1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/kmemcheck.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/memory.h> 32 #include <linux/math64.h> 33 #include <linux/fault-inject.h> 34 #include <linux/stacktrace.h> 35 #include <linux/prefetch.h> 36 #include <linux/memcontrol.h> 37 #include <linux/random.h> 38 39 #include <trace/events/kmem.h> 40 41 #include "internal.h" 42 43 /* 44 * Lock order: 45 * 1. slab_mutex (Global Mutex) 46 * 2. node->list_lock 47 * 3. slab_lock(page) (Only on some arches and for debugging) 48 * 49 * slab_mutex 50 * 51 * The role of the slab_mutex is to protect the list of all the slabs 52 * and to synchronize major metadata changes to slab cache structures. 53 * 54 * The slab_lock is only used for debugging and on arches that do not 55 * have the ability to do a cmpxchg_double. It only protects the second 56 * double word in the page struct. Meaning 57 * A. page->freelist -> List of object free in a page 58 * B. page->counters -> Counters of objects 59 * C. page->frozen -> frozen state 60 * 61 * If a slab is frozen then it is exempt from list management. It is not 62 * on any list. The processor that froze the slab is the one who can 63 * perform list operations on the page. Other processors may put objects 64 * onto the freelist but the processor that froze the slab is the only 65 * one that can retrieve the objects from the page's freelist. 66 * 67 * The list_lock protects the partial and full list on each node and 68 * the partial slab counter. If taken then no new slabs may be added or 69 * removed from the lists nor make the number of partial slabs be modified. 70 * (Note that the total number of slabs is an atomic value that may be 71 * modified without taking the list lock). 72 * 73 * The list_lock is a centralized lock and thus we avoid taking it as 74 * much as possible. As long as SLUB does not have to handle partial 75 * slabs, operations can continue without any centralized lock. F.e. 76 * allocating a long series of objects that fill up slabs does not require 77 * the list lock. 78 * Interrupts are disabled during allocation and deallocation in order to 79 * make the slab allocator safe to use in the context of an irq. In addition 80 * interrupts are disabled to ensure that the processor does not change 81 * while handling per_cpu slabs, due to kernel preemption. 82 * 83 * SLUB assigns one slab for allocation to each processor. 84 * Allocations only occur from these slabs called cpu slabs. 85 * 86 * Slabs with free elements are kept on a partial list and during regular 87 * operations no list for full slabs is used. If an object in a full slab is 88 * freed then the slab will show up again on the partial lists. 89 * We track full slabs for debugging purposes though because otherwise we 90 * cannot scan all objects. 91 * 92 * Slabs are freed when they become empty. Teardown and setup is 93 * minimal so we rely on the page allocators per cpu caches for 94 * fast frees and allocs. 95 * 96 * Overloading of page flags that are otherwise used for LRU management. 97 * 98 * PageActive The slab is frozen and exempt from list processing. 99 * This means that the slab is dedicated to a purpose 100 * such as satisfying allocations for a specific 101 * processor. Objects may be freed in the slab while 102 * it is frozen but slab_free will then skip the usual 103 * list operations. It is up to the processor holding 104 * the slab to integrate the slab into the slab lists 105 * when the slab is no longer needed. 106 * 107 * One use of this flag is to mark slabs that are 108 * used for allocations. Then such a slab becomes a cpu 109 * slab. The cpu slab may be equipped with an additional 110 * freelist that allows lockless access to 111 * free objects in addition to the regular freelist 112 * that requires the slab lock. 113 * 114 * PageError Slab requires special handling due to debug 115 * options set. This moves slab handling out of 116 * the fast path and disables lockless freelists. 117 */ 118 119 static inline int kmem_cache_debug(struct kmem_cache *s) 120 { 121 #ifdef CONFIG_SLUB_DEBUG 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 123 #else 124 return 0; 125 #endif 126 } 127 128 void *fixup_red_left(struct kmem_cache *s, void *p) 129 { 130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 131 p += s->red_left_pad; 132 133 return p; 134 } 135 136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 137 { 138 #ifdef CONFIG_SLUB_CPU_PARTIAL 139 return !kmem_cache_debug(s); 140 #else 141 return false; 142 #endif 143 } 144 145 /* 146 * Issues still to be resolved: 147 * 148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 149 * 150 * - Variable sizing of the per node arrays 151 */ 152 153 /* Enable to test recovery from slab corruption on boot */ 154 #undef SLUB_RESILIENCY_TEST 155 156 /* Enable to log cmpxchg failures */ 157 #undef SLUB_DEBUG_CMPXCHG 158 159 /* 160 * Mininum number of partial slabs. These will be left on the partial 161 * lists even if they are empty. kmem_cache_shrink may reclaim them. 162 */ 163 #define MIN_PARTIAL 5 164 165 /* 166 * Maximum number of desirable partial slabs. 167 * The existence of more partial slabs makes kmem_cache_shrink 168 * sort the partial list by the number of objects in use. 169 */ 170 #define MAX_PARTIAL 10 171 172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 173 SLAB_POISON | SLAB_STORE_USER) 174 175 /* 176 * These debug flags cannot use CMPXCHG because there might be consistency 177 * issues when checking or reading debug information 178 */ 179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 180 SLAB_TRACE) 181 182 183 /* 184 * Debugging flags that require metadata to be stored in the slab. These get 185 * disabled when slub_debug=O is used and a cache's min order increases with 186 * metadata. 187 */ 188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 189 190 #define OO_SHIFT 16 191 #define OO_MASK ((1 << OO_SHIFT) - 1) 192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 193 194 /* Internal SLUB flags */ 195 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 196 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 197 198 /* 199 * Tracking user of a slab. 200 */ 201 #define TRACK_ADDRS_COUNT 16 202 struct track { 203 unsigned long addr; /* Called from address */ 204 #ifdef CONFIG_STACKTRACE 205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 206 #endif 207 int cpu; /* Was running on cpu */ 208 int pid; /* Pid context */ 209 unsigned long when; /* When did the operation occur */ 210 }; 211 212 enum track_item { TRACK_ALLOC, TRACK_FREE }; 213 214 #ifdef CONFIG_SYSFS 215 static int sysfs_slab_add(struct kmem_cache *); 216 static int sysfs_slab_alias(struct kmem_cache *, const char *); 217 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 218 static void sysfs_slab_remove(struct kmem_cache *s); 219 #else 220 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 221 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 222 { return 0; } 223 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 224 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 225 #endif 226 227 static inline void stat(const struct kmem_cache *s, enum stat_item si) 228 { 229 #ifdef CONFIG_SLUB_STATS 230 /* 231 * The rmw is racy on a preemptible kernel but this is acceptable, so 232 * avoid this_cpu_add()'s irq-disable overhead. 233 */ 234 raw_cpu_inc(s->cpu_slab->stat[si]); 235 #endif 236 } 237 238 /******************************************************************** 239 * Core slab cache functions 240 *******************************************************************/ 241 242 /* 243 * Returns freelist pointer (ptr). With hardening, this is obfuscated 244 * with an XOR of the address where the pointer is held and a per-cache 245 * random number. 246 */ 247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 248 unsigned long ptr_addr) 249 { 250 #ifdef CONFIG_SLAB_FREELIST_HARDENED 251 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr); 252 #else 253 return ptr; 254 #endif 255 } 256 257 /* Returns the freelist pointer recorded at location ptr_addr. */ 258 static inline void *freelist_dereference(const struct kmem_cache *s, 259 void *ptr_addr) 260 { 261 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 262 (unsigned long)ptr_addr); 263 } 264 265 static inline void *get_freepointer(struct kmem_cache *s, void *object) 266 { 267 return freelist_dereference(s, object + s->offset); 268 } 269 270 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 271 { 272 if (object) 273 prefetch(freelist_dereference(s, object + s->offset)); 274 } 275 276 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 277 { 278 unsigned long freepointer_addr; 279 void *p; 280 281 if (!debug_pagealloc_enabled()) 282 return get_freepointer(s, object); 283 284 freepointer_addr = (unsigned long)object + s->offset; 285 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 286 return freelist_ptr(s, p, freepointer_addr); 287 } 288 289 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 290 { 291 unsigned long freeptr_addr = (unsigned long)object + s->offset; 292 293 #ifdef CONFIG_SLAB_FREELIST_HARDENED 294 BUG_ON(object == fp); /* naive detection of double free or corruption */ 295 #endif 296 297 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 298 } 299 300 /* Loop over all objects in a slab */ 301 #define for_each_object(__p, __s, __addr, __objects) \ 302 for (__p = fixup_red_left(__s, __addr); \ 303 __p < (__addr) + (__objects) * (__s)->size; \ 304 __p += (__s)->size) 305 306 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 307 for (__p = fixup_red_left(__s, __addr), __idx = 1; \ 308 __idx <= __objects; \ 309 __p += (__s)->size, __idx++) 310 311 /* Determine object index from a given position */ 312 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 313 { 314 return (p - addr) / s->size; 315 } 316 317 static inline int order_objects(int order, unsigned long size, int reserved) 318 { 319 return ((PAGE_SIZE << order) - reserved) / size; 320 } 321 322 static inline struct kmem_cache_order_objects oo_make(int order, 323 unsigned long size, int reserved) 324 { 325 struct kmem_cache_order_objects x = { 326 (order << OO_SHIFT) + order_objects(order, size, reserved) 327 }; 328 329 return x; 330 } 331 332 static inline int oo_order(struct kmem_cache_order_objects x) 333 { 334 return x.x >> OO_SHIFT; 335 } 336 337 static inline int oo_objects(struct kmem_cache_order_objects x) 338 { 339 return x.x & OO_MASK; 340 } 341 342 /* 343 * Per slab locking using the pagelock 344 */ 345 static __always_inline void slab_lock(struct page *page) 346 { 347 VM_BUG_ON_PAGE(PageTail(page), page); 348 bit_spin_lock(PG_locked, &page->flags); 349 } 350 351 static __always_inline void slab_unlock(struct page *page) 352 { 353 VM_BUG_ON_PAGE(PageTail(page), page); 354 __bit_spin_unlock(PG_locked, &page->flags); 355 } 356 357 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 358 { 359 struct page tmp; 360 tmp.counters = counters_new; 361 /* 362 * page->counters can cover frozen/inuse/objects as well 363 * as page->_refcount. If we assign to ->counters directly 364 * we run the risk of losing updates to page->_refcount, so 365 * be careful and only assign to the fields we need. 366 */ 367 page->frozen = tmp.frozen; 368 page->inuse = tmp.inuse; 369 page->objects = tmp.objects; 370 } 371 372 /* Interrupts must be disabled (for the fallback code to work right) */ 373 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 374 void *freelist_old, unsigned long counters_old, 375 void *freelist_new, unsigned long counters_new, 376 const char *n) 377 { 378 VM_BUG_ON(!irqs_disabled()); 379 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 380 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 381 if (s->flags & __CMPXCHG_DOUBLE) { 382 if (cmpxchg_double(&page->freelist, &page->counters, 383 freelist_old, counters_old, 384 freelist_new, counters_new)) 385 return true; 386 } else 387 #endif 388 { 389 slab_lock(page); 390 if (page->freelist == freelist_old && 391 page->counters == counters_old) { 392 page->freelist = freelist_new; 393 set_page_slub_counters(page, counters_new); 394 slab_unlock(page); 395 return true; 396 } 397 slab_unlock(page); 398 } 399 400 cpu_relax(); 401 stat(s, CMPXCHG_DOUBLE_FAIL); 402 403 #ifdef SLUB_DEBUG_CMPXCHG 404 pr_info("%s %s: cmpxchg double redo ", n, s->name); 405 #endif 406 407 return false; 408 } 409 410 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 411 void *freelist_old, unsigned long counters_old, 412 void *freelist_new, unsigned long counters_new, 413 const char *n) 414 { 415 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 416 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 417 if (s->flags & __CMPXCHG_DOUBLE) { 418 if (cmpxchg_double(&page->freelist, &page->counters, 419 freelist_old, counters_old, 420 freelist_new, counters_new)) 421 return true; 422 } else 423 #endif 424 { 425 unsigned long flags; 426 427 local_irq_save(flags); 428 slab_lock(page); 429 if (page->freelist == freelist_old && 430 page->counters == counters_old) { 431 page->freelist = freelist_new; 432 set_page_slub_counters(page, counters_new); 433 slab_unlock(page); 434 local_irq_restore(flags); 435 return true; 436 } 437 slab_unlock(page); 438 local_irq_restore(flags); 439 } 440 441 cpu_relax(); 442 stat(s, CMPXCHG_DOUBLE_FAIL); 443 444 #ifdef SLUB_DEBUG_CMPXCHG 445 pr_info("%s %s: cmpxchg double redo ", n, s->name); 446 #endif 447 448 return false; 449 } 450 451 #ifdef CONFIG_SLUB_DEBUG 452 /* 453 * Determine a map of object in use on a page. 454 * 455 * Node listlock must be held to guarantee that the page does 456 * not vanish from under us. 457 */ 458 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 459 { 460 void *p; 461 void *addr = page_address(page); 462 463 for (p = page->freelist; p; p = get_freepointer(s, p)) 464 set_bit(slab_index(p, s, addr), map); 465 } 466 467 static inline int size_from_object(struct kmem_cache *s) 468 { 469 if (s->flags & SLAB_RED_ZONE) 470 return s->size - s->red_left_pad; 471 472 return s->size; 473 } 474 475 static inline void *restore_red_left(struct kmem_cache *s, void *p) 476 { 477 if (s->flags & SLAB_RED_ZONE) 478 p -= s->red_left_pad; 479 480 return p; 481 } 482 483 /* 484 * Debug settings: 485 */ 486 #if defined(CONFIG_SLUB_DEBUG_ON) 487 static int slub_debug = DEBUG_DEFAULT_FLAGS; 488 #else 489 static int slub_debug; 490 #endif 491 492 static char *slub_debug_slabs; 493 static int disable_higher_order_debug; 494 495 /* 496 * slub is about to manipulate internal object metadata. This memory lies 497 * outside the range of the allocated object, so accessing it would normally 498 * be reported by kasan as a bounds error. metadata_access_enable() is used 499 * to tell kasan that these accesses are OK. 500 */ 501 static inline void metadata_access_enable(void) 502 { 503 kasan_disable_current(); 504 } 505 506 static inline void metadata_access_disable(void) 507 { 508 kasan_enable_current(); 509 } 510 511 /* 512 * Object debugging 513 */ 514 515 /* Verify that a pointer has an address that is valid within a slab page */ 516 static inline int check_valid_pointer(struct kmem_cache *s, 517 struct page *page, void *object) 518 { 519 void *base; 520 521 if (!object) 522 return 1; 523 524 base = page_address(page); 525 object = restore_red_left(s, object); 526 if (object < base || object >= base + page->objects * s->size || 527 (object - base) % s->size) { 528 return 0; 529 } 530 531 return 1; 532 } 533 534 static void print_section(char *level, char *text, u8 *addr, 535 unsigned int length) 536 { 537 metadata_access_enable(); 538 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 539 length, 1); 540 metadata_access_disable(); 541 } 542 543 static struct track *get_track(struct kmem_cache *s, void *object, 544 enum track_item alloc) 545 { 546 struct track *p; 547 548 if (s->offset) 549 p = object + s->offset + sizeof(void *); 550 else 551 p = object + s->inuse; 552 553 return p + alloc; 554 } 555 556 static void set_track(struct kmem_cache *s, void *object, 557 enum track_item alloc, unsigned long addr) 558 { 559 struct track *p = get_track(s, object, alloc); 560 561 if (addr) { 562 #ifdef CONFIG_STACKTRACE 563 struct stack_trace trace; 564 int i; 565 566 trace.nr_entries = 0; 567 trace.max_entries = TRACK_ADDRS_COUNT; 568 trace.entries = p->addrs; 569 trace.skip = 3; 570 metadata_access_enable(); 571 save_stack_trace(&trace); 572 metadata_access_disable(); 573 574 /* See rant in lockdep.c */ 575 if (trace.nr_entries != 0 && 576 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 577 trace.nr_entries--; 578 579 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 580 p->addrs[i] = 0; 581 #endif 582 p->addr = addr; 583 p->cpu = smp_processor_id(); 584 p->pid = current->pid; 585 p->when = jiffies; 586 } else 587 memset(p, 0, sizeof(struct track)); 588 } 589 590 static void init_tracking(struct kmem_cache *s, void *object) 591 { 592 if (!(s->flags & SLAB_STORE_USER)) 593 return; 594 595 set_track(s, object, TRACK_FREE, 0UL); 596 set_track(s, object, TRACK_ALLOC, 0UL); 597 } 598 599 static void print_track(const char *s, struct track *t) 600 { 601 if (!t->addr) 602 return; 603 604 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 605 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 606 #ifdef CONFIG_STACKTRACE 607 { 608 int i; 609 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 610 if (t->addrs[i]) 611 pr_err("\t%pS\n", (void *)t->addrs[i]); 612 else 613 break; 614 } 615 #endif 616 } 617 618 static void print_tracking(struct kmem_cache *s, void *object) 619 { 620 if (!(s->flags & SLAB_STORE_USER)) 621 return; 622 623 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 624 print_track("Freed", get_track(s, object, TRACK_FREE)); 625 } 626 627 static void print_page_info(struct page *page) 628 { 629 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 630 page, page->objects, page->inuse, page->freelist, page->flags); 631 632 } 633 634 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 635 { 636 struct va_format vaf; 637 va_list args; 638 639 va_start(args, fmt); 640 vaf.fmt = fmt; 641 vaf.va = &args; 642 pr_err("=============================================================================\n"); 643 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 644 pr_err("-----------------------------------------------------------------------------\n\n"); 645 646 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 647 va_end(args); 648 } 649 650 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 651 { 652 struct va_format vaf; 653 va_list args; 654 655 va_start(args, fmt); 656 vaf.fmt = fmt; 657 vaf.va = &args; 658 pr_err("FIX %s: %pV\n", s->name, &vaf); 659 va_end(args); 660 } 661 662 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 663 { 664 unsigned int off; /* Offset of last byte */ 665 u8 *addr = page_address(page); 666 667 print_tracking(s, p); 668 669 print_page_info(page); 670 671 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 672 p, p - addr, get_freepointer(s, p)); 673 674 if (s->flags & SLAB_RED_ZONE) 675 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 676 s->red_left_pad); 677 else if (p > addr + 16) 678 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 679 680 print_section(KERN_ERR, "Object ", p, 681 min_t(unsigned long, s->object_size, PAGE_SIZE)); 682 if (s->flags & SLAB_RED_ZONE) 683 print_section(KERN_ERR, "Redzone ", p + s->object_size, 684 s->inuse - s->object_size); 685 686 if (s->offset) 687 off = s->offset + sizeof(void *); 688 else 689 off = s->inuse; 690 691 if (s->flags & SLAB_STORE_USER) 692 off += 2 * sizeof(struct track); 693 694 off += kasan_metadata_size(s); 695 696 if (off != size_from_object(s)) 697 /* Beginning of the filler is the free pointer */ 698 print_section(KERN_ERR, "Padding ", p + off, 699 size_from_object(s) - off); 700 701 dump_stack(); 702 } 703 704 void object_err(struct kmem_cache *s, struct page *page, 705 u8 *object, char *reason) 706 { 707 slab_bug(s, "%s", reason); 708 print_trailer(s, page, object); 709 } 710 711 static void slab_err(struct kmem_cache *s, struct page *page, 712 const char *fmt, ...) 713 { 714 va_list args; 715 char buf[100]; 716 717 va_start(args, fmt); 718 vsnprintf(buf, sizeof(buf), fmt, args); 719 va_end(args); 720 slab_bug(s, "%s", buf); 721 print_page_info(page); 722 dump_stack(); 723 } 724 725 static void init_object(struct kmem_cache *s, void *object, u8 val) 726 { 727 u8 *p = object; 728 729 if (s->flags & SLAB_RED_ZONE) 730 memset(p - s->red_left_pad, val, s->red_left_pad); 731 732 if (s->flags & __OBJECT_POISON) { 733 memset(p, POISON_FREE, s->object_size - 1); 734 p[s->object_size - 1] = POISON_END; 735 } 736 737 if (s->flags & SLAB_RED_ZONE) 738 memset(p + s->object_size, val, s->inuse - s->object_size); 739 } 740 741 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 742 void *from, void *to) 743 { 744 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 745 memset(from, data, to - from); 746 } 747 748 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 749 u8 *object, char *what, 750 u8 *start, unsigned int value, unsigned int bytes) 751 { 752 u8 *fault; 753 u8 *end; 754 755 metadata_access_enable(); 756 fault = memchr_inv(start, value, bytes); 757 metadata_access_disable(); 758 if (!fault) 759 return 1; 760 761 end = start + bytes; 762 while (end > fault && end[-1] == value) 763 end--; 764 765 slab_bug(s, "%s overwritten", what); 766 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 767 fault, end - 1, fault[0], value); 768 print_trailer(s, page, object); 769 770 restore_bytes(s, what, value, fault, end); 771 return 0; 772 } 773 774 /* 775 * Object layout: 776 * 777 * object address 778 * Bytes of the object to be managed. 779 * If the freepointer may overlay the object then the free 780 * pointer is the first word of the object. 781 * 782 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 783 * 0xa5 (POISON_END) 784 * 785 * object + s->object_size 786 * Padding to reach word boundary. This is also used for Redzoning. 787 * Padding is extended by another word if Redzoning is enabled and 788 * object_size == inuse. 789 * 790 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 791 * 0xcc (RED_ACTIVE) for objects in use. 792 * 793 * object + s->inuse 794 * Meta data starts here. 795 * 796 * A. Free pointer (if we cannot overwrite object on free) 797 * B. Tracking data for SLAB_STORE_USER 798 * C. Padding to reach required alignment boundary or at mininum 799 * one word if debugging is on to be able to detect writes 800 * before the word boundary. 801 * 802 * Padding is done using 0x5a (POISON_INUSE) 803 * 804 * object + s->size 805 * Nothing is used beyond s->size. 806 * 807 * If slabcaches are merged then the object_size and inuse boundaries are mostly 808 * ignored. And therefore no slab options that rely on these boundaries 809 * may be used with merged slabcaches. 810 */ 811 812 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 813 { 814 unsigned long off = s->inuse; /* The end of info */ 815 816 if (s->offset) 817 /* Freepointer is placed after the object. */ 818 off += sizeof(void *); 819 820 if (s->flags & SLAB_STORE_USER) 821 /* We also have user information there */ 822 off += 2 * sizeof(struct track); 823 824 off += kasan_metadata_size(s); 825 826 if (size_from_object(s) == off) 827 return 1; 828 829 return check_bytes_and_report(s, page, p, "Object padding", 830 p + off, POISON_INUSE, size_from_object(s) - off); 831 } 832 833 /* Check the pad bytes at the end of a slab page */ 834 static int slab_pad_check(struct kmem_cache *s, struct page *page) 835 { 836 u8 *start; 837 u8 *fault; 838 u8 *end; 839 int length; 840 int remainder; 841 842 if (!(s->flags & SLAB_POISON)) 843 return 1; 844 845 start = page_address(page); 846 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 847 end = start + length; 848 remainder = length % s->size; 849 if (!remainder) 850 return 1; 851 852 metadata_access_enable(); 853 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 854 metadata_access_disable(); 855 if (!fault) 856 return 1; 857 while (end > fault && end[-1] == POISON_INUSE) 858 end--; 859 860 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 861 print_section(KERN_ERR, "Padding ", end - remainder, remainder); 862 863 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 864 return 0; 865 } 866 867 static int check_object(struct kmem_cache *s, struct page *page, 868 void *object, u8 val) 869 { 870 u8 *p = object; 871 u8 *endobject = object + s->object_size; 872 873 if (s->flags & SLAB_RED_ZONE) { 874 if (!check_bytes_and_report(s, page, object, "Redzone", 875 object - s->red_left_pad, val, s->red_left_pad)) 876 return 0; 877 878 if (!check_bytes_and_report(s, page, object, "Redzone", 879 endobject, val, s->inuse - s->object_size)) 880 return 0; 881 } else { 882 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 883 check_bytes_and_report(s, page, p, "Alignment padding", 884 endobject, POISON_INUSE, 885 s->inuse - s->object_size); 886 } 887 } 888 889 if (s->flags & SLAB_POISON) { 890 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 891 (!check_bytes_and_report(s, page, p, "Poison", p, 892 POISON_FREE, s->object_size - 1) || 893 !check_bytes_and_report(s, page, p, "Poison", 894 p + s->object_size - 1, POISON_END, 1))) 895 return 0; 896 /* 897 * check_pad_bytes cleans up on its own. 898 */ 899 check_pad_bytes(s, page, p); 900 } 901 902 if (!s->offset && val == SLUB_RED_ACTIVE) 903 /* 904 * Object and freepointer overlap. Cannot check 905 * freepointer while object is allocated. 906 */ 907 return 1; 908 909 /* Check free pointer validity */ 910 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 911 object_err(s, page, p, "Freepointer corrupt"); 912 /* 913 * No choice but to zap it and thus lose the remainder 914 * of the free objects in this slab. May cause 915 * another error because the object count is now wrong. 916 */ 917 set_freepointer(s, p, NULL); 918 return 0; 919 } 920 return 1; 921 } 922 923 static int check_slab(struct kmem_cache *s, struct page *page) 924 { 925 int maxobj; 926 927 VM_BUG_ON(!irqs_disabled()); 928 929 if (!PageSlab(page)) { 930 slab_err(s, page, "Not a valid slab page"); 931 return 0; 932 } 933 934 maxobj = order_objects(compound_order(page), s->size, s->reserved); 935 if (page->objects > maxobj) { 936 slab_err(s, page, "objects %u > max %u", 937 page->objects, maxobj); 938 return 0; 939 } 940 if (page->inuse > page->objects) { 941 slab_err(s, page, "inuse %u > max %u", 942 page->inuse, page->objects); 943 return 0; 944 } 945 /* Slab_pad_check fixes things up after itself */ 946 slab_pad_check(s, page); 947 return 1; 948 } 949 950 /* 951 * Determine if a certain object on a page is on the freelist. Must hold the 952 * slab lock to guarantee that the chains are in a consistent state. 953 */ 954 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 955 { 956 int nr = 0; 957 void *fp; 958 void *object = NULL; 959 int max_objects; 960 961 fp = page->freelist; 962 while (fp && nr <= page->objects) { 963 if (fp == search) 964 return 1; 965 if (!check_valid_pointer(s, page, fp)) { 966 if (object) { 967 object_err(s, page, object, 968 "Freechain corrupt"); 969 set_freepointer(s, object, NULL); 970 } else { 971 slab_err(s, page, "Freepointer corrupt"); 972 page->freelist = NULL; 973 page->inuse = page->objects; 974 slab_fix(s, "Freelist cleared"); 975 return 0; 976 } 977 break; 978 } 979 object = fp; 980 fp = get_freepointer(s, object); 981 nr++; 982 } 983 984 max_objects = order_objects(compound_order(page), s->size, s->reserved); 985 if (max_objects > MAX_OBJS_PER_PAGE) 986 max_objects = MAX_OBJS_PER_PAGE; 987 988 if (page->objects != max_objects) { 989 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 990 page->objects, max_objects); 991 page->objects = max_objects; 992 slab_fix(s, "Number of objects adjusted."); 993 } 994 if (page->inuse != page->objects - nr) { 995 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 996 page->inuse, page->objects - nr); 997 page->inuse = page->objects - nr; 998 slab_fix(s, "Object count adjusted."); 999 } 1000 return search == NULL; 1001 } 1002 1003 static void trace(struct kmem_cache *s, struct page *page, void *object, 1004 int alloc) 1005 { 1006 if (s->flags & SLAB_TRACE) { 1007 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1008 s->name, 1009 alloc ? "alloc" : "free", 1010 object, page->inuse, 1011 page->freelist); 1012 1013 if (!alloc) 1014 print_section(KERN_INFO, "Object ", (void *)object, 1015 s->object_size); 1016 1017 dump_stack(); 1018 } 1019 } 1020 1021 /* 1022 * Tracking of fully allocated slabs for debugging purposes. 1023 */ 1024 static void add_full(struct kmem_cache *s, 1025 struct kmem_cache_node *n, struct page *page) 1026 { 1027 if (!(s->flags & SLAB_STORE_USER)) 1028 return; 1029 1030 lockdep_assert_held(&n->list_lock); 1031 list_add(&page->lru, &n->full); 1032 } 1033 1034 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1035 { 1036 if (!(s->flags & SLAB_STORE_USER)) 1037 return; 1038 1039 lockdep_assert_held(&n->list_lock); 1040 list_del(&page->lru); 1041 } 1042 1043 /* Tracking of the number of slabs for debugging purposes */ 1044 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1045 { 1046 struct kmem_cache_node *n = get_node(s, node); 1047 1048 return atomic_long_read(&n->nr_slabs); 1049 } 1050 1051 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1052 { 1053 return atomic_long_read(&n->nr_slabs); 1054 } 1055 1056 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1057 { 1058 struct kmem_cache_node *n = get_node(s, node); 1059 1060 /* 1061 * May be called early in order to allocate a slab for the 1062 * kmem_cache_node structure. Solve the chicken-egg 1063 * dilemma by deferring the increment of the count during 1064 * bootstrap (see early_kmem_cache_node_alloc). 1065 */ 1066 if (likely(n)) { 1067 atomic_long_inc(&n->nr_slabs); 1068 atomic_long_add(objects, &n->total_objects); 1069 } 1070 } 1071 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1072 { 1073 struct kmem_cache_node *n = get_node(s, node); 1074 1075 atomic_long_dec(&n->nr_slabs); 1076 atomic_long_sub(objects, &n->total_objects); 1077 } 1078 1079 /* Object debug checks for alloc/free paths */ 1080 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1081 void *object) 1082 { 1083 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1084 return; 1085 1086 init_object(s, object, SLUB_RED_INACTIVE); 1087 init_tracking(s, object); 1088 } 1089 1090 static inline int alloc_consistency_checks(struct kmem_cache *s, 1091 struct page *page, 1092 void *object, unsigned long addr) 1093 { 1094 if (!check_slab(s, page)) 1095 return 0; 1096 1097 if (!check_valid_pointer(s, page, object)) { 1098 object_err(s, page, object, "Freelist Pointer check fails"); 1099 return 0; 1100 } 1101 1102 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1103 return 0; 1104 1105 return 1; 1106 } 1107 1108 static noinline int alloc_debug_processing(struct kmem_cache *s, 1109 struct page *page, 1110 void *object, unsigned long addr) 1111 { 1112 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1113 if (!alloc_consistency_checks(s, page, object, addr)) 1114 goto bad; 1115 } 1116 1117 /* Success perform special debug activities for allocs */ 1118 if (s->flags & SLAB_STORE_USER) 1119 set_track(s, object, TRACK_ALLOC, addr); 1120 trace(s, page, object, 1); 1121 init_object(s, object, SLUB_RED_ACTIVE); 1122 return 1; 1123 1124 bad: 1125 if (PageSlab(page)) { 1126 /* 1127 * If this is a slab page then lets do the best we can 1128 * to avoid issues in the future. Marking all objects 1129 * as used avoids touching the remaining objects. 1130 */ 1131 slab_fix(s, "Marking all objects used"); 1132 page->inuse = page->objects; 1133 page->freelist = NULL; 1134 } 1135 return 0; 1136 } 1137 1138 static inline int free_consistency_checks(struct kmem_cache *s, 1139 struct page *page, void *object, unsigned long addr) 1140 { 1141 if (!check_valid_pointer(s, page, object)) { 1142 slab_err(s, page, "Invalid object pointer 0x%p", object); 1143 return 0; 1144 } 1145 1146 if (on_freelist(s, page, object)) { 1147 object_err(s, page, object, "Object already free"); 1148 return 0; 1149 } 1150 1151 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1152 return 0; 1153 1154 if (unlikely(s != page->slab_cache)) { 1155 if (!PageSlab(page)) { 1156 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1157 object); 1158 } else if (!page->slab_cache) { 1159 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1160 object); 1161 dump_stack(); 1162 } else 1163 object_err(s, page, object, 1164 "page slab pointer corrupt."); 1165 return 0; 1166 } 1167 return 1; 1168 } 1169 1170 /* Supports checking bulk free of a constructed freelist */ 1171 static noinline int free_debug_processing( 1172 struct kmem_cache *s, struct page *page, 1173 void *head, void *tail, int bulk_cnt, 1174 unsigned long addr) 1175 { 1176 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1177 void *object = head; 1178 int cnt = 0; 1179 unsigned long uninitialized_var(flags); 1180 int ret = 0; 1181 1182 spin_lock_irqsave(&n->list_lock, flags); 1183 slab_lock(page); 1184 1185 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1186 if (!check_slab(s, page)) 1187 goto out; 1188 } 1189 1190 next_object: 1191 cnt++; 1192 1193 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1194 if (!free_consistency_checks(s, page, object, addr)) 1195 goto out; 1196 } 1197 1198 if (s->flags & SLAB_STORE_USER) 1199 set_track(s, object, TRACK_FREE, addr); 1200 trace(s, page, object, 0); 1201 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1202 init_object(s, object, SLUB_RED_INACTIVE); 1203 1204 /* Reached end of constructed freelist yet? */ 1205 if (object != tail) { 1206 object = get_freepointer(s, object); 1207 goto next_object; 1208 } 1209 ret = 1; 1210 1211 out: 1212 if (cnt != bulk_cnt) 1213 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1214 bulk_cnt, cnt); 1215 1216 slab_unlock(page); 1217 spin_unlock_irqrestore(&n->list_lock, flags); 1218 if (!ret) 1219 slab_fix(s, "Object at 0x%p not freed", object); 1220 return ret; 1221 } 1222 1223 static int __init setup_slub_debug(char *str) 1224 { 1225 slub_debug = DEBUG_DEFAULT_FLAGS; 1226 if (*str++ != '=' || !*str) 1227 /* 1228 * No options specified. Switch on full debugging. 1229 */ 1230 goto out; 1231 1232 if (*str == ',') 1233 /* 1234 * No options but restriction on slabs. This means full 1235 * debugging for slabs matching a pattern. 1236 */ 1237 goto check_slabs; 1238 1239 slub_debug = 0; 1240 if (*str == '-') 1241 /* 1242 * Switch off all debugging measures. 1243 */ 1244 goto out; 1245 1246 /* 1247 * Determine which debug features should be switched on 1248 */ 1249 for (; *str && *str != ','; str++) { 1250 switch (tolower(*str)) { 1251 case 'f': 1252 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1253 break; 1254 case 'z': 1255 slub_debug |= SLAB_RED_ZONE; 1256 break; 1257 case 'p': 1258 slub_debug |= SLAB_POISON; 1259 break; 1260 case 'u': 1261 slub_debug |= SLAB_STORE_USER; 1262 break; 1263 case 't': 1264 slub_debug |= SLAB_TRACE; 1265 break; 1266 case 'a': 1267 slub_debug |= SLAB_FAILSLAB; 1268 break; 1269 case 'o': 1270 /* 1271 * Avoid enabling debugging on caches if its minimum 1272 * order would increase as a result. 1273 */ 1274 disable_higher_order_debug = 1; 1275 break; 1276 default: 1277 pr_err("slub_debug option '%c' unknown. skipped\n", 1278 *str); 1279 } 1280 } 1281 1282 check_slabs: 1283 if (*str == ',') 1284 slub_debug_slabs = str + 1; 1285 out: 1286 return 1; 1287 } 1288 1289 __setup("slub_debug", setup_slub_debug); 1290 1291 unsigned long kmem_cache_flags(unsigned long object_size, 1292 unsigned long flags, const char *name, 1293 void (*ctor)(void *)) 1294 { 1295 /* 1296 * Enable debugging if selected on the kernel commandline. 1297 */ 1298 if (slub_debug && (!slub_debug_slabs || (name && 1299 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1300 flags |= slub_debug; 1301 1302 return flags; 1303 } 1304 #else /* !CONFIG_SLUB_DEBUG */ 1305 static inline void setup_object_debug(struct kmem_cache *s, 1306 struct page *page, void *object) {} 1307 1308 static inline int alloc_debug_processing(struct kmem_cache *s, 1309 struct page *page, void *object, unsigned long addr) { return 0; } 1310 1311 static inline int free_debug_processing( 1312 struct kmem_cache *s, struct page *page, 1313 void *head, void *tail, int bulk_cnt, 1314 unsigned long addr) { return 0; } 1315 1316 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1317 { return 1; } 1318 static inline int check_object(struct kmem_cache *s, struct page *page, 1319 void *object, u8 val) { return 1; } 1320 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1321 struct page *page) {} 1322 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1323 struct page *page) {} 1324 unsigned long kmem_cache_flags(unsigned long object_size, 1325 unsigned long flags, const char *name, 1326 void (*ctor)(void *)) 1327 { 1328 return flags; 1329 } 1330 #define slub_debug 0 1331 1332 #define disable_higher_order_debug 0 1333 1334 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1335 { return 0; } 1336 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1337 { return 0; } 1338 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1339 int objects) {} 1340 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1341 int objects) {} 1342 1343 #endif /* CONFIG_SLUB_DEBUG */ 1344 1345 /* 1346 * Hooks for other subsystems that check memory allocations. In a typical 1347 * production configuration these hooks all should produce no code at all. 1348 */ 1349 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1350 { 1351 kmemleak_alloc(ptr, size, 1, flags); 1352 kasan_kmalloc_large(ptr, size, flags); 1353 } 1354 1355 static inline void kfree_hook(const void *x) 1356 { 1357 kmemleak_free(x); 1358 kasan_kfree_large(x); 1359 } 1360 1361 static inline void *slab_free_hook(struct kmem_cache *s, void *x) 1362 { 1363 void *freeptr; 1364 1365 kmemleak_free_recursive(x, s->flags); 1366 1367 /* 1368 * Trouble is that we may no longer disable interrupts in the fast path 1369 * So in order to make the debug calls that expect irqs to be 1370 * disabled we need to disable interrupts temporarily. 1371 */ 1372 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 1373 { 1374 unsigned long flags; 1375 1376 local_irq_save(flags); 1377 kmemcheck_slab_free(s, x, s->object_size); 1378 debug_check_no_locks_freed(x, s->object_size); 1379 local_irq_restore(flags); 1380 } 1381 #endif 1382 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1383 debug_check_no_obj_freed(x, s->object_size); 1384 1385 freeptr = get_freepointer(s, x); 1386 /* 1387 * kasan_slab_free() may put x into memory quarantine, delaying its 1388 * reuse. In this case the object's freelist pointer is changed. 1389 */ 1390 kasan_slab_free(s, x); 1391 return freeptr; 1392 } 1393 1394 static inline void slab_free_freelist_hook(struct kmem_cache *s, 1395 void *head, void *tail) 1396 { 1397 /* 1398 * Compiler cannot detect this function can be removed if slab_free_hook() 1399 * evaluates to nothing. Thus, catch all relevant config debug options here. 1400 */ 1401 #if defined(CONFIG_KMEMCHECK) || \ 1402 defined(CONFIG_LOCKDEP) || \ 1403 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1404 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1405 defined(CONFIG_KASAN) 1406 1407 void *object = head; 1408 void *tail_obj = tail ? : head; 1409 void *freeptr; 1410 1411 do { 1412 freeptr = slab_free_hook(s, object); 1413 } while ((object != tail_obj) && (object = freeptr)); 1414 #endif 1415 } 1416 1417 static void setup_object(struct kmem_cache *s, struct page *page, 1418 void *object) 1419 { 1420 setup_object_debug(s, page, object); 1421 kasan_init_slab_obj(s, object); 1422 if (unlikely(s->ctor)) { 1423 kasan_unpoison_object_data(s, object); 1424 s->ctor(object); 1425 kasan_poison_object_data(s, object); 1426 } 1427 } 1428 1429 /* 1430 * Slab allocation and freeing 1431 */ 1432 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1433 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1434 { 1435 struct page *page; 1436 int order = oo_order(oo); 1437 1438 flags |= __GFP_NOTRACK; 1439 1440 if (node == NUMA_NO_NODE) 1441 page = alloc_pages(flags, order); 1442 else 1443 page = __alloc_pages_node(node, flags, order); 1444 1445 if (page && memcg_charge_slab(page, flags, order, s)) { 1446 __free_pages(page, order); 1447 page = NULL; 1448 } 1449 1450 return page; 1451 } 1452 1453 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1454 /* Pre-initialize the random sequence cache */ 1455 static int init_cache_random_seq(struct kmem_cache *s) 1456 { 1457 int err; 1458 unsigned long i, count = oo_objects(s->oo); 1459 1460 /* Bailout if already initialised */ 1461 if (s->random_seq) 1462 return 0; 1463 1464 err = cache_random_seq_create(s, count, GFP_KERNEL); 1465 if (err) { 1466 pr_err("SLUB: Unable to initialize free list for %s\n", 1467 s->name); 1468 return err; 1469 } 1470 1471 /* Transform to an offset on the set of pages */ 1472 if (s->random_seq) { 1473 for (i = 0; i < count; i++) 1474 s->random_seq[i] *= s->size; 1475 } 1476 return 0; 1477 } 1478 1479 /* Initialize each random sequence freelist per cache */ 1480 static void __init init_freelist_randomization(void) 1481 { 1482 struct kmem_cache *s; 1483 1484 mutex_lock(&slab_mutex); 1485 1486 list_for_each_entry(s, &slab_caches, list) 1487 init_cache_random_seq(s); 1488 1489 mutex_unlock(&slab_mutex); 1490 } 1491 1492 /* Get the next entry on the pre-computed freelist randomized */ 1493 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1494 unsigned long *pos, void *start, 1495 unsigned long page_limit, 1496 unsigned long freelist_count) 1497 { 1498 unsigned int idx; 1499 1500 /* 1501 * If the target page allocation failed, the number of objects on the 1502 * page might be smaller than the usual size defined by the cache. 1503 */ 1504 do { 1505 idx = s->random_seq[*pos]; 1506 *pos += 1; 1507 if (*pos >= freelist_count) 1508 *pos = 0; 1509 } while (unlikely(idx >= page_limit)); 1510 1511 return (char *)start + idx; 1512 } 1513 1514 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1515 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1516 { 1517 void *start; 1518 void *cur; 1519 void *next; 1520 unsigned long idx, pos, page_limit, freelist_count; 1521 1522 if (page->objects < 2 || !s->random_seq) 1523 return false; 1524 1525 freelist_count = oo_objects(s->oo); 1526 pos = get_random_int() % freelist_count; 1527 1528 page_limit = page->objects * s->size; 1529 start = fixup_red_left(s, page_address(page)); 1530 1531 /* First entry is used as the base of the freelist */ 1532 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1533 freelist_count); 1534 page->freelist = cur; 1535 1536 for (idx = 1; idx < page->objects; idx++) { 1537 setup_object(s, page, cur); 1538 next = next_freelist_entry(s, page, &pos, start, page_limit, 1539 freelist_count); 1540 set_freepointer(s, cur, next); 1541 cur = next; 1542 } 1543 setup_object(s, page, cur); 1544 set_freepointer(s, cur, NULL); 1545 1546 return true; 1547 } 1548 #else 1549 static inline int init_cache_random_seq(struct kmem_cache *s) 1550 { 1551 return 0; 1552 } 1553 static inline void init_freelist_randomization(void) { } 1554 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1555 { 1556 return false; 1557 } 1558 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1559 1560 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1561 { 1562 struct page *page; 1563 struct kmem_cache_order_objects oo = s->oo; 1564 gfp_t alloc_gfp; 1565 void *start, *p; 1566 int idx, order; 1567 bool shuffle; 1568 1569 flags &= gfp_allowed_mask; 1570 1571 if (gfpflags_allow_blocking(flags)) 1572 local_irq_enable(); 1573 1574 flags |= s->allocflags; 1575 1576 /* 1577 * Let the initial higher-order allocation fail under memory pressure 1578 * so we fall-back to the minimum order allocation. 1579 */ 1580 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1581 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1582 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1583 1584 page = alloc_slab_page(s, alloc_gfp, node, oo); 1585 if (unlikely(!page)) { 1586 oo = s->min; 1587 alloc_gfp = flags; 1588 /* 1589 * Allocation may have failed due to fragmentation. 1590 * Try a lower order alloc if possible 1591 */ 1592 page = alloc_slab_page(s, alloc_gfp, node, oo); 1593 if (unlikely(!page)) 1594 goto out; 1595 stat(s, ORDER_FALLBACK); 1596 } 1597 1598 if (kmemcheck_enabled && 1599 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1600 int pages = 1 << oo_order(oo); 1601 1602 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1603 1604 /* 1605 * Objects from caches that have a constructor don't get 1606 * cleared when they're allocated, so we need to do it here. 1607 */ 1608 if (s->ctor) 1609 kmemcheck_mark_uninitialized_pages(page, pages); 1610 else 1611 kmemcheck_mark_unallocated_pages(page, pages); 1612 } 1613 1614 page->objects = oo_objects(oo); 1615 1616 order = compound_order(page); 1617 page->slab_cache = s; 1618 __SetPageSlab(page); 1619 if (page_is_pfmemalloc(page)) 1620 SetPageSlabPfmemalloc(page); 1621 1622 start = page_address(page); 1623 1624 if (unlikely(s->flags & SLAB_POISON)) 1625 memset(start, POISON_INUSE, PAGE_SIZE << order); 1626 1627 kasan_poison_slab(page); 1628 1629 shuffle = shuffle_freelist(s, page); 1630 1631 if (!shuffle) { 1632 for_each_object_idx(p, idx, s, start, page->objects) { 1633 setup_object(s, page, p); 1634 if (likely(idx < page->objects)) 1635 set_freepointer(s, p, p + s->size); 1636 else 1637 set_freepointer(s, p, NULL); 1638 } 1639 page->freelist = fixup_red_left(s, start); 1640 } 1641 1642 page->inuse = page->objects; 1643 page->frozen = 1; 1644 1645 out: 1646 if (gfpflags_allow_blocking(flags)) 1647 local_irq_disable(); 1648 if (!page) 1649 return NULL; 1650 1651 mod_lruvec_page_state(page, 1652 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1653 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1654 1 << oo_order(oo)); 1655 1656 inc_slabs_node(s, page_to_nid(page), page->objects); 1657 1658 return page; 1659 } 1660 1661 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1662 { 1663 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1664 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1665 flags &= ~GFP_SLAB_BUG_MASK; 1666 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1667 invalid_mask, &invalid_mask, flags, &flags); 1668 dump_stack(); 1669 } 1670 1671 return allocate_slab(s, 1672 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1673 } 1674 1675 static void __free_slab(struct kmem_cache *s, struct page *page) 1676 { 1677 int order = compound_order(page); 1678 int pages = 1 << order; 1679 1680 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1681 void *p; 1682 1683 slab_pad_check(s, page); 1684 for_each_object(p, s, page_address(page), 1685 page->objects) 1686 check_object(s, page, p, SLUB_RED_INACTIVE); 1687 } 1688 1689 kmemcheck_free_shadow(page, compound_order(page)); 1690 1691 mod_lruvec_page_state(page, 1692 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1693 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1694 -pages); 1695 1696 __ClearPageSlabPfmemalloc(page); 1697 __ClearPageSlab(page); 1698 1699 page_mapcount_reset(page); 1700 if (current->reclaim_state) 1701 current->reclaim_state->reclaimed_slab += pages; 1702 memcg_uncharge_slab(page, order, s); 1703 __free_pages(page, order); 1704 } 1705 1706 #define need_reserve_slab_rcu \ 1707 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1708 1709 static void rcu_free_slab(struct rcu_head *h) 1710 { 1711 struct page *page; 1712 1713 if (need_reserve_slab_rcu) 1714 page = virt_to_head_page(h); 1715 else 1716 page = container_of((struct list_head *)h, struct page, lru); 1717 1718 __free_slab(page->slab_cache, page); 1719 } 1720 1721 static void free_slab(struct kmem_cache *s, struct page *page) 1722 { 1723 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1724 struct rcu_head *head; 1725 1726 if (need_reserve_slab_rcu) { 1727 int order = compound_order(page); 1728 int offset = (PAGE_SIZE << order) - s->reserved; 1729 1730 VM_BUG_ON(s->reserved != sizeof(*head)); 1731 head = page_address(page) + offset; 1732 } else { 1733 head = &page->rcu_head; 1734 } 1735 1736 call_rcu(head, rcu_free_slab); 1737 } else 1738 __free_slab(s, page); 1739 } 1740 1741 static void discard_slab(struct kmem_cache *s, struct page *page) 1742 { 1743 dec_slabs_node(s, page_to_nid(page), page->objects); 1744 free_slab(s, page); 1745 } 1746 1747 /* 1748 * Management of partially allocated slabs. 1749 */ 1750 static inline void 1751 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1752 { 1753 n->nr_partial++; 1754 if (tail == DEACTIVATE_TO_TAIL) 1755 list_add_tail(&page->lru, &n->partial); 1756 else 1757 list_add(&page->lru, &n->partial); 1758 } 1759 1760 static inline void add_partial(struct kmem_cache_node *n, 1761 struct page *page, int tail) 1762 { 1763 lockdep_assert_held(&n->list_lock); 1764 __add_partial(n, page, tail); 1765 } 1766 1767 static inline void remove_partial(struct kmem_cache_node *n, 1768 struct page *page) 1769 { 1770 lockdep_assert_held(&n->list_lock); 1771 list_del(&page->lru); 1772 n->nr_partial--; 1773 } 1774 1775 /* 1776 * Remove slab from the partial list, freeze it and 1777 * return the pointer to the freelist. 1778 * 1779 * Returns a list of objects or NULL if it fails. 1780 */ 1781 static inline void *acquire_slab(struct kmem_cache *s, 1782 struct kmem_cache_node *n, struct page *page, 1783 int mode, int *objects) 1784 { 1785 void *freelist; 1786 unsigned long counters; 1787 struct page new; 1788 1789 lockdep_assert_held(&n->list_lock); 1790 1791 /* 1792 * Zap the freelist and set the frozen bit. 1793 * The old freelist is the list of objects for the 1794 * per cpu allocation list. 1795 */ 1796 freelist = page->freelist; 1797 counters = page->counters; 1798 new.counters = counters; 1799 *objects = new.objects - new.inuse; 1800 if (mode) { 1801 new.inuse = page->objects; 1802 new.freelist = NULL; 1803 } else { 1804 new.freelist = freelist; 1805 } 1806 1807 VM_BUG_ON(new.frozen); 1808 new.frozen = 1; 1809 1810 if (!__cmpxchg_double_slab(s, page, 1811 freelist, counters, 1812 new.freelist, new.counters, 1813 "acquire_slab")) 1814 return NULL; 1815 1816 remove_partial(n, page); 1817 WARN_ON(!freelist); 1818 return freelist; 1819 } 1820 1821 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1822 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1823 1824 /* 1825 * Try to allocate a partial slab from a specific node. 1826 */ 1827 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1828 struct kmem_cache_cpu *c, gfp_t flags) 1829 { 1830 struct page *page, *page2; 1831 void *object = NULL; 1832 int available = 0; 1833 int objects; 1834 1835 /* 1836 * Racy check. If we mistakenly see no partial slabs then we 1837 * just allocate an empty slab. If we mistakenly try to get a 1838 * partial slab and there is none available then get_partials() 1839 * will return NULL. 1840 */ 1841 if (!n || !n->nr_partial) 1842 return NULL; 1843 1844 spin_lock(&n->list_lock); 1845 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1846 void *t; 1847 1848 if (!pfmemalloc_match(page, flags)) 1849 continue; 1850 1851 t = acquire_slab(s, n, page, object == NULL, &objects); 1852 if (!t) 1853 break; 1854 1855 available += objects; 1856 if (!object) { 1857 c->page = page; 1858 stat(s, ALLOC_FROM_PARTIAL); 1859 object = t; 1860 } else { 1861 put_cpu_partial(s, page, 0); 1862 stat(s, CPU_PARTIAL_NODE); 1863 } 1864 if (!kmem_cache_has_cpu_partial(s) 1865 || available > slub_cpu_partial(s) / 2) 1866 break; 1867 1868 } 1869 spin_unlock(&n->list_lock); 1870 return object; 1871 } 1872 1873 /* 1874 * Get a page from somewhere. Search in increasing NUMA distances. 1875 */ 1876 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1877 struct kmem_cache_cpu *c) 1878 { 1879 #ifdef CONFIG_NUMA 1880 struct zonelist *zonelist; 1881 struct zoneref *z; 1882 struct zone *zone; 1883 enum zone_type high_zoneidx = gfp_zone(flags); 1884 void *object; 1885 unsigned int cpuset_mems_cookie; 1886 1887 /* 1888 * The defrag ratio allows a configuration of the tradeoffs between 1889 * inter node defragmentation and node local allocations. A lower 1890 * defrag_ratio increases the tendency to do local allocations 1891 * instead of attempting to obtain partial slabs from other nodes. 1892 * 1893 * If the defrag_ratio is set to 0 then kmalloc() always 1894 * returns node local objects. If the ratio is higher then kmalloc() 1895 * may return off node objects because partial slabs are obtained 1896 * from other nodes and filled up. 1897 * 1898 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1899 * (which makes defrag_ratio = 1000) then every (well almost) 1900 * allocation will first attempt to defrag slab caches on other nodes. 1901 * This means scanning over all nodes to look for partial slabs which 1902 * may be expensive if we do it every time we are trying to find a slab 1903 * with available objects. 1904 */ 1905 if (!s->remote_node_defrag_ratio || 1906 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1907 return NULL; 1908 1909 do { 1910 cpuset_mems_cookie = read_mems_allowed_begin(); 1911 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1912 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1913 struct kmem_cache_node *n; 1914 1915 n = get_node(s, zone_to_nid(zone)); 1916 1917 if (n && cpuset_zone_allowed(zone, flags) && 1918 n->nr_partial > s->min_partial) { 1919 object = get_partial_node(s, n, c, flags); 1920 if (object) { 1921 /* 1922 * Don't check read_mems_allowed_retry() 1923 * here - if mems_allowed was updated in 1924 * parallel, that was a harmless race 1925 * between allocation and the cpuset 1926 * update 1927 */ 1928 return object; 1929 } 1930 } 1931 } 1932 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1933 #endif 1934 return NULL; 1935 } 1936 1937 /* 1938 * Get a partial page, lock it and return it. 1939 */ 1940 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1941 struct kmem_cache_cpu *c) 1942 { 1943 void *object; 1944 int searchnode = node; 1945 1946 if (node == NUMA_NO_NODE) 1947 searchnode = numa_mem_id(); 1948 else if (!node_present_pages(node)) 1949 searchnode = node_to_mem_node(node); 1950 1951 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1952 if (object || node != NUMA_NO_NODE) 1953 return object; 1954 1955 return get_any_partial(s, flags, c); 1956 } 1957 1958 #ifdef CONFIG_PREEMPT 1959 /* 1960 * Calculate the next globally unique transaction for disambiguiation 1961 * during cmpxchg. The transactions start with the cpu number and are then 1962 * incremented by CONFIG_NR_CPUS. 1963 */ 1964 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1965 #else 1966 /* 1967 * No preemption supported therefore also no need to check for 1968 * different cpus. 1969 */ 1970 #define TID_STEP 1 1971 #endif 1972 1973 static inline unsigned long next_tid(unsigned long tid) 1974 { 1975 return tid + TID_STEP; 1976 } 1977 1978 static inline unsigned int tid_to_cpu(unsigned long tid) 1979 { 1980 return tid % TID_STEP; 1981 } 1982 1983 static inline unsigned long tid_to_event(unsigned long tid) 1984 { 1985 return tid / TID_STEP; 1986 } 1987 1988 static inline unsigned int init_tid(int cpu) 1989 { 1990 return cpu; 1991 } 1992 1993 static inline void note_cmpxchg_failure(const char *n, 1994 const struct kmem_cache *s, unsigned long tid) 1995 { 1996 #ifdef SLUB_DEBUG_CMPXCHG 1997 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1998 1999 pr_info("%s %s: cmpxchg redo ", n, s->name); 2000 2001 #ifdef CONFIG_PREEMPT 2002 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2003 pr_warn("due to cpu change %d -> %d\n", 2004 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2005 else 2006 #endif 2007 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2008 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2009 tid_to_event(tid), tid_to_event(actual_tid)); 2010 else 2011 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2012 actual_tid, tid, next_tid(tid)); 2013 #endif 2014 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2015 } 2016 2017 static void init_kmem_cache_cpus(struct kmem_cache *s) 2018 { 2019 int cpu; 2020 2021 for_each_possible_cpu(cpu) 2022 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2023 } 2024 2025 /* 2026 * Remove the cpu slab 2027 */ 2028 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2029 void *freelist, struct kmem_cache_cpu *c) 2030 { 2031 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2032 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2033 int lock = 0; 2034 enum slab_modes l = M_NONE, m = M_NONE; 2035 void *nextfree; 2036 int tail = DEACTIVATE_TO_HEAD; 2037 struct page new; 2038 struct page old; 2039 2040 if (page->freelist) { 2041 stat(s, DEACTIVATE_REMOTE_FREES); 2042 tail = DEACTIVATE_TO_TAIL; 2043 } 2044 2045 /* 2046 * Stage one: Free all available per cpu objects back 2047 * to the page freelist while it is still frozen. Leave the 2048 * last one. 2049 * 2050 * There is no need to take the list->lock because the page 2051 * is still frozen. 2052 */ 2053 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2054 void *prior; 2055 unsigned long counters; 2056 2057 do { 2058 prior = page->freelist; 2059 counters = page->counters; 2060 set_freepointer(s, freelist, prior); 2061 new.counters = counters; 2062 new.inuse--; 2063 VM_BUG_ON(!new.frozen); 2064 2065 } while (!__cmpxchg_double_slab(s, page, 2066 prior, counters, 2067 freelist, new.counters, 2068 "drain percpu freelist")); 2069 2070 freelist = nextfree; 2071 } 2072 2073 /* 2074 * Stage two: Ensure that the page is unfrozen while the 2075 * list presence reflects the actual number of objects 2076 * during unfreeze. 2077 * 2078 * We setup the list membership and then perform a cmpxchg 2079 * with the count. If there is a mismatch then the page 2080 * is not unfrozen but the page is on the wrong list. 2081 * 2082 * Then we restart the process which may have to remove 2083 * the page from the list that we just put it on again 2084 * because the number of objects in the slab may have 2085 * changed. 2086 */ 2087 redo: 2088 2089 old.freelist = page->freelist; 2090 old.counters = page->counters; 2091 VM_BUG_ON(!old.frozen); 2092 2093 /* Determine target state of the slab */ 2094 new.counters = old.counters; 2095 if (freelist) { 2096 new.inuse--; 2097 set_freepointer(s, freelist, old.freelist); 2098 new.freelist = freelist; 2099 } else 2100 new.freelist = old.freelist; 2101 2102 new.frozen = 0; 2103 2104 if (!new.inuse && n->nr_partial >= s->min_partial) 2105 m = M_FREE; 2106 else if (new.freelist) { 2107 m = M_PARTIAL; 2108 if (!lock) { 2109 lock = 1; 2110 /* 2111 * Taking the spinlock removes the possiblity 2112 * that acquire_slab() will see a slab page that 2113 * is frozen 2114 */ 2115 spin_lock(&n->list_lock); 2116 } 2117 } else { 2118 m = M_FULL; 2119 if (kmem_cache_debug(s) && !lock) { 2120 lock = 1; 2121 /* 2122 * This also ensures that the scanning of full 2123 * slabs from diagnostic functions will not see 2124 * any frozen slabs. 2125 */ 2126 spin_lock(&n->list_lock); 2127 } 2128 } 2129 2130 if (l != m) { 2131 2132 if (l == M_PARTIAL) 2133 2134 remove_partial(n, page); 2135 2136 else if (l == M_FULL) 2137 2138 remove_full(s, n, page); 2139 2140 if (m == M_PARTIAL) { 2141 2142 add_partial(n, page, tail); 2143 stat(s, tail); 2144 2145 } else if (m == M_FULL) { 2146 2147 stat(s, DEACTIVATE_FULL); 2148 add_full(s, n, page); 2149 2150 } 2151 } 2152 2153 l = m; 2154 if (!__cmpxchg_double_slab(s, page, 2155 old.freelist, old.counters, 2156 new.freelist, new.counters, 2157 "unfreezing slab")) 2158 goto redo; 2159 2160 if (lock) 2161 spin_unlock(&n->list_lock); 2162 2163 if (m == M_FREE) { 2164 stat(s, DEACTIVATE_EMPTY); 2165 discard_slab(s, page); 2166 stat(s, FREE_SLAB); 2167 } 2168 2169 c->page = NULL; 2170 c->freelist = NULL; 2171 } 2172 2173 /* 2174 * Unfreeze all the cpu partial slabs. 2175 * 2176 * This function must be called with interrupts disabled 2177 * for the cpu using c (or some other guarantee must be there 2178 * to guarantee no concurrent accesses). 2179 */ 2180 static void unfreeze_partials(struct kmem_cache *s, 2181 struct kmem_cache_cpu *c) 2182 { 2183 #ifdef CONFIG_SLUB_CPU_PARTIAL 2184 struct kmem_cache_node *n = NULL, *n2 = NULL; 2185 struct page *page, *discard_page = NULL; 2186 2187 while ((page = c->partial)) { 2188 struct page new; 2189 struct page old; 2190 2191 c->partial = page->next; 2192 2193 n2 = get_node(s, page_to_nid(page)); 2194 if (n != n2) { 2195 if (n) 2196 spin_unlock(&n->list_lock); 2197 2198 n = n2; 2199 spin_lock(&n->list_lock); 2200 } 2201 2202 do { 2203 2204 old.freelist = page->freelist; 2205 old.counters = page->counters; 2206 VM_BUG_ON(!old.frozen); 2207 2208 new.counters = old.counters; 2209 new.freelist = old.freelist; 2210 2211 new.frozen = 0; 2212 2213 } while (!__cmpxchg_double_slab(s, page, 2214 old.freelist, old.counters, 2215 new.freelist, new.counters, 2216 "unfreezing slab")); 2217 2218 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2219 page->next = discard_page; 2220 discard_page = page; 2221 } else { 2222 add_partial(n, page, DEACTIVATE_TO_TAIL); 2223 stat(s, FREE_ADD_PARTIAL); 2224 } 2225 } 2226 2227 if (n) 2228 spin_unlock(&n->list_lock); 2229 2230 while (discard_page) { 2231 page = discard_page; 2232 discard_page = discard_page->next; 2233 2234 stat(s, DEACTIVATE_EMPTY); 2235 discard_slab(s, page); 2236 stat(s, FREE_SLAB); 2237 } 2238 #endif 2239 } 2240 2241 /* 2242 * Put a page that was just frozen (in __slab_free) into a partial page 2243 * slot if available. This is done without interrupts disabled and without 2244 * preemption disabled. The cmpxchg is racy and may put the partial page 2245 * onto a random cpus partial slot. 2246 * 2247 * If we did not find a slot then simply move all the partials to the 2248 * per node partial list. 2249 */ 2250 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2251 { 2252 #ifdef CONFIG_SLUB_CPU_PARTIAL 2253 struct page *oldpage; 2254 int pages; 2255 int pobjects; 2256 2257 preempt_disable(); 2258 do { 2259 pages = 0; 2260 pobjects = 0; 2261 oldpage = this_cpu_read(s->cpu_slab->partial); 2262 2263 if (oldpage) { 2264 pobjects = oldpage->pobjects; 2265 pages = oldpage->pages; 2266 if (drain && pobjects > s->cpu_partial) { 2267 unsigned long flags; 2268 /* 2269 * partial array is full. Move the existing 2270 * set to the per node partial list. 2271 */ 2272 local_irq_save(flags); 2273 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2274 local_irq_restore(flags); 2275 oldpage = NULL; 2276 pobjects = 0; 2277 pages = 0; 2278 stat(s, CPU_PARTIAL_DRAIN); 2279 } 2280 } 2281 2282 pages++; 2283 pobjects += page->objects - page->inuse; 2284 2285 page->pages = pages; 2286 page->pobjects = pobjects; 2287 page->next = oldpage; 2288 2289 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2290 != oldpage); 2291 if (unlikely(!s->cpu_partial)) { 2292 unsigned long flags; 2293 2294 local_irq_save(flags); 2295 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2296 local_irq_restore(flags); 2297 } 2298 preempt_enable(); 2299 #endif 2300 } 2301 2302 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2303 { 2304 stat(s, CPUSLAB_FLUSH); 2305 deactivate_slab(s, c->page, c->freelist, c); 2306 2307 c->tid = next_tid(c->tid); 2308 } 2309 2310 /* 2311 * Flush cpu slab. 2312 * 2313 * Called from IPI handler with interrupts disabled. 2314 */ 2315 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2316 { 2317 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2318 2319 if (likely(c)) { 2320 if (c->page) 2321 flush_slab(s, c); 2322 2323 unfreeze_partials(s, c); 2324 } 2325 } 2326 2327 static void flush_cpu_slab(void *d) 2328 { 2329 struct kmem_cache *s = d; 2330 2331 __flush_cpu_slab(s, smp_processor_id()); 2332 } 2333 2334 static bool has_cpu_slab(int cpu, void *info) 2335 { 2336 struct kmem_cache *s = info; 2337 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2338 2339 return c->page || slub_percpu_partial(c); 2340 } 2341 2342 static void flush_all(struct kmem_cache *s) 2343 { 2344 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2345 } 2346 2347 /* 2348 * Use the cpu notifier to insure that the cpu slabs are flushed when 2349 * necessary. 2350 */ 2351 static int slub_cpu_dead(unsigned int cpu) 2352 { 2353 struct kmem_cache *s; 2354 unsigned long flags; 2355 2356 mutex_lock(&slab_mutex); 2357 list_for_each_entry(s, &slab_caches, list) { 2358 local_irq_save(flags); 2359 __flush_cpu_slab(s, cpu); 2360 local_irq_restore(flags); 2361 } 2362 mutex_unlock(&slab_mutex); 2363 return 0; 2364 } 2365 2366 /* 2367 * Check if the objects in a per cpu structure fit numa 2368 * locality expectations. 2369 */ 2370 static inline int node_match(struct page *page, int node) 2371 { 2372 #ifdef CONFIG_NUMA 2373 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2374 return 0; 2375 #endif 2376 return 1; 2377 } 2378 2379 #ifdef CONFIG_SLUB_DEBUG 2380 static int count_free(struct page *page) 2381 { 2382 return page->objects - page->inuse; 2383 } 2384 2385 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2386 { 2387 return atomic_long_read(&n->total_objects); 2388 } 2389 #endif /* CONFIG_SLUB_DEBUG */ 2390 2391 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2392 static unsigned long count_partial(struct kmem_cache_node *n, 2393 int (*get_count)(struct page *)) 2394 { 2395 unsigned long flags; 2396 unsigned long x = 0; 2397 struct page *page; 2398 2399 spin_lock_irqsave(&n->list_lock, flags); 2400 list_for_each_entry(page, &n->partial, lru) 2401 x += get_count(page); 2402 spin_unlock_irqrestore(&n->list_lock, flags); 2403 return x; 2404 } 2405 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2406 2407 static noinline void 2408 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2409 { 2410 #ifdef CONFIG_SLUB_DEBUG 2411 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2412 DEFAULT_RATELIMIT_BURST); 2413 int node; 2414 struct kmem_cache_node *n; 2415 2416 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2417 return; 2418 2419 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2420 nid, gfpflags, &gfpflags); 2421 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2422 s->name, s->object_size, s->size, oo_order(s->oo), 2423 oo_order(s->min)); 2424 2425 if (oo_order(s->min) > get_order(s->object_size)) 2426 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2427 s->name); 2428 2429 for_each_kmem_cache_node(s, node, n) { 2430 unsigned long nr_slabs; 2431 unsigned long nr_objs; 2432 unsigned long nr_free; 2433 2434 nr_free = count_partial(n, count_free); 2435 nr_slabs = node_nr_slabs(n); 2436 nr_objs = node_nr_objs(n); 2437 2438 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2439 node, nr_slabs, nr_objs, nr_free); 2440 } 2441 #endif 2442 } 2443 2444 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2445 int node, struct kmem_cache_cpu **pc) 2446 { 2447 void *freelist; 2448 struct kmem_cache_cpu *c = *pc; 2449 struct page *page; 2450 2451 freelist = get_partial(s, flags, node, c); 2452 2453 if (freelist) 2454 return freelist; 2455 2456 page = new_slab(s, flags, node); 2457 if (page) { 2458 c = raw_cpu_ptr(s->cpu_slab); 2459 if (c->page) 2460 flush_slab(s, c); 2461 2462 /* 2463 * No other reference to the page yet so we can 2464 * muck around with it freely without cmpxchg 2465 */ 2466 freelist = page->freelist; 2467 page->freelist = NULL; 2468 2469 stat(s, ALLOC_SLAB); 2470 c->page = page; 2471 *pc = c; 2472 } else 2473 freelist = NULL; 2474 2475 return freelist; 2476 } 2477 2478 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2479 { 2480 if (unlikely(PageSlabPfmemalloc(page))) 2481 return gfp_pfmemalloc_allowed(gfpflags); 2482 2483 return true; 2484 } 2485 2486 /* 2487 * Check the page->freelist of a page and either transfer the freelist to the 2488 * per cpu freelist or deactivate the page. 2489 * 2490 * The page is still frozen if the return value is not NULL. 2491 * 2492 * If this function returns NULL then the page has been unfrozen. 2493 * 2494 * This function must be called with interrupt disabled. 2495 */ 2496 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2497 { 2498 struct page new; 2499 unsigned long counters; 2500 void *freelist; 2501 2502 do { 2503 freelist = page->freelist; 2504 counters = page->counters; 2505 2506 new.counters = counters; 2507 VM_BUG_ON(!new.frozen); 2508 2509 new.inuse = page->objects; 2510 new.frozen = freelist != NULL; 2511 2512 } while (!__cmpxchg_double_slab(s, page, 2513 freelist, counters, 2514 NULL, new.counters, 2515 "get_freelist")); 2516 2517 return freelist; 2518 } 2519 2520 /* 2521 * Slow path. The lockless freelist is empty or we need to perform 2522 * debugging duties. 2523 * 2524 * Processing is still very fast if new objects have been freed to the 2525 * regular freelist. In that case we simply take over the regular freelist 2526 * as the lockless freelist and zap the regular freelist. 2527 * 2528 * If that is not working then we fall back to the partial lists. We take the 2529 * first element of the freelist as the object to allocate now and move the 2530 * rest of the freelist to the lockless freelist. 2531 * 2532 * And if we were unable to get a new slab from the partial slab lists then 2533 * we need to allocate a new slab. This is the slowest path since it involves 2534 * a call to the page allocator and the setup of a new slab. 2535 * 2536 * Version of __slab_alloc to use when we know that interrupts are 2537 * already disabled (which is the case for bulk allocation). 2538 */ 2539 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2540 unsigned long addr, struct kmem_cache_cpu *c) 2541 { 2542 void *freelist; 2543 struct page *page; 2544 2545 page = c->page; 2546 if (!page) 2547 goto new_slab; 2548 redo: 2549 2550 if (unlikely(!node_match(page, node))) { 2551 int searchnode = node; 2552 2553 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2554 searchnode = node_to_mem_node(node); 2555 2556 if (unlikely(!node_match(page, searchnode))) { 2557 stat(s, ALLOC_NODE_MISMATCH); 2558 deactivate_slab(s, page, c->freelist, c); 2559 goto new_slab; 2560 } 2561 } 2562 2563 /* 2564 * By rights, we should be searching for a slab page that was 2565 * PFMEMALLOC but right now, we are losing the pfmemalloc 2566 * information when the page leaves the per-cpu allocator 2567 */ 2568 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2569 deactivate_slab(s, page, c->freelist, c); 2570 goto new_slab; 2571 } 2572 2573 /* must check again c->freelist in case of cpu migration or IRQ */ 2574 freelist = c->freelist; 2575 if (freelist) 2576 goto load_freelist; 2577 2578 freelist = get_freelist(s, page); 2579 2580 if (!freelist) { 2581 c->page = NULL; 2582 stat(s, DEACTIVATE_BYPASS); 2583 goto new_slab; 2584 } 2585 2586 stat(s, ALLOC_REFILL); 2587 2588 load_freelist: 2589 /* 2590 * freelist is pointing to the list of objects to be used. 2591 * page is pointing to the page from which the objects are obtained. 2592 * That page must be frozen for per cpu allocations to work. 2593 */ 2594 VM_BUG_ON(!c->page->frozen); 2595 c->freelist = get_freepointer(s, freelist); 2596 c->tid = next_tid(c->tid); 2597 return freelist; 2598 2599 new_slab: 2600 2601 if (slub_percpu_partial(c)) { 2602 page = c->page = slub_percpu_partial(c); 2603 slub_set_percpu_partial(c, page); 2604 stat(s, CPU_PARTIAL_ALLOC); 2605 goto redo; 2606 } 2607 2608 freelist = new_slab_objects(s, gfpflags, node, &c); 2609 2610 if (unlikely(!freelist)) { 2611 slab_out_of_memory(s, gfpflags, node); 2612 return NULL; 2613 } 2614 2615 page = c->page; 2616 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2617 goto load_freelist; 2618 2619 /* Only entered in the debug case */ 2620 if (kmem_cache_debug(s) && 2621 !alloc_debug_processing(s, page, freelist, addr)) 2622 goto new_slab; /* Slab failed checks. Next slab needed */ 2623 2624 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2625 return freelist; 2626 } 2627 2628 /* 2629 * Another one that disabled interrupt and compensates for possible 2630 * cpu changes by refetching the per cpu area pointer. 2631 */ 2632 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2633 unsigned long addr, struct kmem_cache_cpu *c) 2634 { 2635 void *p; 2636 unsigned long flags; 2637 2638 local_irq_save(flags); 2639 #ifdef CONFIG_PREEMPT 2640 /* 2641 * We may have been preempted and rescheduled on a different 2642 * cpu before disabling interrupts. Need to reload cpu area 2643 * pointer. 2644 */ 2645 c = this_cpu_ptr(s->cpu_slab); 2646 #endif 2647 2648 p = ___slab_alloc(s, gfpflags, node, addr, c); 2649 local_irq_restore(flags); 2650 return p; 2651 } 2652 2653 /* 2654 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2655 * have the fastpath folded into their functions. So no function call 2656 * overhead for requests that can be satisfied on the fastpath. 2657 * 2658 * The fastpath works by first checking if the lockless freelist can be used. 2659 * If not then __slab_alloc is called for slow processing. 2660 * 2661 * Otherwise we can simply pick the next object from the lockless free list. 2662 */ 2663 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2664 gfp_t gfpflags, int node, unsigned long addr) 2665 { 2666 void *object; 2667 struct kmem_cache_cpu *c; 2668 struct page *page; 2669 unsigned long tid; 2670 2671 s = slab_pre_alloc_hook(s, gfpflags); 2672 if (!s) 2673 return NULL; 2674 redo: 2675 /* 2676 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2677 * enabled. We may switch back and forth between cpus while 2678 * reading from one cpu area. That does not matter as long 2679 * as we end up on the original cpu again when doing the cmpxchg. 2680 * 2681 * We should guarantee that tid and kmem_cache are retrieved on 2682 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2683 * to check if it is matched or not. 2684 */ 2685 do { 2686 tid = this_cpu_read(s->cpu_slab->tid); 2687 c = raw_cpu_ptr(s->cpu_slab); 2688 } while (IS_ENABLED(CONFIG_PREEMPT) && 2689 unlikely(tid != READ_ONCE(c->tid))); 2690 2691 /* 2692 * Irqless object alloc/free algorithm used here depends on sequence 2693 * of fetching cpu_slab's data. tid should be fetched before anything 2694 * on c to guarantee that object and page associated with previous tid 2695 * won't be used with current tid. If we fetch tid first, object and 2696 * page could be one associated with next tid and our alloc/free 2697 * request will be failed. In this case, we will retry. So, no problem. 2698 */ 2699 barrier(); 2700 2701 /* 2702 * The transaction ids are globally unique per cpu and per operation on 2703 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2704 * occurs on the right processor and that there was no operation on the 2705 * linked list in between. 2706 */ 2707 2708 object = c->freelist; 2709 page = c->page; 2710 if (unlikely(!object || !node_match(page, node))) { 2711 object = __slab_alloc(s, gfpflags, node, addr, c); 2712 stat(s, ALLOC_SLOWPATH); 2713 } else { 2714 void *next_object = get_freepointer_safe(s, object); 2715 2716 /* 2717 * The cmpxchg will only match if there was no additional 2718 * operation and if we are on the right processor. 2719 * 2720 * The cmpxchg does the following atomically (without lock 2721 * semantics!) 2722 * 1. Relocate first pointer to the current per cpu area. 2723 * 2. Verify that tid and freelist have not been changed 2724 * 3. If they were not changed replace tid and freelist 2725 * 2726 * Since this is without lock semantics the protection is only 2727 * against code executing on this cpu *not* from access by 2728 * other cpus. 2729 */ 2730 if (unlikely(!this_cpu_cmpxchg_double( 2731 s->cpu_slab->freelist, s->cpu_slab->tid, 2732 object, tid, 2733 next_object, next_tid(tid)))) { 2734 2735 note_cmpxchg_failure("slab_alloc", s, tid); 2736 goto redo; 2737 } 2738 prefetch_freepointer(s, next_object); 2739 stat(s, ALLOC_FASTPATH); 2740 } 2741 2742 if (unlikely(gfpflags & __GFP_ZERO) && object) 2743 memset(object, 0, s->object_size); 2744 2745 slab_post_alloc_hook(s, gfpflags, 1, &object); 2746 2747 return object; 2748 } 2749 2750 static __always_inline void *slab_alloc(struct kmem_cache *s, 2751 gfp_t gfpflags, unsigned long addr) 2752 { 2753 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2754 } 2755 2756 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2757 { 2758 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2759 2760 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2761 s->size, gfpflags); 2762 2763 return ret; 2764 } 2765 EXPORT_SYMBOL(kmem_cache_alloc); 2766 2767 #ifdef CONFIG_TRACING 2768 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2769 { 2770 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2771 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2772 kasan_kmalloc(s, ret, size, gfpflags); 2773 return ret; 2774 } 2775 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2776 #endif 2777 2778 #ifdef CONFIG_NUMA 2779 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2780 { 2781 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2782 2783 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2784 s->object_size, s->size, gfpflags, node); 2785 2786 return ret; 2787 } 2788 EXPORT_SYMBOL(kmem_cache_alloc_node); 2789 2790 #ifdef CONFIG_TRACING 2791 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2792 gfp_t gfpflags, 2793 int node, size_t size) 2794 { 2795 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2796 2797 trace_kmalloc_node(_RET_IP_, ret, 2798 size, s->size, gfpflags, node); 2799 2800 kasan_kmalloc(s, ret, size, gfpflags); 2801 return ret; 2802 } 2803 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2804 #endif 2805 #endif 2806 2807 /* 2808 * Slow path handling. This may still be called frequently since objects 2809 * have a longer lifetime than the cpu slabs in most processing loads. 2810 * 2811 * So we still attempt to reduce cache line usage. Just take the slab 2812 * lock and free the item. If there is no additional partial page 2813 * handling required then we can return immediately. 2814 */ 2815 static void __slab_free(struct kmem_cache *s, struct page *page, 2816 void *head, void *tail, int cnt, 2817 unsigned long addr) 2818 2819 { 2820 void *prior; 2821 int was_frozen; 2822 struct page new; 2823 unsigned long counters; 2824 struct kmem_cache_node *n = NULL; 2825 unsigned long uninitialized_var(flags); 2826 2827 stat(s, FREE_SLOWPATH); 2828 2829 if (kmem_cache_debug(s) && 2830 !free_debug_processing(s, page, head, tail, cnt, addr)) 2831 return; 2832 2833 do { 2834 if (unlikely(n)) { 2835 spin_unlock_irqrestore(&n->list_lock, flags); 2836 n = NULL; 2837 } 2838 prior = page->freelist; 2839 counters = page->counters; 2840 set_freepointer(s, tail, prior); 2841 new.counters = counters; 2842 was_frozen = new.frozen; 2843 new.inuse -= cnt; 2844 if ((!new.inuse || !prior) && !was_frozen) { 2845 2846 if (kmem_cache_has_cpu_partial(s) && !prior) { 2847 2848 /* 2849 * Slab was on no list before and will be 2850 * partially empty 2851 * We can defer the list move and instead 2852 * freeze it. 2853 */ 2854 new.frozen = 1; 2855 2856 } else { /* Needs to be taken off a list */ 2857 2858 n = get_node(s, page_to_nid(page)); 2859 /* 2860 * Speculatively acquire the list_lock. 2861 * If the cmpxchg does not succeed then we may 2862 * drop the list_lock without any processing. 2863 * 2864 * Otherwise the list_lock will synchronize with 2865 * other processors updating the list of slabs. 2866 */ 2867 spin_lock_irqsave(&n->list_lock, flags); 2868 2869 } 2870 } 2871 2872 } while (!cmpxchg_double_slab(s, page, 2873 prior, counters, 2874 head, new.counters, 2875 "__slab_free")); 2876 2877 if (likely(!n)) { 2878 2879 /* 2880 * If we just froze the page then put it onto the 2881 * per cpu partial list. 2882 */ 2883 if (new.frozen && !was_frozen) { 2884 put_cpu_partial(s, page, 1); 2885 stat(s, CPU_PARTIAL_FREE); 2886 } 2887 /* 2888 * The list lock was not taken therefore no list 2889 * activity can be necessary. 2890 */ 2891 if (was_frozen) 2892 stat(s, FREE_FROZEN); 2893 return; 2894 } 2895 2896 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2897 goto slab_empty; 2898 2899 /* 2900 * Objects left in the slab. If it was not on the partial list before 2901 * then add it. 2902 */ 2903 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2904 if (kmem_cache_debug(s)) 2905 remove_full(s, n, page); 2906 add_partial(n, page, DEACTIVATE_TO_TAIL); 2907 stat(s, FREE_ADD_PARTIAL); 2908 } 2909 spin_unlock_irqrestore(&n->list_lock, flags); 2910 return; 2911 2912 slab_empty: 2913 if (prior) { 2914 /* 2915 * Slab on the partial list. 2916 */ 2917 remove_partial(n, page); 2918 stat(s, FREE_REMOVE_PARTIAL); 2919 } else { 2920 /* Slab must be on the full list */ 2921 remove_full(s, n, page); 2922 } 2923 2924 spin_unlock_irqrestore(&n->list_lock, flags); 2925 stat(s, FREE_SLAB); 2926 discard_slab(s, page); 2927 } 2928 2929 /* 2930 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2931 * can perform fastpath freeing without additional function calls. 2932 * 2933 * The fastpath is only possible if we are freeing to the current cpu slab 2934 * of this processor. This typically the case if we have just allocated 2935 * the item before. 2936 * 2937 * If fastpath is not possible then fall back to __slab_free where we deal 2938 * with all sorts of special processing. 2939 * 2940 * Bulk free of a freelist with several objects (all pointing to the 2941 * same page) possible by specifying head and tail ptr, plus objects 2942 * count (cnt). Bulk free indicated by tail pointer being set. 2943 */ 2944 static __always_inline void do_slab_free(struct kmem_cache *s, 2945 struct page *page, void *head, void *tail, 2946 int cnt, unsigned long addr) 2947 { 2948 void *tail_obj = tail ? : head; 2949 struct kmem_cache_cpu *c; 2950 unsigned long tid; 2951 redo: 2952 /* 2953 * Determine the currently cpus per cpu slab. 2954 * The cpu may change afterward. However that does not matter since 2955 * data is retrieved via this pointer. If we are on the same cpu 2956 * during the cmpxchg then the free will succeed. 2957 */ 2958 do { 2959 tid = this_cpu_read(s->cpu_slab->tid); 2960 c = raw_cpu_ptr(s->cpu_slab); 2961 } while (IS_ENABLED(CONFIG_PREEMPT) && 2962 unlikely(tid != READ_ONCE(c->tid))); 2963 2964 /* Same with comment on barrier() in slab_alloc_node() */ 2965 barrier(); 2966 2967 if (likely(page == c->page)) { 2968 set_freepointer(s, tail_obj, c->freelist); 2969 2970 if (unlikely(!this_cpu_cmpxchg_double( 2971 s->cpu_slab->freelist, s->cpu_slab->tid, 2972 c->freelist, tid, 2973 head, next_tid(tid)))) { 2974 2975 note_cmpxchg_failure("slab_free", s, tid); 2976 goto redo; 2977 } 2978 stat(s, FREE_FASTPATH); 2979 } else 2980 __slab_free(s, page, head, tail_obj, cnt, addr); 2981 2982 } 2983 2984 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2985 void *head, void *tail, int cnt, 2986 unsigned long addr) 2987 { 2988 slab_free_freelist_hook(s, head, tail); 2989 /* 2990 * slab_free_freelist_hook() could have put the items into quarantine. 2991 * If so, no need to free them. 2992 */ 2993 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU)) 2994 return; 2995 do_slab_free(s, page, head, tail, cnt, addr); 2996 } 2997 2998 #ifdef CONFIG_KASAN 2999 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3000 { 3001 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3002 } 3003 #endif 3004 3005 void kmem_cache_free(struct kmem_cache *s, void *x) 3006 { 3007 s = cache_from_obj(s, x); 3008 if (!s) 3009 return; 3010 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3011 trace_kmem_cache_free(_RET_IP_, x); 3012 } 3013 EXPORT_SYMBOL(kmem_cache_free); 3014 3015 struct detached_freelist { 3016 struct page *page; 3017 void *tail; 3018 void *freelist; 3019 int cnt; 3020 struct kmem_cache *s; 3021 }; 3022 3023 /* 3024 * This function progressively scans the array with free objects (with 3025 * a limited look ahead) and extract objects belonging to the same 3026 * page. It builds a detached freelist directly within the given 3027 * page/objects. This can happen without any need for 3028 * synchronization, because the objects are owned by running process. 3029 * The freelist is build up as a single linked list in the objects. 3030 * The idea is, that this detached freelist can then be bulk 3031 * transferred to the real freelist(s), but only requiring a single 3032 * synchronization primitive. Look ahead in the array is limited due 3033 * to performance reasons. 3034 */ 3035 static inline 3036 int build_detached_freelist(struct kmem_cache *s, size_t size, 3037 void **p, struct detached_freelist *df) 3038 { 3039 size_t first_skipped_index = 0; 3040 int lookahead = 3; 3041 void *object; 3042 struct page *page; 3043 3044 /* Always re-init detached_freelist */ 3045 df->page = NULL; 3046 3047 do { 3048 object = p[--size]; 3049 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3050 } while (!object && size); 3051 3052 if (!object) 3053 return 0; 3054 3055 page = virt_to_head_page(object); 3056 if (!s) { 3057 /* Handle kalloc'ed objects */ 3058 if (unlikely(!PageSlab(page))) { 3059 BUG_ON(!PageCompound(page)); 3060 kfree_hook(object); 3061 __free_pages(page, compound_order(page)); 3062 p[size] = NULL; /* mark object processed */ 3063 return size; 3064 } 3065 /* Derive kmem_cache from object */ 3066 df->s = page->slab_cache; 3067 } else { 3068 df->s = cache_from_obj(s, object); /* Support for memcg */ 3069 } 3070 3071 /* Start new detached freelist */ 3072 df->page = page; 3073 set_freepointer(df->s, object, NULL); 3074 df->tail = object; 3075 df->freelist = object; 3076 p[size] = NULL; /* mark object processed */ 3077 df->cnt = 1; 3078 3079 while (size) { 3080 object = p[--size]; 3081 if (!object) 3082 continue; /* Skip processed objects */ 3083 3084 /* df->page is always set at this point */ 3085 if (df->page == virt_to_head_page(object)) { 3086 /* Opportunity build freelist */ 3087 set_freepointer(df->s, object, df->freelist); 3088 df->freelist = object; 3089 df->cnt++; 3090 p[size] = NULL; /* mark object processed */ 3091 3092 continue; 3093 } 3094 3095 /* Limit look ahead search */ 3096 if (!--lookahead) 3097 break; 3098 3099 if (!first_skipped_index) 3100 first_skipped_index = size + 1; 3101 } 3102 3103 return first_skipped_index; 3104 } 3105 3106 /* Note that interrupts must be enabled when calling this function. */ 3107 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3108 { 3109 if (WARN_ON(!size)) 3110 return; 3111 3112 do { 3113 struct detached_freelist df; 3114 3115 size = build_detached_freelist(s, size, p, &df); 3116 if (!df.page) 3117 continue; 3118 3119 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3120 } while (likely(size)); 3121 } 3122 EXPORT_SYMBOL(kmem_cache_free_bulk); 3123 3124 /* Note that interrupts must be enabled when calling this function. */ 3125 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3126 void **p) 3127 { 3128 struct kmem_cache_cpu *c; 3129 int i; 3130 3131 /* memcg and kmem_cache debug support */ 3132 s = slab_pre_alloc_hook(s, flags); 3133 if (unlikely(!s)) 3134 return false; 3135 /* 3136 * Drain objects in the per cpu slab, while disabling local 3137 * IRQs, which protects against PREEMPT and interrupts 3138 * handlers invoking normal fastpath. 3139 */ 3140 local_irq_disable(); 3141 c = this_cpu_ptr(s->cpu_slab); 3142 3143 for (i = 0; i < size; i++) { 3144 void *object = c->freelist; 3145 3146 if (unlikely(!object)) { 3147 /* 3148 * Invoking slow path likely have side-effect 3149 * of re-populating per CPU c->freelist 3150 */ 3151 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3152 _RET_IP_, c); 3153 if (unlikely(!p[i])) 3154 goto error; 3155 3156 c = this_cpu_ptr(s->cpu_slab); 3157 continue; /* goto for-loop */ 3158 } 3159 c->freelist = get_freepointer(s, object); 3160 p[i] = object; 3161 } 3162 c->tid = next_tid(c->tid); 3163 local_irq_enable(); 3164 3165 /* Clear memory outside IRQ disabled fastpath loop */ 3166 if (unlikely(flags & __GFP_ZERO)) { 3167 int j; 3168 3169 for (j = 0; j < i; j++) 3170 memset(p[j], 0, s->object_size); 3171 } 3172 3173 /* memcg and kmem_cache debug support */ 3174 slab_post_alloc_hook(s, flags, size, p); 3175 return i; 3176 error: 3177 local_irq_enable(); 3178 slab_post_alloc_hook(s, flags, i, p); 3179 __kmem_cache_free_bulk(s, i, p); 3180 return 0; 3181 } 3182 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3183 3184 3185 /* 3186 * Object placement in a slab is made very easy because we always start at 3187 * offset 0. If we tune the size of the object to the alignment then we can 3188 * get the required alignment by putting one properly sized object after 3189 * another. 3190 * 3191 * Notice that the allocation order determines the sizes of the per cpu 3192 * caches. Each processor has always one slab available for allocations. 3193 * Increasing the allocation order reduces the number of times that slabs 3194 * must be moved on and off the partial lists and is therefore a factor in 3195 * locking overhead. 3196 */ 3197 3198 /* 3199 * Mininum / Maximum order of slab pages. This influences locking overhead 3200 * and slab fragmentation. A higher order reduces the number of partial slabs 3201 * and increases the number of allocations possible without having to 3202 * take the list_lock. 3203 */ 3204 static int slub_min_order; 3205 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3206 static int slub_min_objects; 3207 3208 /* 3209 * Calculate the order of allocation given an slab object size. 3210 * 3211 * The order of allocation has significant impact on performance and other 3212 * system components. Generally order 0 allocations should be preferred since 3213 * order 0 does not cause fragmentation in the page allocator. Larger objects 3214 * be problematic to put into order 0 slabs because there may be too much 3215 * unused space left. We go to a higher order if more than 1/16th of the slab 3216 * would be wasted. 3217 * 3218 * In order to reach satisfactory performance we must ensure that a minimum 3219 * number of objects is in one slab. Otherwise we may generate too much 3220 * activity on the partial lists which requires taking the list_lock. This is 3221 * less a concern for large slabs though which are rarely used. 3222 * 3223 * slub_max_order specifies the order where we begin to stop considering the 3224 * number of objects in a slab as critical. If we reach slub_max_order then 3225 * we try to keep the page order as low as possible. So we accept more waste 3226 * of space in favor of a small page order. 3227 * 3228 * Higher order allocations also allow the placement of more objects in a 3229 * slab and thereby reduce object handling overhead. If the user has 3230 * requested a higher mininum order then we start with that one instead of 3231 * the smallest order which will fit the object. 3232 */ 3233 static inline int slab_order(int size, int min_objects, 3234 int max_order, int fract_leftover, int reserved) 3235 { 3236 int order; 3237 int rem; 3238 int min_order = slub_min_order; 3239 3240 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 3241 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3242 3243 for (order = max(min_order, get_order(min_objects * size + reserved)); 3244 order <= max_order; order++) { 3245 3246 unsigned long slab_size = PAGE_SIZE << order; 3247 3248 rem = (slab_size - reserved) % size; 3249 3250 if (rem <= slab_size / fract_leftover) 3251 break; 3252 } 3253 3254 return order; 3255 } 3256 3257 static inline int calculate_order(int size, int reserved) 3258 { 3259 int order; 3260 int min_objects; 3261 int fraction; 3262 int max_objects; 3263 3264 /* 3265 * Attempt to find best configuration for a slab. This 3266 * works by first attempting to generate a layout with 3267 * the best configuration and backing off gradually. 3268 * 3269 * First we increase the acceptable waste in a slab. Then 3270 * we reduce the minimum objects required in a slab. 3271 */ 3272 min_objects = slub_min_objects; 3273 if (!min_objects) 3274 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3275 max_objects = order_objects(slub_max_order, size, reserved); 3276 min_objects = min(min_objects, max_objects); 3277 3278 while (min_objects > 1) { 3279 fraction = 16; 3280 while (fraction >= 4) { 3281 order = slab_order(size, min_objects, 3282 slub_max_order, fraction, reserved); 3283 if (order <= slub_max_order) 3284 return order; 3285 fraction /= 2; 3286 } 3287 min_objects--; 3288 } 3289 3290 /* 3291 * We were unable to place multiple objects in a slab. Now 3292 * lets see if we can place a single object there. 3293 */ 3294 order = slab_order(size, 1, slub_max_order, 1, reserved); 3295 if (order <= slub_max_order) 3296 return order; 3297 3298 /* 3299 * Doh this slab cannot be placed using slub_max_order. 3300 */ 3301 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 3302 if (order < MAX_ORDER) 3303 return order; 3304 return -ENOSYS; 3305 } 3306 3307 static void 3308 init_kmem_cache_node(struct kmem_cache_node *n) 3309 { 3310 n->nr_partial = 0; 3311 spin_lock_init(&n->list_lock); 3312 INIT_LIST_HEAD(&n->partial); 3313 #ifdef CONFIG_SLUB_DEBUG 3314 atomic_long_set(&n->nr_slabs, 0); 3315 atomic_long_set(&n->total_objects, 0); 3316 INIT_LIST_HEAD(&n->full); 3317 #endif 3318 } 3319 3320 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3321 { 3322 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3323 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3324 3325 /* 3326 * Must align to double word boundary for the double cmpxchg 3327 * instructions to work; see __pcpu_double_call_return_bool(). 3328 */ 3329 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3330 2 * sizeof(void *)); 3331 3332 if (!s->cpu_slab) 3333 return 0; 3334 3335 init_kmem_cache_cpus(s); 3336 3337 return 1; 3338 } 3339 3340 static struct kmem_cache *kmem_cache_node; 3341 3342 /* 3343 * No kmalloc_node yet so do it by hand. We know that this is the first 3344 * slab on the node for this slabcache. There are no concurrent accesses 3345 * possible. 3346 * 3347 * Note that this function only works on the kmem_cache_node 3348 * when allocating for the kmem_cache_node. This is used for bootstrapping 3349 * memory on a fresh node that has no slab structures yet. 3350 */ 3351 static void early_kmem_cache_node_alloc(int node) 3352 { 3353 struct page *page; 3354 struct kmem_cache_node *n; 3355 3356 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3357 3358 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3359 3360 BUG_ON(!page); 3361 if (page_to_nid(page) != node) { 3362 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3363 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3364 } 3365 3366 n = page->freelist; 3367 BUG_ON(!n); 3368 page->freelist = get_freepointer(kmem_cache_node, n); 3369 page->inuse = 1; 3370 page->frozen = 0; 3371 kmem_cache_node->node[node] = n; 3372 #ifdef CONFIG_SLUB_DEBUG 3373 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3374 init_tracking(kmem_cache_node, n); 3375 #endif 3376 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3377 GFP_KERNEL); 3378 init_kmem_cache_node(n); 3379 inc_slabs_node(kmem_cache_node, node, page->objects); 3380 3381 /* 3382 * No locks need to be taken here as it has just been 3383 * initialized and there is no concurrent access. 3384 */ 3385 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3386 } 3387 3388 static void free_kmem_cache_nodes(struct kmem_cache *s) 3389 { 3390 int node; 3391 struct kmem_cache_node *n; 3392 3393 for_each_kmem_cache_node(s, node, n) { 3394 s->node[node] = NULL; 3395 kmem_cache_free(kmem_cache_node, n); 3396 } 3397 } 3398 3399 void __kmem_cache_release(struct kmem_cache *s) 3400 { 3401 cache_random_seq_destroy(s); 3402 free_percpu(s->cpu_slab); 3403 free_kmem_cache_nodes(s); 3404 } 3405 3406 static int init_kmem_cache_nodes(struct kmem_cache *s) 3407 { 3408 int node; 3409 3410 for_each_node_state(node, N_NORMAL_MEMORY) { 3411 struct kmem_cache_node *n; 3412 3413 if (slab_state == DOWN) { 3414 early_kmem_cache_node_alloc(node); 3415 continue; 3416 } 3417 n = kmem_cache_alloc_node(kmem_cache_node, 3418 GFP_KERNEL, node); 3419 3420 if (!n) { 3421 free_kmem_cache_nodes(s); 3422 return 0; 3423 } 3424 3425 init_kmem_cache_node(n); 3426 s->node[node] = n; 3427 } 3428 return 1; 3429 } 3430 3431 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3432 { 3433 if (min < MIN_PARTIAL) 3434 min = MIN_PARTIAL; 3435 else if (min > MAX_PARTIAL) 3436 min = MAX_PARTIAL; 3437 s->min_partial = min; 3438 } 3439 3440 static void set_cpu_partial(struct kmem_cache *s) 3441 { 3442 #ifdef CONFIG_SLUB_CPU_PARTIAL 3443 /* 3444 * cpu_partial determined the maximum number of objects kept in the 3445 * per cpu partial lists of a processor. 3446 * 3447 * Per cpu partial lists mainly contain slabs that just have one 3448 * object freed. If they are used for allocation then they can be 3449 * filled up again with minimal effort. The slab will never hit the 3450 * per node partial lists and therefore no locking will be required. 3451 * 3452 * This setting also determines 3453 * 3454 * A) The number of objects from per cpu partial slabs dumped to the 3455 * per node list when we reach the limit. 3456 * B) The number of objects in cpu partial slabs to extract from the 3457 * per node list when we run out of per cpu objects. We only fetch 3458 * 50% to keep some capacity around for frees. 3459 */ 3460 if (!kmem_cache_has_cpu_partial(s)) 3461 s->cpu_partial = 0; 3462 else if (s->size >= PAGE_SIZE) 3463 s->cpu_partial = 2; 3464 else if (s->size >= 1024) 3465 s->cpu_partial = 6; 3466 else if (s->size >= 256) 3467 s->cpu_partial = 13; 3468 else 3469 s->cpu_partial = 30; 3470 #endif 3471 } 3472 3473 /* 3474 * calculate_sizes() determines the order and the distribution of data within 3475 * a slab object. 3476 */ 3477 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3478 { 3479 unsigned long flags = s->flags; 3480 size_t size = s->object_size; 3481 int order; 3482 3483 /* 3484 * Round up object size to the next word boundary. We can only 3485 * place the free pointer at word boundaries and this determines 3486 * the possible location of the free pointer. 3487 */ 3488 size = ALIGN(size, sizeof(void *)); 3489 3490 #ifdef CONFIG_SLUB_DEBUG 3491 /* 3492 * Determine if we can poison the object itself. If the user of 3493 * the slab may touch the object after free or before allocation 3494 * then we should never poison the object itself. 3495 */ 3496 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3497 !s->ctor) 3498 s->flags |= __OBJECT_POISON; 3499 else 3500 s->flags &= ~__OBJECT_POISON; 3501 3502 3503 /* 3504 * If we are Redzoning then check if there is some space between the 3505 * end of the object and the free pointer. If not then add an 3506 * additional word to have some bytes to store Redzone information. 3507 */ 3508 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3509 size += sizeof(void *); 3510 #endif 3511 3512 /* 3513 * With that we have determined the number of bytes in actual use 3514 * by the object. This is the potential offset to the free pointer. 3515 */ 3516 s->inuse = size; 3517 3518 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3519 s->ctor)) { 3520 /* 3521 * Relocate free pointer after the object if it is not 3522 * permitted to overwrite the first word of the object on 3523 * kmem_cache_free. 3524 * 3525 * This is the case if we do RCU, have a constructor or 3526 * destructor or are poisoning the objects. 3527 */ 3528 s->offset = size; 3529 size += sizeof(void *); 3530 } 3531 3532 #ifdef CONFIG_SLUB_DEBUG 3533 if (flags & SLAB_STORE_USER) 3534 /* 3535 * Need to store information about allocs and frees after 3536 * the object. 3537 */ 3538 size += 2 * sizeof(struct track); 3539 #endif 3540 3541 kasan_cache_create(s, &size, &s->flags); 3542 #ifdef CONFIG_SLUB_DEBUG 3543 if (flags & SLAB_RED_ZONE) { 3544 /* 3545 * Add some empty padding so that we can catch 3546 * overwrites from earlier objects rather than let 3547 * tracking information or the free pointer be 3548 * corrupted if a user writes before the start 3549 * of the object. 3550 */ 3551 size += sizeof(void *); 3552 3553 s->red_left_pad = sizeof(void *); 3554 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3555 size += s->red_left_pad; 3556 } 3557 #endif 3558 3559 /* 3560 * SLUB stores one object immediately after another beginning from 3561 * offset 0. In order to align the objects we have to simply size 3562 * each object to conform to the alignment. 3563 */ 3564 size = ALIGN(size, s->align); 3565 s->size = size; 3566 if (forced_order >= 0) 3567 order = forced_order; 3568 else 3569 order = calculate_order(size, s->reserved); 3570 3571 if (order < 0) 3572 return 0; 3573 3574 s->allocflags = 0; 3575 if (order) 3576 s->allocflags |= __GFP_COMP; 3577 3578 if (s->flags & SLAB_CACHE_DMA) 3579 s->allocflags |= GFP_DMA; 3580 3581 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3582 s->allocflags |= __GFP_RECLAIMABLE; 3583 3584 /* 3585 * Determine the number of objects per slab 3586 */ 3587 s->oo = oo_make(order, size, s->reserved); 3588 s->min = oo_make(get_order(size), size, s->reserved); 3589 if (oo_objects(s->oo) > oo_objects(s->max)) 3590 s->max = s->oo; 3591 3592 return !!oo_objects(s->oo); 3593 } 3594 3595 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3596 { 3597 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3598 s->reserved = 0; 3599 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3600 s->random = get_random_long(); 3601 #endif 3602 3603 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU)) 3604 s->reserved = sizeof(struct rcu_head); 3605 3606 if (!calculate_sizes(s, -1)) 3607 goto error; 3608 if (disable_higher_order_debug) { 3609 /* 3610 * Disable debugging flags that store metadata if the min slab 3611 * order increased. 3612 */ 3613 if (get_order(s->size) > get_order(s->object_size)) { 3614 s->flags &= ~DEBUG_METADATA_FLAGS; 3615 s->offset = 0; 3616 if (!calculate_sizes(s, -1)) 3617 goto error; 3618 } 3619 } 3620 3621 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3622 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3623 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3624 /* Enable fast mode */ 3625 s->flags |= __CMPXCHG_DOUBLE; 3626 #endif 3627 3628 /* 3629 * The larger the object size is, the more pages we want on the partial 3630 * list to avoid pounding the page allocator excessively. 3631 */ 3632 set_min_partial(s, ilog2(s->size) / 2); 3633 3634 set_cpu_partial(s); 3635 3636 #ifdef CONFIG_NUMA 3637 s->remote_node_defrag_ratio = 1000; 3638 #endif 3639 3640 /* Initialize the pre-computed randomized freelist if slab is up */ 3641 if (slab_state >= UP) { 3642 if (init_cache_random_seq(s)) 3643 goto error; 3644 } 3645 3646 if (!init_kmem_cache_nodes(s)) 3647 goto error; 3648 3649 if (alloc_kmem_cache_cpus(s)) 3650 return 0; 3651 3652 free_kmem_cache_nodes(s); 3653 error: 3654 if (flags & SLAB_PANIC) 3655 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n", 3656 s->name, (unsigned long)s->size, s->size, 3657 oo_order(s->oo), s->offset, flags); 3658 return -EINVAL; 3659 } 3660 3661 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3662 const char *text) 3663 { 3664 #ifdef CONFIG_SLUB_DEBUG 3665 void *addr = page_address(page); 3666 void *p; 3667 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3668 sizeof(long), GFP_ATOMIC); 3669 if (!map) 3670 return; 3671 slab_err(s, page, text, s->name); 3672 slab_lock(page); 3673 3674 get_map(s, page, map); 3675 for_each_object(p, s, addr, page->objects) { 3676 3677 if (!test_bit(slab_index(p, s, addr), map)) { 3678 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3679 print_tracking(s, p); 3680 } 3681 } 3682 slab_unlock(page); 3683 kfree(map); 3684 #endif 3685 } 3686 3687 /* 3688 * Attempt to free all partial slabs on a node. 3689 * This is called from __kmem_cache_shutdown(). We must take list_lock 3690 * because sysfs file might still access partial list after the shutdowning. 3691 */ 3692 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3693 { 3694 LIST_HEAD(discard); 3695 struct page *page, *h; 3696 3697 BUG_ON(irqs_disabled()); 3698 spin_lock_irq(&n->list_lock); 3699 list_for_each_entry_safe(page, h, &n->partial, lru) { 3700 if (!page->inuse) { 3701 remove_partial(n, page); 3702 list_add(&page->lru, &discard); 3703 } else { 3704 list_slab_objects(s, page, 3705 "Objects remaining in %s on __kmem_cache_shutdown()"); 3706 } 3707 } 3708 spin_unlock_irq(&n->list_lock); 3709 3710 list_for_each_entry_safe(page, h, &discard, lru) 3711 discard_slab(s, page); 3712 } 3713 3714 /* 3715 * Release all resources used by a slab cache. 3716 */ 3717 int __kmem_cache_shutdown(struct kmem_cache *s) 3718 { 3719 int node; 3720 struct kmem_cache_node *n; 3721 3722 flush_all(s); 3723 /* Attempt to free all objects */ 3724 for_each_kmem_cache_node(s, node, n) { 3725 free_partial(s, n); 3726 if (n->nr_partial || slabs_node(s, node)) 3727 return 1; 3728 } 3729 sysfs_slab_remove(s); 3730 return 0; 3731 } 3732 3733 /******************************************************************** 3734 * Kmalloc subsystem 3735 *******************************************************************/ 3736 3737 static int __init setup_slub_min_order(char *str) 3738 { 3739 get_option(&str, &slub_min_order); 3740 3741 return 1; 3742 } 3743 3744 __setup("slub_min_order=", setup_slub_min_order); 3745 3746 static int __init setup_slub_max_order(char *str) 3747 { 3748 get_option(&str, &slub_max_order); 3749 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3750 3751 return 1; 3752 } 3753 3754 __setup("slub_max_order=", setup_slub_max_order); 3755 3756 static int __init setup_slub_min_objects(char *str) 3757 { 3758 get_option(&str, &slub_min_objects); 3759 3760 return 1; 3761 } 3762 3763 __setup("slub_min_objects=", setup_slub_min_objects); 3764 3765 void *__kmalloc(size_t size, gfp_t flags) 3766 { 3767 struct kmem_cache *s; 3768 void *ret; 3769 3770 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3771 return kmalloc_large(size, flags); 3772 3773 s = kmalloc_slab(size, flags); 3774 3775 if (unlikely(ZERO_OR_NULL_PTR(s))) 3776 return s; 3777 3778 ret = slab_alloc(s, flags, _RET_IP_); 3779 3780 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3781 3782 kasan_kmalloc(s, ret, size, flags); 3783 3784 return ret; 3785 } 3786 EXPORT_SYMBOL(__kmalloc); 3787 3788 #ifdef CONFIG_NUMA 3789 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3790 { 3791 struct page *page; 3792 void *ptr = NULL; 3793 3794 flags |= __GFP_COMP | __GFP_NOTRACK; 3795 page = alloc_pages_node(node, flags, get_order(size)); 3796 if (page) 3797 ptr = page_address(page); 3798 3799 kmalloc_large_node_hook(ptr, size, flags); 3800 return ptr; 3801 } 3802 3803 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3804 { 3805 struct kmem_cache *s; 3806 void *ret; 3807 3808 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3809 ret = kmalloc_large_node(size, flags, node); 3810 3811 trace_kmalloc_node(_RET_IP_, ret, 3812 size, PAGE_SIZE << get_order(size), 3813 flags, node); 3814 3815 return ret; 3816 } 3817 3818 s = kmalloc_slab(size, flags); 3819 3820 if (unlikely(ZERO_OR_NULL_PTR(s))) 3821 return s; 3822 3823 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3824 3825 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3826 3827 kasan_kmalloc(s, ret, size, flags); 3828 3829 return ret; 3830 } 3831 EXPORT_SYMBOL(__kmalloc_node); 3832 #endif 3833 3834 #ifdef CONFIG_HARDENED_USERCOPY 3835 /* 3836 * Rejects objects that are incorrectly sized. 3837 * 3838 * Returns NULL if check passes, otherwise const char * to name of cache 3839 * to indicate an error. 3840 */ 3841 const char *__check_heap_object(const void *ptr, unsigned long n, 3842 struct page *page) 3843 { 3844 struct kmem_cache *s; 3845 unsigned long offset; 3846 size_t object_size; 3847 3848 /* Find object and usable object size. */ 3849 s = page->slab_cache; 3850 object_size = slab_ksize(s); 3851 3852 /* Reject impossible pointers. */ 3853 if (ptr < page_address(page)) 3854 return s->name; 3855 3856 /* Find offset within object. */ 3857 offset = (ptr - page_address(page)) % s->size; 3858 3859 /* Adjust for redzone and reject if within the redzone. */ 3860 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3861 if (offset < s->red_left_pad) 3862 return s->name; 3863 offset -= s->red_left_pad; 3864 } 3865 3866 /* Allow address range falling entirely within object size. */ 3867 if (offset <= object_size && n <= object_size - offset) 3868 return NULL; 3869 3870 return s->name; 3871 } 3872 #endif /* CONFIG_HARDENED_USERCOPY */ 3873 3874 static size_t __ksize(const void *object) 3875 { 3876 struct page *page; 3877 3878 if (unlikely(object == ZERO_SIZE_PTR)) 3879 return 0; 3880 3881 page = virt_to_head_page(object); 3882 3883 if (unlikely(!PageSlab(page))) { 3884 WARN_ON(!PageCompound(page)); 3885 return PAGE_SIZE << compound_order(page); 3886 } 3887 3888 return slab_ksize(page->slab_cache); 3889 } 3890 3891 size_t ksize(const void *object) 3892 { 3893 size_t size = __ksize(object); 3894 /* We assume that ksize callers could use whole allocated area, 3895 * so we need to unpoison this area. 3896 */ 3897 kasan_unpoison_shadow(object, size); 3898 return size; 3899 } 3900 EXPORT_SYMBOL(ksize); 3901 3902 void kfree(const void *x) 3903 { 3904 struct page *page; 3905 void *object = (void *)x; 3906 3907 trace_kfree(_RET_IP_, x); 3908 3909 if (unlikely(ZERO_OR_NULL_PTR(x))) 3910 return; 3911 3912 page = virt_to_head_page(x); 3913 if (unlikely(!PageSlab(page))) { 3914 BUG_ON(!PageCompound(page)); 3915 kfree_hook(x); 3916 __free_pages(page, compound_order(page)); 3917 return; 3918 } 3919 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3920 } 3921 EXPORT_SYMBOL(kfree); 3922 3923 #define SHRINK_PROMOTE_MAX 32 3924 3925 /* 3926 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3927 * up most to the head of the partial lists. New allocations will then 3928 * fill those up and thus they can be removed from the partial lists. 3929 * 3930 * The slabs with the least items are placed last. This results in them 3931 * being allocated from last increasing the chance that the last objects 3932 * are freed in them. 3933 */ 3934 int __kmem_cache_shrink(struct kmem_cache *s) 3935 { 3936 int node; 3937 int i; 3938 struct kmem_cache_node *n; 3939 struct page *page; 3940 struct page *t; 3941 struct list_head discard; 3942 struct list_head promote[SHRINK_PROMOTE_MAX]; 3943 unsigned long flags; 3944 int ret = 0; 3945 3946 flush_all(s); 3947 for_each_kmem_cache_node(s, node, n) { 3948 INIT_LIST_HEAD(&discard); 3949 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3950 INIT_LIST_HEAD(promote + i); 3951 3952 spin_lock_irqsave(&n->list_lock, flags); 3953 3954 /* 3955 * Build lists of slabs to discard or promote. 3956 * 3957 * Note that concurrent frees may occur while we hold the 3958 * list_lock. page->inuse here is the upper limit. 3959 */ 3960 list_for_each_entry_safe(page, t, &n->partial, lru) { 3961 int free = page->objects - page->inuse; 3962 3963 /* Do not reread page->inuse */ 3964 barrier(); 3965 3966 /* We do not keep full slabs on the list */ 3967 BUG_ON(free <= 0); 3968 3969 if (free == page->objects) { 3970 list_move(&page->lru, &discard); 3971 n->nr_partial--; 3972 } else if (free <= SHRINK_PROMOTE_MAX) 3973 list_move(&page->lru, promote + free - 1); 3974 } 3975 3976 /* 3977 * Promote the slabs filled up most to the head of the 3978 * partial list. 3979 */ 3980 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 3981 list_splice(promote + i, &n->partial); 3982 3983 spin_unlock_irqrestore(&n->list_lock, flags); 3984 3985 /* Release empty slabs */ 3986 list_for_each_entry_safe(page, t, &discard, lru) 3987 discard_slab(s, page); 3988 3989 if (slabs_node(s, node)) 3990 ret = 1; 3991 } 3992 3993 return ret; 3994 } 3995 3996 #ifdef CONFIG_MEMCG 3997 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) 3998 { 3999 /* 4000 * Called with all the locks held after a sched RCU grace period. 4001 * Even if @s becomes empty after shrinking, we can't know that @s 4002 * doesn't have allocations already in-flight and thus can't 4003 * destroy @s until the associated memcg is released. 4004 * 4005 * However, let's remove the sysfs files for empty caches here. 4006 * Each cache has a lot of interface files which aren't 4007 * particularly useful for empty draining caches; otherwise, we can 4008 * easily end up with millions of unnecessary sysfs files on 4009 * systems which have a lot of memory and transient cgroups. 4010 */ 4011 if (!__kmem_cache_shrink(s)) 4012 sysfs_slab_remove(s); 4013 } 4014 4015 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4016 { 4017 /* 4018 * Disable empty slabs caching. Used to avoid pinning offline 4019 * memory cgroups by kmem pages that can be freed. 4020 */ 4021 slub_set_cpu_partial(s, 0); 4022 s->min_partial = 0; 4023 4024 /* 4025 * s->cpu_partial is checked locklessly (see put_cpu_partial), so 4026 * we have to make sure the change is visible before shrinking. 4027 */ 4028 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); 4029 } 4030 #endif 4031 4032 static int slab_mem_going_offline_callback(void *arg) 4033 { 4034 struct kmem_cache *s; 4035 4036 mutex_lock(&slab_mutex); 4037 list_for_each_entry(s, &slab_caches, list) 4038 __kmem_cache_shrink(s); 4039 mutex_unlock(&slab_mutex); 4040 4041 return 0; 4042 } 4043 4044 static void slab_mem_offline_callback(void *arg) 4045 { 4046 struct kmem_cache_node *n; 4047 struct kmem_cache *s; 4048 struct memory_notify *marg = arg; 4049 int offline_node; 4050 4051 offline_node = marg->status_change_nid_normal; 4052 4053 /* 4054 * If the node still has available memory. we need kmem_cache_node 4055 * for it yet. 4056 */ 4057 if (offline_node < 0) 4058 return; 4059 4060 mutex_lock(&slab_mutex); 4061 list_for_each_entry(s, &slab_caches, list) { 4062 n = get_node(s, offline_node); 4063 if (n) { 4064 /* 4065 * if n->nr_slabs > 0, slabs still exist on the node 4066 * that is going down. We were unable to free them, 4067 * and offline_pages() function shouldn't call this 4068 * callback. So, we must fail. 4069 */ 4070 BUG_ON(slabs_node(s, offline_node)); 4071 4072 s->node[offline_node] = NULL; 4073 kmem_cache_free(kmem_cache_node, n); 4074 } 4075 } 4076 mutex_unlock(&slab_mutex); 4077 } 4078 4079 static int slab_mem_going_online_callback(void *arg) 4080 { 4081 struct kmem_cache_node *n; 4082 struct kmem_cache *s; 4083 struct memory_notify *marg = arg; 4084 int nid = marg->status_change_nid_normal; 4085 int ret = 0; 4086 4087 /* 4088 * If the node's memory is already available, then kmem_cache_node is 4089 * already created. Nothing to do. 4090 */ 4091 if (nid < 0) 4092 return 0; 4093 4094 /* 4095 * We are bringing a node online. No memory is available yet. We must 4096 * allocate a kmem_cache_node structure in order to bring the node 4097 * online. 4098 */ 4099 mutex_lock(&slab_mutex); 4100 list_for_each_entry(s, &slab_caches, list) { 4101 /* 4102 * XXX: kmem_cache_alloc_node will fallback to other nodes 4103 * since memory is not yet available from the node that 4104 * is brought up. 4105 */ 4106 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4107 if (!n) { 4108 ret = -ENOMEM; 4109 goto out; 4110 } 4111 init_kmem_cache_node(n); 4112 s->node[nid] = n; 4113 } 4114 out: 4115 mutex_unlock(&slab_mutex); 4116 return ret; 4117 } 4118 4119 static int slab_memory_callback(struct notifier_block *self, 4120 unsigned long action, void *arg) 4121 { 4122 int ret = 0; 4123 4124 switch (action) { 4125 case MEM_GOING_ONLINE: 4126 ret = slab_mem_going_online_callback(arg); 4127 break; 4128 case MEM_GOING_OFFLINE: 4129 ret = slab_mem_going_offline_callback(arg); 4130 break; 4131 case MEM_OFFLINE: 4132 case MEM_CANCEL_ONLINE: 4133 slab_mem_offline_callback(arg); 4134 break; 4135 case MEM_ONLINE: 4136 case MEM_CANCEL_OFFLINE: 4137 break; 4138 } 4139 if (ret) 4140 ret = notifier_from_errno(ret); 4141 else 4142 ret = NOTIFY_OK; 4143 return ret; 4144 } 4145 4146 static struct notifier_block slab_memory_callback_nb = { 4147 .notifier_call = slab_memory_callback, 4148 .priority = SLAB_CALLBACK_PRI, 4149 }; 4150 4151 /******************************************************************** 4152 * Basic setup of slabs 4153 *******************************************************************/ 4154 4155 /* 4156 * Used for early kmem_cache structures that were allocated using 4157 * the page allocator. Allocate them properly then fix up the pointers 4158 * that may be pointing to the wrong kmem_cache structure. 4159 */ 4160 4161 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4162 { 4163 int node; 4164 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4165 struct kmem_cache_node *n; 4166 4167 memcpy(s, static_cache, kmem_cache->object_size); 4168 4169 /* 4170 * This runs very early, and only the boot processor is supposed to be 4171 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4172 * IPIs around. 4173 */ 4174 __flush_cpu_slab(s, smp_processor_id()); 4175 for_each_kmem_cache_node(s, node, n) { 4176 struct page *p; 4177 4178 list_for_each_entry(p, &n->partial, lru) 4179 p->slab_cache = s; 4180 4181 #ifdef CONFIG_SLUB_DEBUG 4182 list_for_each_entry(p, &n->full, lru) 4183 p->slab_cache = s; 4184 #endif 4185 } 4186 slab_init_memcg_params(s); 4187 list_add(&s->list, &slab_caches); 4188 memcg_link_cache(s); 4189 return s; 4190 } 4191 4192 void __init kmem_cache_init(void) 4193 { 4194 static __initdata struct kmem_cache boot_kmem_cache, 4195 boot_kmem_cache_node; 4196 4197 if (debug_guardpage_minorder()) 4198 slub_max_order = 0; 4199 4200 kmem_cache_node = &boot_kmem_cache_node; 4201 kmem_cache = &boot_kmem_cache; 4202 4203 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4204 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 4205 4206 register_hotmemory_notifier(&slab_memory_callback_nb); 4207 4208 /* Able to allocate the per node structures */ 4209 slab_state = PARTIAL; 4210 4211 create_boot_cache(kmem_cache, "kmem_cache", 4212 offsetof(struct kmem_cache, node) + 4213 nr_node_ids * sizeof(struct kmem_cache_node *), 4214 SLAB_HWCACHE_ALIGN); 4215 4216 kmem_cache = bootstrap(&boot_kmem_cache); 4217 4218 /* 4219 * Allocate kmem_cache_node properly from the kmem_cache slab. 4220 * kmem_cache_node is separately allocated so no need to 4221 * update any list pointers. 4222 */ 4223 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4224 4225 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4226 setup_kmalloc_cache_index_table(); 4227 create_kmalloc_caches(0); 4228 4229 /* Setup random freelists for each cache */ 4230 init_freelist_randomization(); 4231 4232 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4233 slub_cpu_dead); 4234 4235 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n", 4236 cache_line_size(), 4237 slub_min_order, slub_max_order, slub_min_objects, 4238 nr_cpu_ids, nr_node_ids); 4239 } 4240 4241 void __init kmem_cache_init_late(void) 4242 { 4243 } 4244 4245 struct kmem_cache * 4246 __kmem_cache_alias(const char *name, size_t size, size_t align, 4247 unsigned long flags, void (*ctor)(void *)) 4248 { 4249 struct kmem_cache *s, *c; 4250 4251 s = find_mergeable(size, align, flags, name, ctor); 4252 if (s) { 4253 s->refcount++; 4254 4255 /* 4256 * Adjust the object sizes so that we clear 4257 * the complete object on kzalloc. 4258 */ 4259 s->object_size = max(s->object_size, (int)size); 4260 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 4261 4262 for_each_memcg_cache(c, s) { 4263 c->object_size = s->object_size; 4264 c->inuse = max_t(int, c->inuse, 4265 ALIGN(size, sizeof(void *))); 4266 } 4267 4268 if (sysfs_slab_alias(s, name)) { 4269 s->refcount--; 4270 s = NULL; 4271 } 4272 } 4273 4274 return s; 4275 } 4276 4277 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 4278 { 4279 int err; 4280 4281 err = kmem_cache_open(s, flags); 4282 if (err) 4283 return err; 4284 4285 /* Mutex is not taken during early boot */ 4286 if (slab_state <= UP) 4287 return 0; 4288 4289 memcg_propagate_slab_attrs(s); 4290 err = sysfs_slab_add(s); 4291 if (err) 4292 __kmem_cache_release(s); 4293 4294 return err; 4295 } 4296 4297 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4298 { 4299 struct kmem_cache *s; 4300 void *ret; 4301 4302 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4303 return kmalloc_large(size, gfpflags); 4304 4305 s = kmalloc_slab(size, gfpflags); 4306 4307 if (unlikely(ZERO_OR_NULL_PTR(s))) 4308 return s; 4309 4310 ret = slab_alloc(s, gfpflags, caller); 4311 4312 /* Honor the call site pointer we received. */ 4313 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4314 4315 return ret; 4316 } 4317 4318 #ifdef CONFIG_NUMA 4319 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4320 int node, unsigned long caller) 4321 { 4322 struct kmem_cache *s; 4323 void *ret; 4324 4325 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4326 ret = kmalloc_large_node(size, gfpflags, node); 4327 4328 trace_kmalloc_node(caller, ret, 4329 size, PAGE_SIZE << get_order(size), 4330 gfpflags, node); 4331 4332 return ret; 4333 } 4334 4335 s = kmalloc_slab(size, gfpflags); 4336 4337 if (unlikely(ZERO_OR_NULL_PTR(s))) 4338 return s; 4339 4340 ret = slab_alloc_node(s, gfpflags, node, caller); 4341 4342 /* Honor the call site pointer we received. */ 4343 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4344 4345 return ret; 4346 } 4347 #endif 4348 4349 #ifdef CONFIG_SYSFS 4350 static int count_inuse(struct page *page) 4351 { 4352 return page->inuse; 4353 } 4354 4355 static int count_total(struct page *page) 4356 { 4357 return page->objects; 4358 } 4359 #endif 4360 4361 #ifdef CONFIG_SLUB_DEBUG 4362 static int validate_slab(struct kmem_cache *s, struct page *page, 4363 unsigned long *map) 4364 { 4365 void *p; 4366 void *addr = page_address(page); 4367 4368 if (!check_slab(s, page) || 4369 !on_freelist(s, page, NULL)) 4370 return 0; 4371 4372 /* Now we know that a valid freelist exists */ 4373 bitmap_zero(map, page->objects); 4374 4375 get_map(s, page, map); 4376 for_each_object(p, s, addr, page->objects) { 4377 if (test_bit(slab_index(p, s, addr), map)) 4378 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4379 return 0; 4380 } 4381 4382 for_each_object(p, s, addr, page->objects) 4383 if (!test_bit(slab_index(p, s, addr), map)) 4384 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4385 return 0; 4386 return 1; 4387 } 4388 4389 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4390 unsigned long *map) 4391 { 4392 slab_lock(page); 4393 validate_slab(s, page, map); 4394 slab_unlock(page); 4395 } 4396 4397 static int validate_slab_node(struct kmem_cache *s, 4398 struct kmem_cache_node *n, unsigned long *map) 4399 { 4400 unsigned long count = 0; 4401 struct page *page; 4402 unsigned long flags; 4403 4404 spin_lock_irqsave(&n->list_lock, flags); 4405 4406 list_for_each_entry(page, &n->partial, lru) { 4407 validate_slab_slab(s, page, map); 4408 count++; 4409 } 4410 if (count != n->nr_partial) 4411 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4412 s->name, count, n->nr_partial); 4413 4414 if (!(s->flags & SLAB_STORE_USER)) 4415 goto out; 4416 4417 list_for_each_entry(page, &n->full, lru) { 4418 validate_slab_slab(s, page, map); 4419 count++; 4420 } 4421 if (count != atomic_long_read(&n->nr_slabs)) 4422 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4423 s->name, count, atomic_long_read(&n->nr_slabs)); 4424 4425 out: 4426 spin_unlock_irqrestore(&n->list_lock, flags); 4427 return count; 4428 } 4429 4430 static long validate_slab_cache(struct kmem_cache *s) 4431 { 4432 int node; 4433 unsigned long count = 0; 4434 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4435 sizeof(unsigned long), GFP_KERNEL); 4436 struct kmem_cache_node *n; 4437 4438 if (!map) 4439 return -ENOMEM; 4440 4441 flush_all(s); 4442 for_each_kmem_cache_node(s, node, n) 4443 count += validate_slab_node(s, n, map); 4444 kfree(map); 4445 return count; 4446 } 4447 /* 4448 * Generate lists of code addresses where slabcache objects are allocated 4449 * and freed. 4450 */ 4451 4452 struct location { 4453 unsigned long count; 4454 unsigned long addr; 4455 long long sum_time; 4456 long min_time; 4457 long max_time; 4458 long min_pid; 4459 long max_pid; 4460 DECLARE_BITMAP(cpus, NR_CPUS); 4461 nodemask_t nodes; 4462 }; 4463 4464 struct loc_track { 4465 unsigned long max; 4466 unsigned long count; 4467 struct location *loc; 4468 }; 4469 4470 static void free_loc_track(struct loc_track *t) 4471 { 4472 if (t->max) 4473 free_pages((unsigned long)t->loc, 4474 get_order(sizeof(struct location) * t->max)); 4475 } 4476 4477 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4478 { 4479 struct location *l; 4480 int order; 4481 4482 order = get_order(sizeof(struct location) * max); 4483 4484 l = (void *)__get_free_pages(flags, order); 4485 if (!l) 4486 return 0; 4487 4488 if (t->count) { 4489 memcpy(l, t->loc, sizeof(struct location) * t->count); 4490 free_loc_track(t); 4491 } 4492 t->max = max; 4493 t->loc = l; 4494 return 1; 4495 } 4496 4497 static int add_location(struct loc_track *t, struct kmem_cache *s, 4498 const struct track *track) 4499 { 4500 long start, end, pos; 4501 struct location *l; 4502 unsigned long caddr; 4503 unsigned long age = jiffies - track->when; 4504 4505 start = -1; 4506 end = t->count; 4507 4508 for ( ; ; ) { 4509 pos = start + (end - start + 1) / 2; 4510 4511 /* 4512 * There is nothing at "end". If we end up there 4513 * we need to add something to before end. 4514 */ 4515 if (pos == end) 4516 break; 4517 4518 caddr = t->loc[pos].addr; 4519 if (track->addr == caddr) { 4520 4521 l = &t->loc[pos]; 4522 l->count++; 4523 if (track->when) { 4524 l->sum_time += age; 4525 if (age < l->min_time) 4526 l->min_time = age; 4527 if (age > l->max_time) 4528 l->max_time = age; 4529 4530 if (track->pid < l->min_pid) 4531 l->min_pid = track->pid; 4532 if (track->pid > l->max_pid) 4533 l->max_pid = track->pid; 4534 4535 cpumask_set_cpu(track->cpu, 4536 to_cpumask(l->cpus)); 4537 } 4538 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4539 return 1; 4540 } 4541 4542 if (track->addr < caddr) 4543 end = pos; 4544 else 4545 start = pos; 4546 } 4547 4548 /* 4549 * Not found. Insert new tracking element. 4550 */ 4551 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4552 return 0; 4553 4554 l = t->loc + pos; 4555 if (pos < t->count) 4556 memmove(l + 1, l, 4557 (t->count - pos) * sizeof(struct location)); 4558 t->count++; 4559 l->count = 1; 4560 l->addr = track->addr; 4561 l->sum_time = age; 4562 l->min_time = age; 4563 l->max_time = age; 4564 l->min_pid = track->pid; 4565 l->max_pid = track->pid; 4566 cpumask_clear(to_cpumask(l->cpus)); 4567 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4568 nodes_clear(l->nodes); 4569 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4570 return 1; 4571 } 4572 4573 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4574 struct page *page, enum track_item alloc, 4575 unsigned long *map) 4576 { 4577 void *addr = page_address(page); 4578 void *p; 4579 4580 bitmap_zero(map, page->objects); 4581 get_map(s, page, map); 4582 4583 for_each_object(p, s, addr, page->objects) 4584 if (!test_bit(slab_index(p, s, addr), map)) 4585 add_location(t, s, get_track(s, p, alloc)); 4586 } 4587 4588 static int list_locations(struct kmem_cache *s, char *buf, 4589 enum track_item alloc) 4590 { 4591 int len = 0; 4592 unsigned long i; 4593 struct loc_track t = { 0, 0, NULL }; 4594 int node; 4595 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4596 sizeof(unsigned long), GFP_KERNEL); 4597 struct kmem_cache_node *n; 4598 4599 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4600 GFP_KERNEL)) { 4601 kfree(map); 4602 return sprintf(buf, "Out of memory\n"); 4603 } 4604 /* Push back cpu slabs */ 4605 flush_all(s); 4606 4607 for_each_kmem_cache_node(s, node, n) { 4608 unsigned long flags; 4609 struct page *page; 4610 4611 if (!atomic_long_read(&n->nr_slabs)) 4612 continue; 4613 4614 spin_lock_irqsave(&n->list_lock, flags); 4615 list_for_each_entry(page, &n->partial, lru) 4616 process_slab(&t, s, page, alloc, map); 4617 list_for_each_entry(page, &n->full, lru) 4618 process_slab(&t, s, page, alloc, map); 4619 spin_unlock_irqrestore(&n->list_lock, flags); 4620 } 4621 4622 for (i = 0; i < t.count; i++) { 4623 struct location *l = &t.loc[i]; 4624 4625 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4626 break; 4627 len += sprintf(buf + len, "%7ld ", l->count); 4628 4629 if (l->addr) 4630 len += sprintf(buf + len, "%pS", (void *)l->addr); 4631 else 4632 len += sprintf(buf + len, "<not-available>"); 4633 4634 if (l->sum_time != l->min_time) { 4635 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4636 l->min_time, 4637 (long)div_u64(l->sum_time, l->count), 4638 l->max_time); 4639 } else 4640 len += sprintf(buf + len, " age=%ld", 4641 l->min_time); 4642 4643 if (l->min_pid != l->max_pid) 4644 len += sprintf(buf + len, " pid=%ld-%ld", 4645 l->min_pid, l->max_pid); 4646 else 4647 len += sprintf(buf + len, " pid=%ld", 4648 l->min_pid); 4649 4650 if (num_online_cpus() > 1 && 4651 !cpumask_empty(to_cpumask(l->cpus)) && 4652 len < PAGE_SIZE - 60) 4653 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4654 " cpus=%*pbl", 4655 cpumask_pr_args(to_cpumask(l->cpus))); 4656 4657 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4658 len < PAGE_SIZE - 60) 4659 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4660 " nodes=%*pbl", 4661 nodemask_pr_args(&l->nodes)); 4662 4663 len += sprintf(buf + len, "\n"); 4664 } 4665 4666 free_loc_track(&t); 4667 kfree(map); 4668 if (!t.count) 4669 len += sprintf(buf, "No data\n"); 4670 return len; 4671 } 4672 #endif 4673 4674 #ifdef SLUB_RESILIENCY_TEST 4675 static void __init resiliency_test(void) 4676 { 4677 u8 *p; 4678 4679 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4680 4681 pr_err("SLUB resiliency testing\n"); 4682 pr_err("-----------------------\n"); 4683 pr_err("A. Corruption after allocation\n"); 4684 4685 p = kzalloc(16, GFP_KERNEL); 4686 p[16] = 0x12; 4687 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4688 p + 16); 4689 4690 validate_slab_cache(kmalloc_caches[4]); 4691 4692 /* Hmmm... The next two are dangerous */ 4693 p = kzalloc(32, GFP_KERNEL); 4694 p[32 + sizeof(void *)] = 0x34; 4695 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4696 p); 4697 pr_err("If allocated object is overwritten then not detectable\n\n"); 4698 4699 validate_slab_cache(kmalloc_caches[5]); 4700 p = kzalloc(64, GFP_KERNEL); 4701 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4702 *p = 0x56; 4703 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4704 p); 4705 pr_err("If allocated object is overwritten then not detectable\n\n"); 4706 validate_slab_cache(kmalloc_caches[6]); 4707 4708 pr_err("\nB. Corruption after free\n"); 4709 p = kzalloc(128, GFP_KERNEL); 4710 kfree(p); 4711 *p = 0x78; 4712 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4713 validate_slab_cache(kmalloc_caches[7]); 4714 4715 p = kzalloc(256, GFP_KERNEL); 4716 kfree(p); 4717 p[50] = 0x9a; 4718 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4719 validate_slab_cache(kmalloc_caches[8]); 4720 4721 p = kzalloc(512, GFP_KERNEL); 4722 kfree(p); 4723 p[512] = 0xab; 4724 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4725 validate_slab_cache(kmalloc_caches[9]); 4726 } 4727 #else 4728 #ifdef CONFIG_SYSFS 4729 static void resiliency_test(void) {}; 4730 #endif 4731 #endif 4732 4733 #ifdef CONFIG_SYSFS 4734 enum slab_stat_type { 4735 SL_ALL, /* All slabs */ 4736 SL_PARTIAL, /* Only partially allocated slabs */ 4737 SL_CPU, /* Only slabs used for cpu caches */ 4738 SL_OBJECTS, /* Determine allocated objects not slabs */ 4739 SL_TOTAL /* Determine object capacity not slabs */ 4740 }; 4741 4742 #define SO_ALL (1 << SL_ALL) 4743 #define SO_PARTIAL (1 << SL_PARTIAL) 4744 #define SO_CPU (1 << SL_CPU) 4745 #define SO_OBJECTS (1 << SL_OBJECTS) 4746 #define SO_TOTAL (1 << SL_TOTAL) 4747 4748 #ifdef CONFIG_MEMCG 4749 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4750 4751 static int __init setup_slub_memcg_sysfs(char *str) 4752 { 4753 int v; 4754 4755 if (get_option(&str, &v) > 0) 4756 memcg_sysfs_enabled = v; 4757 4758 return 1; 4759 } 4760 4761 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4762 #endif 4763 4764 static ssize_t show_slab_objects(struct kmem_cache *s, 4765 char *buf, unsigned long flags) 4766 { 4767 unsigned long total = 0; 4768 int node; 4769 int x; 4770 unsigned long *nodes; 4771 4772 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4773 if (!nodes) 4774 return -ENOMEM; 4775 4776 if (flags & SO_CPU) { 4777 int cpu; 4778 4779 for_each_possible_cpu(cpu) { 4780 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4781 cpu); 4782 int node; 4783 struct page *page; 4784 4785 page = READ_ONCE(c->page); 4786 if (!page) 4787 continue; 4788 4789 node = page_to_nid(page); 4790 if (flags & SO_TOTAL) 4791 x = page->objects; 4792 else if (flags & SO_OBJECTS) 4793 x = page->inuse; 4794 else 4795 x = 1; 4796 4797 total += x; 4798 nodes[node] += x; 4799 4800 page = slub_percpu_partial_read_once(c); 4801 if (page) { 4802 node = page_to_nid(page); 4803 if (flags & SO_TOTAL) 4804 WARN_ON_ONCE(1); 4805 else if (flags & SO_OBJECTS) 4806 WARN_ON_ONCE(1); 4807 else 4808 x = page->pages; 4809 total += x; 4810 nodes[node] += x; 4811 } 4812 } 4813 } 4814 4815 get_online_mems(); 4816 #ifdef CONFIG_SLUB_DEBUG 4817 if (flags & SO_ALL) { 4818 struct kmem_cache_node *n; 4819 4820 for_each_kmem_cache_node(s, node, n) { 4821 4822 if (flags & SO_TOTAL) 4823 x = atomic_long_read(&n->total_objects); 4824 else if (flags & SO_OBJECTS) 4825 x = atomic_long_read(&n->total_objects) - 4826 count_partial(n, count_free); 4827 else 4828 x = atomic_long_read(&n->nr_slabs); 4829 total += x; 4830 nodes[node] += x; 4831 } 4832 4833 } else 4834 #endif 4835 if (flags & SO_PARTIAL) { 4836 struct kmem_cache_node *n; 4837 4838 for_each_kmem_cache_node(s, node, n) { 4839 if (flags & SO_TOTAL) 4840 x = count_partial(n, count_total); 4841 else if (flags & SO_OBJECTS) 4842 x = count_partial(n, count_inuse); 4843 else 4844 x = n->nr_partial; 4845 total += x; 4846 nodes[node] += x; 4847 } 4848 } 4849 x = sprintf(buf, "%lu", total); 4850 #ifdef CONFIG_NUMA 4851 for (node = 0; node < nr_node_ids; node++) 4852 if (nodes[node]) 4853 x += sprintf(buf + x, " N%d=%lu", 4854 node, nodes[node]); 4855 #endif 4856 put_online_mems(); 4857 kfree(nodes); 4858 return x + sprintf(buf + x, "\n"); 4859 } 4860 4861 #ifdef CONFIG_SLUB_DEBUG 4862 static int any_slab_objects(struct kmem_cache *s) 4863 { 4864 int node; 4865 struct kmem_cache_node *n; 4866 4867 for_each_kmem_cache_node(s, node, n) 4868 if (atomic_long_read(&n->total_objects)) 4869 return 1; 4870 4871 return 0; 4872 } 4873 #endif 4874 4875 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4876 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4877 4878 struct slab_attribute { 4879 struct attribute attr; 4880 ssize_t (*show)(struct kmem_cache *s, char *buf); 4881 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4882 }; 4883 4884 #define SLAB_ATTR_RO(_name) \ 4885 static struct slab_attribute _name##_attr = \ 4886 __ATTR(_name, 0400, _name##_show, NULL) 4887 4888 #define SLAB_ATTR(_name) \ 4889 static struct slab_attribute _name##_attr = \ 4890 __ATTR(_name, 0600, _name##_show, _name##_store) 4891 4892 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4893 { 4894 return sprintf(buf, "%d\n", s->size); 4895 } 4896 SLAB_ATTR_RO(slab_size); 4897 4898 static ssize_t align_show(struct kmem_cache *s, char *buf) 4899 { 4900 return sprintf(buf, "%d\n", s->align); 4901 } 4902 SLAB_ATTR_RO(align); 4903 4904 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4905 { 4906 return sprintf(buf, "%d\n", s->object_size); 4907 } 4908 SLAB_ATTR_RO(object_size); 4909 4910 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4911 { 4912 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4913 } 4914 SLAB_ATTR_RO(objs_per_slab); 4915 4916 static ssize_t order_store(struct kmem_cache *s, 4917 const char *buf, size_t length) 4918 { 4919 unsigned long order; 4920 int err; 4921 4922 err = kstrtoul(buf, 10, &order); 4923 if (err) 4924 return err; 4925 4926 if (order > slub_max_order || order < slub_min_order) 4927 return -EINVAL; 4928 4929 calculate_sizes(s, order); 4930 return length; 4931 } 4932 4933 static ssize_t order_show(struct kmem_cache *s, char *buf) 4934 { 4935 return sprintf(buf, "%d\n", oo_order(s->oo)); 4936 } 4937 SLAB_ATTR(order); 4938 4939 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4940 { 4941 return sprintf(buf, "%lu\n", s->min_partial); 4942 } 4943 4944 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4945 size_t length) 4946 { 4947 unsigned long min; 4948 int err; 4949 4950 err = kstrtoul(buf, 10, &min); 4951 if (err) 4952 return err; 4953 4954 set_min_partial(s, min); 4955 return length; 4956 } 4957 SLAB_ATTR(min_partial); 4958 4959 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4960 { 4961 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 4962 } 4963 4964 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4965 size_t length) 4966 { 4967 unsigned long objects; 4968 int err; 4969 4970 err = kstrtoul(buf, 10, &objects); 4971 if (err) 4972 return err; 4973 if (objects && !kmem_cache_has_cpu_partial(s)) 4974 return -EINVAL; 4975 4976 slub_set_cpu_partial(s, objects); 4977 flush_all(s); 4978 return length; 4979 } 4980 SLAB_ATTR(cpu_partial); 4981 4982 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4983 { 4984 if (!s->ctor) 4985 return 0; 4986 return sprintf(buf, "%pS\n", s->ctor); 4987 } 4988 SLAB_ATTR_RO(ctor); 4989 4990 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4991 { 4992 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4993 } 4994 SLAB_ATTR_RO(aliases); 4995 4996 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4997 { 4998 return show_slab_objects(s, buf, SO_PARTIAL); 4999 } 5000 SLAB_ATTR_RO(partial); 5001 5002 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5003 { 5004 return show_slab_objects(s, buf, SO_CPU); 5005 } 5006 SLAB_ATTR_RO(cpu_slabs); 5007 5008 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5009 { 5010 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5011 } 5012 SLAB_ATTR_RO(objects); 5013 5014 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5015 { 5016 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5017 } 5018 SLAB_ATTR_RO(objects_partial); 5019 5020 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5021 { 5022 int objects = 0; 5023 int pages = 0; 5024 int cpu; 5025 int len; 5026 5027 for_each_online_cpu(cpu) { 5028 struct page *page; 5029 5030 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5031 5032 if (page) { 5033 pages += page->pages; 5034 objects += page->pobjects; 5035 } 5036 } 5037 5038 len = sprintf(buf, "%d(%d)", objects, pages); 5039 5040 #ifdef CONFIG_SMP 5041 for_each_online_cpu(cpu) { 5042 struct page *page; 5043 5044 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5045 5046 if (page && len < PAGE_SIZE - 20) 5047 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5048 page->pobjects, page->pages); 5049 } 5050 #endif 5051 return len + sprintf(buf + len, "\n"); 5052 } 5053 SLAB_ATTR_RO(slabs_cpu_partial); 5054 5055 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5056 { 5057 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5058 } 5059 5060 static ssize_t reclaim_account_store(struct kmem_cache *s, 5061 const char *buf, size_t length) 5062 { 5063 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5064 if (buf[0] == '1') 5065 s->flags |= SLAB_RECLAIM_ACCOUNT; 5066 return length; 5067 } 5068 SLAB_ATTR(reclaim_account); 5069 5070 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5071 { 5072 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5073 } 5074 SLAB_ATTR_RO(hwcache_align); 5075 5076 #ifdef CONFIG_ZONE_DMA 5077 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5078 { 5079 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5080 } 5081 SLAB_ATTR_RO(cache_dma); 5082 #endif 5083 5084 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5085 { 5086 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5087 } 5088 SLAB_ATTR_RO(destroy_by_rcu); 5089 5090 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 5091 { 5092 return sprintf(buf, "%d\n", s->reserved); 5093 } 5094 SLAB_ATTR_RO(reserved); 5095 5096 #ifdef CONFIG_SLUB_DEBUG 5097 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5098 { 5099 return show_slab_objects(s, buf, SO_ALL); 5100 } 5101 SLAB_ATTR_RO(slabs); 5102 5103 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5104 { 5105 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5106 } 5107 SLAB_ATTR_RO(total_objects); 5108 5109 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5110 { 5111 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5112 } 5113 5114 static ssize_t sanity_checks_store(struct kmem_cache *s, 5115 const char *buf, size_t length) 5116 { 5117 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5118 if (buf[0] == '1') { 5119 s->flags &= ~__CMPXCHG_DOUBLE; 5120 s->flags |= SLAB_CONSISTENCY_CHECKS; 5121 } 5122 return length; 5123 } 5124 SLAB_ATTR(sanity_checks); 5125 5126 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5127 { 5128 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5129 } 5130 5131 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5132 size_t length) 5133 { 5134 /* 5135 * Tracing a merged cache is going to give confusing results 5136 * as well as cause other issues like converting a mergeable 5137 * cache into an umergeable one. 5138 */ 5139 if (s->refcount > 1) 5140 return -EINVAL; 5141 5142 s->flags &= ~SLAB_TRACE; 5143 if (buf[0] == '1') { 5144 s->flags &= ~__CMPXCHG_DOUBLE; 5145 s->flags |= SLAB_TRACE; 5146 } 5147 return length; 5148 } 5149 SLAB_ATTR(trace); 5150 5151 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5152 { 5153 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5154 } 5155 5156 static ssize_t red_zone_store(struct kmem_cache *s, 5157 const char *buf, size_t length) 5158 { 5159 if (any_slab_objects(s)) 5160 return -EBUSY; 5161 5162 s->flags &= ~SLAB_RED_ZONE; 5163 if (buf[0] == '1') { 5164 s->flags |= SLAB_RED_ZONE; 5165 } 5166 calculate_sizes(s, -1); 5167 return length; 5168 } 5169 SLAB_ATTR(red_zone); 5170 5171 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5172 { 5173 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5174 } 5175 5176 static ssize_t poison_store(struct kmem_cache *s, 5177 const char *buf, size_t length) 5178 { 5179 if (any_slab_objects(s)) 5180 return -EBUSY; 5181 5182 s->flags &= ~SLAB_POISON; 5183 if (buf[0] == '1') { 5184 s->flags |= SLAB_POISON; 5185 } 5186 calculate_sizes(s, -1); 5187 return length; 5188 } 5189 SLAB_ATTR(poison); 5190 5191 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5192 { 5193 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5194 } 5195 5196 static ssize_t store_user_store(struct kmem_cache *s, 5197 const char *buf, size_t length) 5198 { 5199 if (any_slab_objects(s)) 5200 return -EBUSY; 5201 5202 s->flags &= ~SLAB_STORE_USER; 5203 if (buf[0] == '1') { 5204 s->flags &= ~__CMPXCHG_DOUBLE; 5205 s->flags |= SLAB_STORE_USER; 5206 } 5207 calculate_sizes(s, -1); 5208 return length; 5209 } 5210 SLAB_ATTR(store_user); 5211 5212 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5213 { 5214 return 0; 5215 } 5216 5217 static ssize_t validate_store(struct kmem_cache *s, 5218 const char *buf, size_t length) 5219 { 5220 int ret = -EINVAL; 5221 5222 if (buf[0] == '1') { 5223 ret = validate_slab_cache(s); 5224 if (ret >= 0) 5225 ret = length; 5226 } 5227 return ret; 5228 } 5229 SLAB_ATTR(validate); 5230 5231 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5232 { 5233 if (!(s->flags & SLAB_STORE_USER)) 5234 return -ENOSYS; 5235 return list_locations(s, buf, TRACK_ALLOC); 5236 } 5237 SLAB_ATTR_RO(alloc_calls); 5238 5239 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5240 { 5241 if (!(s->flags & SLAB_STORE_USER)) 5242 return -ENOSYS; 5243 return list_locations(s, buf, TRACK_FREE); 5244 } 5245 SLAB_ATTR_RO(free_calls); 5246 #endif /* CONFIG_SLUB_DEBUG */ 5247 5248 #ifdef CONFIG_FAILSLAB 5249 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5250 { 5251 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5252 } 5253 5254 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5255 size_t length) 5256 { 5257 if (s->refcount > 1) 5258 return -EINVAL; 5259 5260 s->flags &= ~SLAB_FAILSLAB; 5261 if (buf[0] == '1') 5262 s->flags |= SLAB_FAILSLAB; 5263 return length; 5264 } 5265 SLAB_ATTR(failslab); 5266 #endif 5267 5268 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5269 { 5270 return 0; 5271 } 5272 5273 static ssize_t shrink_store(struct kmem_cache *s, 5274 const char *buf, size_t length) 5275 { 5276 if (buf[0] == '1') 5277 kmem_cache_shrink(s); 5278 else 5279 return -EINVAL; 5280 return length; 5281 } 5282 SLAB_ATTR(shrink); 5283 5284 #ifdef CONFIG_NUMA 5285 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5286 { 5287 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 5288 } 5289 5290 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5291 const char *buf, size_t length) 5292 { 5293 unsigned long ratio; 5294 int err; 5295 5296 err = kstrtoul(buf, 10, &ratio); 5297 if (err) 5298 return err; 5299 5300 if (ratio <= 100) 5301 s->remote_node_defrag_ratio = ratio * 10; 5302 5303 return length; 5304 } 5305 SLAB_ATTR(remote_node_defrag_ratio); 5306 #endif 5307 5308 #ifdef CONFIG_SLUB_STATS 5309 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5310 { 5311 unsigned long sum = 0; 5312 int cpu; 5313 int len; 5314 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 5315 5316 if (!data) 5317 return -ENOMEM; 5318 5319 for_each_online_cpu(cpu) { 5320 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5321 5322 data[cpu] = x; 5323 sum += x; 5324 } 5325 5326 len = sprintf(buf, "%lu", sum); 5327 5328 #ifdef CONFIG_SMP 5329 for_each_online_cpu(cpu) { 5330 if (data[cpu] && len < PAGE_SIZE - 20) 5331 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5332 } 5333 #endif 5334 kfree(data); 5335 return len + sprintf(buf + len, "\n"); 5336 } 5337 5338 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5339 { 5340 int cpu; 5341 5342 for_each_online_cpu(cpu) 5343 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5344 } 5345 5346 #define STAT_ATTR(si, text) \ 5347 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5348 { \ 5349 return show_stat(s, buf, si); \ 5350 } \ 5351 static ssize_t text##_store(struct kmem_cache *s, \ 5352 const char *buf, size_t length) \ 5353 { \ 5354 if (buf[0] != '0') \ 5355 return -EINVAL; \ 5356 clear_stat(s, si); \ 5357 return length; \ 5358 } \ 5359 SLAB_ATTR(text); \ 5360 5361 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5362 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5363 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5364 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5365 STAT_ATTR(FREE_FROZEN, free_frozen); 5366 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5367 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5368 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5369 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5370 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5371 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5372 STAT_ATTR(FREE_SLAB, free_slab); 5373 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5374 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5375 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5376 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5377 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5378 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5379 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5380 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5381 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5382 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5383 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5384 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5385 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5386 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5387 #endif 5388 5389 static struct attribute *slab_attrs[] = { 5390 &slab_size_attr.attr, 5391 &object_size_attr.attr, 5392 &objs_per_slab_attr.attr, 5393 &order_attr.attr, 5394 &min_partial_attr.attr, 5395 &cpu_partial_attr.attr, 5396 &objects_attr.attr, 5397 &objects_partial_attr.attr, 5398 &partial_attr.attr, 5399 &cpu_slabs_attr.attr, 5400 &ctor_attr.attr, 5401 &aliases_attr.attr, 5402 &align_attr.attr, 5403 &hwcache_align_attr.attr, 5404 &reclaim_account_attr.attr, 5405 &destroy_by_rcu_attr.attr, 5406 &shrink_attr.attr, 5407 &reserved_attr.attr, 5408 &slabs_cpu_partial_attr.attr, 5409 #ifdef CONFIG_SLUB_DEBUG 5410 &total_objects_attr.attr, 5411 &slabs_attr.attr, 5412 &sanity_checks_attr.attr, 5413 &trace_attr.attr, 5414 &red_zone_attr.attr, 5415 &poison_attr.attr, 5416 &store_user_attr.attr, 5417 &validate_attr.attr, 5418 &alloc_calls_attr.attr, 5419 &free_calls_attr.attr, 5420 #endif 5421 #ifdef CONFIG_ZONE_DMA 5422 &cache_dma_attr.attr, 5423 #endif 5424 #ifdef CONFIG_NUMA 5425 &remote_node_defrag_ratio_attr.attr, 5426 #endif 5427 #ifdef CONFIG_SLUB_STATS 5428 &alloc_fastpath_attr.attr, 5429 &alloc_slowpath_attr.attr, 5430 &free_fastpath_attr.attr, 5431 &free_slowpath_attr.attr, 5432 &free_frozen_attr.attr, 5433 &free_add_partial_attr.attr, 5434 &free_remove_partial_attr.attr, 5435 &alloc_from_partial_attr.attr, 5436 &alloc_slab_attr.attr, 5437 &alloc_refill_attr.attr, 5438 &alloc_node_mismatch_attr.attr, 5439 &free_slab_attr.attr, 5440 &cpuslab_flush_attr.attr, 5441 &deactivate_full_attr.attr, 5442 &deactivate_empty_attr.attr, 5443 &deactivate_to_head_attr.attr, 5444 &deactivate_to_tail_attr.attr, 5445 &deactivate_remote_frees_attr.attr, 5446 &deactivate_bypass_attr.attr, 5447 &order_fallback_attr.attr, 5448 &cmpxchg_double_fail_attr.attr, 5449 &cmpxchg_double_cpu_fail_attr.attr, 5450 &cpu_partial_alloc_attr.attr, 5451 &cpu_partial_free_attr.attr, 5452 &cpu_partial_node_attr.attr, 5453 &cpu_partial_drain_attr.attr, 5454 #endif 5455 #ifdef CONFIG_FAILSLAB 5456 &failslab_attr.attr, 5457 #endif 5458 5459 NULL 5460 }; 5461 5462 static const struct attribute_group slab_attr_group = { 5463 .attrs = slab_attrs, 5464 }; 5465 5466 static ssize_t slab_attr_show(struct kobject *kobj, 5467 struct attribute *attr, 5468 char *buf) 5469 { 5470 struct slab_attribute *attribute; 5471 struct kmem_cache *s; 5472 int err; 5473 5474 attribute = to_slab_attr(attr); 5475 s = to_slab(kobj); 5476 5477 if (!attribute->show) 5478 return -EIO; 5479 5480 err = attribute->show(s, buf); 5481 5482 return err; 5483 } 5484 5485 static ssize_t slab_attr_store(struct kobject *kobj, 5486 struct attribute *attr, 5487 const char *buf, size_t len) 5488 { 5489 struct slab_attribute *attribute; 5490 struct kmem_cache *s; 5491 int err; 5492 5493 attribute = to_slab_attr(attr); 5494 s = to_slab(kobj); 5495 5496 if (!attribute->store) 5497 return -EIO; 5498 5499 err = attribute->store(s, buf, len); 5500 #ifdef CONFIG_MEMCG 5501 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5502 struct kmem_cache *c; 5503 5504 mutex_lock(&slab_mutex); 5505 if (s->max_attr_size < len) 5506 s->max_attr_size = len; 5507 5508 /* 5509 * This is a best effort propagation, so this function's return 5510 * value will be determined by the parent cache only. This is 5511 * basically because not all attributes will have a well 5512 * defined semantics for rollbacks - most of the actions will 5513 * have permanent effects. 5514 * 5515 * Returning the error value of any of the children that fail 5516 * is not 100 % defined, in the sense that users seeing the 5517 * error code won't be able to know anything about the state of 5518 * the cache. 5519 * 5520 * Only returning the error code for the parent cache at least 5521 * has well defined semantics. The cache being written to 5522 * directly either failed or succeeded, in which case we loop 5523 * through the descendants with best-effort propagation. 5524 */ 5525 for_each_memcg_cache(c, s) 5526 attribute->store(c, buf, len); 5527 mutex_unlock(&slab_mutex); 5528 } 5529 #endif 5530 return err; 5531 } 5532 5533 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5534 { 5535 #ifdef CONFIG_MEMCG 5536 int i; 5537 char *buffer = NULL; 5538 struct kmem_cache *root_cache; 5539 5540 if (is_root_cache(s)) 5541 return; 5542 5543 root_cache = s->memcg_params.root_cache; 5544 5545 /* 5546 * This mean this cache had no attribute written. Therefore, no point 5547 * in copying default values around 5548 */ 5549 if (!root_cache->max_attr_size) 5550 return; 5551 5552 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5553 char mbuf[64]; 5554 char *buf; 5555 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5556 ssize_t len; 5557 5558 if (!attr || !attr->store || !attr->show) 5559 continue; 5560 5561 /* 5562 * It is really bad that we have to allocate here, so we will 5563 * do it only as a fallback. If we actually allocate, though, 5564 * we can just use the allocated buffer until the end. 5565 * 5566 * Most of the slub attributes will tend to be very small in 5567 * size, but sysfs allows buffers up to a page, so they can 5568 * theoretically happen. 5569 */ 5570 if (buffer) 5571 buf = buffer; 5572 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5573 buf = mbuf; 5574 else { 5575 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5576 if (WARN_ON(!buffer)) 5577 continue; 5578 buf = buffer; 5579 } 5580 5581 len = attr->show(root_cache, buf); 5582 if (len > 0) 5583 attr->store(s, buf, len); 5584 } 5585 5586 if (buffer) 5587 free_page((unsigned long)buffer); 5588 #endif 5589 } 5590 5591 static void kmem_cache_release(struct kobject *k) 5592 { 5593 slab_kmem_cache_release(to_slab(k)); 5594 } 5595 5596 static const struct sysfs_ops slab_sysfs_ops = { 5597 .show = slab_attr_show, 5598 .store = slab_attr_store, 5599 }; 5600 5601 static struct kobj_type slab_ktype = { 5602 .sysfs_ops = &slab_sysfs_ops, 5603 .release = kmem_cache_release, 5604 }; 5605 5606 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5607 { 5608 struct kobj_type *ktype = get_ktype(kobj); 5609 5610 if (ktype == &slab_ktype) 5611 return 1; 5612 return 0; 5613 } 5614 5615 static const struct kset_uevent_ops slab_uevent_ops = { 5616 .filter = uevent_filter, 5617 }; 5618 5619 static struct kset *slab_kset; 5620 5621 static inline struct kset *cache_kset(struct kmem_cache *s) 5622 { 5623 #ifdef CONFIG_MEMCG 5624 if (!is_root_cache(s)) 5625 return s->memcg_params.root_cache->memcg_kset; 5626 #endif 5627 return slab_kset; 5628 } 5629 5630 #define ID_STR_LENGTH 64 5631 5632 /* Create a unique string id for a slab cache: 5633 * 5634 * Format :[flags-]size 5635 */ 5636 static char *create_unique_id(struct kmem_cache *s) 5637 { 5638 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5639 char *p = name; 5640 5641 BUG_ON(!name); 5642 5643 *p++ = ':'; 5644 /* 5645 * First flags affecting slabcache operations. We will only 5646 * get here for aliasable slabs so we do not need to support 5647 * too many flags. The flags here must cover all flags that 5648 * are matched during merging to guarantee that the id is 5649 * unique. 5650 */ 5651 if (s->flags & SLAB_CACHE_DMA) 5652 *p++ = 'd'; 5653 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5654 *p++ = 'a'; 5655 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5656 *p++ = 'F'; 5657 if (!(s->flags & SLAB_NOTRACK)) 5658 *p++ = 't'; 5659 if (s->flags & SLAB_ACCOUNT) 5660 *p++ = 'A'; 5661 if (p != name + 1) 5662 *p++ = '-'; 5663 p += sprintf(p, "%07d", s->size); 5664 5665 BUG_ON(p > name + ID_STR_LENGTH - 1); 5666 return name; 5667 } 5668 5669 static void sysfs_slab_remove_workfn(struct work_struct *work) 5670 { 5671 struct kmem_cache *s = 5672 container_of(work, struct kmem_cache, kobj_remove_work); 5673 5674 if (!s->kobj.state_in_sysfs) 5675 /* 5676 * For a memcg cache, this may be called during 5677 * deactivation and again on shutdown. Remove only once. 5678 * A cache is never shut down before deactivation is 5679 * complete, so no need to worry about synchronization. 5680 */ 5681 goto out; 5682 5683 #ifdef CONFIG_MEMCG 5684 kset_unregister(s->memcg_kset); 5685 #endif 5686 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5687 kobject_del(&s->kobj); 5688 out: 5689 kobject_put(&s->kobj); 5690 } 5691 5692 static int sysfs_slab_add(struct kmem_cache *s) 5693 { 5694 int err; 5695 const char *name; 5696 struct kset *kset = cache_kset(s); 5697 int unmergeable = slab_unmergeable(s); 5698 5699 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5700 5701 if (!kset) { 5702 kobject_init(&s->kobj, &slab_ktype); 5703 return 0; 5704 } 5705 5706 if (unmergeable) { 5707 /* 5708 * Slabcache can never be merged so we can use the name proper. 5709 * This is typically the case for debug situations. In that 5710 * case we can catch duplicate names easily. 5711 */ 5712 sysfs_remove_link(&slab_kset->kobj, s->name); 5713 name = s->name; 5714 } else { 5715 /* 5716 * Create a unique name for the slab as a target 5717 * for the symlinks. 5718 */ 5719 name = create_unique_id(s); 5720 } 5721 5722 s->kobj.kset = kset; 5723 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5724 if (err) 5725 goto out; 5726 5727 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5728 if (err) 5729 goto out_del_kobj; 5730 5731 #ifdef CONFIG_MEMCG 5732 if (is_root_cache(s) && memcg_sysfs_enabled) { 5733 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5734 if (!s->memcg_kset) { 5735 err = -ENOMEM; 5736 goto out_del_kobj; 5737 } 5738 } 5739 #endif 5740 5741 kobject_uevent(&s->kobj, KOBJ_ADD); 5742 if (!unmergeable) { 5743 /* Setup first alias */ 5744 sysfs_slab_alias(s, s->name); 5745 } 5746 out: 5747 if (!unmergeable) 5748 kfree(name); 5749 return err; 5750 out_del_kobj: 5751 kobject_del(&s->kobj); 5752 goto out; 5753 } 5754 5755 static void sysfs_slab_remove(struct kmem_cache *s) 5756 { 5757 if (slab_state < FULL) 5758 /* 5759 * Sysfs has not been setup yet so no need to remove the 5760 * cache from sysfs. 5761 */ 5762 return; 5763 5764 kobject_get(&s->kobj); 5765 schedule_work(&s->kobj_remove_work); 5766 } 5767 5768 void sysfs_slab_release(struct kmem_cache *s) 5769 { 5770 if (slab_state >= FULL) 5771 kobject_put(&s->kobj); 5772 } 5773 5774 /* 5775 * Need to buffer aliases during bootup until sysfs becomes 5776 * available lest we lose that information. 5777 */ 5778 struct saved_alias { 5779 struct kmem_cache *s; 5780 const char *name; 5781 struct saved_alias *next; 5782 }; 5783 5784 static struct saved_alias *alias_list; 5785 5786 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5787 { 5788 struct saved_alias *al; 5789 5790 if (slab_state == FULL) { 5791 /* 5792 * If we have a leftover link then remove it. 5793 */ 5794 sysfs_remove_link(&slab_kset->kobj, name); 5795 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5796 } 5797 5798 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5799 if (!al) 5800 return -ENOMEM; 5801 5802 al->s = s; 5803 al->name = name; 5804 al->next = alias_list; 5805 alias_list = al; 5806 return 0; 5807 } 5808 5809 static int __init slab_sysfs_init(void) 5810 { 5811 struct kmem_cache *s; 5812 int err; 5813 5814 mutex_lock(&slab_mutex); 5815 5816 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5817 if (!slab_kset) { 5818 mutex_unlock(&slab_mutex); 5819 pr_err("Cannot register slab subsystem.\n"); 5820 return -ENOSYS; 5821 } 5822 5823 slab_state = FULL; 5824 5825 list_for_each_entry(s, &slab_caches, list) { 5826 err = sysfs_slab_add(s); 5827 if (err) 5828 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5829 s->name); 5830 } 5831 5832 while (alias_list) { 5833 struct saved_alias *al = alias_list; 5834 5835 alias_list = alias_list->next; 5836 err = sysfs_slab_alias(al->s, al->name); 5837 if (err) 5838 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5839 al->name); 5840 kfree(al); 5841 } 5842 5843 mutex_unlock(&slab_mutex); 5844 resiliency_test(); 5845 return 0; 5846 } 5847 5848 __initcall(slab_sysfs_init); 5849 #endif /* CONFIG_SYSFS */ 5850 5851 /* 5852 * The /proc/slabinfo ABI 5853 */ 5854 #ifdef CONFIG_SLABINFO 5855 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5856 { 5857 unsigned long nr_slabs = 0; 5858 unsigned long nr_objs = 0; 5859 unsigned long nr_free = 0; 5860 int node; 5861 struct kmem_cache_node *n; 5862 5863 for_each_kmem_cache_node(s, node, n) { 5864 nr_slabs += node_nr_slabs(n); 5865 nr_objs += node_nr_objs(n); 5866 nr_free += count_partial(n, count_free); 5867 } 5868 5869 sinfo->active_objs = nr_objs - nr_free; 5870 sinfo->num_objs = nr_objs; 5871 sinfo->active_slabs = nr_slabs; 5872 sinfo->num_slabs = nr_slabs; 5873 sinfo->objects_per_slab = oo_objects(s->oo); 5874 sinfo->cache_order = oo_order(s->oo); 5875 } 5876 5877 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5878 { 5879 } 5880 5881 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5882 size_t count, loff_t *ppos) 5883 { 5884 return -EIO; 5885 } 5886 #endif /* CONFIG_SLABINFO */ 5887