xref: /openbmc/linux/mm/slub.c (revision 4bdf0bb7)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 
32 /*
33  * Lock order:
34  *   1. slab_lock(page)
35  *   2. slab->list_lock
36  *
37  *   The slab_lock protects operations on the object of a particular
38  *   slab and its metadata in the page struct. If the slab lock
39  *   has been taken then no allocations nor frees can be performed
40  *   on the objects in the slab nor can the slab be added or removed
41  *   from the partial or full lists since this would mean modifying
42  *   the page_struct of the slab.
43  *
44  *   The list_lock protects the partial and full list on each node and
45  *   the partial slab counter. If taken then no new slabs may be added or
46  *   removed from the lists nor make the number of partial slabs be modified.
47  *   (Note that the total number of slabs is an atomic value that may be
48  *   modified without taking the list lock).
49  *
50  *   The list_lock is a centralized lock and thus we avoid taking it as
51  *   much as possible. As long as SLUB does not have to handle partial
52  *   slabs, operations can continue without any centralized lock. F.e.
53  *   allocating a long series of objects that fill up slabs does not require
54  *   the list lock.
55  *
56  *   The lock order is sometimes inverted when we are trying to get a slab
57  *   off a list. We take the list_lock and then look for a page on the list
58  *   to use. While we do that objects in the slabs may be freed. We can
59  *   only operate on the slab if we have also taken the slab_lock. So we use
60  *   a slab_trylock() on the slab. If trylock was successful then no frees
61  *   can occur anymore and we can use the slab for allocations etc. If the
62  *   slab_trylock() does not succeed then frees are in progress in the slab and
63  *   we must stay away from it for a while since we may cause a bouncing
64  *   cacheline if we try to acquire the lock. So go onto the next slab.
65  *   If all pages are busy then we may allocate a new slab instead of reusing
66  *   a partial slab. A new slab has noone operating on it and thus there is
67  *   no danger of cacheline contention.
68  *
69  *   Interrupts are disabled during allocation and deallocation in order to
70  *   make the slab allocator safe to use in the context of an irq. In addition
71  *   interrupts are disabled to ensure that the processor does not change
72  *   while handling per_cpu slabs, due to kernel preemption.
73  *
74  * SLUB assigns one slab for allocation to each processor.
75  * Allocations only occur from these slabs called cpu slabs.
76  *
77  * Slabs with free elements are kept on a partial list and during regular
78  * operations no list for full slabs is used. If an object in a full slab is
79  * freed then the slab will show up again on the partial lists.
80  * We track full slabs for debugging purposes though because otherwise we
81  * cannot scan all objects.
82  *
83  * Slabs are freed when they become empty. Teardown and setup is
84  * minimal so we rely on the page allocators per cpu caches for
85  * fast frees and allocs.
86  *
87  * Overloading of page flags that are otherwise used for LRU management.
88  *
89  * PageActive 		The slab is frozen and exempt from list processing.
90  * 			This means that the slab is dedicated to a purpose
91  * 			such as satisfying allocations for a specific
92  * 			processor. Objects may be freed in the slab while
93  * 			it is frozen but slab_free will then skip the usual
94  * 			list operations. It is up to the processor holding
95  * 			the slab to integrate the slab into the slab lists
96  * 			when the slab is no longer needed.
97  *
98  * 			One use of this flag is to mark slabs that are
99  * 			used for allocations. Then such a slab becomes a cpu
100  * 			slab. The cpu slab may be equipped with an additional
101  * 			freelist that allows lockless access to
102  * 			free objects in addition to the regular freelist
103  * 			that requires the slab lock.
104  *
105  * PageError		Slab requires special handling due to debug
106  * 			options set. This moves	slab handling out of
107  * 			the fast path and disables lockless freelists.
108  */
109 
110 #ifdef CONFIG_SLUB_DEBUG
111 #define SLABDEBUG 1
112 #else
113 #define SLABDEBUG 0
114 #endif
115 
116 /*
117  * Issues still to be resolved:
118  *
119  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120  *
121  * - Variable sizing of the per node arrays
122  */
123 
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
126 
127 /*
128  * Mininum number of partial slabs. These will be left on the partial
129  * lists even if they are empty. kmem_cache_shrink may reclaim them.
130  */
131 #define MIN_PARTIAL 5
132 
133 /*
134  * Maximum number of desirable partial slabs.
135  * The existence of more partial slabs makes kmem_cache_shrink
136  * sort the partial list by the number of objects in the.
137  */
138 #define MAX_PARTIAL 10
139 
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 				SLAB_POISON | SLAB_STORE_USER)
142 
143 /*
144  * Debugging flags that require metadata to be stored in the slab.  These get
145  * disabled when slub_debug=O is used and a cache's min order increases with
146  * metadata.
147  */
148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
149 
150 /*
151  * Set of flags that will prevent slab merging
152  */
153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
154 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
155 
156 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
157 		SLAB_CACHE_DMA | SLAB_NOTRACK)
158 
159 #ifndef ARCH_KMALLOC_MINALIGN
160 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
161 #endif
162 
163 #ifndef ARCH_SLAB_MINALIGN
164 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
165 #endif
166 
167 #define OO_SHIFT	16
168 #define OO_MASK		((1 << OO_SHIFT) - 1)
169 #define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
170 
171 /* Internal SLUB flags */
172 #define __OBJECT_POISON		0x80000000 /* Poison object */
173 #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
174 
175 static int kmem_size = sizeof(struct kmem_cache);
176 
177 #ifdef CONFIG_SMP
178 static struct notifier_block slab_notifier;
179 #endif
180 
181 static enum {
182 	DOWN,		/* No slab functionality available */
183 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
184 	UP,		/* Everything works but does not show up in sysfs */
185 	SYSFS		/* Sysfs up */
186 } slab_state = DOWN;
187 
188 /* A list of all slab caches on the system */
189 static DECLARE_RWSEM(slub_lock);
190 static LIST_HEAD(slab_caches);
191 
192 /*
193  * Tracking user of a slab.
194  */
195 struct track {
196 	unsigned long addr;	/* Called from address */
197 	int cpu;		/* Was running on cpu */
198 	int pid;		/* Pid context */
199 	unsigned long when;	/* When did the operation occur */
200 };
201 
202 enum track_item { TRACK_ALLOC, TRACK_FREE };
203 
204 #ifdef CONFIG_SLUB_DEBUG
205 static int sysfs_slab_add(struct kmem_cache *);
206 static int sysfs_slab_alias(struct kmem_cache *, const char *);
207 static void sysfs_slab_remove(struct kmem_cache *);
208 
209 #else
210 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 							{ return 0; }
213 static inline void sysfs_slab_remove(struct kmem_cache *s)
214 {
215 	kfree(s);
216 }
217 
218 #endif
219 
220 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
221 {
222 #ifdef CONFIG_SLUB_STATS
223 	c->stat[si]++;
224 #endif
225 }
226 
227 /********************************************************************
228  * 			Core slab cache functions
229  *******************************************************************/
230 
231 int slab_is_available(void)
232 {
233 	return slab_state >= UP;
234 }
235 
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237 {
238 #ifdef CONFIG_NUMA
239 	return s->node[node];
240 #else
241 	return &s->local_node;
242 #endif
243 }
244 
245 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
246 {
247 #ifdef CONFIG_SMP
248 	return s->cpu_slab[cpu];
249 #else
250 	return &s->cpu_slab;
251 #endif
252 }
253 
254 /* Verify that a pointer has an address that is valid within a slab page */
255 static inline int check_valid_pointer(struct kmem_cache *s,
256 				struct page *page, const void *object)
257 {
258 	void *base;
259 
260 	if (!object)
261 		return 1;
262 
263 	base = page_address(page);
264 	if (object < base || object >= base + page->objects * s->size ||
265 		(object - base) % s->size) {
266 		return 0;
267 	}
268 
269 	return 1;
270 }
271 
272 /*
273  * Slow version of get and set free pointer.
274  *
275  * This version requires touching the cache lines of kmem_cache which
276  * we avoid to do in the fast alloc free paths. There we obtain the offset
277  * from the page struct.
278  */
279 static inline void *get_freepointer(struct kmem_cache *s, void *object)
280 {
281 	return *(void **)(object + s->offset);
282 }
283 
284 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285 {
286 	*(void **)(object + s->offset) = fp;
287 }
288 
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
292 			__p += (__s)->size)
293 
294 /* Scan freelist */
295 #define for_each_free_object(__p, __s, __free) \
296 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
297 
298 /* Determine object index from a given position */
299 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
300 {
301 	return (p - addr) / s->size;
302 }
303 
304 static inline struct kmem_cache_order_objects oo_make(int order,
305 						unsigned long size)
306 {
307 	struct kmem_cache_order_objects x = {
308 		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
309 	};
310 
311 	return x;
312 }
313 
314 static inline int oo_order(struct kmem_cache_order_objects x)
315 {
316 	return x.x >> OO_SHIFT;
317 }
318 
319 static inline int oo_objects(struct kmem_cache_order_objects x)
320 {
321 	return x.x & OO_MASK;
322 }
323 
324 #ifdef CONFIG_SLUB_DEBUG
325 /*
326  * Debug settings:
327  */
328 #ifdef CONFIG_SLUB_DEBUG_ON
329 static int slub_debug = DEBUG_DEFAULT_FLAGS;
330 #else
331 static int slub_debug;
332 #endif
333 
334 static char *slub_debug_slabs;
335 static int disable_higher_order_debug;
336 
337 /*
338  * Object debugging
339  */
340 static void print_section(char *text, u8 *addr, unsigned int length)
341 {
342 	int i, offset;
343 	int newline = 1;
344 	char ascii[17];
345 
346 	ascii[16] = 0;
347 
348 	for (i = 0; i < length; i++) {
349 		if (newline) {
350 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
351 			newline = 0;
352 		}
353 		printk(KERN_CONT " %02x", addr[i]);
354 		offset = i % 16;
355 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
356 		if (offset == 15) {
357 			printk(KERN_CONT " %s\n", ascii);
358 			newline = 1;
359 		}
360 	}
361 	if (!newline) {
362 		i %= 16;
363 		while (i < 16) {
364 			printk(KERN_CONT "   ");
365 			ascii[i] = ' ';
366 			i++;
367 		}
368 		printk(KERN_CONT " %s\n", ascii);
369 	}
370 }
371 
372 static struct track *get_track(struct kmem_cache *s, void *object,
373 	enum track_item alloc)
374 {
375 	struct track *p;
376 
377 	if (s->offset)
378 		p = object + s->offset + sizeof(void *);
379 	else
380 		p = object + s->inuse;
381 
382 	return p + alloc;
383 }
384 
385 static void set_track(struct kmem_cache *s, void *object,
386 			enum track_item alloc, unsigned long addr)
387 {
388 	struct track *p = get_track(s, object, alloc);
389 
390 	if (addr) {
391 		p->addr = addr;
392 		p->cpu = smp_processor_id();
393 		p->pid = current->pid;
394 		p->when = jiffies;
395 	} else
396 		memset(p, 0, sizeof(struct track));
397 }
398 
399 static void init_tracking(struct kmem_cache *s, void *object)
400 {
401 	if (!(s->flags & SLAB_STORE_USER))
402 		return;
403 
404 	set_track(s, object, TRACK_FREE, 0UL);
405 	set_track(s, object, TRACK_ALLOC, 0UL);
406 }
407 
408 static void print_track(const char *s, struct track *t)
409 {
410 	if (!t->addr)
411 		return;
412 
413 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
414 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
415 }
416 
417 static void print_tracking(struct kmem_cache *s, void *object)
418 {
419 	if (!(s->flags & SLAB_STORE_USER))
420 		return;
421 
422 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
423 	print_track("Freed", get_track(s, object, TRACK_FREE));
424 }
425 
426 static void print_page_info(struct page *page)
427 {
428 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
429 		page, page->objects, page->inuse, page->freelist, page->flags);
430 
431 }
432 
433 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
434 {
435 	va_list args;
436 	char buf[100];
437 
438 	va_start(args, fmt);
439 	vsnprintf(buf, sizeof(buf), fmt, args);
440 	va_end(args);
441 	printk(KERN_ERR "========================================"
442 			"=====================================\n");
443 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
444 	printk(KERN_ERR "----------------------------------------"
445 			"-------------------------------------\n\n");
446 }
447 
448 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
449 {
450 	va_list args;
451 	char buf[100];
452 
453 	va_start(args, fmt);
454 	vsnprintf(buf, sizeof(buf), fmt, args);
455 	va_end(args);
456 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
457 }
458 
459 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
460 {
461 	unsigned int off;	/* Offset of last byte */
462 	u8 *addr = page_address(page);
463 
464 	print_tracking(s, p);
465 
466 	print_page_info(page);
467 
468 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
469 			p, p - addr, get_freepointer(s, p));
470 
471 	if (p > addr + 16)
472 		print_section("Bytes b4", p - 16, 16);
473 
474 	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
475 
476 	if (s->flags & SLAB_RED_ZONE)
477 		print_section("Redzone", p + s->objsize,
478 			s->inuse - s->objsize);
479 
480 	if (s->offset)
481 		off = s->offset + sizeof(void *);
482 	else
483 		off = s->inuse;
484 
485 	if (s->flags & SLAB_STORE_USER)
486 		off += 2 * sizeof(struct track);
487 
488 	if (off != s->size)
489 		/* Beginning of the filler is the free pointer */
490 		print_section("Padding", p + off, s->size - off);
491 
492 	dump_stack();
493 }
494 
495 static void object_err(struct kmem_cache *s, struct page *page,
496 			u8 *object, char *reason)
497 {
498 	slab_bug(s, "%s", reason);
499 	print_trailer(s, page, object);
500 }
501 
502 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
503 {
504 	va_list args;
505 	char buf[100];
506 
507 	va_start(args, fmt);
508 	vsnprintf(buf, sizeof(buf), fmt, args);
509 	va_end(args);
510 	slab_bug(s, "%s", buf);
511 	print_page_info(page);
512 	dump_stack();
513 }
514 
515 static void init_object(struct kmem_cache *s, void *object, int active)
516 {
517 	u8 *p = object;
518 
519 	if (s->flags & __OBJECT_POISON) {
520 		memset(p, POISON_FREE, s->objsize - 1);
521 		p[s->objsize - 1] = POISON_END;
522 	}
523 
524 	if (s->flags & SLAB_RED_ZONE)
525 		memset(p + s->objsize,
526 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
527 			s->inuse - s->objsize);
528 }
529 
530 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
531 {
532 	while (bytes) {
533 		if (*start != (u8)value)
534 			return start;
535 		start++;
536 		bytes--;
537 	}
538 	return NULL;
539 }
540 
541 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
542 						void *from, void *to)
543 {
544 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
545 	memset(from, data, to - from);
546 }
547 
548 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
549 			u8 *object, char *what,
550 			u8 *start, unsigned int value, unsigned int bytes)
551 {
552 	u8 *fault;
553 	u8 *end;
554 
555 	fault = check_bytes(start, value, bytes);
556 	if (!fault)
557 		return 1;
558 
559 	end = start + bytes;
560 	while (end > fault && end[-1] == value)
561 		end--;
562 
563 	slab_bug(s, "%s overwritten", what);
564 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
565 					fault, end - 1, fault[0], value);
566 	print_trailer(s, page, object);
567 
568 	restore_bytes(s, what, value, fault, end);
569 	return 0;
570 }
571 
572 /*
573  * Object layout:
574  *
575  * object address
576  * 	Bytes of the object to be managed.
577  * 	If the freepointer may overlay the object then the free
578  * 	pointer is the first word of the object.
579  *
580  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
581  * 	0xa5 (POISON_END)
582  *
583  * object + s->objsize
584  * 	Padding to reach word boundary. This is also used for Redzoning.
585  * 	Padding is extended by another word if Redzoning is enabled and
586  * 	objsize == inuse.
587  *
588  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
589  * 	0xcc (RED_ACTIVE) for objects in use.
590  *
591  * object + s->inuse
592  * 	Meta data starts here.
593  *
594  * 	A. Free pointer (if we cannot overwrite object on free)
595  * 	B. Tracking data for SLAB_STORE_USER
596  * 	C. Padding to reach required alignment boundary or at mininum
597  * 		one word if debugging is on to be able to detect writes
598  * 		before the word boundary.
599  *
600  *	Padding is done using 0x5a (POISON_INUSE)
601  *
602  * object + s->size
603  * 	Nothing is used beyond s->size.
604  *
605  * If slabcaches are merged then the objsize and inuse boundaries are mostly
606  * ignored. And therefore no slab options that rely on these boundaries
607  * may be used with merged slabcaches.
608  */
609 
610 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
611 {
612 	unsigned long off = s->inuse;	/* The end of info */
613 
614 	if (s->offset)
615 		/* Freepointer is placed after the object. */
616 		off += sizeof(void *);
617 
618 	if (s->flags & SLAB_STORE_USER)
619 		/* We also have user information there */
620 		off += 2 * sizeof(struct track);
621 
622 	if (s->size == off)
623 		return 1;
624 
625 	return check_bytes_and_report(s, page, p, "Object padding",
626 				p + off, POISON_INUSE, s->size - off);
627 }
628 
629 /* Check the pad bytes at the end of a slab page */
630 static int slab_pad_check(struct kmem_cache *s, struct page *page)
631 {
632 	u8 *start;
633 	u8 *fault;
634 	u8 *end;
635 	int length;
636 	int remainder;
637 
638 	if (!(s->flags & SLAB_POISON))
639 		return 1;
640 
641 	start = page_address(page);
642 	length = (PAGE_SIZE << compound_order(page));
643 	end = start + length;
644 	remainder = length % s->size;
645 	if (!remainder)
646 		return 1;
647 
648 	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
649 	if (!fault)
650 		return 1;
651 	while (end > fault && end[-1] == POISON_INUSE)
652 		end--;
653 
654 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
655 	print_section("Padding", end - remainder, remainder);
656 
657 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
658 	return 0;
659 }
660 
661 static int check_object(struct kmem_cache *s, struct page *page,
662 					void *object, int active)
663 {
664 	u8 *p = object;
665 	u8 *endobject = object + s->objsize;
666 
667 	if (s->flags & SLAB_RED_ZONE) {
668 		unsigned int red =
669 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
670 
671 		if (!check_bytes_and_report(s, page, object, "Redzone",
672 			endobject, red, s->inuse - s->objsize))
673 			return 0;
674 	} else {
675 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
676 			check_bytes_and_report(s, page, p, "Alignment padding",
677 				endobject, POISON_INUSE, s->inuse - s->objsize);
678 		}
679 	}
680 
681 	if (s->flags & SLAB_POISON) {
682 		if (!active && (s->flags & __OBJECT_POISON) &&
683 			(!check_bytes_and_report(s, page, p, "Poison", p,
684 					POISON_FREE, s->objsize - 1) ||
685 			 !check_bytes_and_report(s, page, p, "Poison",
686 				p + s->objsize - 1, POISON_END, 1)))
687 			return 0;
688 		/*
689 		 * check_pad_bytes cleans up on its own.
690 		 */
691 		check_pad_bytes(s, page, p);
692 	}
693 
694 	if (!s->offset && active)
695 		/*
696 		 * Object and freepointer overlap. Cannot check
697 		 * freepointer while object is allocated.
698 		 */
699 		return 1;
700 
701 	/* Check free pointer validity */
702 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
703 		object_err(s, page, p, "Freepointer corrupt");
704 		/*
705 		 * No choice but to zap it and thus lose the remainder
706 		 * of the free objects in this slab. May cause
707 		 * another error because the object count is now wrong.
708 		 */
709 		set_freepointer(s, p, NULL);
710 		return 0;
711 	}
712 	return 1;
713 }
714 
715 static int check_slab(struct kmem_cache *s, struct page *page)
716 {
717 	int maxobj;
718 
719 	VM_BUG_ON(!irqs_disabled());
720 
721 	if (!PageSlab(page)) {
722 		slab_err(s, page, "Not a valid slab page");
723 		return 0;
724 	}
725 
726 	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
727 	if (page->objects > maxobj) {
728 		slab_err(s, page, "objects %u > max %u",
729 			s->name, page->objects, maxobj);
730 		return 0;
731 	}
732 	if (page->inuse > page->objects) {
733 		slab_err(s, page, "inuse %u > max %u",
734 			s->name, page->inuse, page->objects);
735 		return 0;
736 	}
737 	/* Slab_pad_check fixes things up after itself */
738 	slab_pad_check(s, page);
739 	return 1;
740 }
741 
742 /*
743  * Determine if a certain object on a page is on the freelist. Must hold the
744  * slab lock to guarantee that the chains are in a consistent state.
745  */
746 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
747 {
748 	int nr = 0;
749 	void *fp = page->freelist;
750 	void *object = NULL;
751 	unsigned long max_objects;
752 
753 	while (fp && nr <= page->objects) {
754 		if (fp == search)
755 			return 1;
756 		if (!check_valid_pointer(s, page, fp)) {
757 			if (object) {
758 				object_err(s, page, object,
759 					"Freechain corrupt");
760 				set_freepointer(s, object, NULL);
761 				break;
762 			} else {
763 				slab_err(s, page, "Freepointer corrupt");
764 				page->freelist = NULL;
765 				page->inuse = page->objects;
766 				slab_fix(s, "Freelist cleared");
767 				return 0;
768 			}
769 			break;
770 		}
771 		object = fp;
772 		fp = get_freepointer(s, object);
773 		nr++;
774 	}
775 
776 	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
777 	if (max_objects > MAX_OBJS_PER_PAGE)
778 		max_objects = MAX_OBJS_PER_PAGE;
779 
780 	if (page->objects != max_objects) {
781 		slab_err(s, page, "Wrong number of objects. Found %d but "
782 			"should be %d", page->objects, max_objects);
783 		page->objects = max_objects;
784 		slab_fix(s, "Number of objects adjusted.");
785 	}
786 	if (page->inuse != page->objects - nr) {
787 		slab_err(s, page, "Wrong object count. Counter is %d but "
788 			"counted were %d", page->inuse, page->objects - nr);
789 		page->inuse = page->objects - nr;
790 		slab_fix(s, "Object count adjusted.");
791 	}
792 	return search == NULL;
793 }
794 
795 static void trace(struct kmem_cache *s, struct page *page, void *object,
796 								int alloc)
797 {
798 	if (s->flags & SLAB_TRACE) {
799 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
800 			s->name,
801 			alloc ? "alloc" : "free",
802 			object, page->inuse,
803 			page->freelist);
804 
805 		if (!alloc)
806 			print_section("Object", (void *)object, s->objsize);
807 
808 		dump_stack();
809 	}
810 }
811 
812 /*
813  * Tracking of fully allocated slabs for debugging purposes.
814  */
815 static void add_full(struct kmem_cache_node *n, struct page *page)
816 {
817 	spin_lock(&n->list_lock);
818 	list_add(&page->lru, &n->full);
819 	spin_unlock(&n->list_lock);
820 }
821 
822 static void remove_full(struct kmem_cache *s, struct page *page)
823 {
824 	struct kmem_cache_node *n;
825 
826 	if (!(s->flags & SLAB_STORE_USER))
827 		return;
828 
829 	n = get_node(s, page_to_nid(page));
830 
831 	spin_lock(&n->list_lock);
832 	list_del(&page->lru);
833 	spin_unlock(&n->list_lock);
834 }
835 
836 /* Tracking of the number of slabs for debugging purposes */
837 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
838 {
839 	struct kmem_cache_node *n = get_node(s, node);
840 
841 	return atomic_long_read(&n->nr_slabs);
842 }
843 
844 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
845 {
846 	return atomic_long_read(&n->nr_slabs);
847 }
848 
849 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
850 {
851 	struct kmem_cache_node *n = get_node(s, node);
852 
853 	/*
854 	 * May be called early in order to allocate a slab for the
855 	 * kmem_cache_node structure. Solve the chicken-egg
856 	 * dilemma by deferring the increment of the count during
857 	 * bootstrap (see early_kmem_cache_node_alloc).
858 	 */
859 	if (!NUMA_BUILD || n) {
860 		atomic_long_inc(&n->nr_slabs);
861 		atomic_long_add(objects, &n->total_objects);
862 	}
863 }
864 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
865 {
866 	struct kmem_cache_node *n = get_node(s, node);
867 
868 	atomic_long_dec(&n->nr_slabs);
869 	atomic_long_sub(objects, &n->total_objects);
870 }
871 
872 /* Object debug checks for alloc/free paths */
873 static void setup_object_debug(struct kmem_cache *s, struct page *page,
874 								void *object)
875 {
876 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
877 		return;
878 
879 	init_object(s, object, 0);
880 	init_tracking(s, object);
881 }
882 
883 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
884 					void *object, unsigned long addr)
885 {
886 	if (!check_slab(s, page))
887 		goto bad;
888 
889 	if (!on_freelist(s, page, object)) {
890 		object_err(s, page, object, "Object already allocated");
891 		goto bad;
892 	}
893 
894 	if (!check_valid_pointer(s, page, object)) {
895 		object_err(s, page, object, "Freelist Pointer check fails");
896 		goto bad;
897 	}
898 
899 	if (!check_object(s, page, object, 0))
900 		goto bad;
901 
902 	/* Success perform special debug activities for allocs */
903 	if (s->flags & SLAB_STORE_USER)
904 		set_track(s, object, TRACK_ALLOC, addr);
905 	trace(s, page, object, 1);
906 	init_object(s, object, 1);
907 	return 1;
908 
909 bad:
910 	if (PageSlab(page)) {
911 		/*
912 		 * If this is a slab page then lets do the best we can
913 		 * to avoid issues in the future. Marking all objects
914 		 * as used avoids touching the remaining objects.
915 		 */
916 		slab_fix(s, "Marking all objects used");
917 		page->inuse = page->objects;
918 		page->freelist = NULL;
919 	}
920 	return 0;
921 }
922 
923 static int free_debug_processing(struct kmem_cache *s, struct page *page,
924 					void *object, unsigned long addr)
925 {
926 	if (!check_slab(s, page))
927 		goto fail;
928 
929 	if (!check_valid_pointer(s, page, object)) {
930 		slab_err(s, page, "Invalid object pointer 0x%p", object);
931 		goto fail;
932 	}
933 
934 	if (on_freelist(s, page, object)) {
935 		object_err(s, page, object, "Object already free");
936 		goto fail;
937 	}
938 
939 	if (!check_object(s, page, object, 1))
940 		return 0;
941 
942 	if (unlikely(s != page->slab)) {
943 		if (!PageSlab(page)) {
944 			slab_err(s, page, "Attempt to free object(0x%p) "
945 				"outside of slab", object);
946 		} else if (!page->slab) {
947 			printk(KERN_ERR
948 				"SLUB <none>: no slab for object 0x%p.\n",
949 						object);
950 			dump_stack();
951 		} else
952 			object_err(s, page, object,
953 					"page slab pointer corrupt.");
954 		goto fail;
955 	}
956 
957 	/* Special debug activities for freeing objects */
958 	if (!PageSlubFrozen(page) && !page->freelist)
959 		remove_full(s, page);
960 	if (s->flags & SLAB_STORE_USER)
961 		set_track(s, object, TRACK_FREE, addr);
962 	trace(s, page, object, 0);
963 	init_object(s, object, 0);
964 	return 1;
965 
966 fail:
967 	slab_fix(s, "Object at 0x%p not freed", object);
968 	return 0;
969 }
970 
971 static int __init setup_slub_debug(char *str)
972 {
973 	slub_debug = DEBUG_DEFAULT_FLAGS;
974 	if (*str++ != '=' || !*str)
975 		/*
976 		 * No options specified. Switch on full debugging.
977 		 */
978 		goto out;
979 
980 	if (*str == ',')
981 		/*
982 		 * No options but restriction on slabs. This means full
983 		 * debugging for slabs matching a pattern.
984 		 */
985 		goto check_slabs;
986 
987 	if (tolower(*str) == 'o') {
988 		/*
989 		 * Avoid enabling debugging on caches if its minimum order
990 		 * would increase as a result.
991 		 */
992 		disable_higher_order_debug = 1;
993 		goto out;
994 	}
995 
996 	slub_debug = 0;
997 	if (*str == '-')
998 		/*
999 		 * Switch off all debugging measures.
1000 		 */
1001 		goto out;
1002 
1003 	/*
1004 	 * Determine which debug features should be switched on
1005 	 */
1006 	for (; *str && *str != ','; str++) {
1007 		switch (tolower(*str)) {
1008 		case 'f':
1009 			slub_debug |= SLAB_DEBUG_FREE;
1010 			break;
1011 		case 'z':
1012 			slub_debug |= SLAB_RED_ZONE;
1013 			break;
1014 		case 'p':
1015 			slub_debug |= SLAB_POISON;
1016 			break;
1017 		case 'u':
1018 			slub_debug |= SLAB_STORE_USER;
1019 			break;
1020 		case 't':
1021 			slub_debug |= SLAB_TRACE;
1022 			break;
1023 		default:
1024 			printk(KERN_ERR "slub_debug option '%c' "
1025 				"unknown. skipped\n", *str);
1026 		}
1027 	}
1028 
1029 check_slabs:
1030 	if (*str == ',')
1031 		slub_debug_slabs = str + 1;
1032 out:
1033 	return 1;
1034 }
1035 
1036 __setup("slub_debug", setup_slub_debug);
1037 
1038 static unsigned long kmem_cache_flags(unsigned long objsize,
1039 	unsigned long flags, const char *name,
1040 	void (*ctor)(void *))
1041 {
1042 	/*
1043 	 * Enable debugging if selected on the kernel commandline.
1044 	 */
1045 	if (slub_debug && (!slub_debug_slabs ||
1046 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1047 		flags |= slub_debug;
1048 
1049 	return flags;
1050 }
1051 #else
1052 static inline void setup_object_debug(struct kmem_cache *s,
1053 			struct page *page, void *object) {}
1054 
1055 static inline int alloc_debug_processing(struct kmem_cache *s,
1056 	struct page *page, void *object, unsigned long addr) { return 0; }
1057 
1058 static inline int free_debug_processing(struct kmem_cache *s,
1059 	struct page *page, void *object, unsigned long addr) { return 0; }
1060 
1061 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1062 			{ return 1; }
1063 static inline int check_object(struct kmem_cache *s, struct page *page,
1064 			void *object, int active) { return 1; }
1065 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1066 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1067 	unsigned long flags, const char *name,
1068 	void (*ctor)(void *))
1069 {
1070 	return flags;
1071 }
1072 #define slub_debug 0
1073 
1074 #define disable_higher_order_debug 0
1075 
1076 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1077 							{ return 0; }
1078 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1079 							{ return 0; }
1080 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1081 							int objects) {}
1082 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1083 							int objects) {}
1084 #endif
1085 
1086 /*
1087  * Slab allocation and freeing
1088  */
1089 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1090 					struct kmem_cache_order_objects oo)
1091 {
1092 	int order = oo_order(oo);
1093 
1094 	flags |= __GFP_NOTRACK;
1095 
1096 	if (node == -1)
1097 		return alloc_pages(flags, order);
1098 	else
1099 		return alloc_pages_node(node, flags, order);
1100 }
1101 
1102 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1103 {
1104 	struct page *page;
1105 	struct kmem_cache_order_objects oo = s->oo;
1106 	gfp_t alloc_gfp;
1107 
1108 	flags |= s->allocflags;
1109 
1110 	/*
1111 	 * Let the initial higher-order allocation fail under memory pressure
1112 	 * so we fall-back to the minimum order allocation.
1113 	 */
1114 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1115 
1116 	page = alloc_slab_page(alloc_gfp, node, oo);
1117 	if (unlikely(!page)) {
1118 		oo = s->min;
1119 		/*
1120 		 * Allocation may have failed due to fragmentation.
1121 		 * Try a lower order alloc if possible
1122 		 */
1123 		page = alloc_slab_page(flags, node, oo);
1124 		if (!page)
1125 			return NULL;
1126 
1127 		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1128 	}
1129 
1130 	if (kmemcheck_enabled
1131 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1132 		int pages = 1 << oo_order(oo);
1133 
1134 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1135 
1136 		/*
1137 		 * Objects from caches that have a constructor don't get
1138 		 * cleared when they're allocated, so we need to do it here.
1139 		 */
1140 		if (s->ctor)
1141 			kmemcheck_mark_uninitialized_pages(page, pages);
1142 		else
1143 			kmemcheck_mark_unallocated_pages(page, pages);
1144 	}
1145 
1146 	page->objects = oo_objects(oo);
1147 	mod_zone_page_state(page_zone(page),
1148 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1149 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1150 		1 << oo_order(oo));
1151 
1152 	return page;
1153 }
1154 
1155 static void setup_object(struct kmem_cache *s, struct page *page,
1156 				void *object)
1157 {
1158 	setup_object_debug(s, page, object);
1159 	if (unlikely(s->ctor))
1160 		s->ctor(object);
1161 }
1162 
1163 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1164 {
1165 	struct page *page;
1166 	void *start;
1167 	void *last;
1168 	void *p;
1169 
1170 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1171 
1172 	page = allocate_slab(s,
1173 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1174 	if (!page)
1175 		goto out;
1176 
1177 	inc_slabs_node(s, page_to_nid(page), page->objects);
1178 	page->slab = s;
1179 	page->flags |= 1 << PG_slab;
1180 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1181 			SLAB_STORE_USER | SLAB_TRACE))
1182 		__SetPageSlubDebug(page);
1183 
1184 	start = page_address(page);
1185 
1186 	if (unlikely(s->flags & SLAB_POISON))
1187 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1188 
1189 	last = start;
1190 	for_each_object(p, s, start, page->objects) {
1191 		setup_object(s, page, last);
1192 		set_freepointer(s, last, p);
1193 		last = p;
1194 	}
1195 	setup_object(s, page, last);
1196 	set_freepointer(s, last, NULL);
1197 
1198 	page->freelist = start;
1199 	page->inuse = 0;
1200 out:
1201 	return page;
1202 }
1203 
1204 static void __free_slab(struct kmem_cache *s, struct page *page)
1205 {
1206 	int order = compound_order(page);
1207 	int pages = 1 << order;
1208 
1209 	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1210 		void *p;
1211 
1212 		slab_pad_check(s, page);
1213 		for_each_object(p, s, page_address(page),
1214 						page->objects)
1215 			check_object(s, page, p, 0);
1216 		__ClearPageSlubDebug(page);
1217 	}
1218 
1219 	kmemcheck_free_shadow(page, compound_order(page));
1220 
1221 	mod_zone_page_state(page_zone(page),
1222 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1223 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1224 		-pages);
1225 
1226 	__ClearPageSlab(page);
1227 	reset_page_mapcount(page);
1228 	if (current->reclaim_state)
1229 		current->reclaim_state->reclaimed_slab += pages;
1230 	__free_pages(page, order);
1231 }
1232 
1233 static void rcu_free_slab(struct rcu_head *h)
1234 {
1235 	struct page *page;
1236 
1237 	page = container_of((struct list_head *)h, struct page, lru);
1238 	__free_slab(page->slab, page);
1239 }
1240 
1241 static void free_slab(struct kmem_cache *s, struct page *page)
1242 {
1243 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1244 		/*
1245 		 * RCU free overloads the RCU head over the LRU
1246 		 */
1247 		struct rcu_head *head = (void *)&page->lru;
1248 
1249 		call_rcu(head, rcu_free_slab);
1250 	} else
1251 		__free_slab(s, page);
1252 }
1253 
1254 static void discard_slab(struct kmem_cache *s, struct page *page)
1255 {
1256 	dec_slabs_node(s, page_to_nid(page), page->objects);
1257 	free_slab(s, page);
1258 }
1259 
1260 /*
1261  * Per slab locking using the pagelock
1262  */
1263 static __always_inline void slab_lock(struct page *page)
1264 {
1265 	bit_spin_lock(PG_locked, &page->flags);
1266 }
1267 
1268 static __always_inline void slab_unlock(struct page *page)
1269 {
1270 	__bit_spin_unlock(PG_locked, &page->flags);
1271 }
1272 
1273 static __always_inline int slab_trylock(struct page *page)
1274 {
1275 	int rc = 1;
1276 
1277 	rc = bit_spin_trylock(PG_locked, &page->flags);
1278 	return rc;
1279 }
1280 
1281 /*
1282  * Management of partially allocated slabs
1283  */
1284 static void add_partial(struct kmem_cache_node *n,
1285 				struct page *page, int tail)
1286 {
1287 	spin_lock(&n->list_lock);
1288 	n->nr_partial++;
1289 	if (tail)
1290 		list_add_tail(&page->lru, &n->partial);
1291 	else
1292 		list_add(&page->lru, &n->partial);
1293 	spin_unlock(&n->list_lock);
1294 }
1295 
1296 static void remove_partial(struct kmem_cache *s, struct page *page)
1297 {
1298 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1299 
1300 	spin_lock(&n->list_lock);
1301 	list_del(&page->lru);
1302 	n->nr_partial--;
1303 	spin_unlock(&n->list_lock);
1304 }
1305 
1306 /*
1307  * Lock slab and remove from the partial list.
1308  *
1309  * Must hold list_lock.
1310  */
1311 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1312 							struct page *page)
1313 {
1314 	if (slab_trylock(page)) {
1315 		list_del(&page->lru);
1316 		n->nr_partial--;
1317 		__SetPageSlubFrozen(page);
1318 		return 1;
1319 	}
1320 	return 0;
1321 }
1322 
1323 /*
1324  * Try to allocate a partial slab from a specific node.
1325  */
1326 static struct page *get_partial_node(struct kmem_cache_node *n)
1327 {
1328 	struct page *page;
1329 
1330 	/*
1331 	 * Racy check. If we mistakenly see no partial slabs then we
1332 	 * just allocate an empty slab. If we mistakenly try to get a
1333 	 * partial slab and there is none available then get_partials()
1334 	 * will return NULL.
1335 	 */
1336 	if (!n || !n->nr_partial)
1337 		return NULL;
1338 
1339 	spin_lock(&n->list_lock);
1340 	list_for_each_entry(page, &n->partial, lru)
1341 		if (lock_and_freeze_slab(n, page))
1342 			goto out;
1343 	page = NULL;
1344 out:
1345 	spin_unlock(&n->list_lock);
1346 	return page;
1347 }
1348 
1349 /*
1350  * Get a page from somewhere. Search in increasing NUMA distances.
1351  */
1352 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1353 {
1354 #ifdef CONFIG_NUMA
1355 	struct zonelist *zonelist;
1356 	struct zoneref *z;
1357 	struct zone *zone;
1358 	enum zone_type high_zoneidx = gfp_zone(flags);
1359 	struct page *page;
1360 
1361 	/*
1362 	 * The defrag ratio allows a configuration of the tradeoffs between
1363 	 * inter node defragmentation and node local allocations. A lower
1364 	 * defrag_ratio increases the tendency to do local allocations
1365 	 * instead of attempting to obtain partial slabs from other nodes.
1366 	 *
1367 	 * If the defrag_ratio is set to 0 then kmalloc() always
1368 	 * returns node local objects. If the ratio is higher then kmalloc()
1369 	 * may return off node objects because partial slabs are obtained
1370 	 * from other nodes and filled up.
1371 	 *
1372 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1373 	 * defrag_ratio = 1000) then every (well almost) allocation will
1374 	 * first attempt to defrag slab caches on other nodes. This means
1375 	 * scanning over all nodes to look for partial slabs which may be
1376 	 * expensive if we do it every time we are trying to find a slab
1377 	 * with available objects.
1378 	 */
1379 	if (!s->remote_node_defrag_ratio ||
1380 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1381 		return NULL;
1382 
1383 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1384 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1385 		struct kmem_cache_node *n;
1386 
1387 		n = get_node(s, zone_to_nid(zone));
1388 
1389 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1390 				n->nr_partial > s->min_partial) {
1391 			page = get_partial_node(n);
1392 			if (page)
1393 				return page;
1394 		}
1395 	}
1396 #endif
1397 	return NULL;
1398 }
1399 
1400 /*
1401  * Get a partial page, lock it and return it.
1402  */
1403 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1404 {
1405 	struct page *page;
1406 	int searchnode = (node == -1) ? numa_node_id() : node;
1407 
1408 	page = get_partial_node(get_node(s, searchnode));
1409 	if (page || (flags & __GFP_THISNODE))
1410 		return page;
1411 
1412 	return get_any_partial(s, flags);
1413 }
1414 
1415 /*
1416  * Move a page back to the lists.
1417  *
1418  * Must be called with the slab lock held.
1419  *
1420  * On exit the slab lock will have been dropped.
1421  */
1422 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1423 {
1424 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1425 	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1426 
1427 	__ClearPageSlubFrozen(page);
1428 	if (page->inuse) {
1429 
1430 		if (page->freelist) {
1431 			add_partial(n, page, tail);
1432 			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1433 		} else {
1434 			stat(c, DEACTIVATE_FULL);
1435 			if (SLABDEBUG && PageSlubDebug(page) &&
1436 						(s->flags & SLAB_STORE_USER))
1437 				add_full(n, page);
1438 		}
1439 		slab_unlock(page);
1440 	} else {
1441 		stat(c, DEACTIVATE_EMPTY);
1442 		if (n->nr_partial < s->min_partial) {
1443 			/*
1444 			 * Adding an empty slab to the partial slabs in order
1445 			 * to avoid page allocator overhead. This slab needs
1446 			 * to come after the other slabs with objects in
1447 			 * so that the others get filled first. That way the
1448 			 * size of the partial list stays small.
1449 			 *
1450 			 * kmem_cache_shrink can reclaim any empty slabs from
1451 			 * the partial list.
1452 			 */
1453 			add_partial(n, page, 1);
1454 			slab_unlock(page);
1455 		} else {
1456 			slab_unlock(page);
1457 			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1458 			discard_slab(s, page);
1459 		}
1460 	}
1461 }
1462 
1463 /*
1464  * Remove the cpu slab
1465  */
1466 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1467 {
1468 	struct page *page = c->page;
1469 	int tail = 1;
1470 
1471 	if (page->freelist)
1472 		stat(c, DEACTIVATE_REMOTE_FREES);
1473 	/*
1474 	 * Merge cpu freelist into slab freelist. Typically we get here
1475 	 * because both freelists are empty. So this is unlikely
1476 	 * to occur.
1477 	 */
1478 	while (unlikely(c->freelist)) {
1479 		void **object;
1480 
1481 		tail = 0;	/* Hot objects. Put the slab first */
1482 
1483 		/* Retrieve object from cpu_freelist */
1484 		object = c->freelist;
1485 		c->freelist = c->freelist[c->offset];
1486 
1487 		/* And put onto the regular freelist */
1488 		object[c->offset] = page->freelist;
1489 		page->freelist = object;
1490 		page->inuse--;
1491 	}
1492 	c->page = NULL;
1493 	unfreeze_slab(s, page, tail);
1494 }
1495 
1496 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1497 {
1498 	stat(c, CPUSLAB_FLUSH);
1499 	slab_lock(c->page);
1500 	deactivate_slab(s, c);
1501 }
1502 
1503 /*
1504  * Flush cpu slab.
1505  *
1506  * Called from IPI handler with interrupts disabled.
1507  */
1508 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1509 {
1510 	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1511 
1512 	if (likely(c && c->page))
1513 		flush_slab(s, c);
1514 }
1515 
1516 static void flush_cpu_slab(void *d)
1517 {
1518 	struct kmem_cache *s = d;
1519 
1520 	__flush_cpu_slab(s, smp_processor_id());
1521 }
1522 
1523 static void flush_all(struct kmem_cache *s)
1524 {
1525 	on_each_cpu(flush_cpu_slab, s, 1);
1526 }
1527 
1528 /*
1529  * Check if the objects in a per cpu structure fit numa
1530  * locality expectations.
1531  */
1532 static inline int node_match(struct kmem_cache_cpu *c, int node)
1533 {
1534 #ifdef CONFIG_NUMA
1535 	if (node != -1 && c->node != node)
1536 		return 0;
1537 #endif
1538 	return 1;
1539 }
1540 
1541 static int count_free(struct page *page)
1542 {
1543 	return page->objects - page->inuse;
1544 }
1545 
1546 static unsigned long count_partial(struct kmem_cache_node *n,
1547 					int (*get_count)(struct page *))
1548 {
1549 	unsigned long flags;
1550 	unsigned long x = 0;
1551 	struct page *page;
1552 
1553 	spin_lock_irqsave(&n->list_lock, flags);
1554 	list_for_each_entry(page, &n->partial, lru)
1555 		x += get_count(page);
1556 	spin_unlock_irqrestore(&n->list_lock, flags);
1557 	return x;
1558 }
1559 
1560 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1561 {
1562 #ifdef CONFIG_SLUB_DEBUG
1563 	return atomic_long_read(&n->total_objects);
1564 #else
1565 	return 0;
1566 #endif
1567 }
1568 
1569 static noinline void
1570 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1571 {
1572 	int node;
1573 
1574 	printk(KERN_WARNING
1575 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1576 		nid, gfpflags);
1577 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
1578 		"default order: %d, min order: %d\n", s->name, s->objsize,
1579 		s->size, oo_order(s->oo), oo_order(s->min));
1580 
1581 	if (oo_order(s->min) > get_order(s->objsize))
1582 		printk(KERN_WARNING "  %s debugging increased min order, use "
1583 		       "slub_debug=O to disable.\n", s->name);
1584 
1585 	for_each_online_node(node) {
1586 		struct kmem_cache_node *n = get_node(s, node);
1587 		unsigned long nr_slabs;
1588 		unsigned long nr_objs;
1589 		unsigned long nr_free;
1590 
1591 		if (!n)
1592 			continue;
1593 
1594 		nr_free  = count_partial(n, count_free);
1595 		nr_slabs = node_nr_slabs(n);
1596 		nr_objs  = node_nr_objs(n);
1597 
1598 		printk(KERN_WARNING
1599 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
1600 			node, nr_slabs, nr_objs, nr_free);
1601 	}
1602 }
1603 
1604 /*
1605  * Slow path. The lockless freelist is empty or we need to perform
1606  * debugging duties.
1607  *
1608  * Interrupts are disabled.
1609  *
1610  * Processing is still very fast if new objects have been freed to the
1611  * regular freelist. In that case we simply take over the regular freelist
1612  * as the lockless freelist and zap the regular freelist.
1613  *
1614  * If that is not working then we fall back to the partial lists. We take the
1615  * first element of the freelist as the object to allocate now and move the
1616  * rest of the freelist to the lockless freelist.
1617  *
1618  * And if we were unable to get a new slab from the partial slab lists then
1619  * we need to allocate a new slab. This is the slowest path since it involves
1620  * a call to the page allocator and the setup of a new slab.
1621  */
1622 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1623 			  unsigned long addr, struct kmem_cache_cpu *c)
1624 {
1625 	void **object;
1626 	struct page *new;
1627 
1628 	/* We handle __GFP_ZERO in the caller */
1629 	gfpflags &= ~__GFP_ZERO;
1630 
1631 	if (!c->page)
1632 		goto new_slab;
1633 
1634 	slab_lock(c->page);
1635 	if (unlikely(!node_match(c, node)))
1636 		goto another_slab;
1637 
1638 	stat(c, ALLOC_REFILL);
1639 
1640 load_freelist:
1641 	object = c->page->freelist;
1642 	if (unlikely(!object))
1643 		goto another_slab;
1644 	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1645 		goto debug;
1646 
1647 	c->freelist = object[c->offset];
1648 	c->page->inuse = c->page->objects;
1649 	c->page->freelist = NULL;
1650 	c->node = page_to_nid(c->page);
1651 unlock_out:
1652 	slab_unlock(c->page);
1653 	stat(c, ALLOC_SLOWPATH);
1654 	return object;
1655 
1656 another_slab:
1657 	deactivate_slab(s, c);
1658 
1659 new_slab:
1660 	new = get_partial(s, gfpflags, node);
1661 	if (new) {
1662 		c->page = new;
1663 		stat(c, ALLOC_FROM_PARTIAL);
1664 		goto load_freelist;
1665 	}
1666 
1667 	if (gfpflags & __GFP_WAIT)
1668 		local_irq_enable();
1669 
1670 	new = new_slab(s, gfpflags, node);
1671 
1672 	if (gfpflags & __GFP_WAIT)
1673 		local_irq_disable();
1674 
1675 	if (new) {
1676 		c = get_cpu_slab(s, smp_processor_id());
1677 		stat(c, ALLOC_SLAB);
1678 		if (c->page)
1679 			flush_slab(s, c);
1680 		slab_lock(new);
1681 		__SetPageSlubFrozen(new);
1682 		c->page = new;
1683 		goto load_freelist;
1684 	}
1685 	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1686 		slab_out_of_memory(s, gfpflags, node);
1687 	return NULL;
1688 debug:
1689 	if (!alloc_debug_processing(s, c->page, object, addr))
1690 		goto another_slab;
1691 
1692 	c->page->inuse++;
1693 	c->page->freelist = object[c->offset];
1694 	c->node = -1;
1695 	goto unlock_out;
1696 }
1697 
1698 /*
1699  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1700  * have the fastpath folded into their functions. So no function call
1701  * overhead for requests that can be satisfied on the fastpath.
1702  *
1703  * The fastpath works by first checking if the lockless freelist can be used.
1704  * If not then __slab_alloc is called for slow processing.
1705  *
1706  * Otherwise we can simply pick the next object from the lockless free list.
1707  */
1708 static __always_inline void *slab_alloc(struct kmem_cache *s,
1709 		gfp_t gfpflags, int node, unsigned long addr)
1710 {
1711 	void **object;
1712 	struct kmem_cache_cpu *c;
1713 	unsigned long flags;
1714 	unsigned int objsize;
1715 
1716 	gfpflags &= gfp_allowed_mask;
1717 
1718 	lockdep_trace_alloc(gfpflags);
1719 	might_sleep_if(gfpflags & __GFP_WAIT);
1720 
1721 	if (should_failslab(s->objsize, gfpflags))
1722 		return NULL;
1723 
1724 	local_irq_save(flags);
1725 	c = get_cpu_slab(s, smp_processor_id());
1726 	objsize = c->objsize;
1727 	if (unlikely(!c->freelist || !node_match(c, node)))
1728 
1729 		object = __slab_alloc(s, gfpflags, node, addr, c);
1730 
1731 	else {
1732 		object = c->freelist;
1733 		c->freelist = object[c->offset];
1734 		stat(c, ALLOC_FASTPATH);
1735 	}
1736 	local_irq_restore(flags);
1737 
1738 	if (unlikely((gfpflags & __GFP_ZERO) && object))
1739 		memset(object, 0, objsize);
1740 
1741 	kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
1742 	kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
1743 
1744 	return object;
1745 }
1746 
1747 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1748 {
1749 	void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1750 
1751 	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1752 
1753 	return ret;
1754 }
1755 EXPORT_SYMBOL(kmem_cache_alloc);
1756 
1757 #ifdef CONFIG_KMEMTRACE
1758 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1759 {
1760 	return slab_alloc(s, gfpflags, -1, _RET_IP_);
1761 }
1762 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1763 #endif
1764 
1765 #ifdef CONFIG_NUMA
1766 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1767 {
1768 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1769 
1770 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
1771 				    s->objsize, s->size, gfpflags, node);
1772 
1773 	return ret;
1774 }
1775 EXPORT_SYMBOL(kmem_cache_alloc_node);
1776 #endif
1777 
1778 #ifdef CONFIG_KMEMTRACE
1779 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1780 				    gfp_t gfpflags,
1781 				    int node)
1782 {
1783 	return slab_alloc(s, gfpflags, node, _RET_IP_);
1784 }
1785 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1786 #endif
1787 
1788 /*
1789  * Slow patch handling. This may still be called frequently since objects
1790  * have a longer lifetime than the cpu slabs in most processing loads.
1791  *
1792  * So we still attempt to reduce cache line usage. Just take the slab
1793  * lock and free the item. If there is no additional partial page
1794  * handling required then we can return immediately.
1795  */
1796 static void __slab_free(struct kmem_cache *s, struct page *page,
1797 			void *x, unsigned long addr, unsigned int offset)
1798 {
1799 	void *prior;
1800 	void **object = (void *)x;
1801 	struct kmem_cache_cpu *c;
1802 
1803 	c = get_cpu_slab(s, raw_smp_processor_id());
1804 	stat(c, FREE_SLOWPATH);
1805 	slab_lock(page);
1806 
1807 	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1808 		goto debug;
1809 
1810 checks_ok:
1811 	prior = object[offset] = page->freelist;
1812 	page->freelist = object;
1813 	page->inuse--;
1814 
1815 	if (unlikely(PageSlubFrozen(page))) {
1816 		stat(c, FREE_FROZEN);
1817 		goto out_unlock;
1818 	}
1819 
1820 	if (unlikely(!page->inuse))
1821 		goto slab_empty;
1822 
1823 	/*
1824 	 * Objects left in the slab. If it was not on the partial list before
1825 	 * then add it.
1826 	 */
1827 	if (unlikely(!prior)) {
1828 		add_partial(get_node(s, page_to_nid(page)), page, 1);
1829 		stat(c, FREE_ADD_PARTIAL);
1830 	}
1831 
1832 out_unlock:
1833 	slab_unlock(page);
1834 	return;
1835 
1836 slab_empty:
1837 	if (prior) {
1838 		/*
1839 		 * Slab still on the partial list.
1840 		 */
1841 		remove_partial(s, page);
1842 		stat(c, FREE_REMOVE_PARTIAL);
1843 	}
1844 	slab_unlock(page);
1845 	stat(c, FREE_SLAB);
1846 	discard_slab(s, page);
1847 	return;
1848 
1849 debug:
1850 	if (!free_debug_processing(s, page, x, addr))
1851 		goto out_unlock;
1852 	goto checks_ok;
1853 }
1854 
1855 /*
1856  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1857  * can perform fastpath freeing without additional function calls.
1858  *
1859  * The fastpath is only possible if we are freeing to the current cpu slab
1860  * of this processor. This typically the case if we have just allocated
1861  * the item before.
1862  *
1863  * If fastpath is not possible then fall back to __slab_free where we deal
1864  * with all sorts of special processing.
1865  */
1866 static __always_inline void slab_free(struct kmem_cache *s,
1867 			struct page *page, void *x, unsigned long addr)
1868 {
1869 	void **object = (void *)x;
1870 	struct kmem_cache_cpu *c;
1871 	unsigned long flags;
1872 
1873 	kmemleak_free_recursive(x, s->flags);
1874 	local_irq_save(flags);
1875 	c = get_cpu_slab(s, smp_processor_id());
1876 	kmemcheck_slab_free(s, object, c->objsize);
1877 	debug_check_no_locks_freed(object, c->objsize);
1878 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1879 		debug_check_no_obj_freed(object, c->objsize);
1880 	if (likely(page == c->page && c->node >= 0)) {
1881 		object[c->offset] = c->freelist;
1882 		c->freelist = object;
1883 		stat(c, FREE_FASTPATH);
1884 	} else
1885 		__slab_free(s, page, x, addr, c->offset);
1886 
1887 	local_irq_restore(flags);
1888 }
1889 
1890 void kmem_cache_free(struct kmem_cache *s, void *x)
1891 {
1892 	struct page *page;
1893 
1894 	page = virt_to_head_page(x);
1895 
1896 	slab_free(s, page, x, _RET_IP_);
1897 
1898 	trace_kmem_cache_free(_RET_IP_, x);
1899 }
1900 EXPORT_SYMBOL(kmem_cache_free);
1901 
1902 /* Figure out on which slab page the object resides */
1903 static struct page *get_object_page(const void *x)
1904 {
1905 	struct page *page = virt_to_head_page(x);
1906 
1907 	if (!PageSlab(page))
1908 		return NULL;
1909 
1910 	return page;
1911 }
1912 
1913 /*
1914  * Object placement in a slab is made very easy because we always start at
1915  * offset 0. If we tune the size of the object to the alignment then we can
1916  * get the required alignment by putting one properly sized object after
1917  * another.
1918  *
1919  * Notice that the allocation order determines the sizes of the per cpu
1920  * caches. Each processor has always one slab available for allocations.
1921  * Increasing the allocation order reduces the number of times that slabs
1922  * must be moved on and off the partial lists and is therefore a factor in
1923  * locking overhead.
1924  */
1925 
1926 /*
1927  * Mininum / Maximum order of slab pages. This influences locking overhead
1928  * and slab fragmentation. A higher order reduces the number of partial slabs
1929  * and increases the number of allocations possible without having to
1930  * take the list_lock.
1931  */
1932 static int slub_min_order;
1933 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1934 static int slub_min_objects;
1935 
1936 /*
1937  * Merge control. If this is set then no merging of slab caches will occur.
1938  * (Could be removed. This was introduced to pacify the merge skeptics.)
1939  */
1940 static int slub_nomerge;
1941 
1942 /*
1943  * Calculate the order of allocation given an slab object size.
1944  *
1945  * The order of allocation has significant impact on performance and other
1946  * system components. Generally order 0 allocations should be preferred since
1947  * order 0 does not cause fragmentation in the page allocator. Larger objects
1948  * be problematic to put into order 0 slabs because there may be too much
1949  * unused space left. We go to a higher order if more than 1/16th of the slab
1950  * would be wasted.
1951  *
1952  * In order to reach satisfactory performance we must ensure that a minimum
1953  * number of objects is in one slab. Otherwise we may generate too much
1954  * activity on the partial lists which requires taking the list_lock. This is
1955  * less a concern for large slabs though which are rarely used.
1956  *
1957  * slub_max_order specifies the order where we begin to stop considering the
1958  * number of objects in a slab as critical. If we reach slub_max_order then
1959  * we try to keep the page order as low as possible. So we accept more waste
1960  * of space in favor of a small page order.
1961  *
1962  * Higher order allocations also allow the placement of more objects in a
1963  * slab and thereby reduce object handling overhead. If the user has
1964  * requested a higher mininum order then we start with that one instead of
1965  * the smallest order which will fit the object.
1966  */
1967 static inline int slab_order(int size, int min_objects,
1968 				int max_order, int fract_leftover)
1969 {
1970 	int order;
1971 	int rem;
1972 	int min_order = slub_min_order;
1973 
1974 	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1975 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1976 
1977 	for (order = max(min_order,
1978 				fls(min_objects * size - 1) - PAGE_SHIFT);
1979 			order <= max_order; order++) {
1980 
1981 		unsigned long slab_size = PAGE_SIZE << order;
1982 
1983 		if (slab_size < min_objects * size)
1984 			continue;
1985 
1986 		rem = slab_size % size;
1987 
1988 		if (rem <= slab_size / fract_leftover)
1989 			break;
1990 
1991 	}
1992 
1993 	return order;
1994 }
1995 
1996 static inline int calculate_order(int size)
1997 {
1998 	int order;
1999 	int min_objects;
2000 	int fraction;
2001 	int max_objects;
2002 
2003 	/*
2004 	 * Attempt to find best configuration for a slab. This
2005 	 * works by first attempting to generate a layout with
2006 	 * the best configuration and backing off gradually.
2007 	 *
2008 	 * First we reduce the acceptable waste in a slab. Then
2009 	 * we reduce the minimum objects required in a slab.
2010 	 */
2011 	min_objects = slub_min_objects;
2012 	if (!min_objects)
2013 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2014 	max_objects = (PAGE_SIZE << slub_max_order)/size;
2015 	min_objects = min(min_objects, max_objects);
2016 
2017 	while (min_objects > 1) {
2018 		fraction = 16;
2019 		while (fraction >= 4) {
2020 			order = slab_order(size, min_objects,
2021 						slub_max_order, fraction);
2022 			if (order <= slub_max_order)
2023 				return order;
2024 			fraction /= 2;
2025 		}
2026 		min_objects--;
2027 	}
2028 
2029 	/*
2030 	 * We were unable to place multiple objects in a slab. Now
2031 	 * lets see if we can place a single object there.
2032 	 */
2033 	order = slab_order(size, 1, slub_max_order, 1);
2034 	if (order <= slub_max_order)
2035 		return order;
2036 
2037 	/*
2038 	 * Doh this slab cannot be placed using slub_max_order.
2039 	 */
2040 	order = slab_order(size, 1, MAX_ORDER, 1);
2041 	if (order < MAX_ORDER)
2042 		return order;
2043 	return -ENOSYS;
2044 }
2045 
2046 /*
2047  * Figure out what the alignment of the objects will be.
2048  */
2049 static unsigned long calculate_alignment(unsigned long flags,
2050 		unsigned long align, unsigned long size)
2051 {
2052 	/*
2053 	 * If the user wants hardware cache aligned objects then follow that
2054 	 * suggestion if the object is sufficiently large.
2055 	 *
2056 	 * The hardware cache alignment cannot override the specified
2057 	 * alignment though. If that is greater then use it.
2058 	 */
2059 	if (flags & SLAB_HWCACHE_ALIGN) {
2060 		unsigned long ralign = cache_line_size();
2061 		while (size <= ralign / 2)
2062 			ralign /= 2;
2063 		align = max(align, ralign);
2064 	}
2065 
2066 	if (align < ARCH_SLAB_MINALIGN)
2067 		align = ARCH_SLAB_MINALIGN;
2068 
2069 	return ALIGN(align, sizeof(void *));
2070 }
2071 
2072 static void init_kmem_cache_cpu(struct kmem_cache *s,
2073 			struct kmem_cache_cpu *c)
2074 {
2075 	c->page = NULL;
2076 	c->freelist = NULL;
2077 	c->node = 0;
2078 	c->offset = s->offset / sizeof(void *);
2079 	c->objsize = s->objsize;
2080 #ifdef CONFIG_SLUB_STATS
2081 	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
2082 #endif
2083 }
2084 
2085 static void
2086 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2087 {
2088 	n->nr_partial = 0;
2089 	spin_lock_init(&n->list_lock);
2090 	INIT_LIST_HEAD(&n->partial);
2091 #ifdef CONFIG_SLUB_DEBUG
2092 	atomic_long_set(&n->nr_slabs, 0);
2093 	atomic_long_set(&n->total_objects, 0);
2094 	INIT_LIST_HEAD(&n->full);
2095 #endif
2096 }
2097 
2098 #ifdef CONFIG_SMP
2099 /*
2100  * Per cpu array for per cpu structures.
2101  *
2102  * The per cpu array places all kmem_cache_cpu structures from one processor
2103  * close together meaning that it becomes possible that multiple per cpu
2104  * structures are contained in one cacheline. This may be particularly
2105  * beneficial for the kmalloc caches.
2106  *
2107  * A desktop system typically has around 60-80 slabs. With 100 here we are
2108  * likely able to get per cpu structures for all caches from the array defined
2109  * here. We must be able to cover all kmalloc caches during bootstrap.
2110  *
2111  * If the per cpu array is exhausted then fall back to kmalloc
2112  * of individual cachelines. No sharing is possible then.
2113  */
2114 #define NR_KMEM_CACHE_CPU 100
2115 
2116 static DEFINE_PER_CPU(struct kmem_cache_cpu [NR_KMEM_CACHE_CPU],
2117 		      kmem_cache_cpu);
2118 
2119 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2120 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
2121 
2122 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2123 							int cpu, gfp_t flags)
2124 {
2125 	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2126 
2127 	if (c)
2128 		per_cpu(kmem_cache_cpu_free, cpu) =
2129 				(void *)c->freelist;
2130 	else {
2131 		/* Table overflow: So allocate ourselves */
2132 		c = kmalloc_node(
2133 			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2134 			flags, cpu_to_node(cpu));
2135 		if (!c)
2136 			return NULL;
2137 	}
2138 
2139 	init_kmem_cache_cpu(s, c);
2140 	return c;
2141 }
2142 
2143 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2144 {
2145 	if (c < per_cpu(kmem_cache_cpu, cpu) ||
2146 			c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2147 		kfree(c);
2148 		return;
2149 	}
2150 	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2151 	per_cpu(kmem_cache_cpu_free, cpu) = c;
2152 }
2153 
2154 static void free_kmem_cache_cpus(struct kmem_cache *s)
2155 {
2156 	int cpu;
2157 
2158 	for_each_online_cpu(cpu) {
2159 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2160 
2161 		if (c) {
2162 			s->cpu_slab[cpu] = NULL;
2163 			free_kmem_cache_cpu(c, cpu);
2164 		}
2165 	}
2166 }
2167 
2168 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2169 {
2170 	int cpu;
2171 
2172 	for_each_online_cpu(cpu) {
2173 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2174 
2175 		if (c)
2176 			continue;
2177 
2178 		c = alloc_kmem_cache_cpu(s, cpu, flags);
2179 		if (!c) {
2180 			free_kmem_cache_cpus(s);
2181 			return 0;
2182 		}
2183 		s->cpu_slab[cpu] = c;
2184 	}
2185 	return 1;
2186 }
2187 
2188 /*
2189  * Initialize the per cpu array.
2190  */
2191 static void init_alloc_cpu_cpu(int cpu)
2192 {
2193 	int i;
2194 
2195 	if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2196 		return;
2197 
2198 	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2199 		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2200 
2201 	cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2202 }
2203 
2204 static void __init init_alloc_cpu(void)
2205 {
2206 	int cpu;
2207 
2208 	for_each_online_cpu(cpu)
2209 		init_alloc_cpu_cpu(cpu);
2210   }
2211 
2212 #else
2213 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2214 static inline void init_alloc_cpu(void) {}
2215 
2216 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2217 {
2218 	init_kmem_cache_cpu(s, &s->cpu_slab);
2219 	return 1;
2220 }
2221 #endif
2222 
2223 #ifdef CONFIG_NUMA
2224 /*
2225  * No kmalloc_node yet so do it by hand. We know that this is the first
2226  * slab on the node for this slabcache. There are no concurrent accesses
2227  * possible.
2228  *
2229  * Note that this function only works on the kmalloc_node_cache
2230  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2231  * memory on a fresh node that has no slab structures yet.
2232  */
2233 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2234 {
2235 	struct page *page;
2236 	struct kmem_cache_node *n;
2237 	unsigned long flags;
2238 
2239 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2240 
2241 	page = new_slab(kmalloc_caches, gfpflags, node);
2242 
2243 	BUG_ON(!page);
2244 	if (page_to_nid(page) != node) {
2245 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2246 				"node %d\n", node);
2247 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2248 				"in order to be able to continue\n");
2249 	}
2250 
2251 	n = page->freelist;
2252 	BUG_ON(!n);
2253 	page->freelist = get_freepointer(kmalloc_caches, n);
2254 	page->inuse++;
2255 	kmalloc_caches->node[node] = n;
2256 #ifdef CONFIG_SLUB_DEBUG
2257 	init_object(kmalloc_caches, n, 1);
2258 	init_tracking(kmalloc_caches, n);
2259 #endif
2260 	init_kmem_cache_node(n, kmalloc_caches);
2261 	inc_slabs_node(kmalloc_caches, node, page->objects);
2262 
2263 	/*
2264 	 * lockdep requires consistent irq usage for each lock
2265 	 * so even though there cannot be a race this early in
2266 	 * the boot sequence, we still disable irqs.
2267 	 */
2268 	local_irq_save(flags);
2269 	add_partial(n, page, 0);
2270 	local_irq_restore(flags);
2271 }
2272 
2273 static void free_kmem_cache_nodes(struct kmem_cache *s)
2274 {
2275 	int node;
2276 
2277 	for_each_node_state(node, N_NORMAL_MEMORY) {
2278 		struct kmem_cache_node *n = s->node[node];
2279 		if (n && n != &s->local_node)
2280 			kmem_cache_free(kmalloc_caches, n);
2281 		s->node[node] = NULL;
2282 	}
2283 }
2284 
2285 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2286 {
2287 	int node;
2288 	int local_node;
2289 
2290 	if (slab_state >= UP)
2291 		local_node = page_to_nid(virt_to_page(s));
2292 	else
2293 		local_node = 0;
2294 
2295 	for_each_node_state(node, N_NORMAL_MEMORY) {
2296 		struct kmem_cache_node *n;
2297 
2298 		if (local_node == node)
2299 			n = &s->local_node;
2300 		else {
2301 			if (slab_state == DOWN) {
2302 				early_kmem_cache_node_alloc(gfpflags, node);
2303 				continue;
2304 			}
2305 			n = kmem_cache_alloc_node(kmalloc_caches,
2306 							gfpflags, node);
2307 
2308 			if (!n) {
2309 				free_kmem_cache_nodes(s);
2310 				return 0;
2311 			}
2312 
2313 		}
2314 		s->node[node] = n;
2315 		init_kmem_cache_node(n, s);
2316 	}
2317 	return 1;
2318 }
2319 #else
2320 static void free_kmem_cache_nodes(struct kmem_cache *s)
2321 {
2322 }
2323 
2324 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2325 {
2326 	init_kmem_cache_node(&s->local_node, s);
2327 	return 1;
2328 }
2329 #endif
2330 
2331 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2332 {
2333 	if (min < MIN_PARTIAL)
2334 		min = MIN_PARTIAL;
2335 	else if (min > MAX_PARTIAL)
2336 		min = MAX_PARTIAL;
2337 	s->min_partial = min;
2338 }
2339 
2340 /*
2341  * calculate_sizes() determines the order and the distribution of data within
2342  * a slab object.
2343  */
2344 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2345 {
2346 	unsigned long flags = s->flags;
2347 	unsigned long size = s->objsize;
2348 	unsigned long align = s->align;
2349 	int order;
2350 
2351 	/*
2352 	 * Round up object size to the next word boundary. We can only
2353 	 * place the free pointer at word boundaries and this determines
2354 	 * the possible location of the free pointer.
2355 	 */
2356 	size = ALIGN(size, sizeof(void *));
2357 
2358 #ifdef CONFIG_SLUB_DEBUG
2359 	/*
2360 	 * Determine if we can poison the object itself. If the user of
2361 	 * the slab may touch the object after free or before allocation
2362 	 * then we should never poison the object itself.
2363 	 */
2364 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2365 			!s->ctor)
2366 		s->flags |= __OBJECT_POISON;
2367 	else
2368 		s->flags &= ~__OBJECT_POISON;
2369 
2370 
2371 	/*
2372 	 * If we are Redzoning then check if there is some space between the
2373 	 * end of the object and the free pointer. If not then add an
2374 	 * additional word to have some bytes to store Redzone information.
2375 	 */
2376 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2377 		size += sizeof(void *);
2378 #endif
2379 
2380 	/*
2381 	 * With that we have determined the number of bytes in actual use
2382 	 * by the object. This is the potential offset to the free pointer.
2383 	 */
2384 	s->inuse = size;
2385 
2386 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2387 		s->ctor)) {
2388 		/*
2389 		 * Relocate free pointer after the object if it is not
2390 		 * permitted to overwrite the first word of the object on
2391 		 * kmem_cache_free.
2392 		 *
2393 		 * This is the case if we do RCU, have a constructor or
2394 		 * destructor or are poisoning the objects.
2395 		 */
2396 		s->offset = size;
2397 		size += sizeof(void *);
2398 	}
2399 
2400 #ifdef CONFIG_SLUB_DEBUG
2401 	if (flags & SLAB_STORE_USER)
2402 		/*
2403 		 * Need to store information about allocs and frees after
2404 		 * the object.
2405 		 */
2406 		size += 2 * sizeof(struct track);
2407 
2408 	if (flags & SLAB_RED_ZONE)
2409 		/*
2410 		 * Add some empty padding so that we can catch
2411 		 * overwrites from earlier objects rather than let
2412 		 * tracking information or the free pointer be
2413 		 * corrupted if a user writes before the start
2414 		 * of the object.
2415 		 */
2416 		size += sizeof(void *);
2417 #endif
2418 
2419 	/*
2420 	 * Determine the alignment based on various parameters that the
2421 	 * user specified and the dynamic determination of cache line size
2422 	 * on bootup.
2423 	 */
2424 	align = calculate_alignment(flags, align, s->objsize);
2425 	s->align = align;
2426 
2427 	/*
2428 	 * SLUB stores one object immediately after another beginning from
2429 	 * offset 0. In order to align the objects we have to simply size
2430 	 * each object to conform to the alignment.
2431 	 */
2432 	size = ALIGN(size, align);
2433 	s->size = size;
2434 	if (forced_order >= 0)
2435 		order = forced_order;
2436 	else
2437 		order = calculate_order(size);
2438 
2439 	if (order < 0)
2440 		return 0;
2441 
2442 	s->allocflags = 0;
2443 	if (order)
2444 		s->allocflags |= __GFP_COMP;
2445 
2446 	if (s->flags & SLAB_CACHE_DMA)
2447 		s->allocflags |= SLUB_DMA;
2448 
2449 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2450 		s->allocflags |= __GFP_RECLAIMABLE;
2451 
2452 	/*
2453 	 * Determine the number of objects per slab
2454 	 */
2455 	s->oo = oo_make(order, size);
2456 	s->min = oo_make(get_order(size), size);
2457 	if (oo_objects(s->oo) > oo_objects(s->max))
2458 		s->max = s->oo;
2459 
2460 	return !!oo_objects(s->oo);
2461 
2462 }
2463 
2464 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2465 		const char *name, size_t size,
2466 		size_t align, unsigned long flags,
2467 		void (*ctor)(void *))
2468 {
2469 	memset(s, 0, kmem_size);
2470 	s->name = name;
2471 	s->ctor = ctor;
2472 	s->objsize = size;
2473 	s->align = align;
2474 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2475 
2476 	if (!calculate_sizes(s, -1))
2477 		goto error;
2478 	if (disable_higher_order_debug) {
2479 		/*
2480 		 * Disable debugging flags that store metadata if the min slab
2481 		 * order increased.
2482 		 */
2483 		if (get_order(s->size) > get_order(s->objsize)) {
2484 			s->flags &= ~DEBUG_METADATA_FLAGS;
2485 			s->offset = 0;
2486 			if (!calculate_sizes(s, -1))
2487 				goto error;
2488 		}
2489 	}
2490 
2491 	/*
2492 	 * The larger the object size is, the more pages we want on the partial
2493 	 * list to avoid pounding the page allocator excessively.
2494 	 */
2495 	set_min_partial(s, ilog2(s->size));
2496 	s->refcount = 1;
2497 #ifdef CONFIG_NUMA
2498 	s->remote_node_defrag_ratio = 1000;
2499 #endif
2500 	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2501 		goto error;
2502 
2503 	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2504 		return 1;
2505 	free_kmem_cache_nodes(s);
2506 error:
2507 	if (flags & SLAB_PANIC)
2508 		panic("Cannot create slab %s size=%lu realsize=%u "
2509 			"order=%u offset=%u flags=%lx\n",
2510 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2511 			s->offset, flags);
2512 	return 0;
2513 }
2514 
2515 /*
2516  * Check if a given pointer is valid
2517  */
2518 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2519 {
2520 	struct page *page;
2521 
2522 	page = get_object_page(object);
2523 
2524 	if (!page || s != page->slab)
2525 		/* No slab or wrong slab */
2526 		return 0;
2527 
2528 	if (!check_valid_pointer(s, page, object))
2529 		return 0;
2530 
2531 	/*
2532 	 * We could also check if the object is on the slabs freelist.
2533 	 * But this would be too expensive and it seems that the main
2534 	 * purpose of kmem_ptr_valid() is to check if the object belongs
2535 	 * to a certain slab.
2536 	 */
2537 	return 1;
2538 }
2539 EXPORT_SYMBOL(kmem_ptr_validate);
2540 
2541 /*
2542  * Determine the size of a slab object
2543  */
2544 unsigned int kmem_cache_size(struct kmem_cache *s)
2545 {
2546 	return s->objsize;
2547 }
2548 EXPORT_SYMBOL(kmem_cache_size);
2549 
2550 const char *kmem_cache_name(struct kmem_cache *s)
2551 {
2552 	return s->name;
2553 }
2554 EXPORT_SYMBOL(kmem_cache_name);
2555 
2556 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2557 							const char *text)
2558 {
2559 #ifdef CONFIG_SLUB_DEBUG
2560 	void *addr = page_address(page);
2561 	void *p;
2562 	DECLARE_BITMAP(map, page->objects);
2563 
2564 	bitmap_zero(map, page->objects);
2565 	slab_err(s, page, "%s", text);
2566 	slab_lock(page);
2567 	for_each_free_object(p, s, page->freelist)
2568 		set_bit(slab_index(p, s, addr), map);
2569 
2570 	for_each_object(p, s, addr, page->objects) {
2571 
2572 		if (!test_bit(slab_index(p, s, addr), map)) {
2573 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2574 							p, p - addr);
2575 			print_tracking(s, p);
2576 		}
2577 	}
2578 	slab_unlock(page);
2579 #endif
2580 }
2581 
2582 /*
2583  * Attempt to free all partial slabs on a node.
2584  */
2585 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2586 {
2587 	unsigned long flags;
2588 	struct page *page, *h;
2589 
2590 	spin_lock_irqsave(&n->list_lock, flags);
2591 	list_for_each_entry_safe(page, h, &n->partial, lru) {
2592 		if (!page->inuse) {
2593 			list_del(&page->lru);
2594 			discard_slab(s, page);
2595 			n->nr_partial--;
2596 		} else {
2597 			list_slab_objects(s, page,
2598 				"Objects remaining on kmem_cache_close()");
2599 		}
2600 	}
2601 	spin_unlock_irqrestore(&n->list_lock, flags);
2602 }
2603 
2604 /*
2605  * Release all resources used by a slab cache.
2606  */
2607 static inline int kmem_cache_close(struct kmem_cache *s)
2608 {
2609 	int node;
2610 
2611 	flush_all(s);
2612 
2613 	/* Attempt to free all objects */
2614 	free_kmem_cache_cpus(s);
2615 	for_each_node_state(node, N_NORMAL_MEMORY) {
2616 		struct kmem_cache_node *n = get_node(s, node);
2617 
2618 		free_partial(s, n);
2619 		if (n->nr_partial || slabs_node(s, node))
2620 			return 1;
2621 	}
2622 	free_kmem_cache_nodes(s);
2623 	return 0;
2624 }
2625 
2626 /*
2627  * Close a cache and release the kmem_cache structure
2628  * (must be used for caches created using kmem_cache_create)
2629  */
2630 void kmem_cache_destroy(struct kmem_cache *s)
2631 {
2632 	down_write(&slub_lock);
2633 	s->refcount--;
2634 	if (!s->refcount) {
2635 		list_del(&s->list);
2636 		up_write(&slub_lock);
2637 		if (kmem_cache_close(s)) {
2638 			printk(KERN_ERR "SLUB %s: %s called for cache that "
2639 				"still has objects.\n", s->name, __func__);
2640 			dump_stack();
2641 		}
2642 		if (s->flags & SLAB_DESTROY_BY_RCU)
2643 			rcu_barrier();
2644 		sysfs_slab_remove(s);
2645 	} else
2646 		up_write(&slub_lock);
2647 }
2648 EXPORT_SYMBOL(kmem_cache_destroy);
2649 
2650 /********************************************************************
2651  *		Kmalloc subsystem
2652  *******************************************************************/
2653 
2654 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2655 EXPORT_SYMBOL(kmalloc_caches);
2656 
2657 static int __init setup_slub_min_order(char *str)
2658 {
2659 	get_option(&str, &slub_min_order);
2660 
2661 	return 1;
2662 }
2663 
2664 __setup("slub_min_order=", setup_slub_min_order);
2665 
2666 static int __init setup_slub_max_order(char *str)
2667 {
2668 	get_option(&str, &slub_max_order);
2669 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2670 
2671 	return 1;
2672 }
2673 
2674 __setup("slub_max_order=", setup_slub_max_order);
2675 
2676 static int __init setup_slub_min_objects(char *str)
2677 {
2678 	get_option(&str, &slub_min_objects);
2679 
2680 	return 1;
2681 }
2682 
2683 __setup("slub_min_objects=", setup_slub_min_objects);
2684 
2685 static int __init setup_slub_nomerge(char *str)
2686 {
2687 	slub_nomerge = 1;
2688 	return 1;
2689 }
2690 
2691 __setup("slub_nomerge", setup_slub_nomerge);
2692 
2693 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2694 		const char *name, int size, gfp_t gfp_flags)
2695 {
2696 	unsigned int flags = 0;
2697 
2698 	if (gfp_flags & SLUB_DMA)
2699 		flags = SLAB_CACHE_DMA;
2700 
2701 	/*
2702 	 * This function is called with IRQs disabled during early-boot on
2703 	 * single CPU so there's no need to take slub_lock here.
2704 	 */
2705 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2706 								flags, NULL))
2707 		goto panic;
2708 
2709 	list_add(&s->list, &slab_caches);
2710 
2711 	if (sysfs_slab_add(s))
2712 		goto panic;
2713 	return s;
2714 
2715 panic:
2716 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2717 }
2718 
2719 #ifdef CONFIG_ZONE_DMA
2720 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2721 
2722 static void sysfs_add_func(struct work_struct *w)
2723 {
2724 	struct kmem_cache *s;
2725 
2726 	down_write(&slub_lock);
2727 	list_for_each_entry(s, &slab_caches, list) {
2728 		if (s->flags & __SYSFS_ADD_DEFERRED) {
2729 			s->flags &= ~__SYSFS_ADD_DEFERRED;
2730 			sysfs_slab_add(s);
2731 		}
2732 	}
2733 	up_write(&slub_lock);
2734 }
2735 
2736 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2737 
2738 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2739 {
2740 	struct kmem_cache *s;
2741 	char *text;
2742 	size_t realsize;
2743 	unsigned long slabflags;
2744 
2745 	s = kmalloc_caches_dma[index];
2746 	if (s)
2747 		return s;
2748 
2749 	/* Dynamically create dma cache */
2750 	if (flags & __GFP_WAIT)
2751 		down_write(&slub_lock);
2752 	else {
2753 		if (!down_write_trylock(&slub_lock))
2754 			goto out;
2755 	}
2756 
2757 	if (kmalloc_caches_dma[index])
2758 		goto unlock_out;
2759 
2760 	realsize = kmalloc_caches[index].objsize;
2761 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2762 			 (unsigned int)realsize);
2763 	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2764 
2765 	/*
2766 	 * Must defer sysfs creation to a workqueue because we don't know
2767 	 * what context we are called from. Before sysfs comes up, we don't
2768 	 * need to do anything because our sysfs initcall will start by
2769 	 * adding all existing slabs to sysfs.
2770 	 */
2771 	slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2772 	if (slab_state >= SYSFS)
2773 		slabflags |= __SYSFS_ADD_DEFERRED;
2774 
2775 	if (!s || !text || !kmem_cache_open(s, flags, text,
2776 			realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2777 		kfree(s);
2778 		kfree(text);
2779 		goto unlock_out;
2780 	}
2781 
2782 	list_add(&s->list, &slab_caches);
2783 	kmalloc_caches_dma[index] = s;
2784 
2785 	if (slab_state >= SYSFS)
2786 		schedule_work(&sysfs_add_work);
2787 
2788 unlock_out:
2789 	up_write(&slub_lock);
2790 out:
2791 	return kmalloc_caches_dma[index];
2792 }
2793 #endif
2794 
2795 /*
2796  * Conversion table for small slabs sizes / 8 to the index in the
2797  * kmalloc array. This is necessary for slabs < 192 since we have non power
2798  * of two cache sizes there. The size of larger slabs can be determined using
2799  * fls.
2800  */
2801 static s8 size_index[24] = {
2802 	3,	/* 8 */
2803 	4,	/* 16 */
2804 	5,	/* 24 */
2805 	5,	/* 32 */
2806 	6,	/* 40 */
2807 	6,	/* 48 */
2808 	6,	/* 56 */
2809 	6,	/* 64 */
2810 	1,	/* 72 */
2811 	1,	/* 80 */
2812 	1,	/* 88 */
2813 	1,	/* 96 */
2814 	7,	/* 104 */
2815 	7,	/* 112 */
2816 	7,	/* 120 */
2817 	7,	/* 128 */
2818 	2,	/* 136 */
2819 	2,	/* 144 */
2820 	2,	/* 152 */
2821 	2,	/* 160 */
2822 	2,	/* 168 */
2823 	2,	/* 176 */
2824 	2,	/* 184 */
2825 	2	/* 192 */
2826 };
2827 
2828 static inline int size_index_elem(size_t bytes)
2829 {
2830 	return (bytes - 1) / 8;
2831 }
2832 
2833 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2834 {
2835 	int index;
2836 
2837 	if (size <= 192) {
2838 		if (!size)
2839 			return ZERO_SIZE_PTR;
2840 
2841 		index = size_index[size_index_elem(size)];
2842 	} else
2843 		index = fls(size - 1);
2844 
2845 #ifdef CONFIG_ZONE_DMA
2846 	if (unlikely((flags & SLUB_DMA)))
2847 		return dma_kmalloc_cache(index, flags);
2848 
2849 #endif
2850 	return &kmalloc_caches[index];
2851 }
2852 
2853 void *__kmalloc(size_t size, gfp_t flags)
2854 {
2855 	struct kmem_cache *s;
2856 	void *ret;
2857 
2858 	if (unlikely(size > SLUB_MAX_SIZE))
2859 		return kmalloc_large(size, flags);
2860 
2861 	s = get_slab(size, flags);
2862 
2863 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2864 		return s;
2865 
2866 	ret = slab_alloc(s, flags, -1, _RET_IP_);
2867 
2868 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2869 
2870 	return ret;
2871 }
2872 EXPORT_SYMBOL(__kmalloc);
2873 
2874 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2875 {
2876 	struct page *page;
2877 	void *ptr = NULL;
2878 
2879 	flags |= __GFP_COMP | __GFP_NOTRACK;
2880 	page = alloc_pages_node(node, flags, get_order(size));
2881 	if (page)
2882 		ptr = page_address(page);
2883 
2884 	kmemleak_alloc(ptr, size, 1, flags);
2885 	return ptr;
2886 }
2887 
2888 #ifdef CONFIG_NUMA
2889 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2890 {
2891 	struct kmem_cache *s;
2892 	void *ret;
2893 
2894 	if (unlikely(size > SLUB_MAX_SIZE)) {
2895 		ret = kmalloc_large_node(size, flags, node);
2896 
2897 		trace_kmalloc_node(_RET_IP_, ret,
2898 				   size, PAGE_SIZE << get_order(size),
2899 				   flags, node);
2900 
2901 		return ret;
2902 	}
2903 
2904 	s = get_slab(size, flags);
2905 
2906 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2907 		return s;
2908 
2909 	ret = slab_alloc(s, flags, node, _RET_IP_);
2910 
2911 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2912 
2913 	return ret;
2914 }
2915 EXPORT_SYMBOL(__kmalloc_node);
2916 #endif
2917 
2918 size_t ksize(const void *object)
2919 {
2920 	struct page *page;
2921 	struct kmem_cache *s;
2922 
2923 	if (unlikely(object == ZERO_SIZE_PTR))
2924 		return 0;
2925 
2926 	page = virt_to_head_page(object);
2927 
2928 	if (unlikely(!PageSlab(page))) {
2929 		WARN_ON(!PageCompound(page));
2930 		return PAGE_SIZE << compound_order(page);
2931 	}
2932 	s = page->slab;
2933 
2934 #ifdef CONFIG_SLUB_DEBUG
2935 	/*
2936 	 * Debugging requires use of the padding between object
2937 	 * and whatever may come after it.
2938 	 */
2939 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2940 		return s->objsize;
2941 
2942 #endif
2943 	/*
2944 	 * If we have the need to store the freelist pointer
2945 	 * back there or track user information then we can
2946 	 * only use the space before that information.
2947 	 */
2948 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2949 		return s->inuse;
2950 	/*
2951 	 * Else we can use all the padding etc for the allocation
2952 	 */
2953 	return s->size;
2954 }
2955 EXPORT_SYMBOL(ksize);
2956 
2957 void kfree(const void *x)
2958 {
2959 	struct page *page;
2960 	void *object = (void *)x;
2961 
2962 	trace_kfree(_RET_IP_, x);
2963 
2964 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2965 		return;
2966 
2967 	page = virt_to_head_page(x);
2968 	if (unlikely(!PageSlab(page))) {
2969 		BUG_ON(!PageCompound(page));
2970 		kmemleak_free(x);
2971 		put_page(page);
2972 		return;
2973 	}
2974 	slab_free(page->slab, page, object, _RET_IP_);
2975 }
2976 EXPORT_SYMBOL(kfree);
2977 
2978 /*
2979  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2980  * the remaining slabs by the number of items in use. The slabs with the
2981  * most items in use come first. New allocations will then fill those up
2982  * and thus they can be removed from the partial lists.
2983  *
2984  * The slabs with the least items are placed last. This results in them
2985  * being allocated from last increasing the chance that the last objects
2986  * are freed in them.
2987  */
2988 int kmem_cache_shrink(struct kmem_cache *s)
2989 {
2990 	int node;
2991 	int i;
2992 	struct kmem_cache_node *n;
2993 	struct page *page;
2994 	struct page *t;
2995 	int objects = oo_objects(s->max);
2996 	struct list_head *slabs_by_inuse =
2997 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2998 	unsigned long flags;
2999 
3000 	if (!slabs_by_inuse)
3001 		return -ENOMEM;
3002 
3003 	flush_all(s);
3004 	for_each_node_state(node, N_NORMAL_MEMORY) {
3005 		n = get_node(s, node);
3006 
3007 		if (!n->nr_partial)
3008 			continue;
3009 
3010 		for (i = 0; i < objects; i++)
3011 			INIT_LIST_HEAD(slabs_by_inuse + i);
3012 
3013 		spin_lock_irqsave(&n->list_lock, flags);
3014 
3015 		/*
3016 		 * Build lists indexed by the items in use in each slab.
3017 		 *
3018 		 * Note that concurrent frees may occur while we hold the
3019 		 * list_lock. page->inuse here is the upper limit.
3020 		 */
3021 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3022 			if (!page->inuse && slab_trylock(page)) {
3023 				/*
3024 				 * Must hold slab lock here because slab_free
3025 				 * may have freed the last object and be
3026 				 * waiting to release the slab.
3027 				 */
3028 				list_del(&page->lru);
3029 				n->nr_partial--;
3030 				slab_unlock(page);
3031 				discard_slab(s, page);
3032 			} else {
3033 				list_move(&page->lru,
3034 				slabs_by_inuse + page->inuse);
3035 			}
3036 		}
3037 
3038 		/*
3039 		 * Rebuild the partial list with the slabs filled up most
3040 		 * first and the least used slabs at the end.
3041 		 */
3042 		for (i = objects - 1; i >= 0; i--)
3043 			list_splice(slabs_by_inuse + i, n->partial.prev);
3044 
3045 		spin_unlock_irqrestore(&n->list_lock, flags);
3046 	}
3047 
3048 	kfree(slabs_by_inuse);
3049 	return 0;
3050 }
3051 EXPORT_SYMBOL(kmem_cache_shrink);
3052 
3053 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
3054 static int slab_mem_going_offline_callback(void *arg)
3055 {
3056 	struct kmem_cache *s;
3057 
3058 	down_read(&slub_lock);
3059 	list_for_each_entry(s, &slab_caches, list)
3060 		kmem_cache_shrink(s);
3061 	up_read(&slub_lock);
3062 
3063 	return 0;
3064 }
3065 
3066 static void slab_mem_offline_callback(void *arg)
3067 {
3068 	struct kmem_cache_node *n;
3069 	struct kmem_cache *s;
3070 	struct memory_notify *marg = arg;
3071 	int offline_node;
3072 
3073 	offline_node = marg->status_change_nid;
3074 
3075 	/*
3076 	 * If the node still has available memory. we need kmem_cache_node
3077 	 * for it yet.
3078 	 */
3079 	if (offline_node < 0)
3080 		return;
3081 
3082 	down_read(&slub_lock);
3083 	list_for_each_entry(s, &slab_caches, list) {
3084 		n = get_node(s, offline_node);
3085 		if (n) {
3086 			/*
3087 			 * if n->nr_slabs > 0, slabs still exist on the node
3088 			 * that is going down. We were unable to free them,
3089 			 * and offline_pages() function shoudn't call this
3090 			 * callback. So, we must fail.
3091 			 */
3092 			BUG_ON(slabs_node(s, offline_node));
3093 
3094 			s->node[offline_node] = NULL;
3095 			kmem_cache_free(kmalloc_caches, n);
3096 		}
3097 	}
3098 	up_read(&slub_lock);
3099 }
3100 
3101 static int slab_mem_going_online_callback(void *arg)
3102 {
3103 	struct kmem_cache_node *n;
3104 	struct kmem_cache *s;
3105 	struct memory_notify *marg = arg;
3106 	int nid = marg->status_change_nid;
3107 	int ret = 0;
3108 
3109 	/*
3110 	 * If the node's memory is already available, then kmem_cache_node is
3111 	 * already created. Nothing to do.
3112 	 */
3113 	if (nid < 0)
3114 		return 0;
3115 
3116 	/*
3117 	 * We are bringing a node online. No memory is available yet. We must
3118 	 * allocate a kmem_cache_node structure in order to bring the node
3119 	 * online.
3120 	 */
3121 	down_read(&slub_lock);
3122 	list_for_each_entry(s, &slab_caches, list) {
3123 		/*
3124 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3125 		 *      since memory is not yet available from the node that
3126 		 *      is brought up.
3127 		 */
3128 		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3129 		if (!n) {
3130 			ret = -ENOMEM;
3131 			goto out;
3132 		}
3133 		init_kmem_cache_node(n, s);
3134 		s->node[nid] = n;
3135 	}
3136 out:
3137 	up_read(&slub_lock);
3138 	return ret;
3139 }
3140 
3141 static int slab_memory_callback(struct notifier_block *self,
3142 				unsigned long action, void *arg)
3143 {
3144 	int ret = 0;
3145 
3146 	switch (action) {
3147 	case MEM_GOING_ONLINE:
3148 		ret = slab_mem_going_online_callback(arg);
3149 		break;
3150 	case MEM_GOING_OFFLINE:
3151 		ret = slab_mem_going_offline_callback(arg);
3152 		break;
3153 	case MEM_OFFLINE:
3154 	case MEM_CANCEL_ONLINE:
3155 		slab_mem_offline_callback(arg);
3156 		break;
3157 	case MEM_ONLINE:
3158 	case MEM_CANCEL_OFFLINE:
3159 		break;
3160 	}
3161 	if (ret)
3162 		ret = notifier_from_errno(ret);
3163 	else
3164 		ret = NOTIFY_OK;
3165 	return ret;
3166 }
3167 
3168 #endif /* CONFIG_MEMORY_HOTPLUG */
3169 
3170 /********************************************************************
3171  *			Basic setup of slabs
3172  *******************************************************************/
3173 
3174 void __init kmem_cache_init(void)
3175 {
3176 	int i;
3177 	int caches = 0;
3178 
3179 	init_alloc_cpu();
3180 
3181 #ifdef CONFIG_NUMA
3182 	/*
3183 	 * Must first have the slab cache available for the allocations of the
3184 	 * struct kmem_cache_node's. There is special bootstrap code in
3185 	 * kmem_cache_open for slab_state == DOWN.
3186 	 */
3187 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3188 		sizeof(struct kmem_cache_node), GFP_NOWAIT);
3189 	kmalloc_caches[0].refcount = -1;
3190 	caches++;
3191 
3192 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3193 #endif
3194 
3195 	/* Able to allocate the per node structures */
3196 	slab_state = PARTIAL;
3197 
3198 	/* Caches that are not of the two-to-the-power-of size */
3199 	if (KMALLOC_MIN_SIZE <= 32) {
3200 		create_kmalloc_cache(&kmalloc_caches[1],
3201 				"kmalloc-96", 96, GFP_NOWAIT);
3202 		caches++;
3203 	}
3204 	if (KMALLOC_MIN_SIZE <= 64) {
3205 		create_kmalloc_cache(&kmalloc_caches[2],
3206 				"kmalloc-192", 192, GFP_NOWAIT);
3207 		caches++;
3208 	}
3209 
3210 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3211 		create_kmalloc_cache(&kmalloc_caches[i],
3212 			"kmalloc", 1 << i, GFP_NOWAIT);
3213 		caches++;
3214 	}
3215 
3216 
3217 	/*
3218 	 * Patch up the size_index table if we have strange large alignment
3219 	 * requirements for the kmalloc array. This is only the case for
3220 	 * MIPS it seems. The standard arches will not generate any code here.
3221 	 *
3222 	 * Largest permitted alignment is 256 bytes due to the way we
3223 	 * handle the index determination for the smaller caches.
3224 	 *
3225 	 * Make sure that nothing crazy happens if someone starts tinkering
3226 	 * around with ARCH_KMALLOC_MINALIGN
3227 	 */
3228 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3229 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3230 
3231 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3232 		int elem = size_index_elem(i);
3233 		if (elem >= ARRAY_SIZE(size_index))
3234 			break;
3235 		size_index[elem] = KMALLOC_SHIFT_LOW;
3236 	}
3237 
3238 	if (KMALLOC_MIN_SIZE == 64) {
3239 		/*
3240 		 * The 96 byte size cache is not used if the alignment
3241 		 * is 64 byte.
3242 		 */
3243 		for (i = 64 + 8; i <= 96; i += 8)
3244 			size_index[size_index_elem(i)] = 7;
3245 	} else if (KMALLOC_MIN_SIZE == 128) {
3246 		/*
3247 		 * The 192 byte sized cache is not used if the alignment
3248 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3249 		 * instead.
3250 		 */
3251 		for (i = 128 + 8; i <= 192; i += 8)
3252 			size_index[size_index_elem(i)] = 8;
3253 	}
3254 
3255 	slab_state = UP;
3256 
3257 	/* Provide the correct kmalloc names now that the caches are up */
3258 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3259 		kmalloc_caches[i]. name =
3260 			kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3261 
3262 #ifdef CONFIG_SMP
3263 	register_cpu_notifier(&slab_notifier);
3264 	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3265 				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3266 #else
3267 	kmem_size = sizeof(struct kmem_cache);
3268 #endif
3269 
3270 	printk(KERN_INFO
3271 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3272 		" CPUs=%d, Nodes=%d\n",
3273 		caches, cache_line_size(),
3274 		slub_min_order, slub_max_order, slub_min_objects,
3275 		nr_cpu_ids, nr_node_ids);
3276 }
3277 
3278 void __init kmem_cache_init_late(void)
3279 {
3280 }
3281 
3282 /*
3283  * Find a mergeable slab cache
3284  */
3285 static int slab_unmergeable(struct kmem_cache *s)
3286 {
3287 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3288 		return 1;
3289 
3290 	if (s->ctor)
3291 		return 1;
3292 
3293 	/*
3294 	 * We may have set a slab to be unmergeable during bootstrap.
3295 	 */
3296 	if (s->refcount < 0)
3297 		return 1;
3298 
3299 	return 0;
3300 }
3301 
3302 static struct kmem_cache *find_mergeable(size_t size,
3303 		size_t align, unsigned long flags, const char *name,
3304 		void (*ctor)(void *))
3305 {
3306 	struct kmem_cache *s;
3307 
3308 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3309 		return NULL;
3310 
3311 	if (ctor)
3312 		return NULL;
3313 
3314 	size = ALIGN(size, sizeof(void *));
3315 	align = calculate_alignment(flags, align, size);
3316 	size = ALIGN(size, align);
3317 	flags = kmem_cache_flags(size, flags, name, NULL);
3318 
3319 	list_for_each_entry(s, &slab_caches, list) {
3320 		if (slab_unmergeable(s))
3321 			continue;
3322 
3323 		if (size > s->size)
3324 			continue;
3325 
3326 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3327 				continue;
3328 		/*
3329 		 * Check if alignment is compatible.
3330 		 * Courtesy of Adrian Drzewiecki
3331 		 */
3332 		if ((s->size & ~(align - 1)) != s->size)
3333 			continue;
3334 
3335 		if (s->size - size >= sizeof(void *))
3336 			continue;
3337 
3338 		return s;
3339 	}
3340 	return NULL;
3341 }
3342 
3343 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3344 		size_t align, unsigned long flags, void (*ctor)(void *))
3345 {
3346 	struct kmem_cache *s;
3347 
3348 	if (WARN_ON(!name))
3349 		return NULL;
3350 
3351 	down_write(&slub_lock);
3352 	s = find_mergeable(size, align, flags, name, ctor);
3353 	if (s) {
3354 		int cpu;
3355 
3356 		s->refcount++;
3357 		/*
3358 		 * Adjust the object sizes so that we clear
3359 		 * the complete object on kzalloc.
3360 		 */
3361 		s->objsize = max(s->objsize, (int)size);
3362 
3363 		/*
3364 		 * And then we need to update the object size in the
3365 		 * per cpu structures
3366 		 */
3367 		for_each_online_cpu(cpu)
3368 			get_cpu_slab(s, cpu)->objsize = s->objsize;
3369 
3370 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3371 		up_write(&slub_lock);
3372 
3373 		if (sysfs_slab_alias(s, name)) {
3374 			down_write(&slub_lock);
3375 			s->refcount--;
3376 			up_write(&slub_lock);
3377 			goto err;
3378 		}
3379 		return s;
3380 	}
3381 
3382 	s = kmalloc(kmem_size, GFP_KERNEL);
3383 	if (s) {
3384 		if (kmem_cache_open(s, GFP_KERNEL, name,
3385 				size, align, flags, ctor)) {
3386 			list_add(&s->list, &slab_caches);
3387 			up_write(&slub_lock);
3388 			if (sysfs_slab_add(s)) {
3389 				down_write(&slub_lock);
3390 				list_del(&s->list);
3391 				up_write(&slub_lock);
3392 				kfree(s);
3393 				goto err;
3394 			}
3395 			return s;
3396 		}
3397 		kfree(s);
3398 	}
3399 	up_write(&slub_lock);
3400 
3401 err:
3402 	if (flags & SLAB_PANIC)
3403 		panic("Cannot create slabcache %s\n", name);
3404 	else
3405 		s = NULL;
3406 	return s;
3407 }
3408 EXPORT_SYMBOL(kmem_cache_create);
3409 
3410 #ifdef CONFIG_SMP
3411 /*
3412  * Use the cpu notifier to insure that the cpu slabs are flushed when
3413  * necessary.
3414  */
3415 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3416 		unsigned long action, void *hcpu)
3417 {
3418 	long cpu = (long)hcpu;
3419 	struct kmem_cache *s;
3420 	unsigned long flags;
3421 
3422 	switch (action) {
3423 	case CPU_UP_PREPARE:
3424 	case CPU_UP_PREPARE_FROZEN:
3425 		init_alloc_cpu_cpu(cpu);
3426 		down_read(&slub_lock);
3427 		list_for_each_entry(s, &slab_caches, list)
3428 			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3429 							GFP_KERNEL);
3430 		up_read(&slub_lock);
3431 		break;
3432 
3433 	case CPU_UP_CANCELED:
3434 	case CPU_UP_CANCELED_FROZEN:
3435 	case CPU_DEAD:
3436 	case CPU_DEAD_FROZEN:
3437 		down_read(&slub_lock);
3438 		list_for_each_entry(s, &slab_caches, list) {
3439 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3440 
3441 			local_irq_save(flags);
3442 			__flush_cpu_slab(s, cpu);
3443 			local_irq_restore(flags);
3444 			free_kmem_cache_cpu(c, cpu);
3445 			s->cpu_slab[cpu] = NULL;
3446 		}
3447 		up_read(&slub_lock);
3448 		break;
3449 	default:
3450 		break;
3451 	}
3452 	return NOTIFY_OK;
3453 }
3454 
3455 static struct notifier_block __cpuinitdata slab_notifier = {
3456 	.notifier_call = slab_cpuup_callback
3457 };
3458 
3459 #endif
3460 
3461 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3462 {
3463 	struct kmem_cache *s;
3464 	void *ret;
3465 
3466 	if (unlikely(size > SLUB_MAX_SIZE))
3467 		return kmalloc_large(size, gfpflags);
3468 
3469 	s = get_slab(size, gfpflags);
3470 
3471 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3472 		return s;
3473 
3474 	ret = slab_alloc(s, gfpflags, -1, caller);
3475 
3476 	/* Honor the call site pointer we recieved. */
3477 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3478 
3479 	return ret;
3480 }
3481 
3482 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3483 					int node, unsigned long caller)
3484 {
3485 	struct kmem_cache *s;
3486 	void *ret;
3487 
3488 	if (unlikely(size > SLUB_MAX_SIZE))
3489 		return kmalloc_large_node(size, gfpflags, node);
3490 
3491 	s = get_slab(size, gfpflags);
3492 
3493 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3494 		return s;
3495 
3496 	ret = slab_alloc(s, gfpflags, node, caller);
3497 
3498 	/* Honor the call site pointer we recieved. */
3499 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3500 
3501 	return ret;
3502 }
3503 
3504 #ifdef CONFIG_SLUB_DEBUG
3505 static int count_inuse(struct page *page)
3506 {
3507 	return page->inuse;
3508 }
3509 
3510 static int count_total(struct page *page)
3511 {
3512 	return page->objects;
3513 }
3514 
3515 static int validate_slab(struct kmem_cache *s, struct page *page,
3516 						unsigned long *map)
3517 {
3518 	void *p;
3519 	void *addr = page_address(page);
3520 
3521 	if (!check_slab(s, page) ||
3522 			!on_freelist(s, page, NULL))
3523 		return 0;
3524 
3525 	/* Now we know that a valid freelist exists */
3526 	bitmap_zero(map, page->objects);
3527 
3528 	for_each_free_object(p, s, page->freelist) {
3529 		set_bit(slab_index(p, s, addr), map);
3530 		if (!check_object(s, page, p, 0))
3531 			return 0;
3532 	}
3533 
3534 	for_each_object(p, s, addr, page->objects)
3535 		if (!test_bit(slab_index(p, s, addr), map))
3536 			if (!check_object(s, page, p, 1))
3537 				return 0;
3538 	return 1;
3539 }
3540 
3541 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3542 						unsigned long *map)
3543 {
3544 	if (slab_trylock(page)) {
3545 		validate_slab(s, page, map);
3546 		slab_unlock(page);
3547 	} else
3548 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3549 			s->name, page);
3550 
3551 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3552 		if (!PageSlubDebug(page))
3553 			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3554 				"on slab 0x%p\n", s->name, page);
3555 	} else {
3556 		if (PageSlubDebug(page))
3557 			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3558 				"slab 0x%p\n", s->name, page);
3559 	}
3560 }
3561 
3562 static int validate_slab_node(struct kmem_cache *s,
3563 		struct kmem_cache_node *n, unsigned long *map)
3564 {
3565 	unsigned long count = 0;
3566 	struct page *page;
3567 	unsigned long flags;
3568 
3569 	spin_lock_irqsave(&n->list_lock, flags);
3570 
3571 	list_for_each_entry(page, &n->partial, lru) {
3572 		validate_slab_slab(s, page, map);
3573 		count++;
3574 	}
3575 	if (count != n->nr_partial)
3576 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3577 			"counter=%ld\n", s->name, count, n->nr_partial);
3578 
3579 	if (!(s->flags & SLAB_STORE_USER))
3580 		goto out;
3581 
3582 	list_for_each_entry(page, &n->full, lru) {
3583 		validate_slab_slab(s, page, map);
3584 		count++;
3585 	}
3586 	if (count != atomic_long_read(&n->nr_slabs))
3587 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3588 			"counter=%ld\n", s->name, count,
3589 			atomic_long_read(&n->nr_slabs));
3590 
3591 out:
3592 	spin_unlock_irqrestore(&n->list_lock, flags);
3593 	return count;
3594 }
3595 
3596 static long validate_slab_cache(struct kmem_cache *s)
3597 {
3598 	int node;
3599 	unsigned long count = 0;
3600 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3601 				sizeof(unsigned long), GFP_KERNEL);
3602 
3603 	if (!map)
3604 		return -ENOMEM;
3605 
3606 	flush_all(s);
3607 	for_each_node_state(node, N_NORMAL_MEMORY) {
3608 		struct kmem_cache_node *n = get_node(s, node);
3609 
3610 		count += validate_slab_node(s, n, map);
3611 	}
3612 	kfree(map);
3613 	return count;
3614 }
3615 
3616 #ifdef SLUB_RESILIENCY_TEST
3617 static void resiliency_test(void)
3618 {
3619 	u8 *p;
3620 
3621 	printk(KERN_ERR "SLUB resiliency testing\n");
3622 	printk(KERN_ERR "-----------------------\n");
3623 	printk(KERN_ERR "A. Corruption after allocation\n");
3624 
3625 	p = kzalloc(16, GFP_KERNEL);
3626 	p[16] = 0x12;
3627 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3628 			" 0x12->0x%p\n\n", p + 16);
3629 
3630 	validate_slab_cache(kmalloc_caches + 4);
3631 
3632 	/* Hmmm... The next two are dangerous */
3633 	p = kzalloc(32, GFP_KERNEL);
3634 	p[32 + sizeof(void *)] = 0x34;
3635 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3636 			" 0x34 -> -0x%p\n", p);
3637 	printk(KERN_ERR
3638 		"If allocated object is overwritten then not detectable\n\n");
3639 
3640 	validate_slab_cache(kmalloc_caches + 5);
3641 	p = kzalloc(64, GFP_KERNEL);
3642 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3643 	*p = 0x56;
3644 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3645 									p);
3646 	printk(KERN_ERR
3647 		"If allocated object is overwritten then not detectable\n\n");
3648 	validate_slab_cache(kmalloc_caches + 6);
3649 
3650 	printk(KERN_ERR "\nB. Corruption after free\n");
3651 	p = kzalloc(128, GFP_KERNEL);
3652 	kfree(p);
3653 	*p = 0x78;
3654 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3655 	validate_slab_cache(kmalloc_caches + 7);
3656 
3657 	p = kzalloc(256, GFP_KERNEL);
3658 	kfree(p);
3659 	p[50] = 0x9a;
3660 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3661 			p);
3662 	validate_slab_cache(kmalloc_caches + 8);
3663 
3664 	p = kzalloc(512, GFP_KERNEL);
3665 	kfree(p);
3666 	p[512] = 0xab;
3667 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3668 	validate_slab_cache(kmalloc_caches + 9);
3669 }
3670 #else
3671 static void resiliency_test(void) {};
3672 #endif
3673 
3674 /*
3675  * Generate lists of code addresses where slabcache objects are allocated
3676  * and freed.
3677  */
3678 
3679 struct location {
3680 	unsigned long count;
3681 	unsigned long addr;
3682 	long long sum_time;
3683 	long min_time;
3684 	long max_time;
3685 	long min_pid;
3686 	long max_pid;
3687 	DECLARE_BITMAP(cpus, NR_CPUS);
3688 	nodemask_t nodes;
3689 };
3690 
3691 struct loc_track {
3692 	unsigned long max;
3693 	unsigned long count;
3694 	struct location *loc;
3695 };
3696 
3697 static void free_loc_track(struct loc_track *t)
3698 {
3699 	if (t->max)
3700 		free_pages((unsigned long)t->loc,
3701 			get_order(sizeof(struct location) * t->max));
3702 }
3703 
3704 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3705 {
3706 	struct location *l;
3707 	int order;
3708 
3709 	order = get_order(sizeof(struct location) * max);
3710 
3711 	l = (void *)__get_free_pages(flags, order);
3712 	if (!l)
3713 		return 0;
3714 
3715 	if (t->count) {
3716 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3717 		free_loc_track(t);
3718 	}
3719 	t->max = max;
3720 	t->loc = l;
3721 	return 1;
3722 }
3723 
3724 static int add_location(struct loc_track *t, struct kmem_cache *s,
3725 				const struct track *track)
3726 {
3727 	long start, end, pos;
3728 	struct location *l;
3729 	unsigned long caddr;
3730 	unsigned long age = jiffies - track->when;
3731 
3732 	start = -1;
3733 	end = t->count;
3734 
3735 	for ( ; ; ) {
3736 		pos = start + (end - start + 1) / 2;
3737 
3738 		/*
3739 		 * There is nothing at "end". If we end up there
3740 		 * we need to add something to before end.
3741 		 */
3742 		if (pos == end)
3743 			break;
3744 
3745 		caddr = t->loc[pos].addr;
3746 		if (track->addr == caddr) {
3747 
3748 			l = &t->loc[pos];
3749 			l->count++;
3750 			if (track->when) {
3751 				l->sum_time += age;
3752 				if (age < l->min_time)
3753 					l->min_time = age;
3754 				if (age > l->max_time)
3755 					l->max_time = age;
3756 
3757 				if (track->pid < l->min_pid)
3758 					l->min_pid = track->pid;
3759 				if (track->pid > l->max_pid)
3760 					l->max_pid = track->pid;
3761 
3762 				cpumask_set_cpu(track->cpu,
3763 						to_cpumask(l->cpus));
3764 			}
3765 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3766 			return 1;
3767 		}
3768 
3769 		if (track->addr < caddr)
3770 			end = pos;
3771 		else
3772 			start = pos;
3773 	}
3774 
3775 	/*
3776 	 * Not found. Insert new tracking element.
3777 	 */
3778 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3779 		return 0;
3780 
3781 	l = t->loc + pos;
3782 	if (pos < t->count)
3783 		memmove(l + 1, l,
3784 			(t->count - pos) * sizeof(struct location));
3785 	t->count++;
3786 	l->count = 1;
3787 	l->addr = track->addr;
3788 	l->sum_time = age;
3789 	l->min_time = age;
3790 	l->max_time = age;
3791 	l->min_pid = track->pid;
3792 	l->max_pid = track->pid;
3793 	cpumask_clear(to_cpumask(l->cpus));
3794 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3795 	nodes_clear(l->nodes);
3796 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3797 	return 1;
3798 }
3799 
3800 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3801 		struct page *page, enum track_item alloc)
3802 {
3803 	void *addr = page_address(page);
3804 	DECLARE_BITMAP(map, page->objects);
3805 	void *p;
3806 
3807 	bitmap_zero(map, page->objects);
3808 	for_each_free_object(p, s, page->freelist)
3809 		set_bit(slab_index(p, s, addr), map);
3810 
3811 	for_each_object(p, s, addr, page->objects)
3812 		if (!test_bit(slab_index(p, s, addr), map))
3813 			add_location(t, s, get_track(s, p, alloc));
3814 }
3815 
3816 static int list_locations(struct kmem_cache *s, char *buf,
3817 					enum track_item alloc)
3818 {
3819 	int len = 0;
3820 	unsigned long i;
3821 	struct loc_track t = { 0, 0, NULL };
3822 	int node;
3823 
3824 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3825 			GFP_TEMPORARY))
3826 		return sprintf(buf, "Out of memory\n");
3827 
3828 	/* Push back cpu slabs */
3829 	flush_all(s);
3830 
3831 	for_each_node_state(node, N_NORMAL_MEMORY) {
3832 		struct kmem_cache_node *n = get_node(s, node);
3833 		unsigned long flags;
3834 		struct page *page;
3835 
3836 		if (!atomic_long_read(&n->nr_slabs))
3837 			continue;
3838 
3839 		spin_lock_irqsave(&n->list_lock, flags);
3840 		list_for_each_entry(page, &n->partial, lru)
3841 			process_slab(&t, s, page, alloc);
3842 		list_for_each_entry(page, &n->full, lru)
3843 			process_slab(&t, s, page, alloc);
3844 		spin_unlock_irqrestore(&n->list_lock, flags);
3845 	}
3846 
3847 	for (i = 0; i < t.count; i++) {
3848 		struct location *l = &t.loc[i];
3849 
3850 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3851 			break;
3852 		len += sprintf(buf + len, "%7ld ", l->count);
3853 
3854 		if (l->addr)
3855 			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3856 		else
3857 			len += sprintf(buf + len, "<not-available>");
3858 
3859 		if (l->sum_time != l->min_time) {
3860 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3861 				l->min_time,
3862 				(long)div_u64(l->sum_time, l->count),
3863 				l->max_time);
3864 		} else
3865 			len += sprintf(buf + len, " age=%ld",
3866 				l->min_time);
3867 
3868 		if (l->min_pid != l->max_pid)
3869 			len += sprintf(buf + len, " pid=%ld-%ld",
3870 				l->min_pid, l->max_pid);
3871 		else
3872 			len += sprintf(buf + len, " pid=%ld",
3873 				l->min_pid);
3874 
3875 		if (num_online_cpus() > 1 &&
3876 				!cpumask_empty(to_cpumask(l->cpus)) &&
3877 				len < PAGE_SIZE - 60) {
3878 			len += sprintf(buf + len, " cpus=");
3879 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3880 						 to_cpumask(l->cpus));
3881 		}
3882 
3883 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3884 				len < PAGE_SIZE - 60) {
3885 			len += sprintf(buf + len, " nodes=");
3886 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3887 					l->nodes);
3888 		}
3889 
3890 		len += sprintf(buf + len, "\n");
3891 	}
3892 
3893 	free_loc_track(&t);
3894 	if (!t.count)
3895 		len += sprintf(buf, "No data\n");
3896 	return len;
3897 }
3898 
3899 enum slab_stat_type {
3900 	SL_ALL,			/* All slabs */
3901 	SL_PARTIAL,		/* Only partially allocated slabs */
3902 	SL_CPU,			/* Only slabs used for cpu caches */
3903 	SL_OBJECTS,		/* Determine allocated objects not slabs */
3904 	SL_TOTAL		/* Determine object capacity not slabs */
3905 };
3906 
3907 #define SO_ALL		(1 << SL_ALL)
3908 #define SO_PARTIAL	(1 << SL_PARTIAL)
3909 #define SO_CPU		(1 << SL_CPU)
3910 #define SO_OBJECTS	(1 << SL_OBJECTS)
3911 #define SO_TOTAL	(1 << SL_TOTAL)
3912 
3913 static ssize_t show_slab_objects(struct kmem_cache *s,
3914 			    char *buf, unsigned long flags)
3915 {
3916 	unsigned long total = 0;
3917 	int node;
3918 	int x;
3919 	unsigned long *nodes;
3920 	unsigned long *per_cpu;
3921 
3922 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3923 	if (!nodes)
3924 		return -ENOMEM;
3925 	per_cpu = nodes + nr_node_ids;
3926 
3927 	if (flags & SO_CPU) {
3928 		int cpu;
3929 
3930 		for_each_possible_cpu(cpu) {
3931 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3932 
3933 			if (!c || c->node < 0)
3934 				continue;
3935 
3936 			if (c->page) {
3937 					if (flags & SO_TOTAL)
3938 						x = c->page->objects;
3939 				else if (flags & SO_OBJECTS)
3940 					x = c->page->inuse;
3941 				else
3942 					x = 1;
3943 
3944 				total += x;
3945 				nodes[c->node] += x;
3946 			}
3947 			per_cpu[c->node]++;
3948 		}
3949 	}
3950 
3951 	if (flags & SO_ALL) {
3952 		for_each_node_state(node, N_NORMAL_MEMORY) {
3953 			struct kmem_cache_node *n = get_node(s, node);
3954 
3955 		if (flags & SO_TOTAL)
3956 			x = atomic_long_read(&n->total_objects);
3957 		else if (flags & SO_OBJECTS)
3958 			x = atomic_long_read(&n->total_objects) -
3959 				count_partial(n, count_free);
3960 
3961 			else
3962 				x = atomic_long_read(&n->nr_slabs);
3963 			total += x;
3964 			nodes[node] += x;
3965 		}
3966 
3967 	} else if (flags & SO_PARTIAL) {
3968 		for_each_node_state(node, N_NORMAL_MEMORY) {
3969 			struct kmem_cache_node *n = get_node(s, node);
3970 
3971 			if (flags & SO_TOTAL)
3972 				x = count_partial(n, count_total);
3973 			else if (flags & SO_OBJECTS)
3974 				x = count_partial(n, count_inuse);
3975 			else
3976 				x = n->nr_partial;
3977 			total += x;
3978 			nodes[node] += x;
3979 		}
3980 	}
3981 	x = sprintf(buf, "%lu", total);
3982 #ifdef CONFIG_NUMA
3983 	for_each_node_state(node, N_NORMAL_MEMORY)
3984 		if (nodes[node])
3985 			x += sprintf(buf + x, " N%d=%lu",
3986 					node, nodes[node]);
3987 #endif
3988 	kfree(nodes);
3989 	return x + sprintf(buf + x, "\n");
3990 }
3991 
3992 static int any_slab_objects(struct kmem_cache *s)
3993 {
3994 	int node;
3995 
3996 	for_each_online_node(node) {
3997 		struct kmem_cache_node *n = get_node(s, node);
3998 
3999 		if (!n)
4000 			continue;
4001 
4002 		if (atomic_long_read(&n->total_objects))
4003 			return 1;
4004 	}
4005 	return 0;
4006 }
4007 
4008 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4009 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
4010 
4011 struct slab_attribute {
4012 	struct attribute attr;
4013 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4014 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4015 };
4016 
4017 #define SLAB_ATTR_RO(_name) \
4018 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4019 
4020 #define SLAB_ATTR(_name) \
4021 	static struct slab_attribute _name##_attr =  \
4022 	__ATTR(_name, 0644, _name##_show, _name##_store)
4023 
4024 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4025 {
4026 	return sprintf(buf, "%d\n", s->size);
4027 }
4028 SLAB_ATTR_RO(slab_size);
4029 
4030 static ssize_t align_show(struct kmem_cache *s, char *buf)
4031 {
4032 	return sprintf(buf, "%d\n", s->align);
4033 }
4034 SLAB_ATTR_RO(align);
4035 
4036 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4037 {
4038 	return sprintf(buf, "%d\n", s->objsize);
4039 }
4040 SLAB_ATTR_RO(object_size);
4041 
4042 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4043 {
4044 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4045 }
4046 SLAB_ATTR_RO(objs_per_slab);
4047 
4048 static ssize_t order_store(struct kmem_cache *s,
4049 				const char *buf, size_t length)
4050 {
4051 	unsigned long order;
4052 	int err;
4053 
4054 	err = strict_strtoul(buf, 10, &order);
4055 	if (err)
4056 		return err;
4057 
4058 	if (order > slub_max_order || order < slub_min_order)
4059 		return -EINVAL;
4060 
4061 	calculate_sizes(s, order);
4062 	return length;
4063 }
4064 
4065 static ssize_t order_show(struct kmem_cache *s, char *buf)
4066 {
4067 	return sprintf(buf, "%d\n", oo_order(s->oo));
4068 }
4069 SLAB_ATTR(order);
4070 
4071 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4072 {
4073 	return sprintf(buf, "%lu\n", s->min_partial);
4074 }
4075 
4076 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4077 				 size_t length)
4078 {
4079 	unsigned long min;
4080 	int err;
4081 
4082 	err = strict_strtoul(buf, 10, &min);
4083 	if (err)
4084 		return err;
4085 
4086 	set_min_partial(s, min);
4087 	return length;
4088 }
4089 SLAB_ATTR(min_partial);
4090 
4091 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4092 {
4093 	if (s->ctor) {
4094 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
4095 
4096 		return n + sprintf(buf + n, "\n");
4097 	}
4098 	return 0;
4099 }
4100 SLAB_ATTR_RO(ctor);
4101 
4102 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4103 {
4104 	return sprintf(buf, "%d\n", s->refcount - 1);
4105 }
4106 SLAB_ATTR_RO(aliases);
4107 
4108 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4109 {
4110 	return show_slab_objects(s, buf, SO_ALL);
4111 }
4112 SLAB_ATTR_RO(slabs);
4113 
4114 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4115 {
4116 	return show_slab_objects(s, buf, SO_PARTIAL);
4117 }
4118 SLAB_ATTR_RO(partial);
4119 
4120 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4121 {
4122 	return show_slab_objects(s, buf, SO_CPU);
4123 }
4124 SLAB_ATTR_RO(cpu_slabs);
4125 
4126 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4127 {
4128 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4129 }
4130 SLAB_ATTR_RO(objects);
4131 
4132 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4133 {
4134 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4135 }
4136 SLAB_ATTR_RO(objects_partial);
4137 
4138 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4139 {
4140 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4141 }
4142 SLAB_ATTR_RO(total_objects);
4143 
4144 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4145 {
4146 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4147 }
4148 
4149 static ssize_t sanity_checks_store(struct kmem_cache *s,
4150 				const char *buf, size_t length)
4151 {
4152 	s->flags &= ~SLAB_DEBUG_FREE;
4153 	if (buf[0] == '1')
4154 		s->flags |= SLAB_DEBUG_FREE;
4155 	return length;
4156 }
4157 SLAB_ATTR(sanity_checks);
4158 
4159 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4160 {
4161 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4162 }
4163 
4164 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4165 							size_t length)
4166 {
4167 	s->flags &= ~SLAB_TRACE;
4168 	if (buf[0] == '1')
4169 		s->flags |= SLAB_TRACE;
4170 	return length;
4171 }
4172 SLAB_ATTR(trace);
4173 
4174 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4175 {
4176 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4177 }
4178 
4179 static ssize_t reclaim_account_store(struct kmem_cache *s,
4180 				const char *buf, size_t length)
4181 {
4182 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4183 	if (buf[0] == '1')
4184 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4185 	return length;
4186 }
4187 SLAB_ATTR(reclaim_account);
4188 
4189 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4190 {
4191 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4192 }
4193 SLAB_ATTR_RO(hwcache_align);
4194 
4195 #ifdef CONFIG_ZONE_DMA
4196 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4197 {
4198 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4199 }
4200 SLAB_ATTR_RO(cache_dma);
4201 #endif
4202 
4203 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4204 {
4205 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4206 }
4207 SLAB_ATTR_RO(destroy_by_rcu);
4208 
4209 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4210 {
4211 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4212 }
4213 
4214 static ssize_t red_zone_store(struct kmem_cache *s,
4215 				const char *buf, size_t length)
4216 {
4217 	if (any_slab_objects(s))
4218 		return -EBUSY;
4219 
4220 	s->flags &= ~SLAB_RED_ZONE;
4221 	if (buf[0] == '1')
4222 		s->flags |= SLAB_RED_ZONE;
4223 	calculate_sizes(s, -1);
4224 	return length;
4225 }
4226 SLAB_ATTR(red_zone);
4227 
4228 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4229 {
4230 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4231 }
4232 
4233 static ssize_t poison_store(struct kmem_cache *s,
4234 				const char *buf, size_t length)
4235 {
4236 	if (any_slab_objects(s))
4237 		return -EBUSY;
4238 
4239 	s->flags &= ~SLAB_POISON;
4240 	if (buf[0] == '1')
4241 		s->flags |= SLAB_POISON;
4242 	calculate_sizes(s, -1);
4243 	return length;
4244 }
4245 SLAB_ATTR(poison);
4246 
4247 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4248 {
4249 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4250 }
4251 
4252 static ssize_t store_user_store(struct kmem_cache *s,
4253 				const char *buf, size_t length)
4254 {
4255 	if (any_slab_objects(s))
4256 		return -EBUSY;
4257 
4258 	s->flags &= ~SLAB_STORE_USER;
4259 	if (buf[0] == '1')
4260 		s->flags |= SLAB_STORE_USER;
4261 	calculate_sizes(s, -1);
4262 	return length;
4263 }
4264 SLAB_ATTR(store_user);
4265 
4266 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4267 {
4268 	return 0;
4269 }
4270 
4271 static ssize_t validate_store(struct kmem_cache *s,
4272 			const char *buf, size_t length)
4273 {
4274 	int ret = -EINVAL;
4275 
4276 	if (buf[0] == '1') {
4277 		ret = validate_slab_cache(s);
4278 		if (ret >= 0)
4279 			ret = length;
4280 	}
4281 	return ret;
4282 }
4283 SLAB_ATTR(validate);
4284 
4285 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4286 {
4287 	return 0;
4288 }
4289 
4290 static ssize_t shrink_store(struct kmem_cache *s,
4291 			const char *buf, size_t length)
4292 {
4293 	if (buf[0] == '1') {
4294 		int rc = kmem_cache_shrink(s);
4295 
4296 		if (rc)
4297 			return rc;
4298 	} else
4299 		return -EINVAL;
4300 	return length;
4301 }
4302 SLAB_ATTR(shrink);
4303 
4304 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4305 {
4306 	if (!(s->flags & SLAB_STORE_USER))
4307 		return -ENOSYS;
4308 	return list_locations(s, buf, TRACK_ALLOC);
4309 }
4310 SLAB_ATTR_RO(alloc_calls);
4311 
4312 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4313 {
4314 	if (!(s->flags & SLAB_STORE_USER))
4315 		return -ENOSYS;
4316 	return list_locations(s, buf, TRACK_FREE);
4317 }
4318 SLAB_ATTR_RO(free_calls);
4319 
4320 #ifdef CONFIG_NUMA
4321 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4322 {
4323 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4324 }
4325 
4326 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4327 				const char *buf, size_t length)
4328 {
4329 	unsigned long ratio;
4330 	int err;
4331 
4332 	err = strict_strtoul(buf, 10, &ratio);
4333 	if (err)
4334 		return err;
4335 
4336 	if (ratio <= 100)
4337 		s->remote_node_defrag_ratio = ratio * 10;
4338 
4339 	return length;
4340 }
4341 SLAB_ATTR(remote_node_defrag_ratio);
4342 #endif
4343 
4344 #ifdef CONFIG_SLUB_STATS
4345 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4346 {
4347 	unsigned long sum  = 0;
4348 	int cpu;
4349 	int len;
4350 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4351 
4352 	if (!data)
4353 		return -ENOMEM;
4354 
4355 	for_each_online_cpu(cpu) {
4356 		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4357 
4358 		data[cpu] = x;
4359 		sum += x;
4360 	}
4361 
4362 	len = sprintf(buf, "%lu", sum);
4363 
4364 #ifdef CONFIG_SMP
4365 	for_each_online_cpu(cpu) {
4366 		if (data[cpu] && len < PAGE_SIZE - 20)
4367 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4368 	}
4369 #endif
4370 	kfree(data);
4371 	return len + sprintf(buf + len, "\n");
4372 }
4373 
4374 #define STAT_ATTR(si, text) 					\
4375 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4376 {								\
4377 	return show_stat(s, buf, si);				\
4378 }								\
4379 SLAB_ATTR_RO(text);						\
4380 
4381 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4382 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4383 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4384 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4385 STAT_ATTR(FREE_FROZEN, free_frozen);
4386 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4387 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4388 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4389 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4390 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4391 STAT_ATTR(FREE_SLAB, free_slab);
4392 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4393 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4394 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4395 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4396 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4397 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4398 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4399 #endif
4400 
4401 static struct attribute *slab_attrs[] = {
4402 	&slab_size_attr.attr,
4403 	&object_size_attr.attr,
4404 	&objs_per_slab_attr.attr,
4405 	&order_attr.attr,
4406 	&min_partial_attr.attr,
4407 	&objects_attr.attr,
4408 	&objects_partial_attr.attr,
4409 	&total_objects_attr.attr,
4410 	&slabs_attr.attr,
4411 	&partial_attr.attr,
4412 	&cpu_slabs_attr.attr,
4413 	&ctor_attr.attr,
4414 	&aliases_attr.attr,
4415 	&align_attr.attr,
4416 	&sanity_checks_attr.attr,
4417 	&trace_attr.attr,
4418 	&hwcache_align_attr.attr,
4419 	&reclaim_account_attr.attr,
4420 	&destroy_by_rcu_attr.attr,
4421 	&red_zone_attr.attr,
4422 	&poison_attr.attr,
4423 	&store_user_attr.attr,
4424 	&validate_attr.attr,
4425 	&shrink_attr.attr,
4426 	&alloc_calls_attr.attr,
4427 	&free_calls_attr.attr,
4428 #ifdef CONFIG_ZONE_DMA
4429 	&cache_dma_attr.attr,
4430 #endif
4431 #ifdef CONFIG_NUMA
4432 	&remote_node_defrag_ratio_attr.attr,
4433 #endif
4434 #ifdef CONFIG_SLUB_STATS
4435 	&alloc_fastpath_attr.attr,
4436 	&alloc_slowpath_attr.attr,
4437 	&free_fastpath_attr.attr,
4438 	&free_slowpath_attr.attr,
4439 	&free_frozen_attr.attr,
4440 	&free_add_partial_attr.attr,
4441 	&free_remove_partial_attr.attr,
4442 	&alloc_from_partial_attr.attr,
4443 	&alloc_slab_attr.attr,
4444 	&alloc_refill_attr.attr,
4445 	&free_slab_attr.attr,
4446 	&cpuslab_flush_attr.attr,
4447 	&deactivate_full_attr.attr,
4448 	&deactivate_empty_attr.attr,
4449 	&deactivate_to_head_attr.attr,
4450 	&deactivate_to_tail_attr.attr,
4451 	&deactivate_remote_frees_attr.attr,
4452 	&order_fallback_attr.attr,
4453 #endif
4454 	NULL
4455 };
4456 
4457 static struct attribute_group slab_attr_group = {
4458 	.attrs = slab_attrs,
4459 };
4460 
4461 static ssize_t slab_attr_show(struct kobject *kobj,
4462 				struct attribute *attr,
4463 				char *buf)
4464 {
4465 	struct slab_attribute *attribute;
4466 	struct kmem_cache *s;
4467 	int err;
4468 
4469 	attribute = to_slab_attr(attr);
4470 	s = to_slab(kobj);
4471 
4472 	if (!attribute->show)
4473 		return -EIO;
4474 
4475 	err = attribute->show(s, buf);
4476 
4477 	return err;
4478 }
4479 
4480 static ssize_t slab_attr_store(struct kobject *kobj,
4481 				struct attribute *attr,
4482 				const char *buf, size_t len)
4483 {
4484 	struct slab_attribute *attribute;
4485 	struct kmem_cache *s;
4486 	int err;
4487 
4488 	attribute = to_slab_attr(attr);
4489 	s = to_slab(kobj);
4490 
4491 	if (!attribute->store)
4492 		return -EIO;
4493 
4494 	err = attribute->store(s, buf, len);
4495 
4496 	return err;
4497 }
4498 
4499 static void kmem_cache_release(struct kobject *kobj)
4500 {
4501 	struct kmem_cache *s = to_slab(kobj);
4502 
4503 	kfree(s);
4504 }
4505 
4506 static struct sysfs_ops slab_sysfs_ops = {
4507 	.show = slab_attr_show,
4508 	.store = slab_attr_store,
4509 };
4510 
4511 static struct kobj_type slab_ktype = {
4512 	.sysfs_ops = &slab_sysfs_ops,
4513 	.release = kmem_cache_release
4514 };
4515 
4516 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4517 {
4518 	struct kobj_type *ktype = get_ktype(kobj);
4519 
4520 	if (ktype == &slab_ktype)
4521 		return 1;
4522 	return 0;
4523 }
4524 
4525 static struct kset_uevent_ops slab_uevent_ops = {
4526 	.filter = uevent_filter,
4527 };
4528 
4529 static struct kset *slab_kset;
4530 
4531 #define ID_STR_LENGTH 64
4532 
4533 /* Create a unique string id for a slab cache:
4534  *
4535  * Format	:[flags-]size
4536  */
4537 static char *create_unique_id(struct kmem_cache *s)
4538 {
4539 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4540 	char *p = name;
4541 
4542 	BUG_ON(!name);
4543 
4544 	*p++ = ':';
4545 	/*
4546 	 * First flags affecting slabcache operations. We will only
4547 	 * get here for aliasable slabs so we do not need to support
4548 	 * too many flags. The flags here must cover all flags that
4549 	 * are matched during merging to guarantee that the id is
4550 	 * unique.
4551 	 */
4552 	if (s->flags & SLAB_CACHE_DMA)
4553 		*p++ = 'd';
4554 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4555 		*p++ = 'a';
4556 	if (s->flags & SLAB_DEBUG_FREE)
4557 		*p++ = 'F';
4558 	if (!(s->flags & SLAB_NOTRACK))
4559 		*p++ = 't';
4560 	if (p != name + 1)
4561 		*p++ = '-';
4562 	p += sprintf(p, "%07d", s->size);
4563 	BUG_ON(p > name + ID_STR_LENGTH - 1);
4564 	return name;
4565 }
4566 
4567 static int sysfs_slab_add(struct kmem_cache *s)
4568 {
4569 	int err;
4570 	const char *name;
4571 	int unmergeable;
4572 
4573 	if (slab_state < SYSFS)
4574 		/* Defer until later */
4575 		return 0;
4576 
4577 	unmergeable = slab_unmergeable(s);
4578 	if (unmergeable) {
4579 		/*
4580 		 * Slabcache can never be merged so we can use the name proper.
4581 		 * This is typically the case for debug situations. In that
4582 		 * case we can catch duplicate names easily.
4583 		 */
4584 		sysfs_remove_link(&slab_kset->kobj, s->name);
4585 		name = s->name;
4586 	} else {
4587 		/*
4588 		 * Create a unique name for the slab as a target
4589 		 * for the symlinks.
4590 		 */
4591 		name = create_unique_id(s);
4592 	}
4593 
4594 	s->kobj.kset = slab_kset;
4595 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4596 	if (err) {
4597 		kobject_put(&s->kobj);
4598 		return err;
4599 	}
4600 
4601 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4602 	if (err) {
4603 		kobject_del(&s->kobj);
4604 		kobject_put(&s->kobj);
4605 		return err;
4606 	}
4607 	kobject_uevent(&s->kobj, KOBJ_ADD);
4608 	if (!unmergeable) {
4609 		/* Setup first alias */
4610 		sysfs_slab_alias(s, s->name);
4611 		kfree(name);
4612 	}
4613 	return 0;
4614 }
4615 
4616 static void sysfs_slab_remove(struct kmem_cache *s)
4617 {
4618 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4619 	kobject_del(&s->kobj);
4620 	kobject_put(&s->kobj);
4621 }
4622 
4623 /*
4624  * Need to buffer aliases during bootup until sysfs becomes
4625  * available lest we lose that information.
4626  */
4627 struct saved_alias {
4628 	struct kmem_cache *s;
4629 	const char *name;
4630 	struct saved_alias *next;
4631 };
4632 
4633 static struct saved_alias *alias_list;
4634 
4635 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4636 {
4637 	struct saved_alias *al;
4638 
4639 	if (slab_state == SYSFS) {
4640 		/*
4641 		 * If we have a leftover link then remove it.
4642 		 */
4643 		sysfs_remove_link(&slab_kset->kobj, name);
4644 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4645 	}
4646 
4647 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4648 	if (!al)
4649 		return -ENOMEM;
4650 
4651 	al->s = s;
4652 	al->name = name;
4653 	al->next = alias_list;
4654 	alias_list = al;
4655 	return 0;
4656 }
4657 
4658 static int __init slab_sysfs_init(void)
4659 {
4660 	struct kmem_cache *s;
4661 	int err;
4662 
4663 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4664 	if (!slab_kset) {
4665 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4666 		return -ENOSYS;
4667 	}
4668 
4669 	slab_state = SYSFS;
4670 
4671 	list_for_each_entry(s, &slab_caches, list) {
4672 		err = sysfs_slab_add(s);
4673 		if (err)
4674 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4675 						" to sysfs\n", s->name);
4676 	}
4677 
4678 	while (alias_list) {
4679 		struct saved_alias *al = alias_list;
4680 
4681 		alias_list = alias_list->next;
4682 		err = sysfs_slab_alias(al->s, al->name);
4683 		if (err)
4684 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4685 					" %s to sysfs\n", s->name);
4686 		kfree(al);
4687 	}
4688 
4689 	resiliency_test();
4690 	return 0;
4691 }
4692 
4693 __initcall(slab_sysfs_init);
4694 #endif
4695 
4696 /*
4697  * The /proc/slabinfo ABI
4698  */
4699 #ifdef CONFIG_SLABINFO
4700 static void print_slabinfo_header(struct seq_file *m)
4701 {
4702 	seq_puts(m, "slabinfo - version: 2.1\n");
4703 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4704 		 "<objperslab> <pagesperslab>");
4705 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4706 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4707 	seq_putc(m, '\n');
4708 }
4709 
4710 static void *s_start(struct seq_file *m, loff_t *pos)
4711 {
4712 	loff_t n = *pos;
4713 
4714 	down_read(&slub_lock);
4715 	if (!n)
4716 		print_slabinfo_header(m);
4717 
4718 	return seq_list_start(&slab_caches, *pos);
4719 }
4720 
4721 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4722 {
4723 	return seq_list_next(p, &slab_caches, pos);
4724 }
4725 
4726 static void s_stop(struct seq_file *m, void *p)
4727 {
4728 	up_read(&slub_lock);
4729 }
4730 
4731 static int s_show(struct seq_file *m, void *p)
4732 {
4733 	unsigned long nr_partials = 0;
4734 	unsigned long nr_slabs = 0;
4735 	unsigned long nr_inuse = 0;
4736 	unsigned long nr_objs = 0;
4737 	unsigned long nr_free = 0;
4738 	struct kmem_cache *s;
4739 	int node;
4740 
4741 	s = list_entry(p, struct kmem_cache, list);
4742 
4743 	for_each_online_node(node) {
4744 		struct kmem_cache_node *n = get_node(s, node);
4745 
4746 		if (!n)
4747 			continue;
4748 
4749 		nr_partials += n->nr_partial;
4750 		nr_slabs += atomic_long_read(&n->nr_slabs);
4751 		nr_objs += atomic_long_read(&n->total_objects);
4752 		nr_free += count_partial(n, count_free);
4753 	}
4754 
4755 	nr_inuse = nr_objs - nr_free;
4756 
4757 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4758 		   nr_objs, s->size, oo_objects(s->oo),
4759 		   (1 << oo_order(s->oo)));
4760 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4761 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4762 		   0UL);
4763 	seq_putc(m, '\n');
4764 	return 0;
4765 }
4766 
4767 static const struct seq_operations slabinfo_op = {
4768 	.start = s_start,
4769 	.next = s_next,
4770 	.stop = s_stop,
4771 	.show = s_show,
4772 };
4773 
4774 static int slabinfo_open(struct inode *inode, struct file *file)
4775 {
4776 	return seq_open(file, &slabinfo_op);
4777 }
4778 
4779 static const struct file_operations proc_slabinfo_operations = {
4780 	.open		= slabinfo_open,
4781 	.read		= seq_read,
4782 	.llseek		= seq_lseek,
4783 	.release	= seq_release,
4784 };
4785 
4786 static int __init slab_proc_init(void)
4787 {
4788 	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4789 	return 0;
4790 }
4791 module_init(slab_proc_init);
4792 #endif /* CONFIG_SLABINFO */
4793