1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kmemcheck.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 37 #include <trace/events/kmem.h> 38 39 #include "internal.h" 40 41 /* 42 * Lock order: 43 * 1. slab_mutex (Global Mutex) 44 * 2. node->list_lock 45 * 3. slab_lock(page) (Only on some arches and for debugging) 46 * 47 * slab_mutex 48 * 49 * The role of the slab_mutex is to protect the list of all the slabs 50 * and to synchronize major metadata changes to slab cache structures. 51 * 52 * The slab_lock is only used for debugging and on arches that do not 53 * have the ability to do a cmpxchg_double. It only protects the second 54 * double word in the page struct. Meaning 55 * A. page->freelist -> List of object free in a page 56 * B. page->counters -> Counters of objects 57 * C. page->frozen -> frozen state 58 * 59 * If a slab is frozen then it is exempt from list management. It is not 60 * on any list. The processor that froze the slab is the one who can 61 * perform list operations on the page. Other processors may put objects 62 * onto the freelist but the processor that froze the slab is the only 63 * one that can retrieve the objects from the page's freelist. 64 * 65 * The list_lock protects the partial and full list on each node and 66 * the partial slab counter. If taken then no new slabs may be added or 67 * removed from the lists nor make the number of partial slabs be modified. 68 * (Note that the total number of slabs is an atomic value that may be 69 * modified without taking the list lock). 70 * 71 * The list_lock is a centralized lock and thus we avoid taking it as 72 * much as possible. As long as SLUB does not have to handle partial 73 * slabs, operations can continue without any centralized lock. F.e. 74 * allocating a long series of objects that fill up slabs does not require 75 * the list lock. 76 * Interrupts are disabled during allocation and deallocation in order to 77 * make the slab allocator safe to use in the context of an irq. In addition 78 * interrupts are disabled to ensure that the processor does not change 79 * while handling per_cpu slabs, due to kernel preemption. 80 * 81 * SLUB assigns one slab for allocation to each processor. 82 * Allocations only occur from these slabs called cpu slabs. 83 * 84 * Slabs with free elements are kept on a partial list and during regular 85 * operations no list for full slabs is used. If an object in a full slab is 86 * freed then the slab will show up again on the partial lists. 87 * We track full slabs for debugging purposes though because otherwise we 88 * cannot scan all objects. 89 * 90 * Slabs are freed when they become empty. Teardown and setup is 91 * minimal so we rely on the page allocators per cpu caches for 92 * fast frees and allocs. 93 * 94 * Overloading of page flags that are otherwise used for LRU management. 95 * 96 * PageActive The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * PageError Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 static inline int kmem_cache_debug(struct kmem_cache *s) 118 { 119 #ifdef CONFIG_SLUB_DEBUG 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 121 #else 122 return 0; 123 #endif 124 } 125 126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 127 { 128 #ifdef CONFIG_SLUB_CPU_PARTIAL 129 return !kmem_cache_debug(s); 130 #else 131 return false; 132 #endif 133 } 134 135 /* 136 * Issues still to be resolved: 137 * 138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 139 * 140 * - Variable sizing of the per node arrays 141 */ 142 143 /* Enable to test recovery from slab corruption on boot */ 144 #undef SLUB_RESILIENCY_TEST 145 146 /* Enable to log cmpxchg failures */ 147 #undef SLUB_DEBUG_CMPXCHG 148 149 /* 150 * Mininum number of partial slabs. These will be left on the partial 151 * lists even if they are empty. kmem_cache_shrink may reclaim them. 152 */ 153 #define MIN_PARTIAL 5 154 155 /* 156 * Maximum number of desirable partial slabs. 157 * The existence of more partial slabs makes kmem_cache_shrink 158 * sort the partial list by the number of objects in the. 159 */ 160 #define MAX_PARTIAL 10 161 162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 163 SLAB_POISON | SLAB_STORE_USER) 164 165 /* 166 * Debugging flags that require metadata to be stored in the slab. These get 167 * disabled when slub_debug=O is used and a cache's min order increases with 168 * metadata. 169 */ 170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 171 172 /* 173 * Set of flags that will prevent slab merging 174 */ 175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 177 SLAB_FAILSLAB) 178 179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 180 SLAB_CACHE_DMA | SLAB_NOTRACK) 181 182 #define OO_SHIFT 16 183 #define OO_MASK ((1 << OO_SHIFT) - 1) 184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 185 186 /* Internal SLUB flags */ 187 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 189 190 #ifdef CONFIG_SMP 191 static struct notifier_block slab_notifier; 192 #endif 193 194 /* 195 * Tracking user of a slab. 196 */ 197 #define TRACK_ADDRS_COUNT 16 198 struct track { 199 unsigned long addr; /* Called from address */ 200 #ifdef CONFIG_STACKTRACE 201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 202 #endif 203 int cpu; /* Was running on cpu */ 204 int pid; /* Pid context */ 205 unsigned long when; /* When did the operation occur */ 206 }; 207 208 enum track_item { TRACK_ALLOC, TRACK_FREE }; 209 210 #ifdef CONFIG_SYSFS 211 static int sysfs_slab_add(struct kmem_cache *); 212 static int sysfs_slab_alias(struct kmem_cache *, const char *); 213 static void sysfs_slab_remove(struct kmem_cache *); 214 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 215 #else 216 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 217 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 218 { return 0; } 219 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 220 221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 222 #endif 223 224 static inline void stat(const struct kmem_cache *s, enum stat_item si) 225 { 226 #ifdef CONFIG_SLUB_STATS 227 __this_cpu_inc(s->cpu_slab->stat[si]); 228 #endif 229 } 230 231 /******************************************************************** 232 * Core slab cache functions 233 *******************************************************************/ 234 235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 236 { 237 return s->node[node]; 238 } 239 240 /* Verify that a pointer has an address that is valid within a slab page */ 241 static inline int check_valid_pointer(struct kmem_cache *s, 242 struct page *page, const void *object) 243 { 244 void *base; 245 246 if (!object) 247 return 1; 248 249 base = page_address(page); 250 if (object < base || object >= base + page->objects * s->size || 251 (object - base) % s->size) { 252 return 0; 253 } 254 255 return 1; 256 } 257 258 static inline void *get_freepointer(struct kmem_cache *s, void *object) 259 { 260 return *(void **)(object + s->offset); 261 } 262 263 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 264 { 265 prefetch(object + s->offset); 266 } 267 268 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 269 { 270 void *p; 271 272 #ifdef CONFIG_DEBUG_PAGEALLOC 273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 274 #else 275 p = get_freepointer(s, object); 276 #endif 277 return p; 278 } 279 280 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 281 { 282 *(void **)(object + s->offset) = fp; 283 } 284 285 /* Loop over all objects in a slab */ 286 #define for_each_object(__p, __s, __addr, __objects) \ 287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 288 __p += (__s)->size) 289 290 /* Determine object index from a given position */ 291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 292 { 293 return (p - addr) / s->size; 294 } 295 296 static inline size_t slab_ksize(const struct kmem_cache *s) 297 { 298 #ifdef CONFIG_SLUB_DEBUG 299 /* 300 * Debugging requires use of the padding between object 301 * and whatever may come after it. 302 */ 303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 304 return s->object_size; 305 306 #endif 307 /* 308 * If we have the need to store the freelist pointer 309 * back there or track user information then we can 310 * only use the space before that information. 311 */ 312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 313 return s->inuse; 314 /* 315 * Else we can use all the padding etc for the allocation 316 */ 317 return s->size; 318 } 319 320 static inline int order_objects(int order, unsigned long size, int reserved) 321 { 322 return ((PAGE_SIZE << order) - reserved) / size; 323 } 324 325 static inline struct kmem_cache_order_objects oo_make(int order, 326 unsigned long size, int reserved) 327 { 328 struct kmem_cache_order_objects x = { 329 (order << OO_SHIFT) + order_objects(order, size, reserved) 330 }; 331 332 return x; 333 } 334 335 static inline int oo_order(struct kmem_cache_order_objects x) 336 { 337 return x.x >> OO_SHIFT; 338 } 339 340 static inline int oo_objects(struct kmem_cache_order_objects x) 341 { 342 return x.x & OO_MASK; 343 } 344 345 /* 346 * Per slab locking using the pagelock 347 */ 348 static __always_inline void slab_lock(struct page *page) 349 { 350 bit_spin_lock(PG_locked, &page->flags); 351 } 352 353 static __always_inline void slab_unlock(struct page *page) 354 { 355 __bit_spin_unlock(PG_locked, &page->flags); 356 } 357 358 /* Interrupts must be disabled (for the fallback code to work right) */ 359 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 360 void *freelist_old, unsigned long counters_old, 361 void *freelist_new, unsigned long counters_new, 362 const char *n) 363 { 364 VM_BUG_ON(!irqs_disabled()); 365 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 366 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 367 if (s->flags & __CMPXCHG_DOUBLE) { 368 if (cmpxchg_double(&page->freelist, &page->counters, 369 freelist_old, counters_old, 370 freelist_new, counters_new)) 371 return 1; 372 } else 373 #endif 374 { 375 slab_lock(page); 376 if (page->freelist == freelist_old && page->counters == counters_old) { 377 page->freelist = freelist_new; 378 page->counters = counters_new; 379 slab_unlock(page); 380 return 1; 381 } 382 slab_unlock(page); 383 } 384 385 cpu_relax(); 386 stat(s, CMPXCHG_DOUBLE_FAIL); 387 388 #ifdef SLUB_DEBUG_CMPXCHG 389 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 390 #endif 391 392 return 0; 393 } 394 395 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 396 void *freelist_old, unsigned long counters_old, 397 void *freelist_new, unsigned long counters_new, 398 const char *n) 399 { 400 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 401 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 402 if (s->flags & __CMPXCHG_DOUBLE) { 403 if (cmpxchg_double(&page->freelist, &page->counters, 404 freelist_old, counters_old, 405 freelist_new, counters_new)) 406 return 1; 407 } else 408 #endif 409 { 410 unsigned long flags; 411 412 local_irq_save(flags); 413 slab_lock(page); 414 if (page->freelist == freelist_old && page->counters == counters_old) { 415 page->freelist = freelist_new; 416 page->counters = counters_new; 417 slab_unlock(page); 418 local_irq_restore(flags); 419 return 1; 420 } 421 slab_unlock(page); 422 local_irq_restore(flags); 423 } 424 425 cpu_relax(); 426 stat(s, CMPXCHG_DOUBLE_FAIL); 427 428 #ifdef SLUB_DEBUG_CMPXCHG 429 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 430 #endif 431 432 return 0; 433 } 434 435 #ifdef CONFIG_SLUB_DEBUG 436 /* 437 * Determine a map of object in use on a page. 438 * 439 * Node listlock must be held to guarantee that the page does 440 * not vanish from under us. 441 */ 442 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 443 { 444 void *p; 445 void *addr = page_address(page); 446 447 for (p = page->freelist; p; p = get_freepointer(s, p)) 448 set_bit(slab_index(p, s, addr), map); 449 } 450 451 /* 452 * Debug settings: 453 */ 454 #ifdef CONFIG_SLUB_DEBUG_ON 455 static int slub_debug = DEBUG_DEFAULT_FLAGS; 456 #else 457 static int slub_debug; 458 #endif 459 460 static char *slub_debug_slabs; 461 static int disable_higher_order_debug; 462 463 /* 464 * Object debugging 465 */ 466 static void print_section(char *text, u8 *addr, unsigned int length) 467 { 468 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 469 length, 1); 470 } 471 472 static struct track *get_track(struct kmem_cache *s, void *object, 473 enum track_item alloc) 474 { 475 struct track *p; 476 477 if (s->offset) 478 p = object + s->offset + sizeof(void *); 479 else 480 p = object + s->inuse; 481 482 return p + alloc; 483 } 484 485 static void set_track(struct kmem_cache *s, void *object, 486 enum track_item alloc, unsigned long addr) 487 { 488 struct track *p = get_track(s, object, alloc); 489 490 if (addr) { 491 #ifdef CONFIG_STACKTRACE 492 struct stack_trace trace; 493 int i; 494 495 trace.nr_entries = 0; 496 trace.max_entries = TRACK_ADDRS_COUNT; 497 trace.entries = p->addrs; 498 trace.skip = 3; 499 save_stack_trace(&trace); 500 501 /* See rant in lockdep.c */ 502 if (trace.nr_entries != 0 && 503 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 504 trace.nr_entries--; 505 506 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 507 p->addrs[i] = 0; 508 #endif 509 p->addr = addr; 510 p->cpu = smp_processor_id(); 511 p->pid = current->pid; 512 p->when = jiffies; 513 } else 514 memset(p, 0, sizeof(struct track)); 515 } 516 517 static void init_tracking(struct kmem_cache *s, void *object) 518 { 519 if (!(s->flags & SLAB_STORE_USER)) 520 return; 521 522 set_track(s, object, TRACK_FREE, 0UL); 523 set_track(s, object, TRACK_ALLOC, 0UL); 524 } 525 526 static void print_track(const char *s, struct track *t) 527 { 528 if (!t->addr) 529 return; 530 531 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 532 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 533 #ifdef CONFIG_STACKTRACE 534 { 535 int i; 536 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 537 if (t->addrs[i]) 538 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]); 539 else 540 break; 541 } 542 #endif 543 } 544 545 static void print_tracking(struct kmem_cache *s, void *object) 546 { 547 if (!(s->flags & SLAB_STORE_USER)) 548 return; 549 550 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 551 print_track("Freed", get_track(s, object, TRACK_FREE)); 552 } 553 554 static void print_page_info(struct page *page) 555 { 556 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 557 page, page->objects, page->inuse, page->freelist, page->flags); 558 559 } 560 561 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 562 { 563 va_list args; 564 char buf[100]; 565 566 va_start(args, fmt); 567 vsnprintf(buf, sizeof(buf), fmt, args); 568 va_end(args); 569 printk(KERN_ERR "========================================" 570 "=====================================\n"); 571 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf); 572 printk(KERN_ERR "----------------------------------------" 573 "-------------------------------------\n\n"); 574 575 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 576 } 577 578 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 579 { 580 va_list args; 581 char buf[100]; 582 583 va_start(args, fmt); 584 vsnprintf(buf, sizeof(buf), fmt, args); 585 va_end(args); 586 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 587 } 588 589 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 590 { 591 unsigned int off; /* Offset of last byte */ 592 u8 *addr = page_address(page); 593 594 print_tracking(s, p); 595 596 print_page_info(page); 597 598 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 599 p, p - addr, get_freepointer(s, p)); 600 601 if (p > addr + 16) 602 print_section("Bytes b4 ", p - 16, 16); 603 604 print_section("Object ", p, min_t(unsigned long, s->object_size, 605 PAGE_SIZE)); 606 if (s->flags & SLAB_RED_ZONE) 607 print_section("Redzone ", p + s->object_size, 608 s->inuse - s->object_size); 609 610 if (s->offset) 611 off = s->offset + sizeof(void *); 612 else 613 off = s->inuse; 614 615 if (s->flags & SLAB_STORE_USER) 616 off += 2 * sizeof(struct track); 617 618 if (off != s->size) 619 /* Beginning of the filler is the free pointer */ 620 print_section("Padding ", p + off, s->size - off); 621 622 dump_stack(); 623 } 624 625 static void object_err(struct kmem_cache *s, struct page *page, 626 u8 *object, char *reason) 627 { 628 slab_bug(s, "%s", reason); 629 print_trailer(s, page, object); 630 } 631 632 static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...) 633 { 634 va_list args; 635 char buf[100]; 636 637 va_start(args, fmt); 638 vsnprintf(buf, sizeof(buf), fmt, args); 639 va_end(args); 640 slab_bug(s, "%s", buf); 641 print_page_info(page); 642 dump_stack(); 643 } 644 645 static void init_object(struct kmem_cache *s, void *object, u8 val) 646 { 647 u8 *p = object; 648 649 if (s->flags & __OBJECT_POISON) { 650 memset(p, POISON_FREE, s->object_size - 1); 651 p[s->object_size - 1] = POISON_END; 652 } 653 654 if (s->flags & SLAB_RED_ZONE) 655 memset(p + s->object_size, val, s->inuse - s->object_size); 656 } 657 658 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 659 void *from, void *to) 660 { 661 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 662 memset(from, data, to - from); 663 } 664 665 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 666 u8 *object, char *what, 667 u8 *start, unsigned int value, unsigned int bytes) 668 { 669 u8 *fault; 670 u8 *end; 671 672 fault = memchr_inv(start, value, bytes); 673 if (!fault) 674 return 1; 675 676 end = start + bytes; 677 while (end > fault && end[-1] == value) 678 end--; 679 680 slab_bug(s, "%s overwritten", what); 681 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 682 fault, end - 1, fault[0], value); 683 print_trailer(s, page, object); 684 685 restore_bytes(s, what, value, fault, end); 686 return 0; 687 } 688 689 /* 690 * Object layout: 691 * 692 * object address 693 * Bytes of the object to be managed. 694 * If the freepointer may overlay the object then the free 695 * pointer is the first word of the object. 696 * 697 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 698 * 0xa5 (POISON_END) 699 * 700 * object + s->object_size 701 * Padding to reach word boundary. This is also used for Redzoning. 702 * Padding is extended by another word if Redzoning is enabled and 703 * object_size == inuse. 704 * 705 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 706 * 0xcc (RED_ACTIVE) for objects in use. 707 * 708 * object + s->inuse 709 * Meta data starts here. 710 * 711 * A. Free pointer (if we cannot overwrite object on free) 712 * B. Tracking data for SLAB_STORE_USER 713 * C. Padding to reach required alignment boundary or at mininum 714 * one word if debugging is on to be able to detect writes 715 * before the word boundary. 716 * 717 * Padding is done using 0x5a (POISON_INUSE) 718 * 719 * object + s->size 720 * Nothing is used beyond s->size. 721 * 722 * If slabcaches are merged then the object_size and inuse boundaries are mostly 723 * ignored. And therefore no slab options that rely on these boundaries 724 * may be used with merged slabcaches. 725 */ 726 727 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 728 { 729 unsigned long off = s->inuse; /* The end of info */ 730 731 if (s->offset) 732 /* Freepointer is placed after the object. */ 733 off += sizeof(void *); 734 735 if (s->flags & SLAB_STORE_USER) 736 /* We also have user information there */ 737 off += 2 * sizeof(struct track); 738 739 if (s->size == off) 740 return 1; 741 742 return check_bytes_and_report(s, page, p, "Object padding", 743 p + off, POISON_INUSE, s->size - off); 744 } 745 746 /* Check the pad bytes at the end of a slab page */ 747 static int slab_pad_check(struct kmem_cache *s, struct page *page) 748 { 749 u8 *start; 750 u8 *fault; 751 u8 *end; 752 int length; 753 int remainder; 754 755 if (!(s->flags & SLAB_POISON)) 756 return 1; 757 758 start = page_address(page); 759 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 760 end = start + length; 761 remainder = length % s->size; 762 if (!remainder) 763 return 1; 764 765 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 766 if (!fault) 767 return 1; 768 while (end > fault && end[-1] == POISON_INUSE) 769 end--; 770 771 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 772 print_section("Padding ", end - remainder, remainder); 773 774 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 775 return 0; 776 } 777 778 static int check_object(struct kmem_cache *s, struct page *page, 779 void *object, u8 val) 780 { 781 u8 *p = object; 782 u8 *endobject = object + s->object_size; 783 784 if (s->flags & SLAB_RED_ZONE) { 785 if (!check_bytes_and_report(s, page, object, "Redzone", 786 endobject, val, s->inuse - s->object_size)) 787 return 0; 788 } else { 789 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 790 check_bytes_and_report(s, page, p, "Alignment padding", 791 endobject, POISON_INUSE, s->inuse - s->object_size); 792 } 793 } 794 795 if (s->flags & SLAB_POISON) { 796 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 797 (!check_bytes_and_report(s, page, p, "Poison", p, 798 POISON_FREE, s->object_size - 1) || 799 !check_bytes_and_report(s, page, p, "Poison", 800 p + s->object_size - 1, POISON_END, 1))) 801 return 0; 802 /* 803 * check_pad_bytes cleans up on its own. 804 */ 805 check_pad_bytes(s, page, p); 806 } 807 808 if (!s->offset && val == SLUB_RED_ACTIVE) 809 /* 810 * Object and freepointer overlap. Cannot check 811 * freepointer while object is allocated. 812 */ 813 return 1; 814 815 /* Check free pointer validity */ 816 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 817 object_err(s, page, p, "Freepointer corrupt"); 818 /* 819 * No choice but to zap it and thus lose the remainder 820 * of the free objects in this slab. May cause 821 * another error because the object count is now wrong. 822 */ 823 set_freepointer(s, p, NULL); 824 return 0; 825 } 826 return 1; 827 } 828 829 static int check_slab(struct kmem_cache *s, struct page *page) 830 { 831 int maxobj; 832 833 VM_BUG_ON(!irqs_disabled()); 834 835 if (!PageSlab(page)) { 836 slab_err(s, page, "Not a valid slab page"); 837 return 0; 838 } 839 840 maxobj = order_objects(compound_order(page), s->size, s->reserved); 841 if (page->objects > maxobj) { 842 slab_err(s, page, "objects %u > max %u", 843 s->name, page->objects, maxobj); 844 return 0; 845 } 846 if (page->inuse > page->objects) { 847 slab_err(s, page, "inuse %u > max %u", 848 s->name, page->inuse, page->objects); 849 return 0; 850 } 851 /* Slab_pad_check fixes things up after itself */ 852 slab_pad_check(s, page); 853 return 1; 854 } 855 856 /* 857 * Determine if a certain object on a page is on the freelist. Must hold the 858 * slab lock to guarantee that the chains are in a consistent state. 859 */ 860 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 861 { 862 int nr = 0; 863 void *fp; 864 void *object = NULL; 865 unsigned long max_objects; 866 867 fp = page->freelist; 868 while (fp && nr <= page->objects) { 869 if (fp == search) 870 return 1; 871 if (!check_valid_pointer(s, page, fp)) { 872 if (object) { 873 object_err(s, page, object, 874 "Freechain corrupt"); 875 set_freepointer(s, object, NULL); 876 break; 877 } else { 878 slab_err(s, page, "Freepointer corrupt"); 879 page->freelist = NULL; 880 page->inuse = page->objects; 881 slab_fix(s, "Freelist cleared"); 882 return 0; 883 } 884 break; 885 } 886 object = fp; 887 fp = get_freepointer(s, object); 888 nr++; 889 } 890 891 max_objects = order_objects(compound_order(page), s->size, s->reserved); 892 if (max_objects > MAX_OBJS_PER_PAGE) 893 max_objects = MAX_OBJS_PER_PAGE; 894 895 if (page->objects != max_objects) { 896 slab_err(s, page, "Wrong number of objects. Found %d but " 897 "should be %d", page->objects, max_objects); 898 page->objects = max_objects; 899 slab_fix(s, "Number of objects adjusted."); 900 } 901 if (page->inuse != page->objects - nr) { 902 slab_err(s, page, "Wrong object count. Counter is %d but " 903 "counted were %d", page->inuse, page->objects - nr); 904 page->inuse = page->objects - nr; 905 slab_fix(s, "Object count adjusted."); 906 } 907 return search == NULL; 908 } 909 910 static void trace(struct kmem_cache *s, struct page *page, void *object, 911 int alloc) 912 { 913 if (s->flags & SLAB_TRACE) { 914 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 915 s->name, 916 alloc ? "alloc" : "free", 917 object, page->inuse, 918 page->freelist); 919 920 if (!alloc) 921 print_section("Object ", (void *)object, s->object_size); 922 923 dump_stack(); 924 } 925 } 926 927 /* 928 * Hooks for other subsystems that check memory allocations. In a typical 929 * production configuration these hooks all should produce no code at all. 930 */ 931 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 932 { 933 flags &= gfp_allowed_mask; 934 lockdep_trace_alloc(flags); 935 might_sleep_if(flags & __GFP_WAIT); 936 937 return should_failslab(s->object_size, flags, s->flags); 938 } 939 940 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object) 941 { 942 flags &= gfp_allowed_mask; 943 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 944 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); 945 } 946 947 static inline void slab_free_hook(struct kmem_cache *s, void *x) 948 { 949 kmemleak_free_recursive(x, s->flags); 950 951 /* 952 * Trouble is that we may no longer disable interupts in the fast path 953 * So in order to make the debug calls that expect irqs to be 954 * disabled we need to disable interrupts temporarily. 955 */ 956 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 957 { 958 unsigned long flags; 959 960 local_irq_save(flags); 961 kmemcheck_slab_free(s, x, s->object_size); 962 debug_check_no_locks_freed(x, s->object_size); 963 local_irq_restore(flags); 964 } 965 #endif 966 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 967 debug_check_no_obj_freed(x, s->object_size); 968 } 969 970 /* 971 * Tracking of fully allocated slabs for debugging purposes. 972 * 973 * list_lock must be held. 974 */ 975 static void add_full(struct kmem_cache *s, 976 struct kmem_cache_node *n, struct page *page) 977 { 978 if (!(s->flags & SLAB_STORE_USER)) 979 return; 980 981 list_add(&page->lru, &n->full); 982 } 983 984 /* 985 * list_lock must be held. 986 */ 987 static void remove_full(struct kmem_cache *s, struct page *page) 988 { 989 if (!(s->flags & SLAB_STORE_USER)) 990 return; 991 992 list_del(&page->lru); 993 } 994 995 /* Tracking of the number of slabs for debugging purposes */ 996 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 997 { 998 struct kmem_cache_node *n = get_node(s, node); 999 1000 return atomic_long_read(&n->nr_slabs); 1001 } 1002 1003 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1004 { 1005 return atomic_long_read(&n->nr_slabs); 1006 } 1007 1008 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1009 { 1010 struct kmem_cache_node *n = get_node(s, node); 1011 1012 /* 1013 * May be called early in order to allocate a slab for the 1014 * kmem_cache_node structure. Solve the chicken-egg 1015 * dilemma by deferring the increment of the count during 1016 * bootstrap (see early_kmem_cache_node_alloc). 1017 */ 1018 if (likely(n)) { 1019 atomic_long_inc(&n->nr_slabs); 1020 atomic_long_add(objects, &n->total_objects); 1021 } 1022 } 1023 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1024 { 1025 struct kmem_cache_node *n = get_node(s, node); 1026 1027 atomic_long_dec(&n->nr_slabs); 1028 atomic_long_sub(objects, &n->total_objects); 1029 } 1030 1031 /* Object debug checks for alloc/free paths */ 1032 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1033 void *object) 1034 { 1035 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1036 return; 1037 1038 init_object(s, object, SLUB_RED_INACTIVE); 1039 init_tracking(s, object); 1040 } 1041 1042 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page, 1043 void *object, unsigned long addr) 1044 { 1045 if (!check_slab(s, page)) 1046 goto bad; 1047 1048 if (!check_valid_pointer(s, page, object)) { 1049 object_err(s, page, object, "Freelist Pointer check fails"); 1050 goto bad; 1051 } 1052 1053 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1054 goto bad; 1055 1056 /* Success perform special debug activities for allocs */ 1057 if (s->flags & SLAB_STORE_USER) 1058 set_track(s, object, TRACK_ALLOC, addr); 1059 trace(s, page, object, 1); 1060 init_object(s, object, SLUB_RED_ACTIVE); 1061 return 1; 1062 1063 bad: 1064 if (PageSlab(page)) { 1065 /* 1066 * If this is a slab page then lets do the best we can 1067 * to avoid issues in the future. Marking all objects 1068 * as used avoids touching the remaining objects. 1069 */ 1070 slab_fix(s, "Marking all objects used"); 1071 page->inuse = page->objects; 1072 page->freelist = NULL; 1073 } 1074 return 0; 1075 } 1076 1077 static noinline struct kmem_cache_node *free_debug_processing( 1078 struct kmem_cache *s, struct page *page, void *object, 1079 unsigned long addr, unsigned long *flags) 1080 { 1081 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1082 1083 spin_lock_irqsave(&n->list_lock, *flags); 1084 slab_lock(page); 1085 1086 if (!check_slab(s, page)) 1087 goto fail; 1088 1089 if (!check_valid_pointer(s, page, object)) { 1090 slab_err(s, page, "Invalid object pointer 0x%p", object); 1091 goto fail; 1092 } 1093 1094 if (on_freelist(s, page, object)) { 1095 object_err(s, page, object, "Object already free"); 1096 goto fail; 1097 } 1098 1099 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1100 goto out; 1101 1102 if (unlikely(s != page->slab_cache)) { 1103 if (!PageSlab(page)) { 1104 slab_err(s, page, "Attempt to free object(0x%p) " 1105 "outside of slab", object); 1106 } else if (!page->slab_cache) { 1107 printk(KERN_ERR 1108 "SLUB <none>: no slab for object 0x%p.\n", 1109 object); 1110 dump_stack(); 1111 } else 1112 object_err(s, page, object, 1113 "page slab pointer corrupt."); 1114 goto fail; 1115 } 1116 1117 if (s->flags & SLAB_STORE_USER) 1118 set_track(s, object, TRACK_FREE, addr); 1119 trace(s, page, object, 0); 1120 init_object(s, object, SLUB_RED_INACTIVE); 1121 out: 1122 slab_unlock(page); 1123 /* 1124 * Keep node_lock to preserve integrity 1125 * until the object is actually freed 1126 */ 1127 return n; 1128 1129 fail: 1130 slab_unlock(page); 1131 spin_unlock_irqrestore(&n->list_lock, *flags); 1132 slab_fix(s, "Object at 0x%p not freed", object); 1133 return NULL; 1134 } 1135 1136 static int __init setup_slub_debug(char *str) 1137 { 1138 slub_debug = DEBUG_DEFAULT_FLAGS; 1139 if (*str++ != '=' || !*str) 1140 /* 1141 * No options specified. Switch on full debugging. 1142 */ 1143 goto out; 1144 1145 if (*str == ',') 1146 /* 1147 * No options but restriction on slabs. This means full 1148 * debugging for slabs matching a pattern. 1149 */ 1150 goto check_slabs; 1151 1152 if (tolower(*str) == 'o') { 1153 /* 1154 * Avoid enabling debugging on caches if its minimum order 1155 * would increase as a result. 1156 */ 1157 disable_higher_order_debug = 1; 1158 goto out; 1159 } 1160 1161 slub_debug = 0; 1162 if (*str == '-') 1163 /* 1164 * Switch off all debugging measures. 1165 */ 1166 goto out; 1167 1168 /* 1169 * Determine which debug features should be switched on 1170 */ 1171 for (; *str && *str != ','; str++) { 1172 switch (tolower(*str)) { 1173 case 'f': 1174 slub_debug |= SLAB_DEBUG_FREE; 1175 break; 1176 case 'z': 1177 slub_debug |= SLAB_RED_ZONE; 1178 break; 1179 case 'p': 1180 slub_debug |= SLAB_POISON; 1181 break; 1182 case 'u': 1183 slub_debug |= SLAB_STORE_USER; 1184 break; 1185 case 't': 1186 slub_debug |= SLAB_TRACE; 1187 break; 1188 case 'a': 1189 slub_debug |= SLAB_FAILSLAB; 1190 break; 1191 default: 1192 printk(KERN_ERR "slub_debug option '%c' " 1193 "unknown. skipped\n", *str); 1194 } 1195 } 1196 1197 check_slabs: 1198 if (*str == ',') 1199 slub_debug_slabs = str + 1; 1200 out: 1201 return 1; 1202 } 1203 1204 __setup("slub_debug", setup_slub_debug); 1205 1206 static unsigned long kmem_cache_flags(unsigned long object_size, 1207 unsigned long flags, const char *name, 1208 void (*ctor)(void *)) 1209 { 1210 /* 1211 * Enable debugging if selected on the kernel commandline. 1212 */ 1213 if (slub_debug && (!slub_debug_slabs || 1214 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) 1215 flags |= slub_debug; 1216 1217 return flags; 1218 } 1219 #else 1220 static inline void setup_object_debug(struct kmem_cache *s, 1221 struct page *page, void *object) {} 1222 1223 static inline int alloc_debug_processing(struct kmem_cache *s, 1224 struct page *page, void *object, unsigned long addr) { return 0; } 1225 1226 static inline struct kmem_cache_node *free_debug_processing( 1227 struct kmem_cache *s, struct page *page, void *object, 1228 unsigned long addr, unsigned long *flags) { return NULL; } 1229 1230 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1231 { return 1; } 1232 static inline int check_object(struct kmem_cache *s, struct page *page, 1233 void *object, u8 val) { return 1; } 1234 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1235 struct page *page) {} 1236 static inline void remove_full(struct kmem_cache *s, struct page *page) {} 1237 static inline unsigned long kmem_cache_flags(unsigned long object_size, 1238 unsigned long flags, const char *name, 1239 void (*ctor)(void *)) 1240 { 1241 return flags; 1242 } 1243 #define slub_debug 0 1244 1245 #define disable_higher_order_debug 0 1246 1247 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1248 { return 0; } 1249 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1250 { return 0; } 1251 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1252 int objects) {} 1253 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1254 int objects) {} 1255 1256 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 1257 { return 0; } 1258 1259 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 1260 void *object) {} 1261 1262 static inline void slab_free_hook(struct kmem_cache *s, void *x) {} 1263 1264 #endif /* CONFIG_SLUB_DEBUG */ 1265 1266 /* 1267 * Slab allocation and freeing 1268 */ 1269 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1270 struct kmem_cache_order_objects oo) 1271 { 1272 int order = oo_order(oo); 1273 1274 flags |= __GFP_NOTRACK; 1275 1276 if (node == NUMA_NO_NODE) 1277 return alloc_pages(flags, order); 1278 else 1279 return alloc_pages_exact_node(node, flags, order); 1280 } 1281 1282 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1283 { 1284 struct page *page; 1285 struct kmem_cache_order_objects oo = s->oo; 1286 gfp_t alloc_gfp; 1287 1288 flags &= gfp_allowed_mask; 1289 1290 if (flags & __GFP_WAIT) 1291 local_irq_enable(); 1292 1293 flags |= s->allocflags; 1294 1295 /* 1296 * Let the initial higher-order allocation fail under memory pressure 1297 * so we fall-back to the minimum order allocation. 1298 */ 1299 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1300 1301 page = alloc_slab_page(alloc_gfp, node, oo); 1302 if (unlikely(!page)) { 1303 oo = s->min; 1304 /* 1305 * Allocation may have failed due to fragmentation. 1306 * Try a lower order alloc if possible 1307 */ 1308 page = alloc_slab_page(flags, node, oo); 1309 1310 if (page) 1311 stat(s, ORDER_FALLBACK); 1312 } 1313 1314 if (kmemcheck_enabled && page 1315 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1316 int pages = 1 << oo_order(oo); 1317 1318 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1319 1320 /* 1321 * Objects from caches that have a constructor don't get 1322 * cleared when they're allocated, so we need to do it here. 1323 */ 1324 if (s->ctor) 1325 kmemcheck_mark_uninitialized_pages(page, pages); 1326 else 1327 kmemcheck_mark_unallocated_pages(page, pages); 1328 } 1329 1330 if (flags & __GFP_WAIT) 1331 local_irq_disable(); 1332 if (!page) 1333 return NULL; 1334 1335 page->objects = oo_objects(oo); 1336 mod_zone_page_state(page_zone(page), 1337 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1338 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1339 1 << oo_order(oo)); 1340 1341 return page; 1342 } 1343 1344 static void setup_object(struct kmem_cache *s, struct page *page, 1345 void *object) 1346 { 1347 setup_object_debug(s, page, object); 1348 if (unlikely(s->ctor)) 1349 s->ctor(object); 1350 } 1351 1352 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1353 { 1354 struct page *page; 1355 void *start; 1356 void *last; 1357 void *p; 1358 int order; 1359 1360 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1361 1362 page = allocate_slab(s, 1363 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1364 if (!page) 1365 goto out; 1366 1367 order = compound_order(page); 1368 inc_slabs_node(s, page_to_nid(page), page->objects); 1369 memcg_bind_pages(s, order); 1370 page->slab_cache = s; 1371 __SetPageSlab(page); 1372 if (page->pfmemalloc) 1373 SetPageSlabPfmemalloc(page); 1374 1375 start = page_address(page); 1376 1377 if (unlikely(s->flags & SLAB_POISON)) 1378 memset(start, POISON_INUSE, PAGE_SIZE << order); 1379 1380 last = start; 1381 for_each_object(p, s, start, page->objects) { 1382 setup_object(s, page, last); 1383 set_freepointer(s, last, p); 1384 last = p; 1385 } 1386 setup_object(s, page, last); 1387 set_freepointer(s, last, NULL); 1388 1389 page->freelist = start; 1390 page->inuse = page->objects; 1391 page->frozen = 1; 1392 out: 1393 return page; 1394 } 1395 1396 static void __free_slab(struct kmem_cache *s, struct page *page) 1397 { 1398 int order = compound_order(page); 1399 int pages = 1 << order; 1400 1401 if (kmem_cache_debug(s)) { 1402 void *p; 1403 1404 slab_pad_check(s, page); 1405 for_each_object(p, s, page_address(page), 1406 page->objects) 1407 check_object(s, page, p, SLUB_RED_INACTIVE); 1408 } 1409 1410 kmemcheck_free_shadow(page, compound_order(page)); 1411 1412 mod_zone_page_state(page_zone(page), 1413 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1414 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1415 -pages); 1416 1417 __ClearPageSlabPfmemalloc(page); 1418 __ClearPageSlab(page); 1419 1420 memcg_release_pages(s, order); 1421 page_mapcount_reset(page); 1422 if (current->reclaim_state) 1423 current->reclaim_state->reclaimed_slab += pages; 1424 __free_memcg_kmem_pages(page, order); 1425 } 1426 1427 #define need_reserve_slab_rcu \ 1428 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1429 1430 static void rcu_free_slab(struct rcu_head *h) 1431 { 1432 struct page *page; 1433 1434 if (need_reserve_slab_rcu) 1435 page = virt_to_head_page(h); 1436 else 1437 page = container_of((struct list_head *)h, struct page, lru); 1438 1439 __free_slab(page->slab_cache, page); 1440 } 1441 1442 static void free_slab(struct kmem_cache *s, struct page *page) 1443 { 1444 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1445 struct rcu_head *head; 1446 1447 if (need_reserve_slab_rcu) { 1448 int order = compound_order(page); 1449 int offset = (PAGE_SIZE << order) - s->reserved; 1450 1451 VM_BUG_ON(s->reserved != sizeof(*head)); 1452 head = page_address(page) + offset; 1453 } else { 1454 /* 1455 * RCU free overloads the RCU head over the LRU 1456 */ 1457 head = (void *)&page->lru; 1458 } 1459 1460 call_rcu(head, rcu_free_slab); 1461 } else 1462 __free_slab(s, page); 1463 } 1464 1465 static void discard_slab(struct kmem_cache *s, struct page *page) 1466 { 1467 dec_slabs_node(s, page_to_nid(page), page->objects); 1468 free_slab(s, page); 1469 } 1470 1471 /* 1472 * Management of partially allocated slabs. 1473 * 1474 * list_lock must be held. 1475 */ 1476 static inline void add_partial(struct kmem_cache_node *n, 1477 struct page *page, int tail) 1478 { 1479 n->nr_partial++; 1480 if (tail == DEACTIVATE_TO_TAIL) 1481 list_add_tail(&page->lru, &n->partial); 1482 else 1483 list_add(&page->lru, &n->partial); 1484 } 1485 1486 /* 1487 * list_lock must be held. 1488 */ 1489 static inline void remove_partial(struct kmem_cache_node *n, 1490 struct page *page) 1491 { 1492 list_del(&page->lru); 1493 n->nr_partial--; 1494 } 1495 1496 /* 1497 * Remove slab from the partial list, freeze it and 1498 * return the pointer to the freelist. 1499 * 1500 * Returns a list of objects or NULL if it fails. 1501 * 1502 * Must hold list_lock since we modify the partial list. 1503 */ 1504 static inline void *acquire_slab(struct kmem_cache *s, 1505 struct kmem_cache_node *n, struct page *page, 1506 int mode, int *objects) 1507 { 1508 void *freelist; 1509 unsigned long counters; 1510 struct page new; 1511 1512 /* 1513 * Zap the freelist and set the frozen bit. 1514 * The old freelist is the list of objects for the 1515 * per cpu allocation list. 1516 */ 1517 freelist = page->freelist; 1518 counters = page->counters; 1519 new.counters = counters; 1520 *objects = new.objects - new.inuse; 1521 if (mode) { 1522 new.inuse = page->objects; 1523 new.freelist = NULL; 1524 } else { 1525 new.freelist = freelist; 1526 } 1527 1528 VM_BUG_ON(new.frozen); 1529 new.frozen = 1; 1530 1531 if (!__cmpxchg_double_slab(s, page, 1532 freelist, counters, 1533 new.freelist, new.counters, 1534 "acquire_slab")) 1535 return NULL; 1536 1537 remove_partial(n, page); 1538 WARN_ON(!freelist); 1539 return freelist; 1540 } 1541 1542 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1543 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1544 1545 /* 1546 * Try to allocate a partial slab from a specific node. 1547 */ 1548 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1549 struct kmem_cache_cpu *c, gfp_t flags) 1550 { 1551 struct page *page, *page2; 1552 void *object = NULL; 1553 int available = 0; 1554 int objects; 1555 1556 /* 1557 * Racy check. If we mistakenly see no partial slabs then we 1558 * just allocate an empty slab. If we mistakenly try to get a 1559 * partial slab and there is none available then get_partials() 1560 * will return NULL. 1561 */ 1562 if (!n || !n->nr_partial) 1563 return NULL; 1564 1565 spin_lock(&n->list_lock); 1566 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1567 void *t; 1568 1569 if (!pfmemalloc_match(page, flags)) 1570 continue; 1571 1572 t = acquire_slab(s, n, page, object == NULL, &objects); 1573 if (!t) 1574 break; 1575 1576 available += objects; 1577 if (!object) { 1578 c->page = page; 1579 stat(s, ALLOC_FROM_PARTIAL); 1580 object = t; 1581 } else { 1582 put_cpu_partial(s, page, 0); 1583 stat(s, CPU_PARTIAL_NODE); 1584 } 1585 if (!kmem_cache_has_cpu_partial(s) 1586 || available > s->cpu_partial / 2) 1587 break; 1588 1589 } 1590 spin_unlock(&n->list_lock); 1591 return object; 1592 } 1593 1594 /* 1595 * Get a page from somewhere. Search in increasing NUMA distances. 1596 */ 1597 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1598 struct kmem_cache_cpu *c) 1599 { 1600 #ifdef CONFIG_NUMA 1601 struct zonelist *zonelist; 1602 struct zoneref *z; 1603 struct zone *zone; 1604 enum zone_type high_zoneidx = gfp_zone(flags); 1605 void *object; 1606 unsigned int cpuset_mems_cookie; 1607 1608 /* 1609 * The defrag ratio allows a configuration of the tradeoffs between 1610 * inter node defragmentation and node local allocations. A lower 1611 * defrag_ratio increases the tendency to do local allocations 1612 * instead of attempting to obtain partial slabs from other nodes. 1613 * 1614 * If the defrag_ratio is set to 0 then kmalloc() always 1615 * returns node local objects. If the ratio is higher then kmalloc() 1616 * may return off node objects because partial slabs are obtained 1617 * from other nodes and filled up. 1618 * 1619 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1620 * defrag_ratio = 1000) then every (well almost) allocation will 1621 * first attempt to defrag slab caches on other nodes. This means 1622 * scanning over all nodes to look for partial slabs which may be 1623 * expensive if we do it every time we are trying to find a slab 1624 * with available objects. 1625 */ 1626 if (!s->remote_node_defrag_ratio || 1627 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1628 return NULL; 1629 1630 do { 1631 cpuset_mems_cookie = get_mems_allowed(); 1632 zonelist = node_zonelist(slab_node(), flags); 1633 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1634 struct kmem_cache_node *n; 1635 1636 n = get_node(s, zone_to_nid(zone)); 1637 1638 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1639 n->nr_partial > s->min_partial) { 1640 object = get_partial_node(s, n, c, flags); 1641 if (object) { 1642 /* 1643 * Return the object even if 1644 * put_mems_allowed indicated that 1645 * the cpuset mems_allowed was 1646 * updated in parallel. It's a 1647 * harmless race between the alloc 1648 * and the cpuset update. 1649 */ 1650 put_mems_allowed(cpuset_mems_cookie); 1651 return object; 1652 } 1653 } 1654 } 1655 } while (!put_mems_allowed(cpuset_mems_cookie)); 1656 #endif 1657 return NULL; 1658 } 1659 1660 /* 1661 * Get a partial page, lock it and return it. 1662 */ 1663 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1664 struct kmem_cache_cpu *c) 1665 { 1666 void *object; 1667 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; 1668 1669 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1670 if (object || node != NUMA_NO_NODE) 1671 return object; 1672 1673 return get_any_partial(s, flags, c); 1674 } 1675 1676 #ifdef CONFIG_PREEMPT 1677 /* 1678 * Calculate the next globally unique transaction for disambiguiation 1679 * during cmpxchg. The transactions start with the cpu number and are then 1680 * incremented by CONFIG_NR_CPUS. 1681 */ 1682 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1683 #else 1684 /* 1685 * No preemption supported therefore also no need to check for 1686 * different cpus. 1687 */ 1688 #define TID_STEP 1 1689 #endif 1690 1691 static inline unsigned long next_tid(unsigned long tid) 1692 { 1693 return tid + TID_STEP; 1694 } 1695 1696 static inline unsigned int tid_to_cpu(unsigned long tid) 1697 { 1698 return tid % TID_STEP; 1699 } 1700 1701 static inline unsigned long tid_to_event(unsigned long tid) 1702 { 1703 return tid / TID_STEP; 1704 } 1705 1706 static inline unsigned int init_tid(int cpu) 1707 { 1708 return cpu; 1709 } 1710 1711 static inline void note_cmpxchg_failure(const char *n, 1712 const struct kmem_cache *s, unsigned long tid) 1713 { 1714 #ifdef SLUB_DEBUG_CMPXCHG 1715 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1716 1717 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); 1718 1719 #ifdef CONFIG_PREEMPT 1720 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1721 printk("due to cpu change %d -> %d\n", 1722 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1723 else 1724 #endif 1725 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1726 printk("due to cpu running other code. Event %ld->%ld\n", 1727 tid_to_event(tid), tid_to_event(actual_tid)); 1728 else 1729 printk("for unknown reason: actual=%lx was=%lx target=%lx\n", 1730 actual_tid, tid, next_tid(tid)); 1731 #endif 1732 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1733 } 1734 1735 static void init_kmem_cache_cpus(struct kmem_cache *s) 1736 { 1737 int cpu; 1738 1739 for_each_possible_cpu(cpu) 1740 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1741 } 1742 1743 /* 1744 * Remove the cpu slab 1745 */ 1746 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist) 1747 { 1748 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1749 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1750 int lock = 0; 1751 enum slab_modes l = M_NONE, m = M_NONE; 1752 void *nextfree; 1753 int tail = DEACTIVATE_TO_HEAD; 1754 struct page new; 1755 struct page old; 1756 1757 if (page->freelist) { 1758 stat(s, DEACTIVATE_REMOTE_FREES); 1759 tail = DEACTIVATE_TO_TAIL; 1760 } 1761 1762 /* 1763 * Stage one: Free all available per cpu objects back 1764 * to the page freelist while it is still frozen. Leave the 1765 * last one. 1766 * 1767 * There is no need to take the list->lock because the page 1768 * is still frozen. 1769 */ 1770 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1771 void *prior; 1772 unsigned long counters; 1773 1774 do { 1775 prior = page->freelist; 1776 counters = page->counters; 1777 set_freepointer(s, freelist, prior); 1778 new.counters = counters; 1779 new.inuse--; 1780 VM_BUG_ON(!new.frozen); 1781 1782 } while (!__cmpxchg_double_slab(s, page, 1783 prior, counters, 1784 freelist, new.counters, 1785 "drain percpu freelist")); 1786 1787 freelist = nextfree; 1788 } 1789 1790 /* 1791 * Stage two: Ensure that the page is unfrozen while the 1792 * list presence reflects the actual number of objects 1793 * during unfreeze. 1794 * 1795 * We setup the list membership and then perform a cmpxchg 1796 * with the count. If there is a mismatch then the page 1797 * is not unfrozen but the page is on the wrong list. 1798 * 1799 * Then we restart the process which may have to remove 1800 * the page from the list that we just put it on again 1801 * because the number of objects in the slab may have 1802 * changed. 1803 */ 1804 redo: 1805 1806 old.freelist = page->freelist; 1807 old.counters = page->counters; 1808 VM_BUG_ON(!old.frozen); 1809 1810 /* Determine target state of the slab */ 1811 new.counters = old.counters; 1812 if (freelist) { 1813 new.inuse--; 1814 set_freepointer(s, freelist, old.freelist); 1815 new.freelist = freelist; 1816 } else 1817 new.freelist = old.freelist; 1818 1819 new.frozen = 0; 1820 1821 if (!new.inuse && n->nr_partial > s->min_partial) 1822 m = M_FREE; 1823 else if (new.freelist) { 1824 m = M_PARTIAL; 1825 if (!lock) { 1826 lock = 1; 1827 /* 1828 * Taking the spinlock removes the possiblity 1829 * that acquire_slab() will see a slab page that 1830 * is frozen 1831 */ 1832 spin_lock(&n->list_lock); 1833 } 1834 } else { 1835 m = M_FULL; 1836 if (kmem_cache_debug(s) && !lock) { 1837 lock = 1; 1838 /* 1839 * This also ensures that the scanning of full 1840 * slabs from diagnostic functions will not see 1841 * any frozen slabs. 1842 */ 1843 spin_lock(&n->list_lock); 1844 } 1845 } 1846 1847 if (l != m) { 1848 1849 if (l == M_PARTIAL) 1850 1851 remove_partial(n, page); 1852 1853 else if (l == M_FULL) 1854 1855 remove_full(s, page); 1856 1857 if (m == M_PARTIAL) { 1858 1859 add_partial(n, page, tail); 1860 stat(s, tail); 1861 1862 } else if (m == M_FULL) { 1863 1864 stat(s, DEACTIVATE_FULL); 1865 add_full(s, n, page); 1866 1867 } 1868 } 1869 1870 l = m; 1871 if (!__cmpxchg_double_slab(s, page, 1872 old.freelist, old.counters, 1873 new.freelist, new.counters, 1874 "unfreezing slab")) 1875 goto redo; 1876 1877 if (lock) 1878 spin_unlock(&n->list_lock); 1879 1880 if (m == M_FREE) { 1881 stat(s, DEACTIVATE_EMPTY); 1882 discard_slab(s, page); 1883 stat(s, FREE_SLAB); 1884 } 1885 } 1886 1887 /* 1888 * Unfreeze all the cpu partial slabs. 1889 * 1890 * This function must be called with interrupts disabled 1891 * for the cpu using c (or some other guarantee must be there 1892 * to guarantee no concurrent accesses). 1893 */ 1894 static void unfreeze_partials(struct kmem_cache *s, 1895 struct kmem_cache_cpu *c) 1896 { 1897 #ifdef CONFIG_SLUB_CPU_PARTIAL 1898 struct kmem_cache_node *n = NULL, *n2 = NULL; 1899 struct page *page, *discard_page = NULL; 1900 1901 while ((page = c->partial)) { 1902 struct page new; 1903 struct page old; 1904 1905 c->partial = page->next; 1906 1907 n2 = get_node(s, page_to_nid(page)); 1908 if (n != n2) { 1909 if (n) 1910 spin_unlock(&n->list_lock); 1911 1912 n = n2; 1913 spin_lock(&n->list_lock); 1914 } 1915 1916 do { 1917 1918 old.freelist = page->freelist; 1919 old.counters = page->counters; 1920 VM_BUG_ON(!old.frozen); 1921 1922 new.counters = old.counters; 1923 new.freelist = old.freelist; 1924 1925 new.frozen = 0; 1926 1927 } while (!__cmpxchg_double_slab(s, page, 1928 old.freelist, old.counters, 1929 new.freelist, new.counters, 1930 "unfreezing slab")); 1931 1932 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) { 1933 page->next = discard_page; 1934 discard_page = page; 1935 } else { 1936 add_partial(n, page, DEACTIVATE_TO_TAIL); 1937 stat(s, FREE_ADD_PARTIAL); 1938 } 1939 } 1940 1941 if (n) 1942 spin_unlock(&n->list_lock); 1943 1944 while (discard_page) { 1945 page = discard_page; 1946 discard_page = discard_page->next; 1947 1948 stat(s, DEACTIVATE_EMPTY); 1949 discard_slab(s, page); 1950 stat(s, FREE_SLAB); 1951 } 1952 #endif 1953 } 1954 1955 /* 1956 * Put a page that was just frozen (in __slab_free) into a partial page 1957 * slot if available. This is done without interrupts disabled and without 1958 * preemption disabled. The cmpxchg is racy and may put the partial page 1959 * onto a random cpus partial slot. 1960 * 1961 * If we did not find a slot then simply move all the partials to the 1962 * per node partial list. 1963 */ 1964 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 1965 { 1966 #ifdef CONFIG_SLUB_CPU_PARTIAL 1967 struct page *oldpage; 1968 int pages; 1969 int pobjects; 1970 1971 if (!s->cpu_partial) 1972 return; 1973 1974 do { 1975 pages = 0; 1976 pobjects = 0; 1977 oldpage = this_cpu_read(s->cpu_slab->partial); 1978 1979 if (oldpage) { 1980 pobjects = oldpage->pobjects; 1981 pages = oldpage->pages; 1982 if (drain && pobjects > s->cpu_partial) { 1983 unsigned long flags; 1984 /* 1985 * partial array is full. Move the existing 1986 * set to the per node partial list. 1987 */ 1988 local_irq_save(flags); 1989 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 1990 local_irq_restore(flags); 1991 oldpage = NULL; 1992 pobjects = 0; 1993 pages = 0; 1994 stat(s, CPU_PARTIAL_DRAIN); 1995 } 1996 } 1997 1998 pages++; 1999 pobjects += page->objects - page->inuse; 2000 2001 page->pages = pages; 2002 page->pobjects = pobjects; 2003 page->next = oldpage; 2004 2005 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); 2006 #endif 2007 } 2008 2009 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2010 { 2011 stat(s, CPUSLAB_FLUSH); 2012 deactivate_slab(s, c->page, c->freelist); 2013 2014 c->tid = next_tid(c->tid); 2015 c->page = NULL; 2016 c->freelist = NULL; 2017 } 2018 2019 /* 2020 * Flush cpu slab. 2021 * 2022 * Called from IPI handler with interrupts disabled. 2023 */ 2024 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2025 { 2026 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2027 2028 if (likely(c)) { 2029 if (c->page) 2030 flush_slab(s, c); 2031 2032 unfreeze_partials(s, c); 2033 } 2034 } 2035 2036 static void flush_cpu_slab(void *d) 2037 { 2038 struct kmem_cache *s = d; 2039 2040 __flush_cpu_slab(s, smp_processor_id()); 2041 } 2042 2043 static bool has_cpu_slab(int cpu, void *info) 2044 { 2045 struct kmem_cache *s = info; 2046 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2047 2048 return c->page || c->partial; 2049 } 2050 2051 static void flush_all(struct kmem_cache *s) 2052 { 2053 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2054 } 2055 2056 /* 2057 * Check if the objects in a per cpu structure fit numa 2058 * locality expectations. 2059 */ 2060 static inline int node_match(struct page *page, int node) 2061 { 2062 #ifdef CONFIG_NUMA 2063 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2064 return 0; 2065 #endif 2066 return 1; 2067 } 2068 2069 static int count_free(struct page *page) 2070 { 2071 return page->objects - page->inuse; 2072 } 2073 2074 static unsigned long count_partial(struct kmem_cache_node *n, 2075 int (*get_count)(struct page *)) 2076 { 2077 unsigned long flags; 2078 unsigned long x = 0; 2079 struct page *page; 2080 2081 spin_lock_irqsave(&n->list_lock, flags); 2082 list_for_each_entry(page, &n->partial, lru) 2083 x += get_count(page); 2084 spin_unlock_irqrestore(&n->list_lock, flags); 2085 return x; 2086 } 2087 2088 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2089 { 2090 #ifdef CONFIG_SLUB_DEBUG 2091 return atomic_long_read(&n->total_objects); 2092 #else 2093 return 0; 2094 #endif 2095 } 2096 2097 static noinline void 2098 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2099 { 2100 int node; 2101 2102 printk(KERN_WARNING 2103 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2104 nid, gfpflags); 2105 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 2106 "default order: %d, min order: %d\n", s->name, s->object_size, 2107 s->size, oo_order(s->oo), oo_order(s->min)); 2108 2109 if (oo_order(s->min) > get_order(s->object_size)) 2110 printk(KERN_WARNING " %s debugging increased min order, use " 2111 "slub_debug=O to disable.\n", s->name); 2112 2113 for_each_online_node(node) { 2114 struct kmem_cache_node *n = get_node(s, node); 2115 unsigned long nr_slabs; 2116 unsigned long nr_objs; 2117 unsigned long nr_free; 2118 2119 if (!n) 2120 continue; 2121 2122 nr_free = count_partial(n, count_free); 2123 nr_slabs = node_nr_slabs(n); 2124 nr_objs = node_nr_objs(n); 2125 2126 printk(KERN_WARNING 2127 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 2128 node, nr_slabs, nr_objs, nr_free); 2129 } 2130 } 2131 2132 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2133 int node, struct kmem_cache_cpu **pc) 2134 { 2135 void *freelist; 2136 struct kmem_cache_cpu *c = *pc; 2137 struct page *page; 2138 2139 freelist = get_partial(s, flags, node, c); 2140 2141 if (freelist) 2142 return freelist; 2143 2144 page = new_slab(s, flags, node); 2145 if (page) { 2146 c = __this_cpu_ptr(s->cpu_slab); 2147 if (c->page) 2148 flush_slab(s, c); 2149 2150 /* 2151 * No other reference to the page yet so we can 2152 * muck around with it freely without cmpxchg 2153 */ 2154 freelist = page->freelist; 2155 page->freelist = NULL; 2156 2157 stat(s, ALLOC_SLAB); 2158 c->page = page; 2159 *pc = c; 2160 } else 2161 freelist = NULL; 2162 2163 return freelist; 2164 } 2165 2166 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2167 { 2168 if (unlikely(PageSlabPfmemalloc(page))) 2169 return gfp_pfmemalloc_allowed(gfpflags); 2170 2171 return true; 2172 } 2173 2174 /* 2175 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist 2176 * or deactivate the page. 2177 * 2178 * The page is still frozen if the return value is not NULL. 2179 * 2180 * If this function returns NULL then the page has been unfrozen. 2181 * 2182 * This function must be called with interrupt disabled. 2183 */ 2184 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2185 { 2186 struct page new; 2187 unsigned long counters; 2188 void *freelist; 2189 2190 do { 2191 freelist = page->freelist; 2192 counters = page->counters; 2193 2194 new.counters = counters; 2195 VM_BUG_ON(!new.frozen); 2196 2197 new.inuse = page->objects; 2198 new.frozen = freelist != NULL; 2199 2200 } while (!__cmpxchg_double_slab(s, page, 2201 freelist, counters, 2202 NULL, new.counters, 2203 "get_freelist")); 2204 2205 return freelist; 2206 } 2207 2208 /* 2209 * Slow path. The lockless freelist is empty or we need to perform 2210 * debugging duties. 2211 * 2212 * Processing is still very fast if new objects have been freed to the 2213 * regular freelist. In that case we simply take over the regular freelist 2214 * as the lockless freelist and zap the regular freelist. 2215 * 2216 * If that is not working then we fall back to the partial lists. We take the 2217 * first element of the freelist as the object to allocate now and move the 2218 * rest of the freelist to the lockless freelist. 2219 * 2220 * And if we were unable to get a new slab from the partial slab lists then 2221 * we need to allocate a new slab. This is the slowest path since it involves 2222 * a call to the page allocator and the setup of a new slab. 2223 */ 2224 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2225 unsigned long addr, struct kmem_cache_cpu *c) 2226 { 2227 void *freelist; 2228 struct page *page; 2229 unsigned long flags; 2230 2231 local_irq_save(flags); 2232 #ifdef CONFIG_PREEMPT 2233 /* 2234 * We may have been preempted and rescheduled on a different 2235 * cpu before disabling interrupts. Need to reload cpu area 2236 * pointer. 2237 */ 2238 c = this_cpu_ptr(s->cpu_slab); 2239 #endif 2240 2241 page = c->page; 2242 if (!page) 2243 goto new_slab; 2244 redo: 2245 2246 if (unlikely(!node_match(page, node))) { 2247 stat(s, ALLOC_NODE_MISMATCH); 2248 deactivate_slab(s, page, c->freelist); 2249 c->page = NULL; 2250 c->freelist = NULL; 2251 goto new_slab; 2252 } 2253 2254 /* 2255 * By rights, we should be searching for a slab page that was 2256 * PFMEMALLOC but right now, we are losing the pfmemalloc 2257 * information when the page leaves the per-cpu allocator 2258 */ 2259 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2260 deactivate_slab(s, page, c->freelist); 2261 c->page = NULL; 2262 c->freelist = NULL; 2263 goto new_slab; 2264 } 2265 2266 /* must check again c->freelist in case of cpu migration or IRQ */ 2267 freelist = c->freelist; 2268 if (freelist) 2269 goto load_freelist; 2270 2271 stat(s, ALLOC_SLOWPATH); 2272 2273 freelist = get_freelist(s, page); 2274 2275 if (!freelist) { 2276 c->page = NULL; 2277 stat(s, DEACTIVATE_BYPASS); 2278 goto new_slab; 2279 } 2280 2281 stat(s, ALLOC_REFILL); 2282 2283 load_freelist: 2284 /* 2285 * freelist is pointing to the list of objects to be used. 2286 * page is pointing to the page from which the objects are obtained. 2287 * That page must be frozen for per cpu allocations to work. 2288 */ 2289 VM_BUG_ON(!c->page->frozen); 2290 c->freelist = get_freepointer(s, freelist); 2291 c->tid = next_tid(c->tid); 2292 local_irq_restore(flags); 2293 return freelist; 2294 2295 new_slab: 2296 2297 if (c->partial) { 2298 page = c->page = c->partial; 2299 c->partial = page->next; 2300 stat(s, CPU_PARTIAL_ALLOC); 2301 c->freelist = NULL; 2302 goto redo; 2303 } 2304 2305 freelist = new_slab_objects(s, gfpflags, node, &c); 2306 2307 if (unlikely(!freelist)) { 2308 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 2309 slab_out_of_memory(s, gfpflags, node); 2310 2311 local_irq_restore(flags); 2312 return NULL; 2313 } 2314 2315 page = c->page; 2316 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2317 goto load_freelist; 2318 2319 /* Only entered in the debug case */ 2320 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr)) 2321 goto new_slab; /* Slab failed checks. Next slab needed */ 2322 2323 deactivate_slab(s, page, get_freepointer(s, freelist)); 2324 c->page = NULL; 2325 c->freelist = NULL; 2326 local_irq_restore(flags); 2327 return freelist; 2328 } 2329 2330 /* 2331 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2332 * have the fastpath folded into their functions. So no function call 2333 * overhead for requests that can be satisfied on the fastpath. 2334 * 2335 * The fastpath works by first checking if the lockless freelist can be used. 2336 * If not then __slab_alloc is called for slow processing. 2337 * 2338 * Otherwise we can simply pick the next object from the lockless free list. 2339 */ 2340 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2341 gfp_t gfpflags, int node, unsigned long addr) 2342 { 2343 void **object; 2344 struct kmem_cache_cpu *c; 2345 struct page *page; 2346 unsigned long tid; 2347 2348 if (slab_pre_alloc_hook(s, gfpflags)) 2349 return NULL; 2350 2351 s = memcg_kmem_get_cache(s, gfpflags); 2352 redo: 2353 /* 2354 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2355 * enabled. We may switch back and forth between cpus while 2356 * reading from one cpu area. That does not matter as long 2357 * as we end up on the original cpu again when doing the cmpxchg. 2358 * 2359 * Preemption is disabled for the retrieval of the tid because that 2360 * must occur from the current processor. We cannot allow rescheduling 2361 * on a different processor between the determination of the pointer 2362 * and the retrieval of the tid. 2363 */ 2364 preempt_disable(); 2365 c = __this_cpu_ptr(s->cpu_slab); 2366 2367 /* 2368 * The transaction ids are globally unique per cpu and per operation on 2369 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2370 * occurs on the right processor and that there was no operation on the 2371 * linked list in between. 2372 */ 2373 tid = c->tid; 2374 preempt_enable(); 2375 2376 object = c->freelist; 2377 page = c->page; 2378 if (unlikely(!object || !page || !node_match(page, node))) 2379 object = __slab_alloc(s, gfpflags, node, addr, c); 2380 2381 else { 2382 void *next_object = get_freepointer_safe(s, object); 2383 2384 /* 2385 * The cmpxchg will only match if there was no additional 2386 * operation and if we are on the right processor. 2387 * 2388 * The cmpxchg does the following atomically (without lock semantics!) 2389 * 1. Relocate first pointer to the current per cpu area. 2390 * 2. Verify that tid and freelist have not been changed 2391 * 3. If they were not changed replace tid and freelist 2392 * 2393 * Since this is without lock semantics the protection is only against 2394 * code executing on this cpu *not* from access by other cpus. 2395 */ 2396 if (unlikely(!this_cpu_cmpxchg_double( 2397 s->cpu_slab->freelist, s->cpu_slab->tid, 2398 object, tid, 2399 next_object, next_tid(tid)))) { 2400 2401 note_cmpxchg_failure("slab_alloc", s, tid); 2402 goto redo; 2403 } 2404 prefetch_freepointer(s, next_object); 2405 stat(s, ALLOC_FASTPATH); 2406 } 2407 2408 if (unlikely(gfpflags & __GFP_ZERO) && object) 2409 memset(object, 0, s->object_size); 2410 2411 slab_post_alloc_hook(s, gfpflags, object); 2412 2413 return object; 2414 } 2415 2416 static __always_inline void *slab_alloc(struct kmem_cache *s, 2417 gfp_t gfpflags, unsigned long addr) 2418 { 2419 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2420 } 2421 2422 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2423 { 2424 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2425 2426 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags); 2427 2428 return ret; 2429 } 2430 EXPORT_SYMBOL(kmem_cache_alloc); 2431 2432 #ifdef CONFIG_TRACING 2433 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2434 { 2435 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2436 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2437 return ret; 2438 } 2439 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2440 2441 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 2442 { 2443 void *ret = kmalloc_order(size, flags, order); 2444 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 2445 return ret; 2446 } 2447 EXPORT_SYMBOL(kmalloc_order_trace); 2448 #endif 2449 2450 #ifdef CONFIG_NUMA 2451 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2452 { 2453 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2454 2455 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2456 s->object_size, s->size, gfpflags, node); 2457 2458 return ret; 2459 } 2460 EXPORT_SYMBOL(kmem_cache_alloc_node); 2461 2462 #ifdef CONFIG_TRACING 2463 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2464 gfp_t gfpflags, 2465 int node, size_t size) 2466 { 2467 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2468 2469 trace_kmalloc_node(_RET_IP_, ret, 2470 size, s->size, gfpflags, node); 2471 return ret; 2472 } 2473 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2474 #endif 2475 #endif 2476 2477 /* 2478 * Slow patch handling. This may still be called frequently since objects 2479 * have a longer lifetime than the cpu slabs in most processing loads. 2480 * 2481 * So we still attempt to reduce cache line usage. Just take the slab 2482 * lock and free the item. If there is no additional partial page 2483 * handling required then we can return immediately. 2484 */ 2485 static void __slab_free(struct kmem_cache *s, struct page *page, 2486 void *x, unsigned long addr) 2487 { 2488 void *prior; 2489 void **object = (void *)x; 2490 int was_frozen; 2491 struct page new; 2492 unsigned long counters; 2493 struct kmem_cache_node *n = NULL; 2494 unsigned long uninitialized_var(flags); 2495 2496 stat(s, FREE_SLOWPATH); 2497 2498 if (kmem_cache_debug(s) && 2499 !(n = free_debug_processing(s, page, x, addr, &flags))) 2500 return; 2501 2502 do { 2503 if (unlikely(n)) { 2504 spin_unlock_irqrestore(&n->list_lock, flags); 2505 n = NULL; 2506 } 2507 prior = page->freelist; 2508 counters = page->counters; 2509 set_freepointer(s, object, prior); 2510 new.counters = counters; 2511 was_frozen = new.frozen; 2512 new.inuse--; 2513 if ((!new.inuse || !prior) && !was_frozen) { 2514 2515 if (kmem_cache_has_cpu_partial(s) && !prior) 2516 2517 /* 2518 * Slab was on no list before and will be partially empty 2519 * We can defer the list move and instead freeze it. 2520 */ 2521 new.frozen = 1; 2522 2523 else { /* Needs to be taken off a list */ 2524 2525 n = get_node(s, page_to_nid(page)); 2526 /* 2527 * Speculatively acquire the list_lock. 2528 * If the cmpxchg does not succeed then we may 2529 * drop the list_lock without any processing. 2530 * 2531 * Otherwise the list_lock will synchronize with 2532 * other processors updating the list of slabs. 2533 */ 2534 spin_lock_irqsave(&n->list_lock, flags); 2535 2536 } 2537 } 2538 2539 } while (!cmpxchg_double_slab(s, page, 2540 prior, counters, 2541 object, new.counters, 2542 "__slab_free")); 2543 2544 if (likely(!n)) { 2545 2546 /* 2547 * If we just froze the page then put it onto the 2548 * per cpu partial list. 2549 */ 2550 if (new.frozen && !was_frozen) { 2551 put_cpu_partial(s, page, 1); 2552 stat(s, CPU_PARTIAL_FREE); 2553 } 2554 /* 2555 * The list lock was not taken therefore no list 2556 * activity can be necessary. 2557 */ 2558 if (was_frozen) 2559 stat(s, FREE_FROZEN); 2560 return; 2561 } 2562 2563 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) 2564 goto slab_empty; 2565 2566 /* 2567 * Objects left in the slab. If it was not on the partial list before 2568 * then add it. 2569 */ 2570 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2571 if (kmem_cache_debug(s)) 2572 remove_full(s, page); 2573 add_partial(n, page, DEACTIVATE_TO_TAIL); 2574 stat(s, FREE_ADD_PARTIAL); 2575 } 2576 spin_unlock_irqrestore(&n->list_lock, flags); 2577 return; 2578 2579 slab_empty: 2580 if (prior) { 2581 /* 2582 * Slab on the partial list. 2583 */ 2584 remove_partial(n, page); 2585 stat(s, FREE_REMOVE_PARTIAL); 2586 } else 2587 /* Slab must be on the full list */ 2588 remove_full(s, page); 2589 2590 spin_unlock_irqrestore(&n->list_lock, flags); 2591 stat(s, FREE_SLAB); 2592 discard_slab(s, page); 2593 } 2594 2595 /* 2596 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2597 * can perform fastpath freeing without additional function calls. 2598 * 2599 * The fastpath is only possible if we are freeing to the current cpu slab 2600 * of this processor. This typically the case if we have just allocated 2601 * the item before. 2602 * 2603 * If fastpath is not possible then fall back to __slab_free where we deal 2604 * with all sorts of special processing. 2605 */ 2606 static __always_inline void slab_free(struct kmem_cache *s, 2607 struct page *page, void *x, unsigned long addr) 2608 { 2609 void **object = (void *)x; 2610 struct kmem_cache_cpu *c; 2611 unsigned long tid; 2612 2613 slab_free_hook(s, x); 2614 2615 redo: 2616 /* 2617 * Determine the currently cpus per cpu slab. 2618 * The cpu may change afterward. However that does not matter since 2619 * data is retrieved via this pointer. If we are on the same cpu 2620 * during the cmpxchg then the free will succedd. 2621 */ 2622 preempt_disable(); 2623 c = __this_cpu_ptr(s->cpu_slab); 2624 2625 tid = c->tid; 2626 preempt_enable(); 2627 2628 if (likely(page == c->page)) { 2629 set_freepointer(s, object, c->freelist); 2630 2631 if (unlikely(!this_cpu_cmpxchg_double( 2632 s->cpu_slab->freelist, s->cpu_slab->tid, 2633 c->freelist, tid, 2634 object, next_tid(tid)))) { 2635 2636 note_cmpxchg_failure("slab_free", s, tid); 2637 goto redo; 2638 } 2639 stat(s, FREE_FASTPATH); 2640 } else 2641 __slab_free(s, page, x, addr); 2642 2643 } 2644 2645 void kmem_cache_free(struct kmem_cache *s, void *x) 2646 { 2647 s = cache_from_obj(s, x); 2648 if (!s) 2649 return; 2650 slab_free(s, virt_to_head_page(x), x, _RET_IP_); 2651 trace_kmem_cache_free(_RET_IP_, x); 2652 } 2653 EXPORT_SYMBOL(kmem_cache_free); 2654 2655 /* 2656 * Object placement in a slab is made very easy because we always start at 2657 * offset 0. If we tune the size of the object to the alignment then we can 2658 * get the required alignment by putting one properly sized object after 2659 * another. 2660 * 2661 * Notice that the allocation order determines the sizes of the per cpu 2662 * caches. Each processor has always one slab available for allocations. 2663 * Increasing the allocation order reduces the number of times that slabs 2664 * must be moved on and off the partial lists and is therefore a factor in 2665 * locking overhead. 2666 */ 2667 2668 /* 2669 * Mininum / Maximum order of slab pages. This influences locking overhead 2670 * and slab fragmentation. A higher order reduces the number of partial slabs 2671 * and increases the number of allocations possible without having to 2672 * take the list_lock. 2673 */ 2674 static int slub_min_order; 2675 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2676 static int slub_min_objects; 2677 2678 /* 2679 * Merge control. If this is set then no merging of slab caches will occur. 2680 * (Could be removed. This was introduced to pacify the merge skeptics.) 2681 */ 2682 static int slub_nomerge; 2683 2684 /* 2685 * Calculate the order of allocation given an slab object size. 2686 * 2687 * The order of allocation has significant impact on performance and other 2688 * system components. Generally order 0 allocations should be preferred since 2689 * order 0 does not cause fragmentation in the page allocator. Larger objects 2690 * be problematic to put into order 0 slabs because there may be too much 2691 * unused space left. We go to a higher order if more than 1/16th of the slab 2692 * would be wasted. 2693 * 2694 * In order to reach satisfactory performance we must ensure that a minimum 2695 * number of objects is in one slab. Otherwise we may generate too much 2696 * activity on the partial lists which requires taking the list_lock. This is 2697 * less a concern for large slabs though which are rarely used. 2698 * 2699 * slub_max_order specifies the order where we begin to stop considering the 2700 * number of objects in a slab as critical. If we reach slub_max_order then 2701 * we try to keep the page order as low as possible. So we accept more waste 2702 * of space in favor of a small page order. 2703 * 2704 * Higher order allocations also allow the placement of more objects in a 2705 * slab and thereby reduce object handling overhead. If the user has 2706 * requested a higher mininum order then we start with that one instead of 2707 * the smallest order which will fit the object. 2708 */ 2709 static inline int slab_order(int size, int min_objects, 2710 int max_order, int fract_leftover, int reserved) 2711 { 2712 int order; 2713 int rem; 2714 int min_order = slub_min_order; 2715 2716 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2717 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2718 2719 for (order = max(min_order, 2720 fls(min_objects * size - 1) - PAGE_SHIFT); 2721 order <= max_order; order++) { 2722 2723 unsigned long slab_size = PAGE_SIZE << order; 2724 2725 if (slab_size < min_objects * size + reserved) 2726 continue; 2727 2728 rem = (slab_size - reserved) % size; 2729 2730 if (rem <= slab_size / fract_leftover) 2731 break; 2732 2733 } 2734 2735 return order; 2736 } 2737 2738 static inline int calculate_order(int size, int reserved) 2739 { 2740 int order; 2741 int min_objects; 2742 int fraction; 2743 int max_objects; 2744 2745 /* 2746 * Attempt to find best configuration for a slab. This 2747 * works by first attempting to generate a layout with 2748 * the best configuration and backing off gradually. 2749 * 2750 * First we reduce the acceptable waste in a slab. Then 2751 * we reduce the minimum objects required in a slab. 2752 */ 2753 min_objects = slub_min_objects; 2754 if (!min_objects) 2755 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2756 max_objects = order_objects(slub_max_order, size, reserved); 2757 min_objects = min(min_objects, max_objects); 2758 2759 while (min_objects > 1) { 2760 fraction = 16; 2761 while (fraction >= 4) { 2762 order = slab_order(size, min_objects, 2763 slub_max_order, fraction, reserved); 2764 if (order <= slub_max_order) 2765 return order; 2766 fraction /= 2; 2767 } 2768 min_objects--; 2769 } 2770 2771 /* 2772 * We were unable to place multiple objects in a slab. Now 2773 * lets see if we can place a single object there. 2774 */ 2775 order = slab_order(size, 1, slub_max_order, 1, reserved); 2776 if (order <= slub_max_order) 2777 return order; 2778 2779 /* 2780 * Doh this slab cannot be placed using slub_max_order. 2781 */ 2782 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2783 if (order < MAX_ORDER) 2784 return order; 2785 return -ENOSYS; 2786 } 2787 2788 static void 2789 init_kmem_cache_node(struct kmem_cache_node *n) 2790 { 2791 n->nr_partial = 0; 2792 spin_lock_init(&n->list_lock); 2793 INIT_LIST_HEAD(&n->partial); 2794 #ifdef CONFIG_SLUB_DEBUG 2795 atomic_long_set(&n->nr_slabs, 0); 2796 atomic_long_set(&n->total_objects, 0); 2797 INIT_LIST_HEAD(&n->full); 2798 #endif 2799 } 2800 2801 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2802 { 2803 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2804 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 2805 2806 /* 2807 * Must align to double word boundary for the double cmpxchg 2808 * instructions to work; see __pcpu_double_call_return_bool(). 2809 */ 2810 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2811 2 * sizeof(void *)); 2812 2813 if (!s->cpu_slab) 2814 return 0; 2815 2816 init_kmem_cache_cpus(s); 2817 2818 return 1; 2819 } 2820 2821 static struct kmem_cache *kmem_cache_node; 2822 2823 /* 2824 * No kmalloc_node yet so do it by hand. We know that this is the first 2825 * slab on the node for this slabcache. There are no concurrent accesses 2826 * possible. 2827 * 2828 * Note that this function only works on the kmalloc_node_cache 2829 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2830 * memory on a fresh node that has no slab structures yet. 2831 */ 2832 static void early_kmem_cache_node_alloc(int node) 2833 { 2834 struct page *page; 2835 struct kmem_cache_node *n; 2836 2837 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2838 2839 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2840 2841 BUG_ON(!page); 2842 if (page_to_nid(page) != node) { 2843 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2844 "node %d\n", node); 2845 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2846 "in order to be able to continue\n"); 2847 } 2848 2849 n = page->freelist; 2850 BUG_ON(!n); 2851 page->freelist = get_freepointer(kmem_cache_node, n); 2852 page->inuse = 1; 2853 page->frozen = 0; 2854 kmem_cache_node->node[node] = n; 2855 #ifdef CONFIG_SLUB_DEBUG 2856 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2857 init_tracking(kmem_cache_node, n); 2858 #endif 2859 init_kmem_cache_node(n); 2860 inc_slabs_node(kmem_cache_node, node, page->objects); 2861 2862 add_partial(n, page, DEACTIVATE_TO_HEAD); 2863 } 2864 2865 static void free_kmem_cache_nodes(struct kmem_cache *s) 2866 { 2867 int node; 2868 2869 for_each_node_state(node, N_NORMAL_MEMORY) { 2870 struct kmem_cache_node *n = s->node[node]; 2871 2872 if (n) 2873 kmem_cache_free(kmem_cache_node, n); 2874 2875 s->node[node] = NULL; 2876 } 2877 } 2878 2879 static int init_kmem_cache_nodes(struct kmem_cache *s) 2880 { 2881 int node; 2882 2883 for_each_node_state(node, N_NORMAL_MEMORY) { 2884 struct kmem_cache_node *n; 2885 2886 if (slab_state == DOWN) { 2887 early_kmem_cache_node_alloc(node); 2888 continue; 2889 } 2890 n = kmem_cache_alloc_node(kmem_cache_node, 2891 GFP_KERNEL, node); 2892 2893 if (!n) { 2894 free_kmem_cache_nodes(s); 2895 return 0; 2896 } 2897 2898 s->node[node] = n; 2899 init_kmem_cache_node(n); 2900 } 2901 return 1; 2902 } 2903 2904 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2905 { 2906 if (min < MIN_PARTIAL) 2907 min = MIN_PARTIAL; 2908 else if (min > MAX_PARTIAL) 2909 min = MAX_PARTIAL; 2910 s->min_partial = min; 2911 } 2912 2913 /* 2914 * calculate_sizes() determines the order and the distribution of data within 2915 * a slab object. 2916 */ 2917 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2918 { 2919 unsigned long flags = s->flags; 2920 unsigned long size = s->object_size; 2921 int order; 2922 2923 /* 2924 * Round up object size to the next word boundary. We can only 2925 * place the free pointer at word boundaries and this determines 2926 * the possible location of the free pointer. 2927 */ 2928 size = ALIGN(size, sizeof(void *)); 2929 2930 #ifdef CONFIG_SLUB_DEBUG 2931 /* 2932 * Determine if we can poison the object itself. If the user of 2933 * the slab may touch the object after free or before allocation 2934 * then we should never poison the object itself. 2935 */ 2936 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2937 !s->ctor) 2938 s->flags |= __OBJECT_POISON; 2939 else 2940 s->flags &= ~__OBJECT_POISON; 2941 2942 2943 /* 2944 * If we are Redzoning then check if there is some space between the 2945 * end of the object and the free pointer. If not then add an 2946 * additional word to have some bytes to store Redzone information. 2947 */ 2948 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 2949 size += sizeof(void *); 2950 #endif 2951 2952 /* 2953 * With that we have determined the number of bytes in actual use 2954 * by the object. This is the potential offset to the free pointer. 2955 */ 2956 s->inuse = size; 2957 2958 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2959 s->ctor)) { 2960 /* 2961 * Relocate free pointer after the object if it is not 2962 * permitted to overwrite the first word of the object on 2963 * kmem_cache_free. 2964 * 2965 * This is the case if we do RCU, have a constructor or 2966 * destructor or are poisoning the objects. 2967 */ 2968 s->offset = size; 2969 size += sizeof(void *); 2970 } 2971 2972 #ifdef CONFIG_SLUB_DEBUG 2973 if (flags & SLAB_STORE_USER) 2974 /* 2975 * Need to store information about allocs and frees after 2976 * the object. 2977 */ 2978 size += 2 * sizeof(struct track); 2979 2980 if (flags & SLAB_RED_ZONE) 2981 /* 2982 * Add some empty padding so that we can catch 2983 * overwrites from earlier objects rather than let 2984 * tracking information or the free pointer be 2985 * corrupted if a user writes before the start 2986 * of the object. 2987 */ 2988 size += sizeof(void *); 2989 #endif 2990 2991 /* 2992 * SLUB stores one object immediately after another beginning from 2993 * offset 0. In order to align the objects we have to simply size 2994 * each object to conform to the alignment. 2995 */ 2996 size = ALIGN(size, s->align); 2997 s->size = size; 2998 if (forced_order >= 0) 2999 order = forced_order; 3000 else 3001 order = calculate_order(size, s->reserved); 3002 3003 if (order < 0) 3004 return 0; 3005 3006 s->allocflags = 0; 3007 if (order) 3008 s->allocflags |= __GFP_COMP; 3009 3010 if (s->flags & SLAB_CACHE_DMA) 3011 s->allocflags |= GFP_DMA; 3012 3013 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3014 s->allocflags |= __GFP_RECLAIMABLE; 3015 3016 /* 3017 * Determine the number of objects per slab 3018 */ 3019 s->oo = oo_make(order, size, s->reserved); 3020 s->min = oo_make(get_order(size), size, s->reserved); 3021 if (oo_objects(s->oo) > oo_objects(s->max)) 3022 s->max = s->oo; 3023 3024 return !!oo_objects(s->oo); 3025 } 3026 3027 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3028 { 3029 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3030 s->reserved = 0; 3031 3032 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3033 s->reserved = sizeof(struct rcu_head); 3034 3035 if (!calculate_sizes(s, -1)) 3036 goto error; 3037 if (disable_higher_order_debug) { 3038 /* 3039 * Disable debugging flags that store metadata if the min slab 3040 * order increased. 3041 */ 3042 if (get_order(s->size) > get_order(s->object_size)) { 3043 s->flags &= ~DEBUG_METADATA_FLAGS; 3044 s->offset = 0; 3045 if (!calculate_sizes(s, -1)) 3046 goto error; 3047 } 3048 } 3049 3050 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3051 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3052 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3053 /* Enable fast mode */ 3054 s->flags |= __CMPXCHG_DOUBLE; 3055 #endif 3056 3057 /* 3058 * The larger the object size is, the more pages we want on the partial 3059 * list to avoid pounding the page allocator excessively. 3060 */ 3061 set_min_partial(s, ilog2(s->size) / 2); 3062 3063 /* 3064 * cpu_partial determined the maximum number of objects kept in the 3065 * per cpu partial lists of a processor. 3066 * 3067 * Per cpu partial lists mainly contain slabs that just have one 3068 * object freed. If they are used for allocation then they can be 3069 * filled up again with minimal effort. The slab will never hit the 3070 * per node partial lists and therefore no locking will be required. 3071 * 3072 * This setting also determines 3073 * 3074 * A) The number of objects from per cpu partial slabs dumped to the 3075 * per node list when we reach the limit. 3076 * B) The number of objects in cpu partial slabs to extract from the 3077 * per node list when we run out of per cpu objects. We only fetch 50% 3078 * to keep some capacity around for frees. 3079 */ 3080 if (!kmem_cache_has_cpu_partial(s)) 3081 s->cpu_partial = 0; 3082 else if (s->size >= PAGE_SIZE) 3083 s->cpu_partial = 2; 3084 else if (s->size >= 1024) 3085 s->cpu_partial = 6; 3086 else if (s->size >= 256) 3087 s->cpu_partial = 13; 3088 else 3089 s->cpu_partial = 30; 3090 3091 #ifdef CONFIG_NUMA 3092 s->remote_node_defrag_ratio = 1000; 3093 #endif 3094 if (!init_kmem_cache_nodes(s)) 3095 goto error; 3096 3097 if (alloc_kmem_cache_cpus(s)) 3098 return 0; 3099 3100 free_kmem_cache_nodes(s); 3101 error: 3102 if (flags & SLAB_PANIC) 3103 panic("Cannot create slab %s size=%lu realsize=%u " 3104 "order=%u offset=%u flags=%lx\n", 3105 s->name, (unsigned long)s->size, s->size, oo_order(s->oo), 3106 s->offset, flags); 3107 return -EINVAL; 3108 } 3109 3110 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3111 const char *text) 3112 { 3113 #ifdef CONFIG_SLUB_DEBUG 3114 void *addr = page_address(page); 3115 void *p; 3116 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3117 sizeof(long), GFP_ATOMIC); 3118 if (!map) 3119 return; 3120 slab_err(s, page, text, s->name); 3121 slab_lock(page); 3122 3123 get_map(s, page, map); 3124 for_each_object(p, s, addr, page->objects) { 3125 3126 if (!test_bit(slab_index(p, s, addr), map)) { 3127 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 3128 p, p - addr); 3129 print_tracking(s, p); 3130 } 3131 } 3132 slab_unlock(page); 3133 kfree(map); 3134 #endif 3135 } 3136 3137 /* 3138 * Attempt to free all partial slabs on a node. 3139 * This is called from kmem_cache_close(). We must be the last thread 3140 * using the cache and therefore we do not need to lock anymore. 3141 */ 3142 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3143 { 3144 struct page *page, *h; 3145 3146 list_for_each_entry_safe(page, h, &n->partial, lru) { 3147 if (!page->inuse) { 3148 remove_partial(n, page); 3149 discard_slab(s, page); 3150 } else { 3151 list_slab_objects(s, page, 3152 "Objects remaining in %s on kmem_cache_close()"); 3153 } 3154 } 3155 } 3156 3157 /* 3158 * Release all resources used by a slab cache. 3159 */ 3160 static inline int kmem_cache_close(struct kmem_cache *s) 3161 { 3162 int node; 3163 3164 flush_all(s); 3165 /* Attempt to free all objects */ 3166 for_each_node_state(node, N_NORMAL_MEMORY) { 3167 struct kmem_cache_node *n = get_node(s, node); 3168 3169 free_partial(s, n); 3170 if (n->nr_partial || slabs_node(s, node)) 3171 return 1; 3172 } 3173 free_percpu(s->cpu_slab); 3174 free_kmem_cache_nodes(s); 3175 return 0; 3176 } 3177 3178 int __kmem_cache_shutdown(struct kmem_cache *s) 3179 { 3180 int rc = kmem_cache_close(s); 3181 3182 if (!rc) { 3183 /* 3184 * We do the same lock strategy around sysfs_slab_add, see 3185 * __kmem_cache_create. Because this is pretty much the last 3186 * operation we do and the lock will be released shortly after 3187 * that in slab_common.c, we could just move sysfs_slab_remove 3188 * to a later point in common code. We should do that when we 3189 * have a common sysfs framework for all allocators. 3190 */ 3191 mutex_unlock(&slab_mutex); 3192 sysfs_slab_remove(s); 3193 mutex_lock(&slab_mutex); 3194 } 3195 3196 return rc; 3197 } 3198 3199 /******************************************************************** 3200 * Kmalloc subsystem 3201 *******************************************************************/ 3202 3203 static int __init setup_slub_min_order(char *str) 3204 { 3205 get_option(&str, &slub_min_order); 3206 3207 return 1; 3208 } 3209 3210 __setup("slub_min_order=", setup_slub_min_order); 3211 3212 static int __init setup_slub_max_order(char *str) 3213 { 3214 get_option(&str, &slub_max_order); 3215 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3216 3217 return 1; 3218 } 3219 3220 __setup("slub_max_order=", setup_slub_max_order); 3221 3222 static int __init setup_slub_min_objects(char *str) 3223 { 3224 get_option(&str, &slub_min_objects); 3225 3226 return 1; 3227 } 3228 3229 __setup("slub_min_objects=", setup_slub_min_objects); 3230 3231 static int __init setup_slub_nomerge(char *str) 3232 { 3233 slub_nomerge = 1; 3234 return 1; 3235 } 3236 3237 __setup("slub_nomerge", setup_slub_nomerge); 3238 3239 void *__kmalloc(size_t size, gfp_t flags) 3240 { 3241 struct kmem_cache *s; 3242 void *ret; 3243 3244 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3245 return kmalloc_large(size, flags); 3246 3247 s = kmalloc_slab(size, flags); 3248 3249 if (unlikely(ZERO_OR_NULL_PTR(s))) 3250 return s; 3251 3252 ret = slab_alloc(s, flags, _RET_IP_); 3253 3254 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3255 3256 return ret; 3257 } 3258 EXPORT_SYMBOL(__kmalloc); 3259 3260 #ifdef CONFIG_NUMA 3261 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3262 { 3263 struct page *page; 3264 void *ptr = NULL; 3265 3266 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG; 3267 page = alloc_pages_node(node, flags, get_order(size)); 3268 if (page) 3269 ptr = page_address(page); 3270 3271 kmemleak_alloc(ptr, size, 1, flags); 3272 return ptr; 3273 } 3274 3275 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3276 { 3277 struct kmem_cache *s; 3278 void *ret; 3279 3280 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3281 ret = kmalloc_large_node(size, flags, node); 3282 3283 trace_kmalloc_node(_RET_IP_, ret, 3284 size, PAGE_SIZE << get_order(size), 3285 flags, node); 3286 3287 return ret; 3288 } 3289 3290 s = kmalloc_slab(size, flags); 3291 3292 if (unlikely(ZERO_OR_NULL_PTR(s))) 3293 return s; 3294 3295 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3296 3297 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3298 3299 return ret; 3300 } 3301 EXPORT_SYMBOL(__kmalloc_node); 3302 #endif 3303 3304 size_t ksize(const void *object) 3305 { 3306 struct page *page; 3307 3308 if (unlikely(object == ZERO_SIZE_PTR)) 3309 return 0; 3310 3311 page = virt_to_head_page(object); 3312 3313 if (unlikely(!PageSlab(page))) { 3314 WARN_ON(!PageCompound(page)); 3315 return PAGE_SIZE << compound_order(page); 3316 } 3317 3318 return slab_ksize(page->slab_cache); 3319 } 3320 EXPORT_SYMBOL(ksize); 3321 3322 #ifdef CONFIG_SLUB_DEBUG 3323 bool verify_mem_not_deleted(const void *x) 3324 { 3325 struct page *page; 3326 void *object = (void *)x; 3327 unsigned long flags; 3328 bool rv; 3329 3330 if (unlikely(ZERO_OR_NULL_PTR(x))) 3331 return false; 3332 3333 local_irq_save(flags); 3334 3335 page = virt_to_head_page(x); 3336 if (unlikely(!PageSlab(page))) { 3337 /* maybe it was from stack? */ 3338 rv = true; 3339 goto out_unlock; 3340 } 3341 3342 slab_lock(page); 3343 if (on_freelist(page->slab_cache, page, object)) { 3344 object_err(page->slab_cache, page, object, "Object is on free-list"); 3345 rv = false; 3346 } else { 3347 rv = true; 3348 } 3349 slab_unlock(page); 3350 3351 out_unlock: 3352 local_irq_restore(flags); 3353 return rv; 3354 } 3355 EXPORT_SYMBOL(verify_mem_not_deleted); 3356 #endif 3357 3358 void kfree(const void *x) 3359 { 3360 struct page *page; 3361 void *object = (void *)x; 3362 3363 trace_kfree(_RET_IP_, x); 3364 3365 if (unlikely(ZERO_OR_NULL_PTR(x))) 3366 return; 3367 3368 page = virt_to_head_page(x); 3369 if (unlikely(!PageSlab(page))) { 3370 BUG_ON(!PageCompound(page)); 3371 kmemleak_free(x); 3372 __free_memcg_kmem_pages(page, compound_order(page)); 3373 return; 3374 } 3375 slab_free(page->slab_cache, page, object, _RET_IP_); 3376 } 3377 EXPORT_SYMBOL(kfree); 3378 3379 /* 3380 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 3381 * the remaining slabs by the number of items in use. The slabs with the 3382 * most items in use come first. New allocations will then fill those up 3383 * and thus they can be removed from the partial lists. 3384 * 3385 * The slabs with the least items are placed last. This results in them 3386 * being allocated from last increasing the chance that the last objects 3387 * are freed in them. 3388 */ 3389 int kmem_cache_shrink(struct kmem_cache *s) 3390 { 3391 int node; 3392 int i; 3393 struct kmem_cache_node *n; 3394 struct page *page; 3395 struct page *t; 3396 int objects = oo_objects(s->max); 3397 struct list_head *slabs_by_inuse = 3398 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 3399 unsigned long flags; 3400 3401 if (!slabs_by_inuse) 3402 return -ENOMEM; 3403 3404 flush_all(s); 3405 for_each_node_state(node, N_NORMAL_MEMORY) { 3406 n = get_node(s, node); 3407 3408 if (!n->nr_partial) 3409 continue; 3410 3411 for (i = 0; i < objects; i++) 3412 INIT_LIST_HEAD(slabs_by_inuse + i); 3413 3414 spin_lock_irqsave(&n->list_lock, flags); 3415 3416 /* 3417 * Build lists indexed by the items in use in each slab. 3418 * 3419 * Note that concurrent frees may occur while we hold the 3420 * list_lock. page->inuse here is the upper limit. 3421 */ 3422 list_for_each_entry_safe(page, t, &n->partial, lru) { 3423 list_move(&page->lru, slabs_by_inuse + page->inuse); 3424 if (!page->inuse) 3425 n->nr_partial--; 3426 } 3427 3428 /* 3429 * Rebuild the partial list with the slabs filled up most 3430 * first and the least used slabs at the end. 3431 */ 3432 for (i = objects - 1; i > 0; i--) 3433 list_splice(slabs_by_inuse + i, n->partial.prev); 3434 3435 spin_unlock_irqrestore(&n->list_lock, flags); 3436 3437 /* Release empty slabs */ 3438 list_for_each_entry_safe(page, t, slabs_by_inuse, lru) 3439 discard_slab(s, page); 3440 } 3441 3442 kfree(slabs_by_inuse); 3443 return 0; 3444 } 3445 EXPORT_SYMBOL(kmem_cache_shrink); 3446 3447 static int slab_mem_going_offline_callback(void *arg) 3448 { 3449 struct kmem_cache *s; 3450 3451 mutex_lock(&slab_mutex); 3452 list_for_each_entry(s, &slab_caches, list) 3453 kmem_cache_shrink(s); 3454 mutex_unlock(&slab_mutex); 3455 3456 return 0; 3457 } 3458 3459 static void slab_mem_offline_callback(void *arg) 3460 { 3461 struct kmem_cache_node *n; 3462 struct kmem_cache *s; 3463 struct memory_notify *marg = arg; 3464 int offline_node; 3465 3466 offline_node = marg->status_change_nid_normal; 3467 3468 /* 3469 * If the node still has available memory. we need kmem_cache_node 3470 * for it yet. 3471 */ 3472 if (offline_node < 0) 3473 return; 3474 3475 mutex_lock(&slab_mutex); 3476 list_for_each_entry(s, &slab_caches, list) { 3477 n = get_node(s, offline_node); 3478 if (n) { 3479 /* 3480 * if n->nr_slabs > 0, slabs still exist on the node 3481 * that is going down. We were unable to free them, 3482 * and offline_pages() function shouldn't call this 3483 * callback. So, we must fail. 3484 */ 3485 BUG_ON(slabs_node(s, offline_node)); 3486 3487 s->node[offline_node] = NULL; 3488 kmem_cache_free(kmem_cache_node, n); 3489 } 3490 } 3491 mutex_unlock(&slab_mutex); 3492 } 3493 3494 static int slab_mem_going_online_callback(void *arg) 3495 { 3496 struct kmem_cache_node *n; 3497 struct kmem_cache *s; 3498 struct memory_notify *marg = arg; 3499 int nid = marg->status_change_nid_normal; 3500 int ret = 0; 3501 3502 /* 3503 * If the node's memory is already available, then kmem_cache_node is 3504 * already created. Nothing to do. 3505 */ 3506 if (nid < 0) 3507 return 0; 3508 3509 /* 3510 * We are bringing a node online. No memory is available yet. We must 3511 * allocate a kmem_cache_node structure in order to bring the node 3512 * online. 3513 */ 3514 mutex_lock(&slab_mutex); 3515 list_for_each_entry(s, &slab_caches, list) { 3516 /* 3517 * XXX: kmem_cache_alloc_node will fallback to other nodes 3518 * since memory is not yet available from the node that 3519 * is brought up. 3520 */ 3521 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3522 if (!n) { 3523 ret = -ENOMEM; 3524 goto out; 3525 } 3526 init_kmem_cache_node(n); 3527 s->node[nid] = n; 3528 } 3529 out: 3530 mutex_unlock(&slab_mutex); 3531 return ret; 3532 } 3533 3534 static int slab_memory_callback(struct notifier_block *self, 3535 unsigned long action, void *arg) 3536 { 3537 int ret = 0; 3538 3539 switch (action) { 3540 case MEM_GOING_ONLINE: 3541 ret = slab_mem_going_online_callback(arg); 3542 break; 3543 case MEM_GOING_OFFLINE: 3544 ret = slab_mem_going_offline_callback(arg); 3545 break; 3546 case MEM_OFFLINE: 3547 case MEM_CANCEL_ONLINE: 3548 slab_mem_offline_callback(arg); 3549 break; 3550 case MEM_ONLINE: 3551 case MEM_CANCEL_OFFLINE: 3552 break; 3553 } 3554 if (ret) 3555 ret = notifier_from_errno(ret); 3556 else 3557 ret = NOTIFY_OK; 3558 return ret; 3559 } 3560 3561 static struct notifier_block slab_memory_callback_nb = { 3562 .notifier_call = slab_memory_callback, 3563 .priority = SLAB_CALLBACK_PRI, 3564 }; 3565 3566 /******************************************************************** 3567 * Basic setup of slabs 3568 *******************************************************************/ 3569 3570 /* 3571 * Used for early kmem_cache structures that were allocated using 3572 * the page allocator. Allocate them properly then fix up the pointers 3573 * that may be pointing to the wrong kmem_cache structure. 3574 */ 3575 3576 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 3577 { 3578 int node; 3579 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 3580 3581 memcpy(s, static_cache, kmem_cache->object_size); 3582 3583 /* 3584 * This runs very early, and only the boot processor is supposed to be 3585 * up. Even if it weren't true, IRQs are not up so we couldn't fire 3586 * IPIs around. 3587 */ 3588 __flush_cpu_slab(s, smp_processor_id()); 3589 for_each_node_state(node, N_NORMAL_MEMORY) { 3590 struct kmem_cache_node *n = get_node(s, node); 3591 struct page *p; 3592 3593 if (n) { 3594 list_for_each_entry(p, &n->partial, lru) 3595 p->slab_cache = s; 3596 3597 #ifdef CONFIG_SLUB_DEBUG 3598 list_for_each_entry(p, &n->full, lru) 3599 p->slab_cache = s; 3600 #endif 3601 } 3602 } 3603 list_add(&s->list, &slab_caches); 3604 return s; 3605 } 3606 3607 void __init kmem_cache_init(void) 3608 { 3609 static __initdata struct kmem_cache boot_kmem_cache, 3610 boot_kmem_cache_node; 3611 3612 if (debug_guardpage_minorder()) 3613 slub_max_order = 0; 3614 3615 kmem_cache_node = &boot_kmem_cache_node; 3616 kmem_cache = &boot_kmem_cache; 3617 3618 create_boot_cache(kmem_cache_node, "kmem_cache_node", 3619 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 3620 3621 register_hotmemory_notifier(&slab_memory_callback_nb); 3622 3623 /* Able to allocate the per node structures */ 3624 slab_state = PARTIAL; 3625 3626 create_boot_cache(kmem_cache, "kmem_cache", 3627 offsetof(struct kmem_cache, node) + 3628 nr_node_ids * sizeof(struct kmem_cache_node *), 3629 SLAB_HWCACHE_ALIGN); 3630 3631 kmem_cache = bootstrap(&boot_kmem_cache); 3632 3633 /* 3634 * Allocate kmem_cache_node properly from the kmem_cache slab. 3635 * kmem_cache_node is separately allocated so no need to 3636 * update any list pointers. 3637 */ 3638 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 3639 3640 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3641 create_kmalloc_caches(0); 3642 3643 #ifdef CONFIG_SMP 3644 register_cpu_notifier(&slab_notifier); 3645 #endif 3646 3647 printk(KERN_INFO 3648 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d," 3649 " CPUs=%d, Nodes=%d\n", 3650 cache_line_size(), 3651 slub_min_order, slub_max_order, slub_min_objects, 3652 nr_cpu_ids, nr_node_ids); 3653 } 3654 3655 void __init kmem_cache_init_late(void) 3656 { 3657 } 3658 3659 /* 3660 * Find a mergeable slab cache 3661 */ 3662 static int slab_unmergeable(struct kmem_cache *s) 3663 { 3664 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3665 return 1; 3666 3667 if (s->ctor) 3668 return 1; 3669 3670 /* 3671 * We may have set a slab to be unmergeable during bootstrap. 3672 */ 3673 if (s->refcount < 0) 3674 return 1; 3675 3676 return 0; 3677 } 3678 3679 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size, 3680 size_t align, unsigned long flags, const char *name, 3681 void (*ctor)(void *)) 3682 { 3683 struct kmem_cache *s; 3684 3685 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3686 return NULL; 3687 3688 if (ctor) 3689 return NULL; 3690 3691 size = ALIGN(size, sizeof(void *)); 3692 align = calculate_alignment(flags, align, size); 3693 size = ALIGN(size, align); 3694 flags = kmem_cache_flags(size, flags, name, NULL); 3695 3696 list_for_each_entry(s, &slab_caches, list) { 3697 if (slab_unmergeable(s)) 3698 continue; 3699 3700 if (size > s->size) 3701 continue; 3702 3703 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3704 continue; 3705 /* 3706 * Check if alignment is compatible. 3707 * Courtesy of Adrian Drzewiecki 3708 */ 3709 if ((s->size & ~(align - 1)) != s->size) 3710 continue; 3711 3712 if (s->size - size >= sizeof(void *)) 3713 continue; 3714 3715 if (!cache_match_memcg(s, memcg)) 3716 continue; 3717 3718 return s; 3719 } 3720 return NULL; 3721 } 3722 3723 struct kmem_cache * 3724 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size, 3725 size_t align, unsigned long flags, void (*ctor)(void *)) 3726 { 3727 struct kmem_cache *s; 3728 3729 s = find_mergeable(memcg, size, align, flags, name, ctor); 3730 if (s) { 3731 s->refcount++; 3732 /* 3733 * Adjust the object sizes so that we clear 3734 * the complete object on kzalloc. 3735 */ 3736 s->object_size = max(s->object_size, (int)size); 3737 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3738 3739 if (sysfs_slab_alias(s, name)) { 3740 s->refcount--; 3741 s = NULL; 3742 } 3743 } 3744 3745 return s; 3746 } 3747 3748 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 3749 { 3750 int err; 3751 3752 err = kmem_cache_open(s, flags); 3753 if (err) 3754 return err; 3755 3756 /* Mutex is not taken during early boot */ 3757 if (slab_state <= UP) 3758 return 0; 3759 3760 memcg_propagate_slab_attrs(s); 3761 mutex_unlock(&slab_mutex); 3762 err = sysfs_slab_add(s); 3763 mutex_lock(&slab_mutex); 3764 3765 if (err) 3766 kmem_cache_close(s); 3767 3768 return err; 3769 } 3770 3771 #ifdef CONFIG_SMP 3772 /* 3773 * Use the cpu notifier to insure that the cpu slabs are flushed when 3774 * necessary. 3775 */ 3776 static int slab_cpuup_callback(struct notifier_block *nfb, 3777 unsigned long action, void *hcpu) 3778 { 3779 long cpu = (long)hcpu; 3780 struct kmem_cache *s; 3781 unsigned long flags; 3782 3783 switch (action) { 3784 case CPU_UP_CANCELED: 3785 case CPU_UP_CANCELED_FROZEN: 3786 case CPU_DEAD: 3787 case CPU_DEAD_FROZEN: 3788 mutex_lock(&slab_mutex); 3789 list_for_each_entry(s, &slab_caches, list) { 3790 local_irq_save(flags); 3791 __flush_cpu_slab(s, cpu); 3792 local_irq_restore(flags); 3793 } 3794 mutex_unlock(&slab_mutex); 3795 break; 3796 default: 3797 break; 3798 } 3799 return NOTIFY_OK; 3800 } 3801 3802 static struct notifier_block slab_notifier = { 3803 .notifier_call = slab_cpuup_callback 3804 }; 3805 3806 #endif 3807 3808 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3809 { 3810 struct kmem_cache *s; 3811 void *ret; 3812 3813 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3814 return kmalloc_large(size, gfpflags); 3815 3816 s = kmalloc_slab(size, gfpflags); 3817 3818 if (unlikely(ZERO_OR_NULL_PTR(s))) 3819 return s; 3820 3821 ret = slab_alloc(s, gfpflags, caller); 3822 3823 /* Honor the call site pointer we received. */ 3824 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3825 3826 return ret; 3827 } 3828 3829 #ifdef CONFIG_NUMA 3830 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3831 int node, unsigned long caller) 3832 { 3833 struct kmem_cache *s; 3834 void *ret; 3835 3836 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3837 ret = kmalloc_large_node(size, gfpflags, node); 3838 3839 trace_kmalloc_node(caller, ret, 3840 size, PAGE_SIZE << get_order(size), 3841 gfpflags, node); 3842 3843 return ret; 3844 } 3845 3846 s = kmalloc_slab(size, gfpflags); 3847 3848 if (unlikely(ZERO_OR_NULL_PTR(s))) 3849 return s; 3850 3851 ret = slab_alloc_node(s, gfpflags, node, caller); 3852 3853 /* Honor the call site pointer we received. */ 3854 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3855 3856 return ret; 3857 } 3858 #endif 3859 3860 #ifdef CONFIG_SYSFS 3861 static int count_inuse(struct page *page) 3862 { 3863 return page->inuse; 3864 } 3865 3866 static int count_total(struct page *page) 3867 { 3868 return page->objects; 3869 } 3870 #endif 3871 3872 #ifdef CONFIG_SLUB_DEBUG 3873 static int validate_slab(struct kmem_cache *s, struct page *page, 3874 unsigned long *map) 3875 { 3876 void *p; 3877 void *addr = page_address(page); 3878 3879 if (!check_slab(s, page) || 3880 !on_freelist(s, page, NULL)) 3881 return 0; 3882 3883 /* Now we know that a valid freelist exists */ 3884 bitmap_zero(map, page->objects); 3885 3886 get_map(s, page, map); 3887 for_each_object(p, s, addr, page->objects) { 3888 if (test_bit(slab_index(p, s, addr), map)) 3889 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 3890 return 0; 3891 } 3892 3893 for_each_object(p, s, addr, page->objects) 3894 if (!test_bit(slab_index(p, s, addr), map)) 3895 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 3896 return 0; 3897 return 1; 3898 } 3899 3900 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3901 unsigned long *map) 3902 { 3903 slab_lock(page); 3904 validate_slab(s, page, map); 3905 slab_unlock(page); 3906 } 3907 3908 static int validate_slab_node(struct kmem_cache *s, 3909 struct kmem_cache_node *n, unsigned long *map) 3910 { 3911 unsigned long count = 0; 3912 struct page *page; 3913 unsigned long flags; 3914 3915 spin_lock_irqsave(&n->list_lock, flags); 3916 3917 list_for_each_entry(page, &n->partial, lru) { 3918 validate_slab_slab(s, page, map); 3919 count++; 3920 } 3921 if (count != n->nr_partial) 3922 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3923 "counter=%ld\n", s->name, count, n->nr_partial); 3924 3925 if (!(s->flags & SLAB_STORE_USER)) 3926 goto out; 3927 3928 list_for_each_entry(page, &n->full, lru) { 3929 validate_slab_slab(s, page, map); 3930 count++; 3931 } 3932 if (count != atomic_long_read(&n->nr_slabs)) 3933 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3934 "counter=%ld\n", s->name, count, 3935 atomic_long_read(&n->nr_slabs)); 3936 3937 out: 3938 spin_unlock_irqrestore(&n->list_lock, flags); 3939 return count; 3940 } 3941 3942 static long validate_slab_cache(struct kmem_cache *s) 3943 { 3944 int node; 3945 unsigned long count = 0; 3946 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3947 sizeof(unsigned long), GFP_KERNEL); 3948 3949 if (!map) 3950 return -ENOMEM; 3951 3952 flush_all(s); 3953 for_each_node_state(node, N_NORMAL_MEMORY) { 3954 struct kmem_cache_node *n = get_node(s, node); 3955 3956 count += validate_slab_node(s, n, map); 3957 } 3958 kfree(map); 3959 return count; 3960 } 3961 /* 3962 * Generate lists of code addresses where slabcache objects are allocated 3963 * and freed. 3964 */ 3965 3966 struct location { 3967 unsigned long count; 3968 unsigned long addr; 3969 long long sum_time; 3970 long min_time; 3971 long max_time; 3972 long min_pid; 3973 long max_pid; 3974 DECLARE_BITMAP(cpus, NR_CPUS); 3975 nodemask_t nodes; 3976 }; 3977 3978 struct loc_track { 3979 unsigned long max; 3980 unsigned long count; 3981 struct location *loc; 3982 }; 3983 3984 static void free_loc_track(struct loc_track *t) 3985 { 3986 if (t->max) 3987 free_pages((unsigned long)t->loc, 3988 get_order(sizeof(struct location) * t->max)); 3989 } 3990 3991 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3992 { 3993 struct location *l; 3994 int order; 3995 3996 order = get_order(sizeof(struct location) * max); 3997 3998 l = (void *)__get_free_pages(flags, order); 3999 if (!l) 4000 return 0; 4001 4002 if (t->count) { 4003 memcpy(l, t->loc, sizeof(struct location) * t->count); 4004 free_loc_track(t); 4005 } 4006 t->max = max; 4007 t->loc = l; 4008 return 1; 4009 } 4010 4011 static int add_location(struct loc_track *t, struct kmem_cache *s, 4012 const struct track *track) 4013 { 4014 long start, end, pos; 4015 struct location *l; 4016 unsigned long caddr; 4017 unsigned long age = jiffies - track->when; 4018 4019 start = -1; 4020 end = t->count; 4021 4022 for ( ; ; ) { 4023 pos = start + (end - start + 1) / 2; 4024 4025 /* 4026 * There is nothing at "end". If we end up there 4027 * we need to add something to before end. 4028 */ 4029 if (pos == end) 4030 break; 4031 4032 caddr = t->loc[pos].addr; 4033 if (track->addr == caddr) { 4034 4035 l = &t->loc[pos]; 4036 l->count++; 4037 if (track->when) { 4038 l->sum_time += age; 4039 if (age < l->min_time) 4040 l->min_time = age; 4041 if (age > l->max_time) 4042 l->max_time = age; 4043 4044 if (track->pid < l->min_pid) 4045 l->min_pid = track->pid; 4046 if (track->pid > l->max_pid) 4047 l->max_pid = track->pid; 4048 4049 cpumask_set_cpu(track->cpu, 4050 to_cpumask(l->cpus)); 4051 } 4052 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4053 return 1; 4054 } 4055 4056 if (track->addr < caddr) 4057 end = pos; 4058 else 4059 start = pos; 4060 } 4061 4062 /* 4063 * Not found. Insert new tracking element. 4064 */ 4065 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4066 return 0; 4067 4068 l = t->loc + pos; 4069 if (pos < t->count) 4070 memmove(l + 1, l, 4071 (t->count - pos) * sizeof(struct location)); 4072 t->count++; 4073 l->count = 1; 4074 l->addr = track->addr; 4075 l->sum_time = age; 4076 l->min_time = age; 4077 l->max_time = age; 4078 l->min_pid = track->pid; 4079 l->max_pid = track->pid; 4080 cpumask_clear(to_cpumask(l->cpus)); 4081 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4082 nodes_clear(l->nodes); 4083 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4084 return 1; 4085 } 4086 4087 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4088 struct page *page, enum track_item alloc, 4089 unsigned long *map) 4090 { 4091 void *addr = page_address(page); 4092 void *p; 4093 4094 bitmap_zero(map, page->objects); 4095 get_map(s, page, map); 4096 4097 for_each_object(p, s, addr, page->objects) 4098 if (!test_bit(slab_index(p, s, addr), map)) 4099 add_location(t, s, get_track(s, p, alloc)); 4100 } 4101 4102 static int list_locations(struct kmem_cache *s, char *buf, 4103 enum track_item alloc) 4104 { 4105 int len = 0; 4106 unsigned long i; 4107 struct loc_track t = { 0, 0, NULL }; 4108 int node; 4109 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4110 sizeof(unsigned long), GFP_KERNEL); 4111 4112 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4113 GFP_TEMPORARY)) { 4114 kfree(map); 4115 return sprintf(buf, "Out of memory\n"); 4116 } 4117 /* Push back cpu slabs */ 4118 flush_all(s); 4119 4120 for_each_node_state(node, N_NORMAL_MEMORY) { 4121 struct kmem_cache_node *n = get_node(s, node); 4122 unsigned long flags; 4123 struct page *page; 4124 4125 if (!atomic_long_read(&n->nr_slabs)) 4126 continue; 4127 4128 spin_lock_irqsave(&n->list_lock, flags); 4129 list_for_each_entry(page, &n->partial, lru) 4130 process_slab(&t, s, page, alloc, map); 4131 list_for_each_entry(page, &n->full, lru) 4132 process_slab(&t, s, page, alloc, map); 4133 spin_unlock_irqrestore(&n->list_lock, flags); 4134 } 4135 4136 for (i = 0; i < t.count; i++) { 4137 struct location *l = &t.loc[i]; 4138 4139 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4140 break; 4141 len += sprintf(buf + len, "%7ld ", l->count); 4142 4143 if (l->addr) 4144 len += sprintf(buf + len, "%pS", (void *)l->addr); 4145 else 4146 len += sprintf(buf + len, "<not-available>"); 4147 4148 if (l->sum_time != l->min_time) { 4149 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4150 l->min_time, 4151 (long)div_u64(l->sum_time, l->count), 4152 l->max_time); 4153 } else 4154 len += sprintf(buf + len, " age=%ld", 4155 l->min_time); 4156 4157 if (l->min_pid != l->max_pid) 4158 len += sprintf(buf + len, " pid=%ld-%ld", 4159 l->min_pid, l->max_pid); 4160 else 4161 len += sprintf(buf + len, " pid=%ld", 4162 l->min_pid); 4163 4164 if (num_online_cpus() > 1 && 4165 !cpumask_empty(to_cpumask(l->cpus)) && 4166 len < PAGE_SIZE - 60) { 4167 len += sprintf(buf + len, " cpus="); 4168 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4169 to_cpumask(l->cpus)); 4170 } 4171 4172 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4173 len < PAGE_SIZE - 60) { 4174 len += sprintf(buf + len, " nodes="); 4175 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4176 l->nodes); 4177 } 4178 4179 len += sprintf(buf + len, "\n"); 4180 } 4181 4182 free_loc_track(&t); 4183 kfree(map); 4184 if (!t.count) 4185 len += sprintf(buf, "No data\n"); 4186 return len; 4187 } 4188 #endif 4189 4190 #ifdef SLUB_RESILIENCY_TEST 4191 static void resiliency_test(void) 4192 { 4193 u8 *p; 4194 4195 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4196 4197 printk(KERN_ERR "SLUB resiliency testing\n"); 4198 printk(KERN_ERR "-----------------------\n"); 4199 printk(KERN_ERR "A. Corruption after allocation\n"); 4200 4201 p = kzalloc(16, GFP_KERNEL); 4202 p[16] = 0x12; 4203 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 4204 " 0x12->0x%p\n\n", p + 16); 4205 4206 validate_slab_cache(kmalloc_caches[4]); 4207 4208 /* Hmmm... The next two are dangerous */ 4209 p = kzalloc(32, GFP_KERNEL); 4210 p[32 + sizeof(void *)] = 0x34; 4211 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 4212 " 0x34 -> -0x%p\n", p); 4213 printk(KERN_ERR 4214 "If allocated object is overwritten then not detectable\n\n"); 4215 4216 validate_slab_cache(kmalloc_caches[5]); 4217 p = kzalloc(64, GFP_KERNEL); 4218 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4219 *p = 0x56; 4220 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4221 p); 4222 printk(KERN_ERR 4223 "If allocated object is overwritten then not detectable\n\n"); 4224 validate_slab_cache(kmalloc_caches[6]); 4225 4226 printk(KERN_ERR "\nB. Corruption after free\n"); 4227 p = kzalloc(128, GFP_KERNEL); 4228 kfree(p); 4229 *p = 0x78; 4230 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4231 validate_slab_cache(kmalloc_caches[7]); 4232 4233 p = kzalloc(256, GFP_KERNEL); 4234 kfree(p); 4235 p[50] = 0x9a; 4236 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 4237 p); 4238 validate_slab_cache(kmalloc_caches[8]); 4239 4240 p = kzalloc(512, GFP_KERNEL); 4241 kfree(p); 4242 p[512] = 0xab; 4243 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4244 validate_slab_cache(kmalloc_caches[9]); 4245 } 4246 #else 4247 #ifdef CONFIG_SYSFS 4248 static void resiliency_test(void) {}; 4249 #endif 4250 #endif 4251 4252 #ifdef CONFIG_SYSFS 4253 enum slab_stat_type { 4254 SL_ALL, /* All slabs */ 4255 SL_PARTIAL, /* Only partially allocated slabs */ 4256 SL_CPU, /* Only slabs used for cpu caches */ 4257 SL_OBJECTS, /* Determine allocated objects not slabs */ 4258 SL_TOTAL /* Determine object capacity not slabs */ 4259 }; 4260 4261 #define SO_ALL (1 << SL_ALL) 4262 #define SO_PARTIAL (1 << SL_PARTIAL) 4263 #define SO_CPU (1 << SL_CPU) 4264 #define SO_OBJECTS (1 << SL_OBJECTS) 4265 #define SO_TOTAL (1 << SL_TOTAL) 4266 4267 static ssize_t show_slab_objects(struct kmem_cache *s, 4268 char *buf, unsigned long flags) 4269 { 4270 unsigned long total = 0; 4271 int node; 4272 int x; 4273 unsigned long *nodes; 4274 unsigned long *per_cpu; 4275 4276 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4277 if (!nodes) 4278 return -ENOMEM; 4279 per_cpu = nodes + nr_node_ids; 4280 4281 if (flags & SO_CPU) { 4282 int cpu; 4283 4284 for_each_possible_cpu(cpu) { 4285 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 4286 int node; 4287 struct page *page; 4288 4289 page = ACCESS_ONCE(c->page); 4290 if (!page) 4291 continue; 4292 4293 node = page_to_nid(page); 4294 if (flags & SO_TOTAL) 4295 x = page->objects; 4296 else if (flags & SO_OBJECTS) 4297 x = page->inuse; 4298 else 4299 x = 1; 4300 4301 total += x; 4302 nodes[node] += x; 4303 4304 page = ACCESS_ONCE(c->partial); 4305 if (page) { 4306 x = page->pobjects; 4307 total += x; 4308 nodes[node] += x; 4309 } 4310 4311 per_cpu[node]++; 4312 } 4313 } 4314 4315 lock_memory_hotplug(); 4316 #ifdef CONFIG_SLUB_DEBUG 4317 if (flags & SO_ALL) { 4318 for_each_node_state(node, N_NORMAL_MEMORY) { 4319 struct kmem_cache_node *n = get_node(s, node); 4320 4321 if (flags & SO_TOTAL) 4322 x = atomic_long_read(&n->total_objects); 4323 else if (flags & SO_OBJECTS) 4324 x = atomic_long_read(&n->total_objects) - 4325 count_partial(n, count_free); 4326 4327 else 4328 x = atomic_long_read(&n->nr_slabs); 4329 total += x; 4330 nodes[node] += x; 4331 } 4332 4333 } else 4334 #endif 4335 if (flags & SO_PARTIAL) { 4336 for_each_node_state(node, N_NORMAL_MEMORY) { 4337 struct kmem_cache_node *n = get_node(s, node); 4338 4339 if (flags & SO_TOTAL) 4340 x = count_partial(n, count_total); 4341 else if (flags & SO_OBJECTS) 4342 x = count_partial(n, count_inuse); 4343 else 4344 x = n->nr_partial; 4345 total += x; 4346 nodes[node] += x; 4347 } 4348 } 4349 x = sprintf(buf, "%lu", total); 4350 #ifdef CONFIG_NUMA 4351 for_each_node_state(node, N_NORMAL_MEMORY) 4352 if (nodes[node]) 4353 x += sprintf(buf + x, " N%d=%lu", 4354 node, nodes[node]); 4355 #endif 4356 unlock_memory_hotplug(); 4357 kfree(nodes); 4358 return x + sprintf(buf + x, "\n"); 4359 } 4360 4361 #ifdef CONFIG_SLUB_DEBUG 4362 static int any_slab_objects(struct kmem_cache *s) 4363 { 4364 int node; 4365 4366 for_each_online_node(node) { 4367 struct kmem_cache_node *n = get_node(s, node); 4368 4369 if (!n) 4370 continue; 4371 4372 if (atomic_long_read(&n->total_objects)) 4373 return 1; 4374 } 4375 return 0; 4376 } 4377 #endif 4378 4379 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4380 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4381 4382 struct slab_attribute { 4383 struct attribute attr; 4384 ssize_t (*show)(struct kmem_cache *s, char *buf); 4385 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4386 }; 4387 4388 #define SLAB_ATTR_RO(_name) \ 4389 static struct slab_attribute _name##_attr = \ 4390 __ATTR(_name, 0400, _name##_show, NULL) 4391 4392 #define SLAB_ATTR(_name) \ 4393 static struct slab_attribute _name##_attr = \ 4394 __ATTR(_name, 0600, _name##_show, _name##_store) 4395 4396 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4397 { 4398 return sprintf(buf, "%d\n", s->size); 4399 } 4400 SLAB_ATTR_RO(slab_size); 4401 4402 static ssize_t align_show(struct kmem_cache *s, char *buf) 4403 { 4404 return sprintf(buf, "%d\n", s->align); 4405 } 4406 SLAB_ATTR_RO(align); 4407 4408 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4409 { 4410 return sprintf(buf, "%d\n", s->object_size); 4411 } 4412 SLAB_ATTR_RO(object_size); 4413 4414 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4415 { 4416 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4417 } 4418 SLAB_ATTR_RO(objs_per_slab); 4419 4420 static ssize_t order_store(struct kmem_cache *s, 4421 const char *buf, size_t length) 4422 { 4423 unsigned long order; 4424 int err; 4425 4426 err = strict_strtoul(buf, 10, &order); 4427 if (err) 4428 return err; 4429 4430 if (order > slub_max_order || order < slub_min_order) 4431 return -EINVAL; 4432 4433 calculate_sizes(s, order); 4434 return length; 4435 } 4436 4437 static ssize_t order_show(struct kmem_cache *s, char *buf) 4438 { 4439 return sprintf(buf, "%d\n", oo_order(s->oo)); 4440 } 4441 SLAB_ATTR(order); 4442 4443 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4444 { 4445 return sprintf(buf, "%lu\n", s->min_partial); 4446 } 4447 4448 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4449 size_t length) 4450 { 4451 unsigned long min; 4452 int err; 4453 4454 err = strict_strtoul(buf, 10, &min); 4455 if (err) 4456 return err; 4457 4458 set_min_partial(s, min); 4459 return length; 4460 } 4461 SLAB_ATTR(min_partial); 4462 4463 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4464 { 4465 return sprintf(buf, "%u\n", s->cpu_partial); 4466 } 4467 4468 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4469 size_t length) 4470 { 4471 unsigned long objects; 4472 int err; 4473 4474 err = strict_strtoul(buf, 10, &objects); 4475 if (err) 4476 return err; 4477 if (objects && !kmem_cache_has_cpu_partial(s)) 4478 return -EINVAL; 4479 4480 s->cpu_partial = objects; 4481 flush_all(s); 4482 return length; 4483 } 4484 SLAB_ATTR(cpu_partial); 4485 4486 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4487 { 4488 if (!s->ctor) 4489 return 0; 4490 return sprintf(buf, "%pS\n", s->ctor); 4491 } 4492 SLAB_ATTR_RO(ctor); 4493 4494 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4495 { 4496 return sprintf(buf, "%d\n", s->refcount - 1); 4497 } 4498 SLAB_ATTR_RO(aliases); 4499 4500 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4501 { 4502 return show_slab_objects(s, buf, SO_PARTIAL); 4503 } 4504 SLAB_ATTR_RO(partial); 4505 4506 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4507 { 4508 return show_slab_objects(s, buf, SO_CPU); 4509 } 4510 SLAB_ATTR_RO(cpu_slabs); 4511 4512 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4513 { 4514 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4515 } 4516 SLAB_ATTR_RO(objects); 4517 4518 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4519 { 4520 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4521 } 4522 SLAB_ATTR_RO(objects_partial); 4523 4524 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4525 { 4526 int objects = 0; 4527 int pages = 0; 4528 int cpu; 4529 int len; 4530 4531 for_each_online_cpu(cpu) { 4532 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4533 4534 if (page) { 4535 pages += page->pages; 4536 objects += page->pobjects; 4537 } 4538 } 4539 4540 len = sprintf(buf, "%d(%d)", objects, pages); 4541 4542 #ifdef CONFIG_SMP 4543 for_each_online_cpu(cpu) { 4544 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4545 4546 if (page && len < PAGE_SIZE - 20) 4547 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4548 page->pobjects, page->pages); 4549 } 4550 #endif 4551 return len + sprintf(buf + len, "\n"); 4552 } 4553 SLAB_ATTR_RO(slabs_cpu_partial); 4554 4555 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4556 { 4557 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4558 } 4559 4560 static ssize_t reclaim_account_store(struct kmem_cache *s, 4561 const char *buf, size_t length) 4562 { 4563 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4564 if (buf[0] == '1') 4565 s->flags |= SLAB_RECLAIM_ACCOUNT; 4566 return length; 4567 } 4568 SLAB_ATTR(reclaim_account); 4569 4570 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4571 { 4572 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4573 } 4574 SLAB_ATTR_RO(hwcache_align); 4575 4576 #ifdef CONFIG_ZONE_DMA 4577 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4578 { 4579 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4580 } 4581 SLAB_ATTR_RO(cache_dma); 4582 #endif 4583 4584 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4585 { 4586 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4587 } 4588 SLAB_ATTR_RO(destroy_by_rcu); 4589 4590 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4591 { 4592 return sprintf(buf, "%d\n", s->reserved); 4593 } 4594 SLAB_ATTR_RO(reserved); 4595 4596 #ifdef CONFIG_SLUB_DEBUG 4597 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4598 { 4599 return show_slab_objects(s, buf, SO_ALL); 4600 } 4601 SLAB_ATTR_RO(slabs); 4602 4603 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4604 { 4605 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4606 } 4607 SLAB_ATTR_RO(total_objects); 4608 4609 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4610 { 4611 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4612 } 4613 4614 static ssize_t sanity_checks_store(struct kmem_cache *s, 4615 const char *buf, size_t length) 4616 { 4617 s->flags &= ~SLAB_DEBUG_FREE; 4618 if (buf[0] == '1') { 4619 s->flags &= ~__CMPXCHG_DOUBLE; 4620 s->flags |= SLAB_DEBUG_FREE; 4621 } 4622 return length; 4623 } 4624 SLAB_ATTR(sanity_checks); 4625 4626 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4627 { 4628 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4629 } 4630 4631 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4632 size_t length) 4633 { 4634 s->flags &= ~SLAB_TRACE; 4635 if (buf[0] == '1') { 4636 s->flags &= ~__CMPXCHG_DOUBLE; 4637 s->flags |= SLAB_TRACE; 4638 } 4639 return length; 4640 } 4641 SLAB_ATTR(trace); 4642 4643 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4644 { 4645 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4646 } 4647 4648 static ssize_t red_zone_store(struct kmem_cache *s, 4649 const char *buf, size_t length) 4650 { 4651 if (any_slab_objects(s)) 4652 return -EBUSY; 4653 4654 s->flags &= ~SLAB_RED_ZONE; 4655 if (buf[0] == '1') { 4656 s->flags &= ~__CMPXCHG_DOUBLE; 4657 s->flags |= SLAB_RED_ZONE; 4658 } 4659 calculate_sizes(s, -1); 4660 return length; 4661 } 4662 SLAB_ATTR(red_zone); 4663 4664 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4665 { 4666 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4667 } 4668 4669 static ssize_t poison_store(struct kmem_cache *s, 4670 const char *buf, size_t length) 4671 { 4672 if (any_slab_objects(s)) 4673 return -EBUSY; 4674 4675 s->flags &= ~SLAB_POISON; 4676 if (buf[0] == '1') { 4677 s->flags &= ~__CMPXCHG_DOUBLE; 4678 s->flags |= SLAB_POISON; 4679 } 4680 calculate_sizes(s, -1); 4681 return length; 4682 } 4683 SLAB_ATTR(poison); 4684 4685 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4686 { 4687 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4688 } 4689 4690 static ssize_t store_user_store(struct kmem_cache *s, 4691 const char *buf, size_t length) 4692 { 4693 if (any_slab_objects(s)) 4694 return -EBUSY; 4695 4696 s->flags &= ~SLAB_STORE_USER; 4697 if (buf[0] == '1') { 4698 s->flags &= ~__CMPXCHG_DOUBLE; 4699 s->flags |= SLAB_STORE_USER; 4700 } 4701 calculate_sizes(s, -1); 4702 return length; 4703 } 4704 SLAB_ATTR(store_user); 4705 4706 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4707 { 4708 return 0; 4709 } 4710 4711 static ssize_t validate_store(struct kmem_cache *s, 4712 const char *buf, size_t length) 4713 { 4714 int ret = -EINVAL; 4715 4716 if (buf[0] == '1') { 4717 ret = validate_slab_cache(s); 4718 if (ret >= 0) 4719 ret = length; 4720 } 4721 return ret; 4722 } 4723 SLAB_ATTR(validate); 4724 4725 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4726 { 4727 if (!(s->flags & SLAB_STORE_USER)) 4728 return -ENOSYS; 4729 return list_locations(s, buf, TRACK_ALLOC); 4730 } 4731 SLAB_ATTR_RO(alloc_calls); 4732 4733 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4734 { 4735 if (!(s->flags & SLAB_STORE_USER)) 4736 return -ENOSYS; 4737 return list_locations(s, buf, TRACK_FREE); 4738 } 4739 SLAB_ATTR_RO(free_calls); 4740 #endif /* CONFIG_SLUB_DEBUG */ 4741 4742 #ifdef CONFIG_FAILSLAB 4743 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4744 { 4745 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4746 } 4747 4748 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4749 size_t length) 4750 { 4751 s->flags &= ~SLAB_FAILSLAB; 4752 if (buf[0] == '1') 4753 s->flags |= SLAB_FAILSLAB; 4754 return length; 4755 } 4756 SLAB_ATTR(failslab); 4757 #endif 4758 4759 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4760 { 4761 return 0; 4762 } 4763 4764 static ssize_t shrink_store(struct kmem_cache *s, 4765 const char *buf, size_t length) 4766 { 4767 if (buf[0] == '1') { 4768 int rc = kmem_cache_shrink(s); 4769 4770 if (rc) 4771 return rc; 4772 } else 4773 return -EINVAL; 4774 return length; 4775 } 4776 SLAB_ATTR(shrink); 4777 4778 #ifdef CONFIG_NUMA 4779 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4780 { 4781 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4782 } 4783 4784 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4785 const char *buf, size_t length) 4786 { 4787 unsigned long ratio; 4788 int err; 4789 4790 err = strict_strtoul(buf, 10, &ratio); 4791 if (err) 4792 return err; 4793 4794 if (ratio <= 100) 4795 s->remote_node_defrag_ratio = ratio * 10; 4796 4797 return length; 4798 } 4799 SLAB_ATTR(remote_node_defrag_ratio); 4800 #endif 4801 4802 #ifdef CONFIG_SLUB_STATS 4803 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4804 { 4805 unsigned long sum = 0; 4806 int cpu; 4807 int len; 4808 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4809 4810 if (!data) 4811 return -ENOMEM; 4812 4813 for_each_online_cpu(cpu) { 4814 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4815 4816 data[cpu] = x; 4817 sum += x; 4818 } 4819 4820 len = sprintf(buf, "%lu", sum); 4821 4822 #ifdef CONFIG_SMP 4823 for_each_online_cpu(cpu) { 4824 if (data[cpu] && len < PAGE_SIZE - 20) 4825 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4826 } 4827 #endif 4828 kfree(data); 4829 return len + sprintf(buf + len, "\n"); 4830 } 4831 4832 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4833 { 4834 int cpu; 4835 4836 for_each_online_cpu(cpu) 4837 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4838 } 4839 4840 #define STAT_ATTR(si, text) \ 4841 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4842 { \ 4843 return show_stat(s, buf, si); \ 4844 } \ 4845 static ssize_t text##_store(struct kmem_cache *s, \ 4846 const char *buf, size_t length) \ 4847 { \ 4848 if (buf[0] != '0') \ 4849 return -EINVAL; \ 4850 clear_stat(s, si); \ 4851 return length; \ 4852 } \ 4853 SLAB_ATTR(text); \ 4854 4855 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4856 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4857 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4858 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4859 STAT_ATTR(FREE_FROZEN, free_frozen); 4860 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4861 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4862 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4863 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4864 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4865 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 4866 STAT_ATTR(FREE_SLAB, free_slab); 4867 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4868 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4869 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4870 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4871 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4872 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4873 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 4874 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4875 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 4876 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 4877 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 4878 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 4879 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 4880 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 4881 #endif 4882 4883 static struct attribute *slab_attrs[] = { 4884 &slab_size_attr.attr, 4885 &object_size_attr.attr, 4886 &objs_per_slab_attr.attr, 4887 &order_attr.attr, 4888 &min_partial_attr.attr, 4889 &cpu_partial_attr.attr, 4890 &objects_attr.attr, 4891 &objects_partial_attr.attr, 4892 &partial_attr.attr, 4893 &cpu_slabs_attr.attr, 4894 &ctor_attr.attr, 4895 &aliases_attr.attr, 4896 &align_attr.attr, 4897 &hwcache_align_attr.attr, 4898 &reclaim_account_attr.attr, 4899 &destroy_by_rcu_attr.attr, 4900 &shrink_attr.attr, 4901 &reserved_attr.attr, 4902 &slabs_cpu_partial_attr.attr, 4903 #ifdef CONFIG_SLUB_DEBUG 4904 &total_objects_attr.attr, 4905 &slabs_attr.attr, 4906 &sanity_checks_attr.attr, 4907 &trace_attr.attr, 4908 &red_zone_attr.attr, 4909 &poison_attr.attr, 4910 &store_user_attr.attr, 4911 &validate_attr.attr, 4912 &alloc_calls_attr.attr, 4913 &free_calls_attr.attr, 4914 #endif 4915 #ifdef CONFIG_ZONE_DMA 4916 &cache_dma_attr.attr, 4917 #endif 4918 #ifdef CONFIG_NUMA 4919 &remote_node_defrag_ratio_attr.attr, 4920 #endif 4921 #ifdef CONFIG_SLUB_STATS 4922 &alloc_fastpath_attr.attr, 4923 &alloc_slowpath_attr.attr, 4924 &free_fastpath_attr.attr, 4925 &free_slowpath_attr.attr, 4926 &free_frozen_attr.attr, 4927 &free_add_partial_attr.attr, 4928 &free_remove_partial_attr.attr, 4929 &alloc_from_partial_attr.attr, 4930 &alloc_slab_attr.attr, 4931 &alloc_refill_attr.attr, 4932 &alloc_node_mismatch_attr.attr, 4933 &free_slab_attr.attr, 4934 &cpuslab_flush_attr.attr, 4935 &deactivate_full_attr.attr, 4936 &deactivate_empty_attr.attr, 4937 &deactivate_to_head_attr.attr, 4938 &deactivate_to_tail_attr.attr, 4939 &deactivate_remote_frees_attr.attr, 4940 &deactivate_bypass_attr.attr, 4941 &order_fallback_attr.attr, 4942 &cmpxchg_double_fail_attr.attr, 4943 &cmpxchg_double_cpu_fail_attr.attr, 4944 &cpu_partial_alloc_attr.attr, 4945 &cpu_partial_free_attr.attr, 4946 &cpu_partial_node_attr.attr, 4947 &cpu_partial_drain_attr.attr, 4948 #endif 4949 #ifdef CONFIG_FAILSLAB 4950 &failslab_attr.attr, 4951 #endif 4952 4953 NULL 4954 }; 4955 4956 static struct attribute_group slab_attr_group = { 4957 .attrs = slab_attrs, 4958 }; 4959 4960 static ssize_t slab_attr_show(struct kobject *kobj, 4961 struct attribute *attr, 4962 char *buf) 4963 { 4964 struct slab_attribute *attribute; 4965 struct kmem_cache *s; 4966 int err; 4967 4968 attribute = to_slab_attr(attr); 4969 s = to_slab(kobj); 4970 4971 if (!attribute->show) 4972 return -EIO; 4973 4974 err = attribute->show(s, buf); 4975 4976 return err; 4977 } 4978 4979 static ssize_t slab_attr_store(struct kobject *kobj, 4980 struct attribute *attr, 4981 const char *buf, size_t len) 4982 { 4983 struct slab_attribute *attribute; 4984 struct kmem_cache *s; 4985 int err; 4986 4987 attribute = to_slab_attr(attr); 4988 s = to_slab(kobj); 4989 4990 if (!attribute->store) 4991 return -EIO; 4992 4993 err = attribute->store(s, buf, len); 4994 #ifdef CONFIG_MEMCG_KMEM 4995 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 4996 int i; 4997 4998 mutex_lock(&slab_mutex); 4999 if (s->max_attr_size < len) 5000 s->max_attr_size = len; 5001 5002 /* 5003 * This is a best effort propagation, so this function's return 5004 * value will be determined by the parent cache only. This is 5005 * basically because not all attributes will have a well 5006 * defined semantics for rollbacks - most of the actions will 5007 * have permanent effects. 5008 * 5009 * Returning the error value of any of the children that fail 5010 * is not 100 % defined, in the sense that users seeing the 5011 * error code won't be able to know anything about the state of 5012 * the cache. 5013 * 5014 * Only returning the error code for the parent cache at least 5015 * has well defined semantics. The cache being written to 5016 * directly either failed or succeeded, in which case we loop 5017 * through the descendants with best-effort propagation. 5018 */ 5019 for_each_memcg_cache_index(i) { 5020 struct kmem_cache *c = cache_from_memcg(s, i); 5021 if (c) 5022 attribute->store(c, buf, len); 5023 } 5024 mutex_unlock(&slab_mutex); 5025 } 5026 #endif 5027 return err; 5028 } 5029 5030 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5031 { 5032 #ifdef CONFIG_MEMCG_KMEM 5033 int i; 5034 char *buffer = NULL; 5035 5036 if (!is_root_cache(s)) 5037 return; 5038 5039 /* 5040 * This mean this cache had no attribute written. Therefore, no point 5041 * in copying default values around 5042 */ 5043 if (!s->max_attr_size) 5044 return; 5045 5046 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5047 char mbuf[64]; 5048 char *buf; 5049 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5050 5051 if (!attr || !attr->store || !attr->show) 5052 continue; 5053 5054 /* 5055 * It is really bad that we have to allocate here, so we will 5056 * do it only as a fallback. If we actually allocate, though, 5057 * we can just use the allocated buffer until the end. 5058 * 5059 * Most of the slub attributes will tend to be very small in 5060 * size, but sysfs allows buffers up to a page, so they can 5061 * theoretically happen. 5062 */ 5063 if (buffer) 5064 buf = buffer; 5065 else if (s->max_attr_size < ARRAY_SIZE(mbuf)) 5066 buf = mbuf; 5067 else { 5068 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5069 if (WARN_ON(!buffer)) 5070 continue; 5071 buf = buffer; 5072 } 5073 5074 attr->show(s->memcg_params->root_cache, buf); 5075 attr->store(s, buf, strlen(buf)); 5076 } 5077 5078 if (buffer) 5079 free_page((unsigned long)buffer); 5080 #endif 5081 } 5082 5083 static const struct sysfs_ops slab_sysfs_ops = { 5084 .show = slab_attr_show, 5085 .store = slab_attr_store, 5086 }; 5087 5088 static struct kobj_type slab_ktype = { 5089 .sysfs_ops = &slab_sysfs_ops, 5090 }; 5091 5092 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5093 { 5094 struct kobj_type *ktype = get_ktype(kobj); 5095 5096 if (ktype == &slab_ktype) 5097 return 1; 5098 return 0; 5099 } 5100 5101 static const struct kset_uevent_ops slab_uevent_ops = { 5102 .filter = uevent_filter, 5103 }; 5104 5105 static struct kset *slab_kset; 5106 5107 #define ID_STR_LENGTH 64 5108 5109 /* Create a unique string id for a slab cache: 5110 * 5111 * Format :[flags-]size 5112 */ 5113 static char *create_unique_id(struct kmem_cache *s) 5114 { 5115 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5116 char *p = name; 5117 5118 BUG_ON(!name); 5119 5120 *p++ = ':'; 5121 /* 5122 * First flags affecting slabcache operations. We will only 5123 * get here for aliasable slabs so we do not need to support 5124 * too many flags. The flags here must cover all flags that 5125 * are matched during merging to guarantee that the id is 5126 * unique. 5127 */ 5128 if (s->flags & SLAB_CACHE_DMA) 5129 *p++ = 'd'; 5130 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5131 *p++ = 'a'; 5132 if (s->flags & SLAB_DEBUG_FREE) 5133 *p++ = 'F'; 5134 if (!(s->flags & SLAB_NOTRACK)) 5135 *p++ = 't'; 5136 if (p != name + 1) 5137 *p++ = '-'; 5138 p += sprintf(p, "%07d", s->size); 5139 5140 #ifdef CONFIG_MEMCG_KMEM 5141 if (!is_root_cache(s)) 5142 p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg)); 5143 #endif 5144 5145 BUG_ON(p > name + ID_STR_LENGTH - 1); 5146 return name; 5147 } 5148 5149 static int sysfs_slab_add(struct kmem_cache *s) 5150 { 5151 int err; 5152 const char *name; 5153 int unmergeable = slab_unmergeable(s); 5154 5155 if (unmergeable) { 5156 /* 5157 * Slabcache can never be merged so we can use the name proper. 5158 * This is typically the case for debug situations. In that 5159 * case we can catch duplicate names easily. 5160 */ 5161 sysfs_remove_link(&slab_kset->kobj, s->name); 5162 name = s->name; 5163 } else { 5164 /* 5165 * Create a unique name for the slab as a target 5166 * for the symlinks. 5167 */ 5168 name = create_unique_id(s); 5169 } 5170 5171 s->kobj.kset = slab_kset; 5172 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 5173 if (err) { 5174 kobject_put(&s->kobj); 5175 return err; 5176 } 5177 5178 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5179 if (err) { 5180 kobject_del(&s->kobj); 5181 kobject_put(&s->kobj); 5182 return err; 5183 } 5184 kobject_uevent(&s->kobj, KOBJ_ADD); 5185 if (!unmergeable) { 5186 /* Setup first alias */ 5187 sysfs_slab_alias(s, s->name); 5188 kfree(name); 5189 } 5190 return 0; 5191 } 5192 5193 static void sysfs_slab_remove(struct kmem_cache *s) 5194 { 5195 if (slab_state < FULL) 5196 /* 5197 * Sysfs has not been setup yet so no need to remove the 5198 * cache from sysfs. 5199 */ 5200 return; 5201 5202 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5203 kobject_del(&s->kobj); 5204 kobject_put(&s->kobj); 5205 } 5206 5207 /* 5208 * Need to buffer aliases during bootup until sysfs becomes 5209 * available lest we lose that information. 5210 */ 5211 struct saved_alias { 5212 struct kmem_cache *s; 5213 const char *name; 5214 struct saved_alias *next; 5215 }; 5216 5217 static struct saved_alias *alias_list; 5218 5219 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5220 { 5221 struct saved_alias *al; 5222 5223 if (slab_state == FULL) { 5224 /* 5225 * If we have a leftover link then remove it. 5226 */ 5227 sysfs_remove_link(&slab_kset->kobj, name); 5228 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5229 } 5230 5231 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5232 if (!al) 5233 return -ENOMEM; 5234 5235 al->s = s; 5236 al->name = name; 5237 al->next = alias_list; 5238 alias_list = al; 5239 return 0; 5240 } 5241 5242 static int __init slab_sysfs_init(void) 5243 { 5244 struct kmem_cache *s; 5245 int err; 5246 5247 mutex_lock(&slab_mutex); 5248 5249 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5250 if (!slab_kset) { 5251 mutex_unlock(&slab_mutex); 5252 printk(KERN_ERR "Cannot register slab subsystem.\n"); 5253 return -ENOSYS; 5254 } 5255 5256 slab_state = FULL; 5257 5258 list_for_each_entry(s, &slab_caches, list) { 5259 err = sysfs_slab_add(s); 5260 if (err) 5261 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 5262 " to sysfs\n", s->name); 5263 } 5264 5265 while (alias_list) { 5266 struct saved_alias *al = alias_list; 5267 5268 alias_list = alias_list->next; 5269 err = sysfs_slab_alias(al->s, al->name); 5270 if (err) 5271 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 5272 " %s to sysfs\n", al->name); 5273 kfree(al); 5274 } 5275 5276 mutex_unlock(&slab_mutex); 5277 resiliency_test(); 5278 return 0; 5279 } 5280 5281 __initcall(slab_sysfs_init); 5282 #endif /* CONFIG_SYSFS */ 5283 5284 /* 5285 * The /proc/slabinfo ABI 5286 */ 5287 #ifdef CONFIG_SLABINFO 5288 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5289 { 5290 unsigned long nr_slabs = 0; 5291 unsigned long nr_objs = 0; 5292 unsigned long nr_free = 0; 5293 int node; 5294 5295 for_each_online_node(node) { 5296 struct kmem_cache_node *n = get_node(s, node); 5297 5298 if (!n) 5299 continue; 5300 5301 nr_slabs += node_nr_slabs(n); 5302 nr_objs += node_nr_objs(n); 5303 nr_free += count_partial(n, count_free); 5304 } 5305 5306 sinfo->active_objs = nr_objs - nr_free; 5307 sinfo->num_objs = nr_objs; 5308 sinfo->active_slabs = nr_slabs; 5309 sinfo->num_slabs = nr_slabs; 5310 sinfo->objects_per_slab = oo_objects(s->oo); 5311 sinfo->cache_order = oo_order(s->oo); 5312 } 5313 5314 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5315 { 5316 } 5317 5318 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5319 size_t count, loff_t *ppos) 5320 { 5321 return -EIO; 5322 } 5323 #endif /* CONFIG_SLABINFO */ 5324