1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/notifier.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/memory.h> 32 #include <linux/math64.h> 33 #include <linux/fault-inject.h> 34 #include <linux/stacktrace.h> 35 #include <linux/prefetch.h> 36 #include <linux/memcontrol.h> 37 #include <linux/random.h> 38 39 #include <trace/events/kmem.h> 40 41 #include "internal.h" 42 43 /* 44 * Lock order: 45 * 1. slab_mutex (Global Mutex) 46 * 2. node->list_lock 47 * 3. slab_lock(page) (Only on some arches and for debugging) 48 * 49 * slab_mutex 50 * 51 * The role of the slab_mutex is to protect the list of all the slabs 52 * and to synchronize major metadata changes to slab cache structures. 53 * 54 * The slab_lock is only used for debugging and on arches that do not 55 * have the ability to do a cmpxchg_double. It only protects the second 56 * double word in the page struct. Meaning 57 * A. page->freelist -> List of object free in a page 58 * B. page->counters -> Counters of objects 59 * C. page->frozen -> frozen state 60 * 61 * If a slab is frozen then it is exempt from list management. It is not 62 * on any list. The processor that froze the slab is the one who can 63 * perform list operations on the page. Other processors may put objects 64 * onto the freelist but the processor that froze the slab is the only 65 * one that can retrieve the objects from the page's freelist. 66 * 67 * The list_lock protects the partial and full list on each node and 68 * the partial slab counter. If taken then no new slabs may be added or 69 * removed from the lists nor make the number of partial slabs be modified. 70 * (Note that the total number of slabs is an atomic value that may be 71 * modified without taking the list lock). 72 * 73 * The list_lock is a centralized lock and thus we avoid taking it as 74 * much as possible. As long as SLUB does not have to handle partial 75 * slabs, operations can continue without any centralized lock. F.e. 76 * allocating a long series of objects that fill up slabs does not require 77 * the list lock. 78 * Interrupts are disabled during allocation and deallocation in order to 79 * make the slab allocator safe to use in the context of an irq. In addition 80 * interrupts are disabled to ensure that the processor does not change 81 * while handling per_cpu slabs, due to kernel preemption. 82 * 83 * SLUB assigns one slab for allocation to each processor. 84 * Allocations only occur from these slabs called cpu slabs. 85 * 86 * Slabs with free elements are kept on a partial list and during regular 87 * operations no list for full slabs is used. If an object in a full slab is 88 * freed then the slab will show up again on the partial lists. 89 * We track full slabs for debugging purposes though because otherwise we 90 * cannot scan all objects. 91 * 92 * Slabs are freed when they become empty. Teardown and setup is 93 * minimal so we rely on the page allocators per cpu caches for 94 * fast frees and allocs. 95 * 96 * Overloading of page flags that are otherwise used for LRU management. 97 * 98 * PageActive The slab is frozen and exempt from list processing. 99 * This means that the slab is dedicated to a purpose 100 * such as satisfying allocations for a specific 101 * processor. Objects may be freed in the slab while 102 * it is frozen but slab_free will then skip the usual 103 * list operations. It is up to the processor holding 104 * the slab to integrate the slab into the slab lists 105 * when the slab is no longer needed. 106 * 107 * One use of this flag is to mark slabs that are 108 * used for allocations. Then such a slab becomes a cpu 109 * slab. The cpu slab may be equipped with an additional 110 * freelist that allows lockless access to 111 * free objects in addition to the regular freelist 112 * that requires the slab lock. 113 * 114 * PageError Slab requires special handling due to debug 115 * options set. This moves slab handling out of 116 * the fast path and disables lockless freelists. 117 */ 118 119 static inline int kmem_cache_debug(struct kmem_cache *s) 120 { 121 #ifdef CONFIG_SLUB_DEBUG 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 123 #else 124 return 0; 125 #endif 126 } 127 128 void *fixup_red_left(struct kmem_cache *s, void *p) 129 { 130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 131 p += s->red_left_pad; 132 133 return p; 134 } 135 136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 137 { 138 #ifdef CONFIG_SLUB_CPU_PARTIAL 139 return !kmem_cache_debug(s); 140 #else 141 return false; 142 #endif 143 } 144 145 /* 146 * Issues still to be resolved: 147 * 148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 149 * 150 * - Variable sizing of the per node arrays 151 */ 152 153 /* Enable to test recovery from slab corruption on boot */ 154 #undef SLUB_RESILIENCY_TEST 155 156 /* Enable to log cmpxchg failures */ 157 #undef SLUB_DEBUG_CMPXCHG 158 159 /* 160 * Mininum number of partial slabs. These will be left on the partial 161 * lists even if they are empty. kmem_cache_shrink may reclaim them. 162 */ 163 #define MIN_PARTIAL 5 164 165 /* 166 * Maximum number of desirable partial slabs. 167 * The existence of more partial slabs makes kmem_cache_shrink 168 * sort the partial list by the number of objects in use. 169 */ 170 #define MAX_PARTIAL 10 171 172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 173 SLAB_POISON | SLAB_STORE_USER) 174 175 /* 176 * These debug flags cannot use CMPXCHG because there might be consistency 177 * issues when checking or reading debug information 178 */ 179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 180 SLAB_TRACE) 181 182 183 /* 184 * Debugging flags that require metadata to be stored in the slab. These get 185 * disabled when slub_debug=O is used and a cache's min order increases with 186 * metadata. 187 */ 188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 189 190 #define OO_SHIFT 16 191 #define OO_MASK ((1 << OO_SHIFT) - 1) 192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 193 194 /* Internal SLUB flags */ 195 /* Poison object */ 196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 197 /* Use cmpxchg_double */ 198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 199 200 /* 201 * Tracking user of a slab. 202 */ 203 #define TRACK_ADDRS_COUNT 16 204 struct track { 205 unsigned long addr; /* Called from address */ 206 #ifdef CONFIG_STACKTRACE 207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 208 #endif 209 int cpu; /* Was running on cpu */ 210 int pid; /* Pid context */ 211 unsigned long when; /* When did the operation occur */ 212 }; 213 214 enum track_item { TRACK_ALLOC, TRACK_FREE }; 215 216 #ifdef CONFIG_SYSFS 217 static int sysfs_slab_add(struct kmem_cache *); 218 static int sysfs_slab_alias(struct kmem_cache *, const char *); 219 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 220 static void sysfs_slab_remove(struct kmem_cache *s); 221 #else 222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 224 { return 0; } 225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 226 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 227 #endif 228 229 static inline void stat(const struct kmem_cache *s, enum stat_item si) 230 { 231 #ifdef CONFIG_SLUB_STATS 232 /* 233 * The rmw is racy on a preemptible kernel but this is acceptable, so 234 * avoid this_cpu_add()'s irq-disable overhead. 235 */ 236 raw_cpu_inc(s->cpu_slab->stat[si]); 237 #endif 238 } 239 240 /******************************************************************** 241 * Core slab cache functions 242 *******************************************************************/ 243 244 /* 245 * Returns freelist pointer (ptr). With hardening, this is obfuscated 246 * with an XOR of the address where the pointer is held and a per-cache 247 * random number. 248 */ 249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 250 unsigned long ptr_addr) 251 { 252 #ifdef CONFIG_SLAB_FREELIST_HARDENED 253 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr); 254 #else 255 return ptr; 256 #endif 257 } 258 259 /* Returns the freelist pointer recorded at location ptr_addr. */ 260 static inline void *freelist_dereference(const struct kmem_cache *s, 261 void *ptr_addr) 262 { 263 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 264 (unsigned long)ptr_addr); 265 } 266 267 static inline void *get_freepointer(struct kmem_cache *s, void *object) 268 { 269 return freelist_dereference(s, object + s->offset); 270 } 271 272 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 273 { 274 if (object) 275 prefetch(freelist_dereference(s, object + s->offset)); 276 } 277 278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 279 { 280 unsigned long freepointer_addr; 281 void *p; 282 283 if (!debug_pagealloc_enabled()) 284 return get_freepointer(s, object); 285 286 freepointer_addr = (unsigned long)object + s->offset; 287 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 288 return freelist_ptr(s, p, freepointer_addr); 289 } 290 291 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 292 { 293 unsigned long freeptr_addr = (unsigned long)object + s->offset; 294 295 #ifdef CONFIG_SLAB_FREELIST_HARDENED 296 BUG_ON(object == fp); /* naive detection of double free or corruption */ 297 #endif 298 299 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 300 } 301 302 /* Loop over all objects in a slab */ 303 #define for_each_object(__p, __s, __addr, __objects) \ 304 for (__p = fixup_red_left(__s, __addr); \ 305 __p < (__addr) + (__objects) * (__s)->size; \ 306 __p += (__s)->size) 307 308 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 309 for (__p = fixup_red_left(__s, __addr), __idx = 1; \ 310 __idx <= __objects; \ 311 __p += (__s)->size, __idx++) 312 313 /* Determine object index from a given position */ 314 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) 315 { 316 return (p - addr) / s->size; 317 } 318 319 static inline unsigned int order_objects(unsigned int order, unsigned int size, unsigned int reserved) 320 { 321 return (((unsigned int)PAGE_SIZE << order) - reserved) / size; 322 } 323 324 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 325 unsigned int size, unsigned int reserved) 326 { 327 struct kmem_cache_order_objects x = { 328 (order << OO_SHIFT) + order_objects(order, size, reserved) 329 }; 330 331 return x; 332 } 333 334 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 335 { 336 return x.x >> OO_SHIFT; 337 } 338 339 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 340 { 341 return x.x & OO_MASK; 342 } 343 344 /* 345 * Per slab locking using the pagelock 346 */ 347 static __always_inline void slab_lock(struct page *page) 348 { 349 VM_BUG_ON_PAGE(PageTail(page), page); 350 bit_spin_lock(PG_locked, &page->flags); 351 } 352 353 static __always_inline void slab_unlock(struct page *page) 354 { 355 VM_BUG_ON_PAGE(PageTail(page), page); 356 __bit_spin_unlock(PG_locked, &page->flags); 357 } 358 359 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 360 { 361 struct page tmp; 362 tmp.counters = counters_new; 363 /* 364 * page->counters can cover frozen/inuse/objects as well 365 * as page->_refcount. If we assign to ->counters directly 366 * we run the risk of losing updates to page->_refcount, so 367 * be careful and only assign to the fields we need. 368 */ 369 page->frozen = tmp.frozen; 370 page->inuse = tmp.inuse; 371 page->objects = tmp.objects; 372 } 373 374 /* Interrupts must be disabled (for the fallback code to work right) */ 375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 376 void *freelist_old, unsigned long counters_old, 377 void *freelist_new, unsigned long counters_new, 378 const char *n) 379 { 380 VM_BUG_ON(!irqs_disabled()); 381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 383 if (s->flags & __CMPXCHG_DOUBLE) { 384 if (cmpxchg_double(&page->freelist, &page->counters, 385 freelist_old, counters_old, 386 freelist_new, counters_new)) 387 return true; 388 } else 389 #endif 390 { 391 slab_lock(page); 392 if (page->freelist == freelist_old && 393 page->counters == counters_old) { 394 page->freelist = freelist_new; 395 set_page_slub_counters(page, counters_new); 396 slab_unlock(page); 397 return true; 398 } 399 slab_unlock(page); 400 } 401 402 cpu_relax(); 403 stat(s, CMPXCHG_DOUBLE_FAIL); 404 405 #ifdef SLUB_DEBUG_CMPXCHG 406 pr_info("%s %s: cmpxchg double redo ", n, s->name); 407 #endif 408 409 return false; 410 } 411 412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 413 void *freelist_old, unsigned long counters_old, 414 void *freelist_new, unsigned long counters_new, 415 const char *n) 416 { 417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 419 if (s->flags & __CMPXCHG_DOUBLE) { 420 if (cmpxchg_double(&page->freelist, &page->counters, 421 freelist_old, counters_old, 422 freelist_new, counters_new)) 423 return true; 424 } else 425 #endif 426 { 427 unsigned long flags; 428 429 local_irq_save(flags); 430 slab_lock(page); 431 if (page->freelist == freelist_old && 432 page->counters == counters_old) { 433 page->freelist = freelist_new; 434 set_page_slub_counters(page, counters_new); 435 slab_unlock(page); 436 local_irq_restore(flags); 437 return true; 438 } 439 slab_unlock(page); 440 local_irq_restore(flags); 441 } 442 443 cpu_relax(); 444 stat(s, CMPXCHG_DOUBLE_FAIL); 445 446 #ifdef SLUB_DEBUG_CMPXCHG 447 pr_info("%s %s: cmpxchg double redo ", n, s->name); 448 #endif 449 450 return false; 451 } 452 453 #ifdef CONFIG_SLUB_DEBUG 454 /* 455 * Determine a map of object in use on a page. 456 * 457 * Node listlock must be held to guarantee that the page does 458 * not vanish from under us. 459 */ 460 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 461 { 462 void *p; 463 void *addr = page_address(page); 464 465 for (p = page->freelist; p; p = get_freepointer(s, p)) 466 set_bit(slab_index(p, s, addr), map); 467 } 468 469 static inline unsigned int size_from_object(struct kmem_cache *s) 470 { 471 if (s->flags & SLAB_RED_ZONE) 472 return s->size - s->red_left_pad; 473 474 return s->size; 475 } 476 477 static inline void *restore_red_left(struct kmem_cache *s, void *p) 478 { 479 if (s->flags & SLAB_RED_ZONE) 480 p -= s->red_left_pad; 481 482 return p; 483 } 484 485 /* 486 * Debug settings: 487 */ 488 #if defined(CONFIG_SLUB_DEBUG_ON) 489 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 490 #else 491 static slab_flags_t slub_debug; 492 #endif 493 494 static char *slub_debug_slabs; 495 static int disable_higher_order_debug; 496 497 /* 498 * slub is about to manipulate internal object metadata. This memory lies 499 * outside the range of the allocated object, so accessing it would normally 500 * be reported by kasan as a bounds error. metadata_access_enable() is used 501 * to tell kasan that these accesses are OK. 502 */ 503 static inline void metadata_access_enable(void) 504 { 505 kasan_disable_current(); 506 } 507 508 static inline void metadata_access_disable(void) 509 { 510 kasan_enable_current(); 511 } 512 513 /* 514 * Object debugging 515 */ 516 517 /* Verify that a pointer has an address that is valid within a slab page */ 518 static inline int check_valid_pointer(struct kmem_cache *s, 519 struct page *page, void *object) 520 { 521 void *base; 522 523 if (!object) 524 return 1; 525 526 base = page_address(page); 527 object = restore_red_left(s, object); 528 if (object < base || object >= base + page->objects * s->size || 529 (object - base) % s->size) { 530 return 0; 531 } 532 533 return 1; 534 } 535 536 static void print_section(char *level, char *text, u8 *addr, 537 unsigned int length) 538 { 539 metadata_access_enable(); 540 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 541 length, 1); 542 metadata_access_disable(); 543 } 544 545 static struct track *get_track(struct kmem_cache *s, void *object, 546 enum track_item alloc) 547 { 548 struct track *p; 549 550 if (s->offset) 551 p = object + s->offset + sizeof(void *); 552 else 553 p = object + s->inuse; 554 555 return p + alloc; 556 } 557 558 static void set_track(struct kmem_cache *s, void *object, 559 enum track_item alloc, unsigned long addr) 560 { 561 struct track *p = get_track(s, object, alloc); 562 563 if (addr) { 564 #ifdef CONFIG_STACKTRACE 565 struct stack_trace trace; 566 int i; 567 568 trace.nr_entries = 0; 569 trace.max_entries = TRACK_ADDRS_COUNT; 570 trace.entries = p->addrs; 571 trace.skip = 3; 572 metadata_access_enable(); 573 save_stack_trace(&trace); 574 metadata_access_disable(); 575 576 /* See rant in lockdep.c */ 577 if (trace.nr_entries != 0 && 578 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 579 trace.nr_entries--; 580 581 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 582 p->addrs[i] = 0; 583 #endif 584 p->addr = addr; 585 p->cpu = smp_processor_id(); 586 p->pid = current->pid; 587 p->when = jiffies; 588 } else 589 memset(p, 0, sizeof(struct track)); 590 } 591 592 static void init_tracking(struct kmem_cache *s, void *object) 593 { 594 if (!(s->flags & SLAB_STORE_USER)) 595 return; 596 597 set_track(s, object, TRACK_FREE, 0UL); 598 set_track(s, object, TRACK_ALLOC, 0UL); 599 } 600 601 static void print_track(const char *s, struct track *t, unsigned long pr_time) 602 { 603 if (!t->addr) 604 return; 605 606 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 607 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 608 #ifdef CONFIG_STACKTRACE 609 { 610 int i; 611 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 612 if (t->addrs[i]) 613 pr_err("\t%pS\n", (void *)t->addrs[i]); 614 else 615 break; 616 } 617 #endif 618 } 619 620 static void print_tracking(struct kmem_cache *s, void *object) 621 { 622 unsigned long pr_time = jiffies; 623 if (!(s->flags & SLAB_STORE_USER)) 624 return; 625 626 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 627 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 628 } 629 630 static void print_page_info(struct page *page) 631 { 632 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 633 page, page->objects, page->inuse, page->freelist, page->flags); 634 635 } 636 637 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 638 { 639 struct va_format vaf; 640 va_list args; 641 642 va_start(args, fmt); 643 vaf.fmt = fmt; 644 vaf.va = &args; 645 pr_err("=============================================================================\n"); 646 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 647 pr_err("-----------------------------------------------------------------------------\n\n"); 648 649 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 650 va_end(args); 651 } 652 653 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 654 { 655 struct va_format vaf; 656 va_list args; 657 658 va_start(args, fmt); 659 vaf.fmt = fmt; 660 vaf.va = &args; 661 pr_err("FIX %s: %pV\n", s->name, &vaf); 662 va_end(args); 663 } 664 665 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 666 { 667 unsigned int off; /* Offset of last byte */ 668 u8 *addr = page_address(page); 669 670 print_tracking(s, p); 671 672 print_page_info(page); 673 674 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 675 p, p - addr, get_freepointer(s, p)); 676 677 if (s->flags & SLAB_RED_ZONE) 678 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 679 s->red_left_pad); 680 else if (p > addr + 16) 681 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 682 683 print_section(KERN_ERR, "Object ", p, 684 min_t(unsigned int, s->object_size, PAGE_SIZE)); 685 if (s->flags & SLAB_RED_ZONE) 686 print_section(KERN_ERR, "Redzone ", p + s->object_size, 687 s->inuse - s->object_size); 688 689 if (s->offset) 690 off = s->offset + sizeof(void *); 691 else 692 off = s->inuse; 693 694 if (s->flags & SLAB_STORE_USER) 695 off += 2 * sizeof(struct track); 696 697 off += kasan_metadata_size(s); 698 699 if (off != size_from_object(s)) 700 /* Beginning of the filler is the free pointer */ 701 print_section(KERN_ERR, "Padding ", p + off, 702 size_from_object(s) - off); 703 704 dump_stack(); 705 } 706 707 void object_err(struct kmem_cache *s, struct page *page, 708 u8 *object, char *reason) 709 { 710 slab_bug(s, "%s", reason); 711 print_trailer(s, page, object); 712 } 713 714 static void slab_err(struct kmem_cache *s, struct page *page, 715 const char *fmt, ...) 716 { 717 va_list args; 718 char buf[100]; 719 720 va_start(args, fmt); 721 vsnprintf(buf, sizeof(buf), fmt, args); 722 va_end(args); 723 slab_bug(s, "%s", buf); 724 print_page_info(page); 725 dump_stack(); 726 } 727 728 static void init_object(struct kmem_cache *s, void *object, u8 val) 729 { 730 u8 *p = object; 731 732 if (s->flags & SLAB_RED_ZONE) 733 memset(p - s->red_left_pad, val, s->red_left_pad); 734 735 if (s->flags & __OBJECT_POISON) { 736 memset(p, POISON_FREE, s->object_size - 1); 737 p[s->object_size - 1] = POISON_END; 738 } 739 740 if (s->flags & SLAB_RED_ZONE) 741 memset(p + s->object_size, val, s->inuse - s->object_size); 742 } 743 744 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 745 void *from, void *to) 746 { 747 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 748 memset(from, data, to - from); 749 } 750 751 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 752 u8 *object, char *what, 753 u8 *start, unsigned int value, unsigned int bytes) 754 { 755 u8 *fault; 756 u8 *end; 757 758 metadata_access_enable(); 759 fault = memchr_inv(start, value, bytes); 760 metadata_access_disable(); 761 if (!fault) 762 return 1; 763 764 end = start + bytes; 765 while (end > fault && end[-1] == value) 766 end--; 767 768 slab_bug(s, "%s overwritten", what); 769 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 770 fault, end - 1, fault[0], value); 771 print_trailer(s, page, object); 772 773 restore_bytes(s, what, value, fault, end); 774 return 0; 775 } 776 777 /* 778 * Object layout: 779 * 780 * object address 781 * Bytes of the object to be managed. 782 * If the freepointer may overlay the object then the free 783 * pointer is the first word of the object. 784 * 785 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 786 * 0xa5 (POISON_END) 787 * 788 * object + s->object_size 789 * Padding to reach word boundary. This is also used for Redzoning. 790 * Padding is extended by another word if Redzoning is enabled and 791 * object_size == inuse. 792 * 793 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 794 * 0xcc (RED_ACTIVE) for objects in use. 795 * 796 * object + s->inuse 797 * Meta data starts here. 798 * 799 * A. Free pointer (if we cannot overwrite object on free) 800 * B. Tracking data for SLAB_STORE_USER 801 * C. Padding to reach required alignment boundary or at mininum 802 * one word if debugging is on to be able to detect writes 803 * before the word boundary. 804 * 805 * Padding is done using 0x5a (POISON_INUSE) 806 * 807 * object + s->size 808 * Nothing is used beyond s->size. 809 * 810 * If slabcaches are merged then the object_size and inuse boundaries are mostly 811 * ignored. And therefore no slab options that rely on these boundaries 812 * may be used with merged slabcaches. 813 */ 814 815 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 816 { 817 unsigned long off = s->inuse; /* The end of info */ 818 819 if (s->offset) 820 /* Freepointer is placed after the object. */ 821 off += sizeof(void *); 822 823 if (s->flags & SLAB_STORE_USER) 824 /* We also have user information there */ 825 off += 2 * sizeof(struct track); 826 827 off += kasan_metadata_size(s); 828 829 if (size_from_object(s) == off) 830 return 1; 831 832 return check_bytes_and_report(s, page, p, "Object padding", 833 p + off, POISON_INUSE, size_from_object(s) - off); 834 } 835 836 /* Check the pad bytes at the end of a slab page */ 837 static int slab_pad_check(struct kmem_cache *s, struct page *page) 838 { 839 u8 *start; 840 u8 *fault; 841 u8 *end; 842 u8 *pad; 843 int length; 844 int remainder; 845 846 if (!(s->flags & SLAB_POISON)) 847 return 1; 848 849 start = page_address(page); 850 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 851 end = start + length; 852 remainder = length % s->size; 853 if (!remainder) 854 return 1; 855 856 pad = end - remainder; 857 metadata_access_enable(); 858 fault = memchr_inv(pad, POISON_INUSE, remainder); 859 metadata_access_disable(); 860 if (!fault) 861 return 1; 862 while (end > fault && end[-1] == POISON_INUSE) 863 end--; 864 865 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 866 print_section(KERN_ERR, "Padding ", pad, remainder); 867 868 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 869 return 0; 870 } 871 872 static int check_object(struct kmem_cache *s, struct page *page, 873 void *object, u8 val) 874 { 875 u8 *p = object; 876 u8 *endobject = object + s->object_size; 877 878 if (s->flags & SLAB_RED_ZONE) { 879 if (!check_bytes_and_report(s, page, object, "Redzone", 880 object - s->red_left_pad, val, s->red_left_pad)) 881 return 0; 882 883 if (!check_bytes_and_report(s, page, object, "Redzone", 884 endobject, val, s->inuse - s->object_size)) 885 return 0; 886 } else { 887 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 888 check_bytes_and_report(s, page, p, "Alignment padding", 889 endobject, POISON_INUSE, 890 s->inuse - s->object_size); 891 } 892 } 893 894 if (s->flags & SLAB_POISON) { 895 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 896 (!check_bytes_and_report(s, page, p, "Poison", p, 897 POISON_FREE, s->object_size - 1) || 898 !check_bytes_and_report(s, page, p, "Poison", 899 p + s->object_size - 1, POISON_END, 1))) 900 return 0; 901 /* 902 * check_pad_bytes cleans up on its own. 903 */ 904 check_pad_bytes(s, page, p); 905 } 906 907 if (!s->offset && val == SLUB_RED_ACTIVE) 908 /* 909 * Object and freepointer overlap. Cannot check 910 * freepointer while object is allocated. 911 */ 912 return 1; 913 914 /* Check free pointer validity */ 915 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 916 object_err(s, page, p, "Freepointer corrupt"); 917 /* 918 * No choice but to zap it and thus lose the remainder 919 * of the free objects in this slab. May cause 920 * another error because the object count is now wrong. 921 */ 922 set_freepointer(s, p, NULL); 923 return 0; 924 } 925 return 1; 926 } 927 928 static int check_slab(struct kmem_cache *s, struct page *page) 929 { 930 int maxobj; 931 932 VM_BUG_ON(!irqs_disabled()); 933 934 if (!PageSlab(page)) { 935 slab_err(s, page, "Not a valid slab page"); 936 return 0; 937 } 938 939 maxobj = order_objects(compound_order(page), s->size, s->reserved); 940 if (page->objects > maxobj) { 941 slab_err(s, page, "objects %u > max %u", 942 page->objects, maxobj); 943 return 0; 944 } 945 if (page->inuse > page->objects) { 946 slab_err(s, page, "inuse %u > max %u", 947 page->inuse, page->objects); 948 return 0; 949 } 950 /* Slab_pad_check fixes things up after itself */ 951 slab_pad_check(s, page); 952 return 1; 953 } 954 955 /* 956 * Determine if a certain object on a page is on the freelist. Must hold the 957 * slab lock to guarantee that the chains are in a consistent state. 958 */ 959 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 960 { 961 int nr = 0; 962 void *fp; 963 void *object = NULL; 964 int max_objects; 965 966 fp = page->freelist; 967 while (fp && nr <= page->objects) { 968 if (fp == search) 969 return 1; 970 if (!check_valid_pointer(s, page, fp)) { 971 if (object) { 972 object_err(s, page, object, 973 "Freechain corrupt"); 974 set_freepointer(s, object, NULL); 975 } else { 976 slab_err(s, page, "Freepointer corrupt"); 977 page->freelist = NULL; 978 page->inuse = page->objects; 979 slab_fix(s, "Freelist cleared"); 980 return 0; 981 } 982 break; 983 } 984 object = fp; 985 fp = get_freepointer(s, object); 986 nr++; 987 } 988 989 max_objects = order_objects(compound_order(page), s->size, s->reserved); 990 if (max_objects > MAX_OBJS_PER_PAGE) 991 max_objects = MAX_OBJS_PER_PAGE; 992 993 if (page->objects != max_objects) { 994 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 995 page->objects, max_objects); 996 page->objects = max_objects; 997 slab_fix(s, "Number of objects adjusted."); 998 } 999 if (page->inuse != page->objects - nr) { 1000 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 1001 page->inuse, page->objects - nr); 1002 page->inuse = page->objects - nr; 1003 slab_fix(s, "Object count adjusted."); 1004 } 1005 return search == NULL; 1006 } 1007 1008 static void trace(struct kmem_cache *s, struct page *page, void *object, 1009 int alloc) 1010 { 1011 if (s->flags & SLAB_TRACE) { 1012 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1013 s->name, 1014 alloc ? "alloc" : "free", 1015 object, page->inuse, 1016 page->freelist); 1017 1018 if (!alloc) 1019 print_section(KERN_INFO, "Object ", (void *)object, 1020 s->object_size); 1021 1022 dump_stack(); 1023 } 1024 } 1025 1026 /* 1027 * Tracking of fully allocated slabs for debugging purposes. 1028 */ 1029 static void add_full(struct kmem_cache *s, 1030 struct kmem_cache_node *n, struct page *page) 1031 { 1032 if (!(s->flags & SLAB_STORE_USER)) 1033 return; 1034 1035 lockdep_assert_held(&n->list_lock); 1036 list_add(&page->lru, &n->full); 1037 } 1038 1039 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1040 { 1041 if (!(s->flags & SLAB_STORE_USER)) 1042 return; 1043 1044 lockdep_assert_held(&n->list_lock); 1045 list_del(&page->lru); 1046 } 1047 1048 /* Tracking of the number of slabs for debugging purposes */ 1049 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1050 { 1051 struct kmem_cache_node *n = get_node(s, node); 1052 1053 return atomic_long_read(&n->nr_slabs); 1054 } 1055 1056 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1057 { 1058 return atomic_long_read(&n->nr_slabs); 1059 } 1060 1061 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1062 { 1063 struct kmem_cache_node *n = get_node(s, node); 1064 1065 /* 1066 * May be called early in order to allocate a slab for the 1067 * kmem_cache_node structure. Solve the chicken-egg 1068 * dilemma by deferring the increment of the count during 1069 * bootstrap (see early_kmem_cache_node_alloc). 1070 */ 1071 if (likely(n)) { 1072 atomic_long_inc(&n->nr_slabs); 1073 atomic_long_add(objects, &n->total_objects); 1074 } 1075 } 1076 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1077 { 1078 struct kmem_cache_node *n = get_node(s, node); 1079 1080 atomic_long_dec(&n->nr_slabs); 1081 atomic_long_sub(objects, &n->total_objects); 1082 } 1083 1084 /* Object debug checks for alloc/free paths */ 1085 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1086 void *object) 1087 { 1088 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1089 return; 1090 1091 init_object(s, object, SLUB_RED_INACTIVE); 1092 init_tracking(s, object); 1093 } 1094 1095 static inline int alloc_consistency_checks(struct kmem_cache *s, 1096 struct page *page, 1097 void *object, unsigned long addr) 1098 { 1099 if (!check_slab(s, page)) 1100 return 0; 1101 1102 if (!check_valid_pointer(s, page, object)) { 1103 object_err(s, page, object, "Freelist Pointer check fails"); 1104 return 0; 1105 } 1106 1107 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1108 return 0; 1109 1110 return 1; 1111 } 1112 1113 static noinline int alloc_debug_processing(struct kmem_cache *s, 1114 struct page *page, 1115 void *object, unsigned long addr) 1116 { 1117 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1118 if (!alloc_consistency_checks(s, page, object, addr)) 1119 goto bad; 1120 } 1121 1122 /* Success perform special debug activities for allocs */ 1123 if (s->flags & SLAB_STORE_USER) 1124 set_track(s, object, TRACK_ALLOC, addr); 1125 trace(s, page, object, 1); 1126 init_object(s, object, SLUB_RED_ACTIVE); 1127 return 1; 1128 1129 bad: 1130 if (PageSlab(page)) { 1131 /* 1132 * If this is a slab page then lets do the best we can 1133 * to avoid issues in the future. Marking all objects 1134 * as used avoids touching the remaining objects. 1135 */ 1136 slab_fix(s, "Marking all objects used"); 1137 page->inuse = page->objects; 1138 page->freelist = NULL; 1139 } 1140 return 0; 1141 } 1142 1143 static inline int free_consistency_checks(struct kmem_cache *s, 1144 struct page *page, void *object, unsigned long addr) 1145 { 1146 if (!check_valid_pointer(s, page, object)) { 1147 slab_err(s, page, "Invalid object pointer 0x%p", object); 1148 return 0; 1149 } 1150 1151 if (on_freelist(s, page, object)) { 1152 object_err(s, page, object, "Object already free"); 1153 return 0; 1154 } 1155 1156 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1157 return 0; 1158 1159 if (unlikely(s != page->slab_cache)) { 1160 if (!PageSlab(page)) { 1161 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1162 object); 1163 } else if (!page->slab_cache) { 1164 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1165 object); 1166 dump_stack(); 1167 } else 1168 object_err(s, page, object, 1169 "page slab pointer corrupt."); 1170 return 0; 1171 } 1172 return 1; 1173 } 1174 1175 /* Supports checking bulk free of a constructed freelist */ 1176 static noinline int free_debug_processing( 1177 struct kmem_cache *s, struct page *page, 1178 void *head, void *tail, int bulk_cnt, 1179 unsigned long addr) 1180 { 1181 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1182 void *object = head; 1183 int cnt = 0; 1184 unsigned long uninitialized_var(flags); 1185 int ret = 0; 1186 1187 spin_lock_irqsave(&n->list_lock, flags); 1188 slab_lock(page); 1189 1190 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1191 if (!check_slab(s, page)) 1192 goto out; 1193 } 1194 1195 next_object: 1196 cnt++; 1197 1198 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1199 if (!free_consistency_checks(s, page, object, addr)) 1200 goto out; 1201 } 1202 1203 if (s->flags & SLAB_STORE_USER) 1204 set_track(s, object, TRACK_FREE, addr); 1205 trace(s, page, object, 0); 1206 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1207 init_object(s, object, SLUB_RED_INACTIVE); 1208 1209 /* Reached end of constructed freelist yet? */ 1210 if (object != tail) { 1211 object = get_freepointer(s, object); 1212 goto next_object; 1213 } 1214 ret = 1; 1215 1216 out: 1217 if (cnt != bulk_cnt) 1218 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1219 bulk_cnt, cnt); 1220 1221 slab_unlock(page); 1222 spin_unlock_irqrestore(&n->list_lock, flags); 1223 if (!ret) 1224 slab_fix(s, "Object at 0x%p not freed", object); 1225 return ret; 1226 } 1227 1228 static int __init setup_slub_debug(char *str) 1229 { 1230 slub_debug = DEBUG_DEFAULT_FLAGS; 1231 if (*str++ != '=' || !*str) 1232 /* 1233 * No options specified. Switch on full debugging. 1234 */ 1235 goto out; 1236 1237 if (*str == ',') 1238 /* 1239 * No options but restriction on slabs. This means full 1240 * debugging for slabs matching a pattern. 1241 */ 1242 goto check_slabs; 1243 1244 slub_debug = 0; 1245 if (*str == '-') 1246 /* 1247 * Switch off all debugging measures. 1248 */ 1249 goto out; 1250 1251 /* 1252 * Determine which debug features should be switched on 1253 */ 1254 for (; *str && *str != ','; str++) { 1255 switch (tolower(*str)) { 1256 case 'f': 1257 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1258 break; 1259 case 'z': 1260 slub_debug |= SLAB_RED_ZONE; 1261 break; 1262 case 'p': 1263 slub_debug |= SLAB_POISON; 1264 break; 1265 case 'u': 1266 slub_debug |= SLAB_STORE_USER; 1267 break; 1268 case 't': 1269 slub_debug |= SLAB_TRACE; 1270 break; 1271 case 'a': 1272 slub_debug |= SLAB_FAILSLAB; 1273 break; 1274 case 'o': 1275 /* 1276 * Avoid enabling debugging on caches if its minimum 1277 * order would increase as a result. 1278 */ 1279 disable_higher_order_debug = 1; 1280 break; 1281 default: 1282 pr_err("slub_debug option '%c' unknown. skipped\n", 1283 *str); 1284 } 1285 } 1286 1287 check_slabs: 1288 if (*str == ',') 1289 slub_debug_slabs = str + 1; 1290 out: 1291 return 1; 1292 } 1293 1294 __setup("slub_debug", setup_slub_debug); 1295 1296 slab_flags_t kmem_cache_flags(unsigned int object_size, 1297 slab_flags_t flags, const char *name, 1298 void (*ctor)(void *)) 1299 { 1300 /* 1301 * Enable debugging if selected on the kernel commandline. 1302 */ 1303 if (slub_debug && (!slub_debug_slabs || (name && 1304 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1305 flags |= slub_debug; 1306 1307 return flags; 1308 } 1309 #else /* !CONFIG_SLUB_DEBUG */ 1310 static inline void setup_object_debug(struct kmem_cache *s, 1311 struct page *page, void *object) {} 1312 1313 static inline int alloc_debug_processing(struct kmem_cache *s, 1314 struct page *page, void *object, unsigned long addr) { return 0; } 1315 1316 static inline int free_debug_processing( 1317 struct kmem_cache *s, struct page *page, 1318 void *head, void *tail, int bulk_cnt, 1319 unsigned long addr) { return 0; } 1320 1321 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1322 { return 1; } 1323 static inline int check_object(struct kmem_cache *s, struct page *page, 1324 void *object, u8 val) { return 1; } 1325 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1326 struct page *page) {} 1327 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1328 struct page *page) {} 1329 slab_flags_t kmem_cache_flags(unsigned int object_size, 1330 slab_flags_t flags, const char *name, 1331 void (*ctor)(void *)) 1332 { 1333 return flags; 1334 } 1335 #define slub_debug 0 1336 1337 #define disable_higher_order_debug 0 1338 1339 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1340 { return 0; } 1341 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1342 { return 0; } 1343 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1344 int objects) {} 1345 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1346 int objects) {} 1347 1348 #endif /* CONFIG_SLUB_DEBUG */ 1349 1350 /* 1351 * Hooks for other subsystems that check memory allocations. In a typical 1352 * production configuration these hooks all should produce no code at all. 1353 */ 1354 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1355 { 1356 kmemleak_alloc(ptr, size, 1, flags); 1357 kasan_kmalloc_large(ptr, size, flags); 1358 } 1359 1360 static __always_inline void kfree_hook(void *x) 1361 { 1362 kmemleak_free(x); 1363 kasan_kfree_large(x, _RET_IP_); 1364 } 1365 1366 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1367 { 1368 kmemleak_free_recursive(x, s->flags); 1369 1370 /* 1371 * Trouble is that we may no longer disable interrupts in the fast path 1372 * So in order to make the debug calls that expect irqs to be 1373 * disabled we need to disable interrupts temporarily. 1374 */ 1375 #ifdef CONFIG_LOCKDEP 1376 { 1377 unsigned long flags; 1378 1379 local_irq_save(flags); 1380 debug_check_no_locks_freed(x, s->object_size); 1381 local_irq_restore(flags); 1382 } 1383 #endif 1384 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1385 debug_check_no_obj_freed(x, s->object_size); 1386 1387 /* KASAN might put x into memory quarantine, delaying its reuse */ 1388 return kasan_slab_free(s, x, _RET_IP_); 1389 } 1390 1391 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1392 void **head, void **tail) 1393 { 1394 /* 1395 * Compiler cannot detect this function can be removed if slab_free_hook() 1396 * evaluates to nothing. Thus, catch all relevant config debug options here. 1397 */ 1398 #if defined(CONFIG_LOCKDEP) || \ 1399 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1400 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1401 defined(CONFIG_KASAN) 1402 1403 void *object; 1404 void *next = *head; 1405 void *old_tail = *tail ? *tail : *head; 1406 1407 /* Head and tail of the reconstructed freelist */ 1408 *head = NULL; 1409 *tail = NULL; 1410 1411 do { 1412 object = next; 1413 next = get_freepointer(s, object); 1414 /* If object's reuse doesn't have to be delayed */ 1415 if (!slab_free_hook(s, object)) { 1416 /* Move object to the new freelist */ 1417 set_freepointer(s, object, *head); 1418 *head = object; 1419 if (!*tail) 1420 *tail = object; 1421 } 1422 } while (object != old_tail); 1423 1424 if (*head == *tail) 1425 *tail = NULL; 1426 1427 return *head != NULL; 1428 #else 1429 return true; 1430 #endif 1431 } 1432 1433 static void setup_object(struct kmem_cache *s, struct page *page, 1434 void *object) 1435 { 1436 setup_object_debug(s, page, object); 1437 kasan_init_slab_obj(s, object); 1438 if (unlikely(s->ctor)) { 1439 kasan_unpoison_object_data(s, object); 1440 s->ctor(object); 1441 kasan_poison_object_data(s, object); 1442 } 1443 } 1444 1445 /* 1446 * Slab allocation and freeing 1447 */ 1448 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1449 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1450 { 1451 struct page *page; 1452 unsigned int order = oo_order(oo); 1453 1454 if (node == NUMA_NO_NODE) 1455 page = alloc_pages(flags, order); 1456 else 1457 page = __alloc_pages_node(node, flags, order); 1458 1459 if (page && memcg_charge_slab(page, flags, order, s)) { 1460 __free_pages(page, order); 1461 page = NULL; 1462 } 1463 1464 return page; 1465 } 1466 1467 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1468 /* Pre-initialize the random sequence cache */ 1469 static int init_cache_random_seq(struct kmem_cache *s) 1470 { 1471 unsigned int count = oo_objects(s->oo); 1472 int err; 1473 1474 /* Bailout if already initialised */ 1475 if (s->random_seq) 1476 return 0; 1477 1478 err = cache_random_seq_create(s, count, GFP_KERNEL); 1479 if (err) { 1480 pr_err("SLUB: Unable to initialize free list for %s\n", 1481 s->name); 1482 return err; 1483 } 1484 1485 /* Transform to an offset on the set of pages */ 1486 if (s->random_seq) { 1487 unsigned int i; 1488 1489 for (i = 0; i < count; i++) 1490 s->random_seq[i] *= s->size; 1491 } 1492 return 0; 1493 } 1494 1495 /* Initialize each random sequence freelist per cache */ 1496 static void __init init_freelist_randomization(void) 1497 { 1498 struct kmem_cache *s; 1499 1500 mutex_lock(&slab_mutex); 1501 1502 list_for_each_entry(s, &slab_caches, list) 1503 init_cache_random_seq(s); 1504 1505 mutex_unlock(&slab_mutex); 1506 } 1507 1508 /* Get the next entry on the pre-computed freelist randomized */ 1509 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1510 unsigned long *pos, void *start, 1511 unsigned long page_limit, 1512 unsigned long freelist_count) 1513 { 1514 unsigned int idx; 1515 1516 /* 1517 * If the target page allocation failed, the number of objects on the 1518 * page might be smaller than the usual size defined by the cache. 1519 */ 1520 do { 1521 idx = s->random_seq[*pos]; 1522 *pos += 1; 1523 if (*pos >= freelist_count) 1524 *pos = 0; 1525 } while (unlikely(idx >= page_limit)); 1526 1527 return (char *)start + idx; 1528 } 1529 1530 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1531 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1532 { 1533 void *start; 1534 void *cur; 1535 void *next; 1536 unsigned long idx, pos, page_limit, freelist_count; 1537 1538 if (page->objects < 2 || !s->random_seq) 1539 return false; 1540 1541 freelist_count = oo_objects(s->oo); 1542 pos = get_random_int() % freelist_count; 1543 1544 page_limit = page->objects * s->size; 1545 start = fixup_red_left(s, page_address(page)); 1546 1547 /* First entry is used as the base of the freelist */ 1548 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1549 freelist_count); 1550 page->freelist = cur; 1551 1552 for (idx = 1; idx < page->objects; idx++) { 1553 setup_object(s, page, cur); 1554 next = next_freelist_entry(s, page, &pos, start, page_limit, 1555 freelist_count); 1556 set_freepointer(s, cur, next); 1557 cur = next; 1558 } 1559 setup_object(s, page, cur); 1560 set_freepointer(s, cur, NULL); 1561 1562 return true; 1563 } 1564 #else 1565 static inline int init_cache_random_seq(struct kmem_cache *s) 1566 { 1567 return 0; 1568 } 1569 static inline void init_freelist_randomization(void) { } 1570 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1571 { 1572 return false; 1573 } 1574 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1575 1576 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1577 { 1578 struct page *page; 1579 struct kmem_cache_order_objects oo = s->oo; 1580 gfp_t alloc_gfp; 1581 void *start, *p; 1582 int idx, order; 1583 bool shuffle; 1584 1585 flags &= gfp_allowed_mask; 1586 1587 if (gfpflags_allow_blocking(flags)) 1588 local_irq_enable(); 1589 1590 flags |= s->allocflags; 1591 1592 /* 1593 * Let the initial higher-order allocation fail under memory pressure 1594 * so we fall-back to the minimum order allocation. 1595 */ 1596 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1597 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1598 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1599 1600 page = alloc_slab_page(s, alloc_gfp, node, oo); 1601 if (unlikely(!page)) { 1602 oo = s->min; 1603 alloc_gfp = flags; 1604 /* 1605 * Allocation may have failed due to fragmentation. 1606 * Try a lower order alloc if possible 1607 */ 1608 page = alloc_slab_page(s, alloc_gfp, node, oo); 1609 if (unlikely(!page)) 1610 goto out; 1611 stat(s, ORDER_FALLBACK); 1612 } 1613 1614 page->objects = oo_objects(oo); 1615 1616 order = compound_order(page); 1617 page->slab_cache = s; 1618 __SetPageSlab(page); 1619 if (page_is_pfmemalloc(page)) 1620 SetPageSlabPfmemalloc(page); 1621 1622 start = page_address(page); 1623 1624 if (unlikely(s->flags & SLAB_POISON)) 1625 memset(start, POISON_INUSE, PAGE_SIZE << order); 1626 1627 kasan_poison_slab(page); 1628 1629 shuffle = shuffle_freelist(s, page); 1630 1631 if (!shuffle) { 1632 for_each_object_idx(p, idx, s, start, page->objects) { 1633 setup_object(s, page, p); 1634 if (likely(idx < page->objects)) 1635 set_freepointer(s, p, p + s->size); 1636 else 1637 set_freepointer(s, p, NULL); 1638 } 1639 page->freelist = fixup_red_left(s, start); 1640 } 1641 1642 page->inuse = page->objects; 1643 page->frozen = 1; 1644 1645 out: 1646 if (gfpflags_allow_blocking(flags)) 1647 local_irq_disable(); 1648 if (!page) 1649 return NULL; 1650 1651 mod_lruvec_page_state(page, 1652 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1653 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1654 1 << oo_order(oo)); 1655 1656 inc_slabs_node(s, page_to_nid(page), page->objects); 1657 1658 return page; 1659 } 1660 1661 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1662 { 1663 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1664 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1665 flags &= ~GFP_SLAB_BUG_MASK; 1666 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1667 invalid_mask, &invalid_mask, flags, &flags); 1668 dump_stack(); 1669 } 1670 1671 return allocate_slab(s, 1672 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1673 } 1674 1675 static void __free_slab(struct kmem_cache *s, struct page *page) 1676 { 1677 int order = compound_order(page); 1678 int pages = 1 << order; 1679 1680 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1681 void *p; 1682 1683 slab_pad_check(s, page); 1684 for_each_object(p, s, page_address(page), 1685 page->objects) 1686 check_object(s, page, p, SLUB_RED_INACTIVE); 1687 } 1688 1689 mod_lruvec_page_state(page, 1690 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1691 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1692 -pages); 1693 1694 __ClearPageSlabPfmemalloc(page); 1695 __ClearPageSlab(page); 1696 1697 page_mapcount_reset(page); 1698 if (current->reclaim_state) 1699 current->reclaim_state->reclaimed_slab += pages; 1700 memcg_uncharge_slab(page, order, s); 1701 __free_pages(page, order); 1702 } 1703 1704 #define need_reserve_slab_rcu \ 1705 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1706 1707 static void rcu_free_slab(struct rcu_head *h) 1708 { 1709 struct page *page; 1710 1711 if (need_reserve_slab_rcu) 1712 page = virt_to_head_page(h); 1713 else 1714 page = container_of((struct list_head *)h, struct page, lru); 1715 1716 __free_slab(page->slab_cache, page); 1717 } 1718 1719 static void free_slab(struct kmem_cache *s, struct page *page) 1720 { 1721 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1722 struct rcu_head *head; 1723 1724 if (need_reserve_slab_rcu) { 1725 int order = compound_order(page); 1726 int offset = (PAGE_SIZE << order) - s->reserved; 1727 1728 VM_BUG_ON(s->reserved != sizeof(*head)); 1729 head = page_address(page) + offset; 1730 } else { 1731 head = &page->rcu_head; 1732 } 1733 1734 call_rcu(head, rcu_free_slab); 1735 } else 1736 __free_slab(s, page); 1737 } 1738 1739 static void discard_slab(struct kmem_cache *s, struct page *page) 1740 { 1741 dec_slabs_node(s, page_to_nid(page), page->objects); 1742 free_slab(s, page); 1743 } 1744 1745 /* 1746 * Management of partially allocated slabs. 1747 */ 1748 static inline void 1749 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1750 { 1751 n->nr_partial++; 1752 if (tail == DEACTIVATE_TO_TAIL) 1753 list_add_tail(&page->lru, &n->partial); 1754 else 1755 list_add(&page->lru, &n->partial); 1756 } 1757 1758 static inline void add_partial(struct kmem_cache_node *n, 1759 struct page *page, int tail) 1760 { 1761 lockdep_assert_held(&n->list_lock); 1762 __add_partial(n, page, tail); 1763 } 1764 1765 static inline void remove_partial(struct kmem_cache_node *n, 1766 struct page *page) 1767 { 1768 lockdep_assert_held(&n->list_lock); 1769 list_del(&page->lru); 1770 n->nr_partial--; 1771 } 1772 1773 /* 1774 * Remove slab from the partial list, freeze it and 1775 * return the pointer to the freelist. 1776 * 1777 * Returns a list of objects or NULL if it fails. 1778 */ 1779 static inline void *acquire_slab(struct kmem_cache *s, 1780 struct kmem_cache_node *n, struct page *page, 1781 int mode, int *objects) 1782 { 1783 void *freelist; 1784 unsigned long counters; 1785 struct page new; 1786 1787 lockdep_assert_held(&n->list_lock); 1788 1789 /* 1790 * Zap the freelist and set the frozen bit. 1791 * The old freelist is the list of objects for the 1792 * per cpu allocation list. 1793 */ 1794 freelist = page->freelist; 1795 counters = page->counters; 1796 new.counters = counters; 1797 *objects = new.objects - new.inuse; 1798 if (mode) { 1799 new.inuse = page->objects; 1800 new.freelist = NULL; 1801 } else { 1802 new.freelist = freelist; 1803 } 1804 1805 VM_BUG_ON(new.frozen); 1806 new.frozen = 1; 1807 1808 if (!__cmpxchg_double_slab(s, page, 1809 freelist, counters, 1810 new.freelist, new.counters, 1811 "acquire_slab")) 1812 return NULL; 1813 1814 remove_partial(n, page); 1815 WARN_ON(!freelist); 1816 return freelist; 1817 } 1818 1819 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1820 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1821 1822 /* 1823 * Try to allocate a partial slab from a specific node. 1824 */ 1825 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1826 struct kmem_cache_cpu *c, gfp_t flags) 1827 { 1828 struct page *page, *page2; 1829 void *object = NULL; 1830 unsigned int available = 0; 1831 int objects; 1832 1833 /* 1834 * Racy check. If we mistakenly see no partial slabs then we 1835 * just allocate an empty slab. If we mistakenly try to get a 1836 * partial slab and there is none available then get_partials() 1837 * will return NULL. 1838 */ 1839 if (!n || !n->nr_partial) 1840 return NULL; 1841 1842 spin_lock(&n->list_lock); 1843 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1844 void *t; 1845 1846 if (!pfmemalloc_match(page, flags)) 1847 continue; 1848 1849 t = acquire_slab(s, n, page, object == NULL, &objects); 1850 if (!t) 1851 break; 1852 1853 available += objects; 1854 if (!object) { 1855 c->page = page; 1856 stat(s, ALLOC_FROM_PARTIAL); 1857 object = t; 1858 } else { 1859 put_cpu_partial(s, page, 0); 1860 stat(s, CPU_PARTIAL_NODE); 1861 } 1862 if (!kmem_cache_has_cpu_partial(s) 1863 || available > slub_cpu_partial(s) / 2) 1864 break; 1865 1866 } 1867 spin_unlock(&n->list_lock); 1868 return object; 1869 } 1870 1871 /* 1872 * Get a page from somewhere. Search in increasing NUMA distances. 1873 */ 1874 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1875 struct kmem_cache_cpu *c) 1876 { 1877 #ifdef CONFIG_NUMA 1878 struct zonelist *zonelist; 1879 struct zoneref *z; 1880 struct zone *zone; 1881 enum zone_type high_zoneidx = gfp_zone(flags); 1882 void *object; 1883 unsigned int cpuset_mems_cookie; 1884 1885 /* 1886 * The defrag ratio allows a configuration of the tradeoffs between 1887 * inter node defragmentation and node local allocations. A lower 1888 * defrag_ratio increases the tendency to do local allocations 1889 * instead of attempting to obtain partial slabs from other nodes. 1890 * 1891 * If the defrag_ratio is set to 0 then kmalloc() always 1892 * returns node local objects. If the ratio is higher then kmalloc() 1893 * may return off node objects because partial slabs are obtained 1894 * from other nodes and filled up. 1895 * 1896 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1897 * (which makes defrag_ratio = 1000) then every (well almost) 1898 * allocation will first attempt to defrag slab caches on other nodes. 1899 * This means scanning over all nodes to look for partial slabs which 1900 * may be expensive if we do it every time we are trying to find a slab 1901 * with available objects. 1902 */ 1903 if (!s->remote_node_defrag_ratio || 1904 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1905 return NULL; 1906 1907 do { 1908 cpuset_mems_cookie = read_mems_allowed_begin(); 1909 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1910 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1911 struct kmem_cache_node *n; 1912 1913 n = get_node(s, zone_to_nid(zone)); 1914 1915 if (n && cpuset_zone_allowed(zone, flags) && 1916 n->nr_partial > s->min_partial) { 1917 object = get_partial_node(s, n, c, flags); 1918 if (object) { 1919 /* 1920 * Don't check read_mems_allowed_retry() 1921 * here - if mems_allowed was updated in 1922 * parallel, that was a harmless race 1923 * between allocation and the cpuset 1924 * update 1925 */ 1926 return object; 1927 } 1928 } 1929 } 1930 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1931 #endif 1932 return NULL; 1933 } 1934 1935 /* 1936 * Get a partial page, lock it and return it. 1937 */ 1938 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1939 struct kmem_cache_cpu *c) 1940 { 1941 void *object; 1942 int searchnode = node; 1943 1944 if (node == NUMA_NO_NODE) 1945 searchnode = numa_mem_id(); 1946 else if (!node_present_pages(node)) 1947 searchnode = node_to_mem_node(node); 1948 1949 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1950 if (object || node != NUMA_NO_NODE) 1951 return object; 1952 1953 return get_any_partial(s, flags, c); 1954 } 1955 1956 #ifdef CONFIG_PREEMPT 1957 /* 1958 * Calculate the next globally unique transaction for disambiguiation 1959 * during cmpxchg. The transactions start with the cpu number and are then 1960 * incremented by CONFIG_NR_CPUS. 1961 */ 1962 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1963 #else 1964 /* 1965 * No preemption supported therefore also no need to check for 1966 * different cpus. 1967 */ 1968 #define TID_STEP 1 1969 #endif 1970 1971 static inline unsigned long next_tid(unsigned long tid) 1972 { 1973 return tid + TID_STEP; 1974 } 1975 1976 static inline unsigned int tid_to_cpu(unsigned long tid) 1977 { 1978 return tid % TID_STEP; 1979 } 1980 1981 static inline unsigned long tid_to_event(unsigned long tid) 1982 { 1983 return tid / TID_STEP; 1984 } 1985 1986 static inline unsigned int init_tid(int cpu) 1987 { 1988 return cpu; 1989 } 1990 1991 static inline void note_cmpxchg_failure(const char *n, 1992 const struct kmem_cache *s, unsigned long tid) 1993 { 1994 #ifdef SLUB_DEBUG_CMPXCHG 1995 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1996 1997 pr_info("%s %s: cmpxchg redo ", n, s->name); 1998 1999 #ifdef CONFIG_PREEMPT 2000 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2001 pr_warn("due to cpu change %d -> %d\n", 2002 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2003 else 2004 #endif 2005 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2006 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2007 tid_to_event(tid), tid_to_event(actual_tid)); 2008 else 2009 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2010 actual_tid, tid, next_tid(tid)); 2011 #endif 2012 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2013 } 2014 2015 static void init_kmem_cache_cpus(struct kmem_cache *s) 2016 { 2017 int cpu; 2018 2019 for_each_possible_cpu(cpu) 2020 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2021 } 2022 2023 /* 2024 * Remove the cpu slab 2025 */ 2026 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2027 void *freelist, struct kmem_cache_cpu *c) 2028 { 2029 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2030 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2031 int lock = 0; 2032 enum slab_modes l = M_NONE, m = M_NONE; 2033 void *nextfree; 2034 int tail = DEACTIVATE_TO_HEAD; 2035 struct page new; 2036 struct page old; 2037 2038 if (page->freelist) { 2039 stat(s, DEACTIVATE_REMOTE_FREES); 2040 tail = DEACTIVATE_TO_TAIL; 2041 } 2042 2043 /* 2044 * Stage one: Free all available per cpu objects back 2045 * to the page freelist while it is still frozen. Leave the 2046 * last one. 2047 * 2048 * There is no need to take the list->lock because the page 2049 * is still frozen. 2050 */ 2051 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2052 void *prior; 2053 unsigned long counters; 2054 2055 do { 2056 prior = page->freelist; 2057 counters = page->counters; 2058 set_freepointer(s, freelist, prior); 2059 new.counters = counters; 2060 new.inuse--; 2061 VM_BUG_ON(!new.frozen); 2062 2063 } while (!__cmpxchg_double_slab(s, page, 2064 prior, counters, 2065 freelist, new.counters, 2066 "drain percpu freelist")); 2067 2068 freelist = nextfree; 2069 } 2070 2071 /* 2072 * Stage two: Ensure that the page is unfrozen while the 2073 * list presence reflects the actual number of objects 2074 * during unfreeze. 2075 * 2076 * We setup the list membership and then perform a cmpxchg 2077 * with the count. If there is a mismatch then the page 2078 * is not unfrozen but the page is on the wrong list. 2079 * 2080 * Then we restart the process which may have to remove 2081 * the page from the list that we just put it on again 2082 * because the number of objects in the slab may have 2083 * changed. 2084 */ 2085 redo: 2086 2087 old.freelist = page->freelist; 2088 old.counters = page->counters; 2089 VM_BUG_ON(!old.frozen); 2090 2091 /* Determine target state of the slab */ 2092 new.counters = old.counters; 2093 if (freelist) { 2094 new.inuse--; 2095 set_freepointer(s, freelist, old.freelist); 2096 new.freelist = freelist; 2097 } else 2098 new.freelist = old.freelist; 2099 2100 new.frozen = 0; 2101 2102 if (!new.inuse && n->nr_partial >= s->min_partial) 2103 m = M_FREE; 2104 else if (new.freelist) { 2105 m = M_PARTIAL; 2106 if (!lock) { 2107 lock = 1; 2108 /* 2109 * Taking the spinlock removes the possiblity 2110 * that acquire_slab() will see a slab page that 2111 * is frozen 2112 */ 2113 spin_lock(&n->list_lock); 2114 } 2115 } else { 2116 m = M_FULL; 2117 if (kmem_cache_debug(s) && !lock) { 2118 lock = 1; 2119 /* 2120 * This also ensures that the scanning of full 2121 * slabs from diagnostic functions will not see 2122 * any frozen slabs. 2123 */ 2124 spin_lock(&n->list_lock); 2125 } 2126 } 2127 2128 if (l != m) { 2129 2130 if (l == M_PARTIAL) 2131 2132 remove_partial(n, page); 2133 2134 else if (l == M_FULL) 2135 2136 remove_full(s, n, page); 2137 2138 if (m == M_PARTIAL) { 2139 2140 add_partial(n, page, tail); 2141 stat(s, tail); 2142 2143 } else if (m == M_FULL) { 2144 2145 stat(s, DEACTIVATE_FULL); 2146 add_full(s, n, page); 2147 2148 } 2149 } 2150 2151 l = m; 2152 if (!__cmpxchg_double_slab(s, page, 2153 old.freelist, old.counters, 2154 new.freelist, new.counters, 2155 "unfreezing slab")) 2156 goto redo; 2157 2158 if (lock) 2159 spin_unlock(&n->list_lock); 2160 2161 if (m == M_FREE) { 2162 stat(s, DEACTIVATE_EMPTY); 2163 discard_slab(s, page); 2164 stat(s, FREE_SLAB); 2165 } 2166 2167 c->page = NULL; 2168 c->freelist = NULL; 2169 } 2170 2171 /* 2172 * Unfreeze all the cpu partial slabs. 2173 * 2174 * This function must be called with interrupts disabled 2175 * for the cpu using c (or some other guarantee must be there 2176 * to guarantee no concurrent accesses). 2177 */ 2178 static void unfreeze_partials(struct kmem_cache *s, 2179 struct kmem_cache_cpu *c) 2180 { 2181 #ifdef CONFIG_SLUB_CPU_PARTIAL 2182 struct kmem_cache_node *n = NULL, *n2 = NULL; 2183 struct page *page, *discard_page = NULL; 2184 2185 while ((page = c->partial)) { 2186 struct page new; 2187 struct page old; 2188 2189 c->partial = page->next; 2190 2191 n2 = get_node(s, page_to_nid(page)); 2192 if (n != n2) { 2193 if (n) 2194 spin_unlock(&n->list_lock); 2195 2196 n = n2; 2197 spin_lock(&n->list_lock); 2198 } 2199 2200 do { 2201 2202 old.freelist = page->freelist; 2203 old.counters = page->counters; 2204 VM_BUG_ON(!old.frozen); 2205 2206 new.counters = old.counters; 2207 new.freelist = old.freelist; 2208 2209 new.frozen = 0; 2210 2211 } while (!__cmpxchg_double_slab(s, page, 2212 old.freelist, old.counters, 2213 new.freelist, new.counters, 2214 "unfreezing slab")); 2215 2216 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2217 page->next = discard_page; 2218 discard_page = page; 2219 } else { 2220 add_partial(n, page, DEACTIVATE_TO_TAIL); 2221 stat(s, FREE_ADD_PARTIAL); 2222 } 2223 } 2224 2225 if (n) 2226 spin_unlock(&n->list_lock); 2227 2228 while (discard_page) { 2229 page = discard_page; 2230 discard_page = discard_page->next; 2231 2232 stat(s, DEACTIVATE_EMPTY); 2233 discard_slab(s, page); 2234 stat(s, FREE_SLAB); 2235 } 2236 #endif 2237 } 2238 2239 /* 2240 * Put a page that was just frozen (in __slab_free) into a partial page 2241 * slot if available. 2242 * 2243 * If we did not find a slot then simply move all the partials to the 2244 * per node partial list. 2245 */ 2246 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2247 { 2248 #ifdef CONFIG_SLUB_CPU_PARTIAL 2249 struct page *oldpage; 2250 int pages; 2251 int pobjects; 2252 2253 preempt_disable(); 2254 do { 2255 pages = 0; 2256 pobjects = 0; 2257 oldpage = this_cpu_read(s->cpu_slab->partial); 2258 2259 if (oldpage) { 2260 pobjects = oldpage->pobjects; 2261 pages = oldpage->pages; 2262 if (drain && pobjects > s->cpu_partial) { 2263 unsigned long flags; 2264 /* 2265 * partial array is full. Move the existing 2266 * set to the per node partial list. 2267 */ 2268 local_irq_save(flags); 2269 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2270 local_irq_restore(flags); 2271 oldpage = NULL; 2272 pobjects = 0; 2273 pages = 0; 2274 stat(s, CPU_PARTIAL_DRAIN); 2275 } 2276 } 2277 2278 pages++; 2279 pobjects += page->objects - page->inuse; 2280 2281 page->pages = pages; 2282 page->pobjects = pobjects; 2283 page->next = oldpage; 2284 2285 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2286 != oldpage); 2287 if (unlikely(!s->cpu_partial)) { 2288 unsigned long flags; 2289 2290 local_irq_save(flags); 2291 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2292 local_irq_restore(flags); 2293 } 2294 preempt_enable(); 2295 #endif 2296 } 2297 2298 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2299 { 2300 stat(s, CPUSLAB_FLUSH); 2301 deactivate_slab(s, c->page, c->freelist, c); 2302 2303 c->tid = next_tid(c->tid); 2304 } 2305 2306 /* 2307 * Flush cpu slab. 2308 * 2309 * Called from IPI handler with interrupts disabled. 2310 */ 2311 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2312 { 2313 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2314 2315 if (likely(c)) { 2316 if (c->page) 2317 flush_slab(s, c); 2318 2319 unfreeze_partials(s, c); 2320 } 2321 } 2322 2323 static void flush_cpu_slab(void *d) 2324 { 2325 struct kmem_cache *s = d; 2326 2327 __flush_cpu_slab(s, smp_processor_id()); 2328 } 2329 2330 static bool has_cpu_slab(int cpu, void *info) 2331 { 2332 struct kmem_cache *s = info; 2333 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2334 2335 return c->page || slub_percpu_partial(c); 2336 } 2337 2338 static void flush_all(struct kmem_cache *s) 2339 { 2340 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2341 } 2342 2343 /* 2344 * Use the cpu notifier to insure that the cpu slabs are flushed when 2345 * necessary. 2346 */ 2347 static int slub_cpu_dead(unsigned int cpu) 2348 { 2349 struct kmem_cache *s; 2350 unsigned long flags; 2351 2352 mutex_lock(&slab_mutex); 2353 list_for_each_entry(s, &slab_caches, list) { 2354 local_irq_save(flags); 2355 __flush_cpu_slab(s, cpu); 2356 local_irq_restore(flags); 2357 } 2358 mutex_unlock(&slab_mutex); 2359 return 0; 2360 } 2361 2362 /* 2363 * Check if the objects in a per cpu structure fit numa 2364 * locality expectations. 2365 */ 2366 static inline int node_match(struct page *page, int node) 2367 { 2368 #ifdef CONFIG_NUMA 2369 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2370 return 0; 2371 #endif 2372 return 1; 2373 } 2374 2375 #ifdef CONFIG_SLUB_DEBUG 2376 static int count_free(struct page *page) 2377 { 2378 return page->objects - page->inuse; 2379 } 2380 2381 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2382 { 2383 return atomic_long_read(&n->total_objects); 2384 } 2385 #endif /* CONFIG_SLUB_DEBUG */ 2386 2387 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2388 static unsigned long count_partial(struct kmem_cache_node *n, 2389 int (*get_count)(struct page *)) 2390 { 2391 unsigned long flags; 2392 unsigned long x = 0; 2393 struct page *page; 2394 2395 spin_lock_irqsave(&n->list_lock, flags); 2396 list_for_each_entry(page, &n->partial, lru) 2397 x += get_count(page); 2398 spin_unlock_irqrestore(&n->list_lock, flags); 2399 return x; 2400 } 2401 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2402 2403 static noinline void 2404 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2405 { 2406 #ifdef CONFIG_SLUB_DEBUG 2407 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2408 DEFAULT_RATELIMIT_BURST); 2409 int node; 2410 struct kmem_cache_node *n; 2411 2412 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2413 return; 2414 2415 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2416 nid, gfpflags, &gfpflags); 2417 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2418 s->name, s->object_size, s->size, oo_order(s->oo), 2419 oo_order(s->min)); 2420 2421 if (oo_order(s->min) > get_order(s->object_size)) 2422 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2423 s->name); 2424 2425 for_each_kmem_cache_node(s, node, n) { 2426 unsigned long nr_slabs; 2427 unsigned long nr_objs; 2428 unsigned long nr_free; 2429 2430 nr_free = count_partial(n, count_free); 2431 nr_slabs = node_nr_slabs(n); 2432 nr_objs = node_nr_objs(n); 2433 2434 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2435 node, nr_slabs, nr_objs, nr_free); 2436 } 2437 #endif 2438 } 2439 2440 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2441 int node, struct kmem_cache_cpu **pc) 2442 { 2443 void *freelist; 2444 struct kmem_cache_cpu *c = *pc; 2445 struct page *page; 2446 2447 freelist = get_partial(s, flags, node, c); 2448 2449 if (freelist) 2450 return freelist; 2451 2452 page = new_slab(s, flags, node); 2453 if (page) { 2454 c = raw_cpu_ptr(s->cpu_slab); 2455 if (c->page) 2456 flush_slab(s, c); 2457 2458 /* 2459 * No other reference to the page yet so we can 2460 * muck around with it freely without cmpxchg 2461 */ 2462 freelist = page->freelist; 2463 page->freelist = NULL; 2464 2465 stat(s, ALLOC_SLAB); 2466 c->page = page; 2467 *pc = c; 2468 } else 2469 freelist = NULL; 2470 2471 return freelist; 2472 } 2473 2474 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2475 { 2476 if (unlikely(PageSlabPfmemalloc(page))) 2477 return gfp_pfmemalloc_allowed(gfpflags); 2478 2479 return true; 2480 } 2481 2482 /* 2483 * Check the page->freelist of a page and either transfer the freelist to the 2484 * per cpu freelist or deactivate the page. 2485 * 2486 * The page is still frozen if the return value is not NULL. 2487 * 2488 * If this function returns NULL then the page has been unfrozen. 2489 * 2490 * This function must be called with interrupt disabled. 2491 */ 2492 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2493 { 2494 struct page new; 2495 unsigned long counters; 2496 void *freelist; 2497 2498 do { 2499 freelist = page->freelist; 2500 counters = page->counters; 2501 2502 new.counters = counters; 2503 VM_BUG_ON(!new.frozen); 2504 2505 new.inuse = page->objects; 2506 new.frozen = freelist != NULL; 2507 2508 } while (!__cmpxchg_double_slab(s, page, 2509 freelist, counters, 2510 NULL, new.counters, 2511 "get_freelist")); 2512 2513 return freelist; 2514 } 2515 2516 /* 2517 * Slow path. The lockless freelist is empty or we need to perform 2518 * debugging duties. 2519 * 2520 * Processing is still very fast if new objects have been freed to the 2521 * regular freelist. In that case we simply take over the regular freelist 2522 * as the lockless freelist and zap the regular freelist. 2523 * 2524 * If that is not working then we fall back to the partial lists. We take the 2525 * first element of the freelist as the object to allocate now and move the 2526 * rest of the freelist to the lockless freelist. 2527 * 2528 * And if we were unable to get a new slab from the partial slab lists then 2529 * we need to allocate a new slab. This is the slowest path since it involves 2530 * a call to the page allocator and the setup of a new slab. 2531 * 2532 * Version of __slab_alloc to use when we know that interrupts are 2533 * already disabled (which is the case for bulk allocation). 2534 */ 2535 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2536 unsigned long addr, struct kmem_cache_cpu *c) 2537 { 2538 void *freelist; 2539 struct page *page; 2540 2541 page = c->page; 2542 if (!page) 2543 goto new_slab; 2544 redo: 2545 2546 if (unlikely(!node_match(page, node))) { 2547 int searchnode = node; 2548 2549 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2550 searchnode = node_to_mem_node(node); 2551 2552 if (unlikely(!node_match(page, searchnode))) { 2553 stat(s, ALLOC_NODE_MISMATCH); 2554 deactivate_slab(s, page, c->freelist, c); 2555 goto new_slab; 2556 } 2557 } 2558 2559 /* 2560 * By rights, we should be searching for a slab page that was 2561 * PFMEMALLOC but right now, we are losing the pfmemalloc 2562 * information when the page leaves the per-cpu allocator 2563 */ 2564 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2565 deactivate_slab(s, page, c->freelist, c); 2566 goto new_slab; 2567 } 2568 2569 /* must check again c->freelist in case of cpu migration or IRQ */ 2570 freelist = c->freelist; 2571 if (freelist) 2572 goto load_freelist; 2573 2574 freelist = get_freelist(s, page); 2575 2576 if (!freelist) { 2577 c->page = NULL; 2578 stat(s, DEACTIVATE_BYPASS); 2579 goto new_slab; 2580 } 2581 2582 stat(s, ALLOC_REFILL); 2583 2584 load_freelist: 2585 /* 2586 * freelist is pointing to the list of objects to be used. 2587 * page is pointing to the page from which the objects are obtained. 2588 * That page must be frozen for per cpu allocations to work. 2589 */ 2590 VM_BUG_ON(!c->page->frozen); 2591 c->freelist = get_freepointer(s, freelist); 2592 c->tid = next_tid(c->tid); 2593 return freelist; 2594 2595 new_slab: 2596 2597 if (slub_percpu_partial(c)) { 2598 page = c->page = slub_percpu_partial(c); 2599 slub_set_percpu_partial(c, page); 2600 stat(s, CPU_PARTIAL_ALLOC); 2601 goto redo; 2602 } 2603 2604 freelist = new_slab_objects(s, gfpflags, node, &c); 2605 2606 if (unlikely(!freelist)) { 2607 slab_out_of_memory(s, gfpflags, node); 2608 return NULL; 2609 } 2610 2611 page = c->page; 2612 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2613 goto load_freelist; 2614 2615 /* Only entered in the debug case */ 2616 if (kmem_cache_debug(s) && 2617 !alloc_debug_processing(s, page, freelist, addr)) 2618 goto new_slab; /* Slab failed checks. Next slab needed */ 2619 2620 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2621 return freelist; 2622 } 2623 2624 /* 2625 * Another one that disabled interrupt and compensates for possible 2626 * cpu changes by refetching the per cpu area pointer. 2627 */ 2628 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2629 unsigned long addr, struct kmem_cache_cpu *c) 2630 { 2631 void *p; 2632 unsigned long flags; 2633 2634 local_irq_save(flags); 2635 #ifdef CONFIG_PREEMPT 2636 /* 2637 * We may have been preempted and rescheduled on a different 2638 * cpu before disabling interrupts. Need to reload cpu area 2639 * pointer. 2640 */ 2641 c = this_cpu_ptr(s->cpu_slab); 2642 #endif 2643 2644 p = ___slab_alloc(s, gfpflags, node, addr, c); 2645 local_irq_restore(flags); 2646 return p; 2647 } 2648 2649 /* 2650 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2651 * have the fastpath folded into their functions. So no function call 2652 * overhead for requests that can be satisfied on the fastpath. 2653 * 2654 * The fastpath works by first checking if the lockless freelist can be used. 2655 * If not then __slab_alloc is called for slow processing. 2656 * 2657 * Otherwise we can simply pick the next object from the lockless free list. 2658 */ 2659 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2660 gfp_t gfpflags, int node, unsigned long addr) 2661 { 2662 void *object; 2663 struct kmem_cache_cpu *c; 2664 struct page *page; 2665 unsigned long tid; 2666 2667 s = slab_pre_alloc_hook(s, gfpflags); 2668 if (!s) 2669 return NULL; 2670 redo: 2671 /* 2672 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2673 * enabled. We may switch back and forth between cpus while 2674 * reading from one cpu area. That does not matter as long 2675 * as we end up on the original cpu again when doing the cmpxchg. 2676 * 2677 * We should guarantee that tid and kmem_cache are retrieved on 2678 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2679 * to check if it is matched or not. 2680 */ 2681 do { 2682 tid = this_cpu_read(s->cpu_slab->tid); 2683 c = raw_cpu_ptr(s->cpu_slab); 2684 } while (IS_ENABLED(CONFIG_PREEMPT) && 2685 unlikely(tid != READ_ONCE(c->tid))); 2686 2687 /* 2688 * Irqless object alloc/free algorithm used here depends on sequence 2689 * of fetching cpu_slab's data. tid should be fetched before anything 2690 * on c to guarantee that object and page associated with previous tid 2691 * won't be used with current tid. If we fetch tid first, object and 2692 * page could be one associated with next tid and our alloc/free 2693 * request will be failed. In this case, we will retry. So, no problem. 2694 */ 2695 barrier(); 2696 2697 /* 2698 * The transaction ids are globally unique per cpu and per operation on 2699 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2700 * occurs on the right processor and that there was no operation on the 2701 * linked list in between. 2702 */ 2703 2704 object = c->freelist; 2705 page = c->page; 2706 if (unlikely(!object || !node_match(page, node))) { 2707 object = __slab_alloc(s, gfpflags, node, addr, c); 2708 stat(s, ALLOC_SLOWPATH); 2709 } else { 2710 void *next_object = get_freepointer_safe(s, object); 2711 2712 /* 2713 * The cmpxchg will only match if there was no additional 2714 * operation and if we are on the right processor. 2715 * 2716 * The cmpxchg does the following atomically (without lock 2717 * semantics!) 2718 * 1. Relocate first pointer to the current per cpu area. 2719 * 2. Verify that tid and freelist have not been changed 2720 * 3. If they were not changed replace tid and freelist 2721 * 2722 * Since this is without lock semantics the protection is only 2723 * against code executing on this cpu *not* from access by 2724 * other cpus. 2725 */ 2726 if (unlikely(!this_cpu_cmpxchg_double( 2727 s->cpu_slab->freelist, s->cpu_slab->tid, 2728 object, tid, 2729 next_object, next_tid(tid)))) { 2730 2731 note_cmpxchg_failure("slab_alloc", s, tid); 2732 goto redo; 2733 } 2734 prefetch_freepointer(s, next_object); 2735 stat(s, ALLOC_FASTPATH); 2736 } 2737 2738 if (unlikely(gfpflags & __GFP_ZERO) && object) 2739 memset(object, 0, s->object_size); 2740 2741 slab_post_alloc_hook(s, gfpflags, 1, &object); 2742 2743 return object; 2744 } 2745 2746 static __always_inline void *slab_alloc(struct kmem_cache *s, 2747 gfp_t gfpflags, unsigned long addr) 2748 { 2749 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2750 } 2751 2752 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2753 { 2754 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2755 2756 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2757 s->size, gfpflags); 2758 2759 return ret; 2760 } 2761 EXPORT_SYMBOL(kmem_cache_alloc); 2762 2763 #ifdef CONFIG_TRACING 2764 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2765 { 2766 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2767 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2768 kasan_kmalloc(s, ret, size, gfpflags); 2769 return ret; 2770 } 2771 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2772 #endif 2773 2774 #ifdef CONFIG_NUMA 2775 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2776 { 2777 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2778 2779 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2780 s->object_size, s->size, gfpflags, node); 2781 2782 return ret; 2783 } 2784 EXPORT_SYMBOL(kmem_cache_alloc_node); 2785 2786 #ifdef CONFIG_TRACING 2787 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2788 gfp_t gfpflags, 2789 int node, size_t size) 2790 { 2791 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2792 2793 trace_kmalloc_node(_RET_IP_, ret, 2794 size, s->size, gfpflags, node); 2795 2796 kasan_kmalloc(s, ret, size, gfpflags); 2797 return ret; 2798 } 2799 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2800 #endif 2801 #endif 2802 2803 /* 2804 * Slow path handling. This may still be called frequently since objects 2805 * have a longer lifetime than the cpu slabs in most processing loads. 2806 * 2807 * So we still attempt to reduce cache line usage. Just take the slab 2808 * lock and free the item. If there is no additional partial page 2809 * handling required then we can return immediately. 2810 */ 2811 static void __slab_free(struct kmem_cache *s, struct page *page, 2812 void *head, void *tail, int cnt, 2813 unsigned long addr) 2814 2815 { 2816 void *prior; 2817 int was_frozen; 2818 struct page new; 2819 unsigned long counters; 2820 struct kmem_cache_node *n = NULL; 2821 unsigned long uninitialized_var(flags); 2822 2823 stat(s, FREE_SLOWPATH); 2824 2825 if (kmem_cache_debug(s) && 2826 !free_debug_processing(s, page, head, tail, cnt, addr)) 2827 return; 2828 2829 do { 2830 if (unlikely(n)) { 2831 spin_unlock_irqrestore(&n->list_lock, flags); 2832 n = NULL; 2833 } 2834 prior = page->freelist; 2835 counters = page->counters; 2836 set_freepointer(s, tail, prior); 2837 new.counters = counters; 2838 was_frozen = new.frozen; 2839 new.inuse -= cnt; 2840 if ((!new.inuse || !prior) && !was_frozen) { 2841 2842 if (kmem_cache_has_cpu_partial(s) && !prior) { 2843 2844 /* 2845 * Slab was on no list before and will be 2846 * partially empty 2847 * We can defer the list move and instead 2848 * freeze it. 2849 */ 2850 new.frozen = 1; 2851 2852 } else { /* Needs to be taken off a list */ 2853 2854 n = get_node(s, page_to_nid(page)); 2855 /* 2856 * Speculatively acquire the list_lock. 2857 * If the cmpxchg does not succeed then we may 2858 * drop the list_lock without any processing. 2859 * 2860 * Otherwise the list_lock will synchronize with 2861 * other processors updating the list of slabs. 2862 */ 2863 spin_lock_irqsave(&n->list_lock, flags); 2864 2865 } 2866 } 2867 2868 } while (!cmpxchg_double_slab(s, page, 2869 prior, counters, 2870 head, new.counters, 2871 "__slab_free")); 2872 2873 if (likely(!n)) { 2874 2875 /* 2876 * If we just froze the page then put it onto the 2877 * per cpu partial list. 2878 */ 2879 if (new.frozen && !was_frozen) { 2880 put_cpu_partial(s, page, 1); 2881 stat(s, CPU_PARTIAL_FREE); 2882 } 2883 /* 2884 * The list lock was not taken therefore no list 2885 * activity can be necessary. 2886 */ 2887 if (was_frozen) 2888 stat(s, FREE_FROZEN); 2889 return; 2890 } 2891 2892 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2893 goto slab_empty; 2894 2895 /* 2896 * Objects left in the slab. If it was not on the partial list before 2897 * then add it. 2898 */ 2899 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2900 if (kmem_cache_debug(s)) 2901 remove_full(s, n, page); 2902 add_partial(n, page, DEACTIVATE_TO_TAIL); 2903 stat(s, FREE_ADD_PARTIAL); 2904 } 2905 spin_unlock_irqrestore(&n->list_lock, flags); 2906 return; 2907 2908 slab_empty: 2909 if (prior) { 2910 /* 2911 * Slab on the partial list. 2912 */ 2913 remove_partial(n, page); 2914 stat(s, FREE_REMOVE_PARTIAL); 2915 } else { 2916 /* Slab must be on the full list */ 2917 remove_full(s, n, page); 2918 } 2919 2920 spin_unlock_irqrestore(&n->list_lock, flags); 2921 stat(s, FREE_SLAB); 2922 discard_slab(s, page); 2923 } 2924 2925 /* 2926 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2927 * can perform fastpath freeing without additional function calls. 2928 * 2929 * The fastpath is only possible if we are freeing to the current cpu slab 2930 * of this processor. This typically the case if we have just allocated 2931 * the item before. 2932 * 2933 * If fastpath is not possible then fall back to __slab_free where we deal 2934 * with all sorts of special processing. 2935 * 2936 * Bulk free of a freelist with several objects (all pointing to the 2937 * same page) possible by specifying head and tail ptr, plus objects 2938 * count (cnt). Bulk free indicated by tail pointer being set. 2939 */ 2940 static __always_inline void do_slab_free(struct kmem_cache *s, 2941 struct page *page, void *head, void *tail, 2942 int cnt, unsigned long addr) 2943 { 2944 void *tail_obj = tail ? : head; 2945 struct kmem_cache_cpu *c; 2946 unsigned long tid; 2947 redo: 2948 /* 2949 * Determine the currently cpus per cpu slab. 2950 * The cpu may change afterward. However that does not matter since 2951 * data is retrieved via this pointer. If we are on the same cpu 2952 * during the cmpxchg then the free will succeed. 2953 */ 2954 do { 2955 tid = this_cpu_read(s->cpu_slab->tid); 2956 c = raw_cpu_ptr(s->cpu_slab); 2957 } while (IS_ENABLED(CONFIG_PREEMPT) && 2958 unlikely(tid != READ_ONCE(c->tid))); 2959 2960 /* Same with comment on barrier() in slab_alloc_node() */ 2961 barrier(); 2962 2963 if (likely(page == c->page)) { 2964 set_freepointer(s, tail_obj, c->freelist); 2965 2966 if (unlikely(!this_cpu_cmpxchg_double( 2967 s->cpu_slab->freelist, s->cpu_slab->tid, 2968 c->freelist, tid, 2969 head, next_tid(tid)))) { 2970 2971 note_cmpxchg_failure("slab_free", s, tid); 2972 goto redo; 2973 } 2974 stat(s, FREE_FASTPATH); 2975 } else 2976 __slab_free(s, page, head, tail_obj, cnt, addr); 2977 2978 } 2979 2980 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2981 void *head, void *tail, int cnt, 2982 unsigned long addr) 2983 { 2984 /* 2985 * With KASAN enabled slab_free_freelist_hook modifies the freelist 2986 * to remove objects, whose reuse must be delayed. 2987 */ 2988 if (slab_free_freelist_hook(s, &head, &tail)) 2989 do_slab_free(s, page, head, tail, cnt, addr); 2990 } 2991 2992 #ifdef CONFIG_KASAN 2993 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 2994 { 2995 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 2996 } 2997 #endif 2998 2999 void kmem_cache_free(struct kmem_cache *s, void *x) 3000 { 3001 s = cache_from_obj(s, x); 3002 if (!s) 3003 return; 3004 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3005 trace_kmem_cache_free(_RET_IP_, x); 3006 } 3007 EXPORT_SYMBOL(kmem_cache_free); 3008 3009 struct detached_freelist { 3010 struct page *page; 3011 void *tail; 3012 void *freelist; 3013 int cnt; 3014 struct kmem_cache *s; 3015 }; 3016 3017 /* 3018 * This function progressively scans the array with free objects (with 3019 * a limited look ahead) and extract objects belonging to the same 3020 * page. It builds a detached freelist directly within the given 3021 * page/objects. This can happen without any need for 3022 * synchronization, because the objects are owned by running process. 3023 * The freelist is build up as a single linked list in the objects. 3024 * The idea is, that this detached freelist can then be bulk 3025 * transferred to the real freelist(s), but only requiring a single 3026 * synchronization primitive. Look ahead in the array is limited due 3027 * to performance reasons. 3028 */ 3029 static inline 3030 int build_detached_freelist(struct kmem_cache *s, size_t size, 3031 void **p, struct detached_freelist *df) 3032 { 3033 size_t first_skipped_index = 0; 3034 int lookahead = 3; 3035 void *object; 3036 struct page *page; 3037 3038 /* Always re-init detached_freelist */ 3039 df->page = NULL; 3040 3041 do { 3042 object = p[--size]; 3043 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3044 } while (!object && size); 3045 3046 if (!object) 3047 return 0; 3048 3049 page = virt_to_head_page(object); 3050 if (!s) { 3051 /* Handle kalloc'ed objects */ 3052 if (unlikely(!PageSlab(page))) { 3053 BUG_ON(!PageCompound(page)); 3054 kfree_hook(object); 3055 __free_pages(page, compound_order(page)); 3056 p[size] = NULL; /* mark object processed */ 3057 return size; 3058 } 3059 /* Derive kmem_cache from object */ 3060 df->s = page->slab_cache; 3061 } else { 3062 df->s = cache_from_obj(s, object); /* Support for memcg */ 3063 } 3064 3065 /* Start new detached freelist */ 3066 df->page = page; 3067 set_freepointer(df->s, object, NULL); 3068 df->tail = object; 3069 df->freelist = object; 3070 p[size] = NULL; /* mark object processed */ 3071 df->cnt = 1; 3072 3073 while (size) { 3074 object = p[--size]; 3075 if (!object) 3076 continue; /* Skip processed objects */ 3077 3078 /* df->page is always set at this point */ 3079 if (df->page == virt_to_head_page(object)) { 3080 /* Opportunity build freelist */ 3081 set_freepointer(df->s, object, df->freelist); 3082 df->freelist = object; 3083 df->cnt++; 3084 p[size] = NULL; /* mark object processed */ 3085 3086 continue; 3087 } 3088 3089 /* Limit look ahead search */ 3090 if (!--lookahead) 3091 break; 3092 3093 if (!first_skipped_index) 3094 first_skipped_index = size + 1; 3095 } 3096 3097 return first_skipped_index; 3098 } 3099 3100 /* Note that interrupts must be enabled when calling this function. */ 3101 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3102 { 3103 if (WARN_ON(!size)) 3104 return; 3105 3106 do { 3107 struct detached_freelist df; 3108 3109 size = build_detached_freelist(s, size, p, &df); 3110 if (!df.page) 3111 continue; 3112 3113 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3114 } while (likely(size)); 3115 } 3116 EXPORT_SYMBOL(kmem_cache_free_bulk); 3117 3118 /* Note that interrupts must be enabled when calling this function. */ 3119 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3120 void **p) 3121 { 3122 struct kmem_cache_cpu *c; 3123 int i; 3124 3125 /* memcg and kmem_cache debug support */ 3126 s = slab_pre_alloc_hook(s, flags); 3127 if (unlikely(!s)) 3128 return false; 3129 /* 3130 * Drain objects in the per cpu slab, while disabling local 3131 * IRQs, which protects against PREEMPT and interrupts 3132 * handlers invoking normal fastpath. 3133 */ 3134 local_irq_disable(); 3135 c = this_cpu_ptr(s->cpu_slab); 3136 3137 for (i = 0; i < size; i++) { 3138 void *object = c->freelist; 3139 3140 if (unlikely(!object)) { 3141 /* 3142 * Invoking slow path likely have side-effect 3143 * of re-populating per CPU c->freelist 3144 */ 3145 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3146 _RET_IP_, c); 3147 if (unlikely(!p[i])) 3148 goto error; 3149 3150 c = this_cpu_ptr(s->cpu_slab); 3151 continue; /* goto for-loop */ 3152 } 3153 c->freelist = get_freepointer(s, object); 3154 p[i] = object; 3155 } 3156 c->tid = next_tid(c->tid); 3157 local_irq_enable(); 3158 3159 /* Clear memory outside IRQ disabled fastpath loop */ 3160 if (unlikely(flags & __GFP_ZERO)) { 3161 int j; 3162 3163 for (j = 0; j < i; j++) 3164 memset(p[j], 0, s->object_size); 3165 } 3166 3167 /* memcg and kmem_cache debug support */ 3168 slab_post_alloc_hook(s, flags, size, p); 3169 return i; 3170 error: 3171 local_irq_enable(); 3172 slab_post_alloc_hook(s, flags, i, p); 3173 __kmem_cache_free_bulk(s, i, p); 3174 return 0; 3175 } 3176 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3177 3178 3179 /* 3180 * Object placement in a slab is made very easy because we always start at 3181 * offset 0. If we tune the size of the object to the alignment then we can 3182 * get the required alignment by putting one properly sized object after 3183 * another. 3184 * 3185 * Notice that the allocation order determines the sizes of the per cpu 3186 * caches. Each processor has always one slab available for allocations. 3187 * Increasing the allocation order reduces the number of times that slabs 3188 * must be moved on and off the partial lists and is therefore a factor in 3189 * locking overhead. 3190 */ 3191 3192 /* 3193 * Mininum / Maximum order of slab pages. This influences locking overhead 3194 * and slab fragmentation. A higher order reduces the number of partial slabs 3195 * and increases the number of allocations possible without having to 3196 * take the list_lock. 3197 */ 3198 static unsigned int slub_min_order; 3199 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3200 static unsigned int slub_min_objects; 3201 3202 /* 3203 * Calculate the order of allocation given an slab object size. 3204 * 3205 * The order of allocation has significant impact on performance and other 3206 * system components. Generally order 0 allocations should be preferred since 3207 * order 0 does not cause fragmentation in the page allocator. Larger objects 3208 * be problematic to put into order 0 slabs because there may be too much 3209 * unused space left. We go to a higher order if more than 1/16th of the slab 3210 * would be wasted. 3211 * 3212 * In order to reach satisfactory performance we must ensure that a minimum 3213 * number of objects is in one slab. Otherwise we may generate too much 3214 * activity on the partial lists which requires taking the list_lock. This is 3215 * less a concern for large slabs though which are rarely used. 3216 * 3217 * slub_max_order specifies the order where we begin to stop considering the 3218 * number of objects in a slab as critical. If we reach slub_max_order then 3219 * we try to keep the page order as low as possible. So we accept more waste 3220 * of space in favor of a small page order. 3221 * 3222 * Higher order allocations also allow the placement of more objects in a 3223 * slab and thereby reduce object handling overhead. If the user has 3224 * requested a higher mininum order then we start with that one instead of 3225 * the smallest order which will fit the object. 3226 */ 3227 static inline unsigned int slab_order(unsigned int size, 3228 unsigned int min_objects, unsigned int max_order, 3229 unsigned int fract_leftover, unsigned int reserved) 3230 { 3231 unsigned int min_order = slub_min_order; 3232 unsigned int order; 3233 3234 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 3235 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3236 3237 for (order = max(min_order, (unsigned int)get_order(min_objects * size + reserved)); 3238 order <= max_order; order++) { 3239 3240 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3241 unsigned int rem; 3242 3243 rem = (slab_size - reserved) % size; 3244 3245 if (rem <= slab_size / fract_leftover) 3246 break; 3247 } 3248 3249 return order; 3250 } 3251 3252 static inline int calculate_order(unsigned int size, unsigned int reserved) 3253 { 3254 unsigned int order; 3255 unsigned int min_objects; 3256 unsigned int max_objects; 3257 3258 /* 3259 * Attempt to find best configuration for a slab. This 3260 * works by first attempting to generate a layout with 3261 * the best configuration and backing off gradually. 3262 * 3263 * First we increase the acceptable waste in a slab. Then 3264 * we reduce the minimum objects required in a slab. 3265 */ 3266 min_objects = slub_min_objects; 3267 if (!min_objects) 3268 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3269 max_objects = order_objects(slub_max_order, size, reserved); 3270 min_objects = min(min_objects, max_objects); 3271 3272 while (min_objects > 1) { 3273 unsigned int fraction; 3274 3275 fraction = 16; 3276 while (fraction >= 4) { 3277 order = slab_order(size, min_objects, 3278 slub_max_order, fraction, reserved); 3279 if (order <= slub_max_order) 3280 return order; 3281 fraction /= 2; 3282 } 3283 min_objects--; 3284 } 3285 3286 /* 3287 * We were unable to place multiple objects in a slab. Now 3288 * lets see if we can place a single object there. 3289 */ 3290 order = slab_order(size, 1, slub_max_order, 1, reserved); 3291 if (order <= slub_max_order) 3292 return order; 3293 3294 /* 3295 * Doh this slab cannot be placed using slub_max_order. 3296 */ 3297 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 3298 if (order < MAX_ORDER) 3299 return order; 3300 return -ENOSYS; 3301 } 3302 3303 static void 3304 init_kmem_cache_node(struct kmem_cache_node *n) 3305 { 3306 n->nr_partial = 0; 3307 spin_lock_init(&n->list_lock); 3308 INIT_LIST_HEAD(&n->partial); 3309 #ifdef CONFIG_SLUB_DEBUG 3310 atomic_long_set(&n->nr_slabs, 0); 3311 atomic_long_set(&n->total_objects, 0); 3312 INIT_LIST_HEAD(&n->full); 3313 #endif 3314 } 3315 3316 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3317 { 3318 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3319 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3320 3321 /* 3322 * Must align to double word boundary for the double cmpxchg 3323 * instructions to work; see __pcpu_double_call_return_bool(). 3324 */ 3325 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3326 2 * sizeof(void *)); 3327 3328 if (!s->cpu_slab) 3329 return 0; 3330 3331 init_kmem_cache_cpus(s); 3332 3333 return 1; 3334 } 3335 3336 static struct kmem_cache *kmem_cache_node; 3337 3338 /* 3339 * No kmalloc_node yet so do it by hand. We know that this is the first 3340 * slab on the node for this slabcache. There are no concurrent accesses 3341 * possible. 3342 * 3343 * Note that this function only works on the kmem_cache_node 3344 * when allocating for the kmem_cache_node. This is used for bootstrapping 3345 * memory on a fresh node that has no slab structures yet. 3346 */ 3347 static void early_kmem_cache_node_alloc(int node) 3348 { 3349 struct page *page; 3350 struct kmem_cache_node *n; 3351 3352 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3353 3354 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3355 3356 BUG_ON(!page); 3357 if (page_to_nid(page) != node) { 3358 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3359 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3360 } 3361 3362 n = page->freelist; 3363 BUG_ON(!n); 3364 page->freelist = get_freepointer(kmem_cache_node, n); 3365 page->inuse = 1; 3366 page->frozen = 0; 3367 kmem_cache_node->node[node] = n; 3368 #ifdef CONFIG_SLUB_DEBUG 3369 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3370 init_tracking(kmem_cache_node, n); 3371 #endif 3372 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3373 GFP_KERNEL); 3374 init_kmem_cache_node(n); 3375 inc_slabs_node(kmem_cache_node, node, page->objects); 3376 3377 /* 3378 * No locks need to be taken here as it has just been 3379 * initialized and there is no concurrent access. 3380 */ 3381 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3382 } 3383 3384 static void free_kmem_cache_nodes(struct kmem_cache *s) 3385 { 3386 int node; 3387 struct kmem_cache_node *n; 3388 3389 for_each_kmem_cache_node(s, node, n) { 3390 s->node[node] = NULL; 3391 kmem_cache_free(kmem_cache_node, n); 3392 } 3393 } 3394 3395 void __kmem_cache_release(struct kmem_cache *s) 3396 { 3397 cache_random_seq_destroy(s); 3398 free_percpu(s->cpu_slab); 3399 free_kmem_cache_nodes(s); 3400 } 3401 3402 static int init_kmem_cache_nodes(struct kmem_cache *s) 3403 { 3404 int node; 3405 3406 for_each_node_state(node, N_NORMAL_MEMORY) { 3407 struct kmem_cache_node *n; 3408 3409 if (slab_state == DOWN) { 3410 early_kmem_cache_node_alloc(node); 3411 continue; 3412 } 3413 n = kmem_cache_alloc_node(kmem_cache_node, 3414 GFP_KERNEL, node); 3415 3416 if (!n) { 3417 free_kmem_cache_nodes(s); 3418 return 0; 3419 } 3420 3421 init_kmem_cache_node(n); 3422 s->node[node] = n; 3423 } 3424 return 1; 3425 } 3426 3427 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3428 { 3429 if (min < MIN_PARTIAL) 3430 min = MIN_PARTIAL; 3431 else if (min > MAX_PARTIAL) 3432 min = MAX_PARTIAL; 3433 s->min_partial = min; 3434 } 3435 3436 static void set_cpu_partial(struct kmem_cache *s) 3437 { 3438 #ifdef CONFIG_SLUB_CPU_PARTIAL 3439 /* 3440 * cpu_partial determined the maximum number of objects kept in the 3441 * per cpu partial lists of a processor. 3442 * 3443 * Per cpu partial lists mainly contain slabs that just have one 3444 * object freed. If they are used for allocation then they can be 3445 * filled up again with minimal effort. The slab will never hit the 3446 * per node partial lists and therefore no locking will be required. 3447 * 3448 * This setting also determines 3449 * 3450 * A) The number of objects from per cpu partial slabs dumped to the 3451 * per node list when we reach the limit. 3452 * B) The number of objects in cpu partial slabs to extract from the 3453 * per node list when we run out of per cpu objects. We only fetch 3454 * 50% to keep some capacity around for frees. 3455 */ 3456 if (!kmem_cache_has_cpu_partial(s)) 3457 s->cpu_partial = 0; 3458 else if (s->size >= PAGE_SIZE) 3459 s->cpu_partial = 2; 3460 else if (s->size >= 1024) 3461 s->cpu_partial = 6; 3462 else if (s->size >= 256) 3463 s->cpu_partial = 13; 3464 else 3465 s->cpu_partial = 30; 3466 #endif 3467 } 3468 3469 /* 3470 * calculate_sizes() determines the order and the distribution of data within 3471 * a slab object. 3472 */ 3473 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3474 { 3475 slab_flags_t flags = s->flags; 3476 unsigned int size = s->object_size; 3477 unsigned int order; 3478 3479 /* 3480 * Round up object size to the next word boundary. We can only 3481 * place the free pointer at word boundaries and this determines 3482 * the possible location of the free pointer. 3483 */ 3484 size = ALIGN(size, sizeof(void *)); 3485 3486 #ifdef CONFIG_SLUB_DEBUG 3487 /* 3488 * Determine if we can poison the object itself. If the user of 3489 * the slab may touch the object after free or before allocation 3490 * then we should never poison the object itself. 3491 */ 3492 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3493 !s->ctor) 3494 s->flags |= __OBJECT_POISON; 3495 else 3496 s->flags &= ~__OBJECT_POISON; 3497 3498 3499 /* 3500 * If we are Redzoning then check if there is some space between the 3501 * end of the object and the free pointer. If not then add an 3502 * additional word to have some bytes to store Redzone information. 3503 */ 3504 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3505 size += sizeof(void *); 3506 #endif 3507 3508 /* 3509 * With that we have determined the number of bytes in actual use 3510 * by the object. This is the potential offset to the free pointer. 3511 */ 3512 s->inuse = size; 3513 3514 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3515 s->ctor)) { 3516 /* 3517 * Relocate free pointer after the object if it is not 3518 * permitted to overwrite the first word of the object on 3519 * kmem_cache_free. 3520 * 3521 * This is the case if we do RCU, have a constructor or 3522 * destructor or are poisoning the objects. 3523 */ 3524 s->offset = size; 3525 size += sizeof(void *); 3526 } 3527 3528 #ifdef CONFIG_SLUB_DEBUG 3529 if (flags & SLAB_STORE_USER) 3530 /* 3531 * Need to store information about allocs and frees after 3532 * the object. 3533 */ 3534 size += 2 * sizeof(struct track); 3535 #endif 3536 3537 kasan_cache_create(s, &size, &s->flags); 3538 #ifdef CONFIG_SLUB_DEBUG 3539 if (flags & SLAB_RED_ZONE) { 3540 /* 3541 * Add some empty padding so that we can catch 3542 * overwrites from earlier objects rather than let 3543 * tracking information or the free pointer be 3544 * corrupted if a user writes before the start 3545 * of the object. 3546 */ 3547 size += sizeof(void *); 3548 3549 s->red_left_pad = sizeof(void *); 3550 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3551 size += s->red_left_pad; 3552 } 3553 #endif 3554 3555 /* 3556 * SLUB stores one object immediately after another beginning from 3557 * offset 0. In order to align the objects we have to simply size 3558 * each object to conform to the alignment. 3559 */ 3560 size = ALIGN(size, s->align); 3561 s->size = size; 3562 if (forced_order >= 0) 3563 order = forced_order; 3564 else 3565 order = calculate_order(size, s->reserved); 3566 3567 if ((int)order < 0) 3568 return 0; 3569 3570 s->allocflags = 0; 3571 if (order) 3572 s->allocflags |= __GFP_COMP; 3573 3574 if (s->flags & SLAB_CACHE_DMA) 3575 s->allocflags |= GFP_DMA; 3576 3577 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3578 s->allocflags |= __GFP_RECLAIMABLE; 3579 3580 /* 3581 * Determine the number of objects per slab 3582 */ 3583 s->oo = oo_make(order, size, s->reserved); 3584 s->min = oo_make(get_order(size), size, s->reserved); 3585 if (oo_objects(s->oo) > oo_objects(s->max)) 3586 s->max = s->oo; 3587 3588 return !!oo_objects(s->oo); 3589 } 3590 3591 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3592 { 3593 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3594 s->reserved = 0; 3595 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3596 s->random = get_random_long(); 3597 #endif 3598 3599 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU)) 3600 s->reserved = sizeof(struct rcu_head); 3601 3602 if (!calculate_sizes(s, -1)) 3603 goto error; 3604 if (disable_higher_order_debug) { 3605 /* 3606 * Disable debugging flags that store metadata if the min slab 3607 * order increased. 3608 */ 3609 if (get_order(s->size) > get_order(s->object_size)) { 3610 s->flags &= ~DEBUG_METADATA_FLAGS; 3611 s->offset = 0; 3612 if (!calculate_sizes(s, -1)) 3613 goto error; 3614 } 3615 } 3616 3617 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3618 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3619 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3620 /* Enable fast mode */ 3621 s->flags |= __CMPXCHG_DOUBLE; 3622 #endif 3623 3624 /* 3625 * The larger the object size is, the more pages we want on the partial 3626 * list to avoid pounding the page allocator excessively. 3627 */ 3628 set_min_partial(s, ilog2(s->size) / 2); 3629 3630 set_cpu_partial(s); 3631 3632 #ifdef CONFIG_NUMA 3633 s->remote_node_defrag_ratio = 1000; 3634 #endif 3635 3636 /* Initialize the pre-computed randomized freelist if slab is up */ 3637 if (slab_state >= UP) { 3638 if (init_cache_random_seq(s)) 3639 goto error; 3640 } 3641 3642 if (!init_kmem_cache_nodes(s)) 3643 goto error; 3644 3645 if (alloc_kmem_cache_cpus(s)) 3646 return 0; 3647 3648 free_kmem_cache_nodes(s); 3649 error: 3650 if (flags & SLAB_PANIC) 3651 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n", 3652 s->name, s->size, s->size, 3653 oo_order(s->oo), s->offset, (unsigned long)flags); 3654 return -EINVAL; 3655 } 3656 3657 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3658 const char *text) 3659 { 3660 #ifdef CONFIG_SLUB_DEBUG 3661 void *addr = page_address(page); 3662 void *p; 3663 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3664 sizeof(long), GFP_ATOMIC); 3665 if (!map) 3666 return; 3667 slab_err(s, page, text, s->name); 3668 slab_lock(page); 3669 3670 get_map(s, page, map); 3671 for_each_object(p, s, addr, page->objects) { 3672 3673 if (!test_bit(slab_index(p, s, addr), map)) { 3674 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3675 print_tracking(s, p); 3676 } 3677 } 3678 slab_unlock(page); 3679 kfree(map); 3680 #endif 3681 } 3682 3683 /* 3684 * Attempt to free all partial slabs on a node. 3685 * This is called from __kmem_cache_shutdown(). We must take list_lock 3686 * because sysfs file might still access partial list after the shutdowning. 3687 */ 3688 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3689 { 3690 LIST_HEAD(discard); 3691 struct page *page, *h; 3692 3693 BUG_ON(irqs_disabled()); 3694 spin_lock_irq(&n->list_lock); 3695 list_for_each_entry_safe(page, h, &n->partial, lru) { 3696 if (!page->inuse) { 3697 remove_partial(n, page); 3698 list_add(&page->lru, &discard); 3699 } else { 3700 list_slab_objects(s, page, 3701 "Objects remaining in %s on __kmem_cache_shutdown()"); 3702 } 3703 } 3704 spin_unlock_irq(&n->list_lock); 3705 3706 list_for_each_entry_safe(page, h, &discard, lru) 3707 discard_slab(s, page); 3708 } 3709 3710 bool __kmem_cache_empty(struct kmem_cache *s) 3711 { 3712 int node; 3713 struct kmem_cache_node *n; 3714 3715 for_each_kmem_cache_node(s, node, n) 3716 if (n->nr_partial || slabs_node(s, node)) 3717 return false; 3718 return true; 3719 } 3720 3721 /* 3722 * Release all resources used by a slab cache. 3723 */ 3724 int __kmem_cache_shutdown(struct kmem_cache *s) 3725 { 3726 int node; 3727 struct kmem_cache_node *n; 3728 3729 flush_all(s); 3730 /* Attempt to free all objects */ 3731 for_each_kmem_cache_node(s, node, n) { 3732 free_partial(s, n); 3733 if (n->nr_partial || slabs_node(s, node)) 3734 return 1; 3735 } 3736 sysfs_slab_remove(s); 3737 return 0; 3738 } 3739 3740 /******************************************************************** 3741 * Kmalloc subsystem 3742 *******************************************************************/ 3743 3744 static int __init setup_slub_min_order(char *str) 3745 { 3746 get_option(&str, (int *)&slub_min_order); 3747 3748 return 1; 3749 } 3750 3751 __setup("slub_min_order=", setup_slub_min_order); 3752 3753 static int __init setup_slub_max_order(char *str) 3754 { 3755 get_option(&str, (int *)&slub_max_order); 3756 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3757 3758 return 1; 3759 } 3760 3761 __setup("slub_max_order=", setup_slub_max_order); 3762 3763 static int __init setup_slub_min_objects(char *str) 3764 { 3765 get_option(&str, (int *)&slub_min_objects); 3766 3767 return 1; 3768 } 3769 3770 __setup("slub_min_objects=", setup_slub_min_objects); 3771 3772 void *__kmalloc(size_t size, gfp_t flags) 3773 { 3774 struct kmem_cache *s; 3775 void *ret; 3776 3777 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3778 return kmalloc_large(size, flags); 3779 3780 s = kmalloc_slab(size, flags); 3781 3782 if (unlikely(ZERO_OR_NULL_PTR(s))) 3783 return s; 3784 3785 ret = slab_alloc(s, flags, _RET_IP_); 3786 3787 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3788 3789 kasan_kmalloc(s, ret, size, flags); 3790 3791 return ret; 3792 } 3793 EXPORT_SYMBOL(__kmalloc); 3794 3795 #ifdef CONFIG_NUMA 3796 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3797 { 3798 struct page *page; 3799 void *ptr = NULL; 3800 3801 flags |= __GFP_COMP; 3802 page = alloc_pages_node(node, flags, get_order(size)); 3803 if (page) 3804 ptr = page_address(page); 3805 3806 kmalloc_large_node_hook(ptr, size, flags); 3807 return ptr; 3808 } 3809 3810 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3811 { 3812 struct kmem_cache *s; 3813 void *ret; 3814 3815 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3816 ret = kmalloc_large_node(size, flags, node); 3817 3818 trace_kmalloc_node(_RET_IP_, ret, 3819 size, PAGE_SIZE << get_order(size), 3820 flags, node); 3821 3822 return ret; 3823 } 3824 3825 s = kmalloc_slab(size, flags); 3826 3827 if (unlikely(ZERO_OR_NULL_PTR(s))) 3828 return s; 3829 3830 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3831 3832 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3833 3834 kasan_kmalloc(s, ret, size, flags); 3835 3836 return ret; 3837 } 3838 EXPORT_SYMBOL(__kmalloc_node); 3839 #endif 3840 3841 #ifdef CONFIG_HARDENED_USERCOPY 3842 /* 3843 * Rejects incorrectly sized objects and objects that are to be copied 3844 * to/from userspace but do not fall entirely within the containing slab 3845 * cache's usercopy region. 3846 * 3847 * Returns NULL if check passes, otherwise const char * to name of cache 3848 * to indicate an error. 3849 */ 3850 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 3851 bool to_user) 3852 { 3853 struct kmem_cache *s; 3854 unsigned int offset; 3855 size_t object_size; 3856 3857 /* Find object and usable object size. */ 3858 s = page->slab_cache; 3859 3860 /* Reject impossible pointers. */ 3861 if (ptr < page_address(page)) 3862 usercopy_abort("SLUB object not in SLUB page?!", NULL, 3863 to_user, 0, n); 3864 3865 /* Find offset within object. */ 3866 offset = (ptr - page_address(page)) % s->size; 3867 3868 /* Adjust for redzone and reject if within the redzone. */ 3869 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3870 if (offset < s->red_left_pad) 3871 usercopy_abort("SLUB object in left red zone", 3872 s->name, to_user, offset, n); 3873 offset -= s->red_left_pad; 3874 } 3875 3876 /* Allow address range falling entirely within usercopy region. */ 3877 if (offset >= s->useroffset && 3878 offset - s->useroffset <= s->usersize && 3879 n <= s->useroffset - offset + s->usersize) 3880 return; 3881 3882 /* 3883 * If the copy is still within the allocated object, produce 3884 * a warning instead of rejecting the copy. This is intended 3885 * to be a temporary method to find any missing usercopy 3886 * whitelists. 3887 */ 3888 object_size = slab_ksize(s); 3889 if (usercopy_fallback && 3890 offset <= object_size && n <= object_size - offset) { 3891 usercopy_warn("SLUB object", s->name, to_user, offset, n); 3892 return; 3893 } 3894 3895 usercopy_abort("SLUB object", s->name, to_user, offset, n); 3896 } 3897 #endif /* CONFIG_HARDENED_USERCOPY */ 3898 3899 static size_t __ksize(const void *object) 3900 { 3901 struct page *page; 3902 3903 if (unlikely(object == ZERO_SIZE_PTR)) 3904 return 0; 3905 3906 page = virt_to_head_page(object); 3907 3908 if (unlikely(!PageSlab(page))) { 3909 WARN_ON(!PageCompound(page)); 3910 return PAGE_SIZE << compound_order(page); 3911 } 3912 3913 return slab_ksize(page->slab_cache); 3914 } 3915 3916 size_t ksize(const void *object) 3917 { 3918 size_t size = __ksize(object); 3919 /* We assume that ksize callers could use whole allocated area, 3920 * so we need to unpoison this area. 3921 */ 3922 kasan_unpoison_shadow(object, size); 3923 return size; 3924 } 3925 EXPORT_SYMBOL(ksize); 3926 3927 void kfree(const void *x) 3928 { 3929 struct page *page; 3930 void *object = (void *)x; 3931 3932 trace_kfree(_RET_IP_, x); 3933 3934 if (unlikely(ZERO_OR_NULL_PTR(x))) 3935 return; 3936 3937 page = virt_to_head_page(x); 3938 if (unlikely(!PageSlab(page))) { 3939 BUG_ON(!PageCompound(page)); 3940 kfree_hook(object); 3941 __free_pages(page, compound_order(page)); 3942 return; 3943 } 3944 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3945 } 3946 EXPORT_SYMBOL(kfree); 3947 3948 #define SHRINK_PROMOTE_MAX 32 3949 3950 /* 3951 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3952 * up most to the head of the partial lists. New allocations will then 3953 * fill those up and thus they can be removed from the partial lists. 3954 * 3955 * The slabs with the least items are placed last. This results in them 3956 * being allocated from last increasing the chance that the last objects 3957 * are freed in them. 3958 */ 3959 int __kmem_cache_shrink(struct kmem_cache *s) 3960 { 3961 int node; 3962 int i; 3963 struct kmem_cache_node *n; 3964 struct page *page; 3965 struct page *t; 3966 struct list_head discard; 3967 struct list_head promote[SHRINK_PROMOTE_MAX]; 3968 unsigned long flags; 3969 int ret = 0; 3970 3971 flush_all(s); 3972 for_each_kmem_cache_node(s, node, n) { 3973 INIT_LIST_HEAD(&discard); 3974 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3975 INIT_LIST_HEAD(promote + i); 3976 3977 spin_lock_irqsave(&n->list_lock, flags); 3978 3979 /* 3980 * Build lists of slabs to discard or promote. 3981 * 3982 * Note that concurrent frees may occur while we hold the 3983 * list_lock. page->inuse here is the upper limit. 3984 */ 3985 list_for_each_entry_safe(page, t, &n->partial, lru) { 3986 int free = page->objects - page->inuse; 3987 3988 /* Do not reread page->inuse */ 3989 barrier(); 3990 3991 /* We do not keep full slabs on the list */ 3992 BUG_ON(free <= 0); 3993 3994 if (free == page->objects) { 3995 list_move(&page->lru, &discard); 3996 n->nr_partial--; 3997 } else if (free <= SHRINK_PROMOTE_MAX) 3998 list_move(&page->lru, promote + free - 1); 3999 } 4000 4001 /* 4002 * Promote the slabs filled up most to the head of the 4003 * partial list. 4004 */ 4005 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4006 list_splice(promote + i, &n->partial); 4007 4008 spin_unlock_irqrestore(&n->list_lock, flags); 4009 4010 /* Release empty slabs */ 4011 list_for_each_entry_safe(page, t, &discard, lru) 4012 discard_slab(s, page); 4013 4014 if (slabs_node(s, node)) 4015 ret = 1; 4016 } 4017 4018 return ret; 4019 } 4020 4021 #ifdef CONFIG_MEMCG 4022 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) 4023 { 4024 /* 4025 * Called with all the locks held after a sched RCU grace period. 4026 * Even if @s becomes empty after shrinking, we can't know that @s 4027 * doesn't have allocations already in-flight and thus can't 4028 * destroy @s until the associated memcg is released. 4029 * 4030 * However, let's remove the sysfs files for empty caches here. 4031 * Each cache has a lot of interface files which aren't 4032 * particularly useful for empty draining caches; otherwise, we can 4033 * easily end up with millions of unnecessary sysfs files on 4034 * systems which have a lot of memory and transient cgroups. 4035 */ 4036 if (!__kmem_cache_shrink(s)) 4037 sysfs_slab_remove(s); 4038 } 4039 4040 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4041 { 4042 /* 4043 * Disable empty slabs caching. Used to avoid pinning offline 4044 * memory cgroups by kmem pages that can be freed. 4045 */ 4046 slub_set_cpu_partial(s, 0); 4047 s->min_partial = 0; 4048 4049 /* 4050 * s->cpu_partial is checked locklessly (see put_cpu_partial), so 4051 * we have to make sure the change is visible before shrinking. 4052 */ 4053 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); 4054 } 4055 #endif 4056 4057 static int slab_mem_going_offline_callback(void *arg) 4058 { 4059 struct kmem_cache *s; 4060 4061 mutex_lock(&slab_mutex); 4062 list_for_each_entry(s, &slab_caches, list) 4063 __kmem_cache_shrink(s); 4064 mutex_unlock(&slab_mutex); 4065 4066 return 0; 4067 } 4068 4069 static void slab_mem_offline_callback(void *arg) 4070 { 4071 struct kmem_cache_node *n; 4072 struct kmem_cache *s; 4073 struct memory_notify *marg = arg; 4074 int offline_node; 4075 4076 offline_node = marg->status_change_nid_normal; 4077 4078 /* 4079 * If the node still has available memory. we need kmem_cache_node 4080 * for it yet. 4081 */ 4082 if (offline_node < 0) 4083 return; 4084 4085 mutex_lock(&slab_mutex); 4086 list_for_each_entry(s, &slab_caches, list) { 4087 n = get_node(s, offline_node); 4088 if (n) { 4089 /* 4090 * if n->nr_slabs > 0, slabs still exist on the node 4091 * that is going down. We were unable to free them, 4092 * and offline_pages() function shouldn't call this 4093 * callback. So, we must fail. 4094 */ 4095 BUG_ON(slabs_node(s, offline_node)); 4096 4097 s->node[offline_node] = NULL; 4098 kmem_cache_free(kmem_cache_node, n); 4099 } 4100 } 4101 mutex_unlock(&slab_mutex); 4102 } 4103 4104 static int slab_mem_going_online_callback(void *arg) 4105 { 4106 struct kmem_cache_node *n; 4107 struct kmem_cache *s; 4108 struct memory_notify *marg = arg; 4109 int nid = marg->status_change_nid_normal; 4110 int ret = 0; 4111 4112 /* 4113 * If the node's memory is already available, then kmem_cache_node is 4114 * already created. Nothing to do. 4115 */ 4116 if (nid < 0) 4117 return 0; 4118 4119 /* 4120 * We are bringing a node online. No memory is available yet. We must 4121 * allocate a kmem_cache_node structure in order to bring the node 4122 * online. 4123 */ 4124 mutex_lock(&slab_mutex); 4125 list_for_each_entry(s, &slab_caches, list) { 4126 /* 4127 * XXX: kmem_cache_alloc_node will fallback to other nodes 4128 * since memory is not yet available from the node that 4129 * is brought up. 4130 */ 4131 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4132 if (!n) { 4133 ret = -ENOMEM; 4134 goto out; 4135 } 4136 init_kmem_cache_node(n); 4137 s->node[nid] = n; 4138 } 4139 out: 4140 mutex_unlock(&slab_mutex); 4141 return ret; 4142 } 4143 4144 static int slab_memory_callback(struct notifier_block *self, 4145 unsigned long action, void *arg) 4146 { 4147 int ret = 0; 4148 4149 switch (action) { 4150 case MEM_GOING_ONLINE: 4151 ret = slab_mem_going_online_callback(arg); 4152 break; 4153 case MEM_GOING_OFFLINE: 4154 ret = slab_mem_going_offline_callback(arg); 4155 break; 4156 case MEM_OFFLINE: 4157 case MEM_CANCEL_ONLINE: 4158 slab_mem_offline_callback(arg); 4159 break; 4160 case MEM_ONLINE: 4161 case MEM_CANCEL_OFFLINE: 4162 break; 4163 } 4164 if (ret) 4165 ret = notifier_from_errno(ret); 4166 else 4167 ret = NOTIFY_OK; 4168 return ret; 4169 } 4170 4171 static struct notifier_block slab_memory_callback_nb = { 4172 .notifier_call = slab_memory_callback, 4173 .priority = SLAB_CALLBACK_PRI, 4174 }; 4175 4176 /******************************************************************** 4177 * Basic setup of slabs 4178 *******************************************************************/ 4179 4180 /* 4181 * Used for early kmem_cache structures that were allocated using 4182 * the page allocator. Allocate them properly then fix up the pointers 4183 * that may be pointing to the wrong kmem_cache structure. 4184 */ 4185 4186 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4187 { 4188 int node; 4189 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4190 struct kmem_cache_node *n; 4191 4192 memcpy(s, static_cache, kmem_cache->object_size); 4193 4194 /* 4195 * This runs very early, and only the boot processor is supposed to be 4196 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4197 * IPIs around. 4198 */ 4199 __flush_cpu_slab(s, smp_processor_id()); 4200 for_each_kmem_cache_node(s, node, n) { 4201 struct page *p; 4202 4203 list_for_each_entry(p, &n->partial, lru) 4204 p->slab_cache = s; 4205 4206 #ifdef CONFIG_SLUB_DEBUG 4207 list_for_each_entry(p, &n->full, lru) 4208 p->slab_cache = s; 4209 #endif 4210 } 4211 slab_init_memcg_params(s); 4212 list_add(&s->list, &slab_caches); 4213 memcg_link_cache(s); 4214 return s; 4215 } 4216 4217 void __init kmem_cache_init(void) 4218 { 4219 static __initdata struct kmem_cache boot_kmem_cache, 4220 boot_kmem_cache_node; 4221 4222 if (debug_guardpage_minorder()) 4223 slub_max_order = 0; 4224 4225 kmem_cache_node = &boot_kmem_cache_node; 4226 kmem_cache = &boot_kmem_cache; 4227 4228 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4229 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4230 4231 register_hotmemory_notifier(&slab_memory_callback_nb); 4232 4233 /* Able to allocate the per node structures */ 4234 slab_state = PARTIAL; 4235 4236 create_boot_cache(kmem_cache, "kmem_cache", 4237 offsetof(struct kmem_cache, node) + 4238 nr_node_ids * sizeof(struct kmem_cache_node *), 4239 SLAB_HWCACHE_ALIGN, 0, 0); 4240 4241 kmem_cache = bootstrap(&boot_kmem_cache); 4242 4243 /* 4244 * Allocate kmem_cache_node properly from the kmem_cache slab. 4245 * kmem_cache_node is separately allocated so no need to 4246 * update any list pointers. 4247 */ 4248 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4249 4250 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4251 setup_kmalloc_cache_index_table(); 4252 create_kmalloc_caches(0); 4253 4254 /* Setup random freelists for each cache */ 4255 init_freelist_randomization(); 4256 4257 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4258 slub_cpu_dead); 4259 4260 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n", 4261 cache_line_size(), 4262 slub_min_order, slub_max_order, slub_min_objects, 4263 nr_cpu_ids, nr_node_ids); 4264 } 4265 4266 void __init kmem_cache_init_late(void) 4267 { 4268 } 4269 4270 struct kmem_cache * 4271 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4272 slab_flags_t flags, void (*ctor)(void *)) 4273 { 4274 struct kmem_cache *s, *c; 4275 4276 s = find_mergeable(size, align, flags, name, ctor); 4277 if (s) { 4278 s->refcount++; 4279 4280 /* 4281 * Adjust the object sizes so that we clear 4282 * the complete object on kzalloc. 4283 */ 4284 s->object_size = max(s->object_size, size); 4285 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4286 4287 for_each_memcg_cache(c, s) { 4288 c->object_size = s->object_size; 4289 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); 4290 } 4291 4292 if (sysfs_slab_alias(s, name)) { 4293 s->refcount--; 4294 s = NULL; 4295 } 4296 } 4297 4298 return s; 4299 } 4300 4301 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4302 { 4303 int err; 4304 4305 err = kmem_cache_open(s, flags); 4306 if (err) 4307 return err; 4308 4309 /* Mutex is not taken during early boot */ 4310 if (slab_state <= UP) 4311 return 0; 4312 4313 memcg_propagate_slab_attrs(s); 4314 err = sysfs_slab_add(s); 4315 if (err) 4316 __kmem_cache_release(s); 4317 4318 return err; 4319 } 4320 4321 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4322 { 4323 struct kmem_cache *s; 4324 void *ret; 4325 4326 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4327 return kmalloc_large(size, gfpflags); 4328 4329 s = kmalloc_slab(size, gfpflags); 4330 4331 if (unlikely(ZERO_OR_NULL_PTR(s))) 4332 return s; 4333 4334 ret = slab_alloc(s, gfpflags, caller); 4335 4336 /* Honor the call site pointer we received. */ 4337 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4338 4339 return ret; 4340 } 4341 4342 #ifdef CONFIG_NUMA 4343 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4344 int node, unsigned long caller) 4345 { 4346 struct kmem_cache *s; 4347 void *ret; 4348 4349 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4350 ret = kmalloc_large_node(size, gfpflags, node); 4351 4352 trace_kmalloc_node(caller, ret, 4353 size, PAGE_SIZE << get_order(size), 4354 gfpflags, node); 4355 4356 return ret; 4357 } 4358 4359 s = kmalloc_slab(size, gfpflags); 4360 4361 if (unlikely(ZERO_OR_NULL_PTR(s))) 4362 return s; 4363 4364 ret = slab_alloc_node(s, gfpflags, node, caller); 4365 4366 /* Honor the call site pointer we received. */ 4367 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4368 4369 return ret; 4370 } 4371 #endif 4372 4373 #ifdef CONFIG_SYSFS 4374 static int count_inuse(struct page *page) 4375 { 4376 return page->inuse; 4377 } 4378 4379 static int count_total(struct page *page) 4380 { 4381 return page->objects; 4382 } 4383 #endif 4384 4385 #ifdef CONFIG_SLUB_DEBUG 4386 static int validate_slab(struct kmem_cache *s, struct page *page, 4387 unsigned long *map) 4388 { 4389 void *p; 4390 void *addr = page_address(page); 4391 4392 if (!check_slab(s, page) || 4393 !on_freelist(s, page, NULL)) 4394 return 0; 4395 4396 /* Now we know that a valid freelist exists */ 4397 bitmap_zero(map, page->objects); 4398 4399 get_map(s, page, map); 4400 for_each_object(p, s, addr, page->objects) { 4401 if (test_bit(slab_index(p, s, addr), map)) 4402 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4403 return 0; 4404 } 4405 4406 for_each_object(p, s, addr, page->objects) 4407 if (!test_bit(slab_index(p, s, addr), map)) 4408 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4409 return 0; 4410 return 1; 4411 } 4412 4413 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4414 unsigned long *map) 4415 { 4416 slab_lock(page); 4417 validate_slab(s, page, map); 4418 slab_unlock(page); 4419 } 4420 4421 static int validate_slab_node(struct kmem_cache *s, 4422 struct kmem_cache_node *n, unsigned long *map) 4423 { 4424 unsigned long count = 0; 4425 struct page *page; 4426 unsigned long flags; 4427 4428 spin_lock_irqsave(&n->list_lock, flags); 4429 4430 list_for_each_entry(page, &n->partial, lru) { 4431 validate_slab_slab(s, page, map); 4432 count++; 4433 } 4434 if (count != n->nr_partial) 4435 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4436 s->name, count, n->nr_partial); 4437 4438 if (!(s->flags & SLAB_STORE_USER)) 4439 goto out; 4440 4441 list_for_each_entry(page, &n->full, lru) { 4442 validate_slab_slab(s, page, map); 4443 count++; 4444 } 4445 if (count != atomic_long_read(&n->nr_slabs)) 4446 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4447 s->name, count, atomic_long_read(&n->nr_slabs)); 4448 4449 out: 4450 spin_unlock_irqrestore(&n->list_lock, flags); 4451 return count; 4452 } 4453 4454 static long validate_slab_cache(struct kmem_cache *s) 4455 { 4456 int node; 4457 unsigned long count = 0; 4458 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4459 sizeof(unsigned long), GFP_KERNEL); 4460 struct kmem_cache_node *n; 4461 4462 if (!map) 4463 return -ENOMEM; 4464 4465 flush_all(s); 4466 for_each_kmem_cache_node(s, node, n) 4467 count += validate_slab_node(s, n, map); 4468 kfree(map); 4469 return count; 4470 } 4471 /* 4472 * Generate lists of code addresses where slabcache objects are allocated 4473 * and freed. 4474 */ 4475 4476 struct location { 4477 unsigned long count; 4478 unsigned long addr; 4479 long long sum_time; 4480 long min_time; 4481 long max_time; 4482 long min_pid; 4483 long max_pid; 4484 DECLARE_BITMAP(cpus, NR_CPUS); 4485 nodemask_t nodes; 4486 }; 4487 4488 struct loc_track { 4489 unsigned long max; 4490 unsigned long count; 4491 struct location *loc; 4492 }; 4493 4494 static void free_loc_track(struct loc_track *t) 4495 { 4496 if (t->max) 4497 free_pages((unsigned long)t->loc, 4498 get_order(sizeof(struct location) * t->max)); 4499 } 4500 4501 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4502 { 4503 struct location *l; 4504 int order; 4505 4506 order = get_order(sizeof(struct location) * max); 4507 4508 l = (void *)__get_free_pages(flags, order); 4509 if (!l) 4510 return 0; 4511 4512 if (t->count) { 4513 memcpy(l, t->loc, sizeof(struct location) * t->count); 4514 free_loc_track(t); 4515 } 4516 t->max = max; 4517 t->loc = l; 4518 return 1; 4519 } 4520 4521 static int add_location(struct loc_track *t, struct kmem_cache *s, 4522 const struct track *track) 4523 { 4524 long start, end, pos; 4525 struct location *l; 4526 unsigned long caddr; 4527 unsigned long age = jiffies - track->when; 4528 4529 start = -1; 4530 end = t->count; 4531 4532 for ( ; ; ) { 4533 pos = start + (end - start + 1) / 2; 4534 4535 /* 4536 * There is nothing at "end". If we end up there 4537 * we need to add something to before end. 4538 */ 4539 if (pos == end) 4540 break; 4541 4542 caddr = t->loc[pos].addr; 4543 if (track->addr == caddr) { 4544 4545 l = &t->loc[pos]; 4546 l->count++; 4547 if (track->when) { 4548 l->sum_time += age; 4549 if (age < l->min_time) 4550 l->min_time = age; 4551 if (age > l->max_time) 4552 l->max_time = age; 4553 4554 if (track->pid < l->min_pid) 4555 l->min_pid = track->pid; 4556 if (track->pid > l->max_pid) 4557 l->max_pid = track->pid; 4558 4559 cpumask_set_cpu(track->cpu, 4560 to_cpumask(l->cpus)); 4561 } 4562 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4563 return 1; 4564 } 4565 4566 if (track->addr < caddr) 4567 end = pos; 4568 else 4569 start = pos; 4570 } 4571 4572 /* 4573 * Not found. Insert new tracking element. 4574 */ 4575 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4576 return 0; 4577 4578 l = t->loc + pos; 4579 if (pos < t->count) 4580 memmove(l + 1, l, 4581 (t->count - pos) * sizeof(struct location)); 4582 t->count++; 4583 l->count = 1; 4584 l->addr = track->addr; 4585 l->sum_time = age; 4586 l->min_time = age; 4587 l->max_time = age; 4588 l->min_pid = track->pid; 4589 l->max_pid = track->pid; 4590 cpumask_clear(to_cpumask(l->cpus)); 4591 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4592 nodes_clear(l->nodes); 4593 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4594 return 1; 4595 } 4596 4597 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4598 struct page *page, enum track_item alloc, 4599 unsigned long *map) 4600 { 4601 void *addr = page_address(page); 4602 void *p; 4603 4604 bitmap_zero(map, page->objects); 4605 get_map(s, page, map); 4606 4607 for_each_object(p, s, addr, page->objects) 4608 if (!test_bit(slab_index(p, s, addr), map)) 4609 add_location(t, s, get_track(s, p, alloc)); 4610 } 4611 4612 static int list_locations(struct kmem_cache *s, char *buf, 4613 enum track_item alloc) 4614 { 4615 int len = 0; 4616 unsigned long i; 4617 struct loc_track t = { 0, 0, NULL }; 4618 int node; 4619 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4620 sizeof(unsigned long), GFP_KERNEL); 4621 struct kmem_cache_node *n; 4622 4623 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4624 GFP_KERNEL)) { 4625 kfree(map); 4626 return sprintf(buf, "Out of memory\n"); 4627 } 4628 /* Push back cpu slabs */ 4629 flush_all(s); 4630 4631 for_each_kmem_cache_node(s, node, n) { 4632 unsigned long flags; 4633 struct page *page; 4634 4635 if (!atomic_long_read(&n->nr_slabs)) 4636 continue; 4637 4638 spin_lock_irqsave(&n->list_lock, flags); 4639 list_for_each_entry(page, &n->partial, lru) 4640 process_slab(&t, s, page, alloc, map); 4641 list_for_each_entry(page, &n->full, lru) 4642 process_slab(&t, s, page, alloc, map); 4643 spin_unlock_irqrestore(&n->list_lock, flags); 4644 } 4645 4646 for (i = 0; i < t.count; i++) { 4647 struct location *l = &t.loc[i]; 4648 4649 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4650 break; 4651 len += sprintf(buf + len, "%7ld ", l->count); 4652 4653 if (l->addr) 4654 len += sprintf(buf + len, "%pS", (void *)l->addr); 4655 else 4656 len += sprintf(buf + len, "<not-available>"); 4657 4658 if (l->sum_time != l->min_time) { 4659 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4660 l->min_time, 4661 (long)div_u64(l->sum_time, l->count), 4662 l->max_time); 4663 } else 4664 len += sprintf(buf + len, " age=%ld", 4665 l->min_time); 4666 4667 if (l->min_pid != l->max_pid) 4668 len += sprintf(buf + len, " pid=%ld-%ld", 4669 l->min_pid, l->max_pid); 4670 else 4671 len += sprintf(buf + len, " pid=%ld", 4672 l->min_pid); 4673 4674 if (num_online_cpus() > 1 && 4675 !cpumask_empty(to_cpumask(l->cpus)) && 4676 len < PAGE_SIZE - 60) 4677 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4678 " cpus=%*pbl", 4679 cpumask_pr_args(to_cpumask(l->cpus))); 4680 4681 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4682 len < PAGE_SIZE - 60) 4683 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4684 " nodes=%*pbl", 4685 nodemask_pr_args(&l->nodes)); 4686 4687 len += sprintf(buf + len, "\n"); 4688 } 4689 4690 free_loc_track(&t); 4691 kfree(map); 4692 if (!t.count) 4693 len += sprintf(buf, "No data\n"); 4694 return len; 4695 } 4696 #endif 4697 4698 #ifdef SLUB_RESILIENCY_TEST 4699 static void __init resiliency_test(void) 4700 { 4701 u8 *p; 4702 4703 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4704 4705 pr_err("SLUB resiliency testing\n"); 4706 pr_err("-----------------------\n"); 4707 pr_err("A. Corruption after allocation\n"); 4708 4709 p = kzalloc(16, GFP_KERNEL); 4710 p[16] = 0x12; 4711 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4712 p + 16); 4713 4714 validate_slab_cache(kmalloc_caches[4]); 4715 4716 /* Hmmm... The next two are dangerous */ 4717 p = kzalloc(32, GFP_KERNEL); 4718 p[32 + sizeof(void *)] = 0x34; 4719 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4720 p); 4721 pr_err("If allocated object is overwritten then not detectable\n\n"); 4722 4723 validate_slab_cache(kmalloc_caches[5]); 4724 p = kzalloc(64, GFP_KERNEL); 4725 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4726 *p = 0x56; 4727 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4728 p); 4729 pr_err("If allocated object is overwritten then not detectable\n\n"); 4730 validate_slab_cache(kmalloc_caches[6]); 4731 4732 pr_err("\nB. Corruption after free\n"); 4733 p = kzalloc(128, GFP_KERNEL); 4734 kfree(p); 4735 *p = 0x78; 4736 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4737 validate_slab_cache(kmalloc_caches[7]); 4738 4739 p = kzalloc(256, GFP_KERNEL); 4740 kfree(p); 4741 p[50] = 0x9a; 4742 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4743 validate_slab_cache(kmalloc_caches[8]); 4744 4745 p = kzalloc(512, GFP_KERNEL); 4746 kfree(p); 4747 p[512] = 0xab; 4748 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4749 validate_slab_cache(kmalloc_caches[9]); 4750 } 4751 #else 4752 #ifdef CONFIG_SYSFS 4753 static void resiliency_test(void) {}; 4754 #endif 4755 #endif 4756 4757 #ifdef CONFIG_SYSFS 4758 enum slab_stat_type { 4759 SL_ALL, /* All slabs */ 4760 SL_PARTIAL, /* Only partially allocated slabs */ 4761 SL_CPU, /* Only slabs used for cpu caches */ 4762 SL_OBJECTS, /* Determine allocated objects not slabs */ 4763 SL_TOTAL /* Determine object capacity not slabs */ 4764 }; 4765 4766 #define SO_ALL (1 << SL_ALL) 4767 #define SO_PARTIAL (1 << SL_PARTIAL) 4768 #define SO_CPU (1 << SL_CPU) 4769 #define SO_OBJECTS (1 << SL_OBJECTS) 4770 #define SO_TOTAL (1 << SL_TOTAL) 4771 4772 #ifdef CONFIG_MEMCG 4773 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4774 4775 static int __init setup_slub_memcg_sysfs(char *str) 4776 { 4777 int v; 4778 4779 if (get_option(&str, &v) > 0) 4780 memcg_sysfs_enabled = v; 4781 4782 return 1; 4783 } 4784 4785 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4786 #endif 4787 4788 static ssize_t show_slab_objects(struct kmem_cache *s, 4789 char *buf, unsigned long flags) 4790 { 4791 unsigned long total = 0; 4792 int node; 4793 int x; 4794 unsigned long *nodes; 4795 4796 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4797 if (!nodes) 4798 return -ENOMEM; 4799 4800 if (flags & SO_CPU) { 4801 int cpu; 4802 4803 for_each_possible_cpu(cpu) { 4804 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4805 cpu); 4806 int node; 4807 struct page *page; 4808 4809 page = READ_ONCE(c->page); 4810 if (!page) 4811 continue; 4812 4813 node = page_to_nid(page); 4814 if (flags & SO_TOTAL) 4815 x = page->objects; 4816 else if (flags & SO_OBJECTS) 4817 x = page->inuse; 4818 else 4819 x = 1; 4820 4821 total += x; 4822 nodes[node] += x; 4823 4824 page = slub_percpu_partial_read_once(c); 4825 if (page) { 4826 node = page_to_nid(page); 4827 if (flags & SO_TOTAL) 4828 WARN_ON_ONCE(1); 4829 else if (flags & SO_OBJECTS) 4830 WARN_ON_ONCE(1); 4831 else 4832 x = page->pages; 4833 total += x; 4834 nodes[node] += x; 4835 } 4836 } 4837 } 4838 4839 get_online_mems(); 4840 #ifdef CONFIG_SLUB_DEBUG 4841 if (flags & SO_ALL) { 4842 struct kmem_cache_node *n; 4843 4844 for_each_kmem_cache_node(s, node, n) { 4845 4846 if (flags & SO_TOTAL) 4847 x = atomic_long_read(&n->total_objects); 4848 else if (flags & SO_OBJECTS) 4849 x = atomic_long_read(&n->total_objects) - 4850 count_partial(n, count_free); 4851 else 4852 x = atomic_long_read(&n->nr_slabs); 4853 total += x; 4854 nodes[node] += x; 4855 } 4856 4857 } else 4858 #endif 4859 if (flags & SO_PARTIAL) { 4860 struct kmem_cache_node *n; 4861 4862 for_each_kmem_cache_node(s, node, n) { 4863 if (flags & SO_TOTAL) 4864 x = count_partial(n, count_total); 4865 else if (flags & SO_OBJECTS) 4866 x = count_partial(n, count_inuse); 4867 else 4868 x = n->nr_partial; 4869 total += x; 4870 nodes[node] += x; 4871 } 4872 } 4873 x = sprintf(buf, "%lu", total); 4874 #ifdef CONFIG_NUMA 4875 for (node = 0; node < nr_node_ids; node++) 4876 if (nodes[node]) 4877 x += sprintf(buf + x, " N%d=%lu", 4878 node, nodes[node]); 4879 #endif 4880 put_online_mems(); 4881 kfree(nodes); 4882 return x + sprintf(buf + x, "\n"); 4883 } 4884 4885 #ifdef CONFIG_SLUB_DEBUG 4886 static int any_slab_objects(struct kmem_cache *s) 4887 { 4888 int node; 4889 struct kmem_cache_node *n; 4890 4891 for_each_kmem_cache_node(s, node, n) 4892 if (atomic_long_read(&n->total_objects)) 4893 return 1; 4894 4895 return 0; 4896 } 4897 #endif 4898 4899 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4900 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4901 4902 struct slab_attribute { 4903 struct attribute attr; 4904 ssize_t (*show)(struct kmem_cache *s, char *buf); 4905 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4906 }; 4907 4908 #define SLAB_ATTR_RO(_name) \ 4909 static struct slab_attribute _name##_attr = \ 4910 __ATTR(_name, 0400, _name##_show, NULL) 4911 4912 #define SLAB_ATTR(_name) \ 4913 static struct slab_attribute _name##_attr = \ 4914 __ATTR(_name, 0600, _name##_show, _name##_store) 4915 4916 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4917 { 4918 return sprintf(buf, "%u\n", s->size); 4919 } 4920 SLAB_ATTR_RO(slab_size); 4921 4922 static ssize_t align_show(struct kmem_cache *s, char *buf) 4923 { 4924 return sprintf(buf, "%u\n", s->align); 4925 } 4926 SLAB_ATTR_RO(align); 4927 4928 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4929 { 4930 return sprintf(buf, "%u\n", s->object_size); 4931 } 4932 SLAB_ATTR_RO(object_size); 4933 4934 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4935 { 4936 return sprintf(buf, "%u\n", oo_objects(s->oo)); 4937 } 4938 SLAB_ATTR_RO(objs_per_slab); 4939 4940 static ssize_t order_store(struct kmem_cache *s, 4941 const char *buf, size_t length) 4942 { 4943 unsigned int order; 4944 int err; 4945 4946 err = kstrtouint(buf, 10, &order); 4947 if (err) 4948 return err; 4949 4950 if (order > slub_max_order || order < slub_min_order) 4951 return -EINVAL; 4952 4953 calculate_sizes(s, order); 4954 return length; 4955 } 4956 4957 static ssize_t order_show(struct kmem_cache *s, char *buf) 4958 { 4959 return sprintf(buf, "%u\n", oo_order(s->oo)); 4960 } 4961 SLAB_ATTR(order); 4962 4963 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4964 { 4965 return sprintf(buf, "%lu\n", s->min_partial); 4966 } 4967 4968 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4969 size_t length) 4970 { 4971 unsigned long min; 4972 int err; 4973 4974 err = kstrtoul(buf, 10, &min); 4975 if (err) 4976 return err; 4977 4978 set_min_partial(s, min); 4979 return length; 4980 } 4981 SLAB_ATTR(min_partial); 4982 4983 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4984 { 4985 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 4986 } 4987 4988 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4989 size_t length) 4990 { 4991 unsigned int objects; 4992 int err; 4993 4994 err = kstrtouint(buf, 10, &objects); 4995 if (err) 4996 return err; 4997 if (objects && !kmem_cache_has_cpu_partial(s)) 4998 return -EINVAL; 4999 5000 slub_set_cpu_partial(s, objects); 5001 flush_all(s); 5002 return length; 5003 } 5004 SLAB_ATTR(cpu_partial); 5005 5006 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5007 { 5008 if (!s->ctor) 5009 return 0; 5010 return sprintf(buf, "%pS\n", s->ctor); 5011 } 5012 SLAB_ATTR_RO(ctor); 5013 5014 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5015 { 5016 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5017 } 5018 SLAB_ATTR_RO(aliases); 5019 5020 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5021 { 5022 return show_slab_objects(s, buf, SO_PARTIAL); 5023 } 5024 SLAB_ATTR_RO(partial); 5025 5026 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5027 { 5028 return show_slab_objects(s, buf, SO_CPU); 5029 } 5030 SLAB_ATTR_RO(cpu_slabs); 5031 5032 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5033 { 5034 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5035 } 5036 SLAB_ATTR_RO(objects); 5037 5038 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5039 { 5040 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5041 } 5042 SLAB_ATTR_RO(objects_partial); 5043 5044 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5045 { 5046 int objects = 0; 5047 int pages = 0; 5048 int cpu; 5049 int len; 5050 5051 for_each_online_cpu(cpu) { 5052 struct page *page; 5053 5054 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5055 5056 if (page) { 5057 pages += page->pages; 5058 objects += page->pobjects; 5059 } 5060 } 5061 5062 len = sprintf(buf, "%d(%d)", objects, pages); 5063 5064 #ifdef CONFIG_SMP 5065 for_each_online_cpu(cpu) { 5066 struct page *page; 5067 5068 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5069 5070 if (page && len < PAGE_SIZE - 20) 5071 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5072 page->pobjects, page->pages); 5073 } 5074 #endif 5075 return len + sprintf(buf + len, "\n"); 5076 } 5077 SLAB_ATTR_RO(slabs_cpu_partial); 5078 5079 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5080 { 5081 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5082 } 5083 5084 static ssize_t reclaim_account_store(struct kmem_cache *s, 5085 const char *buf, size_t length) 5086 { 5087 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5088 if (buf[0] == '1') 5089 s->flags |= SLAB_RECLAIM_ACCOUNT; 5090 return length; 5091 } 5092 SLAB_ATTR(reclaim_account); 5093 5094 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5095 { 5096 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5097 } 5098 SLAB_ATTR_RO(hwcache_align); 5099 5100 #ifdef CONFIG_ZONE_DMA 5101 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5102 { 5103 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5104 } 5105 SLAB_ATTR_RO(cache_dma); 5106 #endif 5107 5108 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5109 { 5110 return sprintf(buf, "%u\n", s->usersize); 5111 } 5112 SLAB_ATTR_RO(usersize); 5113 5114 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5115 { 5116 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5117 } 5118 SLAB_ATTR_RO(destroy_by_rcu); 5119 5120 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 5121 { 5122 return sprintf(buf, "%u\n", s->reserved); 5123 } 5124 SLAB_ATTR_RO(reserved); 5125 5126 #ifdef CONFIG_SLUB_DEBUG 5127 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5128 { 5129 return show_slab_objects(s, buf, SO_ALL); 5130 } 5131 SLAB_ATTR_RO(slabs); 5132 5133 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5134 { 5135 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5136 } 5137 SLAB_ATTR_RO(total_objects); 5138 5139 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5140 { 5141 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5142 } 5143 5144 static ssize_t sanity_checks_store(struct kmem_cache *s, 5145 const char *buf, size_t length) 5146 { 5147 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5148 if (buf[0] == '1') { 5149 s->flags &= ~__CMPXCHG_DOUBLE; 5150 s->flags |= SLAB_CONSISTENCY_CHECKS; 5151 } 5152 return length; 5153 } 5154 SLAB_ATTR(sanity_checks); 5155 5156 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5157 { 5158 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5159 } 5160 5161 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5162 size_t length) 5163 { 5164 /* 5165 * Tracing a merged cache is going to give confusing results 5166 * as well as cause other issues like converting a mergeable 5167 * cache into an umergeable one. 5168 */ 5169 if (s->refcount > 1) 5170 return -EINVAL; 5171 5172 s->flags &= ~SLAB_TRACE; 5173 if (buf[0] == '1') { 5174 s->flags &= ~__CMPXCHG_DOUBLE; 5175 s->flags |= SLAB_TRACE; 5176 } 5177 return length; 5178 } 5179 SLAB_ATTR(trace); 5180 5181 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5182 { 5183 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5184 } 5185 5186 static ssize_t red_zone_store(struct kmem_cache *s, 5187 const char *buf, size_t length) 5188 { 5189 if (any_slab_objects(s)) 5190 return -EBUSY; 5191 5192 s->flags &= ~SLAB_RED_ZONE; 5193 if (buf[0] == '1') { 5194 s->flags |= SLAB_RED_ZONE; 5195 } 5196 calculate_sizes(s, -1); 5197 return length; 5198 } 5199 SLAB_ATTR(red_zone); 5200 5201 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5202 { 5203 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5204 } 5205 5206 static ssize_t poison_store(struct kmem_cache *s, 5207 const char *buf, size_t length) 5208 { 5209 if (any_slab_objects(s)) 5210 return -EBUSY; 5211 5212 s->flags &= ~SLAB_POISON; 5213 if (buf[0] == '1') { 5214 s->flags |= SLAB_POISON; 5215 } 5216 calculate_sizes(s, -1); 5217 return length; 5218 } 5219 SLAB_ATTR(poison); 5220 5221 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5222 { 5223 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5224 } 5225 5226 static ssize_t store_user_store(struct kmem_cache *s, 5227 const char *buf, size_t length) 5228 { 5229 if (any_slab_objects(s)) 5230 return -EBUSY; 5231 5232 s->flags &= ~SLAB_STORE_USER; 5233 if (buf[0] == '1') { 5234 s->flags &= ~__CMPXCHG_DOUBLE; 5235 s->flags |= SLAB_STORE_USER; 5236 } 5237 calculate_sizes(s, -1); 5238 return length; 5239 } 5240 SLAB_ATTR(store_user); 5241 5242 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5243 { 5244 return 0; 5245 } 5246 5247 static ssize_t validate_store(struct kmem_cache *s, 5248 const char *buf, size_t length) 5249 { 5250 int ret = -EINVAL; 5251 5252 if (buf[0] == '1') { 5253 ret = validate_slab_cache(s); 5254 if (ret >= 0) 5255 ret = length; 5256 } 5257 return ret; 5258 } 5259 SLAB_ATTR(validate); 5260 5261 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5262 { 5263 if (!(s->flags & SLAB_STORE_USER)) 5264 return -ENOSYS; 5265 return list_locations(s, buf, TRACK_ALLOC); 5266 } 5267 SLAB_ATTR_RO(alloc_calls); 5268 5269 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5270 { 5271 if (!(s->flags & SLAB_STORE_USER)) 5272 return -ENOSYS; 5273 return list_locations(s, buf, TRACK_FREE); 5274 } 5275 SLAB_ATTR_RO(free_calls); 5276 #endif /* CONFIG_SLUB_DEBUG */ 5277 5278 #ifdef CONFIG_FAILSLAB 5279 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5280 { 5281 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5282 } 5283 5284 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5285 size_t length) 5286 { 5287 if (s->refcount > 1) 5288 return -EINVAL; 5289 5290 s->flags &= ~SLAB_FAILSLAB; 5291 if (buf[0] == '1') 5292 s->flags |= SLAB_FAILSLAB; 5293 return length; 5294 } 5295 SLAB_ATTR(failslab); 5296 #endif 5297 5298 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5299 { 5300 return 0; 5301 } 5302 5303 static ssize_t shrink_store(struct kmem_cache *s, 5304 const char *buf, size_t length) 5305 { 5306 if (buf[0] == '1') 5307 kmem_cache_shrink(s); 5308 else 5309 return -EINVAL; 5310 return length; 5311 } 5312 SLAB_ATTR(shrink); 5313 5314 #ifdef CONFIG_NUMA 5315 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5316 { 5317 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5318 } 5319 5320 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5321 const char *buf, size_t length) 5322 { 5323 unsigned int ratio; 5324 int err; 5325 5326 err = kstrtouint(buf, 10, &ratio); 5327 if (err) 5328 return err; 5329 if (ratio > 100) 5330 return -ERANGE; 5331 5332 s->remote_node_defrag_ratio = ratio * 10; 5333 5334 return length; 5335 } 5336 SLAB_ATTR(remote_node_defrag_ratio); 5337 #endif 5338 5339 #ifdef CONFIG_SLUB_STATS 5340 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5341 { 5342 unsigned long sum = 0; 5343 int cpu; 5344 int len; 5345 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 5346 5347 if (!data) 5348 return -ENOMEM; 5349 5350 for_each_online_cpu(cpu) { 5351 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5352 5353 data[cpu] = x; 5354 sum += x; 5355 } 5356 5357 len = sprintf(buf, "%lu", sum); 5358 5359 #ifdef CONFIG_SMP 5360 for_each_online_cpu(cpu) { 5361 if (data[cpu] && len < PAGE_SIZE - 20) 5362 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5363 } 5364 #endif 5365 kfree(data); 5366 return len + sprintf(buf + len, "\n"); 5367 } 5368 5369 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5370 { 5371 int cpu; 5372 5373 for_each_online_cpu(cpu) 5374 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5375 } 5376 5377 #define STAT_ATTR(si, text) \ 5378 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5379 { \ 5380 return show_stat(s, buf, si); \ 5381 } \ 5382 static ssize_t text##_store(struct kmem_cache *s, \ 5383 const char *buf, size_t length) \ 5384 { \ 5385 if (buf[0] != '0') \ 5386 return -EINVAL; \ 5387 clear_stat(s, si); \ 5388 return length; \ 5389 } \ 5390 SLAB_ATTR(text); \ 5391 5392 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5393 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5394 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5395 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5396 STAT_ATTR(FREE_FROZEN, free_frozen); 5397 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5398 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5399 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5400 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5401 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5402 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5403 STAT_ATTR(FREE_SLAB, free_slab); 5404 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5405 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5406 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5407 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5408 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5409 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5410 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5411 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5412 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5413 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5414 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5415 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5416 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5417 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5418 #endif 5419 5420 static struct attribute *slab_attrs[] = { 5421 &slab_size_attr.attr, 5422 &object_size_attr.attr, 5423 &objs_per_slab_attr.attr, 5424 &order_attr.attr, 5425 &min_partial_attr.attr, 5426 &cpu_partial_attr.attr, 5427 &objects_attr.attr, 5428 &objects_partial_attr.attr, 5429 &partial_attr.attr, 5430 &cpu_slabs_attr.attr, 5431 &ctor_attr.attr, 5432 &aliases_attr.attr, 5433 &align_attr.attr, 5434 &hwcache_align_attr.attr, 5435 &reclaim_account_attr.attr, 5436 &destroy_by_rcu_attr.attr, 5437 &shrink_attr.attr, 5438 &reserved_attr.attr, 5439 &slabs_cpu_partial_attr.attr, 5440 #ifdef CONFIG_SLUB_DEBUG 5441 &total_objects_attr.attr, 5442 &slabs_attr.attr, 5443 &sanity_checks_attr.attr, 5444 &trace_attr.attr, 5445 &red_zone_attr.attr, 5446 &poison_attr.attr, 5447 &store_user_attr.attr, 5448 &validate_attr.attr, 5449 &alloc_calls_attr.attr, 5450 &free_calls_attr.attr, 5451 #endif 5452 #ifdef CONFIG_ZONE_DMA 5453 &cache_dma_attr.attr, 5454 #endif 5455 #ifdef CONFIG_NUMA 5456 &remote_node_defrag_ratio_attr.attr, 5457 #endif 5458 #ifdef CONFIG_SLUB_STATS 5459 &alloc_fastpath_attr.attr, 5460 &alloc_slowpath_attr.attr, 5461 &free_fastpath_attr.attr, 5462 &free_slowpath_attr.attr, 5463 &free_frozen_attr.attr, 5464 &free_add_partial_attr.attr, 5465 &free_remove_partial_attr.attr, 5466 &alloc_from_partial_attr.attr, 5467 &alloc_slab_attr.attr, 5468 &alloc_refill_attr.attr, 5469 &alloc_node_mismatch_attr.attr, 5470 &free_slab_attr.attr, 5471 &cpuslab_flush_attr.attr, 5472 &deactivate_full_attr.attr, 5473 &deactivate_empty_attr.attr, 5474 &deactivate_to_head_attr.attr, 5475 &deactivate_to_tail_attr.attr, 5476 &deactivate_remote_frees_attr.attr, 5477 &deactivate_bypass_attr.attr, 5478 &order_fallback_attr.attr, 5479 &cmpxchg_double_fail_attr.attr, 5480 &cmpxchg_double_cpu_fail_attr.attr, 5481 &cpu_partial_alloc_attr.attr, 5482 &cpu_partial_free_attr.attr, 5483 &cpu_partial_node_attr.attr, 5484 &cpu_partial_drain_attr.attr, 5485 #endif 5486 #ifdef CONFIG_FAILSLAB 5487 &failslab_attr.attr, 5488 #endif 5489 &usersize_attr.attr, 5490 5491 NULL 5492 }; 5493 5494 static const struct attribute_group slab_attr_group = { 5495 .attrs = slab_attrs, 5496 }; 5497 5498 static ssize_t slab_attr_show(struct kobject *kobj, 5499 struct attribute *attr, 5500 char *buf) 5501 { 5502 struct slab_attribute *attribute; 5503 struct kmem_cache *s; 5504 int err; 5505 5506 attribute = to_slab_attr(attr); 5507 s = to_slab(kobj); 5508 5509 if (!attribute->show) 5510 return -EIO; 5511 5512 err = attribute->show(s, buf); 5513 5514 return err; 5515 } 5516 5517 static ssize_t slab_attr_store(struct kobject *kobj, 5518 struct attribute *attr, 5519 const char *buf, size_t len) 5520 { 5521 struct slab_attribute *attribute; 5522 struct kmem_cache *s; 5523 int err; 5524 5525 attribute = to_slab_attr(attr); 5526 s = to_slab(kobj); 5527 5528 if (!attribute->store) 5529 return -EIO; 5530 5531 err = attribute->store(s, buf, len); 5532 #ifdef CONFIG_MEMCG 5533 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5534 struct kmem_cache *c; 5535 5536 mutex_lock(&slab_mutex); 5537 if (s->max_attr_size < len) 5538 s->max_attr_size = len; 5539 5540 /* 5541 * This is a best effort propagation, so this function's return 5542 * value will be determined by the parent cache only. This is 5543 * basically because not all attributes will have a well 5544 * defined semantics for rollbacks - most of the actions will 5545 * have permanent effects. 5546 * 5547 * Returning the error value of any of the children that fail 5548 * is not 100 % defined, in the sense that users seeing the 5549 * error code won't be able to know anything about the state of 5550 * the cache. 5551 * 5552 * Only returning the error code for the parent cache at least 5553 * has well defined semantics. The cache being written to 5554 * directly either failed or succeeded, in which case we loop 5555 * through the descendants with best-effort propagation. 5556 */ 5557 for_each_memcg_cache(c, s) 5558 attribute->store(c, buf, len); 5559 mutex_unlock(&slab_mutex); 5560 } 5561 #endif 5562 return err; 5563 } 5564 5565 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5566 { 5567 #ifdef CONFIG_MEMCG 5568 int i; 5569 char *buffer = NULL; 5570 struct kmem_cache *root_cache; 5571 5572 if (is_root_cache(s)) 5573 return; 5574 5575 root_cache = s->memcg_params.root_cache; 5576 5577 /* 5578 * This mean this cache had no attribute written. Therefore, no point 5579 * in copying default values around 5580 */ 5581 if (!root_cache->max_attr_size) 5582 return; 5583 5584 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5585 char mbuf[64]; 5586 char *buf; 5587 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5588 ssize_t len; 5589 5590 if (!attr || !attr->store || !attr->show) 5591 continue; 5592 5593 /* 5594 * It is really bad that we have to allocate here, so we will 5595 * do it only as a fallback. If we actually allocate, though, 5596 * we can just use the allocated buffer until the end. 5597 * 5598 * Most of the slub attributes will tend to be very small in 5599 * size, but sysfs allows buffers up to a page, so they can 5600 * theoretically happen. 5601 */ 5602 if (buffer) 5603 buf = buffer; 5604 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5605 buf = mbuf; 5606 else { 5607 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5608 if (WARN_ON(!buffer)) 5609 continue; 5610 buf = buffer; 5611 } 5612 5613 len = attr->show(root_cache, buf); 5614 if (len > 0) 5615 attr->store(s, buf, len); 5616 } 5617 5618 if (buffer) 5619 free_page((unsigned long)buffer); 5620 #endif 5621 } 5622 5623 static void kmem_cache_release(struct kobject *k) 5624 { 5625 slab_kmem_cache_release(to_slab(k)); 5626 } 5627 5628 static const struct sysfs_ops slab_sysfs_ops = { 5629 .show = slab_attr_show, 5630 .store = slab_attr_store, 5631 }; 5632 5633 static struct kobj_type slab_ktype = { 5634 .sysfs_ops = &slab_sysfs_ops, 5635 .release = kmem_cache_release, 5636 }; 5637 5638 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5639 { 5640 struct kobj_type *ktype = get_ktype(kobj); 5641 5642 if (ktype == &slab_ktype) 5643 return 1; 5644 return 0; 5645 } 5646 5647 static const struct kset_uevent_ops slab_uevent_ops = { 5648 .filter = uevent_filter, 5649 }; 5650 5651 static struct kset *slab_kset; 5652 5653 static inline struct kset *cache_kset(struct kmem_cache *s) 5654 { 5655 #ifdef CONFIG_MEMCG 5656 if (!is_root_cache(s)) 5657 return s->memcg_params.root_cache->memcg_kset; 5658 #endif 5659 return slab_kset; 5660 } 5661 5662 #define ID_STR_LENGTH 64 5663 5664 /* Create a unique string id for a slab cache: 5665 * 5666 * Format :[flags-]size 5667 */ 5668 static char *create_unique_id(struct kmem_cache *s) 5669 { 5670 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5671 char *p = name; 5672 5673 BUG_ON(!name); 5674 5675 *p++ = ':'; 5676 /* 5677 * First flags affecting slabcache operations. We will only 5678 * get here for aliasable slabs so we do not need to support 5679 * too many flags. The flags here must cover all flags that 5680 * are matched during merging to guarantee that the id is 5681 * unique. 5682 */ 5683 if (s->flags & SLAB_CACHE_DMA) 5684 *p++ = 'd'; 5685 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5686 *p++ = 'a'; 5687 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5688 *p++ = 'F'; 5689 if (s->flags & SLAB_ACCOUNT) 5690 *p++ = 'A'; 5691 if (p != name + 1) 5692 *p++ = '-'; 5693 p += sprintf(p, "%07u", s->size); 5694 5695 BUG_ON(p > name + ID_STR_LENGTH - 1); 5696 return name; 5697 } 5698 5699 static void sysfs_slab_remove_workfn(struct work_struct *work) 5700 { 5701 struct kmem_cache *s = 5702 container_of(work, struct kmem_cache, kobj_remove_work); 5703 5704 if (!s->kobj.state_in_sysfs) 5705 /* 5706 * For a memcg cache, this may be called during 5707 * deactivation and again on shutdown. Remove only once. 5708 * A cache is never shut down before deactivation is 5709 * complete, so no need to worry about synchronization. 5710 */ 5711 goto out; 5712 5713 #ifdef CONFIG_MEMCG 5714 kset_unregister(s->memcg_kset); 5715 #endif 5716 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5717 kobject_del(&s->kobj); 5718 out: 5719 kobject_put(&s->kobj); 5720 } 5721 5722 static int sysfs_slab_add(struct kmem_cache *s) 5723 { 5724 int err; 5725 const char *name; 5726 struct kset *kset = cache_kset(s); 5727 int unmergeable = slab_unmergeable(s); 5728 5729 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5730 5731 if (!kset) { 5732 kobject_init(&s->kobj, &slab_ktype); 5733 return 0; 5734 } 5735 5736 if (!unmergeable && disable_higher_order_debug && 5737 (slub_debug & DEBUG_METADATA_FLAGS)) 5738 unmergeable = 1; 5739 5740 if (unmergeable) { 5741 /* 5742 * Slabcache can never be merged so we can use the name proper. 5743 * This is typically the case for debug situations. In that 5744 * case we can catch duplicate names easily. 5745 */ 5746 sysfs_remove_link(&slab_kset->kobj, s->name); 5747 name = s->name; 5748 } else { 5749 /* 5750 * Create a unique name for the slab as a target 5751 * for the symlinks. 5752 */ 5753 name = create_unique_id(s); 5754 } 5755 5756 s->kobj.kset = kset; 5757 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5758 if (err) 5759 goto out; 5760 5761 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5762 if (err) 5763 goto out_del_kobj; 5764 5765 #ifdef CONFIG_MEMCG 5766 if (is_root_cache(s) && memcg_sysfs_enabled) { 5767 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5768 if (!s->memcg_kset) { 5769 err = -ENOMEM; 5770 goto out_del_kobj; 5771 } 5772 } 5773 #endif 5774 5775 kobject_uevent(&s->kobj, KOBJ_ADD); 5776 if (!unmergeable) { 5777 /* Setup first alias */ 5778 sysfs_slab_alias(s, s->name); 5779 } 5780 out: 5781 if (!unmergeable) 5782 kfree(name); 5783 return err; 5784 out_del_kobj: 5785 kobject_del(&s->kobj); 5786 goto out; 5787 } 5788 5789 static void sysfs_slab_remove(struct kmem_cache *s) 5790 { 5791 if (slab_state < FULL) 5792 /* 5793 * Sysfs has not been setup yet so no need to remove the 5794 * cache from sysfs. 5795 */ 5796 return; 5797 5798 kobject_get(&s->kobj); 5799 schedule_work(&s->kobj_remove_work); 5800 } 5801 5802 void sysfs_slab_release(struct kmem_cache *s) 5803 { 5804 if (slab_state >= FULL) 5805 kobject_put(&s->kobj); 5806 } 5807 5808 /* 5809 * Need to buffer aliases during bootup until sysfs becomes 5810 * available lest we lose that information. 5811 */ 5812 struct saved_alias { 5813 struct kmem_cache *s; 5814 const char *name; 5815 struct saved_alias *next; 5816 }; 5817 5818 static struct saved_alias *alias_list; 5819 5820 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5821 { 5822 struct saved_alias *al; 5823 5824 if (slab_state == FULL) { 5825 /* 5826 * If we have a leftover link then remove it. 5827 */ 5828 sysfs_remove_link(&slab_kset->kobj, name); 5829 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5830 } 5831 5832 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5833 if (!al) 5834 return -ENOMEM; 5835 5836 al->s = s; 5837 al->name = name; 5838 al->next = alias_list; 5839 alias_list = al; 5840 return 0; 5841 } 5842 5843 static int __init slab_sysfs_init(void) 5844 { 5845 struct kmem_cache *s; 5846 int err; 5847 5848 mutex_lock(&slab_mutex); 5849 5850 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5851 if (!slab_kset) { 5852 mutex_unlock(&slab_mutex); 5853 pr_err("Cannot register slab subsystem.\n"); 5854 return -ENOSYS; 5855 } 5856 5857 slab_state = FULL; 5858 5859 list_for_each_entry(s, &slab_caches, list) { 5860 err = sysfs_slab_add(s); 5861 if (err) 5862 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5863 s->name); 5864 } 5865 5866 while (alias_list) { 5867 struct saved_alias *al = alias_list; 5868 5869 alias_list = alias_list->next; 5870 err = sysfs_slab_alias(al->s, al->name); 5871 if (err) 5872 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5873 al->name); 5874 kfree(al); 5875 } 5876 5877 mutex_unlock(&slab_mutex); 5878 resiliency_test(); 5879 return 0; 5880 } 5881 5882 __initcall(slab_sysfs_init); 5883 #endif /* CONFIG_SYSFS */ 5884 5885 /* 5886 * The /proc/slabinfo ABI 5887 */ 5888 #ifdef CONFIG_SLUB_DEBUG 5889 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5890 { 5891 unsigned long nr_slabs = 0; 5892 unsigned long nr_objs = 0; 5893 unsigned long nr_free = 0; 5894 int node; 5895 struct kmem_cache_node *n; 5896 5897 for_each_kmem_cache_node(s, node, n) { 5898 nr_slabs += node_nr_slabs(n); 5899 nr_objs += node_nr_objs(n); 5900 nr_free += count_partial(n, count_free); 5901 } 5902 5903 sinfo->active_objs = nr_objs - nr_free; 5904 sinfo->num_objs = nr_objs; 5905 sinfo->active_slabs = nr_slabs; 5906 sinfo->num_slabs = nr_slabs; 5907 sinfo->objects_per_slab = oo_objects(s->oo); 5908 sinfo->cache_order = oo_order(s->oo); 5909 } 5910 5911 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5912 { 5913 } 5914 5915 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5916 size_t count, loff_t *ppos) 5917 { 5918 return -EIO; 5919 } 5920 #endif /* CONFIG_SLUB_DEBUG */ 5921