1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/kfence.h> 31 #include <linux/memory.h> 32 #include <linux/math64.h> 33 #include <linux/fault-inject.h> 34 #include <linux/stacktrace.h> 35 #include <linux/prefetch.h> 36 #include <linux/memcontrol.h> 37 #include <linux/random.h> 38 39 #include <trace/events/kmem.h> 40 41 #include "internal.h" 42 43 /* 44 * Lock order: 45 * 1. slab_mutex (Global Mutex) 46 * 2. node->list_lock 47 * 3. slab_lock(page) (Only on some arches and for debugging) 48 * 49 * slab_mutex 50 * 51 * The role of the slab_mutex is to protect the list of all the slabs 52 * and to synchronize major metadata changes to slab cache structures. 53 * 54 * The slab_lock is only used for debugging and on arches that do not 55 * have the ability to do a cmpxchg_double. It only protects: 56 * A. page->freelist -> List of object free in a page 57 * B. page->inuse -> Number of objects in use 58 * C. page->objects -> Number of objects in page 59 * D. page->frozen -> frozen state 60 * 61 * If a slab is frozen then it is exempt from list management. It is not 62 * on any list except per cpu partial list. The processor that froze the 63 * slab is the one who can perform list operations on the page. Other 64 * processors may put objects onto the freelist but the processor that 65 * froze the slab is the only one that can retrieve the objects from the 66 * page's freelist. 67 * 68 * The list_lock protects the partial and full list on each node and 69 * the partial slab counter. If taken then no new slabs may be added or 70 * removed from the lists nor make the number of partial slabs be modified. 71 * (Note that the total number of slabs is an atomic value that may be 72 * modified without taking the list lock). 73 * 74 * The list_lock is a centralized lock and thus we avoid taking it as 75 * much as possible. As long as SLUB does not have to handle partial 76 * slabs, operations can continue without any centralized lock. F.e. 77 * allocating a long series of objects that fill up slabs does not require 78 * the list lock. 79 * Interrupts are disabled during allocation and deallocation in order to 80 * make the slab allocator safe to use in the context of an irq. In addition 81 * interrupts are disabled to ensure that the processor does not change 82 * while handling per_cpu slabs, due to kernel preemption. 83 * 84 * SLUB assigns one slab for allocation to each processor. 85 * Allocations only occur from these slabs called cpu slabs. 86 * 87 * Slabs with free elements are kept on a partial list and during regular 88 * operations no list for full slabs is used. If an object in a full slab is 89 * freed then the slab will show up again on the partial lists. 90 * We track full slabs for debugging purposes though because otherwise we 91 * cannot scan all objects. 92 * 93 * Slabs are freed when they become empty. Teardown and setup is 94 * minimal so we rely on the page allocators per cpu caches for 95 * fast frees and allocs. 96 * 97 * page->frozen The slab is frozen and exempt from list processing. 98 * This means that the slab is dedicated to a purpose 99 * such as satisfying allocations for a specific 100 * processor. Objects may be freed in the slab while 101 * it is frozen but slab_free will then skip the usual 102 * list operations. It is up to the processor holding 103 * the slab to integrate the slab into the slab lists 104 * when the slab is no longer needed. 105 * 106 * One use of this flag is to mark slabs that are 107 * used for allocations. Then such a slab becomes a cpu 108 * slab. The cpu slab may be equipped with an additional 109 * freelist that allows lockless access to 110 * free objects in addition to the regular freelist 111 * that requires the slab lock. 112 * 113 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 114 * options set. This moves slab handling out of 115 * the fast path and disables lockless freelists. 116 */ 117 118 #ifdef CONFIG_SLUB_DEBUG 119 #ifdef CONFIG_SLUB_DEBUG_ON 120 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 121 #else 122 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 123 #endif 124 #endif 125 126 static inline bool kmem_cache_debug(struct kmem_cache *s) 127 { 128 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 129 } 130 131 void *fixup_red_left(struct kmem_cache *s, void *p) 132 { 133 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 134 p += s->red_left_pad; 135 136 return p; 137 } 138 139 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 140 { 141 #ifdef CONFIG_SLUB_CPU_PARTIAL 142 return !kmem_cache_debug(s); 143 #else 144 return false; 145 #endif 146 } 147 148 /* 149 * Issues still to be resolved: 150 * 151 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 152 * 153 * - Variable sizing of the per node arrays 154 */ 155 156 /* Enable to test recovery from slab corruption on boot */ 157 #undef SLUB_RESILIENCY_TEST 158 159 /* Enable to log cmpxchg failures */ 160 #undef SLUB_DEBUG_CMPXCHG 161 162 /* 163 * Minimum number of partial slabs. These will be left on the partial 164 * lists even if they are empty. kmem_cache_shrink may reclaim them. 165 */ 166 #define MIN_PARTIAL 5 167 168 /* 169 * Maximum number of desirable partial slabs. 170 * The existence of more partial slabs makes kmem_cache_shrink 171 * sort the partial list by the number of objects in use. 172 */ 173 #define MAX_PARTIAL 10 174 175 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 176 SLAB_POISON | SLAB_STORE_USER) 177 178 /* 179 * These debug flags cannot use CMPXCHG because there might be consistency 180 * issues when checking or reading debug information 181 */ 182 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 183 SLAB_TRACE) 184 185 186 /* 187 * Debugging flags that require metadata to be stored in the slab. These get 188 * disabled when slub_debug=O is used and a cache's min order increases with 189 * metadata. 190 */ 191 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 192 193 #define OO_SHIFT 16 194 #define OO_MASK ((1 << OO_SHIFT) - 1) 195 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 196 197 /* Internal SLUB flags */ 198 /* Poison object */ 199 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 200 /* Use cmpxchg_double */ 201 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 202 203 /* 204 * Tracking user of a slab. 205 */ 206 #define TRACK_ADDRS_COUNT 16 207 struct track { 208 unsigned long addr; /* Called from address */ 209 #ifdef CONFIG_STACKTRACE 210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 211 #endif 212 int cpu; /* Was running on cpu */ 213 int pid; /* Pid context */ 214 unsigned long when; /* When did the operation occur */ 215 }; 216 217 enum track_item { TRACK_ALLOC, TRACK_FREE }; 218 219 #ifdef CONFIG_SYSFS 220 static int sysfs_slab_add(struct kmem_cache *); 221 static int sysfs_slab_alias(struct kmem_cache *, const char *); 222 #else 223 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 224 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 225 { return 0; } 226 #endif 227 228 static inline void stat(const struct kmem_cache *s, enum stat_item si) 229 { 230 #ifdef CONFIG_SLUB_STATS 231 /* 232 * The rmw is racy on a preemptible kernel but this is acceptable, so 233 * avoid this_cpu_add()'s irq-disable overhead. 234 */ 235 raw_cpu_inc(s->cpu_slab->stat[si]); 236 #endif 237 } 238 239 /* 240 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 241 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 242 * differ during memory hotplug/hotremove operations. 243 * Protected by slab_mutex. 244 */ 245 static nodemask_t slab_nodes; 246 247 /******************************************************************** 248 * Core slab cache functions 249 *******************************************************************/ 250 251 /* 252 * Returns freelist pointer (ptr). With hardening, this is obfuscated 253 * with an XOR of the address where the pointer is held and a per-cache 254 * random number. 255 */ 256 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 257 unsigned long ptr_addr) 258 { 259 #ifdef CONFIG_SLAB_FREELIST_HARDENED 260 /* 261 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. 262 * Normally, this doesn't cause any issues, as both set_freepointer() 263 * and get_freepointer() are called with a pointer with the same tag. 264 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 265 * example, when __free_slub() iterates over objects in a cache, it 266 * passes untagged pointers to check_object(). check_object() in turns 267 * calls get_freepointer() with an untagged pointer, which causes the 268 * freepointer to be restored incorrectly. 269 */ 270 return (void *)((unsigned long)ptr ^ s->random ^ 271 swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); 272 #else 273 return ptr; 274 #endif 275 } 276 277 /* Returns the freelist pointer recorded at location ptr_addr. */ 278 static inline void *freelist_dereference(const struct kmem_cache *s, 279 void *ptr_addr) 280 { 281 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 282 (unsigned long)ptr_addr); 283 } 284 285 static inline void *get_freepointer(struct kmem_cache *s, void *object) 286 { 287 object = kasan_reset_tag(object); 288 return freelist_dereference(s, object + s->offset); 289 } 290 291 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 292 { 293 prefetch(object + s->offset); 294 } 295 296 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 297 { 298 unsigned long freepointer_addr; 299 void *p; 300 301 if (!debug_pagealloc_enabled_static()) 302 return get_freepointer(s, object); 303 304 object = kasan_reset_tag(object); 305 freepointer_addr = (unsigned long)object + s->offset; 306 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); 307 return freelist_ptr(s, p, freepointer_addr); 308 } 309 310 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 311 { 312 unsigned long freeptr_addr = (unsigned long)object + s->offset; 313 314 #ifdef CONFIG_SLAB_FREELIST_HARDENED 315 BUG_ON(object == fp); /* naive detection of double free or corruption */ 316 #endif 317 318 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 319 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 320 } 321 322 /* Loop over all objects in a slab */ 323 #define for_each_object(__p, __s, __addr, __objects) \ 324 for (__p = fixup_red_left(__s, __addr); \ 325 __p < (__addr) + (__objects) * (__s)->size; \ 326 __p += (__s)->size) 327 328 static inline unsigned int order_objects(unsigned int order, unsigned int size) 329 { 330 return ((unsigned int)PAGE_SIZE << order) / size; 331 } 332 333 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 334 unsigned int size) 335 { 336 struct kmem_cache_order_objects x = { 337 (order << OO_SHIFT) + order_objects(order, size) 338 }; 339 340 return x; 341 } 342 343 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 344 { 345 return x.x >> OO_SHIFT; 346 } 347 348 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 349 { 350 return x.x & OO_MASK; 351 } 352 353 /* 354 * Per slab locking using the pagelock 355 */ 356 static __always_inline void slab_lock(struct page *page) 357 { 358 VM_BUG_ON_PAGE(PageTail(page), page); 359 bit_spin_lock(PG_locked, &page->flags); 360 } 361 362 static __always_inline void slab_unlock(struct page *page) 363 { 364 VM_BUG_ON_PAGE(PageTail(page), page); 365 __bit_spin_unlock(PG_locked, &page->flags); 366 } 367 368 /* Interrupts must be disabled (for the fallback code to work right) */ 369 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 370 void *freelist_old, unsigned long counters_old, 371 void *freelist_new, unsigned long counters_new, 372 const char *n) 373 { 374 VM_BUG_ON(!irqs_disabled()); 375 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 376 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 377 if (s->flags & __CMPXCHG_DOUBLE) { 378 if (cmpxchg_double(&page->freelist, &page->counters, 379 freelist_old, counters_old, 380 freelist_new, counters_new)) 381 return true; 382 } else 383 #endif 384 { 385 slab_lock(page); 386 if (page->freelist == freelist_old && 387 page->counters == counters_old) { 388 page->freelist = freelist_new; 389 page->counters = counters_new; 390 slab_unlock(page); 391 return true; 392 } 393 slab_unlock(page); 394 } 395 396 cpu_relax(); 397 stat(s, CMPXCHG_DOUBLE_FAIL); 398 399 #ifdef SLUB_DEBUG_CMPXCHG 400 pr_info("%s %s: cmpxchg double redo ", n, s->name); 401 #endif 402 403 return false; 404 } 405 406 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 407 void *freelist_old, unsigned long counters_old, 408 void *freelist_new, unsigned long counters_new, 409 const char *n) 410 { 411 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 412 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 413 if (s->flags & __CMPXCHG_DOUBLE) { 414 if (cmpxchg_double(&page->freelist, &page->counters, 415 freelist_old, counters_old, 416 freelist_new, counters_new)) 417 return true; 418 } else 419 #endif 420 { 421 unsigned long flags; 422 423 local_irq_save(flags); 424 slab_lock(page); 425 if (page->freelist == freelist_old && 426 page->counters == counters_old) { 427 page->freelist = freelist_new; 428 page->counters = counters_new; 429 slab_unlock(page); 430 local_irq_restore(flags); 431 return true; 432 } 433 slab_unlock(page); 434 local_irq_restore(flags); 435 } 436 437 cpu_relax(); 438 stat(s, CMPXCHG_DOUBLE_FAIL); 439 440 #ifdef SLUB_DEBUG_CMPXCHG 441 pr_info("%s %s: cmpxchg double redo ", n, s->name); 442 #endif 443 444 return false; 445 } 446 447 #ifdef CONFIG_SLUB_DEBUG 448 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 449 static DEFINE_SPINLOCK(object_map_lock); 450 451 /* 452 * Determine a map of object in use on a page. 453 * 454 * Node listlock must be held to guarantee that the page does 455 * not vanish from under us. 456 */ 457 static unsigned long *get_map(struct kmem_cache *s, struct page *page) 458 __acquires(&object_map_lock) 459 { 460 void *p; 461 void *addr = page_address(page); 462 463 VM_BUG_ON(!irqs_disabled()); 464 465 spin_lock(&object_map_lock); 466 467 bitmap_zero(object_map, page->objects); 468 469 for (p = page->freelist; p; p = get_freepointer(s, p)) 470 set_bit(__obj_to_index(s, addr, p), object_map); 471 472 return object_map; 473 } 474 475 static void put_map(unsigned long *map) __releases(&object_map_lock) 476 { 477 VM_BUG_ON(map != object_map); 478 spin_unlock(&object_map_lock); 479 } 480 481 static inline unsigned int size_from_object(struct kmem_cache *s) 482 { 483 if (s->flags & SLAB_RED_ZONE) 484 return s->size - s->red_left_pad; 485 486 return s->size; 487 } 488 489 static inline void *restore_red_left(struct kmem_cache *s, void *p) 490 { 491 if (s->flags & SLAB_RED_ZONE) 492 p -= s->red_left_pad; 493 494 return p; 495 } 496 497 /* 498 * Debug settings: 499 */ 500 #if defined(CONFIG_SLUB_DEBUG_ON) 501 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 502 #else 503 static slab_flags_t slub_debug; 504 #endif 505 506 static char *slub_debug_string; 507 static int disable_higher_order_debug; 508 509 /* 510 * slub is about to manipulate internal object metadata. This memory lies 511 * outside the range of the allocated object, so accessing it would normally 512 * be reported by kasan as a bounds error. metadata_access_enable() is used 513 * to tell kasan that these accesses are OK. 514 */ 515 static inline void metadata_access_enable(void) 516 { 517 kasan_disable_current(); 518 } 519 520 static inline void metadata_access_disable(void) 521 { 522 kasan_enable_current(); 523 } 524 525 /* 526 * Object debugging 527 */ 528 529 /* Verify that a pointer has an address that is valid within a slab page */ 530 static inline int check_valid_pointer(struct kmem_cache *s, 531 struct page *page, void *object) 532 { 533 void *base; 534 535 if (!object) 536 return 1; 537 538 base = page_address(page); 539 object = kasan_reset_tag(object); 540 object = restore_red_left(s, object); 541 if (object < base || object >= base + page->objects * s->size || 542 (object - base) % s->size) { 543 return 0; 544 } 545 546 return 1; 547 } 548 549 static void print_section(char *level, char *text, u8 *addr, 550 unsigned int length) 551 { 552 metadata_access_enable(); 553 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS, 554 16, 1, addr, length, 1); 555 metadata_access_disable(); 556 } 557 558 /* 559 * See comment in calculate_sizes(). 560 */ 561 static inline bool freeptr_outside_object(struct kmem_cache *s) 562 { 563 return s->offset >= s->inuse; 564 } 565 566 /* 567 * Return offset of the end of info block which is inuse + free pointer if 568 * not overlapping with object. 569 */ 570 static inline unsigned int get_info_end(struct kmem_cache *s) 571 { 572 if (freeptr_outside_object(s)) 573 return s->inuse + sizeof(void *); 574 else 575 return s->inuse; 576 } 577 578 static struct track *get_track(struct kmem_cache *s, void *object, 579 enum track_item alloc) 580 { 581 struct track *p; 582 583 p = object + get_info_end(s); 584 585 return kasan_reset_tag(p + alloc); 586 } 587 588 static void set_track(struct kmem_cache *s, void *object, 589 enum track_item alloc, unsigned long addr) 590 { 591 struct track *p = get_track(s, object, alloc); 592 593 if (addr) { 594 #ifdef CONFIG_STACKTRACE 595 unsigned int nr_entries; 596 597 metadata_access_enable(); 598 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs), 599 TRACK_ADDRS_COUNT, 3); 600 metadata_access_disable(); 601 602 if (nr_entries < TRACK_ADDRS_COUNT) 603 p->addrs[nr_entries] = 0; 604 #endif 605 p->addr = addr; 606 p->cpu = smp_processor_id(); 607 p->pid = current->pid; 608 p->when = jiffies; 609 } else { 610 memset(p, 0, sizeof(struct track)); 611 } 612 } 613 614 static void init_tracking(struct kmem_cache *s, void *object) 615 { 616 if (!(s->flags & SLAB_STORE_USER)) 617 return; 618 619 set_track(s, object, TRACK_FREE, 0UL); 620 set_track(s, object, TRACK_ALLOC, 0UL); 621 } 622 623 static void print_track(const char *s, struct track *t, unsigned long pr_time) 624 { 625 if (!t->addr) 626 return; 627 628 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 629 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 630 #ifdef CONFIG_STACKTRACE 631 { 632 int i; 633 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 634 if (t->addrs[i]) 635 pr_err("\t%pS\n", (void *)t->addrs[i]); 636 else 637 break; 638 } 639 #endif 640 } 641 642 void print_tracking(struct kmem_cache *s, void *object) 643 { 644 unsigned long pr_time = jiffies; 645 if (!(s->flags & SLAB_STORE_USER)) 646 return; 647 648 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 649 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 650 } 651 652 static void print_page_info(struct page *page) 653 { 654 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n", 655 page, page->objects, page->inuse, page->freelist, 656 page->flags, &page->flags); 657 658 } 659 660 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 661 { 662 struct va_format vaf; 663 va_list args; 664 665 va_start(args, fmt); 666 vaf.fmt = fmt; 667 vaf.va = &args; 668 pr_err("=============================================================================\n"); 669 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 670 pr_err("-----------------------------------------------------------------------------\n\n"); 671 672 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 673 va_end(args); 674 } 675 676 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 677 { 678 struct va_format vaf; 679 va_list args; 680 681 va_start(args, fmt); 682 vaf.fmt = fmt; 683 vaf.va = &args; 684 pr_err("FIX %s: %pV\n", s->name, &vaf); 685 va_end(args); 686 } 687 688 static bool freelist_corrupted(struct kmem_cache *s, struct page *page, 689 void **freelist, void *nextfree) 690 { 691 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 692 !check_valid_pointer(s, page, nextfree) && freelist) { 693 object_err(s, page, *freelist, "Freechain corrupt"); 694 *freelist = NULL; 695 slab_fix(s, "Isolate corrupted freechain"); 696 return true; 697 } 698 699 return false; 700 } 701 702 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 703 { 704 unsigned int off; /* Offset of last byte */ 705 u8 *addr = page_address(page); 706 707 print_tracking(s, p); 708 709 print_page_info(page); 710 711 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 712 p, p - addr, get_freepointer(s, p)); 713 714 if (s->flags & SLAB_RED_ZONE) 715 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 716 s->red_left_pad); 717 else if (p > addr + 16) 718 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 719 720 print_section(KERN_ERR, "Object ", p, 721 min_t(unsigned int, s->object_size, PAGE_SIZE)); 722 if (s->flags & SLAB_RED_ZONE) 723 print_section(KERN_ERR, "Redzone ", p + s->object_size, 724 s->inuse - s->object_size); 725 726 off = get_info_end(s); 727 728 if (s->flags & SLAB_STORE_USER) 729 off += 2 * sizeof(struct track); 730 731 off += kasan_metadata_size(s); 732 733 if (off != size_from_object(s)) 734 /* Beginning of the filler is the free pointer */ 735 print_section(KERN_ERR, "Padding ", p + off, 736 size_from_object(s) - off); 737 738 dump_stack(); 739 } 740 741 void object_err(struct kmem_cache *s, struct page *page, 742 u8 *object, char *reason) 743 { 744 slab_bug(s, "%s", reason); 745 print_trailer(s, page, object); 746 } 747 748 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 749 const char *fmt, ...) 750 { 751 va_list args; 752 char buf[100]; 753 754 va_start(args, fmt); 755 vsnprintf(buf, sizeof(buf), fmt, args); 756 va_end(args); 757 slab_bug(s, "%s", buf); 758 print_page_info(page); 759 dump_stack(); 760 } 761 762 static void init_object(struct kmem_cache *s, void *object, u8 val) 763 { 764 u8 *p = kasan_reset_tag(object); 765 766 if (s->flags & SLAB_RED_ZONE) 767 memset(p - s->red_left_pad, val, s->red_left_pad); 768 769 if (s->flags & __OBJECT_POISON) { 770 memset(p, POISON_FREE, s->object_size - 1); 771 p[s->object_size - 1] = POISON_END; 772 } 773 774 if (s->flags & SLAB_RED_ZONE) 775 memset(p + s->object_size, val, s->inuse - s->object_size); 776 } 777 778 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 779 void *from, void *to) 780 { 781 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 782 memset(from, data, to - from); 783 } 784 785 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 786 u8 *object, char *what, 787 u8 *start, unsigned int value, unsigned int bytes) 788 { 789 u8 *fault; 790 u8 *end; 791 u8 *addr = page_address(page); 792 793 metadata_access_enable(); 794 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 795 metadata_access_disable(); 796 if (!fault) 797 return 1; 798 799 end = start + bytes; 800 while (end > fault && end[-1] == value) 801 end--; 802 803 slab_bug(s, "%s overwritten", what); 804 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 805 fault, end - 1, fault - addr, 806 fault[0], value); 807 print_trailer(s, page, object); 808 809 restore_bytes(s, what, value, fault, end); 810 return 0; 811 } 812 813 /* 814 * Object layout: 815 * 816 * object address 817 * Bytes of the object to be managed. 818 * If the freepointer may overlay the object then the free 819 * pointer is at the middle of the object. 820 * 821 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 822 * 0xa5 (POISON_END) 823 * 824 * object + s->object_size 825 * Padding to reach word boundary. This is also used for Redzoning. 826 * Padding is extended by another word if Redzoning is enabled and 827 * object_size == inuse. 828 * 829 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 830 * 0xcc (RED_ACTIVE) for objects in use. 831 * 832 * object + s->inuse 833 * Meta data starts here. 834 * 835 * A. Free pointer (if we cannot overwrite object on free) 836 * B. Tracking data for SLAB_STORE_USER 837 * C. Padding to reach required alignment boundary or at minimum 838 * one word if debugging is on to be able to detect writes 839 * before the word boundary. 840 * 841 * Padding is done using 0x5a (POISON_INUSE) 842 * 843 * object + s->size 844 * Nothing is used beyond s->size. 845 * 846 * If slabcaches are merged then the object_size and inuse boundaries are mostly 847 * ignored. And therefore no slab options that rely on these boundaries 848 * may be used with merged slabcaches. 849 */ 850 851 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 852 { 853 unsigned long off = get_info_end(s); /* The end of info */ 854 855 if (s->flags & SLAB_STORE_USER) 856 /* We also have user information there */ 857 off += 2 * sizeof(struct track); 858 859 off += kasan_metadata_size(s); 860 861 if (size_from_object(s) == off) 862 return 1; 863 864 return check_bytes_and_report(s, page, p, "Object padding", 865 p + off, POISON_INUSE, size_from_object(s) - off); 866 } 867 868 /* Check the pad bytes at the end of a slab page */ 869 static int slab_pad_check(struct kmem_cache *s, struct page *page) 870 { 871 u8 *start; 872 u8 *fault; 873 u8 *end; 874 u8 *pad; 875 int length; 876 int remainder; 877 878 if (!(s->flags & SLAB_POISON)) 879 return 1; 880 881 start = page_address(page); 882 length = page_size(page); 883 end = start + length; 884 remainder = length % s->size; 885 if (!remainder) 886 return 1; 887 888 pad = end - remainder; 889 metadata_access_enable(); 890 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 891 metadata_access_disable(); 892 if (!fault) 893 return 1; 894 while (end > fault && end[-1] == POISON_INUSE) 895 end--; 896 897 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu", 898 fault, end - 1, fault - start); 899 print_section(KERN_ERR, "Padding ", pad, remainder); 900 901 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 902 return 0; 903 } 904 905 static int check_object(struct kmem_cache *s, struct page *page, 906 void *object, u8 val) 907 { 908 u8 *p = object; 909 u8 *endobject = object + s->object_size; 910 911 if (s->flags & SLAB_RED_ZONE) { 912 if (!check_bytes_and_report(s, page, object, "Redzone", 913 object - s->red_left_pad, val, s->red_left_pad)) 914 return 0; 915 916 if (!check_bytes_and_report(s, page, object, "Redzone", 917 endobject, val, s->inuse - s->object_size)) 918 return 0; 919 } else { 920 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 921 check_bytes_and_report(s, page, p, "Alignment padding", 922 endobject, POISON_INUSE, 923 s->inuse - s->object_size); 924 } 925 } 926 927 if (s->flags & SLAB_POISON) { 928 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 929 (!check_bytes_and_report(s, page, p, "Poison", p, 930 POISON_FREE, s->object_size - 1) || 931 !check_bytes_and_report(s, page, p, "Poison", 932 p + s->object_size - 1, POISON_END, 1))) 933 return 0; 934 /* 935 * check_pad_bytes cleans up on its own. 936 */ 937 check_pad_bytes(s, page, p); 938 } 939 940 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 941 /* 942 * Object and freepointer overlap. Cannot check 943 * freepointer while object is allocated. 944 */ 945 return 1; 946 947 /* Check free pointer validity */ 948 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 949 object_err(s, page, p, "Freepointer corrupt"); 950 /* 951 * No choice but to zap it and thus lose the remainder 952 * of the free objects in this slab. May cause 953 * another error because the object count is now wrong. 954 */ 955 set_freepointer(s, p, NULL); 956 return 0; 957 } 958 return 1; 959 } 960 961 static int check_slab(struct kmem_cache *s, struct page *page) 962 { 963 int maxobj; 964 965 VM_BUG_ON(!irqs_disabled()); 966 967 if (!PageSlab(page)) { 968 slab_err(s, page, "Not a valid slab page"); 969 return 0; 970 } 971 972 maxobj = order_objects(compound_order(page), s->size); 973 if (page->objects > maxobj) { 974 slab_err(s, page, "objects %u > max %u", 975 page->objects, maxobj); 976 return 0; 977 } 978 if (page->inuse > page->objects) { 979 slab_err(s, page, "inuse %u > max %u", 980 page->inuse, page->objects); 981 return 0; 982 } 983 /* Slab_pad_check fixes things up after itself */ 984 slab_pad_check(s, page); 985 return 1; 986 } 987 988 /* 989 * Determine if a certain object on a page is on the freelist. Must hold the 990 * slab lock to guarantee that the chains are in a consistent state. 991 */ 992 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 993 { 994 int nr = 0; 995 void *fp; 996 void *object = NULL; 997 int max_objects; 998 999 fp = page->freelist; 1000 while (fp && nr <= page->objects) { 1001 if (fp == search) 1002 return 1; 1003 if (!check_valid_pointer(s, page, fp)) { 1004 if (object) { 1005 object_err(s, page, object, 1006 "Freechain corrupt"); 1007 set_freepointer(s, object, NULL); 1008 } else { 1009 slab_err(s, page, "Freepointer corrupt"); 1010 page->freelist = NULL; 1011 page->inuse = page->objects; 1012 slab_fix(s, "Freelist cleared"); 1013 return 0; 1014 } 1015 break; 1016 } 1017 object = fp; 1018 fp = get_freepointer(s, object); 1019 nr++; 1020 } 1021 1022 max_objects = order_objects(compound_order(page), s->size); 1023 if (max_objects > MAX_OBJS_PER_PAGE) 1024 max_objects = MAX_OBJS_PER_PAGE; 1025 1026 if (page->objects != max_objects) { 1027 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 1028 page->objects, max_objects); 1029 page->objects = max_objects; 1030 slab_fix(s, "Number of objects adjusted."); 1031 } 1032 if (page->inuse != page->objects - nr) { 1033 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 1034 page->inuse, page->objects - nr); 1035 page->inuse = page->objects - nr; 1036 slab_fix(s, "Object count adjusted."); 1037 } 1038 return search == NULL; 1039 } 1040 1041 static void trace(struct kmem_cache *s, struct page *page, void *object, 1042 int alloc) 1043 { 1044 if (s->flags & SLAB_TRACE) { 1045 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1046 s->name, 1047 alloc ? "alloc" : "free", 1048 object, page->inuse, 1049 page->freelist); 1050 1051 if (!alloc) 1052 print_section(KERN_INFO, "Object ", (void *)object, 1053 s->object_size); 1054 1055 dump_stack(); 1056 } 1057 } 1058 1059 /* 1060 * Tracking of fully allocated slabs for debugging purposes. 1061 */ 1062 static void add_full(struct kmem_cache *s, 1063 struct kmem_cache_node *n, struct page *page) 1064 { 1065 if (!(s->flags & SLAB_STORE_USER)) 1066 return; 1067 1068 lockdep_assert_held(&n->list_lock); 1069 list_add(&page->slab_list, &n->full); 1070 } 1071 1072 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1073 { 1074 if (!(s->flags & SLAB_STORE_USER)) 1075 return; 1076 1077 lockdep_assert_held(&n->list_lock); 1078 list_del(&page->slab_list); 1079 } 1080 1081 /* Tracking of the number of slabs for debugging purposes */ 1082 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1083 { 1084 struct kmem_cache_node *n = get_node(s, node); 1085 1086 return atomic_long_read(&n->nr_slabs); 1087 } 1088 1089 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1090 { 1091 return atomic_long_read(&n->nr_slabs); 1092 } 1093 1094 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1095 { 1096 struct kmem_cache_node *n = get_node(s, node); 1097 1098 /* 1099 * May be called early in order to allocate a slab for the 1100 * kmem_cache_node structure. Solve the chicken-egg 1101 * dilemma by deferring the increment of the count during 1102 * bootstrap (see early_kmem_cache_node_alloc). 1103 */ 1104 if (likely(n)) { 1105 atomic_long_inc(&n->nr_slabs); 1106 atomic_long_add(objects, &n->total_objects); 1107 } 1108 } 1109 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1110 { 1111 struct kmem_cache_node *n = get_node(s, node); 1112 1113 atomic_long_dec(&n->nr_slabs); 1114 atomic_long_sub(objects, &n->total_objects); 1115 } 1116 1117 /* Object debug checks for alloc/free paths */ 1118 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1119 void *object) 1120 { 1121 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1122 return; 1123 1124 init_object(s, object, SLUB_RED_INACTIVE); 1125 init_tracking(s, object); 1126 } 1127 1128 static 1129 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) 1130 { 1131 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1132 return; 1133 1134 metadata_access_enable(); 1135 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page)); 1136 metadata_access_disable(); 1137 } 1138 1139 static inline int alloc_consistency_checks(struct kmem_cache *s, 1140 struct page *page, void *object) 1141 { 1142 if (!check_slab(s, page)) 1143 return 0; 1144 1145 if (!check_valid_pointer(s, page, object)) { 1146 object_err(s, page, object, "Freelist Pointer check fails"); 1147 return 0; 1148 } 1149 1150 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1151 return 0; 1152 1153 return 1; 1154 } 1155 1156 static noinline int alloc_debug_processing(struct kmem_cache *s, 1157 struct page *page, 1158 void *object, unsigned long addr) 1159 { 1160 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1161 if (!alloc_consistency_checks(s, page, object)) 1162 goto bad; 1163 } 1164 1165 /* Success perform special debug activities for allocs */ 1166 if (s->flags & SLAB_STORE_USER) 1167 set_track(s, object, TRACK_ALLOC, addr); 1168 trace(s, page, object, 1); 1169 init_object(s, object, SLUB_RED_ACTIVE); 1170 return 1; 1171 1172 bad: 1173 if (PageSlab(page)) { 1174 /* 1175 * If this is a slab page then lets do the best we can 1176 * to avoid issues in the future. Marking all objects 1177 * as used avoids touching the remaining objects. 1178 */ 1179 slab_fix(s, "Marking all objects used"); 1180 page->inuse = page->objects; 1181 page->freelist = NULL; 1182 } 1183 return 0; 1184 } 1185 1186 static inline int free_consistency_checks(struct kmem_cache *s, 1187 struct page *page, void *object, unsigned long addr) 1188 { 1189 if (!check_valid_pointer(s, page, object)) { 1190 slab_err(s, page, "Invalid object pointer 0x%p", object); 1191 return 0; 1192 } 1193 1194 if (on_freelist(s, page, object)) { 1195 object_err(s, page, object, "Object already free"); 1196 return 0; 1197 } 1198 1199 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1200 return 0; 1201 1202 if (unlikely(s != page->slab_cache)) { 1203 if (!PageSlab(page)) { 1204 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1205 object); 1206 } else if (!page->slab_cache) { 1207 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1208 object); 1209 dump_stack(); 1210 } else 1211 object_err(s, page, object, 1212 "page slab pointer corrupt."); 1213 return 0; 1214 } 1215 return 1; 1216 } 1217 1218 /* Supports checking bulk free of a constructed freelist */ 1219 static noinline int free_debug_processing( 1220 struct kmem_cache *s, struct page *page, 1221 void *head, void *tail, int bulk_cnt, 1222 unsigned long addr) 1223 { 1224 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1225 void *object = head; 1226 int cnt = 0; 1227 unsigned long flags; 1228 int ret = 0; 1229 1230 spin_lock_irqsave(&n->list_lock, flags); 1231 slab_lock(page); 1232 1233 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1234 if (!check_slab(s, page)) 1235 goto out; 1236 } 1237 1238 next_object: 1239 cnt++; 1240 1241 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1242 if (!free_consistency_checks(s, page, object, addr)) 1243 goto out; 1244 } 1245 1246 if (s->flags & SLAB_STORE_USER) 1247 set_track(s, object, TRACK_FREE, addr); 1248 trace(s, page, object, 0); 1249 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1250 init_object(s, object, SLUB_RED_INACTIVE); 1251 1252 /* Reached end of constructed freelist yet? */ 1253 if (object != tail) { 1254 object = get_freepointer(s, object); 1255 goto next_object; 1256 } 1257 ret = 1; 1258 1259 out: 1260 if (cnt != bulk_cnt) 1261 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1262 bulk_cnt, cnt); 1263 1264 slab_unlock(page); 1265 spin_unlock_irqrestore(&n->list_lock, flags); 1266 if (!ret) 1267 slab_fix(s, "Object at 0x%p not freed", object); 1268 return ret; 1269 } 1270 1271 /* 1272 * Parse a block of slub_debug options. Blocks are delimited by ';' 1273 * 1274 * @str: start of block 1275 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1276 * @slabs: return start of list of slabs, or NULL when there's no list 1277 * @init: assume this is initial parsing and not per-kmem-create parsing 1278 * 1279 * returns the start of next block if there's any, or NULL 1280 */ 1281 static char * 1282 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1283 { 1284 bool higher_order_disable = false; 1285 1286 /* Skip any completely empty blocks */ 1287 while (*str && *str == ';') 1288 str++; 1289 1290 if (*str == ',') { 1291 /* 1292 * No options but restriction on slabs. This means full 1293 * debugging for slabs matching a pattern. 1294 */ 1295 *flags = DEBUG_DEFAULT_FLAGS; 1296 goto check_slabs; 1297 } 1298 *flags = 0; 1299 1300 /* Determine which debug features should be switched on */ 1301 for (; *str && *str != ',' && *str != ';'; str++) { 1302 switch (tolower(*str)) { 1303 case '-': 1304 *flags = 0; 1305 break; 1306 case 'f': 1307 *flags |= SLAB_CONSISTENCY_CHECKS; 1308 break; 1309 case 'z': 1310 *flags |= SLAB_RED_ZONE; 1311 break; 1312 case 'p': 1313 *flags |= SLAB_POISON; 1314 break; 1315 case 'u': 1316 *flags |= SLAB_STORE_USER; 1317 break; 1318 case 't': 1319 *flags |= SLAB_TRACE; 1320 break; 1321 case 'a': 1322 *flags |= SLAB_FAILSLAB; 1323 break; 1324 case 'o': 1325 /* 1326 * Avoid enabling debugging on caches if its minimum 1327 * order would increase as a result. 1328 */ 1329 higher_order_disable = true; 1330 break; 1331 default: 1332 if (init) 1333 pr_err("slub_debug option '%c' unknown. skipped\n", *str); 1334 } 1335 } 1336 check_slabs: 1337 if (*str == ',') 1338 *slabs = ++str; 1339 else 1340 *slabs = NULL; 1341 1342 /* Skip over the slab list */ 1343 while (*str && *str != ';') 1344 str++; 1345 1346 /* Skip any completely empty blocks */ 1347 while (*str && *str == ';') 1348 str++; 1349 1350 if (init && higher_order_disable) 1351 disable_higher_order_debug = 1; 1352 1353 if (*str) 1354 return str; 1355 else 1356 return NULL; 1357 } 1358 1359 static int __init setup_slub_debug(char *str) 1360 { 1361 slab_flags_t flags; 1362 char *saved_str; 1363 char *slab_list; 1364 bool global_slub_debug_changed = false; 1365 bool slab_list_specified = false; 1366 1367 slub_debug = DEBUG_DEFAULT_FLAGS; 1368 if (*str++ != '=' || !*str) 1369 /* 1370 * No options specified. Switch on full debugging. 1371 */ 1372 goto out; 1373 1374 saved_str = str; 1375 while (str) { 1376 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1377 1378 if (!slab_list) { 1379 slub_debug = flags; 1380 global_slub_debug_changed = true; 1381 } else { 1382 slab_list_specified = true; 1383 } 1384 } 1385 1386 /* 1387 * For backwards compatibility, a single list of flags with list of 1388 * slabs means debugging is only enabled for those slabs, so the global 1389 * slub_debug should be 0. We can extended that to multiple lists as 1390 * long as there is no option specifying flags without a slab list. 1391 */ 1392 if (slab_list_specified) { 1393 if (!global_slub_debug_changed) 1394 slub_debug = 0; 1395 slub_debug_string = saved_str; 1396 } 1397 out: 1398 if (slub_debug != 0 || slub_debug_string) 1399 static_branch_enable(&slub_debug_enabled); 1400 if ((static_branch_unlikely(&init_on_alloc) || 1401 static_branch_unlikely(&init_on_free)) && 1402 (slub_debug & SLAB_POISON)) 1403 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1404 return 1; 1405 } 1406 1407 __setup("slub_debug", setup_slub_debug); 1408 1409 /* 1410 * kmem_cache_flags - apply debugging options to the cache 1411 * @object_size: the size of an object without meta data 1412 * @flags: flags to set 1413 * @name: name of the cache 1414 * 1415 * Debug option(s) are applied to @flags. In addition to the debug 1416 * option(s), if a slab name (or multiple) is specified i.e. 1417 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1418 * then only the select slabs will receive the debug option(s). 1419 */ 1420 slab_flags_t kmem_cache_flags(unsigned int object_size, 1421 slab_flags_t flags, const char *name) 1422 { 1423 char *iter; 1424 size_t len; 1425 char *next_block; 1426 slab_flags_t block_flags; 1427 slab_flags_t slub_debug_local = slub_debug; 1428 1429 /* 1430 * If the slab cache is for debugging (e.g. kmemleak) then 1431 * don't store user (stack trace) information by default, 1432 * but let the user enable it via the command line below. 1433 */ 1434 if (flags & SLAB_NOLEAKTRACE) 1435 slub_debug_local &= ~SLAB_STORE_USER; 1436 1437 len = strlen(name); 1438 next_block = slub_debug_string; 1439 /* Go through all blocks of debug options, see if any matches our slab's name */ 1440 while (next_block) { 1441 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1442 if (!iter) 1443 continue; 1444 /* Found a block that has a slab list, search it */ 1445 while (*iter) { 1446 char *end, *glob; 1447 size_t cmplen; 1448 1449 end = strchrnul(iter, ','); 1450 if (next_block && next_block < end) 1451 end = next_block - 1; 1452 1453 glob = strnchr(iter, end - iter, '*'); 1454 if (glob) 1455 cmplen = glob - iter; 1456 else 1457 cmplen = max_t(size_t, len, (end - iter)); 1458 1459 if (!strncmp(name, iter, cmplen)) { 1460 flags |= block_flags; 1461 return flags; 1462 } 1463 1464 if (!*end || *end == ';') 1465 break; 1466 iter = end + 1; 1467 } 1468 } 1469 1470 return flags | slub_debug_local; 1471 } 1472 #else /* !CONFIG_SLUB_DEBUG */ 1473 static inline void setup_object_debug(struct kmem_cache *s, 1474 struct page *page, void *object) {} 1475 static inline 1476 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} 1477 1478 static inline int alloc_debug_processing(struct kmem_cache *s, 1479 struct page *page, void *object, unsigned long addr) { return 0; } 1480 1481 static inline int free_debug_processing( 1482 struct kmem_cache *s, struct page *page, 1483 void *head, void *tail, int bulk_cnt, 1484 unsigned long addr) { return 0; } 1485 1486 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1487 { return 1; } 1488 static inline int check_object(struct kmem_cache *s, struct page *page, 1489 void *object, u8 val) { return 1; } 1490 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1491 struct page *page) {} 1492 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1493 struct page *page) {} 1494 slab_flags_t kmem_cache_flags(unsigned int object_size, 1495 slab_flags_t flags, const char *name) 1496 { 1497 return flags; 1498 } 1499 #define slub_debug 0 1500 1501 #define disable_higher_order_debug 0 1502 1503 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1504 { return 0; } 1505 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1506 { return 0; } 1507 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1508 int objects) {} 1509 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1510 int objects) {} 1511 1512 static bool freelist_corrupted(struct kmem_cache *s, struct page *page, 1513 void **freelist, void *nextfree) 1514 { 1515 return false; 1516 } 1517 #endif /* CONFIG_SLUB_DEBUG */ 1518 1519 /* 1520 * Hooks for other subsystems that check memory allocations. In a typical 1521 * production configuration these hooks all should produce no code at all. 1522 */ 1523 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1524 { 1525 ptr = kasan_kmalloc_large(ptr, size, flags); 1526 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1527 kmemleak_alloc(ptr, size, 1, flags); 1528 return ptr; 1529 } 1530 1531 static __always_inline void kfree_hook(void *x) 1532 { 1533 kmemleak_free(x); 1534 kasan_kfree_large(x); 1535 } 1536 1537 static __always_inline bool slab_free_hook(struct kmem_cache *s, 1538 void *x, bool init) 1539 { 1540 kmemleak_free_recursive(x, s->flags); 1541 1542 /* 1543 * Trouble is that we may no longer disable interrupts in the fast path 1544 * So in order to make the debug calls that expect irqs to be 1545 * disabled we need to disable interrupts temporarily. 1546 */ 1547 #ifdef CONFIG_LOCKDEP 1548 { 1549 unsigned long flags; 1550 1551 local_irq_save(flags); 1552 debug_check_no_locks_freed(x, s->object_size); 1553 local_irq_restore(flags); 1554 } 1555 #endif 1556 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1557 debug_check_no_obj_freed(x, s->object_size); 1558 1559 /* Use KCSAN to help debug racy use-after-free. */ 1560 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 1561 __kcsan_check_access(x, s->object_size, 1562 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 1563 1564 /* 1565 * As memory initialization might be integrated into KASAN, 1566 * kasan_slab_free and initialization memset's must be 1567 * kept together to avoid discrepancies in behavior. 1568 * 1569 * The initialization memset's clear the object and the metadata, 1570 * but don't touch the SLAB redzone. 1571 */ 1572 if (init) { 1573 int rsize; 1574 1575 if (!kasan_has_integrated_init()) 1576 memset(kasan_reset_tag(x), 0, s->object_size); 1577 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 1578 memset((char *)kasan_reset_tag(x) + s->inuse, 0, 1579 s->size - s->inuse - rsize); 1580 } 1581 /* KASAN might put x into memory quarantine, delaying its reuse. */ 1582 return kasan_slab_free(s, x, init); 1583 } 1584 1585 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1586 void **head, void **tail) 1587 { 1588 1589 void *object; 1590 void *next = *head; 1591 void *old_tail = *tail ? *tail : *head; 1592 1593 if (is_kfence_address(next)) { 1594 slab_free_hook(s, next, false); 1595 return true; 1596 } 1597 1598 /* Head and tail of the reconstructed freelist */ 1599 *head = NULL; 1600 *tail = NULL; 1601 1602 do { 1603 object = next; 1604 next = get_freepointer(s, object); 1605 1606 /* If object's reuse doesn't have to be delayed */ 1607 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { 1608 /* Move object to the new freelist */ 1609 set_freepointer(s, object, *head); 1610 *head = object; 1611 if (!*tail) 1612 *tail = object; 1613 } 1614 } while (object != old_tail); 1615 1616 if (*head == *tail) 1617 *tail = NULL; 1618 1619 return *head != NULL; 1620 } 1621 1622 static void *setup_object(struct kmem_cache *s, struct page *page, 1623 void *object) 1624 { 1625 setup_object_debug(s, page, object); 1626 object = kasan_init_slab_obj(s, object); 1627 if (unlikely(s->ctor)) { 1628 kasan_unpoison_object_data(s, object); 1629 s->ctor(object); 1630 kasan_poison_object_data(s, object); 1631 } 1632 return object; 1633 } 1634 1635 /* 1636 * Slab allocation and freeing 1637 */ 1638 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1639 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1640 { 1641 struct page *page; 1642 unsigned int order = oo_order(oo); 1643 1644 if (node == NUMA_NO_NODE) 1645 page = alloc_pages(flags, order); 1646 else 1647 page = __alloc_pages_node(node, flags, order); 1648 1649 return page; 1650 } 1651 1652 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1653 /* Pre-initialize the random sequence cache */ 1654 static int init_cache_random_seq(struct kmem_cache *s) 1655 { 1656 unsigned int count = oo_objects(s->oo); 1657 int err; 1658 1659 /* Bailout if already initialised */ 1660 if (s->random_seq) 1661 return 0; 1662 1663 err = cache_random_seq_create(s, count, GFP_KERNEL); 1664 if (err) { 1665 pr_err("SLUB: Unable to initialize free list for %s\n", 1666 s->name); 1667 return err; 1668 } 1669 1670 /* Transform to an offset on the set of pages */ 1671 if (s->random_seq) { 1672 unsigned int i; 1673 1674 for (i = 0; i < count; i++) 1675 s->random_seq[i] *= s->size; 1676 } 1677 return 0; 1678 } 1679 1680 /* Initialize each random sequence freelist per cache */ 1681 static void __init init_freelist_randomization(void) 1682 { 1683 struct kmem_cache *s; 1684 1685 mutex_lock(&slab_mutex); 1686 1687 list_for_each_entry(s, &slab_caches, list) 1688 init_cache_random_seq(s); 1689 1690 mutex_unlock(&slab_mutex); 1691 } 1692 1693 /* Get the next entry on the pre-computed freelist randomized */ 1694 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1695 unsigned long *pos, void *start, 1696 unsigned long page_limit, 1697 unsigned long freelist_count) 1698 { 1699 unsigned int idx; 1700 1701 /* 1702 * If the target page allocation failed, the number of objects on the 1703 * page might be smaller than the usual size defined by the cache. 1704 */ 1705 do { 1706 idx = s->random_seq[*pos]; 1707 *pos += 1; 1708 if (*pos >= freelist_count) 1709 *pos = 0; 1710 } while (unlikely(idx >= page_limit)); 1711 1712 return (char *)start + idx; 1713 } 1714 1715 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1716 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1717 { 1718 void *start; 1719 void *cur; 1720 void *next; 1721 unsigned long idx, pos, page_limit, freelist_count; 1722 1723 if (page->objects < 2 || !s->random_seq) 1724 return false; 1725 1726 freelist_count = oo_objects(s->oo); 1727 pos = get_random_int() % freelist_count; 1728 1729 page_limit = page->objects * s->size; 1730 start = fixup_red_left(s, page_address(page)); 1731 1732 /* First entry is used as the base of the freelist */ 1733 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1734 freelist_count); 1735 cur = setup_object(s, page, cur); 1736 page->freelist = cur; 1737 1738 for (idx = 1; idx < page->objects; idx++) { 1739 next = next_freelist_entry(s, page, &pos, start, page_limit, 1740 freelist_count); 1741 next = setup_object(s, page, next); 1742 set_freepointer(s, cur, next); 1743 cur = next; 1744 } 1745 set_freepointer(s, cur, NULL); 1746 1747 return true; 1748 } 1749 #else 1750 static inline int init_cache_random_seq(struct kmem_cache *s) 1751 { 1752 return 0; 1753 } 1754 static inline void init_freelist_randomization(void) { } 1755 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1756 { 1757 return false; 1758 } 1759 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1760 1761 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1762 { 1763 struct page *page; 1764 struct kmem_cache_order_objects oo = s->oo; 1765 gfp_t alloc_gfp; 1766 void *start, *p, *next; 1767 int idx; 1768 bool shuffle; 1769 1770 flags &= gfp_allowed_mask; 1771 1772 if (gfpflags_allow_blocking(flags)) 1773 local_irq_enable(); 1774 1775 flags |= s->allocflags; 1776 1777 /* 1778 * Let the initial higher-order allocation fail under memory pressure 1779 * so we fall-back to the minimum order allocation. 1780 */ 1781 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1782 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1783 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1784 1785 page = alloc_slab_page(s, alloc_gfp, node, oo); 1786 if (unlikely(!page)) { 1787 oo = s->min; 1788 alloc_gfp = flags; 1789 /* 1790 * Allocation may have failed due to fragmentation. 1791 * Try a lower order alloc if possible 1792 */ 1793 page = alloc_slab_page(s, alloc_gfp, node, oo); 1794 if (unlikely(!page)) 1795 goto out; 1796 stat(s, ORDER_FALLBACK); 1797 } 1798 1799 page->objects = oo_objects(oo); 1800 1801 account_slab_page(page, oo_order(oo), s, flags); 1802 1803 page->slab_cache = s; 1804 __SetPageSlab(page); 1805 if (page_is_pfmemalloc(page)) 1806 SetPageSlabPfmemalloc(page); 1807 1808 kasan_poison_slab(page); 1809 1810 start = page_address(page); 1811 1812 setup_page_debug(s, page, start); 1813 1814 shuffle = shuffle_freelist(s, page); 1815 1816 if (!shuffle) { 1817 start = fixup_red_left(s, start); 1818 start = setup_object(s, page, start); 1819 page->freelist = start; 1820 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1821 next = p + s->size; 1822 next = setup_object(s, page, next); 1823 set_freepointer(s, p, next); 1824 p = next; 1825 } 1826 set_freepointer(s, p, NULL); 1827 } 1828 1829 page->inuse = page->objects; 1830 page->frozen = 1; 1831 1832 out: 1833 if (gfpflags_allow_blocking(flags)) 1834 local_irq_disable(); 1835 if (!page) 1836 return NULL; 1837 1838 inc_slabs_node(s, page_to_nid(page), page->objects); 1839 1840 return page; 1841 } 1842 1843 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1844 { 1845 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 1846 flags = kmalloc_fix_flags(flags); 1847 1848 return allocate_slab(s, 1849 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1850 } 1851 1852 static void __free_slab(struct kmem_cache *s, struct page *page) 1853 { 1854 int order = compound_order(page); 1855 int pages = 1 << order; 1856 1857 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 1858 void *p; 1859 1860 slab_pad_check(s, page); 1861 for_each_object(p, s, page_address(page), 1862 page->objects) 1863 check_object(s, page, p, SLUB_RED_INACTIVE); 1864 } 1865 1866 __ClearPageSlabPfmemalloc(page); 1867 __ClearPageSlab(page); 1868 /* In union with page->mapping where page allocator expects NULL */ 1869 page->slab_cache = NULL; 1870 if (current->reclaim_state) 1871 current->reclaim_state->reclaimed_slab += pages; 1872 unaccount_slab_page(page, order, s); 1873 __free_pages(page, order); 1874 } 1875 1876 static void rcu_free_slab(struct rcu_head *h) 1877 { 1878 struct page *page = container_of(h, struct page, rcu_head); 1879 1880 __free_slab(page->slab_cache, page); 1881 } 1882 1883 static void free_slab(struct kmem_cache *s, struct page *page) 1884 { 1885 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1886 call_rcu(&page->rcu_head, rcu_free_slab); 1887 } else 1888 __free_slab(s, page); 1889 } 1890 1891 static void discard_slab(struct kmem_cache *s, struct page *page) 1892 { 1893 dec_slabs_node(s, page_to_nid(page), page->objects); 1894 free_slab(s, page); 1895 } 1896 1897 /* 1898 * Management of partially allocated slabs. 1899 */ 1900 static inline void 1901 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1902 { 1903 n->nr_partial++; 1904 if (tail == DEACTIVATE_TO_TAIL) 1905 list_add_tail(&page->slab_list, &n->partial); 1906 else 1907 list_add(&page->slab_list, &n->partial); 1908 } 1909 1910 static inline void add_partial(struct kmem_cache_node *n, 1911 struct page *page, int tail) 1912 { 1913 lockdep_assert_held(&n->list_lock); 1914 __add_partial(n, page, tail); 1915 } 1916 1917 static inline void remove_partial(struct kmem_cache_node *n, 1918 struct page *page) 1919 { 1920 lockdep_assert_held(&n->list_lock); 1921 list_del(&page->slab_list); 1922 n->nr_partial--; 1923 } 1924 1925 /* 1926 * Remove slab from the partial list, freeze it and 1927 * return the pointer to the freelist. 1928 * 1929 * Returns a list of objects or NULL if it fails. 1930 */ 1931 static inline void *acquire_slab(struct kmem_cache *s, 1932 struct kmem_cache_node *n, struct page *page, 1933 int mode, int *objects) 1934 { 1935 void *freelist; 1936 unsigned long counters; 1937 struct page new; 1938 1939 lockdep_assert_held(&n->list_lock); 1940 1941 /* 1942 * Zap the freelist and set the frozen bit. 1943 * The old freelist is the list of objects for the 1944 * per cpu allocation list. 1945 */ 1946 freelist = page->freelist; 1947 counters = page->counters; 1948 new.counters = counters; 1949 *objects = new.objects - new.inuse; 1950 if (mode) { 1951 new.inuse = page->objects; 1952 new.freelist = NULL; 1953 } else { 1954 new.freelist = freelist; 1955 } 1956 1957 VM_BUG_ON(new.frozen); 1958 new.frozen = 1; 1959 1960 if (!__cmpxchg_double_slab(s, page, 1961 freelist, counters, 1962 new.freelist, new.counters, 1963 "acquire_slab")) 1964 return NULL; 1965 1966 remove_partial(n, page); 1967 WARN_ON(!freelist); 1968 return freelist; 1969 } 1970 1971 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1972 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1973 1974 /* 1975 * Try to allocate a partial slab from a specific node. 1976 */ 1977 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1978 struct kmem_cache_cpu *c, gfp_t flags) 1979 { 1980 struct page *page, *page2; 1981 void *object = NULL; 1982 unsigned int available = 0; 1983 int objects; 1984 1985 /* 1986 * Racy check. If we mistakenly see no partial slabs then we 1987 * just allocate an empty slab. If we mistakenly try to get a 1988 * partial slab and there is none available then get_partial() 1989 * will return NULL. 1990 */ 1991 if (!n || !n->nr_partial) 1992 return NULL; 1993 1994 spin_lock(&n->list_lock); 1995 list_for_each_entry_safe(page, page2, &n->partial, slab_list) { 1996 void *t; 1997 1998 if (!pfmemalloc_match(page, flags)) 1999 continue; 2000 2001 t = acquire_slab(s, n, page, object == NULL, &objects); 2002 if (!t) 2003 break; 2004 2005 available += objects; 2006 if (!object) { 2007 c->page = page; 2008 stat(s, ALLOC_FROM_PARTIAL); 2009 object = t; 2010 } else { 2011 put_cpu_partial(s, page, 0); 2012 stat(s, CPU_PARTIAL_NODE); 2013 } 2014 if (!kmem_cache_has_cpu_partial(s) 2015 || available > slub_cpu_partial(s) / 2) 2016 break; 2017 2018 } 2019 spin_unlock(&n->list_lock); 2020 return object; 2021 } 2022 2023 /* 2024 * Get a page from somewhere. Search in increasing NUMA distances. 2025 */ 2026 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 2027 struct kmem_cache_cpu *c) 2028 { 2029 #ifdef CONFIG_NUMA 2030 struct zonelist *zonelist; 2031 struct zoneref *z; 2032 struct zone *zone; 2033 enum zone_type highest_zoneidx = gfp_zone(flags); 2034 void *object; 2035 unsigned int cpuset_mems_cookie; 2036 2037 /* 2038 * The defrag ratio allows a configuration of the tradeoffs between 2039 * inter node defragmentation and node local allocations. A lower 2040 * defrag_ratio increases the tendency to do local allocations 2041 * instead of attempting to obtain partial slabs from other nodes. 2042 * 2043 * If the defrag_ratio is set to 0 then kmalloc() always 2044 * returns node local objects. If the ratio is higher then kmalloc() 2045 * may return off node objects because partial slabs are obtained 2046 * from other nodes and filled up. 2047 * 2048 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2049 * (which makes defrag_ratio = 1000) then every (well almost) 2050 * allocation will first attempt to defrag slab caches on other nodes. 2051 * This means scanning over all nodes to look for partial slabs which 2052 * may be expensive if we do it every time we are trying to find a slab 2053 * with available objects. 2054 */ 2055 if (!s->remote_node_defrag_ratio || 2056 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2057 return NULL; 2058 2059 do { 2060 cpuset_mems_cookie = read_mems_allowed_begin(); 2061 zonelist = node_zonelist(mempolicy_slab_node(), flags); 2062 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2063 struct kmem_cache_node *n; 2064 2065 n = get_node(s, zone_to_nid(zone)); 2066 2067 if (n && cpuset_zone_allowed(zone, flags) && 2068 n->nr_partial > s->min_partial) { 2069 object = get_partial_node(s, n, c, flags); 2070 if (object) { 2071 /* 2072 * Don't check read_mems_allowed_retry() 2073 * here - if mems_allowed was updated in 2074 * parallel, that was a harmless race 2075 * between allocation and the cpuset 2076 * update 2077 */ 2078 return object; 2079 } 2080 } 2081 } 2082 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2083 #endif /* CONFIG_NUMA */ 2084 return NULL; 2085 } 2086 2087 /* 2088 * Get a partial page, lock it and return it. 2089 */ 2090 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 2091 struct kmem_cache_cpu *c) 2092 { 2093 void *object; 2094 int searchnode = node; 2095 2096 if (node == NUMA_NO_NODE) 2097 searchnode = numa_mem_id(); 2098 2099 object = get_partial_node(s, get_node(s, searchnode), c, flags); 2100 if (object || node != NUMA_NO_NODE) 2101 return object; 2102 2103 return get_any_partial(s, flags, c); 2104 } 2105 2106 #ifdef CONFIG_PREEMPTION 2107 /* 2108 * Calculate the next globally unique transaction for disambiguation 2109 * during cmpxchg. The transactions start with the cpu number and are then 2110 * incremented by CONFIG_NR_CPUS. 2111 */ 2112 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2113 #else 2114 /* 2115 * No preemption supported therefore also no need to check for 2116 * different cpus. 2117 */ 2118 #define TID_STEP 1 2119 #endif 2120 2121 static inline unsigned long next_tid(unsigned long tid) 2122 { 2123 return tid + TID_STEP; 2124 } 2125 2126 #ifdef SLUB_DEBUG_CMPXCHG 2127 static inline unsigned int tid_to_cpu(unsigned long tid) 2128 { 2129 return tid % TID_STEP; 2130 } 2131 2132 static inline unsigned long tid_to_event(unsigned long tid) 2133 { 2134 return tid / TID_STEP; 2135 } 2136 #endif 2137 2138 static inline unsigned int init_tid(int cpu) 2139 { 2140 return cpu; 2141 } 2142 2143 static inline void note_cmpxchg_failure(const char *n, 2144 const struct kmem_cache *s, unsigned long tid) 2145 { 2146 #ifdef SLUB_DEBUG_CMPXCHG 2147 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2148 2149 pr_info("%s %s: cmpxchg redo ", n, s->name); 2150 2151 #ifdef CONFIG_PREEMPTION 2152 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2153 pr_warn("due to cpu change %d -> %d\n", 2154 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2155 else 2156 #endif 2157 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2158 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2159 tid_to_event(tid), tid_to_event(actual_tid)); 2160 else 2161 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2162 actual_tid, tid, next_tid(tid)); 2163 #endif 2164 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2165 } 2166 2167 static void init_kmem_cache_cpus(struct kmem_cache *s) 2168 { 2169 int cpu; 2170 2171 for_each_possible_cpu(cpu) 2172 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2173 } 2174 2175 /* 2176 * Remove the cpu slab 2177 */ 2178 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2179 void *freelist, struct kmem_cache_cpu *c) 2180 { 2181 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2182 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2183 int lock = 0, free_delta = 0; 2184 enum slab_modes l = M_NONE, m = M_NONE; 2185 void *nextfree, *freelist_iter, *freelist_tail; 2186 int tail = DEACTIVATE_TO_HEAD; 2187 struct page new; 2188 struct page old; 2189 2190 if (page->freelist) { 2191 stat(s, DEACTIVATE_REMOTE_FREES); 2192 tail = DEACTIVATE_TO_TAIL; 2193 } 2194 2195 /* 2196 * Stage one: Count the objects on cpu's freelist as free_delta and 2197 * remember the last object in freelist_tail for later splicing. 2198 */ 2199 freelist_tail = NULL; 2200 freelist_iter = freelist; 2201 while (freelist_iter) { 2202 nextfree = get_freepointer(s, freelist_iter); 2203 2204 /* 2205 * If 'nextfree' is invalid, it is possible that the object at 2206 * 'freelist_iter' is already corrupted. So isolate all objects 2207 * starting at 'freelist_iter' by skipping them. 2208 */ 2209 if (freelist_corrupted(s, page, &freelist_iter, nextfree)) 2210 break; 2211 2212 freelist_tail = freelist_iter; 2213 free_delta++; 2214 2215 freelist_iter = nextfree; 2216 } 2217 2218 /* 2219 * Stage two: Unfreeze the page while splicing the per-cpu 2220 * freelist to the head of page's freelist. 2221 * 2222 * Ensure that the page is unfrozen while the list presence 2223 * reflects the actual number of objects during unfreeze. 2224 * 2225 * We setup the list membership and then perform a cmpxchg 2226 * with the count. If there is a mismatch then the page 2227 * is not unfrozen but the page is on the wrong list. 2228 * 2229 * Then we restart the process which may have to remove 2230 * the page from the list that we just put it on again 2231 * because the number of objects in the slab may have 2232 * changed. 2233 */ 2234 redo: 2235 2236 old.freelist = READ_ONCE(page->freelist); 2237 old.counters = READ_ONCE(page->counters); 2238 VM_BUG_ON(!old.frozen); 2239 2240 /* Determine target state of the slab */ 2241 new.counters = old.counters; 2242 if (freelist_tail) { 2243 new.inuse -= free_delta; 2244 set_freepointer(s, freelist_tail, old.freelist); 2245 new.freelist = freelist; 2246 } else 2247 new.freelist = old.freelist; 2248 2249 new.frozen = 0; 2250 2251 if (!new.inuse && n->nr_partial >= s->min_partial) 2252 m = M_FREE; 2253 else if (new.freelist) { 2254 m = M_PARTIAL; 2255 if (!lock) { 2256 lock = 1; 2257 /* 2258 * Taking the spinlock removes the possibility 2259 * that acquire_slab() will see a slab page that 2260 * is frozen 2261 */ 2262 spin_lock(&n->list_lock); 2263 } 2264 } else { 2265 m = M_FULL; 2266 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) { 2267 lock = 1; 2268 /* 2269 * This also ensures that the scanning of full 2270 * slabs from diagnostic functions will not see 2271 * any frozen slabs. 2272 */ 2273 spin_lock(&n->list_lock); 2274 } 2275 } 2276 2277 if (l != m) { 2278 if (l == M_PARTIAL) 2279 remove_partial(n, page); 2280 else if (l == M_FULL) 2281 remove_full(s, n, page); 2282 2283 if (m == M_PARTIAL) 2284 add_partial(n, page, tail); 2285 else if (m == M_FULL) 2286 add_full(s, n, page); 2287 } 2288 2289 l = m; 2290 if (!__cmpxchg_double_slab(s, page, 2291 old.freelist, old.counters, 2292 new.freelist, new.counters, 2293 "unfreezing slab")) 2294 goto redo; 2295 2296 if (lock) 2297 spin_unlock(&n->list_lock); 2298 2299 if (m == M_PARTIAL) 2300 stat(s, tail); 2301 else if (m == M_FULL) 2302 stat(s, DEACTIVATE_FULL); 2303 else if (m == M_FREE) { 2304 stat(s, DEACTIVATE_EMPTY); 2305 discard_slab(s, page); 2306 stat(s, FREE_SLAB); 2307 } 2308 2309 c->page = NULL; 2310 c->freelist = NULL; 2311 } 2312 2313 /* 2314 * Unfreeze all the cpu partial slabs. 2315 * 2316 * This function must be called with interrupts disabled 2317 * for the cpu using c (or some other guarantee must be there 2318 * to guarantee no concurrent accesses). 2319 */ 2320 static void unfreeze_partials(struct kmem_cache *s, 2321 struct kmem_cache_cpu *c) 2322 { 2323 #ifdef CONFIG_SLUB_CPU_PARTIAL 2324 struct kmem_cache_node *n = NULL, *n2 = NULL; 2325 struct page *page, *discard_page = NULL; 2326 2327 while ((page = slub_percpu_partial(c))) { 2328 struct page new; 2329 struct page old; 2330 2331 slub_set_percpu_partial(c, page); 2332 2333 n2 = get_node(s, page_to_nid(page)); 2334 if (n != n2) { 2335 if (n) 2336 spin_unlock(&n->list_lock); 2337 2338 n = n2; 2339 spin_lock(&n->list_lock); 2340 } 2341 2342 do { 2343 2344 old.freelist = page->freelist; 2345 old.counters = page->counters; 2346 VM_BUG_ON(!old.frozen); 2347 2348 new.counters = old.counters; 2349 new.freelist = old.freelist; 2350 2351 new.frozen = 0; 2352 2353 } while (!__cmpxchg_double_slab(s, page, 2354 old.freelist, old.counters, 2355 new.freelist, new.counters, 2356 "unfreezing slab")); 2357 2358 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2359 page->next = discard_page; 2360 discard_page = page; 2361 } else { 2362 add_partial(n, page, DEACTIVATE_TO_TAIL); 2363 stat(s, FREE_ADD_PARTIAL); 2364 } 2365 } 2366 2367 if (n) 2368 spin_unlock(&n->list_lock); 2369 2370 while (discard_page) { 2371 page = discard_page; 2372 discard_page = discard_page->next; 2373 2374 stat(s, DEACTIVATE_EMPTY); 2375 discard_slab(s, page); 2376 stat(s, FREE_SLAB); 2377 } 2378 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2379 } 2380 2381 /* 2382 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2383 * partial page slot if available. 2384 * 2385 * If we did not find a slot then simply move all the partials to the 2386 * per node partial list. 2387 */ 2388 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2389 { 2390 #ifdef CONFIG_SLUB_CPU_PARTIAL 2391 struct page *oldpage; 2392 int pages; 2393 int pobjects; 2394 2395 preempt_disable(); 2396 do { 2397 pages = 0; 2398 pobjects = 0; 2399 oldpage = this_cpu_read(s->cpu_slab->partial); 2400 2401 if (oldpage) { 2402 pobjects = oldpage->pobjects; 2403 pages = oldpage->pages; 2404 if (drain && pobjects > slub_cpu_partial(s)) { 2405 unsigned long flags; 2406 /* 2407 * partial array is full. Move the existing 2408 * set to the per node partial list. 2409 */ 2410 local_irq_save(flags); 2411 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2412 local_irq_restore(flags); 2413 oldpage = NULL; 2414 pobjects = 0; 2415 pages = 0; 2416 stat(s, CPU_PARTIAL_DRAIN); 2417 } 2418 } 2419 2420 pages++; 2421 pobjects += page->objects - page->inuse; 2422 2423 page->pages = pages; 2424 page->pobjects = pobjects; 2425 page->next = oldpage; 2426 2427 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2428 != oldpage); 2429 if (unlikely(!slub_cpu_partial(s))) { 2430 unsigned long flags; 2431 2432 local_irq_save(flags); 2433 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2434 local_irq_restore(flags); 2435 } 2436 preempt_enable(); 2437 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2438 } 2439 2440 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2441 { 2442 stat(s, CPUSLAB_FLUSH); 2443 deactivate_slab(s, c->page, c->freelist, c); 2444 2445 c->tid = next_tid(c->tid); 2446 } 2447 2448 /* 2449 * Flush cpu slab. 2450 * 2451 * Called from IPI handler with interrupts disabled. 2452 */ 2453 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2454 { 2455 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2456 2457 if (c->page) 2458 flush_slab(s, c); 2459 2460 unfreeze_partials(s, c); 2461 } 2462 2463 static void flush_cpu_slab(void *d) 2464 { 2465 struct kmem_cache *s = d; 2466 2467 __flush_cpu_slab(s, smp_processor_id()); 2468 } 2469 2470 static bool has_cpu_slab(int cpu, void *info) 2471 { 2472 struct kmem_cache *s = info; 2473 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2474 2475 return c->page || slub_percpu_partial(c); 2476 } 2477 2478 static void flush_all(struct kmem_cache *s) 2479 { 2480 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1); 2481 } 2482 2483 /* 2484 * Use the cpu notifier to insure that the cpu slabs are flushed when 2485 * necessary. 2486 */ 2487 static int slub_cpu_dead(unsigned int cpu) 2488 { 2489 struct kmem_cache *s; 2490 unsigned long flags; 2491 2492 mutex_lock(&slab_mutex); 2493 list_for_each_entry(s, &slab_caches, list) { 2494 local_irq_save(flags); 2495 __flush_cpu_slab(s, cpu); 2496 local_irq_restore(flags); 2497 } 2498 mutex_unlock(&slab_mutex); 2499 return 0; 2500 } 2501 2502 /* 2503 * Check if the objects in a per cpu structure fit numa 2504 * locality expectations. 2505 */ 2506 static inline int node_match(struct page *page, int node) 2507 { 2508 #ifdef CONFIG_NUMA 2509 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2510 return 0; 2511 #endif 2512 return 1; 2513 } 2514 2515 #ifdef CONFIG_SLUB_DEBUG 2516 static int count_free(struct page *page) 2517 { 2518 return page->objects - page->inuse; 2519 } 2520 2521 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2522 { 2523 return atomic_long_read(&n->total_objects); 2524 } 2525 #endif /* CONFIG_SLUB_DEBUG */ 2526 2527 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2528 static unsigned long count_partial(struct kmem_cache_node *n, 2529 int (*get_count)(struct page *)) 2530 { 2531 unsigned long flags; 2532 unsigned long x = 0; 2533 struct page *page; 2534 2535 spin_lock_irqsave(&n->list_lock, flags); 2536 list_for_each_entry(page, &n->partial, slab_list) 2537 x += get_count(page); 2538 spin_unlock_irqrestore(&n->list_lock, flags); 2539 return x; 2540 } 2541 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2542 2543 static noinline void 2544 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2545 { 2546 #ifdef CONFIG_SLUB_DEBUG 2547 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2548 DEFAULT_RATELIMIT_BURST); 2549 int node; 2550 struct kmem_cache_node *n; 2551 2552 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2553 return; 2554 2555 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2556 nid, gfpflags, &gfpflags); 2557 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2558 s->name, s->object_size, s->size, oo_order(s->oo), 2559 oo_order(s->min)); 2560 2561 if (oo_order(s->min) > get_order(s->object_size)) 2562 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2563 s->name); 2564 2565 for_each_kmem_cache_node(s, node, n) { 2566 unsigned long nr_slabs; 2567 unsigned long nr_objs; 2568 unsigned long nr_free; 2569 2570 nr_free = count_partial(n, count_free); 2571 nr_slabs = node_nr_slabs(n); 2572 nr_objs = node_nr_objs(n); 2573 2574 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2575 node, nr_slabs, nr_objs, nr_free); 2576 } 2577 #endif 2578 } 2579 2580 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2581 int node, struct kmem_cache_cpu **pc) 2582 { 2583 void *freelist; 2584 struct kmem_cache_cpu *c = *pc; 2585 struct page *page; 2586 2587 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2588 2589 freelist = get_partial(s, flags, node, c); 2590 2591 if (freelist) 2592 return freelist; 2593 2594 page = new_slab(s, flags, node); 2595 if (page) { 2596 c = raw_cpu_ptr(s->cpu_slab); 2597 if (c->page) 2598 flush_slab(s, c); 2599 2600 /* 2601 * No other reference to the page yet so we can 2602 * muck around with it freely without cmpxchg 2603 */ 2604 freelist = page->freelist; 2605 page->freelist = NULL; 2606 2607 stat(s, ALLOC_SLAB); 2608 c->page = page; 2609 *pc = c; 2610 } 2611 2612 return freelist; 2613 } 2614 2615 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2616 { 2617 if (unlikely(PageSlabPfmemalloc(page))) 2618 return gfp_pfmemalloc_allowed(gfpflags); 2619 2620 return true; 2621 } 2622 2623 /* 2624 * Check the page->freelist of a page and either transfer the freelist to the 2625 * per cpu freelist or deactivate the page. 2626 * 2627 * The page is still frozen if the return value is not NULL. 2628 * 2629 * If this function returns NULL then the page has been unfrozen. 2630 * 2631 * This function must be called with interrupt disabled. 2632 */ 2633 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2634 { 2635 struct page new; 2636 unsigned long counters; 2637 void *freelist; 2638 2639 do { 2640 freelist = page->freelist; 2641 counters = page->counters; 2642 2643 new.counters = counters; 2644 VM_BUG_ON(!new.frozen); 2645 2646 new.inuse = page->objects; 2647 new.frozen = freelist != NULL; 2648 2649 } while (!__cmpxchg_double_slab(s, page, 2650 freelist, counters, 2651 NULL, new.counters, 2652 "get_freelist")); 2653 2654 return freelist; 2655 } 2656 2657 /* 2658 * Slow path. The lockless freelist is empty or we need to perform 2659 * debugging duties. 2660 * 2661 * Processing is still very fast if new objects have been freed to the 2662 * regular freelist. In that case we simply take over the regular freelist 2663 * as the lockless freelist and zap the regular freelist. 2664 * 2665 * If that is not working then we fall back to the partial lists. We take the 2666 * first element of the freelist as the object to allocate now and move the 2667 * rest of the freelist to the lockless freelist. 2668 * 2669 * And if we were unable to get a new slab from the partial slab lists then 2670 * we need to allocate a new slab. This is the slowest path since it involves 2671 * a call to the page allocator and the setup of a new slab. 2672 * 2673 * Version of __slab_alloc to use when we know that interrupts are 2674 * already disabled (which is the case for bulk allocation). 2675 */ 2676 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2677 unsigned long addr, struct kmem_cache_cpu *c) 2678 { 2679 void *freelist; 2680 struct page *page; 2681 2682 stat(s, ALLOC_SLOWPATH); 2683 2684 page = c->page; 2685 if (!page) { 2686 /* 2687 * if the node is not online or has no normal memory, just 2688 * ignore the node constraint 2689 */ 2690 if (unlikely(node != NUMA_NO_NODE && 2691 !node_isset(node, slab_nodes))) 2692 node = NUMA_NO_NODE; 2693 goto new_slab; 2694 } 2695 redo: 2696 2697 if (unlikely(!node_match(page, node))) { 2698 /* 2699 * same as above but node_match() being false already 2700 * implies node != NUMA_NO_NODE 2701 */ 2702 if (!node_isset(node, slab_nodes)) { 2703 node = NUMA_NO_NODE; 2704 goto redo; 2705 } else { 2706 stat(s, ALLOC_NODE_MISMATCH); 2707 deactivate_slab(s, page, c->freelist, c); 2708 goto new_slab; 2709 } 2710 } 2711 2712 /* 2713 * By rights, we should be searching for a slab page that was 2714 * PFMEMALLOC but right now, we are losing the pfmemalloc 2715 * information when the page leaves the per-cpu allocator 2716 */ 2717 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2718 deactivate_slab(s, page, c->freelist, c); 2719 goto new_slab; 2720 } 2721 2722 /* must check again c->freelist in case of cpu migration or IRQ */ 2723 freelist = c->freelist; 2724 if (freelist) 2725 goto load_freelist; 2726 2727 freelist = get_freelist(s, page); 2728 2729 if (!freelist) { 2730 c->page = NULL; 2731 stat(s, DEACTIVATE_BYPASS); 2732 goto new_slab; 2733 } 2734 2735 stat(s, ALLOC_REFILL); 2736 2737 load_freelist: 2738 /* 2739 * freelist is pointing to the list of objects to be used. 2740 * page is pointing to the page from which the objects are obtained. 2741 * That page must be frozen for per cpu allocations to work. 2742 */ 2743 VM_BUG_ON(!c->page->frozen); 2744 c->freelist = get_freepointer(s, freelist); 2745 c->tid = next_tid(c->tid); 2746 return freelist; 2747 2748 new_slab: 2749 2750 if (slub_percpu_partial(c)) { 2751 page = c->page = slub_percpu_partial(c); 2752 slub_set_percpu_partial(c, page); 2753 stat(s, CPU_PARTIAL_ALLOC); 2754 goto redo; 2755 } 2756 2757 freelist = new_slab_objects(s, gfpflags, node, &c); 2758 2759 if (unlikely(!freelist)) { 2760 slab_out_of_memory(s, gfpflags, node); 2761 return NULL; 2762 } 2763 2764 page = c->page; 2765 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2766 goto load_freelist; 2767 2768 /* Only entered in the debug case */ 2769 if (kmem_cache_debug(s) && 2770 !alloc_debug_processing(s, page, freelist, addr)) 2771 goto new_slab; /* Slab failed checks. Next slab needed */ 2772 2773 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2774 return freelist; 2775 } 2776 2777 /* 2778 * Another one that disabled interrupt and compensates for possible 2779 * cpu changes by refetching the per cpu area pointer. 2780 */ 2781 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2782 unsigned long addr, struct kmem_cache_cpu *c) 2783 { 2784 void *p; 2785 unsigned long flags; 2786 2787 local_irq_save(flags); 2788 #ifdef CONFIG_PREEMPTION 2789 /* 2790 * We may have been preempted and rescheduled on a different 2791 * cpu before disabling interrupts. Need to reload cpu area 2792 * pointer. 2793 */ 2794 c = this_cpu_ptr(s->cpu_slab); 2795 #endif 2796 2797 p = ___slab_alloc(s, gfpflags, node, addr, c); 2798 local_irq_restore(flags); 2799 return p; 2800 } 2801 2802 /* 2803 * If the object has been wiped upon free, make sure it's fully initialized by 2804 * zeroing out freelist pointer. 2805 */ 2806 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 2807 void *obj) 2808 { 2809 if (unlikely(slab_want_init_on_free(s)) && obj) 2810 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 2811 0, sizeof(void *)); 2812 } 2813 2814 /* 2815 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2816 * have the fastpath folded into their functions. So no function call 2817 * overhead for requests that can be satisfied on the fastpath. 2818 * 2819 * The fastpath works by first checking if the lockless freelist can be used. 2820 * If not then __slab_alloc is called for slow processing. 2821 * 2822 * Otherwise we can simply pick the next object from the lockless free list. 2823 */ 2824 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2825 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 2826 { 2827 void *object; 2828 struct kmem_cache_cpu *c; 2829 struct page *page; 2830 unsigned long tid; 2831 struct obj_cgroup *objcg = NULL; 2832 bool init = false; 2833 2834 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags); 2835 if (!s) 2836 return NULL; 2837 2838 object = kfence_alloc(s, orig_size, gfpflags); 2839 if (unlikely(object)) 2840 goto out; 2841 2842 redo: 2843 /* 2844 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2845 * enabled. We may switch back and forth between cpus while 2846 * reading from one cpu area. That does not matter as long 2847 * as we end up on the original cpu again when doing the cmpxchg. 2848 * 2849 * We should guarantee that tid and kmem_cache are retrieved on 2850 * the same cpu. It could be different if CONFIG_PREEMPTION so we need 2851 * to check if it is matched or not. 2852 */ 2853 do { 2854 tid = this_cpu_read(s->cpu_slab->tid); 2855 c = raw_cpu_ptr(s->cpu_slab); 2856 } while (IS_ENABLED(CONFIG_PREEMPTION) && 2857 unlikely(tid != READ_ONCE(c->tid))); 2858 2859 /* 2860 * Irqless object alloc/free algorithm used here depends on sequence 2861 * of fetching cpu_slab's data. tid should be fetched before anything 2862 * on c to guarantee that object and page associated with previous tid 2863 * won't be used with current tid. If we fetch tid first, object and 2864 * page could be one associated with next tid and our alloc/free 2865 * request will be failed. In this case, we will retry. So, no problem. 2866 */ 2867 barrier(); 2868 2869 /* 2870 * The transaction ids are globally unique per cpu and per operation on 2871 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2872 * occurs on the right processor and that there was no operation on the 2873 * linked list in between. 2874 */ 2875 2876 object = c->freelist; 2877 page = c->page; 2878 if (unlikely(!object || !page || !node_match(page, node))) { 2879 object = __slab_alloc(s, gfpflags, node, addr, c); 2880 } else { 2881 void *next_object = get_freepointer_safe(s, object); 2882 2883 /* 2884 * The cmpxchg will only match if there was no additional 2885 * operation and if we are on the right processor. 2886 * 2887 * The cmpxchg does the following atomically (without lock 2888 * semantics!) 2889 * 1. Relocate first pointer to the current per cpu area. 2890 * 2. Verify that tid and freelist have not been changed 2891 * 3. If they were not changed replace tid and freelist 2892 * 2893 * Since this is without lock semantics the protection is only 2894 * against code executing on this cpu *not* from access by 2895 * other cpus. 2896 */ 2897 if (unlikely(!this_cpu_cmpxchg_double( 2898 s->cpu_slab->freelist, s->cpu_slab->tid, 2899 object, tid, 2900 next_object, next_tid(tid)))) { 2901 2902 note_cmpxchg_failure("slab_alloc", s, tid); 2903 goto redo; 2904 } 2905 prefetch_freepointer(s, next_object); 2906 stat(s, ALLOC_FASTPATH); 2907 } 2908 2909 maybe_wipe_obj_freeptr(s, object); 2910 init = slab_want_init_on_alloc(gfpflags, s); 2911 2912 out: 2913 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init); 2914 2915 return object; 2916 } 2917 2918 static __always_inline void *slab_alloc(struct kmem_cache *s, 2919 gfp_t gfpflags, unsigned long addr, size_t orig_size) 2920 { 2921 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size); 2922 } 2923 2924 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2925 { 2926 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size); 2927 2928 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2929 s->size, gfpflags); 2930 2931 return ret; 2932 } 2933 EXPORT_SYMBOL(kmem_cache_alloc); 2934 2935 #ifdef CONFIG_TRACING 2936 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2937 { 2938 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size); 2939 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2940 ret = kasan_kmalloc(s, ret, size, gfpflags); 2941 return ret; 2942 } 2943 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2944 #endif 2945 2946 #ifdef CONFIG_NUMA 2947 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2948 { 2949 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size); 2950 2951 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2952 s->object_size, s->size, gfpflags, node); 2953 2954 return ret; 2955 } 2956 EXPORT_SYMBOL(kmem_cache_alloc_node); 2957 2958 #ifdef CONFIG_TRACING 2959 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2960 gfp_t gfpflags, 2961 int node, size_t size) 2962 { 2963 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size); 2964 2965 trace_kmalloc_node(_RET_IP_, ret, 2966 size, s->size, gfpflags, node); 2967 2968 ret = kasan_kmalloc(s, ret, size, gfpflags); 2969 return ret; 2970 } 2971 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2972 #endif 2973 #endif /* CONFIG_NUMA */ 2974 2975 /* 2976 * Slow path handling. This may still be called frequently since objects 2977 * have a longer lifetime than the cpu slabs in most processing loads. 2978 * 2979 * So we still attempt to reduce cache line usage. Just take the slab 2980 * lock and free the item. If there is no additional partial page 2981 * handling required then we can return immediately. 2982 */ 2983 static void __slab_free(struct kmem_cache *s, struct page *page, 2984 void *head, void *tail, int cnt, 2985 unsigned long addr) 2986 2987 { 2988 void *prior; 2989 int was_frozen; 2990 struct page new; 2991 unsigned long counters; 2992 struct kmem_cache_node *n = NULL; 2993 unsigned long flags; 2994 2995 stat(s, FREE_SLOWPATH); 2996 2997 if (kfence_free(head)) 2998 return; 2999 3000 if (kmem_cache_debug(s) && 3001 !free_debug_processing(s, page, head, tail, cnt, addr)) 3002 return; 3003 3004 do { 3005 if (unlikely(n)) { 3006 spin_unlock_irqrestore(&n->list_lock, flags); 3007 n = NULL; 3008 } 3009 prior = page->freelist; 3010 counters = page->counters; 3011 set_freepointer(s, tail, prior); 3012 new.counters = counters; 3013 was_frozen = new.frozen; 3014 new.inuse -= cnt; 3015 if ((!new.inuse || !prior) && !was_frozen) { 3016 3017 if (kmem_cache_has_cpu_partial(s) && !prior) { 3018 3019 /* 3020 * Slab was on no list before and will be 3021 * partially empty 3022 * We can defer the list move and instead 3023 * freeze it. 3024 */ 3025 new.frozen = 1; 3026 3027 } else { /* Needs to be taken off a list */ 3028 3029 n = get_node(s, page_to_nid(page)); 3030 /* 3031 * Speculatively acquire the list_lock. 3032 * If the cmpxchg does not succeed then we may 3033 * drop the list_lock without any processing. 3034 * 3035 * Otherwise the list_lock will synchronize with 3036 * other processors updating the list of slabs. 3037 */ 3038 spin_lock_irqsave(&n->list_lock, flags); 3039 3040 } 3041 } 3042 3043 } while (!cmpxchg_double_slab(s, page, 3044 prior, counters, 3045 head, new.counters, 3046 "__slab_free")); 3047 3048 if (likely(!n)) { 3049 3050 if (likely(was_frozen)) { 3051 /* 3052 * The list lock was not taken therefore no list 3053 * activity can be necessary. 3054 */ 3055 stat(s, FREE_FROZEN); 3056 } else if (new.frozen) { 3057 /* 3058 * If we just froze the page then put it onto the 3059 * per cpu partial list. 3060 */ 3061 put_cpu_partial(s, page, 1); 3062 stat(s, CPU_PARTIAL_FREE); 3063 } 3064 3065 return; 3066 } 3067 3068 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 3069 goto slab_empty; 3070 3071 /* 3072 * Objects left in the slab. If it was not on the partial list before 3073 * then add it. 3074 */ 3075 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 3076 remove_full(s, n, page); 3077 add_partial(n, page, DEACTIVATE_TO_TAIL); 3078 stat(s, FREE_ADD_PARTIAL); 3079 } 3080 spin_unlock_irqrestore(&n->list_lock, flags); 3081 return; 3082 3083 slab_empty: 3084 if (prior) { 3085 /* 3086 * Slab on the partial list. 3087 */ 3088 remove_partial(n, page); 3089 stat(s, FREE_REMOVE_PARTIAL); 3090 } else { 3091 /* Slab must be on the full list */ 3092 remove_full(s, n, page); 3093 } 3094 3095 spin_unlock_irqrestore(&n->list_lock, flags); 3096 stat(s, FREE_SLAB); 3097 discard_slab(s, page); 3098 } 3099 3100 /* 3101 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3102 * can perform fastpath freeing without additional function calls. 3103 * 3104 * The fastpath is only possible if we are freeing to the current cpu slab 3105 * of this processor. This typically the case if we have just allocated 3106 * the item before. 3107 * 3108 * If fastpath is not possible then fall back to __slab_free where we deal 3109 * with all sorts of special processing. 3110 * 3111 * Bulk free of a freelist with several objects (all pointing to the 3112 * same page) possible by specifying head and tail ptr, plus objects 3113 * count (cnt). Bulk free indicated by tail pointer being set. 3114 */ 3115 static __always_inline void do_slab_free(struct kmem_cache *s, 3116 struct page *page, void *head, void *tail, 3117 int cnt, unsigned long addr) 3118 { 3119 void *tail_obj = tail ? : head; 3120 struct kmem_cache_cpu *c; 3121 unsigned long tid; 3122 3123 memcg_slab_free_hook(s, &head, 1); 3124 redo: 3125 /* 3126 * Determine the currently cpus per cpu slab. 3127 * The cpu may change afterward. However that does not matter since 3128 * data is retrieved via this pointer. If we are on the same cpu 3129 * during the cmpxchg then the free will succeed. 3130 */ 3131 do { 3132 tid = this_cpu_read(s->cpu_slab->tid); 3133 c = raw_cpu_ptr(s->cpu_slab); 3134 } while (IS_ENABLED(CONFIG_PREEMPTION) && 3135 unlikely(tid != READ_ONCE(c->tid))); 3136 3137 /* Same with comment on barrier() in slab_alloc_node() */ 3138 barrier(); 3139 3140 if (likely(page == c->page)) { 3141 void **freelist = READ_ONCE(c->freelist); 3142 3143 set_freepointer(s, tail_obj, freelist); 3144 3145 if (unlikely(!this_cpu_cmpxchg_double( 3146 s->cpu_slab->freelist, s->cpu_slab->tid, 3147 freelist, tid, 3148 head, next_tid(tid)))) { 3149 3150 note_cmpxchg_failure("slab_free", s, tid); 3151 goto redo; 3152 } 3153 stat(s, FREE_FASTPATH); 3154 } else 3155 __slab_free(s, page, head, tail_obj, cnt, addr); 3156 3157 } 3158 3159 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 3160 void *head, void *tail, int cnt, 3161 unsigned long addr) 3162 { 3163 /* 3164 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3165 * to remove objects, whose reuse must be delayed. 3166 */ 3167 if (slab_free_freelist_hook(s, &head, &tail)) 3168 do_slab_free(s, page, head, tail, cnt, addr); 3169 } 3170 3171 #ifdef CONFIG_KASAN_GENERIC 3172 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3173 { 3174 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3175 } 3176 #endif 3177 3178 void kmem_cache_free(struct kmem_cache *s, void *x) 3179 { 3180 s = cache_from_obj(s, x); 3181 if (!s) 3182 return; 3183 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3184 trace_kmem_cache_free(_RET_IP_, x, s->name); 3185 } 3186 EXPORT_SYMBOL(kmem_cache_free); 3187 3188 struct detached_freelist { 3189 struct page *page; 3190 void *tail; 3191 void *freelist; 3192 int cnt; 3193 struct kmem_cache *s; 3194 }; 3195 3196 /* 3197 * This function progressively scans the array with free objects (with 3198 * a limited look ahead) and extract objects belonging to the same 3199 * page. It builds a detached freelist directly within the given 3200 * page/objects. This can happen without any need for 3201 * synchronization, because the objects are owned by running process. 3202 * The freelist is build up as a single linked list in the objects. 3203 * The idea is, that this detached freelist can then be bulk 3204 * transferred to the real freelist(s), but only requiring a single 3205 * synchronization primitive. Look ahead in the array is limited due 3206 * to performance reasons. 3207 */ 3208 static inline 3209 int build_detached_freelist(struct kmem_cache *s, size_t size, 3210 void **p, struct detached_freelist *df) 3211 { 3212 size_t first_skipped_index = 0; 3213 int lookahead = 3; 3214 void *object; 3215 struct page *page; 3216 3217 /* Always re-init detached_freelist */ 3218 df->page = NULL; 3219 3220 do { 3221 object = p[--size]; 3222 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3223 } while (!object && size); 3224 3225 if (!object) 3226 return 0; 3227 3228 page = virt_to_head_page(object); 3229 if (!s) { 3230 /* Handle kalloc'ed objects */ 3231 if (unlikely(!PageSlab(page))) { 3232 BUG_ON(!PageCompound(page)); 3233 kfree_hook(object); 3234 __free_pages(page, compound_order(page)); 3235 p[size] = NULL; /* mark object processed */ 3236 return size; 3237 } 3238 /* Derive kmem_cache from object */ 3239 df->s = page->slab_cache; 3240 } else { 3241 df->s = cache_from_obj(s, object); /* Support for memcg */ 3242 } 3243 3244 if (is_kfence_address(object)) { 3245 slab_free_hook(df->s, object, false); 3246 __kfence_free(object); 3247 p[size] = NULL; /* mark object processed */ 3248 return size; 3249 } 3250 3251 /* Start new detached freelist */ 3252 df->page = page; 3253 set_freepointer(df->s, object, NULL); 3254 df->tail = object; 3255 df->freelist = object; 3256 p[size] = NULL; /* mark object processed */ 3257 df->cnt = 1; 3258 3259 while (size) { 3260 object = p[--size]; 3261 if (!object) 3262 continue; /* Skip processed objects */ 3263 3264 /* df->page is always set at this point */ 3265 if (df->page == virt_to_head_page(object)) { 3266 /* Opportunity build freelist */ 3267 set_freepointer(df->s, object, df->freelist); 3268 df->freelist = object; 3269 df->cnt++; 3270 p[size] = NULL; /* mark object processed */ 3271 3272 continue; 3273 } 3274 3275 /* Limit look ahead search */ 3276 if (!--lookahead) 3277 break; 3278 3279 if (!first_skipped_index) 3280 first_skipped_index = size + 1; 3281 } 3282 3283 return first_skipped_index; 3284 } 3285 3286 /* Note that interrupts must be enabled when calling this function. */ 3287 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3288 { 3289 if (WARN_ON(!size)) 3290 return; 3291 3292 memcg_slab_free_hook(s, p, size); 3293 do { 3294 struct detached_freelist df; 3295 3296 size = build_detached_freelist(s, size, p, &df); 3297 if (!df.page) 3298 continue; 3299 3300 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_); 3301 } while (likely(size)); 3302 } 3303 EXPORT_SYMBOL(kmem_cache_free_bulk); 3304 3305 /* Note that interrupts must be enabled when calling this function. */ 3306 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3307 void **p) 3308 { 3309 struct kmem_cache_cpu *c; 3310 int i; 3311 struct obj_cgroup *objcg = NULL; 3312 3313 /* memcg and kmem_cache debug support */ 3314 s = slab_pre_alloc_hook(s, &objcg, size, flags); 3315 if (unlikely(!s)) 3316 return false; 3317 /* 3318 * Drain objects in the per cpu slab, while disabling local 3319 * IRQs, which protects against PREEMPT and interrupts 3320 * handlers invoking normal fastpath. 3321 */ 3322 local_irq_disable(); 3323 c = this_cpu_ptr(s->cpu_slab); 3324 3325 for (i = 0; i < size; i++) { 3326 void *object = kfence_alloc(s, s->object_size, flags); 3327 3328 if (unlikely(object)) { 3329 p[i] = object; 3330 continue; 3331 } 3332 3333 object = c->freelist; 3334 if (unlikely(!object)) { 3335 /* 3336 * We may have removed an object from c->freelist using 3337 * the fastpath in the previous iteration; in that case, 3338 * c->tid has not been bumped yet. 3339 * Since ___slab_alloc() may reenable interrupts while 3340 * allocating memory, we should bump c->tid now. 3341 */ 3342 c->tid = next_tid(c->tid); 3343 3344 /* 3345 * Invoking slow path likely have side-effect 3346 * of re-populating per CPU c->freelist 3347 */ 3348 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3349 _RET_IP_, c); 3350 if (unlikely(!p[i])) 3351 goto error; 3352 3353 c = this_cpu_ptr(s->cpu_slab); 3354 maybe_wipe_obj_freeptr(s, p[i]); 3355 3356 continue; /* goto for-loop */ 3357 } 3358 c->freelist = get_freepointer(s, object); 3359 p[i] = object; 3360 maybe_wipe_obj_freeptr(s, p[i]); 3361 } 3362 c->tid = next_tid(c->tid); 3363 local_irq_enable(); 3364 3365 /* 3366 * memcg and kmem_cache debug support and memory initialization. 3367 * Done outside of the IRQ disabled fastpath loop. 3368 */ 3369 slab_post_alloc_hook(s, objcg, flags, size, p, 3370 slab_want_init_on_alloc(flags, s)); 3371 return i; 3372 error: 3373 local_irq_enable(); 3374 slab_post_alloc_hook(s, objcg, flags, i, p, false); 3375 __kmem_cache_free_bulk(s, i, p); 3376 return 0; 3377 } 3378 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3379 3380 3381 /* 3382 * Object placement in a slab is made very easy because we always start at 3383 * offset 0. If we tune the size of the object to the alignment then we can 3384 * get the required alignment by putting one properly sized object after 3385 * another. 3386 * 3387 * Notice that the allocation order determines the sizes of the per cpu 3388 * caches. Each processor has always one slab available for allocations. 3389 * Increasing the allocation order reduces the number of times that slabs 3390 * must be moved on and off the partial lists and is therefore a factor in 3391 * locking overhead. 3392 */ 3393 3394 /* 3395 * Minimum / Maximum order of slab pages. This influences locking overhead 3396 * and slab fragmentation. A higher order reduces the number of partial slabs 3397 * and increases the number of allocations possible without having to 3398 * take the list_lock. 3399 */ 3400 static unsigned int slub_min_order; 3401 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3402 static unsigned int slub_min_objects; 3403 3404 /* 3405 * Calculate the order of allocation given an slab object size. 3406 * 3407 * The order of allocation has significant impact on performance and other 3408 * system components. Generally order 0 allocations should be preferred since 3409 * order 0 does not cause fragmentation in the page allocator. Larger objects 3410 * be problematic to put into order 0 slabs because there may be too much 3411 * unused space left. We go to a higher order if more than 1/16th of the slab 3412 * would be wasted. 3413 * 3414 * In order to reach satisfactory performance we must ensure that a minimum 3415 * number of objects is in one slab. Otherwise we may generate too much 3416 * activity on the partial lists which requires taking the list_lock. This is 3417 * less a concern for large slabs though which are rarely used. 3418 * 3419 * slub_max_order specifies the order where we begin to stop considering the 3420 * number of objects in a slab as critical. If we reach slub_max_order then 3421 * we try to keep the page order as low as possible. So we accept more waste 3422 * of space in favor of a small page order. 3423 * 3424 * Higher order allocations also allow the placement of more objects in a 3425 * slab and thereby reduce object handling overhead. If the user has 3426 * requested a higher minimum order then we start with that one instead of 3427 * the smallest order which will fit the object. 3428 */ 3429 static inline unsigned int slab_order(unsigned int size, 3430 unsigned int min_objects, unsigned int max_order, 3431 unsigned int fract_leftover) 3432 { 3433 unsigned int min_order = slub_min_order; 3434 unsigned int order; 3435 3436 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3437 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3438 3439 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3440 order <= max_order; order++) { 3441 3442 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3443 unsigned int rem; 3444 3445 rem = slab_size % size; 3446 3447 if (rem <= slab_size / fract_leftover) 3448 break; 3449 } 3450 3451 return order; 3452 } 3453 3454 static inline int calculate_order(unsigned int size) 3455 { 3456 unsigned int order; 3457 unsigned int min_objects; 3458 unsigned int max_objects; 3459 unsigned int nr_cpus; 3460 3461 /* 3462 * Attempt to find best configuration for a slab. This 3463 * works by first attempting to generate a layout with 3464 * the best configuration and backing off gradually. 3465 * 3466 * First we increase the acceptable waste in a slab. Then 3467 * we reduce the minimum objects required in a slab. 3468 */ 3469 min_objects = slub_min_objects; 3470 if (!min_objects) { 3471 /* 3472 * Some architectures will only update present cpus when 3473 * onlining them, so don't trust the number if it's just 1. But 3474 * we also don't want to use nr_cpu_ids always, as on some other 3475 * architectures, there can be many possible cpus, but never 3476 * onlined. Here we compromise between trying to avoid too high 3477 * order on systems that appear larger than they are, and too 3478 * low order on systems that appear smaller than they are. 3479 */ 3480 nr_cpus = num_present_cpus(); 3481 if (nr_cpus <= 1) 3482 nr_cpus = nr_cpu_ids; 3483 min_objects = 4 * (fls(nr_cpus) + 1); 3484 } 3485 max_objects = order_objects(slub_max_order, size); 3486 min_objects = min(min_objects, max_objects); 3487 3488 while (min_objects > 1) { 3489 unsigned int fraction; 3490 3491 fraction = 16; 3492 while (fraction >= 4) { 3493 order = slab_order(size, min_objects, 3494 slub_max_order, fraction); 3495 if (order <= slub_max_order) 3496 return order; 3497 fraction /= 2; 3498 } 3499 min_objects--; 3500 } 3501 3502 /* 3503 * We were unable to place multiple objects in a slab. Now 3504 * lets see if we can place a single object there. 3505 */ 3506 order = slab_order(size, 1, slub_max_order, 1); 3507 if (order <= slub_max_order) 3508 return order; 3509 3510 /* 3511 * Doh this slab cannot be placed using slub_max_order. 3512 */ 3513 order = slab_order(size, 1, MAX_ORDER, 1); 3514 if (order < MAX_ORDER) 3515 return order; 3516 return -ENOSYS; 3517 } 3518 3519 static void 3520 init_kmem_cache_node(struct kmem_cache_node *n) 3521 { 3522 n->nr_partial = 0; 3523 spin_lock_init(&n->list_lock); 3524 INIT_LIST_HEAD(&n->partial); 3525 #ifdef CONFIG_SLUB_DEBUG 3526 atomic_long_set(&n->nr_slabs, 0); 3527 atomic_long_set(&n->total_objects, 0); 3528 INIT_LIST_HEAD(&n->full); 3529 #endif 3530 } 3531 3532 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3533 { 3534 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3535 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3536 3537 /* 3538 * Must align to double word boundary for the double cmpxchg 3539 * instructions to work; see __pcpu_double_call_return_bool(). 3540 */ 3541 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3542 2 * sizeof(void *)); 3543 3544 if (!s->cpu_slab) 3545 return 0; 3546 3547 init_kmem_cache_cpus(s); 3548 3549 return 1; 3550 } 3551 3552 static struct kmem_cache *kmem_cache_node; 3553 3554 /* 3555 * No kmalloc_node yet so do it by hand. We know that this is the first 3556 * slab on the node for this slabcache. There are no concurrent accesses 3557 * possible. 3558 * 3559 * Note that this function only works on the kmem_cache_node 3560 * when allocating for the kmem_cache_node. This is used for bootstrapping 3561 * memory on a fresh node that has no slab structures yet. 3562 */ 3563 static void early_kmem_cache_node_alloc(int node) 3564 { 3565 struct page *page; 3566 struct kmem_cache_node *n; 3567 3568 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3569 3570 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3571 3572 BUG_ON(!page); 3573 if (page_to_nid(page) != node) { 3574 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3575 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3576 } 3577 3578 n = page->freelist; 3579 BUG_ON(!n); 3580 #ifdef CONFIG_SLUB_DEBUG 3581 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3582 init_tracking(kmem_cache_node, n); 3583 #endif 3584 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 3585 page->freelist = get_freepointer(kmem_cache_node, n); 3586 page->inuse = 1; 3587 page->frozen = 0; 3588 kmem_cache_node->node[node] = n; 3589 init_kmem_cache_node(n); 3590 inc_slabs_node(kmem_cache_node, node, page->objects); 3591 3592 /* 3593 * No locks need to be taken here as it has just been 3594 * initialized and there is no concurrent access. 3595 */ 3596 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3597 } 3598 3599 static void free_kmem_cache_nodes(struct kmem_cache *s) 3600 { 3601 int node; 3602 struct kmem_cache_node *n; 3603 3604 for_each_kmem_cache_node(s, node, n) { 3605 s->node[node] = NULL; 3606 kmem_cache_free(kmem_cache_node, n); 3607 } 3608 } 3609 3610 void __kmem_cache_release(struct kmem_cache *s) 3611 { 3612 cache_random_seq_destroy(s); 3613 free_percpu(s->cpu_slab); 3614 free_kmem_cache_nodes(s); 3615 } 3616 3617 static int init_kmem_cache_nodes(struct kmem_cache *s) 3618 { 3619 int node; 3620 3621 for_each_node_mask(node, slab_nodes) { 3622 struct kmem_cache_node *n; 3623 3624 if (slab_state == DOWN) { 3625 early_kmem_cache_node_alloc(node); 3626 continue; 3627 } 3628 n = kmem_cache_alloc_node(kmem_cache_node, 3629 GFP_KERNEL, node); 3630 3631 if (!n) { 3632 free_kmem_cache_nodes(s); 3633 return 0; 3634 } 3635 3636 init_kmem_cache_node(n); 3637 s->node[node] = n; 3638 } 3639 return 1; 3640 } 3641 3642 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3643 { 3644 if (min < MIN_PARTIAL) 3645 min = MIN_PARTIAL; 3646 else if (min > MAX_PARTIAL) 3647 min = MAX_PARTIAL; 3648 s->min_partial = min; 3649 } 3650 3651 static void set_cpu_partial(struct kmem_cache *s) 3652 { 3653 #ifdef CONFIG_SLUB_CPU_PARTIAL 3654 /* 3655 * cpu_partial determined the maximum number of objects kept in the 3656 * per cpu partial lists of a processor. 3657 * 3658 * Per cpu partial lists mainly contain slabs that just have one 3659 * object freed. If they are used for allocation then they can be 3660 * filled up again with minimal effort. The slab will never hit the 3661 * per node partial lists and therefore no locking will be required. 3662 * 3663 * This setting also determines 3664 * 3665 * A) The number of objects from per cpu partial slabs dumped to the 3666 * per node list when we reach the limit. 3667 * B) The number of objects in cpu partial slabs to extract from the 3668 * per node list when we run out of per cpu objects. We only fetch 3669 * 50% to keep some capacity around for frees. 3670 */ 3671 if (!kmem_cache_has_cpu_partial(s)) 3672 slub_set_cpu_partial(s, 0); 3673 else if (s->size >= PAGE_SIZE) 3674 slub_set_cpu_partial(s, 2); 3675 else if (s->size >= 1024) 3676 slub_set_cpu_partial(s, 6); 3677 else if (s->size >= 256) 3678 slub_set_cpu_partial(s, 13); 3679 else 3680 slub_set_cpu_partial(s, 30); 3681 #endif 3682 } 3683 3684 /* 3685 * calculate_sizes() determines the order and the distribution of data within 3686 * a slab object. 3687 */ 3688 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3689 { 3690 slab_flags_t flags = s->flags; 3691 unsigned int size = s->object_size; 3692 unsigned int freepointer_area; 3693 unsigned int order; 3694 3695 /* 3696 * Round up object size to the next word boundary. We can only 3697 * place the free pointer at word boundaries and this determines 3698 * the possible location of the free pointer. 3699 */ 3700 size = ALIGN(size, sizeof(void *)); 3701 /* 3702 * This is the area of the object where a freepointer can be 3703 * safely written. If redzoning adds more to the inuse size, we 3704 * can't use that portion for writing the freepointer, so 3705 * s->offset must be limited within this for the general case. 3706 */ 3707 freepointer_area = size; 3708 3709 #ifdef CONFIG_SLUB_DEBUG 3710 /* 3711 * Determine if we can poison the object itself. If the user of 3712 * the slab may touch the object after free or before allocation 3713 * then we should never poison the object itself. 3714 */ 3715 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3716 !s->ctor) 3717 s->flags |= __OBJECT_POISON; 3718 else 3719 s->flags &= ~__OBJECT_POISON; 3720 3721 3722 /* 3723 * If we are Redzoning then check if there is some space between the 3724 * end of the object and the free pointer. If not then add an 3725 * additional word to have some bytes to store Redzone information. 3726 */ 3727 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3728 size += sizeof(void *); 3729 #endif 3730 3731 /* 3732 * With that we have determined the number of bytes in actual use 3733 * by the object. This is the potential offset to the free pointer. 3734 */ 3735 s->inuse = size; 3736 3737 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3738 s->ctor)) { 3739 /* 3740 * Relocate free pointer after the object if it is not 3741 * permitted to overwrite the first word of the object on 3742 * kmem_cache_free. 3743 * 3744 * This is the case if we do RCU, have a constructor or 3745 * destructor or are poisoning the objects. 3746 * 3747 * The assumption that s->offset >= s->inuse means free 3748 * pointer is outside of the object is used in the 3749 * freeptr_outside_object() function. If that is no 3750 * longer true, the function needs to be modified. 3751 */ 3752 s->offset = size; 3753 size += sizeof(void *); 3754 } else if (freepointer_area > sizeof(void *)) { 3755 /* 3756 * Store freelist pointer near middle of object to keep 3757 * it away from the edges of the object to avoid small 3758 * sized over/underflows from neighboring allocations. 3759 */ 3760 s->offset = ALIGN(freepointer_area / 2, sizeof(void *)); 3761 } 3762 3763 #ifdef CONFIG_SLUB_DEBUG 3764 if (flags & SLAB_STORE_USER) 3765 /* 3766 * Need to store information about allocs and frees after 3767 * the object. 3768 */ 3769 size += 2 * sizeof(struct track); 3770 #endif 3771 3772 kasan_cache_create(s, &size, &s->flags); 3773 #ifdef CONFIG_SLUB_DEBUG 3774 if (flags & SLAB_RED_ZONE) { 3775 /* 3776 * Add some empty padding so that we can catch 3777 * overwrites from earlier objects rather than let 3778 * tracking information or the free pointer be 3779 * corrupted if a user writes before the start 3780 * of the object. 3781 */ 3782 size += sizeof(void *); 3783 3784 s->red_left_pad = sizeof(void *); 3785 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3786 size += s->red_left_pad; 3787 } 3788 #endif 3789 3790 /* 3791 * SLUB stores one object immediately after another beginning from 3792 * offset 0. In order to align the objects we have to simply size 3793 * each object to conform to the alignment. 3794 */ 3795 size = ALIGN(size, s->align); 3796 s->size = size; 3797 s->reciprocal_size = reciprocal_value(size); 3798 if (forced_order >= 0) 3799 order = forced_order; 3800 else 3801 order = calculate_order(size); 3802 3803 if ((int)order < 0) 3804 return 0; 3805 3806 s->allocflags = 0; 3807 if (order) 3808 s->allocflags |= __GFP_COMP; 3809 3810 if (s->flags & SLAB_CACHE_DMA) 3811 s->allocflags |= GFP_DMA; 3812 3813 if (s->flags & SLAB_CACHE_DMA32) 3814 s->allocflags |= GFP_DMA32; 3815 3816 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3817 s->allocflags |= __GFP_RECLAIMABLE; 3818 3819 /* 3820 * Determine the number of objects per slab 3821 */ 3822 s->oo = oo_make(order, size); 3823 s->min = oo_make(get_order(size), size); 3824 if (oo_objects(s->oo) > oo_objects(s->max)) 3825 s->max = s->oo; 3826 3827 return !!oo_objects(s->oo); 3828 } 3829 3830 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3831 { 3832 s->flags = kmem_cache_flags(s->size, flags, s->name); 3833 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3834 s->random = get_random_long(); 3835 #endif 3836 3837 if (!calculate_sizes(s, -1)) 3838 goto error; 3839 if (disable_higher_order_debug) { 3840 /* 3841 * Disable debugging flags that store metadata if the min slab 3842 * order increased. 3843 */ 3844 if (get_order(s->size) > get_order(s->object_size)) { 3845 s->flags &= ~DEBUG_METADATA_FLAGS; 3846 s->offset = 0; 3847 if (!calculate_sizes(s, -1)) 3848 goto error; 3849 } 3850 } 3851 3852 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3853 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3854 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3855 /* Enable fast mode */ 3856 s->flags |= __CMPXCHG_DOUBLE; 3857 #endif 3858 3859 /* 3860 * The larger the object size is, the more pages we want on the partial 3861 * list to avoid pounding the page allocator excessively. 3862 */ 3863 set_min_partial(s, ilog2(s->size) / 2); 3864 3865 set_cpu_partial(s); 3866 3867 #ifdef CONFIG_NUMA 3868 s->remote_node_defrag_ratio = 1000; 3869 #endif 3870 3871 /* Initialize the pre-computed randomized freelist if slab is up */ 3872 if (slab_state >= UP) { 3873 if (init_cache_random_seq(s)) 3874 goto error; 3875 } 3876 3877 if (!init_kmem_cache_nodes(s)) 3878 goto error; 3879 3880 if (alloc_kmem_cache_cpus(s)) 3881 return 0; 3882 3883 free_kmem_cache_nodes(s); 3884 error: 3885 return -EINVAL; 3886 } 3887 3888 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3889 const char *text) 3890 { 3891 #ifdef CONFIG_SLUB_DEBUG 3892 void *addr = page_address(page); 3893 unsigned long *map; 3894 void *p; 3895 3896 slab_err(s, page, text, s->name); 3897 slab_lock(page); 3898 3899 map = get_map(s, page); 3900 for_each_object(p, s, addr, page->objects) { 3901 3902 if (!test_bit(__obj_to_index(s, addr, p), map)) { 3903 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 3904 print_tracking(s, p); 3905 } 3906 } 3907 put_map(map); 3908 slab_unlock(page); 3909 #endif 3910 } 3911 3912 /* 3913 * Attempt to free all partial slabs on a node. 3914 * This is called from __kmem_cache_shutdown(). We must take list_lock 3915 * because sysfs file might still access partial list after the shutdowning. 3916 */ 3917 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3918 { 3919 LIST_HEAD(discard); 3920 struct page *page, *h; 3921 3922 BUG_ON(irqs_disabled()); 3923 spin_lock_irq(&n->list_lock); 3924 list_for_each_entry_safe(page, h, &n->partial, slab_list) { 3925 if (!page->inuse) { 3926 remove_partial(n, page); 3927 list_add(&page->slab_list, &discard); 3928 } else { 3929 list_slab_objects(s, page, 3930 "Objects remaining in %s on __kmem_cache_shutdown()"); 3931 } 3932 } 3933 spin_unlock_irq(&n->list_lock); 3934 3935 list_for_each_entry_safe(page, h, &discard, slab_list) 3936 discard_slab(s, page); 3937 } 3938 3939 bool __kmem_cache_empty(struct kmem_cache *s) 3940 { 3941 int node; 3942 struct kmem_cache_node *n; 3943 3944 for_each_kmem_cache_node(s, node, n) 3945 if (n->nr_partial || slabs_node(s, node)) 3946 return false; 3947 return true; 3948 } 3949 3950 /* 3951 * Release all resources used by a slab cache. 3952 */ 3953 int __kmem_cache_shutdown(struct kmem_cache *s) 3954 { 3955 int node; 3956 struct kmem_cache_node *n; 3957 3958 flush_all(s); 3959 /* Attempt to free all objects */ 3960 for_each_kmem_cache_node(s, node, n) { 3961 free_partial(s, n); 3962 if (n->nr_partial || slabs_node(s, node)) 3963 return 1; 3964 } 3965 return 0; 3966 } 3967 3968 #ifdef CONFIG_PRINTK 3969 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page) 3970 { 3971 void *base; 3972 int __maybe_unused i; 3973 unsigned int objnr; 3974 void *objp; 3975 void *objp0; 3976 struct kmem_cache *s = page->slab_cache; 3977 struct track __maybe_unused *trackp; 3978 3979 kpp->kp_ptr = object; 3980 kpp->kp_page = page; 3981 kpp->kp_slab_cache = s; 3982 base = page_address(page); 3983 objp0 = kasan_reset_tag(object); 3984 #ifdef CONFIG_SLUB_DEBUG 3985 objp = restore_red_left(s, objp0); 3986 #else 3987 objp = objp0; 3988 #endif 3989 objnr = obj_to_index(s, page, objp); 3990 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 3991 objp = base + s->size * objnr; 3992 kpp->kp_objp = objp; 3993 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) || 3994 !(s->flags & SLAB_STORE_USER)) 3995 return; 3996 #ifdef CONFIG_SLUB_DEBUG 3997 trackp = get_track(s, objp, TRACK_ALLOC); 3998 kpp->kp_ret = (void *)trackp->addr; 3999 #ifdef CONFIG_STACKTRACE 4000 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) { 4001 kpp->kp_stack[i] = (void *)trackp->addrs[i]; 4002 if (!kpp->kp_stack[i]) 4003 break; 4004 } 4005 #endif 4006 #endif 4007 } 4008 #endif 4009 4010 /******************************************************************** 4011 * Kmalloc subsystem 4012 *******************************************************************/ 4013 4014 static int __init setup_slub_min_order(char *str) 4015 { 4016 get_option(&str, (int *)&slub_min_order); 4017 4018 return 1; 4019 } 4020 4021 __setup("slub_min_order=", setup_slub_min_order); 4022 4023 static int __init setup_slub_max_order(char *str) 4024 { 4025 get_option(&str, (int *)&slub_max_order); 4026 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 4027 4028 return 1; 4029 } 4030 4031 __setup("slub_max_order=", setup_slub_max_order); 4032 4033 static int __init setup_slub_min_objects(char *str) 4034 { 4035 get_option(&str, (int *)&slub_min_objects); 4036 4037 return 1; 4038 } 4039 4040 __setup("slub_min_objects=", setup_slub_min_objects); 4041 4042 void *__kmalloc(size_t size, gfp_t flags) 4043 { 4044 struct kmem_cache *s; 4045 void *ret; 4046 4047 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4048 return kmalloc_large(size, flags); 4049 4050 s = kmalloc_slab(size, flags); 4051 4052 if (unlikely(ZERO_OR_NULL_PTR(s))) 4053 return s; 4054 4055 ret = slab_alloc(s, flags, _RET_IP_, size); 4056 4057 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 4058 4059 ret = kasan_kmalloc(s, ret, size, flags); 4060 4061 return ret; 4062 } 4063 EXPORT_SYMBOL(__kmalloc); 4064 4065 #ifdef CONFIG_NUMA 4066 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 4067 { 4068 struct page *page; 4069 void *ptr = NULL; 4070 unsigned int order = get_order(size); 4071 4072 flags |= __GFP_COMP; 4073 page = alloc_pages_node(node, flags, order); 4074 if (page) { 4075 ptr = page_address(page); 4076 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, 4077 PAGE_SIZE << order); 4078 } 4079 4080 return kmalloc_large_node_hook(ptr, size, flags); 4081 } 4082 4083 void *__kmalloc_node(size_t size, gfp_t flags, int node) 4084 { 4085 struct kmem_cache *s; 4086 void *ret; 4087 4088 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4089 ret = kmalloc_large_node(size, flags, node); 4090 4091 trace_kmalloc_node(_RET_IP_, ret, 4092 size, PAGE_SIZE << get_order(size), 4093 flags, node); 4094 4095 return ret; 4096 } 4097 4098 s = kmalloc_slab(size, flags); 4099 4100 if (unlikely(ZERO_OR_NULL_PTR(s))) 4101 return s; 4102 4103 ret = slab_alloc_node(s, flags, node, _RET_IP_, size); 4104 4105 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 4106 4107 ret = kasan_kmalloc(s, ret, size, flags); 4108 4109 return ret; 4110 } 4111 EXPORT_SYMBOL(__kmalloc_node); 4112 #endif /* CONFIG_NUMA */ 4113 4114 #ifdef CONFIG_HARDENED_USERCOPY 4115 /* 4116 * Rejects incorrectly sized objects and objects that are to be copied 4117 * to/from userspace but do not fall entirely within the containing slab 4118 * cache's usercopy region. 4119 * 4120 * Returns NULL if check passes, otherwise const char * to name of cache 4121 * to indicate an error. 4122 */ 4123 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 4124 bool to_user) 4125 { 4126 struct kmem_cache *s; 4127 unsigned int offset; 4128 size_t object_size; 4129 bool is_kfence = is_kfence_address(ptr); 4130 4131 ptr = kasan_reset_tag(ptr); 4132 4133 /* Find object and usable object size. */ 4134 s = page->slab_cache; 4135 4136 /* Reject impossible pointers. */ 4137 if (ptr < page_address(page)) 4138 usercopy_abort("SLUB object not in SLUB page?!", NULL, 4139 to_user, 0, n); 4140 4141 /* Find offset within object. */ 4142 if (is_kfence) 4143 offset = ptr - kfence_object_start(ptr); 4144 else 4145 offset = (ptr - page_address(page)) % s->size; 4146 4147 /* Adjust for redzone and reject if within the redzone. */ 4148 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 4149 if (offset < s->red_left_pad) 4150 usercopy_abort("SLUB object in left red zone", 4151 s->name, to_user, offset, n); 4152 offset -= s->red_left_pad; 4153 } 4154 4155 /* Allow address range falling entirely within usercopy region. */ 4156 if (offset >= s->useroffset && 4157 offset - s->useroffset <= s->usersize && 4158 n <= s->useroffset - offset + s->usersize) 4159 return; 4160 4161 /* 4162 * If the copy is still within the allocated object, produce 4163 * a warning instead of rejecting the copy. This is intended 4164 * to be a temporary method to find any missing usercopy 4165 * whitelists. 4166 */ 4167 object_size = slab_ksize(s); 4168 if (usercopy_fallback && 4169 offset <= object_size && n <= object_size - offset) { 4170 usercopy_warn("SLUB object", s->name, to_user, offset, n); 4171 return; 4172 } 4173 4174 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4175 } 4176 #endif /* CONFIG_HARDENED_USERCOPY */ 4177 4178 size_t __ksize(const void *object) 4179 { 4180 struct page *page; 4181 4182 if (unlikely(object == ZERO_SIZE_PTR)) 4183 return 0; 4184 4185 page = virt_to_head_page(object); 4186 4187 if (unlikely(!PageSlab(page))) { 4188 WARN_ON(!PageCompound(page)); 4189 return page_size(page); 4190 } 4191 4192 return slab_ksize(page->slab_cache); 4193 } 4194 EXPORT_SYMBOL(__ksize); 4195 4196 void kfree(const void *x) 4197 { 4198 struct page *page; 4199 void *object = (void *)x; 4200 4201 trace_kfree(_RET_IP_, x); 4202 4203 if (unlikely(ZERO_OR_NULL_PTR(x))) 4204 return; 4205 4206 page = virt_to_head_page(x); 4207 if (unlikely(!PageSlab(page))) { 4208 unsigned int order = compound_order(page); 4209 4210 BUG_ON(!PageCompound(page)); 4211 kfree_hook(object); 4212 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, 4213 -(PAGE_SIZE << order)); 4214 __free_pages(page, order); 4215 return; 4216 } 4217 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 4218 } 4219 EXPORT_SYMBOL(kfree); 4220 4221 #define SHRINK_PROMOTE_MAX 32 4222 4223 /* 4224 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4225 * up most to the head of the partial lists. New allocations will then 4226 * fill those up and thus they can be removed from the partial lists. 4227 * 4228 * The slabs with the least items are placed last. This results in them 4229 * being allocated from last increasing the chance that the last objects 4230 * are freed in them. 4231 */ 4232 int __kmem_cache_shrink(struct kmem_cache *s) 4233 { 4234 int node; 4235 int i; 4236 struct kmem_cache_node *n; 4237 struct page *page; 4238 struct page *t; 4239 struct list_head discard; 4240 struct list_head promote[SHRINK_PROMOTE_MAX]; 4241 unsigned long flags; 4242 int ret = 0; 4243 4244 flush_all(s); 4245 for_each_kmem_cache_node(s, node, n) { 4246 INIT_LIST_HEAD(&discard); 4247 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4248 INIT_LIST_HEAD(promote + i); 4249 4250 spin_lock_irqsave(&n->list_lock, flags); 4251 4252 /* 4253 * Build lists of slabs to discard or promote. 4254 * 4255 * Note that concurrent frees may occur while we hold the 4256 * list_lock. page->inuse here is the upper limit. 4257 */ 4258 list_for_each_entry_safe(page, t, &n->partial, slab_list) { 4259 int free = page->objects - page->inuse; 4260 4261 /* Do not reread page->inuse */ 4262 barrier(); 4263 4264 /* We do not keep full slabs on the list */ 4265 BUG_ON(free <= 0); 4266 4267 if (free == page->objects) { 4268 list_move(&page->slab_list, &discard); 4269 n->nr_partial--; 4270 } else if (free <= SHRINK_PROMOTE_MAX) 4271 list_move(&page->slab_list, promote + free - 1); 4272 } 4273 4274 /* 4275 * Promote the slabs filled up most to the head of the 4276 * partial list. 4277 */ 4278 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4279 list_splice(promote + i, &n->partial); 4280 4281 spin_unlock_irqrestore(&n->list_lock, flags); 4282 4283 /* Release empty slabs */ 4284 list_for_each_entry_safe(page, t, &discard, slab_list) 4285 discard_slab(s, page); 4286 4287 if (slabs_node(s, node)) 4288 ret = 1; 4289 } 4290 4291 return ret; 4292 } 4293 4294 static int slab_mem_going_offline_callback(void *arg) 4295 { 4296 struct kmem_cache *s; 4297 4298 mutex_lock(&slab_mutex); 4299 list_for_each_entry(s, &slab_caches, list) 4300 __kmem_cache_shrink(s); 4301 mutex_unlock(&slab_mutex); 4302 4303 return 0; 4304 } 4305 4306 static void slab_mem_offline_callback(void *arg) 4307 { 4308 struct memory_notify *marg = arg; 4309 int offline_node; 4310 4311 offline_node = marg->status_change_nid_normal; 4312 4313 /* 4314 * If the node still has available memory. we need kmem_cache_node 4315 * for it yet. 4316 */ 4317 if (offline_node < 0) 4318 return; 4319 4320 mutex_lock(&slab_mutex); 4321 node_clear(offline_node, slab_nodes); 4322 /* 4323 * We no longer free kmem_cache_node structures here, as it would be 4324 * racy with all get_node() users, and infeasible to protect them with 4325 * slab_mutex. 4326 */ 4327 mutex_unlock(&slab_mutex); 4328 } 4329 4330 static int slab_mem_going_online_callback(void *arg) 4331 { 4332 struct kmem_cache_node *n; 4333 struct kmem_cache *s; 4334 struct memory_notify *marg = arg; 4335 int nid = marg->status_change_nid_normal; 4336 int ret = 0; 4337 4338 /* 4339 * If the node's memory is already available, then kmem_cache_node is 4340 * already created. Nothing to do. 4341 */ 4342 if (nid < 0) 4343 return 0; 4344 4345 /* 4346 * We are bringing a node online. No memory is available yet. We must 4347 * allocate a kmem_cache_node structure in order to bring the node 4348 * online. 4349 */ 4350 mutex_lock(&slab_mutex); 4351 list_for_each_entry(s, &slab_caches, list) { 4352 /* 4353 * The structure may already exist if the node was previously 4354 * onlined and offlined. 4355 */ 4356 if (get_node(s, nid)) 4357 continue; 4358 /* 4359 * XXX: kmem_cache_alloc_node will fallback to other nodes 4360 * since memory is not yet available from the node that 4361 * is brought up. 4362 */ 4363 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4364 if (!n) { 4365 ret = -ENOMEM; 4366 goto out; 4367 } 4368 init_kmem_cache_node(n); 4369 s->node[nid] = n; 4370 } 4371 /* 4372 * Any cache created after this point will also have kmem_cache_node 4373 * initialized for the new node. 4374 */ 4375 node_set(nid, slab_nodes); 4376 out: 4377 mutex_unlock(&slab_mutex); 4378 return ret; 4379 } 4380 4381 static int slab_memory_callback(struct notifier_block *self, 4382 unsigned long action, void *arg) 4383 { 4384 int ret = 0; 4385 4386 switch (action) { 4387 case MEM_GOING_ONLINE: 4388 ret = slab_mem_going_online_callback(arg); 4389 break; 4390 case MEM_GOING_OFFLINE: 4391 ret = slab_mem_going_offline_callback(arg); 4392 break; 4393 case MEM_OFFLINE: 4394 case MEM_CANCEL_ONLINE: 4395 slab_mem_offline_callback(arg); 4396 break; 4397 case MEM_ONLINE: 4398 case MEM_CANCEL_OFFLINE: 4399 break; 4400 } 4401 if (ret) 4402 ret = notifier_from_errno(ret); 4403 else 4404 ret = NOTIFY_OK; 4405 return ret; 4406 } 4407 4408 static struct notifier_block slab_memory_callback_nb = { 4409 .notifier_call = slab_memory_callback, 4410 .priority = SLAB_CALLBACK_PRI, 4411 }; 4412 4413 /******************************************************************** 4414 * Basic setup of slabs 4415 *******************************************************************/ 4416 4417 /* 4418 * Used for early kmem_cache structures that were allocated using 4419 * the page allocator. Allocate them properly then fix up the pointers 4420 * that may be pointing to the wrong kmem_cache structure. 4421 */ 4422 4423 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4424 { 4425 int node; 4426 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4427 struct kmem_cache_node *n; 4428 4429 memcpy(s, static_cache, kmem_cache->object_size); 4430 4431 /* 4432 * This runs very early, and only the boot processor is supposed to be 4433 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4434 * IPIs around. 4435 */ 4436 __flush_cpu_slab(s, smp_processor_id()); 4437 for_each_kmem_cache_node(s, node, n) { 4438 struct page *p; 4439 4440 list_for_each_entry(p, &n->partial, slab_list) 4441 p->slab_cache = s; 4442 4443 #ifdef CONFIG_SLUB_DEBUG 4444 list_for_each_entry(p, &n->full, slab_list) 4445 p->slab_cache = s; 4446 #endif 4447 } 4448 list_add(&s->list, &slab_caches); 4449 return s; 4450 } 4451 4452 void __init kmem_cache_init(void) 4453 { 4454 static __initdata struct kmem_cache boot_kmem_cache, 4455 boot_kmem_cache_node; 4456 int node; 4457 4458 if (debug_guardpage_minorder()) 4459 slub_max_order = 0; 4460 4461 kmem_cache_node = &boot_kmem_cache_node; 4462 kmem_cache = &boot_kmem_cache; 4463 4464 /* 4465 * Initialize the nodemask for which we will allocate per node 4466 * structures. Here we don't need taking slab_mutex yet. 4467 */ 4468 for_each_node_state(node, N_NORMAL_MEMORY) 4469 node_set(node, slab_nodes); 4470 4471 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4472 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4473 4474 register_hotmemory_notifier(&slab_memory_callback_nb); 4475 4476 /* Able to allocate the per node structures */ 4477 slab_state = PARTIAL; 4478 4479 create_boot_cache(kmem_cache, "kmem_cache", 4480 offsetof(struct kmem_cache, node) + 4481 nr_node_ids * sizeof(struct kmem_cache_node *), 4482 SLAB_HWCACHE_ALIGN, 0, 0); 4483 4484 kmem_cache = bootstrap(&boot_kmem_cache); 4485 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4486 4487 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4488 setup_kmalloc_cache_index_table(); 4489 create_kmalloc_caches(0); 4490 4491 /* Setup random freelists for each cache */ 4492 init_freelist_randomization(); 4493 4494 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4495 slub_cpu_dead); 4496 4497 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4498 cache_line_size(), 4499 slub_min_order, slub_max_order, slub_min_objects, 4500 nr_cpu_ids, nr_node_ids); 4501 } 4502 4503 void __init kmem_cache_init_late(void) 4504 { 4505 } 4506 4507 struct kmem_cache * 4508 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4509 slab_flags_t flags, void (*ctor)(void *)) 4510 { 4511 struct kmem_cache *s; 4512 4513 s = find_mergeable(size, align, flags, name, ctor); 4514 if (s) { 4515 s->refcount++; 4516 4517 /* 4518 * Adjust the object sizes so that we clear 4519 * the complete object on kzalloc. 4520 */ 4521 s->object_size = max(s->object_size, size); 4522 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4523 4524 if (sysfs_slab_alias(s, name)) { 4525 s->refcount--; 4526 s = NULL; 4527 } 4528 } 4529 4530 return s; 4531 } 4532 4533 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4534 { 4535 int err; 4536 4537 err = kmem_cache_open(s, flags); 4538 if (err) 4539 return err; 4540 4541 /* Mutex is not taken during early boot */ 4542 if (slab_state <= UP) 4543 return 0; 4544 4545 err = sysfs_slab_add(s); 4546 if (err) 4547 __kmem_cache_release(s); 4548 4549 return err; 4550 } 4551 4552 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4553 { 4554 struct kmem_cache *s; 4555 void *ret; 4556 4557 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4558 return kmalloc_large(size, gfpflags); 4559 4560 s = kmalloc_slab(size, gfpflags); 4561 4562 if (unlikely(ZERO_OR_NULL_PTR(s))) 4563 return s; 4564 4565 ret = slab_alloc(s, gfpflags, caller, size); 4566 4567 /* Honor the call site pointer we received. */ 4568 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4569 4570 return ret; 4571 } 4572 EXPORT_SYMBOL(__kmalloc_track_caller); 4573 4574 #ifdef CONFIG_NUMA 4575 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4576 int node, unsigned long caller) 4577 { 4578 struct kmem_cache *s; 4579 void *ret; 4580 4581 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4582 ret = kmalloc_large_node(size, gfpflags, node); 4583 4584 trace_kmalloc_node(caller, ret, 4585 size, PAGE_SIZE << get_order(size), 4586 gfpflags, node); 4587 4588 return ret; 4589 } 4590 4591 s = kmalloc_slab(size, gfpflags); 4592 4593 if (unlikely(ZERO_OR_NULL_PTR(s))) 4594 return s; 4595 4596 ret = slab_alloc_node(s, gfpflags, node, caller, size); 4597 4598 /* Honor the call site pointer we received. */ 4599 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4600 4601 return ret; 4602 } 4603 EXPORT_SYMBOL(__kmalloc_node_track_caller); 4604 #endif 4605 4606 #ifdef CONFIG_SYSFS 4607 static int count_inuse(struct page *page) 4608 { 4609 return page->inuse; 4610 } 4611 4612 static int count_total(struct page *page) 4613 { 4614 return page->objects; 4615 } 4616 #endif 4617 4618 #ifdef CONFIG_SLUB_DEBUG 4619 static void validate_slab(struct kmem_cache *s, struct page *page) 4620 { 4621 void *p; 4622 void *addr = page_address(page); 4623 unsigned long *map; 4624 4625 slab_lock(page); 4626 4627 if (!check_slab(s, page) || !on_freelist(s, page, NULL)) 4628 goto unlock; 4629 4630 /* Now we know that a valid freelist exists */ 4631 map = get_map(s, page); 4632 for_each_object(p, s, addr, page->objects) { 4633 u8 val = test_bit(__obj_to_index(s, addr, p), map) ? 4634 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 4635 4636 if (!check_object(s, page, p, val)) 4637 break; 4638 } 4639 put_map(map); 4640 unlock: 4641 slab_unlock(page); 4642 } 4643 4644 static int validate_slab_node(struct kmem_cache *s, 4645 struct kmem_cache_node *n) 4646 { 4647 unsigned long count = 0; 4648 struct page *page; 4649 unsigned long flags; 4650 4651 spin_lock_irqsave(&n->list_lock, flags); 4652 4653 list_for_each_entry(page, &n->partial, slab_list) { 4654 validate_slab(s, page); 4655 count++; 4656 } 4657 if (count != n->nr_partial) 4658 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4659 s->name, count, n->nr_partial); 4660 4661 if (!(s->flags & SLAB_STORE_USER)) 4662 goto out; 4663 4664 list_for_each_entry(page, &n->full, slab_list) { 4665 validate_slab(s, page); 4666 count++; 4667 } 4668 if (count != atomic_long_read(&n->nr_slabs)) 4669 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4670 s->name, count, atomic_long_read(&n->nr_slabs)); 4671 4672 out: 4673 spin_unlock_irqrestore(&n->list_lock, flags); 4674 return count; 4675 } 4676 4677 static long validate_slab_cache(struct kmem_cache *s) 4678 { 4679 int node; 4680 unsigned long count = 0; 4681 struct kmem_cache_node *n; 4682 4683 flush_all(s); 4684 for_each_kmem_cache_node(s, node, n) 4685 count += validate_slab_node(s, n); 4686 4687 return count; 4688 } 4689 /* 4690 * Generate lists of code addresses where slabcache objects are allocated 4691 * and freed. 4692 */ 4693 4694 struct location { 4695 unsigned long count; 4696 unsigned long addr; 4697 long long sum_time; 4698 long min_time; 4699 long max_time; 4700 long min_pid; 4701 long max_pid; 4702 DECLARE_BITMAP(cpus, NR_CPUS); 4703 nodemask_t nodes; 4704 }; 4705 4706 struct loc_track { 4707 unsigned long max; 4708 unsigned long count; 4709 struct location *loc; 4710 }; 4711 4712 static void free_loc_track(struct loc_track *t) 4713 { 4714 if (t->max) 4715 free_pages((unsigned long)t->loc, 4716 get_order(sizeof(struct location) * t->max)); 4717 } 4718 4719 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4720 { 4721 struct location *l; 4722 int order; 4723 4724 order = get_order(sizeof(struct location) * max); 4725 4726 l = (void *)__get_free_pages(flags, order); 4727 if (!l) 4728 return 0; 4729 4730 if (t->count) { 4731 memcpy(l, t->loc, sizeof(struct location) * t->count); 4732 free_loc_track(t); 4733 } 4734 t->max = max; 4735 t->loc = l; 4736 return 1; 4737 } 4738 4739 static int add_location(struct loc_track *t, struct kmem_cache *s, 4740 const struct track *track) 4741 { 4742 long start, end, pos; 4743 struct location *l; 4744 unsigned long caddr; 4745 unsigned long age = jiffies - track->when; 4746 4747 start = -1; 4748 end = t->count; 4749 4750 for ( ; ; ) { 4751 pos = start + (end - start + 1) / 2; 4752 4753 /* 4754 * There is nothing at "end". If we end up there 4755 * we need to add something to before end. 4756 */ 4757 if (pos == end) 4758 break; 4759 4760 caddr = t->loc[pos].addr; 4761 if (track->addr == caddr) { 4762 4763 l = &t->loc[pos]; 4764 l->count++; 4765 if (track->when) { 4766 l->sum_time += age; 4767 if (age < l->min_time) 4768 l->min_time = age; 4769 if (age > l->max_time) 4770 l->max_time = age; 4771 4772 if (track->pid < l->min_pid) 4773 l->min_pid = track->pid; 4774 if (track->pid > l->max_pid) 4775 l->max_pid = track->pid; 4776 4777 cpumask_set_cpu(track->cpu, 4778 to_cpumask(l->cpus)); 4779 } 4780 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4781 return 1; 4782 } 4783 4784 if (track->addr < caddr) 4785 end = pos; 4786 else 4787 start = pos; 4788 } 4789 4790 /* 4791 * Not found. Insert new tracking element. 4792 */ 4793 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4794 return 0; 4795 4796 l = t->loc + pos; 4797 if (pos < t->count) 4798 memmove(l + 1, l, 4799 (t->count - pos) * sizeof(struct location)); 4800 t->count++; 4801 l->count = 1; 4802 l->addr = track->addr; 4803 l->sum_time = age; 4804 l->min_time = age; 4805 l->max_time = age; 4806 l->min_pid = track->pid; 4807 l->max_pid = track->pid; 4808 cpumask_clear(to_cpumask(l->cpus)); 4809 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4810 nodes_clear(l->nodes); 4811 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4812 return 1; 4813 } 4814 4815 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4816 struct page *page, enum track_item alloc) 4817 { 4818 void *addr = page_address(page); 4819 void *p; 4820 unsigned long *map; 4821 4822 map = get_map(s, page); 4823 for_each_object(p, s, addr, page->objects) 4824 if (!test_bit(__obj_to_index(s, addr, p), map)) 4825 add_location(t, s, get_track(s, p, alloc)); 4826 put_map(map); 4827 } 4828 4829 static int list_locations(struct kmem_cache *s, char *buf, 4830 enum track_item alloc) 4831 { 4832 int len = 0; 4833 unsigned long i; 4834 struct loc_track t = { 0, 0, NULL }; 4835 int node; 4836 struct kmem_cache_node *n; 4837 4838 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4839 GFP_KERNEL)) { 4840 return sysfs_emit(buf, "Out of memory\n"); 4841 } 4842 /* Push back cpu slabs */ 4843 flush_all(s); 4844 4845 for_each_kmem_cache_node(s, node, n) { 4846 unsigned long flags; 4847 struct page *page; 4848 4849 if (!atomic_long_read(&n->nr_slabs)) 4850 continue; 4851 4852 spin_lock_irqsave(&n->list_lock, flags); 4853 list_for_each_entry(page, &n->partial, slab_list) 4854 process_slab(&t, s, page, alloc); 4855 list_for_each_entry(page, &n->full, slab_list) 4856 process_slab(&t, s, page, alloc); 4857 spin_unlock_irqrestore(&n->list_lock, flags); 4858 } 4859 4860 for (i = 0; i < t.count; i++) { 4861 struct location *l = &t.loc[i]; 4862 4863 len += sysfs_emit_at(buf, len, "%7ld ", l->count); 4864 4865 if (l->addr) 4866 len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr); 4867 else 4868 len += sysfs_emit_at(buf, len, "<not-available>"); 4869 4870 if (l->sum_time != l->min_time) 4871 len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld", 4872 l->min_time, 4873 (long)div_u64(l->sum_time, 4874 l->count), 4875 l->max_time); 4876 else 4877 len += sysfs_emit_at(buf, len, " age=%ld", l->min_time); 4878 4879 if (l->min_pid != l->max_pid) 4880 len += sysfs_emit_at(buf, len, " pid=%ld-%ld", 4881 l->min_pid, l->max_pid); 4882 else 4883 len += sysfs_emit_at(buf, len, " pid=%ld", 4884 l->min_pid); 4885 4886 if (num_online_cpus() > 1 && 4887 !cpumask_empty(to_cpumask(l->cpus))) 4888 len += sysfs_emit_at(buf, len, " cpus=%*pbl", 4889 cpumask_pr_args(to_cpumask(l->cpus))); 4890 4891 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 4892 len += sysfs_emit_at(buf, len, " nodes=%*pbl", 4893 nodemask_pr_args(&l->nodes)); 4894 4895 len += sysfs_emit_at(buf, len, "\n"); 4896 } 4897 4898 free_loc_track(&t); 4899 if (!t.count) 4900 len += sysfs_emit_at(buf, len, "No data\n"); 4901 4902 return len; 4903 } 4904 #endif /* CONFIG_SLUB_DEBUG */ 4905 4906 #ifdef SLUB_RESILIENCY_TEST 4907 static void __init resiliency_test(void) 4908 { 4909 u8 *p; 4910 int type = KMALLOC_NORMAL; 4911 4912 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4913 4914 pr_err("SLUB resiliency testing\n"); 4915 pr_err("-----------------------\n"); 4916 pr_err("A. Corruption after allocation\n"); 4917 4918 p = kzalloc(16, GFP_KERNEL); 4919 p[16] = 0x12; 4920 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4921 p + 16); 4922 4923 validate_slab_cache(kmalloc_caches[type][4]); 4924 4925 /* Hmmm... The next two are dangerous */ 4926 p = kzalloc(32, GFP_KERNEL); 4927 p[32 + sizeof(void *)] = 0x34; 4928 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4929 p); 4930 pr_err("If allocated object is overwritten then not detectable\n\n"); 4931 4932 validate_slab_cache(kmalloc_caches[type][5]); 4933 p = kzalloc(64, GFP_KERNEL); 4934 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4935 *p = 0x56; 4936 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4937 p); 4938 pr_err("If allocated object is overwritten then not detectable\n\n"); 4939 validate_slab_cache(kmalloc_caches[type][6]); 4940 4941 pr_err("\nB. Corruption after free\n"); 4942 p = kzalloc(128, GFP_KERNEL); 4943 kfree(p); 4944 *p = 0x78; 4945 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4946 validate_slab_cache(kmalloc_caches[type][7]); 4947 4948 p = kzalloc(256, GFP_KERNEL); 4949 kfree(p); 4950 p[50] = 0x9a; 4951 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4952 validate_slab_cache(kmalloc_caches[type][8]); 4953 4954 p = kzalloc(512, GFP_KERNEL); 4955 kfree(p); 4956 p[512] = 0xab; 4957 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4958 validate_slab_cache(kmalloc_caches[type][9]); 4959 } 4960 #else 4961 #ifdef CONFIG_SYSFS 4962 static void resiliency_test(void) {}; 4963 #endif 4964 #endif /* SLUB_RESILIENCY_TEST */ 4965 4966 #ifdef CONFIG_SYSFS 4967 enum slab_stat_type { 4968 SL_ALL, /* All slabs */ 4969 SL_PARTIAL, /* Only partially allocated slabs */ 4970 SL_CPU, /* Only slabs used for cpu caches */ 4971 SL_OBJECTS, /* Determine allocated objects not slabs */ 4972 SL_TOTAL /* Determine object capacity not slabs */ 4973 }; 4974 4975 #define SO_ALL (1 << SL_ALL) 4976 #define SO_PARTIAL (1 << SL_PARTIAL) 4977 #define SO_CPU (1 << SL_CPU) 4978 #define SO_OBJECTS (1 << SL_OBJECTS) 4979 #define SO_TOTAL (1 << SL_TOTAL) 4980 4981 static ssize_t show_slab_objects(struct kmem_cache *s, 4982 char *buf, unsigned long flags) 4983 { 4984 unsigned long total = 0; 4985 int node; 4986 int x; 4987 unsigned long *nodes; 4988 int len = 0; 4989 4990 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4991 if (!nodes) 4992 return -ENOMEM; 4993 4994 if (flags & SO_CPU) { 4995 int cpu; 4996 4997 for_each_possible_cpu(cpu) { 4998 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4999 cpu); 5000 int node; 5001 struct page *page; 5002 5003 page = READ_ONCE(c->page); 5004 if (!page) 5005 continue; 5006 5007 node = page_to_nid(page); 5008 if (flags & SO_TOTAL) 5009 x = page->objects; 5010 else if (flags & SO_OBJECTS) 5011 x = page->inuse; 5012 else 5013 x = 1; 5014 5015 total += x; 5016 nodes[node] += x; 5017 5018 page = slub_percpu_partial_read_once(c); 5019 if (page) { 5020 node = page_to_nid(page); 5021 if (flags & SO_TOTAL) 5022 WARN_ON_ONCE(1); 5023 else if (flags & SO_OBJECTS) 5024 WARN_ON_ONCE(1); 5025 else 5026 x = page->pages; 5027 total += x; 5028 nodes[node] += x; 5029 } 5030 } 5031 } 5032 5033 /* 5034 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 5035 * already held which will conflict with an existing lock order: 5036 * 5037 * mem_hotplug_lock->slab_mutex->kernfs_mutex 5038 * 5039 * We don't really need mem_hotplug_lock (to hold off 5040 * slab_mem_going_offline_callback) here because slab's memory hot 5041 * unplug code doesn't destroy the kmem_cache->node[] data. 5042 */ 5043 5044 #ifdef CONFIG_SLUB_DEBUG 5045 if (flags & SO_ALL) { 5046 struct kmem_cache_node *n; 5047 5048 for_each_kmem_cache_node(s, node, n) { 5049 5050 if (flags & SO_TOTAL) 5051 x = atomic_long_read(&n->total_objects); 5052 else if (flags & SO_OBJECTS) 5053 x = atomic_long_read(&n->total_objects) - 5054 count_partial(n, count_free); 5055 else 5056 x = atomic_long_read(&n->nr_slabs); 5057 total += x; 5058 nodes[node] += x; 5059 } 5060 5061 } else 5062 #endif 5063 if (flags & SO_PARTIAL) { 5064 struct kmem_cache_node *n; 5065 5066 for_each_kmem_cache_node(s, node, n) { 5067 if (flags & SO_TOTAL) 5068 x = count_partial(n, count_total); 5069 else if (flags & SO_OBJECTS) 5070 x = count_partial(n, count_inuse); 5071 else 5072 x = n->nr_partial; 5073 total += x; 5074 nodes[node] += x; 5075 } 5076 } 5077 5078 len += sysfs_emit_at(buf, len, "%lu", total); 5079 #ifdef CONFIG_NUMA 5080 for (node = 0; node < nr_node_ids; node++) { 5081 if (nodes[node]) 5082 len += sysfs_emit_at(buf, len, " N%d=%lu", 5083 node, nodes[node]); 5084 } 5085 #endif 5086 len += sysfs_emit_at(buf, len, "\n"); 5087 kfree(nodes); 5088 5089 return len; 5090 } 5091 5092 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 5093 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5094 5095 struct slab_attribute { 5096 struct attribute attr; 5097 ssize_t (*show)(struct kmem_cache *s, char *buf); 5098 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5099 }; 5100 5101 #define SLAB_ATTR_RO(_name) \ 5102 static struct slab_attribute _name##_attr = \ 5103 __ATTR(_name, 0400, _name##_show, NULL) 5104 5105 #define SLAB_ATTR(_name) \ 5106 static struct slab_attribute _name##_attr = \ 5107 __ATTR(_name, 0600, _name##_show, _name##_store) 5108 5109 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5110 { 5111 return sysfs_emit(buf, "%u\n", s->size); 5112 } 5113 SLAB_ATTR_RO(slab_size); 5114 5115 static ssize_t align_show(struct kmem_cache *s, char *buf) 5116 { 5117 return sysfs_emit(buf, "%u\n", s->align); 5118 } 5119 SLAB_ATTR_RO(align); 5120 5121 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5122 { 5123 return sysfs_emit(buf, "%u\n", s->object_size); 5124 } 5125 SLAB_ATTR_RO(object_size); 5126 5127 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5128 { 5129 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 5130 } 5131 SLAB_ATTR_RO(objs_per_slab); 5132 5133 static ssize_t order_show(struct kmem_cache *s, char *buf) 5134 { 5135 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 5136 } 5137 SLAB_ATTR_RO(order); 5138 5139 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5140 { 5141 return sysfs_emit(buf, "%lu\n", s->min_partial); 5142 } 5143 5144 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5145 size_t length) 5146 { 5147 unsigned long min; 5148 int err; 5149 5150 err = kstrtoul(buf, 10, &min); 5151 if (err) 5152 return err; 5153 5154 set_min_partial(s, min); 5155 return length; 5156 } 5157 SLAB_ATTR(min_partial); 5158 5159 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5160 { 5161 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s)); 5162 } 5163 5164 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5165 size_t length) 5166 { 5167 unsigned int objects; 5168 int err; 5169 5170 err = kstrtouint(buf, 10, &objects); 5171 if (err) 5172 return err; 5173 if (objects && !kmem_cache_has_cpu_partial(s)) 5174 return -EINVAL; 5175 5176 slub_set_cpu_partial(s, objects); 5177 flush_all(s); 5178 return length; 5179 } 5180 SLAB_ATTR(cpu_partial); 5181 5182 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5183 { 5184 if (!s->ctor) 5185 return 0; 5186 return sysfs_emit(buf, "%pS\n", s->ctor); 5187 } 5188 SLAB_ATTR_RO(ctor); 5189 5190 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5191 { 5192 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5193 } 5194 SLAB_ATTR_RO(aliases); 5195 5196 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5197 { 5198 return show_slab_objects(s, buf, SO_PARTIAL); 5199 } 5200 SLAB_ATTR_RO(partial); 5201 5202 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5203 { 5204 return show_slab_objects(s, buf, SO_CPU); 5205 } 5206 SLAB_ATTR_RO(cpu_slabs); 5207 5208 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5209 { 5210 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5211 } 5212 SLAB_ATTR_RO(objects); 5213 5214 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5215 { 5216 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5217 } 5218 SLAB_ATTR_RO(objects_partial); 5219 5220 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5221 { 5222 int objects = 0; 5223 int pages = 0; 5224 int cpu; 5225 int len = 0; 5226 5227 for_each_online_cpu(cpu) { 5228 struct page *page; 5229 5230 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5231 5232 if (page) { 5233 pages += page->pages; 5234 objects += page->pobjects; 5235 } 5236 } 5237 5238 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages); 5239 5240 #ifdef CONFIG_SMP 5241 for_each_online_cpu(cpu) { 5242 struct page *page; 5243 5244 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5245 if (page) 5246 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 5247 cpu, page->pobjects, page->pages); 5248 } 5249 #endif 5250 len += sysfs_emit_at(buf, len, "\n"); 5251 5252 return len; 5253 } 5254 SLAB_ATTR_RO(slabs_cpu_partial); 5255 5256 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5257 { 5258 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5259 } 5260 SLAB_ATTR_RO(reclaim_account); 5261 5262 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5263 { 5264 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5265 } 5266 SLAB_ATTR_RO(hwcache_align); 5267 5268 #ifdef CONFIG_ZONE_DMA 5269 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5270 { 5271 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5272 } 5273 SLAB_ATTR_RO(cache_dma); 5274 #endif 5275 5276 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5277 { 5278 return sysfs_emit(buf, "%u\n", s->usersize); 5279 } 5280 SLAB_ATTR_RO(usersize); 5281 5282 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5283 { 5284 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5285 } 5286 SLAB_ATTR_RO(destroy_by_rcu); 5287 5288 #ifdef CONFIG_SLUB_DEBUG 5289 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5290 { 5291 return show_slab_objects(s, buf, SO_ALL); 5292 } 5293 SLAB_ATTR_RO(slabs); 5294 5295 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5296 { 5297 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5298 } 5299 SLAB_ATTR_RO(total_objects); 5300 5301 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5302 { 5303 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5304 } 5305 SLAB_ATTR_RO(sanity_checks); 5306 5307 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5308 { 5309 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5310 } 5311 SLAB_ATTR_RO(trace); 5312 5313 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5314 { 5315 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5316 } 5317 5318 SLAB_ATTR_RO(red_zone); 5319 5320 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5321 { 5322 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5323 } 5324 5325 SLAB_ATTR_RO(poison); 5326 5327 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5328 { 5329 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5330 } 5331 5332 SLAB_ATTR_RO(store_user); 5333 5334 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5335 { 5336 return 0; 5337 } 5338 5339 static ssize_t validate_store(struct kmem_cache *s, 5340 const char *buf, size_t length) 5341 { 5342 int ret = -EINVAL; 5343 5344 if (buf[0] == '1') { 5345 ret = validate_slab_cache(s); 5346 if (ret >= 0) 5347 ret = length; 5348 } 5349 return ret; 5350 } 5351 SLAB_ATTR(validate); 5352 5353 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5354 { 5355 if (!(s->flags & SLAB_STORE_USER)) 5356 return -ENOSYS; 5357 return list_locations(s, buf, TRACK_ALLOC); 5358 } 5359 SLAB_ATTR_RO(alloc_calls); 5360 5361 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5362 { 5363 if (!(s->flags & SLAB_STORE_USER)) 5364 return -ENOSYS; 5365 return list_locations(s, buf, TRACK_FREE); 5366 } 5367 SLAB_ATTR_RO(free_calls); 5368 #endif /* CONFIG_SLUB_DEBUG */ 5369 5370 #ifdef CONFIG_FAILSLAB 5371 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5372 { 5373 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5374 } 5375 SLAB_ATTR_RO(failslab); 5376 #endif 5377 5378 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5379 { 5380 return 0; 5381 } 5382 5383 static ssize_t shrink_store(struct kmem_cache *s, 5384 const char *buf, size_t length) 5385 { 5386 if (buf[0] == '1') 5387 kmem_cache_shrink(s); 5388 else 5389 return -EINVAL; 5390 return length; 5391 } 5392 SLAB_ATTR(shrink); 5393 5394 #ifdef CONFIG_NUMA 5395 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5396 { 5397 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5398 } 5399 5400 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5401 const char *buf, size_t length) 5402 { 5403 unsigned int ratio; 5404 int err; 5405 5406 err = kstrtouint(buf, 10, &ratio); 5407 if (err) 5408 return err; 5409 if (ratio > 100) 5410 return -ERANGE; 5411 5412 s->remote_node_defrag_ratio = ratio * 10; 5413 5414 return length; 5415 } 5416 SLAB_ATTR(remote_node_defrag_ratio); 5417 #endif 5418 5419 #ifdef CONFIG_SLUB_STATS 5420 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5421 { 5422 unsigned long sum = 0; 5423 int cpu; 5424 int len = 0; 5425 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5426 5427 if (!data) 5428 return -ENOMEM; 5429 5430 for_each_online_cpu(cpu) { 5431 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5432 5433 data[cpu] = x; 5434 sum += x; 5435 } 5436 5437 len += sysfs_emit_at(buf, len, "%lu", sum); 5438 5439 #ifdef CONFIG_SMP 5440 for_each_online_cpu(cpu) { 5441 if (data[cpu]) 5442 len += sysfs_emit_at(buf, len, " C%d=%u", 5443 cpu, data[cpu]); 5444 } 5445 #endif 5446 kfree(data); 5447 len += sysfs_emit_at(buf, len, "\n"); 5448 5449 return len; 5450 } 5451 5452 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5453 { 5454 int cpu; 5455 5456 for_each_online_cpu(cpu) 5457 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5458 } 5459 5460 #define STAT_ATTR(si, text) \ 5461 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5462 { \ 5463 return show_stat(s, buf, si); \ 5464 } \ 5465 static ssize_t text##_store(struct kmem_cache *s, \ 5466 const char *buf, size_t length) \ 5467 { \ 5468 if (buf[0] != '0') \ 5469 return -EINVAL; \ 5470 clear_stat(s, si); \ 5471 return length; \ 5472 } \ 5473 SLAB_ATTR(text); \ 5474 5475 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5476 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5477 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5478 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5479 STAT_ATTR(FREE_FROZEN, free_frozen); 5480 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5481 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5482 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5483 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5484 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5485 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5486 STAT_ATTR(FREE_SLAB, free_slab); 5487 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5488 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5489 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5490 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5491 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5492 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5493 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5494 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5495 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5496 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5497 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5498 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5499 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5500 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5501 #endif /* CONFIG_SLUB_STATS */ 5502 5503 static struct attribute *slab_attrs[] = { 5504 &slab_size_attr.attr, 5505 &object_size_attr.attr, 5506 &objs_per_slab_attr.attr, 5507 &order_attr.attr, 5508 &min_partial_attr.attr, 5509 &cpu_partial_attr.attr, 5510 &objects_attr.attr, 5511 &objects_partial_attr.attr, 5512 &partial_attr.attr, 5513 &cpu_slabs_attr.attr, 5514 &ctor_attr.attr, 5515 &aliases_attr.attr, 5516 &align_attr.attr, 5517 &hwcache_align_attr.attr, 5518 &reclaim_account_attr.attr, 5519 &destroy_by_rcu_attr.attr, 5520 &shrink_attr.attr, 5521 &slabs_cpu_partial_attr.attr, 5522 #ifdef CONFIG_SLUB_DEBUG 5523 &total_objects_attr.attr, 5524 &slabs_attr.attr, 5525 &sanity_checks_attr.attr, 5526 &trace_attr.attr, 5527 &red_zone_attr.attr, 5528 &poison_attr.attr, 5529 &store_user_attr.attr, 5530 &validate_attr.attr, 5531 &alloc_calls_attr.attr, 5532 &free_calls_attr.attr, 5533 #endif 5534 #ifdef CONFIG_ZONE_DMA 5535 &cache_dma_attr.attr, 5536 #endif 5537 #ifdef CONFIG_NUMA 5538 &remote_node_defrag_ratio_attr.attr, 5539 #endif 5540 #ifdef CONFIG_SLUB_STATS 5541 &alloc_fastpath_attr.attr, 5542 &alloc_slowpath_attr.attr, 5543 &free_fastpath_attr.attr, 5544 &free_slowpath_attr.attr, 5545 &free_frozen_attr.attr, 5546 &free_add_partial_attr.attr, 5547 &free_remove_partial_attr.attr, 5548 &alloc_from_partial_attr.attr, 5549 &alloc_slab_attr.attr, 5550 &alloc_refill_attr.attr, 5551 &alloc_node_mismatch_attr.attr, 5552 &free_slab_attr.attr, 5553 &cpuslab_flush_attr.attr, 5554 &deactivate_full_attr.attr, 5555 &deactivate_empty_attr.attr, 5556 &deactivate_to_head_attr.attr, 5557 &deactivate_to_tail_attr.attr, 5558 &deactivate_remote_frees_attr.attr, 5559 &deactivate_bypass_attr.attr, 5560 &order_fallback_attr.attr, 5561 &cmpxchg_double_fail_attr.attr, 5562 &cmpxchg_double_cpu_fail_attr.attr, 5563 &cpu_partial_alloc_attr.attr, 5564 &cpu_partial_free_attr.attr, 5565 &cpu_partial_node_attr.attr, 5566 &cpu_partial_drain_attr.attr, 5567 #endif 5568 #ifdef CONFIG_FAILSLAB 5569 &failslab_attr.attr, 5570 #endif 5571 &usersize_attr.attr, 5572 5573 NULL 5574 }; 5575 5576 static const struct attribute_group slab_attr_group = { 5577 .attrs = slab_attrs, 5578 }; 5579 5580 static ssize_t slab_attr_show(struct kobject *kobj, 5581 struct attribute *attr, 5582 char *buf) 5583 { 5584 struct slab_attribute *attribute; 5585 struct kmem_cache *s; 5586 int err; 5587 5588 attribute = to_slab_attr(attr); 5589 s = to_slab(kobj); 5590 5591 if (!attribute->show) 5592 return -EIO; 5593 5594 err = attribute->show(s, buf); 5595 5596 return err; 5597 } 5598 5599 static ssize_t slab_attr_store(struct kobject *kobj, 5600 struct attribute *attr, 5601 const char *buf, size_t len) 5602 { 5603 struct slab_attribute *attribute; 5604 struct kmem_cache *s; 5605 int err; 5606 5607 attribute = to_slab_attr(attr); 5608 s = to_slab(kobj); 5609 5610 if (!attribute->store) 5611 return -EIO; 5612 5613 err = attribute->store(s, buf, len); 5614 return err; 5615 } 5616 5617 static void kmem_cache_release(struct kobject *k) 5618 { 5619 slab_kmem_cache_release(to_slab(k)); 5620 } 5621 5622 static const struct sysfs_ops slab_sysfs_ops = { 5623 .show = slab_attr_show, 5624 .store = slab_attr_store, 5625 }; 5626 5627 static struct kobj_type slab_ktype = { 5628 .sysfs_ops = &slab_sysfs_ops, 5629 .release = kmem_cache_release, 5630 }; 5631 5632 static struct kset *slab_kset; 5633 5634 static inline struct kset *cache_kset(struct kmem_cache *s) 5635 { 5636 return slab_kset; 5637 } 5638 5639 #define ID_STR_LENGTH 64 5640 5641 /* Create a unique string id for a slab cache: 5642 * 5643 * Format :[flags-]size 5644 */ 5645 static char *create_unique_id(struct kmem_cache *s) 5646 { 5647 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5648 char *p = name; 5649 5650 BUG_ON(!name); 5651 5652 *p++ = ':'; 5653 /* 5654 * First flags affecting slabcache operations. We will only 5655 * get here for aliasable slabs so we do not need to support 5656 * too many flags. The flags here must cover all flags that 5657 * are matched during merging to guarantee that the id is 5658 * unique. 5659 */ 5660 if (s->flags & SLAB_CACHE_DMA) 5661 *p++ = 'd'; 5662 if (s->flags & SLAB_CACHE_DMA32) 5663 *p++ = 'D'; 5664 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5665 *p++ = 'a'; 5666 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5667 *p++ = 'F'; 5668 if (s->flags & SLAB_ACCOUNT) 5669 *p++ = 'A'; 5670 if (p != name + 1) 5671 *p++ = '-'; 5672 p += sprintf(p, "%07u", s->size); 5673 5674 BUG_ON(p > name + ID_STR_LENGTH - 1); 5675 return name; 5676 } 5677 5678 static int sysfs_slab_add(struct kmem_cache *s) 5679 { 5680 int err; 5681 const char *name; 5682 struct kset *kset = cache_kset(s); 5683 int unmergeable = slab_unmergeable(s); 5684 5685 if (!kset) { 5686 kobject_init(&s->kobj, &slab_ktype); 5687 return 0; 5688 } 5689 5690 if (!unmergeable && disable_higher_order_debug && 5691 (slub_debug & DEBUG_METADATA_FLAGS)) 5692 unmergeable = 1; 5693 5694 if (unmergeable) { 5695 /* 5696 * Slabcache can never be merged so we can use the name proper. 5697 * This is typically the case for debug situations. In that 5698 * case we can catch duplicate names easily. 5699 */ 5700 sysfs_remove_link(&slab_kset->kobj, s->name); 5701 name = s->name; 5702 } else { 5703 /* 5704 * Create a unique name for the slab as a target 5705 * for the symlinks. 5706 */ 5707 name = create_unique_id(s); 5708 } 5709 5710 s->kobj.kset = kset; 5711 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5712 if (err) 5713 goto out; 5714 5715 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5716 if (err) 5717 goto out_del_kobj; 5718 5719 if (!unmergeable) { 5720 /* Setup first alias */ 5721 sysfs_slab_alias(s, s->name); 5722 } 5723 out: 5724 if (!unmergeable) 5725 kfree(name); 5726 return err; 5727 out_del_kobj: 5728 kobject_del(&s->kobj); 5729 goto out; 5730 } 5731 5732 void sysfs_slab_unlink(struct kmem_cache *s) 5733 { 5734 if (slab_state >= FULL) 5735 kobject_del(&s->kobj); 5736 } 5737 5738 void sysfs_slab_release(struct kmem_cache *s) 5739 { 5740 if (slab_state >= FULL) 5741 kobject_put(&s->kobj); 5742 } 5743 5744 /* 5745 * Need to buffer aliases during bootup until sysfs becomes 5746 * available lest we lose that information. 5747 */ 5748 struct saved_alias { 5749 struct kmem_cache *s; 5750 const char *name; 5751 struct saved_alias *next; 5752 }; 5753 5754 static struct saved_alias *alias_list; 5755 5756 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5757 { 5758 struct saved_alias *al; 5759 5760 if (slab_state == FULL) { 5761 /* 5762 * If we have a leftover link then remove it. 5763 */ 5764 sysfs_remove_link(&slab_kset->kobj, name); 5765 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5766 } 5767 5768 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5769 if (!al) 5770 return -ENOMEM; 5771 5772 al->s = s; 5773 al->name = name; 5774 al->next = alias_list; 5775 alias_list = al; 5776 return 0; 5777 } 5778 5779 static int __init slab_sysfs_init(void) 5780 { 5781 struct kmem_cache *s; 5782 int err; 5783 5784 mutex_lock(&slab_mutex); 5785 5786 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 5787 if (!slab_kset) { 5788 mutex_unlock(&slab_mutex); 5789 pr_err("Cannot register slab subsystem.\n"); 5790 return -ENOSYS; 5791 } 5792 5793 slab_state = FULL; 5794 5795 list_for_each_entry(s, &slab_caches, list) { 5796 err = sysfs_slab_add(s); 5797 if (err) 5798 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5799 s->name); 5800 } 5801 5802 while (alias_list) { 5803 struct saved_alias *al = alias_list; 5804 5805 alias_list = alias_list->next; 5806 err = sysfs_slab_alias(al->s, al->name); 5807 if (err) 5808 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5809 al->name); 5810 kfree(al); 5811 } 5812 5813 mutex_unlock(&slab_mutex); 5814 resiliency_test(); 5815 return 0; 5816 } 5817 5818 __initcall(slab_sysfs_init); 5819 #endif /* CONFIG_SYSFS */ 5820 5821 /* 5822 * The /proc/slabinfo ABI 5823 */ 5824 #ifdef CONFIG_SLUB_DEBUG 5825 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5826 { 5827 unsigned long nr_slabs = 0; 5828 unsigned long nr_objs = 0; 5829 unsigned long nr_free = 0; 5830 int node; 5831 struct kmem_cache_node *n; 5832 5833 for_each_kmem_cache_node(s, node, n) { 5834 nr_slabs += node_nr_slabs(n); 5835 nr_objs += node_nr_objs(n); 5836 nr_free += count_partial(n, count_free); 5837 } 5838 5839 sinfo->active_objs = nr_objs - nr_free; 5840 sinfo->num_objs = nr_objs; 5841 sinfo->active_slabs = nr_slabs; 5842 sinfo->num_slabs = nr_slabs; 5843 sinfo->objects_per_slab = oo_objects(s->oo); 5844 sinfo->cache_order = oo_order(s->oo); 5845 } 5846 5847 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5848 { 5849 } 5850 5851 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5852 size_t count, loff_t *ppos) 5853 { 5854 return -EIO; 5855 } 5856 #endif /* CONFIG_SLUB_DEBUG */ 5857