xref: /openbmc/linux/mm/slub.c (revision 61cb9ac6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/kfence.h>
32 #include <linux/memory.h>
33 #include <linux/math64.h>
34 #include <linux/fault-inject.h>
35 #include <linux/stacktrace.h>
36 #include <linux/prefetch.h>
37 #include <linux/memcontrol.h>
38 #include <linux/random.h>
39 #include <kunit/test.h>
40 
41 #include <linux/debugfs.h>
42 #include <trace/events/kmem.h>
43 
44 #include "internal.h"
45 
46 /*
47  * Lock order:
48  *   1. slab_mutex (Global Mutex)
49  *   2. node->list_lock (Spinlock)
50  *   3. kmem_cache->cpu_slab->lock (Local lock)
51  *   4. slab_lock(page) (Only on some arches or for debugging)
52  *   5. object_map_lock (Only for debugging)
53  *
54  *   slab_mutex
55  *
56  *   The role of the slab_mutex is to protect the list of all the slabs
57  *   and to synchronize major metadata changes to slab cache structures.
58  *   Also synchronizes memory hotplug callbacks.
59  *
60  *   slab_lock
61  *
62  *   The slab_lock is a wrapper around the page lock, thus it is a bit
63  *   spinlock.
64  *
65  *   The slab_lock is only used for debugging and on arches that do not
66  *   have the ability to do a cmpxchg_double. It only protects:
67  *	A. page->freelist	-> List of object free in a page
68  *	B. page->inuse		-> Number of objects in use
69  *	C. page->objects	-> Number of objects in page
70  *	D. page->frozen		-> frozen state
71  *
72  *   Frozen slabs
73  *
74  *   If a slab is frozen then it is exempt from list management. It is not
75  *   on any list except per cpu partial list. The processor that froze the
76  *   slab is the one who can perform list operations on the page. Other
77  *   processors may put objects onto the freelist but the processor that
78  *   froze the slab is the only one that can retrieve the objects from the
79  *   page's freelist.
80  *
81  *   list_lock
82  *
83  *   The list_lock protects the partial and full list on each node and
84  *   the partial slab counter. If taken then no new slabs may be added or
85  *   removed from the lists nor make the number of partial slabs be modified.
86  *   (Note that the total number of slabs is an atomic value that may be
87  *   modified without taking the list lock).
88  *
89  *   The list_lock is a centralized lock and thus we avoid taking it as
90  *   much as possible. As long as SLUB does not have to handle partial
91  *   slabs, operations can continue without any centralized lock. F.e.
92  *   allocating a long series of objects that fill up slabs does not require
93  *   the list lock.
94  *
95  *   cpu_slab->lock local lock
96  *
97  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
98  *   except the stat counters. This is a percpu structure manipulated only by
99  *   the local cpu, so the lock protects against being preempted or interrupted
100  *   by an irq. Fast path operations rely on lockless operations instead.
101  *   On PREEMPT_RT, the local lock does not actually disable irqs (and thus
102  *   prevent the lockless operations), so fastpath operations also need to take
103  *   the lock and are no longer lockless.
104  *
105  *   lockless fastpaths
106  *
107  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
108  *   are fully lockless when satisfied from the percpu slab (and when
109  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
110  *   They also don't disable preemption or migration or irqs. They rely on
111  *   the transaction id (tid) field to detect being preempted or moved to
112  *   another cpu.
113  *
114  *   irq, preemption, migration considerations
115  *
116  *   Interrupts are disabled as part of list_lock or local_lock operations, or
117  *   around the slab_lock operation, in order to make the slab allocator safe
118  *   to use in the context of an irq.
119  *
120  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
121  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
122  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
123  *   doesn't have to be revalidated in each section protected by the local lock.
124  *
125  * SLUB assigns one slab for allocation to each processor.
126  * Allocations only occur from these slabs called cpu slabs.
127  *
128  * Slabs with free elements are kept on a partial list and during regular
129  * operations no list for full slabs is used. If an object in a full slab is
130  * freed then the slab will show up again on the partial lists.
131  * We track full slabs for debugging purposes though because otherwise we
132  * cannot scan all objects.
133  *
134  * Slabs are freed when they become empty. Teardown and setup is
135  * minimal so we rely on the page allocators per cpu caches for
136  * fast frees and allocs.
137  *
138  * page->frozen		The slab is frozen and exempt from list processing.
139  * 			This means that the slab is dedicated to a purpose
140  * 			such as satisfying allocations for a specific
141  * 			processor. Objects may be freed in the slab while
142  * 			it is frozen but slab_free will then skip the usual
143  * 			list operations. It is up to the processor holding
144  * 			the slab to integrate the slab into the slab lists
145  * 			when the slab is no longer needed.
146  *
147  * 			One use of this flag is to mark slabs that are
148  * 			used for allocations. Then such a slab becomes a cpu
149  * 			slab. The cpu slab may be equipped with an additional
150  * 			freelist that allows lockless access to
151  * 			free objects in addition to the regular freelist
152  * 			that requires the slab lock.
153  *
154  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
155  * 			options set. This moves	slab handling out of
156  * 			the fast path and disables lockless freelists.
157  */
158 
159 /*
160  * We could simply use migrate_disable()/enable() but as long as it's a
161  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
162  */
163 #ifndef CONFIG_PREEMPT_RT
164 #define slub_get_cpu_ptr(var)	get_cpu_ptr(var)
165 #define slub_put_cpu_ptr(var)	put_cpu_ptr(var)
166 #else
167 #define slub_get_cpu_ptr(var)		\
168 ({					\
169 	migrate_disable();		\
170 	this_cpu_ptr(var);		\
171 })
172 #define slub_put_cpu_ptr(var)		\
173 do {					\
174 	(void)(var);			\
175 	migrate_enable();		\
176 } while (0)
177 #endif
178 
179 #ifdef CONFIG_SLUB_DEBUG
180 #ifdef CONFIG_SLUB_DEBUG_ON
181 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
182 #else
183 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
184 #endif
185 #endif		/* CONFIG_SLUB_DEBUG */
186 
187 static inline bool kmem_cache_debug(struct kmem_cache *s)
188 {
189 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
190 }
191 
192 void *fixup_red_left(struct kmem_cache *s, void *p)
193 {
194 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
195 		p += s->red_left_pad;
196 
197 	return p;
198 }
199 
200 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
201 {
202 #ifdef CONFIG_SLUB_CPU_PARTIAL
203 	return !kmem_cache_debug(s);
204 #else
205 	return false;
206 #endif
207 }
208 
209 /*
210  * Issues still to be resolved:
211  *
212  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
213  *
214  * - Variable sizing of the per node arrays
215  */
216 
217 /* Enable to log cmpxchg failures */
218 #undef SLUB_DEBUG_CMPXCHG
219 
220 /*
221  * Minimum number of partial slabs. These will be left on the partial
222  * lists even if they are empty. kmem_cache_shrink may reclaim them.
223  */
224 #define MIN_PARTIAL 5
225 
226 /*
227  * Maximum number of desirable partial slabs.
228  * The existence of more partial slabs makes kmem_cache_shrink
229  * sort the partial list by the number of objects in use.
230  */
231 #define MAX_PARTIAL 10
232 
233 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
234 				SLAB_POISON | SLAB_STORE_USER)
235 
236 /*
237  * These debug flags cannot use CMPXCHG because there might be consistency
238  * issues when checking or reading debug information
239  */
240 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
241 				SLAB_TRACE)
242 
243 
244 /*
245  * Debugging flags that require metadata to be stored in the slab.  These get
246  * disabled when slub_debug=O is used and a cache's min order increases with
247  * metadata.
248  */
249 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
250 
251 #define OO_SHIFT	16
252 #define OO_MASK		((1 << OO_SHIFT) - 1)
253 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
254 
255 /* Internal SLUB flags */
256 /* Poison object */
257 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
258 /* Use cmpxchg_double */
259 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
260 
261 /*
262  * Tracking user of a slab.
263  */
264 #define TRACK_ADDRS_COUNT 16
265 struct track {
266 	unsigned long addr;	/* Called from address */
267 #ifdef CONFIG_STACKTRACE
268 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
269 #endif
270 	int cpu;		/* Was running on cpu */
271 	int pid;		/* Pid context */
272 	unsigned long when;	/* When did the operation occur */
273 };
274 
275 enum track_item { TRACK_ALLOC, TRACK_FREE };
276 
277 #ifdef CONFIG_SYSFS
278 static int sysfs_slab_add(struct kmem_cache *);
279 static int sysfs_slab_alias(struct kmem_cache *, const char *);
280 #else
281 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
282 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
283 							{ return 0; }
284 #endif
285 
286 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
287 static void debugfs_slab_add(struct kmem_cache *);
288 #else
289 static inline void debugfs_slab_add(struct kmem_cache *s) { }
290 #endif
291 
292 static inline void stat(const struct kmem_cache *s, enum stat_item si)
293 {
294 #ifdef CONFIG_SLUB_STATS
295 	/*
296 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
297 	 * avoid this_cpu_add()'s irq-disable overhead.
298 	 */
299 	raw_cpu_inc(s->cpu_slab->stat[si]);
300 #endif
301 }
302 
303 /*
304  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
305  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
306  * differ during memory hotplug/hotremove operations.
307  * Protected by slab_mutex.
308  */
309 static nodemask_t slab_nodes;
310 
311 /********************************************************************
312  * 			Core slab cache functions
313  *******************************************************************/
314 
315 /*
316  * Returns freelist pointer (ptr). With hardening, this is obfuscated
317  * with an XOR of the address where the pointer is held and a per-cache
318  * random number.
319  */
320 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
321 				 unsigned long ptr_addr)
322 {
323 #ifdef CONFIG_SLAB_FREELIST_HARDENED
324 	/*
325 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
326 	 * Normally, this doesn't cause any issues, as both set_freepointer()
327 	 * and get_freepointer() are called with a pointer with the same tag.
328 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
329 	 * example, when __free_slub() iterates over objects in a cache, it
330 	 * passes untagged pointers to check_object(). check_object() in turns
331 	 * calls get_freepointer() with an untagged pointer, which causes the
332 	 * freepointer to be restored incorrectly.
333 	 */
334 	return (void *)((unsigned long)ptr ^ s->random ^
335 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
336 #else
337 	return ptr;
338 #endif
339 }
340 
341 /* Returns the freelist pointer recorded at location ptr_addr. */
342 static inline void *freelist_dereference(const struct kmem_cache *s,
343 					 void *ptr_addr)
344 {
345 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
346 			    (unsigned long)ptr_addr);
347 }
348 
349 static inline void *get_freepointer(struct kmem_cache *s, void *object)
350 {
351 	object = kasan_reset_tag(object);
352 	return freelist_dereference(s, object + s->offset);
353 }
354 
355 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
356 {
357 	prefetch(object + s->offset);
358 }
359 
360 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
361 {
362 	unsigned long freepointer_addr;
363 	void *p;
364 
365 	if (!debug_pagealloc_enabled_static())
366 		return get_freepointer(s, object);
367 
368 	object = kasan_reset_tag(object);
369 	freepointer_addr = (unsigned long)object + s->offset;
370 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
371 	return freelist_ptr(s, p, freepointer_addr);
372 }
373 
374 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
375 {
376 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
377 
378 #ifdef CONFIG_SLAB_FREELIST_HARDENED
379 	BUG_ON(object == fp); /* naive detection of double free or corruption */
380 #endif
381 
382 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
383 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
384 }
385 
386 /* Loop over all objects in a slab */
387 #define for_each_object(__p, __s, __addr, __objects) \
388 	for (__p = fixup_red_left(__s, __addr); \
389 		__p < (__addr) + (__objects) * (__s)->size; \
390 		__p += (__s)->size)
391 
392 static inline unsigned int order_objects(unsigned int order, unsigned int size)
393 {
394 	return ((unsigned int)PAGE_SIZE << order) / size;
395 }
396 
397 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
398 		unsigned int size)
399 {
400 	struct kmem_cache_order_objects x = {
401 		(order << OO_SHIFT) + order_objects(order, size)
402 	};
403 
404 	return x;
405 }
406 
407 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
408 {
409 	return x.x >> OO_SHIFT;
410 }
411 
412 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
413 {
414 	return x.x & OO_MASK;
415 }
416 
417 /*
418  * Per slab locking using the pagelock
419  */
420 static __always_inline void __slab_lock(struct page *page)
421 {
422 	VM_BUG_ON_PAGE(PageTail(page), page);
423 	bit_spin_lock(PG_locked, &page->flags);
424 }
425 
426 static __always_inline void __slab_unlock(struct page *page)
427 {
428 	VM_BUG_ON_PAGE(PageTail(page), page);
429 	__bit_spin_unlock(PG_locked, &page->flags);
430 }
431 
432 static __always_inline void slab_lock(struct page *page, unsigned long *flags)
433 {
434 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
435 		local_irq_save(*flags);
436 	__slab_lock(page);
437 }
438 
439 static __always_inline void slab_unlock(struct page *page, unsigned long *flags)
440 {
441 	__slab_unlock(page);
442 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
443 		local_irq_restore(*flags);
444 }
445 
446 /*
447  * Interrupts must be disabled (for the fallback code to work right), typically
448  * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
449  * so we disable interrupts as part of slab_[un]lock().
450  */
451 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
452 		void *freelist_old, unsigned long counters_old,
453 		void *freelist_new, unsigned long counters_new,
454 		const char *n)
455 {
456 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
457 		lockdep_assert_irqs_disabled();
458 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
459     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
460 	if (s->flags & __CMPXCHG_DOUBLE) {
461 		if (cmpxchg_double(&page->freelist, &page->counters,
462 				   freelist_old, counters_old,
463 				   freelist_new, counters_new))
464 			return true;
465 	} else
466 #endif
467 	{
468 		/* init to 0 to prevent spurious warnings */
469 		unsigned long flags = 0;
470 
471 		slab_lock(page, &flags);
472 		if (page->freelist == freelist_old &&
473 					page->counters == counters_old) {
474 			page->freelist = freelist_new;
475 			page->counters = counters_new;
476 			slab_unlock(page, &flags);
477 			return true;
478 		}
479 		slab_unlock(page, &flags);
480 	}
481 
482 	cpu_relax();
483 	stat(s, CMPXCHG_DOUBLE_FAIL);
484 
485 #ifdef SLUB_DEBUG_CMPXCHG
486 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
487 #endif
488 
489 	return false;
490 }
491 
492 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
493 		void *freelist_old, unsigned long counters_old,
494 		void *freelist_new, unsigned long counters_new,
495 		const char *n)
496 {
497 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
498     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
499 	if (s->flags & __CMPXCHG_DOUBLE) {
500 		if (cmpxchg_double(&page->freelist, &page->counters,
501 				   freelist_old, counters_old,
502 				   freelist_new, counters_new))
503 			return true;
504 	} else
505 #endif
506 	{
507 		unsigned long flags;
508 
509 		local_irq_save(flags);
510 		__slab_lock(page);
511 		if (page->freelist == freelist_old &&
512 					page->counters == counters_old) {
513 			page->freelist = freelist_new;
514 			page->counters = counters_new;
515 			__slab_unlock(page);
516 			local_irq_restore(flags);
517 			return true;
518 		}
519 		__slab_unlock(page);
520 		local_irq_restore(flags);
521 	}
522 
523 	cpu_relax();
524 	stat(s, CMPXCHG_DOUBLE_FAIL);
525 
526 #ifdef SLUB_DEBUG_CMPXCHG
527 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
528 #endif
529 
530 	return false;
531 }
532 
533 #ifdef CONFIG_SLUB_DEBUG
534 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
535 static DEFINE_RAW_SPINLOCK(object_map_lock);
536 
537 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
538 		       struct page *page)
539 {
540 	void *addr = page_address(page);
541 	void *p;
542 
543 	bitmap_zero(obj_map, page->objects);
544 
545 	for (p = page->freelist; p; p = get_freepointer(s, p))
546 		set_bit(__obj_to_index(s, addr, p), obj_map);
547 }
548 
549 #if IS_ENABLED(CONFIG_KUNIT)
550 static bool slab_add_kunit_errors(void)
551 {
552 	struct kunit_resource *resource;
553 
554 	if (likely(!current->kunit_test))
555 		return false;
556 
557 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
558 	if (!resource)
559 		return false;
560 
561 	(*(int *)resource->data)++;
562 	kunit_put_resource(resource);
563 	return true;
564 }
565 #else
566 static inline bool slab_add_kunit_errors(void) { return false; }
567 #endif
568 
569 /*
570  * Determine a map of object in use on a page.
571  *
572  * Node listlock must be held to guarantee that the page does
573  * not vanish from under us.
574  */
575 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
576 	__acquires(&object_map_lock)
577 {
578 	VM_BUG_ON(!irqs_disabled());
579 
580 	raw_spin_lock(&object_map_lock);
581 
582 	__fill_map(object_map, s, page);
583 
584 	return object_map;
585 }
586 
587 static void put_map(unsigned long *map) __releases(&object_map_lock)
588 {
589 	VM_BUG_ON(map != object_map);
590 	raw_spin_unlock(&object_map_lock);
591 }
592 
593 static inline unsigned int size_from_object(struct kmem_cache *s)
594 {
595 	if (s->flags & SLAB_RED_ZONE)
596 		return s->size - s->red_left_pad;
597 
598 	return s->size;
599 }
600 
601 static inline void *restore_red_left(struct kmem_cache *s, void *p)
602 {
603 	if (s->flags & SLAB_RED_ZONE)
604 		p -= s->red_left_pad;
605 
606 	return p;
607 }
608 
609 /*
610  * Debug settings:
611  */
612 #if defined(CONFIG_SLUB_DEBUG_ON)
613 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
614 #else
615 static slab_flags_t slub_debug;
616 #endif
617 
618 static char *slub_debug_string;
619 static int disable_higher_order_debug;
620 
621 /*
622  * slub is about to manipulate internal object metadata.  This memory lies
623  * outside the range of the allocated object, so accessing it would normally
624  * be reported by kasan as a bounds error.  metadata_access_enable() is used
625  * to tell kasan that these accesses are OK.
626  */
627 static inline void metadata_access_enable(void)
628 {
629 	kasan_disable_current();
630 }
631 
632 static inline void metadata_access_disable(void)
633 {
634 	kasan_enable_current();
635 }
636 
637 /*
638  * Object debugging
639  */
640 
641 /* Verify that a pointer has an address that is valid within a slab page */
642 static inline int check_valid_pointer(struct kmem_cache *s,
643 				struct page *page, void *object)
644 {
645 	void *base;
646 
647 	if (!object)
648 		return 1;
649 
650 	base = page_address(page);
651 	object = kasan_reset_tag(object);
652 	object = restore_red_left(s, object);
653 	if (object < base || object >= base + page->objects * s->size ||
654 		(object - base) % s->size) {
655 		return 0;
656 	}
657 
658 	return 1;
659 }
660 
661 static void print_section(char *level, char *text, u8 *addr,
662 			  unsigned int length)
663 {
664 	metadata_access_enable();
665 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
666 			16, 1, kasan_reset_tag((void *)addr), length, 1);
667 	metadata_access_disable();
668 }
669 
670 /*
671  * See comment in calculate_sizes().
672  */
673 static inline bool freeptr_outside_object(struct kmem_cache *s)
674 {
675 	return s->offset >= s->inuse;
676 }
677 
678 /*
679  * Return offset of the end of info block which is inuse + free pointer if
680  * not overlapping with object.
681  */
682 static inline unsigned int get_info_end(struct kmem_cache *s)
683 {
684 	if (freeptr_outside_object(s))
685 		return s->inuse + sizeof(void *);
686 	else
687 		return s->inuse;
688 }
689 
690 static struct track *get_track(struct kmem_cache *s, void *object,
691 	enum track_item alloc)
692 {
693 	struct track *p;
694 
695 	p = object + get_info_end(s);
696 
697 	return kasan_reset_tag(p + alloc);
698 }
699 
700 static void set_track(struct kmem_cache *s, void *object,
701 			enum track_item alloc, unsigned long addr)
702 {
703 	struct track *p = get_track(s, object, alloc);
704 
705 	if (addr) {
706 #ifdef CONFIG_STACKTRACE
707 		unsigned int nr_entries;
708 
709 		metadata_access_enable();
710 		nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
711 					      TRACK_ADDRS_COUNT, 3);
712 		metadata_access_disable();
713 
714 		if (nr_entries < TRACK_ADDRS_COUNT)
715 			p->addrs[nr_entries] = 0;
716 #endif
717 		p->addr = addr;
718 		p->cpu = smp_processor_id();
719 		p->pid = current->pid;
720 		p->when = jiffies;
721 	} else {
722 		memset(p, 0, sizeof(struct track));
723 	}
724 }
725 
726 static void init_tracking(struct kmem_cache *s, void *object)
727 {
728 	if (!(s->flags & SLAB_STORE_USER))
729 		return;
730 
731 	set_track(s, object, TRACK_FREE, 0UL);
732 	set_track(s, object, TRACK_ALLOC, 0UL);
733 }
734 
735 static void print_track(const char *s, struct track *t, unsigned long pr_time)
736 {
737 	if (!t->addr)
738 		return;
739 
740 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
741 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
742 #ifdef CONFIG_STACKTRACE
743 	{
744 		int i;
745 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
746 			if (t->addrs[i])
747 				pr_err("\t%pS\n", (void *)t->addrs[i]);
748 			else
749 				break;
750 	}
751 #endif
752 }
753 
754 void print_tracking(struct kmem_cache *s, void *object)
755 {
756 	unsigned long pr_time = jiffies;
757 	if (!(s->flags & SLAB_STORE_USER))
758 		return;
759 
760 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
761 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
762 }
763 
764 static void print_page_info(struct page *page)
765 {
766 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
767 	       page, page->objects, page->inuse, page->freelist,
768 	       page->flags, &page->flags);
769 
770 }
771 
772 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
773 {
774 	struct va_format vaf;
775 	va_list args;
776 
777 	va_start(args, fmt);
778 	vaf.fmt = fmt;
779 	vaf.va = &args;
780 	pr_err("=============================================================================\n");
781 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
782 	pr_err("-----------------------------------------------------------------------------\n\n");
783 	va_end(args);
784 }
785 
786 __printf(2, 3)
787 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
788 {
789 	struct va_format vaf;
790 	va_list args;
791 
792 	if (slab_add_kunit_errors())
793 		return;
794 
795 	va_start(args, fmt);
796 	vaf.fmt = fmt;
797 	vaf.va = &args;
798 	pr_err("FIX %s: %pV\n", s->name, &vaf);
799 	va_end(args);
800 }
801 
802 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
803 			       void **freelist, void *nextfree)
804 {
805 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
806 	    !check_valid_pointer(s, page, nextfree) && freelist) {
807 		object_err(s, page, *freelist, "Freechain corrupt");
808 		*freelist = NULL;
809 		slab_fix(s, "Isolate corrupted freechain");
810 		return true;
811 	}
812 
813 	return false;
814 }
815 
816 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
817 {
818 	unsigned int off;	/* Offset of last byte */
819 	u8 *addr = page_address(page);
820 
821 	print_tracking(s, p);
822 
823 	print_page_info(page);
824 
825 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
826 	       p, p - addr, get_freepointer(s, p));
827 
828 	if (s->flags & SLAB_RED_ZONE)
829 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
830 			      s->red_left_pad);
831 	else if (p > addr + 16)
832 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
833 
834 	print_section(KERN_ERR,         "Object   ", p,
835 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
836 	if (s->flags & SLAB_RED_ZONE)
837 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
838 			s->inuse - s->object_size);
839 
840 	off = get_info_end(s);
841 
842 	if (s->flags & SLAB_STORE_USER)
843 		off += 2 * sizeof(struct track);
844 
845 	off += kasan_metadata_size(s);
846 
847 	if (off != size_from_object(s))
848 		/* Beginning of the filler is the free pointer */
849 		print_section(KERN_ERR, "Padding  ", p + off,
850 			      size_from_object(s) - off);
851 
852 	dump_stack();
853 }
854 
855 void object_err(struct kmem_cache *s, struct page *page,
856 			u8 *object, char *reason)
857 {
858 	if (slab_add_kunit_errors())
859 		return;
860 
861 	slab_bug(s, "%s", reason);
862 	print_trailer(s, page, object);
863 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
864 }
865 
866 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
867 			const char *fmt, ...)
868 {
869 	va_list args;
870 	char buf[100];
871 
872 	if (slab_add_kunit_errors())
873 		return;
874 
875 	va_start(args, fmt);
876 	vsnprintf(buf, sizeof(buf), fmt, args);
877 	va_end(args);
878 	slab_bug(s, "%s", buf);
879 	print_page_info(page);
880 	dump_stack();
881 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
882 }
883 
884 static void init_object(struct kmem_cache *s, void *object, u8 val)
885 {
886 	u8 *p = kasan_reset_tag(object);
887 
888 	if (s->flags & SLAB_RED_ZONE)
889 		memset(p - s->red_left_pad, val, s->red_left_pad);
890 
891 	if (s->flags & __OBJECT_POISON) {
892 		memset(p, POISON_FREE, s->object_size - 1);
893 		p[s->object_size - 1] = POISON_END;
894 	}
895 
896 	if (s->flags & SLAB_RED_ZONE)
897 		memset(p + s->object_size, val, s->inuse - s->object_size);
898 }
899 
900 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
901 						void *from, void *to)
902 {
903 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
904 	memset(from, data, to - from);
905 }
906 
907 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
908 			u8 *object, char *what,
909 			u8 *start, unsigned int value, unsigned int bytes)
910 {
911 	u8 *fault;
912 	u8 *end;
913 	u8 *addr = page_address(page);
914 
915 	metadata_access_enable();
916 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
917 	metadata_access_disable();
918 	if (!fault)
919 		return 1;
920 
921 	end = start + bytes;
922 	while (end > fault && end[-1] == value)
923 		end--;
924 
925 	if (slab_add_kunit_errors())
926 		goto skip_bug_print;
927 
928 	slab_bug(s, "%s overwritten", what);
929 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
930 					fault, end - 1, fault - addr,
931 					fault[0], value);
932 	print_trailer(s, page, object);
933 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
934 
935 skip_bug_print:
936 	restore_bytes(s, what, value, fault, end);
937 	return 0;
938 }
939 
940 /*
941  * Object layout:
942  *
943  * object address
944  * 	Bytes of the object to be managed.
945  * 	If the freepointer may overlay the object then the free
946  *	pointer is at the middle of the object.
947  *
948  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
949  * 	0xa5 (POISON_END)
950  *
951  * object + s->object_size
952  * 	Padding to reach word boundary. This is also used for Redzoning.
953  * 	Padding is extended by another word if Redzoning is enabled and
954  * 	object_size == inuse.
955  *
956  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
957  * 	0xcc (RED_ACTIVE) for objects in use.
958  *
959  * object + s->inuse
960  * 	Meta data starts here.
961  *
962  * 	A. Free pointer (if we cannot overwrite object on free)
963  * 	B. Tracking data for SLAB_STORE_USER
964  *	C. Padding to reach required alignment boundary or at minimum
965  * 		one word if debugging is on to be able to detect writes
966  * 		before the word boundary.
967  *
968  *	Padding is done using 0x5a (POISON_INUSE)
969  *
970  * object + s->size
971  * 	Nothing is used beyond s->size.
972  *
973  * If slabcaches are merged then the object_size and inuse boundaries are mostly
974  * ignored. And therefore no slab options that rely on these boundaries
975  * may be used with merged slabcaches.
976  */
977 
978 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
979 {
980 	unsigned long off = get_info_end(s);	/* The end of info */
981 
982 	if (s->flags & SLAB_STORE_USER)
983 		/* We also have user information there */
984 		off += 2 * sizeof(struct track);
985 
986 	off += kasan_metadata_size(s);
987 
988 	if (size_from_object(s) == off)
989 		return 1;
990 
991 	return check_bytes_and_report(s, page, p, "Object padding",
992 			p + off, POISON_INUSE, size_from_object(s) - off);
993 }
994 
995 /* Check the pad bytes at the end of a slab page */
996 static int slab_pad_check(struct kmem_cache *s, struct page *page)
997 {
998 	u8 *start;
999 	u8 *fault;
1000 	u8 *end;
1001 	u8 *pad;
1002 	int length;
1003 	int remainder;
1004 
1005 	if (!(s->flags & SLAB_POISON))
1006 		return 1;
1007 
1008 	start = page_address(page);
1009 	length = page_size(page);
1010 	end = start + length;
1011 	remainder = length % s->size;
1012 	if (!remainder)
1013 		return 1;
1014 
1015 	pad = end - remainder;
1016 	metadata_access_enable();
1017 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1018 	metadata_access_disable();
1019 	if (!fault)
1020 		return 1;
1021 	while (end > fault && end[-1] == POISON_INUSE)
1022 		end--;
1023 
1024 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1025 			fault, end - 1, fault - start);
1026 	print_section(KERN_ERR, "Padding ", pad, remainder);
1027 
1028 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1029 	return 0;
1030 }
1031 
1032 static int check_object(struct kmem_cache *s, struct page *page,
1033 					void *object, u8 val)
1034 {
1035 	u8 *p = object;
1036 	u8 *endobject = object + s->object_size;
1037 
1038 	if (s->flags & SLAB_RED_ZONE) {
1039 		if (!check_bytes_and_report(s, page, object, "Left Redzone",
1040 			object - s->red_left_pad, val, s->red_left_pad))
1041 			return 0;
1042 
1043 		if (!check_bytes_and_report(s, page, object, "Right Redzone",
1044 			endobject, val, s->inuse - s->object_size))
1045 			return 0;
1046 	} else {
1047 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1048 			check_bytes_and_report(s, page, p, "Alignment padding",
1049 				endobject, POISON_INUSE,
1050 				s->inuse - s->object_size);
1051 		}
1052 	}
1053 
1054 	if (s->flags & SLAB_POISON) {
1055 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1056 			(!check_bytes_and_report(s, page, p, "Poison", p,
1057 					POISON_FREE, s->object_size - 1) ||
1058 			 !check_bytes_and_report(s, page, p, "End Poison",
1059 				p + s->object_size - 1, POISON_END, 1)))
1060 			return 0;
1061 		/*
1062 		 * check_pad_bytes cleans up on its own.
1063 		 */
1064 		check_pad_bytes(s, page, p);
1065 	}
1066 
1067 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1068 		/*
1069 		 * Object and freepointer overlap. Cannot check
1070 		 * freepointer while object is allocated.
1071 		 */
1072 		return 1;
1073 
1074 	/* Check free pointer validity */
1075 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
1076 		object_err(s, page, p, "Freepointer corrupt");
1077 		/*
1078 		 * No choice but to zap it and thus lose the remainder
1079 		 * of the free objects in this slab. May cause
1080 		 * another error because the object count is now wrong.
1081 		 */
1082 		set_freepointer(s, p, NULL);
1083 		return 0;
1084 	}
1085 	return 1;
1086 }
1087 
1088 static int check_slab(struct kmem_cache *s, struct page *page)
1089 {
1090 	int maxobj;
1091 
1092 	if (!PageSlab(page)) {
1093 		slab_err(s, page, "Not a valid slab page");
1094 		return 0;
1095 	}
1096 
1097 	maxobj = order_objects(compound_order(page), s->size);
1098 	if (page->objects > maxobj) {
1099 		slab_err(s, page, "objects %u > max %u",
1100 			page->objects, maxobj);
1101 		return 0;
1102 	}
1103 	if (page->inuse > page->objects) {
1104 		slab_err(s, page, "inuse %u > max %u",
1105 			page->inuse, page->objects);
1106 		return 0;
1107 	}
1108 	/* Slab_pad_check fixes things up after itself */
1109 	slab_pad_check(s, page);
1110 	return 1;
1111 }
1112 
1113 /*
1114  * Determine if a certain object on a page is on the freelist. Must hold the
1115  * slab lock to guarantee that the chains are in a consistent state.
1116  */
1117 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1118 {
1119 	int nr = 0;
1120 	void *fp;
1121 	void *object = NULL;
1122 	int max_objects;
1123 
1124 	fp = page->freelist;
1125 	while (fp && nr <= page->objects) {
1126 		if (fp == search)
1127 			return 1;
1128 		if (!check_valid_pointer(s, page, fp)) {
1129 			if (object) {
1130 				object_err(s, page, object,
1131 					"Freechain corrupt");
1132 				set_freepointer(s, object, NULL);
1133 			} else {
1134 				slab_err(s, page, "Freepointer corrupt");
1135 				page->freelist = NULL;
1136 				page->inuse = page->objects;
1137 				slab_fix(s, "Freelist cleared");
1138 				return 0;
1139 			}
1140 			break;
1141 		}
1142 		object = fp;
1143 		fp = get_freepointer(s, object);
1144 		nr++;
1145 	}
1146 
1147 	max_objects = order_objects(compound_order(page), s->size);
1148 	if (max_objects > MAX_OBJS_PER_PAGE)
1149 		max_objects = MAX_OBJS_PER_PAGE;
1150 
1151 	if (page->objects != max_objects) {
1152 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1153 			 page->objects, max_objects);
1154 		page->objects = max_objects;
1155 		slab_fix(s, "Number of objects adjusted");
1156 	}
1157 	if (page->inuse != page->objects - nr) {
1158 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1159 			 page->inuse, page->objects - nr);
1160 		page->inuse = page->objects - nr;
1161 		slab_fix(s, "Object count adjusted");
1162 	}
1163 	return search == NULL;
1164 }
1165 
1166 static void trace(struct kmem_cache *s, struct page *page, void *object,
1167 								int alloc)
1168 {
1169 	if (s->flags & SLAB_TRACE) {
1170 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1171 			s->name,
1172 			alloc ? "alloc" : "free",
1173 			object, page->inuse,
1174 			page->freelist);
1175 
1176 		if (!alloc)
1177 			print_section(KERN_INFO, "Object ", (void *)object,
1178 					s->object_size);
1179 
1180 		dump_stack();
1181 	}
1182 }
1183 
1184 /*
1185  * Tracking of fully allocated slabs for debugging purposes.
1186  */
1187 static void add_full(struct kmem_cache *s,
1188 	struct kmem_cache_node *n, struct page *page)
1189 {
1190 	if (!(s->flags & SLAB_STORE_USER))
1191 		return;
1192 
1193 	lockdep_assert_held(&n->list_lock);
1194 	list_add(&page->slab_list, &n->full);
1195 }
1196 
1197 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1198 {
1199 	if (!(s->flags & SLAB_STORE_USER))
1200 		return;
1201 
1202 	lockdep_assert_held(&n->list_lock);
1203 	list_del(&page->slab_list);
1204 }
1205 
1206 /* Tracking of the number of slabs for debugging purposes */
1207 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1208 {
1209 	struct kmem_cache_node *n = get_node(s, node);
1210 
1211 	return atomic_long_read(&n->nr_slabs);
1212 }
1213 
1214 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1215 {
1216 	return atomic_long_read(&n->nr_slabs);
1217 }
1218 
1219 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1220 {
1221 	struct kmem_cache_node *n = get_node(s, node);
1222 
1223 	/*
1224 	 * May be called early in order to allocate a slab for the
1225 	 * kmem_cache_node structure. Solve the chicken-egg
1226 	 * dilemma by deferring the increment of the count during
1227 	 * bootstrap (see early_kmem_cache_node_alloc).
1228 	 */
1229 	if (likely(n)) {
1230 		atomic_long_inc(&n->nr_slabs);
1231 		atomic_long_add(objects, &n->total_objects);
1232 	}
1233 }
1234 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1235 {
1236 	struct kmem_cache_node *n = get_node(s, node);
1237 
1238 	atomic_long_dec(&n->nr_slabs);
1239 	atomic_long_sub(objects, &n->total_objects);
1240 }
1241 
1242 /* Object debug checks for alloc/free paths */
1243 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1244 								void *object)
1245 {
1246 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1247 		return;
1248 
1249 	init_object(s, object, SLUB_RED_INACTIVE);
1250 	init_tracking(s, object);
1251 }
1252 
1253 static
1254 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1255 {
1256 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1257 		return;
1258 
1259 	metadata_access_enable();
1260 	memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1261 	metadata_access_disable();
1262 }
1263 
1264 static inline int alloc_consistency_checks(struct kmem_cache *s,
1265 					struct page *page, void *object)
1266 {
1267 	if (!check_slab(s, page))
1268 		return 0;
1269 
1270 	if (!check_valid_pointer(s, page, object)) {
1271 		object_err(s, page, object, "Freelist Pointer check fails");
1272 		return 0;
1273 	}
1274 
1275 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1276 		return 0;
1277 
1278 	return 1;
1279 }
1280 
1281 static noinline int alloc_debug_processing(struct kmem_cache *s,
1282 					struct page *page,
1283 					void *object, unsigned long addr)
1284 {
1285 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1286 		if (!alloc_consistency_checks(s, page, object))
1287 			goto bad;
1288 	}
1289 
1290 	/* Success perform special debug activities for allocs */
1291 	if (s->flags & SLAB_STORE_USER)
1292 		set_track(s, object, TRACK_ALLOC, addr);
1293 	trace(s, page, object, 1);
1294 	init_object(s, object, SLUB_RED_ACTIVE);
1295 	return 1;
1296 
1297 bad:
1298 	if (PageSlab(page)) {
1299 		/*
1300 		 * If this is a slab page then lets do the best we can
1301 		 * to avoid issues in the future. Marking all objects
1302 		 * as used avoids touching the remaining objects.
1303 		 */
1304 		slab_fix(s, "Marking all objects used");
1305 		page->inuse = page->objects;
1306 		page->freelist = NULL;
1307 	}
1308 	return 0;
1309 }
1310 
1311 static inline int free_consistency_checks(struct kmem_cache *s,
1312 		struct page *page, void *object, unsigned long addr)
1313 {
1314 	if (!check_valid_pointer(s, page, object)) {
1315 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1316 		return 0;
1317 	}
1318 
1319 	if (on_freelist(s, page, object)) {
1320 		object_err(s, page, object, "Object already free");
1321 		return 0;
1322 	}
1323 
1324 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1325 		return 0;
1326 
1327 	if (unlikely(s != page->slab_cache)) {
1328 		if (!PageSlab(page)) {
1329 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1330 				 object);
1331 		} else if (!page->slab_cache) {
1332 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1333 			       object);
1334 			dump_stack();
1335 		} else
1336 			object_err(s, page, object,
1337 					"page slab pointer corrupt.");
1338 		return 0;
1339 	}
1340 	return 1;
1341 }
1342 
1343 /* Supports checking bulk free of a constructed freelist */
1344 static noinline int free_debug_processing(
1345 	struct kmem_cache *s, struct page *page,
1346 	void *head, void *tail, int bulk_cnt,
1347 	unsigned long addr)
1348 {
1349 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1350 	void *object = head;
1351 	int cnt = 0;
1352 	unsigned long flags, flags2;
1353 	int ret = 0;
1354 
1355 	spin_lock_irqsave(&n->list_lock, flags);
1356 	slab_lock(page, &flags2);
1357 
1358 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1359 		if (!check_slab(s, page))
1360 			goto out;
1361 	}
1362 
1363 next_object:
1364 	cnt++;
1365 
1366 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1367 		if (!free_consistency_checks(s, page, object, addr))
1368 			goto out;
1369 	}
1370 
1371 	if (s->flags & SLAB_STORE_USER)
1372 		set_track(s, object, TRACK_FREE, addr);
1373 	trace(s, page, object, 0);
1374 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1375 	init_object(s, object, SLUB_RED_INACTIVE);
1376 
1377 	/* Reached end of constructed freelist yet? */
1378 	if (object != tail) {
1379 		object = get_freepointer(s, object);
1380 		goto next_object;
1381 	}
1382 	ret = 1;
1383 
1384 out:
1385 	if (cnt != bulk_cnt)
1386 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1387 			 bulk_cnt, cnt);
1388 
1389 	slab_unlock(page, &flags2);
1390 	spin_unlock_irqrestore(&n->list_lock, flags);
1391 	if (!ret)
1392 		slab_fix(s, "Object at 0x%p not freed", object);
1393 	return ret;
1394 }
1395 
1396 /*
1397  * Parse a block of slub_debug options. Blocks are delimited by ';'
1398  *
1399  * @str:    start of block
1400  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1401  * @slabs:  return start of list of slabs, or NULL when there's no list
1402  * @init:   assume this is initial parsing and not per-kmem-create parsing
1403  *
1404  * returns the start of next block if there's any, or NULL
1405  */
1406 static char *
1407 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1408 {
1409 	bool higher_order_disable = false;
1410 
1411 	/* Skip any completely empty blocks */
1412 	while (*str && *str == ';')
1413 		str++;
1414 
1415 	if (*str == ',') {
1416 		/*
1417 		 * No options but restriction on slabs. This means full
1418 		 * debugging for slabs matching a pattern.
1419 		 */
1420 		*flags = DEBUG_DEFAULT_FLAGS;
1421 		goto check_slabs;
1422 	}
1423 	*flags = 0;
1424 
1425 	/* Determine which debug features should be switched on */
1426 	for (; *str && *str != ',' && *str != ';'; str++) {
1427 		switch (tolower(*str)) {
1428 		case '-':
1429 			*flags = 0;
1430 			break;
1431 		case 'f':
1432 			*flags |= SLAB_CONSISTENCY_CHECKS;
1433 			break;
1434 		case 'z':
1435 			*flags |= SLAB_RED_ZONE;
1436 			break;
1437 		case 'p':
1438 			*flags |= SLAB_POISON;
1439 			break;
1440 		case 'u':
1441 			*flags |= SLAB_STORE_USER;
1442 			break;
1443 		case 't':
1444 			*flags |= SLAB_TRACE;
1445 			break;
1446 		case 'a':
1447 			*flags |= SLAB_FAILSLAB;
1448 			break;
1449 		case 'o':
1450 			/*
1451 			 * Avoid enabling debugging on caches if its minimum
1452 			 * order would increase as a result.
1453 			 */
1454 			higher_order_disable = true;
1455 			break;
1456 		default:
1457 			if (init)
1458 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1459 		}
1460 	}
1461 check_slabs:
1462 	if (*str == ',')
1463 		*slabs = ++str;
1464 	else
1465 		*slabs = NULL;
1466 
1467 	/* Skip over the slab list */
1468 	while (*str && *str != ';')
1469 		str++;
1470 
1471 	/* Skip any completely empty blocks */
1472 	while (*str && *str == ';')
1473 		str++;
1474 
1475 	if (init && higher_order_disable)
1476 		disable_higher_order_debug = 1;
1477 
1478 	if (*str)
1479 		return str;
1480 	else
1481 		return NULL;
1482 }
1483 
1484 static int __init setup_slub_debug(char *str)
1485 {
1486 	slab_flags_t flags;
1487 	slab_flags_t global_flags;
1488 	char *saved_str;
1489 	char *slab_list;
1490 	bool global_slub_debug_changed = false;
1491 	bool slab_list_specified = false;
1492 
1493 	global_flags = DEBUG_DEFAULT_FLAGS;
1494 	if (*str++ != '=' || !*str)
1495 		/*
1496 		 * No options specified. Switch on full debugging.
1497 		 */
1498 		goto out;
1499 
1500 	saved_str = str;
1501 	while (str) {
1502 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1503 
1504 		if (!slab_list) {
1505 			global_flags = flags;
1506 			global_slub_debug_changed = true;
1507 		} else {
1508 			slab_list_specified = true;
1509 		}
1510 	}
1511 
1512 	/*
1513 	 * For backwards compatibility, a single list of flags with list of
1514 	 * slabs means debugging is only changed for those slabs, so the global
1515 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1516 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1517 	 * long as there is no option specifying flags without a slab list.
1518 	 */
1519 	if (slab_list_specified) {
1520 		if (!global_slub_debug_changed)
1521 			global_flags = slub_debug;
1522 		slub_debug_string = saved_str;
1523 	}
1524 out:
1525 	slub_debug = global_flags;
1526 	if (slub_debug != 0 || slub_debug_string)
1527 		static_branch_enable(&slub_debug_enabled);
1528 	else
1529 		static_branch_disable(&slub_debug_enabled);
1530 	if ((static_branch_unlikely(&init_on_alloc) ||
1531 	     static_branch_unlikely(&init_on_free)) &&
1532 	    (slub_debug & SLAB_POISON))
1533 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1534 	return 1;
1535 }
1536 
1537 __setup("slub_debug", setup_slub_debug);
1538 
1539 /*
1540  * kmem_cache_flags - apply debugging options to the cache
1541  * @object_size:	the size of an object without meta data
1542  * @flags:		flags to set
1543  * @name:		name of the cache
1544  *
1545  * Debug option(s) are applied to @flags. In addition to the debug
1546  * option(s), if a slab name (or multiple) is specified i.e.
1547  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1548  * then only the select slabs will receive the debug option(s).
1549  */
1550 slab_flags_t kmem_cache_flags(unsigned int object_size,
1551 	slab_flags_t flags, const char *name)
1552 {
1553 	char *iter;
1554 	size_t len;
1555 	char *next_block;
1556 	slab_flags_t block_flags;
1557 	slab_flags_t slub_debug_local = slub_debug;
1558 
1559 	/*
1560 	 * If the slab cache is for debugging (e.g. kmemleak) then
1561 	 * don't store user (stack trace) information by default,
1562 	 * but let the user enable it via the command line below.
1563 	 */
1564 	if (flags & SLAB_NOLEAKTRACE)
1565 		slub_debug_local &= ~SLAB_STORE_USER;
1566 
1567 	len = strlen(name);
1568 	next_block = slub_debug_string;
1569 	/* Go through all blocks of debug options, see if any matches our slab's name */
1570 	while (next_block) {
1571 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1572 		if (!iter)
1573 			continue;
1574 		/* Found a block that has a slab list, search it */
1575 		while (*iter) {
1576 			char *end, *glob;
1577 			size_t cmplen;
1578 
1579 			end = strchrnul(iter, ',');
1580 			if (next_block && next_block < end)
1581 				end = next_block - 1;
1582 
1583 			glob = strnchr(iter, end - iter, '*');
1584 			if (glob)
1585 				cmplen = glob - iter;
1586 			else
1587 				cmplen = max_t(size_t, len, (end - iter));
1588 
1589 			if (!strncmp(name, iter, cmplen)) {
1590 				flags |= block_flags;
1591 				return flags;
1592 			}
1593 
1594 			if (!*end || *end == ';')
1595 				break;
1596 			iter = end + 1;
1597 		}
1598 	}
1599 
1600 	return flags | slub_debug_local;
1601 }
1602 #else /* !CONFIG_SLUB_DEBUG */
1603 static inline void setup_object_debug(struct kmem_cache *s,
1604 			struct page *page, void *object) {}
1605 static inline
1606 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1607 
1608 static inline int alloc_debug_processing(struct kmem_cache *s,
1609 	struct page *page, void *object, unsigned long addr) { return 0; }
1610 
1611 static inline int free_debug_processing(
1612 	struct kmem_cache *s, struct page *page,
1613 	void *head, void *tail, int bulk_cnt,
1614 	unsigned long addr) { return 0; }
1615 
1616 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1617 			{ return 1; }
1618 static inline int check_object(struct kmem_cache *s, struct page *page,
1619 			void *object, u8 val) { return 1; }
1620 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1621 					struct page *page) {}
1622 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1623 					struct page *page) {}
1624 slab_flags_t kmem_cache_flags(unsigned int object_size,
1625 	slab_flags_t flags, const char *name)
1626 {
1627 	return flags;
1628 }
1629 #define slub_debug 0
1630 
1631 #define disable_higher_order_debug 0
1632 
1633 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1634 							{ return 0; }
1635 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1636 							{ return 0; }
1637 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1638 							int objects) {}
1639 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1640 							int objects) {}
1641 
1642 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1643 			       void **freelist, void *nextfree)
1644 {
1645 	return false;
1646 }
1647 #endif /* CONFIG_SLUB_DEBUG */
1648 
1649 /*
1650  * Hooks for other subsystems that check memory allocations. In a typical
1651  * production configuration these hooks all should produce no code at all.
1652  */
1653 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1654 {
1655 	ptr = kasan_kmalloc_large(ptr, size, flags);
1656 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1657 	kmemleak_alloc(ptr, size, 1, flags);
1658 	return ptr;
1659 }
1660 
1661 static __always_inline void kfree_hook(void *x)
1662 {
1663 	kmemleak_free(x);
1664 	kasan_kfree_large(x);
1665 }
1666 
1667 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1668 						void *x, bool init)
1669 {
1670 	kmemleak_free_recursive(x, s->flags);
1671 
1672 	debug_check_no_locks_freed(x, s->object_size);
1673 
1674 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1675 		debug_check_no_obj_freed(x, s->object_size);
1676 
1677 	/* Use KCSAN to help debug racy use-after-free. */
1678 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1679 		__kcsan_check_access(x, s->object_size,
1680 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1681 
1682 	/*
1683 	 * As memory initialization might be integrated into KASAN,
1684 	 * kasan_slab_free and initialization memset's must be
1685 	 * kept together to avoid discrepancies in behavior.
1686 	 *
1687 	 * The initialization memset's clear the object and the metadata,
1688 	 * but don't touch the SLAB redzone.
1689 	 */
1690 	if (init) {
1691 		int rsize;
1692 
1693 		if (!kasan_has_integrated_init())
1694 			memset(kasan_reset_tag(x), 0, s->object_size);
1695 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1696 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1697 		       s->size - s->inuse - rsize);
1698 	}
1699 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1700 	return kasan_slab_free(s, x, init);
1701 }
1702 
1703 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1704 					   void **head, void **tail)
1705 {
1706 
1707 	void *object;
1708 	void *next = *head;
1709 	void *old_tail = *tail ? *tail : *head;
1710 
1711 	if (is_kfence_address(next)) {
1712 		slab_free_hook(s, next, false);
1713 		return true;
1714 	}
1715 
1716 	/* Head and tail of the reconstructed freelist */
1717 	*head = NULL;
1718 	*tail = NULL;
1719 
1720 	do {
1721 		object = next;
1722 		next = get_freepointer(s, object);
1723 
1724 		/* If object's reuse doesn't have to be delayed */
1725 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1726 			/* Move object to the new freelist */
1727 			set_freepointer(s, object, *head);
1728 			*head = object;
1729 			if (!*tail)
1730 				*tail = object;
1731 		}
1732 	} while (object != old_tail);
1733 
1734 	if (*head == *tail)
1735 		*tail = NULL;
1736 
1737 	return *head != NULL;
1738 }
1739 
1740 static void *setup_object(struct kmem_cache *s, struct page *page,
1741 				void *object)
1742 {
1743 	setup_object_debug(s, page, object);
1744 	object = kasan_init_slab_obj(s, object);
1745 	if (unlikely(s->ctor)) {
1746 		kasan_unpoison_object_data(s, object);
1747 		s->ctor(object);
1748 		kasan_poison_object_data(s, object);
1749 	}
1750 	return object;
1751 }
1752 
1753 /*
1754  * Slab allocation and freeing
1755  */
1756 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1757 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1758 {
1759 	struct page *page;
1760 	unsigned int order = oo_order(oo);
1761 
1762 	if (node == NUMA_NO_NODE)
1763 		page = alloc_pages(flags, order);
1764 	else
1765 		page = __alloc_pages_node(node, flags, order);
1766 
1767 	return page;
1768 }
1769 
1770 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1771 /* Pre-initialize the random sequence cache */
1772 static int init_cache_random_seq(struct kmem_cache *s)
1773 {
1774 	unsigned int count = oo_objects(s->oo);
1775 	int err;
1776 
1777 	/* Bailout if already initialised */
1778 	if (s->random_seq)
1779 		return 0;
1780 
1781 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1782 	if (err) {
1783 		pr_err("SLUB: Unable to initialize free list for %s\n",
1784 			s->name);
1785 		return err;
1786 	}
1787 
1788 	/* Transform to an offset on the set of pages */
1789 	if (s->random_seq) {
1790 		unsigned int i;
1791 
1792 		for (i = 0; i < count; i++)
1793 			s->random_seq[i] *= s->size;
1794 	}
1795 	return 0;
1796 }
1797 
1798 /* Initialize each random sequence freelist per cache */
1799 static void __init init_freelist_randomization(void)
1800 {
1801 	struct kmem_cache *s;
1802 
1803 	mutex_lock(&slab_mutex);
1804 
1805 	list_for_each_entry(s, &slab_caches, list)
1806 		init_cache_random_seq(s);
1807 
1808 	mutex_unlock(&slab_mutex);
1809 }
1810 
1811 /* Get the next entry on the pre-computed freelist randomized */
1812 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1813 				unsigned long *pos, void *start,
1814 				unsigned long page_limit,
1815 				unsigned long freelist_count)
1816 {
1817 	unsigned int idx;
1818 
1819 	/*
1820 	 * If the target page allocation failed, the number of objects on the
1821 	 * page might be smaller than the usual size defined by the cache.
1822 	 */
1823 	do {
1824 		idx = s->random_seq[*pos];
1825 		*pos += 1;
1826 		if (*pos >= freelist_count)
1827 			*pos = 0;
1828 	} while (unlikely(idx >= page_limit));
1829 
1830 	return (char *)start + idx;
1831 }
1832 
1833 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1834 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1835 {
1836 	void *start;
1837 	void *cur;
1838 	void *next;
1839 	unsigned long idx, pos, page_limit, freelist_count;
1840 
1841 	if (page->objects < 2 || !s->random_seq)
1842 		return false;
1843 
1844 	freelist_count = oo_objects(s->oo);
1845 	pos = get_random_int() % freelist_count;
1846 
1847 	page_limit = page->objects * s->size;
1848 	start = fixup_red_left(s, page_address(page));
1849 
1850 	/* First entry is used as the base of the freelist */
1851 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1852 				freelist_count);
1853 	cur = setup_object(s, page, cur);
1854 	page->freelist = cur;
1855 
1856 	for (idx = 1; idx < page->objects; idx++) {
1857 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1858 			freelist_count);
1859 		next = setup_object(s, page, next);
1860 		set_freepointer(s, cur, next);
1861 		cur = next;
1862 	}
1863 	set_freepointer(s, cur, NULL);
1864 
1865 	return true;
1866 }
1867 #else
1868 static inline int init_cache_random_seq(struct kmem_cache *s)
1869 {
1870 	return 0;
1871 }
1872 static inline void init_freelist_randomization(void) { }
1873 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1874 {
1875 	return false;
1876 }
1877 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1878 
1879 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1880 {
1881 	struct page *page;
1882 	struct kmem_cache_order_objects oo = s->oo;
1883 	gfp_t alloc_gfp;
1884 	void *start, *p, *next;
1885 	int idx;
1886 	bool shuffle;
1887 
1888 	flags &= gfp_allowed_mask;
1889 
1890 	flags |= s->allocflags;
1891 
1892 	/*
1893 	 * Let the initial higher-order allocation fail under memory pressure
1894 	 * so we fall-back to the minimum order allocation.
1895 	 */
1896 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1897 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1898 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1899 
1900 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1901 	if (unlikely(!page)) {
1902 		oo = s->min;
1903 		alloc_gfp = flags;
1904 		/*
1905 		 * Allocation may have failed due to fragmentation.
1906 		 * Try a lower order alloc if possible
1907 		 */
1908 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1909 		if (unlikely(!page))
1910 			goto out;
1911 		stat(s, ORDER_FALLBACK);
1912 	}
1913 
1914 	page->objects = oo_objects(oo);
1915 
1916 	account_slab_page(page, oo_order(oo), s, flags);
1917 
1918 	page->slab_cache = s;
1919 	__SetPageSlab(page);
1920 	if (page_is_pfmemalloc(page))
1921 		SetPageSlabPfmemalloc(page);
1922 
1923 	kasan_poison_slab(page);
1924 
1925 	start = page_address(page);
1926 
1927 	setup_page_debug(s, page, start);
1928 
1929 	shuffle = shuffle_freelist(s, page);
1930 
1931 	if (!shuffle) {
1932 		start = fixup_red_left(s, start);
1933 		start = setup_object(s, page, start);
1934 		page->freelist = start;
1935 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1936 			next = p + s->size;
1937 			next = setup_object(s, page, next);
1938 			set_freepointer(s, p, next);
1939 			p = next;
1940 		}
1941 		set_freepointer(s, p, NULL);
1942 	}
1943 
1944 	page->inuse = page->objects;
1945 	page->frozen = 1;
1946 
1947 out:
1948 	if (!page)
1949 		return NULL;
1950 
1951 	inc_slabs_node(s, page_to_nid(page), page->objects);
1952 
1953 	return page;
1954 }
1955 
1956 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1957 {
1958 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1959 		flags = kmalloc_fix_flags(flags);
1960 
1961 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
1962 
1963 	return allocate_slab(s,
1964 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1965 }
1966 
1967 static void __free_slab(struct kmem_cache *s, struct page *page)
1968 {
1969 	int order = compound_order(page);
1970 	int pages = 1 << order;
1971 
1972 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1973 		void *p;
1974 
1975 		slab_pad_check(s, page);
1976 		for_each_object(p, s, page_address(page),
1977 						page->objects)
1978 			check_object(s, page, p, SLUB_RED_INACTIVE);
1979 	}
1980 
1981 	__ClearPageSlabPfmemalloc(page);
1982 	__ClearPageSlab(page);
1983 	/* In union with page->mapping where page allocator expects NULL */
1984 	page->slab_cache = NULL;
1985 	if (current->reclaim_state)
1986 		current->reclaim_state->reclaimed_slab += pages;
1987 	unaccount_slab_page(page, order, s);
1988 	__free_pages(page, order);
1989 }
1990 
1991 static void rcu_free_slab(struct rcu_head *h)
1992 {
1993 	struct page *page = container_of(h, struct page, rcu_head);
1994 
1995 	__free_slab(page->slab_cache, page);
1996 }
1997 
1998 static void free_slab(struct kmem_cache *s, struct page *page)
1999 {
2000 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
2001 		call_rcu(&page->rcu_head, rcu_free_slab);
2002 	} else
2003 		__free_slab(s, page);
2004 }
2005 
2006 static void discard_slab(struct kmem_cache *s, struct page *page)
2007 {
2008 	dec_slabs_node(s, page_to_nid(page), page->objects);
2009 	free_slab(s, page);
2010 }
2011 
2012 /*
2013  * Management of partially allocated slabs.
2014  */
2015 static inline void
2016 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
2017 {
2018 	n->nr_partial++;
2019 	if (tail == DEACTIVATE_TO_TAIL)
2020 		list_add_tail(&page->slab_list, &n->partial);
2021 	else
2022 		list_add(&page->slab_list, &n->partial);
2023 }
2024 
2025 static inline void add_partial(struct kmem_cache_node *n,
2026 				struct page *page, int tail)
2027 {
2028 	lockdep_assert_held(&n->list_lock);
2029 	__add_partial(n, page, tail);
2030 }
2031 
2032 static inline void remove_partial(struct kmem_cache_node *n,
2033 					struct page *page)
2034 {
2035 	lockdep_assert_held(&n->list_lock);
2036 	list_del(&page->slab_list);
2037 	n->nr_partial--;
2038 }
2039 
2040 /*
2041  * Remove slab from the partial list, freeze it and
2042  * return the pointer to the freelist.
2043  *
2044  * Returns a list of objects or NULL if it fails.
2045  */
2046 static inline void *acquire_slab(struct kmem_cache *s,
2047 		struct kmem_cache_node *n, struct page *page,
2048 		int mode, int *objects)
2049 {
2050 	void *freelist;
2051 	unsigned long counters;
2052 	struct page new;
2053 
2054 	lockdep_assert_held(&n->list_lock);
2055 
2056 	/*
2057 	 * Zap the freelist and set the frozen bit.
2058 	 * The old freelist is the list of objects for the
2059 	 * per cpu allocation list.
2060 	 */
2061 	freelist = page->freelist;
2062 	counters = page->counters;
2063 	new.counters = counters;
2064 	*objects = new.objects - new.inuse;
2065 	if (mode) {
2066 		new.inuse = page->objects;
2067 		new.freelist = NULL;
2068 	} else {
2069 		new.freelist = freelist;
2070 	}
2071 
2072 	VM_BUG_ON(new.frozen);
2073 	new.frozen = 1;
2074 
2075 	if (!__cmpxchg_double_slab(s, page,
2076 			freelist, counters,
2077 			new.freelist, new.counters,
2078 			"acquire_slab"))
2079 		return NULL;
2080 
2081 	remove_partial(n, page);
2082 	WARN_ON(!freelist);
2083 	return freelist;
2084 }
2085 
2086 #ifdef CONFIG_SLUB_CPU_PARTIAL
2087 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
2088 #else
2089 static inline void put_cpu_partial(struct kmem_cache *s, struct page *page,
2090 				   int drain) { }
2091 #endif
2092 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
2093 
2094 /*
2095  * Try to allocate a partial slab from a specific node.
2096  */
2097 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2098 			      struct page **ret_page, gfp_t gfpflags)
2099 {
2100 	struct page *page, *page2;
2101 	void *object = NULL;
2102 	unsigned int available = 0;
2103 	unsigned long flags;
2104 	int objects;
2105 
2106 	/*
2107 	 * Racy check. If we mistakenly see no partial slabs then we
2108 	 * just allocate an empty slab. If we mistakenly try to get a
2109 	 * partial slab and there is none available then get_partial()
2110 	 * will return NULL.
2111 	 */
2112 	if (!n || !n->nr_partial)
2113 		return NULL;
2114 
2115 	spin_lock_irqsave(&n->list_lock, flags);
2116 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
2117 		void *t;
2118 
2119 		if (!pfmemalloc_match(page, gfpflags))
2120 			continue;
2121 
2122 		t = acquire_slab(s, n, page, object == NULL, &objects);
2123 		if (!t)
2124 			break;
2125 
2126 		available += objects;
2127 		if (!object) {
2128 			*ret_page = page;
2129 			stat(s, ALLOC_FROM_PARTIAL);
2130 			object = t;
2131 		} else {
2132 			put_cpu_partial(s, page, 0);
2133 			stat(s, CPU_PARTIAL_NODE);
2134 		}
2135 		if (!kmem_cache_has_cpu_partial(s)
2136 			|| available > slub_cpu_partial(s) / 2)
2137 			break;
2138 
2139 	}
2140 	spin_unlock_irqrestore(&n->list_lock, flags);
2141 	return object;
2142 }
2143 
2144 /*
2145  * Get a page from somewhere. Search in increasing NUMA distances.
2146  */
2147 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2148 			     struct page **ret_page)
2149 {
2150 #ifdef CONFIG_NUMA
2151 	struct zonelist *zonelist;
2152 	struct zoneref *z;
2153 	struct zone *zone;
2154 	enum zone_type highest_zoneidx = gfp_zone(flags);
2155 	void *object;
2156 	unsigned int cpuset_mems_cookie;
2157 
2158 	/*
2159 	 * The defrag ratio allows a configuration of the tradeoffs between
2160 	 * inter node defragmentation and node local allocations. A lower
2161 	 * defrag_ratio increases the tendency to do local allocations
2162 	 * instead of attempting to obtain partial slabs from other nodes.
2163 	 *
2164 	 * If the defrag_ratio is set to 0 then kmalloc() always
2165 	 * returns node local objects. If the ratio is higher then kmalloc()
2166 	 * may return off node objects because partial slabs are obtained
2167 	 * from other nodes and filled up.
2168 	 *
2169 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2170 	 * (which makes defrag_ratio = 1000) then every (well almost)
2171 	 * allocation will first attempt to defrag slab caches on other nodes.
2172 	 * This means scanning over all nodes to look for partial slabs which
2173 	 * may be expensive if we do it every time we are trying to find a slab
2174 	 * with available objects.
2175 	 */
2176 	if (!s->remote_node_defrag_ratio ||
2177 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2178 		return NULL;
2179 
2180 	do {
2181 		cpuset_mems_cookie = read_mems_allowed_begin();
2182 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2183 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2184 			struct kmem_cache_node *n;
2185 
2186 			n = get_node(s, zone_to_nid(zone));
2187 
2188 			if (n && cpuset_zone_allowed(zone, flags) &&
2189 					n->nr_partial > s->min_partial) {
2190 				object = get_partial_node(s, n, ret_page, flags);
2191 				if (object) {
2192 					/*
2193 					 * Don't check read_mems_allowed_retry()
2194 					 * here - if mems_allowed was updated in
2195 					 * parallel, that was a harmless race
2196 					 * between allocation and the cpuset
2197 					 * update
2198 					 */
2199 					return object;
2200 				}
2201 			}
2202 		}
2203 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2204 #endif	/* CONFIG_NUMA */
2205 	return NULL;
2206 }
2207 
2208 /*
2209  * Get a partial page, lock it and return it.
2210  */
2211 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2212 			 struct page **ret_page)
2213 {
2214 	void *object;
2215 	int searchnode = node;
2216 
2217 	if (node == NUMA_NO_NODE)
2218 		searchnode = numa_mem_id();
2219 
2220 	object = get_partial_node(s, get_node(s, searchnode), ret_page, flags);
2221 	if (object || node != NUMA_NO_NODE)
2222 		return object;
2223 
2224 	return get_any_partial(s, flags, ret_page);
2225 }
2226 
2227 #ifdef CONFIG_PREEMPTION
2228 /*
2229  * Calculate the next globally unique transaction for disambiguation
2230  * during cmpxchg. The transactions start with the cpu number and are then
2231  * incremented by CONFIG_NR_CPUS.
2232  */
2233 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2234 #else
2235 /*
2236  * No preemption supported therefore also no need to check for
2237  * different cpus.
2238  */
2239 #define TID_STEP 1
2240 #endif
2241 
2242 static inline unsigned long next_tid(unsigned long tid)
2243 {
2244 	return tid + TID_STEP;
2245 }
2246 
2247 #ifdef SLUB_DEBUG_CMPXCHG
2248 static inline unsigned int tid_to_cpu(unsigned long tid)
2249 {
2250 	return tid % TID_STEP;
2251 }
2252 
2253 static inline unsigned long tid_to_event(unsigned long tid)
2254 {
2255 	return tid / TID_STEP;
2256 }
2257 #endif
2258 
2259 static inline unsigned int init_tid(int cpu)
2260 {
2261 	return cpu;
2262 }
2263 
2264 static inline void note_cmpxchg_failure(const char *n,
2265 		const struct kmem_cache *s, unsigned long tid)
2266 {
2267 #ifdef SLUB_DEBUG_CMPXCHG
2268 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2269 
2270 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2271 
2272 #ifdef CONFIG_PREEMPTION
2273 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2274 		pr_warn("due to cpu change %d -> %d\n",
2275 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2276 	else
2277 #endif
2278 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2279 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2280 			tid_to_event(tid), tid_to_event(actual_tid));
2281 	else
2282 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2283 			actual_tid, tid, next_tid(tid));
2284 #endif
2285 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2286 }
2287 
2288 static void init_kmem_cache_cpus(struct kmem_cache *s)
2289 {
2290 	int cpu;
2291 	struct kmem_cache_cpu *c;
2292 
2293 	for_each_possible_cpu(cpu) {
2294 		c = per_cpu_ptr(s->cpu_slab, cpu);
2295 		local_lock_init(&c->lock);
2296 		c->tid = init_tid(cpu);
2297 	}
2298 }
2299 
2300 /*
2301  * Finishes removing the cpu slab. Merges cpu's freelist with page's freelist,
2302  * unfreezes the slabs and puts it on the proper list.
2303  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2304  * by the caller.
2305  */
2306 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2307 			    void *freelist)
2308 {
2309 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2310 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2311 	int lock = 0, free_delta = 0;
2312 	enum slab_modes l = M_NONE, m = M_NONE;
2313 	void *nextfree, *freelist_iter, *freelist_tail;
2314 	int tail = DEACTIVATE_TO_HEAD;
2315 	unsigned long flags = 0;
2316 	struct page new;
2317 	struct page old;
2318 
2319 	if (page->freelist) {
2320 		stat(s, DEACTIVATE_REMOTE_FREES);
2321 		tail = DEACTIVATE_TO_TAIL;
2322 	}
2323 
2324 	/*
2325 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2326 	 * remember the last object in freelist_tail for later splicing.
2327 	 */
2328 	freelist_tail = NULL;
2329 	freelist_iter = freelist;
2330 	while (freelist_iter) {
2331 		nextfree = get_freepointer(s, freelist_iter);
2332 
2333 		/*
2334 		 * If 'nextfree' is invalid, it is possible that the object at
2335 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2336 		 * starting at 'freelist_iter' by skipping them.
2337 		 */
2338 		if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2339 			break;
2340 
2341 		freelist_tail = freelist_iter;
2342 		free_delta++;
2343 
2344 		freelist_iter = nextfree;
2345 	}
2346 
2347 	/*
2348 	 * Stage two: Unfreeze the page while splicing the per-cpu
2349 	 * freelist to the head of page's freelist.
2350 	 *
2351 	 * Ensure that the page is unfrozen while the list presence
2352 	 * reflects the actual number of objects during unfreeze.
2353 	 *
2354 	 * We setup the list membership and then perform a cmpxchg
2355 	 * with the count. If there is a mismatch then the page
2356 	 * is not unfrozen but the page is on the wrong list.
2357 	 *
2358 	 * Then we restart the process which may have to remove
2359 	 * the page from the list that we just put it on again
2360 	 * because the number of objects in the slab may have
2361 	 * changed.
2362 	 */
2363 redo:
2364 
2365 	old.freelist = READ_ONCE(page->freelist);
2366 	old.counters = READ_ONCE(page->counters);
2367 	VM_BUG_ON(!old.frozen);
2368 
2369 	/* Determine target state of the slab */
2370 	new.counters = old.counters;
2371 	if (freelist_tail) {
2372 		new.inuse -= free_delta;
2373 		set_freepointer(s, freelist_tail, old.freelist);
2374 		new.freelist = freelist;
2375 	} else
2376 		new.freelist = old.freelist;
2377 
2378 	new.frozen = 0;
2379 
2380 	if (!new.inuse && n->nr_partial >= s->min_partial)
2381 		m = M_FREE;
2382 	else if (new.freelist) {
2383 		m = M_PARTIAL;
2384 		if (!lock) {
2385 			lock = 1;
2386 			/*
2387 			 * Taking the spinlock removes the possibility
2388 			 * that acquire_slab() will see a slab page that
2389 			 * is frozen
2390 			 */
2391 			spin_lock_irqsave(&n->list_lock, flags);
2392 		}
2393 	} else {
2394 		m = M_FULL;
2395 		if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2396 			lock = 1;
2397 			/*
2398 			 * This also ensures that the scanning of full
2399 			 * slabs from diagnostic functions will not see
2400 			 * any frozen slabs.
2401 			 */
2402 			spin_lock_irqsave(&n->list_lock, flags);
2403 		}
2404 	}
2405 
2406 	if (l != m) {
2407 		if (l == M_PARTIAL)
2408 			remove_partial(n, page);
2409 		else if (l == M_FULL)
2410 			remove_full(s, n, page);
2411 
2412 		if (m == M_PARTIAL)
2413 			add_partial(n, page, tail);
2414 		else if (m == M_FULL)
2415 			add_full(s, n, page);
2416 	}
2417 
2418 	l = m;
2419 	if (!cmpxchg_double_slab(s, page,
2420 				old.freelist, old.counters,
2421 				new.freelist, new.counters,
2422 				"unfreezing slab"))
2423 		goto redo;
2424 
2425 	if (lock)
2426 		spin_unlock_irqrestore(&n->list_lock, flags);
2427 
2428 	if (m == M_PARTIAL)
2429 		stat(s, tail);
2430 	else if (m == M_FULL)
2431 		stat(s, DEACTIVATE_FULL);
2432 	else if (m == M_FREE) {
2433 		stat(s, DEACTIVATE_EMPTY);
2434 		discard_slab(s, page);
2435 		stat(s, FREE_SLAB);
2436 	}
2437 }
2438 
2439 #ifdef CONFIG_SLUB_CPU_PARTIAL
2440 static void __unfreeze_partials(struct kmem_cache *s, struct page *partial_page)
2441 {
2442 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2443 	struct page *page, *discard_page = NULL;
2444 	unsigned long flags = 0;
2445 
2446 	while (partial_page) {
2447 		struct page new;
2448 		struct page old;
2449 
2450 		page = partial_page;
2451 		partial_page = page->next;
2452 
2453 		n2 = get_node(s, page_to_nid(page));
2454 		if (n != n2) {
2455 			if (n)
2456 				spin_unlock_irqrestore(&n->list_lock, flags);
2457 
2458 			n = n2;
2459 			spin_lock_irqsave(&n->list_lock, flags);
2460 		}
2461 
2462 		do {
2463 
2464 			old.freelist = page->freelist;
2465 			old.counters = page->counters;
2466 			VM_BUG_ON(!old.frozen);
2467 
2468 			new.counters = old.counters;
2469 			new.freelist = old.freelist;
2470 
2471 			new.frozen = 0;
2472 
2473 		} while (!__cmpxchg_double_slab(s, page,
2474 				old.freelist, old.counters,
2475 				new.freelist, new.counters,
2476 				"unfreezing slab"));
2477 
2478 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2479 			page->next = discard_page;
2480 			discard_page = page;
2481 		} else {
2482 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2483 			stat(s, FREE_ADD_PARTIAL);
2484 		}
2485 	}
2486 
2487 	if (n)
2488 		spin_unlock_irqrestore(&n->list_lock, flags);
2489 
2490 	while (discard_page) {
2491 		page = discard_page;
2492 		discard_page = discard_page->next;
2493 
2494 		stat(s, DEACTIVATE_EMPTY);
2495 		discard_slab(s, page);
2496 		stat(s, FREE_SLAB);
2497 	}
2498 }
2499 
2500 /*
2501  * Unfreeze all the cpu partial slabs.
2502  */
2503 static void unfreeze_partials(struct kmem_cache *s)
2504 {
2505 	struct page *partial_page;
2506 	unsigned long flags;
2507 
2508 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2509 	partial_page = this_cpu_read(s->cpu_slab->partial);
2510 	this_cpu_write(s->cpu_slab->partial, NULL);
2511 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2512 
2513 	if (partial_page)
2514 		__unfreeze_partials(s, partial_page);
2515 }
2516 
2517 static void unfreeze_partials_cpu(struct kmem_cache *s,
2518 				  struct kmem_cache_cpu *c)
2519 {
2520 	struct page *partial_page;
2521 
2522 	partial_page = slub_percpu_partial(c);
2523 	c->partial = NULL;
2524 
2525 	if (partial_page)
2526 		__unfreeze_partials(s, partial_page);
2527 }
2528 
2529 /*
2530  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2531  * partial page slot if available.
2532  *
2533  * If we did not find a slot then simply move all the partials to the
2534  * per node partial list.
2535  */
2536 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2537 {
2538 	struct page *oldpage;
2539 	struct page *page_to_unfreeze = NULL;
2540 	unsigned long flags;
2541 	int pages = 0;
2542 	int pobjects = 0;
2543 
2544 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2545 
2546 	oldpage = this_cpu_read(s->cpu_slab->partial);
2547 
2548 	if (oldpage) {
2549 		if (drain && oldpage->pobjects > slub_cpu_partial(s)) {
2550 			/*
2551 			 * Partial array is full. Move the existing set to the
2552 			 * per node partial list. Postpone the actual unfreezing
2553 			 * outside of the critical section.
2554 			 */
2555 			page_to_unfreeze = oldpage;
2556 			oldpage = NULL;
2557 		} else {
2558 			pobjects = oldpage->pobjects;
2559 			pages = oldpage->pages;
2560 		}
2561 	}
2562 
2563 	pages++;
2564 	pobjects += page->objects - page->inuse;
2565 
2566 	page->pages = pages;
2567 	page->pobjects = pobjects;
2568 	page->next = oldpage;
2569 
2570 	this_cpu_write(s->cpu_slab->partial, page);
2571 
2572 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2573 
2574 	if (page_to_unfreeze) {
2575 		__unfreeze_partials(s, page_to_unfreeze);
2576 		stat(s, CPU_PARTIAL_DRAIN);
2577 	}
2578 }
2579 
2580 #else	/* CONFIG_SLUB_CPU_PARTIAL */
2581 
2582 static inline void unfreeze_partials(struct kmem_cache *s) { }
2583 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2584 				  struct kmem_cache_cpu *c) { }
2585 
2586 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2587 
2588 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2589 {
2590 	unsigned long flags;
2591 	struct page *page;
2592 	void *freelist;
2593 
2594 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2595 
2596 	page = c->page;
2597 	freelist = c->freelist;
2598 
2599 	c->page = NULL;
2600 	c->freelist = NULL;
2601 	c->tid = next_tid(c->tid);
2602 
2603 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2604 
2605 	if (page) {
2606 		deactivate_slab(s, page, freelist);
2607 		stat(s, CPUSLAB_FLUSH);
2608 	}
2609 }
2610 
2611 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2612 {
2613 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2614 	void *freelist = c->freelist;
2615 	struct page *page = c->page;
2616 
2617 	c->page = NULL;
2618 	c->freelist = NULL;
2619 	c->tid = next_tid(c->tid);
2620 
2621 	if (page) {
2622 		deactivate_slab(s, page, freelist);
2623 		stat(s, CPUSLAB_FLUSH);
2624 	}
2625 
2626 	unfreeze_partials_cpu(s, c);
2627 }
2628 
2629 struct slub_flush_work {
2630 	struct work_struct work;
2631 	struct kmem_cache *s;
2632 	bool skip;
2633 };
2634 
2635 /*
2636  * Flush cpu slab.
2637  *
2638  * Called from CPU work handler with migration disabled.
2639  */
2640 static void flush_cpu_slab(struct work_struct *w)
2641 {
2642 	struct kmem_cache *s;
2643 	struct kmem_cache_cpu *c;
2644 	struct slub_flush_work *sfw;
2645 
2646 	sfw = container_of(w, struct slub_flush_work, work);
2647 
2648 	s = sfw->s;
2649 	c = this_cpu_ptr(s->cpu_slab);
2650 
2651 	if (c->page)
2652 		flush_slab(s, c);
2653 
2654 	unfreeze_partials(s);
2655 }
2656 
2657 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2658 {
2659 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2660 
2661 	return c->page || slub_percpu_partial(c);
2662 }
2663 
2664 static DEFINE_MUTEX(flush_lock);
2665 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2666 
2667 static void flush_all_cpus_locked(struct kmem_cache *s)
2668 {
2669 	struct slub_flush_work *sfw;
2670 	unsigned int cpu;
2671 
2672 	lockdep_assert_cpus_held();
2673 	mutex_lock(&flush_lock);
2674 
2675 	for_each_online_cpu(cpu) {
2676 		sfw = &per_cpu(slub_flush, cpu);
2677 		if (!has_cpu_slab(cpu, s)) {
2678 			sfw->skip = true;
2679 			continue;
2680 		}
2681 		INIT_WORK(&sfw->work, flush_cpu_slab);
2682 		sfw->skip = false;
2683 		sfw->s = s;
2684 		schedule_work_on(cpu, &sfw->work);
2685 	}
2686 
2687 	for_each_online_cpu(cpu) {
2688 		sfw = &per_cpu(slub_flush, cpu);
2689 		if (sfw->skip)
2690 			continue;
2691 		flush_work(&sfw->work);
2692 	}
2693 
2694 	mutex_unlock(&flush_lock);
2695 }
2696 
2697 static void flush_all(struct kmem_cache *s)
2698 {
2699 	cpus_read_lock();
2700 	flush_all_cpus_locked(s);
2701 	cpus_read_unlock();
2702 }
2703 
2704 /*
2705  * Use the cpu notifier to insure that the cpu slabs are flushed when
2706  * necessary.
2707  */
2708 static int slub_cpu_dead(unsigned int cpu)
2709 {
2710 	struct kmem_cache *s;
2711 
2712 	mutex_lock(&slab_mutex);
2713 	list_for_each_entry(s, &slab_caches, list)
2714 		__flush_cpu_slab(s, cpu);
2715 	mutex_unlock(&slab_mutex);
2716 	return 0;
2717 }
2718 
2719 /*
2720  * Check if the objects in a per cpu structure fit numa
2721  * locality expectations.
2722  */
2723 static inline int node_match(struct page *page, int node)
2724 {
2725 #ifdef CONFIG_NUMA
2726 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2727 		return 0;
2728 #endif
2729 	return 1;
2730 }
2731 
2732 #ifdef CONFIG_SLUB_DEBUG
2733 static int count_free(struct page *page)
2734 {
2735 	return page->objects - page->inuse;
2736 }
2737 
2738 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2739 {
2740 	return atomic_long_read(&n->total_objects);
2741 }
2742 #endif /* CONFIG_SLUB_DEBUG */
2743 
2744 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2745 static unsigned long count_partial(struct kmem_cache_node *n,
2746 					int (*get_count)(struct page *))
2747 {
2748 	unsigned long flags;
2749 	unsigned long x = 0;
2750 	struct page *page;
2751 
2752 	spin_lock_irqsave(&n->list_lock, flags);
2753 	list_for_each_entry(page, &n->partial, slab_list)
2754 		x += get_count(page);
2755 	spin_unlock_irqrestore(&n->list_lock, flags);
2756 	return x;
2757 }
2758 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2759 
2760 static noinline void
2761 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2762 {
2763 #ifdef CONFIG_SLUB_DEBUG
2764 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2765 				      DEFAULT_RATELIMIT_BURST);
2766 	int node;
2767 	struct kmem_cache_node *n;
2768 
2769 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2770 		return;
2771 
2772 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2773 		nid, gfpflags, &gfpflags);
2774 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2775 		s->name, s->object_size, s->size, oo_order(s->oo),
2776 		oo_order(s->min));
2777 
2778 	if (oo_order(s->min) > get_order(s->object_size))
2779 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2780 			s->name);
2781 
2782 	for_each_kmem_cache_node(s, node, n) {
2783 		unsigned long nr_slabs;
2784 		unsigned long nr_objs;
2785 		unsigned long nr_free;
2786 
2787 		nr_free  = count_partial(n, count_free);
2788 		nr_slabs = node_nr_slabs(n);
2789 		nr_objs  = node_nr_objs(n);
2790 
2791 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2792 			node, nr_slabs, nr_objs, nr_free);
2793 	}
2794 #endif
2795 }
2796 
2797 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2798 {
2799 	if (unlikely(PageSlabPfmemalloc(page)))
2800 		return gfp_pfmemalloc_allowed(gfpflags);
2801 
2802 	return true;
2803 }
2804 
2805 /*
2806  * A variant of pfmemalloc_match() that tests page flags without asserting
2807  * PageSlab. Intended for opportunistic checks before taking a lock and
2808  * rechecking that nobody else freed the page under us.
2809  */
2810 static inline bool pfmemalloc_match_unsafe(struct page *page, gfp_t gfpflags)
2811 {
2812 	if (unlikely(__PageSlabPfmemalloc(page)))
2813 		return gfp_pfmemalloc_allowed(gfpflags);
2814 
2815 	return true;
2816 }
2817 
2818 /*
2819  * Check the page->freelist of a page and either transfer the freelist to the
2820  * per cpu freelist or deactivate the page.
2821  *
2822  * The page is still frozen if the return value is not NULL.
2823  *
2824  * If this function returns NULL then the page has been unfrozen.
2825  */
2826 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2827 {
2828 	struct page new;
2829 	unsigned long counters;
2830 	void *freelist;
2831 
2832 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2833 
2834 	do {
2835 		freelist = page->freelist;
2836 		counters = page->counters;
2837 
2838 		new.counters = counters;
2839 		VM_BUG_ON(!new.frozen);
2840 
2841 		new.inuse = page->objects;
2842 		new.frozen = freelist != NULL;
2843 
2844 	} while (!__cmpxchg_double_slab(s, page,
2845 		freelist, counters,
2846 		NULL, new.counters,
2847 		"get_freelist"));
2848 
2849 	return freelist;
2850 }
2851 
2852 /*
2853  * Slow path. The lockless freelist is empty or we need to perform
2854  * debugging duties.
2855  *
2856  * Processing is still very fast if new objects have been freed to the
2857  * regular freelist. In that case we simply take over the regular freelist
2858  * as the lockless freelist and zap the regular freelist.
2859  *
2860  * If that is not working then we fall back to the partial lists. We take the
2861  * first element of the freelist as the object to allocate now and move the
2862  * rest of the freelist to the lockless freelist.
2863  *
2864  * And if we were unable to get a new slab from the partial slab lists then
2865  * we need to allocate a new slab. This is the slowest path since it involves
2866  * a call to the page allocator and the setup of a new slab.
2867  *
2868  * Version of __slab_alloc to use when we know that preemption is
2869  * already disabled (which is the case for bulk allocation).
2870  */
2871 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2872 			  unsigned long addr, struct kmem_cache_cpu *c)
2873 {
2874 	void *freelist;
2875 	struct page *page;
2876 	unsigned long flags;
2877 
2878 	stat(s, ALLOC_SLOWPATH);
2879 
2880 reread_page:
2881 
2882 	page = READ_ONCE(c->page);
2883 	if (!page) {
2884 		/*
2885 		 * if the node is not online or has no normal memory, just
2886 		 * ignore the node constraint
2887 		 */
2888 		if (unlikely(node != NUMA_NO_NODE &&
2889 			     !node_isset(node, slab_nodes)))
2890 			node = NUMA_NO_NODE;
2891 		goto new_slab;
2892 	}
2893 redo:
2894 
2895 	if (unlikely(!node_match(page, node))) {
2896 		/*
2897 		 * same as above but node_match() being false already
2898 		 * implies node != NUMA_NO_NODE
2899 		 */
2900 		if (!node_isset(node, slab_nodes)) {
2901 			node = NUMA_NO_NODE;
2902 			goto redo;
2903 		} else {
2904 			stat(s, ALLOC_NODE_MISMATCH);
2905 			goto deactivate_slab;
2906 		}
2907 	}
2908 
2909 	/*
2910 	 * By rights, we should be searching for a slab page that was
2911 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2912 	 * information when the page leaves the per-cpu allocator
2913 	 */
2914 	if (unlikely(!pfmemalloc_match_unsafe(page, gfpflags)))
2915 		goto deactivate_slab;
2916 
2917 	/* must check again c->page in case we got preempted and it changed */
2918 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2919 	if (unlikely(page != c->page)) {
2920 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2921 		goto reread_page;
2922 	}
2923 	freelist = c->freelist;
2924 	if (freelist)
2925 		goto load_freelist;
2926 
2927 	freelist = get_freelist(s, page);
2928 
2929 	if (!freelist) {
2930 		c->page = NULL;
2931 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2932 		stat(s, DEACTIVATE_BYPASS);
2933 		goto new_slab;
2934 	}
2935 
2936 	stat(s, ALLOC_REFILL);
2937 
2938 load_freelist:
2939 
2940 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2941 
2942 	/*
2943 	 * freelist is pointing to the list of objects to be used.
2944 	 * page is pointing to the page from which the objects are obtained.
2945 	 * That page must be frozen for per cpu allocations to work.
2946 	 */
2947 	VM_BUG_ON(!c->page->frozen);
2948 	c->freelist = get_freepointer(s, freelist);
2949 	c->tid = next_tid(c->tid);
2950 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2951 	return freelist;
2952 
2953 deactivate_slab:
2954 
2955 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2956 	if (page != c->page) {
2957 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2958 		goto reread_page;
2959 	}
2960 	freelist = c->freelist;
2961 	c->page = NULL;
2962 	c->freelist = NULL;
2963 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2964 	deactivate_slab(s, page, freelist);
2965 
2966 new_slab:
2967 
2968 	if (slub_percpu_partial(c)) {
2969 		local_lock_irqsave(&s->cpu_slab->lock, flags);
2970 		if (unlikely(c->page)) {
2971 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2972 			goto reread_page;
2973 		}
2974 		if (unlikely(!slub_percpu_partial(c))) {
2975 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2976 			/* we were preempted and partial list got empty */
2977 			goto new_objects;
2978 		}
2979 
2980 		page = c->page = slub_percpu_partial(c);
2981 		slub_set_percpu_partial(c, page);
2982 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2983 		stat(s, CPU_PARTIAL_ALLOC);
2984 		goto redo;
2985 	}
2986 
2987 new_objects:
2988 
2989 	freelist = get_partial(s, gfpflags, node, &page);
2990 	if (freelist)
2991 		goto check_new_page;
2992 
2993 	slub_put_cpu_ptr(s->cpu_slab);
2994 	page = new_slab(s, gfpflags, node);
2995 	c = slub_get_cpu_ptr(s->cpu_slab);
2996 
2997 	if (unlikely(!page)) {
2998 		slab_out_of_memory(s, gfpflags, node);
2999 		return NULL;
3000 	}
3001 
3002 	/*
3003 	 * No other reference to the page yet so we can
3004 	 * muck around with it freely without cmpxchg
3005 	 */
3006 	freelist = page->freelist;
3007 	page->freelist = NULL;
3008 
3009 	stat(s, ALLOC_SLAB);
3010 
3011 check_new_page:
3012 
3013 	if (kmem_cache_debug(s)) {
3014 		if (!alloc_debug_processing(s, page, freelist, addr)) {
3015 			/* Slab failed checks. Next slab needed */
3016 			goto new_slab;
3017 		} else {
3018 			/*
3019 			 * For debug case, we don't load freelist so that all
3020 			 * allocations go through alloc_debug_processing()
3021 			 */
3022 			goto return_single;
3023 		}
3024 	}
3025 
3026 	if (unlikely(!pfmemalloc_match(page, gfpflags)))
3027 		/*
3028 		 * For !pfmemalloc_match() case we don't load freelist so that
3029 		 * we don't make further mismatched allocations easier.
3030 		 */
3031 		goto return_single;
3032 
3033 retry_load_page:
3034 
3035 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3036 	if (unlikely(c->page)) {
3037 		void *flush_freelist = c->freelist;
3038 		struct page *flush_page = c->page;
3039 
3040 		c->page = NULL;
3041 		c->freelist = NULL;
3042 		c->tid = next_tid(c->tid);
3043 
3044 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3045 
3046 		deactivate_slab(s, flush_page, flush_freelist);
3047 
3048 		stat(s, CPUSLAB_FLUSH);
3049 
3050 		goto retry_load_page;
3051 	}
3052 	c->page = page;
3053 
3054 	goto load_freelist;
3055 
3056 return_single:
3057 
3058 	deactivate_slab(s, page, get_freepointer(s, freelist));
3059 	return freelist;
3060 }
3061 
3062 /*
3063  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3064  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3065  * pointer.
3066  */
3067 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3068 			  unsigned long addr, struct kmem_cache_cpu *c)
3069 {
3070 	void *p;
3071 
3072 #ifdef CONFIG_PREEMPT_COUNT
3073 	/*
3074 	 * We may have been preempted and rescheduled on a different
3075 	 * cpu before disabling preemption. Need to reload cpu area
3076 	 * pointer.
3077 	 */
3078 	c = slub_get_cpu_ptr(s->cpu_slab);
3079 #endif
3080 
3081 	p = ___slab_alloc(s, gfpflags, node, addr, c);
3082 #ifdef CONFIG_PREEMPT_COUNT
3083 	slub_put_cpu_ptr(s->cpu_slab);
3084 #endif
3085 	return p;
3086 }
3087 
3088 /*
3089  * If the object has been wiped upon free, make sure it's fully initialized by
3090  * zeroing out freelist pointer.
3091  */
3092 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3093 						   void *obj)
3094 {
3095 	if (unlikely(slab_want_init_on_free(s)) && obj)
3096 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3097 			0, sizeof(void *));
3098 }
3099 
3100 /*
3101  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3102  * have the fastpath folded into their functions. So no function call
3103  * overhead for requests that can be satisfied on the fastpath.
3104  *
3105  * The fastpath works by first checking if the lockless freelist can be used.
3106  * If not then __slab_alloc is called for slow processing.
3107  *
3108  * Otherwise we can simply pick the next object from the lockless free list.
3109  */
3110 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
3111 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3112 {
3113 	void *object;
3114 	struct kmem_cache_cpu *c;
3115 	struct page *page;
3116 	unsigned long tid;
3117 	struct obj_cgroup *objcg = NULL;
3118 	bool init = false;
3119 
3120 	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
3121 	if (!s)
3122 		return NULL;
3123 
3124 	object = kfence_alloc(s, orig_size, gfpflags);
3125 	if (unlikely(object))
3126 		goto out;
3127 
3128 redo:
3129 	/*
3130 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3131 	 * enabled. We may switch back and forth between cpus while
3132 	 * reading from one cpu area. That does not matter as long
3133 	 * as we end up on the original cpu again when doing the cmpxchg.
3134 	 *
3135 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3136 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3137 	 * the tid. If we are preempted and switched to another cpu between the
3138 	 * two reads, it's OK as the two are still associated with the same cpu
3139 	 * and cmpxchg later will validate the cpu.
3140 	 */
3141 	c = raw_cpu_ptr(s->cpu_slab);
3142 	tid = READ_ONCE(c->tid);
3143 
3144 	/*
3145 	 * Irqless object alloc/free algorithm used here depends on sequence
3146 	 * of fetching cpu_slab's data. tid should be fetched before anything
3147 	 * on c to guarantee that object and page associated with previous tid
3148 	 * won't be used with current tid. If we fetch tid first, object and
3149 	 * page could be one associated with next tid and our alloc/free
3150 	 * request will be failed. In this case, we will retry. So, no problem.
3151 	 */
3152 	barrier();
3153 
3154 	/*
3155 	 * The transaction ids are globally unique per cpu and per operation on
3156 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3157 	 * occurs on the right processor and that there was no operation on the
3158 	 * linked list in between.
3159 	 */
3160 
3161 	object = c->freelist;
3162 	page = c->page;
3163 	/*
3164 	 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3165 	 * slowpath has taken the local_lock_irqsave(), it is not protected
3166 	 * against a fast path operation in an irq handler. So we need to take
3167 	 * the slow path which uses local_lock. It is still relatively fast if
3168 	 * there is a suitable cpu freelist.
3169 	 */
3170 	if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
3171 	    unlikely(!object || !page || !node_match(page, node))) {
3172 		object = __slab_alloc(s, gfpflags, node, addr, c);
3173 	} else {
3174 		void *next_object = get_freepointer_safe(s, object);
3175 
3176 		/*
3177 		 * The cmpxchg will only match if there was no additional
3178 		 * operation and if we are on the right processor.
3179 		 *
3180 		 * The cmpxchg does the following atomically (without lock
3181 		 * semantics!)
3182 		 * 1. Relocate first pointer to the current per cpu area.
3183 		 * 2. Verify that tid and freelist have not been changed
3184 		 * 3. If they were not changed replace tid and freelist
3185 		 *
3186 		 * Since this is without lock semantics the protection is only
3187 		 * against code executing on this cpu *not* from access by
3188 		 * other cpus.
3189 		 */
3190 		if (unlikely(!this_cpu_cmpxchg_double(
3191 				s->cpu_slab->freelist, s->cpu_slab->tid,
3192 				object, tid,
3193 				next_object, next_tid(tid)))) {
3194 
3195 			note_cmpxchg_failure("slab_alloc", s, tid);
3196 			goto redo;
3197 		}
3198 		prefetch_freepointer(s, next_object);
3199 		stat(s, ALLOC_FASTPATH);
3200 	}
3201 
3202 	maybe_wipe_obj_freeptr(s, object);
3203 	init = slab_want_init_on_alloc(gfpflags, s);
3204 
3205 out:
3206 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
3207 
3208 	return object;
3209 }
3210 
3211 static __always_inline void *slab_alloc(struct kmem_cache *s,
3212 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3213 {
3214 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
3215 }
3216 
3217 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3218 {
3219 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
3220 
3221 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
3222 				s->size, gfpflags);
3223 
3224 	return ret;
3225 }
3226 EXPORT_SYMBOL(kmem_cache_alloc);
3227 
3228 #ifdef CONFIG_TRACING
3229 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3230 {
3231 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
3232 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
3233 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3234 	return ret;
3235 }
3236 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3237 #endif
3238 
3239 #ifdef CONFIG_NUMA
3240 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3241 {
3242 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
3243 
3244 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3245 				    s->object_size, s->size, gfpflags, node);
3246 
3247 	return ret;
3248 }
3249 EXPORT_SYMBOL(kmem_cache_alloc_node);
3250 
3251 #ifdef CONFIG_TRACING
3252 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3253 				    gfp_t gfpflags,
3254 				    int node, size_t size)
3255 {
3256 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
3257 
3258 	trace_kmalloc_node(_RET_IP_, ret,
3259 			   size, s->size, gfpflags, node);
3260 
3261 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3262 	return ret;
3263 }
3264 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3265 #endif
3266 #endif	/* CONFIG_NUMA */
3267 
3268 /*
3269  * Slow path handling. This may still be called frequently since objects
3270  * have a longer lifetime than the cpu slabs in most processing loads.
3271  *
3272  * So we still attempt to reduce cache line usage. Just take the slab
3273  * lock and free the item. If there is no additional partial page
3274  * handling required then we can return immediately.
3275  */
3276 static void __slab_free(struct kmem_cache *s, struct page *page,
3277 			void *head, void *tail, int cnt,
3278 			unsigned long addr)
3279 
3280 {
3281 	void *prior;
3282 	int was_frozen;
3283 	struct page new;
3284 	unsigned long counters;
3285 	struct kmem_cache_node *n = NULL;
3286 	unsigned long flags;
3287 
3288 	stat(s, FREE_SLOWPATH);
3289 
3290 	if (kfence_free(head))
3291 		return;
3292 
3293 	if (kmem_cache_debug(s) &&
3294 	    !free_debug_processing(s, page, head, tail, cnt, addr))
3295 		return;
3296 
3297 	do {
3298 		if (unlikely(n)) {
3299 			spin_unlock_irqrestore(&n->list_lock, flags);
3300 			n = NULL;
3301 		}
3302 		prior = page->freelist;
3303 		counters = page->counters;
3304 		set_freepointer(s, tail, prior);
3305 		new.counters = counters;
3306 		was_frozen = new.frozen;
3307 		new.inuse -= cnt;
3308 		if ((!new.inuse || !prior) && !was_frozen) {
3309 
3310 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3311 
3312 				/*
3313 				 * Slab was on no list before and will be
3314 				 * partially empty
3315 				 * We can defer the list move and instead
3316 				 * freeze it.
3317 				 */
3318 				new.frozen = 1;
3319 
3320 			} else { /* Needs to be taken off a list */
3321 
3322 				n = get_node(s, page_to_nid(page));
3323 				/*
3324 				 * Speculatively acquire the list_lock.
3325 				 * If the cmpxchg does not succeed then we may
3326 				 * drop the list_lock without any processing.
3327 				 *
3328 				 * Otherwise the list_lock will synchronize with
3329 				 * other processors updating the list of slabs.
3330 				 */
3331 				spin_lock_irqsave(&n->list_lock, flags);
3332 
3333 			}
3334 		}
3335 
3336 	} while (!cmpxchg_double_slab(s, page,
3337 		prior, counters,
3338 		head, new.counters,
3339 		"__slab_free"));
3340 
3341 	if (likely(!n)) {
3342 
3343 		if (likely(was_frozen)) {
3344 			/*
3345 			 * The list lock was not taken therefore no list
3346 			 * activity can be necessary.
3347 			 */
3348 			stat(s, FREE_FROZEN);
3349 		} else if (new.frozen) {
3350 			/*
3351 			 * If we just froze the page then put it onto the
3352 			 * per cpu partial list.
3353 			 */
3354 			put_cpu_partial(s, page, 1);
3355 			stat(s, CPU_PARTIAL_FREE);
3356 		}
3357 
3358 		return;
3359 	}
3360 
3361 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3362 		goto slab_empty;
3363 
3364 	/*
3365 	 * Objects left in the slab. If it was not on the partial list before
3366 	 * then add it.
3367 	 */
3368 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3369 		remove_full(s, n, page);
3370 		add_partial(n, page, DEACTIVATE_TO_TAIL);
3371 		stat(s, FREE_ADD_PARTIAL);
3372 	}
3373 	spin_unlock_irqrestore(&n->list_lock, flags);
3374 	return;
3375 
3376 slab_empty:
3377 	if (prior) {
3378 		/*
3379 		 * Slab on the partial list.
3380 		 */
3381 		remove_partial(n, page);
3382 		stat(s, FREE_REMOVE_PARTIAL);
3383 	} else {
3384 		/* Slab must be on the full list */
3385 		remove_full(s, n, page);
3386 	}
3387 
3388 	spin_unlock_irqrestore(&n->list_lock, flags);
3389 	stat(s, FREE_SLAB);
3390 	discard_slab(s, page);
3391 }
3392 
3393 /*
3394  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3395  * can perform fastpath freeing without additional function calls.
3396  *
3397  * The fastpath is only possible if we are freeing to the current cpu slab
3398  * of this processor. This typically the case if we have just allocated
3399  * the item before.
3400  *
3401  * If fastpath is not possible then fall back to __slab_free where we deal
3402  * with all sorts of special processing.
3403  *
3404  * Bulk free of a freelist with several objects (all pointing to the
3405  * same page) possible by specifying head and tail ptr, plus objects
3406  * count (cnt). Bulk free indicated by tail pointer being set.
3407  */
3408 static __always_inline void do_slab_free(struct kmem_cache *s,
3409 				struct page *page, void *head, void *tail,
3410 				int cnt, unsigned long addr)
3411 {
3412 	void *tail_obj = tail ? : head;
3413 	struct kmem_cache_cpu *c;
3414 	unsigned long tid;
3415 
3416 	memcg_slab_free_hook(s, &head, 1);
3417 redo:
3418 	/*
3419 	 * Determine the currently cpus per cpu slab.
3420 	 * The cpu may change afterward. However that does not matter since
3421 	 * data is retrieved via this pointer. If we are on the same cpu
3422 	 * during the cmpxchg then the free will succeed.
3423 	 */
3424 	c = raw_cpu_ptr(s->cpu_slab);
3425 	tid = READ_ONCE(c->tid);
3426 
3427 	/* Same with comment on barrier() in slab_alloc_node() */
3428 	barrier();
3429 
3430 	if (likely(page == c->page)) {
3431 #ifndef CONFIG_PREEMPT_RT
3432 		void **freelist = READ_ONCE(c->freelist);
3433 
3434 		set_freepointer(s, tail_obj, freelist);
3435 
3436 		if (unlikely(!this_cpu_cmpxchg_double(
3437 				s->cpu_slab->freelist, s->cpu_slab->tid,
3438 				freelist, tid,
3439 				head, next_tid(tid)))) {
3440 
3441 			note_cmpxchg_failure("slab_free", s, tid);
3442 			goto redo;
3443 		}
3444 #else /* CONFIG_PREEMPT_RT */
3445 		/*
3446 		 * We cannot use the lockless fastpath on PREEMPT_RT because if
3447 		 * a slowpath has taken the local_lock_irqsave(), it is not
3448 		 * protected against a fast path operation in an irq handler. So
3449 		 * we need to take the local_lock. We shouldn't simply defer to
3450 		 * __slab_free() as that wouldn't use the cpu freelist at all.
3451 		 */
3452 		void **freelist;
3453 
3454 		local_lock(&s->cpu_slab->lock);
3455 		c = this_cpu_ptr(s->cpu_slab);
3456 		if (unlikely(page != c->page)) {
3457 			local_unlock(&s->cpu_slab->lock);
3458 			goto redo;
3459 		}
3460 		tid = c->tid;
3461 		freelist = c->freelist;
3462 
3463 		set_freepointer(s, tail_obj, freelist);
3464 		c->freelist = head;
3465 		c->tid = next_tid(tid);
3466 
3467 		local_unlock(&s->cpu_slab->lock);
3468 #endif
3469 		stat(s, FREE_FASTPATH);
3470 	} else
3471 		__slab_free(s, page, head, tail_obj, cnt, addr);
3472 
3473 }
3474 
3475 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3476 				      void *head, void *tail, int cnt,
3477 				      unsigned long addr)
3478 {
3479 	/*
3480 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3481 	 * to remove objects, whose reuse must be delayed.
3482 	 */
3483 	if (slab_free_freelist_hook(s, &head, &tail))
3484 		do_slab_free(s, page, head, tail, cnt, addr);
3485 }
3486 
3487 #ifdef CONFIG_KASAN_GENERIC
3488 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3489 {
3490 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3491 }
3492 #endif
3493 
3494 void kmem_cache_free(struct kmem_cache *s, void *x)
3495 {
3496 	s = cache_from_obj(s, x);
3497 	if (!s)
3498 		return;
3499 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3500 	trace_kmem_cache_free(_RET_IP_, x, s->name);
3501 }
3502 EXPORT_SYMBOL(kmem_cache_free);
3503 
3504 struct detached_freelist {
3505 	struct page *page;
3506 	void *tail;
3507 	void *freelist;
3508 	int cnt;
3509 	struct kmem_cache *s;
3510 };
3511 
3512 static inline void free_nonslab_page(struct page *page, void *object)
3513 {
3514 	unsigned int order = compound_order(page);
3515 
3516 	VM_BUG_ON_PAGE(!PageCompound(page), page);
3517 	kfree_hook(object);
3518 	mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
3519 	__free_pages(page, order);
3520 }
3521 
3522 /*
3523  * This function progressively scans the array with free objects (with
3524  * a limited look ahead) and extract objects belonging to the same
3525  * page.  It builds a detached freelist directly within the given
3526  * page/objects.  This can happen without any need for
3527  * synchronization, because the objects are owned by running process.
3528  * The freelist is build up as a single linked list in the objects.
3529  * The idea is, that this detached freelist can then be bulk
3530  * transferred to the real freelist(s), but only requiring a single
3531  * synchronization primitive.  Look ahead in the array is limited due
3532  * to performance reasons.
3533  */
3534 static inline
3535 int build_detached_freelist(struct kmem_cache *s, size_t size,
3536 			    void **p, struct detached_freelist *df)
3537 {
3538 	size_t first_skipped_index = 0;
3539 	int lookahead = 3;
3540 	void *object;
3541 	struct page *page;
3542 
3543 	/* Always re-init detached_freelist */
3544 	df->page = NULL;
3545 
3546 	do {
3547 		object = p[--size];
3548 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3549 	} while (!object && size);
3550 
3551 	if (!object)
3552 		return 0;
3553 
3554 	page = virt_to_head_page(object);
3555 	if (!s) {
3556 		/* Handle kalloc'ed objects */
3557 		if (unlikely(!PageSlab(page))) {
3558 			free_nonslab_page(page, object);
3559 			p[size] = NULL; /* mark object processed */
3560 			return size;
3561 		}
3562 		/* Derive kmem_cache from object */
3563 		df->s = page->slab_cache;
3564 	} else {
3565 		df->s = cache_from_obj(s, object); /* Support for memcg */
3566 	}
3567 
3568 	if (is_kfence_address(object)) {
3569 		slab_free_hook(df->s, object, false);
3570 		__kfence_free(object);
3571 		p[size] = NULL; /* mark object processed */
3572 		return size;
3573 	}
3574 
3575 	/* Start new detached freelist */
3576 	df->page = page;
3577 	set_freepointer(df->s, object, NULL);
3578 	df->tail = object;
3579 	df->freelist = object;
3580 	p[size] = NULL; /* mark object processed */
3581 	df->cnt = 1;
3582 
3583 	while (size) {
3584 		object = p[--size];
3585 		if (!object)
3586 			continue; /* Skip processed objects */
3587 
3588 		/* df->page is always set at this point */
3589 		if (df->page == virt_to_head_page(object)) {
3590 			/* Opportunity build freelist */
3591 			set_freepointer(df->s, object, df->freelist);
3592 			df->freelist = object;
3593 			df->cnt++;
3594 			p[size] = NULL; /* mark object processed */
3595 
3596 			continue;
3597 		}
3598 
3599 		/* Limit look ahead search */
3600 		if (!--lookahead)
3601 			break;
3602 
3603 		if (!first_skipped_index)
3604 			first_skipped_index = size + 1;
3605 	}
3606 
3607 	return first_skipped_index;
3608 }
3609 
3610 /* Note that interrupts must be enabled when calling this function. */
3611 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3612 {
3613 	if (WARN_ON(!size))
3614 		return;
3615 
3616 	memcg_slab_free_hook(s, p, size);
3617 	do {
3618 		struct detached_freelist df;
3619 
3620 		size = build_detached_freelist(s, size, p, &df);
3621 		if (!df.page)
3622 			continue;
3623 
3624 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3625 	} while (likely(size));
3626 }
3627 EXPORT_SYMBOL(kmem_cache_free_bulk);
3628 
3629 /* Note that interrupts must be enabled when calling this function. */
3630 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3631 			  void **p)
3632 {
3633 	struct kmem_cache_cpu *c;
3634 	int i;
3635 	struct obj_cgroup *objcg = NULL;
3636 
3637 	/* memcg and kmem_cache debug support */
3638 	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3639 	if (unlikely(!s))
3640 		return false;
3641 	/*
3642 	 * Drain objects in the per cpu slab, while disabling local
3643 	 * IRQs, which protects against PREEMPT and interrupts
3644 	 * handlers invoking normal fastpath.
3645 	 */
3646 	c = slub_get_cpu_ptr(s->cpu_slab);
3647 	local_lock_irq(&s->cpu_slab->lock);
3648 
3649 	for (i = 0; i < size; i++) {
3650 		void *object = kfence_alloc(s, s->object_size, flags);
3651 
3652 		if (unlikely(object)) {
3653 			p[i] = object;
3654 			continue;
3655 		}
3656 
3657 		object = c->freelist;
3658 		if (unlikely(!object)) {
3659 			/*
3660 			 * We may have removed an object from c->freelist using
3661 			 * the fastpath in the previous iteration; in that case,
3662 			 * c->tid has not been bumped yet.
3663 			 * Since ___slab_alloc() may reenable interrupts while
3664 			 * allocating memory, we should bump c->tid now.
3665 			 */
3666 			c->tid = next_tid(c->tid);
3667 
3668 			local_unlock_irq(&s->cpu_slab->lock);
3669 
3670 			/*
3671 			 * Invoking slow path likely have side-effect
3672 			 * of re-populating per CPU c->freelist
3673 			 */
3674 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3675 					    _RET_IP_, c);
3676 			if (unlikely(!p[i]))
3677 				goto error;
3678 
3679 			c = this_cpu_ptr(s->cpu_slab);
3680 			maybe_wipe_obj_freeptr(s, p[i]);
3681 
3682 			local_lock_irq(&s->cpu_slab->lock);
3683 
3684 			continue; /* goto for-loop */
3685 		}
3686 		c->freelist = get_freepointer(s, object);
3687 		p[i] = object;
3688 		maybe_wipe_obj_freeptr(s, p[i]);
3689 	}
3690 	c->tid = next_tid(c->tid);
3691 	local_unlock_irq(&s->cpu_slab->lock);
3692 	slub_put_cpu_ptr(s->cpu_slab);
3693 
3694 	/*
3695 	 * memcg and kmem_cache debug support and memory initialization.
3696 	 * Done outside of the IRQ disabled fastpath loop.
3697 	 */
3698 	slab_post_alloc_hook(s, objcg, flags, size, p,
3699 				slab_want_init_on_alloc(flags, s));
3700 	return i;
3701 error:
3702 	slub_put_cpu_ptr(s->cpu_slab);
3703 	slab_post_alloc_hook(s, objcg, flags, i, p, false);
3704 	__kmem_cache_free_bulk(s, i, p);
3705 	return 0;
3706 }
3707 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3708 
3709 
3710 /*
3711  * Object placement in a slab is made very easy because we always start at
3712  * offset 0. If we tune the size of the object to the alignment then we can
3713  * get the required alignment by putting one properly sized object after
3714  * another.
3715  *
3716  * Notice that the allocation order determines the sizes of the per cpu
3717  * caches. Each processor has always one slab available for allocations.
3718  * Increasing the allocation order reduces the number of times that slabs
3719  * must be moved on and off the partial lists and is therefore a factor in
3720  * locking overhead.
3721  */
3722 
3723 /*
3724  * Minimum / Maximum order of slab pages. This influences locking overhead
3725  * and slab fragmentation. A higher order reduces the number of partial slabs
3726  * and increases the number of allocations possible without having to
3727  * take the list_lock.
3728  */
3729 static unsigned int slub_min_order;
3730 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3731 static unsigned int slub_min_objects;
3732 
3733 /*
3734  * Calculate the order of allocation given an slab object size.
3735  *
3736  * The order of allocation has significant impact on performance and other
3737  * system components. Generally order 0 allocations should be preferred since
3738  * order 0 does not cause fragmentation in the page allocator. Larger objects
3739  * be problematic to put into order 0 slabs because there may be too much
3740  * unused space left. We go to a higher order if more than 1/16th of the slab
3741  * would be wasted.
3742  *
3743  * In order to reach satisfactory performance we must ensure that a minimum
3744  * number of objects is in one slab. Otherwise we may generate too much
3745  * activity on the partial lists which requires taking the list_lock. This is
3746  * less a concern for large slabs though which are rarely used.
3747  *
3748  * slub_max_order specifies the order where we begin to stop considering the
3749  * number of objects in a slab as critical. If we reach slub_max_order then
3750  * we try to keep the page order as low as possible. So we accept more waste
3751  * of space in favor of a small page order.
3752  *
3753  * Higher order allocations also allow the placement of more objects in a
3754  * slab and thereby reduce object handling overhead. If the user has
3755  * requested a higher minimum order then we start with that one instead of
3756  * the smallest order which will fit the object.
3757  */
3758 static inline unsigned int slab_order(unsigned int size,
3759 		unsigned int min_objects, unsigned int max_order,
3760 		unsigned int fract_leftover)
3761 {
3762 	unsigned int min_order = slub_min_order;
3763 	unsigned int order;
3764 
3765 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3766 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3767 
3768 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3769 			order <= max_order; order++) {
3770 
3771 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3772 		unsigned int rem;
3773 
3774 		rem = slab_size % size;
3775 
3776 		if (rem <= slab_size / fract_leftover)
3777 			break;
3778 	}
3779 
3780 	return order;
3781 }
3782 
3783 static inline int calculate_order(unsigned int size)
3784 {
3785 	unsigned int order;
3786 	unsigned int min_objects;
3787 	unsigned int max_objects;
3788 	unsigned int nr_cpus;
3789 
3790 	/*
3791 	 * Attempt to find best configuration for a slab. This
3792 	 * works by first attempting to generate a layout with
3793 	 * the best configuration and backing off gradually.
3794 	 *
3795 	 * First we increase the acceptable waste in a slab. Then
3796 	 * we reduce the minimum objects required in a slab.
3797 	 */
3798 	min_objects = slub_min_objects;
3799 	if (!min_objects) {
3800 		/*
3801 		 * Some architectures will only update present cpus when
3802 		 * onlining them, so don't trust the number if it's just 1. But
3803 		 * we also don't want to use nr_cpu_ids always, as on some other
3804 		 * architectures, there can be many possible cpus, but never
3805 		 * onlined. Here we compromise between trying to avoid too high
3806 		 * order on systems that appear larger than they are, and too
3807 		 * low order on systems that appear smaller than they are.
3808 		 */
3809 		nr_cpus = num_present_cpus();
3810 		if (nr_cpus <= 1)
3811 			nr_cpus = nr_cpu_ids;
3812 		min_objects = 4 * (fls(nr_cpus) + 1);
3813 	}
3814 	max_objects = order_objects(slub_max_order, size);
3815 	min_objects = min(min_objects, max_objects);
3816 
3817 	while (min_objects > 1) {
3818 		unsigned int fraction;
3819 
3820 		fraction = 16;
3821 		while (fraction >= 4) {
3822 			order = slab_order(size, min_objects,
3823 					slub_max_order, fraction);
3824 			if (order <= slub_max_order)
3825 				return order;
3826 			fraction /= 2;
3827 		}
3828 		min_objects--;
3829 	}
3830 
3831 	/*
3832 	 * We were unable to place multiple objects in a slab. Now
3833 	 * lets see if we can place a single object there.
3834 	 */
3835 	order = slab_order(size, 1, slub_max_order, 1);
3836 	if (order <= slub_max_order)
3837 		return order;
3838 
3839 	/*
3840 	 * Doh this slab cannot be placed using slub_max_order.
3841 	 */
3842 	order = slab_order(size, 1, MAX_ORDER, 1);
3843 	if (order < MAX_ORDER)
3844 		return order;
3845 	return -ENOSYS;
3846 }
3847 
3848 static void
3849 init_kmem_cache_node(struct kmem_cache_node *n)
3850 {
3851 	n->nr_partial = 0;
3852 	spin_lock_init(&n->list_lock);
3853 	INIT_LIST_HEAD(&n->partial);
3854 #ifdef CONFIG_SLUB_DEBUG
3855 	atomic_long_set(&n->nr_slabs, 0);
3856 	atomic_long_set(&n->total_objects, 0);
3857 	INIT_LIST_HEAD(&n->full);
3858 #endif
3859 }
3860 
3861 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3862 {
3863 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3864 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3865 
3866 	/*
3867 	 * Must align to double word boundary for the double cmpxchg
3868 	 * instructions to work; see __pcpu_double_call_return_bool().
3869 	 */
3870 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3871 				     2 * sizeof(void *));
3872 
3873 	if (!s->cpu_slab)
3874 		return 0;
3875 
3876 	init_kmem_cache_cpus(s);
3877 
3878 	return 1;
3879 }
3880 
3881 static struct kmem_cache *kmem_cache_node;
3882 
3883 /*
3884  * No kmalloc_node yet so do it by hand. We know that this is the first
3885  * slab on the node for this slabcache. There are no concurrent accesses
3886  * possible.
3887  *
3888  * Note that this function only works on the kmem_cache_node
3889  * when allocating for the kmem_cache_node. This is used for bootstrapping
3890  * memory on a fresh node that has no slab structures yet.
3891  */
3892 static void early_kmem_cache_node_alloc(int node)
3893 {
3894 	struct page *page;
3895 	struct kmem_cache_node *n;
3896 
3897 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3898 
3899 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3900 
3901 	BUG_ON(!page);
3902 	if (page_to_nid(page) != node) {
3903 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3904 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3905 	}
3906 
3907 	n = page->freelist;
3908 	BUG_ON(!n);
3909 #ifdef CONFIG_SLUB_DEBUG
3910 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3911 	init_tracking(kmem_cache_node, n);
3912 #endif
3913 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3914 	page->freelist = get_freepointer(kmem_cache_node, n);
3915 	page->inuse = 1;
3916 	page->frozen = 0;
3917 	kmem_cache_node->node[node] = n;
3918 	init_kmem_cache_node(n);
3919 	inc_slabs_node(kmem_cache_node, node, page->objects);
3920 
3921 	/*
3922 	 * No locks need to be taken here as it has just been
3923 	 * initialized and there is no concurrent access.
3924 	 */
3925 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3926 }
3927 
3928 static void free_kmem_cache_nodes(struct kmem_cache *s)
3929 {
3930 	int node;
3931 	struct kmem_cache_node *n;
3932 
3933 	for_each_kmem_cache_node(s, node, n) {
3934 		s->node[node] = NULL;
3935 		kmem_cache_free(kmem_cache_node, n);
3936 	}
3937 }
3938 
3939 void __kmem_cache_release(struct kmem_cache *s)
3940 {
3941 	cache_random_seq_destroy(s);
3942 	free_percpu(s->cpu_slab);
3943 	free_kmem_cache_nodes(s);
3944 }
3945 
3946 static int init_kmem_cache_nodes(struct kmem_cache *s)
3947 {
3948 	int node;
3949 
3950 	for_each_node_mask(node, slab_nodes) {
3951 		struct kmem_cache_node *n;
3952 
3953 		if (slab_state == DOWN) {
3954 			early_kmem_cache_node_alloc(node);
3955 			continue;
3956 		}
3957 		n = kmem_cache_alloc_node(kmem_cache_node,
3958 						GFP_KERNEL, node);
3959 
3960 		if (!n) {
3961 			free_kmem_cache_nodes(s);
3962 			return 0;
3963 		}
3964 
3965 		init_kmem_cache_node(n);
3966 		s->node[node] = n;
3967 	}
3968 	return 1;
3969 }
3970 
3971 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3972 {
3973 	if (min < MIN_PARTIAL)
3974 		min = MIN_PARTIAL;
3975 	else if (min > MAX_PARTIAL)
3976 		min = MAX_PARTIAL;
3977 	s->min_partial = min;
3978 }
3979 
3980 static void set_cpu_partial(struct kmem_cache *s)
3981 {
3982 #ifdef CONFIG_SLUB_CPU_PARTIAL
3983 	/*
3984 	 * cpu_partial determined the maximum number of objects kept in the
3985 	 * per cpu partial lists of a processor.
3986 	 *
3987 	 * Per cpu partial lists mainly contain slabs that just have one
3988 	 * object freed. If they are used for allocation then they can be
3989 	 * filled up again with minimal effort. The slab will never hit the
3990 	 * per node partial lists and therefore no locking will be required.
3991 	 *
3992 	 * This setting also determines
3993 	 *
3994 	 * A) The number of objects from per cpu partial slabs dumped to the
3995 	 *    per node list when we reach the limit.
3996 	 * B) The number of objects in cpu partial slabs to extract from the
3997 	 *    per node list when we run out of per cpu objects. We only fetch
3998 	 *    50% to keep some capacity around for frees.
3999 	 */
4000 	if (!kmem_cache_has_cpu_partial(s))
4001 		slub_set_cpu_partial(s, 0);
4002 	else if (s->size >= PAGE_SIZE)
4003 		slub_set_cpu_partial(s, 2);
4004 	else if (s->size >= 1024)
4005 		slub_set_cpu_partial(s, 6);
4006 	else if (s->size >= 256)
4007 		slub_set_cpu_partial(s, 13);
4008 	else
4009 		slub_set_cpu_partial(s, 30);
4010 #endif
4011 }
4012 
4013 /*
4014  * calculate_sizes() determines the order and the distribution of data within
4015  * a slab object.
4016  */
4017 static int calculate_sizes(struct kmem_cache *s, int forced_order)
4018 {
4019 	slab_flags_t flags = s->flags;
4020 	unsigned int size = s->object_size;
4021 	unsigned int order;
4022 
4023 	/*
4024 	 * Round up object size to the next word boundary. We can only
4025 	 * place the free pointer at word boundaries and this determines
4026 	 * the possible location of the free pointer.
4027 	 */
4028 	size = ALIGN(size, sizeof(void *));
4029 
4030 #ifdef CONFIG_SLUB_DEBUG
4031 	/*
4032 	 * Determine if we can poison the object itself. If the user of
4033 	 * the slab may touch the object after free or before allocation
4034 	 * then we should never poison the object itself.
4035 	 */
4036 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4037 			!s->ctor)
4038 		s->flags |= __OBJECT_POISON;
4039 	else
4040 		s->flags &= ~__OBJECT_POISON;
4041 
4042 
4043 	/*
4044 	 * If we are Redzoning then check if there is some space between the
4045 	 * end of the object and the free pointer. If not then add an
4046 	 * additional word to have some bytes to store Redzone information.
4047 	 */
4048 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4049 		size += sizeof(void *);
4050 #endif
4051 
4052 	/*
4053 	 * With that we have determined the number of bytes in actual use
4054 	 * by the object and redzoning.
4055 	 */
4056 	s->inuse = size;
4057 
4058 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4059 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4060 	    s->ctor) {
4061 		/*
4062 		 * Relocate free pointer after the object if it is not
4063 		 * permitted to overwrite the first word of the object on
4064 		 * kmem_cache_free.
4065 		 *
4066 		 * This is the case if we do RCU, have a constructor or
4067 		 * destructor, are poisoning the objects, or are
4068 		 * redzoning an object smaller than sizeof(void *).
4069 		 *
4070 		 * The assumption that s->offset >= s->inuse means free
4071 		 * pointer is outside of the object is used in the
4072 		 * freeptr_outside_object() function. If that is no
4073 		 * longer true, the function needs to be modified.
4074 		 */
4075 		s->offset = size;
4076 		size += sizeof(void *);
4077 	} else {
4078 		/*
4079 		 * Store freelist pointer near middle of object to keep
4080 		 * it away from the edges of the object to avoid small
4081 		 * sized over/underflows from neighboring allocations.
4082 		 */
4083 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4084 	}
4085 
4086 #ifdef CONFIG_SLUB_DEBUG
4087 	if (flags & SLAB_STORE_USER)
4088 		/*
4089 		 * Need to store information about allocs and frees after
4090 		 * the object.
4091 		 */
4092 		size += 2 * sizeof(struct track);
4093 #endif
4094 
4095 	kasan_cache_create(s, &size, &s->flags);
4096 #ifdef CONFIG_SLUB_DEBUG
4097 	if (flags & SLAB_RED_ZONE) {
4098 		/*
4099 		 * Add some empty padding so that we can catch
4100 		 * overwrites from earlier objects rather than let
4101 		 * tracking information or the free pointer be
4102 		 * corrupted if a user writes before the start
4103 		 * of the object.
4104 		 */
4105 		size += sizeof(void *);
4106 
4107 		s->red_left_pad = sizeof(void *);
4108 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4109 		size += s->red_left_pad;
4110 	}
4111 #endif
4112 
4113 	/*
4114 	 * SLUB stores one object immediately after another beginning from
4115 	 * offset 0. In order to align the objects we have to simply size
4116 	 * each object to conform to the alignment.
4117 	 */
4118 	size = ALIGN(size, s->align);
4119 	s->size = size;
4120 	s->reciprocal_size = reciprocal_value(size);
4121 	if (forced_order >= 0)
4122 		order = forced_order;
4123 	else
4124 		order = calculate_order(size);
4125 
4126 	if ((int)order < 0)
4127 		return 0;
4128 
4129 	s->allocflags = 0;
4130 	if (order)
4131 		s->allocflags |= __GFP_COMP;
4132 
4133 	if (s->flags & SLAB_CACHE_DMA)
4134 		s->allocflags |= GFP_DMA;
4135 
4136 	if (s->flags & SLAB_CACHE_DMA32)
4137 		s->allocflags |= GFP_DMA32;
4138 
4139 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4140 		s->allocflags |= __GFP_RECLAIMABLE;
4141 
4142 	/*
4143 	 * Determine the number of objects per slab
4144 	 */
4145 	s->oo = oo_make(order, size);
4146 	s->min = oo_make(get_order(size), size);
4147 	if (oo_objects(s->oo) > oo_objects(s->max))
4148 		s->max = s->oo;
4149 
4150 	return !!oo_objects(s->oo);
4151 }
4152 
4153 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4154 {
4155 	s->flags = kmem_cache_flags(s->size, flags, s->name);
4156 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4157 	s->random = get_random_long();
4158 #endif
4159 
4160 	if (!calculate_sizes(s, -1))
4161 		goto error;
4162 	if (disable_higher_order_debug) {
4163 		/*
4164 		 * Disable debugging flags that store metadata if the min slab
4165 		 * order increased.
4166 		 */
4167 		if (get_order(s->size) > get_order(s->object_size)) {
4168 			s->flags &= ~DEBUG_METADATA_FLAGS;
4169 			s->offset = 0;
4170 			if (!calculate_sizes(s, -1))
4171 				goto error;
4172 		}
4173 	}
4174 
4175 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4176     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4177 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4178 		/* Enable fast mode */
4179 		s->flags |= __CMPXCHG_DOUBLE;
4180 #endif
4181 
4182 	/*
4183 	 * The larger the object size is, the more pages we want on the partial
4184 	 * list to avoid pounding the page allocator excessively.
4185 	 */
4186 	set_min_partial(s, ilog2(s->size) / 2);
4187 
4188 	set_cpu_partial(s);
4189 
4190 #ifdef CONFIG_NUMA
4191 	s->remote_node_defrag_ratio = 1000;
4192 #endif
4193 
4194 	/* Initialize the pre-computed randomized freelist if slab is up */
4195 	if (slab_state >= UP) {
4196 		if (init_cache_random_seq(s))
4197 			goto error;
4198 	}
4199 
4200 	if (!init_kmem_cache_nodes(s))
4201 		goto error;
4202 
4203 	if (alloc_kmem_cache_cpus(s))
4204 		return 0;
4205 
4206 	free_kmem_cache_nodes(s);
4207 error:
4208 	return -EINVAL;
4209 }
4210 
4211 static void list_slab_objects(struct kmem_cache *s, struct page *page,
4212 			      const char *text)
4213 {
4214 #ifdef CONFIG_SLUB_DEBUG
4215 	void *addr = page_address(page);
4216 	unsigned long flags;
4217 	unsigned long *map;
4218 	void *p;
4219 
4220 	slab_err(s, page, text, s->name);
4221 	slab_lock(page, &flags);
4222 
4223 	map = get_map(s, page);
4224 	for_each_object(p, s, addr, page->objects) {
4225 
4226 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
4227 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4228 			print_tracking(s, p);
4229 		}
4230 	}
4231 	put_map(map);
4232 	slab_unlock(page, &flags);
4233 #endif
4234 }
4235 
4236 /*
4237  * Attempt to free all partial slabs on a node.
4238  * This is called from __kmem_cache_shutdown(). We must take list_lock
4239  * because sysfs file might still access partial list after the shutdowning.
4240  */
4241 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4242 {
4243 	LIST_HEAD(discard);
4244 	struct page *page, *h;
4245 
4246 	BUG_ON(irqs_disabled());
4247 	spin_lock_irq(&n->list_lock);
4248 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
4249 		if (!page->inuse) {
4250 			remove_partial(n, page);
4251 			list_add(&page->slab_list, &discard);
4252 		} else {
4253 			list_slab_objects(s, page,
4254 			  "Objects remaining in %s on __kmem_cache_shutdown()");
4255 		}
4256 	}
4257 	spin_unlock_irq(&n->list_lock);
4258 
4259 	list_for_each_entry_safe(page, h, &discard, slab_list)
4260 		discard_slab(s, page);
4261 }
4262 
4263 bool __kmem_cache_empty(struct kmem_cache *s)
4264 {
4265 	int node;
4266 	struct kmem_cache_node *n;
4267 
4268 	for_each_kmem_cache_node(s, node, n)
4269 		if (n->nr_partial || slabs_node(s, node))
4270 			return false;
4271 	return true;
4272 }
4273 
4274 /*
4275  * Release all resources used by a slab cache.
4276  */
4277 int __kmem_cache_shutdown(struct kmem_cache *s)
4278 {
4279 	int node;
4280 	struct kmem_cache_node *n;
4281 
4282 	flush_all_cpus_locked(s);
4283 	/* Attempt to free all objects */
4284 	for_each_kmem_cache_node(s, node, n) {
4285 		free_partial(s, n);
4286 		if (n->nr_partial || slabs_node(s, node))
4287 			return 1;
4288 	}
4289 	return 0;
4290 }
4291 
4292 #ifdef CONFIG_PRINTK
4293 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4294 {
4295 	void *base;
4296 	int __maybe_unused i;
4297 	unsigned int objnr;
4298 	void *objp;
4299 	void *objp0;
4300 	struct kmem_cache *s = page->slab_cache;
4301 	struct track __maybe_unused *trackp;
4302 
4303 	kpp->kp_ptr = object;
4304 	kpp->kp_page = page;
4305 	kpp->kp_slab_cache = s;
4306 	base = page_address(page);
4307 	objp0 = kasan_reset_tag(object);
4308 #ifdef CONFIG_SLUB_DEBUG
4309 	objp = restore_red_left(s, objp0);
4310 #else
4311 	objp = objp0;
4312 #endif
4313 	objnr = obj_to_index(s, page, objp);
4314 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4315 	objp = base + s->size * objnr;
4316 	kpp->kp_objp = objp;
4317 	if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4318 	    !(s->flags & SLAB_STORE_USER))
4319 		return;
4320 #ifdef CONFIG_SLUB_DEBUG
4321 	objp = fixup_red_left(s, objp);
4322 	trackp = get_track(s, objp, TRACK_ALLOC);
4323 	kpp->kp_ret = (void *)trackp->addr;
4324 #ifdef CONFIG_STACKTRACE
4325 	for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4326 		kpp->kp_stack[i] = (void *)trackp->addrs[i];
4327 		if (!kpp->kp_stack[i])
4328 			break;
4329 	}
4330 
4331 	trackp = get_track(s, objp, TRACK_FREE);
4332 	for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4333 		kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4334 		if (!kpp->kp_free_stack[i])
4335 			break;
4336 	}
4337 #endif
4338 #endif
4339 }
4340 #endif
4341 
4342 /********************************************************************
4343  *		Kmalloc subsystem
4344  *******************************************************************/
4345 
4346 static int __init setup_slub_min_order(char *str)
4347 {
4348 	get_option(&str, (int *)&slub_min_order);
4349 
4350 	return 1;
4351 }
4352 
4353 __setup("slub_min_order=", setup_slub_min_order);
4354 
4355 static int __init setup_slub_max_order(char *str)
4356 {
4357 	get_option(&str, (int *)&slub_max_order);
4358 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4359 
4360 	return 1;
4361 }
4362 
4363 __setup("slub_max_order=", setup_slub_max_order);
4364 
4365 static int __init setup_slub_min_objects(char *str)
4366 {
4367 	get_option(&str, (int *)&slub_min_objects);
4368 
4369 	return 1;
4370 }
4371 
4372 __setup("slub_min_objects=", setup_slub_min_objects);
4373 
4374 void *__kmalloc(size_t size, gfp_t flags)
4375 {
4376 	struct kmem_cache *s;
4377 	void *ret;
4378 
4379 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4380 		return kmalloc_large(size, flags);
4381 
4382 	s = kmalloc_slab(size, flags);
4383 
4384 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4385 		return s;
4386 
4387 	ret = slab_alloc(s, flags, _RET_IP_, size);
4388 
4389 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4390 
4391 	ret = kasan_kmalloc(s, ret, size, flags);
4392 
4393 	return ret;
4394 }
4395 EXPORT_SYMBOL(__kmalloc);
4396 
4397 #ifdef CONFIG_NUMA
4398 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4399 {
4400 	struct page *page;
4401 	void *ptr = NULL;
4402 	unsigned int order = get_order(size);
4403 
4404 	flags |= __GFP_COMP;
4405 	page = alloc_pages_node(node, flags, order);
4406 	if (page) {
4407 		ptr = page_address(page);
4408 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4409 				      PAGE_SIZE << order);
4410 	}
4411 
4412 	return kmalloc_large_node_hook(ptr, size, flags);
4413 }
4414 
4415 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4416 {
4417 	struct kmem_cache *s;
4418 	void *ret;
4419 
4420 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4421 		ret = kmalloc_large_node(size, flags, node);
4422 
4423 		trace_kmalloc_node(_RET_IP_, ret,
4424 				   size, PAGE_SIZE << get_order(size),
4425 				   flags, node);
4426 
4427 		return ret;
4428 	}
4429 
4430 	s = kmalloc_slab(size, flags);
4431 
4432 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4433 		return s;
4434 
4435 	ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4436 
4437 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4438 
4439 	ret = kasan_kmalloc(s, ret, size, flags);
4440 
4441 	return ret;
4442 }
4443 EXPORT_SYMBOL(__kmalloc_node);
4444 #endif	/* CONFIG_NUMA */
4445 
4446 #ifdef CONFIG_HARDENED_USERCOPY
4447 /*
4448  * Rejects incorrectly sized objects and objects that are to be copied
4449  * to/from userspace but do not fall entirely within the containing slab
4450  * cache's usercopy region.
4451  *
4452  * Returns NULL if check passes, otherwise const char * to name of cache
4453  * to indicate an error.
4454  */
4455 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4456 			 bool to_user)
4457 {
4458 	struct kmem_cache *s;
4459 	unsigned int offset;
4460 	size_t object_size;
4461 	bool is_kfence = is_kfence_address(ptr);
4462 
4463 	ptr = kasan_reset_tag(ptr);
4464 
4465 	/* Find object and usable object size. */
4466 	s = page->slab_cache;
4467 
4468 	/* Reject impossible pointers. */
4469 	if (ptr < page_address(page))
4470 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4471 			       to_user, 0, n);
4472 
4473 	/* Find offset within object. */
4474 	if (is_kfence)
4475 		offset = ptr - kfence_object_start(ptr);
4476 	else
4477 		offset = (ptr - page_address(page)) % s->size;
4478 
4479 	/* Adjust for redzone and reject if within the redzone. */
4480 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4481 		if (offset < s->red_left_pad)
4482 			usercopy_abort("SLUB object in left red zone",
4483 				       s->name, to_user, offset, n);
4484 		offset -= s->red_left_pad;
4485 	}
4486 
4487 	/* Allow address range falling entirely within usercopy region. */
4488 	if (offset >= s->useroffset &&
4489 	    offset - s->useroffset <= s->usersize &&
4490 	    n <= s->useroffset - offset + s->usersize)
4491 		return;
4492 
4493 	/*
4494 	 * If the copy is still within the allocated object, produce
4495 	 * a warning instead of rejecting the copy. This is intended
4496 	 * to be a temporary method to find any missing usercopy
4497 	 * whitelists.
4498 	 */
4499 	object_size = slab_ksize(s);
4500 	if (usercopy_fallback &&
4501 	    offset <= object_size && n <= object_size - offset) {
4502 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
4503 		return;
4504 	}
4505 
4506 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4507 }
4508 #endif /* CONFIG_HARDENED_USERCOPY */
4509 
4510 size_t __ksize(const void *object)
4511 {
4512 	struct page *page;
4513 
4514 	if (unlikely(object == ZERO_SIZE_PTR))
4515 		return 0;
4516 
4517 	page = virt_to_head_page(object);
4518 
4519 	if (unlikely(!PageSlab(page))) {
4520 		WARN_ON(!PageCompound(page));
4521 		return page_size(page);
4522 	}
4523 
4524 	return slab_ksize(page->slab_cache);
4525 }
4526 EXPORT_SYMBOL(__ksize);
4527 
4528 void kfree(const void *x)
4529 {
4530 	struct page *page;
4531 	void *object = (void *)x;
4532 
4533 	trace_kfree(_RET_IP_, x);
4534 
4535 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4536 		return;
4537 
4538 	page = virt_to_head_page(x);
4539 	if (unlikely(!PageSlab(page))) {
4540 		free_nonslab_page(page, object);
4541 		return;
4542 	}
4543 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4544 }
4545 EXPORT_SYMBOL(kfree);
4546 
4547 #define SHRINK_PROMOTE_MAX 32
4548 
4549 /*
4550  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4551  * up most to the head of the partial lists. New allocations will then
4552  * fill those up and thus they can be removed from the partial lists.
4553  *
4554  * The slabs with the least items are placed last. This results in them
4555  * being allocated from last increasing the chance that the last objects
4556  * are freed in them.
4557  */
4558 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4559 {
4560 	int node;
4561 	int i;
4562 	struct kmem_cache_node *n;
4563 	struct page *page;
4564 	struct page *t;
4565 	struct list_head discard;
4566 	struct list_head promote[SHRINK_PROMOTE_MAX];
4567 	unsigned long flags;
4568 	int ret = 0;
4569 
4570 	for_each_kmem_cache_node(s, node, n) {
4571 		INIT_LIST_HEAD(&discard);
4572 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4573 			INIT_LIST_HEAD(promote + i);
4574 
4575 		spin_lock_irqsave(&n->list_lock, flags);
4576 
4577 		/*
4578 		 * Build lists of slabs to discard or promote.
4579 		 *
4580 		 * Note that concurrent frees may occur while we hold the
4581 		 * list_lock. page->inuse here is the upper limit.
4582 		 */
4583 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4584 			int free = page->objects - page->inuse;
4585 
4586 			/* Do not reread page->inuse */
4587 			barrier();
4588 
4589 			/* We do not keep full slabs on the list */
4590 			BUG_ON(free <= 0);
4591 
4592 			if (free == page->objects) {
4593 				list_move(&page->slab_list, &discard);
4594 				n->nr_partial--;
4595 			} else if (free <= SHRINK_PROMOTE_MAX)
4596 				list_move(&page->slab_list, promote + free - 1);
4597 		}
4598 
4599 		/*
4600 		 * Promote the slabs filled up most to the head of the
4601 		 * partial list.
4602 		 */
4603 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4604 			list_splice(promote + i, &n->partial);
4605 
4606 		spin_unlock_irqrestore(&n->list_lock, flags);
4607 
4608 		/* Release empty slabs */
4609 		list_for_each_entry_safe(page, t, &discard, slab_list)
4610 			discard_slab(s, page);
4611 
4612 		if (slabs_node(s, node))
4613 			ret = 1;
4614 	}
4615 
4616 	return ret;
4617 }
4618 
4619 int __kmem_cache_shrink(struct kmem_cache *s)
4620 {
4621 	flush_all(s);
4622 	return __kmem_cache_do_shrink(s);
4623 }
4624 
4625 static int slab_mem_going_offline_callback(void *arg)
4626 {
4627 	struct kmem_cache *s;
4628 
4629 	mutex_lock(&slab_mutex);
4630 	list_for_each_entry(s, &slab_caches, list) {
4631 		flush_all_cpus_locked(s);
4632 		__kmem_cache_do_shrink(s);
4633 	}
4634 	mutex_unlock(&slab_mutex);
4635 
4636 	return 0;
4637 }
4638 
4639 static void slab_mem_offline_callback(void *arg)
4640 {
4641 	struct memory_notify *marg = arg;
4642 	int offline_node;
4643 
4644 	offline_node = marg->status_change_nid_normal;
4645 
4646 	/*
4647 	 * If the node still has available memory. we need kmem_cache_node
4648 	 * for it yet.
4649 	 */
4650 	if (offline_node < 0)
4651 		return;
4652 
4653 	mutex_lock(&slab_mutex);
4654 	node_clear(offline_node, slab_nodes);
4655 	/*
4656 	 * We no longer free kmem_cache_node structures here, as it would be
4657 	 * racy with all get_node() users, and infeasible to protect them with
4658 	 * slab_mutex.
4659 	 */
4660 	mutex_unlock(&slab_mutex);
4661 }
4662 
4663 static int slab_mem_going_online_callback(void *arg)
4664 {
4665 	struct kmem_cache_node *n;
4666 	struct kmem_cache *s;
4667 	struct memory_notify *marg = arg;
4668 	int nid = marg->status_change_nid_normal;
4669 	int ret = 0;
4670 
4671 	/*
4672 	 * If the node's memory is already available, then kmem_cache_node is
4673 	 * already created. Nothing to do.
4674 	 */
4675 	if (nid < 0)
4676 		return 0;
4677 
4678 	/*
4679 	 * We are bringing a node online. No memory is available yet. We must
4680 	 * allocate a kmem_cache_node structure in order to bring the node
4681 	 * online.
4682 	 */
4683 	mutex_lock(&slab_mutex);
4684 	list_for_each_entry(s, &slab_caches, list) {
4685 		/*
4686 		 * The structure may already exist if the node was previously
4687 		 * onlined and offlined.
4688 		 */
4689 		if (get_node(s, nid))
4690 			continue;
4691 		/*
4692 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4693 		 *      since memory is not yet available from the node that
4694 		 *      is brought up.
4695 		 */
4696 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4697 		if (!n) {
4698 			ret = -ENOMEM;
4699 			goto out;
4700 		}
4701 		init_kmem_cache_node(n);
4702 		s->node[nid] = n;
4703 	}
4704 	/*
4705 	 * Any cache created after this point will also have kmem_cache_node
4706 	 * initialized for the new node.
4707 	 */
4708 	node_set(nid, slab_nodes);
4709 out:
4710 	mutex_unlock(&slab_mutex);
4711 	return ret;
4712 }
4713 
4714 static int slab_memory_callback(struct notifier_block *self,
4715 				unsigned long action, void *arg)
4716 {
4717 	int ret = 0;
4718 
4719 	switch (action) {
4720 	case MEM_GOING_ONLINE:
4721 		ret = slab_mem_going_online_callback(arg);
4722 		break;
4723 	case MEM_GOING_OFFLINE:
4724 		ret = slab_mem_going_offline_callback(arg);
4725 		break;
4726 	case MEM_OFFLINE:
4727 	case MEM_CANCEL_ONLINE:
4728 		slab_mem_offline_callback(arg);
4729 		break;
4730 	case MEM_ONLINE:
4731 	case MEM_CANCEL_OFFLINE:
4732 		break;
4733 	}
4734 	if (ret)
4735 		ret = notifier_from_errno(ret);
4736 	else
4737 		ret = NOTIFY_OK;
4738 	return ret;
4739 }
4740 
4741 static struct notifier_block slab_memory_callback_nb = {
4742 	.notifier_call = slab_memory_callback,
4743 	.priority = SLAB_CALLBACK_PRI,
4744 };
4745 
4746 /********************************************************************
4747  *			Basic setup of slabs
4748  *******************************************************************/
4749 
4750 /*
4751  * Used for early kmem_cache structures that were allocated using
4752  * the page allocator. Allocate them properly then fix up the pointers
4753  * that may be pointing to the wrong kmem_cache structure.
4754  */
4755 
4756 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4757 {
4758 	int node;
4759 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4760 	struct kmem_cache_node *n;
4761 
4762 	memcpy(s, static_cache, kmem_cache->object_size);
4763 
4764 	/*
4765 	 * This runs very early, and only the boot processor is supposed to be
4766 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4767 	 * IPIs around.
4768 	 */
4769 	__flush_cpu_slab(s, smp_processor_id());
4770 	for_each_kmem_cache_node(s, node, n) {
4771 		struct page *p;
4772 
4773 		list_for_each_entry(p, &n->partial, slab_list)
4774 			p->slab_cache = s;
4775 
4776 #ifdef CONFIG_SLUB_DEBUG
4777 		list_for_each_entry(p, &n->full, slab_list)
4778 			p->slab_cache = s;
4779 #endif
4780 	}
4781 	list_add(&s->list, &slab_caches);
4782 	return s;
4783 }
4784 
4785 void __init kmem_cache_init(void)
4786 {
4787 	static __initdata struct kmem_cache boot_kmem_cache,
4788 		boot_kmem_cache_node;
4789 	int node;
4790 
4791 	if (debug_guardpage_minorder())
4792 		slub_max_order = 0;
4793 
4794 	/* Print slub debugging pointers without hashing */
4795 	if (__slub_debug_enabled())
4796 		no_hash_pointers_enable(NULL);
4797 
4798 	kmem_cache_node = &boot_kmem_cache_node;
4799 	kmem_cache = &boot_kmem_cache;
4800 
4801 	/*
4802 	 * Initialize the nodemask for which we will allocate per node
4803 	 * structures. Here we don't need taking slab_mutex yet.
4804 	 */
4805 	for_each_node_state(node, N_NORMAL_MEMORY)
4806 		node_set(node, slab_nodes);
4807 
4808 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4809 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4810 
4811 	register_hotmemory_notifier(&slab_memory_callback_nb);
4812 
4813 	/* Able to allocate the per node structures */
4814 	slab_state = PARTIAL;
4815 
4816 	create_boot_cache(kmem_cache, "kmem_cache",
4817 			offsetof(struct kmem_cache, node) +
4818 				nr_node_ids * sizeof(struct kmem_cache_node *),
4819 		       SLAB_HWCACHE_ALIGN, 0, 0);
4820 
4821 	kmem_cache = bootstrap(&boot_kmem_cache);
4822 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4823 
4824 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4825 	setup_kmalloc_cache_index_table();
4826 	create_kmalloc_caches(0);
4827 
4828 	/* Setup random freelists for each cache */
4829 	init_freelist_randomization();
4830 
4831 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4832 				  slub_cpu_dead);
4833 
4834 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4835 		cache_line_size(),
4836 		slub_min_order, slub_max_order, slub_min_objects,
4837 		nr_cpu_ids, nr_node_ids);
4838 }
4839 
4840 void __init kmem_cache_init_late(void)
4841 {
4842 }
4843 
4844 struct kmem_cache *
4845 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4846 		   slab_flags_t flags, void (*ctor)(void *))
4847 {
4848 	struct kmem_cache *s;
4849 
4850 	s = find_mergeable(size, align, flags, name, ctor);
4851 	if (s) {
4852 		s->refcount++;
4853 
4854 		/*
4855 		 * Adjust the object sizes so that we clear
4856 		 * the complete object on kzalloc.
4857 		 */
4858 		s->object_size = max(s->object_size, size);
4859 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4860 
4861 		if (sysfs_slab_alias(s, name)) {
4862 			s->refcount--;
4863 			s = NULL;
4864 		}
4865 	}
4866 
4867 	return s;
4868 }
4869 
4870 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4871 {
4872 	int err;
4873 
4874 	err = kmem_cache_open(s, flags);
4875 	if (err)
4876 		return err;
4877 
4878 	/* Mutex is not taken during early boot */
4879 	if (slab_state <= UP)
4880 		return 0;
4881 
4882 	err = sysfs_slab_add(s);
4883 	if (err)
4884 		__kmem_cache_release(s);
4885 
4886 	if (s->flags & SLAB_STORE_USER)
4887 		debugfs_slab_add(s);
4888 
4889 	return err;
4890 }
4891 
4892 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4893 {
4894 	struct kmem_cache *s;
4895 	void *ret;
4896 
4897 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4898 		return kmalloc_large(size, gfpflags);
4899 
4900 	s = kmalloc_slab(size, gfpflags);
4901 
4902 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4903 		return s;
4904 
4905 	ret = slab_alloc(s, gfpflags, caller, size);
4906 
4907 	/* Honor the call site pointer we received. */
4908 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4909 
4910 	return ret;
4911 }
4912 EXPORT_SYMBOL(__kmalloc_track_caller);
4913 
4914 #ifdef CONFIG_NUMA
4915 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4916 					int node, unsigned long caller)
4917 {
4918 	struct kmem_cache *s;
4919 	void *ret;
4920 
4921 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4922 		ret = kmalloc_large_node(size, gfpflags, node);
4923 
4924 		trace_kmalloc_node(caller, ret,
4925 				   size, PAGE_SIZE << get_order(size),
4926 				   gfpflags, node);
4927 
4928 		return ret;
4929 	}
4930 
4931 	s = kmalloc_slab(size, gfpflags);
4932 
4933 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4934 		return s;
4935 
4936 	ret = slab_alloc_node(s, gfpflags, node, caller, size);
4937 
4938 	/* Honor the call site pointer we received. */
4939 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4940 
4941 	return ret;
4942 }
4943 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4944 #endif
4945 
4946 #ifdef CONFIG_SYSFS
4947 static int count_inuse(struct page *page)
4948 {
4949 	return page->inuse;
4950 }
4951 
4952 static int count_total(struct page *page)
4953 {
4954 	return page->objects;
4955 }
4956 #endif
4957 
4958 #ifdef CONFIG_SLUB_DEBUG
4959 static void validate_slab(struct kmem_cache *s, struct page *page,
4960 			  unsigned long *obj_map)
4961 {
4962 	void *p;
4963 	void *addr = page_address(page);
4964 	unsigned long flags;
4965 
4966 	slab_lock(page, &flags);
4967 
4968 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4969 		goto unlock;
4970 
4971 	/* Now we know that a valid freelist exists */
4972 	__fill_map(obj_map, s, page);
4973 	for_each_object(p, s, addr, page->objects) {
4974 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
4975 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4976 
4977 		if (!check_object(s, page, p, val))
4978 			break;
4979 	}
4980 unlock:
4981 	slab_unlock(page, &flags);
4982 }
4983 
4984 static int validate_slab_node(struct kmem_cache *s,
4985 		struct kmem_cache_node *n, unsigned long *obj_map)
4986 {
4987 	unsigned long count = 0;
4988 	struct page *page;
4989 	unsigned long flags;
4990 
4991 	spin_lock_irqsave(&n->list_lock, flags);
4992 
4993 	list_for_each_entry(page, &n->partial, slab_list) {
4994 		validate_slab(s, page, obj_map);
4995 		count++;
4996 	}
4997 	if (count != n->nr_partial) {
4998 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4999 		       s->name, count, n->nr_partial);
5000 		slab_add_kunit_errors();
5001 	}
5002 
5003 	if (!(s->flags & SLAB_STORE_USER))
5004 		goto out;
5005 
5006 	list_for_each_entry(page, &n->full, slab_list) {
5007 		validate_slab(s, page, obj_map);
5008 		count++;
5009 	}
5010 	if (count != atomic_long_read(&n->nr_slabs)) {
5011 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5012 		       s->name, count, atomic_long_read(&n->nr_slabs));
5013 		slab_add_kunit_errors();
5014 	}
5015 
5016 out:
5017 	spin_unlock_irqrestore(&n->list_lock, flags);
5018 	return count;
5019 }
5020 
5021 long validate_slab_cache(struct kmem_cache *s)
5022 {
5023 	int node;
5024 	unsigned long count = 0;
5025 	struct kmem_cache_node *n;
5026 	unsigned long *obj_map;
5027 
5028 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5029 	if (!obj_map)
5030 		return -ENOMEM;
5031 
5032 	flush_all(s);
5033 	for_each_kmem_cache_node(s, node, n)
5034 		count += validate_slab_node(s, n, obj_map);
5035 
5036 	bitmap_free(obj_map);
5037 
5038 	return count;
5039 }
5040 EXPORT_SYMBOL(validate_slab_cache);
5041 
5042 #ifdef CONFIG_DEBUG_FS
5043 /*
5044  * Generate lists of code addresses where slabcache objects are allocated
5045  * and freed.
5046  */
5047 
5048 struct location {
5049 	unsigned long count;
5050 	unsigned long addr;
5051 	long long sum_time;
5052 	long min_time;
5053 	long max_time;
5054 	long min_pid;
5055 	long max_pid;
5056 	DECLARE_BITMAP(cpus, NR_CPUS);
5057 	nodemask_t nodes;
5058 };
5059 
5060 struct loc_track {
5061 	unsigned long max;
5062 	unsigned long count;
5063 	struct location *loc;
5064 };
5065 
5066 static struct dentry *slab_debugfs_root;
5067 
5068 static void free_loc_track(struct loc_track *t)
5069 {
5070 	if (t->max)
5071 		free_pages((unsigned long)t->loc,
5072 			get_order(sizeof(struct location) * t->max));
5073 }
5074 
5075 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5076 {
5077 	struct location *l;
5078 	int order;
5079 
5080 	order = get_order(sizeof(struct location) * max);
5081 
5082 	l = (void *)__get_free_pages(flags, order);
5083 	if (!l)
5084 		return 0;
5085 
5086 	if (t->count) {
5087 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5088 		free_loc_track(t);
5089 	}
5090 	t->max = max;
5091 	t->loc = l;
5092 	return 1;
5093 }
5094 
5095 static int add_location(struct loc_track *t, struct kmem_cache *s,
5096 				const struct track *track)
5097 {
5098 	long start, end, pos;
5099 	struct location *l;
5100 	unsigned long caddr;
5101 	unsigned long age = jiffies - track->when;
5102 
5103 	start = -1;
5104 	end = t->count;
5105 
5106 	for ( ; ; ) {
5107 		pos = start + (end - start + 1) / 2;
5108 
5109 		/*
5110 		 * There is nothing at "end". If we end up there
5111 		 * we need to add something to before end.
5112 		 */
5113 		if (pos == end)
5114 			break;
5115 
5116 		caddr = t->loc[pos].addr;
5117 		if (track->addr == caddr) {
5118 
5119 			l = &t->loc[pos];
5120 			l->count++;
5121 			if (track->when) {
5122 				l->sum_time += age;
5123 				if (age < l->min_time)
5124 					l->min_time = age;
5125 				if (age > l->max_time)
5126 					l->max_time = age;
5127 
5128 				if (track->pid < l->min_pid)
5129 					l->min_pid = track->pid;
5130 				if (track->pid > l->max_pid)
5131 					l->max_pid = track->pid;
5132 
5133 				cpumask_set_cpu(track->cpu,
5134 						to_cpumask(l->cpus));
5135 			}
5136 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5137 			return 1;
5138 		}
5139 
5140 		if (track->addr < caddr)
5141 			end = pos;
5142 		else
5143 			start = pos;
5144 	}
5145 
5146 	/*
5147 	 * Not found. Insert new tracking element.
5148 	 */
5149 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5150 		return 0;
5151 
5152 	l = t->loc + pos;
5153 	if (pos < t->count)
5154 		memmove(l + 1, l,
5155 			(t->count - pos) * sizeof(struct location));
5156 	t->count++;
5157 	l->count = 1;
5158 	l->addr = track->addr;
5159 	l->sum_time = age;
5160 	l->min_time = age;
5161 	l->max_time = age;
5162 	l->min_pid = track->pid;
5163 	l->max_pid = track->pid;
5164 	cpumask_clear(to_cpumask(l->cpus));
5165 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5166 	nodes_clear(l->nodes);
5167 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5168 	return 1;
5169 }
5170 
5171 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5172 		struct page *page, enum track_item alloc,
5173 		unsigned long *obj_map)
5174 {
5175 	void *addr = page_address(page);
5176 	void *p;
5177 
5178 	__fill_map(obj_map, s, page);
5179 
5180 	for_each_object(p, s, addr, page->objects)
5181 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5182 			add_location(t, s, get_track(s, p, alloc));
5183 }
5184 #endif  /* CONFIG_DEBUG_FS   */
5185 #endif	/* CONFIG_SLUB_DEBUG */
5186 
5187 #ifdef CONFIG_SYSFS
5188 enum slab_stat_type {
5189 	SL_ALL,			/* All slabs */
5190 	SL_PARTIAL,		/* Only partially allocated slabs */
5191 	SL_CPU,			/* Only slabs used for cpu caches */
5192 	SL_OBJECTS,		/* Determine allocated objects not slabs */
5193 	SL_TOTAL		/* Determine object capacity not slabs */
5194 };
5195 
5196 #define SO_ALL		(1 << SL_ALL)
5197 #define SO_PARTIAL	(1 << SL_PARTIAL)
5198 #define SO_CPU		(1 << SL_CPU)
5199 #define SO_OBJECTS	(1 << SL_OBJECTS)
5200 #define SO_TOTAL	(1 << SL_TOTAL)
5201 
5202 static ssize_t show_slab_objects(struct kmem_cache *s,
5203 				 char *buf, unsigned long flags)
5204 {
5205 	unsigned long total = 0;
5206 	int node;
5207 	int x;
5208 	unsigned long *nodes;
5209 	int len = 0;
5210 
5211 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5212 	if (!nodes)
5213 		return -ENOMEM;
5214 
5215 	if (flags & SO_CPU) {
5216 		int cpu;
5217 
5218 		for_each_possible_cpu(cpu) {
5219 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5220 							       cpu);
5221 			int node;
5222 			struct page *page;
5223 
5224 			page = READ_ONCE(c->page);
5225 			if (!page)
5226 				continue;
5227 
5228 			node = page_to_nid(page);
5229 			if (flags & SO_TOTAL)
5230 				x = page->objects;
5231 			else if (flags & SO_OBJECTS)
5232 				x = page->inuse;
5233 			else
5234 				x = 1;
5235 
5236 			total += x;
5237 			nodes[node] += x;
5238 
5239 			page = slub_percpu_partial_read_once(c);
5240 			if (page) {
5241 				node = page_to_nid(page);
5242 				if (flags & SO_TOTAL)
5243 					WARN_ON_ONCE(1);
5244 				else if (flags & SO_OBJECTS)
5245 					WARN_ON_ONCE(1);
5246 				else
5247 					x = page->pages;
5248 				total += x;
5249 				nodes[node] += x;
5250 			}
5251 		}
5252 	}
5253 
5254 	/*
5255 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5256 	 * already held which will conflict with an existing lock order:
5257 	 *
5258 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5259 	 *
5260 	 * We don't really need mem_hotplug_lock (to hold off
5261 	 * slab_mem_going_offline_callback) here because slab's memory hot
5262 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5263 	 */
5264 
5265 #ifdef CONFIG_SLUB_DEBUG
5266 	if (flags & SO_ALL) {
5267 		struct kmem_cache_node *n;
5268 
5269 		for_each_kmem_cache_node(s, node, n) {
5270 
5271 			if (flags & SO_TOTAL)
5272 				x = atomic_long_read(&n->total_objects);
5273 			else if (flags & SO_OBJECTS)
5274 				x = atomic_long_read(&n->total_objects) -
5275 					count_partial(n, count_free);
5276 			else
5277 				x = atomic_long_read(&n->nr_slabs);
5278 			total += x;
5279 			nodes[node] += x;
5280 		}
5281 
5282 	} else
5283 #endif
5284 	if (flags & SO_PARTIAL) {
5285 		struct kmem_cache_node *n;
5286 
5287 		for_each_kmem_cache_node(s, node, n) {
5288 			if (flags & SO_TOTAL)
5289 				x = count_partial(n, count_total);
5290 			else if (flags & SO_OBJECTS)
5291 				x = count_partial(n, count_inuse);
5292 			else
5293 				x = n->nr_partial;
5294 			total += x;
5295 			nodes[node] += x;
5296 		}
5297 	}
5298 
5299 	len += sysfs_emit_at(buf, len, "%lu", total);
5300 #ifdef CONFIG_NUMA
5301 	for (node = 0; node < nr_node_ids; node++) {
5302 		if (nodes[node])
5303 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5304 					     node, nodes[node]);
5305 	}
5306 #endif
5307 	len += sysfs_emit_at(buf, len, "\n");
5308 	kfree(nodes);
5309 
5310 	return len;
5311 }
5312 
5313 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5314 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5315 
5316 struct slab_attribute {
5317 	struct attribute attr;
5318 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5319 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5320 };
5321 
5322 #define SLAB_ATTR_RO(_name) \
5323 	static struct slab_attribute _name##_attr = \
5324 	__ATTR(_name, 0400, _name##_show, NULL)
5325 
5326 #define SLAB_ATTR(_name) \
5327 	static struct slab_attribute _name##_attr =  \
5328 	__ATTR(_name, 0600, _name##_show, _name##_store)
5329 
5330 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5331 {
5332 	return sysfs_emit(buf, "%u\n", s->size);
5333 }
5334 SLAB_ATTR_RO(slab_size);
5335 
5336 static ssize_t align_show(struct kmem_cache *s, char *buf)
5337 {
5338 	return sysfs_emit(buf, "%u\n", s->align);
5339 }
5340 SLAB_ATTR_RO(align);
5341 
5342 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5343 {
5344 	return sysfs_emit(buf, "%u\n", s->object_size);
5345 }
5346 SLAB_ATTR_RO(object_size);
5347 
5348 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5349 {
5350 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5351 }
5352 SLAB_ATTR_RO(objs_per_slab);
5353 
5354 static ssize_t order_show(struct kmem_cache *s, char *buf)
5355 {
5356 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5357 }
5358 SLAB_ATTR_RO(order);
5359 
5360 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5361 {
5362 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5363 }
5364 
5365 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5366 				 size_t length)
5367 {
5368 	unsigned long min;
5369 	int err;
5370 
5371 	err = kstrtoul(buf, 10, &min);
5372 	if (err)
5373 		return err;
5374 
5375 	set_min_partial(s, min);
5376 	return length;
5377 }
5378 SLAB_ATTR(min_partial);
5379 
5380 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5381 {
5382 	return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5383 }
5384 
5385 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5386 				 size_t length)
5387 {
5388 	unsigned int objects;
5389 	int err;
5390 
5391 	err = kstrtouint(buf, 10, &objects);
5392 	if (err)
5393 		return err;
5394 	if (objects && !kmem_cache_has_cpu_partial(s))
5395 		return -EINVAL;
5396 
5397 	slub_set_cpu_partial(s, objects);
5398 	flush_all(s);
5399 	return length;
5400 }
5401 SLAB_ATTR(cpu_partial);
5402 
5403 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5404 {
5405 	if (!s->ctor)
5406 		return 0;
5407 	return sysfs_emit(buf, "%pS\n", s->ctor);
5408 }
5409 SLAB_ATTR_RO(ctor);
5410 
5411 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5412 {
5413 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5414 }
5415 SLAB_ATTR_RO(aliases);
5416 
5417 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5418 {
5419 	return show_slab_objects(s, buf, SO_PARTIAL);
5420 }
5421 SLAB_ATTR_RO(partial);
5422 
5423 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5424 {
5425 	return show_slab_objects(s, buf, SO_CPU);
5426 }
5427 SLAB_ATTR_RO(cpu_slabs);
5428 
5429 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5430 {
5431 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5432 }
5433 SLAB_ATTR_RO(objects);
5434 
5435 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5436 {
5437 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5438 }
5439 SLAB_ATTR_RO(objects_partial);
5440 
5441 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5442 {
5443 	int objects = 0;
5444 	int pages = 0;
5445 	int cpu;
5446 	int len = 0;
5447 
5448 	for_each_online_cpu(cpu) {
5449 		struct page *page;
5450 
5451 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5452 
5453 		if (page) {
5454 			pages += page->pages;
5455 			objects += page->pobjects;
5456 		}
5457 	}
5458 
5459 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5460 
5461 #ifdef CONFIG_SMP
5462 	for_each_online_cpu(cpu) {
5463 		struct page *page;
5464 
5465 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5466 		if (page)
5467 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5468 					     cpu, page->pobjects, page->pages);
5469 	}
5470 #endif
5471 	len += sysfs_emit_at(buf, len, "\n");
5472 
5473 	return len;
5474 }
5475 SLAB_ATTR_RO(slabs_cpu_partial);
5476 
5477 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5478 {
5479 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5480 }
5481 SLAB_ATTR_RO(reclaim_account);
5482 
5483 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5484 {
5485 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5486 }
5487 SLAB_ATTR_RO(hwcache_align);
5488 
5489 #ifdef CONFIG_ZONE_DMA
5490 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5491 {
5492 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5493 }
5494 SLAB_ATTR_RO(cache_dma);
5495 #endif
5496 
5497 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5498 {
5499 	return sysfs_emit(buf, "%u\n", s->usersize);
5500 }
5501 SLAB_ATTR_RO(usersize);
5502 
5503 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5504 {
5505 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5506 }
5507 SLAB_ATTR_RO(destroy_by_rcu);
5508 
5509 #ifdef CONFIG_SLUB_DEBUG
5510 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5511 {
5512 	return show_slab_objects(s, buf, SO_ALL);
5513 }
5514 SLAB_ATTR_RO(slabs);
5515 
5516 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5517 {
5518 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5519 }
5520 SLAB_ATTR_RO(total_objects);
5521 
5522 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5523 {
5524 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5525 }
5526 SLAB_ATTR_RO(sanity_checks);
5527 
5528 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5529 {
5530 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5531 }
5532 SLAB_ATTR_RO(trace);
5533 
5534 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5535 {
5536 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5537 }
5538 
5539 SLAB_ATTR_RO(red_zone);
5540 
5541 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5542 {
5543 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5544 }
5545 
5546 SLAB_ATTR_RO(poison);
5547 
5548 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5549 {
5550 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5551 }
5552 
5553 SLAB_ATTR_RO(store_user);
5554 
5555 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5556 {
5557 	return 0;
5558 }
5559 
5560 static ssize_t validate_store(struct kmem_cache *s,
5561 			const char *buf, size_t length)
5562 {
5563 	int ret = -EINVAL;
5564 
5565 	if (buf[0] == '1') {
5566 		ret = validate_slab_cache(s);
5567 		if (ret >= 0)
5568 			ret = length;
5569 	}
5570 	return ret;
5571 }
5572 SLAB_ATTR(validate);
5573 
5574 #endif /* CONFIG_SLUB_DEBUG */
5575 
5576 #ifdef CONFIG_FAILSLAB
5577 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5578 {
5579 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5580 }
5581 SLAB_ATTR_RO(failslab);
5582 #endif
5583 
5584 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5585 {
5586 	return 0;
5587 }
5588 
5589 static ssize_t shrink_store(struct kmem_cache *s,
5590 			const char *buf, size_t length)
5591 {
5592 	if (buf[0] == '1')
5593 		kmem_cache_shrink(s);
5594 	else
5595 		return -EINVAL;
5596 	return length;
5597 }
5598 SLAB_ATTR(shrink);
5599 
5600 #ifdef CONFIG_NUMA
5601 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5602 {
5603 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5604 }
5605 
5606 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5607 				const char *buf, size_t length)
5608 {
5609 	unsigned int ratio;
5610 	int err;
5611 
5612 	err = kstrtouint(buf, 10, &ratio);
5613 	if (err)
5614 		return err;
5615 	if (ratio > 100)
5616 		return -ERANGE;
5617 
5618 	s->remote_node_defrag_ratio = ratio * 10;
5619 
5620 	return length;
5621 }
5622 SLAB_ATTR(remote_node_defrag_ratio);
5623 #endif
5624 
5625 #ifdef CONFIG_SLUB_STATS
5626 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5627 {
5628 	unsigned long sum  = 0;
5629 	int cpu;
5630 	int len = 0;
5631 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5632 
5633 	if (!data)
5634 		return -ENOMEM;
5635 
5636 	for_each_online_cpu(cpu) {
5637 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5638 
5639 		data[cpu] = x;
5640 		sum += x;
5641 	}
5642 
5643 	len += sysfs_emit_at(buf, len, "%lu", sum);
5644 
5645 #ifdef CONFIG_SMP
5646 	for_each_online_cpu(cpu) {
5647 		if (data[cpu])
5648 			len += sysfs_emit_at(buf, len, " C%d=%u",
5649 					     cpu, data[cpu]);
5650 	}
5651 #endif
5652 	kfree(data);
5653 	len += sysfs_emit_at(buf, len, "\n");
5654 
5655 	return len;
5656 }
5657 
5658 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5659 {
5660 	int cpu;
5661 
5662 	for_each_online_cpu(cpu)
5663 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5664 }
5665 
5666 #define STAT_ATTR(si, text) 					\
5667 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5668 {								\
5669 	return show_stat(s, buf, si);				\
5670 }								\
5671 static ssize_t text##_store(struct kmem_cache *s,		\
5672 				const char *buf, size_t length)	\
5673 {								\
5674 	if (buf[0] != '0')					\
5675 		return -EINVAL;					\
5676 	clear_stat(s, si);					\
5677 	return length;						\
5678 }								\
5679 SLAB_ATTR(text);						\
5680 
5681 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5682 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5683 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5684 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5685 STAT_ATTR(FREE_FROZEN, free_frozen);
5686 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5687 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5688 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5689 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5690 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5691 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5692 STAT_ATTR(FREE_SLAB, free_slab);
5693 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5694 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5695 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5696 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5697 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5698 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5699 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5700 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5701 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5702 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5703 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5704 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5705 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5706 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5707 #endif	/* CONFIG_SLUB_STATS */
5708 
5709 static struct attribute *slab_attrs[] = {
5710 	&slab_size_attr.attr,
5711 	&object_size_attr.attr,
5712 	&objs_per_slab_attr.attr,
5713 	&order_attr.attr,
5714 	&min_partial_attr.attr,
5715 	&cpu_partial_attr.attr,
5716 	&objects_attr.attr,
5717 	&objects_partial_attr.attr,
5718 	&partial_attr.attr,
5719 	&cpu_slabs_attr.attr,
5720 	&ctor_attr.attr,
5721 	&aliases_attr.attr,
5722 	&align_attr.attr,
5723 	&hwcache_align_attr.attr,
5724 	&reclaim_account_attr.attr,
5725 	&destroy_by_rcu_attr.attr,
5726 	&shrink_attr.attr,
5727 	&slabs_cpu_partial_attr.attr,
5728 #ifdef CONFIG_SLUB_DEBUG
5729 	&total_objects_attr.attr,
5730 	&slabs_attr.attr,
5731 	&sanity_checks_attr.attr,
5732 	&trace_attr.attr,
5733 	&red_zone_attr.attr,
5734 	&poison_attr.attr,
5735 	&store_user_attr.attr,
5736 	&validate_attr.attr,
5737 #endif
5738 #ifdef CONFIG_ZONE_DMA
5739 	&cache_dma_attr.attr,
5740 #endif
5741 #ifdef CONFIG_NUMA
5742 	&remote_node_defrag_ratio_attr.attr,
5743 #endif
5744 #ifdef CONFIG_SLUB_STATS
5745 	&alloc_fastpath_attr.attr,
5746 	&alloc_slowpath_attr.attr,
5747 	&free_fastpath_attr.attr,
5748 	&free_slowpath_attr.attr,
5749 	&free_frozen_attr.attr,
5750 	&free_add_partial_attr.attr,
5751 	&free_remove_partial_attr.attr,
5752 	&alloc_from_partial_attr.attr,
5753 	&alloc_slab_attr.attr,
5754 	&alloc_refill_attr.attr,
5755 	&alloc_node_mismatch_attr.attr,
5756 	&free_slab_attr.attr,
5757 	&cpuslab_flush_attr.attr,
5758 	&deactivate_full_attr.attr,
5759 	&deactivate_empty_attr.attr,
5760 	&deactivate_to_head_attr.attr,
5761 	&deactivate_to_tail_attr.attr,
5762 	&deactivate_remote_frees_attr.attr,
5763 	&deactivate_bypass_attr.attr,
5764 	&order_fallback_attr.attr,
5765 	&cmpxchg_double_fail_attr.attr,
5766 	&cmpxchg_double_cpu_fail_attr.attr,
5767 	&cpu_partial_alloc_attr.attr,
5768 	&cpu_partial_free_attr.attr,
5769 	&cpu_partial_node_attr.attr,
5770 	&cpu_partial_drain_attr.attr,
5771 #endif
5772 #ifdef CONFIG_FAILSLAB
5773 	&failslab_attr.attr,
5774 #endif
5775 	&usersize_attr.attr,
5776 
5777 	NULL
5778 };
5779 
5780 static const struct attribute_group slab_attr_group = {
5781 	.attrs = slab_attrs,
5782 };
5783 
5784 static ssize_t slab_attr_show(struct kobject *kobj,
5785 				struct attribute *attr,
5786 				char *buf)
5787 {
5788 	struct slab_attribute *attribute;
5789 	struct kmem_cache *s;
5790 	int err;
5791 
5792 	attribute = to_slab_attr(attr);
5793 	s = to_slab(kobj);
5794 
5795 	if (!attribute->show)
5796 		return -EIO;
5797 
5798 	err = attribute->show(s, buf);
5799 
5800 	return err;
5801 }
5802 
5803 static ssize_t slab_attr_store(struct kobject *kobj,
5804 				struct attribute *attr,
5805 				const char *buf, size_t len)
5806 {
5807 	struct slab_attribute *attribute;
5808 	struct kmem_cache *s;
5809 	int err;
5810 
5811 	attribute = to_slab_attr(attr);
5812 	s = to_slab(kobj);
5813 
5814 	if (!attribute->store)
5815 		return -EIO;
5816 
5817 	err = attribute->store(s, buf, len);
5818 	return err;
5819 }
5820 
5821 static void kmem_cache_release(struct kobject *k)
5822 {
5823 	slab_kmem_cache_release(to_slab(k));
5824 }
5825 
5826 static const struct sysfs_ops slab_sysfs_ops = {
5827 	.show = slab_attr_show,
5828 	.store = slab_attr_store,
5829 };
5830 
5831 static struct kobj_type slab_ktype = {
5832 	.sysfs_ops = &slab_sysfs_ops,
5833 	.release = kmem_cache_release,
5834 };
5835 
5836 static struct kset *slab_kset;
5837 
5838 static inline struct kset *cache_kset(struct kmem_cache *s)
5839 {
5840 	return slab_kset;
5841 }
5842 
5843 #define ID_STR_LENGTH 64
5844 
5845 /* Create a unique string id for a slab cache:
5846  *
5847  * Format	:[flags-]size
5848  */
5849 static char *create_unique_id(struct kmem_cache *s)
5850 {
5851 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5852 	char *p = name;
5853 
5854 	BUG_ON(!name);
5855 
5856 	*p++ = ':';
5857 	/*
5858 	 * First flags affecting slabcache operations. We will only
5859 	 * get here for aliasable slabs so we do not need to support
5860 	 * too many flags. The flags here must cover all flags that
5861 	 * are matched during merging to guarantee that the id is
5862 	 * unique.
5863 	 */
5864 	if (s->flags & SLAB_CACHE_DMA)
5865 		*p++ = 'd';
5866 	if (s->flags & SLAB_CACHE_DMA32)
5867 		*p++ = 'D';
5868 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5869 		*p++ = 'a';
5870 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5871 		*p++ = 'F';
5872 	if (s->flags & SLAB_ACCOUNT)
5873 		*p++ = 'A';
5874 	if (p != name + 1)
5875 		*p++ = '-';
5876 	p += sprintf(p, "%07u", s->size);
5877 
5878 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5879 	return name;
5880 }
5881 
5882 static int sysfs_slab_add(struct kmem_cache *s)
5883 {
5884 	int err;
5885 	const char *name;
5886 	struct kset *kset = cache_kset(s);
5887 	int unmergeable = slab_unmergeable(s);
5888 
5889 	if (!kset) {
5890 		kobject_init(&s->kobj, &slab_ktype);
5891 		return 0;
5892 	}
5893 
5894 	if (!unmergeable && disable_higher_order_debug &&
5895 			(slub_debug & DEBUG_METADATA_FLAGS))
5896 		unmergeable = 1;
5897 
5898 	if (unmergeable) {
5899 		/*
5900 		 * Slabcache can never be merged so we can use the name proper.
5901 		 * This is typically the case for debug situations. In that
5902 		 * case we can catch duplicate names easily.
5903 		 */
5904 		sysfs_remove_link(&slab_kset->kobj, s->name);
5905 		name = s->name;
5906 	} else {
5907 		/*
5908 		 * Create a unique name for the slab as a target
5909 		 * for the symlinks.
5910 		 */
5911 		name = create_unique_id(s);
5912 	}
5913 
5914 	s->kobj.kset = kset;
5915 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5916 	if (err)
5917 		goto out;
5918 
5919 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5920 	if (err)
5921 		goto out_del_kobj;
5922 
5923 	if (!unmergeable) {
5924 		/* Setup first alias */
5925 		sysfs_slab_alias(s, s->name);
5926 	}
5927 out:
5928 	if (!unmergeable)
5929 		kfree(name);
5930 	return err;
5931 out_del_kobj:
5932 	kobject_del(&s->kobj);
5933 	goto out;
5934 }
5935 
5936 void sysfs_slab_unlink(struct kmem_cache *s)
5937 {
5938 	if (slab_state >= FULL)
5939 		kobject_del(&s->kobj);
5940 }
5941 
5942 void sysfs_slab_release(struct kmem_cache *s)
5943 {
5944 	if (slab_state >= FULL)
5945 		kobject_put(&s->kobj);
5946 }
5947 
5948 /*
5949  * Need to buffer aliases during bootup until sysfs becomes
5950  * available lest we lose that information.
5951  */
5952 struct saved_alias {
5953 	struct kmem_cache *s;
5954 	const char *name;
5955 	struct saved_alias *next;
5956 };
5957 
5958 static struct saved_alias *alias_list;
5959 
5960 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5961 {
5962 	struct saved_alias *al;
5963 
5964 	if (slab_state == FULL) {
5965 		/*
5966 		 * If we have a leftover link then remove it.
5967 		 */
5968 		sysfs_remove_link(&slab_kset->kobj, name);
5969 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5970 	}
5971 
5972 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5973 	if (!al)
5974 		return -ENOMEM;
5975 
5976 	al->s = s;
5977 	al->name = name;
5978 	al->next = alias_list;
5979 	alias_list = al;
5980 	return 0;
5981 }
5982 
5983 static int __init slab_sysfs_init(void)
5984 {
5985 	struct kmem_cache *s;
5986 	int err;
5987 
5988 	mutex_lock(&slab_mutex);
5989 
5990 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5991 	if (!slab_kset) {
5992 		mutex_unlock(&slab_mutex);
5993 		pr_err("Cannot register slab subsystem.\n");
5994 		return -ENOSYS;
5995 	}
5996 
5997 	slab_state = FULL;
5998 
5999 	list_for_each_entry(s, &slab_caches, list) {
6000 		err = sysfs_slab_add(s);
6001 		if (err)
6002 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6003 			       s->name);
6004 	}
6005 
6006 	while (alias_list) {
6007 		struct saved_alias *al = alias_list;
6008 
6009 		alias_list = alias_list->next;
6010 		err = sysfs_slab_alias(al->s, al->name);
6011 		if (err)
6012 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6013 			       al->name);
6014 		kfree(al);
6015 	}
6016 
6017 	mutex_unlock(&slab_mutex);
6018 	return 0;
6019 }
6020 
6021 __initcall(slab_sysfs_init);
6022 #endif /* CONFIG_SYSFS */
6023 
6024 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6025 static int slab_debugfs_show(struct seq_file *seq, void *v)
6026 {
6027 
6028 	struct location *l;
6029 	unsigned int idx = *(unsigned int *)v;
6030 	struct loc_track *t = seq->private;
6031 
6032 	if (idx < t->count) {
6033 		l = &t->loc[idx];
6034 
6035 		seq_printf(seq, "%7ld ", l->count);
6036 
6037 		if (l->addr)
6038 			seq_printf(seq, "%pS", (void *)l->addr);
6039 		else
6040 			seq_puts(seq, "<not-available>");
6041 
6042 		if (l->sum_time != l->min_time) {
6043 			seq_printf(seq, " age=%ld/%llu/%ld",
6044 				l->min_time, div_u64(l->sum_time, l->count),
6045 				l->max_time);
6046 		} else
6047 			seq_printf(seq, " age=%ld", l->min_time);
6048 
6049 		if (l->min_pid != l->max_pid)
6050 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6051 		else
6052 			seq_printf(seq, " pid=%ld",
6053 				l->min_pid);
6054 
6055 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6056 			seq_printf(seq, " cpus=%*pbl",
6057 				 cpumask_pr_args(to_cpumask(l->cpus)));
6058 
6059 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6060 			seq_printf(seq, " nodes=%*pbl",
6061 				 nodemask_pr_args(&l->nodes));
6062 
6063 		seq_puts(seq, "\n");
6064 	}
6065 
6066 	if (!idx && !t->count)
6067 		seq_puts(seq, "No data\n");
6068 
6069 	return 0;
6070 }
6071 
6072 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6073 {
6074 }
6075 
6076 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6077 {
6078 	struct loc_track *t = seq->private;
6079 
6080 	v = ppos;
6081 	++*ppos;
6082 	if (*ppos <= t->count)
6083 		return v;
6084 
6085 	return NULL;
6086 }
6087 
6088 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6089 {
6090 	return ppos;
6091 }
6092 
6093 static const struct seq_operations slab_debugfs_sops = {
6094 	.start  = slab_debugfs_start,
6095 	.next   = slab_debugfs_next,
6096 	.stop   = slab_debugfs_stop,
6097 	.show   = slab_debugfs_show,
6098 };
6099 
6100 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6101 {
6102 
6103 	struct kmem_cache_node *n;
6104 	enum track_item alloc;
6105 	int node;
6106 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6107 						sizeof(struct loc_track));
6108 	struct kmem_cache *s = file_inode(filep)->i_private;
6109 	unsigned long *obj_map;
6110 
6111 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6112 	if (!obj_map)
6113 		return -ENOMEM;
6114 
6115 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6116 		alloc = TRACK_ALLOC;
6117 	else
6118 		alloc = TRACK_FREE;
6119 
6120 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6121 		bitmap_free(obj_map);
6122 		return -ENOMEM;
6123 	}
6124 
6125 	for_each_kmem_cache_node(s, node, n) {
6126 		unsigned long flags;
6127 		struct page *page;
6128 
6129 		if (!atomic_long_read(&n->nr_slabs))
6130 			continue;
6131 
6132 		spin_lock_irqsave(&n->list_lock, flags);
6133 		list_for_each_entry(page, &n->partial, slab_list)
6134 			process_slab(t, s, page, alloc, obj_map);
6135 		list_for_each_entry(page, &n->full, slab_list)
6136 			process_slab(t, s, page, alloc, obj_map);
6137 		spin_unlock_irqrestore(&n->list_lock, flags);
6138 	}
6139 
6140 	bitmap_free(obj_map);
6141 	return 0;
6142 }
6143 
6144 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6145 {
6146 	struct seq_file *seq = file->private_data;
6147 	struct loc_track *t = seq->private;
6148 
6149 	free_loc_track(t);
6150 	return seq_release_private(inode, file);
6151 }
6152 
6153 static const struct file_operations slab_debugfs_fops = {
6154 	.open    = slab_debug_trace_open,
6155 	.read    = seq_read,
6156 	.llseek  = seq_lseek,
6157 	.release = slab_debug_trace_release,
6158 };
6159 
6160 static void debugfs_slab_add(struct kmem_cache *s)
6161 {
6162 	struct dentry *slab_cache_dir;
6163 
6164 	if (unlikely(!slab_debugfs_root))
6165 		return;
6166 
6167 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6168 
6169 	debugfs_create_file("alloc_traces", 0400,
6170 		slab_cache_dir, s, &slab_debugfs_fops);
6171 
6172 	debugfs_create_file("free_traces", 0400,
6173 		slab_cache_dir, s, &slab_debugfs_fops);
6174 }
6175 
6176 void debugfs_slab_release(struct kmem_cache *s)
6177 {
6178 	debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6179 }
6180 
6181 static int __init slab_debugfs_init(void)
6182 {
6183 	struct kmem_cache *s;
6184 
6185 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6186 
6187 	list_for_each_entry(s, &slab_caches, list)
6188 		if (s->flags & SLAB_STORE_USER)
6189 			debugfs_slab_add(s);
6190 
6191 	return 0;
6192 
6193 }
6194 __initcall(slab_debugfs_init);
6195 #endif
6196 /*
6197  * The /proc/slabinfo ABI
6198  */
6199 #ifdef CONFIG_SLUB_DEBUG
6200 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6201 {
6202 	unsigned long nr_slabs = 0;
6203 	unsigned long nr_objs = 0;
6204 	unsigned long nr_free = 0;
6205 	int node;
6206 	struct kmem_cache_node *n;
6207 
6208 	for_each_kmem_cache_node(s, node, n) {
6209 		nr_slabs += node_nr_slabs(n);
6210 		nr_objs += node_nr_objs(n);
6211 		nr_free += count_partial(n, count_free);
6212 	}
6213 
6214 	sinfo->active_objs = nr_objs - nr_free;
6215 	sinfo->num_objs = nr_objs;
6216 	sinfo->active_slabs = nr_slabs;
6217 	sinfo->num_slabs = nr_slabs;
6218 	sinfo->objects_per_slab = oo_objects(s->oo);
6219 	sinfo->cache_order = oo_order(s->oo);
6220 }
6221 
6222 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6223 {
6224 }
6225 
6226 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6227 		       size_t count, loff_t *ppos)
6228 {
6229 	return -EIO;
6230 }
6231 #endif /* CONFIG_SLUB_DEBUG */
6232