xref: /openbmc/linux/mm/slub.c (revision 2c6467d2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list. The processor that froze the slab is the one who can
62  *   perform list operations on the page. Other processors may put objects
63  *   onto the freelist but the processor that froze the slab is the only
64  *   one that can retrieve the objects from the page's freelist.
65  *
66  *   The list_lock protects the partial and full list on each node and
67  *   the partial slab counter. If taken then no new slabs may be added or
68  *   removed from the lists nor make the number of partial slabs be modified.
69  *   (Note that the total number of slabs is an atomic value that may be
70  *   modified without taking the list lock).
71  *
72  *   The list_lock is a centralized lock and thus we avoid taking it as
73  *   much as possible. As long as SLUB does not have to handle partial
74  *   slabs, operations can continue without any centralized lock. F.e.
75  *   allocating a long series of objects that fill up slabs does not require
76  *   the list lock.
77  *   Interrupts are disabled during allocation and deallocation in order to
78  *   make the slab allocator safe to use in the context of an irq. In addition
79  *   interrupts are disabled to ensure that the processor does not change
80  *   while handling per_cpu slabs, due to kernel preemption.
81  *
82  * SLUB assigns one slab for allocation to each processor.
83  * Allocations only occur from these slabs called cpu slabs.
84  *
85  * Slabs with free elements are kept on a partial list and during regular
86  * operations no list for full slabs is used. If an object in a full slab is
87  * freed then the slab will show up again on the partial lists.
88  * We track full slabs for debugging purposes though because otherwise we
89  * cannot scan all objects.
90  *
91  * Slabs are freed when they become empty. Teardown and setup is
92  * minimal so we rely on the page allocators per cpu caches for
93  * fast frees and allocs.
94  *
95  * Overloading of page flags that are otherwise used for LRU management.
96  *
97  * PageActive 		The slab is frozen and exempt from list processing.
98  * 			This means that the slab is dedicated to a purpose
99  * 			such as satisfying allocations for a specific
100  * 			processor. Objects may be freed in the slab while
101  * 			it is frozen but slab_free will then skip the usual
102  * 			list operations. It is up to the processor holding
103  * 			the slab to integrate the slab into the slab lists
104  * 			when the slab is no longer needed.
105  *
106  * 			One use of this flag is to mark slabs that are
107  * 			used for allocations. Then such a slab becomes a cpu
108  * 			slab. The cpu slab may be equipped with an additional
109  * 			freelist that allows lockless access to
110  * 			free objects in addition to the regular freelist
111  * 			that requires the slab lock.
112  *
113  * PageError		Slab requires special handling due to debug
114  * 			options set. This moves	slab handling out of
115  * 			the fast path and disables lockless freelists.
116  */
117 
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 	return 0;
124 #endif
125 }
126 
127 void *fixup_red_left(struct kmem_cache *s, void *p)
128 {
129 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 		p += s->red_left_pad;
131 
132 	return p;
133 }
134 
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136 {
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 	return !kmem_cache_debug(s);
139 #else
140 	return false;
141 #endif
142 }
143 
144 /*
145  * Issues still to be resolved:
146  *
147  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148  *
149  * - Variable sizing of the per node arrays
150  */
151 
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
154 
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
157 
158 /*
159  * Mininum number of partial slabs. These will be left on the partial
160  * lists even if they are empty. kmem_cache_shrink may reclaim them.
161  */
162 #define MIN_PARTIAL 5
163 
164 /*
165  * Maximum number of desirable partial slabs.
166  * The existence of more partial slabs makes kmem_cache_shrink
167  * sort the partial list by the number of objects in use.
168  */
169 #define MAX_PARTIAL 10
170 
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 				SLAB_POISON | SLAB_STORE_USER)
173 
174 /*
175  * These debug flags cannot use CMPXCHG because there might be consistency
176  * issues when checking or reading debug information
177  */
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 				SLAB_TRACE)
180 
181 
182 /*
183  * Debugging flags that require metadata to be stored in the slab.  These get
184  * disabled when slub_debug=O is used and a cache's min order increases with
185  * metadata.
186  */
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188 
189 #define OO_SHIFT	16
190 #define OO_MASK		((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
192 
193 /* Internal SLUB flags */
194 /* Poison object */
195 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
196 /* Use cmpxchg_double */
197 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
198 
199 /*
200  * Tracking user of a slab.
201  */
202 #define TRACK_ADDRS_COUNT 16
203 struct track {
204 	unsigned long addr;	/* Called from address */
205 #ifdef CONFIG_STACKTRACE
206 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
207 #endif
208 	int cpu;		/* Was running on cpu */
209 	int pid;		/* Pid context */
210 	unsigned long when;	/* When did the operation occur */
211 };
212 
213 enum track_item { TRACK_ALLOC, TRACK_FREE };
214 
215 #ifdef CONFIG_SYSFS
216 static int sysfs_slab_add(struct kmem_cache *);
217 static int sysfs_slab_alias(struct kmem_cache *, const char *);
218 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
219 static void sysfs_slab_remove(struct kmem_cache *s);
220 #else
221 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
222 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
223 							{ return 0; }
224 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
225 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
226 #endif
227 
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 	/*
232 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 	 * avoid this_cpu_add()'s irq-disable overhead.
234 	 */
235 	raw_cpu_inc(s->cpu_slab->stat[si]);
236 #endif
237 }
238 
239 /********************************************************************
240  * 			Core slab cache functions
241  *******************************************************************/
242 
243 /*
244  * Returns freelist pointer (ptr). With hardening, this is obfuscated
245  * with an XOR of the address where the pointer is held and a per-cache
246  * random number.
247  */
248 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
249 				 unsigned long ptr_addr)
250 {
251 #ifdef CONFIG_SLAB_FREELIST_HARDENED
252 	return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
253 #else
254 	return ptr;
255 #endif
256 }
257 
258 /* Returns the freelist pointer recorded at location ptr_addr. */
259 static inline void *freelist_dereference(const struct kmem_cache *s,
260 					 void *ptr_addr)
261 {
262 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
263 			    (unsigned long)ptr_addr);
264 }
265 
266 static inline void *get_freepointer(struct kmem_cache *s, void *object)
267 {
268 	return freelist_dereference(s, object + s->offset);
269 }
270 
271 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
272 {
273 	prefetch(object + s->offset);
274 }
275 
276 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
277 {
278 	unsigned long freepointer_addr;
279 	void *p;
280 
281 	if (!debug_pagealloc_enabled())
282 		return get_freepointer(s, object);
283 
284 	freepointer_addr = (unsigned long)object + s->offset;
285 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
286 	return freelist_ptr(s, p, freepointer_addr);
287 }
288 
289 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
290 {
291 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
292 
293 #ifdef CONFIG_SLAB_FREELIST_HARDENED
294 	BUG_ON(object == fp); /* naive detection of double free or corruption */
295 #endif
296 
297 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
298 }
299 
300 /* Loop over all objects in a slab */
301 #define for_each_object(__p, __s, __addr, __objects) \
302 	for (__p = fixup_red_left(__s, __addr); \
303 		__p < (__addr) + (__objects) * (__s)->size; \
304 		__p += (__s)->size)
305 
306 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
307 	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
308 		__idx <= __objects; \
309 		__p += (__s)->size, __idx++)
310 
311 /* Determine object index from a given position */
312 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
313 {
314 	return (p - addr) / s->size;
315 }
316 
317 static inline unsigned int order_objects(unsigned int order, unsigned int size)
318 {
319 	return ((unsigned int)PAGE_SIZE << order) / size;
320 }
321 
322 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
323 		unsigned int size)
324 {
325 	struct kmem_cache_order_objects x = {
326 		(order << OO_SHIFT) + order_objects(order, size)
327 	};
328 
329 	return x;
330 }
331 
332 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
333 {
334 	return x.x >> OO_SHIFT;
335 }
336 
337 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
338 {
339 	return x.x & OO_MASK;
340 }
341 
342 /*
343  * Per slab locking using the pagelock
344  */
345 static __always_inline void slab_lock(struct page *page)
346 {
347 	VM_BUG_ON_PAGE(PageTail(page), page);
348 	bit_spin_lock(PG_locked, &page->flags);
349 }
350 
351 static __always_inline void slab_unlock(struct page *page)
352 {
353 	VM_BUG_ON_PAGE(PageTail(page), page);
354 	__bit_spin_unlock(PG_locked, &page->flags);
355 }
356 
357 /* Interrupts must be disabled (for the fallback code to work right) */
358 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
359 		void *freelist_old, unsigned long counters_old,
360 		void *freelist_new, unsigned long counters_new,
361 		const char *n)
362 {
363 	VM_BUG_ON(!irqs_disabled());
364 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
365     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
366 	if (s->flags & __CMPXCHG_DOUBLE) {
367 		if (cmpxchg_double(&page->freelist, &page->counters,
368 				   freelist_old, counters_old,
369 				   freelist_new, counters_new))
370 			return true;
371 	} else
372 #endif
373 	{
374 		slab_lock(page);
375 		if (page->freelist == freelist_old &&
376 					page->counters == counters_old) {
377 			page->freelist = freelist_new;
378 			page->counters = counters_new;
379 			slab_unlock(page);
380 			return true;
381 		}
382 		slab_unlock(page);
383 	}
384 
385 	cpu_relax();
386 	stat(s, CMPXCHG_DOUBLE_FAIL);
387 
388 #ifdef SLUB_DEBUG_CMPXCHG
389 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
390 #endif
391 
392 	return false;
393 }
394 
395 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
396 		void *freelist_old, unsigned long counters_old,
397 		void *freelist_new, unsigned long counters_new,
398 		const char *n)
399 {
400 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
401     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
402 	if (s->flags & __CMPXCHG_DOUBLE) {
403 		if (cmpxchg_double(&page->freelist, &page->counters,
404 				   freelist_old, counters_old,
405 				   freelist_new, counters_new))
406 			return true;
407 	} else
408 #endif
409 	{
410 		unsigned long flags;
411 
412 		local_irq_save(flags);
413 		slab_lock(page);
414 		if (page->freelist == freelist_old &&
415 					page->counters == counters_old) {
416 			page->freelist = freelist_new;
417 			page->counters = counters_new;
418 			slab_unlock(page);
419 			local_irq_restore(flags);
420 			return true;
421 		}
422 		slab_unlock(page);
423 		local_irq_restore(flags);
424 	}
425 
426 	cpu_relax();
427 	stat(s, CMPXCHG_DOUBLE_FAIL);
428 
429 #ifdef SLUB_DEBUG_CMPXCHG
430 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
431 #endif
432 
433 	return false;
434 }
435 
436 #ifdef CONFIG_SLUB_DEBUG
437 /*
438  * Determine a map of object in use on a page.
439  *
440  * Node listlock must be held to guarantee that the page does
441  * not vanish from under us.
442  */
443 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
444 {
445 	void *p;
446 	void *addr = page_address(page);
447 
448 	for (p = page->freelist; p; p = get_freepointer(s, p))
449 		set_bit(slab_index(p, s, addr), map);
450 }
451 
452 static inline unsigned int size_from_object(struct kmem_cache *s)
453 {
454 	if (s->flags & SLAB_RED_ZONE)
455 		return s->size - s->red_left_pad;
456 
457 	return s->size;
458 }
459 
460 static inline void *restore_red_left(struct kmem_cache *s, void *p)
461 {
462 	if (s->flags & SLAB_RED_ZONE)
463 		p -= s->red_left_pad;
464 
465 	return p;
466 }
467 
468 /*
469  * Debug settings:
470  */
471 #if defined(CONFIG_SLUB_DEBUG_ON)
472 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
473 #else
474 static slab_flags_t slub_debug;
475 #endif
476 
477 static char *slub_debug_slabs;
478 static int disable_higher_order_debug;
479 
480 /*
481  * slub is about to manipulate internal object metadata.  This memory lies
482  * outside the range of the allocated object, so accessing it would normally
483  * be reported by kasan as a bounds error.  metadata_access_enable() is used
484  * to tell kasan that these accesses are OK.
485  */
486 static inline void metadata_access_enable(void)
487 {
488 	kasan_disable_current();
489 }
490 
491 static inline void metadata_access_disable(void)
492 {
493 	kasan_enable_current();
494 }
495 
496 /*
497  * Object debugging
498  */
499 
500 /* Verify that a pointer has an address that is valid within a slab page */
501 static inline int check_valid_pointer(struct kmem_cache *s,
502 				struct page *page, void *object)
503 {
504 	void *base;
505 
506 	if (!object)
507 		return 1;
508 
509 	base = page_address(page);
510 	object = restore_red_left(s, object);
511 	if (object < base || object >= base + page->objects * s->size ||
512 		(object - base) % s->size) {
513 		return 0;
514 	}
515 
516 	return 1;
517 }
518 
519 static void print_section(char *level, char *text, u8 *addr,
520 			  unsigned int length)
521 {
522 	metadata_access_enable();
523 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
524 			length, 1);
525 	metadata_access_disable();
526 }
527 
528 static struct track *get_track(struct kmem_cache *s, void *object,
529 	enum track_item alloc)
530 {
531 	struct track *p;
532 
533 	if (s->offset)
534 		p = object + s->offset + sizeof(void *);
535 	else
536 		p = object + s->inuse;
537 
538 	return p + alloc;
539 }
540 
541 static void set_track(struct kmem_cache *s, void *object,
542 			enum track_item alloc, unsigned long addr)
543 {
544 	struct track *p = get_track(s, object, alloc);
545 
546 	if (addr) {
547 #ifdef CONFIG_STACKTRACE
548 		struct stack_trace trace;
549 		int i;
550 
551 		trace.nr_entries = 0;
552 		trace.max_entries = TRACK_ADDRS_COUNT;
553 		trace.entries = p->addrs;
554 		trace.skip = 3;
555 		metadata_access_enable();
556 		save_stack_trace(&trace);
557 		metadata_access_disable();
558 
559 		/* See rant in lockdep.c */
560 		if (trace.nr_entries != 0 &&
561 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
562 			trace.nr_entries--;
563 
564 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
565 			p->addrs[i] = 0;
566 #endif
567 		p->addr = addr;
568 		p->cpu = smp_processor_id();
569 		p->pid = current->pid;
570 		p->when = jiffies;
571 	} else
572 		memset(p, 0, sizeof(struct track));
573 }
574 
575 static void init_tracking(struct kmem_cache *s, void *object)
576 {
577 	if (!(s->flags & SLAB_STORE_USER))
578 		return;
579 
580 	set_track(s, object, TRACK_FREE, 0UL);
581 	set_track(s, object, TRACK_ALLOC, 0UL);
582 }
583 
584 static void print_track(const char *s, struct track *t, unsigned long pr_time)
585 {
586 	if (!t->addr)
587 		return;
588 
589 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
590 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
591 #ifdef CONFIG_STACKTRACE
592 	{
593 		int i;
594 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
595 			if (t->addrs[i])
596 				pr_err("\t%pS\n", (void *)t->addrs[i]);
597 			else
598 				break;
599 	}
600 #endif
601 }
602 
603 static void print_tracking(struct kmem_cache *s, void *object)
604 {
605 	unsigned long pr_time = jiffies;
606 	if (!(s->flags & SLAB_STORE_USER))
607 		return;
608 
609 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
610 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
611 }
612 
613 static void print_page_info(struct page *page)
614 {
615 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
616 	       page, page->objects, page->inuse, page->freelist, page->flags);
617 
618 }
619 
620 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
621 {
622 	struct va_format vaf;
623 	va_list args;
624 
625 	va_start(args, fmt);
626 	vaf.fmt = fmt;
627 	vaf.va = &args;
628 	pr_err("=============================================================================\n");
629 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
630 	pr_err("-----------------------------------------------------------------------------\n\n");
631 
632 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
633 	va_end(args);
634 }
635 
636 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
637 {
638 	struct va_format vaf;
639 	va_list args;
640 
641 	va_start(args, fmt);
642 	vaf.fmt = fmt;
643 	vaf.va = &args;
644 	pr_err("FIX %s: %pV\n", s->name, &vaf);
645 	va_end(args);
646 }
647 
648 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
649 {
650 	unsigned int off;	/* Offset of last byte */
651 	u8 *addr = page_address(page);
652 
653 	print_tracking(s, p);
654 
655 	print_page_info(page);
656 
657 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
658 	       p, p - addr, get_freepointer(s, p));
659 
660 	if (s->flags & SLAB_RED_ZONE)
661 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
662 			      s->red_left_pad);
663 	else if (p > addr + 16)
664 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
665 
666 	print_section(KERN_ERR, "Object ", p,
667 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
668 	if (s->flags & SLAB_RED_ZONE)
669 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
670 			s->inuse - s->object_size);
671 
672 	if (s->offset)
673 		off = s->offset + sizeof(void *);
674 	else
675 		off = s->inuse;
676 
677 	if (s->flags & SLAB_STORE_USER)
678 		off += 2 * sizeof(struct track);
679 
680 	off += kasan_metadata_size(s);
681 
682 	if (off != size_from_object(s))
683 		/* Beginning of the filler is the free pointer */
684 		print_section(KERN_ERR, "Padding ", p + off,
685 			      size_from_object(s) - off);
686 
687 	dump_stack();
688 }
689 
690 void object_err(struct kmem_cache *s, struct page *page,
691 			u8 *object, char *reason)
692 {
693 	slab_bug(s, "%s", reason);
694 	print_trailer(s, page, object);
695 }
696 
697 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
698 			const char *fmt, ...)
699 {
700 	va_list args;
701 	char buf[100];
702 
703 	va_start(args, fmt);
704 	vsnprintf(buf, sizeof(buf), fmt, args);
705 	va_end(args);
706 	slab_bug(s, "%s", buf);
707 	print_page_info(page);
708 	dump_stack();
709 }
710 
711 static void init_object(struct kmem_cache *s, void *object, u8 val)
712 {
713 	u8 *p = object;
714 
715 	if (s->flags & SLAB_RED_ZONE)
716 		memset(p - s->red_left_pad, val, s->red_left_pad);
717 
718 	if (s->flags & __OBJECT_POISON) {
719 		memset(p, POISON_FREE, s->object_size - 1);
720 		p[s->object_size - 1] = POISON_END;
721 	}
722 
723 	if (s->flags & SLAB_RED_ZONE)
724 		memset(p + s->object_size, val, s->inuse - s->object_size);
725 }
726 
727 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
728 						void *from, void *to)
729 {
730 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
731 	memset(from, data, to - from);
732 }
733 
734 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
735 			u8 *object, char *what,
736 			u8 *start, unsigned int value, unsigned int bytes)
737 {
738 	u8 *fault;
739 	u8 *end;
740 
741 	metadata_access_enable();
742 	fault = memchr_inv(start, value, bytes);
743 	metadata_access_disable();
744 	if (!fault)
745 		return 1;
746 
747 	end = start + bytes;
748 	while (end > fault && end[-1] == value)
749 		end--;
750 
751 	slab_bug(s, "%s overwritten", what);
752 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
753 					fault, end - 1, fault[0], value);
754 	print_trailer(s, page, object);
755 
756 	restore_bytes(s, what, value, fault, end);
757 	return 0;
758 }
759 
760 /*
761  * Object layout:
762  *
763  * object address
764  * 	Bytes of the object to be managed.
765  * 	If the freepointer may overlay the object then the free
766  * 	pointer is the first word of the object.
767  *
768  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
769  * 	0xa5 (POISON_END)
770  *
771  * object + s->object_size
772  * 	Padding to reach word boundary. This is also used for Redzoning.
773  * 	Padding is extended by another word if Redzoning is enabled and
774  * 	object_size == inuse.
775  *
776  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
777  * 	0xcc (RED_ACTIVE) for objects in use.
778  *
779  * object + s->inuse
780  * 	Meta data starts here.
781  *
782  * 	A. Free pointer (if we cannot overwrite object on free)
783  * 	B. Tracking data for SLAB_STORE_USER
784  * 	C. Padding to reach required alignment boundary or at mininum
785  * 		one word if debugging is on to be able to detect writes
786  * 		before the word boundary.
787  *
788  *	Padding is done using 0x5a (POISON_INUSE)
789  *
790  * object + s->size
791  * 	Nothing is used beyond s->size.
792  *
793  * If slabcaches are merged then the object_size and inuse boundaries are mostly
794  * ignored. And therefore no slab options that rely on these boundaries
795  * may be used with merged slabcaches.
796  */
797 
798 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
799 {
800 	unsigned long off = s->inuse;	/* The end of info */
801 
802 	if (s->offset)
803 		/* Freepointer is placed after the object. */
804 		off += sizeof(void *);
805 
806 	if (s->flags & SLAB_STORE_USER)
807 		/* We also have user information there */
808 		off += 2 * sizeof(struct track);
809 
810 	off += kasan_metadata_size(s);
811 
812 	if (size_from_object(s) == off)
813 		return 1;
814 
815 	return check_bytes_and_report(s, page, p, "Object padding",
816 			p + off, POISON_INUSE, size_from_object(s) - off);
817 }
818 
819 /* Check the pad bytes at the end of a slab page */
820 static int slab_pad_check(struct kmem_cache *s, struct page *page)
821 {
822 	u8 *start;
823 	u8 *fault;
824 	u8 *end;
825 	u8 *pad;
826 	int length;
827 	int remainder;
828 
829 	if (!(s->flags & SLAB_POISON))
830 		return 1;
831 
832 	start = page_address(page);
833 	length = PAGE_SIZE << compound_order(page);
834 	end = start + length;
835 	remainder = length % s->size;
836 	if (!remainder)
837 		return 1;
838 
839 	pad = end - remainder;
840 	metadata_access_enable();
841 	fault = memchr_inv(pad, POISON_INUSE, remainder);
842 	metadata_access_disable();
843 	if (!fault)
844 		return 1;
845 	while (end > fault && end[-1] == POISON_INUSE)
846 		end--;
847 
848 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
849 	print_section(KERN_ERR, "Padding ", pad, remainder);
850 
851 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
852 	return 0;
853 }
854 
855 static int check_object(struct kmem_cache *s, struct page *page,
856 					void *object, u8 val)
857 {
858 	u8 *p = object;
859 	u8 *endobject = object + s->object_size;
860 
861 	if (s->flags & SLAB_RED_ZONE) {
862 		if (!check_bytes_and_report(s, page, object, "Redzone",
863 			object - s->red_left_pad, val, s->red_left_pad))
864 			return 0;
865 
866 		if (!check_bytes_and_report(s, page, object, "Redzone",
867 			endobject, val, s->inuse - s->object_size))
868 			return 0;
869 	} else {
870 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
871 			check_bytes_and_report(s, page, p, "Alignment padding",
872 				endobject, POISON_INUSE,
873 				s->inuse - s->object_size);
874 		}
875 	}
876 
877 	if (s->flags & SLAB_POISON) {
878 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
879 			(!check_bytes_and_report(s, page, p, "Poison", p,
880 					POISON_FREE, s->object_size - 1) ||
881 			 !check_bytes_and_report(s, page, p, "Poison",
882 				p + s->object_size - 1, POISON_END, 1)))
883 			return 0;
884 		/*
885 		 * check_pad_bytes cleans up on its own.
886 		 */
887 		check_pad_bytes(s, page, p);
888 	}
889 
890 	if (!s->offset && val == SLUB_RED_ACTIVE)
891 		/*
892 		 * Object and freepointer overlap. Cannot check
893 		 * freepointer while object is allocated.
894 		 */
895 		return 1;
896 
897 	/* Check free pointer validity */
898 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
899 		object_err(s, page, p, "Freepointer corrupt");
900 		/*
901 		 * No choice but to zap it and thus lose the remainder
902 		 * of the free objects in this slab. May cause
903 		 * another error because the object count is now wrong.
904 		 */
905 		set_freepointer(s, p, NULL);
906 		return 0;
907 	}
908 	return 1;
909 }
910 
911 static int check_slab(struct kmem_cache *s, struct page *page)
912 {
913 	int maxobj;
914 
915 	VM_BUG_ON(!irqs_disabled());
916 
917 	if (!PageSlab(page)) {
918 		slab_err(s, page, "Not a valid slab page");
919 		return 0;
920 	}
921 
922 	maxobj = order_objects(compound_order(page), s->size);
923 	if (page->objects > maxobj) {
924 		slab_err(s, page, "objects %u > max %u",
925 			page->objects, maxobj);
926 		return 0;
927 	}
928 	if (page->inuse > page->objects) {
929 		slab_err(s, page, "inuse %u > max %u",
930 			page->inuse, page->objects);
931 		return 0;
932 	}
933 	/* Slab_pad_check fixes things up after itself */
934 	slab_pad_check(s, page);
935 	return 1;
936 }
937 
938 /*
939  * Determine if a certain object on a page is on the freelist. Must hold the
940  * slab lock to guarantee that the chains are in a consistent state.
941  */
942 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
943 {
944 	int nr = 0;
945 	void *fp;
946 	void *object = NULL;
947 	int max_objects;
948 
949 	fp = page->freelist;
950 	while (fp && nr <= page->objects) {
951 		if (fp == search)
952 			return 1;
953 		if (!check_valid_pointer(s, page, fp)) {
954 			if (object) {
955 				object_err(s, page, object,
956 					"Freechain corrupt");
957 				set_freepointer(s, object, NULL);
958 			} else {
959 				slab_err(s, page, "Freepointer corrupt");
960 				page->freelist = NULL;
961 				page->inuse = page->objects;
962 				slab_fix(s, "Freelist cleared");
963 				return 0;
964 			}
965 			break;
966 		}
967 		object = fp;
968 		fp = get_freepointer(s, object);
969 		nr++;
970 	}
971 
972 	max_objects = order_objects(compound_order(page), s->size);
973 	if (max_objects > MAX_OBJS_PER_PAGE)
974 		max_objects = MAX_OBJS_PER_PAGE;
975 
976 	if (page->objects != max_objects) {
977 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
978 			 page->objects, max_objects);
979 		page->objects = max_objects;
980 		slab_fix(s, "Number of objects adjusted.");
981 	}
982 	if (page->inuse != page->objects - nr) {
983 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
984 			 page->inuse, page->objects - nr);
985 		page->inuse = page->objects - nr;
986 		slab_fix(s, "Object count adjusted.");
987 	}
988 	return search == NULL;
989 }
990 
991 static void trace(struct kmem_cache *s, struct page *page, void *object,
992 								int alloc)
993 {
994 	if (s->flags & SLAB_TRACE) {
995 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
996 			s->name,
997 			alloc ? "alloc" : "free",
998 			object, page->inuse,
999 			page->freelist);
1000 
1001 		if (!alloc)
1002 			print_section(KERN_INFO, "Object ", (void *)object,
1003 					s->object_size);
1004 
1005 		dump_stack();
1006 	}
1007 }
1008 
1009 /*
1010  * Tracking of fully allocated slabs for debugging purposes.
1011  */
1012 static void add_full(struct kmem_cache *s,
1013 	struct kmem_cache_node *n, struct page *page)
1014 {
1015 	if (!(s->flags & SLAB_STORE_USER))
1016 		return;
1017 
1018 	lockdep_assert_held(&n->list_lock);
1019 	list_add(&page->lru, &n->full);
1020 }
1021 
1022 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1023 {
1024 	if (!(s->flags & SLAB_STORE_USER))
1025 		return;
1026 
1027 	lockdep_assert_held(&n->list_lock);
1028 	list_del(&page->lru);
1029 }
1030 
1031 /* Tracking of the number of slabs for debugging purposes */
1032 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1033 {
1034 	struct kmem_cache_node *n = get_node(s, node);
1035 
1036 	return atomic_long_read(&n->nr_slabs);
1037 }
1038 
1039 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1040 {
1041 	return atomic_long_read(&n->nr_slabs);
1042 }
1043 
1044 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1045 {
1046 	struct kmem_cache_node *n = get_node(s, node);
1047 
1048 	/*
1049 	 * May be called early in order to allocate a slab for the
1050 	 * kmem_cache_node structure. Solve the chicken-egg
1051 	 * dilemma by deferring the increment of the count during
1052 	 * bootstrap (see early_kmem_cache_node_alloc).
1053 	 */
1054 	if (likely(n)) {
1055 		atomic_long_inc(&n->nr_slabs);
1056 		atomic_long_add(objects, &n->total_objects);
1057 	}
1058 }
1059 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1060 {
1061 	struct kmem_cache_node *n = get_node(s, node);
1062 
1063 	atomic_long_dec(&n->nr_slabs);
1064 	atomic_long_sub(objects, &n->total_objects);
1065 }
1066 
1067 /* Object debug checks for alloc/free paths */
1068 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1069 								void *object)
1070 {
1071 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1072 		return;
1073 
1074 	init_object(s, object, SLUB_RED_INACTIVE);
1075 	init_tracking(s, object);
1076 }
1077 
1078 static inline int alloc_consistency_checks(struct kmem_cache *s,
1079 					struct page *page,
1080 					void *object, unsigned long addr)
1081 {
1082 	if (!check_slab(s, page))
1083 		return 0;
1084 
1085 	if (!check_valid_pointer(s, page, object)) {
1086 		object_err(s, page, object, "Freelist Pointer check fails");
1087 		return 0;
1088 	}
1089 
1090 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1091 		return 0;
1092 
1093 	return 1;
1094 }
1095 
1096 static noinline int alloc_debug_processing(struct kmem_cache *s,
1097 					struct page *page,
1098 					void *object, unsigned long addr)
1099 {
1100 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1101 		if (!alloc_consistency_checks(s, page, object, addr))
1102 			goto bad;
1103 	}
1104 
1105 	/* Success perform special debug activities for allocs */
1106 	if (s->flags & SLAB_STORE_USER)
1107 		set_track(s, object, TRACK_ALLOC, addr);
1108 	trace(s, page, object, 1);
1109 	init_object(s, object, SLUB_RED_ACTIVE);
1110 	return 1;
1111 
1112 bad:
1113 	if (PageSlab(page)) {
1114 		/*
1115 		 * If this is a slab page then lets do the best we can
1116 		 * to avoid issues in the future. Marking all objects
1117 		 * as used avoids touching the remaining objects.
1118 		 */
1119 		slab_fix(s, "Marking all objects used");
1120 		page->inuse = page->objects;
1121 		page->freelist = NULL;
1122 	}
1123 	return 0;
1124 }
1125 
1126 static inline int free_consistency_checks(struct kmem_cache *s,
1127 		struct page *page, void *object, unsigned long addr)
1128 {
1129 	if (!check_valid_pointer(s, page, object)) {
1130 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1131 		return 0;
1132 	}
1133 
1134 	if (on_freelist(s, page, object)) {
1135 		object_err(s, page, object, "Object already free");
1136 		return 0;
1137 	}
1138 
1139 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1140 		return 0;
1141 
1142 	if (unlikely(s != page->slab_cache)) {
1143 		if (!PageSlab(page)) {
1144 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1145 				 object);
1146 		} else if (!page->slab_cache) {
1147 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1148 			       object);
1149 			dump_stack();
1150 		} else
1151 			object_err(s, page, object,
1152 					"page slab pointer corrupt.");
1153 		return 0;
1154 	}
1155 	return 1;
1156 }
1157 
1158 /* Supports checking bulk free of a constructed freelist */
1159 static noinline int free_debug_processing(
1160 	struct kmem_cache *s, struct page *page,
1161 	void *head, void *tail, int bulk_cnt,
1162 	unsigned long addr)
1163 {
1164 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1165 	void *object = head;
1166 	int cnt = 0;
1167 	unsigned long uninitialized_var(flags);
1168 	int ret = 0;
1169 
1170 	spin_lock_irqsave(&n->list_lock, flags);
1171 	slab_lock(page);
1172 
1173 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1174 		if (!check_slab(s, page))
1175 			goto out;
1176 	}
1177 
1178 next_object:
1179 	cnt++;
1180 
1181 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1182 		if (!free_consistency_checks(s, page, object, addr))
1183 			goto out;
1184 	}
1185 
1186 	if (s->flags & SLAB_STORE_USER)
1187 		set_track(s, object, TRACK_FREE, addr);
1188 	trace(s, page, object, 0);
1189 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1190 	init_object(s, object, SLUB_RED_INACTIVE);
1191 
1192 	/* Reached end of constructed freelist yet? */
1193 	if (object != tail) {
1194 		object = get_freepointer(s, object);
1195 		goto next_object;
1196 	}
1197 	ret = 1;
1198 
1199 out:
1200 	if (cnt != bulk_cnt)
1201 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1202 			 bulk_cnt, cnt);
1203 
1204 	slab_unlock(page);
1205 	spin_unlock_irqrestore(&n->list_lock, flags);
1206 	if (!ret)
1207 		slab_fix(s, "Object at 0x%p not freed", object);
1208 	return ret;
1209 }
1210 
1211 static int __init setup_slub_debug(char *str)
1212 {
1213 	slub_debug = DEBUG_DEFAULT_FLAGS;
1214 	if (*str++ != '=' || !*str)
1215 		/*
1216 		 * No options specified. Switch on full debugging.
1217 		 */
1218 		goto out;
1219 
1220 	if (*str == ',')
1221 		/*
1222 		 * No options but restriction on slabs. This means full
1223 		 * debugging for slabs matching a pattern.
1224 		 */
1225 		goto check_slabs;
1226 
1227 	slub_debug = 0;
1228 	if (*str == '-')
1229 		/*
1230 		 * Switch off all debugging measures.
1231 		 */
1232 		goto out;
1233 
1234 	/*
1235 	 * Determine which debug features should be switched on
1236 	 */
1237 	for (; *str && *str != ','; str++) {
1238 		switch (tolower(*str)) {
1239 		case 'f':
1240 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1241 			break;
1242 		case 'z':
1243 			slub_debug |= SLAB_RED_ZONE;
1244 			break;
1245 		case 'p':
1246 			slub_debug |= SLAB_POISON;
1247 			break;
1248 		case 'u':
1249 			slub_debug |= SLAB_STORE_USER;
1250 			break;
1251 		case 't':
1252 			slub_debug |= SLAB_TRACE;
1253 			break;
1254 		case 'a':
1255 			slub_debug |= SLAB_FAILSLAB;
1256 			break;
1257 		case 'o':
1258 			/*
1259 			 * Avoid enabling debugging on caches if its minimum
1260 			 * order would increase as a result.
1261 			 */
1262 			disable_higher_order_debug = 1;
1263 			break;
1264 		default:
1265 			pr_err("slub_debug option '%c' unknown. skipped\n",
1266 			       *str);
1267 		}
1268 	}
1269 
1270 check_slabs:
1271 	if (*str == ',')
1272 		slub_debug_slabs = str + 1;
1273 out:
1274 	return 1;
1275 }
1276 
1277 __setup("slub_debug", setup_slub_debug);
1278 
1279 /*
1280  * kmem_cache_flags - apply debugging options to the cache
1281  * @object_size:	the size of an object without meta data
1282  * @flags:		flags to set
1283  * @name:		name of the cache
1284  * @ctor:		constructor function
1285  *
1286  * Debug option(s) are applied to @flags. In addition to the debug
1287  * option(s), if a slab name (or multiple) is specified i.e.
1288  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1289  * then only the select slabs will receive the debug option(s).
1290  */
1291 slab_flags_t kmem_cache_flags(unsigned int object_size,
1292 	slab_flags_t flags, const char *name,
1293 	void (*ctor)(void *))
1294 {
1295 	char *iter;
1296 	size_t len;
1297 
1298 	/* If slub_debug = 0, it folds into the if conditional. */
1299 	if (!slub_debug_slabs)
1300 		return flags | slub_debug;
1301 
1302 	len = strlen(name);
1303 	iter = slub_debug_slabs;
1304 	while (*iter) {
1305 		char *end, *glob;
1306 		size_t cmplen;
1307 
1308 		end = strchr(iter, ',');
1309 		if (!end)
1310 			end = iter + strlen(iter);
1311 
1312 		glob = strnchr(iter, end - iter, '*');
1313 		if (glob)
1314 			cmplen = glob - iter;
1315 		else
1316 			cmplen = max_t(size_t, len, (end - iter));
1317 
1318 		if (!strncmp(name, iter, cmplen)) {
1319 			flags |= slub_debug;
1320 			break;
1321 		}
1322 
1323 		if (!*end)
1324 			break;
1325 		iter = end + 1;
1326 	}
1327 
1328 	return flags;
1329 }
1330 #else /* !CONFIG_SLUB_DEBUG */
1331 static inline void setup_object_debug(struct kmem_cache *s,
1332 			struct page *page, void *object) {}
1333 
1334 static inline int alloc_debug_processing(struct kmem_cache *s,
1335 	struct page *page, void *object, unsigned long addr) { return 0; }
1336 
1337 static inline int free_debug_processing(
1338 	struct kmem_cache *s, struct page *page,
1339 	void *head, void *tail, int bulk_cnt,
1340 	unsigned long addr) { return 0; }
1341 
1342 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1343 			{ return 1; }
1344 static inline int check_object(struct kmem_cache *s, struct page *page,
1345 			void *object, u8 val) { return 1; }
1346 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1347 					struct page *page) {}
1348 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1349 					struct page *page) {}
1350 slab_flags_t kmem_cache_flags(unsigned int object_size,
1351 	slab_flags_t flags, const char *name,
1352 	void (*ctor)(void *))
1353 {
1354 	return flags;
1355 }
1356 #define slub_debug 0
1357 
1358 #define disable_higher_order_debug 0
1359 
1360 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1361 							{ return 0; }
1362 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1363 							{ return 0; }
1364 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1365 							int objects) {}
1366 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1367 							int objects) {}
1368 
1369 #endif /* CONFIG_SLUB_DEBUG */
1370 
1371 /*
1372  * Hooks for other subsystems that check memory allocations. In a typical
1373  * production configuration these hooks all should produce no code at all.
1374  */
1375 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1376 {
1377 	kmemleak_alloc(ptr, size, 1, flags);
1378 	return kasan_kmalloc_large(ptr, size, flags);
1379 }
1380 
1381 static __always_inline void kfree_hook(void *x)
1382 {
1383 	kmemleak_free(x);
1384 	kasan_kfree_large(x, _RET_IP_);
1385 }
1386 
1387 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1388 {
1389 	kmemleak_free_recursive(x, s->flags);
1390 
1391 	/*
1392 	 * Trouble is that we may no longer disable interrupts in the fast path
1393 	 * So in order to make the debug calls that expect irqs to be
1394 	 * disabled we need to disable interrupts temporarily.
1395 	 */
1396 #ifdef CONFIG_LOCKDEP
1397 	{
1398 		unsigned long flags;
1399 
1400 		local_irq_save(flags);
1401 		debug_check_no_locks_freed(x, s->object_size);
1402 		local_irq_restore(flags);
1403 	}
1404 #endif
1405 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1406 		debug_check_no_obj_freed(x, s->object_size);
1407 
1408 	/* KASAN might put x into memory quarantine, delaying its reuse */
1409 	return kasan_slab_free(s, x, _RET_IP_);
1410 }
1411 
1412 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1413 					   void **head, void **tail)
1414 {
1415 /*
1416  * Compiler cannot detect this function can be removed if slab_free_hook()
1417  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1418  */
1419 #if defined(CONFIG_LOCKDEP)	||		\
1420 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1421 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1422 	defined(CONFIG_KASAN)
1423 
1424 	void *object;
1425 	void *next = *head;
1426 	void *old_tail = *tail ? *tail : *head;
1427 
1428 	/* Head and tail of the reconstructed freelist */
1429 	*head = NULL;
1430 	*tail = NULL;
1431 
1432 	do {
1433 		object = next;
1434 		next = get_freepointer(s, object);
1435 		/* If object's reuse doesn't have to be delayed */
1436 		if (!slab_free_hook(s, object)) {
1437 			/* Move object to the new freelist */
1438 			set_freepointer(s, object, *head);
1439 			*head = object;
1440 			if (!*tail)
1441 				*tail = object;
1442 		}
1443 	} while (object != old_tail);
1444 
1445 	if (*head == *tail)
1446 		*tail = NULL;
1447 
1448 	return *head != NULL;
1449 #else
1450 	return true;
1451 #endif
1452 }
1453 
1454 static void *setup_object(struct kmem_cache *s, struct page *page,
1455 				void *object)
1456 {
1457 	setup_object_debug(s, page, object);
1458 	object = kasan_init_slab_obj(s, object);
1459 	if (unlikely(s->ctor)) {
1460 		kasan_unpoison_object_data(s, object);
1461 		s->ctor(object);
1462 		kasan_poison_object_data(s, object);
1463 	}
1464 	return object;
1465 }
1466 
1467 /*
1468  * Slab allocation and freeing
1469  */
1470 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1471 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1472 {
1473 	struct page *page;
1474 	unsigned int order = oo_order(oo);
1475 
1476 	if (node == NUMA_NO_NODE)
1477 		page = alloc_pages(flags, order);
1478 	else
1479 		page = __alloc_pages_node(node, flags, order);
1480 
1481 	if (page && memcg_charge_slab(page, flags, order, s)) {
1482 		__free_pages(page, order);
1483 		page = NULL;
1484 	}
1485 
1486 	return page;
1487 }
1488 
1489 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1490 /* Pre-initialize the random sequence cache */
1491 static int init_cache_random_seq(struct kmem_cache *s)
1492 {
1493 	unsigned int count = oo_objects(s->oo);
1494 	int err;
1495 
1496 	/* Bailout if already initialised */
1497 	if (s->random_seq)
1498 		return 0;
1499 
1500 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1501 	if (err) {
1502 		pr_err("SLUB: Unable to initialize free list for %s\n",
1503 			s->name);
1504 		return err;
1505 	}
1506 
1507 	/* Transform to an offset on the set of pages */
1508 	if (s->random_seq) {
1509 		unsigned int i;
1510 
1511 		for (i = 0; i < count; i++)
1512 			s->random_seq[i] *= s->size;
1513 	}
1514 	return 0;
1515 }
1516 
1517 /* Initialize each random sequence freelist per cache */
1518 static void __init init_freelist_randomization(void)
1519 {
1520 	struct kmem_cache *s;
1521 
1522 	mutex_lock(&slab_mutex);
1523 
1524 	list_for_each_entry(s, &slab_caches, list)
1525 		init_cache_random_seq(s);
1526 
1527 	mutex_unlock(&slab_mutex);
1528 }
1529 
1530 /* Get the next entry on the pre-computed freelist randomized */
1531 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1532 				unsigned long *pos, void *start,
1533 				unsigned long page_limit,
1534 				unsigned long freelist_count)
1535 {
1536 	unsigned int idx;
1537 
1538 	/*
1539 	 * If the target page allocation failed, the number of objects on the
1540 	 * page might be smaller than the usual size defined by the cache.
1541 	 */
1542 	do {
1543 		idx = s->random_seq[*pos];
1544 		*pos += 1;
1545 		if (*pos >= freelist_count)
1546 			*pos = 0;
1547 	} while (unlikely(idx >= page_limit));
1548 
1549 	return (char *)start + idx;
1550 }
1551 
1552 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1553 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1554 {
1555 	void *start;
1556 	void *cur;
1557 	void *next;
1558 	unsigned long idx, pos, page_limit, freelist_count;
1559 
1560 	if (page->objects < 2 || !s->random_seq)
1561 		return false;
1562 
1563 	freelist_count = oo_objects(s->oo);
1564 	pos = get_random_int() % freelist_count;
1565 
1566 	page_limit = page->objects * s->size;
1567 	start = fixup_red_left(s, page_address(page));
1568 
1569 	/* First entry is used as the base of the freelist */
1570 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1571 				freelist_count);
1572 	cur = setup_object(s, page, cur);
1573 	page->freelist = cur;
1574 
1575 	for (idx = 1; idx < page->objects; idx++) {
1576 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1577 			freelist_count);
1578 		next = setup_object(s, page, next);
1579 		set_freepointer(s, cur, next);
1580 		cur = next;
1581 	}
1582 	set_freepointer(s, cur, NULL);
1583 
1584 	return true;
1585 }
1586 #else
1587 static inline int init_cache_random_seq(struct kmem_cache *s)
1588 {
1589 	return 0;
1590 }
1591 static inline void init_freelist_randomization(void) { }
1592 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1593 {
1594 	return false;
1595 }
1596 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1597 
1598 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1599 {
1600 	struct page *page;
1601 	struct kmem_cache_order_objects oo = s->oo;
1602 	gfp_t alloc_gfp;
1603 	void *start, *p, *next;
1604 	int idx, order;
1605 	bool shuffle;
1606 
1607 	flags &= gfp_allowed_mask;
1608 
1609 	if (gfpflags_allow_blocking(flags))
1610 		local_irq_enable();
1611 
1612 	flags |= s->allocflags;
1613 
1614 	/*
1615 	 * Let the initial higher-order allocation fail under memory pressure
1616 	 * so we fall-back to the minimum order allocation.
1617 	 */
1618 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1619 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1620 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1621 
1622 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1623 	if (unlikely(!page)) {
1624 		oo = s->min;
1625 		alloc_gfp = flags;
1626 		/*
1627 		 * Allocation may have failed due to fragmentation.
1628 		 * Try a lower order alloc if possible
1629 		 */
1630 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1631 		if (unlikely(!page))
1632 			goto out;
1633 		stat(s, ORDER_FALLBACK);
1634 	}
1635 
1636 	page->objects = oo_objects(oo);
1637 
1638 	order = compound_order(page);
1639 	page->slab_cache = s;
1640 	__SetPageSlab(page);
1641 	if (page_is_pfmemalloc(page))
1642 		SetPageSlabPfmemalloc(page);
1643 
1644 	start = page_address(page);
1645 
1646 	if (unlikely(s->flags & SLAB_POISON))
1647 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1648 
1649 	kasan_poison_slab(page);
1650 
1651 	shuffle = shuffle_freelist(s, page);
1652 
1653 	if (!shuffle) {
1654 		for_each_object_idx(p, idx, s, start, page->objects) {
1655 			if (likely(idx < page->objects)) {
1656 				next = p + s->size;
1657 				next = setup_object(s, page, next);
1658 				set_freepointer(s, p, next);
1659 			} else
1660 				set_freepointer(s, p, NULL);
1661 		}
1662 		start = fixup_red_left(s, start);
1663 		start = setup_object(s, page, start);
1664 		page->freelist = start;
1665 	}
1666 
1667 	page->inuse = page->objects;
1668 	page->frozen = 1;
1669 
1670 out:
1671 	if (gfpflags_allow_blocking(flags))
1672 		local_irq_disable();
1673 	if (!page)
1674 		return NULL;
1675 
1676 	mod_lruvec_page_state(page,
1677 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1678 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1679 		1 << oo_order(oo));
1680 
1681 	inc_slabs_node(s, page_to_nid(page), page->objects);
1682 
1683 	return page;
1684 }
1685 
1686 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1687 {
1688 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1689 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1690 		flags &= ~GFP_SLAB_BUG_MASK;
1691 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1692 				invalid_mask, &invalid_mask, flags, &flags);
1693 		dump_stack();
1694 	}
1695 
1696 	return allocate_slab(s,
1697 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1698 }
1699 
1700 static void __free_slab(struct kmem_cache *s, struct page *page)
1701 {
1702 	int order = compound_order(page);
1703 	int pages = 1 << order;
1704 
1705 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1706 		void *p;
1707 
1708 		slab_pad_check(s, page);
1709 		for_each_object(p, s, page_address(page),
1710 						page->objects)
1711 			check_object(s, page, p, SLUB_RED_INACTIVE);
1712 	}
1713 
1714 	mod_lruvec_page_state(page,
1715 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1716 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1717 		-pages);
1718 
1719 	__ClearPageSlabPfmemalloc(page);
1720 	__ClearPageSlab(page);
1721 
1722 	page->mapping = NULL;
1723 	if (current->reclaim_state)
1724 		current->reclaim_state->reclaimed_slab += pages;
1725 	memcg_uncharge_slab(page, order, s);
1726 	__free_pages(page, order);
1727 }
1728 
1729 static void rcu_free_slab(struct rcu_head *h)
1730 {
1731 	struct page *page = container_of(h, struct page, rcu_head);
1732 
1733 	__free_slab(page->slab_cache, page);
1734 }
1735 
1736 static void free_slab(struct kmem_cache *s, struct page *page)
1737 {
1738 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1739 		call_rcu(&page->rcu_head, rcu_free_slab);
1740 	} else
1741 		__free_slab(s, page);
1742 }
1743 
1744 static void discard_slab(struct kmem_cache *s, struct page *page)
1745 {
1746 	dec_slabs_node(s, page_to_nid(page), page->objects);
1747 	free_slab(s, page);
1748 }
1749 
1750 /*
1751  * Management of partially allocated slabs.
1752  */
1753 static inline void
1754 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1755 {
1756 	n->nr_partial++;
1757 	if (tail == DEACTIVATE_TO_TAIL)
1758 		list_add_tail(&page->lru, &n->partial);
1759 	else
1760 		list_add(&page->lru, &n->partial);
1761 }
1762 
1763 static inline void add_partial(struct kmem_cache_node *n,
1764 				struct page *page, int tail)
1765 {
1766 	lockdep_assert_held(&n->list_lock);
1767 	__add_partial(n, page, tail);
1768 }
1769 
1770 static inline void remove_partial(struct kmem_cache_node *n,
1771 					struct page *page)
1772 {
1773 	lockdep_assert_held(&n->list_lock);
1774 	list_del(&page->lru);
1775 	n->nr_partial--;
1776 }
1777 
1778 /*
1779  * Remove slab from the partial list, freeze it and
1780  * return the pointer to the freelist.
1781  *
1782  * Returns a list of objects or NULL if it fails.
1783  */
1784 static inline void *acquire_slab(struct kmem_cache *s,
1785 		struct kmem_cache_node *n, struct page *page,
1786 		int mode, int *objects)
1787 {
1788 	void *freelist;
1789 	unsigned long counters;
1790 	struct page new;
1791 
1792 	lockdep_assert_held(&n->list_lock);
1793 
1794 	/*
1795 	 * Zap the freelist and set the frozen bit.
1796 	 * The old freelist is the list of objects for the
1797 	 * per cpu allocation list.
1798 	 */
1799 	freelist = page->freelist;
1800 	counters = page->counters;
1801 	new.counters = counters;
1802 	*objects = new.objects - new.inuse;
1803 	if (mode) {
1804 		new.inuse = page->objects;
1805 		new.freelist = NULL;
1806 	} else {
1807 		new.freelist = freelist;
1808 	}
1809 
1810 	VM_BUG_ON(new.frozen);
1811 	new.frozen = 1;
1812 
1813 	if (!__cmpxchg_double_slab(s, page,
1814 			freelist, counters,
1815 			new.freelist, new.counters,
1816 			"acquire_slab"))
1817 		return NULL;
1818 
1819 	remove_partial(n, page);
1820 	WARN_ON(!freelist);
1821 	return freelist;
1822 }
1823 
1824 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1825 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1826 
1827 /*
1828  * Try to allocate a partial slab from a specific node.
1829  */
1830 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1831 				struct kmem_cache_cpu *c, gfp_t flags)
1832 {
1833 	struct page *page, *page2;
1834 	void *object = NULL;
1835 	unsigned int available = 0;
1836 	int objects;
1837 
1838 	/*
1839 	 * Racy check. If we mistakenly see no partial slabs then we
1840 	 * just allocate an empty slab. If we mistakenly try to get a
1841 	 * partial slab and there is none available then get_partials()
1842 	 * will return NULL.
1843 	 */
1844 	if (!n || !n->nr_partial)
1845 		return NULL;
1846 
1847 	spin_lock(&n->list_lock);
1848 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1849 		void *t;
1850 
1851 		if (!pfmemalloc_match(page, flags))
1852 			continue;
1853 
1854 		t = acquire_slab(s, n, page, object == NULL, &objects);
1855 		if (!t)
1856 			break;
1857 
1858 		available += objects;
1859 		if (!object) {
1860 			c->page = page;
1861 			stat(s, ALLOC_FROM_PARTIAL);
1862 			object = t;
1863 		} else {
1864 			put_cpu_partial(s, page, 0);
1865 			stat(s, CPU_PARTIAL_NODE);
1866 		}
1867 		if (!kmem_cache_has_cpu_partial(s)
1868 			|| available > slub_cpu_partial(s) / 2)
1869 			break;
1870 
1871 	}
1872 	spin_unlock(&n->list_lock);
1873 	return object;
1874 }
1875 
1876 /*
1877  * Get a page from somewhere. Search in increasing NUMA distances.
1878  */
1879 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1880 		struct kmem_cache_cpu *c)
1881 {
1882 #ifdef CONFIG_NUMA
1883 	struct zonelist *zonelist;
1884 	struct zoneref *z;
1885 	struct zone *zone;
1886 	enum zone_type high_zoneidx = gfp_zone(flags);
1887 	void *object;
1888 	unsigned int cpuset_mems_cookie;
1889 
1890 	/*
1891 	 * The defrag ratio allows a configuration of the tradeoffs between
1892 	 * inter node defragmentation and node local allocations. A lower
1893 	 * defrag_ratio increases the tendency to do local allocations
1894 	 * instead of attempting to obtain partial slabs from other nodes.
1895 	 *
1896 	 * If the defrag_ratio is set to 0 then kmalloc() always
1897 	 * returns node local objects. If the ratio is higher then kmalloc()
1898 	 * may return off node objects because partial slabs are obtained
1899 	 * from other nodes and filled up.
1900 	 *
1901 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1902 	 * (which makes defrag_ratio = 1000) then every (well almost)
1903 	 * allocation will first attempt to defrag slab caches on other nodes.
1904 	 * This means scanning over all nodes to look for partial slabs which
1905 	 * may be expensive if we do it every time we are trying to find a slab
1906 	 * with available objects.
1907 	 */
1908 	if (!s->remote_node_defrag_ratio ||
1909 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1910 		return NULL;
1911 
1912 	do {
1913 		cpuset_mems_cookie = read_mems_allowed_begin();
1914 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1915 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1916 			struct kmem_cache_node *n;
1917 
1918 			n = get_node(s, zone_to_nid(zone));
1919 
1920 			if (n && cpuset_zone_allowed(zone, flags) &&
1921 					n->nr_partial > s->min_partial) {
1922 				object = get_partial_node(s, n, c, flags);
1923 				if (object) {
1924 					/*
1925 					 * Don't check read_mems_allowed_retry()
1926 					 * here - if mems_allowed was updated in
1927 					 * parallel, that was a harmless race
1928 					 * between allocation and the cpuset
1929 					 * update
1930 					 */
1931 					return object;
1932 				}
1933 			}
1934 		}
1935 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1936 #endif
1937 	return NULL;
1938 }
1939 
1940 /*
1941  * Get a partial page, lock it and return it.
1942  */
1943 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1944 		struct kmem_cache_cpu *c)
1945 {
1946 	void *object;
1947 	int searchnode = node;
1948 
1949 	if (node == NUMA_NO_NODE)
1950 		searchnode = numa_mem_id();
1951 	else if (!node_present_pages(node))
1952 		searchnode = node_to_mem_node(node);
1953 
1954 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1955 	if (object || node != NUMA_NO_NODE)
1956 		return object;
1957 
1958 	return get_any_partial(s, flags, c);
1959 }
1960 
1961 #ifdef CONFIG_PREEMPT
1962 /*
1963  * Calculate the next globally unique transaction for disambiguiation
1964  * during cmpxchg. The transactions start with the cpu number and are then
1965  * incremented by CONFIG_NR_CPUS.
1966  */
1967 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1968 #else
1969 /*
1970  * No preemption supported therefore also no need to check for
1971  * different cpus.
1972  */
1973 #define TID_STEP 1
1974 #endif
1975 
1976 static inline unsigned long next_tid(unsigned long tid)
1977 {
1978 	return tid + TID_STEP;
1979 }
1980 
1981 static inline unsigned int tid_to_cpu(unsigned long tid)
1982 {
1983 	return tid % TID_STEP;
1984 }
1985 
1986 static inline unsigned long tid_to_event(unsigned long tid)
1987 {
1988 	return tid / TID_STEP;
1989 }
1990 
1991 static inline unsigned int init_tid(int cpu)
1992 {
1993 	return cpu;
1994 }
1995 
1996 static inline void note_cmpxchg_failure(const char *n,
1997 		const struct kmem_cache *s, unsigned long tid)
1998 {
1999 #ifdef SLUB_DEBUG_CMPXCHG
2000 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2001 
2002 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2003 
2004 #ifdef CONFIG_PREEMPT
2005 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2006 		pr_warn("due to cpu change %d -> %d\n",
2007 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2008 	else
2009 #endif
2010 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2011 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2012 			tid_to_event(tid), tid_to_event(actual_tid));
2013 	else
2014 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2015 			actual_tid, tid, next_tid(tid));
2016 #endif
2017 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2018 }
2019 
2020 static void init_kmem_cache_cpus(struct kmem_cache *s)
2021 {
2022 	int cpu;
2023 
2024 	for_each_possible_cpu(cpu)
2025 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2026 }
2027 
2028 /*
2029  * Remove the cpu slab
2030  */
2031 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2032 				void *freelist, struct kmem_cache_cpu *c)
2033 {
2034 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2035 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2036 	int lock = 0;
2037 	enum slab_modes l = M_NONE, m = M_NONE;
2038 	void *nextfree;
2039 	int tail = DEACTIVATE_TO_HEAD;
2040 	struct page new;
2041 	struct page old;
2042 
2043 	if (page->freelist) {
2044 		stat(s, DEACTIVATE_REMOTE_FREES);
2045 		tail = DEACTIVATE_TO_TAIL;
2046 	}
2047 
2048 	/*
2049 	 * Stage one: Free all available per cpu objects back
2050 	 * to the page freelist while it is still frozen. Leave the
2051 	 * last one.
2052 	 *
2053 	 * There is no need to take the list->lock because the page
2054 	 * is still frozen.
2055 	 */
2056 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2057 		void *prior;
2058 		unsigned long counters;
2059 
2060 		do {
2061 			prior = page->freelist;
2062 			counters = page->counters;
2063 			set_freepointer(s, freelist, prior);
2064 			new.counters = counters;
2065 			new.inuse--;
2066 			VM_BUG_ON(!new.frozen);
2067 
2068 		} while (!__cmpxchg_double_slab(s, page,
2069 			prior, counters,
2070 			freelist, new.counters,
2071 			"drain percpu freelist"));
2072 
2073 		freelist = nextfree;
2074 	}
2075 
2076 	/*
2077 	 * Stage two: Ensure that the page is unfrozen while the
2078 	 * list presence reflects the actual number of objects
2079 	 * during unfreeze.
2080 	 *
2081 	 * We setup the list membership and then perform a cmpxchg
2082 	 * with the count. If there is a mismatch then the page
2083 	 * is not unfrozen but the page is on the wrong list.
2084 	 *
2085 	 * Then we restart the process which may have to remove
2086 	 * the page from the list that we just put it on again
2087 	 * because the number of objects in the slab may have
2088 	 * changed.
2089 	 */
2090 redo:
2091 
2092 	old.freelist = page->freelist;
2093 	old.counters = page->counters;
2094 	VM_BUG_ON(!old.frozen);
2095 
2096 	/* Determine target state of the slab */
2097 	new.counters = old.counters;
2098 	if (freelist) {
2099 		new.inuse--;
2100 		set_freepointer(s, freelist, old.freelist);
2101 		new.freelist = freelist;
2102 	} else
2103 		new.freelist = old.freelist;
2104 
2105 	new.frozen = 0;
2106 
2107 	if (!new.inuse && n->nr_partial >= s->min_partial)
2108 		m = M_FREE;
2109 	else if (new.freelist) {
2110 		m = M_PARTIAL;
2111 		if (!lock) {
2112 			lock = 1;
2113 			/*
2114 			 * Taking the spinlock removes the possiblity
2115 			 * that acquire_slab() will see a slab page that
2116 			 * is frozen
2117 			 */
2118 			spin_lock(&n->list_lock);
2119 		}
2120 	} else {
2121 		m = M_FULL;
2122 		if (kmem_cache_debug(s) && !lock) {
2123 			lock = 1;
2124 			/*
2125 			 * This also ensures that the scanning of full
2126 			 * slabs from diagnostic functions will not see
2127 			 * any frozen slabs.
2128 			 */
2129 			spin_lock(&n->list_lock);
2130 		}
2131 	}
2132 
2133 	if (l != m) {
2134 		if (l == M_PARTIAL)
2135 			remove_partial(n, page);
2136 		else if (l == M_FULL)
2137 			remove_full(s, n, page);
2138 
2139 		if (m == M_PARTIAL)
2140 			add_partial(n, page, tail);
2141 		else if (m == M_FULL)
2142 			add_full(s, n, page);
2143 	}
2144 
2145 	l = m;
2146 	if (!__cmpxchg_double_slab(s, page,
2147 				old.freelist, old.counters,
2148 				new.freelist, new.counters,
2149 				"unfreezing slab"))
2150 		goto redo;
2151 
2152 	if (lock)
2153 		spin_unlock(&n->list_lock);
2154 
2155 	if (m == M_PARTIAL)
2156 		stat(s, tail);
2157 	else if (m == M_FULL)
2158 		stat(s, DEACTIVATE_FULL);
2159 	else if (m == M_FREE) {
2160 		stat(s, DEACTIVATE_EMPTY);
2161 		discard_slab(s, page);
2162 		stat(s, FREE_SLAB);
2163 	}
2164 
2165 	c->page = NULL;
2166 	c->freelist = NULL;
2167 }
2168 
2169 /*
2170  * Unfreeze all the cpu partial slabs.
2171  *
2172  * This function must be called with interrupts disabled
2173  * for the cpu using c (or some other guarantee must be there
2174  * to guarantee no concurrent accesses).
2175  */
2176 static void unfreeze_partials(struct kmem_cache *s,
2177 		struct kmem_cache_cpu *c)
2178 {
2179 #ifdef CONFIG_SLUB_CPU_PARTIAL
2180 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2181 	struct page *page, *discard_page = NULL;
2182 
2183 	while ((page = c->partial)) {
2184 		struct page new;
2185 		struct page old;
2186 
2187 		c->partial = page->next;
2188 
2189 		n2 = get_node(s, page_to_nid(page));
2190 		if (n != n2) {
2191 			if (n)
2192 				spin_unlock(&n->list_lock);
2193 
2194 			n = n2;
2195 			spin_lock(&n->list_lock);
2196 		}
2197 
2198 		do {
2199 
2200 			old.freelist = page->freelist;
2201 			old.counters = page->counters;
2202 			VM_BUG_ON(!old.frozen);
2203 
2204 			new.counters = old.counters;
2205 			new.freelist = old.freelist;
2206 
2207 			new.frozen = 0;
2208 
2209 		} while (!__cmpxchg_double_slab(s, page,
2210 				old.freelist, old.counters,
2211 				new.freelist, new.counters,
2212 				"unfreezing slab"));
2213 
2214 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2215 			page->next = discard_page;
2216 			discard_page = page;
2217 		} else {
2218 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2219 			stat(s, FREE_ADD_PARTIAL);
2220 		}
2221 	}
2222 
2223 	if (n)
2224 		spin_unlock(&n->list_lock);
2225 
2226 	while (discard_page) {
2227 		page = discard_page;
2228 		discard_page = discard_page->next;
2229 
2230 		stat(s, DEACTIVATE_EMPTY);
2231 		discard_slab(s, page);
2232 		stat(s, FREE_SLAB);
2233 	}
2234 #endif
2235 }
2236 
2237 /*
2238  * Put a page that was just frozen (in __slab_free) into a partial page
2239  * slot if available.
2240  *
2241  * If we did not find a slot then simply move all the partials to the
2242  * per node partial list.
2243  */
2244 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2245 {
2246 #ifdef CONFIG_SLUB_CPU_PARTIAL
2247 	struct page *oldpage;
2248 	int pages;
2249 	int pobjects;
2250 
2251 	preempt_disable();
2252 	do {
2253 		pages = 0;
2254 		pobjects = 0;
2255 		oldpage = this_cpu_read(s->cpu_slab->partial);
2256 
2257 		if (oldpage) {
2258 			pobjects = oldpage->pobjects;
2259 			pages = oldpage->pages;
2260 			if (drain && pobjects > s->cpu_partial) {
2261 				unsigned long flags;
2262 				/*
2263 				 * partial array is full. Move the existing
2264 				 * set to the per node partial list.
2265 				 */
2266 				local_irq_save(flags);
2267 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2268 				local_irq_restore(flags);
2269 				oldpage = NULL;
2270 				pobjects = 0;
2271 				pages = 0;
2272 				stat(s, CPU_PARTIAL_DRAIN);
2273 			}
2274 		}
2275 
2276 		pages++;
2277 		pobjects += page->objects - page->inuse;
2278 
2279 		page->pages = pages;
2280 		page->pobjects = pobjects;
2281 		page->next = oldpage;
2282 
2283 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2284 								!= oldpage);
2285 	if (unlikely(!s->cpu_partial)) {
2286 		unsigned long flags;
2287 
2288 		local_irq_save(flags);
2289 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2290 		local_irq_restore(flags);
2291 	}
2292 	preempt_enable();
2293 #endif
2294 }
2295 
2296 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2297 {
2298 	stat(s, CPUSLAB_FLUSH);
2299 	deactivate_slab(s, c->page, c->freelist, c);
2300 
2301 	c->tid = next_tid(c->tid);
2302 }
2303 
2304 /*
2305  * Flush cpu slab.
2306  *
2307  * Called from IPI handler with interrupts disabled.
2308  */
2309 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2310 {
2311 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2312 
2313 	if (c->page)
2314 		flush_slab(s, c);
2315 
2316 	unfreeze_partials(s, c);
2317 }
2318 
2319 static void flush_cpu_slab(void *d)
2320 {
2321 	struct kmem_cache *s = d;
2322 
2323 	__flush_cpu_slab(s, smp_processor_id());
2324 }
2325 
2326 static bool has_cpu_slab(int cpu, void *info)
2327 {
2328 	struct kmem_cache *s = info;
2329 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2330 
2331 	return c->page || slub_percpu_partial(c);
2332 }
2333 
2334 static void flush_all(struct kmem_cache *s)
2335 {
2336 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2337 }
2338 
2339 /*
2340  * Use the cpu notifier to insure that the cpu slabs are flushed when
2341  * necessary.
2342  */
2343 static int slub_cpu_dead(unsigned int cpu)
2344 {
2345 	struct kmem_cache *s;
2346 	unsigned long flags;
2347 
2348 	mutex_lock(&slab_mutex);
2349 	list_for_each_entry(s, &slab_caches, list) {
2350 		local_irq_save(flags);
2351 		__flush_cpu_slab(s, cpu);
2352 		local_irq_restore(flags);
2353 	}
2354 	mutex_unlock(&slab_mutex);
2355 	return 0;
2356 }
2357 
2358 /*
2359  * Check if the objects in a per cpu structure fit numa
2360  * locality expectations.
2361  */
2362 static inline int node_match(struct page *page, int node)
2363 {
2364 #ifdef CONFIG_NUMA
2365 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2366 		return 0;
2367 #endif
2368 	return 1;
2369 }
2370 
2371 #ifdef CONFIG_SLUB_DEBUG
2372 static int count_free(struct page *page)
2373 {
2374 	return page->objects - page->inuse;
2375 }
2376 
2377 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2378 {
2379 	return atomic_long_read(&n->total_objects);
2380 }
2381 #endif /* CONFIG_SLUB_DEBUG */
2382 
2383 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2384 static unsigned long count_partial(struct kmem_cache_node *n,
2385 					int (*get_count)(struct page *))
2386 {
2387 	unsigned long flags;
2388 	unsigned long x = 0;
2389 	struct page *page;
2390 
2391 	spin_lock_irqsave(&n->list_lock, flags);
2392 	list_for_each_entry(page, &n->partial, lru)
2393 		x += get_count(page);
2394 	spin_unlock_irqrestore(&n->list_lock, flags);
2395 	return x;
2396 }
2397 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2398 
2399 static noinline void
2400 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2401 {
2402 #ifdef CONFIG_SLUB_DEBUG
2403 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2404 				      DEFAULT_RATELIMIT_BURST);
2405 	int node;
2406 	struct kmem_cache_node *n;
2407 
2408 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2409 		return;
2410 
2411 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2412 		nid, gfpflags, &gfpflags);
2413 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2414 		s->name, s->object_size, s->size, oo_order(s->oo),
2415 		oo_order(s->min));
2416 
2417 	if (oo_order(s->min) > get_order(s->object_size))
2418 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2419 			s->name);
2420 
2421 	for_each_kmem_cache_node(s, node, n) {
2422 		unsigned long nr_slabs;
2423 		unsigned long nr_objs;
2424 		unsigned long nr_free;
2425 
2426 		nr_free  = count_partial(n, count_free);
2427 		nr_slabs = node_nr_slabs(n);
2428 		nr_objs  = node_nr_objs(n);
2429 
2430 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2431 			node, nr_slabs, nr_objs, nr_free);
2432 	}
2433 #endif
2434 }
2435 
2436 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2437 			int node, struct kmem_cache_cpu **pc)
2438 {
2439 	void *freelist;
2440 	struct kmem_cache_cpu *c = *pc;
2441 	struct page *page;
2442 
2443 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2444 
2445 	freelist = get_partial(s, flags, node, c);
2446 
2447 	if (freelist)
2448 		return freelist;
2449 
2450 	page = new_slab(s, flags, node);
2451 	if (page) {
2452 		c = raw_cpu_ptr(s->cpu_slab);
2453 		if (c->page)
2454 			flush_slab(s, c);
2455 
2456 		/*
2457 		 * No other reference to the page yet so we can
2458 		 * muck around with it freely without cmpxchg
2459 		 */
2460 		freelist = page->freelist;
2461 		page->freelist = NULL;
2462 
2463 		stat(s, ALLOC_SLAB);
2464 		c->page = page;
2465 		*pc = c;
2466 	} else
2467 		freelist = NULL;
2468 
2469 	return freelist;
2470 }
2471 
2472 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2473 {
2474 	if (unlikely(PageSlabPfmemalloc(page)))
2475 		return gfp_pfmemalloc_allowed(gfpflags);
2476 
2477 	return true;
2478 }
2479 
2480 /*
2481  * Check the page->freelist of a page and either transfer the freelist to the
2482  * per cpu freelist or deactivate the page.
2483  *
2484  * The page is still frozen if the return value is not NULL.
2485  *
2486  * If this function returns NULL then the page has been unfrozen.
2487  *
2488  * This function must be called with interrupt disabled.
2489  */
2490 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2491 {
2492 	struct page new;
2493 	unsigned long counters;
2494 	void *freelist;
2495 
2496 	do {
2497 		freelist = page->freelist;
2498 		counters = page->counters;
2499 
2500 		new.counters = counters;
2501 		VM_BUG_ON(!new.frozen);
2502 
2503 		new.inuse = page->objects;
2504 		new.frozen = freelist != NULL;
2505 
2506 	} while (!__cmpxchg_double_slab(s, page,
2507 		freelist, counters,
2508 		NULL, new.counters,
2509 		"get_freelist"));
2510 
2511 	return freelist;
2512 }
2513 
2514 /*
2515  * Slow path. The lockless freelist is empty or we need to perform
2516  * debugging duties.
2517  *
2518  * Processing is still very fast if new objects have been freed to the
2519  * regular freelist. In that case we simply take over the regular freelist
2520  * as the lockless freelist and zap the regular freelist.
2521  *
2522  * If that is not working then we fall back to the partial lists. We take the
2523  * first element of the freelist as the object to allocate now and move the
2524  * rest of the freelist to the lockless freelist.
2525  *
2526  * And if we were unable to get a new slab from the partial slab lists then
2527  * we need to allocate a new slab. This is the slowest path since it involves
2528  * a call to the page allocator and the setup of a new slab.
2529  *
2530  * Version of __slab_alloc to use when we know that interrupts are
2531  * already disabled (which is the case for bulk allocation).
2532  */
2533 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2534 			  unsigned long addr, struct kmem_cache_cpu *c)
2535 {
2536 	void *freelist;
2537 	struct page *page;
2538 
2539 	page = c->page;
2540 	if (!page)
2541 		goto new_slab;
2542 redo:
2543 
2544 	if (unlikely(!node_match(page, node))) {
2545 		int searchnode = node;
2546 
2547 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2548 			searchnode = node_to_mem_node(node);
2549 
2550 		if (unlikely(!node_match(page, searchnode))) {
2551 			stat(s, ALLOC_NODE_MISMATCH);
2552 			deactivate_slab(s, page, c->freelist, c);
2553 			goto new_slab;
2554 		}
2555 	}
2556 
2557 	/*
2558 	 * By rights, we should be searching for a slab page that was
2559 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2560 	 * information when the page leaves the per-cpu allocator
2561 	 */
2562 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2563 		deactivate_slab(s, page, c->freelist, c);
2564 		goto new_slab;
2565 	}
2566 
2567 	/* must check again c->freelist in case of cpu migration or IRQ */
2568 	freelist = c->freelist;
2569 	if (freelist)
2570 		goto load_freelist;
2571 
2572 	freelist = get_freelist(s, page);
2573 
2574 	if (!freelist) {
2575 		c->page = NULL;
2576 		stat(s, DEACTIVATE_BYPASS);
2577 		goto new_slab;
2578 	}
2579 
2580 	stat(s, ALLOC_REFILL);
2581 
2582 load_freelist:
2583 	/*
2584 	 * freelist is pointing to the list of objects to be used.
2585 	 * page is pointing to the page from which the objects are obtained.
2586 	 * That page must be frozen for per cpu allocations to work.
2587 	 */
2588 	VM_BUG_ON(!c->page->frozen);
2589 	c->freelist = get_freepointer(s, freelist);
2590 	c->tid = next_tid(c->tid);
2591 	return freelist;
2592 
2593 new_slab:
2594 
2595 	if (slub_percpu_partial(c)) {
2596 		page = c->page = slub_percpu_partial(c);
2597 		slub_set_percpu_partial(c, page);
2598 		stat(s, CPU_PARTIAL_ALLOC);
2599 		goto redo;
2600 	}
2601 
2602 	freelist = new_slab_objects(s, gfpflags, node, &c);
2603 
2604 	if (unlikely(!freelist)) {
2605 		slab_out_of_memory(s, gfpflags, node);
2606 		return NULL;
2607 	}
2608 
2609 	page = c->page;
2610 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2611 		goto load_freelist;
2612 
2613 	/* Only entered in the debug case */
2614 	if (kmem_cache_debug(s) &&
2615 			!alloc_debug_processing(s, page, freelist, addr))
2616 		goto new_slab;	/* Slab failed checks. Next slab needed */
2617 
2618 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2619 	return freelist;
2620 }
2621 
2622 /*
2623  * Another one that disabled interrupt and compensates for possible
2624  * cpu changes by refetching the per cpu area pointer.
2625  */
2626 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2627 			  unsigned long addr, struct kmem_cache_cpu *c)
2628 {
2629 	void *p;
2630 	unsigned long flags;
2631 
2632 	local_irq_save(flags);
2633 #ifdef CONFIG_PREEMPT
2634 	/*
2635 	 * We may have been preempted and rescheduled on a different
2636 	 * cpu before disabling interrupts. Need to reload cpu area
2637 	 * pointer.
2638 	 */
2639 	c = this_cpu_ptr(s->cpu_slab);
2640 #endif
2641 
2642 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2643 	local_irq_restore(flags);
2644 	return p;
2645 }
2646 
2647 /*
2648  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2649  * have the fastpath folded into their functions. So no function call
2650  * overhead for requests that can be satisfied on the fastpath.
2651  *
2652  * The fastpath works by first checking if the lockless freelist can be used.
2653  * If not then __slab_alloc is called for slow processing.
2654  *
2655  * Otherwise we can simply pick the next object from the lockless free list.
2656  */
2657 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2658 		gfp_t gfpflags, int node, unsigned long addr)
2659 {
2660 	void *object;
2661 	struct kmem_cache_cpu *c;
2662 	struct page *page;
2663 	unsigned long tid;
2664 
2665 	s = slab_pre_alloc_hook(s, gfpflags);
2666 	if (!s)
2667 		return NULL;
2668 redo:
2669 	/*
2670 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2671 	 * enabled. We may switch back and forth between cpus while
2672 	 * reading from one cpu area. That does not matter as long
2673 	 * as we end up on the original cpu again when doing the cmpxchg.
2674 	 *
2675 	 * We should guarantee that tid and kmem_cache are retrieved on
2676 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2677 	 * to check if it is matched or not.
2678 	 */
2679 	do {
2680 		tid = this_cpu_read(s->cpu_slab->tid);
2681 		c = raw_cpu_ptr(s->cpu_slab);
2682 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2683 		 unlikely(tid != READ_ONCE(c->tid)));
2684 
2685 	/*
2686 	 * Irqless object alloc/free algorithm used here depends on sequence
2687 	 * of fetching cpu_slab's data. tid should be fetched before anything
2688 	 * on c to guarantee that object and page associated with previous tid
2689 	 * won't be used with current tid. If we fetch tid first, object and
2690 	 * page could be one associated with next tid and our alloc/free
2691 	 * request will be failed. In this case, we will retry. So, no problem.
2692 	 */
2693 	barrier();
2694 
2695 	/*
2696 	 * The transaction ids are globally unique per cpu and per operation on
2697 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2698 	 * occurs on the right processor and that there was no operation on the
2699 	 * linked list in between.
2700 	 */
2701 
2702 	object = c->freelist;
2703 	page = c->page;
2704 	if (unlikely(!object || !node_match(page, node))) {
2705 		object = __slab_alloc(s, gfpflags, node, addr, c);
2706 		stat(s, ALLOC_SLOWPATH);
2707 	} else {
2708 		void *next_object = get_freepointer_safe(s, object);
2709 
2710 		/*
2711 		 * The cmpxchg will only match if there was no additional
2712 		 * operation and if we are on the right processor.
2713 		 *
2714 		 * The cmpxchg does the following atomically (without lock
2715 		 * semantics!)
2716 		 * 1. Relocate first pointer to the current per cpu area.
2717 		 * 2. Verify that tid and freelist have not been changed
2718 		 * 3. If they were not changed replace tid and freelist
2719 		 *
2720 		 * Since this is without lock semantics the protection is only
2721 		 * against code executing on this cpu *not* from access by
2722 		 * other cpus.
2723 		 */
2724 		if (unlikely(!this_cpu_cmpxchg_double(
2725 				s->cpu_slab->freelist, s->cpu_slab->tid,
2726 				object, tid,
2727 				next_object, next_tid(tid)))) {
2728 
2729 			note_cmpxchg_failure("slab_alloc", s, tid);
2730 			goto redo;
2731 		}
2732 		prefetch_freepointer(s, next_object);
2733 		stat(s, ALLOC_FASTPATH);
2734 	}
2735 
2736 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2737 		memset(object, 0, s->object_size);
2738 
2739 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2740 
2741 	return object;
2742 }
2743 
2744 static __always_inline void *slab_alloc(struct kmem_cache *s,
2745 		gfp_t gfpflags, unsigned long addr)
2746 {
2747 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2748 }
2749 
2750 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2751 {
2752 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2753 
2754 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2755 				s->size, gfpflags);
2756 
2757 	return ret;
2758 }
2759 EXPORT_SYMBOL(kmem_cache_alloc);
2760 
2761 #ifdef CONFIG_TRACING
2762 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2763 {
2764 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2765 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2766 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2767 	return ret;
2768 }
2769 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2770 #endif
2771 
2772 #ifdef CONFIG_NUMA
2773 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2774 {
2775 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2776 
2777 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2778 				    s->object_size, s->size, gfpflags, node);
2779 
2780 	return ret;
2781 }
2782 EXPORT_SYMBOL(kmem_cache_alloc_node);
2783 
2784 #ifdef CONFIG_TRACING
2785 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2786 				    gfp_t gfpflags,
2787 				    int node, size_t size)
2788 {
2789 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2790 
2791 	trace_kmalloc_node(_RET_IP_, ret,
2792 			   size, s->size, gfpflags, node);
2793 
2794 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2795 	return ret;
2796 }
2797 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2798 #endif
2799 #endif
2800 
2801 /*
2802  * Slow path handling. This may still be called frequently since objects
2803  * have a longer lifetime than the cpu slabs in most processing loads.
2804  *
2805  * So we still attempt to reduce cache line usage. Just take the slab
2806  * lock and free the item. If there is no additional partial page
2807  * handling required then we can return immediately.
2808  */
2809 static void __slab_free(struct kmem_cache *s, struct page *page,
2810 			void *head, void *tail, int cnt,
2811 			unsigned long addr)
2812 
2813 {
2814 	void *prior;
2815 	int was_frozen;
2816 	struct page new;
2817 	unsigned long counters;
2818 	struct kmem_cache_node *n = NULL;
2819 	unsigned long uninitialized_var(flags);
2820 
2821 	stat(s, FREE_SLOWPATH);
2822 
2823 	if (kmem_cache_debug(s) &&
2824 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2825 		return;
2826 
2827 	do {
2828 		if (unlikely(n)) {
2829 			spin_unlock_irqrestore(&n->list_lock, flags);
2830 			n = NULL;
2831 		}
2832 		prior = page->freelist;
2833 		counters = page->counters;
2834 		set_freepointer(s, tail, prior);
2835 		new.counters = counters;
2836 		was_frozen = new.frozen;
2837 		new.inuse -= cnt;
2838 		if ((!new.inuse || !prior) && !was_frozen) {
2839 
2840 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2841 
2842 				/*
2843 				 * Slab was on no list before and will be
2844 				 * partially empty
2845 				 * We can defer the list move and instead
2846 				 * freeze it.
2847 				 */
2848 				new.frozen = 1;
2849 
2850 			} else { /* Needs to be taken off a list */
2851 
2852 				n = get_node(s, page_to_nid(page));
2853 				/*
2854 				 * Speculatively acquire the list_lock.
2855 				 * If the cmpxchg does not succeed then we may
2856 				 * drop the list_lock without any processing.
2857 				 *
2858 				 * Otherwise the list_lock will synchronize with
2859 				 * other processors updating the list of slabs.
2860 				 */
2861 				spin_lock_irqsave(&n->list_lock, flags);
2862 
2863 			}
2864 		}
2865 
2866 	} while (!cmpxchg_double_slab(s, page,
2867 		prior, counters,
2868 		head, new.counters,
2869 		"__slab_free"));
2870 
2871 	if (likely(!n)) {
2872 
2873 		/*
2874 		 * If we just froze the page then put it onto the
2875 		 * per cpu partial list.
2876 		 */
2877 		if (new.frozen && !was_frozen) {
2878 			put_cpu_partial(s, page, 1);
2879 			stat(s, CPU_PARTIAL_FREE);
2880 		}
2881 		/*
2882 		 * The list lock was not taken therefore no list
2883 		 * activity can be necessary.
2884 		 */
2885 		if (was_frozen)
2886 			stat(s, FREE_FROZEN);
2887 		return;
2888 	}
2889 
2890 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2891 		goto slab_empty;
2892 
2893 	/*
2894 	 * Objects left in the slab. If it was not on the partial list before
2895 	 * then add it.
2896 	 */
2897 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2898 		if (kmem_cache_debug(s))
2899 			remove_full(s, n, page);
2900 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2901 		stat(s, FREE_ADD_PARTIAL);
2902 	}
2903 	spin_unlock_irqrestore(&n->list_lock, flags);
2904 	return;
2905 
2906 slab_empty:
2907 	if (prior) {
2908 		/*
2909 		 * Slab on the partial list.
2910 		 */
2911 		remove_partial(n, page);
2912 		stat(s, FREE_REMOVE_PARTIAL);
2913 	} else {
2914 		/* Slab must be on the full list */
2915 		remove_full(s, n, page);
2916 	}
2917 
2918 	spin_unlock_irqrestore(&n->list_lock, flags);
2919 	stat(s, FREE_SLAB);
2920 	discard_slab(s, page);
2921 }
2922 
2923 /*
2924  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2925  * can perform fastpath freeing without additional function calls.
2926  *
2927  * The fastpath is only possible if we are freeing to the current cpu slab
2928  * of this processor. This typically the case if we have just allocated
2929  * the item before.
2930  *
2931  * If fastpath is not possible then fall back to __slab_free where we deal
2932  * with all sorts of special processing.
2933  *
2934  * Bulk free of a freelist with several objects (all pointing to the
2935  * same page) possible by specifying head and tail ptr, plus objects
2936  * count (cnt). Bulk free indicated by tail pointer being set.
2937  */
2938 static __always_inline void do_slab_free(struct kmem_cache *s,
2939 				struct page *page, void *head, void *tail,
2940 				int cnt, unsigned long addr)
2941 {
2942 	void *tail_obj = tail ? : head;
2943 	struct kmem_cache_cpu *c;
2944 	unsigned long tid;
2945 redo:
2946 	/*
2947 	 * Determine the currently cpus per cpu slab.
2948 	 * The cpu may change afterward. However that does not matter since
2949 	 * data is retrieved via this pointer. If we are on the same cpu
2950 	 * during the cmpxchg then the free will succeed.
2951 	 */
2952 	do {
2953 		tid = this_cpu_read(s->cpu_slab->tid);
2954 		c = raw_cpu_ptr(s->cpu_slab);
2955 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2956 		 unlikely(tid != READ_ONCE(c->tid)));
2957 
2958 	/* Same with comment on barrier() in slab_alloc_node() */
2959 	barrier();
2960 
2961 	if (likely(page == c->page)) {
2962 		set_freepointer(s, tail_obj, c->freelist);
2963 
2964 		if (unlikely(!this_cpu_cmpxchg_double(
2965 				s->cpu_slab->freelist, s->cpu_slab->tid,
2966 				c->freelist, tid,
2967 				head, next_tid(tid)))) {
2968 
2969 			note_cmpxchg_failure("slab_free", s, tid);
2970 			goto redo;
2971 		}
2972 		stat(s, FREE_FASTPATH);
2973 	} else
2974 		__slab_free(s, page, head, tail_obj, cnt, addr);
2975 
2976 }
2977 
2978 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2979 				      void *head, void *tail, int cnt,
2980 				      unsigned long addr)
2981 {
2982 	/*
2983 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2984 	 * to remove objects, whose reuse must be delayed.
2985 	 */
2986 	if (slab_free_freelist_hook(s, &head, &tail))
2987 		do_slab_free(s, page, head, tail, cnt, addr);
2988 }
2989 
2990 #ifdef CONFIG_KASAN_GENERIC
2991 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2992 {
2993 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2994 }
2995 #endif
2996 
2997 void kmem_cache_free(struct kmem_cache *s, void *x)
2998 {
2999 	s = cache_from_obj(s, x);
3000 	if (!s)
3001 		return;
3002 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3003 	trace_kmem_cache_free(_RET_IP_, x);
3004 }
3005 EXPORT_SYMBOL(kmem_cache_free);
3006 
3007 struct detached_freelist {
3008 	struct page *page;
3009 	void *tail;
3010 	void *freelist;
3011 	int cnt;
3012 	struct kmem_cache *s;
3013 };
3014 
3015 /*
3016  * This function progressively scans the array with free objects (with
3017  * a limited look ahead) and extract objects belonging to the same
3018  * page.  It builds a detached freelist directly within the given
3019  * page/objects.  This can happen without any need for
3020  * synchronization, because the objects are owned by running process.
3021  * The freelist is build up as a single linked list in the objects.
3022  * The idea is, that this detached freelist can then be bulk
3023  * transferred to the real freelist(s), but only requiring a single
3024  * synchronization primitive.  Look ahead in the array is limited due
3025  * to performance reasons.
3026  */
3027 static inline
3028 int build_detached_freelist(struct kmem_cache *s, size_t size,
3029 			    void **p, struct detached_freelist *df)
3030 {
3031 	size_t first_skipped_index = 0;
3032 	int lookahead = 3;
3033 	void *object;
3034 	struct page *page;
3035 
3036 	/* Always re-init detached_freelist */
3037 	df->page = NULL;
3038 
3039 	do {
3040 		object = p[--size];
3041 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3042 	} while (!object && size);
3043 
3044 	if (!object)
3045 		return 0;
3046 
3047 	page = virt_to_head_page(object);
3048 	if (!s) {
3049 		/* Handle kalloc'ed objects */
3050 		if (unlikely(!PageSlab(page))) {
3051 			BUG_ON(!PageCompound(page));
3052 			kfree_hook(object);
3053 			__free_pages(page, compound_order(page));
3054 			p[size] = NULL; /* mark object processed */
3055 			return size;
3056 		}
3057 		/* Derive kmem_cache from object */
3058 		df->s = page->slab_cache;
3059 	} else {
3060 		df->s = cache_from_obj(s, object); /* Support for memcg */
3061 	}
3062 
3063 	/* Start new detached freelist */
3064 	df->page = page;
3065 	set_freepointer(df->s, object, NULL);
3066 	df->tail = object;
3067 	df->freelist = object;
3068 	p[size] = NULL; /* mark object processed */
3069 	df->cnt = 1;
3070 
3071 	while (size) {
3072 		object = p[--size];
3073 		if (!object)
3074 			continue; /* Skip processed objects */
3075 
3076 		/* df->page is always set at this point */
3077 		if (df->page == virt_to_head_page(object)) {
3078 			/* Opportunity build freelist */
3079 			set_freepointer(df->s, object, df->freelist);
3080 			df->freelist = object;
3081 			df->cnt++;
3082 			p[size] = NULL; /* mark object processed */
3083 
3084 			continue;
3085 		}
3086 
3087 		/* Limit look ahead search */
3088 		if (!--lookahead)
3089 			break;
3090 
3091 		if (!first_skipped_index)
3092 			first_skipped_index = size + 1;
3093 	}
3094 
3095 	return first_skipped_index;
3096 }
3097 
3098 /* Note that interrupts must be enabled when calling this function. */
3099 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3100 {
3101 	if (WARN_ON(!size))
3102 		return;
3103 
3104 	do {
3105 		struct detached_freelist df;
3106 
3107 		size = build_detached_freelist(s, size, p, &df);
3108 		if (!df.page)
3109 			continue;
3110 
3111 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3112 	} while (likely(size));
3113 }
3114 EXPORT_SYMBOL(kmem_cache_free_bulk);
3115 
3116 /* Note that interrupts must be enabled when calling this function. */
3117 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3118 			  void **p)
3119 {
3120 	struct kmem_cache_cpu *c;
3121 	int i;
3122 
3123 	/* memcg and kmem_cache debug support */
3124 	s = slab_pre_alloc_hook(s, flags);
3125 	if (unlikely(!s))
3126 		return false;
3127 	/*
3128 	 * Drain objects in the per cpu slab, while disabling local
3129 	 * IRQs, which protects against PREEMPT and interrupts
3130 	 * handlers invoking normal fastpath.
3131 	 */
3132 	local_irq_disable();
3133 	c = this_cpu_ptr(s->cpu_slab);
3134 
3135 	for (i = 0; i < size; i++) {
3136 		void *object = c->freelist;
3137 
3138 		if (unlikely(!object)) {
3139 			/*
3140 			 * Invoking slow path likely have side-effect
3141 			 * of re-populating per CPU c->freelist
3142 			 */
3143 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3144 					    _RET_IP_, c);
3145 			if (unlikely(!p[i]))
3146 				goto error;
3147 
3148 			c = this_cpu_ptr(s->cpu_slab);
3149 			continue; /* goto for-loop */
3150 		}
3151 		c->freelist = get_freepointer(s, object);
3152 		p[i] = object;
3153 	}
3154 	c->tid = next_tid(c->tid);
3155 	local_irq_enable();
3156 
3157 	/* Clear memory outside IRQ disabled fastpath loop */
3158 	if (unlikely(flags & __GFP_ZERO)) {
3159 		int j;
3160 
3161 		for (j = 0; j < i; j++)
3162 			memset(p[j], 0, s->object_size);
3163 	}
3164 
3165 	/* memcg and kmem_cache debug support */
3166 	slab_post_alloc_hook(s, flags, size, p);
3167 	return i;
3168 error:
3169 	local_irq_enable();
3170 	slab_post_alloc_hook(s, flags, i, p);
3171 	__kmem_cache_free_bulk(s, i, p);
3172 	return 0;
3173 }
3174 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3175 
3176 
3177 /*
3178  * Object placement in a slab is made very easy because we always start at
3179  * offset 0. If we tune the size of the object to the alignment then we can
3180  * get the required alignment by putting one properly sized object after
3181  * another.
3182  *
3183  * Notice that the allocation order determines the sizes of the per cpu
3184  * caches. Each processor has always one slab available for allocations.
3185  * Increasing the allocation order reduces the number of times that slabs
3186  * must be moved on and off the partial lists and is therefore a factor in
3187  * locking overhead.
3188  */
3189 
3190 /*
3191  * Mininum / Maximum order of slab pages. This influences locking overhead
3192  * and slab fragmentation. A higher order reduces the number of partial slabs
3193  * and increases the number of allocations possible without having to
3194  * take the list_lock.
3195  */
3196 static unsigned int slub_min_order;
3197 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3198 static unsigned int slub_min_objects;
3199 
3200 /*
3201  * Calculate the order of allocation given an slab object size.
3202  *
3203  * The order of allocation has significant impact on performance and other
3204  * system components. Generally order 0 allocations should be preferred since
3205  * order 0 does not cause fragmentation in the page allocator. Larger objects
3206  * be problematic to put into order 0 slabs because there may be too much
3207  * unused space left. We go to a higher order if more than 1/16th of the slab
3208  * would be wasted.
3209  *
3210  * In order to reach satisfactory performance we must ensure that a minimum
3211  * number of objects is in one slab. Otherwise we may generate too much
3212  * activity on the partial lists which requires taking the list_lock. This is
3213  * less a concern for large slabs though which are rarely used.
3214  *
3215  * slub_max_order specifies the order where we begin to stop considering the
3216  * number of objects in a slab as critical. If we reach slub_max_order then
3217  * we try to keep the page order as low as possible. So we accept more waste
3218  * of space in favor of a small page order.
3219  *
3220  * Higher order allocations also allow the placement of more objects in a
3221  * slab and thereby reduce object handling overhead. If the user has
3222  * requested a higher mininum order then we start with that one instead of
3223  * the smallest order which will fit the object.
3224  */
3225 static inline unsigned int slab_order(unsigned int size,
3226 		unsigned int min_objects, unsigned int max_order,
3227 		unsigned int fract_leftover)
3228 {
3229 	unsigned int min_order = slub_min_order;
3230 	unsigned int order;
3231 
3232 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3233 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3234 
3235 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3236 			order <= max_order; order++) {
3237 
3238 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3239 		unsigned int rem;
3240 
3241 		rem = slab_size % size;
3242 
3243 		if (rem <= slab_size / fract_leftover)
3244 			break;
3245 	}
3246 
3247 	return order;
3248 }
3249 
3250 static inline int calculate_order(unsigned int size)
3251 {
3252 	unsigned int order;
3253 	unsigned int min_objects;
3254 	unsigned int max_objects;
3255 
3256 	/*
3257 	 * Attempt to find best configuration for a slab. This
3258 	 * works by first attempting to generate a layout with
3259 	 * the best configuration and backing off gradually.
3260 	 *
3261 	 * First we increase the acceptable waste in a slab. Then
3262 	 * we reduce the minimum objects required in a slab.
3263 	 */
3264 	min_objects = slub_min_objects;
3265 	if (!min_objects)
3266 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3267 	max_objects = order_objects(slub_max_order, size);
3268 	min_objects = min(min_objects, max_objects);
3269 
3270 	while (min_objects > 1) {
3271 		unsigned int fraction;
3272 
3273 		fraction = 16;
3274 		while (fraction >= 4) {
3275 			order = slab_order(size, min_objects,
3276 					slub_max_order, fraction);
3277 			if (order <= slub_max_order)
3278 				return order;
3279 			fraction /= 2;
3280 		}
3281 		min_objects--;
3282 	}
3283 
3284 	/*
3285 	 * We were unable to place multiple objects in a slab. Now
3286 	 * lets see if we can place a single object there.
3287 	 */
3288 	order = slab_order(size, 1, slub_max_order, 1);
3289 	if (order <= slub_max_order)
3290 		return order;
3291 
3292 	/*
3293 	 * Doh this slab cannot be placed using slub_max_order.
3294 	 */
3295 	order = slab_order(size, 1, MAX_ORDER, 1);
3296 	if (order < MAX_ORDER)
3297 		return order;
3298 	return -ENOSYS;
3299 }
3300 
3301 static void
3302 init_kmem_cache_node(struct kmem_cache_node *n)
3303 {
3304 	n->nr_partial = 0;
3305 	spin_lock_init(&n->list_lock);
3306 	INIT_LIST_HEAD(&n->partial);
3307 #ifdef CONFIG_SLUB_DEBUG
3308 	atomic_long_set(&n->nr_slabs, 0);
3309 	atomic_long_set(&n->total_objects, 0);
3310 	INIT_LIST_HEAD(&n->full);
3311 #endif
3312 }
3313 
3314 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3315 {
3316 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3317 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3318 
3319 	/*
3320 	 * Must align to double word boundary for the double cmpxchg
3321 	 * instructions to work; see __pcpu_double_call_return_bool().
3322 	 */
3323 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3324 				     2 * sizeof(void *));
3325 
3326 	if (!s->cpu_slab)
3327 		return 0;
3328 
3329 	init_kmem_cache_cpus(s);
3330 
3331 	return 1;
3332 }
3333 
3334 static struct kmem_cache *kmem_cache_node;
3335 
3336 /*
3337  * No kmalloc_node yet so do it by hand. We know that this is the first
3338  * slab on the node for this slabcache. There are no concurrent accesses
3339  * possible.
3340  *
3341  * Note that this function only works on the kmem_cache_node
3342  * when allocating for the kmem_cache_node. This is used for bootstrapping
3343  * memory on a fresh node that has no slab structures yet.
3344  */
3345 static void early_kmem_cache_node_alloc(int node)
3346 {
3347 	struct page *page;
3348 	struct kmem_cache_node *n;
3349 
3350 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3351 
3352 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3353 
3354 	BUG_ON(!page);
3355 	if (page_to_nid(page) != node) {
3356 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3357 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3358 	}
3359 
3360 	n = page->freelist;
3361 	BUG_ON(!n);
3362 #ifdef CONFIG_SLUB_DEBUG
3363 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3364 	init_tracking(kmem_cache_node, n);
3365 #endif
3366 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3367 		      GFP_KERNEL);
3368 	page->freelist = get_freepointer(kmem_cache_node, n);
3369 	page->inuse = 1;
3370 	page->frozen = 0;
3371 	kmem_cache_node->node[node] = n;
3372 	init_kmem_cache_node(n);
3373 	inc_slabs_node(kmem_cache_node, node, page->objects);
3374 
3375 	/*
3376 	 * No locks need to be taken here as it has just been
3377 	 * initialized and there is no concurrent access.
3378 	 */
3379 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3380 }
3381 
3382 static void free_kmem_cache_nodes(struct kmem_cache *s)
3383 {
3384 	int node;
3385 	struct kmem_cache_node *n;
3386 
3387 	for_each_kmem_cache_node(s, node, n) {
3388 		s->node[node] = NULL;
3389 		kmem_cache_free(kmem_cache_node, n);
3390 	}
3391 }
3392 
3393 void __kmem_cache_release(struct kmem_cache *s)
3394 {
3395 	cache_random_seq_destroy(s);
3396 	free_percpu(s->cpu_slab);
3397 	free_kmem_cache_nodes(s);
3398 }
3399 
3400 static int init_kmem_cache_nodes(struct kmem_cache *s)
3401 {
3402 	int node;
3403 
3404 	for_each_node_state(node, N_NORMAL_MEMORY) {
3405 		struct kmem_cache_node *n;
3406 
3407 		if (slab_state == DOWN) {
3408 			early_kmem_cache_node_alloc(node);
3409 			continue;
3410 		}
3411 		n = kmem_cache_alloc_node(kmem_cache_node,
3412 						GFP_KERNEL, node);
3413 
3414 		if (!n) {
3415 			free_kmem_cache_nodes(s);
3416 			return 0;
3417 		}
3418 
3419 		init_kmem_cache_node(n);
3420 		s->node[node] = n;
3421 	}
3422 	return 1;
3423 }
3424 
3425 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3426 {
3427 	if (min < MIN_PARTIAL)
3428 		min = MIN_PARTIAL;
3429 	else if (min > MAX_PARTIAL)
3430 		min = MAX_PARTIAL;
3431 	s->min_partial = min;
3432 }
3433 
3434 static void set_cpu_partial(struct kmem_cache *s)
3435 {
3436 #ifdef CONFIG_SLUB_CPU_PARTIAL
3437 	/*
3438 	 * cpu_partial determined the maximum number of objects kept in the
3439 	 * per cpu partial lists of a processor.
3440 	 *
3441 	 * Per cpu partial lists mainly contain slabs that just have one
3442 	 * object freed. If they are used for allocation then they can be
3443 	 * filled up again with minimal effort. The slab will never hit the
3444 	 * per node partial lists and therefore no locking will be required.
3445 	 *
3446 	 * This setting also determines
3447 	 *
3448 	 * A) The number of objects from per cpu partial slabs dumped to the
3449 	 *    per node list when we reach the limit.
3450 	 * B) The number of objects in cpu partial slabs to extract from the
3451 	 *    per node list when we run out of per cpu objects. We only fetch
3452 	 *    50% to keep some capacity around for frees.
3453 	 */
3454 	if (!kmem_cache_has_cpu_partial(s))
3455 		s->cpu_partial = 0;
3456 	else if (s->size >= PAGE_SIZE)
3457 		s->cpu_partial = 2;
3458 	else if (s->size >= 1024)
3459 		s->cpu_partial = 6;
3460 	else if (s->size >= 256)
3461 		s->cpu_partial = 13;
3462 	else
3463 		s->cpu_partial = 30;
3464 #endif
3465 }
3466 
3467 /*
3468  * calculate_sizes() determines the order and the distribution of data within
3469  * a slab object.
3470  */
3471 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3472 {
3473 	slab_flags_t flags = s->flags;
3474 	unsigned int size = s->object_size;
3475 	unsigned int order;
3476 
3477 	/*
3478 	 * Round up object size to the next word boundary. We can only
3479 	 * place the free pointer at word boundaries and this determines
3480 	 * the possible location of the free pointer.
3481 	 */
3482 	size = ALIGN(size, sizeof(void *));
3483 
3484 #ifdef CONFIG_SLUB_DEBUG
3485 	/*
3486 	 * Determine if we can poison the object itself. If the user of
3487 	 * the slab may touch the object after free or before allocation
3488 	 * then we should never poison the object itself.
3489 	 */
3490 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3491 			!s->ctor)
3492 		s->flags |= __OBJECT_POISON;
3493 	else
3494 		s->flags &= ~__OBJECT_POISON;
3495 
3496 
3497 	/*
3498 	 * If we are Redzoning then check if there is some space between the
3499 	 * end of the object and the free pointer. If not then add an
3500 	 * additional word to have some bytes to store Redzone information.
3501 	 */
3502 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3503 		size += sizeof(void *);
3504 #endif
3505 
3506 	/*
3507 	 * With that we have determined the number of bytes in actual use
3508 	 * by the object. This is the potential offset to the free pointer.
3509 	 */
3510 	s->inuse = size;
3511 
3512 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3513 		s->ctor)) {
3514 		/*
3515 		 * Relocate free pointer after the object if it is not
3516 		 * permitted to overwrite the first word of the object on
3517 		 * kmem_cache_free.
3518 		 *
3519 		 * This is the case if we do RCU, have a constructor or
3520 		 * destructor or are poisoning the objects.
3521 		 */
3522 		s->offset = size;
3523 		size += sizeof(void *);
3524 	}
3525 
3526 #ifdef CONFIG_SLUB_DEBUG
3527 	if (flags & SLAB_STORE_USER)
3528 		/*
3529 		 * Need to store information about allocs and frees after
3530 		 * the object.
3531 		 */
3532 		size += 2 * sizeof(struct track);
3533 #endif
3534 
3535 	kasan_cache_create(s, &size, &s->flags);
3536 #ifdef CONFIG_SLUB_DEBUG
3537 	if (flags & SLAB_RED_ZONE) {
3538 		/*
3539 		 * Add some empty padding so that we can catch
3540 		 * overwrites from earlier objects rather than let
3541 		 * tracking information or the free pointer be
3542 		 * corrupted if a user writes before the start
3543 		 * of the object.
3544 		 */
3545 		size += sizeof(void *);
3546 
3547 		s->red_left_pad = sizeof(void *);
3548 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3549 		size += s->red_left_pad;
3550 	}
3551 #endif
3552 
3553 	/*
3554 	 * SLUB stores one object immediately after another beginning from
3555 	 * offset 0. In order to align the objects we have to simply size
3556 	 * each object to conform to the alignment.
3557 	 */
3558 	size = ALIGN(size, s->align);
3559 	s->size = size;
3560 	if (forced_order >= 0)
3561 		order = forced_order;
3562 	else
3563 		order = calculate_order(size);
3564 
3565 	if ((int)order < 0)
3566 		return 0;
3567 
3568 	s->allocflags = 0;
3569 	if (order)
3570 		s->allocflags |= __GFP_COMP;
3571 
3572 	if (s->flags & SLAB_CACHE_DMA)
3573 		s->allocflags |= GFP_DMA;
3574 
3575 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3576 		s->allocflags |= __GFP_RECLAIMABLE;
3577 
3578 	/*
3579 	 * Determine the number of objects per slab
3580 	 */
3581 	s->oo = oo_make(order, size);
3582 	s->min = oo_make(get_order(size), size);
3583 	if (oo_objects(s->oo) > oo_objects(s->max))
3584 		s->max = s->oo;
3585 
3586 	return !!oo_objects(s->oo);
3587 }
3588 
3589 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3590 {
3591 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3592 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3593 	s->random = get_random_long();
3594 #endif
3595 
3596 	if (!calculate_sizes(s, -1))
3597 		goto error;
3598 	if (disable_higher_order_debug) {
3599 		/*
3600 		 * Disable debugging flags that store metadata if the min slab
3601 		 * order increased.
3602 		 */
3603 		if (get_order(s->size) > get_order(s->object_size)) {
3604 			s->flags &= ~DEBUG_METADATA_FLAGS;
3605 			s->offset = 0;
3606 			if (!calculate_sizes(s, -1))
3607 				goto error;
3608 		}
3609 	}
3610 
3611 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3612     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3613 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3614 		/* Enable fast mode */
3615 		s->flags |= __CMPXCHG_DOUBLE;
3616 #endif
3617 
3618 	/*
3619 	 * The larger the object size is, the more pages we want on the partial
3620 	 * list to avoid pounding the page allocator excessively.
3621 	 */
3622 	set_min_partial(s, ilog2(s->size) / 2);
3623 
3624 	set_cpu_partial(s);
3625 
3626 #ifdef CONFIG_NUMA
3627 	s->remote_node_defrag_ratio = 1000;
3628 #endif
3629 
3630 	/* Initialize the pre-computed randomized freelist if slab is up */
3631 	if (slab_state >= UP) {
3632 		if (init_cache_random_seq(s))
3633 			goto error;
3634 	}
3635 
3636 	if (!init_kmem_cache_nodes(s))
3637 		goto error;
3638 
3639 	if (alloc_kmem_cache_cpus(s))
3640 		return 0;
3641 
3642 	free_kmem_cache_nodes(s);
3643 error:
3644 	if (flags & SLAB_PANIC)
3645 		panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3646 		      s->name, s->size, s->size,
3647 		      oo_order(s->oo), s->offset, (unsigned long)flags);
3648 	return -EINVAL;
3649 }
3650 
3651 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3652 							const char *text)
3653 {
3654 #ifdef CONFIG_SLUB_DEBUG
3655 	void *addr = page_address(page);
3656 	void *p;
3657 	unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
3658 	if (!map)
3659 		return;
3660 	slab_err(s, page, text, s->name);
3661 	slab_lock(page);
3662 
3663 	get_map(s, page, map);
3664 	for_each_object(p, s, addr, page->objects) {
3665 
3666 		if (!test_bit(slab_index(p, s, addr), map)) {
3667 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3668 			print_tracking(s, p);
3669 		}
3670 	}
3671 	slab_unlock(page);
3672 	bitmap_free(map);
3673 #endif
3674 }
3675 
3676 /*
3677  * Attempt to free all partial slabs on a node.
3678  * This is called from __kmem_cache_shutdown(). We must take list_lock
3679  * because sysfs file might still access partial list after the shutdowning.
3680  */
3681 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3682 {
3683 	LIST_HEAD(discard);
3684 	struct page *page, *h;
3685 
3686 	BUG_ON(irqs_disabled());
3687 	spin_lock_irq(&n->list_lock);
3688 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3689 		if (!page->inuse) {
3690 			remove_partial(n, page);
3691 			list_add(&page->lru, &discard);
3692 		} else {
3693 			list_slab_objects(s, page,
3694 			"Objects remaining in %s on __kmem_cache_shutdown()");
3695 		}
3696 	}
3697 	spin_unlock_irq(&n->list_lock);
3698 
3699 	list_for_each_entry_safe(page, h, &discard, lru)
3700 		discard_slab(s, page);
3701 }
3702 
3703 bool __kmem_cache_empty(struct kmem_cache *s)
3704 {
3705 	int node;
3706 	struct kmem_cache_node *n;
3707 
3708 	for_each_kmem_cache_node(s, node, n)
3709 		if (n->nr_partial || slabs_node(s, node))
3710 			return false;
3711 	return true;
3712 }
3713 
3714 /*
3715  * Release all resources used by a slab cache.
3716  */
3717 int __kmem_cache_shutdown(struct kmem_cache *s)
3718 {
3719 	int node;
3720 	struct kmem_cache_node *n;
3721 
3722 	flush_all(s);
3723 	/* Attempt to free all objects */
3724 	for_each_kmem_cache_node(s, node, n) {
3725 		free_partial(s, n);
3726 		if (n->nr_partial || slabs_node(s, node))
3727 			return 1;
3728 	}
3729 	sysfs_slab_remove(s);
3730 	return 0;
3731 }
3732 
3733 /********************************************************************
3734  *		Kmalloc subsystem
3735  *******************************************************************/
3736 
3737 static int __init setup_slub_min_order(char *str)
3738 {
3739 	get_option(&str, (int *)&slub_min_order);
3740 
3741 	return 1;
3742 }
3743 
3744 __setup("slub_min_order=", setup_slub_min_order);
3745 
3746 static int __init setup_slub_max_order(char *str)
3747 {
3748 	get_option(&str, (int *)&slub_max_order);
3749 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3750 
3751 	return 1;
3752 }
3753 
3754 __setup("slub_max_order=", setup_slub_max_order);
3755 
3756 static int __init setup_slub_min_objects(char *str)
3757 {
3758 	get_option(&str, (int *)&slub_min_objects);
3759 
3760 	return 1;
3761 }
3762 
3763 __setup("slub_min_objects=", setup_slub_min_objects);
3764 
3765 void *__kmalloc(size_t size, gfp_t flags)
3766 {
3767 	struct kmem_cache *s;
3768 	void *ret;
3769 
3770 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3771 		return kmalloc_large(size, flags);
3772 
3773 	s = kmalloc_slab(size, flags);
3774 
3775 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3776 		return s;
3777 
3778 	ret = slab_alloc(s, flags, _RET_IP_);
3779 
3780 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3781 
3782 	ret = kasan_kmalloc(s, ret, size, flags);
3783 
3784 	return ret;
3785 }
3786 EXPORT_SYMBOL(__kmalloc);
3787 
3788 #ifdef CONFIG_NUMA
3789 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3790 {
3791 	struct page *page;
3792 	void *ptr = NULL;
3793 
3794 	flags |= __GFP_COMP;
3795 	page = alloc_pages_node(node, flags, get_order(size));
3796 	if (page)
3797 		ptr = page_address(page);
3798 
3799 	return kmalloc_large_node_hook(ptr, size, flags);
3800 }
3801 
3802 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3803 {
3804 	struct kmem_cache *s;
3805 	void *ret;
3806 
3807 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3808 		ret = kmalloc_large_node(size, flags, node);
3809 
3810 		trace_kmalloc_node(_RET_IP_, ret,
3811 				   size, PAGE_SIZE << get_order(size),
3812 				   flags, node);
3813 
3814 		return ret;
3815 	}
3816 
3817 	s = kmalloc_slab(size, flags);
3818 
3819 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3820 		return s;
3821 
3822 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3823 
3824 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3825 
3826 	ret = kasan_kmalloc(s, ret, size, flags);
3827 
3828 	return ret;
3829 }
3830 EXPORT_SYMBOL(__kmalloc_node);
3831 #endif
3832 
3833 #ifdef CONFIG_HARDENED_USERCOPY
3834 /*
3835  * Rejects incorrectly sized objects and objects that are to be copied
3836  * to/from userspace but do not fall entirely within the containing slab
3837  * cache's usercopy region.
3838  *
3839  * Returns NULL if check passes, otherwise const char * to name of cache
3840  * to indicate an error.
3841  */
3842 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3843 			 bool to_user)
3844 {
3845 	struct kmem_cache *s;
3846 	unsigned int offset;
3847 	size_t object_size;
3848 
3849 	/* Find object and usable object size. */
3850 	s = page->slab_cache;
3851 
3852 	/* Reject impossible pointers. */
3853 	if (ptr < page_address(page))
3854 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3855 			       to_user, 0, n);
3856 
3857 	/* Find offset within object. */
3858 	offset = (ptr - page_address(page)) % s->size;
3859 
3860 	/* Adjust for redzone and reject if within the redzone. */
3861 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3862 		if (offset < s->red_left_pad)
3863 			usercopy_abort("SLUB object in left red zone",
3864 				       s->name, to_user, offset, n);
3865 		offset -= s->red_left_pad;
3866 	}
3867 
3868 	/* Allow address range falling entirely within usercopy region. */
3869 	if (offset >= s->useroffset &&
3870 	    offset - s->useroffset <= s->usersize &&
3871 	    n <= s->useroffset - offset + s->usersize)
3872 		return;
3873 
3874 	/*
3875 	 * If the copy is still within the allocated object, produce
3876 	 * a warning instead of rejecting the copy. This is intended
3877 	 * to be a temporary method to find any missing usercopy
3878 	 * whitelists.
3879 	 */
3880 	object_size = slab_ksize(s);
3881 	if (usercopy_fallback &&
3882 	    offset <= object_size && n <= object_size - offset) {
3883 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3884 		return;
3885 	}
3886 
3887 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3888 }
3889 #endif /* CONFIG_HARDENED_USERCOPY */
3890 
3891 static size_t __ksize(const void *object)
3892 {
3893 	struct page *page;
3894 
3895 	if (unlikely(object == ZERO_SIZE_PTR))
3896 		return 0;
3897 
3898 	page = virt_to_head_page(object);
3899 
3900 	if (unlikely(!PageSlab(page))) {
3901 		WARN_ON(!PageCompound(page));
3902 		return PAGE_SIZE << compound_order(page);
3903 	}
3904 
3905 	return slab_ksize(page->slab_cache);
3906 }
3907 
3908 size_t ksize(const void *object)
3909 {
3910 	size_t size = __ksize(object);
3911 	/* We assume that ksize callers could use whole allocated area,
3912 	 * so we need to unpoison this area.
3913 	 */
3914 	kasan_unpoison_shadow(object, size);
3915 	return size;
3916 }
3917 EXPORT_SYMBOL(ksize);
3918 
3919 void kfree(const void *x)
3920 {
3921 	struct page *page;
3922 	void *object = (void *)x;
3923 
3924 	trace_kfree(_RET_IP_, x);
3925 
3926 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3927 		return;
3928 
3929 	page = virt_to_head_page(x);
3930 	if (unlikely(!PageSlab(page))) {
3931 		BUG_ON(!PageCompound(page));
3932 		kfree_hook(object);
3933 		__free_pages(page, compound_order(page));
3934 		return;
3935 	}
3936 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3937 }
3938 EXPORT_SYMBOL(kfree);
3939 
3940 #define SHRINK_PROMOTE_MAX 32
3941 
3942 /*
3943  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3944  * up most to the head of the partial lists. New allocations will then
3945  * fill those up and thus they can be removed from the partial lists.
3946  *
3947  * The slabs with the least items are placed last. This results in them
3948  * being allocated from last increasing the chance that the last objects
3949  * are freed in them.
3950  */
3951 int __kmem_cache_shrink(struct kmem_cache *s)
3952 {
3953 	int node;
3954 	int i;
3955 	struct kmem_cache_node *n;
3956 	struct page *page;
3957 	struct page *t;
3958 	struct list_head discard;
3959 	struct list_head promote[SHRINK_PROMOTE_MAX];
3960 	unsigned long flags;
3961 	int ret = 0;
3962 
3963 	flush_all(s);
3964 	for_each_kmem_cache_node(s, node, n) {
3965 		INIT_LIST_HEAD(&discard);
3966 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3967 			INIT_LIST_HEAD(promote + i);
3968 
3969 		spin_lock_irqsave(&n->list_lock, flags);
3970 
3971 		/*
3972 		 * Build lists of slabs to discard or promote.
3973 		 *
3974 		 * Note that concurrent frees may occur while we hold the
3975 		 * list_lock. page->inuse here is the upper limit.
3976 		 */
3977 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3978 			int free = page->objects - page->inuse;
3979 
3980 			/* Do not reread page->inuse */
3981 			barrier();
3982 
3983 			/* We do not keep full slabs on the list */
3984 			BUG_ON(free <= 0);
3985 
3986 			if (free == page->objects) {
3987 				list_move(&page->lru, &discard);
3988 				n->nr_partial--;
3989 			} else if (free <= SHRINK_PROMOTE_MAX)
3990 				list_move(&page->lru, promote + free - 1);
3991 		}
3992 
3993 		/*
3994 		 * Promote the slabs filled up most to the head of the
3995 		 * partial list.
3996 		 */
3997 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3998 			list_splice(promote + i, &n->partial);
3999 
4000 		spin_unlock_irqrestore(&n->list_lock, flags);
4001 
4002 		/* Release empty slabs */
4003 		list_for_each_entry_safe(page, t, &discard, lru)
4004 			discard_slab(s, page);
4005 
4006 		if (slabs_node(s, node))
4007 			ret = 1;
4008 	}
4009 
4010 	return ret;
4011 }
4012 
4013 #ifdef CONFIG_MEMCG
4014 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4015 {
4016 	/*
4017 	 * Called with all the locks held after a sched RCU grace period.
4018 	 * Even if @s becomes empty after shrinking, we can't know that @s
4019 	 * doesn't have allocations already in-flight and thus can't
4020 	 * destroy @s until the associated memcg is released.
4021 	 *
4022 	 * However, let's remove the sysfs files for empty caches here.
4023 	 * Each cache has a lot of interface files which aren't
4024 	 * particularly useful for empty draining caches; otherwise, we can
4025 	 * easily end up with millions of unnecessary sysfs files on
4026 	 * systems which have a lot of memory and transient cgroups.
4027 	 */
4028 	if (!__kmem_cache_shrink(s))
4029 		sysfs_slab_remove(s);
4030 }
4031 
4032 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4033 {
4034 	/*
4035 	 * Disable empty slabs caching. Used to avoid pinning offline
4036 	 * memory cgroups by kmem pages that can be freed.
4037 	 */
4038 	slub_set_cpu_partial(s, 0);
4039 	s->min_partial = 0;
4040 
4041 	/*
4042 	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4043 	 * we have to make sure the change is visible before shrinking.
4044 	 */
4045 	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4046 }
4047 #endif
4048 
4049 static int slab_mem_going_offline_callback(void *arg)
4050 {
4051 	struct kmem_cache *s;
4052 
4053 	mutex_lock(&slab_mutex);
4054 	list_for_each_entry(s, &slab_caches, list)
4055 		__kmem_cache_shrink(s);
4056 	mutex_unlock(&slab_mutex);
4057 
4058 	return 0;
4059 }
4060 
4061 static void slab_mem_offline_callback(void *arg)
4062 {
4063 	struct kmem_cache_node *n;
4064 	struct kmem_cache *s;
4065 	struct memory_notify *marg = arg;
4066 	int offline_node;
4067 
4068 	offline_node = marg->status_change_nid_normal;
4069 
4070 	/*
4071 	 * If the node still has available memory. we need kmem_cache_node
4072 	 * for it yet.
4073 	 */
4074 	if (offline_node < 0)
4075 		return;
4076 
4077 	mutex_lock(&slab_mutex);
4078 	list_for_each_entry(s, &slab_caches, list) {
4079 		n = get_node(s, offline_node);
4080 		if (n) {
4081 			/*
4082 			 * if n->nr_slabs > 0, slabs still exist on the node
4083 			 * that is going down. We were unable to free them,
4084 			 * and offline_pages() function shouldn't call this
4085 			 * callback. So, we must fail.
4086 			 */
4087 			BUG_ON(slabs_node(s, offline_node));
4088 
4089 			s->node[offline_node] = NULL;
4090 			kmem_cache_free(kmem_cache_node, n);
4091 		}
4092 	}
4093 	mutex_unlock(&slab_mutex);
4094 }
4095 
4096 static int slab_mem_going_online_callback(void *arg)
4097 {
4098 	struct kmem_cache_node *n;
4099 	struct kmem_cache *s;
4100 	struct memory_notify *marg = arg;
4101 	int nid = marg->status_change_nid_normal;
4102 	int ret = 0;
4103 
4104 	/*
4105 	 * If the node's memory is already available, then kmem_cache_node is
4106 	 * already created. Nothing to do.
4107 	 */
4108 	if (nid < 0)
4109 		return 0;
4110 
4111 	/*
4112 	 * We are bringing a node online. No memory is available yet. We must
4113 	 * allocate a kmem_cache_node structure in order to bring the node
4114 	 * online.
4115 	 */
4116 	mutex_lock(&slab_mutex);
4117 	list_for_each_entry(s, &slab_caches, list) {
4118 		/*
4119 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4120 		 *      since memory is not yet available from the node that
4121 		 *      is brought up.
4122 		 */
4123 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4124 		if (!n) {
4125 			ret = -ENOMEM;
4126 			goto out;
4127 		}
4128 		init_kmem_cache_node(n);
4129 		s->node[nid] = n;
4130 	}
4131 out:
4132 	mutex_unlock(&slab_mutex);
4133 	return ret;
4134 }
4135 
4136 static int slab_memory_callback(struct notifier_block *self,
4137 				unsigned long action, void *arg)
4138 {
4139 	int ret = 0;
4140 
4141 	switch (action) {
4142 	case MEM_GOING_ONLINE:
4143 		ret = slab_mem_going_online_callback(arg);
4144 		break;
4145 	case MEM_GOING_OFFLINE:
4146 		ret = slab_mem_going_offline_callback(arg);
4147 		break;
4148 	case MEM_OFFLINE:
4149 	case MEM_CANCEL_ONLINE:
4150 		slab_mem_offline_callback(arg);
4151 		break;
4152 	case MEM_ONLINE:
4153 	case MEM_CANCEL_OFFLINE:
4154 		break;
4155 	}
4156 	if (ret)
4157 		ret = notifier_from_errno(ret);
4158 	else
4159 		ret = NOTIFY_OK;
4160 	return ret;
4161 }
4162 
4163 static struct notifier_block slab_memory_callback_nb = {
4164 	.notifier_call = slab_memory_callback,
4165 	.priority = SLAB_CALLBACK_PRI,
4166 };
4167 
4168 /********************************************************************
4169  *			Basic setup of slabs
4170  *******************************************************************/
4171 
4172 /*
4173  * Used for early kmem_cache structures that were allocated using
4174  * the page allocator. Allocate them properly then fix up the pointers
4175  * that may be pointing to the wrong kmem_cache structure.
4176  */
4177 
4178 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4179 {
4180 	int node;
4181 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4182 	struct kmem_cache_node *n;
4183 
4184 	memcpy(s, static_cache, kmem_cache->object_size);
4185 
4186 	/*
4187 	 * This runs very early, and only the boot processor is supposed to be
4188 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4189 	 * IPIs around.
4190 	 */
4191 	__flush_cpu_slab(s, smp_processor_id());
4192 	for_each_kmem_cache_node(s, node, n) {
4193 		struct page *p;
4194 
4195 		list_for_each_entry(p, &n->partial, lru)
4196 			p->slab_cache = s;
4197 
4198 #ifdef CONFIG_SLUB_DEBUG
4199 		list_for_each_entry(p, &n->full, lru)
4200 			p->slab_cache = s;
4201 #endif
4202 	}
4203 	slab_init_memcg_params(s);
4204 	list_add(&s->list, &slab_caches);
4205 	memcg_link_cache(s);
4206 	return s;
4207 }
4208 
4209 void __init kmem_cache_init(void)
4210 {
4211 	static __initdata struct kmem_cache boot_kmem_cache,
4212 		boot_kmem_cache_node;
4213 
4214 	if (debug_guardpage_minorder())
4215 		slub_max_order = 0;
4216 
4217 	kmem_cache_node = &boot_kmem_cache_node;
4218 	kmem_cache = &boot_kmem_cache;
4219 
4220 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4221 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4222 
4223 	register_hotmemory_notifier(&slab_memory_callback_nb);
4224 
4225 	/* Able to allocate the per node structures */
4226 	slab_state = PARTIAL;
4227 
4228 	create_boot_cache(kmem_cache, "kmem_cache",
4229 			offsetof(struct kmem_cache, node) +
4230 				nr_node_ids * sizeof(struct kmem_cache_node *),
4231 		       SLAB_HWCACHE_ALIGN, 0, 0);
4232 
4233 	kmem_cache = bootstrap(&boot_kmem_cache);
4234 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4235 
4236 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4237 	setup_kmalloc_cache_index_table();
4238 	create_kmalloc_caches(0);
4239 
4240 	/* Setup random freelists for each cache */
4241 	init_freelist_randomization();
4242 
4243 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4244 				  slub_cpu_dead);
4245 
4246 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
4247 		cache_line_size(),
4248 		slub_min_order, slub_max_order, slub_min_objects,
4249 		nr_cpu_ids, nr_node_ids);
4250 }
4251 
4252 void __init kmem_cache_init_late(void)
4253 {
4254 }
4255 
4256 struct kmem_cache *
4257 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4258 		   slab_flags_t flags, void (*ctor)(void *))
4259 {
4260 	struct kmem_cache *s, *c;
4261 
4262 	s = find_mergeable(size, align, flags, name, ctor);
4263 	if (s) {
4264 		s->refcount++;
4265 
4266 		/*
4267 		 * Adjust the object sizes so that we clear
4268 		 * the complete object on kzalloc.
4269 		 */
4270 		s->object_size = max(s->object_size, size);
4271 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4272 
4273 		for_each_memcg_cache(c, s) {
4274 			c->object_size = s->object_size;
4275 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4276 		}
4277 
4278 		if (sysfs_slab_alias(s, name)) {
4279 			s->refcount--;
4280 			s = NULL;
4281 		}
4282 	}
4283 
4284 	return s;
4285 }
4286 
4287 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4288 {
4289 	int err;
4290 
4291 	err = kmem_cache_open(s, flags);
4292 	if (err)
4293 		return err;
4294 
4295 	/* Mutex is not taken during early boot */
4296 	if (slab_state <= UP)
4297 		return 0;
4298 
4299 	memcg_propagate_slab_attrs(s);
4300 	err = sysfs_slab_add(s);
4301 	if (err)
4302 		__kmem_cache_release(s);
4303 
4304 	return err;
4305 }
4306 
4307 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4308 {
4309 	struct kmem_cache *s;
4310 	void *ret;
4311 
4312 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4313 		return kmalloc_large(size, gfpflags);
4314 
4315 	s = kmalloc_slab(size, gfpflags);
4316 
4317 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4318 		return s;
4319 
4320 	ret = slab_alloc(s, gfpflags, caller);
4321 
4322 	/* Honor the call site pointer we received. */
4323 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4324 
4325 	return ret;
4326 }
4327 
4328 #ifdef CONFIG_NUMA
4329 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4330 					int node, unsigned long caller)
4331 {
4332 	struct kmem_cache *s;
4333 	void *ret;
4334 
4335 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4336 		ret = kmalloc_large_node(size, gfpflags, node);
4337 
4338 		trace_kmalloc_node(caller, ret,
4339 				   size, PAGE_SIZE << get_order(size),
4340 				   gfpflags, node);
4341 
4342 		return ret;
4343 	}
4344 
4345 	s = kmalloc_slab(size, gfpflags);
4346 
4347 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4348 		return s;
4349 
4350 	ret = slab_alloc_node(s, gfpflags, node, caller);
4351 
4352 	/* Honor the call site pointer we received. */
4353 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4354 
4355 	return ret;
4356 }
4357 #endif
4358 
4359 #ifdef CONFIG_SYSFS
4360 static int count_inuse(struct page *page)
4361 {
4362 	return page->inuse;
4363 }
4364 
4365 static int count_total(struct page *page)
4366 {
4367 	return page->objects;
4368 }
4369 #endif
4370 
4371 #ifdef CONFIG_SLUB_DEBUG
4372 static int validate_slab(struct kmem_cache *s, struct page *page,
4373 						unsigned long *map)
4374 {
4375 	void *p;
4376 	void *addr = page_address(page);
4377 
4378 	if (!check_slab(s, page) ||
4379 			!on_freelist(s, page, NULL))
4380 		return 0;
4381 
4382 	/* Now we know that a valid freelist exists */
4383 	bitmap_zero(map, page->objects);
4384 
4385 	get_map(s, page, map);
4386 	for_each_object(p, s, addr, page->objects) {
4387 		if (test_bit(slab_index(p, s, addr), map))
4388 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4389 				return 0;
4390 	}
4391 
4392 	for_each_object(p, s, addr, page->objects)
4393 		if (!test_bit(slab_index(p, s, addr), map))
4394 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4395 				return 0;
4396 	return 1;
4397 }
4398 
4399 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4400 						unsigned long *map)
4401 {
4402 	slab_lock(page);
4403 	validate_slab(s, page, map);
4404 	slab_unlock(page);
4405 }
4406 
4407 static int validate_slab_node(struct kmem_cache *s,
4408 		struct kmem_cache_node *n, unsigned long *map)
4409 {
4410 	unsigned long count = 0;
4411 	struct page *page;
4412 	unsigned long flags;
4413 
4414 	spin_lock_irqsave(&n->list_lock, flags);
4415 
4416 	list_for_each_entry(page, &n->partial, lru) {
4417 		validate_slab_slab(s, page, map);
4418 		count++;
4419 	}
4420 	if (count != n->nr_partial)
4421 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4422 		       s->name, count, n->nr_partial);
4423 
4424 	if (!(s->flags & SLAB_STORE_USER))
4425 		goto out;
4426 
4427 	list_for_each_entry(page, &n->full, lru) {
4428 		validate_slab_slab(s, page, map);
4429 		count++;
4430 	}
4431 	if (count != atomic_long_read(&n->nr_slabs))
4432 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4433 		       s->name, count, atomic_long_read(&n->nr_slabs));
4434 
4435 out:
4436 	spin_unlock_irqrestore(&n->list_lock, flags);
4437 	return count;
4438 }
4439 
4440 static long validate_slab_cache(struct kmem_cache *s)
4441 {
4442 	int node;
4443 	unsigned long count = 0;
4444 	struct kmem_cache_node *n;
4445 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4446 
4447 	if (!map)
4448 		return -ENOMEM;
4449 
4450 	flush_all(s);
4451 	for_each_kmem_cache_node(s, node, n)
4452 		count += validate_slab_node(s, n, map);
4453 	bitmap_free(map);
4454 	return count;
4455 }
4456 /*
4457  * Generate lists of code addresses where slabcache objects are allocated
4458  * and freed.
4459  */
4460 
4461 struct location {
4462 	unsigned long count;
4463 	unsigned long addr;
4464 	long long sum_time;
4465 	long min_time;
4466 	long max_time;
4467 	long min_pid;
4468 	long max_pid;
4469 	DECLARE_BITMAP(cpus, NR_CPUS);
4470 	nodemask_t nodes;
4471 };
4472 
4473 struct loc_track {
4474 	unsigned long max;
4475 	unsigned long count;
4476 	struct location *loc;
4477 };
4478 
4479 static void free_loc_track(struct loc_track *t)
4480 {
4481 	if (t->max)
4482 		free_pages((unsigned long)t->loc,
4483 			get_order(sizeof(struct location) * t->max));
4484 }
4485 
4486 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4487 {
4488 	struct location *l;
4489 	int order;
4490 
4491 	order = get_order(sizeof(struct location) * max);
4492 
4493 	l = (void *)__get_free_pages(flags, order);
4494 	if (!l)
4495 		return 0;
4496 
4497 	if (t->count) {
4498 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4499 		free_loc_track(t);
4500 	}
4501 	t->max = max;
4502 	t->loc = l;
4503 	return 1;
4504 }
4505 
4506 static int add_location(struct loc_track *t, struct kmem_cache *s,
4507 				const struct track *track)
4508 {
4509 	long start, end, pos;
4510 	struct location *l;
4511 	unsigned long caddr;
4512 	unsigned long age = jiffies - track->when;
4513 
4514 	start = -1;
4515 	end = t->count;
4516 
4517 	for ( ; ; ) {
4518 		pos = start + (end - start + 1) / 2;
4519 
4520 		/*
4521 		 * There is nothing at "end". If we end up there
4522 		 * we need to add something to before end.
4523 		 */
4524 		if (pos == end)
4525 			break;
4526 
4527 		caddr = t->loc[pos].addr;
4528 		if (track->addr == caddr) {
4529 
4530 			l = &t->loc[pos];
4531 			l->count++;
4532 			if (track->when) {
4533 				l->sum_time += age;
4534 				if (age < l->min_time)
4535 					l->min_time = age;
4536 				if (age > l->max_time)
4537 					l->max_time = age;
4538 
4539 				if (track->pid < l->min_pid)
4540 					l->min_pid = track->pid;
4541 				if (track->pid > l->max_pid)
4542 					l->max_pid = track->pid;
4543 
4544 				cpumask_set_cpu(track->cpu,
4545 						to_cpumask(l->cpus));
4546 			}
4547 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4548 			return 1;
4549 		}
4550 
4551 		if (track->addr < caddr)
4552 			end = pos;
4553 		else
4554 			start = pos;
4555 	}
4556 
4557 	/*
4558 	 * Not found. Insert new tracking element.
4559 	 */
4560 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4561 		return 0;
4562 
4563 	l = t->loc + pos;
4564 	if (pos < t->count)
4565 		memmove(l + 1, l,
4566 			(t->count - pos) * sizeof(struct location));
4567 	t->count++;
4568 	l->count = 1;
4569 	l->addr = track->addr;
4570 	l->sum_time = age;
4571 	l->min_time = age;
4572 	l->max_time = age;
4573 	l->min_pid = track->pid;
4574 	l->max_pid = track->pid;
4575 	cpumask_clear(to_cpumask(l->cpus));
4576 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4577 	nodes_clear(l->nodes);
4578 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4579 	return 1;
4580 }
4581 
4582 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4583 		struct page *page, enum track_item alloc,
4584 		unsigned long *map)
4585 {
4586 	void *addr = page_address(page);
4587 	void *p;
4588 
4589 	bitmap_zero(map, page->objects);
4590 	get_map(s, page, map);
4591 
4592 	for_each_object(p, s, addr, page->objects)
4593 		if (!test_bit(slab_index(p, s, addr), map))
4594 			add_location(t, s, get_track(s, p, alloc));
4595 }
4596 
4597 static int list_locations(struct kmem_cache *s, char *buf,
4598 					enum track_item alloc)
4599 {
4600 	int len = 0;
4601 	unsigned long i;
4602 	struct loc_track t = { 0, 0, NULL };
4603 	int node;
4604 	struct kmem_cache_node *n;
4605 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4606 
4607 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4608 				     GFP_KERNEL)) {
4609 		bitmap_free(map);
4610 		return sprintf(buf, "Out of memory\n");
4611 	}
4612 	/* Push back cpu slabs */
4613 	flush_all(s);
4614 
4615 	for_each_kmem_cache_node(s, node, n) {
4616 		unsigned long flags;
4617 		struct page *page;
4618 
4619 		if (!atomic_long_read(&n->nr_slabs))
4620 			continue;
4621 
4622 		spin_lock_irqsave(&n->list_lock, flags);
4623 		list_for_each_entry(page, &n->partial, lru)
4624 			process_slab(&t, s, page, alloc, map);
4625 		list_for_each_entry(page, &n->full, lru)
4626 			process_slab(&t, s, page, alloc, map);
4627 		spin_unlock_irqrestore(&n->list_lock, flags);
4628 	}
4629 
4630 	for (i = 0; i < t.count; i++) {
4631 		struct location *l = &t.loc[i];
4632 
4633 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4634 			break;
4635 		len += sprintf(buf + len, "%7ld ", l->count);
4636 
4637 		if (l->addr)
4638 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4639 		else
4640 			len += sprintf(buf + len, "<not-available>");
4641 
4642 		if (l->sum_time != l->min_time) {
4643 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4644 				l->min_time,
4645 				(long)div_u64(l->sum_time, l->count),
4646 				l->max_time);
4647 		} else
4648 			len += sprintf(buf + len, " age=%ld",
4649 				l->min_time);
4650 
4651 		if (l->min_pid != l->max_pid)
4652 			len += sprintf(buf + len, " pid=%ld-%ld",
4653 				l->min_pid, l->max_pid);
4654 		else
4655 			len += sprintf(buf + len, " pid=%ld",
4656 				l->min_pid);
4657 
4658 		if (num_online_cpus() > 1 &&
4659 				!cpumask_empty(to_cpumask(l->cpus)) &&
4660 				len < PAGE_SIZE - 60)
4661 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4662 					 " cpus=%*pbl",
4663 					 cpumask_pr_args(to_cpumask(l->cpus)));
4664 
4665 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4666 				len < PAGE_SIZE - 60)
4667 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4668 					 " nodes=%*pbl",
4669 					 nodemask_pr_args(&l->nodes));
4670 
4671 		len += sprintf(buf + len, "\n");
4672 	}
4673 
4674 	free_loc_track(&t);
4675 	bitmap_free(map);
4676 	if (!t.count)
4677 		len += sprintf(buf, "No data\n");
4678 	return len;
4679 }
4680 #endif
4681 
4682 #ifdef SLUB_RESILIENCY_TEST
4683 static void __init resiliency_test(void)
4684 {
4685 	u8 *p;
4686 	int type = KMALLOC_NORMAL;
4687 
4688 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4689 
4690 	pr_err("SLUB resiliency testing\n");
4691 	pr_err("-----------------------\n");
4692 	pr_err("A. Corruption after allocation\n");
4693 
4694 	p = kzalloc(16, GFP_KERNEL);
4695 	p[16] = 0x12;
4696 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4697 	       p + 16);
4698 
4699 	validate_slab_cache(kmalloc_caches[type][4]);
4700 
4701 	/* Hmmm... The next two are dangerous */
4702 	p = kzalloc(32, GFP_KERNEL);
4703 	p[32 + sizeof(void *)] = 0x34;
4704 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4705 	       p);
4706 	pr_err("If allocated object is overwritten then not detectable\n\n");
4707 
4708 	validate_slab_cache(kmalloc_caches[type][5]);
4709 	p = kzalloc(64, GFP_KERNEL);
4710 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4711 	*p = 0x56;
4712 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4713 	       p);
4714 	pr_err("If allocated object is overwritten then not detectable\n\n");
4715 	validate_slab_cache(kmalloc_caches[type][6]);
4716 
4717 	pr_err("\nB. Corruption after free\n");
4718 	p = kzalloc(128, GFP_KERNEL);
4719 	kfree(p);
4720 	*p = 0x78;
4721 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4722 	validate_slab_cache(kmalloc_caches[type][7]);
4723 
4724 	p = kzalloc(256, GFP_KERNEL);
4725 	kfree(p);
4726 	p[50] = 0x9a;
4727 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4728 	validate_slab_cache(kmalloc_caches[type][8]);
4729 
4730 	p = kzalloc(512, GFP_KERNEL);
4731 	kfree(p);
4732 	p[512] = 0xab;
4733 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4734 	validate_slab_cache(kmalloc_caches[type][9]);
4735 }
4736 #else
4737 #ifdef CONFIG_SYSFS
4738 static void resiliency_test(void) {};
4739 #endif
4740 #endif
4741 
4742 #ifdef CONFIG_SYSFS
4743 enum slab_stat_type {
4744 	SL_ALL,			/* All slabs */
4745 	SL_PARTIAL,		/* Only partially allocated slabs */
4746 	SL_CPU,			/* Only slabs used for cpu caches */
4747 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4748 	SL_TOTAL		/* Determine object capacity not slabs */
4749 };
4750 
4751 #define SO_ALL		(1 << SL_ALL)
4752 #define SO_PARTIAL	(1 << SL_PARTIAL)
4753 #define SO_CPU		(1 << SL_CPU)
4754 #define SO_OBJECTS	(1 << SL_OBJECTS)
4755 #define SO_TOTAL	(1 << SL_TOTAL)
4756 
4757 #ifdef CONFIG_MEMCG
4758 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4759 
4760 static int __init setup_slub_memcg_sysfs(char *str)
4761 {
4762 	int v;
4763 
4764 	if (get_option(&str, &v) > 0)
4765 		memcg_sysfs_enabled = v;
4766 
4767 	return 1;
4768 }
4769 
4770 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4771 #endif
4772 
4773 static ssize_t show_slab_objects(struct kmem_cache *s,
4774 			    char *buf, unsigned long flags)
4775 {
4776 	unsigned long total = 0;
4777 	int node;
4778 	int x;
4779 	unsigned long *nodes;
4780 
4781 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4782 	if (!nodes)
4783 		return -ENOMEM;
4784 
4785 	if (flags & SO_CPU) {
4786 		int cpu;
4787 
4788 		for_each_possible_cpu(cpu) {
4789 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4790 							       cpu);
4791 			int node;
4792 			struct page *page;
4793 
4794 			page = READ_ONCE(c->page);
4795 			if (!page)
4796 				continue;
4797 
4798 			node = page_to_nid(page);
4799 			if (flags & SO_TOTAL)
4800 				x = page->objects;
4801 			else if (flags & SO_OBJECTS)
4802 				x = page->inuse;
4803 			else
4804 				x = 1;
4805 
4806 			total += x;
4807 			nodes[node] += x;
4808 
4809 			page = slub_percpu_partial_read_once(c);
4810 			if (page) {
4811 				node = page_to_nid(page);
4812 				if (flags & SO_TOTAL)
4813 					WARN_ON_ONCE(1);
4814 				else if (flags & SO_OBJECTS)
4815 					WARN_ON_ONCE(1);
4816 				else
4817 					x = page->pages;
4818 				total += x;
4819 				nodes[node] += x;
4820 			}
4821 		}
4822 	}
4823 
4824 	get_online_mems();
4825 #ifdef CONFIG_SLUB_DEBUG
4826 	if (flags & SO_ALL) {
4827 		struct kmem_cache_node *n;
4828 
4829 		for_each_kmem_cache_node(s, node, n) {
4830 
4831 			if (flags & SO_TOTAL)
4832 				x = atomic_long_read(&n->total_objects);
4833 			else if (flags & SO_OBJECTS)
4834 				x = atomic_long_read(&n->total_objects) -
4835 					count_partial(n, count_free);
4836 			else
4837 				x = atomic_long_read(&n->nr_slabs);
4838 			total += x;
4839 			nodes[node] += x;
4840 		}
4841 
4842 	} else
4843 #endif
4844 	if (flags & SO_PARTIAL) {
4845 		struct kmem_cache_node *n;
4846 
4847 		for_each_kmem_cache_node(s, node, n) {
4848 			if (flags & SO_TOTAL)
4849 				x = count_partial(n, count_total);
4850 			else if (flags & SO_OBJECTS)
4851 				x = count_partial(n, count_inuse);
4852 			else
4853 				x = n->nr_partial;
4854 			total += x;
4855 			nodes[node] += x;
4856 		}
4857 	}
4858 	x = sprintf(buf, "%lu", total);
4859 #ifdef CONFIG_NUMA
4860 	for (node = 0; node < nr_node_ids; node++)
4861 		if (nodes[node])
4862 			x += sprintf(buf + x, " N%d=%lu",
4863 					node, nodes[node]);
4864 #endif
4865 	put_online_mems();
4866 	kfree(nodes);
4867 	return x + sprintf(buf + x, "\n");
4868 }
4869 
4870 #ifdef CONFIG_SLUB_DEBUG
4871 static int any_slab_objects(struct kmem_cache *s)
4872 {
4873 	int node;
4874 	struct kmem_cache_node *n;
4875 
4876 	for_each_kmem_cache_node(s, node, n)
4877 		if (atomic_long_read(&n->total_objects))
4878 			return 1;
4879 
4880 	return 0;
4881 }
4882 #endif
4883 
4884 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4885 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4886 
4887 struct slab_attribute {
4888 	struct attribute attr;
4889 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4890 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4891 };
4892 
4893 #define SLAB_ATTR_RO(_name) \
4894 	static struct slab_attribute _name##_attr = \
4895 	__ATTR(_name, 0400, _name##_show, NULL)
4896 
4897 #define SLAB_ATTR(_name) \
4898 	static struct slab_attribute _name##_attr =  \
4899 	__ATTR(_name, 0600, _name##_show, _name##_store)
4900 
4901 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4902 {
4903 	return sprintf(buf, "%u\n", s->size);
4904 }
4905 SLAB_ATTR_RO(slab_size);
4906 
4907 static ssize_t align_show(struct kmem_cache *s, char *buf)
4908 {
4909 	return sprintf(buf, "%u\n", s->align);
4910 }
4911 SLAB_ATTR_RO(align);
4912 
4913 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4914 {
4915 	return sprintf(buf, "%u\n", s->object_size);
4916 }
4917 SLAB_ATTR_RO(object_size);
4918 
4919 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4920 {
4921 	return sprintf(buf, "%u\n", oo_objects(s->oo));
4922 }
4923 SLAB_ATTR_RO(objs_per_slab);
4924 
4925 static ssize_t order_store(struct kmem_cache *s,
4926 				const char *buf, size_t length)
4927 {
4928 	unsigned int order;
4929 	int err;
4930 
4931 	err = kstrtouint(buf, 10, &order);
4932 	if (err)
4933 		return err;
4934 
4935 	if (order > slub_max_order || order < slub_min_order)
4936 		return -EINVAL;
4937 
4938 	calculate_sizes(s, order);
4939 	return length;
4940 }
4941 
4942 static ssize_t order_show(struct kmem_cache *s, char *buf)
4943 {
4944 	return sprintf(buf, "%u\n", oo_order(s->oo));
4945 }
4946 SLAB_ATTR(order);
4947 
4948 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4949 {
4950 	return sprintf(buf, "%lu\n", s->min_partial);
4951 }
4952 
4953 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4954 				 size_t length)
4955 {
4956 	unsigned long min;
4957 	int err;
4958 
4959 	err = kstrtoul(buf, 10, &min);
4960 	if (err)
4961 		return err;
4962 
4963 	set_min_partial(s, min);
4964 	return length;
4965 }
4966 SLAB_ATTR(min_partial);
4967 
4968 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4969 {
4970 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4971 }
4972 
4973 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4974 				 size_t length)
4975 {
4976 	unsigned int objects;
4977 	int err;
4978 
4979 	err = kstrtouint(buf, 10, &objects);
4980 	if (err)
4981 		return err;
4982 	if (objects && !kmem_cache_has_cpu_partial(s))
4983 		return -EINVAL;
4984 
4985 	slub_set_cpu_partial(s, objects);
4986 	flush_all(s);
4987 	return length;
4988 }
4989 SLAB_ATTR(cpu_partial);
4990 
4991 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4992 {
4993 	if (!s->ctor)
4994 		return 0;
4995 	return sprintf(buf, "%pS\n", s->ctor);
4996 }
4997 SLAB_ATTR_RO(ctor);
4998 
4999 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5000 {
5001 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5002 }
5003 SLAB_ATTR_RO(aliases);
5004 
5005 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5006 {
5007 	return show_slab_objects(s, buf, SO_PARTIAL);
5008 }
5009 SLAB_ATTR_RO(partial);
5010 
5011 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5012 {
5013 	return show_slab_objects(s, buf, SO_CPU);
5014 }
5015 SLAB_ATTR_RO(cpu_slabs);
5016 
5017 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5018 {
5019 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5020 }
5021 SLAB_ATTR_RO(objects);
5022 
5023 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5024 {
5025 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5026 }
5027 SLAB_ATTR_RO(objects_partial);
5028 
5029 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5030 {
5031 	int objects = 0;
5032 	int pages = 0;
5033 	int cpu;
5034 	int len;
5035 
5036 	for_each_online_cpu(cpu) {
5037 		struct page *page;
5038 
5039 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5040 
5041 		if (page) {
5042 			pages += page->pages;
5043 			objects += page->pobjects;
5044 		}
5045 	}
5046 
5047 	len = sprintf(buf, "%d(%d)", objects, pages);
5048 
5049 #ifdef CONFIG_SMP
5050 	for_each_online_cpu(cpu) {
5051 		struct page *page;
5052 
5053 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5054 
5055 		if (page && len < PAGE_SIZE - 20)
5056 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5057 				page->pobjects, page->pages);
5058 	}
5059 #endif
5060 	return len + sprintf(buf + len, "\n");
5061 }
5062 SLAB_ATTR_RO(slabs_cpu_partial);
5063 
5064 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5065 {
5066 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5067 }
5068 
5069 static ssize_t reclaim_account_store(struct kmem_cache *s,
5070 				const char *buf, size_t length)
5071 {
5072 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5073 	if (buf[0] == '1')
5074 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5075 	return length;
5076 }
5077 SLAB_ATTR(reclaim_account);
5078 
5079 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5080 {
5081 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5082 }
5083 SLAB_ATTR_RO(hwcache_align);
5084 
5085 #ifdef CONFIG_ZONE_DMA
5086 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5087 {
5088 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5089 }
5090 SLAB_ATTR_RO(cache_dma);
5091 #endif
5092 
5093 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5094 {
5095 	return sprintf(buf, "%u\n", s->usersize);
5096 }
5097 SLAB_ATTR_RO(usersize);
5098 
5099 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5100 {
5101 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5102 }
5103 SLAB_ATTR_RO(destroy_by_rcu);
5104 
5105 #ifdef CONFIG_SLUB_DEBUG
5106 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5107 {
5108 	return show_slab_objects(s, buf, SO_ALL);
5109 }
5110 SLAB_ATTR_RO(slabs);
5111 
5112 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5113 {
5114 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5115 }
5116 SLAB_ATTR_RO(total_objects);
5117 
5118 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5119 {
5120 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5121 }
5122 
5123 static ssize_t sanity_checks_store(struct kmem_cache *s,
5124 				const char *buf, size_t length)
5125 {
5126 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5127 	if (buf[0] == '1') {
5128 		s->flags &= ~__CMPXCHG_DOUBLE;
5129 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5130 	}
5131 	return length;
5132 }
5133 SLAB_ATTR(sanity_checks);
5134 
5135 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5136 {
5137 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5138 }
5139 
5140 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5141 							size_t length)
5142 {
5143 	/*
5144 	 * Tracing a merged cache is going to give confusing results
5145 	 * as well as cause other issues like converting a mergeable
5146 	 * cache into an umergeable one.
5147 	 */
5148 	if (s->refcount > 1)
5149 		return -EINVAL;
5150 
5151 	s->flags &= ~SLAB_TRACE;
5152 	if (buf[0] == '1') {
5153 		s->flags &= ~__CMPXCHG_DOUBLE;
5154 		s->flags |= SLAB_TRACE;
5155 	}
5156 	return length;
5157 }
5158 SLAB_ATTR(trace);
5159 
5160 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5161 {
5162 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5163 }
5164 
5165 static ssize_t red_zone_store(struct kmem_cache *s,
5166 				const char *buf, size_t length)
5167 {
5168 	if (any_slab_objects(s))
5169 		return -EBUSY;
5170 
5171 	s->flags &= ~SLAB_RED_ZONE;
5172 	if (buf[0] == '1') {
5173 		s->flags |= SLAB_RED_ZONE;
5174 	}
5175 	calculate_sizes(s, -1);
5176 	return length;
5177 }
5178 SLAB_ATTR(red_zone);
5179 
5180 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5181 {
5182 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5183 }
5184 
5185 static ssize_t poison_store(struct kmem_cache *s,
5186 				const char *buf, size_t length)
5187 {
5188 	if (any_slab_objects(s))
5189 		return -EBUSY;
5190 
5191 	s->flags &= ~SLAB_POISON;
5192 	if (buf[0] == '1') {
5193 		s->flags |= SLAB_POISON;
5194 	}
5195 	calculate_sizes(s, -1);
5196 	return length;
5197 }
5198 SLAB_ATTR(poison);
5199 
5200 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5201 {
5202 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5203 }
5204 
5205 static ssize_t store_user_store(struct kmem_cache *s,
5206 				const char *buf, size_t length)
5207 {
5208 	if (any_slab_objects(s))
5209 		return -EBUSY;
5210 
5211 	s->flags &= ~SLAB_STORE_USER;
5212 	if (buf[0] == '1') {
5213 		s->flags &= ~__CMPXCHG_DOUBLE;
5214 		s->flags |= SLAB_STORE_USER;
5215 	}
5216 	calculate_sizes(s, -1);
5217 	return length;
5218 }
5219 SLAB_ATTR(store_user);
5220 
5221 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5222 {
5223 	return 0;
5224 }
5225 
5226 static ssize_t validate_store(struct kmem_cache *s,
5227 			const char *buf, size_t length)
5228 {
5229 	int ret = -EINVAL;
5230 
5231 	if (buf[0] == '1') {
5232 		ret = validate_slab_cache(s);
5233 		if (ret >= 0)
5234 			ret = length;
5235 	}
5236 	return ret;
5237 }
5238 SLAB_ATTR(validate);
5239 
5240 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5241 {
5242 	if (!(s->flags & SLAB_STORE_USER))
5243 		return -ENOSYS;
5244 	return list_locations(s, buf, TRACK_ALLOC);
5245 }
5246 SLAB_ATTR_RO(alloc_calls);
5247 
5248 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5249 {
5250 	if (!(s->flags & SLAB_STORE_USER))
5251 		return -ENOSYS;
5252 	return list_locations(s, buf, TRACK_FREE);
5253 }
5254 SLAB_ATTR_RO(free_calls);
5255 #endif /* CONFIG_SLUB_DEBUG */
5256 
5257 #ifdef CONFIG_FAILSLAB
5258 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5259 {
5260 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5261 }
5262 
5263 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5264 							size_t length)
5265 {
5266 	if (s->refcount > 1)
5267 		return -EINVAL;
5268 
5269 	s->flags &= ~SLAB_FAILSLAB;
5270 	if (buf[0] == '1')
5271 		s->flags |= SLAB_FAILSLAB;
5272 	return length;
5273 }
5274 SLAB_ATTR(failslab);
5275 #endif
5276 
5277 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5278 {
5279 	return 0;
5280 }
5281 
5282 static ssize_t shrink_store(struct kmem_cache *s,
5283 			const char *buf, size_t length)
5284 {
5285 	if (buf[0] == '1')
5286 		kmem_cache_shrink(s);
5287 	else
5288 		return -EINVAL;
5289 	return length;
5290 }
5291 SLAB_ATTR(shrink);
5292 
5293 #ifdef CONFIG_NUMA
5294 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5295 {
5296 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5297 }
5298 
5299 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5300 				const char *buf, size_t length)
5301 {
5302 	unsigned int ratio;
5303 	int err;
5304 
5305 	err = kstrtouint(buf, 10, &ratio);
5306 	if (err)
5307 		return err;
5308 	if (ratio > 100)
5309 		return -ERANGE;
5310 
5311 	s->remote_node_defrag_ratio = ratio * 10;
5312 
5313 	return length;
5314 }
5315 SLAB_ATTR(remote_node_defrag_ratio);
5316 #endif
5317 
5318 #ifdef CONFIG_SLUB_STATS
5319 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5320 {
5321 	unsigned long sum  = 0;
5322 	int cpu;
5323 	int len;
5324 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5325 
5326 	if (!data)
5327 		return -ENOMEM;
5328 
5329 	for_each_online_cpu(cpu) {
5330 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5331 
5332 		data[cpu] = x;
5333 		sum += x;
5334 	}
5335 
5336 	len = sprintf(buf, "%lu", sum);
5337 
5338 #ifdef CONFIG_SMP
5339 	for_each_online_cpu(cpu) {
5340 		if (data[cpu] && len < PAGE_SIZE - 20)
5341 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5342 	}
5343 #endif
5344 	kfree(data);
5345 	return len + sprintf(buf + len, "\n");
5346 }
5347 
5348 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5349 {
5350 	int cpu;
5351 
5352 	for_each_online_cpu(cpu)
5353 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5354 }
5355 
5356 #define STAT_ATTR(si, text) 					\
5357 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5358 {								\
5359 	return show_stat(s, buf, si);				\
5360 }								\
5361 static ssize_t text##_store(struct kmem_cache *s,		\
5362 				const char *buf, size_t length)	\
5363 {								\
5364 	if (buf[0] != '0')					\
5365 		return -EINVAL;					\
5366 	clear_stat(s, si);					\
5367 	return length;						\
5368 }								\
5369 SLAB_ATTR(text);						\
5370 
5371 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5372 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5373 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5374 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5375 STAT_ATTR(FREE_FROZEN, free_frozen);
5376 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5377 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5378 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5379 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5380 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5381 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5382 STAT_ATTR(FREE_SLAB, free_slab);
5383 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5384 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5385 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5386 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5387 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5388 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5389 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5390 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5391 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5392 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5393 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5394 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5395 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5396 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5397 #endif
5398 
5399 static struct attribute *slab_attrs[] = {
5400 	&slab_size_attr.attr,
5401 	&object_size_attr.attr,
5402 	&objs_per_slab_attr.attr,
5403 	&order_attr.attr,
5404 	&min_partial_attr.attr,
5405 	&cpu_partial_attr.attr,
5406 	&objects_attr.attr,
5407 	&objects_partial_attr.attr,
5408 	&partial_attr.attr,
5409 	&cpu_slabs_attr.attr,
5410 	&ctor_attr.attr,
5411 	&aliases_attr.attr,
5412 	&align_attr.attr,
5413 	&hwcache_align_attr.attr,
5414 	&reclaim_account_attr.attr,
5415 	&destroy_by_rcu_attr.attr,
5416 	&shrink_attr.attr,
5417 	&slabs_cpu_partial_attr.attr,
5418 #ifdef CONFIG_SLUB_DEBUG
5419 	&total_objects_attr.attr,
5420 	&slabs_attr.attr,
5421 	&sanity_checks_attr.attr,
5422 	&trace_attr.attr,
5423 	&red_zone_attr.attr,
5424 	&poison_attr.attr,
5425 	&store_user_attr.attr,
5426 	&validate_attr.attr,
5427 	&alloc_calls_attr.attr,
5428 	&free_calls_attr.attr,
5429 #endif
5430 #ifdef CONFIG_ZONE_DMA
5431 	&cache_dma_attr.attr,
5432 #endif
5433 #ifdef CONFIG_NUMA
5434 	&remote_node_defrag_ratio_attr.attr,
5435 #endif
5436 #ifdef CONFIG_SLUB_STATS
5437 	&alloc_fastpath_attr.attr,
5438 	&alloc_slowpath_attr.attr,
5439 	&free_fastpath_attr.attr,
5440 	&free_slowpath_attr.attr,
5441 	&free_frozen_attr.attr,
5442 	&free_add_partial_attr.attr,
5443 	&free_remove_partial_attr.attr,
5444 	&alloc_from_partial_attr.attr,
5445 	&alloc_slab_attr.attr,
5446 	&alloc_refill_attr.attr,
5447 	&alloc_node_mismatch_attr.attr,
5448 	&free_slab_attr.attr,
5449 	&cpuslab_flush_attr.attr,
5450 	&deactivate_full_attr.attr,
5451 	&deactivate_empty_attr.attr,
5452 	&deactivate_to_head_attr.attr,
5453 	&deactivate_to_tail_attr.attr,
5454 	&deactivate_remote_frees_attr.attr,
5455 	&deactivate_bypass_attr.attr,
5456 	&order_fallback_attr.attr,
5457 	&cmpxchg_double_fail_attr.attr,
5458 	&cmpxchg_double_cpu_fail_attr.attr,
5459 	&cpu_partial_alloc_attr.attr,
5460 	&cpu_partial_free_attr.attr,
5461 	&cpu_partial_node_attr.attr,
5462 	&cpu_partial_drain_attr.attr,
5463 #endif
5464 #ifdef CONFIG_FAILSLAB
5465 	&failslab_attr.attr,
5466 #endif
5467 	&usersize_attr.attr,
5468 
5469 	NULL
5470 };
5471 
5472 static const struct attribute_group slab_attr_group = {
5473 	.attrs = slab_attrs,
5474 };
5475 
5476 static ssize_t slab_attr_show(struct kobject *kobj,
5477 				struct attribute *attr,
5478 				char *buf)
5479 {
5480 	struct slab_attribute *attribute;
5481 	struct kmem_cache *s;
5482 	int err;
5483 
5484 	attribute = to_slab_attr(attr);
5485 	s = to_slab(kobj);
5486 
5487 	if (!attribute->show)
5488 		return -EIO;
5489 
5490 	err = attribute->show(s, buf);
5491 
5492 	return err;
5493 }
5494 
5495 static ssize_t slab_attr_store(struct kobject *kobj,
5496 				struct attribute *attr,
5497 				const char *buf, size_t len)
5498 {
5499 	struct slab_attribute *attribute;
5500 	struct kmem_cache *s;
5501 	int err;
5502 
5503 	attribute = to_slab_attr(attr);
5504 	s = to_slab(kobj);
5505 
5506 	if (!attribute->store)
5507 		return -EIO;
5508 
5509 	err = attribute->store(s, buf, len);
5510 #ifdef CONFIG_MEMCG
5511 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5512 		struct kmem_cache *c;
5513 
5514 		mutex_lock(&slab_mutex);
5515 		if (s->max_attr_size < len)
5516 			s->max_attr_size = len;
5517 
5518 		/*
5519 		 * This is a best effort propagation, so this function's return
5520 		 * value will be determined by the parent cache only. This is
5521 		 * basically because not all attributes will have a well
5522 		 * defined semantics for rollbacks - most of the actions will
5523 		 * have permanent effects.
5524 		 *
5525 		 * Returning the error value of any of the children that fail
5526 		 * is not 100 % defined, in the sense that users seeing the
5527 		 * error code won't be able to know anything about the state of
5528 		 * the cache.
5529 		 *
5530 		 * Only returning the error code for the parent cache at least
5531 		 * has well defined semantics. The cache being written to
5532 		 * directly either failed or succeeded, in which case we loop
5533 		 * through the descendants with best-effort propagation.
5534 		 */
5535 		for_each_memcg_cache(c, s)
5536 			attribute->store(c, buf, len);
5537 		mutex_unlock(&slab_mutex);
5538 	}
5539 #endif
5540 	return err;
5541 }
5542 
5543 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5544 {
5545 #ifdef CONFIG_MEMCG
5546 	int i;
5547 	char *buffer = NULL;
5548 	struct kmem_cache *root_cache;
5549 
5550 	if (is_root_cache(s))
5551 		return;
5552 
5553 	root_cache = s->memcg_params.root_cache;
5554 
5555 	/*
5556 	 * This mean this cache had no attribute written. Therefore, no point
5557 	 * in copying default values around
5558 	 */
5559 	if (!root_cache->max_attr_size)
5560 		return;
5561 
5562 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5563 		char mbuf[64];
5564 		char *buf;
5565 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5566 		ssize_t len;
5567 
5568 		if (!attr || !attr->store || !attr->show)
5569 			continue;
5570 
5571 		/*
5572 		 * It is really bad that we have to allocate here, so we will
5573 		 * do it only as a fallback. If we actually allocate, though,
5574 		 * we can just use the allocated buffer until the end.
5575 		 *
5576 		 * Most of the slub attributes will tend to be very small in
5577 		 * size, but sysfs allows buffers up to a page, so they can
5578 		 * theoretically happen.
5579 		 */
5580 		if (buffer)
5581 			buf = buffer;
5582 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5583 			buf = mbuf;
5584 		else {
5585 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5586 			if (WARN_ON(!buffer))
5587 				continue;
5588 			buf = buffer;
5589 		}
5590 
5591 		len = attr->show(root_cache, buf);
5592 		if (len > 0)
5593 			attr->store(s, buf, len);
5594 	}
5595 
5596 	if (buffer)
5597 		free_page((unsigned long)buffer);
5598 #endif
5599 }
5600 
5601 static void kmem_cache_release(struct kobject *k)
5602 {
5603 	slab_kmem_cache_release(to_slab(k));
5604 }
5605 
5606 static const struct sysfs_ops slab_sysfs_ops = {
5607 	.show = slab_attr_show,
5608 	.store = slab_attr_store,
5609 };
5610 
5611 static struct kobj_type slab_ktype = {
5612 	.sysfs_ops = &slab_sysfs_ops,
5613 	.release = kmem_cache_release,
5614 };
5615 
5616 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5617 {
5618 	struct kobj_type *ktype = get_ktype(kobj);
5619 
5620 	if (ktype == &slab_ktype)
5621 		return 1;
5622 	return 0;
5623 }
5624 
5625 static const struct kset_uevent_ops slab_uevent_ops = {
5626 	.filter = uevent_filter,
5627 };
5628 
5629 static struct kset *slab_kset;
5630 
5631 static inline struct kset *cache_kset(struct kmem_cache *s)
5632 {
5633 #ifdef CONFIG_MEMCG
5634 	if (!is_root_cache(s))
5635 		return s->memcg_params.root_cache->memcg_kset;
5636 #endif
5637 	return slab_kset;
5638 }
5639 
5640 #define ID_STR_LENGTH 64
5641 
5642 /* Create a unique string id for a slab cache:
5643  *
5644  * Format	:[flags-]size
5645  */
5646 static char *create_unique_id(struct kmem_cache *s)
5647 {
5648 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5649 	char *p = name;
5650 
5651 	BUG_ON(!name);
5652 
5653 	*p++ = ':';
5654 	/*
5655 	 * First flags affecting slabcache operations. We will only
5656 	 * get here for aliasable slabs so we do not need to support
5657 	 * too many flags. The flags here must cover all flags that
5658 	 * are matched during merging to guarantee that the id is
5659 	 * unique.
5660 	 */
5661 	if (s->flags & SLAB_CACHE_DMA)
5662 		*p++ = 'd';
5663 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5664 		*p++ = 'a';
5665 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5666 		*p++ = 'F';
5667 	if (s->flags & SLAB_ACCOUNT)
5668 		*p++ = 'A';
5669 	if (p != name + 1)
5670 		*p++ = '-';
5671 	p += sprintf(p, "%07u", s->size);
5672 
5673 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5674 	return name;
5675 }
5676 
5677 static void sysfs_slab_remove_workfn(struct work_struct *work)
5678 {
5679 	struct kmem_cache *s =
5680 		container_of(work, struct kmem_cache, kobj_remove_work);
5681 
5682 	if (!s->kobj.state_in_sysfs)
5683 		/*
5684 		 * For a memcg cache, this may be called during
5685 		 * deactivation and again on shutdown.  Remove only once.
5686 		 * A cache is never shut down before deactivation is
5687 		 * complete, so no need to worry about synchronization.
5688 		 */
5689 		goto out;
5690 
5691 #ifdef CONFIG_MEMCG
5692 	kset_unregister(s->memcg_kset);
5693 #endif
5694 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5695 out:
5696 	kobject_put(&s->kobj);
5697 }
5698 
5699 static int sysfs_slab_add(struct kmem_cache *s)
5700 {
5701 	int err;
5702 	const char *name;
5703 	struct kset *kset = cache_kset(s);
5704 	int unmergeable = slab_unmergeable(s);
5705 
5706 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5707 
5708 	if (!kset) {
5709 		kobject_init(&s->kobj, &slab_ktype);
5710 		return 0;
5711 	}
5712 
5713 	if (!unmergeable && disable_higher_order_debug &&
5714 			(slub_debug & DEBUG_METADATA_FLAGS))
5715 		unmergeable = 1;
5716 
5717 	if (unmergeable) {
5718 		/*
5719 		 * Slabcache can never be merged so we can use the name proper.
5720 		 * This is typically the case for debug situations. In that
5721 		 * case we can catch duplicate names easily.
5722 		 */
5723 		sysfs_remove_link(&slab_kset->kobj, s->name);
5724 		name = s->name;
5725 	} else {
5726 		/*
5727 		 * Create a unique name for the slab as a target
5728 		 * for the symlinks.
5729 		 */
5730 		name = create_unique_id(s);
5731 	}
5732 
5733 	s->kobj.kset = kset;
5734 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5735 	if (err)
5736 		goto out;
5737 
5738 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5739 	if (err)
5740 		goto out_del_kobj;
5741 
5742 #ifdef CONFIG_MEMCG
5743 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5744 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5745 		if (!s->memcg_kset) {
5746 			err = -ENOMEM;
5747 			goto out_del_kobj;
5748 		}
5749 	}
5750 #endif
5751 
5752 	kobject_uevent(&s->kobj, KOBJ_ADD);
5753 	if (!unmergeable) {
5754 		/* Setup first alias */
5755 		sysfs_slab_alias(s, s->name);
5756 	}
5757 out:
5758 	if (!unmergeable)
5759 		kfree(name);
5760 	return err;
5761 out_del_kobj:
5762 	kobject_del(&s->kobj);
5763 	goto out;
5764 }
5765 
5766 static void sysfs_slab_remove(struct kmem_cache *s)
5767 {
5768 	if (slab_state < FULL)
5769 		/*
5770 		 * Sysfs has not been setup yet so no need to remove the
5771 		 * cache from sysfs.
5772 		 */
5773 		return;
5774 
5775 	kobject_get(&s->kobj);
5776 	schedule_work(&s->kobj_remove_work);
5777 }
5778 
5779 void sysfs_slab_unlink(struct kmem_cache *s)
5780 {
5781 	if (slab_state >= FULL)
5782 		kobject_del(&s->kobj);
5783 }
5784 
5785 void sysfs_slab_release(struct kmem_cache *s)
5786 {
5787 	if (slab_state >= FULL)
5788 		kobject_put(&s->kobj);
5789 }
5790 
5791 /*
5792  * Need to buffer aliases during bootup until sysfs becomes
5793  * available lest we lose that information.
5794  */
5795 struct saved_alias {
5796 	struct kmem_cache *s;
5797 	const char *name;
5798 	struct saved_alias *next;
5799 };
5800 
5801 static struct saved_alias *alias_list;
5802 
5803 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5804 {
5805 	struct saved_alias *al;
5806 
5807 	if (slab_state == FULL) {
5808 		/*
5809 		 * If we have a leftover link then remove it.
5810 		 */
5811 		sysfs_remove_link(&slab_kset->kobj, name);
5812 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5813 	}
5814 
5815 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5816 	if (!al)
5817 		return -ENOMEM;
5818 
5819 	al->s = s;
5820 	al->name = name;
5821 	al->next = alias_list;
5822 	alias_list = al;
5823 	return 0;
5824 }
5825 
5826 static int __init slab_sysfs_init(void)
5827 {
5828 	struct kmem_cache *s;
5829 	int err;
5830 
5831 	mutex_lock(&slab_mutex);
5832 
5833 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5834 	if (!slab_kset) {
5835 		mutex_unlock(&slab_mutex);
5836 		pr_err("Cannot register slab subsystem.\n");
5837 		return -ENOSYS;
5838 	}
5839 
5840 	slab_state = FULL;
5841 
5842 	list_for_each_entry(s, &slab_caches, list) {
5843 		err = sysfs_slab_add(s);
5844 		if (err)
5845 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5846 			       s->name);
5847 	}
5848 
5849 	while (alias_list) {
5850 		struct saved_alias *al = alias_list;
5851 
5852 		alias_list = alias_list->next;
5853 		err = sysfs_slab_alias(al->s, al->name);
5854 		if (err)
5855 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5856 			       al->name);
5857 		kfree(al);
5858 	}
5859 
5860 	mutex_unlock(&slab_mutex);
5861 	resiliency_test();
5862 	return 0;
5863 }
5864 
5865 __initcall(slab_sysfs_init);
5866 #endif /* CONFIG_SYSFS */
5867 
5868 /*
5869  * The /proc/slabinfo ABI
5870  */
5871 #ifdef CONFIG_SLUB_DEBUG
5872 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5873 {
5874 	unsigned long nr_slabs = 0;
5875 	unsigned long nr_objs = 0;
5876 	unsigned long nr_free = 0;
5877 	int node;
5878 	struct kmem_cache_node *n;
5879 
5880 	for_each_kmem_cache_node(s, node, n) {
5881 		nr_slabs += node_nr_slabs(n);
5882 		nr_objs += node_nr_objs(n);
5883 		nr_free += count_partial(n, count_free);
5884 	}
5885 
5886 	sinfo->active_objs = nr_objs - nr_free;
5887 	sinfo->num_objs = nr_objs;
5888 	sinfo->active_slabs = nr_slabs;
5889 	sinfo->num_slabs = nr_slabs;
5890 	sinfo->objects_per_slab = oo_objects(s->oo);
5891 	sinfo->cache_order = oo_order(s->oo);
5892 }
5893 
5894 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5895 {
5896 }
5897 
5898 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5899 		       size_t count, loff_t *ppos)
5900 {
5901 	return -EIO;
5902 }
5903 #endif /* CONFIG_SLUB_DEBUG */
5904