1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 #include <linux/random.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects: 55 * A. page->freelist -> List of object free in a page 56 * B. page->inuse -> Number of objects in use 57 * C. page->objects -> Number of objects in page 58 * D. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list. The processor that froze the slab is the one who can 62 * perform list operations on the page. Other processors may put objects 63 * onto the freelist but the processor that froze the slab is the only 64 * one that can retrieve the objects from the page's freelist. 65 * 66 * The list_lock protects the partial and full list on each node and 67 * the partial slab counter. If taken then no new slabs may be added or 68 * removed from the lists nor make the number of partial slabs be modified. 69 * (Note that the total number of slabs is an atomic value that may be 70 * modified without taking the list lock). 71 * 72 * The list_lock is a centralized lock and thus we avoid taking it as 73 * much as possible. As long as SLUB does not have to handle partial 74 * slabs, operations can continue without any centralized lock. F.e. 75 * allocating a long series of objects that fill up slabs does not require 76 * the list lock. 77 * Interrupts are disabled during allocation and deallocation in order to 78 * make the slab allocator safe to use in the context of an irq. In addition 79 * interrupts are disabled to ensure that the processor does not change 80 * while handling per_cpu slabs, due to kernel preemption. 81 * 82 * SLUB assigns one slab for allocation to each processor. 83 * Allocations only occur from these slabs called cpu slabs. 84 * 85 * Slabs with free elements are kept on a partial list and during regular 86 * operations no list for full slabs is used. If an object in a full slab is 87 * freed then the slab will show up again on the partial lists. 88 * We track full slabs for debugging purposes though because otherwise we 89 * cannot scan all objects. 90 * 91 * Slabs are freed when they become empty. Teardown and setup is 92 * minimal so we rely on the page allocators per cpu caches for 93 * fast frees and allocs. 94 * 95 * Overloading of page flags that are otherwise used for LRU management. 96 * 97 * PageActive The slab is frozen and exempt from list processing. 98 * This means that the slab is dedicated to a purpose 99 * such as satisfying allocations for a specific 100 * processor. Objects may be freed in the slab while 101 * it is frozen but slab_free will then skip the usual 102 * list operations. It is up to the processor holding 103 * the slab to integrate the slab into the slab lists 104 * when the slab is no longer needed. 105 * 106 * One use of this flag is to mark slabs that are 107 * used for allocations. Then such a slab becomes a cpu 108 * slab. The cpu slab may be equipped with an additional 109 * freelist that allows lockless access to 110 * free objects in addition to the regular freelist 111 * that requires the slab lock. 112 * 113 * PageError Slab requires special handling due to debug 114 * options set. This moves slab handling out of 115 * the fast path and disables lockless freelists. 116 */ 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 void *fixup_red_left(struct kmem_cache *s, void *p) 128 { 129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 130 p += s->red_left_pad; 131 132 return p; 133 } 134 135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 136 { 137 #ifdef CONFIG_SLUB_CPU_PARTIAL 138 return !kmem_cache_debug(s); 139 #else 140 return false; 141 #endif 142 } 143 144 /* 145 * Issues still to be resolved: 146 * 147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 148 * 149 * - Variable sizing of the per node arrays 150 */ 151 152 /* Enable to test recovery from slab corruption on boot */ 153 #undef SLUB_RESILIENCY_TEST 154 155 /* Enable to log cmpxchg failures */ 156 #undef SLUB_DEBUG_CMPXCHG 157 158 /* 159 * Mininum number of partial slabs. These will be left on the partial 160 * lists even if they are empty. kmem_cache_shrink may reclaim them. 161 */ 162 #define MIN_PARTIAL 5 163 164 /* 165 * Maximum number of desirable partial slabs. 166 * The existence of more partial slabs makes kmem_cache_shrink 167 * sort the partial list by the number of objects in use. 168 */ 169 #define MAX_PARTIAL 10 170 171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 172 SLAB_POISON | SLAB_STORE_USER) 173 174 /* 175 * These debug flags cannot use CMPXCHG because there might be consistency 176 * issues when checking or reading debug information 177 */ 178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 179 SLAB_TRACE) 180 181 182 /* 183 * Debugging flags that require metadata to be stored in the slab. These get 184 * disabled when slub_debug=O is used and a cache's min order increases with 185 * metadata. 186 */ 187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 188 189 #define OO_SHIFT 16 190 #define OO_MASK ((1 << OO_SHIFT) - 1) 191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 192 193 /* Internal SLUB flags */ 194 /* Poison object */ 195 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 196 /* Use cmpxchg_double */ 197 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 198 199 /* 200 * Tracking user of a slab. 201 */ 202 #define TRACK_ADDRS_COUNT 16 203 struct track { 204 unsigned long addr; /* Called from address */ 205 #ifdef CONFIG_STACKTRACE 206 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 207 #endif 208 int cpu; /* Was running on cpu */ 209 int pid; /* Pid context */ 210 unsigned long when; /* When did the operation occur */ 211 }; 212 213 enum track_item { TRACK_ALLOC, TRACK_FREE }; 214 215 #ifdef CONFIG_SYSFS 216 static int sysfs_slab_add(struct kmem_cache *); 217 static int sysfs_slab_alias(struct kmem_cache *, const char *); 218 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 219 static void sysfs_slab_remove(struct kmem_cache *s); 220 #else 221 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 222 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 223 { return 0; } 224 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 225 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 226 #endif 227 228 static inline void stat(const struct kmem_cache *s, enum stat_item si) 229 { 230 #ifdef CONFIG_SLUB_STATS 231 /* 232 * The rmw is racy on a preemptible kernel but this is acceptable, so 233 * avoid this_cpu_add()'s irq-disable overhead. 234 */ 235 raw_cpu_inc(s->cpu_slab->stat[si]); 236 #endif 237 } 238 239 /******************************************************************** 240 * Core slab cache functions 241 *******************************************************************/ 242 243 /* 244 * Returns freelist pointer (ptr). With hardening, this is obfuscated 245 * with an XOR of the address where the pointer is held and a per-cache 246 * random number. 247 */ 248 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 249 unsigned long ptr_addr) 250 { 251 #ifdef CONFIG_SLAB_FREELIST_HARDENED 252 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr); 253 #else 254 return ptr; 255 #endif 256 } 257 258 /* Returns the freelist pointer recorded at location ptr_addr. */ 259 static inline void *freelist_dereference(const struct kmem_cache *s, 260 void *ptr_addr) 261 { 262 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 263 (unsigned long)ptr_addr); 264 } 265 266 static inline void *get_freepointer(struct kmem_cache *s, void *object) 267 { 268 return freelist_dereference(s, object + s->offset); 269 } 270 271 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 272 { 273 prefetch(object + s->offset); 274 } 275 276 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 277 { 278 unsigned long freepointer_addr; 279 void *p; 280 281 if (!debug_pagealloc_enabled()) 282 return get_freepointer(s, object); 283 284 freepointer_addr = (unsigned long)object + s->offset; 285 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 286 return freelist_ptr(s, p, freepointer_addr); 287 } 288 289 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 290 { 291 unsigned long freeptr_addr = (unsigned long)object + s->offset; 292 293 #ifdef CONFIG_SLAB_FREELIST_HARDENED 294 BUG_ON(object == fp); /* naive detection of double free or corruption */ 295 #endif 296 297 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 298 } 299 300 /* Loop over all objects in a slab */ 301 #define for_each_object(__p, __s, __addr, __objects) \ 302 for (__p = fixup_red_left(__s, __addr); \ 303 __p < (__addr) + (__objects) * (__s)->size; \ 304 __p += (__s)->size) 305 306 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 307 for (__p = fixup_red_left(__s, __addr), __idx = 1; \ 308 __idx <= __objects; \ 309 __p += (__s)->size, __idx++) 310 311 /* Determine object index from a given position */ 312 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) 313 { 314 return (p - addr) / s->size; 315 } 316 317 static inline unsigned int order_objects(unsigned int order, unsigned int size) 318 { 319 return ((unsigned int)PAGE_SIZE << order) / size; 320 } 321 322 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 323 unsigned int size) 324 { 325 struct kmem_cache_order_objects x = { 326 (order << OO_SHIFT) + order_objects(order, size) 327 }; 328 329 return x; 330 } 331 332 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 333 { 334 return x.x >> OO_SHIFT; 335 } 336 337 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 338 { 339 return x.x & OO_MASK; 340 } 341 342 /* 343 * Per slab locking using the pagelock 344 */ 345 static __always_inline void slab_lock(struct page *page) 346 { 347 VM_BUG_ON_PAGE(PageTail(page), page); 348 bit_spin_lock(PG_locked, &page->flags); 349 } 350 351 static __always_inline void slab_unlock(struct page *page) 352 { 353 VM_BUG_ON_PAGE(PageTail(page), page); 354 __bit_spin_unlock(PG_locked, &page->flags); 355 } 356 357 /* Interrupts must be disabled (for the fallback code to work right) */ 358 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 359 void *freelist_old, unsigned long counters_old, 360 void *freelist_new, unsigned long counters_new, 361 const char *n) 362 { 363 VM_BUG_ON(!irqs_disabled()); 364 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 365 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 366 if (s->flags & __CMPXCHG_DOUBLE) { 367 if (cmpxchg_double(&page->freelist, &page->counters, 368 freelist_old, counters_old, 369 freelist_new, counters_new)) 370 return true; 371 } else 372 #endif 373 { 374 slab_lock(page); 375 if (page->freelist == freelist_old && 376 page->counters == counters_old) { 377 page->freelist = freelist_new; 378 page->counters = counters_new; 379 slab_unlock(page); 380 return true; 381 } 382 slab_unlock(page); 383 } 384 385 cpu_relax(); 386 stat(s, CMPXCHG_DOUBLE_FAIL); 387 388 #ifdef SLUB_DEBUG_CMPXCHG 389 pr_info("%s %s: cmpxchg double redo ", n, s->name); 390 #endif 391 392 return false; 393 } 394 395 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 396 void *freelist_old, unsigned long counters_old, 397 void *freelist_new, unsigned long counters_new, 398 const char *n) 399 { 400 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 401 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 402 if (s->flags & __CMPXCHG_DOUBLE) { 403 if (cmpxchg_double(&page->freelist, &page->counters, 404 freelist_old, counters_old, 405 freelist_new, counters_new)) 406 return true; 407 } else 408 #endif 409 { 410 unsigned long flags; 411 412 local_irq_save(flags); 413 slab_lock(page); 414 if (page->freelist == freelist_old && 415 page->counters == counters_old) { 416 page->freelist = freelist_new; 417 page->counters = counters_new; 418 slab_unlock(page); 419 local_irq_restore(flags); 420 return true; 421 } 422 slab_unlock(page); 423 local_irq_restore(flags); 424 } 425 426 cpu_relax(); 427 stat(s, CMPXCHG_DOUBLE_FAIL); 428 429 #ifdef SLUB_DEBUG_CMPXCHG 430 pr_info("%s %s: cmpxchg double redo ", n, s->name); 431 #endif 432 433 return false; 434 } 435 436 #ifdef CONFIG_SLUB_DEBUG 437 /* 438 * Determine a map of object in use on a page. 439 * 440 * Node listlock must be held to guarantee that the page does 441 * not vanish from under us. 442 */ 443 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 444 { 445 void *p; 446 void *addr = page_address(page); 447 448 for (p = page->freelist; p; p = get_freepointer(s, p)) 449 set_bit(slab_index(p, s, addr), map); 450 } 451 452 static inline unsigned int size_from_object(struct kmem_cache *s) 453 { 454 if (s->flags & SLAB_RED_ZONE) 455 return s->size - s->red_left_pad; 456 457 return s->size; 458 } 459 460 static inline void *restore_red_left(struct kmem_cache *s, void *p) 461 { 462 if (s->flags & SLAB_RED_ZONE) 463 p -= s->red_left_pad; 464 465 return p; 466 } 467 468 /* 469 * Debug settings: 470 */ 471 #if defined(CONFIG_SLUB_DEBUG_ON) 472 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 473 #else 474 static slab_flags_t slub_debug; 475 #endif 476 477 static char *slub_debug_slabs; 478 static int disable_higher_order_debug; 479 480 /* 481 * slub is about to manipulate internal object metadata. This memory lies 482 * outside the range of the allocated object, so accessing it would normally 483 * be reported by kasan as a bounds error. metadata_access_enable() is used 484 * to tell kasan that these accesses are OK. 485 */ 486 static inline void metadata_access_enable(void) 487 { 488 kasan_disable_current(); 489 } 490 491 static inline void metadata_access_disable(void) 492 { 493 kasan_enable_current(); 494 } 495 496 /* 497 * Object debugging 498 */ 499 500 /* Verify that a pointer has an address that is valid within a slab page */ 501 static inline int check_valid_pointer(struct kmem_cache *s, 502 struct page *page, void *object) 503 { 504 void *base; 505 506 if (!object) 507 return 1; 508 509 base = page_address(page); 510 object = restore_red_left(s, object); 511 if (object < base || object >= base + page->objects * s->size || 512 (object - base) % s->size) { 513 return 0; 514 } 515 516 return 1; 517 } 518 519 static void print_section(char *level, char *text, u8 *addr, 520 unsigned int length) 521 { 522 metadata_access_enable(); 523 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 524 length, 1); 525 metadata_access_disable(); 526 } 527 528 static struct track *get_track(struct kmem_cache *s, void *object, 529 enum track_item alloc) 530 { 531 struct track *p; 532 533 if (s->offset) 534 p = object + s->offset + sizeof(void *); 535 else 536 p = object + s->inuse; 537 538 return p + alloc; 539 } 540 541 static void set_track(struct kmem_cache *s, void *object, 542 enum track_item alloc, unsigned long addr) 543 { 544 struct track *p = get_track(s, object, alloc); 545 546 if (addr) { 547 #ifdef CONFIG_STACKTRACE 548 struct stack_trace trace; 549 int i; 550 551 trace.nr_entries = 0; 552 trace.max_entries = TRACK_ADDRS_COUNT; 553 trace.entries = p->addrs; 554 trace.skip = 3; 555 metadata_access_enable(); 556 save_stack_trace(&trace); 557 metadata_access_disable(); 558 559 /* See rant in lockdep.c */ 560 if (trace.nr_entries != 0 && 561 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 562 trace.nr_entries--; 563 564 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 565 p->addrs[i] = 0; 566 #endif 567 p->addr = addr; 568 p->cpu = smp_processor_id(); 569 p->pid = current->pid; 570 p->when = jiffies; 571 } else 572 memset(p, 0, sizeof(struct track)); 573 } 574 575 static void init_tracking(struct kmem_cache *s, void *object) 576 { 577 if (!(s->flags & SLAB_STORE_USER)) 578 return; 579 580 set_track(s, object, TRACK_FREE, 0UL); 581 set_track(s, object, TRACK_ALLOC, 0UL); 582 } 583 584 static void print_track(const char *s, struct track *t, unsigned long pr_time) 585 { 586 if (!t->addr) 587 return; 588 589 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 590 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 591 #ifdef CONFIG_STACKTRACE 592 { 593 int i; 594 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 595 if (t->addrs[i]) 596 pr_err("\t%pS\n", (void *)t->addrs[i]); 597 else 598 break; 599 } 600 #endif 601 } 602 603 static void print_tracking(struct kmem_cache *s, void *object) 604 { 605 unsigned long pr_time = jiffies; 606 if (!(s->flags & SLAB_STORE_USER)) 607 return; 608 609 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 610 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 611 } 612 613 static void print_page_info(struct page *page) 614 { 615 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 616 page, page->objects, page->inuse, page->freelist, page->flags); 617 618 } 619 620 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 621 { 622 struct va_format vaf; 623 va_list args; 624 625 va_start(args, fmt); 626 vaf.fmt = fmt; 627 vaf.va = &args; 628 pr_err("=============================================================================\n"); 629 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 630 pr_err("-----------------------------------------------------------------------------\n\n"); 631 632 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 633 va_end(args); 634 } 635 636 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 637 { 638 struct va_format vaf; 639 va_list args; 640 641 va_start(args, fmt); 642 vaf.fmt = fmt; 643 vaf.va = &args; 644 pr_err("FIX %s: %pV\n", s->name, &vaf); 645 va_end(args); 646 } 647 648 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 649 { 650 unsigned int off; /* Offset of last byte */ 651 u8 *addr = page_address(page); 652 653 print_tracking(s, p); 654 655 print_page_info(page); 656 657 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 658 p, p - addr, get_freepointer(s, p)); 659 660 if (s->flags & SLAB_RED_ZONE) 661 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 662 s->red_left_pad); 663 else if (p > addr + 16) 664 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 665 666 print_section(KERN_ERR, "Object ", p, 667 min_t(unsigned int, s->object_size, PAGE_SIZE)); 668 if (s->flags & SLAB_RED_ZONE) 669 print_section(KERN_ERR, "Redzone ", p + s->object_size, 670 s->inuse - s->object_size); 671 672 if (s->offset) 673 off = s->offset + sizeof(void *); 674 else 675 off = s->inuse; 676 677 if (s->flags & SLAB_STORE_USER) 678 off += 2 * sizeof(struct track); 679 680 off += kasan_metadata_size(s); 681 682 if (off != size_from_object(s)) 683 /* Beginning of the filler is the free pointer */ 684 print_section(KERN_ERR, "Padding ", p + off, 685 size_from_object(s) - off); 686 687 dump_stack(); 688 } 689 690 void object_err(struct kmem_cache *s, struct page *page, 691 u8 *object, char *reason) 692 { 693 slab_bug(s, "%s", reason); 694 print_trailer(s, page, object); 695 } 696 697 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 698 const char *fmt, ...) 699 { 700 va_list args; 701 char buf[100]; 702 703 va_start(args, fmt); 704 vsnprintf(buf, sizeof(buf), fmt, args); 705 va_end(args); 706 slab_bug(s, "%s", buf); 707 print_page_info(page); 708 dump_stack(); 709 } 710 711 static void init_object(struct kmem_cache *s, void *object, u8 val) 712 { 713 u8 *p = object; 714 715 if (s->flags & SLAB_RED_ZONE) 716 memset(p - s->red_left_pad, val, s->red_left_pad); 717 718 if (s->flags & __OBJECT_POISON) { 719 memset(p, POISON_FREE, s->object_size - 1); 720 p[s->object_size - 1] = POISON_END; 721 } 722 723 if (s->flags & SLAB_RED_ZONE) 724 memset(p + s->object_size, val, s->inuse - s->object_size); 725 } 726 727 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 728 void *from, void *to) 729 { 730 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 731 memset(from, data, to - from); 732 } 733 734 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 735 u8 *object, char *what, 736 u8 *start, unsigned int value, unsigned int bytes) 737 { 738 u8 *fault; 739 u8 *end; 740 741 metadata_access_enable(); 742 fault = memchr_inv(start, value, bytes); 743 metadata_access_disable(); 744 if (!fault) 745 return 1; 746 747 end = start + bytes; 748 while (end > fault && end[-1] == value) 749 end--; 750 751 slab_bug(s, "%s overwritten", what); 752 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 753 fault, end - 1, fault[0], value); 754 print_trailer(s, page, object); 755 756 restore_bytes(s, what, value, fault, end); 757 return 0; 758 } 759 760 /* 761 * Object layout: 762 * 763 * object address 764 * Bytes of the object to be managed. 765 * If the freepointer may overlay the object then the free 766 * pointer is the first word of the object. 767 * 768 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 769 * 0xa5 (POISON_END) 770 * 771 * object + s->object_size 772 * Padding to reach word boundary. This is also used for Redzoning. 773 * Padding is extended by another word if Redzoning is enabled and 774 * object_size == inuse. 775 * 776 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 777 * 0xcc (RED_ACTIVE) for objects in use. 778 * 779 * object + s->inuse 780 * Meta data starts here. 781 * 782 * A. Free pointer (if we cannot overwrite object on free) 783 * B. Tracking data for SLAB_STORE_USER 784 * C. Padding to reach required alignment boundary or at mininum 785 * one word if debugging is on to be able to detect writes 786 * before the word boundary. 787 * 788 * Padding is done using 0x5a (POISON_INUSE) 789 * 790 * object + s->size 791 * Nothing is used beyond s->size. 792 * 793 * If slabcaches are merged then the object_size and inuse boundaries are mostly 794 * ignored. And therefore no slab options that rely on these boundaries 795 * may be used with merged slabcaches. 796 */ 797 798 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 799 { 800 unsigned long off = s->inuse; /* The end of info */ 801 802 if (s->offset) 803 /* Freepointer is placed after the object. */ 804 off += sizeof(void *); 805 806 if (s->flags & SLAB_STORE_USER) 807 /* We also have user information there */ 808 off += 2 * sizeof(struct track); 809 810 off += kasan_metadata_size(s); 811 812 if (size_from_object(s) == off) 813 return 1; 814 815 return check_bytes_and_report(s, page, p, "Object padding", 816 p + off, POISON_INUSE, size_from_object(s) - off); 817 } 818 819 /* Check the pad bytes at the end of a slab page */ 820 static int slab_pad_check(struct kmem_cache *s, struct page *page) 821 { 822 u8 *start; 823 u8 *fault; 824 u8 *end; 825 u8 *pad; 826 int length; 827 int remainder; 828 829 if (!(s->flags & SLAB_POISON)) 830 return 1; 831 832 start = page_address(page); 833 length = PAGE_SIZE << compound_order(page); 834 end = start + length; 835 remainder = length % s->size; 836 if (!remainder) 837 return 1; 838 839 pad = end - remainder; 840 metadata_access_enable(); 841 fault = memchr_inv(pad, POISON_INUSE, remainder); 842 metadata_access_disable(); 843 if (!fault) 844 return 1; 845 while (end > fault && end[-1] == POISON_INUSE) 846 end--; 847 848 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 849 print_section(KERN_ERR, "Padding ", pad, remainder); 850 851 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 852 return 0; 853 } 854 855 static int check_object(struct kmem_cache *s, struct page *page, 856 void *object, u8 val) 857 { 858 u8 *p = object; 859 u8 *endobject = object + s->object_size; 860 861 if (s->flags & SLAB_RED_ZONE) { 862 if (!check_bytes_and_report(s, page, object, "Redzone", 863 object - s->red_left_pad, val, s->red_left_pad)) 864 return 0; 865 866 if (!check_bytes_and_report(s, page, object, "Redzone", 867 endobject, val, s->inuse - s->object_size)) 868 return 0; 869 } else { 870 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 871 check_bytes_and_report(s, page, p, "Alignment padding", 872 endobject, POISON_INUSE, 873 s->inuse - s->object_size); 874 } 875 } 876 877 if (s->flags & SLAB_POISON) { 878 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 879 (!check_bytes_and_report(s, page, p, "Poison", p, 880 POISON_FREE, s->object_size - 1) || 881 !check_bytes_and_report(s, page, p, "Poison", 882 p + s->object_size - 1, POISON_END, 1))) 883 return 0; 884 /* 885 * check_pad_bytes cleans up on its own. 886 */ 887 check_pad_bytes(s, page, p); 888 } 889 890 if (!s->offset && val == SLUB_RED_ACTIVE) 891 /* 892 * Object and freepointer overlap. Cannot check 893 * freepointer while object is allocated. 894 */ 895 return 1; 896 897 /* Check free pointer validity */ 898 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 899 object_err(s, page, p, "Freepointer corrupt"); 900 /* 901 * No choice but to zap it and thus lose the remainder 902 * of the free objects in this slab. May cause 903 * another error because the object count is now wrong. 904 */ 905 set_freepointer(s, p, NULL); 906 return 0; 907 } 908 return 1; 909 } 910 911 static int check_slab(struct kmem_cache *s, struct page *page) 912 { 913 int maxobj; 914 915 VM_BUG_ON(!irqs_disabled()); 916 917 if (!PageSlab(page)) { 918 slab_err(s, page, "Not a valid slab page"); 919 return 0; 920 } 921 922 maxobj = order_objects(compound_order(page), s->size); 923 if (page->objects > maxobj) { 924 slab_err(s, page, "objects %u > max %u", 925 page->objects, maxobj); 926 return 0; 927 } 928 if (page->inuse > page->objects) { 929 slab_err(s, page, "inuse %u > max %u", 930 page->inuse, page->objects); 931 return 0; 932 } 933 /* Slab_pad_check fixes things up after itself */ 934 slab_pad_check(s, page); 935 return 1; 936 } 937 938 /* 939 * Determine if a certain object on a page is on the freelist. Must hold the 940 * slab lock to guarantee that the chains are in a consistent state. 941 */ 942 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 943 { 944 int nr = 0; 945 void *fp; 946 void *object = NULL; 947 int max_objects; 948 949 fp = page->freelist; 950 while (fp && nr <= page->objects) { 951 if (fp == search) 952 return 1; 953 if (!check_valid_pointer(s, page, fp)) { 954 if (object) { 955 object_err(s, page, object, 956 "Freechain corrupt"); 957 set_freepointer(s, object, NULL); 958 } else { 959 slab_err(s, page, "Freepointer corrupt"); 960 page->freelist = NULL; 961 page->inuse = page->objects; 962 slab_fix(s, "Freelist cleared"); 963 return 0; 964 } 965 break; 966 } 967 object = fp; 968 fp = get_freepointer(s, object); 969 nr++; 970 } 971 972 max_objects = order_objects(compound_order(page), s->size); 973 if (max_objects > MAX_OBJS_PER_PAGE) 974 max_objects = MAX_OBJS_PER_PAGE; 975 976 if (page->objects != max_objects) { 977 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 978 page->objects, max_objects); 979 page->objects = max_objects; 980 slab_fix(s, "Number of objects adjusted."); 981 } 982 if (page->inuse != page->objects - nr) { 983 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 984 page->inuse, page->objects - nr); 985 page->inuse = page->objects - nr; 986 slab_fix(s, "Object count adjusted."); 987 } 988 return search == NULL; 989 } 990 991 static void trace(struct kmem_cache *s, struct page *page, void *object, 992 int alloc) 993 { 994 if (s->flags & SLAB_TRACE) { 995 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 996 s->name, 997 alloc ? "alloc" : "free", 998 object, page->inuse, 999 page->freelist); 1000 1001 if (!alloc) 1002 print_section(KERN_INFO, "Object ", (void *)object, 1003 s->object_size); 1004 1005 dump_stack(); 1006 } 1007 } 1008 1009 /* 1010 * Tracking of fully allocated slabs for debugging purposes. 1011 */ 1012 static void add_full(struct kmem_cache *s, 1013 struct kmem_cache_node *n, struct page *page) 1014 { 1015 if (!(s->flags & SLAB_STORE_USER)) 1016 return; 1017 1018 lockdep_assert_held(&n->list_lock); 1019 list_add(&page->lru, &n->full); 1020 } 1021 1022 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1023 { 1024 if (!(s->flags & SLAB_STORE_USER)) 1025 return; 1026 1027 lockdep_assert_held(&n->list_lock); 1028 list_del(&page->lru); 1029 } 1030 1031 /* Tracking of the number of slabs for debugging purposes */ 1032 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1033 { 1034 struct kmem_cache_node *n = get_node(s, node); 1035 1036 return atomic_long_read(&n->nr_slabs); 1037 } 1038 1039 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1040 { 1041 return atomic_long_read(&n->nr_slabs); 1042 } 1043 1044 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1045 { 1046 struct kmem_cache_node *n = get_node(s, node); 1047 1048 /* 1049 * May be called early in order to allocate a slab for the 1050 * kmem_cache_node structure. Solve the chicken-egg 1051 * dilemma by deferring the increment of the count during 1052 * bootstrap (see early_kmem_cache_node_alloc). 1053 */ 1054 if (likely(n)) { 1055 atomic_long_inc(&n->nr_slabs); 1056 atomic_long_add(objects, &n->total_objects); 1057 } 1058 } 1059 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1060 { 1061 struct kmem_cache_node *n = get_node(s, node); 1062 1063 atomic_long_dec(&n->nr_slabs); 1064 atomic_long_sub(objects, &n->total_objects); 1065 } 1066 1067 /* Object debug checks for alloc/free paths */ 1068 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1069 void *object) 1070 { 1071 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1072 return; 1073 1074 init_object(s, object, SLUB_RED_INACTIVE); 1075 init_tracking(s, object); 1076 } 1077 1078 static inline int alloc_consistency_checks(struct kmem_cache *s, 1079 struct page *page, 1080 void *object, unsigned long addr) 1081 { 1082 if (!check_slab(s, page)) 1083 return 0; 1084 1085 if (!check_valid_pointer(s, page, object)) { 1086 object_err(s, page, object, "Freelist Pointer check fails"); 1087 return 0; 1088 } 1089 1090 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1091 return 0; 1092 1093 return 1; 1094 } 1095 1096 static noinline int alloc_debug_processing(struct kmem_cache *s, 1097 struct page *page, 1098 void *object, unsigned long addr) 1099 { 1100 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1101 if (!alloc_consistency_checks(s, page, object, addr)) 1102 goto bad; 1103 } 1104 1105 /* Success perform special debug activities for allocs */ 1106 if (s->flags & SLAB_STORE_USER) 1107 set_track(s, object, TRACK_ALLOC, addr); 1108 trace(s, page, object, 1); 1109 init_object(s, object, SLUB_RED_ACTIVE); 1110 return 1; 1111 1112 bad: 1113 if (PageSlab(page)) { 1114 /* 1115 * If this is a slab page then lets do the best we can 1116 * to avoid issues in the future. Marking all objects 1117 * as used avoids touching the remaining objects. 1118 */ 1119 slab_fix(s, "Marking all objects used"); 1120 page->inuse = page->objects; 1121 page->freelist = NULL; 1122 } 1123 return 0; 1124 } 1125 1126 static inline int free_consistency_checks(struct kmem_cache *s, 1127 struct page *page, void *object, unsigned long addr) 1128 { 1129 if (!check_valid_pointer(s, page, object)) { 1130 slab_err(s, page, "Invalid object pointer 0x%p", object); 1131 return 0; 1132 } 1133 1134 if (on_freelist(s, page, object)) { 1135 object_err(s, page, object, "Object already free"); 1136 return 0; 1137 } 1138 1139 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1140 return 0; 1141 1142 if (unlikely(s != page->slab_cache)) { 1143 if (!PageSlab(page)) { 1144 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1145 object); 1146 } else if (!page->slab_cache) { 1147 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1148 object); 1149 dump_stack(); 1150 } else 1151 object_err(s, page, object, 1152 "page slab pointer corrupt."); 1153 return 0; 1154 } 1155 return 1; 1156 } 1157 1158 /* Supports checking bulk free of a constructed freelist */ 1159 static noinline int free_debug_processing( 1160 struct kmem_cache *s, struct page *page, 1161 void *head, void *tail, int bulk_cnt, 1162 unsigned long addr) 1163 { 1164 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1165 void *object = head; 1166 int cnt = 0; 1167 unsigned long uninitialized_var(flags); 1168 int ret = 0; 1169 1170 spin_lock_irqsave(&n->list_lock, flags); 1171 slab_lock(page); 1172 1173 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1174 if (!check_slab(s, page)) 1175 goto out; 1176 } 1177 1178 next_object: 1179 cnt++; 1180 1181 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1182 if (!free_consistency_checks(s, page, object, addr)) 1183 goto out; 1184 } 1185 1186 if (s->flags & SLAB_STORE_USER) 1187 set_track(s, object, TRACK_FREE, addr); 1188 trace(s, page, object, 0); 1189 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1190 init_object(s, object, SLUB_RED_INACTIVE); 1191 1192 /* Reached end of constructed freelist yet? */ 1193 if (object != tail) { 1194 object = get_freepointer(s, object); 1195 goto next_object; 1196 } 1197 ret = 1; 1198 1199 out: 1200 if (cnt != bulk_cnt) 1201 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1202 bulk_cnt, cnt); 1203 1204 slab_unlock(page); 1205 spin_unlock_irqrestore(&n->list_lock, flags); 1206 if (!ret) 1207 slab_fix(s, "Object at 0x%p not freed", object); 1208 return ret; 1209 } 1210 1211 static int __init setup_slub_debug(char *str) 1212 { 1213 slub_debug = DEBUG_DEFAULT_FLAGS; 1214 if (*str++ != '=' || !*str) 1215 /* 1216 * No options specified. Switch on full debugging. 1217 */ 1218 goto out; 1219 1220 if (*str == ',') 1221 /* 1222 * No options but restriction on slabs. This means full 1223 * debugging for slabs matching a pattern. 1224 */ 1225 goto check_slabs; 1226 1227 slub_debug = 0; 1228 if (*str == '-') 1229 /* 1230 * Switch off all debugging measures. 1231 */ 1232 goto out; 1233 1234 /* 1235 * Determine which debug features should be switched on 1236 */ 1237 for (; *str && *str != ','; str++) { 1238 switch (tolower(*str)) { 1239 case 'f': 1240 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1241 break; 1242 case 'z': 1243 slub_debug |= SLAB_RED_ZONE; 1244 break; 1245 case 'p': 1246 slub_debug |= SLAB_POISON; 1247 break; 1248 case 'u': 1249 slub_debug |= SLAB_STORE_USER; 1250 break; 1251 case 't': 1252 slub_debug |= SLAB_TRACE; 1253 break; 1254 case 'a': 1255 slub_debug |= SLAB_FAILSLAB; 1256 break; 1257 case 'o': 1258 /* 1259 * Avoid enabling debugging on caches if its minimum 1260 * order would increase as a result. 1261 */ 1262 disable_higher_order_debug = 1; 1263 break; 1264 default: 1265 pr_err("slub_debug option '%c' unknown. skipped\n", 1266 *str); 1267 } 1268 } 1269 1270 check_slabs: 1271 if (*str == ',') 1272 slub_debug_slabs = str + 1; 1273 out: 1274 return 1; 1275 } 1276 1277 __setup("slub_debug", setup_slub_debug); 1278 1279 /* 1280 * kmem_cache_flags - apply debugging options to the cache 1281 * @object_size: the size of an object without meta data 1282 * @flags: flags to set 1283 * @name: name of the cache 1284 * @ctor: constructor function 1285 * 1286 * Debug option(s) are applied to @flags. In addition to the debug 1287 * option(s), if a slab name (or multiple) is specified i.e. 1288 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1289 * then only the select slabs will receive the debug option(s). 1290 */ 1291 slab_flags_t kmem_cache_flags(unsigned int object_size, 1292 slab_flags_t flags, const char *name, 1293 void (*ctor)(void *)) 1294 { 1295 char *iter; 1296 size_t len; 1297 1298 /* If slub_debug = 0, it folds into the if conditional. */ 1299 if (!slub_debug_slabs) 1300 return flags | slub_debug; 1301 1302 len = strlen(name); 1303 iter = slub_debug_slabs; 1304 while (*iter) { 1305 char *end, *glob; 1306 size_t cmplen; 1307 1308 end = strchr(iter, ','); 1309 if (!end) 1310 end = iter + strlen(iter); 1311 1312 glob = strnchr(iter, end - iter, '*'); 1313 if (glob) 1314 cmplen = glob - iter; 1315 else 1316 cmplen = max_t(size_t, len, (end - iter)); 1317 1318 if (!strncmp(name, iter, cmplen)) { 1319 flags |= slub_debug; 1320 break; 1321 } 1322 1323 if (!*end) 1324 break; 1325 iter = end + 1; 1326 } 1327 1328 return flags; 1329 } 1330 #else /* !CONFIG_SLUB_DEBUG */ 1331 static inline void setup_object_debug(struct kmem_cache *s, 1332 struct page *page, void *object) {} 1333 1334 static inline int alloc_debug_processing(struct kmem_cache *s, 1335 struct page *page, void *object, unsigned long addr) { return 0; } 1336 1337 static inline int free_debug_processing( 1338 struct kmem_cache *s, struct page *page, 1339 void *head, void *tail, int bulk_cnt, 1340 unsigned long addr) { return 0; } 1341 1342 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1343 { return 1; } 1344 static inline int check_object(struct kmem_cache *s, struct page *page, 1345 void *object, u8 val) { return 1; } 1346 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1347 struct page *page) {} 1348 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1349 struct page *page) {} 1350 slab_flags_t kmem_cache_flags(unsigned int object_size, 1351 slab_flags_t flags, const char *name, 1352 void (*ctor)(void *)) 1353 { 1354 return flags; 1355 } 1356 #define slub_debug 0 1357 1358 #define disable_higher_order_debug 0 1359 1360 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1361 { return 0; } 1362 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1363 { return 0; } 1364 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1365 int objects) {} 1366 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1367 int objects) {} 1368 1369 #endif /* CONFIG_SLUB_DEBUG */ 1370 1371 /* 1372 * Hooks for other subsystems that check memory allocations. In a typical 1373 * production configuration these hooks all should produce no code at all. 1374 */ 1375 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1376 { 1377 kmemleak_alloc(ptr, size, 1, flags); 1378 return kasan_kmalloc_large(ptr, size, flags); 1379 } 1380 1381 static __always_inline void kfree_hook(void *x) 1382 { 1383 kmemleak_free(x); 1384 kasan_kfree_large(x, _RET_IP_); 1385 } 1386 1387 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1388 { 1389 kmemleak_free_recursive(x, s->flags); 1390 1391 /* 1392 * Trouble is that we may no longer disable interrupts in the fast path 1393 * So in order to make the debug calls that expect irqs to be 1394 * disabled we need to disable interrupts temporarily. 1395 */ 1396 #ifdef CONFIG_LOCKDEP 1397 { 1398 unsigned long flags; 1399 1400 local_irq_save(flags); 1401 debug_check_no_locks_freed(x, s->object_size); 1402 local_irq_restore(flags); 1403 } 1404 #endif 1405 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1406 debug_check_no_obj_freed(x, s->object_size); 1407 1408 /* KASAN might put x into memory quarantine, delaying its reuse */ 1409 return kasan_slab_free(s, x, _RET_IP_); 1410 } 1411 1412 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1413 void **head, void **tail) 1414 { 1415 /* 1416 * Compiler cannot detect this function can be removed if slab_free_hook() 1417 * evaluates to nothing. Thus, catch all relevant config debug options here. 1418 */ 1419 #if defined(CONFIG_LOCKDEP) || \ 1420 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1421 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1422 defined(CONFIG_KASAN) 1423 1424 void *object; 1425 void *next = *head; 1426 void *old_tail = *tail ? *tail : *head; 1427 1428 /* Head and tail of the reconstructed freelist */ 1429 *head = NULL; 1430 *tail = NULL; 1431 1432 do { 1433 object = next; 1434 next = get_freepointer(s, object); 1435 /* If object's reuse doesn't have to be delayed */ 1436 if (!slab_free_hook(s, object)) { 1437 /* Move object to the new freelist */ 1438 set_freepointer(s, object, *head); 1439 *head = object; 1440 if (!*tail) 1441 *tail = object; 1442 } 1443 } while (object != old_tail); 1444 1445 if (*head == *tail) 1446 *tail = NULL; 1447 1448 return *head != NULL; 1449 #else 1450 return true; 1451 #endif 1452 } 1453 1454 static void *setup_object(struct kmem_cache *s, struct page *page, 1455 void *object) 1456 { 1457 setup_object_debug(s, page, object); 1458 object = kasan_init_slab_obj(s, object); 1459 if (unlikely(s->ctor)) { 1460 kasan_unpoison_object_data(s, object); 1461 s->ctor(object); 1462 kasan_poison_object_data(s, object); 1463 } 1464 return object; 1465 } 1466 1467 /* 1468 * Slab allocation and freeing 1469 */ 1470 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1471 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1472 { 1473 struct page *page; 1474 unsigned int order = oo_order(oo); 1475 1476 if (node == NUMA_NO_NODE) 1477 page = alloc_pages(flags, order); 1478 else 1479 page = __alloc_pages_node(node, flags, order); 1480 1481 if (page && memcg_charge_slab(page, flags, order, s)) { 1482 __free_pages(page, order); 1483 page = NULL; 1484 } 1485 1486 return page; 1487 } 1488 1489 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1490 /* Pre-initialize the random sequence cache */ 1491 static int init_cache_random_seq(struct kmem_cache *s) 1492 { 1493 unsigned int count = oo_objects(s->oo); 1494 int err; 1495 1496 /* Bailout if already initialised */ 1497 if (s->random_seq) 1498 return 0; 1499 1500 err = cache_random_seq_create(s, count, GFP_KERNEL); 1501 if (err) { 1502 pr_err("SLUB: Unable to initialize free list for %s\n", 1503 s->name); 1504 return err; 1505 } 1506 1507 /* Transform to an offset on the set of pages */ 1508 if (s->random_seq) { 1509 unsigned int i; 1510 1511 for (i = 0; i < count; i++) 1512 s->random_seq[i] *= s->size; 1513 } 1514 return 0; 1515 } 1516 1517 /* Initialize each random sequence freelist per cache */ 1518 static void __init init_freelist_randomization(void) 1519 { 1520 struct kmem_cache *s; 1521 1522 mutex_lock(&slab_mutex); 1523 1524 list_for_each_entry(s, &slab_caches, list) 1525 init_cache_random_seq(s); 1526 1527 mutex_unlock(&slab_mutex); 1528 } 1529 1530 /* Get the next entry on the pre-computed freelist randomized */ 1531 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1532 unsigned long *pos, void *start, 1533 unsigned long page_limit, 1534 unsigned long freelist_count) 1535 { 1536 unsigned int idx; 1537 1538 /* 1539 * If the target page allocation failed, the number of objects on the 1540 * page might be smaller than the usual size defined by the cache. 1541 */ 1542 do { 1543 idx = s->random_seq[*pos]; 1544 *pos += 1; 1545 if (*pos >= freelist_count) 1546 *pos = 0; 1547 } while (unlikely(idx >= page_limit)); 1548 1549 return (char *)start + idx; 1550 } 1551 1552 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1553 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1554 { 1555 void *start; 1556 void *cur; 1557 void *next; 1558 unsigned long idx, pos, page_limit, freelist_count; 1559 1560 if (page->objects < 2 || !s->random_seq) 1561 return false; 1562 1563 freelist_count = oo_objects(s->oo); 1564 pos = get_random_int() % freelist_count; 1565 1566 page_limit = page->objects * s->size; 1567 start = fixup_red_left(s, page_address(page)); 1568 1569 /* First entry is used as the base of the freelist */ 1570 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1571 freelist_count); 1572 cur = setup_object(s, page, cur); 1573 page->freelist = cur; 1574 1575 for (idx = 1; idx < page->objects; idx++) { 1576 next = next_freelist_entry(s, page, &pos, start, page_limit, 1577 freelist_count); 1578 next = setup_object(s, page, next); 1579 set_freepointer(s, cur, next); 1580 cur = next; 1581 } 1582 set_freepointer(s, cur, NULL); 1583 1584 return true; 1585 } 1586 #else 1587 static inline int init_cache_random_seq(struct kmem_cache *s) 1588 { 1589 return 0; 1590 } 1591 static inline void init_freelist_randomization(void) { } 1592 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1593 { 1594 return false; 1595 } 1596 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1597 1598 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1599 { 1600 struct page *page; 1601 struct kmem_cache_order_objects oo = s->oo; 1602 gfp_t alloc_gfp; 1603 void *start, *p, *next; 1604 int idx, order; 1605 bool shuffle; 1606 1607 flags &= gfp_allowed_mask; 1608 1609 if (gfpflags_allow_blocking(flags)) 1610 local_irq_enable(); 1611 1612 flags |= s->allocflags; 1613 1614 /* 1615 * Let the initial higher-order allocation fail under memory pressure 1616 * so we fall-back to the minimum order allocation. 1617 */ 1618 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1619 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1620 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1621 1622 page = alloc_slab_page(s, alloc_gfp, node, oo); 1623 if (unlikely(!page)) { 1624 oo = s->min; 1625 alloc_gfp = flags; 1626 /* 1627 * Allocation may have failed due to fragmentation. 1628 * Try a lower order alloc if possible 1629 */ 1630 page = alloc_slab_page(s, alloc_gfp, node, oo); 1631 if (unlikely(!page)) 1632 goto out; 1633 stat(s, ORDER_FALLBACK); 1634 } 1635 1636 page->objects = oo_objects(oo); 1637 1638 order = compound_order(page); 1639 page->slab_cache = s; 1640 __SetPageSlab(page); 1641 if (page_is_pfmemalloc(page)) 1642 SetPageSlabPfmemalloc(page); 1643 1644 start = page_address(page); 1645 1646 if (unlikely(s->flags & SLAB_POISON)) 1647 memset(start, POISON_INUSE, PAGE_SIZE << order); 1648 1649 kasan_poison_slab(page); 1650 1651 shuffle = shuffle_freelist(s, page); 1652 1653 if (!shuffle) { 1654 for_each_object_idx(p, idx, s, start, page->objects) { 1655 if (likely(idx < page->objects)) { 1656 next = p + s->size; 1657 next = setup_object(s, page, next); 1658 set_freepointer(s, p, next); 1659 } else 1660 set_freepointer(s, p, NULL); 1661 } 1662 start = fixup_red_left(s, start); 1663 start = setup_object(s, page, start); 1664 page->freelist = start; 1665 } 1666 1667 page->inuse = page->objects; 1668 page->frozen = 1; 1669 1670 out: 1671 if (gfpflags_allow_blocking(flags)) 1672 local_irq_disable(); 1673 if (!page) 1674 return NULL; 1675 1676 mod_lruvec_page_state(page, 1677 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1678 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1679 1 << oo_order(oo)); 1680 1681 inc_slabs_node(s, page_to_nid(page), page->objects); 1682 1683 return page; 1684 } 1685 1686 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1687 { 1688 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1689 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1690 flags &= ~GFP_SLAB_BUG_MASK; 1691 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1692 invalid_mask, &invalid_mask, flags, &flags); 1693 dump_stack(); 1694 } 1695 1696 return allocate_slab(s, 1697 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1698 } 1699 1700 static void __free_slab(struct kmem_cache *s, struct page *page) 1701 { 1702 int order = compound_order(page); 1703 int pages = 1 << order; 1704 1705 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1706 void *p; 1707 1708 slab_pad_check(s, page); 1709 for_each_object(p, s, page_address(page), 1710 page->objects) 1711 check_object(s, page, p, SLUB_RED_INACTIVE); 1712 } 1713 1714 mod_lruvec_page_state(page, 1715 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1716 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1717 -pages); 1718 1719 __ClearPageSlabPfmemalloc(page); 1720 __ClearPageSlab(page); 1721 1722 page->mapping = NULL; 1723 if (current->reclaim_state) 1724 current->reclaim_state->reclaimed_slab += pages; 1725 memcg_uncharge_slab(page, order, s); 1726 __free_pages(page, order); 1727 } 1728 1729 static void rcu_free_slab(struct rcu_head *h) 1730 { 1731 struct page *page = container_of(h, struct page, rcu_head); 1732 1733 __free_slab(page->slab_cache, page); 1734 } 1735 1736 static void free_slab(struct kmem_cache *s, struct page *page) 1737 { 1738 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1739 call_rcu(&page->rcu_head, rcu_free_slab); 1740 } else 1741 __free_slab(s, page); 1742 } 1743 1744 static void discard_slab(struct kmem_cache *s, struct page *page) 1745 { 1746 dec_slabs_node(s, page_to_nid(page), page->objects); 1747 free_slab(s, page); 1748 } 1749 1750 /* 1751 * Management of partially allocated slabs. 1752 */ 1753 static inline void 1754 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1755 { 1756 n->nr_partial++; 1757 if (tail == DEACTIVATE_TO_TAIL) 1758 list_add_tail(&page->lru, &n->partial); 1759 else 1760 list_add(&page->lru, &n->partial); 1761 } 1762 1763 static inline void add_partial(struct kmem_cache_node *n, 1764 struct page *page, int tail) 1765 { 1766 lockdep_assert_held(&n->list_lock); 1767 __add_partial(n, page, tail); 1768 } 1769 1770 static inline void remove_partial(struct kmem_cache_node *n, 1771 struct page *page) 1772 { 1773 lockdep_assert_held(&n->list_lock); 1774 list_del(&page->lru); 1775 n->nr_partial--; 1776 } 1777 1778 /* 1779 * Remove slab from the partial list, freeze it and 1780 * return the pointer to the freelist. 1781 * 1782 * Returns a list of objects or NULL if it fails. 1783 */ 1784 static inline void *acquire_slab(struct kmem_cache *s, 1785 struct kmem_cache_node *n, struct page *page, 1786 int mode, int *objects) 1787 { 1788 void *freelist; 1789 unsigned long counters; 1790 struct page new; 1791 1792 lockdep_assert_held(&n->list_lock); 1793 1794 /* 1795 * Zap the freelist and set the frozen bit. 1796 * The old freelist is the list of objects for the 1797 * per cpu allocation list. 1798 */ 1799 freelist = page->freelist; 1800 counters = page->counters; 1801 new.counters = counters; 1802 *objects = new.objects - new.inuse; 1803 if (mode) { 1804 new.inuse = page->objects; 1805 new.freelist = NULL; 1806 } else { 1807 new.freelist = freelist; 1808 } 1809 1810 VM_BUG_ON(new.frozen); 1811 new.frozen = 1; 1812 1813 if (!__cmpxchg_double_slab(s, page, 1814 freelist, counters, 1815 new.freelist, new.counters, 1816 "acquire_slab")) 1817 return NULL; 1818 1819 remove_partial(n, page); 1820 WARN_ON(!freelist); 1821 return freelist; 1822 } 1823 1824 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1825 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1826 1827 /* 1828 * Try to allocate a partial slab from a specific node. 1829 */ 1830 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1831 struct kmem_cache_cpu *c, gfp_t flags) 1832 { 1833 struct page *page, *page2; 1834 void *object = NULL; 1835 unsigned int available = 0; 1836 int objects; 1837 1838 /* 1839 * Racy check. If we mistakenly see no partial slabs then we 1840 * just allocate an empty slab. If we mistakenly try to get a 1841 * partial slab and there is none available then get_partials() 1842 * will return NULL. 1843 */ 1844 if (!n || !n->nr_partial) 1845 return NULL; 1846 1847 spin_lock(&n->list_lock); 1848 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1849 void *t; 1850 1851 if (!pfmemalloc_match(page, flags)) 1852 continue; 1853 1854 t = acquire_slab(s, n, page, object == NULL, &objects); 1855 if (!t) 1856 break; 1857 1858 available += objects; 1859 if (!object) { 1860 c->page = page; 1861 stat(s, ALLOC_FROM_PARTIAL); 1862 object = t; 1863 } else { 1864 put_cpu_partial(s, page, 0); 1865 stat(s, CPU_PARTIAL_NODE); 1866 } 1867 if (!kmem_cache_has_cpu_partial(s) 1868 || available > slub_cpu_partial(s) / 2) 1869 break; 1870 1871 } 1872 spin_unlock(&n->list_lock); 1873 return object; 1874 } 1875 1876 /* 1877 * Get a page from somewhere. Search in increasing NUMA distances. 1878 */ 1879 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1880 struct kmem_cache_cpu *c) 1881 { 1882 #ifdef CONFIG_NUMA 1883 struct zonelist *zonelist; 1884 struct zoneref *z; 1885 struct zone *zone; 1886 enum zone_type high_zoneidx = gfp_zone(flags); 1887 void *object; 1888 unsigned int cpuset_mems_cookie; 1889 1890 /* 1891 * The defrag ratio allows a configuration of the tradeoffs between 1892 * inter node defragmentation and node local allocations. A lower 1893 * defrag_ratio increases the tendency to do local allocations 1894 * instead of attempting to obtain partial slabs from other nodes. 1895 * 1896 * If the defrag_ratio is set to 0 then kmalloc() always 1897 * returns node local objects. If the ratio is higher then kmalloc() 1898 * may return off node objects because partial slabs are obtained 1899 * from other nodes and filled up. 1900 * 1901 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1902 * (which makes defrag_ratio = 1000) then every (well almost) 1903 * allocation will first attempt to defrag slab caches on other nodes. 1904 * This means scanning over all nodes to look for partial slabs which 1905 * may be expensive if we do it every time we are trying to find a slab 1906 * with available objects. 1907 */ 1908 if (!s->remote_node_defrag_ratio || 1909 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1910 return NULL; 1911 1912 do { 1913 cpuset_mems_cookie = read_mems_allowed_begin(); 1914 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1915 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1916 struct kmem_cache_node *n; 1917 1918 n = get_node(s, zone_to_nid(zone)); 1919 1920 if (n && cpuset_zone_allowed(zone, flags) && 1921 n->nr_partial > s->min_partial) { 1922 object = get_partial_node(s, n, c, flags); 1923 if (object) { 1924 /* 1925 * Don't check read_mems_allowed_retry() 1926 * here - if mems_allowed was updated in 1927 * parallel, that was a harmless race 1928 * between allocation and the cpuset 1929 * update 1930 */ 1931 return object; 1932 } 1933 } 1934 } 1935 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1936 #endif 1937 return NULL; 1938 } 1939 1940 /* 1941 * Get a partial page, lock it and return it. 1942 */ 1943 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1944 struct kmem_cache_cpu *c) 1945 { 1946 void *object; 1947 int searchnode = node; 1948 1949 if (node == NUMA_NO_NODE) 1950 searchnode = numa_mem_id(); 1951 else if (!node_present_pages(node)) 1952 searchnode = node_to_mem_node(node); 1953 1954 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1955 if (object || node != NUMA_NO_NODE) 1956 return object; 1957 1958 return get_any_partial(s, flags, c); 1959 } 1960 1961 #ifdef CONFIG_PREEMPT 1962 /* 1963 * Calculate the next globally unique transaction for disambiguiation 1964 * during cmpxchg. The transactions start with the cpu number and are then 1965 * incremented by CONFIG_NR_CPUS. 1966 */ 1967 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1968 #else 1969 /* 1970 * No preemption supported therefore also no need to check for 1971 * different cpus. 1972 */ 1973 #define TID_STEP 1 1974 #endif 1975 1976 static inline unsigned long next_tid(unsigned long tid) 1977 { 1978 return tid + TID_STEP; 1979 } 1980 1981 static inline unsigned int tid_to_cpu(unsigned long tid) 1982 { 1983 return tid % TID_STEP; 1984 } 1985 1986 static inline unsigned long tid_to_event(unsigned long tid) 1987 { 1988 return tid / TID_STEP; 1989 } 1990 1991 static inline unsigned int init_tid(int cpu) 1992 { 1993 return cpu; 1994 } 1995 1996 static inline void note_cmpxchg_failure(const char *n, 1997 const struct kmem_cache *s, unsigned long tid) 1998 { 1999 #ifdef SLUB_DEBUG_CMPXCHG 2000 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2001 2002 pr_info("%s %s: cmpxchg redo ", n, s->name); 2003 2004 #ifdef CONFIG_PREEMPT 2005 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2006 pr_warn("due to cpu change %d -> %d\n", 2007 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2008 else 2009 #endif 2010 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2011 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2012 tid_to_event(tid), tid_to_event(actual_tid)); 2013 else 2014 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2015 actual_tid, tid, next_tid(tid)); 2016 #endif 2017 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2018 } 2019 2020 static void init_kmem_cache_cpus(struct kmem_cache *s) 2021 { 2022 int cpu; 2023 2024 for_each_possible_cpu(cpu) 2025 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2026 } 2027 2028 /* 2029 * Remove the cpu slab 2030 */ 2031 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2032 void *freelist, struct kmem_cache_cpu *c) 2033 { 2034 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2035 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2036 int lock = 0; 2037 enum slab_modes l = M_NONE, m = M_NONE; 2038 void *nextfree; 2039 int tail = DEACTIVATE_TO_HEAD; 2040 struct page new; 2041 struct page old; 2042 2043 if (page->freelist) { 2044 stat(s, DEACTIVATE_REMOTE_FREES); 2045 tail = DEACTIVATE_TO_TAIL; 2046 } 2047 2048 /* 2049 * Stage one: Free all available per cpu objects back 2050 * to the page freelist while it is still frozen. Leave the 2051 * last one. 2052 * 2053 * There is no need to take the list->lock because the page 2054 * is still frozen. 2055 */ 2056 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2057 void *prior; 2058 unsigned long counters; 2059 2060 do { 2061 prior = page->freelist; 2062 counters = page->counters; 2063 set_freepointer(s, freelist, prior); 2064 new.counters = counters; 2065 new.inuse--; 2066 VM_BUG_ON(!new.frozen); 2067 2068 } while (!__cmpxchg_double_slab(s, page, 2069 prior, counters, 2070 freelist, new.counters, 2071 "drain percpu freelist")); 2072 2073 freelist = nextfree; 2074 } 2075 2076 /* 2077 * Stage two: Ensure that the page is unfrozen while the 2078 * list presence reflects the actual number of objects 2079 * during unfreeze. 2080 * 2081 * We setup the list membership and then perform a cmpxchg 2082 * with the count. If there is a mismatch then the page 2083 * is not unfrozen but the page is on the wrong list. 2084 * 2085 * Then we restart the process which may have to remove 2086 * the page from the list that we just put it on again 2087 * because the number of objects in the slab may have 2088 * changed. 2089 */ 2090 redo: 2091 2092 old.freelist = page->freelist; 2093 old.counters = page->counters; 2094 VM_BUG_ON(!old.frozen); 2095 2096 /* Determine target state of the slab */ 2097 new.counters = old.counters; 2098 if (freelist) { 2099 new.inuse--; 2100 set_freepointer(s, freelist, old.freelist); 2101 new.freelist = freelist; 2102 } else 2103 new.freelist = old.freelist; 2104 2105 new.frozen = 0; 2106 2107 if (!new.inuse && n->nr_partial >= s->min_partial) 2108 m = M_FREE; 2109 else if (new.freelist) { 2110 m = M_PARTIAL; 2111 if (!lock) { 2112 lock = 1; 2113 /* 2114 * Taking the spinlock removes the possiblity 2115 * that acquire_slab() will see a slab page that 2116 * is frozen 2117 */ 2118 spin_lock(&n->list_lock); 2119 } 2120 } else { 2121 m = M_FULL; 2122 if (kmem_cache_debug(s) && !lock) { 2123 lock = 1; 2124 /* 2125 * This also ensures that the scanning of full 2126 * slabs from diagnostic functions will not see 2127 * any frozen slabs. 2128 */ 2129 spin_lock(&n->list_lock); 2130 } 2131 } 2132 2133 if (l != m) { 2134 if (l == M_PARTIAL) 2135 remove_partial(n, page); 2136 else if (l == M_FULL) 2137 remove_full(s, n, page); 2138 2139 if (m == M_PARTIAL) 2140 add_partial(n, page, tail); 2141 else if (m == M_FULL) 2142 add_full(s, n, page); 2143 } 2144 2145 l = m; 2146 if (!__cmpxchg_double_slab(s, page, 2147 old.freelist, old.counters, 2148 new.freelist, new.counters, 2149 "unfreezing slab")) 2150 goto redo; 2151 2152 if (lock) 2153 spin_unlock(&n->list_lock); 2154 2155 if (m == M_PARTIAL) 2156 stat(s, tail); 2157 else if (m == M_FULL) 2158 stat(s, DEACTIVATE_FULL); 2159 else if (m == M_FREE) { 2160 stat(s, DEACTIVATE_EMPTY); 2161 discard_slab(s, page); 2162 stat(s, FREE_SLAB); 2163 } 2164 2165 c->page = NULL; 2166 c->freelist = NULL; 2167 } 2168 2169 /* 2170 * Unfreeze all the cpu partial slabs. 2171 * 2172 * This function must be called with interrupts disabled 2173 * for the cpu using c (or some other guarantee must be there 2174 * to guarantee no concurrent accesses). 2175 */ 2176 static void unfreeze_partials(struct kmem_cache *s, 2177 struct kmem_cache_cpu *c) 2178 { 2179 #ifdef CONFIG_SLUB_CPU_PARTIAL 2180 struct kmem_cache_node *n = NULL, *n2 = NULL; 2181 struct page *page, *discard_page = NULL; 2182 2183 while ((page = c->partial)) { 2184 struct page new; 2185 struct page old; 2186 2187 c->partial = page->next; 2188 2189 n2 = get_node(s, page_to_nid(page)); 2190 if (n != n2) { 2191 if (n) 2192 spin_unlock(&n->list_lock); 2193 2194 n = n2; 2195 spin_lock(&n->list_lock); 2196 } 2197 2198 do { 2199 2200 old.freelist = page->freelist; 2201 old.counters = page->counters; 2202 VM_BUG_ON(!old.frozen); 2203 2204 new.counters = old.counters; 2205 new.freelist = old.freelist; 2206 2207 new.frozen = 0; 2208 2209 } while (!__cmpxchg_double_slab(s, page, 2210 old.freelist, old.counters, 2211 new.freelist, new.counters, 2212 "unfreezing slab")); 2213 2214 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2215 page->next = discard_page; 2216 discard_page = page; 2217 } else { 2218 add_partial(n, page, DEACTIVATE_TO_TAIL); 2219 stat(s, FREE_ADD_PARTIAL); 2220 } 2221 } 2222 2223 if (n) 2224 spin_unlock(&n->list_lock); 2225 2226 while (discard_page) { 2227 page = discard_page; 2228 discard_page = discard_page->next; 2229 2230 stat(s, DEACTIVATE_EMPTY); 2231 discard_slab(s, page); 2232 stat(s, FREE_SLAB); 2233 } 2234 #endif 2235 } 2236 2237 /* 2238 * Put a page that was just frozen (in __slab_free) into a partial page 2239 * slot if available. 2240 * 2241 * If we did not find a slot then simply move all the partials to the 2242 * per node partial list. 2243 */ 2244 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2245 { 2246 #ifdef CONFIG_SLUB_CPU_PARTIAL 2247 struct page *oldpage; 2248 int pages; 2249 int pobjects; 2250 2251 preempt_disable(); 2252 do { 2253 pages = 0; 2254 pobjects = 0; 2255 oldpage = this_cpu_read(s->cpu_slab->partial); 2256 2257 if (oldpage) { 2258 pobjects = oldpage->pobjects; 2259 pages = oldpage->pages; 2260 if (drain && pobjects > s->cpu_partial) { 2261 unsigned long flags; 2262 /* 2263 * partial array is full. Move the existing 2264 * set to the per node partial list. 2265 */ 2266 local_irq_save(flags); 2267 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2268 local_irq_restore(flags); 2269 oldpage = NULL; 2270 pobjects = 0; 2271 pages = 0; 2272 stat(s, CPU_PARTIAL_DRAIN); 2273 } 2274 } 2275 2276 pages++; 2277 pobjects += page->objects - page->inuse; 2278 2279 page->pages = pages; 2280 page->pobjects = pobjects; 2281 page->next = oldpage; 2282 2283 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2284 != oldpage); 2285 if (unlikely(!s->cpu_partial)) { 2286 unsigned long flags; 2287 2288 local_irq_save(flags); 2289 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2290 local_irq_restore(flags); 2291 } 2292 preempt_enable(); 2293 #endif 2294 } 2295 2296 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2297 { 2298 stat(s, CPUSLAB_FLUSH); 2299 deactivate_slab(s, c->page, c->freelist, c); 2300 2301 c->tid = next_tid(c->tid); 2302 } 2303 2304 /* 2305 * Flush cpu slab. 2306 * 2307 * Called from IPI handler with interrupts disabled. 2308 */ 2309 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2310 { 2311 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2312 2313 if (c->page) 2314 flush_slab(s, c); 2315 2316 unfreeze_partials(s, c); 2317 } 2318 2319 static void flush_cpu_slab(void *d) 2320 { 2321 struct kmem_cache *s = d; 2322 2323 __flush_cpu_slab(s, smp_processor_id()); 2324 } 2325 2326 static bool has_cpu_slab(int cpu, void *info) 2327 { 2328 struct kmem_cache *s = info; 2329 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2330 2331 return c->page || slub_percpu_partial(c); 2332 } 2333 2334 static void flush_all(struct kmem_cache *s) 2335 { 2336 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2337 } 2338 2339 /* 2340 * Use the cpu notifier to insure that the cpu slabs are flushed when 2341 * necessary. 2342 */ 2343 static int slub_cpu_dead(unsigned int cpu) 2344 { 2345 struct kmem_cache *s; 2346 unsigned long flags; 2347 2348 mutex_lock(&slab_mutex); 2349 list_for_each_entry(s, &slab_caches, list) { 2350 local_irq_save(flags); 2351 __flush_cpu_slab(s, cpu); 2352 local_irq_restore(flags); 2353 } 2354 mutex_unlock(&slab_mutex); 2355 return 0; 2356 } 2357 2358 /* 2359 * Check if the objects in a per cpu structure fit numa 2360 * locality expectations. 2361 */ 2362 static inline int node_match(struct page *page, int node) 2363 { 2364 #ifdef CONFIG_NUMA 2365 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2366 return 0; 2367 #endif 2368 return 1; 2369 } 2370 2371 #ifdef CONFIG_SLUB_DEBUG 2372 static int count_free(struct page *page) 2373 { 2374 return page->objects - page->inuse; 2375 } 2376 2377 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2378 { 2379 return atomic_long_read(&n->total_objects); 2380 } 2381 #endif /* CONFIG_SLUB_DEBUG */ 2382 2383 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2384 static unsigned long count_partial(struct kmem_cache_node *n, 2385 int (*get_count)(struct page *)) 2386 { 2387 unsigned long flags; 2388 unsigned long x = 0; 2389 struct page *page; 2390 2391 spin_lock_irqsave(&n->list_lock, flags); 2392 list_for_each_entry(page, &n->partial, lru) 2393 x += get_count(page); 2394 spin_unlock_irqrestore(&n->list_lock, flags); 2395 return x; 2396 } 2397 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2398 2399 static noinline void 2400 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2401 { 2402 #ifdef CONFIG_SLUB_DEBUG 2403 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2404 DEFAULT_RATELIMIT_BURST); 2405 int node; 2406 struct kmem_cache_node *n; 2407 2408 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2409 return; 2410 2411 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2412 nid, gfpflags, &gfpflags); 2413 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2414 s->name, s->object_size, s->size, oo_order(s->oo), 2415 oo_order(s->min)); 2416 2417 if (oo_order(s->min) > get_order(s->object_size)) 2418 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2419 s->name); 2420 2421 for_each_kmem_cache_node(s, node, n) { 2422 unsigned long nr_slabs; 2423 unsigned long nr_objs; 2424 unsigned long nr_free; 2425 2426 nr_free = count_partial(n, count_free); 2427 nr_slabs = node_nr_slabs(n); 2428 nr_objs = node_nr_objs(n); 2429 2430 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2431 node, nr_slabs, nr_objs, nr_free); 2432 } 2433 #endif 2434 } 2435 2436 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2437 int node, struct kmem_cache_cpu **pc) 2438 { 2439 void *freelist; 2440 struct kmem_cache_cpu *c = *pc; 2441 struct page *page; 2442 2443 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2444 2445 freelist = get_partial(s, flags, node, c); 2446 2447 if (freelist) 2448 return freelist; 2449 2450 page = new_slab(s, flags, node); 2451 if (page) { 2452 c = raw_cpu_ptr(s->cpu_slab); 2453 if (c->page) 2454 flush_slab(s, c); 2455 2456 /* 2457 * No other reference to the page yet so we can 2458 * muck around with it freely without cmpxchg 2459 */ 2460 freelist = page->freelist; 2461 page->freelist = NULL; 2462 2463 stat(s, ALLOC_SLAB); 2464 c->page = page; 2465 *pc = c; 2466 } else 2467 freelist = NULL; 2468 2469 return freelist; 2470 } 2471 2472 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2473 { 2474 if (unlikely(PageSlabPfmemalloc(page))) 2475 return gfp_pfmemalloc_allowed(gfpflags); 2476 2477 return true; 2478 } 2479 2480 /* 2481 * Check the page->freelist of a page and either transfer the freelist to the 2482 * per cpu freelist or deactivate the page. 2483 * 2484 * The page is still frozen if the return value is not NULL. 2485 * 2486 * If this function returns NULL then the page has been unfrozen. 2487 * 2488 * This function must be called with interrupt disabled. 2489 */ 2490 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2491 { 2492 struct page new; 2493 unsigned long counters; 2494 void *freelist; 2495 2496 do { 2497 freelist = page->freelist; 2498 counters = page->counters; 2499 2500 new.counters = counters; 2501 VM_BUG_ON(!new.frozen); 2502 2503 new.inuse = page->objects; 2504 new.frozen = freelist != NULL; 2505 2506 } while (!__cmpxchg_double_slab(s, page, 2507 freelist, counters, 2508 NULL, new.counters, 2509 "get_freelist")); 2510 2511 return freelist; 2512 } 2513 2514 /* 2515 * Slow path. The lockless freelist is empty or we need to perform 2516 * debugging duties. 2517 * 2518 * Processing is still very fast if new objects have been freed to the 2519 * regular freelist. In that case we simply take over the regular freelist 2520 * as the lockless freelist and zap the regular freelist. 2521 * 2522 * If that is not working then we fall back to the partial lists. We take the 2523 * first element of the freelist as the object to allocate now and move the 2524 * rest of the freelist to the lockless freelist. 2525 * 2526 * And if we were unable to get a new slab from the partial slab lists then 2527 * we need to allocate a new slab. This is the slowest path since it involves 2528 * a call to the page allocator and the setup of a new slab. 2529 * 2530 * Version of __slab_alloc to use when we know that interrupts are 2531 * already disabled (which is the case for bulk allocation). 2532 */ 2533 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2534 unsigned long addr, struct kmem_cache_cpu *c) 2535 { 2536 void *freelist; 2537 struct page *page; 2538 2539 page = c->page; 2540 if (!page) 2541 goto new_slab; 2542 redo: 2543 2544 if (unlikely(!node_match(page, node))) { 2545 int searchnode = node; 2546 2547 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2548 searchnode = node_to_mem_node(node); 2549 2550 if (unlikely(!node_match(page, searchnode))) { 2551 stat(s, ALLOC_NODE_MISMATCH); 2552 deactivate_slab(s, page, c->freelist, c); 2553 goto new_slab; 2554 } 2555 } 2556 2557 /* 2558 * By rights, we should be searching for a slab page that was 2559 * PFMEMALLOC but right now, we are losing the pfmemalloc 2560 * information when the page leaves the per-cpu allocator 2561 */ 2562 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2563 deactivate_slab(s, page, c->freelist, c); 2564 goto new_slab; 2565 } 2566 2567 /* must check again c->freelist in case of cpu migration or IRQ */ 2568 freelist = c->freelist; 2569 if (freelist) 2570 goto load_freelist; 2571 2572 freelist = get_freelist(s, page); 2573 2574 if (!freelist) { 2575 c->page = NULL; 2576 stat(s, DEACTIVATE_BYPASS); 2577 goto new_slab; 2578 } 2579 2580 stat(s, ALLOC_REFILL); 2581 2582 load_freelist: 2583 /* 2584 * freelist is pointing to the list of objects to be used. 2585 * page is pointing to the page from which the objects are obtained. 2586 * That page must be frozen for per cpu allocations to work. 2587 */ 2588 VM_BUG_ON(!c->page->frozen); 2589 c->freelist = get_freepointer(s, freelist); 2590 c->tid = next_tid(c->tid); 2591 return freelist; 2592 2593 new_slab: 2594 2595 if (slub_percpu_partial(c)) { 2596 page = c->page = slub_percpu_partial(c); 2597 slub_set_percpu_partial(c, page); 2598 stat(s, CPU_PARTIAL_ALLOC); 2599 goto redo; 2600 } 2601 2602 freelist = new_slab_objects(s, gfpflags, node, &c); 2603 2604 if (unlikely(!freelist)) { 2605 slab_out_of_memory(s, gfpflags, node); 2606 return NULL; 2607 } 2608 2609 page = c->page; 2610 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2611 goto load_freelist; 2612 2613 /* Only entered in the debug case */ 2614 if (kmem_cache_debug(s) && 2615 !alloc_debug_processing(s, page, freelist, addr)) 2616 goto new_slab; /* Slab failed checks. Next slab needed */ 2617 2618 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2619 return freelist; 2620 } 2621 2622 /* 2623 * Another one that disabled interrupt and compensates for possible 2624 * cpu changes by refetching the per cpu area pointer. 2625 */ 2626 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2627 unsigned long addr, struct kmem_cache_cpu *c) 2628 { 2629 void *p; 2630 unsigned long flags; 2631 2632 local_irq_save(flags); 2633 #ifdef CONFIG_PREEMPT 2634 /* 2635 * We may have been preempted and rescheduled on a different 2636 * cpu before disabling interrupts. Need to reload cpu area 2637 * pointer. 2638 */ 2639 c = this_cpu_ptr(s->cpu_slab); 2640 #endif 2641 2642 p = ___slab_alloc(s, gfpflags, node, addr, c); 2643 local_irq_restore(flags); 2644 return p; 2645 } 2646 2647 /* 2648 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2649 * have the fastpath folded into their functions. So no function call 2650 * overhead for requests that can be satisfied on the fastpath. 2651 * 2652 * The fastpath works by first checking if the lockless freelist can be used. 2653 * If not then __slab_alloc is called for slow processing. 2654 * 2655 * Otherwise we can simply pick the next object from the lockless free list. 2656 */ 2657 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2658 gfp_t gfpflags, int node, unsigned long addr) 2659 { 2660 void *object; 2661 struct kmem_cache_cpu *c; 2662 struct page *page; 2663 unsigned long tid; 2664 2665 s = slab_pre_alloc_hook(s, gfpflags); 2666 if (!s) 2667 return NULL; 2668 redo: 2669 /* 2670 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2671 * enabled. We may switch back and forth between cpus while 2672 * reading from one cpu area. That does not matter as long 2673 * as we end up on the original cpu again when doing the cmpxchg. 2674 * 2675 * We should guarantee that tid and kmem_cache are retrieved on 2676 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2677 * to check if it is matched or not. 2678 */ 2679 do { 2680 tid = this_cpu_read(s->cpu_slab->tid); 2681 c = raw_cpu_ptr(s->cpu_slab); 2682 } while (IS_ENABLED(CONFIG_PREEMPT) && 2683 unlikely(tid != READ_ONCE(c->tid))); 2684 2685 /* 2686 * Irqless object alloc/free algorithm used here depends on sequence 2687 * of fetching cpu_slab's data. tid should be fetched before anything 2688 * on c to guarantee that object and page associated with previous tid 2689 * won't be used with current tid. If we fetch tid first, object and 2690 * page could be one associated with next tid and our alloc/free 2691 * request will be failed. In this case, we will retry. So, no problem. 2692 */ 2693 barrier(); 2694 2695 /* 2696 * The transaction ids are globally unique per cpu and per operation on 2697 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2698 * occurs on the right processor and that there was no operation on the 2699 * linked list in between. 2700 */ 2701 2702 object = c->freelist; 2703 page = c->page; 2704 if (unlikely(!object || !node_match(page, node))) { 2705 object = __slab_alloc(s, gfpflags, node, addr, c); 2706 stat(s, ALLOC_SLOWPATH); 2707 } else { 2708 void *next_object = get_freepointer_safe(s, object); 2709 2710 /* 2711 * The cmpxchg will only match if there was no additional 2712 * operation and if we are on the right processor. 2713 * 2714 * The cmpxchg does the following atomically (without lock 2715 * semantics!) 2716 * 1. Relocate first pointer to the current per cpu area. 2717 * 2. Verify that tid and freelist have not been changed 2718 * 3. If they were not changed replace tid and freelist 2719 * 2720 * Since this is without lock semantics the protection is only 2721 * against code executing on this cpu *not* from access by 2722 * other cpus. 2723 */ 2724 if (unlikely(!this_cpu_cmpxchg_double( 2725 s->cpu_slab->freelist, s->cpu_slab->tid, 2726 object, tid, 2727 next_object, next_tid(tid)))) { 2728 2729 note_cmpxchg_failure("slab_alloc", s, tid); 2730 goto redo; 2731 } 2732 prefetch_freepointer(s, next_object); 2733 stat(s, ALLOC_FASTPATH); 2734 } 2735 2736 if (unlikely(gfpflags & __GFP_ZERO) && object) 2737 memset(object, 0, s->object_size); 2738 2739 slab_post_alloc_hook(s, gfpflags, 1, &object); 2740 2741 return object; 2742 } 2743 2744 static __always_inline void *slab_alloc(struct kmem_cache *s, 2745 gfp_t gfpflags, unsigned long addr) 2746 { 2747 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2748 } 2749 2750 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2751 { 2752 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2753 2754 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2755 s->size, gfpflags); 2756 2757 return ret; 2758 } 2759 EXPORT_SYMBOL(kmem_cache_alloc); 2760 2761 #ifdef CONFIG_TRACING 2762 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2763 { 2764 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2765 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2766 ret = kasan_kmalloc(s, ret, size, gfpflags); 2767 return ret; 2768 } 2769 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2770 #endif 2771 2772 #ifdef CONFIG_NUMA 2773 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2774 { 2775 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2776 2777 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2778 s->object_size, s->size, gfpflags, node); 2779 2780 return ret; 2781 } 2782 EXPORT_SYMBOL(kmem_cache_alloc_node); 2783 2784 #ifdef CONFIG_TRACING 2785 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2786 gfp_t gfpflags, 2787 int node, size_t size) 2788 { 2789 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2790 2791 trace_kmalloc_node(_RET_IP_, ret, 2792 size, s->size, gfpflags, node); 2793 2794 ret = kasan_kmalloc(s, ret, size, gfpflags); 2795 return ret; 2796 } 2797 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2798 #endif 2799 #endif 2800 2801 /* 2802 * Slow path handling. This may still be called frequently since objects 2803 * have a longer lifetime than the cpu slabs in most processing loads. 2804 * 2805 * So we still attempt to reduce cache line usage. Just take the slab 2806 * lock and free the item. If there is no additional partial page 2807 * handling required then we can return immediately. 2808 */ 2809 static void __slab_free(struct kmem_cache *s, struct page *page, 2810 void *head, void *tail, int cnt, 2811 unsigned long addr) 2812 2813 { 2814 void *prior; 2815 int was_frozen; 2816 struct page new; 2817 unsigned long counters; 2818 struct kmem_cache_node *n = NULL; 2819 unsigned long uninitialized_var(flags); 2820 2821 stat(s, FREE_SLOWPATH); 2822 2823 if (kmem_cache_debug(s) && 2824 !free_debug_processing(s, page, head, tail, cnt, addr)) 2825 return; 2826 2827 do { 2828 if (unlikely(n)) { 2829 spin_unlock_irqrestore(&n->list_lock, flags); 2830 n = NULL; 2831 } 2832 prior = page->freelist; 2833 counters = page->counters; 2834 set_freepointer(s, tail, prior); 2835 new.counters = counters; 2836 was_frozen = new.frozen; 2837 new.inuse -= cnt; 2838 if ((!new.inuse || !prior) && !was_frozen) { 2839 2840 if (kmem_cache_has_cpu_partial(s) && !prior) { 2841 2842 /* 2843 * Slab was on no list before and will be 2844 * partially empty 2845 * We can defer the list move and instead 2846 * freeze it. 2847 */ 2848 new.frozen = 1; 2849 2850 } else { /* Needs to be taken off a list */ 2851 2852 n = get_node(s, page_to_nid(page)); 2853 /* 2854 * Speculatively acquire the list_lock. 2855 * If the cmpxchg does not succeed then we may 2856 * drop the list_lock without any processing. 2857 * 2858 * Otherwise the list_lock will synchronize with 2859 * other processors updating the list of slabs. 2860 */ 2861 spin_lock_irqsave(&n->list_lock, flags); 2862 2863 } 2864 } 2865 2866 } while (!cmpxchg_double_slab(s, page, 2867 prior, counters, 2868 head, new.counters, 2869 "__slab_free")); 2870 2871 if (likely(!n)) { 2872 2873 /* 2874 * If we just froze the page then put it onto the 2875 * per cpu partial list. 2876 */ 2877 if (new.frozen && !was_frozen) { 2878 put_cpu_partial(s, page, 1); 2879 stat(s, CPU_PARTIAL_FREE); 2880 } 2881 /* 2882 * The list lock was not taken therefore no list 2883 * activity can be necessary. 2884 */ 2885 if (was_frozen) 2886 stat(s, FREE_FROZEN); 2887 return; 2888 } 2889 2890 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2891 goto slab_empty; 2892 2893 /* 2894 * Objects left in the slab. If it was not on the partial list before 2895 * then add it. 2896 */ 2897 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2898 if (kmem_cache_debug(s)) 2899 remove_full(s, n, page); 2900 add_partial(n, page, DEACTIVATE_TO_TAIL); 2901 stat(s, FREE_ADD_PARTIAL); 2902 } 2903 spin_unlock_irqrestore(&n->list_lock, flags); 2904 return; 2905 2906 slab_empty: 2907 if (prior) { 2908 /* 2909 * Slab on the partial list. 2910 */ 2911 remove_partial(n, page); 2912 stat(s, FREE_REMOVE_PARTIAL); 2913 } else { 2914 /* Slab must be on the full list */ 2915 remove_full(s, n, page); 2916 } 2917 2918 spin_unlock_irqrestore(&n->list_lock, flags); 2919 stat(s, FREE_SLAB); 2920 discard_slab(s, page); 2921 } 2922 2923 /* 2924 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2925 * can perform fastpath freeing without additional function calls. 2926 * 2927 * The fastpath is only possible if we are freeing to the current cpu slab 2928 * of this processor. This typically the case if we have just allocated 2929 * the item before. 2930 * 2931 * If fastpath is not possible then fall back to __slab_free where we deal 2932 * with all sorts of special processing. 2933 * 2934 * Bulk free of a freelist with several objects (all pointing to the 2935 * same page) possible by specifying head and tail ptr, plus objects 2936 * count (cnt). Bulk free indicated by tail pointer being set. 2937 */ 2938 static __always_inline void do_slab_free(struct kmem_cache *s, 2939 struct page *page, void *head, void *tail, 2940 int cnt, unsigned long addr) 2941 { 2942 void *tail_obj = tail ? : head; 2943 struct kmem_cache_cpu *c; 2944 unsigned long tid; 2945 redo: 2946 /* 2947 * Determine the currently cpus per cpu slab. 2948 * The cpu may change afterward. However that does not matter since 2949 * data is retrieved via this pointer. If we are on the same cpu 2950 * during the cmpxchg then the free will succeed. 2951 */ 2952 do { 2953 tid = this_cpu_read(s->cpu_slab->tid); 2954 c = raw_cpu_ptr(s->cpu_slab); 2955 } while (IS_ENABLED(CONFIG_PREEMPT) && 2956 unlikely(tid != READ_ONCE(c->tid))); 2957 2958 /* Same with comment on barrier() in slab_alloc_node() */ 2959 barrier(); 2960 2961 if (likely(page == c->page)) { 2962 set_freepointer(s, tail_obj, c->freelist); 2963 2964 if (unlikely(!this_cpu_cmpxchg_double( 2965 s->cpu_slab->freelist, s->cpu_slab->tid, 2966 c->freelist, tid, 2967 head, next_tid(tid)))) { 2968 2969 note_cmpxchg_failure("slab_free", s, tid); 2970 goto redo; 2971 } 2972 stat(s, FREE_FASTPATH); 2973 } else 2974 __slab_free(s, page, head, tail_obj, cnt, addr); 2975 2976 } 2977 2978 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2979 void *head, void *tail, int cnt, 2980 unsigned long addr) 2981 { 2982 /* 2983 * With KASAN enabled slab_free_freelist_hook modifies the freelist 2984 * to remove objects, whose reuse must be delayed. 2985 */ 2986 if (slab_free_freelist_hook(s, &head, &tail)) 2987 do_slab_free(s, page, head, tail, cnt, addr); 2988 } 2989 2990 #ifdef CONFIG_KASAN_GENERIC 2991 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 2992 { 2993 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 2994 } 2995 #endif 2996 2997 void kmem_cache_free(struct kmem_cache *s, void *x) 2998 { 2999 s = cache_from_obj(s, x); 3000 if (!s) 3001 return; 3002 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3003 trace_kmem_cache_free(_RET_IP_, x); 3004 } 3005 EXPORT_SYMBOL(kmem_cache_free); 3006 3007 struct detached_freelist { 3008 struct page *page; 3009 void *tail; 3010 void *freelist; 3011 int cnt; 3012 struct kmem_cache *s; 3013 }; 3014 3015 /* 3016 * This function progressively scans the array with free objects (with 3017 * a limited look ahead) and extract objects belonging to the same 3018 * page. It builds a detached freelist directly within the given 3019 * page/objects. This can happen without any need for 3020 * synchronization, because the objects are owned by running process. 3021 * The freelist is build up as a single linked list in the objects. 3022 * The idea is, that this detached freelist can then be bulk 3023 * transferred to the real freelist(s), but only requiring a single 3024 * synchronization primitive. Look ahead in the array is limited due 3025 * to performance reasons. 3026 */ 3027 static inline 3028 int build_detached_freelist(struct kmem_cache *s, size_t size, 3029 void **p, struct detached_freelist *df) 3030 { 3031 size_t first_skipped_index = 0; 3032 int lookahead = 3; 3033 void *object; 3034 struct page *page; 3035 3036 /* Always re-init detached_freelist */ 3037 df->page = NULL; 3038 3039 do { 3040 object = p[--size]; 3041 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3042 } while (!object && size); 3043 3044 if (!object) 3045 return 0; 3046 3047 page = virt_to_head_page(object); 3048 if (!s) { 3049 /* Handle kalloc'ed objects */ 3050 if (unlikely(!PageSlab(page))) { 3051 BUG_ON(!PageCompound(page)); 3052 kfree_hook(object); 3053 __free_pages(page, compound_order(page)); 3054 p[size] = NULL; /* mark object processed */ 3055 return size; 3056 } 3057 /* Derive kmem_cache from object */ 3058 df->s = page->slab_cache; 3059 } else { 3060 df->s = cache_from_obj(s, object); /* Support for memcg */ 3061 } 3062 3063 /* Start new detached freelist */ 3064 df->page = page; 3065 set_freepointer(df->s, object, NULL); 3066 df->tail = object; 3067 df->freelist = object; 3068 p[size] = NULL; /* mark object processed */ 3069 df->cnt = 1; 3070 3071 while (size) { 3072 object = p[--size]; 3073 if (!object) 3074 continue; /* Skip processed objects */ 3075 3076 /* df->page is always set at this point */ 3077 if (df->page == virt_to_head_page(object)) { 3078 /* Opportunity build freelist */ 3079 set_freepointer(df->s, object, df->freelist); 3080 df->freelist = object; 3081 df->cnt++; 3082 p[size] = NULL; /* mark object processed */ 3083 3084 continue; 3085 } 3086 3087 /* Limit look ahead search */ 3088 if (!--lookahead) 3089 break; 3090 3091 if (!first_skipped_index) 3092 first_skipped_index = size + 1; 3093 } 3094 3095 return first_skipped_index; 3096 } 3097 3098 /* Note that interrupts must be enabled when calling this function. */ 3099 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3100 { 3101 if (WARN_ON(!size)) 3102 return; 3103 3104 do { 3105 struct detached_freelist df; 3106 3107 size = build_detached_freelist(s, size, p, &df); 3108 if (!df.page) 3109 continue; 3110 3111 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3112 } while (likely(size)); 3113 } 3114 EXPORT_SYMBOL(kmem_cache_free_bulk); 3115 3116 /* Note that interrupts must be enabled when calling this function. */ 3117 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3118 void **p) 3119 { 3120 struct kmem_cache_cpu *c; 3121 int i; 3122 3123 /* memcg and kmem_cache debug support */ 3124 s = slab_pre_alloc_hook(s, flags); 3125 if (unlikely(!s)) 3126 return false; 3127 /* 3128 * Drain objects in the per cpu slab, while disabling local 3129 * IRQs, which protects against PREEMPT and interrupts 3130 * handlers invoking normal fastpath. 3131 */ 3132 local_irq_disable(); 3133 c = this_cpu_ptr(s->cpu_slab); 3134 3135 for (i = 0; i < size; i++) { 3136 void *object = c->freelist; 3137 3138 if (unlikely(!object)) { 3139 /* 3140 * Invoking slow path likely have side-effect 3141 * of re-populating per CPU c->freelist 3142 */ 3143 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3144 _RET_IP_, c); 3145 if (unlikely(!p[i])) 3146 goto error; 3147 3148 c = this_cpu_ptr(s->cpu_slab); 3149 continue; /* goto for-loop */ 3150 } 3151 c->freelist = get_freepointer(s, object); 3152 p[i] = object; 3153 } 3154 c->tid = next_tid(c->tid); 3155 local_irq_enable(); 3156 3157 /* Clear memory outside IRQ disabled fastpath loop */ 3158 if (unlikely(flags & __GFP_ZERO)) { 3159 int j; 3160 3161 for (j = 0; j < i; j++) 3162 memset(p[j], 0, s->object_size); 3163 } 3164 3165 /* memcg and kmem_cache debug support */ 3166 slab_post_alloc_hook(s, flags, size, p); 3167 return i; 3168 error: 3169 local_irq_enable(); 3170 slab_post_alloc_hook(s, flags, i, p); 3171 __kmem_cache_free_bulk(s, i, p); 3172 return 0; 3173 } 3174 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3175 3176 3177 /* 3178 * Object placement in a slab is made very easy because we always start at 3179 * offset 0. If we tune the size of the object to the alignment then we can 3180 * get the required alignment by putting one properly sized object after 3181 * another. 3182 * 3183 * Notice that the allocation order determines the sizes of the per cpu 3184 * caches. Each processor has always one slab available for allocations. 3185 * Increasing the allocation order reduces the number of times that slabs 3186 * must be moved on and off the partial lists and is therefore a factor in 3187 * locking overhead. 3188 */ 3189 3190 /* 3191 * Mininum / Maximum order of slab pages. This influences locking overhead 3192 * and slab fragmentation. A higher order reduces the number of partial slabs 3193 * and increases the number of allocations possible without having to 3194 * take the list_lock. 3195 */ 3196 static unsigned int slub_min_order; 3197 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3198 static unsigned int slub_min_objects; 3199 3200 /* 3201 * Calculate the order of allocation given an slab object size. 3202 * 3203 * The order of allocation has significant impact on performance and other 3204 * system components. Generally order 0 allocations should be preferred since 3205 * order 0 does not cause fragmentation in the page allocator. Larger objects 3206 * be problematic to put into order 0 slabs because there may be too much 3207 * unused space left. We go to a higher order if more than 1/16th of the slab 3208 * would be wasted. 3209 * 3210 * In order to reach satisfactory performance we must ensure that a minimum 3211 * number of objects is in one slab. Otherwise we may generate too much 3212 * activity on the partial lists which requires taking the list_lock. This is 3213 * less a concern for large slabs though which are rarely used. 3214 * 3215 * slub_max_order specifies the order where we begin to stop considering the 3216 * number of objects in a slab as critical. If we reach slub_max_order then 3217 * we try to keep the page order as low as possible. So we accept more waste 3218 * of space in favor of a small page order. 3219 * 3220 * Higher order allocations also allow the placement of more objects in a 3221 * slab and thereby reduce object handling overhead. If the user has 3222 * requested a higher mininum order then we start with that one instead of 3223 * the smallest order which will fit the object. 3224 */ 3225 static inline unsigned int slab_order(unsigned int size, 3226 unsigned int min_objects, unsigned int max_order, 3227 unsigned int fract_leftover) 3228 { 3229 unsigned int min_order = slub_min_order; 3230 unsigned int order; 3231 3232 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3233 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3234 3235 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3236 order <= max_order; order++) { 3237 3238 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3239 unsigned int rem; 3240 3241 rem = slab_size % size; 3242 3243 if (rem <= slab_size / fract_leftover) 3244 break; 3245 } 3246 3247 return order; 3248 } 3249 3250 static inline int calculate_order(unsigned int size) 3251 { 3252 unsigned int order; 3253 unsigned int min_objects; 3254 unsigned int max_objects; 3255 3256 /* 3257 * Attempt to find best configuration for a slab. This 3258 * works by first attempting to generate a layout with 3259 * the best configuration and backing off gradually. 3260 * 3261 * First we increase the acceptable waste in a slab. Then 3262 * we reduce the minimum objects required in a slab. 3263 */ 3264 min_objects = slub_min_objects; 3265 if (!min_objects) 3266 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3267 max_objects = order_objects(slub_max_order, size); 3268 min_objects = min(min_objects, max_objects); 3269 3270 while (min_objects > 1) { 3271 unsigned int fraction; 3272 3273 fraction = 16; 3274 while (fraction >= 4) { 3275 order = slab_order(size, min_objects, 3276 slub_max_order, fraction); 3277 if (order <= slub_max_order) 3278 return order; 3279 fraction /= 2; 3280 } 3281 min_objects--; 3282 } 3283 3284 /* 3285 * We were unable to place multiple objects in a slab. Now 3286 * lets see if we can place a single object there. 3287 */ 3288 order = slab_order(size, 1, slub_max_order, 1); 3289 if (order <= slub_max_order) 3290 return order; 3291 3292 /* 3293 * Doh this slab cannot be placed using slub_max_order. 3294 */ 3295 order = slab_order(size, 1, MAX_ORDER, 1); 3296 if (order < MAX_ORDER) 3297 return order; 3298 return -ENOSYS; 3299 } 3300 3301 static void 3302 init_kmem_cache_node(struct kmem_cache_node *n) 3303 { 3304 n->nr_partial = 0; 3305 spin_lock_init(&n->list_lock); 3306 INIT_LIST_HEAD(&n->partial); 3307 #ifdef CONFIG_SLUB_DEBUG 3308 atomic_long_set(&n->nr_slabs, 0); 3309 atomic_long_set(&n->total_objects, 0); 3310 INIT_LIST_HEAD(&n->full); 3311 #endif 3312 } 3313 3314 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3315 { 3316 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3317 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3318 3319 /* 3320 * Must align to double word boundary for the double cmpxchg 3321 * instructions to work; see __pcpu_double_call_return_bool(). 3322 */ 3323 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3324 2 * sizeof(void *)); 3325 3326 if (!s->cpu_slab) 3327 return 0; 3328 3329 init_kmem_cache_cpus(s); 3330 3331 return 1; 3332 } 3333 3334 static struct kmem_cache *kmem_cache_node; 3335 3336 /* 3337 * No kmalloc_node yet so do it by hand. We know that this is the first 3338 * slab on the node for this slabcache. There are no concurrent accesses 3339 * possible. 3340 * 3341 * Note that this function only works on the kmem_cache_node 3342 * when allocating for the kmem_cache_node. This is used for bootstrapping 3343 * memory on a fresh node that has no slab structures yet. 3344 */ 3345 static void early_kmem_cache_node_alloc(int node) 3346 { 3347 struct page *page; 3348 struct kmem_cache_node *n; 3349 3350 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3351 3352 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3353 3354 BUG_ON(!page); 3355 if (page_to_nid(page) != node) { 3356 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3357 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3358 } 3359 3360 n = page->freelist; 3361 BUG_ON(!n); 3362 #ifdef CONFIG_SLUB_DEBUG 3363 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3364 init_tracking(kmem_cache_node, n); 3365 #endif 3366 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3367 GFP_KERNEL); 3368 page->freelist = get_freepointer(kmem_cache_node, n); 3369 page->inuse = 1; 3370 page->frozen = 0; 3371 kmem_cache_node->node[node] = n; 3372 init_kmem_cache_node(n); 3373 inc_slabs_node(kmem_cache_node, node, page->objects); 3374 3375 /* 3376 * No locks need to be taken here as it has just been 3377 * initialized and there is no concurrent access. 3378 */ 3379 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3380 } 3381 3382 static void free_kmem_cache_nodes(struct kmem_cache *s) 3383 { 3384 int node; 3385 struct kmem_cache_node *n; 3386 3387 for_each_kmem_cache_node(s, node, n) { 3388 s->node[node] = NULL; 3389 kmem_cache_free(kmem_cache_node, n); 3390 } 3391 } 3392 3393 void __kmem_cache_release(struct kmem_cache *s) 3394 { 3395 cache_random_seq_destroy(s); 3396 free_percpu(s->cpu_slab); 3397 free_kmem_cache_nodes(s); 3398 } 3399 3400 static int init_kmem_cache_nodes(struct kmem_cache *s) 3401 { 3402 int node; 3403 3404 for_each_node_state(node, N_NORMAL_MEMORY) { 3405 struct kmem_cache_node *n; 3406 3407 if (slab_state == DOWN) { 3408 early_kmem_cache_node_alloc(node); 3409 continue; 3410 } 3411 n = kmem_cache_alloc_node(kmem_cache_node, 3412 GFP_KERNEL, node); 3413 3414 if (!n) { 3415 free_kmem_cache_nodes(s); 3416 return 0; 3417 } 3418 3419 init_kmem_cache_node(n); 3420 s->node[node] = n; 3421 } 3422 return 1; 3423 } 3424 3425 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3426 { 3427 if (min < MIN_PARTIAL) 3428 min = MIN_PARTIAL; 3429 else if (min > MAX_PARTIAL) 3430 min = MAX_PARTIAL; 3431 s->min_partial = min; 3432 } 3433 3434 static void set_cpu_partial(struct kmem_cache *s) 3435 { 3436 #ifdef CONFIG_SLUB_CPU_PARTIAL 3437 /* 3438 * cpu_partial determined the maximum number of objects kept in the 3439 * per cpu partial lists of a processor. 3440 * 3441 * Per cpu partial lists mainly contain slabs that just have one 3442 * object freed. If they are used for allocation then they can be 3443 * filled up again with minimal effort. The slab will never hit the 3444 * per node partial lists and therefore no locking will be required. 3445 * 3446 * This setting also determines 3447 * 3448 * A) The number of objects from per cpu partial slabs dumped to the 3449 * per node list when we reach the limit. 3450 * B) The number of objects in cpu partial slabs to extract from the 3451 * per node list when we run out of per cpu objects. We only fetch 3452 * 50% to keep some capacity around for frees. 3453 */ 3454 if (!kmem_cache_has_cpu_partial(s)) 3455 s->cpu_partial = 0; 3456 else if (s->size >= PAGE_SIZE) 3457 s->cpu_partial = 2; 3458 else if (s->size >= 1024) 3459 s->cpu_partial = 6; 3460 else if (s->size >= 256) 3461 s->cpu_partial = 13; 3462 else 3463 s->cpu_partial = 30; 3464 #endif 3465 } 3466 3467 /* 3468 * calculate_sizes() determines the order and the distribution of data within 3469 * a slab object. 3470 */ 3471 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3472 { 3473 slab_flags_t flags = s->flags; 3474 unsigned int size = s->object_size; 3475 unsigned int order; 3476 3477 /* 3478 * Round up object size to the next word boundary. We can only 3479 * place the free pointer at word boundaries and this determines 3480 * the possible location of the free pointer. 3481 */ 3482 size = ALIGN(size, sizeof(void *)); 3483 3484 #ifdef CONFIG_SLUB_DEBUG 3485 /* 3486 * Determine if we can poison the object itself. If the user of 3487 * the slab may touch the object after free or before allocation 3488 * then we should never poison the object itself. 3489 */ 3490 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3491 !s->ctor) 3492 s->flags |= __OBJECT_POISON; 3493 else 3494 s->flags &= ~__OBJECT_POISON; 3495 3496 3497 /* 3498 * If we are Redzoning then check if there is some space between the 3499 * end of the object and the free pointer. If not then add an 3500 * additional word to have some bytes to store Redzone information. 3501 */ 3502 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3503 size += sizeof(void *); 3504 #endif 3505 3506 /* 3507 * With that we have determined the number of bytes in actual use 3508 * by the object. This is the potential offset to the free pointer. 3509 */ 3510 s->inuse = size; 3511 3512 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3513 s->ctor)) { 3514 /* 3515 * Relocate free pointer after the object if it is not 3516 * permitted to overwrite the first word of the object on 3517 * kmem_cache_free. 3518 * 3519 * This is the case if we do RCU, have a constructor or 3520 * destructor or are poisoning the objects. 3521 */ 3522 s->offset = size; 3523 size += sizeof(void *); 3524 } 3525 3526 #ifdef CONFIG_SLUB_DEBUG 3527 if (flags & SLAB_STORE_USER) 3528 /* 3529 * Need to store information about allocs and frees after 3530 * the object. 3531 */ 3532 size += 2 * sizeof(struct track); 3533 #endif 3534 3535 kasan_cache_create(s, &size, &s->flags); 3536 #ifdef CONFIG_SLUB_DEBUG 3537 if (flags & SLAB_RED_ZONE) { 3538 /* 3539 * Add some empty padding so that we can catch 3540 * overwrites from earlier objects rather than let 3541 * tracking information or the free pointer be 3542 * corrupted if a user writes before the start 3543 * of the object. 3544 */ 3545 size += sizeof(void *); 3546 3547 s->red_left_pad = sizeof(void *); 3548 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3549 size += s->red_left_pad; 3550 } 3551 #endif 3552 3553 /* 3554 * SLUB stores one object immediately after another beginning from 3555 * offset 0. In order to align the objects we have to simply size 3556 * each object to conform to the alignment. 3557 */ 3558 size = ALIGN(size, s->align); 3559 s->size = size; 3560 if (forced_order >= 0) 3561 order = forced_order; 3562 else 3563 order = calculate_order(size); 3564 3565 if ((int)order < 0) 3566 return 0; 3567 3568 s->allocflags = 0; 3569 if (order) 3570 s->allocflags |= __GFP_COMP; 3571 3572 if (s->flags & SLAB_CACHE_DMA) 3573 s->allocflags |= GFP_DMA; 3574 3575 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3576 s->allocflags |= __GFP_RECLAIMABLE; 3577 3578 /* 3579 * Determine the number of objects per slab 3580 */ 3581 s->oo = oo_make(order, size); 3582 s->min = oo_make(get_order(size), size); 3583 if (oo_objects(s->oo) > oo_objects(s->max)) 3584 s->max = s->oo; 3585 3586 return !!oo_objects(s->oo); 3587 } 3588 3589 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3590 { 3591 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3592 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3593 s->random = get_random_long(); 3594 #endif 3595 3596 if (!calculate_sizes(s, -1)) 3597 goto error; 3598 if (disable_higher_order_debug) { 3599 /* 3600 * Disable debugging flags that store metadata if the min slab 3601 * order increased. 3602 */ 3603 if (get_order(s->size) > get_order(s->object_size)) { 3604 s->flags &= ~DEBUG_METADATA_FLAGS; 3605 s->offset = 0; 3606 if (!calculate_sizes(s, -1)) 3607 goto error; 3608 } 3609 } 3610 3611 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3612 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3613 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3614 /* Enable fast mode */ 3615 s->flags |= __CMPXCHG_DOUBLE; 3616 #endif 3617 3618 /* 3619 * The larger the object size is, the more pages we want on the partial 3620 * list to avoid pounding the page allocator excessively. 3621 */ 3622 set_min_partial(s, ilog2(s->size) / 2); 3623 3624 set_cpu_partial(s); 3625 3626 #ifdef CONFIG_NUMA 3627 s->remote_node_defrag_ratio = 1000; 3628 #endif 3629 3630 /* Initialize the pre-computed randomized freelist if slab is up */ 3631 if (slab_state >= UP) { 3632 if (init_cache_random_seq(s)) 3633 goto error; 3634 } 3635 3636 if (!init_kmem_cache_nodes(s)) 3637 goto error; 3638 3639 if (alloc_kmem_cache_cpus(s)) 3640 return 0; 3641 3642 free_kmem_cache_nodes(s); 3643 error: 3644 if (flags & SLAB_PANIC) 3645 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n", 3646 s->name, s->size, s->size, 3647 oo_order(s->oo), s->offset, (unsigned long)flags); 3648 return -EINVAL; 3649 } 3650 3651 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3652 const char *text) 3653 { 3654 #ifdef CONFIG_SLUB_DEBUG 3655 void *addr = page_address(page); 3656 void *p; 3657 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC); 3658 if (!map) 3659 return; 3660 slab_err(s, page, text, s->name); 3661 slab_lock(page); 3662 3663 get_map(s, page, map); 3664 for_each_object(p, s, addr, page->objects) { 3665 3666 if (!test_bit(slab_index(p, s, addr), map)) { 3667 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3668 print_tracking(s, p); 3669 } 3670 } 3671 slab_unlock(page); 3672 bitmap_free(map); 3673 #endif 3674 } 3675 3676 /* 3677 * Attempt to free all partial slabs on a node. 3678 * This is called from __kmem_cache_shutdown(). We must take list_lock 3679 * because sysfs file might still access partial list after the shutdowning. 3680 */ 3681 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3682 { 3683 LIST_HEAD(discard); 3684 struct page *page, *h; 3685 3686 BUG_ON(irqs_disabled()); 3687 spin_lock_irq(&n->list_lock); 3688 list_for_each_entry_safe(page, h, &n->partial, lru) { 3689 if (!page->inuse) { 3690 remove_partial(n, page); 3691 list_add(&page->lru, &discard); 3692 } else { 3693 list_slab_objects(s, page, 3694 "Objects remaining in %s on __kmem_cache_shutdown()"); 3695 } 3696 } 3697 spin_unlock_irq(&n->list_lock); 3698 3699 list_for_each_entry_safe(page, h, &discard, lru) 3700 discard_slab(s, page); 3701 } 3702 3703 bool __kmem_cache_empty(struct kmem_cache *s) 3704 { 3705 int node; 3706 struct kmem_cache_node *n; 3707 3708 for_each_kmem_cache_node(s, node, n) 3709 if (n->nr_partial || slabs_node(s, node)) 3710 return false; 3711 return true; 3712 } 3713 3714 /* 3715 * Release all resources used by a slab cache. 3716 */ 3717 int __kmem_cache_shutdown(struct kmem_cache *s) 3718 { 3719 int node; 3720 struct kmem_cache_node *n; 3721 3722 flush_all(s); 3723 /* Attempt to free all objects */ 3724 for_each_kmem_cache_node(s, node, n) { 3725 free_partial(s, n); 3726 if (n->nr_partial || slabs_node(s, node)) 3727 return 1; 3728 } 3729 sysfs_slab_remove(s); 3730 return 0; 3731 } 3732 3733 /******************************************************************** 3734 * Kmalloc subsystem 3735 *******************************************************************/ 3736 3737 static int __init setup_slub_min_order(char *str) 3738 { 3739 get_option(&str, (int *)&slub_min_order); 3740 3741 return 1; 3742 } 3743 3744 __setup("slub_min_order=", setup_slub_min_order); 3745 3746 static int __init setup_slub_max_order(char *str) 3747 { 3748 get_option(&str, (int *)&slub_max_order); 3749 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3750 3751 return 1; 3752 } 3753 3754 __setup("slub_max_order=", setup_slub_max_order); 3755 3756 static int __init setup_slub_min_objects(char *str) 3757 { 3758 get_option(&str, (int *)&slub_min_objects); 3759 3760 return 1; 3761 } 3762 3763 __setup("slub_min_objects=", setup_slub_min_objects); 3764 3765 void *__kmalloc(size_t size, gfp_t flags) 3766 { 3767 struct kmem_cache *s; 3768 void *ret; 3769 3770 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3771 return kmalloc_large(size, flags); 3772 3773 s = kmalloc_slab(size, flags); 3774 3775 if (unlikely(ZERO_OR_NULL_PTR(s))) 3776 return s; 3777 3778 ret = slab_alloc(s, flags, _RET_IP_); 3779 3780 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3781 3782 ret = kasan_kmalloc(s, ret, size, flags); 3783 3784 return ret; 3785 } 3786 EXPORT_SYMBOL(__kmalloc); 3787 3788 #ifdef CONFIG_NUMA 3789 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3790 { 3791 struct page *page; 3792 void *ptr = NULL; 3793 3794 flags |= __GFP_COMP; 3795 page = alloc_pages_node(node, flags, get_order(size)); 3796 if (page) 3797 ptr = page_address(page); 3798 3799 return kmalloc_large_node_hook(ptr, size, flags); 3800 } 3801 3802 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3803 { 3804 struct kmem_cache *s; 3805 void *ret; 3806 3807 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3808 ret = kmalloc_large_node(size, flags, node); 3809 3810 trace_kmalloc_node(_RET_IP_, ret, 3811 size, PAGE_SIZE << get_order(size), 3812 flags, node); 3813 3814 return ret; 3815 } 3816 3817 s = kmalloc_slab(size, flags); 3818 3819 if (unlikely(ZERO_OR_NULL_PTR(s))) 3820 return s; 3821 3822 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3823 3824 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3825 3826 ret = kasan_kmalloc(s, ret, size, flags); 3827 3828 return ret; 3829 } 3830 EXPORT_SYMBOL(__kmalloc_node); 3831 #endif 3832 3833 #ifdef CONFIG_HARDENED_USERCOPY 3834 /* 3835 * Rejects incorrectly sized objects and objects that are to be copied 3836 * to/from userspace but do not fall entirely within the containing slab 3837 * cache's usercopy region. 3838 * 3839 * Returns NULL if check passes, otherwise const char * to name of cache 3840 * to indicate an error. 3841 */ 3842 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 3843 bool to_user) 3844 { 3845 struct kmem_cache *s; 3846 unsigned int offset; 3847 size_t object_size; 3848 3849 ptr = kasan_reset_tag(ptr); 3850 3851 /* Find object and usable object size. */ 3852 s = page->slab_cache; 3853 3854 /* Reject impossible pointers. */ 3855 if (ptr < page_address(page)) 3856 usercopy_abort("SLUB object not in SLUB page?!", NULL, 3857 to_user, 0, n); 3858 3859 /* Find offset within object. */ 3860 offset = (ptr - page_address(page)) % s->size; 3861 3862 /* Adjust for redzone and reject if within the redzone. */ 3863 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3864 if (offset < s->red_left_pad) 3865 usercopy_abort("SLUB object in left red zone", 3866 s->name, to_user, offset, n); 3867 offset -= s->red_left_pad; 3868 } 3869 3870 /* Allow address range falling entirely within usercopy region. */ 3871 if (offset >= s->useroffset && 3872 offset - s->useroffset <= s->usersize && 3873 n <= s->useroffset - offset + s->usersize) 3874 return; 3875 3876 /* 3877 * If the copy is still within the allocated object, produce 3878 * a warning instead of rejecting the copy. This is intended 3879 * to be a temporary method to find any missing usercopy 3880 * whitelists. 3881 */ 3882 object_size = slab_ksize(s); 3883 if (usercopy_fallback && 3884 offset <= object_size && n <= object_size - offset) { 3885 usercopy_warn("SLUB object", s->name, to_user, offset, n); 3886 return; 3887 } 3888 3889 usercopy_abort("SLUB object", s->name, to_user, offset, n); 3890 } 3891 #endif /* CONFIG_HARDENED_USERCOPY */ 3892 3893 static size_t __ksize(const void *object) 3894 { 3895 struct page *page; 3896 3897 if (unlikely(object == ZERO_SIZE_PTR)) 3898 return 0; 3899 3900 page = virt_to_head_page(object); 3901 3902 if (unlikely(!PageSlab(page))) { 3903 WARN_ON(!PageCompound(page)); 3904 return PAGE_SIZE << compound_order(page); 3905 } 3906 3907 return slab_ksize(page->slab_cache); 3908 } 3909 3910 size_t ksize(const void *object) 3911 { 3912 size_t size = __ksize(object); 3913 /* We assume that ksize callers could use whole allocated area, 3914 * so we need to unpoison this area. 3915 */ 3916 kasan_unpoison_shadow(object, size); 3917 return size; 3918 } 3919 EXPORT_SYMBOL(ksize); 3920 3921 void kfree(const void *x) 3922 { 3923 struct page *page; 3924 void *object = (void *)x; 3925 3926 trace_kfree(_RET_IP_, x); 3927 3928 if (unlikely(ZERO_OR_NULL_PTR(x))) 3929 return; 3930 3931 page = virt_to_head_page(x); 3932 if (unlikely(!PageSlab(page))) { 3933 BUG_ON(!PageCompound(page)); 3934 kfree_hook(object); 3935 __free_pages(page, compound_order(page)); 3936 return; 3937 } 3938 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3939 } 3940 EXPORT_SYMBOL(kfree); 3941 3942 #define SHRINK_PROMOTE_MAX 32 3943 3944 /* 3945 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3946 * up most to the head of the partial lists. New allocations will then 3947 * fill those up and thus they can be removed from the partial lists. 3948 * 3949 * The slabs with the least items are placed last. This results in them 3950 * being allocated from last increasing the chance that the last objects 3951 * are freed in them. 3952 */ 3953 int __kmem_cache_shrink(struct kmem_cache *s) 3954 { 3955 int node; 3956 int i; 3957 struct kmem_cache_node *n; 3958 struct page *page; 3959 struct page *t; 3960 struct list_head discard; 3961 struct list_head promote[SHRINK_PROMOTE_MAX]; 3962 unsigned long flags; 3963 int ret = 0; 3964 3965 flush_all(s); 3966 for_each_kmem_cache_node(s, node, n) { 3967 INIT_LIST_HEAD(&discard); 3968 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3969 INIT_LIST_HEAD(promote + i); 3970 3971 spin_lock_irqsave(&n->list_lock, flags); 3972 3973 /* 3974 * Build lists of slabs to discard or promote. 3975 * 3976 * Note that concurrent frees may occur while we hold the 3977 * list_lock. page->inuse here is the upper limit. 3978 */ 3979 list_for_each_entry_safe(page, t, &n->partial, lru) { 3980 int free = page->objects - page->inuse; 3981 3982 /* Do not reread page->inuse */ 3983 barrier(); 3984 3985 /* We do not keep full slabs on the list */ 3986 BUG_ON(free <= 0); 3987 3988 if (free == page->objects) { 3989 list_move(&page->lru, &discard); 3990 n->nr_partial--; 3991 } else if (free <= SHRINK_PROMOTE_MAX) 3992 list_move(&page->lru, promote + free - 1); 3993 } 3994 3995 /* 3996 * Promote the slabs filled up most to the head of the 3997 * partial list. 3998 */ 3999 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4000 list_splice(promote + i, &n->partial); 4001 4002 spin_unlock_irqrestore(&n->list_lock, flags); 4003 4004 /* Release empty slabs */ 4005 list_for_each_entry_safe(page, t, &discard, lru) 4006 discard_slab(s, page); 4007 4008 if (slabs_node(s, node)) 4009 ret = 1; 4010 } 4011 4012 return ret; 4013 } 4014 4015 #ifdef CONFIG_MEMCG 4016 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) 4017 { 4018 /* 4019 * Called with all the locks held after a sched RCU grace period. 4020 * Even if @s becomes empty after shrinking, we can't know that @s 4021 * doesn't have allocations already in-flight and thus can't 4022 * destroy @s until the associated memcg is released. 4023 * 4024 * However, let's remove the sysfs files for empty caches here. 4025 * Each cache has a lot of interface files which aren't 4026 * particularly useful for empty draining caches; otherwise, we can 4027 * easily end up with millions of unnecessary sysfs files on 4028 * systems which have a lot of memory and transient cgroups. 4029 */ 4030 if (!__kmem_cache_shrink(s)) 4031 sysfs_slab_remove(s); 4032 } 4033 4034 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4035 { 4036 /* 4037 * Disable empty slabs caching. Used to avoid pinning offline 4038 * memory cgroups by kmem pages that can be freed. 4039 */ 4040 slub_set_cpu_partial(s, 0); 4041 s->min_partial = 0; 4042 4043 /* 4044 * s->cpu_partial is checked locklessly (see put_cpu_partial), so 4045 * we have to make sure the change is visible before shrinking. 4046 */ 4047 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); 4048 } 4049 #endif 4050 4051 static int slab_mem_going_offline_callback(void *arg) 4052 { 4053 struct kmem_cache *s; 4054 4055 mutex_lock(&slab_mutex); 4056 list_for_each_entry(s, &slab_caches, list) 4057 __kmem_cache_shrink(s); 4058 mutex_unlock(&slab_mutex); 4059 4060 return 0; 4061 } 4062 4063 static void slab_mem_offline_callback(void *arg) 4064 { 4065 struct kmem_cache_node *n; 4066 struct kmem_cache *s; 4067 struct memory_notify *marg = arg; 4068 int offline_node; 4069 4070 offline_node = marg->status_change_nid_normal; 4071 4072 /* 4073 * If the node still has available memory. we need kmem_cache_node 4074 * for it yet. 4075 */ 4076 if (offline_node < 0) 4077 return; 4078 4079 mutex_lock(&slab_mutex); 4080 list_for_each_entry(s, &slab_caches, list) { 4081 n = get_node(s, offline_node); 4082 if (n) { 4083 /* 4084 * if n->nr_slabs > 0, slabs still exist on the node 4085 * that is going down. We were unable to free them, 4086 * and offline_pages() function shouldn't call this 4087 * callback. So, we must fail. 4088 */ 4089 BUG_ON(slabs_node(s, offline_node)); 4090 4091 s->node[offline_node] = NULL; 4092 kmem_cache_free(kmem_cache_node, n); 4093 } 4094 } 4095 mutex_unlock(&slab_mutex); 4096 } 4097 4098 static int slab_mem_going_online_callback(void *arg) 4099 { 4100 struct kmem_cache_node *n; 4101 struct kmem_cache *s; 4102 struct memory_notify *marg = arg; 4103 int nid = marg->status_change_nid_normal; 4104 int ret = 0; 4105 4106 /* 4107 * If the node's memory is already available, then kmem_cache_node is 4108 * already created. Nothing to do. 4109 */ 4110 if (nid < 0) 4111 return 0; 4112 4113 /* 4114 * We are bringing a node online. No memory is available yet. We must 4115 * allocate a kmem_cache_node structure in order to bring the node 4116 * online. 4117 */ 4118 mutex_lock(&slab_mutex); 4119 list_for_each_entry(s, &slab_caches, list) { 4120 /* 4121 * XXX: kmem_cache_alloc_node will fallback to other nodes 4122 * since memory is not yet available from the node that 4123 * is brought up. 4124 */ 4125 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4126 if (!n) { 4127 ret = -ENOMEM; 4128 goto out; 4129 } 4130 init_kmem_cache_node(n); 4131 s->node[nid] = n; 4132 } 4133 out: 4134 mutex_unlock(&slab_mutex); 4135 return ret; 4136 } 4137 4138 static int slab_memory_callback(struct notifier_block *self, 4139 unsigned long action, void *arg) 4140 { 4141 int ret = 0; 4142 4143 switch (action) { 4144 case MEM_GOING_ONLINE: 4145 ret = slab_mem_going_online_callback(arg); 4146 break; 4147 case MEM_GOING_OFFLINE: 4148 ret = slab_mem_going_offline_callback(arg); 4149 break; 4150 case MEM_OFFLINE: 4151 case MEM_CANCEL_ONLINE: 4152 slab_mem_offline_callback(arg); 4153 break; 4154 case MEM_ONLINE: 4155 case MEM_CANCEL_OFFLINE: 4156 break; 4157 } 4158 if (ret) 4159 ret = notifier_from_errno(ret); 4160 else 4161 ret = NOTIFY_OK; 4162 return ret; 4163 } 4164 4165 static struct notifier_block slab_memory_callback_nb = { 4166 .notifier_call = slab_memory_callback, 4167 .priority = SLAB_CALLBACK_PRI, 4168 }; 4169 4170 /******************************************************************** 4171 * Basic setup of slabs 4172 *******************************************************************/ 4173 4174 /* 4175 * Used for early kmem_cache structures that were allocated using 4176 * the page allocator. Allocate them properly then fix up the pointers 4177 * that may be pointing to the wrong kmem_cache structure. 4178 */ 4179 4180 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4181 { 4182 int node; 4183 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4184 struct kmem_cache_node *n; 4185 4186 memcpy(s, static_cache, kmem_cache->object_size); 4187 4188 /* 4189 * This runs very early, and only the boot processor is supposed to be 4190 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4191 * IPIs around. 4192 */ 4193 __flush_cpu_slab(s, smp_processor_id()); 4194 for_each_kmem_cache_node(s, node, n) { 4195 struct page *p; 4196 4197 list_for_each_entry(p, &n->partial, lru) 4198 p->slab_cache = s; 4199 4200 #ifdef CONFIG_SLUB_DEBUG 4201 list_for_each_entry(p, &n->full, lru) 4202 p->slab_cache = s; 4203 #endif 4204 } 4205 slab_init_memcg_params(s); 4206 list_add(&s->list, &slab_caches); 4207 memcg_link_cache(s); 4208 return s; 4209 } 4210 4211 void __init kmem_cache_init(void) 4212 { 4213 static __initdata struct kmem_cache boot_kmem_cache, 4214 boot_kmem_cache_node; 4215 4216 if (debug_guardpage_minorder()) 4217 slub_max_order = 0; 4218 4219 kmem_cache_node = &boot_kmem_cache_node; 4220 kmem_cache = &boot_kmem_cache; 4221 4222 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4223 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4224 4225 register_hotmemory_notifier(&slab_memory_callback_nb); 4226 4227 /* Able to allocate the per node structures */ 4228 slab_state = PARTIAL; 4229 4230 create_boot_cache(kmem_cache, "kmem_cache", 4231 offsetof(struct kmem_cache, node) + 4232 nr_node_ids * sizeof(struct kmem_cache_node *), 4233 SLAB_HWCACHE_ALIGN, 0, 0); 4234 4235 kmem_cache = bootstrap(&boot_kmem_cache); 4236 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4237 4238 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4239 setup_kmalloc_cache_index_table(); 4240 create_kmalloc_caches(0); 4241 4242 /* Setup random freelists for each cache */ 4243 init_freelist_randomization(); 4244 4245 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4246 slub_cpu_dead); 4247 4248 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n", 4249 cache_line_size(), 4250 slub_min_order, slub_max_order, slub_min_objects, 4251 nr_cpu_ids, nr_node_ids); 4252 } 4253 4254 void __init kmem_cache_init_late(void) 4255 { 4256 } 4257 4258 struct kmem_cache * 4259 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4260 slab_flags_t flags, void (*ctor)(void *)) 4261 { 4262 struct kmem_cache *s, *c; 4263 4264 s = find_mergeable(size, align, flags, name, ctor); 4265 if (s) { 4266 s->refcount++; 4267 4268 /* 4269 * Adjust the object sizes so that we clear 4270 * the complete object on kzalloc. 4271 */ 4272 s->object_size = max(s->object_size, size); 4273 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4274 4275 for_each_memcg_cache(c, s) { 4276 c->object_size = s->object_size; 4277 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); 4278 } 4279 4280 if (sysfs_slab_alias(s, name)) { 4281 s->refcount--; 4282 s = NULL; 4283 } 4284 } 4285 4286 return s; 4287 } 4288 4289 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4290 { 4291 int err; 4292 4293 err = kmem_cache_open(s, flags); 4294 if (err) 4295 return err; 4296 4297 /* Mutex is not taken during early boot */ 4298 if (slab_state <= UP) 4299 return 0; 4300 4301 memcg_propagate_slab_attrs(s); 4302 err = sysfs_slab_add(s); 4303 if (err) 4304 __kmem_cache_release(s); 4305 4306 return err; 4307 } 4308 4309 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4310 { 4311 struct kmem_cache *s; 4312 void *ret; 4313 4314 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4315 return kmalloc_large(size, gfpflags); 4316 4317 s = kmalloc_slab(size, gfpflags); 4318 4319 if (unlikely(ZERO_OR_NULL_PTR(s))) 4320 return s; 4321 4322 ret = slab_alloc(s, gfpflags, caller); 4323 4324 /* Honor the call site pointer we received. */ 4325 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4326 4327 return ret; 4328 } 4329 4330 #ifdef CONFIG_NUMA 4331 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4332 int node, unsigned long caller) 4333 { 4334 struct kmem_cache *s; 4335 void *ret; 4336 4337 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4338 ret = kmalloc_large_node(size, gfpflags, node); 4339 4340 trace_kmalloc_node(caller, ret, 4341 size, PAGE_SIZE << get_order(size), 4342 gfpflags, node); 4343 4344 return ret; 4345 } 4346 4347 s = kmalloc_slab(size, gfpflags); 4348 4349 if (unlikely(ZERO_OR_NULL_PTR(s))) 4350 return s; 4351 4352 ret = slab_alloc_node(s, gfpflags, node, caller); 4353 4354 /* Honor the call site pointer we received. */ 4355 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4356 4357 return ret; 4358 } 4359 #endif 4360 4361 #ifdef CONFIG_SYSFS 4362 static int count_inuse(struct page *page) 4363 { 4364 return page->inuse; 4365 } 4366 4367 static int count_total(struct page *page) 4368 { 4369 return page->objects; 4370 } 4371 #endif 4372 4373 #ifdef CONFIG_SLUB_DEBUG 4374 static int validate_slab(struct kmem_cache *s, struct page *page, 4375 unsigned long *map) 4376 { 4377 void *p; 4378 void *addr = page_address(page); 4379 4380 if (!check_slab(s, page) || 4381 !on_freelist(s, page, NULL)) 4382 return 0; 4383 4384 /* Now we know that a valid freelist exists */ 4385 bitmap_zero(map, page->objects); 4386 4387 get_map(s, page, map); 4388 for_each_object(p, s, addr, page->objects) { 4389 if (test_bit(slab_index(p, s, addr), map)) 4390 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4391 return 0; 4392 } 4393 4394 for_each_object(p, s, addr, page->objects) 4395 if (!test_bit(slab_index(p, s, addr), map)) 4396 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4397 return 0; 4398 return 1; 4399 } 4400 4401 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4402 unsigned long *map) 4403 { 4404 slab_lock(page); 4405 validate_slab(s, page, map); 4406 slab_unlock(page); 4407 } 4408 4409 static int validate_slab_node(struct kmem_cache *s, 4410 struct kmem_cache_node *n, unsigned long *map) 4411 { 4412 unsigned long count = 0; 4413 struct page *page; 4414 unsigned long flags; 4415 4416 spin_lock_irqsave(&n->list_lock, flags); 4417 4418 list_for_each_entry(page, &n->partial, lru) { 4419 validate_slab_slab(s, page, map); 4420 count++; 4421 } 4422 if (count != n->nr_partial) 4423 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4424 s->name, count, n->nr_partial); 4425 4426 if (!(s->flags & SLAB_STORE_USER)) 4427 goto out; 4428 4429 list_for_each_entry(page, &n->full, lru) { 4430 validate_slab_slab(s, page, map); 4431 count++; 4432 } 4433 if (count != atomic_long_read(&n->nr_slabs)) 4434 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4435 s->name, count, atomic_long_read(&n->nr_slabs)); 4436 4437 out: 4438 spin_unlock_irqrestore(&n->list_lock, flags); 4439 return count; 4440 } 4441 4442 static long validate_slab_cache(struct kmem_cache *s) 4443 { 4444 int node; 4445 unsigned long count = 0; 4446 struct kmem_cache_node *n; 4447 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4448 4449 if (!map) 4450 return -ENOMEM; 4451 4452 flush_all(s); 4453 for_each_kmem_cache_node(s, node, n) 4454 count += validate_slab_node(s, n, map); 4455 bitmap_free(map); 4456 return count; 4457 } 4458 /* 4459 * Generate lists of code addresses where slabcache objects are allocated 4460 * and freed. 4461 */ 4462 4463 struct location { 4464 unsigned long count; 4465 unsigned long addr; 4466 long long sum_time; 4467 long min_time; 4468 long max_time; 4469 long min_pid; 4470 long max_pid; 4471 DECLARE_BITMAP(cpus, NR_CPUS); 4472 nodemask_t nodes; 4473 }; 4474 4475 struct loc_track { 4476 unsigned long max; 4477 unsigned long count; 4478 struct location *loc; 4479 }; 4480 4481 static void free_loc_track(struct loc_track *t) 4482 { 4483 if (t->max) 4484 free_pages((unsigned long)t->loc, 4485 get_order(sizeof(struct location) * t->max)); 4486 } 4487 4488 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4489 { 4490 struct location *l; 4491 int order; 4492 4493 order = get_order(sizeof(struct location) * max); 4494 4495 l = (void *)__get_free_pages(flags, order); 4496 if (!l) 4497 return 0; 4498 4499 if (t->count) { 4500 memcpy(l, t->loc, sizeof(struct location) * t->count); 4501 free_loc_track(t); 4502 } 4503 t->max = max; 4504 t->loc = l; 4505 return 1; 4506 } 4507 4508 static int add_location(struct loc_track *t, struct kmem_cache *s, 4509 const struct track *track) 4510 { 4511 long start, end, pos; 4512 struct location *l; 4513 unsigned long caddr; 4514 unsigned long age = jiffies - track->when; 4515 4516 start = -1; 4517 end = t->count; 4518 4519 for ( ; ; ) { 4520 pos = start + (end - start + 1) / 2; 4521 4522 /* 4523 * There is nothing at "end". If we end up there 4524 * we need to add something to before end. 4525 */ 4526 if (pos == end) 4527 break; 4528 4529 caddr = t->loc[pos].addr; 4530 if (track->addr == caddr) { 4531 4532 l = &t->loc[pos]; 4533 l->count++; 4534 if (track->when) { 4535 l->sum_time += age; 4536 if (age < l->min_time) 4537 l->min_time = age; 4538 if (age > l->max_time) 4539 l->max_time = age; 4540 4541 if (track->pid < l->min_pid) 4542 l->min_pid = track->pid; 4543 if (track->pid > l->max_pid) 4544 l->max_pid = track->pid; 4545 4546 cpumask_set_cpu(track->cpu, 4547 to_cpumask(l->cpus)); 4548 } 4549 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4550 return 1; 4551 } 4552 4553 if (track->addr < caddr) 4554 end = pos; 4555 else 4556 start = pos; 4557 } 4558 4559 /* 4560 * Not found. Insert new tracking element. 4561 */ 4562 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4563 return 0; 4564 4565 l = t->loc + pos; 4566 if (pos < t->count) 4567 memmove(l + 1, l, 4568 (t->count - pos) * sizeof(struct location)); 4569 t->count++; 4570 l->count = 1; 4571 l->addr = track->addr; 4572 l->sum_time = age; 4573 l->min_time = age; 4574 l->max_time = age; 4575 l->min_pid = track->pid; 4576 l->max_pid = track->pid; 4577 cpumask_clear(to_cpumask(l->cpus)); 4578 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4579 nodes_clear(l->nodes); 4580 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4581 return 1; 4582 } 4583 4584 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4585 struct page *page, enum track_item alloc, 4586 unsigned long *map) 4587 { 4588 void *addr = page_address(page); 4589 void *p; 4590 4591 bitmap_zero(map, page->objects); 4592 get_map(s, page, map); 4593 4594 for_each_object(p, s, addr, page->objects) 4595 if (!test_bit(slab_index(p, s, addr), map)) 4596 add_location(t, s, get_track(s, p, alloc)); 4597 } 4598 4599 static int list_locations(struct kmem_cache *s, char *buf, 4600 enum track_item alloc) 4601 { 4602 int len = 0; 4603 unsigned long i; 4604 struct loc_track t = { 0, 0, NULL }; 4605 int node; 4606 struct kmem_cache_node *n; 4607 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4608 4609 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4610 GFP_KERNEL)) { 4611 bitmap_free(map); 4612 return sprintf(buf, "Out of memory\n"); 4613 } 4614 /* Push back cpu slabs */ 4615 flush_all(s); 4616 4617 for_each_kmem_cache_node(s, node, n) { 4618 unsigned long flags; 4619 struct page *page; 4620 4621 if (!atomic_long_read(&n->nr_slabs)) 4622 continue; 4623 4624 spin_lock_irqsave(&n->list_lock, flags); 4625 list_for_each_entry(page, &n->partial, lru) 4626 process_slab(&t, s, page, alloc, map); 4627 list_for_each_entry(page, &n->full, lru) 4628 process_slab(&t, s, page, alloc, map); 4629 spin_unlock_irqrestore(&n->list_lock, flags); 4630 } 4631 4632 for (i = 0; i < t.count; i++) { 4633 struct location *l = &t.loc[i]; 4634 4635 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4636 break; 4637 len += sprintf(buf + len, "%7ld ", l->count); 4638 4639 if (l->addr) 4640 len += sprintf(buf + len, "%pS", (void *)l->addr); 4641 else 4642 len += sprintf(buf + len, "<not-available>"); 4643 4644 if (l->sum_time != l->min_time) { 4645 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4646 l->min_time, 4647 (long)div_u64(l->sum_time, l->count), 4648 l->max_time); 4649 } else 4650 len += sprintf(buf + len, " age=%ld", 4651 l->min_time); 4652 4653 if (l->min_pid != l->max_pid) 4654 len += sprintf(buf + len, " pid=%ld-%ld", 4655 l->min_pid, l->max_pid); 4656 else 4657 len += sprintf(buf + len, " pid=%ld", 4658 l->min_pid); 4659 4660 if (num_online_cpus() > 1 && 4661 !cpumask_empty(to_cpumask(l->cpus)) && 4662 len < PAGE_SIZE - 60) 4663 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4664 " cpus=%*pbl", 4665 cpumask_pr_args(to_cpumask(l->cpus))); 4666 4667 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4668 len < PAGE_SIZE - 60) 4669 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4670 " nodes=%*pbl", 4671 nodemask_pr_args(&l->nodes)); 4672 4673 len += sprintf(buf + len, "\n"); 4674 } 4675 4676 free_loc_track(&t); 4677 bitmap_free(map); 4678 if (!t.count) 4679 len += sprintf(buf, "No data\n"); 4680 return len; 4681 } 4682 #endif 4683 4684 #ifdef SLUB_RESILIENCY_TEST 4685 static void __init resiliency_test(void) 4686 { 4687 u8 *p; 4688 int type = KMALLOC_NORMAL; 4689 4690 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4691 4692 pr_err("SLUB resiliency testing\n"); 4693 pr_err("-----------------------\n"); 4694 pr_err("A. Corruption after allocation\n"); 4695 4696 p = kzalloc(16, GFP_KERNEL); 4697 p[16] = 0x12; 4698 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4699 p + 16); 4700 4701 validate_slab_cache(kmalloc_caches[type][4]); 4702 4703 /* Hmmm... The next two are dangerous */ 4704 p = kzalloc(32, GFP_KERNEL); 4705 p[32 + sizeof(void *)] = 0x34; 4706 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4707 p); 4708 pr_err("If allocated object is overwritten then not detectable\n\n"); 4709 4710 validate_slab_cache(kmalloc_caches[type][5]); 4711 p = kzalloc(64, GFP_KERNEL); 4712 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4713 *p = 0x56; 4714 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4715 p); 4716 pr_err("If allocated object is overwritten then not detectable\n\n"); 4717 validate_slab_cache(kmalloc_caches[type][6]); 4718 4719 pr_err("\nB. Corruption after free\n"); 4720 p = kzalloc(128, GFP_KERNEL); 4721 kfree(p); 4722 *p = 0x78; 4723 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4724 validate_slab_cache(kmalloc_caches[type][7]); 4725 4726 p = kzalloc(256, GFP_KERNEL); 4727 kfree(p); 4728 p[50] = 0x9a; 4729 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4730 validate_slab_cache(kmalloc_caches[type][8]); 4731 4732 p = kzalloc(512, GFP_KERNEL); 4733 kfree(p); 4734 p[512] = 0xab; 4735 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4736 validate_slab_cache(kmalloc_caches[type][9]); 4737 } 4738 #else 4739 #ifdef CONFIG_SYSFS 4740 static void resiliency_test(void) {}; 4741 #endif 4742 #endif 4743 4744 #ifdef CONFIG_SYSFS 4745 enum slab_stat_type { 4746 SL_ALL, /* All slabs */ 4747 SL_PARTIAL, /* Only partially allocated slabs */ 4748 SL_CPU, /* Only slabs used for cpu caches */ 4749 SL_OBJECTS, /* Determine allocated objects not slabs */ 4750 SL_TOTAL /* Determine object capacity not slabs */ 4751 }; 4752 4753 #define SO_ALL (1 << SL_ALL) 4754 #define SO_PARTIAL (1 << SL_PARTIAL) 4755 #define SO_CPU (1 << SL_CPU) 4756 #define SO_OBJECTS (1 << SL_OBJECTS) 4757 #define SO_TOTAL (1 << SL_TOTAL) 4758 4759 #ifdef CONFIG_MEMCG 4760 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4761 4762 static int __init setup_slub_memcg_sysfs(char *str) 4763 { 4764 int v; 4765 4766 if (get_option(&str, &v) > 0) 4767 memcg_sysfs_enabled = v; 4768 4769 return 1; 4770 } 4771 4772 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4773 #endif 4774 4775 static ssize_t show_slab_objects(struct kmem_cache *s, 4776 char *buf, unsigned long flags) 4777 { 4778 unsigned long total = 0; 4779 int node; 4780 int x; 4781 unsigned long *nodes; 4782 4783 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4784 if (!nodes) 4785 return -ENOMEM; 4786 4787 if (flags & SO_CPU) { 4788 int cpu; 4789 4790 for_each_possible_cpu(cpu) { 4791 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4792 cpu); 4793 int node; 4794 struct page *page; 4795 4796 page = READ_ONCE(c->page); 4797 if (!page) 4798 continue; 4799 4800 node = page_to_nid(page); 4801 if (flags & SO_TOTAL) 4802 x = page->objects; 4803 else if (flags & SO_OBJECTS) 4804 x = page->inuse; 4805 else 4806 x = 1; 4807 4808 total += x; 4809 nodes[node] += x; 4810 4811 page = slub_percpu_partial_read_once(c); 4812 if (page) { 4813 node = page_to_nid(page); 4814 if (flags & SO_TOTAL) 4815 WARN_ON_ONCE(1); 4816 else if (flags & SO_OBJECTS) 4817 WARN_ON_ONCE(1); 4818 else 4819 x = page->pages; 4820 total += x; 4821 nodes[node] += x; 4822 } 4823 } 4824 } 4825 4826 get_online_mems(); 4827 #ifdef CONFIG_SLUB_DEBUG 4828 if (flags & SO_ALL) { 4829 struct kmem_cache_node *n; 4830 4831 for_each_kmem_cache_node(s, node, n) { 4832 4833 if (flags & SO_TOTAL) 4834 x = atomic_long_read(&n->total_objects); 4835 else if (flags & SO_OBJECTS) 4836 x = atomic_long_read(&n->total_objects) - 4837 count_partial(n, count_free); 4838 else 4839 x = atomic_long_read(&n->nr_slabs); 4840 total += x; 4841 nodes[node] += x; 4842 } 4843 4844 } else 4845 #endif 4846 if (flags & SO_PARTIAL) { 4847 struct kmem_cache_node *n; 4848 4849 for_each_kmem_cache_node(s, node, n) { 4850 if (flags & SO_TOTAL) 4851 x = count_partial(n, count_total); 4852 else if (flags & SO_OBJECTS) 4853 x = count_partial(n, count_inuse); 4854 else 4855 x = n->nr_partial; 4856 total += x; 4857 nodes[node] += x; 4858 } 4859 } 4860 x = sprintf(buf, "%lu", total); 4861 #ifdef CONFIG_NUMA 4862 for (node = 0; node < nr_node_ids; node++) 4863 if (nodes[node]) 4864 x += sprintf(buf + x, " N%d=%lu", 4865 node, nodes[node]); 4866 #endif 4867 put_online_mems(); 4868 kfree(nodes); 4869 return x + sprintf(buf + x, "\n"); 4870 } 4871 4872 #ifdef CONFIG_SLUB_DEBUG 4873 static int any_slab_objects(struct kmem_cache *s) 4874 { 4875 int node; 4876 struct kmem_cache_node *n; 4877 4878 for_each_kmem_cache_node(s, node, n) 4879 if (atomic_long_read(&n->total_objects)) 4880 return 1; 4881 4882 return 0; 4883 } 4884 #endif 4885 4886 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4887 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4888 4889 struct slab_attribute { 4890 struct attribute attr; 4891 ssize_t (*show)(struct kmem_cache *s, char *buf); 4892 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4893 }; 4894 4895 #define SLAB_ATTR_RO(_name) \ 4896 static struct slab_attribute _name##_attr = \ 4897 __ATTR(_name, 0400, _name##_show, NULL) 4898 4899 #define SLAB_ATTR(_name) \ 4900 static struct slab_attribute _name##_attr = \ 4901 __ATTR(_name, 0600, _name##_show, _name##_store) 4902 4903 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4904 { 4905 return sprintf(buf, "%u\n", s->size); 4906 } 4907 SLAB_ATTR_RO(slab_size); 4908 4909 static ssize_t align_show(struct kmem_cache *s, char *buf) 4910 { 4911 return sprintf(buf, "%u\n", s->align); 4912 } 4913 SLAB_ATTR_RO(align); 4914 4915 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4916 { 4917 return sprintf(buf, "%u\n", s->object_size); 4918 } 4919 SLAB_ATTR_RO(object_size); 4920 4921 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4922 { 4923 return sprintf(buf, "%u\n", oo_objects(s->oo)); 4924 } 4925 SLAB_ATTR_RO(objs_per_slab); 4926 4927 static ssize_t order_store(struct kmem_cache *s, 4928 const char *buf, size_t length) 4929 { 4930 unsigned int order; 4931 int err; 4932 4933 err = kstrtouint(buf, 10, &order); 4934 if (err) 4935 return err; 4936 4937 if (order > slub_max_order || order < slub_min_order) 4938 return -EINVAL; 4939 4940 calculate_sizes(s, order); 4941 return length; 4942 } 4943 4944 static ssize_t order_show(struct kmem_cache *s, char *buf) 4945 { 4946 return sprintf(buf, "%u\n", oo_order(s->oo)); 4947 } 4948 SLAB_ATTR(order); 4949 4950 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4951 { 4952 return sprintf(buf, "%lu\n", s->min_partial); 4953 } 4954 4955 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4956 size_t length) 4957 { 4958 unsigned long min; 4959 int err; 4960 4961 err = kstrtoul(buf, 10, &min); 4962 if (err) 4963 return err; 4964 4965 set_min_partial(s, min); 4966 return length; 4967 } 4968 SLAB_ATTR(min_partial); 4969 4970 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4971 { 4972 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 4973 } 4974 4975 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4976 size_t length) 4977 { 4978 unsigned int objects; 4979 int err; 4980 4981 err = kstrtouint(buf, 10, &objects); 4982 if (err) 4983 return err; 4984 if (objects && !kmem_cache_has_cpu_partial(s)) 4985 return -EINVAL; 4986 4987 slub_set_cpu_partial(s, objects); 4988 flush_all(s); 4989 return length; 4990 } 4991 SLAB_ATTR(cpu_partial); 4992 4993 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4994 { 4995 if (!s->ctor) 4996 return 0; 4997 return sprintf(buf, "%pS\n", s->ctor); 4998 } 4999 SLAB_ATTR_RO(ctor); 5000 5001 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5002 { 5003 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5004 } 5005 SLAB_ATTR_RO(aliases); 5006 5007 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5008 { 5009 return show_slab_objects(s, buf, SO_PARTIAL); 5010 } 5011 SLAB_ATTR_RO(partial); 5012 5013 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5014 { 5015 return show_slab_objects(s, buf, SO_CPU); 5016 } 5017 SLAB_ATTR_RO(cpu_slabs); 5018 5019 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5020 { 5021 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5022 } 5023 SLAB_ATTR_RO(objects); 5024 5025 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5026 { 5027 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5028 } 5029 SLAB_ATTR_RO(objects_partial); 5030 5031 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5032 { 5033 int objects = 0; 5034 int pages = 0; 5035 int cpu; 5036 int len; 5037 5038 for_each_online_cpu(cpu) { 5039 struct page *page; 5040 5041 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5042 5043 if (page) { 5044 pages += page->pages; 5045 objects += page->pobjects; 5046 } 5047 } 5048 5049 len = sprintf(buf, "%d(%d)", objects, pages); 5050 5051 #ifdef CONFIG_SMP 5052 for_each_online_cpu(cpu) { 5053 struct page *page; 5054 5055 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5056 5057 if (page && len < PAGE_SIZE - 20) 5058 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5059 page->pobjects, page->pages); 5060 } 5061 #endif 5062 return len + sprintf(buf + len, "\n"); 5063 } 5064 SLAB_ATTR_RO(slabs_cpu_partial); 5065 5066 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5067 { 5068 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5069 } 5070 5071 static ssize_t reclaim_account_store(struct kmem_cache *s, 5072 const char *buf, size_t length) 5073 { 5074 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5075 if (buf[0] == '1') 5076 s->flags |= SLAB_RECLAIM_ACCOUNT; 5077 return length; 5078 } 5079 SLAB_ATTR(reclaim_account); 5080 5081 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5082 { 5083 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5084 } 5085 SLAB_ATTR_RO(hwcache_align); 5086 5087 #ifdef CONFIG_ZONE_DMA 5088 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5089 { 5090 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5091 } 5092 SLAB_ATTR_RO(cache_dma); 5093 #endif 5094 5095 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5096 { 5097 return sprintf(buf, "%u\n", s->usersize); 5098 } 5099 SLAB_ATTR_RO(usersize); 5100 5101 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5102 { 5103 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5104 } 5105 SLAB_ATTR_RO(destroy_by_rcu); 5106 5107 #ifdef CONFIG_SLUB_DEBUG 5108 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5109 { 5110 return show_slab_objects(s, buf, SO_ALL); 5111 } 5112 SLAB_ATTR_RO(slabs); 5113 5114 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5115 { 5116 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5117 } 5118 SLAB_ATTR_RO(total_objects); 5119 5120 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5121 { 5122 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5123 } 5124 5125 static ssize_t sanity_checks_store(struct kmem_cache *s, 5126 const char *buf, size_t length) 5127 { 5128 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5129 if (buf[0] == '1') { 5130 s->flags &= ~__CMPXCHG_DOUBLE; 5131 s->flags |= SLAB_CONSISTENCY_CHECKS; 5132 } 5133 return length; 5134 } 5135 SLAB_ATTR(sanity_checks); 5136 5137 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5138 { 5139 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5140 } 5141 5142 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5143 size_t length) 5144 { 5145 /* 5146 * Tracing a merged cache is going to give confusing results 5147 * as well as cause other issues like converting a mergeable 5148 * cache into an umergeable one. 5149 */ 5150 if (s->refcount > 1) 5151 return -EINVAL; 5152 5153 s->flags &= ~SLAB_TRACE; 5154 if (buf[0] == '1') { 5155 s->flags &= ~__CMPXCHG_DOUBLE; 5156 s->flags |= SLAB_TRACE; 5157 } 5158 return length; 5159 } 5160 SLAB_ATTR(trace); 5161 5162 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5163 { 5164 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5165 } 5166 5167 static ssize_t red_zone_store(struct kmem_cache *s, 5168 const char *buf, size_t length) 5169 { 5170 if (any_slab_objects(s)) 5171 return -EBUSY; 5172 5173 s->flags &= ~SLAB_RED_ZONE; 5174 if (buf[0] == '1') { 5175 s->flags |= SLAB_RED_ZONE; 5176 } 5177 calculate_sizes(s, -1); 5178 return length; 5179 } 5180 SLAB_ATTR(red_zone); 5181 5182 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5183 { 5184 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5185 } 5186 5187 static ssize_t poison_store(struct kmem_cache *s, 5188 const char *buf, size_t length) 5189 { 5190 if (any_slab_objects(s)) 5191 return -EBUSY; 5192 5193 s->flags &= ~SLAB_POISON; 5194 if (buf[0] == '1') { 5195 s->flags |= SLAB_POISON; 5196 } 5197 calculate_sizes(s, -1); 5198 return length; 5199 } 5200 SLAB_ATTR(poison); 5201 5202 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5203 { 5204 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5205 } 5206 5207 static ssize_t store_user_store(struct kmem_cache *s, 5208 const char *buf, size_t length) 5209 { 5210 if (any_slab_objects(s)) 5211 return -EBUSY; 5212 5213 s->flags &= ~SLAB_STORE_USER; 5214 if (buf[0] == '1') { 5215 s->flags &= ~__CMPXCHG_DOUBLE; 5216 s->flags |= SLAB_STORE_USER; 5217 } 5218 calculate_sizes(s, -1); 5219 return length; 5220 } 5221 SLAB_ATTR(store_user); 5222 5223 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5224 { 5225 return 0; 5226 } 5227 5228 static ssize_t validate_store(struct kmem_cache *s, 5229 const char *buf, size_t length) 5230 { 5231 int ret = -EINVAL; 5232 5233 if (buf[0] == '1') { 5234 ret = validate_slab_cache(s); 5235 if (ret >= 0) 5236 ret = length; 5237 } 5238 return ret; 5239 } 5240 SLAB_ATTR(validate); 5241 5242 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5243 { 5244 if (!(s->flags & SLAB_STORE_USER)) 5245 return -ENOSYS; 5246 return list_locations(s, buf, TRACK_ALLOC); 5247 } 5248 SLAB_ATTR_RO(alloc_calls); 5249 5250 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5251 { 5252 if (!(s->flags & SLAB_STORE_USER)) 5253 return -ENOSYS; 5254 return list_locations(s, buf, TRACK_FREE); 5255 } 5256 SLAB_ATTR_RO(free_calls); 5257 #endif /* CONFIG_SLUB_DEBUG */ 5258 5259 #ifdef CONFIG_FAILSLAB 5260 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5261 { 5262 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5263 } 5264 5265 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5266 size_t length) 5267 { 5268 if (s->refcount > 1) 5269 return -EINVAL; 5270 5271 s->flags &= ~SLAB_FAILSLAB; 5272 if (buf[0] == '1') 5273 s->flags |= SLAB_FAILSLAB; 5274 return length; 5275 } 5276 SLAB_ATTR(failslab); 5277 #endif 5278 5279 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5280 { 5281 return 0; 5282 } 5283 5284 static ssize_t shrink_store(struct kmem_cache *s, 5285 const char *buf, size_t length) 5286 { 5287 if (buf[0] == '1') 5288 kmem_cache_shrink(s); 5289 else 5290 return -EINVAL; 5291 return length; 5292 } 5293 SLAB_ATTR(shrink); 5294 5295 #ifdef CONFIG_NUMA 5296 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5297 { 5298 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5299 } 5300 5301 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5302 const char *buf, size_t length) 5303 { 5304 unsigned int ratio; 5305 int err; 5306 5307 err = kstrtouint(buf, 10, &ratio); 5308 if (err) 5309 return err; 5310 if (ratio > 100) 5311 return -ERANGE; 5312 5313 s->remote_node_defrag_ratio = ratio * 10; 5314 5315 return length; 5316 } 5317 SLAB_ATTR(remote_node_defrag_ratio); 5318 #endif 5319 5320 #ifdef CONFIG_SLUB_STATS 5321 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5322 { 5323 unsigned long sum = 0; 5324 int cpu; 5325 int len; 5326 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5327 5328 if (!data) 5329 return -ENOMEM; 5330 5331 for_each_online_cpu(cpu) { 5332 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5333 5334 data[cpu] = x; 5335 sum += x; 5336 } 5337 5338 len = sprintf(buf, "%lu", sum); 5339 5340 #ifdef CONFIG_SMP 5341 for_each_online_cpu(cpu) { 5342 if (data[cpu] && len < PAGE_SIZE - 20) 5343 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5344 } 5345 #endif 5346 kfree(data); 5347 return len + sprintf(buf + len, "\n"); 5348 } 5349 5350 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5351 { 5352 int cpu; 5353 5354 for_each_online_cpu(cpu) 5355 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5356 } 5357 5358 #define STAT_ATTR(si, text) \ 5359 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5360 { \ 5361 return show_stat(s, buf, si); \ 5362 } \ 5363 static ssize_t text##_store(struct kmem_cache *s, \ 5364 const char *buf, size_t length) \ 5365 { \ 5366 if (buf[0] != '0') \ 5367 return -EINVAL; \ 5368 clear_stat(s, si); \ 5369 return length; \ 5370 } \ 5371 SLAB_ATTR(text); \ 5372 5373 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5374 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5375 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5376 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5377 STAT_ATTR(FREE_FROZEN, free_frozen); 5378 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5379 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5380 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5381 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5382 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5383 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5384 STAT_ATTR(FREE_SLAB, free_slab); 5385 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5386 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5387 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5388 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5389 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5390 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5391 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5392 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5393 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5394 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5395 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5396 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5397 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5398 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5399 #endif 5400 5401 static struct attribute *slab_attrs[] = { 5402 &slab_size_attr.attr, 5403 &object_size_attr.attr, 5404 &objs_per_slab_attr.attr, 5405 &order_attr.attr, 5406 &min_partial_attr.attr, 5407 &cpu_partial_attr.attr, 5408 &objects_attr.attr, 5409 &objects_partial_attr.attr, 5410 &partial_attr.attr, 5411 &cpu_slabs_attr.attr, 5412 &ctor_attr.attr, 5413 &aliases_attr.attr, 5414 &align_attr.attr, 5415 &hwcache_align_attr.attr, 5416 &reclaim_account_attr.attr, 5417 &destroy_by_rcu_attr.attr, 5418 &shrink_attr.attr, 5419 &slabs_cpu_partial_attr.attr, 5420 #ifdef CONFIG_SLUB_DEBUG 5421 &total_objects_attr.attr, 5422 &slabs_attr.attr, 5423 &sanity_checks_attr.attr, 5424 &trace_attr.attr, 5425 &red_zone_attr.attr, 5426 &poison_attr.attr, 5427 &store_user_attr.attr, 5428 &validate_attr.attr, 5429 &alloc_calls_attr.attr, 5430 &free_calls_attr.attr, 5431 #endif 5432 #ifdef CONFIG_ZONE_DMA 5433 &cache_dma_attr.attr, 5434 #endif 5435 #ifdef CONFIG_NUMA 5436 &remote_node_defrag_ratio_attr.attr, 5437 #endif 5438 #ifdef CONFIG_SLUB_STATS 5439 &alloc_fastpath_attr.attr, 5440 &alloc_slowpath_attr.attr, 5441 &free_fastpath_attr.attr, 5442 &free_slowpath_attr.attr, 5443 &free_frozen_attr.attr, 5444 &free_add_partial_attr.attr, 5445 &free_remove_partial_attr.attr, 5446 &alloc_from_partial_attr.attr, 5447 &alloc_slab_attr.attr, 5448 &alloc_refill_attr.attr, 5449 &alloc_node_mismatch_attr.attr, 5450 &free_slab_attr.attr, 5451 &cpuslab_flush_attr.attr, 5452 &deactivate_full_attr.attr, 5453 &deactivate_empty_attr.attr, 5454 &deactivate_to_head_attr.attr, 5455 &deactivate_to_tail_attr.attr, 5456 &deactivate_remote_frees_attr.attr, 5457 &deactivate_bypass_attr.attr, 5458 &order_fallback_attr.attr, 5459 &cmpxchg_double_fail_attr.attr, 5460 &cmpxchg_double_cpu_fail_attr.attr, 5461 &cpu_partial_alloc_attr.attr, 5462 &cpu_partial_free_attr.attr, 5463 &cpu_partial_node_attr.attr, 5464 &cpu_partial_drain_attr.attr, 5465 #endif 5466 #ifdef CONFIG_FAILSLAB 5467 &failslab_attr.attr, 5468 #endif 5469 &usersize_attr.attr, 5470 5471 NULL 5472 }; 5473 5474 static const struct attribute_group slab_attr_group = { 5475 .attrs = slab_attrs, 5476 }; 5477 5478 static ssize_t slab_attr_show(struct kobject *kobj, 5479 struct attribute *attr, 5480 char *buf) 5481 { 5482 struct slab_attribute *attribute; 5483 struct kmem_cache *s; 5484 int err; 5485 5486 attribute = to_slab_attr(attr); 5487 s = to_slab(kobj); 5488 5489 if (!attribute->show) 5490 return -EIO; 5491 5492 err = attribute->show(s, buf); 5493 5494 return err; 5495 } 5496 5497 static ssize_t slab_attr_store(struct kobject *kobj, 5498 struct attribute *attr, 5499 const char *buf, size_t len) 5500 { 5501 struct slab_attribute *attribute; 5502 struct kmem_cache *s; 5503 int err; 5504 5505 attribute = to_slab_attr(attr); 5506 s = to_slab(kobj); 5507 5508 if (!attribute->store) 5509 return -EIO; 5510 5511 err = attribute->store(s, buf, len); 5512 #ifdef CONFIG_MEMCG 5513 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5514 struct kmem_cache *c; 5515 5516 mutex_lock(&slab_mutex); 5517 if (s->max_attr_size < len) 5518 s->max_attr_size = len; 5519 5520 /* 5521 * This is a best effort propagation, so this function's return 5522 * value will be determined by the parent cache only. This is 5523 * basically because not all attributes will have a well 5524 * defined semantics for rollbacks - most of the actions will 5525 * have permanent effects. 5526 * 5527 * Returning the error value of any of the children that fail 5528 * is not 100 % defined, in the sense that users seeing the 5529 * error code won't be able to know anything about the state of 5530 * the cache. 5531 * 5532 * Only returning the error code for the parent cache at least 5533 * has well defined semantics. The cache being written to 5534 * directly either failed or succeeded, in which case we loop 5535 * through the descendants with best-effort propagation. 5536 */ 5537 for_each_memcg_cache(c, s) 5538 attribute->store(c, buf, len); 5539 mutex_unlock(&slab_mutex); 5540 } 5541 #endif 5542 return err; 5543 } 5544 5545 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5546 { 5547 #ifdef CONFIG_MEMCG 5548 int i; 5549 char *buffer = NULL; 5550 struct kmem_cache *root_cache; 5551 5552 if (is_root_cache(s)) 5553 return; 5554 5555 root_cache = s->memcg_params.root_cache; 5556 5557 /* 5558 * This mean this cache had no attribute written. Therefore, no point 5559 * in copying default values around 5560 */ 5561 if (!root_cache->max_attr_size) 5562 return; 5563 5564 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5565 char mbuf[64]; 5566 char *buf; 5567 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5568 ssize_t len; 5569 5570 if (!attr || !attr->store || !attr->show) 5571 continue; 5572 5573 /* 5574 * It is really bad that we have to allocate here, so we will 5575 * do it only as a fallback. If we actually allocate, though, 5576 * we can just use the allocated buffer until the end. 5577 * 5578 * Most of the slub attributes will tend to be very small in 5579 * size, but sysfs allows buffers up to a page, so they can 5580 * theoretically happen. 5581 */ 5582 if (buffer) 5583 buf = buffer; 5584 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5585 buf = mbuf; 5586 else { 5587 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5588 if (WARN_ON(!buffer)) 5589 continue; 5590 buf = buffer; 5591 } 5592 5593 len = attr->show(root_cache, buf); 5594 if (len > 0) 5595 attr->store(s, buf, len); 5596 } 5597 5598 if (buffer) 5599 free_page((unsigned long)buffer); 5600 #endif 5601 } 5602 5603 static void kmem_cache_release(struct kobject *k) 5604 { 5605 slab_kmem_cache_release(to_slab(k)); 5606 } 5607 5608 static const struct sysfs_ops slab_sysfs_ops = { 5609 .show = slab_attr_show, 5610 .store = slab_attr_store, 5611 }; 5612 5613 static struct kobj_type slab_ktype = { 5614 .sysfs_ops = &slab_sysfs_ops, 5615 .release = kmem_cache_release, 5616 }; 5617 5618 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5619 { 5620 struct kobj_type *ktype = get_ktype(kobj); 5621 5622 if (ktype == &slab_ktype) 5623 return 1; 5624 return 0; 5625 } 5626 5627 static const struct kset_uevent_ops slab_uevent_ops = { 5628 .filter = uevent_filter, 5629 }; 5630 5631 static struct kset *slab_kset; 5632 5633 static inline struct kset *cache_kset(struct kmem_cache *s) 5634 { 5635 #ifdef CONFIG_MEMCG 5636 if (!is_root_cache(s)) 5637 return s->memcg_params.root_cache->memcg_kset; 5638 #endif 5639 return slab_kset; 5640 } 5641 5642 #define ID_STR_LENGTH 64 5643 5644 /* Create a unique string id for a slab cache: 5645 * 5646 * Format :[flags-]size 5647 */ 5648 static char *create_unique_id(struct kmem_cache *s) 5649 { 5650 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5651 char *p = name; 5652 5653 BUG_ON(!name); 5654 5655 *p++ = ':'; 5656 /* 5657 * First flags affecting slabcache operations. We will only 5658 * get here for aliasable slabs so we do not need to support 5659 * too many flags. The flags here must cover all flags that 5660 * are matched during merging to guarantee that the id is 5661 * unique. 5662 */ 5663 if (s->flags & SLAB_CACHE_DMA) 5664 *p++ = 'd'; 5665 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5666 *p++ = 'a'; 5667 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5668 *p++ = 'F'; 5669 if (s->flags & SLAB_ACCOUNT) 5670 *p++ = 'A'; 5671 if (p != name + 1) 5672 *p++ = '-'; 5673 p += sprintf(p, "%07u", s->size); 5674 5675 BUG_ON(p > name + ID_STR_LENGTH - 1); 5676 return name; 5677 } 5678 5679 static void sysfs_slab_remove_workfn(struct work_struct *work) 5680 { 5681 struct kmem_cache *s = 5682 container_of(work, struct kmem_cache, kobj_remove_work); 5683 5684 if (!s->kobj.state_in_sysfs) 5685 /* 5686 * For a memcg cache, this may be called during 5687 * deactivation and again on shutdown. Remove only once. 5688 * A cache is never shut down before deactivation is 5689 * complete, so no need to worry about synchronization. 5690 */ 5691 goto out; 5692 5693 #ifdef CONFIG_MEMCG 5694 kset_unregister(s->memcg_kset); 5695 #endif 5696 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5697 out: 5698 kobject_put(&s->kobj); 5699 } 5700 5701 static int sysfs_slab_add(struct kmem_cache *s) 5702 { 5703 int err; 5704 const char *name; 5705 struct kset *kset = cache_kset(s); 5706 int unmergeable = slab_unmergeable(s); 5707 5708 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5709 5710 if (!kset) { 5711 kobject_init(&s->kobj, &slab_ktype); 5712 return 0; 5713 } 5714 5715 if (!unmergeable && disable_higher_order_debug && 5716 (slub_debug & DEBUG_METADATA_FLAGS)) 5717 unmergeable = 1; 5718 5719 if (unmergeable) { 5720 /* 5721 * Slabcache can never be merged so we can use the name proper. 5722 * This is typically the case for debug situations. In that 5723 * case we can catch duplicate names easily. 5724 */ 5725 sysfs_remove_link(&slab_kset->kobj, s->name); 5726 name = s->name; 5727 } else { 5728 /* 5729 * Create a unique name for the slab as a target 5730 * for the symlinks. 5731 */ 5732 name = create_unique_id(s); 5733 } 5734 5735 s->kobj.kset = kset; 5736 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5737 if (err) 5738 goto out; 5739 5740 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5741 if (err) 5742 goto out_del_kobj; 5743 5744 #ifdef CONFIG_MEMCG 5745 if (is_root_cache(s) && memcg_sysfs_enabled) { 5746 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5747 if (!s->memcg_kset) { 5748 err = -ENOMEM; 5749 goto out_del_kobj; 5750 } 5751 } 5752 #endif 5753 5754 kobject_uevent(&s->kobj, KOBJ_ADD); 5755 if (!unmergeable) { 5756 /* Setup first alias */ 5757 sysfs_slab_alias(s, s->name); 5758 } 5759 out: 5760 if (!unmergeable) 5761 kfree(name); 5762 return err; 5763 out_del_kobj: 5764 kobject_del(&s->kobj); 5765 goto out; 5766 } 5767 5768 static void sysfs_slab_remove(struct kmem_cache *s) 5769 { 5770 if (slab_state < FULL) 5771 /* 5772 * Sysfs has not been setup yet so no need to remove the 5773 * cache from sysfs. 5774 */ 5775 return; 5776 5777 kobject_get(&s->kobj); 5778 schedule_work(&s->kobj_remove_work); 5779 } 5780 5781 void sysfs_slab_unlink(struct kmem_cache *s) 5782 { 5783 if (slab_state >= FULL) 5784 kobject_del(&s->kobj); 5785 } 5786 5787 void sysfs_slab_release(struct kmem_cache *s) 5788 { 5789 if (slab_state >= FULL) 5790 kobject_put(&s->kobj); 5791 } 5792 5793 /* 5794 * Need to buffer aliases during bootup until sysfs becomes 5795 * available lest we lose that information. 5796 */ 5797 struct saved_alias { 5798 struct kmem_cache *s; 5799 const char *name; 5800 struct saved_alias *next; 5801 }; 5802 5803 static struct saved_alias *alias_list; 5804 5805 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5806 { 5807 struct saved_alias *al; 5808 5809 if (slab_state == FULL) { 5810 /* 5811 * If we have a leftover link then remove it. 5812 */ 5813 sysfs_remove_link(&slab_kset->kobj, name); 5814 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5815 } 5816 5817 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5818 if (!al) 5819 return -ENOMEM; 5820 5821 al->s = s; 5822 al->name = name; 5823 al->next = alias_list; 5824 alias_list = al; 5825 return 0; 5826 } 5827 5828 static int __init slab_sysfs_init(void) 5829 { 5830 struct kmem_cache *s; 5831 int err; 5832 5833 mutex_lock(&slab_mutex); 5834 5835 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5836 if (!slab_kset) { 5837 mutex_unlock(&slab_mutex); 5838 pr_err("Cannot register slab subsystem.\n"); 5839 return -ENOSYS; 5840 } 5841 5842 slab_state = FULL; 5843 5844 list_for_each_entry(s, &slab_caches, list) { 5845 err = sysfs_slab_add(s); 5846 if (err) 5847 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5848 s->name); 5849 } 5850 5851 while (alias_list) { 5852 struct saved_alias *al = alias_list; 5853 5854 alias_list = alias_list->next; 5855 err = sysfs_slab_alias(al->s, al->name); 5856 if (err) 5857 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5858 al->name); 5859 kfree(al); 5860 } 5861 5862 mutex_unlock(&slab_mutex); 5863 resiliency_test(); 5864 return 0; 5865 } 5866 5867 __initcall(slab_sysfs_init); 5868 #endif /* CONFIG_SYSFS */ 5869 5870 /* 5871 * The /proc/slabinfo ABI 5872 */ 5873 #ifdef CONFIG_SLUB_DEBUG 5874 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5875 { 5876 unsigned long nr_slabs = 0; 5877 unsigned long nr_objs = 0; 5878 unsigned long nr_free = 0; 5879 int node; 5880 struct kmem_cache_node *n; 5881 5882 for_each_kmem_cache_node(s, node, n) { 5883 nr_slabs += node_nr_slabs(n); 5884 nr_objs += node_nr_objs(n); 5885 nr_free += count_partial(n, count_free); 5886 } 5887 5888 sinfo->active_objs = nr_objs - nr_free; 5889 sinfo->num_objs = nr_objs; 5890 sinfo->active_slabs = nr_slabs; 5891 sinfo->num_slabs = nr_slabs; 5892 sinfo->objects_per_slab = oo_objects(s->oo); 5893 sinfo->cache_order = oo_order(s->oo); 5894 } 5895 5896 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5897 { 5898 } 5899 5900 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5901 size_t count, loff_t *ppos) 5902 { 5903 return -EIO; 5904 } 5905 #endif /* CONFIG_SLUB_DEBUG */ 5906