xref: /openbmc/linux/mm/slub.c (revision 6189f1b0)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects the second
55  *   double word in the page struct. Meaning
56  *	A. page->freelist	-> List of object free in a page
57  *	B. page->counters	-> Counters of objects
58  *	C. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list. The processor that froze the slab is the one who can
62  *   perform list operations on the page. Other processors may put objects
63  *   onto the freelist but the processor that froze the slab is the only
64  *   one that can retrieve the objects from the page's freelist.
65  *
66  *   The list_lock protects the partial and full list on each node and
67  *   the partial slab counter. If taken then no new slabs may be added or
68  *   removed from the lists nor make the number of partial slabs be modified.
69  *   (Note that the total number of slabs is an atomic value that may be
70  *   modified without taking the list lock).
71  *
72  *   The list_lock is a centralized lock and thus we avoid taking it as
73  *   much as possible. As long as SLUB does not have to handle partial
74  *   slabs, operations can continue without any centralized lock. F.e.
75  *   allocating a long series of objects that fill up slabs does not require
76  *   the list lock.
77  *   Interrupts are disabled during allocation and deallocation in order to
78  *   make the slab allocator safe to use in the context of an irq. In addition
79  *   interrupts are disabled to ensure that the processor does not change
80  *   while handling per_cpu slabs, due to kernel preemption.
81  *
82  * SLUB assigns one slab for allocation to each processor.
83  * Allocations only occur from these slabs called cpu slabs.
84  *
85  * Slabs with free elements are kept on a partial list and during regular
86  * operations no list for full slabs is used. If an object in a full slab is
87  * freed then the slab will show up again on the partial lists.
88  * We track full slabs for debugging purposes though because otherwise we
89  * cannot scan all objects.
90  *
91  * Slabs are freed when they become empty. Teardown and setup is
92  * minimal so we rely on the page allocators per cpu caches for
93  * fast frees and allocs.
94  *
95  * Overloading of page flags that are otherwise used for LRU management.
96  *
97  * PageActive 		The slab is frozen and exempt from list processing.
98  * 			This means that the slab is dedicated to a purpose
99  * 			such as satisfying allocations for a specific
100  * 			processor. Objects may be freed in the slab while
101  * 			it is frozen but slab_free will then skip the usual
102  * 			list operations. It is up to the processor holding
103  * 			the slab to integrate the slab into the slab lists
104  * 			when the slab is no longer needed.
105  *
106  * 			One use of this flag is to mark slabs that are
107  * 			used for allocations. Then such a slab becomes a cpu
108  * 			slab. The cpu slab may be equipped with an additional
109  * 			freelist that allows lockless access to
110  * 			free objects in addition to the regular freelist
111  * 			that requires the slab lock.
112  *
113  * PageError		Slab requires special handling due to debug
114  * 			options set. This moves	slab handling out of
115  * 			the fast path and disables lockless freelists.
116  */
117 
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 	return 0;
124 #endif
125 }
126 
127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128 {
129 #ifdef CONFIG_SLUB_CPU_PARTIAL
130 	return !kmem_cache_debug(s);
131 #else
132 	return false;
133 #endif
134 }
135 
136 /*
137  * Issues still to be resolved:
138  *
139  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140  *
141  * - Variable sizing of the per node arrays
142  */
143 
144 /* Enable to test recovery from slab corruption on boot */
145 #undef SLUB_RESILIENCY_TEST
146 
147 /* Enable to log cmpxchg failures */
148 #undef SLUB_DEBUG_CMPXCHG
149 
150 /*
151  * Mininum number of partial slabs. These will be left on the partial
152  * lists even if they are empty. kmem_cache_shrink may reclaim them.
153  */
154 #define MIN_PARTIAL 5
155 
156 /*
157  * Maximum number of desirable partial slabs.
158  * The existence of more partial slabs makes kmem_cache_shrink
159  * sort the partial list by the number of objects in use.
160  */
161 #define MAX_PARTIAL 10
162 
163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 				SLAB_POISON | SLAB_STORE_USER)
165 
166 /*
167  * Debugging flags that require metadata to be stored in the slab.  These get
168  * disabled when slub_debug=O is used and a cache's min order increases with
169  * metadata.
170  */
171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172 
173 #define OO_SHIFT	16
174 #define OO_MASK		((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
176 
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON		0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
180 
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184 
185 /*
186  * Tracking user of a slab.
187  */
188 #define TRACK_ADDRS_COUNT 16
189 struct track {
190 	unsigned long addr;	/* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
193 #endif
194 	int cpu;		/* Was running on cpu */
195 	int pid;		/* Pid context */
196 	unsigned long when;	/* When did the operation occur */
197 };
198 
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200 
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 							{ return 0; }
209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
210 #endif
211 
212 static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 {
214 #ifdef CONFIG_SLUB_STATS
215 	/*
216 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 	 * avoid this_cpu_add()'s irq-disable overhead.
218 	 */
219 	raw_cpu_inc(s->cpu_slab->stat[si]);
220 #endif
221 }
222 
223 /********************************************************************
224  * 			Core slab cache functions
225  *******************************************************************/
226 
227 /* Verify that a pointer has an address that is valid within a slab page */
228 static inline int check_valid_pointer(struct kmem_cache *s,
229 				struct page *page, const void *object)
230 {
231 	void *base;
232 
233 	if (!object)
234 		return 1;
235 
236 	base = page_address(page);
237 	if (object < base || object >= base + page->objects * s->size ||
238 		(object - base) % s->size) {
239 		return 0;
240 	}
241 
242 	return 1;
243 }
244 
245 static inline void *get_freepointer(struct kmem_cache *s, void *object)
246 {
247 	return *(void **)(object + s->offset);
248 }
249 
250 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251 {
252 	prefetch(object + s->offset);
253 }
254 
255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256 {
257 	void *p;
258 
259 #ifdef CONFIG_DEBUG_PAGEALLOC
260 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261 #else
262 	p = get_freepointer(s, object);
263 #endif
264 	return p;
265 }
266 
267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268 {
269 	*(void **)(object + s->offset) = fp;
270 }
271 
272 /* Loop over all objects in a slab */
273 #define for_each_object(__p, __s, __addr, __objects) \
274 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 			__p += (__s)->size)
276 
277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 	for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 			__p += (__s)->size, __idx++)
280 
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283 {
284 	return (p - addr) / s->size;
285 }
286 
287 static inline size_t slab_ksize(const struct kmem_cache *s)
288 {
289 #ifdef CONFIG_SLUB_DEBUG
290 	/*
291 	 * Debugging requires use of the padding between object
292 	 * and whatever may come after it.
293 	 */
294 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295 		return s->object_size;
296 
297 #endif
298 	/*
299 	 * If we have the need to store the freelist pointer
300 	 * back there or track user information then we can
301 	 * only use the space before that information.
302 	 */
303 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 		return s->inuse;
305 	/*
306 	 * Else we can use all the padding etc for the allocation
307 	 */
308 	return s->size;
309 }
310 
311 static inline int order_objects(int order, unsigned long size, int reserved)
312 {
313 	return ((PAGE_SIZE << order) - reserved) / size;
314 }
315 
316 static inline struct kmem_cache_order_objects oo_make(int order,
317 		unsigned long size, int reserved)
318 {
319 	struct kmem_cache_order_objects x = {
320 		(order << OO_SHIFT) + order_objects(order, size, reserved)
321 	};
322 
323 	return x;
324 }
325 
326 static inline int oo_order(struct kmem_cache_order_objects x)
327 {
328 	return x.x >> OO_SHIFT;
329 }
330 
331 static inline int oo_objects(struct kmem_cache_order_objects x)
332 {
333 	return x.x & OO_MASK;
334 }
335 
336 /*
337  * Per slab locking using the pagelock
338  */
339 static __always_inline void slab_lock(struct page *page)
340 {
341 	bit_spin_lock(PG_locked, &page->flags);
342 }
343 
344 static __always_inline void slab_unlock(struct page *page)
345 {
346 	__bit_spin_unlock(PG_locked, &page->flags);
347 }
348 
349 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350 {
351 	struct page tmp;
352 	tmp.counters = counters_new;
353 	/*
354 	 * page->counters can cover frozen/inuse/objects as well
355 	 * as page->_count.  If we assign to ->counters directly
356 	 * we run the risk of losing updates to page->_count, so
357 	 * be careful and only assign to the fields we need.
358 	 */
359 	page->frozen  = tmp.frozen;
360 	page->inuse   = tmp.inuse;
361 	page->objects = tmp.objects;
362 }
363 
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 		void *freelist_old, unsigned long counters_old,
367 		void *freelist_new, unsigned long counters_new,
368 		const char *n)
369 {
370 	VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 	if (s->flags & __CMPXCHG_DOUBLE) {
374 		if (cmpxchg_double(&page->freelist, &page->counters,
375 				   freelist_old, counters_old,
376 				   freelist_new, counters_new))
377 			return true;
378 	} else
379 #endif
380 	{
381 		slab_lock(page);
382 		if (page->freelist == freelist_old &&
383 					page->counters == counters_old) {
384 			page->freelist = freelist_new;
385 			set_page_slub_counters(page, counters_new);
386 			slab_unlock(page);
387 			return true;
388 		}
389 		slab_unlock(page);
390 	}
391 
392 	cpu_relax();
393 	stat(s, CMPXCHG_DOUBLE_FAIL);
394 
395 #ifdef SLUB_DEBUG_CMPXCHG
396 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398 
399 	return false;
400 }
401 
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 		void *freelist_old, unsigned long counters_old,
404 		void *freelist_new, unsigned long counters_new,
405 		const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 	if (s->flags & __CMPXCHG_DOUBLE) {
410 		if (cmpxchg_double(&page->freelist, &page->counters,
411 				   freelist_old, counters_old,
412 				   freelist_new, counters_new))
413 			return true;
414 	} else
415 #endif
416 	{
417 		unsigned long flags;
418 
419 		local_irq_save(flags);
420 		slab_lock(page);
421 		if (page->freelist == freelist_old &&
422 					page->counters == counters_old) {
423 			page->freelist = freelist_new;
424 			set_page_slub_counters(page, counters_new);
425 			slab_unlock(page);
426 			local_irq_restore(flags);
427 			return true;
428 		}
429 		slab_unlock(page);
430 		local_irq_restore(flags);
431 	}
432 
433 	cpu_relax();
434 	stat(s, CMPXCHG_DOUBLE_FAIL);
435 
436 #ifdef SLUB_DEBUG_CMPXCHG
437 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439 
440 	return false;
441 }
442 
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445  * Determine a map of object in use on a page.
446  *
447  * Node listlock must be held to guarantee that the page does
448  * not vanish from under us.
449  */
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 	void *p;
453 	void *addr = page_address(page);
454 
455 	for (p = page->freelist; p; p = get_freepointer(s, p))
456 		set_bit(slab_index(p, s, addr), map);
457 }
458 
459 /*
460  * Debug settings:
461  */
462 #ifdef CONFIG_SLUB_DEBUG_ON
463 static int slub_debug = DEBUG_DEFAULT_FLAGS;
464 #else
465 static int slub_debug;
466 #endif
467 
468 static char *slub_debug_slabs;
469 static int disable_higher_order_debug;
470 
471 /*
472  * slub is about to manipulate internal object metadata.  This memory lies
473  * outside the range of the allocated object, so accessing it would normally
474  * be reported by kasan as a bounds error.  metadata_access_enable() is used
475  * to tell kasan that these accesses are OK.
476  */
477 static inline void metadata_access_enable(void)
478 {
479 	kasan_disable_current();
480 }
481 
482 static inline void metadata_access_disable(void)
483 {
484 	kasan_enable_current();
485 }
486 
487 /*
488  * Object debugging
489  */
490 static void print_section(char *text, u8 *addr, unsigned int length)
491 {
492 	metadata_access_enable();
493 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
494 			length, 1);
495 	metadata_access_disable();
496 }
497 
498 static struct track *get_track(struct kmem_cache *s, void *object,
499 	enum track_item alloc)
500 {
501 	struct track *p;
502 
503 	if (s->offset)
504 		p = object + s->offset + sizeof(void *);
505 	else
506 		p = object + s->inuse;
507 
508 	return p + alloc;
509 }
510 
511 static void set_track(struct kmem_cache *s, void *object,
512 			enum track_item alloc, unsigned long addr)
513 {
514 	struct track *p = get_track(s, object, alloc);
515 
516 	if (addr) {
517 #ifdef CONFIG_STACKTRACE
518 		struct stack_trace trace;
519 		int i;
520 
521 		trace.nr_entries = 0;
522 		trace.max_entries = TRACK_ADDRS_COUNT;
523 		trace.entries = p->addrs;
524 		trace.skip = 3;
525 		metadata_access_enable();
526 		save_stack_trace(&trace);
527 		metadata_access_disable();
528 
529 		/* See rant in lockdep.c */
530 		if (trace.nr_entries != 0 &&
531 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532 			trace.nr_entries--;
533 
534 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535 			p->addrs[i] = 0;
536 #endif
537 		p->addr = addr;
538 		p->cpu = smp_processor_id();
539 		p->pid = current->pid;
540 		p->when = jiffies;
541 	} else
542 		memset(p, 0, sizeof(struct track));
543 }
544 
545 static void init_tracking(struct kmem_cache *s, void *object)
546 {
547 	if (!(s->flags & SLAB_STORE_USER))
548 		return;
549 
550 	set_track(s, object, TRACK_FREE, 0UL);
551 	set_track(s, object, TRACK_ALLOC, 0UL);
552 }
553 
554 static void print_track(const char *s, struct track *t)
555 {
556 	if (!t->addr)
557 		return;
558 
559 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
560 	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
561 #ifdef CONFIG_STACKTRACE
562 	{
563 		int i;
564 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565 			if (t->addrs[i])
566 				pr_err("\t%pS\n", (void *)t->addrs[i]);
567 			else
568 				break;
569 	}
570 #endif
571 }
572 
573 static void print_tracking(struct kmem_cache *s, void *object)
574 {
575 	if (!(s->flags & SLAB_STORE_USER))
576 		return;
577 
578 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579 	print_track("Freed", get_track(s, object, TRACK_FREE));
580 }
581 
582 static void print_page_info(struct page *page)
583 {
584 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585 	       page, page->objects, page->inuse, page->freelist, page->flags);
586 
587 }
588 
589 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
590 {
591 	struct va_format vaf;
592 	va_list args;
593 
594 	va_start(args, fmt);
595 	vaf.fmt = fmt;
596 	vaf.va = &args;
597 	pr_err("=============================================================================\n");
598 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
599 	pr_err("-----------------------------------------------------------------------------\n\n");
600 
601 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
602 	va_end(args);
603 }
604 
605 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
606 {
607 	struct va_format vaf;
608 	va_list args;
609 
610 	va_start(args, fmt);
611 	vaf.fmt = fmt;
612 	vaf.va = &args;
613 	pr_err("FIX %s: %pV\n", s->name, &vaf);
614 	va_end(args);
615 }
616 
617 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
618 {
619 	unsigned int off;	/* Offset of last byte */
620 	u8 *addr = page_address(page);
621 
622 	print_tracking(s, p);
623 
624 	print_page_info(page);
625 
626 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
627 	       p, p - addr, get_freepointer(s, p));
628 
629 	if (p > addr + 16)
630 		print_section("Bytes b4 ", p - 16, 16);
631 
632 	print_section("Object ", p, min_t(unsigned long, s->object_size,
633 				PAGE_SIZE));
634 	if (s->flags & SLAB_RED_ZONE)
635 		print_section("Redzone ", p + s->object_size,
636 			s->inuse - s->object_size);
637 
638 	if (s->offset)
639 		off = s->offset + sizeof(void *);
640 	else
641 		off = s->inuse;
642 
643 	if (s->flags & SLAB_STORE_USER)
644 		off += 2 * sizeof(struct track);
645 
646 	if (off != s->size)
647 		/* Beginning of the filler is the free pointer */
648 		print_section("Padding ", p + off, s->size - off);
649 
650 	dump_stack();
651 }
652 
653 void object_err(struct kmem_cache *s, struct page *page,
654 			u8 *object, char *reason)
655 {
656 	slab_bug(s, "%s", reason);
657 	print_trailer(s, page, object);
658 }
659 
660 static void slab_err(struct kmem_cache *s, struct page *page,
661 			const char *fmt, ...)
662 {
663 	va_list args;
664 	char buf[100];
665 
666 	va_start(args, fmt);
667 	vsnprintf(buf, sizeof(buf), fmt, args);
668 	va_end(args);
669 	slab_bug(s, "%s", buf);
670 	print_page_info(page);
671 	dump_stack();
672 }
673 
674 static void init_object(struct kmem_cache *s, void *object, u8 val)
675 {
676 	u8 *p = object;
677 
678 	if (s->flags & __OBJECT_POISON) {
679 		memset(p, POISON_FREE, s->object_size - 1);
680 		p[s->object_size - 1] = POISON_END;
681 	}
682 
683 	if (s->flags & SLAB_RED_ZONE)
684 		memset(p + s->object_size, val, s->inuse - s->object_size);
685 }
686 
687 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
688 						void *from, void *to)
689 {
690 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
691 	memset(from, data, to - from);
692 }
693 
694 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
695 			u8 *object, char *what,
696 			u8 *start, unsigned int value, unsigned int bytes)
697 {
698 	u8 *fault;
699 	u8 *end;
700 
701 	metadata_access_enable();
702 	fault = memchr_inv(start, value, bytes);
703 	metadata_access_disable();
704 	if (!fault)
705 		return 1;
706 
707 	end = start + bytes;
708 	while (end > fault && end[-1] == value)
709 		end--;
710 
711 	slab_bug(s, "%s overwritten", what);
712 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
713 					fault, end - 1, fault[0], value);
714 	print_trailer(s, page, object);
715 
716 	restore_bytes(s, what, value, fault, end);
717 	return 0;
718 }
719 
720 /*
721  * Object layout:
722  *
723  * object address
724  * 	Bytes of the object to be managed.
725  * 	If the freepointer may overlay the object then the free
726  * 	pointer is the first word of the object.
727  *
728  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
729  * 	0xa5 (POISON_END)
730  *
731  * object + s->object_size
732  * 	Padding to reach word boundary. This is also used for Redzoning.
733  * 	Padding is extended by another word if Redzoning is enabled and
734  * 	object_size == inuse.
735  *
736  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
737  * 	0xcc (RED_ACTIVE) for objects in use.
738  *
739  * object + s->inuse
740  * 	Meta data starts here.
741  *
742  * 	A. Free pointer (if we cannot overwrite object on free)
743  * 	B. Tracking data for SLAB_STORE_USER
744  * 	C. Padding to reach required alignment boundary or at mininum
745  * 		one word if debugging is on to be able to detect writes
746  * 		before the word boundary.
747  *
748  *	Padding is done using 0x5a (POISON_INUSE)
749  *
750  * object + s->size
751  * 	Nothing is used beyond s->size.
752  *
753  * If slabcaches are merged then the object_size and inuse boundaries are mostly
754  * ignored. And therefore no slab options that rely on these boundaries
755  * may be used with merged slabcaches.
756  */
757 
758 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
759 {
760 	unsigned long off = s->inuse;	/* The end of info */
761 
762 	if (s->offset)
763 		/* Freepointer is placed after the object. */
764 		off += sizeof(void *);
765 
766 	if (s->flags & SLAB_STORE_USER)
767 		/* We also have user information there */
768 		off += 2 * sizeof(struct track);
769 
770 	if (s->size == off)
771 		return 1;
772 
773 	return check_bytes_and_report(s, page, p, "Object padding",
774 				p + off, POISON_INUSE, s->size - off);
775 }
776 
777 /* Check the pad bytes at the end of a slab page */
778 static int slab_pad_check(struct kmem_cache *s, struct page *page)
779 {
780 	u8 *start;
781 	u8 *fault;
782 	u8 *end;
783 	int length;
784 	int remainder;
785 
786 	if (!(s->flags & SLAB_POISON))
787 		return 1;
788 
789 	start = page_address(page);
790 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
791 	end = start + length;
792 	remainder = length % s->size;
793 	if (!remainder)
794 		return 1;
795 
796 	metadata_access_enable();
797 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
798 	metadata_access_disable();
799 	if (!fault)
800 		return 1;
801 	while (end > fault && end[-1] == POISON_INUSE)
802 		end--;
803 
804 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
805 	print_section("Padding ", end - remainder, remainder);
806 
807 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
808 	return 0;
809 }
810 
811 static int check_object(struct kmem_cache *s, struct page *page,
812 					void *object, u8 val)
813 {
814 	u8 *p = object;
815 	u8 *endobject = object + s->object_size;
816 
817 	if (s->flags & SLAB_RED_ZONE) {
818 		if (!check_bytes_and_report(s, page, object, "Redzone",
819 			endobject, val, s->inuse - s->object_size))
820 			return 0;
821 	} else {
822 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
823 			check_bytes_and_report(s, page, p, "Alignment padding",
824 				endobject, POISON_INUSE,
825 				s->inuse - s->object_size);
826 		}
827 	}
828 
829 	if (s->flags & SLAB_POISON) {
830 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
831 			(!check_bytes_and_report(s, page, p, "Poison", p,
832 					POISON_FREE, s->object_size - 1) ||
833 			 !check_bytes_and_report(s, page, p, "Poison",
834 				p + s->object_size - 1, POISON_END, 1)))
835 			return 0;
836 		/*
837 		 * check_pad_bytes cleans up on its own.
838 		 */
839 		check_pad_bytes(s, page, p);
840 	}
841 
842 	if (!s->offset && val == SLUB_RED_ACTIVE)
843 		/*
844 		 * Object and freepointer overlap. Cannot check
845 		 * freepointer while object is allocated.
846 		 */
847 		return 1;
848 
849 	/* Check free pointer validity */
850 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
851 		object_err(s, page, p, "Freepointer corrupt");
852 		/*
853 		 * No choice but to zap it and thus lose the remainder
854 		 * of the free objects in this slab. May cause
855 		 * another error because the object count is now wrong.
856 		 */
857 		set_freepointer(s, p, NULL);
858 		return 0;
859 	}
860 	return 1;
861 }
862 
863 static int check_slab(struct kmem_cache *s, struct page *page)
864 {
865 	int maxobj;
866 
867 	VM_BUG_ON(!irqs_disabled());
868 
869 	if (!PageSlab(page)) {
870 		slab_err(s, page, "Not a valid slab page");
871 		return 0;
872 	}
873 
874 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
875 	if (page->objects > maxobj) {
876 		slab_err(s, page, "objects %u > max %u",
877 			page->objects, maxobj);
878 		return 0;
879 	}
880 	if (page->inuse > page->objects) {
881 		slab_err(s, page, "inuse %u > max %u",
882 			page->inuse, page->objects);
883 		return 0;
884 	}
885 	/* Slab_pad_check fixes things up after itself */
886 	slab_pad_check(s, page);
887 	return 1;
888 }
889 
890 /*
891  * Determine if a certain object on a page is on the freelist. Must hold the
892  * slab lock to guarantee that the chains are in a consistent state.
893  */
894 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
895 {
896 	int nr = 0;
897 	void *fp;
898 	void *object = NULL;
899 	int max_objects;
900 
901 	fp = page->freelist;
902 	while (fp && nr <= page->objects) {
903 		if (fp == search)
904 			return 1;
905 		if (!check_valid_pointer(s, page, fp)) {
906 			if (object) {
907 				object_err(s, page, object,
908 					"Freechain corrupt");
909 				set_freepointer(s, object, NULL);
910 			} else {
911 				slab_err(s, page, "Freepointer corrupt");
912 				page->freelist = NULL;
913 				page->inuse = page->objects;
914 				slab_fix(s, "Freelist cleared");
915 				return 0;
916 			}
917 			break;
918 		}
919 		object = fp;
920 		fp = get_freepointer(s, object);
921 		nr++;
922 	}
923 
924 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
925 	if (max_objects > MAX_OBJS_PER_PAGE)
926 		max_objects = MAX_OBJS_PER_PAGE;
927 
928 	if (page->objects != max_objects) {
929 		slab_err(s, page, "Wrong number of objects. Found %d but "
930 			"should be %d", page->objects, max_objects);
931 		page->objects = max_objects;
932 		slab_fix(s, "Number of objects adjusted.");
933 	}
934 	if (page->inuse != page->objects - nr) {
935 		slab_err(s, page, "Wrong object count. Counter is %d but "
936 			"counted were %d", page->inuse, page->objects - nr);
937 		page->inuse = page->objects - nr;
938 		slab_fix(s, "Object count adjusted.");
939 	}
940 	return search == NULL;
941 }
942 
943 static void trace(struct kmem_cache *s, struct page *page, void *object,
944 								int alloc)
945 {
946 	if (s->flags & SLAB_TRACE) {
947 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
948 			s->name,
949 			alloc ? "alloc" : "free",
950 			object, page->inuse,
951 			page->freelist);
952 
953 		if (!alloc)
954 			print_section("Object ", (void *)object,
955 					s->object_size);
956 
957 		dump_stack();
958 	}
959 }
960 
961 /*
962  * Tracking of fully allocated slabs for debugging purposes.
963  */
964 static void add_full(struct kmem_cache *s,
965 	struct kmem_cache_node *n, struct page *page)
966 {
967 	if (!(s->flags & SLAB_STORE_USER))
968 		return;
969 
970 	lockdep_assert_held(&n->list_lock);
971 	list_add(&page->lru, &n->full);
972 }
973 
974 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
975 {
976 	if (!(s->flags & SLAB_STORE_USER))
977 		return;
978 
979 	lockdep_assert_held(&n->list_lock);
980 	list_del(&page->lru);
981 }
982 
983 /* Tracking of the number of slabs for debugging purposes */
984 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
985 {
986 	struct kmem_cache_node *n = get_node(s, node);
987 
988 	return atomic_long_read(&n->nr_slabs);
989 }
990 
991 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
992 {
993 	return atomic_long_read(&n->nr_slabs);
994 }
995 
996 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
997 {
998 	struct kmem_cache_node *n = get_node(s, node);
999 
1000 	/*
1001 	 * May be called early in order to allocate a slab for the
1002 	 * kmem_cache_node structure. Solve the chicken-egg
1003 	 * dilemma by deferring the increment of the count during
1004 	 * bootstrap (see early_kmem_cache_node_alloc).
1005 	 */
1006 	if (likely(n)) {
1007 		atomic_long_inc(&n->nr_slabs);
1008 		atomic_long_add(objects, &n->total_objects);
1009 	}
1010 }
1011 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1012 {
1013 	struct kmem_cache_node *n = get_node(s, node);
1014 
1015 	atomic_long_dec(&n->nr_slabs);
1016 	atomic_long_sub(objects, &n->total_objects);
1017 }
1018 
1019 /* Object debug checks for alloc/free paths */
1020 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1021 								void *object)
1022 {
1023 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1024 		return;
1025 
1026 	init_object(s, object, SLUB_RED_INACTIVE);
1027 	init_tracking(s, object);
1028 }
1029 
1030 static noinline int alloc_debug_processing(struct kmem_cache *s,
1031 					struct page *page,
1032 					void *object, unsigned long addr)
1033 {
1034 	if (!check_slab(s, page))
1035 		goto bad;
1036 
1037 	if (!check_valid_pointer(s, page, object)) {
1038 		object_err(s, page, object, "Freelist Pointer check fails");
1039 		goto bad;
1040 	}
1041 
1042 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1043 		goto bad;
1044 
1045 	/* Success perform special debug activities for allocs */
1046 	if (s->flags & SLAB_STORE_USER)
1047 		set_track(s, object, TRACK_ALLOC, addr);
1048 	trace(s, page, object, 1);
1049 	init_object(s, object, SLUB_RED_ACTIVE);
1050 	return 1;
1051 
1052 bad:
1053 	if (PageSlab(page)) {
1054 		/*
1055 		 * If this is a slab page then lets do the best we can
1056 		 * to avoid issues in the future. Marking all objects
1057 		 * as used avoids touching the remaining objects.
1058 		 */
1059 		slab_fix(s, "Marking all objects used");
1060 		page->inuse = page->objects;
1061 		page->freelist = NULL;
1062 	}
1063 	return 0;
1064 }
1065 
1066 static noinline struct kmem_cache_node *free_debug_processing(
1067 	struct kmem_cache *s, struct page *page, void *object,
1068 	unsigned long addr, unsigned long *flags)
1069 {
1070 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1071 
1072 	spin_lock_irqsave(&n->list_lock, *flags);
1073 	slab_lock(page);
1074 
1075 	if (!check_slab(s, page))
1076 		goto fail;
1077 
1078 	if (!check_valid_pointer(s, page, object)) {
1079 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1080 		goto fail;
1081 	}
1082 
1083 	if (on_freelist(s, page, object)) {
1084 		object_err(s, page, object, "Object already free");
1085 		goto fail;
1086 	}
1087 
1088 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1089 		goto out;
1090 
1091 	if (unlikely(s != page->slab_cache)) {
1092 		if (!PageSlab(page)) {
1093 			slab_err(s, page, "Attempt to free object(0x%p) "
1094 				"outside of slab", object);
1095 		} else if (!page->slab_cache) {
1096 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1097 			       object);
1098 			dump_stack();
1099 		} else
1100 			object_err(s, page, object,
1101 					"page slab pointer corrupt.");
1102 		goto fail;
1103 	}
1104 
1105 	if (s->flags & SLAB_STORE_USER)
1106 		set_track(s, object, TRACK_FREE, addr);
1107 	trace(s, page, object, 0);
1108 	init_object(s, object, SLUB_RED_INACTIVE);
1109 out:
1110 	slab_unlock(page);
1111 	/*
1112 	 * Keep node_lock to preserve integrity
1113 	 * until the object is actually freed
1114 	 */
1115 	return n;
1116 
1117 fail:
1118 	slab_unlock(page);
1119 	spin_unlock_irqrestore(&n->list_lock, *flags);
1120 	slab_fix(s, "Object at 0x%p not freed", object);
1121 	return NULL;
1122 }
1123 
1124 static int __init setup_slub_debug(char *str)
1125 {
1126 	slub_debug = DEBUG_DEFAULT_FLAGS;
1127 	if (*str++ != '=' || !*str)
1128 		/*
1129 		 * No options specified. Switch on full debugging.
1130 		 */
1131 		goto out;
1132 
1133 	if (*str == ',')
1134 		/*
1135 		 * No options but restriction on slabs. This means full
1136 		 * debugging for slabs matching a pattern.
1137 		 */
1138 		goto check_slabs;
1139 
1140 	slub_debug = 0;
1141 	if (*str == '-')
1142 		/*
1143 		 * Switch off all debugging measures.
1144 		 */
1145 		goto out;
1146 
1147 	/*
1148 	 * Determine which debug features should be switched on
1149 	 */
1150 	for (; *str && *str != ','; str++) {
1151 		switch (tolower(*str)) {
1152 		case 'f':
1153 			slub_debug |= SLAB_DEBUG_FREE;
1154 			break;
1155 		case 'z':
1156 			slub_debug |= SLAB_RED_ZONE;
1157 			break;
1158 		case 'p':
1159 			slub_debug |= SLAB_POISON;
1160 			break;
1161 		case 'u':
1162 			slub_debug |= SLAB_STORE_USER;
1163 			break;
1164 		case 't':
1165 			slub_debug |= SLAB_TRACE;
1166 			break;
1167 		case 'a':
1168 			slub_debug |= SLAB_FAILSLAB;
1169 			break;
1170 		case 'o':
1171 			/*
1172 			 * Avoid enabling debugging on caches if its minimum
1173 			 * order would increase as a result.
1174 			 */
1175 			disable_higher_order_debug = 1;
1176 			break;
1177 		default:
1178 			pr_err("slub_debug option '%c' unknown. skipped\n",
1179 			       *str);
1180 		}
1181 	}
1182 
1183 check_slabs:
1184 	if (*str == ',')
1185 		slub_debug_slabs = str + 1;
1186 out:
1187 	return 1;
1188 }
1189 
1190 __setup("slub_debug", setup_slub_debug);
1191 
1192 unsigned long kmem_cache_flags(unsigned long object_size,
1193 	unsigned long flags, const char *name,
1194 	void (*ctor)(void *))
1195 {
1196 	/*
1197 	 * Enable debugging if selected on the kernel commandline.
1198 	 */
1199 	if (slub_debug && (!slub_debug_slabs || (name &&
1200 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1201 		flags |= slub_debug;
1202 
1203 	return flags;
1204 }
1205 #else
1206 static inline void setup_object_debug(struct kmem_cache *s,
1207 			struct page *page, void *object) {}
1208 
1209 static inline int alloc_debug_processing(struct kmem_cache *s,
1210 	struct page *page, void *object, unsigned long addr) { return 0; }
1211 
1212 static inline struct kmem_cache_node *free_debug_processing(
1213 	struct kmem_cache *s, struct page *page, void *object,
1214 	unsigned long addr, unsigned long *flags) { return NULL; }
1215 
1216 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1217 			{ return 1; }
1218 static inline int check_object(struct kmem_cache *s, struct page *page,
1219 			void *object, u8 val) { return 1; }
1220 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1221 					struct page *page) {}
1222 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1223 					struct page *page) {}
1224 unsigned long kmem_cache_flags(unsigned long object_size,
1225 	unsigned long flags, const char *name,
1226 	void (*ctor)(void *))
1227 {
1228 	return flags;
1229 }
1230 #define slub_debug 0
1231 
1232 #define disable_higher_order_debug 0
1233 
1234 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1235 							{ return 0; }
1236 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1237 							{ return 0; }
1238 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1239 							int objects) {}
1240 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1241 							int objects) {}
1242 
1243 #endif /* CONFIG_SLUB_DEBUG */
1244 
1245 /*
1246  * Hooks for other subsystems that check memory allocations. In a typical
1247  * production configuration these hooks all should produce no code at all.
1248  */
1249 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1250 {
1251 	kmemleak_alloc(ptr, size, 1, flags);
1252 	kasan_kmalloc_large(ptr, size);
1253 }
1254 
1255 static inline void kfree_hook(const void *x)
1256 {
1257 	kmemleak_free(x);
1258 	kasan_kfree_large(x);
1259 }
1260 
1261 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1262 						     gfp_t flags)
1263 {
1264 	flags &= gfp_allowed_mask;
1265 	lockdep_trace_alloc(flags);
1266 	might_sleep_if(flags & __GFP_WAIT);
1267 
1268 	if (should_failslab(s->object_size, flags, s->flags))
1269 		return NULL;
1270 
1271 	return memcg_kmem_get_cache(s, flags);
1272 }
1273 
1274 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1275 					gfp_t flags, void *object)
1276 {
1277 	flags &= gfp_allowed_mask;
1278 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1279 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1280 	memcg_kmem_put_cache(s);
1281 	kasan_slab_alloc(s, object);
1282 }
1283 
1284 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1285 {
1286 	kmemleak_free_recursive(x, s->flags);
1287 
1288 	/*
1289 	 * Trouble is that we may no longer disable interrupts in the fast path
1290 	 * So in order to make the debug calls that expect irqs to be
1291 	 * disabled we need to disable interrupts temporarily.
1292 	 */
1293 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1294 	{
1295 		unsigned long flags;
1296 
1297 		local_irq_save(flags);
1298 		kmemcheck_slab_free(s, x, s->object_size);
1299 		debug_check_no_locks_freed(x, s->object_size);
1300 		local_irq_restore(flags);
1301 	}
1302 #endif
1303 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1304 		debug_check_no_obj_freed(x, s->object_size);
1305 
1306 	kasan_slab_free(s, x);
1307 }
1308 
1309 /*
1310  * Slab allocation and freeing
1311  */
1312 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1313 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1314 {
1315 	struct page *page;
1316 	int order = oo_order(oo);
1317 
1318 	flags |= __GFP_NOTRACK;
1319 
1320 	if (memcg_charge_slab(s, flags, order))
1321 		return NULL;
1322 
1323 	if (node == NUMA_NO_NODE)
1324 		page = alloc_pages(flags, order);
1325 	else
1326 		page = alloc_pages_exact_node(node, flags, order);
1327 
1328 	if (!page)
1329 		memcg_uncharge_slab(s, order);
1330 
1331 	return page;
1332 }
1333 
1334 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1335 {
1336 	struct page *page;
1337 	struct kmem_cache_order_objects oo = s->oo;
1338 	gfp_t alloc_gfp;
1339 
1340 	flags &= gfp_allowed_mask;
1341 
1342 	if (flags & __GFP_WAIT)
1343 		local_irq_enable();
1344 
1345 	flags |= s->allocflags;
1346 
1347 	/*
1348 	 * Let the initial higher-order allocation fail under memory pressure
1349 	 * so we fall-back to the minimum order allocation.
1350 	 */
1351 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1352 
1353 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1354 	if (unlikely(!page)) {
1355 		oo = s->min;
1356 		alloc_gfp = flags;
1357 		/*
1358 		 * Allocation may have failed due to fragmentation.
1359 		 * Try a lower order alloc if possible
1360 		 */
1361 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1362 
1363 		if (page)
1364 			stat(s, ORDER_FALLBACK);
1365 	}
1366 
1367 	if (kmemcheck_enabled && page
1368 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1369 		int pages = 1 << oo_order(oo);
1370 
1371 		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1372 
1373 		/*
1374 		 * Objects from caches that have a constructor don't get
1375 		 * cleared when they're allocated, so we need to do it here.
1376 		 */
1377 		if (s->ctor)
1378 			kmemcheck_mark_uninitialized_pages(page, pages);
1379 		else
1380 			kmemcheck_mark_unallocated_pages(page, pages);
1381 	}
1382 
1383 	if (flags & __GFP_WAIT)
1384 		local_irq_disable();
1385 	if (!page)
1386 		return NULL;
1387 
1388 	page->objects = oo_objects(oo);
1389 	mod_zone_page_state(page_zone(page),
1390 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1391 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1392 		1 << oo_order(oo));
1393 
1394 	return page;
1395 }
1396 
1397 static void setup_object(struct kmem_cache *s, struct page *page,
1398 				void *object)
1399 {
1400 	setup_object_debug(s, page, object);
1401 	if (unlikely(s->ctor)) {
1402 		kasan_unpoison_object_data(s, object);
1403 		s->ctor(object);
1404 		kasan_poison_object_data(s, object);
1405 	}
1406 }
1407 
1408 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1409 {
1410 	struct page *page;
1411 	void *start;
1412 	void *p;
1413 	int order;
1414 	int idx;
1415 
1416 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1417 		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1418 		BUG();
1419 	}
1420 
1421 	page = allocate_slab(s,
1422 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1423 	if (!page)
1424 		goto out;
1425 
1426 	order = compound_order(page);
1427 	inc_slabs_node(s, page_to_nid(page), page->objects);
1428 	page->slab_cache = s;
1429 	__SetPageSlab(page);
1430 	if (page_is_pfmemalloc(page))
1431 		SetPageSlabPfmemalloc(page);
1432 
1433 	start = page_address(page);
1434 
1435 	if (unlikely(s->flags & SLAB_POISON))
1436 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1437 
1438 	kasan_poison_slab(page);
1439 
1440 	for_each_object_idx(p, idx, s, start, page->objects) {
1441 		setup_object(s, page, p);
1442 		if (likely(idx < page->objects))
1443 			set_freepointer(s, p, p + s->size);
1444 		else
1445 			set_freepointer(s, p, NULL);
1446 	}
1447 
1448 	page->freelist = start;
1449 	page->inuse = page->objects;
1450 	page->frozen = 1;
1451 out:
1452 	return page;
1453 }
1454 
1455 static void __free_slab(struct kmem_cache *s, struct page *page)
1456 {
1457 	int order = compound_order(page);
1458 	int pages = 1 << order;
1459 
1460 	if (kmem_cache_debug(s)) {
1461 		void *p;
1462 
1463 		slab_pad_check(s, page);
1464 		for_each_object(p, s, page_address(page),
1465 						page->objects)
1466 			check_object(s, page, p, SLUB_RED_INACTIVE);
1467 	}
1468 
1469 	kmemcheck_free_shadow(page, compound_order(page));
1470 
1471 	mod_zone_page_state(page_zone(page),
1472 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1473 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1474 		-pages);
1475 
1476 	__ClearPageSlabPfmemalloc(page);
1477 	__ClearPageSlab(page);
1478 
1479 	page_mapcount_reset(page);
1480 	if (current->reclaim_state)
1481 		current->reclaim_state->reclaimed_slab += pages;
1482 	__free_pages(page, order);
1483 	memcg_uncharge_slab(s, order);
1484 }
1485 
1486 #define need_reserve_slab_rcu						\
1487 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1488 
1489 static void rcu_free_slab(struct rcu_head *h)
1490 {
1491 	struct page *page;
1492 
1493 	if (need_reserve_slab_rcu)
1494 		page = virt_to_head_page(h);
1495 	else
1496 		page = container_of((struct list_head *)h, struct page, lru);
1497 
1498 	__free_slab(page->slab_cache, page);
1499 }
1500 
1501 static void free_slab(struct kmem_cache *s, struct page *page)
1502 {
1503 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1504 		struct rcu_head *head;
1505 
1506 		if (need_reserve_slab_rcu) {
1507 			int order = compound_order(page);
1508 			int offset = (PAGE_SIZE << order) - s->reserved;
1509 
1510 			VM_BUG_ON(s->reserved != sizeof(*head));
1511 			head = page_address(page) + offset;
1512 		} else {
1513 			/*
1514 			 * RCU free overloads the RCU head over the LRU
1515 			 */
1516 			head = (void *)&page->lru;
1517 		}
1518 
1519 		call_rcu(head, rcu_free_slab);
1520 	} else
1521 		__free_slab(s, page);
1522 }
1523 
1524 static void discard_slab(struct kmem_cache *s, struct page *page)
1525 {
1526 	dec_slabs_node(s, page_to_nid(page), page->objects);
1527 	free_slab(s, page);
1528 }
1529 
1530 /*
1531  * Management of partially allocated slabs.
1532  */
1533 static inline void
1534 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1535 {
1536 	n->nr_partial++;
1537 	if (tail == DEACTIVATE_TO_TAIL)
1538 		list_add_tail(&page->lru, &n->partial);
1539 	else
1540 		list_add(&page->lru, &n->partial);
1541 }
1542 
1543 static inline void add_partial(struct kmem_cache_node *n,
1544 				struct page *page, int tail)
1545 {
1546 	lockdep_assert_held(&n->list_lock);
1547 	__add_partial(n, page, tail);
1548 }
1549 
1550 static inline void
1551 __remove_partial(struct kmem_cache_node *n, struct page *page)
1552 {
1553 	list_del(&page->lru);
1554 	n->nr_partial--;
1555 }
1556 
1557 static inline void remove_partial(struct kmem_cache_node *n,
1558 					struct page *page)
1559 {
1560 	lockdep_assert_held(&n->list_lock);
1561 	__remove_partial(n, page);
1562 }
1563 
1564 /*
1565  * Remove slab from the partial list, freeze it and
1566  * return the pointer to the freelist.
1567  *
1568  * Returns a list of objects or NULL if it fails.
1569  */
1570 static inline void *acquire_slab(struct kmem_cache *s,
1571 		struct kmem_cache_node *n, struct page *page,
1572 		int mode, int *objects)
1573 {
1574 	void *freelist;
1575 	unsigned long counters;
1576 	struct page new;
1577 
1578 	lockdep_assert_held(&n->list_lock);
1579 
1580 	/*
1581 	 * Zap the freelist and set the frozen bit.
1582 	 * The old freelist is the list of objects for the
1583 	 * per cpu allocation list.
1584 	 */
1585 	freelist = page->freelist;
1586 	counters = page->counters;
1587 	new.counters = counters;
1588 	*objects = new.objects - new.inuse;
1589 	if (mode) {
1590 		new.inuse = page->objects;
1591 		new.freelist = NULL;
1592 	} else {
1593 		new.freelist = freelist;
1594 	}
1595 
1596 	VM_BUG_ON(new.frozen);
1597 	new.frozen = 1;
1598 
1599 	if (!__cmpxchg_double_slab(s, page,
1600 			freelist, counters,
1601 			new.freelist, new.counters,
1602 			"acquire_slab"))
1603 		return NULL;
1604 
1605 	remove_partial(n, page);
1606 	WARN_ON(!freelist);
1607 	return freelist;
1608 }
1609 
1610 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1611 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1612 
1613 /*
1614  * Try to allocate a partial slab from a specific node.
1615  */
1616 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1617 				struct kmem_cache_cpu *c, gfp_t flags)
1618 {
1619 	struct page *page, *page2;
1620 	void *object = NULL;
1621 	int available = 0;
1622 	int objects;
1623 
1624 	/*
1625 	 * Racy check. If we mistakenly see no partial slabs then we
1626 	 * just allocate an empty slab. If we mistakenly try to get a
1627 	 * partial slab and there is none available then get_partials()
1628 	 * will return NULL.
1629 	 */
1630 	if (!n || !n->nr_partial)
1631 		return NULL;
1632 
1633 	spin_lock(&n->list_lock);
1634 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1635 		void *t;
1636 
1637 		if (!pfmemalloc_match(page, flags))
1638 			continue;
1639 
1640 		t = acquire_slab(s, n, page, object == NULL, &objects);
1641 		if (!t)
1642 			break;
1643 
1644 		available += objects;
1645 		if (!object) {
1646 			c->page = page;
1647 			stat(s, ALLOC_FROM_PARTIAL);
1648 			object = t;
1649 		} else {
1650 			put_cpu_partial(s, page, 0);
1651 			stat(s, CPU_PARTIAL_NODE);
1652 		}
1653 		if (!kmem_cache_has_cpu_partial(s)
1654 			|| available > s->cpu_partial / 2)
1655 			break;
1656 
1657 	}
1658 	spin_unlock(&n->list_lock);
1659 	return object;
1660 }
1661 
1662 /*
1663  * Get a page from somewhere. Search in increasing NUMA distances.
1664  */
1665 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1666 		struct kmem_cache_cpu *c)
1667 {
1668 #ifdef CONFIG_NUMA
1669 	struct zonelist *zonelist;
1670 	struct zoneref *z;
1671 	struct zone *zone;
1672 	enum zone_type high_zoneidx = gfp_zone(flags);
1673 	void *object;
1674 	unsigned int cpuset_mems_cookie;
1675 
1676 	/*
1677 	 * The defrag ratio allows a configuration of the tradeoffs between
1678 	 * inter node defragmentation and node local allocations. A lower
1679 	 * defrag_ratio increases the tendency to do local allocations
1680 	 * instead of attempting to obtain partial slabs from other nodes.
1681 	 *
1682 	 * If the defrag_ratio is set to 0 then kmalloc() always
1683 	 * returns node local objects. If the ratio is higher then kmalloc()
1684 	 * may return off node objects because partial slabs are obtained
1685 	 * from other nodes and filled up.
1686 	 *
1687 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1688 	 * defrag_ratio = 1000) then every (well almost) allocation will
1689 	 * first attempt to defrag slab caches on other nodes. This means
1690 	 * scanning over all nodes to look for partial slabs which may be
1691 	 * expensive if we do it every time we are trying to find a slab
1692 	 * with available objects.
1693 	 */
1694 	if (!s->remote_node_defrag_ratio ||
1695 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1696 		return NULL;
1697 
1698 	do {
1699 		cpuset_mems_cookie = read_mems_allowed_begin();
1700 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1701 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1702 			struct kmem_cache_node *n;
1703 
1704 			n = get_node(s, zone_to_nid(zone));
1705 
1706 			if (n && cpuset_zone_allowed(zone, flags) &&
1707 					n->nr_partial > s->min_partial) {
1708 				object = get_partial_node(s, n, c, flags);
1709 				if (object) {
1710 					/*
1711 					 * Don't check read_mems_allowed_retry()
1712 					 * here - if mems_allowed was updated in
1713 					 * parallel, that was a harmless race
1714 					 * between allocation and the cpuset
1715 					 * update
1716 					 */
1717 					return object;
1718 				}
1719 			}
1720 		}
1721 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1722 #endif
1723 	return NULL;
1724 }
1725 
1726 /*
1727  * Get a partial page, lock it and return it.
1728  */
1729 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1730 		struct kmem_cache_cpu *c)
1731 {
1732 	void *object;
1733 	int searchnode = node;
1734 
1735 	if (node == NUMA_NO_NODE)
1736 		searchnode = numa_mem_id();
1737 	else if (!node_present_pages(node))
1738 		searchnode = node_to_mem_node(node);
1739 
1740 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1741 	if (object || node != NUMA_NO_NODE)
1742 		return object;
1743 
1744 	return get_any_partial(s, flags, c);
1745 }
1746 
1747 #ifdef CONFIG_PREEMPT
1748 /*
1749  * Calculate the next globally unique transaction for disambiguiation
1750  * during cmpxchg. The transactions start with the cpu number and are then
1751  * incremented by CONFIG_NR_CPUS.
1752  */
1753 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1754 #else
1755 /*
1756  * No preemption supported therefore also no need to check for
1757  * different cpus.
1758  */
1759 #define TID_STEP 1
1760 #endif
1761 
1762 static inline unsigned long next_tid(unsigned long tid)
1763 {
1764 	return tid + TID_STEP;
1765 }
1766 
1767 static inline unsigned int tid_to_cpu(unsigned long tid)
1768 {
1769 	return tid % TID_STEP;
1770 }
1771 
1772 static inline unsigned long tid_to_event(unsigned long tid)
1773 {
1774 	return tid / TID_STEP;
1775 }
1776 
1777 static inline unsigned int init_tid(int cpu)
1778 {
1779 	return cpu;
1780 }
1781 
1782 static inline void note_cmpxchg_failure(const char *n,
1783 		const struct kmem_cache *s, unsigned long tid)
1784 {
1785 #ifdef SLUB_DEBUG_CMPXCHG
1786 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1787 
1788 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1789 
1790 #ifdef CONFIG_PREEMPT
1791 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1792 		pr_warn("due to cpu change %d -> %d\n",
1793 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1794 	else
1795 #endif
1796 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1797 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1798 			tid_to_event(tid), tid_to_event(actual_tid));
1799 	else
1800 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1801 			actual_tid, tid, next_tid(tid));
1802 #endif
1803 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1804 }
1805 
1806 static void init_kmem_cache_cpus(struct kmem_cache *s)
1807 {
1808 	int cpu;
1809 
1810 	for_each_possible_cpu(cpu)
1811 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1812 }
1813 
1814 /*
1815  * Remove the cpu slab
1816  */
1817 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1818 				void *freelist)
1819 {
1820 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1821 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1822 	int lock = 0;
1823 	enum slab_modes l = M_NONE, m = M_NONE;
1824 	void *nextfree;
1825 	int tail = DEACTIVATE_TO_HEAD;
1826 	struct page new;
1827 	struct page old;
1828 
1829 	if (page->freelist) {
1830 		stat(s, DEACTIVATE_REMOTE_FREES);
1831 		tail = DEACTIVATE_TO_TAIL;
1832 	}
1833 
1834 	/*
1835 	 * Stage one: Free all available per cpu objects back
1836 	 * to the page freelist while it is still frozen. Leave the
1837 	 * last one.
1838 	 *
1839 	 * There is no need to take the list->lock because the page
1840 	 * is still frozen.
1841 	 */
1842 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1843 		void *prior;
1844 		unsigned long counters;
1845 
1846 		do {
1847 			prior = page->freelist;
1848 			counters = page->counters;
1849 			set_freepointer(s, freelist, prior);
1850 			new.counters = counters;
1851 			new.inuse--;
1852 			VM_BUG_ON(!new.frozen);
1853 
1854 		} while (!__cmpxchg_double_slab(s, page,
1855 			prior, counters,
1856 			freelist, new.counters,
1857 			"drain percpu freelist"));
1858 
1859 		freelist = nextfree;
1860 	}
1861 
1862 	/*
1863 	 * Stage two: Ensure that the page is unfrozen while the
1864 	 * list presence reflects the actual number of objects
1865 	 * during unfreeze.
1866 	 *
1867 	 * We setup the list membership and then perform a cmpxchg
1868 	 * with the count. If there is a mismatch then the page
1869 	 * is not unfrozen but the page is on the wrong list.
1870 	 *
1871 	 * Then we restart the process which may have to remove
1872 	 * the page from the list that we just put it on again
1873 	 * because the number of objects in the slab may have
1874 	 * changed.
1875 	 */
1876 redo:
1877 
1878 	old.freelist = page->freelist;
1879 	old.counters = page->counters;
1880 	VM_BUG_ON(!old.frozen);
1881 
1882 	/* Determine target state of the slab */
1883 	new.counters = old.counters;
1884 	if (freelist) {
1885 		new.inuse--;
1886 		set_freepointer(s, freelist, old.freelist);
1887 		new.freelist = freelist;
1888 	} else
1889 		new.freelist = old.freelist;
1890 
1891 	new.frozen = 0;
1892 
1893 	if (!new.inuse && n->nr_partial >= s->min_partial)
1894 		m = M_FREE;
1895 	else if (new.freelist) {
1896 		m = M_PARTIAL;
1897 		if (!lock) {
1898 			lock = 1;
1899 			/*
1900 			 * Taking the spinlock removes the possiblity
1901 			 * that acquire_slab() will see a slab page that
1902 			 * is frozen
1903 			 */
1904 			spin_lock(&n->list_lock);
1905 		}
1906 	} else {
1907 		m = M_FULL;
1908 		if (kmem_cache_debug(s) && !lock) {
1909 			lock = 1;
1910 			/*
1911 			 * This also ensures that the scanning of full
1912 			 * slabs from diagnostic functions will not see
1913 			 * any frozen slabs.
1914 			 */
1915 			spin_lock(&n->list_lock);
1916 		}
1917 	}
1918 
1919 	if (l != m) {
1920 
1921 		if (l == M_PARTIAL)
1922 
1923 			remove_partial(n, page);
1924 
1925 		else if (l == M_FULL)
1926 
1927 			remove_full(s, n, page);
1928 
1929 		if (m == M_PARTIAL) {
1930 
1931 			add_partial(n, page, tail);
1932 			stat(s, tail);
1933 
1934 		} else if (m == M_FULL) {
1935 
1936 			stat(s, DEACTIVATE_FULL);
1937 			add_full(s, n, page);
1938 
1939 		}
1940 	}
1941 
1942 	l = m;
1943 	if (!__cmpxchg_double_slab(s, page,
1944 				old.freelist, old.counters,
1945 				new.freelist, new.counters,
1946 				"unfreezing slab"))
1947 		goto redo;
1948 
1949 	if (lock)
1950 		spin_unlock(&n->list_lock);
1951 
1952 	if (m == M_FREE) {
1953 		stat(s, DEACTIVATE_EMPTY);
1954 		discard_slab(s, page);
1955 		stat(s, FREE_SLAB);
1956 	}
1957 }
1958 
1959 /*
1960  * Unfreeze all the cpu partial slabs.
1961  *
1962  * This function must be called with interrupts disabled
1963  * for the cpu using c (or some other guarantee must be there
1964  * to guarantee no concurrent accesses).
1965  */
1966 static void unfreeze_partials(struct kmem_cache *s,
1967 		struct kmem_cache_cpu *c)
1968 {
1969 #ifdef CONFIG_SLUB_CPU_PARTIAL
1970 	struct kmem_cache_node *n = NULL, *n2 = NULL;
1971 	struct page *page, *discard_page = NULL;
1972 
1973 	while ((page = c->partial)) {
1974 		struct page new;
1975 		struct page old;
1976 
1977 		c->partial = page->next;
1978 
1979 		n2 = get_node(s, page_to_nid(page));
1980 		if (n != n2) {
1981 			if (n)
1982 				spin_unlock(&n->list_lock);
1983 
1984 			n = n2;
1985 			spin_lock(&n->list_lock);
1986 		}
1987 
1988 		do {
1989 
1990 			old.freelist = page->freelist;
1991 			old.counters = page->counters;
1992 			VM_BUG_ON(!old.frozen);
1993 
1994 			new.counters = old.counters;
1995 			new.freelist = old.freelist;
1996 
1997 			new.frozen = 0;
1998 
1999 		} while (!__cmpxchg_double_slab(s, page,
2000 				old.freelist, old.counters,
2001 				new.freelist, new.counters,
2002 				"unfreezing slab"));
2003 
2004 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2005 			page->next = discard_page;
2006 			discard_page = page;
2007 		} else {
2008 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2009 			stat(s, FREE_ADD_PARTIAL);
2010 		}
2011 	}
2012 
2013 	if (n)
2014 		spin_unlock(&n->list_lock);
2015 
2016 	while (discard_page) {
2017 		page = discard_page;
2018 		discard_page = discard_page->next;
2019 
2020 		stat(s, DEACTIVATE_EMPTY);
2021 		discard_slab(s, page);
2022 		stat(s, FREE_SLAB);
2023 	}
2024 #endif
2025 }
2026 
2027 /*
2028  * Put a page that was just frozen (in __slab_free) into a partial page
2029  * slot if available. This is done without interrupts disabled and without
2030  * preemption disabled. The cmpxchg is racy and may put the partial page
2031  * onto a random cpus partial slot.
2032  *
2033  * If we did not find a slot then simply move all the partials to the
2034  * per node partial list.
2035  */
2036 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2037 {
2038 #ifdef CONFIG_SLUB_CPU_PARTIAL
2039 	struct page *oldpage;
2040 	int pages;
2041 	int pobjects;
2042 
2043 	preempt_disable();
2044 	do {
2045 		pages = 0;
2046 		pobjects = 0;
2047 		oldpage = this_cpu_read(s->cpu_slab->partial);
2048 
2049 		if (oldpage) {
2050 			pobjects = oldpage->pobjects;
2051 			pages = oldpage->pages;
2052 			if (drain && pobjects > s->cpu_partial) {
2053 				unsigned long flags;
2054 				/*
2055 				 * partial array is full. Move the existing
2056 				 * set to the per node partial list.
2057 				 */
2058 				local_irq_save(flags);
2059 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2060 				local_irq_restore(flags);
2061 				oldpage = NULL;
2062 				pobjects = 0;
2063 				pages = 0;
2064 				stat(s, CPU_PARTIAL_DRAIN);
2065 			}
2066 		}
2067 
2068 		pages++;
2069 		pobjects += page->objects - page->inuse;
2070 
2071 		page->pages = pages;
2072 		page->pobjects = pobjects;
2073 		page->next = oldpage;
2074 
2075 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2076 								!= oldpage);
2077 	if (unlikely(!s->cpu_partial)) {
2078 		unsigned long flags;
2079 
2080 		local_irq_save(flags);
2081 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2082 		local_irq_restore(flags);
2083 	}
2084 	preempt_enable();
2085 #endif
2086 }
2087 
2088 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2089 {
2090 	stat(s, CPUSLAB_FLUSH);
2091 	deactivate_slab(s, c->page, c->freelist);
2092 
2093 	c->tid = next_tid(c->tid);
2094 	c->page = NULL;
2095 	c->freelist = NULL;
2096 }
2097 
2098 /*
2099  * Flush cpu slab.
2100  *
2101  * Called from IPI handler with interrupts disabled.
2102  */
2103 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2104 {
2105 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2106 
2107 	if (likely(c)) {
2108 		if (c->page)
2109 			flush_slab(s, c);
2110 
2111 		unfreeze_partials(s, c);
2112 	}
2113 }
2114 
2115 static void flush_cpu_slab(void *d)
2116 {
2117 	struct kmem_cache *s = d;
2118 
2119 	__flush_cpu_slab(s, smp_processor_id());
2120 }
2121 
2122 static bool has_cpu_slab(int cpu, void *info)
2123 {
2124 	struct kmem_cache *s = info;
2125 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2126 
2127 	return c->page || c->partial;
2128 }
2129 
2130 static void flush_all(struct kmem_cache *s)
2131 {
2132 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2133 }
2134 
2135 /*
2136  * Check if the objects in a per cpu structure fit numa
2137  * locality expectations.
2138  */
2139 static inline int node_match(struct page *page, int node)
2140 {
2141 #ifdef CONFIG_NUMA
2142 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2143 		return 0;
2144 #endif
2145 	return 1;
2146 }
2147 
2148 #ifdef CONFIG_SLUB_DEBUG
2149 static int count_free(struct page *page)
2150 {
2151 	return page->objects - page->inuse;
2152 }
2153 
2154 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2155 {
2156 	return atomic_long_read(&n->total_objects);
2157 }
2158 #endif /* CONFIG_SLUB_DEBUG */
2159 
2160 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2161 static unsigned long count_partial(struct kmem_cache_node *n,
2162 					int (*get_count)(struct page *))
2163 {
2164 	unsigned long flags;
2165 	unsigned long x = 0;
2166 	struct page *page;
2167 
2168 	spin_lock_irqsave(&n->list_lock, flags);
2169 	list_for_each_entry(page, &n->partial, lru)
2170 		x += get_count(page);
2171 	spin_unlock_irqrestore(&n->list_lock, flags);
2172 	return x;
2173 }
2174 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2175 
2176 static noinline void
2177 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2178 {
2179 #ifdef CONFIG_SLUB_DEBUG
2180 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2181 				      DEFAULT_RATELIMIT_BURST);
2182 	int node;
2183 	struct kmem_cache_node *n;
2184 
2185 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2186 		return;
2187 
2188 	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2189 		nid, gfpflags);
2190 	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2191 		s->name, s->object_size, s->size, oo_order(s->oo),
2192 		oo_order(s->min));
2193 
2194 	if (oo_order(s->min) > get_order(s->object_size))
2195 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2196 			s->name);
2197 
2198 	for_each_kmem_cache_node(s, node, n) {
2199 		unsigned long nr_slabs;
2200 		unsigned long nr_objs;
2201 		unsigned long nr_free;
2202 
2203 		nr_free  = count_partial(n, count_free);
2204 		nr_slabs = node_nr_slabs(n);
2205 		nr_objs  = node_nr_objs(n);
2206 
2207 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2208 			node, nr_slabs, nr_objs, nr_free);
2209 	}
2210 #endif
2211 }
2212 
2213 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2214 			int node, struct kmem_cache_cpu **pc)
2215 {
2216 	void *freelist;
2217 	struct kmem_cache_cpu *c = *pc;
2218 	struct page *page;
2219 
2220 	freelist = get_partial(s, flags, node, c);
2221 
2222 	if (freelist)
2223 		return freelist;
2224 
2225 	page = new_slab(s, flags, node);
2226 	if (page) {
2227 		c = raw_cpu_ptr(s->cpu_slab);
2228 		if (c->page)
2229 			flush_slab(s, c);
2230 
2231 		/*
2232 		 * No other reference to the page yet so we can
2233 		 * muck around with it freely without cmpxchg
2234 		 */
2235 		freelist = page->freelist;
2236 		page->freelist = NULL;
2237 
2238 		stat(s, ALLOC_SLAB);
2239 		c->page = page;
2240 		*pc = c;
2241 	} else
2242 		freelist = NULL;
2243 
2244 	return freelist;
2245 }
2246 
2247 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2248 {
2249 	if (unlikely(PageSlabPfmemalloc(page)))
2250 		return gfp_pfmemalloc_allowed(gfpflags);
2251 
2252 	return true;
2253 }
2254 
2255 /*
2256  * Check the page->freelist of a page and either transfer the freelist to the
2257  * per cpu freelist or deactivate the page.
2258  *
2259  * The page is still frozen if the return value is not NULL.
2260  *
2261  * If this function returns NULL then the page has been unfrozen.
2262  *
2263  * This function must be called with interrupt disabled.
2264  */
2265 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2266 {
2267 	struct page new;
2268 	unsigned long counters;
2269 	void *freelist;
2270 
2271 	do {
2272 		freelist = page->freelist;
2273 		counters = page->counters;
2274 
2275 		new.counters = counters;
2276 		VM_BUG_ON(!new.frozen);
2277 
2278 		new.inuse = page->objects;
2279 		new.frozen = freelist != NULL;
2280 
2281 	} while (!__cmpxchg_double_slab(s, page,
2282 		freelist, counters,
2283 		NULL, new.counters,
2284 		"get_freelist"));
2285 
2286 	return freelist;
2287 }
2288 
2289 /*
2290  * Slow path. The lockless freelist is empty or we need to perform
2291  * debugging duties.
2292  *
2293  * Processing is still very fast if new objects have been freed to the
2294  * regular freelist. In that case we simply take over the regular freelist
2295  * as the lockless freelist and zap the regular freelist.
2296  *
2297  * If that is not working then we fall back to the partial lists. We take the
2298  * first element of the freelist as the object to allocate now and move the
2299  * rest of the freelist to the lockless freelist.
2300  *
2301  * And if we were unable to get a new slab from the partial slab lists then
2302  * we need to allocate a new slab. This is the slowest path since it involves
2303  * a call to the page allocator and the setup of a new slab.
2304  */
2305 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2306 			  unsigned long addr, struct kmem_cache_cpu *c)
2307 {
2308 	void *freelist;
2309 	struct page *page;
2310 	unsigned long flags;
2311 
2312 	local_irq_save(flags);
2313 #ifdef CONFIG_PREEMPT
2314 	/*
2315 	 * We may have been preempted and rescheduled on a different
2316 	 * cpu before disabling interrupts. Need to reload cpu area
2317 	 * pointer.
2318 	 */
2319 	c = this_cpu_ptr(s->cpu_slab);
2320 #endif
2321 
2322 	page = c->page;
2323 	if (!page)
2324 		goto new_slab;
2325 redo:
2326 
2327 	if (unlikely(!node_match(page, node))) {
2328 		int searchnode = node;
2329 
2330 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2331 			searchnode = node_to_mem_node(node);
2332 
2333 		if (unlikely(!node_match(page, searchnode))) {
2334 			stat(s, ALLOC_NODE_MISMATCH);
2335 			deactivate_slab(s, page, c->freelist);
2336 			c->page = NULL;
2337 			c->freelist = NULL;
2338 			goto new_slab;
2339 		}
2340 	}
2341 
2342 	/*
2343 	 * By rights, we should be searching for a slab page that was
2344 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2345 	 * information when the page leaves the per-cpu allocator
2346 	 */
2347 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2348 		deactivate_slab(s, page, c->freelist);
2349 		c->page = NULL;
2350 		c->freelist = NULL;
2351 		goto new_slab;
2352 	}
2353 
2354 	/* must check again c->freelist in case of cpu migration or IRQ */
2355 	freelist = c->freelist;
2356 	if (freelist)
2357 		goto load_freelist;
2358 
2359 	freelist = get_freelist(s, page);
2360 
2361 	if (!freelist) {
2362 		c->page = NULL;
2363 		stat(s, DEACTIVATE_BYPASS);
2364 		goto new_slab;
2365 	}
2366 
2367 	stat(s, ALLOC_REFILL);
2368 
2369 load_freelist:
2370 	/*
2371 	 * freelist is pointing to the list of objects to be used.
2372 	 * page is pointing to the page from which the objects are obtained.
2373 	 * That page must be frozen for per cpu allocations to work.
2374 	 */
2375 	VM_BUG_ON(!c->page->frozen);
2376 	c->freelist = get_freepointer(s, freelist);
2377 	c->tid = next_tid(c->tid);
2378 	local_irq_restore(flags);
2379 	return freelist;
2380 
2381 new_slab:
2382 
2383 	if (c->partial) {
2384 		page = c->page = c->partial;
2385 		c->partial = page->next;
2386 		stat(s, CPU_PARTIAL_ALLOC);
2387 		c->freelist = NULL;
2388 		goto redo;
2389 	}
2390 
2391 	freelist = new_slab_objects(s, gfpflags, node, &c);
2392 
2393 	if (unlikely(!freelist)) {
2394 		slab_out_of_memory(s, gfpflags, node);
2395 		local_irq_restore(flags);
2396 		return NULL;
2397 	}
2398 
2399 	page = c->page;
2400 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2401 		goto load_freelist;
2402 
2403 	/* Only entered in the debug case */
2404 	if (kmem_cache_debug(s) &&
2405 			!alloc_debug_processing(s, page, freelist, addr))
2406 		goto new_slab;	/* Slab failed checks. Next slab needed */
2407 
2408 	deactivate_slab(s, page, get_freepointer(s, freelist));
2409 	c->page = NULL;
2410 	c->freelist = NULL;
2411 	local_irq_restore(flags);
2412 	return freelist;
2413 }
2414 
2415 /*
2416  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2417  * have the fastpath folded into their functions. So no function call
2418  * overhead for requests that can be satisfied on the fastpath.
2419  *
2420  * The fastpath works by first checking if the lockless freelist can be used.
2421  * If not then __slab_alloc is called for slow processing.
2422  *
2423  * Otherwise we can simply pick the next object from the lockless free list.
2424  */
2425 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2426 		gfp_t gfpflags, int node, unsigned long addr)
2427 {
2428 	void **object;
2429 	struct kmem_cache_cpu *c;
2430 	struct page *page;
2431 	unsigned long tid;
2432 
2433 	s = slab_pre_alloc_hook(s, gfpflags);
2434 	if (!s)
2435 		return NULL;
2436 redo:
2437 	/*
2438 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2439 	 * enabled. We may switch back and forth between cpus while
2440 	 * reading from one cpu area. That does not matter as long
2441 	 * as we end up on the original cpu again when doing the cmpxchg.
2442 	 *
2443 	 * We should guarantee that tid and kmem_cache are retrieved on
2444 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2445 	 * to check if it is matched or not.
2446 	 */
2447 	do {
2448 		tid = this_cpu_read(s->cpu_slab->tid);
2449 		c = raw_cpu_ptr(s->cpu_slab);
2450 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2451 		 unlikely(tid != READ_ONCE(c->tid)));
2452 
2453 	/*
2454 	 * Irqless object alloc/free algorithm used here depends on sequence
2455 	 * of fetching cpu_slab's data. tid should be fetched before anything
2456 	 * on c to guarantee that object and page associated with previous tid
2457 	 * won't be used with current tid. If we fetch tid first, object and
2458 	 * page could be one associated with next tid and our alloc/free
2459 	 * request will be failed. In this case, we will retry. So, no problem.
2460 	 */
2461 	barrier();
2462 
2463 	/*
2464 	 * The transaction ids are globally unique per cpu and per operation on
2465 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2466 	 * occurs on the right processor and that there was no operation on the
2467 	 * linked list in between.
2468 	 */
2469 
2470 	object = c->freelist;
2471 	page = c->page;
2472 	if (unlikely(!object || !node_match(page, node))) {
2473 		object = __slab_alloc(s, gfpflags, node, addr, c);
2474 		stat(s, ALLOC_SLOWPATH);
2475 	} else {
2476 		void *next_object = get_freepointer_safe(s, object);
2477 
2478 		/*
2479 		 * The cmpxchg will only match if there was no additional
2480 		 * operation and if we are on the right processor.
2481 		 *
2482 		 * The cmpxchg does the following atomically (without lock
2483 		 * semantics!)
2484 		 * 1. Relocate first pointer to the current per cpu area.
2485 		 * 2. Verify that tid and freelist have not been changed
2486 		 * 3. If they were not changed replace tid and freelist
2487 		 *
2488 		 * Since this is without lock semantics the protection is only
2489 		 * against code executing on this cpu *not* from access by
2490 		 * other cpus.
2491 		 */
2492 		if (unlikely(!this_cpu_cmpxchg_double(
2493 				s->cpu_slab->freelist, s->cpu_slab->tid,
2494 				object, tid,
2495 				next_object, next_tid(tid)))) {
2496 
2497 			note_cmpxchg_failure("slab_alloc", s, tid);
2498 			goto redo;
2499 		}
2500 		prefetch_freepointer(s, next_object);
2501 		stat(s, ALLOC_FASTPATH);
2502 	}
2503 
2504 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2505 		memset(object, 0, s->object_size);
2506 
2507 	slab_post_alloc_hook(s, gfpflags, object);
2508 
2509 	return object;
2510 }
2511 
2512 static __always_inline void *slab_alloc(struct kmem_cache *s,
2513 		gfp_t gfpflags, unsigned long addr)
2514 {
2515 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2516 }
2517 
2518 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2519 {
2520 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2521 
2522 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2523 				s->size, gfpflags);
2524 
2525 	return ret;
2526 }
2527 EXPORT_SYMBOL(kmem_cache_alloc);
2528 
2529 #ifdef CONFIG_TRACING
2530 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2531 {
2532 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2533 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2534 	kasan_kmalloc(s, ret, size);
2535 	return ret;
2536 }
2537 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2538 #endif
2539 
2540 #ifdef CONFIG_NUMA
2541 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2542 {
2543 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2544 
2545 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2546 				    s->object_size, s->size, gfpflags, node);
2547 
2548 	return ret;
2549 }
2550 EXPORT_SYMBOL(kmem_cache_alloc_node);
2551 
2552 #ifdef CONFIG_TRACING
2553 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2554 				    gfp_t gfpflags,
2555 				    int node, size_t size)
2556 {
2557 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2558 
2559 	trace_kmalloc_node(_RET_IP_, ret,
2560 			   size, s->size, gfpflags, node);
2561 
2562 	kasan_kmalloc(s, ret, size);
2563 	return ret;
2564 }
2565 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2566 #endif
2567 #endif
2568 
2569 /*
2570  * Slow path handling. This may still be called frequently since objects
2571  * have a longer lifetime than the cpu slabs in most processing loads.
2572  *
2573  * So we still attempt to reduce cache line usage. Just take the slab
2574  * lock and free the item. If there is no additional partial page
2575  * handling required then we can return immediately.
2576  */
2577 static void __slab_free(struct kmem_cache *s, struct page *page,
2578 			void *x, unsigned long addr)
2579 {
2580 	void *prior;
2581 	void **object = (void *)x;
2582 	int was_frozen;
2583 	struct page new;
2584 	unsigned long counters;
2585 	struct kmem_cache_node *n = NULL;
2586 	unsigned long uninitialized_var(flags);
2587 
2588 	stat(s, FREE_SLOWPATH);
2589 
2590 	if (kmem_cache_debug(s) &&
2591 		!(n = free_debug_processing(s, page, x, addr, &flags)))
2592 		return;
2593 
2594 	do {
2595 		if (unlikely(n)) {
2596 			spin_unlock_irqrestore(&n->list_lock, flags);
2597 			n = NULL;
2598 		}
2599 		prior = page->freelist;
2600 		counters = page->counters;
2601 		set_freepointer(s, object, prior);
2602 		new.counters = counters;
2603 		was_frozen = new.frozen;
2604 		new.inuse--;
2605 		if ((!new.inuse || !prior) && !was_frozen) {
2606 
2607 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2608 
2609 				/*
2610 				 * Slab was on no list before and will be
2611 				 * partially empty
2612 				 * We can defer the list move and instead
2613 				 * freeze it.
2614 				 */
2615 				new.frozen = 1;
2616 
2617 			} else { /* Needs to be taken off a list */
2618 
2619 				n = get_node(s, page_to_nid(page));
2620 				/*
2621 				 * Speculatively acquire the list_lock.
2622 				 * If the cmpxchg does not succeed then we may
2623 				 * drop the list_lock without any processing.
2624 				 *
2625 				 * Otherwise the list_lock will synchronize with
2626 				 * other processors updating the list of slabs.
2627 				 */
2628 				spin_lock_irqsave(&n->list_lock, flags);
2629 
2630 			}
2631 		}
2632 
2633 	} while (!cmpxchg_double_slab(s, page,
2634 		prior, counters,
2635 		object, new.counters,
2636 		"__slab_free"));
2637 
2638 	if (likely(!n)) {
2639 
2640 		/*
2641 		 * If we just froze the page then put it onto the
2642 		 * per cpu partial list.
2643 		 */
2644 		if (new.frozen && !was_frozen) {
2645 			put_cpu_partial(s, page, 1);
2646 			stat(s, CPU_PARTIAL_FREE);
2647 		}
2648 		/*
2649 		 * The list lock was not taken therefore no list
2650 		 * activity can be necessary.
2651 		 */
2652 		if (was_frozen)
2653 			stat(s, FREE_FROZEN);
2654 		return;
2655 	}
2656 
2657 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2658 		goto slab_empty;
2659 
2660 	/*
2661 	 * Objects left in the slab. If it was not on the partial list before
2662 	 * then add it.
2663 	 */
2664 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2665 		if (kmem_cache_debug(s))
2666 			remove_full(s, n, page);
2667 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2668 		stat(s, FREE_ADD_PARTIAL);
2669 	}
2670 	spin_unlock_irqrestore(&n->list_lock, flags);
2671 	return;
2672 
2673 slab_empty:
2674 	if (prior) {
2675 		/*
2676 		 * Slab on the partial list.
2677 		 */
2678 		remove_partial(n, page);
2679 		stat(s, FREE_REMOVE_PARTIAL);
2680 	} else {
2681 		/* Slab must be on the full list */
2682 		remove_full(s, n, page);
2683 	}
2684 
2685 	spin_unlock_irqrestore(&n->list_lock, flags);
2686 	stat(s, FREE_SLAB);
2687 	discard_slab(s, page);
2688 }
2689 
2690 /*
2691  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2692  * can perform fastpath freeing without additional function calls.
2693  *
2694  * The fastpath is only possible if we are freeing to the current cpu slab
2695  * of this processor. This typically the case if we have just allocated
2696  * the item before.
2697  *
2698  * If fastpath is not possible then fall back to __slab_free where we deal
2699  * with all sorts of special processing.
2700  */
2701 static __always_inline void slab_free(struct kmem_cache *s,
2702 			struct page *page, void *x, unsigned long addr)
2703 {
2704 	void **object = (void *)x;
2705 	struct kmem_cache_cpu *c;
2706 	unsigned long tid;
2707 
2708 	slab_free_hook(s, x);
2709 
2710 redo:
2711 	/*
2712 	 * Determine the currently cpus per cpu slab.
2713 	 * The cpu may change afterward. However that does not matter since
2714 	 * data is retrieved via this pointer. If we are on the same cpu
2715 	 * during the cmpxchg then the free will succedd.
2716 	 */
2717 	do {
2718 		tid = this_cpu_read(s->cpu_slab->tid);
2719 		c = raw_cpu_ptr(s->cpu_slab);
2720 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2721 		 unlikely(tid != READ_ONCE(c->tid)));
2722 
2723 	/* Same with comment on barrier() in slab_alloc_node() */
2724 	barrier();
2725 
2726 	if (likely(page == c->page)) {
2727 		set_freepointer(s, object, c->freelist);
2728 
2729 		if (unlikely(!this_cpu_cmpxchg_double(
2730 				s->cpu_slab->freelist, s->cpu_slab->tid,
2731 				c->freelist, tid,
2732 				object, next_tid(tid)))) {
2733 
2734 			note_cmpxchg_failure("slab_free", s, tid);
2735 			goto redo;
2736 		}
2737 		stat(s, FREE_FASTPATH);
2738 	} else
2739 		__slab_free(s, page, x, addr);
2740 
2741 }
2742 
2743 void kmem_cache_free(struct kmem_cache *s, void *x)
2744 {
2745 	s = cache_from_obj(s, x);
2746 	if (!s)
2747 		return;
2748 	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2749 	trace_kmem_cache_free(_RET_IP_, x);
2750 }
2751 EXPORT_SYMBOL(kmem_cache_free);
2752 
2753 /*
2754  * Object placement in a slab is made very easy because we always start at
2755  * offset 0. If we tune the size of the object to the alignment then we can
2756  * get the required alignment by putting one properly sized object after
2757  * another.
2758  *
2759  * Notice that the allocation order determines the sizes of the per cpu
2760  * caches. Each processor has always one slab available for allocations.
2761  * Increasing the allocation order reduces the number of times that slabs
2762  * must be moved on and off the partial lists and is therefore a factor in
2763  * locking overhead.
2764  */
2765 
2766 /*
2767  * Mininum / Maximum order of slab pages. This influences locking overhead
2768  * and slab fragmentation. A higher order reduces the number of partial slabs
2769  * and increases the number of allocations possible without having to
2770  * take the list_lock.
2771  */
2772 static int slub_min_order;
2773 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2774 static int slub_min_objects;
2775 
2776 /*
2777  * Calculate the order of allocation given an slab object size.
2778  *
2779  * The order of allocation has significant impact on performance and other
2780  * system components. Generally order 0 allocations should be preferred since
2781  * order 0 does not cause fragmentation in the page allocator. Larger objects
2782  * be problematic to put into order 0 slabs because there may be too much
2783  * unused space left. We go to a higher order if more than 1/16th of the slab
2784  * would be wasted.
2785  *
2786  * In order to reach satisfactory performance we must ensure that a minimum
2787  * number of objects is in one slab. Otherwise we may generate too much
2788  * activity on the partial lists which requires taking the list_lock. This is
2789  * less a concern for large slabs though which are rarely used.
2790  *
2791  * slub_max_order specifies the order where we begin to stop considering the
2792  * number of objects in a slab as critical. If we reach slub_max_order then
2793  * we try to keep the page order as low as possible. So we accept more waste
2794  * of space in favor of a small page order.
2795  *
2796  * Higher order allocations also allow the placement of more objects in a
2797  * slab and thereby reduce object handling overhead. If the user has
2798  * requested a higher mininum order then we start with that one instead of
2799  * the smallest order which will fit the object.
2800  */
2801 static inline int slab_order(int size, int min_objects,
2802 				int max_order, int fract_leftover, int reserved)
2803 {
2804 	int order;
2805 	int rem;
2806 	int min_order = slub_min_order;
2807 
2808 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2809 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2810 
2811 	for (order = max(min_order,
2812 				fls(min_objects * size - 1) - PAGE_SHIFT);
2813 			order <= max_order; order++) {
2814 
2815 		unsigned long slab_size = PAGE_SIZE << order;
2816 
2817 		if (slab_size < min_objects * size + reserved)
2818 			continue;
2819 
2820 		rem = (slab_size - reserved) % size;
2821 
2822 		if (rem <= slab_size / fract_leftover)
2823 			break;
2824 
2825 	}
2826 
2827 	return order;
2828 }
2829 
2830 static inline int calculate_order(int size, int reserved)
2831 {
2832 	int order;
2833 	int min_objects;
2834 	int fraction;
2835 	int max_objects;
2836 
2837 	/*
2838 	 * Attempt to find best configuration for a slab. This
2839 	 * works by first attempting to generate a layout with
2840 	 * the best configuration and backing off gradually.
2841 	 *
2842 	 * First we reduce the acceptable waste in a slab. Then
2843 	 * we reduce the minimum objects required in a slab.
2844 	 */
2845 	min_objects = slub_min_objects;
2846 	if (!min_objects)
2847 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2848 	max_objects = order_objects(slub_max_order, size, reserved);
2849 	min_objects = min(min_objects, max_objects);
2850 
2851 	while (min_objects > 1) {
2852 		fraction = 16;
2853 		while (fraction >= 4) {
2854 			order = slab_order(size, min_objects,
2855 					slub_max_order, fraction, reserved);
2856 			if (order <= slub_max_order)
2857 				return order;
2858 			fraction /= 2;
2859 		}
2860 		min_objects--;
2861 	}
2862 
2863 	/*
2864 	 * We were unable to place multiple objects in a slab. Now
2865 	 * lets see if we can place a single object there.
2866 	 */
2867 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2868 	if (order <= slub_max_order)
2869 		return order;
2870 
2871 	/*
2872 	 * Doh this slab cannot be placed using slub_max_order.
2873 	 */
2874 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2875 	if (order < MAX_ORDER)
2876 		return order;
2877 	return -ENOSYS;
2878 }
2879 
2880 static void
2881 init_kmem_cache_node(struct kmem_cache_node *n)
2882 {
2883 	n->nr_partial = 0;
2884 	spin_lock_init(&n->list_lock);
2885 	INIT_LIST_HEAD(&n->partial);
2886 #ifdef CONFIG_SLUB_DEBUG
2887 	atomic_long_set(&n->nr_slabs, 0);
2888 	atomic_long_set(&n->total_objects, 0);
2889 	INIT_LIST_HEAD(&n->full);
2890 #endif
2891 }
2892 
2893 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2894 {
2895 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2896 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2897 
2898 	/*
2899 	 * Must align to double word boundary for the double cmpxchg
2900 	 * instructions to work; see __pcpu_double_call_return_bool().
2901 	 */
2902 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2903 				     2 * sizeof(void *));
2904 
2905 	if (!s->cpu_slab)
2906 		return 0;
2907 
2908 	init_kmem_cache_cpus(s);
2909 
2910 	return 1;
2911 }
2912 
2913 static struct kmem_cache *kmem_cache_node;
2914 
2915 /*
2916  * No kmalloc_node yet so do it by hand. We know that this is the first
2917  * slab on the node for this slabcache. There are no concurrent accesses
2918  * possible.
2919  *
2920  * Note that this function only works on the kmem_cache_node
2921  * when allocating for the kmem_cache_node. This is used for bootstrapping
2922  * memory on a fresh node that has no slab structures yet.
2923  */
2924 static void early_kmem_cache_node_alloc(int node)
2925 {
2926 	struct page *page;
2927 	struct kmem_cache_node *n;
2928 
2929 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2930 
2931 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2932 
2933 	BUG_ON(!page);
2934 	if (page_to_nid(page) != node) {
2935 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2936 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2937 	}
2938 
2939 	n = page->freelist;
2940 	BUG_ON(!n);
2941 	page->freelist = get_freepointer(kmem_cache_node, n);
2942 	page->inuse = 1;
2943 	page->frozen = 0;
2944 	kmem_cache_node->node[node] = n;
2945 #ifdef CONFIG_SLUB_DEBUG
2946 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2947 	init_tracking(kmem_cache_node, n);
2948 #endif
2949 	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
2950 	init_kmem_cache_node(n);
2951 	inc_slabs_node(kmem_cache_node, node, page->objects);
2952 
2953 	/*
2954 	 * No locks need to be taken here as it has just been
2955 	 * initialized and there is no concurrent access.
2956 	 */
2957 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
2958 }
2959 
2960 static void free_kmem_cache_nodes(struct kmem_cache *s)
2961 {
2962 	int node;
2963 	struct kmem_cache_node *n;
2964 
2965 	for_each_kmem_cache_node(s, node, n) {
2966 		kmem_cache_free(kmem_cache_node, n);
2967 		s->node[node] = NULL;
2968 	}
2969 }
2970 
2971 static int init_kmem_cache_nodes(struct kmem_cache *s)
2972 {
2973 	int node;
2974 
2975 	for_each_node_state(node, N_NORMAL_MEMORY) {
2976 		struct kmem_cache_node *n;
2977 
2978 		if (slab_state == DOWN) {
2979 			early_kmem_cache_node_alloc(node);
2980 			continue;
2981 		}
2982 		n = kmem_cache_alloc_node(kmem_cache_node,
2983 						GFP_KERNEL, node);
2984 
2985 		if (!n) {
2986 			free_kmem_cache_nodes(s);
2987 			return 0;
2988 		}
2989 
2990 		s->node[node] = n;
2991 		init_kmem_cache_node(n);
2992 	}
2993 	return 1;
2994 }
2995 
2996 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2997 {
2998 	if (min < MIN_PARTIAL)
2999 		min = MIN_PARTIAL;
3000 	else if (min > MAX_PARTIAL)
3001 		min = MAX_PARTIAL;
3002 	s->min_partial = min;
3003 }
3004 
3005 /*
3006  * calculate_sizes() determines the order and the distribution of data within
3007  * a slab object.
3008  */
3009 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3010 {
3011 	unsigned long flags = s->flags;
3012 	unsigned long size = s->object_size;
3013 	int order;
3014 
3015 	/*
3016 	 * Round up object size to the next word boundary. We can only
3017 	 * place the free pointer at word boundaries and this determines
3018 	 * the possible location of the free pointer.
3019 	 */
3020 	size = ALIGN(size, sizeof(void *));
3021 
3022 #ifdef CONFIG_SLUB_DEBUG
3023 	/*
3024 	 * Determine if we can poison the object itself. If the user of
3025 	 * the slab may touch the object after free or before allocation
3026 	 * then we should never poison the object itself.
3027 	 */
3028 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3029 			!s->ctor)
3030 		s->flags |= __OBJECT_POISON;
3031 	else
3032 		s->flags &= ~__OBJECT_POISON;
3033 
3034 
3035 	/*
3036 	 * If we are Redzoning then check if there is some space between the
3037 	 * end of the object and the free pointer. If not then add an
3038 	 * additional word to have some bytes to store Redzone information.
3039 	 */
3040 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3041 		size += sizeof(void *);
3042 #endif
3043 
3044 	/*
3045 	 * With that we have determined the number of bytes in actual use
3046 	 * by the object. This is the potential offset to the free pointer.
3047 	 */
3048 	s->inuse = size;
3049 
3050 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3051 		s->ctor)) {
3052 		/*
3053 		 * Relocate free pointer after the object if it is not
3054 		 * permitted to overwrite the first word of the object on
3055 		 * kmem_cache_free.
3056 		 *
3057 		 * This is the case if we do RCU, have a constructor or
3058 		 * destructor or are poisoning the objects.
3059 		 */
3060 		s->offset = size;
3061 		size += sizeof(void *);
3062 	}
3063 
3064 #ifdef CONFIG_SLUB_DEBUG
3065 	if (flags & SLAB_STORE_USER)
3066 		/*
3067 		 * Need to store information about allocs and frees after
3068 		 * the object.
3069 		 */
3070 		size += 2 * sizeof(struct track);
3071 
3072 	if (flags & SLAB_RED_ZONE)
3073 		/*
3074 		 * Add some empty padding so that we can catch
3075 		 * overwrites from earlier objects rather than let
3076 		 * tracking information or the free pointer be
3077 		 * corrupted if a user writes before the start
3078 		 * of the object.
3079 		 */
3080 		size += sizeof(void *);
3081 #endif
3082 
3083 	/*
3084 	 * SLUB stores one object immediately after another beginning from
3085 	 * offset 0. In order to align the objects we have to simply size
3086 	 * each object to conform to the alignment.
3087 	 */
3088 	size = ALIGN(size, s->align);
3089 	s->size = size;
3090 	if (forced_order >= 0)
3091 		order = forced_order;
3092 	else
3093 		order = calculate_order(size, s->reserved);
3094 
3095 	if (order < 0)
3096 		return 0;
3097 
3098 	s->allocflags = 0;
3099 	if (order)
3100 		s->allocflags |= __GFP_COMP;
3101 
3102 	if (s->flags & SLAB_CACHE_DMA)
3103 		s->allocflags |= GFP_DMA;
3104 
3105 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3106 		s->allocflags |= __GFP_RECLAIMABLE;
3107 
3108 	/*
3109 	 * Determine the number of objects per slab
3110 	 */
3111 	s->oo = oo_make(order, size, s->reserved);
3112 	s->min = oo_make(get_order(size), size, s->reserved);
3113 	if (oo_objects(s->oo) > oo_objects(s->max))
3114 		s->max = s->oo;
3115 
3116 	return !!oo_objects(s->oo);
3117 }
3118 
3119 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3120 {
3121 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3122 	s->reserved = 0;
3123 
3124 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3125 		s->reserved = sizeof(struct rcu_head);
3126 
3127 	if (!calculate_sizes(s, -1))
3128 		goto error;
3129 	if (disable_higher_order_debug) {
3130 		/*
3131 		 * Disable debugging flags that store metadata if the min slab
3132 		 * order increased.
3133 		 */
3134 		if (get_order(s->size) > get_order(s->object_size)) {
3135 			s->flags &= ~DEBUG_METADATA_FLAGS;
3136 			s->offset = 0;
3137 			if (!calculate_sizes(s, -1))
3138 				goto error;
3139 		}
3140 	}
3141 
3142 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3143     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3144 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3145 		/* Enable fast mode */
3146 		s->flags |= __CMPXCHG_DOUBLE;
3147 #endif
3148 
3149 	/*
3150 	 * The larger the object size is, the more pages we want on the partial
3151 	 * list to avoid pounding the page allocator excessively.
3152 	 */
3153 	set_min_partial(s, ilog2(s->size) / 2);
3154 
3155 	/*
3156 	 * cpu_partial determined the maximum number of objects kept in the
3157 	 * per cpu partial lists of a processor.
3158 	 *
3159 	 * Per cpu partial lists mainly contain slabs that just have one
3160 	 * object freed. If they are used for allocation then they can be
3161 	 * filled up again with minimal effort. The slab will never hit the
3162 	 * per node partial lists and therefore no locking will be required.
3163 	 *
3164 	 * This setting also determines
3165 	 *
3166 	 * A) The number of objects from per cpu partial slabs dumped to the
3167 	 *    per node list when we reach the limit.
3168 	 * B) The number of objects in cpu partial slabs to extract from the
3169 	 *    per node list when we run out of per cpu objects. We only fetch
3170 	 *    50% to keep some capacity around for frees.
3171 	 */
3172 	if (!kmem_cache_has_cpu_partial(s))
3173 		s->cpu_partial = 0;
3174 	else if (s->size >= PAGE_SIZE)
3175 		s->cpu_partial = 2;
3176 	else if (s->size >= 1024)
3177 		s->cpu_partial = 6;
3178 	else if (s->size >= 256)
3179 		s->cpu_partial = 13;
3180 	else
3181 		s->cpu_partial = 30;
3182 
3183 #ifdef CONFIG_NUMA
3184 	s->remote_node_defrag_ratio = 1000;
3185 #endif
3186 	if (!init_kmem_cache_nodes(s))
3187 		goto error;
3188 
3189 	if (alloc_kmem_cache_cpus(s))
3190 		return 0;
3191 
3192 	free_kmem_cache_nodes(s);
3193 error:
3194 	if (flags & SLAB_PANIC)
3195 		panic("Cannot create slab %s size=%lu realsize=%u "
3196 			"order=%u offset=%u flags=%lx\n",
3197 			s->name, (unsigned long)s->size, s->size,
3198 			oo_order(s->oo), s->offset, flags);
3199 	return -EINVAL;
3200 }
3201 
3202 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3203 							const char *text)
3204 {
3205 #ifdef CONFIG_SLUB_DEBUG
3206 	void *addr = page_address(page);
3207 	void *p;
3208 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3209 				     sizeof(long), GFP_ATOMIC);
3210 	if (!map)
3211 		return;
3212 	slab_err(s, page, text, s->name);
3213 	slab_lock(page);
3214 
3215 	get_map(s, page, map);
3216 	for_each_object(p, s, addr, page->objects) {
3217 
3218 		if (!test_bit(slab_index(p, s, addr), map)) {
3219 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3220 			print_tracking(s, p);
3221 		}
3222 	}
3223 	slab_unlock(page);
3224 	kfree(map);
3225 #endif
3226 }
3227 
3228 /*
3229  * Attempt to free all partial slabs on a node.
3230  * This is called from kmem_cache_close(). We must be the last thread
3231  * using the cache and therefore we do not need to lock anymore.
3232  */
3233 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3234 {
3235 	struct page *page, *h;
3236 
3237 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3238 		if (!page->inuse) {
3239 			__remove_partial(n, page);
3240 			discard_slab(s, page);
3241 		} else {
3242 			list_slab_objects(s, page,
3243 			"Objects remaining in %s on kmem_cache_close()");
3244 		}
3245 	}
3246 }
3247 
3248 /*
3249  * Release all resources used by a slab cache.
3250  */
3251 static inline int kmem_cache_close(struct kmem_cache *s)
3252 {
3253 	int node;
3254 	struct kmem_cache_node *n;
3255 
3256 	flush_all(s);
3257 	/* Attempt to free all objects */
3258 	for_each_kmem_cache_node(s, node, n) {
3259 		free_partial(s, n);
3260 		if (n->nr_partial || slabs_node(s, node))
3261 			return 1;
3262 	}
3263 	free_percpu(s->cpu_slab);
3264 	free_kmem_cache_nodes(s);
3265 	return 0;
3266 }
3267 
3268 int __kmem_cache_shutdown(struct kmem_cache *s)
3269 {
3270 	return kmem_cache_close(s);
3271 }
3272 
3273 /********************************************************************
3274  *		Kmalloc subsystem
3275  *******************************************************************/
3276 
3277 static int __init setup_slub_min_order(char *str)
3278 {
3279 	get_option(&str, &slub_min_order);
3280 
3281 	return 1;
3282 }
3283 
3284 __setup("slub_min_order=", setup_slub_min_order);
3285 
3286 static int __init setup_slub_max_order(char *str)
3287 {
3288 	get_option(&str, &slub_max_order);
3289 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3290 
3291 	return 1;
3292 }
3293 
3294 __setup("slub_max_order=", setup_slub_max_order);
3295 
3296 static int __init setup_slub_min_objects(char *str)
3297 {
3298 	get_option(&str, &slub_min_objects);
3299 
3300 	return 1;
3301 }
3302 
3303 __setup("slub_min_objects=", setup_slub_min_objects);
3304 
3305 void *__kmalloc(size_t size, gfp_t flags)
3306 {
3307 	struct kmem_cache *s;
3308 	void *ret;
3309 
3310 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3311 		return kmalloc_large(size, flags);
3312 
3313 	s = kmalloc_slab(size, flags);
3314 
3315 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3316 		return s;
3317 
3318 	ret = slab_alloc(s, flags, _RET_IP_);
3319 
3320 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3321 
3322 	kasan_kmalloc(s, ret, size);
3323 
3324 	return ret;
3325 }
3326 EXPORT_SYMBOL(__kmalloc);
3327 
3328 #ifdef CONFIG_NUMA
3329 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3330 {
3331 	struct page *page;
3332 	void *ptr = NULL;
3333 
3334 	flags |= __GFP_COMP | __GFP_NOTRACK;
3335 	page = alloc_kmem_pages_node(node, flags, get_order(size));
3336 	if (page)
3337 		ptr = page_address(page);
3338 
3339 	kmalloc_large_node_hook(ptr, size, flags);
3340 	return ptr;
3341 }
3342 
3343 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3344 {
3345 	struct kmem_cache *s;
3346 	void *ret;
3347 
3348 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3349 		ret = kmalloc_large_node(size, flags, node);
3350 
3351 		trace_kmalloc_node(_RET_IP_, ret,
3352 				   size, PAGE_SIZE << get_order(size),
3353 				   flags, node);
3354 
3355 		return ret;
3356 	}
3357 
3358 	s = kmalloc_slab(size, flags);
3359 
3360 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3361 		return s;
3362 
3363 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3364 
3365 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3366 
3367 	kasan_kmalloc(s, ret, size);
3368 
3369 	return ret;
3370 }
3371 EXPORT_SYMBOL(__kmalloc_node);
3372 #endif
3373 
3374 static size_t __ksize(const void *object)
3375 {
3376 	struct page *page;
3377 
3378 	if (unlikely(object == ZERO_SIZE_PTR))
3379 		return 0;
3380 
3381 	page = virt_to_head_page(object);
3382 
3383 	if (unlikely(!PageSlab(page))) {
3384 		WARN_ON(!PageCompound(page));
3385 		return PAGE_SIZE << compound_order(page);
3386 	}
3387 
3388 	return slab_ksize(page->slab_cache);
3389 }
3390 
3391 size_t ksize(const void *object)
3392 {
3393 	size_t size = __ksize(object);
3394 	/* We assume that ksize callers could use whole allocated area,
3395 	   so we need unpoison this area. */
3396 	kasan_krealloc(object, size);
3397 	return size;
3398 }
3399 EXPORT_SYMBOL(ksize);
3400 
3401 void kfree(const void *x)
3402 {
3403 	struct page *page;
3404 	void *object = (void *)x;
3405 
3406 	trace_kfree(_RET_IP_, x);
3407 
3408 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3409 		return;
3410 
3411 	page = virt_to_head_page(x);
3412 	if (unlikely(!PageSlab(page))) {
3413 		BUG_ON(!PageCompound(page));
3414 		kfree_hook(x);
3415 		__free_kmem_pages(page, compound_order(page));
3416 		return;
3417 	}
3418 	slab_free(page->slab_cache, page, object, _RET_IP_);
3419 }
3420 EXPORT_SYMBOL(kfree);
3421 
3422 #define SHRINK_PROMOTE_MAX 32
3423 
3424 /*
3425  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3426  * up most to the head of the partial lists. New allocations will then
3427  * fill those up and thus they can be removed from the partial lists.
3428  *
3429  * The slabs with the least items are placed last. This results in them
3430  * being allocated from last increasing the chance that the last objects
3431  * are freed in them.
3432  */
3433 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3434 {
3435 	int node;
3436 	int i;
3437 	struct kmem_cache_node *n;
3438 	struct page *page;
3439 	struct page *t;
3440 	struct list_head discard;
3441 	struct list_head promote[SHRINK_PROMOTE_MAX];
3442 	unsigned long flags;
3443 	int ret = 0;
3444 
3445 	if (deactivate) {
3446 		/*
3447 		 * Disable empty slabs caching. Used to avoid pinning offline
3448 		 * memory cgroups by kmem pages that can be freed.
3449 		 */
3450 		s->cpu_partial = 0;
3451 		s->min_partial = 0;
3452 
3453 		/*
3454 		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3455 		 * so we have to make sure the change is visible.
3456 		 */
3457 		kick_all_cpus_sync();
3458 	}
3459 
3460 	flush_all(s);
3461 	for_each_kmem_cache_node(s, node, n) {
3462 		INIT_LIST_HEAD(&discard);
3463 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3464 			INIT_LIST_HEAD(promote + i);
3465 
3466 		spin_lock_irqsave(&n->list_lock, flags);
3467 
3468 		/*
3469 		 * Build lists of slabs to discard or promote.
3470 		 *
3471 		 * Note that concurrent frees may occur while we hold the
3472 		 * list_lock. page->inuse here is the upper limit.
3473 		 */
3474 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3475 			int free = page->objects - page->inuse;
3476 
3477 			/* Do not reread page->inuse */
3478 			barrier();
3479 
3480 			/* We do not keep full slabs on the list */
3481 			BUG_ON(free <= 0);
3482 
3483 			if (free == page->objects) {
3484 				list_move(&page->lru, &discard);
3485 				n->nr_partial--;
3486 			} else if (free <= SHRINK_PROMOTE_MAX)
3487 				list_move(&page->lru, promote + free - 1);
3488 		}
3489 
3490 		/*
3491 		 * Promote the slabs filled up most to the head of the
3492 		 * partial list.
3493 		 */
3494 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3495 			list_splice(promote + i, &n->partial);
3496 
3497 		spin_unlock_irqrestore(&n->list_lock, flags);
3498 
3499 		/* Release empty slabs */
3500 		list_for_each_entry_safe(page, t, &discard, lru)
3501 			discard_slab(s, page);
3502 
3503 		if (slabs_node(s, node))
3504 			ret = 1;
3505 	}
3506 
3507 	return ret;
3508 }
3509 
3510 static int slab_mem_going_offline_callback(void *arg)
3511 {
3512 	struct kmem_cache *s;
3513 
3514 	mutex_lock(&slab_mutex);
3515 	list_for_each_entry(s, &slab_caches, list)
3516 		__kmem_cache_shrink(s, false);
3517 	mutex_unlock(&slab_mutex);
3518 
3519 	return 0;
3520 }
3521 
3522 static void slab_mem_offline_callback(void *arg)
3523 {
3524 	struct kmem_cache_node *n;
3525 	struct kmem_cache *s;
3526 	struct memory_notify *marg = arg;
3527 	int offline_node;
3528 
3529 	offline_node = marg->status_change_nid_normal;
3530 
3531 	/*
3532 	 * If the node still has available memory. we need kmem_cache_node
3533 	 * for it yet.
3534 	 */
3535 	if (offline_node < 0)
3536 		return;
3537 
3538 	mutex_lock(&slab_mutex);
3539 	list_for_each_entry(s, &slab_caches, list) {
3540 		n = get_node(s, offline_node);
3541 		if (n) {
3542 			/*
3543 			 * if n->nr_slabs > 0, slabs still exist on the node
3544 			 * that is going down. We were unable to free them,
3545 			 * and offline_pages() function shouldn't call this
3546 			 * callback. So, we must fail.
3547 			 */
3548 			BUG_ON(slabs_node(s, offline_node));
3549 
3550 			s->node[offline_node] = NULL;
3551 			kmem_cache_free(kmem_cache_node, n);
3552 		}
3553 	}
3554 	mutex_unlock(&slab_mutex);
3555 }
3556 
3557 static int slab_mem_going_online_callback(void *arg)
3558 {
3559 	struct kmem_cache_node *n;
3560 	struct kmem_cache *s;
3561 	struct memory_notify *marg = arg;
3562 	int nid = marg->status_change_nid_normal;
3563 	int ret = 0;
3564 
3565 	/*
3566 	 * If the node's memory is already available, then kmem_cache_node is
3567 	 * already created. Nothing to do.
3568 	 */
3569 	if (nid < 0)
3570 		return 0;
3571 
3572 	/*
3573 	 * We are bringing a node online. No memory is available yet. We must
3574 	 * allocate a kmem_cache_node structure in order to bring the node
3575 	 * online.
3576 	 */
3577 	mutex_lock(&slab_mutex);
3578 	list_for_each_entry(s, &slab_caches, list) {
3579 		/*
3580 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3581 		 *      since memory is not yet available from the node that
3582 		 *      is brought up.
3583 		 */
3584 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3585 		if (!n) {
3586 			ret = -ENOMEM;
3587 			goto out;
3588 		}
3589 		init_kmem_cache_node(n);
3590 		s->node[nid] = n;
3591 	}
3592 out:
3593 	mutex_unlock(&slab_mutex);
3594 	return ret;
3595 }
3596 
3597 static int slab_memory_callback(struct notifier_block *self,
3598 				unsigned long action, void *arg)
3599 {
3600 	int ret = 0;
3601 
3602 	switch (action) {
3603 	case MEM_GOING_ONLINE:
3604 		ret = slab_mem_going_online_callback(arg);
3605 		break;
3606 	case MEM_GOING_OFFLINE:
3607 		ret = slab_mem_going_offline_callback(arg);
3608 		break;
3609 	case MEM_OFFLINE:
3610 	case MEM_CANCEL_ONLINE:
3611 		slab_mem_offline_callback(arg);
3612 		break;
3613 	case MEM_ONLINE:
3614 	case MEM_CANCEL_OFFLINE:
3615 		break;
3616 	}
3617 	if (ret)
3618 		ret = notifier_from_errno(ret);
3619 	else
3620 		ret = NOTIFY_OK;
3621 	return ret;
3622 }
3623 
3624 static struct notifier_block slab_memory_callback_nb = {
3625 	.notifier_call = slab_memory_callback,
3626 	.priority = SLAB_CALLBACK_PRI,
3627 };
3628 
3629 /********************************************************************
3630  *			Basic setup of slabs
3631  *******************************************************************/
3632 
3633 /*
3634  * Used for early kmem_cache structures that were allocated using
3635  * the page allocator. Allocate them properly then fix up the pointers
3636  * that may be pointing to the wrong kmem_cache structure.
3637  */
3638 
3639 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3640 {
3641 	int node;
3642 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3643 	struct kmem_cache_node *n;
3644 
3645 	memcpy(s, static_cache, kmem_cache->object_size);
3646 
3647 	/*
3648 	 * This runs very early, and only the boot processor is supposed to be
3649 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3650 	 * IPIs around.
3651 	 */
3652 	__flush_cpu_slab(s, smp_processor_id());
3653 	for_each_kmem_cache_node(s, node, n) {
3654 		struct page *p;
3655 
3656 		list_for_each_entry(p, &n->partial, lru)
3657 			p->slab_cache = s;
3658 
3659 #ifdef CONFIG_SLUB_DEBUG
3660 		list_for_each_entry(p, &n->full, lru)
3661 			p->slab_cache = s;
3662 #endif
3663 	}
3664 	slab_init_memcg_params(s);
3665 	list_add(&s->list, &slab_caches);
3666 	return s;
3667 }
3668 
3669 void __init kmem_cache_init(void)
3670 {
3671 	static __initdata struct kmem_cache boot_kmem_cache,
3672 		boot_kmem_cache_node;
3673 
3674 	if (debug_guardpage_minorder())
3675 		slub_max_order = 0;
3676 
3677 	kmem_cache_node = &boot_kmem_cache_node;
3678 	kmem_cache = &boot_kmem_cache;
3679 
3680 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3681 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3682 
3683 	register_hotmemory_notifier(&slab_memory_callback_nb);
3684 
3685 	/* Able to allocate the per node structures */
3686 	slab_state = PARTIAL;
3687 
3688 	create_boot_cache(kmem_cache, "kmem_cache",
3689 			offsetof(struct kmem_cache, node) +
3690 				nr_node_ids * sizeof(struct kmem_cache_node *),
3691 		       SLAB_HWCACHE_ALIGN);
3692 
3693 	kmem_cache = bootstrap(&boot_kmem_cache);
3694 
3695 	/*
3696 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3697 	 * kmem_cache_node is separately allocated so no need to
3698 	 * update any list pointers.
3699 	 */
3700 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3701 
3702 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3703 	setup_kmalloc_cache_index_table();
3704 	create_kmalloc_caches(0);
3705 
3706 #ifdef CONFIG_SMP
3707 	register_cpu_notifier(&slab_notifier);
3708 #endif
3709 
3710 	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3711 		cache_line_size(),
3712 		slub_min_order, slub_max_order, slub_min_objects,
3713 		nr_cpu_ids, nr_node_ids);
3714 }
3715 
3716 void __init kmem_cache_init_late(void)
3717 {
3718 }
3719 
3720 struct kmem_cache *
3721 __kmem_cache_alias(const char *name, size_t size, size_t align,
3722 		   unsigned long flags, void (*ctor)(void *))
3723 {
3724 	struct kmem_cache *s, *c;
3725 
3726 	s = find_mergeable(size, align, flags, name, ctor);
3727 	if (s) {
3728 		s->refcount++;
3729 
3730 		/*
3731 		 * Adjust the object sizes so that we clear
3732 		 * the complete object on kzalloc.
3733 		 */
3734 		s->object_size = max(s->object_size, (int)size);
3735 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3736 
3737 		for_each_memcg_cache(c, s) {
3738 			c->object_size = s->object_size;
3739 			c->inuse = max_t(int, c->inuse,
3740 					 ALIGN(size, sizeof(void *)));
3741 		}
3742 
3743 		if (sysfs_slab_alias(s, name)) {
3744 			s->refcount--;
3745 			s = NULL;
3746 		}
3747 	}
3748 
3749 	return s;
3750 }
3751 
3752 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3753 {
3754 	int err;
3755 
3756 	err = kmem_cache_open(s, flags);
3757 	if (err)
3758 		return err;
3759 
3760 	/* Mutex is not taken during early boot */
3761 	if (slab_state <= UP)
3762 		return 0;
3763 
3764 	memcg_propagate_slab_attrs(s);
3765 	err = sysfs_slab_add(s);
3766 	if (err)
3767 		kmem_cache_close(s);
3768 
3769 	return err;
3770 }
3771 
3772 #ifdef CONFIG_SMP
3773 /*
3774  * Use the cpu notifier to insure that the cpu slabs are flushed when
3775  * necessary.
3776  */
3777 static int slab_cpuup_callback(struct notifier_block *nfb,
3778 		unsigned long action, void *hcpu)
3779 {
3780 	long cpu = (long)hcpu;
3781 	struct kmem_cache *s;
3782 	unsigned long flags;
3783 
3784 	switch (action) {
3785 	case CPU_UP_CANCELED:
3786 	case CPU_UP_CANCELED_FROZEN:
3787 	case CPU_DEAD:
3788 	case CPU_DEAD_FROZEN:
3789 		mutex_lock(&slab_mutex);
3790 		list_for_each_entry(s, &slab_caches, list) {
3791 			local_irq_save(flags);
3792 			__flush_cpu_slab(s, cpu);
3793 			local_irq_restore(flags);
3794 		}
3795 		mutex_unlock(&slab_mutex);
3796 		break;
3797 	default:
3798 		break;
3799 	}
3800 	return NOTIFY_OK;
3801 }
3802 
3803 static struct notifier_block slab_notifier = {
3804 	.notifier_call = slab_cpuup_callback
3805 };
3806 
3807 #endif
3808 
3809 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3810 {
3811 	struct kmem_cache *s;
3812 	void *ret;
3813 
3814 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3815 		return kmalloc_large(size, gfpflags);
3816 
3817 	s = kmalloc_slab(size, gfpflags);
3818 
3819 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3820 		return s;
3821 
3822 	ret = slab_alloc(s, gfpflags, caller);
3823 
3824 	/* Honor the call site pointer we received. */
3825 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3826 
3827 	return ret;
3828 }
3829 
3830 #ifdef CONFIG_NUMA
3831 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3832 					int node, unsigned long caller)
3833 {
3834 	struct kmem_cache *s;
3835 	void *ret;
3836 
3837 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3838 		ret = kmalloc_large_node(size, gfpflags, node);
3839 
3840 		trace_kmalloc_node(caller, ret,
3841 				   size, PAGE_SIZE << get_order(size),
3842 				   gfpflags, node);
3843 
3844 		return ret;
3845 	}
3846 
3847 	s = kmalloc_slab(size, gfpflags);
3848 
3849 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3850 		return s;
3851 
3852 	ret = slab_alloc_node(s, gfpflags, node, caller);
3853 
3854 	/* Honor the call site pointer we received. */
3855 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3856 
3857 	return ret;
3858 }
3859 #endif
3860 
3861 #ifdef CONFIG_SYSFS
3862 static int count_inuse(struct page *page)
3863 {
3864 	return page->inuse;
3865 }
3866 
3867 static int count_total(struct page *page)
3868 {
3869 	return page->objects;
3870 }
3871 #endif
3872 
3873 #ifdef CONFIG_SLUB_DEBUG
3874 static int validate_slab(struct kmem_cache *s, struct page *page,
3875 						unsigned long *map)
3876 {
3877 	void *p;
3878 	void *addr = page_address(page);
3879 
3880 	if (!check_slab(s, page) ||
3881 			!on_freelist(s, page, NULL))
3882 		return 0;
3883 
3884 	/* Now we know that a valid freelist exists */
3885 	bitmap_zero(map, page->objects);
3886 
3887 	get_map(s, page, map);
3888 	for_each_object(p, s, addr, page->objects) {
3889 		if (test_bit(slab_index(p, s, addr), map))
3890 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3891 				return 0;
3892 	}
3893 
3894 	for_each_object(p, s, addr, page->objects)
3895 		if (!test_bit(slab_index(p, s, addr), map))
3896 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3897 				return 0;
3898 	return 1;
3899 }
3900 
3901 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3902 						unsigned long *map)
3903 {
3904 	slab_lock(page);
3905 	validate_slab(s, page, map);
3906 	slab_unlock(page);
3907 }
3908 
3909 static int validate_slab_node(struct kmem_cache *s,
3910 		struct kmem_cache_node *n, unsigned long *map)
3911 {
3912 	unsigned long count = 0;
3913 	struct page *page;
3914 	unsigned long flags;
3915 
3916 	spin_lock_irqsave(&n->list_lock, flags);
3917 
3918 	list_for_each_entry(page, &n->partial, lru) {
3919 		validate_slab_slab(s, page, map);
3920 		count++;
3921 	}
3922 	if (count != n->nr_partial)
3923 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3924 		       s->name, count, n->nr_partial);
3925 
3926 	if (!(s->flags & SLAB_STORE_USER))
3927 		goto out;
3928 
3929 	list_for_each_entry(page, &n->full, lru) {
3930 		validate_slab_slab(s, page, map);
3931 		count++;
3932 	}
3933 	if (count != atomic_long_read(&n->nr_slabs))
3934 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3935 		       s->name, count, atomic_long_read(&n->nr_slabs));
3936 
3937 out:
3938 	spin_unlock_irqrestore(&n->list_lock, flags);
3939 	return count;
3940 }
3941 
3942 static long validate_slab_cache(struct kmem_cache *s)
3943 {
3944 	int node;
3945 	unsigned long count = 0;
3946 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3947 				sizeof(unsigned long), GFP_KERNEL);
3948 	struct kmem_cache_node *n;
3949 
3950 	if (!map)
3951 		return -ENOMEM;
3952 
3953 	flush_all(s);
3954 	for_each_kmem_cache_node(s, node, n)
3955 		count += validate_slab_node(s, n, map);
3956 	kfree(map);
3957 	return count;
3958 }
3959 /*
3960  * Generate lists of code addresses where slabcache objects are allocated
3961  * and freed.
3962  */
3963 
3964 struct location {
3965 	unsigned long count;
3966 	unsigned long addr;
3967 	long long sum_time;
3968 	long min_time;
3969 	long max_time;
3970 	long min_pid;
3971 	long max_pid;
3972 	DECLARE_BITMAP(cpus, NR_CPUS);
3973 	nodemask_t nodes;
3974 };
3975 
3976 struct loc_track {
3977 	unsigned long max;
3978 	unsigned long count;
3979 	struct location *loc;
3980 };
3981 
3982 static void free_loc_track(struct loc_track *t)
3983 {
3984 	if (t->max)
3985 		free_pages((unsigned long)t->loc,
3986 			get_order(sizeof(struct location) * t->max));
3987 }
3988 
3989 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3990 {
3991 	struct location *l;
3992 	int order;
3993 
3994 	order = get_order(sizeof(struct location) * max);
3995 
3996 	l = (void *)__get_free_pages(flags, order);
3997 	if (!l)
3998 		return 0;
3999 
4000 	if (t->count) {
4001 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4002 		free_loc_track(t);
4003 	}
4004 	t->max = max;
4005 	t->loc = l;
4006 	return 1;
4007 }
4008 
4009 static int add_location(struct loc_track *t, struct kmem_cache *s,
4010 				const struct track *track)
4011 {
4012 	long start, end, pos;
4013 	struct location *l;
4014 	unsigned long caddr;
4015 	unsigned long age = jiffies - track->when;
4016 
4017 	start = -1;
4018 	end = t->count;
4019 
4020 	for ( ; ; ) {
4021 		pos = start + (end - start + 1) / 2;
4022 
4023 		/*
4024 		 * There is nothing at "end". If we end up there
4025 		 * we need to add something to before end.
4026 		 */
4027 		if (pos == end)
4028 			break;
4029 
4030 		caddr = t->loc[pos].addr;
4031 		if (track->addr == caddr) {
4032 
4033 			l = &t->loc[pos];
4034 			l->count++;
4035 			if (track->when) {
4036 				l->sum_time += age;
4037 				if (age < l->min_time)
4038 					l->min_time = age;
4039 				if (age > l->max_time)
4040 					l->max_time = age;
4041 
4042 				if (track->pid < l->min_pid)
4043 					l->min_pid = track->pid;
4044 				if (track->pid > l->max_pid)
4045 					l->max_pid = track->pid;
4046 
4047 				cpumask_set_cpu(track->cpu,
4048 						to_cpumask(l->cpus));
4049 			}
4050 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4051 			return 1;
4052 		}
4053 
4054 		if (track->addr < caddr)
4055 			end = pos;
4056 		else
4057 			start = pos;
4058 	}
4059 
4060 	/*
4061 	 * Not found. Insert new tracking element.
4062 	 */
4063 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4064 		return 0;
4065 
4066 	l = t->loc + pos;
4067 	if (pos < t->count)
4068 		memmove(l + 1, l,
4069 			(t->count - pos) * sizeof(struct location));
4070 	t->count++;
4071 	l->count = 1;
4072 	l->addr = track->addr;
4073 	l->sum_time = age;
4074 	l->min_time = age;
4075 	l->max_time = age;
4076 	l->min_pid = track->pid;
4077 	l->max_pid = track->pid;
4078 	cpumask_clear(to_cpumask(l->cpus));
4079 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4080 	nodes_clear(l->nodes);
4081 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4082 	return 1;
4083 }
4084 
4085 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4086 		struct page *page, enum track_item alloc,
4087 		unsigned long *map)
4088 {
4089 	void *addr = page_address(page);
4090 	void *p;
4091 
4092 	bitmap_zero(map, page->objects);
4093 	get_map(s, page, map);
4094 
4095 	for_each_object(p, s, addr, page->objects)
4096 		if (!test_bit(slab_index(p, s, addr), map))
4097 			add_location(t, s, get_track(s, p, alloc));
4098 }
4099 
4100 static int list_locations(struct kmem_cache *s, char *buf,
4101 					enum track_item alloc)
4102 {
4103 	int len = 0;
4104 	unsigned long i;
4105 	struct loc_track t = { 0, 0, NULL };
4106 	int node;
4107 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4108 				     sizeof(unsigned long), GFP_KERNEL);
4109 	struct kmem_cache_node *n;
4110 
4111 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4112 				     GFP_TEMPORARY)) {
4113 		kfree(map);
4114 		return sprintf(buf, "Out of memory\n");
4115 	}
4116 	/* Push back cpu slabs */
4117 	flush_all(s);
4118 
4119 	for_each_kmem_cache_node(s, node, n) {
4120 		unsigned long flags;
4121 		struct page *page;
4122 
4123 		if (!atomic_long_read(&n->nr_slabs))
4124 			continue;
4125 
4126 		spin_lock_irqsave(&n->list_lock, flags);
4127 		list_for_each_entry(page, &n->partial, lru)
4128 			process_slab(&t, s, page, alloc, map);
4129 		list_for_each_entry(page, &n->full, lru)
4130 			process_slab(&t, s, page, alloc, map);
4131 		spin_unlock_irqrestore(&n->list_lock, flags);
4132 	}
4133 
4134 	for (i = 0; i < t.count; i++) {
4135 		struct location *l = &t.loc[i];
4136 
4137 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4138 			break;
4139 		len += sprintf(buf + len, "%7ld ", l->count);
4140 
4141 		if (l->addr)
4142 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4143 		else
4144 			len += sprintf(buf + len, "<not-available>");
4145 
4146 		if (l->sum_time != l->min_time) {
4147 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4148 				l->min_time,
4149 				(long)div_u64(l->sum_time, l->count),
4150 				l->max_time);
4151 		} else
4152 			len += sprintf(buf + len, " age=%ld",
4153 				l->min_time);
4154 
4155 		if (l->min_pid != l->max_pid)
4156 			len += sprintf(buf + len, " pid=%ld-%ld",
4157 				l->min_pid, l->max_pid);
4158 		else
4159 			len += sprintf(buf + len, " pid=%ld",
4160 				l->min_pid);
4161 
4162 		if (num_online_cpus() > 1 &&
4163 				!cpumask_empty(to_cpumask(l->cpus)) &&
4164 				len < PAGE_SIZE - 60)
4165 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4166 					 " cpus=%*pbl",
4167 					 cpumask_pr_args(to_cpumask(l->cpus)));
4168 
4169 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4170 				len < PAGE_SIZE - 60)
4171 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4172 					 " nodes=%*pbl",
4173 					 nodemask_pr_args(&l->nodes));
4174 
4175 		len += sprintf(buf + len, "\n");
4176 	}
4177 
4178 	free_loc_track(&t);
4179 	kfree(map);
4180 	if (!t.count)
4181 		len += sprintf(buf, "No data\n");
4182 	return len;
4183 }
4184 #endif
4185 
4186 #ifdef SLUB_RESILIENCY_TEST
4187 static void __init resiliency_test(void)
4188 {
4189 	u8 *p;
4190 
4191 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4192 
4193 	pr_err("SLUB resiliency testing\n");
4194 	pr_err("-----------------------\n");
4195 	pr_err("A. Corruption after allocation\n");
4196 
4197 	p = kzalloc(16, GFP_KERNEL);
4198 	p[16] = 0x12;
4199 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4200 	       p + 16);
4201 
4202 	validate_slab_cache(kmalloc_caches[4]);
4203 
4204 	/* Hmmm... The next two are dangerous */
4205 	p = kzalloc(32, GFP_KERNEL);
4206 	p[32 + sizeof(void *)] = 0x34;
4207 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4208 	       p);
4209 	pr_err("If allocated object is overwritten then not detectable\n\n");
4210 
4211 	validate_slab_cache(kmalloc_caches[5]);
4212 	p = kzalloc(64, GFP_KERNEL);
4213 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4214 	*p = 0x56;
4215 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4216 	       p);
4217 	pr_err("If allocated object is overwritten then not detectable\n\n");
4218 	validate_slab_cache(kmalloc_caches[6]);
4219 
4220 	pr_err("\nB. Corruption after free\n");
4221 	p = kzalloc(128, GFP_KERNEL);
4222 	kfree(p);
4223 	*p = 0x78;
4224 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4225 	validate_slab_cache(kmalloc_caches[7]);
4226 
4227 	p = kzalloc(256, GFP_KERNEL);
4228 	kfree(p);
4229 	p[50] = 0x9a;
4230 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4231 	validate_slab_cache(kmalloc_caches[8]);
4232 
4233 	p = kzalloc(512, GFP_KERNEL);
4234 	kfree(p);
4235 	p[512] = 0xab;
4236 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4237 	validate_slab_cache(kmalloc_caches[9]);
4238 }
4239 #else
4240 #ifdef CONFIG_SYSFS
4241 static void resiliency_test(void) {};
4242 #endif
4243 #endif
4244 
4245 #ifdef CONFIG_SYSFS
4246 enum slab_stat_type {
4247 	SL_ALL,			/* All slabs */
4248 	SL_PARTIAL,		/* Only partially allocated slabs */
4249 	SL_CPU,			/* Only slabs used for cpu caches */
4250 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4251 	SL_TOTAL		/* Determine object capacity not slabs */
4252 };
4253 
4254 #define SO_ALL		(1 << SL_ALL)
4255 #define SO_PARTIAL	(1 << SL_PARTIAL)
4256 #define SO_CPU		(1 << SL_CPU)
4257 #define SO_OBJECTS	(1 << SL_OBJECTS)
4258 #define SO_TOTAL	(1 << SL_TOTAL)
4259 
4260 static ssize_t show_slab_objects(struct kmem_cache *s,
4261 			    char *buf, unsigned long flags)
4262 {
4263 	unsigned long total = 0;
4264 	int node;
4265 	int x;
4266 	unsigned long *nodes;
4267 
4268 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4269 	if (!nodes)
4270 		return -ENOMEM;
4271 
4272 	if (flags & SO_CPU) {
4273 		int cpu;
4274 
4275 		for_each_possible_cpu(cpu) {
4276 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4277 							       cpu);
4278 			int node;
4279 			struct page *page;
4280 
4281 			page = READ_ONCE(c->page);
4282 			if (!page)
4283 				continue;
4284 
4285 			node = page_to_nid(page);
4286 			if (flags & SO_TOTAL)
4287 				x = page->objects;
4288 			else if (flags & SO_OBJECTS)
4289 				x = page->inuse;
4290 			else
4291 				x = 1;
4292 
4293 			total += x;
4294 			nodes[node] += x;
4295 
4296 			page = READ_ONCE(c->partial);
4297 			if (page) {
4298 				node = page_to_nid(page);
4299 				if (flags & SO_TOTAL)
4300 					WARN_ON_ONCE(1);
4301 				else if (flags & SO_OBJECTS)
4302 					WARN_ON_ONCE(1);
4303 				else
4304 					x = page->pages;
4305 				total += x;
4306 				nodes[node] += x;
4307 			}
4308 		}
4309 	}
4310 
4311 	get_online_mems();
4312 #ifdef CONFIG_SLUB_DEBUG
4313 	if (flags & SO_ALL) {
4314 		struct kmem_cache_node *n;
4315 
4316 		for_each_kmem_cache_node(s, node, n) {
4317 
4318 			if (flags & SO_TOTAL)
4319 				x = atomic_long_read(&n->total_objects);
4320 			else if (flags & SO_OBJECTS)
4321 				x = atomic_long_read(&n->total_objects) -
4322 					count_partial(n, count_free);
4323 			else
4324 				x = atomic_long_read(&n->nr_slabs);
4325 			total += x;
4326 			nodes[node] += x;
4327 		}
4328 
4329 	} else
4330 #endif
4331 	if (flags & SO_PARTIAL) {
4332 		struct kmem_cache_node *n;
4333 
4334 		for_each_kmem_cache_node(s, node, n) {
4335 			if (flags & SO_TOTAL)
4336 				x = count_partial(n, count_total);
4337 			else if (flags & SO_OBJECTS)
4338 				x = count_partial(n, count_inuse);
4339 			else
4340 				x = n->nr_partial;
4341 			total += x;
4342 			nodes[node] += x;
4343 		}
4344 	}
4345 	x = sprintf(buf, "%lu", total);
4346 #ifdef CONFIG_NUMA
4347 	for (node = 0; node < nr_node_ids; node++)
4348 		if (nodes[node])
4349 			x += sprintf(buf + x, " N%d=%lu",
4350 					node, nodes[node]);
4351 #endif
4352 	put_online_mems();
4353 	kfree(nodes);
4354 	return x + sprintf(buf + x, "\n");
4355 }
4356 
4357 #ifdef CONFIG_SLUB_DEBUG
4358 static int any_slab_objects(struct kmem_cache *s)
4359 {
4360 	int node;
4361 	struct kmem_cache_node *n;
4362 
4363 	for_each_kmem_cache_node(s, node, n)
4364 		if (atomic_long_read(&n->total_objects))
4365 			return 1;
4366 
4367 	return 0;
4368 }
4369 #endif
4370 
4371 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4372 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4373 
4374 struct slab_attribute {
4375 	struct attribute attr;
4376 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4377 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4378 };
4379 
4380 #define SLAB_ATTR_RO(_name) \
4381 	static struct slab_attribute _name##_attr = \
4382 	__ATTR(_name, 0400, _name##_show, NULL)
4383 
4384 #define SLAB_ATTR(_name) \
4385 	static struct slab_attribute _name##_attr =  \
4386 	__ATTR(_name, 0600, _name##_show, _name##_store)
4387 
4388 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4389 {
4390 	return sprintf(buf, "%d\n", s->size);
4391 }
4392 SLAB_ATTR_RO(slab_size);
4393 
4394 static ssize_t align_show(struct kmem_cache *s, char *buf)
4395 {
4396 	return sprintf(buf, "%d\n", s->align);
4397 }
4398 SLAB_ATTR_RO(align);
4399 
4400 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4401 {
4402 	return sprintf(buf, "%d\n", s->object_size);
4403 }
4404 SLAB_ATTR_RO(object_size);
4405 
4406 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4407 {
4408 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4409 }
4410 SLAB_ATTR_RO(objs_per_slab);
4411 
4412 static ssize_t order_store(struct kmem_cache *s,
4413 				const char *buf, size_t length)
4414 {
4415 	unsigned long order;
4416 	int err;
4417 
4418 	err = kstrtoul(buf, 10, &order);
4419 	if (err)
4420 		return err;
4421 
4422 	if (order > slub_max_order || order < slub_min_order)
4423 		return -EINVAL;
4424 
4425 	calculate_sizes(s, order);
4426 	return length;
4427 }
4428 
4429 static ssize_t order_show(struct kmem_cache *s, char *buf)
4430 {
4431 	return sprintf(buf, "%d\n", oo_order(s->oo));
4432 }
4433 SLAB_ATTR(order);
4434 
4435 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4436 {
4437 	return sprintf(buf, "%lu\n", s->min_partial);
4438 }
4439 
4440 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4441 				 size_t length)
4442 {
4443 	unsigned long min;
4444 	int err;
4445 
4446 	err = kstrtoul(buf, 10, &min);
4447 	if (err)
4448 		return err;
4449 
4450 	set_min_partial(s, min);
4451 	return length;
4452 }
4453 SLAB_ATTR(min_partial);
4454 
4455 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4456 {
4457 	return sprintf(buf, "%u\n", s->cpu_partial);
4458 }
4459 
4460 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4461 				 size_t length)
4462 {
4463 	unsigned long objects;
4464 	int err;
4465 
4466 	err = kstrtoul(buf, 10, &objects);
4467 	if (err)
4468 		return err;
4469 	if (objects && !kmem_cache_has_cpu_partial(s))
4470 		return -EINVAL;
4471 
4472 	s->cpu_partial = objects;
4473 	flush_all(s);
4474 	return length;
4475 }
4476 SLAB_ATTR(cpu_partial);
4477 
4478 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4479 {
4480 	if (!s->ctor)
4481 		return 0;
4482 	return sprintf(buf, "%pS\n", s->ctor);
4483 }
4484 SLAB_ATTR_RO(ctor);
4485 
4486 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4487 {
4488 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4489 }
4490 SLAB_ATTR_RO(aliases);
4491 
4492 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4493 {
4494 	return show_slab_objects(s, buf, SO_PARTIAL);
4495 }
4496 SLAB_ATTR_RO(partial);
4497 
4498 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4499 {
4500 	return show_slab_objects(s, buf, SO_CPU);
4501 }
4502 SLAB_ATTR_RO(cpu_slabs);
4503 
4504 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4505 {
4506 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4507 }
4508 SLAB_ATTR_RO(objects);
4509 
4510 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4511 {
4512 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4513 }
4514 SLAB_ATTR_RO(objects_partial);
4515 
4516 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4517 {
4518 	int objects = 0;
4519 	int pages = 0;
4520 	int cpu;
4521 	int len;
4522 
4523 	for_each_online_cpu(cpu) {
4524 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4525 
4526 		if (page) {
4527 			pages += page->pages;
4528 			objects += page->pobjects;
4529 		}
4530 	}
4531 
4532 	len = sprintf(buf, "%d(%d)", objects, pages);
4533 
4534 #ifdef CONFIG_SMP
4535 	for_each_online_cpu(cpu) {
4536 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4537 
4538 		if (page && len < PAGE_SIZE - 20)
4539 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4540 				page->pobjects, page->pages);
4541 	}
4542 #endif
4543 	return len + sprintf(buf + len, "\n");
4544 }
4545 SLAB_ATTR_RO(slabs_cpu_partial);
4546 
4547 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4548 {
4549 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4550 }
4551 
4552 static ssize_t reclaim_account_store(struct kmem_cache *s,
4553 				const char *buf, size_t length)
4554 {
4555 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4556 	if (buf[0] == '1')
4557 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4558 	return length;
4559 }
4560 SLAB_ATTR(reclaim_account);
4561 
4562 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4563 {
4564 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4565 }
4566 SLAB_ATTR_RO(hwcache_align);
4567 
4568 #ifdef CONFIG_ZONE_DMA
4569 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4570 {
4571 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4572 }
4573 SLAB_ATTR_RO(cache_dma);
4574 #endif
4575 
4576 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4577 {
4578 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4579 }
4580 SLAB_ATTR_RO(destroy_by_rcu);
4581 
4582 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4583 {
4584 	return sprintf(buf, "%d\n", s->reserved);
4585 }
4586 SLAB_ATTR_RO(reserved);
4587 
4588 #ifdef CONFIG_SLUB_DEBUG
4589 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4590 {
4591 	return show_slab_objects(s, buf, SO_ALL);
4592 }
4593 SLAB_ATTR_RO(slabs);
4594 
4595 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4596 {
4597 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4598 }
4599 SLAB_ATTR_RO(total_objects);
4600 
4601 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4602 {
4603 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4604 }
4605 
4606 static ssize_t sanity_checks_store(struct kmem_cache *s,
4607 				const char *buf, size_t length)
4608 {
4609 	s->flags &= ~SLAB_DEBUG_FREE;
4610 	if (buf[0] == '1') {
4611 		s->flags &= ~__CMPXCHG_DOUBLE;
4612 		s->flags |= SLAB_DEBUG_FREE;
4613 	}
4614 	return length;
4615 }
4616 SLAB_ATTR(sanity_checks);
4617 
4618 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4619 {
4620 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4621 }
4622 
4623 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4624 							size_t length)
4625 {
4626 	/*
4627 	 * Tracing a merged cache is going to give confusing results
4628 	 * as well as cause other issues like converting a mergeable
4629 	 * cache into an umergeable one.
4630 	 */
4631 	if (s->refcount > 1)
4632 		return -EINVAL;
4633 
4634 	s->flags &= ~SLAB_TRACE;
4635 	if (buf[0] == '1') {
4636 		s->flags &= ~__CMPXCHG_DOUBLE;
4637 		s->flags |= SLAB_TRACE;
4638 	}
4639 	return length;
4640 }
4641 SLAB_ATTR(trace);
4642 
4643 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4644 {
4645 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4646 }
4647 
4648 static ssize_t red_zone_store(struct kmem_cache *s,
4649 				const char *buf, size_t length)
4650 {
4651 	if (any_slab_objects(s))
4652 		return -EBUSY;
4653 
4654 	s->flags &= ~SLAB_RED_ZONE;
4655 	if (buf[0] == '1') {
4656 		s->flags &= ~__CMPXCHG_DOUBLE;
4657 		s->flags |= SLAB_RED_ZONE;
4658 	}
4659 	calculate_sizes(s, -1);
4660 	return length;
4661 }
4662 SLAB_ATTR(red_zone);
4663 
4664 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4665 {
4666 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4667 }
4668 
4669 static ssize_t poison_store(struct kmem_cache *s,
4670 				const char *buf, size_t length)
4671 {
4672 	if (any_slab_objects(s))
4673 		return -EBUSY;
4674 
4675 	s->flags &= ~SLAB_POISON;
4676 	if (buf[0] == '1') {
4677 		s->flags &= ~__CMPXCHG_DOUBLE;
4678 		s->flags |= SLAB_POISON;
4679 	}
4680 	calculate_sizes(s, -1);
4681 	return length;
4682 }
4683 SLAB_ATTR(poison);
4684 
4685 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4686 {
4687 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4688 }
4689 
4690 static ssize_t store_user_store(struct kmem_cache *s,
4691 				const char *buf, size_t length)
4692 {
4693 	if (any_slab_objects(s))
4694 		return -EBUSY;
4695 
4696 	s->flags &= ~SLAB_STORE_USER;
4697 	if (buf[0] == '1') {
4698 		s->flags &= ~__CMPXCHG_DOUBLE;
4699 		s->flags |= SLAB_STORE_USER;
4700 	}
4701 	calculate_sizes(s, -1);
4702 	return length;
4703 }
4704 SLAB_ATTR(store_user);
4705 
4706 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4707 {
4708 	return 0;
4709 }
4710 
4711 static ssize_t validate_store(struct kmem_cache *s,
4712 			const char *buf, size_t length)
4713 {
4714 	int ret = -EINVAL;
4715 
4716 	if (buf[0] == '1') {
4717 		ret = validate_slab_cache(s);
4718 		if (ret >= 0)
4719 			ret = length;
4720 	}
4721 	return ret;
4722 }
4723 SLAB_ATTR(validate);
4724 
4725 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4726 {
4727 	if (!(s->flags & SLAB_STORE_USER))
4728 		return -ENOSYS;
4729 	return list_locations(s, buf, TRACK_ALLOC);
4730 }
4731 SLAB_ATTR_RO(alloc_calls);
4732 
4733 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4734 {
4735 	if (!(s->flags & SLAB_STORE_USER))
4736 		return -ENOSYS;
4737 	return list_locations(s, buf, TRACK_FREE);
4738 }
4739 SLAB_ATTR_RO(free_calls);
4740 #endif /* CONFIG_SLUB_DEBUG */
4741 
4742 #ifdef CONFIG_FAILSLAB
4743 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4744 {
4745 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4746 }
4747 
4748 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4749 							size_t length)
4750 {
4751 	if (s->refcount > 1)
4752 		return -EINVAL;
4753 
4754 	s->flags &= ~SLAB_FAILSLAB;
4755 	if (buf[0] == '1')
4756 		s->flags |= SLAB_FAILSLAB;
4757 	return length;
4758 }
4759 SLAB_ATTR(failslab);
4760 #endif
4761 
4762 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4763 {
4764 	return 0;
4765 }
4766 
4767 static ssize_t shrink_store(struct kmem_cache *s,
4768 			const char *buf, size_t length)
4769 {
4770 	if (buf[0] == '1')
4771 		kmem_cache_shrink(s);
4772 	else
4773 		return -EINVAL;
4774 	return length;
4775 }
4776 SLAB_ATTR(shrink);
4777 
4778 #ifdef CONFIG_NUMA
4779 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4780 {
4781 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4782 }
4783 
4784 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4785 				const char *buf, size_t length)
4786 {
4787 	unsigned long ratio;
4788 	int err;
4789 
4790 	err = kstrtoul(buf, 10, &ratio);
4791 	if (err)
4792 		return err;
4793 
4794 	if (ratio <= 100)
4795 		s->remote_node_defrag_ratio = ratio * 10;
4796 
4797 	return length;
4798 }
4799 SLAB_ATTR(remote_node_defrag_ratio);
4800 #endif
4801 
4802 #ifdef CONFIG_SLUB_STATS
4803 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4804 {
4805 	unsigned long sum  = 0;
4806 	int cpu;
4807 	int len;
4808 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4809 
4810 	if (!data)
4811 		return -ENOMEM;
4812 
4813 	for_each_online_cpu(cpu) {
4814 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4815 
4816 		data[cpu] = x;
4817 		sum += x;
4818 	}
4819 
4820 	len = sprintf(buf, "%lu", sum);
4821 
4822 #ifdef CONFIG_SMP
4823 	for_each_online_cpu(cpu) {
4824 		if (data[cpu] && len < PAGE_SIZE - 20)
4825 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4826 	}
4827 #endif
4828 	kfree(data);
4829 	return len + sprintf(buf + len, "\n");
4830 }
4831 
4832 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4833 {
4834 	int cpu;
4835 
4836 	for_each_online_cpu(cpu)
4837 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4838 }
4839 
4840 #define STAT_ATTR(si, text) 					\
4841 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4842 {								\
4843 	return show_stat(s, buf, si);				\
4844 }								\
4845 static ssize_t text##_store(struct kmem_cache *s,		\
4846 				const char *buf, size_t length)	\
4847 {								\
4848 	if (buf[0] != '0')					\
4849 		return -EINVAL;					\
4850 	clear_stat(s, si);					\
4851 	return length;						\
4852 }								\
4853 SLAB_ATTR(text);						\
4854 
4855 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4856 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4857 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4858 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4859 STAT_ATTR(FREE_FROZEN, free_frozen);
4860 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4861 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4862 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4863 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4864 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4865 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4866 STAT_ATTR(FREE_SLAB, free_slab);
4867 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4868 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4869 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4870 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4871 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4872 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4873 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4874 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4875 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4876 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4877 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4878 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4879 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4880 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4881 #endif
4882 
4883 static struct attribute *slab_attrs[] = {
4884 	&slab_size_attr.attr,
4885 	&object_size_attr.attr,
4886 	&objs_per_slab_attr.attr,
4887 	&order_attr.attr,
4888 	&min_partial_attr.attr,
4889 	&cpu_partial_attr.attr,
4890 	&objects_attr.attr,
4891 	&objects_partial_attr.attr,
4892 	&partial_attr.attr,
4893 	&cpu_slabs_attr.attr,
4894 	&ctor_attr.attr,
4895 	&aliases_attr.attr,
4896 	&align_attr.attr,
4897 	&hwcache_align_attr.attr,
4898 	&reclaim_account_attr.attr,
4899 	&destroy_by_rcu_attr.attr,
4900 	&shrink_attr.attr,
4901 	&reserved_attr.attr,
4902 	&slabs_cpu_partial_attr.attr,
4903 #ifdef CONFIG_SLUB_DEBUG
4904 	&total_objects_attr.attr,
4905 	&slabs_attr.attr,
4906 	&sanity_checks_attr.attr,
4907 	&trace_attr.attr,
4908 	&red_zone_attr.attr,
4909 	&poison_attr.attr,
4910 	&store_user_attr.attr,
4911 	&validate_attr.attr,
4912 	&alloc_calls_attr.attr,
4913 	&free_calls_attr.attr,
4914 #endif
4915 #ifdef CONFIG_ZONE_DMA
4916 	&cache_dma_attr.attr,
4917 #endif
4918 #ifdef CONFIG_NUMA
4919 	&remote_node_defrag_ratio_attr.attr,
4920 #endif
4921 #ifdef CONFIG_SLUB_STATS
4922 	&alloc_fastpath_attr.attr,
4923 	&alloc_slowpath_attr.attr,
4924 	&free_fastpath_attr.attr,
4925 	&free_slowpath_attr.attr,
4926 	&free_frozen_attr.attr,
4927 	&free_add_partial_attr.attr,
4928 	&free_remove_partial_attr.attr,
4929 	&alloc_from_partial_attr.attr,
4930 	&alloc_slab_attr.attr,
4931 	&alloc_refill_attr.attr,
4932 	&alloc_node_mismatch_attr.attr,
4933 	&free_slab_attr.attr,
4934 	&cpuslab_flush_attr.attr,
4935 	&deactivate_full_attr.attr,
4936 	&deactivate_empty_attr.attr,
4937 	&deactivate_to_head_attr.attr,
4938 	&deactivate_to_tail_attr.attr,
4939 	&deactivate_remote_frees_attr.attr,
4940 	&deactivate_bypass_attr.attr,
4941 	&order_fallback_attr.attr,
4942 	&cmpxchg_double_fail_attr.attr,
4943 	&cmpxchg_double_cpu_fail_attr.attr,
4944 	&cpu_partial_alloc_attr.attr,
4945 	&cpu_partial_free_attr.attr,
4946 	&cpu_partial_node_attr.attr,
4947 	&cpu_partial_drain_attr.attr,
4948 #endif
4949 #ifdef CONFIG_FAILSLAB
4950 	&failslab_attr.attr,
4951 #endif
4952 
4953 	NULL
4954 };
4955 
4956 static struct attribute_group slab_attr_group = {
4957 	.attrs = slab_attrs,
4958 };
4959 
4960 static ssize_t slab_attr_show(struct kobject *kobj,
4961 				struct attribute *attr,
4962 				char *buf)
4963 {
4964 	struct slab_attribute *attribute;
4965 	struct kmem_cache *s;
4966 	int err;
4967 
4968 	attribute = to_slab_attr(attr);
4969 	s = to_slab(kobj);
4970 
4971 	if (!attribute->show)
4972 		return -EIO;
4973 
4974 	err = attribute->show(s, buf);
4975 
4976 	return err;
4977 }
4978 
4979 static ssize_t slab_attr_store(struct kobject *kobj,
4980 				struct attribute *attr,
4981 				const char *buf, size_t len)
4982 {
4983 	struct slab_attribute *attribute;
4984 	struct kmem_cache *s;
4985 	int err;
4986 
4987 	attribute = to_slab_attr(attr);
4988 	s = to_slab(kobj);
4989 
4990 	if (!attribute->store)
4991 		return -EIO;
4992 
4993 	err = attribute->store(s, buf, len);
4994 #ifdef CONFIG_MEMCG_KMEM
4995 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4996 		struct kmem_cache *c;
4997 
4998 		mutex_lock(&slab_mutex);
4999 		if (s->max_attr_size < len)
5000 			s->max_attr_size = len;
5001 
5002 		/*
5003 		 * This is a best effort propagation, so this function's return
5004 		 * value will be determined by the parent cache only. This is
5005 		 * basically because not all attributes will have a well
5006 		 * defined semantics for rollbacks - most of the actions will
5007 		 * have permanent effects.
5008 		 *
5009 		 * Returning the error value of any of the children that fail
5010 		 * is not 100 % defined, in the sense that users seeing the
5011 		 * error code won't be able to know anything about the state of
5012 		 * the cache.
5013 		 *
5014 		 * Only returning the error code for the parent cache at least
5015 		 * has well defined semantics. The cache being written to
5016 		 * directly either failed or succeeded, in which case we loop
5017 		 * through the descendants with best-effort propagation.
5018 		 */
5019 		for_each_memcg_cache(c, s)
5020 			attribute->store(c, buf, len);
5021 		mutex_unlock(&slab_mutex);
5022 	}
5023 #endif
5024 	return err;
5025 }
5026 
5027 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5028 {
5029 #ifdef CONFIG_MEMCG_KMEM
5030 	int i;
5031 	char *buffer = NULL;
5032 	struct kmem_cache *root_cache;
5033 
5034 	if (is_root_cache(s))
5035 		return;
5036 
5037 	root_cache = s->memcg_params.root_cache;
5038 
5039 	/*
5040 	 * This mean this cache had no attribute written. Therefore, no point
5041 	 * in copying default values around
5042 	 */
5043 	if (!root_cache->max_attr_size)
5044 		return;
5045 
5046 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5047 		char mbuf[64];
5048 		char *buf;
5049 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5050 
5051 		if (!attr || !attr->store || !attr->show)
5052 			continue;
5053 
5054 		/*
5055 		 * It is really bad that we have to allocate here, so we will
5056 		 * do it only as a fallback. If we actually allocate, though,
5057 		 * we can just use the allocated buffer until the end.
5058 		 *
5059 		 * Most of the slub attributes will tend to be very small in
5060 		 * size, but sysfs allows buffers up to a page, so they can
5061 		 * theoretically happen.
5062 		 */
5063 		if (buffer)
5064 			buf = buffer;
5065 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5066 			buf = mbuf;
5067 		else {
5068 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5069 			if (WARN_ON(!buffer))
5070 				continue;
5071 			buf = buffer;
5072 		}
5073 
5074 		attr->show(root_cache, buf);
5075 		attr->store(s, buf, strlen(buf));
5076 	}
5077 
5078 	if (buffer)
5079 		free_page((unsigned long)buffer);
5080 #endif
5081 }
5082 
5083 static void kmem_cache_release(struct kobject *k)
5084 {
5085 	slab_kmem_cache_release(to_slab(k));
5086 }
5087 
5088 static const struct sysfs_ops slab_sysfs_ops = {
5089 	.show = slab_attr_show,
5090 	.store = slab_attr_store,
5091 };
5092 
5093 static struct kobj_type slab_ktype = {
5094 	.sysfs_ops = &slab_sysfs_ops,
5095 	.release = kmem_cache_release,
5096 };
5097 
5098 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5099 {
5100 	struct kobj_type *ktype = get_ktype(kobj);
5101 
5102 	if (ktype == &slab_ktype)
5103 		return 1;
5104 	return 0;
5105 }
5106 
5107 static const struct kset_uevent_ops slab_uevent_ops = {
5108 	.filter = uevent_filter,
5109 };
5110 
5111 static struct kset *slab_kset;
5112 
5113 static inline struct kset *cache_kset(struct kmem_cache *s)
5114 {
5115 #ifdef CONFIG_MEMCG_KMEM
5116 	if (!is_root_cache(s))
5117 		return s->memcg_params.root_cache->memcg_kset;
5118 #endif
5119 	return slab_kset;
5120 }
5121 
5122 #define ID_STR_LENGTH 64
5123 
5124 /* Create a unique string id for a slab cache:
5125  *
5126  * Format	:[flags-]size
5127  */
5128 static char *create_unique_id(struct kmem_cache *s)
5129 {
5130 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5131 	char *p = name;
5132 
5133 	BUG_ON(!name);
5134 
5135 	*p++ = ':';
5136 	/*
5137 	 * First flags affecting slabcache operations. We will only
5138 	 * get here for aliasable slabs so we do not need to support
5139 	 * too many flags. The flags here must cover all flags that
5140 	 * are matched during merging to guarantee that the id is
5141 	 * unique.
5142 	 */
5143 	if (s->flags & SLAB_CACHE_DMA)
5144 		*p++ = 'd';
5145 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5146 		*p++ = 'a';
5147 	if (s->flags & SLAB_DEBUG_FREE)
5148 		*p++ = 'F';
5149 	if (!(s->flags & SLAB_NOTRACK))
5150 		*p++ = 't';
5151 	if (p != name + 1)
5152 		*p++ = '-';
5153 	p += sprintf(p, "%07d", s->size);
5154 
5155 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5156 	return name;
5157 }
5158 
5159 static int sysfs_slab_add(struct kmem_cache *s)
5160 {
5161 	int err;
5162 	const char *name;
5163 	int unmergeable = slab_unmergeable(s);
5164 
5165 	if (unmergeable) {
5166 		/*
5167 		 * Slabcache can never be merged so we can use the name proper.
5168 		 * This is typically the case for debug situations. In that
5169 		 * case we can catch duplicate names easily.
5170 		 */
5171 		sysfs_remove_link(&slab_kset->kobj, s->name);
5172 		name = s->name;
5173 	} else {
5174 		/*
5175 		 * Create a unique name for the slab as a target
5176 		 * for the symlinks.
5177 		 */
5178 		name = create_unique_id(s);
5179 	}
5180 
5181 	s->kobj.kset = cache_kset(s);
5182 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5183 	if (err)
5184 		goto out_put_kobj;
5185 
5186 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5187 	if (err)
5188 		goto out_del_kobj;
5189 
5190 #ifdef CONFIG_MEMCG_KMEM
5191 	if (is_root_cache(s)) {
5192 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5193 		if (!s->memcg_kset) {
5194 			err = -ENOMEM;
5195 			goto out_del_kobj;
5196 		}
5197 	}
5198 #endif
5199 
5200 	kobject_uevent(&s->kobj, KOBJ_ADD);
5201 	if (!unmergeable) {
5202 		/* Setup first alias */
5203 		sysfs_slab_alias(s, s->name);
5204 	}
5205 out:
5206 	if (!unmergeable)
5207 		kfree(name);
5208 	return err;
5209 out_del_kobj:
5210 	kobject_del(&s->kobj);
5211 out_put_kobj:
5212 	kobject_put(&s->kobj);
5213 	goto out;
5214 }
5215 
5216 void sysfs_slab_remove(struct kmem_cache *s)
5217 {
5218 	if (slab_state < FULL)
5219 		/*
5220 		 * Sysfs has not been setup yet so no need to remove the
5221 		 * cache from sysfs.
5222 		 */
5223 		return;
5224 
5225 #ifdef CONFIG_MEMCG_KMEM
5226 	kset_unregister(s->memcg_kset);
5227 #endif
5228 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5229 	kobject_del(&s->kobj);
5230 	kobject_put(&s->kobj);
5231 }
5232 
5233 /*
5234  * Need to buffer aliases during bootup until sysfs becomes
5235  * available lest we lose that information.
5236  */
5237 struct saved_alias {
5238 	struct kmem_cache *s;
5239 	const char *name;
5240 	struct saved_alias *next;
5241 };
5242 
5243 static struct saved_alias *alias_list;
5244 
5245 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5246 {
5247 	struct saved_alias *al;
5248 
5249 	if (slab_state == FULL) {
5250 		/*
5251 		 * If we have a leftover link then remove it.
5252 		 */
5253 		sysfs_remove_link(&slab_kset->kobj, name);
5254 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5255 	}
5256 
5257 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5258 	if (!al)
5259 		return -ENOMEM;
5260 
5261 	al->s = s;
5262 	al->name = name;
5263 	al->next = alias_list;
5264 	alias_list = al;
5265 	return 0;
5266 }
5267 
5268 static int __init slab_sysfs_init(void)
5269 {
5270 	struct kmem_cache *s;
5271 	int err;
5272 
5273 	mutex_lock(&slab_mutex);
5274 
5275 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5276 	if (!slab_kset) {
5277 		mutex_unlock(&slab_mutex);
5278 		pr_err("Cannot register slab subsystem.\n");
5279 		return -ENOSYS;
5280 	}
5281 
5282 	slab_state = FULL;
5283 
5284 	list_for_each_entry(s, &slab_caches, list) {
5285 		err = sysfs_slab_add(s);
5286 		if (err)
5287 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5288 			       s->name);
5289 	}
5290 
5291 	while (alias_list) {
5292 		struct saved_alias *al = alias_list;
5293 
5294 		alias_list = alias_list->next;
5295 		err = sysfs_slab_alias(al->s, al->name);
5296 		if (err)
5297 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5298 			       al->name);
5299 		kfree(al);
5300 	}
5301 
5302 	mutex_unlock(&slab_mutex);
5303 	resiliency_test();
5304 	return 0;
5305 }
5306 
5307 __initcall(slab_sysfs_init);
5308 #endif /* CONFIG_SYSFS */
5309 
5310 /*
5311  * The /proc/slabinfo ABI
5312  */
5313 #ifdef CONFIG_SLABINFO
5314 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5315 {
5316 	unsigned long nr_slabs = 0;
5317 	unsigned long nr_objs = 0;
5318 	unsigned long nr_free = 0;
5319 	int node;
5320 	struct kmem_cache_node *n;
5321 
5322 	for_each_kmem_cache_node(s, node, n) {
5323 		nr_slabs += node_nr_slabs(n);
5324 		nr_objs += node_nr_objs(n);
5325 		nr_free += count_partial(n, count_free);
5326 	}
5327 
5328 	sinfo->active_objs = nr_objs - nr_free;
5329 	sinfo->num_objs = nr_objs;
5330 	sinfo->active_slabs = nr_slabs;
5331 	sinfo->num_slabs = nr_slabs;
5332 	sinfo->objects_per_slab = oo_objects(s->oo);
5333 	sinfo->cache_order = oo_order(s->oo);
5334 }
5335 
5336 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5337 {
5338 }
5339 
5340 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5341 		       size_t count, loff_t *ppos)
5342 {
5343 	return -EIO;
5344 }
5345 #endif /* CONFIG_SLABINFO */
5346