xref: /openbmc/linux/mm/slub.c (revision 5bd8e16d)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 
37 #include <trace/events/kmem.h>
38 
39 #include "internal.h"
40 
41 /*
42  * Lock order:
43  *   1. slab_mutex (Global Mutex)
44  *   2. node->list_lock
45  *   3. slab_lock(page) (Only on some arches and for debugging)
46  *
47  *   slab_mutex
48  *
49  *   The role of the slab_mutex is to protect the list of all the slabs
50  *   and to synchronize major metadata changes to slab cache structures.
51  *
52  *   The slab_lock is only used for debugging and on arches that do not
53  *   have the ability to do a cmpxchg_double. It only protects the second
54  *   double word in the page struct. Meaning
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->counters	-> Counters of objects
57  *	C. page->frozen		-> frozen state
58  *
59  *   If a slab is frozen then it is exempt from list management. It is not
60  *   on any list. The processor that froze the slab is the one who can
61  *   perform list operations on the page. Other processors may put objects
62  *   onto the freelist but the processor that froze the slab is the only
63  *   one that can retrieve the objects from the page's freelist.
64  *
65  *   The list_lock protects the partial and full list on each node and
66  *   the partial slab counter. If taken then no new slabs may be added or
67  *   removed from the lists nor make the number of partial slabs be modified.
68  *   (Note that the total number of slabs is an atomic value that may be
69  *   modified without taking the list lock).
70  *
71  *   The list_lock is a centralized lock and thus we avoid taking it as
72  *   much as possible. As long as SLUB does not have to handle partial
73  *   slabs, operations can continue without any centralized lock. F.e.
74  *   allocating a long series of objects that fill up slabs does not require
75  *   the list lock.
76  *   Interrupts are disabled during allocation and deallocation in order to
77  *   make the slab allocator safe to use in the context of an irq. In addition
78  *   interrupts are disabled to ensure that the processor does not change
79  *   while handling per_cpu slabs, due to kernel preemption.
80  *
81  * SLUB assigns one slab for allocation to each processor.
82  * Allocations only occur from these slabs called cpu slabs.
83  *
84  * Slabs with free elements are kept on a partial list and during regular
85  * operations no list for full slabs is used. If an object in a full slab is
86  * freed then the slab will show up again on the partial lists.
87  * We track full slabs for debugging purposes though because otherwise we
88  * cannot scan all objects.
89  *
90  * Slabs are freed when they become empty. Teardown and setup is
91  * minimal so we rely on the page allocators per cpu caches for
92  * fast frees and allocs.
93  *
94  * Overloading of page flags that are otherwise used for LRU management.
95  *
96  * PageActive 		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * PageError		Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 	return 0;
123 #endif
124 }
125 
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 	return !kmem_cache_debug(s);
130 #else
131 	return false;
132 #endif
133 }
134 
135 /*
136  * Issues still to be resolved:
137  *
138  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139  *
140  * - Variable sizing of the per node arrays
141  */
142 
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145 
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148 
149 /*
150  * Mininum number of partial slabs. These will be left on the partial
151  * lists even if they are empty. kmem_cache_shrink may reclaim them.
152  */
153 #define MIN_PARTIAL 5
154 
155 /*
156  * Maximum number of desirable partial slabs.
157  * The existence of more partial slabs makes kmem_cache_shrink
158  * sort the partial list by the number of objects in the.
159  */
160 #define MAX_PARTIAL 10
161 
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 				SLAB_POISON | SLAB_STORE_USER)
164 
165 /*
166  * Debugging flags that require metadata to be stored in the slab.  These get
167  * disabled when slub_debug=O is used and a cache's min order increases with
168  * metadata.
169  */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171 
172 /*
173  * Set of flags that will prevent slab merging
174  */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 		SLAB_FAILSLAB)
178 
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 		SLAB_CACHE_DMA | SLAB_NOTRACK)
181 
182 #define OO_SHIFT	16
183 #define OO_MASK		((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185 
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON		0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
189 
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193 
194 /*
195  * Tracking user of a slab.
196  */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 	unsigned long addr;	/* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
202 #endif
203 	int cpu;		/* Was running on cpu */
204 	int pid;		/* Pid context */
205 	unsigned long when;	/* When did the operation occur */
206 };
207 
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209 
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void sysfs_slab_remove(struct kmem_cache *);
214 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
215 #else
216 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
217 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
218 							{ return 0; }
219 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220 
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
222 #endif
223 
224 static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 {
226 #ifdef CONFIG_SLUB_STATS
227 	__this_cpu_inc(s->cpu_slab->stat[si]);
228 #endif
229 }
230 
231 /********************************************************************
232  * 			Core slab cache functions
233  *******************************************************************/
234 
235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236 {
237 	return s->node[node];
238 }
239 
240 /* Verify that a pointer has an address that is valid within a slab page */
241 static inline int check_valid_pointer(struct kmem_cache *s,
242 				struct page *page, const void *object)
243 {
244 	void *base;
245 
246 	if (!object)
247 		return 1;
248 
249 	base = page_address(page);
250 	if (object < base || object >= base + page->objects * s->size ||
251 		(object - base) % s->size) {
252 		return 0;
253 	}
254 
255 	return 1;
256 }
257 
258 static inline void *get_freepointer(struct kmem_cache *s, void *object)
259 {
260 	return *(void **)(object + s->offset);
261 }
262 
263 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
264 {
265 	prefetch(object + s->offset);
266 }
267 
268 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269 {
270 	void *p;
271 
272 #ifdef CONFIG_DEBUG_PAGEALLOC
273 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274 #else
275 	p = get_freepointer(s, object);
276 #endif
277 	return p;
278 }
279 
280 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281 {
282 	*(void **)(object + s->offset) = fp;
283 }
284 
285 /* Loop over all objects in a slab */
286 #define for_each_object(__p, __s, __addr, __objects) \
287 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 			__p += (__s)->size)
289 
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292 {
293 	return (p - addr) / s->size;
294 }
295 
296 static inline size_t slab_ksize(const struct kmem_cache *s)
297 {
298 #ifdef CONFIG_SLUB_DEBUG
299 	/*
300 	 * Debugging requires use of the padding between object
301 	 * and whatever may come after it.
302 	 */
303 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304 		return s->object_size;
305 
306 #endif
307 	/*
308 	 * If we have the need to store the freelist pointer
309 	 * back there or track user information then we can
310 	 * only use the space before that information.
311 	 */
312 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 		return s->inuse;
314 	/*
315 	 * Else we can use all the padding etc for the allocation
316 	 */
317 	return s->size;
318 }
319 
320 static inline int order_objects(int order, unsigned long size, int reserved)
321 {
322 	return ((PAGE_SIZE << order) - reserved) / size;
323 }
324 
325 static inline struct kmem_cache_order_objects oo_make(int order,
326 		unsigned long size, int reserved)
327 {
328 	struct kmem_cache_order_objects x = {
329 		(order << OO_SHIFT) + order_objects(order, size, reserved)
330 	};
331 
332 	return x;
333 }
334 
335 static inline int oo_order(struct kmem_cache_order_objects x)
336 {
337 	return x.x >> OO_SHIFT;
338 }
339 
340 static inline int oo_objects(struct kmem_cache_order_objects x)
341 {
342 	return x.x & OO_MASK;
343 }
344 
345 /*
346  * Per slab locking using the pagelock
347  */
348 static __always_inline void slab_lock(struct page *page)
349 {
350 	bit_spin_lock(PG_locked, &page->flags);
351 }
352 
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 	__bit_spin_unlock(PG_locked, &page->flags);
356 }
357 
358 /* Interrupts must be disabled (for the fallback code to work right) */
359 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
360 		void *freelist_old, unsigned long counters_old,
361 		void *freelist_new, unsigned long counters_new,
362 		const char *n)
363 {
364 	VM_BUG_ON(!irqs_disabled());
365 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
366     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
367 	if (s->flags & __CMPXCHG_DOUBLE) {
368 		if (cmpxchg_double(&page->freelist, &page->counters,
369 			freelist_old, counters_old,
370 			freelist_new, counters_new))
371 		return 1;
372 	} else
373 #endif
374 	{
375 		slab_lock(page);
376 		if (page->freelist == freelist_old &&
377 					page->counters == counters_old) {
378 			page->freelist = freelist_new;
379 			page->counters = counters_new;
380 			slab_unlock(page);
381 			return 1;
382 		}
383 		slab_unlock(page);
384 	}
385 
386 	cpu_relax();
387 	stat(s, CMPXCHG_DOUBLE_FAIL);
388 
389 #ifdef SLUB_DEBUG_CMPXCHG
390 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
391 #endif
392 
393 	return 0;
394 }
395 
396 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
397 		void *freelist_old, unsigned long counters_old,
398 		void *freelist_new, unsigned long counters_new,
399 		const char *n)
400 {
401 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
402     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
403 	if (s->flags & __CMPXCHG_DOUBLE) {
404 		if (cmpxchg_double(&page->freelist, &page->counters,
405 			freelist_old, counters_old,
406 			freelist_new, counters_new))
407 		return 1;
408 	} else
409 #endif
410 	{
411 		unsigned long flags;
412 
413 		local_irq_save(flags);
414 		slab_lock(page);
415 		if (page->freelist == freelist_old &&
416 					page->counters == counters_old) {
417 			page->freelist = freelist_new;
418 			page->counters = counters_new;
419 			slab_unlock(page);
420 			local_irq_restore(flags);
421 			return 1;
422 		}
423 		slab_unlock(page);
424 		local_irq_restore(flags);
425 	}
426 
427 	cpu_relax();
428 	stat(s, CMPXCHG_DOUBLE_FAIL);
429 
430 #ifdef SLUB_DEBUG_CMPXCHG
431 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432 #endif
433 
434 	return 0;
435 }
436 
437 #ifdef CONFIG_SLUB_DEBUG
438 /*
439  * Determine a map of object in use on a page.
440  *
441  * Node listlock must be held to guarantee that the page does
442  * not vanish from under us.
443  */
444 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445 {
446 	void *p;
447 	void *addr = page_address(page);
448 
449 	for (p = page->freelist; p; p = get_freepointer(s, p))
450 		set_bit(slab_index(p, s, addr), map);
451 }
452 
453 /*
454  * Debug settings:
455  */
456 #ifdef CONFIG_SLUB_DEBUG_ON
457 static int slub_debug = DEBUG_DEFAULT_FLAGS;
458 #else
459 static int slub_debug;
460 #endif
461 
462 static char *slub_debug_slabs;
463 static int disable_higher_order_debug;
464 
465 /*
466  * Object debugging
467  */
468 static void print_section(char *text, u8 *addr, unsigned int length)
469 {
470 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
471 			length, 1);
472 }
473 
474 static struct track *get_track(struct kmem_cache *s, void *object,
475 	enum track_item alloc)
476 {
477 	struct track *p;
478 
479 	if (s->offset)
480 		p = object + s->offset + sizeof(void *);
481 	else
482 		p = object + s->inuse;
483 
484 	return p + alloc;
485 }
486 
487 static void set_track(struct kmem_cache *s, void *object,
488 			enum track_item alloc, unsigned long addr)
489 {
490 	struct track *p = get_track(s, object, alloc);
491 
492 	if (addr) {
493 #ifdef CONFIG_STACKTRACE
494 		struct stack_trace trace;
495 		int i;
496 
497 		trace.nr_entries = 0;
498 		trace.max_entries = TRACK_ADDRS_COUNT;
499 		trace.entries = p->addrs;
500 		trace.skip = 3;
501 		save_stack_trace(&trace);
502 
503 		/* See rant in lockdep.c */
504 		if (trace.nr_entries != 0 &&
505 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
506 			trace.nr_entries--;
507 
508 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
509 			p->addrs[i] = 0;
510 #endif
511 		p->addr = addr;
512 		p->cpu = smp_processor_id();
513 		p->pid = current->pid;
514 		p->when = jiffies;
515 	} else
516 		memset(p, 0, sizeof(struct track));
517 }
518 
519 static void init_tracking(struct kmem_cache *s, void *object)
520 {
521 	if (!(s->flags & SLAB_STORE_USER))
522 		return;
523 
524 	set_track(s, object, TRACK_FREE, 0UL);
525 	set_track(s, object, TRACK_ALLOC, 0UL);
526 }
527 
528 static void print_track(const char *s, struct track *t)
529 {
530 	if (!t->addr)
531 		return;
532 
533 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
534 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
535 #ifdef CONFIG_STACKTRACE
536 	{
537 		int i;
538 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
539 			if (t->addrs[i])
540 				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
541 			else
542 				break;
543 	}
544 #endif
545 }
546 
547 static void print_tracking(struct kmem_cache *s, void *object)
548 {
549 	if (!(s->flags & SLAB_STORE_USER))
550 		return;
551 
552 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
553 	print_track("Freed", get_track(s, object, TRACK_FREE));
554 }
555 
556 static void print_page_info(struct page *page)
557 {
558 	printk(KERN_ERR
559 	       "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
560 	       page, page->objects, page->inuse, page->freelist, page->flags);
561 
562 }
563 
564 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
565 {
566 	va_list args;
567 	char buf[100];
568 
569 	va_start(args, fmt);
570 	vsnprintf(buf, sizeof(buf), fmt, args);
571 	va_end(args);
572 	printk(KERN_ERR "========================================"
573 			"=====================================\n");
574 	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
575 	printk(KERN_ERR "----------------------------------------"
576 			"-------------------------------------\n\n");
577 
578 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
579 }
580 
581 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
582 {
583 	va_list args;
584 	char buf[100];
585 
586 	va_start(args, fmt);
587 	vsnprintf(buf, sizeof(buf), fmt, args);
588 	va_end(args);
589 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
590 }
591 
592 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
593 {
594 	unsigned int off;	/* Offset of last byte */
595 	u8 *addr = page_address(page);
596 
597 	print_tracking(s, p);
598 
599 	print_page_info(page);
600 
601 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
602 			p, p - addr, get_freepointer(s, p));
603 
604 	if (p > addr + 16)
605 		print_section("Bytes b4 ", p - 16, 16);
606 
607 	print_section("Object ", p, min_t(unsigned long, s->object_size,
608 				PAGE_SIZE));
609 	if (s->flags & SLAB_RED_ZONE)
610 		print_section("Redzone ", p + s->object_size,
611 			s->inuse - s->object_size);
612 
613 	if (s->offset)
614 		off = s->offset + sizeof(void *);
615 	else
616 		off = s->inuse;
617 
618 	if (s->flags & SLAB_STORE_USER)
619 		off += 2 * sizeof(struct track);
620 
621 	if (off != s->size)
622 		/* Beginning of the filler is the free pointer */
623 		print_section("Padding ", p + off, s->size - off);
624 
625 	dump_stack();
626 }
627 
628 static void object_err(struct kmem_cache *s, struct page *page,
629 			u8 *object, char *reason)
630 {
631 	slab_bug(s, "%s", reason);
632 	print_trailer(s, page, object);
633 }
634 
635 static void slab_err(struct kmem_cache *s, struct page *page,
636 			const char *fmt, ...)
637 {
638 	va_list args;
639 	char buf[100];
640 
641 	va_start(args, fmt);
642 	vsnprintf(buf, sizeof(buf), fmt, args);
643 	va_end(args);
644 	slab_bug(s, "%s", buf);
645 	print_page_info(page);
646 	dump_stack();
647 }
648 
649 static void init_object(struct kmem_cache *s, void *object, u8 val)
650 {
651 	u8 *p = object;
652 
653 	if (s->flags & __OBJECT_POISON) {
654 		memset(p, POISON_FREE, s->object_size - 1);
655 		p[s->object_size - 1] = POISON_END;
656 	}
657 
658 	if (s->flags & SLAB_RED_ZONE)
659 		memset(p + s->object_size, val, s->inuse - s->object_size);
660 }
661 
662 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
663 						void *from, void *to)
664 {
665 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
666 	memset(from, data, to - from);
667 }
668 
669 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
670 			u8 *object, char *what,
671 			u8 *start, unsigned int value, unsigned int bytes)
672 {
673 	u8 *fault;
674 	u8 *end;
675 
676 	fault = memchr_inv(start, value, bytes);
677 	if (!fault)
678 		return 1;
679 
680 	end = start + bytes;
681 	while (end > fault && end[-1] == value)
682 		end--;
683 
684 	slab_bug(s, "%s overwritten", what);
685 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
686 					fault, end - 1, fault[0], value);
687 	print_trailer(s, page, object);
688 
689 	restore_bytes(s, what, value, fault, end);
690 	return 0;
691 }
692 
693 /*
694  * Object layout:
695  *
696  * object address
697  * 	Bytes of the object to be managed.
698  * 	If the freepointer may overlay the object then the free
699  * 	pointer is the first word of the object.
700  *
701  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
702  * 	0xa5 (POISON_END)
703  *
704  * object + s->object_size
705  * 	Padding to reach word boundary. This is also used for Redzoning.
706  * 	Padding is extended by another word if Redzoning is enabled and
707  * 	object_size == inuse.
708  *
709  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
710  * 	0xcc (RED_ACTIVE) for objects in use.
711  *
712  * object + s->inuse
713  * 	Meta data starts here.
714  *
715  * 	A. Free pointer (if we cannot overwrite object on free)
716  * 	B. Tracking data for SLAB_STORE_USER
717  * 	C. Padding to reach required alignment boundary or at mininum
718  * 		one word if debugging is on to be able to detect writes
719  * 		before the word boundary.
720  *
721  *	Padding is done using 0x5a (POISON_INUSE)
722  *
723  * object + s->size
724  * 	Nothing is used beyond s->size.
725  *
726  * If slabcaches are merged then the object_size and inuse boundaries are mostly
727  * ignored. And therefore no slab options that rely on these boundaries
728  * may be used with merged slabcaches.
729  */
730 
731 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
732 {
733 	unsigned long off = s->inuse;	/* The end of info */
734 
735 	if (s->offset)
736 		/* Freepointer is placed after the object. */
737 		off += sizeof(void *);
738 
739 	if (s->flags & SLAB_STORE_USER)
740 		/* We also have user information there */
741 		off += 2 * sizeof(struct track);
742 
743 	if (s->size == off)
744 		return 1;
745 
746 	return check_bytes_and_report(s, page, p, "Object padding",
747 				p + off, POISON_INUSE, s->size - off);
748 }
749 
750 /* Check the pad bytes at the end of a slab page */
751 static int slab_pad_check(struct kmem_cache *s, struct page *page)
752 {
753 	u8 *start;
754 	u8 *fault;
755 	u8 *end;
756 	int length;
757 	int remainder;
758 
759 	if (!(s->flags & SLAB_POISON))
760 		return 1;
761 
762 	start = page_address(page);
763 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
764 	end = start + length;
765 	remainder = length % s->size;
766 	if (!remainder)
767 		return 1;
768 
769 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
770 	if (!fault)
771 		return 1;
772 	while (end > fault && end[-1] == POISON_INUSE)
773 		end--;
774 
775 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
776 	print_section("Padding ", end - remainder, remainder);
777 
778 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
779 	return 0;
780 }
781 
782 static int check_object(struct kmem_cache *s, struct page *page,
783 					void *object, u8 val)
784 {
785 	u8 *p = object;
786 	u8 *endobject = object + s->object_size;
787 
788 	if (s->flags & SLAB_RED_ZONE) {
789 		if (!check_bytes_and_report(s, page, object, "Redzone",
790 			endobject, val, s->inuse - s->object_size))
791 			return 0;
792 	} else {
793 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
794 			check_bytes_and_report(s, page, p, "Alignment padding",
795 				endobject, POISON_INUSE,
796 				s->inuse - s->object_size);
797 		}
798 	}
799 
800 	if (s->flags & SLAB_POISON) {
801 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
802 			(!check_bytes_and_report(s, page, p, "Poison", p,
803 					POISON_FREE, s->object_size - 1) ||
804 			 !check_bytes_and_report(s, page, p, "Poison",
805 				p + s->object_size - 1, POISON_END, 1)))
806 			return 0;
807 		/*
808 		 * check_pad_bytes cleans up on its own.
809 		 */
810 		check_pad_bytes(s, page, p);
811 	}
812 
813 	if (!s->offset && val == SLUB_RED_ACTIVE)
814 		/*
815 		 * Object and freepointer overlap. Cannot check
816 		 * freepointer while object is allocated.
817 		 */
818 		return 1;
819 
820 	/* Check free pointer validity */
821 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
822 		object_err(s, page, p, "Freepointer corrupt");
823 		/*
824 		 * No choice but to zap it and thus lose the remainder
825 		 * of the free objects in this slab. May cause
826 		 * another error because the object count is now wrong.
827 		 */
828 		set_freepointer(s, p, NULL);
829 		return 0;
830 	}
831 	return 1;
832 }
833 
834 static int check_slab(struct kmem_cache *s, struct page *page)
835 {
836 	int maxobj;
837 
838 	VM_BUG_ON(!irqs_disabled());
839 
840 	if (!PageSlab(page)) {
841 		slab_err(s, page, "Not a valid slab page");
842 		return 0;
843 	}
844 
845 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
846 	if (page->objects > maxobj) {
847 		slab_err(s, page, "objects %u > max %u",
848 			s->name, page->objects, maxobj);
849 		return 0;
850 	}
851 	if (page->inuse > page->objects) {
852 		slab_err(s, page, "inuse %u > max %u",
853 			s->name, page->inuse, page->objects);
854 		return 0;
855 	}
856 	/* Slab_pad_check fixes things up after itself */
857 	slab_pad_check(s, page);
858 	return 1;
859 }
860 
861 /*
862  * Determine if a certain object on a page is on the freelist. Must hold the
863  * slab lock to guarantee that the chains are in a consistent state.
864  */
865 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
866 {
867 	int nr = 0;
868 	void *fp;
869 	void *object = NULL;
870 	unsigned long max_objects;
871 
872 	fp = page->freelist;
873 	while (fp && nr <= page->objects) {
874 		if (fp == search)
875 			return 1;
876 		if (!check_valid_pointer(s, page, fp)) {
877 			if (object) {
878 				object_err(s, page, object,
879 					"Freechain corrupt");
880 				set_freepointer(s, object, NULL);
881 			} else {
882 				slab_err(s, page, "Freepointer corrupt");
883 				page->freelist = NULL;
884 				page->inuse = page->objects;
885 				slab_fix(s, "Freelist cleared");
886 				return 0;
887 			}
888 			break;
889 		}
890 		object = fp;
891 		fp = get_freepointer(s, object);
892 		nr++;
893 	}
894 
895 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
896 	if (max_objects > MAX_OBJS_PER_PAGE)
897 		max_objects = MAX_OBJS_PER_PAGE;
898 
899 	if (page->objects != max_objects) {
900 		slab_err(s, page, "Wrong number of objects. Found %d but "
901 			"should be %d", page->objects, max_objects);
902 		page->objects = max_objects;
903 		slab_fix(s, "Number of objects adjusted.");
904 	}
905 	if (page->inuse != page->objects - nr) {
906 		slab_err(s, page, "Wrong object count. Counter is %d but "
907 			"counted were %d", page->inuse, page->objects - nr);
908 		page->inuse = page->objects - nr;
909 		slab_fix(s, "Object count adjusted.");
910 	}
911 	return search == NULL;
912 }
913 
914 static void trace(struct kmem_cache *s, struct page *page, void *object,
915 								int alloc)
916 {
917 	if (s->flags & SLAB_TRACE) {
918 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
919 			s->name,
920 			alloc ? "alloc" : "free",
921 			object, page->inuse,
922 			page->freelist);
923 
924 		if (!alloc)
925 			print_section("Object ", (void *)object,
926 					s->object_size);
927 
928 		dump_stack();
929 	}
930 }
931 
932 /*
933  * Hooks for other subsystems that check memory allocations. In a typical
934  * production configuration these hooks all should produce no code at all.
935  */
936 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
937 {
938 	flags &= gfp_allowed_mask;
939 	lockdep_trace_alloc(flags);
940 	might_sleep_if(flags & __GFP_WAIT);
941 
942 	return should_failslab(s->object_size, flags, s->flags);
943 }
944 
945 static inline void slab_post_alloc_hook(struct kmem_cache *s,
946 					gfp_t flags, void *object)
947 {
948 	flags &= gfp_allowed_mask;
949 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
950 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
951 }
952 
953 static inline void slab_free_hook(struct kmem_cache *s, void *x)
954 {
955 	kmemleak_free_recursive(x, s->flags);
956 
957 	/*
958 	 * Trouble is that we may no longer disable interupts in the fast path
959 	 * So in order to make the debug calls that expect irqs to be
960 	 * disabled we need to disable interrupts temporarily.
961 	 */
962 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
963 	{
964 		unsigned long flags;
965 
966 		local_irq_save(flags);
967 		kmemcheck_slab_free(s, x, s->object_size);
968 		debug_check_no_locks_freed(x, s->object_size);
969 		local_irq_restore(flags);
970 	}
971 #endif
972 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
973 		debug_check_no_obj_freed(x, s->object_size);
974 }
975 
976 /*
977  * Tracking of fully allocated slabs for debugging purposes.
978  *
979  * list_lock must be held.
980  */
981 static void add_full(struct kmem_cache *s,
982 	struct kmem_cache_node *n, struct page *page)
983 {
984 	if (!(s->flags & SLAB_STORE_USER))
985 		return;
986 
987 	list_add(&page->lru, &n->full);
988 }
989 
990 /*
991  * list_lock must be held.
992  */
993 static void remove_full(struct kmem_cache *s, struct page *page)
994 {
995 	if (!(s->flags & SLAB_STORE_USER))
996 		return;
997 
998 	list_del(&page->lru);
999 }
1000 
1001 /* Tracking of the number of slabs for debugging purposes */
1002 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1003 {
1004 	struct kmem_cache_node *n = get_node(s, node);
1005 
1006 	return atomic_long_read(&n->nr_slabs);
1007 }
1008 
1009 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1010 {
1011 	return atomic_long_read(&n->nr_slabs);
1012 }
1013 
1014 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1015 {
1016 	struct kmem_cache_node *n = get_node(s, node);
1017 
1018 	/*
1019 	 * May be called early in order to allocate a slab for the
1020 	 * kmem_cache_node structure. Solve the chicken-egg
1021 	 * dilemma by deferring the increment of the count during
1022 	 * bootstrap (see early_kmem_cache_node_alloc).
1023 	 */
1024 	if (likely(n)) {
1025 		atomic_long_inc(&n->nr_slabs);
1026 		atomic_long_add(objects, &n->total_objects);
1027 	}
1028 }
1029 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1030 {
1031 	struct kmem_cache_node *n = get_node(s, node);
1032 
1033 	atomic_long_dec(&n->nr_slabs);
1034 	atomic_long_sub(objects, &n->total_objects);
1035 }
1036 
1037 /* Object debug checks for alloc/free paths */
1038 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1039 								void *object)
1040 {
1041 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1042 		return;
1043 
1044 	init_object(s, object, SLUB_RED_INACTIVE);
1045 	init_tracking(s, object);
1046 }
1047 
1048 static noinline int alloc_debug_processing(struct kmem_cache *s,
1049 					struct page *page,
1050 					void *object, unsigned long addr)
1051 {
1052 	if (!check_slab(s, page))
1053 		goto bad;
1054 
1055 	if (!check_valid_pointer(s, page, object)) {
1056 		object_err(s, page, object, "Freelist Pointer check fails");
1057 		goto bad;
1058 	}
1059 
1060 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1061 		goto bad;
1062 
1063 	/* Success perform special debug activities for allocs */
1064 	if (s->flags & SLAB_STORE_USER)
1065 		set_track(s, object, TRACK_ALLOC, addr);
1066 	trace(s, page, object, 1);
1067 	init_object(s, object, SLUB_RED_ACTIVE);
1068 	return 1;
1069 
1070 bad:
1071 	if (PageSlab(page)) {
1072 		/*
1073 		 * If this is a slab page then lets do the best we can
1074 		 * to avoid issues in the future. Marking all objects
1075 		 * as used avoids touching the remaining objects.
1076 		 */
1077 		slab_fix(s, "Marking all objects used");
1078 		page->inuse = page->objects;
1079 		page->freelist = NULL;
1080 	}
1081 	return 0;
1082 }
1083 
1084 static noinline struct kmem_cache_node *free_debug_processing(
1085 	struct kmem_cache *s, struct page *page, void *object,
1086 	unsigned long addr, unsigned long *flags)
1087 {
1088 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1089 
1090 	spin_lock_irqsave(&n->list_lock, *flags);
1091 	slab_lock(page);
1092 
1093 	if (!check_slab(s, page))
1094 		goto fail;
1095 
1096 	if (!check_valid_pointer(s, page, object)) {
1097 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1098 		goto fail;
1099 	}
1100 
1101 	if (on_freelist(s, page, object)) {
1102 		object_err(s, page, object, "Object already free");
1103 		goto fail;
1104 	}
1105 
1106 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1107 		goto out;
1108 
1109 	if (unlikely(s != page->slab_cache)) {
1110 		if (!PageSlab(page)) {
1111 			slab_err(s, page, "Attempt to free object(0x%p) "
1112 				"outside of slab", object);
1113 		} else if (!page->slab_cache) {
1114 			printk(KERN_ERR
1115 				"SLUB <none>: no slab for object 0x%p.\n",
1116 						object);
1117 			dump_stack();
1118 		} else
1119 			object_err(s, page, object,
1120 					"page slab pointer corrupt.");
1121 		goto fail;
1122 	}
1123 
1124 	if (s->flags & SLAB_STORE_USER)
1125 		set_track(s, object, TRACK_FREE, addr);
1126 	trace(s, page, object, 0);
1127 	init_object(s, object, SLUB_RED_INACTIVE);
1128 out:
1129 	slab_unlock(page);
1130 	/*
1131 	 * Keep node_lock to preserve integrity
1132 	 * until the object is actually freed
1133 	 */
1134 	return n;
1135 
1136 fail:
1137 	slab_unlock(page);
1138 	spin_unlock_irqrestore(&n->list_lock, *flags);
1139 	slab_fix(s, "Object at 0x%p not freed", object);
1140 	return NULL;
1141 }
1142 
1143 static int __init setup_slub_debug(char *str)
1144 {
1145 	slub_debug = DEBUG_DEFAULT_FLAGS;
1146 	if (*str++ != '=' || !*str)
1147 		/*
1148 		 * No options specified. Switch on full debugging.
1149 		 */
1150 		goto out;
1151 
1152 	if (*str == ',')
1153 		/*
1154 		 * No options but restriction on slabs. This means full
1155 		 * debugging for slabs matching a pattern.
1156 		 */
1157 		goto check_slabs;
1158 
1159 	if (tolower(*str) == 'o') {
1160 		/*
1161 		 * Avoid enabling debugging on caches if its minimum order
1162 		 * would increase as a result.
1163 		 */
1164 		disable_higher_order_debug = 1;
1165 		goto out;
1166 	}
1167 
1168 	slub_debug = 0;
1169 	if (*str == '-')
1170 		/*
1171 		 * Switch off all debugging measures.
1172 		 */
1173 		goto out;
1174 
1175 	/*
1176 	 * Determine which debug features should be switched on
1177 	 */
1178 	for (; *str && *str != ','; str++) {
1179 		switch (tolower(*str)) {
1180 		case 'f':
1181 			slub_debug |= SLAB_DEBUG_FREE;
1182 			break;
1183 		case 'z':
1184 			slub_debug |= SLAB_RED_ZONE;
1185 			break;
1186 		case 'p':
1187 			slub_debug |= SLAB_POISON;
1188 			break;
1189 		case 'u':
1190 			slub_debug |= SLAB_STORE_USER;
1191 			break;
1192 		case 't':
1193 			slub_debug |= SLAB_TRACE;
1194 			break;
1195 		case 'a':
1196 			slub_debug |= SLAB_FAILSLAB;
1197 			break;
1198 		default:
1199 			printk(KERN_ERR "slub_debug option '%c' "
1200 				"unknown. skipped\n", *str);
1201 		}
1202 	}
1203 
1204 check_slabs:
1205 	if (*str == ',')
1206 		slub_debug_slabs = str + 1;
1207 out:
1208 	return 1;
1209 }
1210 
1211 __setup("slub_debug", setup_slub_debug);
1212 
1213 static unsigned long kmem_cache_flags(unsigned long object_size,
1214 	unsigned long flags, const char *name,
1215 	void (*ctor)(void *))
1216 {
1217 	/*
1218 	 * Enable debugging if selected on the kernel commandline.
1219 	 */
1220 	if (slub_debug && (!slub_debug_slabs ||
1221 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1222 		flags |= slub_debug;
1223 
1224 	return flags;
1225 }
1226 #else
1227 static inline void setup_object_debug(struct kmem_cache *s,
1228 			struct page *page, void *object) {}
1229 
1230 static inline int alloc_debug_processing(struct kmem_cache *s,
1231 	struct page *page, void *object, unsigned long addr) { return 0; }
1232 
1233 static inline struct kmem_cache_node *free_debug_processing(
1234 	struct kmem_cache *s, struct page *page, void *object,
1235 	unsigned long addr, unsigned long *flags) { return NULL; }
1236 
1237 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1238 			{ return 1; }
1239 static inline int check_object(struct kmem_cache *s, struct page *page,
1240 			void *object, u8 val) { return 1; }
1241 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1242 					struct page *page) {}
1243 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1244 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1245 	unsigned long flags, const char *name,
1246 	void (*ctor)(void *))
1247 {
1248 	return flags;
1249 }
1250 #define slub_debug 0
1251 
1252 #define disable_higher_order_debug 0
1253 
1254 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1255 							{ return 0; }
1256 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1257 							{ return 0; }
1258 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1259 							int objects) {}
1260 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1261 							int objects) {}
1262 
1263 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1264 							{ return 0; }
1265 
1266 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1267 		void *object) {}
1268 
1269 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1270 
1271 #endif /* CONFIG_SLUB_DEBUG */
1272 
1273 /*
1274  * Slab allocation and freeing
1275  */
1276 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1277 					struct kmem_cache_order_objects oo)
1278 {
1279 	int order = oo_order(oo);
1280 
1281 	flags |= __GFP_NOTRACK;
1282 
1283 	if (node == NUMA_NO_NODE)
1284 		return alloc_pages(flags, order);
1285 	else
1286 		return alloc_pages_exact_node(node, flags, order);
1287 }
1288 
1289 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1290 {
1291 	struct page *page;
1292 	struct kmem_cache_order_objects oo = s->oo;
1293 	gfp_t alloc_gfp;
1294 
1295 	flags &= gfp_allowed_mask;
1296 
1297 	if (flags & __GFP_WAIT)
1298 		local_irq_enable();
1299 
1300 	flags |= s->allocflags;
1301 
1302 	/*
1303 	 * Let the initial higher-order allocation fail under memory pressure
1304 	 * so we fall-back to the minimum order allocation.
1305 	 */
1306 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1307 
1308 	page = alloc_slab_page(alloc_gfp, node, oo);
1309 	if (unlikely(!page)) {
1310 		oo = s->min;
1311 		/*
1312 		 * Allocation may have failed due to fragmentation.
1313 		 * Try a lower order alloc if possible
1314 		 */
1315 		page = alloc_slab_page(flags, node, oo);
1316 
1317 		if (page)
1318 			stat(s, ORDER_FALLBACK);
1319 	}
1320 
1321 	if (kmemcheck_enabled && page
1322 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1323 		int pages = 1 << oo_order(oo);
1324 
1325 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1326 
1327 		/*
1328 		 * Objects from caches that have a constructor don't get
1329 		 * cleared when they're allocated, so we need to do it here.
1330 		 */
1331 		if (s->ctor)
1332 			kmemcheck_mark_uninitialized_pages(page, pages);
1333 		else
1334 			kmemcheck_mark_unallocated_pages(page, pages);
1335 	}
1336 
1337 	if (flags & __GFP_WAIT)
1338 		local_irq_disable();
1339 	if (!page)
1340 		return NULL;
1341 
1342 	page->objects = oo_objects(oo);
1343 	mod_zone_page_state(page_zone(page),
1344 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1345 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1346 		1 << oo_order(oo));
1347 
1348 	return page;
1349 }
1350 
1351 static void setup_object(struct kmem_cache *s, struct page *page,
1352 				void *object)
1353 {
1354 	setup_object_debug(s, page, object);
1355 	if (unlikely(s->ctor))
1356 		s->ctor(object);
1357 }
1358 
1359 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1360 {
1361 	struct page *page;
1362 	void *start;
1363 	void *last;
1364 	void *p;
1365 	int order;
1366 
1367 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1368 
1369 	page = allocate_slab(s,
1370 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1371 	if (!page)
1372 		goto out;
1373 
1374 	order = compound_order(page);
1375 	inc_slabs_node(s, page_to_nid(page), page->objects);
1376 	memcg_bind_pages(s, order);
1377 	page->slab_cache = s;
1378 	__SetPageSlab(page);
1379 	if (page->pfmemalloc)
1380 		SetPageSlabPfmemalloc(page);
1381 
1382 	start = page_address(page);
1383 
1384 	if (unlikely(s->flags & SLAB_POISON))
1385 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1386 
1387 	last = start;
1388 	for_each_object(p, s, start, page->objects) {
1389 		setup_object(s, page, last);
1390 		set_freepointer(s, last, p);
1391 		last = p;
1392 	}
1393 	setup_object(s, page, last);
1394 	set_freepointer(s, last, NULL);
1395 
1396 	page->freelist = start;
1397 	page->inuse = page->objects;
1398 	page->frozen = 1;
1399 out:
1400 	return page;
1401 }
1402 
1403 static void __free_slab(struct kmem_cache *s, struct page *page)
1404 {
1405 	int order = compound_order(page);
1406 	int pages = 1 << order;
1407 
1408 	if (kmem_cache_debug(s)) {
1409 		void *p;
1410 
1411 		slab_pad_check(s, page);
1412 		for_each_object(p, s, page_address(page),
1413 						page->objects)
1414 			check_object(s, page, p, SLUB_RED_INACTIVE);
1415 	}
1416 
1417 	kmemcheck_free_shadow(page, compound_order(page));
1418 
1419 	mod_zone_page_state(page_zone(page),
1420 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1421 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1422 		-pages);
1423 
1424 	__ClearPageSlabPfmemalloc(page);
1425 	__ClearPageSlab(page);
1426 
1427 	memcg_release_pages(s, order);
1428 	page_mapcount_reset(page);
1429 	if (current->reclaim_state)
1430 		current->reclaim_state->reclaimed_slab += pages;
1431 	__free_memcg_kmem_pages(page, order);
1432 }
1433 
1434 #define need_reserve_slab_rcu						\
1435 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1436 
1437 static void rcu_free_slab(struct rcu_head *h)
1438 {
1439 	struct page *page;
1440 
1441 	if (need_reserve_slab_rcu)
1442 		page = virt_to_head_page(h);
1443 	else
1444 		page = container_of((struct list_head *)h, struct page, lru);
1445 
1446 	__free_slab(page->slab_cache, page);
1447 }
1448 
1449 static void free_slab(struct kmem_cache *s, struct page *page)
1450 {
1451 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1452 		struct rcu_head *head;
1453 
1454 		if (need_reserve_slab_rcu) {
1455 			int order = compound_order(page);
1456 			int offset = (PAGE_SIZE << order) - s->reserved;
1457 
1458 			VM_BUG_ON(s->reserved != sizeof(*head));
1459 			head = page_address(page) + offset;
1460 		} else {
1461 			/*
1462 			 * RCU free overloads the RCU head over the LRU
1463 			 */
1464 			head = (void *)&page->lru;
1465 		}
1466 
1467 		call_rcu(head, rcu_free_slab);
1468 	} else
1469 		__free_slab(s, page);
1470 }
1471 
1472 static void discard_slab(struct kmem_cache *s, struct page *page)
1473 {
1474 	dec_slabs_node(s, page_to_nid(page), page->objects);
1475 	free_slab(s, page);
1476 }
1477 
1478 /*
1479  * Management of partially allocated slabs.
1480  *
1481  * list_lock must be held.
1482  */
1483 static inline void add_partial(struct kmem_cache_node *n,
1484 				struct page *page, int tail)
1485 {
1486 	n->nr_partial++;
1487 	if (tail == DEACTIVATE_TO_TAIL)
1488 		list_add_tail(&page->lru, &n->partial);
1489 	else
1490 		list_add(&page->lru, &n->partial);
1491 }
1492 
1493 /*
1494  * list_lock must be held.
1495  */
1496 static inline void remove_partial(struct kmem_cache_node *n,
1497 					struct page *page)
1498 {
1499 	list_del(&page->lru);
1500 	n->nr_partial--;
1501 }
1502 
1503 /*
1504  * Remove slab from the partial list, freeze it and
1505  * return the pointer to the freelist.
1506  *
1507  * Returns a list of objects or NULL if it fails.
1508  *
1509  * Must hold list_lock since we modify the partial list.
1510  */
1511 static inline void *acquire_slab(struct kmem_cache *s,
1512 		struct kmem_cache_node *n, struct page *page,
1513 		int mode, int *objects)
1514 {
1515 	void *freelist;
1516 	unsigned long counters;
1517 	struct page new;
1518 
1519 	/*
1520 	 * Zap the freelist and set the frozen bit.
1521 	 * The old freelist is the list of objects for the
1522 	 * per cpu allocation list.
1523 	 */
1524 	freelist = page->freelist;
1525 	counters = page->counters;
1526 	new.counters = counters;
1527 	*objects = new.objects - new.inuse;
1528 	if (mode) {
1529 		new.inuse = page->objects;
1530 		new.freelist = NULL;
1531 	} else {
1532 		new.freelist = freelist;
1533 	}
1534 
1535 	VM_BUG_ON(new.frozen);
1536 	new.frozen = 1;
1537 
1538 	if (!__cmpxchg_double_slab(s, page,
1539 			freelist, counters,
1540 			new.freelist, new.counters,
1541 			"acquire_slab"))
1542 		return NULL;
1543 
1544 	remove_partial(n, page);
1545 	WARN_ON(!freelist);
1546 	return freelist;
1547 }
1548 
1549 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1550 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1551 
1552 /*
1553  * Try to allocate a partial slab from a specific node.
1554  */
1555 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1556 				struct kmem_cache_cpu *c, gfp_t flags)
1557 {
1558 	struct page *page, *page2;
1559 	void *object = NULL;
1560 	int available = 0;
1561 	int objects;
1562 
1563 	/*
1564 	 * Racy check. If we mistakenly see no partial slabs then we
1565 	 * just allocate an empty slab. If we mistakenly try to get a
1566 	 * partial slab and there is none available then get_partials()
1567 	 * will return NULL.
1568 	 */
1569 	if (!n || !n->nr_partial)
1570 		return NULL;
1571 
1572 	spin_lock(&n->list_lock);
1573 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1574 		void *t;
1575 
1576 		if (!pfmemalloc_match(page, flags))
1577 			continue;
1578 
1579 		t = acquire_slab(s, n, page, object == NULL, &objects);
1580 		if (!t)
1581 			break;
1582 
1583 		available += objects;
1584 		if (!object) {
1585 			c->page = page;
1586 			stat(s, ALLOC_FROM_PARTIAL);
1587 			object = t;
1588 		} else {
1589 			put_cpu_partial(s, page, 0);
1590 			stat(s, CPU_PARTIAL_NODE);
1591 		}
1592 		if (!kmem_cache_has_cpu_partial(s)
1593 			|| available > s->cpu_partial / 2)
1594 			break;
1595 
1596 	}
1597 	spin_unlock(&n->list_lock);
1598 	return object;
1599 }
1600 
1601 /*
1602  * Get a page from somewhere. Search in increasing NUMA distances.
1603  */
1604 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1605 		struct kmem_cache_cpu *c)
1606 {
1607 #ifdef CONFIG_NUMA
1608 	struct zonelist *zonelist;
1609 	struct zoneref *z;
1610 	struct zone *zone;
1611 	enum zone_type high_zoneidx = gfp_zone(flags);
1612 	void *object;
1613 	unsigned int cpuset_mems_cookie;
1614 
1615 	/*
1616 	 * The defrag ratio allows a configuration of the tradeoffs between
1617 	 * inter node defragmentation and node local allocations. A lower
1618 	 * defrag_ratio increases the tendency to do local allocations
1619 	 * instead of attempting to obtain partial slabs from other nodes.
1620 	 *
1621 	 * If the defrag_ratio is set to 0 then kmalloc() always
1622 	 * returns node local objects. If the ratio is higher then kmalloc()
1623 	 * may return off node objects because partial slabs are obtained
1624 	 * from other nodes and filled up.
1625 	 *
1626 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1627 	 * defrag_ratio = 1000) then every (well almost) allocation will
1628 	 * first attempt to defrag slab caches on other nodes. This means
1629 	 * scanning over all nodes to look for partial slabs which may be
1630 	 * expensive if we do it every time we are trying to find a slab
1631 	 * with available objects.
1632 	 */
1633 	if (!s->remote_node_defrag_ratio ||
1634 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1635 		return NULL;
1636 
1637 	do {
1638 		cpuset_mems_cookie = get_mems_allowed();
1639 		zonelist = node_zonelist(slab_node(), flags);
1640 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1641 			struct kmem_cache_node *n;
1642 
1643 			n = get_node(s, zone_to_nid(zone));
1644 
1645 			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1646 					n->nr_partial > s->min_partial) {
1647 				object = get_partial_node(s, n, c, flags);
1648 				if (object) {
1649 					/*
1650 					 * Return the object even if
1651 					 * put_mems_allowed indicated that
1652 					 * the cpuset mems_allowed was
1653 					 * updated in parallel. It's a
1654 					 * harmless race between the alloc
1655 					 * and the cpuset update.
1656 					 */
1657 					put_mems_allowed(cpuset_mems_cookie);
1658 					return object;
1659 				}
1660 			}
1661 		}
1662 	} while (!put_mems_allowed(cpuset_mems_cookie));
1663 #endif
1664 	return NULL;
1665 }
1666 
1667 /*
1668  * Get a partial page, lock it and return it.
1669  */
1670 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1671 		struct kmem_cache_cpu *c)
1672 {
1673 	void *object;
1674 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1675 
1676 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1677 	if (object || node != NUMA_NO_NODE)
1678 		return object;
1679 
1680 	return get_any_partial(s, flags, c);
1681 }
1682 
1683 #ifdef CONFIG_PREEMPT
1684 /*
1685  * Calculate the next globally unique transaction for disambiguiation
1686  * during cmpxchg. The transactions start with the cpu number and are then
1687  * incremented by CONFIG_NR_CPUS.
1688  */
1689 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1690 #else
1691 /*
1692  * No preemption supported therefore also no need to check for
1693  * different cpus.
1694  */
1695 #define TID_STEP 1
1696 #endif
1697 
1698 static inline unsigned long next_tid(unsigned long tid)
1699 {
1700 	return tid + TID_STEP;
1701 }
1702 
1703 static inline unsigned int tid_to_cpu(unsigned long tid)
1704 {
1705 	return tid % TID_STEP;
1706 }
1707 
1708 static inline unsigned long tid_to_event(unsigned long tid)
1709 {
1710 	return tid / TID_STEP;
1711 }
1712 
1713 static inline unsigned int init_tid(int cpu)
1714 {
1715 	return cpu;
1716 }
1717 
1718 static inline void note_cmpxchg_failure(const char *n,
1719 		const struct kmem_cache *s, unsigned long tid)
1720 {
1721 #ifdef SLUB_DEBUG_CMPXCHG
1722 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1723 
1724 	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1725 
1726 #ifdef CONFIG_PREEMPT
1727 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1728 		printk("due to cpu change %d -> %d\n",
1729 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1730 	else
1731 #endif
1732 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1733 		printk("due to cpu running other code. Event %ld->%ld\n",
1734 			tid_to_event(tid), tid_to_event(actual_tid));
1735 	else
1736 		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1737 			actual_tid, tid, next_tid(tid));
1738 #endif
1739 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1740 }
1741 
1742 static void init_kmem_cache_cpus(struct kmem_cache *s)
1743 {
1744 	int cpu;
1745 
1746 	for_each_possible_cpu(cpu)
1747 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1748 }
1749 
1750 /*
1751  * Remove the cpu slab
1752  */
1753 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1754 				void *freelist)
1755 {
1756 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1757 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1758 	int lock = 0;
1759 	enum slab_modes l = M_NONE, m = M_NONE;
1760 	void *nextfree;
1761 	int tail = DEACTIVATE_TO_HEAD;
1762 	struct page new;
1763 	struct page old;
1764 
1765 	if (page->freelist) {
1766 		stat(s, DEACTIVATE_REMOTE_FREES);
1767 		tail = DEACTIVATE_TO_TAIL;
1768 	}
1769 
1770 	/*
1771 	 * Stage one: Free all available per cpu objects back
1772 	 * to the page freelist while it is still frozen. Leave the
1773 	 * last one.
1774 	 *
1775 	 * There is no need to take the list->lock because the page
1776 	 * is still frozen.
1777 	 */
1778 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1779 		void *prior;
1780 		unsigned long counters;
1781 
1782 		do {
1783 			prior = page->freelist;
1784 			counters = page->counters;
1785 			set_freepointer(s, freelist, prior);
1786 			new.counters = counters;
1787 			new.inuse--;
1788 			VM_BUG_ON(!new.frozen);
1789 
1790 		} while (!__cmpxchg_double_slab(s, page,
1791 			prior, counters,
1792 			freelist, new.counters,
1793 			"drain percpu freelist"));
1794 
1795 		freelist = nextfree;
1796 	}
1797 
1798 	/*
1799 	 * Stage two: Ensure that the page is unfrozen while the
1800 	 * list presence reflects the actual number of objects
1801 	 * during unfreeze.
1802 	 *
1803 	 * We setup the list membership and then perform a cmpxchg
1804 	 * with the count. If there is a mismatch then the page
1805 	 * is not unfrozen but the page is on the wrong list.
1806 	 *
1807 	 * Then we restart the process which may have to remove
1808 	 * the page from the list that we just put it on again
1809 	 * because the number of objects in the slab may have
1810 	 * changed.
1811 	 */
1812 redo:
1813 
1814 	old.freelist = page->freelist;
1815 	old.counters = page->counters;
1816 	VM_BUG_ON(!old.frozen);
1817 
1818 	/* Determine target state of the slab */
1819 	new.counters = old.counters;
1820 	if (freelist) {
1821 		new.inuse--;
1822 		set_freepointer(s, freelist, old.freelist);
1823 		new.freelist = freelist;
1824 	} else
1825 		new.freelist = old.freelist;
1826 
1827 	new.frozen = 0;
1828 
1829 	if (!new.inuse && n->nr_partial > s->min_partial)
1830 		m = M_FREE;
1831 	else if (new.freelist) {
1832 		m = M_PARTIAL;
1833 		if (!lock) {
1834 			lock = 1;
1835 			/*
1836 			 * Taking the spinlock removes the possiblity
1837 			 * that acquire_slab() will see a slab page that
1838 			 * is frozen
1839 			 */
1840 			spin_lock(&n->list_lock);
1841 		}
1842 	} else {
1843 		m = M_FULL;
1844 		if (kmem_cache_debug(s) && !lock) {
1845 			lock = 1;
1846 			/*
1847 			 * This also ensures that the scanning of full
1848 			 * slabs from diagnostic functions will not see
1849 			 * any frozen slabs.
1850 			 */
1851 			spin_lock(&n->list_lock);
1852 		}
1853 	}
1854 
1855 	if (l != m) {
1856 
1857 		if (l == M_PARTIAL)
1858 
1859 			remove_partial(n, page);
1860 
1861 		else if (l == M_FULL)
1862 
1863 			remove_full(s, page);
1864 
1865 		if (m == M_PARTIAL) {
1866 
1867 			add_partial(n, page, tail);
1868 			stat(s, tail);
1869 
1870 		} else if (m == M_FULL) {
1871 
1872 			stat(s, DEACTIVATE_FULL);
1873 			add_full(s, n, page);
1874 
1875 		}
1876 	}
1877 
1878 	l = m;
1879 	if (!__cmpxchg_double_slab(s, page,
1880 				old.freelist, old.counters,
1881 				new.freelist, new.counters,
1882 				"unfreezing slab"))
1883 		goto redo;
1884 
1885 	if (lock)
1886 		spin_unlock(&n->list_lock);
1887 
1888 	if (m == M_FREE) {
1889 		stat(s, DEACTIVATE_EMPTY);
1890 		discard_slab(s, page);
1891 		stat(s, FREE_SLAB);
1892 	}
1893 }
1894 
1895 /*
1896  * Unfreeze all the cpu partial slabs.
1897  *
1898  * This function must be called with interrupts disabled
1899  * for the cpu using c (or some other guarantee must be there
1900  * to guarantee no concurrent accesses).
1901  */
1902 static void unfreeze_partials(struct kmem_cache *s,
1903 		struct kmem_cache_cpu *c)
1904 {
1905 #ifdef CONFIG_SLUB_CPU_PARTIAL
1906 	struct kmem_cache_node *n = NULL, *n2 = NULL;
1907 	struct page *page, *discard_page = NULL;
1908 
1909 	while ((page = c->partial)) {
1910 		struct page new;
1911 		struct page old;
1912 
1913 		c->partial = page->next;
1914 
1915 		n2 = get_node(s, page_to_nid(page));
1916 		if (n != n2) {
1917 			if (n)
1918 				spin_unlock(&n->list_lock);
1919 
1920 			n = n2;
1921 			spin_lock(&n->list_lock);
1922 		}
1923 
1924 		do {
1925 
1926 			old.freelist = page->freelist;
1927 			old.counters = page->counters;
1928 			VM_BUG_ON(!old.frozen);
1929 
1930 			new.counters = old.counters;
1931 			new.freelist = old.freelist;
1932 
1933 			new.frozen = 0;
1934 
1935 		} while (!__cmpxchg_double_slab(s, page,
1936 				old.freelist, old.counters,
1937 				new.freelist, new.counters,
1938 				"unfreezing slab"));
1939 
1940 		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1941 			page->next = discard_page;
1942 			discard_page = page;
1943 		} else {
1944 			add_partial(n, page, DEACTIVATE_TO_TAIL);
1945 			stat(s, FREE_ADD_PARTIAL);
1946 		}
1947 	}
1948 
1949 	if (n)
1950 		spin_unlock(&n->list_lock);
1951 
1952 	while (discard_page) {
1953 		page = discard_page;
1954 		discard_page = discard_page->next;
1955 
1956 		stat(s, DEACTIVATE_EMPTY);
1957 		discard_slab(s, page);
1958 		stat(s, FREE_SLAB);
1959 	}
1960 #endif
1961 }
1962 
1963 /*
1964  * Put a page that was just frozen (in __slab_free) into a partial page
1965  * slot if available. This is done without interrupts disabled and without
1966  * preemption disabled. The cmpxchg is racy and may put the partial page
1967  * onto a random cpus partial slot.
1968  *
1969  * If we did not find a slot then simply move all the partials to the
1970  * per node partial list.
1971  */
1972 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1973 {
1974 #ifdef CONFIG_SLUB_CPU_PARTIAL
1975 	struct page *oldpage;
1976 	int pages;
1977 	int pobjects;
1978 
1979 	do {
1980 		pages = 0;
1981 		pobjects = 0;
1982 		oldpage = this_cpu_read(s->cpu_slab->partial);
1983 
1984 		if (oldpage) {
1985 			pobjects = oldpage->pobjects;
1986 			pages = oldpage->pages;
1987 			if (drain && pobjects > s->cpu_partial) {
1988 				unsigned long flags;
1989 				/*
1990 				 * partial array is full. Move the existing
1991 				 * set to the per node partial list.
1992 				 */
1993 				local_irq_save(flags);
1994 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
1995 				local_irq_restore(flags);
1996 				oldpage = NULL;
1997 				pobjects = 0;
1998 				pages = 0;
1999 				stat(s, CPU_PARTIAL_DRAIN);
2000 			}
2001 		}
2002 
2003 		pages++;
2004 		pobjects += page->objects - page->inuse;
2005 
2006 		page->pages = pages;
2007 		page->pobjects = pobjects;
2008 		page->next = oldpage;
2009 
2010 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2011 								!= oldpage);
2012 #endif
2013 }
2014 
2015 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2016 {
2017 	stat(s, CPUSLAB_FLUSH);
2018 	deactivate_slab(s, c->page, c->freelist);
2019 
2020 	c->tid = next_tid(c->tid);
2021 	c->page = NULL;
2022 	c->freelist = NULL;
2023 }
2024 
2025 /*
2026  * Flush cpu slab.
2027  *
2028  * Called from IPI handler with interrupts disabled.
2029  */
2030 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2031 {
2032 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2033 
2034 	if (likely(c)) {
2035 		if (c->page)
2036 			flush_slab(s, c);
2037 
2038 		unfreeze_partials(s, c);
2039 	}
2040 }
2041 
2042 static void flush_cpu_slab(void *d)
2043 {
2044 	struct kmem_cache *s = d;
2045 
2046 	__flush_cpu_slab(s, smp_processor_id());
2047 }
2048 
2049 static bool has_cpu_slab(int cpu, void *info)
2050 {
2051 	struct kmem_cache *s = info;
2052 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2053 
2054 	return c->page || c->partial;
2055 }
2056 
2057 static void flush_all(struct kmem_cache *s)
2058 {
2059 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2060 }
2061 
2062 /*
2063  * Check if the objects in a per cpu structure fit numa
2064  * locality expectations.
2065  */
2066 static inline int node_match(struct page *page, int node)
2067 {
2068 #ifdef CONFIG_NUMA
2069 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2070 		return 0;
2071 #endif
2072 	return 1;
2073 }
2074 
2075 static int count_free(struct page *page)
2076 {
2077 	return page->objects - page->inuse;
2078 }
2079 
2080 static unsigned long count_partial(struct kmem_cache_node *n,
2081 					int (*get_count)(struct page *))
2082 {
2083 	unsigned long flags;
2084 	unsigned long x = 0;
2085 	struct page *page;
2086 
2087 	spin_lock_irqsave(&n->list_lock, flags);
2088 	list_for_each_entry(page, &n->partial, lru)
2089 		x += get_count(page);
2090 	spin_unlock_irqrestore(&n->list_lock, flags);
2091 	return x;
2092 }
2093 
2094 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2095 {
2096 #ifdef CONFIG_SLUB_DEBUG
2097 	return atomic_long_read(&n->total_objects);
2098 #else
2099 	return 0;
2100 #endif
2101 }
2102 
2103 static noinline void
2104 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2105 {
2106 	int node;
2107 
2108 	printk(KERN_WARNING
2109 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2110 		nid, gfpflags);
2111 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2112 		"default order: %d, min order: %d\n", s->name, s->object_size,
2113 		s->size, oo_order(s->oo), oo_order(s->min));
2114 
2115 	if (oo_order(s->min) > get_order(s->object_size))
2116 		printk(KERN_WARNING "  %s debugging increased min order, use "
2117 		       "slub_debug=O to disable.\n", s->name);
2118 
2119 	for_each_online_node(node) {
2120 		struct kmem_cache_node *n = get_node(s, node);
2121 		unsigned long nr_slabs;
2122 		unsigned long nr_objs;
2123 		unsigned long nr_free;
2124 
2125 		if (!n)
2126 			continue;
2127 
2128 		nr_free  = count_partial(n, count_free);
2129 		nr_slabs = node_nr_slabs(n);
2130 		nr_objs  = node_nr_objs(n);
2131 
2132 		printk(KERN_WARNING
2133 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2134 			node, nr_slabs, nr_objs, nr_free);
2135 	}
2136 }
2137 
2138 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2139 			int node, struct kmem_cache_cpu **pc)
2140 {
2141 	void *freelist;
2142 	struct kmem_cache_cpu *c = *pc;
2143 	struct page *page;
2144 
2145 	freelist = get_partial(s, flags, node, c);
2146 
2147 	if (freelist)
2148 		return freelist;
2149 
2150 	page = new_slab(s, flags, node);
2151 	if (page) {
2152 		c = __this_cpu_ptr(s->cpu_slab);
2153 		if (c->page)
2154 			flush_slab(s, c);
2155 
2156 		/*
2157 		 * No other reference to the page yet so we can
2158 		 * muck around with it freely without cmpxchg
2159 		 */
2160 		freelist = page->freelist;
2161 		page->freelist = NULL;
2162 
2163 		stat(s, ALLOC_SLAB);
2164 		c->page = page;
2165 		*pc = c;
2166 	} else
2167 		freelist = NULL;
2168 
2169 	return freelist;
2170 }
2171 
2172 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2173 {
2174 	if (unlikely(PageSlabPfmemalloc(page)))
2175 		return gfp_pfmemalloc_allowed(gfpflags);
2176 
2177 	return true;
2178 }
2179 
2180 /*
2181  * Check the page->freelist of a page and either transfer the freelist to the
2182  * per cpu freelist or deactivate the page.
2183  *
2184  * The page is still frozen if the return value is not NULL.
2185  *
2186  * If this function returns NULL then the page has been unfrozen.
2187  *
2188  * This function must be called with interrupt disabled.
2189  */
2190 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2191 {
2192 	struct page new;
2193 	unsigned long counters;
2194 	void *freelist;
2195 
2196 	do {
2197 		freelist = page->freelist;
2198 		counters = page->counters;
2199 
2200 		new.counters = counters;
2201 		VM_BUG_ON(!new.frozen);
2202 
2203 		new.inuse = page->objects;
2204 		new.frozen = freelist != NULL;
2205 
2206 	} while (!__cmpxchg_double_slab(s, page,
2207 		freelist, counters,
2208 		NULL, new.counters,
2209 		"get_freelist"));
2210 
2211 	return freelist;
2212 }
2213 
2214 /*
2215  * Slow path. The lockless freelist is empty or we need to perform
2216  * debugging duties.
2217  *
2218  * Processing is still very fast if new objects have been freed to the
2219  * regular freelist. In that case we simply take over the regular freelist
2220  * as the lockless freelist and zap the regular freelist.
2221  *
2222  * If that is not working then we fall back to the partial lists. We take the
2223  * first element of the freelist as the object to allocate now and move the
2224  * rest of the freelist to the lockless freelist.
2225  *
2226  * And if we were unable to get a new slab from the partial slab lists then
2227  * we need to allocate a new slab. This is the slowest path since it involves
2228  * a call to the page allocator and the setup of a new slab.
2229  */
2230 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2231 			  unsigned long addr, struct kmem_cache_cpu *c)
2232 {
2233 	void *freelist;
2234 	struct page *page;
2235 	unsigned long flags;
2236 
2237 	local_irq_save(flags);
2238 #ifdef CONFIG_PREEMPT
2239 	/*
2240 	 * We may have been preempted and rescheduled on a different
2241 	 * cpu before disabling interrupts. Need to reload cpu area
2242 	 * pointer.
2243 	 */
2244 	c = this_cpu_ptr(s->cpu_slab);
2245 #endif
2246 
2247 	page = c->page;
2248 	if (!page)
2249 		goto new_slab;
2250 redo:
2251 
2252 	if (unlikely(!node_match(page, node))) {
2253 		stat(s, ALLOC_NODE_MISMATCH);
2254 		deactivate_slab(s, page, c->freelist);
2255 		c->page = NULL;
2256 		c->freelist = NULL;
2257 		goto new_slab;
2258 	}
2259 
2260 	/*
2261 	 * By rights, we should be searching for a slab page that was
2262 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2263 	 * information when the page leaves the per-cpu allocator
2264 	 */
2265 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2266 		deactivate_slab(s, page, c->freelist);
2267 		c->page = NULL;
2268 		c->freelist = NULL;
2269 		goto new_slab;
2270 	}
2271 
2272 	/* must check again c->freelist in case of cpu migration or IRQ */
2273 	freelist = c->freelist;
2274 	if (freelist)
2275 		goto load_freelist;
2276 
2277 	stat(s, ALLOC_SLOWPATH);
2278 
2279 	freelist = get_freelist(s, page);
2280 
2281 	if (!freelist) {
2282 		c->page = NULL;
2283 		stat(s, DEACTIVATE_BYPASS);
2284 		goto new_slab;
2285 	}
2286 
2287 	stat(s, ALLOC_REFILL);
2288 
2289 load_freelist:
2290 	/*
2291 	 * freelist is pointing to the list of objects to be used.
2292 	 * page is pointing to the page from which the objects are obtained.
2293 	 * That page must be frozen for per cpu allocations to work.
2294 	 */
2295 	VM_BUG_ON(!c->page->frozen);
2296 	c->freelist = get_freepointer(s, freelist);
2297 	c->tid = next_tid(c->tid);
2298 	local_irq_restore(flags);
2299 	return freelist;
2300 
2301 new_slab:
2302 
2303 	if (c->partial) {
2304 		page = c->page = c->partial;
2305 		c->partial = page->next;
2306 		stat(s, CPU_PARTIAL_ALLOC);
2307 		c->freelist = NULL;
2308 		goto redo;
2309 	}
2310 
2311 	freelist = new_slab_objects(s, gfpflags, node, &c);
2312 
2313 	if (unlikely(!freelist)) {
2314 		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2315 			slab_out_of_memory(s, gfpflags, node);
2316 
2317 		local_irq_restore(flags);
2318 		return NULL;
2319 	}
2320 
2321 	page = c->page;
2322 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2323 		goto load_freelist;
2324 
2325 	/* Only entered in the debug case */
2326 	if (kmem_cache_debug(s) &&
2327 			!alloc_debug_processing(s, page, freelist, addr))
2328 		goto new_slab;	/* Slab failed checks. Next slab needed */
2329 
2330 	deactivate_slab(s, page, get_freepointer(s, freelist));
2331 	c->page = NULL;
2332 	c->freelist = NULL;
2333 	local_irq_restore(flags);
2334 	return freelist;
2335 }
2336 
2337 /*
2338  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2339  * have the fastpath folded into their functions. So no function call
2340  * overhead for requests that can be satisfied on the fastpath.
2341  *
2342  * The fastpath works by first checking if the lockless freelist can be used.
2343  * If not then __slab_alloc is called for slow processing.
2344  *
2345  * Otherwise we can simply pick the next object from the lockless free list.
2346  */
2347 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2348 		gfp_t gfpflags, int node, unsigned long addr)
2349 {
2350 	void **object;
2351 	struct kmem_cache_cpu *c;
2352 	struct page *page;
2353 	unsigned long tid;
2354 
2355 	if (slab_pre_alloc_hook(s, gfpflags))
2356 		return NULL;
2357 
2358 	s = memcg_kmem_get_cache(s, gfpflags);
2359 redo:
2360 	/*
2361 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2362 	 * enabled. We may switch back and forth between cpus while
2363 	 * reading from one cpu area. That does not matter as long
2364 	 * as we end up on the original cpu again when doing the cmpxchg.
2365 	 *
2366 	 * Preemption is disabled for the retrieval of the tid because that
2367 	 * must occur from the current processor. We cannot allow rescheduling
2368 	 * on a different processor between the determination of the pointer
2369 	 * and the retrieval of the tid.
2370 	 */
2371 	preempt_disable();
2372 	c = __this_cpu_ptr(s->cpu_slab);
2373 
2374 	/*
2375 	 * The transaction ids are globally unique per cpu and per operation on
2376 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2377 	 * occurs on the right processor and that there was no operation on the
2378 	 * linked list in between.
2379 	 */
2380 	tid = c->tid;
2381 	preempt_enable();
2382 
2383 	object = c->freelist;
2384 	page = c->page;
2385 	if (unlikely(!object || !node_match(page, node)))
2386 		object = __slab_alloc(s, gfpflags, node, addr, c);
2387 
2388 	else {
2389 		void *next_object = get_freepointer_safe(s, object);
2390 
2391 		/*
2392 		 * The cmpxchg will only match if there was no additional
2393 		 * operation and if we are on the right processor.
2394 		 *
2395 		 * The cmpxchg does the following atomically (without lock
2396 		 * semantics!)
2397 		 * 1. Relocate first pointer to the current per cpu area.
2398 		 * 2. Verify that tid and freelist have not been changed
2399 		 * 3. If they were not changed replace tid and freelist
2400 		 *
2401 		 * Since this is without lock semantics the protection is only
2402 		 * against code executing on this cpu *not* from access by
2403 		 * other cpus.
2404 		 */
2405 		if (unlikely(!this_cpu_cmpxchg_double(
2406 				s->cpu_slab->freelist, s->cpu_slab->tid,
2407 				object, tid,
2408 				next_object, next_tid(tid)))) {
2409 
2410 			note_cmpxchg_failure("slab_alloc", s, tid);
2411 			goto redo;
2412 		}
2413 		prefetch_freepointer(s, next_object);
2414 		stat(s, ALLOC_FASTPATH);
2415 	}
2416 
2417 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2418 		memset(object, 0, s->object_size);
2419 
2420 	slab_post_alloc_hook(s, gfpflags, object);
2421 
2422 	return object;
2423 }
2424 
2425 static __always_inline void *slab_alloc(struct kmem_cache *s,
2426 		gfp_t gfpflags, unsigned long addr)
2427 {
2428 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2429 }
2430 
2431 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2432 {
2433 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2434 
2435 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2436 				s->size, gfpflags);
2437 
2438 	return ret;
2439 }
2440 EXPORT_SYMBOL(kmem_cache_alloc);
2441 
2442 #ifdef CONFIG_TRACING
2443 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2444 {
2445 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2446 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2447 	return ret;
2448 }
2449 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2450 #endif
2451 
2452 #ifdef CONFIG_NUMA
2453 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2454 {
2455 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2456 
2457 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2458 				    s->object_size, s->size, gfpflags, node);
2459 
2460 	return ret;
2461 }
2462 EXPORT_SYMBOL(kmem_cache_alloc_node);
2463 
2464 #ifdef CONFIG_TRACING
2465 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2466 				    gfp_t gfpflags,
2467 				    int node, size_t size)
2468 {
2469 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2470 
2471 	trace_kmalloc_node(_RET_IP_, ret,
2472 			   size, s->size, gfpflags, node);
2473 	return ret;
2474 }
2475 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2476 #endif
2477 #endif
2478 
2479 /*
2480  * Slow patch handling. This may still be called frequently since objects
2481  * have a longer lifetime than the cpu slabs in most processing loads.
2482  *
2483  * So we still attempt to reduce cache line usage. Just take the slab
2484  * lock and free the item. If there is no additional partial page
2485  * handling required then we can return immediately.
2486  */
2487 static void __slab_free(struct kmem_cache *s, struct page *page,
2488 			void *x, unsigned long addr)
2489 {
2490 	void *prior;
2491 	void **object = (void *)x;
2492 	int was_frozen;
2493 	struct page new;
2494 	unsigned long counters;
2495 	struct kmem_cache_node *n = NULL;
2496 	unsigned long uninitialized_var(flags);
2497 
2498 	stat(s, FREE_SLOWPATH);
2499 
2500 	if (kmem_cache_debug(s) &&
2501 		!(n = free_debug_processing(s, page, x, addr, &flags)))
2502 		return;
2503 
2504 	do {
2505 		if (unlikely(n)) {
2506 			spin_unlock_irqrestore(&n->list_lock, flags);
2507 			n = NULL;
2508 		}
2509 		prior = page->freelist;
2510 		counters = page->counters;
2511 		set_freepointer(s, object, prior);
2512 		new.counters = counters;
2513 		was_frozen = new.frozen;
2514 		new.inuse--;
2515 		if ((!new.inuse || !prior) && !was_frozen) {
2516 
2517 			if (kmem_cache_has_cpu_partial(s) && !prior)
2518 
2519 				/*
2520 				 * Slab was on no list before and will be
2521 				 * partially empty
2522 				 * We can defer the list move and instead
2523 				 * freeze it.
2524 				 */
2525 				new.frozen = 1;
2526 
2527 			else { /* Needs to be taken off a list */
2528 
2529 	                        n = get_node(s, page_to_nid(page));
2530 				/*
2531 				 * Speculatively acquire the list_lock.
2532 				 * If the cmpxchg does not succeed then we may
2533 				 * drop the list_lock without any processing.
2534 				 *
2535 				 * Otherwise the list_lock will synchronize with
2536 				 * other processors updating the list of slabs.
2537 				 */
2538 				spin_lock_irqsave(&n->list_lock, flags);
2539 
2540 			}
2541 		}
2542 
2543 	} while (!cmpxchg_double_slab(s, page,
2544 		prior, counters,
2545 		object, new.counters,
2546 		"__slab_free"));
2547 
2548 	if (likely(!n)) {
2549 
2550 		/*
2551 		 * If we just froze the page then put it onto the
2552 		 * per cpu partial list.
2553 		 */
2554 		if (new.frozen && !was_frozen) {
2555 			put_cpu_partial(s, page, 1);
2556 			stat(s, CPU_PARTIAL_FREE);
2557 		}
2558 		/*
2559 		 * The list lock was not taken therefore no list
2560 		 * activity can be necessary.
2561 		 */
2562                 if (was_frozen)
2563                         stat(s, FREE_FROZEN);
2564                 return;
2565         }
2566 
2567 	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2568 		goto slab_empty;
2569 
2570 	/*
2571 	 * Objects left in the slab. If it was not on the partial list before
2572 	 * then add it.
2573 	 */
2574 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2575 		if (kmem_cache_debug(s))
2576 			remove_full(s, page);
2577 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2578 		stat(s, FREE_ADD_PARTIAL);
2579 	}
2580 	spin_unlock_irqrestore(&n->list_lock, flags);
2581 	return;
2582 
2583 slab_empty:
2584 	if (prior) {
2585 		/*
2586 		 * Slab on the partial list.
2587 		 */
2588 		remove_partial(n, page);
2589 		stat(s, FREE_REMOVE_PARTIAL);
2590 	} else
2591 		/* Slab must be on the full list */
2592 		remove_full(s, page);
2593 
2594 	spin_unlock_irqrestore(&n->list_lock, flags);
2595 	stat(s, FREE_SLAB);
2596 	discard_slab(s, page);
2597 }
2598 
2599 /*
2600  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2601  * can perform fastpath freeing without additional function calls.
2602  *
2603  * The fastpath is only possible if we are freeing to the current cpu slab
2604  * of this processor. This typically the case if we have just allocated
2605  * the item before.
2606  *
2607  * If fastpath is not possible then fall back to __slab_free where we deal
2608  * with all sorts of special processing.
2609  */
2610 static __always_inline void slab_free(struct kmem_cache *s,
2611 			struct page *page, void *x, unsigned long addr)
2612 {
2613 	void **object = (void *)x;
2614 	struct kmem_cache_cpu *c;
2615 	unsigned long tid;
2616 
2617 	slab_free_hook(s, x);
2618 
2619 redo:
2620 	/*
2621 	 * Determine the currently cpus per cpu slab.
2622 	 * The cpu may change afterward. However that does not matter since
2623 	 * data is retrieved via this pointer. If we are on the same cpu
2624 	 * during the cmpxchg then the free will succedd.
2625 	 */
2626 	preempt_disable();
2627 	c = __this_cpu_ptr(s->cpu_slab);
2628 
2629 	tid = c->tid;
2630 	preempt_enable();
2631 
2632 	if (likely(page == c->page)) {
2633 		set_freepointer(s, object, c->freelist);
2634 
2635 		if (unlikely(!this_cpu_cmpxchg_double(
2636 				s->cpu_slab->freelist, s->cpu_slab->tid,
2637 				c->freelist, tid,
2638 				object, next_tid(tid)))) {
2639 
2640 			note_cmpxchg_failure("slab_free", s, tid);
2641 			goto redo;
2642 		}
2643 		stat(s, FREE_FASTPATH);
2644 	} else
2645 		__slab_free(s, page, x, addr);
2646 
2647 }
2648 
2649 void kmem_cache_free(struct kmem_cache *s, void *x)
2650 {
2651 	s = cache_from_obj(s, x);
2652 	if (!s)
2653 		return;
2654 	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2655 	trace_kmem_cache_free(_RET_IP_, x);
2656 }
2657 EXPORT_SYMBOL(kmem_cache_free);
2658 
2659 /*
2660  * Object placement in a slab is made very easy because we always start at
2661  * offset 0. If we tune the size of the object to the alignment then we can
2662  * get the required alignment by putting one properly sized object after
2663  * another.
2664  *
2665  * Notice that the allocation order determines the sizes of the per cpu
2666  * caches. Each processor has always one slab available for allocations.
2667  * Increasing the allocation order reduces the number of times that slabs
2668  * must be moved on and off the partial lists and is therefore a factor in
2669  * locking overhead.
2670  */
2671 
2672 /*
2673  * Mininum / Maximum order of slab pages. This influences locking overhead
2674  * and slab fragmentation. A higher order reduces the number of partial slabs
2675  * and increases the number of allocations possible without having to
2676  * take the list_lock.
2677  */
2678 static int slub_min_order;
2679 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2680 static int slub_min_objects;
2681 
2682 /*
2683  * Merge control. If this is set then no merging of slab caches will occur.
2684  * (Could be removed. This was introduced to pacify the merge skeptics.)
2685  */
2686 static int slub_nomerge;
2687 
2688 /*
2689  * Calculate the order of allocation given an slab object size.
2690  *
2691  * The order of allocation has significant impact on performance and other
2692  * system components. Generally order 0 allocations should be preferred since
2693  * order 0 does not cause fragmentation in the page allocator. Larger objects
2694  * be problematic to put into order 0 slabs because there may be too much
2695  * unused space left. We go to a higher order if more than 1/16th of the slab
2696  * would be wasted.
2697  *
2698  * In order to reach satisfactory performance we must ensure that a minimum
2699  * number of objects is in one slab. Otherwise we may generate too much
2700  * activity on the partial lists which requires taking the list_lock. This is
2701  * less a concern for large slabs though which are rarely used.
2702  *
2703  * slub_max_order specifies the order where we begin to stop considering the
2704  * number of objects in a slab as critical. If we reach slub_max_order then
2705  * we try to keep the page order as low as possible. So we accept more waste
2706  * of space in favor of a small page order.
2707  *
2708  * Higher order allocations also allow the placement of more objects in a
2709  * slab and thereby reduce object handling overhead. If the user has
2710  * requested a higher mininum order then we start with that one instead of
2711  * the smallest order which will fit the object.
2712  */
2713 static inline int slab_order(int size, int min_objects,
2714 				int max_order, int fract_leftover, int reserved)
2715 {
2716 	int order;
2717 	int rem;
2718 	int min_order = slub_min_order;
2719 
2720 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2721 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2722 
2723 	for (order = max(min_order,
2724 				fls(min_objects * size - 1) - PAGE_SHIFT);
2725 			order <= max_order; order++) {
2726 
2727 		unsigned long slab_size = PAGE_SIZE << order;
2728 
2729 		if (slab_size < min_objects * size + reserved)
2730 			continue;
2731 
2732 		rem = (slab_size - reserved) % size;
2733 
2734 		if (rem <= slab_size / fract_leftover)
2735 			break;
2736 
2737 	}
2738 
2739 	return order;
2740 }
2741 
2742 static inline int calculate_order(int size, int reserved)
2743 {
2744 	int order;
2745 	int min_objects;
2746 	int fraction;
2747 	int max_objects;
2748 
2749 	/*
2750 	 * Attempt to find best configuration for a slab. This
2751 	 * works by first attempting to generate a layout with
2752 	 * the best configuration and backing off gradually.
2753 	 *
2754 	 * First we reduce the acceptable waste in a slab. Then
2755 	 * we reduce the minimum objects required in a slab.
2756 	 */
2757 	min_objects = slub_min_objects;
2758 	if (!min_objects)
2759 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2760 	max_objects = order_objects(slub_max_order, size, reserved);
2761 	min_objects = min(min_objects, max_objects);
2762 
2763 	while (min_objects > 1) {
2764 		fraction = 16;
2765 		while (fraction >= 4) {
2766 			order = slab_order(size, min_objects,
2767 					slub_max_order, fraction, reserved);
2768 			if (order <= slub_max_order)
2769 				return order;
2770 			fraction /= 2;
2771 		}
2772 		min_objects--;
2773 	}
2774 
2775 	/*
2776 	 * We were unable to place multiple objects in a slab. Now
2777 	 * lets see if we can place a single object there.
2778 	 */
2779 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2780 	if (order <= slub_max_order)
2781 		return order;
2782 
2783 	/*
2784 	 * Doh this slab cannot be placed using slub_max_order.
2785 	 */
2786 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2787 	if (order < MAX_ORDER)
2788 		return order;
2789 	return -ENOSYS;
2790 }
2791 
2792 static void
2793 init_kmem_cache_node(struct kmem_cache_node *n)
2794 {
2795 	n->nr_partial = 0;
2796 	spin_lock_init(&n->list_lock);
2797 	INIT_LIST_HEAD(&n->partial);
2798 #ifdef CONFIG_SLUB_DEBUG
2799 	atomic_long_set(&n->nr_slabs, 0);
2800 	atomic_long_set(&n->total_objects, 0);
2801 	INIT_LIST_HEAD(&n->full);
2802 #endif
2803 }
2804 
2805 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2806 {
2807 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2808 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2809 
2810 	/*
2811 	 * Must align to double word boundary for the double cmpxchg
2812 	 * instructions to work; see __pcpu_double_call_return_bool().
2813 	 */
2814 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2815 				     2 * sizeof(void *));
2816 
2817 	if (!s->cpu_slab)
2818 		return 0;
2819 
2820 	init_kmem_cache_cpus(s);
2821 
2822 	return 1;
2823 }
2824 
2825 static struct kmem_cache *kmem_cache_node;
2826 
2827 /*
2828  * No kmalloc_node yet so do it by hand. We know that this is the first
2829  * slab on the node for this slabcache. There are no concurrent accesses
2830  * possible.
2831  *
2832  * Note that this function only works on the kmalloc_node_cache
2833  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2834  * memory on a fresh node that has no slab structures yet.
2835  */
2836 static void early_kmem_cache_node_alloc(int node)
2837 {
2838 	struct page *page;
2839 	struct kmem_cache_node *n;
2840 
2841 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2842 
2843 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2844 
2845 	BUG_ON(!page);
2846 	if (page_to_nid(page) != node) {
2847 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2848 				"node %d\n", node);
2849 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2850 				"in order to be able to continue\n");
2851 	}
2852 
2853 	n = page->freelist;
2854 	BUG_ON(!n);
2855 	page->freelist = get_freepointer(kmem_cache_node, n);
2856 	page->inuse = 1;
2857 	page->frozen = 0;
2858 	kmem_cache_node->node[node] = n;
2859 #ifdef CONFIG_SLUB_DEBUG
2860 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2861 	init_tracking(kmem_cache_node, n);
2862 #endif
2863 	init_kmem_cache_node(n);
2864 	inc_slabs_node(kmem_cache_node, node, page->objects);
2865 
2866 	add_partial(n, page, DEACTIVATE_TO_HEAD);
2867 }
2868 
2869 static void free_kmem_cache_nodes(struct kmem_cache *s)
2870 {
2871 	int node;
2872 
2873 	for_each_node_state(node, N_NORMAL_MEMORY) {
2874 		struct kmem_cache_node *n = s->node[node];
2875 
2876 		if (n)
2877 			kmem_cache_free(kmem_cache_node, n);
2878 
2879 		s->node[node] = NULL;
2880 	}
2881 }
2882 
2883 static int init_kmem_cache_nodes(struct kmem_cache *s)
2884 {
2885 	int node;
2886 
2887 	for_each_node_state(node, N_NORMAL_MEMORY) {
2888 		struct kmem_cache_node *n;
2889 
2890 		if (slab_state == DOWN) {
2891 			early_kmem_cache_node_alloc(node);
2892 			continue;
2893 		}
2894 		n = kmem_cache_alloc_node(kmem_cache_node,
2895 						GFP_KERNEL, node);
2896 
2897 		if (!n) {
2898 			free_kmem_cache_nodes(s);
2899 			return 0;
2900 		}
2901 
2902 		s->node[node] = n;
2903 		init_kmem_cache_node(n);
2904 	}
2905 	return 1;
2906 }
2907 
2908 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2909 {
2910 	if (min < MIN_PARTIAL)
2911 		min = MIN_PARTIAL;
2912 	else if (min > MAX_PARTIAL)
2913 		min = MAX_PARTIAL;
2914 	s->min_partial = min;
2915 }
2916 
2917 /*
2918  * calculate_sizes() determines the order and the distribution of data within
2919  * a slab object.
2920  */
2921 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2922 {
2923 	unsigned long flags = s->flags;
2924 	unsigned long size = s->object_size;
2925 	int order;
2926 
2927 	/*
2928 	 * Round up object size to the next word boundary. We can only
2929 	 * place the free pointer at word boundaries and this determines
2930 	 * the possible location of the free pointer.
2931 	 */
2932 	size = ALIGN(size, sizeof(void *));
2933 
2934 #ifdef CONFIG_SLUB_DEBUG
2935 	/*
2936 	 * Determine if we can poison the object itself. If the user of
2937 	 * the slab may touch the object after free or before allocation
2938 	 * then we should never poison the object itself.
2939 	 */
2940 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2941 			!s->ctor)
2942 		s->flags |= __OBJECT_POISON;
2943 	else
2944 		s->flags &= ~__OBJECT_POISON;
2945 
2946 
2947 	/*
2948 	 * If we are Redzoning then check if there is some space between the
2949 	 * end of the object and the free pointer. If not then add an
2950 	 * additional word to have some bytes to store Redzone information.
2951 	 */
2952 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2953 		size += sizeof(void *);
2954 #endif
2955 
2956 	/*
2957 	 * With that we have determined the number of bytes in actual use
2958 	 * by the object. This is the potential offset to the free pointer.
2959 	 */
2960 	s->inuse = size;
2961 
2962 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2963 		s->ctor)) {
2964 		/*
2965 		 * Relocate free pointer after the object if it is not
2966 		 * permitted to overwrite the first word of the object on
2967 		 * kmem_cache_free.
2968 		 *
2969 		 * This is the case if we do RCU, have a constructor or
2970 		 * destructor or are poisoning the objects.
2971 		 */
2972 		s->offset = size;
2973 		size += sizeof(void *);
2974 	}
2975 
2976 #ifdef CONFIG_SLUB_DEBUG
2977 	if (flags & SLAB_STORE_USER)
2978 		/*
2979 		 * Need to store information about allocs and frees after
2980 		 * the object.
2981 		 */
2982 		size += 2 * sizeof(struct track);
2983 
2984 	if (flags & SLAB_RED_ZONE)
2985 		/*
2986 		 * Add some empty padding so that we can catch
2987 		 * overwrites from earlier objects rather than let
2988 		 * tracking information or the free pointer be
2989 		 * corrupted if a user writes before the start
2990 		 * of the object.
2991 		 */
2992 		size += sizeof(void *);
2993 #endif
2994 
2995 	/*
2996 	 * SLUB stores one object immediately after another beginning from
2997 	 * offset 0. In order to align the objects we have to simply size
2998 	 * each object to conform to the alignment.
2999 	 */
3000 	size = ALIGN(size, s->align);
3001 	s->size = size;
3002 	if (forced_order >= 0)
3003 		order = forced_order;
3004 	else
3005 		order = calculate_order(size, s->reserved);
3006 
3007 	if (order < 0)
3008 		return 0;
3009 
3010 	s->allocflags = 0;
3011 	if (order)
3012 		s->allocflags |= __GFP_COMP;
3013 
3014 	if (s->flags & SLAB_CACHE_DMA)
3015 		s->allocflags |= GFP_DMA;
3016 
3017 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3018 		s->allocflags |= __GFP_RECLAIMABLE;
3019 
3020 	/*
3021 	 * Determine the number of objects per slab
3022 	 */
3023 	s->oo = oo_make(order, size, s->reserved);
3024 	s->min = oo_make(get_order(size), size, s->reserved);
3025 	if (oo_objects(s->oo) > oo_objects(s->max))
3026 		s->max = s->oo;
3027 
3028 	return !!oo_objects(s->oo);
3029 }
3030 
3031 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3032 {
3033 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3034 	s->reserved = 0;
3035 
3036 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3037 		s->reserved = sizeof(struct rcu_head);
3038 
3039 	if (!calculate_sizes(s, -1))
3040 		goto error;
3041 	if (disable_higher_order_debug) {
3042 		/*
3043 		 * Disable debugging flags that store metadata if the min slab
3044 		 * order increased.
3045 		 */
3046 		if (get_order(s->size) > get_order(s->object_size)) {
3047 			s->flags &= ~DEBUG_METADATA_FLAGS;
3048 			s->offset = 0;
3049 			if (!calculate_sizes(s, -1))
3050 				goto error;
3051 		}
3052 	}
3053 
3054 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3055     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3056 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3057 		/* Enable fast mode */
3058 		s->flags |= __CMPXCHG_DOUBLE;
3059 #endif
3060 
3061 	/*
3062 	 * The larger the object size is, the more pages we want on the partial
3063 	 * list to avoid pounding the page allocator excessively.
3064 	 */
3065 	set_min_partial(s, ilog2(s->size) / 2);
3066 
3067 	/*
3068 	 * cpu_partial determined the maximum number of objects kept in the
3069 	 * per cpu partial lists of a processor.
3070 	 *
3071 	 * Per cpu partial lists mainly contain slabs that just have one
3072 	 * object freed. If they are used for allocation then they can be
3073 	 * filled up again with minimal effort. The slab will never hit the
3074 	 * per node partial lists and therefore no locking will be required.
3075 	 *
3076 	 * This setting also determines
3077 	 *
3078 	 * A) The number of objects from per cpu partial slabs dumped to the
3079 	 *    per node list when we reach the limit.
3080 	 * B) The number of objects in cpu partial slabs to extract from the
3081 	 *    per node list when we run out of per cpu objects. We only fetch
3082 	 *    50% to keep some capacity around for frees.
3083 	 */
3084 	if (!kmem_cache_has_cpu_partial(s))
3085 		s->cpu_partial = 0;
3086 	else if (s->size >= PAGE_SIZE)
3087 		s->cpu_partial = 2;
3088 	else if (s->size >= 1024)
3089 		s->cpu_partial = 6;
3090 	else if (s->size >= 256)
3091 		s->cpu_partial = 13;
3092 	else
3093 		s->cpu_partial = 30;
3094 
3095 #ifdef CONFIG_NUMA
3096 	s->remote_node_defrag_ratio = 1000;
3097 #endif
3098 	if (!init_kmem_cache_nodes(s))
3099 		goto error;
3100 
3101 	if (alloc_kmem_cache_cpus(s))
3102 		return 0;
3103 
3104 	free_kmem_cache_nodes(s);
3105 error:
3106 	if (flags & SLAB_PANIC)
3107 		panic("Cannot create slab %s size=%lu realsize=%u "
3108 			"order=%u offset=%u flags=%lx\n",
3109 			s->name, (unsigned long)s->size, s->size,
3110 			oo_order(s->oo), s->offset, flags);
3111 	return -EINVAL;
3112 }
3113 
3114 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3115 							const char *text)
3116 {
3117 #ifdef CONFIG_SLUB_DEBUG
3118 	void *addr = page_address(page);
3119 	void *p;
3120 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3121 				     sizeof(long), GFP_ATOMIC);
3122 	if (!map)
3123 		return;
3124 	slab_err(s, page, text, s->name);
3125 	slab_lock(page);
3126 
3127 	get_map(s, page, map);
3128 	for_each_object(p, s, addr, page->objects) {
3129 
3130 		if (!test_bit(slab_index(p, s, addr), map)) {
3131 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3132 							p, p - addr);
3133 			print_tracking(s, p);
3134 		}
3135 	}
3136 	slab_unlock(page);
3137 	kfree(map);
3138 #endif
3139 }
3140 
3141 /*
3142  * Attempt to free all partial slabs on a node.
3143  * This is called from kmem_cache_close(). We must be the last thread
3144  * using the cache and therefore we do not need to lock anymore.
3145  */
3146 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3147 {
3148 	struct page *page, *h;
3149 
3150 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3151 		if (!page->inuse) {
3152 			remove_partial(n, page);
3153 			discard_slab(s, page);
3154 		} else {
3155 			list_slab_objects(s, page,
3156 			"Objects remaining in %s on kmem_cache_close()");
3157 		}
3158 	}
3159 }
3160 
3161 /*
3162  * Release all resources used by a slab cache.
3163  */
3164 static inline int kmem_cache_close(struct kmem_cache *s)
3165 {
3166 	int node;
3167 
3168 	flush_all(s);
3169 	/* Attempt to free all objects */
3170 	for_each_node_state(node, N_NORMAL_MEMORY) {
3171 		struct kmem_cache_node *n = get_node(s, node);
3172 
3173 		free_partial(s, n);
3174 		if (n->nr_partial || slabs_node(s, node))
3175 			return 1;
3176 	}
3177 	free_percpu(s->cpu_slab);
3178 	free_kmem_cache_nodes(s);
3179 	return 0;
3180 }
3181 
3182 int __kmem_cache_shutdown(struct kmem_cache *s)
3183 {
3184 	int rc = kmem_cache_close(s);
3185 
3186 	if (!rc) {
3187 		/*
3188 		 * We do the same lock strategy around sysfs_slab_add, see
3189 		 * __kmem_cache_create. Because this is pretty much the last
3190 		 * operation we do and the lock will be released shortly after
3191 		 * that in slab_common.c, we could just move sysfs_slab_remove
3192 		 * to a later point in common code. We should do that when we
3193 		 * have a common sysfs framework for all allocators.
3194 		 */
3195 		mutex_unlock(&slab_mutex);
3196 		sysfs_slab_remove(s);
3197 		mutex_lock(&slab_mutex);
3198 	}
3199 
3200 	return rc;
3201 }
3202 
3203 /********************************************************************
3204  *		Kmalloc subsystem
3205  *******************************************************************/
3206 
3207 static int __init setup_slub_min_order(char *str)
3208 {
3209 	get_option(&str, &slub_min_order);
3210 
3211 	return 1;
3212 }
3213 
3214 __setup("slub_min_order=", setup_slub_min_order);
3215 
3216 static int __init setup_slub_max_order(char *str)
3217 {
3218 	get_option(&str, &slub_max_order);
3219 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3220 
3221 	return 1;
3222 }
3223 
3224 __setup("slub_max_order=", setup_slub_max_order);
3225 
3226 static int __init setup_slub_min_objects(char *str)
3227 {
3228 	get_option(&str, &slub_min_objects);
3229 
3230 	return 1;
3231 }
3232 
3233 __setup("slub_min_objects=", setup_slub_min_objects);
3234 
3235 static int __init setup_slub_nomerge(char *str)
3236 {
3237 	slub_nomerge = 1;
3238 	return 1;
3239 }
3240 
3241 __setup("slub_nomerge", setup_slub_nomerge);
3242 
3243 void *__kmalloc(size_t size, gfp_t flags)
3244 {
3245 	struct kmem_cache *s;
3246 	void *ret;
3247 
3248 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3249 		return kmalloc_large(size, flags);
3250 
3251 	s = kmalloc_slab(size, flags);
3252 
3253 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3254 		return s;
3255 
3256 	ret = slab_alloc(s, flags, _RET_IP_);
3257 
3258 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3259 
3260 	return ret;
3261 }
3262 EXPORT_SYMBOL(__kmalloc);
3263 
3264 #ifdef CONFIG_NUMA
3265 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3266 {
3267 	struct page *page;
3268 	void *ptr = NULL;
3269 
3270 	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3271 	page = alloc_pages_node(node, flags, get_order(size));
3272 	if (page)
3273 		ptr = page_address(page);
3274 
3275 	kmemleak_alloc(ptr, size, 1, flags);
3276 	return ptr;
3277 }
3278 
3279 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3280 {
3281 	struct kmem_cache *s;
3282 	void *ret;
3283 
3284 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3285 		ret = kmalloc_large_node(size, flags, node);
3286 
3287 		trace_kmalloc_node(_RET_IP_, ret,
3288 				   size, PAGE_SIZE << get_order(size),
3289 				   flags, node);
3290 
3291 		return ret;
3292 	}
3293 
3294 	s = kmalloc_slab(size, flags);
3295 
3296 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3297 		return s;
3298 
3299 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3300 
3301 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3302 
3303 	return ret;
3304 }
3305 EXPORT_SYMBOL(__kmalloc_node);
3306 #endif
3307 
3308 size_t ksize(const void *object)
3309 {
3310 	struct page *page;
3311 
3312 	if (unlikely(object == ZERO_SIZE_PTR))
3313 		return 0;
3314 
3315 	page = virt_to_head_page(object);
3316 
3317 	if (unlikely(!PageSlab(page))) {
3318 		WARN_ON(!PageCompound(page));
3319 		return PAGE_SIZE << compound_order(page);
3320 	}
3321 
3322 	return slab_ksize(page->slab_cache);
3323 }
3324 EXPORT_SYMBOL(ksize);
3325 
3326 void kfree(const void *x)
3327 {
3328 	struct page *page;
3329 	void *object = (void *)x;
3330 
3331 	trace_kfree(_RET_IP_, x);
3332 
3333 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3334 		return;
3335 
3336 	page = virt_to_head_page(x);
3337 	if (unlikely(!PageSlab(page))) {
3338 		BUG_ON(!PageCompound(page));
3339 		kmemleak_free(x);
3340 		__free_memcg_kmem_pages(page, compound_order(page));
3341 		return;
3342 	}
3343 	slab_free(page->slab_cache, page, object, _RET_IP_);
3344 }
3345 EXPORT_SYMBOL(kfree);
3346 
3347 /*
3348  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3349  * the remaining slabs by the number of items in use. The slabs with the
3350  * most items in use come first. New allocations will then fill those up
3351  * and thus they can be removed from the partial lists.
3352  *
3353  * The slabs with the least items are placed last. This results in them
3354  * being allocated from last increasing the chance that the last objects
3355  * are freed in them.
3356  */
3357 int kmem_cache_shrink(struct kmem_cache *s)
3358 {
3359 	int node;
3360 	int i;
3361 	struct kmem_cache_node *n;
3362 	struct page *page;
3363 	struct page *t;
3364 	int objects = oo_objects(s->max);
3365 	struct list_head *slabs_by_inuse =
3366 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3367 	unsigned long flags;
3368 
3369 	if (!slabs_by_inuse)
3370 		return -ENOMEM;
3371 
3372 	flush_all(s);
3373 	for_each_node_state(node, N_NORMAL_MEMORY) {
3374 		n = get_node(s, node);
3375 
3376 		if (!n->nr_partial)
3377 			continue;
3378 
3379 		for (i = 0; i < objects; i++)
3380 			INIT_LIST_HEAD(slabs_by_inuse + i);
3381 
3382 		spin_lock_irqsave(&n->list_lock, flags);
3383 
3384 		/*
3385 		 * Build lists indexed by the items in use in each slab.
3386 		 *
3387 		 * Note that concurrent frees may occur while we hold the
3388 		 * list_lock. page->inuse here is the upper limit.
3389 		 */
3390 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3391 			list_move(&page->lru, slabs_by_inuse + page->inuse);
3392 			if (!page->inuse)
3393 				n->nr_partial--;
3394 		}
3395 
3396 		/*
3397 		 * Rebuild the partial list with the slabs filled up most
3398 		 * first and the least used slabs at the end.
3399 		 */
3400 		for (i = objects - 1; i > 0; i--)
3401 			list_splice(slabs_by_inuse + i, n->partial.prev);
3402 
3403 		spin_unlock_irqrestore(&n->list_lock, flags);
3404 
3405 		/* Release empty slabs */
3406 		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3407 			discard_slab(s, page);
3408 	}
3409 
3410 	kfree(slabs_by_inuse);
3411 	return 0;
3412 }
3413 EXPORT_SYMBOL(kmem_cache_shrink);
3414 
3415 static int slab_mem_going_offline_callback(void *arg)
3416 {
3417 	struct kmem_cache *s;
3418 
3419 	mutex_lock(&slab_mutex);
3420 	list_for_each_entry(s, &slab_caches, list)
3421 		kmem_cache_shrink(s);
3422 	mutex_unlock(&slab_mutex);
3423 
3424 	return 0;
3425 }
3426 
3427 static void slab_mem_offline_callback(void *arg)
3428 {
3429 	struct kmem_cache_node *n;
3430 	struct kmem_cache *s;
3431 	struct memory_notify *marg = arg;
3432 	int offline_node;
3433 
3434 	offline_node = marg->status_change_nid_normal;
3435 
3436 	/*
3437 	 * If the node still has available memory. we need kmem_cache_node
3438 	 * for it yet.
3439 	 */
3440 	if (offline_node < 0)
3441 		return;
3442 
3443 	mutex_lock(&slab_mutex);
3444 	list_for_each_entry(s, &slab_caches, list) {
3445 		n = get_node(s, offline_node);
3446 		if (n) {
3447 			/*
3448 			 * if n->nr_slabs > 0, slabs still exist on the node
3449 			 * that is going down. We were unable to free them,
3450 			 * and offline_pages() function shouldn't call this
3451 			 * callback. So, we must fail.
3452 			 */
3453 			BUG_ON(slabs_node(s, offline_node));
3454 
3455 			s->node[offline_node] = NULL;
3456 			kmem_cache_free(kmem_cache_node, n);
3457 		}
3458 	}
3459 	mutex_unlock(&slab_mutex);
3460 }
3461 
3462 static int slab_mem_going_online_callback(void *arg)
3463 {
3464 	struct kmem_cache_node *n;
3465 	struct kmem_cache *s;
3466 	struct memory_notify *marg = arg;
3467 	int nid = marg->status_change_nid_normal;
3468 	int ret = 0;
3469 
3470 	/*
3471 	 * If the node's memory is already available, then kmem_cache_node is
3472 	 * already created. Nothing to do.
3473 	 */
3474 	if (nid < 0)
3475 		return 0;
3476 
3477 	/*
3478 	 * We are bringing a node online. No memory is available yet. We must
3479 	 * allocate a kmem_cache_node structure in order to bring the node
3480 	 * online.
3481 	 */
3482 	mutex_lock(&slab_mutex);
3483 	list_for_each_entry(s, &slab_caches, list) {
3484 		/*
3485 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3486 		 *      since memory is not yet available from the node that
3487 		 *      is brought up.
3488 		 */
3489 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3490 		if (!n) {
3491 			ret = -ENOMEM;
3492 			goto out;
3493 		}
3494 		init_kmem_cache_node(n);
3495 		s->node[nid] = n;
3496 	}
3497 out:
3498 	mutex_unlock(&slab_mutex);
3499 	return ret;
3500 }
3501 
3502 static int slab_memory_callback(struct notifier_block *self,
3503 				unsigned long action, void *arg)
3504 {
3505 	int ret = 0;
3506 
3507 	switch (action) {
3508 	case MEM_GOING_ONLINE:
3509 		ret = slab_mem_going_online_callback(arg);
3510 		break;
3511 	case MEM_GOING_OFFLINE:
3512 		ret = slab_mem_going_offline_callback(arg);
3513 		break;
3514 	case MEM_OFFLINE:
3515 	case MEM_CANCEL_ONLINE:
3516 		slab_mem_offline_callback(arg);
3517 		break;
3518 	case MEM_ONLINE:
3519 	case MEM_CANCEL_OFFLINE:
3520 		break;
3521 	}
3522 	if (ret)
3523 		ret = notifier_from_errno(ret);
3524 	else
3525 		ret = NOTIFY_OK;
3526 	return ret;
3527 }
3528 
3529 static struct notifier_block slab_memory_callback_nb = {
3530 	.notifier_call = slab_memory_callback,
3531 	.priority = SLAB_CALLBACK_PRI,
3532 };
3533 
3534 /********************************************************************
3535  *			Basic setup of slabs
3536  *******************************************************************/
3537 
3538 /*
3539  * Used for early kmem_cache structures that were allocated using
3540  * the page allocator. Allocate them properly then fix up the pointers
3541  * that may be pointing to the wrong kmem_cache structure.
3542  */
3543 
3544 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3545 {
3546 	int node;
3547 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3548 
3549 	memcpy(s, static_cache, kmem_cache->object_size);
3550 
3551 	/*
3552 	 * This runs very early, and only the boot processor is supposed to be
3553 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3554 	 * IPIs around.
3555 	 */
3556 	__flush_cpu_slab(s, smp_processor_id());
3557 	for_each_node_state(node, N_NORMAL_MEMORY) {
3558 		struct kmem_cache_node *n = get_node(s, node);
3559 		struct page *p;
3560 
3561 		if (n) {
3562 			list_for_each_entry(p, &n->partial, lru)
3563 				p->slab_cache = s;
3564 
3565 #ifdef CONFIG_SLUB_DEBUG
3566 			list_for_each_entry(p, &n->full, lru)
3567 				p->slab_cache = s;
3568 #endif
3569 		}
3570 	}
3571 	list_add(&s->list, &slab_caches);
3572 	return s;
3573 }
3574 
3575 void __init kmem_cache_init(void)
3576 {
3577 	static __initdata struct kmem_cache boot_kmem_cache,
3578 		boot_kmem_cache_node;
3579 
3580 	if (debug_guardpage_minorder())
3581 		slub_max_order = 0;
3582 
3583 	kmem_cache_node = &boot_kmem_cache_node;
3584 	kmem_cache = &boot_kmem_cache;
3585 
3586 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3587 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3588 
3589 	register_hotmemory_notifier(&slab_memory_callback_nb);
3590 
3591 	/* Able to allocate the per node structures */
3592 	slab_state = PARTIAL;
3593 
3594 	create_boot_cache(kmem_cache, "kmem_cache",
3595 			offsetof(struct kmem_cache, node) +
3596 				nr_node_ids * sizeof(struct kmem_cache_node *),
3597 		       SLAB_HWCACHE_ALIGN);
3598 
3599 	kmem_cache = bootstrap(&boot_kmem_cache);
3600 
3601 	/*
3602 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3603 	 * kmem_cache_node is separately allocated so no need to
3604 	 * update any list pointers.
3605 	 */
3606 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3607 
3608 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3609 	create_kmalloc_caches(0);
3610 
3611 #ifdef CONFIG_SMP
3612 	register_cpu_notifier(&slab_notifier);
3613 #endif
3614 
3615 	printk(KERN_INFO
3616 		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3617 		" CPUs=%d, Nodes=%d\n",
3618 		cache_line_size(),
3619 		slub_min_order, slub_max_order, slub_min_objects,
3620 		nr_cpu_ids, nr_node_ids);
3621 }
3622 
3623 void __init kmem_cache_init_late(void)
3624 {
3625 }
3626 
3627 /*
3628  * Find a mergeable slab cache
3629  */
3630 static int slab_unmergeable(struct kmem_cache *s)
3631 {
3632 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3633 		return 1;
3634 
3635 	if (s->ctor)
3636 		return 1;
3637 
3638 	/*
3639 	 * We may have set a slab to be unmergeable during bootstrap.
3640 	 */
3641 	if (s->refcount < 0)
3642 		return 1;
3643 
3644 	return 0;
3645 }
3646 
3647 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3648 		size_t align, unsigned long flags, const char *name,
3649 		void (*ctor)(void *))
3650 {
3651 	struct kmem_cache *s;
3652 
3653 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3654 		return NULL;
3655 
3656 	if (ctor)
3657 		return NULL;
3658 
3659 	size = ALIGN(size, sizeof(void *));
3660 	align = calculate_alignment(flags, align, size);
3661 	size = ALIGN(size, align);
3662 	flags = kmem_cache_flags(size, flags, name, NULL);
3663 
3664 	list_for_each_entry(s, &slab_caches, list) {
3665 		if (slab_unmergeable(s))
3666 			continue;
3667 
3668 		if (size > s->size)
3669 			continue;
3670 
3671 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3672 				continue;
3673 		/*
3674 		 * Check if alignment is compatible.
3675 		 * Courtesy of Adrian Drzewiecki
3676 		 */
3677 		if ((s->size & ~(align - 1)) != s->size)
3678 			continue;
3679 
3680 		if (s->size - size >= sizeof(void *))
3681 			continue;
3682 
3683 		if (!cache_match_memcg(s, memcg))
3684 			continue;
3685 
3686 		return s;
3687 	}
3688 	return NULL;
3689 }
3690 
3691 struct kmem_cache *
3692 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3693 		   size_t align, unsigned long flags, void (*ctor)(void *))
3694 {
3695 	struct kmem_cache *s;
3696 
3697 	s = find_mergeable(memcg, size, align, flags, name, ctor);
3698 	if (s) {
3699 		s->refcount++;
3700 		/*
3701 		 * Adjust the object sizes so that we clear
3702 		 * the complete object on kzalloc.
3703 		 */
3704 		s->object_size = max(s->object_size, (int)size);
3705 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3706 
3707 		if (sysfs_slab_alias(s, name)) {
3708 			s->refcount--;
3709 			s = NULL;
3710 		}
3711 	}
3712 
3713 	return s;
3714 }
3715 
3716 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3717 {
3718 	int err;
3719 
3720 	err = kmem_cache_open(s, flags);
3721 	if (err)
3722 		return err;
3723 
3724 	/* Mutex is not taken during early boot */
3725 	if (slab_state <= UP)
3726 		return 0;
3727 
3728 	memcg_propagate_slab_attrs(s);
3729 	mutex_unlock(&slab_mutex);
3730 	err = sysfs_slab_add(s);
3731 	mutex_lock(&slab_mutex);
3732 
3733 	if (err)
3734 		kmem_cache_close(s);
3735 
3736 	return err;
3737 }
3738 
3739 #ifdef CONFIG_SMP
3740 /*
3741  * Use the cpu notifier to insure that the cpu slabs are flushed when
3742  * necessary.
3743  */
3744 static int slab_cpuup_callback(struct notifier_block *nfb,
3745 		unsigned long action, void *hcpu)
3746 {
3747 	long cpu = (long)hcpu;
3748 	struct kmem_cache *s;
3749 	unsigned long flags;
3750 
3751 	switch (action) {
3752 	case CPU_UP_CANCELED:
3753 	case CPU_UP_CANCELED_FROZEN:
3754 	case CPU_DEAD:
3755 	case CPU_DEAD_FROZEN:
3756 		mutex_lock(&slab_mutex);
3757 		list_for_each_entry(s, &slab_caches, list) {
3758 			local_irq_save(flags);
3759 			__flush_cpu_slab(s, cpu);
3760 			local_irq_restore(flags);
3761 		}
3762 		mutex_unlock(&slab_mutex);
3763 		break;
3764 	default:
3765 		break;
3766 	}
3767 	return NOTIFY_OK;
3768 }
3769 
3770 static struct notifier_block slab_notifier = {
3771 	.notifier_call = slab_cpuup_callback
3772 };
3773 
3774 #endif
3775 
3776 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3777 {
3778 	struct kmem_cache *s;
3779 	void *ret;
3780 
3781 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3782 		return kmalloc_large(size, gfpflags);
3783 
3784 	s = kmalloc_slab(size, gfpflags);
3785 
3786 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3787 		return s;
3788 
3789 	ret = slab_alloc(s, gfpflags, caller);
3790 
3791 	/* Honor the call site pointer we received. */
3792 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3793 
3794 	return ret;
3795 }
3796 
3797 #ifdef CONFIG_NUMA
3798 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3799 					int node, unsigned long caller)
3800 {
3801 	struct kmem_cache *s;
3802 	void *ret;
3803 
3804 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3805 		ret = kmalloc_large_node(size, gfpflags, node);
3806 
3807 		trace_kmalloc_node(caller, ret,
3808 				   size, PAGE_SIZE << get_order(size),
3809 				   gfpflags, node);
3810 
3811 		return ret;
3812 	}
3813 
3814 	s = kmalloc_slab(size, gfpflags);
3815 
3816 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3817 		return s;
3818 
3819 	ret = slab_alloc_node(s, gfpflags, node, caller);
3820 
3821 	/* Honor the call site pointer we received. */
3822 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3823 
3824 	return ret;
3825 }
3826 #endif
3827 
3828 #ifdef CONFIG_SYSFS
3829 static int count_inuse(struct page *page)
3830 {
3831 	return page->inuse;
3832 }
3833 
3834 static int count_total(struct page *page)
3835 {
3836 	return page->objects;
3837 }
3838 #endif
3839 
3840 #ifdef CONFIG_SLUB_DEBUG
3841 static int validate_slab(struct kmem_cache *s, struct page *page,
3842 						unsigned long *map)
3843 {
3844 	void *p;
3845 	void *addr = page_address(page);
3846 
3847 	if (!check_slab(s, page) ||
3848 			!on_freelist(s, page, NULL))
3849 		return 0;
3850 
3851 	/* Now we know that a valid freelist exists */
3852 	bitmap_zero(map, page->objects);
3853 
3854 	get_map(s, page, map);
3855 	for_each_object(p, s, addr, page->objects) {
3856 		if (test_bit(slab_index(p, s, addr), map))
3857 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3858 				return 0;
3859 	}
3860 
3861 	for_each_object(p, s, addr, page->objects)
3862 		if (!test_bit(slab_index(p, s, addr), map))
3863 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3864 				return 0;
3865 	return 1;
3866 }
3867 
3868 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3869 						unsigned long *map)
3870 {
3871 	slab_lock(page);
3872 	validate_slab(s, page, map);
3873 	slab_unlock(page);
3874 }
3875 
3876 static int validate_slab_node(struct kmem_cache *s,
3877 		struct kmem_cache_node *n, unsigned long *map)
3878 {
3879 	unsigned long count = 0;
3880 	struct page *page;
3881 	unsigned long flags;
3882 
3883 	spin_lock_irqsave(&n->list_lock, flags);
3884 
3885 	list_for_each_entry(page, &n->partial, lru) {
3886 		validate_slab_slab(s, page, map);
3887 		count++;
3888 	}
3889 	if (count != n->nr_partial)
3890 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3891 			"counter=%ld\n", s->name, count, n->nr_partial);
3892 
3893 	if (!(s->flags & SLAB_STORE_USER))
3894 		goto out;
3895 
3896 	list_for_each_entry(page, &n->full, lru) {
3897 		validate_slab_slab(s, page, map);
3898 		count++;
3899 	}
3900 	if (count != atomic_long_read(&n->nr_slabs))
3901 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3902 			"counter=%ld\n", s->name, count,
3903 			atomic_long_read(&n->nr_slabs));
3904 
3905 out:
3906 	spin_unlock_irqrestore(&n->list_lock, flags);
3907 	return count;
3908 }
3909 
3910 static long validate_slab_cache(struct kmem_cache *s)
3911 {
3912 	int node;
3913 	unsigned long count = 0;
3914 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3915 				sizeof(unsigned long), GFP_KERNEL);
3916 
3917 	if (!map)
3918 		return -ENOMEM;
3919 
3920 	flush_all(s);
3921 	for_each_node_state(node, N_NORMAL_MEMORY) {
3922 		struct kmem_cache_node *n = get_node(s, node);
3923 
3924 		count += validate_slab_node(s, n, map);
3925 	}
3926 	kfree(map);
3927 	return count;
3928 }
3929 /*
3930  * Generate lists of code addresses where slabcache objects are allocated
3931  * and freed.
3932  */
3933 
3934 struct location {
3935 	unsigned long count;
3936 	unsigned long addr;
3937 	long long sum_time;
3938 	long min_time;
3939 	long max_time;
3940 	long min_pid;
3941 	long max_pid;
3942 	DECLARE_BITMAP(cpus, NR_CPUS);
3943 	nodemask_t nodes;
3944 };
3945 
3946 struct loc_track {
3947 	unsigned long max;
3948 	unsigned long count;
3949 	struct location *loc;
3950 };
3951 
3952 static void free_loc_track(struct loc_track *t)
3953 {
3954 	if (t->max)
3955 		free_pages((unsigned long)t->loc,
3956 			get_order(sizeof(struct location) * t->max));
3957 }
3958 
3959 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3960 {
3961 	struct location *l;
3962 	int order;
3963 
3964 	order = get_order(sizeof(struct location) * max);
3965 
3966 	l = (void *)__get_free_pages(flags, order);
3967 	if (!l)
3968 		return 0;
3969 
3970 	if (t->count) {
3971 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3972 		free_loc_track(t);
3973 	}
3974 	t->max = max;
3975 	t->loc = l;
3976 	return 1;
3977 }
3978 
3979 static int add_location(struct loc_track *t, struct kmem_cache *s,
3980 				const struct track *track)
3981 {
3982 	long start, end, pos;
3983 	struct location *l;
3984 	unsigned long caddr;
3985 	unsigned long age = jiffies - track->when;
3986 
3987 	start = -1;
3988 	end = t->count;
3989 
3990 	for ( ; ; ) {
3991 		pos = start + (end - start + 1) / 2;
3992 
3993 		/*
3994 		 * There is nothing at "end". If we end up there
3995 		 * we need to add something to before end.
3996 		 */
3997 		if (pos == end)
3998 			break;
3999 
4000 		caddr = t->loc[pos].addr;
4001 		if (track->addr == caddr) {
4002 
4003 			l = &t->loc[pos];
4004 			l->count++;
4005 			if (track->when) {
4006 				l->sum_time += age;
4007 				if (age < l->min_time)
4008 					l->min_time = age;
4009 				if (age > l->max_time)
4010 					l->max_time = age;
4011 
4012 				if (track->pid < l->min_pid)
4013 					l->min_pid = track->pid;
4014 				if (track->pid > l->max_pid)
4015 					l->max_pid = track->pid;
4016 
4017 				cpumask_set_cpu(track->cpu,
4018 						to_cpumask(l->cpus));
4019 			}
4020 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4021 			return 1;
4022 		}
4023 
4024 		if (track->addr < caddr)
4025 			end = pos;
4026 		else
4027 			start = pos;
4028 	}
4029 
4030 	/*
4031 	 * Not found. Insert new tracking element.
4032 	 */
4033 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4034 		return 0;
4035 
4036 	l = t->loc + pos;
4037 	if (pos < t->count)
4038 		memmove(l + 1, l,
4039 			(t->count - pos) * sizeof(struct location));
4040 	t->count++;
4041 	l->count = 1;
4042 	l->addr = track->addr;
4043 	l->sum_time = age;
4044 	l->min_time = age;
4045 	l->max_time = age;
4046 	l->min_pid = track->pid;
4047 	l->max_pid = track->pid;
4048 	cpumask_clear(to_cpumask(l->cpus));
4049 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4050 	nodes_clear(l->nodes);
4051 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4052 	return 1;
4053 }
4054 
4055 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4056 		struct page *page, enum track_item alloc,
4057 		unsigned long *map)
4058 {
4059 	void *addr = page_address(page);
4060 	void *p;
4061 
4062 	bitmap_zero(map, page->objects);
4063 	get_map(s, page, map);
4064 
4065 	for_each_object(p, s, addr, page->objects)
4066 		if (!test_bit(slab_index(p, s, addr), map))
4067 			add_location(t, s, get_track(s, p, alloc));
4068 }
4069 
4070 static int list_locations(struct kmem_cache *s, char *buf,
4071 					enum track_item alloc)
4072 {
4073 	int len = 0;
4074 	unsigned long i;
4075 	struct loc_track t = { 0, 0, NULL };
4076 	int node;
4077 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4078 				     sizeof(unsigned long), GFP_KERNEL);
4079 
4080 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4081 				     GFP_TEMPORARY)) {
4082 		kfree(map);
4083 		return sprintf(buf, "Out of memory\n");
4084 	}
4085 	/* Push back cpu slabs */
4086 	flush_all(s);
4087 
4088 	for_each_node_state(node, N_NORMAL_MEMORY) {
4089 		struct kmem_cache_node *n = get_node(s, node);
4090 		unsigned long flags;
4091 		struct page *page;
4092 
4093 		if (!atomic_long_read(&n->nr_slabs))
4094 			continue;
4095 
4096 		spin_lock_irqsave(&n->list_lock, flags);
4097 		list_for_each_entry(page, &n->partial, lru)
4098 			process_slab(&t, s, page, alloc, map);
4099 		list_for_each_entry(page, &n->full, lru)
4100 			process_slab(&t, s, page, alloc, map);
4101 		spin_unlock_irqrestore(&n->list_lock, flags);
4102 	}
4103 
4104 	for (i = 0; i < t.count; i++) {
4105 		struct location *l = &t.loc[i];
4106 
4107 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4108 			break;
4109 		len += sprintf(buf + len, "%7ld ", l->count);
4110 
4111 		if (l->addr)
4112 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4113 		else
4114 			len += sprintf(buf + len, "<not-available>");
4115 
4116 		if (l->sum_time != l->min_time) {
4117 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4118 				l->min_time,
4119 				(long)div_u64(l->sum_time, l->count),
4120 				l->max_time);
4121 		} else
4122 			len += sprintf(buf + len, " age=%ld",
4123 				l->min_time);
4124 
4125 		if (l->min_pid != l->max_pid)
4126 			len += sprintf(buf + len, " pid=%ld-%ld",
4127 				l->min_pid, l->max_pid);
4128 		else
4129 			len += sprintf(buf + len, " pid=%ld",
4130 				l->min_pid);
4131 
4132 		if (num_online_cpus() > 1 &&
4133 				!cpumask_empty(to_cpumask(l->cpus)) &&
4134 				len < PAGE_SIZE - 60) {
4135 			len += sprintf(buf + len, " cpus=");
4136 			len += cpulist_scnprintf(buf + len,
4137 						 PAGE_SIZE - len - 50,
4138 						 to_cpumask(l->cpus));
4139 		}
4140 
4141 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4142 				len < PAGE_SIZE - 60) {
4143 			len += sprintf(buf + len, " nodes=");
4144 			len += nodelist_scnprintf(buf + len,
4145 						  PAGE_SIZE - len - 50,
4146 						  l->nodes);
4147 		}
4148 
4149 		len += sprintf(buf + len, "\n");
4150 	}
4151 
4152 	free_loc_track(&t);
4153 	kfree(map);
4154 	if (!t.count)
4155 		len += sprintf(buf, "No data\n");
4156 	return len;
4157 }
4158 #endif
4159 
4160 #ifdef SLUB_RESILIENCY_TEST
4161 static void resiliency_test(void)
4162 {
4163 	u8 *p;
4164 
4165 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4166 
4167 	printk(KERN_ERR "SLUB resiliency testing\n");
4168 	printk(KERN_ERR "-----------------------\n");
4169 	printk(KERN_ERR "A. Corruption after allocation\n");
4170 
4171 	p = kzalloc(16, GFP_KERNEL);
4172 	p[16] = 0x12;
4173 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4174 			" 0x12->0x%p\n\n", p + 16);
4175 
4176 	validate_slab_cache(kmalloc_caches[4]);
4177 
4178 	/* Hmmm... The next two are dangerous */
4179 	p = kzalloc(32, GFP_KERNEL);
4180 	p[32 + sizeof(void *)] = 0x34;
4181 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4182 			" 0x34 -> -0x%p\n", p);
4183 	printk(KERN_ERR
4184 		"If allocated object is overwritten then not detectable\n\n");
4185 
4186 	validate_slab_cache(kmalloc_caches[5]);
4187 	p = kzalloc(64, GFP_KERNEL);
4188 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4189 	*p = 0x56;
4190 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4191 									p);
4192 	printk(KERN_ERR
4193 		"If allocated object is overwritten then not detectable\n\n");
4194 	validate_slab_cache(kmalloc_caches[6]);
4195 
4196 	printk(KERN_ERR "\nB. Corruption after free\n");
4197 	p = kzalloc(128, GFP_KERNEL);
4198 	kfree(p);
4199 	*p = 0x78;
4200 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4201 	validate_slab_cache(kmalloc_caches[7]);
4202 
4203 	p = kzalloc(256, GFP_KERNEL);
4204 	kfree(p);
4205 	p[50] = 0x9a;
4206 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4207 			p);
4208 	validate_slab_cache(kmalloc_caches[8]);
4209 
4210 	p = kzalloc(512, GFP_KERNEL);
4211 	kfree(p);
4212 	p[512] = 0xab;
4213 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4214 	validate_slab_cache(kmalloc_caches[9]);
4215 }
4216 #else
4217 #ifdef CONFIG_SYSFS
4218 static void resiliency_test(void) {};
4219 #endif
4220 #endif
4221 
4222 #ifdef CONFIG_SYSFS
4223 enum slab_stat_type {
4224 	SL_ALL,			/* All slabs */
4225 	SL_PARTIAL,		/* Only partially allocated slabs */
4226 	SL_CPU,			/* Only slabs used for cpu caches */
4227 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4228 	SL_TOTAL		/* Determine object capacity not slabs */
4229 };
4230 
4231 #define SO_ALL		(1 << SL_ALL)
4232 #define SO_PARTIAL	(1 << SL_PARTIAL)
4233 #define SO_CPU		(1 << SL_CPU)
4234 #define SO_OBJECTS	(1 << SL_OBJECTS)
4235 #define SO_TOTAL	(1 << SL_TOTAL)
4236 
4237 static ssize_t show_slab_objects(struct kmem_cache *s,
4238 			    char *buf, unsigned long flags)
4239 {
4240 	unsigned long total = 0;
4241 	int node;
4242 	int x;
4243 	unsigned long *nodes;
4244 
4245 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4246 	if (!nodes)
4247 		return -ENOMEM;
4248 
4249 	if (flags & SO_CPU) {
4250 		int cpu;
4251 
4252 		for_each_possible_cpu(cpu) {
4253 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4254 							       cpu);
4255 			int node;
4256 			struct page *page;
4257 
4258 			page = ACCESS_ONCE(c->page);
4259 			if (!page)
4260 				continue;
4261 
4262 			node = page_to_nid(page);
4263 			if (flags & SO_TOTAL)
4264 				x = page->objects;
4265 			else if (flags & SO_OBJECTS)
4266 				x = page->inuse;
4267 			else
4268 				x = 1;
4269 
4270 			total += x;
4271 			nodes[node] += x;
4272 
4273 			page = ACCESS_ONCE(c->partial);
4274 			if (page) {
4275 				x = page->pobjects;
4276 				total += x;
4277 				nodes[node] += x;
4278 			}
4279 		}
4280 	}
4281 
4282 	lock_memory_hotplug();
4283 #ifdef CONFIG_SLUB_DEBUG
4284 	if (flags & SO_ALL) {
4285 		for_each_node_state(node, N_NORMAL_MEMORY) {
4286 			struct kmem_cache_node *n = get_node(s, node);
4287 
4288 			if (flags & SO_TOTAL)
4289 				x = atomic_long_read(&n->total_objects);
4290 			else if (flags & SO_OBJECTS)
4291 				x = atomic_long_read(&n->total_objects) -
4292 					count_partial(n, count_free);
4293 			else
4294 				x = atomic_long_read(&n->nr_slabs);
4295 			total += x;
4296 			nodes[node] += x;
4297 		}
4298 
4299 	} else
4300 #endif
4301 	if (flags & SO_PARTIAL) {
4302 		for_each_node_state(node, N_NORMAL_MEMORY) {
4303 			struct kmem_cache_node *n = get_node(s, node);
4304 
4305 			if (flags & SO_TOTAL)
4306 				x = count_partial(n, count_total);
4307 			else if (flags & SO_OBJECTS)
4308 				x = count_partial(n, count_inuse);
4309 			else
4310 				x = n->nr_partial;
4311 			total += x;
4312 			nodes[node] += x;
4313 		}
4314 	}
4315 	x = sprintf(buf, "%lu", total);
4316 #ifdef CONFIG_NUMA
4317 	for_each_node_state(node, N_NORMAL_MEMORY)
4318 		if (nodes[node])
4319 			x += sprintf(buf + x, " N%d=%lu",
4320 					node, nodes[node]);
4321 #endif
4322 	unlock_memory_hotplug();
4323 	kfree(nodes);
4324 	return x + sprintf(buf + x, "\n");
4325 }
4326 
4327 #ifdef CONFIG_SLUB_DEBUG
4328 static int any_slab_objects(struct kmem_cache *s)
4329 {
4330 	int node;
4331 
4332 	for_each_online_node(node) {
4333 		struct kmem_cache_node *n = get_node(s, node);
4334 
4335 		if (!n)
4336 			continue;
4337 
4338 		if (atomic_long_read(&n->total_objects))
4339 			return 1;
4340 	}
4341 	return 0;
4342 }
4343 #endif
4344 
4345 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4346 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4347 
4348 struct slab_attribute {
4349 	struct attribute attr;
4350 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4351 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4352 };
4353 
4354 #define SLAB_ATTR_RO(_name) \
4355 	static struct slab_attribute _name##_attr = \
4356 	__ATTR(_name, 0400, _name##_show, NULL)
4357 
4358 #define SLAB_ATTR(_name) \
4359 	static struct slab_attribute _name##_attr =  \
4360 	__ATTR(_name, 0600, _name##_show, _name##_store)
4361 
4362 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4363 {
4364 	return sprintf(buf, "%d\n", s->size);
4365 }
4366 SLAB_ATTR_RO(slab_size);
4367 
4368 static ssize_t align_show(struct kmem_cache *s, char *buf)
4369 {
4370 	return sprintf(buf, "%d\n", s->align);
4371 }
4372 SLAB_ATTR_RO(align);
4373 
4374 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4375 {
4376 	return sprintf(buf, "%d\n", s->object_size);
4377 }
4378 SLAB_ATTR_RO(object_size);
4379 
4380 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4381 {
4382 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4383 }
4384 SLAB_ATTR_RO(objs_per_slab);
4385 
4386 static ssize_t order_store(struct kmem_cache *s,
4387 				const char *buf, size_t length)
4388 {
4389 	unsigned long order;
4390 	int err;
4391 
4392 	err = kstrtoul(buf, 10, &order);
4393 	if (err)
4394 		return err;
4395 
4396 	if (order > slub_max_order || order < slub_min_order)
4397 		return -EINVAL;
4398 
4399 	calculate_sizes(s, order);
4400 	return length;
4401 }
4402 
4403 static ssize_t order_show(struct kmem_cache *s, char *buf)
4404 {
4405 	return sprintf(buf, "%d\n", oo_order(s->oo));
4406 }
4407 SLAB_ATTR(order);
4408 
4409 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4410 {
4411 	return sprintf(buf, "%lu\n", s->min_partial);
4412 }
4413 
4414 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4415 				 size_t length)
4416 {
4417 	unsigned long min;
4418 	int err;
4419 
4420 	err = kstrtoul(buf, 10, &min);
4421 	if (err)
4422 		return err;
4423 
4424 	set_min_partial(s, min);
4425 	return length;
4426 }
4427 SLAB_ATTR(min_partial);
4428 
4429 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4430 {
4431 	return sprintf(buf, "%u\n", s->cpu_partial);
4432 }
4433 
4434 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4435 				 size_t length)
4436 {
4437 	unsigned long objects;
4438 	int err;
4439 
4440 	err = kstrtoul(buf, 10, &objects);
4441 	if (err)
4442 		return err;
4443 	if (objects && !kmem_cache_has_cpu_partial(s))
4444 		return -EINVAL;
4445 
4446 	s->cpu_partial = objects;
4447 	flush_all(s);
4448 	return length;
4449 }
4450 SLAB_ATTR(cpu_partial);
4451 
4452 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4453 {
4454 	if (!s->ctor)
4455 		return 0;
4456 	return sprintf(buf, "%pS\n", s->ctor);
4457 }
4458 SLAB_ATTR_RO(ctor);
4459 
4460 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4461 {
4462 	return sprintf(buf, "%d\n", s->refcount - 1);
4463 }
4464 SLAB_ATTR_RO(aliases);
4465 
4466 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4467 {
4468 	return show_slab_objects(s, buf, SO_PARTIAL);
4469 }
4470 SLAB_ATTR_RO(partial);
4471 
4472 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4473 {
4474 	return show_slab_objects(s, buf, SO_CPU);
4475 }
4476 SLAB_ATTR_RO(cpu_slabs);
4477 
4478 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4479 {
4480 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4481 }
4482 SLAB_ATTR_RO(objects);
4483 
4484 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4485 {
4486 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4487 }
4488 SLAB_ATTR_RO(objects_partial);
4489 
4490 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4491 {
4492 	int objects = 0;
4493 	int pages = 0;
4494 	int cpu;
4495 	int len;
4496 
4497 	for_each_online_cpu(cpu) {
4498 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4499 
4500 		if (page) {
4501 			pages += page->pages;
4502 			objects += page->pobjects;
4503 		}
4504 	}
4505 
4506 	len = sprintf(buf, "%d(%d)", objects, pages);
4507 
4508 #ifdef CONFIG_SMP
4509 	for_each_online_cpu(cpu) {
4510 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4511 
4512 		if (page && len < PAGE_SIZE - 20)
4513 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4514 				page->pobjects, page->pages);
4515 	}
4516 #endif
4517 	return len + sprintf(buf + len, "\n");
4518 }
4519 SLAB_ATTR_RO(slabs_cpu_partial);
4520 
4521 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4522 {
4523 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4524 }
4525 
4526 static ssize_t reclaim_account_store(struct kmem_cache *s,
4527 				const char *buf, size_t length)
4528 {
4529 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4530 	if (buf[0] == '1')
4531 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4532 	return length;
4533 }
4534 SLAB_ATTR(reclaim_account);
4535 
4536 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4537 {
4538 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4539 }
4540 SLAB_ATTR_RO(hwcache_align);
4541 
4542 #ifdef CONFIG_ZONE_DMA
4543 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4544 {
4545 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4546 }
4547 SLAB_ATTR_RO(cache_dma);
4548 #endif
4549 
4550 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4551 {
4552 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4553 }
4554 SLAB_ATTR_RO(destroy_by_rcu);
4555 
4556 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4557 {
4558 	return sprintf(buf, "%d\n", s->reserved);
4559 }
4560 SLAB_ATTR_RO(reserved);
4561 
4562 #ifdef CONFIG_SLUB_DEBUG
4563 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4564 {
4565 	return show_slab_objects(s, buf, SO_ALL);
4566 }
4567 SLAB_ATTR_RO(slabs);
4568 
4569 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4570 {
4571 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4572 }
4573 SLAB_ATTR_RO(total_objects);
4574 
4575 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4576 {
4577 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4578 }
4579 
4580 static ssize_t sanity_checks_store(struct kmem_cache *s,
4581 				const char *buf, size_t length)
4582 {
4583 	s->flags &= ~SLAB_DEBUG_FREE;
4584 	if (buf[0] == '1') {
4585 		s->flags &= ~__CMPXCHG_DOUBLE;
4586 		s->flags |= SLAB_DEBUG_FREE;
4587 	}
4588 	return length;
4589 }
4590 SLAB_ATTR(sanity_checks);
4591 
4592 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4593 {
4594 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4595 }
4596 
4597 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4598 							size_t length)
4599 {
4600 	s->flags &= ~SLAB_TRACE;
4601 	if (buf[0] == '1') {
4602 		s->flags &= ~__CMPXCHG_DOUBLE;
4603 		s->flags |= SLAB_TRACE;
4604 	}
4605 	return length;
4606 }
4607 SLAB_ATTR(trace);
4608 
4609 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4610 {
4611 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4612 }
4613 
4614 static ssize_t red_zone_store(struct kmem_cache *s,
4615 				const char *buf, size_t length)
4616 {
4617 	if (any_slab_objects(s))
4618 		return -EBUSY;
4619 
4620 	s->flags &= ~SLAB_RED_ZONE;
4621 	if (buf[0] == '1') {
4622 		s->flags &= ~__CMPXCHG_DOUBLE;
4623 		s->flags |= SLAB_RED_ZONE;
4624 	}
4625 	calculate_sizes(s, -1);
4626 	return length;
4627 }
4628 SLAB_ATTR(red_zone);
4629 
4630 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4631 {
4632 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4633 }
4634 
4635 static ssize_t poison_store(struct kmem_cache *s,
4636 				const char *buf, size_t length)
4637 {
4638 	if (any_slab_objects(s))
4639 		return -EBUSY;
4640 
4641 	s->flags &= ~SLAB_POISON;
4642 	if (buf[0] == '1') {
4643 		s->flags &= ~__CMPXCHG_DOUBLE;
4644 		s->flags |= SLAB_POISON;
4645 	}
4646 	calculate_sizes(s, -1);
4647 	return length;
4648 }
4649 SLAB_ATTR(poison);
4650 
4651 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4652 {
4653 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4654 }
4655 
4656 static ssize_t store_user_store(struct kmem_cache *s,
4657 				const char *buf, size_t length)
4658 {
4659 	if (any_slab_objects(s))
4660 		return -EBUSY;
4661 
4662 	s->flags &= ~SLAB_STORE_USER;
4663 	if (buf[0] == '1') {
4664 		s->flags &= ~__CMPXCHG_DOUBLE;
4665 		s->flags |= SLAB_STORE_USER;
4666 	}
4667 	calculate_sizes(s, -1);
4668 	return length;
4669 }
4670 SLAB_ATTR(store_user);
4671 
4672 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4673 {
4674 	return 0;
4675 }
4676 
4677 static ssize_t validate_store(struct kmem_cache *s,
4678 			const char *buf, size_t length)
4679 {
4680 	int ret = -EINVAL;
4681 
4682 	if (buf[0] == '1') {
4683 		ret = validate_slab_cache(s);
4684 		if (ret >= 0)
4685 			ret = length;
4686 	}
4687 	return ret;
4688 }
4689 SLAB_ATTR(validate);
4690 
4691 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4692 {
4693 	if (!(s->flags & SLAB_STORE_USER))
4694 		return -ENOSYS;
4695 	return list_locations(s, buf, TRACK_ALLOC);
4696 }
4697 SLAB_ATTR_RO(alloc_calls);
4698 
4699 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4700 {
4701 	if (!(s->flags & SLAB_STORE_USER))
4702 		return -ENOSYS;
4703 	return list_locations(s, buf, TRACK_FREE);
4704 }
4705 SLAB_ATTR_RO(free_calls);
4706 #endif /* CONFIG_SLUB_DEBUG */
4707 
4708 #ifdef CONFIG_FAILSLAB
4709 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4710 {
4711 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4712 }
4713 
4714 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4715 							size_t length)
4716 {
4717 	s->flags &= ~SLAB_FAILSLAB;
4718 	if (buf[0] == '1')
4719 		s->flags |= SLAB_FAILSLAB;
4720 	return length;
4721 }
4722 SLAB_ATTR(failslab);
4723 #endif
4724 
4725 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4726 {
4727 	return 0;
4728 }
4729 
4730 static ssize_t shrink_store(struct kmem_cache *s,
4731 			const char *buf, size_t length)
4732 {
4733 	if (buf[0] == '1') {
4734 		int rc = kmem_cache_shrink(s);
4735 
4736 		if (rc)
4737 			return rc;
4738 	} else
4739 		return -EINVAL;
4740 	return length;
4741 }
4742 SLAB_ATTR(shrink);
4743 
4744 #ifdef CONFIG_NUMA
4745 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4746 {
4747 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4748 }
4749 
4750 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4751 				const char *buf, size_t length)
4752 {
4753 	unsigned long ratio;
4754 	int err;
4755 
4756 	err = kstrtoul(buf, 10, &ratio);
4757 	if (err)
4758 		return err;
4759 
4760 	if (ratio <= 100)
4761 		s->remote_node_defrag_ratio = ratio * 10;
4762 
4763 	return length;
4764 }
4765 SLAB_ATTR(remote_node_defrag_ratio);
4766 #endif
4767 
4768 #ifdef CONFIG_SLUB_STATS
4769 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4770 {
4771 	unsigned long sum  = 0;
4772 	int cpu;
4773 	int len;
4774 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4775 
4776 	if (!data)
4777 		return -ENOMEM;
4778 
4779 	for_each_online_cpu(cpu) {
4780 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4781 
4782 		data[cpu] = x;
4783 		sum += x;
4784 	}
4785 
4786 	len = sprintf(buf, "%lu", sum);
4787 
4788 #ifdef CONFIG_SMP
4789 	for_each_online_cpu(cpu) {
4790 		if (data[cpu] && len < PAGE_SIZE - 20)
4791 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4792 	}
4793 #endif
4794 	kfree(data);
4795 	return len + sprintf(buf + len, "\n");
4796 }
4797 
4798 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4799 {
4800 	int cpu;
4801 
4802 	for_each_online_cpu(cpu)
4803 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4804 }
4805 
4806 #define STAT_ATTR(si, text) 					\
4807 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4808 {								\
4809 	return show_stat(s, buf, si);				\
4810 }								\
4811 static ssize_t text##_store(struct kmem_cache *s,		\
4812 				const char *buf, size_t length)	\
4813 {								\
4814 	if (buf[0] != '0')					\
4815 		return -EINVAL;					\
4816 	clear_stat(s, si);					\
4817 	return length;						\
4818 }								\
4819 SLAB_ATTR(text);						\
4820 
4821 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4822 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4823 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4824 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4825 STAT_ATTR(FREE_FROZEN, free_frozen);
4826 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4827 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4828 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4829 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4830 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4831 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4832 STAT_ATTR(FREE_SLAB, free_slab);
4833 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4834 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4835 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4836 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4837 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4838 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4839 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4840 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4841 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4842 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4843 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4844 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4845 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4846 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4847 #endif
4848 
4849 static struct attribute *slab_attrs[] = {
4850 	&slab_size_attr.attr,
4851 	&object_size_attr.attr,
4852 	&objs_per_slab_attr.attr,
4853 	&order_attr.attr,
4854 	&min_partial_attr.attr,
4855 	&cpu_partial_attr.attr,
4856 	&objects_attr.attr,
4857 	&objects_partial_attr.attr,
4858 	&partial_attr.attr,
4859 	&cpu_slabs_attr.attr,
4860 	&ctor_attr.attr,
4861 	&aliases_attr.attr,
4862 	&align_attr.attr,
4863 	&hwcache_align_attr.attr,
4864 	&reclaim_account_attr.attr,
4865 	&destroy_by_rcu_attr.attr,
4866 	&shrink_attr.attr,
4867 	&reserved_attr.attr,
4868 	&slabs_cpu_partial_attr.attr,
4869 #ifdef CONFIG_SLUB_DEBUG
4870 	&total_objects_attr.attr,
4871 	&slabs_attr.attr,
4872 	&sanity_checks_attr.attr,
4873 	&trace_attr.attr,
4874 	&red_zone_attr.attr,
4875 	&poison_attr.attr,
4876 	&store_user_attr.attr,
4877 	&validate_attr.attr,
4878 	&alloc_calls_attr.attr,
4879 	&free_calls_attr.attr,
4880 #endif
4881 #ifdef CONFIG_ZONE_DMA
4882 	&cache_dma_attr.attr,
4883 #endif
4884 #ifdef CONFIG_NUMA
4885 	&remote_node_defrag_ratio_attr.attr,
4886 #endif
4887 #ifdef CONFIG_SLUB_STATS
4888 	&alloc_fastpath_attr.attr,
4889 	&alloc_slowpath_attr.attr,
4890 	&free_fastpath_attr.attr,
4891 	&free_slowpath_attr.attr,
4892 	&free_frozen_attr.attr,
4893 	&free_add_partial_attr.attr,
4894 	&free_remove_partial_attr.attr,
4895 	&alloc_from_partial_attr.attr,
4896 	&alloc_slab_attr.attr,
4897 	&alloc_refill_attr.attr,
4898 	&alloc_node_mismatch_attr.attr,
4899 	&free_slab_attr.attr,
4900 	&cpuslab_flush_attr.attr,
4901 	&deactivate_full_attr.attr,
4902 	&deactivate_empty_attr.attr,
4903 	&deactivate_to_head_attr.attr,
4904 	&deactivate_to_tail_attr.attr,
4905 	&deactivate_remote_frees_attr.attr,
4906 	&deactivate_bypass_attr.attr,
4907 	&order_fallback_attr.attr,
4908 	&cmpxchg_double_fail_attr.attr,
4909 	&cmpxchg_double_cpu_fail_attr.attr,
4910 	&cpu_partial_alloc_attr.attr,
4911 	&cpu_partial_free_attr.attr,
4912 	&cpu_partial_node_attr.attr,
4913 	&cpu_partial_drain_attr.attr,
4914 #endif
4915 #ifdef CONFIG_FAILSLAB
4916 	&failslab_attr.attr,
4917 #endif
4918 
4919 	NULL
4920 };
4921 
4922 static struct attribute_group slab_attr_group = {
4923 	.attrs = slab_attrs,
4924 };
4925 
4926 static ssize_t slab_attr_show(struct kobject *kobj,
4927 				struct attribute *attr,
4928 				char *buf)
4929 {
4930 	struct slab_attribute *attribute;
4931 	struct kmem_cache *s;
4932 	int err;
4933 
4934 	attribute = to_slab_attr(attr);
4935 	s = to_slab(kobj);
4936 
4937 	if (!attribute->show)
4938 		return -EIO;
4939 
4940 	err = attribute->show(s, buf);
4941 
4942 	return err;
4943 }
4944 
4945 static ssize_t slab_attr_store(struct kobject *kobj,
4946 				struct attribute *attr,
4947 				const char *buf, size_t len)
4948 {
4949 	struct slab_attribute *attribute;
4950 	struct kmem_cache *s;
4951 	int err;
4952 
4953 	attribute = to_slab_attr(attr);
4954 	s = to_slab(kobj);
4955 
4956 	if (!attribute->store)
4957 		return -EIO;
4958 
4959 	err = attribute->store(s, buf, len);
4960 #ifdef CONFIG_MEMCG_KMEM
4961 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4962 		int i;
4963 
4964 		mutex_lock(&slab_mutex);
4965 		if (s->max_attr_size < len)
4966 			s->max_attr_size = len;
4967 
4968 		/*
4969 		 * This is a best effort propagation, so this function's return
4970 		 * value will be determined by the parent cache only. This is
4971 		 * basically because not all attributes will have a well
4972 		 * defined semantics for rollbacks - most of the actions will
4973 		 * have permanent effects.
4974 		 *
4975 		 * Returning the error value of any of the children that fail
4976 		 * is not 100 % defined, in the sense that users seeing the
4977 		 * error code won't be able to know anything about the state of
4978 		 * the cache.
4979 		 *
4980 		 * Only returning the error code for the parent cache at least
4981 		 * has well defined semantics. The cache being written to
4982 		 * directly either failed or succeeded, in which case we loop
4983 		 * through the descendants with best-effort propagation.
4984 		 */
4985 		for_each_memcg_cache_index(i) {
4986 			struct kmem_cache *c = cache_from_memcg(s, i);
4987 			if (c)
4988 				attribute->store(c, buf, len);
4989 		}
4990 		mutex_unlock(&slab_mutex);
4991 	}
4992 #endif
4993 	return err;
4994 }
4995 
4996 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
4997 {
4998 #ifdef CONFIG_MEMCG_KMEM
4999 	int i;
5000 	char *buffer = NULL;
5001 
5002 	if (!is_root_cache(s))
5003 		return;
5004 
5005 	/*
5006 	 * This mean this cache had no attribute written. Therefore, no point
5007 	 * in copying default values around
5008 	 */
5009 	if (!s->max_attr_size)
5010 		return;
5011 
5012 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5013 		char mbuf[64];
5014 		char *buf;
5015 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5016 
5017 		if (!attr || !attr->store || !attr->show)
5018 			continue;
5019 
5020 		/*
5021 		 * It is really bad that we have to allocate here, so we will
5022 		 * do it only as a fallback. If we actually allocate, though,
5023 		 * we can just use the allocated buffer until the end.
5024 		 *
5025 		 * Most of the slub attributes will tend to be very small in
5026 		 * size, but sysfs allows buffers up to a page, so they can
5027 		 * theoretically happen.
5028 		 */
5029 		if (buffer)
5030 			buf = buffer;
5031 		else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5032 			buf = mbuf;
5033 		else {
5034 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5035 			if (WARN_ON(!buffer))
5036 				continue;
5037 			buf = buffer;
5038 		}
5039 
5040 		attr->show(s->memcg_params->root_cache, buf);
5041 		attr->store(s, buf, strlen(buf));
5042 	}
5043 
5044 	if (buffer)
5045 		free_page((unsigned long)buffer);
5046 #endif
5047 }
5048 
5049 static const struct sysfs_ops slab_sysfs_ops = {
5050 	.show = slab_attr_show,
5051 	.store = slab_attr_store,
5052 };
5053 
5054 static struct kobj_type slab_ktype = {
5055 	.sysfs_ops = &slab_sysfs_ops,
5056 };
5057 
5058 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5059 {
5060 	struct kobj_type *ktype = get_ktype(kobj);
5061 
5062 	if (ktype == &slab_ktype)
5063 		return 1;
5064 	return 0;
5065 }
5066 
5067 static const struct kset_uevent_ops slab_uevent_ops = {
5068 	.filter = uevent_filter,
5069 };
5070 
5071 static struct kset *slab_kset;
5072 
5073 #define ID_STR_LENGTH 64
5074 
5075 /* Create a unique string id for a slab cache:
5076  *
5077  * Format	:[flags-]size
5078  */
5079 static char *create_unique_id(struct kmem_cache *s)
5080 {
5081 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5082 	char *p = name;
5083 
5084 	BUG_ON(!name);
5085 
5086 	*p++ = ':';
5087 	/*
5088 	 * First flags affecting slabcache operations. We will only
5089 	 * get here for aliasable slabs so we do not need to support
5090 	 * too many flags. The flags here must cover all flags that
5091 	 * are matched during merging to guarantee that the id is
5092 	 * unique.
5093 	 */
5094 	if (s->flags & SLAB_CACHE_DMA)
5095 		*p++ = 'd';
5096 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5097 		*p++ = 'a';
5098 	if (s->flags & SLAB_DEBUG_FREE)
5099 		*p++ = 'F';
5100 	if (!(s->flags & SLAB_NOTRACK))
5101 		*p++ = 't';
5102 	if (p != name + 1)
5103 		*p++ = '-';
5104 	p += sprintf(p, "%07d", s->size);
5105 
5106 #ifdef CONFIG_MEMCG_KMEM
5107 	if (!is_root_cache(s))
5108 		p += sprintf(p, "-%08d",
5109 				memcg_cache_id(s->memcg_params->memcg));
5110 #endif
5111 
5112 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5113 	return name;
5114 }
5115 
5116 static int sysfs_slab_add(struct kmem_cache *s)
5117 {
5118 	int err;
5119 	const char *name;
5120 	int unmergeable = slab_unmergeable(s);
5121 
5122 	if (unmergeable) {
5123 		/*
5124 		 * Slabcache can never be merged so we can use the name proper.
5125 		 * This is typically the case for debug situations. In that
5126 		 * case we can catch duplicate names easily.
5127 		 */
5128 		sysfs_remove_link(&slab_kset->kobj, s->name);
5129 		name = s->name;
5130 	} else {
5131 		/*
5132 		 * Create a unique name for the slab as a target
5133 		 * for the symlinks.
5134 		 */
5135 		name = create_unique_id(s);
5136 	}
5137 
5138 	s->kobj.kset = slab_kset;
5139 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5140 	if (err) {
5141 		kobject_put(&s->kobj);
5142 		return err;
5143 	}
5144 
5145 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5146 	if (err) {
5147 		kobject_del(&s->kobj);
5148 		kobject_put(&s->kobj);
5149 		return err;
5150 	}
5151 	kobject_uevent(&s->kobj, KOBJ_ADD);
5152 	if (!unmergeable) {
5153 		/* Setup first alias */
5154 		sysfs_slab_alias(s, s->name);
5155 		kfree(name);
5156 	}
5157 	return 0;
5158 }
5159 
5160 static void sysfs_slab_remove(struct kmem_cache *s)
5161 {
5162 	if (slab_state < FULL)
5163 		/*
5164 		 * Sysfs has not been setup yet so no need to remove the
5165 		 * cache from sysfs.
5166 		 */
5167 		return;
5168 
5169 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5170 	kobject_del(&s->kobj);
5171 	kobject_put(&s->kobj);
5172 }
5173 
5174 /*
5175  * Need to buffer aliases during bootup until sysfs becomes
5176  * available lest we lose that information.
5177  */
5178 struct saved_alias {
5179 	struct kmem_cache *s;
5180 	const char *name;
5181 	struct saved_alias *next;
5182 };
5183 
5184 static struct saved_alias *alias_list;
5185 
5186 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5187 {
5188 	struct saved_alias *al;
5189 
5190 	if (slab_state == FULL) {
5191 		/*
5192 		 * If we have a leftover link then remove it.
5193 		 */
5194 		sysfs_remove_link(&slab_kset->kobj, name);
5195 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5196 	}
5197 
5198 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5199 	if (!al)
5200 		return -ENOMEM;
5201 
5202 	al->s = s;
5203 	al->name = name;
5204 	al->next = alias_list;
5205 	alias_list = al;
5206 	return 0;
5207 }
5208 
5209 static int __init slab_sysfs_init(void)
5210 {
5211 	struct kmem_cache *s;
5212 	int err;
5213 
5214 	mutex_lock(&slab_mutex);
5215 
5216 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5217 	if (!slab_kset) {
5218 		mutex_unlock(&slab_mutex);
5219 		printk(KERN_ERR "Cannot register slab subsystem.\n");
5220 		return -ENOSYS;
5221 	}
5222 
5223 	slab_state = FULL;
5224 
5225 	list_for_each_entry(s, &slab_caches, list) {
5226 		err = sysfs_slab_add(s);
5227 		if (err)
5228 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5229 						" to sysfs\n", s->name);
5230 	}
5231 
5232 	while (alias_list) {
5233 		struct saved_alias *al = alias_list;
5234 
5235 		alias_list = alias_list->next;
5236 		err = sysfs_slab_alias(al->s, al->name);
5237 		if (err)
5238 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5239 					" %s to sysfs\n", al->name);
5240 		kfree(al);
5241 	}
5242 
5243 	mutex_unlock(&slab_mutex);
5244 	resiliency_test();
5245 	return 0;
5246 }
5247 
5248 __initcall(slab_sysfs_init);
5249 #endif /* CONFIG_SYSFS */
5250 
5251 /*
5252  * The /proc/slabinfo ABI
5253  */
5254 #ifdef CONFIG_SLABINFO
5255 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5256 {
5257 	unsigned long nr_slabs = 0;
5258 	unsigned long nr_objs = 0;
5259 	unsigned long nr_free = 0;
5260 	int node;
5261 
5262 	for_each_online_node(node) {
5263 		struct kmem_cache_node *n = get_node(s, node);
5264 
5265 		if (!n)
5266 			continue;
5267 
5268 		nr_slabs += node_nr_slabs(n);
5269 		nr_objs += node_nr_objs(n);
5270 		nr_free += count_partial(n, count_free);
5271 	}
5272 
5273 	sinfo->active_objs = nr_objs - nr_free;
5274 	sinfo->num_objs = nr_objs;
5275 	sinfo->active_slabs = nr_slabs;
5276 	sinfo->num_slabs = nr_slabs;
5277 	sinfo->objects_per_slab = oo_objects(s->oo);
5278 	sinfo->cache_order = oo_order(s->oo);
5279 }
5280 
5281 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5282 {
5283 }
5284 
5285 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5286 		       size_t count, loff_t *ppos)
5287 {
5288 	return -EIO;
5289 }
5290 #endif /* CONFIG_SLABINFO */
5291