xref: /openbmc/linux/mm/slub.c (revision 42fc2e9e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list except per cpu partial list. The processor that froze the
62  *   slab is the one who can perform list operations on the page. Other
63  *   processors may put objects onto the freelist but the processor that
64  *   froze the slab is the only one that can retrieve the objects from the
65  *   page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * Overloading of page flags that are otherwise used for LRU management.
97  *
98  * PageActive 		The slab is frozen and exempt from list processing.
99  * 			This means that the slab is dedicated to a purpose
100  * 			such as satisfying allocations for a specific
101  * 			processor. Objects may be freed in the slab while
102  * 			it is frozen but slab_free will then skip the usual
103  * 			list operations. It is up to the processor holding
104  * 			the slab to integrate the slab into the slab lists
105  * 			when the slab is no longer needed.
106  *
107  * 			One use of this flag is to mark slabs that are
108  * 			used for allocations. Then such a slab becomes a cpu
109  * 			slab. The cpu slab may be equipped with an additional
110  * 			freelist that allows lockless access to
111  * 			free objects in addition to the regular freelist
112  * 			that requires the slab lock.
113  *
114  * PageError		Slab requires special handling due to debug
115  * 			options set. This moves	slab handling out of
116  * 			the fast path and disables lockless freelists.
117  */
118 
119 static inline int kmem_cache_debug(struct kmem_cache *s)
120 {
121 #ifdef CONFIG_SLUB_DEBUG
122 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 	return 0;
125 #endif
126 }
127 
128 void *fixup_red_left(struct kmem_cache *s, void *p)
129 {
130 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 		p += s->red_left_pad;
132 
133 	return p;
134 }
135 
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 {
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 	return !kmem_cache_debug(s);
140 #else
141 	return false;
142 #endif
143 }
144 
145 /*
146  * Issues still to be resolved:
147  *
148  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149  *
150  * - Variable sizing of the per node arrays
151  */
152 
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155 
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
158 
159 /*
160  * Mininum number of partial slabs. These will be left on the partial
161  * lists even if they are empty. kmem_cache_shrink may reclaim them.
162  */
163 #define MIN_PARTIAL 5
164 
165 /*
166  * Maximum number of desirable partial slabs.
167  * The existence of more partial slabs makes kmem_cache_shrink
168  * sort the partial list by the number of objects in use.
169  */
170 #define MAX_PARTIAL 10
171 
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 				SLAB_POISON | SLAB_STORE_USER)
174 
175 /*
176  * These debug flags cannot use CMPXCHG because there might be consistency
177  * issues when checking or reading debug information
178  */
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 				SLAB_TRACE)
181 
182 
183 /*
184  * Debugging flags that require metadata to be stored in the slab.  These get
185  * disabled when slub_debug=O is used and a cache's min order increases with
186  * metadata.
187  */
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189 
190 #define OO_SHIFT	16
191 #define OO_MASK		((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
193 
194 /* Internal SLUB flags */
195 /* Poison object */
196 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
199 
200 /*
201  * Tracking user of a slab.
202  */
203 #define TRACK_ADDRS_COUNT 16
204 struct track {
205 	unsigned long addr;	/* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
208 #endif
209 	int cpu;		/* Was running on cpu */
210 	int pid;		/* Pid context */
211 	unsigned long when;	/* When did the operation occur */
212 };
213 
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
215 
216 #ifdef CONFIG_SYSFS
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 							{ return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 #endif
228 
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 	/*
233 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 	 * avoid this_cpu_add()'s irq-disable overhead.
235 	 */
236 	raw_cpu_inc(s->cpu_slab->stat[si]);
237 #endif
238 }
239 
240 /********************************************************************
241  * 			Core slab cache functions
242  *******************************************************************/
243 
244 /*
245  * Returns freelist pointer (ptr). With hardening, this is obfuscated
246  * with an XOR of the address where the pointer is held and a per-cache
247  * random number.
248  */
249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 				 unsigned long ptr_addr)
251 {
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 	/*
254 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
255 	 * Normally, this doesn't cause any issues, as both set_freepointer()
256 	 * and get_freepointer() are called with a pointer with the same tag.
257 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
258 	 * example, when __free_slub() iterates over objects in a cache, it
259 	 * passes untagged pointers to check_object(). check_object() in turns
260 	 * calls get_freepointer() with an untagged pointer, which causes the
261 	 * freepointer to be restored incorrectly.
262 	 */
263 	return (void *)((unsigned long)ptr ^ s->random ^
264 			(unsigned long)kasan_reset_tag((void *)ptr_addr));
265 #else
266 	return ptr;
267 #endif
268 }
269 
270 /* Returns the freelist pointer recorded at location ptr_addr. */
271 static inline void *freelist_dereference(const struct kmem_cache *s,
272 					 void *ptr_addr)
273 {
274 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
275 			    (unsigned long)ptr_addr);
276 }
277 
278 static inline void *get_freepointer(struct kmem_cache *s, void *object)
279 {
280 	return freelist_dereference(s, object + s->offset);
281 }
282 
283 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
284 {
285 	prefetch(object + s->offset);
286 }
287 
288 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
289 {
290 	unsigned long freepointer_addr;
291 	void *p;
292 
293 	if (!debug_pagealloc_enabled())
294 		return get_freepointer(s, object);
295 
296 	freepointer_addr = (unsigned long)object + s->offset;
297 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
298 	return freelist_ptr(s, p, freepointer_addr);
299 }
300 
301 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
302 {
303 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
304 
305 #ifdef CONFIG_SLAB_FREELIST_HARDENED
306 	BUG_ON(object == fp); /* naive detection of double free or corruption */
307 #endif
308 
309 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
310 }
311 
312 /* Loop over all objects in a slab */
313 #define for_each_object(__p, __s, __addr, __objects) \
314 	for (__p = fixup_red_left(__s, __addr); \
315 		__p < (__addr) + (__objects) * (__s)->size; \
316 		__p += (__s)->size)
317 
318 /* Determine object index from a given position */
319 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
320 {
321 	return (kasan_reset_tag(p) - addr) / s->size;
322 }
323 
324 static inline unsigned int order_objects(unsigned int order, unsigned int size)
325 {
326 	return ((unsigned int)PAGE_SIZE << order) / size;
327 }
328 
329 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
330 		unsigned int size)
331 {
332 	struct kmem_cache_order_objects x = {
333 		(order << OO_SHIFT) + order_objects(order, size)
334 	};
335 
336 	return x;
337 }
338 
339 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
340 {
341 	return x.x >> OO_SHIFT;
342 }
343 
344 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
345 {
346 	return x.x & OO_MASK;
347 }
348 
349 /*
350  * Per slab locking using the pagelock
351  */
352 static __always_inline void slab_lock(struct page *page)
353 {
354 	VM_BUG_ON_PAGE(PageTail(page), page);
355 	bit_spin_lock(PG_locked, &page->flags);
356 }
357 
358 static __always_inline void slab_unlock(struct page *page)
359 {
360 	VM_BUG_ON_PAGE(PageTail(page), page);
361 	__bit_spin_unlock(PG_locked, &page->flags);
362 }
363 
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 		void *freelist_old, unsigned long counters_old,
367 		void *freelist_new, unsigned long counters_new,
368 		const char *n)
369 {
370 	VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 	if (s->flags & __CMPXCHG_DOUBLE) {
374 		if (cmpxchg_double(&page->freelist, &page->counters,
375 				   freelist_old, counters_old,
376 				   freelist_new, counters_new))
377 			return true;
378 	} else
379 #endif
380 	{
381 		slab_lock(page);
382 		if (page->freelist == freelist_old &&
383 					page->counters == counters_old) {
384 			page->freelist = freelist_new;
385 			page->counters = counters_new;
386 			slab_unlock(page);
387 			return true;
388 		}
389 		slab_unlock(page);
390 	}
391 
392 	cpu_relax();
393 	stat(s, CMPXCHG_DOUBLE_FAIL);
394 
395 #ifdef SLUB_DEBUG_CMPXCHG
396 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398 
399 	return false;
400 }
401 
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 		void *freelist_old, unsigned long counters_old,
404 		void *freelist_new, unsigned long counters_new,
405 		const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 	if (s->flags & __CMPXCHG_DOUBLE) {
410 		if (cmpxchg_double(&page->freelist, &page->counters,
411 				   freelist_old, counters_old,
412 				   freelist_new, counters_new))
413 			return true;
414 	} else
415 #endif
416 	{
417 		unsigned long flags;
418 
419 		local_irq_save(flags);
420 		slab_lock(page);
421 		if (page->freelist == freelist_old &&
422 					page->counters == counters_old) {
423 			page->freelist = freelist_new;
424 			page->counters = counters_new;
425 			slab_unlock(page);
426 			local_irq_restore(flags);
427 			return true;
428 		}
429 		slab_unlock(page);
430 		local_irq_restore(flags);
431 	}
432 
433 	cpu_relax();
434 	stat(s, CMPXCHG_DOUBLE_FAIL);
435 
436 #ifdef SLUB_DEBUG_CMPXCHG
437 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439 
440 	return false;
441 }
442 
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445  * Determine a map of object in use on a page.
446  *
447  * Node listlock must be held to guarantee that the page does
448  * not vanish from under us.
449  */
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 	void *p;
453 	void *addr = page_address(page);
454 
455 	for (p = page->freelist; p; p = get_freepointer(s, p))
456 		set_bit(slab_index(p, s, addr), map);
457 }
458 
459 static inline unsigned int size_from_object(struct kmem_cache *s)
460 {
461 	if (s->flags & SLAB_RED_ZONE)
462 		return s->size - s->red_left_pad;
463 
464 	return s->size;
465 }
466 
467 static inline void *restore_red_left(struct kmem_cache *s, void *p)
468 {
469 	if (s->flags & SLAB_RED_ZONE)
470 		p -= s->red_left_pad;
471 
472 	return p;
473 }
474 
475 /*
476  * Debug settings:
477  */
478 #if defined(CONFIG_SLUB_DEBUG_ON)
479 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
480 #else
481 static slab_flags_t slub_debug;
482 #endif
483 
484 static char *slub_debug_slabs;
485 static int disable_higher_order_debug;
486 
487 /*
488  * slub is about to manipulate internal object metadata.  This memory lies
489  * outside the range of the allocated object, so accessing it would normally
490  * be reported by kasan as a bounds error.  metadata_access_enable() is used
491  * to tell kasan that these accesses are OK.
492  */
493 static inline void metadata_access_enable(void)
494 {
495 	kasan_disable_current();
496 }
497 
498 static inline void metadata_access_disable(void)
499 {
500 	kasan_enable_current();
501 }
502 
503 /*
504  * Object debugging
505  */
506 
507 /* Verify that a pointer has an address that is valid within a slab page */
508 static inline int check_valid_pointer(struct kmem_cache *s,
509 				struct page *page, void *object)
510 {
511 	void *base;
512 
513 	if (!object)
514 		return 1;
515 
516 	base = page_address(page);
517 	object = kasan_reset_tag(object);
518 	object = restore_red_left(s, object);
519 	if (object < base || object >= base + page->objects * s->size ||
520 		(object - base) % s->size) {
521 		return 0;
522 	}
523 
524 	return 1;
525 }
526 
527 static void print_section(char *level, char *text, u8 *addr,
528 			  unsigned int length)
529 {
530 	metadata_access_enable();
531 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
532 			length, 1);
533 	metadata_access_disable();
534 }
535 
536 static struct track *get_track(struct kmem_cache *s, void *object,
537 	enum track_item alloc)
538 {
539 	struct track *p;
540 
541 	if (s->offset)
542 		p = object + s->offset + sizeof(void *);
543 	else
544 		p = object + s->inuse;
545 
546 	return p + alloc;
547 }
548 
549 static void set_track(struct kmem_cache *s, void *object,
550 			enum track_item alloc, unsigned long addr)
551 {
552 	struct track *p = get_track(s, object, alloc);
553 
554 	if (addr) {
555 #ifdef CONFIG_STACKTRACE
556 		unsigned int nr_entries;
557 
558 		metadata_access_enable();
559 		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
560 		metadata_access_disable();
561 
562 		if (nr_entries < TRACK_ADDRS_COUNT)
563 			p->addrs[nr_entries] = 0;
564 #endif
565 		p->addr = addr;
566 		p->cpu = smp_processor_id();
567 		p->pid = current->pid;
568 		p->when = jiffies;
569 	} else {
570 		memset(p, 0, sizeof(struct track));
571 	}
572 }
573 
574 static void init_tracking(struct kmem_cache *s, void *object)
575 {
576 	if (!(s->flags & SLAB_STORE_USER))
577 		return;
578 
579 	set_track(s, object, TRACK_FREE, 0UL);
580 	set_track(s, object, TRACK_ALLOC, 0UL);
581 }
582 
583 static void print_track(const char *s, struct track *t, unsigned long pr_time)
584 {
585 	if (!t->addr)
586 		return;
587 
588 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
589 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
590 #ifdef CONFIG_STACKTRACE
591 	{
592 		int i;
593 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
594 			if (t->addrs[i])
595 				pr_err("\t%pS\n", (void *)t->addrs[i]);
596 			else
597 				break;
598 	}
599 #endif
600 }
601 
602 static void print_tracking(struct kmem_cache *s, void *object)
603 {
604 	unsigned long pr_time = jiffies;
605 	if (!(s->flags & SLAB_STORE_USER))
606 		return;
607 
608 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
609 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
610 }
611 
612 static void print_page_info(struct page *page)
613 {
614 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
615 	       page, page->objects, page->inuse, page->freelist, page->flags);
616 
617 }
618 
619 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
620 {
621 	struct va_format vaf;
622 	va_list args;
623 
624 	va_start(args, fmt);
625 	vaf.fmt = fmt;
626 	vaf.va = &args;
627 	pr_err("=============================================================================\n");
628 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
629 	pr_err("-----------------------------------------------------------------------------\n\n");
630 
631 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
632 	va_end(args);
633 }
634 
635 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
636 {
637 	struct va_format vaf;
638 	va_list args;
639 
640 	va_start(args, fmt);
641 	vaf.fmt = fmt;
642 	vaf.va = &args;
643 	pr_err("FIX %s: %pV\n", s->name, &vaf);
644 	va_end(args);
645 }
646 
647 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
648 {
649 	unsigned int off;	/* Offset of last byte */
650 	u8 *addr = page_address(page);
651 
652 	print_tracking(s, p);
653 
654 	print_page_info(page);
655 
656 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
657 	       p, p - addr, get_freepointer(s, p));
658 
659 	if (s->flags & SLAB_RED_ZONE)
660 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
661 			      s->red_left_pad);
662 	else if (p > addr + 16)
663 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
664 
665 	print_section(KERN_ERR, "Object ", p,
666 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
667 	if (s->flags & SLAB_RED_ZONE)
668 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
669 			s->inuse - s->object_size);
670 
671 	if (s->offset)
672 		off = s->offset + sizeof(void *);
673 	else
674 		off = s->inuse;
675 
676 	if (s->flags & SLAB_STORE_USER)
677 		off += 2 * sizeof(struct track);
678 
679 	off += kasan_metadata_size(s);
680 
681 	if (off != size_from_object(s))
682 		/* Beginning of the filler is the free pointer */
683 		print_section(KERN_ERR, "Padding ", p + off,
684 			      size_from_object(s) - off);
685 
686 	dump_stack();
687 }
688 
689 void object_err(struct kmem_cache *s, struct page *page,
690 			u8 *object, char *reason)
691 {
692 	slab_bug(s, "%s", reason);
693 	print_trailer(s, page, object);
694 }
695 
696 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
697 			const char *fmt, ...)
698 {
699 	va_list args;
700 	char buf[100];
701 
702 	va_start(args, fmt);
703 	vsnprintf(buf, sizeof(buf), fmt, args);
704 	va_end(args);
705 	slab_bug(s, "%s", buf);
706 	print_page_info(page);
707 	dump_stack();
708 }
709 
710 static void init_object(struct kmem_cache *s, void *object, u8 val)
711 {
712 	u8 *p = object;
713 
714 	if (s->flags & SLAB_RED_ZONE)
715 		memset(p - s->red_left_pad, val, s->red_left_pad);
716 
717 	if (s->flags & __OBJECT_POISON) {
718 		memset(p, POISON_FREE, s->object_size - 1);
719 		p[s->object_size - 1] = POISON_END;
720 	}
721 
722 	if (s->flags & SLAB_RED_ZONE)
723 		memset(p + s->object_size, val, s->inuse - s->object_size);
724 }
725 
726 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
727 						void *from, void *to)
728 {
729 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
730 	memset(from, data, to - from);
731 }
732 
733 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
734 			u8 *object, char *what,
735 			u8 *start, unsigned int value, unsigned int bytes)
736 {
737 	u8 *fault;
738 	u8 *end;
739 
740 	metadata_access_enable();
741 	fault = memchr_inv(start, value, bytes);
742 	metadata_access_disable();
743 	if (!fault)
744 		return 1;
745 
746 	end = start + bytes;
747 	while (end > fault && end[-1] == value)
748 		end--;
749 
750 	slab_bug(s, "%s overwritten", what);
751 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
752 					fault, end - 1, fault[0], value);
753 	print_trailer(s, page, object);
754 
755 	restore_bytes(s, what, value, fault, end);
756 	return 0;
757 }
758 
759 /*
760  * Object layout:
761  *
762  * object address
763  * 	Bytes of the object to be managed.
764  * 	If the freepointer may overlay the object then the free
765  * 	pointer is the first word of the object.
766  *
767  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
768  * 	0xa5 (POISON_END)
769  *
770  * object + s->object_size
771  * 	Padding to reach word boundary. This is also used for Redzoning.
772  * 	Padding is extended by another word if Redzoning is enabled and
773  * 	object_size == inuse.
774  *
775  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
776  * 	0xcc (RED_ACTIVE) for objects in use.
777  *
778  * object + s->inuse
779  * 	Meta data starts here.
780  *
781  * 	A. Free pointer (if we cannot overwrite object on free)
782  * 	B. Tracking data for SLAB_STORE_USER
783  * 	C. Padding to reach required alignment boundary or at mininum
784  * 		one word if debugging is on to be able to detect writes
785  * 		before the word boundary.
786  *
787  *	Padding is done using 0x5a (POISON_INUSE)
788  *
789  * object + s->size
790  * 	Nothing is used beyond s->size.
791  *
792  * If slabcaches are merged then the object_size and inuse boundaries are mostly
793  * ignored. And therefore no slab options that rely on these boundaries
794  * may be used with merged slabcaches.
795  */
796 
797 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
798 {
799 	unsigned long off = s->inuse;	/* The end of info */
800 
801 	if (s->offset)
802 		/* Freepointer is placed after the object. */
803 		off += sizeof(void *);
804 
805 	if (s->flags & SLAB_STORE_USER)
806 		/* We also have user information there */
807 		off += 2 * sizeof(struct track);
808 
809 	off += kasan_metadata_size(s);
810 
811 	if (size_from_object(s) == off)
812 		return 1;
813 
814 	return check_bytes_and_report(s, page, p, "Object padding",
815 			p + off, POISON_INUSE, size_from_object(s) - off);
816 }
817 
818 /* Check the pad bytes at the end of a slab page */
819 static int slab_pad_check(struct kmem_cache *s, struct page *page)
820 {
821 	u8 *start;
822 	u8 *fault;
823 	u8 *end;
824 	u8 *pad;
825 	int length;
826 	int remainder;
827 
828 	if (!(s->flags & SLAB_POISON))
829 		return 1;
830 
831 	start = page_address(page);
832 	length = PAGE_SIZE << compound_order(page);
833 	end = start + length;
834 	remainder = length % s->size;
835 	if (!remainder)
836 		return 1;
837 
838 	pad = end - remainder;
839 	metadata_access_enable();
840 	fault = memchr_inv(pad, POISON_INUSE, remainder);
841 	metadata_access_disable();
842 	if (!fault)
843 		return 1;
844 	while (end > fault && end[-1] == POISON_INUSE)
845 		end--;
846 
847 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
848 	print_section(KERN_ERR, "Padding ", pad, remainder);
849 
850 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
851 	return 0;
852 }
853 
854 static int check_object(struct kmem_cache *s, struct page *page,
855 					void *object, u8 val)
856 {
857 	u8 *p = object;
858 	u8 *endobject = object + s->object_size;
859 
860 	if (s->flags & SLAB_RED_ZONE) {
861 		if (!check_bytes_and_report(s, page, object, "Redzone",
862 			object - s->red_left_pad, val, s->red_left_pad))
863 			return 0;
864 
865 		if (!check_bytes_and_report(s, page, object, "Redzone",
866 			endobject, val, s->inuse - s->object_size))
867 			return 0;
868 	} else {
869 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
870 			check_bytes_and_report(s, page, p, "Alignment padding",
871 				endobject, POISON_INUSE,
872 				s->inuse - s->object_size);
873 		}
874 	}
875 
876 	if (s->flags & SLAB_POISON) {
877 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
878 			(!check_bytes_and_report(s, page, p, "Poison", p,
879 					POISON_FREE, s->object_size - 1) ||
880 			 !check_bytes_and_report(s, page, p, "Poison",
881 				p + s->object_size - 1, POISON_END, 1)))
882 			return 0;
883 		/*
884 		 * check_pad_bytes cleans up on its own.
885 		 */
886 		check_pad_bytes(s, page, p);
887 	}
888 
889 	if (!s->offset && val == SLUB_RED_ACTIVE)
890 		/*
891 		 * Object and freepointer overlap. Cannot check
892 		 * freepointer while object is allocated.
893 		 */
894 		return 1;
895 
896 	/* Check free pointer validity */
897 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
898 		object_err(s, page, p, "Freepointer corrupt");
899 		/*
900 		 * No choice but to zap it and thus lose the remainder
901 		 * of the free objects in this slab. May cause
902 		 * another error because the object count is now wrong.
903 		 */
904 		set_freepointer(s, p, NULL);
905 		return 0;
906 	}
907 	return 1;
908 }
909 
910 static int check_slab(struct kmem_cache *s, struct page *page)
911 {
912 	int maxobj;
913 
914 	VM_BUG_ON(!irqs_disabled());
915 
916 	if (!PageSlab(page)) {
917 		slab_err(s, page, "Not a valid slab page");
918 		return 0;
919 	}
920 
921 	maxobj = order_objects(compound_order(page), s->size);
922 	if (page->objects > maxobj) {
923 		slab_err(s, page, "objects %u > max %u",
924 			page->objects, maxobj);
925 		return 0;
926 	}
927 	if (page->inuse > page->objects) {
928 		slab_err(s, page, "inuse %u > max %u",
929 			page->inuse, page->objects);
930 		return 0;
931 	}
932 	/* Slab_pad_check fixes things up after itself */
933 	slab_pad_check(s, page);
934 	return 1;
935 }
936 
937 /*
938  * Determine if a certain object on a page is on the freelist. Must hold the
939  * slab lock to guarantee that the chains are in a consistent state.
940  */
941 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
942 {
943 	int nr = 0;
944 	void *fp;
945 	void *object = NULL;
946 	int max_objects;
947 
948 	fp = page->freelist;
949 	while (fp && nr <= page->objects) {
950 		if (fp == search)
951 			return 1;
952 		if (!check_valid_pointer(s, page, fp)) {
953 			if (object) {
954 				object_err(s, page, object,
955 					"Freechain corrupt");
956 				set_freepointer(s, object, NULL);
957 			} else {
958 				slab_err(s, page, "Freepointer corrupt");
959 				page->freelist = NULL;
960 				page->inuse = page->objects;
961 				slab_fix(s, "Freelist cleared");
962 				return 0;
963 			}
964 			break;
965 		}
966 		object = fp;
967 		fp = get_freepointer(s, object);
968 		nr++;
969 	}
970 
971 	max_objects = order_objects(compound_order(page), s->size);
972 	if (max_objects > MAX_OBJS_PER_PAGE)
973 		max_objects = MAX_OBJS_PER_PAGE;
974 
975 	if (page->objects != max_objects) {
976 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
977 			 page->objects, max_objects);
978 		page->objects = max_objects;
979 		slab_fix(s, "Number of objects adjusted.");
980 	}
981 	if (page->inuse != page->objects - nr) {
982 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
983 			 page->inuse, page->objects - nr);
984 		page->inuse = page->objects - nr;
985 		slab_fix(s, "Object count adjusted.");
986 	}
987 	return search == NULL;
988 }
989 
990 static void trace(struct kmem_cache *s, struct page *page, void *object,
991 								int alloc)
992 {
993 	if (s->flags & SLAB_TRACE) {
994 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
995 			s->name,
996 			alloc ? "alloc" : "free",
997 			object, page->inuse,
998 			page->freelist);
999 
1000 		if (!alloc)
1001 			print_section(KERN_INFO, "Object ", (void *)object,
1002 					s->object_size);
1003 
1004 		dump_stack();
1005 	}
1006 }
1007 
1008 /*
1009  * Tracking of fully allocated slabs for debugging purposes.
1010  */
1011 static void add_full(struct kmem_cache *s,
1012 	struct kmem_cache_node *n, struct page *page)
1013 {
1014 	if (!(s->flags & SLAB_STORE_USER))
1015 		return;
1016 
1017 	lockdep_assert_held(&n->list_lock);
1018 	list_add(&page->slab_list, &n->full);
1019 }
1020 
1021 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1022 {
1023 	if (!(s->flags & SLAB_STORE_USER))
1024 		return;
1025 
1026 	lockdep_assert_held(&n->list_lock);
1027 	list_del(&page->slab_list);
1028 }
1029 
1030 /* Tracking of the number of slabs for debugging purposes */
1031 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1032 {
1033 	struct kmem_cache_node *n = get_node(s, node);
1034 
1035 	return atomic_long_read(&n->nr_slabs);
1036 }
1037 
1038 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1039 {
1040 	return atomic_long_read(&n->nr_slabs);
1041 }
1042 
1043 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1044 {
1045 	struct kmem_cache_node *n = get_node(s, node);
1046 
1047 	/*
1048 	 * May be called early in order to allocate a slab for the
1049 	 * kmem_cache_node structure. Solve the chicken-egg
1050 	 * dilemma by deferring the increment of the count during
1051 	 * bootstrap (see early_kmem_cache_node_alloc).
1052 	 */
1053 	if (likely(n)) {
1054 		atomic_long_inc(&n->nr_slabs);
1055 		atomic_long_add(objects, &n->total_objects);
1056 	}
1057 }
1058 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1059 {
1060 	struct kmem_cache_node *n = get_node(s, node);
1061 
1062 	atomic_long_dec(&n->nr_slabs);
1063 	atomic_long_sub(objects, &n->total_objects);
1064 }
1065 
1066 /* Object debug checks for alloc/free paths */
1067 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1068 								void *object)
1069 {
1070 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1071 		return;
1072 
1073 	init_object(s, object, SLUB_RED_INACTIVE);
1074 	init_tracking(s, object);
1075 }
1076 
1077 static void setup_page_debug(struct kmem_cache *s, void *addr, int order)
1078 {
1079 	if (!(s->flags & SLAB_POISON))
1080 		return;
1081 
1082 	metadata_access_enable();
1083 	memset(addr, POISON_INUSE, PAGE_SIZE << order);
1084 	metadata_access_disable();
1085 }
1086 
1087 static inline int alloc_consistency_checks(struct kmem_cache *s,
1088 					struct page *page, void *object)
1089 {
1090 	if (!check_slab(s, page))
1091 		return 0;
1092 
1093 	if (!check_valid_pointer(s, page, object)) {
1094 		object_err(s, page, object, "Freelist Pointer check fails");
1095 		return 0;
1096 	}
1097 
1098 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1099 		return 0;
1100 
1101 	return 1;
1102 }
1103 
1104 static noinline int alloc_debug_processing(struct kmem_cache *s,
1105 					struct page *page,
1106 					void *object, unsigned long addr)
1107 {
1108 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1109 		if (!alloc_consistency_checks(s, page, object))
1110 			goto bad;
1111 	}
1112 
1113 	/* Success perform special debug activities for allocs */
1114 	if (s->flags & SLAB_STORE_USER)
1115 		set_track(s, object, TRACK_ALLOC, addr);
1116 	trace(s, page, object, 1);
1117 	init_object(s, object, SLUB_RED_ACTIVE);
1118 	return 1;
1119 
1120 bad:
1121 	if (PageSlab(page)) {
1122 		/*
1123 		 * If this is a slab page then lets do the best we can
1124 		 * to avoid issues in the future. Marking all objects
1125 		 * as used avoids touching the remaining objects.
1126 		 */
1127 		slab_fix(s, "Marking all objects used");
1128 		page->inuse = page->objects;
1129 		page->freelist = NULL;
1130 	}
1131 	return 0;
1132 }
1133 
1134 static inline int free_consistency_checks(struct kmem_cache *s,
1135 		struct page *page, void *object, unsigned long addr)
1136 {
1137 	if (!check_valid_pointer(s, page, object)) {
1138 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1139 		return 0;
1140 	}
1141 
1142 	if (on_freelist(s, page, object)) {
1143 		object_err(s, page, object, "Object already free");
1144 		return 0;
1145 	}
1146 
1147 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1148 		return 0;
1149 
1150 	if (unlikely(s != page->slab_cache)) {
1151 		if (!PageSlab(page)) {
1152 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1153 				 object);
1154 		} else if (!page->slab_cache) {
1155 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1156 			       object);
1157 			dump_stack();
1158 		} else
1159 			object_err(s, page, object,
1160 					"page slab pointer corrupt.");
1161 		return 0;
1162 	}
1163 	return 1;
1164 }
1165 
1166 /* Supports checking bulk free of a constructed freelist */
1167 static noinline int free_debug_processing(
1168 	struct kmem_cache *s, struct page *page,
1169 	void *head, void *tail, int bulk_cnt,
1170 	unsigned long addr)
1171 {
1172 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1173 	void *object = head;
1174 	int cnt = 0;
1175 	unsigned long uninitialized_var(flags);
1176 	int ret = 0;
1177 
1178 	spin_lock_irqsave(&n->list_lock, flags);
1179 	slab_lock(page);
1180 
1181 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1182 		if (!check_slab(s, page))
1183 			goto out;
1184 	}
1185 
1186 next_object:
1187 	cnt++;
1188 
1189 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1190 		if (!free_consistency_checks(s, page, object, addr))
1191 			goto out;
1192 	}
1193 
1194 	if (s->flags & SLAB_STORE_USER)
1195 		set_track(s, object, TRACK_FREE, addr);
1196 	trace(s, page, object, 0);
1197 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1198 	init_object(s, object, SLUB_RED_INACTIVE);
1199 
1200 	/* Reached end of constructed freelist yet? */
1201 	if (object != tail) {
1202 		object = get_freepointer(s, object);
1203 		goto next_object;
1204 	}
1205 	ret = 1;
1206 
1207 out:
1208 	if (cnt != bulk_cnt)
1209 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1210 			 bulk_cnt, cnt);
1211 
1212 	slab_unlock(page);
1213 	spin_unlock_irqrestore(&n->list_lock, flags);
1214 	if (!ret)
1215 		slab_fix(s, "Object at 0x%p not freed", object);
1216 	return ret;
1217 }
1218 
1219 static int __init setup_slub_debug(char *str)
1220 {
1221 	slub_debug = DEBUG_DEFAULT_FLAGS;
1222 	if (*str++ != '=' || !*str)
1223 		/*
1224 		 * No options specified. Switch on full debugging.
1225 		 */
1226 		goto out;
1227 
1228 	if (*str == ',')
1229 		/*
1230 		 * No options but restriction on slabs. This means full
1231 		 * debugging for slabs matching a pattern.
1232 		 */
1233 		goto check_slabs;
1234 
1235 	slub_debug = 0;
1236 	if (*str == '-')
1237 		/*
1238 		 * Switch off all debugging measures.
1239 		 */
1240 		goto out;
1241 
1242 	/*
1243 	 * Determine which debug features should be switched on
1244 	 */
1245 	for (; *str && *str != ','; str++) {
1246 		switch (tolower(*str)) {
1247 		case 'f':
1248 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1249 			break;
1250 		case 'z':
1251 			slub_debug |= SLAB_RED_ZONE;
1252 			break;
1253 		case 'p':
1254 			slub_debug |= SLAB_POISON;
1255 			break;
1256 		case 'u':
1257 			slub_debug |= SLAB_STORE_USER;
1258 			break;
1259 		case 't':
1260 			slub_debug |= SLAB_TRACE;
1261 			break;
1262 		case 'a':
1263 			slub_debug |= SLAB_FAILSLAB;
1264 			break;
1265 		case 'o':
1266 			/*
1267 			 * Avoid enabling debugging on caches if its minimum
1268 			 * order would increase as a result.
1269 			 */
1270 			disable_higher_order_debug = 1;
1271 			break;
1272 		default:
1273 			pr_err("slub_debug option '%c' unknown. skipped\n",
1274 			       *str);
1275 		}
1276 	}
1277 
1278 check_slabs:
1279 	if (*str == ',')
1280 		slub_debug_slabs = str + 1;
1281 out:
1282 	if ((static_branch_unlikely(&init_on_alloc) ||
1283 	     static_branch_unlikely(&init_on_free)) &&
1284 	    (slub_debug & SLAB_POISON))
1285 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1286 	return 1;
1287 }
1288 
1289 __setup("slub_debug", setup_slub_debug);
1290 
1291 /*
1292  * kmem_cache_flags - apply debugging options to the cache
1293  * @object_size:	the size of an object without meta data
1294  * @flags:		flags to set
1295  * @name:		name of the cache
1296  * @ctor:		constructor function
1297  *
1298  * Debug option(s) are applied to @flags. In addition to the debug
1299  * option(s), if a slab name (or multiple) is specified i.e.
1300  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1301  * then only the select slabs will receive the debug option(s).
1302  */
1303 slab_flags_t kmem_cache_flags(unsigned int object_size,
1304 	slab_flags_t flags, const char *name,
1305 	void (*ctor)(void *))
1306 {
1307 	char *iter;
1308 	size_t len;
1309 
1310 	/* If slub_debug = 0, it folds into the if conditional. */
1311 	if (!slub_debug_slabs)
1312 		return flags | slub_debug;
1313 
1314 	len = strlen(name);
1315 	iter = slub_debug_slabs;
1316 	while (*iter) {
1317 		char *end, *glob;
1318 		size_t cmplen;
1319 
1320 		end = strchrnul(iter, ',');
1321 
1322 		glob = strnchr(iter, end - iter, '*');
1323 		if (glob)
1324 			cmplen = glob - iter;
1325 		else
1326 			cmplen = max_t(size_t, len, (end - iter));
1327 
1328 		if (!strncmp(name, iter, cmplen)) {
1329 			flags |= slub_debug;
1330 			break;
1331 		}
1332 
1333 		if (!*end)
1334 			break;
1335 		iter = end + 1;
1336 	}
1337 
1338 	return flags;
1339 }
1340 #else /* !CONFIG_SLUB_DEBUG */
1341 static inline void setup_object_debug(struct kmem_cache *s,
1342 			struct page *page, void *object) {}
1343 static inline void setup_page_debug(struct kmem_cache *s,
1344 			void *addr, int order) {}
1345 
1346 static inline int alloc_debug_processing(struct kmem_cache *s,
1347 	struct page *page, void *object, unsigned long addr) { return 0; }
1348 
1349 static inline int free_debug_processing(
1350 	struct kmem_cache *s, struct page *page,
1351 	void *head, void *tail, int bulk_cnt,
1352 	unsigned long addr) { return 0; }
1353 
1354 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1355 			{ return 1; }
1356 static inline int check_object(struct kmem_cache *s, struct page *page,
1357 			void *object, u8 val) { return 1; }
1358 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1359 					struct page *page) {}
1360 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1361 					struct page *page) {}
1362 slab_flags_t kmem_cache_flags(unsigned int object_size,
1363 	slab_flags_t flags, const char *name,
1364 	void (*ctor)(void *))
1365 {
1366 	return flags;
1367 }
1368 #define slub_debug 0
1369 
1370 #define disable_higher_order_debug 0
1371 
1372 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1373 							{ return 0; }
1374 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1375 							{ return 0; }
1376 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1377 							int objects) {}
1378 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1379 							int objects) {}
1380 
1381 #endif /* CONFIG_SLUB_DEBUG */
1382 
1383 /*
1384  * Hooks for other subsystems that check memory allocations. In a typical
1385  * production configuration these hooks all should produce no code at all.
1386  */
1387 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1388 {
1389 	ptr = kasan_kmalloc_large(ptr, size, flags);
1390 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1391 	kmemleak_alloc(ptr, size, 1, flags);
1392 	return ptr;
1393 }
1394 
1395 static __always_inline void kfree_hook(void *x)
1396 {
1397 	kmemleak_free(x);
1398 	kasan_kfree_large(x, _RET_IP_);
1399 }
1400 
1401 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1402 {
1403 	kmemleak_free_recursive(x, s->flags);
1404 
1405 	/*
1406 	 * Trouble is that we may no longer disable interrupts in the fast path
1407 	 * So in order to make the debug calls that expect irqs to be
1408 	 * disabled we need to disable interrupts temporarily.
1409 	 */
1410 #ifdef CONFIG_LOCKDEP
1411 	{
1412 		unsigned long flags;
1413 
1414 		local_irq_save(flags);
1415 		debug_check_no_locks_freed(x, s->object_size);
1416 		local_irq_restore(flags);
1417 	}
1418 #endif
1419 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1420 		debug_check_no_obj_freed(x, s->object_size);
1421 
1422 	/* KASAN might put x into memory quarantine, delaying its reuse */
1423 	return kasan_slab_free(s, x, _RET_IP_);
1424 }
1425 
1426 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1427 					   void **head, void **tail)
1428 {
1429 
1430 	void *object;
1431 	void *next = *head;
1432 	void *old_tail = *tail ? *tail : *head;
1433 	int rsize;
1434 
1435 	if (slab_want_init_on_free(s)) {
1436 		void *p = NULL;
1437 
1438 		do {
1439 			object = next;
1440 			next = get_freepointer(s, object);
1441 			/*
1442 			 * Clear the object and the metadata, but don't touch
1443 			 * the redzone.
1444 			 */
1445 			memset(object, 0, s->object_size);
1446 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1447 							   : 0;
1448 			memset((char *)object + s->inuse, 0,
1449 			       s->size - s->inuse - rsize);
1450 			set_freepointer(s, object, p);
1451 			p = object;
1452 		} while (object != old_tail);
1453 	}
1454 
1455 /*
1456  * Compiler cannot detect this function can be removed if slab_free_hook()
1457  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1458  */
1459 #if defined(CONFIG_LOCKDEP)	||		\
1460 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1461 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1462 	defined(CONFIG_KASAN)
1463 
1464 	next = *head;
1465 
1466 	/* Head and tail of the reconstructed freelist */
1467 	*head = NULL;
1468 	*tail = NULL;
1469 
1470 	do {
1471 		object = next;
1472 		next = get_freepointer(s, object);
1473 		/* If object's reuse doesn't have to be delayed */
1474 		if (!slab_free_hook(s, object)) {
1475 			/* Move object to the new freelist */
1476 			set_freepointer(s, object, *head);
1477 			*head = object;
1478 			if (!*tail)
1479 				*tail = object;
1480 		}
1481 	} while (object != old_tail);
1482 
1483 	if (*head == *tail)
1484 		*tail = NULL;
1485 
1486 	return *head != NULL;
1487 #else
1488 	return true;
1489 #endif
1490 }
1491 
1492 static void *setup_object(struct kmem_cache *s, struct page *page,
1493 				void *object)
1494 {
1495 	setup_object_debug(s, page, object);
1496 	object = kasan_init_slab_obj(s, object);
1497 	if (unlikely(s->ctor)) {
1498 		kasan_unpoison_object_data(s, object);
1499 		s->ctor(object);
1500 		kasan_poison_object_data(s, object);
1501 	}
1502 	return object;
1503 }
1504 
1505 /*
1506  * Slab allocation and freeing
1507  */
1508 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1509 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1510 {
1511 	struct page *page;
1512 	unsigned int order = oo_order(oo);
1513 
1514 	if (node == NUMA_NO_NODE)
1515 		page = alloc_pages(flags, order);
1516 	else
1517 		page = __alloc_pages_node(node, flags, order);
1518 
1519 	if (page && charge_slab_page(page, flags, order, s)) {
1520 		__free_pages(page, order);
1521 		page = NULL;
1522 	}
1523 
1524 	return page;
1525 }
1526 
1527 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1528 /* Pre-initialize the random sequence cache */
1529 static int init_cache_random_seq(struct kmem_cache *s)
1530 {
1531 	unsigned int count = oo_objects(s->oo);
1532 	int err;
1533 
1534 	/* Bailout if already initialised */
1535 	if (s->random_seq)
1536 		return 0;
1537 
1538 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1539 	if (err) {
1540 		pr_err("SLUB: Unable to initialize free list for %s\n",
1541 			s->name);
1542 		return err;
1543 	}
1544 
1545 	/* Transform to an offset on the set of pages */
1546 	if (s->random_seq) {
1547 		unsigned int i;
1548 
1549 		for (i = 0; i < count; i++)
1550 			s->random_seq[i] *= s->size;
1551 	}
1552 	return 0;
1553 }
1554 
1555 /* Initialize each random sequence freelist per cache */
1556 static void __init init_freelist_randomization(void)
1557 {
1558 	struct kmem_cache *s;
1559 
1560 	mutex_lock(&slab_mutex);
1561 
1562 	list_for_each_entry(s, &slab_caches, list)
1563 		init_cache_random_seq(s);
1564 
1565 	mutex_unlock(&slab_mutex);
1566 }
1567 
1568 /* Get the next entry on the pre-computed freelist randomized */
1569 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1570 				unsigned long *pos, void *start,
1571 				unsigned long page_limit,
1572 				unsigned long freelist_count)
1573 {
1574 	unsigned int idx;
1575 
1576 	/*
1577 	 * If the target page allocation failed, the number of objects on the
1578 	 * page might be smaller than the usual size defined by the cache.
1579 	 */
1580 	do {
1581 		idx = s->random_seq[*pos];
1582 		*pos += 1;
1583 		if (*pos >= freelist_count)
1584 			*pos = 0;
1585 	} while (unlikely(idx >= page_limit));
1586 
1587 	return (char *)start + idx;
1588 }
1589 
1590 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1591 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1592 {
1593 	void *start;
1594 	void *cur;
1595 	void *next;
1596 	unsigned long idx, pos, page_limit, freelist_count;
1597 
1598 	if (page->objects < 2 || !s->random_seq)
1599 		return false;
1600 
1601 	freelist_count = oo_objects(s->oo);
1602 	pos = get_random_int() % freelist_count;
1603 
1604 	page_limit = page->objects * s->size;
1605 	start = fixup_red_left(s, page_address(page));
1606 
1607 	/* First entry is used as the base of the freelist */
1608 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1609 				freelist_count);
1610 	cur = setup_object(s, page, cur);
1611 	page->freelist = cur;
1612 
1613 	for (idx = 1; idx < page->objects; idx++) {
1614 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1615 			freelist_count);
1616 		next = setup_object(s, page, next);
1617 		set_freepointer(s, cur, next);
1618 		cur = next;
1619 	}
1620 	set_freepointer(s, cur, NULL);
1621 
1622 	return true;
1623 }
1624 #else
1625 static inline int init_cache_random_seq(struct kmem_cache *s)
1626 {
1627 	return 0;
1628 }
1629 static inline void init_freelist_randomization(void) { }
1630 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1631 {
1632 	return false;
1633 }
1634 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1635 
1636 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1637 {
1638 	struct page *page;
1639 	struct kmem_cache_order_objects oo = s->oo;
1640 	gfp_t alloc_gfp;
1641 	void *start, *p, *next;
1642 	int idx, order;
1643 	bool shuffle;
1644 
1645 	flags &= gfp_allowed_mask;
1646 
1647 	if (gfpflags_allow_blocking(flags))
1648 		local_irq_enable();
1649 
1650 	flags |= s->allocflags;
1651 
1652 	/*
1653 	 * Let the initial higher-order allocation fail under memory pressure
1654 	 * so we fall-back to the minimum order allocation.
1655 	 */
1656 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1657 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1658 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1659 
1660 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1661 	if (unlikely(!page)) {
1662 		oo = s->min;
1663 		alloc_gfp = flags;
1664 		/*
1665 		 * Allocation may have failed due to fragmentation.
1666 		 * Try a lower order alloc if possible
1667 		 */
1668 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1669 		if (unlikely(!page))
1670 			goto out;
1671 		stat(s, ORDER_FALLBACK);
1672 	}
1673 
1674 	page->objects = oo_objects(oo);
1675 
1676 	order = compound_order(page);
1677 	page->slab_cache = s;
1678 	__SetPageSlab(page);
1679 	if (page_is_pfmemalloc(page))
1680 		SetPageSlabPfmemalloc(page);
1681 
1682 	kasan_poison_slab(page);
1683 
1684 	start = page_address(page);
1685 
1686 	setup_page_debug(s, start, order);
1687 
1688 	shuffle = shuffle_freelist(s, page);
1689 
1690 	if (!shuffle) {
1691 		start = fixup_red_left(s, start);
1692 		start = setup_object(s, page, start);
1693 		page->freelist = start;
1694 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1695 			next = p + s->size;
1696 			next = setup_object(s, page, next);
1697 			set_freepointer(s, p, next);
1698 			p = next;
1699 		}
1700 		set_freepointer(s, p, NULL);
1701 	}
1702 
1703 	page->inuse = page->objects;
1704 	page->frozen = 1;
1705 
1706 out:
1707 	if (gfpflags_allow_blocking(flags))
1708 		local_irq_disable();
1709 	if (!page)
1710 		return NULL;
1711 
1712 	inc_slabs_node(s, page_to_nid(page), page->objects);
1713 
1714 	return page;
1715 }
1716 
1717 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1718 {
1719 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1720 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1721 		flags &= ~GFP_SLAB_BUG_MASK;
1722 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1723 				invalid_mask, &invalid_mask, flags, &flags);
1724 		dump_stack();
1725 	}
1726 
1727 	return allocate_slab(s,
1728 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1729 }
1730 
1731 static void __free_slab(struct kmem_cache *s, struct page *page)
1732 {
1733 	int order = compound_order(page);
1734 	int pages = 1 << order;
1735 
1736 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1737 		void *p;
1738 
1739 		slab_pad_check(s, page);
1740 		for_each_object(p, s, page_address(page),
1741 						page->objects)
1742 			check_object(s, page, p, SLUB_RED_INACTIVE);
1743 	}
1744 
1745 	__ClearPageSlabPfmemalloc(page);
1746 	__ClearPageSlab(page);
1747 
1748 	page->mapping = NULL;
1749 	if (current->reclaim_state)
1750 		current->reclaim_state->reclaimed_slab += pages;
1751 	uncharge_slab_page(page, order, s);
1752 	__free_pages(page, order);
1753 }
1754 
1755 static void rcu_free_slab(struct rcu_head *h)
1756 {
1757 	struct page *page = container_of(h, struct page, rcu_head);
1758 
1759 	__free_slab(page->slab_cache, page);
1760 }
1761 
1762 static void free_slab(struct kmem_cache *s, struct page *page)
1763 {
1764 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1765 		call_rcu(&page->rcu_head, rcu_free_slab);
1766 	} else
1767 		__free_slab(s, page);
1768 }
1769 
1770 static void discard_slab(struct kmem_cache *s, struct page *page)
1771 {
1772 	dec_slabs_node(s, page_to_nid(page), page->objects);
1773 	free_slab(s, page);
1774 }
1775 
1776 /*
1777  * Management of partially allocated slabs.
1778  */
1779 static inline void
1780 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1781 {
1782 	n->nr_partial++;
1783 	if (tail == DEACTIVATE_TO_TAIL)
1784 		list_add_tail(&page->slab_list, &n->partial);
1785 	else
1786 		list_add(&page->slab_list, &n->partial);
1787 }
1788 
1789 static inline void add_partial(struct kmem_cache_node *n,
1790 				struct page *page, int tail)
1791 {
1792 	lockdep_assert_held(&n->list_lock);
1793 	__add_partial(n, page, tail);
1794 }
1795 
1796 static inline void remove_partial(struct kmem_cache_node *n,
1797 					struct page *page)
1798 {
1799 	lockdep_assert_held(&n->list_lock);
1800 	list_del(&page->slab_list);
1801 	n->nr_partial--;
1802 }
1803 
1804 /*
1805  * Remove slab from the partial list, freeze it and
1806  * return the pointer to the freelist.
1807  *
1808  * Returns a list of objects or NULL if it fails.
1809  */
1810 static inline void *acquire_slab(struct kmem_cache *s,
1811 		struct kmem_cache_node *n, struct page *page,
1812 		int mode, int *objects)
1813 {
1814 	void *freelist;
1815 	unsigned long counters;
1816 	struct page new;
1817 
1818 	lockdep_assert_held(&n->list_lock);
1819 
1820 	/*
1821 	 * Zap the freelist and set the frozen bit.
1822 	 * The old freelist is the list of objects for the
1823 	 * per cpu allocation list.
1824 	 */
1825 	freelist = page->freelist;
1826 	counters = page->counters;
1827 	new.counters = counters;
1828 	*objects = new.objects - new.inuse;
1829 	if (mode) {
1830 		new.inuse = page->objects;
1831 		new.freelist = NULL;
1832 	} else {
1833 		new.freelist = freelist;
1834 	}
1835 
1836 	VM_BUG_ON(new.frozen);
1837 	new.frozen = 1;
1838 
1839 	if (!__cmpxchg_double_slab(s, page,
1840 			freelist, counters,
1841 			new.freelist, new.counters,
1842 			"acquire_slab"))
1843 		return NULL;
1844 
1845 	remove_partial(n, page);
1846 	WARN_ON(!freelist);
1847 	return freelist;
1848 }
1849 
1850 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1851 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1852 
1853 /*
1854  * Try to allocate a partial slab from a specific node.
1855  */
1856 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1857 				struct kmem_cache_cpu *c, gfp_t flags)
1858 {
1859 	struct page *page, *page2;
1860 	void *object = NULL;
1861 	unsigned int available = 0;
1862 	int objects;
1863 
1864 	/*
1865 	 * Racy check. If we mistakenly see no partial slabs then we
1866 	 * just allocate an empty slab. If we mistakenly try to get a
1867 	 * partial slab and there is none available then get_partials()
1868 	 * will return NULL.
1869 	 */
1870 	if (!n || !n->nr_partial)
1871 		return NULL;
1872 
1873 	spin_lock(&n->list_lock);
1874 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1875 		void *t;
1876 
1877 		if (!pfmemalloc_match(page, flags))
1878 			continue;
1879 
1880 		t = acquire_slab(s, n, page, object == NULL, &objects);
1881 		if (!t)
1882 			break;
1883 
1884 		available += objects;
1885 		if (!object) {
1886 			c->page = page;
1887 			stat(s, ALLOC_FROM_PARTIAL);
1888 			object = t;
1889 		} else {
1890 			put_cpu_partial(s, page, 0);
1891 			stat(s, CPU_PARTIAL_NODE);
1892 		}
1893 		if (!kmem_cache_has_cpu_partial(s)
1894 			|| available > slub_cpu_partial(s) / 2)
1895 			break;
1896 
1897 	}
1898 	spin_unlock(&n->list_lock);
1899 	return object;
1900 }
1901 
1902 /*
1903  * Get a page from somewhere. Search in increasing NUMA distances.
1904  */
1905 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1906 		struct kmem_cache_cpu *c)
1907 {
1908 #ifdef CONFIG_NUMA
1909 	struct zonelist *zonelist;
1910 	struct zoneref *z;
1911 	struct zone *zone;
1912 	enum zone_type high_zoneidx = gfp_zone(flags);
1913 	void *object;
1914 	unsigned int cpuset_mems_cookie;
1915 
1916 	/*
1917 	 * The defrag ratio allows a configuration of the tradeoffs between
1918 	 * inter node defragmentation and node local allocations. A lower
1919 	 * defrag_ratio increases the tendency to do local allocations
1920 	 * instead of attempting to obtain partial slabs from other nodes.
1921 	 *
1922 	 * If the defrag_ratio is set to 0 then kmalloc() always
1923 	 * returns node local objects. If the ratio is higher then kmalloc()
1924 	 * may return off node objects because partial slabs are obtained
1925 	 * from other nodes and filled up.
1926 	 *
1927 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1928 	 * (which makes defrag_ratio = 1000) then every (well almost)
1929 	 * allocation will first attempt to defrag slab caches on other nodes.
1930 	 * This means scanning over all nodes to look for partial slabs which
1931 	 * may be expensive if we do it every time we are trying to find a slab
1932 	 * with available objects.
1933 	 */
1934 	if (!s->remote_node_defrag_ratio ||
1935 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1936 		return NULL;
1937 
1938 	do {
1939 		cpuset_mems_cookie = read_mems_allowed_begin();
1940 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1941 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1942 			struct kmem_cache_node *n;
1943 
1944 			n = get_node(s, zone_to_nid(zone));
1945 
1946 			if (n && cpuset_zone_allowed(zone, flags) &&
1947 					n->nr_partial > s->min_partial) {
1948 				object = get_partial_node(s, n, c, flags);
1949 				if (object) {
1950 					/*
1951 					 * Don't check read_mems_allowed_retry()
1952 					 * here - if mems_allowed was updated in
1953 					 * parallel, that was a harmless race
1954 					 * between allocation and the cpuset
1955 					 * update
1956 					 */
1957 					return object;
1958 				}
1959 			}
1960 		}
1961 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1962 #endif	/* CONFIG_NUMA */
1963 	return NULL;
1964 }
1965 
1966 /*
1967  * Get a partial page, lock it and return it.
1968  */
1969 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1970 		struct kmem_cache_cpu *c)
1971 {
1972 	void *object;
1973 	int searchnode = node;
1974 
1975 	if (node == NUMA_NO_NODE)
1976 		searchnode = numa_mem_id();
1977 	else if (!node_present_pages(node))
1978 		searchnode = node_to_mem_node(node);
1979 
1980 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1981 	if (object || node != NUMA_NO_NODE)
1982 		return object;
1983 
1984 	return get_any_partial(s, flags, c);
1985 }
1986 
1987 #ifdef CONFIG_PREEMPT
1988 /*
1989  * Calculate the next globally unique transaction for disambiguiation
1990  * during cmpxchg. The transactions start with the cpu number and are then
1991  * incremented by CONFIG_NR_CPUS.
1992  */
1993 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1994 #else
1995 /*
1996  * No preemption supported therefore also no need to check for
1997  * different cpus.
1998  */
1999 #define TID_STEP 1
2000 #endif
2001 
2002 static inline unsigned long next_tid(unsigned long tid)
2003 {
2004 	return tid + TID_STEP;
2005 }
2006 
2007 static inline unsigned int tid_to_cpu(unsigned long tid)
2008 {
2009 	return tid % TID_STEP;
2010 }
2011 
2012 static inline unsigned long tid_to_event(unsigned long tid)
2013 {
2014 	return tid / TID_STEP;
2015 }
2016 
2017 static inline unsigned int init_tid(int cpu)
2018 {
2019 	return cpu;
2020 }
2021 
2022 static inline void note_cmpxchg_failure(const char *n,
2023 		const struct kmem_cache *s, unsigned long tid)
2024 {
2025 #ifdef SLUB_DEBUG_CMPXCHG
2026 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2027 
2028 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2029 
2030 #ifdef CONFIG_PREEMPT
2031 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2032 		pr_warn("due to cpu change %d -> %d\n",
2033 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2034 	else
2035 #endif
2036 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2037 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2038 			tid_to_event(tid), tid_to_event(actual_tid));
2039 	else
2040 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2041 			actual_tid, tid, next_tid(tid));
2042 #endif
2043 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2044 }
2045 
2046 static void init_kmem_cache_cpus(struct kmem_cache *s)
2047 {
2048 	int cpu;
2049 
2050 	for_each_possible_cpu(cpu)
2051 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2052 }
2053 
2054 /*
2055  * Remove the cpu slab
2056  */
2057 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2058 				void *freelist, struct kmem_cache_cpu *c)
2059 {
2060 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2061 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2062 	int lock = 0;
2063 	enum slab_modes l = M_NONE, m = M_NONE;
2064 	void *nextfree;
2065 	int tail = DEACTIVATE_TO_HEAD;
2066 	struct page new;
2067 	struct page old;
2068 
2069 	if (page->freelist) {
2070 		stat(s, DEACTIVATE_REMOTE_FREES);
2071 		tail = DEACTIVATE_TO_TAIL;
2072 	}
2073 
2074 	/*
2075 	 * Stage one: Free all available per cpu objects back
2076 	 * to the page freelist while it is still frozen. Leave the
2077 	 * last one.
2078 	 *
2079 	 * There is no need to take the list->lock because the page
2080 	 * is still frozen.
2081 	 */
2082 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2083 		void *prior;
2084 		unsigned long counters;
2085 
2086 		do {
2087 			prior = page->freelist;
2088 			counters = page->counters;
2089 			set_freepointer(s, freelist, prior);
2090 			new.counters = counters;
2091 			new.inuse--;
2092 			VM_BUG_ON(!new.frozen);
2093 
2094 		} while (!__cmpxchg_double_slab(s, page,
2095 			prior, counters,
2096 			freelist, new.counters,
2097 			"drain percpu freelist"));
2098 
2099 		freelist = nextfree;
2100 	}
2101 
2102 	/*
2103 	 * Stage two: Ensure that the page is unfrozen while the
2104 	 * list presence reflects the actual number of objects
2105 	 * during unfreeze.
2106 	 *
2107 	 * We setup the list membership and then perform a cmpxchg
2108 	 * with the count. If there is a mismatch then the page
2109 	 * is not unfrozen but the page is on the wrong list.
2110 	 *
2111 	 * Then we restart the process which may have to remove
2112 	 * the page from the list that we just put it on again
2113 	 * because the number of objects in the slab may have
2114 	 * changed.
2115 	 */
2116 redo:
2117 
2118 	old.freelist = page->freelist;
2119 	old.counters = page->counters;
2120 	VM_BUG_ON(!old.frozen);
2121 
2122 	/* Determine target state of the slab */
2123 	new.counters = old.counters;
2124 	if (freelist) {
2125 		new.inuse--;
2126 		set_freepointer(s, freelist, old.freelist);
2127 		new.freelist = freelist;
2128 	} else
2129 		new.freelist = old.freelist;
2130 
2131 	new.frozen = 0;
2132 
2133 	if (!new.inuse && n->nr_partial >= s->min_partial)
2134 		m = M_FREE;
2135 	else if (new.freelist) {
2136 		m = M_PARTIAL;
2137 		if (!lock) {
2138 			lock = 1;
2139 			/*
2140 			 * Taking the spinlock removes the possibility
2141 			 * that acquire_slab() will see a slab page that
2142 			 * is frozen
2143 			 */
2144 			spin_lock(&n->list_lock);
2145 		}
2146 	} else {
2147 		m = M_FULL;
2148 		if (kmem_cache_debug(s) && !lock) {
2149 			lock = 1;
2150 			/*
2151 			 * This also ensures that the scanning of full
2152 			 * slabs from diagnostic functions will not see
2153 			 * any frozen slabs.
2154 			 */
2155 			spin_lock(&n->list_lock);
2156 		}
2157 	}
2158 
2159 	if (l != m) {
2160 		if (l == M_PARTIAL)
2161 			remove_partial(n, page);
2162 		else if (l == M_FULL)
2163 			remove_full(s, n, page);
2164 
2165 		if (m == M_PARTIAL)
2166 			add_partial(n, page, tail);
2167 		else if (m == M_FULL)
2168 			add_full(s, n, page);
2169 	}
2170 
2171 	l = m;
2172 	if (!__cmpxchg_double_slab(s, page,
2173 				old.freelist, old.counters,
2174 				new.freelist, new.counters,
2175 				"unfreezing slab"))
2176 		goto redo;
2177 
2178 	if (lock)
2179 		spin_unlock(&n->list_lock);
2180 
2181 	if (m == M_PARTIAL)
2182 		stat(s, tail);
2183 	else if (m == M_FULL)
2184 		stat(s, DEACTIVATE_FULL);
2185 	else if (m == M_FREE) {
2186 		stat(s, DEACTIVATE_EMPTY);
2187 		discard_slab(s, page);
2188 		stat(s, FREE_SLAB);
2189 	}
2190 
2191 	c->page = NULL;
2192 	c->freelist = NULL;
2193 }
2194 
2195 /*
2196  * Unfreeze all the cpu partial slabs.
2197  *
2198  * This function must be called with interrupts disabled
2199  * for the cpu using c (or some other guarantee must be there
2200  * to guarantee no concurrent accesses).
2201  */
2202 static void unfreeze_partials(struct kmem_cache *s,
2203 		struct kmem_cache_cpu *c)
2204 {
2205 #ifdef CONFIG_SLUB_CPU_PARTIAL
2206 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2207 	struct page *page, *discard_page = NULL;
2208 
2209 	while ((page = c->partial)) {
2210 		struct page new;
2211 		struct page old;
2212 
2213 		c->partial = page->next;
2214 
2215 		n2 = get_node(s, page_to_nid(page));
2216 		if (n != n2) {
2217 			if (n)
2218 				spin_unlock(&n->list_lock);
2219 
2220 			n = n2;
2221 			spin_lock(&n->list_lock);
2222 		}
2223 
2224 		do {
2225 
2226 			old.freelist = page->freelist;
2227 			old.counters = page->counters;
2228 			VM_BUG_ON(!old.frozen);
2229 
2230 			new.counters = old.counters;
2231 			new.freelist = old.freelist;
2232 
2233 			new.frozen = 0;
2234 
2235 		} while (!__cmpxchg_double_slab(s, page,
2236 				old.freelist, old.counters,
2237 				new.freelist, new.counters,
2238 				"unfreezing slab"));
2239 
2240 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2241 			page->next = discard_page;
2242 			discard_page = page;
2243 		} else {
2244 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2245 			stat(s, FREE_ADD_PARTIAL);
2246 		}
2247 	}
2248 
2249 	if (n)
2250 		spin_unlock(&n->list_lock);
2251 
2252 	while (discard_page) {
2253 		page = discard_page;
2254 		discard_page = discard_page->next;
2255 
2256 		stat(s, DEACTIVATE_EMPTY);
2257 		discard_slab(s, page);
2258 		stat(s, FREE_SLAB);
2259 	}
2260 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2261 }
2262 
2263 /*
2264  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2265  * partial page slot if available.
2266  *
2267  * If we did not find a slot then simply move all the partials to the
2268  * per node partial list.
2269  */
2270 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2271 {
2272 #ifdef CONFIG_SLUB_CPU_PARTIAL
2273 	struct page *oldpage;
2274 	int pages;
2275 	int pobjects;
2276 
2277 	preempt_disable();
2278 	do {
2279 		pages = 0;
2280 		pobjects = 0;
2281 		oldpage = this_cpu_read(s->cpu_slab->partial);
2282 
2283 		if (oldpage) {
2284 			pobjects = oldpage->pobjects;
2285 			pages = oldpage->pages;
2286 			if (drain && pobjects > s->cpu_partial) {
2287 				unsigned long flags;
2288 				/*
2289 				 * partial array is full. Move the existing
2290 				 * set to the per node partial list.
2291 				 */
2292 				local_irq_save(flags);
2293 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2294 				local_irq_restore(flags);
2295 				oldpage = NULL;
2296 				pobjects = 0;
2297 				pages = 0;
2298 				stat(s, CPU_PARTIAL_DRAIN);
2299 			}
2300 		}
2301 
2302 		pages++;
2303 		pobjects += page->objects - page->inuse;
2304 
2305 		page->pages = pages;
2306 		page->pobjects = pobjects;
2307 		page->next = oldpage;
2308 
2309 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2310 								!= oldpage);
2311 	if (unlikely(!s->cpu_partial)) {
2312 		unsigned long flags;
2313 
2314 		local_irq_save(flags);
2315 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2316 		local_irq_restore(flags);
2317 	}
2318 	preempt_enable();
2319 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2320 }
2321 
2322 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2323 {
2324 	stat(s, CPUSLAB_FLUSH);
2325 	deactivate_slab(s, c->page, c->freelist, c);
2326 
2327 	c->tid = next_tid(c->tid);
2328 }
2329 
2330 /*
2331  * Flush cpu slab.
2332  *
2333  * Called from IPI handler with interrupts disabled.
2334  */
2335 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2336 {
2337 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2338 
2339 	if (c->page)
2340 		flush_slab(s, c);
2341 
2342 	unfreeze_partials(s, c);
2343 }
2344 
2345 static void flush_cpu_slab(void *d)
2346 {
2347 	struct kmem_cache *s = d;
2348 
2349 	__flush_cpu_slab(s, smp_processor_id());
2350 }
2351 
2352 static bool has_cpu_slab(int cpu, void *info)
2353 {
2354 	struct kmem_cache *s = info;
2355 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2356 
2357 	return c->page || slub_percpu_partial(c);
2358 }
2359 
2360 static void flush_all(struct kmem_cache *s)
2361 {
2362 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2363 }
2364 
2365 /*
2366  * Use the cpu notifier to insure that the cpu slabs are flushed when
2367  * necessary.
2368  */
2369 static int slub_cpu_dead(unsigned int cpu)
2370 {
2371 	struct kmem_cache *s;
2372 	unsigned long flags;
2373 
2374 	mutex_lock(&slab_mutex);
2375 	list_for_each_entry(s, &slab_caches, list) {
2376 		local_irq_save(flags);
2377 		__flush_cpu_slab(s, cpu);
2378 		local_irq_restore(flags);
2379 	}
2380 	mutex_unlock(&slab_mutex);
2381 	return 0;
2382 }
2383 
2384 /*
2385  * Check if the objects in a per cpu structure fit numa
2386  * locality expectations.
2387  */
2388 static inline int node_match(struct page *page, int node)
2389 {
2390 #ifdef CONFIG_NUMA
2391 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2392 		return 0;
2393 #endif
2394 	return 1;
2395 }
2396 
2397 #ifdef CONFIG_SLUB_DEBUG
2398 static int count_free(struct page *page)
2399 {
2400 	return page->objects - page->inuse;
2401 }
2402 
2403 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2404 {
2405 	return atomic_long_read(&n->total_objects);
2406 }
2407 #endif /* CONFIG_SLUB_DEBUG */
2408 
2409 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2410 static unsigned long count_partial(struct kmem_cache_node *n,
2411 					int (*get_count)(struct page *))
2412 {
2413 	unsigned long flags;
2414 	unsigned long x = 0;
2415 	struct page *page;
2416 
2417 	spin_lock_irqsave(&n->list_lock, flags);
2418 	list_for_each_entry(page, &n->partial, slab_list)
2419 		x += get_count(page);
2420 	spin_unlock_irqrestore(&n->list_lock, flags);
2421 	return x;
2422 }
2423 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2424 
2425 static noinline void
2426 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2427 {
2428 #ifdef CONFIG_SLUB_DEBUG
2429 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2430 				      DEFAULT_RATELIMIT_BURST);
2431 	int node;
2432 	struct kmem_cache_node *n;
2433 
2434 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2435 		return;
2436 
2437 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2438 		nid, gfpflags, &gfpflags);
2439 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2440 		s->name, s->object_size, s->size, oo_order(s->oo),
2441 		oo_order(s->min));
2442 
2443 	if (oo_order(s->min) > get_order(s->object_size))
2444 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2445 			s->name);
2446 
2447 	for_each_kmem_cache_node(s, node, n) {
2448 		unsigned long nr_slabs;
2449 		unsigned long nr_objs;
2450 		unsigned long nr_free;
2451 
2452 		nr_free  = count_partial(n, count_free);
2453 		nr_slabs = node_nr_slabs(n);
2454 		nr_objs  = node_nr_objs(n);
2455 
2456 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2457 			node, nr_slabs, nr_objs, nr_free);
2458 	}
2459 #endif
2460 }
2461 
2462 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2463 			int node, struct kmem_cache_cpu **pc)
2464 {
2465 	void *freelist;
2466 	struct kmem_cache_cpu *c = *pc;
2467 	struct page *page;
2468 
2469 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2470 
2471 	freelist = get_partial(s, flags, node, c);
2472 
2473 	if (freelist)
2474 		return freelist;
2475 
2476 	page = new_slab(s, flags, node);
2477 	if (page) {
2478 		c = raw_cpu_ptr(s->cpu_slab);
2479 		if (c->page)
2480 			flush_slab(s, c);
2481 
2482 		/*
2483 		 * No other reference to the page yet so we can
2484 		 * muck around with it freely without cmpxchg
2485 		 */
2486 		freelist = page->freelist;
2487 		page->freelist = NULL;
2488 
2489 		stat(s, ALLOC_SLAB);
2490 		c->page = page;
2491 		*pc = c;
2492 	}
2493 
2494 	return freelist;
2495 }
2496 
2497 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2498 {
2499 	if (unlikely(PageSlabPfmemalloc(page)))
2500 		return gfp_pfmemalloc_allowed(gfpflags);
2501 
2502 	return true;
2503 }
2504 
2505 /*
2506  * Check the page->freelist of a page and either transfer the freelist to the
2507  * per cpu freelist or deactivate the page.
2508  *
2509  * The page is still frozen if the return value is not NULL.
2510  *
2511  * If this function returns NULL then the page has been unfrozen.
2512  *
2513  * This function must be called with interrupt disabled.
2514  */
2515 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2516 {
2517 	struct page new;
2518 	unsigned long counters;
2519 	void *freelist;
2520 
2521 	do {
2522 		freelist = page->freelist;
2523 		counters = page->counters;
2524 
2525 		new.counters = counters;
2526 		VM_BUG_ON(!new.frozen);
2527 
2528 		new.inuse = page->objects;
2529 		new.frozen = freelist != NULL;
2530 
2531 	} while (!__cmpxchg_double_slab(s, page,
2532 		freelist, counters,
2533 		NULL, new.counters,
2534 		"get_freelist"));
2535 
2536 	return freelist;
2537 }
2538 
2539 /*
2540  * Slow path. The lockless freelist is empty or we need to perform
2541  * debugging duties.
2542  *
2543  * Processing is still very fast if new objects have been freed to the
2544  * regular freelist. In that case we simply take over the regular freelist
2545  * as the lockless freelist and zap the regular freelist.
2546  *
2547  * If that is not working then we fall back to the partial lists. We take the
2548  * first element of the freelist as the object to allocate now and move the
2549  * rest of the freelist to the lockless freelist.
2550  *
2551  * And if we were unable to get a new slab from the partial slab lists then
2552  * we need to allocate a new slab. This is the slowest path since it involves
2553  * a call to the page allocator and the setup of a new slab.
2554  *
2555  * Version of __slab_alloc to use when we know that interrupts are
2556  * already disabled (which is the case for bulk allocation).
2557  */
2558 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2559 			  unsigned long addr, struct kmem_cache_cpu *c)
2560 {
2561 	void *freelist;
2562 	struct page *page;
2563 
2564 	page = c->page;
2565 	if (!page)
2566 		goto new_slab;
2567 redo:
2568 
2569 	if (unlikely(!node_match(page, node))) {
2570 		int searchnode = node;
2571 
2572 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2573 			searchnode = node_to_mem_node(node);
2574 
2575 		if (unlikely(!node_match(page, searchnode))) {
2576 			stat(s, ALLOC_NODE_MISMATCH);
2577 			deactivate_slab(s, page, c->freelist, c);
2578 			goto new_slab;
2579 		}
2580 	}
2581 
2582 	/*
2583 	 * By rights, we should be searching for a slab page that was
2584 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2585 	 * information when the page leaves the per-cpu allocator
2586 	 */
2587 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2588 		deactivate_slab(s, page, c->freelist, c);
2589 		goto new_slab;
2590 	}
2591 
2592 	/* must check again c->freelist in case of cpu migration or IRQ */
2593 	freelist = c->freelist;
2594 	if (freelist)
2595 		goto load_freelist;
2596 
2597 	freelist = get_freelist(s, page);
2598 
2599 	if (!freelist) {
2600 		c->page = NULL;
2601 		stat(s, DEACTIVATE_BYPASS);
2602 		goto new_slab;
2603 	}
2604 
2605 	stat(s, ALLOC_REFILL);
2606 
2607 load_freelist:
2608 	/*
2609 	 * freelist is pointing to the list of objects to be used.
2610 	 * page is pointing to the page from which the objects are obtained.
2611 	 * That page must be frozen for per cpu allocations to work.
2612 	 */
2613 	VM_BUG_ON(!c->page->frozen);
2614 	c->freelist = get_freepointer(s, freelist);
2615 	c->tid = next_tid(c->tid);
2616 	return freelist;
2617 
2618 new_slab:
2619 
2620 	if (slub_percpu_partial(c)) {
2621 		page = c->page = slub_percpu_partial(c);
2622 		slub_set_percpu_partial(c, page);
2623 		stat(s, CPU_PARTIAL_ALLOC);
2624 		goto redo;
2625 	}
2626 
2627 	freelist = new_slab_objects(s, gfpflags, node, &c);
2628 
2629 	if (unlikely(!freelist)) {
2630 		slab_out_of_memory(s, gfpflags, node);
2631 		return NULL;
2632 	}
2633 
2634 	page = c->page;
2635 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2636 		goto load_freelist;
2637 
2638 	/* Only entered in the debug case */
2639 	if (kmem_cache_debug(s) &&
2640 			!alloc_debug_processing(s, page, freelist, addr))
2641 		goto new_slab;	/* Slab failed checks. Next slab needed */
2642 
2643 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2644 	return freelist;
2645 }
2646 
2647 /*
2648  * Another one that disabled interrupt and compensates for possible
2649  * cpu changes by refetching the per cpu area pointer.
2650  */
2651 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2652 			  unsigned long addr, struct kmem_cache_cpu *c)
2653 {
2654 	void *p;
2655 	unsigned long flags;
2656 
2657 	local_irq_save(flags);
2658 #ifdef CONFIG_PREEMPT
2659 	/*
2660 	 * We may have been preempted and rescheduled on a different
2661 	 * cpu before disabling interrupts. Need to reload cpu area
2662 	 * pointer.
2663 	 */
2664 	c = this_cpu_ptr(s->cpu_slab);
2665 #endif
2666 
2667 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2668 	local_irq_restore(flags);
2669 	return p;
2670 }
2671 
2672 /*
2673  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2674  * have the fastpath folded into their functions. So no function call
2675  * overhead for requests that can be satisfied on the fastpath.
2676  *
2677  * The fastpath works by first checking if the lockless freelist can be used.
2678  * If not then __slab_alloc is called for slow processing.
2679  *
2680  * Otherwise we can simply pick the next object from the lockless free list.
2681  */
2682 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2683 		gfp_t gfpflags, int node, unsigned long addr)
2684 {
2685 	void *object;
2686 	struct kmem_cache_cpu *c;
2687 	struct page *page;
2688 	unsigned long tid;
2689 
2690 	s = slab_pre_alloc_hook(s, gfpflags);
2691 	if (!s)
2692 		return NULL;
2693 redo:
2694 	/*
2695 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2696 	 * enabled. We may switch back and forth between cpus while
2697 	 * reading from one cpu area. That does not matter as long
2698 	 * as we end up on the original cpu again when doing the cmpxchg.
2699 	 *
2700 	 * We should guarantee that tid and kmem_cache are retrieved on
2701 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2702 	 * to check if it is matched or not.
2703 	 */
2704 	do {
2705 		tid = this_cpu_read(s->cpu_slab->tid);
2706 		c = raw_cpu_ptr(s->cpu_slab);
2707 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2708 		 unlikely(tid != READ_ONCE(c->tid)));
2709 
2710 	/*
2711 	 * Irqless object alloc/free algorithm used here depends on sequence
2712 	 * of fetching cpu_slab's data. tid should be fetched before anything
2713 	 * on c to guarantee that object and page associated with previous tid
2714 	 * won't be used with current tid. If we fetch tid first, object and
2715 	 * page could be one associated with next tid and our alloc/free
2716 	 * request will be failed. In this case, we will retry. So, no problem.
2717 	 */
2718 	barrier();
2719 
2720 	/*
2721 	 * The transaction ids are globally unique per cpu and per operation on
2722 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2723 	 * occurs on the right processor and that there was no operation on the
2724 	 * linked list in between.
2725 	 */
2726 
2727 	object = c->freelist;
2728 	page = c->page;
2729 	if (unlikely(!object || !node_match(page, node))) {
2730 		object = __slab_alloc(s, gfpflags, node, addr, c);
2731 		stat(s, ALLOC_SLOWPATH);
2732 	} else {
2733 		void *next_object = get_freepointer_safe(s, object);
2734 
2735 		/*
2736 		 * The cmpxchg will only match if there was no additional
2737 		 * operation and if we are on the right processor.
2738 		 *
2739 		 * The cmpxchg does the following atomically (without lock
2740 		 * semantics!)
2741 		 * 1. Relocate first pointer to the current per cpu area.
2742 		 * 2. Verify that tid and freelist have not been changed
2743 		 * 3. If they were not changed replace tid and freelist
2744 		 *
2745 		 * Since this is without lock semantics the protection is only
2746 		 * against code executing on this cpu *not* from access by
2747 		 * other cpus.
2748 		 */
2749 		if (unlikely(!this_cpu_cmpxchg_double(
2750 				s->cpu_slab->freelist, s->cpu_slab->tid,
2751 				object, tid,
2752 				next_object, next_tid(tid)))) {
2753 
2754 			note_cmpxchg_failure("slab_alloc", s, tid);
2755 			goto redo;
2756 		}
2757 		prefetch_freepointer(s, next_object);
2758 		stat(s, ALLOC_FASTPATH);
2759 	}
2760 	/*
2761 	 * If the object has been wiped upon free, make sure it's fully
2762 	 * initialized by zeroing out freelist pointer.
2763 	 */
2764 	if (unlikely(slab_want_init_on_free(s)) && object)
2765 		memset(object + s->offset, 0, sizeof(void *));
2766 
2767 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2768 		memset(object, 0, s->object_size);
2769 
2770 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2771 
2772 	return object;
2773 }
2774 
2775 static __always_inline void *slab_alloc(struct kmem_cache *s,
2776 		gfp_t gfpflags, unsigned long addr)
2777 {
2778 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2779 }
2780 
2781 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2782 {
2783 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2784 
2785 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2786 				s->size, gfpflags);
2787 
2788 	return ret;
2789 }
2790 EXPORT_SYMBOL(kmem_cache_alloc);
2791 
2792 #ifdef CONFIG_TRACING
2793 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2794 {
2795 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2796 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2797 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2798 	return ret;
2799 }
2800 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2801 #endif
2802 
2803 #ifdef CONFIG_NUMA
2804 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2805 {
2806 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2807 
2808 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2809 				    s->object_size, s->size, gfpflags, node);
2810 
2811 	return ret;
2812 }
2813 EXPORT_SYMBOL(kmem_cache_alloc_node);
2814 
2815 #ifdef CONFIG_TRACING
2816 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2817 				    gfp_t gfpflags,
2818 				    int node, size_t size)
2819 {
2820 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2821 
2822 	trace_kmalloc_node(_RET_IP_, ret,
2823 			   size, s->size, gfpflags, node);
2824 
2825 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2826 	return ret;
2827 }
2828 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2829 #endif
2830 #endif	/* CONFIG_NUMA */
2831 
2832 /*
2833  * Slow path handling. This may still be called frequently since objects
2834  * have a longer lifetime than the cpu slabs in most processing loads.
2835  *
2836  * So we still attempt to reduce cache line usage. Just take the slab
2837  * lock and free the item. If there is no additional partial page
2838  * handling required then we can return immediately.
2839  */
2840 static void __slab_free(struct kmem_cache *s, struct page *page,
2841 			void *head, void *tail, int cnt,
2842 			unsigned long addr)
2843 
2844 {
2845 	void *prior;
2846 	int was_frozen;
2847 	struct page new;
2848 	unsigned long counters;
2849 	struct kmem_cache_node *n = NULL;
2850 	unsigned long uninitialized_var(flags);
2851 
2852 	stat(s, FREE_SLOWPATH);
2853 
2854 	if (kmem_cache_debug(s) &&
2855 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2856 		return;
2857 
2858 	do {
2859 		if (unlikely(n)) {
2860 			spin_unlock_irqrestore(&n->list_lock, flags);
2861 			n = NULL;
2862 		}
2863 		prior = page->freelist;
2864 		counters = page->counters;
2865 		set_freepointer(s, tail, prior);
2866 		new.counters = counters;
2867 		was_frozen = new.frozen;
2868 		new.inuse -= cnt;
2869 		if ((!new.inuse || !prior) && !was_frozen) {
2870 
2871 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2872 
2873 				/*
2874 				 * Slab was on no list before and will be
2875 				 * partially empty
2876 				 * We can defer the list move and instead
2877 				 * freeze it.
2878 				 */
2879 				new.frozen = 1;
2880 
2881 			} else { /* Needs to be taken off a list */
2882 
2883 				n = get_node(s, page_to_nid(page));
2884 				/*
2885 				 * Speculatively acquire the list_lock.
2886 				 * If the cmpxchg does not succeed then we may
2887 				 * drop the list_lock without any processing.
2888 				 *
2889 				 * Otherwise the list_lock will synchronize with
2890 				 * other processors updating the list of slabs.
2891 				 */
2892 				spin_lock_irqsave(&n->list_lock, flags);
2893 
2894 			}
2895 		}
2896 
2897 	} while (!cmpxchg_double_slab(s, page,
2898 		prior, counters,
2899 		head, new.counters,
2900 		"__slab_free"));
2901 
2902 	if (likely(!n)) {
2903 
2904 		/*
2905 		 * If we just froze the page then put it onto the
2906 		 * per cpu partial list.
2907 		 */
2908 		if (new.frozen && !was_frozen) {
2909 			put_cpu_partial(s, page, 1);
2910 			stat(s, CPU_PARTIAL_FREE);
2911 		}
2912 		/*
2913 		 * The list lock was not taken therefore no list
2914 		 * activity can be necessary.
2915 		 */
2916 		if (was_frozen)
2917 			stat(s, FREE_FROZEN);
2918 		return;
2919 	}
2920 
2921 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2922 		goto slab_empty;
2923 
2924 	/*
2925 	 * Objects left in the slab. If it was not on the partial list before
2926 	 * then add it.
2927 	 */
2928 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2929 		remove_full(s, n, page);
2930 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2931 		stat(s, FREE_ADD_PARTIAL);
2932 	}
2933 	spin_unlock_irqrestore(&n->list_lock, flags);
2934 	return;
2935 
2936 slab_empty:
2937 	if (prior) {
2938 		/*
2939 		 * Slab on the partial list.
2940 		 */
2941 		remove_partial(n, page);
2942 		stat(s, FREE_REMOVE_PARTIAL);
2943 	} else {
2944 		/* Slab must be on the full list */
2945 		remove_full(s, n, page);
2946 	}
2947 
2948 	spin_unlock_irqrestore(&n->list_lock, flags);
2949 	stat(s, FREE_SLAB);
2950 	discard_slab(s, page);
2951 }
2952 
2953 /*
2954  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2955  * can perform fastpath freeing without additional function calls.
2956  *
2957  * The fastpath is only possible if we are freeing to the current cpu slab
2958  * of this processor. This typically the case if we have just allocated
2959  * the item before.
2960  *
2961  * If fastpath is not possible then fall back to __slab_free where we deal
2962  * with all sorts of special processing.
2963  *
2964  * Bulk free of a freelist with several objects (all pointing to the
2965  * same page) possible by specifying head and tail ptr, plus objects
2966  * count (cnt). Bulk free indicated by tail pointer being set.
2967  */
2968 static __always_inline void do_slab_free(struct kmem_cache *s,
2969 				struct page *page, void *head, void *tail,
2970 				int cnt, unsigned long addr)
2971 {
2972 	void *tail_obj = tail ? : head;
2973 	struct kmem_cache_cpu *c;
2974 	unsigned long tid;
2975 redo:
2976 	/*
2977 	 * Determine the currently cpus per cpu slab.
2978 	 * The cpu may change afterward. However that does not matter since
2979 	 * data is retrieved via this pointer. If we are on the same cpu
2980 	 * during the cmpxchg then the free will succeed.
2981 	 */
2982 	do {
2983 		tid = this_cpu_read(s->cpu_slab->tid);
2984 		c = raw_cpu_ptr(s->cpu_slab);
2985 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2986 		 unlikely(tid != READ_ONCE(c->tid)));
2987 
2988 	/* Same with comment on barrier() in slab_alloc_node() */
2989 	barrier();
2990 
2991 	if (likely(page == c->page)) {
2992 		set_freepointer(s, tail_obj, c->freelist);
2993 
2994 		if (unlikely(!this_cpu_cmpxchg_double(
2995 				s->cpu_slab->freelist, s->cpu_slab->tid,
2996 				c->freelist, tid,
2997 				head, next_tid(tid)))) {
2998 
2999 			note_cmpxchg_failure("slab_free", s, tid);
3000 			goto redo;
3001 		}
3002 		stat(s, FREE_FASTPATH);
3003 	} else
3004 		__slab_free(s, page, head, tail_obj, cnt, addr);
3005 
3006 }
3007 
3008 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3009 				      void *head, void *tail, int cnt,
3010 				      unsigned long addr)
3011 {
3012 	/*
3013 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3014 	 * to remove objects, whose reuse must be delayed.
3015 	 */
3016 	if (slab_free_freelist_hook(s, &head, &tail))
3017 		do_slab_free(s, page, head, tail, cnt, addr);
3018 }
3019 
3020 #ifdef CONFIG_KASAN_GENERIC
3021 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3022 {
3023 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3024 }
3025 #endif
3026 
3027 void kmem_cache_free(struct kmem_cache *s, void *x)
3028 {
3029 	s = cache_from_obj(s, x);
3030 	if (!s)
3031 		return;
3032 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3033 	trace_kmem_cache_free(_RET_IP_, x);
3034 }
3035 EXPORT_SYMBOL(kmem_cache_free);
3036 
3037 struct detached_freelist {
3038 	struct page *page;
3039 	void *tail;
3040 	void *freelist;
3041 	int cnt;
3042 	struct kmem_cache *s;
3043 };
3044 
3045 /*
3046  * This function progressively scans the array with free objects (with
3047  * a limited look ahead) and extract objects belonging to the same
3048  * page.  It builds a detached freelist directly within the given
3049  * page/objects.  This can happen without any need for
3050  * synchronization, because the objects are owned by running process.
3051  * The freelist is build up as a single linked list in the objects.
3052  * The idea is, that this detached freelist can then be bulk
3053  * transferred to the real freelist(s), but only requiring a single
3054  * synchronization primitive.  Look ahead in the array is limited due
3055  * to performance reasons.
3056  */
3057 static inline
3058 int build_detached_freelist(struct kmem_cache *s, size_t size,
3059 			    void **p, struct detached_freelist *df)
3060 {
3061 	size_t first_skipped_index = 0;
3062 	int lookahead = 3;
3063 	void *object;
3064 	struct page *page;
3065 
3066 	/* Always re-init detached_freelist */
3067 	df->page = NULL;
3068 
3069 	do {
3070 		object = p[--size];
3071 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3072 	} while (!object && size);
3073 
3074 	if (!object)
3075 		return 0;
3076 
3077 	page = virt_to_head_page(object);
3078 	if (!s) {
3079 		/* Handle kalloc'ed objects */
3080 		if (unlikely(!PageSlab(page))) {
3081 			BUG_ON(!PageCompound(page));
3082 			kfree_hook(object);
3083 			__free_pages(page, compound_order(page));
3084 			p[size] = NULL; /* mark object processed */
3085 			return size;
3086 		}
3087 		/* Derive kmem_cache from object */
3088 		df->s = page->slab_cache;
3089 	} else {
3090 		df->s = cache_from_obj(s, object); /* Support for memcg */
3091 	}
3092 
3093 	/* Start new detached freelist */
3094 	df->page = page;
3095 	set_freepointer(df->s, object, NULL);
3096 	df->tail = object;
3097 	df->freelist = object;
3098 	p[size] = NULL; /* mark object processed */
3099 	df->cnt = 1;
3100 
3101 	while (size) {
3102 		object = p[--size];
3103 		if (!object)
3104 			continue; /* Skip processed objects */
3105 
3106 		/* df->page is always set at this point */
3107 		if (df->page == virt_to_head_page(object)) {
3108 			/* Opportunity build freelist */
3109 			set_freepointer(df->s, object, df->freelist);
3110 			df->freelist = object;
3111 			df->cnt++;
3112 			p[size] = NULL; /* mark object processed */
3113 
3114 			continue;
3115 		}
3116 
3117 		/* Limit look ahead search */
3118 		if (!--lookahead)
3119 			break;
3120 
3121 		if (!first_skipped_index)
3122 			first_skipped_index = size + 1;
3123 	}
3124 
3125 	return first_skipped_index;
3126 }
3127 
3128 /* Note that interrupts must be enabled when calling this function. */
3129 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3130 {
3131 	if (WARN_ON(!size))
3132 		return;
3133 
3134 	do {
3135 		struct detached_freelist df;
3136 
3137 		size = build_detached_freelist(s, size, p, &df);
3138 		if (!df.page)
3139 			continue;
3140 
3141 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3142 	} while (likely(size));
3143 }
3144 EXPORT_SYMBOL(kmem_cache_free_bulk);
3145 
3146 /* Note that interrupts must be enabled when calling this function. */
3147 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3148 			  void **p)
3149 {
3150 	struct kmem_cache_cpu *c;
3151 	int i;
3152 
3153 	/* memcg and kmem_cache debug support */
3154 	s = slab_pre_alloc_hook(s, flags);
3155 	if (unlikely(!s))
3156 		return false;
3157 	/*
3158 	 * Drain objects in the per cpu slab, while disabling local
3159 	 * IRQs, which protects against PREEMPT and interrupts
3160 	 * handlers invoking normal fastpath.
3161 	 */
3162 	local_irq_disable();
3163 	c = this_cpu_ptr(s->cpu_slab);
3164 
3165 	for (i = 0; i < size; i++) {
3166 		void *object = c->freelist;
3167 
3168 		if (unlikely(!object)) {
3169 			/*
3170 			 * Invoking slow path likely have side-effect
3171 			 * of re-populating per CPU c->freelist
3172 			 */
3173 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3174 					    _RET_IP_, c);
3175 			if (unlikely(!p[i]))
3176 				goto error;
3177 
3178 			c = this_cpu_ptr(s->cpu_slab);
3179 			continue; /* goto for-loop */
3180 		}
3181 		c->freelist = get_freepointer(s, object);
3182 		p[i] = object;
3183 	}
3184 	c->tid = next_tid(c->tid);
3185 	local_irq_enable();
3186 
3187 	/* Clear memory outside IRQ disabled fastpath loop */
3188 	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3189 		int j;
3190 
3191 		for (j = 0; j < i; j++)
3192 			memset(p[j], 0, s->object_size);
3193 	}
3194 
3195 	/* memcg and kmem_cache debug support */
3196 	slab_post_alloc_hook(s, flags, size, p);
3197 	return i;
3198 error:
3199 	local_irq_enable();
3200 	slab_post_alloc_hook(s, flags, i, p);
3201 	__kmem_cache_free_bulk(s, i, p);
3202 	return 0;
3203 }
3204 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3205 
3206 
3207 /*
3208  * Object placement in a slab is made very easy because we always start at
3209  * offset 0. If we tune the size of the object to the alignment then we can
3210  * get the required alignment by putting one properly sized object after
3211  * another.
3212  *
3213  * Notice that the allocation order determines the sizes of the per cpu
3214  * caches. Each processor has always one slab available for allocations.
3215  * Increasing the allocation order reduces the number of times that slabs
3216  * must be moved on and off the partial lists and is therefore a factor in
3217  * locking overhead.
3218  */
3219 
3220 /*
3221  * Mininum / Maximum order of slab pages. This influences locking overhead
3222  * and slab fragmentation. A higher order reduces the number of partial slabs
3223  * and increases the number of allocations possible without having to
3224  * take the list_lock.
3225  */
3226 static unsigned int slub_min_order;
3227 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3228 static unsigned int slub_min_objects;
3229 
3230 /*
3231  * Calculate the order of allocation given an slab object size.
3232  *
3233  * The order of allocation has significant impact on performance and other
3234  * system components. Generally order 0 allocations should be preferred since
3235  * order 0 does not cause fragmentation in the page allocator. Larger objects
3236  * be problematic to put into order 0 slabs because there may be too much
3237  * unused space left. We go to a higher order if more than 1/16th of the slab
3238  * would be wasted.
3239  *
3240  * In order to reach satisfactory performance we must ensure that a minimum
3241  * number of objects is in one slab. Otherwise we may generate too much
3242  * activity on the partial lists which requires taking the list_lock. This is
3243  * less a concern for large slabs though which are rarely used.
3244  *
3245  * slub_max_order specifies the order where we begin to stop considering the
3246  * number of objects in a slab as critical. If we reach slub_max_order then
3247  * we try to keep the page order as low as possible. So we accept more waste
3248  * of space in favor of a small page order.
3249  *
3250  * Higher order allocations also allow the placement of more objects in a
3251  * slab and thereby reduce object handling overhead. If the user has
3252  * requested a higher mininum order then we start with that one instead of
3253  * the smallest order which will fit the object.
3254  */
3255 static inline unsigned int slab_order(unsigned int size,
3256 		unsigned int min_objects, unsigned int max_order,
3257 		unsigned int fract_leftover)
3258 {
3259 	unsigned int min_order = slub_min_order;
3260 	unsigned int order;
3261 
3262 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3263 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3264 
3265 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3266 			order <= max_order; order++) {
3267 
3268 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3269 		unsigned int rem;
3270 
3271 		rem = slab_size % size;
3272 
3273 		if (rem <= slab_size / fract_leftover)
3274 			break;
3275 	}
3276 
3277 	return order;
3278 }
3279 
3280 static inline int calculate_order(unsigned int size)
3281 {
3282 	unsigned int order;
3283 	unsigned int min_objects;
3284 	unsigned int max_objects;
3285 
3286 	/*
3287 	 * Attempt to find best configuration for a slab. This
3288 	 * works by first attempting to generate a layout with
3289 	 * the best configuration and backing off gradually.
3290 	 *
3291 	 * First we increase the acceptable waste in a slab. Then
3292 	 * we reduce the minimum objects required in a slab.
3293 	 */
3294 	min_objects = slub_min_objects;
3295 	if (!min_objects)
3296 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3297 	max_objects = order_objects(slub_max_order, size);
3298 	min_objects = min(min_objects, max_objects);
3299 
3300 	while (min_objects > 1) {
3301 		unsigned int fraction;
3302 
3303 		fraction = 16;
3304 		while (fraction >= 4) {
3305 			order = slab_order(size, min_objects,
3306 					slub_max_order, fraction);
3307 			if (order <= slub_max_order)
3308 				return order;
3309 			fraction /= 2;
3310 		}
3311 		min_objects--;
3312 	}
3313 
3314 	/*
3315 	 * We were unable to place multiple objects in a slab. Now
3316 	 * lets see if we can place a single object there.
3317 	 */
3318 	order = slab_order(size, 1, slub_max_order, 1);
3319 	if (order <= slub_max_order)
3320 		return order;
3321 
3322 	/*
3323 	 * Doh this slab cannot be placed using slub_max_order.
3324 	 */
3325 	order = slab_order(size, 1, MAX_ORDER, 1);
3326 	if (order < MAX_ORDER)
3327 		return order;
3328 	return -ENOSYS;
3329 }
3330 
3331 static void
3332 init_kmem_cache_node(struct kmem_cache_node *n)
3333 {
3334 	n->nr_partial = 0;
3335 	spin_lock_init(&n->list_lock);
3336 	INIT_LIST_HEAD(&n->partial);
3337 #ifdef CONFIG_SLUB_DEBUG
3338 	atomic_long_set(&n->nr_slabs, 0);
3339 	atomic_long_set(&n->total_objects, 0);
3340 	INIT_LIST_HEAD(&n->full);
3341 #endif
3342 }
3343 
3344 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3345 {
3346 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3347 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3348 
3349 	/*
3350 	 * Must align to double word boundary for the double cmpxchg
3351 	 * instructions to work; see __pcpu_double_call_return_bool().
3352 	 */
3353 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3354 				     2 * sizeof(void *));
3355 
3356 	if (!s->cpu_slab)
3357 		return 0;
3358 
3359 	init_kmem_cache_cpus(s);
3360 
3361 	return 1;
3362 }
3363 
3364 static struct kmem_cache *kmem_cache_node;
3365 
3366 /*
3367  * No kmalloc_node yet so do it by hand. We know that this is the first
3368  * slab on the node for this slabcache. There are no concurrent accesses
3369  * possible.
3370  *
3371  * Note that this function only works on the kmem_cache_node
3372  * when allocating for the kmem_cache_node. This is used for bootstrapping
3373  * memory on a fresh node that has no slab structures yet.
3374  */
3375 static void early_kmem_cache_node_alloc(int node)
3376 {
3377 	struct page *page;
3378 	struct kmem_cache_node *n;
3379 
3380 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3381 
3382 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3383 
3384 	BUG_ON(!page);
3385 	if (page_to_nid(page) != node) {
3386 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3387 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3388 	}
3389 
3390 	n = page->freelist;
3391 	BUG_ON(!n);
3392 #ifdef CONFIG_SLUB_DEBUG
3393 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3394 	init_tracking(kmem_cache_node, n);
3395 #endif
3396 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3397 		      GFP_KERNEL);
3398 	page->freelist = get_freepointer(kmem_cache_node, n);
3399 	page->inuse = 1;
3400 	page->frozen = 0;
3401 	kmem_cache_node->node[node] = n;
3402 	init_kmem_cache_node(n);
3403 	inc_slabs_node(kmem_cache_node, node, page->objects);
3404 
3405 	/*
3406 	 * No locks need to be taken here as it has just been
3407 	 * initialized and there is no concurrent access.
3408 	 */
3409 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3410 }
3411 
3412 static void free_kmem_cache_nodes(struct kmem_cache *s)
3413 {
3414 	int node;
3415 	struct kmem_cache_node *n;
3416 
3417 	for_each_kmem_cache_node(s, node, n) {
3418 		s->node[node] = NULL;
3419 		kmem_cache_free(kmem_cache_node, n);
3420 	}
3421 }
3422 
3423 void __kmem_cache_release(struct kmem_cache *s)
3424 {
3425 	cache_random_seq_destroy(s);
3426 	free_percpu(s->cpu_slab);
3427 	free_kmem_cache_nodes(s);
3428 }
3429 
3430 static int init_kmem_cache_nodes(struct kmem_cache *s)
3431 {
3432 	int node;
3433 
3434 	for_each_node_state(node, N_NORMAL_MEMORY) {
3435 		struct kmem_cache_node *n;
3436 
3437 		if (slab_state == DOWN) {
3438 			early_kmem_cache_node_alloc(node);
3439 			continue;
3440 		}
3441 		n = kmem_cache_alloc_node(kmem_cache_node,
3442 						GFP_KERNEL, node);
3443 
3444 		if (!n) {
3445 			free_kmem_cache_nodes(s);
3446 			return 0;
3447 		}
3448 
3449 		init_kmem_cache_node(n);
3450 		s->node[node] = n;
3451 	}
3452 	return 1;
3453 }
3454 
3455 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3456 {
3457 	if (min < MIN_PARTIAL)
3458 		min = MIN_PARTIAL;
3459 	else if (min > MAX_PARTIAL)
3460 		min = MAX_PARTIAL;
3461 	s->min_partial = min;
3462 }
3463 
3464 static void set_cpu_partial(struct kmem_cache *s)
3465 {
3466 #ifdef CONFIG_SLUB_CPU_PARTIAL
3467 	/*
3468 	 * cpu_partial determined the maximum number of objects kept in the
3469 	 * per cpu partial lists of a processor.
3470 	 *
3471 	 * Per cpu partial lists mainly contain slabs that just have one
3472 	 * object freed. If they are used for allocation then they can be
3473 	 * filled up again with minimal effort. The slab will never hit the
3474 	 * per node partial lists and therefore no locking will be required.
3475 	 *
3476 	 * This setting also determines
3477 	 *
3478 	 * A) The number of objects from per cpu partial slabs dumped to the
3479 	 *    per node list when we reach the limit.
3480 	 * B) The number of objects in cpu partial slabs to extract from the
3481 	 *    per node list when we run out of per cpu objects. We only fetch
3482 	 *    50% to keep some capacity around for frees.
3483 	 */
3484 	if (!kmem_cache_has_cpu_partial(s))
3485 		s->cpu_partial = 0;
3486 	else if (s->size >= PAGE_SIZE)
3487 		s->cpu_partial = 2;
3488 	else if (s->size >= 1024)
3489 		s->cpu_partial = 6;
3490 	else if (s->size >= 256)
3491 		s->cpu_partial = 13;
3492 	else
3493 		s->cpu_partial = 30;
3494 #endif
3495 }
3496 
3497 /*
3498  * calculate_sizes() determines the order and the distribution of data within
3499  * a slab object.
3500  */
3501 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3502 {
3503 	slab_flags_t flags = s->flags;
3504 	unsigned int size = s->object_size;
3505 	unsigned int order;
3506 
3507 	/*
3508 	 * Round up object size to the next word boundary. We can only
3509 	 * place the free pointer at word boundaries and this determines
3510 	 * the possible location of the free pointer.
3511 	 */
3512 	size = ALIGN(size, sizeof(void *));
3513 
3514 #ifdef CONFIG_SLUB_DEBUG
3515 	/*
3516 	 * Determine if we can poison the object itself. If the user of
3517 	 * the slab may touch the object after free or before allocation
3518 	 * then we should never poison the object itself.
3519 	 */
3520 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3521 			!s->ctor)
3522 		s->flags |= __OBJECT_POISON;
3523 	else
3524 		s->flags &= ~__OBJECT_POISON;
3525 
3526 
3527 	/*
3528 	 * If we are Redzoning then check if there is some space between the
3529 	 * end of the object and the free pointer. If not then add an
3530 	 * additional word to have some bytes to store Redzone information.
3531 	 */
3532 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3533 		size += sizeof(void *);
3534 #endif
3535 
3536 	/*
3537 	 * With that we have determined the number of bytes in actual use
3538 	 * by the object. This is the potential offset to the free pointer.
3539 	 */
3540 	s->inuse = size;
3541 
3542 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3543 		s->ctor)) {
3544 		/*
3545 		 * Relocate free pointer after the object if it is not
3546 		 * permitted to overwrite the first word of the object on
3547 		 * kmem_cache_free.
3548 		 *
3549 		 * This is the case if we do RCU, have a constructor or
3550 		 * destructor or are poisoning the objects.
3551 		 */
3552 		s->offset = size;
3553 		size += sizeof(void *);
3554 	}
3555 
3556 #ifdef CONFIG_SLUB_DEBUG
3557 	if (flags & SLAB_STORE_USER)
3558 		/*
3559 		 * Need to store information about allocs and frees after
3560 		 * the object.
3561 		 */
3562 		size += 2 * sizeof(struct track);
3563 #endif
3564 
3565 	kasan_cache_create(s, &size, &s->flags);
3566 #ifdef CONFIG_SLUB_DEBUG
3567 	if (flags & SLAB_RED_ZONE) {
3568 		/*
3569 		 * Add some empty padding so that we can catch
3570 		 * overwrites from earlier objects rather than let
3571 		 * tracking information or the free pointer be
3572 		 * corrupted if a user writes before the start
3573 		 * of the object.
3574 		 */
3575 		size += sizeof(void *);
3576 
3577 		s->red_left_pad = sizeof(void *);
3578 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3579 		size += s->red_left_pad;
3580 	}
3581 #endif
3582 
3583 	/*
3584 	 * SLUB stores one object immediately after another beginning from
3585 	 * offset 0. In order to align the objects we have to simply size
3586 	 * each object to conform to the alignment.
3587 	 */
3588 	size = ALIGN(size, s->align);
3589 	s->size = size;
3590 	if (forced_order >= 0)
3591 		order = forced_order;
3592 	else
3593 		order = calculate_order(size);
3594 
3595 	if ((int)order < 0)
3596 		return 0;
3597 
3598 	s->allocflags = 0;
3599 	if (order)
3600 		s->allocflags |= __GFP_COMP;
3601 
3602 	if (s->flags & SLAB_CACHE_DMA)
3603 		s->allocflags |= GFP_DMA;
3604 
3605 	if (s->flags & SLAB_CACHE_DMA32)
3606 		s->allocflags |= GFP_DMA32;
3607 
3608 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3609 		s->allocflags |= __GFP_RECLAIMABLE;
3610 
3611 	/*
3612 	 * Determine the number of objects per slab
3613 	 */
3614 	s->oo = oo_make(order, size);
3615 	s->min = oo_make(get_order(size), size);
3616 	if (oo_objects(s->oo) > oo_objects(s->max))
3617 		s->max = s->oo;
3618 
3619 	return !!oo_objects(s->oo);
3620 }
3621 
3622 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3623 {
3624 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3625 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3626 	s->random = get_random_long();
3627 #endif
3628 
3629 	if (!calculate_sizes(s, -1))
3630 		goto error;
3631 	if (disable_higher_order_debug) {
3632 		/*
3633 		 * Disable debugging flags that store metadata if the min slab
3634 		 * order increased.
3635 		 */
3636 		if (get_order(s->size) > get_order(s->object_size)) {
3637 			s->flags &= ~DEBUG_METADATA_FLAGS;
3638 			s->offset = 0;
3639 			if (!calculate_sizes(s, -1))
3640 				goto error;
3641 		}
3642 	}
3643 
3644 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3645     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3646 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3647 		/* Enable fast mode */
3648 		s->flags |= __CMPXCHG_DOUBLE;
3649 #endif
3650 
3651 	/*
3652 	 * The larger the object size is, the more pages we want on the partial
3653 	 * list to avoid pounding the page allocator excessively.
3654 	 */
3655 	set_min_partial(s, ilog2(s->size) / 2);
3656 
3657 	set_cpu_partial(s);
3658 
3659 #ifdef CONFIG_NUMA
3660 	s->remote_node_defrag_ratio = 1000;
3661 #endif
3662 
3663 	/* Initialize the pre-computed randomized freelist if slab is up */
3664 	if (slab_state >= UP) {
3665 		if (init_cache_random_seq(s))
3666 			goto error;
3667 	}
3668 
3669 	if (!init_kmem_cache_nodes(s))
3670 		goto error;
3671 
3672 	if (alloc_kmem_cache_cpus(s))
3673 		return 0;
3674 
3675 	free_kmem_cache_nodes(s);
3676 error:
3677 	return -EINVAL;
3678 }
3679 
3680 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3681 							const char *text)
3682 {
3683 #ifdef CONFIG_SLUB_DEBUG
3684 	void *addr = page_address(page);
3685 	void *p;
3686 	unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
3687 	if (!map)
3688 		return;
3689 	slab_err(s, page, text, s->name);
3690 	slab_lock(page);
3691 
3692 	get_map(s, page, map);
3693 	for_each_object(p, s, addr, page->objects) {
3694 
3695 		if (!test_bit(slab_index(p, s, addr), map)) {
3696 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3697 			print_tracking(s, p);
3698 		}
3699 	}
3700 	slab_unlock(page);
3701 	bitmap_free(map);
3702 #endif
3703 }
3704 
3705 /*
3706  * Attempt to free all partial slabs on a node.
3707  * This is called from __kmem_cache_shutdown(). We must take list_lock
3708  * because sysfs file might still access partial list after the shutdowning.
3709  */
3710 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3711 {
3712 	LIST_HEAD(discard);
3713 	struct page *page, *h;
3714 
3715 	BUG_ON(irqs_disabled());
3716 	spin_lock_irq(&n->list_lock);
3717 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3718 		if (!page->inuse) {
3719 			remove_partial(n, page);
3720 			list_add(&page->slab_list, &discard);
3721 		} else {
3722 			list_slab_objects(s, page,
3723 			"Objects remaining in %s on __kmem_cache_shutdown()");
3724 		}
3725 	}
3726 	spin_unlock_irq(&n->list_lock);
3727 
3728 	list_for_each_entry_safe(page, h, &discard, slab_list)
3729 		discard_slab(s, page);
3730 }
3731 
3732 bool __kmem_cache_empty(struct kmem_cache *s)
3733 {
3734 	int node;
3735 	struct kmem_cache_node *n;
3736 
3737 	for_each_kmem_cache_node(s, node, n)
3738 		if (n->nr_partial || slabs_node(s, node))
3739 			return false;
3740 	return true;
3741 }
3742 
3743 /*
3744  * Release all resources used by a slab cache.
3745  */
3746 int __kmem_cache_shutdown(struct kmem_cache *s)
3747 {
3748 	int node;
3749 	struct kmem_cache_node *n;
3750 
3751 	flush_all(s);
3752 	/* Attempt to free all objects */
3753 	for_each_kmem_cache_node(s, node, n) {
3754 		free_partial(s, n);
3755 		if (n->nr_partial || slabs_node(s, node))
3756 			return 1;
3757 	}
3758 	sysfs_slab_remove(s);
3759 	return 0;
3760 }
3761 
3762 /********************************************************************
3763  *		Kmalloc subsystem
3764  *******************************************************************/
3765 
3766 static int __init setup_slub_min_order(char *str)
3767 {
3768 	get_option(&str, (int *)&slub_min_order);
3769 
3770 	return 1;
3771 }
3772 
3773 __setup("slub_min_order=", setup_slub_min_order);
3774 
3775 static int __init setup_slub_max_order(char *str)
3776 {
3777 	get_option(&str, (int *)&slub_max_order);
3778 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3779 
3780 	return 1;
3781 }
3782 
3783 __setup("slub_max_order=", setup_slub_max_order);
3784 
3785 static int __init setup_slub_min_objects(char *str)
3786 {
3787 	get_option(&str, (int *)&slub_min_objects);
3788 
3789 	return 1;
3790 }
3791 
3792 __setup("slub_min_objects=", setup_slub_min_objects);
3793 
3794 void *__kmalloc(size_t size, gfp_t flags)
3795 {
3796 	struct kmem_cache *s;
3797 	void *ret;
3798 
3799 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3800 		return kmalloc_large(size, flags);
3801 
3802 	s = kmalloc_slab(size, flags);
3803 
3804 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3805 		return s;
3806 
3807 	ret = slab_alloc(s, flags, _RET_IP_);
3808 
3809 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3810 
3811 	ret = kasan_kmalloc(s, ret, size, flags);
3812 
3813 	return ret;
3814 }
3815 EXPORT_SYMBOL(__kmalloc);
3816 
3817 #ifdef CONFIG_NUMA
3818 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3819 {
3820 	struct page *page;
3821 	void *ptr = NULL;
3822 
3823 	flags |= __GFP_COMP;
3824 	page = alloc_pages_node(node, flags, get_order(size));
3825 	if (page)
3826 		ptr = page_address(page);
3827 
3828 	return kmalloc_large_node_hook(ptr, size, flags);
3829 }
3830 
3831 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3832 {
3833 	struct kmem_cache *s;
3834 	void *ret;
3835 
3836 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3837 		ret = kmalloc_large_node(size, flags, node);
3838 
3839 		trace_kmalloc_node(_RET_IP_, ret,
3840 				   size, PAGE_SIZE << get_order(size),
3841 				   flags, node);
3842 
3843 		return ret;
3844 	}
3845 
3846 	s = kmalloc_slab(size, flags);
3847 
3848 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3849 		return s;
3850 
3851 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3852 
3853 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3854 
3855 	ret = kasan_kmalloc(s, ret, size, flags);
3856 
3857 	return ret;
3858 }
3859 EXPORT_SYMBOL(__kmalloc_node);
3860 #endif	/* CONFIG_NUMA */
3861 
3862 #ifdef CONFIG_HARDENED_USERCOPY
3863 /*
3864  * Rejects incorrectly sized objects and objects that are to be copied
3865  * to/from userspace but do not fall entirely within the containing slab
3866  * cache's usercopy region.
3867  *
3868  * Returns NULL if check passes, otherwise const char * to name of cache
3869  * to indicate an error.
3870  */
3871 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3872 			 bool to_user)
3873 {
3874 	struct kmem_cache *s;
3875 	unsigned int offset;
3876 	size_t object_size;
3877 
3878 	ptr = kasan_reset_tag(ptr);
3879 
3880 	/* Find object and usable object size. */
3881 	s = page->slab_cache;
3882 
3883 	/* Reject impossible pointers. */
3884 	if (ptr < page_address(page))
3885 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3886 			       to_user, 0, n);
3887 
3888 	/* Find offset within object. */
3889 	offset = (ptr - page_address(page)) % s->size;
3890 
3891 	/* Adjust for redzone and reject if within the redzone. */
3892 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3893 		if (offset < s->red_left_pad)
3894 			usercopy_abort("SLUB object in left red zone",
3895 				       s->name, to_user, offset, n);
3896 		offset -= s->red_left_pad;
3897 	}
3898 
3899 	/* Allow address range falling entirely within usercopy region. */
3900 	if (offset >= s->useroffset &&
3901 	    offset - s->useroffset <= s->usersize &&
3902 	    n <= s->useroffset - offset + s->usersize)
3903 		return;
3904 
3905 	/*
3906 	 * If the copy is still within the allocated object, produce
3907 	 * a warning instead of rejecting the copy. This is intended
3908 	 * to be a temporary method to find any missing usercopy
3909 	 * whitelists.
3910 	 */
3911 	object_size = slab_ksize(s);
3912 	if (usercopy_fallback &&
3913 	    offset <= object_size && n <= object_size - offset) {
3914 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3915 		return;
3916 	}
3917 
3918 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3919 }
3920 #endif /* CONFIG_HARDENED_USERCOPY */
3921 
3922 size_t __ksize(const void *object)
3923 {
3924 	struct page *page;
3925 
3926 	if (unlikely(object == ZERO_SIZE_PTR))
3927 		return 0;
3928 
3929 	page = virt_to_head_page(object);
3930 
3931 	if (unlikely(!PageSlab(page))) {
3932 		WARN_ON(!PageCompound(page));
3933 		return PAGE_SIZE << compound_order(page);
3934 	}
3935 
3936 	return slab_ksize(page->slab_cache);
3937 }
3938 EXPORT_SYMBOL(__ksize);
3939 
3940 void kfree(const void *x)
3941 {
3942 	struct page *page;
3943 	void *object = (void *)x;
3944 
3945 	trace_kfree(_RET_IP_, x);
3946 
3947 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3948 		return;
3949 
3950 	page = virt_to_head_page(x);
3951 	if (unlikely(!PageSlab(page))) {
3952 		BUG_ON(!PageCompound(page));
3953 		kfree_hook(object);
3954 		__free_pages(page, compound_order(page));
3955 		return;
3956 	}
3957 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3958 }
3959 EXPORT_SYMBOL(kfree);
3960 
3961 #define SHRINK_PROMOTE_MAX 32
3962 
3963 /*
3964  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3965  * up most to the head of the partial lists. New allocations will then
3966  * fill those up and thus they can be removed from the partial lists.
3967  *
3968  * The slabs with the least items are placed last. This results in them
3969  * being allocated from last increasing the chance that the last objects
3970  * are freed in them.
3971  */
3972 int __kmem_cache_shrink(struct kmem_cache *s)
3973 {
3974 	int node;
3975 	int i;
3976 	struct kmem_cache_node *n;
3977 	struct page *page;
3978 	struct page *t;
3979 	struct list_head discard;
3980 	struct list_head promote[SHRINK_PROMOTE_MAX];
3981 	unsigned long flags;
3982 	int ret = 0;
3983 
3984 	flush_all(s);
3985 	for_each_kmem_cache_node(s, node, n) {
3986 		INIT_LIST_HEAD(&discard);
3987 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3988 			INIT_LIST_HEAD(promote + i);
3989 
3990 		spin_lock_irqsave(&n->list_lock, flags);
3991 
3992 		/*
3993 		 * Build lists of slabs to discard or promote.
3994 		 *
3995 		 * Note that concurrent frees may occur while we hold the
3996 		 * list_lock. page->inuse here is the upper limit.
3997 		 */
3998 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
3999 			int free = page->objects - page->inuse;
4000 
4001 			/* Do not reread page->inuse */
4002 			barrier();
4003 
4004 			/* We do not keep full slabs on the list */
4005 			BUG_ON(free <= 0);
4006 
4007 			if (free == page->objects) {
4008 				list_move(&page->slab_list, &discard);
4009 				n->nr_partial--;
4010 			} else if (free <= SHRINK_PROMOTE_MAX)
4011 				list_move(&page->slab_list, promote + free - 1);
4012 		}
4013 
4014 		/*
4015 		 * Promote the slabs filled up most to the head of the
4016 		 * partial list.
4017 		 */
4018 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4019 			list_splice(promote + i, &n->partial);
4020 
4021 		spin_unlock_irqrestore(&n->list_lock, flags);
4022 
4023 		/* Release empty slabs */
4024 		list_for_each_entry_safe(page, t, &discard, slab_list)
4025 			discard_slab(s, page);
4026 
4027 		if (slabs_node(s, node))
4028 			ret = 1;
4029 	}
4030 
4031 	return ret;
4032 }
4033 
4034 #ifdef CONFIG_MEMCG
4035 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4036 {
4037 	/*
4038 	 * Called with all the locks held after a sched RCU grace period.
4039 	 * Even if @s becomes empty after shrinking, we can't know that @s
4040 	 * doesn't have allocations already in-flight and thus can't
4041 	 * destroy @s until the associated memcg is released.
4042 	 *
4043 	 * However, let's remove the sysfs files for empty caches here.
4044 	 * Each cache has a lot of interface files which aren't
4045 	 * particularly useful for empty draining caches; otherwise, we can
4046 	 * easily end up with millions of unnecessary sysfs files on
4047 	 * systems which have a lot of memory and transient cgroups.
4048 	 */
4049 	if (!__kmem_cache_shrink(s))
4050 		sysfs_slab_remove(s);
4051 }
4052 
4053 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4054 {
4055 	/*
4056 	 * Disable empty slabs caching. Used to avoid pinning offline
4057 	 * memory cgroups by kmem pages that can be freed.
4058 	 */
4059 	slub_set_cpu_partial(s, 0);
4060 	s->min_partial = 0;
4061 }
4062 #endif	/* CONFIG_MEMCG */
4063 
4064 static int slab_mem_going_offline_callback(void *arg)
4065 {
4066 	struct kmem_cache *s;
4067 
4068 	mutex_lock(&slab_mutex);
4069 	list_for_each_entry(s, &slab_caches, list)
4070 		__kmem_cache_shrink(s);
4071 	mutex_unlock(&slab_mutex);
4072 
4073 	return 0;
4074 }
4075 
4076 static void slab_mem_offline_callback(void *arg)
4077 {
4078 	struct kmem_cache_node *n;
4079 	struct kmem_cache *s;
4080 	struct memory_notify *marg = arg;
4081 	int offline_node;
4082 
4083 	offline_node = marg->status_change_nid_normal;
4084 
4085 	/*
4086 	 * If the node still has available memory. we need kmem_cache_node
4087 	 * for it yet.
4088 	 */
4089 	if (offline_node < 0)
4090 		return;
4091 
4092 	mutex_lock(&slab_mutex);
4093 	list_for_each_entry(s, &slab_caches, list) {
4094 		n = get_node(s, offline_node);
4095 		if (n) {
4096 			/*
4097 			 * if n->nr_slabs > 0, slabs still exist on the node
4098 			 * that is going down. We were unable to free them,
4099 			 * and offline_pages() function shouldn't call this
4100 			 * callback. So, we must fail.
4101 			 */
4102 			BUG_ON(slabs_node(s, offline_node));
4103 
4104 			s->node[offline_node] = NULL;
4105 			kmem_cache_free(kmem_cache_node, n);
4106 		}
4107 	}
4108 	mutex_unlock(&slab_mutex);
4109 }
4110 
4111 static int slab_mem_going_online_callback(void *arg)
4112 {
4113 	struct kmem_cache_node *n;
4114 	struct kmem_cache *s;
4115 	struct memory_notify *marg = arg;
4116 	int nid = marg->status_change_nid_normal;
4117 	int ret = 0;
4118 
4119 	/*
4120 	 * If the node's memory is already available, then kmem_cache_node is
4121 	 * already created. Nothing to do.
4122 	 */
4123 	if (nid < 0)
4124 		return 0;
4125 
4126 	/*
4127 	 * We are bringing a node online. No memory is available yet. We must
4128 	 * allocate a kmem_cache_node structure in order to bring the node
4129 	 * online.
4130 	 */
4131 	mutex_lock(&slab_mutex);
4132 	list_for_each_entry(s, &slab_caches, list) {
4133 		/*
4134 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4135 		 *      since memory is not yet available from the node that
4136 		 *      is brought up.
4137 		 */
4138 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4139 		if (!n) {
4140 			ret = -ENOMEM;
4141 			goto out;
4142 		}
4143 		init_kmem_cache_node(n);
4144 		s->node[nid] = n;
4145 	}
4146 out:
4147 	mutex_unlock(&slab_mutex);
4148 	return ret;
4149 }
4150 
4151 static int slab_memory_callback(struct notifier_block *self,
4152 				unsigned long action, void *arg)
4153 {
4154 	int ret = 0;
4155 
4156 	switch (action) {
4157 	case MEM_GOING_ONLINE:
4158 		ret = slab_mem_going_online_callback(arg);
4159 		break;
4160 	case MEM_GOING_OFFLINE:
4161 		ret = slab_mem_going_offline_callback(arg);
4162 		break;
4163 	case MEM_OFFLINE:
4164 	case MEM_CANCEL_ONLINE:
4165 		slab_mem_offline_callback(arg);
4166 		break;
4167 	case MEM_ONLINE:
4168 	case MEM_CANCEL_OFFLINE:
4169 		break;
4170 	}
4171 	if (ret)
4172 		ret = notifier_from_errno(ret);
4173 	else
4174 		ret = NOTIFY_OK;
4175 	return ret;
4176 }
4177 
4178 static struct notifier_block slab_memory_callback_nb = {
4179 	.notifier_call = slab_memory_callback,
4180 	.priority = SLAB_CALLBACK_PRI,
4181 };
4182 
4183 /********************************************************************
4184  *			Basic setup of slabs
4185  *******************************************************************/
4186 
4187 /*
4188  * Used for early kmem_cache structures that were allocated using
4189  * the page allocator. Allocate them properly then fix up the pointers
4190  * that may be pointing to the wrong kmem_cache structure.
4191  */
4192 
4193 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4194 {
4195 	int node;
4196 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4197 	struct kmem_cache_node *n;
4198 
4199 	memcpy(s, static_cache, kmem_cache->object_size);
4200 
4201 	/*
4202 	 * This runs very early, and only the boot processor is supposed to be
4203 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4204 	 * IPIs around.
4205 	 */
4206 	__flush_cpu_slab(s, smp_processor_id());
4207 	for_each_kmem_cache_node(s, node, n) {
4208 		struct page *p;
4209 
4210 		list_for_each_entry(p, &n->partial, slab_list)
4211 			p->slab_cache = s;
4212 
4213 #ifdef CONFIG_SLUB_DEBUG
4214 		list_for_each_entry(p, &n->full, slab_list)
4215 			p->slab_cache = s;
4216 #endif
4217 	}
4218 	slab_init_memcg_params(s);
4219 	list_add(&s->list, &slab_caches);
4220 	memcg_link_cache(s, NULL);
4221 	return s;
4222 }
4223 
4224 void __init kmem_cache_init(void)
4225 {
4226 	static __initdata struct kmem_cache boot_kmem_cache,
4227 		boot_kmem_cache_node;
4228 
4229 	if (debug_guardpage_minorder())
4230 		slub_max_order = 0;
4231 
4232 	kmem_cache_node = &boot_kmem_cache_node;
4233 	kmem_cache = &boot_kmem_cache;
4234 
4235 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4236 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4237 
4238 	register_hotmemory_notifier(&slab_memory_callback_nb);
4239 
4240 	/* Able to allocate the per node structures */
4241 	slab_state = PARTIAL;
4242 
4243 	create_boot_cache(kmem_cache, "kmem_cache",
4244 			offsetof(struct kmem_cache, node) +
4245 				nr_node_ids * sizeof(struct kmem_cache_node *),
4246 		       SLAB_HWCACHE_ALIGN, 0, 0);
4247 
4248 	kmem_cache = bootstrap(&boot_kmem_cache);
4249 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4250 
4251 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4252 	setup_kmalloc_cache_index_table();
4253 	create_kmalloc_caches(0);
4254 
4255 	/* Setup random freelists for each cache */
4256 	init_freelist_randomization();
4257 
4258 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4259 				  slub_cpu_dead);
4260 
4261 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4262 		cache_line_size(),
4263 		slub_min_order, slub_max_order, slub_min_objects,
4264 		nr_cpu_ids, nr_node_ids);
4265 }
4266 
4267 void __init kmem_cache_init_late(void)
4268 {
4269 }
4270 
4271 struct kmem_cache *
4272 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4273 		   slab_flags_t flags, void (*ctor)(void *))
4274 {
4275 	struct kmem_cache *s, *c;
4276 
4277 	s = find_mergeable(size, align, flags, name, ctor);
4278 	if (s) {
4279 		s->refcount++;
4280 
4281 		/*
4282 		 * Adjust the object sizes so that we clear
4283 		 * the complete object on kzalloc.
4284 		 */
4285 		s->object_size = max(s->object_size, size);
4286 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4287 
4288 		for_each_memcg_cache(c, s) {
4289 			c->object_size = s->object_size;
4290 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4291 		}
4292 
4293 		if (sysfs_slab_alias(s, name)) {
4294 			s->refcount--;
4295 			s = NULL;
4296 		}
4297 	}
4298 
4299 	return s;
4300 }
4301 
4302 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4303 {
4304 	int err;
4305 
4306 	err = kmem_cache_open(s, flags);
4307 	if (err)
4308 		return err;
4309 
4310 	/* Mutex is not taken during early boot */
4311 	if (slab_state <= UP)
4312 		return 0;
4313 
4314 	memcg_propagate_slab_attrs(s);
4315 	err = sysfs_slab_add(s);
4316 	if (err)
4317 		__kmem_cache_release(s);
4318 
4319 	return err;
4320 }
4321 
4322 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4323 {
4324 	struct kmem_cache *s;
4325 	void *ret;
4326 
4327 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4328 		return kmalloc_large(size, gfpflags);
4329 
4330 	s = kmalloc_slab(size, gfpflags);
4331 
4332 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4333 		return s;
4334 
4335 	ret = slab_alloc(s, gfpflags, caller);
4336 
4337 	/* Honor the call site pointer we received. */
4338 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4339 
4340 	return ret;
4341 }
4342 
4343 #ifdef CONFIG_NUMA
4344 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4345 					int node, unsigned long caller)
4346 {
4347 	struct kmem_cache *s;
4348 	void *ret;
4349 
4350 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4351 		ret = kmalloc_large_node(size, gfpflags, node);
4352 
4353 		trace_kmalloc_node(caller, ret,
4354 				   size, PAGE_SIZE << get_order(size),
4355 				   gfpflags, node);
4356 
4357 		return ret;
4358 	}
4359 
4360 	s = kmalloc_slab(size, gfpflags);
4361 
4362 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4363 		return s;
4364 
4365 	ret = slab_alloc_node(s, gfpflags, node, caller);
4366 
4367 	/* Honor the call site pointer we received. */
4368 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4369 
4370 	return ret;
4371 }
4372 #endif
4373 
4374 #ifdef CONFIG_SYSFS
4375 static int count_inuse(struct page *page)
4376 {
4377 	return page->inuse;
4378 }
4379 
4380 static int count_total(struct page *page)
4381 {
4382 	return page->objects;
4383 }
4384 #endif
4385 
4386 #ifdef CONFIG_SLUB_DEBUG
4387 static int validate_slab(struct kmem_cache *s, struct page *page,
4388 						unsigned long *map)
4389 {
4390 	void *p;
4391 	void *addr = page_address(page);
4392 
4393 	if (!check_slab(s, page) ||
4394 			!on_freelist(s, page, NULL))
4395 		return 0;
4396 
4397 	/* Now we know that a valid freelist exists */
4398 	bitmap_zero(map, page->objects);
4399 
4400 	get_map(s, page, map);
4401 	for_each_object(p, s, addr, page->objects) {
4402 		if (test_bit(slab_index(p, s, addr), map))
4403 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4404 				return 0;
4405 	}
4406 
4407 	for_each_object(p, s, addr, page->objects)
4408 		if (!test_bit(slab_index(p, s, addr), map))
4409 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4410 				return 0;
4411 	return 1;
4412 }
4413 
4414 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4415 						unsigned long *map)
4416 {
4417 	slab_lock(page);
4418 	validate_slab(s, page, map);
4419 	slab_unlock(page);
4420 }
4421 
4422 static int validate_slab_node(struct kmem_cache *s,
4423 		struct kmem_cache_node *n, unsigned long *map)
4424 {
4425 	unsigned long count = 0;
4426 	struct page *page;
4427 	unsigned long flags;
4428 
4429 	spin_lock_irqsave(&n->list_lock, flags);
4430 
4431 	list_for_each_entry(page, &n->partial, slab_list) {
4432 		validate_slab_slab(s, page, map);
4433 		count++;
4434 	}
4435 	if (count != n->nr_partial)
4436 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4437 		       s->name, count, n->nr_partial);
4438 
4439 	if (!(s->flags & SLAB_STORE_USER))
4440 		goto out;
4441 
4442 	list_for_each_entry(page, &n->full, slab_list) {
4443 		validate_slab_slab(s, page, map);
4444 		count++;
4445 	}
4446 	if (count != atomic_long_read(&n->nr_slabs))
4447 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4448 		       s->name, count, atomic_long_read(&n->nr_slabs));
4449 
4450 out:
4451 	spin_unlock_irqrestore(&n->list_lock, flags);
4452 	return count;
4453 }
4454 
4455 static long validate_slab_cache(struct kmem_cache *s)
4456 {
4457 	int node;
4458 	unsigned long count = 0;
4459 	struct kmem_cache_node *n;
4460 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4461 
4462 	if (!map)
4463 		return -ENOMEM;
4464 
4465 	flush_all(s);
4466 	for_each_kmem_cache_node(s, node, n)
4467 		count += validate_slab_node(s, n, map);
4468 	bitmap_free(map);
4469 	return count;
4470 }
4471 /*
4472  * Generate lists of code addresses where slabcache objects are allocated
4473  * and freed.
4474  */
4475 
4476 struct location {
4477 	unsigned long count;
4478 	unsigned long addr;
4479 	long long sum_time;
4480 	long min_time;
4481 	long max_time;
4482 	long min_pid;
4483 	long max_pid;
4484 	DECLARE_BITMAP(cpus, NR_CPUS);
4485 	nodemask_t nodes;
4486 };
4487 
4488 struct loc_track {
4489 	unsigned long max;
4490 	unsigned long count;
4491 	struct location *loc;
4492 };
4493 
4494 static void free_loc_track(struct loc_track *t)
4495 {
4496 	if (t->max)
4497 		free_pages((unsigned long)t->loc,
4498 			get_order(sizeof(struct location) * t->max));
4499 }
4500 
4501 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4502 {
4503 	struct location *l;
4504 	int order;
4505 
4506 	order = get_order(sizeof(struct location) * max);
4507 
4508 	l = (void *)__get_free_pages(flags, order);
4509 	if (!l)
4510 		return 0;
4511 
4512 	if (t->count) {
4513 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4514 		free_loc_track(t);
4515 	}
4516 	t->max = max;
4517 	t->loc = l;
4518 	return 1;
4519 }
4520 
4521 static int add_location(struct loc_track *t, struct kmem_cache *s,
4522 				const struct track *track)
4523 {
4524 	long start, end, pos;
4525 	struct location *l;
4526 	unsigned long caddr;
4527 	unsigned long age = jiffies - track->when;
4528 
4529 	start = -1;
4530 	end = t->count;
4531 
4532 	for ( ; ; ) {
4533 		pos = start + (end - start + 1) / 2;
4534 
4535 		/*
4536 		 * There is nothing at "end". If we end up there
4537 		 * we need to add something to before end.
4538 		 */
4539 		if (pos == end)
4540 			break;
4541 
4542 		caddr = t->loc[pos].addr;
4543 		if (track->addr == caddr) {
4544 
4545 			l = &t->loc[pos];
4546 			l->count++;
4547 			if (track->when) {
4548 				l->sum_time += age;
4549 				if (age < l->min_time)
4550 					l->min_time = age;
4551 				if (age > l->max_time)
4552 					l->max_time = age;
4553 
4554 				if (track->pid < l->min_pid)
4555 					l->min_pid = track->pid;
4556 				if (track->pid > l->max_pid)
4557 					l->max_pid = track->pid;
4558 
4559 				cpumask_set_cpu(track->cpu,
4560 						to_cpumask(l->cpus));
4561 			}
4562 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4563 			return 1;
4564 		}
4565 
4566 		if (track->addr < caddr)
4567 			end = pos;
4568 		else
4569 			start = pos;
4570 	}
4571 
4572 	/*
4573 	 * Not found. Insert new tracking element.
4574 	 */
4575 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4576 		return 0;
4577 
4578 	l = t->loc + pos;
4579 	if (pos < t->count)
4580 		memmove(l + 1, l,
4581 			(t->count - pos) * sizeof(struct location));
4582 	t->count++;
4583 	l->count = 1;
4584 	l->addr = track->addr;
4585 	l->sum_time = age;
4586 	l->min_time = age;
4587 	l->max_time = age;
4588 	l->min_pid = track->pid;
4589 	l->max_pid = track->pid;
4590 	cpumask_clear(to_cpumask(l->cpus));
4591 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4592 	nodes_clear(l->nodes);
4593 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4594 	return 1;
4595 }
4596 
4597 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4598 		struct page *page, enum track_item alloc,
4599 		unsigned long *map)
4600 {
4601 	void *addr = page_address(page);
4602 	void *p;
4603 
4604 	bitmap_zero(map, page->objects);
4605 	get_map(s, page, map);
4606 
4607 	for_each_object(p, s, addr, page->objects)
4608 		if (!test_bit(slab_index(p, s, addr), map))
4609 			add_location(t, s, get_track(s, p, alloc));
4610 }
4611 
4612 static int list_locations(struct kmem_cache *s, char *buf,
4613 					enum track_item alloc)
4614 {
4615 	int len = 0;
4616 	unsigned long i;
4617 	struct loc_track t = { 0, 0, NULL };
4618 	int node;
4619 	struct kmem_cache_node *n;
4620 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4621 
4622 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4623 				     GFP_KERNEL)) {
4624 		bitmap_free(map);
4625 		return sprintf(buf, "Out of memory\n");
4626 	}
4627 	/* Push back cpu slabs */
4628 	flush_all(s);
4629 
4630 	for_each_kmem_cache_node(s, node, n) {
4631 		unsigned long flags;
4632 		struct page *page;
4633 
4634 		if (!atomic_long_read(&n->nr_slabs))
4635 			continue;
4636 
4637 		spin_lock_irqsave(&n->list_lock, flags);
4638 		list_for_each_entry(page, &n->partial, slab_list)
4639 			process_slab(&t, s, page, alloc, map);
4640 		list_for_each_entry(page, &n->full, slab_list)
4641 			process_slab(&t, s, page, alloc, map);
4642 		spin_unlock_irqrestore(&n->list_lock, flags);
4643 	}
4644 
4645 	for (i = 0; i < t.count; i++) {
4646 		struct location *l = &t.loc[i];
4647 
4648 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4649 			break;
4650 		len += sprintf(buf + len, "%7ld ", l->count);
4651 
4652 		if (l->addr)
4653 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4654 		else
4655 			len += sprintf(buf + len, "<not-available>");
4656 
4657 		if (l->sum_time != l->min_time) {
4658 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4659 				l->min_time,
4660 				(long)div_u64(l->sum_time, l->count),
4661 				l->max_time);
4662 		} else
4663 			len += sprintf(buf + len, " age=%ld",
4664 				l->min_time);
4665 
4666 		if (l->min_pid != l->max_pid)
4667 			len += sprintf(buf + len, " pid=%ld-%ld",
4668 				l->min_pid, l->max_pid);
4669 		else
4670 			len += sprintf(buf + len, " pid=%ld",
4671 				l->min_pid);
4672 
4673 		if (num_online_cpus() > 1 &&
4674 				!cpumask_empty(to_cpumask(l->cpus)) &&
4675 				len < PAGE_SIZE - 60)
4676 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4677 					 " cpus=%*pbl",
4678 					 cpumask_pr_args(to_cpumask(l->cpus)));
4679 
4680 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4681 				len < PAGE_SIZE - 60)
4682 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4683 					 " nodes=%*pbl",
4684 					 nodemask_pr_args(&l->nodes));
4685 
4686 		len += sprintf(buf + len, "\n");
4687 	}
4688 
4689 	free_loc_track(&t);
4690 	bitmap_free(map);
4691 	if (!t.count)
4692 		len += sprintf(buf, "No data\n");
4693 	return len;
4694 }
4695 #endif	/* CONFIG_SLUB_DEBUG */
4696 
4697 #ifdef SLUB_RESILIENCY_TEST
4698 static void __init resiliency_test(void)
4699 {
4700 	u8 *p;
4701 	int type = KMALLOC_NORMAL;
4702 
4703 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4704 
4705 	pr_err("SLUB resiliency testing\n");
4706 	pr_err("-----------------------\n");
4707 	pr_err("A. Corruption after allocation\n");
4708 
4709 	p = kzalloc(16, GFP_KERNEL);
4710 	p[16] = 0x12;
4711 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4712 	       p + 16);
4713 
4714 	validate_slab_cache(kmalloc_caches[type][4]);
4715 
4716 	/* Hmmm... The next two are dangerous */
4717 	p = kzalloc(32, GFP_KERNEL);
4718 	p[32 + sizeof(void *)] = 0x34;
4719 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4720 	       p);
4721 	pr_err("If allocated object is overwritten then not detectable\n\n");
4722 
4723 	validate_slab_cache(kmalloc_caches[type][5]);
4724 	p = kzalloc(64, GFP_KERNEL);
4725 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4726 	*p = 0x56;
4727 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4728 	       p);
4729 	pr_err("If allocated object is overwritten then not detectable\n\n");
4730 	validate_slab_cache(kmalloc_caches[type][6]);
4731 
4732 	pr_err("\nB. Corruption after free\n");
4733 	p = kzalloc(128, GFP_KERNEL);
4734 	kfree(p);
4735 	*p = 0x78;
4736 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4737 	validate_slab_cache(kmalloc_caches[type][7]);
4738 
4739 	p = kzalloc(256, GFP_KERNEL);
4740 	kfree(p);
4741 	p[50] = 0x9a;
4742 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4743 	validate_slab_cache(kmalloc_caches[type][8]);
4744 
4745 	p = kzalloc(512, GFP_KERNEL);
4746 	kfree(p);
4747 	p[512] = 0xab;
4748 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4749 	validate_slab_cache(kmalloc_caches[type][9]);
4750 }
4751 #else
4752 #ifdef CONFIG_SYSFS
4753 static void resiliency_test(void) {};
4754 #endif
4755 #endif	/* SLUB_RESILIENCY_TEST */
4756 
4757 #ifdef CONFIG_SYSFS
4758 enum slab_stat_type {
4759 	SL_ALL,			/* All slabs */
4760 	SL_PARTIAL,		/* Only partially allocated slabs */
4761 	SL_CPU,			/* Only slabs used for cpu caches */
4762 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4763 	SL_TOTAL		/* Determine object capacity not slabs */
4764 };
4765 
4766 #define SO_ALL		(1 << SL_ALL)
4767 #define SO_PARTIAL	(1 << SL_PARTIAL)
4768 #define SO_CPU		(1 << SL_CPU)
4769 #define SO_OBJECTS	(1 << SL_OBJECTS)
4770 #define SO_TOTAL	(1 << SL_TOTAL)
4771 
4772 #ifdef CONFIG_MEMCG
4773 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4774 
4775 static int __init setup_slub_memcg_sysfs(char *str)
4776 {
4777 	int v;
4778 
4779 	if (get_option(&str, &v) > 0)
4780 		memcg_sysfs_enabled = v;
4781 
4782 	return 1;
4783 }
4784 
4785 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4786 #endif
4787 
4788 static ssize_t show_slab_objects(struct kmem_cache *s,
4789 			    char *buf, unsigned long flags)
4790 {
4791 	unsigned long total = 0;
4792 	int node;
4793 	int x;
4794 	unsigned long *nodes;
4795 
4796 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4797 	if (!nodes)
4798 		return -ENOMEM;
4799 
4800 	if (flags & SO_CPU) {
4801 		int cpu;
4802 
4803 		for_each_possible_cpu(cpu) {
4804 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4805 							       cpu);
4806 			int node;
4807 			struct page *page;
4808 
4809 			page = READ_ONCE(c->page);
4810 			if (!page)
4811 				continue;
4812 
4813 			node = page_to_nid(page);
4814 			if (flags & SO_TOTAL)
4815 				x = page->objects;
4816 			else if (flags & SO_OBJECTS)
4817 				x = page->inuse;
4818 			else
4819 				x = 1;
4820 
4821 			total += x;
4822 			nodes[node] += x;
4823 
4824 			page = slub_percpu_partial_read_once(c);
4825 			if (page) {
4826 				node = page_to_nid(page);
4827 				if (flags & SO_TOTAL)
4828 					WARN_ON_ONCE(1);
4829 				else if (flags & SO_OBJECTS)
4830 					WARN_ON_ONCE(1);
4831 				else
4832 					x = page->pages;
4833 				total += x;
4834 				nodes[node] += x;
4835 			}
4836 		}
4837 	}
4838 
4839 	get_online_mems();
4840 #ifdef CONFIG_SLUB_DEBUG
4841 	if (flags & SO_ALL) {
4842 		struct kmem_cache_node *n;
4843 
4844 		for_each_kmem_cache_node(s, node, n) {
4845 
4846 			if (flags & SO_TOTAL)
4847 				x = atomic_long_read(&n->total_objects);
4848 			else if (flags & SO_OBJECTS)
4849 				x = atomic_long_read(&n->total_objects) -
4850 					count_partial(n, count_free);
4851 			else
4852 				x = atomic_long_read(&n->nr_slabs);
4853 			total += x;
4854 			nodes[node] += x;
4855 		}
4856 
4857 	} else
4858 #endif
4859 	if (flags & SO_PARTIAL) {
4860 		struct kmem_cache_node *n;
4861 
4862 		for_each_kmem_cache_node(s, node, n) {
4863 			if (flags & SO_TOTAL)
4864 				x = count_partial(n, count_total);
4865 			else if (flags & SO_OBJECTS)
4866 				x = count_partial(n, count_inuse);
4867 			else
4868 				x = n->nr_partial;
4869 			total += x;
4870 			nodes[node] += x;
4871 		}
4872 	}
4873 	x = sprintf(buf, "%lu", total);
4874 #ifdef CONFIG_NUMA
4875 	for (node = 0; node < nr_node_ids; node++)
4876 		if (nodes[node])
4877 			x += sprintf(buf + x, " N%d=%lu",
4878 					node, nodes[node]);
4879 #endif
4880 	put_online_mems();
4881 	kfree(nodes);
4882 	return x + sprintf(buf + x, "\n");
4883 }
4884 
4885 #ifdef CONFIG_SLUB_DEBUG
4886 static int any_slab_objects(struct kmem_cache *s)
4887 {
4888 	int node;
4889 	struct kmem_cache_node *n;
4890 
4891 	for_each_kmem_cache_node(s, node, n)
4892 		if (atomic_long_read(&n->total_objects))
4893 			return 1;
4894 
4895 	return 0;
4896 }
4897 #endif
4898 
4899 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4900 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4901 
4902 struct slab_attribute {
4903 	struct attribute attr;
4904 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4905 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4906 };
4907 
4908 #define SLAB_ATTR_RO(_name) \
4909 	static struct slab_attribute _name##_attr = \
4910 	__ATTR(_name, 0400, _name##_show, NULL)
4911 
4912 #define SLAB_ATTR(_name) \
4913 	static struct slab_attribute _name##_attr =  \
4914 	__ATTR(_name, 0600, _name##_show, _name##_store)
4915 
4916 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4917 {
4918 	return sprintf(buf, "%u\n", s->size);
4919 }
4920 SLAB_ATTR_RO(slab_size);
4921 
4922 static ssize_t align_show(struct kmem_cache *s, char *buf)
4923 {
4924 	return sprintf(buf, "%u\n", s->align);
4925 }
4926 SLAB_ATTR_RO(align);
4927 
4928 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4929 {
4930 	return sprintf(buf, "%u\n", s->object_size);
4931 }
4932 SLAB_ATTR_RO(object_size);
4933 
4934 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4935 {
4936 	return sprintf(buf, "%u\n", oo_objects(s->oo));
4937 }
4938 SLAB_ATTR_RO(objs_per_slab);
4939 
4940 static ssize_t order_store(struct kmem_cache *s,
4941 				const char *buf, size_t length)
4942 {
4943 	unsigned int order;
4944 	int err;
4945 
4946 	err = kstrtouint(buf, 10, &order);
4947 	if (err)
4948 		return err;
4949 
4950 	if (order > slub_max_order || order < slub_min_order)
4951 		return -EINVAL;
4952 
4953 	calculate_sizes(s, order);
4954 	return length;
4955 }
4956 
4957 static ssize_t order_show(struct kmem_cache *s, char *buf)
4958 {
4959 	return sprintf(buf, "%u\n", oo_order(s->oo));
4960 }
4961 SLAB_ATTR(order);
4962 
4963 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4964 {
4965 	return sprintf(buf, "%lu\n", s->min_partial);
4966 }
4967 
4968 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4969 				 size_t length)
4970 {
4971 	unsigned long min;
4972 	int err;
4973 
4974 	err = kstrtoul(buf, 10, &min);
4975 	if (err)
4976 		return err;
4977 
4978 	set_min_partial(s, min);
4979 	return length;
4980 }
4981 SLAB_ATTR(min_partial);
4982 
4983 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4984 {
4985 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4986 }
4987 
4988 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4989 				 size_t length)
4990 {
4991 	unsigned int objects;
4992 	int err;
4993 
4994 	err = kstrtouint(buf, 10, &objects);
4995 	if (err)
4996 		return err;
4997 	if (objects && !kmem_cache_has_cpu_partial(s))
4998 		return -EINVAL;
4999 
5000 	slub_set_cpu_partial(s, objects);
5001 	flush_all(s);
5002 	return length;
5003 }
5004 SLAB_ATTR(cpu_partial);
5005 
5006 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5007 {
5008 	if (!s->ctor)
5009 		return 0;
5010 	return sprintf(buf, "%pS\n", s->ctor);
5011 }
5012 SLAB_ATTR_RO(ctor);
5013 
5014 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5015 {
5016 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5017 }
5018 SLAB_ATTR_RO(aliases);
5019 
5020 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5021 {
5022 	return show_slab_objects(s, buf, SO_PARTIAL);
5023 }
5024 SLAB_ATTR_RO(partial);
5025 
5026 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5027 {
5028 	return show_slab_objects(s, buf, SO_CPU);
5029 }
5030 SLAB_ATTR_RO(cpu_slabs);
5031 
5032 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5033 {
5034 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5035 }
5036 SLAB_ATTR_RO(objects);
5037 
5038 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5039 {
5040 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5041 }
5042 SLAB_ATTR_RO(objects_partial);
5043 
5044 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5045 {
5046 	int objects = 0;
5047 	int pages = 0;
5048 	int cpu;
5049 	int len;
5050 
5051 	for_each_online_cpu(cpu) {
5052 		struct page *page;
5053 
5054 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5055 
5056 		if (page) {
5057 			pages += page->pages;
5058 			objects += page->pobjects;
5059 		}
5060 	}
5061 
5062 	len = sprintf(buf, "%d(%d)", objects, pages);
5063 
5064 #ifdef CONFIG_SMP
5065 	for_each_online_cpu(cpu) {
5066 		struct page *page;
5067 
5068 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5069 
5070 		if (page && len < PAGE_SIZE - 20)
5071 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5072 				page->pobjects, page->pages);
5073 	}
5074 #endif
5075 	return len + sprintf(buf + len, "\n");
5076 }
5077 SLAB_ATTR_RO(slabs_cpu_partial);
5078 
5079 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5080 {
5081 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5082 }
5083 
5084 static ssize_t reclaim_account_store(struct kmem_cache *s,
5085 				const char *buf, size_t length)
5086 {
5087 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5088 	if (buf[0] == '1')
5089 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5090 	return length;
5091 }
5092 SLAB_ATTR(reclaim_account);
5093 
5094 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5095 {
5096 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5097 }
5098 SLAB_ATTR_RO(hwcache_align);
5099 
5100 #ifdef CONFIG_ZONE_DMA
5101 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5102 {
5103 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5104 }
5105 SLAB_ATTR_RO(cache_dma);
5106 #endif
5107 
5108 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5109 {
5110 	return sprintf(buf, "%u\n", s->usersize);
5111 }
5112 SLAB_ATTR_RO(usersize);
5113 
5114 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5115 {
5116 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5117 }
5118 SLAB_ATTR_RO(destroy_by_rcu);
5119 
5120 #ifdef CONFIG_SLUB_DEBUG
5121 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5122 {
5123 	return show_slab_objects(s, buf, SO_ALL);
5124 }
5125 SLAB_ATTR_RO(slabs);
5126 
5127 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5128 {
5129 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5130 }
5131 SLAB_ATTR_RO(total_objects);
5132 
5133 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5134 {
5135 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5136 }
5137 
5138 static ssize_t sanity_checks_store(struct kmem_cache *s,
5139 				const char *buf, size_t length)
5140 {
5141 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5142 	if (buf[0] == '1') {
5143 		s->flags &= ~__CMPXCHG_DOUBLE;
5144 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5145 	}
5146 	return length;
5147 }
5148 SLAB_ATTR(sanity_checks);
5149 
5150 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5151 {
5152 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5153 }
5154 
5155 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5156 							size_t length)
5157 {
5158 	/*
5159 	 * Tracing a merged cache is going to give confusing results
5160 	 * as well as cause other issues like converting a mergeable
5161 	 * cache into an umergeable one.
5162 	 */
5163 	if (s->refcount > 1)
5164 		return -EINVAL;
5165 
5166 	s->flags &= ~SLAB_TRACE;
5167 	if (buf[0] == '1') {
5168 		s->flags &= ~__CMPXCHG_DOUBLE;
5169 		s->flags |= SLAB_TRACE;
5170 	}
5171 	return length;
5172 }
5173 SLAB_ATTR(trace);
5174 
5175 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5176 {
5177 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5178 }
5179 
5180 static ssize_t red_zone_store(struct kmem_cache *s,
5181 				const char *buf, size_t length)
5182 {
5183 	if (any_slab_objects(s))
5184 		return -EBUSY;
5185 
5186 	s->flags &= ~SLAB_RED_ZONE;
5187 	if (buf[0] == '1') {
5188 		s->flags |= SLAB_RED_ZONE;
5189 	}
5190 	calculate_sizes(s, -1);
5191 	return length;
5192 }
5193 SLAB_ATTR(red_zone);
5194 
5195 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5196 {
5197 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5198 }
5199 
5200 static ssize_t poison_store(struct kmem_cache *s,
5201 				const char *buf, size_t length)
5202 {
5203 	if (any_slab_objects(s))
5204 		return -EBUSY;
5205 
5206 	s->flags &= ~SLAB_POISON;
5207 	if (buf[0] == '1') {
5208 		s->flags |= SLAB_POISON;
5209 	}
5210 	calculate_sizes(s, -1);
5211 	return length;
5212 }
5213 SLAB_ATTR(poison);
5214 
5215 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5216 {
5217 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5218 }
5219 
5220 static ssize_t store_user_store(struct kmem_cache *s,
5221 				const char *buf, size_t length)
5222 {
5223 	if (any_slab_objects(s))
5224 		return -EBUSY;
5225 
5226 	s->flags &= ~SLAB_STORE_USER;
5227 	if (buf[0] == '1') {
5228 		s->flags &= ~__CMPXCHG_DOUBLE;
5229 		s->flags |= SLAB_STORE_USER;
5230 	}
5231 	calculate_sizes(s, -1);
5232 	return length;
5233 }
5234 SLAB_ATTR(store_user);
5235 
5236 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5237 {
5238 	return 0;
5239 }
5240 
5241 static ssize_t validate_store(struct kmem_cache *s,
5242 			const char *buf, size_t length)
5243 {
5244 	int ret = -EINVAL;
5245 
5246 	if (buf[0] == '1') {
5247 		ret = validate_slab_cache(s);
5248 		if (ret >= 0)
5249 			ret = length;
5250 	}
5251 	return ret;
5252 }
5253 SLAB_ATTR(validate);
5254 
5255 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5256 {
5257 	if (!(s->flags & SLAB_STORE_USER))
5258 		return -ENOSYS;
5259 	return list_locations(s, buf, TRACK_ALLOC);
5260 }
5261 SLAB_ATTR_RO(alloc_calls);
5262 
5263 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5264 {
5265 	if (!(s->flags & SLAB_STORE_USER))
5266 		return -ENOSYS;
5267 	return list_locations(s, buf, TRACK_FREE);
5268 }
5269 SLAB_ATTR_RO(free_calls);
5270 #endif /* CONFIG_SLUB_DEBUG */
5271 
5272 #ifdef CONFIG_FAILSLAB
5273 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5274 {
5275 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5276 }
5277 
5278 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5279 							size_t length)
5280 {
5281 	if (s->refcount > 1)
5282 		return -EINVAL;
5283 
5284 	s->flags &= ~SLAB_FAILSLAB;
5285 	if (buf[0] == '1')
5286 		s->flags |= SLAB_FAILSLAB;
5287 	return length;
5288 }
5289 SLAB_ATTR(failslab);
5290 #endif
5291 
5292 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5293 {
5294 	return 0;
5295 }
5296 
5297 static ssize_t shrink_store(struct kmem_cache *s,
5298 			const char *buf, size_t length)
5299 {
5300 	if (buf[0] == '1')
5301 		kmem_cache_shrink(s);
5302 	else
5303 		return -EINVAL;
5304 	return length;
5305 }
5306 SLAB_ATTR(shrink);
5307 
5308 #ifdef CONFIG_NUMA
5309 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5310 {
5311 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5312 }
5313 
5314 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5315 				const char *buf, size_t length)
5316 {
5317 	unsigned int ratio;
5318 	int err;
5319 
5320 	err = kstrtouint(buf, 10, &ratio);
5321 	if (err)
5322 		return err;
5323 	if (ratio > 100)
5324 		return -ERANGE;
5325 
5326 	s->remote_node_defrag_ratio = ratio * 10;
5327 
5328 	return length;
5329 }
5330 SLAB_ATTR(remote_node_defrag_ratio);
5331 #endif
5332 
5333 #ifdef CONFIG_SLUB_STATS
5334 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5335 {
5336 	unsigned long sum  = 0;
5337 	int cpu;
5338 	int len;
5339 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5340 
5341 	if (!data)
5342 		return -ENOMEM;
5343 
5344 	for_each_online_cpu(cpu) {
5345 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5346 
5347 		data[cpu] = x;
5348 		sum += x;
5349 	}
5350 
5351 	len = sprintf(buf, "%lu", sum);
5352 
5353 #ifdef CONFIG_SMP
5354 	for_each_online_cpu(cpu) {
5355 		if (data[cpu] && len < PAGE_SIZE - 20)
5356 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5357 	}
5358 #endif
5359 	kfree(data);
5360 	return len + sprintf(buf + len, "\n");
5361 }
5362 
5363 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5364 {
5365 	int cpu;
5366 
5367 	for_each_online_cpu(cpu)
5368 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5369 }
5370 
5371 #define STAT_ATTR(si, text) 					\
5372 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5373 {								\
5374 	return show_stat(s, buf, si);				\
5375 }								\
5376 static ssize_t text##_store(struct kmem_cache *s,		\
5377 				const char *buf, size_t length)	\
5378 {								\
5379 	if (buf[0] != '0')					\
5380 		return -EINVAL;					\
5381 	clear_stat(s, si);					\
5382 	return length;						\
5383 }								\
5384 SLAB_ATTR(text);						\
5385 
5386 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5387 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5388 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5389 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5390 STAT_ATTR(FREE_FROZEN, free_frozen);
5391 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5392 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5393 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5394 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5395 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5396 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5397 STAT_ATTR(FREE_SLAB, free_slab);
5398 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5399 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5400 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5401 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5402 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5403 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5404 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5405 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5406 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5407 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5408 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5409 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5410 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5411 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5412 #endif	/* CONFIG_SLUB_STATS */
5413 
5414 static struct attribute *slab_attrs[] = {
5415 	&slab_size_attr.attr,
5416 	&object_size_attr.attr,
5417 	&objs_per_slab_attr.attr,
5418 	&order_attr.attr,
5419 	&min_partial_attr.attr,
5420 	&cpu_partial_attr.attr,
5421 	&objects_attr.attr,
5422 	&objects_partial_attr.attr,
5423 	&partial_attr.attr,
5424 	&cpu_slabs_attr.attr,
5425 	&ctor_attr.attr,
5426 	&aliases_attr.attr,
5427 	&align_attr.attr,
5428 	&hwcache_align_attr.attr,
5429 	&reclaim_account_attr.attr,
5430 	&destroy_by_rcu_attr.attr,
5431 	&shrink_attr.attr,
5432 	&slabs_cpu_partial_attr.attr,
5433 #ifdef CONFIG_SLUB_DEBUG
5434 	&total_objects_attr.attr,
5435 	&slabs_attr.attr,
5436 	&sanity_checks_attr.attr,
5437 	&trace_attr.attr,
5438 	&red_zone_attr.attr,
5439 	&poison_attr.attr,
5440 	&store_user_attr.attr,
5441 	&validate_attr.attr,
5442 	&alloc_calls_attr.attr,
5443 	&free_calls_attr.attr,
5444 #endif
5445 #ifdef CONFIG_ZONE_DMA
5446 	&cache_dma_attr.attr,
5447 #endif
5448 #ifdef CONFIG_NUMA
5449 	&remote_node_defrag_ratio_attr.attr,
5450 #endif
5451 #ifdef CONFIG_SLUB_STATS
5452 	&alloc_fastpath_attr.attr,
5453 	&alloc_slowpath_attr.attr,
5454 	&free_fastpath_attr.attr,
5455 	&free_slowpath_attr.attr,
5456 	&free_frozen_attr.attr,
5457 	&free_add_partial_attr.attr,
5458 	&free_remove_partial_attr.attr,
5459 	&alloc_from_partial_attr.attr,
5460 	&alloc_slab_attr.attr,
5461 	&alloc_refill_attr.attr,
5462 	&alloc_node_mismatch_attr.attr,
5463 	&free_slab_attr.attr,
5464 	&cpuslab_flush_attr.attr,
5465 	&deactivate_full_attr.attr,
5466 	&deactivate_empty_attr.attr,
5467 	&deactivate_to_head_attr.attr,
5468 	&deactivate_to_tail_attr.attr,
5469 	&deactivate_remote_frees_attr.attr,
5470 	&deactivate_bypass_attr.attr,
5471 	&order_fallback_attr.attr,
5472 	&cmpxchg_double_fail_attr.attr,
5473 	&cmpxchg_double_cpu_fail_attr.attr,
5474 	&cpu_partial_alloc_attr.attr,
5475 	&cpu_partial_free_attr.attr,
5476 	&cpu_partial_node_attr.attr,
5477 	&cpu_partial_drain_attr.attr,
5478 #endif
5479 #ifdef CONFIG_FAILSLAB
5480 	&failslab_attr.attr,
5481 #endif
5482 	&usersize_attr.attr,
5483 
5484 	NULL
5485 };
5486 
5487 static const struct attribute_group slab_attr_group = {
5488 	.attrs = slab_attrs,
5489 };
5490 
5491 static ssize_t slab_attr_show(struct kobject *kobj,
5492 				struct attribute *attr,
5493 				char *buf)
5494 {
5495 	struct slab_attribute *attribute;
5496 	struct kmem_cache *s;
5497 	int err;
5498 
5499 	attribute = to_slab_attr(attr);
5500 	s = to_slab(kobj);
5501 
5502 	if (!attribute->show)
5503 		return -EIO;
5504 
5505 	err = attribute->show(s, buf);
5506 
5507 	return err;
5508 }
5509 
5510 static ssize_t slab_attr_store(struct kobject *kobj,
5511 				struct attribute *attr,
5512 				const char *buf, size_t len)
5513 {
5514 	struct slab_attribute *attribute;
5515 	struct kmem_cache *s;
5516 	int err;
5517 
5518 	attribute = to_slab_attr(attr);
5519 	s = to_slab(kobj);
5520 
5521 	if (!attribute->store)
5522 		return -EIO;
5523 
5524 	err = attribute->store(s, buf, len);
5525 #ifdef CONFIG_MEMCG
5526 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5527 		struct kmem_cache *c;
5528 
5529 		mutex_lock(&slab_mutex);
5530 		if (s->max_attr_size < len)
5531 			s->max_attr_size = len;
5532 
5533 		/*
5534 		 * This is a best effort propagation, so this function's return
5535 		 * value will be determined by the parent cache only. This is
5536 		 * basically because not all attributes will have a well
5537 		 * defined semantics for rollbacks - most of the actions will
5538 		 * have permanent effects.
5539 		 *
5540 		 * Returning the error value of any of the children that fail
5541 		 * is not 100 % defined, in the sense that users seeing the
5542 		 * error code won't be able to know anything about the state of
5543 		 * the cache.
5544 		 *
5545 		 * Only returning the error code for the parent cache at least
5546 		 * has well defined semantics. The cache being written to
5547 		 * directly either failed or succeeded, in which case we loop
5548 		 * through the descendants with best-effort propagation.
5549 		 */
5550 		for_each_memcg_cache(c, s)
5551 			attribute->store(c, buf, len);
5552 		mutex_unlock(&slab_mutex);
5553 	}
5554 #endif
5555 	return err;
5556 }
5557 
5558 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5559 {
5560 #ifdef CONFIG_MEMCG
5561 	int i;
5562 	char *buffer = NULL;
5563 	struct kmem_cache *root_cache;
5564 
5565 	if (is_root_cache(s))
5566 		return;
5567 
5568 	root_cache = s->memcg_params.root_cache;
5569 
5570 	/*
5571 	 * This mean this cache had no attribute written. Therefore, no point
5572 	 * in copying default values around
5573 	 */
5574 	if (!root_cache->max_attr_size)
5575 		return;
5576 
5577 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5578 		char mbuf[64];
5579 		char *buf;
5580 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5581 		ssize_t len;
5582 
5583 		if (!attr || !attr->store || !attr->show)
5584 			continue;
5585 
5586 		/*
5587 		 * It is really bad that we have to allocate here, so we will
5588 		 * do it only as a fallback. If we actually allocate, though,
5589 		 * we can just use the allocated buffer until the end.
5590 		 *
5591 		 * Most of the slub attributes will tend to be very small in
5592 		 * size, but sysfs allows buffers up to a page, so they can
5593 		 * theoretically happen.
5594 		 */
5595 		if (buffer)
5596 			buf = buffer;
5597 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5598 			buf = mbuf;
5599 		else {
5600 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5601 			if (WARN_ON(!buffer))
5602 				continue;
5603 			buf = buffer;
5604 		}
5605 
5606 		len = attr->show(root_cache, buf);
5607 		if (len > 0)
5608 			attr->store(s, buf, len);
5609 	}
5610 
5611 	if (buffer)
5612 		free_page((unsigned long)buffer);
5613 #endif	/* CONFIG_MEMCG */
5614 }
5615 
5616 static void kmem_cache_release(struct kobject *k)
5617 {
5618 	slab_kmem_cache_release(to_slab(k));
5619 }
5620 
5621 static const struct sysfs_ops slab_sysfs_ops = {
5622 	.show = slab_attr_show,
5623 	.store = slab_attr_store,
5624 };
5625 
5626 static struct kobj_type slab_ktype = {
5627 	.sysfs_ops = &slab_sysfs_ops,
5628 	.release = kmem_cache_release,
5629 };
5630 
5631 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5632 {
5633 	struct kobj_type *ktype = get_ktype(kobj);
5634 
5635 	if (ktype == &slab_ktype)
5636 		return 1;
5637 	return 0;
5638 }
5639 
5640 static const struct kset_uevent_ops slab_uevent_ops = {
5641 	.filter = uevent_filter,
5642 };
5643 
5644 static struct kset *slab_kset;
5645 
5646 static inline struct kset *cache_kset(struct kmem_cache *s)
5647 {
5648 #ifdef CONFIG_MEMCG
5649 	if (!is_root_cache(s))
5650 		return s->memcg_params.root_cache->memcg_kset;
5651 #endif
5652 	return slab_kset;
5653 }
5654 
5655 #define ID_STR_LENGTH 64
5656 
5657 /* Create a unique string id for a slab cache:
5658  *
5659  * Format	:[flags-]size
5660  */
5661 static char *create_unique_id(struct kmem_cache *s)
5662 {
5663 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5664 	char *p = name;
5665 
5666 	BUG_ON(!name);
5667 
5668 	*p++ = ':';
5669 	/*
5670 	 * First flags affecting slabcache operations. We will only
5671 	 * get here for aliasable slabs so we do not need to support
5672 	 * too many flags. The flags here must cover all flags that
5673 	 * are matched during merging to guarantee that the id is
5674 	 * unique.
5675 	 */
5676 	if (s->flags & SLAB_CACHE_DMA)
5677 		*p++ = 'd';
5678 	if (s->flags & SLAB_CACHE_DMA32)
5679 		*p++ = 'D';
5680 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5681 		*p++ = 'a';
5682 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5683 		*p++ = 'F';
5684 	if (s->flags & SLAB_ACCOUNT)
5685 		*p++ = 'A';
5686 	if (p != name + 1)
5687 		*p++ = '-';
5688 	p += sprintf(p, "%07u", s->size);
5689 
5690 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5691 	return name;
5692 }
5693 
5694 static void sysfs_slab_remove_workfn(struct work_struct *work)
5695 {
5696 	struct kmem_cache *s =
5697 		container_of(work, struct kmem_cache, kobj_remove_work);
5698 
5699 	if (!s->kobj.state_in_sysfs)
5700 		/*
5701 		 * For a memcg cache, this may be called during
5702 		 * deactivation and again on shutdown.  Remove only once.
5703 		 * A cache is never shut down before deactivation is
5704 		 * complete, so no need to worry about synchronization.
5705 		 */
5706 		goto out;
5707 
5708 #ifdef CONFIG_MEMCG
5709 	kset_unregister(s->memcg_kset);
5710 #endif
5711 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5712 out:
5713 	kobject_put(&s->kobj);
5714 }
5715 
5716 static int sysfs_slab_add(struct kmem_cache *s)
5717 {
5718 	int err;
5719 	const char *name;
5720 	struct kset *kset = cache_kset(s);
5721 	int unmergeable = slab_unmergeable(s);
5722 
5723 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5724 
5725 	if (!kset) {
5726 		kobject_init(&s->kobj, &slab_ktype);
5727 		return 0;
5728 	}
5729 
5730 	if (!unmergeable && disable_higher_order_debug &&
5731 			(slub_debug & DEBUG_METADATA_FLAGS))
5732 		unmergeable = 1;
5733 
5734 	if (unmergeable) {
5735 		/*
5736 		 * Slabcache can never be merged so we can use the name proper.
5737 		 * This is typically the case for debug situations. In that
5738 		 * case we can catch duplicate names easily.
5739 		 */
5740 		sysfs_remove_link(&slab_kset->kobj, s->name);
5741 		name = s->name;
5742 	} else {
5743 		/*
5744 		 * Create a unique name for the slab as a target
5745 		 * for the symlinks.
5746 		 */
5747 		name = create_unique_id(s);
5748 	}
5749 
5750 	s->kobj.kset = kset;
5751 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5752 	if (err)
5753 		goto out;
5754 
5755 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5756 	if (err)
5757 		goto out_del_kobj;
5758 
5759 #ifdef CONFIG_MEMCG
5760 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5761 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5762 		if (!s->memcg_kset) {
5763 			err = -ENOMEM;
5764 			goto out_del_kobj;
5765 		}
5766 	}
5767 #endif
5768 
5769 	kobject_uevent(&s->kobj, KOBJ_ADD);
5770 	if (!unmergeable) {
5771 		/* Setup first alias */
5772 		sysfs_slab_alias(s, s->name);
5773 	}
5774 out:
5775 	if (!unmergeable)
5776 		kfree(name);
5777 	return err;
5778 out_del_kobj:
5779 	kobject_del(&s->kobj);
5780 	goto out;
5781 }
5782 
5783 static void sysfs_slab_remove(struct kmem_cache *s)
5784 {
5785 	if (slab_state < FULL)
5786 		/*
5787 		 * Sysfs has not been setup yet so no need to remove the
5788 		 * cache from sysfs.
5789 		 */
5790 		return;
5791 
5792 	kobject_get(&s->kobj);
5793 	schedule_work(&s->kobj_remove_work);
5794 }
5795 
5796 void sysfs_slab_unlink(struct kmem_cache *s)
5797 {
5798 	if (slab_state >= FULL)
5799 		kobject_del(&s->kobj);
5800 }
5801 
5802 void sysfs_slab_release(struct kmem_cache *s)
5803 {
5804 	if (slab_state >= FULL)
5805 		kobject_put(&s->kobj);
5806 }
5807 
5808 /*
5809  * Need to buffer aliases during bootup until sysfs becomes
5810  * available lest we lose that information.
5811  */
5812 struct saved_alias {
5813 	struct kmem_cache *s;
5814 	const char *name;
5815 	struct saved_alias *next;
5816 };
5817 
5818 static struct saved_alias *alias_list;
5819 
5820 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5821 {
5822 	struct saved_alias *al;
5823 
5824 	if (slab_state == FULL) {
5825 		/*
5826 		 * If we have a leftover link then remove it.
5827 		 */
5828 		sysfs_remove_link(&slab_kset->kobj, name);
5829 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5830 	}
5831 
5832 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5833 	if (!al)
5834 		return -ENOMEM;
5835 
5836 	al->s = s;
5837 	al->name = name;
5838 	al->next = alias_list;
5839 	alias_list = al;
5840 	return 0;
5841 }
5842 
5843 static int __init slab_sysfs_init(void)
5844 {
5845 	struct kmem_cache *s;
5846 	int err;
5847 
5848 	mutex_lock(&slab_mutex);
5849 
5850 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5851 	if (!slab_kset) {
5852 		mutex_unlock(&slab_mutex);
5853 		pr_err("Cannot register slab subsystem.\n");
5854 		return -ENOSYS;
5855 	}
5856 
5857 	slab_state = FULL;
5858 
5859 	list_for_each_entry(s, &slab_caches, list) {
5860 		err = sysfs_slab_add(s);
5861 		if (err)
5862 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5863 			       s->name);
5864 	}
5865 
5866 	while (alias_list) {
5867 		struct saved_alias *al = alias_list;
5868 
5869 		alias_list = alias_list->next;
5870 		err = sysfs_slab_alias(al->s, al->name);
5871 		if (err)
5872 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5873 			       al->name);
5874 		kfree(al);
5875 	}
5876 
5877 	mutex_unlock(&slab_mutex);
5878 	resiliency_test();
5879 	return 0;
5880 }
5881 
5882 __initcall(slab_sysfs_init);
5883 #endif /* CONFIG_SYSFS */
5884 
5885 /*
5886  * The /proc/slabinfo ABI
5887  */
5888 #ifdef CONFIG_SLUB_DEBUG
5889 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5890 {
5891 	unsigned long nr_slabs = 0;
5892 	unsigned long nr_objs = 0;
5893 	unsigned long nr_free = 0;
5894 	int node;
5895 	struct kmem_cache_node *n;
5896 
5897 	for_each_kmem_cache_node(s, node, n) {
5898 		nr_slabs += node_nr_slabs(n);
5899 		nr_objs += node_nr_objs(n);
5900 		nr_free += count_partial(n, count_free);
5901 	}
5902 
5903 	sinfo->active_objs = nr_objs - nr_free;
5904 	sinfo->num_objs = nr_objs;
5905 	sinfo->active_slabs = nr_slabs;
5906 	sinfo->num_slabs = nr_slabs;
5907 	sinfo->objects_per_slab = oo_objects(s->oo);
5908 	sinfo->cache_order = oo_order(s->oo);
5909 }
5910 
5911 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5912 {
5913 }
5914 
5915 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5916 		       size_t count, loff_t *ppos)
5917 {
5918 	return -EIO;
5919 }
5920 #endif /* CONFIG_SLUB_DEBUG */
5921