xref: /openbmc/linux/mm/slub.c (revision 367b8112)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/cpu.h>
20 #include <linux/cpuset.h>
21 #include <linux/mempolicy.h>
22 #include <linux/ctype.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/memory.h>
26 #include <linux/math64.h>
27 
28 /*
29  * Lock order:
30  *   1. slab_lock(page)
31  *   2. slab->list_lock
32  *
33  *   The slab_lock protects operations on the object of a particular
34  *   slab and its metadata in the page struct. If the slab lock
35  *   has been taken then no allocations nor frees can be performed
36  *   on the objects in the slab nor can the slab be added or removed
37  *   from the partial or full lists since this would mean modifying
38  *   the page_struct of the slab.
39  *
40  *   The list_lock protects the partial and full list on each node and
41  *   the partial slab counter. If taken then no new slabs may be added or
42  *   removed from the lists nor make the number of partial slabs be modified.
43  *   (Note that the total number of slabs is an atomic value that may be
44  *   modified without taking the list lock).
45  *
46  *   The list_lock is a centralized lock and thus we avoid taking it as
47  *   much as possible. As long as SLUB does not have to handle partial
48  *   slabs, operations can continue without any centralized lock. F.e.
49  *   allocating a long series of objects that fill up slabs does not require
50  *   the list lock.
51  *
52  *   The lock order is sometimes inverted when we are trying to get a slab
53  *   off a list. We take the list_lock and then look for a page on the list
54  *   to use. While we do that objects in the slabs may be freed. We can
55  *   only operate on the slab if we have also taken the slab_lock. So we use
56  *   a slab_trylock() on the slab. If trylock was successful then no frees
57  *   can occur anymore and we can use the slab for allocations etc. If the
58  *   slab_trylock() does not succeed then frees are in progress in the slab and
59  *   we must stay away from it for a while since we may cause a bouncing
60  *   cacheline if we try to acquire the lock. So go onto the next slab.
61  *   If all pages are busy then we may allocate a new slab instead of reusing
62  *   a partial slab. A new slab has noone operating on it and thus there is
63  *   no danger of cacheline contention.
64  *
65  *   Interrupts are disabled during allocation and deallocation in order to
66  *   make the slab allocator safe to use in the context of an irq. In addition
67  *   interrupts are disabled to ensure that the processor does not change
68  *   while handling per_cpu slabs, due to kernel preemption.
69  *
70  * SLUB assigns one slab for allocation to each processor.
71  * Allocations only occur from these slabs called cpu slabs.
72  *
73  * Slabs with free elements are kept on a partial list and during regular
74  * operations no list for full slabs is used. If an object in a full slab is
75  * freed then the slab will show up again on the partial lists.
76  * We track full slabs for debugging purposes though because otherwise we
77  * cannot scan all objects.
78  *
79  * Slabs are freed when they become empty. Teardown and setup is
80  * minimal so we rely on the page allocators per cpu caches for
81  * fast frees and allocs.
82  *
83  * Overloading of page flags that are otherwise used for LRU management.
84  *
85  * PageActive 		The slab is frozen and exempt from list processing.
86  * 			This means that the slab is dedicated to a purpose
87  * 			such as satisfying allocations for a specific
88  * 			processor. Objects may be freed in the slab while
89  * 			it is frozen but slab_free will then skip the usual
90  * 			list operations. It is up to the processor holding
91  * 			the slab to integrate the slab into the slab lists
92  * 			when the slab is no longer needed.
93  *
94  * 			One use of this flag is to mark slabs that are
95  * 			used for allocations. Then such a slab becomes a cpu
96  * 			slab. The cpu slab may be equipped with an additional
97  * 			freelist that allows lockless access to
98  * 			free objects in addition to the regular freelist
99  * 			that requires the slab lock.
100  *
101  * PageError		Slab requires special handling due to debug
102  * 			options set. This moves	slab handling out of
103  * 			the fast path and disables lockless freelists.
104  */
105 
106 #ifdef CONFIG_SLUB_DEBUG
107 #define SLABDEBUG 1
108 #else
109 #define SLABDEBUG 0
110 #endif
111 
112 /*
113  * Issues still to be resolved:
114  *
115  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
116  *
117  * - Variable sizing of the per node arrays
118  */
119 
120 /* Enable to test recovery from slab corruption on boot */
121 #undef SLUB_RESILIENCY_TEST
122 
123 /*
124  * Mininum number of partial slabs. These will be left on the partial
125  * lists even if they are empty. kmem_cache_shrink may reclaim them.
126  */
127 #define MIN_PARTIAL 5
128 
129 /*
130  * Maximum number of desirable partial slabs.
131  * The existence of more partial slabs makes kmem_cache_shrink
132  * sort the partial list by the number of objects in the.
133  */
134 #define MAX_PARTIAL 10
135 
136 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
137 				SLAB_POISON | SLAB_STORE_USER)
138 
139 /*
140  * Set of flags that will prevent slab merging
141  */
142 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
143 		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
144 
145 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
146 		SLAB_CACHE_DMA)
147 
148 #ifndef ARCH_KMALLOC_MINALIGN
149 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
150 #endif
151 
152 #ifndef ARCH_SLAB_MINALIGN
153 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
154 #endif
155 
156 /* Internal SLUB flags */
157 #define __OBJECT_POISON		0x80000000 /* Poison object */
158 #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
159 
160 static int kmem_size = sizeof(struct kmem_cache);
161 
162 #ifdef CONFIG_SMP
163 static struct notifier_block slab_notifier;
164 #endif
165 
166 static enum {
167 	DOWN,		/* No slab functionality available */
168 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
169 	UP,		/* Everything works but does not show up in sysfs */
170 	SYSFS		/* Sysfs up */
171 } slab_state = DOWN;
172 
173 /* A list of all slab caches on the system */
174 static DECLARE_RWSEM(slub_lock);
175 static LIST_HEAD(slab_caches);
176 
177 /*
178  * Tracking user of a slab.
179  */
180 struct track {
181 	void *addr;		/* Called from address */
182 	int cpu;		/* Was running on cpu */
183 	int pid;		/* Pid context */
184 	unsigned long when;	/* When did the operation occur */
185 };
186 
187 enum track_item { TRACK_ALLOC, TRACK_FREE };
188 
189 #ifdef CONFIG_SLUB_DEBUG
190 static int sysfs_slab_add(struct kmem_cache *);
191 static int sysfs_slab_alias(struct kmem_cache *, const char *);
192 static void sysfs_slab_remove(struct kmem_cache *);
193 
194 #else
195 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
196 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
197 							{ return 0; }
198 static inline void sysfs_slab_remove(struct kmem_cache *s)
199 {
200 	kfree(s);
201 }
202 
203 #endif
204 
205 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
206 {
207 #ifdef CONFIG_SLUB_STATS
208 	c->stat[si]++;
209 #endif
210 }
211 
212 /********************************************************************
213  * 			Core slab cache functions
214  *******************************************************************/
215 
216 int slab_is_available(void)
217 {
218 	return slab_state >= UP;
219 }
220 
221 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
222 {
223 #ifdef CONFIG_NUMA
224 	return s->node[node];
225 #else
226 	return &s->local_node;
227 #endif
228 }
229 
230 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
231 {
232 #ifdef CONFIG_SMP
233 	return s->cpu_slab[cpu];
234 #else
235 	return &s->cpu_slab;
236 #endif
237 }
238 
239 /* Verify that a pointer has an address that is valid within a slab page */
240 static inline int check_valid_pointer(struct kmem_cache *s,
241 				struct page *page, const void *object)
242 {
243 	void *base;
244 
245 	if (!object)
246 		return 1;
247 
248 	base = page_address(page);
249 	if (object < base || object >= base + page->objects * s->size ||
250 		(object - base) % s->size) {
251 		return 0;
252 	}
253 
254 	return 1;
255 }
256 
257 /*
258  * Slow version of get and set free pointer.
259  *
260  * This version requires touching the cache lines of kmem_cache which
261  * we avoid to do in the fast alloc free paths. There we obtain the offset
262  * from the page struct.
263  */
264 static inline void *get_freepointer(struct kmem_cache *s, void *object)
265 {
266 	return *(void **)(object + s->offset);
267 }
268 
269 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
270 {
271 	*(void **)(object + s->offset) = fp;
272 }
273 
274 /* Loop over all objects in a slab */
275 #define for_each_object(__p, __s, __addr, __objects) \
276 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
277 			__p += (__s)->size)
278 
279 /* Scan freelist */
280 #define for_each_free_object(__p, __s, __free) \
281 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
282 
283 /* Determine object index from a given position */
284 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
285 {
286 	return (p - addr) / s->size;
287 }
288 
289 static inline struct kmem_cache_order_objects oo_make(int order,
290 						unsigned long size)
291 {
292 	struct kmem_cache_order_objects x = {
293 		(order << 16) + (PAGE_SIZE << order) / size
294 	};
295 
296 	return x;
297 }
298 
299 static inline int oo_order(struct kmem_cache_order_objects x)
300 {
301 	return x.x >> 16;
302 }
303 
304 static inline int oo_objects(struct kmem_cache_order_objects x)
305 {
306 	return x.x & ((1 << 16) - 1);
307 }
308 
309 #ifdef CONFIG_SLUB_DEBUG
310 /*
311  * Debug settings:
312  */
313 #ifdef CONFIG_SLUB_DEBUG_ON
314 static int slub_debug = DEBUG_DEFAULT_FLAGS;
315 #else
316 static int slub_debug;
317 #endif
318 
319 static char *slub_debug_slabs;
320 
321 /*
322  * Object debugging
323  */
324 static void print_section(char *text, u8 *addr, unsigned int length)
325 {
326 	int i, offset;
327 	int newline = 1;
328 	char ascii[17];
329 
330 	ascii[16] = 0;
331 
332 	for (i = 0; i < length; i++) {
333 		if (newline) {
334 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
335 			newline = 0;
336 		}
337 		printk(KERN_CONT " %02x", addr[i]);
338 		offset = i % 16;
339 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
340 		if (offset == 15) {
341 			printk(KERN_CONT " %s\n", ascii);
342 			newline = 1;
343 		}
344 	}
345 	if (!newline) {
346 		i %= 16;
347 		while (i < 16) {
348 			printk(KERN_CONT "   ");
349 			ascii[i] = ' ';
350 			i++;
351 		}
352 		printk(KERN_CONT " %s\n", ascii);
353 	}
354 }
355 
356 static struct track *get_track(struct kmem_cache *s, void *object,
357 	enum track_item alloc)
358 {
359 	struct track *p;
360 
361 	if (s->offset)
362 		p = object + s->offset + sizeof(void *);
363 	else
364 		p = object + s->inuse;
365 
366 	return p + alloc;
367 }
368 
369 static void set_track(struct kmem_cache *s, void *object,
370 				enum track_item alloc, void *addr)
371 {
372 	struct track *p;
373 
374 	if (s->offset)
375 		p = object + s->offset + sizeof(void *);
376 	else
377 		p = object + s->inuse;
378 
379 	p += alloc;
380 	if (addr) {
381 		p->addr = addr;
382 		p->cpu = smp_processor_id();
383 		p->pid = current->pid;
384 		p->when = jiffies;
385 	} else
386 		memset(p, 0, sizeof(struct track));
387 }
388 
389 static void init_tracking(struct kmem_cache *s, void *object)
390 {
391 	if (!(s->flags & SLAB_STORE_USER))
392 		return;
393 
394 	set_track(s, object, TRACK_FREE, NULL);
395 	set_track(s, object, TRACK_ALLOC, NULL);
396 }
397 
398 static void print_track(const char *s, struct track *t)
399 {
400 	if (!t->addr)
401 		return;
402 
403 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
404 		s, t->addr, jiffies - t->when, t->cpu, t->pid);
405 }
406 
407 static void print_tracking(struct kmem_cache *s, void *object)
408 {
409 	if (!(s->flags & SLAB_STORE_USER))
410 		return;
411 
412 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
413 	print_track("Freed", get_track(s, object, TRACK_FREE));
414 }
415 
416 static void print_page_info(struct page *page)
417 {
418 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
419 		page, page->objects, page->inuse, page->freelist, page->flags);
420 
421 }
422 
423 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
424 {
425 	va_list args;
426 	char buf[100];
427 
428 	va_start(args, fmt);
429 	vsnprintf(buf, sizeof(buf), fmt, args);
430 	va_end(args);
431 	printk(KERN_ERR "========================================"
432 			"=====================================\n");
433 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
434 	printk(KERN_ERR "----------------------------------------"
435 			"-------------------------------------\n\n");
436 }
437 
438 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
439 {
440 	va_list args;
441 	char buf[100];
442 
443 	va_start(args, fmt);
444 	vsnprintf(buf, sizeof(buf), fmt, args);
445 	va_end(args);
446 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
447 }
448 
449 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
450 {
451 	unsigned int off;	/* Offset of last byte */
452 	u8 *addr = page_address(page);
453 
454 	print_tracking(s, p);
455 
456 	print_page_info(page);
457 
458 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
459 			p, p - addr, get_freepointer(s, p));
460 
461 	if (p > addr + 16)
462 		print_section("Bytes b4", p - 16, 16);
463 
464 	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
465 
466 	if (s->flags & SLAB_RED_ZONE)
467 		print_section("Redzone", p + s->objsize,
468 			s->inuse - s->objsize);
469 
470 	if (s->offset)
471 		off = s->offset + sizeof(void *);
472 	else
473 		off = s->inuse;
474 
475 	if (s->flags & SLAB_STORE_USER)
476 		off += 2 * sizeof(struct track);
477 
478 	if (off != s->size)
479 		/* Beginning of the filler is the free pointer */
480 		print_section("Padding", p + off, s->size - off);
481 
482 	dump_stack();
483 }
484 
485 static void object_err(struct kmem_cache *s, struct page *page,
486 			u8 *object, char *reason)
487 {
488 	slab_bug(s, "%s", reason);
489 	print_trailer(s, page, object);
490 }
491 
492 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
493 {
494 	va_list args;
495 	char buf[100];
496 
497 	va_start(args, fmt);
498 	vsnprintf(buf, sizeof(buf), fmt, args);
499 	va_end(args);
500 	slab_bug(s, "%s", buf);
501 	print_page_info(page);
502 	dump_stack();
503 }
504 
505 static void init_object(struct kmem_cache *s, void *object, int active)
506 {
507 	u8 *p = object;
508 
509 	if (s->flags & __OBJECT_POISON) {
510 		memset(p, POISON_FREE, s->objsize - 1);
511 		p[s->objsize - 1] = POISON_END;
512 	}
513 
514 	if (s->flags & SLAB_RED_ZONE)
515 		memset(p + s->objsize,
516 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
517 			s->inuse - s->objsize);
518 }
519 
520 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
521 {
522 	while (bytes) {
523 		if (*start != (u8)value)
524 			return start;
525 		start++;
526 		bytes--;
527 	}
528 	return NULL;
529 }
530 
531 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
532 						void *from, void *to)
533 {
534 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
535 	memset(from, data, to - from);
536 }
537 
538 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
539 			u8 *object, char *what,
540 			u8 *start, unsigned int value, unsigned int bytes)
541 {
542 	u8 *fault;
543 	u8 *end;
544 
545 	fault = check_bytes(start, value, bytes);
546 	if (!fault)
547 		return 1;
548 
549 	end = start + bytes;
550 	while (end > fault && end[-1] == value)
551 		end--;
552 
553 	slab_bug(s, "%s overwritten", what);
554 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
555 					fault, end - 1, fault[0], value);
556 	print_trailer(s, page, object);
557 
558 	restore_bytes(s, what, value, fault, end);
559 	return 0;
560 }
561 
562 /*
563  * Object layout:
564  *
565  * object address
566  * 	Bytes of the object to be managed.
567  * 	If the freepointer may overlay the object then the free
568  * 	pointer is the first word of the object.
569  *
570  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
571  * 	0xa5 (POISON_END)
572  *
573  * object + s->objsize
574  * 	Padding to reach word boundary. This is also used for Redzoning.
575  * 	Padding is extended by another word if Redzoning is enabled and
576  * 	objsize == inuse.
577  *
578  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
579  * 	0xcc (RED_ACTIVE) for objects in use.
580  *
581  * object + s->inuse
582  * 	Meta data starts here.
583  *
584  * 	A. Free pointer (if we cannot overwrite object on free)
585  * 	B. Tracking data for SLAB_STORE_USER
586  * 	C. Padding to reach required alignment boundary or at mininum
587  * 		one word if debugging is on to be able to detect writes
588  * 		before the word boundary.
589  *
590  *	Padding is done using 0x5a (POISON_INUSE)
591  *
592  * object + s->size
593  * 	Nothing is used beyond s->size.
594  *
595  * If slabcaches are merged then the objsize and inuse boundaries are mostly
596  * ignored. And therefore no slab options that rely on these boundaries
597  * may be used with merged slabcaches.
598  */
599 
600 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
601 {
602 	unsigned long off = s->inuse;	/* The end of info */
603 
604 	if (s->offset)
605 		/* Freepointer is placed after the object. */
606 		off += sizeof(void *);
607 
608 	if (s->flags & SLAB_STORE_USER)
609 		/* We also have user information there */
610 		off += 2 * sizeof(struct track);
611 
612 	if (s->size == off)
613 		return 1;
614 
615 	return check_bytes_and_report(s, page, p, "Object padding",
616 				p + off, POISON_INUSE, s->size - off);
617 }
618 
619 /* Check the pad bytes at the end of a slab page */
620 static int slab_pad_check(struct kmem_cache *s, struct page *page)
621 {
622 	u8 *start;
623 	u8 *fault;
624 	u8 *end;
625 	int length;
626 	int remainder;
627 
628 	if (!(s->flags & SLAB_POISON))
629 		return 1;
630 
631 	start = page_address(page);
632 	length = (PAGE_SIZE << compound_order(page));
633 	end = start + length;
634 	remainder = length % s->size;
635 	if (!remainder)
636 		return 1;
637 
638 	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
639 	if (!fault)
640 		return 1;
641 	while (end > fault && end[-1] == POISON_INUSE)
642 		end--;
643 
644 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
645 	print_section("Padding", end - remainder, remainder);
646 
647 	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
648 	return 0;
649 }
650 
651 static int check_object(struct kmem_cache *s, struct page *page,
652 					void *object, int active)
653 {
654 	u8 *p = object;
655 	u8 *endobject = object + s->objsize;
656 
657 	if (s->flags & SLAB_RED_ZONE) {
658 		unsigned int red =
659 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
660 
661 		if (!check_bytes_and_report(s, page, object, "Redzone",
662 			endobject, red, s->inuse - s->objsize))
663 			return 0;
664 	} else {
665 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
666 			check_bytes_and_report(s, page, p, "Alignment padding",
667 				endobject, POISON_INUSE, s->inuse - s->objsize);
668 		}
669 	}
670 
671 	if (s->flags & SLAB_POISON) {
672 		if (!active && (s->flags & __OBJECT_POISON) &&
673 			(!check_bytes_and_report(s, page, p, "Poison", p,
674 					POISON_FREE, s->objsize - 1) ||
675 			 !check_bytes_and_report(s, page, p, "Poison",
676 				p + s->objsize - 1, POISON_END, 1)))
677 			return 0;
678 		/*
679 		 * check_pad_bytes cleans up on its own.
680 		 */
681 		check_pad_bytes(s, page, p);
682 	}
683 
684 	if (!s->offset && active)
685 		/*
686 		 * Object and freepointer overlap. Cannot check
687 		 * freepointer while object is allocated.
688 		 */
689 		return 1;
690 
691 	/* Check free pointer validity */
692 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
693 		object_err(s, page, p, "Freepointer corrupt");
694 		/*
695 		 * No choice but to zap it and thus loose the remainder
696 		 * of the free objects in this slab. May cause
697 		 * another error because the object count is now wrong.
698 		 */
699 		set_freepointer(s, p, NULL);
700 		return 0;
701 	}
702 	return 1;
703 }
704 
705 static int check_slab(struct kmem_cache *s, struct page *page)
706 {
707 	int maxobj;
708 
709 	VM_BUG_ON(!irqs_disabled());
710 
711 	if (!PageSlab(page)) {
712 		slab_err(s, page, "Not a valid slab page");
713 		return 0;
714 	}
715 
716 	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
717 	if (page->objects > maxobj) {
718 		slab_err(s, page, "objects %u > max %u",
719 			s->name, page->objects, maxobj);
720 		return 0;
721 	}
722 	if (page->inuse > page->objects) {
723 		slab_err(s, page, "inuse %u > max %u",
724 			s->name, page->inuse, page->objects);
725 		return 0;
726 	}
727 	/* Slab_pad_check fixes things up after itself */
728 	slab_pad_check(s, page);
729 	return 1;
730 }
731 
732 /*
733  * Determine if a certain object on a page is on the freelist. Must hold the
734  * slab lock to guarantee that the chains are in a consistent state.
735  */
736 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
737 {
738 	int nr = 0;
739 	void *fp = page->freelist;
740 	void *object = NULL;
741 	unsigned long max_objects;
742 
743 	while (fp && nr <= page->objects) {
744 		if (fp == search)
745 			return 1;
746 		if (!check_valid_pointer(s, page, fp)) {
747 			if (object) {
748 				object_err(s, page, object,
749 					"Freechain corrupt");
750 				set_freepointer(s, object, NULL);
751 				break;
752 			} else {
753 				slab_err(s, page, "Freepointer corrupt");
754 				page->freelist = NULL;
755 				page->inuse = page->objects;
756 				slab_fix(s, "Freelist cleared");
757 				return 0;
758 			}
759 			break;
760 		}
761 		object = fp;
762 		fp = get_freepointer(s, object);
763 		nr++;
764 	}
765 
766 	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
767 	if (max_objects > 65535)
768 		max_objects = 65535;
769 
770 	if (page->objects != max_objects) {
771 		slab_err(s, page, "Wrong number of objects. Found %d but "
772 			"should be %d", page->objects, max_objects);
773 		page->objects = max_objects;
774 		slab_fix(s, "Number of objects adjusted.");
775 	}
776 	if (page->inuse != page->objects - nr) {
777 		slab_err(s, page, "Wrong object count. Counter is %d but "
778 			"counted were %d", page->inuse, page->objects - nr);
779 		page->inuse = page->objects - nr;
780 		slab_fix(s, "Object count adjusted.");
781 	}
782 	return search == NULL;
783 }
784 
785 static void trace(struct kmem_cache *s, struct page *page, void *object,
786 								int alloc)
787 {
788 	if (s->flags & SLAB_TRACE) {
789 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
790 			s->name,
791 			alloc ? "alloc" : "free",
792 			object, page->inuse,
793 			page->freelist);
794 
795 		if (!alloc)
796 			print_section("Object", (void *)object, s->objsize);
797 
798 		dump_stack();
799 	}
800 }
801 
802 /*
803  * Tracking of fully allocated slabs for debugging purposes.
804  */
805 static void add_full(struct kmem_cache_node *n, struct page *page)
806 {
807 	spin_lock(&n->list_lock);
808 	list_add(&page->lru, &n->full);
809 	spin_unlock(&n->list_lock);
810 }
811 
812 static void remove_full(struct kmem_cache *s, struct page *page)
813 {
814 	struct kmem_cache_node *n;
815 
816 	if (!(s->flags & SLAB_STORE_USER))
817 		return;
818 
819 	n = get_node(s, page_to_nid(page));
820 
821 	spin_lock(&n->list_lock);
822 	list_del(&page->lru);
823 	spin_unlock(&n->list_lock);
824 }
825 
826 /* Tracking of the number of slabs for debugging purposes */
827 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
828 {
829 	struct kmem_cache_node *n = get_node(s, node);
830 
831 	return atomic_long_read(&n->nr_slabs);
832 }
833 
834 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
835 {
836 	struct kmem_cache_node *n = get_node(s, node);
837 
838 	/*
839 	 * May be called early in order to allocate a slab for the
840 	 * kmem_cache_node structure. Solve the chicken-egg
841 	 * dilemma by deferring the increment of the count during
842 	 * bootstrap (see early_kmem_cache_node_alloc).
843 	 */
844 	if (!NUMA_BUILD || n) {
845 		atomic_long_inc(&n->nr_slabs);
846 		atomic_long_add(objects, &n->total_objects);
847 	}
848 }
849 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
850 {
851 	struct kmem_cache_node *n = get_node(s, node);
852 
853 	atomic_long_dec(&n->nr_slabs);
854 	atomic_long_sub(objects, &n->total_objects);
855 }
856 
857 /* Object debug checks for alloc/free paths */
858 static void setup_object_debug(struct kmem_cache *s, struct page *page,
859 								void *object)
860 {
861 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
862 		return;
863 
864 	init_object(s, object, 0);
865 	init_tracking(s, object);
866 }
867 
868 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
869 						void *object, void *addr)
870 {
871 	if (!check_slab(s, page))
872 		goto bad;
873 
874 	if (!on_freelist(s, page, object)) {
875 		object_err(s, page, object, "Object already allocated");
876 		goto bad;
877 	}
878 
879 	if (!check_valid_pointer(s, page, object)) {
880 		object_err(s, page, object, "Freelist Pointer check fails");
881 		goto bad;
882 	}
883 
884 	if (!check_object(s, page, object, 0))
885 		goto bad;
886 
887 	/* Success perform special debug activities for allocs */
888 	if (s->flags & SLAB_STORE_USER)
889 		set_track(s, object, TRACK_ALLOC, addr);
890 	trace(s, page, object, 1);
891 	init_object(s, object, 1);
892 	return 1;
893 
894 bad:
895 	if (PageSlab(page)) {
896 		/*
897 		 * If this is a slab page then lets do the best we can
898 		 * to avoid issues in the future. Marking all objects
899 		 * as used avoids touching the remaining objects.
900 		 */
901 		slab_fix(s, "Marking all objects used");
902 		page->inuse = page->objects;
903 		page->freelist = NULL;
904 	}
905 	return 0;
906 }
907 
908 static int free_debug_processing(struct kmem_cache *s, struct page *page,
909 						void *object, void *addr)
910 {
911 	if (!check_slab(s, page))
912 		goto fail;
913 
914 	if (!check_valid_pointer(s, page, object)) {
915 		slab_err(s, page, "Invalid object pointer 0x%p", object);
916 		goto fail;
917 	}
918 
919 	if (on_freelist(s, page, object)) {
920 		object_err(s, page, object, "Object already free");
921 		goto fail;
922 	}
923 
924 	if (!check_object(s, page, object, 1))
925 		return 0;
926 
927 	if (unlikely(s != page->slab)) {
928 		if (!PageSlab(page)) {
929 			slab_err(s, page, "Attempt to free object(0x%p) "
930 				"outside of slab", object);
931 		} else if (!page->slab) {
932 			printk(KERN_ERR
933 				"SLUB <none>: no slab for object 0x%p.\n",
934 						object);
935 			dump_stack();
936 		} else
937 			object_err(s, page, object,
938 					"page slab pointer corrupt.");
939 		goto fail;
940 	}
941 
942 	/* Special debug activities for freeing objects */
943 	if (!PageSlubFrozen(page) && !page->freelist)
944 		remove_full(s, page);
945 	if (s->flags & SLAB_STORE_USER)
946 		set_track(s, object, TRACK_FREE, addr);
947 	trace(s, page, object, 0);
948 	init_object(s, object, 0);
949 	return 1;
950 
951 fail:
952 	slab_fix(s, "Object at 0x%p not freed", object);
953 	return 0;
954 }
955 
956 static int __init setup_slub_debug(char *str)
957 {
958 	slub_debug = DEBUG_DEFAULT_FLAGS;
959 	if (*str++ != '=' || !*str)
960 		/*
961 		 * No options specified. Switch on full debugging.
962 		 */
963 		goto out;
964 
965 	if (*str == ',')
966 		/*
967 		 * No options but restriction on slabs. This means full
968 		 * debugging for slabs matching a pattern.
969 		 */
970 		goto check_slabs;
971 
972 	slub_debug = 0;
973 	if (*str == '-')
974 		/*
975 		 * Switch off all debugging measures.
976 		 */
977 		goto out;
978 
979 	/*
980 	 * Determine which debug features should be switched on
981 	 */
982 	for (; *str && *str != ','; str++) {
983 		switch (tolower(*str)) {
984 		case 'f':
985 			slub_debug |= SLAB_DEBUG_FREE;
986 			break;
987 		case 'z':
988 			slub_debug |= SLAB_RED_ZONE;
989 			break;
990 		case 'p':
991 			slub_debug |= SLAB_POISON;
992 			break;
993 		case 'u':
994 			slub_debug |= SLAB_STORE_USER;
995 			break;
996 		case 't':
997 			slub_debug |= SLAB_TRACE;
998 			break;
999 		default:
1000 			printk(KERN_ERR "slub_debug option '%c' "
1001 				"unknown. skipped\n", *str);
1002 		}
1003 	}
1004 
1005 check_slabs:
1006 	if (*str == ',')
1007 		slub_debug_slabs = str + 1;
1008 out:
1009 	return 1;
1010 }
1011 
1012 __setup("slub_debug", setup_slub_debug);
1013 
1014 static unsigned long kmem_cache_flags(unsigned long objsize,
1015 	unsigned long flags, const char *name,
1016 	void (*ctor)(void *))
1017 {
1018 	/*
1019 	 * Enable debugging if selected on the kernel commandline.
1020 	 */
1021 	if (slub_debug && (!slub_debug_slabs ||
1022 	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1023 			flags |= slub_debug;
1024 
1025 	return flags;
1026 }
1027 #else
1028 static inline void setup_object_debug(struct kmem_cache *s,
1029 			struct page *page, void *object) {}
1030 
1031 static inline int alloc_debug_processing(struct kmem_cache *s,
1032 	struct page *page, void *object, void *addr) { return 0; }
1033 
1034 static inline int free_debug_processing(struct kmem_cache *s,
1035 	struct page *page, void *object, void *addr) { return 0; }
1036 
1037 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1038 			{ return 1; }
1039 static inline int check_object(struct kmem_cache *s, struct page *page,
1040 			void *object, int active) { return 1; }
1041 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1042 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1043 	unsigned long flags, const char *name,
1044 	void (*ctor)(void *))
1045 {
1046 	return flags;
1047 }
1048 #define slub_debug 0
1049 
1050 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1051 							{ return 0; }
1052 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1053 							int objects) {}
1054 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1055 							int objects) {}
1056 #endif
1057 
1058 /*
1059  * Slab allocation and freeing
1060  */
1061 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1062 					struct kmem_cache_order_objects oo)
1063 {
1064 	int order = oo_order(oo);
1065 
1066 	if (node == -1)
1067 		return alloc_pages(flags, order);
1068 	else
1069 		return alloc_pages_node(node, flags, order);
1070 }
1071 
1072 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1073 {
1074 	struct page *page;
1075 	struct kmem_cache_order_objects oo = s->oo;
1076 
1077 	flags |= s->allocflags;
1078 
1079 	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1080 									oo);
1081 	if (unlikely(!page)) {
1082 		oo = s->min;
1083 		/*
1084 		 * Allocation may have failed due to fragmentation.
1085 		 * Try a lower order alloc if possible
1086 		 */
1087 		page = alloc_slab_page(flags, node, oo);
1088 		if (!page)
1089 			return NULL;
1090 
1091 		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1092 	}
1093 	page->objects = oo_objects(oo);
1094 	mod_zone_page_state(page_zone(page),
1095 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1096 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1097 		1 << oo_order(oo));
1098 
1099 	return page;
1100 }
1101 
1102 static void setup_object(struct kmem_cache *s, struct page *page,
1103 				void *object)
1104 {
1105 	setup_object_debug(s, page, object);
1106 	if (unlikely(s->ctor))
1107 		s->ctor(object);
1108 }
1109 
1110 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1111 {
1112 	struct page *page;
1113 	void *start;
1114 	void *last;
1115 	void *p;
1116 
1117 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1118 
1119 	page = allocate_slab(s,
1120 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1121 	if (!page)
1122 		goto out;
1123 
1124 	inc_slabs_node(s, page_to_nid(page), page->objects);
1125 	page->slab = s;
1126 	page->flags |= 1 << PG_slab;
1127 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1128 			SLAB_STORE_USER | SLAB_TRACE))
1129 		__SetPageSlubDebug(page);
1130 
1131 	start = page_address(page);
1132 
1133 	if (unlikely(s->flags & SLAB_POISON))
1134 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1135 
1136 	last = start;
1137 	for_each_object(p, s, start, page->objects) {
1138 		setup_object(s, page, last);
1139 		set_freepointer(s, last, p);
1140 		last = p;
1141 	}
1142 	setup_object(s, page, last);
1143 	set_freepointer(s, last, NULL);
1144 
1145 	page->freelist = start;
1146 	page->inuse = 0;
1147 out:
1148 	return page;
1149 }
1150 
1151 static void __free_slab(struct kmem_cache *s, struct page *page)
1152 {
1153 	int order = compound_order(page);
1154 	int pages = 1 << order;
1155 
1156 	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1157 		void *p;
1158 
1159 		slab_pad_check(s, page);
1160 		for_each_object(p, s, page_address(page),
1161 						page->objects)
1162 			check_object(s, page, p, 0);
1163 		__ClearPageSlubDebug(page);
1164 	}
1165 
1166 	mod_zone_page_state(page_zone(page),
1167 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1168 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1169 		-pages);
1170 
1171 	__ClearPageSlab(page);
1172 	reset_page_mapcount(page);
1173 	__free_pages(page, order);
1174 }
1175 
1176 static void rcu_free_slab(struct rcu_head *h)
1177 {
1178 	struct page *page;
1179 
1180 	page = container_of((struct list_head *)h, struct page, lru);
1181 	__free_slab(page->slab, page);
1182 }
1183 
1184 static void free_slab(struct kmem_cache *s, struct page *page)
1185 {
1186 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1187 		/*
1188 		 * RCU free overloads the RCU head over the LRU
1189 		 */
1190 		struct rcu_head *head = (void *)&page->lru;
1191 
1192 		call_rcu(head, rcu_free_slab);
1193 	} else
1194 		__free_slab(s, page);
1195 }
1196 
1197 static void discard_slab(struct kmem_cache *s, struct page *page)
1198 {
1199 	dec_slabs_node(s, page_to_nid(page), page->objects);
1200 	free_slab(s, page);
1201 }
1202 
1203 /*
1204  * Per slab locking using the pagelock
1205  */
1206 static __always_inline void slab_lock(struct page *page)
1207 {
1208 	bit_spin_lock(PG_locked, &page->flags);
1209 }
1210 
1211 static __always_inline void slab_unlock(struct page *page)
1212 {
1213 	__bit_spin_unlock(PG_locked, &page->flags);
1214 }
1215 
1216 static __always_inline int slab_trylock(struct page *page)
1217 {
1218 	int rc = 1;
1219 
1220 	rc = bit_spin_trylock(PG_locked, &page->flags);
1221 	return rc;
1222 }
1223 
1224 /*
1225  * Management of partially allocated slabs
1226  */
1227 static void add_partial(struct kmem_cache_node *n,
1228 				struct page *page, int tail)
1229 {
1230 	spin_lock(&n->list_lock);
1231 	n->nr_partial++;
1232 	if (tail)
1233 		list_add_tail(&page->lru, &n->partial);
1234 	else
1235 		list_add(&page->lru, &n->partial);
1236 	spin_unlock(&n->list_lock);
1237 }
1238 
1239 static void remove_partial(struct kmem_cache *s, struct page *page)
1240 {
1241 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1242 
1243 	spin_lock(&n->list_lock);
1244 	list_del(&page->lru);
1245 	n->nr_partial--;
1246 	spin_unlock(&n->list_lock);
1247 }
1248 
1249 /*
1250  * Lock slab and remove from the partial list.
1251  *
1252  * Must hold list_lock.
1253  */
1254 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1255 							struct page *page)
1256 {
1257 	if (slab_trylock(page)) {
1258 		list_del(&page->lru);
1259 		n->nr_partial--;
1260 		__SetPageSlubFrozen(page);
1261 		return 1;
1262 	}
1263 	return 0;
1264 }
1265 
1266 /*
1267  * Try to allocate a partial slab from a specific node.
1268  */
1269 static struct page *get_partial_node(struct kmem_cache_node *n)
1270 {
1271 	struct page *page;
1272 
1273 	/*
1274 	 * Racy check. If we mistakenly see no partial slabs then we
1275 	 * just allocate an empty slab. If we mistakenly try to get a
1276 	 * partial slab and there is none available then get_partials()
1277 	 * will return NULL.
1278 	 */
1279 	if (!n || !n->nr_partial)
1280 		return NULL;
1281 
1282 	spin_lock(&n->list_lock);
1283 	list_for_each_entry(page, &n->partial, lru)
1284 		if (lock_and_freeze_slab(n, page))
1285 			goto out;
1286 	page = NULL;
1287 out:
1288 	spin_unlock(&n->list_lock);
1289 	return page;
1290 }
1291 
1292 /*
1293  * Get a page from somewhere. Search in increasing NUMA distances.
1294  */
1295 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1296 {
1297 #ifdef CONFIG_NUMA
1298 	struct zonelist *zonelist;
1299 	struct zoneref *z;
1300 	struct zone *zone;
1301 	enum zone_type high_zoneidx = gfp_zone(flags);
1302 	struct page *page;
1303 
1304 	/*
1305 	 * The defrag ratio allows a configuration of the tradeoffs between
1306 	 * inter node defragmentation and node local allocations. A lower
1307 	 * defrag_ratio increases the tendency to do local allocations
1308 	 * instead of attempting to obtain partial slabs from other nodes.
1309 	 *
1310 	 * If the defrag_ratio is set to 0 then kmalloc() always
1311 	 * returns node local objects. If the ratio is higher then kmalloc()
1312 	 * may return off node objects because partial slabs are obtained
1313 	 * from other nodes and filled up.
1314 	 *
1315 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1316 	 * defrag_ratio = 1000) then every (well almost) allocation will
1317 	 * first attempt to defrag slab caches on other nodes. This means
1318 	 * scanning over all nodes to look for partial slabs which may be
1319 	 * expensive if we do it every time we are trying to find a slab
1320 	 * with available objects.
1321 	 */
1322 	if (!s->remote_node_defrag_ratio ||
1323 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1324 		return NULL;
1325 
1326 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1327 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1328 		struct kmem_cache_node *n;
1329 
1330 		n = get_node(s, zone_to_nid(zone));
1331 
1332 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1333 				n->nr_partial > n->min_partial) {
1334 			page = get_partial_node(n);
1335 			if (page)
1336 				return page;
1337 		}
1338 	}
1339 #endif
1340 	return NULL;
1341 }
1342 
1343 /*
1344  * Get a partial page, lock it and return it.
1345  */
1346 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1347 {
1348 	struct page *page;
1349 	int searchnode = (node == -1) ? numa_node_id() : node;
1350 
1351 	page = get_partial_node(get_node(s, searchnode));
1352 	if (page || (flags & __GFP_THISNODE))
1353 		return page;
1354 
1355 	return get_any_partial(s, flags);
1356 }
1357 
1358 /*
1359  * Move a page back to the lists.
1360  *
1361  * Must be called with the slab lock held.
1362  *
1363  * On exit the slab lock will have been dropped.
1364  */
1365 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1366 {
1367 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1368 	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1369 
1370 	__ClearPageSlubFrozen(page);
1371 	if (page->inuse) {
1372 
1373 		if (page->freelist) {
1374 			add_partial(n, page, tail);
1375 			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1376 		} else {
1377 			stat(c, DEACTIVATE_FULL);
1378 			if (SLABDEBUG && PageSlubDebug(page) &&
1379 						(s->flags & SLAB_STORE_USER))
1380 				add_full(n, page);
1381 		}
1382 		slab_unlock(page);
1383 	} else {
1384 		stat(c, DEACTIVATE_EMPTY);
1385 		if (n->nr_partial < n->min_partial) {
1386 			/*
1387 			 * Adding an empty slab to the partial slabs in order
1388 			 * to avoid page allocator overhead. This slab needs
1389 			 * to come after the other slabs with objects in
1390 			 * so that the others get filled first. That way the
1391 			 * size of the partial list stays small.
1392 			 *
1393 			 * kmem_cache_shrink can reclaim any empty slabs from
1394 			 * the partial list.
1395 			 */
1396 			add_partial(n, page, 1);
1397 			slab_unlock(page);
1398 		} else {
1399 			slab_unlock(page);
1400 			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1401 			discard_slab(s, page);
1402 		}
1403 	}
1404 }
1405 
1406 /*
1407  * Remove the cpu slab
1408  */
1409 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1410 {
1411 	struct page *page = c->page;
1412 	int tail = 1;
1413 
1414 	if (page->freelist)
1415 		stat(c, DEACTIVATE_REMOTE_FREES);
1416 	/*
1417 	 * Merge cpu freelist into slab freelist. Typically we get here
1418 	 * because both freelists are empty. So this is unlikely
1419 	 * to occur.
1420 	 */
1421 	while (unlikely(c->freelist)) {
1422 		void **object;
1423 
1424 		tail = 0;	/* Hot objects. Put the slab first */
1425 
1426 		/* Retrieve object from cpu_freelist */
1427 		object = c->freelist;
1428 		c->freelist = c->freelist[c->offset];
1429 
1430 		/* And put onto the regular freelist */
1431 		object[c->offset] = page->freelist;
1432 		page->freelist = object;
1433 		page->inuse--;
1434 	}
1435 	c->page = NULL;
1436 	unfreeze_slab(s, page, tail);
1437 }
1438 
1439 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1440 {
1441 	stat(c, CPUSLAB_FLUSH);
1442 	slab_lock(c->page);
1443 	deactivate_slab(s, c);
1444 }
1445 
1446 /*
1447  * Flush cpu slab.
1448  *
1449  * Called from IPI handler with interrupts disabled.
1450  */
1451 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1452 {
1453 	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1454 
1455 	if (likely(c && c->page))
1456 		flush_slab(s, c);
1457 }
1458 
1459 static void flush_cpu_slab(void *d)
1460 {
1461 	struct kmem_cache *s = d;
1462 
1463 	__flush_cpu_slab(s, smp_processor_id());
1464 }
1465 
1466 static void flush_all(struct kmem_cache *s)
1467 {
1468 	on_each_cpu(flush_cpu_slab, s, 1);
1469 }
1470 
1471 /*
1472  * Check if the objects in a per cpu structure fit numa
1473  * locality expectations.
1474  */
1475 static inline int node_match(struct kmem_cache_cpu *c, int node)
1476 {
1477 #ifdef CONFIG_NUMA
1478 	if (node != -1 && c->node != node)
1479 		return 0;
1480 #endif
1481 	return 1;
1482 }
1483 
1484 /*
1485  * Slow path. The lockless freelist is empty or we need to perform
1486  * debugging duties.
1487  *
1488  * Interrupts are disabled.
1489  *
1490  * Processing is still very fast if new objects have been freed to the
1491  * regular freelist. In that case we simply take over the regular freelist
1492  * as the lockless freelist and zap the regular freelist.
1493  *
1494  * If that is not working then we fall back to the partial lists. We take the
1495  * first element of the freelist as the object to allocate now and move the
1496  * rest of the freelist to the lockless freelist.
1497  *
1498  * And if we were unable to get a new slab from the partial slab lists then
1499  * we need to allocate a new slab. This is the slowest path since it involves
1500  * a call to the page allocator and the setup of a new slab.
1501  */
1502 static void *__slab_alloc(struct kmem_cache *s,
1503 		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1504 {
1505 	void **object;
1506 	struct page *new;
1507 
1508 	/* We handle __GFP_ZERO in the caller */
1509 	gfpflags &= ~__GFP_ZERO;
1510 
1511 	if (!c->page)
1512 		goto new_slab;
1513 
1514 	slab_lock(c->page);
1515 	if (unlikely(!node_match(c, node)))
1516 		goto another_slab;
1517 
1518 	stat(c, ALLOC_REFILL);
1519 
1520 load_freelist:
1521 	object = c->page->freelist;
1522 	if (unlikely(!object))
1523 		goto another_slab;
1524 	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1525 		goto debug;
1526 
1527 	c->freelist = object[c->offset];
1528 	c->page->inuse = c->page->objects;
1529 	c->page->freelist = NULL;
1530 	c->node = page_to_nid(c->page);
1531 unlock_out:
1532 	slab_unlock(c->page);
1533 	stat(c, ALLOC_SLOWPATH);
1534 	return object;
1535 
1536 another_slab:
1537 	deactivate_slab(s, c);
1538 
1539 new_slab:
1540 	new = get_partial(s, gfpflags, node);
1541 	if (new) {
1542 		c->page = new;
1543 		stat(c, ALLOC_FROM_PARTIAL);
1544 		goto load_freelist;
1545 	}
1546 
1547 	if (gfpflags & __GFP_WAIT)
1548 		local_irq_enable();
1549 
1550 	new = new_slab(s, gfpflags, node);
1551 
1552 	if (gfpflags & __GFP_WAIT)
1553 		local_irq_disable();
1554 
1555 	if (new) {
1556 		c = get_cpu_slab(s, smp_processor_id());
1557 		stat(c, ALLOC_SLAB);
1558 		if (c->page)
1559 			flush_slab(s, c);
1560 		slab_lock(new);
1561 		__SetPageSlubFrozen(new);
1562 		c->page = new;
1563 		goto load_freelist;
1564 	}
1565 	return NULL;
1566 debug:
1567 	if (!alloc_debug_processing(s, c->page, object, addr))
1568 		goto another_slab;
1569 
1570 	c->page->inuse++;
1571 	c->page->freelist = object[c->offset];
1572 	c->node = -1;
1573 	goto unlock_out;
1574 }
1575 
1576 /*
1577  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1578  * have the fastpath folded into their functions. So no function call
1579  * overhead for requests that can be satisfied on the fastpath.
1580  *
1581  * The fastpath works by first checking if the lockless freelist can be used.
1582  * If not then __slab_alloc is called for slow processing.
1583  *
1584  * Otherwise we can simply pick the next object from the lockless free list.
1585  */
1586 static __always_inline void *slab_alloc(struct kmem_cache *s,
1587 		gfp_t gfpflags, int node, void *addr)
1588 {
1589 	void **object;
1590 	struct kmem_cache_cpu *c;
1591 	unsigned long flags;
1592 	unsigned int objsize;
1593 
1594 	local_irq_save(flags);
1595 	c = get_cpu_slab(s, smp_processor_id());
1596 	objsize = c->objsize;
1597 	if (unlikely(!c->freelist || !node_match(c, node)))
1598 
1599 		object = __slab_alloc(s, gfpflags, node, addr, c);
1600 
1601 	else {
1602 		object = c->freelist;
1603 		c->freelist = object[c->offset];
1604 		stat(c, ALLOC_FASTPATH);
1605 	}
1606 	local_irq_restore(flags);
1607 
1608 	if (unlikely((gfpflags & __GFP_ZERO) && object))
1609 		memset(object, 0, objsize);
1610 
1611 	return object;
1612 }
1613 
1614 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1615 {
1616 	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1617 }
1618 EXPORT_SYMBOL(kmem_cache_alloc);
1619 
1620 #ifdef CONFIG_NUMA
1621 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1622 {
1623 	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1624 }
1625 EXPORT_SYMBOL(kmem_cache_alloc_node);
1626 #endif
1627 
1628 /*
1629  * Slow patch handling. This may still be called frequently since objects
1630  * have a longer lifetime than the cpu slabs in most processing loads.
1631  *
1632  * So we still attempt to reduce cache line usage. Just take the slab
1633  * lock and free the item. If there is no additional partial page
1634  * handling required then we can return immediately.
1635  */
1636 static void __slab_free(struct kmem_cache *s, struct page *page,
1637 				void *x, void *addr, unsigned int offset)
1638 {
1639 	void *prior;
1640 	void **object = (void *)x;
1641 	struct kmem_cache_cpu *c;
1642 
1643 	c = get_cpu_slab(s, raw_smp_processor_id());
1644 	stat(c, FREE_SLOWPATH);
1645 	slab_lock(page);
1646 
1647 	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1648 		goto debug;
1649 
1650 checks_ok:
1651 	prior = object[offset] = page->freelist;
1652 	page->freelist = object;
1653 	page->inuse--;
1654 
1655 	if (unlikely(PageSlubFrozen(page))) {
1656 		stat(c, FREE_FROZEN);
1657 		goto out_unlock;
1658 	}
1659 
1660 	if (unlikely(!page->inuse))
1661 		goto slab_empty;
1662 
1663 	/*
1664 	 * Objects left in the slab. If it was not on the partial list before
1665 	 * then add it.
1666 	 */
1667 	if (unlikely(!prior)) {
1668 		add_partial(get_node(s, page_to_nid(page)), page, 1);
1669 		stat(c, FREE_ADD_PARTIAL);
1670 	}
1671 
1672 out_unlock:
1673 	slab_unlock(page);
1674 	return;
1675 
1676 slab_empty:
1677 	if (prior) {
1678 		/*
1679 		 * Slab still on the partial list.
1680 		 */
1681 		remove_partial(s, page);
1682 		stat(c, FREE_REMOVE_PARTIAL);
1683 	}
1684 	slab_unlock(page);
1685 	stat(c, FREE_SLAB);
1686 	discard_slab(s, page);
1687 	return;
1688 
1689 debug:
1690 	if (!free_debug_processing(s, page, x, addr))
1691 		goto out_unlock;
1692 	goto checks_ok;
1693 }
1694 
1695 /*
1696  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1697  * can perform fastpath freeing without additional function calls.
1698  *
1699  * The fastpath is only possible if we are freeing to the current cpu slab
1700  * of this processor. This typically the case if we have just allocated
1701  * the item before.
1702  *
1703  * If fastpath is not possible then fall back to __slab_free where we deal
1704  * with all sorts of special processing.
1705  */
1706 static __always_inline void slab_free(struct kmem_cache *s,
1707 			struct page *page, void *x, void *addr)
1708 {
1709 	void **object = (void *)x;
1710 	struct kmem_cache_cpu *c;
1711 	unsigned long flags;
1712 
1713 	local_irq_save(flags);
1714 	c = get_cpu_slab(s, smp_processor_id());
1715 	debug_check_no_locks_freed(object, c->objsize);
1716 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1717 		debug_check_no_obj_freed(object, s->objsize);
1718 	if (likely(page == c->page && c->node >= 0)) {
1719 		object[c->offset] = c->freelist;
1720 		c->freelist = object;
1721 		stat(c, FREE_FASTPATH);
1722 	} else
1723 		__slab_free(s, page, x, addr, c->offset);
1724 
1725 	local_irq_restore(flags);
1726 }
1727 
1728 void kmem_cache_free(struct kmem_cache *s, void *x)
1729 {
1730 	struct page *page;
1731 
1732 	page = virt_to_head_page(x);
1733 
1734 	slab_free(s, page, x, __builtin_return_address(0));
1735 }
1736 EXPORT_SYMBOL(kmem_cache_free);
1737 
1738 /* Figure out on which slab object the object resides */
1739 static struct page *get_object_page(const void *x)
1740 {
1741 	struct page *page = virt_to_head_page(x);
1742 
1743 	if (!PageSlab(page))
1744 		return NULL;
1745 
1746 	return page;
1747 }
1748 
1749 /*
1750  * Object placement in a slab is made very easy because we always start at
1751  * offset 0. If we tune the size of the object to the alignment then we can
1752  * get the required alignment by putting one properly sized object after
1753  * another.
1754  *
1755  * Notice that the allocation order determines the sizes of the per cpu
1756  * caches. Each processor has always one slab available for allocations.
1757  * Increasing the allocation order reduces the number of times that slabs
1758  * must be moved on and off the partial lists and is therefore a factor in
1759  * locking overhead.
1760  */
1761 
1762 /*
1763  * Mininum / Maximum order of slab pages. This influences locking overhead
1764  * and slab fragmentation. A higher order reduces the number of partial slabs
1765  * and increases the number of allocations possible without having to
1766  * take the list_lock.
1767  */
1768 static int slub_min_order;
1769 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1770 static int slub_min_objects;
1771 
1772 /*
1773  * Merge control. If this is set then no merging of slab caches will occur.
1774  * (Could be removed. This was introduced to pacify the merge skeptics.)
1775  */
1776 static int slub_nomerge;
1777 
1778 /*
1779  * Calculate the order of allocation given an slab object size.
1780  *
1781  * The order of allocation has significant impact on performance and other
1782  * system components. Generally order 0 allocations should be preferred since
1783  * order 0 does not cause fragmentation in the page allocator. Larger objects
1784  * be problematic to put into order 0 slabs because there may be too much
1785  * unused space left. We go to a higher order if more than 1/16th of the slab
1786  * would be wasted.
1787  *
1788  * In order to reach satisfactory performance we must ensure that a minimum
1789  * number of objects is in one slab. Otherwise we may generate too much
1790  * activity on the partial lists which requires taking the list_lock. This is
1791  * less a concern for large slabs though which are rarely used.
1792  *
1793  * slub_max_order specifies the order where we begin to stop considering the
1794  * number of objects in a slab as critical. If we reach slub_max_order then
1795  * we try to keep the page order as low as possible. So we accept more waste
1796  * of space in favor of a small page order.
1797  *
1798  * Higher order allocations also allow the placement of more objects in a
1799  * slab and thereby reduce object handling overhead. If the user has
1800  * requested a higher mininum order then we start with that one instead of
1801  * the smallest order which will fit the object.
1802  */
1803 static inline int slab_order(int size, int min_objects,
1804 				int max_order, int fract_leftover)
1805 {
1806 	int order;
1807 	int rem;
1808 	int min_order = slub_min_order;
1809 
1810 	if ((PAGE_SIZE << min_order) / size > 65535)
1811 		return get_order(size * 65535) - 1;
1812 
1813 	for (order = max(min_order,
1814 				fls(min_objects * size - 1) - PAGE_SHIFT);
1815 			order <= max_order; order++) {
1816 
1817 		unsigned long slab_size = PAGE_SIZE << order;
1818 
1819 		if (slab_size < min_objects * size)
1820 			continue;
1821 
1822 		rem = slab_size % size;
1823 
1824 		if (rem <= slab_size / fract_leftover)
1825 			break;
1826 
1827 	}
1828 
1829 	return order;
1830 }
1831 
1832 static inline int calculate_order(int size)
1833 {
1834 	int order;
1835 	int min_objects;
1836 	int fraction;
1837 
1838 	/*
1839 	 * Attempt to find best configuration for a slab. This
1840 	 * works by first attempting to generate a layout with
1841 	 * the best configuration and backing off gradually.
1842 	 *
1843 	 * First we reduce the acceptable waste in a slab. Then
1844 	 * we reduce the minimum objects required in a slab.
1845 	 */
1846 	min_objects = slub_min_objects;
1847 	if (!min_objects)
1848 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1849 	while (min_objects > 1) {
1850 		fraction = 16;
1851 		while (fraction >= 4) {
1852 			order = slab_order(size, min_objects,
1853 						slub_max_order, fraction);
1854 			if (order <= slub_max_order)
1855 				return order;
1856 			fraction /= 2;
1857 		}
1858 		min_objects /= 2;
1859 	}
1860 
1861 	/*
1862 	 * We were unable to place multiple objects in a slab. Now
1863 	 * lets see if we can place a single object there.
1864 	 */
1865 	order = slab_order(size, 1, slub_max_order, 1);
1866 	if (order <= slub_max_order)
1867 		return order;
1868 
1869 	/*
1870 	 * Doh this slab cannot be placed using slub_max_order.
1871 	 */
1872 	order = slab_order(size, 1, MAX_ORDER, 1);
1873 	if (order <= MAX_ORDER)
1874 		return order;
1875 	return -ENOSYS;
1876 }
1877 
1878 /*
1879  * Figure out what the alignment of the objects will be.
1880  */
1881 static unsigned long calculate_alignment(unsigned long flags,
1882 		unsigned long align, unsigned long size)
1883 {
1884 	/*
1885 	 * If the user wants hardware cache aligned objects then follow that
1886 	 * suggestion if the object is sufficiently large.
1887 	 *
1888 	 * The hardware cache alignment cannot override the specified
1889 	 * alignment though. If that is greater then use it.
1890 	 */
1891 	if (flags & SLAB_HWCACHE_ALIGN) {
1892 		unsigned long ralign = cache_line_size();
1893 		while (size <= ralign / 2)
1894 			ralign /= 2;
1895 		align = max(align, ralign);
1896 	}
1897 
1898 	if (align < ARCH_SLAB_MINALIGN)
1899 		align = ARCH_SLAB_MINALIGN;
1900 
1901 	return ALIGN(align, sizeof(void *));
1902 }
1903 
1904 static void init_kmem_cache_cpu(struct kmem_cache *s,
1905 			struct kmem_cache_cpu *c)
1906 {
1907 	c->page = NULL;
1908 	c->freelist = NULL;
1909 	c->node = 0;
1910 	c->offset = s->offset / sizeof(void *);
1911 	c->objsize = s->objsize;
1912 #ifdef CONFIG_SLUB_STATS
1913 	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1914 #endif
1915 }
1916 
1917 static void
1918 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1919 {
1920 	n->nr_partial = 0;
1921 
1922 	/*
1923 	 * The larger the object size is, the more pages we want on the partial
1924 	 * list to avoid pounding the page allocator excessively.
1925 	 */
1926 	n->min_partial = ilog2(s->size);
1927 	if (n->min_partial < MIN_PARTIAL)
1928 		n->min_partial = MIN_PARTIAL;
1929 	else if (n->min_partial > MAX_PARTIAL)
1930 		n->min_partial = MAX_PARTIAL;
1931 
1932 	spin_lock_init(&n->list_lock);
1933 	INIT_LIST_HEAD(&n->partial);
1934 #ifdef CONFIG_SLUB_DEBUG
1935 	atomic_long_set(&n->nr_slabs, 0);
1936 	atomic_long_set(&n->total_objects, 0);
1937 	INIT_LIST_HEAD(&n->full);
1938 #endif
1939 }
1940 
1941 #ifdef CONFIG_SMP
1942 /*
1943  * Per cpu array for per cpu structures.
1944  *
1945  * The per cpu array places all kmem_cache_cpu structures from one processor
1946  * close together meaning that it becomes possible that multiple per cpu
1947  * structures are contained in one cacheline. This may be particularly
1948  * beneficial for the kmalloc caches.
1949  *
1950  * A desktop system typically has around 60-80 slabs. With 100 here we are
1951  * likely able to get per cpu structures for all caches from the array defined
1952  * here. We must be able to cover all kmalloc caches during bootstrap.
1953  *
1954  * If the per cpu array is exhausted then fall back to kmalloc
1955  * of individual cachelines. No sharing is possible then.
1956  */
1957 #define NR_KMEM_CACHE_CPU 100
1958 
1959 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1960 				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1961 
1962 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1963 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1964 
1965 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1966 							int cpu, gfp_t flags)
1967 {
1968 	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1969 
1970 	if (c)
1971 		per_cpu(kmem_cache_cpu_free, cpu) =
1972 				(void *)c->freelist;
1973 	else {
1974 		/* Table overflow: So allocate ourselves */
1975 		c = kmalloc_node(
1976 			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1977 			flags, cpu_to_node(cpu));
1978 		if (!c)
1979 			return NULL;
1980 	}
1981 
1982 	init_kmem_cache_cpu(s, c);
1983 	return c;
1984 }
1985 
1986 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1987 {
1988 	if (c < per_cpu(kmem_cache_cpu, cpu) ||
1989 			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1990 		kfree(c);
1991 		return;
1992 	}
1993 	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1994 	per_cpu(kmem_cache_cpu_free, cpu) = c;
1995 }
1996 
1997 static void free_kmem_cache_cpus(struct kmem_cache *s)
1998 {
1999 	int cpu;
2000 
2001 	for_each_online_cpu(cpu) {
2002 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2003 
2004 		if (c) {
2005 			s->cpu_slab[cpu] = NULL;
2006 			free_kmem_cache_cpu(c, cpu);
2007 		}
2008 	}
2009 }
2010 
2011 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2012 {
2013 	int cpu;
2014 
2015 	for_each_online_cpu(cpu) {
2016 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2017 
2018 		if (c)
2019 			continue;
2020 
2021 		c = alloc_kmem_cache_cpu(s, cpu, flags);
2022 		if (!c) {
2023 			free_kmem_cache_cpus(s);
2024 			return 0;
2025 		}
2026 		s->cpu_slab[cpu] = c;
2027 	}
2028 	return 1;
2029 }
2030 
2031 /*
2032  * Initialize the per cpu array.
2033  */
2034 static void init_alloc_cpu_cpu(int cpu)
2035 {
2036 	int i;
2037 
2038 	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2039 		return;
2040 
2041 	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2042 		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2043 
2044 	cpu_set(cpu, kmem_cach_cpu_free_init_once);
2045 }
2046 
2047 static void __init init_alloc_cpu(void)
2048 {
2049 	int cpu;
2050 
2051 	for_each_online_cpu(cpu)
2052 		init_alloc_cpu_cpu(cpu);
2053   }
2054 
2055 #else
2056 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2057 static inline void init_alloc_cpu(void) {}
2058 
2059 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2060 {
2061 	init_kmem_cache_cpu(s, &s->cpu_slab);
2062 	return 1;
2063 }
2064 #endif
2065 
2066 #ifdef CONFIG_NUMA
2067 /*
2068  * No kmalloc_node yet so do it by hand. We know that this is the first
2069  * slab on the node for this slabcache. There are no concurrent accesses
2070  * possible.
2071  *
2072  * Note that this function only works on the kmalloc_node_cache
2073  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2074  * memory on a fresh node that has no slab structures yet.
2075  */
2076 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2077 							   int node)
2078 {
2079 	struct page *page;
2080 	struct kmem_cache_node *n;
2081 	unsigned long flags;
2082 
2083 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2084 
2085 	page = new_slab(kmalloc_caches, gfpflags, node);
2086 
2087 	BUG_ON(!page);
2088 	if (page_to_nid(page) != node) {
2089 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2090 				"node %d\n", node);
2091 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2092 				"in order to be able to continue\n");
2093 	}
2094 
2095 	n = page->freelist;
2096 	BUG_ON(!n);
2097 	page->freelist = get_freepointer(kmalloc_caches, n);
2098 	page->inuse++;
2099 	kmalloc_caches->node[node] = n;
2100 #ifdef CONFIG_SLUB_DEBUG
2101 	init_object(kmalloc_caches, n, 1);
2102 	init_tracking(kmalloc_caches, n);
2103 #endif
2104 	init_kmem_cache_node(n, kmalloc_caches);
2105 	inc_slabs_node(kmalloc_caches, node, page->objects);
2106 
2107 	/*
2108 	 * lockdep requires consistent irq usage for each lock
2109 	 * so even though there cannot be a race this early in
2110 	 * the boot sequence, we still disable irqs.
2111 	 */
2112 	local_irq_save(flags);
2113 	add_partial(n, page, 0);
2114 	local_irq_restore(flags);
2115 	return n;
2116 }
2117 
2118 static void free_kmem_cache_nodes(struct kmem_cache *s)
2119 {
2120 	int node;
2121 
2122 	for_each_node_state(node, N_NORMAL_MEMORY) {
2123 		struct kmem_cache_node *n = s->node[node];
2124 		if (n && n != &s->local_node)
2125 			kmem_cache_free(kmalloc_caches, n);
2126 		s->node[node] = NULL;
2127 	}
2128 }
2129 
2130 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2131 {
2132 	int node;
2133 	int local_node;
2134 
2135 	if (slab_state >= UP)
2136 		local_node = page_to_nid(virt_to_page(s));
2137 	else
2138 		local_node = 0;
2139 
2140 	for_each_node_state(node, N_NORMAL_MEMORY) {
2141 		struct kmem_cache_node *n;
2142 
2143 		if (local_node == node)
2144 			n = &s->local_node;
2145 		else {
2146 			if (slab_state == DOWN) {
2147 				n = early_kmem_cache_node_alloc(gfpflags,
2148 								node);
2149 				continue;
2150 			}
2151 			n = kmem_cache_alloc_node(kmalloc_caches,
2152 							gfpflags, node);
2153 
2154 			if (!n) {
2155 				free_kmem_cache_nodes(s);
2156 				return 0;
2157 			}
2158 
2159 		}
2160 		s->node[node] = n;
2161 		init_kmem_cache_node(n, s);
2162 	}
2163 	return 1;
2164 }
2165 #else
2166 static void free_kmem_cache_nodes(struct kmem_cache *s)
2167 {
2168 }
2169 
2170 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2171 {
2172 	init_kmem_cache_node(&s->local_node, s);
2173 	return 1;
2174 }
2175 #endif
2176 
2177 /*
2178  * calculate_sizes() determines the order and the distribution of data within
2179  * a slab object.
2180  */
2181 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2182 {
2183 	unsigned long flags = s->flags;
2184 	unsigned long size = s->objsize;
2185 	unsigned long align = s->align;
2186 	int order;
2187 
2188 	/*
2189 	 * Round up object size to the next word boundary. We can only
2190 	 * place the free pointer at word boundaries and this determines
2191 	 * the possible location of the free pointer.
2192 	 */
2193 	size = ALIGN(size, sizeof(void *));
2194 
2195 #ifdef CONFIG_SLUB_DEBUG
2196 	/*
2197 	 * Determine if we can poison the object itself. If the user of
2198 	 * the slab may touch the object after free or before allocation
2199 	 * then we should never poison the object itself.
2200 	 */
2201 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2202 			!s->ctor)
2203 		s->flags |= __OBJECT_POISON;
2204 	else
2205 		s->flags &= ~__OBJECT_POISON;
2206 
2207 
2208 	/*
2209 	 * If we are Redzoning then check if there is some space between the
2210 	 * end of the object and the free pointer. If not then add an
2211 	 * additional word to have some bytes to store Redzone information.
2212 	 */
2213 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2214 		size += sizeof(void *);
2215 #endif
2216 
2217 	/*
2218 	 * With that we have determined the number of bytes in actual use
2219 	 * by the object. This is the potential offset to the free pointer.
2220 	 */
2221 	s->inuse = size;
2222 
2223 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2224 		s->ctor)) {
2225 		/*
2226 		 * Relocate free pointer after the object if it is not
2227 		 * permitted to overwrite the first word of the object on
2228 		 * kmem_cache_free.
2229 		 *
2230 		 * This is the case if we do RCU, have a constructor or
2231 		 * destructor or are poisoning the objects.
2232 		 */
2233 		s->offset = size;
2234 		size += sizeof(void *);
2235 	}
2236 
2237 #ifdef CONFIG_SLUB_DEBUG
2238 	if (flags & SLAB_STORE_USER)
2239 		/*
2240 		 * Need to store information about allocs and frees after
2241 		 * the object.
2242 		 */
2243 		size += 2 * sizeof(struct track);
2244 
2245 	if (flags & SLAB_RED_ZONE)
2246 		/*
2247 		 * Add some empty padding so that we can catch
2248 		 * overwrites from earlier objects rather than let
2249 		 * tracking information or the free pointer be
2250 		 * corrupted if an user writes before the start
2251 		 * of the object.
2252 		 */
2253 		size += sizeof(void *);
2254 #endif
2255 
2256 	/*
2257 	 * Determine the alignment based on various parameters that the
2258 	 * user specified and the dynamic determination of cache line size
2259 	 * on bootup.
2260 	 */
2261 	align = calculate_alignment(flags, align, s->objsize);
2262 
2263 	/*
2264 	 * SLUB stores one object immediately after another beginning from
2265 	 * offset 0. In order to align the objects we have to simply size
2266 	 * each object to conform to the alignment.
2267 	 */
2268 	size = ALIGN(size, align);
2269 	s->size = size;
2270 	if (forced_order >= 0)
2271 		order = forced_order;
2272 	else
2273 		order = calculate_order(size);
2274 
2275 	if (order < 0)
2276 		return 0;
2277 
2278 	s->allocflags = 0;
2279 	if (order)
2280 		s->allocflags |= __GFP_COMP;
2281 
2282 	if (s->flags & SLAB_CACHE_DMA)
2283 		s->allocflags |= SLUB_DMA;
2284 
2285 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2286 		s->allocflags |= __GFP_RECLAIMABLE;
2287 
2288 	/*
2289 	 * Determine the number of objects per slab
2290 	 */
2291 	s->oo = oo_make(order, size);
2292 	s->min = oo_make(get_order(size), size);
2293 	if (oo_objects(s->oo) > oo_objects(s->max))
2294 		s->max = s->oo;
2295 
2296 	return !!oo_objects(s->oo);
2297 
2298 }
2299 
2300 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2301 		const char *name, size_t size,
2302 		size_t align, unsigned long flags,
2303 		void (*ctor)(void *))
2304 {
2305 	memset(s, 0, kmem_size);
2306 	s->name = name;
2307 	s->ctor = ctor;
2308 	s->objsize = size;
2309 	s->align = align;
2310 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2311 
2312 	if (!calculate_sizes(s, -1))
2313 		goto error;
2314 
2315 	s->refcount = 1;
2316 #ifdef CONFIG_NUMA
2317 	s->remote_node_defrag_ratio = 1000;
2318 #endif
2319 	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2320 		goto error;
2321 
2322 	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2323 		return 1;
2324 	free_kmem_cache_nodes(s);
2325 error:
2326 	if (flags & SLAB_PANIC)
2327 		panic("Cannot create slab %s size=%lu realsize=%u "
2328 			"order=%u offset=%u flags=%lx\n",
2329 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2330 			s->offset, flags);
2331 	return 0;
2332 }
2333 
2334 /*
2335  * Check if a given pointer is valid
2336  */
2337 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2338 {
2339 	struct page *page;
2340 
2341 	page = get_object_page(object);
2342 
2343 	if (!page || s != page->slab)
2344 		/* No slab or wrong slab */
2345 		return 0;
2346 
2347 	if (!check_valid_pointer(s, page, object))
2348 		return 0;
2349 
2350 	/*
2351 	 * We could also check if the object is on the slabs freelist.
2352 	 * But this would be too expensive and it seems that the main
2353 	 * purpose of kmem_ptr_valid() is to check if the object belongs
2354 	 * to a certain slab.
2355 	 */
2356 	return 1;
2357 }
2358 EXPORT_SYMBOL(kmem_ptr_validate);
2359 
2360 /*
2361  * Determine the size of a slab object
2362  */
2363 unsigned int kmem_cache_size(struct kmem_cache *s)
2364 {
2365 	return s->objsize;
2366 }
2367 EXPORT_SYMBOL(kmem_cache_size);
2368 
2369 const char *kmem_cache_name(struct kmem_cache *s)
2370 {
2371 	return s->name;
2372 }
2373 EXPORT_SYMBOL(kmem_cache_name);
2374 
2375 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2376 							const char *text)
2377 {
2378 #ifdef CONFIG_SLUB_DEBUG
2379 	void *addr = page_address(page);
2380 	void *p;
2381 	DECLARE_BITMAP(map, page->objects);
2382 
2383 	bitmap_zero(map, page->objects);
2384 	slab_err(s, page, "%s", text);
2385 	slab_lock(page);
2386 	for_each_free_object(p, s, page->freelist)
2387 		set_bit(slab_index(p, s, addr), map);
2388 
2389 	for_each_object(p, s, addr, page->objects) {
2390 
2391 		if (!test_bit(slab_index(p, s, addr), map)) {
2392 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2393 							p, p - addr);
2394 			print_tracking(s, p);
2395 		}
2396 	}
2397 	slab_unlock(page);
2398 #endif
2399 }
2400 
2401 /*
2402  * Attempt to free all partial slabs on a node.
2403  */
2404 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2405 {
2406 	unsigned long flags;
2407 	struct page *page, *h;
2408 
2409 	spin_lock_irqsave(&n->list_lock, flags);
2410 	list_for_each_entry_safe(page, h, &n->partial, lru) {
2411 		if (!page->inuse) {
2412 			list_del(&page->lru);
2413 			discard_slab(s, page);
2414 			n->nr_partial--;
2415 		} else {
2416 			list_slab_objects(s, page,
2417 				"Objects remaining on kmem_cache_close()");
2418 		}
2419 	}
2420 	spin_unlock_irqrestore(&n->list_lock, flags);
2421 }
2422 
2423 /*
2424  * Release all resources used by a slab cache.
2425  */
2426 static inline int kmem_cache_close(struct kmem_cache *s)
2427 {
2428 	int node;
2429 
2430 	flush_all(s);
2431 
2432 	/* Attempt to free all objects */
2433 	free_kmem_cache_cpus(s);
2434 	for_each_node_state(node, N_NORMAL_MEMORY) {
2435 		struct kmem_cache_node *n = get_node(s, node);
2436 
2437 		free_partial(s, n);
2438 		if (n->nr_partial || slabs_node(s, node))
2439 			return 1;
2440 	}
2441 	free_kmem_cache_nodes(s);
2442 	return 0;
2443 }
2444 
2445 /*
2446  * Close a cache and release the kmem_cache structure
2447  * (must be used for caches created using kmem_cache_create)
2448  */
2449 void kmem_cache_destroy(struct kmem_cache *s)
2450 {
2451 	down_write(&slub_lock);
2452 	s->refcount--;
2453 	if (!s->refcount) {
2454 		list_del(&s->list);
2455 		up_write(&slub_lock);
2456 		if (kmem_cache_close(s)) {
2457 			printk(KERN_ERR "SLUB %s: %s called for cache that "
2458 				"still has objects.\n", s->name, __func__);
2459 			dump_stack();
2460 		}
2461 		sysfs_slab_remove(s);
2462 	} else
2463 		up_write(&slub_lock);
2464 }
2465 EXPORT_SYMBOL(kmem_cache_destroy);
2466 
2467 /********************************************************************
2468  *		Kmalloc subsystem
2469  *******************************************************************/
2470 
2471 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2472 EXPORT_SYMBOL(kmalloc_caches);
2473 
2474 static int __init setup_slub_min_order(char *str)
2475 {
2476 	get_option(&str, &slub_min_order);
2477 
2478 	return 1;
2479 }
2480 
2481 __setup("slub_min_order=", setup_slub_min_order);
2482 
2483 static int __init setup_slub_max_order(char *str)
2484 {
2485 	get_option(&str, &slub_max_order);
2486 
2487 	return 1;
2488 }
2489 
2490 __setup("slub_max_order=", setup_slub_max_order);
2491 
2492 static int __init setup_slub_min_objects(char *str)
2493 {
2494 	get_option(&str, &slub_min_objects);
2495 
2496 	return 1;
2497 }
2498 
2499 __setup("slub_min_objects=", setup_slub_min_objects);
2500 
2501 static int __init setup_slub_nomerge(char *str)
2502 {
2503 	slub_nomerge = 1;
2504 	return 1;
2505 }
2506 
2507 __setup("slub_nomerge", setup_slub_nomerge);
2508 
2509 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2510 		const char *name, int size, gfp_t gfp_flags)
2511 {
2512 	unsigned int flags = 0;
2513 
2514 	if (gfp_flags & SLUB_DMA)
2515 		flags = SLAB_CACHE_DMA;
2516 
2517 	down_write(&slub_lock);
2518 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2519 								flags, NULL))
2520 		goto panic;
2521 
2522 	list_add(&s->list, &slab_caches);
2523 	up_write(&slub_lock);
2524 	if (sysfs_slab_add(s))
2525 		goto panic;
2526 	return s;
2527 
2528 panic:
2529 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2530 }
2531 
2532 #ifdef CONFIG_ZONE_DMA
2533 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2534 
2535 static void sysfs_add_func(struct work_struct *w)
2536 {
2537 	struct kmem_cache *s;
2538 
2539 	down_write(&slub_lock);
2540 	list_for_each_entry(s, &slab_caches, list) {
2541 		if (s->flags & __SYSFS_ADD_DEFERRED) {
2542 			s->flags &= ~__SYSFS_ADD_DEFERRED;
2543 			sysfs_slab_add(s);
2544 		}
2545 	}
2546 	up_write(&slub_lock);
2547 }
2548 
2549 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2550 
2551 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2552 {
2553 	struct kmem_cache *s;
2554 	char *text;
2555 	size_t realsize;
2556 
2557 	s = kmalloc_caches_dma[index];
2558 	if (s)
2559 		return s;
2560 
2561 	/* Dynamically create dma cache */
2562 	if (flags & __GFP_WAIT)
2563 		down_write(&slub_lock);
2564 	else {
2565 		if (!down_write_trylock(&slub_lock))
2566 			goto out;
2567 	}
2568 
2569 	if (kmalloc_caches_dma[index])
2570 		goto unlock_out;
2571 
2572 	realsize = kmalloc_caches[index].objsize;
2573 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2574 			 (unsigned int)realsize);
2575 	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2576 
2577 	if (!s || !text || !kmem_cache_open(s, flags, text,
2578 			realsize, ARCH_KMALLOC_MINALIGN,
2579 			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2580 		kfree(s);
2581 		kfree(text);
2582 		goto unlock_out;
2583 	}
2584 
2585 	list_add(&s->list, &slab_caches);
2586 	kmalloc_caches_dma[index] = s;
2587 
2588 	schedule_work(&sysfs_add_work);
2589 
2590 unlock_out:
2591 	up_write(&slub_lock);
2592 out:
2593 	return kmalloc_caches_dma[index];
2594 }
2595 #endif
2596 
2597 /*
2598  * Conversion table for small slabs sizes / 8 to the index in the
2599  * kmalloc array. This is necessary for slabs < 192 since we have non power
2600  * of two cache sizes there. The size of larger slabs can be determined using
2601  * fls.
2602  */
2603 static s8 size_index[24] = {
2604 	3,	/* 8 */
2605 	4,	/* 16 */
2606 	5,	/* 24 */
2607 	5,	/* 32 */
2608 	6,	/* 40 */
2609 	6,	/* 48 */
2610 	6,	/* 56 */
2611 	6,	/* 64 */
2612 	1,	/* 72 */
2613 	1,	/* 80 */
2614 	1,	/* 88 */
2615 	1,	/* 96 */
2616 	7,	/* 104 */
2617 	7,	/* 112 */
2618 	7,	/* 120 */
2619 	7,	/* 128 */
2620 	2,	/* 136 */
2621 	2,	/* 144 */
2622 	2,	/* 152 */
2623 	2,	/* 160 */
2624 	2,	/* 168 */
2625 	2,	/* 176 */
2626 	2,	/* 184 */
2627 	2	/* 192 */
2628 };
2629 
2630 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2631 {
2632 	int index;
2633 
2634 	if (size <= 192) {
2635 		if (!size)
2636 			return ZERO_SIZE_PTR;
2637 
2638 		index = size_index[(size - 1) / 8];
2639 	} else
2640 		index = fls(size - 1);
2641 
2642 #ifdef CONFIG_ZONE_DMA
2643 	if (unlikely((flags & SLUB_DMA)))
2644 		return dma_kmalloc_cache(index, flags);
2645 
2646 #endif
2647 	return &kmalloc_caches[index];
2648 }
2649 
2650 void *__kmalloc(size_t size, gfp_t flags)
2651 {
2652 	struct kmem_cache *s;
2653 
2654 	if (unlikely(size > PAGE_SIZE))
2655 		return kmalloc_large(size, flags);
2656 
2657 	s = get_slab(size, flags);
2658 
2659 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2660 		return s;
2661 
2662 	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2663 }
2664 EXPORT_SYMBOL(__kmalloc);
2665 
2666 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2667 {
2668 	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2669 						get_order(size));
2670 
2671 	if (page)
2672 		return page_address(page);
2673 	else
2674 		return NULL;
2675 }
2676 
2677 #ifdef CONFIG_NUMA
2678 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2679 {
2680 	struct kmem_cache *s;
2681 
2682 	if (unlikely(size > PAGE_SIZE))
2683 		return kmalloc_large_node(size, flags, node);
2684 
2685 	s = get_slab(size, flags);
2686 
2687 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2688 		return s;
2689 
2690 	return slab_alloc(s, flags, node, __builtin_return_address(0));
2691 }
2692 EXPORT_SYMBOL(__kmalloc_node);
2693 #endif
2694 
2695 size_t ksize(const void *object)
2696 {
2697 	struct page *page;
2698 	struct kmem_cache *s;
2699 
2700 	if (unlikely(object == ZERO_SIZE_PTR))
2701 		return 0;
2702 
2703 	page = virt_to_head_page(object);
2704 
2705 	if (unlikely(!PageSlab(page))) {
2706 		WARN_ON(!PageCompound(page));
2707 		return PAGE_SIZE << compound_order(page);
2708 	}
2709 	s = page->slab;
2710 
2711 #ifdef CONFIG_SLUB_DEBUG
2712 	/*
2713 	 * Debugging requires use of the padding between object
2714 	 * and whatever may come after it.
2715 	 */
2716 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2717 		return s->objsize;
2718 
2719 #endif
2720 	/*
2721 	 * If we have the need to store the freelist pointer
2722 	 * back there or track user information then we can
2723 	 * only use the space before that information.
2724 	 */
2725 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2726 		return s->inuse;
2727 	/*
2728 	 * Else we can use all the padding etc for the allocation
2729 	 */
2730 	return s->size;
2731 }
2732 
2733 void kfree(const void *x)
2734 {
2735 	struct page *page;
2736 	void *object = (void *)x;
2737 
2738 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2739 		return;
2740 
2741 	page = virt_to_head_page(x);
2742 	if (unlikely(!PageSlab(page))) {
2743 		BUG_ON(!PageCompound(page));
2744 		put_page(page);
2745 		return;
2746 	}
2747 	slab_free(page->slab, page, object, __builtin_return_address(0));
2748 }
2749 EXPORT_SYMBOL(kfree);
2750 
2751 /*
2752  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2753  * the remaining slabs by the number of items in use. The slabs with the
2754  * most items in use come first. New allocations will then fill those up
2755  * and thus they can be removed from the partial lists.
2756  *
2757  * The slabs with the least items are placed last. This results in them
2758  * being allocated from last increasing the chance that the last objects
2759  * are freed in them.
2760  */
2761 int kmem_cache_shrink(struct kmem_cache *s)
2762 {
2763 	int node;
2764 	int i;
2765 	struct kmem_cache_node *n;
2766 	struct page *page;
2767 	struct page *t;
2768 	int objects = oo_objects(s->max);
2769 	struct list_head *slabs_by_inuse =
2770 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2771 	unsigned long flags;
2772 
2773 	if (!slabs_by_inuse)
2774 		return -ENOMEM;
2775 
2776 	flush_all(s);
2777 	for_each_node_state(node, N_NORMAL_MEMORY) {
2778 		n = get_node(s, node);
2779 
2780 		if (!n->nr_partial)
2781 			continue;
2782 
2783 		for (i = 0; i < objects; i++)
2784 			INIT_LIST_HEAD(slabs_by_inuse + i);
2785 
2786 		spin_lock_irqsave(&n->list_lock, flags);
2787 
2788 		/*
2789 		 * Build lists indexed by the items in use in each slab.
2790 		 *
2791 		 * Note that concurrent frees may occur while we hold the
2792 		 * list_lock. page->inuse here is the upper limit.
2793 		 */
2794 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2795 			if (!page->inuse && slab_trylock(page)) {
2796 				/*
2797 				 * Must hold slab lock here because slab_free
2798 				 * may have freed the last object and be
2799 				 * waiting to release the slab.
2800 				 */
2801 				list_del(&page->lru);
2802 				n->nr_partial--;
2803 				slab_unlock(page);
2804 				discard_slab(s, page);
2805 			} else {
2806 				list_move(&page->lru,
2807 				slabs_by_inuse + page->inuse);
2808 			}
2809 		}
2810 
2811 		/*
2812 		 * Rebuild the partial list with the slabs filled up most
2813 		 * first and the least used slabs at the end.
2814 		 */
2815 		for (i = objects - 1; i >= 0; i--)
2816 			list_splice(slabs_by_inuse + i, n->partial.prev);
2817 
2818 		spin_unlock_irqrestore(&n->list_lock, flags);
2819 	}
2820 
2821 	kfree(slabs_by_inuse);
2822 	return 0;
2823 }
2824 EXPORT_SYMBOL(kmem_cache_shrink);
2825 
2826 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2827 static int slab_mem_going_offline_callback(void *arg)
2828 {
2829 	struct kmem_cache *s;
2830 
2831 	down_read(&slub_lock);
2832 	list_for_each_entry(s, &slab_caches, list)
2833 		kmem_cache_shrink(s);
2834 	up_read(&slub_lock);
2835 
2836 	return 0;
2837 }
2838 
2839 static void slab_mem_offline_callback(void *arg)
2840 {
2841 	struct kmem_cache_node *n;
2842 	struct kmem_cache *s;
2843 	struct memory_notify *marg = arg;
2844 	int offline_node;
2845 
2846 	offline_node = marg->status_change_nid;
2847 
2848 	/*
2849 	 * If the node still has available memory. we need kmem_cache_node
2850 	 * for it yet.
2851 	 */
2852 	if (offline_node < 0)
2853 		return;
2854 
2855 	down_read(&slub_lock);
2856 	list_for_each_entry(s, &slab_caches, list) {
2857 		n = get_node(s, offline_node);
2858 		if (n) {
2859 			/*
2860 			 * if n->nr_slabs > 0, slabs still exist on the node
2861 			 * that is going down. We were unable to free them,
2862 			 * and offline_pages() function shoudn't call this
2863 			 * callback. So, we must fail.
2864 			 */
2865 			BUG_ON(slabs_node(s, offline_node));
2866 
2867 			s->node[offline_node] = NULL;
2868 			kmem_cache_free(kmalloc_caches, n);
2869 		}
2870 	}
2871 	up_read(&slub_lock);
2872 }
2873 
2874 static int slab_mem_going_online_callback(void *arg)
2875 {
2876 	struct kmem_cache_node *n;
2877 	struct kmem_cache *s;
2878 	struct memory_notify *marg = arg;
2879 	int nid = marg->status_change_nid;
2880 	int ret = 0;
2881 
2882 	/*
2883 	 * If the node's memory is already available, then kmem_cache_node is
2884 	 * already created. Nothing to do.
2885 	 */
2886 	if (nid < 0)
2887 		return 0;
2888 
2889 	/*
2890 	 * We are bringing a node online. No memory is available yet. We must
2891 	 * allocate a kmem_cache_node structure in order to bring the node
2892 	 * online.
2893 	 */
2894 	down_read(&slub_lock);
2895 	list_for_each_entry(s, &slab_caches, list) {
2896 		/*
2897 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2898 		 *      since memory is not yet available from the node that
2899 		 *      is brought up.
2900 		 */
2901 		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2902 		if (!n) {
2903 			ret = -ENOMEM;
2904 			goto out;
2905 		}
2906 		init_kmem_cache_node(n, s);
2907 		s->node[nid] = n;
2908 	}
2909 out:
2910 	up_read(&slub_lock);
2911 	return ret;
2912 }
2913 
2914 static int slab_memory_callback(struct notifier_block *self,
2915 				unsigned long action, void *arg)
2916 {
2917 	int ret = 0;
2918 
2919 	switch (action) {
2920 	case MEM_GOING_ONLINE:
2921 		ret = slab_mem_going_online_callback(arg);
2922 		break;
2923 	case MEM_GOING_OFFLINE:
2924 		ret = slab_mem_going_offline_callback(arg);
2925 		break;
2926 	case MEM_OFFLINE:
2927 	case MEM_CANCEL_ONLINE:
2928 		slab_mem_offline_callback(arg);
2929 		break;
2930 	case MEM_ONLINE:
2931 	case MEM_CANCEL_OFFLINE:
2932 		break;
2933 	}
2934 
2935 	ret = notifier_from_errno(ret);
2936 	return ret;
2937 }
2938 
2939 #endif /* CONFIG_MEMORY_HOTPLUG */
2940 
2941 /********************************************************************
2942  *			Basic setup of slabs
2943  *******************************************************************/
2944 
2945 void __init kmem_cache_init(void)
2946 {
2947 	int i;
2948 	int caches = 0;
2949 
2950 	init_alloc_cpu();
2951 
2952 #ifdef CONFIG_NUMA
2953 	/*
2954 	 * Must first have the slab cache available for the allocations of the
2955 	 * struct kmem_cache_node's. There is special bootstrap code in
2956 	 * kmem_cache_open for slab_state == DOWN.
2957 	 */
2958 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2959 		sizeof(struct kmem_cache_node), GFP_KERNEL);
2960 	kmalloc_caches[0].refcount = -1;
2961 	caches++;
2962 
2963 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2964 #endif
2965 
2966 	/* Able to allocate the per node structures */
2967 	slab_state = PARTIAL;
2968 
2969 	/* Caches that are not of the two-to-the-power-of size */
2970 	if (KMALLOC_MIN_SIZE <= 64) {
2971 		create_kmalloc_cache(&kmalloc_caches[1],
2972 				"kmalloc-96", 96, GFP_KERNEL);
2973 		caches++;
2974 		create_kmalloc_cache(&kmalloc_caches[2],
2975 				"kmalloc-192", 192, GFP_KERNEL);
2976 		caches++;
2977 	}
2978 
2979 	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2980 		create_kmalloc_cache(&kmalloc_caches[i],
2981 			"kmalloc", 1 << i, GFP_KERNEL);
2982 		caches++;
2983 	}
2984 
2985 
2986 	/*
2987 	 * Patch up the size_index table if we have strange large alignment
2988 	 * requirements for the kmalloc array. This is only the case for
2989 	 * MIPS it seems. The standard arches will not generate any code here.
2990 	 *
2991 	 * Largest permitted alignment is 256 bytes due to the way we
2992 	 * handle the index determination for the smaller caches.
2993 	 *
2994 	 * Make sure that nothing crazy happens if someone starts tinkering
2995 	 * around with ARCH_KMALLOC_MINALIGN
2996 	 */
2997 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2998 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2999 
3000 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3001 		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3002 
3003 	if (KMALLOC_MIN_SIZE == 128) {
3004 		/*
3005 		 * The 192 byte sized cache is not used if the alignment
3006 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3007 		 * instead.
3008 		 */
3009 		for (i = 128 + 8; i <= 192; i += 8)
3010 			size_index[(i - 1) / 8] = 8;
3011 	}
3012 
3013 	slab_state = UP;
3014 
3015 	/* Provide the correct kmalloc names now that the caches are up */
3016 	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3017 		kmalloc_caches[i]. name =
3018 			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3019 
3020 #ifdef CONFIG_SMP
3021 	register_cpu_notifier(&slab_notifier);
3022 	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3023 				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3024 #else
3025 	kmem_size = sizeof(struct kmem_cache);
3026 #endif
3027 
3028 	printk(KERN_INFO
3029 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3030 		" CPUs=%d, Nodes=%d\n",
3031 		caches, cache_line_size(),
3032 		slub_min_order, slub_max_order, slub_min_objects,
3033 		nr_cpu_ids, nr_node_ids);
3034 }
3035 
3036 /*
3037  * Find a mergeable slab cache
3038  */
3039 static int slab_unmergeable(struct kmem_cache *s)
3040 {
3041 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3042 		return 1;
3043 
3044 	if (s->ctor)
3045 		return 1;
3046 
3047 	/*
3048 	 * We may have set a slab to be unmergeable during bootstrap.
3049 	 */
3050 	if (s->refcount < 0)
3051 		return 1;
3052 
3053 	return 0;
3054 }
3055 
3056 static struct kmem_cache *find_mergeable(size_t size,
3057 		size_t align, unsigned long flags, const char *name,
3058 		void (*ctor)(void *))
3059 {
3060 	struct kmem_cache *s;
3061 
3062 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3063 		return NULL;
3064 
3065 	if (ctor)
3066 		return NULL;
3067 
3068 	size = ALIGN(size, sizeof(void *));
3069 	align = calculate_alignment(flags, align, size);
3070 	size = ALIGN(size, align);
3071 	flags = kmem_cache_flags(size, flags, name, NULL);
3072 
3073 	list_for_each_entry(s, &slab_caches, list) {
3074 		if (slab_unmergeable(s))
3075 			continue;
3076 
3077 		if (size > s->size)
3078 			continue;
3079 
3080 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3081 				continue;
3082 		/*
3083 		 * Check if alignment is compatible.
3084 		 * Courtesy of Adrian Drzewiecki
3085 		 */
3086 		if ((s->size & ~(align - 1)) != s->size)
3087 			continue;
3088 
3089 		if (s->size - size >= sizeof(void *))
3090 			continue;
3091 
3092 		return s;
3093 	}
3094 	return NULL;
3095 }
3096 
3097 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3098 		size_t align, unsigned long flags, void (*ctor)(void *))
3099 {
3100 	struct kmem_cache *s;
3101 
3102 	down_write(&slub_lock);
3103 	s = find_mergeable(size, align, flags, name, ctor);
3104 	if (s) {
3105 		int cpu;
3106 
3107 		s->refcount++;
3108 		/*
3109 		 * Adjust the object sizes so that we clear
3110 		 * the complete object on kzalloc.
3111 		 */
3112 		s->objsize = max(s->objsize, (int)size);
3113 
3114 		/*
3115 		 * And then we need to update the object size in the
3116 		 * per cpu structures
3117 		 */
3118 		for_each_online_cpu(cpu)
3119 			get_cpu_slab(s, cpu)->objsize = s->objsize;
3120 
3121 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3122 		up_write(&slub_lock);
3123 
3124 		if (sysfs_slab_alias(s, name))
3125 			goto err;
3126 		return s;
3127 	}
3128 
3129 	s = kmalloc(kmem_size, GFP_KERNEL);
3130 	if (s) {
3131 		if (kmem_cache_open(s, GFP_KERNEL, name,
3132 				size, align, flags, ctor)) {
3133 			list_add(&s->list, &slab_caches);
3134 			up_write(&slub_lock);
3135 			if (sysfs_slab_add(s))
3136 				goto err;
3137 			return s;
3138 		}
3139 		kfree(s);
3140 	}
3141 	up_write(&slub_lock);
3142 
3143 err:
3144 	if (flags & SLAB_PANIC)
3145 		panic("Cannot create slabcache %s\n", name);
3146 	else
3147 		s = NULL;
3148 	return s;
3149 }
3150 EXPORT_SYMBOL(kmem_cache_create);
3151 
3152 #ifdef CONFIG_SMP
3153 /*
3154  * Use the cpu notifier to insure that the cpu slabs are flushed when
3155  * necessary.
3156  */
3157 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3158 		unsigned long action, void *hcpu)
3159 {
3160 	long cpu = (long)hcpu;
3161 	struct kmem_cache *s;
3162 	unsigned long flags;
3163 
3164 	switch (action) {
3165 	case CPU_UP_PREPARE:
3166 	case CPU_UP_PREPARE_FROZEN:
3167 		init_alloc_cpu_cpu(cpu);
3168 		down_read(&slub_lock);
3169 		list_for_each_entry(s, &slab_caches, list)
3170 			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3171 							GFP_KERNEL);
3172 		up_read(&slub_lock);
3173 		break;
3174 
3175 	case CPU_UP_CANCELED:
3176 	case CPU_UP_CANCELED_FROZEN:
3177 	case CPU_DEAD:
3178 	case CPU_DEAD_FROZEN:
3179 		down_read(&slub_lock);
3180 		list_for_each_entry(s, &slab_caches, list) {
3181 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3182 
3183 			local_irq_save(flags);
3184 			__flush_cpu_slab(s, cpu);
3185 			local_irq_restore(flags);
3186 			free_kmem_cache_cpu(c, cpu);
3187 			s->cpu_slab[cpu] = NULL;
3188 		}
3189 		up_read(&slub_lock);
3190 		break;
3191 	default:
3192 		break;
3193 	}
3194 	return NOTIFY_OK;
3195 }
3196 
3197 static struct notifier_block __cpuinitdata slab_notifier = {
3198 	.notifier_call = slab_cpuup_callback
3199 };
3200 
3201 #endif
3202 
3203 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3204 {
3205 	struct kmem_cache *s;
3206 
3207 	if (unlikely(size > PAGE_SIZE))
3208 		return kmalloc_large(size, gfpflags);
3209 
3210 	s = get_slab(size, gfpflags);
3211 
3212 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3213 		return s;
3214 
3215 	return slab_alloc(s, gfpflags, -1, caller);
3216 }
3217 
3218 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3219 					int node, void *caller)
3220 {
3221 	struct kmem_cache *s;
3222 
3223 	if (unlikely(size > PAGE_SIZE))
3224 		return kmalloc_large_node(size, gfpflags, node);
3225 
3226 	s = get_slab(size, gfpflags);
3227 
3228 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3229 		return s;
3230 
3231 	return slab_alloc(s, gfpflags, node, caller);
3232 }
3233 
3234 #ifdef CONFIG_SLUB_DEBUG
3235 static unsigned long count_partial(struct kmem_cache_node *n,
3236 					int (*get_count)(struct page *))
3237 {
3238 	unsigned long flags;
3239 	unsigned long x = 0;
3240 	struct page *page;
3241 
3242 	spin_lock_irqsave(&n->list_lock, flags);
3243 	list_for_each_entry(page, &n->partial, lru)
3244 		x += get_count(page);
3245 	spin_unlock_irqrestore(&n->list_lock, flags);
3246 	return x;
3247 }
3248 
3249 static int count_inuse(struct page *page)
3250 {
3251 	return page->inuse;
3252 }
3253 
3254 static int count_total(struct page *page)
3255 {
3256 	return page->objects;
3257 }
3258 
3259 static int count_free(struct page *page)
3260 {
3261 	return page->objects - page->inuse;
3262 }
3263 
3264 static int validate_slab(struct kmem_cache *s, struct page *page,
3265 						unsigned long *map)
3266 {
3267 	void *p;
3268 	void *addr = page_address(page);
3269 
3270 	if (!check_slab(s, page) ||
3271 			!on_freelist(s, page, NULL))
3272 		return 0;
3273 
3274 	/* Now we know that a valid freelist exists */
3275 	bitmap_zero(map, page->objects);
3276 
3277 	for_each_free_object(p, s, page->freelist) {
3278 		set_bit(slab_index(p, s, addr), map);
3279 		if (!check_object(s, page, p, 0))
3280 			return 0;
3281 	}
3282 
3283 	for_each_object(p, s, addr, page->objects)
3284 		if (!test_bit(slab_index(p, s, addr), map))
3285 			if (!check_object(s, page, p, 1))
3286 				return 0;
3287 	return 1;
3288 }
3289 
3290 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3291 						unsigned long *map)
3292 {
3293 	if (slab_trylock(page)) {
3294 		validate_slab(s, page, map);
3295 		slab_unlock(page);
3296 	} else
3297 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3298 			s->name, page);
3299 
3300 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3301 		if (!PageSlubDebug(page))
3302 			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3303 				"on slab 0x%p\n", s->name, page);
3304 	} else {
3305 		if (PageSlubDebug(page))
3306 			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3307 				"slab 0x%p\n", s->name, page);
3308 	}
3309 }
3310 
3311 static int validate_slab_node(struct kmem_cache *s,
3312 		struct kmem_cache_node *n, unsigned long *map)
3313 {
3314 	unsigned long count = 0;
3315 	struct page *page;
3316 	unsigned long flags;
3317 
3318 	spin_lock_irqsave(&n->list_lock, flags);
3319 
3320 	list_for_each_entry(page, &n->partial, lru) {
3321 		validate_slab_slab(s, page, map);
3322 		count++;
3323 	}
3324 	if (count != n->nr_partial)
3325 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3326 			"counter=%ld\n", s->name, count, n->nr_partial);
3327 
3328 	if (!(s->flags & SLAB_STORE_USER))
3329 		goto out;
3330 
3331 	list_for_each_entry(page, &n->full, lru) {
3332 		validate_slab_slab(s, page, map);
3333 		count++;
3334 	}
3335 	if (count != atomic_long_read(&n->nr_slabs))
3336 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3337 			"counter=%ld\n", s->name, count,
3338 			atomic_long_read(&n->nr_slabs));
3339 
3340 out:
3341 	spin_unlock_irqrestore(&n->list_lock, flags);
3342 	return count;
3343 }
3344 
3345 static long validate_slab_cache(struct kmem_cache *s)
3346 {
3347 	int node;
3348 	unsigned long count = 0;
3349 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3350 				sizeof(unsigned long), GFP_KERNEL);
3351 
3352 	if (!map)
3353 		return -ENOMEM;
3354 
3355 	flush_all(s);
3356 	for_each_node_state(node, N_NORMAL_MEMORY) {
3357 		struct kmem_cache_node *n = get_node(s, node);
3358 
3359 		count += validate_slab_node(s, n, map);
3360 	}
3361 	kfree(map);
3362 	return count;
3363 }
3364 
3365 #ifdef SLUB_RESILIENCY_TEST
3366 static void resiliency_test(void)
3367 {
3368 	u8 *p;
3369 
3370 	printk(KERN_ERR "SLUB resiliency testing\n");
3371 	printk(KERN_ERR "-----------------------\n");
3372 	printk(KERN_ERR "A. Corruption after allocation\n");
3373 
3374 	p = kzalloc(16, GFP_KERNEL);
3375 	p[16] = 0x12;
3376 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3377 			" 0x12->0x%p\n\n", p + 16);
3378 
3379 	validate_slab_cache(kmalloc_caches + 4);
3380 
3381 	/* Hmmm... The next two are dangerous */
3382 	p = kzalloc(32, GFP_KERNEL);
3383 	p[32 + sizeof(void *)] = 0x34;
3384 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3385 			" 0x34 -> -0x%p\n", p);
3386 	printk(KERN_ERR
3387 		"If allocated object is overwritten then not detectable\n\n");
3388 
3389 	validate_slab_cache(kmalloc_caches + 5);
3390 	p = kzalloc(64, GFP_KERNEL);
3391 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3392 	*p = 0x56;
3393 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3394 									p);
3395 	printk(KERN_ERR
3396 		"If allocated object is overwritten then not detectable\n\n");
3397 	validate_slab_cache(kmalloc_caches + 6);
3398 
3399 	printk(KERN_ERR "\nB. Corruption after free\n");
3400 	p = kzalloc(128, GFP_KERNEL);
3401 	kfree(p);
3402 	*p = 0x78;
3403 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3404 	validate_slab_cache(kmalloc_caches + 7);
3405 
3406 	p = kzalloc(256, GFP_KERNEL);
3407 	kfree(p);
3408 	p[50] = 0x9a;
3409 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3410 			p);
3411 	validate_slab_cache(kmalloc_caches + 8);
3412 
3413 	p = kzalloc(512, GFP_KERNEL);
3414 	kfree(p);
3415 	p[512] = 0xab;
3416 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3417 	validate_slab_cache(kmalloc_caches + 9);
3418 }
3419 #else
3420 static void resiliency_test(void) {};
3421 #endif
3422 
3423 /*
3424  * Generate lists of code addresses where slabcache objects are allocated
3425  * and freed.
3426  */
3427 
3428 struct location {
3429 	unsigned long count;
3430 	void *addr;
3431 	long long sum_time;
3432 	long min_time;
3433 	long max_time;
3434 	long min_pid;
3435 	long max_pid;
3436 	cpumask_t cpus;
3437 	nodemask_t nodes;
3438 };
3439 
3440 struct loc_track {
3441 	unsigned long max;
3442 	unsigned long count;
3443 	struct location *loc;
3444 };
3445 
3446 static void free_loc_track(struct loc_track *t)
3447 {
3448 	if (t->max)
3449 		free_pages((unsigned long)t->loc,
3450 			get_order(sizeof(struct location) * t->max));
3451 }
3452 
3453 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3454 {
3455 	struct location *l;
3456 	int order;
3457 
3458 	order = get_order(sizeof(struct location) * max);
3459 
3460 	l = (void *)__get_free_pages(flags, order);
3461 	if (!l)
3462 		return 0;
3463 
3464 	if (t->count) {
3465 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3466 		free_loc_track(t);
3467 	}
3468 	t->max = max;
3469 	t->loc = l;
3470 	return 1;
3471 }
3472 
3473 static int add_location(struct loc_track *t, struct kmem_cache *s,
3474 				const struct track *track)
3475 {
3476 	long start, end, pos;
3477 	struct location *l;
3478 	void *caddr;
3479 	unsigned long age = jiffies - track->when;
3480 
3481 	start = -1;
3482 	end = t->count;
3483 
3484 	for ( ; ; ) {
3485 		pos = start + (end - start + 1) / 2;
3486 
3487 		/*
3488 		 * There is nothing at "end". If we end up there
3489 		 * we need to add something to before end.
3490 		 */
3491 		if (pos == end)
3492 			break;
3493 
3494 		caddr = t->loc[pos].addr;
3495 		if (track->addr == caddr) {
3496 
3497 			l = &t->loc[pos];
3498 			l->count++;
3499 			if (track->when) {
3500 				l->sum_time += age;
3501 				if (age < l->min_time)
3502 					l->min_time = age;
3503 				if (age > l->max_time)
3504 					l->max_time = age;
3505 
3506 				if (track->pid < l->min_pid)
3507 					l->min_pid = track->pid;
3508 				if (track->pid > l->max_pid)
3509 					l->max_pid = track->pid;
3510 
3511 				cpu_set(track->cpu, l->cpus);
3512 			}
3513 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3514 			return 1;
3515 		}
3516 
3517 		if (track->addr < caddr)
3518 			end = pos;
3519 		else
3520 			start = pos;
3521 	}
3522 
3523 	/*
3524 	 * Not found. Insert new tracking element.
3525 	 */
3526 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3527 		return 0;
3528 
3529 	l = t->loc + pos;
3530 	if (pos < t->count)
3531 		memmove(l + 1, l,
3532 			(t->count - pos) * sizeof(struct location));
3533 	t->count++;
3534 	l->count = 1;
3535 	l->addr = track->addr;
3536 	l->sum_time = age;
3537 	l->min_time = age;
3538 	l->max_time = age;
3539 	l->min_pid = track->pid;
3540 	l->max_pid = track->pid;
3541 	cpus_clear(l->cpus);
3542 	cpu_set(track->cpu, l->cpus);
3543 	nodes_clear(l->nodes);
3544 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3545 	return 1;
3546 }
3547 
3548 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3549 		struct page *page, enum track_item alloc)
3550 {
3551 	void *addr = page_address(page);
3552 	DECLARE_BITMAP(map, page->objects);
3553 	void *p;
3554 
3555 	bitmap_zero(map, page->objects);
3556 	for_each_free_object(p, s, page->freelist)
3557 		set_bit(slab_index(p, s, addr), map);
3558 
3559 	for_each_object(p, s, addr, page->objects)
3560 		if (!test_bit(slab_index(p, s, addr), map))
3561 			add_location(t, s, get_track(s, p, alloc));
3562 }
3563 
3564 static int list_locations(struct kmem_cache *s, char *buf,
3565 					enum track_item alloc)
3566 {
3567 	int len = 0;
3568 	unsigned long i;
3569 	struct loc_track t = { 0, 0, NULL };
3570 	int node;
3571 
3572 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3573 			GFP_TEMPORARY))
3574 		return sprintf(buf, "Out of memory\n");
3575 
3576 	/* Push back cpu slabs */
3577 	flush_all(s);
3578 
3579 	for_each_node_state(node, N_NORMAL_MEMORY) {
3580 		struct kmem_cache_node *n = get_node(s, node);
3581 		unsigned long flags;
3582 		struct page *page;
3583 
3584 		if (!atomic_long_read(&n->nr_slabs))
3585 			continue;
3586 
3587 		spin_lock_irqsave(&n->list_lock, flags);
3588 		list_for_each_entry(page, &n->partial, lru)
3589 			process_slab(&t, s, page, alloc);
3590 		list_for_each_entry(page, &n->full, lru)
3591 			process_slab(&t, s, page, alloc);
3592 		spin_unlock_irqrestore(&n->list_lock, flags);
3593 	}
3594 
3595 	for (i = 0; i < t.count; i++) {
3596 		struct location *l = &t.loc[i];
3597 
3598 		if (len > PAGE_SIZE - 100)
3599 			break;
3600 		len += sprintf(buf + len, "%7ld ", l->count);
3601 
3602 		if (l->addr)
3603 			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3604 		else
3605 			len += sprintf(buf + len, "<not-available>");
3606 
3607 		if (l->sum_time != l->min_time) {
3608 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3609 				l->min_time,
3610 				(long)div_u64(l->sum_time, l->count),
3611 				l->max_time);
3612 		} else
3613 			len += sprintf(buf + len, " age=%ld",
3614 				l->min_time);
3615 
3616 		if (l->min_pid != l->max_pid)
3617 			len += sprintf(buf + len, " pid=%ld-%ld",
3618 				l->min_pid, l->max_pid);
3619 		else
3620 			len += sprintf(buf + len, " pid=%ld",
3621 				l->min_pid);
3622 
3623 		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3624 				len < PAGE_SIZE - 60) {
3625 			len += sprintf(buf + len, " cpus=");
3626 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3627 					l->cpus);
3628 		}
3629 
3630 		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3631 				len < PAGE_SIZE - 60) {
3632 			len += sprintf(buf + len, " nodes=");
3633 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3634 					l->nodes);
3635 		}
3636 
3637 		len += sprintf(buf + len, "\n");
3638 	}
3639 
3640 	free_loc_track(&t);
3641 	if (!t.count)
3642 		len += sprintf(buf, "No data\n");
3643 	return len;
3644 }
3645 
3646 enum slab_stat_type {
3647 	SL_ALL,			/* All slabs */
3648 	SL_PARTIAL,		/* Only partially allocated slabs */
3649 	SL_CPU,			/* Only slabs used for cpu caches */
3650 	SL_OBJECTS,		/* Determine allocated objects not slabs */
3651 	SL_TOTAL		/* Determine object capacity not slabs */
3652 };
3653 
3654 #define SO_ALL		(1 << SL_ALL)
3655 #define SO_PARTIAL	(1 << SL_PARTIAL)
3656 #define SO_CPU		(1 << SL_CPU)
3657 #define SO_OBJECTS	(1 << SL_OBJECTS)
3658 #define SO_TOTAL	(1 << SL_TOTAL)
3659 
3660 static ssize_t show_slab_objects(struct kmem_cache *s,
3661 			    char *buf, unsigned long flags)
3662 {
3663 	unsigned long total = 0;
3664 	int node;
3665 	int x;
3666 	unsigned long *nodes;
3667 	unsigned long *per_cpu;
3668 
3669 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3670 	if (!nodes)
3671 		return -ENOMEM;
3672 	per_cpu = nodes + nr_node_ids;
3673 
3674 	if (flags & SO_CPU) {
3675 		int cpu;
3676 
3677 		for_each_possible_cpu(cpu) {
3678 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3679 
3680 			if (!c || c->node < 0)
3681 				continue;
3682 
3683 			if (c->page) {
3684 					if (flags & SO_TOTAL)
3685 						x = c->page->objects;
3686 				else if (flags & SO_OBJECTS)
3687 					x = c->page->inuse;
3688 				else
3689 					x = 1;
3690 
3691 				total += x;
3692 				nodes[c->node] += x;
3693 			}
3694 			per_cpu[c->node]++;
3695 		}
3696 	}
3697 
3698 	if (flags & SO_ALL) {
3699 		for_each_node_state(node, N_NORMAL_MEMORY) {
3700 			struct kmem_cache_node *n = get_node(s, node);
3701 
3702 		if (flags & SO_TOTAL)
3703 			x = atomic_long_read(&n->total_objects);
3704 		else if (flags & SO_OBJECTS)
3705 			x = atomic_long_read(&n->total_objects) -
3706 				count_partial(n, count_free);
3707 
3708 			else
3709 				x = atomic_long_read(&n->nr_slabs);
3710 			total += x;
3711 			nodes[node] += x;
3712 		}
3713 
3714 	} else if (flags & SO_PARTIAL) {
3715 		for_each_node_state(node, N_NORMAL_MEMORY) {
3716 			struct kmem_cache_node *n = get_node(s, node);
3717 
3718 			if (flags & SO_TOTAL)
3719 				x = count_partial(n, count_total);
3720 			else if (flags & SO_OBJECTS)
3721 				x = count_partial(n, count_inuse);
3722 			else
3723 				x = n->nr_partial;
3724 			total += x;
3725 			nodes[node] += x;
3726 		}
3727 	}
3728 	x = sprintf(buf, "%lu", total);
3729 #ifdef CONFIG_NUMA
3730 	for_each_node_state(node, N_NORMAL_MEMORY)
3731 		if (nodes[node])
3732 			x += sprintf(buf + x, " N%d=%lu",
3733 					node, nodes[node]);
3734 #endif
3735 	kfree(nodes);
3736 	return x + sprintf(buf + x, "\n");
3737 }
3738 
3739 static int any_slab_objects(struct kmem_cache *s)
3740 {
3741 	int node;
3742 
3743 	for_each_online_node(node) {
3744 		struct kmem_cache_node *n = get_node(s, node);
3745 
3746 		if (!n)
3747 			continue;
3748 
3749 		if (atomic_long_read(&n->total_objects))
3750 			return 1;
3751 	}
3752 	return 0;
3753 }
3754 
3755 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3756 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3757 
3758 struct slab_attribute {
3759 	struct attribute attr;
3760 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3761 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3762 };
3763 
3764 #define SLAB_ATTR_RO(_name) \
3765 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3766 
3767 #define SLAB_ATTR(_name) \
3768 	static struct slab_attribute _name##_attr =  \
3769 	__ATTR(_name, 0644, _name##_show, _name##_store)
3770 
3771 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3772 {
3773 	return sprintf(buf, "%d\n", s->size);
3774 }
3775 SLAB_ATTR_RO(slab_size);
3776 
3777 static ssize_t align_show(struct kmem_cache *s, char *buf)
3778 {
3779 	return sprintf(buf, "%d\n", s->align);
3780 }
3781 SLAB_ATTR_RO(align);
3782 
3783 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3784 {
3785 	return sprintf(buf, "%d\n", s->objsize);
3786 }
3787 SLAB_ATTR_RO(object_size);
3788 
3789 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3790 {
3791 	return sprintf(buf, "%d\n", oo_objects(s->oo));
3792 }
3793 SLAB_ATTR_RO(objs_per_slab);
3794 
3795 static ssize_t order_store(struct kmem_cache *s,
3796 				const char *buf, size_t length)
3797 {
3798 	unsigned long order;
3799 	int err;
3800 
3801 	err = strict_strtoul(buf, 10, &order);
3802 	if (err)
3803 		return err;
3804 
3805 	if (order > slub_max_order || order < slub_min_order)
3806 		return -EINVAL;
3807 
3808 	calculate_sizes(s, order);
3809 	return length;
3810 }
3811 
3812 static ssize_t order_show(struct kmem_cache *s, char *buf)
3813 {
3814 	return sprintf(buf, "%d\n", oo_order(s->oo));
3815 }
3816 SLAB_ATTR(order);
3817 
3818 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3819 {
3820 	if (s->ctor) {
3821 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3822 
3823 		return n + sprintf(buf + n, "\n");
3824 	}
3825 	return 0;
3826 }
3827 SLAB_ATTR_RO(ctor);
3828 
3829 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3830 {
3831 	return sprintf(buf, "%d\n", s->refcount - 1);
3832 }
3833 SLAB_ATTR_RO(aliases);
3834 
3835 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3836 {
3837 	return show_slab_objects(s, buf, SO_ALL);
3838 }
3839 SLAB_ATTR_RO(slabs);
3840 
3841 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3842 {
3843 	return show_slab_objects(s, buf, SO_PARTIAL);
3844 }
3845 SLAB_ATTR_RO(partial);
3846 
3847 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3848 {
3849 	return show_slab_objects(s, buf, SO_CPU);
3850 }
3851 SLAB_ATTR_RO(cpu_slabs);
3852 
3853 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3854 {
3855 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3856 }
3857 SLAB_ATTR_RO(objects);
3858 
3859 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3860 {
3861 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3862 }
3863 SLAB_ATTR_RO(objects_partial);
3864 
3865 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3866 {
3867 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3868 }
3869 SLAB_ATTR_RO(total_objects);
3870 
3871 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3872 {
3873 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3874 }
3875 
3876 static ssize_t sanity_checks_store(struct kmem_cache *s,
3877 				const char *buf, size_t length)
3878 {
3879 	s->flags &= ~SLAB_DEBUG_FREE;
3880 	if (buf[0] == '1')
3881 		s->flags |= SLAB_DEBUG_FREE;
3882 	return length;
3883 }
3884 SLAB_ATTR(sanity_checks);
3885 
3886 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3887 {
3888 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3889 }
3890 
3891 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3892 							size_t length)
3893 {
3894 	s->flags &= ~SLAB_TRACE;
3895 	if (buf[0] == '1')
3896 		s->flags |= SLAB_TRACE;
3897 	return length;
3898 }
3899 SLAB_ATTR(trace);
3900 
3901 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3902 {
3903 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3904 }
3905 
3906 static ssize_t reclaim_account_store(struct kmem_cache *s,
3907 				const char *buf, size_t length)
3908 {
3909 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3910 	if (buf[0] == '1')
3911 		s->flags |= SLAB_RECLAIM_ACCOUNT;
3912 	return length;
3913 }
3914 SLAB_ATTR(reclaim_account);
3915 
3916 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3917 {
3918 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3919 }
3920 SLAB_ATTR_RO(hwcache_align);
3921 
3922 #ifdef CONFIG_ZONE_DMA
3923 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3924 {
3925 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3926 }
3927 SLAB_ATTR_RO(cache_dma);
3928 #endif
3929 
3930 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3931 {
3932 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3933 }
3934 SLAB_ATTR_RO(destroy_by_rcu);
3935 
3936 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3937 {
3938 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3939 }
3940 
3941 static ssize_t red_zone_store(struct kmem_cache *s,
3942 				const char *buf, size_t length)
3943 {
3944 	if (any_slab_objects(s))
3945 		return -EBUSY;
3946 
3947 	s->flags &= ~SLAB_RED_ZONE;
3948 	if (buf[0] == '1')
3949 		s->flags |= SLAB_RED_ZONE;
3950 	calculate_sizes(s, -1);
3951 	return length;
3952 }
3953 SLAB_ATTR(red_zone);
3954 
3955 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3956 {
3957 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3958 }
3959 
3960 static ssize_t poison_store(struct kmem_cache *s,
3961 				const char *buf, size_t length)
3962 {
3963 	if (any_slab_objects(s))
3964 		return -EBUSY;
3965 
3966 	s->flags &= ~SLAB_POISON;
3967 	if (buf[0] == '1')
3968 		s->flags |= SLAB_POISON;
3969 	calculate_sizes(s, -1);
3970 	return length;
3971 }
3972 SLAB_ATTR(poison);
3973 
3974 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3975 {
3976 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3977 }
3978 
3979 static ssize_t store_user_store(struct kmem_cache *s,
3980 				const char *buf, size_t length)
3981 {
3982 	if (any_slab_objects(s))
3983 		return -EBUSY;
3984 
3985 	s->flags &= ~SLAB_STORE_USER;
3986 	if (buf[0] == '1')
3987 		s->flags |= SLAB_STORE_USER;
3988 	calculate_sizes(s, -1);
3989 	return length;
3990 }
3991 SLAB_ATTR(store_user);
3992 
3993 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3994 {
3995 	return 0;
3996 }
3997 
3998 static ssize_t validate_store(struct kmem_cache *s,
3999 			const char *buf, size_t length)
4000 {
4001 	int ret = -EINVAL;
4002 
4003 	if (buf[0] == '1') {
4004 		ret = validate_slab_cache(s);
4005 		if (ret >= 0)
4006 			ret = length;
4007 	}
4008 	return ret;
4009 }
4010 SLAB_ATTR(validate);
4011 
4012 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4013 {
4014 	return 0;
4015 }
4016 
4017 static ssize_t shrink_store(struct kmem_cache *s,
4018 			const char *buf, size_t length)
4019 {
4020 	if (buf[0] == '1') {
4021 		int rc = kmem_cache_shrink(s);
4022 
4023 		if (rc)
4024 			return rc;
4025 	} else
4026 		return -EINVAL;
4027 	return length;
4028 }
4029 SLAB_ATTR(shrink);
4030 
4031 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4032 {
4033 	if (!(s->flags & SLAB_STORE_USER))
4034 		return -ENOSYS;
4035 	return list_locations(s, buf, TRACK_ALLOC);
4036 }
4037 SLAB_ATTR_RO(alloc_calls);
4038 
4039 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4040 {
4041 	if (!(s->flags & SLAB_STORE_USER))
4042 		return -ENOSYS;
4043 	return list_locations(s, buf, TRACK_FREE);
4044 }
4045 SLAB_ATTR_RO(free_calls);
4046 
4047 #ifdef CONFIG_NUMA
4048 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4049 {
4050 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4051 }
4052 
4053 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4054 				const char *buf, size_t length)
4055 {
4056 	unsigned long ratio;
4057 	int err;
4058 
4059 	err = strict_strtoul(buf, 10, &ratio);
4060 	if (err)
4061 		return err;
4062 
4063 	if (ratio <= 100)
4064 		s->remote_node_defrag_ratio = ratio * 10;
4065 
4066 	return length;
4067 }
4068 SLAB_ATTR(remote_node_defrag_ratio);
4069 #endif
4070 
4071 #ifdef CONFIG_SLUB_STATS
4072 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4073 {
4074 	unsigned long sum  = 0;
4075 	int cpu;
4076 	int len;
4077 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4078 
4079 	if (!data)
4080 		return -ENOMEM;
4081 
4082 	for_each_online_cpu(cpu) {
4083 		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4084 
4085 		data[cpu] = x;
4086 		sum += x;
4087 	}
4088 
4089 	len = sprintf(buf, "%lu", sum);
4090 
4091 #ifdef CONFIG_SMP
4092 	for_each_online_cpu(cpu) {
4093 		if (data[cpu] && len < PAGE_SIZE - 20)
4094 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4095 	}
4096 #endif
4097 	kfree(data);
4098 	return len + sprintf(buf + len, "\n");
4099 }
4100 
4101 #define STAT_ATTR(si, text) 					\
4102 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4103 {								\
4104 	return show_stat(s, buf, si);				\
4105 }								\
4106 SLAB_ATTR_RO(text);						\
4107 
4108 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4109 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4110 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4111 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4112 STAT_ATTR(FREE_FROZEN, free_frozen);
4113 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4114 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4115 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4116 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4117 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4118 STAT_ATTR(FREE_SLAB, free_slab);
4119 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4120 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4121 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4122 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4123 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4124 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4125 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4126 #endif
4127 
4128 static struct attribute *slab_attrs[] = {
4129 	&slab_size_attr.attr,
4130 	&object_size_attr.attr,
4131 	&objs_per_slab_attr.attr,
4132 	&order_attr.attr,
4133 	&objects_attr.attr,
4134 	&objects_partial_attr.attr,
4135 	&total_objects_attr.attr,
4136 	&slabs_attr.attr,
4137 	&partial_attr.attr,
4138 	&cpu_slabs_attr.attr,
4139 	&ctor_attr.attr,
4140 	&aliases_attr.attr,
4141 	&align_attr.attr,
4142 	&sanity_checks_attr.attr,
4143 	&trace_attr.attr,
4144 	&hwcache_align_attr.attr,
4145 	&reclaim_account_attr.attr,
4146 	&destroy_by_rcu_attr.attr,
4147 	&red_zone_attr.attr,
4148 	&poison_attr.attr,
4149 	&store_user_attr.attr,
4150 	&validate_attr.attr,
4151 	&shrink_attr.attr,
4152 	&alloc_calls_attr.attr,
4153 	&free_calls_attr.attr,
4154 #ifdef CONFIG_ZONE_DMA
4155 	&cache_dma_attr.attr,
4156 #endif
4157 #ifdef CONFIG_NUMA
4158 	&remote_node_defrag_ratio_attr.attr,
4159 #endif
4160 #ifdef CONFIG_SLUB_STATS
4161 	&alloc_fastpath_attr.attr,
4162 	&alloc_slowpath_attr.attr,
4163 	&free_fastpath_attr.attr,
4164 	&free_slowpath_attr.attr,
4165 	&free_frozen_attr.attr,
4166 	&free_add_partial_attr.attr,
4167 	&free_remove_partial_attr.attr,
4168 	&alloc_from_partial_attr.attr,
4169 	&alloc_slab_attr.attr,
4170 	&alloc_refill_attr.attr,
4171 	&free_slab_attr.attr,
4172 	&cpuslab_flush_attr.attr,
4173 	&deactivate_full_attr.attr,
4174 	&deactivate_empty_attr.attr,
4175 	&deactivate_to_head_attr.attr,
4176 	&deactivate_to_tail_attr.attr,
4177 	&deactivate_remote_frees_attr.attr,
4178 	&order_fallback_attr.attr,
4179 #endif
4180 	NULL
4181 };
4182 
4183 static struct attribute_group slab_attr_group = {
4184 	.attrs = slab_attrs,
4185 };
4186 
4187 static ssize_t slab_attr_show(struct kobject *kobj,
4188 				struct attribute *attr,
4189 				char *buf)
4190 {
4191 	struct slab_attribute *attribute;
4192 	struct kmem_cache *s;
4193 	int err;
4194 
4195 	attribute = to_slab_attr(attr);
4196 	s = to_slab(kobj);
4197 
4198 	if (!attribute->show)
4199 		return -EIO;
4200 
4201 	err = attribute->show(s, buf);
4202 
4203 	return err;
4204 }
4205 
4206 static ssize_t slab_attr_store(struct kobject *kobj,
4207 				struct attribute *attr,
4208 				const char *buf, size_t len)
4209 {
4210 	struct slab_attribute *attribute;
4211 	struct kmem_cache *s;
4212 	int err;
4213 
4214 	attribute = to_slab_attr(attr);
4215 	s = to_slab(kobj);
4216 
4217 	if (!attribute->store)
4218 		return -EIO;
4219 
4220 	err = attribute->store(s, buf, len);
4221 
4222 	return err;
4223 }
4224 
4225 static void kmem_cache_release(struct kobject *kobj)
4226 {
4227 	struct kmem_cache *s = to_slab(kobj);
4228 
4229 	kfree(s);
4230 }
4231 
4232 static struct sysfs_ops slab_sysfs_ops = {
4233 	.show = slab_attr_show,
4234 	.store = slab_attr_store,
4235 };
4236 
4237 static struct kobj_type slab_ktype = {
4238 	.sysfs_ops = &slab_sysfs_ops,
4239 	.release = kmem_cache_release
4240 };
4241 
4242 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4243 {
4244 	struct kobj_type *ktype = get_ktype(kobj);
4245 
4246 	if (ktype == &slab_ktype)
4247 		return 1;
4248 	return 0;
4249 }
4250 
4251 static struct kset_uevent_ops slab_uevent_ops = {
4252 	.filter = uevent_filter,
4253 };
4254 
4255 static struct kset *slab_kset;
4256 
4257 #define ID_STR_LENGTH 64
4258 
4259 /* Create a unique string id for a slab cache:
4260  *
4261  * Format	:[flags-]size
4262  */
4263 static char *create_unique_id(struct kmem_cache *s)
4264 {
4265 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4266 	char *p = name;
4267 
4268 	BUG_ON(!name);
4269 
4270 	*p++ = ':';
4271 	/*
4272 	 * First flags affecting slabcache operations. We will only
4273 	 * get here for aliasable slabs so we do not need to support
4274 	 * too many flags. The flags here must cover all flags that
4275 	 * are matched during merging to guarantee that the id is
4276 	 * unique.
4277 	 */
4278 	if (s->flags & SLAB_CACHE_DMA)
4279 		*p++ = 'd';
4280 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4281 		*p++ = 'a';
4282 	if (s->flags & SLAB_DEBUG_FREE)
4283 		*p++ = 'F';
4284 	if (p != name + 1)
4285 		*p++ = '-';
4286 	p += sprintf(p, "%07d", s->size);
4287 	BUG_ON(p > name + ID_STR_LENGTH - 1);
4288 	return name;
4289 }
4290 
4291 static int sysfs_slab_add(struct kmem_cache *s)
4292 {
4293 	int err;
4294 	const char *name;
4295 	int unmergeable;
4296 
4297 	if (slab_state < SYSFS)
4298 		/* Defer until later */
4299 		return 0;
4300 
4301 	unmergeable = slab_unmergeable(s);
4302 	if (unmergeable) {
4303 		/*
4304 		 * Slabcache can never be merged so we can use the name proper.
4305 		 * This is typically the case for debug situations. In that
4306 		 * case we can catch duplicate names easily.
4307 		 */
4308 		sysfs_remove_link(&slab_kset->kobj, s->name);
4309 		name = s->name;
4310 	} else {
4311 		/*
4312 		 * Create a unique name for the slab as a target
4313 		 * for the symlinks.
4314 		 */
4315 		name = create_unique_id(s);
4316 	}
4317 
4318 	s->kobj.kset = slab_kset;
4319 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4320 	if (err) {
4321 		kobject_put(&s->kobj);
4322 		return err;
4323 	}
4324 
4325 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4326 	if (err)
4327 		return err;
4328 	kobject_uevent(&s->kobj, KOBJ_ADD);
4329 	if (!unmergeable) {
4330 		/* Setup first alias */
4331 		sysfs_slab_alias(s, s->name);
4332 		kfree(name);
4333 	}
4334 	return 0;
4335 }
4336 
4337 static void sysfs_slab_remove(struct kmem_cache *s)
4338 {
4339 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4340 	kobject_del(&s->kobj);
4341 	kobject_put(&s->kobj);
4342 }
4343 
4344 /*
4345  * Need to buffer aliases during bootup until sysfs becomes
4346  * available lest we loose that information.
4347  */
4348 struct saved_alias {
4349 	struct kmem_cache *s;
4350 	const char *name;
4351 	struct saved_alias *next;
4352 };
4353 
4354 static struct saved_alias *alias_list;
4355 
4356 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4357 {
4358 	struct saved_alias *al;
4359 
4360 	if (slab_state == SYSFS) {
4361 		/*
4362 		 * If we have a leftover link then remove it.
4363 		 */
4364 		sysfs_remove_link(&slab_kset->kobj, name);
4365 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4366 	}
4367 
4368 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4369 	if (!al)
4370 		return -ENOMEM;
4371 
4372 	al->s = s;
4373 	al->name = name;
4374 	al->next = alias_list;
4375 	alias_list = al;
4376 	return 0;
4377 }
4378 
4379 static int __init slab_sysfs_init(void)
4380 {
4381 	struct kmem_cache *s;
4382 	int err;
4383 
4384 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4385 	if (!slab_kset) {
4386 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4387 		return -ENOSYS;
4388 	}
4389 
4390 	slab_state = SYSFS;
4391 
4392 	list_for_each_entry(s, &slab_caches, list) {
4393 		err = sysfs_slab_add(s);
4394 		if (err)
4395 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4396 						" to sysfs\n", s->name);
4397 	}
4398 
4399 	while (alias_list) {
4400 		struct saved_alias *al = alias_list;
4401 
4402 		alias_list = alias_list->next;
4403 		err = sysfs_slab_alias(al->s, al->name);
4404 		if (err)
4405 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4406 					" %s to sysfs\n", s->name);
4407 		kfree(al);
4408 	}
4409 
4410 	resiliency_test();
4411 	return 0;
4412 }
4413 
4414 __initcall(slab_sysfs_init);
4415 #endif
4416 
4417 /*
4418  * The /proc/slabinfo ABI
4419  */
4420 #ifdef CONFIG_SLABINFO
4421 static void print_slabinfo_header(struct seq_file *m)
4422 {
4423 	seq_puts(m, "slabinfo - version: 2.1\n");
4424 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4425 		 "<objperslab> <pagesperslab>");
4426 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4427 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4428 	seq_putc(m, '\n');
4429 }
4430 
4431 static void *s_start(struct seq_file *m, loff_t *pos)
4432 {
4433 	loff_t n = *pos;
4434 
4435 	down_read(&slub_lock);
4436 	if (!n)
4437 		print_slabinfo_header(m);
4438 
4439 	return seq_list_start(&slab_caches, *pos);
4440 }
4441 
4442 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4443 {
4444 	return seq_list_next(p, &slab_caches, pos);
4445 }
4446 
4447 static void s_stop(struct seq_file *m, void *p)
4448 {
4449 	up_read(&slub_lock);
4450 }
4451 
4452 static int s_show(struct seq_file *m, void *p)
4453 {
4454 	unsigned long nr_partials = 0;
4455 	unsigned long nr_slabs = 0;
4456 	unsigned long nr_inuse = 0;
4457 	unsigned long nr_objs = 0;
4458 	unsigned long nr_free = 0;
4459 	struct kmem_cache *s;
4460 	int node;
4461 
4462 	s = list_entry(p, struct kmem_cache, list);
4463 
4464 	for_each_online_node(node) {
4465 		struct kmem_cache_node *n = get_node(s, node);
4466 
4467 		if (!n)
4468 			continue;
4469 
4470 		nr_partials += n->nr_partial;
4471 		nr_slabs += atomic_long_read(&n->nr_slabs);
4472 		nr_objs += atomic_long_read(&n->total_objects);
4473 		nr_free += count_partial(n, count_free);
4474 	}
4475 
4476 	nr_inuse = nr_objs - nr_free;
4477 
4478 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4479 		   nr_objs, s->size, oo_objects(s->oo),
4480 		   (1 << oo_order(s->oo)));
4481 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4482 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4483 		   0UL);
4484 	seq_putc(m, '\n');
4485 	return 0;
4486 }
4487 
4488 static const struct seq_operations slabinfo_op = {
4489 	.start = s_start,
4490 	.next = s_next,
4491 	.stop = s_stop,
4492 	.show = s_show,
4493 };
4494 
4495 static int slabinfo_open(struct inode *inode, struct file *file)
4496 {
4497 	return seq_open(file, &slabinfo_op);
4498 }
4499 
4500 static const struct file_operations proc_slabinfo_operations = {
4501 	.open		= slabinfo_open,
4502 	.read		= seq_read,
4503 	.llseek		= seq_lseek,
4504 	.release	= seq_release,
4505 };
4506 
4507 static int __init slab_proc_init(void)
4508 {
4509 	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4510 	return 0;
4511 }
4512 module_init(slab_proc_init);
4513 #endif /* CONFIG_SLABINFO */
4514