1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kmemcheck.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 37 #include <trace/events/kmem.h> 38 39 #include "internal.h" 40 41 /* 42 * Lock order: 43 * 1. slab_mutex (Global Mutex) 44 * 2. node->list_lock 45 * 3. slab_lock(page) (Only on some arches and for debugging) 46 * 47 * slab_mutex 48 * 49 * The role of the slab_mutex is to protect the list of all the slabs 50 * and to synchronize major metadata changes to slab cache structures. 51 * 52 * The slab_lock is only used for debugging and on arches that do not 53 * have the ability to do a cmpxchg_double. It only protects the second 54 * double word in the page struct. Meaning 55 * A. page->freelist -> List of object free in a page 56 * B. page->counters -> Counters of objects 57 * C. page->frozen -> frozen state 58 * 59 * If a slab is frozen then it is exempt from list management. It is not 60 * on any list. The processor that froze the slab is the one who can 61 * perform list operations on the page. Other processors may put objects 62 * onto the freelist but the processor that froze the slab is the only 63 * one that can retrieve the objects from the page's freelist. 64 * 65 * The list_lock protects the partial and full list on each node and 66 * the partial slab counter. If taken then no new slabs may be added or 67 * removed from the lists nor make the number of partial slabs be modified. 68 * (Note that the total number of slabs is an atomic value that may be 69 * modified without taking the list lock). 70 * 71 * The list_lock is a centralized lock and thus we avoid taking it as 72 * much as possible. As long as SLUB does not have to handle partial 73 * slabs, operations can continue without any centralized lock. F.e. 74 * allocating a long series of objects that fill up slabs does not require 75 * the list lock. 76 * Interrupts are disabled during allocation and deallocation in order to 77 * make the slab allocator safe to use in the context of an irq. In addition 78 * interrupts are disabled to ensure that the processor does not change 79 * while handling per_cpu slabs, due to kernel preemption. 80 * 81 * SLUB assigns one slab for allocation to each processor. 82 * Allocations only occur from these slabs called cpu slabs. 83 * 84 * Slabs with free elements are kept on a partial list and during regular 85 * operations no list for full slabs is used. If an object in a full slab is 86 * freed then the slab will show up again on the partial lists. 87 * We track full slabs for debugging purposes though because otherwise we 88 * cannot scan all objects. 89 * 90 * Slabs are freed when they become empty. Teardown and setup is 91 * minimal so we rely on the page allocators per cpu caches for 92 * fast frees and allocs. 93 * 94 * Overloading of page flags that are otherwise used for LRU management. 95 * 96 * PageActive The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * PageError Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 static inline int kmem_cache_debug(struct kmem_cache *s) 118 { 119 #ifdef CONFIG_SLUB_DEBUG 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 121 #else 122 return 0; 123 #endif 124 } 125 126 /* 127 * Issues still to be resolved: 128 * 129 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 130 * 131 * - Variable sizing of the per node arrays 132 */ 133 134 /* Enable to test recovery from slab corruption on boot */ 135 #undef SLUB_RESILIENCY_TEST 136 137 /* Enable to log cmpxchg failures */ 138 #undef SLUB_DEBUG_CMPXCHG 139 140 /* 141 * Mininum number of partial slabs. These will be left on the partial 142 * lists even if they are empty. kmem_cache_shrink may reclaim them. 143 */ 144 #define MIN_PARTIAL 5 145 146 /* 147 * Maximum number of desirable partial slabs. 148 * The existence of more partial slabs makes kmem_cache_shrink 149 * sort the partial list by the number of objects in the. 150 */ 151 #define MAX_PARTIAL 10 152 153 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 154 SLAB_POISON | SLAB_STORE_USER) 155 156 /* 157 * Debugging flags that require metadata to be stored in the slab. These get 158 * disabled when slub_debug=O is used and a cache's min order increases with 159 * metadata. 160 */ 161 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 162 163 /* 164 * Set of flags that will prevent slab merging 165 */ 166 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 167 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 168 SLAB_FAILSLAB) 169 170 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 171 SLAB_CACHE_DMA | SLAB_NOTRACK) 172 173 #define OO_SHIFT 16 174 #define OO_MASK ((1 << OO_SHIFT) - 1) 175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 176 177 /* Internal SLUB flags */ 178 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 180 181 #ifdef CONFIG_SMP 182 static struct notifier_block slab_notifier; 183 #endif 184 185 /* 186 * Tracking user of a slab. 187 */ 188 #define TRACK_ADDRS_COUNT 16 189 struct track { 190 unsigned long addr; /* Called from address */ 191 #ifdef CONFIG_STACKTRACE 192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 193 #endif 194 int cpu; /* Was running on cpu */ 195 int pid; /* Pid context */ 196 unsigned long when; /* When did the operation occur */ 197 }; 198 199 enum track_item { TRACK_ALLOC, TRACK_FREE }; 200 201 #ifdef CONFIG_SYSFS 202 static int sysfs_slab_add(struct kmem_cache *); 203 static int sysfs_slab_alias(struct kmem_cache *, const char *); 204 static void sysfs_slab_remove(struct kmem_cache *); 205 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 206 #else 207 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 208 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 209 { return 0; } 210 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 211 212 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 213 #endif 214 215 static inline void stat(const struct kmem_cache *s, enum stat_item si) 216 { 217 #ifdef CONFIG_SLUB_STATS 218 __this_cpu_inc(s->cpu_slab->stat[si]); 219 #endif 220 } 221 222 /******************************************************************** 223 * Core slab cache functions 224 *******************************************************************/ 225 226 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 227 { 228 return s->node[node]; 229 } 230 231 /* Verify that a pointer has an address that is valid within a slab page */ 232 static inline int check_valid_pointer(struct kmem_cache *s, 233 struct page *page, const void *object) 234 { 235 void *base; 236 237 if (!object) 238 return 1; 239 240 base = page_address(page); 241 if (object < base || object >= base + page->objects * s->size || 242 (object - base) % s->size) { 243 return 0; 244 } 245 246 return 1; 247 } 248 249 static inline void *get_freepointer(struct kmem_cache *s, void *object) 250 { 251 return *(void **)(object + s->offset); 252 } 253 254 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 255 { 256 prefetch(object + s->offset); 257 } 258 259 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 260 { 261 void *p; 262 263 #ifdef CONFIG_DEBUG_PAGEALLOC 264 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 265 #else 266 p = get_freepointer(s, object); 267 #endif 268 return p; 269 } 270 271 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 272 { 273 *(void **)(object + s->offset) = fp; 274 } 275 276 /* Loop over all objects in a slab */ 277 #define for_each_object(__p, __s, __addr, __objects) \ 278 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 279 __p += (__s)->size) 280 281 /* Determine object index from a given position */ 282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 283 { 284 return (p - addr) / s->size; 285 } 286 287 static inline size_t slab_ksize(const struct kmem_cache *s) 288 { 289 #ifdef CONFIG_SLUB_DEBUG 290 /* 291 * Debugging requires use of the padding between object 292 * and whatever may come after it. 293 */ 294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 295 return s->object_size; 296 297 #endif 298 /* 299 * If we have the need to store the freelist pointer 300 * back there or track user information then we can 301 * only use the space before that information. 302 */ 303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 304 return s->inuse; 305 /* 306 * Else we can use all the padding etc for the allocation 307 */ 308 return s->size; 309 } 310 311 static inline int order_objects(int order, unsigned long size, int reserved) 312 { 313 return ((PAGE_SIZE << order) - reserved) / size; 314 } 315 316 static inline struct kmem_cache_order_objects oo_make(int order, 317 unsigned long size, int reserved) 318 { 319 struct kmem_cache_order_objects x = { 320 (order << OO_SHIFT) + order_objects(order, size, reserved) 321 }; 322 323 return x; 324 } 325 326 static inline int oo_order(struct kmem_cache_order_objects x) 327 { 328 return x.x >> OO_SHIFT; 329 } 330 331 static inline int oo_objects(struct kmem_cache_order_objects x) 332 { 333 return x.x & OO_MASK; 334 } 335 336 /* 337 * Per slab locking using the pagelock 338 */ 339 static __always_inline void slab_lock(struct page *page) 340 { 341 bit_spin_lock(PG_locked, &page->flags); 342 } 343 344 static __always_inline void slab_unlock(struct page *page) 345 { 346 __bit_spin_unlock(PG_locked, &page->flags); 347 } 348 349 /* Interrupts must be disabled (for the fallback code to work right) */ 350 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 351 void *freelist_old, unsigned long counters_old, 352 void *freelist_new, unsigned long counters_new, 353 const char *n) 354 { 355 VM_BUG_ON(!irqs_disabled()); 356 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 357 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 358 if (s->flags & __CMPXCHG_DOUBLE) { 359 if (cmpxchg_double(&page->freelist, &page->counters, 360 freelist_old, counters_old, 361 freelist_new, counters_new)) 362 return 1; 363 } else 364 #endif 365 { 366 slab_lock(page); 367 if (page->freelist == freelist_old && page->counters == counters_old) { 368 page->freelist = freelist_new; 369 page->counters = counters_new; 370 slab_unlock(page); 371 return 1; 372 } 373 slab_unlock(page); 374 } 375 376 cpu_relax(); 377 stat(s, CMPXCHG_DOUBLE_FAIL); 378 379 #ifdef SLUB_DEBUG_CMPXCHG 380 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 381 #endif 382 383 return 0; 384 } 385 386 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 387 void *freelist_old, unsigned long counters_old, 388 void *freelist_new, unsigned long counters_new, 389 const char *n) 390 { 391 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 392 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 393 if (s->flags & __CMPXCHG_DOUBLE) { 394 if (cmpxchg_double(&page->freelist, &page->counters, 395 freelist_old, counters_old, 396 freelist_new, counters_new)) 397 return 1; 398 } else 399 #endif 400 { 401 unsigned long flags; 402 403 local_irq_save(flags); 404 slab_lock(page); 405 if (page->freelist == freelist_old && page->counters == counters_old) { 406 page->freelist = freelist_new; 407 page->counters = counters_new; 408 slab_unlock(page); 409 local_irq_restore(flags); 410 return 1; 411 } 412 slab_unlock(page); 413 local_irq_restore(flags); 414 } 415 416 cpu_relax(); 417 stat(s, CMPXCHG_DOUBLE_FAIL); 418 419 #ifdef SLUB_DEBUG_CMPXCHG 420 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 421 #endif 422 423 return 0; 424 } 425 426 #ifdef CONFIG_SLUB_DEBUG 427 /* 428 * Determine a map of object in use on a page. 429 * 430 * Node listlock must be held to guarantee that the page does 431 * not vanish from under us. 432 */ 433 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 434 { 435 void *p; 436 void *addr = page_address(page); 437 438 for (p = page->freelist; p; p = get_freepointer(s, p)) 439 set_bit(slab_index(p, s, addr), map); 440 } 441 442 /* 443 * Debug settings: 444 */ 445 #ifdef CONFIG_SLUB_DEBUG_ON 446 static int slub_debug = DEBUG_DEFAULT_FLAGS; 447 #else 448 static int slub_debug; 449 #endif 450 451 static char *slub_debug_slabs; 452 static int disable_higher_order_debug; 453 454 /* 455 * Object debugging 456 */ 457 static void print_section(char *text, u8 *addr, unsigned int length) 458 { 459 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 460 length, 1); 461 } 462 463 static struct track *get_track(struct kmem_cache *s, void *object, 464 enum track_item alloc) 465 { 466 struct track *p; 467 468 if (s->offset) 469 p = object + s->offset + sizeof(void *); 470 else 471 p = object + s->inuse; 472 473 return p + alloc; 474 } 475 476 static void set_track(struct kmem_cache *s, void *object, 477 enum track_item alloc, unsigned long addr) 478 { 479 struct track *p = get_track(s, object, alloc); 480 481 if (addr) { 482 #ifdef CONFIG_STACKTRACE 483 struct stack_trace trace; 484 int i; 485 486 trace.nr_entries = 0; 487 trace.max_entries = TRACK_ADDRS_COUNT; 488 trace.entries = p->addrs; 489 trace.skip = 3; 490 save_stack_trace(&trace); 491 492 /* See rant in lockdep.c */ 493 if (trace.nr_entries != 0 && 494 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 495 trace.nr_entries--; 496 497 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 498 p->addrs[i] = 0; 499 #endif 500 p->addr = addr; 501 p->cpu = smp_processor_id(); 502 p->pid = current->pid; 503 p->when = jiffies; 504 } else 505 memset(p, 0, sizeof(struct track)); 506 } 507 508 static void init_tracking(struct kmem_cache *s, void *object) 509 { 510 if (!(s->flags & SLAB_STORE_USER)) 511 return; 512 513 set_track(s, object, TRACK_FREE, 0UL); 514 set_track(s, object, TRACK_ALLOC, 0UL); 515 } 516 517 static void print_track(const char *s, struct track *t) 518 { 519 if (!t->addr) 520 return; 521 522 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 523 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 524 #ifdef CONFIG_STACKTRACE 525 { 526 int i; 527 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 528 if (t->addrs[i]) 529 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]); 530 else 531 break; 532 } 533 #endif 534 } 535 536 static void print_tracking(struct kmem_cache *s, void *object) 537 { 538 if (!(s->flags & SLAB_STORE_USER)) 539 return; 540 541 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 542 print_track("Freed", get_track(s, object, TRACK_FREE)); 543 } 544 545 static void print_page_info(struct page *page) 546 { 547 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 548 page, page->objects, page->inuse, page->freelist, page->flags); 549 550 } 551 552 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 553 { 554 va_list args; 555 char buf[100]; 556 557 va_start(args, fmt); 558 vsnprintf(buf, sizeof(buf), fmt, args); 559 va_end(args); 560 printk(KERN_ERR "========================================" 561 "=====================================\n"); 562 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf); 563 printk(KERN_ERR "----------------------------------------" 564 "-------------------------------------\n\n"); 565 566 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 567 } 568 569 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 570 { 571 va_list args; 572 char buf[100]; 573 574 va_start(args, fmt); 575 vsnprintf(buf, sizeof(buf), fmt, args); 576 va_end(args); 577 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 578 } 579 580 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 581 { 582 unsigned int off; /* Offset of last byte */ 583 u8 *addr = page_address(page); 584 585 print_tracking(s, p); 586 587 print_page_info(page); 588 589 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 590 p, p - addr, get_freepointer(s, p)); 591 592 if (p > addr + 16) 593 print_section("Bytes b4 ", p - 16, 16); 594 595 print_section("Object ", p, min_t(unsigned long, s->object_size, 596 PAGE_SIZE)); 597 if (s->flags & SLAB_RED_ZONE) 598 print_section("Redzone ", p + s->object_size, 599 s->inuse - s->object_size); 600 601 if (s->offset) 602 off = s->offset + sizeof(void *); 603 else 604 off = s->inuse; 605 606 if (s->flags & SLAB_STORE_USER) 607 off += 2 * sizeof(struct track); 608 609 if (off != s->size) 610 /* Beginning of the filler is the free pointer */ 611 print_section("Padding ", p + off, s->size - off); 612 613 dump_stack(); 614 } 615 616 static void object_err(struct kmem_cache *s, struct page *page, 617 u8 *object, char *reason) 618 { 619 slab_bug(s, "%s", reason); 620 print_trailer(s, page, object); 621 } 622 623 static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...) 624 { 625 va_list args; 626 char buf[100]; 627 628 va_start(args, fmt); 629 vsnprintf(buf, sizeof(buf), fmt, args); 630 va_end(args); 631 slab_bug(s, "%s", buf); 632 print_page_info(page); 633 dump_stack(); 634 } 635 636 static void init_object(struct kmem_cache *s, void *object, u8 val) 637 { 638 u8 *p = object; 639 640 if (s->flags & __OBJECT_POISON) { 641 memset(p, POISON_FREE, s->object_size - 1); 642 p[s->object_size - 1] = POISON_END; 643 } 644 645 if (s->flags & SLAB_RED_ZONE) 646 memset(p + s->object_size, val, s->inuse - s->object_size); 647 } 648 649 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 650 void *from, void *to) 651 { 652 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 653 memset(from, data, to - from); 654 } 655 656 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 657 u8 *object, char *what, 658 u8 *start, unsigned int value, unsigned int bytes) 659 { 660 u8 *fault; 661 u8 *end; 662 663 fault = memchr_inv(start, value, bytes); 664 if (!fault) 665 return 1; 666 667 end = start + bytes; 668 while (end > fault && end[-1] == value) 669 end--; 670 671 slab_bug(s, "%s overwritten", what); 672 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 673 fault, end - 1, fault[0], value); 674 print_trailer(s, page, object); 675 676 restore_bytes(s, what, value, fault, end); 677 return 0; 678 } 679 680 /* 681 * Object layout: 682 * 683 * object address 684 * Bytes of the object to be managed. 685 * If the freepointer may overlay the object then the free 686 * pointer is the first word of the object. 687 * 688 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 689 * 0xa5 (POISON_END) 690 * 691 * object + s->object_size 692 * Padding to reach word boundary. This is also used for Redzoning. 693 * Padding is extended by another word if Redzoning is enabled and 694 * object_size == inuse. 695 * 696 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 697 * 0xcc (RED_ACTIVE) for objects in use. 698 * 699 * object + s->inuse 700 * Meta data starts here. 701 * 702 * A. Free pointer (if we cannot overwrite object on free) 703 * B. Tracking data for SLAB_STORE_USER 704 * C. Padding to reach required alignment boundary or at mininum 705 * one word if debugging is on to be able to detect writes 706 * before the word boundary. 707 * 708 * Padding is done using 0x5a (POISON_INUSE) 709 * 710 * object + s->size 711 * Nothing is used beyond s->size. 712 * 713 * If slabcaches are merged then the object_size and inuse boundaries are mostly 714 * ignored. And therefore no slab options that rely on these boundaries 715 * may be used with merged slabcaches. 716 */ 717 718 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 719 { 720 unsigned long off = s->inuse; /* The end of info */ 721 722 if (s->offset) 723 /* Freepointer is placed after the object. */ 724 off += sizeof(void *); 725 726 if (s->flags & SLAB_STORE_USER) 727 /* We also have user information there */ 728 off += 2 * sizeof(struct track); 729 730 if (s->size == off) 731 return 1; 732 733 return check_bytes_and_report(s, page, p, "Object padding", 734 p + off, POISON_INUSE, s->size - off); 735 } 736 737 /* Check the pad bytes at the end of a slab page */ 738 static int slab_pad_check(struct kmem_cache *s, struct page *page) 739 { 740 u8 *start; 741 u8 *fault; 742 u8 *end; 743 int length; 744 int remainder; 745 746 if (!(s->flags & SLAB_POISON)) 747 return 1; 748 749 start = page_address(page); 750 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 751 end = start + length; 752 remainder = length % s->size; 753 if (!remainder) 754 return 1; 755 756 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 757 if (!fault) 758 return 1; 759 while (end > fault && end[-1] == POISON_INUSE) 760 end--; 761 762 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 763 print_section("Padding ", end - remainder, remainder); 764 765 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 766 return 0; 767 } 768 769 static int check_object(struct kmem_cache *s, struct page *page, 770 void *object, u8 val) 771 { 772 u8 *p = object; 773 u8 *endobject = object + s->object_size; 774 775 if (s->flags & SLAB_RED_ZONE) { 776 if (!check_bytes_and_report(s, page, object, "Redzone", 777 endobject, val, s->inuse - s->object_size)) 778 return 0; 779 } else { 780 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 781 check_bytes_and_report(s, page, p, "Alignment padding", 782 endobject, POISON_INUSE, s->inuse - s->object_size); 783 } 784 } 785 786 if (s->flags & SLAB_POISON) { 787 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 788 (!check_bytes_and_report(s, page, p, "Poison", p, 789 POISON_FREE, s->object_size - 1) || 790 !check_bytes_and_report(s, page, p, "Poison", 791 p + s->object_size - 1, POISON_END, 1))) 792 return 0; 793 /* 794 * check_pad_bytes cleans up on its own. 795 */ 796 check_pad_bytes(s, page, p); 797 } 798 799 if (!s->offset && val == SLUB_RED_ACTIVE) 800 /* 801 * Object and freepointer overlap. Cannot check 802 * freepointer while object is allocated. 803 */ 804 return 1; 805 806 /* Check free pointer validity */ 807 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 808 object_err(s, page, p, "Freepointer corrupt"); 809 /* 810 * No choice but to zap it and thus lose the remainder 811 * of the free objects in this slab. May cause 812 * another error because the object count is now wrong. 813 */ 814 set_freepointer(s, p, NULL); 815 return 0; 816 } 817 return 1; 818 } 819 820 static int check_slab(struct kmem_cache *s, struct page *page) 821 { 822 int maxobj; 823 824 VM_BUG_ON(!irqs_disabled()); 825 826 if (!PageSlab(page)) { 827 slab_err(s, page, "Not a valid slab page"); 828 return 0; 829 } 830 831 maxobj = order_objects(compound_order(page), s->size, s->reserved); 832 if (page->objects > maxobj) { 833 slab_err(s, page, "objects %u > max %u", 834 s->name, page->objects, maxobj); 835 return 0; 836 } 837 if (page->inuse > page->objects) { 838 slab_err(s, page, "inuse %u > max %u", 839 s->name, page->inuse, page->objects); 840 return 0; 841 } 842 /* Slab_pad_check fixes things up after itself */ 843 slab_pad_check(s, page); 844 return 1; 845 } 846 847 /* 848 * Determine if a certain object on a page is on the freelist. Must hold the 849 * slab lock to guarantee that the chains are in a consistent state. 850 */ 851 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 852 { 853 int nr = 0; 854 void *fp; 855 void *object = NULL; 856 unsigned long max_objects; 857 858 fp = page->freelist; 859 while (fp && nr <= page->objects) { 860 if (fp == search) 861 return 1; 862 if (!check_valid_pointer(s, page, fp)) { 863 if (object) { 864 object_err(s, page, object, 865 "Freechain corrupt"); 866 set_freepointer(s, object, NULL); 867 break; 868 } else { 869 slab_err(s, page, "Freepointer corrupt"); 870 page->freelist = NULL; 871 page->inuse = page->objects; 872 slab_fix(s, "Freelist cleared"); 873 return 0; 874 } 875 break; 876 } 877 object = fp; 878 fp = get_freepointer(s, object); 879 nr++; 880 } 881 882 max_objects = order_objects(compound_order(page), s->size, s->reserved); 883 if (max_objects > MAX_OBJS_PER_PAGE) 884 max_objects = MAX_OBJS_PER_PAGE; 885 886 if (page->objects != max_objects) { 887 slab_err(s, page, "Wrong number of objects. Found %d but " 888 "should be %d", page->objects, max_objects); 889 page->objects = max_objects; 890 slab_fix(s, "Number of objects adjusted."); 891 } 892 if (page->inuse != page->objects - nr) { 893 slab_err(s, page, "Wrong object count. Counter is %d but " 894 "counted were %d", page->inuse, page->objects - nr); 895 page->inuse = page->objects - nr; 896 slab_fix(s, "Object count adjusted."); 897 } 898 return search == NULL; 899 } 900 901 static void trace(struct kmem_cache *s, struct page *page, void *object, 902 int alloc) 903 { 904 if (s->flags & SLAB_TRACE) { 905 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 906 s->name, 907 alloc ? "alloc" : "free", 908 object, page->inuse, 909 page->freelist); 910 911 if (!alloc) 912 print_section("Object ", (void *)object, s->object_size); 913 914 dump_stack(); 915 } 916 } 917 918 /* 919 * Hooks for other subsystems that check memory allocations. In a typical 920 * production configuration these hooks all should produce no code at all. 921 */ 922 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 923 { 924 flags &= gfp_allowed_mask; 925 lockdep_trace_alloc(flags); 926 might_sleep_if(flags & __GFP_WAIT); 927 928 return should_failslab(s->object_size, flags, s->flags); 929 } 930 931 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object) 932 { 933 flags &= gfp_allowed_mask; 934 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 935 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); 936 } 937 938 static inline void slab_free_hook(struct kmem_cache *s, void *x) 939 { 940 kmemleak_free_recursive(x, s->flags); 941 942 /* 943 * Trouble is that we may no longer disable interupts in the fast path 944 * So in order to make the debug calls that expect irqs to be 945 * disabled we need to disable interrupts temporarily. 946 */ 947 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 948 { 949 unsigned long flags; 950 951 local_irq_save(flags); 952 kmemcheck_slab_free(s, x, s->object_size); 953 debug_check_no_locks_freed(x, s->object_size); 954 local_irq_restore(flags); 955 } 956 #endif 957 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 958 debug_check_no_obj_freed(x, s->object_size); 959 } 960 961 /* 962 * Tracking of fully allocated slabs for debugging purposes. 963 * 964 * list_lock must be held. 965 */ 966 static void add_full(struct kmem_cache *s, 967 struct kmem_cache_node *n, struct page *page) 968 { 969 if (!(s->flags & SLAB_STORE_USER)) 970 return; 971 972 list_add(&page->lru, &n->full); 973 } 974 975 /* 976 * list_lock must be held. 977 */ 978 static void remove_full(struct kmem_cache *s, struct page *page) 979 { 980 if (!(s->flags & SLAB_STORE_USER)) 981 return; 982 983 list_del(&page->lru); 984 } 985 986 /* Tracking of the number of slabs for debugging purposes */ 987 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 988 { 989 struct kmem_cache_node *n = get_node(s, node); 990 991 return atomic_long_read(&n->nr_slabs); 992 } 993 994 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 995 { 996 return atomic_long_read(&n->nr_slabs); 997 } 998 999 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1000 { 1001 struct kmem_cache_node *n = get_node(s, node); 1002 1003 /* 1004 * May be called early in order to allocate a slab for the 1005 * kmem_cache_node structure. Solve the chicken-egg 1006 * dilemma by deferring the increment of the count during 1007 * bootstrap (see early_kmem_cache_node_alloc). 1008 */ 1009 if (likely(n)) { 1010 atomic_long_inc(&n->nr_slabs); 1011 atomic_long_add(objects, &n->total_objects); 1012 } 1013 } 1014 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1015 { 1016 struct kmem_cache_node *n = get_node(s, node); 1017 1018 atomic_long_dec(&n->nr_slabs); 1019 atomic_long_sub(objects, &n->total_objects); 1020 } 1021 1022 /* Object debug checks for alloc/free paths */ 1023 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1024 void *object) 1025 { 1026 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1027 return; 1028 1029 init_object(s, object, SLUB_RED_INACTIVE); 1030 init_tracking(s, object); 1031 } 1032 1033 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page, 1034 void *object, unsigned long addr) 1035 { 1036 if (!check_slab(s, page)) 1037 goto bad; 1038 1039 if (!check_valid_pointer(s, page, object)) { 1040 object_err(s, page, object, "Freelist Pointer check fails"); 1041 goto bad; 1042 } 1043 1044 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1045 goto bad; 1046 1047 /* Success perform special debug activities for allocs */ 1048 if (s->flags & SLAB_STORE_USER) 1049 set_track(s, object, TRACK_ALLOC, addr); 1050 trace(s, page, object, 1); 1051 init_object(s, object, SLUB_RED_ACTIVE); 1052 return 1; 1053 1054 bad: 1055 if (PageSlab(page)) { 1056 /* 1057 * If this is a slab page then lets do the best we can 1058 * to avoid issues in the future. Marking all objects 1059 * as used avoids touching the remaining objects. 1060 */ 1061 slab_fix(s, "Marking all objects used"); 1062 page->inuse = page->objects; 1063 page->freelist = NULL; 1064 } 1065 return 0; 1066 } 1067 1068 static noinline struct kmem_cache_node *free_debug_processing( 1069 struct kmem_cache *s, struct page *page, void *object, 1070 unsigned long addr, unsigned long *flags) 1071 { 1072 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1073 1074 spin_lock_irqsave(&n->list_lock, *flags); 1075 slab_lock(page); 1076 1077 if (!check_slab(s, page)) 1078 goto fail; 1079 1080 if (!check_valid_pointer(s, page, object)) { 1081 slab_err(s, page, "Invalid object pointer 0x%p", object); 1082 goto fail; 1083 } 1084 1085 if (on_freelist(s, page, object)) { 1086 object_err(s, page, object, "Object already free"); 1087 goto fail; 1088 } 1089 1090 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1091 goto out; 1092 1093 if (unlikely(s != page->slab_cache)) { 1094 if (!PageSlab(page)) { 1095 slab_err(s, page, "Attempt to free object(0x%p) " 1096 "outside of slab", object); 1097 } else if (!page->slab_cache) { 1098 printk(KERN_ERR 1099 "SLUB <none>: no slab for object 0x%p.\n", 1100 object); 1101 dump_stack(); 1102 } else 1103 object_err(s, page, object, 1104 "page slab pointer corrupt."); 1105 goto fail; 1106 } 1107 1108 if (s->flags & SLAB_STORE_USER) 1109 set_track(s, object, TRACK_FREE, addr); 1110 trace(s, page, object, 0); 1111 init_object(s, object, SLUB_RED_INACTIVE); 1112 out: 1113 slab_unlock(page); 1114 /* 1115 * Keep node_lock to preserve integrity 1116 * until the object is actually freed 1117 */ 1118 return n; 1119 1120 fail: 1121 slab_unlock(page); 1122 spin_unlock_irqrestore(&n->list_lock, *flags); 1123 slab_fix(s, "Object at 0x%p not freed", object); 1124 return NULL; 1125 } 1126 1127 static int __init setup_slub_debug(char *str) 1128 { 1129 slub_debug = DEBUG_DEFAULT_FLAGS; 1130 if (*str++ != '=' || !*str) 1131 /* 1132 * No options specified. Switch on full debugging. 1133 */ 1134 goto out; 1135 1136 if (*str == ',') 1137 /* 1138 * No options but restriction on slabs. This means full 1139 * debugging for slabs matching a pattern. 1140 */ 1141 goto check_slabs; 1142 1143 if (tolower(*str) == 'o') { 1144 /* 1145 * Avoid enabling debugging on caches if its minimum order 1146 * would increase as a result. 1147 */ 1148 disable_higher_order_debug = 1; 1149 goto out; 1150 } 1151 1152 slub_debug = 0; 1153 if (*str == '-') 1154 /* 1155 * Switch off all debugging measures. 1156 */ 1157 goto out; 1158 1159 /* 1160 * Determine which debug features should be switched on 1161 */ 1162 for (; *str && *str != ','; str++) { 1163 switch (tolower(*str)) { 1164 case 'f': 1165 slub_debug |= SLAB_DEBUG_FREE; 1166 break; 1167 case 'z': 1168 slub_debug |= SLAB_RED_ZONE; 1169 break; 1170 case 'p': 1171 slub_debug |= SLAB_POISON; 1172 break; 1173 case 'u': 1174 slub_debug |= SLAB_STORE_USER; 1175 break; 1176 case 't': 1177 slub_debug |= SLAB_TRACE; 1178 break; 1179 case 'a': 1180 slub_debug |= SLAB_FAILSLAB; 1181 break; 1182 default: 1183 printk(KERN_ERR "slub_debug option '%c' " 1184 "unknown. skipped\n", *str); 1185 } 1186 } 1187 1188 check_slabs: 1189 if (*str == ',') 1190 slub_debug_slabs = str + 1; 1191 out: 1192 return 1; 1193 } 1194 1195 __setup("slub_debug", setup_slub_debug); 1196 1197 static unsigned long kmem_cache_flags(unsigned long object_size, 1198 unsigned long flags, const char *name, 1199 void (*ctor)(void *)) 1200 { 1201 /* 1202 * Enable debugging if selected on the kernel commandline. 1203 */ 1204 if (slub_debug && (!slub_debug_slabs || 1205 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) 1206 flags |= slub_debug; 1207 1208 return flags; 1209 } 1210 #else 1211 static inline void setup_object_debug(struct kmem_cache *s, 1212 struct page *page, void *object) {} 1213 1214 static inline int alloc_debug_processing(struct kmem_cache *s, 1215 struct page *page, void *object, unsigned long addr) { return 0; } 1216 1217 static inline struct kmem_cache_node *free_debug_processing( 1218 struct kmem_cache *s, struct page *page, void *object, 1219 unsigned long addr, unsigned long *flags) { return NULL; } 1220 1221 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1222 { return 1; } 1223 static inline int check_object(struct kmem_cache *s, struct page *page, 1224 void *object, u8 val) { return 1; } 1225 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1226 struct page *page) {} 1227 static inline void remove_full(struct kmem_cache *s, struct page *page) {} 1228 static inline unsigned long kmem_cache_flags(unsigned long object_size, 1229 unsigned long flags, const char *name, 1230 void (*ctor)(void *)) 1231 { 1232 return flags; 1233 } 1234 #define slub_debug 0 1235 1236 #define disable_higher_order_debug 0 1237 1238 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1239 { return 0; } 1240 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1241 { return 0; } 1242 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1243 int objects) {} 1244 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1245 int objects) {} 1246 1247 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 1248 { return 0; } 1249 1250 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 1251 void *object) {} 1252 1253 static inline void slab_free_hook(struct kmem_cache *s, void *x) {} 1254 1255 #endif /* CONFIG_SLUB_DEBUG */ 1256 1257 /* 1258 * Slab allocation and freeing 1259 */ 1260 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1261 struct kmem_cache_order_objects oo) 1262 { 1263 int order = oo_order(oo); 1264 1265 flags |= __GFP_NOTRACK; 1266 1267 if (node == NUMA_NO_NODE) 1268 return alloc_pages(flags, order); 1269 else 1270 return alloc_pages_exact_node(node, flags, order); 1271 } 1272 1273 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1274 { 1275 struct page *page; 1276 struct kmem_cache_order_objects oo = s->oo; 1277 gfp_t alloc_gfp; 1278 1279 flags &= gfp_allowed_mask; 1280 1281 if (flags & __GFP_WAIT) 1282 local_irq_enable(); 1283 1284 flags |= s->allocflags; 1285 1286 /* 1287 * Let the initial higher-order allocation fail under memory pressure 1288 * so we fall-back to the minimum order allocation. 1289 */ 1290 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1291 1292 page = alloc_slab_page(alloc_gfp, node, oo); 1293 if (unlikely(!page)) { 1294 oo = s->min; 1295 /* 1296 * Allocation may have failed due to fragmentation. 1297 * Try a lower order alloc if possible 1298 */ 1299 page = alloc_slab_page(flags, node, oo); 1300 1301 if (page) 1302 stat(s, ORDER_FALLBACK); 1303 } 1304 1305 if (kmemcheck_enabled && page 1306 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1307 int pages = 1 << oo_order(oo); 1308 1309 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1310 1311 /* 1312 * Objects from caches that have a constructor don't get 1313 * cleared when they're allocated, so we need to do it here. 1314 */ 1315 if (s->ctor) 1316 kmemcheck_mark_uninitialized_pages(page, pages); 1317 else 1318 kmemcheck_mark_unallocated_pages(page, pages); 1319 } 1320 1321 if (flags & __GFP_WAIT) 1322 local_irq_disable(); 1323 if (!page) 1324 return NULL; 1325 1326 page->objects = oo_objects(oo); 1327 mod_zone_page_state(page_zone(page), 1328 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1329 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1330 1 << oo_order(oo)); 1331 1332 return page; 1333 } 1334 1335 static void setup_object(struct kmem_cache *s, struct page *page, 1336 void *object) 1337 { 1338 setup_object_debug(s, page, object); 1339 if (unlikely(s->ctor)) 1340 s->ctor(object); 1341 } 1342 1343 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1344 { 1345 struct page *page; 1346 void *start; 1347 void *last; 1348 void *p; 1349 int order; 1350 1351 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1352 1353 page = allocate_slab(s, 1354 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1355 if (!page) 1356 goto out; 1357 1358 order = compound_order(page); 1359 inc_slabs_node(s, page_to_nid(page), page->objects); 1360 memcg_bind_pages(s, order); 1361 page->slab_cache = s; 1362 __SetPageSlab(page); 1363 if (page->pfmemalloc) 1364 SetPageSlabPfmemalloc(page); 1365 1366 start = page_address(page); 1367 1368 if (unlikely(s->flags & SLAB_POISON)) 1369 memset(start, POISON_INUSE, PAGE_SIZE << order); 1370 1371 last = start; 1372 for_each_object(p, s, start, page->objects) { 1373 setup_object(s, page, last); 1374 set_freepointer(s, last, p); 1375 last = p; 1376 } 1377 setup_object(s, page, last); 1378 set_freepointer(s, last, NULL); 1379 1380 page->freelist = start; 1381 page->inuse = page->objects; 1382 page->frozen = 1; 1383 out: 1384 return page; 1385 } 1386 1387 static void __free_slab(struct kmem_cache *s, struct page *page) 1388 { 1389 int order = compound_order(page); 1390 int pages = 1 << order; 1391 1392 if (kmem_cache_debug(s)) { 1393 void *p; 1394 1395 slab_pad_check(s, page); 1396 for_each_object(p, s, page_address(page), 1397 page->objects) 1398 check_object(s, page, p, SLUB_RED_INACTIVE); 1399 } 1400 1401 kmemcheck_free_shadow(page, compound_order(page)); 1402 1403 mod_zone_page_state(page_zone(page), 1404 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1405 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1406 -pages); 1407 1408 __ClearPageSlabPfmemalloc(page); 1409 __ClearPageSlab(page); 1410 1411 memcg_release_pages(s, order); 1412 page_mapcount_reset(page); 1413 if (current->reclaim_state) 1414 current->reclaim_state->reclaimed_slab += pages; 1415 __free_memcg_kmem_pages(page, order); 1416 } 1417 1418 #define need_reserve_slab_rcu \ 1419 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1420 1421 static void rcu_free_slab(struct rcu_head *h) 1422 { 1423 struct page *page; 1424 1425 if (need_reserve_slab_rcu) 1426 page = virt_to_head_page(h); 1427 else 1428 page = container_of((struct list_head *)h, struct page, lru); 1429 1430 __free_slab(page->slab_cache, page); 1431 } 1432 1433 static void free_slab(struct kmem_cache *s, struct page *page) 1434 { 1435 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1436 struct rcu_head *head; 1437 1438 if (need_reserve_slab_rcu) { 1439 int order = compound_order(page); 1440 int offset = (PAGE_SIZE << order) - s->reserved; 1441 1442 VM_BUG_ON(s->reserved != sizeof(*head)); 1443 head = page_address(page) + offset; 1444 } else { 1445 /* 1446 * RCU free overloads the RCU head over the LRU 1447 */ 1448 head = (void *)&page->lru; 1449 } 1450 1451 call_rcu(head, rcu_free_slab); 1452 } else 1453 __free_slab(s, page); 1454 } 1455 1456 static void discard_slab(struct kmem_cache *s, struct page *page) 1457 { 1458 dec_slabs_node(s, page_to_nid(page), page->objects); 1459 free_slab(s, page); 1460 } 1461 1462 /* 1463 * Management of partially allocated slabs. 1464 * 1465 * list_lock must be held. 1466 */ 1467 static inline void add_partial(struct kmem_cache_node *n, 1468 struct page *page, int tail) 1469 { 1470 n->nr_partial++; 1471 if (tail == DEACTIVATE_TO_TAIL) 1472 list_add_tail(&page->lru, &n->partial); 1473 else 1474 list_add(&page->lru, &n->partial); 1475 } 1476 1477 /* 1478 * list_lock must be held. 1479 */ 1480 static inline void remove_partial(struct kmem_cache_node *n, 1481 struct page *page) 1482 { 1483 list_del(&page->lru); 1484 n->nr_partial--; 1485 } 1486 1487 /* 1488 * Remove slab from the partial list, freeze it and 1489 * return the pointer to the freelist. 1490 * 1491 * Returns a list of objects or NULL if it fails. 1492 * 1493 * Must hold list_lock since we modify the partial list. 1494 */ 1495 static inline void *acquire_slab(struct kmem_cache *s, 1496 struct kmem_cache_node *n, struct page *page, 1497 int mode, int *objects) 1498 { 1499 void *freelist; 1500 unsigned long counters; 1501 struct page new; 1502 1503 /* 1504 * Zap the freelist and set the frozen bit. 1505 * The old freelist is the list of objects for the 1506 * per cpu allocation list. 1507 */ 1508 freelist = page->freelist; 1509 counters = page->counters; 1510 new.counters = counters; 1511 *objects = new.objects - new.inuse; 1512 if (mode) { 1513 new.inuse = page->objects; 1514 new.freelist = NULL; 1515 } else { 1516 new.freelist = freelist; 1517 } 1518 1519 VM_BUG_ON(new.frozen); 1520 new.frozen = 1; 1521 1522 if (!__cmpxchg_double_slab(s, page, 1523 freelist, counters, 1524 new.freelist, new.counters, 1525 "acquire_slab")) 1526 return NULL; 1527 1528 remove_partial(n, page); 1529 WARN_ON(!freelist); 1530 return freelist; 1531 } 1532 1533 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1534 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1535 1536 /* 1537 * Try to allocate a partial slab from a specific node. 1538 */ 1539 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1540 struct kmem_cache_cpu *c, gfp_t flags) 1541 { 1542 struct page *page, *page2; 1543 void *object = NULL; 1544 int available = 0; 1545 int objects; 1546 1547 /* 1548 * Racy check. If we mistakenly see no partial slabs then we 1549 * just allocate an empty slab. If we mistakenly try to get a 1550 * partial slab and there is none available then get_partials() 1551 * will return NULL. 1552 */ 1553 if (!n || !n->nr_partial) 1554 return NULL; 1555 1556 spin_lock(&n->list_lock); 1557 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1558 void *t; 1559 1560 if (!pfmemalloc_match(page, flags)) 1561 continue; 1562 1563 t = acquire_slab(s, n, page, object == NULL, &objects); 1564 if (!t) 1565 break; 1566 1567 available += objects; 1568 if (!object) { 1569 c->page = page; 1570 stat(s, ALLOC_FROM_PARTIAL); 1571 object = t; 1572 } else { 1573 put_cpu_partial(s, page, 0); 1574 stat(s, CPU_PARTIAL_NODE); 1575 } 1576 if (kmem_cache_debug(s) || available > s->cpu_partial / 2) 1577 break; 1578 1579 } 1580 spin_unlock(&n->list_lock); 1581 return object; 1582 } 1583 1584 /* 1585 * Get a page from somewhere. Search in increasing NUMA distances. 1586 */ 1587 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1588 struct kmem_cache_cpu *c) 1589 { 1590 #ifdef CONFIG_NUMA 1591 struct zonelist *zonelist; 1592 struct zoneref *z; 1593 struct zone *zone; 1594 enum zone_type high_zoneidx = gfp_zone(flags); 1595 void *object; 1596 unsigned int cpuset_mems_cookie; 1597 1598 /* 1599 * The defrag ratio allows a configuration of the tradeoffs between 1600 * inter node defragmentation and node local allocations. A lower 1601 * defrag_ratio increases the tendency to do local allocations 1602 * instead of attempting to obtain partial slabs from other nodes. 1603 * 1604 * If the defrag_ratio is set to 0 then kmalloc() always 1605 * returns node local objects. If the ratio is higher then kmalloc() 1606 * may return off node objects because partial slabs are obtained 1607 * from other nodes and filled up. 1608 * 1609 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1610 * defrag_ratio = 1000) then every (well almost) allocation will 1611 * first attempt to defrag slab caches on other nodes. This means 1612 * scanning over all nodes to look for partial slabs which may be 1613 * expensive if we do it every time we are trying to find a slab 1614 * with available objects. 1615 */ 1616 if (!s->remote_node_defrag_ratio || 1617 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1618 return NULL; 1619 1620 do { 1621 cpuset_mems_cookie = get_mems_allowed(); 1622 zonelist = node_zonelist(slab_node(), flags); 1623 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1624 struct kmem_cache_node *n; 1625 1626 n = get_node(s, zone_to_nid(zone)); 1627 1628 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1629 n->nr_partial > s->min_partial) { 1630 object = get_partial_node(s, n, c, flags); 1631 if (object) { 1632 /* 1633 * Return the object even if 1634 * put_mems_allowed indicated that 1635 * the cpuset mems_allowed was 1636 * updated in parallel. It's a 1637 * harmless race between the alloc 1638 * and the cpuset update. 1639 */ 1640 put_mems_allowed(cpuset_mems_cookie); 1641 return object; 1642 } 1643 } 1644 } 1645 } while (!put_mems_allowed(cpuset_mems_cookie)); 1646 #endif 1647 return NULL; 1648 } 1649 1650 /* 1651 * Get a partial page, lock it and return it. 1652 */ 1653 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1654 struct kmem_cache_cpu *c) 1655 { 1656 void *object; 1657 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; 1658 1659 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1660 if (object || node != NUMA_NO_NODE) 1661 return object; 1662 1663 return get_any_partial(s, flags, c); 1664 } 1665 1666 #ifdef CONFIG_PREEMPT 1667 /* 1668 * Calculate the next globally unique transaction for disambiguiation 1669 * during cmpxchg. The transactions start with the cpu number and are then 1670 * incremented by CONFIG_NR_CPUS. 1671 */ 1672 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1673 #else 1674 /* 1675 * No preemption supported therefore also no need to check for 1676 * different cpus. 1677 */ 1678 #define TID_STEP 1 1679 #endif 1680 1681 static inline unsigned long next_tid(unsigned long tid) 1682 { 1683 return tid + TID_STEP; 1684 } 1685 1686 static inline unsigned int tid_to_cpu(unsigned long tid) 1687 { 1688 return tid % TID_STEP; 1689 } 1690 1691 static inline unsigned long tid_to_event(unsigned long tid) 1692 { 1693 return tid / TID_STEP; 1694 } 1695 1696 static inline unsigned int init_tid(int cpu) 1697 { 1698 return cpu; 1699 } 1700 1701 static inline void note_cmpxchg_failure(const char *n, 1702 const struct kmem_cache *s, unsigned long tid) 1703 { 1704 #ifdef SLUB_DEBUG_CMPXCHG 1705 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1706 1707 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); 1708 1709 #ifdef CONFIG_PREEMPT 1710 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1711 printk("due to cpu change %d -> %d\n", 1712 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1713 else 1714 #endif 1715 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1716 printk("due to cpu running other code. Event %ld->%ld\n", 1717 tid_to_event(tid), tid_to_event(actual_tid)); 1718 else 1719 printk("for unknown reason: actual=%lx was=%lx target=%lx\n", 1720 actual_tid, tid, next_tid(tid)); 1721 #endif 1722 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1723 } 1724 1725 static void init_kmem_cache_cpus(struct kmem_cache *s) 1726 { 1727 int cpu; 1728 1729 for_each_possible_cpu(cpu) 1730 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1731 } 1732 1733 /* 1734 * Remove the cpu slab 1735 */ 1736 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist) 1737 { 1738 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1739 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1740 int lock = 0; 1741 enum slab_modes l = M_NONE, m = M_NONE; 1742 void *nextfree; 1743 int tail = DEACTIVATE_TO_HEAD; 1744 struct page new; 1745 struct page old; 1746 1747 if (page->freelist) { 1748 stat(s, DEACTIVATE_REMOTE_FREES); 1749 tail = DEACTIVATE_TO_TAIL; 1750 } 1751 1752 /* 1753 * Stage one: Free all available per cpu objects back 1754 * to the page freelist while it is still frozen. Leave the 1755 * last one. 1756 * 1757 * There is no need to take the list->lock because the page 1758 * is still frozen. 1759 */ 1760 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1761 void *prior; 1762 unsigned long counters; 1763 1764 do { 1765 prior = page->freelist; 1766 counters = page->counters; 1767 set_freepointer(s, freelist, prior); 1768 new.counters = counters; 1769 new.inuse--; 1770 VM_BUG_ON(!new.frozen); 1771 1772 } while (!__cmpxchg_double_slab(s, page, 1773 prior, counters, 1774 freelist, new.counters, 1775 "drain percpu freelist")); 1776 1777 freelist = nextfree; 1778 } 1779 1780 /* 1781 * Stage two: Ensure that the page is unfrozen while the 1782 * list presence reflects the actual number of objects 1783 * during unfreeze. 1784 * 1785 * We setup the list membership and then perform a cmpxchg 1786 * with the count. If there is a mismatch then the page 1787 * is not unfrozen but the page is on the wrong list. 1788 * 1789 * Then we restart the process which may have to remove 1790 * the page from the list that we just put it on again 1791 * because the number of objects in the slab may have 1792 * changed. 1793 */ 1794 redo: 1795 1796 old.freelist = page->freelist; 1797 old.counters = page->counters; 1798 VM_BUG_ON(!old.frozen); 1799 1800 /* Determine target state of the slab */ 1801 new.counters = old.counters; 1802 if (freelist) { 1803 new.inuse--; 1804 set_freepointer(s, freelist, old.freelist); 1805 new.freelist = freelist; 1806 } else 1807 new.freelist = old.freelist; 1808 1809 new.frozen = 0; 1810 1811 if (!new.inuse && n->nr_partial > s->min_partial) 1812 m = M_FREE; 1813 else if (new.freelist) { 1814 m = M_PARTIAL; 1815 if (!lock) { 1816 lock = 1; 1817 /* 1818 * Taking the spinlock removes the possiblity 1819 * that acquire_slab() will see a slab page that 1820 * is frozen 1821 */ 1822 spin_lock(&n->list_lock); 1823 } 1824 } else { 1825 m = M_FULL; 1826 if (kmem_cache_debug(s) && !lock) { 1827 lock = 1; 1828 /* 1829 * This also ensures that the scanning of full 1830 * slabs from diagnostic functions will not see 1831 * any frozen slabs. 1832 */ 1833 spin_lock(&n->list_lock); 1834 } 1835 } 1836 1837 if (l != m) { 1838 1839 if (l == M_PARTIAL) 1840 1841 remove_partial(n, page); 1842 1843 else if (l == M_FULL) 1844 1845 remove_full(s, page); 1846 1847 if (m == M_PARTIAL) { 1848 1849 add_partial(n, page, tail); 1850 stat(s, tail); 1851 1852 } else if (m == M_FULL) { 1853 1854 stat(s, DEACTIVATE_FULL); 1855 add_full(s, n, page); 1856 1857 } 1858 } 1859 1860 l = m; 1861 if (!__cmpxchg_double_slab(s, page, 1862 old.freelist, old.counters, 1863 new.freelist, new.counters, 1864 "unfreezing slab")) 1865 goto redo; 1866 1867 if (lock) 1868 spin_unlock(&n->list_lock); 1869 1870 if (m == M_FREE) { 1871 stat(s, DEACTIVATE_EMPTY); 1872 discard_slab(s, page); 1873 stat(s, FREE_SLAB); 1874 } 1875 } 1876 1877 /* 1878 * Unfreeze all the cpu partial slabs. 1879 * 1880 * This function must be called with interrupts disabled 1881 * for the cpu using c (or some other guarantee must be there 1882 * to guarantee no concurrent accesses). 1883 */ 1884 static void unfreeze_partials(struct kmem_cache *s, 1885 struct kmem_cache_cpu *c) 1886 { 1887 struct kmem_cache_node *n = NULL, *n2 = NULL; 1888 struct page *page, *discard_page = NULL; 1889 1890 while ((page = c->partial)) { 1891 struct page new; 1892 struct page old; 1893 1894 c->partial = page->next; 1895 1896 n2 = get_node(s, page_to_nid(page)); 1897 if (n != n2) { 1898 if (n) 1899 spin_unlock(&n->list_lock); 1900 1901 n = n2; 1902 spin_lock(&n->list_lock); 1903 } 1904 1905 do { 1906 1907 old.freelist = page->freelist; 1908 old.counters = page->counters; 1909 VM_BUG_ON(!old.frozen); 1910 1911 new.counters = old.counters; 1912 new.freelist = old.freelist; 1913 1914 new.frozen = 0; 1915 1916 } while (!__cmpxchg_double_slab(s, page, 1917 old.freelist, old.counters, 1918 new.freelist, new.counters, 1919 "unfreezing slab")); 1920 1921 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) { 1922 page->next = discard_page; 1923 discard_page = page; 1924 } else { 1925 add_partial(n, page, DEACTIVATE_TO_TAIL); 1926 stat(s, FREE_ADD_PARTIAL); 1927 } 1928 } 1929 1930 if (n) 1931 spin_unlock(&n->list_lock); 1932 1933 while (discard_page) { 1934 page = discard_page; 1935 discard_page = discard_page->next; 1936 1937 stat(s, DEACTIVATE_EMPTY); 1938 discard_slab(s, page); 1939 stat(s, FREE_SLAB); 1940 } 1941 } 1942 1943 /* 1944 * Put a page that was just frozen (in __slab_free) into a partial page 1945 * slot if available. This is done without interrupts disabled and without 1946 * preemption disabled. The cmpxchg is racy and may put the partial page 1947 * onto a random cpus partial slot. 1948 * 1949 * If we did not find a slot then simply move all the partials to the 1950 * per node partial list. 1951 */ 1952 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 1953 { 1954 struct page *oldpage; 1955 int pages; 1956 int pobjects; 1957 1958 do { 1959 pages = 0; 1960 pobjects = 0; 1961 oldpage = this_cpu_read(s->cpu_slab->partial); 1962 1963 if (oldpage) { 1964 pobjects = oldpage->pobjects; 1965 pages = oldpage->pages; 1966 if (drain && pobjects > s->cpu_partial) { 1967 unsigned long flags; 1968 /* 1969 * partial array is full. Move the existing 1970 * set to the per node partial list. 1971 */ 1972 local_irq_save(flags); 1973 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 1974 local_irq_restore(flags); 1975 oldpage = NULL; 1976 pobjects = 0; 1977 pages = 0; 1978 stat(s, CPU_PARTIAL_DRAIN); 1979 } 1980 } 1981 1982 pages++; 1983 pobjects += page->objects - page->inuse; 1984 1985 page->pages = pages; 1986 page->pobjects = pobjects; 1987 page->next = oldpage; 1988 1989 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); 1990 } 1991 1992 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1993 { 1994 stat(s, CPUSLAB_FLUSH); 1995 deactivate_slab(s, c->page, c->freelist); 1996 1997 c->tid = next_tid(c->tid); 1998 c->page = NULL; 1999 c->freelist = NULL; 2000 } 2001 2002 /* 2003 * Flush cpu slab. 2004 * 2005 * Called from IPI handler with interrupts disabled. 2006 */ 2007 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2008 { 2009 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2010 2011 if (likely(c)) { 2012 if (c->page) 2013 flush_slab(s, c); 2014 2015 unfreeze_partials(s, c); 2016 } 2017 } 2018 2019 static void flush_cpu_slab(void *d) 2020 { 2021 struct kmem_cache *s = d; 2022 2023 __flush_cpu_slab(s, smp_processor_id()); 2024 } 2025 2026 static bool has_cpu_slab(int cpu, void *info) 2027 { 2028 struct kmem_cache *s = info; 2029 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2030 2031 return c->page || c->partial; 2032 } 2033 2034 static void flush_all(struct kmem_cache *s) 2035 { 2036 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2037 } 2038 2039 /* 2040 * Check if the objects in a per cpu structure fit numa 2041 * locality expectations. 2042 */ 2043 static inline int node_match(struct page *page, int node) 2044 { 2045 #ifdef CONFIG_NUMA 2046 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2047 return 0; 2048 #endif 2049 return 1; 2050 } 2051 2052 static int count_free(struct page *page) 2053 { 2054 return page->objects - page->inuse; 2055 } 2056 2057 static unsigned long count_partial(struct kmem_cache_node *n, 2058 int (*get_count)(struct page *)) 2059 { 2060 unsigned long flags; 2061 unsigned long x = 0; 2062 struct page *page; 2063 2064 spin_lock_irqsave(&n->list_lock, flags); 2065 list_for_each_entry(page, &n->partial, lru) 2066 x += get_count(page); 2067 spin_unlock_irqrestore(&n->list_lock, flags); 2068 return x; 2069 } 2070 2071 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2072 { 2073 #ifdef CONFIG_SLUB_DEBUG 2074 return atomic_long_read(&n->total_objects); 2075 #else 2076 return 0; 2077 #endif 2078 } 2079 2080 static noinline void 2081 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2082 { 2083 int node; 2084 2085 printk(KERN_WARNING 2086 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2087 nid, gfpflags); 2088 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 2089 "default order: %d, min order: %d\n", s->name, s->object_size, 2090 s->size, oo_order(s->oo), oo_order(s->min)); 2091 2092 if (oo_order(s->min) > get_order(s->object_size)) 2093 printk(KERN_WARNING " %s debugging increased min order, use " 2094 "slub_debug=O to disable.\n", s->name); 2095 2096 for_each_online_node(node) { 2097 struct kmem_cache_node *n = get_node(s, node); 2098 unsigned long nr_slabs; 2099 unsigned long nr_objs; 2100 unsigned long nr_free; 2101 2102 if (!n) 2103 continue; 2104 2105 nr_free = count_partial(n, count_free); 2106 nr_slabs = node_nr_slabs(n); 2107 nr_objs = node_nr_objs(n); 2108 2109 printk(KERN_WARNING 2110 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 2111 node, nr_slabs, nr_objs, nr_free); 2112 } 2113 } 2114 2115 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2116 int node, struct kmem_cache_cpu **pc) 2117 { 2118 void *freelist; 2119 struct kmem_cache_cpu *c = *pc; 2120 struct page *page; 2121 2122 freelist = get_partial(s, flags, node, c); 2123 2124 if (freelist) 2125 return freelist; 2126 2127 page = new_slab(s, flags, node); 2128 if (page) { 2129 c = __this_cpu_ptr(s->cpu_slab); 2130 if (c->page) 2131 flush_slab(s, c); 2132 2133 /* 2134 * No other reference to the page yet so we can 2135 * muck around with it freely without cmpxchg 2136 */ 2137 freelist = page->freelist; 2138 page->freelist = NULL; 2139 2140 stat(s, ALLOC_SLAB); 2141 c->page = page; 2142 *pc = c; 2143 } else 2144 freelist = NULL; 2145 2146 return freelist; 2147 } 2148 2149 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2150 { 2151 if (unlikely(PageSlabPfmemalloc(page))) 2152 return gfp_pfmemalloc_allowed(gfpflags); 2153 2154 return true; 2155 } 2156 2157 /* 2158 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist 2159 * or deactivate the page. 2160 * 2161 * The page is still frozen if the return value is not NULL. 2162 * 2163 * If this function returns NULL then the page has been unfrozen. 2164 * 2165 * This function must be called with interrupt disabled. 2166 */ 2167 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2168 { 2169 struct page new; 2170 unsigned long counters; 2171 void *freelist; 2172 2173 do { 2174 freelist = page->freelist; 2175 counters = page->counters; 2176 2177 new.counters = counters; 2178 VM_BUG_ON(!new.frozen); 2179 2180 new.inuse = page->objects; 2181 new.frozen = freelist != NULL; 2182 2183 } while (!__cmpxchg_double_slab(s, page, 2184 freelist, counters, 2185 NULL, new.counters, 2186 "get_freelist")); 2187 2188 return freelist; 2189 } 2190 2191 /* 2192 * Slow path. The lockless freelist is empty or we need to perform 2193 * debugging duties. 2194 * 2195 * Processing is still very fast if new objects have been freed to the 2196 * regular freelist. In that case we simply take over the regular freelist 2197 * as the lockless freelist and zap the regular freelist. 2198 * 2199 * If that is not working then we fall back to the partial lists. We take the 2200 * first element of the freelist as the object to allocate now and move the 2201 * rest of the freelist to the lockless freelist. 2202 * 2203 * And if we were unable to get a new slab from the partial slab lists then 2204 * we need to allocate a new slab. This is the slowest path since it involves 2205 * a call to the page allocator and the setup of a new slab. 2206 */ 2207 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2208 unsigned long addr, struct kmem_cache_cpu *c) 2209 { 2210 void *freelist; 2211 struct page *page; 2212 unsigned long flags; 2213 2214 local_irq_save(flags); 2215 #ifdef CONFIG_PREEMPT 2216 /* 2217 * We may have been preempted and rescheduled on a different 2218 * cpu before disabling interrupts. Need to reload cpu area 2219 * pointer. 2220 */ 2221 c = this_cpu_ptr(s->cpu_slab); 2222 #endif 2223 2224 page = c->page; 2225 if (!page) 2226 goto new_slab; 2227 redo: 2228 2229 if (unlikely(!node_match(page, node))) { 2230 stat(s, ALLOC_NODE_MISMATCH); 2231 deactivate_slab(s, page, c->freelist); 2232 c->page = NULL; 2233 c->freelist = NULL; 2234 goto new_slab; 2235 } 2236 2237 /* 2238 * By rights, we should be searching for a slab page that was 2239 * PFMEMALLOC but right now, we are losing the pfmemalloc 2240 * information when the page leaves the per-cpu allocator 2241 */ 2242 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2243 deactivate_slab(s, page, c->freelist); 2244 c->page = NULL; 2245 c->freelist = NULL; 2246 goto new_slab; 2247 } 2248 2249 /* must check again c->freelist in case of cpu migration or IRQ */ 2250 freelist = c->freelist; 2251 if (freelist) 2252 goto load_freelist; 2253 2254 stat(s, ALLOC_SLOWPATH); 2255 2256 freelist = get_freelist(s, page); 2257 2258 if (!freelist) { 2259 c->page = NULL; 2260 stat(s, DEACTIVATE_BYPASS); 2261 goto new_slab; 2262 } 2263 2264 stat(s, ALLOC_REFILL); 2265 2266 load_freelist: 2267 /* 2268 * freelist is pointing to the list of objects to be used. 2269 * page is pointing to the page from which the objects are obtained. 2270 * That page must be frozen for per cpu allocations to work. 2271 */ 2272 VM_BUG_ON(!c->page->frozen); 2273 c->freelist = get_freepointer(s, freelist); 2274 c->tid = next_tid(c->tid); 2275 local_irq_restore(flags); 2276 return freelist; 2277 2278 new_slab: 2279 2280 if (c->partial) { 2281 page = c->page = c->partial; 2282 c->partial = page->next; 2283 stat(s, CPU_PARTIAL_ALLOC); 2284 c->freelist = NULL; 2285 goto redo; 2286 } 2287 2288 freelist = new_slab_objects(s, gfpflags, node, &c); 2289 2290 if (unlikely(!freelist)) { 2291 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 2292 slab_out_of_memory(s, gfpflags, node); 2293 2294 local_irq_restore(flags); 2295 return NULL; 2296 } 2297 2298 page = c->page; 2299 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2300 goto load_freelist; 2301 2302 /* Only entered in the debug case */ 2303 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr)) 2304 goto new_slab; /* Slab failed checks. Next slab needed */ 2305 2306 deactivate_slab(s, page, get_freepointer(s, freelist)); 2307 c->page = NULL; 2308 c->freelist = NULL; 2309 local_irq_restore(flags); 2310 return freelist; 2311 } 2312 2313 /* 2314 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2315 * have the fastpath folded into their functions. So no function call 2316 * overhead for requests that can be satisfied on the fastpath. 2317 * 2318 * The fastpath works by first checking if the lockless freelist can be used. 2319 * If not then __slab_alloc is called for slow processing. 2320 * 2321 * Otherwise we can simply pick the next object from the lockless free list. 2322 */ 2323 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2324 gfp_t gfpflags, int node, unsigned long addr) 2325 { 2326 void **object; 2327 struct kmem_cache_cpu *c; 2328 struct page *page; 2329 unsigned long tid; 2330 2331 if (slab_pre_alloc_hook(s, gfpflags)) 2332 return NULL; 2333 2334 s = memcg_kmem_get_cache(s, gfpflags); 2335 redo: 2336 /* 2337 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2338 * enabled. We may switch back and forth between cpus while 2339 * reading from one cpu area. That does not matter as long 2340 * as we end up on the original cpu again when doing the cmpxchg. 2341 * 2342 * Preemption is disabled for the retrieval of the tid because that 2343 * must occur from the current processor. We cannot allow rescheduling 2344 * on a different processor between the determination of the pointer 2345 * and the retrieval of the tid. 2346 */ 2347 preempt_disable(); 2348 c = __this_cpu_ptr(s->cpu_slab); 2349 2350 /* 2351 * The transaction ids are globally unique per cpu and per operation on 2352 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2353 * occurs on the right processor and that there was no operation on the 2354 * linked list in between. 2355 */ 2356 tid = c->tid; 2357 preempt_enable(); 2358 2359 object = c->freelist; 2360 page = c->page; 2361 if (unlikely(!object || !node_match(page, node))) 2362 object = __slab_alloc(s, gfpflags, node, addr, c); 2363 2364 else { 2365 void *next_object = get_freepointer_safe(s, object); 2366 2367 /* 2368 * The cmpxchg will only match if there was no additional 2369 * operation and if we are on the right processor. 2370 * 2371 * The cmpxchg does the following atomically (without lock semantics!) 2372 * 1. Relocate first pointer to the current per cpu area. 2373 * 2. Verify that tid and freelist have not been changed 2374 * 3. If they were not changed replace tid and freelist 2375 * 2376 * Since this is without lock semantics the protection is only against 2377 * code executing on this cpu *not* from access by other cpus. 2378 */ 2379 if (unlikely(!this_cpu_cmpxchg_double( 2380 s->cpu_slab->freelist, s->cpu_slab->tid, 2381 object, tid, 2382 next_object, next_tid(tid)))) { 2383 2384 note_cmpxchg_failure("slab_alloc", s, tid); 2385 goto redo; 2386 } 2387 prefetch_freepointer(s, next_object); 2388 stat(s, ALLOC_FASTPATH); 2389 } 2390 2391 if (unlikely(gfpflags & __GFP_ZERO) && object) 2392 memset(object, 0, s->object_size); 2393 2394 slab_post_alloc_hook(s, gfpflags, object); 2395 2396 return object; 2397 } 2398 2399 static __always_inline void *slab_alloc(struct kmem_cache *s, 2400 gfp_t gfpflags, unsigned long addr) 2401 { 2402 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2403 } 2404 2405 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2406 { 2407 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2408 2409 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags); 2410 2411 return ret; 2412 } 2413 EXPORT_SYMBOL(kmem_cache_alloc); 2414 2415 #ifdef CONFIG_TRACING 2416 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2417 { 2418 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2419 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2420 return ret; 2421 } 2422 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2423 2424 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 2425 { 2426 void *ret = kmalloc_order(size, flags, order); 2427 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 2428 return ret; 2429 } 2430 EXPORT_SYMBOL(kmalloc_order_trace); 2431 #endif 2432 2433 #ifdef CONFIG_NUMA 2434 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2435 { 2436 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2437 2438 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2439 s->object_size, s->size, gfpflags, node); 2440 2441 return ret; 2442 } 2443 EXPORT_SYMBOL(kmem_cache_alloc_node); 2444 2445 #ifdef CONFIG_TRACING 2446 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2447 gfp_t gfpflags, 2448 int node, size_t size) 2449 { 2450 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2451 2452 trace_kmalloc_node(_RET_IP_, ret, 2453 size, s->size, gfpflags, node); 2454 return ret; 2455 } 2456 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2457 #endif 2458 #endif 2459 2460 /* 2461 * Slow patch handling. This may still be called frequently since objects 2462 * have a longer lifetime than the cpu slabs in most processing loads. 2463 * 2464 * So we still attempt to reduce cache line usage. Just take the slab 2465 * lock and free the item. If there is no additional partial page 2466 * handling required then we can return immediately. 2467 */ 2468 static void __slab_free(struct kmem_cache *s, struct page *page, 2469 void *x, unsigned long addr) 2470 { 2471 void *prior; 2472 void **object = (void *)x; 2473 int was_frozen; 2474 struct page new; 2475 unsigned long counters; 2476 struct kmem_cache_node *n = NULL; 2477 unsigned long uninitialized_var(flags); 2478 2479 stat(s, FREE_SLOWPATH); 2480 2481 if (kmem_cache_debug(s) && 2482 !(n = free_debug_processing(s, page, x, addr, &flags))) 2483 return; 2484 2485 do { 2486 if (unlikely(n)) { 2487 spin_unlock_irqrestore(&n->list_lock, flags); 2488 n = NULL; 2489 } 2490 prior = page->freelist; 2491 counters = page->counters; 2492 set_freepointer(s, object, prior); 2493 new.counters = counters; 2494 was_frozen = new.frozen; 2495 new.inuse--; 2496 if ((!new.inuse || !prior) && !was_frozen) { 2497 2498 if (!kmem_cache_debug(s) && !prior) 2499 2500 /* 2501 * Slab was on no list before and will be partially empty 2502 * We can defer the list move and instead freeze it. 2503 */ 2504 new.frozen = 1; 2505 2506 else { /* Needs to be taken off a list */ 2507 2508 n = get_node(s, page_to_nid(page)); 2509 /* 2510 * Speculatively acquire the list_lock. 2511 * If the cmpxchg does not succeed then we may 2512 * drop the list_lock without any processing. 2513 * 2514 * Otherwise the list_lock will synchronize with 2515 * other processors updating the list of slabs. 2516 */ 2517 spin_lock_irqsave(&n->list_lock, flags); 2518 2519 } 2520 } 2521 2522 } while (!cmpxchg_double_slab(s, page, 2523 prior, counters, 2524 object, new.counters, 2525 "__slab_free")); 2526 2527 if (likely(!n)) { 2528 2529 /* 2530 * If we just froze the page then put it onto the 2531 * per cpu partial list. 2532 */ 2533 if (new.frozen && !was_frozen) { 2534 put_cpu_partial(s, page, 1); 2535 stat(s, CPU_PARTIAL_FREE); 2536 } 2537 /* 2538 * The list lock was not taken therefore no list 2539 * activity can be necessary. 2540 */ 2541 if (was_frozen) 2542 stat(s, FREE_FROZEN); 2543 return; 2544 } 2545 2546 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) 2547 goto slab_empty; 2548 2549 /* 2550 * Objects left in the slab. If it was not on the partial list before 2551 * then add it. 2552 */ 2553 if (kmem_cache_debug(s) && unlikely(!prior)) { 2554 remove_full(s, page); 2555 add_partial(n, page, DEACTIVATE_TO_TAIL); 2556 stat(s, FREE_ADD_PARTIAL); 2557 } 2558 spin_unlock_irqrestore(&n->list_lock, flags); 2559 return; 2560 2561 slab_empty: 2562 if (prior) { 2563 /* 2564 * Slab on the partial list. 2565 */ 2566 remove_partial(n, page); 2567 stat(s, FREE_REMOVE_PARTIAL); 2568 } else 2569 /* Slab must be on the full list */ 2570 remove_full(s, page); 2571 2572 spin_unlock_irqrestore(&n->list_lock, flags); 2573 stat(s, FREE_SLAB); 2574 discard_slab(s, page); 2575 } 2576 2577 /* 2578 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2579 * can perform fastpath freeing without additional function calls. 2580 * 2581 * The fastpath is only possible if we are freeing to the current cpu slab 2582 * of this processor. This typically the case if we have just allocated 2583 * the item before. 2584 * 2585 * If fastpath is not possible then fall back to __slab_free where we deal 2586 * with all sorts of special processing. 2587 */ 2588 static __always_inline void slab_free(struct kmem_cache *s, 2589 struct page *page, void *x, unsigned long addr) 2590 { 2591 void **object = (void *)x; 2592 struct kmem_cache_cpu *c; 2593 unsigned long tid; 2594 2595 slab_free_hook(s, x); 2596 2597 redo: 2598 /* 2599 * Determine the currently cpus per cpu slab. 2600 * The cpu may change afterward. However that does not matter since 2601 * data is retrieved via this pointer. If we are on the same cpu 2602 * during the cmpxchg then the free will succedd. 2603 */ 2604 preempt_disable(); 2605 c = __this_cpu_ptr(s->cpu_slab); 2606 2607 tid = c->tid; 2608 preempt_enable(); 2609 2610 if (likely(page == c->page)) { 2611 set_freepointer(s, object, c->freelist); 2612 2613 if (unlikely(!this_cpu_cmpxchg_double( 2614 s->cpu_slab->freelist, s->cpu_slab->tid, 2615 c->freelist, tid, 2616 object, next_tid(tid)))) { 2617 2618 note_cmpxchg_failure("slab_free", s, tid); 2619 goto redo; 2620 } 2621 stat(s, FREE_FASTPATH); 2622 } else 2623 __slab_free(s, page, x, addr); 2624 2625 } 2626 2627 void kmem_cache_free(struct kmem_cache *s, void *x) 2628 { 2629 s = cache_from_obj(s, x); 2630 if (!s) 2631 return; 2632 slab_free(s, virt_to_head_page(x), x, _RET_IP_); 2633 trace_kmem_cache_free(_RET_IP_, x); 2634 } 2635 EXPORT_SYMBOL(kmem_cache_free); 2636 2637 /* 2638 * Object placement in a slab is made very easy because we always start at 2639 * offset 0. If we tune the size of the object to the alignment then we can 2640 * get the required alignment by putting one properly sized object after 2641 * another. 2642 * 2643 * Notice that the allocation order determines the sizes of the per cpu 2644 * caches. Each processor has always one slab available for allocations. 2645 * Increasing the allocation order reduces the number of times that slabs 2646 * must be moved on and off the partial lists and is therefore a factor in 2647 * locking overhead. 2648 */ 2649 2650 /* 2651 * Mininum / Maximum order of slab pages. This influences locking overhead 2652 * and slab fragmentation. A higher order reduces the number of partial slabs 2653 * and increases the number of allocations possible without having to 2654 * take the list_lock. 2655 */ 2656 static int slub_min_order; 2657 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2658 static int slub_min_objects; 2659 2660 /* 2661 * Merge control. If this is set then no merging of slab caches will occur. 2662 * (Could be removed. This was introduced to pacify the merge skeptics.) 2663 */ 2664 static int slub_nomerge; 2665 2666 /* 2667 * Calculate the order of allocation given an slab object size. 2668 * 2669 * The order of allocation has significant impact on performance and other 2670 * system components. Generally order 0 allocations should be preferred since 2671 * order 0 does not cause fragmentation in the page allocator. Larger objects 2672 * be problematic to put into order 0 slabs because there may be too much 2673 * unused space left. We go to a higher order if more than 1/16th of the slab 2674 * would be wasted. 2675 * 2676 * In order to reach satisfactory performance we must ensure that a minimum 2677 * number of objects is in one slab. Otherwise we may generate too much 2678 * activity on the partial lists which requires taking the list_lock. This is 2679 * less a concern for large slabs though which are rarely used. 2680 * 2681 * slub_max_order specifies the order where we begin to stop considering the 2682 * number of objects in a slab as critical. If we reach slub_max_order then 2683 * we try to keep the page order as low as possible. So we accept more waste 2684 * of space in favor of a small page order. 2685 * 2686 * Higher order allocations also allow the placement of more objects in a 2687 * slab and thereby reduce object handling overhead. If the user has 2688 * requested a higher mininum order then we start with that one instead of 2689 * the smallest order which will fit the object. 2690 */ 2691 static inline int slab_order(int size, int min_objects, 2692 int max_order, int fract_leftover, int reserved) 2693 { 2694 int order; 2695 int rem; 2696 int min_order = slub_min_order; 2697 2698 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2699 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2700 2701 for (order = max(min_order, 2702 fls(min_objects * size - 1) - PAGE_SHIFT); 2703 order <= max_order; order++) { 2704 2705 unsigned long slab_size = PAGE_SIZE << order; 2706 2707 if (slab_size < min_objects * size + reserved) 2708 continue; 2709 2710 rem = (slab_size - reserved) % size; 2711 2712 if (rem <= slab_size / fract_leftover) 2713 break; 2714 2715 } 2716 2717 return order; 2718 } 2719 2720 static inline int calculate_order(int size, int reserved) 2721 { 2722 int order; 2723 int min_objects; 2724 int fraction; 2725 int max_objects; 2726 2727 /* 2728 * Attempt to find best configuration for a slab. This 2729 * works by first attempting to generate a layout with 2730 * the best configuration and backing off gradually. 2731 * 2732 * First we reduce the acceptable waste in a slab. Then 2733 * we reduce the minimum objects required in a slab. 2734 */ 2735 min_objects = slub_min_objects; 2736 if (!min_objects) 2737 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2738 max_objects = order_objects(slub_max_order, size, reserved); 2739 min_objects = min(min_objects, max_objects); 2740 2741 while (min_objects > 1) { 2742 fraction = 16; 2743 while (fraction >= 4) { 2744 order = slab_order(size, min_objects, 2745 slub_max_order, fraction, reserved); 2746 if (order <= slub_max_order) 2747 return order; 2748 fraction /= 2; 2749 } 2750 min_objects--; 2751 } 2752 2753 /* 2754 * We were unable to place multiple objects in a slab. Now 2755 * lets see if we can place a single object there. 2756 */ 2757 order = slab_order(size, 1, slub_max_order, 1, reserved); 2758 if (order <= slub_max_order) 2759 return order; 2760 2761 /* 2762 * Doh this slab cannot be placed using slub_max_order. 2763 */ 2764 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2765 if (order < MAX_ORDER) 2766 return order; 2767 return -ENOSYS; 2768 } 2769 2770 static void 2771 init_kmem_cache_node(struct kmem_cache_node *n) 2772 { 2773 n->nr_partial = 0; 2774 spin_lock_init(&n->list_lock); 2775 INIT_LIST_HEAD(&n->partial); 2776 #ifdef CONFIG_SLUB_DEBUG 2777 atomic_long_set(&n->nr_slabs, 0); 2778 atomic_long_set(&n->total_objects, 0); 2779 INIT_LIST_HEAD(&n->full); 2780 #endif 2781 } 2782 2783 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2784 { 2785 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2786 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 2787 2788 /* 2789 * Must align to double word boundary for the double cmpxchg 2790 * instructions to work; see __pcpu_double_call_return_bool(). 2791 */ 2792 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2793 2 * sizeof(void *)); 2794 2795 if (!s->cpu_slab) 2796 return 0; 2797 2798 init_kmem_cache_cpus(s); 2799 2800 return 1; 2801 } 2802 2803 static struct kmem_cache *kmem_cache_node; 2804 2805 /* 2806 * No kmalloc_node yet so do it by hand. We know that this is the first 2807 * slab on the node for this slabcache. There are no concurrent accesses 2808 * possible. 2809 * 2810 * Note that this function only works on the kmalloc_node_cache 2811 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2812 * memory on a fresh node that has no slab structures yet. 2813 */ 2814 static void early_kmem_cache_node_alloc(int node) 2815 { 2816 struct page *page; 2817 struct kmem_cache_node *n; 2818 2819 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2820 2821 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2822 2823 BUG_ON(!page); 2824 if (page_to_nid(page) != node) { 2825 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2826 "node %d\n", node); 2827 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2828 "in order to be able to continue\n"); 2829 } 2830 2831 n = page->freelist; 2832 BUG_ON(!n); 2833 page->freelist = get_freepointer(kmem_cache_node, n); 2834 page->inuse = 1; 2835 page->frozen = 0; 2836 kmem_cache_node->node[node] = n; 2837 #ifdef CONFIG_SLUB_DEBUG 2838 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2839 init_tracking(kmem_cache_node, n); 2840 #endif 2841 init_kmem_cache_node(n); 2842 inc_slabs_node(kmem_cache_node, node, page->objects); 2843 2844 add_partial(n, page, DEACTIVATE_TO_HEAD); 2845 } 2846 2847 static void free_kmem_cache_nodes(struct kmem_cache *s) 2848 { 2849 int node; 2850 2851 for_each_node_state(node, N_NORMAL_MEMORY) { 2852 struct kmem_cache_node *n = s->node[node]; 2853 2854 if (n) 2855 kmem_cache_free(kmem_cache_node, n); 2856 2857 s->node[node] = NULL; 2858 } 2859 } 2860 2861 static int init_kmem_cache_nodes(struct kmem_cache *s) 2862 { 2863 int node; 2864 2865 for_each_node_state(node, N_NORMAL_MEMORY) { 2866 struct kmem_cache_node *n; 2867 2868 if (slab_state == DOWN) { 2869 early_kmem_cache_node_alloc(node); 2870 continue; 2871 } 2872 n = kmem_cache_alloc_node(kmem_cache_node, 2873 GFP_KERNEL, node); 2874 2875 if (!n) { 2876 free_kmem_cache_nodes(s); 2877 return 0; 2878 } 2879 2880 s->node[node] = n; 2881 init_kmem_cache_node(n); 2882 } 2883 return 1; 2884 } 2885 2886 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2887 { 2888 if (min < MIN_PARTIAL) 2889 min = MIN_PARTIAL; 2890 else if (min > MAX_PARTIAL) 2891 min = MAX_PARTIAL; 2892 s->min_partial = min; 2893 } 2894 2895 /* 2896 * calculate_sizes() determines the order and the distribution of data within 2897 * a slab object. 2898 */ 2899 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2900 { 2901 unsigned long flags = s->flags; 2902 unsigned long size = s->object_size; 2903 int order; 2904 2905 /* 2906 * Round up object size to the next word boundary. We can only 2907 * place the free pointer at word boundaries and this determines 2908 * the possible location of the free pointer. 2909 */ 2910 size = ALIGN(size, sizeof(void *)); 2911 2912 #ifdef CONFIG_SLUB_DEBUG 2913 /* 2914 * Determine if we can poison the object itself. If the user of 2915 * the slab may touch the object after free or before allocation 2916 * then we should never poison the object itself. 2917 */ 2918 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2919 !s->ctor) 2920 s->flags |= __OBJECT_POISON; 2921 else 2922 s->flags &= ~__OBJECT_POISON; 2923 2924 2925 /* 2926 * If we are Redzoning then check if there is some space between the 2927 * end of the object and the free pointer. If not then add an 2928 * additional word to have some bytes to store Redzone information. 2929 */ 2930 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 2931 size += sizeof(void *); 2932 #endif 2933 2934 /* 2935 * With that we have determined the number of bytes in actual use 2936 * by the object. This is the potential offset to the free pointer. 2937 */ 2938 s->inuse = size; 2939 2940 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2941 s->ctor)) { 2942 /* 2943 * Relocate free pointer after the object if it is not 2944 * permitted to overwrite the first word of the object on 2945 * kmem_cache_free. 2946 * 2947 * This is the case if we do RCU, have a constructor or 2948 * destructor or are poisoning the objects. 2949 */ 2950 s->offset = size; 2951 size += sizeof(void *); 2952 } 2953 2954 #ifdef CONFIG_SLUB_DEBUG 2955 if (flags & SLAB_STORE_USER) 2956 /* 2957 * Need to store information about allocs and frees after 2958 * the object. 2959 */ 2960 size += 2 * sizeof(struct track); 2961 2962 if (flags & SLAB_RED_ZONE) 2963 /* 2964 * Add some empty padding so that we can catch 2965 * overwrites from earlier objects rather than let 2966 * tracking information or the free pointer be 2967 * corrupted if a user writes before the start 2968 * of the object. 2969 */ 2970 size += sizeof(void *); 2971 #endif 2972 2973 /* 2974 * SLUB stores one object immediately after another beginning from 2975 * offset 0. In order to align the objects we have to simply size 2976 * each object to conform to the alignment. 2977 */ 2978 size = ALIGN(size, s->align); 2979 s->size = size; 2980 if (forced_order >= 0) 2981 order = forced_order; 2982 else 2983 order = calculate_order(size, s->reserved); 2984 2985 if (order < 0) 2986 return 0; 2987 2988 s->allocflags = 0; 2989 if (order) 2990 s->allocflags |= __GFP_COMP; 2991 2992 if (s->flags & SLAB_CACHE_DMA) 2993 s->allocflags |= GFP_DMA; 2994 2995 if (s->flags & SLAB_RECLAIM_ACCOUNT) 2996 s->allocflags |= __GFP_RECLAIMABLE; 2997 2998 /* 2999 * Determine the number of objects per slab 3000 */ 3001 s->oo = oo_make(order, size, s->reserved); 3002 s->min = oo_make(get_order(size), size, s->reserved); 3003 if (oo_objects(s->oo) > oo_objects(s->max)) 3004 s->max = s->oo; 3005 3006 return !!oo_objects(s->oo); 3007 } 3008 3009 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3010 { 3011 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3012 s->reserved = 0; 3013 3014 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3015 s->reserved = sizeof(struct rcu_head); 3016 3017 if (!calculate_sizes(s, -1)) 3018 goto error; 3019 if (disable_higher_order_debug) { 3020 /* 3021 * Disable debugging flags that store metadata if the min slab 3022 * order increased. 3023 */ 3024 if (get_order(s->size) > get_order(s->object_size)) { 3025 s->flags &= ~DEBUG_METADATA_FLAGS; 3026 s->offset = 0; 3027 if (!calculate_sizes(s, -1)) 3028 goto error; 3029 } 3030 } 3031 3032 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3033 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3034 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3035 /* Enable fast mode */ 3036 s->flags |= __CMPXCHG_DOUBLE; 3037 #endif 3038 3039 /* 3040 * The larger the object size is, the more pages we want on the partial 3041 * list to avoid pounding the page allocator excessively. 3042 */ 3043 set_min_partial(s, ilog2(s->size) / 2); 3044 3045 /* 3046 * cpu_partial determined the maximum number of objects kept in the 3047 * per cpu partial lists of a processor. 3048 * 3049 * Per cpu partial lists mainly contain slabs that just have one 3050 * object freed. If they are used for allocation then they can be 3051 * filled up again with minimal effort. The slab will never hit the 3052 * per node partial lists and therefore no locking will be required. 3053 * 3054 * This setting also determines 3055 * 3056 * A) The number of objects from per cpu partial slabs dumped to the 3057 * per node list when we reach the limit. 3058 * B) The number of objects in cpu partial slabs to extract from the 3059 * per node list when we run out of per cpu objects. We only fetch 50% 3060 * to keep some capacity around for frees. 3061 */ 3062 if (kmem_cache_debug(s)) 3063 s->cpu_partial = 0; 3064 else if (s->size >= PAGE_SIZE) 3065 s->cpu_partial = 2; 3066 else if (s->size >= 1024) 3067 s->cpu_partial = 6; 3068 else if (s->size >= 256) 3069 s->cpu_partial = 13; 3070 else 3071 s->cpu_partial = 30; 3072 3073 #ifdef CONFIG_NUMA 3074 s->remote_node_defrag_ratio = 1000; 3075 #endif 3076 if (!init_kmem_cache_nodes(s)) 3077 goto error; 3078 3079 if (alloc_kmem_cache_cpus(s)) 3080 return 0; 3081 3082 free_kmem_cache_nodes(s); 3083 error: 3084 if (flags & SLAB_PANIC) 3085 panic("Cannot create slab %s size=%lu realsize=%u " 3086 "order=%u offset=%u flags=%lx\n", 3087 s->name, (unsigned long)s->size, s->size, oo_order(s->oo), 3088 s->offset, flags); 3089 return -EINVAL; 3090 } 3091 3092 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3093 const char *text) 3094 { 3095 #ifdef CONFIG_SLUB_DEBUG 3096 void *addr = page_address(page); 3097 void *p; 3098 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3099 sizeof(long), GFP_ATOMIC); 3100 if (!map) 3101 return; 3102 slab_err(s, page, text, s->name); 3103 slab_lock(page); 3104 3105 get_map(s, page, map); 3106 for_each_object(p, s, addr, page->objects) { 3107 3108 if (!test_bit(slab_index(p, s, addr), map)) { 3109 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 3110 p, p - addr); 3111 print_tracking(s, p); 3112 } 3113 } 3114 slab_unlock(page); 3115 kfree(map); 3116 #endif 3117 } 3118 3119 /* 3120 * Attempt to free all partial slabs on a node. 3121 * This is called from kmem_cache_close(). We must be the last thread 3122 * using the cache and therefore we do not need to lock anymore. 3123 */ 3124 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3125 { 3126 struct page *page, *h; 3127 3128 list_for_each_entry_safe(page, h, &n->partial, lru) { 3129 if (!page->inuse) { 3130 remove_partial(n, page); 3131 discard_slab(s, page); 3132 } else { 3133 list_slab_objects(s, page, 3134 "Objects remaining in %s on kmem_cache_close()"); 3135 } 3136 } 3137 } 3138 3139 /* 3140 * Release all resources used by a slab cache. 3141 */ 3142 static inline int kmem_cache_close(struct kmem_cache *s) 3143 { 3144 int node; 3145 3146 flush_all(s); 3147 /* Attempt to free all objects */ 3148 for_each_node_state(node, N_NORMAL_MEMORY) { 3149 struct kmem_cache_node *n = get_node(s, node); 3150 3151 free_partial(s, n); 3152 if (n->nr_partial || slabs_node(s, node)) 3153 return 1; 3154 } 3155 free_percpu(s->cpu_slab); 3156 free_kmem_cache_nodes(s); 3157 return 0; 3158 } 3159 3160 int __kmem_cache_shutdown(struct kmem_cache *s) 3161 { 3162 int rc = kmem_cache_close(s); 3163 3164 if (!rc) { 3165 /* 3166 * We do the same lock strategy around sysfs_slab_add, see 3167 * __kmem_cache_create. Because this is pretty much the last 3168 * operation we do and the lock will be released shortly after 3169 * that in slab_common.c, we could just move sysfs_slab_remove 3170 * to a later point in common code. We should do that when we 3171 * have a common sysfs framework for all allocators. 3172 */ 3173 mutex_unlock(&slab_mutex); 3174 sysfs_slab_remove(s); 3175 mutex_lock(&slab_mutex); 3176 } 3177 3178 return rc; 3179 } 3180 3181 /******************************************************************** 3182 * Kmalloc subsystem 3183 *******************************************************************/ 3184 3185 static int __init setup_slub_min_order(char *str) 3186 { 3187 get_option(&str, &slub_min_order); 3188 3189 return 1; 3190 } 3191 3192 __setup("slub_min_order=", setup_slub_min_order); 3193 3194 static int __init setup_slub_max_order(char *str) 3195 { 3196 get_option(&str, &slub_max_order); 3197 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3198 3199 return 1; 3200 } 3201 3202 __setup("slub_max_order=", setup_slub_max_order); 3203 3204 static int __init setup_slub_min_objects(char *str) 3205 { 3206 get_option(&str, &slub_min_objects); 3207 3208 return 1; 3209 } 3210 3211 __setup("slub_min_objects=", setup_slub_min_objects); 3212 3213 static int __init setup_slub_nomerge(char *str) 3214 { 3215 slub_nomerge = 1; 3216 return 1; 3217 } 3218 3219 __setup("slub_nomerge", setup_slub_nomerge); 3220 3221 void *__kmalloc(size_t size, gfp_t flags) 3222 { 3223 struct kmem_cache *s; 3224 void *ret; 3225 3226 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3227 return kmalloc_large(size, flags); 3228 3229 s = kmalloc_slab(size, flags); 3230 3231 if (unlikely(ZERO_OR_NULL_PTR(s))) 3232 return s; 3233 3234 ret = slab_alloc(s, flags, _RET_IP_); 3235 3236 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3237 3238 return ret; 3239 } 3240 EXPORT_SYMBOL(__kmalloc); 3241 3242 #ifdef CONFIG_NUMA 3243 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3244 { 3245 struct page *page; 3246 void *ptr = NULL; 3247 3248 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG; 3249 page = alloc_pages_node(node, flags, get_order(size)); 3250 if (page) 3251 ptr = page_address(page); 3252 3253 kmemleak_alloc(ptr, size, 1, flags); 3254 return ptr; 3255 } 3256 3257 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3258 { 3259 struct kmem_cache *s; 3260 void *ret; 3261 3262 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3263 ret = kmalloc_large_node(size, flags, node); 3264 3265 trace_kmalloc_node(_RET_IP_, ret, 3266 size, PAGE_SIZE << get_order(size), 3267 flags, node); 3268 3269 return ret; 3270 } 3271 3272 s = kmalloc_slab(size, flags); 3273 3274 if (unlikely(ZERO_OR_NULL_PTR(s))) 3275 return s; 3276 3277 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3278 3279 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3280 3281 return ret; 3282 } 3283 EXPORT_SYMBOL(__kmalloc_node); 3284 #endif 3285 3286 size_t ksize(const void *object) 3287 { 3288 struct page *page; 3289 3290 if (unlikely(object == ZERO_SIZE_PTR)) 3291 return 0; 3292 3293 page = virt_to_head_page(object); 3294 3295 if (unlikely(!PageSlab(page))) { 3296 WARN_ON(!PageCompound(page)); 3297 return PAGE_SIZE << compound_order(page); 3298 } 3299 3300 return slab_ksize(page->slab_cache); 3301 } 3302 EXPORT_SYMBOL(ksize); 3303 3304 #ifdef CONFIG_SLUB_DEBUG 3305 bool verify_mem_not_deleted(const void *x) 3306 { 3307 struct page *page; 3308 void *object = (void *)x; 3309 unsigned long flags; 3310 bool rv; 3311 3312 if (unlikely(ZERO_OR_NULL_PTR(x))) 3313 return false; 3314 3315 local_irq_save(flags); 3316 3317 page = virt_to_head_page(x); 3318 if (unlikely(!PageSlab(page))) { 3319 /* maybe it was from stack? */ 3320 rv = true; 3321 goto out_unlock; 3322 } 3323 3324 slab_lock(page); 3325 if (on_freelist(page->slab_cache, page, object)) { 3326 object_err(page->slab_cache, page, object, "Object is on free-list"); 3327 rv = false; 3328 } else { 3329 rv = true; 3330 } 3331 slab_unlock(page); 3332 3333 out_unlock: 3334 local_irq_restore(flags); 3335 return rv; 3336 } 3337 EXPORT_SYMBOL(verify_mem_not_deleted); 3338 #endif 3339 3340 void kfree(const void *x) 3341 { 3342 struct page *page; 3343 void *object = (void *)x; 3344 3345 trace_kfree(_RET_IP_, x); 3346 3347 if (unlikely(ZERO_OR_NULL_PTR(x))) 3348 return; 3349 3350 page = virt_to_head_page(x); 3351 if (unlikely(!PageSlab(page))) { 3352 BUG_ON(!PageCompound(page)); 3353 kmemleak_free(x); 3354 __free_memcg_kmem_pages(page, compound_order(page)); 3355 return; 3356 } 3357 slab_free(page->slab_cache, page, object, _RET_IP_); 3358 } 3359 EXPORT_SYMBOL(kfree); 3360 3361 /* 3362 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 3363 * the remaining slabs by the number of items in use. The slabs with the 3364 * most items in use come first. New allocations will then fill those up 3365 * and thus they can be removed from the partial lists. 3366 * 3367 * The slabs with the least items are placed last. This results in them 3368 * being allocated from last increasing the chance that the last objects 3369 * are freed in them. 3370 */ 3371 int kmem_cache_shrink(struct kmem_cache *s) 3372 { 3373 int node; 3374 int i; 3375 struct kmem_cache_node *n; 3376 struct page *page; 3377 struct page *t; 3378 int objects = oo_objects(s->max); 3379 struct list_head *slabs_by_inuse = 3380 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 3381 unsigned long flags; 3382 3383 if (!slabs_by_inuse) 3384 return -ENOMEM; 3385 3386 flush_all(s); 3387 for_each_node_state(node, N_NORMAL_MEMORY) { 3388 n = get_node(s, node); 3389 3390 if (!n->nr_partial) 3391 continue; 3392 3393 for (i = 0; i < objects; i++) 3394 INIT_LIST_HEAD(slabs_by_inuse + i); 3395 3396 spin_lock_irqsave(&n->list_lock, flags); 3397 3398 /* 3399 * Build lists indexed by the items in use in each slab. 3400 * 3401 * Note that concurrent frees may occur while we hold the 3402 * list_lock. page->inuse here is the upper limit. 3403 */ 3404 list_for_each_entry_safe(page, t, &n->partial, lru) { 3405 list_move(&page->lru, slabs_by_inuse + page->inuse); 3406 if (!page->inuse) 3407 n->nr_partial--; 3408 } 3409 3410 /* 3411 * Rebuild the partial list with the slabs filled up most 3412 * first and the least used slabs at the end. 3413 */ 3414 for (i = objects - 1; i > 0; i--) 3415 list_splice(slabs_by_inuse + i, n->partial.prev); 3416 3417 spin_unlock_irqrestore(&n->list_lock, flags); 3418 3419 /* Release empty slabs */ 3420 list_for_each_entry_safe(page, t, slabs_by_inuse, lru) 3421 discard_slab(s, page); 3422 } 3423 3424 kfree(slabs_by_inuse); 3425 return 0; 3426 } 3427 EXPORT_SYMBOL(kmem_cache_shrink); 3428 3429 static int slab_mem_going_offline_callback(void *arg) 3430 { 3431 struct kmem_cache *s; 3432 3433 mutex_lock(&slab_mutex); 3434 list_for_each_entry(s, &slab_caches, list) 3435 kmem_cache_shrink(s); 3436 mutex_unlock(&slab_mutex); 3437 3438 return 0; 3439 } 3440 3441 static void slab_mem_offline_callback(void *arg) 3442 { 3443 struct kmem_cache_node *n; 3444 struct kmem_cache *s; 3445 struct memory_notify *marg = arg; 3446 int offline_node; 3447 3448 offline_node = marg->status_change_nid_normal; 3449 3450 /* 3451 * If the node still has available memory. we need kmem_cache_node 3452 * for it yet. 3453 */ 3454 if (offline_node < 0) 3455 return; 3456 3457 mutex_lock(&slab_mutex); 3458 list_for_each_entry(s, &slab_caches, list) { 3459 n = get_node(s, offline_node); 3460 if (n) { 3461 /* 3462 * if n->nr_slabs > 0, slabs still exist on the node 3463 * that is going down. We were unable to free them, 3464 * and offline_pages() function shouldn't call this 3465 * callback. So, we must fail. 3466 */ 3467 BUG_ON(slabs_node(s, offline_node)); 3468 3469 s->node[offline_node] = NULL; 3470 kmem_cache_free(kmem_cache_node, n); 3471 } 3472 } 3473 mutex_unlock(&slab_mutex); 3474 } 3475 3476 static int slab_mem_going_online_callback(void *arg) 3477 { 3478 struct kmem_cache_node *n; 3479 struct kmem_cache *s; 3480 struct memory_notify *marg = arg; 3481 int nid = marg->status_change_nid_normal; 3482 int ret = 0; 3483 3484 /* 3485 * If the node's memory is already available, then kmem_cache_node is 3486 * already created. Nothing to do. 3487 */ 3488 if (nid < 0) 3489 return 0; 3490 3491 /* 3492 * We are bringing a node online. No memory is available yet. We must 3493 * allocate a kmem_cache_node structure in order to bring the node 3494 * online. 3495 */ 3496 mutex_lock(&slab_mutex); 3497 list_for_each_entry(s, &slab_caches, list) { 3498 /* 3499 * XXX: kmem_cache_alloc_node will fallback to other nodes 3500 * since memory is not yet available from the node that 3501 * is brought up. 3502 */ 3503 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3504 if (!n) { 3505 ret = -ENOMEM; 3506 goto out; 3507 } 3508 init_kmem_cache_node(n); 3509 s->node[nid] = n; 3510 } 3511 out: 3512 mutex_unlock(&slab_mutex); 3513 return ret; 3514 } 3515 3516 static int slab_memory_callback(struct notifier_block *self, 3517 unsigned long action, void *arg) 3518 { 3519 int ret = 0; 3520 3521 switch (action) { 3522 case MEM_GOING_ONLINE: 3523 ret = slab_mem_going_online_callback(arg); 3524 break; 3525 case MEM_GOING_OFFLINE: 3526 ret = slab_mem_going_offline_callback(arg); 3527 break; 3528 case MEM_OFFLINE: 3529 case MEM_CANCEL_ONLINE: 3530 slab_mem_offline_callback(arg); 3531 break; 3532 case MEM_ONLINE: 3533 case MEM_CANCEL_OFFLINE: 3534 break; 3535 } 3536 if (ret) 3537 ret = notifier_from_errno(ret); 3538 else 3539 ret = NOTIFY_OK; 3540 return ret; 3541 } 3542 3543 static struct notifier_block slab_memory_callback_nb = { 3544 .notifier_call = slab_memory_callback, 3545 .priority = SLAB_CALLBACK_PRI, 3546 }; 3547 3548 /******************************************************************** 3549 * Basic setup of slabs 3550 *******************************************************************/ 3551 3552 /* 3553 * Used for early kmem_cache structures that were allocated using 3554 * the page allocator. Allocate them properly then fix up the pointers 3555 * that may be pointing to the wrong kmem_cache structure. 3556 */ 3557 3558 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 3559 { 3560 int node; 3561 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 3562 3563 memcpy(s, static_cache, kmem_cache->object_size); 3564 3565 /* 3566 * This runs very early, and only the boot processor is supposed to be 3567 * up. Even if it weren't true, IRQs are not up so we couldn't fire 3568 * IPIs around. 3569 */ 3570 __flush_cpu_slab(s, smp_processor_id()); 3571 for_each_node_state(node, N_NORMAL_MEMORY) { 3572 struct kmem_cache_node *n = get_node(s, node); 3573 struct page *p; 3574 3575 if (n) { 3576 list_for_each_entry(p, &n->partial, lru) 3577 p->slab_cache = s; 3578 3579 #ifdef CONFIG_SLUB_DEBUG 3580 list_for_each_entry(p, &n->full, lru) 3581 p->slab_cache = s; 3582 #endif 3583 } 3584 } 3585 list_add(&s->list, &slab_caches); 3586 return s; 3587 } 3588 3589 void __init kmem_cache_init(void) 3590 { 3591 static __initdata struct kmem_cache boot_kmem_cache, 3592 boot_kmem_cache_node; 3593 3594 if (debug_guardpage_minorder()) 3595 slub_max_order = 0; 3596 3597 kmem_cache_node = &boot_kmem_cache_node; 3598 kmem_cache = &boot_kmem_cache; 3599 3600 create_boot_cache(kmem_cache_node, "kmem_cache_node", 3601 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 3602 3603 register_hotmemory_notifier(&slab_memory_callback_nb); 3604 3605 /* Able to allocate the per node structures */ 3606 slab_state = PARTIAL; 3607 3608 create_boot_cache(kmem_cache, "kmem_cache", 3609 offsetof(struct kmem_cache, node) + 3610 nr_node_ids * sizeof(struct kmem_cache_node *), 3611 SLAB_HWCACHE_ALIGN); 3612 3613 kmem_cache = bootstrap(&boot_kmem_cache); 3614 3615 /* 3616 * Allocate kmem_cache_node properly from the kmem_cache slab. 3617 * kmem_cache_node is separately allocated so no need to 3618 * update any list pointers. 3619 */ 3620 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 3621 3622 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3623 create_kmalloc_caches(0); 3624 3625 #ifdef CONFIG_SMP 3626 register_cpu_notifier(&slab_notifier); 3627 #endif 3628 3629 printk(KERN_INFO 3630 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d," 3631 " CPUs=%d, Nodes=%d\n", 3632 cache_line_size(), 3633 slub_min_order, slub_max_order, slub_min_objects, 3634 nr_cpu_ids, nr_node_ids); 3635 } 3636 3637 void __init kmem_cache_init_late(void) 3638 { 3639 } 3640 3641 /* 3642 * Find a mergeable slab cache 3643 */ 3644 static int slab_unmergeable(struct kmem_cache *s) 3645 { 3646 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3647 return 1; 3648 3649 if (s->ctor) 3650 return 1; 3651 3652 /* 3653 * We may have set a slab to be unmergeable during bootstrap. 3654 */ 3655 if (s->refcount < 0) 3656 return 1; 3657 3658 return 0; 3659 } 3660 3661 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size, 3662 size_t align, unsigned long flags, const char *name, 3663 void (*ctor)(void *)) 3664 { 3665 struct kmem_cache *s; 3666 3667 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3668 return NULL; 3669 3670 if (ctor) 3671 return NULL; 3672 3673 size = ALIGN(size, sizeof(void *)); 3674 align = calculate_alignment(flags, align, size); 3675 size = ALIGN(size, align); 3676 flags = kmem_cache_flags(size, flags, name, NULL); 3677 3678 list_for_each_entry(s, &slab_caches, list) { 3679 if (slab_unmergeable(s)) 3680 continue; 3681 3682 if (size > s->size) 3683 continue; 3684 3685 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3686 continue; 3687 /* 3688 * Check if alignment is compatible. 3689 * Courtesy of Adrian Drzewiecki 3690 */ 3691 if ((s->size & ~(align - 1)) != s->size) 3692 continue; 3693 3694 if (s->size - size >= sizeof(void *)) 3695 continue; 3696 3697 if (!cache_match_memcg(s, memcg)) 3698 continue; 3699 3700 return s; 3701 } 3702 return NULL; 3703 } 3704 3705 struct kmem_cache * 3706 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size, 3707 size_t align, unsigned long flags, void (*ctor)(void *)) 3708 { 3709 struct kmem_cache *s; 3710 3711 s = find_mergeable(memcg, size, align, flags, name, ctor); 3712 if (s) { 3713 s->refcount++; 3714 /* 3715 * Adjust the object sizes so that we clear 3716 * the complete object on kzalloc. 3717 */ 3718 s->object_size = max(s->object_size, (int)size); 3719 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3720 3721 if (sysfs_slab_alias(s, name)) { 3722 s->refcount--; 3723 s = NULL; 3724 } 3725 } 3726 3727 return s; 3728 } 3729 3730 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 3731 { 3732 int err; 3733 3734 err = kmem_cache_open(s, flags); 3735 if (err) 3736 return err; 3737 3738 /* Mutex is not taken during early boot */ 3739 if (slab_state <= UP) 3740 return 0; 3741 3742 memcg_propagate_slab_attrs(s); 3743 mutex_unlock(&slab_mutex); 3744 err = sysfs_slab_add(s); 3745 mutex_lock(&slab_mutex); 3746 3747 if (err) 3748 kmem_cache_close(s); 3749 3750 return err; 3751 } 3752 3753 #ifdef CONFIG_SMP 3754 /* 3755 * Use the cpu notifier to insure that the cpu slabs are flushed when 3756 * necessary. 3757 */ 3758 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3759 unsigned long action, void *hcpu) 3760 { 3761 long cpu = (long)hcpu; 3762 struct kmem_cache *s; 3763 unsigned long flags; 3764 3765 switch (action) { 3766 case CPU_UP_CANCELED: 3767 case CPU_UP_CANCELED_FROZEN: 3768 case CPU_DEAD: 3769 case CPU_DEAD_FROZEN: 3770 mutex_lock(&slab_mutex); 3771 list_for_each_entry(s, &slab_caches, list) { 3772 local_irq_save(flags); 3773 __flush_cpu_slab(s, cpu); 3774 local_irq_restore(flags); 3775 } 3776 mutex_unlock(&slab_mutex); 3777 break; 3778 default: 3779 break; 3780 } 3781 return NOTIFY_OK; 3782 } 3783 3784 static struct notifier_block __cpuinitdata slab_notifier = { 3785 .notifier_call = slab_cpuup_callback 3786 }; 3787 3788 #endif 3789 3790 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3791 { 3792 struct kmem_cache *s; 3793 void *ret; 3794 3795 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3796 return kmalloc_large(size, gfpflags); 3797 3798 s = kmalloc_slab(size, gfpflags); 3799 3800 if (unlikely(ZERO_OR_NULL_PTR(s))) 3801 return s; 3802 3803 ret = slab_alloc(s, gfpflags, caller); 3804 3805 /* Honor the call site pointer we received. */ 3806 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3807 3808 return ret; 3809 } 3810 3811 #ifdef CONFIG_NUMA 3812 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3813 int node, unsigned long caller) 3814 { 3815 struct kmem_cache *s; 3816 void *ret; 3817 3818 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3819 ret = kmalloc_large_node(size, gfpflags, node); 3820 3821 trace_kmalloc_node(caller, ret, 3822 size, PAGE_SIZE << get_order(size), 3823 gfpflags, node); 3824 3825 return ret; 3826 } 3827 3828 s = kmalloc_slab(size, gfpflags); 3829 3830 if (unlikely(ZERO_OR_NULL_PTR(s))) 3831 return s; 3832 3833 ret = slab_alloc_node(s, gfpflags, node, caller); 3834 3835 /* Honor the call site pointer we received. */ 3836 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3837 3838 return ret; 3839 } 3840 #endif 3841 3842 #ifdef CONFIG_SYSFS 3843 static int count_inuse(struct page *page) 3844 { 3845 return page->inuse; 3846 } 3847 3848 static int count_total(struct page *page) 3849 { 3850 return page->objects; 3851 } 3852 #endif 3853 3854 #ifdef CONFIG_SLUB_DEBUG 3855 static int validate_slab(struct kmem_cache *s, struct page *page, 3856 unsigned long *map) 3857 { 3858 void *p; 3859 void *addr = page_address(page); 3860 3861 if (!check_slab(s, page) || 3862 !on_freelist(s, page, NULL)) 3863 return 0; 3864 3865 /* Now we know that a valid freelist exists */ 3866 bitmap_zero(map, page->objects); 3867 3868 get_map(s, page, map); 3869 for_each_object(p, s, addr, page->objects) { 3870 if (test_bit(slab_index(p, s, addr), map)) 3871 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 3872 return 0; 3873 } 3874 3875 for_each_object(p, s, addr, page->objects) 3876 if (!test_bit(slab_index(p, s, addr), map)) 3877 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 3878 return 0; 3879 return 1; 3880 } 3881 3882 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3883 unsigned long *map) 3884 { 3885 slab_lock(page); 3886 validate_slab(s, page, map); 3887 slab_unlock(page); 3888 } 3889 3890 static int validate_slab_node(struct kmem_cache *s, 3891 struct kmem_cache_node *n, unsigned long *map) 3892 { 3893 unsigned long count = 0; 3894 struct page *page; 3895 unsigned long flags; 3896 3897 spin_lock_irqsave(&n->list_lock, flags); 3898 3899 list_for_each_entry(page, &n->partial, lru) { 3900 validate_slab_slab(s, page, map); 3901 count++; 3902 } 3903 if (count != n->nr_partial) 3904 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3905 "counter=%ld\n", s->name, count, n->nr_partial); 3906 3907 if (!(s->flags & SLAB_STORE_USER)) 3908 goto out; 3909 3910 list_for_each_entry(page, &n->full, lru) { 3911 validate_slab_slab(s, page, map); 3912 count++; 3913 } 3914 if (count != atomic_long_read(&n->nr_slabs)) 3915 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3916 "counter=%ld\n", s->name, count, 3917 atomic_long_read(&n->nr_slabs)); 3918 3919 out: 3920 spin_unlock_irqrestore(&n->list_lock, flags); 3921 return count; 3922 } 3923 3924 static long validate_slab_cache(struct kmem_cache *s) 3925 { 3926 int node; 3927 unsigned long count = 0; 3928 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3929 sizeof(unsigned long), GFP_KERNEL); 3930 3931 if (!map) 3932 return -ENOMEM; 3933 3934 flush_all(s); 3935 for_each_node_state(node, N_NORMAL_MEMORY) { 3936 struct kmem_cache_node *n = get_node(s, node); 3937 3938 count += validate_slab_node(s, n, map); 3939 } 3940 kfree(map); 3941 return count; 3942 } 3943 /* 3944 * Generate lists of code addresses where slabcache objects are allocated 3945 * and freed. 3946 */ 3947 3948 struct location { 3949 unsigned long count; 3950 unsigned long addr; 3951 long long sum_time; 3952 long min_time; 3953 long max_time; 3954 long min_pid; 3955 long max_pid; 3956 DECLARE_BITMAP(cpus, NR_CPUS); 3957 nodemask_t nodes; 3958 }; 3959 3960 struct loc_track { 3961 unsigned long max; 3962 unsigned long count; 3963 struct location *loc; 3964 }; 3965 3966 static void free_loc_track(struct loc_track *t) 3967 { 3968 if (t->max) 3969 free_pages((unsigned long)t->loc, 3970 get_order(sizeof(struct location) * t->max)); 3971 } 3972 3973 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3974 { 3975 struct location *l; 3976 int order; 3977 3978 order = get_order(sizeof(struct location) * max); 3979 3980 l = (void *)__get_free_pages(flags, order); 3981 if (!l) 3982 return 0; 3983 3984 if (t->count) { 3985 memcpy(l, t->loc, sizeof(struct location) * t->count); 3986 free_loc_track(t); 3987 } 3988 t->max = max; 3989 t->loc = l; 3990 return 1; 3991 } 3992 3993 static int add_location(struct loc_track *t, struct kmem_cache *s, 3994 const struct track *track) 3995 { 3996 long start, end, pos; 3997 struct location *l; 3998 unsigned long caddr; 3999 unsigned long age = jiffies - track->when; 4000 4001 start = -1; 4002 end = t->count; 4003 4004 for ( ; ; ) { 4005 pos = start + (end - start + 1) / 2; 4006 4007 /* 4008 * There is nothing at "end". If we end up there 4009 * we need to add something to before end. 4010 */ 4011 if (pos == end) 4012 break; 4013 4014 caddr = t->loc[pos].addr; 4015 if (track->addr == caddr) { 4016 4017 l = &t->loc[pos]; 4018 l->count++; 4019 if (track->when) { 4020 l->sum_time += age; 4021 if (age < l->min_time) 4022 l->min_time = age; 4023 if (age > l->max_time) 4024 l->max_time = age; 4025 4026 if (track->pid < l->min_pid) 4027 l->min_pid = track->pid; 4028 if (track->pid > l->max_pid) 4029 l->max_pid = track->pid; 4030 4031 cpumask_set_cpu(track->cpu, 4032 to_cpumask(l->cpus)); 4033 } 4034 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4035 return 1; 4036 } 4037 4038 if (track->addr < caddr) 4039 end = pos; 4040 else 4041 start = pos; 4042 } 4043 4044 /* 4045 * Not found. Insert new tracking element. 4046 */ 4047 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4048 return 0; 4049 4050 l = t->loc + pos; 4051 if (pos < t->count) 4052 memmove(l + 1, l, 4053 (t->count - pos) * sizeof(struct location)); 4054 t->count++; 4055 l->count = 1; 4056 l->addr = track->addr; 4057 l->sum_time = age; 4058 l->min_time = age; 4059 l->max_time = age; 4060 l->min_pid = track->pid; 4061 l->max_pid = track->pid; 4062 cpumask_clear(to_cpumask(l->cpus)); 4063 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4064 nodes_clear(l->nodes); 4065 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4066 return 1; 4067 } 4068 4069 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4070 struct page *page, enum track_item alloc, 4071 unsigned long *map) 4072 { 4073 void *addr = page_address(page); 4074 void *p; 4075 4076 bitmap_zero(map, page->objects); 4077 get_map(s, page, map); 4078 4079 for_each_object(p, s, addr, page->objects) 4080 if (!test_bit(slab_index(p, s, addr), map)) 4081 add_location(t, s, get_track(s, p, alloc)); 4082 } 4083 4084 static int list_locations(struct kmem_cache *s, char *buf, 4085 enum track_item alloc) 4086 { 4087 int len = 0; 4088 unsigned long i; 4089 struct loc_track t = { 0, 0, NULL }; 4090 int node; 4091 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4092 sizeof(unsigned long), GFP_KERNEL); 4093 4094 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4095 GFP_TEMPORARY)) { 4096 kfree(map); 4097 return sprintf(buf, "Out of memory\n"); 4098 } 4099 /* Push back cpu slabs */ 4100 flush_all(s); 4101 4102 for_each_node_state(node, N_NORMAL_MEMORY) { 4103 struct kmem_cache_node *n = get_node(s, node); 4104 unsigned long flags; 4105 struct page *page; 4106 4107 if (!atomic_long_read(&n->nr_slabs)) 4108 continue; 4109 4110 spin_lock_irqsave(&n->list_lock, flags); 4111 list_for_each_entry(page, &n->partial, lru) 4112 process_slab(&t, s, page, alloc, map); 4113 list_for_each_entry(page, &n->full, lru) 4114 process_slab(&t, s, page, alloc, map); 4115 spin_unlock_irqrestore(&n->list_lock, flags); 4116 } 4117 4118 for (i = 0; i < t.count; i++) { 4119 struct location *l = &t.loc[i]; 4120 4121 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4122 break; 4123 len += sprintf(buf + len, "%7ld ", l->count); 4124 4125 if (l->addr) 4126 len += sprintf(buf + len, "%pS", (void *)l->addr); 4127 else 4128 len += sprintf(buf + len, "<not-available>"); 4129 4130 if (l->sum_time != l->min_time) { 4131 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4132 l->min_time, 4133 (long)div_u64(l->sum_time, l->count), 4134 l->max_time); 4135 } else 4136 len += sprintf(buf + len, " age=%ld", 4137 l->min_time); 4138 4139 if (l->min_pid != l->max_pid) 4140 len += sprintf(buf + len, " pid=%ld-%ld", 4141 l->min_pid, l->max_pid); 4142 else 4143 len += sprintf(buf + len, " pid=%ld", 4144 l->min_pid); 4145 4146 if (num_online_cpus() > 1 && 4147 !cpumask_empty(to_cpumask(l->cpus)) && 4148 len < PAGE_SIZE - 60) { 4149 len += sprintf(buf + len, " cpus="); 4150 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4151 to_cpumask(l->cpus)); 4152 } 4153 4154 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4155 len < PAGE_SIZE - 60) { 4156 len += sprintf(buf + len, " nodes="); 4157 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4158 l->nodes); 4159 } 4160 4161 len += sprintf(buf + len, "\n"); 4162 } 4163 4164 free_loc_track(&t); 4165 kfree(map); 4166 if (!t.count) 4167 len += sprintf(buf, "No data\n"); 4168 return len; 4169 } 4170 #endif 4171 4172 #ifdef SLUB_RESILIENCY_TEST 4173 static void resiliency_test(void) 4174 { 4175 u8 *p; 4176 4177 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4178 4179 printk(KERN_ERR "SLUB resiliency testing\n"); 4180 printk(KERN_ERR "-----------------------\n"); 4181 printk(KERN_ERR "A. Corruption after allocation\n"); 4182 4183 p = kzalloc(16, GFP_KERNEL); 4184 p[16] = 0x12; 4185 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 4186 " 0x12->0x%p\n\n", p + 16); 4187 4188 validate_slab_cache(kmalloc_caches[4]); 4189 4190 /* Hmmm... The next two are dangerous */ 4191 p = kzalloc(32, GFP_KERNEL); 4192 p[32 + sizeof(void *)] = 0x34; 4193 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 4194 " 0x34 -> -0x%p\n", p); 4195 printk(KERN_ERR 4196 "If allocated object is overwritten then not detectable\n\n"); 4197 4198 validate_slab_cache(kmalloc_caches[5]); 4199 p = kzalloc(64, GFP_KERNEL); 4200 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4201 *p = 0x56; 4202 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4203 p); 4204 printk(KERN_ERR 4205 "If allocated object is overwritten then not detectable\n\n"); 4206 validate_slab_cache(kmalloc_caches[6]); 4207 4208 printk(KERN_ERR "\nB. Corruption after free\n"); 4209 p = kzalloc(128, GFP_KERNEL); 4210 kfree(p); 4211 *p = 0x78; 4212 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4213 validate_slab_cache(kmalloc_caches[7]); 4214 4215 p = kzalloc(256, GFP_KERNEL); 4216 kfree(p); 4217 p[50] = 0x9a; 4218 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 4219 p); 4220 validate_slab_cache(kmalloc_caches[8]); 4221 4222 p = kzalloc(512, GFP_KERNEL); 4223 kfree(p); 4224 p[512] = 0xab; 4225 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4226 validate_slab_cache(kmalloc_caches[9]); 4227 } 4228 #else 4229 #ifdef CONFIG_SYSFS 4230 static void resiliency_test(void) {}; 4231 #endif 4232 #endif 4233 4234 #ifdef CONFIG_SYSFS 4235 enum slab_stat_type { 4236 SL_ALL, /* All slabs */ 4237 SL_PARTIAL, /* Only partially allocated slabs */ 4238 SL_CPU, /* Only slabs used for cpu caches */ 4239 SL_OBJECTS, /* Determine allocated objects not slabs */ 4240 SL_TOTAL /* Determine object capacity not slabs */ 4241 }; 4242 4243 #define SO_ALL (1 << SL_ALL) 4244 #define SO_PARTIAL (1 << SL_PARTIAL) 4245 #define SO_CPU (1 << SL_CPU) 4246 #define SO_OBJECTS (1 << SL_OBJECTS) 4247 #define SO_TOTAL (1 << SL_TOTAL) 4248 4249 static ssize_t show_slab_objects(struct kmem_cache *s, 4250 char *buf, unsigned long flags) 4251 { 4252 unsigned long total = 0; 4253 int node; 4254 int x; 4255 unsigned long *nodes; 4256 unsigned long *per_cpu; 4257 4258 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4259 if (!nodes) 4260 return -ENOMEM; 4261 per_cpu = nodes + nr_node_ids; 4262 4263 if (flags & SO_CPU) { 4264 int cpu; 4265 4266 for_each_possible_cpu(cpu) { 4267 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 4268 int node; 4269 struct page *page; 4270 4271 page = ACCESS_ONCE(c->page); 4272 if (!page) 4273 continue; 4274 4275 node = page_to_nid(page); 4276 if (flags & SO_TOTAL) 4277 x = page->objects; 4278 else if (flags & SO_OBJECTS) 4279 x = page->inuse; 4280 else 4281 x = 1; 4282 4283 total += x; 4284 nodes[node] += x; 4285 4286 page = ACCESS_ONCE(c->partial); 4287 if (page) { 4288 x = page->pobjects; 4289 total += x; 4290 nodes[node] += x; 4291 } 4292 4293 per_cpu[node]++; 4294 } 4295 } 4296 4297 lock_memory_hotplug(); 4298 #ifdef CONFIG_SLUB_DEBUG 4299 if (flags & SO_ALL) { 4300 for_each_node_state(node, N_NORMAL_MEMORY) { 4301 struct kmem_cache_node *n = get_node(s, node); 4302 4303 if (flags & SO_TOTAL) 4304 x = atomic_long_read(&n->total_objects); 4305 else if (flags & SO_OBJECTS) 4306 x = atomic_long_read(&n->total_objects) - 4307 count_partial(n, count_free); 4308 4309 else 4310 x = atomic_long_read(&n->nr_slabs); 4311 total += x; 4312 nodes[node] += x; 4313 } 4314 4315 } else 4316 #endif 4317 if (flags & SO_PARTIAL) { 4318 for_each_node_state(node, N_NORMAL_MEMORY) { 4319 struct kmem_cache_node *n = get_node(s, node); 4320 4321 if (flags & SO_TOTAL) 4322 x = count_partial(n, count_total); 4323 else if (flags & SO_OBJECTS) 4324 x = count_partial(n, count_inuse); 4325 else 4326 x = n->nr_partial; 4327 total += x; 4328 nodes[node] += x; 4329 } 4330 } 4331 x = sprintf(buf, "%lu", total); 4332 #ifdef CONFIG_NUMA 4333 for_each_node_state(node, N_NORMAL_MEMORY) 4334 if (nodes[node]) 4335 x += sprintf(buf + x, " N%d=%lu", 4336 node, nodes[node]); 4337 #endif 4338 unlock_memory_hotplug(); 4339 kfree(nodes); 4340 return x + sprintf(buf + x, "\n"); 4341 } 4342 4343 #ifdef CONFIG_SLUB_DEBUG 4344 static int any_slab_objects(struct kmem_cache *s) 4345 { 4346 int node; 4347 4348 for_each_online_node(node) { 4349 struct kmem_cache_node *n = get_node(s, node); 4350 4351 if (!n) 4352 continue; 4353 4354 if (atomic_long_read(&n->total_objects)) 4355 return 1; 4356 } 4357 return 0; 4358 } 4359 #endif 4360 4361 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4362 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4363 4364 struct slab_attribute { 4365 struct attribute attr; 4366 ssize_t (*show)(struct kmem_cache *s, char *buf); 4367 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4368 }; 4369 4370 #define SLAB_ATTR_RO(_name) \ 4371 static struct slab_attribute _name##_attr = \ 4372 __ATTR(_name, 0400, _name##_show, NULL) 4373 4374 #define SLAB_ATTR(_name) \ 4375 static struct slab_attribute _name##_attr = \ 4376 __ATTR(_name, 0600, _name##_show, _name##_store) 4377 4378 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4379 { 4380 return sprintf(buf, "%d\n", s->size); 4381 } 4382 SLAB_ATTR_RO(slab_size); 4383 4384 static ssize_t align_show(struct kmem_cache *s, char *buf) 4385 { 4386 return sprintf(buf, "%d\n", s->align); 4387 } 4388 SLAB_ATTR_RO(align); 4389 4390 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4391 { 4392 return sprintf(buf, "%d\n", s->object_size); 4393 } 4394 SLAB_ATTR_RO(object_size); 4395 4396 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4397 { 4398 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4399 } 4400 SLAB_ATTR_RO(objs_per_slab); 4401 4402 static ssize_t order_store(struct kmem_cache *s, 4403 const char *buf, size_t length) 4404 { 4405 unsigned long order; 4406 int err; 4407 4408 err = strict_strtoul(buf, 10, &order); 4409 if (err) 4410 return err; 4411 4412 if (order > slub_max_order || order < slub_min_order) 4413 return -EINVAL; 4414 4415 calculate_sizes(s, order); 4416 return length; 4417 } 4418 4419 static ssize_t order_show(struct kmem_cache *s, char *buf) 4420 { 4421 return sprintf(buf, "%d\n", oo_order(s->oo)); 4422 } 4423 SLAB_ATTR(order); 4424 4425 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4426 { 4427 return sprintf(buf, "%lu\n", s->min_partial); 4428 } 4429 4430 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4431 size_t length) 4432 { 4433 unsigned long min; 4434 int err; 4435 4436 err = strict_strtoul(buf, 10, &min); 4437 if (err) 4438 return err; 4439 4440 set_min_partial(s, min); 4441 return length; 4442 } 4443 SLAB_ATTR(min_partial); 4444 4445 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4446 { 4447 return sprintf(buf, "%u\n", s->cpu_partial); 4448 } 4449 4450 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4451 size_t length) 4452 { 4453 unsigned long objects; 4454 int err; 4455 4456 err = strict_strtoul(buf, 10, &objects); 4457 if (err) 4458 return err; 4459 if (objects && kmem_cache_debug(s)) 4460 return -EINVAL; 4461 4462 s->cpu_partial = objects; 4463 flush_all(s); 4464 return length; 4465 } 4466 SLAB_ATTR(cpu_partial); 4467 4468 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4469 { 4470 if (!s->ctor) 4471 return 0; 4472 return sprintf(buf, "%pS\n", s->ctor); 4473 } 4474 SLAB_ATTR_RO(ctor); 4475 4476 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4477 { 4478 return sprintf(buf, "%d\n", s->refcount - 1); 4479 } 4480 SLAB_ATTR_RO(aliases); 4481 4482 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4483 { 4484 return show_slab_objects(s, buf, SO_PARTIAL); 4485 } 4486 SLAB_ATTR_RO(partial); 4487 4488 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4489 { 4490 return show_slab_objects(s, buf, SO_CPU); 4491 } 4492 SLAB_ATTR_RO(cpu_slabs); 4493 4494 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4495 { 4496 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4497 } 4498 SLAB_ATTR_RO(objects); 4499 4500 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4501 { 4502 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4503 } 4504 SLAB_ATTR_RO(objects_partial); 4505 4506 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4507 { 4508 int objects = 0; 4509 int pages = 0; 4510 int cpu; 4511 int len; 4512 4513 for_each_online_cpu(cpu) { 4514 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4515 4516 if (page) { 4517 pages += page->pages; 4518 objects += page->pobjects; 4519 } 4520 } 4521 4522 len = sprintf(buf, "%d(%d)", objects, pages); 4523 4524 #ifdef CONFIG_SMP 4525 for_each_online_cpu(cpu) { 4526 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4527 4528 if (page && len < PAGE_SIZE - 20) 4529 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4530 page->pobjects, page->pages); 4531 } 4532 #endif 4533 return len + sprintf(buf + len, "\n"); 4534 } 4535 SLAB_ATTR_RO(slabs_cpu_partial); 4536 4537 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4538 { 4539 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4540 } 4541 4542 static ssize_t reclaim_account_store(struct kmem_cache *s, 4543 const char *buf, size_t length) 4544 { 4545 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4546 if (buf[0] == '1') 4547 s->flags |= SLAB_RECLAIM_ACCOUNT; 4548 return length; 4549 } 4550 SLAB_ATTR(reclaim_account); 4551 4552 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4553 { 4554 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4555 } 4556 SLAB_ATTR_RO(hwcache_align); 4557 4558 #ifdef CONFIG_ZONE_DMA 4559 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4560 { 4561 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4562 } 4563 SLAB_ATTR_RO(cache_dma); 4564 #endif 4565 4566 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4567 { 4568 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4569 } 4570 SLAB_ATTR_RO(destroy_by_rcu); 4571 4572 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4573 { 4574 return sprintf(buf, "%d\n", s->reserved); 4575 } 4576 SLAB_ATTR_RO(reserved); 4577 4578 #ifdef CONFIG_SLUB_DEBUG 4579 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4580 { 4581 return show_slab_objects(s, buf, SO_ALL); 4582 } 4583 SLAB_ATTR_RO(slabs); 4584 4585 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4586 { 4587 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4588 } 4589 SLAB_ATTR_RO(total_objects); 4590 4591 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4592 { 4593 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4594 } 4595 4596 static ssize_t sanity_checks_store(struct kmem_cache *s, 4597 const char *buf, size_t length) 4598 { 4599 s->flags &= ~SLAB_DEBUG_FREE; 4600 if (buf[0] == '1') { 4601 s->flags &= ~__CMPXCHG_DOUBLE; 4602 s->flags |= SLAB_DEBUG_FREE; 4603 } 4604 return length; 4605 } 4606 SLAB_ATTR(sanity_checks); 4607 4608 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4609 { 4610 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4611 } 4612 4613 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4614 size_t length) 4615 { 4616 s->flags &= ~SLAB_TRACE; 4617 if (buf[0] == '1') { 4618 s->flags &= ~__CMPXCHG_DOUBLE; 4619 s->flags |= SLAB_TRACE; 4620 } 4621 return length; 4622 } 4623 SLAB_ATTR(trace); 4624 4625 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4626 { 4627 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4628 } 4629 4630 static ssize_t red_zone_store(struct kmem_cache *s, 4631 const char *buf, size_t length) 4632 { 4633 if (any_slab_objects(s)) 4634 return -EBUSY; 4635 4636 s->flags &= ~SLAB_RED_ZONE; 4637 if (buf[0] == '1') { 4638 s->flags &= ~__CMPXCHG_DOUBLE; 4639 s->flags |= SLAB_RED_ZONE; 4640 } 4641 calculate_sizes(s, -1); 4642 return length; 4643 } 4644 SLAB_ATTR(red_zone); 4645 4646 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4647 { 4648 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4649 } 4650 4651 static ssize_t poison_store(struct kmem_cache *s, 4652 const char *buf, size_t length) 4653 { 4654 if (any_slab_objects(s)) 4655 return -EBUSY; 4656 4657 s->flags &= ~SLAB_POISON; 4658 if (buf[0] == '1') { 4659 s->flags &= ~__CMPXCHG_DOUBLE; 4660 s->flags |= SLAB_POISON; 4661 } 4662 calculate_sizes(s, -1); 4663 return length; 4664 } 4665 SLAB_ATTR(poison); 4666 4667 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4668 { 4669 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4670 } 4671 4672 static ssize_t store_user_store(struct kmem_cache *s, 4673 const char *buf, size_t length) 4674 { 4675 if (any_slab_objects(s)) 4676 return -EBUSY; 4677 4678 s->flags &= ~SLAB_STORE_USER; 4679 if (buf[0] == '1') { 4680 s->flags &= ~__CMPXCHG_DOUBLE; 4681 s->flags |= SLAB_STORE_USER; 4682 } 4683 calculate_sizes(s, -1); 4684 return length; 4685 } 4686 SLAB_ATTR(store_user); 4687 4688 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4689 { 4690 return 0; 4691 } 4692 4693 static ssize_t validate_store(struct kmem_cache *s, 4694 const char *buf, size_t length) 4695 { 4696 int ret = -EINVAL; 4697 4698 if (buf[0] == '1') { 4699 ret = validate_slab_cache(s); 4700 if (ret >= 0) 4701 ret = length; 4702 } 4703 return ret; 4704 } 4705 SLAB_ATTR(validate); 4706 4707 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4708 { 4709 if (!(s->flags & SLAB_STORE_USER)) 4710 return -ENOSYS; 4711 return list_locations(s, buf, TRACK_ALLOC); 4712 } 4713 SLAB_ATTR_RO(alloc_calls); 4714 4715 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4716 { 4717 if (!(s->flags & SLAB_STORE_USER)) 4718 return -ENOSYS; 4719 return list_locations(s, buf, TRACK_FREE); 4720 } 4721 SLAB_ATTR_RO(free_calls); 4722 #endif /* CONFIG_SLUB_DEBUG */ 4723 4724 #ifdef CONFIG_FAILSLAB 4725 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4726 { 4727 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4728 } 4729 4730 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4731 size_t length) 4732 { 4733 s->flags &= ~SLAB_FAILSLAB; 4734 if (buf[0] == '1') 4735 s->flags |= SLAB_FAILSLAB; 4736 return length; 4737 } 4738 SLAB_ATTR(failslab); 4739 #endif 4740 4741 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4742 { 4743 return 0; 4744 } 4745 4746 static ssize_t shrink_store(struct kmem_cache *s, 4747 const char *buf, size_t length) 4748 { 4749 if (buf[0] == '1') { 4750 int rc = kmem_cache_shrink(s); 4751 4752 if (rc) 4753 return rc; 4754 } else 4755 return -EINVAL; 4756 return length; 4757 } 4758 SLAB_ATTR(shrink); 4759 4760 #ifdef CONFIG_NUMA 4761 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4762 { 4763 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4764 } 4765 4766 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4767 const char *buf, size_t length) 4768 { 4769 unsigned long ratio; 4770 int err; 4771 4772 err = strict_strtoul(buf, 10, &ratio); 4773 if (err) 4774 return err; 4775 4776 if (ratio <= 100) 4777 s->remote_node_defrag_ratio = ratio * 10; 4778 4779 return length; 4780 } 4781 SLAB_ATTR(remote_node_defrag_ratio); 4782 #endif 4783 4784 #ifdef CONFIG_SLUB_STATS 4785 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4786 { 4787 unsigned long sum = 0; 4788 int cpu; 4789 int len; 4790 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4791 4792 if (!data) 4793 return -ENOMEM; 4794 4795 for_each_online_cpu(cpu) { 4796 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4797 4798 data[cpu] = x; 4799 sum += x; 4800 } 4801 4802 len = sprintf(buf, "%lu", sum); 4803 4804 #ifdef CONFIG_SMP 4805 for_each_online_cpu(cpu) { 4806 if (data[cpu] && len < PAGE_SIZE - 20) 4807 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4808 } 4809 #endif 4810 kfree(data); 4811 return len + sprintf(buf + len, "\n"); 4812 } 4813 4814 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4815 { 4816 int cpu; 4817 4818 for_each_online_cpu(cpu) 4819 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4820 } 4821 4822 #define STAT_ATTR(si, text) \ 4823 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4824 { \ 4825 return show_stat(s, buf, si); \ 4826 } \ 4827 static ssize_t text##_store(struct kmem_cache *s, \ 4828 const char *buf, size_t length) \ 4829 { \ 4830 if (buf[0] != '0') \ 4831 return -EINVAL; \ 4832 clear_stat(s, si); \ 4833 return length; \ 4834 } \ 4835 SLAB_ATTR(text); \ 4836 4837 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4838 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4839 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4840 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4841 STAT_ATTR(FREE_FROZEN, free_frozen); 4842 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4843 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4844 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4845 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4846 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4847 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 4848 STAT_ATTR(FREE_SLAB, free_slab); 4849 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4850 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4851 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4852 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4853 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4854 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4855 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 4856 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4857 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 4858 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 4859 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 4860 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 4861 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 4862 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 4863 #endif 4864 4865 static struct attribute *slab_attrs[] = { 4866 &slab_size_attr.attr, 4867 &object_size_attr.attr, 4868 &objs_per_slab_attr.attr, 4869 &order_attr.attr, 4870 &min_partial_attr.attr, 4871 &cpu_partial_attr.attr, 4872 &objects_attr.attr, 4873 &objects_partial_attr.attr, 4874 &partial_attr.attr, 4875 &cpu_slabs_attr.attr, 4876 &ctor_attr.attr, 4877 &aliases_attr.attr, 4878 &align_attr.attr, 4879 &hwcache_align_attr.attr, 4880 &reclaim_account_attr.attr, 4881 &destroy_by_rcu_attr.attr, 4882 &shrink_attr.attr, 4883 &reserved_attr.attr, 4884 &slabs_cpu_partial_attr.attr, 4885 #ifdef CONFIG_SLUB_DEBUG 4886 &total_objects_attr.attr, 4887 &slabs_attr.attr, 4888 &sanity_checks_attr.attr, 4889 &trace_attr.attr, 4890 &red_zone_attr.attr, 4891 &poison_attr.attr, 4892 &store_user_attr.attr, 4893 &validate_attr.attr, 4894 &alloc_calls_attr.attr, 4895 &free_calls_attr.attr, 4896 #endif 4897 #ifdef CONFIG_ZONE_DMA 4898 &cache_dma_attr.attr, 4899 #endif 4900 #ifdef CONFIG_NUMA 4901 &remote_node_defrag_ratio_attr.attr, 4902 #endif 4903 #ifdef CONFIG_SLUB_STATS 4904 &alloc_fastpath_attr.attr, 4905 &alloc_slowpath_attr.attr, 4906 &free_fastpath_attr.attr, 4907 &free_slowpath_attr.attr, 4908 &free_frozen_attr.attr, 4909 &free_add_partial_attr.attr, 4910 &free_remove_partial_attr.attr, 4911 &alloc_from_partial_attr.attr, 4912 &alloc_slab_attr.attr, 4913 &alloc_refill_attr.attr, 4914 &alloc_node_mismatch_attr.attr, 4915 &free_slab_attr.attr, 4916 &cpuslab_flush_attr.attr, 4917 &deactivate_full_attr.attr, 4918 &deactivate_empty_attr.attr, 4919 &deactivate_to_head_attr.attr, 4920 &deactivate_to_tail_attr.attr, 4921 &deactivate_remote_frees_attr.attr, 4922 &deactivate_bypass_attr.attr, 4923 &order_fallback_attr.attr, 4924 &cmpxchg_double_fail_attr.attr, 4925 &cmpxchg_double_cpu_fail_attr.attr, 4926 &cpu_partial_alloc_attr.attr, 4927 &cpu_partial_free_attr.attr, 4928 &cpu_partial_node_attr.attr, 4929 &cpu_partial_drain_attr.attr, 4930 #endif 4931 #ifdef CONFIG_FAILSLAB 4932 &failslab_attr.attr, 4933 #endif 4934 4935 NULL 4936 }; 4937 4938 static struct attribute_group slab_attr_group = { 4939 .attrs = slab_attrs, 4940 }; 4941 4942 static ssize_t slab_attr_show(struct kobject *kobj, 4943 struct attribute *attr, 4944 char *buf) 4945 { 4946 struct slab_attribute *attribute; 4947 struct kmem_cache *s; 4948 int err; 4949 4950 attribute = to_slab_attr(attr); 4951 s = to_slab(kobj); 4952 4953 if (!attribute->show) 4954 return -EIO; 4955 4956 err = attribute->show(s, buf); 4957 4958 return err; 4959 } 4960 4961 static ssize_t slab_attr_store(struct kobject *kobj, 4962 struct attribute *attr, 4963 const char *buf, size_t len) 4964 { 4965 struct slab_attribute *attribute; 4966 struct kmem_cache *s; 4967 int err; 4968 4969 attribute = to_slab_attr(attr); 4970 s = to_slab(kobj); 4971 4972 if (!attribute->store) 4973 return -EIO; 4974 4975 err = attribute->store(s, buf, len); 4976 #ifdef CONFIG_MEMCG_KMEM 4977 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 4978 int i; 4979 4980 mutex_lock(&slab_mutex); 4981 if (s->max_attr_size < len) 4982 s->max_attr_size = len; 4983 4984 /* 4985 * This is a best effort propagation, so this function's return 4986 * value will be determined by the parent cache only. This is 4987 * basically because not all attributes will have a well 4988 * defined semantics for rollbacks - most of the actions will 4989 * have permanent effects. 4990 * 4991 * Returning the error value of any of the children that fail 4992 * is not 100 % defined, in the sense that users seeing the 4993 * error code won't be able to know anything about the state of 4994 * the cache. 4995 * 4996 * Only returning the error code for the parent cache at least 4997 * has well defined semantics. The cache being written to 4998 * directly either failed or succeeded, in which case we loop 4999 * through the descendants with best-effort propagation. 5000 */ 5001 for_each_memcg_cache_index(i) { 5002 struct kmem_cache *c = cache_from_memcg(s, i); 5003 if (c) 5004 attribute->store(c, buf, len); 5005 } 5006 mutex_unlock(&slab_mutex); 5007 } 5008 #endif 5009 return err; 5010 } 5011 5012 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5013 { 5014 #ifdef CONFIG_MEMCG_KMEM 5015 int i; 5016 char *buffer = NULL; 5017 5018 if (!is_root_cache(s)) 5019 return; 5020 5021 /* 5022 * This mean this cache had no attribute written. Therefore, no point 5023 * in copying default values around 5024 */ 5025 if (!s->max_attr_size) 5026 return; 5027 5028 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5029 char mbuf[64]; 5030 char *buf; 5031 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5032 5033 if (!attr || !attr->store || !attr->show) 5034 continue; 5035 5036 /* 5037 * It is really bad that we have to allocate here, so we will 5038 * do it only as a fallback. If we actually allocate, though, 5039 * we can just use the allocated buffer until the end. 5040 * 5041 * Most of the slub attributes will tend to be very small in 5042 * size, but sysfs allows buffers up to a page, so they can 5043 * theoretically happen. 5044 */ 5045 if (buffer) 5046 buf = buffer; 5047 else if (s->max_attr_size < ARRAY_SIZE(mbuf)) 5048 buf = mbuf; 5049 else { 5050 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5051 if (WARN_ON(!buffer)) 5052 continue; 5053 buf = buffer; 5054 } 5055 5056 attr->show(s->memcg_params->root_cache, buf); 5057 attr->store(s, buf, strlen(buf)); 5058 } 5059 5060 if (buffer) 5061 free_page((unsigned long)buffer); 5062 #endif 5063 } 5064 5065 static const struct sysfs_ops slab_sysfs_ops = { 5066 .show = slab_attr_show, 5067 .store = slab_attr_store, 5068 }; 5069 5070 static struct kobj_type slab_ktype = { 5071 .sysfs_ops = &slab_sysfs_ops, 5072 }; 5073 5074 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5075 { 5076 struct kobj_type *ktype = get_ktype(kobj); 5077 5078 if (ktype == &slab_ktype) 5079 return 1; 5080 return 0; 5081 } 5082 5083 static const struct kset_uevent_ops slab_uevent_ops = { 5084 .filter = uevent_filter, 5085 }; 5086 5087 static struct kset *slab_kset; 5088 5089 #define ID_STR_LENGTH 64 5090 5091 /* Create a unique string id for a slab cache: 5092 * 5093 * Format :[flags-]size 5094 */ 5095 static char *create_unique_id(struct kmem_cache *s) 5096 { 5097 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5098 char *p = name; 5099 5100 BUG_ON(!name); 5101 5102 *p++ = ':'; 5103 /* 5104 * First flags affecting slabcache operations. We will only 5105 * get here for aliasable slabs so we do not need to support 5106 * too many flags. The flags here must cover all flags that 5107 * are matched during merging to guarantee that the id is 5108 * unique. 5109 */ 5110 if (s->flags & SLAB_CACHE_DMA) 5111 *p++ = 'd'; 5112 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5113 *p++ = 'a'; 5114 if (s->flags & SLAB_DEBUG_FREE) 5115 *p++ = 'F'; 5116 if (!(s->flags & SLAB_NOTRACK)) 5117 *p++ = 't'; 5118 if (p != name + 1) 5119 *p++ = '-'; 5120 p += sprintf(p, "%07d", s->size); 5121 5122 #ifdef CONFIG_MEMCG_KMEM 5123 if (!is_root_cache(s)) 5124 p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg)); 5125 #endif 5126 5127 BUG_ON(p > name + ID_STR_LENGTH - 1); 5128 return name; 5129 } 5130 5131 static int sysfs_slab_add(struct kmem_cache *s) 5132 { 5133 int err; 5134 const char *name; 5135 int unmergeable = slab_unmergeable(s); 5136 5137 if (unmergeable) { 5138 /* 5139 * Slabcache can never be merged so we can use the name proper. 5140 * This is typically the case for debug situations. In that 5141 * case we can catch duplicate names easily. 5142 */ 5143 sysfs_remove_link(&slab_kset->kobj, s->name); 5144 name = s->name; 5145 } else { 5146 /* 5147 * Create a unique name for the slab as a target 5148 * for the symlinks. 5149 */ 5150 name = create_unique_id(s); 5151 } 5152 5153 s->kobj.kset = slab_kset; 5154 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 5155 if (err) { 5156 kobject_put(&s->kobj); 5157 return err; 5158 } 5159 5160 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5161 if (err) { 5162 kobject_del(&s->kobj); 5163 kobject_put(&s->kobj); 5164 return err; 5165 } 5166 kobject_uevent(&s->kobj, KOBJ_ADD); 5167 if (!unmergeable) { 5168 /* Setup first alias */ 5169 sysfs_slab_alias(s, s->name); 5170 kfree(name); 5171 } 5172 return 0; 5173 } 5174 5175 static void sysfs_slab_remove(struct kmem_cache *s) 5176 { 5177 if (slab_state < FULL) 5178 /* 5179 * Sysfs has not been setup yet so no need to remove the 5180 * cache from sysfs. 5181 */ 5182 return; 5183 5184 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5185 kobject_del(&s->kobj); 5186 kobject_put(&s->kobj); 5187 } 5188 5189 /* 5190 * Need to buffer aliases during bootup until sysfs becomes 5191 * available lest we lose that information. 5192 */ 5193 struct saved_alias { 5194 struct kmem_cache *s; 5195 const char *name; 5196 struct saved_alias *next; 5197 }; 5198 5199 static struct saved_alias *alias_list; 5200 5201 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5202 { 5203 struct saved_alias *al; 5204 5205 if (slab_state == FULL) { 5206 /* 5207 * If we have a leftover link then remove it. 5208 */ 5209 sysfs_remove_link(&slab_kset->kobj, name); 5210 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5211 } 5212 5213 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5214 if (!al) 5215 return -ENOMEM; 5216 5217 al->s = s; 5218 al->name = name; 5219 al->next = alias_list; 5220 alias_list = al; 5221 return 0; 5222 } 5223 5224 static int __init slab_sysfs_init(void) 5225 { 5226 struct kmem_cache *s; 5227 int err; 5228 5229 mutex_lock(&slab_mutex); 5230 5231 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5232 if (!slab_kset) { 5233 mutex_unlock(&slab_mutex); 5234 printk(KERN_ERR "Cannot register slab subsystem.\n"); 5235 return -ENOSYS; 5236 } 5237 5238 slab_state = FULL; 5239 5240 list_for_each_entry(s, &slab_caches, list) { 5241 err = sysfs_slab_add(s); 5242 if (err) 5243 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 5244 " to sysfs\n", s->name); 5245 } 5246 5247 while (alias_list) { 5248 struct saved_alias *al = alias_list; 5249 5250 alias_list = alias_list->next; 5251 err = sysfs_slab_alias(al->s, al->name); 5252 if (err) 5253 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 5254 " %s to sysfs\n", al->name); 5255 kfree(al); 5256 } 5257 5258 mutex_unlock(&slab_mutex); 5259 resiliency_test(); 5260 return 0; 5261 } 5262 5263 __initcall(slab_sysfs_init); 5264 #endif /* CONFIG_SYSFS */ 5265 5266 /* 5267 * The /proc/slabinfo ABI 5268 */ 5269 #ifdef CONFIG_SLABINFO 5270 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5271 { 5272 unsigned long nr_partials = 0; 5273 unsigned long nr_slabs = 0; 5274 unsigned long nr_objs = 0; 5275 unsigned long nr_free = 0; 5276 int node; 5277 5278 for_each_online_node(node) { 5279 struct kmem_cache_node *n = get_node(s, node); 5280 5281 if (!n) 5282 continue; 5283 5284 nr_partials += n->nr_partial; 5285 nr_slabs += atomic_long_read(&n->nr_slabs); 5286 nr_objs += atomic_long_read(&n->total_objects); 5287 nr_free += count_partial(n, count_free); 5288 } 5289 5290 sinfo->active_objs = nr_objs - nr_free; 5291 sinfo->num_objs = nr_objs; 5292 sinfo->active_slabs = nr_slabs; 5293 sinfo->num_slabs = nr_slabs; 5294 sinfo->objects_per_slab = oo_objects(s->oo); 5295 sinfo->cache_order = oo_order(s->oo); 5296 } 5297 5298 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5299 { 5300 } 5301 5302 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5303 size_t count, loff_t *ppos) 5304 { 5305 return -EIO; 5306 } 5307 #endif /* CONFIG_SLABINFO */ 5308