979 		 * defined semantics for rollbacks - most of the actions will
4980 		 * have permanent effects.
4981 		 *
4982 		 * Returning the error value of any of the children that fail
4983 		 * is not 100 % defined, in the sense that users seeing the
4984 		 * error code won't be able to know anything about the state of
4985 		 * the cache.
4986 		 *
4987 		 * Only returning the error code for the parent cache at least
4988 		 * has well defined semantics. The cache being written to
4989 		 * directly either failed or succeeded, in which case we loop
4990 		 * through the descendants with best-effort propagation.
4991 		 */
4992 		for_each_memcg_cache_index(i) {
4993 			struct kmem_cache *c = cache_from_memcg_idx(s, i);
4994 			if (c)
4995 				attribute->store(c, buf, len);
4996 		}
4997 		mutex_unlock(&slab_mutex);
4998 	}
4999 #endif
5000 	return err;
5001 }
5002 
5003 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5004 {
5005 #ifdef CONFIG_MEMCG_KMEM
5006 	int i;
5007 	char *buffer = NULL;
5008 	struct kmem_cache *root_cache;
5009 
5010 	if (is_root_cache(s))
5011 		return;
5012 
5013 	root_cache = s->memcg_params->root_cache;
5014 
5015 	/*
5016 	 * This mean this cache had no attribute written. Therefore, no point
5017 	 * in copying default values around
5018 	 */
5019 	if (!root_cache->max_attr_size)
5020 		return;
5021 
5022 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5023 		char mbuf[64];
5024 		char *buf;
5025 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5026 
5027 		if (!attr || !attr->store || !attr->show)
5028 			continue;
5029 
5030 		/*
5031 		 * It is really bad that we have to allocate here, so we will
5032 		 * do it only as a fallback. If we actually allocate, though,
5033 		 * we can just use the allocated buffer until the end.
5034 		 *
5035 		 * Most of the slub attributes will tend to be very small in
5036 		 * size, but sysfs allows buffers up to a page, so they can
5037 		 * theoretically happen.
5038 		 */
5039 		if (buffer)
5040 			buf = buffer;
5041 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5042 			buf = mbuf;
5043 		else {
5044 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5045 			if (WARN_ON(!buffer))
5046 				continue;
5047 			buf = buffer;
5048 		}
5049 
5050 		attr->show(root_cache, buf);
5051 		attr->store(s, buf, strlen(buf));
5052 	}
5053 
5054 	if (buffer)
5055 		free_page((unsigned long)buffer);
5056 #endif
5057 }
5058 
5059 static void kmem_cache_release(struct kobject *k)
5060 {
5061 	slab_kmem_cache_release(to_slab(k));
5062 }
5063 
5064 static const struct sysfs_ops slab_sysfs_ops = {
5065 	.show = slab_attr_show,
5066 	.store = slab_attr_store,
5067 };
5068 
5069 static struct kobj_type slab_ktype = {
5070 	.sysfs_ops = &slab_sysfs_ops,
5071 	.release = kmem_cache_release,
5072 };
5073 
5074 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5075 {
5076 	struct kobj_type *ktype = get_ktype(kobj);
5077 
5078 	if (ktype == &slab_ktype)
5079 		return 1;
5080 	return 0;
5081 }
5082 
5083 static const struct kset_uevent_ops slab_uevent_ops = {
5084 	.filter = uevent_filter,
5085 };
5086 
5087 static struct kset *slab_kset;
5088 
5089 static inline struct kset *cache_kset(struct kmem_cache *s)
5090 {
5091 #ifdef CONFIG_MEMCG_KMEM
5092 	if (!is_root_cache(s))
5093 		return s->memcg_params->root_cache->memcg_kset;
5094 #endif
5095 	return slab_kset;
5096 }
5097 
5098 #define ID_STR_LENGTH 64
5099 
5100 /* Create a unique string id for a slab cache:
5101  *
5102  * Format	:[flags-]size
5103  */
5104 static char *create_unique_id(struct kmem_cache *s)
5105 {
5106 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5107 	char *p = name;
5108 
5109 	BUG_ON(!name);
5110 
5111 	*p++ = ':';
5112 	/*
5113 	 * First flags affecting slabcache operations. We will only
5114 	 * get here for aliasable slabs so we do not need to support
5115 	 * too many flags. The flags here must cover all flags that
5116 	 * are matched during merging to guarantee that the id is
5117 	 * unique.
5118 	 */
5119 	if (s->flags & SLAB_CACHE_DMA)
5120 		*p++ = 'd';
5121 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5122 		*p++ = 'a';
5123 	if (s->flags & SLAB_DEBUG_FREE)
5124 		*p++ = 'F';
5125 	if (!(s->flags & SLAB_NOTRACK))
5126 		*p++ = 't';
5127 	if (p != name + 1)
5128 		*p++ = '-';
5129 	p += sprintf(p, "%07d", s->size);
5130 
5131 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5132 	return name;
5133 }
5134 
5135 static int sysfs_slab_add(struct kmem_cache *s)
5136 {
5137 	int err;
5138 	const char *name;
5139 	int unmergeable = slab_unmergeable(s);
5140 
5141 	if (unmergeable) {
5142 		/*
5143 		 * Slabcache can never be merged so we can use the name proper.
5144 		 * This is typically the case for debug situations. In that
5145 		 * case we can catch duplicate names easily.
5146 		 */
5147 		sysfs_remove_link(&slab_kset->kobj, s->name);
5148 		name = s->name;
5149 	} else {
5150 		/*
5151 		 * Create a unique name for the slab as a target
5152 		 * for the symlinks.
5153 		 */
5154 		name = create_unique_id(s);
5155 	}
5156 
5157 	s->kobj.kset = cache_kset(s);
5158 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5159 	if (err)
5160 		goto out_put_kobj;
5161 
5162 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5163 	if (err)
5164 		goto out_del_kobj;
5165 
5166 #ifdef CONFIG_MEMCG_KMEM
5167 	if (is_root_cache(s)) {
5168 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5169 		if (!s->memcg_kset) {
5170 			err = -ENOMEM;
5171 			goto out_del_kobj;
5172 		}
5173 	}
5174 #endif
5175 
5176 	kobject_uevent(&s->kobj, KOBJ_ADD);
5177 	if (!unmergeable) {
5178 		/* Setup first alias */
5179 		sysfs_slab_alias(s, s->name);
5180 	}
5181 out:
5182 	if (!unmergeable)
5183 		kfree(name);
5184 	return err;
5185 out_del_kobj:
5186 	kobject_del(&s->kobj);
5187 out_put_kobj:
5188 	kobject_put(&s->kobj);
5189 	goto out;
5190 }
5191 
5192 void sysfs_slab_remove(struct kmem_cache *s)
5193 {
5194 	if (slab_state < FULL)
5195 		/*
5196 		 * Sysfs has not been setup yet so no need to remove the
5197 		 * cache from sysfs.
5198 		 */
5199 		return;
5200 
5201 #ifdef CONFIG_MEMCG_KMEM
5202 	kset_unregister(s->memcg_kset);
5203 #endif
5204 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5205 	kobject_del(&s->kobj);
5206 	kobject_put(&s->kobj);
5207 }
5208 
5209 /*
5210  * Need to buffer aliases during bootup until sysfs becomes
5211  * available lest we lose that information.
5212  */
5213 struct saved_alias {
5214 	struct kmem_cache *s;
5215 	const char *name;
5216 	struct saved_alias *next;
5217 };
5218 
5219 static struct saved_alias *alias_list;
5220 
5221 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5222 {
5223 	struct saved_alias *al;
5224 
5225 	if (slab_state == FULL) {
5226 		/*
5227 		 * If we have a leftover link then remove it.
5228 		 */
5229 		sysfs_remove_link(&slab_kset->kobj, name);
5230 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5231 	}
5232 
5233 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5234 	if (!al)
5235 		return -ENOMEM;
5236 
5237 	al->s = s;
5238 	al->name = name;
5239 	al->next = alias_list;
5240 	alias_list = al;
5241 	return 0;
5242 }
5243 
5244 static int __init slab_sysfs_init(void)
5245 {
5246 	struct kmem_cache *s;
5247 	int err;
5248 
5249 	mutex_lock(&slab_mutex);
5250 
5251 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5252 	if (!slab_kset) {
5253 		mutex_unlock(&slab_mutex);
5254 		pr_err("Cannot register slab subsystem.\n");
5255 		return -ENOSYS;
5256 	}
5257 
5258 	slab_state = FULL;
5259 
5260 	list_for_each_entry(s, &slab_caches, list) {
5261 		err = sysfs_slab_add(s);
5262 		if (err)
5263 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5264 			       s->name);
5265 	}
5266 
5267 	while (alias_list) {
5268 		struct saved_alias *al = alias_list;
5269 
5270 		alias_list = alias_list->next;
5271 		err = sysfs_slab_alias(al->s, al->name);
5272 		if (err)
5273 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5274 			       al->name);
5275 		kfree(al);
5276 	}
5277 
5278 	mutex_unlock(&slab_mutex);
5279 	resiliency_test();
5280 	return 0;
5281 }
5282 
5283 __initcall(slab_sysfs_init);
5284 #endif /* CONFIG_SYSFS */
5285 
5286 /*
5287  * The /proc/slabinfo ABI
5288  */
5289 #ifdef CONFIG_SLABINFO
5290 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5291 {
5292 	unsigned long nr_slabs = 0;
5293 	unsigned long nr_objs = 0;
5294 	unsigned long nr_free = 0;
5295 	int node;
5296 	struct kmem_cache_node *n;
5297 
5298 	for_each_kmem_cache_node(s, node, n) {
5299 		nr_slabs += node_nr_slabs(n);
5300 		nr_objs += node_nr_objs(n);
5301 		nr_free += count_partial(n, count_free);
5302 	}
5303 
5304 	sinfo->active_objs = nr_objs - nr_free;
5305 	sinfo->num_objs = nr_objs;
5306 	sinfo->active_slabs = nr_slabs;
5307 	sinfo->num_slabs = nr_slabs;
5308 	sinfo->objects_per_slab = oo_objects(s->oo);
5309 	sinfo->cache_order = oo_order(s->oo);
5310 }
5311 
5312 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5313 {
5314 }
5315 
5316 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5317 		       size_t count, loff_t *ppos)
5318 {
5319 	return -EIO;
5320 }
5321 #endif /* CONFIG_SLABINFO */
5322