xref: /openbmc/linux/mm/slub.c (revision 483eb062)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 
37 #include <trace/events/kmem.h>
38 
39 #include "internal.h"
40 
41 /*
42  * Lock order:
43  *   1. slab_mutex (Global Mutex)
44  *   2. node->list_lock
45  *   3. slab_lock(page) (Only on some arches and for debugging)
46  *
47  *   slab_mutex
48  *
49  *   The role of the slab_mutex is to protect the list of all the slabs
50  *   and to synchronize major metadata changes to slab cache structures.
51  *
52  *   The slab_lock is only used for debugging and on arches that do not
53  *   have the ability to do a cmpxchg_double. It only protects the second
54  *   double word in the page struct. Meaning
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->counters	-> Counters of objects
57  *	C. page->frozen		-> frozen state
58  *
59  *   If a slab is frozen then it is exempt from list management. It is not
60  *   on any list. The processor that froze the slab is the one who can
61  *   perform list operations on the page. Other processors may put objects
62  *   onto the freelist but the processor that froze the slab is the only
63  *   one that can retrieve the objects from the page's freelist.
64  *
65  *   The list_lock protects the partial and full list on each node and
66  *   the partial slab counter. If taken then no new slabs may be added or
67  *   removed from the lists nor make the number of partial slabs be modified.
68  *   (Note that the total number of slabs is an atomic value that may be
69  *   modified without taking the list lock).
70  *
71  *   The list_lock is a centralized lock and thus we avoid taking it as
72  *   much as possible. As long as SLUB does not have to handle partial
73  *   slabs, operations can continue without any centralized lock. F.e.
74  *   allocating a long series of objects that fill up slabs does not require
75  *   the list lock.
76  *   Interrupts are disabled during allocation and deallocation in order to
77  *   make the slab allocator safe to use in the context of an irq. In addition
78  *   interrupts are disabled to ensure that the processor does not change
79  *   while handling per_cpu slabs, due to kernel preemption.
80  *
81  * SLUB assigns one slab for allocation to each processor.
82  * Allocations only occur from these slabs called cpu slabs.
83  *
84  * Slabs with free elements are kept on a partial list and during regular
85  * operations no list for full slabs is used. If an object in a full slab is
86  * freed then the slab will show up again on the partial lists.
87  * We track full slabs for debugging purposes though because otherwise we
88  * cannot scan all objects.
89  *
90  * Slabs are freed when they become empty. Teardown and setup is
91  * minimal so we rely on the page allocators per cpu caches for
92  * fast frees and allocs.
93  *
94  * Overloading of page flags that are otherwise used for LRU management.
95  *
96  * PageActive 		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * PageError		Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 	return 0;
123 #endif
124 }
125 
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 	return !kmem_cache_debug(s);
130 #else
131 	return false;
132 #endif
133 }
134 
135 /*
136  * Issues still to be resolved:
137  *
138  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139  *
140  * - Variable sizing of the per node arrays
141  */
142 
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145 
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148 
149 /*
150  * Mininum number of partial slabs. These will be left on the partial
151  * lists even if they are empty. kmem_cache_shrink may reclaim them.
152  */
153 #define MIN_PARTIAL 5
154 
155 /*
156  * Maximum number of desirable partial slabs.
157  * The existence of more partial slabs makes kmem_cache_shrink
158  * sort the partial list by the number of objects in use.
159  */
160 #define MAX_PARTIAL 10
161 
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 				SLAB_POISON | SLAB_STORE_USER)
164 
165 /*
166  * Debugging flags that require metadata to be stored in the slab.  These get
167  * disabled when slub_debug=O is used and a cache's min order increases with
168  * metadata.
169  */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171 
172 /*
173  * Set of flags that will prevent slab merging
174  */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 		SLAB_FAILSLAB)
178 
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 		SLAB_CACHE_DMA | SLAB_NOTRACK)
181 
182 #define OO_SHIFT	16
183 #define OO_MASK		((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185 
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON		0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
189 
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193 
194 /*
195  * Tracking user of a slab.
196  */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 	unsigned long addr;	/* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
202 #endif
203 	int cpu;		/* Was running on cpu */
204 	int pid;		/* Pid context */
205 	unsigned long when;	/* When did the operation occur */
206 };
207 
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209 
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void sysfs_slab_remove(struct kmem_cache *);
214 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
215 #else
216 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
217 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
218 							{ return 0; }
219 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220 
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
222 #endif
223 
224 static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 {
226 #ifdef CONFIG_SLUB_STATS
227 	__this_cpu_inc(s->cpu_slab->stat[si]);
228 #endif
229 }
230 
231 /********************************************************************
232  * 			Core slab cache functions
233  *******************************************************************/
234 
235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236 {
237 	return s->node[node];
238 }
239 
240 /* Verify that a pointer has an address that is valid within a slab page */
241 static inline int check_valid_pointer(struct kmem_cache *s,
242 				struct page *page, const void *object)
243 {
244 	void *base;
245 
246 	if (!object)
247 		return 1;
248 
249 	base = page_address(page);
250 	if (object < base || object >= base + page->objects * s->size ||
251 		(object - base) % s->size) {
252 		return 0;
253 	}
254 
255 	return 1;
256 }
257 
258 static inline void *get_freepointer(struct kmem_cache *s, void *object)
259 {
260 	return *(void **)(object + s->offset);
261 }
262 
263 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
264 {
265 	prefetch(object + s->offset);
266 }
267 
268 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269 {
270 	void *p;
271 
272 #ifdef CONFIG_DEBUG_PAGEALLOC
273 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274 #else
275 	p = get_freepointer(s, object);
276 #endif
277 	return p;
278 }
279 
280 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281 {
282 	*(void **)(object + s->offset) = fp;
283 }
284 
285 /* Loop over all objects in a slab */
286 #define for_each_object(__p, __s, __addr, __objects) \
287 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 			__p += (__s)->size)
289 
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292 {
293 	return (p - addr) / s->size;
294 }
295 
296 static inline size_t slab_ksize(const struct kmem_cache *s)
297 {
298 #ifdef CONFIG_SLUB_DEBUG
299 	/*
300 	 * Debugging requires use of the padding between object
301 	 * and whatever may come after it.
302 	 */
303 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304 		return s->object_size;
305 
306 #endif
307 	/*
308 	 * If we have the need to store the freelist pointer
309 	 * back there or track user information then we can
310 	 * only use the space before that information.
311 	 */
312 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 		return s->inuse;
314 	/*
315 	 * Else we can use all the padding etc for the allocation
316 	 */
317 	return s->size;
318 }
319 
320 static inline int order_objects(int order, unsigned long size, int reserved)
321 {
322 	return ((PAGE_SIZE << order) - reserved) / size;
323 }
324 
325 static inline struct kmem_cache_order_objects oo_make(int order,
326 		unsigned long size, int reserved)
327 {
328 	struct kmem_cache_order_objects x = {
329 		(order << OO_SHIFT) + order_objects(order, size, reserved)
330 	};
331 
332 	return x;
333 }
334 
335 static inline int oo_order(struct kmem_cache_order_objects x)
336 {
337 	return x.x >> OO_SHIFT;
338 }
339 
340 static inline int oo_objects(struct kmem_cache_order_objects x)
341 {
342 	return x.x & OO_MASK;
343 }
344 
345 /*
346  * Per slab locking using the pagelock
347  */
348 static __always_inline void slab_lock(struct page *page)
349 {
350 	bit_spin_lock(PG_locked, &page->flags);
351 }
352 
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 	__bit_spin_unlock(PG_locked, &page->flags);
356 }
357 
358 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
359 {
360 	struct page tmp;
361 	tmp.counters = counters_new;
362 	/*
363 	 * page->counters can cover frozen/inuse/objects as well
364 	 * as page->_count.  If we assign to ->counters directly
365 	 * we run the risk of losing updates to page->_count, so
366 	 * be careful and only assign to the fields we need.
367 	 */
368 	page->frozen  = tmp.frozen;
369 	page->inuse   = tmp.inuse;
370 	page->objects = tmp.objects;
371 }
372 
373 /* Interrupts must be disabled (for the fallback code to work right) */
374 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
375 		void *freelist_old, unsigned long counters_old,
376 		void *freelist_new, unsigned long counters_new,
377 		const char *n)
378 {
379 	VM_BUG_ON(!irqs_disabled());
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 	if (s->flags & __CMPXCHG_DOUBLE) {
383 		if (cmpxchg_double(&page->freelist, &page->counters,
384 			freelist_old, counters_old,
385 			freelist_new, counters_new))
386 		return 1;
387 	} else
388 #endif
389 	{
390 		slab_lock(page);
391 		if (page->freelist == freelist_old &&
392 					page->counters == counters_old) {
393 			page->freelist = freelist_new;
394 			set_page_slub_counters(page, counters_new);
395 			slab_unlock(page);
396 			return 1;
397 		}
398 		slab_unlock(page);
399 	}
400 
401 	cpu_relax();
402 	stat(s, CMPXCHG_DOUBLE_FAIL);
403 
404 #ifdef SLUB_DEBUG_CMPXCHG
405 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
406 #endif
407 
408 	return 0;
409 }
410 
411 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
412 		void *freelist_old, unsigned long counters_old,
413 		void *freelist_new, unsigned long counters_new,
414 		const char *n)
415 {
416 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
417     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
418 	if (s->flags & __CMPXCHG_DOUBLE) {
419 		if (cmpxchg_double(&page->freelist, &page->counters,
420 			freelist_old, counters_old,
421 			freelist_new, counters_new))
422 		return 1;
423 	} else
424 #endif
425 	{
426 		unsigned long flags;
427 
428 		local_irq_save(flags);
429 		slab_lock(page);
430 		if (page->freelist == freelist_old &&
431 					page->counters == counters_old) {
432 			page->freelist = freelist_new;
433 			set_page_slub_counters(page, counters_new);
434 			slab_unlock(page);
435 			local_irq_restore(flags);
436 			return 1;
437 		}
438 		slab_unlock(page);
439 		local_irq_restore(flags);
440 	}
441 
442 	cpu_relax();
443 	stat(s, CMPXCHG_DOUBLE_FAIL);
444 
445 #ifdef SLUB_DEBUG_CMPXCHG
446 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
447 #endif
448 
449 	return 0;
450 }
451 
452 #ifdef CONFIG_SLUB_DEBUG
453 /*
454  * Determine a map of object in use on a page.
455  *
456  * Node listlock must be held to guarantee that the page does
457  * not vanish from under us.
458  */
459 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
460 {
461 	void *p;
462 	void *addr = page_address(page);
463 
464 	for (p = page->freelist; p; p = get_freepointer(s, p))
465 		set_bit(slab_index(p, s, addr), map);
466 }
467 
468 /*
469  * Debug settings:
470  */
471 #ifdef CONFIG_SLUB_DEBUG_ON
472 static int slub_debug = DEBUG_DEFAULT_FLAGS;
473 #else
474 static int slub_debug;
475 #endif
476 
477 static char *slub_debug_slabs;
478 static int disable_higher_order_debug;
479 
480 /*
481  * Object debugging
482  */
483 static void print_section(char *text, u8 *addr, unsigned int length)
484 {
485 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
486 			length, 1);
487 }
488 
489 static struct track *get_track(struct kmem_cache *s, void *object,
490 	enum track_item alloc)
491 {
492 	struct track *p;
493 
494 	if (s->offset)
495 		p = object + s->offset + sizeof(void *);
496 	else
497 		p = object + s->inuse;
498 
499 	return p + alloc;
500 }
501 
502 static void set_track(struct kmem_cache *s, void *object,
503 			enum track_item alloc, unsigned long addr)
504 {
505 	struct track *p = get_track(s, object, alloc);
506 
507 	if (addr) {
508 #ifdef CONFIG_STACKTRACE
509 		struct stack_trace trace;
510 		int i;
511 
512 		trace.nr_entries = 0;
513 		trace.max_entries = TRACK_ADDRS_COUNT;
514 		trace.entries = p->addrs;
515 		trace.skip = 3;
516 		save_stack_trace(&trace);
517 
518 		/* See rant in lockdep.c */
519 		if (trace.nr_entries != 0 &&
520 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
521 			trace.nr_entries--;
522 
523 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
524 			p->addrs[i] = 0;
525 #endif
526 		p->addr = addr;
527 		p->cpu = smp_processor_id();
528 		p->pid = current->pid;
529 		p->when = jiffies;
530 	} else
531 		memset(p, 0, sizeof(struct track));
532 }
533 
534 static void init_tracking(struct kmem_cache *s, void *object)
535 {
536 	if (!(s->flags & SLAB_STORE_USER))
537 		return;
538 
539 	set_track(s, object, TRACK_FREE, 0UL);
540 	set_track(s, object, TRACK_ALLOC, 0UL);
541 }
542 
543 static void print_track(const char *s, struct track *t)
544 {
545 	if (!t->addr)
546 		return;
547 
548 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
549 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
550 #ifdef CONFIG_STACKTRACE
551 	{
552 		int i;
553 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
554 			if (t->addrs[i])
555 				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
556 			else
557 				break;
558 	}
559 #endif
560 }
561 
562 static void print_tracking(struct kmem_cache *s, void *object)
563 {
564 	if (!(s->flags & SLAB_STORE_USER))
565 		return;
566 
567 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
568 	print_track("Freed", get_track(s, object, TRACK_FREE));
569 }
570 
571 static void print_page_info(struct page *page)
572 {
573 	printk(KERN_ERR
574 	       "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
575 	       page, page->objects, page->inuse, page->freelist, page->flags);
576 
577 }
578 
579 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
580 {
581 	va_list args;
582 	char buf[100];
583 
584 	va_start(args, fmt);
585 	vsnprintf(buf, sizeof(buf), fmt, args);
586 	va_end(args);
587 	printk(KERN_ERR "========================================"
588 			"=====================================\n");
589 	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
590 	printk(KERN_ERR "----------------------------------------"
591 			"-------------------------------------\n\n");
592 
593 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
594 }
595 
596 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
597 {
598 	va_list args;
599 	char buf[100];
600 
601 	va_start(args, fmt);
602 	vsnprintf(buf, sizeof(buf), fmt, args);
603 	va_end(args);
604 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
605 }
606 
607 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
608 {
609 	unsigned int off;	/* Offset of last byte */
610 	u8 *addr = page_address(page);
611 
612 	print_tracking(s, p);
613 
614 	print_page_info(page);
615 
616 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
617 			p, p - addr, get_freepointer(s, p));
618 
619 	if (p > addr + 16)
620 		print_section("Bytes b4 ", p - 16, 16);
621 
622 	print_section("Object ", p, min_t(unsigned long, s->object_size,
623 				PAGE_SIZE));
624 	if (s->flags & SLAB_RED_ZONE)
625 		print_section("Redzone ", p + s->object_size,
626 			s->inuse - s->object_size);
627 
628 	if (s->offset)
629 		off = s->offset + sizeof(void *);
630 	else
631 		off = s->inuse;
632 
633 	if (s->flags & SLAB_STORE_USER)
634 		off += 2 * sizeof(struct track);
635 
636 	if (off != s->size)
637 		/* Beginning of the filler is the free pointer */
638 		print_section("Padding ", p + off, s->size - off);
639 
640 	dump_stack();
641 }
642 
643 static void object_err(struct kmem_cache *s, struct page *page,
644 			u8 *object, char *reason)
645 {
646 	slab_bug(s, "%s", reason);
647 	print_trailer(s, page, object);
648 }
649 
650 static void slab_err(struct kmem_cache *s, struct page *page,
651 			const char *fmt, ...)
652 {
653 	va_list args;
654 	char buf[100];
655 
656 	va_start(args, fmt);
657 	vsnprintf(buf, sizeof(buf), fmt, args);
658 	va_end(args);
659 	slab_bug(s, "%s", buf);
660 	print_page_info(page);
661 	dump_stack();
662 }
663 
664 static void init_object(struct kmem_cache *s, void *object, u8 val)
665 {
666 	u8 *p = object;
667 
668 	if (s->flags & __OBJECT_POISON) {
669 		memset(p, POISON_FREE, s->object_size - 1);
670 		p[s->object_size - 1] = POISON_END;
671 	}
672 
673 	if (s->flags & SLAB_RED_ZONE)
674 		memset(p + s->object_size, val, s->inuse - s->object_size);
675 }
676 
677 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
678 						void *from, void *to)
679 {
680 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
681 	memset(from, data, to - from);
682 }
683 
684 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
685 			u8 *object, char *what,
686 			u8 *start, unsigned int value, unsigned int bytes)
687 {
688 	u8 *fault;
689 	u8 *end;
690 
691 	fault = memchr_inv(start, value, bytes);
692 	if (!fault)
693 		return 1;
694 
695 	end = start + bytes;
696 	while (end > fault && end[-1] == value)
697 		end--;
698 
699 	slab_bug(s, "%s overwritten", what);
700 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
701 					fault, end - 1, fault[0], value);
702 	print_trailer(s, page, object);
703 
704 	restore_bytes(s, what, value, fault, end);
705 	return 0;
706 }
707 
708 /*
709  * Object layout:
710  *
711  * object address
712  * 	Bytes of the object to be managed.
713  * 	If the freepointer may overlay the object then the free
714  * 	pointer is the first word of the object.
715  *
716  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
717  * 	0xa5 (POISON_END)
718  *
719  * object + s->object_size
720  * 	Padding to reach word boundary. This is also used for Redzoning.
721  * 	Padding is extended by another word if Redzoning is enabled and
722  * 	object_size == inuse.
723  *
724  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
725  * 	0xcc (RED_ACTIVE) for objects in use.
726  *
727  * object + s->inuse
728  * 	Meta data starts here.
729  *
730  * 	A. Free pointer (if we cannot overwrite object on free)
731  * 	B. Tracking data for SLAB_STORE_USER
732  * 	C. Padding to reach required alignment boundary or at mininum
733  * 		one word if debugging is on to be able to detect writes
734  * 		before the word boundary.
735  *
736  *	Padding is done using 0x5a (POISON_INUSE)
737  *
738  * object + s->size
739  * 	Nothing is used beyond s->size.
740  *
741  * If slabcaches are merged then the object_size and inuse boundaries are mostly
742  * ignored. And therefore no slab options that rely on these boundaries
743  * may be used with merged slabcaches.
744  */
745 
746 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
747 {
748 	unsigned long off = s->inuse;	/* The end of info */
749 
750 	if (s->offset)
751 		/* Freepointer is placed after the object. */
752 		off += sizeof(void *);
753 
754 	if (s->flags & SLAB_STORE_USER)
755 		/* We also have user information there */
756 		off += 2 * sizeof(struct track);
757 
758 	if (s->size == off)
759 		return 1;
760 
761 	return check_bytes_and_report(s, page, p, "Object padding",
762 				p + off, POISON_INUSE, s->size - off);
763 }
764 
765 /* Check the pad bytes at the end of a slab page */
766 static int slab_pad_check(struct kmem_cache *s, struct page *page)
767 {
768 	u8 *start;
769 	u8 *fault;
770 	u8 *end;
771 	int length;
772 	int remainder;
773 
774 	if (!(s->flags & SLAB_POISON))
775 		return 1;
776 
777 	start = page_address(page);
778 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
779 	end = start + length;
780 	remainder = length % s->size;
781 	if (!remainder)
782 		return 1;
783 
784 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
785 	if (!fault)
786 		return 1;
787 	while (end > fault && end[-1] == POISON_INUSE)
788 		end--;
789 
790 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
791 	print_section("Padding ", end - remainder, remainder);
792 
793 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
794 	return 0;
795 }
796 
797 static int check_object(struct kmem_cache *s, struct page *page,
798 					void *object, u8 val)
799 {
800 	u8 *p = object;
801 	u8 *endobject = object + s->object_size;
802 
803 	if (s->flags & SLAB_RED_ZONE) {
804 		if (!check_bytes_and_report(s, page, object, "Redzone",
805 			endobject, val, s->inuse - s->object_size))
806 			return 0;
807 	} else {
808 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
809 			check_bytes_and_report(s, page, p, "Alignment padding",
810 				endobject, POISON_INUSE,
811 				s->inuse - s->object_size);
812 		}
813 	}
814 
815 	if (s->flags & SLAB_POISON) {
816 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
817 			(!check_bytes_and_report(s, page, p, "Poison", p,
818 					POISON_FREE, s->object_size - 1) ||
819 			 !check_bytes_and_report(s, page, p, "Poison",
820 				p + s->object_size - 1, POISON_END, 1)))
821 			return 0;
822 		/*
823 		 * check_pad_bytes cleans up on its own.
824 		 */
825 		check_pad_bytes(s, page, p);
826 	}
827 
828 	if (!s->offset && val == SLUB_RED_ACTIVE)
829 		/*
830 		 * Object and freepointer overlap. Cannot check
831 		 * freepointer while object is allocated.
832 		 */
833 		return 1;
834 
835 	/* Check free pointer validity */
836 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
837 		object_err(s, page, p, "Freepointer corrupt");
838 		/*
839 		 * No choice but to zap it and thus lose the remainder
840 		 * of the free objects in this slab. May cause
841 		 * another error because the object count is now wrong.
842 		 */
843 		set_freepointer(s, p, NULL);
844 		return 0;
845 	}
846 	return 1;
847 }
848 
849 static int check_slab(struct kmem_cache *s, struct page *page)
850 {
851 	int maxobj;
852 
853 	VM_BUG_ON(!irqs_disabled());
854 
855 	if (!PageSlab(page)) {
856 		slab_err(s, page, "Not a valid slab page");
857 		return 0;
858 	}
859 
860 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
861 	if (page->objects > maxobj) {
862 		slab_err(s, page, "objects %u > max %u",
863 			s->name, page->objects, maxobj);
864 		return 0;
865 	}
866 	if (page->inuse > page->objects) {
867 		slab_err(s, page, "inuse %u > max %u",
868 			s->name, page->inuse, page->objects);
869 		return 0;
870 	}
871 	/* Slab_pad_check fixes things up after itself */
872 	slab_pad_check(s, page);
873 	return 1;
874 }
875 
876 /*
877  * Determine if a certain object on a page is on the freelist. Must hold the
878  * slab lock to guarantee that the chains are in a consistent state.
879  */
880 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
881 {
882 	int nr = 0;
883 	void *fp;
884 	void *object = NULL;
885 	unsigned long max_objects;
886 
887 	fp = page->freelist;
888 	while (fp && nr <= page->objects) {
889 		if (fp == search)
890 			return 1;
891 		if (!check_valid_pointer(s, page, fp)) {
892 			if (object) {
893 				object_err(s, page, object,
894 					"Freechain corrupt");
895 				set_freepointer(s, object, NULL);
896 			} else {
897 				slab_err(s, page, "Freepointer corrupt");
898 				page->freelist = NULL;
899 				page->inuse = page->objects;
900 				slab_fix(s, "Freelist cleared");
901 				return 0;
902 			}
903 			break;
904 		}
905 		object = fp;
906 		fp = get_freepointer(s, object);
907 		nr++;
908 	}
909 
910 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
911 	if (max_objects > MAX_OBJS_PER_PAGE)
912 		max_objects = MAX_OBJS_PER_PAGE;
913 
914 	if (page->objects != max_objects) {
915 		slab_err(s, page, "Wrong number of objects. Found %d but "
916 			"should be %d", page->objects, max_objects);
917 		page->objects = max_objects;
918 		slab_fix(s, "Number of objects adjusted.");
919 	}
920 	if (page->inuse != page->objects - nr) {
921 		slab_err(s, page, "Wrong object count. Counter is %d but "
922 			"counted were %d", page->inuse, page->objects - nr);
923 		page->inuse = page->objects - nr;
924 		slab_fix(s, "Object count adjusted.");
925 	}
926 	return search == NULL;
927 }
928 
929 static void trace(struct kmem_cache *s, struct page *page, void *object,
930 								int alloc)
931 {
932 	if (s->flags & SLAB_TRACE) {
933 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
934 			s->name,
935 			alloc ? "alloc" : "free",
936 			object, page->inuse,
937 			page->freelist);
938 
939 		if (!alloc)
940 			print_section("Object ", (void *)object,
941 					s->object_size);
942 
943 		dump_stack();
944 	}
945 }
946 
947 /*
948  * Hooks for other subsystems that check memory allocations. In a typical
949  * production configuration these hooks all should produce no code at all.
950  */
951 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
952 {
953 	kmemleak_alloc(ptr, size, 1, flags);
954 }
955 
956 static inline void kfree_hook(const void *x)
957 {
958 	kmemleak_free(x);
959 }
960 
961 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
962 {
963 	flags &= gfp_allowed_mask;
964 	lockdep_trace_alloc(flags);
965 	might_sleep_if(flags & __GFP_WAIT);
966 
967 	return should_failslab(s->object_size, flags, s->flags);
968 }
969 
970 static inline void slab_post_alloc_hook(struct kmem_cache *s,
971 					gfp_t flags, void *object)
972 {
973 	flags &= gfp_allowed_mask;
974 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
975 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
976 }
977 
978 static inline void slab_free_hook(struct kmem_cache *s, void *x)
979 {
980 	kmemleak_free_recursive(x, s->flags);
981 
982 	/*
983 	 * Trouble is that we may no longer disable interrupts in the fast path
984 	 * So in order to make the debug calls that expect irqs to be
985 	 * disabled we need to disable interrupts temporarily.
986 	 */
987 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
988 	{
989 		unsigned long flags;
990 
991 		local_irq_save(flags);
992 		kmemcheck_slab_free(s, x, s->object_size);
993 		debug_check_no_locks_freed(x, s->object_size);
994 		local_irq_restore(flags);
995 	}
996 #endif
997 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
998 		debug_check_no_obj_freed(x, s->object_size);
999 }
1000 
1001 /*
1002  * Tracking of fully allocated slabs for debugging purposes.
1003  */
1004 static void add_full(struct kmem_cache *s,
1005 	struct kmem_cache_node *n, struct page *page)
1006 {
1007 	lockdep_assert_held(&n->list_lock);
1008 
1009 	if (!(s->flags & SLAB_STORE_USER))
1010 		return;
1011 
1012 	list_add(&page->lru, &n->full);
1013 }
1014 
1015 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1016 {
1017 	lockdep_assert_held(&n->list_lock);
1018 
1019 	if (!(s->flags & SLAB_STORE_USER))
1020 		return;
1021 
1022 	list_del(&page->lru);
1023 }
1024 
1025 /* Tracking of the number of slabs for debugging purposes */
1026 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1027 {
1028 	struct kmem_cache_node *n = get_node(s, node);
1029 
1030 	return atomic_long_read(&n->nr_slabs);
1031 }
1032 
1033 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1034 {
1035 	return atomic_long_read(&n->nr_slabs);
1036 }
1037 
1038 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1039 {
1040 	struct kmem_cache_node *n = get_node(s, node);
1041 
1042 	/*
1043 	 * May be called early in order to allocate a slab for the
1044 	 * kmem_cache_node structure. Solve the chicken-egg
1045 	 * dilemma by deferring the increment of the count during
1046 	 * bootstrap (see early_kmem_cache_node_alloc).
1047 	 */
1048 	if (likely(n)) {
1049 		atomic_long_inc(&n->nr_slabs);
1050 		atomic_long_add(objects, &n->total_objects);
1051 	}
1052 }
1053 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1054 {
1055 	struct kmem_cache_node *n = get_node(s, node);
1056 
1057 	atomic_long_dec(&n->nr_slabs);
1058 	atomic_long_sub(objects, &n->total_objects);
1059 }
1060 
1061 /* Object debug checks for alloc/free paths */
1062 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1063 								void *object)
1064 {
1065 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1066 		return;
1067 
1068 	init_object(s, object, SLUB_RED_INACTIVE);
1069 	init_tracking(s, object);
1070 }
1071 
1072 static noinline int alloc_debug_processing(struct kmem_cache *s,
1073 					struct page *page,
1074 					void *object, unsigned long addr)
1075 {
1076 	if (!check_slab(s, page))
1077 		goto bad;
1078 
1079 	if (!check_valid_pointer(s, page, object)) {
1080 		object_err(s, page, object, "Freelist Pointer check fails");
1081 		goto bad;
1082 	}
1083 
1084 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1085 		goto bad;
1086 
1087 	/* Success perform special debug activities for allocs */
1088 	if (s->flags & SLAB_STORE_USER)
1089 		set_track(s, object, TRACK_ALLOC, addr);
1090 	trace(s, page, object, 1);
1091 	init_object(s, object, SLUB_RED_ACTIVE);
1092 	return 1;
1093 
1094 bad:
1095 	if (PageSlab(page)) {
1096 		/*
1097 		 * If this is a slab page then lets do the best we can
1098 		 * to avoid issues in the future. Marking all objects
1099 		 * as used avoids touching the remaining objects.
1100 		 */
1101 		slab_fix(s, "Marking all objects used");
1102 		page->inuse = page->objects;
1103 		page->freelist = NULL;
1104 	}
1105 	return 0;
1106 }
1107 
1108 static noinline struct kmem_cache_node *free_debug_processing(
1109 	struct kmem_cache *s, struct page *page, void *object,
1110 	unsigned long addr, unsigned long *flags)
1111 {
1112 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1113 
1114 	spin_lock_irqsave(&n->list_lock, *flags);
1115 	slab_lock(page);
1116 
1117 	if (!check_slab(s, page))
1118 		goto fail;
1119 
1120 	if (!check_valid_pointer(s, page, object)) {
1121 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1122 		goto fail;
1123 	}
1124 
1125 	if (on_freelist(s, page, object)) {
1126 		object_err(s, page, object, "Object already free");
1127 		goto fail;
1128 	}
1129 
1130 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1131 		goto out;
1132 
1133 	if (unlikely(s != page->slab_cache)) {
1134 		if (!PageSlab(page)) {
1135 			slab_err(s, page, "Attempt to free object(0x%p) "
1136 				"outside of slab", object);
1137 		} else if (!page->slab_cache) {
1138 			printk(KERN_ERR
1139 				"SLUB <none>: no slab for object 0x%p.\n",
1140 						object);
1141 			dump_stack();
1142 		} else
1143 			object_err(s, page, object,
1144 					"page slab pointer corrupt.");
1145 		goto fail;
1146 	}
1147 
1148 	if (s->flags & SLAB_STORE_USER)
1149 		set_track(s, object, TRACK_FREE, addr);
1150 	trace(s, page, object, 0);
1151 	init_object(s, object, SLUB_RED_INACTIVE);
1152 out:
1153 	slab_unlock(page);
1154 	/*
1155 	 * Keep node_lock to preserve integrity
1156 	 * until the object is actually freed
1157 	 */
1158 	return n;
1159 
1160 fail:
1161 	slab_unlock(page);
1162 	spin_unlock_irqrestore(&n->list_lock, *flags);
1163 	slab_fix(s, "Object at 0x%p not freed", object);
1164 	return NULL;
1165 }
1166 
1167 static int __init setup_slub_debug(char *str)
1168 {
1169 	slub_debug = DEBUG_DEFAULT_FLAGS;
1170 	if (*str++ != '=' || !*str)
1171 		/*
1172 		 * No options specified. Switch on full debugging.
1173 		 */
1174 		goto out;
1175 
1176 	if (*str == ',')
1177 		/*
1178 		 * No options but restriction on slabs. This means full
1179 		 * debugging for slabs matching a pattern.
1180 		 */
1181 		goto check_slabs;
1182 
1183 	if (tolower(*str) == 'o') {
1184 		/*
1185 		 * Avoid enabling debugging on caches if its minimum order
1186 		 * would increase as a result.
1187 		 */
1188 		disable_higher_order_debug = 1;
1189 		goto out;
1190 	}
1191 
1192 	slub_debug = 0;
1193 	if (*str == '-')
1194 		/*
1195 		 * Switch off all debugging measures.
1196 		 */
1197 		goto out;
1198 
1199 	/*
1200 	 * Determine which debug features should be switched on
1201 	 */
1202 	for (; *str && *str != ','; str++) {
1203 		switch (tolower(*str)) {
1204 		case 'f':
1205 			slub_debug |= SLAB_DEBUG_FREE;
1206 			break;
1207 		case 'z':
1208 			slub_debug |= SLAB_RED_ZONE;
1209 			break;
1210 		case 'p':
1211 			slub_debug |= SLAB_POISON;
1212 			break;
1213 		case 'u':
1214 			slub_debug |= SLAB_STORE_USER;
1215 			break;
1216 		case 't':
1217 			slub_debug |= SLAB_TRACE;
1218 			break;
1219 		case 'a':
1220 			slub_debug |= SLAB_FAILSLAB;
1221 			break;
1222 		default:
1223 			printk(KERN_ERR "slub_debug option '%c' "
1224 				"unknown. skipped\n", *str);
1225 		}
1226 	}
1227 
1228 check_slabs:
1229 	if (*str == ',')
1230 		slub_debug_slabs = str + 1;
1231 out:
1232 	return 1;
1233 }
1234 
1235 __setup("slub_debug", setup_slub_debug);
1236 
1237 static unsigned long kmem_cache_flags(unsigned long object_size,
1238 	unsigned long flags, const char *name,
1239 	void (*ctor)(void *))
1240 {
1241 	/*
1242 	 * Enable debugging if selected on the kernel commandline.
1243 	 */
1244 	if (slub_debug && (!slub_debug_slabs || (name &&
1245 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1246 		flags |= slub_debug;
1247 
1248 	return flags;
1249 }
1250 #else
1251 static inline void setup_object_debug(struct kmem_cache *s,
1252 			struct page *page, void *object) {}
1253 
1254 static inline int alloc_debug_processing(struct kmem_cache *s,
1255 	struct page *page, void *object, unsigned long addr) { return 0; }
1256 
1257 static inline struct kmem_cache_node *free_debug_processing(
1258 	struct kmem_cache *s, struct page *page, void *object,
1259 	unsigned long addr, unsigned long *flags) { return NULL; }
1260 
1261 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1262 			{ return 1; }
1263 static inline int check_object(struct kmem_cache *s, struct page *page,
1264 			void *object, u8 val) { return 1; }
1265 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1266 					struct page *page) {}
1267 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1268 					struct page *page) {}
1269 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1270 	unsigned long flags, const char *name,
1271 	void (*ctor)(void *))
1272 {
1273 	return flags;
1274 }
1275 #define slub_debug 0
1276 
1277 #define disable_higher_order_debug 0
1278 
1279 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1280 							{ return 0; }
1281 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1282 							{ return 0; }
1283 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1284 							int objects) {}
1285 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1286 							int objects) {}
1287 
1288 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1289 {
1290 	kmemleak_alloc(ptr, size, 1, flags);
1291 }
1292 
1293 static inline void kfree_hook(const void *x)
1294 {
1295 	kmemleak_free(x);
1296 }
1297 
1298 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1299 							{ return 0; }
1300 
1301 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1302 		void *object)
1303 {
1304 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1305 		flags & gfp_allowed_mask);
1306 }
1307 
1308 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1309 {
1310 	kmemleak_free_recursive(x, s->flags);
1311 }
1312 
1313 #endif /* CONFIG_SLUB_DEBUG */
1314 
1315 /*
1316  * Slab allocation and freeing
1317  */
1318 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1319 					struct kmem_cache_order_objects oo)
1320 {
1321 	int order = oo_order(oo);
1322 
1323 	flags |= __GFP_NOTRACK;
1324 
1325 	if (node == NUMA_NO_NODE)
1326 		return alloc_pages(flags, order);
1327 	else
1328 		return alloc_pages_exact_node(node, flags, order);
1329 }
1330 
1331 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1332 {
1333 	struct page *page;
1334 	struct kmem_cache_order_objects oo = s->oo;
1335 	gfp_t alloc_gfp;
1336 
1337 	flags &= gfp_allowed_mask;
1338 
1339 	if (flags & __GFP_WAIT)
1340 		local_irq_enable();
1341 
1342 	flags |= s->allocflags;
1343 
1344 	/*
1345 	 * Let the initial higher-order allocation fail under memory pressure
1346 	 * so we fall-back to the minimum order allocation.
1347 	 */
1348 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1349 
1350 	page = alloc_slab_page(alloc_gfp, node, oo);
1351 	if (unlikely(!page)) {
1352 		oo = s->min;
1353 		/*
1354 		 * Allocation may have failed due to fragmentation.
1355 		 * Try a lower order alloc if possible
1356 		 */
1357 		page = alloc_slab_page(flags, node, oo);
1358 
1359 		if (page)
1360 			stat(s, ORDER_FALLBACK);
1361 	}
1362 
1363 	if (kmemcheck_enabled && page
1364 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1365 		int pages = 1 << oo_order(oo);
1366 
1367 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1368 
1369 		/*
1370 		 * Objects from caches that have a constructor don't get
1371 		 * cleared when they're allocated, so we need to do it here.
1372 		 */
1373 		if (s->ctor)
1374 			kmemcheck_mark_uninitialized_pages(page, pages);
1375 		else
1376 			kmemcheck_mark_unallocated_pages(page, pages);
1377 	}
1378 
1379 	if (flags & __GFP_WAIT)
1380 		local_irq_disable();
1381 	if (!page)
1382 		return NULL;
1383 
1384 	page->objects = oo_objects(oo);
1385 	mod_zone_page_state(page_zone(page),
1386 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1387 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1388 		1 << oo_order(oo));
1389 
1390 	return page;
1391 }
1392 
1393 static void setup_object(struct kmem_cache *s, struct page *page,
1394 				void *object)
1395 {
1396 	setup_object_debug(s, page, object);
1397 	if (unlikely(s->ctor))
1398 		s->ctor(object);
1399 }
1400 
1401 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1402 {
1403 	struct page *page;
1404 	void *start;
1405 	void *last;
1406 	void *p;
1407 	int order;
1408 
1409 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1410 
1411 	page = allocate_slab(s,
1412 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1413 	if (!page)
1414 		goto out;
1415 
1416 	order = compound_order(page);
1417 	inc_slabs_node(s, page_to_nid(page), page->objects);
1418 	memcg_bind_pages(s, order);
1419 	page->slab_cache = s;
1420 	__SetPageSlab(page);
1421 	if (page->pfmemalloc)
1422 		SetPageSlabPfmemalloc(page);
1423 
1424 	start = page_address(page);
1425 
1426 	if (unlikely(s->flags & SLAB_POISON))
1427 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1428 
1429 	last = start;
1430 	for_each_object(p, s, start, page->objects) {
1431 		setup_object(s, page, last);
1432 		set_freepointer(s, last, p);
1433 		last = p;
1434 	}
1435 	setup_object(s, page, last);
1436 	set_freepointer(s, last, NULL);
1437 
1438 	page->freelist = start;
1439 	page->inuse = page->objects;
1440 	page->frozen = 1;
1441 out:
1442 	return page;
1443 }
1444 
1445 static void __free_slab(struct kmem_cache *s, struct page *page)
1446 {
1447 	int order = compound_order(page);
1448 	int pages = 1 << order;
1449 
1450 	if (kmem_cache_debug(s)) {
1451 		void *p;
1452 
1453 		slab_pad_check(s, page);
1454 		for_each_object(p, s, page_address(page),
1455 						page->objects)
1456 			check_object(s, page, p, SLUB_RED_INACTIVE);
1457 	}
1458 
1459 	kmemcheck_free_shadow(page, compound_order(page));
1460 
1461 	mod_zone_page_state(page_zone(page),
1462 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1463 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1464 		-pages);
1465 
1466 	__ClearPageSlabPfmemalloc(page);
1467 	__ClearPageSlab(page);
1468 
1469 	memcg_release_pages(s, order);
1470 	page_mapcount_reset(page);
1471 	if (current->reclaim_state)
1472 		current->reclaim_state->reclaimed_slab += pages;
1473 	__free_memcg_kmem_pages(page, order);
1474 }
1475 
1476 #define need_reserve_slab_rcu						\
1477 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1478 
1479 static void rcu_free_slab(struct rcu_head *h)
1480 {
1481 	struct page *page;
1482 
1483 	if (need_reserve_slab_rcu)
1484 		page = virt_to_head_page(h);
1485 	else
1486 		page = container_of((struct list_head *)h, struct page, lru);
1487 
1488 	__free_slab(page->slab_cache, page);
1489 }
1490 
1491 static void free_slab(struct kmem_cache *s, struct page *page)
1492 {
1493 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1494 		struct rcu_head *head;
1495 
1496 		if (need_reserve_slab_rcu) {
1497 			int order = compound_order(page);
1498 			int offset = (PAGE_SIZE << order) - s->reserved;
1499 
1500 			VM_BUG_ON(s->reserved != sizeof(*head));
1501 			head = page_address(page) + offset;
1502 		} else {
1503 			/*
1504 			 * RCU free overloads the RCU head over the LRU
1505 			 */
1506 			head = (void *)&page->lru;
1507 		}
1508 
1509 		call_rcu(head, rcu_free_slab);
1510 	} else
1511 		__free_slab(s, page);
1512 }
1513 
1514 static void discard_slab(struct kmem_cache *s, struct page *page)
1515 {
1516 	dec_slabs_node(s, page_to_nid(page), page->objects);
1517 	free_slab(s, page);
1518 }
1519 
1520 /*
1521  * Management of partially allocated slabs.
1522  */
1523 static inline void add_partial(struct kmem_cache_node *n,
1524 				struct page *page, int tail)
1525 {
1526 	lockdep_assert_held(&n->list_lock);
1527 
1528 	n->nr_partial++;
1529 	if (tail == DEACTIVATE_TO_TAIL)
1530 		list_add_tail(&page->lru, &n->partial);
1531 	else
1532 		list_add(&page->lru, &n->partial);
1533 }
1534 
1535 static inline void remove_partial(struct kmem_cache_node *n,
1536 					struct page *page)
1537 {
1538 	lockdep_assert_held(&n->list_lock);
1539 
1540 	list_del(&page->lru);
1541 	n->nr_partial--;
1542 }
1543 
1544 /*
1545  * Remove slab from the partial list, freeze it and
1546  * return the pointer to the freelist.
1547  *
1548  * Returns a list of objects or NULL if it fails.
1549  */
1550 static inline void *acquire_slab(struct kmem_cache *s,
1551 		struct kmem_cache_node *n, struct page *page,
1552 		int mode, int *objects)
1553 {
1554 	void *freelist;
1555 	unsigned long counters;
1556 	struct page new;
1557 
1558 	lockdep_assert_held(&n->list_lock);
1559 
1560 	/*
1561 	 * Zap the freelist and set the frozen bit.
1562 	 * The old freelist is the list of objects for the
1563 	 * per cpu allocation list.
1564 	 */
1565 	freelist = page->freelist;
1566 	counters = page->counters;
1567 	new.counters = counters;
1568 	*objects = new.objects - new.inuse;
1569 	if (mode) {
1570 		new.inuse = page->objects;
1571 		new.freelist = NULL;
1572 	} else {
1573 		new.freelist = freelist;
1574 	}
1575 
1576 	VM_BUG_ON(new.frozen);
1577 	new.frozen = 1;
1578 
1579 	if (!__cmpxchg_double_slab(s, page,
1580 			freelist, counters,
1581 			new.freelist, new.counters,
1582 			"acquire_slab"))
1583 		return NULL;
1584 
1585 	remove_partial(n, page);
1586 	WARN_ON(!freelist);
1587 	return freelist;
1588 }
1589 
1590 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1591 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1592 
1593 /*
1594  * Try to allocate a partial slab from a specific node.
1595  */
1596 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1597 				struct kmem_cache_cpu *c, gfp_t flags)
1598 {
1599 	struct page *page, *page2;
1600 	void *object = NULL;
1601 	int available = 0;
1602 	int objects;
1603 
1604 	/*
1605 	 * Racy check. If we mistakenly see no partial slabs then we
1606 	 * just allocate an empty slab. If we mistakenly try to get a
1607 	 * partial slab and there is none available then get_partials()
1608 	 * will return NULL.
1609 	 */
1610 	if (!n || !n->nr_partial)
1611 		return NULL;
1612 
1613 	spin_lock(&n->list_lock);
1614 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1615 		void *t;
1616 
1617 		if (!pfmemalloc_match(page, flags))
1618 			continue;
1619 
1620 		t = acquire_slab(s, n, page, object == NULL, &objects);
1621 		if (!t)
1622 			break;
1623 
1624 		available += objects;
1625 		if (!object) {
1626 			c->page = page;
1627 			stat(s, ALLOC_FROM_PARTIAL);
1628 			object = t;
1629 		} else {
1630 			put_cpu_partial(s, page, 0);
1631 			stat(s, CPU_PARTIAL_NODE);
1632 		}
1633 		if (!kmem_cache_has_cpu_partial(s)
1634 			|| available > s->cpu_partial / 2)
1635 			break;
1636 
1637 	}
1638 	spin_unlock(&n->list_lock);
1639 	return object;
1640 }
1641 
1642 /*
1643  * Get a page from somewhere. Search in increasing NUMA distances.
1644  */
1645 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1646 		struct kmem_cache_cpu *c)
1647 {
1648 #ifdef CONFIG_NUMA
1649 	struct zonelist *zonelist;
1650 	struct zoneref *z;
1651 	struct zone *zone;
1652 	enum zone_type high_zoneidx = gfp_zone(flags);
1653 	void *object;
1654 	unsigned int cpuset_mems_cookie;
1655 
1656 	/*
1657 	 * The defrag ratio allows a configuration of the tradeoffs between
1658 	 * inter node defragmentation and node local allocations. A lower
1659 	 * defrag_ratio increases the tendency to do local allocations
1660 	 * instead of attempting to obtain partial slabs from other nodes.
1661 	 *
1662 	 * If the defrag_ratio is set to 0 then kmalloc() always
1663 	 * returns node local objects. If the ratio is higher then kmalloc()
1664 	 * may return off node objects because partial slabs are obtained
1665 	 * from other nodes and filled up.
1666 	 *
1667 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1668 	 * defrag_ratio = 1000) then every (well almost) allocation will
1669 	 * first attempt to defrag slab caches on other nodes. This means
1670 	 * scanning over all nodes to look for partial slabs which may be
1671 	 * expensive if we do it every time we are trying to find a slab
1672 	 * with available objects.
1673 	 */
1674 	if (!s->remote_node_defrag_ratio ||
1675 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1676 		return NULL;
1677 
1678 	do {
1679 		cpuset_mems_cookie = get_mems_allowed();
1680 		zonelist = node_zonelist(slab_node(), flags);
1681 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1682 			struct kmem_cache_node *n;
1683 
1684 			n = get_node(s, zone_to_nid(zone));
1685 
1686 			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1687 					n->nr_partial > s->min_partial) {
1688 				object = get_partial_node(s, n, c, flags);
1689 				if (object) {
1690 					/*
1691 					 * Return the object even if
1692 					 * put_mems_allowed indicated that
1693 					 * the cpuset mems_allowed was
1694 					 * updated in parallel. It's a
1695 					 * harmless race between the alloc
1696 					 * and the cpuset update.
1697 					 */
1698 					put_mems_allowed(cpuset_mems_cookie);
1699 					return object;
1700 				}
1701 			}
1702 		}
1703 	} while (!put_mems_allowed(cpuset_mems_cookie));
1704 #endif
1705 	return NULL;
1706 }
1707 
1708 /*
1709  * Get a partial page, lock it and return it.
1710  */
1711 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1712 		struct kmem_cache_cpu *c)
1713 {
1714 	void *object;
1715 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1716 
1717 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1718 	if (object || node != NUMA_NO_NODE)
1719 		return object;
1720 
1721 	return get_any_partial(s, flags, c);
1722 }
1723 
1724 #ifdef CONFIG_PREEMPT
1725 /*
1726  * Calculate the next globally unique transaction for disambiguiation
1727  * during cmpxchg. The transactions start with the cpu number and are then
1728  * incremented by CONFIG_NR_CPUS.
1729  */
1730 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1731 #else
1732 /*
1733  * No preemption supported therefore also no need to check for
1734  * different cpus.
1735  */
1736 #define TID_STEP 1
1737 #endif
1738 
1739 static inline unsigned long next_tid(unsigned long tid)
1740 {
1741 	return tid + TID_STEP;
1742 }
1743 
1744 static inline unsigned int tid_to_cpu(unsigned long tid)
1745 {
1746 	return tid % TID_STEP;
1747 }
1748 
1749 static inline unsigned long tid_to_event(unsigned long tid)
1750 {
1751 	return tid / TID_STEP;
1752 }
1753 
1754 static inline unsigned int init_tid(int cpu)
1755 {
1756 	return cpu;
1757 }
1758 
1759 static inline void note_cmpxchg_failure(const char *n,
1760 		const struct kmem_cache *s, unsigned long tid)
1761 {
1762 #ifdef SLUB_DEBUG_CMPXCHG
1763 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1764 
1765 	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1766 
1767 #ifdef CONFIG_PREEMPT
1768 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1769 		printk("due to cpu change %d -> %d\n",
1770 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1771 	else
1772 #endif
1773 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1774 		printk("due to cpu running other code. Event %ld->%ld\n",
1775 			tid_to_event(tid), tid_to_event(actual_tid));
1776 	else
1777 		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1778 			actual_tid, tid, next_tid(tid));
1779 #endif
1780 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1781 }
1782 
1783 static void init_kmem_cache_cpus(struct kmem_cache *s)
1784 {
1785 	int cpu;
1786 
1787 	for_each_possible_cpu(cpu)
1788 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1789 }
1790 
1791 /*
1792  * Remove the cpu slab
1793  */
1794 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1795 				void *freelist)
1796 {
1797 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1798 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1799 	int lock = 0;
1800 	enum slab_modes l = M_NONE, m = M_NONE;
1801 	void *nextfree;
1802 	int tail = DEACTIVATE_TO_HEAD;
1803 	struct page new;
1804 	struct page old;
1805 
1806 	if (page->freelist) {
1807 		stat(s, DEACTIVATE_REMOTE_FREES);
1808 		tail = DEACTIVATE_TO_TAIL;
1809 	}
1810 
1811 	/*
1812 	 * Stage one: Free all available per cpu objects back
1813 	 * to the page freelist while it is still frozen. Leave the
1814 	 * last one.
1815 	 *
1816 	 * There is no need to take the list->lock because the page
1817 	 * is still frozen.
1818 	 */
1819 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1820 		void *prior;
1821 		unsigned long counters;
1822 
1823 		do {
1824 			prior = page->freelist;
1825 			counters = page->counters;
1826 			set_freepointer(s, freelist, prior);
1827 			new.counters = counters;
1828 			new.inuse--;
1829 			VM_BUG_ON(!new.frozen);
1830 
1831 		} while (!__cmpxchg_double_slab(s, page,
1832 			prior, counters,
1833 			freelist, new.counters,
1834 			"drain percpu freelist"));
1835 
1836 		freelist = nextfree;
1837 	}
1838 
1839 	/*
1840 	 * Stage two: Ensure that the page is unfrozen while the
1841 	 * list presence reflects the actual number of objects
1842 	 * during unfreeze.
1843 	 *
1844 	 * We setup the list membership and then perform a cmpxchg
1845 	 * with the count. If there is a mismatch then the page
1846 	 * is not unfrozen but the page is on the wrong list.
1847 	 *
1848 	 * Then we restart the process which may have to remove
1849 	 * the page from the list that we just put it on again
1850 	 * because the number of objects in the slab may have
1851 	 * changed.
1852 	 */
1853 redo:
1854 
1855 	old.freelist = page->freelist;
1856 	old.counters = page->counters;
1857 	VM_BUG_ON(!old.frozen);
1858 
1859 	/* Determine target state of the slab */
1860 	new.counters = old.counters;
1861 	if (freelist) {
1862 		new.inuse--;
1863 		set_freepointer(s, freelist, old.freelist);
1864 		new.freelist = freelist;
1865 	} else
1866 		new.freelist = old.freelist;
1867 
1868 	new.frozen = 0;
1869 
1870 	if (!new.inuse && n->nr_partial > s->min_partial)
1871 		m = M_FREE;
1872 	else if (new.freelist) {
1873 		m = M_PARTIAL;
1874 		if (!lock) {
1875 			lock = 1;
1876 			/*
1877 			 * Taking the spinlock removes the possiblity
1878 			 * that acquire_slab() will see a slab page that
1879 			 * is frozen
1880 			 */
1881 			spin_lock(&n->list_lock);
1882 		}
1883 	} else {
1884 		m = M_FULL;
1885 		if (kmem_cache_debug(s) && !lock) {
1886 			lock = 1;
1887 			/*
1888 			 * This also ensures that the scanning of full
1889 			 * slabs from diagnostic functions will not see
1890 			 * any frozen slabs.
1891 			 */
1892 			spin_lock(&n->list_lock);
1893 		}
1894 	}
1895 
1896 	if (l != m) {
1897 
1898 		if (l == M_PARTIAL)
1899 
1900 			remove_partial(n, page);
1901 
1902 		else if (l == M_FULL)
1903 
1904 			remove_full(s, n, page);
1905 
1906 		if (m == M_PARTIAL) {
1907 
1908 			add_partial(n, page, tail);
1909 			stat(s, tail);
1910 
1911 		} else if (m == M_FULL) {
1912 
1913 			stat(s, DEACTIVATE_FULL);
1914 			add_full(s, n, page);
1915 
1916 		}
1917 	}
1918 
1919 	l = m;
1920 	if (!__cmpxchg_double_slab(s, page,
1921 				old.freelist, old.counters,
1922 				new.freelist, new.counters,
1923 				"unfreezing slab"))
1924 		goto redo;
1925 
1926 	if (lock)
1927 		spin_unlock(&n->list_lock);
1928 
1929 	if (m == M_FREE) {
1930 		stat(s, DEACTIVATE_EMPTY);
1931 		discard_slab(s, page);
1932 		stat(s, FREE_SLAB);
1933 	}
1934 }
1935 
1936 /*
1937  * Unfreeze all the cpu partial slabs.
1938  *
1939  * This function must be called with interrupts disabled
1940  * for the cpu using c (or some other guarantee must be there
1941  * to guarantee no concurrent accesses).
1942  */
1943 static void unfreeze_partials(struct kmem_cache *s,
1944 		struct kmem_cache_cpu *c)
1945 {
1946 #ifdef CONFIG_SLUB_CPU_PARTIAL
1947 	struct kmem_cache_node *n = NULL, *n2 = NULL;
1948 	struct page *page, *discard_page = NULL;
1949 
1950 	while ((page = c->partial)) {
1951 		struct page new;
1952 		struct page old;
1953 
1954 		c->partial = page->next;
1955 
1956 		n2 = get_node(s, page_to_nid(page));
1957 		if (n != n2) {
1958 			if (n)
1959 				spin_unlock(&n->list_lock);
1960 
1961 			n = n2;
1962 			spin_lock(&n->list_lock);
1963 		}
1964 
1965 		do {
1966 
1967 			old.freelist = page->freelist;
1968 			old.counters = page->counters;
1969 			VM_BUG_ON(!old.frozen);
1970 
1971 			new.counters = old.counters;
1972 			new.freelist = old.freelist;
1973 
1974 			new.frozen = 0;
1975 
1976 		} while (!__cmpxchg_double_slab(s, page,
1977 				old.freelist, old.counters,
1978 				new.freelist, new.counters,
1979 				"unfreezing slab"));
1980 
1981 		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1982 			page->next = discard_page;
1983 			discard_page = page;
1984 		} else {
1985 			add_partial(n, page, DEACTIVATE_TO_TAIL);
1986 			stat(s, FREE_ADD_PARTIAL);
1987 		}
1988 	}
1989 
1990 	if (n)
1991 		spin_unlock(&n->list_lock);
1992 
1993 	while (discard_page) {
1994 		page = discard_page;
1995 		discard_page = discard_page->next;
1996 
1997 		stat(s, DEACTIVATE_EMPTY);
1998 		discard_slab(s, page);
1999 		stat(s, FREE_SLAB);
2000 	}
2001 #endif
2002 }
2003 
2004 /*
2005  * Put a page that was just frozen (in __slab_free) into a partial page
2006  * slot if available. This is done without interrupts disabled and without
2007  * preemption disabled. The cmpxchg is racy and may put the partial page
2008  * onto a random cpus partial slot.
2009  *
2010  * If we did not find a slot then simply move all the partials to the
2011  * per node partial list.
2012  */
2013 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2014 {
2015 #ifdef CONFIG_SLUB_CPU_PARTIAL
2016 	struct page *oldpage;
2017 	int pages;
2018 	int pobjects;
2019 
2020 	do {
2021 		pages = 0;
2022 		pobjects = 0;
2023 		oldpage = this_cpu_read(s->cpu_slab->partial);
2024 
2025 		if (oldpage) {
2026 			pobjects = oldpage->pobjects;
2027 			pages = oldpage->pages;
2028 			if (drain && pobjects > s->cpu_partial) {
2029 				unsigned long flags;
2030 				/*
2031 				 * partial array is full. Move the existing
2032 				 * set to the per node partial list.
2033 				 */
2034 				local_irq_save(flags);
2035 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2036 				local_irq_restore(flags);
2037 				oldpage = NULL;
2038 				pobjects = 0;
2039 				pages = 0;
2040 				stat(s, CPU_PARTIAL_DRAIN);
2041 			}
2042 		}
2043 
2044 		pages++;
2045 		pobjects += page->objects - page->inuse;
2046 
2047 		page->pages = pages;
2048 		page->pobjects = pobjects;
2049 		page->next = oldpage;
2050 
2051 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2052 								!= oldpage);
2053 #endif
2054 }
2055 
2056 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2057 {
2058 	stat(s, CPUSLAB_FLUSH);
2059 	deactivate_slab(s, c->page, c->freelist);
2060 
2061 	c->tid = next_tid(c->tid);
2062 	c->page = NULL;
2063 	c->freelist = NULL;
2064 }
2065 
2066 /*
2067  * Flush cpu slab.
2068  *
2069  * Called from IPI handler with interrupts disabled.
2070  */
2071 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2072 {
2073 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2074 
2075 	if (likely(c)) {
2076 		if (c->page)
2077 			flush_slab(s, c);
2078 
2079 		unfreeze_partials(s, c);
2080 	}
2081 }
2082 
2083 static void flush_cpu_slab(void *d)
2084 {
2085 	struct kmem_cache *s = d;
2086 
2087 	__flush_cpu_slab(s, smp_processor_id());
2088 }
2089 
2090 static bool has_cpu_slab(int cpu, void *info)
2091 {
2092 	struct kmem_cache *s = info;
2093 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2094 
2095 	return c->page || c->partial;
2096 }
2097 
2098 static void flush_all(struct kmem_cache *s)
2099 {
2100 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2101 }
2102 
2103 /*
2104  * Check if the objects in a per cpu structure fit numa
2105  * locality expectations.
2106  */
2107 static inline int node_match(struct page *page, int node)
2108 {
2109 #ifdef CONFIG_NUMA
2110 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2111 		return 0;
2112 #endif
2113 	return 1;
2114 }
2115 
2116 static int count_free(struct page *page)
2117 {
2118 	return page->objects - page->inuse;
2119 }
2120 
2121 static unsigned long count_partial(struct kmem_cache_node *n,
2122 					int (*get_count)(struct page *))
2123 {
2124 	unsigned long flags;
2125 	unsigned long x = 0;
2126 	struct page *page;
2127 
2128 	spin_lock_irqsave(&n->list_lock, flags);
2129 	list_for_each_entry(page, &n->partial, lru)
2130 		x += get_count(page);
2131 	spin_unlock_irqrestore(&n->list_lock, flags);
2132 	return x;
2133 }
2134 
2135 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2136 {
2137 #ifdef CONFIG_SLUB_DEBUG
2138 	return atomic_long_read(&n->total_objects);
2139 #else
2140 	return 0;
2141 #endif
2142 }
2143 
2144 static noinline void
2145 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2146 {
2147 	int node;
2148 
2149 	printk(KERN_WARNING
2150 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2151 		nid, gfpflags);
2152 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2153 		"default order: %d, min order: %d\n", s->name, s->object_size,
2154 		s->size, oo_order(s->oo), oo_order(s->min));
2155 
2156 	if (oo_order(s->min) > get_order(s->object_size))
2157 		printk(KERN_WARNING "  %s debugging increased min order, use "
2158 		       "slub_debug=O to disable.\n", s->name);
2159 
2160 	for_each_online_node(node) {
2161 		struct kmem_cache_node *n = get_node(s, node);
2162 		unsigned long nr_slabs;
2163 		unsigned long nr_objs;
2164 		unsigned long nr_free;
2165 
2166 		if (!n)
2167 			continue;
2168 
2169 		nr_free  = count_partial(n, count_free);
2170 		nr_slabs = node_nr_slabs(n);
2171 		nr_objs  = node_nr_objs(n);
2172 
2173 		printk(KERN_WARNING
2174 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2175 			node, nr_slabs, nr_objs, nr_free);
2176 	}
2177 }
2178 
2179 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2180 			int node, struct kmem_cache_cpu **pc)
2181 {
2182 	void *freelist;
2183 	struct kmem_cache_cpu *c = *pc;
2184 	struct page *page;
2185 
2186 	freelist = get_partial(s, flags, node, c);
2187 
2188 	if (freelist)
2189 		return freelist;
2190 
2191 	page = new_slab(s, flags, node);
2192 	if (page) {
2193 		c = __this_cpu_ptr(s->cpu_slab);
2194 		if (c->page)
2195 			flush_slab(s, c);
2196 
2197 		/*
2198 		 * No other reference to the page yet so we can
2199 		 * muck around with it freely without cmpxchg
2200 		 */
2201 		freelist = page->freelist;
2202 		page->freelist = NULL;
2203 
2204 		stat(s, ALLOC_SLAB);
2205 		c->page = page;
2206 		*pc = c;
2207 	} else
2208 		freelist = NULL;
2209 
2210 	return freelist;
2211 }
2212 
2213 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2214 {
2215 	if (unlikely(PageSlabPfmemalloc(page)))
2216 		return gfp_pfmemalloc_allowed(gfpflags);
2217 
2218 	return true;
2219 }
2220 
2221 /*
2222  * Check the page->freelist of a page and either transfer the freelist to the
2223  * per cpu freelist or deactivate the page.
2224  *
2225  * The page is still frozen if the return value is not NULL.
2226  *
2227  * If this function returns NULL then the page has been unfrozen.
2228  *
2229  * This function must be called with interrupt disabled.
2230  */
2231 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2232 {
2233 	struct page new;
2234 	unsigned long counters;
2235 	void *freelist;
2236 
2237 	do {
2238 		freelist = page->freelist;
2239 		counters = page->counters;
2240 
2241 		new.counters = counters;
2242 		VM_BUG_ON(!new.frozen);
2243 
2244 		new.inuse = page->objects;
2245 		new.frozen = freelist != NULL;
2246 
2247 	} while (!__cmpxchg_double_slab(s, page,
2248 		freelist, counters,
2249 		NULL, new.counters,
2250 		"get_freelist"));
2251 
2252 	return freelist;
2253 }
2254 
2255 /*
2256  * Slow path. The lockless freelist is empty or we need to perform
2257  * debugging duties.
2258  *
2259  * Processing is still very fast if new objects have been freed to the
2260  * regular freelist. In that case we simply take over the regular freelist
2261  * as the lockless freelist and zap the regular freelist.
2262  *
2263  * If that is not working then we fall back to the partial lists. We take the
2264  * first element of the freelist as the object to allocate now and move the
2265  * rest of the freelist to the lockless freelist.
2266  *
2267  * And if we were unable to get a new slab from the partial slab lists then
2268  * we need to allocate a new slab. This is the slowest path since it involves
2269  * a call to the page allocator and the setup of a new slab.
2270  */
2271 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2272 			  unsigned long addr, struct kmem_cache_cpu *c)
2273 {
2274 	void *freelist;
2275 	struct page *page;
2276 	unsigned long flags;
2277 
2278 	local_irq_save(flags);
2279 #ifdef CONFIG_PREEMPT
2280 	/*
2281 	 * We may have been preempted and rescheduled on a different
2282 	 * cpu before disabling interrupts. Need to reload cpu area
2283 	 * pointer.
2284 	 */
2285 	c = this_cpu_ptr(s->cpu_slab);
2286 #endif
2287 
2288 	page = c->page;
2289 	if (!page)
2290 		goto new_slab;
2291 redo:
2292 
2293 	if (unlikely(!node_match(page, node))) {
2294 		stat(s, ALLOC_NODE_MISMATCH);
2295 		deactivate_slab(s, page, c->freelist);
2296 		c->page = NULL;
2297 		c->freelist = NULL;
2298 		goto new_slab;
2299 	}
2300 
2301 	/*
2302 	 * By rights, we should be searching for a slab page that was
2303 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2304 	 * information when the page leaves the per-cpu allocator
2305 	 */
2306 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2307 		deactivate_slab(s, page, c->freelist);
2308 		c->page = NULL;
2309 		c->freelist = NULL;
2310 		goto new_slab;
2311 	}
2312 
2313 	/* must check again c->freelist in case of cpu migration or IRQ */
2314 	freelist = c->freelist;
2315 	if (freelist)
2316 		goto load_freelist;
2317 
2318 	stat(s, ALLOC_SLOWPATH);
2319 
2320 	freelist = get_freelist(s, page);
2321 
2322 	if (!freelist) {
2323 		c->page = NULL;
2324 		stat(s, DEACTIVATE_BYPASS);
2325 		goto new_slab;
2326 	}
2327 
2328 	stat(s, ALLOC_REFILL);
2329 
2330 load_freelist:
2331 	/*
2332 	 * freelist is pointing to the list of objects to be used.
2333 	 * page is pointing to the page from which the objects are obtained.
2334 	 * That page must be frozen for per cpu allocations to work.
2335 	 */
2336 	VM_BUG_ON(!c->page->frozen);
2337 	c->freelist = get_freepointer(s, freelist);
2338 	c->tid = next_tid(c->tid);
2339 	local_irq_restore(flags);
2340 	return freelist;
2341 
2342 new_slab:
2343 
2344 	if (c->partial) {
2345 		page = c->page = c->partial;
2346 		c->partial = page->next;
2347 		stat(s, CPU_PARTIAL_ALLOC);
2348 		c->freelist = NULL;
2349 		goto redo;
2350 	}
2351 
2352 	freelist = new_slab_objects(s, gfpflags, node, &c);
2353 
2354 	if (unlikely(!freelist)) {
2355 		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2356 			slab_out_of_memory(s, gfpflags, node);
2357 
2358 		local_irq_restore(flags);
2359 		return NULL;
2360 	}
2361 
2362 	page = c->page;
2363 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2364 		goto load_freelist;
2365 
2366 	/* Only entered in the debug case */
2367 	if (kmem_cache_debug(s) &&
2368 			!alloc_debug_processing(s, page, freelist, addr))
2369 		goto new_slab;	/* Slab failed checks. Next slab needed */
2370 
2371 	deactivate_slab(s, page, get_freepointer(s, freelist));
2372 	c->page = NULL;
2373 	c->freelist = NULL;
2374 	local_irq_restore(flags);
2375 	return freelist;
2376 }
2377 
2378 /*
2379  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2380  * have the fastpath folded into their functions. So no function call
2381  * overhead for requests that can be satisfied on the fastpath.
2382  *
2383  * The fastpath works by first checking if the lockless freelist can be used.
2384  * If not then __slab_alloc is called for slow processing.
2385  *
2386  * Otherwise we can simply pick the next object from the lockless free list.
2387  */
2388 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2389 		gfp_t gfpflags, int node, unsigned long addr)
2390 {
2391 	void **object;
2392 	struct kmem_cache_cpu *c;
2393 	struct page *page;
2394 	unsigned long tid;
2395 
2396 	if (slab_pre_alloc_hook(s, gfpflags))
2397 		return NULL;
2398 
2399 	s = memcg_kmem_get_cache(s, gfpflags);
2400 redo:
2401 	/*
2402 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2403 	 * enabled. We may switch back and forth between cpus while
2404 	 * reading from one cpu area. That does not matter as long
2405 	 * as we end up on the original cpu again when doing the cmpxchg.
2406 	 *
2407 	 * Preemption is disabled for the retrieval of the tid because that
2408 	 * must occur from the current processor. We cannot allow rescheduling
2409 	 * on a different processor between the determination of the pointer
2410 	 * and the retrieval of the tid.
2411 	 */
2412 	preempt_disable();
2413 	c = __this_cpu_ptr(s->cpu_slab);
2414 
2415 	/*
2416 	 * The transaction ids are globally unique per cpu and per operation on
2417 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2418 	 * occurs on the right processor and that there was no operation on the
2419 	 * linked list in between.
2420 	 */
2421 	tid = c->tid;
2422 	preempt_enable();
2423 
2424 	object = c->freelist;
2425 	page = c->page;
2426 	if (unlikely(!object || !node_match(page, node)))
2427 		object = __slab_alloc(s, gfpflags, node, addr, c);
2428 
2429 	else {
2430 		void *next_object = get_freepointer_safe(s, object);
2431 
2432 		/*
2433 		 * The cmpxchg will only match if there was no additional
2434 		 * operation and if we are on the right processor.
2435 		 *
2436 		 * The cmpxchg does the following atomically (without lock
2437 		 * semantics!)
2438 		 * 1. Relocate first pointer to the current per cpu area.
2439 		 * 2. Verify that tid and freelist have not been changed
2440 		 * 3. If they were not changed replace tid and freelist
2441 		 *
2442 		 * Since this is without lock semantics the protection is only
2443 		 * against code executing on this cpu *not* from access by
2444 		 * other cpus.
2445 		 */
2446 		if (unlikely(!this_cpu_cmpxchg_double(
2447 				s->cpu_slab->freelist, s->cpu_slab->tid,
2448 				object, tid,
2449 				next_object, next_tid(tid)))) {
2450 
2451 			note_cmpxchg_failure("slab_alloc", s, tid);
2452 			goto redo;
2453 		}
2454 		prefetch_freepointer(s, next_object);
2455 		stat(s, ALLOC_FASTPATH);
2456 	}
2457 
2458 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2459 		memset(object, 0, s->object_size);
2460 
2461 	slab_post_alloc_hook(s, gfpflags, object);
2462 
2463 	return object;
2464 }
2465 
2466 static __always_inline void *slab_alloc(struct kmem_cache *s,
2467 		gfp_t gfpflags, unsigned long addr)
2468 {
2469 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2470 }
2471 
2472 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2473 {
2474 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2475 
2476 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2477 				s->size, gfpflags);
2478 
2479 	return ret;
2480 }
2481 EXPORT_SYMBOL(kmem_cache_alloc);
2482 
2483 #ifdef CONFIG_TRACING
2484 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2485 {
2486 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2487 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2488 	return ret;
2489 }
2490 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2491 #endif
2492 
2493 #ifdef CONFIG_NUMA
2494 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2495 {
2496 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2497 
2498 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2499 				    s->object_size, s->size, gfpflags, node);
2500 
2501 	return ret;
2502 }
2503 EXPORT_SYMBOL(kmem_cache_alloc_node);
2504 
2505 #ifdef CONFIG_TRACING
2506 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2507 				    gfp_t gfpflags,
2508 				    int node, size_t size)
2509 {
2510 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2511 
2512 	trace_kmalloc_node(_RET_IP_, ret,
2513 			   size, s->size, gfpflags, node);
2514 	return ret;
2515 }
2516 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2517 #endif
2518 #endif
2519 
2520 /*
2521  * Slow patch handling. This may still be called frequently since objects
2522  * have a longer lifetime than the cpu slabs in most processing loads.
2523  *
2524  * So we still attempt to reduce cache line usage. Just take the slab
2525  * lock and free the item. If there is no additional partial page
2526  * handling required then we can return immediately.
2527  */
2528 static void __slab_free(struct kmem_cache *s, struct page *page,
2529 			void *x, unsigned long addr)
2530 {
2531 	void *prior;
2532 	void **object = (void *)x;
2533 	int was_frozen;
2534 	struct page new;
2535 	unsigned long counters;
2536 	struct kmem_cache_node *n = NULL;
2537 	unsigned long uninitialized_var(flags);
2538 
2539 	stat(s, FREE_SLOWPATH);
2540 
2541 	if (kmem_cache_debug(s) &&
2542 		!(n = free_debug_processing(s, page, x, addr, &flags)))
2543 		return;
2544 
2545 	do {
2546 		if (unlikely(n)) {
2547 			spin_unlock_irqrestore(&n->list_lock, flags);
2548 			n = NULL;
2549 		}
2550 		prior = page->freelist;
2551 		counters = page->counters;
2552 		set_freepointer(s, object, prior);
2553 		new.counters = counters;
2554 		was_frozen = new.frozen;
2555 		new.inuse--;
2556 		if ((!new.inuse || !prior) && !was_frozen) {
2557 
2558 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2559 
2560 				/*
2561 				 * Slab was on no list before and will be
2562 				 * partially empty
2563 				 * We can defer the list move and instead
2564 				 * freeze it.
2565 				 */
2566 				new.frozen = 1;
2567 
2568 			} else { /* Needs to be taken off a list */
2569 
2570 	                        n = get_node(s, page_to_nid(page));
2571 				/*
2572 				 * Speculatively acquire the list_lock.
2573 				 * If the cmpxchg does not succeed then we may
2574 				 * drop the list_lock without any processing.
2575 				 *
2576 				 * Otherwise the list_lock will synchronize with
2577 				 * other processors updating the list of slabs.
2578 				 */
2579 				spin_lock_irqsave(&n->list_lock, flags);
2580 
2581 			}
2582 		}
2583 
2584 	} while (!cmpxchg_double_slab(s, page,
2585 		prior, counters,
2586 		object, new.counters,
2587 		"__slab_free"));
2588 
2589 	if (likely(!n)) {
2590 
2591 		/*
2592 		 * If we just froze the page then put it onto the
2593 		 * per cpu partial list.
2594 		 */
2595 		if (new.frozen && !was_frozen) {
2596 			put_cpu_partial(s, page, 1);
2597 			stat(s, CPU_PARTIAL_FREE);
2598 		}
2599 		/*
2600 		 * The list lock was not taken therefore no list
2601 		 * activity can be necessary.
2602 		 */
2603                 if (was_frozen)
2604                         stat(s, FREE_FROZEN);
2605                 return;
2606         }
2607 
2608 	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2609 		goto slab_empty;
2610 
2611 	/*
2612 	 * Objects left in the slab. If it was not on the partial list before
2613 	 * then add it.
2614 	 */
2615 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2616 		if (kmem_cache_debug(s))
2617 			remove_full(s, n, page);
2618 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2619 		stat(s, FREE_ADD_PARTIAL);
2620 	}
2621 	spin_unlock_irqrestore(&n->list_lock, flags);
2622 	return;
2623 
2624 slab_empty:
2625 	if (prior) {
2626 		/*
2627 		 * Slab on the partial list.
2628 		 */
2629 		remove_partial(n, page);
2630 		stat(s, FREE_REMOVE_PARTIAL);
2631 	} else {
2632 		/* Slab must be on the full list */
2633 		remove_full(s, n, page);
2634 	}
2635 
2636 	spin_unlock_irqrestore(&n->list_lock, flags);
2637 	stat(s, FREE_SLAB);
2638 	discard_slab(s, page);
2639 }
2640 
2641 /*
2642  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2643  * can perform fastpath freeing without additional function calls.
2644  *
2645  * The fastpath is only possible if we are freeing to the current cpu slab
2646  * of this processor. This typically the case if we have just allocated
2647  * the item before.
2648  *
2649  * If fastpath is not possible then fall back to __slab_free where we deal
2650  * with all sorts of special processing.
2651  */
2652 static __always_inline void slab_free(struct kmem_cache *s,
2653 			struct page *page, void *x, unsigned long addr)
2654 {
2655 	void **object = (void *)x;
2656 	struct kmem_cache_cpu *c;
2657 	unsigned long tid;
2658 
2659 	slab_free_hook(s, x);
2660 
2661 redo:
2662 	/*
2663 	 * Determine the currently cpus per cpu slab.
2664 	 * The cpu may change afterward. However that does not matter since
2665 	 * data is retrieved via this pointer. If we are on the same cpu
2666 	 * during the cmpxchg then the free will succedd.
2667 	 */
2668 	preempt_disable();
2669 	c = __this_cpu_ptr(s->cpu_slab);
2670 
2671 	tid = c->tid;
2672 	preempt_enable();
2673 
2674 	if (likely(page == c->page)) {
2675 		set_freepointer(s, object, c->freelist);
2676 
2677 		if (unlikely(!this_cpu_cmpxchg_double(
2678 				s->cpu_slab->freelist, s->cpu_slab->tid,
2679 				c->freelist, tid,
2680 				object, next_tid(tid)))) {
2681 
2682 			note_cmpxchg_failure("slab_free", s, tid);
2683 			goto redo;
2684 		}
2685 		stat(s, FREE_FASTPATH);
2686 	} else
2687 		__slab_free(s, page, x, addr);
2688 
2689 }
2690 
2691 void kmem_cache_free(struct kmem_cache *s, void *x)
2692 {
2693 	s = cache_from_obj(s, x);
2694 	if (!s)
2695 		return;
2696 	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2697 	trace_kmem_cache_free(_RET_IP_, x);
2698 }
2699 EXPORT_SYMBOL(kmem_cache_free);
2700 
2701 /*
2702  * Object placement in a slab is made very easy because we always start at
2703  * offset 0. If we tune the size of the object to the alignment then we can
2704  * get the required alignment by putting one properly sized object after
2705  * another.
2706  *
2707  * Notice that the allocation order determines the sizes of the per cpu
2708  * caches. Each processor has always one slab available for allocations.
2709  * Increasing the allocation order reduces the number of times that slabs
2710  * must be moved on and off the partial lists and is therefore a factor in
2711  * locking overhead.
2712  */
2713 
2714 /*
2715  * Mininum / Maximum order of slab pages. This influences locking overhead
2716  * and slab fragmentation. A higher order reduces the number of partial slabs
2717  * and increases the number of allocations possible without having to
2718  * take the list_lock.
2719  */
2720 static int slub_min_order;
2721 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2722 static int slub_min_objects;
2723 
2724 /*
2725  * Merge control. If this is set then no merging of slab caches will occur.
2726  * (Could be removed. This was introduced to pacify the merge skeptics.)
2727  */
2728 static int slub_nomerge;
2729 
2730 /*
2731  * Calculate the order of allocation given an slab object size.
2732  *
2733  * The order of allocation has significant impact on performance and other
2734  * system components. Generally order 0 allocations should be preferred since
2735  * order 0 does not cause fragmentation in the page allocator. Larger objects
2736  * be problematic to put into order 0 slabs because there may be too much
2737  * unused space left. We go to a higher order if more than 1/16th of the slab
2738  * would be wasted.
2739  *
2740  * In order to reach satisfactory performance we must ensure that a minimum
2741  * number of objects is in one slab. Otherwise we may generate too much
2742  * activity on the partial lists which requires taking the list_lock. This is
2743  * less a concern for large slabs though which are rarely used.
2744  *
2745  * slub_max_order specifies the order where we begin to stop considering the
2746  * number of objects in a slab as critical. If we reach slub_max_order then
2747  * we try to keep the page order as low as possible. So we accept more waste
2748  * of space in favor of a small page order.
2749  *
2750  * Higher order allocations also allow the placement of more objects in a
2751  * slab and thereby reduce object handling overhead. If the user has
2752  * requested a higher mininum order then we start with that one instead of
2753  * the smallest order which will fit the object.
2754  */
2755 static inline int slab_order(int size, int min_objects,
2756 				int max_order, int fract_leftover, int reserved)
2757 {
2758 	int order;
2759 	int rem;
2760 	int min_order = slub_min_order;
2761 
2762 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2763 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2764 
2765 	for (order = max(min_order,
2766 				fls(min_objects * size - 1) - PAGE_SHIFT);
2767 			order <= max_order; order++) {
2768 
2769 		unsigned long slab_size = PAGE_SIZE << order;
2770 
2771 		if (slab_size < min_objects * size + reserved)
2772 			continue;
2773 
2774 		rem = (slab_size - reserved) % size;
2775 
2776 		if (rem <= slab_size / fract_leftover)
2777 			break;
2778 
2779 	}
2780 
2781 	return order;
2782 }
2783 
2784 static inline int calculate_order(int size, int reserved)
2785 {
2786 	int order;
2787 	int min_objects;
2788 	int fraction;
2789 	int max_objects;
2790 
2791 	/*
2792 	 * Attempt to find best configuration for a slab. This
2793 	 * works by first attempting to generate a layout with
2794 	 * the best configuration and backing off gradually.
2795 	 *
2796 	 * First we reduce the acceptable waste in a slab. Then
2797 	 * we reduce the minimum objects required in a slab.
2798 	 */
2799 	min_objects = slub_min_objects;
2800 	if (!min_objects)
2801 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2802 	max_objects = order_objects(slub_max_order, size, reserved);
2803 	min_objects = min(min_objects, max_objects);
2804 
2805 	while (min_objects > 1) {
2806 		fraction = 16;
2807 		while (fraction >= 4) {
2808 			order = slab_order(size, min_objects,
2809 					slub_max_order, fraction, reserved);
2810 			if (order <= slub_max_order)
2811 				return order;
2812 			fraction /= 2;
2813 		}
2814 		min_objects--;
2815 	}
2816 
2817 	/*
2818 	 * We were unable to place multiple objects in a slab. Now
2819 	 * lets see if we can place a single object there.
2820 	 */
2821 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2822 	if (order <= slub_max_order)
2823 		return order;
2824 
2825 	/*
2826 	 * Doh this slab cannot be placed using slub_max_order.
2827 	 */
2828 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2829 	if (order < MAX_ORDER)
2830 		return order;
2831 	return -ENOSYS;
2832 }
2833 
2834 static void
2835 init_kmem_cache_node(struct kmem_cache_node *n)
2836 {
2837 	n->nr_partial = 0;
2838 	spin_lock_init(&n->list_lock);
2839 	INIT_LIST_HEAD(&n->partial);
2840 #ifdef CONFIG_SLUB_DEBUG
2841 	atomic_long_set(&n->nr_slabs, 0);
2842 	atomic_long_set(&n->total_objects, 0);
2843 	INIT_LIST_HEAD(&n->full);
2844 #endif
2845 }
2846 
2847 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2848 {
2849 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2850 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2851 
2852 	/*
2853 	 * Must align to double word boundary for the double cmpxchg
2854 	 * instructions to work; see __pcpu_double_call_return_bool().
2855 	 */
2856 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2857 				     2 * sizeof(void *));
2858 
2859 	if (!s->cpu_slab)
2860 		return 0;
2861 
2862 	init_kmem_cache_cpus(s);
2863 
2864 	return 1;
2865 }
2866 
2867 static struct kmem_cache *kmem_cache_node;
2868 
2869 /*
2870  * No kmalloc_node yet so do it by hand. We know that this is the first
2871  * slab on the node for this slabcache. There are no concurrent accesses
2872  * possible.
2873  *
2874  * Note that this function only works on the kmem_cache_node
2875  * when allocating for the kmem_cache_node. This is used for bootstrapping
2876  * memory on a fresh node that has no slab structures yet.
2877  */
2878 static void early_kmem_cache_node_alloc(int node)
2879 {
2880 	struct page *page;
2881 	struct kmem_cache_node *n;
2882 
2883 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2884 
2885 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2886 
2887 	BUG_ON(!page);
2888 	if (page_to_nid(page) != node) {
2889 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2890 				"node %d\n", node);
2891 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2892 				"in order to be able to continue\n");
2893 	}
2894 
2895 	n = page->freelist;
2896 	BUG_ON(!n);
2897 	page->freelist = get_freepointer(kmem_cache_node, n);
2898 	page->inuse = 1;
2899 	page->frozen = 0;
2900 	kmem_cache_node->node[node] = n;
2901 #ifdef CONFIG_SLUB_DEBUG
2902 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2903 	init_tracking(kmem_cache_node, n);
2904 #endif
2905 	init_kmem_cache_node(n);
2906 	inc_slabs_node(kmem_cache_node, node, page->objects);
2907 
2908 	/*
2909 	 * the lock is for lockdep's sake, not for any actual
2910 	 * race protection
2911 	 */
2912 	spin_lock(&n->list_lock);
2913 	add_partial(n, page, DEACTIVATE_TO_HEAD);
2914 	spin_unlock(&n->list_lock);
2915 }
2916 
2917 static void free_kmem_cache_nodes(struct kmem_cache *s)
2918 {
2919 	int node;
2920 
2921 	for_each_node_state(node, N_NORMAL_MEMORY) {
2922 		struct kmem_cache_node *n = s->node[node];
2923 
2924 		if (n)
2925 			kmem_cache_free(kmem_cache_node, n);
2926 
2927 		s->node[node] = NULL;
2928 	}
2929 }
2930 
2931 static int init_kmem_cache_nodes(struct kmem_cache *s)
2932 {
2933 	int node;
2934 
2935 	for_each_node_state(node, N_NORMAL_MEMORY) {
2936 		struct kmem_cache_node *n;
2937 
2938 		if (slab_state == DOWN) {
2939 			early_kmem_cache_node_alloc(node);
2940 			continue;
2941 		}
2942 		n = kmem_cache_alloc_node(kmem_cache_node,
2943 						GFP_KERNEL, node);
2944 
2945 		if (!n) {
2946 			free_kmem_cache_nodes(s);
2947 			return 0;
2948 		}
2949 
2950 		s->node[node] = n;
2951 		init_kmem_cache_node(n);
2952 	}
2953 	return 1;
2954 }
2955 
2956 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2957 {
2958 	if (min < MIN_PARTIAL)
2959 		min = MIN_PARTIAL;
2960 	else if (min > MAX_PARTIAL)
2961 		min = MAX_PARTIAL;
2962 	s->min_partial = min;
2963 }
2964 
2965 /*
2966  * calculate_sizes() determines the order and the distribution of data within
2967  * a slab object.
2968  */
2969 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2970 {
2971 	unsigned long flags = s->flags;
2972 	unsigned long size = s->object_size;
2973 	int order;
2974 
2975 	/*
2976 	 * Round up object size to the next word boundary. We can only
2977 	 * place the free pointer at word boundaries and this determines
2978 	 * the possible location of the free pointer.
2979 	 */
2980 	size = ALIGN(size, sizeof(void *));
2981 
2982 #ifdef CONFIG_SLUB_DEBUG
2983 	/*
2984 	 * Determine if we can poison the object itself. If the user of
2985 	 * the slab may touch the object after free or before allocation
2986 	 * then we should never poison the object itself.
2987 	 */
2988 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2989 			!s->ctor)
2990 		s->flags |= __OBJECT_POISON;
2991 	else
2992 		s->flags &= ~__OBJECT_POISON;
2993 
2994 
2995 	/*
2996 	 * If we are Redzoning then check if there is some space between the
2997 	 * end of the object and the free pointer. If not then add an
2998 	 * additional word to have some bytes to store Redzone information.
2999 	 */
3000 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3001 		size += sizeof(void *);
3002 #endif
3003 
3004 	/*
3005 	 * With that we have determined the number of bytes in actual use
3006 	 * by the object. This is the potential offset to the free pointer.
3007 	 */
3008 	s->inuse = size;
3009 
3010 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3011 		s->ctor)) {
3012 		/*
3013 		 * Relocate free pointer after the object if it is not
3014 		 * permitted to overwrite the first word of the object on
3015 		 * kmem_cache_free.
3016 		 *
3017 		 * This is the case if we do RCU, have a constructor or
3018 		 * destructor or are poisoning the objects.
3019 		 */
3020 		s->offset = size;
3021 		size += sizeof(void *);
3022 	}
3023 
3024 #ifdef CONFIG_SLUB_DEBUG
3025 	if (flags & SLAB_STORE_USER)
3026 		/*
3027 		 * Need to store information about allocs and frees after
3028 		 * the object.
3029 		 */
3030 		size += 2 * sizeof(struct track);
3031 
3032 	if (flags & SLAB_RED_ZONE)
3033 		/*
3034 		 * Add some empty padding so that we can catch
3035 		 * overwrites from earlier objects rather than let
3036 		 * tracking information or the free pointer be
3037 		 * corrupted if a user writes before the start
3038 		 * of the object.
3039 		 */
3040 		size += sizeof(void *);
3041 #endif
3042 
3043 	/*
3044 	 * SLUB stores one object immediately after another beginning from
3045 	 * offset 0. In order to align the objects we have to simply size
3046 	 * each object to conform to the alignment.
3047 	 */
3048 	size = ALIGN(size, s->align);
3049 	s->size = size;
3050 	if (forced_order >= 0)
3051 		order = forced_order;
3052 	else
3053 		order = calculate_order(size, s->reserved);
3054 
3055 	if (order < 0)
3056 		return 0;
3057 
3058 	s->allocflags = 0;
3059 	if (order)
3060 		s->allocflags |= __GFP_COMP;
3061 
3062 	if (s->flags & SLAB_CACHE_DMA)
3063 		s->allocflags |= GFP_DMA;
3064 
3065 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3066 		s->allocflags |= __GFP_RECLAIMABLE;
3067 
3068 	/*
3069 	 * Determine the number of objects per slab
3070 	 */
3071 	s->oo = oo_make(order, size, s->reserved);
3072 	s->min = oo_make(get_order(size), size, s->reserved);
3073 	if (oo_objects(s->oo) > oo_objects(s->max))
3074 		s->max = s->oo;
3075 
3076 	return !!oo_objects(s->oo);
3077 }
3078 
3079 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3080 {
3081 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3082 	s->reserved = 0;
3083 
3084 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3085 		s->reserved = sizeof(struct rcu_head);
3086 
3087 	if (!calculate_sizes(s, -1))
3088 		goto error;
3089 	if (disable_higher_order_debug) {
3090 		/*
3091 		 * Disable debugging flags that store metadata if the min slab
3092 		 * order increased.
3093 		 */
3094 		if (get_order(s->size) > get_order(s->object_size)) {
3095 			s->flags &= ~DEBUG_METADATA_FLAGS;
3096 			s->offset = 0;
3097 			if (!calculate_sizes(s, -1))
3098 				goto error;
3099 		}
3100 	}
3101 
3102 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3103     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3104 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3105 		/* Enable fast mode */
3106 		s->flags |= __CMPXCHG_DOUBLE;
3107 #endif
3108 
3109 	/*
3110 	 * The larger the object size is, the more pages we want on the partial
3111 	 * list to avoid pounding the page allocator excessively.
3112 	 */
3113 	set_min_partial(s, ilog2(s->size) / 2);
3114 
3115 	/*
3116 	 * cpu_partial determined the maximum number of objects kept in the
3117 	 * per cpu partial lists of a processor.
3118 	 *
3119 	 * Per cpu partial lists mainly contain slabs that just have one
3120 	 * object freed. If they are used for allocation then they can be
3121 	 * filled up again with minimal effort. The slab will never hit the
3122 	 * per node partial lists and therefore no locking will be required.
3123 	 *
3124 	 * This setting also determines
3125 	 *
3126 	 * A) The number of objects from per cpu partial slabs dumped to the
3127 	 *    per node list when we reach the limit.
3128 	 * B) The number of objects in cpu partial slabs to extract from the
3129 	 *    per node list when we run out of per cpu objects. We only fetch
3130 	 *    50% to keep some capacity around for frees.
3131 	 */
3132 	if (!kmem_cache_has_cpu_partial(s))
3133 		s->cpu_partial = 0;
3134 	else if (s->size >= PAGE_SIZE)
3135 		s->cpu_partial = 2;
3136 	else if (s->size >= 1024)
3137 		s->cpu_partial = 6;
3138 	else if (s->size >= 256)
3139 		s->cpu_partial = 13;
3140 	else
3141 		s->cpu_partial = 30;
3142 
3143 #ifdef CONFIG_NUMA
3144 	s->remote_node_defrag_ratio = 1000;
3145 #endif
3146 	if (!init_kmem_cache_nodes(s))
3147 		goto error;
3148 
3149 	if (alloc_kmem_cache_cpus(s))
3150 		return 0;
3151 
3152 	free_kmem_cache_nodes(s);
3153 error:
3154 	if (flags & SLAB_PANIC)
3155 		panic("Cannot create slab %s size=%lu realsize=%u "
3156 			"order=%u offset=%u flags=%lx\n",
3157 			s->name, (unsigned long)s->size, s->size,
3158 			oo_order(s->oo), s->offset, flags);
3159 	return -EINVAL;
3160 }
3161 
3162 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3163 							const char *text)
3164 {
3165 #ifdef CONFIG_SLUB_DEBUG
3166 	void *addr = page_address(page);
3167 	void *p;
3168 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3169 				     sizeof(long), GFP_ATOMIC);
3170 	if (!map)
3171 		return;
3172 	slab_err(s, page, text, s->name);
3173 	slab_lock(page);
3174 
3175 	get_map(s, page, map);
3176 	for_each_object(p, s, addr, page->objects) {
3177 
3178 		if (!test_bit(slab_index(p, s, addr), map)) {
3179 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3180 							p, p - addr);
3181 			print_tracking(s, p);
3182 		}
3183 	}
3184 	slab_unlock(page);
3185 	kfree(map);
3186 #endif
3187 }
3188 
3189 /*
3190  * Attempt to free all partial slabs on a node.
3191  * This is called from kmem_cache_close(). We must be the last thread
3192  * using the cache and therefore we do not need to lock anymore.
3193  */
3194 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3195 {
3196 	struct page *page, *h;
3197 
3198 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3199 		if (!page->inuse) {
3200 			remove_partial(n, page);
3201 			discard_slab(s, page);
3202 		} else {
3203 			list_slab_objects(s, page,
3204 			"Objects remaining in %s on kmem_cache_close()");
3205 		}
3206 	}
3207 }
3208 
3209 /*
3210  * Release all resources used by a slab cache.
3211  */
3212 static inline int kmem_cache_close(struct kmem_cache *s)
3213 {
3214 	int node;
3215 
3216 	flush_all(s);
3217 	/* Attempt to free all objects */
3218 	for_each_node_state(node, N_NORMAL_MEMORY) {
3219 		struct kmem_cache_node *n = get_node(s, node);
3220 
3221 		free_partial(s, n);
3222 		if (n->nr_partial || slabs_node(s, node))
3223 			return 1;
3224 	}
3225 	free_percpu(s->cpu_slab);
3226 	free_kmem_cache_nodes(s);
3227 	return 0;
3228 }
3229 
3230 int __kmem_cache_shutdown(struct kmem_cache *s)
3231 {
3232 	int rc = kmem_cache_close(s);
3233 
3234 	if (!rc) {
3235 		/*
3236 		 * We do the same lock strategy around sysfs_slab_add, see
3237 		 * __kmem_cache_create. Because this is pretty much the last
3238 		 * operation we do and the lock will be released shortly after
3239 		 * that in slab_common.c, we could just move sysfs_slab_remove
3240 		 * to a later point in common code. We should do that when we
3241 		 * have a common sysfs framework for all allocators.
3242 		 */
3243 		mutex_unlock(&slab_mutex);
3244 		sysfs_slab_remove(s);
3245 		mutex_lock(&slab_mutex);
3246 	}
3247 
3248 	return rc;
3249 }
3250 
3251 /********************************************************************
3252  *		Kmalloc subsystem
3253  *******************************************************************/
3254 
3255 static int __init setup_slub_min_order(char *str)
3256 {
3257 	get_option(&str, &slub_min_order);
3258 
3259 	return 1;
3260 }
3261 
3262 __setup("slub_min_order=", setup_slub_min_order);
3263 
3264 static int __init setup_slub_max_order(char *str)
3265 {
3266 	get_option(&str, &slub_max_order);
3267 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3268 
3269 	return 1;
3270 }
3271 
3272 __setup("slub_max_order=", setup_slub_max_order);
3273 
3274 static int __init setup_slub_min_objects(char *str)
3275 {
3276 	get_option(&str, &slub_min_objects);
3277 
3278 	return 1;
3279 }
3280 
3281 __setup("slub_min_objects=", setup_slub_min_objects);
3282 
3283 static int __init setup_slub_nomerge(char *str)
3284 {
3285 	slub_nomerge = 1;
3286 	return 1;
3287 }
3288 
3289 __setup("slub_nomerge", setup_slub_nomerge);
3290 
3291 void *__kmalloc(size_t size, gfp_t flags)
3292 {
3293 	struct kmem_cache *s;
3294 	void *ret;
3295 
3296 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3297 		return kmalloc_large(size, flags);
3298 
3299 	s = kmalloc_slab(size, flags);
3300 
3301 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3302 		return s;
3303 
3304 	ret = slab_alloc(s, flags, _RET_IP_);
3305 
3306 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3307 
3308 	return ret;
3309 }
3310 EXPORT_SYMBOL(__kmalloc);
3311 
3312 #ifdef CONFIG_NUMA
3313 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3314 {
3315 	struct page *page;
3316 	void *ptr = NULL;
3317 
3318 	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3319 	page = alloc_pages_node(node, flags, get_order(size));
3320 	if (page)
3321 		ptr = page_address(page);
3322 
3323 	kmalloc_large_node_hook(ptr, size, flags);
3324 	return ptr;
3325 }
3326 
3327 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3328 {
3329 	struct kmem_cache *s;
3330 	void *ret;
3331 
3332 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3333 		ret = kmalloc_large_node(size, flags, node);
3334 
3335 		trace_kmalloc_node(_RET_IP_, ret,
3336 				   size, PAGE_SIZE << get_order(size),
3337 				   flags, node);
3338 
3339 		return ret;
3340 	}
3341 
3342 	s = kmalloc_slab(size, flags);
3343 
3344 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3345 		return s;
3346 
3347 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3348 
3349 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3350 
3351 	return ret;
3352 }
3353 EXPORT_SYMBOL(__kmalloc_node);
3354 #endif
3355 
3356 size_t ksize(const void *object)
3357 {
3358 	struct page *page;
3359 
3360 	if (unlikely(object == ZERO_SIZE_PTR))
3361 		return 0;
3362 
3363 	page = virt_to_head_page(object);
3364 
3365 	if (unlikely(!PageSlab(page))) {
3366 		WARN_ON(!PageCompound(page));
3367 		return PAGE_SIZE << compound_order(page);
3368 	}
3369 
3370 	return slab_ksize(page->slab_cache);
3371 }
3372 EXPORT_SYMBOL(ksize);
3373 
3374 void kfree(const void *x)
3375 {
3376 	struct page *page;
3377 	void *object = (void *)x;
3378 
3379 	trace_kfree(_RET_IP_, x);
3380 
3381 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3382 		return;
3383 
3384 	page = virt_to_head_page(x);
3385 	if (unlikely(!PageSlab(page))) {
3386 		BUG_ON(!PageCompound(page));
3387 		kfree_hook(x);
3388 		__free_memcg_kmem_pages(page, compound_order(page));
3389 		return;
3390 	}
3391 	slab_free(page->slab_cache, page, object, _RET_IP_);
3392 }
3393 EXPORT_SYMBOL(kfree);
3394 
3395 /*
3396  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3397  * the remaining slabs by the number of items in use. The slabs with the
3398  * most items in use come first. New allocations will then fill those up
3399  * and thus they can be removed from the partial lists.
3400  *
3401  * The slabs with the least items are placed last. This results in them
3402  * being allocated from last increasing the chance that the last objects
3403  * are freed in them.
3404  */
3405 int kmem_cache_shrink(struct kmem_cache *s)
3406 {
3407 	int node;
3408 	int i;
3409 	struct kmem_cache_node *n;
3410 	struct page *page;
3411 	struct page *t;
3412 	int objects = oo_objects(s->max);
3413 	struct list_head *slabs_by_inuse =
3414 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3415 	unsigned long flags;
3416 
3417 	if (!slabs_by_inuse)
3418 		return -ENOMEM;
3419 
3420 	flush_all(s);
3421 	for_each_node_state(node, N_NORMAL_MEMORY) {
3422 		n = get_node(s, node);
3423 
3424 		if (!n->nr_partial)
3425 			continue;
3426 
3427 		for (i = 0; i < objects; i++)
3428 			INIT_LIST_HEAD(slabs_by_inuse + i);
3429 
3430 		spin_lock_irqsave(&n->list_lock, flags);
3431 
3432 		/*
3433 		 * Build lists indexed by the items in use in each slab.
3434 		 *
3435 		 * Note that concurrent frees may occur while we hold the
3436 		 * list_lock. page->inuse here is the upper limit.
3437 		 */
3438 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3439 			list_move(&page->lru, slabs_by_inuse + page->inuse);
3440 			if (!page->inuse)
3441 				n->nr_partial--;
3442 		}
3443 
3444 		/*
3445 		 * Rebuild the partial list with the slabs filled up most
3446 		 * first and the least used slabs at the end.
3447 		 */
3448 		for (i = objects - 1; i > 0; i--)
3449 			list_splice(slabs_by_inuse + i, n->partial.prev);
3450 
3451 		spin_unlock_irqrestore(&n->list_lock, flags);
3452 
3453 		/* Release empty slabs */
3454 		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3455 			discard_slab(s, page);
3456 	}
3457 
3458 	kfree(slabs_by_inuse);
3459 	return 0;
3460 }
3461 EXPORT_SYMBOL(kmem_cache_shrink);
3462 
3463 static int slab_mem_going_offline_callback(void *arg)
3464 {
3465 	struct kmem_cache *s;
3466 
3467 	mutex_lock(&slab_mutex);
3468 	list_for_each_entry(s, &slab_caches, list)
3469 		kmem_cache_shrink(s);
3470 	mutex_unlock(&slab_mutex);
3471 
3472 	return 0;
3473 }
3474 
3475 static void slab_mem_offline_callback(void *arg)
3476 {
3477 	struct kmem_cache_node *n;
3478 	struct kmem_cache *s;
3479 	struct memory_notify *marg = arg;
3480 	int offline_node;
3481 
3482 	offline_node = marg->status_change_nid_normal;
3483 
3484 	/*
3485 	 * If the node still has available memory. we need kmem_cache_node
3486 	 * for it yet.
3487 	 */
3488 	if (offline_node < 0)
3489 		return;
3490 
3491 	mutex_lock(&slab_mutex);
3492 	list_for_each_entry(s, &slab_caches, list) {
3493 		n = get_node(s, offline_node);
3494 		if (n) {
3495 			/*
3496 			 * if n->nr_slabs > 0, slabs still exist on the node
3497 			 * that is going down. We were unable to free them,
3498 			 * and offline_pages() function shouldn't call this
3499 			 * callback. So, we must fail.
3500 			 */
3501 			BUG_ON(slabs_node(s, offline_node));
3502 
3503 			s->node[offline_node] = NULL;
3504 			kmem_cache_free(kmem_cache_node, n);
3505 		}
3506 	}
3507 	mutex_unlock(&slab_mutex);
3508 }
3509 
3510 static int slab_mem_going_online_callback(void *arg)
3511 {
3512 	struct kmem_cache_node *n;
3513 	struct kmem_cache *s;
3514 	struct memory_notify *marg = arg;
3515 	int nid = marg->status_change_nid_normal;
3516 	int ret = 0;
3517 
3518 	/*
3519 	 * If the node's memory is already available, then kmem_cache_node is
3520 	 * already created. Nothing to do.
3521 	 */
3522 	if (nid < 0)
3523 		return 0;
3524 
3525 	/*
3526 	 * We are bringing a node online. No memory is available yet. We must
3527 	 * allocate a kmem_cache_node structure in order to bring the node
3528 	 * online.
3529 	 */
3530 	mutex_lock(&slab_mutex);
3531 	list_for_each_entry(s, &slab_caches, list) {
3532 		/*
3533 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3534 		 *      since memory is not yet available from the node that
3535 		 *      is brought up.
3536 		 */
3537 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3538 		if (!n) {
3539 			ret = -ENOMEM;
3540 			goto out;
3541 		}
3542 		init_kmem_cache_node(n);
3543 		s->node[nid] = n;
3544 	}
3545 out:
3546 	mutex_unlock(&slab_mutex);
3547 	return ret;
3548 }
3549 
3550 static int slab_memory_callback(struct notifier_block *self,
3551 				unsigned long action, void *arg)
3552 {
3553 	int ret = 0;
3554 
3555 	switch (action) {
3556 	case MEM_GOING_ONLINE:
3557 		ret = slab_mem_going_online_callback(arg);
3558 		break;
3559 	case MEM_GOING_OFFLINE:
3560 		ret = slab_mem_going_offline_callback(arg);
3561 		break;
3562 	case MEM_OFFLINE:
3563 	case MEM_CANCEL_ONLINE:
3564 		slab_mem_offline_callback(arg);
3565 		break;
3566 	case MEM_ONLINE:
3567 	case MEM_CANCEL_OFFLINE:
3568 		break;
3569 	}
3570 	if (ret)
3571 		ret = notifier_from_errno(ret);
3572 	else
3573 		ret = NOTIFY_OK;
3574 	return ret;
3575 }
3576 
3577 static struct notifier_block slab_memory_callback_nb = {
3578 	.notifier_call = slab_memory_callback,
3579 	.priority = SLAB_CALLBACK_PRI,
3580 };
3581 
3582 /********************************************************************
3583  *			Basic setup of slabs
3584  *******************************************************************/
3585 
3586 /*
3587  * Used for early kmem_cache structures that were allocated using
3588  * the page allocator. Allocate them properly then fix up the pointers
3589  * that may be pointing to the wrong kmem_cache structure.
3590  */
3591 
3592 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3593 {
3594 	int node;
3595 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3596 
3597 	memcpy(s, static_cache, kmem_cache->object_size);
3598 
3599 	/*
3600 	 * This runs very early, and only the boot processor is supposed to be
3601 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3602 	 * IPIs around.
3603 	 */
3604 	__flush_cpu_slab(s, smp_processor_id());
3605 	for_each_node_state(node, N_NORMAL_MEMORY) {
3606 		struct kmem_cache_node *n = get_node(s, node);
3607 		struct page *p;
3608 
3609 		if (n) {
3610 			list_for_each_entry(p, &n->partial, lru)
3611 				p->slab_cache = s;
3612 
3613 #ifdef CONFIG_SLUB_DEBUG
3614 			list_for_each_entry(p, &n->full, lru)
3615 				p->slab_cache = s;
3616 #endif
3617 		}
3618 	}
3619 	list_add(&s->list, &slab_caches);
3620 	return s;
3621 }
3622 
3623 void __init kmem_cache_init(void)
3624 {
3625 	static __initdata struct kmem_cache boot_kmem_cache,
3626 		boot_kmem_cache_node;
3627 
3628 	if (debug_guardpage_minorder())
3629 		slub_max_order = 0;
3630 
3631 	kmem_cache_node = &boot_kmem_cache_node;
3632 	kmem_cache = &boot_kmem_cache;
3633 
3634 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3635 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3636 
3637 	register_hotmemory_notifier(&slab_memory_callback_nb);
3638 
3639 	/* Able to allocate the per node structures */
3640 	slab_state = PARTIAL;
3641 
3642 	create_boot_cache(kmem_cache, "kmem_cache",
3643 			offsetof(struct kmem_cache, node) +
3644 				nr_node_ids * sizeof(struct kmem_cache_node *),
3645 		       SLAB_HWCACHE_ALIGN);
3646 
3647 	kmem_cache = bootstrap(&boot_kmem_cache);
3648 
3649 	/*
3650 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3651 	 * kmem_cache_node is separately allocated so no need to
3652 	 * update any list pointers.
3653 	 */
3654 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3655 
3656 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3657 	create_kmalloc_caches(0);
3658 
3659 #ifdef CONFIG_SMP
3660 	register_cpu_notifier(&slab_notifier);
3661 #endif
3662 
3663 	printk(KERN_INFO
3664 		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3665 		" CPUs=%d, Nodes=%d\n",
3666 		cache_line_size(),
3667 		slub_min_order, slub_max_order, slub_min_objects,
3668 		nr_cpu_ids, nr_node_ids);
3669 }
3670 
3671 void __init kmem_cache_init_late(void)
3672 {
3673 }
3674 
3675 /*
3676  * Find a mergeable slab cache
3677  */
3678 static int slab_unmergeable(struct kmem_cache *s)
3679 {
3680 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3681 		return 1;
3682 
3683 	if (s->ctor)
3684 		return 1;
3685 
3686 	/*
3687 	 * We may have set a slab to be unmergeable during bootstrap.
3688 	 */
3689 	if (s->refcount < 0)
3690 		return 1;
3691 
3692 	return 0;
3693 }
3694 
3695 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3696 		size_t align, unsigned long flags, const char *name,
3697 		void (*ctor)(void *))
3698 {
3699 	struct kmem_cache *s;
3700 
3701 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3702 		return NULL;
3703 
3704 	if (ctor)
3705 		return NULL;
3706 
3707 	size = ALIGN(size, sizeof(void *));
3708 	align = calculate_alignment(flags, align, size);
3709 	size = ALIGN(size, align);
3710 	flags = kmem_cache_flags(size, flags, name, NULL);
3711 
3712 	list_for_each_entry(s, &slab_caches, list) {
3713 		if (slab_unmergeable(s))
3714 			continue;
3715 
3716 		if (size > s->size)
3717 			continue;
3718 
3719 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3720 				continue;
3721 		/*
3722 		 * Check if alignment is compatible.
3723 		 * Courtesy of Adrian Drzewiecki
3724 		 */
3725 		if ((s->size & ~(align - 1)) != s->size)
3726 			continue;
3727 
3728 		if (s->size - size >= sizeof(void *))
3729 			continue;
3730 
3731 		if (!cache_match_memcg(s, memcg))
3732 			continue;
3733 
3734 		return s;
3735 	}
3736 	return NULL;
3737 }
3738 
3739 struct kmem_cache *
3740 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3741 		   size_t align, unsigned long flags, void (*ctor)(void *))
3742 {
3743 	struct kmem_cache *s;
3744 
3745 	s = find_mergeable(memcg, size, align, flags, name, ctor);
3746 	if (s) {
3747 		s->refcount++;
3748 		/*
3749 		 * Adjust the object sizes so that we clear
3750 		 * the complete object on kzalloc.
3751 		 */
3752 		s->object_size = max(s->object_size, (int)size);
3753 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3754 
3755 		if (sysfs_slab_alias(s, name)) {
3756 			s->refcount--;
3757 			s = NULL;
3758 		}
3759 	}
3760 
3761 	return s;
3762 }
3763 
3764 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3765 {
3766 	int err;
3767 
3768 	err = kmem_cache_open(s, flags);
3769 	if (err)
3770 		return err;
3771 
3772 	/* Mutex is not taken during early boot */
3773 	if (slab_state <= UP)
3774 		return 0;
3775 
3776 	memcg_propagate_slab_attrs(s);
3777 	mutex_unlock(&slab_mutex);
3778 	err = sysfs_slab_add(s);
3779 	mutex_lock(&slab_mutex);
3780 
3781 	if (err)
3782 		kmem_cache_close(s);
3783 
3784 	return err;
3785 }
3786 
3787 #ifdef CONFIG_SMP
3788 /*
3789  * Use the cpu notifier to insure that the cpu slabs are flushed when
3790  * necessary.
3791  */
3792 static int slab_cpuup_callback(struct notifier_block *nfb,
3793 		unsigned long action, void *hcpu)
3794 {
3795 	long cpu = (long)hcpu;
3796 	struct kmem_cache *s;
3797 	unsigned long flags;
3798 
3799 	switch (action) {
3800 	case CPU_UP_CANCELED:
3801 	case CPU_UP_CANCELED_FROZEN:
3802 	case CPU_DEAD:
3803 	case CPU_DEAD_FROZEN:
3804 		mutex_lock(&slab_mutex);
3805 		list_for_each_entry(s, &slab_caches, list) {
3806 			local_irq_save(flags);
3807 			__flush_cpu_slab(s, cpu);
3808 			local_irq_restore(flags);
3809 		}
3810 		mutex_unlock(&slab_mutex);
3811 		break;
3812 	default:
3813 		break;
3814 	}
3815 	return NOTIFY_OK;
3816 }
3817 
3818 static struct notifier_block slab_notifier = {
3819 	.notifier_call = slab_cpuup_callback
3820 };
3821 
3822 #endif
3823 
3824 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3825 {
3826 	struct kmem_cache *s;
3827 	void *ret;
3828 
3829 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3830 		return kmalloc_large(size, gfpflags);
3831 
3832 	s = kmalloc_slab(size, gfpflags);
3833 
3834 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3835 		return s;
3836 
3837 	ret = slab_alloc(s, gfpflags, caller);
3838 
3839 	/* Honor the call site pointer we received. */
3840 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3841 
3842 	return ret;
3843 }
3844 
3845 #ifdef CONFIG_NUMA
3846 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3847 					int node, unsigned long caller)
3848 {
3849 	struct kmem_cache *s;
3850 	void *ret;
3851 
3852 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3853 		ret = kmalloc_large_node(size, gfpflags, node);
3854 
3855 		trace_kmalloc_node(caller, ret,
3856 				   size, PAGE_SIZE << get_order(size),
3857 				   gfpflags, node);
3858 
3859 		return ret;
3860 	}
3861 
3862 	s = kmalloc_slab(size, gfpflags);
3863 
3864 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3865 		return s;
3866 
3867 	ret = slab_alloc_node(s, gfpflags, node, caller);
3868 
3869 	/* Honor the call site pointer we received. */
3870 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3871 
3872 	return ret;
3873 }
3874 #endif
3875 
3876 #ifdef CONFIG_SYSFS
3877 static int count_inuse(struct page *page)
3878 {
3879 	return page->inuse;
3880 }
3881 
3882 static int count_total(struct page *page)
3883 {
3884 	return page->objects;
3885 }
3886 #endif
3887 
3888 #ifdef CONFIG_SLUB_DEBUG
3889 static int validate_slab(struct kmem_cache *s, struct page *page,
3890 						unsigned long *map)
3891 {
3892 	void *p;
3893 	void *addr = page_address(page);
3894 
3895 	if (!check_slab(s, page) ||
3896 			!on_freelist(s, page, NULL))
3897 		return 0;
3898 
3899 	/* Now we know that a valid freelist exists */
3900 	bitmap_zero(map, page->objects);
3901 
3902 	get_map(s, page, map);
3903 	for_each_object(p, s, addr, page->objects) {
3904 		if (test_bit(slab_index(p, s, addr), map))
3905 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3906 				return 0;
3907 	}
3908 
3909 	for_each_object(p, s, addr, page->objects)
3910 		if (!test_bit(slab_index(p, s, addr), map))
3911 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3912 				return 0;
3913 	return 1;
3914 }
3915 
3916 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3917 						unsigned long *map)
3918 {
3919 	slab_lock(page);
3920 	validate_slab(s, page, map);
3921 	slab_unlock(page);
3922 }
3923 
3924 static int validate_slab_node(struct kmem_cache *s,
3925 		struct kmem_cache_node *n, unsigned long *map)
3926 {
3927 	unsigned long count = 0;
3928 	struct page *page;
3929 	unsigned long flags;
3930 
3931 	spin_lock_irqsave(&n->list_lock, flags);
3932 
3933 	list_for_each_entry(page, &n->partial, lru) {
3934 		validate_slab_slab(s, page, map);
3935 		count++;
3936 	}
3937 	if (count != n->nr_partial)
3938 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3939 			"counter=%ld\n", s->name, count, n->nr_partial);
3940 
3941 	if (!(s->flags & SLAB_STORE_USER))
3942 		goto out;
3943 
3944 	list_for_each_entry(page, &n->full, lru) {
3945 		validate_slab_slab(s, page, map);
3946 		count++;
3947 	}
3948 	if (count != atomic_long_read(&n->nr_slabs))
3949 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3950 			"counter=%ld\n", s->name, count,
3951 			atomic_long_read(&n->nr_slabs));
3952 
3953 out:
3954 	spin_unlock_irqrestore(&n->list_lock, flags);
3955 	return count;
3956 }
3957 
3958 static long validate_slab_cache(struct kmem_cache *s)
3959 {
3960 	int node;
3961 	unsigned long count = 0;
3962 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3963 				sizeof(unsigned long), GFP_KERNEL);
3964 
3965 	if (!map)
3966 		return -ENOMEM;
3967 
3968 	flush_all(s);
3969 	for_each_node_state(node, N_NORMAL_MEMORY) {
3970 		struct kmem_cache_node *n = get_node(s, node);
3971 
3972 		count += validate_slab_node(s, n, map);
3973 	}
3974 	kfree(map);
3975 	return count;
3976 }
3977 /*
3978  * Generate lists of code addresses where slabcache objects are allocated
3979  * and freed.
3980  */
3981 
3982 struct location {
3983 	unsigned long count;
3984 	unsigned long addr;
3985 	long long sum_time;
3986 	long min_time;
3987 	long max_time;
3988 	long min_pid;
3989 	long max_pid;
3990 	DECLARE_BITMAP(cpus, NR_CPUS);
3991 	nodemask_t nodes;
3992 };
3993 
3994 struct loc_track {
3995 	unsigned long max;
3996 	unsigned long count;
3997 	struct location *loc;
3998 };
3999 
4000 static void free_loc_track(struct loc_track *t)
4001 {
4002 	if (t->max)
4003 		free_pages((unsigned long)t->loc,
4004 			get_order(sizeof(struct location) * t->max));
4005 }
4006 
4007 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4008 {
4009 	struct location *l;
4010 	int order;
4011 
4012 	order = get_order(sizeof(struct location) * max);
4013 
4014 	l = (void *)__get_free_pages(flags, order);
4015 	if (!l)
4016 		return 0;
4017 
4018 	if (t->count) {
4019 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4020 		free_loc_track(t);
4021 	}
4022 	t->max = max;
4023 	t->loc = l;
4024 	return 1;
4025 }
4026 
4027 static int add_location(struct loc_track *t, struct kmem_cache *s,
4028 				const struct track *track)
4029 {
4030 	long start, end, pos;
4031 	struct location *l;
4032 	unsigned long caddr;
4033 	unsigned long age = jiffies - track->when;
4034 
4035 	start = -1;
4036 	end = t->count;
4037 
4038 	for ( ; ; ) {
4039 		pos = start + (end - start + 1) / 2;
4040 
4041 		/*
4042 		 * There is nothing at "end". If we end up there
4043 		 * we need to add something to before end.
4044 		 */
4045 		if (pos == end)
4046 			break;
4047 
4048 		caddr = t->loc[pos].addr;
4049 		if (track->addr == caddr) {
4050 
4051 			l = &t->loc[pos];
4052 			l->count++;
4053 			if (track->when) {
4054 				l->sum_time += age;
4055 				if (age < l->min_time)
4056 					l->min_time = age;
4057 				if (age > l->max_time)
4058 					l->max_time = age;
4059 
4060 				if (track->pid < l->min_pid)
4061 					l->min_pid = track->pid;
4062 				if (track->pid > l->max_pid)
4063 					l->max_pid = track->pid;
4064 
4065 				cpumask_set_cpu(track->cpu,
4066 						to_cpumask(l->cpus));
4067 			}
4068 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4069 			return 1;
4070 		}
4071 
4072 		if (track->addr < caddr)
4073 			end = pos;
4074 		else
4075 			start = pos;
4076 	}
4077 
4078 	/*
4079 	 * Not found. Insert new tracking element.
4080 	 */
4081 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4082 		return 0;
4083 
4084 	l = t->loc + pos;
4085 	if (pos < t->count)
4086 		memmove(l + 1, l,
4087 			(t->count - pos) * sizeof(struct location));
4088 	t->count++;
4089 	l->count = 1;
4090 	l->addr = track->addr;
4091 	l->sum_time = age;
4092 	l->min_time = age;
4093 	l->max_time = age;
4094 	l->min_pid = track->pid;
4095 	l->max_pid = track->pid;
4096 	cpumask_clear(to_cpumask(l->cpus));
4097 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4098 	nodes_clear(l->nodes);
4099 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4100 	return 1;
4101 }
4102 
4103 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4104 		struct page *page, enum track_item alloc,
4105 		unsigned long *map)
4106 {
4107 	void *addr = page_address(page);
4108 	void *p;
4109 
4110 	bitmap_zero(map, page->objects);
4111 	get_map(s, page, map);
4112 
4113 	for_each_object(p, s, addr, page->objects)
4114 		if (!test_bit(slab_index(p, s, addr), map))
4115 			add_location(t, s, get_track(s, p, alloc));
4116 }
4117 
4118 static int list_locations(struct kmem_cache *s, char *buf,
4119 					enum track_item alloc)
4120 {
4121 	int len = 0;
4122 	unsigned long i;
4123 	struct loc_track t = { 0, 0, NULL };
4124 	int node;
4125 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4126 				     sizeof(unsigned long), GFP_KERNEL);
4127 
4128 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4129 				     GFP_TEMPORARY)) {
4130 		kfree(map);
4131 		return sprintf(buf, "Out of memory\n");
4132 	}
4133 	/* Push back cpu slabs */
4134 	flush_all(s);
4135 
4136 	for_each_node_state(node, N_NORMAL_MEMORY) {
4137 		struct kmem_cache_node *n = get_node(s, node);
4138 		unsigned long flags;
4139 		struct page *page;
4140 
4141 		if (!atomic_long_read(&n->nr_slabs))
4142 			continue;
4143 
4144 		spin_lock_irqsave(&n->list_lock, flags);
4145 		list_for_each_entry(page, &n->partial, lru)
4146 			process_slab(&t, s, page, alloc, map);
4147 		list_for_each_entry(page, &n->full, lru)
4148 			process_slab(&t, s, page, alloc, map);
4149 		spin_unlock_irqrestore(&n->list_lock, flags);
4150 	}
4151 
4152 	for (i = 0; i < t.count; i++) {
4153 		struct location *l = &t.loc[i];
4154 
4155 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4156 			break;
4157 		len += sprintf(buf + len, "%7ld ", l->count);
4158 
4159 		if (l->addr)
4160 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4161 		else
4162 			len += sprintf(buf + len, "<not-available>");
4163 
4164 		if (l->sum_time != l->min_time) {
4165 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4166 				l->min_time,
4167 				(long)div_u64(l->sum_time, l->count),
4168 				l->max_time);
4169 		} else
4170 			len += sprintf(buf + len, " age=%ld",
4171 				l->min_time);
4172 
4173 		if (l->min_pid != l->max_pid)
4174 			len += sprintf(buf + len, " pid=%ld-%ld",
4175 				l->min_pid, l->max_pid);
4176 		else
4177 			len += sprintf(buf + len, " pid=%ld",
4178 				l->min_pid);
4179 
4180 		if (num_online_cpus() > 1 &&
4181 				!cpumask_empty(to_cpumask(l->cpus)) &&
4182 				len < PAGE_SIZE - 60) {
4183 			len += sprintf(buf + len, " cpus=");
4184 			len += cpulist_scnprintf(buf + len,
4185 						 PAGE_SIZE - len - 50,
4186 						 to_cpumask(l->cpus));
4187 		}
4188 
4189 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4190 				len < PAGE_SIZE - 60) {
4191 			len += sprintf(buf + len, " nodes=");
4192 			len += nodelist_scnprintf(buf + len,
4193 						  PAGE_SIZE - len - 50,
4194 						  l->nodes);
4195 		}
4196 
4197 		len += sprintf(buf + len, "\n");
4198 	}
4199 
4200 	free_loc_track(&t);
4201 	kfree(map);
4202 	if (!t.count)
4203 		len += sprintf(buf, "No data\n");
4204 	return len;
4205 }
4206 #endif
4207 
4208 #ifdef SLUB_RESILIENCY_TEST
4209 static void resiliency_test(void)
4210 {
4211 	u8 *p;
4212 
4213 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4214 
4215 	printk(KERN_ERR "SLUB resiliency testing\n");
4216 	printk(KERN_ERR "-----------------------\n");
4217 	printk(KERN_ERR "A. Corruption after allocation\n");
4218 
4219 	p = kzalloc(16, GFP_KERNEL);
4220 	p[16] = 0x12;
4221 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4222 			" 0x12->0x%p\n\n", p + 16);
4223 
4224 	validate_slab_cache(kmalloc_caches[4]);
4225 
4226 	/* Hmmm... The next two are dangerous */
4227 	p = kzalloc(32, GFP_KERNEL);
4228 	p[32 + sizeof(void *)] = 0x34;
4229 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4230 			" 0x34 -> -0x%p\n", p);
4231 	printk(KERN_ERR
4232 		"If allocated object is overwritten then not detectable\n\n");
4233 
4234 	validate_slab_cache(kmalloc_caches[5]);
4235 	p = kzalloc(64, GFP_KERNEL);
4236 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4237 	*p = 0x56;
4238 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4239 									p);
4240 	printk(KERN_ERR
4241 		"If allocated object is overwritten then not detectable\n\n");
4242 	validate_slab_cache(kmalloc_caches[6]);
4243 
4244 	printk(KERN_ERR "\nB. Corruption after free\n");
4245 	p = kzalloc(128, GFP_KERNEL);
4246 	kfree(p);
4247 	*p = 0x78;
4248 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4249 	validate_slab_cache(kmalloc_caches[7]);
4250 
4251 	p = kzalloc(256, GFP_KERNEL);
4252 	kfree(p);
4253 	p[50] = 0x9a;
4254 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4255 			p);
4256 	validate_slab_cache(kmalloc_caches[8]);
4257 
4258 	p = kzalloc(512, GFP_KERNEL);
4259 	kfree(p);
4260 	p[512] = 0xab;
4261 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4262 	validate_slab_cache(kmalloc_caches[9]);
4263 }
4264 #else
4265 #ifdef CONFIG_SYSFS
4266 static void resiliency_test(void) {};
4267 #endif
4268 #endif
4269 
4270 #ifdef CONFIG_SYSFS
4271 enum slab_stat_type {
4272 	SL_ALL,			/* All slabs */
4273 	SL_PARTIAL,		/* Only partially allocated slabs */
4274 	SL_CPU,			/* Only slabs used for cpu caches */
4275 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4276 	SL_TOTAL		/* Determine object capacity not slabs */
4277 };
4278 
4279 #define SO_ALL		(1 << SL_ALL)
4280 #define SO_PARTIAL	(1 << SL_PARTIAL)
4281 #define SO_CPU		(1 << SL_CPU)
4282 #define SO_OBJECTS	(1 << SL_OBJECTS)
4283 #define SO_TOTAL	(1 << SL_TOTAL)
4284 
4285 static ssize_t show_slab_objects(struct kmem_cache *s,
4286 			    char *buf, unsigned long flags)
4287 {
4288 	unsigned long total = 0;
4289 	int node;
4290 	int x;
4291 	unsigned long *nodes;
4292 
4293 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4294 	if (!nodes)
4295 		return -ENOMEM;
4296 
4297 	if (flags & SO_CPU) {
4298 		int cpu;
4299 
4300 		for_each_possible_cpu(cpu) {
4301 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4302 							       cpu);
4303 			int node;
4304 			struct page *page;
4305 
4306 			page = ACCESS_ONCE(c->page);
4307 			if (!page)
4308 				continue;
4309 
4310 			node = page_to_nid(page);
4311 			if (flags & SO_TOTAL)
4312 				x = page->objects;
4313 			else if (flags & SO_OBJECTS)
4314 				x = page->inuse;
4315 			else
4316 				x = 1;
4317 
4318 			total += x;
4319 			nodes[node] += x;
4320 
4321 			page = ACCESS_ONCE(c->partial);
4322 			if (page) {
4323 				node = page_to_nid(page);
4324 				if (flags & SO_TOTAL)
4325 					WARN_ON_ONCE(1);
4326 				else if (flags & SO_OBJECTS)
4327 					WARN_ON_ONCE(1);
4328 				else
4329 					x = page->pages;
4330 				total += x;
4331 				nodes[node] += x;
4332 			}
4333 		}
4334 	}
4335 
4336 	lock_memory_hotplug();
4337 #ifdef CONFIG_SLUB_DEBUG
4338 	if (flags & SO_ALL) {
4339 		for_each_node_state(node, N_NORMAL_MEMORY) {
4340 			struct kmem_cache_node *n = get_node(s, node);
4341 
4342 			if (flags & SO_TOTAL)
4343 				x = atomic_long_read(&n->total_objects);
4344 			else if (flags & SO_OBJECTS)
4345 				x = atomic_long_read(&n->total_objects) -
4346 					count_partial(n, count_free);
4347 			else
4348 				x = atomic_long_read(&n->nr_slabs);
4349 			total += x;
4350 			nodes[node] += x;
4351 		}
4352 
4353 	} else
4354 #endif
4355 	if (flags & SO_PARTIAL) {
4356 		for_each_node_state(node, N_NORMAL_MEMORY) {
4357 			struct kmem_cache_node *n = get_node(s, node);
4358 
4359 			if (flags & SO_TOTAL)
4360 				x = count_partial(n, count_total);
4361 			else if (flags & SO_OBJECTS)
4362 				x = count_partial(n, count_inuse);
4363 			else
4364 				x = n->nr_partial;
4365 			total += x;
4366 			nodes[node] += x;
4367 		}
4368 	}
4369 	x = sprintf(buf, "%lu", total);
4370 #ifdef CONFIG_NUMA
4371 	for_each_node_state(node, N_NORMAL_MEMORY)
4372 		if (nodes[node])
4373 			x += sprintf(buf + x, " N%d=%lu",
4374 					node, nodes[node]);
4375 #endif
4376 	unlock_memory_hotplug();
4377 	kfree(nodes);
4378 	return x + sprintf(buf + x, "\n");
4379 }
4380 
4381 #ifdef CONFIG_SLUB_DEBUG
4382 static int any_slab_objects(struct kmem_cache *s)
4383 {
4384 	int node;
4385 
4386 	for_each_online_node(node) {
4387 		struct kmem_cache_node *n = get_node(s, node);
4388 
4389 		if (!n)
4390 			continue;
4391 
4392 		if (atomic_long_read(&n->total_objects))
4393 			return 1;
4394 	}
4395 	return 0;
4396 }
4397 #endif
4398 
4399 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4400 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4401 
4402 struct slab_attribute {
4403 	struct attribute attr;
4404 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4405 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4406 };
4407 
4408 #define SLAB_ATTR_RO(_name) \
4409 	static struct slab_attribute _name##_attr = \
4410 	__ATTR(_name, 0400, _name##_show, NULL)
4411 
4412 #define SLAB_ATTR(_name) \
4413 	static struct slab_attribute _name##_attr =  \
4414 	__ATTR(_name, 0600, _name##_show, _name##_store)
4415 
4416 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4417 {
4418 	return sprintf(buf, "%d\n", s->size);
4419 }
4420 SLAB_ATTR_RO(slab_size);
4421 
4422 static ssize_t align_show(struct kmem_cache *s, char *buf)
4423 {
4424 	return sprintf(buf, "%d\n", s->align);
4425 }
4426 SLAB_ATTR_RO(align);
4427 
4428 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4429 {
4430 	return sprintf(buf, "%d\n", s->object_size);
4431 }
4432 SLAB_ATTR_RO(object_size);
4433 
4434 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4435 {
4436 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4437 }
4438 SLAB_ATTR_RO(objs_per_slab);
4439 
4440 static ssize_t order_store(struct kmem_cache *s,
4441 				const char *buf, size_t length)
4442 {
4443 	unsigned long order;
4444 	int err;
4445 
4446 	err = kstrtoul(buf, 10, &order);
4447 	if (err)
4448 		return err;
4449 
4450 	if (order > slub_max_order || order < slub_min_order)
4451 		return -EINVAL;
4452 
4453 	calculate_sizes(s, order);
4454 	return length;
4455 }
4456 
4457 static ssize_t order_show(struct kmem_cache *s, char *buf)
4458 {
4459 	return sprintf(buf, "%d\n", oo_order(s->oo));
4460 }
4461 SLAB_ATTR(order);
4462 
4463 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4464 {
4465 	return sprintf(buf, "%lu\n", s->min_partial);
4466 }
4467 
4468 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4469 				 size_t length)
4470 {
4471 	unsigned long min;
4472 	int err;
4473 
4474 	err = kstrtoul(buf, 10, &min);
4475 	if (err)
4476 		return err;
4477 
4478 	set_min_partial(s, min);
4479 	return length;
4480 }
4481 SLAB_ATTR(min_partial);
4482 
4483 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4484 {
4485 	return sprintf(buf, "%u\n", s->cpu_partial);
4486 }
4487 
4488 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4489 				 size_t length)
4490 {
4491 	unsigned long objects;
4492 	int err;
4493 
4494 	err = kstrtoul(buf, 10, &objects);
4495 	if (err)
4496 		return err;
4497 	if (objects && !kmem_cache_has_cpu_partial(s))
4498 		return -EINVAL;
4499 
4500 	s->cpu_partial = objects;
4501 	flush_all(s);
4502 	return length;
4503 }
4504 SLAB_ATTR(cpu_partial);
4505 
4506 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4507 {
4508 	if (!s->ctor)
4509 		return 0;
4510 	return sprintf(buf, "%pS\n", s->ctor);
4511 }
4512 SLAB_ATTR_RO(ctor);
4513 
4514 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4515 {
4516 	return sprintf(buf, "%d\n", s->refcount - 1);
4517 }
4518 SLAB_ATTR_RO(aliases);
4519 
4520 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4521 {
4522 	return show_slab_objects(s, buf, SO_PARTIAL);
4523 }
4524 SLAB_ATTR_RO(partial);
4525 
4526 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4527 {
4528 	return show_slab_objects(s, buf, SO_CPU);
4529 }
4530 SLAB_ATTR_RO(cpu_slabs);
4531 
4532 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4533 {
4534 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4535 }
4536 SLAB_ATTR_RO(objects);
4537 
4538 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4539 {
4540 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4541 }
4542 SLAB_ATTR_RO(objects_partial);
4543 
4544 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4545 {
4546 	int objects = 0;
4547 	int pages = 0;
4548 	int cpu;
4549 	int len;
4550 
4551 	for_each_online_cpu(cpu) {
4552 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4553 
4554 		if (page) {
4555 			pages += page->pages;
4556 			objects += page->pobjects;
4557 		}
4558 	}
4559 
4560 	len = sprintf(buf, "%d(%d)", objects, pages);
4561 
4562 #ifdef CONFIG_SMP
4563 	for_each_online_cpu(cpu) {
4564 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4565 
4566 		if (page && len < PAGE_SIZE - 20)
4567 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4568 				page->pobjects, page->pages);
4569 	}
4570 #endif
4571 	return len + sprintf(buf + len, "\n");
4572 }
4573 SLAB_ATTR_RO(slabs_cpu_partial);
4574 
4575 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4576 {
4577 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4578 }
4579 
4580 static ssize_t reclaim_account_store(struct kmem_cache *s,
4581 				const char *buf, size_t length)
4582 {
4583 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4584 	if (buf[0] == '1')
4585 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4586 	return length;
4587 }
4588 SLAB_ATTR(reclaim_account);
4589 
4590 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4591 {
4592 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4593 }
4594 SLAB_ATTR_RO(hwcache_align);
4595 
4596 #ifdef CONFIG_ZONE_DMA
4597 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4598 {
4599 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4600 }
4601 SLAB_ATTR_RO(cache_dma);
4602 #endif
4603 
4604 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4605 {
4606 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4607 }
4608 SLAB_ATTR_RO(destroy_by_rcu);
4609 
4610 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4611 {
4612 	return sprintf(buf, "%d\n", s->reserved);
4613 }
4614 SLAB_ATTR_RO(reserved);
4615 
4616 #ifdef CONFIG_SLUB_DEBUG
4617 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4618 {
4619 	return show_slab_objects(s, buf, SO_ALL);
4620 }
4621 SLAB_ATTR_RO(slabs);
4622 
4623 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4624 {
4625 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4626 }
4627 SLAB_ATTR_RO(total_objects);
4628 
4629 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4630 {
4631 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4632 }
4633 
4634 static ssize_t sanity_checks_store(struct kmem_cache *s,
4635 				const char *buf, size_t length)
4636 {
4637 	s->flags &= ~SLAB_DEBUG_FREE;
4638 	if (buf[0] == '1') {
4639 		s->flags &= ~__CMPXCHG_DOUBLE;
4640 		s->flags |= SLAB_DEBUG_FREE;
4641 	}
4642 	return length;
4643 }
4644 SLAB_ATTR(sanity_checks);
4645 
4646 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4647 {
4648 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4649 }
4650 
4651 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4652 							size_t length)
4653 {
4654 	s->flags &= ~SLAB_TRACE;
4655 	if (buf[0] == '1') {
4656 		s->flags &= ~__CMPXCHG_DOUBLE;
4657 		s->flags |= SLAB_TRACE;
4658 	}
4659 	return length;
4660 }
4661 SLAB_ATTR(trace);
4662 
4663 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4664 {
4665 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4666 }
4667 
4668 static ssize_t red_zone_store(struct kmem_cache *s,
4669 				const char *buf, size_t length)
4670 {
4671 	if (any_slab_objects(s))
4672 		return -EBUSY;
4673 
4674 	s->flags &= ~SLAB_RED_ZONE;
4675 	if (buf[0] == '1') {
4676 		s->flags &= ~__CMPXCHG_DOUBLE;
4677 		s->flags |= SLAB_RED_ZONE;
4678 	}
4679 	calculate_sizes(s, -1);
4680 	return length;
4681 }
4682 SLAB_ATTR(red_zone);
4683 
4684 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4685 {
4686 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4687 }
4688 
4689 static ssize_t poison_store(struct kmem_cache *s,
4690 				const char *buf, size_t length)
4691 {
4692 	if (any_slab_objects(s))
4693 		return -EBUSY;
4694 
4695 	s->flags &= ~SLAB_POISON;
4696 	if (buf[0] == '1') {
4697 		s->flags &= ~__CMPXCHG_DOUBLE;
4698 		s->flags |= SLAB_POISON;
4699 	}
4700 	calculate_sizes(s, -1);
4701 	return length;
4702 }
4703 SLAB_ATTR(poison);
4704 
4705 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4706 {
4707 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4708 }
4709 
4710 static ssize_t store_user_store(struct kmem_cache *s,
4711 				const char *buf, size_t length)
4712 {
4713 	if (any_slab_objects(s))
4714 		return -EBUSY;
4715 
4716 	s->flags &= ~SLAB_STORE_USER;
4717 	if (buf[0] == '1') {
4718 		s->flags &= ~__CMPXCHG_DOUBLE;
4719 		s->flags |= SLAB_STORE_USER;
4720 	}
4721 	calculate_sizes(s, -1);
4722 	return length;
4723 }
4724 SLAB_ATTR(store_user);
4725 
4726 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4727 {
4728 	return 0;
4729 }
4730 
4731 static ssize_t validate_store(struct kmem_cache *s,
4732 			const char *buf, size_t length)
4733 {
4734 	int ret = -EINVAL;
4735 
4736 	if (buf[0] == '1') {
4737 		ret = validate_slab_cache(s);
4738 		if (ret >= 0)
4739 			ret = length;
4740 	}
4741 	return ret;
4742 }
4743 SLAB_ATTR(validate);
4744 
4745 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4746 {
4747 	if (!(s->flags & SLAB_STORE_USER))
4748 		return -ENOSYS;
4749 	return list_locations(s, buf, TRACK_ALLOC);
4750 }
4751 SLAB_ATTR_RO(alloc_calls);
4752 
4753 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4754 {
4755 	if (!(s->flags & SLAB_STORE_USER))
4756 		return -ENOSYS;
4757 	return list_locations(s, buf, TRACK_FREE);
4758 }
4759 SLAB_ATTR_RO(free_calls);
4760 #endif /* CONFIG_SLUB_DEBUG */
4761 
4762 #ifdef CONFIG_FAILSLAB
4763 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4764 {
4765 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4766 }
4767 
4768 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4769 							size_t length)
4770 {
4771 	s->flags &= ~SLAB_FAILSLAB;
4772 	if (buf[0] == '1')
4773 		s->flags |= SLAB_FAILSLAB;
4774 	return length;
4775 }
4776 SLAB_ATTR(failslab);
4777 #endif
4778 
4779 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4780 {
4781 	return 0;
4782 }
4783 
4784 static ssize_t shrink_store(struct kmem_cache *s,
4785 			const char *buf, size_t length)
4786 {
4787 	if (buf[0] == '1') {
4788 		int rc = kmem_cache_shrink(s);
4789 
4790 		if (rc)
4791 			return rc;
4792 	} else
4793 		return -EINVAL;
4794 	return length;
4795 }
4796 SLAB_ATTR(shrink);
4797 
4798 #ifdef CONFIG_NUMA
4799 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4800 {
4801 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4802 }
4803 
4804 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4805 				const char *buf, size_t length)
4806 {
4807 	unsigned long ratio;
4808 	int err;
4809 
4810 	err = kstrtoul(buf, 10, &ratio);
4811 	if (err)
4812 		return err;
4813 
4814 	if (ratio <= 100)
4815 		s->remote_node_defrag_ratio = ratio * 10;
4816 
4817 	return length;
4818 }
4819 SLAB_ATTR(remote_node_defrag_ratio);
4820 #endif
4821 
4822 #ifdef CONFIG_SLUB_STATS
4823 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4824 {
4825 	unsigned long sum  = 0;
4826 	int cpu;
4827 	int len;
4828 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4829 
4830 	if (!data)
4831 		return -ENOMEM;
4832 
4833 	for_each_online_cpu(cpu) {
4834 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4835 
4836 		data[cpu] = x;
4837 		sum += x;
4838 	}
4839 
4840 	len = sprintf(buf, "%lu", sum);
4841 
4842 #ifdef CONFIG_SMP
4843 	for_each_online_cpu(cpu) {
4844 		if (data[cpu] && len < PAGE_SIZE - 20)
4845 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4846 	}
4847 #endif
4848 	kfree(data);
4849 	return len + sprintf(buf + len, "\n");
4850 }
4851 
4852 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4853 {
4854 	int cpu;
4855 
4856 	for_each_online_cpu(cpu)
4857 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4858 }
4859 
4860 #define STAT_ATTR(si, text) 					\
4861 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4862 {								\
4863 	return show_stat(s, buf, si);				\
4864 }								\
4865 static ssize_t text##_store(struct kmem_cache *s,		\
4866 				const char *buf, size_t length)	\
4867 {								\
4868 	if (buf[0] != '0')					\
4869 		return -EINVAL;					\
4870 	clear_stat(s, si);					\
4871 	return length;						\
4872 }								\
4873 SLAB_ATTR(text);						\
4874 
4875 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4876 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4877 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4878 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4879 STAT_ATTR(FREE_FROZEN, free_frozen);
4880 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4881 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4882 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4883 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4884 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4885 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4886 STAT_ATTR(FREE_SLAB, free_slab);
4887 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4888 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4889 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4890 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4891 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4892 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4893 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4894 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4895 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4896 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4897 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4898 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4899 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4900 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4901 #endif
4902 
4903 static struct attribute *slab_attrs[] = {
4904 	&slab_size_attr.attr,
4905 	&object_size_attr.attr,
4906 	&objs_per_slab_attr.attr,
4907 	&order_attr.attr,
4908 	&min_partial_attr.attr,
4909 	&cpu_partial_attr.attr,
4910 	&objects_attr.attr,
4911 	&objects_partial_attr.attr,
4912 	&partial_attr.attr,
4913 	&cpu_slabs_attr.attr,
4914 	&ctor_attr.attr,
4915 	&aliases_attr.attr,
4916 	&align_attr.attr,
4917 	&hwcache_align_attr.attr,
4918 	&reclaim_account_attr.attr,
4919 	&destroy_by_rcu_attr.attr,
4920 	&shrink_attr.attr,
4921 	&reserved_attr.attr,
4922 	&slabs_cpu_partial_attr.attr,
4923 #ifdef CONFIG_SLUB_DEBUG
4924 	&total_objects_attr.attr,
4925 	&slabs_attr.attr,
4926 	&sanity_checks_attr.attr,
4927 	&trace_attr.attr,
4928 	&red_zone_attr.attr,
4929 	&poison_attr.attr,
4930 	&store_user_attr.attr,
4931 	&validate_attr.attr,
4932 	&alloc_calls_attr.attr,
4933 	&free_calls_attr.attr,
4934 #endif
4935 #ifdef CONFIG_ZONE_DMA
4936 	&cache_dma_attr.attr,
4937 #endif
4938 #ifdef CONFIG_NUMA
4939 	&remote_node_defrag_ratio_attr.attr,
4940 #endif
4941 #ifdef CONFIG_SLUB_STATS
4942 	&alloc_fastpath_attr.attr,
4943 	&alloc_slowpath_attr.attr,
4944 	&free_fastpath_attr.attr,
4945 	&free_slowpath_attr.attr,
4946 	&free_frozen_attr.attr,
4947 	&free_add_partial_attr.attr,
4948 	&free_remove_partial_attr.attr,
4949 	&alloc_from_partial_attr.attr,
4950 	&alloc_slab_attr.attr,
4951 	&alloc_refill_attr.attr,
4952 	&alloc_node_mismatch_attr.attr,
4953 	&free_slab_attr.attr,
4954 	&cpuslab_flush_attr.attr,
4955 	&deactivate_full_attr.attr,
4956 	&deactivate_empty_attr.attr,
4957 	&deactivate_to_head_attr.attr,
4958 	&deactivate_to_tail_attr.attr,
4959 	&deactivate_remote_frees_attr.attr,
4960 	&deactivate_bypass_attr.attr,
4961 	&order_fallback_attr.attr,
4962 	&cmpxchg_double_fail_attr.attr,
4963 	&cmpxchg_double_cpu_fail_attr.attr,
4964 	&cpu_partial_alloc_attr.attr,
4965 	&cpu_partial_free_attr.attr,
4966 	&cpu_partial_node_attr.attr,
4967 	&cpu_partial_drain_attr.attr,
4968 #endif
4969 #ifdef CONFIG_FAILSLAB
4970 	&failslab_attr.attr,
4971 #endif
4972 
4973 	NULL
4974 };
4975 
4976 static struct attribute_group slab_attr_group = {
4977 	.attrs = slab_attrs,
4978 };
4979 
4980 static ssize_t slab_attr_show(struct kobject *kobj,
4981 				struct attribute *attr,
4982 				char *buf)
4983 {
4984 	struct slab_attribute *attribute;
4985 	struct kmem_cache *s;
4986 	int err;
4987 
4988 	attribute = to_slab_attr(attr);
4989 	s = to_slab(kobj);
4990 
4991 	if (!attribute->show)
4992 		return -EIO;
4993 
4994 	err = attribute->show(s, buf);
4995 
4996 	return err;
4997 }
4998 
4999 static ssize_t slab_attr_store(struct kobject *kobj,
5000 				struct attribute *attr,
5001 				const char *buf, size_t len)
5002 {
5003 	struct slab_attribute *attribute;
5004 	struct kmem_cache *s;
5005 	int err;
5006 
5007 	attribute = to_slab_attr(attr);
5008 	s = to_slab(kobj);
5009 
5010 	if (!attribute->store)
5011 		return -EIO;
5012 
5013 	err = attribute->store(s, buf, len);
5014 #ifdef CONFIG_MEMCG_KMEM
5015 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5016 		int i;
5017 
5018 		mutex_lock(&slab_mutex);
5019 		if (s->max_attr_size < len)
5020 			s->max_attr_size = len;
5021 
5022 		/*
5023 		 * This is a best effort propagation, so this function's return
5024 		 * value will be determined by the parent cache only. This is
5025 		 * basically because not all attributes will have a well
5026 		 * defined semantics for rollbacks - most of the actions will
5027 		 * have permanent effects.
5028 		 *
5029 		 * Returning the error value of any of the children that fail
5030 		 * is not 100 % defined, in the sense that users seeing the
5031 		 * error code won't be able to know anything about the state of
5032 		 * the cache.
5033 		 *
5034 		 * Only returning the error code for the parent cache at least
5035 		 * has well defined semantics. The cache being written to
5036 		 * directly either failed or succeeded, in which case we loop
5037 		 * through the descendants with best-effort propagation.
5038 		 */
5039 		for_each_memcg_cache_index(i) {
5040 			struct kmem_cache *c = cache_from_memcg_idx(s, i);
5041 			if (c)
5042 				attribute->store(c, buf, len);
5043 		}
5044 		mutex_unlock(&slab_mutex);
5045 	}
5046 #endif
5047 	return err;
5048 }
5049 
5050 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5051 {
5052 #ifdef CONFIG_MEMCG_KMEM
5053 	int i;
5054 	char *buffer = NULL;
5055 
5056 	if (!is_root_cache(s))
5057 		return;
5058 
5059 	/*
5060 	 * This mean this cache had no attribute written. Therefore, no point
5061 	 * in copying default values around
5062 	 */
5063 	if (!s->max_attr_size)
5064 		return;
5065 
5066 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5067 		char mbuf[64];
5068 		char *buf;
5069 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5070 
5071 		if (!attr || !attr->store || !attr->show)
5072 			continue;
5073 
5074 		/*
5075 		 * It is really bad that we have to allocate here, so we will
5076 		 * do it only as a fallback. If we actually allocate, though,
5077 		 * we can just use the allocated buffer until the end.
5078 		 *
5079 		 * Most of the slub attributes will tend to be very small in
5080 		 * size, but sysfs allows buffers up to a page, so they can
5081 		 * theoretically happen.
5082 		 */
5083 		if (buffer)
5084 			buf = buffer;
5085 		else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5086 			buf = mbuf;
5087 		else {
5088 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5089 			if (WARN_ON(!buffer))
5090 				continue;
5091 			buf = buffer;
5092 		}
5093 
5094 		attr->show(s->memcg_params->root_cache, buf);
5095 		attr->store(s, buf, strlen(buf));
5096 	}
5097 
5098 	if (buffer)
5099 		free_page((unsigned long)buffer);
5100 #endif
5101 }
5102 
5103 static const struct sysfs_ops slab_sysfs_ops = {
5104 	.show = slab_attr_show,
5105 	.store = slab_attr_store,
5106 };
5107 
5108 static struct kobj_type slab_ktype = {
5109 	.sysfs_ops = &slab_sysfs_ops,
5110 };
5111 
5112 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5113 {
5114 	struct kobj_type *ktype = get_ktype(kobj);
5115 
5116 	if (ktype == &slab_ktype)
5117 		return 1;
5118 	return 0;
5119 }
5120 
5121 static const struct kset_uevent_ops slab_uevent_ops = {
5122 	.filter = uevent_filter,
5123 };
5124 
5125 static struct kset *slab_kset;
5126 
5127 #define ID_STR_LENGTH 64
5128 
5129 /* Create a unique string id for a slab cache:
5130  *
5131  * Format	:[flags-]size
5132  */
5133 static char *create_unique_id(struct kmem_cache *s)
5134 {
5135 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5136 	char *p = name;
5137 
5138 	BUG_ON(!name);
5139 
5140 	*p++ = ':';
5141 	/*
5142 	 * First flags affecting slabcache operations. We will only
5143 	 * get here for aliasable slabs so we do not need to support
5144 	 * too many flags. The flags here must cover all flags that
5145 	 * are matched during merging to guarantee that the id is
5146 	 * unique.
5147 	 */
5148 	if (s->flags & SLAB_CACHE_DMA)
5149 		*p++ = 'd';
5150 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5151 		*p++ = 'a';
5152 	if (s->flags & SLAB_DEBUG_FREE)
5153 		*p++ = 'F';
5154 	if (!(s->flags & SLAB_NOTRACK))
5155 		*p++ = 't';
5156 	if (p != name + 1)
5157 		*p++ = '-';
5158 	p += sprintf(p, "%07d", s->size);
5159 
5160 #ifdef CONFIG_MEMCG_KMEM
5161 	if (!is_root_cache(s))
5162 		p += sprintf(p, "-%08d",
5163 				memcg_cache_id(s->memcg_params->memcg));
5164 #endif
5165 
5166 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5167 	return name;
5168 }
5169 
5170 static int sysfs_slab_add(struct kmem_cache *s)
5171 {
5172 	int err;
5173 	const char *name;
5174 	int unmergeable = slab_unmergeable(s);
5175 
5176 	if (unmergeable) {
5177 		/*
5178 		 * Slabcache can never be merged so we can use the name proper.
5179 		 * This is typically the case for debug situations. In that
5180 		 * case we can catch duplicate names easily.
5181 		 */
5182 		sysfs_remove_link(&slab_kset->kobj, s->name);
5183 		name = s->name;
5184 	} else {
5185 		/*
5186 		 * Create a unique name for the slab as a target
5187 		 * for the symlinks.
5188 		 */
5189 		name = create_unique_id(s);
5190 	}
5191 
5192 	s->kobj.kset = slab_kset;
5193 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5194 	if (err) {
5195 		kobject_put(&s->kobj);
5196 		return err;
5197 	}
5198 
5199 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5200 	if (err) {
5201 		kobject_del(&s->kobj);
5202 		kobject_put(&s->kobj);
5203 		return err;
5204 	}
5205 	kobject_uevent(&s->kobj, KOBJ_ADD);
5206 	if (!unmergeable) {
5207 		/* Setup first alias */
5208 		sysfs_slab_alias(s, s->name);
5209 		kfree(name);
5210 	}
5211 	return 0;
5212 }
5213 
5214 static void sysfs_slab_remove(struct kmem_cache *s)
5215 {
5216 	if (slab_state < FULL)
5217 		/*
5218 		 * Sysfs has not been setup yet so no need to remove the
5219 		 * cache from sysfs.
5220 		 */
5221 		return;
5222 
5223 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5224 	kobject_del(&s->kobj);
5225 	kobject_put(&s->kobj);
5226 }
5227 
5228 /*
5229  * Need to buffer aliases during bootup until sysfs becomes
5230  * available lest we lose that information.
5231  */
5232 struct saved_alias {
5233 	struct kmem_cache *s;
5234 	const char *name;
5235 	struct saved_alias *next;
5236 };
5237 
5238 static struct saved_alias *alias_list;
5239 
5240 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5241 {
5242 	struct saved_alias *al;
5243 
5244 	if (slab_state == FULL) {
5245 		/*
5246 		 * If we have a leftover link then remove it.
5247 		 */
5248 		sysfs_remove_link(&slab_kset->kobj, name);
5249 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5250 	}
5251 
5252 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5253 	if (!al)
5254 		return -ENOMEM;
5255 
5256 	al->s = s;
5257 	al->name = name;
5258 	al->next = alias_list;
5259 	alias_list = al;
5260 	return 0;
5261 }
5262 
5263 static int __init slab_sysfs_init(void)
5264 {
5265 	struct kmem_cache *s;
5266 	int err;
5267 
5268 	mutex_lock(&slab_mutex);
5269 
5270 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5271 	if (!slab_kset) {
5272 		mutex_unlock(&slab_mutex);
5273 		printk(KERN_ERR "Cannot register slab subsystem.\n");
5274 		return -ENOSYS;
5275 	}
5276 
5277 	slab_state = FULL;
5278 
5279 	list_for_each_entry(s, &slab_caches, list) {
5280 		err = sysfs_slab_add(s);
5281 		if (err)
5282 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5283 						" to sysfs\n", s->name);
5284 	}
5285 
5286 	while (alias_list) {
5287 		struct saved_alias *al = alias_list;
5288 
5289 		alias_list = alias_list->next;
5290 		err = sysfs_slab_alias(al->s, al->name);
5291 		if (err)
5292 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5293 					" %s to sysfs\n", al->name);
5294 		kfree(al);
5295 	}
5296 
5297 	mutex_unlock(&slab_mutex);
5298 	resiliency_test();
5299 	return 0;
5300 }
5301 
5302 __initcall(slab_sysfs_init);
5303 #endif /* CONFIG_SYSFS */
5304 
5305 /*
5306  * The /proc/slabinfo ABI
5307  */
5308 #ifdef CONFIG_SLABINFO
5309 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5310 {
5311 	unsigned long nr_slabs = 0;
5312 	unsigned long nr_objs = 0;
5313 	unsigned long nr_free = 0;
5314 	int node;
5315 
5316 	for_each_online_node(node) {
5317 		struct kmem_cache_node *n = get_node(s, node);
5318 
5319 		if (!n)
5320 			continue;
5321 
5322 		nr_slabs += node_nr_slabs(n);
5323 		nr_objs += node_nr_objs(n);
5324 		nr_free += count_partial(n, count_free);
5325 	}
5326 
5327 	sinfo->active_objs = nr_objs - nr_free;
5328 	sinfo->num_objs = nr_objs;
5329 	sinfo->active_slabs = nr_slabs;
5330 	sinfo->num_slabs = nr_slabs;
5331 	sinfo->objects_per_slab = oo_objects(s->oo);
5332 	sinfo->cache_order = oo_order(s->oo);
5333 }
5334 
5335 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5336 {
5337 }
5338 
5339 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5340 		       size_t count, loff_t *ppos)
5341 {
5342 	return -EIO;
5343 }
5344 #endif /* CONFIG_SLABINFO */
5345