1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kmemcheck.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 37 #include <trace/events/kmem.h> 38 39 #include "internal.h" 40 41 /* 42 * Lock order: 43 * 1. slab_mutex (Global Mutex) 44 * 2. node->list_lock 45 * 3. slab_lock(page) (Only on some arches and for debugging) 46 * 47 * slab_mutex 48 * 49 * The role of the slab_mutex is to protect the list of all the slabs 50 * and to synchronize major metadata changes to slab cache structures. 51 * 52 * The slab_lock is only used for debugging and on arches that do not 53 * have the ability to do a cmpxchg_double. It only protects the second 54 * double word in the page struct. Meaning 55 * A. page->freelist -> List of object free in a page 56 * B. page->counters -> Counters of objects 57 * C. page->frozen -> frozen state 58 * 59 * If a slab is frozen then it is exempt from list management. It is not 60 * on any list. The processor that froze the slab is the one who can 61 * perform list operations on the page. Other processors may put objects 62 * onto the freelist but the processor that froze the slab is the only 63 * one that can retrieve the objects from the page's freelist. 64 * 65 * The list_lock protects the partial and full list on each node and 66 * the partial slab counter. If taken then no new slabs may be added or 67 * removed from the lists nor make the number of partial slabs be modified. 68 * (Note that the total number of slabs is an atomic value that may be 69 * modified without taking the list lock). 70 * 71 * The list_lock is a centralized lock and thus we avoid taking it as 72 * much as possible. As long as SLUB does not have to handle partial 73 * slabs, operations can continue without any centralized lock. F.e. 74 * allocating a long series of objects that fill up slabs does not require 75 * the list lock. 76 * Interrupts are disabled during allocation and deallocation in order to 77 * make the slab allocator safe to use in the context of an irq. In addition 78 * interrupts are disabled to ensure that the processor does not change 79 * while handling per_cpu slabs, due to kernel preemption. 80 * 81 * SLUB assigns one slab for allocation to each processor. 82 * Allocations only occur from these slabs called cpu slabs. 83 * 84 * Slabs with free elements are kept on a partial list and during regular 85 * operations no list for full slabs is used. If an object in a full slab is 86 * freed then the slab will show up again on the partial lists. 87 * We track full slabs for debugging purposes though because otherwise we 88 * cannot scan all objects. 89 * 90 * Slabs are freed when they become empty. Teardown and setup is 91 * minimal so we rely on the page allocators per cpu caches for 92 * fast frees and allocs. 93 * 94 * Overloading of page flags that are otherwise used for LRU management. 95 * 96 * PageActive The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * PageError Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 static inline int kmem_cache_debug(struct kmem_cache *s) 118 { 119 #ifdef CONFIG_SLUB_DEBUG 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 121 #else 122 return 0; 123 #endif 124 } 125 126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 127 { 128 #ifdef CONFIG_SLUB_CPU_PARTIAL 129 return !kmem_cache_debug(s); 130 #else 131 return false; 132 #endif 133 } 134 135 /* 136 * Issues still to be resolved: 137 * 138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 139 * 140 * - Variable sizing of the per node arrays 141 */ 142 143 /* Enable to test recovery from slab corruption on boot */ 144 #undef SLUB_RESILIENCY_TEST 145 146 /* Enable to log cmpxchg failures */ 147 #undef SLUB_DEBUG_CMPXCHG 148 149 /* 150 * Mininum number of partial slabs. These will be left on the partial 151 * lists even if they are empty. kmem_cache_shrink may reclaim them. 152 */ 153 #define MIN_PARTIAL 5 154 155 /* 156 * Maximum number of desirable partial slabs. 157 * The existence of more partial slabs makes kmem_cache_shrink 158 * sort the partial list by the number of objects in use. 159 */ 160 #define MAX_PARTIAL 10 161 162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 163 SLAB_POISON | SLAB_STORE_USER) 164 165 /* 166 * Debugging flags that require metadata to be stored in the slab. These get 167 * disabled when slub_debug=O is used and a cache's min order increases with 168 * metadata. 169 */ 170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 171 172 /* 173 * Set of flags that will prevent slab merging 174 */ 175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 177 SLAB_FAILSLAB) 178 179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 180 SLAB_CACHE_DMA | SLAB_NOTRACK) 181 182 #define OO_SHIFT 16 183 #define OO_MASK ((1 << OO_SHIFT) - 1) 184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 185 186 /* Internal SLUB flags */ 187 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 189 190 #ifdef CONFIG_SMP 191 static struct notifier_block slab_notifier; 192 #endif 193 194 /* 195 * Tracking user of a slab. 196 */ 197 #define TRACK_ADDRS_COUNT 16 198 struct track { 199 unsigned long addr; /* Called from address */ 200 #ifdef CONFIG_STACKTRACE 201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 202 #endif 203 int cpu; /* Was running on cpu */ 204 int pid; /* Pid context */ 205 unsigned long when; /* When did the operation occur */ 206 }; 207 208 enum track_item { TRACK_ALLOC, TRACK_FREE }; 209 210 #ifdef CONFIG_SYSFS 211 static int sysfs_slab_add(struct kmem_cache *); 212 static int sysfs_slab_alias(struct kmem_cache *, const char *); 213 static void sysfs_slab_remove(struct kmem_cache *); 214 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 215 #else 216 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 217 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 218 { return 0; } 219 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 220 221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 222 #endif 223 224 static inline void stat(const struct kmem_cache *s, enum stat_item si) 225 { 226 #ifdef CONFIG_SLUB_STATS 227 __this_cpu_inc(s->cpu_slab->stat[si]); 228 #endif 229 } 230 231 /******************************************************************** 232 * Core slab cache functions 233 *******************************************************************/ 234 235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 236 { 237 return s->node[node]; 238 } 239 240 /* Verify that a pointer has an address that is valid within a slab page */ 241 static inline int check_valid_pointer(struct kmem_cache *s, 242 struct page *page, const void *object) 243 { 244 void *base; 245 246 if (!object) 247 return 1; 248 249 base = page_address(page); 250 if (object < base || object >= base + page->objects * s->size || 251 (object - base) % s->size) { 252 return 0; 253 } 254 255 return 1; 256 } 257 258 static inline void *get_freepointer(struct kmem_cache *s, void *object) 259 { 260 return *(void **)(object + s->offset); 261 } 262 263 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 264 { 265 prefetch(object + s->offset); 266 } 267 268 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 269 { 270 void *p; 271 272 #ifdef CONFIG_DEBUG_PAGEALLOC 273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 274 #else 275 p = get_freepointer(s, object); 276 #endif 277 return p; 278 } 279 280 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 281 { 282 *(void **)(object + s->offset) = fp; 283 } 284 285 /* Loop over all objects in a slab */ 286 #define for_each_object(__p, __s, __addr, __objects) \ 287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 288 __p += (__s)->size) 289 290 /* Determine object index from a given position */ 291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 292 { 293 return (p - addr) / s->size; 294 } 295 296 static inline size_t slab_ksize(const struct kmem_cache *s) 297 { 298 #ifdef CONFIG_SLUB_DEBUG 299 /* 300 * Debugging requires use of the padding between object 301 * and whatever may come after it. 302 */ 303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 304 return s->object_size; 305 306 #endif 307 /* 308 * If we have the need to store the freelist pointer 309 * back there or track user information then we can 310 * only use the space before that information. 311 */ 312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 313 return s->inuse; 314 /* 315 * Else we can use all the padding etc for the allocation 316 */ 317 return s->size; 318 } 319 320 static inline int order_objects(int order, unsigned long size, int reserved) 321 { 322 return ((PAGE_SIZE << order) - reserved) / size; 323 } 324 325 static inline struct kmem_cache_order_objects oo_make(int order, 326 unsigned long size, int reserved) 327 { 328 struct kmem_cache_order_objects x = { 329 (order << OO_SHIFT) + order_objects(order, size, reserved) 330 }; 331 332 return x; 333 } 334 335 static inline int oo_order(struct kmem_cache_order_objects x) 336 { 337 return x.x >> OO_SHIFT; 338 } 339 340 static inline int oo_objects(struct kmem_cache_order_objects x) 341 { 342 return x.x & OO_MASK; 343 } 344 345 /* 346 * Per slab locking using the pagelock 347 */ 348 static __always_inline void slab_lock(struct page *page) 349 { 350 bit_spin_lock(PG_locked, &page->flags); 351 } 352 353 static __always_inline void slab_unlock(struct page *page) 354 { 355 __bit_spin_unlock(PG_locked, &page->flags); 356 } 357 358 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 359 { 360 struct page tmp; 361 tmp.counters = counters_new; 362 /* 363 * page->counters can cover frozen/inuse/objects as well 364 * as page->_count. If we assign to ->counters directly 365 * we run the risk of losing updates to page->_count, so 366 * be careful and only assign to the fields we need. 367 */ 368 page->frozen = tmp.frozen; 369 page->inuse = tmp.inuse; 370 page->objects = tmp.objects; 371 } 372 373 /* Interrupts must be disabled (for the fallback code to work right) */ 374 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 375 void *freelist_old, unsigned long counters_old, 376 void *freelist_new, unsigned long counters_new, 377 const char *n) 378 { 379 VM_BUG_ON(!irqs_disabled()); 380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 382 if (s->flags & __CMPXCHG_DOUBLE) { 383 if (cmpxchg_double(&page->freelist, &page->counters, 384 freelist_old, counters_old, 385 freelist_new, counters_new)) 386 return 1; 387 } else 388 #endif 389 { 390 slab_lock(page); 391 if (page->freelist == freelist_old && 392 page->counters == counters_old) { 393 page->freelist = freelist_new; 394 set_page_slub_counters(page, counters_new); 395 slab_unlock(page); 396 return 1; 397 } 398 slab_unlock(page); 399 } 400 401 cpu_relax(); 402 stat(s, CMPXCHG_DOUBLE_FAIL); 403 404 #ifdef SLUB_DEBUG_CMPXCHG 405 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 406 #endif 407 408 return 0; 409 } 410 411 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 412 void *freelist_old, unsigned long counters_old, 413 void *freelist_new, unsigned long counters_new, 414 const char *n) 415 { 416 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 417 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 418 if (s->flags & __CMPXCHG_DOUBLE) { 419 if (cmpxchg_double(&page->freelist, &page->counters, 420 freelist_old, counters_old, 421 freelist_new, counters_new)) 422 return 1; 423 } else 424 #endif 425 { 426 unsigned long flags; 427 428 local_irq_save(flags); 429 slab_lock(page); 430 if (page->freelist == freelist_old && 431 page->counters == counters_old) { 432 page->freelist = freelist_new; 433 set_page_slub_counters(page, counters_new); 434 slab_unlock(page); 435 local_irq_restore(flags); 436 return 1; 437 } 438 slab_unlock(page); 439 local_irq_restore(flags); 440 } 441 442 cpu_relax(); 443 stat(s, CMPXCHG_DOUBLE_FAIL); 444 445 #ifdef SLUB_DEBUG_CMPXCHG 446 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 447 #endif 448 449 return 0; 450 } 451 452 #ifdef CONFIG_SLUB_DEBUG 453 /* 454 * Determine a map of object in use on a page. 455 * 456 * Node listlock must be held to guarantee that the page does 457 * not vanish from under us. 458 */ 459 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 460 { 461 void *p; 462 void *addr = page_address(page); 463 464 for (p = page->freelist; p; p = get_freepointer(s, p)) 465 set_bit(slab_index(p, s, addr), map); 466 } 467 468 /* 469 * Debug settings: 470 */ 471 #ifdef CONFIG_SLUB_DEBUG_ON 472 static int slub_debug = DEBUG_DEFAULT_FLAGS; 473 #else 474 static int slub_debug; 475 #endif 476 477 static char *slub_debug_slabs; 478 static int disable_higher_order_debug; 479 480 /* 481 * Object debugging 482 */ 483 static void print_section(char *text, u8 *addr, unsigned int length) 484 { 485 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 486 length, 1); 487 } 488 489 static struct track *get_track(struct kmem_cache *s, void *object, 490 enum track_item alloc) 491 { 492 struct track *p; 493 494 if (s->offset) 495 p = object + s->offset + sizeof(void *); 496 else 497 p = object + s->inuse; 498 499 return p + alloc; 500 } 501 502 static void set_track(struct kmem_cache *s, void *object, 503 enum track_item alloc, unsigned long addr) 504 { 505 struct track *p = get_track(s, object, alloc); 506 507 if (addr) { 508 #ifdef CONFIG_STACKTRACE 509 struct stack_trace trace; 510 int i; 511 512 trace.nr_entries = 0; 513 trace.max_entries = TRACK_ADDRS_COUNT; 514 trace.entries = p->addrs; 515 trace.skip = 3; 516 save_stack_trace(&trace); 517 518 /* See rant in lockdep.c */ 519 if (trace.nr_entries != 0 && 520 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 521 trace.nr_entries--; 522 523 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 524 p->addrs[i] = 0; 525 #endif 526 p->addr = addr; 527 p->cpu = smp_processor_id(); 528 p->pid = current->pid; 529 p->when = jiffies; 530 } else 531 memset(p, 0, sizeof(struct track)); 532 } 533 534 static void init_tracking(struct kmem_cache *s, void *object) 535 { 536 if (!(s->flags & SLAB_STORE_USER)) 537 return; 538 539 set_track(s, object, TRACK_FREE, 0UL); 540 set_track(s, object, TRACK_ALLOC, 0UL); 541 } 542 543 static void print_track(const char *s, struct track *t) 544 { 545 if (!t->addr) 546 return; 547 548 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 549 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 550 #ifdef CONFIG_STACKTRACE 551 { 552 int i; 553 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 554 if (t->addrs[i]) 555 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]); 556 else 557 break; 558 } 559 #endif 560 } 561 562 static void print_tracking(struct kmem_cache *s, void *object) 563 { 564 if (!(s->flags & SLAB_STORE_USER)) 565 return; 566 567 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 568 print_track("Freed", get_track(s, object, TRACK_FREE)); 569 } 570 571 static void print_page_info(struct page *page) 572 { 573 printk(KERN_ERR 574 "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 575 page, page->objects, page->inuse, page->freelist, page->flags); 576 577 } 578 579 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 580 { 581 va_list args; 582 char buf[100]; 583 584 va_start(args, fmt); 585 vsnprintf(buf, sizeof(buf), fmt, args); 586 va_end(args); 587 printk(KERN_ERR "========================================" 588 "=====================================\n"); 589 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf); 590 printk(KERN_ERR "----------------------------------------" 591 "-------------------------------------\n\n"); 592 593 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 594 } 595 596 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 597 { 598 va_list args; 599 char buf[100]; 600 601 va_start(args, fmt); 602 vsnprintf(buf, sizeof(buf), fmt, args); 603 va_end(args); 604 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 605 } 606 607 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 608 { 609 unsigned int off; /* Offset of last byte */ 610 u8 *addr = page_address(page); 611 612 print_tracking(s, p); 613 614 print_page_info(page); 615 616 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 617 p, p - addr, get_freepointer(s, p)); 618 619 if (p > addr + 16) 620 print_section("Bytes b4 ", p - 16, 16); 621 622 print_section("Object ", p, min_t(unsigned long, s->object_size, 623 PAGE_SIZE)); 624 if (s->flags & SLAB_RED_ZONE) 625 print_section("Redzone ", p + s->object_size, 626 s->inuse - s->object_size); 627 628 if (s->offset) 629 off = s->offset + sizeof(void *); 630 else 631 off = s->inuse; 632 633 if (s->flags & SLAB_STORE_USER) 634 off += 2 * sizeof(struct track); 635 636 if (off != s->size) 637 /* Beginning of the filler is the free pointer */ 638 print_section("Padding ", p + off, s->size - off); 639 640 dump_stack(); 641 } 642 643 static void object_err(struct kmem_cache *s, struct page *page, 644 u8 *object, char *reason) 645 { 646 slab_bug(s, "%s", reason); 647 print_trailer(s, page, object); 648 } 649 650 static void slab_err(struct kmem_cache *s, struct page *page, 651 const char *fmt, ...) 652 { 653 va_list args; 654 char buf[100]; 655 656 va_start(args, fmt); 657 vsnprintf(buf, sizeof(buf), fmt, args); 658 va_end(args); 659 slab_bug(s, "%s", buf); 660 print_page_info(page); 661 dump_stack(); 662 } 663 664 static void init_object(struct kmem_cache *s, void *object, u8 val) 665 { 666 u8 *p = object; 667 668 if (s->flags & __OBJECT_POISON) { 669 memset(p, POISON_FREE, s->object_size - 1); 670 p[s->object_size - 1] = POISON_END; 671 } 672 673 if (s->flags & SLAB_RED_ZONE) 674 memset(p + s->object_size, val, s->inuse - s->object_size); 675 } 676 677 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 678 void *from, void *to) 679 { 680 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 681 memset(from, data, to - from); 682 } 683 684 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 685 u8 *object, char *what, 686 u8 *start, unsigned int value, unsigned int bytes) 687 { 688 u8 *fault; 689 u8 *end; 690 691 fault = memchr_inv(start, value, bytes); 692 if (!fault) 693 return 1; 694 695 end = start + bytes; 696 while (end > fault && end[-1] == value) 697 end--; 698 699 slab_bug(s, "%s overwritten", what); 700 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 701 fault, end - 1, fault[0], value); 702 print_trailer(s, page, object); 703 704 restore_bytes(s, what, value, fault, end); 705 return 0; 706 } 707 708 /* 709 * Object layout: 710 * 711 * object address 712 * Bytes of the object to be managed. 713 * If the freepointer may overlay the object then the free 714 * pointer is the first word of the object. 715 * 716 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 717 * 0xa5 (POISON_END) 718 * 719 * object + s->object_size 720 * Padding to reach word boundary. This is also used for Redzoning. 721 * Padding is extended by another word if Redzoning is enabled and 722 * object_size == inuse. 723 * 724 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 725 * 0xcc (RED_ACTIVE) for objects in use. 726 * 727 * object + s->inuse 728 * Meta data starts here. 729 * 730 * A. Free pointer (if we cannot overwrite object on free) 731 * B. Tracking data for SLAB_STORE_USER 732 * C. Padding to reach required alignment boundary or at mininum 733 * one word if debugging is on to be able to detect writes 734 * before the word boundary. 735 * 736 * Padding is done using 0x5a (POISON_INUSE) 737 * 738 * object + s->size 739 * Nothing is used beyond s->size. 740 * 741 * If slabcaches are merged then the object_size and inuse boundaries are mostly 742 * ignored. And therefore no slab options that rely on these boundaries 743 * may be used with merged slabcaches. 744 */ 745 746 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 747 { 748 unsigned long off = s->inuse; /* The end of info */ 749 750 if (s->offset) 751 /* Freepointer is placed after the object. */ 752 off += sizeof(void *); 753 754 if (s->flags & SLAB_STORE_USER) 755 /* We also have user information there */ 756 off += 2 * sizeof(struct track); 757 758 if (s->size == off) 759 return 1; 760 761 return check_bytes_and_report(s, page, p, "Object padding", 762 p + off, POISON_INUSE, s->size - off); 763 } 764 765 /* Check the pad bytes at the end of a slab page */ 766 static int slab_pad_check(struct kmem_cache *s, struct page *page) 767 { 768 u8 *start; 769 u8 *fault; 770 u8 *end; 771 int length; 772 int remainder; 773 774 if (!(s->flags & SLAB_POISON)) 775 return 1; 776 777 start = page_address(page); 778 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 779 end = start + length; 780 remainder = length % s->size; 781 if (!remainder) 782 return 1; 783 784 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 785 if (!fault) 786 return 1; 787 while (end > fault && end[-1] == POISON_INUSE) 788 end--; 789 790 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 791 print_section("Padding ", end - remainder, remainder); 792 793 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 794 return 0; 795 } 796 797 static int check_object(struct kmem_cache *s, struct page *page, 798 void *object, u8 val) 799 { 800 u8 *p = object; 801 u8 *endobject = object + s->object_size; 802 803 if (s->flags & SLAB_RED_ZONE) { 804 if (!check_bytes_and_report(s, page, object, "Redzone", 805 endobject, val, s->inuse - s->object_size)) 806 return 0; 807 } else { 808 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 809 check_bytes_and_report(s, page, p, "Alignment padding", 810 endobject, POISON_INUSE, 811 s->inuse - s->object_size); 812 } 813 } 814 815 if (s->flags & SLAB_POISON) { 816 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 817 (!check_bytes_and_report(s, page, p, "Poison", p, 818 POISON_FREE, s->object_size - 1) || 819 !check_bytes_and_report(s, page, p, "Poison", 820 p + s->object_size - 1, POISON_END, 1))) 821 return 0; 822 /* 823 * check_pad_bytes cleans up on its own. 824 */ 825 check_pad_bytes(s, page, p); 826 } 827 828 if (!s->offset && val == SLUB_RED_ACTIVE) 829 /* 830 * Object and freepointer overlap. Cannot check 831 * freepointer while object is allocated. 832 */ 833 return 1; 834 835 /* Check free pointer validity */ 836 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 837 object_err(s, page, p, "Freepointer corrupt"); 838 /* 839 * No choice but to zap it and thus lose the remainder 840 * of the free objects in this slab. May cause 841 * another error because the object count is now wrong. 842 */ 843 set_freepointer(s, p, NULL); 844 return 0; 845 } 846 return 1; 847 } 848 849 static int check_slab(struct kmem_cache *s, struct page *page) 850 { 851 int maxobj; 852 853 VM_BUG_ON(!irqs_disabled()); 854 855 if (!PageSlab(page)) { 856 slab_err(s, page, "Not a valid slab page"); 857 return 0; 858 } 859 860 maxobj = order_objects(compound_order(page), s->size, s->reserved); 861 if (page->objects > maxobj) { 862 slab_err(s, page, "objects %u > max %u", 863 s->name, page->objects, maxobj); 864 return 0; 865 } 866 if (page->inuse > page->objects) { 867 slab_err(s, page, "inuse %u > max %u", 868 s->name, page->inuse, page->objects); 869 return 0; 870 } 871 /* Slab_pad_check fixes things up after itself */ 872 slab_pad_check(s, page); 873 return 1; 874 } 875 876 /* 877 * Determine if a certain object on a page is on the freelist. Must hold the 878 * slab lock to guarantee that the chains are in a consistent state. 879 */ 880 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 881 { 882 int nr = 0; 883 void *fp; 884 void *object = NULL; 885 unsigned long max_objects; 886 887 fp = page->freelist; 888 while (fp && nr <= page->objects) { 889 if (fp == search) 890 return 1; 891 if (!check_valid_pointer(s, page, fp)) { 892 if (object) { 893 object_err(s, page, object, 894 "Freechain corrupt"); 895 set_freepointer(s, object, NULL); 896 } else { 897 slab_err(s, page, "Freepointer corrupt"); 898 page->freelist = NULL; 899 page->inuse = page->objects; 900 slab_fix(s, "Freelist cleared"); 901 return 0; 902 } 903 break; 904 } 905 object = fp; 906 fp = get_freepointer(s, object); 907 nr++; 908 } 909 910 max_objects = order_objects(compound_order(page), s->size, s->reserved); 911 if (max_objects > MAX_OBJS_PER_PAGE) 912 max_objects = MAX_OBJS_PER_PAGE; 913 914 if (page->objects != max_objects) { 915 slab_err(s, page, "Wrong number of objects. Found %d but " 916 "should be %d", page->objects, max_objects); 917 page->objects = max_objects; 918 slab_fix(s, "Number of objects adjusted."); 919 } 920 if (page->inuse != page->objects - nr) { 921 slab_err(s, page, "Wrong object count. Counter is %d but " 922 "counted were %d", page->inuse, page->objects - nr); 923 page->inuse = page->objects - nr; 924 slab_fix(s, "Object count adjusted."); 925 } 926 return search == NULL; 927 } 928 929 static void trace(struct kmem_cache *s, struct page *page, void *object, 930 int alloc) 931 { 932 if (s->flags & SLAB_TRACE) { 933 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 934 s->name, 935 alloc ? "alloc" : "free", 936 object, page->inuse, 937 page->freelist); 938 939 if (!alloc) 940 print_section("Object ", (void *)object, 941 s->object_size); 942 943 dump_stack(); 944 } 945 } 946 947 /* 948 * Hooks for other subsystems that check memory allocations. In a typical 949 * production configuration these hooks all should produce no code at all. 950 */ 951 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 952 { 953 kmemleak_alloc(ptr, size, 1, flags); 954 } 955 956 static inline void kfree_hook(const void *x) 957 { 958 kmemleak_free(x); 959 } 960 961 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 962 { 963 flags &= gfp_allowed_mask; 964 lockdep_trace_alloc(flags); 965 might_sleep_if(flags & __GFP_WAIT); 966 967 return should_failslab(s->object_size, flags, s->flags); 968 } 969 970 static inline void slab_post_alloc_hook(struct kmem_cache *s, 971 gfp_t flags, void *object) 972 { 973 flags &= gfp_allowed_mask; 974 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 975 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); 976 } 977 978 static inline void slab_free_hook(struct kmem_cache *s, void *x) 979 { 980 kmemleak_free_recursive(x, s->flags); 981 982 /* 983 * Trouble is that we may no longer disable interrupts in the fast path 984 * So in order to make the debug calls that expect irqs to be 985 * disabled we need to disable interrupts temporarily. 986 */ 987 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 988 { 989 unsigned long flags; 990 991 local_irq_save(flags); 992 kmemcheck_slab_free(s, x, s->object_size); 993 debug_check_no_locks_freed(x, s->object_size); 994 local_irq_restore(flags); 995 } 996 #endif 997 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 998 debug_check_no_obj_freed(x, s->object_size); 999 } 1000 1001 /* 1002 * Tracking of fully allocated slabs for debugging purposes. 1003 */ 1004 static void add_full(struct kmem_cache *s, 1005 struct kmem_cache_node *n, struct page *page) 1006 { 1007 lockdep_assert_held(&n->list_lock); 1008 1009 if (!(s->flags & SLAB_STORE_USER)) 1010 return; 1011 1012 list_add(&page->lru, &n->full); 1013 } 1014 1015 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1016 { 1017 lockdep_assert_held(&n->list_lock); 1018 1019 if (!(s->flags & SLAB_STORE_USER)) 1020 return; 1021 1022 list_del(&page->lru); 1023 } 1024 1025 /* Tracking of the number of slabs for debugging purposes */ 1026 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1027 { 1028 struct kmem_cache_node *n = get_node(s, node); 1029 1030 return atomic_long_read(&n->nr_slabs); 1031 } 1032 1033 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1034 { 1035 return atomic_long_read(&n->nr_slabs); 1036 } 1037 1038 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1039 { 1040 struct kmem_cache_node *n = get_node(s, node); 1041 1042 /* 1043 * May be called early in order to allocate a slab for the 1044 * kmem_cache_node structure. Solve the chicken-egg 1045 * dilemma by deferring the increment of the count during 1046 * bootstrap (see early_kmem_cache_node_alloc). 1047 */ 1048 if (likely(n)) { 1049 atomic_long_inc(&n->nr_slabs); 1050 atomic_long_add(objects, &n->total_objects); 1051 } 1052 } 1053 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1054 { 1055 struct kmem_cache_node *n = get_node(s, node); 1056 1057 atomic_long_dec(&n->nr_slabs); 1058 atomic_long_sub(objects, &n->total_objects); 1059 } 1060 1061 /* Object debug checks for alloc/free paths */ 1062 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1063 void *object) 1064 { 1065 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1066 return; 1067 1068 init_object(s, object, SLUB_RED_INACTIVE); 1069 init_tracking(s, object); 1070 } 1071 1072 static noinline int alloc_debug_processing(struct kmem_cache *s, 1073 struct page *page, 1074 void *object, unsigned long addr) 1075 { 1076 if (!check_slab(s, page)) 1077 goto bad; 1078 1079 if (!check_valid_pointer(s, page, object)) { 1080 object_err(s, page, object, "Freelist Pointer check fails"); 1081 goto bad; 1082 } 1083 1084 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1085 goto bad; 1086 1087 /* Success perform special debug activities for allocs */ 1088 if (s->flags & SLAB_STORE_USER) 1089 set_track(s, object, TRACK_ALLOC, addr); 1090 trace(s, page, object, 1); 1091 init_object(s, object, SLUB_RED_ACTIVE); 1092 return 1; 1093 1094 bad: 1095 if (PageSlab(page)) { 1096 /* 1097 * If this is a slab page then lets do the best we can 1098 * to avoid issues in the future. Marking all objects 1099 * as used avoids touching the remaining objects. 1100 */ 1101 slab_fix(s, "Marking all objects used"); 1102 page->inuse = page->objects; 1103 page->freelist = NULL; 1104 } 1105 return 0; 1106 } 1107 1108 static noinline struct kmem_cache_node *free_debug_processing( 1109 struct kmem_cache *s, struct page *page, void *object, 1110 unsigned long addr, unsigned long *flags) 1111 { 1112 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1113 1114 spin_lock_irqsave(&n->list_lock, *flags); 1115 slab_lock(page); 1116 1117 if (!check_slab(s, page)) 1118 goto fail; 1119 1120 if (!check_valid_pointer(s, page, object)) { 1121 slab_err(s, page, "Invalid object pointer 0x%p", object); 1122 goto fail; 1123 } 1124 1125 if (on_freelist(s, page, object)) { 1126 object_err(s, page, object, "Object already free"); 1127 goto fail; 1128 } 1129 1130 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1131 goto out; 1132 1133 if (unlikely(s != page->slab_cache)) { 1134 if (!PageSlab(page)) { 1135 slab_err(s, page, "Attempt to free object(0x%p) " 1136 "outside of slab", object); 1137 } else if (!page->slab_cache) { 1138 printk(KERN_ERR 1139 "SLUB <none>: no slab for object 0x%p.\n", 1140 object); 1141 dump_stack(); 1142 } else 1143 object_err(s, page, object, 1144 "page slab pointer corrupt."); 1145 goto fail; 1146 } 1147 1148 if (s->flags & SLAB_STORE_USER) 1149 set_track(s, object, TRACK_FREE, addr); 1150 trace(s, page, object, 0); 1151 init_object(s, object, SLUB_RED_INACTIVE); 1152 out: 1153 slab_unlock(page); 1154 /* 1155 * Keep node_lock to preserve integrity 1156 * until the object is actually freed 1157 */ 1158 return n; 1159 1160 fail: 1161 slab_unlock(page); 1162 spin_unlock_irqrestore(&n->list_lock, *flags); 1163 slab_fix(s, "Object at 0x%p not freed", object); 1164 return NULL; 1165 } 1166 1167 static int __init setup_slub_debug(char *str) 1168 { 1169 slub_debug = DEBUG_DEFAULT_FLAGS; 1170 if (*str++ != '=' || !*str) 1171 /* 1172 * No options specified. Switch on full debugging. 1173 */ 1174 goto out; 1175 1176 if (*str == ',') 1177 /* 1178 * No options but restriction on slabs. This means full 1179 * debugging for slabs matching a pattern. 1180 */ 1181 goto check_slabs; 1182 1183 if (tolower(*str) == 'o') { 1184 /* 1185 * Avoid enabling debugging on caches if its minimum order 1186 * would increase as a result. 1187 */ 1188 disable_higher_order_debug = 1; 1189 goto out; 1190 } 1191 1192 slub_debug = 0; 1193 if (*str == '-') 1194 /* 1195 * Switch off all debugging measures. 1196 */ 1197 goto out; 1198 1199 /* 1200 * Determine which debug features should be switched on 1201 */ 1202 for (; *str && *str != ','; str++) { 1203 switch (tolower(*str)) { 1204 case 'f': 1205 slub_debug |= SLAB_DEBUG_FREE; 1206 break; 1207 case 'z': 1208 slub_debug |= SLAB_RED_ZONE; 1209 break; 1210 case 'p': 1211 slub_debug |= SLAB_POISON; 1212 break; 1213 case 'u': 1214 slub_debug |= SLAB_STORE_USER; 1215 break; 1216 case 't': 1217 slub_debug |= SLAB_TRACE; 1218 break; 1219 case 'a': 1220 slub_debug |= SLAB_FAILSLAB; 1221 break; 1222 default: 1223 printk(KERN_ERR "slub_debug option '%c' " 1224 "unknown. skipped\n", *str); 1225 } 1226 } 1227 1228 check_slabs: 1229 if (*str == ',') 1230 slub_debug_slabs = str + 1; 1231 out: 1232 return 1; 1233 } 1234 1235 __setup("slub_debug", setup_slub_debug); 1236 1237 static unsigned long kmem_cache_flags(unsigned long object_size, 1238 unsigned long flags, const char *name, 1239 void (*ctor)(void *)) 1240 { 1241 /* 1242 * Enable debugging if selected on the kernel commandline. 1243 */ 1244 if (slub_debug && (!slub_debug_slabs || (name && 1245 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1246 flags |= slub_debug; 1247 1248 return flags; 1249 } 1250 #else 1251 static inline void setup_object_debug(struct kmem_cache *s, 1252 struct page *page, void *object) {} 1253 1254 static inline int alloc_debug_processing(struct kmem_cache *s, 1255 struct page *page, void *object, unsigned long addr) { return 0; } 1256 1257 static inline struct kmem_cache_node *free_debug_processing( 1258 struct kmem_cache *s, struct page *page, void *object, 1259 unsigned long addr, unsigned long *flags) { return NULL; } 1260 1261 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1262 { return 1; } 1263 static inline int check_object(struct kmem_cache *s, struct page *page, 1264 void *object, u8 val) { return 1; } 1265 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1266 struct page *page) {} 1267 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1268 struct page *page) {} 1269 static inline unsigned long kmem_cache_flags(unsigned long object_size, 1270 unsigned long flags, const char *name, 1271 void (*ctor)(void *)) 1272 { 1273 return flags; 1274 } 1275 #define slub_debug 0 1276 1277 #define disable_higher_order_debug 0 1278 1279 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1280 { return 0; } 1281 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1282 { return 0; } 1283 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1284 int objects) {} 1285 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1286 int objects) {} 1287 1288 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1289 { 1290 kmemleak_alloc(ptr, size, 1, flags); 1291 } 1292 1293 static inline void kfree_hook(const void *x) 1294 { 1295 kmemleak_free(x); 1296 } 1297 1298 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 1299 { return 0; } 1300 1301 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 1302 void *object) 1303 { 1304 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, 1305 flags & gfp_allowed_mask); 1306 } 1307 1308 static inline void slab_free_hook(struct kmem_cache *s, void *x) 1309 { 1310 kmemleak_free_recursive(x, s->flags); 1311 } 1312 1313 #endif /* CONFIG_SLUB_DEBUG */ 1314 1315 /* 1316 * Slab allocation and freeing 1317 */ 1318 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1319 struct kmem_cache_order_objects oo) 1320 { 1321 int order = oo_order(oo); 1322 1323 flags |= __GFP_NOTRACK; 1324 1325 if (node == NUMA_NO_NODE) 1326 return alloc_pages(flags, order); 1327 else 1328 return alloc_pages_exact_node(node, flags, order); 1329 } 1330 1331 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1332 { 1333 struct page *page; 1334 struct kmem_cache_order_objects oo = s->oo; 1335 gfp_t alloc_gfp; 1336 1337 flags &= gfp_allowed_mask; 1338 1339 if (flags & __GFP_WAIT) 1340 local_irq_enable(); 1341 1342 flags |= s->allocflags; 1343 1344 /* 1345 * Let the initial higher-order allocation fail under memory pressure 1346 * so we fall-back to the minimum order allocation. 1347 */ 1348 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1349 1350 page = alloc_slab_page(alloc_gfp, node, oo); 1351 if (unlikely(!page)) { 1352 oo = s->min; 1353 /* 1354 * Allocation may have failed due to fragmentation. 1355 * Try a lower order alloc if possible 1356 */ 1357 page = alloc_slab_page(flags, node, oo); 1358 1359 if (page) 1360 stat(s, ORDER_FALLBACK); 1361 } 1362 1363 if (kmemcheck_enabled && page 1364 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1365 int pages = 1 << oo_order(oo); 1366 1367 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1368 1369 /* 1370 * Objects from caches that have a constructor don't get 1371 * cleared when they're allocated, so we need to do it here. 1372 */ 1373 if (s->ctor) 1374 kmemcheck_mark_uninitialized_pages(page, pages); 1375 else 1376 kmemcheck_mark_unallocated_pages(page, pages); 1377 } 1378 1379 if (flags & __GFP_WAIT) 1380 local_irq_disable(); 1381 if (!page) 1382 return NULL; 1383 1384 page->objects = oo_objects(oo); 1385 mod_zone_page_state(page_zone(page), 1386 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1387 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1388 1 << oo_order(oo)); 1389 1390 return page; 1391 } 1392 1393 static void setup_object(struct kmem_cache *s, struct page *page, 1394 void *object) 1395 { 1396 setup_object_debug(s, page, object); 1397 if (unlikely(s->ctor)) 1398 s->ctor(object); 1399 } 1400 1401 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1402 { 1403 struct page *page; 1404 void *start; 1405 void *last; 1406 void *p; 1407 int order; 1408 1409 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1410 1411 page = allocate_slab(s, 1412 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1413 if (!page) 1414 goto out; 1415 1416 order = compound_order(page); 1417 inc_slabs_node(s, page_to_nid(page), page->objects); 1418 memcg_bind_pages(s, order); 1419 page->slab_cache = s; 1420 __SetPageSlab(page); 1421 if (page->pfmemalloc) 1422 SetPageSlabPfmemalloc(page); 1423 1424 start = page_address(page); 1425 1426 if (unlikely(s->flags & SLAB_POISON)) 1427 memset(start, POISON_INUSE, PAGE_SIZE << order); 1428 1429 last = start; 1430 for_each_object(p, s, start, page->objects) { 1431 setup_object(s, page, last); 1432 set_freepointer(s, last, p); 1433 last = p; 1434 } 1435 setup_object(s, page, last); 1436 set_freepointer(s, last, NULL); 1437 1438 page->freelist = start; 1439 page->inuse = page->objects; 1440 page->frozen = 1; 1441 out: 1442 return page; 1443 } 1444 1445 static void __free_slab(struct kmem_cache *s, struct page *page) 1446 { 1447 int order = compound_order(page); 1448 int pages = 1 << order; 1449 1450 if (kmem_cache_debug(s)) { 1451 void *p; 1452 1453 slab_pad_check(s, page); 1454 for_each_object(p, s, page_address(page), 1455 page->objects) 1456 check_object(s, page, p, SLUB_RED_INACTIVE); 1457 } 1458 1459 kmemcheck_free_shadow(page, compound_order(page)); 1460 1461 mod_zone_page_state(page_zone(page), 1462 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1463 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1464 -pages); 1465 1466 __ClearPageSlabPfmemalloc(page); 1467 __ClearPageSlab(page); 1468 1469 memcg_release_pages(s, order); 1470 page_mapcount_reset(page); 1471 if (current->reclaim_state) 1472 current->reclaim_state->reclaimed_slab += pages; 1473 __free_memcg_kmem_pages(page, order); 1474 } 1475 1476 #define need_reserve_slab_rcu \ 1477 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1478 1479 static void rcu_free_slab(struct rcu_head *h) 1480 { 1481 struct page *page; 1482 1483 if (need_reserve_slab_rcu) 1484 page = virt_to_head_page(h); 1485 else 1486 page = container_of((struct list_head *)h, struct page, lru); 1487 1488 __free_slab(page->slab_cache, page); 1489 } 1490 1491 static void free_slab(struct kmem_cache *s, struct page *page) 1492 { 1493 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1494 struct rcu_head *head; 1495 1496 if (need_reserve_slab_rcu) { 1497 int order = compound_order(page); 1498 int offset = (PAGE_SIZE << order) - s->reserved; 1499 1500 VM_BUG_ON(s->reserved != sizeof(*head)); 1501 head = page_address(page) + offset; 1502 } else { 1503 /* 1504 * RCU free overloads the RCU head over the LRU 1505 */ 1506 head = (void *)&page->lru; 1507 } 1508 1509 call_rcu(head, rcu_free_slab); 1510 } else 1511 __free_slab(s, page); 1512 } 1513 1514 static void discard_slab(struct kmem_cache *s, struct page *page) 1515 { 1516 dec_slabs_node(s, page_to_nid(page), page->objects); 1517 free_slab(s, page); 1518 } 1519 1520 /* 1521 * Management of partially allocated slabs. 1522 */ 1523 static inline void add_partial(struct kmem_cache_node *n, 1524 struct page *page, int tail) 1525 { 1526 lockdep_assert_held(&n->list_lock); 1527 1528 n->nr_partial++; 1529 if (tail == DEACTIVATE_TO_TAIL) 1530 list_add_tail(&page->lru, &n->partial); 1531 else 1532 list_add(&page->lru, &n->partial); 1533 } 1534 1535 static inline void remove_partial(struct kmem_cache_node *n, 1536 struct page *page) 1537 { 1538 lockdep_assert_held(&n->list_lock); 1539 1540 list_del(&page->lru); 1541 n->nr_partial--; 1542 } 1543 1544 /* 1545 * Remove slab from the partial list, freeze it and 1546 * return the pointer to the freelist. 1547 * 1548 * Returns a list of objects or NULL if it fails. 1549 */ 1550 static inline void *acquire_slab(struct kmem_cache *s, 1551 struct kmem_cache_node *n, struct page *page, 1552 int mode, int *objects) 1553 { 1554 void *freelist; 1555 unsigned long counters; 1556 struct page new; 1557 1558 lockdep_assert_held(&n->list_lock); 1559 1560 /* 1561 * Zap the freelist and set the frozen bit. 1562 * The old freelist is the list of objects for the 1563 * per cpu allocation list. 1564 */ 1565 freelist = page->freelist; 1566 counters = page->counters; 1567 new.counters = counters; 1568 *objects = new.objects - new.inuse; 1569 if (mode) { 1570 new.inuse = page->objects; 1571 new.freelist = NULL; 1572 } else { 1573 new.freelist = freelist; 1574 } 1575 1576 VM_BUG_ON(new.frozen); 1577 new.frozen = 1; 1578 1579 if (!__cmpxchg_double_slab(s, page, 1580 freelist, counters, 1581 new.freelist, new.counters, 1582 "acquire_slab")) 1583 return NULL; 1584 1585 remove_partial(n, page); 1586 WARN_ON(!freelist); 1587 return freelist; 1588 } 1589 1590 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1591 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1592 1593 /* 1594 * Try to allocate a partial slab from a specific node. 1595 */ 1596 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1597 struct kmem_cache_cpu *c, gfp_t flags) 1598 { 1599 struct page *page, *page2; 1600 void *object = NULL; 1601 int available = 0; 1602 int objects; 1603 1604 /* 1605 * Racy check. If we mistakenly see no partial slabs then we 1606 * just allocate an empty slab. If we mistakenly try to get a 1607 * partial slab and there is none available then get_partials() 1608 * will return NULL. 1609 */ 1610 if (!n || !n->nr_partial) 1611 return NULL; 1612 1613 spin_lock(&n->list_lock); 1614 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1615 void *t; 1616 1617 if (!pfmemalloc_match(page, flags)) 1618 continue; 1619 1620 t = acquire_slab(s, n, page, object == NULL, &objects); 1621 if (!t) 1622 break; 1623 1624 available += objects; 1625 if (!object) { 1626 c->page = page; 1627 stat(s, ALLOC_FROM_PARTIAL); 1628 object = t; 1629 } else { 1630 put_cpu_partial(s, page, 0); 1631 stat(s, CPU_PARTIAL_NODE); 1632 } 1633 if (!kmem_cache_has_cpu_partial(s) 1634 || available > s->cpu_partial / 2) 1635 break; 1636 1637 } 1638 spin_unlock(&n->list_lock); 1639 return object; 1640 } 1641 1642 /* 1643 * Get a page from somewhere. Search in increasing NUMA distances. 1644 */ 1645 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1646 struct kmem_cache_cpu *c) 1647 { 1648 #ifdef CONFIG_NUMA 1649 struct zonelist *zonelist; 1650 struct zoneref *z; 1651 struct zone *zone; 1652 enum zone_type high_zoneidx = gfp_zone(flags); 1653 void *object; 1654 unsigned int cpuset_mems_cookie; 1655 1656 /* 1657 * The defrag ratio allows a configuration of the tradeoffs between 1658 * inter node defragmentation and node local allocations. A lower 1659 * defrag_ratio increases the tendency to do local allocations 1660 * instead of attempting to obtain partial slabs from other nodes. 1661 * 1662 * If the defrag_ratio is set to 0 then kmalloc() always 1663 * returns node local objects. If the ratio is higher then kmalloc() 1664 * may return off node objects because partial slabs are obtained 1665 * from other nodes and filled up. 1666 * 1667 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1668 * defrag_ratio = 1000) then every (well almost) allocation will 1669 * first attempt to defrag slab caches on other nodes. This means 1670 * scanning over all nodes to look for partial slabs which may be 1671 * expensive if we do it every time we are trying to find a slab 1672 * with available objects. 1673 */ 1674 if (!s->remote_node_defrag_ratio || 1675 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1676 return NULL; 1677 1678 do { 1679 cpuset_mems_cookie = get_mems_allowed(); 1680 zonelist = node_zonelist(slab_node(), flags); 1681 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1682 struct kmem_cache_node *n; 1683 1684 n = get_node(s, zone_to_nid(zone)); 1685 1686 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1687 n->nr_partial > s->min_partial) { 1688 object = get_partial_node(s, n, c, flags); 1689 if (object) { 1690 /* 1691 * Return the object even if 1692 * put_mems_allowed indicated that 1693 * the cpuset mems_allowed was 1694 * updated in parallel. It's a 1695 * harmless race between the alloc 1696 * and the cpuset update. 1697 */ 1698 put_mems_allowed(cpuset_mems_cookie); 1699 return object; 1700 } 1701 } 1702 } 1703 } while (!put_mems_allowed(cpuset_mems_cookie)); 1704 #endif 1705 return NULL; 1706 } 1707 1708 /* 1709 * Get a partial page, lock it and return it. 1710 */ 1711 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1712 struct kmem_cache_cpu *c) 1713 { 1714 void *object; 1715 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; 1716 1717 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1718 if (object || node != NUMA_NO_NODE) 1719 return object; 1720 1721 return get_any_partial(s, flags, c); 1722 } 1723 1724 #ifdef CONFIG_PREEMPT 1725 /* 1726 * Calculate the next globally unique transaction for disambiguiation 1727 * during cmpxchg. The transactions start with the cpu number and are then 1728 * incremented by CONFIG_NR_CPUS. 1729 */ 1730 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1731 #else 1732 /* 1733 * No preemption supported therefore also no need to check for 1734 * different cpus. 1735 */ 1736 #define TID_STEP 1 1737 #endif 1738 1739 static inline unsigned long next_tid(unsigned long tid) 1740 { 1741 return tid + TID_STEP; 1742 } 1743 1744 static inline unsigned int tid_to_cpu(unsigned long tid) 1745 { 1746 return tid % TID_STEP; 1747 } 1748 1749 static inline unsigned long tid_to_event(unsigned long tid) 1750 { 1751 return tid / TID_STEP; 1752 } 1753 1754 static inline unsigned int init_tid(int cpu) 1755 { 1756 return cpu; 1757 } 1758 1759 static inline void note_cmpxchg_failure(const char *n, 1760 const struct kmem_cache *s, unsigned long tid) 1761 { 1762 #ifdef SLUB_DEBUG_CMPXCHG 1763 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1764 1765 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); 1766 1767 #ifdef CONFIG_PREEMPT 1768 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1769 printk("due to cpu change %d -> %d\n", 1770 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1771 else 1772 #endif 1773 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1774 printk("due to cpu running other code. Event %ld->%ld\n", 1775 tid_to_event(tid), tid_to_event(actual_tid)); 1776 else 1777 printk("for unknown reason: actual=%lx was=%lx target=%lx\n", 1778 actual_tid, tid, next_tid(tid)); 1779 #endif 1780 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1781 } 1782 1783 static void init_kmem_cache_cpus(struct kmem_cache *s) 1784 { 1785 int cpu; 1786 1787 for_each_possible_cpu(cpu) 1788 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1789 } 1790 1791 /* 1792 * Remove the cpu slab 1793 */ 1794 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1795 void *freelist) 1796 { 1797 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1798 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1799 int lock = 0; 1800 enum slab_modes l = M_NONE, m = M_NONE; 1801 void *nextfree; 1802 int tail = DEACTIVATE_TO_HEAD; 1803 struct page new; 1804 struct page old; 1805 1806 if (page->freelist) { 1807 stat(s, DEACTIVATE_REMOTE_FREES); 1808 tail = DEACTIVATE_TO_TAIL; 1809 } 1810 1811 /* 1812 * Stage one: Free all available per cpu objects back 1813 * to the page freelist while it is still frozen. Leave the 1814 * last one. 1815 * 1816 * There is no need to take the list->lock because the page 1817 * is still frozen. 1818 */ 1819 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1820 void *prior; 1821 unsigned long counters; 1822 1823 do { 1824 prior = page->freelist; 1825 counters = page->counters; 1826 set_freepointer(s, freelist, prior); 1827 new.counters = counters; 1828 new.inuse--; 1829 VM_BUG_ON(!new.frozen); 1830 1831 } while (!__cmpxchg_double_slab(s, page, 1832 prior, counters, 1833 freelist, new.counters, 1834 "drain percpu freelist")); 1835 1836 freelist = nextfree; 1837 } 1838 1839 /* 1840 * Stage two: Ensure that the page is unfrozen while the 1841 * list presence reflects the actual number of objects 1842 * during unfreeze. 1843 * 1844 * We setup the list membership and then perform a cmpxchg 1845 * with the count. If there is a mismatch then the page 1846 * is not unfrozen but the page is on the wrong list. 1847 * 1848 * Then we restart the process which may have to remove 1849 * the page from the list that we just put it on again 1850 * because the number of objects in the slab may have 1851 * changed. 1852 */ 1853 redo: 1854 1855 old.freelist = page->freelist; 1856 old.counters = page->counters; 1857 VM_BUG_ON(!old.frozen); 1858 1859 /* Determine target state of the slab */ 1860 new.counters = old.counters; 1861 if (freelist) { 1862 new.inuse--; 1863 set_freepointer(s, freelist, old.freelist); 1864 new.freelist = freelist; 1865 } else 1866 new.freelist = old.freelist; 1867 1868 new.frozen = 0; 1869 1870 if (!new.inuse && n->nr_partial > s->min_partial) 1871 m = M_FREE; 1872 else if (new.freelist) { 1873 m = M_PARTIAL; 1874 if (!lock) { 1875 lock = 1; 1876 /* 1877 * Taking the spinlock removes the possiblity 1878 * that acquire_slab() will see a slab page that 1879 * is frozen 1880 */ 1881 spin_lock(&n->list_lock); 1882 } 1883 } else { 1884 m = M_FULL; 1885 if (kmem_cache_debug(s) && !lock) { 1886 lock = 1; 1887 /* 1888 * This also ensures that the scanning of full 1889 * slabs from diagnostic functions will not see 1890 * any frozen slabs. 1891 */ 1892 spin_lock(&n->list_lock); 1893 } 1894 } 1895 1896 if (l != m) { 1897 1898 if (l == M_PARTIAL) 1899 1900 remove_partial(n, page); 1901 1902 else if (l == M_FULL) 1903 1904 remove_full(s, n, page); 1905 1906 if (m == M_PARTIAL) { 1907 1908 add_partial(n, page, tail); 1909 stat(s, tail); 1910 1911 } else if (m == M_FULL) { 1912 1913 stat(s, DEACTIVATE_FULL); 1914 add_full(s, n, page); 1915 1916 } 1917 } 1918 1919 l = m; 1920 if (!__cmpxchg_double_slab(s, page, 1921 old.freelist, old.counters, 1922 new.freelist, new.counters, 1923 "unfreezing slab")) 1924 goto redo; 1925 1926 if (lock) 1927 spin_unlock(&n->list_lock); 1928 1929 if (m == M_FREE) { 1930 stat(s, DEACTIVATE_EMPTY); 1931 discard_slab(s, page); 1932 stat(s, FREE_SLAB); 1933 } 1934 } 1935 1936 /* 1937 * Unfreeze all the cpu partial slabs. 1938 * 1939 * This function must be called with interrupts disabled 1940 * for the cpu using c (or some other guarantee must be there 1941 * to guarantee no concurrent accesses). 1942 */ 1943 static void unfreeze_partials(struct kmem_cache *s, 1944 struct kmem_cache_cpu *c) 1945 { 1946 #ifdef CONFIG_SLUB_CPU_PARTIAL 1947 struct kmem_cache_node *n = NULL, *n2 = NULL; 1948 struct page *page, *discard_page = NULL; 1949 1950 while ((page = c->partial)) { 1951 struct page new; 1952 struct page old; 1953 1954 c->partial = page->next; 1955 1956 n2 = get_node(s, page_to_nid(page)); 1957 if (n != n2) { 1958 if (n) 1959 spin_unlock(&n->list_lock); 1960 1961 n = n2; 1962 spin_lock(&n->list_lock); 1963 } 1964 1965 do { 1966 1967 old.freelist = page->freelist; 1968 old.counters = page->counters; 1969 VM_BUG_ON(!old.frozen); 1970 1971 new.counters = old.counters; 1972 new.freelist = old.freelist; 1973 1974 new.frozen = 0; 1975 1976 } while (!__cmpxchg_double_slab(s, page, 1977 old.freelist, old.counters, 1978 new.freelist, new.counters, 1979 "unfreezing slab")); 1980 1981 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) { 1982 page->next = discard_page; 1983 discard_page = page; 1984 } else { 1985 add_partial(n, page, DEACTIVATE_TO_TAIL); 1986 stat(s, FREE_ADD_PARTIAL); 1987 } 1988 } 1989 1990 if (n) 1991 spin_unlock(&n->list_lock); 1992 1993 while (discard_page) { 1994 page = discard_page; 1995 discard_page = discard_page->next; 1996 1997 stat(s, DEACTIVATE_EMPTY); 1998 discard_slab(s, page); 1999 stat(s, FREE_SLAB); 2000 } 2001 #endif 2002 } 2003 2004 /* 2005 * Put a page that was just frozen (in __slab_free) into a partial page 2006 * slot if available. This is done without interrupts disabled and without 2007 * preemption disabled. The cmpxchg is racy and may put the partial page 2008 * onto a random cpus partial slot. 2009 * 2010 * If we did not find a slot then simply move all the partials to the 2011 * per node partial list. 2012 */ 2013 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2014 { 2015 #ifdef CONFIG_SLUB_CPU_PARTIAL 2016 struct page *oldpage; 2017 int pages; 2018 int pobjects; 2019 2020 do { 2021 pages = 0; 2022 pobjects = 0; 2023 oldpage = this_cpu_read(s->cpu_slab->partial); 2024 2025 if (oldpage) { 2026 pobjects = oldpage->pobjects; 2027 pages = oldpage->pages; 2028 if (drain && pobjects > s->cpu_partial) { 2029 unsigned long flags; 2030 /* 2031 * partial array is full. Move the existing 2032 * set to the per node partial list. 2033 */ 2034 local_irq_save(flags); 2035 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2036 local_irq_restore(flags); 2037 oldpage = NULL; 2038 pobjects = 0; 2039 pages = 0; 2040 stat(s, CPU_PARTIAL_DRAIN); 2041 } 2042 } 2043 2044 pages++; 2045 pobjects += page->objects - page->inuse; 2046 2047 page->pages = pages; 2048 page->pobjects = pobjects; 2049 page->next = oldpage; 2050 2051 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2052 != oldpage); 2053 #endif 2054 } 2055 2056 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2057 { 2058 stat(s, CPUSLAB_FLUSH); 2059 deactivate_slab(s, c->page, c->freelist); 2060 2061 c->tid = next_tid(c->tid); 2062 c->page = NULL; 2063 c->freelist = NULL; 2064 } 2065 2066 /* 2067 * Flush cpu slab. 2068 * 2069 * Called from IPI handler with interrupts disabled. 2070 */ 2071 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2072 { 2073 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2074 2075 if (likely(c)) { 2076 if (c->page) 2077 flush_slab(s, c); 2078 2079 unfreeze_partials(s, c); 2080 } 2081 } 2082 2083 static void flush_cpu_slab(void *d) 2084 { 2085 struct kmem_cache *s = d; 2086 2087 __flush_cpu_slab(s, smp_processor_id()); 2088 } 2089 2090 static bool has_cpu_slab(int cpu, void *info) 2091 { 2092 struct kmem_cache *s = info; 2093 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2094 2095 return c->page || c->partial; 2096 } 2097 2098 static void flush_all(struct kmem_cache *s) 2099 { 2100 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2101 } 2102 2103 /* 2104 * Check if the objects in a per cpu structure fit numa 2105 * locality expectations. 2106 */ 2107 static inline int node_match(struct page *page, int node) 2108 { 2109 #ifdef CONFIG_NUMA 2110 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2111 return 0; 2112 #endif 2113 return 1; 2114 } 2115 2116 static int count_free(struct page *page) 2117 { 2118 return page->objects - page->inuse; 2119 } 2120 2121 static unsigned long count_partial(struct kmem_cache_node *n, 2122 int (*get_count)(struct page *)) 2123 { 2124 unsigned long flags; 2125 unsigned long x = 0; 2126 struct page *page; 2127 2128 spin_lock_irqsave(&n->list_lock, flags); 2129 list_for_each_entry(page, &n->partial, lru) 2130 x += get_count(page); 2131 spin_unlock_irqrestore(&n->list_lock, flags); 2132 return x; 2133 } 2134 2135 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2136 { 2137 #ifdef CONFIG_SLUB_DEBUG 2138 return atomic_long_read(&n->total_objects); 2139 #else 2140 return 0; 2141 #endif 2142 } 2143 2144 static noinline void 2145 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2146 { 2147 int node; 2148 2149 printk(KERN_WARNING 2150 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2151 nid, gfpflags); 2152 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 2153 "default order: %d, min order: %d\n", s->name, s->object_size, 2154 s->size, oo_order(s->oo), oo_order(s->min)); 2155 2156 if (oo_order(s->min) > get_order(s->object_size)) 2157 printk(KERN_WARNING " %s debugging increased min order, use " 2158 "slub_debug=O to disable.\n", s->name); 2159 2160 for_each_online_node(node) { 2161 struct kmem_cache_node *n = get_node(s, node); 2162 unsigned long nr_slabs; 2163 unsigned long nr_objs; 2164 unsigned long nr_free; 2165 2166 if (!n) 2167 continue; 2168 2169 nr_free = count_partial(n, count_free); 2170 nr_slabs = node_nr_slabs(n); 2171 nr_objs = node_nr_objs(n); 2172 2173 printk(KERN_WARNING 2174 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 2175 node, nr_slabs, nr_objs, nr_free); 2176 } 2177 } 2178 2179 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2180 int node, struct kmem_cache_cpu **pc) 2181 { 2182 void *freelist; 2183 struct kmem_cache_cpu *c = *pc; 2184 struct page *page; 2185 2186 freelist = get_partial(s, flags, node, c); 2187 2188 if (freelist) 2189 return freelist; 2190 2191 page = new_slab(s, flags, node); 2192 if (page) { 2193 c = __this_cpu_ptr(s->cpu_slab); 2194 if (c->page) 2195 flush_slab(s, c); 2196 2197 /* 2198 * No other reference to the page yet so we can 2199 * muck around with it freely without cmpxchg 2200 */ 2201 freelist = page->freelist; 2202 page->freelist = NULL; 2203 2204 stat(s, ALLOC_SLAB); 2205 c->page = page; 2206 *pc = c; 2207 } else 2208 freelist = NULL; 2209 2210 return freelist; 2211 } 2212 2213 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2214 { 2215 if (unlikely(PageSlabPfmemalloc(page))) 2216 return gfp_pfmemalloc_allowed(gfpflags); 2217 2218 return true; 2219 } 2220 2221 /* 2222 * Check the page->freelist of a page and either transfer the freelist to the 2223 * per cpu freelist or deactivate the page. 2224 * 2225 * The page is still frozen if the return value is not NULL. 2226 * 2227 * If this function returns NULL then the page has been unfrozen. 2228 * 2229 * This function must be called with interrupt disabled. 2230 */ 2231 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2232 { 2233 struct page new; 2234 unsigned long counters; 2235 void *freelist; 2236 2237 do { 2238 freelist = page->freelist; 2239 counters = page->counters; 2240 2241 new.counters = counters; 2242 VM_BUG_ON(!new.frozen); 2243 2244 new.inuse = page->objects; 2245 new.frozen = freelist != NULL; 2246 2247 } while (!__cmpxchg_double_slab(s, page, 2248 freelist, counters, 2249 NULL, new.counters, 2250 "get_freelist")); 2251 2252 return freelist; 2253 } 2254 2255 /* 2256 * Slow path. The lockless freelist is empty or we need to perform 2257 * debugging duties. 2258 * 2259 * Processing is still very fast if new objects have been freed to the 2260 * regular freelist. In that case we simply take over the regular freelist 2261 * as the lockless freelist and zap the regular freelist. 2262 * 2263 * If that is not working then we fall back to the partial lists. We take the 2264 * first element of the freelist as the object to allocate now and move the 2265 * rest of the freelist to the lockless freelist. 2266 * 2267 * And if we were unable to get a new slab from the partial slab lists then 2268 * we need to allocate a new slab. This is the slowest path since it involves 2269 * a call to the page allocator and the setup of a new slab. 2270 */ 2271 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2272 unsigned long addr, struct kmem_cache_cpu *c) 2273 { 2274 void *freelist; 2275 struct page *page; 2276 unsigned long flags; 2277 2278 local_irq_save(flags); 2279 #ifdef CONFIG_PREEMPT 2280 /* 2281 * We may have been preempted and rescheduled on a different 2282 * cpu before disabling interrupts. Need to reload cpu area 2283 * pointer. 2284 */ 2285 c = this_cpu_ptr(s->cpu_slab); 2286 #endif 2287 2288 page = c->page; 2289 if (!page) 2290 goto new_slab; 2291 redo: 2292 2293 if (unlikely(!node_match(page, node))) { 2294 stat(s, ALLOC_NODE_MISMATCH); 2295 deactivate_slab(s, page, c->freelist); 2296 c->page = NULL; 2297 c->freelist = NULL; 2298 goto new_slab; 2299 } 2300 2301 /* 2302 * By rights, we should be searching for a slab page that was 2303 * PFMEMALLOC but right now, we are losing the pfmemalloc 2304 * information when the page leaves the per-cpu allocator 2305 */ 2306 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2307 deactivate_slab(s, page, c->freelist); 2308 c->page = NULL; 2309 c->freelist = NULL; 2310 goto new_slab; 2311 } 2312 2313 /* must check again c->freelist in case of cpu migration or IRQ */ 2314 freelist = c->freelist; 2315 if (freelist) 2316 goto load_freelist; 2317 2318 stat(s, ALLOC_SLOWPATH); 2319 2320 freelist = get_freelist(s, page); 2321 2322 if (!freelist) { 2323 c->page = NULL; 2324 stat(s, DEACTIVATE_BYPASS); 2325 goto new_slab; 2326 } 2327 2328 stat(s, ALLOC_REFILL); 2329 2330 load_freelist: 2331 /* 2332 * freelist is pointing to the list of objects to be used. 2333 * page is pointing to the page from which the objects are obtained. 2334 * That page must be frozen for per cpu allocations to work. 2335 */ 2336 VM_BUG_ON(!c->page->frozen); 2337 c->freelist = get_freepointer(s, freelist); 2338 c->tid = next_tid(c->tid); 2339 local_irq_restore(flags); 2340 return freelist; 2341 2342 new_slab: 2343 2344 if (c->partial) { 2345 page = c->page = c->partial; 2346 c->partial = page->next; 2347 stat(s, CPU_PARTIAL_ALLOC); 2348 c->freelist = NULL; 2349 goto redo; 2350 } 2351 2352 freelist = new_slab_objects(s, gfpflags, node, &c); 2353 2354 if (unlikely(!freelist)) { 2355 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 2356 slab_out_of_memory(s, gfpflags, node); 2357 2358 local_irq_restore(flags); 2359 return NULL; 2360 } 2361 2362 page = c->page; 2363 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2364 goto load_freelist; 2365 2366 /* Only entered in the debug case */ 2367 if (kmem_cache_debug(s) && 2368 !alloc_debug_processing(s, page, freelist, addr)) 2369 goto new_slab; /* Slab failed checks. Next slab needed */ 2370 2371 deactivate_slab(s, page, get_freepointer(s, freelist)); 2372 c->page = NULL; 2373 c->freelist = NULL; 2374 local_irq_restore(flags); 2375 return freelist; 2376 } 2377 2378 /* 2379 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2380 * have the fastpath folded into their functions. So no function call 2381 * overhead for requests that can be satisfied on the fastpath. 2382 * 2383 * The fastpath works by first checking if the lockless freelist can be used. 2384 * If not then __slab_alloc is called for slow processing. 2385 * 2386 * Otherwise we can simply pick the next object from the lockless free list. 2387 */ 2388 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2389 gfp_t gfpflags, int node, unsigned long addr) 2390 { 2391 void **object; 2392 struct kmem_cache_cpu *c; 2393 struct page *page; 2394 unsigned long tid; 2395 2396 if (slab_pre_alloc_hook(s, gfpflags)) 2397 return NULL; 2398 2399 s = memcg_kmem_get_cache(s, gfpflags); 2400 redo: 2401 /* 2402 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2403 * enabled. We may switch back and forth between cpus while 2404 * reading from one cpu area. That does not matter as long 2405 * as we end up on the original cpu again when doing the cmpxchg. 2406 * 2407 * Preemption is disabled for the retrieval of the tid because that 2408 * must occur from the current processor. We cannot allow rescheduling 2409 * on a different processor between the determination of the pointer 2410 * and the retrieval of the tid. 2411 */ 2412 preempt_disable(); 2413 c = __this_cpu_ptr(s->cpu_slab); 2414 2415 /* 2416 * The transaction ids are globally unique per cpu and per operation on 2417 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2418 * occurs on the right processor and that there was no operation on the 2419 * linked list in between. 2420 */ 2421 tid = c->tid; 2422 preempt_enable(); 2423 2424 object = c->freelist; 2425 page = c->page; 2426 if (unlikely(!object || !node_match(page, node))) 2427 object = __slab_alloc(s, gfpflags, node, addr, c); 2428 2429 else { 2430 void *next_object = get_freepointer_safe(s, object); 2431 2432 /* 2433 * The cmpxchg will only match if there was no additional 2434 * operation and if we are on the right processor. 2435 * 2436 * The cmpxchg does the following atomically (without lock 2437 * semantics!) 2438 * 1. Relocate first pointer to the current per cpu area. 2439 * 2. Verify that tid and freelist have not been changed 2440 * 3. If they were not changed replace tid and freelist 2441 * 2442 * Since this is without lock semantics the protection is only 2443 * against code executing on this cpu *not* from access by 2444 * other cpus. 2445 */ 2446 if (unlikely(!this_cpu_cmpxchg_double( 2447 s->cpu_slab->freelist, s->cpu_slab->tid, 2448 object, tid, 2449 next_object, next_tid(tid)))) { 2450 2451 note_cmpxchg_failure("slab_alloc", s, tid); 2452 goto redo; 2453 } 2454 prefetch_freepointer(s, next_object); 2455 stat(s, ALLOC_FASTPATH); 2456 } 2457 2458 if (unlikely(gfpflags & __GFP_ZERO) && object) 2459 memset(object, 0, s->object_size); 2460 2461 slab_post_alloc_hook(s, gfpflags, object); 2462 2463 return object; 2464 } 2465 2466 static __always_inline void *slab_alloc(struct kmem_cache *s, 2467 gfp_t gfpflags, unsigned long addr) 2468 { 2469 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2470 } 2471 2472 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2473 { 2474 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2475 2476 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2477 s->size, gfpflags); 2478 2479 return ret; 2480 } 2481 EXPORT_SYMBOL(kmem_cache_alloc); 2482 2483 #ifdef CONFIG_TRACING 2484 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2485 { 2486 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2487 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2488 return ret; 2489 } 2490 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2491 #endif 2492 2493 #ifdef CONFIG_NUMA 2494 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2495 { 2496 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2497 2498 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2499 s->object_size, s->size, gfpflags, node); 2500 2501 return ret; 2502 } 2503 EXPORT_SYMBOL(kmem_cache_alloc_node); 2504 2505 #ifdef CONFIG_TRACING 2506 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2507 gfp_t gfpflags, 2508 int node, size_t size) 2509 { 2510 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2511 2512 trace_kmalloc_node(_RET_IP_, ret, 2513 size, s->size, gfpflags, node); 2514 return ret; 2515 } 2516 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2517 #endif 2518 #endif 2519 2520 /* 2521 * Slow patch handling. This may still be called frequently since objects 2522 * have a longer lifetime than the cpu slabs in most processing loads. 2523 * 2524 * So we still attempt to reduce cache line usage. Just take the slab 2525 * lock and free the item. If there is no additional partial page 2526 * handling required then we can return immediately. 2527 */ 2528 static void __slab_free(struct kmem_cache *s, struct page *page, 2529 void *x, unsigned long addr) 2530 { 2531 void *prior; 2532 void **object = (void *)x; 2533 int was_frozen; 2534 struct page new; 2535 unsigned long counters; 2536 struct kmem_cache_node *n = NULL; 2537 unsigned long uninitialized_var(flags); 2538 2539 stat(s, FREE_SLOWPATH); 2540 2541 if (kmem_cache_debug(s) && 2542 !(n = free_debug_processing(s, page, x, addr, &flags))) 2543 return; 2544 2545 do { 2546 if (unlikely(n)) { 2547 spin_unlock_irqrestore(&n->list_lock, flags); 2548 n = NULL; 2549 } 2550 prior = page->freelist; 2551 counters = page->counters; 2552 set_freepointer(s, object, prior); 2553 new.counters = counters; 2554 was_frozen = new.frozen; 2555 new.inuse--; 2556 if ((!new.inuse || !prior) && !was_frozen) { 2557 2558 if (kmem_cache_has_cpu_partial(s) && !prior) { 2559 2560 /* 2561 * Slab was on no list before and will be 2562 * partially empty 2563 * We can defer the list move and instead 2564 * freeze it. 2565 */ 2566 new.frozen = 1; 2567 2568 } else { /* Needs to be taken off a list */ 2569 2570 n = get_node(s, page_to_nid(page)); 2571 /* 2572 * Speculatively acquire the list_lock. 2573 * If the cmpxchg does not succeed then we may 2574 * drop the list_lock without any processing. 2575 * 2576 * Otherwise the list_lock will synchronize with 2577 * other processors updating the list of slabs. 2578 */ 2579 spin_lock_irqsave(&n->list_lock, flags); 2580 2581 } 2582 } 2583 2584 } while (!cmpxchg_double_slab(s, page, 2585 prior, counters, 2586 object, new.counters, 2587 "__slab_free")); 2588 2589 if (likely(!n)) { 2590 2591 /* 2592 * If we just froze the page then put it onto the 2593 * per cpu partial list. 2594 */ 2595 if (new.frozen && !was_frozen) { 2596 put_cpu_partial(s, page, 1); 2597 stat(s, CPU_PARTIAL_FREE); 2598 } 2599 /* 2600 * The list lock was not taken therefore no list 2601 * activity can be necessary. 2602 */ 2603 if (was_frozen) 2604 stat(s, FREE_FROZEN); 2605 return; 2606 } 2607 2608 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) 2609 goto slab_empty; 2610 2611 /* 2612 * Objects left in the slab. If it was not on the partial list before 2613 * then add it. 2614 */ 2615 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2616 if (kmem_cache_debug(s)) 2617 remove_full(s, n, page); 2618 add_partial(n, page, DEACTIVATE_TO_TAIL); 2619 stat(s, FREE_ADD_PARTIAL); 2620 } 2621 spin_unlock_irqrestore(&n->list_lock, flags); 2622 return; 2623 2624 slab_empty: 2625 if (prior) { 2626 /* 2627 * Slab on the partial list. 2628 */ 2629 remove_partial(n, page); 2630 stat(s, FREE_REMOVE_PARTIAL); 2631 } else { 2632 /* Slab must be on the full list */ 2633 remove_full(s, n, page); 2634 } 2635 2636 spin_unlock_irqrestore(&n->list_lock, flags); 2637 stat(s, FREE_SLAB); 2638 discard_slab(s, page); 2639 } 2640 2641 /* 2642 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2643 * can perform fastpath freeing without additional function calls. 2644 * 2645 * The fastpath is only possible if we are freeing to the current cpu slab 2646 * of this processor. This typically the case if we have just allocated 2647 * the item before. 2648 * 2649 * If fastpath is not possible then fall back to __slab_free where we deal 2650 * with all sorts of special processing. 2651 */ 2652 static __always_inline void slab_free(struct kmem_cache *s, 2653 struct page *page, void *x, unsigned long addr) 2654 { 2655 void **object = (void *)x; 2656 struct kmem_cache_cpu *c; 2657 unsigned long tid; 2658 2659 slab_free_hook(s, x); 2660 2661 redo: 2662 /* 2663 * Determine the currently cpus per cpu slab. 2664 * The cpu may change afterward. However that does not matter since 2665 * data is retrieved via this pointer. If we are on the same cpu 2666 * during the cmpxchg then the free will succedd. 2667 */ 2668 preempt_disable(); 2669 c = __this_cpu_ptr(s->cpu_slab); 2670 2671 tid = c->tid; 2672 preempt_enable(); 2673 2674 if (likely(page == c->page)) { 2675 set_freepointer(s, object, c->freelist); 2676 2677 if (unlikely(!this_cpu_cmpxchg_double( 2678 s->cpu_slab->freelist, s->cpu_slab->tid, 2679 c->freelist, tid, 2680 object, next_tid(tid)))) { 2681 2682 note_cmpxchg_failure("slab_free", s, tid); 2683 goto redo; 2684 } 2685 stat(s, FREE_FASTPATH); 2686 } else 2687 __slab_free(s, page, x, addr); 2688 2689 } 2690 2691 void kmem_cache_free(struct kmem_cache *s, void *x) 2692 { 2693 s = cache_from_obj(s, x); 2694 if (!s) 2695 return; 2696 slab_free(s, virt_to_head_page(x), x, _RET_IP_); 2697 trace_kmem_cache_free(_RET_IP_, x); 2698 } 2699 EXPORT_SYMBOL(kmem_cache_free); 2700 2701 /* 2702 * Object placement in a slab is made very easy because we always start at 2703 * offset 0. If we tune the size of the object to the alignment then we can 2704 * get the required alignment by putting one properly sized object after 2705 * another. 2706 * 2707 * Notice that the allocation order determines the sizes of the per cpu 2708 * caches. Each processor has always one slab available for allocations. 2709 * Increasing the allocation order reduces the number of times that slabs 2710 * must be moved on and off the partial lists and is therefore a factor in 2711 * locking overhead. 2712 */ 2713 2714 /* 2715 * Mininum / Maximum order of slab pages. This influences locking overhead 2716 * and slab fragmentation. A higher order reduces the number of partial slabs 2717 * and increases the number of allocations possible without having to 2718 * take the list_lock. 2719 */ 2720 static int slub_min_order; 2721 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2722 static int slub_min_objects; 2723 2724 /* 2725 * Merge control. If this is set then no merging of slab caches will occur. 2726 * (Could be removed. This was introduced to pacify the merge skeptics.) 2727 */ 2728 static int slub_nomerge; 2729 2730 /* 2731 * Calculate the order of allocation given an slab object size. 2732 * 2733 * The order of allocation has significant impact on performance and other 2734 * system components. Generally order 0 allocations should be preferred since 2735 * order 0 does not cause fragmentation in the page allocator. Larger objects 2736 * be problematic to put into order 0 slabs because there may be too much 2737 * unused space left. We go to a higher order if more than 1/16th of the slab 2738 * would be wasted. 2739 * 2740 * In order to reach satisfactory performance we must ensure that a minimum 2741 * number of objects is in one slab. Otherwise we may generate too much 2742 * activity on the partial lists which requires taking the list_lock. This is 2743 * less a concern for large slabs though which are rarely used. 2744 * 2745 * slub_max_order specifies the order where we begin to stop considering the 2746 * number of objects in a slab as critical. If we reach slub_max_order then 2747 * we try to keep the page order as low as possible. So we accept more waste 2748 * of space in favor of a small page order. 2749 * 2750 * Higher order allocations also allow the placement of more objects in a 2751 * slab and thereby reduce object handling overhead. If the user has 2752 * requested a higher mininum order then we start with that one instead of 2753 * the smallest order which will fit the object. 2754 */ 2755 static inline int slab_order(int size, int min_objects, 2756 int max_order, int fract_leftover, int reserved) 2757 { 2758 int order; 2759 int rem; 2760 int min_order = slub_min_order; 2761 2762 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2763 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2764 2765 for (order = max(min_order, 2766 fls(min_objects * size - 1) - PAGE_SHIFT); 2767 order <= max_order; order++) { 2768 2769 unsigned long slab_size = PAGE_SIZE << order; 2770 2771 if (slab_size < min_objects * size + reserved) 2772 continue; 2773 2774 rem = (slab_size - reserved) % size; 2775 2776 if (rem <= slab_size / fract_leftover) 2777 break; 2778 2779 } 2780 2781 return order; 2782 } 2783 2784 static inline int calculate_order(int size, int reserved) 2785 { 2786 int order; 2787 int min_objects; 2788 int fraction; 2789 int max_objects; 2790 2791 /* 2792 * Attempt to find best configuration for a slab. This 2793 * works by first attempting to generate a layout with 2794 * the best configuration and backing off gradually. 2795 * 2796 * First we reduce the acceptable waste in a slab. Then 2797 * we reduce the minimum objects required in a slab. 2798 */ 2799 min_objects = slub_min_objects; 2800 if (!min_objects) 2801 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2802 max_objects = order_objects(slub_max_order, size, reserved); 2803 min_objects = min(min_objects, max_objects); 2804 2805 while (min_objects > 1) { 2806 fraction = 16; 2807 while (fraction >= 4) { 2808 order = slab_order(size, min_objects, 2809 slub_max_order, fraction, reserved); 2810 if (order <= slub_max_order) 2811 return order; 2812 fraction /= 2; 2813 } 2814 min_objects--; 2815 } 2816 2817 /* 2818 * We were unable to place multiple objects in a slab. Now 2819 * lets see if we can place a single object there. 2820 */ 2821 order = slab_order(size, 1, slub_max_order, 1, reserved); 2822 if (order <= slub_max_order) 2823 return order; 2824 2825 /* 2826 * Doh this slab cannot be placed using slub_max_order. 2827 */ 2828 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2829 if (order < MAX_ORDER) 2830 return order; 2831 return -ENOSYS; 2832 } 2833 2834 static void 2835 init_kmem_cache_node(struct kmem_cache_node *n) 2836 { 2837 n->nr_partial = 0; 2838 spin_lock_init(&n->list_lock); 2839 INIT_LIST_HEAD(&n->partial); 2840 #ifdef CONFIG_SLUB_DEBUG 2841 atomic_long_set(&n->nr_slabs, 0); 2842 atomic_long_set(&n->total_objects, 0); 2843 INIT_LIST_HEAD(&n->full); 2844 #endif 2845 } 2846 2847 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2848 { 2849 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2850 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 2851 2852 /* 2853 * Must align to double word boundary for the double cmpxchg 2854 * instructions to work; see __pcpu_double_call_return_bool(). 2855 */ 2856 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2857 2 * sizeof(void *)); 2858 2859 if (!s->cpu_slab) 2860 return 0; 2861 2862 init_kmem_cache_cpus(s); 2863 2864 return 1; 2865 } 2866 2867 static struct kmem_cache *kmem_cache_node; 2868 2869 /* 2870 * No kmalloc_node yet so do it by hand. We know that this is the first 2871 * slab on the node for this slabcache. There are no concurrent accesses 2872 * possible. 2873 * 2874 * Note that this function only works on the kmem_cache_node 2875 * when allocating for the kmem_cache_node. This is used for bootstrapping 2876 * memory on a fresh node that has no slab structures yet. 2877 */ 2878 static void early_kmem_cache_node_alloc(int node) 2879 { 2880 struct page *page; 2881 struct kmem_cache_node *n; 2882 2883 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2884 2885 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2886 2887 BUG_ON(!page); 2888 if (page_to_nid(page) != node) { 2889 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2890 "node %d\n", node); 2891 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2892 "in order to be able to continue\n"); 2893 } 2894 2895 n = page->freelist; 2896 BUG_ON(!n); 2897 page->freelist = get_freepointer(kmem_cache_node, n); 2898 page->inuse = 1; 2899 page->frozen = 0; 2900 kmem_cache_node->node[node] = n; 2901 #ifdef CONFIG_SLUB_DEBUG 2902 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2903 init_tracking(kmem_cache_node, n); 2904 #endif 2905 init_kmem_cache_node(n); 2906 inc_slabs_node(kmem_cache_node, node, page->objects); 2907 2908 /* 2909 * the lock is for lockdep's sake, not for any actual 2910 * race protection 2911 */ 2912 spin_lock(&n->list_lock); 2913 add_partial(n, page, DEACTIVATE_TO_HEAD); 2914 spin_unlock(&n->list_lock); 2915 } 2916 2917 static void free_kmem_cache_nodes(struct kmem_cache *s) 2918 { 2919 int node; 2920 2921 for_each_node_state(node, N_NORMAL_MEMORY) { 2922 struct kmem_cache_node *n = s->node[node]; 2923 2924 if (n) 2925 kmem_cache_free(kmem_cache_node, n); 2926 2927 s->node[node] = NULL; 2928 } 2929 } 2930 2931 static int init_kmem_cache_nodes(struct kmem_cache *s) 2932 { 2933 int node; 2934 2935 for_each_node_state(node, N_NORMAL_MEMORY) { 2936 struct kmem_cache_node *n; 2937 2938 if (slab_state == DOWN) { 2939 early_kmem_cache_node_alloc(node); 2940 continue; 2941 } 2942 n = kmem_cache_alloc_node(kmem_cache_node, 2943 GFP_KERNEL, node); 2944 2945 if (!n) { 2946 free_kmem_cache_nodes(s); 2947 return 0; 2948 } 2949 2950 s->node[node] = n; 2951 init_kmem_cache_node(n); 2952 } 2953 return 1; 2954 } 2955 2956 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2957 { 2958 if (min < MIN_PARTIAL) 2959 min = MIN_PARTIAL; 2960 else if (min > MAX_PARTIAL) 2961 min = MAX_PARTIAL; 2962 s->min_partial = min; 2963 } 2964 2965 /* 2966 * calculate_sizes() determines the order and the distribution of data within 2967 * a slab object. 2968 */ 2969 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2970 { 2971 unsigned long flags = s->flags; 2972 unsigned long size = s->object_size; 2973 int order; 2974 2975 /* 2976 * Round up object size to the next word boundary. We can only 2977 * place the free pointer at word boundaries and this determines 2978 * the possible location of the free pointer. 2979 */ 2980 size = ALIGN(size, sizeof(void *)); 2981 2982 #ifdef CONFIG_SLUB_DEBUG 2983 /* 2984 * Determine if we can poison the object itself. If the user of 2985 * the slab may touch the object after free or before allocation 2986 * then we should never poison the object itself. 2987 */ 2988 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2989 !s->ctor) 2990 s->flags |= __OBJECT_POISON; 2991 else 2992 s->flags &= ~__OBJECT_POISON; 2993 2994 2995 /* 2996 * If we are Redzoning then check if there is some space between the 2997 * end of the object and the free pointer. If not then add an 2998 * additional word to have some bytes to store Redzone information. 2999 */ 3000 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3001 size += sizeof(void *); 3002 #endif 3003 3004 /* 3005 * With that we have determined the number of bytes in actual use 3006 * by the object. This is the potential offset to the free pointer. 3007 */ 3008 s->inuse = size; 3009 3010 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 3011 s->ctor)) { 3012 /* 3013 * Relocate free pointer after the object if it is not 3014 * permitted to overwrite the first word of the object on 3015 * kmem_cache_free. 3016 * 3017 * This is the case if we do RCU, have a constructor or 3018 * destructor or are poisoning the objects. 3019 */ 3020 s->offset = size; 3021 size += sizeof(void *); 3022 } 3023 3024 #ifdef CONFIG_SLUB_DEBUG 3025 if (flags & SLAB_STORE_USER) 3026 /* 3027 * Need to store information about allocs and frees after 3028 * the object. 3029 */ 3030 size += 2 * sizeof(struct track); 3031 3032 if (flags & SLAB_RED_ZONE) 3033 /* 3034 * Add some empty padding so that we can catch 3035 * overwrites from earlier objects rather than let 3036 * tracking information or the free pointer be 3037 * corrupted if a user writes before the start 3038 * of the object. 3039 */ 3040 size += sizeof(void *); 3041 #endif 3042 3043 /* 3044 * SLUB stores one object immediately after another beginning from 3045 * offset 0. In order to align the objects we have to simply size 3046 * each object to conform to the alignment. 3047 */ 3048 size = ALIGN(size, s->align); 3049 s->size = size; 3050 if (forced_order >= 0) 3051 order = forced_order; 3052 else 3053 order = calculate_order(size, s->reserved); 3054 3055 if (order < 0) 3056 return 0; 3057 3058 s->allocflags = 0; 3059 if (order) 3060 s->allocflags |= __GFP_COMP; 3061 3062 if (s->flags & SLAB_CACHE_DMA) 3063 s->allocflags |= GFP_DMA; 3064 3065 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3066 s->allocflags |= __GFP_RECLAIMABLE; 3067 3068 /* 3069 * Determine the number of objects per slab 3070 */ 3071 s->oo = oo_make(order, size, s->reserved); 3072 s->min = oo_make(get_order(size), size, s->reserved); 3073 if (oo_objects(s->oo) > oo_objects(s->max)) 3074 s->max = s->oo; 3075 3076 return !!oo_objects(s->oo); 3077 } 3078 3079 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3080 { 3081 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3082 s->reserved = 0; 3083 3084 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3085 s->reserved = sizeof(struct rcu_head); 3086 3087 if (!calculate_sizes(s, -1)) 3088 goto error; 3089 if (disable_higher_order_debug) { 3090 /* 3091 * Disable debugging flags that store metadata if the min slab 3092 * order increased. 3093 */ 3094 if (get_order(s->size) > get_order(s->object_size)) { 3095 s->flags &= ~DEBUG_METADATA_FLAGS; 3096 s->offset = 0; 3097 if (!calculate_sizes(s, -1)) 3098 goto error; 3099 } 3100 } 3101 3102 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3103 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3104 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3105 /* Enable fast mode */ 3106 s->flags |= __CMPXCHG_DOUBLE; 3107 #endif 3108 3109 /* 3110 * The larger the object size is, the more pages we want on the partial 3111 * list to avoid pounding the page allocator excessively. 3112 */ 3113 set_min_partial(s, ilog2(s->size) / 2); 3114 3115 /* 3116 * cpu_partial determined the maximum number of objects kept in the 3117 * per cpu partial lists of a processor. 3118 * 3119 * Per cpu partial lists mainly contain slabs that just have one 3120 * object freed. If they are used for allocation then they can be 3121 * filled up again with minimal effort. The slab will never hit the 3122 * per node partial lists and therefore no locking will be required. 3123 * 3124 * This setting also determines 3125 * 3126 * A) The number of objects from per cpu partial slabs dumped to the 3127 * per node list when we reach the limit. 3128 * B) The number of objects in cpu partial slabs to extract from the 3129 * per node list when we run out of per cpu objects. We only fetch 3130 * 50% to keep some capacity around for frees. 3131 */ 3132 if (!kmem_cache_has_cpu_partial(s)) 3133 s->cpu_partial = 0; 3134 else if (s->size >= PAGE_SIZE) 3135 s->cpu_partial = 2; 3136 else if (s->size >= 1024) 3137 s->cpu_partial = 6; 3138 else if (s->size >= 256) 3139 s->cpu_partial = 13; 3140 else 3141 s->cpu_partial = 30; 3142 3143 #ifdef CONFIG_NUMA 3144 s->remote_node_defrag_ratio = 1000; 3145 #endif 3146 if (!init_kmem_cache_nodes(s)) 3147 goto error; 3148 3149 if (alloc_kmem_cache_cpus(s)) 3150 return 0; 3151 3152 free_kmem_cache_nodes(s); 3153 error: 3154 if (flags & SLAB_PANIC) 3155 panic("Cannot create slab %s size=%lu realsize=%u " 3156 "order=%u offset=%u flags=%lx\n", 3157 s->name, (unsigned long)s->size, s->size, 3158 oo_order(s->oo), s->offset, flags); 3159 return -EINVAL; 3160 } 3161 3162 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3163 const char *text) 3164 { 3165 #ifdef CONFIG_SLUB_DEBUG 3166 void *addr = page_address(page); 3167 void *p; 3168 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3169 sizeof(long), GFP_ATOMIC); 3170 if (!map) 3171 return; 3172 slab_err(s, page, text, s->name); 3173 slab_lock(page); 3174 3175 get_map(s, page, map); 3176 for_each_object(p, s, addr, page->objects) { 3177 3178 if (!test_bit(slab_index(p, s, addr), map)) { 3179 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 3180 p, p - addr); 3181 print_tracking(s, p); 3182 } 3183 } 3184 slab_unlock(page); 3185 kfree(map); 3186 #endif 3187 } 3188 3189 /* 3190 * Attempt to free all partial slabs on a node. 3191 * This is called from kmem_cache_close(). We must be the last thread 3192 * using the cache and therefore we do not need to lock anymore. 3193 */ 3194 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3195 { 3196 struct page *page, *h; 3197 3198 list_for_each_entry_safe(page, h, &n->partial, lru) { 3199 if (!page->inuse) { 3200 remove_partial(n, page); 3201 discard_slab(s, page); 3202 } else { 3203 list_slab_objects(s, page, 3204 "Objects remaining in %s on kmem_cache_close()"); 3205 } 3206 } 3207 } 3208 3209 /* 3210 * Release all resources used by a slab cache. 3211 */ 3212 static inline int kmem_cache_close(struct kmem_cache *s) 3213 { 3214 int node; 3215 3216 flush_all(s); 3217 /* Attempt to free all objects */ 3218 for_each_node_state(node, N_NORMAL_MEMORY) { 3219 struct kmem_cache_node *n = get_node(s, node); 3220 3221 free_partial(s, n); 3222 if (n->nr_partial || slabs_node(s, node)) 3223 return 1; 3224 } 3225 free_percpu(s->cpu_slab); 3226 free_kmem_cache_nodes(s); 3227 return 0; 3228 } 3229 3230 int __kmem_cache_shutdown(struct kmem_cache *s) 3231 { 3232 int rc = kmem_cache_close(s); 3233 3234 if (!rc) { 3235 /* 3236 * We do the same lock strategy around sysfs_slab_add, see 3237 * __kmem_cache_create. Because this is pretty much the last 3238 * operation we do and the lock will be released shortly after 3239 * that in slab_common.c, we could just move sysfs_slab_remove 3240 * to a later point in common code. We should do that when we 3241 * have a common sysfs framework for all allocators. 3242 */ 3243 mutex_unlock(&slab_mutex); 3244 sysfs_slab_remove(s); 3245 mutex_lock(&slab_mutex); 3246 } 3247 3248 return rc; 3249 } 3250 3251 /******************************************************************** 3252 * Kmalloc subsystem 3253 *******************************************************************/ 3254 3255 static int __init setup_slub_min_order(char *str) 3256 { 3257 get_option(&str, &slub_min_order); 3258 3259 return 1; 3260 } 3261 3262 __setup("slub_min_order=", setup_slub_min_order); 3263 3264 static int __init setup_slub_max_order(char *str) 3265 { 3266 get_option(&str, &slub_max_order); 3267 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3268 3269 return 1; 3270 } 3271 3272 __setup("slub_max_order=", setup_slub_max_order); 3273 3274 static int __init setup_slub_min_objects(char *str) 3275 { 3276 get_option(&str, &slub_min_objects); 3277 3278 return 1; 3279 } 3280 3281 __setup("slub_min_objects=", setup_slub_min_objects); 3282 3283 static int __init setup_slub_nomerge(char *str) 3284 { 3285 slub_nomerge = 1; 3286 return 1; 3287 } 3288 3289 __setup("slub_nomerge", setup_slub_nomerge); 3290 3291 void *__kmalloc(size_t size, gfp_t flags) 3292 { 3293 struct kmem_cache *s; 3294 void *ret; 3295 3296 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3297 return kmalloc_large(size, flags); 3298 3299 s = kmalloc_slab(size, flags); 3300 3301 if (unlikely(ZERO_OR_NULL_PTR(s))) 3302 return s; 3303 3304 ret = slab_alloc(s, flags, _RET_IP_); 3305 3306 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3307 3308 return ret; 3309 } 3310 EXPORT_SYMBOL(__kmalloc); 3311 3312 #ifdef CONFIG_NUMA 3313 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3314 { 3315 struct page *page; 3316 void *ptr = NULL; 3317 3318 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG; 3319 page = alloc_pages_node(node, flags, get_order(size)); 3320 if (page) 3321 ptr = page_address(page); 3322 3323 kmalloc_large_node_hook(ptr, size, flags); 3324 return ptr; 3325 } 3326 3327 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3328 { 3329 struct kmem_cache *s; 3330 void *ret; 3331 3332 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3333 ret = kmalloc_large_node(size, flags, node); 3334 3335 trace_kmalloc_node(_RET_IP_, ret, 3336 size, PAGE_SIZE << get_order(size), 3337 flags, node); 3338 3339 return ret; 3340 } 3341 3342 s = kmalloc_slab(size, flags); 3343 3344 if (unlikely(ZERO_OR_NULL_PTR(s))) 3345 return s; 3346 3347 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3348 3349 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3350 3351 return ret; 3352 } 3353 EXPORT_SYMBOL(__kmalloc_node); 3354 #endif 3355 3356 size_t ksize(const void *object) 3357 { 3358 struct page *page; 3359 3360 if (unlikely(object == ZERO_SIZE_PTR)) 3361 return 0; 3362 3363 page = virt_to_head_page(object); 3364 3365 if (unlikely(!PageSlab(page))) { 3366 WARN_ON(!PageCompound(page)); 3367 return PAGE_SIZE << compound_order(page); 3368 } 3369 3370 return slab_ksize(page->slab_cache); 3371 } 3372 EXPORT_SYMBOL(ksize); 3373 3374 void kfree(const void *x) 3375 { 3376 struct page *page; 3377 void *object = (void *)x; 3378 3379 trace_kfree(_RET_IP_, x); 3380 3381 if (unlikely(ZERO_OR_NULL_PTR(x))) 3382 return; 3383 3384 page = virt_to_head_page(x); 3385 if (unlikely(!PageSlab(page))) { 3386 BUG_ON(!PageCompound(page)); 3387 kfree_hook(x); 3388 __free_memcg_kmem_pages(page, compound_order(page)); 3389 return; 3390 } 3391 slab_free(page->slab_cache, page, object, _RET_IP_); 3392 } 3393 EXPORT_SYMBOL(kfree); 3394 3395 /* 3396 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 3397 * the remaining slabs by the number of items in use. The slabs with the 3398 * most items in use come first. New allocations will then fill those up 3399 * and thus they can be removed from the partial lists. 3400 * 3401 * The slabs with the least items are placed last. This results in them 3402 * being allocated from last increasing the chance that the last objects 3403 * are freed in them. 3404 */ 3405 int kmem_cache_shrink(struct kmem_cache *s) 3406 { 3407 int node; 3408 int i; 3409 struct kmem_cache_node *n; 3410 struct page *page; 3411 struct page *t; 3412 int objects = oo_objects(s->max); 3413 struct list_head *slabs_by_inuse = 3414 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 3415 unsigned long flags; 3416 3417 if (!slabs_by_inuse) 3418 return -ENOMEM; 3419 3420 flush_all(s); 3421 for_each_node_state(node, N_NORMAL_MEMORY) { 3422 n = get_node(s, node); 3423 3424 if (!n->nr_partial) 3425 continue; 3426 3427 for (i = 0; i < objects; i++) 3428 INIT_LIST_HEAD(slabs_by_inuse + i); 3429 3430 spin_lock_irqsave(&n->list_lock, flags); 3431 3432 /* 3433 * Build lists indexed by the items in use in each slab. 3434 * 3435 * Note that concurrent frees may occur while we hold the 3436 * list_lock. page->inuse here is the upper limit. 3437 */ 3438 list_for_each_entry_safe(page, t, &n->partial, lru) { 3439 list_move(&page->lru, slabs_by_inuse + page->inuse); 3440 if (!page->inuse) 3441 n->nr_partial--; 3442 } 3443 3444 /* 3445 * Rebuild the partial list with the slabs filled up most 3446 * first and the least used slabs at the end. 3447 */ 3448 for (i = objects - 1; i > 0; i--) 3449 list_splice(slabs_by_inuse + i, n->partial.prev); 3450 3451 spin_unlock_irqrestore(&n->list_lock, flags); 3452 3453 /* Release empty slabs */ 3454 list_for_each_entry_safe(page, t, slabs_by_inuse, lru) 3455 discard_slab(s, page); 3456 } 3457 3458 kfree(slabs_by_inuse); 3459 return 0; 3460 } 3461 EXPORT_SYMBOL(kmem_cache_shrink); 3462 3463 static int slab_mem_going_offline_callback(void *arg) 3464 { 3465 struct kmem_cache *s; 3466 3467 mutex_lock(&slab_mutex); 3468 list_for_each_entry(s, &slab_caches, list) 3469 kmem_cache_shrink(s); 3470 mutex_unlock(&slab_mutex); 3471 3472 return 0; 3473 } 3474 3475 static void slab_mem_offline_callback(void *arg) 3476 { 3477 struct kmem_cache_node *n; 3478 struct kmem_cache *s; 3479 struct memory_notify *marg = arg; 3480 int offline_node; 3481 3482 offline_node = marg->status_change_nid_normal; 3483 3484 /* 3485 * If the node still has available memory. we need kmem_cache_node 3486 * for it yet. 3487 */ 3488 if (offline_node < 0) 3489 return; 3490 3491 mutex_lock(&slab_mutex); 3492 list_for_each_entry(s, &slab_caches, list) { 3493 n = get_node(s, offline_node); 3494 if (n) { 3495 /* 3496 * if n->nr_slabs > 0, slabs still exist on the node 3497 * that is going down. We were unable to free them, 3498 * and offline_pages() function shouldn't call this 3499 * callback. So, we must fail. 3500 */ 3501 BUG_ON(slabs_node(s, offline_node)); 3502 3503 s->node[offline_node] = NULL; 3504 kmem_cache_free(kmem_cache_node, n); 3505 } 3506 } 3507 mutex_unlock(&slab_mutex); 3508 } 3509 3510 static int slab_mem_going_online_callback(void *arg) 3511 { 3512 struct kmem_cache_node *n; 3513 struct kmem_cache *s; 3514 struct memory_notify *marg = arg; 3515 int nid = marg->status_change_nid_normal; 3516 int ret = 0; 3517 3518 /* 3519 * If the node's memory is already available, then kmem_cache_node is 3520 * already created. Nothing to do. 3521 */ 3522 if (nid < 0) 3523 return 0; 3524 3525 /* 3526 * We are bringing a node online. No memory is available yet. We must 3527 * allocate a kmem_cache_node structure in order to bring the node 3528 * online. 3529 */ 3530 mutex_lock(&slab_mutex); 3531 list_for_each_entry(s, &slab_caches, list) { 3532 /* 3533 * XXX: kmem_cache_alloc_node will fallback to other nodes 3534 * since memory is not yet available from the node that 3535 * is brought up. 3536 */ 3537 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3538 if (!n) { 3539 ret = -ENOMEM; 3540 goto out; 3541 } 3542 init_kmem_cache_node(n); 3543 s->node[nid] = n; 3544 } 3545 out: 3546 mutex_unlock(&slab_mutex); 3547 return ret; 3548 } 3549 3550 static int slab_memory_callback(struct notifier_block *self, 3551 unsigned long action, void *arg) 3552 { 3553 int ret = 0; 3554 3555 switch (action) { 3556 case MEM_GOING_ONLINE: 3557 ret = slab_mem_going_online_callback(arg); 3558 break; 3559 case MEM_GOING_OFFLINE: 3560 ret = slab_mem_going_offline_callback(arg); 3561 break; 3562 case MEM_OFFLINE: 3563 case MEM_CANCEL_ONLINE: 3564 slab_mem_offline_callback(arg); 3565 break; 3566 case MEM_ONLINE: 3567 case MEM_CANCEL_OFFLINE: 3568 break; 3569 } 3570 if (ret) 3571 ret = notifier_from_errno(ret); 3572 else 3573 ret = NOTIFY_OK; 3574 return ret; 3575 } 3576 3577 static struct notifier_block slab_memory_callback_nb = { 3578 .notifier_call = slab_memory_callback, 3579 .priority = SLAB_CALLBACK_PRI, 3580 }; 3581 3582 /******************************************************************** 3583 * Basic setup of slabs 3584 *******************************************************************/ 3585 3586 /* 3587 * Used for early kmem_cache structures that were allocated using 3588 * the page allocator. Allocate them properly then fix up the pointers 3589 * that may be pointing to the wrong kmem_cache structure. 3590 */ 3591 3592 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 3593 { 3594 int node; 3595 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 3596 3597 memcpy(s, static_cache, kmem_cache->object_size); 3598 3599 /* 3600 * This runs very early, and only the boot processor is supposed to be 3601 * up. Even if it weren't true, IRQs are not up so we couldn't fire 3602 * IPIs around. 3603 */ 3604 __flush_cpu_slab(s, smp_processor_id()); 3605 for_each_node_state(node, N_NORMAL_MEMORY) { 3606 struct kmem_cache_node *n = get_node(s, node); 3607 struct page *p; 3608 3609 if (n) { 3610 list_for_each_entry(p, &n->partial, lru) 3611 p->slab_cache = s; 3612 3613 #ifdef CONFIG_SLUB_DEBUG 3614 list_for_each_entry(p, &n->full, lru) 3615 p->slab_cache = s; 3616 #endif 3617 } 3618 } 3619 list_add(&s->list, &slab_caches); 3620 return s; 3621 } 3622 3623 void __init kmem_cache_init(void) 3624 { 3625 static __initdata struct kmem_cache boot_kmem_cache, 3626 boot_kmem_cache_node; 3627 3628 if (debug_guardpage_minorder()) 3629 slub_max_order = 0; 3630 3631 kmem_cache_node = &boot_kmem_cache_node; 3632 kmem_cache = &boot_kmem_cache; 3633 3634 create_boot_cache(kmem_cache_node, "kmem_cache_node", 3635 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 3636 3637 register_hotmemory_notifier(&slab_memory_callback_nb); 3638 3639 /* Able to allocate the per node structures */ 3640 slab_state = PARTIAL; 3641 3642 create_boot_cache(kmem_cache, "kmem_cache", 3643 offsetof(struct kmem_cache, node) + 3644 nr_node_ids * sizeof(struct kmem_cache_node *), 3645 SLAB_HWCACHE_ALIGN); 3646 3647 kmem_cache = bootstrap(&boot_kmem_cache); 3648 3649 /* 3650 * Allocate kmem_cache_node properly from the kmem_cache slab. 3651 * kmem_cache_node is separately allocated so no need to 3652 * update any list pointers. 3653 */ 3654 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 3655 3656 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3657 create_kmalloc_caches(0); 3658 3659 #ifdef CONFIG_SMP 3660 register_cpu_notifier(&slab_notifier); 3661 #endif 3662 3663 printk(KERN_INFO 3664 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d," 3665 " CPUs=%d, Nodes=%d\n", 3666 cache_line_size(), 3667 slub_min_order, slub_max_order, slub_min_objects, 3668 nr_cpu_ids, nr_node_ids); 3669 } 3670 3671 void __init kmem_cache_init_late(void) 3672 { 3673 } 3674 3675 /* 3676 * Find a mergeable slab cache 3677 */ 3678 static int slab_unmergeable(struct kmem_cache *s) 3679 { 3680 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3681 return 1; 3682 3683 if (s->ctor) 3684 return 1; 3685 3686 /* 3687 * We may have set a slab to be unmergeable during bootstrap. 3688 */ 3689 if (s->refcount < 0) 3690 return 1; 3691 3692 return 0; 3693 } 3694 3695 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size, 3696 size_t align, unsigned long flags, const char *name, 3697 void (*ctor)(void *)) 3698 { 3699 struct kmem_cache *s; 3700 3701 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3702 return NULL; 3703 3704 if (ctor) 3705 return NULL; 3706 3707 size = ALIGN(size, sizeof(void *)); 3708 align = calculate_alignment(flags, align, size); 3709 size = ALIGN(size, align); 3710 flags = kmem_cache_flags(size, flags, name, NULL); 3711 3712 list_for_each_entry(s, &slab_caches, list) { 3713 if (slab_unmergeable(s)) 3714 continue; 3715 3716 if (size > s->size) 3717 continue; 3718 3719 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3720 continue; 3721 /* 3722 * Check if alignment is compatible. 3723 * Courtesy of Adrian Drzewiecki 3724 */ 3725 if ((s->size & ~(align - 1)) != s->size) 3726 continue; 3727 3728 if (s->size - size >= sizeof(void *)) 3729 continue; 3730 3731 if (!cache_match_memcg(s, memcg)) 3732 continue; 3733 3734 return s; 3735 } 3736 return NULL; 3737 } 3738 3739 struct kmem_cache * 3740 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size, 3741 size_t align, unsigned long flags, void (*ctor)(void *)) 3742 { 3743 struct kmem_cache *s; 3744 3745 s = find_mergeable(memcg, size, align, flags, name, ctor); 3746 if (s) { 3747 s->refcount++; 3748 /* 3749 * Adjust the object sizes so that we clear 3750 * the complete object on kzalloc. 3751 */ 3752 s->object_size = max(s->object_size, (int)size); 3753 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3754 3755 if (sysfs_slab_alias(s, name)) { 3756 s->refcount--; 3757 s = NULL; 3758 } 3759 } 3760 3761 return s; 3762 } 3763 3764 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 3765 { 3766 int err; 3767 3768 err = kmem_cache_open(s, flags); 3769 if (err) 3770 return err; 3771 3772 /* Mutex is not taken during early boot */ 3773 if (slab_state <= UP) 3774 return 0; 3775 3776 memcg_propagate_slab_attrs(s); 3777 mutex_unlock(&slab_mutex); 3778 err = sysfs_slab_add(s); 3779 mutex_lock(&slab_mutex); 3780 3781 if (err) 3782 kmem_cache_close(s); 3783 3784 return err; 3785 } 3786 3787 #ifdef CONFIG_SMP 3788 /* 3789 * Use the cpu notifier to insure that the cpu slabs are flushed when 3790 * necessary. 3791 */ 3792 static int slab_cpuup_callback(struct notifier_block *nfb, 3793 unsigned long action, void *hcpu) 3794 { 3795 long cpu = (long)hcpu; 3796 struct kmem_cache *s; 3797 unsigned long flags; 3798 3799 switch (action) { 3800 case CPU_UP_CANCELED: 3801 case CPU_UP_CANCELED_FROZEN: 3802 case CPU_DEAD: 3803 case CPU_DEAD_FROZEN: 3804 mutex_lock(&slab_mutex); 3805 list_for_each_entry(s, &slab_caches, list) { 3806 local_irq_save(flags); 3807 __flush_cpu_slab(s, cpu); 3808 local_irq_restore(flags); 3809 } 3810 mutex_unlock(&slab_mutex); 3811 break; 3812 default: 3813 break; 3814 } 3815 return NOTIFY_OK; 3816 } 3817 3818 static struct notifier_block slab_notifier = { 3819 .notifier_call = slab_cpuup_callback 3820 }; 3821 3822 #endif 3823 3824 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3825 { 3826 struct kmem_cache *s; 3827 void *ret; 3828 3829 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3830 return kmalloc_large(size, gfpflags); 3831 3832 s = kmalloc_slab(size, gfpflags); 3833 3834 if (unlikely(ZERO_OR_NULL_PTR(s))) 3835 return s; 3836 3837 ret = slab_alloc(s, gfpflags, caller); 3838 3839 /* Honor the call site pointer we received. */ 3840 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3841 3842 return ret; 3843 } 3844 3845 #ifdef CONFIG_NUMA 3846 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3847 int node, unsigned long caller) 3848 { 3849 struct kmem_cache *s; 3850 void *ret; 3851 3852 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3853 ret = kmalloc_large_node(size, gfpflags, node); 3854 3855 trace_kmalloc_node(caller, ret, 3856 size, PAGE_SIZE << get_order(size), 3857 gfpflags, node); 3858 3859 return ret; 3860 } 3861 3862 s = kmalloc_slab(size, gfpflags); 3863 3864 if (unlikely(ZERO_OR_NULL_PTR(s))) 3865 return s; 3866 3867 ret = slab_alloc_node(s, gfpflags, node, caller); 3868 3869 /* Honor the call site pointer we received. */ 3870 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3871 3872 return ret; 3873 } 3874 #endif 3875 3876 #ifdef CONFIG_SYSFS 3877 static int count_inuse(struct page *page) 3878 { 3879 return page->inuse; 3880 } 3881 3882 static int count_total(struct page *page) 3883 { 3884 return page->objects; 3885 } 3886 #endif 3887 3888 #ifdef CONFIG_SLUB_DEBUG 3889 static int validate_slab(struct kmem_cache *s, struct page *page, 3890 unsigned long *map) 3891 { 3892 void *p; 3893 void *addr = page_address(page); 3894 3895 if (!check_slab(s, page) || 3896 !on_freelist(s, page, NULL)) 3897 return 0; 3898 3899 /* Now we know that a valid freelist exists */ 3900 bitmap_zero(map, page->objects); 3901 3902 get_map(s, page, map); 3903 for_each_object(p, s, addr, page->objects) { 3904 if (test_bit(slab_index(p, s, addr), map)) 3905 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 3906 return 0; 3907 } 3908 3909 for_each_object(p, s, addr, page->objects) 3910 if (!test_bit(slab_index(p, s, addr), map)) 3911 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 3912 return 0; 3913 return 1; 3914 } 3915 3916 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3917 unsigned long *map) 3918 { 3919 slab_lock(page); 3920 validate_slab(s, page, map); 3921 slab_unlock(page); 3922 } 3923 3924 static int validate_slab_node(struct kmem_cache *s, 3925 struct kmem_cache_node *n, unsigned long *map) 3926 { 3927 unsigned long count = 0; 3928 struct page *page; 3929 unsigned long flags; 3930 3931 spin_lock_irqsave(&n->list_lock, flags); 3932 3933 list_for_each_entry(page, &n->partial, lru) { 3934 validate_slab_slab(s, page, map); 3935 count++; 3936 } 3937 if (count != n->nr_partial) 3938 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3939 "counter=%ld\n", s->name, count, n->nr_partial); 3940 3941 if (!(s->flags & SLAB_STORE_USER)) 3942 goto out; 3943 3944 list_for_each_entry(page, &n->full, lru) { 3945 validate_slab_slab(s, page, map); 3946 count++; 3947 } 3948 if (count != atomic_long_read(&n->nr_slabs)) 3949 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3950 "counter=%ld\n", s->name, count, 3951 atomic_long_read(&n->nr_slabs)); 3952 3953 out: 3954 spin_unlock_irqrestore(&n->list_lock, flags); 3955 return count; 3956 } 3957 3958 static long validate_slab_cache(struct kmem_cache *s) 3959 { 3960 int node; 3961 unsigned long count = 0; 3962 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3963 sizeof(unsigned long), GFP_KERNEL); 3964 3965 if (!map) 3966 return -ENOMEM; 3967 3968 flush_all(s); 3969 for_each_node_state(node, N_NORMAL_MEMORY) { 3970 struct kmem_cache_node *n = get_node(s, node); 3971 3972 count += validate_slab_node(s, n, map); 3973 } 3974 kfree(map); 3975 return count; 3976 } 3977 /* 3978 * Generate lists of code addresses where slabcache objects are allocated 3979 * and freed. 3980 */ 3981 3982 struct location { 3983 unsigned long count; 3984 unsigned long addr; 3985 long long sum_time; 3986 long min_time; 3987 long max_time; 3988 long min_pid; 3989 long max_pid; 3990 DECLARE_BITMAP(cpus, NR_CPUS); 3991 nodemask_t nodes; 3992 }; 3993 3994 struct loc_track { 3995 unsigned long max; 3996 unsigned long count; 3997 struct location *loc; 3998 }; 3999 4000 static void free_loc_track(struct loc_track *t) 4001 { 4002 if (t->max) 4003 free_pages((unsigned long)t->loc, 4004 get_order(sizeof(struct location) * t->max)); 4005 } 4006 4007 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4008 { 4009 struct location *l; 4010 int order; 4011 4012 order = get_order(sizeof(struct location) * max); 4013 4014 l = (void *)__get_free_pages(flags, order); 4015 if (!l) 4016 return 0; 4017 4018 if (t->count) { 4019 memcpy(l, t->loc, sizeof(struct location) * t->count); 4020 free_loc_track(t); 4021 } 4022 t->max = max; 4023 t->loc = l; 4024 return 1; 4025 } 4026 4027 static int add_location(struct loc_track *t, struct kmem_cache *s, 4028 const struct track *track) 4029 { 4030 long start, end, pos; 4031 struct location *l; 4032 unsigned long caddr; 4033 unsigned long age = jiffies - track->when; 4034 4035 start = -1; 4036 end = t->count; 4037 4038 for ( ; ; ) { 4039 pos = start + (end - start + 1) / 2; 4040 4041 /* 4042 * There is nothing at "end". If we end up there 4043 * we need to add something to before end. 4044 */ 4045 if (pos == end) 4046 break; 4047 4048 caddr = t->loc[pos].addr; 4049 if (track->addr == caddr) { 4050 4051 l = &t->loc[pos]; 4052 l->count++; 4053 if (track->when) { 4054 l->sum_time += age; 4055 if (age < l->min_time) 4056 l->min_time = age; 4057 if (age > l->max_time) 4058 l->max_time = age; 4059 4060 if (track->pid < l->min_pid) 4061 l->min_pid = track->pid; 4062 if (track->pid > l->max_pid) 4063 l->max_pid = track->pid; 4064 4065 cpumask_set_cpu(track->cpu, 4066 to_cpumask(l->cpus)); 4067 } 4068 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4069 return 1; 4070 } 4071 4072 if (track->addr < caddr) 4073 end = pos; 4074 else 4075 start = pos; 4076 } 4077 4078 /* 4079 * Not found. Insert new tracking element. 4080 */ 4081 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4082 return 0; 4083 4084 l = t->loc + pos; 4085 if (pos < t->count) 4086 memmove(l + 1, l, 4087 (t->count - pos) * sizeof(struct location)); 4088 t->count++; 4089 l->count = 1; 4090 l->addr = track->addr; 4091 l->sum_time = age; 4092 l->min_time = age; 4093 l->max_time = age; 4094 l->min_pid = track->pid; 4095 l->max_pid = track->pid; 4096 cpumask_clear(to_cpumask(l->cpus)); 4097 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4098 nodes_clear(l->nodes); 4099 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4100 return 1; 4101 } 4102 4103 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4104 struct page *page, enum track_item alloc, 4105 unsigned long *map) 4106 { 4107 void *addr = page_address(page); 4108 void *p; 4109 4110 bitmap_zero(map, page->objects); 4111 get_map(s, page, map); 4112 4113 for_each_object(p, s, addr, page->objects) 4114 if (!test_bit(slab_index(p, s, addr), map)) 4115 add_location(t, s, get_track(s, p, alloc)); 4116 } 4117 4118 static int list_locations(struct kmem_cache *s, char *buf, 4119 enum track_item alloc) 4120 { 4121 int len = 0; 4122 unsigned long i; 4123 struct loc_track t = { 0, 0, NULL }; 4124 int node; 4125 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4126 sizeof(unsigned long), GFP_KERNEL); 4127 4128 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4129 GFP_TEMPORARY)) { 4130 kfree(map); 4131 return sprintf(buf, "Out of memory\n"); 4132 } 4133 /* Push back cpu slabs */ 4134 flush_all(s); 4135 4136 for_each_node_state(node, N_NORMAL_MEMORY) { 4137 struct kmem_cache_node *n = get_node(s, node); 4138 unsigned long flags; 4139 struct page *page; 4140 4141 if (!atomic_long_read(&n->nr_slabs)) 4142 continue; 4143 4144 spin_lock_irqsave(&n->list_lock, flags); 4145 list_for_each_entry(page, &n->partial, lru) 4146 process_slab(&t, s, page, alloc, map); 4147 list_for_each_entry(page, &n->full, lru) 4148 process_slab(&t, s, page, alloc, map); 4149 spin_unlock_irqrestore(&n->list_lock, flags); 4150 } 4151 4152 for (i = 0; i < t.count; i++) { 4153 struct location *l = &t.loc[i]; 4154 4155 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4156 break; 4157 len += sprintf(buf + len, "%7ld ", l->count); 4158 4159 if (l->addr) 4160 len += sprintf(buf + len, "%pS", (void *)l->addr); 4161 else 4162 len += sprintf(buf + len, "<not-available>"); 4163 4164 if (l->sum_time != l->min_time) { 4165 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4166 l->min_time, 4167 (long)div_u64(l->sum_time, l->count), 4168 l->max_time); 4169 } else 4170 len += sprintf(buf + len, " age=%ld", 4171 l->min_time); 4172 4173 if (l->min_pid != l->max_pid) 4174 len += sprintf(buf + len, " pid=%ld-%ld", 4175 l->min_pid, l->max_pid); 4176 else 4177 len += sprintf(buf + len, " pid=%ld", 4178 l->min_pid); 4179 4180 if (num_online_cpus() > 1 && 4181 !cpumask_empty(to_cpumask(l->cpus)) && 4182 len < PAGE_SIZE - 60) { 4183 len += sprintf(buf + len, " cpus="); 4184 len += cpulist_scnprintf(buf + len, 4185 PAGE_SIZE - len - 50, 4186 to_cpumask(l->cpus)); 4187 } 4188 4189 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4190 len < PAGE_SIZE - 60) { 4191 len += sprintf(buf + len, " nodes="); 4192 len += nodelist_scnprintf(buf + len, 4193 PAGE_SIZE - len - 50, 4194 l->nodes); 4195 } 4196 4197 len += sprintf(buf + len, "\n"); 4198 } 4199 4200 free_loc_track(&t); 4201 kfree(map); 4202 if (!t.count) 4203 len += sprintf(buf, "No data\n"); 4204 return len; 4205 } 4206 #endif 4207 4208 #ifdef SLUB_RESILIENCY_TEST 4209 static void resiliency_test(void) 4210 { 4211 u8 *p; 4212 4213 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4214 4215 printk(KERN_ERR "SLUB resiliency testing\n"); 4216 printk(KERN_ERR "-----------------------\n"); 4217 printk(KERN_ERR "A. Corruption after allocation\n"); 4218 4219 p = kzalloc(16, GFP_KERNEL); 4220 p[16] = 0x12; 4221 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 4222 " 0x12->0x%p\n\n", p + 16); 4223 4224 validate_slab_cache(kmalloc_caches[4]); 4225 4226 /* Hmmm... The next two are dangerous */ 4227 p = kzalloc(32, GFP_KERNEL); 4228 p[32 + sizeof(void *)] = 0x34; 4229 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 4230 " 0x34 -> -0x%p\n", p); 4231 printk(KERN_ERR 4232 "If allocated object is overwritten then not detectable\n\n"); 4233 4234 validate_slab_cache(kmalloc_caches[5]); 4235 p = kzalloc(64, GFP_KERNEL); 4236 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4237 *p = 0x56; 4238 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4239 p); 4240 printk(KERN_ERR 4241 "If allocated object is overwritten then not detectable\n\n"); 4242 validate_slab_cache(kmalloc_caches[6]); 4243 4244 printk(KERN_ERR "\nB. Corruption after free\n"); 4245 p = kzalloc(128, GFP_KERNEL); 4246 kfree(p); 4247 *p = 0x78; 4248 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4249 validate_slab_cache(kmalloc_caches[7]); 4250 4251 p = kzalloc(256, GFP_KERNEL); 4252 kfree(p); 4253 p[50] = 0x9a; 4254 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 4255 p); 4256 validate_slab_cache(kmalloc_caches[8]); 4257 4258 p = kzalloc(512, GFP_KERNEL); 4259 kfree(p); 4260 p[512] = 0xab; 4261 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4262 validate_slab_cache(kmalloc_caches[9]); 4263 } 4264 #else 4265 #ifdef CONFIG_SYSFS 4266 static void resiliency_test(void) {}; 4267 #endif 4268 #endif 4269 4270 #ifdef CONFIG_SYSFS 4271 enum slab_stat_type { 4272 SL_ALL, /* All slabs */ 4273 SL_PARTIAL, /* Only partially allocated slabs */ 4274 SL_CPU, /* Only slabs used for cpu caches */ 4275 SL_OBJECTS, /* Determine allocated objects not slabs */ 4276 SL_TOTAL /* Determine object capacity not slabs */ 4277 }; 4278 4279 #define SO_ALL (1 << SL_ALL) 4280 #define SO_PARTIAL (1 << SL_PARTIAL) 4281 #define SO_CPU (1 << SL_CPU) 4282 #define SO_OBJECTS (1 << SL_OBJECTS) 4283 #define SO_TOTAL (1 << SL_TOTAL) 4284 4285 static ssize_t show_slab_objects(struct kmem_cache *s, 4286 char *buf, unsigned long flags) 4287 { 4288 unsigned long total = 0; 4289 int node; 4290 int x; 4291 unsigned long *nodes; 4292 4293 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4294 if (!nodes) 4295 return -ENOMEM; 4296 4297 if (flags & SO_CPU) { 4298 int cpu; 4299 4300 for_each_possible_cpu(cpu) { 4301 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4302 cpu); 4303 int node; 4304 struct page *page; 4305 4306 page = ACCESS_ONCE(c->page); 4307 if (!page) 4308 continue; 4309 4310 node = page_to_nid(page); 4311 if (flags & SO_TOTAL) 4312 x = page->objects; 4313 else if (flags & SO_OBJECTS) 4314 x = page->inuse; 4315 else 4316 x = 1; 4317 4318 total += x; 4319 nodes[node] += x; 4320 4321 page = ACCESS_ONCE(c->partial); 4322 if (page) { 4323 node = page_to_nid(page); 4324 if (flags & SO_TOTAL) 4325 WARN_ON_ONCE(1); 4326 else if (flags & SO_OBJECTS) 4327 WARN_ON_ONCE(1); 4328 else 4329 x = page->pages; 4330 total += x; 4331 nodes[node] += x; 4332 } 4333 } 4334 } 4335 4336 lock_memory_hotplug(); 4337 #ifdef CONFIG_SLUB_DEBUG 4338 if (flags & SO_ALL) { 4339 for_each_node_state(node, N_NORMAL_MEMORY) { 4340 struct kmem_cache_node *n = get_node(s, node); 4341 4342 if (flags & SO_TOTAL) 4343 x = atomic_long_read(&n->total_objects); 4344 else if (flags & SO_OBJECTS) 4345 x = atomic_long_read(&n->total_objects) - 4346 count_partial(n, count_free); 4347 else 4348 x = atomic_long_read(&n->nr_slabs); 4349 total += x; 4350 nodes[node] += x; 4351 } 4352 4353 } else 4354 #endif 4355 if (flags & SO_PARTIAL) { 4356 for_each_node_state(node, N_NORMAL_MEMORY) { 4357 struct kmem_cache_node *n = get_node(s, node); 4358 4359 if (flags & SO_TOTAL) 4360 x = count_partial(n, count_total); 4361 else if (flags & SO_OBJECTS) 4362 x = count_partial(n, count_inuse); 4363 else 4364 x = n->nr_partial; 4365 total += x; 4366 nodes[node] += x; 4367 } 4368 } 4369 x = sprintf(buf, "%lu", total); 4370 #ifdef CONFIG_NUMA 4371 for_each_node_state(node, N_NORMAL_MEMORY) 4372 if (nodes[node]) 4373 x += sprintf(buf + x, " N%d=%lu", 4374 node, nodes[node]); 4375 #endif 4376 unlock_memory_hotplug(); 4377 kfree(nodes); 4378 return x + sprintf(buf + x, "\n"); 4379 } 4380 4381 #ifdef CONFIG_SLUB_DEBUG 4382 static int any_slab_objects(struct kmem_cache *s) 4383 { 4384 int node; 4385 4386 for_each_online_node(node) { 4387 struct kmem_cache_node *n = get_node(s, node); 4388 4389 if (!n) 4390 continue; 4391 4392 if (atomic_long_read(&n->total_objects)) 4393 return 1; 4394 } 4395 return 0; 4396 } 4397 #endif 4398 4399 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4400 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4401 4402 struct slab_attribute { 4403 struct attribute attr; 4404 ssize_t (*show)(struct kmem_cache *s, char *buf); 4405 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4406 }; 4407 4408 #define SLAB_ATTR_RO(_name) \ 4409 static struct slab_attribute _name##_attr = \ 4410 __ATTR(_name, 0400, _name##_show, NULL) 4411 4412 #define SLAB_ATTR(_name) \ 4413 static struct slab_attribute _name##_attr = \ 4414 __ATTR(_name, 0600, _name##_show, _name##_store) 4415 4416 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4417 { 4418 return sprintf(buf, "%d\n", s->size); 4419 } 4420 SLAB_ATTR_RO(slab_size); 4421 4422 static ssize_t align_show(struct kmem_cache *s, char *buf) 4423 { 4424 return sprintf(buf, "%d\n", s->align); 4425 } 4426 SLAB_ATTR_RO(align); 4427 4428 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4429 { 4430 return sprintf(buf, "%d\n", s->object_size); 4431 } 4432 SLAB_ATTR_RO(object_size); 4433 4434 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4435 { 4436 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4437 } 4438 SLAB_ATTR_RO(objs_per_slab); 4439 4440 static ssize_t order_store(struct kmem_cache *s, 4441 const char *buf, size_t length) 4442 { 4443 unsigned long order; 4444 int err; 4445 4446 err = kstrtoul(buf, 10, &order); 4447 if (err) 4448 return err; 4449 4450 if (order > slub_max_order || order < slub_min_order) 4451 return -EINVAL; 4452 4453 calculate_sizes(s, order); 4454 return length; 4455 } 4456 4457 static ssize_t order_show(struct kmem_cache *s, char *buf) 4458 { 4459 return sprintf(buf, "%d\n", oo_order(s->oo)); 4460 } 4461 SLAB_ATTR(order); 4462 4463 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4464 { 4465 return sprintf(buf, "%lu\n", s->min_partial); 4466 } 4467 4468 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4469 size_t length) 4470 { 4471 unsigned long min; 4472 int err; 4473 4474 err = kstrtoul(buf, 10, &min); 4475 if (err) 4476 return err; 4477 4478 set_min_partial(s, min); 4479 return length; 4480 } 4481 SLAB_ATTR(min_partial); 4482 4483 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4484 { 4485 return sprintf(buf, "%u\n", s->cpu_partial); 4486 } 4487 4488 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4489 size_t length) 4490 { 4491 unsigned long objects; 4492 int err; 4493 4494 err = kstrtoul(buf, 10, &objects); 4495 if (err) 4496 return err; 4497 if (objects && !kmem_cache_has_cpu_partial(s)) 4498 return -EINVAL; 4499 4500 s->cpu_partial = objects; 4501 flush_all(s); 4502 return length; 4503 } 4504 SLAB_ATTR(cpu_partial); 4505 4506 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4507 { 4508 if (!s->ctor) 4509 return 0; 4510 return sprintf(buf, "%pS\n", s->ctor); 4511 } 4512 SLAB_ATTR_RO(ctor); 4513 4514 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4515 { 4516 return sprintf(buf, "%d\n", s->refcount - 1); 4517 } 4518 SLAB_ATTR_RO(aliases); 4519 4520 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4521 { 4522 return show_slab_objects(s, buf, SO_PARTIAL); 4523 } 4524 SLAB_ATTR_RO(partial); 4525 4526 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4527 { 4528 return show_slab_objects(s, buf, SO_CPU); 4529 } 4530 SLAB_ATTR_RO(cpu_slabs); 4531 4532 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4533 { 4534 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4535 } 4536 SLAB_ATTR_RO(objects); 4537 4538 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4539 { 4540 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4541 } 4542 SLAB_ATTR_RO(objects_partial); 4543 4544 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4545 { 4546 int objects = 0; 4547 int pages = 0; 4548 int cpu; 4549 int len; 4550 4551 for_each_online_cpu(cpu) { 4552 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4553 4554 if (page) { 4555 pages += page->pages; 4556 objects += page->pobjects; 4557 } 4558 } 4559 4560 len = sprintf(buf, "%d(%d)", objects, pages); 4561 4562 #ifdef CONFIG_SMP 4563 for_each_online_cpu(cpu) { 4564 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4565 4566 if (page && len < PAGE_SIZE - 20) 4567 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4568 page->pobjects, page->pages); 4569 } 4570 #endif 4571 return len + sprintf(buf + len, "\n"); 4572 } 4573 SLAB_ATTR_RO(slabs_cpu_partial); 4574 4575 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4576 { 4577 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4578 } 4579 4580 static ssize_t reclaim_account_store(struct kmem_cache *s, 4581 const char *buf, size_t length) 4582 { 4583 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4584 if (buf[0] == '1') 4585 s->flags |= SLAB_RECLAIM_ACCOUNT; 4586 return length; 4587 } 4588 SLAB_ATTR(reclaim_account); 4589 4590 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4591 { 4592 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4593 } 4594 SLAB_ATTR_RO(hwcache_align); 4595 4596 #ifdef CONFIG_ZONE_DMA 4597 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4598 { 4599 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4600 } 4601 SLAB_ATTR_RO(cache_dma); 4602 #endif 4603 4604 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4605 { 4606 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4607 } 4608 SLAB_ATTR_RO(destroy_by_rcu); 4609 4610 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4611 { 4612 return sprintf(buf, "%d\n", s->reserved); 4613 } 4614 SLAB_ATTR_RO(reserved); 4615 4616 #ifdef CONFIG_SLUB_DEBUG 4617 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4618 { 4619 return show_slab_objects(s, buf, SO_ALL); 4620 } 4621 SLAB_ATTR_RO(slabs); 4622 4623 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4624 { 4625 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4626 } 4627 SLAB_ATTR_RO(total_objects); 4628 4629 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4630 { 4631 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4632 } 4633 4634 static ssize_t sanity_checks_store(struct kmem_cache *s, 4635 const char *buf, size_t length) 4636 { 4637 s->flags &= ~SLAB_DEBUG_FREE; 4638 if (buf[0] == '1') { 4639 s->flags &= ~__CMPXCHG_DOUBLE; 4640 s->flags |= SLAB_DEBUG_FREE; 4641 } 4642 return length; 4643 } 4644 SLAB_ATTR(sanity_checks); 4645 4646 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4647 { 4648 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4649 } 4650 4651 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4652 size_t length) 4653 { 4654 s->flags &= ~SLAB_TRACE; 4655 if (buf[0] == '1') { 4656 s->flags &= ~__CMPXCHG_DOUBLE; 4657 s->flags |= SLAB_TRACE; 4658 } 4659 return length; 4660 } 4661 SLAB_ATTR(trace); 4662 4663 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4664 { 4665 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4666 } 4667 4668 static ssize_t red_zone_store(struct kmem_cache *s, 4669 const char *buf, size_t length) 4670 { 4671 if (any_slab_objects(s)) 4672 return -EBUSY; 4673 4674 s->flags &= ~SLAB_RED_ZONE; 4675 if (buf[0] == '1') { 4676 s->flags &= ~__CMPXCHG_DOUBLE; 4677 s->flags |= SLAB_RED_ZONE; 4678 } 4679 calculate_sizes(s, -1); 4680 return length; 4681 } 4682 SLAB_ATTR(red_zone); 4683 4684 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4685 { 4686 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4687 } 4688 4689 static ssize_t poison_store(struct kmem_cache *s, 4690 const char *buf, size_t length) 4691 { 4692 if (any_slab_objects(s)) 4693 return -EBUSY; 4694 4695 s->flags &= ~SLAB_POISON; 4696 if (buf[0] == '1') { 4697 s->flags &= ~__CMPXCHG_DOUBLE; 4698 s->flags |= SLAB_POISON; 4699 } 4700 calculate_sizes(s, -1); 4701 return length; 4702 } 4703 SLAB_ATTR(poison); 4704 4705 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4706 { 4707 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4708 } 4709 4710 static ssize_t store_user_store(struct kmem_cache *s, 4711 const char *buf, size_t length) 4712 { 4713 if (any_slab_objects(s)) 4714 return -EBUSY; 4715 4716 s->flags &= ~SLAB_STORE_USER; 4717 if (buf[0] == '1') { 4718 s->flags &= ~__CMPXCHG_DOUBLE; 4719 s->flags |= SLAB_STORE_USER; 4720 } 4721 calculate_sizes(s, -1); 4722 return length; 4723 } 4724 SLAB_ATTR(store_user); 4725 4726 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4727 { 4728 return 0; 4729 } 4730 4731 static ssize_t validate_store(struct kmem_cache *s, 4732 const char *buf, size_t length) 4733 { 4734 int ret = -EINVAL; 4735 4736 if (buf[0] == '1') { 4737 ret = validate_slab_cache(s); 4738 if (ret >= 0) 4739 ret = length; 4740 } 4741 return ret; 4742 } 4743 SLAB_ATTR(validate); 4744 4745 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4746 { 4747 if (!(s->flags & SLAB_STORE_USER)) 4748 return -ENOSYS; 4749 return list_locations(s, buf, TRACK_ALLOC); 4750 } 4751 SLAB_ATTR_RO(alloc_calls); 4752 4753 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4754 { 4755 if (!(s->flags & SLAB_STORE_USER)) 4756 return -ENOSYS; 4757 return list_locations(s, buf, TRACK_FREE); 4758 } 4759 SLAB_ATTR_RO(free_calls); 4760 #endif /* CONFIG_SLUB_DEBUG */ 4761 4762 #ifdef CONFIG_FAILSLAB 4763 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4764 { 4765 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4766 } 4767 4768 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4769 size_t length) 4770 { 4771 s->flags &= ~SLAB_FAILSLAB; 4772 if (buf[0] == '1') 4773 s->flags |= SLAB_FAILSLAB; 4774 return length; 4775 } 4776 SLAB_ATTR(failslab); 4777 #endif 4778 4779 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4780 { 4781 return 0; 4782 } 4783 4784 static ssize_t shrink_store(struct kmem_cache *s, 4785 const char *buf, size_t length) 4786 { 4787 if (buf[0] == '1') { 4788 int rc = kmem_cache_shrink(s); 4789 4790 if (rc) 4791 return rc; 4792 } else 4793 return -EINVAL; 4794 return length; 4795 } 4796 SLAB_ATTR(shrink); 4797 4798 #ifdef CONFIG_NUMA 4799 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4800 { 4801 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4802 } 4803 4804 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4805 const char *buf, size_t length) 4806 { 4807 unsigned long ratio; 4808 int err; 4809 4810 err = kstrtoul(buf, 10, &ratio); 4811 if (err) 4812 return err; 4813 4814 if (ratio <= 100) 4815 s->remote_node_defrag_ratio = ratio * 10; 4816 4817 return length; 4818 } 4819 SLAB_ATTR(remote_node_defrag_ratio); 4820 #endif 4821 4822 #ifdef CONFIG_SLUB_STATS 4823 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4824 { 4825 unsigned long sum = 0; 4826 int cpu; 4827 int len; 4828 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4829 4830 if (!data) 4831 return -ENOMEM; 4832 4833 for_each_online_cpu(cpu) { 4834 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4835 4836 data[cpu] = x; 4837 sum += x; 4838 } 4839 4840 len = sprintf(buf, "%lu", sum); 4841 4842 #ifdef CONFIG_SMP 4843 for_each_online_cpu(cpu) { 4844 if (data[cpu] && len < PAGE_SIZE - 20) 4845 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4846 } 4847 #endif 4848 kfree(data); 4849 return len + sprintf(buf + len, "\n"); 4850 } 4851 4852 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4853 { 4854 int cpu; 4855 4856 for_each_online_cpu(cpu) 4857 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4858 } 4859 4860 #define STAT_ATTR(si, text) \ 4861 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4862 { \ 4863 return show_stat(s, buf, si); \ 4864 } \ 4865 static ssize_t text##_store(struct kmem_cache *s, \ 4866 const char *buf, size_t length) \ 4867 { \ 4868 if (buf[0] != '0') \ 4869 return -EINVAL; \ 4870 clear_stat(s, si); \ 4871 return length; \ 4872 } \ 4873 SLAB_ATTR(text); \ 4874 4875 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4876 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4877 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4878 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4879 STAT_ATTR(FREE_FROZEN, free_frozen); 4880 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4881 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4882 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4883 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4884 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4885 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 4886 STAT_ATTR(FREE_SLAB, free_slab); 4887 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4888 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4889 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4890 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4891 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4892 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4893 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 4894 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4895 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 4896 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 4897 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 4898 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 4899 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 4900 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 4901 #endif 4902 4903 static struct attribute *slab_attrs[] = { 4904 &slab_size_attr.attr, 4905 &object_size_attr.attr, 4906 &objs_per_slab_attr.attr, 4907 &order_attr.attr, 4908 &min_partial_attr.attr, 4909 &cpu_partial_attr.attr, 4910 &objects_attr.attr, 4911 &objects_partial_attr.attr, 4912 &partial_attr.attr, 4913 &cpu_slabs_attr.attr, 4914 &ctor_attr.attr, 4915 &aliases_attr.attr, 4916 &align_attr.attr, 4917 &hwcache_align_attr.attr, 4918 &reclaim_account_attr.attr, 4919 &destroy_by_rcu_attr.attr, 4920 &shrink_attr.attr, 4921 &reserved_attr.attr, 4922 &slabs_cpu_partial_attr.attr, 4923 #ifdef CONFIG_SLUB_DEBUG 4924 &total_objects_attr.attr, 4925 &slabs_attr.attr, 4926 &sanity_checks_attr.attr, 4927 &trace_attr.attr, 4928 &red_zone_attr.attr, 4929 &poison_attr.attr, 4930 &store_user_attr.attr, 4931 &validate_attr.attr, 4932 &alloc_calls_attr.attr, 4933 &free_calls_attr.attr, 4934 #endif 4935 #ifdef CONFIG_ZONE_DMA 4936 &cache_dma_attr.attr, 4937 #endif 4938 #ifdef CONFIG_NUMA 4939 &remote_node_defrag_ratio_attr.attr, 4940 #endif 4941 #ifdef CONFIG_SLUB_STATS 4942 &alloc_fastpath_attr.attr, 4943 &alloc_slowpath_attr.attr, 4944 &free_fastpath_attr.attr, 4945 &free_slowpath_attr.attr, 4946 &free_frozen_attr.attr, 4947 &free_add_partial_attr.attr, 4948 &free_remove_partial_attr.attr, 4949 &alloc_from_partial_attr.attr, 4950 &alloc_slab_attr.attr, 4951 &alloc_refill_attr.attr, 4952 &alloc_node_mismatch_attr.attr, 4953 &free_slab_attr.attr, 4954 &cpuslab_flush_attr.attr, 4955 &deactivate_full_attr.attr, 4956 &deactivate_empty_attr.attr, 4957 &deactivate_to_head_attr.attr, 4958 &deactivate_to_tail_attr.attr, 4959 &deactivate_remote_frees_attr.attr, 4960 &deactivate_bypass_attr.attr, 4961 &order_fallback_attr.attr, 4962 &cmpxchg_double_fail_attr.attr, 4963 &cmpxchg_double_cpu_fail_attr.attr, 4964 &cpu_partial_alloc_attr.attr, 4965 &cpu_partial_free_attr.attr, 4966 &cpu_partial_node_attr.attr, 4967 &cpu_partial_drain_attr.attr, 4968 #endif 4969 #ifdef CONFIG_FAILSLAB 4970 &failslab_attr.attr, 4971 #endif 4972 4973 NULL 4974 }; 4975 4976 static struct attribute_group slab_attr_group = { 4977 .attrs = slab_attrs, 4978 }; 4979 4980 static ssize_t slab_attr_show(struct kobject *kobj, 4981 struct attribute *attr, 4982 char *buf) 4983 { 4984 struct slab_attribute *attribute; 4985 struct kmem_cache *s; 4986 int err; 4987 4988 attribute = to_slab_attr(attr); 4989 s = to_slab(kobj); 4990 4991 if (!attribute->show) 4992 return -EIO; 4993 4994 err = attribute->show(s, buf); 4995 4996 return err; 4997 } 4998 4999 static ssize_t slab_attr_store(struct kobject *kobj, 5000 struct attribute *attr, 5001 const char *buf, size_t len) 5002 { 5003 struct slab_attribute *attribute; 5004 struct kmem_cache *s; 5005 int err; 5006 5007 attribute = to_slab_attr(attr); 5008 s = to_slab(kobj); 5009 5010 if (!attribute->store) 5011 return -EIO; 5012 5013 err = attribute->store(s, buf, len); 5014 #ifdef CONFIG_MEMCG_KMEM 5015 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5016 int i; 5017 5018 mutex_lock(&slab_mutex); 5019 if (s->max_attr_size < len) 5020 s->max_attr_size = len; 5021 5022 /* 5023 * This is a best effort propagation, so this function's return 5024 * value will be determined by the parent cache only. This is 5025 * basically because not all attributes will have a well 5026 * defined semantics for rollbacks - most of the actions will 5027 * have permanent effects. 5028 * 5029 * Returning the error value of any of the children that fail 5030 * is not 100 % defined, in the sense that users seeing the 5031 * error code won't be able to know anything about the state of 5032 * the cache. 5033 * 5034 * Only returning the error code for the parent cache at least 5035 * has well defined semantics. The cache being written to 5036 * directly either failed or succeeded, in which case we loop 5037 * through the descendants with best-effort propagation. 5038 */ 5039 for_each_memcg_cache_index(i) { 5040 struct kmem_cache *c = cache_from_memcg_idx(s, i); 5041 if (c) 5042 attribute->store(c, buf, len); 5043 } 5044 mutex_unlock(&slab_mutex); 5045 } 5046 #endif 5047 return err; 5048 } 5049 5050 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5051 { 5052 #ifdef CONFIG_MEMCG_KMEM 5053 int i; 5054 char *buffer = NULL; 5055 5056 if (!is_root_cache(s)) 5057 return; 5058 5059 /* 5060 * This mean this cache had no attribute written. Therefore, no point 5061 * in copying default values around 5062 */ 5063 if (!s->max_attr_size) 5064 return; 5065 5066 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5067 char mbuf[64]; 5068 char *buf; 5069 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5070 5071 if (!attr || !attr->store || !attr->show) 5072 continue; 5073 5074 /* 5075 * It is really bad that we have to allocate here, so we will 5076 * do it only as a fallback. If we actually allocate, though, 5077 * we can just use the allocated buffer until the end. 5078 * 5079 * Most of the slub attributes will tend to be very small in 5080 * size, but sysfs allows buffers up to a page, so they can 5081 * theoretically happen. 5082 */ 5083 if (buffer) 5084 buf = buffer; 5085 else if (s->max_attr_size < ARRAY_SIZE(mbuf)) 5086 buf = mbuf; 5087 else { 5088 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5089 if (WARN_ON(!buffer)) 5090 continue; 5091 buf = buffer; 5092 } 5093 5094 attr->show(s->memcg_params->root_cache, buf); 5095 attr->store(s, buf, strlen(buf)); 5096 } 5097 5098 if (buffer) 5099 free_page((unsigned long)buffer); 5100 #endif 5101 } 5102 5103 static const struct sysfs_ops slab_sysfs_ops = { 5104 .show = slab_attr_show, 5105 .store = slab_attr_store, 5106 }; 5107 5108 static struct kobj_type slab_ktype = { 5109 .sysfs_ops = &slab_sysfs_ops, 5110 }; 5111 5112 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5113 { 5114 struct kobj_type *ktype = get_ktype(kobj); 5115 5116 if (ktype == &slab_ktype) 5117 return 1; 5118 return 0; 5119 } 5120 5121 static const struct kset_uevent_ops slab_uevent_ops = { 5122 .filter = uevent_filter, 5123 }; 5124 5125 static struct kset *slab_kset; 5126 5127 #define ID_STR_LENGTH 64 5128 5129 /* Create a unique string id for a slab cache: 5130 * 5131 * Format :[flags-]size 5132 */ 5133 static char *create_unique_id(struct kmem_cache *s) 5134 { 5135 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5136 char *p = name; 5137 5138 BUG_ON(!name); 5139 5140 *p++ = ':'; 5141 /* 5142 * First flags affecting slabcache operations. We will only 5143 * get here for aliasable slabs so we do not need to support 5144 * too many flags. The flags here must cover all flags that 5145 * are matched during merging to guarantee that the id is 5146 * unique. 5147 */ 5148 if (s->flags & SLAB_CACHE_DMA) 5149 *p++ = 'd'; 5150 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5151 *p++ = 'a'; 5152 if (s->flags & SLAB_DEBUG_FREE) 5153 *p++ = 'F'; 5154 if (!(s->flags & SLAB_NOTRACK)) 5155 *p++ = 't'; 5156 if (p != name + 1) 5157 *p++ = '-'; 5158 p += sprintf(p, "%07d", s->size); 5159 5160 #ifdef CONFIG_MEMCG_KMEM 5161 if (!is_root_cache(s)) 5162 p += sprintf(p, "-%08d", 5163 memcg_cache_id(s->memcg_params->memcg)); 5164 #endif 5165 5166 BUG_ON(p > name + ID_STR_LENGTH - 1); 5167 return name; 5168 } 5169 5170 static int sysfs_slab_add(struct kmem_cache *s) 5171 { 5172 int err; 5173 const char *name; 5174 int unmergeable = slab_unmergeable(s); 5175 5176 if (unmergeable) { 5177 /* 5178 * Slabcache can never be merged so we can use the name proper. 5179 * This is typically the case for debug situations. In that 5180 * case we can catch duplicate names easily. 5181 */ 5182 sysfs_remove_link(&slab_kset->kobj, s->name); 5183 name = s->name; 5184 } else { 5185 /* 5186 * Create a unique name for the slab as a target 5187 * for the symlinks. 5188 */ 5189 name = create_unique_id(s); 5190 } 5191 5192 s->kobj.kset = slab_kset; 5193 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5194 if (err) { 5195 kobject_put(&s->kobj); 5196 return err; 5197 } 5198 5199 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5200 if (err) { 5201 kobject_del(&s->kobj); 5202 kobject_put(&s->kobj); 5203 return err; 5204 } 5205 kobject_uevent(&s->kobj, KOBJ_ADD); 5206 if (!unmergeable) { 5207 /* Setup first alias */ 5208 sysfs_slab_alias(s, s->name); 5209 kfree(name); 5210 } 5211 return 0; 5212 } 5213 5214 static void sysfs_slab_remove(struct kmem_cache *s) 5215 { 5216 if (slab_state < FULL) 5217 /* 5218 * Sysfs has not been setup yet so no need to remove the 5219 * cache from sysfs. 5220 */ 5221 return; 5222 5223 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5224 kobject_del(&s->kobj); 5225 kobject_put(&s->kobj); 5226 } 5227 5228 /* 5229 * Need to buffer aliases during bootup until sysfs becomes 5230 * available lest we lose that information. 5231 */ 5232 struct saved_alias { 5233 struct kmem_cache *s; 5234 const char *name; 5235 struct saved_alias *next; 5236 }; 5237 5238 static struct saved_alias *alias_list; 5239 5240 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5241 { 5242 struct saved_alias *al; 5243 5244 if (slab_state == FULL) { 5245 /* 5246 * If we have a leftover link then remove it. 5247 */ 5248 sysfs_remove_link(&slab_kset->kobj, name); 5249 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5250 } 5251 5252 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5253 if (!al) 5254 return -ENOMEM; 5255 5256 al->s = s; 5257 al->name = name; 5258 al->next = alias_list; 5259 alias_list = al; 5260 return 0; 5261 } 5262 5263 static int __init slab_sysfs_init(void) 5264 { 5265 struct kmem_cache *s; 5266 int err; 5267 5268 mutex_lock(&slab_mutex); 5269 5270 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5271 if (!slab_kset) { 5272 mutex_unlock(&slab_mutex); 5273 printk(KERN_ERR "Cannot register slab subsystem.\n"); 5274 return -ENOSYS; 5275 } 5276 5277 slab_state = FULL; 5278 5279 list_for_each_entry(s, &slab_caches, list) { 5280 err = sysfs_slab_add(s); 5281 if (err) 5282 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 5283 " to sysfs\n", s->name); 5284 } 5285 5286 while (alias_list) { 5287 struct saved_alias *al = alias_list; 5288 5289 alias_list = alias_list->next; 5290 err = sysfs_slab_alias(al->s, al->name); 5291 if (err) 5292 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 5293 " %s to sysfs\n", al->name); 5294 kfree(al); 5295 } 5296 5297 mutex_unlock(&slab_mutex); 5298 resiliency_test(); 5299 return 0; 5300 } 5301 5302 __initcall(slab_sysfs_init); 5303 #endif /* CONFIG_SYSFS */ 5304 5305 /* 5306 * The /proc/slabinfo ABI 5307 */ 5308 #ifdef CONFIG_SLABINFO 5309 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5310 { 5311 unsigned long nr_slabs = 0; 5312 unsigned long nr_objs = 0; 5313 unsigned long nr_free = 0; 5314 int node; 5315 5316 for_each_online_node(node) { 5317 struct kmem_cache_node *n = get_node(s, node); 5318 5319 if (!n) 5320 continue; 5321 5322 nr_slabs += node_nr_slabs(n); 5323 nr_objs += node_nr_objs(n); 5324 nr_free += count_partial(n, count_free); 5325 } 5326 5327 sinfo->active_objs = nr_objs - nr_free; 5328 sinfo->num_objs = nr_objs; 5329 sinfo->active_slabs = nr_slabs; 5330 sinfo->num_slabs = nr_slabs; 5331 sinfo->objects_per_slab = oo_objects(s->oo); 5332 sinfo->cache_order = oo_order(s->oo); 5333 } 5334 5335 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5336 { 5337 } 5338 5339 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5340 size_t count, loff_t *ppos) 5341 { 5342 return -EIO; 5343 } 5344 #endif /* CONFIG_SLABINFO */ 5345