xref: /openbmc/linux/mm/slub.c (revision 36bccb11)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 
37 #include <trace/events/kmem.h>
38 
39 #include "internal.h"
40 
41 /*
42  * Lock order:
43  *   1. slab_mutex (Global Mutex)
44  *   2. node->list_lock
45  *   3. slab_lock(page) (Only on some arches and for debugging)
46  *
47  *   slab_mutex
48  *
49  *   The role of the slab_mutex is to protect the list of all the slabs
50  *   and to synchronize major metadata changes to slab cache structures.
51  *
52  *   The slab_lock is only used for debugging and on arches that do not
53  *   have the ability to do a cmpxchg_double. It only protects the second
54  *   double word in the page struct. Meaning
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->counters	-> Counters of objects
57  *	C. page->frozen		-> frozen state
58  *
59  *   If a slab is frozen then it is exempt from list management. It is not
60  *   on any list. The processor that froze the slab is the one who can
61  *   perform list operations on the page. Other processors may put objects
62  *   onto the freelist but the processor that froze the slab is the only
63  *   one that can retrieve the objects from the page's freelist.
64  *
65  *   The list_lock protects the partial and full list on each node and
66  *   the partial slab counter. If taken then no new slabs may be added or
67  *   removed from the lists nor make the number of partial slabs be modified.
68  *   (Note that the total number of slabs is an atomic value that may be
69  *   modified without taking the list lock).
70  *
71  *   The list_lock is a centralized lock and thus we avoid taking it as
72  *   much as possible. As long as SLUB does not have to handle partial
73  *   slabs, operations can continue without any centralized lock. F.e.
74  *   allocating a long series of objects that fill up slabs does not require
75  *   the list lock.
76  *   Interrupts are disabled during allocation and deallocation in order to
77  *   make the slab allocator safe to use in the context of an irq. In addition
78  *   interrupts are disabled to ensure that the processor does not change
79  *   while handling per_cpu slabs, due to kernel preemption.
80  *
81  * SLUB assigns one slab for allocation to each processor.
82  * Allocations only occur from these slabs called cpu slabs.
83  *
84  * Slabs with free elements are kept on a partial list and during regular
85  * operations no list for full slabs is used. If an object in a full slab is
86  * freed then the slab will show up again on the partial lists.
87  * We track full slabs for debugging purposes though because otherwise we
88  * cannot scan all objects.
89  *
90  * Slabs are freed when they become empty. Teardown and setup is
91  * minimal so we rely on the page allocators per cpu caches for
92  * fast frees and allocs.
93  *
94  * Overloading of page flags that are otherwise used for LRU management.
95  *
96  * PageActive 		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * PageError		Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 	return 0;
123 #endif
124 }
125 
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 	return !kmem_cache_debug(s);
130 #else
131 	return false;
132 #endif
133 }
134 
135 /*
136  * Issues still to be resolved:
137  *
138  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139  *
140  * - Variable sizing of the per node arrays
141  */
142 
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145 
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148 
149 /*
150  * Mininum number of partial slabs. These will be left on the partial
151  * lists even if they are empty. kmem_cache_shrink may reclaim them.
152  */
153 #define MIN_PARTIAL 5
154 
155 /*
156  * Maximum number of desirable partial slabs.
157  * The existence of more partial slabs makes kmem_cache_shrink
158  * sort the partial list by the number of objects in use.
159  */
160 #define MAX_PARTIAL 10
161 
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 				SLAB_POISON | SLAB_STORE_USER)
164 
165 /*
166  * Debugging flags that require metadata to be stored in the slab.  These get
167  * disabled when slub_debug=O is used and a cache's min order increases with
168  * metadata.
169  */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171 
172 /*
173  * Set of flags that will prevent slab merging
174  */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 		SLAB_FAILSLAB)
178 
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 		SLAB_CACHE_DMA | SLAB_NOTRACK)
181 
182 #define OO_SHIFT	16
183 #define OO_MASK		((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185 
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON		0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
189 
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193 
194 /*
195  * Tracking user of a slab.
196  */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 	unsigned long addr;	/* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
202 #endif
203 	int cpu;		/* Was running on cpu */
204 	int pid;		/* Pid context */
205 	unsigned long when;	/* When did the operation occur */
206 };
207 
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209 
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
214 #else
215 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
216 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
217 							{ return 0; }
218 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
219 #endif
220 
221 static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 {
223 #ifdef CONFIG_SLUB_STATS
224 	/*
225 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
226 	 * avoid this_cpu_add()'s irq-disable overhead.
227 	 */
228 	raw_cpu_inc(s->cpu_slab->stat[si]);
229 #endif
230 }
231 
232 /********************************************************************
233  * 			Core slab cache functions
234  *******************************************************************/
235 
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237 {
238 	return s->node[node];
239 }
240 
241 /* Verify that a pointer has an address that is valid within a slab page */
242 static inline int check_valid_pointer(struct kmem_cache *s,
243 				struct page *page, const void *object)
244 {
245 	void *base;
246 
247 	if (!object)
248 		return 1;
249 
250 	base = page_address(page);
251 	if (object < base || object >= base + page->objects * s->size ||
252 		(object - base) % s->size) {
253 		return 0;
254 	}
255 
256 	return 1;
257 }
258 
259 static inline void *get_freepointer(struct kmem_cache *s, void *object)
260 {
261 	return *(void **)(object + s->offset);
262 }
263 
264 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
265 {
266 	prefetch(object + s->offset);
267 }
268 
269 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
270 {
271 	void *p;
272 
273 #ifdef CONFIG_DEBUG_PAGEALLOC
274 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
275 #else
276 	p = get_freepointer(s, object);
277 #endif
278 	return p;
279 }
280 
281 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
282 {
283 	*(void **)(object + s->offset) = fp;
284 }
285 
286 /* Loop over all objects in a slab */
287 #define for_each_object(__p, __s, __addr, __objects) \
288 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
289 			__p += (__s)->size)
290 
291 /* Determine object index from a given position */
292 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
293 {
294 	return (p - addr) / s->size;
295 }
296 
297 static inline size_t slab_ksize(const struct kmem_cache *s)
298 {
299 #ifdef CONFIG_SLUB_DEBUG
300 	/*
301 	 * Debugging requires use of the padding between object
302 	 * and whatever may come after it.
303 	 */
304 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
305 		return s->object_size;
306 
307 #endif
308 	/*
309 	 * If we have the need to store the freelist pointer
310 	 * back there or track user information then we can
311 	 * only use the space before that information.
312 	 */
313 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
314 		return s->inuse;
315 	/*
316 	 * Else we can use all the padding etc for the allocation
317 	 */
318 	return s->size;
319 }
320 
321 static inline int order_objects(int order, unsigned long size, int reserved)
322 {
323 	return ((PAGE_SIZE << order) - reserved) / size;
324 }
325 
326 static inline struct kmem_cache_order_objects oo_make(int order,
327 		unsigned long size, int reserved)
328 {
329 	struct kmem_cache_order_objects x = {
330 		(order << OO_SHIFT) + order_objects(order, size, reserved)
331 	};
332 
333 	return x;
334 }
335 
336 static inline int oo_order(struct kmem_cache_order_objects x)
337 {
338 	return x.x >> OO_SHIFT;
339 }
340 
341 static inline int oo_objects(struct kmem_cache_order_objects x)
342 {
343 	return x.x & OO_MASK;
344 }
345 
346 /*
347  * Per slab locking using the pagelock
348  */
349 static __always_inline void slab_lock(struct page *page)
350 {
351 	bit_spin_lock(PG_locked, &page->flags);
352 }
353 
354 static __always_inline void slab_unlock(struct page *page)
355 {
356 	__bit_spin_unlock(PG_locked, &page->flags);
357 }
358 
359 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
360 {
361 	struct page tmp;
362 	tmp.counters = counters_new;
363 	/*
364 	 * page->counters can cover frozen/inuse/objects as well
365 	 * as page->_count.  If we assign to ->counters directly
366 	 * we run the risk of losing updates to page->_count, so
367 	 * be careful and only assign to the fields we need.
368 	 */
369 	page->frozen  = tmp.frozen;
370 	page->inuse   = tmp.inuse;
371 	page->objects = tmp.objects;
372 }
373 
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 		void *freelist_old, unsigned long counters_old,
377 		void *freelist_new, unsigned long counters_new,
378 		const char *n)
379 {
380 	VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 	if (s->flags & __CMPXCHG_DOUBLE) {
384 		if (cmpxchg_double(&page->freelist, &page->counters,
385 			freelist_old, counters_old,
386 			freelist_new, counters_new))
387 		return 1;
388 	} else
389 #endif
390 	{
391 		slab_lock(page);
392 		if (page->freelist == freelist_old &&
393 					page->counters == counters_old) {
394 			page->freelist = freelist_new;
395 			set_page_slub_counters(page, counters_new);
396 			slab_unlock(page);
397 			return 1;
398 		}
399 		slab_unlock(page);
400 	}
401 
402 	cpu_relax();
403 	stat(s, CMPXCHG_DOUBLE_FAIL);
404 
405 #ifdef SLUB_DEBUG_CMPXCHG
406 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
407 #endif
408 
409 	return 0;
410 }
411 
412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 		void *freelist_old, unsigned long counters_old,
414 		void *freelist_new, unsigned long counters_new,
415 		const char *n)
416 {
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 	if (s->flags & __CMPXCHG_DOUBLE) {
420 		if (cmpxchg_double(&page->freelist, &page->counters,
421 			freelist_old, counters_old,
422 			freelist_new, counters_new))
423 		return 1;
424 	} else
425 #endif
426 	{
427 		unsigned long flags;
428 
429 		local_irq_save(flags);
430 		slab_lock(page);
431 		if (page->freelist == freelist_old &&
432 					page->counters == counters_old) {
433 			page->freelist = freelist_new;
434 			set_page_slub_counters(page, counters_new);
435 			slab_unlock(page);
436 			local_irq_restore(flags);
437 			return 1;
438 		}
439 		slab_unlock(page);
440 		local_irq_restore(flags);
441 	}
442 
443 	cpu_relax();
444 	stat(s, CMPXCHG_DOUBLE_FAIL);
445 
446 #ifdef SLUB_DEBUG_CMPXCHG
447 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
448 #endif
449 
450 	return 0;
451 }
452 
453 #ifdef CONFIG_SLUB_DEBUG
454 /*
455  * Determine a map of object in use on a page.
456  *
457  * Node listlock must be held to guarantee that the page does
458  * not vanish from under us.
459  */
460 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
461 {
462 	void *p;
463 	void *addr = page_address(page);
464 
465 	for (p = page->freelist; p; p = get_freepointer(s, p))
466 		set_bit(slab_index(p, s, addr), map);
467 }
468 
469 /*
470  * Debug settings:
471  */
472 #ifdef CONFIG_SLUB_DEBUG_ON
473 static int slub_debug = DEBUG_DEFAULT_FLAGS;
474 #else
475 static int slub_debug;
476 #endif
477 
478 static char *slub_debug_slabs;
479 static int disable_higher_order_debug;
480 
481 /*
482  * Object debugging
483  */
484 static void print_section(char *text, u8 *addr, unsigned int length)
485 {
486 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
487 			length, 1);
488 }
489 
490 static struct track *get_track(struct kmem_cache *s, void *object,
491 	enum track_item alloc)
492 {
493 	struct track *p;
494 
495 	if (s->offset)
496 		p = object + s->offset + sizeof(void *);
497 	else
498 		p = object + s->inuse;
499 
500 	return p + alloc;
501 }
502 
503 static void set_track(struct kmem_cache *s, void *object,
504 			enum track_item alloc, unsigned long addr)
505 {
506 	struct track *p = get_track(s, object, alloc);
507 
508 	if (addr) {
509 #ifdef CONFIG_STACKTRACE
510 		struct stack_trace trace;
511 		int i;
512 
513 		trace.nr_entries = 0;
514 		trace.max_entries = TRACK_ADDRS_COUNT;
515 		trace.entries = p->addrs;
516 		trace.skip = 3;
517 		save_stack_trace(&trace);
518 
519 		/* See rant in lockdep.c */
520 		if (trace.nr_entries != 0 &&
521 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
522 			trace.nr_entries--;
523 
524 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
525 			p->addrs[i] = 0;
526 #endif
527 		p->addr = addr;
528 		p->cpu = smp_processor_id();
529 		p->pid = current->pid;
530 		p->when = jiffies;
531 	} else
532 		memset(p, 0, sizeof(struct track));
533 }
534 
535 static void init_tracking(struct kmem_cache *s, void *object)
536 {
537 	if (!(s->flags & SLAB_STORE_USER))
538 		return;
539 
540 	set_track(s, object, TRACK_FREE, 0UL);
541 	set_track(s, object, TRACK_ALLOC, 0UL);
542 }
543 
544 static void print_track(const char *s, struct track *t)
545 {
546 	if (!t->addr)
547 		return;
548 
549 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
550 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
551 #ifdef CONFIG_STACKTRACE
552 	{
553 		int i;
554 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
555 			if (t->addrs[i])
556 				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
557 			else
558 				break;
559 	}
560 #endif
561 }
562 
563 static void print_tracking(struct kmem_cache *s, void *object)
564 {
565 	if (!(s->flags & SLAB_STORE_USER))
566 		return;
567 
568 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
569 	print_track("Freed", get_track(s, object, TRACK_FREE));
570 }
571 
572 static void print_page_info(struct page *page)
573 {
574 	printk(KERN_ERR
575 	       "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
576 	       page, page->objects, page->inuse, page->freelist, page->flags);
577 
578 }
579 
580 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
581 {
582 	va_list args;
583 	char buf[100];
584 
585 	va_start(args, fmt);
586 	vsnprintf(buf, sizeof(buf), fmt, args);
587 	va_end(args);
588 	printk(KERN_ERR "========================================"
589 			"=====================================\n");
590 	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
591 	printk(KERN_ERR "----------------------------------------"
592 			"-------------------------------------\n\n");
593 
594 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
595 }
596 
597 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
598 {
599 	va_list args;
600 	char buf[100];
601 
602 	va_start(args, fmt);
603 	vsnprintf(buf, sizeof(buf), fmt, args);
604 	va_end(args);
605 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
606 }
607 
608 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
609 {
610 	unsigned int off;	/* Offset of last byte */
611 	u8 *addr = page_address(page);
612 
613 	print_tracking(s, p);
614 
615 	print_page_info(page);
616 
617 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
618 			p, p - addr, get_freepointer(s, p));
619 
620 	if (p > addr + 16)
621 		print_section("Bytes b4 ", p - 16, 16);
622 
623 	print_section("Object ", p, min_t(unsigned long, s->object_size,
624 				PAGE_SIZE));
625 	if (s->flags & SLAB_RED_ZONE)
626 		print_section("Redzone ", p + s->object_size,
627 			s->inuse - s->object_size);
628 
629 	if (s->offset)
630 		off = s->offset + sizeof(void *);
631 	else
632 		off = s->inuse;
633 
634 	if (s->flags & SLAB_STORE_USER)
635 		off += 2 * sizeof(struct track);
636 
637 	if (off != s->size)
638 		/* Beginning of the filler is the free pointer */
639 		print_section("Padding ", p + off, s->size - off);
640 
641 	dump_stack();
642 }
643 
644 static void object_err(struct kmem_cache *s, struct page *page,
645 			u8 *object, char *reason)
646 {
647 	slab_bug(s, "%s", reason);
648 	print_trailer(s, page, object);
649 }
650 
651 static void slab_err(struct kmem_cache *s, struct page *page,
652 			const char *fmt, ...)
653 {
654 	va_list args;
655 	char buf[100];
656 
657 	va_start(args, fmt);
658 	vsnprintf(buf, sizeof(buf), fmt, args);
659 	va_end(args);
660 	slab_bug(s, "%s", buf);
661 	print_page_info(page);
662 	dump_stack();
663 }
664 
665 static void init_object(struct kmem_cache *s, void *object, u8 val)
666 {
667 	u8 *p = object;
668 
669 	if (s->flags & __OBJECT_POISON) {
670 		memset(p, POISON_FREE, s->object_size - 1);
671 		p[s->object_size - 1] = POISON_END;
672 	}
673 
674 	if (s->flags & SLAB_RED_ZONE)
675 		memset(p + s->object_size, val, s->inuse - s->object_size);
676 }
677 
678 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
679 						void *from, void *to)
680 {
681 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
682 	memset(from, data, to - from);
683 }
684 
685 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
686 			u8 *object, char *what,
687 			u8 *start, unsigned int value, unsigned int bytes)
688 {
689 	u8 *fault;
690 	u8 *end;
691 
692 	fault = memchr_inv(start, value, bytes);
693 	if (!fault)
694 		return 1;
695 
696 	end = start + bytes;
697 	while (end > fault && end[-1] == value)
698 		end--;
699 
700 	slab_bug(s, "%s overwritten", what);
701 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
702 					fault, end - 1, fault[0], value);
703 	print_trailer(s, page, object);
704 
705 	restore_bytes(s, what, value, fault, end);
706 	return 0;
707 }
708 
709 /*
710  * Object layout:
711  *
712  * object address
713  * 	Bytes of the object to be managed.
714  * 	If the freepointer may overlay the object then the free
715  * 	pointer is the first word of the object.
716  *
717  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
718  * 	0xa5 (POISON_END)
719  *
720  * object + s->object_size
721  * 	Padding to reach word boundary. This is also used for Redzoning.
722  * 	Padding is extended by another word if Redzoning is enabled and
723  * 	object_size == inuse.
724  *
725  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
726  * 	0xcc (RED_ACTIVE) for objects in use.
727  *
728  * object + s->inuse
729  * 	Meta data starts here.
730  *
731  * 	A. Free pointer (if we cannot overwrite object on free)
732  * 	B. Tracking data for SLAB_STORE_USER
733  * 	C. Padding to reach required alignment boundary or at mininum
734  * 		one word if debugging is on to be able to detect writes
735  * 		before the word boundary.
736  *
737  *	Padding is done using 0x5a (POISON_INUSE)
738  *
739  * object + s->size
740  * 	Nothing is used beyond s->size.
741  *
742  * If slabcaches are merged then the object_size and inuse boundaries are mostly
743  * ignored. And therefore no slab options that rely on these boundaries
744  * may be used with merged slabcaches.
745  */
746 
747 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
748 {
749 	unsigned long off = s->inuse;	/* The end of info */
750 
751 	if (s->offset)
752 		/* Freepointer is placed after the object. */
753 		off += sizeof(void *);
754 
755 	if (s->flags & SLAB_STORE_USER)
756 		/* We also have user information there */
757 		off += 2 * sizeof(struct track);
758 
759 	if (s->size == off)
760 		return 1;
761 
762 	return check_bytes_and_report(s, page, p, "Object padding",
763 				p + off, POISON_INUSE, s->size - off);
764 }
765 
766 /* Check the pad bytes at the end of a slab page */
767 static int slab_pad_check(struct kmem_cache *s, struct page *page)
768 {
769 	u8 *start;
770 	u8 *fault;
771 	u8 *end;
772 	int length;
773 	int remainder;
774 
775 	if (!(s->flags & SLAB_POISON))
776 		return 1;
777 
778 	start = page_address(page);
779 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
780 	end = start + length;
781 	remainder = length % s->size;
782 	if (!remainder)
783 		return 1;
784 
785 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
786 	if (!fault)
787 		return 1;
788 	while (end > fault && end[-1] == POISON_INUSE)
789 		end--;
790 
791 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
792 	print_section("Padding ", end - remainder, remainder);
793 
794 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
795 	return 0;
796 }
797 
798 static int check_object(struct kmem_cache *s, struct page *page,
799 					void *object, u8 val)
800 {
801 	u8 *p = object;
802 	u8 *endobject = object + s->object_size;
803 
804 	if (s->flags & SLAB_RED_ZONE) {
805 		if (!check_bytes_and_report(s, page, object, "Redzone",
806 			endobject, val, s->inuse - s->object_size))
807 			return 0;
808 	} else {
809 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
810 			check_bytes_and_report(s, page, p, "Alignment padding",
811 				endobject, POISON_INUSE,
812 				s->inuse - s->object_size);
813 		}
814 	}
815 
816 	if (s->flags & SLAB_POISON) {
817 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
818 			(!check_bytes_and_report(s, page, p, "Poison", p,
819 					POISON_FREE, s->object_size - 1) ||
820 			 !check_bytes_and_report(s, page, p, "Poison",
821 				p + s->object_size - 1, POISON_END, 1)))
822 			return 0;
823 		/*
824 		 * check_pad_bytes cleans up on its own.
825 		 */
826 		check_pad_bytes(s, page, p);
827 	}
828 
829 	if (!s->offset && val == SLUB_RED_ACTIVE)
830 		/*
831 		 * Object and freepointer overlap. Cannot check
832 		 * freepointer while object is allocated.
833 		 */
834 		return 1;
835 
836 	/* Check free pointer validity */
837 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
838 		object_err(s, page, p, "Freepointer corrupt");
839 		/*
840 		 * No choice but to zap it and thus lose the remainder
841 		 * of the free objects in this slab. May cause
842 		 * another error because the object count is now wrong.
843 		 */
844 		set_freepointer(s, p, NULL);
845 		return 0;
846 	}
847 	return 1;
848 }
849 
850 static int check_slab(struct kmem_cache *s, struct page *page)
851 {
852 	int maxobj;
853 
854 	VM_BUG_ON(!irqs_disabled());
855 
856 	if (!PageSlab(page)) {
857 		slab_err(s, page, "Not a valid slab page");
858 		return 0;
859 	}
860 
861 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
862 	if (page->objects > maxobj) {
863 		slab_err(s, page, "objects %u > max %u",
864 			s->name, page->objects, maxobj);
865 		return 0;
866 	}
867 	if (page->inuse > page->objects) {
868 		slab_err(s, page, "inuse %u > max %u",
869 			s->name, page->inuse, page->objects);
870 		return 0;
871 	}
872 	/* Slab_pad_check fixes things up after itself */
873 	slab_pad_check(s, page);
874 	return 1;
875 }
876 
877 /*
878  * Determine if a certain object on a page is on the freelist. Must hold the
879  * slab lock to guarantee that the chains are in a consistent state.
880  */
881 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
882 {
883 	int nr = 0;
884 	void *fp;
885 	void *object = NULL;
886 	unsigned long max_objects;
887 
888 	fp = page->freelist;
889 	while (fp && nr <= page->objects) {
890 		if (fp == search)
891 			return 1;
892 		if (!check_valid_pointer(s, page, fp)) {
893 			if (object) {
894 				object_err(s, page, object,
895 					"Freechain corrupt");
896 				set_freepointer(s, object, NULL);
897 			} else {
898 				slab_err(s, page, "Freepointer corrupt");
899 				page->freelist = NULL;
900 				page->inuse = page->objects;
901 				slab_fix(s, "Freelist cleared");
902 				return 0;
903 			}
904 			break;
905 		}
906 		object = fp;
907 		fp = get_freepointer(s, object);
908 		nr++;
909 	}
910 
911 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
912 	if (max_objects > MAX_OBJS_PER_PAGE)
913 		max_objects = MAX_OBJS_PER_PAGE;
914 
915 	if (page->objects != max_objects) {
916 		slab_err(s, page, "Wrong number of objects. Found %d but "
917 			"should be %d", page->objects, max_objects);
918 		page->objects = max_objects;
919 		slab_fix(s, "Number of objects adjusted.");
920 	}
921 	if (page->inuse != page->objects - nr) {
922 		slab_err(s, page, "Wrong object count. Counter is %d but "
923 			"counted were %d", page->inuse, page->objects - nr);
924 		page->inuse = page->objects - nr;
925 		slab_fix(s, "Object count adjusted.");
926 	}
927 	return search == NULL;
928 }
929 
930 static void trace(struct kmem_cache *s, struct page *page, void *object,
931 								int alloc)
932 {
933 	if (s->flags & SLAB_TRACE) {
934 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
935 			s->name,
936 			alloc ? "alloc" : "free",
937 			object, page->inuse,
938 			page->freelist);
939 
940 		if (!alloc)
941 			print_section("Object ", (void *)object,
942 					s->object_size);
943 
944 		dump_stack();
945 	}
946 }
947 
948 /*
949  * Hooks for other subsystems that check memory allocations. In a typical
950  * production configuration these hooks all should produce no code at all.
951  */
952 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
953 {
954 	kmemleak_alloc(ptr, size, 1, flags);
955 }
956 
957 static inline void kfree_hook(const void *x)
958 {
959 	kmemleak_free(x);
960 }
961 
962 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
963 {
964 	flags &= gfp_allowed_mask;
965 	lockdep_trace_alloc(flags);
966 	might_sleep_if(flags & __GFP_WAIT);
967 
968 	return should_failslab(s->object_size, flags, s->flags);
969 }
970 
971 static inline void slab_post_alloc_hook(struct kmem_cache *s,
972 					gfp_t flags, void *object)
973 {
974 	flags &= gfp_allowed_mask;
975 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
976 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
977 }
978 
979 static inline void slab_free_hook(struct kmem_cache *s, void *x)
980 {
981 	kmemleak_free_recursive(x, s->flags);
982 
983 	/*
984 	 * Trouble is that we may no longer disable interrupts in the fast path
985 	 * So in order to make the debug calls that expect irqs to be
986 	 * disabled we need to disable interrupts temporarily.
987 	 */
988 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
989 	{
990 		unsigned long flags;
991 
992 		local_irq_save(flags);
993 		kmemcheck_slab_free(s, x, s->object_size);
994 		debug_check_no_locks_freed(x, s->object_size);
995 		local_irq_restore(flags);
996 	}
997 #endif
998 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
999 		debug_check_no_obj_freed(x, s->object_size);
1000 }
1001 
1002 /*
1003  * Tracking of fully allocated slabs for debugging purposes.
1004  */
1005 static void add_full(struct kmem_cache *s,
1006 	struct kmem_cache_node *n, struct page *page)
1007 {
1008 	if (!(s->flags & SLAB_STORE_USER))
1009 		return;
1010 
1011 	lockdep_assert_held(&n->list_lock);
1012 	list_add(&page->lru, &n->full);
1013 }
1014 
1015 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1016 {
1017 	if (!(s->flags & SLAB_STORE_USER))
1018 		return;
1019 
1020 	lockdep_assert_held(&n->list_lock);
1021 	list_del(&page->lru);
1022 }
1023 
1024 /* Tracking of the number of slabs for debugging purposes */
1025 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1026 {
1027 	struct kmem_cache_node *n = get_node(s, node);
1028 
1029 	return atomic_long_read(&n->nr_slabs);
1030 }
1031 
1032 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1033 {
1034 	return atomic_long_read(&n->nr_slabs);
1035 }
1036 
1037 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1038 {
1039 	struct kmem_cache_node *n = get_node(s, node);
1040 
1041 	/*
1042 	 * May be called early in order to allocate a slab for the
1043 	 * kmem_cache_node structure. Solve the chicken-egg
1044 	 * dilemma by deferring the increment of the count during
1045 	 * bootstrap (see early_kmem_cache_node_alloc).
1046 	 */
1047 	if (likely(n)) {
1048 		atomic_long_inc(&n->nr_slabs);
1049 		atomic_long_add(objects, &n->total_objects);
1050 	}
1051 }
1052 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1053 {
1054 	struct kmem_cache_node *n = get_node(s, node);
1055 
1056 	atomic_long_dec(&n->nr_slabs);
1057 	atomic_long_sub(objects, &n->total_objects);
1058 }
1059 
1060 /* Object debug checks for alloc/free paths */
1061 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1062 								void *object)
1063 {
1064 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1065 		return;
1066 
1067 	init_object(s, object, SLUB_RED_INACTIVE);
1068 	init_tracking(s, object);
1069 }
1070 
1071 static noinline int alloc_debug_processing(struct kmem_cache *s,
1072 					struct page *page,
1073 					void *object, unsigned long addr)
1074 {
1075 	if (!check_slab(s, page))
1076 		goto bad;
1077 
1078 	if (!check_valid_pointer(s, page, object)) {
1079 		object_err(s, page, object, "Freelist Pointer check fails");
1080 		goto bad;
1081 	}
1082 
1083 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1084 		goto bad;
1085 
1086 	/* Success perform special debug activities for allocs */
1087 	if (s->flags & SLAB_STORE_USER)
1088 		set_track(s, object, TRACK_ALLOC, addr);
1089 	trace(s, page, object, 1);
1090 	init_object(s, object, SLUB_RED_ACTIVE);
1091 	return 1;
1092 
1093 bad:
1094 	if (PageSlab(page)) {
1095 		/*
1096 		 * If this is a slab page then lets do the best we can
1097 		 * to avoid issues in the future. Marking all objects
1098 		 * as used avoids touching the remaining objects.
1099 		 */
1100 		slab_fix(s, "Marking all objects used");
1101 		page->inuse = page->objects;
1102 		page->freelist = NULL;
1103 	}
1104 	return 0;
1105 }
1106 
1107 static noinline struct kmem_cache_node *free_debug_processing(
1108 	struct kmem_cache *s, struct page *page, void *object,
1109 	unsigned long addr, unsigned long *flags)
1110 {
1111 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1112 
1113 	spin_lock_irqsave(&n->list_lock, *flags);
1114 	slab_lock(page);
1115 
1116 	if (!check_slab(s, page))
1117 		goto fail;
1118 
1119 	if (!check_valid_pointer(s, page, object)) {
1120 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1121 		goto fail;
1122 	}
1123 
1124 	if (on_freelist(s, page, object)) {
1125 		object_err(s, page, object, "Object already free");
1126 		goto fail;
1127 	}
1128 
1129 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1130 		goto out;
1131 
1132 	if (unlikely(s != page->slab_cache)) {
1133 		if (!PageSlab(page)) {
1134 			slab_err(s, page, "Attempt to free object(0x%p) "
1135 				"outside of slab", object);
1136 		} else if (!page->slab_cache) {
1137 			printk(KERN_ERR
1138 				"SLUB <none>: no slab for object 0x%p.\n",
1139 						object);
1140 			dump_stack();
1141 		} else
1142 			object_err(s, page, object,
1143 					"page slab pointer corrupt.");
1144 		goto fail;
1145 	}
1146 
1147 	if (s->flags & SLAB_STORE_USER)
1148 		set_track(s, object, TRACK_FREE, addr);
1149 	trace(s, page, object, 0);
1150 	init_object(s, object, SLUB_RED_INACTIVE);
1151 out:
1152 	slab_unlock(page);
1153 	/*
1154 	 * Keep node_lock to preserve integrity
1155 	 * until the object is actually freed
1156 	 */
1157 	return n;
1158 
1159 fail:
1160 	slab_unlock(page);
1161 	spin_unlock_irqrestore(&n->list_lock, *flags);
1162 	slab_fix(s, "Object at 0x%p not freed", object);
1163 	return NULL;
1164 }
1165 
1166 static int __init setup_slub_debug(char *str)
1167 {
1168 	slub_debug = DEBUG_DEFAULT_FLAGS;
1169 	if (*str++ != '=' || !*str)
1170 		/*
1171 		 * No options specified. Switch on full debugging.
1172 		 */
1173 		goto out;
1174 
1175 	if (*str == ',')
1176 		/*
1177 		 * No options but restriction on slabs. This means full
1178 		 * debugging for slabs matching a pattern.
1179 		 */
1180 		goto check_slabs;
1181 
1182 	if (tolower(*str) == 'o') {
1183 		/*
1184 		 * Avoid enabling debugging on caches if its minimum order
1185 		 * would increase as a result.
1186 		 */
1187 		disable_higher_order_debug = 1;
1188 		goto out;
1189 	}
1190 
1191 	slub_debug = 0;
1192 	if (*str == '-')
1193 		/*
1194 		 * Switch off all debugging measures.
1195 		 */
1196 		goto out;
1197 
1198 	/*
1199 	 * Determine which debug features should be switched on
1200 	 */
1201 	for (; *str && *str != ','; str++) {
1202 		switch (tolower(*str)) {
1203 		case 'f':
1204 			slub_debug |= SLAB_DEBUG_FREE;
1205 			break;
1206 		case 'z':
1207 			slub_debug |= SLAB_RED_ZONE;
1208 			break;
1209 		case 'p':
1210 			slub_debug |= SLAB_POISON;
1211 			break;
1212 		case 'u':
1213 			slub_debug |= SLAB_STORE_USER;
1214 			break;
1215 		case 't':
1216 			slub_debug |= SLAB_TRACE;
1217 			break;
1218 		case 'a':
1219 			slub_debug |= SLAB_FAILSLAB;
1220 			break;
1221 		default:
1222 			printk(KERN_ERR "slub_debug option '%c' "
1223 				"unknown. skipped\n", *str);
1224 		}
1225 	}
1226 
1227 check_slabs:
1228 	if (*str == ',')
1229 		slub_debug_slabs = str + 1;
1230 out:
1231 	return 1;
1232 }
1233 
1234 __setup("slub_debug", setup_slub_debug);
1235 
1236 static unsigned long kmem_cache_flags(unsigned long object_size,
1237 	unsigned long flags, const char *name,
1238 	void (*ctor)(void *))
1239 {
1240 	/*
1241 	 * Enable debugging if selected on the kernel commandline.
1242 	 */
1243 	if (slub_debug && (!slub_debug_slabs || (name &&
1244 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1245 		flags |= slub_debug;
1246 
1247 	return flags;
1248 }
1249 #else
1250 static inline void setup_object_debug(struct kmem_cache *s,
1251 			struct page *page, void *object) {}
1252 
1253 static inline int alloc_debug_processing(struct kmem_cache *s,
1254 	struct page *page, void *object, unsigned long addr) { return 0; }
1255 
1256 static inline struct kmem_cache_node *free_debug_processing(
1257 	struct kmem_cache *s, struct page *page, void *object,
1258 	unsigned long addr, unsigned long *flags) { return NULL; }
1259 
1260 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1261 			{ return 1; }
1262 static inline int check_object(struct kmem_cache *s, struct page *page,
1263 			void *object, u8 val) { return 1; }
1264 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1265 					struct page *page) {}
1266 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1267 					struct page *page) {}
1268 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1269 	unsigned long flags, const char *name,
1270 	void (*ctor)(void *))
1271 {
1272 	return flags;
1273 }
1274 #define slub_debug 0
1275 
1276 #define disable_higher_order_debug 0
1277 
1278 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1279 							{ return 0; }
1280 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1281 							{ return 0; }
1282 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1283 							int objects) {}
1284 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1285 							int objects) {}
1286 
1287 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1288 {
1289 	kmemleak_alloc(ptr, size, 1, flags);
1290 }
1291 
1292 static inline void kfree_hook(const void *x)
1293 {
1294 	kmemleak_free(x);
1295 }
1296 
1297 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1298 							{ return 0; }
1299 
1300 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1301 		void *object)
1302 {
1303 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1304 		flags & gfp_allowed_mask);
1305 }
1306 
1307 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1308 {
1309 	kmemleak_free_recursive(x, s->flags);
1310 }
1311 
1312 #endif /* CONFIG_SLUB_DEBUG */
1313 
1314 /*
1315  * Slab allocation and freeing
1316  */
1317 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1318 					struct kmem_cache_order_objects oo)
1319 {
1320 	int order = oo_order(oo);
1321 
1322 	flags |= __GFP_NOTRACK;
1323 
1324 	if (node == NUMA_NO_NODE)
1325 		return alloc_pages(flags, order);
1326 	else
1327 		return alloc_pages_exact_node(node, flags, order);
1328 }
1329 
1330 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1331 {
1332 	struct page *page;
1333 	struct kmem_cache_order_objects oo = s->oo;
1334 	gfp_t alloc_gfp;
1335 
1336 	flags &= gfp_allowed_mask;
1337 
1338 	if (flags & __GFP_WAIT)
1339 		local_irq_enable();
1340 
1341 	flags |= s->allocflags;
1342 
1343 	/*
1344 	 * Let the initial higher-order allocation fail under memory pressure
1345 	 * so we fall-back to the minimum order allocation.
1346 	 */
1347 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1348 
1349 	page = alloc_slab_page(alloc_gfp, node, oo);
1350 	if (unlikely(!page)) {
1351 		oo = s->min;
1352 		alloc_gfp = flags;
1353 		/*
1354 		 * Allocation may have failed due to fragmentation.
1355 		 * Try a lower order alloc if possible
1356 		 */
1357 		page = alloc_slab_page(alloc_gfp, node, oo);
1358 
1359 		if (page)
1360 			stat(s, ORDER_FALLBACK);
1361 	}
1362 
1363 	if (kmemcheck_enabled && page
1364 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1365 		int pages = 1 << oo_order(oo);
1366 
1367 		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1368 
1369 		/*
1370 		 * Objects from caches that have a constructor don't get
1371 		 * cleared when they're allocated, so we need to do it here.
1372 		 */
1373 		if (s->ctor)
1374 			kmemcheck_mark_uninitialized_pages(page, pages);
1375 		else
1376 			kmemcheck_mark_unallocated_pages(page, pages);
1377 	}
1378 
1379 	if (flags & __GFP_WAIT)
1380 		local_irq_disable();
1381 	if (!page)
1382 		return NULL;
1383 
1384 	page->objects = oo_objects(oo);
1385 	mod_zone_page_state(page_zone(page),
1386 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1387 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1388 		1 << oo_order(oo));
1389 
1390 	return page;
1391 }
1392 
1393 static void setup_object(struct kmem_cache *s, struct page *page,
1394 				void *object)
1395 {
1396 	setup_object_debug(s, page, object);
1397 	if (unlikely(s->ctor))
1398 		s->ctor(object);
1399 }
1400 
1401 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1402 {
1403 	struct page *page;
1404 	void *start;
1405 	void *last;
1406 	void *p;
1407 	int order;
1408 
1409 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1410 
1411 	page = allocate_slab(s,
1412 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1413 	if (!page)
1414 		goto out;
1415 
1416 	order = compound_order(page);
1417 	inc_slabs_node(s, page_to_nid(page), page->objects);
1418 	memcg_bind_pages(s, order);
1419 	page->slab_cache = s;
1420 	__SetPageSlab(page);
1421 	if (page->pfmemalloc)
1422 		SetPageSlabPfmemalloc(page);
1423 
1424 	start = page_address(page);
1425 
1426 	if (unlikely(s->flags & SLAB_POISON))
1427 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1428 
1429 	last = start;
1430 	for_each_object(p, s, start, page->objects) {
1431 		setup_object(s, page, last);
1432 		set_freepointer(s, last, p);
1433 		last = p;
1434 	}
1435 	setup_object(s, page, last);
1436 	set_freepointer(s, last, NULL);
1437 
1438 	page->freelist = start;
1439 	page->inuse = page->objects;
1440 	page->frozen = 1;
1441 out:
1442 	return page;
1443 }
1444 
1445 static void __free_slab(struct kmem_cache *s, struct page *page)
1446 {
1447 	int order = compound_order(page);
1448 	int pages = 1 << order;
1449 
1450 	if (kmem_cache_debug(s)) {
1451 		void *p;
1452 
1453 		slab_pad_check(s, page);
1454 		for_each_object(p, s, page_address(page),
1455 						page->objects)
1456 			check_object(s, page, p, SLUB_RED_INACTIVE);
1457 	}
1458 
1459 	kmemcheck_free_shadow(page, compound_order(page));
1460 
1461 	mod_zone_page_state(page_zone(page),
1462 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1463 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1464 		-pages);
1465 
1466 	__ClearPageSlabPfmemalloc(page);
1467 	__ClearPageSlab(page);
1468 
1469 	memcg_release_pages(s, order);
1470 	page_mapcount_reset(page);
1471 	if (current->reclaim_state)
1472 		current->reclaim_state->reclaimed_slab += pages;
1473 	__free_memcg_kmem_pages(page, order);
1474 }
1475 
1476 #define need_reserve_slab_rcu						\
1477 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1478 
1479 static void rcu_free_slab(struct rcu_head *h)
1480 {
1481 	struct page *page;
1482 
1483 	if (need_reserve_slab_rcu)
1484 		page = virt_to_head_page(h);
1485 	else
1486 		page = container_of((struct list_head *)h, struct page, lru);
1487 
1488 	__free_slab(page->slab_cache, page);
1489 }
1490 
1491 static void free_slab(struct kmem_cache *s, struct page *page)
1492 {
1493 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1494 		struct rcu_head *head;
1495 
1496 		if (need_reserve_slab_rcu) {
1497 			int order = compound_order(page);
1498 			int offset = (PAGE_SIZE << order) - s->reserved;
1499 
1500 			VM_BUG_ON(s->reserved != sizeof(*head));
1501 			head = page_address(page) + offset;
1502 		} else {
1503 			/*
1504 			 * RCU free overloads the RCU head over the LRU
1505 			 */
1506 			head = (void *)&page->lru;
1507 		}
1508 
1509 		call_rcu(head, rcu_free_slab);
1510 	} else
1511 		__free_slab(s, page);
1512 }
1513 
1514 static void discard_slab(struct kmem_cache *s, struct page *page)
1515 {
1516 	dec_slabs_node(s, page_to_nid(page), page->objects);
1517 	free_slab(s, page);
1518 }
1519 
1520 /*
1521  * Management of partially allocated slabs.
1522  */
1523 static inline void
1524 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1525 {
1526 	n->nr_partial++;
1527 	if (tail == DEACTIVATE_TO_TAIL)
1528 		list_add_tail(&page->lru, &n->partial);
1529 	else
1530 		list_add(&page->lru, &n->partial);
1531 }
1532 
1533 static inline void add_partial(struct kmem_cache_node *n,
1534 				struct page *page, int tail)
1535 {
1536 	lockdep_assert_held(&n->list_lock);
1537 	__add_partial(n, page, tail);
1538 }
1539 
1540 static inline void
1541 __remove_partial(struct kmem_cache_node *n, struct page *page)
1542 {
1543 	list_del(&page->lru);
1544 	n->nr_partial--;
1545 }
1546 
1547 static inline void remove_partial(struct kmem_cache_node *n,
1548 					struct page *page)
1549 {
1550 	lockdep_assert_held(&n->list_lock);
1551 	__remove_partial(n, page);
1552 }
1553 
1554 /*
1555  * Remove slab from the partial list, freeze it and
1556  * return the pointer to the freelist.
1557  *
1558  * Returns a list of objects or NULL if it fails.
1559  */
1560 static inline void *acquire_slab(struct kmem_cache *s,
1561 		struct kmem_cache_node *n, struct page *page,
1562 		int mode, int *objects)
1563 {
1564 	void *freelist;
1565 	unsigned long counters;
1566 	struct page new;
1567 
1568 	lockdep_assert_held(&n->list_lock);
1569 
1570 	/*
1571 	 * Zap the freelist and set the frozen bit.
1572 	 * The old freelist is the list of objects for the
1573 	 * per cpu allocation list.
1574 	 */
1575 	freelist = page->freelist;
1576 	counters = page->counters;
1577 	new.counters = counters;
1578 	*objects = new.objects - new.inuse;
1579 	if (mode) {
1580 		new.inuse = page->objects;
1581 		new.freelist = NULL;
1582 	} else {
1583 		new.freelist = freelist;
1584 	}
1585 
1586 	VM_BUG_ON(new.frozen);
1587 	new.frozen = 1;
1588 
1589 	if (!__cmpxchg_double_slab(s, page,
1590 			freelist, counters,
1591 			new.freelist, new.counters,
1592 			"acquire_slab"))
1593 		return NULL;
1594 
1595 	remove_partial(n, page);
1596 	WARN_ON(!freelist);
1597 	return freelist;
1598 }
1599 
1600 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1601 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1602 
1603 /*
1604  * Try to allocate a partial slab from a specific node.
1605  */
1606 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1607 				struct kmem_cache_cpu *c, gfp_t flags)
1608 {
1609 	struct page *page, *page2;
1610 	void *object = NULL;
1611 	int available = 0;
1612 	int objects;
1613 
1614 	/*
1615 	 * Racy check. If we mistakenly see no partial slabs then we
1616 	 * just allocate an empty slab. If we mistakenly try to get a
1617 	 * partial slab and there is none available then get_partials()
1618 	 * will return NULL.
1619 	 */
1620 	if (!n || !n->nr_partial)
1621 		return NULL;
1622 
1623 	spin_lock(&n->list_lock);
1624 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1625 		void *t;
1626 
1627 		if (!pfmemalloc_match(page, flags))
1628 			continue;
1629 
1630 		t = acquire_slab(s, n, page, object == NULL, &objects);
1631 		if (!t)
1632 			break;
1633 
1634 		available += objects;
1635 		if (!object) {
1636 			c->page = page;
1637 			stat(s, ALLOC_FROM_PARTIAL);
1638 			object = t;
1639 		} else {
1640 			put_cpu_partial(s, page, 0);
1641 			stat(s, CPU_PARTIAL_NODE);
1642 		}
1643 		if (!kmem_cache_has_cpu_partial(s)
1644 			|| available > s->cpu_partial / 2)
1645 			break;
1646 
1647 	}
1648 	spin_unlock(&n->list_lock);
1649 	return object;
1650 }
1651 
1652 /*
1653  * Get a page from somewhere. Search in increasing NUMA distances.
1654  */
1655 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1656 		struct kmem_cache_cpu *c)
1657 {
1658 #ifdef CONFIG_NUMA
1659 	struct zonelist *zonelist;
1660 	struct zoneref *z;
1661 	struct zone *zone;
1662 	enum zone_type high_zoneidx = gfp_zone(flags);
1663 	void *object;
1664 	unsigned int cpuset_mems_cookie;
1665 
1666 	/*
1667 	 * The defrag ratio allows a configuration of the tradeoffs between
1668 	 * inter node defragmentation and node local allocations. A lower
1669 	 * defrag_ratio increases the tendency to do local allocations
1670 	 * instead of attempting to obtain partial slabs from other nodes.
1671 	 *
1672 	 * If the defrag_ratio is set to 0 then kmalloc() always
1673 	 * returns node local objects. If the ratio is higher then kmalloc()
1674 	 * may return off node objects because partial slabs are obtained
1675 	 * from other nodes and filled up.
1676 	 *
1677 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1678 	 * defrag_ratio = 1000) then every (well almost) allocation will
1679 	 * first attempt to defrag slab caches on other nodes. This means
1680 	 * scanning over all nodes to look for partial slabs which may be
1681 	 * expensive if we do it every time we are trying to find a slab
1682 	 * with available objects.
1683 	 */
1684 	if (!s->remote_node_defrag_ratio ||
1685 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1686 		return NULL;
1687 
1688 	do {
1689 		cpuset_mems_cookie = read_mems_allowed_begin();
1690 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1691 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1692 			struct kmem_cache_node *n;
1693 
1694 			n = get_node(s, zone_to_nid(zone));
1695 
1696 			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1697 					n->nr_partial > s->min_partial) {
1698 				object = get_partial_node(s, n, c, flags);
1699 				if (object) {
1700 					/*
1701 					 * Don't check read_mems_allowed_retry()
1702 					 * here - if mems_allowed was updated in
1703 					 * parallel, that was a harmless race
1704 					 * between allocation and the cpuset
1705 					 * update
1706 					 */
1707 					return object;
1708 				}
1709 			}
1710 		}
1711 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1712 #endif
1713 	return NULL;
1714 }
1715 
1716 /*
1717  * Get a partial page, lock it and return it.
1718  */
1719 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1720 		struct kmem_cache_cpu *c)
1721 {
1722 	void *object;
1723 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1724 
1725 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1726 	if (object || node != NUMA_NO_NODE)
1727 		return object;
1728 
1729 	return get_any_partial(s, flags, c);
1730 }
1731 
1732 #ifdef CONFIG_PREEMPT
1733 /*
1734  * Calculate the next globally unique transaction for disambiguiation
1735  * during cmpxchg. The transactions start with the cpu number and are then
1736  * incremented by CONFIG_NR_CPUS.
1737  */
1738 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1739 #else
1740 /*
1741  * No preemption supported therefore also no need to check for
1742  * different cpus.
1743  */
1744 #define TID_STEP 1
1745 #endif
1746 
1747 static inline unsigned long next_tid(unsigned long tid)
1748 {
1749 	return tid + TID_STEP;
1750 }
1751 
1752 static inline unsigned int tid_to_cpu(unsigned long tid)
1753 {
1754 	return tid % TID_STEP;
1755 }
1756 
1757 static inline unsigned long tid_to_event(unsigned long tid)
1758 {
1759 	return tid / TID_STEP;
1760 }
1761 
1762 static inline unsigned int init_tid(int cpu)
1763 {
1764 	return cpu;
1765 }
1766 
1767 static inline void note_cmpxchg_failure(const char *n,
1768 		const struct kmem_cache *s, unsigned long tid)
1769 {
1770 #ifdef SLUB_DEBUG_CMPXCHG
1771 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1772 
1773 	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1774 
1775 #ifdef CONFIG_PREEMPT
1776 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1777 		printk("due to cpu change %d -> %d\n",
1778 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1779 	else
1780 #endif
1781 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1782 		printk("due to cpu running other code. Event %ld->%ld\n",
1783 			tid_to_event(tid), tid_to_event(actual_tid));
1784 	else
1785 		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1786 			actual_tid, tid, next_tid(tid));
1787 #endif
1788 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1789 }
1790 
1791 static void init_kmem_cache_cpus(struct kmem_cache *s)
1792 {
1793 	int cpu;
1794 
1795 	for_each_possible_cpu(cpu)
1796 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1797 }
1798 
1799 /*
1800  * Remove the cpu slab
1801  */
1802 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1803 				void *freelist)
1804 {
1805 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1806 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1807 	int lock = 0;
1808 	enum slab_modes l = M_NONE, m = M_NONE;
1809 	void *nextfree;
1810 	int tail = DEACTIVATE_TO_HEAD;
1811 	struct page new;
1812 	struct page old;
1813 
1814 	if (page->freelist) {
1815 		stat(s, DEACTIVATE_REMOTE_FREES);
1816 		tail = DEACTIVATE_TO_TAIL;
1817 	}
1818 
1819 	/*
1820 	 * Stage one: Free all available per cpu objects back
1821 	 * to the page freelist while it is still frozen. Leave the
1822 	 * last one.
1823 	 *
1824 	 * There is no need to take the list->lock because the page
1825 	 * is still frozen.
1826 	 */
1827 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1828 		void *prior;
1829 		unsigned long counters;
1830 
1831 		do {
1832 			prior = page->freelist;
1833 			counters = page->counters;
1834 			set_freepointer(s, freelist, prior);
1835 			new.counters = counters;
1836 			new.inuse--;
1837 			VM_BUG_ON(!new.frozen);
1838 
1839 		} while (!__cmpxchg_double_slab(s, page,
1840 			prior, counters,
1841 			freelist, new.counters,
1842 			"drain percpu freelist"));
1843 
1844 		freelist = nextfree;
1845 	}
1846 
1847 	/*
1848 	 * Stage two: Ensure that the page is unfrozen while the
1849 	 * list presence reflects the actual number of objects
1850 	 * during unfreeze.
1851 	 *
1852 	 * We setup the list membership and then perform a cmpxchg
1853 	 * with the count. If there is a mismatch then the page
1854 	 * is not unfrozen but the page is on the wrong list.
1855 	 *
1856 	 * Then we restart the process which may have to remove
1857 	 * the page from the list that we just put it on again
1858 	 * because the number of objects in the slab may have
1859 	 * changed.
1860 	 */
1861 redo:
1862 
1863 	old.freelist = page->freelist;
1864 	old.counters = page->counters;
1865 	VM_BUG_ON(!old.frozen);
1866 
1867 	/* Determine target state of the slab */
1868 	new.counters = old.counters;
1869 	if (freelist) {
1870 		new.inuse--;
1871 		set_freepointer(s, freelist, old.freelist);
1872 		new.freelist = freelist;
1873 	} else
1874 		new.freelist = old.freelist;
1875 
1876 	new.frozen = 0;
1877 
1878 	if (!new.inuse && n->nr_partial > s->min_partial)
1879 		m = M_FREE;
1880 	else if (new.freelist) {
1881 		m = M_PARTIAL;
1882 		if (!lock) {
1883 			lock = 1;
1884 			/*
1885 			 * Taking the spinlock removes the possiblity
1886 			 * that acquire_slab() will see a slab page that
1887 			 * is frozen
1888 			 */
1889 			spin_lock(&n->list_lock);
1890 		}
1891 	} else {
1892 		m = M_FULL;
1893 		if (kmem_cache_debug(s) && !lock) {
1894 			lock = 1;
1895 			/*
1896 			 * This also ensures that the scanning of full
1897 			 * slabs from diagnostic functions will not see
1898 			 * any frozen slabs.
1899 			 */
1900 			spin_lock(&n->list_lock);
1901 		}
1902 	}
1903 
1904 	if (l != m) {
1905 
1906 		if (l == M_PARTIAL)
1907 
1908 			remove_partial(n, page);
1909 
1910 		else if (l == M_FULL)
1911 
1912 			remove_full(s, n, page);
1913 
1914 		if (m == M_PARTIAL) {
1915 
1916 			add_partial(n, page, tail);
1917 			stat(s, tail);
1918 
1919 		} else if (m == M_FULL) {
1920 
1921 			stat(s, DEACTIVATE_FULL);
1922 			add_full(s, n, page);
1923 
1924 		}
1925 	}
1926 
1927 	l = m;
1928 	if (!__cmpxchg_double_slab(s, page,
1929 				old.freelist, old.counters,
1930 				new.freelist, new.counters,
1931 				"unfreezing slab"))
1932 		goto redo;
1933 
1934 	if (lock)
1935 		spin_unlock(&n->list_lock);
1936 
1937 	if (m == M_FREE) {
1938 		stat(s, DEACTIVATE_EMPTY);
1939 		discard_slab(s, page);
1940 		stat(s, FREE_SLAB);
1941 	}
1942 }
1943 
1944 /*
1945  * Unfreeze all the cpu partial slabs.
1946  *
1947  * This function must be called with interrupts disabled
1948  * for the cpu using c (or some other guarantee must be there
1949  * to guarantee no concurrent accesses).
1950  */
1951 static void unfreeze_partials(struct kmem_cache *s,
1952 		struct kmem_cache_cpu *c)
1953 {
1954 #ifdef CONFIG_SLUB_CPU_PARTIAL
1955 	struct kmem_cache_node *n = NULL, *n2 = NULL;
1956 	struct page *page, *discard_page = NULL;
1957 
1958 	while ((page = c->partial)) {
1959 		struct page new;
1960 		struct page old;
1961 
1962 		c->partial = page->next;
1963 
1964 		n2 = get_node(s, page_to_nid(page));
1965 		if (n != n2) {
1966 			if (n)
1967 				spin_unlock(&n->list_lock);
1968 
1969 			n = n2;
1970 			spin_lock(&n->list_lock);
1971 		}
1972 
1973 		do {
1974 
1975 			old.freelist = page->freelist;
1976 			old.counters = page->counters;
1977 			VM_BUG_ON(!old.frozen);
1978 
1979 			new.counters = old.counters;
1980 			new.freelist = old.freelist;
1981 
1982 			new.frozen = 0;
1983 
1984 		} while (!__cmpxchg_double_slab(s, page,
1985 				old.freelist, old.counters,
1986 				new.freelist, new.counters,
1987 				"unfreezing slab"));
1988 
1989 		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1990 			page->next = discard_page;
1991 			discard_page = page;
1992 		} else {
1993 			add_partial(n, page, DEACTIVATE_TO_TAIL);
1994 			stat(s, FREE_ADD_PARTIAL);
1995 		}
1996 	}
1997 
1998 	if (n)
1999 		spin_unlock(&n->list_lock);
2000 
2001 	while (discard_page) {
2002 		page = discard_page;
2003 		discard_page = discard_page->next;
2004 
2005 		stat(s, DEACTIVATE_EMPTY);
2006 		discard_slab(s, page);
2007 		stat(s, FREE_SLAB);
2008 	}
2009 #endif
2010 }
2011 
2012 /*
2013  * Put a page that was just frozen (in __slab_free) into a partial page
2014  * slot if available. This is done without interrupts disabled and without
2015  * preemption disabled. The cmpxchg is racy and may put the partial page
2016  * onto a random cpus partial slot.
2017  *
2018  * If we did not find a slot then simply move all the partials to the
2019  * per node partial list.
2020  */
2021 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2022 {
2023 #ifdef CONFIG_SLUB_CPU_PARTIAL
2024 	struct page *oldpage;
2025 	int pages;
2026 	int pobjects;
2027 
2028 	do {
2029 		pages = 0;
2030 		pobjects = 0;
2031 		oldpage = this_cpu_read(s->cpu_slab->partial);
2032 
2033 		if (oldpage) {
2034 			pobjects = oldpage->pobjects;
2035 			pages = oldpage->pages;
2036 			if (drain && pobjects > s->cpu_partial) {
2037 				unsigned long flags;
2038 				/*
2039 				 * partial array is full. Move the existing
2040 				 * set to the per node partial list.
2041 				 */
2042 				local_irq_save(flags);
2043 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2044 				local_irq_restore(flags);
2045 				oldpage = NULL;
2046 				pobjects = 0;
2047 				pages = 0;
2048 				stat(s, CPU_PARTIAL_DRAIN);
2049 			}
2050 		}
2051 
2052 		pages++;
2053 		pobjects += page->objects - page->inuse;
2054 
2055 		page->pages = pages;
2056 		page->pobjects = pobjects;
2057 		page->next = oldpage;
2058 
2059 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2060 								!= oldpage);
2061 #endif
2062 }
2063 
2064 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2065 {
2066 	stat(s, CPUSLAB_FLUSH);
2067 	deactivate_slab(s, c->page, c->freelist);
2068 
2069 	c->tid = next_tid(c->tid);
2070 	c->page = NULL;
2071 	c->freelist = NULL;
2072 }
2073 
2074 /*
2075  * Flush cpu slab.
2076  *
2077  * Called from IPI handler with interrupts disabled.
2078  */
2079 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2080 {
2081 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2082 
2083 	if (likely(c)) {
2084 		if (c->page)
2085 			flush_slab(s, c);
2086 
2087 		unfreeze_partials(s, c);
2088 	}
2089 }
2090 
2091 static void flush_cpu_slab(void *d)
2092 {
2093 	struct kmem_cache *s = d;
2094 
2095 	__flush_cpu_slab(s, smp_processor_id());
2096 }
2097 
2098 static bool has_cpu_slab(int cpu, void *info)
2099 {
2100 	struct kmem_cache *s = info;
2101 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2102 
2103 	return c->page || c->partial;
2104 }
2105 
2106 static void flush_all(struct kmem_cache *s)
2107 {
2108 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2109 }
2110 
2111 /*
2112  * Check if the objects in a per cpu structure fit numa
2113  * locality expectations.
2114  */
2115 static inline int node_match(struct page *page, int node)
2116 {
2117 #ifdef CONFIG_NUMA
2118 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2119 		return 0;
2120 #endif
2121 	return 1;
2122 }
2123 
2124 static int count_free(struct page *page)
2125 {
2126 	return page->objects - page->inuse;
2127 }
2128 
2129 static unsigned long count_partial(struct kmem_cache_node *n,
2130 					int (*get_count)(struct page *))
2131 {
2132 	unsigned long flags;
2133 	unsigned long x = 0;
2134 	struct page *page;
2135 
2136 	spin_lock_irqsave(&n->list_lock, flags);
2137 	list_for_each_entry(page, &n->partial, lru)
2138 		x += get_count(page);
2139 	spin_unlock_irqrestore(&n->list_lock, flags);
2140 	return x;
2141 }
2142 
2143 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2144 {
2145 #ifdef CONFIG_SLUB_DEBUG
2146 	return atomic_long_read(&n->total_objects);
2147 #else
2148 	return 0;
2149 #endif
2150 }
2151 
2152 static noinline void
2153 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2154 {
2155 	int node;
2156 
2157 	printk(KERN_WARNING
2158 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2159 		nid, gfpflags);
2160 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2161 		"default order: %d, min order: %d\n", s->name, s->object_size,
2162 		s->size, oo_order(s->oo), oo_order(s->min));
2163 
2164 	if (oo_order(s->min) > get_order(s->object_size))
2165 		printk(KERN_WARNING "  %s debugging increased min order, use "
2166 		       "slub_debug=O to disable.\n", s->name);
2167 
2168 	for_each_online_node(node) {
2169 		struct kmem_cache_node *n = get_node(s, node);
2170 		unsigned long nr_slabs;
2171 		unsigned long nr_objs;
2172 		unsigned long nr_free;
2173 
2174 		if (!n)
2175 			continue;
2176 
2177 		nr_free  = count_partial(n, count_free);
2178 		nr_slabs = node_nr_slabs(n);
2179 		nr_objs  = node_nr_objs(n);
2180 
2181 		printk(KERN_WARNING
2182 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2183 			node, nr_slabs, nr_objs, nr_free);
2184 	}
2185 }
2186 
2187 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2188 			int node, struct kmem_cache_cpu **pc)
2189 {
2190 	void *freelist;
2191 	struct kmem_cache_cpu *c = *pc;
2192 	struct page *page;
2193 
2194 	freelist = get_partial(s, flags, node, c);
2195 
2196 	if (freelist)
2197 		return freelist;
2198 
2199 	page = new_slab(s, flags, node);
2200 	if (page) {
2201 		c = __this_cpu_ptr(s->cpu_slab);
2202 		if (c->page)
2203 			flush_slab(s, c);
2204 
2205 		/*
2206 		 * No other reference to the page yet so we can
2207 		 * muck around with it freely without cmpxchg
2208 		 */
2209 		freelist = page->freelist;
2210 		page->freelist = NULL;
2211 
2212 		stat(s, ALLOC_SLAB);
2213 		c->page = page;
2214 		*pc = c;
2215 	} else
2216 		freelist = NULL;
2217 
2218 	return freelist;
2219 }
2220 
2221 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2222 {
2223 	if (unlikely(PageSlabPfmemalloc(page)))
2224 		return gfp_pfmemalloc_allowed(gfpflags);
2225 
2226 	return true;
2227 }
2228 
2229 /*
2230  * Check the page->freelist of a page and either transfer the freelist to the
2231  * per cpu freelist or deactivate the page.
2232  *
2233  * The page is still frozen if the return value is not NULL.
2234  *
2235  * If this function returns NULL then the page has been unfrozen.
2236  *
2237  * This function must be called with interrupt disabled.
2238  */
2239 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2240 {
2241 	struct page new;
2242 	unsigned long counters;
2243 	void *freelist;
2244 
2245 	do {
2246 		freelist = page->freelist;
2247 		counters = page->counters;
2248 
2249 		new.counters = counters;
2250 		VM_BUG_ON(!new.frozen);
2251 
2252 		new.inuse = page->objects;
2253 		new.frozen = freelist != NULL;
2254 
2255 	} while (!__cmpxchg_double_slab(s, page,
2256 		freelist, counters,
2257 		NULL, new.counters,
2258 		"get_freelist"));
2259 
2260 	return freelist;
2261 }
2262 
2263 /*
2264  * Slow path. The lockless freelist is empty or we need to perform
2265  * debugging duties.
2266  *
2267  * Processing is still very fast if new objects have been freed to the
2268  * regular freelist. In that case we simply take over the regular freelist
2269  * as the lockless freelist and zap the regular freelist.
2270  *
2271  * If that is not working then we fall back to the partial lists. We take the
2272  * first element of the freelist as the object to allocate now and move the
2273  * rest of the freelist to the lockless freelist.
2274  *
2275  * And if we were unable to get a new slab from the partial slab lists then
2276  * we need to allocate a new slab. This is the slowest path since it involves
2277  * a call to the page allocator and the setup of a new slab.
2278  */
2279 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2280 			  unsigned long addr, struct kmem_cache_cpu *c)
2281 {
2282 	void *freelist;
2283 	struct page *page;
2284 	unsigned long flags;
2285 
2286 	local_irq_save(flags);
2287 #ifdef CONFIG_PREEMPT
2288 	/*
2289 	 * We may have been preempted and rescheduled on a different
2290 	 * cpu before disabling interrupts. Need to reload cpu area
2291 	 * pointer.
2292 	 */
2293 	c = this_cpu_ptr(s->cpu_slab);
2294 #endif
2295 
2296 	page = c->page;
2297 	if (!page)
2298 		goto new_slab;
2299 redo:
2300 
2301 	if (unlikely(!node_match(page, node))) {
2302 		stat(s, ALLOC_NODE_MISMATCH);
2303 		deactivate_slab(s, page, c->freelist);
2304 		c->page = NULL;
2305 		c->freelist = NULL;
2306 		goto new_slab;
2307 	}
2308 
2309 	/*
2310 	 * By rights, we should be searching for a slab page that was
2311 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2312 	 * information when the page leaves the per-cpu allocator
2313 	 */
2314 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2315 		deactivate_slab(s, page, c->freelist);
2316 		c->page = NULL;
2317 		c->freelist = NULL;
2318 		goto new_slab;
2319 	}
2320 
2321 	/* must check again c->freelist in case of cpu migration or IRQ */
2322 	freelist = c->freelist;
2323 	if (freelist)
2324 		goto load_freelist;
2325 
2326 	stat(s, ALLOC_SLOWPATH);
2327 
2328 	freelist = get_freelist(s, page);
2329 
2330 	if (!freelist) {
2331 		c->page = NULL;
2332 		stat(s, DEACTIVATE_BYPASS);
2333 		goto new_slab;
2334 	}
2335 
2336 	stat(s, ALLOC_REFILL);
2337 
2338 load_freelist:
2339 	/*
2340 	 * freelist is pointing to the list of objects to be used.
2341 	 * page is pointing to the page from which the objects are obtained.
2342 	 * That page must be frozen for per cpu allocations to work.
2343 	 */
2344 	VM_BUG_ON(!c->page->frozen);
2345 	c->freelist = get_freepointer(s, freelist);
2346 	c->tid = next_tid(c->tid);
2347 	local_irq_restore(flags);
2348 	return freelist;
2349 
2350 new_slab:
2351 
2352 	if (c->partial) {
2353 		page = c->page = c->partial;
2354 		c->partial = page->next;
2355 		stat(s, CPU_PARTIAL_ALLOC);
2356 		c->freelist = NULL;
2357 		goto redo;
2358 	}
2359 
2360 	freelist = new_slab_objects(s, gfpflags, node, &c);
2361 
2362 	if (unlikely(!freelist)) {
2363 		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2364 			slab_out_of_memory(s, gfpflags, node);
2365 
2366 		local_irq_restore(flags);
2367 		return NULL;
2368 	}
2369 
2370 	page = c->page;
2371 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2372 		goto load_freelist;
2373 
2374 	/* Only entered in the debug case */
2375 	if (kmem_cache_debug(s) &&
2376 			!alloc_debug_processing(s, page, freelist, addr))
2377 		goto new_slab;	/* Slab failed checks. Next slab needed */
2378 
2379 	deactivate_slab(s, page, get_freepointer(s, freelist));
2380 	c->page = NULL;
2381 	c->freelist = NULL;
2382 	local_irq_restore(flags);
2383 	return freelist;
2384 }
2385 
2386 /*
2387  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2388  * have the fastpath folded into their functions. So no function call
2389  * overhead for requests that can be satisfied on the fastpath.
2390  *
2391  * The fastpath works by first checking if the lockless freelist can be used.
2392  * If not then __slab_alloc is called for slow processing.
2393  *
2394  * Otherwise we can simply pick the next object from the lockless free list.
2395  */
2396 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2397 		gfp_t gfpflags, int node, unsigned long addr)
2398 {
2399 	void **object;
2400 	struct kmem_cache_cpu *c;
2401 	struct page *page;
2402 	unsigned long tid;
2403 
2404 	if (slab_pre_alloc_hook(s, gfpflags))
2405 		return NULL;
2406 
2407 	s = memcg_kmem_get_cache(s, gfpflags);
2408 redo:
2409 	/*
2410 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2411 	 * enabled. We may switch back and forth between cpus while
2412 	 * reading from one cpu area. That does not matter as long
2413 	 * as we end up on the original cpu again when doing the cmpxchg.
2414 	 *
2415 	 * Preemption is disabled for the retrieval of the tid because that
2416 	 * must occur from the current processor. We cannot allow rescheduling
2417 	 * on a different processor between the determination of the pointer
2418 	 * and the retrieval of the tid.
2419 	 */
2420 	preempt_disable();
2421 	c = __this_cpu_ptr(s->cpu_slab);
2422 
2423 	/*
2424 	 * The transaction ids are globally unique per cpu and per operation on
2425 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2426 	 * occurs on the right processor and that there was no operation on the
2427 	 * linked list in between.
2428 	 */
2429 	tid = c->tid;
2430 	preempt_enable();
2431 
2432 	object = c->freelist;
2433 	page = c->page;
2434 	if (unlikely(!object || !node_match(page, node)))
2435 		object = __slab_alloc(s, gfpflags, node, addr, c);
2436 
2437 	else {
2438 		void *next_object = get_freepointer_safe(s, object);
2439 
2440 		/*
2441 		 * The cmpxchg will only match if there was no additional
2442 		 * operation and if we are on the right processor.
2443 		 *
2444 		 * The cmpxchg does the following atomically (without lock
2445 		 * semantics!)
2446 		 * 1. Relocate first pointer to the current per cpu area.
2447 		 * 2. Verify that tid and freelist have not been changed
2448 		 * 3. If they were not changed replace tid and freelist
2449 		 *
2450 		 * Since this is without lock semantics the protection is only
2451 		 * against code executing on this cpu *not* from access by
2452 		 * other cpus.
2453 		 */
2454 		if (unlikely(!this_cpu_cmpxchg_double(
2455 				s->cpu_slab->freelist, s->cpu_slab->tid,
2456 				object, tid,
2457 				next_object, next_tid(tid)))) {
2458 
2459 			note_cmpxchg_failure("slab_alloc", s, tid);
2460 			goto redo;
2461 		}
2462 		prefetch_freepointer(s, next_object);
2463 		stat(s, ALLOC_FASTPATH);
2464 	}
2465 
2466 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2467 		memset(object, 0, s->object_size);
2468 
2469 	slab_post_alloc_hook(s, gfpflags, object);
2470 
2471 	return object;
2472 }
2473 
2474 static __always_inline void *slab_alloc(struct kmem_cache *s,
2475 		gfp_t gfpflags, unsigned long addr)
2476 {
2477 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2478 }
2479 
2480 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2481 {
2482 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2483 
2484 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2485 				s->size, gfpflags);
2486 
2487 	return ret;
2488 }
2489 EXPORT_SYMBOL(kmem_cache_alloc);
2490 
2491 #ifdef CONFIG_TRACING
2492 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2493 {
2494 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2495 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2496 	return ret;
2497 }
2498 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2499 #endif
2500 
2501 #ifdef CONFIG_NUMA
2502 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2503 {
2504 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2505 
2506 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2507 				    s->object_size, s->size, gfpflags, node);
2508 
2509 	return ret;
2510 }
2511 EXPORT_SYMBOL(kmem_cache_alloc_node);
2512 
2513 #ifdef CONFIG_TRACING
2514 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2515 				    gfp_t gfpflags,
2516 				    int node, size_t size)
2517 {
2518 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2519 
2520 	trace_kmalloc_node(_RET_IP_, ret,
2521 			   size, s->size, gfpflags, node);
2522 	return ret;
2523 }
2524 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2525 #endif
2526 #endif
2527 
2528 /*
2529  * Slow patch handling. This may still be called frequently since objects
2530  * have a longer lifetime than the cpu slabs in most processing loads.
2531  *
2532  * So we still attempt to reduce cache line usage. Just take the slab
2533  * lock and free the item. If there is no additional partial page
2534  * handling required then we can return immediately.
2535  */
2536 static void __slab_free(struct kmem_cache *s, struct page *page,
2537 			void *x, unsigned long addr)
2538 {
2539 	void *prior;
2540 	void **object = (void *)x;
2541 	int was_frozen;
2542 	struct page new;
2543 	unsigned long counters;
2544 	struct kmem_cache_node *n = NULL;
2545 	unsigned long uninitialized_var(flags);
2546 
2547 	stat(s, FREE_SLOWPATH);
2548 
2549 	if (kmem_cache_debug(s) &&
2550 		!(n = free_debug_processing(s, page, x, addr, &flags)))
2551 		return;
2552 
2553 	do {
2554 		if (unlikely(n)) {
2555 			spin_unlock_irqrestore(&n->list_lock, flags);
2556 			n = NULL;
2557 		}
2558 		prior = page->freelist;
2559 		counters = page->counters;
2560 		set_freepointer(s, object, prior);
2561 		new.counters = counters;
2562 		was_frozen = new.frozen;
2563 		new.inuse--;
2564 		if ((!new.inuse || !prior) && !was_frozen) {
2565 
2566 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2567 
2568 				/*
2569 				 * Slab was on no list before and will be
2570 				 * partially empty
2571 				 * We can defer the list move and instead
2572 				 * freeze it.
2573 				 */
2574 				new.frozen = 1;
2575 
2576 			} else { /* Needs to be taken off a list */
2577 
2578 	                        n = get_node(s, page_to_nid(page));
2579 				/*
2580 				 * Speculatively acquire the list_lock.
2581 				 * If the cmpxchg does not succeed then we may
2582 				 * drop the list_lock without any processing.
2583 				 *
2584 				 * Otherwise the list_lock will synchronize with
2585 				 * other processors updating the list of slabs.
2586 				 */
2587 				spin_lock_irqsave(&n->list_lock, flags);
2588 
2589 			}
2590 		}
2591 
2592 	} while (!cmpxchg_double_slab(s, page,
2593 		prior, counters,
2594 		object, new.counters,
2595 		"__slab_free"));
2596 
2597 	if (likely(!n)) {
2598 
2599 		/*
2600 		 * If we just froze the page then put it onto the
2601 		 * per cpu partial list.
2602 		 */
2603 		if (new.frozen && !was_frozen) {
2604 			put_cpu_partial(s, page, 1);
2605 			stat(s, CPU_PARTIAL_FREE);
2606 		}
2607 		/*
2608 		 * The list lock was not taken therefore no list
2609 		 * activity can be necessary.
2610 		 */
2611                 if (was_frozen)
2612                         stat(s, FREE_FROZEN);
2613                 return;
2614         }
2615 
2616 	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2617 		goto slab_empty;
2618 
2619 	/*
2620 	 * Objects left in the slab. If it was not on the partial list before
2621 	 * then add it.
2622 	 */
2623 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2624 		if (kmem_cache_debug(s))
2625 			remove_full(s, n, page);
2626 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2627 		stat(s, FREE_ADD_PARTIAL);
2628 	}
2629 	spin_unlock_irqrestore(&n->list_lock, flags);
2630 	return;
2631 
2632 slab_empty:
2633 	if (prior) {
2634 		/*
2635 		 * Slab on the partial list.
2636 		 */
2637 		remove_partial(n, page);
2638 		stat(s, FREE_REMOVE_PARTIAL);
2639 	} else {
2640 		/* Slab must be on the full list */
2641 		remove_full(s, n, page);
2642 	}
2643 
2644 	spin_unlock_irqrestore(&n->list_lock, flags);
2645 	stat(s, FREE_SLAB);
2646 	discard_slab(s, page);
2647 }
2648 
2649 /*
2650  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2651  * can perform fastpath freeing without additional function calls.
2652  *
2653  * The fastpath is only possible if we are freeing to the current cpu slab
2654  * of this processor. This typically the case if we have just allocated
2655  * the item before.
2656  *
2657  * If fastpath is not possible then fall back to __slab_free where we deal
2658  * with all sorts of special processing.
2659  */
2660 static __always_inline void slab_free(struct kmem_cache *s,
2661 			struct page *page, void *x, unsigned long addr)
2662 {
2663 	void **object = (void *)x;
2664 	struct kmem_cache_cpu *c;
2665 	unsigned long tid;
2666 
2667 	slab_free_hook(s, x);
2668 
2669 redo:
2670 	/*
2671 	 * Determine the currently cpus per cpu slab.
2672 	 * The cpu may change afterward. However that does not matter since
2673 	 * data is retrieved via this pointer. If we are on the same cpu
2674 	 * during the cmpxchg then the free will succedd.
2675 	 */
2676 	preempt_disable();
2677 	c = __this_cpu_ptr(s->cpu_slab);
2678 
2679 	tid = c->tid;
2680 	preempt_enable();
2681 
2682 	if (likely(page == c->page)) {
2683 		set_freepointer(s, object, c->freelist);
2684 
2685 		if (unlikely(!this_cpu_cmpxchg_double(
2686 				s->cpu_slab->freelist, s->cpu_slab->tid,
2687 				c->freelist, tid,
2688 				object, next_tid(tid)))) {
2689 
2690 			note_cmpxchg_failure("slab_free", s, tid);
2691 			goto redo;
2692 		}
2693 		stat(s, FREE_FASTPATH);
2694 	} else
2695 		__slab_free(s, page, x, addr);
2696 
2697 }
2698 
2699 void kmem_cache_free(struct kmem_cache *s, void *x)
2700 {
2701 	s = cache_from_obj(s, x);
2702 	if (!s)
2703 		return;
2704 	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2705 	trace_kmem_cache_free(_RET_IP_, x);
2706 }
2707 EXPORT_SYMBOL(kmem_cache_free);
2708 
2709 /*
2710  * Object placement in a slab is made very easy because we always start at
2711  * offset 0. If we tune the size of the object to the alignment then we can
2712  * get the required alignment by putting one properly sized object after
2713  * another.
2714  *
2715  * Notice that the allocation order determines the sizes of the per cpu
2716  * caches. Each processor has always one slab available for allocations.
2717  * Increasing the allocation order reduces the number of times that slabs
2718  * must be moved on and off the partial lists and is therefore a factor in
2719  * locking overhead.
2720  */
2721 
2722 /*
2723  * Mininum / Maximum order of slab pages. This influences locking overhead
2724  * and slab fragmentation. A higher order reduces the number of partial slabs
2725  * and increases the number of allocations possible without having to
2726  * take the list_lock.
2727  */
2728 static int slub_min_order;
2729 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2730 static int slub_min_objects;
2731 
2732 /*
2733  * Merge control. If this is set then no merging of slab caches will occur.
2734  * (Could be removed. This was introduced to pacify the merge skeptics.)
2735  */
2736 static int slub_nomerge;
2737 
2738 /*
2739  * Calculate the order of allocation given an slab object size.
2740  *
2741  * The order of allocation has significant impact on performance and other
2742  * system components. Generally order 0 allocations should be preferred since
2743  * order 0 does not cause fragmentation in the page allocator. Larger objects
2744  * be problematic to put into order 0 slabs because there may be too much
2745  * unused space left. We go to a higher order if more than 1/16th of the slab
2746  * would be wasted.
2747  *
2748  * In order to reach satisfactory performance we must ensure that a minimum
2749  * number of objects is in one slab. Otherwise we may generate too much
2750  * activity on the partial lists which requires taking the list_lock. This is
2751  * less a concern for large slabs though which are rarely used.
2752  *
2753  * slub_max_order specifies the order where we begin to stop considering the
2754  * number of objects in a slab as critical. If we reach slub_max_order then
2755  * we try to keep the page order as low as possible. So we accept more waste
2756  * of space in favor of a small page order.
2757  *
2758  * Higher order allocations also allow the placement of more objects in a
2759  * slab and thereby reduce object handling overhead. If the user has
2760  * requested a higher mininum order then we start with that one instead of
2761  * the smallest order which will fit the object.
2762  */
2763 static inline int slab_order(int size, int min_objects,
2764 				int max_order, int fract_leftover, int reserved)
2765 {
2766 	int order;
2767 	int rem;
2768 	int min_order = slub_min_order;
2769 
2770 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2771 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2772 
2773 	for (order = max(min_order,
2774 				fls(min_objects * size - 1) - PAGE_SHIFT);
2775 			order <= max_order; order++) {
2776 
2777 		unsigned long slab_size = PAGE_SIZE << order;
2778 
2779 		if (slab_size < min_objects * size + reserved)
2780 			continue;
2781 
2782 		rem = (slab_size - reserved) % size;
2783 
2784 		if (rem <= slab_size / fract_leftover)
2785 			break;
2786 
2787 	}
2788 
2789 	return order;
2790 }
2791 
2792 static inline int calculate_order(int size, int reserved)
2793 {
2794 	int order;
2795 	int min_objects;
2796 	int fraction;
2797 	int max_objects;
2798 
2799 	/*
2800 	 * Attempt to find best configuration for a slab. This
2801 	 * works by first attempting to generate a layout with
2802 	 * the best configuration and backing off gradually.
2803 	 *
2804 	 * First we reduce the acceptable waste in a slab. Then
2805 	 * we reduce the minimum objects required in a slab.
2806 	 */
2807 	min_objects = slub_min_objects;
2808 	if (!min_objects)
2809 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2810 	max_objects = order_objects(slub_max_order, size, reserved);
2811 	min_objects = min(min_objects, max_objects);
2812 
2813 	while (min_objects > 1) {
2814 		fraction = 16;
2815 		while (fraction >= 4) {
2816 			order = slab_order(size, min_objects,
2817 					slub_max_order, fraction, reserved);
2818 			if (order <= slub_max_order)
2819 				return order;
2820 			fraction /= 2;
2821 		}
2822 		min_objects--;
2823 	}
2824 
2825 	/*
2826 	 * We were unable to place multiple objects in a slab. Now
2827 	 * lets see if we can place a single object there.
2828 	 */
2829 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2830 	if (order <= slub_max_order)
2831 		return order;
2832 
2833 	/*
2834 	 * Doh this slab cannot be placed using slub_max_order.
2835 	 */
2836 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2837 	if (order < MAX_ORDER)
2838 		return order;
2839 	return -ENOSYS;
2840 }
2841 
2842 static void
2843 init_kmem_cache_node(struct kmem_cache_node *n)
2844 {
2845 	n->nr_partial = 0;
2846 	spin_lock_init(&n->list_lock);
2847 	INIT_LIST_HEAD(&n->partial);
2848 #ifdef CONFIG_SLUB_DEBUG
2849 	atomic_long_set(&n->nr_slabs, 0);
2850 	atomic_long_set(&n->total_objects, 0);
2851 	INIT_LIST_HEAD(&n->full);
2852 #endif
2853 }
2854 
2855 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2856 {
2857 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2858 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2859 
2860 	/*
2861 	 * Must align to double word boundary for the double cmpxchg
2862 	 * instructions to work; see __pcpu_double_call_return_bool().
2863 	 */
2864 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2865 				     2 * sizeof(void *));
2866 
2867 	if (!s->cpu_slab)
2868 		return 0;
2869 
2870 	init_kmem_cache_cpus(s);
2871 
2872 	return 1;
2873 }
2874 
2875 static struct kmem_cache *kmem_cache_node;
2876 
2877 /*
2878  * No kmalloc_node yet so do it by hand. We know that this is the first
2879  * slab on the node for this slabcache. There are no concurrent accesses
2880  * possible.
2881  *
2882  * Note that this function only works on the kmem_cache_node
2883  * when allocating for the kmem_cache_node. This is used for bootstrapping
2884  * memory on a fresh node that has no slab structures yet.
2885  */
2886 static void early_kmem_cache_node_alloc(int node)
2887 {
2888 	struct page *page;
2889 	struct kmem_cache_node *n;
2890 
2891 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2892 
2893 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2894 
2895 	BUG_ON(!page);
2896 	if (page_to_nid(page) != node) {
2897 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2898 				"node %d\n", node);
2899 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2900 				"in order to be able to continue\n");
2901 	}
2902 
2903 	n = page->freelist;
2904 	BUG_ON(!n);
2905 	page->freelist = get_freepointer(kmem_cache_node, n);
2906 	page->inuse = 1;
2907 	page->frozen = 0;
2908 	kmem_cache_node->node[node] = n;
2909 #ifdef CONFIG_SLUB_DEBUG
2910 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2911 	init_tracking(kmem_cache_node, n);
2912 #endif
2913 	init_kmem_cache_node(n);
2914 	inc_slabs_node(kmem_cache_node, node, page->objects);
2915 
2916 	/*
2917 	 * No locks need to be taken here as it has just been
2918 	 * initialized and there is no concurrent access.
2919 	 */
2920 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
2921 }
2922 
2923 static void free_kmem_cache_nodes(struct kmem_cache *s)
2924 {
2925 	int node;
2926 
2927 	for_each_node_state(node, N_NORMAL_MEMORY) {
2928 		struct kmem_cache_node *n = s->node[node];
2929 
2930 		if (n)
2931 			kmem_cache_free(kmem_cache_node, n);
2932 
2933 		s->node[node] = NULL;
2934 	}
2935 }
2936 
2937 static int init_kmem_cache_nodes(struct kmem_cache *s)
2938 {
2939 	int node;
2940 
2941 	for_each_node_state(node, N_NORMAL_MEMORY) {
2942 		struct kmem_cache_node *n;
2943 
2944 		if (slab_state == DOWN) {
2945 			early_kmem_cache_node_alloc(node);
2946 			continue;
2947 		}
2948 		n = kmem_cache_alloc_node(kmem_cache_node,
2949 						GFP_KERNEL, node);
2950 
2951 		if (!n) {
2952 			free_kmem_cache_nodes(s);
2953 			return 0;
2954 		}
2955 
2956 		s->node[node] = n;
2957 		init_kmem_cache_node(n);
2958 	}
2959 	return 1;
2960 }
2961 
2962 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2963 {
2964 	if (min < MIN_PARTIAL)
2965 		min = MIN_PARTIAL;
2966 	else if (min > MAX_PARTIAL)
2967 		min = MAX_PARTIAL;
2968 	s->min_partial = min;
2969 }
2970 
2971 /*
2972  * calculate_sizes() determines the order and the distribution of data within
2973  * a slab object.
2974  */
2975 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2976 {
2977 	unsigned long flags = s->flags;
2978 	unsigned long size = s->object_size;
2979 	int order;
2980 
2981 	/*
2982 	 * Round up object size to the next word boundary. We can only
2983 	 * place the free pointer at word boundaries and this determines
2984 	 * the possible location of the free pointer.
2985 	 */
2986 	size = ALIGN(size, sizeof(void *));
2987 
2988 #ifdef CONFIG_SLUB_DEBUG
2989 	/*
2990 	 * Determine if we can poison the object itself. If the user of
2991 	 * the slab may touch the object after free or before allocation
2992 	 * then we should never poison the object itself.
2993 	 */
2994 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2995 			!s->ctor)
2996 		s->flags |= __OBJECT_POISON;
2997 	else
2998 		s->flags &= ~__OBJECT_POISON;
2999 
3000 
3001 	/*
3002 	 * If we are Redzoning then check if there is some space between the
3003 	 * end of the object and the free pointer. If not then add an
3004 	 * additional word to have some bytes to store Redzone information.
3005 	 */
3006 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3007 		size += sizeof(void *);
3008 #endif
3009 
3010 	/*
3011 	 * With that we have determined the number of bytes in actual use
3012 	 * by the object. This is the potential offset to the free pointer.
3013 	 */
3014 	s->inuse = size;
3015 
3016 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3017 		s->ctor)) {
3018 		/*
3019 		 * Relocate free pointer after the object if it is not
3020 		 * permitted to overwrite the first word of the object on
3021 		 * kmem_cache_free.
3022 		 *
3023 		 * This is the case if we do RCU, have a constructor or
3024 		 * destructor or are poisoning the objects.
3025 		 */
3026 		s->offset = size;
3027 		size += sizeof(void *);
3028 	}
3029 
3030 #ifdef CONFIG_SLUB_DEBUG
3031 	if (flags & SLAB_STORE_USER)
3032 		/*
3033 		 * Need to store information about allocs and frees after
3034 		 * the object.
3035 		 */
3036 		size += 2 * sizeof(struct track);
3037 
3038 	if (flags & SLAB_RED_ZONE)
3039 		/*
3040 		 * Add some empty padding so that we can catch
3041 		 * overwrites from earlier objects rather than let
3042 		 * tracking information or the free pointer be
3043 		 * corrupted if a user writes before the start
3044 		 * of the object.
3045 		 */
3046 		size += sizeof(void *);
3047 #endif
3048 
3049 	/*
3050 	 * SLUB stores one object immediately after another beginning from
3051 	 * offset 0. In order to align the objects we have to simply size
3052 	 * each object to conform to the alignment.
3053 	 */
3054 	size = ALIGN(size, s->align);
3055 	s->size = size;
3056 	if (forced_order >= 0)
3057 		order = forced_order;
3058 	else
3059 		order = calculate_order(size, s->reserved);
3060 
3061 	if (order < 0)
3062 		return 0;
3063 
3064 	s->allocflags = 0;
3065 	if (order)
3066 		s->allocflags |= __GFP_COMP;
3067 
3068 	if (s->flags & SLAB_CACHE_DMA)
3069 		s->allocflags |= GFP_DMA;
3070 
3071 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3072 		s->allocflags |= __GFP_RECLAIMABLE;
3073 
3074 	/*
3075 	 * Determine the number of objects per slab
3076 	 */
3077 	s->oo = oo_make(order, size, s->reserved);
3078 	s->min = oo_make(get_order(size), size, s->reserved);
3079 	if (oo_objects(s->oo) > oo_objects(s->max))
3080 		s->max = s->oo;
3081 
3082 	return !!oo_objects(s->oo);
3083 }
3084 
3085 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3086 {
3087 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3088 	s->reserved = 0;
3089 
3090 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3091 		s->reserved = sizeof(struct rcu_head);
3092 
3093 	if (!calculate_sizes(s, -1))
3094 		goto error;
3095 	if (disable_higher_order_debug) {
3096 		/*
3097 		 * Disable debugging flags that store metadata if the min slab
3098 		 * order increased.
3099 		 */
3100 		if (get_order(s->size) > get_order(s->object_size)) {
3101 			s->flags &= ~DEBUG_METADATA_FLAGS;
3102 			s->offset = 0;
3103 			if (!calculate_sizes(s, -1))
3104 				goto error;
3105 		}
3106 	}
3107 
3108 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3109     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3110 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3111 		/* Enable fast mode */
3112 		s->flags |= __CMPXCHG_DOUBLE;
3113 #endif
3114 
3115 	/*
3116 	 * The larger the object size is, the more pages we want on the partial
3117 	 * list to avoid pounding the page allocator excessively.
3118 	 */
3119 	set_min_partial(s, ilog2(s->size) / 2);
3120 
3121 	/*
3122 	 * cpu_partial determined the maximum number of objects kept in the
3123 	 * per cpu partial lists of a processor.
3124 	 *
3125 	 * Per cpu partial lists mainly contain slabs that just have one
3126 	 * object freed. If they are used for allocation then they can be
3127 	 * filled up again with minimal effort. The slab will never hit the
3128 	 * per node partial lists and therefore no locking will be required.
3129 	 *
3130 	 * This setting also determines
3131 	 *
3132 	 * A) The number of objects from per cpu partial slabs dumped to the
3133 	 *    per node list when we reach the limit.
3134 	 * B) The number of objects in cpu partial slabs to extract from the
3135 	 *    per node list when we run out of per cpu objects. We only fetch
3136 	 *    50% to keep some capacity around for frees.
3137 	 */
3138 	if (!kmem_cache_has_cpu_partial(s))
3139 		s->cpu_partial = 0;
3140 	else if (s->size >= PAGE_SIZE)
3141 		s->cpu_partial = 2;
3142 	else if (s->size >= 1024)
3143 		s->cpu_partial = 6;
3144 	else if (s->size >= 256)
3145 		s->cpu_partial = 13;
3146 	else
3147 		s->cpu_partial = 30;
3148 
3149 #ifdef CONFIG_NUMA
3150 	s->remote_node_defrag_ratio = 1000;
3151 #endif
3152 	if (!init_kmem_cache_nodes(s))
3153 		goto error;
3154 
3155 	if (alloc_kmem_cache_cpus(s))
3156 		return 0;
3157 
3158 	free_kmem_cache_nodes(s);
3159 error:
3160 	if (flags & SLAB_PANIC)
3161 		panic("Cannot create slab %s size=%lu realsize=%u "
3162 			"order=%u offset=%u flags=%lx\n",
3163 			s->name, (unsigned long)s->size, s->size,
3164 			oo_order(s->oo), s->offset, flags);
3165 	return -EINVAL;
3166 }
3167 
3168 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3169 							const char *text)
3170 {
3171 #ifdef CONFIG_SLUB_DEBUG
3172 	void *addr = page_address(page);
3173 	void *p;
3174 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3175 				     sizeof(long), GFP_ATOMIC);
3176 	if (!map)
3177 		return;
3178 	slab_err(s, page, text, s->name);
3179 	slab_lock(page);
3180 
3181 	get_map(s, page, map);
3182 	for_each_object(p, s, addr, page->objects) {
3183 
3184 		if (!test_bit(slab_index(p, s, addr), map)) {
3185 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3186 							p, p - addr);
3187 			print_tracking(s, p);
3188 		}
3189 	}
3190 	slab_unlock(page);
3191 	kfree(map);
3192 #endif
3193 }
3194 
3195 /*
3196  * Attempt to free all partial slabs on a node.
3197  * This is called from kmem_cache_close(). We must be the last thread
3198  * using the cache and therefore we do not need to lock anymore.
3199  */
3200 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3201 {
3202 	struct page *page, *h;
3203 
3204 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3205 		if (!page->inuse) {
3206 			__remove_partial(n, page);
3207 			discard_slab(s, page);
3208 		} else {
3209 			list_slab_objects(s, page,
3210 			"Objects remaining in %s on kmem_cache_close()");
3211 		}
3212 	}
3213 }
3214 
3215 /*
3216  * Release all resources used by a slab cache.
3217  */
3218 static inline int kmem_cache_close(struct kmem_cache *s)
3219 {
3220 	int node;
3221 
3222 	flush_all(s);
3223 	/* Attempt to free all objects */
3224 	for_each_node_state(node, N_NORMAL_MEMORY) {
3225 		struct kmem_cache_node *n = get_node(s, node);
3226 
3227 		free_partial(s, n);
3228 		if (n->nr_partial || slabs_node(s, node))
3229 			return 1;
3230 	}
3231 	free_percpu(s->cpu_slab);
3232 	free_kmem_cache_nodes(s);
3233 	return 0;
3234 }
3235 
3236 int __kmem_cache_shutdown(struct kmem_cache *s)
3237 {
3238 	return kmem_cache_close(s);
3239 }
3240 
3241 /********************************************************************
3242  *		Kmalloc subsystem
3243  *******************************************************************/
3244 
3245 static int __init setup_slub_min_order(char *str)
3246 {
3247 	get_option(&str, &slub_min_order);
3248 
3249 	return 1;
3250 }
3251 
3252 __setup("slub_min_order=", setup_slub_min_order);
3253 
3254 static int __init setup_slub_max_order(char *str)
3255 {
3256 	get_option(&str, &slub_max_order);
3257 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3258 
3259 	return 1;
3260 }
3261 
3262 __setup("slub_max_order=", setup_slub_max_order);
3263 
3264 static int __init setup_slub_min_objects(char *str)
3265 {
3266 	get_option(&str, &slub_min_objects);
3267 
3268 	return 1;
3269 }
3270 
3271 __setup("slub_min_objects=", setup_slub_min_objects);
3272 
3273 static int __init setup_slub_nomerge(char *str)
3274 {
3275 	slub_nomerge = 1;
3276 	return 1;
3277 }
3278 
3279 __setup("slub_nomerge", setup_slub_nomerge);
3280 
3281 void *__kmalloc(size_t size, gfp_t flags)
3282 {
3283 	struct kmem_cache *s;
3284 	void *ret;
3285 
3286 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3287 		return kmalloc_large(size, flags);
3288 
3289 	s = kmalloc_slab(size, flags);
3290 
3291 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3292 		return s;
3293 
3294 	ret = slab_alloc(s, flags, _RET_IP_);
3295 
3296 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3297 
3298 	return ret;
3299 }
3300 EXPORT_SYMBOL(__kmalloc);
3301 
3302 #ifdef CONFIG_NUMA
3303 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3304 {
3305 	struct page *page;
3306 	void *ptr = NULL;
3307 
3308 	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3309 	page = alloc_pages_node(node, flags, get_order(size));
3310 	if (page)
3311 		ptr = page_address(page);
3312 
3313 	kmalloc_large_node_hook(ptr, size, flags);
3314 	return ptr;
3315 }
3316 
3317 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3318 {
3319 	struct kmem_cache *s;
3320 	void *ret;
3321 
3322 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3323 		ret = kmalloc_large_node(size, flags, node);
3324 
3325 		trace_kmalloc_node(_RET_IP_, ret,
3326 				   size, PAGE_SIZE << get_order(size),
3327 				   flags, node);
3328 
3329 		return ret;
3330 	}
3331 
3332 	s = kmalloc_slab(size, flags);
3333 
3334 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3335 		return s;
3336 
3337 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3338 
3339 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3340 
3341 	return ret;
3342 }
3343 EXPORT_SYMBOL(__kmalloc_node);
3344 #endif
3345 
3346 size_t ksize(const void *object)
3347 {
3348 	struct page *page;
3349 
3350 	if (unlikely(object == ZERO_SIZE_PTR))
3351 		return 0;
3352 
3353 	page = virt_to_head_page(object);
3354 
3355 	if (unlikely(!PageSlab(page))) {
3356 		WARN_ON(!PageCompound(page));
3357 		return PAGE_SIZE << compound_order(page);
3358 	}
3359 
3360 	return slab_ksize(page->slab_cache);
3361 }
3362 EXPORT_SYMBOL(ksize);
3363 
3364 void kfree(const void *x)
3365 {
3366 	struct page *page;
3367 	void *object = (void *)x;
3368 
3369 	trace_kfree(_RET_IP_, x);
3370 
3371 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3372 		return;
3373 
3374 	page = virt_to_head_page(x);
3375 	if (unlikely(!PageSlab(page))) {
3376 		BUG_ON(!PageCompound(page));
3377 		kfree_hook(x);
3378 		__free_memcg_kmem_pages(page, compound_order(page));
3379 		return;
3380 	}
3381 	slab_free(page->slab_cache, page, object, _RET_IP_);
3382 }
3383 EXPORT_SYMBOL(kfree);
3384 
3385 /*
3386  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3387  * the remaining slabs by the number of items in use. The slabs with the
3388  * most items in use come first. New allocations will then fill those up
3389  * and thus they can be removed from the partial lists.
3390  *
3391  * The slabs with the least items are placed last. This results in them
3392  * being allocated from last increasing the chance that the last objects
3393  * are freed in them.
3394  */
3395 int kmem_cache_shrink(struct kmem_cache *s)
3396 {
3397 	int node;
3398 	int i;
3399 	struct kmem_cache_node *n;
3400 	struct page *page;
3401 	struct page *t;
3402 	int objects = oo_objects(s->max);
3403 	struct list_head *slabs_by_inuse =
3404 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3405 	unsigned long flags;
3406 
3407 	if (!slabs_by_inuse)
3408 		return -ENOMEM;
3409 
3410 	flush_all(s);
3411 	for_each_node_state(node, N_NORMAL_MEMORY) {
3412 		n = get_node(s, node);
3413 
3414 		if (!n->nr_partial)
3415 			continue;
3416 
3417 		for (i = 0; i < objects; i++)
3418 			INIT_LIST_HEAD(slabs_by_inuse + i);
3419 
3420 		spin_lock_irqsave(&n->list_lock, flags);
3421 
3422 		/*
3423 		 * Build lists indexed by the items in use in each slab.
3424 		 *
3425 		 * Note that concurrent frees may occur while we hold the
3426 		 * list_lock. page->inuse here is the upper limit.
3427 		 */
3428 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3429 			list_move(&page->lru, slabs_by_inuse + page->inuse);
3430 			if (!page->inuse)
3431 				n->nr_partial--;
3432 		}
3433 
3434 		/*
3435 		 * Rebuild the partial list with the slabs filled up most
3436 		 * first and the least used slabs at the end.
3437 		 */
3438 		for (i = objects - 1; i > 0; i--)
3439 			list_splice(slabs_by_inuse + i, n->partial.prev);
3440 
3441 		spin_unlock_irqrestore(&n->list_lock, flags);
3442 
3443 		/* Release empty slabs */
3444 		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3445 			discard_slab(s, page);
3446 	}
3447 
3448 	kfree(slabs_by_inuse);
3449 	return 0;
3450 }
3451 EXPORT_SYMBOL(kmem_cache_shrink);
3452 
3453 static int slab_mem_going_offline_callback(void *arg)
3454 {
3455 	struct kmem_cache *s;
3456 
3457 	mutex_lock(&slab_mutex);
3458 	list_for_each_entry(s, &slab_caches, list)
3459 		kmem_cache_shrink(s);
3460 	mutex_unlock(&slab_mutex);
3461 
3462 	return 0;
3463 }
3464 
3465 static void slab_mem_offline_callback(void *arg)
3466 {
3467 	struct kmem_cache_node *n;
3468 	struct kmem_cache *s;
3469 	struct memory_notify *marg = arg;
3470 	int offline_node;
3471 
3472 	offline_node = marg->status_change_nid_normal;
3473 
3474 	/*
3475 	 * If the node still has available memory. we need kmem_cache_node
3476 	 * for it yet.
3477 	 */
3478 	if (offline_node < 0)
3479 		return;
3480 
3481 	mutex_lock(&slab_mutex);
3482 	list_for_each_entry(s, &slab_caches, list) {
3483 		n = get_node(s, offline_node);
3484 		if (n) {
3485 			/*
3486 			 * if n->nr_slabs > 0, slabs still exist on the node
3487 			 * that is going down. We were unable to free them,
3488 			 * and offline_pages() function shouldn't call this
3489 			 * callback. So, we must fail.
3490 			 */
3491 			BUG_ON(slabs_node(s, offline_node));
3492 
3493 			s->node[offline_node] = NULL;
3494 			kmem_cache_free(kmem_cache_node, n);
3495 		}
3496 	}
3497 	mutex_unlock(&slab_mutex);
3498 }
3499 
3500 static int slab_mem_going_online_callback(void *arg)
3501 {
3502 	struct kmem_cache_node *n;
3503 	struct kmem_cache *s;
3504 	struct memory_notify *marg = arg;
3505 	int nid = marg->status_change_nid_normal;
3506 	int ret = 0;
3507 
3508 	/*
3509 	 * If the node's memory is already available, then kmem_cache_node is
3510 	 * already created. Nothing to do.
3511 	 */
3512 	if (nid < 0)
3513 		return 0;
3514 
3515 	/*
3516 	 * We are bringing a node online. No memory is available yet. We must
3517 	 * allocate a kmem_cache_node structure in order to bring the node
3518 	 * online.
3519 	 */
3520 	mutex_lock(&slab_mutex);
3521 	list_for_each_entry(s, &slab_caches, list) {
3522 		/*
3523 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3524 		 *      since memory is not yet available from the node that
3525 		 *      is brought up.
3526 		 */
3527 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3528 		if (!n) {
3529 			ret = -ENOMEM;
3530 			goto out;
3531 		}
3532 		init_kmem_cache_node(n);
3533 		s->node[nid] = n;
3534 	}
3535 out:
3536 	mutex_unlock(&slab_mutex);
3537 	return ret;
3538 }
3539 
3540 static int slab_memory_callback(struct notifier_block *self,
3541 				unsigned long action, void *arg)
3542 {
3543 	int ret = 0;
3544 
3545 	switch (action) {
3546 	case MEM_GOING_ONLINE:
3547 		ret = slab_mem_going_online_callback(arg);
3548 		break;
3549 	case MEM_GOING_OFFLINE:
3550 		ret = slab_mem_going_offline_callback(arg);
3551 		break;
3552 	case MEM_OFFLINE:
3553 	case MEM_CANCEL_ONLINE:
3554 		slab_mem_offline_callback(arg);
3555 		break;
3556 	case MEM_ONLINE:
3557 	case MEM_CANCEL_OFFLINE:
3558 		break;
3559 	}
3560 	if (ret)
3561 		ret = notifier_from_errno(ret);
3562 	else
3563 		ret = NOTIFY_OK;
3564 	return ret;
3565 }
3566 
3567 static struct notifier_block slab_memory_callback_nb = {
3568 	.notifier_call = slab_memory_callback,
3569 	.priority = SLAB_CALLBACK_PRI,
3570 };
3571 
3572 /********************************************************************
3573  *			Basic setup of slabs
3574  *******************************************************************/
3575 
3576 /*
3577  * Used for early kmem_cache structures that were allocated using
3578  * the page allocator. Allocate them properly then fix up the pointers
3579  * that may be pointing to the wrong kmem_cache structure.
3580  */
3581 
3582 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3583 {
3584 	int node;
3585 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3586 
3587 	memcpy(s, static_cache, kmem_cache->object_size);
3588 
3589 	/*
3590 	 * This runs very early, and only the boot processor is supposed to be
3591 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3592 	 * IPIs around.
3593 	 */
3594 	__flush_cpu_slab(s, smp_processor_id());
3595 	for_each_node_state(node, N_NORMAL_MEMORY) {
3596 		struct kmem_cache_node *n = get_node(s, node);
3597 		struct page *p;
3598 
3599 		if (n) {
3600 			list_for_each_entry(p, &n->partial, lru)
3601 				p->slab_cache = s;
3602 
3603 #ifdef CONFIG_SLUB_DEBUG
3604 			list_for_each_entry(p, &n->full, lru)
3605 				p->slab_cache = s;
3606 #endif
3607 		}
3608 	}
3609 	list_add(&s->list, &slab_caches);
3610 	return s;
3611 }
3612 
3613 void __init kmem_cache_init(void)
3614 {
3615 	static __initdata struct kmem_cache boot_kmem_cache,
3616 		boot_kmem_cache_node;
3617 
3618 	if (debug_guardpage_minorder())
3619 		slub_max_order = 0;
3620 
3621 	kmem_cache_node = &boot_kmem_cache_node;
3622 	kmem_cache = &boot_kmem_cache;
3623 
3624 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3625 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3626 
3627 	register_hotmemory_notifier(&slab_memory_callback_nb);
3628 
3629 	/* Able to allocate the per node structures */
3630 	slab_state = PARTIAL;
3631 
3632 	create_boot_cache(kmem_cache, "kmem_cache",
3633 			offsetof(struct kmem_cache, node) +
3634 				nr_node_ids * sizeof(struct kmem_cache_node *),
3635 		       SLAB_HWCACHE_ALIGN);
3636 
3637 	kmem_cache = bootstrap(&boot_kmem_cache);
3638 
3639 	/*
3640 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3641 	 * kmem_cache_node is separately allocated so no need to
3642 	 * update any list pointers.
3643 	 */
3644 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3645 
3646 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3647 	create_kmalloc_caches(0);
3648 
3649 #ifdef CONFIG_SMP
3650 	register_cpu_notifier(&slab_notifier);
3651 #endif
3652 
3653 	printk(KERN_INFO
3654 		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3655 		" CPUs=%d, Nodes=%d\n",
3656 		cache_line_size(),
3657 		slub_min_order, slub_max_order, slub_min_objects,
3658 		nr_cpu_ids, nr_node_ids);
3659 }
3660 
3661 void __init kmem_cache_init_late(void)
3662 {
3663 }
3664 
3665 /*
3666  * Find a mergeable slab cache
3667  */
3668 static int slab_unmergeable(struct kmem_cache *s)
3669 {
3670 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3671 		return 1;
3672 
3673 	if (!is_root_cache(s))
3674 		return 1;
3675 
3676 	if (s->ctor)
3677 		return 1;
3678 
3679 	/*
3680 	 * We may have set a slab to be unmergeable during bootstrap.
3681 	 */
3682 	if (s->refcount < 0)
3683 		return 1;
3684 
3685 	return 0;
3686 }
3687 
3688 static struct kmem_cache *find_mergeable(size_t size, size_t align,
3689 		unsigned long flags, const char *name, void (*ctor)(void *))
3690 {
3691 	struct kmem_cache *s;
3692 
3693 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3694 		return NULL;
3695 
3696 	if (ctor)
3697 		return NULL;
3698 
3699 	size = ALIGN(size, sizeof(void *));
3700 	align = calculate_alignment(flags, align, size);
3701 	size = ALIGN(size, align);
3702 	flags = kmem_cache_flags(size, flags, name, NULL);
3703 
3704 	list_for_each_entry(s, &slab_caches, list) {
3705 		if (slab_unmergeable(s))
3706 			continue;
3707 
3708 		if (size > s->size)
3709 			continue;
3710 
3711 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3712 			continue;
3713 		/*
3714 		 * Check if alignment is compatible.
3715 		 * Courtesy of Adrian Drzewiecki
3716 		 */
3717 		if ((s->size & ~(align - 1)) != s->size)
3718 			continue;
3719 
3720 		if (s->size - size >= sizeof(void *))
3721 			continue;
3722 
3723 		return s;
3724 	}
3725 	return NULL;
3726 }
3727 
3728 struct kmem_cache *
3729 __kmem_cache_alias(const char *name, size_t size, size_t align,
3730 		   unsigned long flags, void (*ctor)(void *))
3731 {
3732 	struct kmem_cache *s;
3733 
3734 	s = find_mergeable(size, align, flags, name, ctor);
3735 	if (s) {
3736 		int i;
3737 		struct kmem_cache *c;
3738 
3739 		s->refcount++;
3740 
3741 		/*
3742 		 * Adjust the object sizes so that we clear
3743 		 * the complete object on kzalloc.
3744 		 */
3745 		s->object_size = max(s->object_size, (int)size);
3746 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3747 
3748 		for_each_memcg_cache_index(i) {
3749 			c = cache_from_memcg_idx(s, i);
3750 			if (!c)
3751 				continue;
3752 			c->object_size = s->object_size;
3753 			c->inuse = max_t(int, c->inuse,
3754 					 ALIGN(size, sizeof(void *)));
3755 		}
3756 
3757 		if (sysfs_slab_alias(s, name)) {
3758 			s->refcount--;
3759 			s = NULL;
3760 		}
3761 	}
3762 
3763 	return s;
3764 }
3765 
3766 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3767 {
3768 	int err;
3769 
3770 	err = kmem_cache_open(s, flags);
3771 	if (err)
3772 		return err;
3773 
3774 	/* Mutex is not taken during early boot */
3775 	if (slab_state <= UP)
3776 		return 0;
3777 
3778 	memcg_propagate_slab_attrs(s);
3779 	err = sysfs_slab_add(s);
3780 	if (err)
3781 		kmem_cache_close(s);
3782 
3783 	return err;
3784 }
3785 
3786 #ifdef CONFIG_SMP
3787 /*
3788  * Use the cpu notifier to insure that the cpu slabs are flushed when
3789  * necessary.
3790  */
3791 static int slab_cpuup_callback(struct notifier_block *nfb,
3792 		unsigned long action, void *hcpu)
3793 {
3794 	long cpu = (long)hcpu;
3795 	struct kmem_cache *s;
3796 	unsigned long flags;
3797 
3798 	switch (action) {
3799 	case CPU_UP_CANCELED:
3800 	case CPU_UP_CANCELED_FROZEN:
3801 	case CPU_DEAD:
3802 	case CPU_DEAD_FROZEN:
3803 		mutex_lock(&slab_mutex);
3804 		list_for_each_entry(s, &slab_caches, list) {
3805 			local_irq_save(flags);
3806 			__flush_cpu_slab(s, cpu);
3807 			local_irq_restore(flags);
3808 		}
3809 		mutex_unlock(&slab_mutex);
3810 		break;
3811 	default:
3812 		break;
3813 	}
3814 	return NOTIFY_OK;
3815 }
3816 
3817 static struct notifier_block slab_notifier = {
3818 	.notifier_call = slab_cpuup_callback
3819 };
3820 
3821 #endif
3822 
3823 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3824 {
3825 	struct kmem_cache *s;
3826 	void *ret;
3827 
3828 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3829 		return kmalloc_large(size, gfpflags);
3830 
3831 	s = kmalloc_slab(size, gfpflags);
3832 
3833 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3834 		return s;
3835 
3836 	ret = slab_alloc(s, gfpflags, caller);
3837 
3838 	/* Honor the call site pointer we received. */
3839 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3840 
3841 	return ret;
3842 }
3843 
3844 #ifdef CONFIG_NUMA
3845 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3846 					int node, unsigned long caller)
3847 {
3848 	struct kmem_cache *s;
3849 	void *ret;
3850 
3851 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3852 		ret = kmalloc_large_node(size, gfpflags, node);
3853 
3854 		trace_kmalloc_node(caller, ret,
3855 				   size, PAGE_SIZE << get_order(size),
3856 				   gfpflags, node);
3857 
3858 		return ret;
3859 	}
3860 
3861 	s = kmalloc_slab(size, gfpflags);
3862 
3863 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3864 		return s;
3865 
3866 	ret = slab_alloc_node(s, gfpflags, node, caller);
3867 
3868 	/* Honor the call site pointer we received. */
3869 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3870 
3871 	return ret;
3872 }
3873 #endif
3874 
3875 #ifdef CONFIG_SYSFS
3876 static int count_inuse(struct page *page)
3877 {
3878 	return page->inuse;
3879 }
3880 
3881 static int count_total(struct page *page)
3882 {
3883 	return page->objects;
3884 }
3885 #endif
3886 
3887 #ifdef CONFIG_SLUB_DEBUG
3888 static int validate_slab(struct kmem_cache *s, struct page *page,
3889 						unsigned long *map)
3890 {
3891 	void *p;
3892 	void *addr = page_address(page);
3893 
3894 	if (!check_slab(s, page) ||
3895 			!on_freelist(s, page, NULL))
3896 		return 0;
3897 
3898 	/* Now we know that a valid freelist exists */
3899 	bitmap_zero(map, page->objects);
3900 
3901 	get_map(s, page, map);
3902 	for_each_object(p, s, addr, page->objects) {
3903 		if (test_bit(slab_index(p, s, addr), map))
3904 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3905 				return 0;
3906 	}
3907 
3908 	for_each_object(p, s, addr, page->objects)
3909 		if (!test_bit(slab_index(p, s, addr), map))
3910 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3911 				return 0;
3912 	return 1;
3913 }
3914 
3915 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3916 						unsigned long *map)
3917 {
3918 	slab_lock(page);
3919 	validate_slab(s, page, map);
3920 	slab_unlock(page);
3921 }
3922 
3923 static int validate_slab_node(struct kmem_cache *s,
3924 		struct kmem_cache_node *n, unsigned long *map)
3925 {
3926 	unsigned long count = 0;
3927 	struct page *page;
3928 	unsigned long flags;
3929 
3930 	spin_lock_irqsave(&n->list_lock, flags);
3931 
3932 	list_for_each_entry(page, &n->partial, lru) {
3933 		validate_slab_slab(s, page, map);
3934 		count++;
3935 	}
3936 	if (count != n->nr_partial)
3937 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3938 			"counter=%ld\n", s->name, count, n->nr_partial);
3939 
3940 	if (!(s->flags & SLAB_STORE_USER))
3941 		goto out;
3942 
3943 	list_for_each_entry(page, &n->full, lru) {
3944 		validate_slab_slab(s, page, map);
3945 		count++;
3946 	}
3947 	if (count != atomic_long_read(&n->nr_slabs))
3948 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3949 			"counter=%ld\n", s->name, count,
3950 			atomic_long_read(&n->nr_slabs));
3951 
3952 out:
3953 	spin_unlock_irqrestore(&n->list_lock, flags);
3954 	return count;
3955 }
3956 
3957 static long validate_slab_cache(struct kmem_cache *s)
3958 {
3959 	int node;
3960 	unsigned long count = 0;
3961 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3962 				sizeof(unsigned long), GFP_KERNEL);
3963 
3964 	if (!map)
3965 		return -ENOMEM;
3966 
3967 	flush_all(s);
3968 	for_each_node_state(node, N_NORMAL_MEMORY) {
3969 		struct kmem_cache_node *n = get_node(s, node);
3970 
3971 		count += validate_slab_node(s, n, map);
3972 	}
3973 	kfree(map);
3974 	return count;
3975 }
3976 /*
3977  * Generate lists of code addresses where slabcache objects are allocated
3978  * and freed.
3979  */
3980 
3981 struct location {
3982 	unsigned long count;
3983 	unsigned long addr;
3984 	long long sum_time;
3985 	long min_time;
3986 	long max_time;
3987 	long min_pid;
3988 	long max_pid;
3989 	DECLARE_BITMAP(cpus, NR_CPUS);
3990 	nodemask_t nodes;
3991 };
3992 
3993 struct loc_track {
3994 	unsigned long max;
3995 	unsigned long count;
3996 	struct location *loc;
3997 };
3998 
3999 static void free_loc_track(struct loc_track *t)
4000 {
4001 	if (t->max)
4002 		free_pages((unsigned long)t->loc,
4003 			get_order(sizeof(struct location) * t->max));
4004 }
4005 
4006 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4007 {
4008 	struct location *l;
4009 	int order;
4010 
4011 	order = get_order(sizeof(struct location) * max);
4012 
4013 	l = (void *)__get_free_pages(flags, order);
4014 	if (!l)
4015 		return 0;
4016 
4017 	if (t->count) {
4018 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4019 		free_loc_track(t);
4020 	}
4021 	t->max = max;
4022 	t->loc = l;
4023 	return 1;
4024 }
4025 
4026 static int add_location(struct loc_track *t, struct kmem_cache *s,
4027 				const struct track *track)
4028 {
4029 	long start, end, pos;
4030 	struct location *l;
4031 	unsigned long caddr;
4032 	unsigned long age = jiffies - track->when;
4033 
4034 	start = -1;
4035 	end = t->count;
4036 
4037 	for ( ; ; ) {
4038 		pos = start + (end - start + 1) / 2;
4039 
4040 		/*
4041 		 * There is nothing at "end". If we end up there
4042 		 * we need to add something to before end.
4043 		 */
4044 		if (pos == end)
4045 			break;
4046 
4047 		caddr = t->loc[pos].addr;
4048 		if (track->addr == caddr) {
4049 
4050 			l = &t->loc[pos];
4051 			l->count++;
4052 			if (track->when) {
4053 				l->sum_time += age;
4054 				if (age < l->min_time)
4055 					l->min_time = age;
4056 				if (age > l->max_time)
4057 					l->max_time = age;
4058 
4059 				if (track->pid < l->min_pid)
4060 					l->min_pid = track->pid;
4061 				if (track->pid > l->max_pid)
4062 					l->max_pid = track->pid;
4063 
4064 				cpumask_set_cpu(track->cpu,
4065 						to_cpumask(l->cpus));
4066 			}
4067 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4068 			return 1;
4069 		}
4070 
4071 		if (track->addr < caddr)
4072 			end = pos;
4073 		else
4074 			start = pos;
4075 	}
4076 
4077 	/*
4078 	 * Not found. Insert new tracking element.
4079 	 */
4080 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4081 		return 0;
4082 
4083 	l = t->loc + pos;
4084 	if (pos < t->count)
4085 		memmove(l + 1, l,
4086 			(t->count - pos) * sizeof(struct location));
4087 	t->count++;
4088 	l->count = 1;
4089 	l->addr = track->addr;
4090 	l->sum_time = age;
4091 	l->min_time = age;
4092 	l->max_time = age;
4093 	l->min_pid = track->pid;
4094 	l->max_pid = track->pid;
4095 	cpumask_clear(to_cpumask(l->cpus));
4096 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4097 	nodes_clear(l->nodes);
4098 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4099 	return 1;
4100 }
4101 
4102 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4103 		struct page *page, enum track_item alloc,
4104 		unsigned long *map)
4105 {
4106 	void *addr = page_address(page);
4107 	void *p;
4108 
4109 	bitmap_zero(map, page->objects);
4110 	get_map(s, page, map);
4111 
4112 	for_each_object(p, s, addr, page->objects)
4113 		if (!test_bit(slab_index(p, s, addr), map))
4114 			add_location(t, s, get_track(s, p, alloc));
4115 }
4116 
4117 static int list_locations(struct kmem_cache *s, char *buf,
4118 					enum track_item alloc)
4119 {
4120 	int len = 0;
4121 	unsigned long i;
4122 	struct loc_track t = { 0, 0, NULL };
4123 	int node;
4124 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4125 				     sizeof(unsigned long), GFP_KERNEL);
4126 
4127 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4128 				     GFP_TEMPORARY)) {
4129 		kfree(map);
4130 		return sprintf(buf, "Out of memory\n");
4131 	}
4132 	/* Push back cpu slabs */
4133 	flush_all(s);
4134 
4135 	for_each_node_state(node, N_NORMAL_MEMORY) {
4136 		struct kmem_cache_node *n = get_node(s, node);
4137 		unsigned long flags;
4138 		struct page *page;
4139 
4140 		if (!atomic_long_read(&n->nr_slabs))
4141 			continue;
4142 
4143 		spin_lock_irqsave(&n->list_lock, flags);
4144 		list_for_each_entry(page, &n->partial, lru)
4145 			process_slab(&t, s, page, alloc, map);
4146 		list_for_each_entry(page, &n->full, lru)
4147 			process_slab(&t, s, page, alloc, map);
4148 		spin_unlock_irqrestore(&n->list_lock, flags);
4149 	}
4150 
4151 	for (i = 0; i < t.count; i++) {
4152 		struct location *l = &t.loc[i];
4153 
4154 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4155 			break;
4156 		len += sprintf(buf + len, "%7ld ", l->count);
4157 
4158 		if (l->addr)
4159 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4160 		else
4161 			len += sprintf(buf + len, "<not-available>");
4162 
4163 		if (l->sum_time != l->min_time) {
4164 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4165 				l->min_time,
4166 				(long)div_u64(l->sum_time, l->count),
4167 				l->max_time);
4168 		} else
4169 			len += sprintf(buf + len, " age=%ld",
4170 				l->min_time);
4171 
4172 		if (l->min_pid != l->max_pid)
4173 			len += sprintf(buf + len, " pid=%ld-%ld",
4174 				l->min_pid, l->max_pid);
4175 		else
4176 			len += sprintf(buf + len, " pid=%ld",
4177 				l->min_pid);
4178 
4179 		if (num_online_cpus() > 1 &&
4180 				!cpumask_empty(to_cpumask(l->cpus)) &&
4181 				len < PAGE_SIZE - 60) {
4182 			len += sprintf(buf + len, " cpus=");
4183 			len += cpulist_scnprintf(buf + len,
4184 						 PAGE_SIZE - len - 50,
4185 						 to_cpumask(l->cpus));
4186 		}
4187 
4188 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4189 				len < PAGE_SIZE - 60) {
4190 			len += sprintf(buf + len, " nodes=");
4191 			len += nodelist_scnprintf(buf + len,
4192 						  PAGE_SIZE - len - 50,
4193 						  l->nodes);
4194 		}
4195 
4196 		len += sprintf(buf + len, "\n");
4197 	}
4198 
4199 	free_loc_track(&t);
4200 	kfree(map);
4201 	if (!t.count)
4202 		len += sprintf(buf, "No data\n");
4203 	return len;
4204 }
4205 #endif
4206 
4207 #ifdef SLUB_RESILIENCY_TEST
4208 static void resiliency_test(void)
4209 {
4210 	u8 *p;
4211 
4212 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4213 
4214 	printk(KERN_ERR "SLUB resiliency testing\n");
4215 	printk(KERN_ERR "-----------------------\n");
4216 	printk(KERN_ERR "A. Corruption after allocation\n");
4217 
4218 	p = kzalloc(16, GFP_KERNEL);
4219 	p[16] = 0x12;
4220 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4221 			" 0x12->0x%p\n\n", p + 16);
4222 
4223 	validate_slab_cache(kmalloc_caches[4]);
4224 
4225 	/* Hmmm... The next two are dangerous */
4226 	p = kzalloc(32, GFP_KERNEL);
4227 	p[32 + sizeof(void *)] = 0x34;
4228 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4229 			" 0x34 -> -0x%p\n", p);
4230 	printk(KERN_ERR
4231 		"If allocated object is overwritten then not detectable\n\n");
4232 
4233 	validate_slab_cache(kmalloc_caches[5]);
4234 	p = kzalloc(64, GFP_KERNEL);
4235 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4236 	*p = 0x56;
4237 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4238 									p);
4239 	printk(KERN_ERR
4240 		"If allocated object is overwritten then not detectable\n\n");
4241 	validate_slab_cache(kmalloc_caches[6]);
4242 
4243 	printk(KERN_ERR "\nB. Corruption after free\n");
4244 	p = kzalloc(128, GFP_KERNEL);
4245 	kfree(p);
4246 	*p = 0x78;
4247 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4248 	validate_slab_cache(kmalloc_caches[7]);
4249 
4250 	p = kzalloc(256, GFP_KERNEL);
4251 	kfree(p);
4252 	p[50] = 0x9a;
4253 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4254 			p);
4255 	validate_slab_cache(kmalloc_caches[8]);
4256 
4257 	p = kzalloc(512, GFP_KERNEL);
4258 	kfree(p);
4259 	p[512] = 0xab;
4260 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4261 	validate_slab_cache(kmalloc_caches[9]);
4262 }
4263 #else
4264 #ifdef CONFIG_SYSFS
4265 static void resiliency_test(void) {};
4266 #endif
4267 #endif
4268 
4269 #ifdef CONFIG_SYSFS
4270 enum slab_stat_type {
4271 	SL_ALL,			/* All slabs */
4272 	SL_PARTIAL,		/* Only partially allocated slabs */
4273 	SL_CPU,			/* Only slabs used for cpu caches */
4274 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4275 	SL_TOTAL		/* Determine object capacity not slabs */
4276 };
4277 
4278 #define SO_ALL		(1 << SL_ALL)
4279 #define SO_PARTIAL	(1 << SL_PARTIAL)
4280 #define SO_CPU		(1 << SL_CPU)
4281 #define SO_OBJECTS	(1 << SL_OBJECTS)
4282 #define SO_TOTAL	(1 << SL_TOTAL)
4283 
4284 static ssize_t show_slab_objects(struct kmem_cache *s,
4285 			    char *buf, unsigned long flags)
4286 {
4287 	unsigned long total = 0;
4288 	int node;
4289 	int x;
4290 	unsigned long *nodes;
4291 
4292 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4293 	if (!nodes)
4294 		return -ENOMEM;
4295 
4296 	if (flags & SO_CPU) {
4297 		int cpu;
4298 
4299 		for_each_possible_cpu(cpu) {
4300 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4301 							       cpu);
4302 			int node;
4303 			struct page *page;
4304 
4305 			page = ACCESS_ONCE(c->page);
4306 			if (!page)
4307 				continue;
4308 
4309 			node = page_to_nid(page);
4310 			if (flags & SO_TOTAL)
4311 				x = page->objects;
4312 			else if (flags & SO_OBJECTS)
4313 				x = page->inuse;
4314 			else
4315 				x = 1;
4316 
4317 			total += x;
4318 			nodes[node] += x;
4319 
4320 			page = ACCESS_ONCE(c->partial);
4321 			if (page) {
4322 				node = page_to_nid(page);
4323 				if (flags & SO_TOTAL)
4324 					WARN_ON_ONCE(1);
4325 				else if (flags & SO_OBJECTS)
4326 					WARN_ON_ONCE(1);
4327 				else
4328 					x = page->pages;
4329 				total += x;
4330 				nodes[node] += x;
4331 			}
4332 		}
4333 	}
4334 
4335 	lock_memory_hotplug();
4336 #ifdef CONFIG_SLUB_DEBUG
4337 	if (flags & SO_ALL) {
4338 		for_each_node_state(node, N_NORMAL_MEMORY) {
4339 			struct kmem_cache_node *n = get_node(s, node);
4340 
4341 			if (flags & SO_TOTAL)
4342 				x = atomic_long_read(&n->total_objects);
4343 			else if (flags & SO_OBJECTS)
4344 				x = atomic_long_read(&n->total_objects) -
4345 					count_partial(n, count_free);
4346 			else
4347 				x = atomic_long_read(&n->nr_slabs);
4348 			total += x;
4349 			nodes[node] += x;
4350 		}
4351 
4352 	} else
4353 #endif
4354 	if (flags & SO_PARTIAL) {
4355 		for_each_node_state(node, N_NORMAL_MEMORY) {
4356 			struct kmem_cache_node *n = get_node(s, node);
4357 
4358 			if (flags & SO_TOTAL)
4359 				x = count_partial(n, count_total);
4360 			else if (flags & SO_OBJECTS)
4361 				x = count_partial(n, count_inuse);
4362 			else
4363 				x = n->nr_partial;
4364 			total += x;
4365 			nodes[node] += x;
4366 		}
4367 	}
4368 	x = sprintf(buf, "%lu", total);
4369 #ifdef CONFIG_NUMA
4370 	for_each_node_state(node, N_NORMAL_MEMORY)
4371 		if (nodes[node])
4372 			x += sprintf(buf + x, " N%d=%lu",
4373 					node, nodes[node]);
4374 #endif
4375 	unlock_memory_hotplug();
4376 	kfree(nodes);
4377 	return x + sprintf(buf + x, "\n");
4378 }
4379 
4380 #ifdef CONFIG_SLUB_DEBUG
4381 static int any_slab_objects(struct kmem_cache *s)
4382 {
4383 	int node;
4384 
4385 	for_each_online_node(node) {
4386 		struct kmem_cache_node *n = get_node(s, node);
4387 
4388 		if (!n)
4389 			continue;
4390 
4391 		if (atomic_long_read(&n->total_objects))
4392 			return 1;
4393 	}
4394 	return 0;
4395 }
4396 #endif
4397 
4398 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4399 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4400 
4401 struct slab_attribute {
4402 	struct attribute attr;
4403 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4404 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4405 };
4406 
4407 #define SLAB_ATTR_RO(_name) \
4408 	static struct slab_attribute _name##_attr = \
4409 	__ATTR(_name, 0400, _name##_show, NULL)
4410 
4411 #define SLAB_ATTR(_name) \
4412 	static struct slab_attribute _name##_attr =  \
4413 	__ATTR(_name, 0600, _name##_show, _name##_store)
4414 
4415 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4416 {
4417 	return sprintf(buf, "%d\n", s->size);
4418 }
4419 SLAB_ATTR_RO(slab_size);
4420 
4421 static ssize_t align_show(struct kmem_cache *s, char *buf)
4422 {
4423 	return sprintf(buf, "%d\n", s->align);
4424 }
4425 SLAB_ATTR_RO(align);
4426 
4427 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4428 {
4429 	return sprintf(buf, "%d\n", s->object_size);
4430 }
4431 SLAB_ATTR_RO(object_size);
4432 
4433 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4434 {
4435 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4436 }
4437 SLAB_ATTR_RO(objs_per_slab);
4438 
4439 static ssize_t order_store(struct kmem_cache *s,
4440 				const char *buf, size_t length)
4441 {
4442 	unsigned long order;
4443 	int err;
4444 
4445 	err = kstrtoul(buf, 10, &order);
4446 	if (err)
4447 		return err;
4448 
4449 	if (order > slub_max_order || order < slub_min_order)
4450 		return -EINVAL;
4451 
4452 	calculate_sizes(s, order);
4453 	return length;
4454 }
4455 
4456 static ssize_t order_show(struct kmem_cache *s, char *buf)
4457 {
4458 	return sprintf(buf, "%d\n", oo_order(s->oo));
4459 }
4460 SLAB_ATTR(order);
4461 
4462 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4463 {
4464 	return sprintf(buf, "%lu\n", s->min_partial);
4465 }
4466 
4467 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4468 				 size_t length)
4469 {
4470 	unsigned long min;
4471 	int err;
4472 
4473 	err = kstrtoul(buf, 10, &min);
4474 	if (err)
4475 		return err;
4476 
4477 	set_min_partial(s, min);
4478 	return length;
4479 }
4480 SLAB_ATTR(min_partial);
4481 
4482 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4483 {
4484 	return sprintf(buf, "%u\n", s->cpu_partial);
4485 }
4486 
4487 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4488 				 size_t length)
4489 {
4490 	unsigned long objects;
4491 	int err;
4492 
4493 	err = kstrtoul(buf, 10, &objects);
4494 	if (err)
4495 		return err;
4496 	if (objects && !kmem_cache_has_cpu_partial(s))
4497 		return -EINVAL;
4498 
4499 	s->cpu_partial = objects;
4500 	flush_all(s);
4501 	return length;
4502 }
4503 SLAB_ATTR(cpu_partial);
4504 
4505 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4506 {
4507 	if (!s->ctor)
4508 		return 0;
4509 	return sprintf(buf, "%pS\n", s->ctor);
4510 }
4511 SLAB_ATTR_RO(ctor);
4512 
4513 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4514 {
4515 	return sprintf(buf, "%d\n", s->refcount - 1);
4516 }
4517 SLAB_ATTR_RO(aliases);
4518 
4519 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4520 {
4521 	return show_slab_objects(s, buf, SO_PARTIAL);
4522 }
4523 SLAB_ATTR_RO(partial);
4524 
4525 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4526 {
4527 	return show_slab_objects(s, buf, SO_CPU);
4528 }
4529 SLAB_ATTR_RO(cpu_slabs);
4530 
4531 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4532 {
4533 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4534 }
4535 SLAB_ATTR_RO(objects);
4536 
4537 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4538 {
4539 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4540 }
4541 SLAB_ATTR_RO(objects_partial);
4542 
4543 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4544 {
4545 	int objects = 0;
4546 	int pages = 0;
4547 	int cpu;
4548 	int len;
4549 
4550 	for_each_online_cpu(cpu) {
4551 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4552 
4553 		if (page) {
4554 			pages += page->pages;
4555 			objects += page->pobjects;
4556 		}
4557 	}
4558 
4559 	len = sprintf(buf, "%d(%d)", objects, pages);
4560 
4561 #ifdef CONFIG_SMP
4562 	for_each_online_cpu(cpu) {
4563 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4564 
4565 		if (page && len < PAGE_SIZE - 20)
4566 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4567 				page->pobjects, page->pages);
4568 	}
4569 #endif
4570 	return len + sprintf(buf + len, "\n");
4571 }
4572 SLAB_ATTR_RO(slabs_cpu_partial);
4573 
4574 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4575 {
4576 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4577 }
4578 
4579 static ssize_t reclaim_account_store(struct kmem_cache *s,
4580 				const char *buf, size_t length)
4581 {
4582 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4583 	if (buf[0] == '1')
4584 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4585 	return length;
4586 }
4587 SLAB_ATTR(reclaim_account);
4588 
4589 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4590 {
4591 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4592 }
4593 SLAB_ATTR_RO(hwcache_align);
4594 
4595 #ifdef CONFIG_ZONE_DMA
4596 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4597 {
4598 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4599 }
4600 SLAB_ATTR_RO(cache_dma);
4601 #endif
4602 
4603 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4604 {
4605 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4606 }
4607 SLAB_ATTR_RO(destroy_by_rcu);
4608 
4609 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4610 {
4611 	return sprintf(buf, "%d\n", s->reserved);
4612 }
4613 SLAB_ATTR_RO(reserved);
4614 
4615 #ifdef CONFIG_SLUB_DEBUG
4616 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4617 {
4618 	return show_slab_objects(s, buf, SO_ALL);
4619 }
4620 SLAB_ATTR_RO(slabs);
4621 
4622 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4623 {
4624 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4625 }
4626 SLAB_ATTR_RO(total_objects);
4627 
4628 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4629 {
4630 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4631 }
4632 
4633 static ssize_t sanity_checks_store(struct kmem_cache *s,
4634 				const char *buf, size_t length)
4635 {
4636 	s->flags &= ~SLAB_DEBUG_FREE;
4637 	if (buf[0] == '1') {
4638 		s->flags &= ~__CMPXCHG_DOUBLE;
4639 		s->flags |= SLAB_DEBUG_FREE;
4640 	}
4641 	return length;
4642 }
4643 SLAB_ATTR(sanity_checks);
4644 
4645 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4646 {
4647 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4648 }
4649 
4650 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4651 							size_t length)
4652 {
4653 	s->flags &= ~SLAB_TRACE;
4654 	if (buf[0] == '1') {
4655 		s->flags &= ~__CMPXCHG_DOUBLE;
4656 		s->flags |= SLAB_TRACE;
4657 	}
4658 	return length;
4659 }
4660 SLAB_ATTR(trace);
4661 
4662 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4663 {
4664 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4665 }
4666 
4667 static ssize_t red_zone_store(struct kmem_cache *s,
4668 				const char *buf, size_t length)
4669 {
4670 	if (any_slab_objects(s))
4671 		return -EBUSY;
4672 
4673 	s->flags &= ~SLAB_RED_ZONE;
4674 	if (buf[0] == '1') {
4675 		s->flags &= ~__CMPXCHG_DOUBLE;
4676 		s->flags |= SLAB_RED_ZONE;
4677 	}
4678 	calculate_sizes(s, -1);
4679 	return length;
4680 }
4681 SLAB_ATTR(red_zone);
4682 
4683 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4684 {
4685 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4686 }
4687 
4688 static ssize_t poison_store(struct kmem_cache *s,
4689 				const char *buf, size_t length)
4690 {
4691 	if (any_slab_objects(s))
4692 		return -EBUSY;
4693 
4694 	s->flags &= ~SLAB_POISON;
4695 	if (buf[0] == '1') {
4696 		s->flags &= ~__CMPXCHG_DOUBLE;
4697 		s->flags |= SLAB_POISON;
4698 	}
4699 	calculate_sizes(s, -1);
4700 	return length;
4701 }
4702 SLAB_ATTR(poison);
4703 
4704 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4705 {
4706 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4707 }
4708 
4709 static ssize_t store_user_store(struct kmem_cache *s,
4710 				const char *buf, size_t length)
4711 {
4712 	if (any_slab_objects(s))
4713 		return -EBUSY;
4714 
4715 	s->flags &= ~SLAB_STORE_USER;
4716 	if (buf[0] == '1') {
4717 		s->flags &= ~__CMPXCHG_DOUBLE;
4718 		s->flags |= SLAB_STORE_USER;
4719 	}
4720 	calculate_sizes(s, -1);
4721 	return length;
4722 }
4723 SLAB_ATTR(store_user);
4724 
4725 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4726 {
4727 	return 0;
4728 }
4729 
4730 static ssize_t validate_store(struct kmem_cache *s,
4731 			const char *buf, size_t length)
4732 {
4733 	int ret = -EINVAL;
4734 
4735 	if (buf[0] == '1') {
4736 		ret = validate_slab_cache(s);
4737 		if (ret >= 0)
4738 			ret = length;
4739 	}
4740 	return ret;
4741 }
4742 SLAB_ATTR(validate);
4743 
4744 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4745 {
4746 	if (!(s->flags & SLAB_STORE_USER))
4747 		return -ENOSYS;
4748 	return list_locations(s, buf, TRACK_ALLOC);
4749 }
4750 SLAB_ATTR_RO(alloc_calls);
4751 
4752 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4753 {
4754 	if (!(s->flags & SLAB_STORE_USER))
4755 		return -ENOSYS;
4756 	return list_locations(s, buf, TRACK_FREE);
4757 }
4758 SLAB_ATTR_RO(free_calls);
4759 #endif /* CONFIG_SLUB_DEBUG */
4760 
4761 #ifdef CONFIG_FAILSLAB
4762 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4763 {
4764 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4765 }
4766 
4767 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4768 							size_t length)
4769 {
4770 	s->flags &= ~SLAB_FAILSLAB;
4771 	if (buf[0] == '1')
4772 		s->flags |= SLAB_FAILSLAB;
4773 	return length;
4774 }
4775 SLAB_ATTR(failslab);
4776 #endif
4777 
4778 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4779 {
4780 	return 0;
4781 }
4782 
4783 static ssize_t shrink_store(struct kmem_cache *s,
4784 			const char *buf, size_t length)
4785 {
4786 	if (buf[0] == '1') {
4787 		int rc = kmem_cache_shrink(s);
4788 
4789 		if (rc)
4790 			return rc;
4791 	} else
4792 		return -EINVAL;
4793 	return length;
4794 }
4795 SLAB_ATTR(shrink);
4796 
4797 #ifdef CONFIG_NUMA
4798 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4799 {
4800 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4801 }
4802 
4803 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4804 				const char *buf, size_t length)
4805 {
4806 	unsigned long ratio;
4807 	int err;
4808 
4809 	err = kstrtoul(buf, 10, &ratio);
4810 	if (err)
4811 		return err;
4812 
4813 	if (ratio <= 100)
4814 		s->remote_node_defrag_ratio = ratio * 10;
4815 
4816 	return length;
4817 }
4818 SLAB_ATTR(remote_node_defrag_ratio);
4819 #endif
4820 
4821 #ifdef CONFIG_SLUB_STATS
4822 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4823 {
4824 	unsigned long sum  = 0;
4825 	int cpu;
4826 	int len;
4827 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4828 
4829 	if (!data)
4830 		return -ENOMEM;
4831 
4832 	for_each_online_cpu(cpu) {
4833 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4834 
4835 		data[cpu] = x;
4836 		sum += x;
4837 	}
4838 
4839 	len = sprintf(buf, "%lu", sum);
4840 
4841 #ifdef CONFIG_SMP
4842 	for_each_online_cpu(cpu) {
4843 		if (data[cpu] && len < PAGE_SIZE - 20)
4844 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4845 	}
4846 #endif
4847 	kfree(data);
4848 	return len + sprintf(buf + len, "\n");
4849 }
4850 
4851 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4852 {
4853 	int cpu;
4854 
4855 	for_each_online_cpu(cpu)
4856 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4857 }
4858 
4859 #define STAT_ATTR(si, text) 					\
4860 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4861 {								\
4862 	return show_stat(s, buf, si);				\
4863 }								\
4864 static ssize_t text##_store(struct kmem_cache *s,		\
4865 				const char *buf, size_t length)	\
4866 {								\
4867 	if (buf[0] != '0')					\
4868 		return -EINVAL;					\
4869 	clear_stat(s, si);					\
4870 	return length;						\
4871 }								\
4872 SLAB_ATTR(text);						\
4873 
4874 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4875 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4876 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4877 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4878 STAT_ATTR(FREE_FROZEN, free_frozen);
4879 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4880 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4881 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4882 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4883 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4884 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4885 STAT_ATTR(FREE_SLAB, free_slab);
4886 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4887 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4888 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4889 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4890 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4891 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4892 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4893 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4894 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4895 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4896 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4897 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4898 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4899 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4900 #endif
4901 
4902 static struct attribute *slab_attrs[] = {
4903 	&slab_size_attr.attr,
4904 	&object_size_attr.attr,
4905 	&objs_per_slab_attr.attr,
4906 	&order_attr.attr,
4907 	&min_partial_attr.attr,
4908 	&cpu_partial_attr.attr,
4909 	&objects_attr.attr,
4910 	&objects_partial_attr.attr,
4911 	&partial_attr.attr,
4912 	&cpu_slabs_attr.attr,
4913 	&ctor_attr.attr,
4914 	&aliases_attr.attr,
4915 	&align_attr.attr,
4916 	&hwcache_align_attr.attr,
4917 	&reclaim_account_attr.attr,
4918 	&destroy_by_rcu_attr.attr,
4919 	&shrink_attr.attr,
4920 	&reserved_attr.attr,
4921 	&slabs_cpu_partial_attr.attr,
4922 #ifdef CONFIG_SLUB_DEBUG
4923 	&total_objects_attr.attr,
4924 	&slabs_attr.attr,
4925 	&sanity_checks_attr.attr,
4926 	&trace_attr.attr,
4927 	&red_zone_attr.attr,
4928 	&poison_attr.attr,
4929 	&store_user_attr.attr,
4930 	&validate_attr.attr,
4931 	&alloc_calls_attr.attr,
4932 	&free_calls_attr.attr,
4933 #endif
4934 #ifdef CONFIG_ZONE_DMA
4935 	&cache_dma_attr.attr,
4936 #endif
4937 #ifdef CONFIG_NUMA
4938 	&remote_node_defrag_ratio_attr.attr,
4939 #endif
4940 #ifdef CONFIG_SLUB_STATS
4941 	&alloc_fastpath_attr.attr,
4942 	&alloc_slowpath_attr.attr,
4943 	&free_fastpath_attr.attr,
4944 	&free_slowpath_attr.attr,
4945 	&free_frozen_attr.attr,
4946 	&free_add_partial_attr.attr,
4947 	&free_remove_partial_attr.attr,
4948 	&alloc_from_partial_attr.attr,
4949 	&alloc_slab_attr.attr,
4950 	&alloc_refill_attr.attr,
4951 	&alloc_node_mismatch_attr.attr,
4952 	&free_slab_attr.attr,
4953 	&cpuslab_flush_attr.attr,
4954 	&deactivate_full_attr.attr,
4955 	&deactivate_empty_attr.attr,
4956 	&deactivate_to_head_attr.attr,
4957 	&deactivate_to_tail_attr.attr,
4958 	&deactivate_remote_frees_attr.attr,
4959 	&deactivate_bypass_attr.attr,
4960 	&order_fallback_attr.attr,
4961 	&cmpxchg_double_fail_attr.attr,
4962 	&cmpxchg_double_cpu_fail_attr.attr,
4963 	&cpu_partial_alloc_attr.attr,
4964 	&cpu_partial_free_attr.attr,
4965 	&cpu_partial_node_attr.attr,
4966 	&cpu_partial_drain_attr.attr,
4967 #endif
4968 #ifdef CONFIG_FAILSLAB
4969 	&failslab_attr.attr,
4970 #endif
4971 
4972 	NULL
4973 };
4974 
4975 static struct attribute_group slab_attr_group = {
4976 	.attrs = slab_attrs,
4977 };
4978 
4979 static ssize_t slab_attr_show(struct kobject *kobj,
4980 				struct attribute *attr,
4981 				char *buf)
4982 {
4983 	struct slab_attribute *attribute;
4984 	struct kmem_cache *s;
4985 	int err;
4986 
4987 	attribute = to_slab_attr(attr);
4988 	s = to_slab(kobj);
4989 
4990 	if (!attribute->show)
4991 		return -EIO;
4992 
4993 	err = attribute->show(s, buf);
4994 
4995 	return err;
4996 }
4997 
4998 static ssize_t slab_attr_store(struct kobject *kobj,
4999 				struct attribute *attr,
5000 				const char *buf, size_t len)
5001 {
5002 	struct slab_attribute *attribute;
5003 	struct kmem_cache *s;
5004 	int err;
5005 
5006 	attribute = to_slab_attr(attr);
5007 	s = to_slab(kobj);
5008 
5009 	if (!attribute->store)
5010 		return -EIO;
5011 
5012 	err = attribute->store(s, buf, len);
5013 #ifdef CONFIG_MEMCG_KMEM
5014 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5015 		int i;
5016 
5017 		mutex_lock(&slab_mutex);
5018 		if (s->max_attr_size < len)
5019 			s->max_attr_size = len;
5020 
5021 		/*
5022 		 * This is a best effort propagation, so this function's return
5023 		 * value will be determined by the parent cache only. This is
5024 		 * basically because not all attributes will have a well
5025 		 * defined semantics for rollbacks - most of the actions will
5026 		 * have permanent effects.
5027 		 *
5028 		 * Returning the error value of any of the children that fail
5029 		 * is not 100 % defined, in the sense that users seeing the
5030 		 * error code won't be able to know anything about the state of
5031 		 * the cache.
5032 		 *
5033 		 * Only returning the error code for the parent cache at least
5034 		 * has well defined semantics. The cache being written to
5035 		 * directly either failed or succeeded, in which case we loop
5036 		 * through the descendants with best-effort propagation.
5037 		 */
5038 		for_each_memcg_cache_index(i) {
5039 			struct kmem_cache *c = cache_from_memcg_idx(s, i);
5040 			if (c)
5041 				attribute->store(c, buf, len);
5042 		}
5043 		mutex_unlock(&slab_mutex);
5044 	}
5045 #endif
5046 	return err;
5047 }
5048 
5049 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5050 {
5051 #ifdef CONFIG_MEMCG_KMEM
5052 	int i;
5053 	char *buffer = NULL;
5054 	struct kmem_cache *root_cache;
5055 
5056 	if (is_root_cache(s))
5057 		return;
5058 
5059 	root_cache = s->memcg_params->root_cache;
5060 
5061 	/*
5062 	 * This mean this cache had no attribute written. Therefore, no point
5063 	 * in copying default values around
5064 	 */
5065 	if (!root_cache->max_attr_size)
5066 		return;
5067 
5068 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5069 		char mbuf[64];
5070 		char *buf;
5071 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5072 
5073 		if (!attr || !attr->store || !attr->show)
5074 			continue;
5075 
5076 		/*
5077 		 * It is really bad that we have to allocate here, so we will
5078 		 * do it only as a fallback. If we actually allocate, though,
5079 		 * we can just use the allocated buffer until the end.
5080 		 *
5081 		 * Most of the slub attributes will tend to be very small in
5082 		 * size, but sysfs allows buffers up to a page, so they can
5083 		 * theoretically happen.
5084 		 */
5085 		if (buffer)
5086 			buf = buffer;
5087 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5088 			buf = mbuf;
5089 		else {
5090 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5091 			if (WARN_ON(!buffer))
5092 				continue;
5093 			buf = buffer;
5094 		}
5095 
5096 		attr->show(root_cache, buf);
5097 		attr->store(s, buf, strlen(buf));
5098 	}
5099 
5100 	if (buffer)
5101 		free_page((unsigned long)buffer);
5102 #endif
5103 }
5104 
5105 static void kmem_cache_release(struct kobject *k)
5106 {
5107 	slab_kmem_cache_release(to_slab(k));
5108 }
5109 
5110 static const struct sysfs_ops slab_sysfs_ops = {
5111 	.show = slab_attr_show,
5112 	.store = slab_attr_store,
5113 };
5114 
5115 static struct kobj_type slab_ktype = {
5116 	.sysfs_ops = &slab_sysfs_ops,
5117 	.release = kmem_cache_release,
5118 };
5119 
5120 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5121 {
5122 	struct kobj_type *ktype = get_ktype(kobj);
5123 
5124 	if (ktype == &slab_ktype)
5125 		return 1;
5126 	return 0;
5127 }
5128 
5129 static const struct kset_uevent_ops slab_uevent_ops = {
5130 	.filter = uevent_filter,
5131 };
5132 
5133 static struct kset *slab_kset;
5134 
5135 static inline struct kset *cache_kset(struct kmem_cache *s)
5136 {
5137 #ifdef CONFIG_MEMCG_KMEM
5138 	if (!is_root_cache(s))
5139 		return s->memcg_params->root_cache->memcg_kset;
5140 #endif
5141 	return slab_kset;
5142 }
5143 
5144 #define ID_STR_LENGTH 64
5145 
5146 /* Create a unique string id for a slab cache:
5147  *
5148  * Format	:[flags-]size
5149  */
5150 static char *create_unique_id(struct kmem_cache *s)
5151 {
5152 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5153 	char *p = name;
5154 
5155 	BUG_ON(!name);
5156 
5157 	*p++ = ':';
5158 	/*
5159 	 * First flags affecting slabcache operations. We will only
5160 	 * get here for aliasable slabs so we do not need to support
5161 	 * too many flags. The flags here must cover all flags that
5162 	 * are matched during merging to guarantee that the id is
5163 	 * unique.
5164 	 */
5165 	if (s->flags & SLAB_CACHE_DMA)
5166 		*p++ = 'd';
5167 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5168 		*p++ = 'a';
5169 	if (s->flags & SLAB_DEBUG_FREE)
5170 		*p++ = 'F';
5171 	if (!(s->flags & SLAB_NOTRACK))
5172 		*p++ = 't';
5173 	if (p != name + 1)
5174 		*p++ = '-';
5175 	p += sprintf(p, "%07d", s->size);
5176 
5177 #ifdef CONFIG_MEMCG_KMEM
5178 	if (!is_root_cache(s))
5179 		p += sprintf(p, "-%08d",
5180 				memcg_cache_id(s->memcg_params->memcg));
5181 #endif
5182 
5183 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5184 	return name;
5185 }
5186 
5187 static int sysfs_slab_add(struct kmem_cache *s)
5188 {
5189 	int err;
5190 	const char *name;
5191 	int unmergeable = slab_unmergeable(s);
5192 
5193 	if (unmergeable) {
5194 		/*
5195 		 * Slabcache can never be merged so we can use the name proper.
5196 		 * This is typically the case for debug situations. In that
5197 		 * case we can catch duplicate names easily.
5198 		 */
5199 		sysfs_remove_link(&slab_kset->kobj, s->name);
5200 		name = s->name;
5201 	} else {
5202 		/*
5203 		 * Create a unique name for the slab as a target
5204 		 * for the symlinks.
5205 		 */
5206 		name = create_unique_id(s);
5207 	}
5208 
5209 	s->kobj.kset = cache_kset(s);
5210 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5211 	if (err)
5212 		goto out_put_kobj;
5213 
5214 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5215 	if (err)
5216 		goto out_del_kobj;
5217 
5218 #ifdef CONFIG_MEMCG_KMEM
5219 	if (is_root_cache(s)) {
5220 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5221 		if (!s->memcg_kset) {
5222 			err = -ENOMEM;
5223 			goto out_del_kobj;
5224 		}
5225 	}
5226 #endif
5227 
5228 	kobject_uevent(&s->kobj, KOBJ_ADD);
5229 	if (!unmergeable) {
5230 		/* Setup first alias */
5231 		sysfs_slab_alias(s, s->name);
5232 	}
5233 out:
5234 	if (!unmergeable)
5235 		kfree(name);
5236 	return err;
5237 out_del_kobj:
5238 	kobject_del(&s->kobj);
5239 out_put_kobj:
5240 	kobject_put(&s->kobj);
5241 	goto out;
5242 }
5243 
5244 void sysfs_slab_remove(struct kmem_cache *s)
5245 {
5246 	if (slab_state < FULL)
5247 		/*
5248 		 * Sysfs has not been setup yet so no need to remove the
5249 		 * cache from sysfs.
5250 		 */
5251 		return;
5252 
5253 #ifdef CONFIG_MEMCG_KMEM
5254 	kset_unregister(s->memcg_kset);
5255 #endif
5256 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5257 	kobject_del(&s->kobj);
5258 	kobject_put(&s->kobj);
5259 }
5260 
5261 /*
5262  * Need to buffer aliases during bootup until sysfs becomes
5263  * available lest we lose that information.
5264  */
5265 struct saved_alias {
5266 	struct kmem_cache *s;
5267 	const char *name;
5268 	struct saved_alias *next;
5269 };
5270 
5271 static struct saved_alias *alias_list;
5272 
5273 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5274 {
5275 	struct saved_alias *al;
5276 
5277 	if (slab_state == FULL) {
5278 		/*
5279 		 * If we have a leftover link then remove it.
5280 		 */
5281 		sysfs_remove_link(&slab_kset->kobj, name);
5282 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5283 	}
5284 
5285 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5286 	if (!al)
5287 		return -ENOMEM;
5288 
5289 	al->s = s;
5290 	al->name = name;
5291 	al->next = alias_list;
5292 	alias_list = al;
5293 	return 0;
5294 }
5295 
5296 static int __init slab_sysfs_init(void)
5297 {
5298 	struct kmem_cache *s;
5299 	int err;
5300 
5301 	mutex_lock(&slab_mutex);
5302 
5303 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5304 	if (!slab_kset) {
5305 		mutex_unlock(&slab_mutex);
5306 		printk(KERN_ERR "Cannot register slab subsystem.\n");
5307 		return -ENOSYS;
5308 	}
5309 
5310 	slab_state = FULL;
5311 
5312 	list_for_each_entry(s, &slab_caches, list) {
5313 		err = sysfs_slab_add(s);
5314 		if (err)
5315 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5316 						" to sysfs\n", s->name);
5317 	}
5318 
5319 	while (alias_list) {
5320 		struct saved_alias *al = alias_list;
5321 
5322 		alias_list = alias_list->next;
5323 		err = sysfs_slab_alias(al->s, al->name);
5324 		if (err)
5325 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5326 					" %s to sysfs\n", al->name);
5327 		kfree(al);
5328 	}
5329 
5330 	mutex_unlock(&slab_mutex);
5331 	resiliency_test();
5332 	return 0;
5333 }
5334 
5335 __initcall(slab_sysfs_init);
5336 #endif /* CONFIG_SYSFS */
5337 
5338 /*
5339  * The /proc/slabinfo ABI
5340  */
5341 #ifdef CONFIG_SLABINFO
5342 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5343 {
5344 	unsigned long nr_slabs = 0;
5345 	unsigned long nr_objs = 0;
5346 	unsigned long nr_free = 0;
5347 	int node;
5348 
5349 	for_each_online_node(node) {
5350 		struct kmem_cache_node *n = get_node(s, node);
5351 
5352 		if (!n)
5353 			continue;
5354 
5355 		nr_slabs += node_nr_slabs(n);
5356 		nr_objs += node_nr_objs(n);
5357 		nr_free += count_partial(n, count_free);
5358 	}
5359 
5360 	sinfo->active_objs = nr_objs - nr_free;
5361 	sinfo->num_objs = nr_objs;
5362 	sinfo->active_slabs = nr_slabs;
5363 	sinfo->num_slabs = nr_slabs;
5364 	sinfo->objects_per_slab = oo_objects(s->oo);
5365 	sinfo->cache_order = oo_order(s->oo);
5366 }
5367 
5368 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5369 {
5370 }
5371 
5372 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5373 		       size_t count, loff_t *ppos)
5374 {
5375 	return -EIO;
5376 }
5377 #endif /* CONFIG_SLABINFO */
5378