xref: /openbmc/linux/mm/slub.c (revision 545e4006)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/memory.h>
25 #include <linux/math64.h>
26 
27 /*
28  * Lock order:
29  *   1. slab_lock(page)
30  *   2. slab->list_lock
31  *
32  *   The slab_lock protects operations on the object of a particular
33  *   slab and its metadata in the page struct. If the slab lock
34  *   has been taken then no allocations nor frees can be performed
35  *   on the objects in the slab nor can the slab be added or removed
36  *   from the partial or full lists since this would mean modifying
37  *   the page_struct of the slab.
38  *
39  *   The list_lock protects the partial and full list on each node and
40  *   the partial slab counter. If taken then no new slabs may be added or
41  *   removed from the lists nor make the number of partial slabs be modified.
42  *   (Note that the total number of slabs is an atomic value that may be
43  *   modified without taking the list lock).
44  *
45  *   The list_lock is a centralized lock and thus we avoid taking it as
46  *   much as possible. As long as SLUB does not have to handle partial
47  *   slabs, operations can continue without any centralized lock. F.e.
48  *   allocating a long series of objects that fill up slabs does not require
49  *   the list lock.
50  *
51  *   The lock order is sometimes inverted when we are trying to get a slab
52  *   off a list. We take the list_lock and then look for a page on the list
53  *   to use. While we do that objects in the slabs may be freed. We can
54  *   only operate on the slab if we have also taken the slab_lock. So we use
55  *   a slab_trylock() on the slab. If trylock was successful then no frees
56  *   can occur anymore and we can use the slab for allocations etc. If the
57  *   slab_trylock() does not succeed then frees are in progress in the slab and
58  *   we must stay away from it for a while since we may cause a bouncing
59  *   cacheline if we try to acquire the lock. So go onto the next slab.
60  *   If all pages are busy then we may allocate a new slab instead of reusing
61  *   a partial slab. A new slab has noone operating on it and thus there is
62  *   no danger of cacheline contention.
63  *
64  *   Interrupts are disabled during allocation and deallocation in order to
65  *   make the slab allocator safe to use in the context of an irq. In addition
66  *   interrupts are disabled to ensure that the processor does not change
67  *   while handling per_cpu slabs, due to kernel preemption.
68  *
69  * SLUB assigns one slab for allocation to each processor.
70  * Allocations only occur from these slabs called cpu slabs.
71  *
72  * Slabs with free elements are kept on a partial list and during regular
73  * operations no list for full slabs is used. If an object in a full slab is
74  * freed then the slab will show up again on the partial lists.
75  * We track full slabs for debugging purposes though because otherwise we
76  * cannot scan all objects.
77  *
78  * Slabs are freed when they become empty. Teardown and setup is
79  * minimal so we rely on the page allocators per cpu caches for
80  * fast frees and allocs.
81  *
82  * Overloading of page flags that are otherwise used for LRU management.
83  *
84  * PageActive 		The slab is frozen and exempt from list processing.
85  * 			This means that the slab is dedicated to a purpose
86  * 			such as satisfying allocations for a specific
87  * 			processor. Objects may be freed in the slab while
88  * 			it is frozen but slab_free will then skip the usual
89  * 			list operations. It is up to the processor holding
90  * 			the slab to integrate the slab into the slab lists
91  * 			when the slab is no longer needed.
92  *
93  * 			One use of this flag is to mark slabs that are
94  * 			used for allocations. Then such a slab becomes a cpu
95  * 			slab. The cpu slab may be equipped with an additional
96  * 			freelist that allows lockless access to
97  * 			free objects in addition to the regular freelist
98  * 			that requires the slab lock.
99  *
100  * PageError		Slab requires special handling due to debug
101  * 			options set. This moves	slab handling out of
102  * 			the fast path and disables lockless freelists.
103  */
104 
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG 1
107 #else
108 #define SLABDEBUG 0
109 #endif
110 
111 /*
112  * Issues still to be resolved:
113  *
114  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
115  *
116  * - Variable sizing of the per node arrays
117  */
118 
119 /* Enable to test recovery from slab corruption on boot */
120 #undef SLUB_RESILIENCY_TEST
121 
122 /*
123  * Mininum number of partial slabs. These will be left on the partial
124  * lists even if they are empty. kmem_cache_shrink may reclaim them.
125  */
126 #define MIN_PARTIAL 5
127 
128 /*
129  * Maximum number of desirable partial slabs.
130  * The existence of more partial slabs makes kmem_cache_shrink
131  * sort the partial list by the number of objects in the.
132  */
133 #define MAX_PARTIAL 10
134 
135 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
136 				SLAB_POISON | SLAB_STORE_USER)
137 
138 /*
139  * Set of flags that will prevent slab merging
140  */
141 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
142 		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
143 
144 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
145 		SLAB_CACHE_DMA)
146 
147 #ifndef ARCH_KMALLOC_MINALIGN
148 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
149 #endif
150 
151 #ifndef ARCH_SLAB_MINALIGN
152 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
153 #endif
154 
155 /* Internal SLUB flags */
156 #define __OBJECT_POISON		0x80000000 /* Poison object */
157 #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
158 
159 static int kmem_size = sizeof(struct kmem_cache);
160 
161 #ifdef CONFIG_SMP
162 static struct notifier_block slab_notifier;
163 #endif
164 
165 static enum {
166 	DOWN,		/* No slab functionality available */
167 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
168 	UP,		/* Everything works but does not show up in sysfs */
169 	SYSFS		/* Sysfs up */
170 } slab_state = DOWN;
171 
172 /* A list of all slab caches on the system */
173 static DECLARE_RWSEM(slub_lock);
174 static LIST_HEAD(slab_caches);
175 
176 /*
177  * Tracking user of a slab.
178  */
179 struct track {
180 	void *addr;		/* Called from address */
181 	int cpu;		/* Was running on cpu */
182 	int pid;		/* Pid context */
183 	unsigned long when;	/* When did the operation occur */
184 };
185 
186 enum track_item { TRACK_ALLOC, TRACK_FREE };
187 
188 #ifdef CONFIG_SLUB_DEBUG
189 static int sysfs_slab_add(struct kmem_cache *);
190 static int sysfs_slab_alias(struct kmem_cache *, const char *);
191 static void sysfs_slab_remove(struct kmem_cache *);
192 
193 #else
194 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
195 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
196 							{ return 0; }
197 static inline void sysfs_slab_remove(struct kmem_cache *s)
198 {
199 	kfree(s);
200 }
201 
202 #endif
203 
204 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
205 {
206 #ifdef CONFIG_SLUB_STATS
207 	c->stat[si]++;
208 #endif
209 }
210 
211 /********************************************************************
212  * 			Core slab cache functions
213  *******************************************************************/
214 
215 int slab_is_available(void)
216 {
217 	return slab_state >= UP;
218 }
219 
220 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
221 {
222 #ifdef CONFIG_NUMA
223 	return s->node[node];
224 #else
225 	return &s->local_node;
226 #endif
227 }
228 
229 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
230 {
231 #ifdef CONFIG_SMP
232 	return s->cpu_slab[cpu];
233 #else
234 	return &s->cpu_slab;
235 #endif
236 }
237 
238 /* Verify that a pointer has an address that is valid within a slab page */
239 static inline int check_valid_pointer(struct kmem_cache *s,
240 				struct page *page, const void *object)
241 {
242 	void *base;
243 
244 	if (!object)
245 		return 1;
246 
247 	base = page_address(page);
248 	if (object < base || object >= base + page->objects * s->size ||
249 		(object - base) % s->size) {
250 		return 0;
251 	}
252 
253 	return 1;
254 }
255 
256 /*
257  * Slow version of get and set free pointer.
258  *
259  * This version requires touching the cache lines of kmem_cache which
260  * we avoid to do in the fast alloc free paths. There we obtain the offset
261  * from the page struct.
262  */
263 static inline void *get_freepointer(struct kmem_cache *s, void *object)
264 {
265 	return *(void **)(object + s->offset);
266 }
267 
268 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
269 {
270 	*(void **)(object + s->offset) = fp;
271 }
272 
273 /* Loop over all objects in a slab */
274 #define for_each_object(__p, __s, __addr, __objects) \
275 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
276 			__p += (__s)->size)
277 
278 /* Scan freelist */
279 #define for_each_free_object(__p, __s, __free) \
280 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
281 
282 /* Determine object index from a given position */
283 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
284 {
285 	return (p - addr) / s->size;
286 }
287 
288 static inline struct kmem_cache_order_objects oo_make(int order,
289 						unsigned long size)
290 {
291 	struct kmem_cache_order_objects x = {
292 		(order << 16) + (PAGE_SIZE << order) / size
293 	};
294 
295 	return x;
296 }
297 
298 static inline int oo_order(struct kmem_cache_order_objects x)
299 {
300 	return x.x >> 16;
301 }
302 
303 static inline int oo_objects(struct kmem_cache_order_objects x)
304 {
305 	return x.x & ((1 << 16) - 1);
306 }
307 
308 #ifdef CONFIG_SLUB_DEBUG
309 /*
310  * Debug settings:
311  */
312 #ifdef CONFIG_SLUB_DEBUG_ON
313 static int slub_debug = DEBUG_DEFAULT_FLAGS;
314 #else
315 static int slub_debug;
316 #endif
317 
318 static char *slub_debug_slabs;
319 
320 /*
321  * Object debugging
322  */
323 static void print_section(char *text, u8 *addr, unsigned int length)
324 {
325 	int i, offset;
326 	int newline = 1;
327 	char ascii[17];
328 
329 	ascii[16] = 0;
330 
331 	for (i = 0; i < length; i++) {
332 		if (newline) {
333 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
334 			newline = 0;
335 		}
336 		printk(KERN_CONT " %02x", addr[i]);
337 		offset = i % 16;
338 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
339 		if (offset == 15) {
340 			printk(KERN_CONT " %s\n", ascii);
341 			newline = 1;
342 		}
343 	}
344 	if (!newline) {
345 		i %= 16;
346 		while (i < 16) {
347 			printk(KERN_CONT "   ");
348 			ascii[i] = ' ';
349 			i++;
350 		}
351 		printk(KERN_CONT " %s\n", ascii);
352 	}
353 }
354 
355 static struct track *get_track(struct kmem_cache *s, void *object,
356 	enum track_item alloc)
357 {
358 	struct track *p;
359 
360 	if (s->offset)
361 		p = object + s->offset + sizeof(void *);
362 	else
363 		p = object + s->inuse;
364 
365 	return p + alloc;
366 }
367 
368 static void set_track(struct kmem_cache *s, void *object,
369 				enum track_item alloc, void *addr)
370 {
371 	struct track *p;
372 
373 	if (s->offset)
374 		p = object + s->offset + sizeof(void *);
375 	else
376 		p = object + s->inuse;
377 
378 	p += alloc;
379 	if (addr) {
380 		p->addr = addr;
381 		p->cpu = smp_processor_id();
382 		p->pid = current->pid;
383 		p->when = jiffies;
384 	} else
385 		memset(p, 0, sizeof(struct track));
386 }
387 
388 static void init_tracking(struct kmem_cache *s, void *object)
389 {
390 	if (!(s->flags & SLAB_STORE_USER))
391 		return;
392 
393 	set_track(s, object, TRACK_FREE, NULL);
394 	set_track(s, object, TRACK_ALLOC, NULL);
395 }
396 
397 static void print_track(const char *s, struct track *t)
398 {
399 	if (!t->addr)
400 		return;
401 
402 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
403 		s, t->addr, jiffies - t->when, t->cpu, t->pid);
404 }
405 
406 static void print_tracking(struct kmem_cache *s, void *object)
407 {
408 	if (!(s->flags & SLAB_STORE_USER))
409 		return;
410 
411 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
412 	print_track("Freed", get_track(s, object, TRACK_FREE));
413 }
414 
415 static void print_page_info(struct page *page)
416 {
417 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
418 		page, page->objects, page->inuse, page->freelist, page->flags);
419 
420 }
421 
422 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
423 {
424 	va_list args;
425 	char buf[100];
426 
427 	va_start(args, fmt);
428 	vsnprintf(buf, sizeof(buf), fmt, args);
429 	va_end(args);
430 	printk(KERN_ERR "========================================"
431 			"=====================================\n");
432 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
433 	printk(KERN_ERR "----------------------------------------"
434 			"-------------------------------------\n\n");
435 }
436 
437 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
438 {
439 	va_list args;
440 	char buf[100];
441 
442 	va_start(args, fmt);
443 	vsnprintf(buf, sizeof(buf), fmt, args);
444 	va_end(args);
445 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
446 }
447 
448 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
449 {
450 	unsigned int off;	/* Offset of last byte */
451 	u8 *addr = page_address(page);
452 
453 	print_tracking(s, p);
454 
455 	print_page_info(page);
456 
457 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
458 			p, p - addr, get_freepointer(s, p));
459 
460 	if (p > addr + 16)
461 		print_section("Bytes b4", p - 16, 16);
462 
463 	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
464 
465 	if (s->flags & SLAB_RED_ZONE)
466 		print_section("Redzone", p + s->objsize,
467 			s->inuse - s->objsize);
468 
469 	if (s->offset)
470 		off = s->offset + sizeof(void *);
471 	else
472 		off = s->inuse;
473 
474 	if (s->flags & SLAB_STORE_USER)
475 		off += 2 * sizeof(struct track);
476 
477 	if (off != s->size)
478 		/* Beginning of the filler is the free pointer */
479 		print_section("Padding", p + off, s->size - off);
480 
481 	dump_stack();
482 }
483 
484 static void object_err(struct kmem_cache *s, struct page *page,
485 			u8 *object, char *reason)
486 {
487 	slab_bug(s, "%s", reason);
488 	print_trailer(s, page, object);
489 }
490 
491 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
492 {
493 	va_list args;
494 	char buf[100];
495 
496 	va_start(args, fmt);
497 	vsnprintf(buf, sizeof(buf), fmt, args);
498 	va_end(args);
499 	slab_bug(s, "%s", buf);
500 	print_page_info(page);
501 	dump_stack();
502 }
503 
504 static void init_object(struct kmem_cache *s, void *object, int active)
505 {
506 	u8 *p = object;
507 
508 	if (s->flags & __OBJECT_POISON) {
509 		memset(p, POISON_FREE, s->objsize - 1);
510 		p[s->objsize - 1] = POISON_END;
511 	}
512 
513 	if (s->flags & SLAB_RED_ZONE)
514 		memset(p + s->objsize,
515 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
516 			s->inuse - s->objsize);
517 }
518 
519 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
520 {
521 	while (bytes) {
522 		if (*start != (u8)value)
523 			return start;
524 		start++;
525 		bytes--;
526 	}
527 	return NULL;
528 }
529 
530 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
531 						void *from, void *to)
532 {
533 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
534 	memset(from, data, to - from);
535 }
536 
537 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
538 			u8 *object, char *what,
539 			u8 *start, unsigned int value, unsigned int bytes)
540 {
541 	u8 *fault;
542 	u8 *end;
543 
544 	fault = check_bytes(start, value, bytes);
545 	if (!fault)
546 		return 1;
547 
548 	end = start + bytes;
549 	while (end > fault && end[-1] == value)
550 		end--;
551 
552 	slab_bug(s, "%s overwritten", what);
553 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
554 					fault, end - 1, fault[0], value);
555 	print_trailer(s, page, object);
556 
557 	restore_bytes(s, what, value, fault, end);
558 	return 0;
559 }
560 
561 /*
562  * Object layout:
563  *
564  * object address
565  * 	Bytes of the object to be managed.
566  * 	If the freepointer may overlay the object then the free
567  * 	pointer is the first word of the object.
568  *
569  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
570  * 	0xa5 (POISON_END)
571  *
572  * object + s->objsize
573  * 	Padding to reach word boundary. This is also used for Redzoning.
574  * 	Padding is extended by another word if Redzoning is enabled and
575  * 	objsize == inuse.
576  *
577  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
578  * 	0xcc (RED_ACTIVE) for objects in use.
579  *
580  * object + s->inuse
581  * 	Meta data starts here.
582  *
583  * 	A. Free pointer (if we cannot overwrite object on free)
584  * 	B. Tracking data for SLAB_STORE_USER
585  * 	C. Padding to reach required alignment boundary or at mininum
586  * 		one word if debugging is on to be able to detect writes
587  * 		before the word boundary.
588  *
589  *	Padding is done using 0x5a (POISON_INUSE)
590  *
591  * object + s->size
592  * 	Nothing is used beyond s->size.
593  *
594  * If slabcaches are merged then the objsize and inuse boundaries are mostly
595  * ignored. And therefore no slab options that rely on these boundaries
596  * may be used with merged slabcaches.
597  */
598 
599 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
600 {
601 	unsigned long off = s->inuse;	/* The end of info */
602 
603 	if (s->offset)
604 		/* Freepointer is placed after the object. */
605 		off += sizeof(void *);
606 
607 	if (s->flags & SLAB_STORE_USER)
608 		/* We also have user information there */
609 		off += 2 * sizeof(struct track);
610 
611 	if (s->size == off)
612 		return 1;
613 
614 	return check_bytes_and_report(s, page, p, "Object padding",
615 				p + off, POISON_INUSE, s->size - off);
616 }
617 
618 /* Check the pad bytes at the end of a slab page */
619 static int slab_pad_check(struct kmem_cache *s, struct page *page)
620 {
621 	u8 *start;
622 	u8 *fault;
623 	u8 *end;
624 	int length;
625 	int remainder;
626 
627 	if (!(s->flags & SLAB_POISON))
628 		return 1;
629 
630 	start = page_address(page);
631 	length = (PAGE_SIZE << compound_order(page));
632 	end = start + length;
633 	remainder = length % s->size;
634 	if (!remainder)
635 		return 1;
636 
637 	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
638 	if (!fault)
639 		return 1;
640 	while (end > fault && end[-1] == POISON_INUSE)
641 		end--;
642 
643 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
644 	print_section("Padding", end - remainder, remainder);
645 
646 	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
647 	return 0;
648 }
649 
650 static int check_object(struct kmem_cache *s, struct page *page,
651 					void *object, int active)
652 {
653 	u8 *p = object;
654 	u8 *endobject = object + s->objsize;
655 
656 	if (s->flags & SLAB_RED_ZONE) {
657 		unsigned int red =
658 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
659 
660 		if (!check_bytes_and_report(s, page, object, "Redzone",
661 			endobject, red, s->inuse - s->objsize))
662 			return 0;
663 	} else {
664 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
665 			check_bytes_and_report(s, page, p, "Alignment padding",
666 				endobject, POISON_INUSE, s->inuse - s->objsize);
667 		}
668 	}
669 
670 	if (s->flags & SLAB_POISON) {
671 		if (!active && (s->flags & __OBJECT_POISON) &&
672 			(!check_bytes_and_report(s, page, p, "Poison", p,
673 					POISON_FREE, s->objsize - 1) ||
674 			 !check_bytes_and_report(s, page, p, "Poison",
675 				p + s->objsize - 1, POISON_END, 1)))
676 			return 0;
677 		/*
678 		 * check_pad_bytes cleans up on its own.
679 		 */
680 		check_pad_bytes(s, page, p);
681 	}
682 
683 	if (!s->offset && active)
684 		/*
685 		 * Object and freepointer overlap. Cannot check
686 		 * freepointer while object is allocated.
687 		 */
688 		return 1;
689 
690 	/* Check free pointer validity */
691 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
692 		object_err(s, page, p, "Freepointer corrupt");
693 		/*
694 		 * No choice but to zap it and thus loose the remainder
695 		 * of the free objects in this slab. May cause
696 		 * another error because the object count is now wrong.
697 		 */
698 		set_freepointer(s, p, NULL);
699 		return 0;
700 	}
701 	return 1;
702 }
703 
704 static int check_slab(struct kmem_cache *s, struct page *page)
705 {
706 	int maxobj;
707 
708 	VM_BUG_ON(!irqs_disabled());
709 
710 	if (!PageSlab(page)) {
711 		slab_err(s, page, "Not a valid slab page");
712 		return 0;
713 	}
714 
715 	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
716 	if (page->objects > maxobj) {
717 		slab_err(s, page, "objects %u > max %u",
718 			s->name, page->objects, maxobj);
719 		return 0;
720 	}
721 	if (page->inuse > page->objects) {
722 		slab_err(s, page, "inuse %u > max %u",
723 			s->name, page->inuse, page->objects);
724 		return 0;
725 	}
726 	/* Slab_pad_check fixes things up after itself */
727 	slab_pad_check(s, page);
728 	return 1;
729 }
730 
731 /*
732  * Determine if a certain object on a page is on the freelist. Must hold the
733  * slab lock to guarantee that the chains are in a consistent state.
734  */
735 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
736 {
737 	int nr = 0;
738 	void *fp = page->freelist;
739 	void *object = NULL;
740 	unsigned long max_objects;
741 
742 	while (fp && nr <= page->objects) {
743 		if (fp == search)
744 			return 1;
745 		if (!check_valid_pointer(s, page, fp)) {
746 			if (object) {
747 				object_err(s, page, object,
748 					"Freechain corrupt");
749 				set_freepointer(s, object, NULL);
750 				break;
751 			} else {
752 				slab_err(s, page, "Freepointer corrupt");
753 				page->freelist = NULL;
754 				page->inuse = page->objects;
755 				slab_fix(s, "Freelist cleared");
756 				return 0;
757 			}
758 			break;
759 		}
760 		object = fp;
761 		fp = get_freepointer(s, object);
762 		nr++;
763 	}
764 
765 	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
766 	if (max_objects > 65535)
767 		max_objects = 65535;
768 
769 	if (page->objects != max_objects) {
770 		slab_err(s, page, "Wrong number of objects. Found %d but "
771 			"should be %d", page->objects, max_objects);
772 		page->objects = max_objects;
773 		slab_fix(s, "Number of objects adjusted.");
774 	}
775 	if (page->inuse != page->objects - nr) {
776 		slab_err(s, page, "Wrong object count. Counter is %d but "
777 			"counted were %d", page->inuse, page->objects - nr);
778 		page->inuse = page->objects - nr;
779 		slab_fix(s, "Object count adjusted.");
780 	}
781 	return search == NULL;
782 }
783 
784 static void trace(struct kmem_cache *s, struct page *page, void *object,
785 								int alloc)
786 {
787 	if (s->flags & SLAB_TRACE) {
788 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
789 			s->name,
790 			alloc ? "alloc" : "free",
791 			object, page->inuse,
792 			page->freelist);
793 
794 		if (!alloc)
795 			print_section("Object", (void *)object, s->objsize);
796 
797 		dump_stack();
798 	}
799 }
800 
801 /*
802  * Tracking of fully allocated slabs for debugging purposes.
803  */
804 static void add_full(struct kmem_cache_node *n, struct page *page)
805 {
806 	spin_lock(&n->list_lock);
807 	list_add(&page->lru, &n->full);
808 	spin_unlock(&n->list_lock);
809 }
810 
811 static void remove_full(struct kmem_cache *s, struct page *page)
812 {
813 	struct kmem_cache_node *n;
814 
815 	if (!(s->flags & SLAB_STORE_USER))
816 		return;
817 
818 	n = get_node(s, page_to_nid(page));
819 
820 	spin_lock(&n->list_lock);
821 	list_del(&page->lru);
822 	spin_unlock(&n->list_lock);
823 }
824 
825 /* Tracking of the number of slabs for debugging purposes */
826 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
827 {
828 	struct kmem_cache_node *n = get_node(s, node);
829 
830 	return atomic_long_read(&n->nr_slabs);
831 }
832 
833 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
834 {
835 	struct kmem_cache_node *n = get_node(s, node);
836 
837 	/*
838 	 * May be called early in order to allocate a slab for the
839 	 * kmem_cache_node structure. Solve the chicken-egg
840 	 * dilemma by deferring the increment of the count during
841 	 * bootstrap (see early_kmem_cache_node_alloc).
842 	 */
843 	if (!NUMA_BUILD || n) {
844 		atomic_long_inc(&n->nr_slabs);
845 		atomic_long_add(objects, &n->total_objects);
846 	}
847 }
848 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
849 {
850 	struct kmem_cache_node *n = get_node(s, node);
851 
852 	atomic_long_dec(&n->nr_slabs);
853 	atomic_long_sub(objects, &n->total_objects);
854 }
855 
856 /* Object debug checks for alloc/free paths */
857 static void setup_object_debug(struct kmem_cache *s, struct page *page,
858 								void *object)
859 {
860 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
861 		return;
862 
863 	init_object(s, object, 0);
864 	init_tracking(s, object);
865 }
866 
867 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
868 						void *object, void *addr)
869 {
870 	if (!check_slab(s, page))
871 		goto bad;
872 
873 	if (!on_freelist(s, page, object)) {
874 		object_err(s, page, object, "Object already allocated");
875 		goto bad;
876 	}
877 
878 	if (!check_valid_pointer(s, page, object)) {
879 		object_err(s, page, object, "Freelist Pointer check fails");
880 		goto bad;
881 	}
882 
883 	if (!check_object(s, page, object, 0))
884 		goto bad;
885 
886 	/* Success perform special debug activities for allocs */
887 	if (s->flags & SLAB_STORE_USER)
888 		set_track(s, object, TRACK_ALLOC, addr);
889 	trace(s, page, object, 1);
890 	init_object(s, object, 1);
891 	return 1;
892 
893 bad:
894 	if (PageSlab(page)) {
895 		/*
896 		 * If this is a slab page then lets do the best we can
897 		 * to avoid issues in the future. Marking all objects
898 		 * as used avoids touching the remaining objects.
899 		 */
900 		slab_fix(s, "Marking all objects used");
901 		page->inuse = page->objects;
902 		page->freelist = NULL;
903 	}
904 	return 0;
905 }
906 
907 static int free_debug_processing(struct kmem_cache *s, struct page *page,
908 						void *object, void *addr)
909 {
910 	if (!check_slab(s, page))
911 		goto fail;
912 
913 	if (!check_valid_pointer(s, page, object)) {
914 		slab_err(s, page, "Invalid object pointer 0x%p", object);
915 		goto fail;
916 	}
917 
918 	if (on_freelist(s, page, object)) {
919 		object_err(s, page, object, "Object already free");
920 		goto fail;
921 	}
922 
923 	if (!check_object(s, page, object, 1))
924 		return 0;
925 
926 	if (unlikely(s != page->slab)) {
927 		if (!PageSlab(page)) {
928 			slab_err(s, page, "Attempt to free object(0x%p) "
929 				"outside of slab", object);
930 		} else if (!page->slab) {
931 			printk(KERN_ERR
932 				"SLUB <none>: no slab for object 0x%p.\n",
933 						object);
934 			dump_stack();
935 		} else
936 			object_err(s, page, object,
937 					"page slab pointer corrupt.");
938 		goto fail;
939 	}
940 
941 	/* Special debug activities for freeing objects */
942 	if (!PageSlubFrozen(page) && !page->freelist)
943 		remove_full(s, page);
944 	if (s->flags & SLAB_STORE_USER)
945 		set_track(s, object, TRACK_FREE, addr);
946 	trace(s, page, object, 0);
947 	init_object(s, object, 0);
948 	return 1;
949 
950 fail:
951 	slab_fix(s, "Object at 0x%p not freed", object);
952 	return 0;
953 }
954 
955 static int __init setup_slub_debug(char *str)
956 {
957 	slub_debug = DEBUG_DEFAULT_FLAGS;
958 	if (*str++ != '=' || !*str)
959 		/*
960 		 * No options specified. Switch on full debugging.
961 		 */
962 		goto out;
963 
964 	if (*str == ',')
965 		/*
966 		 * No options but restriction on slabs. This means full
967 		 * debugging for slabs matching a pattern.
968 		 */
969 		goto check_slabs;
970 
971 	slub_debug = 0;
972 	if (*str == '-')
973 		/*
974 		 * Switch off all debugging measures.
975 		 */
976 		goto out;
977 
978 	/*
979 	 * Determine which debug features should be switched on
980 	 */
981 	for (; *str && *str != ','; str++) {
982 		switch (tolower(*str)) {
983 		case 'f':
984 			slub_debug |= SLAB_DEBUG_FREE;
985 			break;
986 		case 'z':
987 			slub_debug |= SLAB_RED_ZONE;
988 			break;
989 		case 'p':
990 			slub_debug |= SLAB_POISON;
991 			break;
992 		case 'u':
993 			slub_debug |= SLAB_STORE_USER;
994 			break;
995 		case 't':
996 			slub_debug |= SLAB_TRACE;
997 			break;
998 		default:
999 			printk(KERN_ERR "slub_debug option '%c' "
1000 				"unknown. skipped\n", *str);
1001 		}
1002 	}
1003 
1004 check_slabs:
1005 	if (*str == ',')
1006 		slub_debug_slabs = str + 1;
1007 out:
1008 	return 1;
1009 }
1010 
1011 __setup("slub_debug", setup_slub_debug);
1012 
1013 static unsigned long kmem_cache_flags(unsigned long objsize,
1014 	unsigned long flags, const char *name,
1015 	void (*ctor)(struct kmem_cache *, void *))
1016 {
1017 	/*
1018 	 * Enable debugging if selected on the kernel commandline.
1019 	 */
1020 	if (slub_debug && (!slub_debug_slabs ||
1021 	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1022 			flags |= slub_debug;
1023 
1024 	return flags;
1025 }
1026 #else
1027 static inline void setup_object_debug(struct kmem_cache *s,
1028 			struct page *page, void *object) {}
1029 
1030 static inline int alloc_debug_processing(struct kmem_cache *s,
1031 	struct page *page, void *object, void *addr) { return 0; }
1032 
1033 static inline int free_debug_processing(struct kmem_cache *s,
1034 	struct page *page, void *object, void *addr) { return 0; }
1035 
1036 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1037 			{ return 1; }
1038 static inline int check_object(struct kmem_cache *s, struct page *page,
1039 			void *object, int active) { return 1; }
1040 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1041 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1042 	unsigned long flags, const char *name,
1043 	void (*ctor)(struct kmem_cache *, void *))
1044 {
1045 	return flags;
1046 }
1047 #define slub_debug 0
1048 
1049 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1050 							{ return 0; }
1051 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1052 							int objects) {}
1053 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1054 							int objects) {}
1055 #endif
1056 
1057 /*
1058  * Slab allocation and freeing
1059  */
1060 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1061 					struct kmem_cache_order_objects oo)
1062 {
1063 	int order = oo_order(oo);
1064 
1065 	if (node == -1)
1066 		return alloc_pages(flags, order);
1067 	else
1068 		return alloc_pages_node(node, flags, order);
1069 }
1070 
1071 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1072 {
1073 	struct page *page;
1074 	struct kmem_cache_order_objects oo = s->oo;
1075 
1076 	flags |= s->allocflags;
1077 
1078 	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1079 									oo);
1080 	if (unlikely(!page)) {
1081 		oo = s->min;
1082 		/*
1083 		 * Allocation may have failed due to fragmentation.
1084 		 * Try a lower order alloc if possible
1085 		 */
1086 		page = alloc_slab_page(flags, node, oo);
1087 		if (!page)
1088 			return NULL;
1089 
1090 		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1091 	}
1092 	page->objects = oo_objects(oo);
1093 	mod_zone_page_state(page_zone(page),
1094 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1095 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1096 		1 << oo_order(oo));
1097 
1098 	return page;
1099 }
1100 
1101 static void setup_object(struct kmem_cache *s, struct page *page,
1102 				void *object)
1103 {
1104 	setup_object_debug(s, page, object);
1105 	if (unlikely(s->ctor))
1106 		s->ctor(s, object);
1107 }
1108 
1109 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1110 {
1111 	struct page *page;
1112 	void *start;
1113 	void *last;
1114 	void *p;
1115 
1116 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1117 
1118 	page = allocate_slab(s,
1119 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1120 	if (!page)
1121 		goto out;
1122 
1123 	inc_slabs_node(s, page_to_nid(page), page->objects);
1124 	page->slab = s;
1125 	page->flags |= 1 << PG_slab;
1126 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1127 			SLAB_STORE_USER | SLAB_TRACE))
1128 		__SetPageSlubDebug(page);
1129 
1130 	start = page_address(page);
1131 
1132 	if (unlikely(s->flags & SLAB_POISON))
1133 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1134 
1135 	last = start;
1136 	for_each_object(p, s, start, page->objects) {
1137 		setup_object(s, page, last);
1138 		set_freepointer(s, last, p);
1139 		last = p;
1140 	}
1141 	setup_object(s, page, last);
1142 	set_freepointer(s, last, NULL);
1143 
1144 	page->freelist = start;
1145 	page->inuse = 0;
1146 out:
1147 	return page;
1148 }
1149 
1150 static void __free_slab(struct kmem_cache *s, struct page *page)
1151 {
1152 	int order = compound_order(page);
1153 	int pages = 1 << order;
1154 
1155 	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1156 		void *p;
1157 
1158 		slab_pad_check(s, page);
1159 		for_each_object(p, s, page_address(page),
1160 						page->objects)
1161 			check_object(s, page, p, 0);
1162 		__ClearPageSlubDebug(page);
1163 	}
1164 
1165 	mod_zone_page_state(page_zone(page),
1166 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1167 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1168 		-pages);
1169 
1170 	__ClearPageSlab(page);
1171 	reset_page_mapcount(page);
1172 	__free_pages(page, order);
1173 }
1174 
1175 static void rcu_free_slab(struct rcu_head *h)
1176 {
1177 	struct page *page;
1178 
1179 	page = container_of((struct list_head *)h, struct page, lru);
1180 	__free_slab(page->slab, page);
1181 }
1182 
1183 static void free_slab(struct kmem_cache *s, struct page *page)
1184 {
1185 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1186 		/*
1187 		 * RCU free overloads the RCU head over the LRU
1188 		 */
1189 		struct rcu_head *head = (void *)&page->lru;
1190 
1191 		call_rcu(head, rcu_free_slab);
1192 	} else
1193 		__free_slab(s, page);
1194 }
1195 
1196 static void discard_slab(struct kmem_cache *s, struct page *page)
1197 {
1198 	dec_slabs_node(s, page_to_nid(page), page->objects);
1199 	free_slab(s, page);
1200 }
1201 
1202 /*
1203  * Per slab locking using the pagelock
1204  */
1205 static __always_inline void slab_lock(struct page *page)
1206 {
1207 	bit_spin_lock(PG_locked, &page->flags);
1208 }
1209 
1210 static __always_inline void slab_unlock(struct page *page)
1211 {
1212 	__bit_spin_unlock(PG_locked, &page->flags);
1213 }
1214 
1215 static __always_inline int slab_trylock(struct page *page)
1216 {
1217 	int rc = 1;
1218 
1219 	rc = bit_spin_trylock(PG_locked, &page->flags);
1220 	return rc;
1221 }
1222 
1223 /*
1224  * Management of partially allocated slabs
1225  */
1226 static void add_partial(struct kmem_cache_node *n,
1227 				struct page *page, int tail)
1228 {
1229 	spin_lock(&n->list_lock);
1230 	n->nr_partial++;
1231 	if (tail)
1232 		list_add_tail(&page->lru, &n->partial);
1233 	else
1234 		list_add(&page->lru, &n->partial);
1235 	spin_unlock(&n->list_lock);
1236 }
1237 
1238 static void remove_partial(struct kmem_cache *s, struct page *page)
1239 {
1240 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1241 
1242 	spin_lock(&n->list_lock);
1243 	list_del(&page->lru);
1244 	n->nr_partial--;
1245 	spin_unlock(&n->list_lock);
1246 }
1247 
1248 /*
1249  * Lock slab and remove from the partial list.
1250  *
1251  * Must hold list_lock.
1252  */
1253 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1254 							struct page *page)
1255 {
1256 	if (slab_trylock(page)) {
1257 		list_del(&page->lru);
1258 		n->nr_partial--;
1259 		__SetPageSlubFrozen(page);
1260 		return 1;
1261 	}
1262 	return 0;
1263 }
1264 
1265 /*
1266  * Try to allocate a partial slab from a specific node.
1267  */
1268 static struct page *get_partial_node(struct kmem_cache_node *n)
1269 {
1270 	struct page *page;
1271 
1272 	/*
1273 	 * Racy check. If we mistakenly see no partial slabs then we
1274 	 * just allocate an empty slab. If we mistakenly try to get a
1275 	 * partial slab and there is none available then get_partials()
1276 	 * will return NULL.
1277 	 */
1278 	if (!n || !n->nr_partial)
1279 		return NULL;
1280 
1281 	spin_lock(&n->list_lock);
1282 	list_for_each_entry(page, &n->partial, lru)
1283 		if (lock_and_freeze_slab(n, page))
1284 			goto out;
1285 	page = NULL;
1286 out:
1287 	spin_unlock(&n->list_lock);
1288 	return page;
1289 }
1290 
1291 /*
1292  * Get a page from somewhere. Search in increasing NUMA distances.
1293  */
1294 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1295 {
1296 #ifdef CONFIG_NUMA
1297 	struct zonelist *zonelist;
1298 	struct zoneref *z;
1299 	struct zone *zone;
1300 	enum zone_type high_zoneidx = gfp_zone(flags);
1301 	struct page *page;
1302 
1303 	/*
1304 	 * The defrag ratio allows a configuration of the tradeoffs between
1305 	 * inter node defragmentation and node local allocations. A lower
1306 	 * defrag_ratio increases the tendency to do local allocations
1307 	 * instead of attempting to obtain partial slabs from other nodes.
1308 	 *
1309 	 * If the defrag_ratio is set to 0 then kmalloc() always
1310 	 * returns node local objects. If the ratio is higher then kmalloc()
1311 	 * may return off node objects because partial slabs are obtained
1312 	 * from other nodes and filled up.
1313 	 *
1314 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1315 	 * defrag_ratio = 1000) then every (well almost) allocation will
1316 	 * first attempt to defrag slab caches on other nodes. This means
1317 	 * scanning over all nodes to look for partial slabs which may be
1318 	 * expensive if we do it every time we are trying to find a slab
1319 	 * with available objects.
1320 	 */
1321 	if (!s->remote_node_defrag_ratio ||
1322 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1323 		return NULL;
1324 
1325 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1326 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1327 		struct kmem_cache_node *n;
1328 
1329 		n = get_node(s, zone_to_nid(zone));
1330 
1331 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1332 				n->nr_partial > MIN_PARTIAL) {
1333 			page = get_partial_node(n);
1334 			if (page)
1335 				return page;
1336 		}
1337 	}
1338 #endif
1339 	return NULL;
1340 }
1341 
1342 /*
1343  * Get a partial page, lock it and return it.
1344  */
1345 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1346 {
1347 	struct page *page;
1348 	int searchnode = (node == -1) ? numa_node_id() : node;
1349 
1350 	page = get_partial_node(get_node(s, searchnode));
1351 	if (page || (flags & __GFP_THISNODE))
1352 		return page;
1353 
1354 	return get_any_partial(s, flags);
1355 }
1356 
1357 /*
1358  * Move a page back to the lists.
1359  *
1360  * Must be called with the slab lock held.
1361  *
1362  * On exit the slab lock will have been dropped.
1363  */
1364 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1365 {
1366 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1367 	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1368 
1369 	__ClearPageSlubFrozen(page);
1370 	if (page->inuse) {
1371 
1372 		if (page->freelist) {
1373 			add_partial(n, page, tail);
1374 			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1375 		} else {
1376 			stat(c, DEACTIVATE_FULL);
1377 			if (SLABDEBUG && PageSlubDebug(page) &&
1378 						(s->flags & SLAB_STORE_USER))
1379 				add_full(n, page);
1380 		}
1381 		slab_unlock(page);
1382 	} else {
1383 		stat(c, DEACTIVATE_EMPTY);
1384 		if (n->nr_partial < MIN_PARTIAL) {
1385 			/*
1386 			 * Adding an empty slab to the partial slabs in order
1387 			 * to avoid page allocator overhead. This slab needs
1388 			 * to come after the other slabs with objects in
1389 			 * so that the others get filled first. That way the
1390 			 * size of the partial list stays small.
1391 			 *
1392 			 * kmem_cache_shrink can reclaim any empty slabs from
1393 			 * the partial list.
1394 			 */
1395 			add_partial(n, page, 1);
1396 			slab_unlock(page);
1397 		} else {
1398 			slab_unlock(page);
1399 			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1400 			discard_slab(s, page);
1401 		}
1402 	}
1403 }
1404 
1405 /*
1406  * Remove the cpu slab
1407  */
1408 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1409 {
1410 	struct page *page = c->page;
1411 	int tail = 1;
1412 
1413 	if (page->freelist)
1414 		stat(c, DEACTIVATE_REMOTE_FREES);
1415 	/*
1416 	 * Merge cpu freelist into slab freelist. Typically we get here
1417 	 * because both freelists are empty. So this is unlikely
1418 	 * to occur.
1419 	 */
1420 	while (unlikely(c->freelist)) {
1421 		void **object;
1422 
1423 		tail = 0;	/* Hot objects. Put the slab first */
1424 
1425 		/* Retrieve object from cpu_freelist */
1426 		object = c->freelist;
1427 		c->freelist = c->freelist[c->offset];
1428 
1429 		/* And put onto the regular freelist */
1430 		object[c->offset] = page->freelist;
1431 		page->freelist = object;
1432 		page->inuse--;
1433 	}
1434 	c->page = NULL;
1435 	unfreeze_slab(s, page, tail);
1436 }
1437 
1438 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1439 {
1440 	stat(c, CPUSLAB_FLUSH);
1441 	slab_lock(c->page);
1442 	deactivate_slab(s, c);
1443 }
1444 
1445 /*
1446  * Flush cpu slab.
1447  *
1448  * Called from IPI handler with interrupts disabled.
1449  */
1450 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1451 {
1452 	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1453 
1454 	if (likely(c && c->page))
1455 		flush_slab(s, c);
1456 }
1457 
1458 static void flush_cpu_slab(void *d)
1459 {
1460 	struct kmem_cache *s = d;
1461 
1462 	__flush_cpu_slab(s, smp_processor_id());
1463 }
1464 
1465 static void flush_all(struct kmem_cache *s)
1466 {
1467 	on_each_cpu(flush_cpu_slab, s, 1);
1468 }
1469 
1470 /*
1471  * Check if the objects in a per cpu structure fit numa
1472  * locality expectations.
1473  */
1474 static inline int node_match(struct kmem_cache_cpu *c, int node)
1475 {
1476 #ifdef CONFIG_NUMA
1477 	if (node != -1 && c->node != node)
1478 		return 0;
1479 #endif
1480 	return 1;
1481 }
1482 
1483 /*
1484  * Slow path. The lockless freelist is empty or we need to perform
1485  * debugging duties.
1486  *
1487  * Interrupts are disabled.
1488  *
1489  * Processing is still very fast if new objects have been freed to the
1490  * regular freelist. In that case we simply take over the regular freelist
1491  * as the lockless freelist and zap the regular freelist.
1492  *
1493  * If that is not working then we fall back to the partial lists. We take the
1494  * first element of the freelist as the object to allocate now and move the
1495  * rest of the freelist to the lockless freelist.
1496  *
1497  * And if we were unable to get a new slab from the partial slab lists then
1498  * we need to allocate a new slab. This is the slowest path since it involves
1499  * a call to the page allocator and the setup of a new slab.
1500  */
1501 static void *__slab_alloc(struct kmem_cache *s,
1502 		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1503 {
1504 	void **object;
1505 	struct page *new;
1506 
1507 	/* We handle __GFP_ZERO in the caller */
1508 	gfpflags &= ~__GFP_ZERO;
1509 
1510 	if (!c->page)
1511 		goto new_slab;
1512 
1513 	slab_lock(c->page);
1514 	if (unlikely(!node_match(c, node)))
1515 		goto another_slab;
1516 
1517 	stat(c, ALLOC_REFILL);
1518 
1519 load_freelist:
1520 	object = c->page->freelist;
1521 	if (unlikely(!object))
1522 		goto another_slab;
1523 	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1524 		goto debug;
1525 
1526 	c->freelist = object[c->offset];
1527 	c->page->inuse = c->page->objects;
1528 	c->page->freelist = NULL;
1529 	c->node = page_to_nid(c->page);
1530 unlock_out:
1531 	slab_unlock(c->page);
1532 	stat(c, ALLOC_SLOWPATH);
1533 	return object;
1534 
1535 another_slab:
1536 	deactivate_slab(s, c);
1537 
1538 new_slab:
1539 	new = get_partial(s, gfpflags, node);
1540 	if (new) {
1541 		c->page = new;
1542 		stat(c, ALLOC_FROM_PARTIAL);
1543 		goto load_freelist;
1544 	}
1545 
1546 	if (gfpflags & __GFP_WAIT)
1547 		local_irq_enable();
1548 
1549 	new = new_slab(s, gfpflags, node);
1550 
1551 	if (gfpflags & __GFP_WAIT)
1552 		local_irq_disable();
1553 
1554 	if (new) {
1555 		c = get_cpu_slab(s, smp_processor_id());
1556 		stat(c, ALLOC_SLAB);
1557 		if (c->page)
1558 			flush_slab(s, c);
1559 		slab_lock(new);
1560 		__SetPageSlubFrozen(new);
1561 		c->page = new;
1562 		goto load_freelist;
1563 	}
1564 	return NULL;
1565 debug:
1566 	if (!alloc_debug_processing(s, c->page, object, addr))
1567 		goto another_slab;
1568 
1569 	c->page->inuse++;
1570 	c->page->freelist = object[c->offset];
1571 	c->node = -1;
1572 	goto unlock_out;
1573 }
1574 
1575 /*
1576  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1577  * have the fastpath folded into their functions. So no function call
1578  * overhead for requests that can be satisfied on the fastpath.
1579  *
1580  * The fastpath works by first checking if the lockless freelist can be used.
1581  * If not then __slab_alloc is called for slow processing.
1582  *
1583  * Otherwise we can simply pick the next object from the lockless free list.
1584  */
1585 static __always_inline void *slab_alloc(struct kmem_cache *s,
1586 		gfp_t gfpflags, int node, void *addr)
1587 {
1588 	void **object;
1589 	struct kmem_cache_cpu *c;
1590 	unsigned long flags;
1591 	unsigned int objsize;
1592 
1593 	local_irq_save(flags);
1594 	c = get_cpu_slab(s, smp_processor_id());
1595 	objsize = c->objsize;
1596 	if (unlikely(!c->freelist || !node_match(c, node)))
1597 
1598 		object = __slab_alloc(s, gfpflags, node, addr, c);
1599 
1600 	else {
1601 		object = c->freelist;
1602 		c->freelist = object[c->offset];
1603 		stat(c, ALLOC_FASTPATH);
1604 	}
1605 	local_irq_restore(flags);
1606 
1607 	if (unlikely((gfpflags & __GFP_ZERO) && object))
1608 		memset(object, 0, objsize);
1609 
1610 	return object;
1611 }
1612 
1613 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1614 {
1615 	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1616 }
1617 EXPORT_SYMBOL(kmem_cache_alloc);
1618 
1619 #ifdef CONFIG_NUMA
1620 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1621 {
1622 	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1623 }
1624 EXPORT_SYMBOL(kmem_cache_alloc_node);
1625 #endif
1626 
1627 /*
1628  * Slow patch handling. This may still be called frequently since objects
1629  * have a longer lifetime than the cpu slabs in most processing loads.
1630  *
1631  * So we still attempt to reduce cache line usage. Just take the slab
1632  * lock and free the item. If there is no additional partial page
1633  * handling required then we can return immediately.
1634  */
1635 static void __slab_free(struct kmem_cache *s, struct page *page,
1636 				void *x, void *addr, unsigned int offset)
1637 {
1638 	void *prior;
1639 	void **object = (void *)x;
1640 	struct kmem_cache_cpu *c;
1641 
1642 	c = get_cpu_slab(s, raw_smp_processor_id());
1643 	stat(c, FREE_SLOWPATH);
1644 	slab_lock(page);
1645 
1646 	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1647 		goto debug;
1648 
1649 checks_ok:
1650 	prior = object[offset] = page->freelist;
1651 	page->freelist = object;
1652 	page->inuse--;
1653 
1654 	if (unlikely(PageSlubFrozen(page))) {
1655 		stat(c, FREE_FROZEN);
1656 		goto out_unlock;
1657 	}
1658 
1659 	if (unlikely(!page->inuse))
1660 		goto slab_empty;
1661 
1662 	/*
1663 	 * Objects left in the slab. If it was not on the partial list before
1664 	 * then add it.
1665 	 */
1666 	if (unlikely(!prior)) {
1667 		add_partial(get_node(s, page_to_nid(page)), page, 1);
1668 		stat(c, FREE_ADD_PARTIAL);
1669 	}
1670 
1671 out_unlock:
1672 	slab_unlock(page);
1673 	return;
1674 
1675 slab_empty:
1676 	if (prior) {
1677 		/*
1678 		 * Slab still on the partial list.
1679 		 */
1680 		remove_partial(s, page);
1681 		stat(c, FREE_REMOVE_PARTIAL);
1682 	}
1683 	slab_unlock(page);
1684 	stat(c, FREE_SLAB);
1685 	discard_slab(s, page);
1686 	return;
1687 
1688 debug:
1689 	if (!free_debug_processing(s, page, x, addr))
1690 		goto out_unlock;
1691 	goto checks_ok;
1692 }
1693 
1694 /*
1695  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1696  * can perform fastpath freeing without additional function calls.
1697  *
1698  * The fastpath is only possible if we are freeing to the current cpu slab
1699  * of this processor. This typically the case if we have just allocated
1700  * the item before.
1701  *
1702  * If fastpath is not possible then fall back to __slab_free where we deal
1703  * with all sorts of special processing.
1704  */
1705 static __always_inline void slab_free(struct kmem_cache *s,
1706 			struct page *page, void *x, void *addr)
1707 {
1708 	void **object = (void *)x;
1709 	struct kmem_cache_cpu *c;
1710 	unsigned long flags;
1711 
1712 	local_irq_save(flags);
1713 	c = get_cpu_slab(s, smp_processor_id());
1714 	debug_check_no_locks_freed(object, c->objsize);
1715 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1716 		debug_check_no_obj_freed(object, s->objsize);
1717 	if (likely(page == c->page && c->node >= 0)) {
1718 		object[c->offset] = c->freelist;
1719 		c->freelist = object;
1720 		stat(c, FREE_FASTPATH);
1721 	} else
1722 		__slab_free(s, page, x, addr, c->offset);
1723 
1724 	local_irq_restore(flags);
1725 }
1726 
1727 void kmem_cache_free(struct kmem_cache *s, void *x)
1728 {
1729 	struct page *page;
1730 
1731 	page = virt_to_head_page(x);
1732 
1733 	slab_free(s, page, x, __builtin_return_address(0));
1734 }
1735 EXPORT_SYMBOL(kmem_cache_free);
1736 
1737 /* Figure out on which slab object the object resides */
1738 static struct page *get_object_page(const void *x)
1739 {
1740 	struct page *page = virt_to_head_page(x);
1741 
1742 	if (!PageSlab(page))
1743 		return NULL;
1744 
1745 	return page;
1746 }
1747 
1748 /*
1749  * Object placement in a slab is made very easy because we always start at
1750  * offset 0. If we tune the size of the object to the alignment then we can
1751  * get the required alignment by putting one properly sized object after
1752  * another.
1753  *
1754  * Notice that the allocation order determines the sizes of the per cpu
1755  * caches. Each processor has always one slab available for allocations.
1756  * Increasing the allocation order reduces the number of times that slabs
1757  * must be moved on and off the partial lists and is therefore a factor in
1758  * locking overhead.
1759  */
1760 
1761 /*
1762  * Mininum / Maximum order of slab pages. This influences locking overhead
1763  * and slab fragmentation. A higher order reduces the number of partial slabs
1764  * and increases the number of allocations possible without having to
1765  * take the list_lock.
1766  */
1767 static int slub_min_order;
1768 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1769 static int slub_min_objects;
1770 
1771 /*
1772  * Merge control. If this is set then no merging of slab caches will occur.
1773  * (Could be removed. This was introduced to pacify the merge skeptics.)
1774  */
1775 static int slub_nomerge;
1776 
1777 /*
1778  * Calculate the order of allocation given an slab object size.
1779  *
1780  * The order of allocation has significant impact on performance and other
1781  * system components. Generally order 0 allocations should be preferred since
1782  * order 0 does not cause fragmentation in the page allocator. Larger objects
1783  * be problematic to put into order 0 slabs because there may be too much
1784  * unused space left. We go to a higher order if more than 1/16th of the slab
1785  * would be wasted.
1786  *
1787  * In order to reach satisfactory performance we must ensure that a minimum
1788  * number of objects is in one slab. Otherwise we may generate too much
1789  * activity on the partial lists which requires taking the list_lock. This is
1790  * less a concern for large slabs though which are rarely used.
1791  *
1792  * slub_max_order specifies the order where we begin to stop considering the
1793  * number of objects in a slab as critical. If we reach slub_max_order then
1794  * we try to keep the page order as low as possible. So we accept more waste
1795  * of space in favor of a small page order.
1796  *
1797  * Higher order allocations also allow the placement of more objects in a
1798  * slab and thereby reduce object handling overhead. If the user has
1799  * requested a higher mininum order then we start with that one instead of
1800  * the smallest order which will fit the object.
1801  */
1802 static inline int slab_order(int size, int min_objects,
1803 				int max_order, int fract_leftover)
1804 {
1805 	int order;
1806 	int rem;
1807 	int min_order = slub_min_order;
1808 
1809 	if ((PAGE_SIZE << min_order) / size > 65535)
1810 		return get_order(size * 65535) - 1;
1811 
1812 	for (order = max(min_order,
1813 				fls(min_objects * size - 1) - PAGE_SHIFT);
1814 			order <= max_order; order++) {
1815 
1816 		unsigned long slab_size = PAGE_SIZE << order;
1817 
1818 		if (slab_size < min_objects * size)
1819 			continue;
1820 
1821 		rem = slab_size % size;
1822 
1823 		if (rem <= slab_size / fract_leftover)
1824 			break;
1825 
1826 	}
1827 
1828 	return order;
1829 }
1830 
1831 static inline int calculate_order(int size)
1832 {
1833 	int order;
1834 	int min_objects;
1835 	int fraction;
1836 
1837 	/*
1838 	 * Attempt to find best configuration for a slab. This
1839 	 * works by first attempting to generate a layout with
1840 	 * the best configuration and backing off gradually.
1841 	 *
1842 	 * First we reduce the acceptable waste in a slab. Then
1843 	 * we reduce the minimum objects required in a slab.
1844 	 */
1845 	min_objects = slub_min_objects;
1846 	if (!min_objects)
1847 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1848 	while (min_objects > 1) {
1849 		fraction = 16;
1850 		while (fraction >= 4) {
1851 			order = slab_order(size, min_objects,
1852 						slub_max_order, fraction);
1853 			if (order <= slub_max_order)
1854 				return order;
1855 			fraction /= 2;
1856 		}
1857 		min_objects /= 2;
1858 	}
1859 
1860 	/*
1861 	 * We were unable to place multiple objects in a slab. Now
1862 	 * lets see if we can place a single object there.
1863 	 */
1864 	order = slab_order(size, 1, slub_max_order, 1);
1865 	if (order <= slub_max_order)
1866 		return order;
1867 
1868 	/*
1869 	 * Doh this slab cannot be placed using slub_max_order.
1870 	 */
1871 	order = slab_order(size, 1, MAX_ORDER, 1);
1872 	if (order <= MAX_ORDER)
1873 		return order;
1874 	return -ENOSYS;
1875 }
1876 
1877 /*
1878  * Figure out what the alignment of the objects will be.
1879  */
1880 static unsigned long calculate_alignment(unsigned long flags,
1881 		unsigned long align, unsigned long size)
1882 {
1883 	/*
1884 	 * If the user wants hardware cache aligned objects then follow that
1885 	 * suggestion if the object is sufficiently large.
1886 	 *
1887 	 * The hardware cache alignment cannot override the specified
1888 	 * alignment though. If that is greater then use it.
1889 	 */
1890 	if (flags & SLAB_HWCACHE_ALIGN) {
1891 		unsigned long ralign = cache_line_size();
1892 		while (size <= ralign / 2)
1893 			ralign /= 2;
1894 		align = max(align, ralign);
1895 	}
1896 
1897 	if (align < ARCH_SLAB_MINALIGN)
1898 		align = ARCH_SLAB_MINALIGN;
1899 
1900 	return ALIGN(align, sizeof(void *));
1901 }
1902 
1903 static void init_kmem_cache_cpu(struct kmem_cache *s,
1904 			struct kmem_cache_cpu *c)
1905 {
1906 	c->page = NULL;
1907 	c->freelist = NULL;
1908 	c->node = 0;
1909 	c->offset = s->offset / sizeof(void *);
1910 	c->objsize = s->objsize;
1911 #ifdef CONFIG_SLUB_STATS
1912 	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1913 #endif
1914 }
1915 
1916 static void init_kmem_cache_node(struct kmem_cache_node *n)
1917 {
1918 	n->nr_partial = 0;
1919 	spin_lock_init(&n->list_lock);
1920 	INIT_LIST_HEAD(&n->partial);
1921 #ifdef CONFIG_SLUB_DEBUG
1922 	atomic_long_set(&n->nr_slabs, 0);
1923 	INIT_LIST_HEAD(&n->full);
1924 #endif
1925 }
1926 
1927 #ifdef CONFIG_SMP
1928 /*
1929  * Per cpu array for per cpu structures.
1930  *
1931  * The per cpu array places all kmem_cache_cpu structures from one processor
1932  * close together meaning that it becomes possible that multiple per cpu
1933  * structures are contained in one cacheline. This may be particularly
1934  * beneficial for the kmalloc caches.
1935  *
1936  * A desktop system typically has around 60-80 slabs. With 100 here we are
1937  * likely able to get per cpu structures for all caches from the array defined
1938  * here. We must be able to cover all kmalloc caches during bootstrap.
1939  *
1940  * If the per cpu array is exhausted then fall back to kmalloc
1941  * of individual cachelines. No sharing is possible then.
1942  */
1943 #define NR_KMEM_CACHE_CPU 100
1944 
1945 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1946 				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1947 
1948 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1949 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1950 
1951 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1952 							int cpu, gfp_t flags)
1953 {
1954 	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1955 
1956 	if (c)
1957 		per_cpu(kmem_cache_cpu_free, cpu) =
1958 				(void *)c->freelist;
1959 	else {
1960 		/* Table overflow: So allocate ourselves */
1961 		c = kmalloc_node(
1962 			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1963 			flags, cpu_to_node(cpu));
1964 		if (!c)
1965 			return NULL;
1966 	}
1967 
1968 	init_kmem_cache_cpu(s, c);
1969 	return c;
1970 }
1971 
1972 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1973 {
1974 	if (c < per_cpu(kmem_cache_cpu, cpu) ||
1975 			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1976 		kfree(c);
1977 		return;
1978 	}
1979 	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1980 	per_cpu(kmem_cache_cpu_free, cpu) = c;
1981 }
1982 
1983 static void free_kmem_cache_cpus(struct kmem_cache *s)
1984 {
1985 	int cpu;
1986 
1987 	for_each_online_cpu(cpu) {
1988 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1989 
1990 		if (c) {
1991 			s->cpu_slab[cpu] = NULL;
1992 			free_kmem_cache_cpu(c, cpu);
1993 		}
1994 	}
1995 }
1996 
1997 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1998 {
1999 	int cpu;
2000 
2001 	for_each_online_cpu(cpu) {
2002 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2003 
2004 		if (c)
2005 			continue;
2006 
2007 		c = alloc_kmem_cache_cpu(s, cpu, flags);
2008 		if (!c) {
2009 			free_kmem_cache_cpus(s);
2010 			return 0;
2011 		}
2012 		s->cpu_slab[cpu] = c;
2013 	}
2014 	return 1;
2015 }
2016 
2017 /*
2018  * Initialize the per cpu array.
2019  */
2020 static void init_alloc_cpu_cpu(int cpu)
2021 {
2022 	int i;
2023 
2024 	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2025 		return;
2026 
2027 	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2028 		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2029 
2030 	cpu_set(cpu, kmem_cach_cpu_free_init_once);
2031 }
2032 
2033 static void __init init_alloc_cpu(void)
2034 {
2035 	int cpu;
2036 
2037 	for_each_online_cpu(cpu)
2038 		init_alloc_cpu_cpu(cpu);
2039   }
2040 
2041 #else
2042 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2043 static inline void init_alloc_cpu(void) {}
2044 
2045 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2046 {
2047 	init_kmem_cache_cpu(s, &s->cpu_slab);
2048 	return 1;
2049 }
2050 #endif
2051 
2052 #ifdef CONFIG_NUMA
2053 /*
2054  * No kmalloc_node yet so do it by hand. We know that this is the first
2055  * slab on the node for this slabcache. There are no concurrent accesses
2056  * possible.
2057  *
2058  * Note that this function only works on the kmalloc_node_cache
2059  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2060  * memory on a fresh node that has no slab structures yet.
2061  */
2062 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2063 							   int node)
2064 {
2065 	struct page *page;
2066 	struct kmem_cache_node *n;
2067 	unsigned long flags;
2068 
2069 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2070 
2071 	page = new_slab(kmalloc_caches, gfpflags, node);
2072 
2073 	BUG_ON(!page);
2074 	if (page_to_nid(page) != node) {
2075 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2076 				"node %d\n", node);
2077 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2078 				"in order to be able to continue\n");
2079 	}
2080 
2081 	n = page->freelist;
2082 	BUG_ON(!n);
2083 	page->freelist = get_freepointer(kmalloc_caches, n);
2084 	page->inuse++;
2085 	kmalloc_caches->node[node] = n;
2086 #ifdef CONFIG_SLUB_DEBUG
2087 	init_object(kmalloc_caches, n, 1);
2088 	init_tracking(kmalloc_caches, n);
2089 #endif
2090 	init_kmem_cache_node(n);
2091 	inc_slabs_node(kmalloc_caches, node, page->objects);
2092 
2093 	/*
2094 	 * lockdep requires consistent irq usage for each lock
2095 	 * so even though there cannot be a race this early in
2096 	 * the boot sequence, we still disable irqs.
2097 	 */
2098 	local_irq_save(flags);
2099 	add_partial(n, page, 0);
2100 	local_irq_restore(flags);
2101 	return n;
2102 }
2103 
2104 static void free_kmem_cache_nodes(struct kmem_cache *s)
2105 {
2106 	int node;
2107 
2108 	for_each_node_state(node, N_NORMAL_MEMORY) {
2109 		struct kmem_cache_node *n = s->node[node];
2110 		if (n && n != &s->local_node)
2111 			kmem_cache_free(kmalloc_caches, n);
2112 		s->node[node] = NULL;
2113 	}
2114 }
2115 
2116 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2117 {
2118 	int node;
2119 	int local_node;
2120 
2121 	if (slab_state >= UP)
2122 		local_node = page_to_nid(virt_to_page(s));
2123 	else
2124 		local_node = 0;
2125 
2126 	for_each_node_state(node, N_NORMAL_MEMORY) {
2127 		struct kmem_cache_node *n;
2128 
2129 		if (local_node == node)
2130 			n = &s->local_node;
2131 		else {
2132 			if (slab_state == DOWN) {
2133 				n = early_kmem_cache_node_alloc(gfpflags,
2134 								node);
2135 				continue;
2136 			}
2137 			n = kmem_cache_alloc_node(kmalloc_caches,
2138 							gfpflags, node);
2139 
2140 			if (!n) {
2141 				free_kmem_cache_nodes(s);
2142 				return 0;
2143 			}
2144 
2145 		}
2146 		s->node[node] = n;
2147 		init_kmem_cache_node(n);
2148 	}
2149 	return 1;
2150 }
2151 #else
2152 static void free_kmem_cache_nodes(struct kmem_cache *s)
2153 {
2154 }
2155 
2156 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2157 {
2158 	init_kmem_cache_node(&s->local_node);
2159 	return 1;
2160 }
2161 #endif
2162 
2163 /*
2164  * calculate_sizes() determines the order and the distribution of data within
2165  * a slab object.
2166  */
2167 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2168 {
2169 	unsigned long flags = s->flags;
2170 	unsigned long size = s->objsize;
2171 	unsigned long align = s->align;
2172 	int order;
2173 
2174 	/*
2175 	 * Round up object size to the next word boundary. We can only
2176 	 * place the free pointer at word boundaries and this determines
2177 	 * the possible location of the free pointer.
2178 	 */
2179 	size = ALIGN(size, sizeof(void *));
2180 
2181 #ifdef CONFIG_SLUB_DEBUG
2182 	/*
2183 	 * Determine if we can poison the object itself. If the user of
2184 	 * the slab may touch the object after free or before allocation
2185 	 * then we should never poison the object itself.
2186 	 */
2187 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2188 			!s->ctor)
2189 		s->flags |= __OBJECT_POISON;
2190 	else
2191 		s->flags &= ~__OBJECT_POISON;
2192 
2193 
2194 	/*
2195 	 * If we are Redzoning then check if there is some space between the
2196 	 * end of the object and the free pointer. If not then add an
2197 	 * additional word to have some bytes to store Redzone information.
2198 	 */
2199 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2200 		size += sizeof(void *);
2201 #endif
2202 
2203 	/*
2204 	 * With that we have determined the number of bytes in actual use
2205 	 * by the object. This is the potential offset to the free pointer.
2206 	 */
2207 	s->inuse = size;
2208 
2209 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2210 		s->ctor)) {
2211 		/*
2212 		 * Relocate free pointer after the object if it is not
2213 		 * permitted to overwrite the first word of the object on
2214 		 * kmem_cache_free.
2215 		 *
2216 		 * This is the case if we do RCU, have a constructor or
2217 		 * destructor or are poisoning the objects.
2218 		 */
2219 		s->offset = size;
2220 		size += sizeof(void *);
2221 	}
2222 
2223 #ifdef CONFIG_SLUB_DEBUG
2224 	if (flags & SLAB_STORE_USER)
2225 		/*
2226 		 * Need to store information about allocs and frees after
2227 		 * the object.
2228 		 */
2229 		size += 2 * sizeof(struct track);
2230 
2231 	if (flags & SLAB_RED_ZONE)
2232 		/*
2233 		 * Add some empty padding so that we can catch
2234 		 * overwrites from earlier objects rather than let
2235 		 * tracking information or the free pointer be
2236 		 * corrupted if an user writes before the start
2237 		 * of the object.
2238 		 */
2239 		size += sizeof(void *);
2240 #endif
2241 
2242 	/*
2243 	 * Determine the alignment based on various parameters that the
2244 	 * user specified and the dynamic determination of cache line size
2245 	 * on bootup.
2246 	 */
2247 	align = calculate_alignment(flags, align, s->objsize);
2248 
2249 	/*
2250 	 * SLUB stores one object immediately after another beginning from
2251 	 * offset 0. In order to align the objects we have to simply size
2252 	 * each object to conform to the alignment.
2253 	 */
2254 	size = ALIGN(size, align);
2255 	s->size = size;
2256 	if (forced_order >= 0)
2257 		order = forced_order;
2258 	else
2259 		order = calculate_order(size);
2260 
2261 	if (order < 0)
2262 		return 0;
2263 
2264 	s->allocflags = 0;
2265 	if (order)
2266 		s->allocflags |= __GFP_COMP;
2267 
2268 	if (s->flags & SLAB_CACHE_DMA)
2269 		s->allocflags |= SLUB_DMA;
2270 
2271 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2272 		s->allocflags |= __GFP_RECLAIMABLE;
2273 
2274 	/*
2275 	 * Determine the number of objects per slab
2276 	 */
2277 	s->oo = oo_make(order, size);
2278 	s->min = oo_make(get_order(size), size);
2279 	if (oo_objects(s->oo) > oo_objects(s->max))
2280 		s->max = s->oo;
2281 
2282 	return !!oo_objects(s->oo);
2283 
2284 }
2285 
2286 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2287 		const char *name, size_t size,
2288 		size_t align, unsigned long flags,
2289 		void (*ctor)(struct kmem_cache *, void *))
2290 {
2291 	memset(s, 0, kmem_size);
2292 	s->name = name;
2293 	s->ctor = ctor;
2294 	s->objsize = size;
2295 	s->align = align;
2296 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2297 
2298 	if (!calculate_sizes(s, -1))
2299 		goto error;
2300 
2301 	s->refcount = 1;
2302 #ifdef CONFIG_NUMA
2303 	s->remote_node_defrag_ratio = 100;
2304 #endif
2305 	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2306 		goto error;
2307 
2308 	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2309 		return 1;
2310 	free_kmem_cache_nodes(s);
2311 error:
2312 	if (flags & SLAB_PANIC)
2313 		panic("Cannot create slab %s size=%lu realsize=%u "
2314 			"order=%u offset=%u flags=%lx\n",
2315 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2316 			s->offset, flags);
2317 	return 0;
2318 }
2319 
2320 /*
2321  * Check if a given pointer is valid
2322  */
2323 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2324 {
2325 	struct page *page;
2326 
2327 	page = get_object_page(object);
2328 
2329 	if (!page || s != page->slab)
2330 		/* No slab or wrong slab */
2331 		return 0;
2332 
2333 	if (!check_valid_pointer(s, page, object))
2334 		return 0;
2335 
2336 	/*
2337 	 * We could also check if the object is on the slabs freelist.
2338 	 * But this would be too expensive and it seems that the main
2339 	 * purpose of kmem_ptr_valid() is to check if the object belongs
2340 	 * to a certain slab.
2341 	 */
2342 	return 1;
2343 }
2344 EXPORT_SYMBOL(kmem_ptr_validate);
2345 
2346 /*
2347  * Determine the size of a slab object
2348  */
2349 unsigned int kmem_cache_size(struct kmem_cache *s)
2350 {
2351 	return s->objsize;
2352 }
2353 EXPORT_SYMBOL(kmem_cache_size);
2354 
2355 const char *kmem_cache_name(struct kmem_cache *s)
2356 {
2357 	return s->name;
2358 }
2359 EXPORT_SYMBOL(kmem_cache_name);
2360 
2361 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2362 							const char *text)
2363 {
2364 #ifdef CONFIG_SLUB_DEBUG
2365 	void *addr = page_address(page);
2366 	void *p;
2367 	DECLARE_BITMAP(map, page->objects);
2368 
2369 	bitmap_zero(map, page->objects);
2370 	slab_err(s, page, "%s", text);
2371 	slab_lock(page);
2372 	for_each_free_object(p, s, page->freelist)
2373 		set_bit(slab_index(p, s, addr), map);
2374 
2375 	for_each_object(p, s, addr, page->objects) {
2376 
2377 		if (!test_bit(slab_index(p, s, addr), map)) {
2378 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2379 							p, p - addr);
2380 			print_tracking(s, p);
2381 		}
2382 	}
2383 	slab_unlock(page);
2384 #endif
2385 }
2386 
2387 /*
2388  * Attempt to free all partial slabs on a node.
2389  */
2390 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2391 {
2392 	unsigned long flags;
2393 	struct page *page, *h;
2394 
2395 	spin_lock_irqsave(&n->list_lock, flags);
2396 	list_for_each_entry_safe(page, h, &n->partial, lru) {
2397 		if (!page->inuse) {
2398 			list_del(&page->lru);
2399 			discard_slab(s, page);
2400 			n->nr_partial--;
2401 		} else {
2402 			list_slab_objects(s, page,
2403 				"Objects remaining on kmem_cache_close()");
2404 		}
2405 	}
2406 	spin_unlock_irqrestore(&n->list_lock, flags);
2407 }
2408 
2409 /*
2410  * Release all resources used by a slab cache.
2411  */
2412 static inline int kmem_cache_close(struct kmem_cache *s)
2413 {
2414 	int node;
2415 
2416 	flush_all(s);
2417 
2418 	/* Attempt to free all objects */
2419 	free_kmem_cache_cpus(s);
2420 	for_each_node_state(node, N_NORMAL_MEMORY) {
2421 		struct kmem_cache_node *n = get_node(s, node);
2422 
2423 		free_partial(s, n);
2424 		if (n->nr_partial || slabs_node(s, node))
2425 			return 1;
2426 	}
2427 	free_kmem_cache_nodes(s);
2428 	return 0;
2429 }
2430 
2431 /*
2432  * Close a cache and release the kmem_cache structure
2433  * (must be used for caches created using kmem_cache_create)
2434  */
2435 void kmem_cache_destroy(struct kmem_cache *s)
2436 {
2437 	down_write(&slub_lock);
2438 	s->refcount--;
2439 	if (!s->refcount) {
2440 		list_del(&s->list);
2441 		up_write(&slub_lock);
2442 		if (kmem_cache_close(s)) {
2443 			printk(KERN_ERR "SLUB %s: %s called for cache that "
2444 				"still has objects.\n", s->name, __func__);
2445 			dump_stack();
2446 		}
2447 		sysfs_slab_remove(s);
2448 	} else
2449 		up_write(&slub_lock);
2450 }
2451 EXPORT_SYMBOL(kmem_cache_destroy);
2452 
2453 /********************************************************************
2454  *		Kmalloc subsystem
2455  *******************************************************************/
2456 
2457 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2458 EXPORT_SYMBOL(kmalloc_caches);
2459 
2460 static int __init setup_slub_min_order(char *str)
2461 {
2462 	get_option(&str, &slub_min_order);
2463 
2464 	return 1;
2465 }
2466 
2467 __setup("slub_min_order=", setup_slub_min_order);
2468 
2469 static int __init setup_slub_max_order(char *str)
2470 {
2471 	get_option(&str, &slub_max_order);
2472 
2473 	return 1;
2474 }
2475 
2476 __setup("slub_max_order=", setup_slub_max_order);
2477 
2478 static int __init setup_slub_min_objects(char *str)
2479 {
2480 	get_option(&str, &slub_min_objects);
2481 
2482 	return 1;
2483 }
2484 
2485 __setup("slub_min_objects=", setup_slub_min_objects);
2486 
2487 static int __init setup_slub_nomerge(char *str)
2488 {
2489 	slub_nomerge = 1;
2490 	return 1;
2491 }
2492 
2493 __setup("slub_nomerge", setup_slub_nomerge);
2494 
2495 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2496 		const char *name, int size, gfp_t gfp_flags)
2497 {
2498 	unsigned int flags = 0;
2499 
2500 	if (gfp_flags & SLUB_DMA)
2501 		flags = SLAB_CACHE_DMA;
2502 
2503 	down_write(&slub_lock);
2504 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2505 								flags, NULL))
2506 		goto panic;
2507 
2508 	list_add(&s->list, &slab_caches);
2509 	up_write(&slub_lock);
2510 	if (sysfs_slab_add(s))
2511 		goto panic;
2512 	return s;
2513 
2514 panic:
2515 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2516 }
2517 
2518 #ifdef CONFIG_ZONE_DMA
2519 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2520 
2521 static void sysfs_add_func(struct work_struct *w)
2522 {
2523 	struct kmem_cache *s;
2524 
2525 	down_write(&slub_lock);
2526 	list_for_each_entry(s, &slab_caches, list) {
2527 		if (s->flags & __SYSFS_ADD_DEFERRED) {
2528 			s->flags &= ~__SYSFS_ADD_DEFERRED;
2529 			sysfs_slab_add(s);
2530 		}
2531 	}
2532 	up_write(&slub_lock);
2533 }
2534 
2535 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2536 
2537 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2538 {
2539 	struct kmem_cache *s;
2540 	char *text;
2541 	size_t realsize;
2542 
2543 	s = kmalloc_caches_dma[index];
2544 	if (s)
2545 		return s;
2546 
2547 	/* Dynamically create dma cache */
2548 	if (flags & __GFP_WAIT)
2549 		down_write(&slub_lock);
2550 	else {
2551 		if (!down_write_trylock(&slub_lock))
2552 			goto out;
2553 	}
2554 
2555 	if (kmalloc_caches_dma[index])
2556 		goto unlock_out;
2557 
2558 	realsize = kmalloc_caches[index].objsize;
2559 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2560 			 (unsigned int)realsize);
2561 	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2562 
2563 	if (!s || !text || !kmem_cache_open(s, flags, text,
2564 			realsize, ARCH_KMALLOC_MINALIGN,
2565 			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2566 		kfree(s);
2567 		kfree(text);
2568 		goto unlock_out;
2569 	}
2570 
2571 	list_add(&s->list, &slab_caches);
2572 	kmalloc_caches_dma[index] = s;
2573 
2574 	schedule_work(&sysfs_add_work);
2575 
2576 unlock_out:
2577 	up_write(&slub_lock);
2578 out:
2579 	return kmalloc_caches_dma[index];
2580 }
2581 #endif
2582 
2583 /*
2584  * Conversion table for small slabs sizes / 8 to the index in the
2585  * kmalloc array. This is necessary for slabs < 192 since we have non power
2586  * of two cache sizes there. The size of larger slabs can be determined using
2587  * fls.
2588  */
2589 static s8 size_index[24] = {
2590 	3,	/* 8 */
2591 	4,	/* 16 */
2592 	5,	/* 24 */
2593 	5,	/* 32 */
2594 	6,	/* 40 */
2595 	6,	/* 48 */
2596 	6,	/* 56 */
2597 	6,	/* 64 */
2598 	1,	/* 72 */
2599 	1,	/* 80 */
2600 	1,	/* 88 */
2601 	1,	/* 96 */
2602 	7,	/* 104 */
2603 	7,	/* 112 */
2604 	7,	/* 120 */
2605 	7,	/* 128 */
2606 	2,	/* 136 */
2607 	2,	/* 144 */
2608 	2,	/* 152 */
2609 	2,	/* 160 */
2610 	2,	/* 168 */
2611 	2,	/* 176 */
2612 	2,	/* 184 */
2613 	2	/* 192 */
2614 };
2615 
2616 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2617 {
2618 	int index;
2619 
2620 	if (size <= 192) {
2621 		if (!size)
2622 			return ZERO_SIZE_PTR;
2623 
2624 		index = size_index[(size - 1) / 8];
2625 	} else
2626 		index = fls(size - 1);
2627 
2628 #ifdef CONFIG_ZONE_DMA
2629 	if (unlikely((flags & SLUB_DMA)))
2630 		return dma_kmalloc_cache(index, flags);
2631 
2632 #endif
2633 	return &kmalloc_caches[index];
2634 }
2635 
2636 void *__kmalloc(size_t size, gfp_t flags)
2637 {
2638 	struct kmem_cache *s;
2639 
2640 	if (unlikely(size > PAGE_SIZE))
2641 		return kmalloc_large(size, flags);
2642 
2643 	s = get_slab(size, flags);
2644 
2645 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2646 		return s;
2647 
2648 	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2649 }
2650 EXPORT_SYMBOL(__kmalloc);
2651 
2652 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2653 {
2654 	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2655 						get_order(size));
2656 
2657 	if (page)
2658 		return page_address(page);
2659 	else
2660 		return NULL;
2661 }
2662 
2663 #ifdef CONFIG_NUMA
2664 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2665 {
2666 	struct kmem_cache *s;
2667 
2668 	if (unlikely(size > PAGE_SIZE))
2669 		return kmalloc_large_node(size, flags, node);
2670 
2671 	s = get_slab(size, flags);
2672 
2673 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2674 		return s;
2675 
2676 	return slab_alloc(s, flags, node, __builtin_return_address(0));
2677 }
2678 EXPORT_SYMBOL(__kmalloc_node);
2679 #endif
2680 
2681 size_t ksize(const void *object)
2682 {
2683 	struct page *page;
2684 	struct kmem_cache *s;
2685 
2686 	if (unlikely(object == ZERO_SIZE_PTR))
2687 		return 0;
2688 
2689 	page = virt_to_head_page(object);
2690 
2691 	if (unlikely(!PageSlab(page))) {
2692 		WARN_ON(!PageCompound(page));
2693 		return PAGE_SIZE << compound_order(page);
2694 	}
2695 	s = page->slab;
2696 
2697 #ifdef CONFIG_SLUB_DEBUG
2698 	/*
2699 	 * Debugging requires use of the padding between object
2700 	 * and whatever may come after it.
2701 	 */
2702 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2703 		return s->objsize;
2704 
2705 #endif
2706 	/*
2707 	 * If we have the need to store the freelist pointer
2708 	 * back there or track user information then we can
2709 	 * only use the space before that information.
2710 	 */
2711 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2712 		return s->inuse;
2713 	/*
2714 	 * Else we can use all the padding etc for the allocation
2715 	 */
2716 	return s->size;
2717 }
2718 EXPORT_SYMBOL(ksize);
2719 
2720 void kfree(const void *x)
2721 {
2722 	struct page *page;
2723 	void *object = (void *)x;
2724 
2725 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2726 		return;
2727 
2728 	page = virt_to_head_page(x);
2729 	if (unlikely(!PageSlab(page))) {
2730 		BUG_ON(!PageCompound(page));
2731 		put_page(page);
2732 		return;
2733 	}
2734 	slab_free(page->slab, page, object, __builtin_return_address(0));
2735 }
2736 EXPORT_SYMBOL(kfree);
2737 
2738 /*
2739  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2740  * the remaining slabs by the number of items in use. The slabs with the
2741  * most items in use come first. New allocations will then fill those up
2742  * and thus they can be removed from the partial lists.
2743  *
2744  * The slabs with the least items are placed last. This results in them
2745  * being allocated from last increasing the chance that the last objects
2746  * are freed in them.
2747  */
2748 int kmem_cache_shrink(struct kmem_cache *s)
2749 {
2750 	int node;
2751 	int i;
2752 	struct kmem_cache_node *n;
2753 	struct page *page;
2754 	struct page *t;
2755 	int objects = oo_objects(s->max);
2756 	struct list_head *slabs_by_inuse =
2757 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2758 	unsigned long flags;
2759 
2760 	if (!slabs_by_inuse)
2761 		return -ENOMEM;
2762 
2763 	flush_all(s);
2764 	for_each_node_state(node, N_NORMAL_MEMORY) {
2765 		n = get_node(s, node);
2766 
2767 		if (!n->nr_partial)
2768 			continue;
2769 
2770 		for (i = 0; i < objects; i++)
2771 			INIT_LIST_HEAD(slabs_by_inuse + i);
2772 
2773 		spin_lock_irqsave(&n->list_lock, flags);
2774 
2775 		/*
2776 		 * Build lists indexed by the items in use in each slab.
2777 		 *
2778 		 * Note that concurrent frees may occur while we hold the
2779 		 * list_lock. page->inuse here is the upper limit.
2780 		 */
2781 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2782 			if (!page->inuse && slab_trylock(page)) {
2783 				/*
2784 				 * Must hold slab lock here because slab_free
2785 				 * may have freed the last object and be
2786 				 * waiting to release the slab.
2787 				 */
2788 				list_del(&page->lru);
2789 				n->nr_partial--;
2790 				slab_unlock(page);
2791 				discard_slab(s, page);
2792 			} else {
2793 				list_move(&page->lru,
2794 				slabs_by_inuse + page->inuse);
2795 			}
2796 		}
2797 
2798 		/*
2799 		 * Rebuild the partial list with the slabs filled up most
2800 		 * first and the least used slabs at the end.
2801 		 */
2802 		for (i = objects - 1; i >= 0; i--)
2803 			list_splice(slabs_by_inuse + i, n->partial.prev);
2804 
2805 		spin_unlock_irqrestore(&n->list_lock, flags);
2806 	}
2807 
2808 	kfree(slabs_by_inuse);
2809 	return 0;
2810 }
2811 EXPORT_SYMBOL(kmem_cache_shrink);
2812 
2813 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2814 static int slab_mem_going_offline_callback(void *arg)
2815 {
2816 	struct kmem_cache *s;
2817 
2818 	down_read(&slub_lock);
2819 	list_for_each_entry(s, &slab_caches, list)
2820 		kmem_cache_shrink(s);
2821 	up_read(&slub_lock);
2822 
2823 	return 0;
2824 }
2825 
2826 static void slab_mem_offline_callback(void *arg)
2827 {
2828 	struct kmem_cache_node *n;
2829 	struct kmem_cache *s;
2830 	struct memory_notify *marg = arg;
2831 	int offline_node;
2832 
2833 	offline_node = marg->status_change_nid;
2834 
2835 	/*
2836 	 * If the node still has available memory. we need kmem_cache_node
2837 	 * for it yet.
2838 	 */
2839 	if (offline_node < 0)
2840 		return;
2841 
2842 	down_read(&slub_lock);
2843 	list_for_each_entry(s, &slab_caches, list) {
2844 		n = get_node(s, offline_node);
2845 		if (n) {
2846 			/*
2847 			 * if n->nr_slabs > 0, slabs still exist on the node
2848 			 * that is going down. We were unable to free them,
2849 			 * and offline_pages() function shoudn't call this
2850 			 * callback. So, we must fail.
2851 			 */
2852 			BUG_ON(slabs_node(s, offline_node));
2853 
2854 			s->node[offline_node] = NULL;
2855 			kmem_cache_free(kmalloc_caches, n);
2856 		}
2857 	}
2858 	up_read(&slub_lock);
2859 }
2860 
2861 static int slab_mem_going_online_callback(void *arg)
2862 {
2863 	struct kmem_cache_node *n;
2864 	struct kmem_cache *s;
2865 	struct memory_notify *marg = arg;
2866 	int nid = marg->status_change_nid;
2867 	int ret = 0;
2868 
2869 	/*
2870 	 * If the node's memory is already available, then kmem_cache_node is
2871 	 * already created. Nothing to do.
2872 	 */
2873 	if (nid < 0)
2874 		return 0;
2875 
2876 	/*
2877 	 * We are bringing a node online. No memory is available yet. We must
2878 	 * allocate a kmem_cache_node structure in order to bring the node
2879 	 * online.
2880 	 */
2881 	down_read(&slub_lock);
2882 	list_for_each_entry(s, &slab_caches, list) {
2883 		/*
2884 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2885 		 *      since memory is not yet available from the node that
2886 		 *      is brought up.
2887 		 */
2888 		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2889 		if (!n) {
2890 			ret = -ENOMEM;
2891 			goto out;
2892 		}
2893 		init_kmem_cache_node(n);
2894 		s->node[nid] = n;
2895 	}
2896 out:
2897 	up_read(&slub_lock);
2898 	return ret;
2899 }
2900 
2901 static int slab_memory_callback(struct notifier_block *self,
2902 				unsigned long action, void *arg)
2903 {
2904 	int ret = 0;
2905 
2906 	switch (action) {
2907 	case MEM_GOING_ONLINE:
2908 		ret = slab_mem_going_online_callback(arg);
2909 		break;
2910 	case MEM_GOING_OFFLINE:
2911 		ret = slab_mem_going_offline_callback(arg);
2912 		break;
2913 	case MEM_OFFLINE:
2914 	case MEM_CANCEL_ONLINE:
2915 		slab_mem_offline_callback(arg);
2916 		break;
2917 	case MEM_ONLINE:
2918 	case MEM_CANCEL_OFFLINE:
2919 		break;
2920 	}
2921 
2922 	ret = notifier_from_errno(ret);
2923 	return ret;
2924 }
2925 
2926 #endif /* CONFIG_MEMORY_HOTPLUG */
2927 
2928 /********************************************************************
2929  *			Basic setup of slabs
2930  *******************************************************************/
2931 
2932 void __init kmem_cache_init(void)
2933 {
2934 	int i;
2935 	int caches = 0;
2936 
2937 	init_alloc_cpu();
2938 
2939 #ifdef CONFIG_NUMA
2940 	/*
2941 	 * Must first have the slab cache available for the allocations of the
2942 	 * struct kmem_cache_node's. There is special bootstrap code in
2943 	 * kmem_cache_open for slab_state == DOWN.
2944 	 */
2945 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2946 		sizeof(struct kmem_cache_node), GFP_KERNEL);
2947 	kmalloc_caches[0].refcount = -1;
2948 	caches++;
2949 
2950 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2951 #endif
2952 
2953 	/* Able to allocate the per node structures */
2954 	slab_state = PARTIAL;
2955 
2956 	/* Caches that are not of the two-to-the-power-of size */
2957 	if (KMALLOC_MIN_SIZE <= 64) {
2958 		create_kmalloc_cache(&kmalloc_caches[1],
2959 				"kmalloc-96", 96, GFP_KERNEL);
2960 		caches++;
2961 		create_kmalloc_cache(&kmalloc_caches[2],
2962 				"kmalloc-192", 192, GFP_KERNEL);
2963 		caches++;
2964 	}
2965 
2966 	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2967 		create_kmalloc_cache(&kmalloc_caches[i],
2968 			"kmalloc", 1 << i, GFP_KERNEL);
2969 		caches++;
2970 	}
2971 
2972 
2973 	/*
2974 	 * Patch up the size_index table if we have strange large alignment
2975 	 * requirements for the kmalloc array. This is only the case for
2976 	 * MIPS it seems. The standard arches will not generate any code here.
2977 	 *
2978 	 * Largest permitted alignment is 256 bytes due to the way we
2979 	 * handle the index determination for the smaller caches.
2980 	 *
2981 	 * Make sure that nothing crazy happens if someone starts tinkering
2982 	 * around with ARCH_KMALLOC_MINALIGN
2983 	 */
2984 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2985 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2986 
2987 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2988 		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2989 
2990 	if (KMALLOC_MIN_SIZE == 128) {
2991 		/*
2992 		 * The 192 byte sized cache is not used if the alignment
2993 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
2994 		 * instead.
2995 		 */
2996 		for (i = 128 + 8; i <= 192; i += 8)
2997 			size_index[(i - 1) / 8] = 8;
2998 	}
2999 
3000 	slab_state = UP;
3001 
3002 	/* Provide the correct kmalloc names now that the caches are up */
3003 	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3004 		kmalloc_caches[i]. name =
3005 			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3006 
3007 #ifdef CONFIG_SMP
3008 	register_cpu_notifier(&slab_notifier);
3009 	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3010 				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3011 #else
3012 	kmem_size = sizeof(struct kmem_cache);
3013 #endif
3014 
3015 	printk(KERN_INFO
3016 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3017 		" CPUs=%d, Nodes=%d\n",
3018 		caches, cache_line_size(),
3019 		slub_min_order, slub_max_order, slub_min_objects,
3020 		nr_cpu_ids, nr_node_ids);
3021 }
3022 
3023 /*
3024  * Find a mergeable slab cache
3025  */
3026 static int slab_unmergeable(struct kmem_cache *s)
3027 {
3028 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3029 		return 1;
3030 
3031 	if (s->ctor)
3032 		return 1;
3033 
3034 	/*
3035 	 * We may have set a slab to be unmergeable during bootstrap.
3036 	 */
3037 	if (s->refcount < 0)
3038 		return 1;
3039 
3040 	return 0;
3041 }
3042 
3043 static struct kmem_cache *find_mergeable(size_t size,
3044 		size_t align, unsigned long flags, const char *name,
3045 		void (*ctor)(struct kmem_cache *, void *))
3046 {
3047 	struct kmem_cache *s;
3048 
3049 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3050 		return NULL;
3051 
3052 	if (ctor)
3053 		return NULL;
3054 
3055 	size = ALIGN(size, sizeof(void *));
3056 	align = calculate_alignment(flags, align, size);
3057 	size = ALIGN(size, align);
3058 	flags = kmem_cache_flags(size, flags, name, NULL);
3059 
3060 	list_for_each_entry(s, &slab_caches, list) {
3061 		if (slab_unmergeable(s))
3062 			continue;
3063 
3064 		if (size > s->size)
3065 			continue;
3066 
3067 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3068 				continue;
3069 		/*
3070 		 * Check if alignment is compatible.
3071 		 * Courtesy of Adrian Drzewiecki
3072 		 */
3073 		if ((s->size & ~(align - 1)) != s->size)
3074 			continue;
3075 
3076 		if (s->size - size >= sizeof(void *))
3077 			continue;
3078 
3079 		return s;
3080 	}
3081 	return NULL;
3082 }
3083 
3084 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3085 		size_t align, unsigned long flags,
3086 		void (*ctor)(struct kmem_cache *, void *))
3087 {
3088 	struct kmem_cache *s;
3089 
3090 	down_write(&slub_lock);
3091 	s = find_mergeable(size, align, flags, name, ctor);
3092 	if (s) {
3093 		int cpu;
3094 
3095 		s->refcount++;
3096 		/*
3097 		 * Adjust the object sizes so that we clear
3098 		 * the complete object on kzalloc.
3099 		 */
3100 		s->objsize = max(s->objsize, (int)size);
3101 
3102 		/*
3103 		 * And then we need to update the object size in the
3104 		 * per cpu structures
3105 		 */
3106 		for_each_online_cpu(cpu)
3107 			get_cpu_slab(s, cpu)->objsize = s->objsize;
3108 
3109 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3110 		up_write(&slub_lock);
3111 
3112 		if (sysfs_slab_alias(s, name))
3113 			goto err;
3114 		return s;
3115 	}
3116 
3117 	s = kmalloc(kmem_size, GFP_KERNEL);
3118 	if (s) {
3119 		if (kmem_cache_open(s, GFP_KERNEL, name,
3120 				size, align, flags, ctor)) {
3121 			list_add(&s->list, &slab_caches);
3122 			up_write(&slub_lock);
3123 			if (sysfs_slab_add(s))
3124 				goto err;
3125 			return s;
3126 		}
3127 		kfree(s);
3128 	}
3129 	up_write(&slub_lock);
3130 
3131 err:
3132 	if (flags & SLAB_PANIC)
3133 		panic("Cannot create slabcache %s\n", name);
3134 	else
3135 		s = NULL;
3136 	return s;
3137 }
3138 EXPORT_SYMBOL(kmem_cache_create);
3139 
3140 #ifdef CONFIG_SMP
3141 /*
3142  * Use the cpu notifier to insure that the cpu slabs are flushed when
3143  * necessary.
3144  */
3145 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3146 		unsigned long action, void *hcpu)
3147 {
3148 	long cpu = (long)hcpu;
3149 	struct kmem_cache *s;
3150 	unsigned long flags;
3151 
3152 	switch (action) {
3153 	case CPU_UP_PREPARE:
3154 	case CPU_UP_PREPARE_FROZEN:
3155 		init_alloc_cpu_cpu(cpu);
3156 		down_read(&slub_lock);
3157 		list_for_each_entry(s, &slab_caches, list)
3158 			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3159 							GFP_KERNEL);
3160 		up_read(&slub_lock);
3161 		break;
3162 
3163 	case CPU_UP_CANCELED:
3164 	case CPU_UP_CANCELED_FROZEN:
3165 	case CPU_DEAD:
3166 	case CPU_DEAD_FROZEN:
3167 		down_read(&slub_lock);
3168 		list_for_each_entry(s, &slab_caches, list) {
3169 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3170 
3171 			local_irq_save(flags);
3172 			__flush_cpu_slab(s, cpu);
3173 			local_irq_restore(flags);
3174 			free_kmem_cache_cpu(c, cpu);
3175 			s->cpu_slab[cpu] = NULL;
3176 		}
3177 		up_read(&slub_lock);
3178 		break;
3179 	default:
3180 		break;
3181 	}
3182 	return NOTIFY_OK;
3183 }
3184 
3185 static struct notifier_block __cpuinitdata slab_notifier = {
3186 	.notifier_call = slab_cpuup_callback
3187 };
3188 
3189 #endif
3190 
3191 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3192 {
3193 	struct kmem_cache *s;
3194 
3195 	if (unlikely(size > PAGE_SIZE))
3196 		return kmalloc_large(size, gfpflags);
3197 
3198 	s = get_slab(size, gfpflags);
3199 
3200 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3201 		return s;
3202 
3203 	return slab_alloc(s, gfpflags, -1, caller);
3204 }
3205 
3206 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3207 					int node, void *caller)
3208 {
3209 	struct kmem_cache *s;
3210 
3211 	if (unlikely(size > PAGE_SIZE))
3212 		return kmalloc_large_node(size, gfpflags, node);
3213 
3214 	s = get_slab(size, gfpflags);
3215 
3216 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3217 		return s;
3218 
3219 	return slab_alloc(s, gfpflags, node, caller);
3220 }
3221 
3222 #ifdef CONFIG_SLUB_DEBUG
3223 static unsigned long count_partial(struct kmem_cache_node *n,
3224 					int (*get_count)(struct page *))
3225 {
3226 	unsigned long flags;
3227 	unsigned long x = 0;
3228 	struct page *page;
3229 
3230 	spin_lock_irqsave(&n->list_lock, flags);
3231 	list_for_each_entry(page, &n->partial, lru)
3232 		x += get_count(page);
3233 	spin_unlock_irqrestore(&n->list_lock, flags);
3234 	return x;
3235 }
3236 
3237 static int count_inuse(struct page *page)
3238 {
3239 	return page->inuse;
3240 }
3241 
3242 static int count_total(struct page *page)
3243 {
3244 	return page->objects;
3245 }
3246 
3247 static int count_free(struct page *page)
3248 {
3249 	return page->objects - page->inuse;
3250 }
3251 
3252 static int validate_slab(struct kmem_cache *s, struct page *page,
3253 						unsigned long *map)
3254 {
3255 	void *p;
3256 	void *addr = page_address(page);
3257 
3258 	if (!check_slab(s, page) ||
3259 			!on_freelist(s, page, NULL))
3260 		return 0;
3261 
3262 	/* Now we know that a valid freelist exists */
3263 	bitmap_zero(map, page->objects);
3264 
3265 	for_each_free_object(p, s, page->freelist) {
3266 		set_bit(slab_index(p, s, addr), map);
3267 		if (!check_object(s, page, p, 0))
3268 			return 0;
3269 	}
3270 
3271 	for_each_object(p, s, addr, page->objects)
3272 		if (!test_bit(slab_index(p, s, addr), map))
3273 			if (!check_object(s, page, p, 1))
3274 				return 0;
3275 	return 1;
3276 }
3277 
3278 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3279 						unsigned long *map)
3280 {
3281 	if (slab_trylock(page)) {
3282 		validate_slab(s, page, map);
3283 		slab_unlock(page);
3284 	} else
3285 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3286 			s->name, page);
3287 
3288 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3289 		if (!PageSlubDebug(page))
3290 			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3291 				"on slab 0x%p\n", s->name, page);
3292 	} else {
3293 		if (PageSlubDebug(page))
3294 			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3295 				"slab 0x%p\n", s->name, page);
3296 	}
3297 }
3298 
3299 static int validate_slab_node(struct kmem_cache *s,
3300 		struct kmem_cache_node *n, unsigned long *map)
3301 {
3302 	unsigned long count = 0;
3303 	struct page *page;
3304 	unsigned long flags;
3305 
3306 	spin_lock_irqsave(&n->list_lock, flags);
3307 
3308 	list_for_each_entry(page, &n->partial, lru) {
3309 		validate_slab_slab(s, page, map);
3310 		count++;
3311 	}
3312 	if (count != n->nr_partial)
3313 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3314 			"counter=%ld\n", s->name, count, n->nr_partial);
3315 
3316 	if (!(s->flags & SLAB_STORE_USER))
3317 		goto out;
3318 
3319 	list_for_each_entry(page, &n->full, lru) {
3320 		validate_slab_slab(s, page, map);
3321 		count++;
3322 	}
3323 	if (count != atomic_long_read(&n->nr_slabs))
3324 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3325 			"counter=%ld\n", s->name, count,
3326 			atomic_long_read(&n->nr_slabs));
3327 
3328 out:
3329 	spin_unlock_irqrestore(&n->list_lock, flags);
3330 	return count;
3331 }
3332 
3333 static long validate_slab_cache(struct kmem_cache *s)
3334 {
3335 	int node;
3336 	unsigned long count = 0;
3337 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3338 				sizeof(unsigned long), GFP_KERNEL);
3339 
3340 	if (!map)
3341 		return -ENOMEM;
3342 
3343 	flush_all(s);
3344 	for_each_node_state(node, N_NORMAL_MEMORY) {
3345 		struct kmem_cache_node *n = get_node(s, node);
3346 
3347 		count += validate_slab_node(s, n, map);
3348 	}
3349 	kfree(map);
3350 	return count;
3351 }
3352 
3353 #ifdef SLUB_RESILIENCY_TEST
3354 static void resiliency_test(void)
3355 {
3356 	u8 *p;
3357 
3358 	printk(KERN_ERR "SLUB resiliency testing\n");
3359 	printk(KERN_ERR "-----------------------\n");
3360 	printk(KERN_ERR "A. Corruption after allocation\n");
3361 
3362 	p = kzalloc(16, GFP_KERNEL);
3363 	p[16] = 0x12;
3364 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3365 			" 0x12->0x%p\n\n", p + 16);
3366 
3367 	validate_slab_cache(kmalloc_caches + 4);
3368 
3369 	/* Hmmm... The next two are dangerous */
3370 	p = kzalloc(32, GFP_KERNEL);
3371 	p[32 + sizeof(void *)] = 0x34;
3372 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3373 			" 0x34 -> -0x%p\n", p);
3374 	printk(KERN_ERR
3375 		"If allocated object is overwritten then not detectable\n\n");
3376 
3377 	validate_slab_cache(kmalloc_caches + 5);
3378 	p = kzalloc(64, GFP_KERNEL);
3379 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3380 	*p = 0x56;
3381 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3382 									p);
3383 	printk(KERN_ERR
3384 		"If allocated object is overwritten then not detectable\n\n");
3385 	validate_slab_cache(kmalloc_caches + 6);
3386 
3387 	printk(KERN_ERR "\nB. Corruption after free\n");
3388 	p = kzalloc(128, GFP_KERNEL);
3389 	kfree(p);
3390 	*p = 0x78;
3391 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3392 	validate_slab_cache(kmalloc_caches + 7);
3393 
3394 	p = kzalloc(256, GFP_KERNEL);
3395 	kfree(p);
3396 	p[50] = 0x9a;
3397 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3398 			p);
3399 	validate_slab_cache(kmalloc_caches + 8);
3400 
3401 	p = kzalloc(512, GFP_KERNEL);
3402 	kfree(p);
3403 	p[512] = 0xab;
3404 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3405 	validate_slab_cache(kmalloc_caches + 9);
3406 }
3407 #else
3408 static void resiliency_test(void) {};
3409 #endif
3410 
3411 /*
3412  * Generate lists of code addresses where slabcache objects are allocated
3413  * and freed.
3414  */
3415 
3416 struct location {
3417 	unsigned long count;
3418 	void *addr;
3419 	long long sum_time;
3420 	long min_time;
3421 	long max_time;
3422 	long min_pid;
3423 	long max_pid;
3424 	cpumask_t cpus;
3425 	nodemask_t nodes;
3426 };
3427 
3428 struct loc_track {
3429 	unsigned long max;
3430 	unsigned long count;
3431 	struct location *loc;
3432 };
3433 
3434 static void free_loc_track(struct loc_track *t)
3435 {
3436 	if (t->max)
3437 		free_pages((unsigned long)t->loc,
3438 			get_order(sizeof(struct location) * t->max));
3439 }
3440 
3441 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3442 {
3443 	struct location *l;
3444 	int order;
3445 
3446 	order = get_order(sizeof(struct location) * max);
3447 
3448 	l = (void *)__get_free_pages(flags, order);
3449 	if (!l)
3450 		return 0;
3451 
3452 	if (t->count) {
3453 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3454 		free_loc_track(t);
3455 	}
3456 	t->max = max;
3457 	t->loc = l;
3458 	return 1;
3459 }
3460 
3461 static int add_location(struct loc_track *t, struct kmem_cache *s,
3462 				const struct track *track)
3463 {
3464 	long start, end, pos;
3465 	struct location *l;
3466 	void *caddr;
3467 	unsigned long age = jiffies - track->when;
3468 
3469 	start = -1;
3470 	end = t->count;
3471 
3472 	for ( ; ; ) {
3473 		pos = start + (end - start + 1) / 2;
3474 
3475 		/*
3476 		 * There is nothing at "end". If we end up there
3477 		 * we need to add something to before end.
3478 		 */
3479 		if (pos == end)
3480 			break;
3481 
3482 		caddr = t->loc[pos].addr;
3483 		if (track->addr == caddr) {
3484 
3485 			l = &t->loc[pos];
3486 			l->count++;
3487 			if (track->when) {
3488 				l->sum_time += age;
3489 				if (age < l->min_time)
3490 					l->min_time = age;
3491 				if (age > l->max_time)
3492 					l->max_time = age;
3493 
3494 				if (track->pid < l->min_pid)
3495 					l->min_pid = track->pid;
3496 				if (track->pid > l->max_pid)
3497 					l->max_pid = track->pid;
3498 
3499 				cpu_set(track->cpu, l->cpus);
3500 			}
3501 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3502 			return 1;
3503 		}
3504 
3505 		if (track->addr < caddr)
3506 			end = pos;
3507 		else
3508 			start = pos;
3509 	}
3510 
3511 	/*
3512 	 * Not found. Insert new tracking element.
3513 	 */
3514 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3515 		return 0;
3516 
3517 	l = t->loc + pos;
3518 	if (pos < t->count)
3519 		memmove(l + 1, l,
3520 			(t->count - pos) * sizeof(struct location));
3521 	t->count++;
3522 	l->count = 1;
3523 	l->addr = track->addr;
3524 	l->sum_time = age;
3525 	l->min_time = age;
3526 	l->max_time = age;
3527 	l->min_pid = track->pid;
3528 	l->max_pid = track->pid;
3529 	cpus_clear(l->cpus);
3530 	cpu_set(track->cpu, l->cpus);
3531 	nodes_clear(l->nodes);
3532 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3533 	return 1;
3534 }
3535 
3536 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3537 		struct page *page, enum track_item alloc)
3538 {
3539 	void *addr = page_address(page);
3540 	DECLARE_BITMAP(map, page->objects);
3541 	void *p;
3542 
3543 	bitmap_zero(map, page->objects);
3544 	for_each_free_object(p, s, page->freelist)
3545 		set_bit(slab_index(p, s, addr), map);
3546 
3547 	for_each_object(p, s, addr, page->objects)
3548 		if (!test_bit(slab_index(p, s, addr), map))
3549 			add_location(t, s, get_track(s, p, alloc));
3550 }
3551 
3552 static int list_locations(struct kmem_cache *s, char *buf,
3553 					enum track_item alloc)
3554 {
3555 	int len = 0;
3556 	unsigned long i;
3557 	struct loc_track t = { 0, 0, NULL };
3558 	int node;
3559 
3560 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3561 			GFP_TEMPORARY))
3562 		return sprintf(buf, "Out of memory\n");
3563 
3564 	/* Push back cpu slabs */
3565 	flush_all(s);
3566 
3567 	for_each_node_state(node, N_NORMAL_MEMORY) {
3568 		struct kmem_cache_node *n = get_node(s, node);
3569 		unsigned long flags;
3570 		struct page *page;
3571 
3572 		if (!atomic_long_read(&n->nr_slabs))
3573 			continue;
3574 
3575 		spin_lock_irqsave(&n->list_lock, flags);
3576 		list_for_each_entry(page, &n->partial, lru)
3577 			process_slab(&t, s, page, alloc);
3578 		list_for_each_entry(page, &n->full, lru)
3579 			process_slab(&t, s, page, alloc);
3580 		spin_unlock_irqrestore(&n->list_lock, flags);
3581 	}
3582 
3583 	for (i = 0; i < t.count; i++) {
3584 		struct location *l = &t.loc[i];
3585 
3586 		if (len > PAGE_SIZE - 100)
3587 			break;
3588 		len += sprintf(buf + len, "%7ld ", l->count);
3589 
3590 		if (l->addr)
3591 			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3592 		else
3593 			len += sprintf(buf + len, "<not-available>");
3594 
3595 		if (l->sum_time != l->min_time) {
3596 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3597 				l->min_time,
3598 				(long)div_u64(l->sum_time, l->count),
3599 				l->max_time);
3600 		} else
3601 			len += sprintf(buf + len, " age=%ld",
3602 				l->min_time);
3603 
3604 		if (l->min_pid != l->max_pid)
3605 			len += sprintf(buf + len, " pid=%ld-%ld",
3606 				l->min_pid, l->max_pid);
3607 		else
3608 			len += sprintf(buf + len, " pid=%ld",
3609 				l->min_pid);
3610 
3611 		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3612 				len < PAGE_SIZE - 60) {
3613 			len += sprintf(buf + len, " cpus=");
3614 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3615 					l->cpus);
3616 		}
3617 
3618 		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3619 				len < PAGE_SIZE - 60) {
3620 			len += sprintf(buf + len, " nodes=");
3621 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3622 					l->nodes);
3623 		}
3624 
3625 		len += sprintf(buf + len, "\n");
3626 	}
3627 
3628 	free_loc_track(&t);
3629 	if (!t.count)
3630 		len += sprintf(buf, "No data\n");
3631 	return len;
3632 }
3633 
3634 enum slab_stat_type {
3635 	SL_ALL,			/* All slabs */
3636 	SL_PARTIAL,		/* Only partially allocated slabs */
3637 	SL_CPU,			/* Only slabs used for cpu caches */
3638 	SL_OBJECTS,		/* Determine allocated objects not slabs */
3639 	SL_TOTAL		/* Determine object capacity not slabs */
3640 };
3641 
3642 #define SO_ALL		(1 << SL_ALL)
3643 #define SO_PARTIAL	(1 << SL_PARTIAL)
3644 #define SO_CPU		(1 << SL_CPU)
3645 #define SO_OBJECTS	(1 << SL_OBJECTS)
3646 #define SO_TOTAL	(1 << SL_TOTAL)
3647 
3648 static ssize_t show_slab_objects(struct kmem_cache *s,
3649 			    char *buf, unsigned long flags)
3650 {
3651 	unsigned long total = 0;
3652 	int node;
3653 	int x;
3654 	unsigned long *nodes;
3655 	unsigned long *per_cpu;
3656 
3657 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3658 	if (!nodes)
3659 		return -ENOMEM;
3660 	per_cpu = nodes + nr_node_ids;
3661 
3662 	if (flags & SO_CPU) {
3663 		int cpu;
3664 
3665 		for_each_possible_cpu(cpu) {
3666 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3667 
3668 			if (!c || c->node < 0)
3669 				continue;
3670 
3671 			if (c->page) {
3672 					if (flags & SO_TOTAL)
3673 						x = c->page->objects;
3674 				else if (flags & SO_OBJECTS)
3675 					x = c->page->inuse;
3676 				else
3677 					x = 1;
3678 
3679 				total += x;
3680 				nodes[c->node] += x;
3681 			}
3682 			per_cpu[c->node]++;
3683 		}
3684 	}
3685 
3686 	if (flags & SO_ALL) {
3687 		for_each_node_state(node, N_NORMAL_MEMORY) {
3688 			struct kmem_cache_node *n = get_node(s, node);
3689 
3690 		if (flags & SO_TOTAL)
3691 			x = atomic_long_read(&n->total_objects);
3692 		else if (flags & SO_OBJECTS)
3693 			x = atomic_long_read(&n->total_objects) -
3694 				count_partial(n, count_free);
3695 
3696 			else
3697 				x = atomic_long_read(&n->nr_slabs);
3698 			total += x;
3699 			nodes[node] += x;
3700 		}
3701 
3702 	} else if (flags & SO_PARTIAL) {
3703 		for_each_node_state(node, N_NORMAL_MEMORY) {
3704 			struct kmem_cache_node *n = get_node(s, node);
3705 
3706 			if (flags & SO_TOTAL)
3707 				x = count_partial(n, count_total);
3708 			else if (flags & SO_OBJECTS)
3709 				x = count_partial(n, count_inuse);
3710 			else
3711 				x = n->nr_partial;
3712 			total += x;
3713 			nodes[node] += x;
3714 		}
3715 	}
3716 	x = sprintf(buf, "%lu", total);
3717 #ifdef CONFIG_NUMA
3718 	for_each_node_state(node, N_NORMAL_MEMORY)
3719 		if (nodes[node])
3720 			x += sprintf(buf + x, " N%d=%lu",
3721 					node, nodes[node]);
3722 #endif
3723 	kfree(nodes);
3724 	return x + sprintf(buf + x, "\n");
3725 }
3726 
3727 static int any_slab_objects(struct kmem_cache *s)
3728 {
3729 	int node;
3730 
3731 	for_each_online_node(node) {
3732 		struct kmem_cache_node *n = get_node(s, node);
3733 
3734 		if (!n)
3735 			continue;
3736 
3737 		if (atomic_long_read(&n->total_objects))
3738 			return 1;
3739 	}
3740 	return 0;
3741 }
3742 
3743 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3744 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3745 
3746 struct slab_attribute {
3747 	struct attribute attr;
3748 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3749 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3750 };
3751 
3752 #define SLAB_ATTR_RO(_name) \
3753 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3754 
3755 #define SLAB_ATTR(_name) \
3756 	static struct slab_attribute _name##_attr =  \
3757 	__ATTR(_name, 0644, _name##_show, _name##_store)
3758 
3759 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3760 {
3761 	return sprintf(buf, "%d\n", s->size);
3762 }
3763 SLAB_ATTR_RO(slab_size);
3764 
3765 static ssize_t align_show(struct kmem_cache *s, char *buf)
3766 {
3767 	return sprintf(buf, "%d\n", s->align);
3768 }
3769 SLAB_ATTR_RO(align);
3770 
3771 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3772 {
3773 	return sprintf(buf, "%d\n", s->objsize);
3774 }
3775 SLAB_ATTR_RO(object_size);
3776 
3777 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3778 {
3779 	return sprintf(buf, "%d\n", oo_objects(s->oo));
3780 }
3781 SLAB_ATTR_RO(objs_per_slab);
3782 
3783 static ssize_t order_store(struct kmem_cache *s,
3784 				const char *buf, size_t length)
3785 {
3786 	unsigned long order;
3787 	int err;
3788 
3789 	err = strict_strtoul(buf, 10, &order);
3790 	if (err)
3791 		return err;
3792 
3793 	if (order > slub_max_order || order < slub_min_order)
3794 		return -EINVAL;
3795 
3796 	calculate_sizes(s, order);
3797 	return length;
3798 }
3799 
3800 static ssize_t order_show(struct kmem_cache *s, char *buf)
3801 {
3802 	return sprintf(buf, "%d\n", oo_order(s->oo));
3803 }
3804 SLAB_ATTR(order);
3805 
3806 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3807 {
3808 	if (s->ctor) {
3809 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3810 
3811 		return n + sprintf(buf + n, "\n");
3812 	}
3813 	return 0;
3814 }
3815 SLAB_ATTR_RO(ctor);
3816 
3817 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3818 {
3819 	return sprintf(buf, "%d\n", s->refcount - 1);
3820 }
3821 SLAB_ATTR_RO(aliases);
3822 
3823 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3824 {
3825 	return show_slab_objects(s, buf, SO_ALL);
3826 }
3827 SLAB_ATTR_RO(slabs);
3828 
3829 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3830 {
3831 	return show_slab_objects(s, buf, SO_PARTIAL);
3832 }
3833 SLAB_ATTR_RO(partial);
3834 
3835 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3836 {
3837 	return show_slab_objects(s, buf, SO_CPU);
3838 }
3839 SLAB_ATTR_RO(cpu_slabs);
3840 
3841 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3842 {
3843 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3844 }
3845 SLAB_ATTR_RO(objects);
3846 
3847 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3848 {
3849 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3850 }
3851 SLAB_ATTR_RO(objects_partial);
3852 
3853 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3854 {
3855 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3856 }
3857 SLAB_ATTR_RO(total_objects);
3858 
3859 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3860 {
3861 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3862 }
3863 
3864 static ssize_t sanity_checks_store(struct kmem_cache *s,
3865 				const char *buf, size_t length)
3866 {
3867 	s->flags &= ~SLAB_DEBUG_FREE;
3868 	if (buf[0] == '1')
3869 		s->flags |= SLAB_DEBUG_FREE;
3870 	return length;
3871 }
3872 SLAB_ATTR(sanity_checks);
3873 
3874 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3875 {
3876 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3877 }
3878 
3879 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3880 							size_t length)
3881 {
3882 	s->flags &= ~SLAB_TRACE;
3883 	if (buf[0] == '1')
3884 		s->flags |= SLAB_TRACE;
3885 	return length;
3886 }
3887 SLAB_ATTR(trace);
3888 
3889 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3890 {
3891 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3892 }
3893 
3894 static ssize_t reclaim_account_store(struct kmem_cache *s,
3895 				const char *buf, size_t length)
3896 {
3897 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3898 	if (buf[0] == '1')
3899 		s->flags |= SLAB_RECLAIM_ACCOUNT;
3900 	return length;
3901 }
3902 SLAB_ATTR(reclaim_account);
3903 
3904 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3905 {
3906 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3907 }
3908 SLAB_ATTR_RO(hwcache_align);
3909 
3910 #ifdef CONFIG_ZONE_DMA
3911 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3912 {
3913 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3914 }
3915 SLAB_ATTR_RO(cache_dma);
3916 #endif
3917 
3918 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3919 {
3920 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3921 }
3922 SLAB_ATTR_RO(destroy_by_rcu);
3923 
3924 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3925 {
3926 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3927 }
3928 
3929 static ssize_t red_zone_store(struct kmem_cache *s,
3930 				const char *buf, size_t length)
3931 {
3932 	if (any_slab_objects(s))
3933 		return -EBUSY;
3934 
3935 	s->flags &= ~SLAB_RED_ZONE;
3936 	if (buf[0] == '1')
3937 		s->flags |= SLAB_RED_ZONE;
3938 	calculate_sizes(s, -1);
3939 	return length;
3940 }
3941 SLAB_ATTR(red_zone);
3942 
3943 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3944 {
3945 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3946 }
3947 
3948 static ssize_t poison_store(struct kmem_cache *s,
3949 				const char *buf, size_t length)
3950 {
3951 	if (any_slab_objects(s))
3952 		return -EBUSY;
3953 
3954 	s->flags &= ~SLAB_POISON;
3955 	if (buf[0] == '1')
3956 		s->flags |= SLAB_POISON;
3957 	calculate_sizes(s, -1);
3958 	return length;
3959 }
3960 SLAB_ATTR(poison);
3961 
3962 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3963 {
3964 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3965 }
3966 
3967 static ssize_t store_user_store(struct kmem_cache *s,
3968 				const char *buf, size_t length)
3969 {
3970 	if (any_slab_objects(s))
3971 		return -EBUSY;
3972 
3973 	s->flags &= ~SLAB_STORE_USER;
3974 	if (buf[0] == '1')
3975 		s->flags |= SLAB_STORE_USER;
3976 	calculate_sizes(s, -1);
3977 	return length;
3978 }
3979 SLAB_ATTR(store_user);
3980 
3981 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3982 {
3983 	return 0;
3984 }
3985 
3986 static ssize_t validate_store(struct kmem_cache *s,
3987 			const char *buf, size_t length)
3988 {
3989 	int ret = -EINVAL;
3990 
3991 	if (buf[0] == '1') {
3992 		ret = validate_slab_cache(s);
3993 		if (ret >= 0)
3994 			ret = length;
3995 	}
3996 	return ret;
3997 }
3998 SLAB_ATTR(validate);
3999 
4000 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4001 {
4002 	return 0;
4003 }
4004 
4005 static ssize_t shrink_store(struct kmem_cache *s,
4006 			const char *buf, size_t length)
4007 {
4008 	if (buf[0] == '1') {
4009 		int rc = kmem_cache_shrink(s);
4010 
4011 		if (rc)
4012 			return rc;
4013 	} else
4014 		return -EINVAL;
4015 	return length;
4016 }
4017 SLAB_ATTR(shrink);
4018 
4019 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4020 {
4021 	if (!(s->flags & SLAB_STORE_USER))
4022 		return -ENOSYS;
4023 	return list_locations(s, buf, TRACK_ALLOC);
4024 }
4025 SLAB_ATTR_RO(alloc_calls);
4026 
4027 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4028 {
4029 	if (!(s->flags & SLAB_STORE_USER))
4030 		return -ENOSYS;
4031 	return list_locations(s, buf, TRACK_FREE);
4032 }
4033 SLAB_ATTR_RO(free_calls);
4034 
4035 #ifdef CONFIG_NUMA
4036 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4037 {
4038 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4039 }
4040 
4041 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4042 				const char *buf, size_t length)
4043 {
4044 	unsigned long ratio;
4045 	int err;
4046 
4047 	err = strict_strtoul(buf, 10, &ratio);
4048 	if (err)
4049 		return err;
4050 
4051 	if (ratio < 100)
4052 		s->remote_node_defrag_ratio = ratio * 10;
4053 
4054 	return length;
4055 }
4056 SLAB_ATTR(remote_node_defrag_ratio);
4057 #endif
4058 
4059 #ifdef CONFIG_SLUB_STATS
4060 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4061 {
4062 	unsigned long sum  = 0;
4063 	int cpu;
4064 	int len;
4065 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4066 
4067 	if (!data)
4068 		return -ENOMEM;
4069 
4070 	for_each_online_cpu(cpu) {
4071 		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4072 
4073 		data[cpu] = x;
4074 		sum += x;
4075 	}
4076 
4077 	len = sprintf(buf, "%lu", sum);
4078 
4079 #ifdef CONFIG_SMP
4080 	for_each_online_cpu(cpu) {
4081 		if (data[cpu] && len < PAGE_SIZE - 20)
4082 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4083 	}
4084 #endif
4085 	kfree(data);
4086 	return len + sprintf(buf + len, "\n");
4087 }
4088 
4089 #define STAT_ATTR(si, text) 					\
4090 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4091 {								\
4092 	return show_stat(s, buf, si);				\
4093 }								\
4094 SLAB_ATTR_RO(text);						\
4095 
4096 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4097 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4098 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4099 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4100 STAT_ATTR(FREE_FROZEN, free_frozen);
4101 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4102 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4103 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4104 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4105 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4106 STAT_ATTR(FREE_SLAB, free_slab);
4107 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4108 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4109 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4110 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4111 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4112 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4113 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4114 #endif
4115 
4116 static struct attribute *slab_attrs[] = {
4117 	&slab_size_attr.attr,
4118 	&object_size_attr.attr,
4119 	&objs_per_slab_attr.attr,
4120 	&order_attr.attr,
4121 	&objects_attr.attr,
4122 	&objects_partial_attr.attr,
4123 	&total_objects_attr.attr,
4124 	&slabs_attr.attr,
4125 	&partial_attr.attr,
4126 	&cpu_slabs_attr.attr,
4127 	&ctor_attr.attr,
4128 	&aliases_attr.attr,
4129 	&align_attr.attr,
4130 	&sanity_checks_attr.attr,
4131 	&trace_attr.attr,
4132 	&hwcache_align_attr.attr,
4133 	&reclaim_account_attr.attr,
4134 	&destroy_by_rcu_attr.attr,
4135 	&red_zone_attr.attr,
4136 	&poison_attr.attr,
4137 	&store_user_attr.attr,
4138 	&validate_attr.attr,
4139 	&shrink_attr.attr,
4140 	&alloc_calls_attr.attr,
4141 	&free_calls_attr.attr,
4142 #ifdef CONFIG_ZONE_DMA
4143 	&cache_dma_attr.attr,
4144 #endif
4145 #ifdef CONFIG_NUMA
4146 	&remote_node_defrag_ratio_attr.attr,
4147 #endif
4148 #ifdef CONFIG_SLUB_STATS
4149 	&alloc_fastpath_attr.attr,
4150 	&alloc_slowpath_attr.attr,
4151 	&free_fastpath_attr.attr,
4152 	&free_slowpath_attr.attr,
4153 	&free_frozen_attr.attr,
4154 	&free_add_partial_attr.attr,
4155 	&free_remove_partial_attr.attr,
4156 	&alloc_from_partial_attr.attr,
4157 	&alloc_slab_attr.attr,
4158 	&alloc_refill_attr.attr,
4159 	&free_slab_attr.attr,
4160 	&cpuslab_flush_attr.attr,
4161 	&deactivate_full_attr.attr,
4162 	&deactivate_empty_attr.attr,
4163 	&deactivate_to_head_attr.attr,
4164 	&deactivate_to_tail_attr.attr,
4165 	&deactivate_remote_frees_attr.attr,
4166 	&order_fallback_attr.attr,
4167 #endif
4168 	NULL
4169 };
4170 
4171 static struct attribute_group slab_attr_group = {
4172 	.attrs = slab_attrs,
4173 };
4174 
4175 static ssize_t slab_attr_show(struct kobject *kobj,
4176 				struct attribute *attr,
4177 				char *buf)
4178 {
4179 	struct slab_attribute *attribute;
4180 	struct kmem_cache *s;
4181 	int err;
4182 
4183 	attribute = to_slab_attr(attr);
4184 	s = to_slab(kobj);
4185 
4186 	if (!attribute->show)
4187 		return -EIO;
4188 
4189 	err = attribute->show(s, buf);
4190 
4191 	return err;
4192 }
4193 
4194 static ssize_t slab_attr_store(struct kobject *kobj,
4195 				struct attribute *attr,
4196 				const char *buf, size_t len)
4197 {
4198 	struct slab_attribute *attribute;
4199 	struct kmem_cache *s;
4200 	int err;
4201 
4202 	attribute = to_slab_attr(attr);
4203 	s = to_slab(kobj);
4204 
4205 	if (!attribute->store)
4206 		return -EIO;
4207 
4208 	err = attribute->store(s, buf, len);
4209 
4210 	return err;
4211 }
4212 
4213 static void kmem_cache_release(struct kobject *kobj)
4214 {
4215 	struct kmem_cache *s = to_slab(kobj);
4216 
4217 	kfree(s);
4218 }
4219 
4220 static struct sysfs_ops slab_sysfs_ops = {
4221 	.show = slab_attr_show,
4222 	.store = slab_attr_store,
4223 };
4224 
4225 static struct kobj_type slab_ktype = {
4226 	.sysfs_ops = &slab_sysfs_ops,
4227 	.release = kmem_cache_release
4228 };
4229 
4230 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4231 {
4232 	struct kobj_type *ktype = get_ktype(kobj);
4233 
4234 	if (ktype == &slab_ktype)
4235 		return 1;
4236 	return 0;
4237 }
4238 
4239 static struct kset_uevent_ops slab_uevent_ops = {
4240 	.filter = uevent_filter,
4241 };
4242 
4243 static struct kset *slab_kset;
4244 
4245 #define ID_STR_LENGTH 64
4246 
4247 /* Create a unique string id for a slab cache:
4248  *
4249  * Format	:[flags-]size
4250  */
4251 static char *create_unique_id(struct kmem_cache *s)
4252 {
4253 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4254 	char *p = name;
4255 
4256 	BUG_ON(!name);
4257 
4258 	*p++ = ':';
4259 	/*
4260 	 * First flags affecting slabcache operations. We will only
4261 	 * get here for aliasable slabs so we do not need to support
4262 	 * too many flags. The flags here must cover all flags that
4263 	 * are matched during merging to guarantee that the id is
4264 	 * unique.
4265 	 */
4266 	if (s->flags & SLAB_CACHE_DMA)
4267 		*p++ = 'd';
4268 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4269 		*p++ = 'a';
4270 	if (s->flags & SLAB_DEBUG_FREE)
4271 		*p++ = 'F';
4272 	if (p != name + 1)
4273 		*p++ = '-';
4274 	p += sprintf(p, "%07d", s->size);
4275 	BUG_ON(p > name + ID_STR_LENGTH - 1);
4276 	return name;
4277 }
4278 
4279 static int sysfs_slab_add(struct kmem_cache *s)
4280 {
4281 	int err;
4282 	const char *name;
4283 	int unmergeable;
4284 
4285 	if (slab_state < SYSFS)
4286 		/* Defer until later */
4287 		return 0;
4288 
4289 	unmergeable = slab_unmergeable(s);
4290 	if (unmergeable) {
4291 		/*
4292 		 * Slabcache can never be merged so we can use the name proper.
4293 		 * This is typically the case for debug situations. In that
4294 		 * case we can catch duplicate names easily.
4295 		 */
4296 		sysfs_remove_link(&slab_kset->kobj, s->name);
4297 		name = s->name;
4298 	} else {
4299 		/*
4300 		 * Create a unique name for the slab as a target
4301 		 * for the symlinks.
4302 		 */
4303 		name = create_unique_id(s);
4304 	}
4305 
4306 	s->kobj.kset = slab_kset;
4307 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4308 	if (err) {
4309 		kobject_put(&s->kobj);
4310 		return err;
4311 	}
4312 
4313 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4314 	if (err)
4315 		return err;
4316 	kobject_uevent(&s->kobj, KOBJ_ADD);
4317 	if (!unmergeable) {
4318 		/* Setup first alias */
4319 		sysfs_slab_alias(s, s->name);
4320 		kfree(name);
4321 	}
4322 	return 0;
4323 }
4324 
4325 static void sysfs_slab_remove(struct kmem_cache *s)
4326 {
4327 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4328 	kobject_del(&s->kobj);
4329 	kobject_put(&s->kobj);
4330 }
4331 
4332 /*
4333  * Need to buffer aliases during bootup until sysfs becomes
4334  * available lest we loose that information.
4335  */
4336 struct saved_alias {
4337 	struct kmem_cache *s;
4338 	const char *name;
4339 	struct saved_alias *next;
4340 };
4341 
4342 static struct saved_alias *alias_list;
4343 
4344 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4345 {
4346 	struct saved_alias *al;
4347 
4348 	if (slab_state == SYSFS) {
4349 		/*
4350 		 * If we have a leftover link then remove it.
4351 		 */
4352 		sysfs_remove_link(&slab_kset->kobj, name);
4353 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4354 	}
4355 
4356 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4357 	if (!al)
4358 		return -ENOMEM;
4359 
4360 	al->s = s;
4361 	al->name = name;
4362 	al->next = alias_list;
4363 	alias_list = al;
4364 	return 0;
4365 }
4366 
4367 static int __init slab_sysfs_init(void)
4368 {
4369 	struct kmem_cache *s;
4370 	int err;
4371 
4372 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4373 	if (!slab_kset) {
4374 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4375 		return -ENOSYS;
4376 	}
4377 
4378 	slab_state = SYSFS;
4379 
4380 	list_for_each_entry(s, &slab_caches, list) {
4381 		err = sysfs_slab_add(s);
4382 		if (err)
4383 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4384 						" to sysfs\n", s->name);
4385 	}
4386 
4387 	while (alias_list) {
4388 		struct saved_alias *al = alias_list;
4389 
4390 		alias_list = alias_list->next;
4391 		err = sysfs_slab_alias(al->s, al->name);
4392 		if (err)
4393 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4394 					" %s to sysfs\n", s->name);
4395 		kfree(al);
4396 	}
4397 
4398 	resiliency_test();
4399 	return 0;
4400 }
4401 
4402 __initcall(slab_sysfs_init);
4403 #endif
4404 
4405 /*
4406  * The /proc/slabinfo ABI
4407  */
4408 #ifdef CONFIG_SLABINFO
4409 
4410 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4411 		       size_t count, loff_t *ppos)
4412 {
4413 	return -EINVAL;
4414 }
4415 
4416 
4417 static void print_slabinfo_header(struct seq_file *m)
4418 {
4419 	seq_puts(m, "slabinfo - version: 2.1\n");
4420 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4421 		 "<objperslab> <pagesperslab>");
4422 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4423 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4424 	seq_putc(m, '\n');
4425 }
4426 
4427 static void *s_start(struct seq_file *m, loff_t *pos)
4428 {
4429 	loff_t n = *pos;
4430 
4431 	down_read(&slub_lock);
4432 	if (!n)
4433 		print_slabinfo_header(m);
4434 
4435 	return seq_list_start(&slab_caches, *pos);
4436 }
4437 
4438 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4439 {
4440 	return seq_list_next(p, &slab_caches, pos);
4441 }
4442 
4443 static void s_stop(struct seq_file *m, void *p)
4444 {
4445 	up_read(&slub_lock);
4446 }
4447 
4448 static int s_show(struct seq_file *m, void *p)
4449 {
4450 	unsigned long nr_partials = 0;
4451 	unsigned long nr_slabs = 0;
4452 	unsigned long nr_inuse = 0;
4453 	unsigned long nr_objs = 0;
4454 	unsigned long nr_free = 0;
4455 	struct kmem_cache *s;
4456 	int node;
4457 
4458 	s = list_entry(p, struct kmem_cache, list);
4459 
4460 	for_each_online_node(node) {
4461 		struct kmem_cache_node *n = get_node(s, node);
4462 
4463 		if (!n)
4464 			continue;
4465 
4466 		nr_partials += n->nr_partial;
4467 		nr_slabs += atomic_long_read(&n->nr_slabs);
4468 		nr_objs += atomic_long_read(&n->total_objects);
4469 		nr_free += count_partial(n, count_free);
4470 	}
4471 
4472 	nr_inuse = nr_objs - nr_free;
4473 
4474 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4475 		   nr_objs, s->size, oo_objects(s->oo),
4476 		   (1 << oo_order(s->oo)));
4477 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4478 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4479 		   0UL);
4480 	seq_putc(m, '\n');
4481 	return 0;
4482 }
4483 
4484 const struct seq_operations slabinfo_op = {
4485 	.start = s_start,
4486 	.next = s_next,
4487 	.stop = s_stop,
4488 	.show = s_show,
4489 };
4490 
4491 #endif /* CONFIG_SLABINFO */
4492