1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/kmemcheck.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/memory.h> 32 #include <linux/math64.h> 33 #include <linux/fault-inject.h> 34 #include <linux/stacktrace.h> 35 #include <linux/prefetch.h> 36 #include <linux/memcontrol.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects the second 55 * double word in the page struct. Meaning 56 * A. page->freelist -> List of object free in a page 57 * B. page->counters -> Counters of objects 58 * C. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list. The processor that froze the slab is the one who can 62 * perform list operations on the page. Other processors may put objects 63 * onto the freelist but the processor that froze the slab is the only 64 * one that can retrieve the objects from the page's freelist. 65 * 66 * The list_lock protects the partial and full list on each node and 67 * the partial slab counter. If taken then no new slabs may be added or 68 * removed from the lists nor make the number of partial slabs be modified. 69 * (Note that the total number of slabs is an atomic value that may be 70 * modified without taking the list lock). 71 * 72 * The list_lock is a centralized lock and thus we avoid taking it as 73 * much as possible. As long as SLUB does not have to handle partial 74 * slabs, operations can continue without any centralized lock. F.e. 75 * allocating a long series of objects that fill up slabs does not require 76 * the list lock. 77 * Interrupts are disabled during allocation and deallocation in order to 78 * make the slab allocator safe to use in the context of an irq. In addition 79 * interrupts are disabled to ensure that the processor does not change 80 * while handling per_cpu slabs, due to kernel preemption. 81 * 82 * SLUB assigns one slab for allocation to each processor. 83 * Allocations only occur from these slabs called cpu slabs. 84 * 85 * Slabs with free elements are kept on a partial list and during regular 86 * operations no list for full slabs is used. If an object in a full slab is 87 * freed then the slab will show up again on the partial lists. 88 * We track full slabs for debugging purposes though because otherwise we 89 * cannot scan all objects. 90 * 91 * Slabs are freed when they become empty. Teardown and setup is 92 * minimal so we rely on the page allocators per cpu caches for 93 * fast frees and allocs. 94 * 95 * Overloading of page flags that are otherwise used for LRU management. 96 * 97 * PageActive The slab is frozen and exempt from list processing. 98 * This means that the slab is dedicated to a purpose 99 * such as satisfying allocations for a specific 100 * processor. Objects may be freed in the slab while 101 * it is frozen but slab_free will then skip the usual 102 * list operations. It is up to the processor holding 103 * the slab to integrate the slab into the slab lists 104 * when the slab is no longer needed. 105 * 106 * One use of this flag is to mark slabs that are 107 * used for allocations. Then such a slab becomes a cpu 108 * slab. The cpu slab may be equipped with an additional 109 * freelist that allows lockless access to 110 * free objects in addition to the regular freelist 111 * that requires the slab lock. 112 * 113 * PageError Slab requires special handling due to debug 114 * options set. This moves slab handling out of 115 * the fast path and disables lockless freelists. 116 */ 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 128 { 129 #ifdef CONFIG_SLUB_CPU_PARTIAL 130 return !kmem_cache_debug(s); 131 #else 132 return false; 133 #endif 134 } 135 136 /* 137 * Issues still to be resolved: 138 * 139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 140 * 141 * - Variable sizing of the per node arrays 142 */ 143 144 /* Enable to test recovery from slab corruption on boot */ 145 #undef SLUB_RESILIENCY_TEST 146 147 /* Enable to log cmpxchg failures */ 148 #undef SLUB_DEBUG_CMPXCHG 149 150 /* 151 * Mininum number of partial slabs. These will be left on the partial 152 * lists even if they are empty. kmem_cache_shrink may reclaim them. 153 */ 154 #define MIN_PARTIAL 5 155 156 /* 157 * Maximum number of desirable partial slabs. 158 * The existence of more partial slabs makes kmem_cache_shrink 159 * sort the partial list by the number of objects in use. 160 */ 161 #define MAX_PARTIAL 10 162 163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 164 SLAB_POISON | SLAB_STORE_USER) 165 166 /* 167 * Debugging flags that require metadata to be stored in the slab. These get 168 * disabled when slub_debug=O is used and a cache's min order increases with 169 * metadata. 170 */ 171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 172 173 #define OO_SHIFT 16 174 #define OO_MASK ((1 << OO_SHIFT) - 1) 175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 176 177 /* Internal SLUB flags */ 178 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 180 181 #ifdef CONFIG_SMP 182 static struct notifier_block slab_notifier; 183 #endif 184 185 /* 186 * Tracking user of a slab. 187 */ 188 #define TRACK_ADDRS_COUNT 16 189 struct track { 190 unsigned long addr; /* Called from address */ 191 #ifdef CONFIG_STACKTRACE 192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 193 #endif 194 int cpu; /* Was running on cpu */ 195 int pid; /* Pid context */ 196 unsigned long when; /* When did the operation occur */ 197 }; 198 199 enum track_item { TRACK_ALLOC, TRACK_FREE }; 200 201 #ifdef CONFIG_SYSFS 202 static int sysfs_slab_add(struct kmem_cache *); 203 static int sysfs_slab_alias(struct kmem_cache *, const char *); 204 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 205 #else 206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 208 { return 0; } 209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 210 #endif 211 212 static inline void stat(const struct kmem_cache *s, enum stat_item si) 213 { 214 #ifdef CONFIG_SLUB_STATS 215 /* 216 * The rmw is racy on a preemptible kernel but this is acceptable, so 217 * avoid this_cpu_add()'s irq-disable overhead. 218 */ 219 raw_cpu_inc(s->cpu_slab->stat[si]); 220 #endif 221 } 222 223 /******************************************************************** 224 * Core slab cache functions 225 *******************************************************************/ 226 227 /* Verify that a pointer has an address that is valid within a slab page */ 228 static inline int check_valid_pointer(struct kmem_cache *s, 229 struct page *page, const void *object) 230 { 231 void *base; 232 233 if (!object) 234 return 1; 235 236 base = page_address(page); 237 if (object < base || object >= base + page->objects * s->size || 238 (object - base) % s->size) { 239 return 0; 240 } 241 242 return 1; 243 } 244 245 static inline void *get_freepointer(struct kmem_cache *s, void *object) 246 { 247 return *(void **)(object + s->offset); 248 } 249 250 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 251 { 252 prefetch(object + s->offset); 253 } 254 255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 256 { 257 void *p; 258 259 #ifdef CONFIG_DEBUG_PAGEALLOC 260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 261 #else 262 p = get_freepointer(s, object); 263 #endif 264 return p; 265 } 266 267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 268 { 269 *(void **)(object + s->offset) = fp; 270 } 271 272 /* Loop over all objects in a slab */ 273 #define for_each_object(__p, __s, __addr, __objects) \ 274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 275 __p += (__s)->size) 276 277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 278 for (__p = (__addr), __idx = 1; __idx <= __objects;\ 279 __p += (__s)->size, __idx++) 280 281 /* Determine object index from a given position */ 282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 283 { 284 return (p - addr) / s->size; 285 } 286 287 static inline size_t slab_ksize(const struct kmem_cache *s) 288 { 289 #ifdef CONFIG_SLUB_DEBUG 290 /* 291 * Debugging requires use of the padding between object 292 * and whatever may come after it. 293 */ 294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 295 return s->object_size; 296 297 #endif 298 /* 299 * If we have the need to store the freelist pointer 300 * back there or track user information then we can 301 * only use the space before that information. 302 */ 303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 304 return s->inuse; 305 /* 306 * Else we can use all the padding etc for the allocation 307 */ 308 return s->size; 309 } 310 311 static inline int order_objects(int order, unsigned long size, int reserved) 312 { 313 return ((PAGE_SIZE << order) - reserved) / size; 314 } 315 316 static inline struct kmem_cache_order_objects oo_make(int order, 317 unsigned long size, int reserved) 318 { 319 struct kmem_cache_order_objects x = { 320 (order << OO_SHIFT) + order_objects(order, size, reserved) 321 }; 322 323 return x; 324 } 325 326 static inline int oo_order(struct kmem_cache_order_objects x) 327 { 328 return x.x >> OO_SHIFT; 329 } 330 331 static inline int oo_objects(struct kmem_cache_order_objects x) 332 { 333 return x.x & OO_MASK; 334 } 335 336 /* 337 * Per slab locking using the pagelock 338 */ 339 static __always_inline void slab_lock(struct page *page) 340 { 341 VM_BUG_ON_PAGE(PageTail(page), page); 342 bit_spin_lock(PG_locked, &page->flags); 343 } 344 345 static __always_inline void slab_unlock(struct page *page) 346 { 347 VM_BUG_ON_PAGE(PageTail(page), page); 348 __bit_spin_unlock(PG_locked, &page->flags); 349 } 350 351 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 352 { 353 struct page tmp; 354 tmp.counters = counters_new; 355 /* 356 * page->counters can cover frozen/inuse/objects as well 357 * as page->_count. If we assign to ->counters directly 358 * we run the risk of losing updates to page->_count, so 359 * be careful and only assign to the fields we need. 360 */ 361 page->frozen = tmp.frozen; 362 page->inuse = tmp.inuse; 363 page->objects = tmp.objects; 364 } 365 366 /* Interrupts must be disabled (for the fallback code to work right) */ 367 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 368 void *freelist_old, unsigned long counters_old, 369 void *freelist_new, unsigned long counters_new, 370 const char *n) 371 { 372 VM_BUG_ON(!irqs_disabled()); 373 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 374 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 375 if (s->flags & __CMPXCHG_DOUBLE) { 376 if (cmpxchg_double(&page->freelist, &page->counters, 377 freelist_old, counters_old, 378 freelist_new, counters_new)) 379 return true; 380 } else 381 #endif 382 { 383 slab_lock(page); 384 if (page->freelist == freelist_old && 385 page->counters == counters_old) { 386 page->freelist = freelist_new; 387 set_page_slub_counters(page, counters_new); 388 slab_unlock(page); 389 return true; 390 } 391 slab_unlock(page); 392 } 393 394 cpu_relax(); 395 stat(s, CMPXCHG_DOUBLE_FAIL); 396 397 #ifdef SLUB_DEBUG_CMPXCHG 398 pr_info("%s %s: cmpxchg double redo ", n, s->name); 399 #endif 400 401 return false; 402 } 403 404 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 405 void *freelist_old, unsigned long counters_old, 406 void *freelist_new, unsigned long counters_new, 407 const char *n) 408 { 409 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 410 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 411 if (s->flags & __CMPXCHG_DOUBLE) { 412 if (cmpxchg_double(&page->freelist, &page->counters, 413 freelist_old, counters_old, 414 freelist_new, counters_new)) 415 return true; 416 } else 417 #endif 418 { 419 unsigned long flags; 420 421 local_irq_save(flags); 422 slab_lock(page); 423 if (page->freelist == freelist_old && 424 page->counters == counters_old) { 425 page->freelist = freelist_new; 426 set_page_slub_counters(page, counters_new); 427 slab_unlock(page); 428 local_irq_restore(flags); 429 return true; 430 } 431 slab_unlock(page); 432 local_irq_restore(flags); 433 } 434 435 cpu_relax(); 436 stat(s, CMPXCHG_DOUBLE_FAIL); 437 438 #ifdef SLUB_DEBUG_CMPXCHG 439 pr_info("%s %s: cmpxchg double redo ", n, s->name); 440 #endif 441 442 return false; 443 } 444 445 #ifdef CONFIG_SLUB_DEBUG 446 /* 447 * Determine a map of object in use on a page. 448 * 449 * Node listlock must be held to guarantee that the page does 450 * not vanish from under us. 451 */ 452 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 453 { 454 void *p; 455 void *addr = page_address(page); 456 457 for (p = page->freelist; p; p = get_freepointer(s, p)) 458 set_bit(slab_index(p, s, addr), map); 459 } 460 461 /* 462 * Debug settings: 463 */ 464 #if defined(CONFIG_SLUB_DEBUG_ON) 465 static int slub_debug = DEBUG_DEFAULT_FLAGS; 466 #elif defined(CONFIG_KASAN) 467 static int slub_debug = SLAB_STORE_USER; 468 #else 469 static int slub_debug; 470 #endif 471 472 static char *slub_debug_slabs; 473 static int disable_higher_order_debug; 474 475 /* 476 * slub is about to manipulate internal object metadata. This memory lies 477 * outside the range of the allocated object, so accessing it would normally 478 * be reported by kasan as a bounds error. metadata_access_enable() is used 479 * to tell kasan that these accesses are OK. 480 */ 481 static inline void metadata_access_enable(void) 482 { 483 kasan_disable_current(); 484 } 485 486 static inline void metadata_access_disable(void) 487 { 488 kasan_enable_current(); 489 } 490 491 /* 492 * Object debugging 493 */ 494 static void print_section(char *text, u8 *addr, unsigned int length) 495 { 496 metadata_access_enable(); 497 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 498 length, 1); 499 metadata_access_disable(); 500 } 501 502 static struct track *get_track(struct kmem_cache *s, void *object, 503 enum track_item alloc) 504 { 505 struct track *p; 506 507 if (s->offset) 508 p = object + s->offset + sizeof(void *); 509 else 510 p = object + s->inuse; 511 512 return p + alloc; 513 } 514 515 static void set_track(struct kmem_cache *s, void *object, 516 enum track_item alloc, unsigned long addr) 517 { 518 struct track *p = get_track(s, object, alloc); 519 520 if (addr) { 521 #ifdef CONFIG_STACKTRACE 522 struct stack_trace trace; 523 int i; 524 525 trace.nr_entries = 0; 526 trace.max_entries = TRACK_ADDRS_COUNT; 527 trace.entries = p->addrs; 528 trace.skip = 3; 529 metadata_access_enable(); 530 save_stack_trace(&trace); 531 metadata_access_disable(); 532 533 /* See rant in lockdep.c */ 534 if (trace.nr_entries != 0 && 535 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 536 trace.nr_entries--; 537 538 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 539 p->addrs[i] = 0; 540 #endif 541 p->addr = addr; 542 p->cpu = smp_processor_id(); 543 p->pid = current->pid; 544 p->when = jiffies; 545 } else 546 memset(p, 0, sizeof(struct track)); 547 } 548 549 static void init_tracking(struct kmem_cache *s, void *object) 550 { 551 if (!(s->flags & SLAB_STORE_USER)) 552 return; 553 554 set_track(s, object, TRACK_FREE, 0UL); 555 set_track(s, object, TRACK_ALLOC, 0UL); 556 } 557 558 static void print_track(const char *s, struct track *t) 559 { 560 if (!t->addr) 561 return; 562 563 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 564 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 565 #ifdef CONFIG_STACKTRACE 566 { 567 int i; 568 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 569 if (t->addrs[i]) 570 pr_err("\t%pS\n", (void *)t->addrs[i]); 571 else 572 break; 573 } 574 #endif 575 } 576 577 static void print_tracking(struct kmem_cache *s, void *object) 578 { 579 if (!(s->flags & SLAB_STORE_USER)) 580 return; 581 582 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 583 print_track("Freed", get_track(s, object, TRACK_FREE)); 584 } 585 586 static void print_page_info(struct page *page) 587 { 588 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 589 page, page->objects, page->inuse, page->freelist, page->flags); 590 591 } 592 593 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 594 { 595 struct va_format vaf; 596 va_list args; 597 598 va_start(args, fmt); 599 vaf.fmt = fmt; 600 vaf.va = &args; 601 pr_err("=============================================================================\n"); 602 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 603 pr_err("-----------------------------------------------------------------------------\n\n"); 604 605 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 606 va_end(args); 607 } 608 609 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 610 { 611 struct va_format vaf; 612 va_list args; 613 614 va_start(args, fmt); 615 vaf.fmt = fmt; 616 vaf.va = &args; 617 pr_err("FIX %s: %pV\n", s->name, &vaf); 618 va_end(args); 619 } 620 621 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 622 { 623 unsigned int off; /* Offset of last byte */ 624 u8 *addr = page_address(page); 625 626 print_tracking(s, p); 627 628 print_page_info(page); 629 630 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 631 p, p - addr, get_freepointer(s, p)); 632 633 if (p > addr + 16) 634 print_section("Bytes b4 ", p - 16, 16); 635 636 print_section("Object ", p, min_t(unsigned long, s->object_size, 637 PAGE_SIZE)); 638 if (s->flags & SLAB_RED_ZONE) 639 print_section("Redzone ", p + s->object_size, 640 s->inuse - s->object_size); 641 642 if (s->offset) 643 off = s->offset + sizeof(void *); 644 else 645 off = s->inuse; 646 647 if (s->flags & SLAB_STORE_USER) 648 off += 2 * sizeof(struct track); 649 650 if (off != s->size) 651 /* Beginning of the filler is the free pointer */ 652 print_section("Padding ", p + off, s->size - off); 653 654 dump_stack(); 655 } 656 657 void object_err(struct kmem_cache *s, struct page *page, 658 u8 *object, char *reason) 659 { 660 slab_bug(s, "%s", reason); 661 print_trailer(s, page, object); 662 } 663 664 static void slab_err(struct kmem_cache *s, struct page *page, 665 const char *fmt, ...) 666 { 667 va_list args; 668 char buf[100]; 669 670 va_start(args, fmt); 671 vsnprintf(buf, sizeof(buf), fmt, args); 672 va_end(args); 673 slab_bug(s, "%s", buf); 674 print_page_info(page); 675 dump_stack(); 676 } 677 678 static void init_object(struct kmem_cache *s, void *object, u8 val) 679 { 680 u8 *p = object; 681 682 if (s->flags & __OBJECT_POISON) { 683 memset(p, POISON_FREE, s->object_size - 1); 684 p[s->object_size - 1] = POISON_END; 685 } 686 687 if (s->flags & SLAB_RED_ZONE) 688 memset(p + s->object_size, val, s->inuse - s->object_size); 689 } 690 691 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 692 void *from, void *to) 693 { 694 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 695 memset(from, data, to - from); 696 } 697 698 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 699 u8 *object, char *what, 700 u8 *start, unsigned int value, unsigned int bytes) 701 { 702 u8 *fault; 703 u8 *end; 704 705 metadata_access_enable(); 706 fault = memchr_inv(start, value, bytes); 707 metadata_access_disable(); 708 if (!fault) 709 return 1; 710 711 end = start + bytes; 712 while (end > fault && end[-1] == value) 713 end--; 714 715 slab_bug(s, "%s overwritten", what); 716 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 717 fault, end - 1, fault[0], value); 718 print_trailer(s, page, object); 719 720 restore_bytes(s, what, value, fault, end); 721 return 0; 722 } 723 724 /* 725 * Object layout: 726 * 727 * object address 728 * Bytes of the object to be managed. 729 * If the freepointer may overlay the object then the free 730 * pointer is the first word of the object. 731 * 732 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 733 * 0xa5 (POISON_END) 734 * 735 * object + s->object_size 736 * Padding to reach word boundary. This is also used for Redzoning. 737 * Padding is extended by another word if Redzoning is enabled and 738 * object_size == inuse. 739 * 740 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 741 * 0xcc (RED_ACTIVE) for objects in use. 742 * 743 * object + s->inuse 744 * Meta data starts here. 745 * 746 * A. Free pointer (if we cannot overwrite object on free) 747 * B. Tracking data for SLAB_STORE_USER 748 * C. Padding to reach required alignment boundary or at mininum 749 * one word if debugging is on to be able to detect writes 750 * before the word boundary. 751 * 752 * Padding is done using 0x5a (POISON_INUSE) 753 * 754 * object + s->size 755 * Nothing is used beyond s->size. 756 * 757 * If slabcaches are merged then the object_size and inuse boundaries are mostly 758 * ignored. And therefore no slab options that rely on these boundaries 759 * may be used with merged slabcaches. 760 */ 761 762 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 763 { 764 unsigned long off = s->inuse; /* The end of info */ 765 766 if (s->offset) 767 /* Freepointer is placed after the object. */ 768 off += sizeof(void *); 769 770 if (s->flags & SLAB_STORE_USER) 771 /* We also have user information there */ 772 off += 2 * sizeof(struct track); 773 774 if (s->size == off) 775 return 1; 776 777 return check_bytes_and_report(s, page, p, "Object padding", 778 p + off, POISON_INUSE, s->size - off); 779 } 780 781 /* Check the pad bytes at the end of a slab page */ 782 static int slab_pad_check(struct kmem_cache *s, struct page *page) 783 { 784 u8 *start; 785 u8 *fault; 786 u8 *end; 787 int length; 788 int remainder; 789 790 if (!(s->flags & SLAB_POISON)) 791 return 1; 792 793 start = page_address(page); 794 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 795 end = start + length; 796 remainder = length % s->size; 797 if (!remainder) 798 return 1; 799 800 metadata_access_enable(); 801 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 802 metadata_access_disable(); 803 if (!fault) 804 return 1; 805 while (end > fault && end[-1] == POISON_INUSE) 806 end--; 807 808 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 809 print_section("Padding ", end - remainder, remainder); 810 811 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 812 return 0; 813 } 814 815 static int check_object(struct kmem_cache *s, struct page *page, 816 void *object, u8 val) 817 { 818 u8 *p = object; 819 u8 *endobject = object + s->object_size; 820 821 if (s->flags & SLAB_RED_ZONE) { 822 if (!check_bytes_and_report(s, page, object, "Redzone", 823 endobject, val, s->inuse - s->object_size)) 824 return 0; 825 } else { 826 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 827 check_bytes_and_report(s, page, p, "Alignment padding", 828 endobject, POISON_INUSE, 829 s->inuse - s->object_size); 830 } 831 } 832 833 if (s->flags & SLAB_POISON) { 834 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 835 (!check_bytes_and_report(s, page, p, "Poison", p, 836 POISON_FREE, s->object_size - 1) || 837 !check_bytes_and_report(s, page, p, "Poison", 838 p + s->object_size - 1, POISON_END, 1))) 839 return 0; 840 /* 841 * check_pad_bytes cleans up on its own. 842 */ 843 check_pad_bytes(s, page, p); 844 } 845 846 if (!s->offset && val == SLUB_RED_ACTIVE) 847 /* 848 * Object and freepointer overlap. Cannot check 849 * freepointer while object is allocated. 850 */ 851 return 1; 852 853 /* Check free pointer validity */ 854 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 855 object_err(s, page, p, "Freepointer corrupt"); 856 /* 857 * No choice but to zap it and thus lose the remainder 858 * of the free objects in this slab. May cause 859 * another error because the object count is now wrong. 860 */ 861 set_freepointer(s, p, NULL); 862 return 0; 863 } 864 return 1; 865 } 866 867 static int check_slab(struct kmem_cache *s, struct page *page) 868 { 869 int maxobj; 870 871 VM_BUG_ON(!irqs_disabled()); 872 873 if (!PageSlab(page)) { 874 slab_err(s, page, "Not a valid slab page"); 875 return 0; 876 } 877 878 maxobj = order_objects(compound_order(page), s->size, s->reserved); 879 if (page->objects > maxobj) { 880 slab_err(s, page, "objects %u > max %u", 881 page->objects, maxobj); 882 return 0; 883 } 884 if (page->inuse > page->objects) { 885 slab_err(s, page, "inuse %u > max %u", 886 page->inuse, page->objects); 887 return 0; 888 } 889 /* Slab_pad_check fixes things up after itself */ 890 slab_pad_check(s, page); 891 return 1; 892 } 893 894 /* 895 * Determine if a certain object on a page is on the freelist. Must hold the 896 * slab lock to guarantee that the chains are in a consistent state. 897 */ 898 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 899 { 900 int nr = 0; 901 void *fp; 902 void *object = NULL; 903 int max_objects; 904 905 fp = page->freelist; 906 while (fp && nr <= page->objects) { 907 if (fp == search) 908 return 1; 909 if (!check_valid_pointer(s, page, fp)) { 910 if (object) { 911 object_err(s, page, object, 912 "Freechain corrupt"); 913 set_freepointer(s, object, NULL); 914 } else { 915 slab_err(s, page, "Freepointer corrupt"); 916 page->freelist = NULL; 917 page->inuse = page->objects; 918 slab_fix(s, "Freelist cleared"); 919 return 0; 920 } 921 break; 922 } 923 object = fp; 924 fp = get_freepointer(s, object); 925 nr++; 926 } 927 928 max_objects = order_objects(compound_order(page), s->size, s->reserved); 929 if (max_objects > MAX_OBJS_PER_PAGE) 930 max_objects = MAX_OBJS_PER_PAGE; 931 932 if (page->objects != max_objects) { 933 slab_err(s, page, "Wrong number of objects. Found %d but " 934 "should be %d", page->objects, max_objects); 935 page->objects = max_objects; 936 slab_fix(s, "Number of objects adjusted."); 937 } 938 if (page->inuse != page->objects - nr) { 939 slab_err(s, page, "Wrong object count. Counter is %d but " 940 "counted were %d", page->inuse, page->objects - nr); 941 page->inuse = page->objects - nr; 942 slab_fix(s, "Object count adjusted."); 943 } 944 return search == NULL; 945 } 946 947 static void trace(struct kmem_cache *s, struct page *page, void *object, 948 int alloc) 949 { 950 if (s->flags & SLAB_TRACE) { 951 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 952 s->name, 953 alloc ? "alloc" : "free", 954 object, page->inuse, 955 page->freelist); 956 957 if (!alloc) 958 print_section("Object ", (void *)object, 959 s->object_size); 960 961 dump_stack(); 962 } 963 } 964 965 /* 966 * Tracking of fully allocated slabs for debugging purposes. 967 */ 968 static void add_full(struct kmem_cache *s, 969 struct kmem_cache_node *n, struct page *page) 970 { 971 if (!(s->flags & SLAB_STORE_USER)) 972 return; 973 974 lockdep_assert_held(&n->list_lock); 975 list_add(&page->lru, &n->full); 976 } 977 978 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 979 { 980 if (!(s->flags & SLAB_STORE_USER)) 981 return; 982 983 lockdep_assert_held(&n->list_lock); 984 list_del(&page->lru); 985 } 986 987 /* Tracking of the number of slabs for debugging purposes */ 988 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 989 { 990 struct kmem_cache_node *n = get_node(s, node); 991 992 return atomic_long_read(&n->nr_slabs); 993 } 994 995 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 996 { 997 return atomic_long_read(&n->nr_slabs); 998 } 999 1000 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1001 { 1002 struct kmem_cache_node *n = get_node(s, node); 1003 1004 /* 1005 * May be called early in order to allocate a slab for the 1006 * kmem_cache_node structure. Solve the chicken-egg 1007 * dilemma by deferring the increment of the count during 1008 * bootstrap (see early_kmem_cache_node_alloc). 1009 */ 1010 if (likely(n)) { 1011 atomic_long_inc(&n->nr_slabs); 1012 atomic_long_add(objects, &n->total_objects); 1013 } 1014 } 1015 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1016 { 1017 struct kmem_cache_node *n = get_node(s, node); 1018 1019 atomic_long_dec(&n->nr_slabs); 1020 atomic_long_sub(objects, &n->total_objects); 1021 } 1022 1023 /* Object debug checks for alloc/free paths */ 1024 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1025 void *object) 1026 { 1027 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1028 return; 1029 1030 init_object(s, object, SLUB_RED_INACTIVE); 1031 init_tracking(s, object); 1032 } 1033 1034 static noinline int alloc_debug_processing(struct kmem_cache *s, 1035 struct page *page, 1036 void *object, unsigned long addr) 1037 { 1038 if (!check_slab(s, page)) 1039 goto bad; 1040 1041 if (!check_valid_pointer(s, page, object)) { 1042 object_err(s, page, object, "Freelist Pointer check fails"); 1043 goto bad; 1044 } 1045 1046 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1047 goto bad; 1048 1049 /* Success perform special debug activities for allocs */ 1050 if (s->flags & SLAB_STORE_USER) 1051 set_track(s, object, TRACK_ALLOC, addr); 1052 trace(s, page, object, 1); 1053 init_object(s, object, SLUB_RED_ACTIVE); 1054 return 1; 1055 1056 bad: 1057 if (PageSlab(page)) { 1058 /* 1059 * If this is a slab page then lets do the best we can 1060 * to avoid issues in the future. Marking all objects 1061 * as used avoids touching the remaining objects. 1062 */ 1063 slab_fix(s, "Marking all objects used"); 1064 page->inuse = page->objects; 1065 page->freelist = NULL; 1066 } 1067 return 0; 1068 } 1069 1070 /* Supports checking bulk free of a constructed freelist */ 1071 static noinline struct kmem_cache_node *free_debug_processing( 1072 struct kmem_cache *s, struct page *page, 1073 void *head, void *tail, int bulk_cnt, 1074 unsigned long addr, unsigned long *flags) 1075 { 1076 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1077 void *object = head; 1078 int cnt = 0; 1079 1080 spin_lock_irqsave(&n->list_lock, *flags); 1081 slab_lock(page); 1082 1083 if (!check_slab(s, page)) 1084 goto fail; 1085 1086 next_object: 1087 cnt++; 1088 1089 if (!check_valid_pointer(s, page, object)) { 1090 slab_err(s, page, "Invalid object pointer 0x%p", object); 1091 goto fail; 1092 } 1093 1094 if (on_freelist(s, page, object)) { 1095 object_err(s, page, object, "Object already free"); 1096 goto fail; 1097 } 1098 1099 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1100 goto out; 1101 1102 if (unlikely(s != page->slab_cache)) { 1103 if (!PageSlab(page)) { 1104 slab_err(s, page, "Attempt to free object(0x%p) " 1105 "outside of slab", object); 1106 } else if (!page->slab_cache) { 1107 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1108 object); 1109 dump_stack(); 1110 } else 1111 object_err(s, page, object, 1112 "page slab pointer corrupt."); 1113 goto fail; 1114 } 1115 1116 if (s->flags & SLAB_STORE_USER) 1117 set_track(s, object, TRACK_FREE, addr); 1118 trace(s, page, object, 0); 1119 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1120 init_object(s, object, SLUB_RED_INACTIVE); 1121 1122 /* Reached end of constructed freelist yet? */ 1123 if (object != tail) { 1124 object = get_freepointer(s, object); 1125 goto next_object; 1126 } 1127 out: 1128 if (cnt != bulk_cnt) 1129 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1130 bulk_cnt, cnt); 1131 1132 slab_unlock(page); 1133 /* 1134 * Keep node_lock to preserve integrity 1135 * until the object is actually freed 1136 */ 1137 return n; 1138 1139 fail: 1140 slab_unlock(page); 1141 spin_unlock_irqrestore(&n->list_lock, *flags); 1142 slab_fix(s, "Object at 0x%p not freed", object); 1143 return NULL; 1144 } 1145 1146 static int __init setup_slub_debug(char *str) 1147 { 1148 slub_debug = DEBUG_DEFAULT_FLAGS; 1149 if (*str++ != '=' || !*str) 1150 /* 1151 * No options specified. Switch on full debugging. 1152 */ 1153 goto out; 1154 1155 if (*str == ',') 1156 /* 1157 * No options but restriction on slabs. This means full 1158 * debugging for slabs matching a pattern. 1159 */ 1160 goto check_slabs; 1161 1162 slub_debug = 0; 1163 if (*str == '-') 1164 /* 1165 * Switch off all debugging measures. 1166 */ 1167 goto out; 1168 1169 /* 1170 * Determine which debug features should be switched on 1171 */ 1172 for (; *str && *str != ','; str++) { 1173 switch (tolower(*str)) { 1174 case 'f': 1175 slub_debug |= SLAB_DEBUG_FREE; 1176 break; 1177 case 'z': 1178 slub_debug |= SLAB_RED_ZONE; 1179 break; 1180 case 'p': 1181 slub_debug |= SLAB_POISON; 1182 break; 1183 case 'u': 1184 slub_debug |= SLAB_STORE_USER; 1185 break; 1186 case 't': 1187 slub_debug |= SLAB_TRACE; 1188 break; 1189 case 'a': 1190 slub_debug |= SLAB_FAILSLAB; 1191 break; 1192 case 'o': 1193 /* 1194 * Avoid enabling debugging on caches if its minimum 1195 * order would increase as a result. 1196 */ 1197 disable_higher_order_debug = 1; 1198 break; 1199 default: 1200 pr_err("slub_debug option '%c' unknown. skipped\n", 1201 *str); 1202 } 1203 } 1204 1205 check_slabs: 1206 if (*str == ',') 1207 slub_debug_slabs = str + 1; 1208 out: 1209 return 1; 1210 } 1211 1212 __setup("slub_debug", setup_slub_debug); 1213 1214 unsigned long kmem_cache_flags(unsigned long object_size, 1215 unsigned long flags, const char *name, 1216 void (*ctor)(void *)) 1217 { 1218 /* 1219 * Enable debugging if selected on the kernel commandline. 1220 */ 1221 if (slub_debug && (!slub_debug_slabs || (name && 1222 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1223 flags |= slub_debug; 1224 1225 return flags; 1226 } 1227 #else /* !CONFIG_SLUB_DEBUG */ 1228 static inline void setup_object_debug(struct kmem_cache *s, 1229 struct page *page, void *object) {} 1230 1231 static inline int alloc_debug_processing(struct kmem_cache *s, 1232 struct page *page, void *object, unsigned long addr) { return 0; } 1233 1234 static inline struct kmem_cache_node *free_debug_processing( 1235 struct kmem_cache *s, struct page *page, 1236 void *head, void *tail, int bulk_cnt, 1237 unsigned long addr, unsigned long *flags) { return NULL; } 1238 1239 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1240 { return 1; } 1241 static inline int check_object(struct kmem_cache *s, struct page *page, 1242 void *object, u8 val) { return 1; } 1243 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1244 struct page *page) {} 1245 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1246 struct page *page) {} 1247 unsigned long kmem_cache_flags(unsigned long object_size, 1248 unsigned long flags, const char *name, 1249 void (*ctor)(void *)) 1250 { 1251 return flags; 1252 } 1253 #define slub_debug 0 1254 1255 #define disable_higher_order_debug 0 1256 1257 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1258 { return 0; } 1259 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1260 { return 0; } 1261 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1262 int objects) {} 1263 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1264 int objects) {} 1265 1266 #endif /* CONFIG_SLUB_DEBUG */ 1267 1268 /* 1269 * Hooks for other subsystems that check memory allocations. In a typical 1270 * production configuration these hooks all should produce no code at all. 1271 */ 1272 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1273 { 1274 kmemleak_alloc(ptr, size, 1, flags); 1275 kasan_kmalloc_large(ptr, size); 1276 } 1277 1278 static inline void kfree_hook(const void *x) 1279 { 1280 kmemleak_free(x); 1281 kasan_kfree_large(x); 1282 } 1283 1284 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, 1285 gfp_t flags) 1286 { 1287 flags &= gfp_allowed_mask; 1288 lockdep_trace_alloc(flags); 1289 might_sleep_if(gfpflags_allow_blocking(flags)); 1290 1291 if (should_failslab(s->object_size, flags, s->flags)) 1292 return NULL; 1293 1294 return memcg_kmem_get_cache(s, flags); 1295 } 1296 1297 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 1298 size_t size, void **p) 1299 { 1300 size_t i; 1301 1302 flags &= gfp_allowed_mask; 1303 for (i = 0; i < size; i++) { 1304 void *object = p[i]; 1305 1306 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 1307 kmemleak_alloc_recursive(object, s->object_size, 1, 1308 s->flags, flags); 1309 kasan_slab_alloc(s, object); 1310 } 1311 memcg_kmem_put_cache(s); 1312 } 1313 1314 static inline void slab_free_hook(struct kmem_cache *s, void *x) 1315 { 1316 kmemleak_free_recursive(x, s->flags); 1317 1318 /* 1319 * Trouble is that we may no longer disable interrupts in the fast path 1320 * So in order to make the debug calls that expect irqs to be 1321 * disabled we need to disable interrupts temporarily. 1322 */ 1323 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 1324 { 1325 unsigned long flags; 1326 1327 local_irq_save(flags); 1328 kmemcheck_slab_free(s, x, s->object_size); 1329 debug_check_no_locks_freed(x, s->object_size); 1330 local_irq_restore(flags); 1331 } 1332 #endif 1333 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1334 debug_check_no_obj_freed(x, s->object_size); 1335 1336 kasan_slab_free(s, x); 1337 } 1338 1339 static inline void slab_free_freelist_hook(struct kmem_cache *s, 1340 void *head, void *tail) 1341 { 1342 /* 1343 * Compiler cannot detect this function can be removed if slab_free_hook() 1344 * evaluates to nothing. Thus, catch all relevant config debug options here. 1345 */ 1346 #if defined(CONFIG_KMEMCHECK) || \ 1347 defined(CONFIG_LOCKDEP) || \ 1348 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1349 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1350 defined(CONFIG_KASAN) 1351 1352 void *object = head; 1353 void *tail_obj = tail ? : head; 1354 1355 do { 1356 slab_free_hook(s, object); 1357 } while ((object != tail_obj) && 1358 (object = get_freepointer(s, object))); 1359 #endif 1360 } 1361 1362 static void setup_object(struct kmem_cache *s, struct page *page, 1363 void *object) 1364 { 1365 setup_object_debug(s, page, object); 1366 if (unlikely(s->ctor)) { 1367 kasan_unpoison_object_data(s, object); 1368 s->ctor(object); 1369 kasan_poison_object_data(s, object); 1370 } 1371 } 1372 1373 /* 1374 * Slab allocation and freeing 1375 */ 1376 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1377 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1378 { 1379 struct page *page; 1380 int order = oo_order(oo); 1381 1382 flags |= __GFP_NOTRACK; 1383 1384 if (node == NUMA_NO_NODE) 1385 page = alloc_pages(flags, order); 1386 else 1387 page = __alloc_pages_node(node, flags, order); 1388 1389 if (page && memcg_charge_slab(page, flags, order, s)) { 1390 __free_pages(page, order); 1391 page = NULL; 1392 } 1393 1394 return page; 1395 } 1396 1397 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1398 { 1399 struct page *page; 1400 struct kmem_cache_order_objects oo = s->oo; 1401 gfp_t alloc_gfp; 1402 void *start, *p; 1403 int idx, order; 1404 1405 flags &= gfp_allowed_mask; 1406 1407 if (gfpflags_allow_blocking(flags)) 1408 local_irq_enable(); 1409 1410 flags |= s->allocflags; 1411 1412 /* 1413 * Let the initial higher-order allocation fail under memory pressure 1414 * so we fall-back to the minimum order allocation. 1415 */ 1416 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1417 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1418 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM; 1419 1420 page = alloc_slab_page(s, alloc_gfp, node, oo); 1421 if (unlikely(!page)) { 1422 oo = s->min; 1423 alloc_gfp = flags; 1424 /* 1425 * Allocation may have failed due to fragmentation. 1426 * Try a lower order alloc if possible 1427 */ 1428 page = alloc_slab_page(s, alloc_gfp, node, oo); 1429 if (unlikely(!page)) 1430 goto out; 1431 stat(s, ORDER_FALLBACK); 1432 } 1433 1434 if (kmemcheck_enabled && 1435 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1436 int pages = 1 << oo_order(oo); 1437 1438 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1439 1440 /* 1441 * Objects from caches that have a constructor don't get 1442 * cleared when they're allocated, so we need to do it here. 1443 */ 1444 if (s->ctor) 1445 kmemcheck_mark_uninitialized_pages(page, pages); 1446 else 1447 kmemcheck_mark_unallocated_pages(page, pages); 1448 } 1449 1450 page->objects = oo_objects(oo); 1451 1452 order = compound_order(page); 1453 page->slab_cache = s; 1454 __SetPageSlab(page); 1455 if (page_is_pfmemalloc(page)) 1456 SetPageSlabPfmemalloc(page); 1457 1458 start = page_address(page); 1459 1460 if (unlikely(s->flags & SLAB_POISON)) 1461 memset(start, POISON_INUSE, PAGE_SIZE << order); 1462 1463 kasan_poison_slab(page); 1464 1465 for_each_object_idx(p, idx, s, start, page->objects) { 1466 setup_object(s, page, p); 1467 if (likely(idx < page->objects)) 1468 set_freepointer(s, p, p + s->size); 1469 else 1470 set_freepointer(s, p, NULL); 1471 } 1472 1473 page->freelist = start; 1474 page->inuse = page->objects; 1475 page->frozen = 1; 1476 1477 out: 1478 if (gfpflags_allow_blocking(flags)) 1479 local_irq_disable(); 1480 if (!page) 1481 return NULL; 1482 1483 mod_zone_page_state(page_zone(page), 1484 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1485 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1486 1 << oo_order(oo)); 1487 1488 inc_slabs_node(s, page_to_nid(page), page->objects); 1489 1490 return page; 1491 } 1492 1493 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1494 { 1495 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1496 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); 1497 BUG(); 1498 } 1499 1500 return allocate_slab(s, 1501 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1502 } 1503 1504 static void __free_slab(struct kmem_cache *s, struct page *page) 1505 { 1506 int order = compound_order(page); 1507 int pages = 1 << order; 1508 1509 if (kmem_cache_debug(s)) { 1510 void *p; 1511 1512 slab_pad_check(s, page); 1513 for_each_object(p, s, page_address(page), 1514 page->objects) 1515 check_object(s, page, p, SLUB_RED_INACTIVE); 1516 } 1517 1518 kmemcheck_free_shadow(page, compound_order(page)); 1519 1520 mod_zone_page_state(page_zone(page), 1521 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1522 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1523 -pages); 1524 1525 __ClearPageSlabPfmemalloc(page); 1526 __ClearPageSlab(page); 1527 1528 page_mapcount_reset(page); 1529 if (current->reclaim_state) 1530 current->reclaim_state->reclaimed_slab += pages; 1531 __free_kmem_pages(page, order); 1532 } 1533 1534 #define need_reserve_slab_rcu \ 1535 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1536 1537 static void rcu_free_slab(struct rcu_head *h) 1538 { 1539 struct page *page; 1540 1541 if (need_reserve_slab_rcu) 1542 page = virt_to_head_page(h); 1543 else 1544 page = container_of((struct list_head *)h, struct page, lru); 1545 1546 __free_slab(page->slab_cache, page); 1547 } 1548 1549 static void free_slab(struct kmem_cache *s, struct page *page) 1550 { 1551 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1552 struct rcu_head *head; 1553 1554 if (need_reserve_slab_rcu) { 1555 int order = compound_order(page); 1556 int offset = (PAGE_SIZE << order) - s->reserved; 1557 1558 VM_BUG_ON(s->reserved != sizeof(*head)); 1559 head = page_address(page) + offset; 1560 } else { 1561 head = &page->rcu_head; 1562 } 1563 1564 call_rcu(head, rcu_free_slab); 1565 } else 1566 __free_slab(s, page); 1567 } 1568 1569 static void discard_slab(struct kmem_cache *s, struct page *page) 1570 { 1571 dec_slabs_node(s, page_to_nid(page), page->objects); 1572 free_slab(s, page); 1573 } 1574 1575 /* 1576 * Management of partially allocated slabs. 1577 */ 1578 static inline void 1579 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1580 { 1581 n->nr_partial++; 1582 if (tail == DEACTIVATE_TO_TAIL) 1583 list_add_tail(&page->lru, &n->partial); 1584 else 1585 list_add(&page->lru, &n->partial); 1586 } 1587 1588 static inline void add_partial(struct kmem_cache_node *n, 1589 struct page *page, int tail) 1590 { 1591 lockdep_assert_held(&n->list_lock); 1592 __add_partial(n, page, tail); 1593 } 1594 1595 static inline void remove_partial(struct kmem_cache_node *n, 1596 struct page *page) 1597 { 1598 lockdep_assert_held(&n->list_lock); 1599 list_del(&page->lru); 1600 n->nr_partial--; 1601 } 1602 1603 /* 1604 * Remove slab from the partial list, freeze it and 1605 * return the pointer to the freelist. 1606 * 1607 * Returns a list of objects or NULL if it fails. 1608 */ 1609 static inline void *acquire_slab(struct kmem_cache *s, 1610 struct kmem_cache_node *n, struct page *page, 1611 int mode, int *objects) 1612 { 1613 void *freelist; 1614 unsigned long counters; 1615 struct page new; 1616 1617 lockdep_assert_held(&n->list_lock); 1618 1619 /* 1620 * Zap the freelist and set the frozen bit. 1621 * The old freelist is the list of objects for the 1622 * per cpu allocation list. 1623 */ 1624 freelist = page->freelist; 1625 counters = page->counters; 1626 new.counters = counters; 1627 *objects = new.objects - new.inuse; 1628 if (mode) { 1629 new.inuse = page->objects; 1630 new.freelist = NULL; 1631 } else { 1632 new.freelist = freelist; 1633 } 1634 1635 VM_BUG_ON(new.frozen); 1636 new.frozen = 1; 1637 1638 if (!__cmpxchg_double_slab(s, page, 1639 freelist, counters, 1640 new.freelist, new.counters, 1641 "acquire_slab")) 1642 return NULL; 1643 1644 remove_partial(n, page); 1645 WARN_ON(!freelist); 1646 return freelist; 1647 } 1648 1649 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1650 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1651 1652 /* 1653 * Try to allocate a partial slab from a specific node. 1654 */ 1655 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1656 struct kmem_cache_cpu *c, gfp_t flags) 1657 { 1658 struct page *page, *page2; 1659 void *object = NULL; 1660 int available = 0; 1661 int objects; 1662 1663 /* 1664 * Racy check. If we mistakenly see no partial slabs then we 1665 * just allocate an empty slab. If we mistakenly try to get a 1666 * partial slab and there is none available then get_partials() 1667 * will return NULL. 1668 */ 1669 if (!n || !n->nr_partial) 1670 return NULL; 1671 1672 spin_lock(&n->list_lock); 1673 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1674 void *t; 1675 1676 if (!pfmemalloc_match(page, flags)) 1677 continue; 1678 1679 t = acquire_slab(s, n, page, object == NULL, &objects); 1680 if (!t) 1681 break; 1682 1683 available += objects; 1684 if (!object) { 1685 c->page = page; 1686 stat(s, ALLOC_FROM_PARTIAL); 1687 object = t; 1688 } else { 1689 put_cpu_partial(s, page, 0); 1690 stat(s, CPU_PARTIAL_NODE); 1691 } 1692 if (!kmem_cache_has_cpu_partial(s) 1693 || available > s->cpu_partial / 2) 1694 break; 1695 1696 } 1697 spin_unlock(&n->list_lock); 1698 return object; 1699 } 1700 1701 /* 1702 * Get a page from somewhere. Search in increasing NUMA distances. 1703 */ 1704 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1705 struct kmem_cache_cpu *c) 1706 { 1707 #ifdef CONFIG_NUMA 1708 struct zonelist *zonelist; 1709 struct zoneref *z; 1710 struct zone *zone; 1711 enum zone_type high_zoneidx = gfp_zone(flags); 1712 void *object; 1713 unsigned int cpuset_mems_cookie; 1714 1715 /* 1716 * The defrag ratio allows a configuration of the tradeoffs between 1717 * inter node defragmentation and node local allocations. A lower 1718 * defrag_ratio increases the tendency to do local allocations 1719 * instead of attempting to obtain partial slabs from other nodes. 1720 * 1721 * If the defrag_ratio is set to 0 then kmalloc() always 1722 * returns node local objects. If the ratio is higher then kmalloc() 1723 * may return off node objects because partial slabs are obtained 1724 * from other nodes and filled up. 1725 * 1726 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1727 * defrag_ratio = 1000) then every (well almost) allocation will 1728 * first attempt to defrag slab caches on other nodes. This means 1729 * scanning over all nodes to look for partial slabs which may be 1730 * expensive if we do it every time we are trying to find a slab 1731 * with available objects. 1732 */ 1733 if (!s->remote_node_defrag_ratio || 1734 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1735 return NULL; 1736 1737 do { 1738 cpuset_mems_cookie = read_mems_allowed_begin(); 1739 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1740 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1741 struct kmem_cache_node *n; 1742 1743 n = get_node(s, zone_to_nid(zone)); 1744 1745 if (n && cpuset_zone_allowed(zone, flags) && 1746 n->nr_partial > s->min_partial) { 1747 object = get_partial_node(s, n, c, flags); 1748 if (object) { 1749 /* 1750 * Don't check read_mems_allowed_retry() 1751 * here - if mems_allowed was updated in 1752 * parallel, that was a harmless race 1753 * between allocation and the cpuset 1754 * update 1755 */ 1756 return object; 1757 } 1758 } 1759 } 1760 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1761 #endif 1762 return NULL; 1763 } 1764 1765 /* 1766 * Get a partial page, lock it and return it. 1767 */ 1768 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1769 struct kmem_cache_cpu *c) 1770 { 1771 void *object; 1772 int searchnode = node; 1773 1774 if (node == NUMA_NO_NODE) 1775 searchnode = numa_mem_id(); 1776 else if (!node_present_pages(node)) 1777 searchnode = node_to_mem_node(node); 1778 1779 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1780 if (object || node != NUMA_NO_NODE) 1781 return object; 1782 1783 return get_any_partial(s, flags, c); 1784 } 1785 1786 #ifdef CONFIG_PREEMPT 1787 /* 1788 * Calculate the next globally unique transaction for disambiguiation 1789 * during cmpxchg. The transactions start with the cpu number and are then 1790 * incremented by CONFIG_NR_CPUS. 1791 */ 1792 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1793 #else 1794 /* 1795 * No preemption supported therefore also no need to check for 1796 * different cpus. 1797 */ 1798 #define TID_STEP 1 1799 #endif 1800 1801 static inline unsigned long next_tid(unsigned long tid) 1802 { 1803 return tid + TID_STEP; 1804 } 1805 1806 static inline unsigned int tid_to_cpu(unsigned long tid) 1807 { 1808 return tid % TID_STEP; 1809 } 1810 1811 static inline unsigned long tid_to_event(unsigned long tid) 1812 { 1813 return tid / TID_STEP; 1814 } 1815 1816 static inline unsigned int init_tid(int cpu) 1817 { 1818 return cpu; 1819 } 1820 1821 static inline void note_cmpxchg_failure(const char *n, 1822 const struct kmem_cache *s, unsigned long tid) 1823 { 1824 #ifdef SLUB_DEBUG_CMPXCHG 1825 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1826 1827 pr_info("%s %s: cmpxchg redo ", n, s->name); 1828 1829 #ifdef CONFIG_PREEMPT 1830 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1831 pr_warn("due to cpu change %d -> %d\n", 1832 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1833 else 1834 #endif 1835 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1836 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1837 tid_to_event(tid), tid_to_event(actual_tid)); 1838 else 1839 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1840 actual_tid, tid, next_tid(tid)); 1841 #endif 1842 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1843 } 1844 1845 static void init_kmem_cache_cpus(struct kmem_cache *s) 1846 { 1847 int cpu; 1848 1849 for_each_possible_cpu(cpu) 1850 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1851 } 1852 1853 /* 1854 * Remove the cpu slab 1855 */ 1856 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1857 void *freelist) 1858 { 1859 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1860 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1861 int lock = 0; 1862 enum slab_modes l = M_NONE, m = M_NONE; 1863 void *nextfree; 1864 int tail = DEACTIVATE_TO_HEAD; 1865 struct page new; 1866 struct page old; 1867 1868 if (page->freelist) { 1869 stat(s, DEACTIVATE_REMOTE_FREES); 1870 tail = DEACTIVATE_TO_TAIL; 1871 } 1872 1873 /* 1874 * Stage one: Free all available per cpu objects back 1875 * to the page freelist while it is still frozen. Leave the 1876 * last one. 1877 * 1878 * There is no need to take the list->lock because the page 1879 * is still frozen. 1880 */ 1881 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1882 void *prior; 1883 unsigned long counters; 1884 1885 do { 1886 prior = page->freelist; 1887 counters = page->counters; 1888 set_freepointer(s, freelist, prior); 1889 new.counters = counters; 1890 new.inuse--; 1891 VM_BUG_ON(!new.frozen); 1892 1893 } while (!__cmpxchg_double_slab(s, page, 1894 prior, counters, 1895 freelist, new.counters, 1896 "drain percpu freelist")); 1897 1898 freelist = nextfree; 1899 } 1900 1901 /* 1902 * Stage two: Ensure that the page is unfrozen while the 1903 * list presence reflects the actual number of objects 1904 * during unfreeze. 1905 * 1906 * We setup the list membership and then perform a cmpxchg 1907 * with the count. If there is a mismatch then the page 1908 * is not unfrozen but the page is on the wrong list. 1909 * 1910 * Then we restart the process which may have to remove 1911 * the page from the list that we just put it on again 1912 * because the number of objects in the slab may have 1913 * changed. 1914 */ 1915 redo: 1916 1917 old.freelist = page->freelist; 1918 old.counters = page->counters; 1919 VM_BUG_ON(!old.frozen); 1920 1921 /* Determine target state of the slab */ 1922 new.counters = old.counters; 1923 if (freelist) { 1924 new.inuse--; 1925 set_freepointer(s, freelist, old.freelist); 1926 new.freelist = freelist; 1927 } else 1928 new.freelist = old.freelist; 1929 1930 new.frozen = 0; 1931 1932 if (!new.inuse && n->nr_partial >= s->min_partial) 1933 m = M_FREE; 1934 else if (new.freelist) { 1935 m = M_PARTIAL; 1936 if (!lock) { 1937 lock = 1; 1938 /* 1939 * Taking the spinlock removes the possiblity 1940 * that acquire_slab() will see a slab page that 1941 * is frozen 1942 */ 1943 spin_lock(&n->list_lock); 1944 } 1945 } else { 1946 m = M_FULL; 1947 if (kmem_cache_debug(s) && !lock) { 1948 lock = 1; 1949 /* 1950 * This also ensures that the scanning of full 1951 * slabs from diagnostic functions will not see 1952 * any frozen slabs. 1953 */ 1954 spin_lock(&n->list_lock); 1955 } 1956 } 1957 1958 if (l != m) { 1959 1960 if (l == M_PARTIAL) 1961 1962 remove_partial(n, page); 1963 1964 else if (l == M_FULL) 1965 1966 remove_full(s, n, page); 1967 1968 if (m == M_PARTIAL) { 1969 1970 add_partial(n, page, tail); 1971 stat(s, tail); 1972 1973 } else if (m == M_FULL) { 1974 1975 stat(s, DEACTIVATE_FULL); 1976 add_full(s, n, page); 1977 1978 } 1979 } 1980 1981 l = m; 1982 if (!__cmpxchg_double_slab(s, page, 1983 old.freelist, old.counters, 1984 new.freelist, new.counters, 1985 "unfreezing slab")) 1986 goto redo; 1987 1988 if (lock) 1989 spin_unlock(&n->list_lock); 1990 1991 if (m == M_FREE) { 1992 stat(s, DEACTIVATE_EMPTY); 1993 discard_slab(s, page); 1994 stat(s, FREE_SLAB); 1995 } 1996 } 1997 1998 /* 1999 * Unfreeze all the cpu partial slabs. 2000 * 2001 * This function must be called with interrupts disabled 2002 * for the cpu using c (or some other guarantee must be there 2003 * to guarantee no concurrent accesses). 2004 */ 2005 static void unfreeze_partials(struct kmem_cache *s, 2006 struct kmem_cache_cpu *c) 2007 { 2008 #ifdef CONFIG_SLUB_CPU_PARTIAL 2009 struct kmem_cache_node *n = NULL, *n2 = NULL; 2010 struct page *page, *discard_page = NULL; 2011 2012 while ((page = c->partial)) { 2013 struct page new; 2014 struct page old; 2015 2016 c->partial = page->next; 2017 2018 n2 = get_node(s, page_to_nid(page)); 2019 if (n != n2) { 2020 if (n) 2021 spin_unlock(&n->list_lock); 2022 2023 n = n2; 2024 spin_lock(&n->list_lock); 2025 } 2026 2027 do { 2028 2029 old.freelist = page->freelist; 2030 old.counters = page->counters; 2031 VM_BUG_ON(!old.frozen); 2032 2033 new.counters = old.counters; 2034 new.freelist = old.freelist; 2035 2036 new.frozen = 0; 2037 2038 } while (!__cmpxchg_double_slab(s, page, 2039 old.freelist, old.counters, 2040 new.freelist, new.counters, 2041 "unfreezing slab")); 2042 2043 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2044 page->next = discard_page; 2045 discard_page = page; 2046 } else { 2047 add_partial(n, page, DEACTIVATE_TO_TAIL); 2048 stat(s, FREE_ADD_PARTIAL); 2049 } 2050 } 2051 2052 if (n) 2053 spin_unlock(&n->list_lock); 2054 2055 while (discard_page) { 2056 page = discard_page; 2057 discard_page = discard_page->next; 2058 2059 stat(s, DEACTIVATE_EMPTY); 2060 discard_slab(s, page); 2061 stat(s, FREE_SLAB); 2062 } 2063 #endif 2064 } 2065 2066 /* 2067 * Put a page that was just frozen (in __slab_free) into a partial page 2068 * slot if available. This is done without interrupts disabled and without 2069 * preemption disabled. The cmpxchg is racy and may put the partial page 2070 * onto a random cpus partial slot. 2071 * 2072 * If we did not find a slot then simply move all the partials to the 2073 * per node partial list. 2074 */ 2075 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2076 { 2077 #ifdef CONFIG_SLUB_CPU_PARTIAL 2078 struct page *oldpage; 2079 int pages; 2080 int pobjects; 2081 2082 preempt_disable(); 2083 do { 2084 pages = 0; 2085 pobjects = 0; 2086 oldpage = this_cpu_read(s->cpu_slab->partial); 2087 2088 if (oldpage) { 2089 pobjects = oldpage->pobjects; 2090 pages = oldpage->pages; 2091 if (drain && pobjects > s->cpu_partial) { 2092 unsigned long flags; 2093 /* 2094 * partial array is full. Move the existing 2095 * set to the per node partial list. 2096 */ 2097 local_irq_save(flags); 2098 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2099 local_irq_restore(flags); 2100 oldpage = NULL; 2101 pobjects = 0; 2102 pages = 0; 2103 stat(s, CPU_PARTIAL_DRAIN); 2104 } 2105 } 2106 2107 pages++; 2108 pobjects += page->objects - page->inuse; 2109 2110 page->pages = pages; 2111 page->pobjects = pobjects; 2112 page->next = oldpage; 2113 2114 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2115 != oldpage); 2116 if (unlikely(!s->cpu_partial)) { 2117 unsigned long flags; 2118 2119 local_irq_save(flags); 2120 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2121 local_irq_restore(flags); 2122 } 2123 preempt_enable(); 2124 #endif 2125 } 2126 2127 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2128 { 2129 stat(s, CPUSLAB_FLUSH); 2130 deactivate_slab(s, c->page, c->freelist); 2131 2132 c->tid = next_tid(c->tid); 2133 c->page = NULL; 2134 c->freelist = NULL; 2135 } 2136 2137 /* 2138 * Flush cpu slab. 2139 * 2140 * Called from IPI handler with interrupts disabled. 2141 */ 2142 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2143 { 2144 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2145 2146 if (likely(c)) { 2147 if (c->page) 2148 flush_slab(s, c); 2149 2150 unfreeze_partials(s, c); 2151 } 2152 } 2153 2154 static void flush_cpu_slab(void *d) 2155 { 2156 struct kmem_cache *s = d; 2157 2158 __flush_cpu_slab(s, smp_processor_id()); 2159 } 2160 2161 static bool has_cpu_slab(int cpu, void *info) 2162 { 2163 struct kmem_cache *s = info; 2164 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2165 2166 return c->page || c->partial; 2167 } 2168 2169 static void flush_all(struct kmem_cache *s) 2170 { 2171 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2172 } 2173 2174 /* 2175 * Check if the objects in a per cpu structure fit numa 2176 * locality expectations. 2177 */ 2178 static inline int node_match(struct page *page, int node) 2179 { 2180 #ifdef CONFIG_NUMA 2181 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2182 return 0; 2183 #endif 2184 return 1; 2185 } 2186 2187 #ifdef CONFIG_SLUB_DEBUG 2188 static int count_free(struct page *page) 2189 { 2190 return page->objects - page->inuse; 2191 } 2192 2193 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2194 { 2195 return atomic_long_read(&n->total_objects); 2196 } 2197 #endif /* CONFIG_SLUB_DEBUG */ 2198 2199 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2200 static unsigned long count_partial(struct kmem_cache_node *n, 2201 int (*get_count)(struct page *)) 2202 { 2203 unsigned long flags; 2204 unsigned long x = 0; 2205 struct page *page; 2206 2207 spin_lock_irqsave(&n->list_lock, flags); 2208 list_for_each_entry(page, &n->partial, lru) 2209 x += get_count(page); 2210 spin_unlock_irqrestore(&n->list_lock, flags); 2211 return x; 2212 } 2213 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2214 2215 static noinline void 2216 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2217 { 2218 #ifdef CONFIG_SLUB_DEBUG 2219 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2220 DEFAULT_RATELIMIT_BURST); 2221 int node; 2222 struct kmem_cache_node *n; 2223 2224 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2225 return; 2226 2227 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2228 nid, gfpflags); 2229 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2230 s->name, s->object_size, s->size, oo_order(s->oo), 2231 oo_order(s->min)); 2232 2233 if (oo_order(s->min) > get_order(s->object_size)) 2234 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2235 s->name); 2236 2237 for_each_kmem_cache_node(s, node, n) { 2238 unsigned long nr_slabs; 2239 unsigned long nr_objs; 2240 unsigned long nr_free; 2241 2242 nr_free = count_partial(n, count_free); 2243 nr_slabs = node_nr_slabs(n); 2244 nr_objs = node_nr_objs(n); 2245 2246 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2247 node, nr_slabs, nr_objs, nr_free); 2248 } 2249 #endif 2250 } 2251 2252 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2253 int node, struct kmem_cache_cpu **pc) 2254 { 2255 void *freelist; 2256 struct kmem_cache_cpu *c = *pc; 2257 struct page *page; 2258 2259 freelist = get_partial(s, flags, node, c); 2260 2261 if (freelist) 2262 return freelist; 2263 2264 page = new_slab(s, flags, node); 2265 if (page) { 2266 c = raw_cpu_ptr(s->cpu_slab); 2267 if (c->page) 2268 flush_slab(s, c); 2269 2270 /* 2271 * No other reference to the page yet so we can 2272 * muck around with it freely without cmpxchg 2273 */ 2274 freelist = page->freelist; 2275 page->freelist = NULL; 2276 2277 stat(s, ALLOC_SLAB); 2278 c->page = page; 2279 *pc = c; 2280 } else 2281 freelist = NULL; 2282 2283 return freelist; 2284 } 2285 2286 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2287 { 2288 if (unlikely(PageSlabPfmemalloc(page))) 2289 return gfp_pfmemalloc_allowed(gfpflags); 2290 2291 return true; 2292 } 2293 2294 /* 2295 * Check the page->freelist of a page and either transfer the freelist to the 2296 * per cpu freelist or deactivate the page. 2297 * 2298 * The page is still frozen if the return value is not NULL. 2299 * 2300 * If this function returns NULL then the page has been unfrozen. 2301 * 2302 * This function must be called with interrupt disabled. 2303 */ 2304 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2305 { 2306 struct page new; 2307 unsigned long counters; 2308 void *freelist; 2309 2310 do { 2311 freelist = page->freelist; 2312 counters = page->counters; 2313 2314 new.counters = counters; 2315 VM_BUG_ON(!new.frozen); 2316 2317 new.inuse = page->objects; 2318 new.frozen = freelist != NULL; 2319 2320 } while (!__cmpxchg_double_slab(s, page, 2321 freelist, counters, 2322 NULL, new.counters, 2323 "get_freelist")); 2324 2325 return freelist; 2326 } 2327 2328 /* 2329 * Slow path. The lockless freelist is empty or we need to perform 2330 * debugging duties. 2331 * 2332 * Processing is still very fast if new objects have been freed to the 2333 * regular freelist. In that case we simply take over the regular freelist 2334 * as the lockless freelist and zap the regular freelist. 2335 * 2336 * If that is not working then we fall back to the partial lists. We take the 2337 * first element of the freelist as the object to allocate now and move the 2338 * rest of the freelist to the lockless freelist. 2339 * 2340 * And if we were unable to get a new slab from the partial slab lists then 2341 * we need to allocate a new slab. This is the slowest path since it involves 2342 * a call to the page allocator and the setup of a new slab. 2343 * 2344 * Version of __slab_alloc to use when we know that interrupts are 2345 * already disabled (which is the case for bulk allocation). 2346 */ 2347 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2348 unsigned long addr, struct kmem_cache_cpu *c) 2349 { 2350 void *freelist; 2351 struct page *page; 2352 2353 page = c->page; 2354 if (!page) 2355 goto new_slab; 2356 redo: 2357 2358 if (unlikely(!node_match(page, node))) { 2359 int searchnode = node; 2360 2361 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2362 searchnode = node_to_mem_node(node); 2363 2364 if (unlikely(!node_match(page, searchnode))) { 2365 stat(s, ALLOC_NODE_MISMATCH); 2366 deactivate_slab(s, page, c->freelist); 2367 c->page = NULL; 2368 c->freelist = NULL; 2369 goto new_slab; 2370 } 2371 } 2372 2373 /* 2374 * By rights, we should be searching for a slab page that was 2375 * PFMEMALLOC but right now, we are losing the pfmemalloc 2376 * information when the page leaves the per-cpu allocator 2377 */ 2378 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2379 deactivate_slab(s, page, c->freelist); 2380 c->page = NULL; 2381 c->freelist = NULL; 2382 goto new_slab; 2383 } 2384 2385 /* must check again c->freelist in case of cpu migration or IRQ */ 2386 freelist = c->freelist; 2387 if (freelist) 2388 goto load_freelist; 2389 2390 freelist = get_freelist(s, page); 2391 2392 if (!freelist) { 2393 c->page = NULL; 2394 stat(s, DEACTIVATE_BYPASS); 2395 goto new_slab; 2396 } 2397 2398 stat(s, ALLOC_REFILL); 2399 2400 load_freelist: 2401 /* 2402 * freelist is pointing to the list of objects to be used. 2403 * page is pointing to the page from which the objects are obtained. 2404 * That page must be frozen for per cpu allocations to work. 2405 */ 2406 VM_BUG_ON(!c->page->frozen); 2407 c->freelist = get_freepointer(s, freelist); 2408 c->tid = next_tid(c->tid); 2409 return freelist; 2410 2411 new_slab: 2412 2413 if (c->partial) { 2414 page = c->page = c->partial; 2415 c->partial = page->next; 2416 stat(s, CPU_PARTIAL_ALLOC); 2417 c->freelist = NULL; 2418 goto redo; 2419 } 2420 2421 freelist = new_slab_objects(s, gfpflags, node, &c); 2422 2423 if (unlikely(!freelist)) { 2424 slab_out_of_memory(s, gfpflags, node); 2425 return NULL; 2426 } 2427 2428 page = c->page; 2429 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2430 goto load_freelist; 2431 2432 /* Only entered in the debug case */ 2433 if (kmem_cache_debug(s) && 2434 !alloc_debug_processing(s, page, freelist, addr)) 2435 goto new_slab; /* Slab failed checks. Next slab needed */ 2436 2437 deactivate_slab(s, page, get_freepointer(s, freelist)); 2438 c->page = NULL; 2439 c->freelist = NULL; 2440 return freelist; 2441 } 2442 2443 /* 2444 * Another one that disabled interrupt and compensates for possible 2445 * cpu changes by refetching the per cpu area pointer. 2446 */ 2447 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2448 unsigned long addr, struct kmem_cache_cpu *c) 2449 { 2450 void *p; 2451 unsigned long flags; 2452 2453 local_irq_save(flags); 2454 #ifdef CONFIG_PREEMPT 2455 /* 2456 * We may have been preempted and rescheduled on a different 2457 * cpu before disabling interrupts. Need to reload cpu area 2458 * pointer. 2459 */ 2460 c = this_cpu_ptr(s->cpu_slab); 2461 #endif 2462 2463 p = ___slab_alloc(s, gfpflags, node, addr, c); 2464 local_irq_restore(flags); 2465 return p; 2466 } 2467 2468 /* 2469 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2470 * have the fastpath folded into their functions. So no function call 2471 * overhead for requests that can be satisfied on the fastpath. 2472 * 2473 * The fastpath works by first checking if the lockless freelist can be used. 2474 * If not then __slab_alloc is called for slow processing. 2475 * 2476 * Otherwise we can simply pick the next object from the lockless free list. 2477 */ 2478 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2479 gfp_t gfpflags, int node, unsigned long addr) 2480 { 2481 void *object; 2482 struct kmem_cache_cpu *c; 2483 struct page *page; 2484 unsigned long tid; 2485 2486 s = slab_pre_alloc_hook(s, gfpflags); 2487 if (!s) 2488 return NULL; 2489 redo: 2490 /* 2491 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2492 * enabled. We may switch back and forth between cpus while 2493 * reading from one cpu area. That does not matter as long 2494 * as we end up on the original cpu again when doing the cmpxchg. 2495 * 2496 * We should guarantee that tid and kmem_cache are retrieved on 2497 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2498 * to check if it is matched or not. 2499 */ 2500 do { 2501 tid = this_cpu_read(s->cpu_slab->tid); 2502 c = raw_cpu_ptr(s->cpu_slab); 2503 } while (IS_ENABLED(CONFIG_PREEMPT) && 2504 unlikely(tid != READ_ONCE(c->tid))); 2505 2506 /* 2507 * Irqless object alloc/free algorithm used here depends on sequence 2508 * of fetching cpu_slab's data. tid should be fetched before anything 2509 * on c to guarantee that object and page associated with previous tid 2510 * won't be used with current tid. If we fetch tid first, object and 2511 * page could be one associated with next tid and our alloc/free 2512 * request will be failed. In this case, we will retry. So, no problem. 2513 */ 2514 barrier(); 2515 2516 /* 2517 * The transaction ids are globally unique per cpu and per operation on 2518 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2519 * occurs on the right processor and that there was no operation on the 2520 * linked list in between. 2521 */ 2522 2523 object = c->freelist; 2524 page = c->page; 2525 if (unlikely(!object || !node_match(page, node))) { 2526 object = __slab_alloc(s, gfpflags, node, addr, c); 2527 stat(s, ALLOC_SLOWPATH); 2528 } else { 2529 void *next_object = get_freepointer_safe(s, object); 2530 2531 /* 2532 * The cmpxchg will only match if there was no additional 2533 * operation and if we are on the right processor. 2534 * 2535 * The cmpxchg does the following atomically (without lock 2536 * semantics!) 2537 * 1. Relocate first pointer to the current per cpu area. 2538 * 2. Verify that tid and freelist have not been changed 2539 * 3. If they were not changed replace tid and freelist 2540 * 2541 * Since this is without lock semantics the protection is only 2542 * against code executing on this cpu *not* from access by 2543 * other cpus. 2544 */ 2545 if (unlikely(!this_cpu_cmpxchg_double( 2546 s->cpu_slab->freelist, s->cpu_slab->tid, 2547 object, tid, 2548 next_object, next_tid(tid)))) { 2549 2550 note_cmpxchg_failure("slab_alloc", s, tid); 2551 goto redo; 2552 } 2553 prefetch_freepointer(s, next_object); 2554 stat(s, ALLOC_FASTPATH); 2555 } 2556 2557 if (unlikely(gfpflags & __GFP_ZERO) && object) 2558 memset(object, 0, s->object_size); 2559 2560 slab_post_alloc_hook(s, gfpflags, 1, &object); 2561 2562 return object; 2563 } 2564 2565 static __always_inline void *slab_alloc(struct kmem_cache *s, 2566 gfp_t gfpflags, unsigned long addr) 2567 { 2568 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2569 } 2570 2571 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2572 { 2573 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2574 2575 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2576 s->size, gfpflags); 2577 2578 return ret; 2579 } 2580 EXPORT_SYMBOL(kmem_cache_alloc); 2581 2582 #ifdef CONFIG_TRACING 2583 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2584 { 2585 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2586 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2587 kasan_kmalloc(s, ret, size); 2588 return ret; 2589 } 2590 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2591 #endif 2592 2593 #ifdef CONFIG_NUMA 2594 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2595 { 2596 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2597 2598 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2599 s->object_size, s->size, gfpflags, node); 2600 2601 return ret; 2602 } 2603 EXPORT_SYMBOL(kmem_cache_alloc_node); 2604 2605 #ifdef CONFIG_TRACING 2606 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2607 gfp_t gfpflags, 2608 int node, size_t size) 2609 { 2610 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2611 2612 trace_kmalloc_node(_RET_IP_, ret, 2613 size, s->size, gfpflags, node); 2614 2615 kasan_kmalloc(s, ret, size); 2616 return ret; 2617 } 2618 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2619 #endif 2620 #endif 2621 2622 /* 2623 * Slow path handling. This may still be called frequently since objects 2624 * have a longer lifetime than the cpu slabs in most processing loads. 2625 * 2626 * So we still attempt to reduce cache line usage. Just take the slab 2627 * lock and free the item. If there is no additional partial page 2628 * handling required then we can return immediately. 2629 */ 2630 static void __slab_free(struct kmem_cache *s, struct page *page, 2631 void *head, void *tail, int cnt, 2632 unsigned long addr) 2633 2634 { 2635 void *prior; 2636 int was_frozen; 2637 struct page new; 2638 unsigned long counters; 2639 struct kmem_cache_node *n = NULL; 2640 unsigned long uninitialized_var(flags); 2641 2642 stat(s, FREE_SLOWPATH); 2643 2644 if (kmem_cache_debug(s) && 2645 !(n = free_debug_processing(s, page, head, tail, cnt, 2646 addr, &flags))) 2647 return; 2648 2649 do { 2650 if (unlikely(n)) { 2651 spin_unlock_irqrestore(&n->list_lock, flags); 2652 n = NULL; 2653 } 2654 prior = page->freelist; 2655 counters = page->counters; 2656 set_freepointer(s, tail, prior); 2657 new.counters = counters; 2658 was_frozen = new.frozen; 2659 new.inuse -= cnt; 2660 if ((!new.inuse || !prior) && !was_frozen) { 2661 2662 if (kmem_cache_has_cpu_partial(s) && !prior) { 2663 2664 /* 2665 * Slab was on no list before and will be 2666 * partially empty 2667 * We can defer the list move and instead 2668 * freeze it. 2669 */ 2670 new.frozen = 1; 2671 2672 } else { /* Needs to be taken off a list */ 2673 2674 n = get_node(s, page_to_nid(page)); 2675 /* 2676 * Speculatively acquire the list_lock. 2677 * If the cmpxchg does not succeed then we may 2678 * drop the list_lock without any processing. 2679 * 2680 * Otherwise the list_lock will synchronize with 2681 * other processors updating the list of slabs. 2682 */ 2683 spin_lock_irqsave(&n->list_lock, flags); 2684 2685 } 2686 } 2687 2688 } while (!cmpxchg_double_slab(s, page, 2689 prior, counters, 2690 head, new.counters, 2691 "__slab_free")); 2692 2693 if (likely(!n)) { 2694 2695 /* 2696 * If we just froze the page then put it onto the 2697 * per cpu partial list. 2698 */ 2699 if (new.frozen && !was_frozen) { 2700 put_cpu_partial(s, page, 1); 2701 stat(s, CPU_PARTIAL_FREE); 2702 } 2703 /* 2704 * The list lock was not taken therefore no list 2705 * activity can be necessary. 2706 */ 2707 if (was_frozen) 2708 stat(s, FREE_FROZEN); 2709 return; 2710 } 2711 2712 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2713 goto slab_empty; 2714 2715 /* 2716 * Objects left in the slab. If it was not on the partial list before 2717 * then add it. 2718 */ 2719 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2720 if (kmem_cache_debug(s)) 2721 remove_full(s, n, page); 2722 add_partial(n, page, DEACTIVATE_TO_TAIL); 2723 stat(s, FREE_ADD_PARTIAL); 2724 } 2725 spin_unlock_irqrestore(&n->list_lock, flags); 2726 return; 2727 2728 slab_empty: 2729 if (prior) { 2730 /* 2731 * Slab on the partial list. 2732 */ 2733 remove_partial(n, page); 2734 stat(s, FREE_REMOVE_PARTIAL); 2735 } else { 2736 /* Slab must be on the full list */ 2737 remove_full(s, n, page); 2738 } 2739 2740 spin_unlock_irqrestore(&n->list_lock, flags); 2741 stat(s, FREE_SLAB); 2742 discard_slab(s, page); 2743 } 2744 2745 /* 2746 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2747 * can perform fastpath freeing without additional function calls. 2748 * 2749 * The fastpath is only possible if we are freeing to the current cpu slab 2750 * of this processor. This typically the case if we have just allocated 2751 * the item before. 2752 * 2753 * If fastpath is not possible then fall back to __slab_free where we deal 2754 * with all sorts of special processing. 2755 * 2756 * Bulk free of a freelist with several objects (all pointing to the 2757 * same page) possible by specifying head and tail ptr, plus objects 2758 * count (cnt). Bulk free indicated by tail pointer being set. 2759 */ 2760 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2761 void *head, void *tail, int cnt, 2762 unsigned long addr) 2763 { 2764 void *tail_obj = tail ? : head; 2765 struct kmem_cache_cpu *c; 2766 unsigned long tid; 2767 2768 slab_free_freelist_hook(s, head, tail); 2769 2770 redo: 2771 /* 2772 * Determine the currently cpus per cpu slab. 2773 * The cpu may change afterward. However that does not matter since 2774 * data is retrieved via this pointer. If we are on the same cpu 2775 * during the cmpxchg then the free will succeed. 2776 */ 2777 do { 2778 tid = this_cpu_read(s->cpu_slab->tid); 2779 c = raw_cpu_ptr(s->cpu_slab); 2780 } while (IS_ENABLED(CONFIG_PREEMPT) && 2781 unlikely(tid != READ_ONCE(c->tid))); 2782 2783 /* Same with comment on barrier() in slab_alloc_node() */ 2784 barrier(); 2785 2786 if (likely(page == c->page)) { 2787 set_freepointer(s, tail_obj, c->freelist); 2788 2789 if (unlikely(!this_cpu_cmpxchg_double( 2790 s->cpu_slab->freelist, s->cpu_slab->tid, 2791 c->freelist, tid, 2792 head, next_tid(tid)))) { 2793 2794 note_cmpxchg_failure("slab_free", s, tid); 2795 goto redo; 2796 } 2797 stat(s, FREE_FASTPATH); 2798 } else 2799 __slab_free(s, page, head, tail_obj, cnt, addr); 2800 2801 } 2802 2803 void kmem_cache_free(struct kmem_cache *s, void *x) 2804 { 2805 s = cache_from_obj(s, x); 2806 if (!s) 2807 return; 2808 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 2809 trace_kmem_cache_free(_RET_IP_, x); 2810 } 2811 EXPORT_SYMBOL(kmem_cache_free); 2812 2813 struct detached_freelist { 2814 struct page *page; 2815 void *tail; 2816 void *freelist; 2817 int cnt; 2818 }; 2819 2820 /* 2821 * This function progressively scans the array with free objects (with 2822 * a limited look ahead) and extract objects belonging to the same 2823 * page. It builds a detached freelist directly within the given 2824 * page/objects. This can happen without any need for 2825 * synchronization, because the objects are owned by running process. 2826 * The freelist is build up as a single linked list in the objects. 2827 * The idea is, that this detached freelist can then be bulk 2828 * transferred to the real freelist(s), but only requiring a single 2829 * synchronization primitive. Look ahead in the array is limited due 2830 * to performance reasons. 2831 */ 2832 static int build_detached_freelist(struct kmem_cache *s, size_t size, 2833 void **p, struct detached_freelist *df) 2834 { 2835 size_t first_skipped_index = 0; 2836 int lookahead = 3; 2837 void *object; 2838 2839 /* Always re-init detached_freelist */ 2840 df->page = NULL; 2841 2842 do { 2843 object = p[--size]; 2844 } while (!object && size); 2845 2846 if (!object) 2847 return 0; 2848 2849 /* Start new detached freelist */ 2850 set_freepointer(s, object, NULL); 2851 df->page = virt_to_head_page(object); 2852 df->tail = object; 2853 df->freelist = object; 2854 p[size] = NULL; /* mark object processed */ 2855 df->cnt = 1; 2856 2857 while (size) { 2858 object = p[--size]; 2859 if (!object) 2860 continue; /* Skip processed objects */ 2861 2862 /* df->page is always set at this point */ 2863 if (df->page == virt_to_head_page(object)) { 2864 /* Opportunity build freelist */ 2865 set_freepointer(s, object, df->freelist); 2866 df->freelist = object; 2867 df->cnt++; 2868 p[size] = NULL; /* mark object processed */ 2869 2870 continue; 2871 } 2872 2873 /* Limit look ahead search */ 2874 if (!--lookahead) 2875 break; 2876 2877 if (!first_skipped_index) 2878 first_skipped_index = size + 1; 2879 } 2880 2881 return first_skipped_index; 2882 } 2883 2884 2885 /* Note that interrupts must be enabled when calling this function. */ 2886 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 2887 { 2888 if (WARN_ON(!size)) 2889 return; 2890 2891 do { 2892 struct detached_freelist df; 2893 struct kmem_cache *s; 2894 2895 /* Support for memcg */ 2896 s = cache_from_obj(orig_s, p[size - 1]); 2897 2898 size = build_detached_freelist(s, size, p, &df); 2899 if (unlikely(!df.page)) 2900 continue; 2901 2902 slab_free(s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_); 2903 } while (likely(size)); 2904 } 2905 EXPORT_SYMBOL(kmem_cache_free_bulk); 2906 2907 /* Note that interrupts must be enabled when calling this function. */ 2908 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 2909 void **p) 2910 { 2911 struct kmem_cache_cpu *c; 2912 int i; 2913 2914 /* memcg and kmem_cache debug support */ 2915 s = slab_pre_alloc_hook(s, flags); 2916 if (unlikely(!s)) 2917 return false; 2918 /* 2919 * Drain objects in the per cpu slab, while disabling local 2920 * IRQs, which protects against PREEMPT and interrupts 2921 * handlers invoking normal fastpath. 2922 */ 2923 local_irq_disable(); 2924 c = this_cpu_ptr(s->cpu_slab); 2925 2926 for (i = 0; i < size; i++) { 2927 void *object = c->freelist; 2928 2929 if (unlikely(!object)) { 2930 /* 2931 * Invoking slow path likely have side-effect 2932 * of re-populating per CPU c->freelist 2933 */ 2934 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 2935 _RET_IP_, c); 2936 if (unlikely(!p[i])) 2937 goto error; 2938 2939 c = this_cpu_ptr(s->cpu_slab); 2940 continue; /* goto for-loop */ 2941 } 2942 c->freelist = get_freepointer(s, object); 2943 p[i] = object; 2944 } 2945 c->tid = next_tid(c->tid); 2946 local_irq_enable(); 2947 2948 /* Clear memory outside IRQ disabled fastpath loop */ 2949 if (unlikely(flags & __GFP_ZERO)) { 2950 int j; 2951 2952 for (j = 0; j < i; j++) 2953 memset(p[j], 0, s->object_size); 2954 } 2955 2956 /* memcg and kmem_cache debug support */ 2957 slab_post_alloc_hook(s, flags, size, p); 2958 return i; 2959 error: 2960 local_irq_enable(); 2961 slab_post_alloc_hook(s, flags, i, p); 2962 __kmem_cache_free_bulk(s, i, p); 2963 return 0; 2964 } 2965 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 2966 2967 2968 /* 2969 * Object placement in a slab is made very easy because we always start at 2970 * offset 0. If we tune the size of the object to the alignment then we can 2971 * get the required alignment by putting one properly sized object after 2972 * another. 2973 * 2974 * Notice that the allocation order determines the sizes of the per cpu 2975 * caches. Each processor has always one slab available for allocations. 2976 * Increasing the allocation order reduces the number of times that slabs 2977 * must be moved on and off the partial lists and is therefore a factor in 2978 * locking overhead. 2979 */ 2980 2981 /* 2982 * Mininum / Maximum order of slab pages. This influences locking overhead 2983 * and slab fragmentation. A higher order reduces the number of partial slabs 2984 * and increases the number of allocations possible without having to 2985 * take the list_lock. 2986 */ 2987 static int slub_min_order; 2988 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2989 static int slub_min_objects; 2990 2991 /* 2992 * Calculate the order of allocation given an slab object size. 2993 * 2994 * The order of allocation has significant impact on performance and other 2995 * system components. Generally order 0 allocations should be preferred since 2996 * order 0 does not cause fragmentation in the page allocator. Larger objects 2997 * be problematic to put into order 0 slabs because there may be too much 2998 * unused space left. We go to a higher order if more than 1/16th of the slab 2999 * would be wasted. 3000 * 3001 * In order to reach satisfactory performance we must ensure that a minimum 3002 * number of objects is in one slab. Otherwise we may generate too much 3003 * activity on the partial lists which requires taking the list_lock. This is 3004 * less a concern for large slabs though which are rarely used. 3005 * 3006 * slub_max_order specifies the order where we begin to stop considering the 3007 * number of objects in a slab as critical. If we reach slub_max_order then 3008 * we try to keep the page order as low as possible. So we accept more waste 3009 * of space in favor of a small page order. 3010 * 3011 * Higher order allocations also allow the placement of more objects in a 3012 * slab and thereby reduce object handling overhead. If the user has 3013 * requested a higher mininum order then we start with that one instead of 3014 * the smallest order which will fit the object. 3015 */ 3016 static inline int slab_order(int size, int min_objects, 3017 int max_order, int fract_leftover, int reserved) 3018 { 3019 int order; 3020 int rem; 3021 int min_order = slub_min_order; 3022 3023 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 3024 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3025 3026 for (order = max(min_order, get_order(min_objects * size + reserved)); 3027 order <= max_order; order++) { 3028 3029 unsigned long slab_size = PAGE_SIZE << order; 3030 3031 rem = (slab_size - reserved) % size; 3032 3033 if (rem <= slab_size / fract_leftover) 3034 break; 3035 } 3036 3037 return order; 3038 } 3039 3040 static inline int calculate_order(int size, int reserved) 3041 { 3042 int order; 3043 int min_objects; 3044 int fraction; 3045 int max_objects; 3046 3047 /* 3048 * Attempt to find best configuration for a slab. This 3049 * works by first attempting to generate a layout with 3050 * the best configuration and backing off gradually. 3051 * 3052 * First we increase the acceptable waste in a slab. Then 3053 * we reduce the minimum objects required in a slab. 3054 */ 3055 min_objects = slub_min_objects; 3056 if (!min_objects) 3057 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3058 max_objects = order_objects(slub_max_order, size, reserved); 3059 min_objects = min(min_objects, max_objects); 3060 3061 while (min_objects > 1) { 3062 fraction = 16; 3063 while (fraction >= 4) { 3064 order = slab_order(size, min_objects, 3065 slub_max_order, fraction, reserved); 3066 if (order <= slub_max_order) 3067 return order; 3068 fraction /= 2; 3069 } 3070 min_objects--; 3071 } 3072 3073 /* 3074 * We were unable to place multiple objects in a slab. Now 3075 * lets see if we can place a single object there. 3076 */ 3077 order = slab_order(size, 1, slub_max_order, 1, reserved); 3078 if (order <= slub_max_order) 3079 return order; 3080 3081 /* 3082 * Doh this slab cannot be placed using slub_max_order. 3083 */ 3084 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 3085 if (order < MAX_ORDER) 3086 return order; 3087 return -ENOSYS; 3088 } 3089 3090 static void 3091 init_kmem_cache_node(struct kmem_cache_node *n) 3092 { 3093 n->nr_partial = 0; 3094 spin_lock_init(&n->list_lock); 3095 INIT_LIST_HEAD(&n->partial); 3096 #ifdef CONFIG_SLUB_DEBUG 3097 atomic_long_set(&n->nr_slabs, 0); 3098 atomic_long_set(&n->total_objects, 0); 3099 INIT_LIST_HEAD(&n->full); 3100 #endif 3101 } 3102 3103 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3104 { 3105 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3106 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3107 3108 /* 3109 * Must align to double word boundary for the double cmpxchg 3110 * instructions to work; see __pcpu_double_call_return_bool(). 3111 */ 3112 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3113 2 * sizeof(void *)); 3114 3115 if (!s->cpu_slab) 3116 return 0; 3117 3118 init_kmem_cache_cpus(s); 3119 3120 return 1; 3121 } 3122 3123 static struct kmem_cache *kmem_cache_node; 3124 3125 /* 3126 * No kmalloc_node yet so do it by hand. We know that this is the first 3127 * slab on the node for this slabcache. There are no concurrent accesses 3128 * possible. 3129 * 3130 * Note that this function only works on the kmem_cache_node 3131 * when allocating for the kmem_cache_node. This is used for bootstrapping 3132 * memory on a fresh node that has no slab structures yet. 3133 */ 3134 static void early_kmem_cache_node_alloc(int node) 3135 { 3136 struct page *page; 3137 struct kmem_cache_node *n; 3138 3139 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3140 3141 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3142 3143 BUG_ON(!page); 3144 if (page_to_nid(page) != node) { 3145 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3146 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3147 } 3148 3149 n = page->freelist; 3150 BUG_ON(!n); 3151 page->freelist = get_freepointer(kmem_cache_node, n); 3152 page->inuse = 1; 3153 page->frozen = 0; 3154 kmem_cache_node->node[node] = n; 3155 #ifdef CONFIG_SLUB_DEBUG 3156 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3157 init_tracking(kmem_cache_node, n); 3158 #endif 3159 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node)); 3160 init_kmem_cache_node(n); 3161 inc_slabs_node(kmem_cache_node, node, page->objects); 3162 3163 /* 3164 * No locks need to be taken here as it has just been 3165 * initialized and there is no concurrent access. 3166 */ 3167 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3168 } 3169 3170 static void free_kmem_cache_nodes(struct kmem_cache *s) 3171 { 3172 int node; 3173 struct kmem_cache_node *n; 3174 3175 for_each_kmem_cache_node(s, node, n) { 3176 kmem_cache_free(kmem_cache_node, n); 3177 s->node[node] = NULL; 3178 } 3179 } 3180 3181 void __kmem_cache_release(struct kmem_cache *s) 3182 { 3183 free_percpu(s->cpu_slab); 3184 free_kmem_cache_nodes(s); 3185 } 3186 3187 static int init_kmem_cache_nodes(struct kmem_cache *s) 3188 { 3189 int node; 3190 3191 for_each_node_state(node, N_NORMAL_MEMORY) { 3192 struct kmem_cache_node *n; 3193 3194 if (slab_state == DOWN) { 3195 early_kmem_cache_node_alloc(node); 3196 continue; 3197 } 3198 n = kmem_cache_alloc_node(kmem_cache_node, 3199 GFP_KERNEL, node); 3200 3201 if (!n) { 3202 free_kmem_cache_nodes(s); 3203 return 0; 3204 } 3205 3206 s->node[node] = n; 3207 init_kmem_cache_node(n); 3208 } 3209 return 1; 3210 } 3211 3212 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3213 { 3214 if (min < MIN_PARTIAL) 3215 min = MIN_PARTIAL; 3216 else if (min > MAX_PARTIAL) 3217 min = MAX_PARTIAL; 3218 s->min_partial = min; 3219 } 3220 3221 /* 3222 * calculate_sizes() determines the order and the distribution of data within 3223 * a slab object. 3224 */ 3225 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3226 { 3227 unsigned long flags = s->flags; 3228 unsigned long size = s->object_size; 3229 int order; 3230 3231 /* 3232 * Round up object size to the next word boundary. We can only 3233 * place the free pointer at word boundaries and this determines 3234 * the possible location of the free pointer. 3235 */ 3236 size = ALIGN(size, sizeof(void *)); 3237 3238 #ifdef CONFIG_SLUB_DEBUG 3239 /* 3240 * Determine if we can poison the object itself. If the user of 3241 * the slab may touch the object after free or before allocation 3242 * then we should never poison the object itself. 3243 */ 3244 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 3245 !s->ctor) 3246 s->flags |= __OBJECT_POISON; 3247 else 3248 s->flags &= ~__OBJECT_POISON; 3249 3250 3251 /* 3252 * If we are Redzoning then check if there is some space between the 3253 * end of the object and the free pointer. If not then add an 3254 * additional word to have some bytes to store Redzone information. 3255 */ 3256 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3257 size += sizeof(void *); 3258 #endif 3259 3260 /* 3261 * With that we have determined the number of bytes in actual use 3262 * by the object. This is the potential offset to the free pointer. 3263 */ 3264 s->inuse = size; 3265 3266 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 3267 s->ctor)) { 3268 /* 3269 * Relocate free pointer after the object if it is not 3270 * permitted to overwrite the first word of the object on 3271 * kmem_cache_free. 3272 * 3273 * This is the case if we do RCU, have a constructor or 3274 * destructor or are poisoning the objects. 3275 */ 3276 s->offset = size; 3277 size += sizeof(void *); 3278 } 3279 3280 #ifdef CONFIG_SLUB_DEBUG 3281 if (flags & SLAB_STORE_USER) 3282 /* 3283 * Need to store information about allocs and frees after 3284 * the object. 3285 */ 3286 size += 2 * sizeof(struct track); 3287 3288 if (flags & SLAB_RED_ZONE) 3289 /* 3290 * Add some empty padding so that we can catch 3291 * overwrites from earlier objects rather than let 3292 * tracking information or the free pointer be 3293 * corrupted if a user writes before the start 3294 * of the object. 3295 */ 3296 size += sizeof(void *); 3297 #endif 3298 3299 /* 3300 * SLUB stores one object immediately after another beginning from 3301 * offset 0. In order to align the objects we have to simply size 3302 * each object to conform to the alignment. 3303 */ 3304 size = ALIGN(size, s->align); 3305 s->size = size; 3306 if (forced_order >= 0) 3307 order = forced_order; 3308 else 3309 order = calculate_order(size, s->reserved); 3310 3311 if (order < 0) 3312 return 0; 3313 3314 s->allocflags = 0; 3315 if (order) 3316 s->allocflags |= __GFP_COMP; 3317 3318 if (s->flags & SLAB_CACHE_DMA) 3319 s->allocflags |= GFP_DMA; 3320 3321 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3322 s->allocflags |= __GFP_RECLAIMABLE; 3323 3324 /* 3325 * Determine the number of objects per slab 3326 */ 3327 s->oo = oo_make(order, size, s->reserved); 3328 s->min = oo_make(get_order(size), size, s->reserved); 3329 if (oo_objects(s->oo) > oo_objects(s->max)) 3330 s->max = s->oo; 3331 3332 return !!oo_objects(s->oo); 3333 } 3334 3335 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3336 { 3337 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3338 s->reserved = 0; 3339 3340 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3341 s->reserved = sizeof(struct rcu_head); 3342 3343 if (!calculate_sizes(s, -1)) 3344 goto error; 3345 if (disable_higher_order_debug) { 3346 /* 3347 * Disable debugging flags that store metadata if the min slab 3348 * order increased. 3349 */ 3350 if (get_order(s->size) > get_order(s->object_size)) { 3351 s->flags &= ~DEBUG_METADATA_FLAGS; 3352 s->offset = 0; 3353 if (!calculate_sizes(s, -1)) 3354 goto error; 3355 } 3356 } 3357 3358 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3359 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3360 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3361 /* Enable fast mode */ 3362 s->flags |= __CMPXCHG_DOUBLE; 3363 #endif 3364 3365 /* 3366 * The larger the object size is, the more pages we want on the partial 3367 * list to avoid pounding the page allocator excessively. 3368 */ 3369 set_min_partial(s, ilog2(s->size) / 2); 3370 3371 /* 3372 * cpu_partial determined the maximum number of objects kept in the 3373 * per cpu partial lists of a processor. 3374 * 3375 * Per cpu partial lists mainly contain slabs that just have one 3376 * object freed. If they are used for allocation then they can be 3377 * filled up again with minimal effort. The slab will never hit the 3378 * per node partial lists and therefore no locking will be required. 3379 * 3380 * This setting also determines 3381 * 3382 * A) The number of objects from per cpu partial slabs dumped to the 3383 * per node list when we reach the limit. 3384 * B) The number of objects in cpu partial slabs to extract from the 3385 * per node list when we run out of per cpu objects. We only fetch 3386 * 50% to keep some capacity around for frees. 3387 */ 3388 if (!kmem_cache_has_cpu_partial(s)) 3389 s->cpu_partial = 0; 3390 else if (s->size >= PAGE_SIZE) 3391 s->cpu_partial = 2; 3392 else if (s->size >= 1024) 3393 s->cpu_partial = 6; 3394 else if (s->size >= 256) 3395 s->cpu_partial = 13; 3396 else 3397 s->cpu_partial = 30; 3398 3399 #ifdef CONFIG_NUMA 3400 s->remote_node_defrag_ratio = 1000; 3401 #endif 3402 if (!init_kmem_cache_nodes(s)) 3403 goto error; 3404 3405 if (alloc_kmem_cache_cpus(s)) 3406 return 0; 3407 3408 free_kmem_cache_nodes(s); 3409 error: 3410 if (flags & SLAB_PANIC) 3411 panic("Cannot create slab %s size=%lu realsize=%u " 3412 "order=%u offset=%u flags=%lx\n", 3413 s->name, (unsigned long)s->size, s->size, 3414 oo_order(s->oo), s->offset, flags); 3415 return -EINVAL; 3416 } 3417 3418 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3419 const char *text) 3420 { 3421 #ifdef CONFIG_SLUB_DEBUG 3422 void *addr = page_address(page); 3423 void *p; 3424 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3425 sizeof(long), GFP_ATOMIC); 3426 if (!map) 3427 return; 3428 slab_err(s, page, text, s->name); 3429 slab_lock(page); 3430 3431 get_map(s, page, map); 3432 for_each_object(p, s, addr, page->objects) { 3433 3434 if (!test_bit(slab_index(p, s, addr), map)) { 3435 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3436 print_tracking(s, p); 3437 } 3438 } 3439 slab_unlock(page); 3440 kfree(map); 3441 #endif 3442 } 3443 3444 /* 3445 * Attempt to free all partial slabs on a node. 3446 * This is called from __kmem_cache_shutdown(). We must take list_lock 3447 * because sysfs file might still access partial list after the shutdowning. 3448 */ 3449 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3450 { 3451 struct page *page, *h; 3452 3453 BUG_ON(irqs_disabled()); 3454 spin_lock_irq(&n->list_lock); 3455 list_for_each_entry_safe(page, h, &n->partial, lru) { 3456 if (!page->inuse) { 3457 remove_partial(n, page); 3458 discard_slab(s, page); 3459 } else { 3460 list_slab_objects(s, page, 3461 "Objects remaining in %s on __kmem_cache_shutdown()"); 3462 } 3463 } 3464 spin_unlock_irq(&n->list_lock); 3465 } 3466 3467 /* 3468 * Release all resources used by a slab cache. 3469 */ 3470 int __kmem_cache_shutdown(struct kmem_cache *s) 3471 { 3472 int node; 3473 struct kmem_cache_node *n; 3474 3475 flush_all(s); 3476 /* Attempt to free all objects */ 3477 for_each_kmem_cache_node(s, node, n) { 3478 free_partial(s, n); 3479 if (n->nr_partial || slabs_node(s, node)) 3480 return 1; 3481 } 3482 return 0; 3483 } 3484 3485 /******************************************************************** 3486 * Kmalloc subsystem 3487 *******************************************************************/ 3488 3489 static int __init setup_slub_min_order(char *str) 3490 { 3491 get_option(&str, &slub_min_order); 3492 3493 return 1; 3494 } 3495 3496 __setup("slub_min_order=", setup_slub_min_order); 3497 3498 static int __init setup_slub_max_order(char *str) 3499 { 3500 get_option(&str, &slub_max_order); 3501 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3502 3503 return 1; 3504 } 3505 3506 __setup("slub_max_order=", setup_slub_max_order); 3507 3508 static int __init setup_slub_min_objects(char *str) 3509 { 3510 get_option(&str, &slub_min_objects); 3511 3512 return 1; 3513 } 3514 3515 __setup("slub_min_objects=", setup_slub_min_objects); 3516 3517 void *__kmalloc(size_t size, gfp_t flags) 3518 { 3519 struct kmem_cache *s; 3520 void *ret; 3521 3522 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3523 return kmalloc_large(size, flags); 3524 3525 s = kmalloc_slab(size, flags); 3526 3527 if (unlikely(ZERO_OR_NULL_PTR(s))) 3528 return s; 3529 3530 ret = slab_alloc(s, flags, _RET_IP_); 3531 3532 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3533 3534 kasan_kmalloc(s, ret, size); 3535 3536 return ret; 3537 } 3538 EXPORT_SYMBOL(__kmalloc); 3539 3540 #ifdef CONFIG_NUMA 3541 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3542 { 3543 struct page *page; 3544 void *ptr = NULL; 3545 3546 flags |= __GFP_COMP | __GFP_NOTRACK; 3547 page = alloc_kmem_pages_node(node, flags, get_order(size)); 3548 if (page) 3549 ptr = page_address(page); 3550 3551 kmalloc_large_node_hook(ptr, size, flags); 3552 return ptr; 3553 } 3554 3555 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3556 { 3557 struct kmem_cache *s; 3558 void *ret; 3559 3560 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3561 ret = kmalloc_large_node(size, flags, node); 3562 3563 trace_kmalloc_node(_RET_IP_, ret, 3564 size, PAGE_SIZE << get_order(size), 3565 flags, node); 3566 3567 return ret; 3568 } 3569 3570 s = kmalloc_slab(size, flags); 3571 3572 if (unlikely(ZERO_OR_NULL_PTR(s))) 3573 return s; 3574 3575 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3576 3577 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3578 3579 kasan_kmalloc(s, ret, size); 3580 3581 return ret; 3582 } 3583 EXPORT_SYMBOL(__kmalloc_node); 3584 #endif 3585 3586 static size_t __ksize(const void *object) 3587 { 3588 struct page *page; 3589 3590 if (unlikely(object == ZERO_SIZE_PTR)) 3591 return 0; 3592 3593 page = virt_to_head_page(object); 3594 3595 if (unlikely(!PageSlab(page))) { 3596 WARN_ON(!PageCompound(page)); 3597 return PAGE_SIZE << compound_order(page); 3598 } 3599 3600 return slab_ksize(page->slab_cache); 3601 } 3602 3603 size_t ksize(const void *object) 3604 { 3605 size_t size = __ksize(object); 3606 /* We assume that ksize callers could use whole allocated area, 3607 so we need unpoison this area. */ 3608 kasan_krealloc(object, size); 3609 return size; 3610 } 3611 EXPORT_SYMBOL(ksize); 3612 3613 void kfree(const void *x) 3614 { 3615 struct page *page; 3616 void *object = (void *)x; 3617 3618 trace_kfree(_RET_IP_, x); 3619 3620 if (unlikely(ZERO_OR_NULL_PTR(x))) 3621 return; 3622 3623 page = virt_to_head_page(x); 3624 if (unlikely(!PageSlab(page))) { 3625 BUG_ON(!PageCompound(page)); 3626 kfree_hook(x); 3627 __free_kmem_pages(page, compound_order(page)); 3628 return; 3629 } 3630 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3631 } 3632 EXPORT_SYMBOL(kfree); 3633 3634 #define SHRINK_PROMOTE_MAX 32 3635 3636 /* 3637 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3638 * up most to the head of the partial lists. New allocations will then 3639 * fill those up and thus they can be removed from the partial lists. 3640 * 3641 * The slabs with the least items are placed last. This results in them 3642 * being allocated from last increasing the chance that the last objects 3643 * are freed in them. 3644 */ 3645 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate) 3646 { 3647 int node; 3648 int i; 3649 struct kmem_cache_node *n; 3650 struct page *page; 3651 struct page *t; 3652 struct list_head discard; 3653 struct list_head promote[SHRINK_PROMOTE_MAX]; 3654 unsigned long flags; 3655 int ret = 0; 3656 3657 if (deactivate) { 3658 /* 3659 * Disable empty slabs caching. Used to avoid pinning offline 3660 * memory cgroups by kmem pages that can be freed. 3661 */ 3662 s->cpu_partial = 0; 3663 s->min_partial = 0; 3664 3665 /* 3666 * s->cpu_partial is checked locklessly (see put_cpu_partial), 3667 * so we have to make sure the change is visible. 3668 */ 3669 kick_all_cpus_sync(); 3670 } 3671 3672 flush_all(s); 3673 for_each_kmem_cache_node(s, node, n) { 3674 INIT_LIST_HEAD(&discard); 3675 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3676 INIT_LIST_HEAD(promote + i); 3677 3678 spin_lock_irqsave(&n->list_lock, flags); 3679 3680 /* 3681 * Build lists of slabs to discard or promote. 3682 * 3683 * Note that concurrent frees may occur while we hold the 3684 * list_lock. page->inuse here is the upper limit. 3685 */ 3686 list_for_each_entry_safe(page, t, &n->partial, lru) { 3687 int free = page->objects - page->inuse; 3688 3689 /* Do not reread page->inuse */ 3690 barrier(); 3691 3692 /* We do not keep full slabs on the list */ 3693 BUG_ON(free <= 0); 3694 3695 if (free == page->objects) { 3696 list_move(&page->lru, &discard); 3697 n->nr_partial--; 3698 } else if (free <= SHRINK_PROMOTE_MAX) 3699 list_move(&page->lru, promote + free - 1); 3700 } 3701 3702 /* 3703 * Promote the slabs filled up most to the head of the 3704 * partial list. 3705 */ 3706 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 3707 list_splice(promote + i, &n->partial); 3708 3709 spin_unlock_irqrestore(&n->list_lock, flags); 3710 3711 /* Release empty slabs */ 3712 list_for_each_entry_safe(page, t, &discard, lru) 3713 discard_slab(s, page); 3714 3715 if (slabs_node(s, node)) 3716 ret = 1; 3717 } 3718 3719 return ret; 3720 } 3721 3722 static int slab_mem_going_offline_callback(void *arg) 3723 { 3724 struct kmem_cache *s; 3725 3726 mutex_lock(&slab_mutex); 3727 list_for_each_entry(s, &slab_caches, list) 3728 __kmem_cache_shrink(s, false); 3729 mutex_unlock(&slab_mutex); 3730 3731 return 0; 3732 } 3733 3734 static void slab_mem_offline_callback(void *arg) 3735 { 3736 struct kmem_cache_node *n; 3737 struct kmem_cache *s; 3738 struct memory_notify *marg = arg; 3739 int offline_node; 3740 3741 offline_node = marg->status_change_nid_normal; 3742 3743 /* 3744 * If the node still has available memory. we need kmem_cache_node 3745 * for it yet. 3746 */ 3747 if (offline_node < 0) 3748 return; 3749 3750 mutex_lock(&slab_mutex); 3751 list_for_each_entry(s, &slab_caches, list) { 3752 n = get_node(s, offline_node); 3753 if (n) { 3754 /* 3755 * if n->nr_slabs > 0, slabs still exist on the node 3756 * that is going down. We were unable to free them, 3757 * and offline_pages() function shouldn't call this 3758 * callback. So, we must fail. 3759 */ 3760 BUG_ON(slabs_node(s, offline_node)); 3761 3762 s->node[offline_node] = NULL; 3763 kmem_cache_free(kmem_cache_node, n); 3764 } 3765 } 3766 mutex_unlock(&slab_mutex); 3767 } 3768 3769 static int slab_mem_going_online_callback(void *arg) 3770 { 3771 struct kmem_cache_node *n; 3772 struct kmem_cache *s; 3773 struct memory_notify *marg = arg; 3774 int nid = marg->status_change_nid_normal; 3775 int ret = 0; 3776 3777 /* 3778 * If the node's memory is already available, then kmem_cache_node is 3779 * already created. Nothing to do. 3780 */ 3781 if (nid < 0) 3782 return 0; 3783 3784 /* 3785 * We are bringing a node online. No memory is available yet. We must 3786 * allocate a kmem_cache_node structure in order to bring the node 3787 * online. 3788 */ 3789 mutex_lock(&slab_mutex); 3790 list_for_each_entry(s, &slab_caches, list) { 3791 /* 3792 * XXX: kmem_cache_alloc_node will fallback to other nodes 3793 * since memory is not yet available from the node that 3794 * is brought up. 3795 */ 3796 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3797 if (!n) { 3798 ret = -ENOMEM; 3799 goto out; 3800 } 3801 init_kmem_cache_node(n); 3802 s->node[nid] = n; 3803 } 3804 out: 3805 mutex_unlock(&slab_mutex); 3806 return ret; 3807 } 3808 3809 static int slab_memory_callback(struct notifier_block *self, 3810 unsigned long action, void *arg) 3811 { 3812 int ret = 0; 3813 3814 switch (action) { 3815 case MEM_GOING_ONLINE: 3816 ret = slab_mem_going_online_callback(arg); 3817 break; 3818 case MEM_GOING_OFFLINE: 3819 ret = slab_mem_going_offline_callback(arg); 3820 break; 3821 case MEM_OFFLINE: 3822 case MEM_CANCEL_ONLINE: 3823 slab_mem_offline_callback(arg); 3824 break; 3825 case MEM_ONLINE: 3826 case MEM_CANCEL_OFFLINE: 3827 break; 3828 } 3829 if (ret) 3830 ret = notifier_from_errno(ret); 3831 else 3832 ret = NOTIFY_OK; 3833 return ret; 3834 } 3835 3836 static struct notifier_block slab_memory_callback_nb = { 3837 .notifier_call = slab_memory_callback, 3838 .priority = SLAB_CALLBACK_PRI, 3839 }; 3840 3841 /******************************************************************** 3842 * Basic setup of slabs 3843 *******************************************************************/ 3844 3845 /* 3846 * Used for early kmem_cache structures that were allocated using 3847 * the page allocator. Allocate them properly then fix up the pointers 3848 * that may be pointing to the wrong kmem_cache structure. 3849 */ 3850 3851 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 3852 { 3853 int node; 3854 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 3855 struct kmem_cache_node *n; 3856 3857 memcpy(s, static_cache, kmem_cache->object_size); 3858 3859 /* 3860 * This runs very early, and only the boot processor is supposed to be 3861 * up. Even if it weren't true, IRQs are not up so we couldn't fire 3862 * IPIs around. 3863 */ 3864 __flush_cpu_slab(s, smp_processor_id()); 3865 for_each_kmem_cache_node(s, node, n) { 3866 struct page *p; 3867 3868 list_for_each_entry(p, &n->partial, lru) 3869 p->slab_cache = s; 3870 3871 #ifdef CONFIG_SLUB_DEBUG 3872 list_for_each_entry(p, &n->full, lru) 3873 p->slab_cache = s; 3874 #endif 3875 } 3876 slab_init_memcg_params(s); 3877 list_add(&s->list, &slab_caches); 3878 return s; 3879 } 3880 3881 void __init kmem_cache_init(void) 3882 { 3883 static __initdata struct kmem_cache boot_kmem_cache, 3884 boot_kmem_cache_node; 3885 3886 if (debug_guardpage_minorder()) 3887 slub_max_order = 0; 3888 3889 kmem_cache_node = &boot_kmem_cache_node; 3890 kmem_cache = &boot_kmem_cache; 3891 3892 create_boot_cache(kmem_cache_node, "kmem_cache_node", 3893 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 3894 3895 register_hotmemory_notifier(&slab_memory_callback_nb); 3896 3897 /* Able to allocate the per node structures */ 3898 slab_state = PARTIAL; 3899 3900 create_boot_cache(kmem_cache, "kmem_cache", 3901 offsetof(struct kmem_cache, node) + 3902 nr_node_ids * sizeof(struct kmem_cache_node *), 3903 SLAB_HWCACHE_ALIGN); 3904 3905 kmem_cache = bootstrap(&boot_kmem_cache); 3906 3907 /* 3908 * Allocate kmem_cache_node properly from the kmem_cache slab. 3909 * kmem_cache_node is separately allocated so no need to 3910 * update any list pointers. 3911 */ 3912 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 3913 3914 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3915 setup_kmalloc_cache_index_table(); 3916 create_kmalloc_caches(0); 3917 3918 #ifdef CONFIG_SMP 3919 register_cpu_notifier(&slab_notifier); 3920 #endif 3921 3922 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n", 3923 cache_line_size(), 3924 slub_min_order, slub_max_order, slub_min_objects, 3925 nr_cpu_ids, nr_node_ids); 3926 } 3927 3928 void __init kmem_cache_init_late(void) 3929 { 3930 } 3931 3932 struct kmem_cache * 3933 __kmem_cache_alias(const char *name, size_t size, size_t align, 3934 unsigned long flags, void (*ctor)(void *)) 3935 { 3936 struct kmem_cache *s, *c; 3937 3938 s = find_mergeable(size, align, flags, name, ctor); 3939 if (s) { 3940 s->refcount++; 3941 3942 /* 3943 * Adjust the object sizes so that we clear 3944 * the complete object on kzalloc. 3945 */ 3946 s->object_size = max(s->object_size, (int)size); 3947 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3948 3949 for_each_memcg_cache(c, s) { 3950 c->object_size = s->object_size; 3951 c->inuse = max_t(int, c->inuse, 3952 ALIGN(size, sizeof(void *))); 3953 } 3954 3955 if (sysfs_slab_alias(s, name)) { 3956 s->refcount--; 3957 s = NULL; 3958 } 3959 } 3960 3961 return s; 3962 } 3963 3964 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 3965 { 3966 int err; 3967 3968 err = kmem_cache_open(s, flags); 3969 if (err) 3970 return err; 3971 3972 /* Mutex is not taken during early boot */ 3973 if (slab_state <= UP) 3974 return 0; 3975 3976 memcg_propagate_slab_attrs(s); 3977 err = sysfs_slab_add(s); 3978 if (err) 3979 __kmem_cache_release(s); 3980 3981 return err; 3982 } 3983 3984 #ifdef CONFIG_SMP 3985 /* 3986 * Use the cpu notifier to insure that the cpu slabs are flushed when 3987 * necessary. 3988 */ 3989 static int slab_cpuup_callback(struct notifier_block *nfb, 3990 unsigned long action, void *hcpu) 3991 { 3992 long cpu = (long)hcpu; 3993 struct kmem_cache *s; 3994 unsigned long flags; 3995 3996 switch (action) { 3997 case CPU_UP_CANCELED: 3998 case CPU_UP_CANCELED_FROZEN: 3999 case CPU_DEAD: 4000 case CPU_DEAD_FROZEN: 4001 mutex_lock(&slab_mutex); 4002 list_for_each_entry(s, &slab_caches, list) { 4003 local_irq_save(flags); 4004 __flush_cpu_slab(s, cpu); 4005 local_irq_restore(flags); 4006 } 4007 mutex_unlock(&slab_mutex); 4008 break; 4009 default: 4010 break; 4011 } 4012 return NOTIFY_OK; 4013 } 4014 4015 static struct notifier_block slab_notifier = { 4016 .notifier_call = slab_cpuup_callback 4017 }; 4018 4019 #endif 4020 4021 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4022 { 4023 struct kmem_cache *s; 4024 void *ret; 4025 4026 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4027 return kmalloc_large(size, gfpflags); 4028 4029 s = kmalloc_slab(size, gfpflags); 4030 4031 if (unlikely(ZERO_OR_NULL_PTR(s))) 4032 return s; 4033 4034 ret = slab_alloc(s, gfpflags, caller); 4035 4036 /* Honor the call site pointer we received. */ 4037 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4038 4039 return ret; 4040 } 4041 4042 #ifdef CONFIG_NUMA 4043 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4044 int node, unsigned long caller) 4045 { 4046 struct kmem_cache *s; 4047 void *ret; 4048 4049 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4050 ret = kmalloc_large_node(size, gfpflags, node); 4051 4052 trace_kmalloc_node(caller, ret, 4053 size, PAGE_SIZE << get_order(size), 4054 gfpflags, node); 4055 4056 return ret; 4057 } 4058 4059 s = kmalloc_slab(size, gfpflags); 4060 4061 if (unlikely(ZERO_OR_NULL_PTR(s))) 4062 return s; 4063 4064 ret = slab_alloc_node(s, gfpflags, node, caller); 4065 4066 /* Honor the call site pointer we received. */ 4067 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4068 4069 return ret; 4070 } 4071 #endif 4072 4073 #ifdef CONFIG_SYSFS 4074 static int count_inuse(struct page *page) 4075 { 4076 return page->inuse; 4077 } 4078 4079 static int count_total(struct page *page) 4080 { 4081 return page->objects; 4082 } 4083 #endif 4084 4085 #ifdef CONFIG_SLUB_DEBUG 4086 static int validate_slab(struct kmem_cache *s, struct page *page, 4087 unsigned long *map) 4088 { 4089 void *p; 4090 void *addr = page_address(page); 4091 4092 if (!check_slab(s, page) || 4093 !on_freelist(s, page, NULL)) 4094 return 0; 4095 4096 /* Now we know that a valid freelist exists */ 4097 bitmap_zero(map, page->objects); 4098 4099 get_map(s, page, map); 4100 for_each_object(p, s, addr, page->objects) { 4101 if (test_bit(slab_index(p, s, addr), map)) 4102 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4103 return 0; 4104 } 4105 4106 for_each_object(p, s, addr, page->objects) 4107 if (!test_bit(slab_index(p, s, addr), map)) 4108 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4109 return 0; 4110 return 1; 4111 } 4112 4113 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4114 unsigned long *map) 4115 { 4116 slab_lock(page); 4117 validate_slab(s, page, map); 4118 slab_unlock(page); 4119 } 4120 4121 static int validate_slab_node(struct kmem_cache *s, 4122 struct kmem_cache_node *n, unsigned long *map) 4123 { 4124 unsigned long count = 0; 4125 struct page *page; 4126 unsigned long flags; 4127 4128 spin_lock_irqsave(&n->list_lock, flags); 4129 4130 list_for_each_entry(page, &n->partial, lru) { 4131 validate_slab_slab(s, page, map); 4132 count++; 4133 } 4134 if (count != n->nr_partial) 4135 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4136 s->name, count, n->nr_partial); 4137 4138 if (!(s->flags & SLAB_STORE_USER)) 4139 goto out; 4140 4141 list_for_each_entry(page, &n->full, lru) { 4142 validate_slab_slab(s, page, map); 4143 count++; 4144 } 4145 if (count != atomic_long_read(&n->nr_slabs)) 4146 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4147 s->name, count, atomic_long_read(&n->nr_slabs)); 4148 4149 out: 4150 spin_unlock_irqrestore(&n->list_lock, flags); 4151 return count; 4152 } 4153 4154 static long validate_slab_cache(struct kmem_cache *s) 4155 { 4156 int node; 4157 unsigned long count = 0; 4158 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4159 sizeof(unsigned long), GFP_KERNEL); 4160 struct kmem_cache_node *n; 4161 4162 if (!map) 4163 return -ENOMEM; 4164 4165 flush_all(s); 4166 for_each_kmem_cache_node(s, node, n) 4167 count += validate_slab_node(s, n, map); 4168 kfree(map); 4169 return count; 4170 } 4171 /* 4172 * Generate lists of code addresses where slabcache objects are allocated 4173 * and freed. 4174 */ 4175 4176 struct location { 4177 unsigned long count; 4178 unsigned long addr; 4179 long long sum_time; 4180 long min_time; 4181 long max_time; 4182 long min_pid; 4183 long max_pid; 4184 DECLARE_BITMAP(cpus, NR_CPUS); 4185 nodemask_t nodes; 4186 }; 4187 4188 struct loc_track { 4189 unsigned long max; 4190 unsigned long count; 4191 struct location *loc; 4192 }; 4193 4194 static void free_loc_track(struct loc_track *t) 4195 { 4196 if (t->max) 4197 free_pages((unsigned long)t->loc, 4198 get_order(sizeof(struct location) * t->max)); 4199 } 4200 4201 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4202 { 4203 struct location *l; 4204 int order; 4205 4206 order = get_order(sizeof(struct location) * max); 4207 4208 l = (void *)__get_free_pages(flags, order); 4209 if (!l) 4210 return 0; 4211 4212 if (t->count) { 4213 memcpy(l, t->loc, sizeof(struct location) * t->count); 4214 free_loc_track(t); 4215 } 4216 t->max = max; 4217 t->loc = l; 4218 return 1; 4219 } 4220 4221 static int add_location(struct loc_track *t, struct kmem_cache *s, 4222 const struct track *track) 4223 { 4224 long start, end, pos; 4225 struct location *l; 4226 unsigned long caddr; 4227 unsigned long age = jiffies - track->when; 4228 4229 start = -1; 4230 end = t->count; 4231 4232 for ( ; ; ) { 4233 pos = start + (end - start + 1) / 2; 4234 4235 /* 4236 * There is nothing at "end". If we end up there 4237 * we need to add something to before end. 4238 */ 4239 if (pos == end) 4240 break; 4241 4242 caddr = t->loc[pos].addr; 4243 if (track->addr == caddr) { 4244 4245 l = &t->loc[pos]; 4246 l->count++; 4247 if (track->when) { 4248 l->sum_time += age; 4249 if (age < l->min_time) 4250 l->min_time = age; 4251 if (age > l->max_time) 4252 l->max_time = age; 4253 4254 if (track->pid < l->min_pid) 4255 l->min_pid = track->pid; 4256 if (track->pid > l->max_pid) 4257 l->max_pid = track->pid; 4258 4259 cpumask_set_cpu(track->cpu, 4260 to_cpumask(l->cpus)); 4261 } 4262 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4263 return 1; 4264 } 4265 4266 if (track->addr < caddr) 4267 end = pos; 4268 else 4269 start = pos; 4270 } 4271 4272 /* 4273 * Not found. Insert new tracking element. 4274 */ 4275 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4276 return 0; 4277 4278 l = t->loc + pos; 4279 if (pos < t->count) 4280 memmove(l + 1, l, 4281 (t->count - pos) * sizeof(struct location)); 4282 t->count++; 4283 l->count = 1; 4284 l->addr = track->addr; 4285 l->sum_time = age; 4286 l->min_time = age; 4287 l->max_time = age; 4288 l->min_pid = track->pid; 4289 l->max_pid = track->pid; 4290 cpumask_clear(to_cpumask(l->cpus)); 4291 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4292 nodes_clear(l->nodes); 4293 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4294 return 1; 4295 } 4296 4297 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4298 struct page *page, enum track_item alloc, 4299 unsigned long *map) 4300 { 4301 void *addr = page_address(page); 4302 void *p; 4303 4304 bitmap_zero(map, page->objects); 4305 get_map(s, page, map); 4306 4307 for_each_object(p, s, addr, page->objects) 4308 if (!test_bit(slab_index(p, s, addr), map)) 4309 add_location(t, s, get_track(s, p, alloc)); 4310 } 4311 4312 static int list_locations(struct kmem_cache *s, char *buf, 4313 enum track_item alloc) 4314 { 4315 int len = 0; 4316 unsigned long i; 4317 struct loc_track t = { 0, 0, NULL }; 4318 int node; 4319 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4320 sizeof(unsigned long), GFP_KERNEL); 4321 struct kmem_cache_node *n; 4322 4323 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4324 GFP_TEMPORARY)) { 4325 kfree(map); 4326 return sprintf(buf, "Out of memory\n"); 4327 } 4328 /* Push back cpu slabs */ 4329 flush_all(s); 4330 4331 for_each_kmem_cache_node(s, node, n) { 4332 unsigned long flags; 4333 struct page *page; 4334 4335 if (!atomic_long_read(&n->nr_slabs)) 4336 continue; 4337 4338 spin_lock_irqsave(&n->list_lock, flags); 4339 list_for_each_entry(page, &n->partial, lru) 4340 process_slab(&t, s, page, alloc, map); 4341 list_for_each_entry(page, &n->full, lru) 4342 process_slab(&t, s, page, alloc, map); 4343 spin_unlock_irqrestore(&n->list_lock, flags); 4344 } 4345 4346 for (i = 0; i < t.count; i++) { 4347 struct location *l = &t.loc[i]; 4348 4349 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4350 break; 4351 len += sprintf(buf + len, "%7ld ", l->count); 4352 4353 if (l->addr) 4354 len += sprintf(buf + len, "%pS", (void *)l->addr); 4355 else 4356 len += sprintf(buf + len, "<not-available>"); 4357 4358 if (l->sum_time != l->min_time) { 4359 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4360 l->min_time, 4361 (long)div_u64(l->sum_time, l->count), 4362 l->max_time); 4363 } else 4364 len += sprintf(buf + len, " age=%ld", 4365 l->min_time); 4366 4367 if (l->min_pid != l->max_pid) 4368 len += sprintf(buf + len, " pid=%ld-%ld", 4369 l->min_pid, l->max_pid); 4370 else 4371 len += sprintf(buf + len, " pid=%ld", 4372 l->min_pid); 4373 4374 if (num_online_cpus() > 1 && 4375 !cpumask_empty(to_cpumask(l->cpus)) && 4376 len < PAGE_SIZE - 60) 4377 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4378 " cpus=%*pbl", 4379 cpumask_pr_args(to_cpumask(l->cpus))); 4380 4381 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4382 len < PAGE_SIZE - 60) 4383 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4384 " nodes=%*pbl", 4385 nodemask_pr_args(&l->nodes)); 4386 4387 len += sprintf(buf + len, "\n"); 4388 } 4389 4390 free_loc_track(&t); 4391 kfree(map); 4392 if (!t.count) 4393 len += sprintf(buf, "No data\n"); 4394 return len; 4395 } 4396 #endif 4397 4398 #ifdef SLUB_RESILIENCY_TEST 4399 static void __init resiliency_test(void) 4400 { 4401 u8 *p; 4402 4403 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4404 4405 pr_err("SLUB resiliency testing\n"); 4406 pr_err("-----------------------\n"); 4407 pr_err("A. Corruption after allocation\n"); 4408 4409 p = kzalloc(16, GFP_KERNEL); 4410 p[16] = 0x12; 4411 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4412 p + 16); 4413 4414 validate_slab_cache(kmalloc_caches[4]); 4415 4416 /* Hmmm... The next two are dangerous */ 4417 p = kzalloc(32, GFP_KERNEL); 4418 p[32 + sizeof(void *)] = 0x34; 4419 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4420 p); 4421 pr_err("If allocated object is overwritten then not detectable\n\n"); 4422 4423 validate_slab_cache(kmalloc_caches[5]); 4424 p = kzalloc(64, GFP_KERNEL); 4425 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4426 *p = 0x56; 4427 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4428 p); 4429 pr_err("If allocated object is overwritten then not detectable\n\n"); 4430 validate_slab_cache(kmalloc_caches[6]); 4431 4432 pr_err("\nB. Corruption after free\n"); 4433 p = kzalloc(128, GFP_KERNEL); 4434 kfree(p); 4435 *p = 0x78; 4436 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4437 validate_slab_cache(kmalloc_caches[7]); 4438 4439 p = kzalloc(256, GFP_KERNEL); 4440 kfree(p); 4441 p[50] = 0x9a; 4442 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4443 validate_slab_cache(kmalloc_caches[8]); 4444 4445 p = kzalloc(512, GFP_KERNEL); 4446 kfree(p); 4447 p[512] = 0xab; 4448 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4449 validate_slab_cache(kmalloc_caches[9]); 4450 } 4451 #else 4452 #ifdef CONFIG_SYSFS 4453 static void resiliency_test(void) {}; 4454 #endif 4455 #endif 4456 4457 #ifdef CONFIG_SYSFS 4458 enum slab_stat_type { 4459 SL_ALL, /* All slabs */ 4460 SL_PARTIAL, /* Only partially allocated slabs */ 4461 SL_CPU, /* Only slabs used for cpu caches */ 4462 SL_OBJECTS, /* Determine allocated objects not slabs */ 4463 SL_TOTAL /* Determine object capacity not slabs */ 4464 }; 4465 4466 #define SO_ALL (1 << SL_ALL) 4467 #define SO_PARTIAL (1 << SL_PARTIAL) 4468 #define SO_CPU (1 << SL_CPU) 4469 #define SO_OBJECTS (1 << SL_OBJECTS) 4470 #define SO_TOTAL (1 << SL_TOTAL) 4471 4472 static ssize_t show_slab_objects(struct kmem_cache *s, 4473 char *buf, unsigned long flags) 4474 { 4475 unsigned long total = 0; 4476 int node; 4477 int x; 4478 unsigned long *nodes; 4479 4480 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4481 if (!nodes) 4482 return -ENOMEM; 4483 4484 if (flags & SO_CPU) { 4485 int cpu; 4486 4487 for_each_possible_cpu(cpu) { 4488 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4489 cpu); 4490 int node; 4491 struct page *page; 4492 4493 page = READ_ONCE(c->page); 4494 if (!page) 4495 continue; 4496 4497 node = page_to_nid(page); 4498 if (flags & SO_TOTAL) 4499 x = page->objects; 4500 else if (flags & SO_OBJECTS) 4501 x = page->inuse; 4502 else 4503 x = 1; 4504 4505 total += x; 4506 nodes[node] += x; 4507 4508 page = READ_ONCE(c->partial); 4509 if (page) { 4510 node = page_to_nid(page); 4511 if (flags & SO_TOTAL) 4512 WARN_ON_ONCE(1); 4513 else if (flags & SO_OBJECTS) 4514 WARN_ON_ONCE(1); 4515 else 4516 x = page->pages; 4517 total += x; 4518 nodes[node] += x; 4519 } 4520 } 4521 } 4522 4523 get_online_mems(); 4524 #ifdef CONFIG_SLUB_DEBUG 4525 if (flags & SO_ALL) { 4526 struct kmem_cache_node *n; 4527 4528 for_each_kmem_cache_node(s, node, n) { 4529 4530 if (flags & SO_TOTAL) 4531 x = atomic_long_read(&n->total_objects); 4532 else if (flags & SO_OBJECTS) 4533 x = atomic_long_read(&n->total_objects) - 4534 count_partial(n, count_free); 4535 else 4536 x = atomic_long_read(&n->nr_slabs); 4537 total += x; 4538 nodes[node] += x; 4539 } 4540 4541 } else 4542 #endif 4543 if (flags & SO_PARTIAL) { 4544 struct kmem_cache_node *n; 4545 4546 for_each_kmem_cache_node(s, node, n) { 4547 if (flags & SO_TOTAL) 4548 x = count_partial(n, count_total); 4549 else if (flags & SO_OBJECTS) 4550 x = count_partial(n, count_inuse); 4551 else 4552 x = n->nr_partial; 4553 total += x; 4554 nodes[node] += x; 4555 } 4556 } 4557 x = sprintf(buf, "%lu", total); 4558 #ifdef CONFIG_NUMA 4559 for (node = 0; node < nr_node_ids; node++) 4560 if (nodes[node]) 4561 x += sprintf(buf + x, " N%d=%lu", 4562 node, nodes[node]); 4563 #endif 4564 put_online_mems(); 4565 kfree(nodes); 4566 return x + sprintf(buf + x, "\n"); 4567 } 4568 4569 #ifdef CONFIG_SLUB_DEBUG 4570 static int any_slab_objects(struct kmem_cache *s) 4571 { 4572 int node; 4573 struct kmem_cache_node *n; 4574 4575 for_each_kmem_cache_node(s, node, n) 4576 if (atomic_long_read(&n->total_objects)) 4577 return 1; 4578 4579 return 0; 4580 } 4581 #endif 4582 4583 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4584 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4585 4586 struct slab_attribute { 4587 struct attribute attr; 4588 ssize_t (*show)(struct kmem_cache *s, char *buf); 4589 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4590 }; 4591 4592 #define SLAB_ATTR_RO(_name) \ 4593 static struct slab_attribute _name##_attr = \ 4594 __ATTR(_name, 0400, _name##_show, NULL) 4595 4596 #define SLAB_ATTR(_name) \ 4597 static struct slab_attribute _name##_attr = \ 4598 __ATTR(_name, 0600, _name##_show, _name##_store) 4599 4600 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4601 { 4602 return sprintf(buf, "%d\n", s->size); 4603 } 4604 SLAB_ATTR_RO(slab_size); 4605 4606 static ssize_t align_show(struct kmem_cache *s, char *buf) 4607 { 4608 return sprintf(buf, "%d\n", s->align); 4609 } 4610 SLAB_ATTR_RO(align); 4611 4612 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4613 { 4614 return sprintf(buf, "%d\n", s->object_size); 4615 } 4616 SLAB_ATTR_RO(object_size); 4617 4618 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4619 { 4620 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4621 } 4622 SLAB_ATTR_RO(objs_per_slab); 4623 4624 static ssize_t order_store(struct kmem_cache *s, 4625 const char *buf, size_t length) 4626 { 4627 unsigned long order; 4628 int err; 4629 4630 err = kstrtoul(buf, 10, &order); 4631 if (err) 4632 return err; 4633 4634 if (order > slub_max_order || order < slub_min_order) 4635 return -EINVAL; 4636 4637 calculate_sizes(s, order); 4638 return length; 4639 } 4640 4641 static ssize_t order_show(struct kmem_cache *s, char *buf) 4642 { 4643 return sprintf(buf, "%d\n", oo_order(s->oo)); 4644 } 4645 SLAB_ATTR(order); 4646 4647 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4648 { 4649 return sprintf(buf, "%lu\n", s->min_partial); 4650 } 4651 4652 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4653 size_t length) 4654 { 4655 unsigned long min; 4656 int err; 4657 4658 err = kstrtoul(buf, 10, &min); 4659 if (err) 4660 return err; 4661 4662 set_min_partial(s, min); 4663 return length; 4664 } 4665 SLAB_ATTR(min_partial); 4666 4667 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4668 { 4669 return sprintf(buf, "%u\n", s->cpu_partial); 4670 } 4671 4672 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4673 size_t length) 4674 { 4675 unsigned long objects; 4676 int err; 4677 4678 err = kstrtoul(buf, 10, &objects); 4679 if (err) 4680 return err; 4681 if (objects && !kmem_cache_has_cpu_partial(s)) 4682 return -EINVAL; 4683 4684 s->cpu_partial = objects; 4685 flush_all(s); 4686 return length; 4687 } 4688 SLAB_ATTR(cpu_partial); 4689 4690 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4691 { 4692 if (!s->ctor) 4693 return 0; 4694 return sprintf(buf, "%pS\n", s->ctor); 4695 } 4696 SLAB_ATTR_RO(ctor); 4697 4698 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4699 { 4700 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4701 } 4702 SLAB_ATTR_RO(aliases); 4703 4704 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4705 { 4706 return show_slab_objects(s, buf, SO_PARTIAL); 4707 } 4708 SLAB_ATTR_RO(partial); 4709 4710 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4711 { 4712 return show_slab_objects(s, buf, SO_CPU); 4713 } 4714 SLAB_ATTR_RO(cpu_slabs); 4715 4716 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4717 { 4718 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4719 } 4720 SLAB_ATTR_RO(objects); 4721 4722 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4723 { 4724 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4725 } 4726 SLAB_ATTR_RO(objects_partial); 4727 4728 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4729 { 4730 int objects = 0; 4731 int pages = 0; 4732 int cpu; 4733 int len; 4734 4735 for_each_online_cpu(cpu) { 4736 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4737 4738 if (page) { 4739 pages += page->pages; 4740 objects += page->pobjects; 4741 } 4742 } 4743 4744 len = sprintf(buf, "%d(%d)", objects, pages); 4745 4746 #ifdef CONFIG_SMP 4747 for_each_online_cpu(cpu) { 4748 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4749 4750 if (page && len < PAGE_SIZE - 20) 4751 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4752 page->pobjects, page->pages); 4753 } 4754 #endif 4755 return len + sprintf(buf + len, "\n"); 4756 } 4757 SLAB_ATTR_RO(slabs_cpu_partial); 4758 4759 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4760 { 4761 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4762 } 4763 4764 static ssize_t reclaim_account_store(struct kmem_cache *s, 4765 const char *buf, size_t length) 4766 { 4767 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4768 if (buf[0] == '1') 4769 s->flags |= SLAB_RECLAIM_ACCOUNT; 4770 return length; 4771 } 4772 SLAB_ATTR(reclaim_account); 4773 4774 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4775 { 4776 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4777 } 4778 SLAB_ATTR_RO(hwcache_align); 4779 4780 #ifdef CONFIG_ZONE_DMA 4781 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4782 { 4783 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4784 } 4785 SLAB_ATTR_RO(cache_dma); 4786 #endif 4787 4788 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4789 { 4790 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4791 } 4792 SLAB_ATTR_RO(destroy_by_rcu); 4793 4794 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4795 { 4796 return sprintf(buf, "%d\n", s->reserved); 4797 } 4798 SLAB_ATTR_RO(reserved); 4799 4800 #ifdef CONFIG_SLUB_DEBUG 4801 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4802 { 4803 return show_slab_objects(s, buf, SO_ALL); 4804 } 4805 SLAB_ATTR_RO(slabs); 4806 4807 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4808 { 4809 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4810 } 4811 SLAB_ATTR_RO(total_objects); 4812 4813 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4814 { 4815 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4816 } 4817 4818 static ssize_t sanity_checks_store(struct kmem_cache *s, 4819 const char *buf, size_t length) 4820 { 4821 s->flags &= ~SLAB_DEBUG_FREE; 4822 if (buf[0] == '1') { 4823 s->flags &= ~__CMPXCHG_DOUBLE; 4824 s->flags |= SLAB_DEBUG_FREE; 4825 } 4826 return length; 4827 } 4828 SLAB_ATTR(sanity_checks); 4829 4830 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4831 { 4832 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4833 } 4834 4835 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4836 size_t length) 4837 { 4838 /* 4839 * Tracing a merged cache is going to give confusing results 4840 * as well as cause other issues like converting a mergeable 4841 * cache into an umergeable one. 4842 */ 4843 if (s->refcount > 1) 4844 return -EINVAL; 4845 4846 s->flags &= ~SLAB_TRACE; 4847 if (buf[0] == '1') { 4848 s->flags &= ~__CMPXCHG_DOUBLE; 4849 s->flags |= SLAB_TRACE; 4850 } 4851 return length; 4852 } 4853 SLAB_ATTR(trace); 4854 4855 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4856 { 4857 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4858 } 4859 4860 static ssize_t red_zone_store(struct kmem_cache *s, 4861 const char *buf, size_t length) 4862 { 4863 if (any_slab_objects(s)) 4864 return -EBUSY; 4865 4866 s->flags &= ~SLAB_RED_ZONE; 4867 if (buf[0] == '1') { 4868 s->flags &= ~__CMPXCHG_DOUBLE; 4869 s->flags |= SLAB_RED_ZONE; 4870 } 4871 calculate_sizes(s, -1); 4872 return length; 4873 } 4874 SLAB_ATTR(red_zone); 4875 4876 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4877 { 4878 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4879 } 4880 4881 static ssize_t poison_store(struct kmem_cache *s, 4882 const char *buf, size_t length) 4883 { 4884 if (any_slab_objects(s)) 4885 return -EBUSY; 4886 4887 s->flags &= ~SLAB_POISON; 4888 if (buf[0] == '1') { 4889 s->flags &= ~__CMPXCHG_DOUBLE; 4890 s->flags |= SLAB_POISON; 4891 } 4892 calculate_sizes(s, -1); 4893 return length; 4894 } 4895 SLAB_ATTR(poison); 4896 4897 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4898 { 4899 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4900 } 4901 4902 static ssize_t store_user_store(struct kmem_cache *s, 4903 const char *buf, size_t length) 4904 { 4905 if (any_slab_objects(s)) 4906 return -EBUSY; 4907 4908 s->flags &= ~SLAB_STORE_USER; 4909 if (buf[0] == '1') { 4910 s->flags &= ~__CMPXCHG_DOUBLE; 4911 s->flags |= SLAB_STORE_USER; 4912 } 4913 calculate_sizes(s, -1); 4914 return length; 4915 } 4916 SLAB_ATTR(store_user); 4917 4918 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4919 { 4920 return 0; 4921 } 4922 4923 static ssize_t validate_store(struct kmem_cache *s, 4924 const char *buf, size_t length) 4925 { 4926 int ret = -EINVAL; 4927 4928 if (buf[0] == '1') { 4929 ret = validate_slab_cache(s); 4930 if (ret >= 0) 4931 ret = length; 4932 } 4933 return ret; 4934 } 4935 SLAB_ATTR(validate); 4936 4937 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4938 { 4939 if (!(s->flags & SLAB_STORE_USER)) 4940 return -ENOSYS; 4941 return list_locations(s, buf, TRACK_ALLOC); 4942 } 4943 SLAB_ATTR_RO(alloc_calls); 4944 4945 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4946 { 4947 if (!(s->flags & SLAB_STORE_USER)) 4948 return -ENOSYS; 4949 return list_locations(s, buf, TRACK_FREE); 4950 } 4951 SLAB_ATTR_RO(free_calls); 4952 #endif /* CONFIG_SLUB_DEBUG */ 4953 4954 #ifdef CONFIG_FAILSLAB 4955 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4956 { 4957 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4958 } 4959 4960 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4961 size_t length) 4962 { 4963 if (s->refcount > 1) 4964 return -EINVAL; 4965 4966 s->flags &= ~SLAB_FAILSLAB; 4967 if (buf[0] == '1') 4968 s->flags |= SLAB_FAILSLAB; 4969 return length; 4970 } 4971 SLAB_ATTR(failslab); 4972 #endif 4973 4974 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4975 { 4976 return 0; 4977 } 4978 4979 static ssize_t shrink_store(struct kmem_cache *s, 4980 const char *buf, size_t length) 4981 { 4982 if (buf[0] == '1') 4983 kmem_cache_shrink(s); 4984 else 4985 return -EINVAL; 4986 return length; 4987 } 4988 SLAB_ATTR(shrink); 4989 4990 #ifdef CONFIG_NUMA 4991 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4992 { 4993 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4994 } 4995 4996 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4997 const char *buf, size_t length) 4998 { 4999 unsigned long ratio; 5000 int err; 5001 5002 err = kstrtoul(buf, 10, &ratio); 5003 if (err) 5004 return err; 5005 5006 if (ratio <= 100) 5007 s->remote_node_defrag_ratio = ratio * 10; 5008 5009 return length; 5010 } 5011 SLAB_ATTR(remote_node_defrag_ratio); 5012 #endif 5013 5014 #ifdef CONFIG_SLUB_STATS 5015 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5016 { 5017 unsigned long sum = 0; 5018 int cpu; 5019 int len; 5020 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 5021 5022 if (!data) 5023 return -ENOMEM; 5024 5025 for_each_online_cpu(cpu) { 5026 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5027 5028 data[cpu] = x; 5029 sum += x; 5030 } 5031 5032 len = sprintf(buf, "%lu", sum); 5033 5034 #ifdef CONFIG_SMP 5035 for_each_online_cpu(cpu) { 5036 if (data[cpu] && len < PAGE_SIZE - 20) 5037 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5038 } 5039 #endif 5040 kfree(data); 5041 return len + sprintf(buf + len, "\n"); 5042 } 5043 5044 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5045 { 5046 int cpu; 5047 5048 for_each_online_cpu(cpu) 5049 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5050 } 5051 5052 #define STAT_ATTR(si, text) \ 5053 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5054 { \ 5055 return show_stat(s, buf, si); \ 5056 } \ 5057 static ssize_t text##_store(struct kmem_cache *s, \ 5058 const char *buf, size_t length) \ 5059 { \ 5060 if (buf[0] != '0') \ 5061 return -EINVAL; \ 5062 clear_stat(s, si); \ 5063 return length; \ 5064 } \ 5065 SLAB_ATTR(text); \ 5066 5067 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5068 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5069 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5070 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5071 STAT_ATTR(FREE_FROZEN, free_frozen); 5072 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5073 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5074 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5075 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5076 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5077 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5078 STAT_ATTR(FREE_SLAB, free_slab); 5079 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5080 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5081 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5082 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5083 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5084 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5085 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5086 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5087 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5088 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5089 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5090 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5091 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5092 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5093 #endif 5094 5095 static struct attribute *slab_attrs[] = { 5096 &slab_size_attr.attr, 5097 &object_size_attr.attr, 5098 &objs_per_slab_attr.attr, 5099 &order_attr.attr, 5100 &min_partial_attr.attr, 5101 &cpu_partial_attr.attr, 5102 &objects_attr.attr, 5103 &objects_partial_attr.attr, 5104 &partial_attr.attr, 5105 &cpu_slabs_attr.attr, 5106 &ctor_attr.attr, 5107 &aliases_attr.attr, 5108 &align_attr.attr, 5109 &hwcache_align_attr.attr, 5110 &reclaim_account_attr.attr, 5111 &destroy_by_rcu_attr.attr, 5112 &shrink_attr.attr, 5113 &reserved_attr.attr, 5114 &slabs_cpu_partial_attr.attr, 5115 #ifdef CONFIG_SLUB_DEBUG 5116 &total_objects_attr.attr, 5117 &slabs_attr.attr, 5118 &sanity_checks_attr.attr, 5119 &trace_attr.attr, 5120 &red_zone_attr.attr, 5121 &poison_attr.attr, 5122 &store_user_attr.attr, 5123 &validate_attr.attr, 5124 &alloc_calls_attr.attr, 5125 &free_calls_attr.attr, 5126 #endif 5127 #ifdef CONFIG_ZONE_DMA 5128 &cache_dma_attr.attr, 5129 #endif 5130 #ifdef CONFIG_NUMA 5131 &remote_node_defrag_ratio_attr.attr, 5132 #endif 5133 #ifdef CONFIG_SLUB_STATS 5134 &alloc_fastpath_attr.attr, 5135 &alloc_slowpath_attr.attr, 5136 &free_fastpath_attr.attr, 5137 &free_slowpath_attr.attr, 5138 &free_frozen_attr.attr, 5139 &free_add_partial_attr.attr, 5140 &free_remove_partial_attr.attr, 5141 &alloc_from_partial_attr.attr, 5142 &alloc_slab_attr.attr, 5143 &alloc_refill_attr.attr, 5144 &alloc_node_mismatch_attr.attr, 5145 &free_slab_attr.attr, 5146 &cpuslab_flush_attr.attr, 5147 &deactivate_full_attr.attr, 5148 &deactivate_empty_attr.attr, 5149 &deactivate_to_head_attr.attr, 5150 &deactivate_to_tail_attr.attr, 5151 &deactivate_remote_frees_attr.attr, 5152 &deactivate_bypass_attr.attr, 5153 &order_fallback_attr.attr, 5154 &cmpxchg_double_fail_attr.attr, 5155 &cmpxchg_double_cpu_fail_attr.attr, 5156 &cpu_partial_alloc_attr.attr, 5157 &cpu_partial_free_attr.attr, 5158 &cpu_partial_node_attr.attr, 5159 &cpu_partial_drain_attr.attr, 5160 #endif 5161 #ifdef CONFIG_FAILSLAB 5162 &failslab_attr.attr, 5163 #endif 5164 5165 NULL 5166 }; 5167 5168 static struct attribute_group slab_attr_group = { 5169 .attrs = slab_attrs, 5170 }; 5171 5172 static ssize_t slab_attr_show(struct kobject *kobj, 5173 struct attribute *attr, 5174 char *buf) 5175 { 5176 struct slab_attribute *attribute; 5177 struct kmem_cache *s; 5178 int err; 5179 5180 attribute = to_slab_attr(attr); 5181 s = to_slab(kobj); 5182 5183 if (!attribute->show) 5184 return -EIO; 5185 5186 err = attribute->show(s, buf); 5187 5188 return err; 5189 } 5190 5191 static ssize_t slab_attr_store(struct kobject *kobj, 5192 struct attribute *attr, 5193 const char *buf, size_t len) 5194 { 5195 struct slab_attribute *attribute; 5196 struct kmem_cache *s; 5197 int err; 5198 5199 attribute = to_slab_attr(attr); 5200 s = to_slab(kobj); 5201 5202 if (!attribute->store) 5203 return -EIO; 5204 5205 err = attribute->store(s, buf, len); 5206 #ifdef CONFIG_MEMCG 5207 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5208 struct kmem_cache *c; 5209 5210 mutex_lock(&slab_mutex); 5211 if (s->max_attr_size < len) 5212 s->max_attr_size = len; 5213 5214 /* 5215 * This is a best effort propagation, so this function's return 5216 * value will be determined by the parent cache only. This is 5217 * basically because not all attributes will have a well 5218 * defined semantics for rollbacks - most of the actions will 5219 * have permanent effects. 5220 * 5221 * Returning the error value of any of the children that fail 5222 * is not 100 % defined, in the sense that users seeing the 5223 * error code won't be able to know anything about the state of 5224 * the cache. 5225 * 5226 * Only returning the error code for the parent cache at least 5227 * has well defined semantics. The cache being written to 5228 * directly either failed or succeeded, in which case we loop 5229 * through the descendants with best-effort propagation. 5230 */ 5231 for_each_memcg_cache(c, s) 5232 attribute->store(c, buf, len); 5233 mutex_unlock(&slab_mutex); 5234 } 5235 #endif 5236 return err; 5237 } 5238 5239 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5240 { 5241 #ifdef CONFIG_MEMCG 5242 int i; 5243 char *buffer = NULL; 5244 struct kmem_cache *root_cache; 5245 5246 if (is_root_cache(s)) 5247 return; 5248 5249 root_cache = s->memcg_params.root_cache; 5250 5251 /* 5252 * This mean this cache had no attribute written. Therefore, no point 5253 * in copying default values around 5254 */ 5255 if (!root_cache->max_attr_size) 5256 return; 5257 5258 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5259 char mbuf[64]; 5260 char *buf; 5261 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5262 5263 if (!attr || !attr->store || !attr->show) 5264 continue; 5265 5266 /* 5267 * It is really bad that we have to allocate here, so we will 5268 * do it only as a fallback. If we actually allocate, though, 5269 * we can just use the allocated buffer until the end. 5270 * 5271 * Most of the slub attributes will tend to be very small in 5272 * size, but sysfs allows buffers up to a page, so they can 5273 * theoretically happen. 5274 */ 5275 if (buffer) 5276 buf = buffer; 5277 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5278 buf = mbuf; 5279 else { 5280 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5281 if (WARN_ON(!buffer)) 5282 continue; 5283 buf = buffer; 5284 } 5285 5286 attr->show(root_cache, buf); 5287 attr->store(s, buf, strlen(buf)); 5288 } 5289 5290 if (buffer) 5291 free_page((unsigned long)buffer); 5292 #endif 5293 } 5294 5295 static void kmem_cache_release(struct kobject *k) 5296 { 5297 slab_kmem_cache_release(to_slab(k)); 5298 } 5299 5300 static const struct sysfs_ops slab_sysfs_ops = { 5301 .show = slab_attr_show, 5302 .store = slab_attr_store, 5303 }; 5304 5305 static struct kobj_type slab_ktype = { 5306 .sysfs_ops = &slab_sysfs_ops, 5307 .release = kmem_cache_release, 5308 }; 5309 5310 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5311 { 5312 struct kobj_type *ktype = get_ktype(kobj); 5313 5314 if (ktype == &slab_ktype) 5315 return 1; 5316 return 0; 5317 } 5318 5319 static const struct kset_uevent_ops slab_uevent_ops = { 5320 .filter = uevent_filter, 5321 }; 5322 5323 static struct kset *slab_kset; 5324 5325 static inline struct kset *cache_kset(struct kmem_cache *s) 5326 { 5327 #ifdef CONFIG_MEMCG 5328 if (!is_root_cache(s)) 5329 return s->memcg_params.root_cache->memcg_kset; 5330 #endif 5331 return slab_kset; 5332 } 5333 5334 #define ID_STR_LENGTH 64 5335 5336 /* Create a unique string id for a slab cache: 5337 * 5338 * Format :[flags-]size 5339 */ 5340 static char *create_unique_id(struct kmem_cache *s) 5341 { 5342 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5343 char *p = name; 5344 5345 BUG_ON(!name); 5346 5347 *p++ = ':'; 5348 /* 5349 * First flags affecting slabcache operations. We will only 5350 * get here for aliasable slabs so we do not need to support 5351 * too many flags. The flags here must cover all flags that 5352 * are matched during merging to guarantee that the id is 5353 * unique. 5354 */ 5355 if (s->flags & SLAB_CACHE_DMA) 5356 *p++ = 'd'; 5357 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5358 *p++ = 'a'; 5359 if (s->flags & SLAB_DEBUG_FREE) 5360 *p++ = 'F'; 5361 if (!(s->flags & SLAB_NOTRACK)) 5362 *p++ = 't'; 5363 if (s->flags & SLAB_ACCOUNT) 5364 *p++ = 'A'; 5365 if (p != name + 1) 5366 *p++ = '-'; 5367 p += sprintf(p, "%07d", s->size); 5368 5369 BUG_ON(p > name + ID_STR_LENGTH - 1); 5370 return name; 5371 } 5372 5373 static int sysfs_slab_add(struct kmem_cache *s) 5374 { 5375 int err; 5376 const char *name; 5377 int unmergeable = slab_unmergeable(s); 5378 5379 if (unmergeable) { 5380 /* 5381 * Slabcache can never be merged so we can use the name proper. 5382 * This is typically the case for debug situations. In that 5383 * case we can catch duplicate names easily. 5384 */ 5385 sysfs_remove_link(&slab_kset->kobj, s->name); 5386 name = s->name; 5387 } else { 5388 /* 5389 * Create a unique name for the slab as a target 5390 * for the symlinks. 5391 */ 5392 name = create_unique_id(s); 5393 } 5394 5395 s->kobj.kset = cache_kset(s); 5396 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5397 if (err) 5398 goto out; 5399 5400 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5401 if (err) 5402 goto out_del_kobj; 5403 5404 #ifdef CONFIG_MEMCG 5405 if (is_root_cache(s)) { 5406 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5407 if (!s->memcg_kset) { 5408 err = -ENOMEM; 5409 goto out_del_kobj; 5410 } 5411 } 5412 #endif 5413 5414 kobject_uevent(&s->kobj, KOBJ_ADD); 5415 if (!unmergeable) { 5416 /* Setup first alias */ 5417 sysfs_slab_alias(s, s->name); 5418 } 5419 out: 5420 if (!unmergeable) 5421 kfree(name); 5422 return err; 5423 out_del_kobj: 5424 kobject_del(&s->kobj); 5425 goto out; 5426 } 5427 5428 void sysfs_slab_remove(struct kmem_cache *s) 5429 { 5430 if (slab_state < FULL) 5431 /* 5432 * Sysfs has not been setup yet so no need to remove the 5433 * cache from sysfs. 5434 */ 5435 return; 5436 5437 #ifdef CONFIG_MEMCG 5438 kset_unregister(s->memcg_kset); 5439 #endif 5440 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5441 kobject_del(&s->kobj); 5442 kobject_put(&s->kobj); 5443 } 5444 5445 /* 5446 * Need to buffer aliases during bootup until sysfs becomes 5447 * available lest we lose that information. 5448 */ 5449 struct saved_alias { 5450 struct kmem_cache *s; 5451 const char *name; 5452 struct saved_alias *next; 5453 }; 5454 5455 static struct saved_alias *alias_list; 5456 5457 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5458 { 5459 struct saved_alias *al; 5460 5461 if (slab_state == FULL) { 5462 /* 5463 * If we have a leftover link then remove it. 5464 */ 5465 sysfs_remove_link(&slab_kset->kobj, name); 5466 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5467 } 5468 5469 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5470 if (!al) 5471 return -ENOMEM; 5472 5473 al->s = s; 5474 al->name = name; 5475 al->next = alias_list; 5476 alias_list = al; 5477 return 0; 5478 } 5479 5480 static int __init slab_sysfs_init(void) 5481 { 5482 struct kmem_cache *s; 5483 int err; 5484 5485 mutex_lock(&slab_mutex); 5486 5487 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5488 if (!slab_kset) { 5489 mutex_unlock(&slab_mutex); 5490 pr_err("Cannot register slab subsystem.\n"); 5491 return -ENOSYS; 5492 } 5493 5494 slab_state = FULL; 5495 5496 list_for_each_entry(s, &slab_caches, list) { 5497 err = sysfs_slab_add(s); 5498 if (err) 5499 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5500 s->name); 5501 } 5502 5503 while (alias_list) { 5504 struct saved_alias *al = alias_list; 5505 5506 alias_list = alias_list->next; 5507 err = sysfs_slab_alias(al->s, al->name); 5508 if (err) 5509 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5510 al->name); 5511 kfree(al); 5512 } 5513 5514 mutex_unlock(&slab_mutex); 5515 resiliency_test(); 5516 return 0; 5517 } 5518 5519 __initcall(slab_sysfs_init); 5520 #endif /* CONFIG_SYSFS */ 5521 5522 /* 5523 * The /proc/slabinfo ABI 5524 */ 5525 #ifdef CONFIG_SLABINFO 5526 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5527 { 5528 unsigned long nr_slabs = 0; 5529 unsigned long nr_objs = 0; 5530 unsigned long nr_free = 0; 5531 int node; 5532 struct kmem_cache_node *n; 5533 5534 for_each_kmem_cache_node(s, node, n) { 5535 nr_slabs += node_nr_slabs(n); 5536 nr_objs += node_nr_objs(n); 5537 nr_free += count_partial(n, count_free); 5538 } 5539 5540 sinfo->active_objs = nr_objs - nr_free; 5541 sinfo->num_objs = nr_objs; 5542 sinfo->active_slabs = nr_slabs; 5543 sinfo->num_slabs = nr_slabs; 5544 sinfo->objects_per_slab = oo_objects(s->oo); 5545 sinfo->cache_order = oo_order(s->oo); 5546 } 5547 5548 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5549 { 5550 } 5551 5552 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5553 size_t count, loff_t *ppos) 5554 { 5555 return -EIO; 5556 } 5557 #endif /* CONFIG_SLABINFO */ 5558