xref: /openbmc/linux/mm/slub.c (revision 39b6f3aa)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 
37 #include <trace/events/kmem.h>
38 
39 #include "internal.h"
40 
41 /*
42  * Lock order:
43  *   1. slab_mutex (Global Mutex)
44  *   2. node->list_lock
45  *   3. slab_lock(page) (Only on some arches and for debugging)
46  *
47  *   slab_mutex
48  *
49  *   The role of the slab_mutex is to protect the list of all the slabs
50  *   and to synchronize major metadata changes to slab cache structures.
51  *
52  *   The slab_lock is only used for debugging and on arches that do not
53  *   have the ability to do a cmpxchg_double. It only protects the second
54  *   double word in the page struct. Meaning
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->counters	-> Counters of objects
57  *	C. page->frozen		-> frozen state
58  *
59  *   If a slab is frozen then it is exempt from list management. It is not
60  *   on any list. The processor that froze the slab is the one who can
61  *   perform list operations on the page. Other processors may put objects
62  *   onto the freelist but the processor that froze the slab is the only
63  *   one that can retrieve the objects from the page's freelist.
64  *
65  *   The list_lock protects the partial and full list on each node and
66  *   the partial slab counter. If taken then no new slabs may be added or
67  *   removed from the lists nor make the number of partial slabs be modified.
68  *   (Note that the total number of slabs is an atomic value that may be
69  *   modified without taking the list lock).
70  *
71  *   The list_lock is a centralized lock and thus we avoid taking it as
72  *   much as possible. As long as SLUB does not have to handle partial
73  *   slabs, operations can continue without any centralized lock. F.e.
74  *   allocating a long series of objects that fill up slabs does not require
75  *   the list lock.
76  *   Interrupts are disabled during allocation and deallocation in order to
77  *   make the slab allocator safe to use in the context of an irq. In addition
78  *   interrupts are disabled to ensure that the processor does not change
79  *   while handling per_cpu slabs, due to kernel preemption.
80  *
81  * SLUB assigns one slab for allocation to each processor.
82  * Allocations only occur from these slabs called cpu slabs.
83  *
84  * Slabs with free elements are kept on a partial list and during regular
85  * operations no list for full slabs is used. If an object in a full slab is
86  * freed then the slab will show up again on the partial lists.
87  * We track full slabs for debugging purposes though because otherwise we
88  * cannot scan all objects.
89  *
90  * Slabs are freed when they become empty. Teardown and setup is
91  * minimal so we rely on the page allocators per cpu caches for
92  * fast frees and allocs.
93  *
94  * Overloading of page flags that are otherwise used for LRU management.
95  *
96  * PageActive 		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * PageError		Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 	return 0;
123 #endif
124 }
125 
126 /*
127  * Issues still to be resolved:
128  *
129  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
130  *
131  * - Variable sizing of the per node arrays
132  */
133 
134 /* Enable to test recovery from slab corruption on boot */
135 #undef SLUB_RESILIENCY_TEST
136 
137 /* Enable to log cmpxchg failures */
138 #undef SLUB_DEBUG_CMPXCHG
139 
140 /*
141  * Mininum number of partial slabs. These will be left on the partial
142  * lists even if they are empty. kmem_cache_shrink may reclaim them.
143  */
144 #define MIN_PARTIAL 5
145 
146 /*
147  * Maximum number of desirable partial slabs.
148  * The existence of more partial slabs makes kmem_cache_shrink
149  * sort the partial list by the number of objects in the.
150  */
151 #define MAX_PARTIAL 10
152 
153 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
154 				SLAB_POISON | SLAB_STORE_USER)
155 
156 /*
157  * Debugging flags that require metadata to be stored in the slab.  These get
158  * disabled when slub_debug=O is used and a cache's min order increases with
159  * metadata.
160  */
161 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
162 
163 /*
164  * Set of flags that will prevent slab merging
165  */
166 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
167 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
168 		SLAB_FAILSLAB)
169 
170 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
171 		SLAB_CACHE_DMA | SLAB_NOTRACK)
172 
173 #define OO_SHIFT	16
174 #define OO_MASK		((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
176 
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON		0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
180 
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184 
185 /*
186  * Tracking user of a slab.
187  */
188 #define TRACK_ADDRS_COUNT 16
189 struct track {
190 	unsigned long addr;	/* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
193 #endif
194 	int cpu;		/* Was running on cpu */
195 	int pid;		/* Pid context */
196 	unsigned long when;	/* When did the operation occur */
197 };
198 
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200 
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void sysfs_slab_remove(struct kmem_cache *);
205 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
206 #else
207 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 							{ return 0; }
210 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
211 
212 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
213 #endif
214 
215 static inline void stat(const struct kmem_cache *s, enum stat_item si)
216 {
217 #ifdef CONFIG_SLUB_STATS
218 	__this_cpu_inc(s->cpu_slab->stat[si]);
219 #endif
220 }
221 
222 /********************************************************************
223  * 			Core slab cache functions
224  *******************************************************************/
225 
226 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
227 {
228 	return s->node[node];
229 }
230 
231 /* Verify that a pointer has an address that is valid within a slab page */
232 static inline int check_valid_pointer(struct kmem_cache *s,
233 				struct page *page, const void *object)
234 {
235 	void *base;
236 
237 	if (!object)
238 		return 1;
239 
240 	base = page_address(page);
241 	if (object < base || object >= base + page->objects * s->size ||
242 		(object - base) % s->size) {
243 		return 0;
244 	}
245 
246 	return 1;
247 }
248 
249 static inline void *get_freepointer(struct kmem_cache *s, void *object)
250 {
251 	return *(void **)(object + s->offset);
252 }
253 
254 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
255 {
256 	prefetch(object + s->offset);
257 }
258 
259 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
260 {
261 	void *p;
262 
263 #ifdef CONFIG_DEBUG_PAGEALLOC
264 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
265 #else
266 	p = get_freepointer(s, object);
267 #endif
268 	return p;
269 }
270 
271 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
272 {
273 	*(void **)(object + s->offset) = fp;
274 }
275 
276 /* Loop over all objects in a slab */
277 #define for_each_object(__p, __s, __addr, __objects) \
278 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
279 			__p += (__s)->size)
280 
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283 {
284 	return (p - addr) / s->size;
285 }
286 
287 static inline size_t slab_ksize(const struct kmem_cache *s)
288 {
289 #ifdef CONFIG_SLUB_DEBUG
290 	/*
291 	 * Debugging requires use of the padding between object
292 	 * and whatever may come after it.
293 	 */
294 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295 		return s->object_size;
296 
297 #endif
298 	/*
299 	 * If we have the need to store the freelist pointer
300 	 * back there or track user information then we can
301 	 * only use the space before that information.
302 	 */
303 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 		return s->inuse;
305 	/*
306 	 * Else we can use all the padding etc for the allocation
307 	 */
308 	return s->size;
309 }
310 
311 static inline int order_objects(int order, unsigned long size, int reserved)
312 {
313 	return ((PAGE_SIZE << order) - reserved) / size;
314 }
315 
316 static inline struct kmem_cache_order_objects oo_make(int order,
317 		unsigned long size, int reserved)
318 {
319 	struct kmem_cache_order_objects x = {
320 		(order << OO_SHIFT) + order_objects(order, size, reserved)
321 	};
322 
323 	return x;
324 }
325 
326 static inline int oo_order(struct kmem_cache_order_objects x)
327 {
328 	return x.x >> OO_SHIFT;
329 }
330 
331 static inline int oo_objects(struct kmem_cache_order_objects x)
332 {
333 	return x.x & OO_MASK;
334 }
335 
336 /*
337  * Per slab locking using the pagelock
338  */
339 static __always_inline void slab_lock(struct page *page)
340 {
341 	bit_spin_lock(PG_locked, &page->flags);
342 }
343 
344 static __always_inline void slab_unlock(struct page *page)
345 {
346 	__bit_spin_unlock(PG_locked, &page->flags);
347 }
348 
349 /* Interrupts must be disabled (for the fallback code to work right) */
350 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
351 		void *freelist_old, unsigned long counters_old,
352 		void *freelist_new, unsigned long counters_new,
353 		const char *n)
354 {
355 	VM_BUG_ON(!irqs_disabled());
356 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
357     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
358 	if (s->flags & __CMPXCHG_DOUBLE) {
359 		if (cmpxchg_double(&page->freelist, &page->counters,
360 			freelist_old, counters_old,
361 			freelist_new, counters_new))
362 		return 1;
363 	} else
364 #endif
365 	{
366 		slab_lock(page);
367 		if (page->freelist == freelist_old && page->counters == counters_old) {
368 			page->freelist = freelist_new;
369 			page->counters = counters_new;
370 			slab_unlock(page);
371 			return 1;
372 		}
373 		slab_unlock(page);
374 	}
375 
376 	cpu_relax();
377 	stat(s, CMPXCHG_DOUBLE_FAIL);
378 
379 #ifdef SLUB_DEBUG_CMPXCHG
380 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
381 #endif
382 
383 	return 0;
384 }
385 
386 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
387 		void *freelist_old, unsigned long counters_old,
388 		void *freelist_new, unsigned long counters_new,
389 		const char *n)
390 {
391 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
392     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
393 	if (s->flags & __CMPXCHG_DOUBLE) {
394 		if (cmpxchg_double(&page->freelist, &page->counters,
395 			freelist_old, counters_old,
396 			freelist_new, counters_new))
397 		return 1;
398 	} else
399 #endif
400 	{
401 		unsigned long flags;
402 
403 		local_irq_save(flags);
404 		slab_lock(page);
405 		if (page->freelist == freelist_old && page->counters == counters_old) {
406 			page->freelist = freelist_new;
407 			page->counters = counters_new;
408 			slab_unlock(page);
409 			local_irq_restore(flags);
410 			return 1;
411 		}
412 		slab_unlock(page);
413 		local_irq_restore(flags);
414 	}
415 
416 	cpu_relax();
417 	stat(s, CMPXCHG_DOUBLE_FAIL);
418 
419 #ifdef SLUB_DEBUG_CMPXCHG
420 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
421 #endif
422 
423 	return 0;
424 }
425 
426 #ifdef CONFIG_SLUB_DEBUG
427 /*
428  * Determine a map of object in use on a page.
429  *
430  * Node listlock must be held to guarantee that the page does
431  * not vanish from under us.
432  */
433 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
434 {
435 	void *p;
436 	void *addr = page_address(page);
437 
438 	for (p = page->freelist; p; p = get_freepointer(s, p))
439 		set_bit(slab_index(p, s, addr), map);
440 }
441 
442 /*
443  * Debug settings:
444  */
445 #ifdef CONFIG_SLUB_DEBUG_ON
446 static int slub_debug = DEBUG_DEFAULT_FLAGS;
447 #else
448 static int slub_debug;
449 #endif
450 
451 static char *slub_debug_slabs;
452 static int disable_higher_order_debug;
453 
454 /*
455  * Object debugging
456  */
457 static void print_section(char *text, u8 *addr, unsigned int length)
458 {
459 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
460 			length, 1);
461 }
462 
463 static struct track *get_track(struct kmem_cache *s, void *object,
464 	enum track_item alloc)
465 {
466 	struct track *p;
467 
468 	if (s->offset)
469 		p = object + s->offset + sizeof(void *);
470 	else
471 		p = object + s->inuse;
472 
473 	return p + alloc;
474 }
475 
476 static void set_track(struct kmem_cache *s, void *object,
477 			enum track_item alloc, unsigned long addr)
478 {
479 	struct track *p = get_track(s, object, alloc);
480 
481 	if (addr) {
482 #ifdef CONFIG_STACKTRACE
483 		struct stack_trace trace;
484 		int i;
485 
486 		trace.nr_entries = 0;
487 		trace.max_entries = TRACK_ADDRS_COUNT;
488 		trace.entries = p->addrs;
489 		trace.skip = 3;
490 		save_stack_trace(&trace);
491 
492 		/* See rant in lockdep.c */
493 		if (trace.nr_entries != 0 &&
494 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
495 			trace.nr_entries--;
496 
497 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
498 			p->addrs[i] = 0;
499 #endif
500 		p->addr = addr;
501 		p->cpu = smp_processor_id();
502 		p->pid = current->pid;
503 		p->when = jiffies;
504 	} else
505 		memset(p, 0, sizeof(struct track));
506 }
507 
508 static void init_tracking(struct kmem_cache *s, void *object)
509 {
510 	if (!(s->flags & SLAB_STORE_USER))
511 		return;
512 
513 	set_track(s, object, TRACK_FREE, 0UL);
514 	set_track(s, object, TRACK_ALLOC, 0UL);
515 }
516 
517 static void print_track(const char *s, struct track *t)
518 {
519 	if (!t->addr)
520 		return;
521 
522 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
523 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
524 #ifdef CONFIG_STACKTRACE
525 	{
526 		int i;
527 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
528 			if (t->addrs[i])
529 				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
530 			else
531 				break;
532 	}
533 #endif
534 }
535 
536 static void print_tracking(struct kmem_cache *s, void *object)
537 {
538 	if (!(s->flags & SLAB_STORE_USER))
539 		return;
540 
541 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
542 	print_track("Freed", get_track(s, object, TRACK_FREE));
543 }
544 
545 static void print_page_info(struct page *page)
546 {
547 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
548 		page, page->objects, page->inuse, page->freelist, page->flags);
549 
550 }
551 
552 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
553 {
554 	va_list args;
555 	char buf[100];
556 
557 	va_start(args, fmt);
558 	vsnprintf(buf, sizeof(buf), fmt, args);
559 	va_end(args);
560 	printk(KERN_ERR "========================================"
561 			"=====================================\n");
562 	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
563 	printk(KERN_ERR "----------------------------------------"
564 			"-------------------------------------\n\n");
565 
566 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
567 }
568 
569 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
570 {
571 	va_list args;
572 	char buf[100];
573 
574 	va_start(args, fmt);
575 	vsnprintf(buf, sizeof(buf), fmt, args);
576 	va_end(args);
577 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
578 }
579 
580 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
581 {
582 	unsigned int off;	/* Offset of last byte */
583 	u8 *addr = page_address(page);
584 
585 	print_tracking(s, p);
586 
587 	print_page_info(page);
588 
589 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
590 			p, p - addr, get_freepointer(s, p));
591 
592 	if (p > addr + 16)
593 		print_section("Bytes b4 ", p - 16, 16);
594 
595 	print_section("Object ", p, min_t(unsigned long, s->object_size,
596 				PAGE_SIZE));
597 	if (s->flags & SLAB_RED_ZONE)
598 		print_section("Redzone ", p + s->object_size,
599 			s->inuse - s->object_size);
600 
601 	if (s->offset)
602 		off = s->offset + sizeof(void *);
603 	else
604 		off = s->inuse;
605 
606 	if (s->flags & SLAB_STORE_USER)
607 		off += 2 * sizeof(struct track);
608 
609 	if (off != s->size)
610 		/* Beginning of the filler is the free pointer */
611 		print_section("Padding ", p + off, s->size - off);
612 
613 	dump_stack();
614 }
615 
616 static void object_err(struct kmem_cache *s, struct page *page,
617 			u8 *object, char *reason)
618 {
619 	slab_bug(s, "%s", reason);
620 	print_trailer(s, page, object);
621 }
622 
623 static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
624 {
625 	va_list args;
626 	char buf[100];
627 
628 	va_start(args, fmt);
629 	vsnprintf(buf, sizeof(buf), fmt, args);
630 	va_end(args);
631 	slab_bug(s, "%s", buf);
632 	print_page_info(page);
633 	dump_stack();
634 }
635 
636 static void init_object(struct kmem_cache *s, void *object, u8 val)
637 {
638 	u8 *p = object;
639 
640 	if (s->flags & __OBJECT_POISON) {
641 		memset(p, POISON_FREE, s->object_size - 1);
642 		p[s->object_size - 1] = POISON_END;
643 	}
644 
645 	if (s->flags & SLAB_RED_ZONE)
646 		memset(p + s->object_size, val, s->inuse - s->object_size);
647 }
648 
649 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
650 						void *from, void *to)
651 {
652 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
653 	memset(from, data, to - from);
654 }
655 
656 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
657 			u8 *object, char *what,
658 			u8 *start, unsigned int value, unsigned int bytes)
659 {
660 	u8 *fault;
661 	u8 *end;
662 
663 	fault = memchr_inv(start, value, bytes);
664 	if (!fault)
665 		return 1;
666 
667 	end = start + bytes;
668 	while (end > fault && end[-1] == value)
669 		end--;
670 
671 	slab_bug(s, "%s overwritten", what);
672 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
673 					fault, end - 1, fault[0], value);
674 	print_trailer(s, page, object);
675 
676 	restore_bytes(s, what, value, fault, end);
677 	return 0;
678 }
679 
680 /*
681  * Object layout:
682  *
683  * object address
684  * 	Bytes of the object to be managed.
685  * 	If the freepointer may overlay the object then the free
686  * 	pointer is the first word of the object.
687  *
688  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
689  * 	0xa5 (POISON_END)
690  *
691  * object + s->object_size
692  * 	Padding to reach word boundary. This is also used for Redzoning.
693  * 	Padding is extended by another word if Redzoning is enabled and
694  * 	object_size == inuse.
695  *
696  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
697  * 	0xcc (RED_ACTIVE) for objects in use.
698  *
699  * object + s->inuse
700  * 	Meta data starts here.
701  *
702  * 	A. Free pointer (if we cannot overwrite object on free)
703  * 	B. Tracking data for SLAB_STORE_USER
704  * 	C. Padding to reach required alignment boundary or at mininum
705  * 		one word if debugging is on to be able to detect writes
706  * 		before the word boundary.
707  *
708  *	Padding is done using 0x5a (POISON_INUSE)
709  *
710  * object + s->size
711  * 	Nothing is used beyond s->size.
712  *
713  * If slabcaches are merged then the object_size and inuse boundaries are mostly
714  * ignored. And therefore no slab options that rely on these boundaries
715  * may be used with merged slabcaches.
716  */
717 
718 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
719 {
720 	unsigned long off = s->inuse;	/* The end of info */
721 
722 	if (s->offset)
723 		/* Freepointer is placed after the object. */
724 		off += sizeof(void *);
725 
726 	if (s->flags & SLAB_STORE_USER)
727 		/* We also have user information there */
728 		off += 2 * sizeof(struct track);
729 
730 	if (s->size == off)
731 		return 1;
732 
733 	return check_bytes_and_report(s, page, p, "Object padding",
734 				p + off, POISON_INUSE, s->size - off);
735 }
736 
737 /* Check the pad bytes at the end of a slab page */
738 static int slab_pad_check(struct kmem_cache *s, struct page *page)
739 {
740 	u8 *start;
741 	u8 *fault;
742 	u8 *end;
743 	int length;
744 	int remainder;
745 
746 	if (!(s->flags & SLAB_POISON))
747 		return 1;
748 
749 	start = page_address(page);
750 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
751 	end = start + length;
752 	remainder = length % s->size;
753 	if (!remainder)
754 		return 1;
755 
756 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
757 	if (!fault)
758 		return 1;
759 	while (end > fault && end[-1] == POISON_INUSE)
760 		end--;
761 
762 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
763 	print_section("Padding ", end - remainder, remainder);
764 
765 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
766 	return 0;
767 }
768 
769 static int check_object(struct kmem_cache *s, struct page *page,
770 					void *object, u8 val)
771 {
772 	u8 *p = object;
773 	u8 *endobject = object + s->object_size;
774 
775 	if (s->flags & SLAB_RED_ZONE) {
776 		if (!check_bytes_and_report(s, page, object, "Redzone",
777 			endobject, val, s->inuse - s->object_size))
778 			return 0;
779 	} else {
780 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
781 			check_bytes_and_report(s, page, p, "Alignment padding",
782 				endobject, POISON_INUSE, s->inuse - s->object_size);
783 		}
784 	}
785 
786 	if (s->flags & SLAB_POISON) {
787 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
788 			(!check_bytes_and_report(s, page, p, "Poison", p,
789 					POISON_FREE, s->object_size - 1) ||
790 			 !check_bytes_and_report(s, page, p, "Poison",
791 				p + s->object_size - 1, POISON_END, 1)))
792 			return 0;
793 		/*
794 		 * check_pad_bytes cleans up on its own.
795 		 */
796 		check_pad_bytes(s, page, p);
797 	}
798 
799 	if (!s->offset && val == SLUB_RED_ACTIVE)
800 		/*
801 		 * Object and freepointer overlap. Cannot check
802 		 * freepointer while object is allocated.
803 		 */
804 		return 1;
805 
806 	/* Check free pointer validity */
807 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
808 		object_err(s, page, p, "Freepointer corrupt");
809 		/*
810 		 * No choice but to zap it and thus lose the remainder
811 		 * of the free objects in this slab. May cause
812 		 * another error because the object count is now wrong.
813 		 */
814 		set_freepointer(s, p, NULL);
815 		return 0;
816 	}
817 	return 1;
818 }
819 
820 static int check_slab(struct kmem_cache *s, struct page *page)
821 {
822 	int maxobj;
823 
824 	VM_BUG_ON(!irqs_disabled());
825 
826 	if (!PageSlab(page)) {
827 		slab_err(s, page, "Not a valid slab page");
828 		return 0;
829 	}
830 
831 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
832 	if (page->objects > maxobj) {
833 		slab_err(s, page, "objects %u > max %u",
834 			s->name, page->objects, maxobj);
835 		return 0;
836 	}
837 	if (page->inuse > page->objects) {
838 		slab_err(s, page, "inuse %u > max %u",
839 			s->name, page->inuse, page->objects);
840 		return 0;
841 	}
842 	/* Slab_pad_check fixes things up after itself */
843 	slab_pad_check(s, page);
844 	return 1;
845 }
846 
847 /*
848  * Determine if a certain object on a page is on the freelist. Must hold the
849  * slab lock to guarantee that the chains are in a consistent state.
850  */
851 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
852 {
853 	int nr = 0;
854 	void *fp;
855 	void *object = NULL;
856 	unsigned long max_objects;
857 
858 	fp = page->freelist;
859 	while (fp && nr <= page->objects) {
860 		if (fp == search)
861 			return 1;
862 		if (!check_valid_pointer(s, page, fp)) {
863 			if (object) {
864 				object_err(s, page, object,
865 					"Freechain corrupt");
866 				set_freepointer(s, object, NULL);
867 				break;
868 			} else {
869 				slab_err(s, page, "Freepointer corrupt");
870 				page->freelist = NULL;
871 				page->inuse = page->objects;
872 				slab_fix(s, "Freelist cleared");
873 				return 0;
874 			}
875 			break;
876 		}
877 		object = fp;
878 		fp = get_freepointer(s, object);
879 		nr++;
880 	}
881 
882 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
883 	if (max_objects > MAX_OBJS_PER_PAGE)
884 		max_objects = MAX_OBJS_PER_PAGE;
885 
886 	if (page->objects != max_objects) {
887 		slab_err(s, page, "Wrong number of objects. Found %d but "
888 			"should be %d", page->objects, max_objects);
889 		page->objects = max_objects;
890 		slab_fix(s, "Number of objects adjusted.");
891 	}
892 	if (page->inuse != page->objects - nr) {
893 		slab_err(s, page, "Wrong object count. Counter is %d but "
894 			"counted were %d", page->inuse, page->objects - nr);
895 		page->inuse = page->objects - nr;
896 		slab_fix(s, "Object count adjusted.");
897 	}
898 	return search == NULL;
899 }
900 
901 static void trace(struct kmem_cache *s, struct page *page, void *object,
902 								int alloc)
903 {
904 	if (s->flags & SLAB_TRACE) {
905 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
906 			s->name,
907 			alloc ? "alloc" : "free",
908 			object, page->inuse,
909 			page->freelist);
910 
911 		if (!alloc)
912 			print_section("Object ", (void *)object, s->object_size);
913 
914 		dump_stack();
915 	}
916 }
917 
918 /*
919  * Hooks for other subsystems that check memory allocations. In a typical
920  * production configuration these hooks all should produce no code at all.
921  */
922 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
923 {
924 	flags &= gfp_allowed_mask;
925 	lockdep_trace_alloc(flags);
926 	might_sleep_if(flags & __GFP_WAIT);
927 
928 	return should_failslab(s->object_size, flags, s->flags);
929 }
930 
931 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
932 {
933 	flags &= gfp_allowed_mask;
934 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
935 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
936 }
937 
938 static inline void slab_free_hook(struct kmem_cache *s, void *x)
939 {
940 	kmemleak_free_recursive(x, s->flags);
941 
942 	/*
943 	 * Trouble is that we may no longer disable interupts in the fast path
944 	 * So in order to make the debug calls that expect irqs to be
945 	 * disabled we need to disable interrupts temporarily.
946 	 */
947 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
948 	{
949 		unsigned long flags;
950 
951 		local_irq_save(flags);
952 		kmemcheck_slab_free(s, x, s->object_size);
953 		debug_check_no_locks_freed(x, s->object_size);
954 		local_irq_restore(flags);
955 	}
956 #endif
957 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
958 		debug_check_no_obj_freed(x, s->object_size);
959 }
960 
961 /*
962  * Tracking of fully allocated slabs for debugging purposes.
963  *
964  * list_lock must be held.
965  */
966 static void add_full(struct kmem_cache *s,
967 	struct kmem_cache_node *n, struct page *page)
968 {
969 	if (!(s->flags & SLAB_STORE_USER))
970 		return;
971 
972 	list_add(&page->lru, &n->full);
973 }
974 
975 /*
976  * list_lock must be held.
977  */
978 static void remove_full(struct kmem_cache *s, struct page *page)
979 {
980 	if (!(s->flags & SLAB_STORE_USER))
981 		return;
982 
983 	list_del(&page->lru);
984 }
985 
986 /* Tracking of the number of slabs for debugging purposes */
987 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
988 {
989 	struct kmem_cache_node *n = get_node(s, node);
990 
991 	return atomic_long_read(&n->nr_slabs);
992 }
993 
994 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
995 {
996 	return atomic_long_read(&n->nr_slabs);
997 }
998 
999 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1000 {
1001 	struct kmem_cache_node *n = get_node(s, node);
1002 
1003 	/*
1004 	 * May be called early in order to allocate a slab for the
1005 	 * kmem_cache_node structure. Solve the chicken-egg
1006 	 * dilemma by deferring the increment of the count during
1007 	 * bootstrap (see early_kmem_cache_node_alloc).
1008 	 */
1009 	if (likely(n)) {
1010 		atomic_long_inc(&n->nr_slabs);
1011 		atomic_long_add(objects, &n->total_objects);
1012 	}
1013 }
1014 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1015 {
1016 	struct kmem_cache_node *n = get_node(s, node);
1017 
1018 	atomic_long_dec(&n->nr_slabs);
1019 	atomic_long_sub(objects, &n->total_objects);
1020 }
1021 
1022 /* Object debug checks for alloc/free paths */
1023 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1024 								void *object)
1025 {
1026 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1027 		return;
1028 
1029 	init_object(s, object, SLUB_RED_INACTIVE);
1030 	init_tracking(s, object);
1031 }
1032 
1033 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1034 					void *object, unsigned long addr)
1035 {
1036 	if (!check_slab(s, page))
1037 		goto bad;
1038 
1039 	if (!check_valid_pointer(s, page, object)) {
1040 		object_err(s, page, object, "Freelist Pointer check fails");
1041 		goto bad;
1042 	}
1043 
1044 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1045 		goto bad;
1046 
1047 	/* Success perform special debug activities for allocs */
1048 	if (s->flags & SLAB_STORE_USER)
1049 		set_track(s, object, TRACK_ALLOC, addr);
1050 	trace(s, page, object, 1);
1051 	init_object(s, object, SLUB_RED_ACTIVE);
1052 	return 1;
1053 
1054 bad:
1055 	if (PageSlab(page)) {
1056 		/*
1057 		 * If this is a slab page then lets do the best we can
1058 		 * to avoid issues in the future. Marking all objects
1059 		 * as used avoids touching the remaining objects.
1060 		 */
1061 		slab_fix(s, "Marking all objects used");
1062 		page->inuse = page->objects;
1063 		page->freelist = NULL;
1064 	}
1065 	return 0;
1066 }
1067 
1068 static noinline struct kmem_cache_node *free_debug_processing(
1069 	struct kmem_cache *s, struct page *page, void *object,
1070 	unsigned long addr, unsigned long *flags)
1071 {
1072 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1073 
1074 	spin_lock_irqsave(&n->list_lock, *flags);
1075 	slab_lock(page);
1076 
1077 	if (!check_slab(s, page))
1078 		goto fail;
1079 
1080 	if (!check_valid_pointer(s, page, object)) {
1081 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1082 		goto fail;
1083 	}
1084 
1085 	if (on_freelist(s, page, object)) {
1086 		object_err(s, page, object, "Object already free");
1087 		goto fail;
1088 	}
1089 
1090 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1091 		goto out;
1092 
1093 	if (unlikely(s != page->slab_cache)) {
1094 		if (!PageSlab(page)) {
1095 			slab_err(s, page, "Attempt to free object(0x%p) "
1096 				"outside of slab", object);
1097 		} else if (!page->slab_cache) {
1098 			printk(KERN_ERR
1099 				"SLUB <none>: no slab for object 0x%p.\n",
1100 						object);
1101 			dump_stack();
1102 		} else
1103 			object_err(s, page, object,
1104 					"page slab pointer corrupt.");
1105 		goto fail;
1106 	}
1107 
1108 	if (s->flags & SLAB_STORE_USER)
1109 		set_track(s, object, TRACK_FREE, addr);
1110 	trace(s, page, object, 0);
1111 	init_object(s, object, SLUB_RED_INACTIVE);
1112 out:
1113 	slab_unlock(page);
1114 	/*
1115 	 * Keep node_lock to preserve integrity
1116 	 * until the object is actually freed
1117 	 */
1118 	return n;
1119 
1120 fail:
1121 	slab_unlock(page);
1122 	spin_unlock_irqrestore(&n->list_lock, *flags);
1123 	slab_fix(s, "Object at 0x%p not freed", object);
1124 	return NULL;
1125 }
1126 
1127 static int __init setup_slub_debug(char *str)
1128 {
1129 	slub_debug = DEBUG_DEFAULT_FLAGS;
1130 	if (*str++ != '=' || !*str)
1131 		/*
1132 		 * No options specified. Switch on full debugging.
1133 		 */
1134 		goto out;
1135 
1136 	if (*str == ',')
1137 		/*
1138 		 * No options but restriction on slabs. This means full
1139 		 * debugging for slabs matching a pattern.
1140 		 */
1141 		goto check_slabs;
1142 
1143 	if (tolower(*str) == 'o') {
1144 		/*
1145 		 * Avoid enabling debugging on caches if its minimum order
1146 		 * would increase as a result.
1147 		 */
1148 		disable_higher_order_debug = 1;
1149 		goto out;
1150 	}
1151 
1152 	slub_debug = 0;
1153 	if (*str == '-')
1154 		/*
1155 		 * Switch off all debugging measures.
1156 		 */
1157 		goto out;
1158 
1159 	/*
1160 	 * Determine which debug features should be switched on
1161 	 */
1162 	for (; *str && *str != ','; str++) {
1163 		switch (tolower(*str)) {
1164 		case 'f':
1165 			slub_debug |= SLAB_DEBUG_FREE;
1166 			break;
1167 		case 'z':
1168 			slub_debug |= SLAB_RED_ZONE;
1169 			break;
1170 		case 'p':
1171 			slub_debug |= SLAB_POISON;
1172 			break;
1173 		case 'u':
1174 			slub_debug |= SLAB_STORE_USER;
1175 			break;
1176 		case 't':
1177 			slub_debug |= SLAB_TRACE;
1178 			break;
1179 		case 'a':
1180 			slub_debug |= SLAB_FAILSLAB;
1181 			break;
1182 		default:
1183 			printk(KERN_ERR "slub_debug option '%c' "
1184 				"unknown. skipped\n", *str);
1185 		}
1186 	}
1187 
1188 check_slabs:
1189 	if (*str == ',')
1190 		slub_debug_slabs = str + 1;
1191 out:
1192 	return 1;
1193 }
1194 
1195 __setup("slub_debug", setup_slub_debug);
1196 
1197 static unsigned long kmem_cache_flags(unsigned long object_size,
1198 	unsigned long flags, const char *name,
1199 	void (*ctor)(void *))
1200 {
1201 	/*
1202 	 * Enable debugging if selected on the kernel commandline.
1203 	 */
1204 	if (slub_debug && (!slub_debug_slabs ||
1205 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1206 		flags |= slub_debug;
1207 
1208 	return flags;
1209 }
1210 #else
1211 static inline void setup_object_debug(struct kmem_cache *s,
1212 			struct page *page, void *object) {}
1213 
1214 static inline int alloc_debug_processing(struct kmem_cache *s,
1215 	struct page *page, void *object, unsigned long addr) { return 0; }
1216 
1217 static inline struct kmem_cache_node *free_debug_processing(
1218 	struct kmem_cache *s, struct page *page, void *object,
1219 	unsigned long addr, unsigned long *flags) { return NULL; }
1220 
1221 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1222 			{ return 1; }
1223 static inline int check_object(struct kmem_cache *s, struct page *page,
1224 			void *object, u8 val) { return 1; }
1225 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1226 					struct page *page) {}
1227 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1228 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1229 	unsigned long flags, const char *name,
1230 	void (*ctor)(void *))
1231 {
1232 	return flags;
1233 }
1234 #define slub_debug 0
1235 
1236 #define disable_higher_order_debug 0
1237 
1238 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1239 							{ return 0; }
1240 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1241 							{ return 0; }
1242 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1243 							int objects) {}
1244 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1245 							int objects) {}
1246 
1247 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1248 							{ return 0; }
1249 
1250 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1251 		void *object) {}
1252 
1253 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1254 
1255 #endif /* CONFIG_SLUB_DEBUG */
1256 
1257 /*
1258  * Slab allocation and freeing
1259  */
1260 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1261 					struct kmem_cache_order_objects oo)
1262 {
1263 	int order = oo_order(oo);
1264 
1265 	flags |= __GFP_NOTRACK;
1266 
1267 	if (node == NUMA_NO_NODE)
1268 		return alloc_pages(flags, order);
1269 	else
1270 		return alloc_pages_exact_node(node, flags, order);
1271 }
1272 
1273 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1274 {
1275 	struct page *page;
1276 	struct kmem_cache_order_objects oo = s->oo;
1277 	gfp_t alloc_gfp;
1278 
1279 	flags &= gfp_allowed_mask;
1280 
1281 	if (flags & __GFP_WAIT)
1282 		local_irq_enable();
1283 
1284 	flags |= s->allocflags;
1285 
1286 	/*
1287 	 * Let the initial higher-order allocation fail under memory pressure
1288 	 * so we fall-back to the minimum order allocation.
1289 	 */
1290 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1291 
1292 	page = alloc_slab_page(alloc_gfp, node, oo);
1293 	if (unlikely(!page)) {
1294 		oo = s->min;
1295 		/*
1296 		 * Allocation may have failed due to fragmentation.
1297 		 * Try a lower order alloc if possible
1298 		 */
1299 		page = alloc_slab_page(flags, node, oo);
1300 
1301 		if (page)
1302 			stat(s, ORDER_FALLBACK);
1303 	}
1304 
1305 	if (kmemcheck_enabled && page
1306 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1307 		int pages = 1 << oo_order(oo);
1308 
1309 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1310 
1311 		/*
1312 		 * Objects from caches that have a constructor don't get
1313 		 * cleared when they're allocated, so we need to do it here.
1314 		 */
1315 		if (s->ctor)
1316 			kmemcheck_mark_uninitialized_pages(page, pages);
1317 		else
1318 			kmemcheck_mark_unallocated_pages(page, pages);
1319 	}
1320 
1321 	if (flags & __GFP_WAIT)
1322 		local_irq_disable();
1323 	if (!page)
1324 		return NULL;
1325 
1326 	page->objects = oo_objects(oo);
1327 	mod_zone_page_state(page_zone(page),
1328 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1329 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1330 		1 << oo_order(oo));
1331 
1332 	return page;
1333 }
1334 
1335 static void setup_object(struct kmem_cache *s, struct page *page,
1336 				void *object)
1337 {
1338 	setup_object_debug(s, page, object);
1339 	if (unlikely(s->ctor))
1340 		s->ctor(object);
1341 }
1342 
1343 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1344 {
1345 	struct page *page;
1346 	void *start;
1347 	void *last;
1348 	void *p;
1349 	int order;
1350 
1351 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1352 
1353 	page = allocate_slab(s,
1354 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1355 	if (!page)
1356 		goto out;
1357 
1358 	order = compound_order(page);
1359 	inc_slabs_node(s, page_to_nid(page), page->objects);
1360 	memcg_bind_pages(s, order);
1361 	page->slab_cache = s;
1362 	__SetPageSlab(page);
1363 	if (page->pfmemalloc)
1364 		SetPageSlabPfmemalloc(page);
1365 
1366 	start = page_address(page);
1367 
1368 	if (unlikely(s->flags & SLAB_POISON))
1369 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1370 
1371 	last = start;
1372 	for_each_object(p, s, start, page->objects) {
1373 		setup_object(s, page, last);
1374 		set_freepointer(s, last, p);
1375 		last = p;
1376 	}
1377 	setup_object(s, page, last);
1378 	set_freepointer(s, last, NULL);
1379 
1380 	page->freelist = start;
1381 	page->inuse = page->objects;
1382 	page->frozen = 1;
1383 out:
1384 	return page;
1385 }
1386 
1387 static void __free_slab(struct kmem_cache *s, struct page *page)
1388 {
1389 	int order = compound_order(page);
1390 	int pages = 1 << order;
1391 
1392 	if (kmem_cache_debug(s)) {
1393 		void *p;
1394 
1395 		slab_pad_check(s, page);
1396 		for_each_object(p, s, page_address(page),
1397 						page->objects)
1398 			check_object(s, page, p, SLUB_RED_INACTIVE);
1399 	}
1400 
1401 	kmemcheck_free_shadow(page, compound_order(page));
1402 
1403 	mod_zone_page_state(page_zone(page),
1404 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1405 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1406 		-pages);
1407 
1408 	__ClearPageSlabPfmemalloc(page);
1409 	__ClearPageSlab(page);
1410 
1411 	memcg_release_pages(s, order);
1412 	page_mapcount_reset(page);
1413 	if (current->reclaim_state)
1414 		current->reclaim_state->reclaimed_slab += pages;
1415 	__free_memcg_kmem_pages(page, order);
1416 }
1417 
1418 #define need_reserve_slab_rcu						\
1419 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1420 
1421 static void rcu_free_slab(struct rcu_head *h)
1422 {
1423 	struct page *page;
1424 
1425 	if (need_reserve_slab_rcu)
1426 		page = virt_to_head_page(h);
1427 	else
1428 		page = container_of((struct list_head *)h, struct page, lru);
1429 
1430 	__free_slab(page->slab_cache, page);
1431 }
1432 
1433 static void free_slab(struct kmem_cache *s, struct page *page)
1434 {
1435 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1436 		struct rcu_head *head;
1437 
1438 		if (need_reserve_slab_rcu) {
1439 			int order = compound_order(page);
1440 			int offset = (PAGE_SIZE << order) - s->reserved;
1441 
1442 			VM_BUG_ON(s->reserved != sizeof(*head));
1443 			head = page_address(page) + offset;
1444 		} else {
1445 			/*
1446 			 * RCU free overloads the RCU head over the LRU
1447 			 */
1448 			head = (void *)&page->lru;
1449 		}
1450 
1451 		call_rcu(head, rcu_free_slab);
1452 	} else
1453 		__free_slab(s, page);
1454 }
1455 
1456 static void discard_slab(struct kmem_cache *s, struct page *page)
1457 {
1458 	dec_slabs_node(s, page_to_nid(page), page->objects);
1459 	free_slab(s, page);
1460 }
1461 
1462 /*
1463  * Management of partially allocated slabs.
1464  *
1465  * list_lock must be held.
1466  */
1467 static inline void add_partial(struct kmem_cache_node *n,
1468 				struct page *page, int tail)
1469 {
1470 	n->nr_partial++;
1471 	if (tail == DEACTIVATE_TO_TAIL)
1472 		list_add_tail(&page->lru, &n->partial);
1473 	else
1474 		list_add(&page->lru, &n->partial);
1475 }
1476 
1477 /*
1478  * list_lock must be held.
1479  */
1480 static inline void remove_partial(struct kmem_cache_node *n,
1481 					struct page *page)
1482 {
1483 	list_del(&page->lru);
1484 	n->nr_partial--;
1485 }
1486 
1487 /*
1488  * Remove slab from the partial list, freeze it and
1489  * return the pointer to the freelist.
1490  *
1491  * Returns a list of objects or NULL if it fails.
1492  *
1493  * Must hold list_lock since we modify the partial list.
1494  */
1495 static inline void *acquire_slab(struct kmem_cache *s,
1496 		struct kmem_cache_node *n, struct page *page,
1497 		int mode, int *objects)
1498 {
1499 	void *freelist;
1500 	unsigned long counters;
1501 	struct page new;
1502 
1503 	/*
1504 	 * Zap the freelist and set the frozen bit.
1505 	 * The old freelist is the list of objects for the
1506 	 * per cpu allocation list.
1507 	 */
1508 	freelist = page->freelist;
1509 	counters = page->counters;
1510 	new.counters = counters;
1511 	*objects = new.objects - new.inuse;
1512 	if (mode) {
1513 		new.inuse = page->objects;
1514 		new.freelist = NULL;
1515 	} else {
1516 		new.freelist = freelist;
1517 	}
1518 
1519 	VM_BUG_ON(new.frozen);
1520 	new.frozen = 1;
1521 
1522 	if (!__cmpxchg_double_slab(s, page,
1523 			freelist, counters,
1524 			new.freelist, new.counters,
1525 			"acquire_slab"))
1526 		return NULL;
1527 
1528 	remove_partial(n, page);
1529 	WARN_ON(!freelist);
1530 	return freelist;
1531 }
1532 
1533 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1534 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1535 
1536 /*
1537  * Try to allocate a partial slab from a specific node.
1538  */
1539 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1540 				struct kmem_cache_cpu *c, gfp_t flags)
1541 {
1542 	struct page *page, *page2;
1543 	void *object = NULL;
1544 	int available = 0;
1545 	int objects;
1546 
1547 	/*
1548 	 * Racy check. If we mistakenly see no partial slabs then we
1549 	 * just allocate an empty slab. If we mistakenly try to get a
1550 	 * partial slab and there is none available then get_partials()
1551 	 * will return NULL.
1552 	 */
1553 	if (!n || !n->nr_partial)
1554 		return NULL;
1555 
1556 	spin_lock(&n->list_lock);
1557 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1558 		void *t;
1559 
1560 		if (!pfmemalloc_match(page, flags))
1561 			continue;
1562 
1563 		t = acquire_slab(s, n, page, object == NULL, &objects);
1564 		if (!t)
1565 			break;
1566 
1567 		available += objects;
1568 		if (!object) {
1569 			c->page = page;
1570 			stat(s, ALLOC_FROM_PARTIAL);
1571 			object = t;
1572 		} else {
1573 			put_cpu_partial(s, page, 0);
1574 			stat(s, CPU_PARTIAL_NODE);
1575 		}
1576 		if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1577 			break;
1578 
1579 	}
1580 	spin_unlock(&n->list_lock);
1581 	return object;
1582 }
1583 
1584 /*
1585  * Get a page from somewhere. Search in increasing NUMA distances.
1586  */
1587 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1588 		struct kmem_cache_cpu *c)
1589 {
1590 #ifdef CONFIG_NUMA
1591 	struct zonelist *zonelist;
1592 	struct zoneref *z;
1593 	struct zone *zone;
1594 	enum zone_type high_zoneidx = gfp_zone(flags);
1595 	void *object;
1596 	unsigned int cpuset_mems_cookie;
1597 
1598 	/*
1599 	 * The defrag ratio allows a configuration of the tradeoffs between
1600 	 * inter node defragmentation and node local allocations. A lower
1601 	 * defrag_ratio increases the tendency to do local allocations
1602 	 * instead of attempting to obtain partial slabs from other nodes.
1603 	 *
1604 	 * If the defrag_ratio is set to 0 then kmalloc() always
1605 	 * returns node local objects. If the ratio is higher then kmalloc()
1606 	 * may return off node objects because partial slabs are obtained
1607 	 * from other nodes and filled up.
1608 	 *
1609 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1610 	 * defrag_ratio = 1000) then every (well almost) allocation will
1611 	 * first attempt to defrag slab caches on other nodes. This means
1612 	 * scanning over all nodes to look for partial slabs which may be
1613 	 * expensive if we do it every time we are trying to find a slab
1614 	 * with available objects.
1615 	 */
1616 	if (!s->remote_node_defrag_ratio ||
1617 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1618 		return NULL;
1619 
1620 	do {
1621 		cpuset_mems_cookie = get_mems_allowed();
1622 		zonelist = node_zonelist(slab_node(), flags);
1623 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1624 			struct kmem_cache_node *n;
1625 
1626 			n = get_node(s, zone_to_nid(zone));
1627 
1628 			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1629 					n->nr_partial > s->min_partial) {
1630 				object = get_partial_node(s, n, c, flags);
1631 				if (object) {
1632 					/*
1633 					 * Return the object even if
1634 					 * put_mems_allowed indicated that
1635 					 * the cpuset mems_allowed was
1636 					 * updated in parallel. It's a
1637 					 * harmless race between the alloc
1638 					 * and the cpuset update.
1639 					 */
1640 					put_mems_allowed(cpuset_mems_cookie);
1641 					return object;
1642 				}
1643 			}
1644 		}
1645 	} while (!put_mems_allowed(cpuset_mems_cookie));
1646 #endif
1647 	return NULL;
1648 }
1649 
1650 /*
1651  * Get a partial page, lock it and return it.
1652  */
1653 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1654 		struct kmem_cache_cpu *c)
1655 {
1656 	void *object;
1657 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1658 
1659 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1660 	if (object || node != NUMA_NO_NODE)
1661 		return object;
1662 
1663 	return get_any_partial(s, flags, c);
1664 }
1665 
1666 #ifdef CONFIG_PREEMPT
1667 /*
1668  * Calculate the next globally unique transaction for disambiguiation
1669  * during cmpxchg. The transactions start with the cpu number and are then
1670  * incremented by CONFIG_NR_CPUS.
1671  */
1672 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1673 #else
1674 /*
1675  * No preemption supported therefore also no need to check for
1676  * different cpus.
1677  */
1678 #define TID_STEP 1
1679 #endif
1680 
1681 static inline unsigned long next_tid(unsigned long tid)
1682 {
1683 	return tid + TID_STEP;
1684 }
1685 
1686 static inline unsigned int tid_to_cpu(unsigned long tid)
1687 {
1688 	return tid % TID_STEP;
1689 }
1690 
1691 static inline unsigned long tid_to_event(unsigned long tid)
1692 {
1693 	return tid / TID_STEP;
1694 }
1695 
1696 static inline unsigned int init_tid(int cpu)
1697 {
1698 	return cpu;
1699 }
1700 
1701 static inline void note_cmpxchg_failure(const char *n,
1702 		const struct kmem_cache *s, unsigned long tid)
1703 {
1704 #ifdef SLUB_DEBUG_CMPXCHG
1705 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1706 
1707 	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1708 
1709 #ifdef CONFIG_PREEMPT
1710 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1711 		printk("due to cpu change %d -> %d\n",
1712 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1713 	else
1714 #endif
1715 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1716 		printk("due to cpu running other code. Event %ld->%ld\n",
1717 			tid_to_event(tid), tid_to_event(actual_tid));
1718 	else
1719 		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1720 			actual_tid, tid, next_tid(tid));
1721 #endif
1722 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1723 }
1724 
1725 static void init_kmem_cache_cpus(struct kmem_cache *s)
1726 {
1727 	int cpu;
1728 
1729 	for_each_possible_cpu(cpu)
1730 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1731 }
1732 
1733 /*
1734  * Remove the cpu slab
1735  */
1736 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1737 {
1738 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1739 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1740 	int lock = 0;
1741 	enum slab_modes l = M_NONE, m = M_NONE;
1742 	void *nextfree;
1743 	int tail = DEACTIVATE_TO_HEAD;
1744 	struct page new;
1745 	struct page old;
1746 
1747 	if (page->freelist) {
1748 		stat(s, DEACTIVATE_REMOTE_FREES);
1749 		tail = DEACTIVATE_TO_TAIL;
1750 	}
1751 
1752 	/*
1753 	 * Stage one: Free all available per cpu objects back
1754 	 * to the page freelist while it is still frozen. Leave the
1755 	 * last one.
1756 	 *
1757 	 * There is no need to take the list->lock because the page
1758 	 * is still frozen.
1759 	 */
1760 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1761 		void *prior;
1762 		unsigned long counters;
1763 
1764 		do {
1765 			prior = page->freelist;
1766 			counters = page->counters;
1767 			set_freepointer(s, freelist, prior);
1768 			new.counters = counters;
1769 			new.inuse--;
1770 			VM_BUG_ON(!new.frozen);
1771 
1772 		} while (!__cmpxchg_double_slab(s, page,
1773 			prior, counters,
1774 			freelist, new.counters,
1775 			"drain percpu freelist"));
1776 
1777 		freelist = nextfree;
1778 	}
1779 
1780 	/*
1781 	 * Stage two: Ensure that the page is unfrozen while the
1782 	 * list presence reflects the actual number of objects
1783 	 * during unfreeze.
1784 	 *
1785 	 * We setup the list membership and then perform a cmpxchg
1786 	 * with the count. If there is a mismatch then the page
1787 	 * is not unfrozen but the page is on the wrong list.
1788 	 *
1789 	 * Then we restart the process which may have to remove
1790 	 * the page from the list that we just put it on again
1791 	 * because the number of objects in the slab may have
1792 	 * changed.
1793 	 */
1794 redo:
1795 
1796 	old.freelist = page->freelist;
1797 	old.counters = page->counters;
1798 	VM_BUG_ON(!old.frozen);
1799 
1800 	/* Determine target state of the slab */
1801 	new.counters = old.counters;
1802 	if (freelist) {
1803 		new.inuse--;
1804 		set_freepointer(s, freelist, old.freelist);
1805 		new.freelist = freelist;
1806 	} else
1807 		new.freelist = old.freelist;
1808 
1809 	new.frozen = 0;
1810 
1811 	if (!new.inuse && n->nr_partial > s->min_partial)
1812 		m = M_FREE;
1813 	else if (new.freelist) {
1814 		m = M_PARTIAL;
1815 		if (!lock) {
1816 			lock = 1;
1817 			/*
1818 			 * Taking the spinlock removes the possiblity
1819 			 * that acquire_slab() will see a slab page that
1820 			 * is frozen
1821 			 */
1822 			spin_lock(&n->list_lock);
1823 		}
1824 	} else {
1825 		m = M_FULL;
1826 		if (kmem_cache_debug(s) && !lock) {
1827 			lock = 1;
1828 			/*
1829 			 * This also ensures that the scanning of full
1830 			 * slabs from diagnostic functions will not see
1831 			 * any frozen slabs.
1832 			 */
1833 			spin_lock(&n->list_lock);
1834 		}
1835 	}
1836 
1837 	if (l != m) {
1838 
1839 		if (l == M_PARTIAL)
1840 
1841 			remove_partial(n, page);
1842 
1843 		else if (l == M_FULL)
1844 
1845 			remove_full(s, page);
1846 
1847 		if (m == M_PARTIAL) {
1848 
1849 			add_partial(n, page, tail);
1850 			stat(s, tail);
1851 
1852 		} else if (m == M_FULL) {
1853 
1854 			stat(s, DEACTIVATE_FULL);
1855 			add_full(s, n, page);
1856 
1857 		}
1858 	}
1859 
1860 	l = m;
1861 	if (!__cmpxchg_double_slab(s, page,
1862 				old.freelist, old.counters,
1863 				new.freelist, new.counters,
1864 				"unfreezing slab"))
1865 		goto redo;
1866 
1867 	if (lock)
1868 		spin_unlock(&n->list_lock);
1869 
1870 	if (m == M_FREE) {
1871 		stat(s, DEACTIVATE_EMPTY);
1872 		discard_slab(s, page);
1873 		stat(s, FREE_SLAB);
1874 	}
1875 }
1876 
1877 /*
1878  * Unfreeze all the cpu partial slabs.
1879  *
1880  * This function must be called with interrupts disabled
1881  * for the cpu using c (or some other guarantee must be there
1882  * to guarantee no concurrent accesses).
1883  */
1884 static void unfreeze_partials(struct kmem_cache *s,
1885 		struct kmem_cache_cpu *c)
1886 {
1887 	struct kmem_cache_node *n = NULL, *n2 = NULL;
1888 	struct page *page, *discard_page = NULL;
1889 
1890 	while ((page = c->partial)) {
1891 		struct page new;
1892 		struct page old;
1893 
1894 		c->partial = page->next;
1895 
1896 		n2 = get_node(s, page_to_nid(page));
1897 		if (n != n2) {
1898 			if (n)
1899 				spin_unlock(&n->list_lock);
1900 
1901 			n = n2;
1902 			spin_lock(&n->list_lock);
1903 		}
1904 
1905 		do {
1906 
1907 			old.freelist = page->freelist;
1908 			old.counters = page->counters;
1909 			VM_BUG_ON(!old.frozen);
1910 
1911 			new.counters = old.counters;
1912 			new.freelist = old.freelist;
1913 
1914 			new.frozen = 0;
1915 
1916 		} while (!__cmpxchg_double_slab(s, page,
1917 				old.freelist, old.counters,
1918 				new.freelist, new.counters,
1919 				"unfreezing slab"));
1920 
1921 		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1922 			page->next = discard_page;
1923 			discard_page = page;
1924 		} else {
1925 			add_partial(n, page, DEACTIVATE_TO_TAIL);
1926 			stat(s, FREE_ADD_PARTIAL);
1927 		}
1928 	}
1929 
1930 	if (n)
1931 		spin_unlock(&n->list_lock);
1932 
1933 	while (discard_page) {
1934 		page = discard_page;
1935 		discard_page = discard_page->next;
1936 
1937 		stat(s, DEACTIVATE_EMPTY);
1938 		discard_slab(s, page);
1939 		stat(s, FREE_SLAB);
1940 	}
1941 }
1942 
1943 /*
1944  * Put a page that was just frozen (in __slab_free) into a partial page
1945  * slot if available. This is done without interrupts disabled and without
1946  * preemption disabled. The cmpxchg is racy and may put the partial page
1947  * onto a random cpus partial slot.
1948  *
1949  * If we did not find a slot then simply move all the partials to the
1950  * per node partial list.
1951  */
1952 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1953 {
1954 	struct page *oldpage;
1955 	int pages;
1956 	int pobjects;
1957 
1958 	do {
1959 		pages = 0;
1960 		pobjects = 0;
1961 		oldpage = this_cpu_read(s->cpu_slab->partial);
1962 
1963 		if (oldpage) {
1964 			pobjects = oldpage->pobjects;
1965 			pages = oldpage->pages;
1966 			if (drain && pobjects > s->cpu_partial) {
1967 				unsigned long flags;
1968 				/*
1969 				 * partial array is full. Move the existing
1970 				 * set to the per node partial list.
1971 				 */
1972 				local_irq_save(flags);
1973 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
1974 				local_irq_restore(flags);
1975 				oldpage = NULL;
1976 				pobjects = 0;
1977 				pages = 0;
1978 				stat(s, CPU_PARTIAL_DRAIN);
1979 			}
1980 		}
1981 
1982 		pages++;
1983 		pobjects += page->objects - page->inuse;
1984 
1985 		page->pages = pages;
1986 		page->pobjects = pobjects;
1987 		page->next = oldpage;
1988 
1989 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1990 }
1991 
1992 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1993 {
1994 	stat(s, CPUSLAB_FLUSH);
1995 	deactivate_slab(s, c->page, c->freelist);
1996 
1997 	c->tid = next_tid(c->tid);
1998 	c->page = NULL;
1999 	c->freelist = NULL;
2000 }
2001 
2002 /*
2003  * Flush cpu slab.
2004  *
2005  * Called from IPI handler with interrupts disabled.
2006  */
2007 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2008 {
2009 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2010 
2011 	if (likely(c)) {
2012 		if (c->page)
2013 			flush_slab(s, c);
2014 
2015 		unfreeze_partials(s, c);
2016 	}
2017 }
2018 
2019 static void flush_cpu_slab(void *d)
2020 {
2021 	struct kmem_cache *s = d;
2022 
2023 	__flush_cpu_slab(s, smp_processor_id());
2024 }
2025 
2026 static bool has_cpu_slab(int cpu, void *info)
2027 {
2028 	struct kmem_cache *s = info;
2029 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2030 
2031 	return c->page || c->partial;
2032 }
2033 
2034 static void flush_all(struct kmem_cache *s)
2035 {
2036 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2037 }
2038 
2039 /*
2040  * Check if the objects in a per cpu structure fit numa
2041  * locality expectations.
2042  */
2043 static inline int node_match(struct page *page, int node)
2044 {
2045 #ifdef CONFIG_NUMA
2046 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2047 		return 0;
2048 #endif
2049 	return 1;
2050 }
2051 
2052 static int count_free(struct page *page)
2053 {
2054 	return page->objects - page->inuse;
2055 }
2056 
2057 static unsigned long count_partial(struct kmem_cache_node *n,
2058 					int (*get_count)(struct page *))
2059 {
2060 	unsigned long flags;
2061 	unsigned long x = 0;
2062 	struct page *page;
2063 
2064 	spin_lock_irqsave(&n->list_lock, flags);
2065 	list_for_each_entry(page, &n->partial, lru)
2066 		x += get_count(page);
2067 	spin_unlock_irqrestore(&n->list_lock, flags);
2068 	return x;
2069 }
2070 
2071 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2072 {
2073 #ifdef CONFIG_SLUB_DEBUG
2074 	return atomic_long_read(&n->total_objects);
2075 #else
2076 	return 0;
2077 #endif
2078 }
2079 
2080 static noinline void
2081 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2082 {
2083 	int node;
2084 
2085 	printk(KERN_WARNING
2086 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2087 		nid, gfpflags);
2088 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2089 		"default order: %d, min order: %d\n", s->name, s->object_size,
2090 		s->size, oo_order(s->oo), oo_order(s->min));
2091 
2092 	if (oo_order(s->min) > get_order(s->object_size))
2093 		printk(KERN_WARNING "  %s debugging increased min order, use "
2094 		       "slub_debug=O to disable.\n", s->name);
2095 
2096 	for_each_online_node(node) {
2097 		struct kmem_cache_node *n = get_node(s, node);
2098 		unsigned long nr_slabs;
2099 		unsigned long nr_objs;
2100 		unsigned long nr_free;
2101 
2102 		if (!n)
2103 			continue;
2104 
2105 		nr_free  = count_partial(n, count_free);
2106 		nr_slabs = node_nr_slabs(n);
2107 		nr_objs  = node_nr_objs(n);
2108 
2109 		printk(KERN_WARNING
2110 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2111 			node, nr_slabs, nr_objs, nr_free);
2112 	}
2113 }
2114 
2115 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2116 			int node, struct kmem_cache_cpu **pc)
2117 {
2118 	void *freelist;
2119 	struct kmem_cache_cpu *c = *pc;
2120 	struct page *page;
2121 
2122 	freelist = get_partial(s, flags, node, c);
2123 
2124 	if (freelist)
2125 		return freelist;
2126 
2127 	page = new_slab(s, flags, node);
2128 	if (page) {
2129 		c = __this_cpu_ptr(s->cpu_slab);
2130 		if (c->page)
2131 			flush_slab(s, c);
2132 
2133 		/*
2134 		 * No other reference to the page yet so we can
2135 		 * muck around with it freely without cmpxchg
2136 		 */
2137 		freelist = page->freelist;
2138 		page->freelist = NULL;
2139 
2140 		stat(s, ALLOC_SLAB);
2141 		c->page = page;
2142 		*pc = c;
2143 	} else
2144 		freelist = NULL;
2145 
2146 	return freelist;
2147 }
2148 
2149 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2150 {
2151 	if (unlikely(PageSlabPfmemalloc(page)))
2152 		return gfp_pfmemalloc_allowed(gfpflags);
2153 
2154 	return true;
2155 }
2156 
2157 /*
2158  * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2159  * or deactivate the page.
2160  *
2161  * The page is still frozen if the return value is not NULL.
2162  *
2163  * If this function returns NULL then the page has been unfrozen.
2164  *
2165  * This function must be called with interrupt disabled.
2166  */
2167 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2168 {
2169 	struct page new;
2170 	unsigned long counters;
2171 	void *freelist;
2172 
2173 	do {
2174 		freelist = page->freelist;
2175 		counters = page->counters;
2176 
2177 		new.counters = counters;
2178 		VM_BUG_ON(!new.frozen);
2179 
2180 		new.inuse = page->objects;
2181 		new.frozen = freelist != NULL;
2182 
2183 	} while (!__cmpxchg_double_slab(s, page,
2184 		freelist, counters,
2185 		NULL, new.counters,
2186 		"get_freelist"));
2187 
2188 	return freelist;
2189 }
2190 
2191 /*
2192  * Slow path. The lockless freelist is empty or we need to perform
2193  * debugging duties.
2194  *
2195  * Processing is still very fast if new objects have been freed to the
2196  * regular freelist. In that case we simply take over the regular freelist
2197  * as the lockless freelist and zap the regular freelist.
2198  *
2199  * If that is not working then we fall back to the partial lists. We take the
2200  * first element of the freelist as the object to allocate now and move the
2201  * rest of the freelist to the lockless freelist.
2202  *
2203  * And if we were unable to get a new slab from the partial slab lists then
2204  * we need to allocate a new slab. This is the slowest path since it involves
2205  * a call to the page allocator and the setup of a new slab.
2206  */
2207 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2208 			  unsigned long addr, struct kmem_cache_cpu *c)
2209 {
2210 	void *freelist;
2211 	struct page *page;
2212 	unsigned long flags;
2213 
2214 	local_irq_save(flags);
2215 #ifdef CONFIG_PREEMPT
2216 	/*
2217 	 * We may have been preempted and rescheduled on a different
2218 	 * cpu before disabling interrupts. Need to reload cpu area
2219 	 * pointer.
2220 	 */
2221 	c = this_cpu_ptr(s->cpu_slab);
2222 #endif
2223 
2224 	page = c->page;
2225 	if (!page)
2226 		goto new_slab;
2227 redo:
2228 
2229 	if (unlikely(!node_match(page, node))) {
2230 		stat(s, ALLOC_NODE_MISMATCH);
2231 		deactivate_slab(s, page, c->freelist);
2232 		c->page = NULL;
2233 		c->freelist = NULL;
2234 		goto new_slab;
2235 	}
2236 
2237 	/*
2238 	 * By rights, we should be searching for a slab page that was
2239 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2240 	 * information when the page leaves the per-cpu allocator
2241 	 */
2242 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2243 		deactivate_slab(s, page, c->freelist);
2244 		c->page = NULL;
2245 		c->freelist = NULL;
2246 		goto new_slab;
2247 	}
2248 
2249 	/* must check again c->freelist in case of cpu migration or IRQ */
2250 	freelist = c->freelist;
2251 	if (freelist)
2252 		goto load_freelist;
2253 
2254 	stat(s, ALLOC_SLOWPATH);
2255 
2256 	freelist = get_freelist(s, page);
2257 
2258 	if (!freelist) {
2259 		c->page = NULL;
2260 		stat(s, DEACTIVATE_BYPASS);
2261 		goto new_slab;
2262 	}
2263 
2264 	stat(s, ALLOC_REFILL);
2265 
2266 load_freelist:
2267 	/*
2268 	 * freelist is pointing to the list of objects to be used.
2269 	 * page is pointing to the page from which the objects are obtained.
2270 	 * That page must be frozen for per cpu allocations to work.
2271 	 */
2272 	VM_BUG_ON(!c->page->frozen);
2273 	c->freelist = get_freepointer(s, freelist);
2274 	c->tid = next_tid(c->tid);
2275 	local_irq_restore(flags);
2276 	return freelist;
2277 
2278 new_slab:
2279 
2280 	if (c->partial) {
2281 		page = c->page = c->partial;
2282 		c->partial = page->next;
2283 		stat(s, CPU_PARTIAL_ALLOC);
2284 		c->freelist = NULL;
2285 		goto redo;
2286 	}
2287 
2288 	freelist = new_slab_objects(s, gfpflags, node, &c);
2289 
2290 	if (unlikely(!freelist)) {
2291 		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2292 			slab_out_of_memory(s, gfpflags, node);
2293 
2294 		local_irq_restore(flags);
2295 		return NULL;
2296 	}
2297 
2298 	page = c->page;
2299 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2300 		goto load_freelist;
2301 
2302 	/* Only entered in the debug case */
2303 	if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2304 		goto new_slab;	/* Slab failed checks. Next slab needed */
2305 
2306 	deactivate_slab(s, page, get_freepointer(s, freelist));
2307 	c->page = NULL;
2308 	c->freelist = NULL;
2309 	local_irq_restore(flags);
2310 	return freelist;
2311 }
2312 
2313 /*
2314  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2315  * have the fastpath folded into their functions. So no function call
2316  * overhead for requests that can be satisfied on the fastpath.
2317  *
2318  * The fastpath works by first checking if the lockless freelist can be used.
2319  * If not then __slab_alloc is called for slow processing.
2320  *
2321  * Otherwise we can simply pick the next object from the lockless free list.
2322  */
2323 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2324 		gfp_t gfpflags, int node, unsigned long addr)
2325 {
2326 	void **object;
2327 	struct kmem_cache_cpu *c;
2328 	struct page *page;
2329 	unsigned long tid;
2330 
2331 	if (slab_pre_alloc_hook(s, gfpflags))
2332 		return NULL;
2333 
2334 	s = memcg_kmem_get_cache(s, gfpflags);
2335 redo:
2336 	/*
2337 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2338 	 * enabled. We may switch back and forth between cpus while
2339 	 * reading from one cpu area. That does not matter as long
2340 	 * as we end up on the original cpu again when doing the cmpxchg.
2341 	 *
2342 	 * Preemption is disabled for the retrieval of the tid because that
2343 	 * must occur from the current processor. We cannot allow rescheduling
2344 	 * on a different processor between the determination of the pointer
2345 	 * and the retrieval of the tid.
2346 	 */
2347 	preempt_disable();
2348 	c = __this_cpu_ptr(s->cpu_slab);
2349 
2350 	/*
2351 	 * The transaction ids are globally unique per cpu and per operation on
2352 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2353 	 * occurs on the right processor and that there was no operation on the
2354 	 * linked list in between.
2355 	 */
2356 	tid = c->tid;
2357 	preempt_enable();
2358 
2359 	object = c->freelist;
2360 	page = c->page;
2361 	if (unlikely(!object || !node_match(page, node)))
2362 		object = __slab_alloc(s, gfpflags, node, addr, c);
2363 
2364 	else {
2365 		void *next_object = get_freepointer_safe(s, object);
2366 
2367 		/*
2368 		 * The cmpxchg will only match if there was no additional
2369 		 * operation and if we are on the right processor.
2370 		 *
2371 		 * The cmpxchg does the following atomically (without lock semantics!)
2372 		 * 1. Relocate first pointer to the current per cpu area.
2373 		 * 2. Verify that tid and freelist have not been changed
2374 		 * 3. If they were not changed replace tid and freelist
2375 		 *
2376 		 * Since this is without lock semantics the protection is only against
2377 		 * code executing on this cpu *not* from access by other cpus.
2378 		 */
2379 		if (unlikely(!this_cpu_cmpxchg_double(
2380 				s->cpu_slab->freelist, s->cpu_slab->tid,
2381 				object, tid,
2382 				next_object, next_tid(tid)))) {
2383 
2384 			note_cmpxchg_failure("slab_alloc", s, tid);
2385 			goto redo;
2386 		}
2387 		prefetch_freepointer(s, next_object);
2388 		stat(s, ALLOC_FASTPATH);
2389 	}
2390 
2391 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2392 		memset(object, 0, s->object_size);
2393 
2394 	slab_post_alloc_hook(s, gfpflags, object);
2395 
2396 	return object;
2397 }
2398 
2399 static __always_inline void *slab_alloc(struct kmem_cache *s,
2400 		gfp_t gfpflags, unsigned long addr)
2401 {
2402 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2403 }
2404 
2405 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2406 {
2407 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2408 
2409 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2410 
2411 	return ret;
2412 }
2413 EXPORT_SYMBOL(kmem_cache_alloc);
2414 
2415 #ifdef CONFIG_TRACING
2416 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2417 {
2418 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2419 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2420 	return ret;
2421 }
2422 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2423 
2424 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2425 {
2426 	void *ret = kmalloc_order(size, flags, order);
2427 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2428 	return ret;
2429 }
2430 EXPORT_SYMBOL(kmalloc_order_trace);
2431 #endif
2432 
2433 #ifdef CONFIG_NUMA
2434 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2435 {
2436 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2437 
2438 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2439 				    s->object_size, s->size, gfpflags, node);
2440 
2441 	return ret;
2442 }
2443 EXPORT_SYMBOL(kmem_cache_alloc_node);
2444 
2445 #ifdef CONFIG_TRACING
2446 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2447 				    gfp_t gfpflags,
2448 				    int node, size_t size)
2449 {
2450 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2451 
2452 	trace_kmalloc_node(_RET_IP_, ret,
2453 			   size, s->size, gfpflags, node);
2454 	return ret;
2455 }
2456 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2457 #endif
2458 #endif
2459 
2460 /*
2461  * Slow patch handling. This may still be called frequently since objects
2462  * have a longer lifetime than the cpu slabs in most processing loads.
2463  *
2464  * So we still attempt to reduce cache line usage. Just take the slab
2465  * lock and free the item. If there is no additional partial page
2466  * handling required then we can return immediately.
2467  */
2468 static void __slab_free(struct kmem_cache *s, struct page *page,
2469 			void *x, unsigned long addr)
2470 {
2471 	void *prior;
2472 	void **object = (void *)x;
2473 	int was_frozen;
2474 	struct page new;
2475 	unsigned long counters;
2476 	struct kmem_cache_node *n = NULL;
2477 	unsigned long uninitialized_var(flags);
2478 
2479 	stat(s, FREE_SLOWPATH);
2480 
2481 	if (kmem_cache_debug(s) &&
2482 		!(n = free_debug_processing(s, page, x, addr, &flags)))
2483 		return;
2484 
2485 	do {
2486 		if (unlikely(n)) {
2487 			spin_unlock_irqrestore(&n->list_lock, flags);
2488 			n = NULL;
2489 		}
2490 		prior = page->freelist;
2491 		counters = page->counters;
2492 		set_freepointer(s, object, prior);
2493 		new.counters = counters;
2494 		was_frozen = new.frozen;
2495 		new.inuse--;
2496 		if ((!new.inuse || !prior) && !was_frozen) {
2497 
2498 			if (!kmem_cache_debug(s) && !prior)
2499 
2500 				/*
2501 				 * Slab was on no list before and will be partially empty
2502 				 * We can defer the list move and instead freeze it.
2503 				 */
2504 				new.frozen = 1;
2505 
2506 			else { /* Needs to be taken off a list */
2507 
2508 	                        n = get_node(s, page_to_nid(page));
2509 				/*
2510 				 * Speculatively acquire the list_lock.
2511 				 * If the cmpxchg does not succeed then we may
2512 				 * drop the list_lock without any processing.
2513 				 *
2514 				 * Otherwise the list_lock will synchronize with
2515 				 * other processors updating the list of slabs.
2516 				 */
2517 				spin_lock_irqsave(&n->list_lock, flags);
2518 
2519 			}
2520 		}
2521 
2522 	} while (!cmpxchg_double_slab(s, page,
2523 		prior, counters,
2524 		object, new.counters,
2525 		"__slab_free"));
2526 
2527 	if (likely(!n)) {
2528 
2529 		/*
2530 		 * If we just froze the page then put it onto the
2531 		 * per cpu partial list.
2532 		 */
2533 		if (new.frozen && !was_frozen) {
2534 			put_cpu_partial(s, page, 1);
2535 			stat(s, CPU_PARTIAL_FREE);
2536 		}
2537 		/*
2538 		 * The list lock was not taken therefore no list
2539 		 * activity can be necessary.
2540 		 */
2541                 if (was_frozen)
2542                         stat(s, FREE_FROZEN);
2543                 return;
2544         }
2545 
2546 	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2547 		goto slab_empty;
2548 
2549 	/*
2550 	 * Objects left in the slab. If it was not on the partial list before
2551 	 * then add it.
2552 	 */
2553 	if (kmem_cache_debug(s) && unlikely(!prior)) {
2554 		remove_full(s, page);
2555 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2556 		stat(s, FREE_ADD_PARTIAL);
2557 	}
2558 	spin_unlock_irqrestore(&n->list_lock, flags);
2559 	return;
2560 
2561 slab_empty:
2562 	if (prior) {
2563 		/*
2564 		 * Slab on the partial list.
2565 		 */
2566 		remove_partial(n, page);
2567 		stat(s, FREE_REMOVE_PARTIAL);
2568 	} else
2569 		/* Slab must be on the full list */
2570 		remove_full(s, page);
2571 
2572 	spin_unlock_irqrestore(&n->list_lock, flags);
2573 	stat(s, FREE_SLAB);
2574 	discard_slab(s, page);
2575 }
2576 
2577 /*
2578  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2579  * can perform fastpath freeing without additional function calls.
2580  *
2581  * The fastpath is only possible if we are freeing to the current cpu slab
2582  * of this processor. This typically the case if we have just allocated
2583  * the item before.
2584  *
2585  * If fastpath is not possible then fall back to __slab_free where we deal
2586  * with all sorts of special processing.
2587  */
2588 static __always_inline void slab_free(struct kmem_cache *s,
2589 			struct page *page, void *x, unsigned long addr)
2590 {
2591 	void **object = (void *)x;
2592 	struct kmem_cache_cpu *c;
2593 	unsigned long tid;
2594 
2595 	slab_free_hook(s, x);
2596 
2597 redo:
2598 	/*
2599 	 * Determine the currently cpus per cpu slab.
2600 	 * The cpu may change afterward. However that does not matter since
2601 	 * data is retrieved via this pointer. If we are on the same cpu
2602 	 * during the cmpxchg then the free will succedd.
2603 	 */
2604 	preempt_disable();
2605 	c = __this_cpu_ptr(s->cpu_slab);
2606 
2607 	tid = c->tid;
2608 	preempt_enable();
2609 
2610 	if (likely(page == c->page)) {
2611 		set_freepointer(s, object, c->freelist);
2612 
2613 		if (unlikely(!this_cpu_cmpxchg_double(
2614 				s->cpu_slab->freelist, s->cpu_slab->tid,
2615 				c->freelist, tid,
2616 				object, next_tid(tid)))) {
2617 
2618 			note_cmpxchg_failure("slab_free", s, tid);
2619 			goto redo;
2620 		}
2621 		stat(s, FREE_FASTPATH);
2622 	} else
2623 		__slab_free(s, page, x, addr);
2624 
2625 }
2626 
2627 void kmem_cache_free(struct kmem_cache *s, void *x)
2628 {
2629 	s = cache_from_obj(s, x);
2630 	if (!s)
2631 		return;
2632 	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2633 	trace_kmem_cache_free(_RET_IP_, x);
2634 }
2635 EXPORT_SYMBOL(kmem_cache_free);
2636 
2637 /*
2638  * Object placement in a slab is made very easy because we always start at
2639  * offset 0. If we tune the size of the object to the alignment then we can
2640  * get the required alignment by putting one properly sized object after
2641  * another.
2642  *
2643  * Notice that the allocation order determines the sizes of the per cpu
2644  * caches. Each processor has always one slab available for allocations.
2645  * Increasing the allocation order reduces the number of times that slabs
2646  * must be moved on and off the partial lists and is therefore a factor in
2647  * locking overhead.
2648  */
2649 
2650 /*
2651  * Mininum / Maximum order of slab pages. This influences locking overhead
2652  * and slab fragmentation. A higher order reduces the number of partial slabs
2653  * and increases the number of allocations possible without having to
2654  * take the list_lock.
2655  */
2656 static int slub_min_order;
2657 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2658 static int slub_min_objects;
2659 
2660 /*
2661  * Merge control. If this is set then no merging of slab caches will occur.
2662  * (Could be removed. This was introduced to pacify the merge skeptics.)
2663  */
2664 static int slub_nomerge;
2665 
2666 /*
2667  * Calculate the order of allocation given an slab object size.
2668  *
2669  * The order of allocation has significant impact on performance and other
2670  * system components. Generally order 0 allocations should be preferred since
2671  * order 0 does not cause fragmentation in the page allocator. Larger objects
2672  * be problematic to put into order 0 slabs because there may be too much
2673  * unused space left. We go to a higher order if more than 1/16th of the slab
2674  * would be wasted.
2675  *
2676  * In order to reach satisfactory performance we must ensure that a minimum
2677  * number of objects is in one slab. Otherwise we may generate too much
2678  * activity on the partial lists which requires taking the list_lock. This is
2679  * less a concern for large slabs though which are rarely used.
2680  *
2681  * slub_max_order specifies the order where we begin to stop considering the
2682  * number of objects in a slab as critical. If we reach slub_max_order then
2683  * we try to keep the page order as low as possible. So we accept more waste
2684  * of space in favor of a small page order.
2685  *
2686  * Higher order allocations also allow the placement of more objects in a
2687  * slab and thereby reduce object handling overhead. If the user has
2688  * requested a higher mininum order then we start with that one instead of
2689  * the smallest order which will fit the object.
2690  */
2691 static inline int slab_order(int size, int min_objects,
2692 				int max_order, int fract_leftover, int reserved)
2693 {
2694 	int order;
2695 	int rem;
2696 	int min_order = slub_min_order;
2697 
2698 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2699 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2700 
2701 	for (order = max(min_order,
2702 				fls(min_objects * size - 1) - PAGE_SHIFT);
2703 			order <= max_order; order++) {
2704 
2705 		unsigned long slab_size = PAGE_SIZE << order;
2706 
2707 		if (slab_size < min_objects * size + reserved)
2708 			continue;
2709 
2710 		rem = (slab_size - reserved) % size;
2711 
2712 		if (rem <= slab_size / fract_leftover)
2713 			break;
2714 
2715 	}
2716 
2717 	return order;
2718 }
2719 
2720 static inline int calculate_order(int size, int reserved)
2721 {
2722 	int order;
2723 	int min_objects;
2724 	int fraction;
2725 	int max_objects;
2726 
2727 	/*
2728 	 * Attempt to find best configuration for a slab. This
2729 	 * works by first attempting to generate a layout with
2730 	 * the best configuration and backing off gradually.
2731 	 *
2732 	 * First we reduce the acceptable waste in a slab. Then
2733 	 * we reduce the minimum objects required in a slab.
2734 	 */
2735 	min_objects = slub_min_objects;
2736 	if (!min_objects)
2737 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2738 	max_objects = order_objects(slub_max_order, size, reserved);
2739 	min_objects = min(min_objects, max_objects);
2740 
2741 	while (min_objects > 1) {
2742 		fraction = 16;
2743 		while (fraction >= 4) {
2744 			order = slab_order(size, min_objects,
2745 					slub_max_order, fraction, reserved);
2746 			if (order <= slub_max_order)
2747 				return order;
2748 			fraction /= 2;
2749 		}
2750 		min_objects--;
2751 	}
2752 
2753 	/*
2754 	 * We were unable to place multiple objects in a slab. Now
2755 	 * lets see if we can place a single object there.
2756 	 */
2757 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2758 	if (order <= slub_max_order)
2759 		return order;
2760 
2761 	/*
2762 	 * Doh this slab cannot be placed using slub_max_order.
2763 	 */
2764 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2765 	if (order < MAX_ORDER)
2766 		return order;
2767 	return -ENOSYS;
2768 }
2769 
2770 static void
2771 init_kmem_cache_node(struct kmem_cache_node *n)
2772 {
2773 	n->nr_partial = 0;
2774 	spin_lock_init(&n->list_lock);
2775 	INIT_LIST_HEAD(&n->partial);
2776 #ifdef CONFIG_SLUB_DEBUG
2777 	atomic_long_set(&n->nr_slabs, 0);
2778 	atomic_long_set(&n->total_objects, 0);
2779 	INIT_LIST_HEAD(&n->full);
2780 #endif
2781 }
2782 
2783 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2784 {
2785 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2786 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2787 
2788 	/*
2789 	 * Must align to double word boundary for the double cmpxchg
2790 	 * instructions to work; see __pcpu_double_call_return_bool().
2791 	 */
2792 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2793 				     2 * sizeof(void *));
2794 
2795 	if (!s->cpu_slab)
2796 		return 0;
2797 
2798 	init_kmem_cache_cpus(s);
2799 
2800 	return 1;
2801 }
2802 
2803 static struct kmem_cache *kmem_cache_node;
2804 
2805 /*
2806  * No kmalloc_node yet so do it by hand. We know that this is the first
2807  * slab on the node for this slabcache. There are no concurrent accesses
2808  * possible.
2809  *
2810  * Note that this function only works on the kmalloc_node_cache
2811  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2812  * memory on a fresh node that has no slab structures yet.
2813  */
2814 static void early_kmem_cache_node_alloc(int node)
2815 {
2816 	struct page *page;
2817 	struct kmem_cache_node *n;
2818 
2819 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2820 
2821 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2822 
2823 	BUG_ON(!page);
2824 	if (page_to_nid(page) != node) {
2825 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2826 				"node %d\n", node);
2827 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2828 				"in order to be able to continue\n");
2829 	}
2830 
2831 	n = page->freelist;
2832 	BUG_ON(!n);
2833 	page->freelist = get_freepointer(kmem_cache_node, n);
2834 	page->inuse = 1;
2835 	page->frozen = 0;
2836 	kmem_cache_node->node[node] = n;
2837 #ifdef CONFIG_SLUB_DEBUG
2838 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2839 	init_tracking(kmem_cache_node, n);
2840 #endif
2841 	init_kmem_cache_node(n);
2842 	inc_slabs_node(kmem_cache_node, node, page->objects);
2843 
2844 	add_partial(n, page, DEACTIVATE_TO_HEAD);
2845 }
2846 
2847 static void free_kmem_cache_nodes(struct kmem_cache *s)
2848 {
2849 	int node;
2850 
2851 	for_each_node_state(node, N_NORMAL_MEMORY) {
2852 		struct kmem_cache_node *n = s->node[node];
2853 
2854 		if (n)
2855 			kmem_cache_free(kmem_cache_node, n);
2856 
2857 		s->node[node] = NULL;
2858 	}
2859 }
2860 
2861 static int init_kmem_cache_nodes(struct kmem_cache *s)
2862 {
2863 	int node;
2864 
2865 	for_each_node_state(node, N_NORMAL_MEMORY) {
2866 		struct kmem_cache_node *n;
2867 
2868 		if (slab_state == DOWN) {
2869 			early_kmem_cache_node_alloc(node);
2870 			continue;
2871 		}
2872 		n = kmem_cache_alloc_node(kmem_cache_node,
2873 						GFP_KERNEL, node);
2874 
2875 		if (!n) {
2876 			free_kmem_cache_nodes(s);
2877 			return 0;
2878 		}
2879 
2880 		s->node[node] = n;
2881 		init_kmem_cache_node(n);
2882 	}
2883 	return 1;
2884 }
2885 
2886 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2887 {
2888 	if (min < MIN_PARTIAL)
2889 		min = MIN_PARTIAL;
2890 	else if (min > MAX_PARTIAL)
2891 		min = MAX_PARTIAL;
2892 	s->min_partial = min;
2893 }
2894 
2895 /*
2896  * calculate_sizes() determines the order and the distribution of data within
2897  * a slab object.
2898  */
2899 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2900 {
2901 	unsigned long flags = s->flags;
2902 	unsigned long size = s->object_size;
2903 	int order;
2904 
2905 	/*
2906 	 * Round up object size to the next word boundary. We can only
2907 	 * place the free pointer at word boundaries and this determines
2908 	 * the possible location of the free pointer.
2909 	 */
2910 	size = ALIGN(size, sizeof(void *));
2911 
2912 #ifdef CONFIG_SLUB_DEBUG
2913 	/*
2914 	 * Determine if we can poison the object itself. If the user of
2915 	 * the slab may touch the object after free or before allocation
2916 	 * then we should never poison the object itself.
2917 	 */
2918 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2919 			!s->ctor)
2920 		s->flags |= __OBJECT_POISON;
2921 	else
2922 		s->flags &= ~__OBJECT_POISON;
2923 
2924 
2925 	/*
2926 	 * If we are Redzoning then check if there is some space between the
2927 	 * end of the object and the free pointer. If not then add an
2928 	 * additional word to have some bytes to store Redzone information.
2929 	 */
2930 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2931 		size += sizeof(void *);
2932 #endif
2933 
2934 	/*
2935 	 * With that we have determined the number of bytes in actual use
2936 	 * by the object. This is the potential offset to the free pointer.
2937 	 */
2938 	s->inuse = size;
2939 
2940 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2941 		s->ctor)) {
2942 		/*
2943 		 * Relocate free pointer after the object if it is not
2944 		 * permitted to overwrite the first word of the object on
2945 		 * kmem_cache_free.
2946 		 *
2947 		 * This is the case if we do RCU, have a constructor or
2948 		 * destructor or are poisoning the objects.
2949 		 */
2950 		s->offset = size;
2951 		size += sizeof(void *);
2952 	}
2953 
2954 #ifdef CONFIG_SLUB_DEBUG
2955 	if (flags & SLAB_STORE_USER)
2956 		/*
2957 		 * Need to store information about allocs and frees after
2958 		 * the object.
2959 		 */
2960 		size += 2 * sizeof(struct track);
2961 
2962 	if (flags & SLAB_RED_ZONE)
2963 		/*
2964 		 * Add some empty padding so that we can catch
2965 		 * overwrites from earlier objects rather than let
2966 		 * tracking information or the free pointer be
2967 		 * corrupted if a user writes before the start
2968 		 * of the object.
2969 		 */
2970 		size += sizeof(void *);
2971 #endif
2972 
2973 	/*
2974 	 * SLUB stores one object immediately after another beginning from
2975 	 * offset 0. In order to align the objects we have to simply size
2976 	 * each object to conform to the alignment.
2977 	 */
2978 	size = ALIGN(size, s->align);
2979 	s->size = size;
2980 	if (forced_order >= 0)
2981 		order = forced_order;
2982 	else
2983 		order = calculate_order(size, s->reserved);
2984 
2985 	if (order < 0)
2986 		return 0;
2987 
2988 	s->allocflags = 0;
2989 	if (order)
2990 		s->allocflags |= __GFP_COMP;
2991 
2992 	if (s->flags & SLAB_CACHE_DMA)
2993 		s->allocflags |= GFP_DMA;
2994 
2995 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2996 		s->allocflags |= __GFP_RECLAIMABLE;
2997 
2998 	/*
2999 	 * Determine the number of objects per slab
3000 	 */
3001 	s->oo = oo_make(order, size, s->reserved);
3002 	s->min = oo_make(get_order(size), size, s->reserved);
3003 	if (oo_objects(s->oo) > oo_objects(s->max))
3004 		s->max = s->oo;
3005 
3006 	return !!oo_objects(s->oo);
3007 }
3008 
3009 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3010 {
3011 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3012 	s->reserved = 0;
3013 
3014 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3015 		s->reserved = sizeof(struct rcu_head);
3016 
3017 	if (!calculate_sizes(s, -1))
3018 		goto error;
3019 	if (disable_higher_order_debug) {
3020 		/*
3021 		 * Disable debugging flags that store metadata if the min slab
3022 		 * order increased.
3023 		 */
3024 		if (get_order(s->size) > get_order(s->object_size)) {
3025 			s->flags &= ~DEBUG_METADATA_FLAGS;
3026 			s->offset = 0;
3027 			if (!calculate_sizes(s, -1))
3028 				goto error;
3029 		}
3030 	}
3031 
3032 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3033     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3034 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3035 		/* Enable fast mode */
3036 		s->flags |= __CMPXCHG_DOUBLE;
3037 #endif
3038 
3039 	/*
3040 	 * The larger the object size is, the more pages we want on the partial
3041 	 * list to avoid pounding the page allocator excessively.
3042 	 */
3043 	set_min_partial(s, ilog2(s->size) / 2);
3044 
3045 	/*
3046 	 * cpu_partial determined the maximum number of objects kept in the
3047 	 * per cpu partial lists of a processor.
3048 	 *
3049 	 * Per cpu partial lists mainly contain slabs that just have one
3050 	 * object freed. If they are used for allocation then they can be
3051 	 * filled up again with minimal effort. The slab will never hit the
3052 	 * per node partial lists and therefore no locking will be required.
3053 	 *
3054 	 * This setting also determines
3055 	 *
3056 	 * A) The number of objects from per cpu partial slabs dumped to the
3057 	 *    per node list when we reach the limit.
3058 	 * B) The number of objects in cpu partial slabs to extract from the
3059 	 *    per node list when we run out of per cpu objects. We only fetch 50%
3060 	 *    to keep some capacity around for frees.
3061 	 */
3062 	if (kmem_cache_debug(s))
3063 		s->cpu_partial = 0;
3064 	else if (s->size >= PAGE_SIZE)
3065 		s->cpu_partial = 2;
3066 	else if (s->size >= 1024)
3067 		s->cpu_partial = 6;
3068 	else if (s->size >= 256)
3069 		s->cpu_partial = 13;
3070 	else
3071 		s->cpu_partial = 30;
3072 
3073 #ifdef CONFIG_NUMA
3074 	s->remote_node_defrag_ratio = 1000;
3075 #endif
3076 	if (!init_kmem_cache_nodes(s))
3077 		goto error;
3078 
3079 	if (alloc_kmem_cache_cpus(s))
3080 		return 0;
3081 
3082 	free_kmem_cache_nodes(s);
3083 error:
3084 	if (flags & SLAB_PANIC)
3085 		panic("Cannot create slab %s size=%lu realsize=%u "
3086 			"order=%u offset=%u flags=%lx\n",
3087 			s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
3088 			s->offset, flags);
3089 	return -EINVAL;
3090 }
3091 
3092 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3093 							const char *text)
3094 {
3095 #ifdef CONFIG_SLUB_DEBUG
3096 	void *addr = page_address(page);
3097 	void *p;
3098 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3099 				     sizeof(long), GFP_ATOMIC);
3100 	if (!map)
3101 		return;
3102 	slab_err(s, page, text, s->name);
3103 	slab_lock(page);
3104 
3105 	get_map(s, page, map);
3106 	for_each_object(p, s, addr, page->objects) {
3107 
3108 		if (!test_bit(slab_index(p, s, addr), map)) {
3109 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3110 							p, p - addr);
3111 			print_tracking(s, p);
3112 		}
3113 	}
3114 	slab_unlock(page);
3115 	kfree(map);
3116 #endif
3117 }
3118 
3119 /*
3120  * Attempt to free all partial slabs on a node.
3121  * This is called from kmem_cache_close(). We must be the last thread
3122  * using the cache and therefore we do not need to lock anymore.
3123  */
3124 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3125 {
3126 	struct page *page, *h;
3127 
3128 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3129 		if (!page->inuse) {
3130 			remove_partial(n, page);
3131 			discard_slab(s, page);
3132 		} else {
3133 			list_slab_objects(s, page,
3134 			"Objects remaining in %s on kmem_cache_close()");
3135 		}
3136 	}
3137 }
3138 
3139 /*
3140  * Release all resources used by a slab cache.
3141  */
3142 static inline int kmem_cache_close(struct kmem_cache *s)
3143 {
3144 	int node;
3145 
3146 	flush_all(s);
3147 	/* Attempt to free all objects */
3148 	for_each_node_state(node, N_NORMAL_MEMORY) {
3149 		struct kmem_cache_node *n = get_node(s, node);
3150 
3151 		free_partial(s, n);
3152 		if (n->nr_partial || slabs_node(s, node))
3153 			return 1;
3154 	}
3155 	free_percpu(s->cpu_slab);
3156 	free_kmem_cache_nodes(s);
3157 	return 0;
3158 }
3159 
3160 int __kmem_cache_shutdown(struct kmem_cache *s)
3161 {
3162 	int rc = kmem_cache_close(s);
3163 
3164 	if (!rc) {
3165 		/*
3166 		 * We do the same lock strategy around sysfs_slab_add, see
3167 		 * __kmem_cache_create. Because this is pretty much the last
3168 		 * operation we do and the lock will be released shortly after
3169 		 * that in slab_common.c, we could just move sysfs_slab_remove
3170 		 * to a later point in common code. We should do that when we
3171 		 * have a common sysfs framework for all allocators.
3172 		 */
3173 		mutex_unlock(&slab_mutex);
3174 		sysfs_slab_remove(s);
3175 		mutex_lock(&slab_mutex);
3176 	}
3177 
3178 	return rc;
3179 }
3180 
3181 /********************************************************************
3182  *		Kmalloc subsystem
3183  *******************************************************************/
3184 
3185 static int __init setup_slub_min_order(char *str)
3186 {
3187 	get_option(&str, &slub_min_order);
3188 
3189 	return 1;
3190 }
3191 
3192 __setup("slub_min_order=", setup_slub_min_order);
3193 
3194 static int __init setup_slub_max_order(char *str)
3195 {
3196 	get_option(&str, &slub_max_order);
3197 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3198 
3199 	return 1;
3200 }
3201 
3202 __setup("slub_max_order=", setup_slub_max_order);
3203 
3204 static int __init setup_slub_min_objects(char *str)
3205 {
3206 	get_option(&str, &slub_min_objects);
3207 
3208 	return 1;
3209 }
3210 
3211 __setup("slub_min_objects=", setup_slub_min_objects);
3212 
3213 static int __init setup_slub_nomerge(char *str)
3214 {
3215 	slub_nomerge = 1;
3216 	return 1;
3217 }
3218 
3219 __setup("slub_nomerge", setup_slub_nomerge);
3220 
3221 void *__kmalloc(size_t size, gfp_t flags)
3222 {
3223 	struct kmem_cache *s;
3224 	void *ret;
3225 
3226 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3227 		return kmalloc_large(size, flags);
3228 
3229 	s = kmalloc_slab(size, flags);
3230 
3231 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3232 		return s;
3233 
3234 	ret = slab_alloc(s, flags, _RET_IP_);
3235 
3236 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3237 
3238 	return ret;
3239 }
3240 EXPORT_SYMBOL(__kmalloc);
3241 
3242 #ifdef CONFIG_NUMA
3243 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3244 {
3245 	struct page *page;
3246 	void *ptr = NULL;
3247 
3248 	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3249 	page = alloc_pages_node(node, flags, get_order(size));
3250 	if (page)
3251 		ptr = page_address(page);
3252 
3253 	kmemleak_alloc(ptr, size, 1, flags);
3254 	return ptr;
3255 }
3256 
3257 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3258 {
3259 	struct kmem_cache *s;
3260 	void *ret;
3261 
3262 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3263 		ret = kmalloc_large_node(size, flags, node);
3264 
3265 		trace_kmalloc_node(_RET_IP_, ret,
3266 				   size, PAGE_SIZE << get_order(size),
3267 				   flags, node);
3268 
3269 		return ret;
3270 	}
3271 
3272 	s = kmalloc_slab(size, flags);
3273 
3274 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3275 		return s;
3276 
3277 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3278 
3279 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3280 
3281 	return ret;
3282 }
3283 EXPORT_SYMBOL(__kmalloc_node);
3284 #endif
3285 
3286 size_t ksize(const void *object)
3287 {
3288 	struct page *page;
3289 
3290 	if (unlikely(object == ZERO_SIZE_PTR))
3291 		return 0;
3292 
3293 	page = virt_to_head_page(object);
3294 
3295 	if (unlikely(!PageSlab(page))) {
3296 		WARN_ON(!PageCompound(page));
3297 		return PAGE_SIZE << compound_order(page);
3298 	}
3299 
3300 	return slab_ksize(page->slab_cache);
3301 }
3302 EXPORT_SYMBOL(ksize);
3303 
3304 #ifdef CONFIG_SLUB_DEBUG
3305 bool verify_mem_not_deleted(const void *x)
3306 {
3307 	struct page *page;
3308 	void *object = (void *)x;
3309 	unsigned long flags;
3310 	bool rv;
3311 
3312 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3313 		return false;
3314 
3315 	local_irq_save(flags);
3316 
3317 	page = virt_to_head_page(x);
3318 	if (unlikely(!PageSlab(page))) {
3319 		/* maybe it was from stack? */
3320 		rv = true;
3321 		goto out_unlock;
3322 	}
3323 
3324 	slab_lock(page);
3325 	if (on_freelist(page->slab_cache, page, object)) {
3326 		object_err(page->slab_cache, page, object, "Object is on free-list");
3327 		rv = false;
3328 	} else {
3329 		rv = true;
3330 	}
3331 	slab_unlock(page);
3332 
3333 out_unlock:
3334 	local_irq_restore(flags);
3335 	return rv;
3336 }
3337 EXPORT_SYMBOL(verify_mem_not_deleted);
3338 #endif
3339 
3340 void kfree(const void *x)
3341 {
3342 	struct page *page;
3343 	void *object = (void *)x;
3344 
3345 	trace_kfree(_RET_IP_, x);
3346 
3347 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3348 		return;
3349 
3350 	page = virt_to_head_page(x);
3351 	if (unlikely(!PageSlab(page))) {
3352 		BUG_ON(!PageCompound(page));
3353 		kmemleak_free(x);
3354 		__free_memcg_kmem_pages(page, compound_order(page));
3355 		return;
3356 	}
3357 	slab_free(page->slab_cache, page, object, _RET_IP_);
3358 }
3359 EXPORT_SYMBOL(kfree);
3360 
3361 /*
3362  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3363  * the remaining slabs by the number of items in use. The slabs with the
3364  * most items in use come first. New allocations will then fill those up
3365  * and thus they can be removed from the partial lists.
3366  *
3367  * The slabs with the least items are placed last. This results in them
3368  * being allocated from last increasing the chance that the last objects
3369  * are freed in them.
3370  */
3371 int kmem_cache_shrink(struct kmem_cache *s)
3372 {
3373 	int node;
3374 	int i;
3375 	struct kmem_cache_node *n;
3376 	struct page *page;
3377 	struct page *t;
3378 	int objects = oo_objects(s->max);
3379 	struct list_head *slabs_by_inuse =
3380 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3381 	unsigned long flags;
3382 
3383 	if (!slabs_by_inuse)
3384 		return -ENOMEM;
3385 
3386 	flush_all(s);
3387 	for_each_node_state(node, N_NORMAL_MEMORY) {
3388 		n = get_node(s, node);
3389 
3390 		if (!n->nr_partial)
3391 			continue;
3392 
3393 		for (i = 0; i < objects; i++)
3394 			INIT_LIST_HEAD(slabs_by_inuse + i);
3395 
3396 		spin_lock_irqsave(&n->list_lock, flags);
3397 
3398 		/*
3399 		 * Build lists indexed by the items in use in each slab.
3400 		 *
3401 		 * Note that concurrent frees may occur while we hold the
3402 		 * list_lock. page->inuse here is the upper limit.
3403 		 */
3404 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3405 			list_move(&page->lru, slabs_by_inuse + page->inuse);
3406 			if (!page->inuse)
3407 				n->nr_partial--;
3408 		}
3409 
3410 		/*
3411 		 * Rebuild the partial list with the slabs filled up most
3412 		 * first and the least used slabs at the end.
3413 		 */
3414 		for (i = objects - 1; i > 0; i--)
3415 			list_splice(slabs_by_inuse + i, n->partial.prev);
3416 
3417 		spin_unlock_irqrestore(&n->list_lock, flags);
3418 
3419 		/* Release empty slabs */
3420 		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3421 			discard_slab(s, page);
3422 	}
3423 
3424 	kfree(slabs_by_inuse);
3425 	return 0;
3426 }
3427 EXPORT_SYMBOL(kmem_cache_shrink);
3428 
3429 static int slab_mem_going_offline_callback(void *arg)
3430 {
3431 	struct kmem_cache *s;
3432 
3433 	mutex_lock(&slab_mutex);
3434 	list_for_each_entry(s, &slab_caches, list)
3435 		kmem_cache_shrink(s);
3436 	mutex_unlock(&slab_mutex);
3437 
3438 	return 0;
3439 }
3440 
3441 static void slab_mem_offline_callback(void *arg)
3442 {
3443 	struct kmem_cache_node *n;
3444 	struct kmem_cache *s;
3445 	struct memory_notify *marg = arg;
3446 	int offline_node;
3447 
3448 	offline_node = marg->status_change_nid_normal;
3449 
3450 	/*
3451 	 * If the node still has available memory. we need kmem_cache_node
3452 	 * for it yet.
3453 	 */
3454 	if (offline_node < 0)
3455 		return;
3456 
3457 	mutex_lock(&slab_mutex);
3458 	list_for_each_entry(s, &slab_caches, list) {
3459 		n = get_node(s, offline_node);
3460 		if (n) {
3461 			/*
3462 			 * if n->nr_slabs > 0, slabs still exist on the node
3463 			 * that is going down. We were unable to free them,
3464 			 * and offline_pages() function shouldn't call this
3465 			 * callback. So, we must fail.
3466 			 */
3467 			BUG_ON(slabs_node(s, offline_node));
3468 
3469 			s->node[offline_node] = NULL;
3470 			kmem_cache_free(kmem_cache_node, n);
3471 		}
3472 	}
3473 	mutex_unlock(&slab_mutex);
3474 }
3475 
3476 static int slab_mem_going_online_callback(void *arg)
3477 {
3478 	struct kmem_cache_node *n;
3479 	struct kmem_cache *s;
3480 	struct memory_notify *marg = arg;
3481 	int nid = marg->status_change_nid_normal;
3482 	int ret = 0;
3483 
3484 	/*
3485 	 * If the node's memory is already available, then kmem_cache_node is
3486 	 * already created. Nothing to do.
3487 	 */
3488 	if (nid < 0)
3489 		return 0;
3490 
3491 	/*
3492 	 * We are bringing a node online. No memory is available yet. We must
3493 	 * allocate a kmem_cache_node structure in order to bring the node
3494 	 * online.
3495 	 */
3496 	mutex_lock(&slab_mutex);
3497 	list_for_each_entry(s, &slab_caches, list) {
3498 		/*
3499 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3500 		 *      since memory is not yet available from the node that
3501 		 *      is brought up.
3502 		 */
3503 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3504 		if (!n) {
3505 			ret = -ENOMEM;
3506 			goto out;
3507 		}
3508 		init_kmem_cache_node(n);
3509 		s->node[nid] = n;
3510 	}
3511 out:
3512 	mutex_unlock(&slab_mutex);
3513 	return ret;
3514 }
3515 
3516 static int slab_memory_callback(struct notifier_block *self,
3517 				unsigned long action, void *arg)
3518 {
3519 	int ret = 0;
3520 
3521 	switch (action) {
3522 	case MEM_GOING_ONLINE:
3523 		ret = slab_mem_going_online_callback(arg);
3524 		break;
3525 	case MEM_GOING_OFFLINE:
3526 		ret = slab_mem_going_offline_callback(arg);
3527 		break;
3528 	case MEM_OFFLINE:
3529 	case MEM_CANCEL_ONLINE:
3530 		slab_mem_offline_callback(arg);
3531 		break;
3532 	case MEM_ONLINE:
3533 	case MEM_CANCEL_OFFLINE:
3534 		break;
3535 	}
3536 	if (ret)
3537 		ret = notifier_from_errno(ret);
3538 	else
3539 		ret = NOTIFY_OK;
3540 	return ret;
3541 }
3542 
3543 static struct notifier_block slab_memory_callback_nb = {
3544 	.notifier_call = slab_memory_callback,
3545 	.priority = SLAB_CALLBACK_PRI,
3546 };
3547 
3548 /********************************************************************
3549  *			Basic setup of slabs
3550  *******************************************************************/
3551 
3552 /*
3553  * Used for early kmem_cache structures that were allocated using
3554  * the page allocator. Allocate them properly then fix up the pointers
3555  * that may be pointing to the wrong kmem_cache structure.
3556  */
3557 
3558 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3559 {
3560 	int node;
3561 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3562 
3563 	memcpy(s, static_cache, kmem_cache->object_size);
3564 
3565 	/*
3566 	 * This runs very early, and only the boot processor is supposed to be
3567 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3568 	 * IPIs around.
3569 	 */
3570 	__flush_cpu_slab(s, smp_processor_id());
3571 	for_each_node_state(node, N_NORMAL_MEMORY) {
3572 		struct kmem_cache_node *n = get_node(s, node);
3573 		struct page *p;
3574 
3575 		if (n) {
3576 			list_for_each_entry(p, &n->partial, lru)
3577 				p->slab_cache = s;
3578 
3579 #ifdef CONFIG_SLUB_DEBUG
3580 			list_for_each_entry(p, &n->full, lru)
3581 				p->slab_cache = s;
3582 #endif
3583 		}
3584 	}
3585 	list_add(&s->list, &slab_caches);
3586 	return s;
3587 }
3588 
3589 void __init kmem_cache_init(void)
3590 {
3591 	static __initdata struct kmem_cache boot_kmem_cache,
3592 		boot_kmem_cache_node;
3593 
3594 	if (debug_guardpage_minorder())
3595 		slub_max_order = 0;
3596 
3597 	kmem_cache_node = &boot_kmem_cache_node;
3598 	kmem_cache = &boot_kmem_cache;
3599 
3600 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3601 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3602 
3603 	register_hotmemory_notifier(&slab_memory_callback_nb);
3604 
3605 	/* Able to allocate the per node structures */
3606 	slab_state = PARTIAL;
3607 
3608 	create_boot_cache(kmem_cache, "kmem_cache",
3609 			offsetof(struct kmem_cache, node) +
3610 				nr_node_ids * sizeof(struct kmem_cache_node *),
3611 		       SLAB_HWCACHE_ALIGN);
3612 
3613 	kmem_cache = bootstrap(&boot_kmem_cache);
3614 
3615 	/*
3616 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3617 	 * kmem_cache_node is separately allocated so no need to
3618 	 * update any list pointers.
3619 	 */
3620 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3621 
3622 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3623 	create_kmalloc_caches(0);
3624 
3625 #ifdef CONFIG_SMP
3626 	register_cpu_notifier(&slab_notifier);
3627 #endif
3628 
3629 	printk(KERN_INFO
3630 		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3631 		" CPUs=%d, Nodes=%d\n",
3632 		cache_line_size(),
3633 		slub_min_order, slub_max_order, slub_min_objects,
3634 		nr_cpu_ids, nr_node_ids);
3635 }
3636 
3637 void __init kmem_cache_init_late(void)
3638 {
3639 }
3640 
3641 /*
3642  * Find a mergeable slab cache
3643  */
3644 static int slab_unmergeable(struct kmem_cache *s)
3645 {
3646 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3647 		return 1;
3648 
3649 	if (s->ctor)
3650 		return 1;
3651 
3652 	/*
3653 	 * We may have set a slab to be unmergeable during bootstrap.
3654 	 */
3655 	if (s->refcount < 0)
3656 		return 1;
3657 
3658 	return 0;
3659 }
3660 
3661 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3662 		size_t align, unsigned long flags, const char *name,
3663 		void (*ctor)(void *))
3664 {
3665 	struct kmem_cache *s;
3666 
3667 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3668 		return NULL;
3669 
3670 	if (ctor)
3671 		return NULL;
3672 
3673 	size = ALIGN(size, sizeof(void *));
3674 	align = calculate_alignment(flags, align, size);
3675 	size = ALIGN(size, align);
3676 	flags = kmem_cache_flags(size, flags, name, NULL);
3677 
3678 	list_for_each_entry(s, &slab_caches, list) {
3679 		if (slab_unmergeable(s))
3680 			continue;
3681 
3682 		if (size > s->size)
3683 			continue;
3684 
3685 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3686 				continue;
3687 		/*
3688 		 * Check if alignment is compatible.
3689 		 * Courtesy of Adrian Drzewiecki
3690 		 */
3691 		if ((s->size & ~(align - 1)) != s->size)
3692 			continue;
3693 
3694 		if (s->size - size >= sizeof(void *))
3695 			continue;
3696 
3697 		if (!cache_match_memcg(s, memcg))
3698 			continue;
3699 
3700 		return s;
3701 	}
3702 	return NULL;
3703 }
3704 
3705 struct kmem_cache *
3706 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3707 		   size_t align, unsigned long flags, void (*ctor)(void *))
3708 {
3709 	struct kmem_cache *s;
3710 
3711 	s = find_mergeable(memcg, size, align, flags, name, ctor);
3712 	if (s) {
3713 		s->refcount++;
3714 		/*
3715 		 * Adjust the object sizes so that we clear
3716 		 * the complete object on kzalloc.
3717 		 */
3718 		s->object_size = max(s->object_size, (int)size);
3719 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3720 
3721 		if (sysfs_slab_alias(s, name)) {
3722 			s->refcount--;
3723 			s = NULL;
3724 		}
3725 	}
3726 
3727 	return s;
3728 }
3729 
3730 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3731 {
3732 	int err;
3733 
3734 	err = kmem_cache_open(s, flags);
3735 	if (err)
3736 		return err;
3737 
3738 	/* Mutex is not taken during early boot */
3739 	if (slab_state <= UP)
3740 		return 0;
3741 
3742 	memcg_propagate_slab_attrs(s);
3743 	mutex_unlock(&slab_mutex);
3744 	err = sysfs_slab_add(s);
3745 	mutex_lock(&slab_mutex);
3746 
3747 	if (err)
3748 		kmem_cache_close(s);
3749 
3750 	return err;
3751 }
3752 
3753 #ifdef CONFIG_SMP
3754 /*
3755  * Use the cpu notifier to insure that the cpu slabs are flushed when
3756  * necessary.
3757  */
3758 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3759 		unsigned long action, void *hcpu)
3760 {
3761 	long cpu = (long)hcpu;
3762 	struct kmem_cache *s;
3763 	unsigned long flags;
3764 
3765 	switch (action) {
3766 	case CPU_UP_CANCELED:
3767 	case CPU_UP_CANCELED_FROZEN:
3768 	case CPU_DEAD:
3769 	case CPU_DEAD_FROZEN:
3770 		mutex_lock(&slab_mutex);
3771 		list_for_each_entry(s, &slab_caches, list) {
3772 			local_irq_save(flags);
3773 			__flush_cpu_slab(s, cpu);
3774 			local_irq_restore(flags);
3775 		}
3776 		mutex_unlock(&slab_mutex);
3777 		break;
3778 	default:
3779 		break;
3780 	}
3781 	return NOTIFY_OK;
3782 }
3783 
3784 static struct notifier_block __cpuinitdata slab_notifier = {
3785 	.notifier_call = slab_cpuup_callback
3786 };
3787 
3788 #endif
3789 
3790 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3791 {
3792 	struct kmem_cache *s;
3793 	void *ret;
3794 
3795 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3796 		return kmalloc_large(size, gfpflags);
3797 
3798 	s = kmalloc_slab(size, gfpflags);
3799 
3800 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3801 		return s;
3802 
3803 	ret = slab_alloc(s, gfpflags, caller);
3804 
3805 	/* Honor the call site pointer we received. */
3806 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3807 
3808 	return ret;
3809 }
3810 
3811 #ifdef CONFIG_NUMA
3812 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3813 					int node, unsigned long caller)
3814 {
3815 	struct kmem_cache *s;
3816 	void *ret;
3817 
3818 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3819 		ret = kmalloc_large_node(size, gfpflags, node);
3820 
3821 		trace_kmalloc_node(caller, ret,
3822 				   size, PAGE_SIZE << get_order(size),
3823 				   gfpflags, node);
3824 
3825 		return ret;
3826 	}
3827 
3828 	s = kmalloc_slab(size, gfpflags);
3829 
3830 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3831 		return s;
3832 
3833 	ret = slab_alloc_node(s, gfpflags, node, caller);
3834 
3835 	/* Honor the call site pointer we received. */
3836 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3837 
3838 	return ret;
3839 }
3840 #endif
3841 
3842 #ifdef CONFIG_SYSFS
3843 static int count_inuse(struct page *page)
3844 {
3845 	return page->inuse;
3846 }
3847 
3848 static int count_total(struct page *page)
3849 {
3850 	return page->objects;
3851 }
3852 #endif
3853 
3854 #ifdef CONFIG_SLUB_DEBUG
3855 static int validate_slab(struct kmem_cache *s, struct page *page,
3856 						unsigned long *map)
3857 {
3858 	void *p;
3859 	void *addr = page_address(page);
3860 
3861 	if (!check_slab(s, page) ||
3862 			!on_freelist(s, page, NULL))
3863 		return 0;
3864 
3865 	/* Now we know that a valid freelist exists */
3866 	bitmap_zero(map, page->objects);
3867 
3868 	get_map(s, page, map);
3869 	for_each_object(p, s, addr, page->objects) {
3870 		if (test_bit(slab_index(p, s, addr), map))
3871 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3872 				return 0;
3873 	}
3874 
3875 	for_each_object(p, s, addr, page->objects)
3876 		if (!test_bit(slab_index(p, s, addr), map))
3877 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3878 				return 0;
3879 	return 1;
3880 }
3881 
3882 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3883 						unsigned long *map)
3884 {
3885 	slab_lock(page);
3886 	validate_slab(s, page, map);
3887 	slab_unlock(page);
3888 }
3889 
3890 static int validate_slab_node(struct kmem_cache *s,
3891 		struct kmem_cache_node *n, unsigned long *map)
3892 {
3893 	unsigned long count = 0;
3894 	struct page *page;
3895 	unsigned long flags;
3896 
3897 	spin_lock_irqsave(&n->list_lock, flags);
3898 
3899 	list_for_each_entry(page, &n->partial, lru) {
3900 		validate_slab_slab(s, page, map);
3901 		count++;
3902 	}
3903 	if (count != n->nr_partial)
3904 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3905 			"counter=%ld\n", s->name, count, n->nr_partial);
3906 
3907 	if (!(s->flags & SLAB_STORE_USER))
3908 		goto out;
3909 
3910 	list_for_each_entry(page, &n->full, lru) {
3911 		validate_slab_slab(s, page, map);
3912 		count++;
3913 	}
3914 	if (count != atomic_long_read(&n->nr_slabs))
3915 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3916 			"counter=%ld\n", s->name, count,
3917 			atomic_long_read(&n->nr_slabs));
3918 
3919 out:
3920 	spin_unlock_irqrestore(&n->list_lock, flags);
3921 	return count;
3922 }
3923 
3924 static long validate_slab_cache(struct kmem_cache *s)
3925 {
3926 	int node;
3927 	unsigned long count = 0;
3928 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3929 				sizeof(unsigned long), GFP_KERNEL);
3930 
3931 	if (!map)
3932 		return -ENOMEM;
3933 
3934 	flush_all(s);
3935 	for_each_node_state(node, N_NORMAL_MEMORY) {
3936 		struct kmem_cache_node *n = get_node(s, node);
3937 
3938 		count += validate_slab_node(s, n, map);
3939 	}
3940 	kfree(map);
3941 	return count;
3942 }
3943 /*
3944  * Generate lists of code addresses where slabcache objects are allocated
3945  * and freed.
3946  */
3947 
3948 struct location {
3949 	unsigned long count;
3950 	unsigned long addr;
3951 	long long sum_time;
3952 	long min_time;
3953 	long max_time;
3954 	long min_pid;
3955 	long max_pid;
3956 	DECLARE_BITMAP(cpus, NR_CPUS);
3957 	nodemask_t nodes;
3958 };
3959 
3960 struct loc_track {
3961 	unsigned long max;
3962 	unsigned long count;
3963 	struct location *loc;
3964 };
3965 
3966 static void free_loc_track(struct loc_track *t)
3967 {
3968 	if (t->max)
3969 		free_pages((unsigned long)t->loc,
3970 			get_order(sizeof(struct location) * t->max));
3971 }
3972 
3973 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3974 {
3975 	struct location *l;
3976 	int order;
3977 
3978 	order = get_order(sizeof(struct location) * max);
3979 
3980 	l = (void *)__get_free_pages(flags, order);
3981 	if (!l)
3982 		return 0;
3983 
3984 	if (t->count) {
3985 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3986 		free_loc_track(t);
3987 	}
3988 	t->max = max;
3989 	t->loc = l;
3990 	return 1;
3991 }
3992 
3993 static int add_location(struct loc_track *t, struct kmem_cache *s,
3994 				const struct track *track)
3995 {
3996 	long start, end, pos;
3997 	struct location *l;
3998 	unsigned long caddr;
3999 	unsigned long age = jiffies - track->when;
4000 
4001 	start = -1;
4002 	end = t->count;
4003 
4004 	for ( ; ; ) {
4005 		pos = start + (end - start + 1) / 2;
4006 
4007 		/*
4008 		 * There is nothing at "end". If we end up there
4009 		 * we need to add something to before end.
4010 		 */
4011 		if (pos == end)
4012 			break;
4013 
4014 		caddr = t->loc[pos].addr;
4015 		if (track->addr == caddr) {
4016 
4017 			l = &t->loc[pos];
4018 			l->count++;
4019 			if (track->when) {
4020 				l->sum_time += age;
4021 				if (age < l->min_time)
4022 					l->min_time = age;
4023 				if (age > l->max_time)
4024 					l->max_time = age;
4025 
4026 				if (track->pid < l->min_pid)
4027 					l->min_pid = track->pid;
4028 				if (track->pid > l->max_pid)
4029 					l->max_pid = track->pid;
4030 
4031 				cpumask_set_cpu(track->cpu,
4032 						to_cpumask(l->cpus));
4033 			}
4034 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4035 			return 1;
4036 		}
4037 
4038 		if (track->addr < caddr)
4039 			end = pos;
4040 		else
4041 			start = pos;
4042 	}
4043 
4044 	/*
4045 	 * Not found. Insert new tracking element.
4046 	 */
4047 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4048 		return 0;
4049 
4050 	l = t->loc + pos;
4051 	if (pos < t->count)
4052 		memmove(l + 1, l,
4053 			(t->count - pos) * sizeof(struct location));
4054 	t->count++;
4055 	l->count = 1;
4056 	l->addr = track->addr;
4057 	l->sum_time = age;
4058 	l->min_time = age;
4059 	l->max_time = age;
4060 	l->min_pid = track->pid;
4061 	l->max_pid = track->pid;
4062 	cpumask_clear(to_cpumask(l->cpus));
4063 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4064 	nodes_clear(l->nodes);
4065 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4066 	return 1;
4067 }
4068 
4069 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4070 		struct page *page, enum track_item alloc,
4071 		unsigned long *map)
4072 {
4073 	void *addr = page_address(page);
4074 	void *p;
4075 
4076 	bitmap_zero(map, page->objects);
4077 	get_map(s, page, map);
4078 
4079 	for_each_object(p, s, addr, page->objects)
4080 		if (!test_bit(slab_index(p, s, addr), map))
4081 			add_location(t, s, get_track(s, p, alloc));
4082 }
4083 
4084 static int list_locations(struct kmem_cache *s, char *buf,
4085 					enum track_item alloc)
4086 {
4087 	int len = 0;
4088 	unsigned long i;
4089 	struct loc_track t = { 0, 0, NULL };
4090 	int node;
4091 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4092 				     sizeof(unsigned long), GFP_KERNEL);
4093 
4094 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4095 				     GFP_TEMPORARY)) {
4096 		kfree(map);
4097 		return sprintf(buf, "Out of memory\n");
4098 	}
4099 	/* Push back cpu slabs */
4100 	flush_all(s);
4101 
4102 	for_each_node_state(node, N_NORMAL_MEMORY) {
4103 		struct kmem_cache_node *n = get_node(s, node);
4104 		unsigned long flags;
4105 		struct page *page;
4106 
4107 		if (!atomic_long_read(&n->nr_slabs))
4108 			continue;
4109 
4110 		spin_lock_irqsave(&n->list_lock, flags);
4111 		list_for_each_entry(page, &n->partial, lru)
4112 			process_slab(&t, s, page, alloc, map);
4113 		list_for_each_entry(page, &n->full, lru)
4114 			process_slab(&t, s, page, alloc, map);
4115 		spin_unlock_irqrestore(&n->list_lock, flags);
4116 	}
4117 
4118 	for (i = 0; i < t.count; i++) {
4119 		struct location *l = &t.loc[i];
4120 
4121 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4122 			break;
4123 		len += sprintf(buf + len, "%7ld ", l->count);
4124 
4125 		if (l->addr)
4126 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4127 		else
4128 			len += sprintf(buf + len, "<not-available>");
4129 
4130 		if (l->sum_time != l->min_time) {
4131 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4132 				l->min_time,
4133 				(long)div_u64(l->sum_time, l->count),
4134 				l->max_time);
4135 		} else
4136 			len += sprintf(buf + len, " age=%ld",
4137 				l->min_time);
4138 
4139 		if (l->min_pid != l->max_pid)
4140 			len += sprintf(buf + len, " pid=%ld-%ld",
4141 				l->min_pid, l->max_pid);
4142 		else
4143 			len += sprintf(buf + len, " pid=%ld",
4144 				l->min_pid);
4145 
4146 		if (num_online_cpus() > 1 &&
4147 				!cpumask_empty(to_cpumask(l->cpus)) &&
4148 				len < PAGE_SIZE - 60) {
4149 			len += sprintf(buf + len, " cpus=");
4150 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4151 						 to_cpumask(l->cpus));
4152 		}
4153 
4154 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4155 				len < PAGE_SIZE - 60) {
4156 			len += sprintf(buf + len, " nodes=");
4157 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4158 					l->nodes);
4159 		}
4160 
4161 		len += sprintf(buf + len, "\n");
4162 	}
4163 
4164 	free_loc_track(&t);
4165 	kfree(map);
4166 	if (!t.count)
4167 		len += sprintf(buf, "No data\n");
4168 	return len;
4169 }
4170 #endif
4171 
4172 #ifdef SLUB_RESILIENCY_TEST
4173 static void resiliency_test(void)
4174 {
4175 	u8 *p;
4176 
4177 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4178 
4179 	printk(KERN_ERR "SLUB resiliency testing\n");
4180 	printk(KERN_ERR "-----------------------\n");
4181 	printk(KERN_ERR "A. Corruption after allocation\n");
4182 
4183 	p = kzalloc(16, GFP_KERNEL);
4184 	p[16] = 0x12;
4185 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4186 			" 0x12->0x%p\n\n", p + 16);
4187 
4188 	validate_slab_cache(kmalloc_caches[4]);
4189 
4190 	/* Hmmm... The next two are dangerous */
4191 	p = kzalloc(32, GFP_KERNEL);
4192 	p[32 + sizeof(void *)] = 0x34;
4193 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4194 			" 0x34 -> -0x%p\n", p);
4195 	printk(KERN_ERR
4196 		"If allocated object is overwritten then not detectable\n\n");
4197 
4198 	validate_slab_cache(kmalloc_caches[5]);
4199 	p = kzalloc(64, GFP_KERNEL);
4200 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4201 	*p = 0x56;
4202 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4203 									p);
4204 	printk(KERN_ERR
4205 		"If allocated object is overwritten then not detectable\n\n");
4206 	validate_slab_cache(kmalloc_caches[6]);
4207 
4208 	printk(KERN_ERR "\nB. Corruption after free\n");
4209 	p = kzalloc(128, GFP_KERNEL);
4210 	kfree(p);
4211 	*p = 0x78;
4212 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4213 	validate_slab_cache(kmalloc_caches[7]);
4214 
4215 	p = kzalloc(256, GFP_KERNEL);
4216 	kfree(p);
4217 	p[50] = 0x9a;
4218 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4219 			p);
4220 	validate_slab_cache(kmalloc_caches[8]);
4221 
4222 	p = kzalloc(512, GFP_KERNEL);
4223 	kfree(p);
4224 	p[512] = 0xab;
4225 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4226 	validate_slab_cache(kmalloc_caches[9]);
4227 }
4228 #else
4229 #ifdef CONFIG_SYSFS
4230 static void resiliency_test(void) {};
4231 #endif
4232 #endif
4233 
4234 #ifdef CONFIG_SYSFS
4235 enum slab_stat_type {
4236 	SL_ALL,			/* All slabs */
4237 	SL_PARTIAL,		/* Only partially allocated slabs */
4238 	SL_CPU,			/* Only slabs used for cpu caches */
4239 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4240 	SL_TOTAL		/* Determine object capacity not slabs */
4241 };
4242 
4243 #define SO_ALL		(1 << SL_ALL)
4244 #define SO_PARTIAL	(1 << SL_PARTIAL)
4245 #define SO_CPU		(1 << SL_CPU)
4246 #define SO_OBJECTS	(1 << SL_OBJECTS)
4247 #define SO_TOTAL	(1 << SL_TOTAL)
4248 
4249 static ssize_t show_slab_objects(struct kmem_cache *s,
4250 			    char *buf, unsigned long flags)
4251 {
4252 	unsigned long total = 0;
4253 	int node;
4254 	int x;
4255 	unsigned long *nodes;
4256 	unsigned long *per_cpu;
4257 
4258 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4259 	if (!nodes)
4260 		return -ENOMEM;
4261 	per_cpu = nodes + nr_node_ids;
4262 
4263 	if (flags & SO_CPU) {
4264 		int cpu;
4265 
4266 		for_each_possible_cpu(cpu) {
4267 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4268 			int node;
4269 			struct page *page;
4270 
4271 			page = ACCESS_ONCE(c->page);
4272 			if (!page)
4273 				continue;
4274 
4275 			node = page_to_nid(page);
4276 			if (flags & SO_TOTAL)
4277 				x = page->objects;
4278 			else if (flags & SO_OBJECTS)
4279 				x = page->inuse;
4280 			else
4281 				x = 1;
4282 
4283 			total += x;
4284 			nodes[node] += x;
4285 
4286 			page = ACCESS_ONCE(c->partial);
4287 			if (page) {
4288 				x = page->pobjects;
4289 				total += x;
4290 				nodes[node] += x;
4291 			}
4292 
4293 			per_cpu[node]++;
4294 		}
4295 	}
4296 
4297 	lock_memory_hotplug();
4298 #ifdef CONFIG_SLUB_DEBUG
4299 	if (flags & SO_ALL) {
4300 		for_each_node_state(node, N_NORMAL_MEMORY) {
4301 			struct kmem_cache_node *n = get_node(s, node);
4302 
4303 		if (flags & SO_TOTAL)
4304 			x = atomic_long_read(&n->total_objects);
4305 		else if (flags & SO_OBJECTS)
4306 			x = atomic_long_read(&n->total_objects) -
4307 				count_partial(n, count_free);
4308 
4309 			else
4310 				x = atomic_long_read(&n->nr_slabs);
4311 			total += x;
4312 			nodes[node] += x;
4313 		}
4314 
4315 	} else
4316 #endif
4317 	if (flags & SO_PARTIAL) {
4318 		for_each_node_state(node, N_NORMAL_MEMORY) {
4319 			struct kmem_cache_node *n = get_node(s, node);
4320 
4321 			if (flags & SO_TOTAL)
4322 				x = count_partial(n, count_total);
4323 			else if (flags & SO_OBJECTS)
4324 				x = count_partial(n, count_inuse);
4325 			else
4326 				x = n->nr_partial;
4327 			total += x;
4328 			nodes[node] += x;
4329 		}
4330 	}
4331 	x = sprintf(buf, "%lu", total);
4332 #ifdef CONFIG_NUMA
4333 	for_each_node_state(node, N_NORMAL_MEMORY)
4334 		if (nodes[node])
4335 			x += sprintf(buf + x, " N%d=%lu",
4336 					node, nodes[node]);
4337 #endif
4338 	unlock_memory_hotplug();
4339 	kfree(nodes);
4340 	return x + sprintf(buf + x, "\n");
4341 }
4342 
4343 #ifdef CONFIG_SLUB_DEBUG
4344 static int any_slab_objects(struct kmem_cache *s)
4345 {
4346 	int node;
4347 
4348 	for_each_online_node(node) {
4349 		struct kmem_cache_node *n = get_node(s, node);
4350 
4351 		if (!n)
4352 			continue;
4353 
4354 		if (atomic_long_read(&n->total_objects))
4355 			return 1;
4356 	}
4357 	return 0;
4358 }
4359 #endif
4360 
4361 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4362 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4363 
4364 struct slab_attribute {
4365 	struct attribute attr;
4366 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4367 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4368 };
4369 
4370 #define SLAB_ATTR_RO(_name) \
4371 	static struct slab_attribute _name##_attr = \
4372 	__ATTR(_name, 0400, _name##_show, NULL)
4373 
4374 #define SLAB_ATTR(_name) \
4375 	static struct slab_attribute _name##_attr =  \
4376 	__ATTR(_name, 0600, _name##_show, _name##_store)
4377 
4378 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4379 {
4380 	return sprintf(buf, "%d\n", s->size);
4381 }
4382 SLAB_ATTR_RO(slab_size);
4383 
4384 static ssize_t align_show(struct kmem_cache *s, char *buf)
4385 {
4386 	return sprintf(buf, "%d\n", s->align);
4387 }
4388 SLAB_ATTR_RO(align);
4389 
4390 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4391 {
4392 	return sprintf(buf, "%d\n", s->object_size);
4393 }
4394 SLAB_ATTR_RO(object_size);
4395 
4396 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4397 {
4398 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4399 }
4400 SLAB_ATTR_RO(objs_per_slab);
4401 
4402 static ssize_t order_store(struct kmem_cache *s,
4403 				const char *buf, size_t length)
4404 {
4405 	unsigned long order;
4406 	int err;
4407 
4408 	err = strict_strtoul(buf, 10, &order);
4409 	if (err)
4410 		return err;
4411 
4412 	if (order > slub_max_order || order < slub_min_order)
4413 		return -EINVAL;
4414 
4415 	calculate_sizes(s, order);
4416 	return length;
4417 }
4418 
4419 static ssize_t order_show(struct kmem_cache *s, char *buf)
4420 {
4421 	return sprintf(buf, "%d\n", oo_order(s->oo));
4422 }
4423 SLAB_ATTR(order);
4424 
4425 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4426 {
4427 	return sprintf(buf, "%lu\n", s->min_partial);
4428 }
4429 
4430 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4431 				 size_t length)
4432 {
4433 	unsigned long min;
4434 	int err;
4435 
4436 	err = strict_strtoul(buf, 10, &min);
4437 	if (err)
4438 		return err;
4439 
4440 	set_min_partial(s, min);
4441 	return length;
4442 }
4443 SLAB_ATTR(min_partial);
4444 
4445 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4446 {
4447 	return sprintf(buf, "%u\n", s->cpu_partial);
4448 }
4449 
4450 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4451 				 size_t length)
4452 {
4453 	unsigned long objects;
4454 	int err;
4455 
4456 	err = strict_strtoul(buf, 10, &objects);
4457 	if (err)
4458 		return err;
4459 	if (objects && kmem_cache_debug(s))
4460 		return -EINVAL;
4461 
4462 	s->cpu_partial = objects;
4463 	flush_all(s);
4464 	return length;
4465 }
4466 SLAB_ATTR(cpu_partial);
4467 
4468 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4469 {
4470 	if (!s->ctor)
4471 		return 0;
4472 	return sprintf(buf, "%pS\n", s->ctor);
4473 }
4474 SLAB_ATTR_RO(ctor);
4475 
4476 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4477 {
4478 	return sprintf(buf, "%d\n", s->refcount - 1);
4479 }
4480 SLAB_ATTR_RO(aliases);
4481 
4482 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4483 {
4484 	return show_slab_objects(s, buf, SO_PARTIAL);
4485 }
4486 SLAB_ATTR_RO(partial);
4487 
4488 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4489 {
4490 	return show_slab_objects(s, buf, SO_CPU);
4491 }
4492 SLAB_ATTR_RO(cpu_slabs);
4493 
4494 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4495 {
4496 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4497 }
4498 SLAB_ATTR_RO(objects);
4499 
4500 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4501 {
4502 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4503 }
4504 SLAB_ATTR_RO(objects_partial);
4505 
4506 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4507 {
4508 	int objects = 0;
4509 	int pages = 0;
4510 	int cpu;
4511 	int len;
4512 
4513 	for_each_online_cpu(cpu) {
4514 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4515 
4516 		if (page) {
4517 			pages += page->pages;
4518 			objects += page->pobjects;
4519 		}
4520 	}
4521 
4522 	len = sprintf(buf, "%d(%d)", objects, pages);
4523 
4524 #ifdef CONFIG_SMP
4525 	for_each_online_cpu(cpu) {
4526 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4527 
4528 		if (page && len < PAGE_SIZE - 20)
4529 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4530 				page->pobjects, page->pages);
4531 	}
4532 #endif
4533 	return len + sprintf(buf + len, "\n");
4534 }
4535 SLAB_ATTR_RO(slabs_cpu_partial);
4536 
4537 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4538 {
4539 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4540 }
4541 
4542 static ssize_t reclaim_account_store(struct kmem_cache *s,
4543 				const char *buf, size_t length)
4544 {
4545 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4546 	if (buf[0] == '1')
4547 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4548 	return length;
4549 }
4550 SLAB_ATTR(reclaim_account);
4551 
4552 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4553 {
4554 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4555 }
4556 SLAB_ATTR_RO(hwcache_align);
4557 
4558 #ifdef CONFIG_ZONE_DMA
4559 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4560 {
4561 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4562 }
4563 SLAB_ATTR_RO(cache_dma);
4564 #endif
4565 
4566 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4567 {
4568 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4569 }
4570 SLAB_ATTR_RO(destroy_by_rcu);
4571 
4572 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4573 {
4574 	return sprintf(buf, "%d\n", s->reserved);
4575 }
4576 SLAB_ATTR_RO(reserved);
4577 
4578 #ifdef CONFIG_SLUB_DEBUG
4579 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4580 {
4581 	return show_slab_objects(s, buf, SO_ALL);
4582 }
4583 SLAB_ATTR_RO(slabs);
4584 
4585 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4586 {
4587 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4588 }
4589 SLAB_ATTR_RO(total_objects);
4590 
4591 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4592 {
4593 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4594 }
4595 
4596 static ssize_t sanity_checks_store(struct kmem_cache *s,
4597 				const char *buf, size_t length)
4598 {
4599 	s->flags &= ~SLAB_DEBUG_FREE;
4600 	if (buf[0] == '1') {
4601 		s->flags &= ~__CMPXCHG_DOUBLE;
4602 		s->flags |= SLAB_DEBUG_FREE;
4603 	}
4604 	return length;
4605 }
4606 SLAB_ATTR(sanity_checks);
4607 
4608 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4609 {
4610 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4611 }
4612 
4613 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4614 							size_t length)
4615 {
4616 	s->flags &= ~SLAB_TRACE;
4617 	if (buf[0] == '1') {
4618 		s->flags &= ~__CMPXCHG_DOUBLE;
4619 		s->flags |= SLAB_TRACE;
4620 	}
4621 	return length;
4622 }
4623 SLAB_ATTR(trace);
4624 
4625 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4626 {
4627 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4628 }
4629 
4630 static ssize_t red_zone_store(struct kmem_cache *s,
4631 				const char *buf, size_t length)
4632 {
4633 	if (any_slab_objects(s))
4634 		return -EBUSY;
4635 
4636 	s->flags &= ~SLAB_RED_ZONE;
4637 	if (buf[0] == '1') {
4638 		s->flags &= ~__CMPXCHG_DOUBLE;
4639 		s->flags |= SLAB_RED_ZONE;
4640 	}
4641 	calculate_sizes(s, -1);
4642 	return length;
4643 }
4644 SLAB_ATTR(red_zone);
4645 
4646 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4647 {
4648 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4649 }
4650 
4651 static ssize_t poison_store(struct kmem_cache *s,
4652 				const char *buf, size_t length)
4653 {
4654 	if (any_slab_objects(s))
4655 		return -EBUSY;
4656 
4657 	s->flags &= ~SLAB_POISON;
4658 	if (buf[0] == '1') {
4659 		s->flags &= ~__CMPXCHG_DOUBLE;
4660 		s->flags |= SLAB_POISON;
4661 	}
4662 	calculate_sizes(s, -1);
4663 	return length;
4664 }
4665 SLAB_ATTR(poison);
4666 
4667 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4668 {
4669 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4670 }
4671 
4672 static ssize_t store_user_store(struct kmem_cache *s,
4673 				const char *buf, size_t length)
4674 {
4675 	if (any_slab_objects(s))
4676 		return -EBUSY;
4677 
4678 	s->flags &= ~SLAB_STORE_USER;
4679 	if (buf[0] == '1') {
4680 		s->flags &= ~__CMPXCHG_DOUBLE;
4681 		s->flags |= SLAB_STORE_USER;
4682 	}
4683 	calculate_sizes(s, -1);
4684 	return length;
4685 }
4686 SLAB_ATTR(store_user);
4687 
4688 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4689 {
4690 	return 0;
4691 }
4692 
4693 static ssize_t validate_store(struct kmem_cache *s,
4694 			const char *buf, size_t length)
4695 {
4696 	int ret = -EINVAL;
4697 
4698 	if (buf[0] == '1') {
4699 		ret = validate_slab_cache(s);
4700 		if (ret >= 0)
4701 			ret = length;
4702 	}
4703 	return ret;
4704 }
4705 SLAB_ATTR(validate);
4706 
4707 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4708 {
4709 	if (!(s->flags & SLAB_STORE_USER))
4710 		return -ENOSYS;
4711 	return list_locations(s, buf, TRACK_ALLOC);
4712 }
4713 SLAB_ATTR_RO(alloc_calls);
4714 
4715 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4716 {
4717 	if (!(s->flags & SLAB_STORE_USER))
4718 		return -ENOSYS;
4719 	return list_locations(s, buf, TRACK_FREE);
4720 }
4721 SLAB_ATTR_RO(free_calls);
4722 #endif /* CONFIG_SLUB_DEBUG */
4723 
4724 #ifdef CONFIG_FAILSLAB
4725 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4726 {
4727 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4728 }
4729 
4730 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4731 							size_t length)
4732 {
4733 	s->flags &= ~SLAB_FAILSLAB;
4734 	if (buf[0] == '1')
4735 		s->flags |= SLAB_FAILSLAB;
4736 	return length;
4737 }
4738 SLAB_ATTR(failslab);
4739 #endif
4740 
4741 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4742 {
4743 	return 0;
4744 }
4745 
4746 static ssize_t shrink_store(struct kmem_cache *s,
4747 			const char *buf, size_t length)
4748 {
4749 	if (buf[0] == '1') {
4750 		int rc = kmem_cache_shrink(s);
4751 
4752 		if (rc)
4753 			return rc;
4754 	} else
4755 		return -EINVAL;
4756 	return length;
4757 }
4758 SLAB_ATTR(shrink);
4759 
4760 #ifdef CONFIG_NUMA
4761 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4762 {
4763 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4764 }
4765 
4766 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4767 				const char *buf, size_t length)
4768 {
4769 	unsigned long ratio;
4770 	int err;
4771 
4772 	err = strict_strtoul(buf, 10, &ratio);
4773 	if (err)
4774 		return err;
4775 
4776 	if (ratio <= 100)
4777 		s->remote_node_defrag_ratio = ratio * 10;
4778 
4779 	return length;
4780 }
4781 SLAB_ATTR(remote_node_defrag_ratio);
4782 #endif
4783 
4784 #ifdef CONFIG_SLUB_STATS
4785 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4786 {
4787 	unsigned long sum  = 0;
4788 	int cpu;
4789 	int len;
4790 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4791 
4792 	if (!data)
4793 		return -ENOMEM;
4794 
4795 	for_each_online_cpu(cpu) {
4796 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4797 
4798 		data[cpu] = x;
4799 		sum += x;
4800 	}
4801 
4802 	len = sprintf(buf, "%lu", sum);
4803 
4804 #ifdef CONFIG_SMP
4805 	for_each_online_cpu(cpu) {
4806 		if (data[cpu] && len < PAGE_SIZE - 20)
4807 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4808 	}
4809 #endif
4810 	kfree(data);
4811 	return len + sprintf(buf + len, "\n");
4812 }
4813 
4814 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4815 {
4816 	int cpu;
4817 
4818 	for_each_online_cpu(cpu)
4819 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4820 }
4821 
4822 #define STAT_ATTR(si, text) 					\
4823 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4824 {								\
4825 	return show_stat(s, buf, si);				\
4826 }								\
4827 static ssize_t text##_store(struct kmem_cache *s,		\
4828 				const char *buf, size_t length)	\
4829 {								\
4830 	if (buf[0] != '0')					\
4831 		return -EINVAL;					\
4832 	clear_stat(s, si);					\
4833 	return length;						\
4834 }								\
4835 SLAB_ATTR(text);						\
4836 
4837 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4838 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4839 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4840 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4841 STAT_ATTR(FREE_FROZEN, free_frozen);
4842 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4843 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4844 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4845 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4846 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4847 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4848 STAT_ATTR(FREE_SLAB, free_slab);
4849 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4850 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4851 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4852 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4853 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4854 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4855 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4856 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4857 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4858 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4859 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4860 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4861 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4862 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4863 #endif
4864 
4865 static struct attribute *slab_attrs[] = {
4866 	&slab_size_attr.attr,
4867 	&object_size_attr.attr,
4868 	&objs_per_slab_attr.attr,
4869 	&order_attr.attr,
4870 	&min_partial_attr.attr,
4871 	&cpu_partial_attr.attr,
4872 	&objects_attr.attr,
4873 	&objects_partial_attr.attr,
4874 	&partial_attr.attr,
4875 	&cpu_slabs_attr.attr,
4876 	&ctor_attr.attr,
4877 	&aliases_attr.attr,
4878 	&align_attr.attr,
4879 	&hwcache_align_attr.attr,
4880 	&reclaim_account_attr.attr,
4881 	&destroy_by_rcu_attr.attr,
4882 	&shrink_attr.attr,
4883 	&reserved_attr.attr,
4884 	&slabs_cpu_partial_attr.attr,
4885 #ifdef CONFIG_SLUB_DEBUG
4886 	&total_objects_attr.attr,
4887 	&slabs_attr.attr,
4888 	&sanity_checks_attr.attr,
4889 	&trace_attr.attr,
4890 	&red_zone_attr.attr,
4891 	&poison_attr.attr,
4892 	&store_user_attr.attr,
4893 	&validate_attr.attr,
4894 	&alloc_calls_attr.attr,
4895 	&free_calls_attr.attr,
4896 #endif
4897 #ifdef CONFIG_ZONE_DMA
4898 	&cache_dma_attr.attr,
4899 #endif
4900 #ifdef CONFIG_NUMA
4901 	&remote_node_defrag_ratio_attr.attr,
4902 #endif
4903 #ifdef CONFIG_SLUB_STATS
4904 	&alloc_fastpath_attr.attr,
4905 	&alloc_slowpath_attr.attr,
4906 	&free_fastpath_attr.attr,
4907 	&free_slowpath_attr.attr,
4908 	&free_frozen_attr.attr,
4909 	&free_add_partial_attr.attr,
4910 	&free_remove_partial_attr.attr,
4911 	&alloc_from_partial_attr.attr,
4912 	&alloc_slab_attr.attr,
4913 	&alloc_refill_attr.attr,
4914 	&alloc_node_mismatch_attr.attr,
4915 	&free_slab_attr.attr,
4916 	&cpuslab_flush_attr.attr,
4917 	&deactivate_full_attr.attr,
4918 	&deactivate_empty_attr.attr,
4919 	&deactivate_to_head_attr.attr,
4920 	&deactivate_to_tail_attr.attr,
4921 	&deactivate_remote_frees_attr.attr,
4922 	&deactivate_bypass_attr.attr,
4923 	&order_fallback_attr.attr,
4924 	&cmpxchg_double_fail_attr.attr,
4925 	&cmpxchg_double_cpu_fail_attr.attr,
4926 	&cpu_partial_alloc_attr.attr,
4927 	&cpu_partial_free_attr.attr,
4928 	&cpu_partial_node_attr.attr,
4929 	&cpu_partial_drain_attr.attr,
4930 #endif
4931 #ifdef CONFIG_FAILSLAB
4932 	&failslab_attr.attr,
4933 #endif
4934 
4935 	NULL
4936 };
4937 
4938 static struct attribute_group slab_attr_group = {
4939 	.attrs = slab_attrs,
4940 };
4941 
4942 static ssize_t slab_attr_show(struct kobject *kobj,
4943 				struct attribute *attr,
4944 				char *buf)
4945 {
4946 	struct slab_attribute *attribute;
4947 	struct kmem_cache *s;
4948 	int err;
4949 
4950 	attribute = to_slab_attr(attr);
4951 	s = to_slab(kobj);
4952 
4953 	if (!attribute->show)
4954 		return -EIO;
4955 
4956 	err = attribute->show(s, buf);
4957 
4958 	return err;
4959 }
4960 
4961 static ssize_t slab_attr_store(struct kobject *kobj,
4962 				struct attribute *attr,
4963 				const char *buf, size_t len)
4964 {
4965 	struct slab_attribute *attribute;
4966 	struct kmem_cache *s;
4967 	int err;
4968 
4969 	attribute = to_slab_attr(attr);
4970 	s = to_slab(kobj);
4971 
4972 	if (!attribute->store)
4973 		return -EIO;
4974 
4975 	err = attribute->store(s, buf, len);
4976 #ifdef CONFIG_MEMCG_KMEM
4977 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4978 		int i;
4979 
4980 		mutex_lock(&slab_mutex);
4981 		if (s->max_attr_size < len)
4982 			s->max_attr_size = len;
4983 
4984 		/*
4985 		 * This is a best effort propagation, so this function's return
4986 		 * value will be determined by the parent cache only. This is
4987 		 * basically because not all attributes will have a well
4988 		 * defined semantics for rollbacks - most of the actions will
4989 		 * have permanent effects.
4990 		 *
4991 		 * Returning the error value of any of the children that fail
4992 		 * is not 100 % defined, in the sense that users seeing the
4993 		 * error code won't be able to know anything about the state of
4994 		 * the cache.
4995 		 *
4996 		 * Only returning the error code for the parent cache at least
4997 		 * has well defined semantics. The cache being written to
4998 		 * directly either failed or succeeded, in which case we loop
4999 		 * through the descendants with best-effort propagation.
5000 		 */
5001 		for_each_memcg_cache_index(i) {
5002 			struct kmem_cache *c = cache_from_memcg(s, i);
5003 			if (c)
5004 				attribute->store(c, buf, len);
5005 		}
5006 		mutex_unlock(&slab_mutex);
5007 	}
5008 #endif
5009 	return err;
5010 }
5011 
5012 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5013 {
5014 #ifdef CONFIG_MEMCG_KMEM
5015 	int i;
5016 	char *buffer = NULL;
5017 
5018 	if (!is_root_cache(s))
5019 		return;
5020 
5021 	/*
5022 	 * This mean this cache had no attribute written. Therefore, no point
5023 	 * in copying default values around
5024 	 */
5025 	if (!s->max_attr_size)
5026 		return;
5027 
5028 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5029 		char mbuf[64];
5030 		char *buf;
5031 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5032 
5033 		if (!attr || !attr->store || !attr->show)
5034 			continue;
5035 
5036 		/*
5037 		 * It is really bad that we have to allocate here, so we will
5038 		 * do it only as a fallback. If we actually allocate, though,
5039 		 * we can just use the allocated buffer until the end.
5040 		 *
5041 		 * Most of the slub attributes will tend to be very small in
5042 		 * size, but sysfs allows buffers up to a page, so they can
5043 		 * theoretically happen.
5044 		 */
5045 		if (buffer)
5046 			buf = buffer;
5047 		else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5048 			buf = mbuf;
5049 		else {
5050 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5051 			if (WARN_ON(!buffer))
5052 				continue;
5053 			buf = buffer;
5054 		}
5055 
5056 		attr->show(s->memcg_params->root_cache, buf);
5057 		attr->store(s, buf, strlen(buf));
5058 	}
5059 
5060 	if (buffer)
5061 		free_page((unsigned long)buffer);
5062 #endif
5063 }
5064 
5065 static const struct sysfs_ops slab_sysfs_ops = {
5066 	.show = slab_attr_show,
5067 	.store = slab_attr_store,
5068 };
5069 
5070 static struct kobj_type slab_ktype = {
5071 	.sysfs_ops = &slab_sysfs_ops,
5072 };
5073 
5074 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5075 {
5076 	struct kobj_type *ktype = get_ktype(kobj);
5077 
5078 	if (ktype == &slab_ktype)
5079 		return 1;
5080 	return 0;
5081 }
5082 
5083 static const struct kset_uevent_ops slab_uevent_ops = {
5084 	.filter = uevent_filter,
5085 };
5086 
5087 static struct kset *slab_kset;
5088 
5089 #define ID_STR_LENGTH 64
5090 
5091 /* Create a unique string id for a slab cache:
5092  *
5093  * Format	:[flags-]size
5094  */
5095 static char *create_unique_id(struct kmem_cache *s)
5096 {
5097 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5098 	char *p = name;
5099 
5100 	BUG_ON(!name);
5101 
5102 	*p++ = ':';
5103 	/*
5104 	 * First flags affecting slabcache operations. We will only
5105 	 * get here for aliasable slabs so we do not need to support
5106 	 * too many flags. The flags here must cover all flags that
5107 	 * are matched during merging to guarantee that the id is
5108 	 * unique.
5109 	 */
5110 	if (s->flags & SLAB_CACHE_DMA)
5111 		*p++ = 'd';
5112 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5113 		*p++ = 'a';
5114 	if (s->flags & SLAB_DEBUG_FREE)
5115 		*p++ = 'F';
5116 	if (!(s->flags & SLAB_NOTRACK))
5117 		*p++ = 't';
5118 	if (p != name + 1)
5119 		*p++ = '-';
5120 	p += sprintf(p, "%07d", s->size);
5121 
5122 #ifdef CONFIG_MEMCG_KMEM
5123 	if (!is_root_cache(s))
5124 		p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
5125 #endif
5126 
5127 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5128 	return name;
5129 }
5130 
5131 static int sysfs_slab_add(struct kmem_cache *s)
5132 {
5133 	int err;
5134 	const char *name;
5135 	int unmergeable = slab_unmergeable(s);
5136 
5137 	if (unmergeable) {
5138 		/*
5139 		 * Slabcache can never be merged so we can use the name proper.
5140 		 * This is typically the case for debug situations. In that
5141 		 * case we can catch duplicate names easily.
5142 		 */
5143 		sysfs_remove_link(&slab_kset->kobj, s->name);
5144 		name = s->name;
5145 	} else {
5146 		/*
5147 		 * Create a unique name for the slab as a target
5148 		 * for the symlinks.
5149 		 */
5150 		name = create_unique_id(s);
5151 	}
5152 
5153 	s->kobj.kset = slab_kset;
5154 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5155 	if (err) {
5156 		kobject_put(&s->kobj);
5157 		return err;
5158 	}
5159 
5160 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5161 	if (err) {
5162 		kobject_del(&s->kobj);
5163 		kobject_put(&s->kobj);
5164 		return err;
5165 	}
5166 	kobject_uevent(&s->kobj, KOBJ_ADD);
5167 	if (!unmergeable) {
5168 		/* Setup first alias */
5169 		sysfs_slab_alias(s, s->name);
5170 		kfree(name);
5171 	}
5172 	return 0;
5173 }
5174 
5175 static void sysfs_slab_remove(struct kmem_cache *s)
5176 {
5177 	if (slab_state < FULL)
5178 		/*
5179 		 * Sysfs has not been setup yet so no need to remove the
5180 		 * cache from sysfs.
5181 		 */
5182 		return;
5183 
5184 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5185 	kobject_del(&s->kobj);
5186 	kobject_put(&s->kobj);
5187 }
5188 
5189 /*
5190  * Need to buffer aliases during bootup until sysfs becomes
5191  * available lest we lose that information.
5192  */
5193 struct saved_alias {
5194 	struct kmem_cache *s;
5195 	const char *name;
5196 	struct saved_alias *next;
5197 };
5198 
5199 static struct saved_alias *alias_list;
5200 
5201 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5202 {
5203 	struct saved_alias *al;
5204 
5205 	if (slab_state == FULL) {
5206 		/*
5207 		 * If we have a leftover link then remove it.
5208 		 */
5209 		sysfs_remove_link(&slab_kset->kobj, name);
5210 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5211 	}
5212 
5213 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5214 	if (!al)
5215 		return -ENOMEM;
5216 
5217 	al->s = s;
5218 	al->name = name;
5219 	al->next = alias_list;
5220 	alias_list = al;
5221 	return 0;
5222 }
5223 
5224 static int __init slab_sysfs_init(void)
5225 {
5226 	struct kmem_cache *s;
5227 	int err;
5228 
5229 	mutex_lock(&slab_mutex);
5230 
5231 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5232 	if (!slab_kset) {
5233 		mutex_unlock(&slab_mutex);
5234 		printk(KERN_ERR "Cannot register slab subsystem.\n");
5235 		return -ENOSYS;
5236 	}
5237 
5238 	slab_state = FULL;
5239 
5240 	list_for_each_entry(s, &slab_caches, list) {
5241 		err = sysfs_slab_add(s);
5242 		if (err)
5243 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5244 						" to sysfs\n", s->name);
5245 	}
5246 
5247 	while (alias_list) {
5248 		struct saved_alias *al = alias_list;
5249 
5250 		alias_list = alias_list->next;
5251 		err = sysfs_slab_alias(al->s, al->name);
5252 		if (err)
5253 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5254 					" %s to sysfs\n", al->name);
5255 		kfree(al);
5256 	}
5257 
5258 	mutex_unlock(&slab_mutex);
5259 	resiliency_test();
5260 	return 0;
5261 }
5262 
5263 __initcall(slab_sysfs_init);
5264 #endif /* CONFIG_SYSFS */
5265 
5266 /*
5267  * The /proc/slabinfo ABI
5268  */
5269 #ifdef CONFIG_SLABINFO
5270 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5271 {
5272 	unsigned long nr_partials = 0;
5273 	unsigned long nr_slabs = 0;
5274 	unsigned long nr_objs = 0;
5275 	unsigned long nr_free = 0;
5276 	int node;
5277 
5278 	for_each_online_node(node) {
5279 		struct kmem_cache_node *n = get_node(s, node);
5280 
5281 		if (!n)
5282 			continue;
5283 
5284 		nr_partials += n->nr_partial;
5285 		nr_slabs += atomic_long_read(&n->nr_slabs);
5286 		nr_objs += atomic_long_read(&n->total_objects);
5287 		nr_free += count_partial(n, count_free);
5288 	}
5289 
5290 	sinfo->active_objs = nr_objs - nr_free;
5291 	sinfo->num_objs = nr_objs;
5292 	sinfo->active_slabs = nr_slabs;
5293 	sinfo->num_slabs = nr_slabs;
5294 	sinfo->objects_per_slab = oo_objects(s->oo);
5295 	sinfo->cache_order = oo_order(s->oo);
5296 }
5297 
5298 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5299 {
5300 }
5301 
5302 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5303 		       size_t count, loff_t *ppos)
5304 {
5305 	return -EIO;
5306 }
5307 #endif /* CONFIG_SLABINFO */
5308