1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kmemcheck.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 37 #include <trace/events/kmem.h> 38 39 #include "internal.h" 40 41 /* 42 * Lock order: 43 * 1. slab_mutex (Global Mutex) 44 * 2. node->list_lock 45 * 3. slab_lock(page) (Only on some arches and for debugging) 46 * 47 * slab_mutex 48 * 49 * The role of the slab_mutex is to protect the list of all the slabs 50 * and to synchronize major metadata changes to slab cache structures. 51 * 52 * The slab_lock is only used for debugging and on arches that do not 53 * have the ability to do a cmpxchg_double. It only protects the second 54 * double word in the page struct. Meaning 55 * A. page->freelist -> List of object free in a page 56 * B. page->counters -> Counters of objects 57 * C. page->frozen -> frozen state 58 * 59 * If a slab is frozen then it is exempt from list management. It is not 60 * on any list. The processor that froze the slab is the one who can 61 * perform list operations on the page. Other processors may put objects 62 * onto the freelist but the processor that froze the slab is the only 63 * one that can retrieve the objects from the page's freelist. 64 * 65 * The list_lock protects the partial and full list on each node and 66 * the partial slab counter. If taken then no new slabs may be added or 67 * removed from the lists nor make the number of partial slabs be modified. 68 * (Note that the total number of slabs is an atomic value that may be 69 * modified without taking the list lock). 70 * 71 * The list_lock is a centralized lock and thus we avoid taking it as 72 * much as possible. As long as SLUB does not have to handle partial 73 * slabs, operations can continue without any centralized lock. F.e. 74 * allocating a long series of objects that fill up slabs does not require 75 * the list lock. 76 * Interrupts are disabled during allocation and deallocation in order to 77 * make the slab allocator safe to use in the context of an irq. In addition 78 * interrupts are disabled to ensure that the processor does not change 79 * while handling per_cpu slabs, due to kernel preemption. 80 * 81 * SLUB assigns one slab for allocation to each processor. 82 * Allocations only occur from these slabs called cpu slabs. 83 * 84 * Slabs with free elements are kept on a partial list and during regular 85 * operations no list for full slabs is used. If an object in a full slab is 86 * freed then the slab will show up again on the partial lists. 87 * We track full slabs for debugging purposes though because otherwise we 88 * cannot scan all objects. 89 * 90 * Slabs are freed when they become empty. Teardown and setup is 91 * minimal so we rely on the page allocators per cpu caches for 92 * fast frees and allocs. 93 * 94 * Overloading of page flags that are otherwise used for LRU management. 95 * 96 * PageActive The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * PageError Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 static inline int kmem_cache_debug(struct kmem_cache *s) 118 { 119 #ifdef CONFIG_SLUB_DEBUG 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 121 #else 122 return 0; 123 #endif 124 } 125 126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 127 { 128 #ifdef CONFIG_SLUB_CPU_PARTIAL 129 return !kmem_cache_debug(s); 130 #else 131 return false; 132 #endif 133 } 134 135 /* 136 * Issues still to be resolved: 137 * 138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 139 * 140 * - Variable sizing of the per node arrays 141 */ 142 143 /* Enable to test recovery from slab corruption on boot */ 144 #undef SLUB_RESILIENCY_TEST 145 146 /* Enable to log cmpxchg failures */ 147 #undef SLUB_DEBUG_CMPXCHG 148 149 /* 150 * Mininum number of partial slabs. These will be left on the partial 151 * lists even if they are empty. kmem_cache_shrink may reclaim them. 152 */ 153 #define MIN_PARTIAL 5 154 155 /* 156 * Maximum number of desirable partial slabs. 157 * The existence of more partial slabs makes kmem_cache_shrink 158 * sort the partial list by the number of objects in use. 159 */ 160 #define MAX_PARTIAL 10 161 162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 163 SLAB_POISON | SLAB_STORE_USER) 164 165 /* 166 * Debugging flags that require metadata to be stored in the slab. These get 167 * disabled when slub_debug=O is used and a cache's min order increases with 168 * metadata. 169 */ 170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 171 172 /* 173 * Set of flags that will prevent slab merging 174 */ 175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 177 SLAB_FAILSLAB) 178 179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 180 SLAB_CACHE_DMA | SLAB_NOTRACK) 181 182 #define OO_SHIFT 16 183 #define OO_MASK ((1 << OO_SHIFT) - 1) 184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 185 186 /* Internal SLUB flags */ 187 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 189 190 #ifdef CONFIG_SMP 191 static struct notifier_block slab_notifier; 192 #endif 193 194 /* 195 * Tracking user of a slab. 196 */ 197 #define TRACK_ADDRS_COUNT 16 198 struct track { 199 unsigned long addr; /* Called from address */ 200 #ifdef CONFIG_STACKTRACE 201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 202 #endif 203 int cpu; /* Was running on cpu */ 204 int pid; /* Pid context */ 205 unsigned long when; /* When did the operation occur */ 206 }; 207 208 enum track_item { TRACK_ALLOC, TRACK_FREE }; 209 210 #ifdef CONFIG_SYSFS 211 static int sysfs_slab_add(struct kmem_cache *); 212 static int sysfs_slab_alias(struct kmem_cache *, const char *); 213 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 214 #else 215 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 216 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 217 { return 0; } 218 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 219 #endif 220 221 static inline void stat(const struct kmem_cache *s, enum stat_item si) 222 { 223 #ifdef CONFIG_SLUB_STATS 224 /* 225 * The rmw is racy on a preemptible kernel but this is acceptable, so 226 * avoid this_cpu_add()'s irq-disable overhead. 227 */ 228 raw_cpu_inc(s->cpu_slab->stat[si]); 229 #endif 230 } 231 232 /******************************************************************** 233 * Core slab cache functions 234 *******************************************************************/ 235 236 /* Verify that a pointer has an address that is valid within a slab page */ 237 static inline int check_valid_pointer(struct kmem_cache *s, 238 struct page *page, const void *object) 239 { 240 void *base; 241 242 if (!object) 243 return 1; 244 245 base = page_address(page); 246 if (object < base || object >= base + page->objects * s->size || 247 (object - base) % s->size) { 248 return 0; 249 } 250 251 return 1; 252 } 253 254 static inline void *get_freepointer(struct kmem_cache *s, void *object) 255 { 256 return *(void **)(object + s->offset); 257 } 258 259 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 260 { 261 prefetch(object + s->offset); 262 } 263 264 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 265 { 266 void *p; 267 268 #ifdef CONFIG_DEBUG_PAGEALLOC 269 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 270 #else 271 p = get_freepointer(s, object); 272 #endif 273 return p; 274 } 275 276 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 277 { 278 *(void **)(object + s->offset) = fp; 279 } 280 281 /* Loop over all objects in a slab */ 282 #define for_each_object(__p, __s, __addr, __objects) \ 283 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 284 __p += (__s)->size) 285 286 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 287 for (__p = (__addr), __idx = 1; __idx <= __objects;\ 288 __p += (__s)->size, __idx++) 289 290 /* Determine object index from a given position */ 291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 292 { 293 return (p - addr) / s->size; 294 } 295 296 static inline size_t slab_ksize(const struct kmem_cache *s) 297 { 298 #ifdef CONFIG_SLUB_DEBUG 299 /* 300 * Debugging requires use of the padding between object 301 * and whatever may come after it. 302 */ 303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 304 return s->object_size; 305 306 #endif 307 /* 308 * If we have the need to store the freelist pointer 309 * back there or track user information then we can 310 * only use the space before that information. 311 */ 312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 313 return s->inuse; 314 /* 315 * Else we can use all the padding etc for the allocation 316 */ 317 return s->size; 318 } 319 320 static inline int order_objects(int order, unsigned long size, int reserved) 321 { 322 return ((PAGE_SIZE << order) - reserved) / size; 323 } 324 325 static inline struct kmem_cache_order_objects oo_make(int order, 326 unsigned long size, int reserved) 327 { 328 struct kmem_cache_order_objects x = { 329 (order << OO_SHIFT) + order_objects(order, size, reserved) 330 }; 331 332 return x; 333 } 334 335 static inline int oo_order(struct kmem_cache_order_objects x) 336 { 337 return x.x >> OO_SHIFT; 338 } 339 340 static inline int oo_objects(struct kmem_cache_order_objects x) 341 { 342 return x.x & OO_MASK; 343 } 344 345 /* 346 * Per slab locking using the pagelock 347 */ 348 static __always_inline void slab_lock(struct page *page) 349 { 350 bit_spin_lock(PG_locked, &page->flags); 351 } 352 353 static __always_inline void slab_unlock(struct page *page) 354 { 355 __bit_spin_unlock(PG_locked, &page->flags); 356 } 357 358 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 359 { 360 struct page tmp; 361 tmp.counters = counters_new; 362 /* 363 * page->counters can cover frozen/inuse/objects as well 364 * as page->_count. If we assign to ->counters directly 365 * we run the risk of losing updates to page->_count, so 366 * be careful and only assign to the fields we need. 367 */ 368 page->frozen = tmp.frozen; 369 page->inuse = tmp.inuse; 370 page->objects = tmp.objects; 371 } 372 373 /* Interrupts must be disabled (for the fallback code to work right) */ 374 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 375 void *freelist_old, unsigned long counters_old, 376 void *freelist_new, unsigned long counters_new, 377 const char *n) 378 { 379 VM_BUG_ON(!irqs_disabled()); 380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 382 if (s->flags & __CMPXCHG_DOUBLE) { 383 if (cmpxchg_double(&page->freelist, &page->counters, 384 freelist_old, counters_old, 385 freelist_new, counters_new)) 386 return 1; 387 } else 388 #endif 389 { 390 slab_lock(page); 391 if (page->freelist == freelist_old && 392 page->counters == counters_old) { 393 page->freelist = freelist_new; 394 set_page_slub_counters(page, counters_new); 395 slab_unlock(page); 396 return 1; 397 } 398 slab_unlock(page); 399 } 400 401 cpu_relax(); 402 stat(s, CMPXCHG_DOUBLE_FAIL); 403 404 #ifdef SLUB_DEBUG_CMPXCHG 405 pr_info("%s %s: cmpxchg double redo ", n, s->name); 406 #endif 407 408 return 0; 409 } 410 411 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 412 void *freelist_old, unsigned long counters_old, 413 void *freelist_new, unsigned long counters_new, 414 const char *n) 415 { 416 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 417 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 418 if (s->flags & __CMPXCHG_DOUBLE) { 419 if (cmpxchg_double(&page->freelist, &page->counters, 420 freelist_old, counters_old, 421 freelist_new, counters_new)) 422 return 1; 423 } else 424 #endif 425 { 426 unsigned long flags; 427 428 local_irq_save(flags); 429 slab_lock(page); 430 if (page->freelist == freelist_old && 431 page->counters == counters_old) { 432 page->freelist = freelist_new; 433 set_page_slub_counters(page, counters_new); 434 slab_unlock(page); 435 local_irq_restore(flags); 436 return 1; 437 } 438 slab_unlock(page); 439 local_irq_restore(flags); 440 } 441 442 cpu_relax(); 443 stat(s, CMPXCHG_DOUBLE_FAIL); 444 445 #ifdef SLUB_DEBUG_CMPXCHG 446 pr_info("%s %s: cmpxchg double redo ", n, s->name); 447 #endif 448 449 return 0; 450 } 451 452 #ifdef CONFIG_SLUB_DEBUG 453 /* 454 * Determine a map of object in use on a page. 455 * 456 * Node listlock must be held to guarantee that the page does 457 * not vanish from under us. 458 */ 459 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 460 { 461 void *p; 462 void *addr = page_address(page); 463 464 for (p = page->freelist; p; p = get_freepointer(s, p)) 465 set_bit(slab_index(p, s, addr), map); 466 } 467 468 /* 469 * Debug settings: 470 */ 471 #ifdef CONFIG_SLUB_DEBUG_ON 472 static int slub_debug = DEBUG_DEFAULT_FLAGS; 473 #else 474 static int slub_debug; 475 #endif 476 477 static char *slub_debug_slabs; 478 static int disable_higher_order_debug; 479 480 /* 481 * Object debugging 482 */ 483 static void print_section(char *text, u8 *addr, unsigned int length) 484 { 485 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 486 length, 1); 487 } 488 489 static struct track *get_track(struct kmem_cache *s, void *object, 490 enum track_item alloc) 491 { 492 struct track *p; 493 494 if (s->offset) 495 p = object + s->offset + sizeof(void *); 496 else 497 p = object + s->inuse; 498 499 return p + alloc; 500 } 501 502 static void set_track(struct kmem_cache *s, void *object, 503 enum track_item alloc, unsigned long addr) 504 { 505 struct track *p = get_track(s, object, alloc); 506 507 if (addr) { 508 #ifdef CONFIG_STACKTRACE 509 struct stack_trace trace; 510 int i; 511 512 trace.nr_entries = 0; 513 trace.max_entries = TRACK_ADDRS_COUNT; 514 trace.entries = p->addrs; 515 trace.skip = 3; 516 save_stack_trace(&trace); 517 518 /* See rant in lockdep.c */ 519 if (trace.nr_entries != 0 && 520 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 521 trace.nr_entries--; 522 523 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 524 p->addrs[i] = 0; 525 #endif 526 p->addr = addr; 527 p->cpu = smp_processor_id(); 528 p->pid = current->pid; 529 p->when = jiffies; 530 } else 531 memset(p, 0, sizeof(struct track)); 532 } 533 534 static void init_tracking(struct kmem_cache *s, void *object) 535 { 536 if (!(s->flags & SLAB_STORE_USER)) 537 return; 538 539 set_track(s, object, TRACK_FREE, 0UL); 540 set_track(s, object, TRACK_ALLOC, 0UL); 541 } 542 543 static void print_track(const char *s, struct track *t) 544 { 545 if (!t->addr) 546 return; 547 548 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 549 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 550 #ifdef CONFIG_STACKTRACE 551 { 552 int i; 553 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 554 if (t->addrs[i]) 555 pr_err("\t%pS\n", (void *)t->addrs[i]); 556 else 557 break; 558 } 559 #endif 560 } 561 562 static void print_tracking(struct kmem_cache *s, void *object) 563 { 564 if (!(s->flags & SLAB_STORE_USER)) 565 return; 566 567 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 568 print_track("Freed", get_track(s, object, TRACK_FREE)); 569 } 570 571 static void print_page_info(struct page *page) 572 { 573 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 574 page, page->objects, page->inuse, page->freelist, page->flags); 575 576 } 577 578 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 579 { 580 struct va_format vaf; 581 va_list args; 582 583 va_start(args, fmt); 584 vaf.fmt = fmt; 585 vaf.va = &args; 586 pr_err("=============================================================================\n"); 587 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 588 pr_err("-----------------------------------------------------------------------------\n\n"); 589 590 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 591 va_end(args); 592 } 593 594 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 595 { 596 struct va_format vaf; 597 va_list args; 598 599 va_start(args, fmt); 600 vaf.fmt = fmt; 601 vaf.va = &args; 602 pr_err("FIX %s: %pV\n", s->name, &vaf); 603 va_end(args); 604 } 605 606 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 607 { 608 unsigned int off; /* Offset of last byte */ 609 u8 *addr = page_address(page); 610 611 print_tracking(s, p); 612 613 print_page_info(page); 614 615 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 616 p, p - addr, get_freepointer(s, p)); 617 618 if (p > addr + 16) 619 print_section("Bytes b4 ", p - 16, 16); 620 621 print_section("Object ", p, min_t(unsigned long, s->object_size, 622 PAGE_SIZE)); 623 if (s->flags & SLAB_RED_ZONE) 624 print_section("Redzone ", p + s->object_size, 625 s->inuse - s->object_size); 626 627 if (s->offset) 628 off = s->offset + sizeof(void *); 629 else 630 off = s->inuse; 631 632 if (s->flags & SLAB_STORE_USER) 633 off += 2 * sizeof(struct track); 634 635 if (off != s->size) 636 /* Beginning of the filler is the free pointer */ 637 print_section("Padding ", p + off, s->size - off); 638 639 dump_stack(); 640 } 641 642 static void object_err(struct kmem_cache *s, struct page *page, 643 u8 *object, char *reason) 644 { 645 slab_bug(s, "%s", reason); 646 print_trailer(s, page, object); 647 } 648 649 static void slab_err(struct kmem_cache *s, struct page *page, 650 const char *fmt, ...) 651 { 652 va_list args; 653 char buf[100]; 654 655 va_start(args, fmt); 656 vsnprintf(buf, sizeof(buf), fmt, args); 657 va_end(args); 658 slab_bug(s, "%s", buf); 659 print_page_info(page); 660 dump_stack(); 661 } 662 663 static void init_object(struct kmem_cache *s, void *object, u8 val) 664 { 665 u8 *p = object; 666 667 if (s->flags & __OBJECT_POISON) { 668 memset(p, POISON_FREE, s->object_size - 1); 669 p[s->object_size - 1] = POISON_END; 670 } 671 672 if (s->flags & SLAB_RED_ZONE) 673 memset(p + s->object_size, val, s->inuse - s->object_size); 674 } 675 676 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 677 void *from, void *to) 678 { 679 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 680 memset(from, data, to - from); 681 } 682 683 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 684 u8 *object, char *what, 685 u8 *start, unsigned int value, unsigned int bytes) 686 { 687 u8 *fault; 688 u8 *end; 689 690 fault = memchr_inv(start, value, bytes); 691 if (!fault) 692 return 1; 693 694 end = start + bytes; 695 while (end > fault && end[-1] == value) 696 end--; 697 698 slab_bug(s, "%s overwritten", what); 699 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 700 fault, end - 1, fault[0], value); 701 print_trailer(s, page, object); 702 703 restore_bytes(s, what, value, fault, end); 704 return 0; 705 } 706 707 /* 708 * Object layout: 709 * 710 * object address 711 * Bytes of the object to be managed. 712 * If the freepointer may overlay the object then the free 713 * pointer is the first word of the object. 714 * 715 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 716 * 0xa5 (POISON_END) 717 * 718 * object + s->object_size 719 * Padding to reach word boundary. This is also used for Redzoning. 720 * Padding is extended by another word if Redzoning is enabled and 721 * object_size == inuse. 722 * 723 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 724 * 0xcc (RED_ACTIVE) for objects in use. 725 * 726 * object + s->inuse 727 * Meta data starts here. 728 * 729 * A. Free pointer (if we cannot overwrite object on free) 730 * B. Tracking data for SLAB_STORE_USER 731 * C. Padding to reach required alignment boundary or at mininum 732 * one word if debugging is on to be able to detect writes 733 * before the word boundary. 734 * 735 * Padding is done using 0x5a (POISON_INUSE) 736 * 737 * object + s->size 738 * Nothing is used beyond s->size. 739 * 740 * If slabcaches are merged then the object_size and inuse boundaries are mostly 741 * ignored. And therefore no slab options that rely on these boundaries 742 * may be used with merged slabcaches. 743 */ 744 745 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 746 { 747 unsigned long off = s->inuse; /* The end of info */ 748 749 if (s->offset) 750 /* Freepointer is placed after the object. */ 751 off += sizeof(void *); 752 753 if (s->flags & SLAB_STORE_USER) 754 /* We also have user information there */ 755 off += 2 * sizeof(struct track); 756 757 if (s->size == off) 758 return 1; 759 760 return check_bytes_and_report(s, page, p, "Object padding", 761 p + off, POISON_INUSE, s->size - off); 762 } 763 764 /* Check the pad bytes at the end of a slab page */ 765 static int slab_pad_check(struct kmem_cache *s, struct page *page) 766 { 767 u8 *start; 768 u8 *fault; 769 u8 *end; 770 int length; 771 int remainder; 772 773 if (!(s->flags & SLAB_POISON)) 774 return 1; 775 776 start = page_address(page); 777 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 778 end = start + length; 779 remainder = length % s->size; 780 if (!remainder) 781 return 1; 782 783 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 784 if (!fault) 785 return 1; 786 while (end > fault && end[-1] == POISON_INUSE) 787 end--; 788 789 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 790 print_section("Padding ", end - remainder, remainder); 791 792 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 793 return 0; 794 } 795 796 static int check_object(struct kmem_cache *s, struct page *page, 797 void *object, u8 val) 798 { 799 u8 *p = object; 800 u8 *endobject = object + s->object_size; 801 802 if (s->flags & SLAB_RED_ZONE) { 803 if (!check_bytes_and_report(s, page, object, "Redzone", 804 endobject, val, s->inuse - s->object_size)) 805 return 0; 806 } else { 807 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 808 check_bytes_and_report(s, page, p, "Alignment padding", 809 endobject, POISON_INUSE, 810 s->inuse - s->object_size); 811 } 812 } 813 814 if (s->flags & SLAB_POISON) { 815 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 816 (!check_bytes_and_report(s, page, p, "Poison", p, 817 POISON_FREE, s->object_size - 1) || 818 !check_bytes_and_report(s, page, p, "Poison", 819 p + s->object_size - 1, POISON_END, 1))) 820 return 0; 821 /* 822 * check_pad_bytes cleans up on its own. 823 */ 824 check_pad_bytes(s, page, p); 825 } 826 827 if (!s->offset && val == SLUB_RED_ACTIVE) 828 /* 829 * Object and freepointer overlap. Cannot check 830 * freepointer while object is allocated. 831 */ 832 return 1; 833 834 /* Check free pointer validity */ 835 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 836 object_err(s, page, p, "Freepointer corrupt"); 837 /* 838 * No choice but to zap it and thus lose the remainder 839 * of the free objects in this slab. May cause 840 * another error because the object count is now wrong. 841 */ 842 set_freepointer(s, p, NULL); 843 return 0; 844 } 845 return 1; 846 } 847 848 static int check_slab(struct kmem_cache *s, struct page *page) 849 { 850 int maxobj; 851 852 VM_BUG_ON(!irqs_disabled()); 853 854 if (!PageSlab(page)) { 855 slab_err(s, page, "Not a valid slab page"); 856 return 0; 857 } 858 859 maxobj = order_objects(compound_order(page), s->size, s->reserved); 860 if (page->objects > maxobj) { 861 slab_err(s, page, "objects %u > max %u", 862 s->name, page->objects, maxobj); 863 return 0; 864 } 865 if (page->inuse > page->objects) { 866 slab_err(s, page, "inuse %u > max %u", 867 s->name, page->inuse, page->objects); 868 return 0; 869 } 870 /* Slab_pad_check fixes things up after itself */ 871 slab_pad_check(s, page); 872 return 1; 873 } 874 875 /* 876 * Determine if a certain object on a page is on the freelist. Must hold the 877 * slab lock to guarantee that the chains are in a consistent state. 878 */ 879 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 880 { 881 int nr = 0; 882 void *fp; 883 void *object = NULL; 884 unsigned long max_objects; 885 886 fp = page->freelist; 887 while (fp && nr <= page->objects) { 888 if (fp == search) 889 return 1; 890 if (!check_valid_pointer(s, page, fp)) { 891 if (object) { 892 object_err(s, page, object, 893 "Freechain corrupt"); 894 set_freepointer(s, object, NULL); 895 } else { 896 slab_err(s, page, "Freepointer corrupt"); 897 page->freelist = NULL; 898 page->inuse = page->objects; 899 slab_fix(s, "Freelist cleared"); 900 return 0; 901 } 902 break; 903 } 904 object = fp; 905 fp = get_freepointer(s, object); 906 nr++; 907 } 908 909 max_objects = order_objects(compound_order(page), s->size, s->reserved); 910 if (max_objects > MAX_OBJS_PER_PAGE) 911 max_objects = MAX_OBJS_PER_PAGE; 912 913 if (page->objects != max_objects) { 914 slab_err(s, page, "Wrong number of objects. Found %d but " 915 "should be %d", page->objects, max_objects); 916 page->objects = max_objects; 917 slab_fix(s, "Number of objects adjusted."); 918 } 919 if (page->inuse != page->objects - nr) { 920 slab_err(s, page, "Wrong object count. Counter is %d but " 921 "counted were %d", page->inuse, page->objects - nr); 922 page->inuse = page->objects - nr; 923 slab_fix(s, "Object count adjusted."); 924 } 925 return search == NULL; 926 } 927 928 static void trace(struct kmem_cache *s, struct page *page, void *object, 929 int alloc) 930 { 931 if (s->flags & SLAB_TRACE) { 932 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 933 s->name, 934 alloc ? "alloc" : "free", 935 object, page->inuse, 936 page->freelist); 937 938 if (!alloc) 939 print_section("Object ", (void *)object, 940 s->object_size); 941 942 dump_stack(); 943 } 944 } 945 946 /* 947 * Tracking of fully allocated slabs for debugging purposes. 948 */ 949 static void add_full(struct kmem_cache *s, 950 struct kmem_cache_node *n, struct page *page) 951 { 952 if (!(s->flags & SLAB_STORE_USER)) 953 return; 954 955 lockdep_assert_held(&n->list_lock); 956 list_add(&page->lru, &n->full); 957 } 958 959 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 960 { 961 if (!(s->flags & SLAB_STORE_USER)) 962 return; 963 964 lockdep_assert_held(&n->list_lock); 965 list_del(&page->lru); 966 } 967 968 /* Tracking of the number of slabs for debugging purposes */ 969 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 970 { 971 struct kmem_cache_node *n = get_node(s, node); 972 973 return atomic_long_read(&n->nr_slabs); 974 } 975 976 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 977 { 978 return atomic_long_read(&n->nr_slabs); 979 } 980 981 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 982 { 983 struct kmem_cache_node *n = get_node(s, node); 984 985 /* 986 * May be called early in order to allocate a slab for the 987 * kmem_cache_node structure. Solve the chicken-egg 988 * dilemma by deferring the increment of the count during 989 * bootstrap (see early_kmem_cache_node_alloc). 990 */ 991 if (likely(n)) { 992 atomic_long_inc(&n->nr_slabs); 993 atomic_long_add(objects, &n->total_objects); 994 } 995 } 996 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 997 { 998 struct kmem_cache_node *n = get_node(s, node); 999 1000 atomic_long_dec(&n->nr_slabs); 1001 atomic_long_sub(objects, &n->total_objects); 1002 } 1003 1004 /* Object debug checks for alloc/free paths */ 1005 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1006 void *object) 1007 { 1008 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1009 return; 1010 1011 init_object(s, object, SLUB_RED_INACTIVE); 1012 init_tracking(s, object); 1013 } 1014 1015 static noinline int alloc_debug_processing(struct kmem_cache *s, 1016 struct page *page, 1017 void *object, unsigned long addr) 1018 { 1019 if (!check_slab(s, page)) 1020 goto bad; 1021 1022 if (!check_valid_pointer(s, page, object)) { 1023 object_err(s, page, object, "Freelist Pointer check fails"); 1024 goto bad; 1025 } 1026 1027 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1028 goto bad; 1029 1030 /* Success perform special debug activities for allocs */ 1031 if (s->flags & SLAB_STORE_USER) 1032 set_track(s, object, TRACK_ALLOC, addr); 1033 trace(s, page, object, 1); 1034 init_object(s, object, SLUB_RED_ACTIVE); 1035 return 1; 1036 1037 bad: 1038 if (PageSlab(page)) { 1039 /* 1040 * If this is a slab page then lets do the best we can 1041 * to avoid issues in the future. Marking all objects 1042 * as used avoids touching the remaining objects. 1043 */ 1044 slab_fix(s, "Marking all objects used"); 1045 page->inuse = page->objects; 1046 page->freelist = NULL; 1047 } 1048 return 0; 1049 } 1050 1051 static noinline struct kmem_cache_node *free_debug_processing( 1052 struct kmem_cache *s, struct page *page, void *object, 1053 unsigned long addr, unsigned long *flags) 1054 { 1055 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1056 1057 spin_lock_irqsave(&n->list_lock, *flags); 1058 slab_lock(page); 1059 1060 if (!check_slab(s, page)) 1061 goto fail; 1062 1063 if (!check_valid_pointer(s, page, object)) { 1064 slab_err(s, page, "Invalid object pointer 0x%p", object); 1065 goto fail; 1066 } 1067 1068 if (on_freelist(s, page, object)) { 1069 object_err(s, page, object, "Object already free"); 1070 goto fail; 1071 } 1072 1073 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1074 goto out; 1075 1076 if (unlikely(s != page->slab_cache)) { 1077 if (!PageSlab(page)) { 1078 slab_err(s, page, "Attempt to free object(0x%p) " 1079 "outside of slab", object); 1080 } else if (!page->slab_cache) { 1081 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1082 object); 1083 dump_stack(); 1084 } else 1085 object_err(s, page, object, 1086 "page slab pointer corrupt."); 1087 goto fail; 1088 } 1089 1090 if (s->flags & SLAB_STORE_USER) 1091 set_track(s, object, TRACK_FREE, addr); 1092 trace(s, page, object, 0); 1093 init_object(s, object, SLUB_RED_INACTIVE); 1094 out: 1095 slab_unlock(page); 1096 /* 1097 * Keep node_lock to preserve integrity 1098 * until the object is actually freed 1099 */ 1100 return n; 1101 1102 fail: 1103 slab_unlock(page); 1104 spin_unlock_irqrestore(&n->list_lock, *flags); 1105 slab_fix(s, "Object at 0x%p not freed", object); 1106 return NULL; 1107 } 1108 1109 static int __init setup_slub_debug(char *str) 1110 { 1111 slub_debug = DEBUG_DEFAULT_FLAGS; 1112 if (*str++ != '=' || !*str) 1113 /* 1114 * No options specified. Switch on full debugging. 1115 */ 1116 goto out; 1117 1118 if (*str == ',') 1119 /* 1120 * No options but restriction on slabs. This means full 1121 * debugging for slabs matching a pattern. 1122 */ 1123 goto check_slabs; 1124 1125 if (tolower(*str) == 'o') { 1126 /* 1127 * Avoid enabling debugging on caches if its minimum order 1128 * would increase as a result. 1129 */ 1130 disable_higher_order_debug = 1; 1131 goto out; 1132 } 1133 1134 slub_debug = 0; 1135 if (*str == '-') 1136 /* 1137 * Switch off all debugging measures. 1138 */ 1139 goto out; 1140 1141 /* 1142 * Determine which debug features should be switched on 1143 */ 1144 for (; *str && *str != ','; str++) { 1145 switch (tolower(*str)) { 1146 case 'f': 1147 slub_debug |= SLAB_DEBUG_FREE; 1148 break; 1149 case 'z': 1150 slub_debug |= SLAB_RED_ZONE; 1151 break; 1152 case 'p': 1153 slub_debug |= SLAB_POISON; 1154 break; 1155 case 'u': 1156 slub_debug |= SLAB_STORE_USER; 1157 break; 1158 case 't': 1159 slub_debug |= SLAB_TRACE; 1160 break; 1161 case 'a': 1162 slub_debug |= SLAB_FAILSLAB; 1163 break; 1164 default: 1165 pr_err("slub_debug option '%c' unknown. skipped\n", 1166 *str); 1167 } 1168 } 1169 1170 check_slabs: 1171 if (*str == ',') 1172 slub_debug_slabs = str + 1; 1173 out: 1174 return 1; 1175 } 1176 1177 __setup("slub_debug", setup_slub_debug); 1178 1179 static unsigned long kmem_cache_flags(unsigned long object_size, 1180 unsigned long flags, const char *name, 1181 void (*ctor)(void *)) 1182 { 1183 /* 1184 * Enable debugging if selected on the kernel commandline. 1185 */ 1186 if (slub_debug && (!slub_debug_slabs || (name && 1187 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1188 flags |= slub_debug; 1189 1190 return flags; 1191 } 1192 #else 1193 static inline void setup_object_debug(struct kmem_cache *s, 1194 struct page *page, void *object) {} 1195 1196 static inline int alloc_debug_processing(struct kmem_cache *s, 1197 struct page *page, void *object, unsigned long addr) { return 0; } 1198 1199 static inline struct kmem_cache_node *free_debug_processing( 1200 struct kmem_cache *s, struct page *page, void *object, 1201 unsigned long addr, unsigned long *flags) { return NULL; } 1202 1203 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1204 { return 1; } 1205 static inline int check_object(struct kmem_cache *s, struct page *page, 1206 void *object, u8 val) { return 1; } 1207 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1208 struct page *page) {} 1209 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1210 struct page *page) {} 1211 static inline unsigned long kmem_cache_flags(unsigned long object_size, 1212 unsigned long flags, const char *name, 1213 void (*ctor)(void *)) 1214 { 1215 return flags; 1216 } 1217 #define slub_debug 0 1218 1219 #define disable_higher_order_debug 0 1220 1221 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1222 { return 0; } 1223 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1224 { return 0; } 1225 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1226 int objects) {} 1227 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1228 int objects) {} 1229 1230 #endif /* CONFIG_SLUB_DEBUG */ 1231 1232 /* 1233 * Hooks for other subsystems that check memory allocations. In a typical 1234 * production configuration these hooks all should produce no code at all. 1235 */ 1236 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1237 { 1238 kmemleak_alloc(ptr, size, 1, flags); 1239 } 1240 1241 static inline void kfree_hook(const void *x) 1242 { 1243 kmemleak_free(x); 1244 } 1245 1246 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 1247 { 1248 flags &= gfp_allowed_mask; 1249 lockdep_trace_alloc(flags); 1250 might_sleep_if(flags & __GFP_WAIT); 1251 1252 return should_failslab(s->object_size, flags, s->flags); 1253 } 1254 1255 static inline void slab_post_alloc_hook(struct kmem_cache *s, 1256 gfp_t flags, void *object) 1257 { 1258 flags &= gfp_allowed_mask; 1259 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 1260 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); 1261 } 1262 1263 static inline void slab_free_hook(struct kmem_cache *s, void *x) 1264 { 1265 kmemleak_free_recursive(x, s->flags); 1266 1267 /* 1268 * Trouble is that we may no longer disable interrupts in the fast path 1269 * So in order to make the debug calls that expect irqs to be 1270 * disabled we need to disable interrupts temporarily. 1271 */ 1272 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 1273 { 1274 unsigned long flags; 1275 1276 local_irq_save(flags); 1277 kmemcheck_slab_free(s, x, s->object_size); 1278 debug_check_no_locks_freed(x, s->object_size); 1279 local_irq_restore(flags); 1280 } 1281 #endif 1282 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1283 debug_check_no_obj_freed(x, s->object_size); 1284 } 1285 1286 /* 1287 * Slab allocation and freeing 1288 */ 1289 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1290 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1291 { 1292 struct page *page; 1293 int order = oo_order(oo); 1294 1295 flags |= __GFP_NOTRACK; 1296 1297 if (memcg_charge_slab(s, flags, order)) 1298 return NULL; 1299 1300 if (node == NUMA_NO_NODE) 1301 page = alloc_pages(flags, order); 1302 else 1303 page = alloc_pages_exact_node(node, flags, order); 1304 1305 if (!page) 1306 memcg_uncharge_slab(s, order); 1307 1308 return page; 1309 } 1310 1311 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1312 { 1313 struct page *page; 1314 struct kmem_cache_order_objects oo = s->oo; 1315 gfp_t alloc_gfp; 1316 1317 flags &= gfp_allowed_mask; 1318 1319 if (flags & __GFP_WAIT) 1320 local_irq_enable(); 1321 1322 flags |= s->allocflags; 1323 1324 /* 1325 * Let the initial higher-order allocation fail under memory pressure 1326 * so we fall-back to the minimum order allocation. 1327 */ 1328 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1329 1330 page = alloc_slab_page(s, alloc_gfp, node, oo); 1331 if (unlikely(!page)) { 1332 oo = s->min; 1333 alloc_gfp = flags; 1334 /* 1335 * Allocation may have failed due to fragmentation. 1336 * Try a lower order alloc if possible 1337 */ 1338 page = alloc_slab_page(s, alloc_gfp, node, oo); 1339 1340 if (page) 1341 stat(s, ORDER_FALLBACK); 1342 } 1343 1344 if (kmemcheck_enabled && page 1345 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1346 int pages = 1 << oo_order(oo); 1347 1348 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1349 1350 /* 1351 * Objects from caches that have a constructor don't get 1352 * cleared when they're allocated, so we need to do it here. 1353 */ 1354 if (s->ctor) 1355 kmemcheck_mark_uninitialized_pages(page, pages); 1356 else 1357 kmemcheck_mark_unallocated_pages(page, pages); 1358 } 1359 1360 if (flags & __GFP_WAIT) 1361 local_irq_disable(); 1362 if (!page) 1363 return NULL; 1364 1365 page->objects = oo_objects(oo); 1366 mod_zone_page_state(page_zone(page), 1367 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1368 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1369 1 << oo_order(oo)); 1370 1371 return page; 1372 } 1373 1374 static void setup_object(struct kmem_cache *s, struct page *page, 1375 void *object) 1376 { 1377 setup_object_debug(s, page, object); 1378 if (unlikely(s->ctor)) 1379 s->ctor(object); 1380 } 1381 1382 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1383 { 1384 struct page *page; 1385 void *start; 1386 void *p; 1387 int order; 1388 int idx; 1389 1390 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1391 1392 page = allocate_slab(s, 1393 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1394 if (!page) 1395 goto out; 1396 1397 order = compound_order(page); 1398 inc_slabs_node(s, page_to_nid(page), page->objects); 1399 page->slab_cache = s; 1400 __SetPageSlab(page); 1401 if (page->pfmemalloc) 1402 SetPageSlabPfmemalloc(page); 1403 1404 start = page_address(page); 1405 1406 if (unlikely(s->flags & SLAB_POISON)) 1407 memset(start, POISON_INUSE, PAGE_SIZE << order); 1408 1409 for_each_object_idx(p, idx, s, start, page->objects) { 1410 setup_object(s, page, p); 1411 if (likely(idx < page->objects)) 1412 set_freepointer(s, p, p + s->size); 1413 else 1414 set_freepointer(s, p, NULL); 1415 } 1416 1417 page->freelist = start; 1418 page->inuse = page->objects; 1419 page->frozen = 1; 1420 out: 1421 return page; 1422 } 1423 1424 static void __free_slab(struct kmem_cache *s, struct page *page) 1425 { 1426 int order = compound_order(page); 1427 int pages = 1 << order; 1428 1429 if (kmem_cache_debug(s)) { 1430 void *p; 1431 1432 slab_pad_check(s, page); 1433 for_each_object(p, s, page_address(page), 1434 page->objects) 1435 check_object(s, page, p, SLUB_RED_INACTIVE); 1436 } 1437 1438 kmemcheck_free_shadow(page, compound_order(page)); 1439 1440 mod_zone_page_state(page_zone(page), 1441 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1442 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1443 -pages); 1444 1445 __ClearPageSlabPfmemalloc(page); 1446 __ClearPageSlab(page); 1447 1448 page_mapcount_reset(page); 1449 if (current->reclaim_state) 1450 current->reclaim_state->reclaimed_slab += pages; 1451 __free_pages(page, order); 1452 memcg_uncharge_slab(s, order); 1453 } 1454 1455 #define need_reserve_slab_rcu \ 1456 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1457 1458 static void rcu_free_slab(struct rcu_head *h) 1459 { 1460 struct page *page; 1461 1462 if (need_reserve_slab_rcu) 1463 page = virt_to_head_page(h); 1464 else 1465 page = container_of((struct list_head *)h, struct page, lru); 1466 1467 __free_slab(page->slab_cache, page); 1468 } 1469 1470 static void free_slab(struct kmem_cache *s, struct page *page) 1471 { 1472 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1473 struct rcu_head *head; 1474 1475 if (need_reserve_slab_rcu) { 1476 int order = compound_order(page); 1477 int offset = (PAGE_SIZE << order) - s->reserved; 1478 1479 VM_BUG_ON(s->reserved != sizeof(*head)); 1480 head = page_address(page) + offset; 1481 } else { 1482 /* 1483 * RCU free overloads the RCU head over the LRU 1484 */ 1485 head = (void *)&page->lru; 1486 } 1487 1488 call_rcu(head, rcu_free_slab); 1489 } else 1490 __free_slab(s, page); 1491 } 1492 1493 static void discard_slab(struct kmem_cache *s, struct page *page) 1494 { 1495 dec_slabs_node(s, page_to_nid(page), page->objects); 1496 free_slab(s, page); 1497 } 1498 1499 /* 1500 * Management of partially allocated slabs. 1501 */ 1502 static inline void 1503 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1504 { 1505 n->nr_partial++; 1506 if (tail == DEACTIVATE_TO_TAIL) 1507 list_add_tail(&page->lru, &n->partial); 1508 else 1509 list_add(&page->lru, &n->partial); 1510 } 1511 1512 static inline void add_partial(struct kmem_cache_node *n, 1513 struct page *page, int tail) 1514 { 1515 lockdep_assert_held(&n->list_lock); 1516 __add_partial(n, page, tail); 1517 } 1518 1519 static inline void 1520 __remove_partial(struct kmem_cache_node *n, struct page *page) 1521 { 1522 list_del(&page->lru); 1523 n->nr_partial--; 1524 } 1525 1526 static inline void remove_partial(struct kmem_cache_node *n, 1527 struct page *page) 1528 { 1529 lockdep_assert_held(&n->list_lock); 1530 __remove_partial(n, page); 1531 } 1532 1533 /* 1534 * Remove slab from the partial list, freeze it and 1535 * return the pointer to the freelist. 1536 * 1537 * Returns a list of objects or NULL if it fails. 1538 */ 1539 static inline void *acquire_slab(struct kmem_cache *s, 1540 struct kmem_cache_node *n, struct page *page, 1541 int mode, int *objects) 1542 { 1543 void *freelist; 1544 unsigned long counters; 1545 struct page new; 1546 1547 lockdep_assert_held(&n->list_lock); 1548 1549 /* 1550 * Zap the freelist and set the frozen bit. 1551 * The old freelist is the list of objects for the 1552 * per cpu allocation list. 1553 */ 1554 freelist = page->freelist; 1555 counters = page->counters; 1556 new.counters = counters; 1557 *objects = new.objects - new.inuse; 1558 if (mode) { 1559 new.inuse = page->objects; 1560 new.freelist = NULL; 1561 } else { 1562 new.freelist = freelist; 1563 } 1564 1565 VM_BUG_ON(new.frozen); 1566 new.frozen = 1; 1567 1568 if (!__cmpxchg_double_slab(s, page, 1569 freelist, counters, 1570 new.freelist, new.counters, 1571 "acquire_slab")) 1572 return NULL; 1573 1574 remove_partial(n, page); 1575 WARN_ON(!freelist); 1576 return freelist; 1577 } 1578 1579 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1580 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1581 1582 /* 1583 * Try to allocate a partial slab from a specific node. 1584 */ 1585 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1586 struct kmem_cache_cpu *c, gfp_t flags) 1587 { 1588 struct page *page, *page2; 1589 void *object = NULL; 1590 int available = 0; 1591 int objects; 1592 1593 /* 1594 * Racy check. If we mistakenly see no partial slabs then we 1595 * just allocate an empty slab. If we mistakenly try to get a 1596 * partial slab and there is none available then get_partials() 1597 * will return NULL. 1598 */ 1599 if (!n || !n->nr_partial) 1600 return NULL; 1601 1602 spin_lock(&n->list_lock); 1603 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1604 void *t; 1605 1606 if (!pfmemalloc_match(page, flags)) 1607 continue; 1608 1609 t = acquire_slab(s, n, page, object == NULL, &objects); 1610 if (!t) 1611 break; 1612 1613 available += objects; 1614 if (!object) { 1615 c->page = page; 1616 stat(s, ALLOC_FROM_PARTIAL); 1617 object = t; 1618 } else { 1619 put_cpu_partial(s, page, 0); 1620 stat(s, CPU_PARTIAL_NODE); 1621 } 1622 if (!kmem_cache_has_cpu_partial(s) 1623 || available > s->cpu_partial / 2) 1624 break; 1625 1626 } 1627 spin_unlock(&n->list_lock); 1628 return object; 1629 } 1630 1631 /* 1632 * Get a page from somewhere. Search in increasing NUMA distances. 1633 */ 1634 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1635 struct kmem_cache_cpu *c) 1636 { 1637 #ifdef CONFIG_NUMA 1638 struct zonelist *zonelist; 1639 struct zoneref *z; 1640 struct zone *zone; 1641 enum zone_type high_zoneidx = gfp_zone(flags); 1642 void *object; 1643 unsigned int cpuset_mems_cookie; 1644 1645 /* 1646 * The defrag ratio allows a configuration of the tradeoffs between 1647 * inter node defragmentation and node local allocations. A lower 1648 * defrag_ratio increases the tendency to do local allocations 1649 * instead of attempting to obtain partial slabs from other nodes. 1650 * 1651 * If the defrag_ratio is set to 0 then kmalloc() always 1652 * returns node local objects. If the ratio is higher then kmalloc() 1653 * may return off node objects because partial slabs are obtained 1654 * from other nodes and filled up. 1655 * 1656 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1657 * defrag_ratio = 1000) then every (well almost) allocation will 1658 * first attempt to defrag slab caches on other nodes. This means 1659 * scanning over all nodes to look for partial slabs which may be 1660 * expensive if we do it every time we are trying to find a slab 1661 * with available objects. 1662 */ 1663 if (!s->remote_node_defrag_ratio || 1664 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1665 return NULL; 1666 1667 do { 1668 cpuset_mems_cookie = read_mems_allowed_begin(); 1669 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1670 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1671 struct kmem_cache_node *n; 1672 1673 n = get_node(s, zone_to_nid(zone)); 1674 1675 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1676 n->nr_partial > s->min_partial) { 1677 object = get_partial_node(s, n, c, flags); 1678 if (object) { 1679 /* 1680 * Don't check read_mems_allowed_retry() 1681 * here - if mems_allowed was updated in 1682 * parallel, that was a harmless race 1683 * between allocation and the cpuset 1684 * update 1685 */ 1686 return object; 1687 } 1688 } 1689 } 1690 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1691 #endif 1692 return NULL; 1693 } 1694 1695 /* 1696 * Get a partial page, lock it and return it. 1697 */ 1698 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1699 struct kmem_cache_cpu *c) 1700 { 1701 void *object; 1702 int searchnode = (node == NUMA_NO_NODE) ? numa_mem_id() : node; 1703 1704 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1705 if (object || node != NUMA_NO_NODE) 1706 return object; 1707 1708 return get_any_partial(s, flags, c); 1709 } 1710 1711 #ifdef CONFIG_PREEMPT 1712 /* 1713 * Calculate the next globally unique transaction for disambiguiation 1714 * during cmpxchg. The transactions start with the cpu number and are then 1715 * incremented by CONFIG_NR_CPUS. 1716 */ 1717 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1718 #else 1719 /* 1720 * No preemption supported therefore also no need to check for 1721 * different cpus. 1722 */ 1723 #define TID_STEP 1 1724 #endif 1725 1726 static inline unsigned long next_tid(unsigned long tid) 1727 { 1728 return tid + TID_STEP; 1729 } 1730 1731 static inline unsigned int tid_to_cpu(unsigned long tid) 1732 { 1733 return tid % TID_STEP; 1734 } 1735 1736 static inline unsigned long tid_to_event(unsigned long tid) 1737 { 1738 return tid / TID_STEP; 1739 } 1740 1741 static inline unsigned int init_tid(int cpu) 1742 { 1743 return cpu; 1744 } 1745 1746 static inline void note_cmpxchg_failure(const char *n, 1747 const struct kmem_cache *s, unsigned long tid) 1748 { 1749 #ifdef SLUB_DEBUG_CMPXCHG 1750 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1751 1752 pr_info("%s %s: cmpxchg redo ", n, s->name); 1753 1754 #ifdef CONFIG_PREEMPT 1755 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1756 pr_warn("due to cpu change %d -> %d\n", 1757 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1758 else 1759 #endif 1760 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1761 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1762 tid_to_event(tid), tid_to_event(actual_tid)); 1763 else 1764 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1765 actual_tid, tid, next_tid(tid)); 1766 #endif 1767 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1768 } 1769 1770 static void init_kmem_cache_cpus(struct kmem_cache *s) 1771 { 1772 int cpu; 1773 1774 for_each_possible_cpu(cpu) 1775 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1776 } 1777 1778 /* 1779 * Remove the cpu slab 1780 */ 1781 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1782 void *freelist) 1783 { 1784 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1785 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1786 int lock = 0; 1787 enum slab_modes l = M_NONE, m = M_NONE; 1788 void *nextfree; 1789 int tail = DEACTIVATE_TO_HEAD; 1790 struct page new; 1791 struct page old; 1792 1793 if (page->freelist) { 1794 stat(s, DEACTIVATE_REMOTE_FREES); 1795 tail = DEACTIVATE_TO_TAIL; 1796 } 1797 1798 /* 1799 * Stage one: Free all available per cpu objects back 1800 * to the page freelist while it is still frozen. Leave the 1801 * last one. 1802 * 1803 * There is no need to take the list->lock because the page 1804 * is still frozen. 1805 */ 1806 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1807 void *prior; 1808 unsigned long counters; 1809 1810 do { 1811 prior = page->freelist; 1812 counters = page->counters; 1813 set_freepointer(s, freelist, prior); 1814 new.counters = counters; 1815 new.inuse--; 1816 VM_BUG_ON(!new.frozen); 1817 1818 } while (!__cmpxchg_double_slab(s, page, 1819 prior, counters, 1820 freelist, new.counters, 1821 "drain percpu freelist")); 1822 1823 freelist = nextfree; 1824 } 1825 1826 /* 1827 * Stage two: Ensure that the page is unfrozen while the 1828 * list presence reflects the actual number of objects 1829 * during unfreeze. 1830 * 1831 * We setup the list membership and then perform a cmpxchg 1832 * with the count. If there is a mismatch then the page 1833 * is not unfrozen but the page is on the wrong list. 1834 * 1835 * Then we restart the process which may have to remove 1836 * the page from the list that we just put it on again 1837 * because the number of objects in the slab may have 1838 * changed. 1839 */ 1840 redo: 1841 1842 old.freelist = page->freelist; 1843 old.counters = page->counters; 1844 VM_BUG_ON(!old.frozen); 1845 1846 /* Determine target state of the slab */ 1847 new.counters = old.counters; 1848 if (freelist) { 1849 new.inuse--; 1850 set_freepointer(s, freelist, old.freelist); 1851 new.freelist = freelist; 1852 } else 1853 new.freelist = old.freelist; 1854 1855 new.frozen = 0; 1856 1857 if (!new.inuse && n->nr_partial >= s->min_partial) 1858 m = M_FREE; 1859 else if (new.freelist) { 1860 m = M_PARTIAL; 1861 if (!lock) { 1862 lock = 1; 1863 /* 1864 * Taking the spinlock removes the possiblity 1865 * that acquire_slab() will see a slab page that 1866 * is frozen 1867 */ 1868 spin_lock(&n->list_lock); 1869 } 1870 } else { 1871 m = M_FULL; 1872 if (kmem_cache_debug(s) && !lock) { 1873 lock = 1; 1874 /* 1875 * This also ensures that the scanning of full 1876 * slabs from diagnostic functions will not see 1877 * any frozen slabs. 1878 */ 1879 spin_lock(&n->list_lock); 1880 } 1881 } 1882 1883 if (l != m) { 1884 1885 if (l == M_PARTIAL) 1886 1887 remove_partial(n, page); 1888 1889 else if (l == M_FULL) 1890 1891 remove_full(s, n, page); 1892 1893 if (m == M_PARTIAL) { 1894 1895 add_partial(n, page, tail); 1896 stat(s, tail); 1897 1898 } else if (m == M_FULL) { 1899 1900 stat(s, DEACTIVATE_FULL); 1901 add_full(s, n, page); 1902 1903 } 1904 } 1905 1906 l = m; 1907 if (!__cmpxchg_double_slab(s, page, 1908 old.freelist, old.counters, 1909 new.freelist, new.counters, 1910 "unfreezing slab")) 1911 goto redo; 1912 1913 if (lock) 1914 spin_unlock(&n->list_lock); 1915 1916 if (m == M_FREE) { 1917 stat(s, DEACTIVATE_EMPTY); 1918 discard_slab(s, page); 1919 stat(s, FREE_SLAB); 1920 } 1921 } 1922 1923 /* 1924 * Unfreeze all the cpu partial slabs. 1925 * 1926 * This function must be called with interrupts disabled 1927 * for the cpu using c (or some other guarantee must be there 1928 * to guarantee no concurrent accesses). 1929 */ 1930 static void unfreeze_partials(struct kmem_cache *s, 1931 struct kmem_cache_cpu *c) 1932 { 1933 #ifdef CONFIG_SLUB_CPU_PARTIAL 1934 struct kmem_cache_node *n = NULL, *n2 = NULL; 1935 struct page *page, *discard_page = NULL; 1936 1937 while ((page = c->partial)) { 1938 struct page new; 1939 struct page old; 1940 1941 c->partial = page->next; 1942 1943 n2 = get_node(s, page_to_nid(page)); 1944 if (n != n2) { 1945 if (n) 1946 spin_unlock(&n->list_lock); 1947 1948 n = n2; 1949 spin_lock(&n->list_lock); 1950 } 1951 1952 do { 1953 1954 old.freelist = page->freelist; 1955 old.counters = page->counters; 1956 VM_BUG_ON(!old.frozen); 1957 1958 new.counters = old.counters; 1959 new.freelist = old.freelist; 1960 1961 new.frozen = 0; 1962 1963 } while (!__cmpxchg_double_slab(s, page, 1964 old.freelist, old.counters, 1965 new.freelist, new.counters, 1966 "unfreezing slab")); 1967 1968 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 1969 page->next = discard_page; 1970 discard_page = page; 1971 } else { 1972 add_partial(n, page, DEACTIVATE_TO_TAIL); 1973 stat(s, FREE_ADD_PARTIAL); 1974 } 1975 } 1976 1977 if (n) 1978 spin_unlock(&n->list_lock); 1979 1980 while (discard_page) { 1981 page = discard_page; 1982 discard_page = discard_page->next; 1983 1984 stat(s, DEACTIVATE_EMPTY); 1985 discard_slab(s, page); 1986 stat(s, FREE_SLAB); 1987 } 1988 #endif 1989 } 1990 1991 /* 1992 * Put a page that was just frozen (in __slab_free) into a partial page 1993 * slot if available. This is done without interrupts disabled and without 1994 * preemption disabled. The cmpxchg is racy and may put the partial page 1995 * onto a random cpus partial slot. 1996 * 1997 * If we did not find a slot then simply move all the partials to the 1998 * per node partial list. 1999 */ 2000 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2001 { 2002 #ifdef CONFIG_SLUB_CPU_PARTIAL 2003 struct page *oldpage; 2004 int pages; 2005 int pobjects; 2006 2007 do { 2008 pages = 0; 2009 pobjects = 0; 2010 oldpage = this_cpu_read(s->cpu_slab->partial); 2011 2012 if (oldpage) { 2013 pobjects = oldpage->pobjects; 2014 pages = oldpage->pages; 2015 if (drain && pobjects > s->cpu_partial) { 2016 unsigned long flags; 2017 /* 2018 * partial array is full. Move the existing 2019 * set to the per node partial list. 2020 */ 2021 local_irq_save(flags); 2022 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2023 local_irq_restore(flags); 2024 oldpage = NULL; 2025 pobjects = 0; 2026 pages = 0; 2027 stat(s, CPU_PARTIAL_DRAIN); 2028 } 2029 } 2030 2031 pages++; 2032 pobjects += page->objects - page->inuse; 2033 2034 page->pages = pages; 2035 page->pobjects = pobjects; 2036 page->next = oldpage; 2037 2038 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2039 != oldpage); 2040 #endif 2041 } 2042 2043 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2044 { 2045 stat(s, CPUSLAB_FLUSH); 2046 deactivate_slab(s, c->page, c->freelist); 2047 2048 c->tid = next_tid(c->tid); 2049 c->page = NULL; 2050 c->freelist = NULL; 2051 } 2052 2053 /* 2054 * Flush cpu slab. 2055 * 2056 * Called from IPI handler with interrupts disabled. 2057 */ 2058 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2059 { 2060 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2061 2062 if (likely(c)) { 2063 if (c->page) 2064 flush_slab(s, c); 2065 2066 unfreeze_partials(s, c); 2067 } 2068 } 2069 2070 static void flush_cpu_slab(void *d) 2071 { 2072 struct kmem_cache *s = d; 2073 2074 __flush_cpu_slab(s, smp_processor_id()); 2075 } 2076 2077 static bool has_cpu_slab(int cpu, void *info) 2078 { 2079 struct kmem_cache *s = info; 2080 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2081 2082 return c->page || c->partial; 2083 } 2084 2085 static void flush_all(struct kmem_cache *s) 2086 { 2087 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2088 } 2089 2090 /* 2091 * Check if the objects in a per cpu structure fit numa 2092 * locality expectations. 2093 */ 2094 static inline int node_match(struct page *page, int node) 2095 { 2096 #ifdef CONFIG_NUMA 2097 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2098 return 0; 2099 #endif 2100 return 1; 2101 } 2102 2103 #ifdef CONFIG_SLUB_DEBUG 2104 static int count_free(struct page *page) 2105 { 2106 return page->objects - page->inuse; 2107 } 2108 2109 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2110 { 2111 return atomic_long_read(&n->total_objects); 2112 } 2113 #endif /* CONFIG_SLUB_DEBUG */ 2114 2115 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2116 static unsigned long count_partial(struct kmem_cache_node *n, 2117 int (*get_count)(struct page *)) 2118 { 2119 unsigned long flags; 2120 unsigned long x = 0; 2121 struct page *page; 2122 2123 spin_lock_irqsave(&n->list_lock, flags); 2124 list_for_each_entry(page, &n->partial, lru) 2125 x += get_count(page); 2126 spin_unlock_irqrestore(&n->list_lock, flags); 2127 return x; 2128 } 2129 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2130 2131 static noinline void 2132 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2133 { 2134 #ifdef CONFIG_SLUB_DEBUG 2135 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2136 DEFAULT_RATELIMIT_BURST); 2137 int node; 2138 struct kmem_cache_node *n; 2139 2140 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2141 return; 2142 2143 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2144 nid, gfpflags); 2145 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2146 s->name, s->object_size, s->size, oo_order(s->oo), 2147 oo_order(s->min)); 2148 2149 if (oo_order(s->min) > get_order(s->object_size)) 2150 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2151 s->name); 2152 2153 for_each_kmem_cache_node(s, node, n) { 2154 unsigned long nr_slabs; 2155 unsigned long nr_objs; 2156 unsigned long nr_free; 2157 2158 nr_free = count_partial(n, count_free); 2159 nr_slabs = node_nr_slabs(n); 2160 nr_objs = node_nr_objs(n); 2161 2162 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2163 node, nr_slabs, nr_objs, nr_free); 2164 } 2165 #endif 2166 } 2167 2168 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2169 int node, struct kmem_cache_cpu **pc) 2170 { 2171 void *freelist; 2172 struct kmem_cache_cpu *c = *pc; 2173 struct page *page; 2174 2175 freelist = get_partial(s, flags, node, c); 2176 2177 if (freelist) 2178 return freelist; 2179 2180 page = new_slab(s, flags, node); 2181 if (page) { 2182 c = raw_cpu_ptr(s->cpu_slab); 2183 if (c->page) 2184 flush_slab(s, c); 2185 2186 /* 2187 * No other reference to the page yet so we can 2188 * muck around with it freely without cmpxchg 2189 */ 2190 freelist = page->freelist; 2191 page->freelist = NULL; 2192 2193 stat(s, ALLOC_SLAB); 2194 c->page = page; 2195 *pc = c; 2196 } else 2197 freelist = NULL; 2198 2199 return freelist; 2200 } 2201 2202 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2203 { 2204 if (unlikely(PageSlabPfmemalloc(page))) 2205 return gfp_pfmemalloc_allowed(gfpflags); 2206 2207 return true; 2208 } 2209 2210 /* 2211 * Check the page->freelist of a page and either transfer the freelist to the 2212 * per cpu freelist or deactivate the page. 2213 * 2214 * The page is still frozen if the return value is not NULL. 2215 * 2216 * If this function returns NULL then the page has been unfrozen. 2217 * 2218 * This function must be called with interrupt disabled. 2219 */ 2220 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2221 { 2222 struct page new; 2223 unsigned long counters; 2224 void *freelist; 2225 2226 do { 2227 freelist = page->freelist; 2228 counters = page->counters; 2229 2230 new.counters = counters; 2231 VM_BUG_ON(!new.frozen); 2232 2233 new.inuse = page->objects; 2234 new.frozen = freelist != NULL; 2235 2236 } while (!__cmpxchg_double_slab(s, page, 2237 freelist, counters, 2238 NULL, new.counters, 2239 "get_freelist")); 2240 2241 return freelist; 2242 } 2243 2244 /* 2245 * Slow path. The lockless freelist is empty or we need to perform 2246 * debugging duties. 2247 * 2248 * Processing is still very fast if new objects have been freed to the 2249 * regular freelist. In that case we simply take over the regular freelist 2250 * as the lockless freelist and zap the regular freelist. 2251 * 2252 * If that is not working then we fall back to the partial lists. We take the 2253 * first element of the freelist as the object to allocate now and move the 2254 * rest of the freelist to the lockless freelist. 2255 * 2256 * And if we were unable to get a new slab from the partial slab lists then 2257 * we need to allocate a new slab. This is the slowest path since it involves 2258 * a call to the page allocator and the setup of a new slab. 2259 */ 2260 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2261 unsigned long addr, struct kmem_cache_cpu *c) 2262 { 2263 void *freelist; 2264 struct page *page; 2265 unsigned long flags; 2266 2267 local_irq_save(flags); 2268 #ifdef CONFIG_PREEMPT 2269 /* 2270 * We may have been preempted and rescheduled on a different 2271 * cpu before disabling interrupts. Need to reload cpu area 2272 * pointer. 2273 */ 2274 c = this_cpu_ptr(s->cpu_slab); 2275 #endif 2276 2277 page = c->page; 2278 if (!page) 2279 goto new_slab; 2280 redo: 2281 2282 if (unlikely(!node_match(page, node))) { 2283 stat(s, ALLOC_NODE_MISMATCH); 2284 deactivate_slab(s, page, c->freelist); 2285 c->page = NULL; 2286 c->freelist = NULL; 2287 goto new_slab; 2288 } 2289 2290 /* 2291 * By rights, we should be searching for a slab page that was 2292 * PFMEMALLOC but right now, we are losing the pfmemalloc 2293 * information when the page leaves the per-cpu allocator 2294 */ 2295 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2296 deactivate_slab(s, page, c->freelist); 2297 c->page = NULL; 2298 c->freelist = NULL; 2299 goto new_slab; 2300 } 2301 2302 /* must check again c->freelist in case of cpu migration or IRQ */ 2303 freelist = c->freelist; 2304 if (freelist) 2305 goto load_freelist; 2306 2307 freelist = get_freelist(s, page); 2308 2309 if (!freelist) { 2310 c->page = NULL; 2311 stat(s, DEACTIVATE_BYPASS); 2312 goto new_slab; 2313 } 2314 2315 stat(s, ALLOC_REFILL); 2316 2317 load_freelist: 2318 /* 2319 * freelist is pointing to the list of objects to be used. 2320 * page is pointing to the page from which the objects are obtained. 2321 * That page must be frozen for per cpu allocations to work. 2322 */ 2323 VM_BUG_ON(!c->page->frozen); 2324 c->freelist = get_freepointer(s, freelist); 2325 c->tid = next_tid(c->tid); 2326 local_irq_restore(flags); 2327 return freelist; 2328 2329 new_slab: 2330 2331 if (c->partial) { 2332 page = c->page = c->partial; 2333 c->partial = page->next; 2334 stat(s, CPU_PARTIAL_ALLOC); 2335 c->freelist = NULL; 2336 goto redo; 2337 } 2338 2339 freelist = new_slab_objects(s, gfpflags, node, &c); 2340 2341 if (unlikely(!freelist)) { 2342 slab_out_of_memory(s, gfpflags, node); 2343 local_irq_restore(flags); 2344 return NULL; 2345 } 2346 2347 page = c->page; 2348 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2349 goto load_freelist; 2350 2351 /* Only entered in the debug case */ 2352 if (kmem_cache_debug(s) && 2353 !alloc_debug_processing(s, page, freelist, addr)) 2354 goto new_slab; /* Slab failed checks. Next slab needed */ 2355 2356 deactivate_slab(s, page, get_freepointer(s, freelist)); 2357 c->page = NULL; 2358 c->freelist = NULL; 2359 local_irq_restore(flags); 2360 return freelist; 2361 } 2362 2363 /* 2364 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2365 * have the fastpath folded into their functions. So no function call 2366 * overhead for requests that can be satisfied on the fastpath. 2367 * 2368 * The fastpath works by first checking if the lockless freelist can be used. 2369 * If not then __slab_alloc is called for slow processing. 2370 * 2371 * Otherwise we can simply pick the next object from the lockless free list. 2372 */ 2373 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2374 gfp_t gfpflags, int node, unsigned long addr) 2375 { 2376 void **object; 2377 struct kmem_cache_cpu *c; 2378 struct page *page; 2379 unsigned long tid; 2380 2381 if (slab_pre_alloc_hook(s, gfpflags)) 2382 return NULL; 2383 2384 s = memcg_kmem_get_cache(s, gfpflags); 2385 redo: 2386 /* 2387 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2388 * enabled. We may switch back and forth between cpus while 2389 * reading from one cpu area. That does not matter as long 2390 * as we end up on the original cpu again when doing the cmpxchg. 2391 * 2392 * Preemption is disabled for the retrieval of the tid because that 2393 * must occur from the current processor. We cannot allow rescheduling 2394 * on a different processor between the determination of the pointer 2395 * and the retrieval of the tid. 2396 */ 2397 preempt_disable(); 2398 c = this_cpu_ptr(s->cpu_slab); 2399 2400 /* 2401 * The transaction ids are globally unique per cpu and per operation on 2402 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2403 * occurs on the right processor and that there was no operation on the 2404 * linked list in between. 2405 */ 2406 tid = c->tid; 2407 preempt_enable(); 2408 2409 object = c->freelist; 2410 page = c->page; 2411 if (unlikely(!object || !node_match(page, node))) { 2412 object = __slab_alloc(s, gfpflags, node, addr, c); 2413 stat(s, ALLOC_SLOWPATH); 2414 } else { 2415 void *next_object = get_freepointer_safe(s, object); 2416 2417 /* 2418 * The cmpxchg will only match if there was no additional 2419 * operation and if we are on the right processor. 2420 * 2421 * The cmpxchg does the following atomically (without lock 2422 * semantics!) 2423 * 1. Relocate first pointer to the current per cpu area. 2424 * 2. Verify that tid and freelist have not been changed 2425 * 3. If they were not changed replace tid and freelist 2426 * 2427 * Since this is without lock semantics the protection is only 2428 * against code executing on this cpu *not* from access by 2429 * other cpus. 2430 */ 2431 if (unlikely(!this_cpu_cmpxchg_double( 2432 s->cpu_slab->freelist, s->cpu_slab->tid, 2433 object, tid, 2434 next_object, next_tid(tid)))) { 2435 2436 note_cmpxchg_failure("slab_alloc", s, tid); 2437 goto redo; 2438 } 2439 prefetch_freepointer(s, next_object); 2440 stat(s, ALLOC_FASTPATH); 2441 } 2442 2443 if (unlikely(gfpflags & __GFP_ZERO) && object) 2444 memset(object, 0, s->object_size); 2445 2446 slab_post_alloc_hook(s, gfpflags, object); 2447 2448 return object; 2449 } 2450 2451 static __always_inline void *slab_alloc(struct kmem_cache *s, 2452 gfp_t gfpflags, unsigned long addr) 2453 { 2454 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2455 } 2456 2457 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2458 { 2459 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2460 2461 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2462 s->size, gfpflags); 2463 2464 return ret; 2465 } 2466 EXPORT_SYMBOL(kmem_cache_alloc); 2467 2468 #ifdef CONFIG_TRACING 2469 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2470 { 2471 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2472 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2473 return ret; 2474 } 2475 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2476 #endif 2477 2478 #ifdef CONFIG_NUMA 2479 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2480 { 2481 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2482 2483 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2484 s->object_size, s->size, gfpflags, node); 2485 2486 return ret; 2487 } 2488 EXPORT_SYMBOL(kmem_cache_alloc_node); 2489 2490 #ifdef CONFIG_TRACING 2491 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2492 gfp_t gfpflags, 2493 int node, size_t size) 2494 { 2495 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2496 2497 trace_kmalloc_node(_RET_IP_, ret, 2498 size, s->size, gfpflags, node); 2499 return ret; 2500 } 2501 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2502 #endif 2503 #endif 2504 2505 /* 2506 * Slow patch handling. This may still be called frequently since objects 2507 * have a longer lifetime than the cpu slabs in most processing loads. 2508 * 2509 * So we still attempt to reduce cache line usage. Just take the slab 2510 * lock and free the item. If there is no additional partial page 2511 * handling required then we can return immediately. 2512 */ 2513 static void __slab_free(struct kmem_cache *s, struct page *page, 2514 void *x, unsigned long addr) 2515 { 2516 void *prior; 2517 void **object = (void *)x; 2518 int was_frozen; 2519 struct page new; 2520 unsigned long counters; 2521 struct kmem_cache_node *n = NULL; 2522 unsigned long uninitialized_var(flags); 2523 2524 stat(s, FREE_SLOWPATH); 2525 2526 if (kmem_cache_debug(s) && 2527 !(n = free_debug_processing(s, page, x, addr, &flags))) 2528 return; 2529 2530 do { 2531 if (unlikely(n)) { 2532 spin_unlock_irqrestore(&n->list_lock, flags); 2533 n = NULL; 2534 } 2535 prior = page->freelist; 2536 counters = page->counters; 2537 set_freepointer(s, object, prior); 2538 new.counters = counters; 2539 was_frozen = new.frozen; 2540 new.inuse--; 2541 if ((!new.inuse || !prior) && !was_frozen) { 2542 2543 if (kmem_cache_has_cpu_partial(s) && !prior) { 2544 2545 /* 2546 * Slab was on no list before and will be 2547 * partially empty 2548 * We can defer the list move and instead 2549 * freeze it. 2550 */ 2551 new.frozen = 1; 2552 2553 } else { /* Needs to be taken off a list */ 2554 2555 n = get_node(s, page_to_nid(page)); 2556 /* 2557 * Speculatively acquire the list_lock. 2558 * If the cmpxchg does not succeed then we may 2559 * drop the list_lock without any processing. 2560 * 2561 * Otherwise the list_lock will synchronize with 2562 * other processors updating the list of slabs. 2563 */ 2564 spin_lock_irqsave(&n->list_lock, flags); 2565 2566 } 2567 } 2568 2569 } while (!cmpxchg_double_slab(s, page, 2570 prior, counters, 2571 object, new.counters, 2572 "__slab_free")); 2573 2574 if (likely(!n)) { 2575 2576 /* 2577 * If we just froze the page then put it onto the 2578 * per cpu partial list. 2579 */ 2580 if (new.frozen && !was_frozen) { 2581 put_cpu_partial(s, page, 1); 2582 stat(s, CPU_PARTIAL_FREE); 2583 } 2584 /* 2585 * The list lock was not taken therefore no list 2586 * activity can be necessary. 2587 */ 2588 if (was_frozen) 2589 stat(s, FREE_FROZEN); 2590 return; 2591 } 2592 2593 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2594 goto slab_empty; 2595 2596 /* 2597 * Objects left in the slab. If it was not on the partial list before 2598 * then add it. 2599 */ 2600 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2601 if (kmem_cache_debug(s)) 2602 remove_full(s, n, page); 2603 add_partial(n, page, DEACTIVATE_TO_TAIL); 2604 stat(s, FREE_ADD_PARTIAL); 2605 } 2606 spin_unlock_irqrestore(&n->list_lock, flags); 2607 return; 2608 2609 slab_empty: 2610 if (prior) { 2611 /* 2612 * Slab on the partial list. 2613 */ 2614 remove_partial(n, page); 2615 stat(s, FREE_REMOVE_PARTIAL); 2616 } else { 2617 /* Slab must be on the full list */ 2618 remove_full(s, n, page); 2619 } 2620 2621 spin_unlock_irqrestore(&n->list_lock, flags); 2622 stat(s, FREE_SLAB); 2623 discard_slab(s, page); 2624 } 2625 2626 /* 2627 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2628 * can perform fastpath freeing without additional function calls. 2629 * 2630 * The fastpath is only possible if we are freeing to the current cpu slab 2631 * of this processor. This typically the case if we have just allocated 2632 * the item before. 2633 * 2634 * If fastpath is not possible then fall back to __slab_free where we deal 2635 * with all sorts of special processing. 2636 */ 2637 static __always_inline void slab_free(struct kmem_cache *s, 2638 struct page *page, void *x, unsigned long addr) 2639 { 2640 void **object = (void *)x; 2641 struct kmem_cache_cpu *c; 2642 unsigned long tid; 2643 2644 slab_free_hook(s, x); 2645 2646 redo: 2647 /* 2648 * Determine the currently cpus per cpu slab. 2649 * The cpu may change afterward. However that does not matter since 2650 * data is retrieved via this pointer. If we are on the same cpu 2651 * during the cmpxchg then the free will succedd. 2652 */ 2653 preempt_disable(); 2654 c = this_cpu_ptr(s->cpu_slab); 2655 2656 tid = c->tid; 2657 preempt_enable(); 2658 2659 if (likely(page == c->page)) { 2660 set_freepointer(s, object, c->freelist); 2661 2662 if (unlikely(!this_cpu_cmpxchg_double( 2663 s->cpu_slab->freelist, s->cpu_slab->tid, 2664 c->freelist, tid, 2665 object, next_tid(tid)))) { 2666 2667 note_cmpxchg_failure("slab_free", s, tid); 2668 goto redo; 2669 } 2670 stat(s, FREE_FASTPATH); 2671 } else 2672 __slab_free(s, page, x, addr); 2673 2674 } 2675 2676 void kmem_cache_free(struct kmem_cache *s, void *x) 2677 { 2678 s = cache_from_obj(s, x); 2679 if (!s) 2680 return; 2681 slab_free(s, virt_to_head_page(x), x, _RET_IP_); 2682 trace_kmem_cache_free(_RET_IP_, x); 2683 } 2684 EXPORT_SYMBOL(kmem_cache_free); 2685 2686 /* 2687 * Object placement in a slab is made very easy because we always start at 2688 * offset 0. If we tune the size of the object to the alignment then we can 2689 * get the required alignment by putting one properly sized object after 2690 * another. 2691 * 2692 * Notice that the allocation order determines the sizes of the per cpu 2693 * caches. Each processor has always one slab available for allocations. 2694 * Increasing the allocation order reduces the number of times that slabs 2695 * must be moved on and off the partial lists and is therefore a factor in 2696 * locking overhead. 2697 */ 2698 2699 /* 2700 * Mininum / Maximum order of slab pages. This influences locking overhead 2701 * and slab fragmentation. A higher order reduces the number of partial slabs 2702 * and increases the number of allocations possible without having to 2703 * take the list_lock. 2704 */ 2705 static int slub_min_order; 2706 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2707 static int slub_min_objects; 2708 2709 /* 2710 * Merge control. If this is set then no merging of slab caches will occur. 2711 * (Could be removed. This was introduced to pacify the merge skeptics.) 2712 */ 2713 static int slub_nomerge; 2714 2715 /* 2716 * Calculate the order of allocation given an slab object size. 2717 * 2718 * The order of allocation has significant impact on performance and other 2719 * system components. Generally order 0 allocations should be preferred since 2720 * order 0 does not cause fragmentation in the page allocator. Larger objects 2721 * be problematic to put into order 0 slabs because there may be too much 2722 * unused space left. We go to a higher order if more than 1/16th of the slab 2723 * would be wasted. 2724 * 2725 * In order to reach satisfactory performance we must ensure that a minimum 2726 * number of objects is in one slab. Otherwise we may generate too much 2727 * activity on the partial lists which requires taking the list_lock. This is 2728 * less a concern for large slabs though which are rarely used. 2729 * 2730 * slub_max_order specifies the order where we begin to stop considering the 2731 * number of objects in a slab as critical. If we reach slub_max_order then 2732 * we try to keep the page order as low as possible. So we accept more waste 2733 * of space in favor of a small page order. 2734 * 2735 * Higher order allocations also allow the placement of more objects in a 2736 * slab and thereby reduce object handling overhead. If the user has 2737 * requested a higher mininum order then we start with that one instead of 2738 * the smallest order which will fit the object. 2739 */ 2740 static inline int slab_order(int size, int min_objects, 2741 int max_order, int fract_leftover, int reserved) 2742 { 2743 int order; 2744 int rem; 2745 int min_order = slub_min_order; 2746 2747 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2748 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2749 2750 for (order = max(min_order, 2751 fls(min_objects * size - 1) - PAGE_SHIFT); 2752 order <= max_order; order++) { 2753 2754 unsigned long slab_size = PAGE_SIZE << order; 2755 2756 if (slab_size < min_objects * size + reserved) 2757 continue; 2758 2759 rem = (slab_size - reserved) % size; 2760 2761 if (rem <= slab_size / fract_leftover) 2762 break; 2763 2764 } 2765 2766 return order; 2767 } 2768 2769 static inline int calculate_order(int size, int reserved) 2770 { 2771 int order; 2772 int min_objects; 2773 int fraction; 2774 int max_objects; 2775 2776 /* 2777 * Attempt to find best configuration for a slab. This 2778 * works by first attempting to generate a layout with 2779 * the best configuration and backing off gradually. 2780 * 2781 * First we reduce the acceptable waste in a slab. Then 2782 * we reduce the minimum objects required in a slab. 2783 */ 2784 min_objects = slub_min_objects; 2785 if (!min_objects) 2786 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2787 max_objects = order_objects(slub_max_order, size, reserved); 2788 min_objects = min(min_objects, max_objects); 2789 2790 while (min_objects > 1) { 2791 fraction = 16; 2792 while (fraction >= 4) { 2793 order = slab_order(size, min_objects, 2794 slub_max_order, fraction, reserved); 2795 if (order <= slub_max_order) 2796 return order; 2797 fraction /= 2; 2798 } 2799 min_objects--; 2800 } 2801 2802 /* 2803 * We were unable to place multiple objects in a slab. Now 2804 * lets see if we can place a single object there. 2805 */ 2806 order = slab_order(size, 1, slub_max_order, 1, reserved); 2807 if (order <= slub_max_order) 2808 return order; 2809 2810 /* 2811 * Doh this slab cannot be placed using slub_max_order. 2812 */ 2813 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2814 if (order < MAX_ORDER) 2815 return order; 2816 return -ENOSYS; 2817 } 2818 2819 static void 2820 init_kmem_cache_node(struct kmem_cache_node *n) 2821 { 2822 n->nr_partial = 0; 2823 spin_lock_init(&n->list_lock); 2824 INIT_LIST_HEAD(&n->partial); 2825 #ifdef CONFIG_SLUB_DEBUG 2826 atomic_long_set(&n->nr_slabs, 0); 2827 atomic_long_set(&n->total_objects, 0); 2828 INIT_LIST_HEAD(&n->full); 2829 #endif 2830 } 2831 2832 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2833 { 2834 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2835 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 2836 2837 /* 2838 * Must align to double word boundary for the double cmpxchg 2839 * instructions to work; see __pcpu_double_call_return_bool(). 2840 */ 2841 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2842 2 * sizeof(void *)); 2843 2844 if (!s->cpu_slab) 2845 return 0; 2846 2847 init_kmem_cache_cpus(s); 2848 2849 return 1; 2850 } 2851 2852 static struct kmem_cache *kmem_cache_node; 2853 2854 /* 2855 * No kmalloc_node yet so do it by hand. We know that this is the first 2856 * slab on the node for this slabcache. There are no concurrent accesses 2857 * possible. 2858 * 2859 * Note that this function only works on the kmem_cache_node 2860 * when allocating for the kmem_cache_node. This is used for bootstrapping 2861 * memory on a fresh node that has no slab structures yet. 2862 */ 2863 static void early_kmem_cache_node_alloc(int node) 2864 { 2865 struct page *page; 2866 struct kmem_cache_node *n; 2867 2868 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2869 2870 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2871 2872 BUG_ON(!page); 2873 if (page_to_nid(page) != node) { 2874 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 2875 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 2876 } 2877 2878 n = page->freelist; 2879 BUG_ON(!n); 2880 page->freelist = get_freepointer(kmem_cache_node, n); 2881 page->inuse = 1; 2882 page->frozen = 0; 2883 kmem_cache_node->node[node] = n; 2884 #ifdef CONFIG_SLUB_DEBUG 2885 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2886 init_tracking(kmem_cache_node, n); 2887 #endif 2888 init_kmem_cache_node(n); 2889 inc_slabs_node(kmem_cache_node, node, page->objects); 2890 2891 /* 2892 * No locks need to be taken here as it has just been 2893 * initialized and there is no concurrent access. 2894 */ 2895 __add_partial(n, page, DEACTIVATE_TO_HEAD); 2896 } 2897 2898 static void free_kmem_cache_nodes(struct kmem_cache *s) 2899 { 2900 int node; 2901 struct kmem_cache_node *n; 2902 2903 for_each_kmem_cache_node(s, node, n) { 2904 kmem_cache_free(kmem_cache_node, n); 2905 s->node[node] = NULL; 2906 } 2907 } 2908 2909 static int init_kmem_cache_nodes(struct kmem_cache *s) 2910 { 2911 int node; 2912 2913 for_each_node_state(node, N_NORMAL_MEMORY) { 2914 struct kmem_cache_node *n; 2915 2916 if (slab_state == DOWN) { 2917 early_kmem_cache_node_alloc(node); 2918 continue; 2919 } 2920 n = kmem_cache_alloc_node(kmem_cache_node, 2921 GFP_KERNEL, node); 2922 2923 if (!n) { 2924 free_kmem_cache_nodes(s); 2925 return 0; 2926 } 2927 2928 s->node[node] = n; 2929 init_kmem_cache_node(n); 2930 } 2931 return 1; 2932 } 2933 2934 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2935 { 2936 if (min < MIN_PARTIAL) 2937 min = MIN_PARTIAL; 2938 else if (min > MAX_PARTIAL) 2939 min = MAX_PARTIAL; 2940 s->min_partial = min; 2941 } 2942 2943 /* 2944 * calculate_sizes() determines the order and the distribution of data within 2945 * a slab object. 2946 */ 2947 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2948 { 2949 unsigned long flags = s->flags; 2950 unsigned long size = s->object_size; 2951 int order; 2952 2953 /* 2954 * Round up object size to the next word boundary. We can only 2955 * place the free pointer at word boundaries and this determines 2956 * the possible location of the free pointer. 2957 */ 2958 size = ALIGN(size, sizeof(void *)); 2959 2960 #ifdef CONFIG_SLUB_DEBUG 2961 /* 2962 * Determine if we can poison the object itself. If the user of 2963 * the slab may touch the object after free or before allocation 2964 * then we should never poison the object itself. 2965 */ 2966 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2967 !s->ctor) 2968 s->flags |= __OBJECT_POISON; 2969 else 2970 s->flags &= ~__OBJECT_POISON; 2971 2972 2973 /* 2974 * If we are Redzoning then check if there is some space between the 2975 * end of the object and the free pointer. If not then add an 2976 * additional word to have some bytes to store Redzone information. 2977 */ 2978 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 2979 size += sizeof(void *); 2980 #endif 2981 2982 /* 2983 * With that we have determined the number of bytes in actual use 2984 * by the object. This is the potential offset to the free pointer. 2985 */ 2986 s->inuse = size; 2987 2988 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2989 s->ctor)) { 2990 /* 2991 * Relocate free pointer after the object if it is not 2992 * permitted to overwrite the first word of the object on 2993 * kmem_cache_free. 2994 * 2995 * This is the case if we do RCU, have a constructor or 2996 * destructor or are poisoning the objects. 2997 */ 2998 s->offset = size; 2999 size += sizeof(void *); 3000 } 3001 3002 #ifdef CONFIG_SLUB_DEBUG 3003 if (flags & SLAB_STORE_USER) 3004 /* 3005 * Need to store information about allocs and frees after 3006 * the object. 3007 */ 3008 size += 2 * sizeof(struct track); 3009 3010 if (flags & SLAB_RED_ZONE) 3011 /* 3012 * Add some empty padding so that we can catch 3013 * overwrites from earlier objects rather than let 3014 * tracking information or the free pointer be 3015 * corrupted if a user writes before the start 3016 * of the object. 3017 */ 3018 size += sizeof(void *); 3019 #endif 3020 3021 /* 3022 * SLUB stores one object immediately after another beginning from 3023 * offset 0. In order to align the objects we have to simply size 3024 * each object to conform to the alignment. 3025 */ 3026 size = ALIGN(size, s->align); 3027 s->size = size; 3028 if (forced_order >= 0) 3029 order = forced_order; 3030 else 3031 order = calculate_order(size, s->reserved); 3032 3033 if (order < 0) 3034 return 0; 3035 3036 s->allocflags = 0; 3037 if (order) 3038 s->allocflags |= __GFP_COMP; 3039 3040 if (s->flags & SLAB_CACHE_DMA) 3041 s->allocflags |= GFP_DMA; 3042 3043 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3044 s->allocflags |= __GFP_RECLAIMABLE; 3045 3046 /* 3047 * Determine the number of objects per slab 3048 */ 3049 s->oo = oo_make(order, size, s->reserved); 3050 s->min = oo_make(get_order(size), size, s->reserved); 3051 if (oo_objects(s->oo) > oo_objects(s->max)) 3052 s->max = s->oo; 3053 3054 return !!oo_objects(s->oo); 3055 } 3056 3057 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3058 { 3059 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3060 s->reserved = 0; 3061 3062 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3063 s->reserved = sizeof(struct rcu_head); 3064 3065 if (!calculate_sizes(s, -1)) 3066 goto error; 3067 if (disable_higher_order_debug) { 3068 /* 3069 * Disable debugging flags that store metadata if the min slab 3070 * order increased. 3071 */ 3072 if (get_order(s->size) > get_order(s->object_size)) { 3073 s->flags &= ~DEBUG_METADATA_FLAGS; 3074 s->offset = 0; 3075 if (!calculate_sizes(s, -1)) 3076 goto error; 3077 } 3078 } 3079 3080 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3081 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3082 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3083 /* Enable fast mode */ 3084 s->flags |= __CMPXCHG_DOUBLE; 3085 #endif 3086 3087 /* 3088 * The larger the object size is, the more pages we want on the partial 3089 * list to avoid pounding the page allocator excessively. 3090 */ 3091 set_min_partial(s, ilog2(s->size) / 2); 3092 3093 /* 3094 * cpu_partial determined the maximum number of objects kept in the 3095 * per cpu partial lists of a processor. 3096 * 3097 * Per cpu partial lists mainly contain slabs that just have one 3098 * object freed. If they are used for allocation then they can be 3099 * filled up again with minimal effort. The slab will never hit the 3100 * per node partial lists and therefore no locking will be required. 3101 * 3102 * This setting also determines 3103 * 3104 * A) The number of objects from per cpu partial slabs dumped to the 3105 * per node list when we reach the limit. 3106 * B) The number of objects in cpu partial slabs to extract from the 3107 * per node list when we run out of per cpu objects. We only fetch 3108 * 50% to keep some capacity around for frees. 3109 */ 3110 if (!kmem_cache_has_cpu_partial(s)) 3111 s->cpu_partial = 0; 3112 else if (s->size >= PAGE_SIZE) 3113 s->cpu_partial = 2; 3114 else if (s->size >= 1024) 3115 s->cpu_partial = 6; 3116 else if (s->size >= 256) 3117 s->cpu_partial = 13; 3118 else 3119 s->cpu_partial = 30; 3120 3121 #ifdef CONFIG_NUMA 3122 s->remote_node_defrag_ratio = 1000; 3123 #endif 3124 if (!init_kmem_cache_nodes(s)) 3125 goto error; 3126 3127 if (alloc_kmem_cache_cpus(s)) 3128 return 0; 3129 3130 free_kmem_cache_nodes(s); 3131 error: 3132 if (flags & SLAB_PANIC) 3133 panic("Cannot create slab %s size=%lu realsize=%u " 3134 "order=%u offset=%u flags=%lx\n", 3135 s->name, (unsigned long)s->size, s->size, 3136 oo_order(s->oo), s->offset, flags); 3137 return -EINVAL; 3138 } 3139 3140 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3141 const char *text) 3142 { 3143 #ifdef CONFIG_SLUB_DEBUG 3144 void *addr = page_address(page); 3145 void *p; 3146 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3147 sizeof(long), GFP_ATOMIC); 3148 if (!map) 3149 return; 3150 slab_err(s, page, text, s->name); 3151 slab_lock(page); 3152 3153 get_map(s, page, map); 3154 for_each_object(p, s, addr, page->objects) { 3155 3156 if (!test_bit(slab_index(p, s, addr), map)) { 3157 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3158 print_tracking(s, p); 3159 } 3160 } 3161 slab_unlock(page); 3162 kfree(map); 3163 #endif 3164 } 3165 3166 /* 3167 * Attempt to free all partial slabs on a node. 3168 * This is called from kmem_cache_close(). We must be the last thread 3169 * using the cache and therefore we do not need to lock anymore. 3170 */ 3171 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3172 { 3173 struct page *page, *h; 3174 3175 list_for_each_entry_safe(page, h, &n->partial, lru) { 3176 if (!page->inuse) { 3177 __remove_partial(n, page); 3178 discard_slab(s, page); 3179 } else { 3180 list_slab_objects(s, page, 3181 "Objects remaining in %s on kmem_cache_close()"); 3182 } 3183 } 3184 } 3185 3186 /* 3187 * Release all resources used by a slab cache. 3188 */ 3189 static inline int kmem_cache_close(struct kmem_cache *s) 3190 { 3191 int node; 3192 struct kmem_cache_node *n; 3193 3194 flush_all(s); 3195 /* Attempt to free all objects */ 3196 for_each_kmem_cache_node(s, node, n) { 3197 free_partial(s, n); 3198 if (n->nr_partial || slabs_node(s, node)) 3199 return 1; 3200 } 3201 free_percpu(s->cpu_slab); 3202 free_kmem_cache_nodes(s); 3203 return 0; 3204 } 3205 3206 int __kmem_cache_shutdown(struct kmem_cache *s) 3207 { 3208 return kmem_cache_close(s); 3209 } 3210 3211 /******************************************************************** 3212 * Kmalloc subsystem 3213 *******************************************************************/ 3214 3215 static int __init setup_slub_min_order(char *str) 3216 { 3217 get_option(&str, &slub_min_order); 3218 3219 return 1; 3220 } 3221 3222 __setup("slub_min_order=", setup_slub_min_order); 3223 3224 static int __init setup_slub_max_order(char *str) 3225 { 3226 get_option(&str, &slub_max_order); 3227 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3228 3229 return 1; 3230 } 3231 3232 __setup("slub_max_order=", setup_slub_max_order); 3233 3234 static int __init setup_slub_min_objects(char *str) 3235 { 3236 get_option(&str, &slub_min_objects); 3237 3238 return 1; 3239 } 3240 3241 __setup("slub_min_objects=", setup_slub_min_objects); 3242 3243 static int __init setup_slub_nomerge(char *str) 3244 { 3245 slub_nomerge = 1; 3246 return 1; 3247 } 3248 3249 __setup("slub_nomerge", setup_slub_nomerge); 3250 3251 void *__kmalloc(size_t size, gfp_t flags) 3252 { 3253 struct kmem_cache *s; 3254 void *ret; 3255 3256 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3257 return kmalloc_large(size, flags); 3258 3259 s = kmalloc_slab(size, flags); 3260 3261 if (unlikely(ZERO_OR_NULL_PTR(s))) 3262 return s; 3263 3264 ret = slab_alloc(s, flags, _RET_IP_); 3265 3266 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3267 3268 return ret; 3269 } 3270 EXPORT_SYMBOL(__kmalloc); 3271 3272 #ifdef CONFIG_NUMA 3273 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3274 { 3275 struct page *page; 3276 void *ptr = NULL; 3277 3278 flags |= __GFP_COMP | __GFP_NOTRACK; 3279 page = alloc_kmem_pages_node(node, flags, get_order(size)); 3280 if (page) 3281 ptr = page_address(page); 3282 3283 kmalloc_large_node_hook(ptr, size, flags); 3284 return ptr; 3285 } 3286 3287 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3288 { 3289 struct kmem_cache *s; 3290 void *ret; 3291 3292 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3293 ret = kmalloc_large_node(size, flags, node); 3294 3295 trace_kmalloc_node(_RET_IP_, ret, 3296 size, PAGE_SIZE << get_order(size), 3297 flags, node); 3298 3299 return ret; 3300 } 3301 3302 s = kmalloc_slab(size, flags); 3303 3304 if (unlikely(ZERO_OR_NULL_PTR(s))) 3305 return s; 3306 3307 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3308 3309 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3310 3311 return ret; 3312 } 3313 EXPORT_SYMBOL(__kmalloc_node); 3314 #endif 3315 3316 size_t ksize(const void *object) 3317 { 3318 struct page *page; 3319 3320 if (unlikely(object == ZERO_SIZE_PTR)) 3321 return 0; 3322 3323 page = virt_to_head_page(object); 3324 3325 if (unlikely(!PageSlab(page))) { 3326 WARN_ON(!PageCompound(page)); 3327 return PAGE_SIZE << compound_order(page); 3328 } 3329 3330 return slab_ksize(page->slab_cache); 3331 } 3332 EXPORT_SYMBOL(ksize); 3333 3334 void kfree(const void *x) 3335 { 3336 struct page *page; 3337 void *object = (void *)x; 3338 3339 trace_kfree(_RET_IP_, x); 3340 3341 if (unlikely(ZERO_OR_NULL_PTR(x))) 3342 return; 3343 3344 page = virt_to_head_page(x); 3345 if (unlikely(!PageSlab(page))) { 3346 BUG_ON(!PageCompound(page)); 3347 kfree_hook(x); 3348 __free_kmem_pages(page, compound_order(page)); 3349 return; 3350 } 3351 slab_free(page->slab_cache, page, object, _RET_IP_); 3352 } 3353 EXPORT_SYMBOL(kfree); 3354 3355 /* 3356 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 3357 * the remaining slabs by the number of items in use. The slabs with the 3358 * most items in use come first. New allocations will then fill those up 3359 * and thus they can be removed from the partial lists. 3360 * 3361 * The slabs with the least items are placed last. This results in them 3362 * being allocated from last increasing the chance that the last objects 3363 * are freed in them. 3364 */ 3365 int __kmem_cache_shrink(struct kmem_cache *s) 3366 { 3367 int node; 3368 int i; 3369 struct kmem_cache_node *n; 3370 struct page *page; 3371 struct page *t; 3372 int objects = oo_objects(s->max); 3373 struct list_head *slabs_by_inuse = 3374 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 3375 unsigned long flags; 3376 3377 if (!slabs_by_inuse) 3378 return -ENOMEM; 3379 3380 flush_all(s); 3381 for_each_kmem_cache_node(s, node, n) { 3382 if (!n->nr_partial) 3383 continue; 3384 3385 for (i = 0; i < objects; i++) 3386 INIT_LIST_HEAD(slabs_by_inuse + i); 3387 3388 spin_lock_irqsave(&n->list_lock, flags); 3389 3390 /* 3391 * Build lists indexed by the items in use in each slab. 3392 * 3393 * Note that concurrent frees may occur while we hold the 3394 * list_lock. page->inuse here is the upper limit. 3395 */ 3396 list_for_each_entry_safe(page, t, &n->partial, lru) { 3397 list_move(&page->lru, slabs_by_inuse + page->inuse); 3398 if (!page->inuse) 3399 n->nr_partial--; 3400 } 3401 3402 /* 3403 * Rebuild the partial list with the slabs filled up most 3404 * first and the least used slabs at the end. 3405 */ 3406 for (i = objects - 1; i > 0; i--) 3407 list_splice(slabs_by_inuse + i, n->partial.prev); 3408 3409 spin_unlock_irqrestore(&n->list_lock, flags); 3410 3411 /* Release empty slabs */ 3412 list_for_each_entry_safe(page, t, slabs_by_inuse, lru) 3413 discard_slab(s, page); 3414 } 3415 3416 kfree(slabs_by_inuse); 3417 return 0; 3418 } 3419 3420 static int slab_mem_going_offline_callback(void *arg) 3421 { 3422 struct kmem_cache *s; 3423 3424 mutex_lock(&slab_mutex); 3425 list_for_each_entry(s, &slab_caches, list) 3426 __kmem_cache_shrink(s); 3427 mutex_unlock(&slab_mutex); 3428 3429 return 0; 3430 } 3431 3432 static void slab_mem_offline_callback(void *arg) 3433 { 3434 struct kmem_cache_node *n; 3435 struct kmem_cache *s; 3436 struct memory_notify *marg = arg; 3437 int offline_node; 3438 3439 offline_node = marg->status_change_nid_normal; 3440 3441 /* 3442 * If the node still has available memory. we need kmem_cache_node 3443 * for it yet. 3444 */ 3445 if (offline_node < 0) 3446 return; 3447 3448 mutex_lock(&slab_mutex); 3449 list_for_each_entry(s, &slab_caches, list) { 3450 n = get_node(s, offline_node); 3451 if (n) { 3452 /* 3453 * if n->nr_slabs > 0, slabs still exist on the node 3454 * that is going down. We were unable to free them, 3455 * and offline_pages() function shouldn't call this 3456 * callback. So, we must fail. 3457 */ 3458 BUG_ON(slabs_node(s, offline_node)); 3459 3460 s->node[offline_node] = NULL; 3461 kmem_cache_free(kmem_cache_node, n); 3462 } 3463 } 3464 mutex_unlock(&slab_mutex); 3465 } 3466 3467 static int slab_mem_going_online_callback(void *arg) 3468 { 3469 struct kmem_cache_node *n; 3470 struct kmem_cache *s; 3471 struct memory_notify *marg = arg; 3472 int nid = marg->status_change_nid_normal; 3473 int ret = 0; 3474 3475 /* 3476 * If the node's memory is already available, then kmem_cache_node is 3477 * already created. Nothing to do. 3478 */ 3479 if (nid < 0) 3480 return 0; 3481 3482 /* 3483 * We are bringing a node online. No memory is available yet. We must 3484 * allocate a kmem_cache_node structure in order to bring the node 3485 * online. 3486 */ 3487 mutex_lock(&slab_mutex); 3488 list_for_each_entry(s, &slab_caches, list) { 3489 /* 3490 * XXX: kmem_cache_alloc_node will fallback to other nodes 3491 * since memory is not yet available from the node that 3492 * is brought up. 3493 */ 3494 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3495 if (!n) { 3496 ret = -ENOMEM; 3497 goto out; 3498 } 3499 init_kmem_cache_node(n); 3500 s->node[nid] = n; 3501 } 3502 out: 3503 mutex_unlock(&slab_mutex); 3504 return ret; 3505 } 3506 3507 static int slab_memory_callback(struct notifier_block *self, 3508 unsigned long action, void *arg) 3509 { 3510 int ret = 0; 3511 3512 switch (action) { 3513 case MEM_GOING_ONLINE: 3514 ret = slab_mem_going_online_callback(arg); 3515 break; 3516 case MEM_GOING_OFFLINE: 3517 ret = slab_mem_going_offline_callback(arg); 3518 break; 3519 case MEM_OFFLINE: 3520 case MEM_CANCEL_ONLINE: 3521 slab_mem_offline_callback(arg); 3522 break; 3523 case MEM_ONLINE: 3524 case MEM_CANCEL_OFFLINE: 3525 break; 3526 } 3527 if (ret) 3528 ret = notifier_from_errno(ret); 3529 else 3530 ret = NOTIFY_OK; 3531 return ret; 3532 } 3533 3534 static struct notifier_block slab_memory_callback_nb = { 3535 .notifier_call = slab_memory_callback, 3536 .priority = SLAB_CALLBACK_PRI, 3537 }; 3538 3539 /******************************************************************** 3540 * Basic setup of slabs 3541 *******************************************************************/ 3542 3543 /* 3544 * Used for early kmem_cache structures that were allocated using 3545 * the page allocator. Allocate them properly then fix up the pointers 3546 * that may be pointing to the wrong kmem_cache structure. 3547 */ 3548 3549 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 3550 { 3551 int node; 3552 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 3553 struct kmem_cache_node *n; 3554 3555 memcpy(s, static_cache, kmem_cache->object_size); 3556 3557 /* 3558 * This runs very early, and only the boot processor is supposed to be 3559 * up. Even if it weren't true, IRQs are not up so we couldn't fire 3560 * IPIs around. 3561 */ 3562 __flush_cpu_slab(s, smp_processor_id()); 3563 for_each_kmem_cache_node(s, node, n) { 3564 struct page *p; 3565 3566 list_for_each_entry(p, &n->partial, lru) 3567 p->slab_cache = s; 3568 3569 #ifdef CONFIG_SLUB_DEBUG 3570 list_for_each_entry(p, &n->full, lru) 3571 p->slab_cache = s; 3572 #endif 3573 } 3574 list_add(&s->list, &slab_caches); 3575 return s; 3576 } 3577 3578 void __init kmem_cache_init(void) 3579 { 3580 static __initdata struct kmem_cache boot_kmem_cache, 3581 boot_kmem_cache_node; 3582 3583 if (debug_guardpage_minorder()) 3584 slub_max_order = 0; 3585 3586 kmem_cache_node = &boot_kmem_cache_node; 3587 kmem_cache = &boot_kmem_cache; 3588 3589 create_boot_cache(kmem_cache_node, "kmem_cache_node", 3590 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 3591 3592 register_hotmemory_notifier(&slab_memory_callback_nb); 3593 3594 /* Able to allocate the per node structures */ 3595 slab_state = PARTIAL; 3596 3597 create_boot_cache(kmem_cache, "kmem_cache", 3598 offsetof(struct kmem_cache, node) + 3599 nr_node_ids * sizeof(struct kmem_cache_node *), 3600 SLAB_HWCACHE_ALIGN); 3601 3602 kmem_cache = bootstrap(&boot_kmem_cache); 3603 3604 /* 3605 * Allocate kmem_cache_node properly from the kmem_cache slab. 3606 * kmem_cache_node is separately allocated so no need to 3607 * update any list pointers. 3608 */ 3609 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 3610 3611 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3612 create_kmalloc_caches(0); 3613 3614 #ifdef CONFIG_SMP 3615 register_cpu_notifier(&slab_notifier); 3616 #endif 3617 3618 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n", 3619 cache_line_size(), 3620 slub_min_order, slub_max_order, slub_min_objects, 3621 nr_cpu_ids, nr_node_ids); 3622 } 3623 3624 void __init kmem_cache_init_late(void) 3625 { 3626 } 3627 3628 /* 3629 * Find a mergeable slab cache 3630 */ 3631 static int slab_unmergeable(struct kmem_cache *s) 3632 { 3633 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3634 return 1; 3635 3636 if (!is_root_cache(s)) 3637 return 1; 3638 3639 if (s->ctor) 3640 return 1; 3641 3642 /* 3643 * We may have set a slab to be unmergeable during bootstrap. 3644 */ 3645 if (s->refcount < 0) 3646 return 1; 3647 3648 return 0; 3649 } 3650 3651 static struct kmem_cache *find_mergeable(size_t size, size_t align, 3652 unsigned long flags, const char *name, void (*ctor)(void *)) 3653 { 3654 struct kmem_cache *s; 3655 3656 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3657 return NULL; 3658 3659 if (ctor) 3660 return NULL; 3661 3662 size = ALIGN(size, sizeof(void *)); 3663 align = calculate_alignment(flags, align, size); 3664 size = ALIGN(size, align); 3665 flags = kmem_cache_flags(size, flags, name, NULL); 3666 3667 list_for_each_entry(s, &slab_caches, list) { 3668 if (slab_unmergeable(s)) 3669 continue; 3670 3671 if (size > s->size) 3672 continue; 3673 3674 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3675 continue; 3676 /* 3677 * Check if alignment is compatible. 3678 * Courtesy of Adrian Drzewiecki 3679 */ 3680 if ((s->size & ~(align - 1)) != s->size) 3681 continue; 3682 3683 if (s->size - size >= sizeof(void *)) 3684 continue; 3685 3686 return s; 3687 } 3688 return NULL; 3689 } 3690 3691 struct kmem_cache * 3692 __kmem_cache_alias(const char *name, size_t size, size_t align, 3693 unsigned long flags, void (*ctor)(void *)) 3694 { 3695 struct kmem_cache *s; 3696 3697 s = find_mergeable(size, align, flags, name, ctor); 3698 if (s) { 3699 int i; 3700 struct kmem_cache *c; 3701 3702 s->refcount++; 3703 3704 /* 3705 * Adjust the object sizes so that we clear 3706 * the complete object on kzalloc. 3707 */ 3708 s->object_size = max(s->object_size, (int)size); 3709 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3710 3711 for_each_memcg_cache_index(i) { 3712 c = cache_from_memcg_idx(s, i); 3713 if (!c) 3714 continue; 3715 c->object_size = s->object_size; 3716 c->inuse = max_t(int, c->inuse, 3717 ALIGN(size, sizeof(void *))); 3718 } 3719 3720 if (sysfs_slab_alias(s, name)) { 3721 s->refcount--; 3722 s = NULL; 3723 } 3724 } 3725 3726 return s; 3727 } 3728 3729 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 3730 { 3731 int err; 3732 3733 err = kmem_cache_open(s, flags); 3734 if (err) 3735 return err; 3736 3737 /* Mutex is not taken during early boot */ 3738 if (slab_state <= UP) 3739 return 0; 3740 3741 memcg_propagate_slab_attrs(s); 3742 err = sysfs_slab_add(s); 3743 if (err) 3744 kmem_cache_close(s); 3745 3746 return err; 3747 } 3748 3749 #ifdef CONFIG_SMP 3750 /* 3751 * Use the cpu notifier to insure that the cpu slabs are flushed when 3752 * necessary. 3753 */ 3754 static int slab_cpuup_callback(struct notifier_block *nfb, 3755 unsigned long action, void *hcpu) 3756 { 3757 long cpu = (long)hcpu; 3758 struct kmem_cache *s; 3759 unsigned long flags; 3760 3761 switch (action) { 3762 case CPU_UP_CANCELED: 3763 case CPU_UP_CANCELED_FROZEN: 3764 case CPU_DEAD: 3765 case CPU_DEAD_FROZEN: 3766 mutex_lock(&slab_mutex); 3767 list_for_each_entry(s, &slab_caches, list) { 3768 local_irq_save(flags); 3769 __flush_cpu_slab(s, cpu); 3770 local_irq_restore(flags); 3771 } 3772 mutex_unlock(&slab_mutex); 3773 break; 3774 default: 3775 break; 3776 } 3777 return NOTIFY_OK; 3778 } 3779 3780 static struct notifier_block slab_notifier = { 3781 .notifier_call = slab_cpuup_callback 3782 }; 3783 3784 #endif 3785 3786 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3787 { 3788 struct kmem_cache *s; 3789 void *ret; 3790 3791 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3792 return kmalloc_large(size, gfpflags); 3793 3794 s = kmalloc_slab(size, gfpflags); 3795 3796 if (unlikely(ZERO_OR_NULL_PTR(s))) 3797 return s; 3798 3799 ret = slab_alloc(s, gfpflags, caller); 3800 3801 /* Honor the call site pointer we received. */ 3802 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3803 3804 return ret; 3805 } 3806 3807 #ifdef CONFIG_NUMA 3808 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3809 int node, unsigned long caller) 3810 { 3811 struct kmem_cache *s; 3812 void *ret; 3813 3814 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3815 ret = kmalloc_large_node(size, gfpflags, node); 3816 3817 trace_kmalloc_node(caller, ret, 3818 size, PAGE_SIZE << get_order(size), 3819 gfpflags, node); 3820 3821 return ret; 3822 } 3823 3824 s = kmalloc_slab(size, gfpflags); 3825 3826 if (unlikely(ZERO_OR_NULL_PTR(s))) 3827 return s; 3828 3829 ret = slab_alloc_node(s, gfpflags, node, caller); 3830 3831 /* Honor the call site pointer we received. */ 3832 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3833 3834 return ret; 3835 } 3836 #endif 3837 3838 #ifdef CONFIG_SYSFS 3839 static int count_inuse(struct page *page) 3840 { 3841 return page->inuse; 3842 } 3843 3844 static int count_total(struct page *page) 3845 { 3846 return page->objects; 3847 } 3848 #endif 3849 3850 #ifdef CONFIG_SLUB_DEBUG 3851 static int validate_slab(struct kmem_cache *s, struct page *page, 3852 unsigned long *map) 3853 { 3854 void *p; 3855 void *addr = page_address(page); 3856 3857 if (!check_slab(s, page) || 3858 !on_freelist(s, page, NULL)) 3859 return 0; 3860 3861 /* Now we know that a valid freelist exists */ 3862 bitmap_zero(map, page->objects); 3863 3864 get_map(s, page, map); 3865 for_each_object(p, s, addr, page->objects) { 3866 if (test_bit(slab_index(p, s, addr), map)) 3867 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 3868 return 0; 3869 } 3870 3871 for_each_object(p, s, addr, page->objects) 3872 if (!test_bit(slab_index(p, s, addr), map)) 3873 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 3874 return 0; 3875 return 1; 3876 } 3877 3878 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3879 unsigned long *map) 3880 { 3881 slab_lock(page); 3882 validate_slab(s, page, map); 3883 slab_unlock(page); 3884 } 3885 3886 static int validate_slab_node(struct kmem_cache *s, 3887 struct kmem_cache_node *n, unsigned long *map) 3888 { 3889 unsigned long count = 0; 3890 struct page *page; 3891 unsigned long flags; 3892 3893 spin_lock_irqsave(&n->list_lock, flags); 3894 3895 list_for_each_entry(page, &n->partial, lru) { 3896 validate_slab_slab(s, page, map); 3897 count++; 3898 } 3899 if (count != n->nr_partial) 3900 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 3901 s->name, count, n->nr_partial); 3902 3903 if (!(s->flags & SLAB_STORE_USER)) 3904 goto out; 3905 3906 list_for_each_entry(page, &n->full, lru) { 3907 validate_slab_slab(s, page, map); 3908 count++; 3909 } 3910 if (count != atomic_long_read(&n->nr_slabs)) 3911 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 3912 s->name, count, atomic_long_read(&n->nr_slabs)); 3913 3914 out: 3915 spin_unlock_irqrestore(&n->list_lock, flags); 3916 return count; 3917 } 3918 3919 static long validate_slab_cache(struct kmem_cache *s) 3920 { 3921 int node; 3922 unsigned long count = 0; 3923 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3924 sizeof(unsigned long), GFP_KERNEL); 3925 struct kmem_cache_node *n; 3926 3927 if (!map) 3928 return -ENOMEM; 3929 3930 flush_all(s); 3931 for_each_kmem_cache_node(s, node, n) 3932 count += validate_slab_node(s, n, map); 3933 kfree(map); 3934 return count; 3935 } 3936 /* 3937 * Generate lists of code addresses where slabcache objects are allocated 3938 * and freed. 3939 */ 3940 3941 struct location { 3942 unsigned long count; 3943 unsigned long addr; 3944 long long sum_time; 3945 long min_time; 3946 long max_time; 3947 long min_pid; 3948 long max_pid; 3949 DECLARE_BITMAP(cpus, NR_CPUS); 3950 nodemask_t nodes; 3951 }; 3952 3953 struct loc_track { 3954 unsigned long max; 3955 unsigned long count; 3956 struct location *loc; 3957 }; 3958 3959 static void free_loc_track(struct loc_track *t) 3960 { 3961 if (t->max) 3962 free_pages((unsigned long)t->loc, 3963 get_order(sizeof(struct location) * t->max)); 3964 } 3965 3966 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3967 { 3968 struct location *l; 3969 int order; 3970 3971 order = get_order(sizeof(struct location) * max); 3972 3973 l = (void *)__get_free_pages(flags, order); 3974 if (!l) 3975 return 0; 3976 3977 if (t->count) { 3978 memcpy(l, t->loc, sizeof(struct location) * t->count); 3979 free_loc_track(t); 3980 } 3981 t->max = max; 3982 t->loc = l; 3983 return 1; 3984 } 3985 3986 static int add_location(struct loc_track *t, struct kmem_cache *s, 3987 const struct track *track) 3988 { 3989 long start, end, pos; 3990 struct location *l; 3991 unsigned long caddr; 3992 unsigned long age = jiffies - track->when; 3993 3994 start = -1; 3995 end = t->count; 3996 3997 for ( ; ; ) { 3998 pos = start + (end - start + 1) / 2; 3999 4000 /* 4001 * There is nothing at "end". If we end up there 4002 * we need to add something to before end. 4003 */ 4004 if (pos == end) 4005 break; 4006 4007 caddr = t->loc[pos].addr; 4008 if (track->addr == caddr) { 4009 4010 l = &t->loc[pos]; 4011 l->count++; 4012 if (track->when) { 4013 l->sum_time += age; 4014 if (age < l->min_time) 4015 l->min_time = age; 4016 if (age > l->max_time) 4017 l->max_time = age; 4018 4019 if (track->pid < l->min_pid) 4020 l->min_pid = track->pid; 4021 if (track->pid > l->max_pid) 4022 l->max_pid = track->pid; 4023 4024 cpumask_set_cpu(track->cpu, 4025 to_cpumask(l->cpus)); 4026 } 4027 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4028 return 1; 4029 } 4030 4031 if (track->addr < caddr) 4032 end = pos; 4033 else 4034 start = pos; 4035 } 4036 4037 /* 4038 * Not found. Insert new tracking element. 4039 */ 4040 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4041 return 0; 4042 4043 l = t->loc + pos; 4044 if (pos < t->count) 4045 memmove(l + 1, l, 4046 (t->count - pos) * sizeof(struct location)); 4047 t->count++; 4048 l->count = 1; 4049 l->addr = track->addr; 4050 l->sum_time = age; 4051 l->min_time = age; 4052 l->max_time = age; 4053 l->min_pid = track->pid; 4054 l->max_pid = track->pid; 4055 cpumask_clear(to_cpumask(l->cpus)); 4056 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4057 nodes_clear(l->nodes); 4058 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4059 return 1; 4060 } 4061 4062 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4063 struct page *page, enum track_item alloc, 4064 unsigned long *map) 4065 { 4066 void *addr = page_address(page); 4067 void *p; 4068 4069 bitmap_zero(map, page->objects); 4070 get_map(s, page, map); 4071 4072 for_each_object(p, s, addr, page->objects) 4073 if (!test_bit(slab_index(p, s, addr), map)) 4074 add_location(t, s, get_track(s, p, alloc)); 4075 } 4076 4077 static int list_locations(struct kmem_cache *s, char *buf, 4078 enum track_item alloc) 4079 { 4080 int len = 0; 4081 unsigned long i; 4082 struct loc_track t = { 0, 0, NULL }; 4083 int node; 4084 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4085 sizeof(unsigned long), GFP_KERNEL); 4086 struct kmem_cache_node *n; 4087 4088 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4089 GFP_TEMPORARY)) { 4090 kfree(map); 4091 return sprintf(buf, "Out of memory\n"); 4092 } 4093 /* Push back cpu slabs */ 4094 flush_all(s); 4095 4096 for_each_kmem_cache_node(s, node, n) { 4097 unsigned long flags; 4098 struct page *page; 4099 4100 if (!atomic_long_read(&n->nr_slabs)) 4101 continue; 4102 4103 spin_lock_irqsave(&n->list_lock, flags); 4104 list_for_each_entry(page, &n->partial, lru) 4105 process_slab(&t, s, page, alloc, map); 4106 list_for_each_entry(page, &n->full, lru) 4107 process_slab(&t, s, page, alloc, map); 4108 spin_unlock_irqrestore(&n->list_lock, flags); 4109 } 4110 4111 for (i = 0; i < t.count; i++) { 4112 struct location *l = &t.loc[i]; 4113 4114 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4115 break; 4116 len += sprintf(buf + len, "%7ld ", l->count); 4117 4118 if (l->addr) 4119 len += sprintf(buf + len, "%pS", (void *)l->addr); 4120 else 4121 len += sprintf(buf + len, "<not-available>"); 4122 4123 if (l->sum_time != l->min_time) { 4124 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4125 l->min_time, 4126 (long)div_u64(l->sum_time, l->count), 4127 l->max_time); 4128 } else 4129 len += sprintf(buf + len, " age=%ld", 4130 l->min_time); 4131 4132 if (l->min_pid != l->max_pid) 4133 len += sprintf(buf + len, " pid=%ld-%ld", 4134 l->min_pid, l->max_pid); 4135 else 4136 len += sprintf(buf + len, " pid=%ld", 4137 l->min_pid); 4138 4139 if (num_online_cpus() > 1 && 4140 !cpumask_empty(to_cpumask(l->cpus)) && 4141 len < PAGE_SIZE - 60) { 4142 len += sprintf(buf + len, " cpus="); 4143 len += cpulist_scnprintf(buf + len, 4144 PAGE_SIZE - len - 50, 4145 to_cpumask(l->cpus)); 4146 } 4147 4148 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4149 len < PAGE_SIZE - 60) { 4150 len += sprintf(buf + len, " nodes="); 4151 len += nodelist_scnprintf(buf + len, 4152 PAGE_SIZE - len - 50, 4153 l->nodes); 4154 } 4155 4156 len += sprintf(buf + len, "\n"); 4157 } 4158 4159 free_loc_track(&t); 4160 kfree(map); 4161 if (!t.count) 4162 len += sprintf(buf, "No data\n"); 4163 return len; 4164 } 4165 #endif 4166 4167 #ifdef SLUB_RESILIENCY_TEST 4168 static void __init resiliency_test(void) 4169 { 4170 u8 *p; 4171 4172 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4173 4174 pr_err("SLUB resiliency testing\n"); 4175 pr_err("-----------------------\n"); 4176 pr_err("A. Corruption after allocation\n"); 4177 4178 p = kzalloc(16, GFP_KERNEL); 4179 p[16] = 0x12; 4180 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4181 p + 16); 4182 4183 validate_slab_cache(kmalloc_caches[4]); 4184 4185 /* Hmmm... The next two are dangerous */ 4186 p = kzalloc(32, GFP_KERNEL); 4187 p[32 + sizeof(void *)] = 0x34; 4188 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4189 p); 4190 pr_err("If allocated object is overwritten then not detectable\n\n"); 4191 4192 validate_slab_cache(kmalloc_caches[5]); 4193 p = kzalloc(64, GFP_KERNEL); 4194 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4195 *p = 0x56; 4196 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4197 p); 4198 pr_err("If allocated object is overwritten then not detectable\n\n"); 4199 validate_slab_cache(kmalloc_caches[6]); 4200 4201 pr_err("\nB. Corruption after free\n"); 4202 p = kzalloc(128, GFP_KERNEL); 4203 kfree(p); 4204 *p = 0x78; 4205 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4206 validate_slab_cache(kmalloc_caches[7]); 4207 4208 p = kzalloc(256, GFP_KERNEL); 4209 kfree(p); 4210 p[50] = 0x9a; 4211 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4212 validate_slab_cache(kmalloc_caches[8]); 4213 4214 p = kzalloc(512, GFP_KERNEL); 4215 kfree(p); 4216 p[512] = 0xab; 4217 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4218 validate_slab_cache(kmalloc_caches[9]); 4219 } 4220 #else 4221 #ifdef CONFIG_SYSFS 4222 static void resiliency_test(void) {}; 4223 #endif 4224 #endif 4225 4226 #ifdef CONFIG_SYSFS 4227 enum slab_stat_type { 4228 SL_ALL, /* All slabs */ 4229 SL_PARTIAL, /* Only partially allocated slabs */ 4230 SL_CPU, /* Only slabs used for cpu caches */ 4231 SL_OBJECTS, /* Determine allocated objects not slabs */ 4232 SL_TOTAL /* Determine object capacity not slabs */ 4233 }; 4234 4235 #define SO_ALL (1 << SL_ALL) 4236 #define SO_PARTIAL (1 << SL_PARTIAL) 4237 #define SO_CPU (1 << SL_CPU) 4238 #define SO_OBJECTS (1 << SL_OBJECTS) 4239 #define SO_TOTAL (1 << SL_TOTAL) 4240 4241 static ssize_t show_slab_objects(struct kmem_cache *s, 4242 char *buf, unsigned long flags) 4243 { 4244 unsigned long total = 0; 4245 int node; 4246 int x; 4247 unsigned long *nodes; 4248 4249 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4250 if (!nodes) 4251 return -ENOMEM; 4252 4253 if (flags & SO_CPU) { 4254 int cpu; 4255 4256 for_each_possible_cpu(cpu) { 4257 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4258 cpu); 4259 int node; 4260 struct page *page; 4261 4262 page = ACCESS_ONCE(c->page); 4263 if (!page) 4264 continue; 4265 4266 node = page_to_nid(page); 4267 if (flags & SO_TOTAL) 4268 x = page->objects; 4269 else if (flags & SO_OBJECTS) 4270 x = page->inuse; 4271 else 4272 x = 1; 4273 4274 total += x; 4275 nodes[node] += x; 4276 4277 page = ACCESS_ONCE(c->partial); 4278 if (page) { 4279 node = page_to_nid(page); 4280 if (flags & SO_TOTAL) 4281 WARN_ON_ONCE(1); 4282 else if (flags & SO_OBJECTS) 4283 WARN_ON_ONCE(1); 4284 else 4285 x = page->pages; 4286 total += x; 4287 nodes[node] += x; 4288 } 4289 } 4290 } 4291 4292 get_online_mems(); 4293 #ifdef CONFIG_SLUB_DEBUG 4294 if (flags & SO_ALL) { 4295 struct kmem_cache_node *n; 4296 4297 for_each_kmem_cache_node(s, node, n) { 4298 4299 if (flags & SO_TOTAL) 4300 x = atomic_long_read(&n->total_objects); 4301 else if (flags & SO_OBJECTS) 4302 x = atomic_long_read(&n->total_objects) - 4303 count_partial(n, count_free); 4304 else 4305 x = atomic_long_read(&n->nr_slabs); 4306 total += x; 4307 nodes[node] += x; 4308 } 4309 4310 } else 4311 #endif 4312 if (flags & SO_PARTIAL) { 4313 struct kmem_cache_node *n; 4314 4315 for_each_kmem_cache_node(s, node, n) { 4316 if (flags & SO_TOTAL) 4317 x = count_partial(n, count_total); 4318 else if (flags & SO_OBJECTS) 4319 x = count_partial(n, count_inuse); 4320 else 4321 x = n->nr_partial; 4322 total += x; 4323 nodes[node] += x; 4324 } 4325 } 4326 x = sprintf(buf, "%lu", total); 4327 #ifdef CONFIG_NUMA 4328 for (node = 0; node < nr_node_ids; node++) 4329 if (nodes[node]) 4330 x += sprintf(buf + x, " N%d=%lu", 4331 node, nodes[node]); 4332 #endif 4333 put_online_mems(); 4334 kfree(nodes); 4335 return x + sprintf(buf + x, "\n"); 4336 } 4337 4338 #ifdef CONFIG_SLUB_DEBUG 4339 static int any_slab_objects(struct kmem_cache *s) 4340 { 4341 int node; 4342 struct kmem_cache_node *n; 4343 4344 for_each_kmem_cache_node(s, node, n) 4345 if (atomic_long_read(&n->total_objects)) 4346 return 1; 4347 4348 return 0; 4349 } 4350 #endif 4351 4352 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4353 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4354 4355 struct slab_attribute { 4356 struct attribute attr; 4357 ssize_t (*show)(struct kmem_cache *s, char *buf); 4358 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4359 }; 4360 4361 #define SLAB_ATTR_RO(_name) \ 4362 static struct slab_attribute _name##_attr = \ 4363 __ATTR(_name, 0400, _name##_show, NULL) 4364 4365 #define SLAB_ATTR(_name) \ 4366 static struct slab_attribute _name##_attr = \ 4367 __ATTR(_name, 0600, _name##_show, _name##_store) 4368 4369 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4370 { 4371 return sprintf(buf, "%d\n", s->size); 4372 } 4373 SLAB_ATTR_RO(slab_size); 4374 4375 static ssize_t align_show(struct kmem_cache *s, char *buf) 4376 { 4377 return sprintf(buf, "%d\n", s->align); 4378 } 4379 SLAB_ATTR_RO(align); 4380 4381 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4382 { 4383 return sprintf(buf, "%d\n", s->object_size); 4384 } 4385 SLAB_ATTR_RO(object_size); 4386 4387 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4388 { 4389 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4390 } 4391 SLAB_ATTR_RO(objs_per_slab); 4392 4393 static ssize_t order_store(struct kmem_cache *s, 4394 const char *buf, size_t length) 4395 { 4396 unsigned long order; 4397 int err; 4398 4399 err = kstrtoul(buf, 10, &order); 4400 if (err) 4401 return err; 4402 4403 if (order > slub_max_order || order < slub_min_order) 4404 return -EINVAL; 4405 4406 calculate_sizes(s, order); 4407 return length; 4408 } 4409 4410 static ssize_t order_show(struct kmem_cache *s, char *buf) 4411 { 4412 return sprintf(buf, "%d\n", oo_order(s->oo)); 4413 } 4414 SLAB_ATTR(order); 4415 4416 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4417 { 4418 return sprintf(buf, "%lu\n", s->min_partial); 4419 } 4420 4421 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4422 size_t length) 4423 { 4424 unsigned long min; 4425 int err; 4426 4427 err = kstrtoul(buf, 10, &min); 4428 if (err) 4429 return err; 4430 4431 set_min_partial(s, min); 4432 return length; 4433 } 4434 SLAB_ATTR(min_partial); 4435 4436 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4437 { 4438 return sprintf(buf, "%u\n", s->cpu_partial); 4439 } 4440 4441 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4442 size_t length) 4443 { 4444 unsigned long objects; 4445 int err; 4446 4447 err = kstrtoul(buf, 10, &objects); 4448 if (err) 4449 return err; 4450 if (objects && !kmem_cache_has_cpu_partial(s)) 4451 return -EINVAL; 4452 4453 s->cpu_partial = objects; 4454 flush_all(s); 4455 return length; 4456 } 4457 SLAB_ATTR(cpu_partial); 4458 4459 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4460 { 4461 if (!s->ctor) 4462 return 0; 4463 return sprintf(buf, "%pS\n", s->ctor); 4464 } 4465 SLAB_ATTR_RO(ctor); 4466 4467 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4468 { 4469 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4470 } 4471 SLAB_ATTR_RO(aliases); 4472 4473 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4474 { 4475 return show_slab_objects(s, buf, SO_PARTIAL); 4476 } 4477 SLAB_ATTR_RO(partial); 4478 4479 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4480 { 4481 return show_slab_objects(s, buf, SO_CPU); 4482 } 4483 SLAB_ATTR_RO(cpu_slabs); 4484 4485 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4486 { 4487 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4488 } 4489 SLAB_ATTR_RO(objects); 4490 4491 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4492 { 4493 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4494 } 4495 SLAB_ATTR_RO(objects_partial); 4496 4497 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4498 { 4499 int objects = 0; 4500 int pages = 0; 4501 int cpu; 4502 int len; 4503 4504 for_each_online_cpu(cpu) { 4505 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4506 4507 if (page) { 4508 pages += page->pages; 4509 objects += page->pobjects; 4510 } 4511 } 4512 4513 len = sprintf(buf, "%d(%d)", objects, pages); 4514 4515 #ifdef CONFIG_SMP 4516 for_each_online_cpu(cpu) { 4517 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4518 4519 if (page && len < PAGE_SIZE - 20) 4520 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4521 page->pobjects, page->pages); 4522 } 4523 #endif 4524 return len + sprintf(buf + len, "\n"); 4525 } 4526 SLAB_ATTR_RO(slabs_cpu_partial); 4527 4528 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4529 { 4530 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4531 } 4532 4533 static ssize_t reclaim_account_store(struct kmem_cache *s, 4534 const char *buf, size_t length) 4535 { 4536 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4537 if (buf[0] == '1') 4538 s->flags |= SLAB_RECLAIM_ACCOUNT; 4539 return length; 4540 } 4541 SLAB_ATTR(reclaim_account); 4542 4543 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4544 { 4545 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4546 } 4547 SLAB_ATTR_RO(hwcache_align); 4548 4549 #ifdef CONFIG_ZONE_DMA 4550 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4551 { 4552 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4553 } 4554 SLAB_ATTR_RO(cache_dma); 4555 #endif 4556 4557 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4558 { 4559 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4560 } 4561 SLAB_ATTR_RO(destroy_by_rcu); 4562 4563 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4564 { 4565 return sprintf(buf, "%d\n", s->reserved); 4566 } 4567 SLAB_ATTR_RO(reserved); 4568 4569 #ifdef CONFIG_SLUB_DEBUG 4570 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4571 { 4572 return show_slab_objects(s, buf, SO_ALL); 4573 } 4574 SLAB_ATTR_RO(slabs); 4575 4576 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4577 { 4578 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4579 } 4580 SLAB_ATTR_RO(total_objects); 4581 4582 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4583 { 4584 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4585 } 4586 4587 static ssize_t sanity_checks_store(struct kmem_cache *s, 4588 const char *buf, size_t length) 4589 { 4590 s->flags &= ~SLAB_DEBUG_FREE; 4591 if (buf[0] == '1') { 4592 s->flags &= ~__CMPXCHG_DOUBLE; 4593 s->flags |= SLAB_DEBUG_FREE; 4594 } 4595 return length; 4596 } 4597 SLAB_ATTR(sanity_checks); 4598 4599 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4600 { 4601 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4602 } 4603 4604 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4605 size_t length) 4606 { 4607 s->flags &= ~SLAB_TRACE; 4608 if (buf[0] == '1') { 4609 s->flags &= ~__CMPXCHG_DOUBLE; 4610 s->flags |= SLAB_TRACE; 4611 } 4612 return length; 4613 } 4614 SLAB_ATTR(trace); 4615 4616 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4617 { 4618 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4619 } 4620 4621 static ssize_t red_zone_store(struct kmem_cache *s, 4622 const char *buf, size_t length) 4623 { 4624 if (any_slab_objects(s)) 4625 return -EBUSY; 4626 4627 s->flags &= ~SLAB_RED_ZONE; 4628 if (buf[0] == '1') { 4629 s->flags &= ~__CMPXCHG_DOUBLE; 4630 s->flags |= SLAB_RED_ZONE; 4631 } 4632 calculate_sizes(s, -1); 4633 return length; 4634 } 4635 SLAB_ATTR(red_zone); 4636 4637 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4638 { 4639 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4640 } 4641 4642 static ssize_t poison_store(struct kmem_cache *s, 4643 const char *buf, size_t length) 4644 { 4645 if (any_slab_objects(s)) 4646 return -EBUSY; 4647 4648 s->flags &= ~SLAB_POISON; 4649 if (buf[0] == '1') { 4650 s->flags &= ~__CMPXCHG_DOUBLE; 4651 s->flags |= SLAB_POISON; 4652 } 4653 calculate_sizes(s, -1); 4654 return length; 4655 } 4656 SLAB_ATTR(poison); 4657 4658 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4659 { 4660 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4661 } 4662 4663 static ssize_t store_user_store(struct kmem_cache *s, 4664 const char *buf, size_t length) 4665 { 4666 if (any_slab_objects(s)) 4667 return -EBUSY; 4668 4669 s->flags &= ~SLAB_STORE_USER; 4670 if (buf[0] == '1') { 4671 s->flags &= ~__CMPXCHG_DOUBLE; 4672 s->flags |= SLAB_STORE_USER; 4673 } 4674 calculate_sizes(s, -1); 4675 return length; 4676 } 4677 SLAB_ATTR(store_user); 4678 4679 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4680 { 4681 return 0; 4682 } 4683 4684 static ssize_t validate_store(struct kmem_cache *s, 4685 const char *buf, size_t length) 4686 { 4687 int ret = -EINVAL; 4688 4689 if (buf[0] == '1') { 4690 ret = validate_slab_cache(s); 4691 if (ret >= 0) 4692 ret = length; 4693 } 4694 return ret; 4695 } 4696 SLAB_ATTR(validate); 4697 4698 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4699 { 4700 if (!(s->flags & SLAB_STORE_USER)) 4701 return -ENOSYS; 4702 return list_locations(s, buf, TRACK_ALLOC); 4703 } 4704 SLAB_ATTR_RO(alloc_calls); 4705 4706 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4707 { 4708 if (!(s->flags & SLAB_STORE_USER)) 4709 return -ENOSYS; 4710 return list_locations(s, buf, TRACK_FREE); 4711 } 4712 SLAB_ATTR_RO(free_calls); 4713 #endif /* CONFIG_SLUB_DEBUG */ 4714 4715 #ifdef CONFIG_FAILSLAB 4716 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4717 { 4718 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4719 } 4720 4721 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4722 size_t length) 4723 { 4724 s->flags &= ~SLAB_FAILSLAB; 4725 if (buf[0] == '1') 4726 s->flags |= SLAB_FAILSLAB; 4727 return length; 4728 } 4729 SLAB_ATTR(failslab); 4730 #endif 4731 4732 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4733 { 4734 return 0; 4735 } 4736 4737 static ssize_t shrink_store(struct kmem_cache *s, 4738 const char *buf, size_t length) 4739 { 4740 if (buf[0] == '1') { 4741 int rc = kmem_cache_shrink(s); 4742 4743 if (rc) 4744 return rc; 4745 } else 4746 return -EINVAL; 4747 return length; 4748 } 4749 SLAB_ATTR(shrink); 4750 4751 #ifdef CONFIG_NUMA 4752 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4753 { 4754 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4755 } 4756 4757 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4758 const char *buf, size_t length) 4759 { 4760 unsigned long ratio; 4761 int err; 4762 4763 err = kstrtoul(buf, 10, &ratio); 4764 if (err) 4765 return err; 4766 4767 if (ratio <= 100) 4768 s->remote_node_defrag_ratio = ratio * 10; 4769 4770 return length; 4771 } 4772 SLAB_ATTR(remote_node_defrag_ratio); 4773 #endif 4774 4775 #ifdef CONFIG_SLUB_STATS 4776 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4777 { 4778 unsigned long sum = 0; 4779 int cpu; 4780 int len; 4781 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4782 4783 if (!data) 4784 return -ENOMEM; 4785 4786 for_each_online_cpu(cpu) { 4787 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4788 4789 data[cpu] = x; 4790 sum += x; 4791 } 4792 4793 len = sprintf(buf, "%lu", sum); 4794 4795 #ifdef CONFIG_SMP 4796 for_each_online_cpu(cpu) { 4797 if (data[cpu] && len < PAGE_SIZE - 20) 4798 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4799 } 4800 #endif 4801 kfree(data); 4802 return len + sprintf(buf + len, "\n"); 4803 } 4804 4805 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4806 { 4807 int cpu; 4808 4809 for_each_online_cpu(cpu) 4810 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4811 } 4812 4813 #define STAT_ATTR(si, text) \ 4814 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4815 { \ 4816 return show_stat(s, buf, si); \ 4817 } \ 4818 static ssize_t text##_store(struct kmem_cache *s, \ 4819 const char *buf, size_t length) \ 4820 { \ 4821 if (buf[0] != '0') \ 4822 return -EINVAL; \ 4823 clear_stat(s, si); \ 4824 return length; \ 4825 } \ 4826 SLAB_ATTR(text); \ 4827 4828 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4829 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4830 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4831 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4832 STAT_ATTR(FREE_FROZEN, free_frozen); 4833 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4834 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4835 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4836 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4837 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4838 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 4839 STAT_ATTR(FREE_SLAB, free_slab); 4840 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4841 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4842 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4843 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4844 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4845 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4846 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 4847 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4848 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 4849 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 4850 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 4851 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 4852 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 4853 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 4854 #endif 4855 4856 static struct attribute *slab_attrs[] = { 4857 &slab_size_attr.attr, 4858 &object_size_attr.attr, 4859 &objs_per_slab_attr.attr, 4860 &order_attr.attr, 4861 &min_partial_attr.attr, 4862 &cpu_partial_attr.attr, 4863 &objects_attr.attr, 4864 &objects_partial_attr.attr, 4865 &partial_attr.attr, 4866 &cpu_slabs_attr.attr, 4867 &ctor_attr.attr, 4868 &aliases_attr.attr, 4869 &align_attr.attr, 4870 &hwcache_align_attr.attr, 4871 &reclaim_account_attr.attr, 4872 &destroy_by_rcu_attr.attr, 4873 &shrink_attr.attr, 4874 &reserved_attr.attr, 4875 &slabs_cpu_partial_attr.attr, 4876 #ifdef CONFIG_SLUB_DEBUG 4877 &total_objects_attr.attr, 4878 &slabs_attr.attr, 4879 &sanity_checks_attr.attr, 4880 &trace_attr.attr, 4881 &red_zone_attr.attr, 4882 &poison_attr.attr, 4883 &store_user_attr.attr, 4884 &validate_attr.attr, 4885 &alloc_calls_attr.attr, 4886 &free_calls_attr.attr, 4887 #endif 4888 #ifdef CONFIG_ZONE_DMA 4889 &cache_dma_attr.attr, 4890 #endif 4891 #ifdef CONFIG_NUMA 4892 &remote_node_defrag_ratio_attr.attr, 4893 #endif 4894 #ifdef CONFIG_SLUB_STATS 4895 &alloc_fastpath_attr.attr, 4896 &alloc_slowpath_attr.attr, 4897 &free_fastpath_attr.attr, 4898 &free_slowpath_attr.attr, 4899 &free_frozen_attr.attr, 4900 &free_add_partial_attr.attr, 4901 &free_remove_partial_attr.attr, 4902 &alloc_from_partial_attr.attr, 4903 &alloc_slab_attr.attr, 4904 &alloc_refill_attr.attr, 4905 &alloc_node_mismatch_attr.attr, 4906 &free_slab_attr.attr, 4907 &cpuslab_flush_attr.attr, 4908 &deactivate_full_attr.attr, 4909 &deactivate_empty_attr.attr, 4910 &deactivate_to_head_attr.attr, 4911 &deactivate_to_tail_attr.attr, 4912 &deactivate_remote_frees_attr.attr, 4913 &deactivate_bypass_attr.attr, 4914 &order_fallback_attr.attr, 4915 &cmpxchg_double_fail_attr.attr, 4916 &cmpxchg_double_cpu_fail_attr.attr, 4917 &cpu_partial_alloc_attr.attr, 4918 &cpu_partial_free_attr.attr, 4919 &cpu_partial_node_attr.attr, 4920 &cpu_partial_drain_attr.attr, 4921 #endif 4922 #ifdef CONFIG_FAILSLAB 4923 &failslab_attr.attr, 4924 #endif 4925 4926 NULL 4927 }; 4928 4929 static struct attribute_group slab_attr_group = { 4930 .attrs = slab_attrs, 4931 }; 4932 4933 static ssize_t slab_attr_show(struct kobject *kobj, 4934 struct attribute *attr, 4935 char *buf) 4936 { 4937 struct slab_attribute *attribute; 4938 struct kmem_cache *s; 4939 int err; 4940 4941 attribute = to_slab_attr(attr); 4942 s = to_slab(kobj); 4943 4944 if (!attribute->show) 4945 return -EIO; 4946 4947 err = attribute->show(s, buf); 4948 4949 return err; 4950 } 4951 4952 static ssize_t slab_attr_store(struct kobject *kobj, 4953 struct attribute *attr, 4954 const char *buf, size_t len) 4955 { 4956 struct slab_attribute *attribute; 4957 struct kmem_cache *s; 4958 int err; 4959 4960 attribute = to_slab_attr(attr); 4961 s = to_slab(kobj); 4962 4963 if (!attribute->store) 4964 return -EIO; 4965 4966 err = attribute->store(s, buf, len); 4967 #ifdef CONFIG_MEMCG_KMEM 4968 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 4969 int i; 4970 4971 mutex_lock(&slab_mutex); 4972 if (s->max_attr_size < len) 4973 s->max_attr_size = len; 4974 4975 /* 4976 * This is a best effort propagation, so this function's return 4977 * value will be determined by the parent cache only. This is 4978 * basically because not all attributes will have a well 4979 * defined semantics for rollbacks - most of the actions will 4980 * have permanent effects. 4981 * 4982 * Returning the error value of any of the children that fail 4983 * is not 100 % defined, in the sense that users seeing the 4984 * error code won't be able to know anything about the state of 4985 * the cache. 4986 * 4987 * Only returning the error code for the parent cache at least 4988 * has well defined semantics. The cache being written to 4989 * directly either failed or succeeded, in which case we loop 4990 * through the descendants with best-effort propagation. 4991 */ 4992 for_each_memcg_cache_index(i) { 4993 struct kmem_cache *c = cache_from_memcg_idx(s, i); 4994 if (c) 4995 attribute->store(c, buf, len); 4996 } 4997 mutex_unlock(&slab_mutex); 4998 } 4999 #endif 5000 return err; 5001 } 5002 5003 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5004 { 5005 #ifdef CONFIG_MEMCG_KMEM 5006 int i; 5007 char *buffer = NULL; 5008 struct kmem_cache *root_cache; 5009 5010 if (is_root_cache(s)) 5011 return; 5012 5013 root_cache = s->memcg_params->root_cache; 5014 5015 /* 5016 * This mean this cache had no attribute written. Therefore, no point 5017 * in copying default values around 5018 */ 5019 if (!root_cache->max_attr_size) 5020 return; 5021 5022 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5023 char mbuf[64]; 5024 char *buf; 5025 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5026 5027 if (!attr || !attr->store || !attr->show) 5028 continue; 5029 5030 /* 5031 * It is really bad that we have to allocate here, so we will 5032 * do it only as a fallback. If we actually allocate, though, 5033 * we can just use the allocated buffer until the end. 5034 * 5035 * Most of the slub attributes will tend to be very small in 5036 * size, but sysfs allows buffers up to a page, so they can 5037 * theoretically happen. 5038 */ 5039 if (buffer) 5040 buf = buffer; 5041 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5042 buf = mbuf; 5043 else { 5044 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5045 if (WARN_ON(!buffer)) 5046 continue; 5047 buf = buffer; 5048 } 5049 5050 attr->show(root_cache, buf); 5051 attr->store(s, buf, strlen(buf)); 5052 } 5053 5054 if (buffer) 5055 free_page((unsigned long)buffer); 5056 #endif 5057 } 5058 5059 static void kmem_cache_release(struct kobject *k) 5060 { 5061 slab_kmem_cache_release(to_slab(k)); 5062 } 5063 5064 static const struct sysfs_ops slab_sysfs_ops = { 5065 .show = slab_attr_show, 5066 .store = slab_attr_store, 5067 }; 5068 5069 static struct kobj_type slab_ktype = { 5070 .sysfs_ops = &slab_sysfs_ops, 5071 .release = kmem_cache_release, 5072 }; 5073 5074 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5075 { 5076 struct kobj_type *ktype = get_ktype(kobj); 5077 5078 if (ktype == &slab_ktype) 5079 return 1; 5080 return 0; 5081 } 5082 5083 static const struct kset_uevent_ops slab_uevent_ops = { 5084 .filter = uevent_filter, 5085 }; 5086 5087 static struct kset *slab_kset; 5088 5089 static inline struct kset *cache_kset(struct kmem_cache *s) 5090 { 5091 #ifdef CONFIG_MEMCG_KMEM 5092 if (!is_root_cache(s)) 5093 return s->memcg_params->root_cache->memcg_kset; 5094 #endif 5095 return slab_kset; 5096 } 5097 5098 #define ID_STR_LENGTH 64 5099 5100 /* Create a unique string id for a slab cache: 5101 * 5102 * Format :[flags-]size 5103 */ 5104 static char *create_unique_id(struct kmem_cache *s) 5105 { 5106 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5107 char *p = name; 5108 5109 BUG_ON(!name); 5110 5111 *p++ = ':'; 5112 /* 5113 * First flags affecting slabcache operations. We will only 5114 * get here for aliasable slabs so we do not need to support 5115 * too many flags. The flags here must cover all flags that 5116 * are matched during merging to guarantee that the id is 5117 * unique. 5118 */ 5119 if (s->flags & SLAB_CACHE_DMA) 5120 *p++ = 'd'; 5121 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5122 *p++ = 'a'; 5123 if (s->flags & SLAB_DEBUG_FREE) 5124 *p++ = 'F'; 5125 if (!(s->flags & SLAB_NOTRACK)) 5126 *p++ = 't'; 5127 if (p != name + 1) 5128 *p++ = '-'; 5129 p += sprintf(p, "%07d", s->size); 5130 5131 BUG_ON(p > name + ID_STR_LENGTH - 1); 5132 return name; 5133 } 5134 5135 static int sysfs_slab_add(struct kmem_cache *s) 5136 { 5137 int err; 5138 const char *name; 5139 int unmergeable = slab_unmergeable(s); 5140 5141 if (unmergeable) { 5142 /* 5143 * Slabcache can never be merged so we can use the name proper. 5144 * This is typically the case for debug situations. In that 5145 * case we can catch duplicate names easily. 5146 */ 5147 sysfs_remove_link(&slab_kset->kobj, s->name); 5148 name = s->name; 5149 } else { 5150 /* 5151 * Create a unique name for the slab as a target 5152 * for the symlinks. 5153 */ 5154 name = create_unique_id(s); 5155 } 5156 5157 s->kobj.kset = cache_kset(s); 5158 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5159 if (err) 5160 goto out_put_kobj; 5161 5162 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5163 if (err) 5164 goto out_del_kobj; 5165 5166 #ifdef CONFIG_MEMCG_KMEM 5167 if (is_root_cache(s)) { 5168 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5169 if (!s->memcg_kset) { 5170 err = -ENOMEM; 5171 goto out_del_kobj; 5172 } 5173 } 5174 #endif 5175 5176 kobject_uevent(&s->kobj, KOBJ_ADD); 5177 if (!unmergeable) { 5178 /* Setup first alias */ 5179 sysfs_slab_alias(s, s->name); 5180 } 5181 out: 5182 if (!unmergeable) 5183 kfree(name); 5184 return err; 5185 out_del_kobj: 5186 kobject_del(&s->kobj); 5187 out_put_kobj: 5188 kobject_put(&s->kobj); 5189 goto out; 5190 } 5191 5192 void sysfs_slab_remove(struct kmem_cache *s) 5193 { 5194 if (slab_state < FULL) 5195 /* 5196 * Sysfs has not been setup yet so no need to remove the 5197 * cache from sysfs. 5198 */ 5199 return; 5200 5201 #ifdef CONFIG_MEMCG_KMEM 5202 kset_unregister(s->memcg_kset); 5203 #endif 5204 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5205 kobject_del(&s->kobj); 5206 kobject_put(&s->kobj); 5207 } 5208 5209 /* 5210 * Need to buffer aliases during bootup until sysfs becomes 5211 * available lest we lose that information. 5212 */ 5213 struct saved_alias { 5214 struct kmem_cache *s; 5215 const char *name; 5216 struct saved_alias *next; 5217 }; 5218 5219 static struct saved_alias *alias_list; 5220 5221 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5222 { 5223 struct saved_alias *al; 5224 5225 if (slab_state == FULL) { 5226 /* 5227 * If we have a leftover link then remove it. 5228 */ 5229 sysfs_remove_link(&slab_kset->kobj, name); 5230 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5231 } 5232 5233 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5234 if (!al) 5235 return -ENOMEM; 5236 5237 al->s = s; 5238 al->name = name; 5239 al->next = alias_list; 5240 alias_list = al; 5241 return 0; 5242 } 5243 5244 static int __init slab_sysfs_init(void) 5245 { 5246 struct kmem_cache *s; 5247 int err; 5248 5249 mutex_lock(&slab_mutex); 5250 5251 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5252 if (!slab_kset) { 5253 mutex_unlock(&slab_mutex); 5254 pr_err("Cannot register slab subsystem.\n"); 5255 return -ENOSYS; 5256 } 5257 5258 slab_state = FULL; 5259 5260 list_for_each_entry(s, &slab_caches, list) { 5261 err = sysfs_slab_add(s); 5262 if (err) 5263 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5264 s->name); 5265 } 5266 5267 while (alias_list) { 5268 struct saved_alias *al = alias_list; 5269 5270 alias_list = alias_list->next; 5271 err = sysfs_slab_alias(al->s, al->name); 5272 if (err) 5273 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5274 al->name); 5275 kfree(al); 5276 } 5277 5278 mutex_unlock(&slab_mutex); 5279 resiliency_test(); 5280 return 0; 5281 } 5282 5283 __initcall(slab_sysfs_init); 5284 #endif /* CONFIG_SYSFS */ 5285 5286 /* 5287 * The /proc/slabinfo ABI 5288 */ 5289 #ifdef CONFIG_SLABINFO 5290 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5291 { 5292 unsigned long nr_slabs = 0; 5293 unsigned long nr_objs = 0; 5294 unsigned long nr_free = 0; 5295 int node; 5296 struct kmem_cache_node *n; 5297 5298 for_each_kmem_cache_node(s, node, n) { 5299 nr_slabs += node_nr_slabs(n); 5300 nr_objs += node_nr_objs(n); 5301 nr_free += count_partial(n, count_free); 5302 } 5303 5304 sinfo->active_objs = nr_objs - nr_free; 5305 sinfo->num_objs = nr_objs; 5306 sinfo->active_slabs = nr_slabs; 5307 sinfo->num_slabs = nr_slabs; 5308 sinfo->objects_per_slab = oo_objects(s->oo); 5309 sinfo->cache_order = oo_order(s->oo); 5310 } 5311 5312 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5313 { 5314 } 5315 5316 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5317 size_t count, loff_t *ppos) 5318 { 5319 return -EIO; 5320 } 5321 #endif /* CONFIG_SLABINFO */ 5322