xref: /openbmc/linux/mm/slub.c (revision 565d76cb)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
30 
31 #include <trace/events/kmem.h>
32 
33 /*
34  * Lock order:
35  *   1. slab_lock(page)
36  *   2. slab->list_lock
37  *
38  *   The slab_lock protects operations on the object of a particular
39  *   slab and its metadata in the page struct. If the slab lock
40  *   has been taken then no allocations nor frees can be performed
41  *   on the objects in the slab nor can the slab be added or removed
42  *   from the partial or full lists since this would mean modifying
43  *   the page_struct of the slab.
44  *
45  *   The list_lock protects the partial and full list on each node and
46  *   the partial slab counter. If taken then no new slabs may be added or
47  *   removed from the lists nor make the number of partial slabs be modified.
48  *   (Note that the total number of slabs is an atomic value that may be
49  *   modified without taking the list lock).
50  *
51  *   The list_lock is a centralized lock and thus we avoid taking it as
52  *   much as possible. As long as SLUB does not have to handle partial
53  *   slabs, operations can continue without any centralized lock. F.e.
54  *   allocating a long series of objects that fill up slabs does not require
55  *   the list lock.
56  *
57  *   The lock order is sometimes inverted when we are trying to get a slab
58  *   off a list. We take the list_lock and then look for a page on the list
59  *   to use. While we do that objects in the slabs may be freed. We can
60  *   only operate on the slab if we have also taken the slab_lock. So we use
61  *   a slab_trylock() on the slab. If trylock was successful then no frees
62  *   can occur anymore and we can use the slab for allocations etc. If the
63  *   slab_trylock() does not succeed then frees are in progress in the slab and
64  *   we must stay away from it for a while since we may cause a bouncing
65  *   cacheline if we try to acquire the lock. So go onto the next slab.
66  *   If all pages are busy then we may allocate a new slab instead of reusing
67  *   a partial slab. A new slab has noone operating on it and thus there is
68  *   no danger of cacheline contention.
69  *
70  *   Interrupts are disabled during allocation and deallocation in order to
71  *   make the slab allocator safe to use in the context of an irq. In addition
72  *   interrupts are disabled to ensure that the processor does not change
73  *   while handling per_cpu slabs, due to kernel preemption.
74  *
75  * SLUB assigns one slab for allocation to each processor.
76  * Allocations only occur from these slabs called cpu slabs.
77  *
78  * Slabs with free elements are kept on a partial list and during regular
79  * operations no list for full slabs is used. If an object in a full slab is
80  * freed then the slab will show up again on the partial lists.
81  * We track full slabs for debugging purposes though because otherwise we
82  * cannot scan all objects.
83  *
84  * Slabs are freed when they become empty. Teardown and setup is
85  * minimal so we rely on the page allocators per cpu caches for
86  * fast frees and allocs.
87  *
88  * Overloading of page flags that are otherwise used for LRU management.
89  *
90  * PageActive 		The slab is frozen and exempt from list processing.
91  * 			This means that the slab is dedicated to a purpose
92  * 			such as satisfying allocations for a specific
93  * 			processor. Objects may be freed in the slab while
94  * 			it is frozen but slab_free will then skip the usual
95  * 			list operations. It is up to the processor holding
96  * 			the slab to integrate the slab into the slab lists
97  * 			when the slab is no longer needed.
98  *
99  * 			One use of this flag is to mark slabs that are
100  * 			used for allocations. Then such a slab becomes a cpu
101  * 			slab. The cpu slab may be equipped with an additional
102  * 			freelist that allows lockless access to
103  * 			free objects in addition to the regular freelist
104  * 			that requires the slab lock.
105  *
106  * PageError		Slab requires special handling due to debug
107  * 			options set. This moves	slab handling out of
108  * 			the fast path and disables lockless freelists.
109  */
110 
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 		SLAB_TRACE | SLAB_DEBUG_FREE)
113 
114 static inline int kmem_cache_debug(struct kmem_cache *s)
115 {
116 #ifdef CONFIG_SLUB_DEBUG
117 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118 #else
119 	return 0;
120 #endif
121 }
122 
123 /*
124  * Issues still to be resolved:
125  *
126  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127  *
128  * - Variable sizing of the per node arrays
129  */
130 
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
133 
134 /*
135  * Mininum number of partial slabs. These will be left on the partial
136  * lists even if they are empty. kmem_cache_shrink may reclaim them.
137  */
138 #define MIN_PARTIAL 5
139 
140 /*
141  * Maximum number of desirable partial slabs.
142  * The existence of more partial slabs makes kmem_cache_shrink
143  * sort the partial list by the number of objects in the.
144  */
145 #define MAX_PARTIAL 10
146 
147 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 				SLAB_POISON | SLAB_STORE_USER)
149 
150 /*
151  * Debugging flags that require metadata to be stored in the slab.  These get
152  * disabled when slub_debug=O is used and a cache's min order increases with
153  * metadata.
154  */
155 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
156 
157 /*
158  * Set of flags that will prevent slab merging
159  */
160 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
161 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162 		SLAB_FAILSLAB)
163 
164 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
165 		SLAB_CACHE_DMA | SLAB_NOTRACK)
166 
167 #define OO_SHIFT	16
168 #define OO_MASK		((1 << OO_SHIFT) - 1)
169 #define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
170 
171 /* Internal SLUB flags */
172 #define __OBJECT_POISON		0x80000000UL /* Poison object */
173 
174 static int kmem_size = sizeof(struct kmem_cache);
175 
176 #ifdef CONFIG_SMP
177 static struct notifier_block slab_notifier;
178 #endif
179 
180 static enum {
181 	DOWN,		/* No slab functionality available */
182 	PARTIAL,	/* Kmem_cache_node works */
183 	UP,		/* Everything works but does not show up in sysfs */
184 	SYSFS		/* Sysfs up */
185 } slab_state = DOWN;
186 
187 /* A list of all slab caches on the system */
188 static DECLARE_RWSEM(slub_lock);
189 static LIST_HEAD(slab_caches);
190 
191 /*
192  * Tracking user of a slab.
193  */
194 struct track {
195 	unsigned long addr;	/* Called from address */
196 	int cpu;		/* Was running on cpu */
197 	int pid;		/* Pid context */
198 	unsigned long when;	/* When did the operation occur */
199 };
200 
201 enum track_item { TRACK_ALLOC, TRACK_FREE };
202 
203 #ifdef CONFIG_SYSFS
204 static int sysfs_slab_add(struct kmem_cache *);
205 static int sysfs_slab_alias(struct kmem_cache *, const char *);
206 static void sysfs_slab_remove(struct kmem_cache *);
207 
208 #else
209 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 							{ return 0; }
212 static inline void sysfs_slab_remove(struct kmem_cache *s)
213 {
214 	kfree(s->name);
215 	kfree(s);
216 }
217 
218 #endif
219 
220 static inline void stat(const struct kmem_cache *s, enum stat_item si)
221 {
222 #ifdef CONFIG_SLUB_STATS
223 	__this_cpu_inc(s->cpu_slab->stat[si]);
224 #endif
225 }
226 
227 /********************************************************************
228  * 			Core slab cache functions
229  *******************************************************************/
230 
231 int slab_is_available(void)
232 {
233 	return slab_state >= UP;
234 }
235 
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237 {
238 	return s->node[node];
239 }
240 
241 /* Verify that a pointer has an address that is valid within a slab page */
242 static inline int check_valid_pointer(struct kmem_cache *s,
243 				struct page *page, const void *object)
244 {
245 	void *base;
246 
247 	if (!object)
248 		return 1;
249 
250 	base = page_address(page);
251 	if (object < base || object >= base + page->objects * s->size ||
252 		(object - base) % s->size) {
253 		return 0;
254 	}
255 
256 	return 1;
257 }
258 
259 static inline void *get_freepointer(struct kmem_cache *s, void *object)
260 {
261 	return *(void **)(object + s->offset);
262 }
263 
264 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265 {
266 	*(void **)(object + s->offset) = fp;
267 }
268 
269 /* Loop over all objects in a slab */
270 #define for_each_object(__p, __s, __addr, __objects) \
271 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
272 			__p += (__s)->size)
273 
274 /* Scan freelist */
275 #define for_each_free_object(__p, __s, __free) \
276 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
277 
278 /* Determine object index from a given position */
279 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
280 {
281 	return (p - addr) / s->size;
282 }
283 
284 static inline size_t slab_ksize(const struct kmem_cache *s)
285 {
286 #ifdef CONFIG_SLUB_DEBUG
287 	/*
288 	 * Debugging requires use of the padding between object
289 	 * and whatever may come after it.
290 	 */
291 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
292 		return s->objsize;
293 
294 #endif
295 	/*
296 	 * If we have the need to store the freelist pointer
297 	 * back there or track user information then we can
298 	 * only use the space before that information.
299 	 */
300 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
301 		return s->inuse;
302 	/*
303 	 * Else we can use all the padding etc for the allocation
304 	 */
305 	return s->size;
306 }
307 
308 static inline int order_objects(int order, unsigned long size, int reserved)
309 {
310 	return ((PAGE_SIZE << order) - reserved) / size;
311 }
312 
313 static inline struct kmem_cache_order_objects oo_make(int order,
314 		unsigned long size, int reserved)
315 {
316 	struct kmem_cache_order_objects x = {
317 		(order << OO_SHIFT) + order_objects(order, size, reserved)
318 	};
319 
320 	return x;
321 }
322 
323 static inline int oo_order(struct kmem_cache_order_objects x)
324 {
325 	return x.x >> OO_SHIFT;
326 }
327 
328 static inline int oo_objects(struct kmem_cache_order_objects x)
329 {
330 	return x.x & OO_MASK;
331 }
332 
333 #ifdef CONFIG_SLUB_DEBUG
334 /*
335  * Debug settings:
336  */
337 #ifdef CONFIG_SLUB_DEBUG_ON
338 static int slub_debug = DEBUG_DEFAULT_FLAGS;
339 #else
340 static int slub_debug;
341 #endif
342 
343 static char *slub_debug_slabs;
344 static int disable_higher_order_debug;
345 
346 /*
347  * Object debugging
348  */
349 static void print_section(char *text, u8 *addr, unsigned int length)
350 {
351 	int i, offset;
352 	int newline = 1;
353 	char ascii[17];
354 
355 	ascii[16] = 0;
356 
357 	for (i = 0; i < length; i++) {
358 		if (newline) {
359 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
360 			newline = 0;
361 		}
362 		printk(KERN_CONT " %02x", addr[i]);
363 		offset = i % 16;
364 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
365 		if (offset == 15) {
366 			printk(KERN_CONT " %s\n", ascii);
367 			newline = 1;
368 		}
369 	}
370 	if (!newline) {
371 		i %= 16;
372 		while (i < 16) {
373 			printk(KERN_CONT "   ");
374 			ascii[i] = ' ';
375 			i++;
376 		}
377 		printk(KERN_CONT " %s\n", ascii);
378 	}
379 }
380 
381 static struct track *get_track(struct kmem_cache *s, void *object,
382 	enum track_item alloc)
383 {
384 	struct track *p;
385 
386 	if (s->offset)
387 		p = object + s->offset + sizeof(void *);
388 	else
389 		p = object + s->inuse;
390 
391 	return p + alloc;
392 }
393 
394 static void set_track(struct kmem_cache *s, void *object,
395 			enum track_item alloc, unsigned long addr)
396 {
397 	struct track *p = get_track(s, object, alloc);
398 
399 	if (addr) {
400 		p->addr = addr;
401 		p->cpu = smp_processor_id();
402 		p->pid = current->pid;
403 		p->when = jiffies;
404 	} else
405 		memset(p, 0, sizeof(struct track));
406 }
407 
408 static void init_tracking(struct kmem_cache *s, void *object)
409 {
410 	if (!(s->flags & SLAB_STORE_USER))
411 		return;
412 
413 	set_track(s, object, TRACK_FREE, 0UL);
414 	set_track(s, object, TRACK_ALLOC, 0UL);
415 }
416 
417 static void print_track(const char *s, struct track *t)
418 {
419 	if (!t->addr)
420 		return;
421 
422 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
423 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
424 }
425 
426 static void print_tracking(struct kmem_cache *s, void *object)
427 {
428 	if (!(s->flags & SLAB_STORE_USER))
429 		return;
430 
431 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
432 	print_track("Freed", get_track(s, object, TRACK_FREE));
433 }
434 
435 static void print_page_info(struct page *page)
436 {
437 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
438 		page, page->objects, page->inuse, page->freelist, page->flags);
439 
440 }
441 
442 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
443 {
444 	va_list args;
445 	char buf[100];
446 
447 	va_start(args, fmt);
448 	vsnprintf(buf, sizeof(buf), fmt, args);
449 	va_end(args);
450 	printk(KERN_ERR "========================================"
451 			"=====================================\n");
452 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
453 	printk(KERN_ERR "----------------------------------------"
454 			"-------------------------------------\n\n");
455 }
456 
457 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
458 {
459 	va_list args;
460 	char buf[100];
461 
462 	va_start(args, fmt);
463 	vsnprintf(buf, sizeof(buf), fmt, args);
464 	va_end(args);
465 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
466 }
467 
468 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
469 {
470 	unsigned int off;	/* Offset of last byte */
471 	u8 *addr = page_address(page);
472 
473 	print_tracking(s, p);
474 
475 	print_page_info(page);
476 
477 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
478 			p, p - addr, get_freepointer(s, p));
479 
480 	if (p > addr + 16)
481 		print_section("Bytes b4", p - 16, 16);
482 
483 	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
484 
485 	if (s->flags & SLAB_RED_ZONE)
486 		print_section("Redzone", p + s->objsize,
487 			s->inuse - s->objsize);
488 
489 	if (s->offset)
490 		off = s->offset + sizeof(void *);
491 	else
492 		off = s->inuse;
493 
494 	if (s->flags & SLAB_STORE_USER)
495 		off += 2 * sizeof(struct track);
496 
497 	if (off != s->size)
498 		/* Beginning of the filler is the free pointer */
499 		print_section("Padding", p + off, s->size - off);
500 
501 	dump_stack();
502 }
503 
504 static void object_err(struct kmem_cache *s, struct page *page,
505 			u8 *object, char *reason)
506 {
507 	slab_bug(s, "%s", reason);
508 	print_trailer(s, page, object);
509 }
510 
511 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
512 {
513 	va_list args;
514 	char buf[100];
515 
516 	va_start(args, fmt);
517 	vsnprintf(buf, sizeof(buf), fmt, args);
518 	va_end(args);
519 	slab_bug(s, "%s", buf);
520 	print_page_info(page);
521 	dump_stack();
522 }
523 
524 static void init_object(struct kmem_cache *s, void *object, u8 val)
525 {
526 	u8 *p = object;
527 
528 	if (s->flags & __OBJECT_POISON) {
529 		memset(p, POISON_FREE, s->objsize - 1);
530 		p[s->objsize - 1] = POISON_END;
531 	}
532 
533 	if (s->flags & SLAB_RED_ZONE)
534 		memset(p + s->objsize, val, s->inuse - s->objsize);
535 }
536 
537 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
538 {
539 	while (bytes) {
540 		if (*start != (u8)value)
541 			return start;
542 		start++;
543 		bytes--;
544 	}
545 	return NULL;
546 }
547 
548 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
549 						void *from, void *to)
550 {
551 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
552 	memset(from, data, to - from);
553 }
554 
555 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
556 			u8 *object, char *what,
557 			u8 *start, unsigned int value, unsigned int bytes)
558 {
559 	u8 *fault;
560 	u8 *end;
561 
562 	fault = check_bytes(start, value, bytes);
563 	if (!fault)
564 		return 1;
565 
566 	end = start + bytes;
567 	while (end > fault && end[-1] == value)
568 		end--;
569 
570 	slab_bug(s, "%s overwritten", what);
571 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
572 					fault, end - 1, fault[0], value);
573 	print_trailer(s, page, object);
574 
575 	restore_bytes(s, what, value, fault, end);
576 	return 0;
577 }
578 
579 /*
580  * Object layout:
581  *
582  * object address
583  * 	Bytes of the object to be managed.
584  * 	If the freepointer may overlay the object then the free
585  * 	pointer is the first word of the object.
586  *
587  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
588  * 	0xa5 (POISON_END)
589  *
590  * object + s->objsize
591  * 	Padding to reach word boundary. This is also used for Redzoning.
592  * 	Padding is extended by another word if Redzoning is enabled and
593  * 	objsize == inuse.
594  *
595  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
596  * 	0xcc (RED_ACTIVE) for objects in use.
597  *
598  * object + s->inuse
599  * 	Meta data starts here.
600  *
601  * 	A. Free pointer (if we cannot overwrite object on free)
602  * 	B. Tracking data for SLAB_STORE_USER
603  * 	C. Padding to reach required alignment boundary or at mininum
604  * 		one word if debugging is on to be able to detect writes
605  * 		before the word boundary.
606  *
607  *	Padding is done using 0x5a (POISON_INUSE)
608  *
609  * object + s->size
610  * 	Nothing is used beyond s->size.
611  *
612  * If slabcaches are merged then the objsize and inuse boundaries are mostly
613  * ignored. And therefore no slab options that rely on these boundaries
614  * may be used with merged slabcaches.
615  */
616 
617 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
618 {
619 	unsigned long off = s->inuse;	/* The end of info */
620 
621 	if (s->offset)
622 		/* Freepointer is placed after the object. */
623 		off += sizeof(void *);
624 
625 	if (s->flags & SLAB_STORE_USER)
626 		/* We also have user information there */
627 		off += 2 * sizeof(struct track);
628 
629 	if (s->size == off)
630 		return 1;
631 
632 	return check_bytes_and_report(s, page, p, "Object padding",
633 				p + off, POISON_INUSE, s->size - off);
634 }
635 
636 /* Check the pad bytes at the end of a slab page */
637 static int slab_pad_check(struct kmem_cache *s, struct page *page)
638 {
639 	u8 *start;
640 	u8 *fault;
641 	u8 *end;
642 	int length;
643 	int remainder;
644 
645 	if (!(s->flags & SLAB_POISON))
646 		return 1;
647 
648 	start = page_address(page);
649 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
650 	end = start + length;
651 	remainder = length % s->size;
652 	if (!remainder)
653 		return 1;
654 
655 	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
656 	if (!fault)
657 		return 1;
658 	while (end > fault && end[-1] == POISON_INUSE)
659 		end--;
660 
661 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
662 	print_section("Padding", end - remainder, remainder);
663 
664 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
665 	return 0;
666 }
667 
668 static int check_object(struct kmem_cache *s, struct page *page,
669 					void *object, u8 val)
670 {
671 	u8 *p = object;
672 	u8 *endobject = object + s->objsize;
673 
674 	if (s->flags & SLAB_RED_ZONE) {
675 		if (!check_bytes_and_report(s, page, object, "Redzone",
676 			endobject, val, s->inuse - s->objsize))
677 			return 0;
678 	} else {
679 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
680 			check_bytes_and_report(s, page, p, "Alignment padding",
681 				endobject, POISON_INUSE, s->inuse - s->objsize);
682 		}
683 	}
684 
685 	if (s->flags & SLAB_POISON) {
686 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
687 			(!check_bytes_and_report(s, page, p, "Poison", p,
688 					POISON_FREE, s->objsize - 1) ||
689 			 !check_bytes_and_report(s, page, p, "Poison",
690 				p + s->objsize - 1, POISON_END, 1)))
691 			return 0;
692 		/*
693 		 * check_pad_bytes cleans up on its own.
694 		 */
695 		check_pad_bytes(s, page, p);
696 	}
697 
698 	if (!s->offset && val == SLUB_RED_ACTIVE)
699 		/*
700 		 * Object and freepointer overlap. Cannot check
701 		 * freepointer while object is allocated.
702 		 */
703 		return 1;
704 
705 	/* Check free pointer validity */
706 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
707 		object_err(s, page, p, "Freepointer corrupt");
708 		/*
709 		 * No choice but to zap it and thus lose the remainder
710 		 * of the free objects in this slab. May cause
711 		 * another error because the object count is now wrong.
712 		 */
713 		set_freepointer(s, p, NULL);
714 		return 0;
715 	}
716 	return 1;
717 }
718 
719 static int check_slab(struct kmem_cache *s, struct page *page)
720 {
721 	int maxobj;
722 
723 	VM_BUG_ON(!irqs_disabled());
724 
725 	if (!PageSlab(page)) {
726 		slab_err(s, page, "Not a valid slab page");
727 		return 0;
728 	}
729 
730 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
731 	if (page->objects > maxobj) {
732 		slab_err(s, page, "objects %u > max %u",
733 			s->name, page->objects, maxobj);
734 		return 0;
735 	}
736 	if (page->inuse > page->objects) {
737 		slab_err(s, page, "inuse %u > max %u",
738 			s->name, page->inuse, page->objects);
739 		return 0;
740 	}
741 	/* Slab_pad_check fixes things up after itself */
742 	slab_pad_check(s, page);
743 	return 1;
744 }
745 
746 /*
747  * Determine if a certain object on a page is on the freelist. Must hold the
748  * slab lock to guarantee that the chains are in a consistent state.
749  */
750 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
751 {
752 	int nr = 0;
753 	void *fp = page->freelist;
754 	void *object = NULL;
755 	unsigned long max_objects;
756 
757 	while (fp && nr <= page->objects) {
758 		if (fp == search)
759 			return 1;
760 		if (!check_valid_pointer(s, page, fp)) {
761 			if (object) {
762 				object_err(s, page, object,
763 					"Freechain corrupt");
764 				set_freepointer(s, object, NULL);
765 				break;
766 			} else {
767 				slab_err(s, page, "Freepointer corrupt");
768 				page->freelist = NULL;
769 				page->inuse = page->objects;
770 				slab_fix(s, "Freelist cleared");
771 				return 0;
772 			}
773 			break;
774 		}
775 		object = fp;
776 		fp = get_freepointer(s, object);
777 		nr++;
778 	}
779 
780 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
781 	if (max_objects > MAX_OBJS_PER_PAGE)
782 		max_objects = MAX_OBJS_PER_PAGE;
783 
784 	if (page->objects != max_objects) {
785 		slab_err(s, page, "Wrong number of objects. Found %d but "
786 			"should be %d", page->objects, max_objects);
787 		page->objects = max_objects;
788 		slab_fix(s, "Number of objects adjusted.");
789 	}
790 	if (page->inuse != page->objects - nr) {
791 		slab_err(s, page, "Wrong object count. Counter is %d but "
792 			"counted were %d", page->inuse, page->objects - nr);
793 		page->inuse = page->objects - nr;
794 		slab_fix(s, "Object count adjusted.");
795 	}
796 	return search == NULL;
797 }
798 
799 static void trace(struct kmem_cache *s, struct page *page, void *object,
800 								int alloc)
801 {
802 	if (s->flags & SLAB_TRACE) {
803 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
804 			s->name,
805 			alloc ? "alloc" : "free",
806 			object, page->inuse,
807 			page->freelist);
808 
809 		if (!alloc)
810 			print_section("Object", (void *)object, s->objsize);
811 
812 		dump_stack();
813 	}
814 }
815 
816 /*
817  * Hooks for other subsystems that check memory allocations. In a typical
818  * production configuration these hooks all should produce no code at all.
819  */
820 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
821 {
822 	flags &= gfp_allowed_mask;
823 	lockdep_trace_alloc(flags);
824 	might_sleep_if(flags & __GFP_WAIT);
825 
826 	return should_failslab(s->objsize, flags, s->flags);
827 }
828 
829 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
830 {
831 	flags &= gfp_allowed_mask;
832 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
833 	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
834 }
835 
836 static inline void slab_free_hook(struct kmem_cache *s, void *x)
837 {
838 	kmemleak_free_recursive(x, s->flags);
839 
840 	/*
841 	 * Trouble is that we may no longer disable interupts in the fast path
842 	 * So in order to make the debug calls that expect irqs to be
843 	 * disabled we need to disable interrupts temporarily.
844 	 */
845 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
846 	{
847 		unsigned long flags;
848 
849 		local_irq_save(flags);
850 		kmemcheck_slab_free(s, x, s->objsize);
851 		debug_check_no_locks_freed(x, s->objsize);
852 		if (!(s->flags & SLAB_DEBUG_OBJECTS))
853 			debug_check_no_obj_freed(x, s->objsize);
854 		local_irq_restore(flags);
855 	}
856 #endif
857 }
858 
859 /*
860  * Tracking of fully allocated slabs for debugging purposes.
861  */
862 static void add_full(struct kmem_cache_node *n, struct page *page)
863 {
864 	spin_lock(&n->list_lock);
865 	list_add(&page->lru, &n->full);
866 	spin_unlock(&n->list_lock);
867 }
868 
869 static void remove_full(struct kmem_cache *s, struct page *page)
870 {
871 	struct kmem_cache_node *n;
872 
873 	if (!(s->flags & SLAB_STORE_USER))
874 		return;
875 
876 	n = get_node(s, page_to_nid(page));
877 
878 	spin_lock(&n->list_lock);
879 	list_del(&page->lru);
880 	spin_unlock(&n->list_lock);
881 }
882 
883 /* Tracking of the number of slabs for debugging purposes */
884 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
885 {
886 	struct kmem_cache_node *n = get_node(s, node);
887 
888 	return atomic_long_read(&n->nr_slabs);
889 }
890 
891 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
892 {
893 	return atomic_long_read(&n->nr_slabs);
894 }
895 
896 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
897 {
898 	struct kmem_cache_node *n = get_node(s, node);
899 
900 	/*
901 	 * May be called early in order to allocate a slab for the
902 	 * kmem_cache_node structure. Solve the chicken-egg
903 	 * dilemma by deferring the increment of the count during
904 	 * bootstrap (see early_kmem_cache_node_alloc).
905 	 */
906 	if (n) {
907 		atomic_long_inc(&n->nr_slabs);
908 		atomic_long_add(objects, &n->total_objects);
909 	}
910 }
911 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
912 {
913 	struct kmem_cache_node *n = get_node(s, node);
914 
915 	atomic_long_dec(&n->nr_slabs);
916 	atomic_long_sub(objects, &n->total_objects);
917 }
918 
919 /* Object debug checks for alloc/free paths */
920 static void setup_object_debug(struct kmem_cache *s, struct page *page,
921 								void *object)
922 {
923 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
924 		return;
925 
926 	init_object(s, object, SLUB_RED_INACTIVE);
927 	init_tracking(s, object);
928 }
929 
930 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
931 					void *object, unsigned long addr)
932 {
933 	if (!check_slab(s, page))
934 		goto bad;
935 
936 	if (!on_freelist(s, page, object)) {
937 		object_err(s, page, object, "Object already allocated");
938 		goto bad;
939 	}
940 
941 	if (!check_valid_pointer(s, page, object)) {
942 		object_err(s, page, object, "Freelist Pointer check fails");
943 		goto bad;
944 	}
945 
946 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
947 		goto bad;
948 
949 	/* Success perform special debug activities for allocs */
950 	if (s->flags & SLAB_STORE_USER)
951 		set_track(s, object, TRACK_ALLOC, addr);
952 	trace(s, page, object, 1);
953 	init_object(s, object, SLUB_RED_ACTIVE);
954 	return 1;
955 
956 bad:
957 	if (PageSlab(page)) {
958 		/*
959 		 * If this is a slab page then lets do the best we can
960 		 * to avoid issues in the future. Marking all objects
961 		 * as used avoids touching the remaining objects.
962 		 */
963 		slab_fix(s, "Marking all objects used");
964 		page->inuse = page->objects;
965 		page->freelist = NULL;
966 	}
967 	return 0;
968 }
969 
970 static noinline int free_debug_processing(struct kmem_cache *s,
971 		 struct page *page, void *object, unsigned long addr)
972 {
973 	if (!check_slab(s, page))
974 		goto fail;
975 
976 	if (!check_valid_pointer(s, page, object)) {
977 		slab_err(s, page, "Invalid object pointer 0x%p", object);
978 		goto fail;
979 	}
980 
981 	if (on_freelist(s, page, object)) {
982 		object_err(s, page, object, "Object already free");
983 		goto fail;
984 	}
985 
986 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
987 		return 0;
988 
989 	if (unlikely(s != page->slab)) {
990 		if (!PageSlab(page)) {
991 			slab_err(s, page, "Attempt to free object(0x%p) "
992 				"outside of slab", object);
993 		} else if (!page->slab) {
994 			printk(KERN_ERR
995 				"SLUB <none>: no slab for object 0x%p.\n",
996 						object);
997 			dump_stack();
998 		} else
999 			object_err(s, page, object,
1000 					"page slab pointer corrupt.");
1001 		goto fail;
1002 	}
1003 
1004 	/* Special debug activities for freeing objects */
1005 	if (!PageSlubFrozen(page) && !page->freelist)
1006 		remove_full(s, page);
1007 	if (s->flags & SLAB_STORE_USER)
1008 		set_track(s, object, TRACK_FREE, addr);
1009 	trace(s, page, object, 0);
1010 	init_object(s, object, SLUB_RED_INACTIVE);
1011 	return 1;
1012 
1013 fail:
1014 	slab_fix(s, "Object at 0x%p not freed", object);
1015 	return 0;
1016 }
1017 
1018 static int __init setup_slub_debug(char *str)
1019 {
1020 	slub_debug = DEBUG_DEFAULT_FLAGS;
1021 	if (*str++ != '=' || !*str)
1022 		/*
1023 		 * No options specified. Switch on full debugging.
1024 		 */
1025 		goto out;
1026 
1027 	if (*str == ',')
1028 		/*
1029 		 * No options but restriction on slabs. This means full
1030 		 * debugging for slabs matching a pattern.
1031 		 */
1032 		goto check_slabs;
1033 
1034 	if (tolower(*str) == 'o') {
1035 		/*
1036 		 * Avoid enabling debugging on caches if its minimum order
1037 		 * would increase as a result.
1038 		 */
1039 		disable_higher_order_debug = 1;
1040 		goto out;
1041 	}
1042 
1043 	slub_debug = 0;
1044 	if (*str == '-')
1045 		/*
1046 		 * Switch off all debugging measures.
1047 		 */
1048 		goto out;
1049 
1050 	/*
1051 	 * Determine which debug features should be switched on
1052 	 */
1053 	for (; *str && *str != ','; str++) {
1054 		switch (tolower(*str)) {
1055 		case 'f':
1056 			slub_debug |= SLAB_DEBUG_FREE;
1057 			break;
1058 		case 'z':
1059 			slub_debug |= SLAB_RED_ZONE;
1060 			break;
1061 		case 'p':
1062 			slub_debug |= SLAB_POISON;
1063 			break;
1064 		case 'u':
1065 			slub_debug |= SLAB_STORE_USER;
1066 			break;
1067 		case 't':
1068 			slub_debug |= SLAB_TRACE;
1069 			break;
1070 		case 'a':
1071 			slub_debug |= SLAB_FAILSLAB;
1072 			break;
1073 		default:
1074 			printk(KERN_ERR "slub_debug option '%c' "
1075 				"unknown. skipped\n", *str);
1076 		}
1077 	}
1078 
1079 check_slabs:
1080 	if (*str == ',')
1081 		slub_debug_slabs = str + 1;
1082 out:
1083 	return 1;
1084 }
1085 
1086 __setup("slub_debug", setup_slub_debug);
1087 
1088 static unsigned long kmem_cache_flags(unsigned long objsize,
1089 	unsigned long flags, const char *name,
1090 	void (*ctor)(void *))
1091 {
1092 	/*
1093 	 * Enable debugging if selected on the kernel commandline.
1094 	 */
1095 	if (slub_debug && (!slub_debug_slabs ||
1096 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1097 		flags |= slub_debug;
1098 
1099 	return flags;
1100 }
1101 #else
1102 static inline void setup_object_debug(struct kmem_cache *s,
1103 			struct page *page, void *object) {}
1104 
1105 static inline int alloc_debug_processing(struct kmem_cache *s,
1106 	struct page *page, void *object, unsigned long addr) { return 0; }
1107 
1108 static inline int free_debug_processing(struct kmem_cache *s,
1109 	struct page *page, void *object, unsigned long addr) { return 0; }
1110 
1111 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1112 			{ return 1; }
1113 static inline int check_object(struct kmem_cache *s, struct page *page,
1114 			void *object, u8 val) { return 1; }
1115 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1116 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1117 	unsigned long flags, const char *name,
1118 	void (*ctor)(void *))
1119 {
1120 	return flags;
1121 }
1122 #define slub_debug 0
1123 
1124 #define disable_higher_order_debug 0
1125 
1126 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1127 							{ return 0; }
1128 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1129 							{ return 0; }
1130 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1131 							int objects) {}
1132 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1133 							int objects) {}
1134 
1135 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1136 							{ return 0; }
1137 
1138 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1139 		void *object) {}
1140 
1141 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1142 
1143 #endif /* CONFIG_SLUB_DEBUG */
1144 
1145 /*
1146  * Slab allocation and freeing
1147  */
1148 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1149 					struct kmem_cache_order_objects oo)
1150 {
1151 	int order = oo_order(oo);
1152 
1153 	flags |= __GFP_NOTRACK;
1154 
1155 	if (node == NUMA_NO_NODE)
1156 		return alloc_pages(flags, order);
1157 	else
1158 		return alloc_pages_exact_node(node, flags, order);
1159 }
1160 
1161 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1162 {
1163 	struct page *page;
1164 	struct kmem_cache_order_objects oo = s->oo;
1165 	gfp_t alloc_gfp;
1166 
1167 	flags |= s->allocflags;
1168 
1169 	/*
1170 	 * Let the initial higher-order allocation fail under memory pressure
1171 	 * so we fall-back to the minimum order allocation.
1172 	 */
1173 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1174 
1175 	page = alloc_slab_page(alloc_gfp, node, oo);
1176 	if (unlikely(!page)) {
1177 		oo = s->min;
1178 		/*
1179 		 * Allocation may have failed due to fragmentation.
1180 		 * Try a lower order alloc if possible
1181 		 */
1182 		page = alloc_slab_page(flags, node, oo);
1183 		if (!page)
1184 			return NULL;
1185 
1186 		stat(s, ORDER_FALLBACK);
1187 	}
1188 
1189 	if (kmemcheck_enabled
1190 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1191 		int pages = 1 << oo_order(oo);
1192 
1193 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1194 
1195 		/*
1196 		 * Objects from caches that have a constructor don't get
1197 		 * cleared when they're allocated, so we need to do it here.
1198 		 */
1199 		if (s->ctor)
1200 			kmemcheck_mark_uninitialized_pages(page, pages);
1201 		else
1202 			kmemcheck_mark_unallocated_pages(page, pages);
1203 	}
1204 
1205 	page->objects = oo_objects(oo);
1206 	mod_zone_page_state(page_zone(page),
1207 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1208 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1209 		1 << oo_order(oo));
1210 
1211 	return page;
1212 }
1213 
1214 static void setup_object(struct kmem_cache *s, struct page *page,
1215 				void *object)
1216 {
1217 	setup_object_debug(s, page, object);
1218 	if (unlikely(s->ctor))
1219 		s->ctor(object);
1220 }
1221 
1222 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1223 {
1224 	struct page *page;
1225 	void *start;
1226 	void *last;
1227 	void *p;
1228 
1229 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1230 
1231 	page = allocate_slab(s,
1232 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1233 	if (!page)
1234 		goto out;
1235 
1236 	inc_slabs_node(s, page_to_nid(page), page->objects);
1237 	page->slab = s;
1238 	page->flags |= 1 << PG_slab;
1239 
1240 	start = page_address(page);
1241 
1242 	if (unlikely(s->flags & SLAB_POISON))
1243 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1244 
1245 	last = start;
1246 	for_each_object(p, s, start, page->objects) {
1247 		setup_object(s, page, last);
1248 		set_freepointer(s, last, p);
1249 		last = p;
1250 	}
1251 	setup_object(s, page, last);
1252 	set_freepointer(s, last, NULL);
1253 
1254 	page->freelist = start;
1255 	page->inuse = 0;
1256 out:
1257 	return page;
1258 }
1259 
1260 static void __free_slab(struct kmem_cache *s, struct page *page)
1261 {
1262 	int order = compound_order(page);
1263 	int pages = 1 << order;
1264 
1265 	if (kmem_cache_debug(s)) {
1266 		void *p;
1267 
1268 		slab_pad_check(s, page);
1269 		for_each_object(p, s, page_address(page),
1270 						page->objects)
1271 			check_object(s, page, p, SLUB_RED_INACTIVE);
1272 	}
1273 
1274 	kmemcheck_free_shadow(page, compound_order(page));
1275 
1276 	mod_zone_page_state(page_zone(page),
1277 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1278 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1279 		-pages);
1280 
1281 	__ClearPageSlab(page);
1282 	reset_page_mapcount(page);
1283 	if (current->reclaim_state)
1284 		current->reclaim_state->reclaimed_slab += pages;
1285 	__free_pages(page, order);
1286 }
1287 
1288 #define need_reserve_slab_rcu						\
1289 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1290 
1291 static void rcu_free_slab(struct rcu_head *h)
1292 {
1293 	struct page *page;
1294 
1295 	if (need_reserve_slab_rcu)
1296 		page = virt_to_head_page(h);
1297 	else
1298 		page = container_of((struct list_head *)h, struct page, lru);
1299 
1300 	__free_slab(page->slab, page);
1301 }
1302 
1303 static void free_slab(struct kmem_cache *s, struct page *page)
1304 {
1305 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1306 		struct rcu_head *head;
1307 
1308 		if (need_reserve_slab_rcu) {
1309 			int order = compound_order(page);
1310 			int offset = (PAGE_SIZE << order) - s->reserved;
1311 
1312 			VM_BUG_ON(s->reserved != sizeof(*head));
1313 			head = page_address(page) + offset;
1314 		} else {
1315 			/*
1316 			 * RCU free overloads the RCU head over the LRU
1317 			 */
1318 			head = (void *)&page->lru;
1319 		}
1320 
1321 		call_rcu(head, rcu_free_slab);
1322 	} else
1323 		__free_slab(s, page);
1324 }
1325 
1326 static void discard_slab(struct kmem_cache *s, struct page *page)
1327 {
1328 	dec_slabs_node(s, page_to_nid(page), page->objects);
1329 	free_slab(s, page);
1330 }
1331 
1332 /*
1333  * Per slab locking using the pagelock
1334  */
1335 static __always_inline void slab_lock(struct page *page)
1336 {
1337 	bit_spin_lock(PG_locked, &page->flags);
1338 }
1339 
1340 static __always_inline void slab_unlock(struct page *page)
1341 {
1342 	__bit_spin_unlock(PG_locked, &page->flags);
1343 }
1344 
1345 static __always_inline int slab_trylock(struct page *page)
1346 {
1347 	int rc = 1;
1348 
1349 	rc = bit_spin_trylock(PG_locked, &page->flags);
1350 	return rc;
1351 }
1352 
1353 /*
1354  * Management of partially allocated slabs
1355  */
1356 static void add_partial(struct kmem_cache_node *n,
1357 				struct page *page, int tail)
1358 {
1359 	spin_lock(&n->list_lock);
1360 	n->nr_partial++;
1361 	if (tail)
1362 		list_add_tail(&page->lru, &n->partial);
1363 	else
1364 		list_add(&page->lru, &n->partial);
1365 	spin_unlock(&n->list_lock);
1366 }
1367 
1368 static inline void __remove_partial(struct kmem_cache_node *n,
1369 					struct page *page)
1370 {
1371 	list_del(&page->lru);
1372 	n->nr_partial--;
1373 }
1374 
1375 static void remove_partial(struct kmem_cache *s, struct page *page)
1376 {
1377 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1378 
1379 	spin_lock(&n->list_lock);
1380 	__remove_partial(n, page);
1381 	spin_unlock(&n->list_lock);
1382 }
1383 
1384 /*
1385  * Lock slab and remove from the partial list.
1386  *
1387  * Must hold list_lock.
1388  */
1389 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1390 							struct page *page)
1391 {
1392 	if (slab_trylock(page)) {
1393 		__remove_partial(n, page);
1394 		__SetPageSlubFrozen(page);
1395 		return 1;
1396 	}
1397 	return 0;
1398 }
1399 
1400 /*
1401  * Try to allocate a partial slab from a specific node.
1402  */
1403 static struct page *get_partial_node(struct kmem_cache_node *n)
1404 {
1405 	struct page *page;
1406 
1407 	/*
1408 	 * Racy check. If we mistakenly see no partial slabs then we
1409 	 * just allocate an empty slab. If we mistakenly try to get a
1410 	 * partial slab and there is none available then get_partials()
1411 	 * will return NULL.
1412 	 */
1413 	if (!n || !n->nr_partial)
1414 		return NULL;
1415 
1416 	spin_lock(&n->list_lock);
1417 	list_for_each_entry(page, &n->partial, lru)
1418 		if (lock_and_freeze_slab(n, page))
1419 			goto out;
1420 	page = NULL;
1421 out:
1422 	spin_unlock(&n->list_lock);
1423 	return page;
1424 }
1425 
1426 /*
1427  * Get a page from somewhere. Search in increasing NUMA distances.
1428  */
1429 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1430 {
1431 #ifdef CONFIG_NUMA
1432 	struct zonelist *zonelist;
1433 	struct zoneref *z;
1434 	struct zone *zone;
1435 	enum zone_type high_zoneidx = gfp_zone(flags);
1436 	struct page *page;
1437 
1438 	/*
1439 	 * The defrag ratio allows a configuration of the tradeoffs between
1440 	 * inter node defragmentation and node local allocations. A lower
1441 	 * defrag_ratio increases the tendency to do local allocations
1442 	 * instead of attempting to obtain partial slabs from other nodes.
1443 	 *
1444 	 * If the defrag_ratio is set to 0 then kmalloc() always
1445 	 * returns node local objects. If the ratio is higher then kmalloc()
1446 	 * may return off node objects because partial slabs are obtained
1447 	 * from other nodes and filled up.
1448 	 *
1449 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1450 	 * defrag_ratio = 1000) then every (well almost) allocation will
1451 	 * first attempt to defrag slab caches on other nodes. This means
1452 	 * scanning over all nodes to look for partial slabs which may be
1453 	 * expensive if we do it every time we are trying to find a slab
1454 	 * with available objects.
1455 	 */
1456 	if (!s->remote_node_defrag_ratio ||
1457 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1458 		return NULL;
1459 
1460 	get_mems_allowed();
1461 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1462 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1463 		struct kmem_cache_node *n;
1464 
1465 		n = get_node(s, zone_to_nid(zone));
1466 
1467 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1468 				n->nr_partial > s->min_partial) {
1469 			page = get_partial_node(n);
1470 			if (page) {
1471 				put_mems_allowed();
1472 				return page;
1473 			}
1474 		}
1475 	}
1476 	put_mems_allowed();
1477 #endif
1478 	return NULL;
1479 }
1480 
1481 /*
1482  * Get a partial page, lock it and return it.
1483  */
1484 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1485 {
1486 	struct page *page;
1487 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1488 
1489 	page = get_partial_node(get_node(s, searchnode));
1490 	if (page || node != -1)
1491 		return page;
1492 
1493 	return get_any_partial(s, flags);
1494 }
1495 
1496 /*
1497  * Move a page back to the lists.
1498  *
1499  * Must be called with the slab lock held.
1500  *
1501  * On exit the slab lock will have been dropped.
1502  */
1503 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1504 	__releases(bitlock)
1505 {
1506 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1507 
1508 	__ClearPageSlubFrozen(page);
1509 	if (page->inuse) {
1510 
1511 		if (page->freelist) {
1512 			add_partial(n, page, tail);
1513 			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1514 		} else {
1515 			stat(s, DEACTIVATE_FULL);
1516 			if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1517 				add_full(n, page);
1518 		}
1519 		slab_unlock(page);
1520 	} else {
1521 		stat(s, DEACTIVATE_EMPTY);
1522 		if (n->nr_partial < s->min_partial) {
1523 			/*
1524 			 * Adding an empty slab to the partial slabs in order
1525 			 * to avoid page allocator overhead. This slab needs
1526 			 * to come after the other slabs with objects in
1527 			 * so that the others get filled first. That way the
1528 			 * size of the partial list stays small.
1529 			 *
1530 			 * kmem_cache_shrink can reclaim any empty slabs from
1531 			 * the partial list.
1532 			 */
1533 			add_partial(n, page, 1);
1534 			slab_unlock(page);
1535 		} else {
1536 			slab_unlock(page);
1537 			stat(s, FREE_SLAB);
1538 			discard_slab(s, page);
1539 		}
1540 	}
1541 }
1542 
1543 #ifdef CONFIG_CMPXCHG_LOCAL
1544 #ifdef CONFIG_PREEMPT
1545 /*
1546  * Calculate the next globally unique transaction for disambiguiation
1547  * during cmpxchg. The transactions start with the cpu number and are then
1548  * incremented by CONFIG_NR_CPUS.
1549  */
1550 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1551 #else
1552 /*
1553  * No preemption supported therefore also no need to check for
1554  * different cpus.
1555  */
1556 #define TID_STEP 1
1557 #endif
1558 
1559 static inline unsigned long next_tid(unsigned long tid)
1560 {
1561 	return tid + TID_STEP;
1562 }
1563 
1564 static inline unsigned int tid_to_cpu(unsigned long tid)
1565 {
1566 	return tid % TID_STEP;
1567 }
1568 
1569 static inline unsigned long tid_to_event(unsigned long tid)
1570 {
1571 	return tid / TID_STEP;
1572 }
1573 
1574 static inline unsigned int init_tid(int cpu)
1575 {
1576 	return cpu;
1577 }
1578 
1579 static inline void note_cmpxchg_failure(const char *n,
1580 		const struct kmem_cache *s, unsigned long tid)
1581 {
1582 #ifdef SLUB_DEBUG_CMPXCHG
1583 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1584 
1585 	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1586 
1587 #ifdef CONFIG_PREEMPT
1588 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1589 		printk("due to cpu change %d -> %d\n",
1590 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1591 	else
1592 #endif
1593 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1594 		printk("due to cpu running other code. Event %ld->%ld\n",
1595 			tid_to_event(tid), tid_to_event(actual_tid));
1596 	else
1597 		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1598 			actual_tid, tid, next_tid(tid));
1599 #endif
1600 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1601 }
1602 
1603 #endif
1604 
1605 void init_kmem_cache_cpus(struct kmem_cache *s)
1606 {
1607 #if defined(CONFIG_CMPXCHG_LOCAL) && defined(CONFIG_PREEMPT)
1608 	int cpu;
1609 
1610 	for_each_possible_cpu(cpu)
1611 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1612 #endif
1613 
1614 }
1615 /*
1616  * Remove the cpu slab
1617  */
1618 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1619 	__releases(bitlock)
1620 {
1621 	struct page *page = c->page;
1622 	int tail = 1;
1623 
1624 	if (page->freelist)
1625 		stat(s, DEACTIVATE_REMOTE_FREES);
1626 	/*
1627 	 * Merge cpu freelist into slab freelist. Typically we get here
1628 	 * because both freelists are empty. So this is unlikely
1629 	 * to occur.
1630 	 */
1631 	while (unlikely(c->freelist)) {
1632 		void **object;
1633 
1634 		tail = 0;	/* Hot objects. Put the slab first */
1635 
1636 		/* Retrieve object from cpu_freelist */
1637 		object = c->freelist;
1638 		c->freelist = get_freepointer(s, c->freelist);
1639 
1640 		/* And put onto the regular freelist */
1641 		set_freepointer(s, object, page->freelist);
1642 		page->freelist = object;
1643 		page->inuse--;
1644 	}
1645 	c->page = NULL;
1646 #ifdef CONFIG_CMPXCHG_LOCAL
1647 	c->tid = next_tid(c->tid);
1648 #endif
1649 	unfreeze_slab(s, page, tail);
1650 }
1651 
1652 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1653 {
1654 	stat(s, CPUSLAB_FLUSH);
1655 	slab_lock(c->page);
1656 	deactivate_slab(s, c);
1657 }
1658 
1659 /*
1660  * Flush cpu slab.
1661  *
1662  * Called from IPI handler with interrupts disabled.
1663  */
1664 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1665 {
1666 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1667 
1668 	if (likely(c && c->page))
1669 		flush_slab(s, c);
1670 }
1671 
1672 static void flush_cpu_slab(void *d)
1673 {
1674 	struct kmem_cache *s = d;
1675 
1676 	__flush_cpu_slab(s, smp_processor_id());
1677 }
1678 
1679 static void flush_all(struct kmem_cache *s)
1680 {
1681 	on_each_cpu(flush_cpu_slab, s, 1);
1682 }
1683 
1684 /*
1685  * Check if the objects in a per cpu structure fit numa
1686  * locality expectations.
1687  */
1688 static inline int node_match(struct kmem_cache_cpu *c, int node)
1689 {
1690 #ifdef CONFIG_NUMA
1691 	if (node != NUMA_NO_NODE && c->node != node)
1692 		return 0;
1693 #endif
1694 	return 1;
1695 }
1696 
1697 static int count_free(struct page *page)
1698 {
1699 	return page->objects - page->inuse;
1700 }
1701 
1702 static unsigned long count_partial(struct kmem_cache_node *n,
1703 					int (*get_count)(struct page *))
1704 {
1705 	unsigned long flags;
1706 	unsigned long x = 0;
1707 	struct page *page;
1708 
1709 	spin_lock_irqsave(&n->list_lock, flags);
1710 	list_for_each_entry(page, &n->partial, lru)
1711 		x += get_count(page);
1712 	spin_unlock_irqrestore(&n->list_lock, flags);
1713 	return x;
1714 }
1715 
1716 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1717 {
1718 #ifdef CONFIG_SLUB_DEBUG
1719 	return atomic_long_read(&n->total_objects);
1720 #else
1721 	return 0;
1722 #endif
1723 }
1724 
1725 static noinline void
1726 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1727 {
1728 	int node;
1729 
1730 	printk(KERN_WARNING
1731 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1732 		nid, gfpflags);
1733 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
1734 		"default order: %d, min order: %d\n", s->name, s->objsize,
1735 		s->size, oo_order(s->oo), oo_order(s->min));
1736 
1737 	if (oo_order(s->min) > get_order(s->objsize))
1738 		printk(KERN_WARNING "  %s debugging increased min order, use "
1739 		       "slub_debug=O to disable.\n", s->name);
1740 
1741 	for_each_online_node(node) {
1742 		struct kmem_cache_node *n = get_node(s, node);
1743 		unsigned long nr_slabs;
1744 		unsigned long nr_objs;
1745 		unsigned long nr_free;
1746 
1747 		if (!n)
1748 			continue;
1749 
1750 		nr_free  = count_partial(n, count_free);
1751 		nr_slabs = node_nr_slabs(n);
1752 		nr_objs  = node_nr_objs(n);
1753 
1754 		printk(KERN_WARNING
1755 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
1756 			node, nr_slabs, nr_objs, nr_free);
1757 	}
1758 }
1759 
1760 /*
1761  * Slow path. The lockless freelist is empty or we need to perform
1762  * debugging duties.
1763  *
1764  * Interrupts are disabled.
1765  *
1766  * Processing is still very fast if new objects have been freed to the
1767  * regular freelist. In that case we simply take over the regular freelist
1768  * as the lockless freelist and zap the regular freelist.
1769  *
1770  * If that is not working then we fall back to the partial lists. We take the
1771  * first element of the freelist as the object to allocate now and move the
1772  * rest of the freelist to the lockless freelist.
1773  *
1774  * And if we were unable to get a new slab from the partial slab lists then
1775  * we need to allocate a new slab. This is the slowest path since it involves
1776  * a call to the page allocator and the setup of a new slab.
1777  */
1778 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1779 			  unsigned long addr, struct kmem_cache_cpu *c)
1780 {
1781 	void **object;
1782 	struct page *new;
1783 #ifdef CONFIG_CMPXCHG_LOCAL
1784 	unsigned long flags;
1785 
1786 	local_irq_save(flags);
1787 #ifdef CONFIG_PREEMPT
1788 	/*
1789 	 * We may have been preempted and rescheduled on a different
1790 	 * cpu before disabling interrupts. Need to reload cpu area
1791 	 * pointer.
1792 	 */
1793 	c = this_cpu_ptr(s->cpu_slab);
1794 #endif
1795 #endif
1796 
1797 	/* We handle __GFP_ZERO in the caller */
1798 	gfpflags &= ~__GFP_ZERO;
1799 
1800 	if (!c->page)
1801 		goto new_slab;
1802 
1803 	slab_lock(c->page);
1804 	if (unlikely(!node_match(c, node)))
1805 		goto another_slab;
1806 
1807 	stat(s, ALLOC_REFILL);
1808 
1809 load_freelist:
1810 	object = c->page->freelist;
1811 	if (unlikely(!object))
1812 		goto another_slab;
1813 	if (kmem_cache_debug(s))
1814 		goto debug;
1815 
1816 	c->freelist = get_freepointer(s, object);
1817 	c->page->inuse = c->page->objects;
1818 	c->page->freelist = NULL;
1819 	c->node = page_to_nid(c->page);
1820 unlock_out:
1821 	slab_unlock(c->page);
1822 #ifdef CONFIG_CMPXCHG_LOCAL
1823 	c->tid = next_tid(c->tid);
1824 	local_irq_restore(flags);
1825 #endif
1826 	stat(s, ALLOC_SLOWPATH);
1827 	return object;
1828 
1829 another_slab:
1830 	deactivate_slab(s, c);
1831 
1832 new_slab:
1833 	new = get_partial(s, gfpflags, node);
1834 	if (new) {
1835 		c->page = new;
1836 		stat(s, ALLOC_FROM_PARTIAL);
1837 		goto load_freelist;
1838 	}
1839 
1840 	gfpflags &= gfp_allowed_mask;
1841 	if (gfpflags & __GFP_WAIT)
1842 		local_irq_enable();
1843 
1844 	new = new_slab(s, gfpflags, node);
1845 
1846 	if (gfpflags & __GFP_WAIT)
1847 		local_irq_disable();
1848 
1849 	if (new) {
1850 		c = __this_cpu_ptr(s->cpu_slab);
1851 		stat(s, ALLOC_SLAB);
1852 		if (c->page)
1853 			flush_slab(s, c);
1854 		slab_lock(new);
1855 		__SetPageSlubFrozen(new);
1856 		c->page = new;
1857 		goto load_freelist;
1858 	}
1859 	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1860 		slab_out_of_memory(s, gfpflags, node);
1861 #ifdef CONFIG_CMPXCHG_LOCAL
1862 	local_irq_restore(flags);
1863 #endif
1864 	return NULL;
1865 debug:
1866 	if (!alloc_debug_processing(s, c->page, object, addr))
1867 		goto another_slab;
1868 
1869 	c->page->inuse++;
1870 	c->page->freelist = get_freepointer(s, object);
1871 	c->node = NUMA_NO_NODE;
1872 	goto unlock_out;
1873 }
1874 
1875 /*
1876  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1877  * have the fastpath folded into their functions. So no function call
1878  * overhead for requests that can be satisfied on the fastpath.
1879  *
1880  * The fastpath works by first checking if the lockless freelist can be used.
1881  * If not then __slab_alloc is called for slow processing.
1882  *
1883  * Otherwise we can simply pick the next object from the lockless free list.
1884  */
1885 static __always_inline void *slab_alloc(struct kmem_cache *s,
1886 		gfp_t gfpflags, int node, unsigned long addr)
1887 {
1888 	void **object;
1889 	struct kmem_cache_cpu *c;
1890 #ifdef CONFIG_CMPXCHG_LOCAL
1891 	unsigned long tid;
1892 #else
1893 	unsigned long flags;
1894 #endif
1895 
1896 	if (slab_pre_alloc_hook(s, gfpflags))
1897 		return NULL;
1898 
1899 #ifndef CONFIG_CMPXCHG_LOCAL
1900 	local_irq_save(flags);
1901 #else
1902 redo:
1903 #endif
1904 
1905 	/*
1906 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1907 	 * enabled. We may switch back and forth between cpus while
1908 	 * reading from one cpu area. That does not matter as long
1909 	 * as we end up on the original cpu again when doing the cmpxchg.
1910 	 */
1911 	c = __this_cpu_ptr(s->cpu_slab);
1912 
1913 #ifdef CONFIG_CMPXCHG_LOCAL
1914 	/*
1915 	 * The transaction ids are globally unique per cpu and per operation on
1916 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1917 	 * occurs on the right processor and that there was no operation on the
1918 	 * linked list in between.
1919 	 */
1920 	tid = c->tid;
1921 	barrier();
1922 #endif
1923 
1924 	object = c->freelist;
1925 	if (unlikely(!object || !node_match(c, node)))
1926 
1927 		object = __slab_alloc(s, gfpflags, node, addr, c);
1928 
1929 	else {
1930 #ifdef CONFIG_CMPXCHG_LOCAL
1931 		/*
1932 		 * The cmpxchg will only match if there was no additonal
1933 		 * operation and if we are on the right processor.
1934 		 *
1935 		 * The cmpxchg does the following atomically (without lock semantics!)
1936 		 * 1. Relocate first pointer to the current per cpu area.
1937 		 * 2. Verify that tid and freelist have not been changed
1938 		 * 3. If they were not changed replace tid and freelist
1939 		 *
1940 		 * Since this is without lock semantics the protection is only against
1941 		 * code executing on this cpu *not* from access by other cpus.
1942 		 */
1943 		if (unlikely(!this_cpu_cmpxchg_double(
1944 				s->cpu_slab->freelist, s->cpu_slab->tid,
1945 				object, tid,
1946 				get_freepointer(s, object), next_tid(tid)))) {
1947 
1948 			note_cmpxchg_failure("slab_alloc", s, tid);
1949 			goto redo;
1950 		}
1951 #else
1952 		c->freelist = get_freepointer(s, object);
1953 #endif
1954 		stat(s, ALLOC_FASTPATH);
1955 	}
1956 
1957 #ifndef CONFIG_CMPXCHG_LOCAL
1958 	local_irq_restore(flags);
1959 #endif
1960 
1961 	if (unlikely(gfpflags & __GFP_ZERO) && object)
1962 		memset(object, 0, s->objsize);
1963 
1964 	slab_post_alloc_hook(s, gfpflags, object);
1965 
1966 	return object;
1967 }
1968 
1969 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1970 {
1971 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1972 
1973 	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1974 
1975 	return ret;
1976 }
1977 EXPORT_SYMBOL(kmem_cache_alloc);
1978 
1979 #ifdef CONFIG_TRACING
1980 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1981 {
1982 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1983 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1984 	return ret;
1985 }
1986 EXPORT_SYMBOL(kmem_cache_alloc_trace);
1987 
1988 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1989 {
1990 	void *ret = kmalloc_order(size, flags, order);
1991 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1992 	return ret;
1993 }
1994 EXPORT_SYMBOL(kmalloc_order_trace);
1995 #endif
1996 
1997 #ifdef CONFIG_NUMA
1998 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1999 {
2000 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2001 
2002 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2003 				    s->objsize, s->size, gfpflags, node);
2004 
2005 	return ret;
2006 }
2007 EXPORT_SYMBOL(kmem_cache_alloc_node);
2008 
2009 #ifdef CONFIG_TRACING
2010 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2011 				    gfp_t gfpflags,
2012 				    int node, size_t size)
2013 {
2014 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2015 
2016 	trace_kmalloc_node(_RET_IP_, ret,
2017 			   size, s->size, gfpflags, node);
2018 	return ret;
2019 }
2020 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2021 #endif
2022 #endif
2023 
2024 /*
2025  * Slow patch handling. This may still be called frequently since objects
2026  * have a longer lifetime than the cpu slabs in most processing loads.
2027  *
2028  * So we still attempt to reduce cache line usage. Just take the slab
2029  * lock and free the item. If there is no additional partial page
2030  * handling required then we can return immediately.
2031  */
2032 static void __slab_free(struct kmem_cache *s, struct page *page,
2033 			void *x, unsigned long addr)
2034 {
2035 	void *prior;
2036 	void **object = (void *)x;
2037 #ifdef CONFIG_CMPXCHG_LOCAL
2038 	unsigned long flags;
2039 
2040 	local_irq_save(flags);
2041 #endif
2042 	slab_lock(page);
2043 	stat(s, FREE_SLOWPATH);
2044 
2045 	if (kmem_cache_debug(s))
2046 		goto debug;
2047 
2048 checks_ok:
2049 	prior = page->freelist;
2050 	set_freepointer(s, object, prior);
2051 	page->freelist = object;
2052 	page->inuse--;
2053 
2054 	if (unlikely(PageSlubFrozen(page))) {
2055 		stat(s, FREE_FROZEN);
2056 		goto out_unlock;
2057 	}
2058 
2059 	if (unlikely(!page->inuse))
2060 		goto slab_empty;
2061 
2062 	/*
2063 	 * Objects left in the slab. If it was not on the partial list before
2064 	 * then add it.
2065 	 */
2066 	if (unlikely(!prior)) {
2067 		add_partial(get_node(s, page_to_nid(page)), page, 1);
2068 		stat(s, FREE_ADD_PARTIAL);
2069 	}
2070 
2071 out_unlock:
2072 	slab_unlock(page);
2073 #ifdef CONFIG_CMPXCHG_LOCAL
2074 	local_irq_restore(flags);
2075 #endif
2076 	return;
2077 
2078 slab_empty:
2079 	if (prior) {
2080 		/*
2081 		 * Slab still on the partial list.
2082 		 */
2083 		remove_partial(s, page);
2084 		stat(s, FREE_REMOVE_PARTIAL);
2085 	}
2086 	slab_unlock(page);
2087 #ifdef CONFIG_CMPXCHG_LOCAL
2088 	local_irq_restore(flags);
2089 #endif
2090 	stat(s, FREE_SLAB);
2091 	discard_slab(s, page);
2092 	return;
2093 
2094 debug:
2095 	if (!free_debug_processing(s, page, x, addr))
2096 		goto out_unlock;
2097 	goto checks_ok;
2098 }
2099 
2100 /*
2101  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2102  * can perform fastpath freeing without additional function calls.
2103  *
2104  * The fastpath is only possible if we are freeing to the current cpu slab
2105  * of this processor. This typically the case if we have just allocated
2106  * the item before.
2107  *
2108  * If fastpath is not possible then fall back to __slab_free where we deal
2109  * with all sorts of special processing.
2110  */
2111 static __always_inline void slab_free(struct kmem_cache *s,
2112 			struct page *page, void *x, unsigned long addr)
2113 {
2114 	void **object = (void *)x;
2115 	struct kmem_cache_cpu *c;
2116 #ifdef CONFIG_CMPXCHG_LOCAL
2117 	unsigned long tid;
2118 #else
2119 	unsigned long flags;
2120 #endif
2121 
2122 	slab_free_hook(s, x);
2123 
2124 #ifndef CONFIG_CMPXCHG_LOCAL
2125 	local_irq_save(flags);
2126 
2127 #else
2128 redo:
2129 #endif
2130 
2131 	/*
2132 	 * Determine the currently cpus per cpu slab.
2133 	 * The cpu may change afterward. However that does not matter since
2134 	 * data is retrieved via this pointer. If we are on the same cpu
2135 	 * during the cmpxchg then the free will succedd.
2136 	 */
2137 	c = __this_cpu_ptr(s->cpu_slab);
2138 
2139 #ifdef CONFIG_CMPXCHG_LOCAL
2140 	tid = c->tid;
2141 	barrier();
2142 #endif
2143 
2144 	if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
2145 		set_freepointer(s, object, c->freelist);
2146 
2147 #ifdef CONFIG_CMPXCHG_LOCAL
2148 		if (unlikely(!this_cpu_cmpxchg_double(
2149 				s->cpu_slab->freelist, s->cpu_slab->tid,
2150 				c->freelist, tid,
2151 				object, next_tid(tid)))) {
2152 
2153 			note_cmpxchg_failure("slab_free", s, tid);
2154 			goto redo;
2155 		}
2156 #else
2157 		c->freelist = object;
2158 #endif
2159 		stat(s, FREE_FASTPATH);
2160 	} else
2161 		__slab_free(s, page, x, addr);
2162 
2163 #ifndef CONFIG_CMPXCHG_LOCAL
2164 	local_irq_restore(flags);
2165 #endif
2166 }
2167 
2168 void kmem_cache_free(struct kmem_cache *s, void *x)
2169 {
2170 	struct page *page;
2171 
2172 	page = virt_to_head_page(x);
2173 
2174 	slab_free(s, page, x, _RET_IP_);
2175 
2176 	trace_kmem_cache_free(_RET_IP_, x);
2177 }
2178 EXPORT_SYMBOL(kmem_cache_free);
2179 
2180 /*
2181  * Object placement in a slab is made very easy because we always start at
2182  * offset 0. If we tune the size of the object to the alignment then we can
2183  * get the required alignment by putting one properly sized object after
2184  * another.
2185  *
2186  * Notice that the allocation order determines the sizes of the per cpu
2187  * caches. Each processor has always one slab available for allocations.
2188  * Increasing the allocation order reduces the number of times that slabs
2189  * must be moved on and off the partial lists and is therefore a factor in
2190  * locking overhead.
2191  */
2192 
2193 /*
2194  * Mininum / Maximum order of slab pages. This influences locking overhead
2195  * and slab fragmentation. A higher order reduces the number of partial slabs
2196  * and increases the number of allocations possible without having to
2197  * take the list_lock.
2198  */
2199 static int slub_min_order;
2200 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2201 static int slub_min_objects;
2202 
2203 /*
2204  * Merge control. If this is set then no merging of slab caches will occur.
2205  * (Could be removed. This was introduced to pacify the merge skeptics.)
2206  */
2207 static int slub_nomerge;
2208 
2209 /*
2210  * Calculate the order of allocation given an slab object size.
2211  *
2212  * The order of allocation has significant impact on performance and other
2213  * system components. Generally order 0 allocations should be preferred since
2214  * order 0 does not cause fragmentation in the page allocator. Larger objects
2215  * be problematic to put into order 0 slabs because there may be too much
2216  * unused space left. We go to a higher order if more than 1/16th of the slab
2217  * would be wasted.
2218  *
2219  * In order to reach satisfactory performance we must ensure that a minimum
2220  * number of objects is in one slab. Otherwise we may generate too much
2221  * activity on the partial lists which requires taking the list_lock. This is
2222  * less a concern for large slabs though which are rarely used.
2223  *
2224  * slub_max_order specifies the order where we begin to stop considering the
2225  * number of objects in a slab as critical. If we reach slub_max_order then
2226  * we try to keep the page order as low as possible. So we accept more waste
2227  * of space in favor of a small page order.
2228  *
2229  * Higher order allocations also allow the placement of more objects in a
2230  * slab and thereby reduce object handling overhead. If the user has
2231  * requested a higher mininum order then we start with that one instead of
2232  * the smallest order which will fit the object.
2233  */
2234 static inline int slab_order(int size, int min_objects,
2235 				int max_order, int fract_leftover, int reserved)
2236 {
2237 	int order;
2238 	int rem;
2239 	int min_order = slub_min_order;
2240 
2241 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2242 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2243 
2244 	for (order = max(min_order,
2245 				fls(min_objects * size - 1) - PAGE_SHIFT);
2246 			order <= max_order; order++) {
2247 
2248 		unsigned long slab_size = PAGE_SIZE << order;
2249 
2250 		if (slab_size < min_objects * size + reserved)
2251 			continue;
2252 
2253 		rem = (slab_size - reserved) % size;
2254 
2255 		if (rem <= slab_size / fract_leftover)
2256 			break;
2257 
2258 	}
2259 
2260 	return order;
2261 }
2262 
2263 static inline int calculate_order(int size, int reserved)
2264 {
2265 	int order;
2266 	int min_objects;
2267 	int fraction;
2268 	int max_objects;
2269 
2270 	/*
2271 	 * Attempt to find best configuration for a slab. This
2272 	 * works by first attempting to generate a layout with
2273 	 * the best configuration and backing off gradually.
2274 	 *
2275 	 * First we reduce the acceptable waste in a slab. Then
2276 	 * we reduce the minimum objects required in a slab.
2277 	 */
2278 	min_objects = slub_min_objects;
2279 	if (!min_objects)
2280 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2281 	max_objects = order_objects(slub_max_order, size, reserved);
2282 	min_objects = min(min_objects, max_objects);
2283 
2284 	while (min_objects > 1) {
2285 		fraction = 16;
2286 		while (fraction >= 4) {
2287 			order = slab_order(size, min_objects,
2288 					slub_max_order, fraction, reserved);
2289 			if (order <= slub_max_order)
2290 				return order;
2291 			fraction /= 2;
2292 		}
2293 		min_objects--;
2294 	}
2295 
2296 	/*
2297 	 * We were unable to place multiple objects in a slab. Now
2298 	 * lets see if we can place a single object there.
2299 	 */
2300 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2301 	if (order <= slub_max_order)
2302 		return order;
2303 
2304 	/*
2305 	 * Doh this slab cannot be placed using slub_max_order.
2306 	 */
2307 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2308 	if (order < MAX_ORDER)
2309 		return order;
2310 	return -ENOSYS;
2311 }
2312 
2313 /*
2314  * Figure out what the alignment of the objects will be.
2315  */
2316 static unsigned long calculate_alignment(unsigned long flags,
2317 		unsigned long align, unsigned long size)
2318 {
2319 	/*
2320 	 * If the user wants hardware cache aligned objects then follow that
2321 	 * suggestion if the object is sufficiently large.
2322 	 *
2323 	 * The hardware cache alignment cannot override the specified
2324 	 * alignment though. If that is greater then use it.
2325 	 */
2326 	if (flags & SLAB_HWCACHE_ALIGN) {
2327 		unsigned long ralign = cache_line_size();
2328 		while (size <= ralign / 2)
2329 			ralign /= 2;
2330 		align = max(align, ralign);
2331 	}
2332 
2333 	if (align < ARCH_SLAB_MINALIGN)
2334 		align = ARCH_SLAB_MINALIGN;
2335 
2336 	return ALIGN(align, sizeof(void *));
2337 }
2338 
2339 static void
2340 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2341 {
2342 	n->nr_partial = 0;
2343 	spin_lock_init(&n->list_lock);
2344 	INIT_LIST_HEAD(&n->partial);
2345 #ifdef CONFIG_SLUB_DEBUG
2346 	atomic_long_set(&n->nr_slabs, 0);
2347 	atomic_long_set(&n->total_objects, 0);
2348 	INIT_LIST_HEAD(&n->full);
2349 #endif
2350 }
2351 
2352 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2353 {
2354 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2355 			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2356 
2357 #ifdef CONFIG_CMPXCHG_LOCAL
2358 	/*
2359 	 * Must align to double word boundary for the double cmpxchg instructions
2360 	 * to work.
2361 	 */
2362 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *));
2363 #else
2364 	/* Regular alignment is sufficient */
2365 	s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2366 #endif
2367 
2368 	if (!s->cpu_slab)
2369 		return 0;
2370 
2371 	init_kmem_cache_cpus(s);
2372 
2373 	return 1;
2374 }
2375 
2376 static struct kmem_cache *kmem_cache_node;
2377 
2378 /*
2379  * No kmalloc_node yet so do it by hand. We know that this is the first
2380  * slab on the node for this slabcache. There are no concurrent accesses
2381  * possible.
2382  *
2383  * Note that this function only works on the kmalloc_node_cache
2384  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2385  * memory on a fresh node that has no slab structures yet.
2386  */
2387 static void early_kmem_cache_node_alloc(int node)
2388 {
2389 	struct page *page;
2390 	struct kmem_cache_node *n;
2391 	unsigned long flags;
2392 
2393 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2394 
2395 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2396 
2397 	BUG_ON(!page);
2398 	if (page_to_nid(page) != node) {
2399 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2400 				"node %d\n", node);
2401 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2402 				"in order to be able to continue\n");
2403 	}
2404 
2405 	n = page->freelist;
2406 	BUG_ON(!n);
2407 	page->freelist = get_freepointer(kmem_cache_node, n);
2408 	page->inuse++;
2409 	kmem_cache_node->node[node] = n;
2410 #ifdef CONFIG_SLUB_DEBUG
2411 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2412 	init_tracking(kmem_cache_node, n);
2413 #endif
2414 	init_kmem_cache_node(n, kmem_cache_node);
2415 	inc_slabs_node(kmem_cache_node, node, page->objects);
2416 
2417 	/*
2418 	 * lockdep requires consistent irq usage for each lock
2419 	 * so even though there cannot be a race this early in
2420 	 * the boot sequence, we still disable irqs.
2421 	 */
2422 	local_irq_save(flags);
2423 	add_partial(n, page, 0);
2424 	local_irq_restore(flags);
2425 }
2426 
2427 static void free_kmem_cache_nodes(struct kmem_cache *s)
2428 {
2429 	int node;
2430 
2431 	for_each_node_state(node, N_NORMAL_MEMORY) {
2432 		struct kmem_cache_node *n = s->node[node];
2433 
2434 		if (n)
2435 			kmem_cache_free(kmem_cache_node, n);
2436 
2437 		s->node[node] = NULL;
2438 	}
2439 }
2440 
2441 static int init_kmem_cache_nodes(struct kmem_cache *s)
2442 {
2443 	int node;
2444 
2445 	for_each_node_state(node, N_NORMAL_MEMORY) {
2446 		struct kmem_cache_node *n;
2447 
2448 		if (slab_state == DOWN) {
2449 			early_kmem_cache_node_alloc(node);
2450 			continue;
2451 		}
2452 		n = kmem_cache_alloc_node(kmem_cache_node,
2453 						GFP_KERNEL, node);
2454 
2455 		if (!n) {
2456 			free_kmem_cache_nodes(s);
2457 			return 0;
2458 		}
2459 
2460 		s->node[node] = n;
2461 		init_kmem_cache_node(n, s);
2462 	}
2463 	return 1;
2464 }
2465 
2466 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2467 {
2468 	if (min < MIN_PARTIAL)
2469 		min = MIN_PARTIAL;
2470 	else if (min > MAX_PARTIAL)
2471 		min = MAX_PARTIAL;
2472 	s->min_partial = min;
2473 }
2474 
2475 /*
2476  * calculate_sizes() determines the order and the distribution of data within
2477  * a slab object.
2478  */
2479 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2480 {
2481 	unsigned long flags = s->flags;
2482 	unsigned long size = s->objsize;
2483 	unsigned long align = s->align;
2484 	int order;
2485 
2486 	/*
2487 	 * Round up object size to the next word boundary. We can only
2488 	 * place the free pointer at word boundaries and this determines
2489 	 * the possible location of the free pointer.
2490 	 */
2491 	size = ALIGN(size, sizeof(void *));
2492 
2493 #ifdef CONFIG_SLUB_DEBUG
2494 	/*
2495 	 * Determine if we can poison the object itself. If the user of
2496 	 * the slab may touch the object after free or before allocation
2497 	 * then we should never poison the object itself.
2498 	 */
2499 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2500 			!s->ctor)
2501 		s->flags |= __OBJECT_POISON;
2502 	else
2503 		s->flags &= ~__OBJECT_POISON;
2504 
2505 
2506 	/*
2507 	 * If we are Redzoning then check if there is some space between the
2508 	 * end of the object and the free pointer. If not then add an
2509 	 * additional word to have some bytes to store Redzone information.
2510 	 */
2511 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2512 		size += sizeof(void *);
2513 #endif
2514 
2515 	/*
2516 	 * With that we have determined the number of bytes in actual use
2517 	 * by the object. This is the potential offset to the free pointer.
2518 	 */
2519 	s->inuse = size;
2520 
2521 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2522 		s->ctor)) {
2523 		/*
2524 		 * Relocate free pointer after the object if it is not
2525 		 * permitted to overwrite the first word of the object on
2526 		 * kmem_cache_free.
2527 		 *
2528 		 * This is the case if we do RCU, have a constructor or
2529 		 * destructor or are poisoning the objects.
2530 		 */
2531 		s->offset = size;
2532 		size += sizeof(void *);
2533 	}
2534 
2535 #ifdef CONFIG_SLUB_DEBUG
2536 	if (flags & SLAB_STORE_USER)
2537 		/*
2538 		 * Need to store information about allocs and frees after
2539 		 * the object.
2540 		 */
2541 		size += 2 * sizeof(struct track);
2542 
2543 	if (flags & SLAB_RED_ZONE)
2544 		/*
2545 		 * Add some empty padding so that we can catch
2546 		 * overwrites from earlier objects rather than let
2547 		 * tracking information or the free pointer be
2548 		 * corrupted if a user writes before the start
2549 		 * of the object.
2550 		 */
2551 		size += sizeof(void *);
2552 #endif
2553 
2554 	/*
2555 	 * Determine the alignment based on various parameters that the
2556 	 * user specified and the dynamic determination of cache line size
2557 	 * on bootup.
2558 	 */
2559 	align = calculate_alignment(flags, align, s->objsize);
2560 	s->align = align;
2561 
2562 	/*
2563 	 * SLUB stores one object immediately after another beginning from
2564 	 * offset 0. In order to align the objects we have to simply size
2565 	 * each object to conform to the alignment.
2566 	 */
2567 	size = ALIGN(size, align);
2568 	s->size = size;
2569 	if (forced_order >= 0)
2570 		order = forced_order;
2571 	else
2572 		order = calculate_order(size, s->reserved);
2573 
2574 	if (order < 0)
2575 		return 0;
2576 
2577 	s->allocflags = 0;
2578 	if (order)
2579 		s->allocflags |= __GFP_COMP;
2580 
2581 	if (s->flags & SLAB_CACHE_DMA)
2582 		s->allocflags |= SLUB_DMA;
2583 
2584 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2585 		s->allocflags |= __GFP_RECLAIMABLE;
2586 
2587 	/*
2588 	 * Determine the number of objects per slab
2589 	 */
2590 	s->oo = oo_make(order, size, s->reserved);
2591 	s->min = oo_make(get_order(size), size, s->reserved);
2592 	if (oo_objects(s->oo) > oo_objects(s->max))
2593 		s->max = s->oo;
2594 
2595 	return !!oo_objects(s->oo);
2596 
2597 }
2598 
2599 static int kmem_cache_open(struct kmem_cache *s,
2600 		const char *name, size_t size,
2601 		size_t align, unsigned long flags,
2602 		void (*ctor)(void *))
2603 {
2604 	memset(s, 0, kmem_size);
2605 	s->name = name;
2606 	s->ctor = ctor;
2607 	s->objsize = size;
2608 	s->align = align;
2609 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2610 	s->reserved = 0;
2611 
2612 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2613 		s->reserved = sizeof(struct rcu_head);
2614 
2615 	if (!calculate_sizes(s, -1))
2616 		goto error;
2617 	if (disable_higher_order_debug) {
2618 		/*
2619 		 * Disable debugging flags that store metadata if the min slab
2620 		 * order increased.
2621 		 */
2622 		if (get_order(s->size) > get_order(s->objsize)) {
2623 			s->flags &= ~DEBUG_METADATA_FLAGS;
2624 			s->offset = 0;
2625 			if (!calculate_sizes(s, -1))
2626 				goto error;
2627 		}
2628 	}
2629 
2630 	/*
2631 	 * The larger the object size is, the more pages we want on the partial
2632 	 * list to avoid pounding the page allocator excessively.
2633 	 */
2634 	set_min_partial(s, ilog2(s->size));
2635 	s->refcount = 1;
2636 #ifdef CONFIG_NUMA
2637 	s->remote_node_defrag_ratio = 1000;
2638 #endif
2639 	if (!init_kmem_cache_nodes(s))
2640 		goto error;
2641 
2642 	if (alloc_kmem_cache_cpus(s))
2643 		return 1;
2644 
2645 	free_kmem_cache_nodes(s);
2646 error:
2647 	if (flags & SLAB_PANIC)
2648 		panic("Cannot create slab %s size=%lu realsize=%u "
2649 			"order=%u offset=%u flags=%lx\n",
2650 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2651 			s->offset, flags);
2652 	return 0;
2653 }
2654 
2655 /*
2656  * Determine the size of a slab object
2657  */
2658 unsigned int kmem_cache_size(struct kmem_cache *s)
2659 {
2660 	return s->objsize;
2661 }
2662 EXPORT_SYMBOL(kmem_cache_size);
2663 
2664 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2665 							const char *text)
2666 {
2667 #ifdef CONFIG_SLUB_DEBUG
2668 	void *addr = page_address(page);
2669 	void *p;
2670 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2671 				     sizeof(long), GFP_ATOMIC);
2672 	if (!map)
2673 		return;
2674 	slab_err(s, page, "%s", text);
2675 	slab_lock(page);
2676 	for_each_free_object(p, s, page->freelist)
2677 		set_bit(slab_index(p, s, addr), map);
2678 
2679 	for_each_object(p, s, addr, page->objects) {
2680 
2681 		if (!test_bit(slab_index(p, s, addr), map)) {
2682 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2683 							p, p - addr);
2684 			print_tracking(s, p);
2685 		}
2686 	}
2687 	slab_unlock(page);
2688 	kfree(map);
2689 #endif
2690 }
2691 
2692 /*
2693  * Attempt to free all partial slabs on a node.
2694  */
2695 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2696 {
2697 	unsigned long flags;
2698 	struct page *page, *h;
2699 
2700 	spin_lock_irqsave(&n->list_lock, flags);
2701 	list_for_each_entry_safe(page, h, &n->partial, lru) {
2702 		if (!page->inuse) {
2703 			__remove_partial(n, page);
2704 			discard_slab(s, page);
2705 		} else {
2706 			list_slab_objects(s, page,
2707 				"Objects remaining on kmem_cache_close()");
2708 		}
2709 	}
2710 	spin_unlock_irqrestore(&n->list_lock, flags);
2711 }
2712 
2713 /*
2714  * Release all resources used by a slab cache.
2715  */
2716 static inline int kmem_cache_close(struct kmem_cache *s)
2717 {
2718 	int node;
2719 
2720 	flush_all(s);
2721 	free_percpu(s->cpu_slab);
2722 	/* Attempt to free all objects */
2723 	for_each_node_state(node, N_NORMAL_MEMORY) {
2724 		struct kmem_cache_node *n = get_node(s, node);
2725 
2726 		free_partial(s, n);
2727 		if (n->nr_partial || slabs_node(s, node))
2728 			return 1;
2729 	}
2730 	free_kmem_cache_nodes(s);
2731 	return 0;
2732 }
2733 
2734 /*
2735  * Close a cache and release the kmem_cache structure
2736  * (must be used for caches created using kmem_cache_create)
2737  */
2738 void kmem_cache_destroy(struct kmem_cache *s)
2739 {
2740 	down_write(&slub_lock);
2741 	s->refcount--;
2742 	if (!s->refcount) {
2743 		list_del(&s->list);
2744 		if (kmem_cache_close(s)) {
2745 			printk(KERN_ERR "SLUB %s: %s called for cache that "
2746 				"still has objects.\n", s->name, __func__);
2747 			dump_stack();
2748 		}
2749 		if (s->flags & SLAB_DESTROY_BY_RCU)
2750 			rcu_barrier();
2751 		sysfs_slab_remove(s);
2752 	}
2753 	up_write(&slub_lock);
2754 }
2755 EXPORT_SYMBOL(kmem_cache_destroy);
2756 
2757 /********************************************************************
2758  *		Kmalloc subsystem
2759  *******************************************************************/
2760 
2761 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2762 EXPORT_SYMBOL(kmalloc_caches);
2763 
2764 static struct kmem_cache *kmem_cache;
2765 
2766 #ifdef CONFIG_ZONE_DMA
2767 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2768 #endif
2769 
2770 static int __init setup_slub_min_order(char *str)
2771 {
2772 	get_option(&str, &slub_min_order);
2773 
2774 	return 1;
2775 }
2776 
2777 __setup("slub_min_order=", setup_slub_min_order);
2778 
2779 static int __init setup_slub_max_order(char *str)
2780 {
2781 	get_option(&str, &slub_max_order);
2782 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2783 
2784 	return 1;
2785 }
2786 
2787 __setup("slub_max_order=", setup_slub_max_order);
2788 
2789 static int __init setup_slub_min_objects(char *str)
2790 {
2791 	get_option(&str, &slub_min_objects);
2792 
2793 	return 1;
2794 }
2795 
2796 __setup("slub_min_objects=", setup_slub_min_objects);
2797 
2798 static int __init setup_slub_nomerge(char *str)
2799 {
2800 	slub_nomerge = 1;
2801 	return 1;
2802 }
2803 
2804 __setup("slub_nomerge", setup_slub_nomerge);
2805 
2806 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2807 						int size, unsigned int flags)
2808 {
2809 	struct kmem_cache *s;
2810 
2811 	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2812 
2813 	/*
2814 	 * This function is called with IRQs disabled during early-boot on
2815 	 * single CPU so there's no need to take slub_lock here.
2816 	 */
2817 	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2818 								flags, NULL))
2819 		goto panic;
2820 
2821 	list_add(&s->list, &slab_caches);
2822 	return s;
2823 
2824 panic:
2825 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2826 	return NULL;
2827 }
2828 
2829 /*
2830  * Conversion table for small slabs sizes / 8 to the index in the
2831  * kmalloc array. This is necessary for slabs < 192 since we have non power
2832  * of two cache sizes there. The size of larger slabs can be determined using
2833  * fls.
2834  */
2835 static s8 size_index[24] = {
2836 	3,	/* 8 */
2837 	4,	/* 16 */
2838 	5,	/* 24 */
2839 	5,	/* 32 */
2840 	6,	/* 40 */
2841 	6,	/* 48 */
2842 	6,	/* 56 */
2843 	6,	/* 64 */
2844 	1,	/* 72 */
2845 	1,	/* 80 */
2846 	1,	/* 88 */
2847 	1,	/* 96 */
2848 	7,	/* 104 */
2849 	7,	/* 112 */
2850 	7,	/* 120 */
2851 	7,	/* 128 */
2852 	2,	/* 136 */
2853 	2,	/* 144 */
2854 	2,	/* 152 */
2855 	2,	/* 160 */
2856 	2,	/* 168 */
2857 	2,	/* 176 */
2858 	2,	/* 184 */
2859 	2	/* 192 */
2860 };
2861 
2862 static inline int size_index_elem(size_t bytes)
2863 {
2864 	return (bytes - 1) / 8;
2865 }
2866 
2867 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2868 {
2869 	int index;
2870 
2871 	if (size <= 192) {
2872 		if (!size)
2873 			return ZERO_SIZE_PTR;
2874 
2875 		index = size_index[size_index_elem(size)];
2876 	} else
2877 		index = fls(size - 1);
2878 
2879 #ifdef CONFIG_ZONE_DMA
2880 	if (unlikely((flags & SLUB_DMA)))
2881 		return kmalloc_dma_caches[index];
2882 
2883 #endif
2884 	return kmalloc_caches[index];
2885 }
2886 
2887 void *__kmalloc(size_t size, gfp_t flags)
2888 {
2889 	struct kmem_cache *s;
2890 	void *ret;
2891 
2892 	if (unlikely(size > SLUB_MAX_SIZE))
2893 		return kmalloc_large(size, flags);
2894 
2895 	s = get_slab(size, flags);
2896 
2897 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2898 		return s;
2899 
2900 	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2901 
2902 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2903 
2904 	return ret;
2905 }
2906 EXPORT_SYMBOL(__kmalloc);
2907 
2908 #ifdef CONFIG_NUMA
2909 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2910 {
2911 	struct page *page;
2912 	void *ptr = NULL;
2913 
2914 	flags |= __GFP_COMP | __GFP_NOTRACK;
2915 	page = alloc_pages_node(node, flags, get_order(size));
2916 	if (page)
2917 		ptr = page_address(page);
2918 
2919 	kmemleak_alloc(ptr, size, 1, flags);
2920 	return ptr;
2921 }
2922 
2923 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2924 {
2925 	struct kmem_cache *s;
2926 	void *ret;
2927 
2928 	if (unlikely(size > SLUB_MAX_SIZE)) {
2929 		ret = kmalloc_large_node(size, flags, node);
2930 
2931 		trace_kmalloc_node(_RET_IP_, ret,
2932 				   size, PAGE_SIZE << get_order(size),
2933 				   flags, node);
2934 
2935 		return ret;
2936 	}
2937 
2938 	s = get_slab(size, flags);
2939 
2940 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2941 		return s;
2942 
2943 	ret = slab_alloc(s, flags, node, _RET_IP_);
2944 
2945 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2946 
2947 	return ret;
2948 }
2949 EXPORT_SYMBOL(__kmalloc_node);
2950 #endif
2951 
2952 size_t ksize(const void *object)
2953 {
2954 	struct page *page;
2955 
2956 	if (unlikely(object == ZERO_SIZE_PTR))
2957 		return 0;
2958 
2959 	page = virt_to_head_page(object);
2960 
2961 	if (unlikely(!PageSlab(page))) {
2962 		WARN_ON(!PageCompound(page));
2963 		return PAGE_SIZE << compound_order(page);
2964 	}
2965 
2966 	return slab_ksize(page->slab);
2967 }
2968 EXPORT_SYMBOL(ksize);
2969 
2970 void kfree(const void *x)
2971 {
2972 	struct page *page;
2973 	void *object = (void *)x;
2974 
2975 	trace_kfree(_RET_IP_, x);
2976 
2977 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2978 		return;
2979 
2980 	page = virt_to_head_page(x);
2981 	if (unlikely(!PageSlab(page))) {
2982 		BUG_ON(!PageCompound(page));
2983 		kmemleak_free(x);
2984 		put_page(page);
2985 		return;
2986 	}
2987 	slab_free(page->slab, page, object, _RET_IP_);
2988 }
2989 EXPORT_SYMBOL(kfree);
2990 
2991 /*
2992  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2993  * the remaining slabs by the number of items in use. The slabs with the
2994  * most items in use come first. New allocations will then fill those up
2995  * and thus they can be removed from the partial lists.
2996  *
2997  * The slabs with the least items are placed last. This results in them
2998  * being allocated from last increasing the chance that the last objects
2999  * are freed in them.
3000  */
3001 int kmem_cache_shrink(struct kmem_cache *s)
3002 {
3003 	int node;
3004 	int i;
3005 	struct kmem_cache_node *n;
3006 	struct page *page;
3007 	struct page *t;
3008 	int objects = oo_objects(s->max);
3009 	struct list_head *slabs_by_inuse =
3010 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3011 	unsigned long flags;
3012 
3013 	if (!slabs_by_inuse)
3014 		return -ENOMEM;
3015 
3016 	flush_all(s);
3017 	for_each_node_state(node, N_NORMAL_MEMORY) {
3018 		n = get_node(s, node);
3019 
3020 		if (!n->nr_partial)
3021 			continue;
3022 
3023 		for (i = 0; i < objects; i++)
3024 			INIT_LIST_HEAD(slabs_by_inuse + i);
3025 
3026 		spin_lock_irqsave(&n->list_lock, flags);
3027 
3028 		/*
3029 		 * Build lists indexed by the items in use in each slab.
3030 		 *
3031 		 * Note that concurrent frees may occur while we hold the
3032 		 * list_lock. page->inuse here is the upper limit.
3033 		 */
3034 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3035 			if (!page->inuse && slab_trylock(page)) {
3036 				/*
3037 				 * Must hold slab lock here because slab_free
3038 				 * may have freed the last object and be
3039 				 * waiting to release the slab.
3040 				 */
3041 				__remove_partial(n, page);
3042 				slab_unlock(page);
3043 				discard_slab(s, page);
3044 			} else {
3045 				list_move(&page->lru,
3046 				slabs_by_inuse + page->inuse);
3047 			}
3048 		}
3049 
3050 		/*
3051 		 * Rebuild the partial list with the slabs filled up most
3052 		 * first and the least used slabs at the end.
3053 		 */
3054 		for (i = objects - 1; i >= 0; i--)
3055 			list_splice(slabs_by_inuse + i, n->partial.prev);
3056 
3057 		spin_unlock_irqrestore(&n->list_lock, flags);
3058 	}
3059 
3060 	kfree(slabs_by_inuse);
3061 	return 0;
3062 }
3063 EXPORT_SYMBOL(kmem_cache_shrink);
3064 
3065 #if defined(CONFIG_MEMORY_HOTPLUG)
3066 static int slab_mem_going_offline_callback(void *arg)
3067 {
3068 	struct kmem_cache *s;
3069 
3070 	down_read(&slub_lock);
3071 	list_for_each_entry(s, &slab_caches, list)
3072 		kmem_cache_shrink(s);
3073 	up_read(&slub_lock);
3074 
3075 	return 0;
3076 }
3077 
3078 static void slab_mem_offline_callback(void *arg)
3079 {
3080 	struct kmem_cache_node *n;
3081 	struct kmem_cache *s;
3082 	struct memory_notify *marg = arg;
3083 	int offline_node;
3084 
3085 	offline_node = marg->status_change_nid;
3086 
3087 	/*
3088 	 * If the node still has available memory. we need kmem_cache_node
3089 	 * for it yet.
3090 	 */
3091 	if (offline_node < 0)
3092 		return;
3093 
3094 	down_read(&slub_lock);
3095 	list_for_each_entry(s, &slab_caches, list) {
3096 		n = get_node(s, offline_node);
3097 		if (n) {
3098 			/*
3099 			 * if n->nr_slabs > 0, slabs still exist on the node
3100 			 * that is going down. We were unable to free them,
3101 			 * and offline_pages() function shouldn't call this
3102 			 * callback. So, we must fail.
3103 			 */
3104 			BUG_ON(slabs_node(s, offline_node));
3105 
3106 			s->node[offline_node] = NULL;
3107 			kmem_cache_free(kmem_cache_node, n);
3108 		}
3109 	}
3110 	up_read(&slub_lock);
3111 }
3112 
3113 static int slab_mem_going_online_callback(void *arg)
3114 {
3115 	struct kmem_cache_node *n;
3116 	struct kmem_cache *s;
3117 	struct memory_notify *marg = arg;
3118 	int nid = marg->status_change_nid;
3119 	int ret = 0;
3120 
3121 	/*
3122 	 * If the node's memory is already available, then kmem_cache_node is
3123 	 * already created. Nothing to do.
3124 	 */
3125 	if (nid < 0)
3126 		return 0;
3127 
3128 	/*
3129 	 * We are bringing a node online. No memory is available yet. We must
3130 	 * allocate a kmem_cache_node structure in order to bring the node
3131 	 * online.
3132 	 */
3133 	down_read(&slub_lock);
3134 	list_for_each_entry(s, &slab_caches, list) {
3135 		/*
3136 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3137 		 *      since memory is not yet available from the node that
3138 		 *      is brought up.
3139 		 */
3140 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3141 		if (!n) {
3142 			ret = -ENOMEM;
3143 			goto out;
3144 		}
3145 		init_kmem_cache_node(n, s);
3146 		s->node[nid] = n;
3147 	}
3148 out:
3149 	up_read(&slub_lock);
3150 	return ret;
3151 }
3152 
3153 static int slab_memory_callback(struct notifier_block *self,
3154 				unsigned long action, void *arg)
3155 {
3156 	int ret = 0;
3157 
3158 	switch (action) {
3159 	case MEM_GOING_ONLINE:
3160 		ret = slab_mem_going_online_callback(arg);
3161 		break;
3162 	case MEM_GOING_OFFLINE:
3163 		ret = slab_mem_going_offline_callback(arg);
3164 		break;
3165 	case MEM_OFFLINE:
3166 	case MEM_CANCEL_ONLINE:
3167 		slab_mem_offline_callback(arg);
3168 		break;
3169 	case MEM_ONLINE:
3170 	case MEM_CANCEL_OFFLINE:
3171 		break;
3172 	}
3173 	if (ret)
3174 		ret = notifier_from_errno(ret);
3175 	else
3176 		ret = NOTIFY_OK;
3177 	return ret;
3178 }
3179 
3180 #endif /* CONFIG_MEMORY_HOTPLUG */
3181 
3182 /********************************************************************
3183  *			Basic setup of slabs
3184  *******************************************************************/
3185 
3186 /*
3187  * Used for early kmem_cache structures that were allocated using
3188  * the page allocator
3189  */
3190 
3191 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3192 {
3193 	int node;
3194 
3195 	list_add(&s->list, &slab_caches);
3196 	s->refcount = -1;
3197 
3198 	for_each_node_state(node, N_NORMAL_MEMORY) {
3199 		struct kmem_cache_node *n = get_node(s, node);
3200 		struct page *p;
3201 
3202 		if (n) {
3203 			list_for_each_entry(p, &n->partial, lru)
3204 				p->slab = s;
3205 
3206 #ifdef CONFIG_SLAB_DEBUG
3207 			list_for_each_entry(p, &n->full, lru)
3208 				p->slab = s;
3209 #endif
3210 		}
3211 	}
3212 }
3213 
3214 void __init kmem_cache_init(void)
3215 {
3216 	int i;
3217 	int caches = 0;
3218 	struct kmem_cache *temp_kmem_cache;
3219 	int order;
3220 	struct kmem_cache *temp_kmem_cache_node;
3221 	unsigned long kmalloc_size;
3222 
3223 	kmem_size = offsetof(struct kmem_cache, node) +
3224 				nr_node_ids * sizeof(struct kmem_cache_node *);
3225 
3226 	/* Allocate two kmem_caches from the page allocator */
3227 	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3228 	order = get_order(2 * kmalloc_size);
3229 	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3230 
3231 	/*
3232 	 * Must first have the slab cache available for the allocations of the
3233 	 * struct kmem_cache_node's. There is special bootstrap code in
3234 	 * kmem_cache_open for slab_state == DOWN.
3235 	 */
3236 	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3237 
3238 	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3239 		sizeof(struct kmem_cache_node),
3240 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3241 
3242 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3243 
3244 	/* Able to allocate the per node structures */
3245 	slab_state = PARTIAL;
3246 
3247 	temp_kmem_cache = kmem_cache;
3248 	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3249 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3250 	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3251 	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3252 
3253 	/*
3254 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3255 	 * kmem_cache_node is separately allocated so no need to
3256 	 * update any list pointers.
3257 	 */
3258 	temp_kmem_cache_node = kmem_cache_node;
3259 
3260 	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3261 	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3262 
3263 	kmem_cache_bootstrap_fixup(kmem_cache_node);
3264 
3265 	caches++;
3266 	kmem_cache_bootstrap_fixup(kmem_cache);
3267 	caches++;
3268 	/* Free temporary boot structure */
3269 	free_pages((unsigned long)temp_kmem_cache, order);
3270 
3271 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3272 
3273 	/*
3274 	 * Patch up the size_index table if we have strange large alignment
3275 	 * requirements for the kmalloc array. This is only the case for
3276 	 * MIPS it seems. The standard arches will not generate any code here.
3277 	 *
3278 	 * Largest permitted alignment is 256 bytes due to the way we
3279 	 * handle the index determination for the smaller caches.
3280 	 *
3281 	 * Make sure that nothing crazy happens if someone starts tinkering
3282 	 * around with ARCH_KMALLOC_MINALIGN
3283 	 */
3284 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3285 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3286 
3287 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3288 		int elem = size_index_elem(i);
3289 		if (elem >= ARRAY_SIZE(size_index))
3290 			break;
3291 		size_index[elem] = KMALLOC_SHIFT_LOW;
3292 	}
3293 
3294 	if (KMALLOC_MIN_SIZE == 64) {
3295 		/*
3296 		 * The 96 byte size cache is not used if the alignment
3297 		 * is 64 byte.
3298 		 */
3299 		for (i = 64 + 8; i <= 96; i += 8)
3300 			size_index[size_index_elem(i)] = 7;
3301 	} else if (KMALLOC_MIN_SIZE == 128) {
3302 		/*
3303 		 * The 192 byte sized cache is not used if the alignment
3304 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3305 		 * instead.
3306 		 */
3307 		for (i = 128 + 8; i <= 192; i += 8)
3308 			size_index[size_index_elem(i)] = 8;
3309 	}
3310 
3311 	/* Caches that are not of the two-to-the-power-of size */
3312 	if (KMALLOC_MIN_SIZE <= 32) {
3313 		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3314 		caches++;
3315 	}
3316 
3317 	if (KMALLOC_MIN_SIZE <= 64) {
3318 		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3319 		caches++;
3320 	}
3321 
3322 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3323 		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3324 		caches++;
3325 	}
3326 
3327 	slab_state = UP;
3328 
3329 	/* Provide the correct kmalloc names now that the caches are up */
3330 	if (KMALLOC_MIN_SIZE <= 32) {
3331 		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3332 		BUG_ON(!kmalloc_caches[1]->name);
3333 	}
3334 
3335 	if (KMALLOC_MIN_SIZE <= 64) {
3336 		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3337 		BUG_ON(!kmalloc_caches[2]->name);
3338 	}
3339 
3340 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3341 		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3342 
3343 		BUG_ON(!s);
3344 		kmalloc_caches[i]->name = s;
3345 	}
3346 
3347 #ifdef CONFIG_SMP
3348 	register_cpu_notifier(&slab_notifier);
3349 #endif
3350 
3351 #ifdef CONFIG_ZONE_DMA
3352 	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3353 		struct kmem_cache *s = kmalloc_caches[i];
3354 
3355 		if (s && s->size) {
3356 			char *name = kasprintf(GFP_NOWAIT,
3357 				 "dma-kmalloc-%d", s->objsize);
3358 
3359 			BUG_ON(!name);
3360 			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3361 				s->objsize, SLAB_CACHE_DMA);
3362 		}
3363 	}
3364 #endif
3365 	printk(KERN_INFO
3366 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3367 		" CPUs=%d, Nodes=%d\n",
3368 		caches, cache_line_size(),
3369 		slub_min_order, slub_max_order, slub_min_objects,
3370 		nr_cpu_ids, nr_node_ids);
3371 }
3372 
3373 void __init kmem_cache_init_late(void)
3374 {
3375 }
3376 
3377 /*
3378  * Find a mergeable slab cache
3379  */
3380 static int slab_unmergeable(struct kmem_cache *s)
3381 {
3382 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3383 		return 1;
3384 
3385 	if (s->ctor)
3386 		return 1;
3387 
3388 	/*
3389 	 * We may have set a slab to be unmergeable during bootstrap.
3390 	 */
3391 	if (s->refcount < 0)
3392 		return 1;
3393 
3394 	return 0;
3395 }
3396 
3397 static struct kmem_cache *find_mergeable(size_t size,
3398 		size_t align, unsigned long flags, const char *name,
3399 		void (*ctor)(void *))
3400 {
3401 	struct kmem_cache *s;
3402 
3403 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3404 		return NULL;
3405 
3406 	if (ctor)
3407 		return NULL;
3408 
3409 	size = ALIGN(size, sizeof(void *));
3410 	align = calculate_alignment(flags, align, size);
3411 	size = ALIGN(size, align);
3412 	flags = kmem_cache_flags(size, flags, name, NULL);
3413 
3414 	list_for_each_entry(s, &slab_caches, list) {
3415 		if (slab_unmergeable(s))
3416 			continue;
3417 
3418 		if (size > s->size)
3419 			continue;
3420 
3421 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3422 				continue;
3423 		/*
3424 		 * Check if alignment is compatible.
3425 		 * Courtesy of Adrian Drzewiecki
3426 		 */
3427 		if ((s->size & ~(align - 1)) != s->size)
3428 			continue;
3429 
3430 		if (s->size - size >= sizeof(void *))
3431 			continue;
3432 
3433 		return s;
3434 	}
3435 	return NULL;
3436 }
3437 
3438 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3439 		size_t align, unsigned long flags, void (*ctor)(void *))
3440 {
3441 	struct kmem_cache *s;
3442 	char *n;
3443 
3444 	if (WARN_ON(!name))
3445 		return NULL;
3446 
3447 	down_write(&slub_lock);
3448 	s = find_mergeable(size, align, flags, name, ctor);
3449 	if (s) {
3450 		s->refcount++;
3451 		/*
3452 		 * Adjust the object sizes so that we clear
3453 		 * the complete object on kzalloc.
3454 		 */
3455 		s->objsize = max(s->objsize, (int)size);
3456 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3457 
3458 		if (sysfs_slab_alias(s, name)) {
3459 			s->refcount--;
3460 			goto err;
3461 		}
3462 		up_write(&slub_lock);
3463 		return s;
3464 	}
3465 
3466 	n = kstrdup(name, GFP_KERNEL);
3467 	if (!n)
3468 		goto err;
3469 
3470 	s = kmalloc(kmem_size, GFP_KERNEL);
3471 	if (s) {
3472 		if (kmem_cache_open(s, n,
3473 				size, align, flags, ctor)) {
3474 			list_add(&s->list, &slab_caches);
3475 			if (sysfs_slab_add(s)) {
3476 				list_del(&s->list);
3477 				kfree(n);
3478 				kfree(s);
3479 				goto err;
3480 			}
3481 			up_write(&slub_lock);
3482 			return s;
3483 		}
3484 		kfree(n);
3485 		kfree(s);
3486 	}
3487 err:
3488 	up_write(&slub_lock);
3489 
3490 	if (flags & SLAB_PANIC)
3491 		panic("Cannot create slabcache %s\n", name);
3492 	else
3493 		s = NULL;
3494 	return s;
3495 }
3496 EXPORT_SYMBOL(kmem_cache_create);
3497 
3498 #ifdef CONFIG_SMP
3499 /*
3500  * Use the cpu notifier to insure that the cpu slabs are flushed when
3501  * necessary.
3502  */
3503 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3504 		unsigned long action, void *hcpu)
3505 {
3506 	long cpu = (long)hcpu;
3507 	struct kmem_cache *s;
3508 	unsigned long flags;
3509 
3510 	switch (action) {
3511 	case CPU_UP_CANCELED:
3512 	case CPU_UP_CANCELED_FROZEN:
3513 	case CPU_DEAD:
3514 	case CPU_DEAD_FROZEN:
3515 		down_read(&slub_lock);
3516 		list_for_each_entry(s, &slab_caches, list) {
3517 			local_irq_save(flags);
3518 			__flush_cpu_slab(s, cpu);
3519 			local_irq_restore(flags);
3520 		}
3521 		up_read(&slub_lock);
3522 		break;
3523 	default:
3524 		break;
3525 	}
3526 	return NOTIFY_OK;
3527 }
3528 
3529 static struct notifier_block __cpuinitdata slab_notifier = {
3530 	.notifier_call = slab_cpuup_callback
3531 };
3532 
3533 #endif
3534 
3535 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3536 {
3537 	struct kmem_cache *s;
3538 	void *ret;
3539 
3540 	if (unlikely(size > SLUB_MAX_SIZE))
3541 		return kmalloc_large(size, gfpflags);
3542 
3543 	s = get_slab(size, gfpflags);
3544 
3545 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3546 		return s;
3547 
3548 	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3549 
3550 	/* Honor the call site pointer we recieved. */
3551 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3552 
3553 	return ret;
3554 }
3555 
3556 #ifdef CONFIG_NUMA
3557 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3558 					int node, unsigned long caller)
3559 {
3560 	struct kmem_cache *s;
3561 	void *ret;
3562 
3563 	if (unlikely(size > SLUB_MAX_SIZE)) {
3564 		ret = kmalloc_large_node(size, gfpflags, node);
3565 
3566 		trace_kmalloc_node(caller, ret,
3567 				   size, PAGE_SIZE << get_order(size),
3568 				   gfpflags, node);
3569 
3570 		return ret;
3571 	}
3572 
3573 	s = get_slab(size, gfpflags);
3574 
3575 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3576 		return s;
3577 
3578 	ret = slab_alloc(s, gfpflags, node, caller);
3579 
3580 	/* Honor the call site pointer we recieved. */
3581 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3582 
3583 	return ret;
3584 }
3585 #endif
3586 
3587 #ifdef CONFIG_SYSFS
3588 static int count_inuse(struct page *page)
3589 {
3590 	return page->inuse;
3591 }
3592 
3593 static int count_total(struct page *page)
3594 {
3595 	return page->objects;
3596 }
3597 #endif
3598 
3599 #ifdef CONFIG_SLUB_DEBUG
3600 static int validate_slab(struct kmem_cache *s, struct page *page,
3601 						unsigned long *map)
3602 {
3603 	void *p;
3604 	void *addr = page_address(page);
3605 
3606 	if (!check_slab(s, page) ||
3607 			!on_freelist(s, page, NULL))
3608 		return 0;
3609 
3610 	/* Now we know that a valid freelist exists */
3611 	bitmap_zero(map, page->objects);
3612 
3613 	for_each_free_object(p, s, page->freelist) {
3614 		set_bit(slab_index(p, s, addr), map);
3615 		if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3616 			return 0;
3617 	}
3618 
3619 	for_each_object(p, s, addr, page->objects)
3620 		if (!test_bit(slab_index(p, s, addr), map))
3621 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3622 				return 0;
3623 	return 1;
3624 }
3625 
3626 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3627 						unsigned long *map)
3628 {
3629 	if (slab_trylock(page)) {
3630 		validate_slab(s, page, map);
3631 		slab_unlock(page);
3632 	} else
3633 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3634 			s->name, page);
3635 }
3636 
3637 static int validate_slab_node(struct kmem_cache *s,
3638 		struct kmem_cache_node *n, unsigned long *map)
3639 {
3640 	unsigned long count = 0;
3641 	struct page *page;
3642 	unsigned long flags;
3643 
3644 	spin_lock_irqsave(&n->list_lock, flags);
3645 
3646 	list_for_each_entry(page, &n->partial, lru) {
3647 		validate_slab_slab(s, page, map);
3648 		count++;
3649 	}
3650 	if (count != n->nr_partial)
3651 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3652 			"counter=%ld\n", s->name, count, n->nr_partial);
3653 
3654 	if (!(s->flags & SLAB_STORE_USER))
3655 		goto out;
3656 
3657 	list_for_each_entry(page, &n->full, lru) {
3658 		validate_slab_slab(s, page, map);
3659 		count++;
3660 	}
3661 	if (count != atomic_long_read(&n->nr_slabs))
3662 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3663 			"counter=%ld\n", s->name, count,
3664 			atomic_long_read(&n->nr_slabs));
3665 
3666 out:
3667 	spin_unlock_irqrestore(&n->list_lock, flags);
3668 	return count;
3669 }
3670 
3671 static long validate_slab_cache(struct kmem_cache *s)
3672 {
3673 	int node;
3674 	unsigned long count = 0;
3675 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3676 				sizeof(unsigned long), GFP_KERNEL);
3677 
3678 	if (!map)
3679 		return -ENOMEM;
3680 
3681 	flush_all(s);
3682 	for_each_node_state(node, N_NORMAL_MEMORY) {
3683 		struct kmem_cache_node *n = get_node(s, node);
3684 
3685 		count += validate_slab_node(s, n, map);
3686 	}
3687 	kfree(map);
3688 	return count;
3689 }
3690 /*
3691  * Generate lists of code addresses where slabcache objects are allocated
3692  * and freed.
3693  */
3694 
3695 struct location {
3696 	unsigned long count;
3697 	unsigned long addr;
3698 	long long sum_time;
3699 	long min_time;
3700 	long max_time;
3701 	long min_pid;
3702 	long max_pid;
3703 	DECLARE_BITMAP(cpus, NR_CPUS);
3704 	nodemask_t nodes;
3705 };
3706 
3707 struct loc_track {
3708 	unsigned long max;
3709 	unsigned long count;
3710 	struct location *loc;
3711 };
3712 
3713 static void free_loc_track(struct loc_track *t)
3714 {
3715 	if (t->max)
3716 		free_pages((unsigned long)t->loc,
3717 			get_order(sizeof(struct location) * t->max));
3718 }
3719 
3720 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3721 {
3722 	struct location *l;
3723 	int order;
3724 
3725 	order = get_order(sizeof(struct location) * max);
3726 
3727 	l = (void *)__get_free_pages(flags, order);
3728 	if (!l)
3729 		return 0;
3730 
3731 	if (t->count) {
3732 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3733 		free_loc_track(t);
3734 	}
3735 	t->max = max;
3736 	t->loc = l;
3737 	return 1;
3738 }
3739 
3740 static int add_location(struct loc_track *t, struct kmem_cache *s,
3741 				const struct track *track)
3742 {
3743 	long start, end, pos;
3744 	struct location *l;
3745 	unsigned long caddr;
3746 	unsigned long age = jiffies - track->when;
3747 
3748 	start = -1;
3749 	end = t->count;
3750 
3751 	for ( ; ; ) {
3752 		pos = start + (end - start + 1) / 2;
3753 
3754 		/*
3755 		 * There is nothing at "end". If we end up there
3756 		 * we need to add something to before end.
3757 		 */
3758 		if (pos == end)
3759 			break;
3760 
3761 		caddr = t->loc[pos].addr;
3762 		if (track->addr == caddr) {
3763 
3764 			l = &t->loc[pos];
3765 			l->count++;
3766 			if (track->when) {
3767 				l->sum_time += age;
3768 				if (age < l->min_time)
3769 					l->min_time = age;
3770 				if (age > l->max_time)
3771 					l->max_time = age;
3772 
3773 				if (track->pid < l->min_pid)
3774 					l->min_pid = track->pid;
3775 				if (track->pid > l->max_pid)
3776 					l->max_pid = track->pid;
3777 
3778 				cpumask_set_cpu(track->cpu,
3779 						to_cpumask(l->cpus));
3780 			}
3781 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3782 			return 1;
3783 		}
3784 
3785 		if (track->addr < caddr)
3786 			end = pos;
3787 		else
3788 			start = pos;
3789 	}
3790 
3791 	/*
3792 	 * Not found. Insert new tracking element.
3793 	 */
3794 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3795 		return 0;
3796 
3797 	l = t->loc + pos;
3798 	if (pos < t->count)
3799 		memmove(l + 1, l,
3800 			(t->count - pos) * sizeof(struct location));
3801 	t->count++;
3802 	l->count = 1;
3803 	l->addr = track->addr;
3804 	l->sum_time = age;
3805 	l->min_time = age;
3806 	l->max_time = age;
3807 	l->min_pid = track->pid;
3808 	l->max_pid = track->pid;
3809 	cpumask_clear(to_cpumask(l->cpus));
3810 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3811 	nodes_clear(l->nodes);
3812 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3813 	return 1;
3814 }
3815 
3816 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3817 		struct page *page, enum track_item alloc,
3818 		unsigned long *map)
3819 {
3820 	void *addr = page_address(page);
3821 	void *p;
3822 
3823 	bitmap_zero(map, page->objects);
3824 	for_each_free_object(p, s, page->freelist)
3825 		set_bit(slab_index(p, s, addr), map);
3826 
3827 	for_each_object(p, s, addr, page->objects)
3828 		if (!test_bit(slab_index(p, s, addr), map))
3829 			add_location(t, s, get_track(s, p, alloc));
3830 }
3831 
3832 static int list_locations(struct kmem_cache *s, char *buf,
3833 					enum track_item alloc)
3834 {
3835 	int len = 0;
3836 	unsigned long i;
3837 	struct loc_track t = { 0, 0, NULL };
3838 	int node;
3839 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3840 				     sizeof(unsigned long), GFP_KERNEL);
3841 
3842 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3843 				     GFP_TEMPORARY)) {
3844 		kfree(map);
3845 		return sprintf(buf, "Out of memory\n");
3846 	}
3847 	/* Push back cpu slabs */
3848 	flush_all(s);
3849 
3850 	for_each_node_state(node, N_NORMAL_MEMORY) {
3851 		struct kmem_cache_node *n = get_node(s, node);
3852 		unsigned long flags;
3853 		struct page *page;
3854 
3855 		if (!atomic_long_read(&n->nr_slabs))
3856 			continue;
3857 
3858 		spin_lock_irqsave(&n->list_lock, flags);
3859 		list_for_each_entry(page, &n->partial, lru)
3860 			process_slab(&t, s, page, alloc, map);
3861 		list_for_each_entry(page, &n->full, lru)
3862 			process_slab(&t, s, page, alloc, map);
3863 		spin_unlock_irqrestore(&n->list_lock, flags);
3864 	}
3865 
3866 	for (i = 0; i < t.count; i++) {
3867 		struct location *l = &t.loc[i];
3868 
3869 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3870 			break;
3871 		len += sprintf(buf + len, "%7ld ", l->count);
3872 
3873 		if (l->addr)
3874 			len += sprintf(buf + len, "%pS", (void *)l->addr);
3875 		else
3876 			len += sprintf(buf + len, "<not-available>");
3877 
3878 		if (l->sum_time != l->min_time) {
3879 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3880 				l->min_time,
3881 				(long)div_u64(l->sum_time, l->count),
3882 				l->max_time);
3883 		} else
3884 			len += sprintf(buf + len, " age=%ld",
3885 				l->min_time);
3886 
3887 		if (l->min_pid != l->max_pid)
3888 			len += sprintf(buf + len, " pid=%ld-%ld",
3889 				l->min_pid, l->max_pid);
3890 		else
3891 			len += sprintf(buf + len, " pid=%ld",
3892 				l->min_pid);
3893 
3894 		if (num_online_cpus() > 1 &&
3895 				!cpumask_empty(to_cpumask(l->cpus)) &&
3896 				len < PAGE_SIZE - 60) {
3897 			len += sprintf(buf + len, " cpus=");
3898 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3899 						 to_cpumask(l->cpus));
3900 		}
3901 
3902 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3903 				len < PAGE_SIZE - 60) {
3904 			len += sprintf(buf + len, " nodes=");
3905 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3906 					l->nodes);
3907 		}
3908 
3909 		len += sprintf(buf + len, "\n");
3910 	}
3911 
3912 	free_loc_track(&t);
3913 	kfree(map);
3914 	if (!t.count)
3915 		len += sprintf(buf, "No data\n");
3916 	return len;
3917 }
3918 #endif
3919 
3920 #ifdef SLUB_RESILIENCY_TEST
3921 static void resiliency_test(void)
3922 {
3923 	u8 *p;
3924 
3925 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3926 
3927 	printk(KERN_ERR "SLUB resiliency testing\n");
3928 	printk(KERN_ERR "-----------------------\n");
3929 	printk(KERN_ERR "A. Corruption after allocation\n");
3930 
3931 	p = kzalloc(16, GFP_KERNEL);
3932 	p[16] = 0x12;
3933 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3934 			" 0x12->0x%p\n\n", p + 16);
3935 
3936 	validate_slab_cache(kmalloc_caches[4]);
3937 
3938 	/* Hmmm... The next two are dangerous */
3939 	p = kzalloc(32, GFP_KERNEL);
3940 	p[32 + sizeof(void *)] = 0x34;
3941 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3942 			" 0x34 -> -0x%p\n", p);
3943 	printk(KERN_ERR
3944 		"If allocated object is overwritten then not detectable\n\n");
3945 
3946 	validate_slab_cache(kmalloc_caches[5]);
3947 	p = kzalloc(64, GFP_KERNEL);
3948 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3949 	*p = 0x56;
3950 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3951 									p);
3952 	printk(KERN_ERR
3953 		"If allocated object is overwritten then not detectable\n\n");
3954 	validate_slab_cache(kmalloc_caches[6]);
3955 
3956 	printk(KERN_ERR "\nB. Corruption after free\n");
3957 	p = kzalloc(128, GFP_KERNEL);
3958 	kfree(p);
3959 	*p = 0x78;
3960 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3961 	validate_slab_cache(kmalloc_caches[7]);
3962 
3963 	p = kzalloc(256, GFP_KERNEL);
3964 	kfree(p);
3965 	p[50] = 0x9a;
3966 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3967 			p);
3968 	validate_slab_cache(kmalloc_caches[8]);
3969 
3970 	p = kzalloc(512, GFP_KERNEL);
3971 	kfree(p);
3972 	p[512] = 0xab;
3973 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3974 	validate_slab_cache(kmalloc_caches[9]);
3975 }
3976 #else
3977 #ifdef CONFIG_SYSFS
3978 static void resiliency_test(void) {};
3979 #endif
3980 #endif
3981 
3982 #ifdef CONFIG_SYSFS
3983 enum slab_stat_type {
3984 	SL_ALL,			/* All slabs */
3985 	SL_PARTIAL,		/* Only partially allocated slabs */
3986 	SL_CPU,			/* Only slabs used for cpu caches */
3987 	SL_OBJECTS,		/* Determine allocated objects not slabs */
3988 	SL_TOTAL		/* Determine object capacity not slabs */
3989 };
3990 
3991 #define SO_ALL		(1 << SL_ALL)
3992 #define SO_PARTIAL	(1 << SL_PARTIAL)
3993 #define SO_CPU		(1 << SL_CPU)
3994 #define SO_OBJECTS	(1 << SL_OBJECTS)
3995 #define SO_TOTAL	(1 << SL_TOTAL)
3996 
3997 static ssize_t show_slab_objects(struct kmem_cache *s,
3998 			    char *buf, unsigned long flags)
3999 {
4000 	unsigned long total = 0;
4001 	int node;
4002 	int x;
4003 	unsigned long *nodes;
4004 	unsigned long *per_cpu;
4005 
4006 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4007 	if (!nodes)
4008 		return -ENOMEM;
4009 	per_cpu = nodes + nr_node_ids;
4010 
4011 	if (flags & SO_CPU) {
4012 		int cpu;
4013 
4014 		for_each_possible_cpu(cpu) {
4015 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4016 
4017 			if (!c || c->node < 0)
4018 				continue;
4019 
4020 			if (c->page) {
4021 					if (flags & SO_TOTAL)
4022 						x = c->page->objects;
4023 				else if (flags & SO_OBJECTS)
4024 					x = c->page->inuse;
4025 				else
4026 					x = 1;
4027 
4028 				total += x;
4029 				nodes[c->node] += x;
4030 			}
4031 			per_cpu[c->node]++;
4032 		}
4033 	}
4034 
4035 	lock_memory_hotplug();
4036 #ifdef CONFIG_SLUB_DEBUG
4037 	if (flags & SO_ALL) {
4038 		for_each_node_state(node, N_NORMAL_MEMORY) {
4039 			struct kmem_cache_node *n = get_node(s, node);
4040 
4041 		if (flags & SO_TOTAL)
4042 			x = atomic_long_read(&n->total_objects);
4043 		else if (flags & SO_OBJECTS)
4044 			x = atomic_long_read(&n->total_objects) -
4045 				count_partial(n, count_free);
4046 
4047 			else
4048 				x = atomic_long_read(&n->nr_slabs);
4049 			total += x;
4050 			nodes[node] += x;
4051 		}
4052 
4053 	} else
4054 #endif
4055 	if (flags & SO_PARTIAL) {
4056 		for_each_node_state(node, N_NORMAL_MEMORY) {
4057 			struct kmem_cache_node *n = get_node(s, node);
4058 
4059 			if (flags & SO_TOTAL)
4060 				x = count_partial(n, count_total);
4061 			else if (flags & SO_OBJECTS)
4062 				x = count_partial(n, count_inuse);
4063 			else
4064 				x = n->nr_partial;
4065 			total += x;
4066 			nodes[node] += x;
4067 		}
4068 	}
4069 	x = sprintf(buf, "%lu", total);
4070 #ifdef CONFIG_NUMA
4071 	for_each_node_state(node, N_NORMAL_MEMORY)
4072 		if (nodes[node])
4073 			x += sprintf(buf + x, " N%d=%lu",
4074 					node, nodes[node]);
4075 #endif
4076 	unlock_memory_hotplug();
4077 	kfree(nodes);
4078 	return x + sprintf(buf + x, "\n");
4079 }
4080 
4081 #ifdef CONFIG_SLUB_DEBUG
4082 static int any_slab_objects(struct kmem_cache *s)
4083 {
4084 	int node;
4085 
4086 	for_each_online_node(node) {
4087 		struct kmem_cache_node *n = get_node(s, node);
4088 
4089 		if (!n)
4090 			continue;
4091 
4092 		if (atomic_long_read(&n->total_objects))
4093 			return 1;
4094 	}
4095 	return 0;
4096 }
4097 #endif
4098 
4099 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4100 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
4101 
4102 struct slab_attribute {
4103 	struct attribute attr;
4104 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4105 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4106 };
4107 
4108 #define SLAB_ATTR_RO(_name) \
4109 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4110 
4111 #define SLAB_ATTR(_name) \
4112 	static struct slab_attribute _name##_attr =  \
4113 	__ATTR(_name, 0644, _name##_show, _name##_store)
4114 
4115 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4116 {
4117 	return sprintf(buf, "%d\n", s->size);
4118 }
4119 SLAB_ATTR_RO(slab_size);
4120 
4121 static ssize_t align_show(struct kmem_cache *s, char *buf)
4122 {
4123 	return sprintf(buf, "%d\n", s->align);
4124 }
4125 SLAB_ATTR_RO(align);
4126 
4127 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4128 {
4129 	return sprintf(buf, "%d\n", s->objsize);
4130 }
4131 SLAB_ATTR_RO(object_size);
4132 
4133 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4134 {
4135 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4136 }
4137 SLAB_ATTR_RO(objs_per_slab);
4138 
4139 static ssize_t order_store(struct kmem_cache *s,
4140 				const char *buf, size_t length)
4141 {
4142 	unsigned long order;
4143 	int err;
4144 
4145 	err = strict_strtoul(buf, 10, &order);
4146 	if (err)
4147 		return err;
4148 
4149 	if (order > slub_max_order || order < slub_min_order)
4150 		return -EINVAL;
4151 
4152 	calculate_sizes(s, order);
4153 	return length;
4154 }
4155 
4156 static ssize_t order_show(struct kmem_cache *s, char *buf)
4157 {
4158 	return sprintf(buf, "%d\n", oo_order(s->oo));
4159 }
4160 SLAB_ATTR(order);
4161 
4162 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4163 {
4164 	return sprintf(buf, "%lu\n", s->min_partial);
4165 }
4166 
4167 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4168 				 size_t length)
4169 {
4170 	unsigned long min;
4171 	int err;
4172 
4173 	err = strict_strtoul(buf, 10, &min);
4174 	if (err)
4175 		return err;
4176 
4177 	set_min_partial(s, min);
4178 	return length;
4179 }
4180 SLAB_ATTR(min_partial);
4181 
4182 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4183 {
4184 	if (!s->ctor)
4185 		return 0;
4186 	return sprintf(buf, "%pS\n", s->ctor);
4187 }
4188 SLAB_ATTR_RO(ctor);
4189 
4190 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4191 {
4192 	return sprintf(buf, "%d\n", s->refcount - 1);
4193 }
4194 SLAB_ATTR_RO(aliases);
4195 
4196 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4197 {
4198 	return show_slab_objects(s, buf, SO_PARTIAL);
4199 }
4200 SLAB_ATTR_RO(partial);
4201 
4202 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4203 {
4204 	return show_slab_objects(s, buf, SO_CPU);
4205 }
4206 SLAB_ATTR_RO(cpu_slabs);
4207 
4208 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4209 {
4210 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4211 }
4212 SLAB_ATTR_RO(objects);
4213 
4214 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4215 {
4216 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4217 }
4218 SLAB_ATTR_RO(objects_partial);
4219 
4220 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4221 {
4222 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4223 }
4224 
4225 static ssize_t reclaim_account_store(struct kmem_cache *s,
4226 				const char *buf, size_t length)
4227 {
4228 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4229 	if (buf[0] == '1')
4230 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4231 	return length;
4232 }
4233 SLAB_ATTR(reclaim_account);
4234 
4235 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4236 {
4237 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4238 }
4239 SLAB_ATTR_RO(hwcache_align);
4240 
4241 #ifdef CONFIG_ZONE_DMA
4242 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4243 {
4244 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4245 }
4246 SLAB_ATTR_RO(cache_dma);
4247 #endif
4248 
4249 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4250 {
4251 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4252 }
4253 SLAB_ATTR_RO(destroy_by_rcu);
4254 
4255 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4256 {
4257 	return sprintf(buf, "%d\n", s->reserved);
4258 }
4259 SLAB_ATTR_RO(reserved);
4260 
4261 #ifdef CONFIG_SLUB_DEBUG
4262 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4263 {
4264 	return show_slab_objects(s, buf, SO_ALL);
4265 }
4266 SLAB_ATTR_RO(slabs);
4267 
4268 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4269 {
4270 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4271 }
4272 SLAB_ATTR_RO(total_objects);
4273 
4274 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4275 {
4276 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4277 }
4278 
4279 static ssize_t sanity_checks_store(struct kmem_cache *s,
4280 				const char *buf, size_t length)
4281 {
4282 	s->flags &= ~SLAB_DEBUG_FREE;
4283 	if (buf[0] == '1')
4284 		s->flags |= SLAB_DEBUG_FREE;
4285 	return length;
4286 }
4287 SLAB_ATTR(sanity_checks);
4288 
4289 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4290 {
4291 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4292 }
4293 
4294 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4295 							size_t length)
4296 {
4297 	s->flags &= ~SLAB_TRACE;
4298 	if (buf[0] == '1')
4299 		s->flags |= SLAB_TRACE;
4300 	return length;
4301 }
4302 SLAB_ATTR(trace);
4303 
4304 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4305 {
4306 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4307 }
4308 
4309 static ssize_t red_zone_store(struct kmem_cache *s,
4310 				const char *buf, size_t length)
4311 {
4312 	if (any_slab_objects(s))
4313 		return -EBUSY;
4314 
4315 	s->flags &= ~SLAB_RED_ZONE;
4316 	if (buf[0] == '1')
4317 		s->flags |= SLAB_RED_ZONE;
4318 	calculate_sizes(s, -1);
4319 	return length;
4320 }
4321 SLAB_ATTR(red_zone);
4322 
4323 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4324 {
4325 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4326 }
4327 
4328 static ssize_t poison_store(struct kmem_cache *s,
4329 				const char *buf, size_t length)
4330 {
4331 	if (any_slab_objects(s))
4332 		return -EBUSY;
4333 
4334 	s->flags &= ~SLAB_POISON;
4335 	if (buf[0] == '1')
4336 		s->flags |= SLAB_POISON;
4337 	calculate_sizes(s, -1);
4338 	return length;
4339 }
4340 SLAB_ATTR(poison);
4341 
4342 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4343 {
4344 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4345 }
4346 
4347 static ssize_t store_user_store(struct kmem_cache *s,
4348 				const char *buf, size_t length)
4349 {
4350 	if (any_slab_objects(s))
4351 		return -EBUSY;
4352 
4353 	s->flags &= ~SLAB_STORE_USER;
4354 	if (buf[0] == '1')
4355 		s->flags |= SLAB_STORE_USER;
4356 	calculate_sizes(s, -1);
4357 	return length;
4358 }
4359 SLAB_ATTR(store_user);
4360 
4361 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4362 {
4363 	return 0;
4364 }
4365 
4366 static ssize_t validate_store(struct kmem_cache *s,
4367 			const char *buf, size_t length)
4368 {
4369 	int ret = -EINVAL;
4370 
4371 	if (buf[0] == '1') {
4372 		ret = validate_slab_cache(s);
4373 		if (ret >= 0)
4374 			ret = length;
4375 	}
4376 	return ret;
4377 }
4378 SLAB_ATTR(validate);
4379 
4380 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4381 {
4382 	if (!(s->flags & SLAB_STORE_USER))
4383 		return -ENOSYS;
4384 	return list_locations(s, buf, TRACK_ALLOC);
4385 }
4386 SLAB_ATTR_RO(alloc_calls);
4387 
4388 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4389 {
4390 	if (!(s->flags & SLAB_STORE_USER))
4391 		return -ENOSYS;
4392 	return list_locations(s, buf, TRACK_FREE);
4393 }
4394 SLAB_ATTR_RO(free_calls);
4395 #endif /* CONFIG_SLUB_DEBUG */
4396 
4397 #ifdef CONFIG_FAILSLAB
4398 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4399 {
4400 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4401 }
4402 
4403 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4404 							size_t length)
4405 {
4406 	s->flags &= ~SLAB_FAILSLAB;
4407 	if (buf[0] == '1')
4408 		s->flags |= SLAB_FAILSLAB;
4409 	return length;
4410 }
4411 SLAB_ATTR(failslab);
4412 #endif
4413 
4414 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4415 {
4416 	return 0;
4417 }
4418 
4419 static ssize_t shrink_store(struct kmem_cache *s,
4420 			const char *buf, size_t length)
4421 {
4422 	if (buf[0] == '1') {
4423 		int rc = kmem_cache_shrink(s);
4424 
4425 		if (rc)
4426 			return rc;
4427 	} else
4428 		return -EINVAL;
4429 	return length;
4430 }
4431 SLAB_ATTR(shrink);
4432 
4433 #ifdef CONFIG_NUMA
4434 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4435 {
4436 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4437 }
4438 
4439 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4440 				const char *buf, size_t length)
4441 {
4442 	unsigned long ratio;
4443 	int err;
4444 
4445 	err = strict_strtoul(buf, 10, &ratio);
4446 	if (err)
4447 		return err;
4448 
4449 	if (ratio <= 100)
4450 		s->remote_node_defrag_ratio = ratio * 10;
4451 
4452 	return length;
4453 }
4454 SLAB_ATTR(remote_node_defrag_ratio);
4455 #endif
4456 
4457 #ifdef CONFIG_SLUB_STATS
4458 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4459 {
4460 	unsigned long sum  = 0;
4461 	int cpu;
4462 	int len;
4463 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4464 
4465 	if (!data)
4466 		return -ENOMEM;
4467 
4468 	for_each_online_cpu(cpu) {
4469 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4470 
4471 		data[cpu] = x;
4472 		sum += x;
4473 	}
4474 
4475 	len = sprintf(buf, "%lu", sum);
4476 
4477 #ifdef CONFIG_SMP
4478 	for_each_online_cpu(cpu) {
4479 		if (data[cpu] && len < PAGE_SIZE - 20)
4480 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4481 	}
4482 #endif
4483 	kfree(data);
4484 	return len + sprintf(buf + len, "\n");
4485 }
4486 
4487 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4488 {
4489 	int cpu;
4490 
4491 	for_each_online_cpu(cpu)
4492 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4493 }
4494 
4495 #define STAT_ATTR(si, text) 					\
4496 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4497 {								\
4498 	return show_stat(s, buf, si);				\
4499 }								\
4500 static ssize_t text##_store(struct kmem_cache *s,		\
4501 				const char *buf, size_t length)	\
4502 {								\
4503 	if (buf[0] != '0')					\
4504 		return -EINVAL;					\
4505 	clear_stat(s, si);					\
4506 	return length;						\
4507 }								\
4508 SLAB_ATTR(text);						\
4509 
4510 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4511 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4512 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4513 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4514 STAT_ATTR(FREE_FROZEN, free_frozen);
4515 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4516 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4517 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4518 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4519 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4520 STAT_ATTR(FREE_SLAB, free_slab);
4521 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4522 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4523 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4524 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4525 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4526 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4527 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4528 #endif
4529 
4530 static struct attribute *slab_attrs[] = {
4531 	&slab_size_attr.attr,
4532 	&object_size_attr.attr,
4533 	&objs_per_slab_attr.attr,
4534 	&order_attr.attr,
4535 	&min_partial_attr.attr,
4536 	&objects_attr.attr,
4537 	&objects_partial_attr.attr,
4538 	&partial_attr.attr,
4539 	&cpu_slabs_attr.attr,
4540 	&ctor_attr.attr,
4541 	&aliases_attr.attr,
4542 	&align_attr.attr,
4543 	&hwcache_align_attr.attr,
4544 	&reclaim_account_attr.attr,
4545 	&destroy_by_rcu_attr.attr,
4546 	&shrink_attr.attr,
4547 	&reserved_attr.attr,
4548 #ifdef CONFIG_SLUB_DEBUG
4549 	&total_objects_attr.attr,
4550 	&slabs_attr.attr,
4551 	&sanity_checks_attr.attr,
4552 	&trace_attr.attr,
4553 	&red_zone_attr.attr,
4554 	&poison_attr.attr,
4555 	&store_user_attr.attr,
4556 	&validate_attr.attr,
4557 	&alloc_calls_attr.attr,
4558 	&free_calls_attr.attr,
4559 #endif
4560 #ifdef CONFIG_ZONE_DMA
4561 	&cache_dma_attr.attr,
4562 #endif
4563 #ifdef CONFIG_NUMA
4564 	&remote_node_defrag_ratio_attr.attr,
4565 #endif
4566 #ifdef CONFIG_SLUB_STATS
4567 	&alloc_fastpath_attr.attr,
4568 	&alloc_slowpath_attr.attr,
4569 	&free_fastpath_attr.attr,
4570 	&free_slowpath_attr.attr,
4571 	&free_frozen_attr.attr,
4572 	&free_add_partial_attr.attr,
4573 	&free_remove_partial_attr.attr,
4574 	&alloc_from_partial_attr.attr,
4575 	&alloc_slab_attr.attr,
4576 	&alloc_refill_attr.attr,
4577 	&free_slab_attr.attr,
4578 	&cpuslab_flush_attr.attr,
4579 	&deactivate_full_attr.attr,
4580 	&deactivate_empty_attr.attr,
4581 	&deactivate_to_head_attr.attr,
4582 	&deactivate_to_tail_attr.attr,
4583 	&deactivate_remote_frees_attr.attr,
4584 	&order_fallback_attr.attr,
4585 #endif
4586 #ifdef CONFIG_FAILSLAB
4587 	&failslab_attr.attr,
4588 #endif
4589 
4590 	NULL
4591 };
4592 
4593 static struct attribute_group slab_attr_group = {
4594 	.attrs = slab_attrs,
4595 };
4596 
4597 static ssize_t slab_attr_show(struct kobject *kobj,
4598 				struct attribute *attr,
4599 				char *buf)
4600 {
4601 	struct slab_attribute *attribute;
4602 	struct kmem_cache *s;
4603 	int err;
4604 
4605 	attribute = to_slab_attr(attr);
4606 	s = to_slab(kobj);
4607 
4608 	if (!attribute->show)
4609 		return -EIO;
4610 
4611 	err = attribute->show(s, buf);
4612 
4613 	return err;
4614 }
4615 
4616 static ssize_t slab_attr_store(struct kobject *kobj,
4617 				struct attribute *attr,
4618 				const char *buf, size_t len)
4619 {
4620 	struct slab_attribute *attribute;
4621 	struct kmem_cache *s;
4622 	int err;
4623 
4624 	attribute = to_slab_attr(attr);
4625 	s = to_slab(kobj);
4626 
4627 	if (!attribute->store)
4628 		return -EIO;
4629 
4630 	err = attribute->store(s, buf, len);
4631 
4632 	return err;
4633 }
4634 
4635 static void kmem_cache_release(struct kobject *kobj)
4636 {
4637 	struct kmem_cache *s = to_slab(kobj);
4638 
4639 	kfree(s->name);
4640 	kfree(s);
4641 }
4642 
4643 static const struct sysfs_ops slab_sysfs_ops = {
4644 	.show = slab_attr_show,
4645 	.store = slab_attr_store,
4646 };
4647 
4648 static struct kobj_type slab_ktype = {
4649 	.sysfs_ops = &slab_sysfs_ops,
4650 	.release = kmem_cache_release
4651 };
4652 
4653 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4654 {
4655 	struct kobj_type *ktype = get_ktype(kobj);
4656 
4657 	if (ktype == &slab_ktype)
4658 		return 1;
4659 	return 0;
4660 }
4661 
4662 static const struct kset_uevent_ops slab_uevent_ops = {
4663 	.filter = uevent_filter,
4664 };
4665 
4666 static struct kset *slab_kset;
4667 
4668 #define ID_STR_LENGTH 64
4669 
4670 /* Create a unique string id for a slab cache:
4671  *
4672  * Format	:[flags-]size
4673  */
4674 static char *create_unique_id(struct kmem_cache *s)
4675 {
4676 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4677 	char *p = name;
4678 
4679 	BUG_ON(!name);
4680 
4681 	*p++ = ':';
4682 	/*
4683 	 * First flags affecting slabcache operations. We will only
4684 	 * get here for aliasable slabs so we do not need to support
4685 	 * too many flags. The flags here must cover all flags that
4686 	 * are matched during merging to guarantee that the id is
4687 	 * unique.
4688 	 */
4689 	if (s->flags & SLAB_CACHE_DMA)
4690 		*p++ = 'd';
4691 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4692 		*p++ = 'a';
4693 	if (s->flags & SLAB_DEBUG_FREE)
4694 		*p++ = 'F';
4695 	if (!(s->flags & SLAB_NOTRACK))
4696 		*p++ = 't';
4697 	if (p != name + 1)
4698 		*p++ = '-';
4699 	p += sprintf(p, "%07d", s->size);
4700 	BUG_ON(p > name + ID_STR_LENGTH - 1);
4701 	return name;
4702 }
4703 
4704 static int sysfs_slab_add(struct kmem_cache *s)
4705 {
4706 	int err;
4707 	const char *name;
4708 	int unmergeable;
4709 
4710 	if (slab_state < SYSFS)
4711 		/* Defer until later */
4712 		return 0;
4713 
4714 	unmergeable = slab_unmergeable(s);
4715 	if (unmergeable) {
4716 		/*
4717 		 * Slabcache can never be merged so we can use the name proper.
4718 		 * This is typically the case for debug situations. In that
4719 		 * case we can catch duplicate names easily.
4720 		 */
4721 		sysfs_remove_link(&slab_kset->kobj, s->name);
4722 		name = s->name;
4723 	} else {
4724 		/*
4725 		 * Create a unique name for the slab as a target
4726 		 * for the symlinks.
4727 		 */
4728 		name = create_unique_id(s);
4729 	}
4730 
4731 	s->kobj.kset = slab_kset;
4732 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4733 	if (err) {
4734 		kobject_put(&s->kobj);
4735 		return err;
4736 	}
4737 
4738 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4739 	if (err) {
4740 		kobject_del(&s->kobj);
4741 		kobject_put(&s->kobj);
4742 		return err;
4743 	}
4744 	kobject_uevent(&s->kobj, KOBJ_ADD);
4745 	if (!unmergeable) {
4746 		/* Setup first alias */
4747 		sysfs_slab_alias(s, s->name);
4748 		kfree(name);
4749 	}
4750 	return 0;
4751 }
4752 
4753 static void sysfs_slab_remove(struct kmem_cache *s)
4754 {
4755 	if (slab_state < SYSFS)
4756 		/*
4757 		 * Sysfs has not been setup yet so no need to remove the
4758 		 * cache from sysfs.
4759 		 */
4760 		return;
4761 
4762 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4763 	kobject_del(&s->kobj);
4764 	kobject_put(&s->kobj);
4765 }
4766 
4767 /*
4768  * Need to buffer aliases during bootup until sysfs becomes
4769  * available lest we lose that information.
4770  */
4771 struct saved_alias {
4772 	struct kmem_cache *s;
4773 	const char *name;
4774 	struct saved_alias *next;
4775 };
4776 
4777 static struct saved_alias *alias_list;
4778 
4779 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4780 {
4781 	struct saved_alias *al;
4782 
4783 	if (slab_state == SYSFS) {
4784 		/*
4785 		 * If we have a leftover link then remove it.
4786 		 */
4787 		sysfs_remove_link(&slab_kset->kobj, name);
4788 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4789 	}
4790 
4791 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4792 	if (!al)
4793 		return -ENOMEM;
4794 
4795 	al->s = s;
4796 	al->name = name;
4797 	al->next = alias_list;
4798 	alias_list = al;
4799 	return 0;
4800 }
4801 
4802 static int __init slab_sysfs_init(void)
4803 {
4804 	struct kmem_cache *s;
4805 	int err;
4806 
4807 	down_write(&slub_lock);
4808 
4809 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4810 	if (!slab_kset) {
4811 		up_write(&slub_lock);
4812 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4813 		return -ENOSYS;
4814 	}
4815 
4816 	slab_state = SYSFS;
4817 
4818 	list_for_each_entry(s, &slab_caches, list) {
4819 		err = sysfs_slab_add(s);
4820 		if (err)
4821 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4822 						" to sysfs\n", s->name);
4823 	}
4824 
4825 	while (alias_list) {
4826 		struct saved_alias *al = alias_list;
4827 
4828 		alias_list = alias_list->next;
4829 		err = sysfs_slab_alias(al->s, al->name);
4830 		if (err)
4831 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4832 					" %s to sysfs\n", s->name);
4833 		kfree(al);
4834 	}
4835 
4836 	up_write(&slub_lock);
4837 	resiliency_test();
4838 	return 0;
4839 }
4840 
4841 __initcall(slab_sysfs_init);
4842 #endif /* CONFIG_SYSFS */
4843 
4844 /*
4845  * The /proc/slabinfo ABI
4846  */
4847 #ifdef CONFIG_SLABINFO
4848 static void print_slabinfo_header(struct seq_file *m)
4849 {
4850 	seq_puts(m, "slabinfo - version: 2.1\n");
4851 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4852 		 "<objperslab> <pagesperslab>");
4853 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4854 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4855 	seq_putc(m, '\n');
4856 }
4857 
4858 static void *s_start(struct seq_file *m, loff_t *pos)
4859 {
4860 	loff_t n = *pos;
4861 
4862 	down_read(&slub_lock);
4863 	if (!n)
4864 		print_slabinfo_header(m);
4865 
4866 	return seq_list_start(&slab_caches, *pos);
4867 }
4868 
4869 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4870 {
4871 	return seq_list_next(p, &slab_caches, pos);
4872 }
4873 
4874 static void s_stop(struct seq_file *m, void *p)
4875 {
4876 	up_read(&slub_lock);
4877 }
4878 
4879 static int s_show(struct seq_file *m, void *p)
4880 {
4881 	unsigned long nr_partials = 0;
4882 	unsigned long nr_slabs = 0;
4883 	unsigned long nr_inuse = 0;
4884 	unsigned long nr_objs = 0;
4885 	unsigned long nr_free = 0;
4886 	struct kmem_cache *s;
4887 	int node;
4888 
4889 	s = list_entry(p, struct kmem_cache, list);
4890 
4891 	for_each_online_node(node) {
4892 		struct kmem_cache_node *n = get_node(s, node);
4893 
4894 		if (!n)
4895 			continue;
4896 
4897 		nr_partials += n->nr_partial;
4898 		nr_slabs += atomic_long_read(&n->nr_slabs);
4899 		nr_objs += atomic_long_read(&n->total_objects);
4900 		nr_free += count_partial(n, count_free);
4901 	}
4902 
4903 	nr_inuse = nr_objs - nr_free;
4904 
4905 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4906 		   nr_objs, s->size, oo_objects(s->oo),
4907 		   (1 << oo_order(s->oo)));
4908 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4909 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4910 		   0UL);
4911 	seq_putc(m, '\n');
4912 	return 0;
4913 }
4914 
4915 static const struct seq_operations slabinfo_op = {
4916 	.start = s_start,
4917 	.next = s_next,
4918 	.stop = s_stop,
4919 	.show = s_show,
4920 };
4921 
4922 static int slabinfo_open(struct inode *inode, struct file *file)
4923 {
4924 	return seq_open(file, &slabinfo_op);
4925 }
4926 
4927 static const struct file_operations proc_slabinfo_operations = {
4928 	.open		= slabinfo_open,
4929 	.read		= seq_read,
4930 	.llseek		= seq_lseek,
4931 	.release	= seq_release,
4932 };
4933 
4934 static int __init slab_proc_init(void)
4935 {
4936 	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4937 	return 0;
4938 }
4939 module_init(slab_proc_init);
4940 #endif /* CONFIG_SLABINFO */
4941