xref: /openbmc/linux/mm/slub.c (revision 22fd411a)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
30 
31 #include <trace/events/kmem.h>
32 
33 /*
34  * Lock order:
35  *   1. slab_lock(page)
36  *   2. slab->list_lock
37  *
38  *   The slab_lock protects operations on the object of a particular
39  *   slab and its metadata in the page struct. If the slab lock
40  *   has been taken then no allocations nor frees can be performed
41  *   on the objects in the slab nor can the slab be added or removed
42  *   from the partial or full lists since this would mean modifying
43  *   the page_struct of the slab.
44  *
45  *   The list_lock protects the partial and full list on each node and
46  *   the partial slab counter. If taken then no new slabs may be added or
47  *   removed from the lists nor make the number of partial slabs be modified.
48  *   (Note that the total number of slabs is an atomic value that may be
49  *   modified without taking the list lock).
50  *
51  *   The list_lock is a centralized lock and thus we avoid taking it as
52  *   much as possible. As long as SLUB does not have to handle partial
53  *   slabs, operations can continue without any centralized lock. F.e.
54  *   allocating a long series of objects that fill up slabs does not require
55  *   the list lock.
56  *
57  *   The lock order is sometimes inverted when we are trying to get a slab
58  *   off a list. We take the list_lock and then look for a page on the list
59  *   to use. While we do that objects in the slabs may be freed. We can
60  *   only operate on the slab if we have also taken the slab_lock. So we use
61  *   a slab_trylock() on the slab. If trylock was successful then no frees
62  *   can occur anymore and we can use the slab for allocations etc. If the
63  *   slab_trylock() does not succeed then frees are in progress in the slab and
64  *   we must stay away from it for a while since we may cause a bouncing
65  *   cacheline if we try to acquire the lock. So go onto the next slab.
66  *   If all pages are busy then we may allocate a new slab instead of reusing
67  *   a partial slab. A new slab has noone operating on it and thus there is
68  *   no danger of cacheline contention.
69  *
70  *   Interrupts are disabled during allocation and deallocation in order to
71  *   make the slab allocator safe to use in the context of an irq. In addition
72  *   interrupts are disabled to ensure that the processor does not change
73  *   while handling per_cpu slabs, due to kernel preemption.
74  *
75  * SLUB assigns one slab for allocation to each processor.
76  * Allocations only occur from these slabs called cpu slabs.
77  *
78  * Slabs with free elements are kept on a partial list and during regular
79  * operations no list for full slabs is used. If an object in a full slab is
80  * freed then the slab will show up again on the partial lists.
81  * We track full slabs for debugging purposes though because otherwise we
82  * cannot scan all objects.
83  *
84  * Slabs are freed when they become empty. Teardown and setup is
85  * minimal so we rely on the page allocators per cpu caches for
86  * fast frees and allocs.
87  *
88  * Overloading of page flags that are otherwise used for LRU management.
89  *
90  * PageActive 		The slab is frozen and exempt from list processing.
91  * 			This means that the slab is dedicated to a purpose
92  * 			such as satisfying allocations for a specific
93  * 			processor. Objects may be freed in the slab while
94  * 			it is frozen but slab_free will then skip the usual
95  * 			list operations. It is up to the processor holding
96  * 			the slab to integrate the slab into the slab lists
97  * 			when the slab is no longer needed.
98  *
99  * 			One use of this flag is to mark slabs that are
100  * 			used for allocations. Then such a slab becomes a cpu
101  * 			slab. The cpu slab may be equipped with an additional
102  * 			freelist that allows lockless access to
103  * 			free objects in addition to the regular freelist
104  * 			that requires the slab lock.
105  *
106  * PageError		Slab requires special handling due to debug
107  * 			options set. This moves	slab handling out of
108  * 			the fast path and disables lockless freelists.
109  */
110 
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 		SLAB_TRACE | SLAB_DEBUG_FREE)
113 
114 static inline int kmem_cache_debug(struct kmem_cache *s)
115 {
116 #ifdef CONFIG_SLUB_DEBUG
117 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118 #else
119 	return 0;
120 #endif
121 }
122 
123 /*
124  * Issues still to be resolved:
125  *
126  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127  *
128  * - Variable sizing of the per node arrays
129  */
130 
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
133 
134 /*
135  * Mininum number of partial slabs. These will be left on the partial
136  * lists even if they are empty. kmem_cache_shrink may reclaim them.
137  */
138 #define MIN_PARTIAL 5
139 
140 /*
141  * Maximum number of desirable partial slabs.
142  * The existence of more partial slabs makes kmem_cache_shrink
143  * sort the partial list by the number of objects in the.
144  */
145 #define MAX_PARTIAL 10
146 
147 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 				SLAB_POISON | SLAB_STORE_USER)
149 
150 /*
151  * Debugging flags that require metadata to be stored in the slab.  These get
152  * disabled when slub_debug=O is used and a cache's min order increases with
153  * metadata.
154  */
155 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
156 
157 /*
158  * Set of flags that will prevent slab merging
159  */
160 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
161 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162 		SLAB_FAILSLAB)
163 
164 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
165 		SLAB_CACHE_DMA | SLAB_NOTRACK)
166 
167 #define OO_SHIFT	16
168 #define OO_MASK		((1 << OO_SHIFT) - 1)
169 #define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
170 
171 /* Internal SLUB flags */
172 #define __OBJECT_POISON		0x80000000UL /* Poison object */
173 
174 static int kmem_size = sizeof(struct kmem_cache);
175 
176 #ifdef CONFIG_SMP
177 static struct notifier_block slab_notifier;
178 #endif
179 
180 static enum {
181 	DOWN,		/* No slab functionality available */
182 	PARTIAL,	/* Kmem_cache_node works */
183 	UP,		/* Everything works but does not show up in sysfs */
184 	SYSFS		/* Sysfs up */
185 } slab_state = DOWN;
186 
187 /* A list of all slab caches on the system */
188 static DECLARE_RWSEM(slub_lock);
189 static LIST_HEAD(slab_caches);
190 
191 /*
192  * Tracking user of a slab.
193  */
194 struct track {
195 	unsigned long addr;	/* Called from address */
196 	int cpu;		/* Was running on cpu */
197 	int pid;		/* Pid context */
198 	unsigned long when;	/* When did the operation occur */
199 };
200 
201 enum track_item { TRACK_ALLOC, TRACK_FREE };
202 
203 #ifdef CONFIG_SYSFS
204 static int sysfs_slab_add(struct kmem_cache *);
205 static int sysfs_slab_alias(struct kmem_cache *, const char *);
206 static void sysfs_slab_remove(struct kmem_cache *);
207 
208 #else
209 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 							{ return 0; }
212 static inline void sysfs_slab_remove(struct kmem_cache *s)
213 {
214 	kfree(s->name);
215 	kfree(s);
216 }
217 
218 #endif
219 
220 static inline void stat(struct kmem_cache *s, enum stat_item si)
221 {
222 #ifdef CONFIG_SLUB_STATS
223 	__this_cpu_inc(s->cpu_slab->stat[si]);
224 #endif
225 }
226 
227 /********************************************************************
228  * 			Core slab cache functions
229  *******************************************************************/
230 
231 int slab_is_available(void)
232 {
233 	return slab_state >= UP;
234 }
235 
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237 {
238 	return s->node[node];
239 }
240 
241 /* Verify that a pointer has an address that is valid within a slab page */
242 static inline int check_valid_pointer(struct kmem_cache *s,
243 				struct page *page, const void *object)
244 {
245 	void *base;
246 
247 	if (!object)
248 		return 1;
249 
250 	base = page_address(page);
251 	if (object < base || object >= base + page->objects * s->size ||
252 		(object - base) % s->size) {
253 		return 0;
254 	}
255 
256 	return 1;
257 }
258 
259 static inline void *get_freepointer(struct kmem_cache *s, void *object)
260 {
261 	return *(void **)(object + s->offset);
262 }
263 
264 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265 {
266 	*(void **)(object + s->offset) = fp;
267 }
268 
269 /* Loop over all objects in a slab */
270 #define for_each_object(__p, __s, __addr, __objects) \
271 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
272 			__p += (__s)->size)
273 
274 /* Scan freelist */
275 #define for_each_free_object(__p, __s, __free) \
276 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
277 
278 /* Determine object index from a given position */
279 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
280 {
281 	return (p - addr) / s->size;
282 }
283 
284 static inline struct kmem_cache_order_objects oo_make(int order,
285 						unsigned long size)
286 {
287 	struct kmem_cache_order_objects x = {
288 		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
289 	};
290 
291 	return x;
292 }
293 
294 static inline int oo_order(struct kmem_cache_order_objects x)
295 {
296 	return x.x >> OO_SHIFT;
297 }
298 
299 static inline int oo_objects(struct kmem_cache_order_objects x)
300 {
301 	return x.x & OO_MASK;
302 }
303 
304 #ifdef CONFIG_SLUB_DEBUG
305 /*
306  * Debug settings:
307  */
308 #ifdef CONFIG_SLUB_DEBUG_ON
309 static int slub_debug = DEBUG_DEFAULT_FLAGS;
310 #else
311 static int slub_debug;
312 #endif
313 
314 static char *slub_debug_slabs;
315 static int disable_higher_order_debug;
316 
317 /*
318  * Object debugging
319  */
320 static void print_section(char *text, u8 *addr, unsigned int length)
321 {
322 	int i, offset;
323 	int newline = 1;
324 	char ascii[17];
325 
326 	ascii[16] = 0;
327 
328 	for (i = 0; i < length; i++) {
329 		if (newline) {
330 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
331 			newline = 0;
332 		}
333 		printk(KERN_CONT " %02x", addr[i]);
334 		offset = i % 16;
335 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
336 		if (offset == 15) {
337 			printk(KERN_CONT " %s\n", ascii);
338 			newline = 1;
339 		}
340 	}
341 	if (!newline) {
342 		i %= 16;
343 		while (i < 16) {
344 			printk(KERN_CONT "   ");
345 			ascii[i] = ' ';
346 			i++;
347 		}
348 		printk(KERN_CONT " %s\n", ascii);
349 	}
350 }
351 
352 static struct track *get_track(struct kmem_cache *s, void *object,
353 	enum track_item alloc)
354 {
355 	struct track *p;
356 
357 	if (s->offset)
358 		p = object + s->offset + sizeof(void *);
359 	else
360 		p = object + s->inuse;
361 
362 	return p + alloc;
363 }
364 
365 static void set_track(struct kmem_cache *s, void *object,
366 			enum track_item alloc, unsigned long addr)
367 {
368 	struct track *p = get_track(s, object, alloc);
369 
370 	if (addr) {
371 		p->addr = addr;
372 		p->cpu = smp_processor_id();
373 		p->pid = current->pid;
374 		p->when = jiffies;
375 	} else
376 		memset(p, 0, sizeof(struct track));
377 }
378 
379 static void init_tracking(struct kmem_cache *s, void *object)
380 {
381 	if (!(s->flags & SLAB_STORE_USER))
382 		return;
383 
384 	set_track(s, object, TRACK_FREE, 0UL);
385 	set_track(s, object, TRACK_ALLOC, 0UL);
386 }
387 
388 static void print_track(const char *s, struct track *t)
389 {
390 	if (!t->addr)
391 		return;
392 
393 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
394 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
395 }
396 
397 static void print_tracking(struct kmem_cache *s, void *object)
398 {
399 	if (!(s->flags & SLAB_STORE_USER))
400 		return;
401 
402 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
403 	print_track("Freed", get_track(s, object, TRACK_FREE));
404 }
405 
406 static void print_page_info(struct page *page)
407 {
408 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
409 		page, page->objects, page->inuse, page->freelist, page->flags);
410 
411 }
412 
413 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
414 {
415 	va_list args;
416 	char buf[100];
417 
418 	va_start(args, fmt);
419 	vsnprintf(buf, sizeof(buf), fmt, args);
420 	va_end(args);
421 	printk(KERN_ERR "========================================"
422 			"=====================================\n");
423 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
424 	printk(KERN_ERR "----------------------------------------"
425 			"-------------------------------------\n\n");
426 }
427 
428 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
429 {
430 	va_list args;
431 	char buf[100];
432 
433 	va_start(args, fmt);
434 	vsnprintf(buf, sizeof(buf), fmt, args);
435 	va_end(args);
436 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
437 }
438 
439 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
440 {
441 	unsigned int off;	/* Offset of last byte */
442 	u8 *addr = page_address(page);
443 
444 	print_tracking(s, p);
445 
446 	print_page_info(page);
447 
448 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
449 			p, p - addr, get_freepointer(s, p));
450 
451 	if (p > addr + 16)
452 		print_section("Bytes b4", p - 16, 16);
453 
454 	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
455 
456 	if (s->flags & SLAB_RED_ZONE)
457 		print_section("Redzone", p + s->objsize,
458 			s->inuse - s->objsize);
459 
460 	if (s->offset)
461 		off = s->offset + sizeof(void *);
462 	else
463 		off = s->inuse;
464 
465 	if (s->flags & SLAB_STORE_USER)
466 		off += 2 * sizeof(struct track);
467 
468 	if (off != s->size)
469 		/* Beginning of the filler is the free pointer */
470 		print_section("Padding", p + off, s->size - off);
471 
472 	dump_stack();
473 }
474 
475 static void object_err(struct kmem_cache *s, struct page *page,
476 			u8 *object, char *reason)
477 {
478 	slab_bug(s, "%s", reason);
479 	print_trailer(s, page, object);
480 }
481 
482 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
483 {
484 	va_list args;
485 	char buf[100];
486 
487 	va_start(args, fmt);
488 	vsnprintf(buf, sizeof(buf), fmt, args);
489 	va_end(args);
490 	slab_bug(s, "%s", buf);
491 	print_page_info(page);
492 	dump_stack();
493 }
494 
495 static void init_object(struct kmem_cache *s, void *object, u8 val)
496 {
497 	u8 *p = object;
498 
499 	if (s->flags & __OBJECT_POISON) {
500 		memset(p, POISON_FREE, s->objsize - 1);
501 		p[s->objsize - 1] = POISON_END;
502 	}
503 
504 	if (s->flags & SLAB_RED_ZONE)
505 		memset(p + s->objsize, val, s->inuse - s->objsize);
506 }
507 
508 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
509 {
510 	while (bytes) {
511 		if (*start != (u8)value)
512 			return start;
513 		start++;
514 		bytes--;
515 	}
516 	return NULL;
517 }
518 
519 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
520 						void *from, void *to)
521 {
522 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
523 	memset(from, data, to - from);
524 }
525 
526 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
527 			u8 *object, char *what,
528 			u8 *start, unsigned int value, unsigned int bytes)
529 {
530 	u8 *fault;
531 	u8 *end;
532 
533 	fault = check_bytes(start, value, bytes);
534 	if (!fault)
535 		return 1;
536 
537 	end = start + bytes;
538 	while (end > fault && end[-1] == value)
539 		end--;
540 
541 	slab_bug(s, "%s overwritten", what);
542 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
543 					fault, end - 1, fault[0], value);
544 	print_trailer(s, page, object);
545 
546 	restore_bytes(s, what, value, fault, end);
547 	return 0;
548 }
549 
550 /*
551  * Object layout:
552  *
553  * object address
554  * 	Bytes of the object to be managed.
555  * 	If the freepointer may overlay the object then the free
556  * 	pointer is the first word of the object.
557  *
558  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
559  * 	0xa5 (POISON_END)
560  *
561  * object + s->objsize
562  * 	Padding to reach word boundary. This is also used for Redzoning.
563  * 	Padding is extended by another word if Redzoning is enabled and
564  * 	objsize == inuse.
565  *
566  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
567  * 	0xcc (RED_ACTIVE) for objects in use.
568  *
569  * object + s->inuse
570  * 	Meta data starts here.
571  *
572  * 	A. Free pointer (if we cannot overwrite object on free)
573  * 	B. Tracking data for SLAB_STORE_USER
574  * 	C. Padding to reach required alignment boundary or at mininum
575  * 		one word if debugging is on to be able to detect writes
576  * 		before the word boundary.
577  *
578  *	Padding is done using 0x5a (POISON_INUSE)
579  *
580  * object + s->size
581  * 	Nothing is used beyond s->size.
582  *
583  * If slabcaches are merged then the objsize and inuse boundaries are mostly
584  * ignored. And therefore no slab options that rely on these boundaries
585  * may be used with merged slabcaches.
586  */
587 
588 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
589 {
590 	unsigned long off = s->inuse;	/* The end of info */
591 
592 	if (s->offset)
593 		/* Freepointer is placed after the object. */
594 		off += sizeof(void *);
595 
596 	if (s->flags & SLAB_STORE_USER)
597 		/* We also have user information there */
598 		off += 2 * sizeof(struct track);
599 
600 	if (s->size == off)
601 		return 1;
602 
603 	return check_bytes_and_report(s, page, p, "Object padding",
604 				p + off, POISON_INUSE, s->size - off);
605 }
606 
607 /* Check the pad bytes at the end of a slab page */
608 static int slab_pad_check(struct kmem_cache *s, struct page *page)
609 {
610 	u8 *start;
611 	u8 *fault;
612 	u8 *end;
613 	int length;
614 	int remainder;
615 
616 	if (!(s->flags & SLAB_POISON))
617 		return 1;
618 
619 	start = page_address(page);
620 	length = (PAGE_SIZE << compound_order(page));
621 	end = start + length;
622 	remainder = length % s->size;
623 	if (!remainder)
624 		return 1;
625 
626 	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
627 	if (!fault)
628 		return 1;
629 	while (end > fault && end[-1] == POISON_INUSE)
630 		end--;
631 
632 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
633 	print_section("Padding", end - remainder, remainder);
634 
635 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
636 	return 0;
637 }
638 
639 static int check_object(struct kmem_cache *s, struct page *page,
640 					void *object, u8 val)
641 {
642 	u8 *p = object;
643 	u8 *endobject = object + s->objsize;
644 
645 	if (s->flags & SLAB_RED_ZONE) {
646 		if (!check_bytes_and_report(s, page, object, "Redzone",
647 			endobject, val, s->inuse - s->objsize))
648 			return 0;
649 	} else {
650 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
651 			check_bytes_and_report(s, page, p, "Alignment padding",
652 				endobject, POISON_INUSE, s->inuse - s->objsize);
653 		}
654 	}
655 
656 	if (s->flags & SLAB_POISON) {
657 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
658 			(!check_bytes_and_report(s, page, p, "Poison", p,
659 					POISON_FREE, s->objsize - 1) ||
660 			 !check_bytes_and_report(s, page, p, "Poison",
661 				p + s->objsize - 1, POISON_END, 1)))
662 			return 0;
663 		/*
664 		 * check_pad_bytes cleans up on its own.
665 		 */
666 		check_pad_bytes(s, page, p);
667 	}
668 
669 	if (!s->offset && val == SLUB_RED_ACTIVE)
670 		/*
671 		 * Object and freepointer overlap. Cannot check
672 		 * freepointer while object is allocated.
673 		 */
674 		return 1;
675 
676 	/* Check free pointer validity */
677 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
678 		object_err(s, page, p, "Freepointer corrupt");
679 		/*
680 		 * No choice but to zap it and thus lose the remainder
681 		 * of the free objects in this slab. May cause
682 		 * another error because the object count is now wrong.
683 		 */
684 		set_freepointer(s, p, NULL);
685 		return 0;
686 	}
687 	return 1;
688 }
689 
690 static int check_slab(struct kmem_cache *s, struct page *page)
691 {
692 	int maxobj;
693 
694 	VM_BUG_ON(!irqs_disabled());
695 
696 	if (!PageSlab(page)) {
697 		slab_err(s, page, "Not a valid slab page");
698 		return 0;
699 	}
700 
701 	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
702 	if (page->objects > maxobj) {
703 		slab_err(s, page, "objects %u > max %u",
704 			s->name, page->objects, maxobj);
705 		return 0;
706 	}
707 	if (page->inuse > page->objects) {
708 		slab_err(s, page, "inuse %u > max %u",
709 			s->name, page->inuse, page->objects);
710 		return 0;
711 	}
712 	/* Slab_pad_check fixes things up after itself */
713 	slab_pad_check(s, page);
714 	return 1;
715 }
716 
717 /*
718  * Determine if a certain object on a page is on the freelist. Must hold the
719  * slab lock to guarantee that the chains are in a consistent state.
720  */
721 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
722 {
723 	int nr = 0;
724 	void *fp = page->freelist;
725 	void *object = NULL;
726 	unsigned long max_objects;
727 
728 	while (fp && nr <= page->objects) {
729 		if (fp == search)
730 			return 1;
731 		if (!check_valid_pointer(s, page, fp)) {
732 			if (object) {
733 				object_err(s, page, object,
734 					"Freechain corrupt");
735 				set_freepointer(s, object, NULL);
736 				break;
737 			} else {
738 				slab_err(s, page, "Freepointer corrupt");
739 				page->freelist = NULL;
740 				page->inuse = page->objects;
741 				slab_fix(s, "Freelist cleared");
742 				return 0;
743 			}
744 			break;
745 		}
746 		object = fp;
747 		fp = get_freepointer(s, object);
748 		nr++;
749 	}
750 
751 	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
752 	if (max_objects > MAX_OBJS_PER_PAGE)
753 		max_objects = MAX_OBJS_PER_PAGE;
754 
755 	if (page->objects != max_objects) {
756 		slab_err(s, page, "Wrong number of objects. Found %d but "
757 			"should be %d", page->objects, max_objects);
758 		page->objects = max_objects;
759 		slab_fix(s, "Number of objects adjusted.");
760 	}
761 	if (page->inuse != page->objects - nr) {
762 		slab_err(s, page, "Wrong object count. Counter is %d but "
763 			"counted were %d", page->inuse, page->objects - nr);
764 		page->inuse = page->objects - nr;
765 		slab_fix(s, "Object count adjusted.");
766 	}
767 	return search == NULL;
768 }
769 
770 static void trace(struct kmem_cache *s, struct page *page, void *object,
771 								int alloc)
772 {
773 	if (s->flags & SLAB_TRACE) {
774 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
775 			s->name,
776 			alloc ? "alloc" : "free",
777 			object, page->inuse,
778 			page->freelist);
779 
780 		if (!alloc)
781 			print_section("Object", (void *)object, s->objsize);
782 
783 		dump_stack();
784 	}
785 }
786 
787 /*
788  * Hooks for other subsystems that check memory allocations. In a typical
789  * production configuration these hooks all should produce no code at all.
790  */
791 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
792 {
793 	flags &= gfp_allowed_mask;
794 	lockdep_trace_alloc(flags);
795 	might_sleep_if(flags & __GFP_WAIT);
796 
797 	return should_failslab(s->objsize, flags, s->flags);
798 }
799 
800 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
801 {
802 	flags &= gfp_allowed_mask;
803 	kmemcheck_slab_alloc(s, flags, object, s->objsize);
804 	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
805 }
806 
807 static inline void slab_free_hook(struct kmem_cache *s, void *x)
808 {
809 	kmemleak_free_recursive(x, s->flags);
810 }
811 
812 static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
813 {
814 	kmemcheck_slab_free(s, object, s->objsize);
815 	debug_check_no_locks_freed(object, s->objsize);
816 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
817 		debug_check_no_obj_freed(object, s->objsize);
818 }
819 
820 /*
821  * Tracking of fully allocated slabs for debugging purposes.
822  */
823 static void add_full(struct kmem_cache_node *n, struct page *page)
824 {
825 	spin_lock(&n->list_lock);
826 	list_add(&page->lru, &n->full);
827 	spin_unlock(&n->list_lock);
828 }
829 
830 static void remove_full(struct kmem_cache *s, struct page *page)
831 {
832 	struct kmem_cache_node *n;
833 
834 	if (!(s->flags & SLAB_STORE_USER))
835 		return;
836 
837 	n = get_node(s, page_to_nid(page));
838 
839 	spin_lock(&n->list_lock);
840 	list_del(&page->lru);
841 	spin_unlock(&n->list_lock);
842 }
843 
844 /* Tracking of the number of slabs for debugging purposes */
845 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
846 {
847 	struct kmem_cache_node *n = get_node(s, node);
848 
849 	return atomic_long_read(&n->nr_slabs);
850 }
851 
852 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
853 {
854 	return atomic_long_read(&n->nr_slabs);
855 }
856 
857 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
858 {
859 	struct kmem_cache_node *n = get_node(s, node);
860 
861 	/*
862 	 * May be called early in order to allocate a slab for the
863 	 * kmem_cache_node structure. Solve the chicken-egg
864 	 * dilemma by deferring the increment of the count during
865 	 * bootstrap (see early_kmem_cache_node_alloc).
866 	 */
867 	if (n) {
868 		atomic_long_inc(&n->nr_slabs);
869 		atomic_long_add(objects, &n->total_objects);
870 	}
871 }
872 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
873 {
874 	struct kmem_cache_node *n = get_node(s, node);
875 
876 	atomic_long_dec(&n->nr_slabs);
877 	atomic_long_sub(objects, &n->total_objects);
878 }
879 
880 /* Object debug checks for alloc/free paths */
881 static void setup_object_debug(struct kmem_cache *s, struct page *page,
882 								void *object)
883 {
884 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
885 		return;
886 
887 	init_object(s, object, SLUB_RED_INACTIVE);
888 	init_tracking(s, object);
889 }
890 
891 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
892 					void *object, unsigned long addr)
893 {
894 	if (!check_slab(s, page))
895 		goto bad;
896 
897 	if (!on_freelist(s, page, object)) {
898 		object_err(s, page, object, "Object already allocated");
899 		goto bad;
900 	}
901 
902 	if (!check_valid_pointer(s, page, object)) {
903 		object_err(s, page, object, "Freelist Pointer check fails");
904 		goto bad;
905 	}
906 
907 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
908 		goto bad;
909 
910 	/* Success perform special debug activities for allocs */
911 	if (s->flags & SLAB_STORE_USER)
912 		set_track(s, object, TRACK_ALLOC, addr);
913 	trace(s, page, object, 1);
914 	init_object(s, object, SLUB_RED_ACTIVE);
915 	return 1;
916 
917 bad:
918 	if (PageSlab(page)) {
919 		/*
920 		 * If this is a slab page then lets do the best we can
921 		 * to avoid issues in the future. Marking all objects
922 		 * as used avoids touching the remaining objects.
923 		 */
924 		slab_fix(s, "Marking all objects used");
925 		page->inuse = page->objects;
926 		page->freelist = NULL;
927 	}
928 	return 0;
929 }
930 
931 static noinline int free_debug_processing(struct kmem_cache *s,
932 		 struct page *page, void *object, unsigned long addr)
933 {
934 	if (!check_slab(s, page))
935 		goto fail;
936 
937 	if (!check_valid_pointer(s, page, object)) {
938 		slab_err(s, page, "Invalid object pointer 0x%p", object);
939 		goto fail;
940 	}
941 
942 	if (on_freelist(s, page, object)) {
943 		object_err(s, page, object, "Object already free");
944 		goto fail;
945 	}
946 
947 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
948 		return 0;
949 
950 	if (unlikely(s != page->slab)) {
951 		if (!PageSlab(page)) {
952 			slab_err(s, page, "Attempt to free object(0x%p) "
953 				"outside of slab", object);
954 		} else if (!page->slab) {
955 			printk(KERN_ERR
956 				"SLUB <none>: no slab for object 0x%p.\n",
957 						object);
958 			dump_stack();
959 		} else
960 			object_err(s, page, object,
961 					"page slab pointer corrupt.");
962 		goto fail;
963 	}
964 
965 	/* Special debug activities for freeing objects */
966 	if (!PageSlubFrozen(page) && !page->freelist)
967 		remove_full(s, page);
968 	if (s->flags & SLAB_STORE_USER)
969 		set_track(s, object, TRACK_FREE, addr);
970 	trace(s, page, object, 0);
971 	init_object(s, object, SLUB_RED_INACTIVE);
972 	return 1;
973 
974 fail:
975 	slab_fix(s, "Object at 0x%p not freed", object);
976 	return 0;
977 }
978 
979 static int __init setup_slub_debug(char *str)
980 {
981 	slub_debug = DEBUG_DEFAULT_FLAGS;
982 	if (*str++ != '=' || !*str)
983 		/*
984 		 * No options specified. Switch on full debugging.
985 		 */
986 		goto out;
987 
988 	if (*str == ',')
989 		/*
990 		 * No options but restriction on slabs. This means full
991 		 * debugging for slabs matching a pattern.
992 		 */
993 		goto check_slabs;
994 
995 	if (tolower(*str) == 'o') {
996 		/*
997 		 * Avoid enabling debugging on caches if its minimum order
998 		 * would increase as a result.
999 		 */
1000 		disable_higher_order_debug = 1;
1001 		goto out;
1002 	}
1003 
1004 	slub_debug = 0;
1005 	if (*str == '-')
1006 		/*
1007 		 * Switch off all debugging measures.
1008 		 */
1009 		goto out;
1010 
1011 	/*
1012 	 * Determine which debug features should be switched on
1013 	 */
1014 	for (; *str && *str != ','; str++) {
1015 		switch (tolower(*str)) {
1016 		case 'f':
1017 			slub_debug |= SLAB_DEBUG_FREE;
1018 			break;
1019 		case 'z':
1020 			slub_debug |= SLAB_RED_ZONE;
1021 			break;
1022 		case 'p':
1023 			slub_debug |= SLAB_POISON;
1024 			break;
1025 		case 'u':
1026 			slub_debug |= SLAB_STORE_USER;
1027 			break;
1028 		case 't':
1029 			slub_debug |= SLAB_TRACE;
1030 			break;
1031 		case 'a':
1032 			slub_debug |= SLAB_FAILSLAB;
1033 			break;
1034 		default:
1035 			printk(KERN_ERR "slub_debug option '%c' "
1036 				"unknown. skipped\n", *str);
1037 		}
1038 	}
1039 
1040 check_slabs:
1041 	if (*str == ',')
1042 		slub_debug_slabs = str + 1;
1043 out:
1044 	return 1;
1045 }
1046 
1047 __setup("slub_debug", setup_slub_debug);
1048 
1049 static unsigned long kmem_cache_flags(unsigned long objsize,
1050 	unsigned long flags, const char *name,
1051 	void (*ctor)(void *))
1052 {
1053 	/*
1054 	 * Enable debugging if selected on the kernel commandline.
1055 	 */
1056 	if (slub_debug && (!slub_debug_slabs ||
1057 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1058 		flags |= slub_debug;
1059 
1060 	return flags;
1061 }
1062 #else
1063 static inline void setup_object_debug(struct kmem_cache *s,
1064 			struct page *page, void *object) {}
1065 
1066 static inline int alloc_debug_processing(struct kmem_cache *s,
1067 	struct page *page, void *object, unsigned long addr) { return 0; }
1068 
1069 static inline int free_debug_processing(struct kmem_cache *s,
1070 	struct page *page, void *object, unsigned long addr) { return 0; }
1071 
1072 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1073 			{ return 1; }
1074 static inline int check_object(struct kmem_cache *s, struct page *page,
1075 			void *object, u8 val) { return 1; }
1076 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1077 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1078 	unsigned long flags, const char *name,
1079 	void (*ctor)(void *))
1080 {
1081 	return flags;
1082 }
1083 #define slub_debug 0
1084 
1085 #define disable_higher_order_debug 0
1086 
1087 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1088 							{ return 0; }
1089 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1090 							{ return 0; }
1091 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1092 							int objects) {}
1093 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1094 							int objects) {}
1095 
1096 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1097 							{ return 0; }
1098 
1099 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1100 		void *object) {}
1101 
1102 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1103 
1104 static inline void slab_free_hook_irq(struct kmem_cache *s,
1105 		void *object) {}
1106 
1107 #endif /* CONFIG_SLUB_DEBUG */
1108 
1109 /*
1110  * Slab allocation and freeing
1111  */
1112 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1113 					struct kmem_cache_order_objects oo)
1114 {
1115 	int order = oo_order(oo);
1116 
1117 	flags |= __GFP_NOTRACK;
1118 
1119 	if (node == NUMA_NO_NODE)
1120 		return alloc_pages(flags, order);
1121 	else
1122 		return alloc_pages_exact_node(node, flags, order);
1123 }
1124 
1125 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1126 {
1127 	struct page *page;
1128 	struct kmem_cache_order_objects oo = s->oo;
1129 	gfp_t alloc_gfp;
1130 
1131 	flags |= s->allocflags;
1132 
1133 	/*
1134 	 * Let the initial higher-order allocation fail under memory pressure
1135 	 * so we fall-back to the minimum order allocation.
1136 	 */
1137 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1138 
1139 	page = alloc_slab_page(alloc_gfp, node, oo);
1140 	if (unlikely(!page)) {
1141 		oo = s->min;
1142 		/*
1143 		 * Allocation may have failed due to fragmentation.
1144 		 * Try a lower order alloc if possible
1145 		 */
1146 		page = alloc_slab_page(flags, node, oo);
1147 		if (!page)
1148 			return NULL;
1149 
1150 		stat(s, ORDER_FALLBACK);
1151 	}
1152 
1153 	if (kmemcheck_enabled
1154 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1155 		int pages = 1 << oo_order(oo);
1156 
1157 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1158 
1159 		/*
1160 		 * Objects from caches that have a constructor don't get
1161 		 * cleared when they're allocated, so we need to do it here.
1162 		 */
1163 		if (s->ctor)
1164 			kmemcheck_mark_uninitialized_pages(page, pages);
1165 		else
1166 			kmemcheck_mark_unallocated_pages(page, pages);
1167 	}
1168 
1169 	page->objects = oo_objects(oo);
1170 	mod_zone_page_state(page_zone(page),
1171 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1172 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1173 		1 << oo_order(oo));
1174 
1175 	return page;
1176 }
1177 
1178 static void setup_object(struct kmem_cache *s, struct page *page,
1179 				void *object)
1180 {
1181 	setup_object_debug(s, page, object);
1182 	if (unlikely(s->ctor))
1183 		s->ctor(object);
1184 }
1185 
1186 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1187 {
1188 	struct page *page;
1189 	void *start;
1190 	void *last;
1191 	void *p;
1192 
1193 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1194 
1195 	page = allocate_slab(s,
1196 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1197 	if (!page)
1198 		goto out;
1199 
1200 	inc_slabs_node(s, page_to_nid(page), page->objects);
1201 	page->slab = s;
1202 	page->flags |= 1 << PG_slab;
1203 
1204 	start = page_address(page);
1205 
1206 	if (unlikely(s->flags & SLAB_POISON))
1207 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1208 
1209 	last = start;
1210 	for_each_object(p, s, start, page->objects) {
1211 		setup_object(s, page, last);
1212 		set_freepointer(s, last, p);
1213 		last = p;
1214 	}
1215 	setup_object(s, page, last);
1216 	set_freepointer(s, last, NULL);
1217 
1218 	page->freelist = start;
1219 	page->inuse = 0;
1220 out:
1221 	return page;
1222 }
1223 
1224 static void __free_slab(struct kmem_cache *s, struct page *page)
1225 {
1226 	int order = compound_order(page);
1227 	int pages = 1 << order;
1228 
1229 	if (kmem_cache_debug(s)) {
1230 		void *p;
1231 
1232 		slab_pad_check(s, page);
1233 		for_each_object(p, s, page_address(page),
1234 						page->objects)
1235 			check_object(s, page, p, SLUB_RED_INACTIVE);
1236 	}
1237 
1238 	kmemcheck_free_shadow(page, compound_order(page));
1239 
1240 	mod_zone_page_state(page_zone(page),
1241 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1242 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1243 		-pages);
1244 
1245 	__ClearPageSlab(page);
1246 	reset_page_mapcount(page);
1247 	if (current->reclaim_state)
1248 		current->reclaim_state->reclaimed_slab += pages;
1249 	__free_pages(page, order);
1250 }
1251 
1252 static void rcu_free_slab(struct rcu_head *h)
1253 {
1254 	struct page *page;
1255 
1256 	page = container_of((struct list_head *)h, struct page, lru);
1257 	__free_slab(page->slab, page);
1258 }
1259 
1260 static void free_slab(struct kmem_cache *s, struct page *page)
1261 {
1262 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1263 		/*
1264 		 * RCU free overloads the RCU head over the LRU
1265 		 */
1266 		struct rcu_head *head = (void *)&page->lru;
1267 
1268 		call_rcu(head, rcu_free_slab);
1269 	} else
1270 		__free_slab(s, page);
1271 }
1272 
1273 static void discard_slab(struct kmem_cache *s, struct page *page)
1274 {
1275 	dec_slabs_node(s, page_to_nid(page), page->objects);
1276 	free_slab(s, page);
1277 }
1278 
1279 /*
1280  * Per slab locking using the pagelock
1281  */
1282 static __always_inline void slab_lock(struct page *page)
1283 {
1284 	bit_spin_lock(PG_locked, &page->flags);
1285 }
1286 
1287 static __always_inline void slab_unlock(struct page *page)
1288 {
1289 	__bit_spin_unlock(PG_locked, &page->flags);
1290 }
1291 
1292 static __always_inline int slab_trylock(struct page *page)
1293 {
1294 	int rc = 1;
1295 
1296 	rc = bit_spin_trylock(PG_locked, &page->flags);
1297 	return rc;
1298 }
1299 
1300 /*
1301  * Management of partially allocated slabs
1302  */
1303 static void add_partial(struct kmem_cache_node *n,
1304 				struct page *page, int tail)
1305 {
1306 	spin_lock(&n->list_lock);
1307 	n->nr_partial++;
1308 	if (tail)
1309 		list_add_tail(&page->lru, &n->partial);
1310 	else
1311 		list_add(&page->lru, &n->partial);
1312 	spin_unlock(&n->list_lock);
1313 }
1314 
1315 static inline void __remove_partial(struct kmem_cache_node *n,
1316 					struct page *page)
1317 {
1318 	list_del(&page->lru);
1319 	n->nr_partial--;
1320 }
1321 
1322 static void remove_partial(struct kmem_cache *s, struct page *page)
1323 {
1324 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1325 
1326 	spin_lock(&n->list_lock);
1327 	__remove_partial(n, page);
1328 	spin_unlock(&n->list_lock);
1329 }
1330 
1331 /*
1332  * Lock slab and remove from the partial list.
1333  *
1334  * Must hold list_lock.
1335  */
1336 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1337 							struct page *page)
1338 {
1339 	if (slab_trylock(page)) {
1340 		__remove_partial(n, page);
1341 		__SetPageSlubFrozen(page);
1342 		return 1;
1343 	}
1344 	return 0;
1345 }
1346 
1347 /*
1348  * Try to allocate a partial slab from a specific node.
1349  */
1350 static struct page *get_partial_node(struct kmem_cache_node *n)
1351 {
1352 	struct page *page;
1353 
1354 	/*
1355 	 * Racy check. If we mistakenly see no partial slabs then we
1356 	 * just allocate an empty slab. If we mistakenly try to get a
1357 	 * partial slab and there is none available then get_partials()
1358 	 * will return NULL.
1359 	 */
1360 	if (!n || !n->nr_partial)
1361 		return NULL;
1362 
1363 	spin_lock(&n->list_lock);
1364 	list_for_each_entry(page, &n->partial, lru)
1365 		if (lock_and_freeze_slab(n, page))
1366 			goto out;
1367 	page = NULL;
1368 out:
1369 	spin_unlock(&n->list_lock);
1370 	return page;
1371 }
1372 
1373 /*
1374  * Get a page from somewhere. Search in increasing NUMA distances.
1375  */
1376 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1377 {
1378 #ifdef CONFIG_NUMA
1379 	struct zonelist *zonelist;
1380 	struct zoneref *z;
1381 	struct zone *zone;
1382 	enum zone_type high_zoneidx = gfp_zone(flags);
1383 	struct page *page;
1384 
1385 	/*
1386 	 * The defrag ratio allows a configuration of the tradeoffs between
1387 	 * inter node defragmentation and node local allocations. A lower
1388 	 * defrag_ratio increases the tendency to do local allocations
1389 	 * instead of attempting to obtain partial slabs from other nodes.
1390 	 *
1391 	 * If the defrag_ratio is set to 0 then kmalloc() always
1392 	 * returns node local objects. If the ratio is higher then kmalloc()
1393 	 * may return off node objects because partial slabs are obtained
1394 	 * from other nodes and filled up.
1395 	 *
1396 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1397 	 * defrag_ratio = 1000) then every (well almost) allocation will
1398 	 * first attempt to defrag slab caches on other nodes. This means
1399 	 * scanning over all nodes to look for partial slabs which may be
1400 	 * expensive if we do it every time we are trying to find a slab
1401 	 * with available objects.
1402 	 */
1403 	if (!s->remote_node_defrag_ratio ||
1404 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1405 		return NULL;
1406 
1407 	get_mems_allowed();
1408 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1409 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1410 		struct kmem_cache_node *n;
1411 
1412 		n = get_node(s, zone_to_nid(zone));
1413 
1414 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1415 				n->nr_partial > s->min_partial) {
1416 			page = get_partial_node(n);
1417 			if (page) {
1418 				put_mems_allowed();
1419 				return page;
1420 			}
1421 		}
1422 	}
1423 	put_mems_allowed();
1424 #endif
1425 	return NULL;
1426 }
1427 
1428 /*
1429  * Get a partial page, lock it and return it.
1430  */
1431 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1432 {
1433 	struct page *page;
1434 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1435 
1436 	page = get_partial_node(get_node(s, searchnode));
1437 	if (page || node != -1)
1438 		return page;
1439 
1440 	return get_any_partial(s, flags);
1441 }
1442 
1443 /*
1444  * Move a page back to the lists.
1445  *
1446  * Must be called with the slab lock held.
1447  *
1448  * On exit the slab lock will have been dropped.
1449  */
1450 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1451 	__releases(bitlock)
1452 {
1453 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1454 
1455 	__ClearPageSlubFrozen(page);
1456 	if (page->inuse) {
1457 
1458 		if (page->freelist) {
1459 			add_partial(n, page, tail);
1460 			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1461 		} else {
1462 			stat(s, DEACTIVATE_FULL);
1463 			if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1464 				add_full(n, page);
1465 		}
1466 		slab_unlock(page);
1467 	} else {
1468 		stat(s, DEACTIVATE_EMPTY);
1469 		if (n->nr_partial < s->min_partial) {
1470 			/*
1471 			 * Adding an empty slab to the partial slabs in order
1472 			 * to avoid page allocator overhead. This slab needs
1473 			 * to come after the other slabs with objects in
1474 			 * so that the others get filled first. That way the
1475 			 * size of the partial list stays small.
1476 			 *
1477 			 * kmem_cache_shrink can reclaim any empty slabs from
1478 			 * the partial list.
1479 			 */
1480 			add_partial(n, page, 1);
1481 			slab_unlock(page);
1482 		} else {
1483 			slab_unlock(page);
1484 			stat(s, FREE_SLAB);
1485 			discard_slab(s, page);
1486 		}
1487 	}
1488 }
1489 
1490 /*
1491  * Remove the cpu slab
1492  */
1493 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1494 	__releases(bitlock)
1495 {
1496 	struct page *page = c->page;
1497 	int tail = 1;
1498 
1499 	if (page->freelist)
1500 		stat(s, DEACTIVATE_REMOTE_FREES);
1501 	/*
1502 	 * Merge cpu freelist into slab freelist. Typically we get here
1503 	 * because both freelists are empty. So this is unlikely
1504 	 * to occur.
1505 	 */
1506 	while (unlikely(c->freelist)) {
1507 		void **object;
1508 
1509 		tail = 0;	/* Hot objects. Put the slab first */
1510 
1511 		/* Retrieve object from cpu_freelist */
1512 		object = c->freelist;
1513 		c->freelist = get_freepointer(s, c->freelist);
1514 
1515 		/* And put onto the regular freelist */
1516 		set_freepointer(s, object, page->freelist);
1517 		page->freelist = object;
1518 		page->inuse--;
1519 	}
1520 	c->page = NULL;
1521 	unfreeze_slab(s, page, tail);
1522 }
1523 
1524 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1525 {
1526 	stat(s, CPUSLAB_FLUSH);
1527 	slab_lock(c->page);
1528 	deactivate_slab(s, c);
1529 }
1530 
1531 /*
1532  * Flush cpu slab.
1533  *
1534  * Called from IPI handler with interrupts disabled.
1535  */
1536 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1537 {
1538 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1539 
1540 	if (likely(c && c->page))
1541 		flush_slab(s, c);
1542 }
1543 
1544 static void flush_cpu_slab(void *d)
1545 {
1546 	struct kmem_cache *s = d;
1547 
1548 	__flush_cpu_slab(s, smp_processor_id());
1549 }
1550 
1551 static void flush_all(struct kmem_cache *s)
1552 {
1553 	on_each_cpu(flush_cpu_slab, s, 1);
1554 }
1555 
1556 /*
1557  * Check if the objects in a per cpu structure fit numa
1558  * locality expectations.
1559  */
1560 static inline int node_match(struct kmem_cache_cpu *c, int node)
1561 {
1562 #ifdef CONFIG_NUMA
1563 	if (node != NUMA_NO_NODE && c->node != node)
1564 		return 0;
1565 #endif
1566 	return 1;
1567 }
1568 
1569 static int count_free(struct page *page)
1570 {
1571 	return page->objects - page->inuse;
1572 }
1573 
1574 static unsigned long count_partial(struct kmem_cache_node *n,
1575 					int (*get_count)(struct page *))
1576 {
1577 	unsigned long flags;
1578 	unsigned long x = 0;
1579 	struct page *page;
1580 
1581 	spin_lock_irqsave(&n->list_lock, flags);
1582 	list_for_each_entry(page, &n->partial, lru)
1583 		x += get_count(page);
1584 	spin_unlock_irqrestore(&n->list_lock, flags);
1585 	return x;
1586 }
1587 
1588 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1589 {
1590 #ifdef CONFIG_SLUB_DEBUG
1591 	return atomic_long_read(&n->total_objects);
1592 #else
1593 	return 0;
1594 #endif
1595 }
1596 
1597 static noinline void
1598 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1599 {
1600 	int node;
1601 
1602 	printk(KERN_WARNING
1603 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1604 		nid, gfpflags);
1605 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
1606 		"default order: %d, min order: %d\n", s->name, s->objsize,
1607 		s->size, oo_order(s->oo), oo_order(s->min));
1608 
1609 	if (oo_order(s->min) > get_order(s->objsize))
1610 		printk(KERN_WARNING "  %s debugging increased min order, use "
1611 		       "slub_debug=O to disable.\n", s->name);
1612 
1613 	for_each_online_node(node) {
1614 		struct kmem_cache_node *n = get_node(s, node);
1615 		unsigned long nr_slabs;
1616 		unsigned long nr_objs;
1617 		unsigned long nr_free;
1618 
1619 		if (!n)
1620 			continue;
1621 
1622 		nr_free  = count_partial(n, count_free);
1623 		nr_slabs = node_nr_slabs(n);
1624 		nr_objs  = node_nr_objs(n);
1625 
1626 		printk(KERN_WARNING
1627 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
1628 			node, nr_slabs, nr_objs, nr_free);
1629 	}
1630 }
1631 
1632 /*
1633  * Slow path. The lockless freelist is empty or we need to perform
1634  * debugging duties.
1635  *
1636  * Interrupts are disabled.
1637  *
1638  * Processing is still very fast if new objects have been freed to the
1639  * regular freelist. In that case we simply take over the regular freelist
1640  * as the lockless freelist and zap the regular freelist.
1641  *
1642  * If that is not working then we fall back to the partial lists. We take the
1643  * first element of the freelist as the object to allocate now and move the
1644  * rest of the freelist to the lockless freelist.
1645  *
1646  * And if we were unable to get a new slab from the partial slab lists then
1647  * we need to allocate a new slab. This is the slowest path since it involves
1648  * a call to the page allocator and the setup of a new slab.
1649  */
1650 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1651 			  unsigned long addr, struct kmem_cache_cpu *c)
1652 {
1653 	void **object;
1654 	struct page *new;
1655 
1656 	/* We handle __GFP_ZERO in the caller */
1657 	gfpflags &= ~__GFP_ZERO;
1658 
1659 	if (!c->page)
1660 		goto new_slab;
1661 
1662 	slab_lock(c->page);
1663 	if (unlikely(!node_match(c, node)))
1664 		goto another_slab;
1665 
1666 	stat(s, ALLOC_REFILL);
1667 
1668 load_freelist:
1669 	object = c->page->freelist;
1670 	if (unlikely(!object))
1671 		goto another_slab;
1672 	if (kmem_cache_debug(s))
1673 		goto debug;
1674 
1675 	c->freelist = get_freepointer(s, object);
1676 	c->page->inuse = c->page->objects;
1677 	c->page->freelist = NULL;
1678 	c->node = page_to_nid(c->page);
1679 unlock_out:
1680 	slab_unlock(c->page);
1681 	stat(s, ALLOC_SLOWPATH);
1682 	return object;
1683 
1684 another_slab:
1685 	deactivate_slab(s, c);
1686 
1687 new_slab:
1688 	new = get_partial(s, gfpflags, node);
1689 	if (new) {
1690 		c->page = new;
1691 		stat(s, ALLOC_FROM_PARTIAL);
1692 		goto load_freelist;
1693 	}
1694 
1695 	gfpflags &= gfp_allowed_mask;
1696 	if (gfpflags & __GFP_WAIT)
1697 		local_irq_enable();
1698 
1699 	new = new_slab(s, gfpflags, node);
1700 
1701 	if (gfpflags & __GFP_WAIT)
1702 		local_irq_disable();
1703 
1704 	if (new) {
1705 		c = __this_cpu_ptr(s->cpu_slab);
1706 		stat(s, ALLOC_SLAB);
1707 		if (c->page)
1708 			flush_slab(s, c);
1709 		slab_lock(new);
1710 		__SetPageSlubFrozen(new);
1711 		c->page = new;
1712 		goto load_freelist;
1713 	}
1714 	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1715 		slab_out_of_memory(s, gfpflags, node);
1716 	return NULL;
1717 debug:
1718 	if (!alloc_debug_processing(s, c->page, object, addr))
1719 		goto another_slab;
1720 
1721 	c->page->inuse++;
1722 	c->page->freelist = get_freepointer(s, object);
1723 	c->node = NUMA_NO_NODE;
1724 	goto unlock_out;
1725 }
1726 
1727 /*
1728  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1729  * have the fastpath folded into their functions. So no function call
1730  * overhead for requests that can be satisfied on the fastpath.
1731  *
1732  * The fastpath works by first checking if the lockless freelist can be used.
1733  * If not then __slab_alloc is called for slow processing.
1734  *
1735  * Otherwise we can simply pick the next object from the lockless free list.
1736  */
1737 static __always_inline void *slab_alloc(struct kmem_cache *s,
1738 		gfp_t gfpflags, int node, unsigned long addr)
1739 {
1740 	void **object;
1741 	struct kmem_cache_cpu *c;
1742 	unsigned long flags;
1743 
1744 	if (slab_pre_alloc_hook(s, gfpflags))
1745 		return NULL;
1746 
1747 	local_irq_save(flags);
1748 	c = __this_cpu_ptr(s->cpu_slab);
1749 	object = c->freelist;
1750 	if (unlikely(!object || !node_match(c, node)))
1751 
1752 		object = __slab_alloc(s, gfpflags, node, addr, c);
1753 
1754 	else {
1755 		c->freelist = get_freepointer(s, object);
1756 		stat(s, ALLOC_FASTPATH);
1757 	}
1758 	local_irq_restore(flags);
1759 
1760 	if (unlikely(gfpflags & __GFP_ZERO) && object)
1761 		memset(object, 0, s->objsize);
1762 
1763 	slab_post_alloc_hook(s, gfpflags, object);
1764 
1765 	return object;
1766 }
1767 
1768 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1769 {
1770 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1771 
1772 	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1773 
1774 	return ret;
1775 }
1776 EXPORT_SYMBOL(kmem_cache_alloc);
1777 
1778 #ifdef CONFIG_TRACING
1779 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1780 {
1781 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1782 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1783 	return ret;
1784 }
1785 EXPORT_SYMBOL(kmem_cache_alloc_trace);
1786 
1787 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1788 {
1789 	void *ret = kmalloc_order(size, flags, order);
1790 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1791 	return ret;
1792 }
1793 EXPORT_SYMBOL(kmalloc_order_trace);
1794 #endif
1795 
1796 #ifdef CONFIG_NUMA
1797 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1798 {
1799 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1800 
1801 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
1802 				    s->objsize, s->size, gfpflags, node);
1803 
1804 	return ret;
1805 }
1806 EXPORT_SYMBOL(kmem_cache_alloc_node);
1807 
1808 #ifdef CONFIG_TRACING
1809 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
1810 				    gfp_t gfpflags,
1811 				    int node, size_t size)
1812 {
1813 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1814 
1815 	trace_kmalloc_node(_RET_IP_, ret,
1816 			   size, s->size, gfpflags, node);
1817 	return ret;
1818 }
1819 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
1820 #endif
1821 #endif
1822 
1823 /*
1824  * Slow patch handling. This may still be called frequently since objects
1825  * have a longer lifetime than the cpu slabs in most processing loads.
1826  *
1827  * So we still attempt to reduce cache line usage. Just take the slab
1828  * lock and free the item. If there is no additional partial page
1829  * handling required then we can return immediately.
1830  */
1831 static void __slab_free(struct kmem_cache *s, struct page *page,
1832 			void *x, unsigned long addr)
1833 {
1834 	void *prior;
1835 	void **object = (void *)x;
1836 
1837 	stat(s, FREE_SLOWPATH);
1838 	slab_lock(page);
1839 
1840 	if (kmem_cache_debug(s))
1841 		goto debug;
1842 
1843 checks_ok:
1844 	prior = page->freelist;
1845 	set_freepointer(s, object, prior);
1846 	page->freelist = object;
1847 	page->inuse--;
1848 
1849 	if (unlikely(PageSlubFrozen(page))) {
1850 		stat(s, FREE_FROZEN);
1851 		goto out_unlock;
1852 	}
1853 
1854 	if (unlikely(!page->inuse))
1855 		goto slab_empty;
1856 
1857 	/*
1858 	 * Objects left in the slab. If it was not on the partial list before
1859 	 * then add it.
1860 	 */
1861 	if (unlikely(!prior)) {
1862 		add_partial(get_node(s, page_to_nid(page)), page, 1);
1863 		stat(s, FREE_ADD_PARTIAL);
1864 	}
1865 
1866 out_unlock:
1867 	slab_unlock(page);
1868 	return;
1869 
1870 slab_empty:
1871 	if (prior) {
1872 		/*
1873 		 * Slab still on the partial list.
1874 		 */
1875 		remove_partial(s, page);
1876 		stat(s, FREE_REMOVE_PARTIAL);
1877 	}
1878 	slab_unlock(page);
1879 	stat(s, FREE_SLAB);
1880 	discard_slab(s, page);
1881 	return;
1882 
1883 debug:
1884 	if (!free_debug_processing(s, page, x, addr))
1885 		goto out_unlock;
1886 	goto checks_ok;
1887 }
1888 
1889 /*
1890  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1891  * can perform fastpath freeing without additional function calls.
1892  *
1893  * The fastpath is only possible if we are freeing to the current cpu slab
1894  * of this processor. This typically the case if we have just allocated
1895  * the item before.
1896  *
1897  * If fastpath is not possible then fall back to __slab_free where we deal
1898  * with all sorts of special processing.
1899  */
1900 static __always_inline void slab_free(struct kmem_cache *s,
1901 			struct page *page, void *x, unsigned long addr)
1902 {
1903 	void **object = (void *)x;
1904 	struct kmem_cache_cpu *c;
1905 	unsigned long flags;
1906 
1907 	slab_free_hook(s, x);
1908 
1909 	local_irq_save(flags);
1910 	c = __this_cpu_ptr(s->cpu_slab);
1911 
1912 	slab_free_hook_irq(s, x);
1913 
1914 	if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
1915 		set_freepointer(s, object, c->freelist);
1916 		c->freelist = object;
1917 		stat(s, FREE_FASTPATH);
1918 	} else
1919 		__slab_free(s, page, x, addr);
1920 
1921 	local_irq_restore(flags);
1922 }
1923 
1924 void kmem_cache_free(struct kmem_cache *s, void *x)
1925 {
1926 	struct page *page;
1927 
1928 	page = virt_to_head_page(x);
1929 
1930 	slab_free(s, page, x, _RET_IP_);
1931 
1932 	trace_kmem_cache_free(_RET_IP_, x);
1933 }
1934 EXPORT_SYMBOL(kmem_cache_free);
1935 
1936 /*
1937  * Object placement in a slab is made very easy because we always start at
1938  * offset 0. If we tune the size of the object to the alignment then we can
1939  * get the required alignment by putting one properly sized object after
1940  * another.
1941  *
1942  * Notice that the allocation order determines the sizes of the per cpu
1943  * caches. Each processor has always one slab available for allocations.
1944  * Increasing the allocation order reduces the number of times that slabs
1945  * must be moved on and off the partial lists and is therefore a factor in
1946  * locking overhead.
1947  */
1948 
1949 /*
1950  * Mininum / Maximum order of slab pages. This influences locking overhead
1951  * and slab fragmentation. A higher order reduces the number of partial slabs
1952  * and increases the number of allocations possible without having to
1953  * take the list_lock.
1954  */
1955 static int slub_min_order;
1956 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1957 static int slub_min_objects;
1958 
1959 /*
1960  * Merge control. If this is set then no merging of slab caches will occur.
1961  * (Could be removed. This was introduced to pacify the merge skeptics.)
1962  */
1963 static int slub_nomerge;
1964 
1965 /*
1966  * Calculate the order of allocation given an slab object size.
1967  *
1968  * The order of allocation has significant impact on performance and other
1969  * system components. Generally order 0 allocations should be preferred since
1970  * order 0 does not cause fragmentation in the page allocator. Larger objects
1971  * be problematic to put into order 0 slabs because there may be too much
1972  * unused space left. We go to a higher order if more than 1/16th of the slab
1973  * would be wasted.
1974  *
1975  * In order to reach satisfactory performance we must ensure that a minimum
1976  * number of objects is in one slab. Otherwise we may generate too much
1977  * activity on the partial lists which requires taking the list_lock. This is
1978  * less a concern for large slabs though which are rarely used.
1979  *
1980  * slub_max_order specifies the order where we begin to stop considering the
1981  * number of objects in a slab as critical. If we reach slub_max_order then
1982  * we try to keep the page order as low as possible. So we accept more waste
1983  * of space in favor of a small page order.
1984  *
1985  * Higher order allocations also allow the placement of more objects in a
1986  * slab and thereby reduce object handling overhead. If the user has
1987  * requested a higher mininum order then we start with that one instead of
1988  * the smallest order which will fit the object.
1989  */
1990 static inline int slab_order(int size, int min_objects,
1991 				int max_order, int fract_leftover)
1992 {
1993 	int order;
1994 	int rem;
1995 	int min_order = slub_min_order;
1996 
1997 	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1998 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1999 
2000 	for (order = max(min_order,
2001 				fls(min_objects * size - 1) - PAGE_SHIFT);
2002 			order <= max_order; order++) {
2003 
2004 		unsigned long slab_size = PAGE_SIZE << order;
2005 
2006 		if (slab_size < min_objects * size)
2007 			continue;
2008 
2009 		rem = slab_size % size;
2010 
2011 		if (rem <= slab_size / fract_leftover)
2012 			break;
2013 
2014 	}
2015 
2016 	return order;
2017 }
2018 
2019 static inline int calculate_order(int size)
2020 {
2021 	int order;
2022 	int min_objects;
2023 	int fraction;
2024 	int max_objects;
2025 
2026 	/*
2027 	 * Attempt to find best configuration for a slab. This
2028 	 * works by first attempting to generate a layout with
2029 	 * the best configuration and backing off gradually.
2030 	 *
2031 	 * First we reduce the acceptable waste in a slab. Then
2032 	 * we reduce the minimum objects required in a slab.
2033 	 */
2034 	min_objects = slub_min_objects;
2035 	if (!min_objects)
2036 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2037 	max_objects = (PAGE_SIZE << slub_max_order)/size;
2038 	min_objects = min(min_objects, max_objects);
2039 
2040 	while (min_objects > 1) {
2041 		fraction = 16;
2042 		while (fraction >= 4) {
2043 			order = slab_order(size, min_objects,
2044 						slub_max_order, fraction);
2045 			if (order <= slub_max_order)
2046 				return order;
2047 			fraction /= 2;
2048 		}
2049 		min_objects--;
2050 	}
2051 
2052 	/*
2053 	 * We were unable to place multiple objects in a slab. Now
2054 	 * lets see if we can place a single object there.
2055 	 */
2056 	order = slab_order(size, 1, slub_max_order, 1);
2057 	if (order <= slub_max_order)
2058 		return order;
2059 
2060 	/*
2061 	 * Doh this slab cannot be placed using slub_max_order.
2062 	 */
2063 	order = slab_order(size, 1, MAX_ORDER, 1);
2064 	if (order < MAX_ORDER)
2065 		return order;
2066 	return -ENOSYS;
2067 }
2068 
2069 /*
2070  * Figure out what the alignment of the objects will be.
2071  */
2072 static unsigned long calculate_alignment(unsigned long flags,
2073 		unsigned long align, unsigned long size)
2074 {
2075 	/*
2076 	 * If the user wants hardware cache aligned objects then follow that
2077 	 * suggestion if the object is sufficiently large.
2078 	 *
2079 	 * The hardware cache alignment cannot override the specified
2080 	 * alignment though. If that is greater then use it.
2081 	 */
2082 	if (flags & SLAB_HWCACHE_ALIGN) {
2083 		unsigned long ralign = cache_line_size();
2084 		while (size <= ralign / 2)
2085 			ralign /= 2;
2086 		align = max(align, ralign);
2087 	}
2088 
2089 	if (align < ARCH_SLAB_MINALIGN)
2090 		align = ARCH_SLAB_MINALIGN;
2091 
2092 	return ALIGN(align, sizeof(void *));
2093 }
2094 
2095 static void
2096 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2097 {
2098 	n->nr_partial = 0;
2099 	spin_lock_init(&n->list_lock);
2100 	INIT_LIST_HEAD(&n->partial);
2101 #ifdef CONFIG_SLUB_DEBUG
2102 	atomic_long_set(&n->nr_slabs, 0);
2103 	atomic_long_set(&n->total_objects, 0);
2104 	INIT_LIST_HEAD(&n->full);
2105 #endif
2106 }
2107 
2108 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2109 {
2110 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2111 			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2112 
2113 	s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2114 
2115 	return s->cpu_slab != NULL;
2116 }
2117 
2118 static struct kmem_cache *kmem_cache_node;
2119 
2120 /*
2121  * No kmalloc_node yet so do it by hand. We know that this is the first
2122  * slab on the node for this slabcache. There are no concurrent accesses
2123  * possible.
2124  *
2125  * Note that this function only works on the kmalloc_node_cache
2126  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2127  * memory on a fresh node that has no slab structures yet.
2128  */
2129 static void early_kmem_cache_node_alloc(int node)
2130 {
2131 	struct page *page;
2132 	struct kmem_cache_node *n;
2133 	unsigned long flags;
2134 
2135 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2136 
2137 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2138 
2139 	BUG_ON(!page);
2140 	if (page_to_nid(page) != node) {
2141 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2142 				"node %d\n", node);
2143 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2144 				"in order to be able to continue\n");
2145 	}
2146 
2147 	n = page->freelist;
2148 	BUG_ON(!n);
2149 	page->freelist = get_freepointer(kmem_cache_node, n);
2150 	page->inuse++;
2151 	kmem_cache_node->node[node] = n;
2152 #ifdef CONFIG_SLUB_DEBUG
2153 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2154 	init_tracking(kmem_cache_node, n);
2155 #endif
2156 	init_kmem_cache_node(n, kmem_cache_node);
2157 	inc_slabs_node(kmem_cache_node, node, page->objects);
2158 
2159 	/*
2160 	 * lockdep requires consistent irq usage for each lock
2161 	 * so even though there cannot be a race this early in
2162 	 * the boot sequence, we still disable irqs.
2163 	 */
2164 	local_irq_save(flags);
2165 	add_partial(n, page, 0);
2166 	local_irq_restore(flags);
2167 }
2168 
2169 static void free_kmem_cache_nodes(struct kmem_cache *s)
2170 {
2171 	int node;
2172 
2173 	for_each_node_state(node, N_NORMAL_MEMORY) {
2174 		struct kmem_cache_node *n = s->node[node];
2175 
2176 		if (n)
2177 			kmem_cache_free(kmem_cache_node, n);
2178 
2179 		s->node[node] = NULL;
2180 	}
2181 }
2182 
2183 static int init_kmem_cache_nodes(struct kmem_cache *s)
2184 {
2185 	int node;
2186 
2187 	for_each_node_state(node, N_NORMAL_MEMORY) {
2188 		struct kmem_cache_node *n;
2189 
2190 		if (slab_state == DOWN) {
2191 			early_kmem_cache_node_alloc(node);
2192 			continue;
2193 		}
2194 		n = kmem_cache_alloc_node(kmem_cache_node,
2195 						GFP_KERNEL, node);
2196 
2197 		if (!n) {
2198 			free_kmem_cache_nodes(s);
2199 			return 0;
2200 		}
2201 
2202 		s->node[node] = n;
2203 		init_kmem_cache_node(n, s);
2204 	}
2205 	return 1;
2206 }
2207 
2208 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2209 {
2210 	if (min < MIN_PARTIAL)
2211 		min = MIN_PARTIAL;
2212 	else if (min > MAX_PARTIAL)
2213 		min = MAX_PARTIAL;
2214 	s->min_partial = min;
2215 }
2216 
2217 /*
2218  * calculate_sizes() determines the order and the distribution of data within
2219  * a slab object.
2220  */
2221 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2222 {
2223 	unsigned long flags = s->flags;
2224 	unsigned long size = s->objsize;
2225 	unsigned long align = s->align;
2226 	int order;
2227 
2228 	/*
2229 	 * Round up object size to the next word boundary. We can only
2230 	 * place the free pointer at word boundaries and this determines
2231 	 * the possible location of the free pointer.
2232 	 */
2233 	size = ALIGN(size, sizeof(void *));
2234 
2235 #ifdef CONFIG_SLUB_DEBUG
2236 	/*
2237 	 * Determine if we can poison the object itself. If the user of
2238 	 * the slab may touch the object after free or before allocation
2239 	 * then we should never poison the object itself.
2240 	 */
2241 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2242 			!s->ctor)
2243 		s->flags |= __OBJECT_POISON;
2244 	else
2245 		s->flags &= ~__OBJECT_POISON;
2246 
2247 
2248 	/*
2249 	 * If we are Redzoning then check if there is some space between the
2250 	 * end of the object and the free pointer. If not then add an
2251 	 * additional word to have some bytes to store Redzone information.
2252 	 */
2253 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2254 		size += sizeof(void *);
2255 #endif
2256 
2257 	/*
2258 	 * With that we have determined the number of bytes in actual use
2259 	 * by the object. This is the potential offset to the free pointer.
2260 	 */
2261 	s->inuse = size;
2262 
2263 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2264 		s->ctor)) {
2265 		/*
2266 		 * Relocate free pointer after the object if it is not
2267 		 * permitted to overwrite the first word of the object on
2268 		 * kmem_cache_free.
2269 		 *
2270 		 * This is the case if we do RCU, have a constructor or
2271 		 * destructor or are poisoning the objects.
2272 		 */
2273 		s->offset = size;
2274 		size += sizeof(void *);
2275 	}
2276 
2277 #ifdef CONFIG_SLUB_DEBUG
2278 	if (flags & SLAB_STORE_USER)
2279 		/*
2280 		 * Need to store information about allocs and frees after
2281 		 * the object.
2282 		 */
2283 		size += 2 * sizeof(struct track);
2284 
2285 	if (flags & SLAB_RED_ZONE)
2286 		/*
2287 		 * Add some empty padding so that we can catch
2288 		 * overwrites from earlier objects rather than let
2289 		 * tracking information or the free pointer be
2290 		 * corrupted if a user writes before the start
2291 		 * of the object.
2292 		 */
2293 		size += sizeof(void *);
2294 #endif
2295 
2296 	/*
2297 	 * Determine the alignment based on various parameters that the
2298 	 * user specified and the dynamic determination of cache line size
2299 	 * on bootup.
2300 	 */
2301 	align = calculate_alignment(flags, align, s->objsize);
2302 	s->align = align;
2303 
2304 	/*
2305 	 * SLUB stores one object immediately after another beginning from
2306 	 * offset 0. In order to align the objects we have to simply size
2307 	 * each object to conform to the alignment.
2308 	 */
2309 	size = ALIGN(size, align);
2310 	s->size = size;
2311 	if (forced_order >= 0)
2312 		order = forced_order;
2313 	else
2314 		order = calculate_order(size);
2315 
2316 	if (order < 0)
2317 		return 0;
2318 
2319 	s->allocflags = 0;
2320 	if (order)
2321 		s->allocflags |= __GFP_COMP;
2322 
2323 	if (s->flags & SLAB_CACHE_DMA)
2324 		s->allocflags |= SLUB_DMA;
2325 
2326 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2327 		s->allocflags |= __GFP_RECLAIMABLE;
2328 
2329 	/*
2330 	 * Determine the number of objects per slab
2331 	 */
2332 	s->oo = oo_make(order, size);
2333 	s->min = oo_make(get_order(size), size);
2334 	if (oo_objects(s->oo) > oo_objects(s->max))
2335 		s->max = s->oo;
2336 
2337 	return !!oo_objects(s->oo);
2338 
2339 }
2340 
2341 static int kmem_cache_open(struct kmem_cache *s,
2342 		const char *name, size_t size,
2343 		size_t align, unsigned long flags,
2344 		void (*ctor)(void *))
2345 {
2346 	memset(s, 0, kmem_size);
2347 	s->name = name;
2348 	s->ctor = ctor;
2349 	s->objsize = size;
2350 	s->align = align;
2351 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2352 
2353 	if (!calculate_sizes(s, -1))
2354 		goto error;
2355 	if (disable_higher_order_debug) {
2356 		/*
2357 		 * Disable debugging flags that store metadata if the min slab
2358 		 * order increased.
2359 		 */
2360 		if (get_order(s->size) > get_order(s->objsize)) {
2361 			s->flags &= ~DEBUG_METADATA_FLAGS;
2362 			s->offset = 0;
2363 			if (!calculate_sizes(s, -1))
2364 				goto error;
2365 		}
2366 	}
2367 
2368 	/*
2369 	 * The larger the object size is, the more pages we want on the partial
2370 	 * list to avoid pounding the page allocator excessively.
2371 	 */
2372 	set_min_partial(s, ilog2(s->size));
2373 	s->refcount = 1;
2374 #ifdef CONFIG_NUMA
2375 	s->remote_node_defrag_ratio = 1000;
2376 #endif
2377 	if (!init_kmem_cache_nodes(s))
2378 		goto error;
2379 
2380 	if (alloc_kmem_cache_cpus(s))
2381 		return 1;
2382 
2383 	free_kmem_cache_nodes(s);
2384 error:
2385 	if (flags & SLAB_PANIC)
2386 		panic("Cannot create slab %s size=%lu realsize=%u "
2387 			"order=%u offset=%u flags=%lx\n",
2388 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2389 			s->offset, flags);
2390 	return 0;
2391 }
2392 
2393 /*
2394  * Determine the size of a slab object
2395  */
2396 unsigned int kmem_cache_size(struct kmem_cache *s)
2397 {
2398 	return s->objsize;
2399 }
2400 EXPORT_SYMBOL(kmem_cache_size);
2401 
2402 const char *kmem_cache_name(struct kmem_cache *s)
2403 {
2404 	return s->name;
2405 }
2406 EXPORT_SYMBOL(kmem_cache_name);
2407 
2408 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2409 							const char *text)
2410 {
2411 #ifdef CONFIG_SLUB_DEBUG
2412 	void *addr = page_address(page);
2413 	void *p;
2414 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2415 				     sizeof(long), GFP_ATOMIC);
2416 	if (!map)
2417 		return;
2418 	slab_err(s, page, "%s", text);
2419 	slab_lock(page);
2420 	for_each_free_object(p, s, page->freelist)
2421 		set_bit(slab_index(p, s, addr), map);
2422 
2423 	for_each_object(p, s, addr, page->objects) {
2424 
2425 		if (!test_bit(slab_index(p, s, addr), map)) {
2426 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2427 							p, p - addr);
2428 			print_tracking(s, p);
2429 		}
2430 	}
2431 	slab_unlock(page);
2432 	kfree(map);
2433 #endif
2434 }
2435 
2436 /*
2437  * Attempt to free all partial slabs on a node.
2438  */
2439 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2440 {
2441 	unsigned long flags;
2442 	struct page *page, *h;
2443 
2444 	spin_lock_irqsave(&n->list_lock, flags);
2445 	list_for_each_entry_safe(page, h, &n->partial, lru) {
2446 		if (!page->inuse) {
2447 			__remove_partial(n, page);
2448 			discard_slab(s, page);
2449 		} else {
2450 			list_slab_objects(s, page,
2451 				"Objects remaining on kmem_cache_close()");
2452 		}
2453 	}
2454 	spin_unlock_irqrestore(&n->list_lock, flags);
2455 }
2456 
2457 /*
2458  * Release all resources used by a slab cache.
2459  */
2460 static inline int kmem_cache_close(struct kmem_cache *s)
2461 {
2462 	int node;
2463 
2464 	flush_all(s);
2465 	free_percpu(s->cpu_slab);
2466 	/* Attempt to free all objects */
2467 	for_each_node_state(node, N_NORMAL_MEMORY) {
2468 		struct kmem_cache_node *n = get_node(s, node);
2469 
2470 		free_partial(s, n);
2471 		if (n->nr_partial || slabs_node(s, node))
2472 			return 1;
2473 	}
2474 	free_kmem_cache_nodes(s);
2475 	return 0;
2476 }
2477 
2478 /*
2479  * Close a cache and release the kmem_cache structure
2480  * (must be used for caches created using kmem_cache_create)
2481  */
2482 void kmem_cache_destroy(struct kmem_cache *s)
2483 {
2484 	down_write(&slub_lock);
2485 	s->refcount--;
2486 	if (!s->refcount) {
2487 		list_del(&s->list);
2488 		if (kmem_cache_close(s)) {
2489 			printk(KERN_ERR "SLUB %s: %s called for cache that "
2490 				"still has objects.\n", s->name, __func__);
2491 			dump_stack();
2492 		}
2493 		if (s->flags & SLAB_DESTROY_BY_RCU)
2494 			rcu_barrier();
2495 		sysfs_slab_remove(s);
2496 	}
2497 	up_write(&slub_lock);
2498 }
2499 EXPORT_SYMBOL(kmem_cache_destroy);
2500 
2501 /********************************************************************
2502  *		Kmalloc subsystem
2503  *******************************************************************/
2504 
2505 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2506 EXPORT_SYMBOL(kmalloc_caches);
2507 
2508 static struct kmem_cache *kmem_cache;
2509 
2510 #ifdef CONFIG_ZONE_DMA
2511 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2512 #endif
2513 
2514 static int __init setup_slub_min_order(char *str)
2515 {
2516 	get_option(&str, &slub_min_order);
2517 
2518 	return 1;
2519 }
2520 
2521 __setup("slub_min_order=", setup_slub_min_order);
2522 
2523 static int __init setup_slub_max_order(char *str)
2524 {
2525 	get_option(&str, &slub_max_order);
2526 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2527 
2528 	return 1;
2529 }
2530 
2531 __setup("slub_max_order=", setup_slub_max_order);
2532 
2533 static int __init setup_slub_min_objects(char *str)
2534 {
2535 	get_option(&str, &slub_min_objects);
2536 
2537 	return 1;
2538 }
2539 
2540 __setup("slub_min_objects=", setup_slub_min_objects);
2541 
2542 static int __init setup_slub_nomerge(char *str)
2543 {
2544 	slub_nomerge = 1;
2545 	return 1;
2546 }
2547 
2548 __setup("slub_nomerge", setup_slub_nomerge);
2549 
2550 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2551 						int size, unsigned int flags)
2552 {
2553 	struct kmem_cache *s;
2554 
2555 	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2556 
2557 	/*
2558 	 * This function is called with IRQs disabled during early-boot on
2559 	 * single CPU so there's no need to take slub_lock here.
2560 	 */
2561 	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2562 								flags, NULL))
2563 		goto panic;
2564 
2565 	list_add(&s->list, &slab_caches);
2566 	return s;
2567 
2568 panic:
2569 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2570 	return NULL;
2571 }
2572 
2573 /*
2574  * Conversion table for small slabs sizes / 8 to the index in the
2575  * kmalloc array. This is necessary for slabs < 192 since we have non power
2576  * of two cache sizes there. The size of larger slabs can be determined using
2577  * fls.
2578  */
2579 static s8 size_index[24] = {
2580 	3,	/* 8 */
2581 	4,	/* 16 */
2582 	5,	/* 24 */
2583 	5,	/* 32 */
2584 	6,	/* 40 */
2585 	6,	/* 48 */
2586 	6,	/* 56 */
2587 	6,	/* 64 */
2588 	1,	/* 72 */
2589 	1,	/* 80 */
2590 	1,	/* 88 */
2591 	1,	/* 96 */
2592 	7,	/* 104 */
2593 	7,	/* 112 */
2594 	7,	/* 120 */
2595 	7,	/* 128 */
2596 	2,	/* 136 */
2597 	2,	/* 144 */
2598 	2,	/* 152 */
2599 	2,	/* 160 */
2600 	2,	/* 168 */
2601 	2,	/* 176 */
2602 	2,	/* 184 */
2603 	2	/* 192 */
2604 };
2605 
2606 static inline int size_index_elem(size_t bytes)
2607 {
2608 	return (bytes - 1) / 8;
2609 }
2610 
2611 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2612 {
2613 	int index;
2614 
2615 	if (size <= 192) {
2616 		if (!size)
2617 			return ZERO_SIZE_PTR;
2618 
2619 		index = size_index[size_index_elem(size)];
2620 	} else
2621 		index = fls(size - 1);
2622 
2623 #ifdef CONFIG_ZONE_DMA
2624 	if (unlikely((flags & SLUB_DMA)))
2625 		return kmalloc_dma_caches[index];
2626 
2627 #endif
2628 	return kmalloc_caches[index];
2629 }
2630 
2631 void *__kmalloc(size_t size, gfp_t flags)
2632 {
2633 	struct kmem_cache *s;
2634 	void *ret;
2635 
2636 	if (unlikely(size > SLUB_MAX_SIZE))
2637 		return kmalloc_large(size, flags);
2638 
2639 	s = get_slab(size, flags);
2640 
2641 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2642 		return s;
2643 
2644 	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2645 
2646 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2647 
2648 	return ret;
2649 }
2650 EXPORT_SYMBOL(__kmalloc);
2651 
2652 #ifdef CONFIG_NUMA
2653 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2654 {
2655 	struct page *page;
2656 	void *ptr = NULL;
2657 
2658 	flags |= __GFP_COMP | __GFP_NOTRACK;
2659 	page = alloc_pages_node(node, flags, get_order(size));
2660 	if (page)
2661 		ptr = page_address(page);
2662 
2663 	kmemleak_alloc(ptr, size, 1, flags);
2664 	return ptr;
2665 }
2666 
2667 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2668 {
2669 	struct kmem_cache *s;
2670 	void *ret;
2671 
2672 	if (unlikely(size > SLUB_MAX_SIZE)) {
2673 		ret = kmalloc_large_node(size, flags, node);
2674 
2675 		trace_kmalloc_node(_RET_IP_, ret,
2676 				   size, PAGE_SIZE << get_order(size),
2677 				   flags, node);
2678 
2679 		return ret;
2680 	}
2681 
2682 	s = get_slab(size, flags);
2683 
2684 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2685 		return s;
2686 
2687 	ret = slab_alloc(s, flags, node, _RET_IP_);
2688 
2689 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2690 
2691 	return ret;
2692 }
2693 EXPORT_SYMBOL(__kmalloc_node);
2694 #endif
2695 
2696 size_t ksize(const void *object)
2697 {
2698 	struct page *page;
2699 	struct kmem_cache *s;
2700 
2701 	if (unlikely(object == ZERO_SIZE_PTR))
2702 		return 0;
2703 
2704 	page = virt_to_head_page(object);
2705 
2706 	if (unlikely(!PageSlab(page))) {
2707 		WARN_ON(!PageCompound(page));
2708 		return PAGE_SIZE << compound_order(page);
2709 	}
2710 	s = page->slab;
2711 
2712 #ifdef CONFIG_SLUB_DEBUG
2713 	/*
2714 	 * Debugging requires use of the padding between object
2715 	 * and whatever may come after it.
2716 	 */
2717 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2718 		return s->objsize;
2719 
2720 #endif
2721 	/*
2722 	 * If we have the need to store the freelist pointer
2723 	 * back there or track user information then we can
2724 	 * only use the space before that information.
2725 	 */
2726 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2727 		return s->inuse;
2728 	/*
2729 	 * Else we can use all the padding etc for the allocation
2730 	 */
2731 	return s->size;
2732 }
2733 EXPORT_SYMBOL(ksize);
2734 
2735 void kfree(const void *x)
2736 {
2737 	struct page *page;
2738 	void *object = (void *)x;
2739 
2740 	trace_kfree(_RET_IP_, x);
2741 
2742 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2743 		return;
2744 
2745 	page = virt_to_head_page(x);
2746 	if (unlikely(!PageSlab(page))) {
2747 		BUG_ON(!PageCompound(page));
2748 		kmemleak_free(x);
2749 		put_page(page);
2750 		return;
2751 	}
2752 	slab_free(page->slab, page, object, _RET_IP_);
2753 }
2754 EXPORT_SYMBOL(kfree);
2755 
2756 /*
2757  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2758  * the remaining slabs by the number of items in use. The slabs with the
2759  * most items in use come first. New allocations will then fill those up
2760  * and thus they can be removed from the partial lists.
2761  *
2762  * The slabs with the least items are placed last. This results in them
2763  * being allocated from last increasing the chance that the last objects
2764  * are freed in them.
2765  */
2766 int kmem_cache_shrink(struct kmem_cache *s)
2767 {
2768 	int node;
2769 	int i;
2770 	struct kmem_cache_node *n;
2771 	struct page *page;
2772 	struct page *t;
2773 	int objects = oo_objects(s->max);
2774 	struct list_head *slabs_by_inuse =
2775 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2776 	unsigned long flags;
2777 
2778 	if (!slabs_by_inuse)
2779 		return -ENOMEM;
2780 
2781 	flush_all(s);
2782 	for_each_node_state(node, N_NORMAL_MEMORY) {
2783 		n = get_node(s, node);
2784 
2785 		if (!n->nr_partial)
2786 			continue;
2787 
2788 		for (i = 0; i < objects; i++)
2789 			INIT_LIST_HEAD(slabs_by_inuse + i);
2790 
2791 		spin_lock_irqsave(&n->list_lock, flags);
2792 
2793 		/*
2794 		 * Build lists indexed by the items in use in each slab.
2795 		 *
2796 		 * Note that concurrent frees may occur while we hold the
2797 		 * list_lock. page->inuse here is the upper limit.
2798 		 */
2799 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2800 			if (!page->inuse && slab_trylock(page)) {
2801 				/*
2802 				 * Must hold slab lock here because slab_free
2803 				 * may have freed the last object and be
2804 				 * waiting to release the slab.
2805 				 */
2806 				__remove_partial(n, page);
2807 				slab_unlock(page);
2808 				discard_slab(s, page);
2809 			} else {
2810 				list_move(&page->lru,
2811 				slabs_by_inuse + page->inuse);
2812 			}
2813 		}
2814 
2815 		/*
2816 		 * Rebuild the partial list with the slabs filled up most
2817 		 * first and the least used slabs at the end.
2818 		 */
2819 		for (i = objects - 1; i >= 0; i--)
2820 			list_splice(slabs_by_inuse + i, n->partial.prev);
2821 
2822 		spin_unlock_irqrestore(&n->list_lock, flags);
2823 	}
2824 
2825 	kfree(slabs_by_inuse);
2826 	return 0;
2827 }
2828 EXPORT_SYMBOL(kmem_cache_shrink);
2829 
2830 #if defined(CONFIG_MEMORY_HOTPLUG)
2831 static int slab_mem_going_offline_callback(void *arg)
2832 {
2833 	struct kmem_cache *s;
2834 
2835 	down_read(&slub_lock);
2836 	list_for_each_entry(s, &slab_caches, list)
2837 		kmem_cache_shrink(s);
2838 	up_read(&slub_lock);
2839 
2840 	return 0;
2841 }
2842 
2843 static void slab_mem_offline_callback(void *arg)
2844 {
2845 	struct kmem_cache_node *n;
2846 	struct kmem_cache *s;
2847 	struct memory_notify *marg = arg;
2848 	int offline_node;
2849 
2850 	offline_node = marg->status_change_nid;
2851 
2852 	/*
2853 	 * If the node still has available memory. we need kmem_cache_node
2854 	 * for it yet.
2855 	 */
2856 	if (offline_node < 0)
2857 		return;
2858 
2859 	down_read(&slub_lock);
2860 	list_for_each_entry(s, &slab_caches, list) {
2861 		n = get_node(s, offline_node);
2862 		if (n) {
2863 			/*
2864 			 * if n->nr_slabs > 0, slabs still exist on the node
2865 			 * that is going down. We were unable to free them,
2866 			 * and offline_pages() function shouldn't call this
2867 			 * callback. So, we must fail.
2868 			 */
2869 			BUG_ON(slabs_node(s, offline_node));
2870 
2871 			s->node[offline_node] = NULL;
2872 			kmem_cache_free(kmem_cache_node, n);
2873 		}
2874 	}
2875 	up_read(&slub_lock);
2876 }
2877 
2878 static int slab_mem_going_online_callback(void *arg)
2879 {
2880 	struct kmem_cache_node *n;
2881 	struct kmem_cache *s;
2882 	struct memory_notify *marg = arg;
2883 	int nid = marg->status_change_nid;
2884 	int ret = 0;
2885 
2886 	/*
2887 	 * If the node's memory is already available, then kmem_cache_node is
2888 	 * already created. Nothing to do.
2889 	 */
2890 	if (nid < 0)
2891 		return 0;
2892 
2893 	/*
2894 	 * We are bringing a node online. No memory is available yet. We must
2895 	 * allocate a kmem_cache_node structure in order to bring the node
2896 	 * online.
2897 	 */
2898 	down_read(&slub_lock);
2899 	list_for_each_entry(s, &slab_caches, list) {
2900 		/*
2901 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2902 		 *      since memory is not yet available from the node that
2903 		 *      is brought up.
2904 		 */
2905 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
2906 		if (!n) {
2907 			ret = -ENOMEM;
2908 			goto out;
2909 		}
2910 		init_kmem_cache_node(n, s);
2911 		s->node[nid] = n;
2912 	}
2913 out:
2914 	up_read(&slub_lock);
2915 	return ret;
2916 }
2917 
2918 static int slab_memory_callback(struct notifier_block *self,
2919 				unsigned long action, void *arg)
2920 {
2921 	int ret = 0;
2922 
2923 	switch (action) {
2924 	case MEM_GOING_ONLINE:
2925 		ret = slab_mem_going_online_callback(arg);
2926 		break;
2927 	case MEM_GOING_OFFLINE:
2928 		ret = slab_mem_going_offline_callback(arg);
2929 		break;
2930 	case MEM_OFFLINE:
2931 	case MEM_CANCEL_ONLINE:
2932 		slab_mem_offline_callback(arg);
2933 		break;
2934 	case MEM_ONLINE:
2935 	case MEM_CANCEL_OFFLINE:
2936 		break;
2937 	}
2938 	if (ret)
2939 		ret = notifier_from_errno(ret);
2940 	else
2941 		ret = NOTIFY_OK;
2942 	return ret;
2943 }
2944 
2945 #endif /* CONFIG_MEMORY_HOTPLUG */
2946 
2947 /********************************************************************
2948  *			Basic setup of slabs
2949  *******************************************************************/
2950 
2951 /*
2952  * Used for early kmem_cache structures that were allocated using
2953  * the page allocator
2954  */
2955 
2956 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2957 {
2958 	int node;
2959 
2960 	list_add(&s->list, &slab_caches);
2961 	s->refcount = -1;
2962 
2963 	for_each_node_state(node, N_NORMAL_MEMORY) {
2964 		struct kmem_cache_node *n = get_node(s, node);
2965 		struct page *p;
2966 
2967 		if (n) {
2968 			list_for_each_entry(p, &n->partial, lru)
2969 				p->slab = s;
2970 
2971 #ifdef CONFIG_SLAB_DEBUG
2972 			list_for_each_entry(p, &n->full, lru)
2973 				p->slab = s;
2974 #endif
2975 		}
2976 	}
2977 }
2978 
2979 void __init kmem_cache_init(void)
2980 {
2981 	int i;
2982 	int caches = 0;
2983 	struct kmem_cache *temp_kmem_cache;
2984 	int order;
2985 	struct kmem_cache *temp_kmem_cache_node;
2986 	unsigned long kmalloc_size;
2987 
2988 	kmem_size = offsetof(struct kmem_cache, node) +
2989 				nr_node_ids * sizeof(struct kmem_cache_node *);
2990 
2991 	/* Allocate two kmem_caches from the page allocator */
2992 	kmalloc_size = ALIGN(kmem_size, cache_line_size());
2993 	order = get_order(2 * kmalloc_size);
2994 	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
2995 
2996 	/*
2997 	 * Must first have the slab cache available for the allocations of the
2998 	 * struct kmem_cache_node's. There is special bootstrap code in
2999 	 * kmem_cache_open for slab_state == DOWN.
3000 	 */
3001 	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3002 
3003 	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3004 		sizeof(struct kmem_cache_node),
3005 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3006 
3007 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3008 
3009 	/* Able to allocate the per node structures */
3010 	slab_state = PARTIAL;
3011 
3012 	temp_kmem_cache = kmem_cache;
3013 	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3014 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3015 	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3016 	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3017 
3018 	/*
3019 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3020 	 * kmem_cache_node is separately allocated so no need to
3021 	 * update any list pointers.
3022 	 */
3023 	temp_kmem_cache_node = kmem_cache_node;
3024 
3025 	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3026 	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3027 
3028 	kmem_cache_bootstrap_fixup(kmem_cache_node);
3029 
3030 	caches++;
3031 	kmem_cache_bootstrap_fixup(kmem_cache);
3032 	caches++;
3033 	/* Free temporary boot structure */
3034 	free_pages((unsigned long)temp_kmem_cache, order);
3035 
3036 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3037 
3038 	/*
3039 	 * Patch up the size_index table if we have strange large alignment
3040 	 * requirements for the kmalloc array. This is only the case for
3041 	 * MIPS it seems. The standard arches will not generate any code here.
3042 	 *
3043 	 * Largest permitted alignment is 256 bytes due to the way we
3044 	 * handle the index determination for the smaller caches.
3045 	 *
3046 	 * Make sure that nothing crazy happens if someone starts tinkering
3047 	 * around with ARCH_KMALLOC_MINALIGN
3048 	 */
3049 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3050 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3051 
3052 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3053 		int elem = size_index_elem(i);
3054 		if (elem >= ARRAY_SIZE(size_index))
3055 			break;
3056 		size_index[elem] = KMALLOC_SHIFT_LOW;
3057 	}
3058 
3059 	if (KMALLOC_MIN_SIZE == 64) {
3060 		/*
3061 		 * The 96 byte size cache is not used if the alignment
3062 		 * is 64 byte.
3063 		 */
3064 		for (i = 64 + 8; i <= 96; i += 8)
3065 			size_index[size_index_elem(i)] = 7;
3066 	} else if (KMALLOC_MIN_SIZE == 128) {
3067 		/*
3068 		 * The 192 byte sized cache is not used if the alignment
3069 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3070 		 * instead.
3071 		 */
3072 		for (i = 128 + 8; i <= 192; i += 8)
3073 			size_index[size_index_elem(i)] = 8;
3074 	}
3075 
3076 	/* Caches that are not of the two-to-the-power-of size */
3077 	if (KMALLOC_MIN_SIZE <= 32) {
3078 		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3079 		caches++;
3080 	}
3081 
3082 	if (KMALLOC_MIN_SIZE <= 64) {
3083 		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3084 		caches++;
3085 	}
3086 
3087 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3088 		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3089 		caches++;
3090 	}
3091 
3092 	slab_state = UP;
3093 
3094 	/* Provide the correct kmalloc names now that the caches are up */
3095 	if (KMALLOC_MIN_SIZE <= 32) {
3096 		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3097 		BUG_ON(!kmalloc_caches[1]->name);
3098 	}
3099 
3100 	if (KMALLOC_MIN_SIZE <= 64) {
3101 		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3102 		BUG_ON(!kmalloc_caches[2]->name);
3103 	}
3104 
3105 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3106 		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3107 
3108 		BUG_ON(!s);
3109 		kmalloc_caches[i]->name = s;
3110 	}
3111 
3112 #ifdef CONFIG_SMP
3113 	register_cpu_notifier(&slab_notifier);
3114 #endif
3115 
3116 #ifdef CONFIG_ZONE_DMA
3117 	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3118 		struct kmem_cache *s = kmalloc_caches[i];
3119 
3120 		if (s && s->size) {
3121 			char *name = kasprintf(GFP_NOWAIT,
3122 				 "dma-kmalloc-%d", s->objsize);
3123 
3124 			BUG_ON(!name);
3125 			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3126 				s->objsize, SLAB_CACHE_DMA);
3127 		}
3128 	}
3129 #endif
3130 	printk(KERN_INFO
3131 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3132 		" CPUs=%d, Nodes=%d\n",
3133 		caches, cache_line_size(),
3134 		slub_min_order, slub_max_order, slub_min_objects,
3135 		nr_cpu_ids, nr_node_ids);
3136 }
3137 
3138 void __init kmem_cache_init_late(void)
3139 {
3140 }
3141 
3142 /*
3143  * Find a mergeable slab cache
3144  */
3145 static int slab_unmergeable(struct kmem_cache *s)
3146 {
3147 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3148 		return 1;
3149 
3150 	if (s->ctor)
3151 		return 1;
3152 
3153 	/*
3154 	 * We may have set a slab to be unmergeable during bootstrap.
3155 	 */
3156 	if (s->refcount < 0)
3157 		return 1;
3158 
3159 	return 0;
3160 }
3161 
3162 static struct kmem_cache *find_mergeable(size_t size,
3163 		size_t align, unsigned long flags, const char *name,
3164 		void (*ctor)(void *))
3165 {
3166 	struct kmem_cache *s;
3167 
3168 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3169 		return NULL;
3170 
3171 	if (ctor)
3172 		return NULL;
3173 
3174 	size = ALIGN(size, sizeof(void *));
3175 	align = calculate_alignment(flags, align, size);
3176 	size = ALIGN(size, align);
3177 	flags = kmem_cache_flags(size, flags, name, NULL);
3178 
3179 	list_for_each_entry(s, &slab_caches, list) {
3180 		if (slab_unmergeable(s))
3181 			continue;
3182 
3183 		if (size > s->size)
3184 			continue;
3185 
3186 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3187 				continue;
3188 		/*
3189 		 * Check if alignment is compatible.
3190 		 * Courtesy of Adrian Drzewiecki
3191 		 */
3192 		if ((s->size & ~(align - 1)) != s->size)
3193 			continue;
3194 
3195 		if (s->size - size >= sizeof(void *))
3196 			continue;
3197 
3198 		return s;
3199 	}
3200 	return NULL;
3201 }
3202 
3203 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3204 		size_t align, unsigned long flags, void (*ctor)(void *))
3205 {
3206 	struct kmem_cache *s;
3207 	char *n;
3208 
3209 	if (WARN_ON(!name))
3210 		return NULL;
3211 
3212 	down_write(&slub_lock);
3213 	s = find_mergeable(size, align, flags, name, ctor);
3214 	if (s) {
3215 		s->refcount++;
3216 		/*
3217 		 * Adjust the object sizes so that we clear
3218 		 * the complete object on kzalloc.
3219 		 */
3220 		s->objsize = max(s->objsize, (int)size);
3221 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3222 
3223 		if (sysfs_slab_alias(s, name)) {
3224 			s->refcount--;
3225 			goto err;
3226 		}
3227 		up_write(&slub_lock);
3228 		return s;
3229 	}
3230 
3231 	n = kstrdup(name, GFP_KERNEL);
3232 	if (!n)
3233 		goto err;
3234 
3235 	s = kmalloc(kmem_size, GFP_KERNEL);
3236 	if (s) {
3237 		if (kmem_cache_open(s, n,
3238 				size, align, flags, ctor)) {
3239 			list_add(&s->list, &slab_caches);
3240 			if (sysfs_slab_add(s)) {
3241 				list_del(&s->list);
3242 				kfree(n);
3243 				kfree(s);
3244 				goto err;
3245 			}
3246 			up_write(&slub_lock);
3247 			return s;
3248 		}
3249 		kfree(n);
3250 		kfree(s);
3251 	}
3252 err:
3253 	up_write(&slub_lock);
3254 
3255 	if (flags & SLAB_PANIC)
3256 		panic("Cannot create slabcache %s\n", name);
3257 	else
3258 		s = NULL;
3259 	return s;
3260 }
3261 EXPORT_SYMBOL(kmem_cache_create);
3262 
3263 #ifdef CONFIG_SMP
3264 /*
3265  * Use the cpu notifier to insure that the cpu slabs are flushed when
3266  * necessary.
3267  */
3268 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3269 		unsigned long action, void *hcpu)
3270 {
3271 	long cpu = (long)hcpu;
3272 	struct kmem_cache *s;
3273 	unsigned long flags;
3274 
3275 	switch (action) {
3276 	case CPU_UP_CANCELED:
3277 	case CPU_UP_CANCELED_FROZEN:
3278 	case CPU_DEAD:
3279 	case CPU_DEAD_FROZEN:
3280 		down_read(&slub_lock);
3281 		list_for_each_entry(s, &slab_caches, list) {
3282 			local_irq_save(flags);
3283 			__flush_cpu_slab(s, cpu);
3284 			local_irq_restore(flags);
3285 		}
3286 		up_read(&slub_lock);
3287 		break;
3288 	default:
3289 		break;
3290 	}
3291 	return NOTIFY_OK;
3292 }
3293 
3294 static struct notifier_block __cpuinitdata slab_notifier = {
3295 	.notifier_call = slab_cpuup_callback
3296 };
3297 
3298 #endif
3299 
3300 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3301 {
3302 	struct kmem_cache *s;
3303 	void *ret;
3304 
3305 	if (unlikely(size > SLUB_MAX_SIZE))
3306 		return kmalloc_large(size, gfpflags);
3307 
3308 	s = get_slab(size, gfpflags);
3309 
3310 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3311 		return s;
3312 
3313 	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3314 
3315 	/* Honor the call site pointer we recieved. */
3316 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3317 
3318 	return ret;
3319 }
3320 
3321 #ifdef CONFIG_NUMA
3322 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3323 					int node, unsigned long caller)
3324 {
3325 	struct kmem_cache *s;
3326 	void *ret;
3327 
3328 	if (unlikely(size > SLUB_MAX_SIZE)) {
3329 		ret = kmalloc_large_node(size, gfpflags, node);
3330 
3331 		trace_kmalloc_node(caller, ret,
3332 				   size, PAGE_SIZE << get_order(size),
3333 				   gfpflags, node);
3334 
3335 		return ret;
3336 	}
3337 
3338 	s = get_slab(size, gfpflags);
3339 
3340 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3341 		return s;
3342 
3343 	ret = slab_alloc(s, gfpflags, node, caller);
3344 
3345 	/* Honor the call site pointer we recieved. */
3346 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3347 
3348 	return ret;
3349 }
3350 #endif
3351 
3352 #ifdef CONFIG_SYSFS
3353 static int count_inuse(struct page *page)
3354 {
3355 	return page->inuse;
3356 }
3357 
3358 static int count_total(struct page *page)
3359 {
3360 	return page->objects;
3361 }
3362 #endif
3363 
3364 #ifdef CONFIG_SLUB_DEBUG
3365 static int validate_slab(struct kmem_cache *s, struct page *page,
3366 						unsigned long *map)
3367 {
3368 	void *p;
3369 	void *addr = page_address(page);
3370 
3371 	if (!check_slab(s, page) ||
3372 			!on_freelist(s, page, NULL))
3373 		return 0;
3374 
3375 	/* Now we know that a valid freelist exists */
3376 	bitmap_zero(map, page->objects);
3377 
3378 	for_each_free_object(p, s, page->freelist) {
3379 		set_bit(slab_index(p, s, addr), map);
3380 		if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3381 			return 0;
3382 	}
3383 
3384 	for_each_object(p, s, addr, page->objects)
3385 		if (!test_bit(slab_index(p, s, addr), map))
3386 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3387 				return 0;
3388 	return 1;
3389 }
3390 
3391 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3392 						unsigned long *map)
3393 {
3394 	if (slab_trylock(page)) {
3395 		validate_slab(s, page, map);
3396 		slab_unlock(page);
3397 	} else
3398 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3399 			s->name, page);
3400 }
3401 
3402 static int validate_slab_node(struct kmem_cache *s,
3403 		struct kmem_cache_node *n, unsigned long *map)
3404 {
3405 	unsigned long count = 0;
3406 	struct page *page;
3407 	unsigned long flags;
3408 
3409 	spin_lock_irqsave(&n->list_lock, flags);
3410 
3411 	list_for_each_entry(page, &n->partial, lru) {
3412 		validate_slab_slab(s, page, map);
3413 		count++;
3414 	}
3415 	if (count != n->nr_partial)
3416 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3417 			"counter=%ld\n", s->name, count, n->nr_partial);
3418 
3419 	if (!(s->flags & SLAB_STORE_USER))
3420 		goto out;
3421 
3422 	list_for_each_entry(page, &n->full, lru) {
3423 		validate_slab_slab(s, page, map);
3424 		count++;
3425 	}
3426 	if (count != atomic_long_read(&n->nr_slabs))
3427 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3428 			"counter=%ld\n", s->name, count,
3429 			atomic_long_read(&n->nr_slabs));
3430 
3431 out:
3432 	spin_unlock_irqrestore(&n->list_lock, flags);
3433 	return count;
3434 }
3435 
3436 static long validate_slab_cache(struct kmem_cache *s)
3437 {
3438 	int node;
3439 	unsigned long count = 0;
3440 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3441 				sizeof(unsigned long), GFP_KERNEL);
3442 
3443 	if (!map)
3444 		return -ENOMEM;
3445 
3446 	flush_all(s);
3447 	for_each_node_state(node, N_NORMAL_MEMORY) {
3448 		struct kmem_cache_node *n = get_node(s, node);
3449 
3450 		count += validate_slab_node(s, n, map);
3451 	}
3452 	kfree(map);
3453 	return count;
3454 }
3455 /*
3456  * Generate lists of code addresses where slabcache objects are allocated
3457  * and freed.
3458  */
3459 
3460 struct location {
3461 	unsigned long count;
3462 	unsigned long addr;
3463 	long long sum_time;
3464 	long min_time;
3465 	long max_time;
3466 	long min_pid;
3467 	long max_pid;
3468 	DECLARE_BITMAP(cpus, NR_CPUS);
3469 	nodemask_t nodes;
3470 };
3471 
3472 struct loc_track {
3473 	unsigned long max;
3474 	unsigned long count;
3475 	struct location *loc;
3476 };
3477 
3478 static void free_loc_track(struct loc_track *t)
3479 {
3480 	if (t->max)
3481 		free_pages((unsigned long)t->loc,
3482 			get_order(sizeof(struct location) * t->max));
3483 }
3484 
3485 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3486 {
3487 	struct location *l;
3488 	int order;
3489 
3490 	order = get_order(sizeof(struct location) * max);
3491 
3492 	l = (void *)__get_free_pages(flags, order);
3493 	if (!l)
3494 		return 0;
3495 
3496 	if (t->count) {
3497 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3498 		free_loc_track(t);
3499 	}
3500 	t->max = max;
3501 	t->loc = l;
3502 	return 1;
3503 }
3504 
3505 static int add_location(struct loc_track *t, struct kmem_cache *s,
3506 				const struct track *track)
3507 {
3508 	long start, end, pos;
3509 	struct location *l;
3510 	unsigned long caddr;
3511 	unsigned long age = jiffies - track->when;
3512 
3513 	start = -1;
3514 	end = t->count;
3515 
3516 	for ( ; ; ) {
3517 		pos = start + (end - start + 1) / 2;
3518 
3519 		/*
3520 		 * There is nothing at "end". If we end up there
3521 		 * we need to add something to before end.
3522 		 */
3523 		if (pos == end)
3524 			break;
3525 
3526 		caddr = t->loc[pos].addr;
3527 		if (track->addr == caddr) {
3528 
3529 			l = &t->loc[pos];
3530 			l->count++;
3531 			if (track->when) {
3532 				l->sum_time += age;
3533 				if (age < l->min_time)
3534 					l->min_time = age;
3535 				if (age > l->max_time)
3536 					l->max_time = age;
3537 
3538 				if (track->pid < l->min_pid)
3539 					l->min_pid = track->pid;
3540 				if (track->pid > l->max_pid)
3541 					l->max_pid = track->pid;
3542 
3543 				cpumask_set_cpu(track->cpu,
3544 						to_cpumask(l->cpus));
3545 			}
3546 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3547 			return 1;
3548 		}
3549 
3550 		if (track->addr < caddr)
3551 			end = pos;
3552 		else
3553 			start = pos;
3554 	}
3555 
3556 	/*
3557 	 * Not found. Insert new tracking element.
3558 	 */
3559 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3560 		return 0;
3561 
3562 	l = t->loc + pos;
3563 	if (pos < t->count)
3564 		memmove(l + 1, l,
3565 			(t->count - pos) * sizeof(struct location));
3566 	t->count++;
3567 	l->count = 1;
3568 	l->addr = track->addr;
3569 	l->sum_time = age;
3570 	l->min_time = age;
3571 	l->max_time = age;
3572 	l->min_pid = track->pid;
3573 	l->max_pid = track->pid;
3574 	cpumask_clear(to_cpumask(l->cpus));
3575 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3576 	nodes_clear(l->nodes);
3577 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3578 	return 1;
3579 }
3580 
3581 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3582 		struct page *page, enum track_item alloc,
3583 		unsigned long *map)
3584 {
3585 	void *addr = page_address(page);
3586 	void *p;
3587 
3588 	bitmap_zero(map, page->objects);
3589 	for_each_free_object(p, s, page->freelist)
3590 		set_bit(slab_index(p, s, addr), map);
3591 
3592 	for_each_object(p, s, addr, page->objects)
3593 		if (!test_bit(slab_index(p, s, addr), map))
3594 			add_location(t, s, get_track(s, p, alloc));
3595 }
3596 
3597 static int list_locations(struct kmem_cache *s, char *buf,
3598 					enum track_item alloc)
3599 {
3600 	int len = 0;
3601 	unsigned long i;
3602 	struct loc_track t = { 0, 0, NULL };
3603 	int node;
3604 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3605 				     sizeof(unsigned long), GFP_KERNEL);
3606 
3607 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3608 				     GFP_TEMPORARY)) {
3609 		kfree(map);
3610 		return sprintf(buf, "Out of memory\n");
3611 	}
3612 	/* Push back cpu slabs */
3613 	flush_all(s);
3614 
3615 	for_each_node_state(node, N_NORMAL_MEMORY) {
3616 		struct kmem_cache_node *n = get_node(s, node);
3617 		unsigned long flags;
3618 		struct page *page;
3619 
3620 		if (!atomic_long_read(&n->nr_slabs))
3621 			continue;
3622 
3623 		spin_lock_irqsave(&n->list_lock, flags);
3624 		list_for_each_entry(page, &n->partial, lru)
3625 			process_slab(&t, s, page, alloc, map);
3626 		list_for_each_entry(page, &n->full, lru)
3627 			process_slab(&t, s, page, alloc, map);
3628 		spin_unlock_irqrestore(&n->list_lock, flags);
3629 	}
3630 
3631 	for (i = 0; i < t.count; i++) {
3632 		struct location *l = &t.loc[i];
3633 
3634 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3635 			break;
3636 		len += sprintf(buf + len, "%7ld ", l->count);
3637 
3638 		if (l->addr)
3639 			len += sprintf(buf + len, "%pS", (void *)l->addr);
3640 		else
3641 			len += sprintf(buf + len, "<not-available>");
3642 
3643 		if (l->sum_time != l->min_time) {
3644 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3645 				l->min_time,
3646 				(long)div_u64(l->sum_time, l->count),
3647 				l->max_time);
3648 		} else
3649 			len += sprintf(buf + len, " age=%ld",
3650 				l->min_time);
3651 
3652 		if (l->min_pid != l->max_pid)
3653 			len += sprintf(buf + len, " pid=%ld-%ld",
3654 				l->min_pid, l->max_pid);
3655 		else
3656 			len += sprintf(buf + len, " pid=%ld",
3657 				l->min_pid);
3658 
3659 		if (num_online_cpus() > 1 &&
3660 				!cpumask_empty(to_cpumask(l->cpus)) &&
3661 				len < PAGE_SIZE - 60) {
3662 			len += sprintf(buf + len, " cpus=");
3663 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3664 						 to_cpumask(l->cpus));
3665 		}
3666 
3667 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3668 				len < PAGE_SIZE - 60) {
3669 			len += sprintf(buf + len, " nodes=");
3670 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3671 					l->nodes);
3672 		}
3673 
3674 		len += sprintf(buf + len, "\n");
3675 	}
3676 
3677 	free_loc_track(&t);
3678 	kfree(map);
3679 	if (!t.count)
3680 		len += sprintf(buf, "No data\n");
3681 	return len;
3682 }
3683 #endif
3684 
3685 #ifdef SLUB_RESILIENCY_TEST
3686 static void resiliency_test(void)
3687 {
3688 	u8 *p;
3689 
3690 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3691 
3692 	printk(KERN_ERR "SLUB resiliency testing\n");
3693 	printk(KERN_ERR "-----------------------\n");
3694 	printk(KERN_ERR "A. Corruption after allocation\n");
3695 
3696 	p = kzalloc(16, GFP_KERNEL);
3697 	p[16] = 0x12;
3698 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3699 			" 0x12->0x%p\n\n", p + 16);
3700 
3701 	validate_slab_cache(kmalloc_caches[4]);
3702 
3703 	/* Hmmm... The next two are dangerous */
3704 	p = kzalloc(32, GFP_KERNEL);
3705 	p[32 + sizeof(void *)] = 0x34;
3706 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3707 			" 0x34 -> -0x%p\n", p);
3708 	printk(KERN_ERR
3709 		"If allocated object is overwritten then not detectable\n\n");
3710 
3711 	validate_slab_cache(kmalloc_caches[5]);
3712 	p = kzalloc(64, GFP_KERNEL);
3713 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3714 	*p = 0x56;
3715 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3716 									p);
3717 	printk(KERN_ERR
3718 		"If allocated object is overwritten then not detectable\n\n");
3719 	validate_slab_cache(kmalloc_caches[6]);
3720 
3721 	printk(KERN_ERR "\nB. Corruption after free\n");
3722 	p = kzalloc(128, GFP_KERNEL);
3723 	kfree(p);
3724 	*p = 0x78;
3725 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3726 	validate_slab_cache(kmalloc_caches[7]);
3727 
3728 	p = kzalloc(256, GFP_KERNEL);
3729 	kfree(p);
3730 	p[50] = 0x9a;
3731 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3732 			p);
3733 	validate_slab_cache(kmalloc_caches[8]);
3734 
3735 	p = kzalloc(512, GFP_KERNEL);
3736 	kfree(p);
3737 	p[512] = 0xab;
3738 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3739 	validate_slab_cache(kmalloc_caches[9]);
3740 }
3741 #else
3742 #ifdef CONFIG_SYSFS
3743 static void resiliency_test(void) {};
3744 #endif
3745 #endif
3746 
3747 #ifdef CONFIG_SYSFS
3748 enum slab_stat_type {
3749 	SL_ALL,			/* All slabs */
3750 	SL_PARTIAL,		/* Only partially allocated slabs */
3751 	SL_CPU,			/* Only slabs used for cpu caches */
3752 	SL_OBJECTS,		/* Determine allocated objects not slabs */
3753 	SL_TOTAL		/* Determine object capacity not slabs */
3754 };
3755 
3756 #define SO_ALL		(1 << SL_ALL)
3757 #define SO_PARTIAL	(1 << SL_PARTIAL)
3758 #define SO_CPU		(1 << SL_CPU)
3759 #define SO_OBJECTS	(1 << SL_OBJECTS)
3760 #define SO_TOTAL	(1 << SL_TOTAL)
3761 
3762 static ssize_t show_slab_objects(struct kmem_cache *s,
3763 			    char *buf, unsigned long flags)
3764 {
3765 	unsigned long total = 0;
3766 	int node;
3767 	int x;
3768 	unsigned long *nodes;
3769 	unsigned long *per_cpu;
3770 
3771 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3772 	if (!nodes)
3773 		return -ENOMEM;
3774 	per_cpu = nodes + nr_node_ids;
3775 
3776 	if (flags & SO_CPU) {
3777 		int cpu;
3778 
3779 		for_each_possible_cpu(cpu) {
3780 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3781 
3782 			if (!c || c->node < 0)
3783 				continue;
3784 
3785 			if (c->page) {
3786 					if (flags & SO_TOTAL)
3787 						x = c->page->objects;
3788 				else if (flags & SO_OBJECTS)
3789 					x = c->page->inuse;
3790 				else
3791 					x = 1;
3792 
3793 				total += x;
3794 				nodes[c->node] += x;
3795 			}
3796 			per_cpu[c->node]++;
3797 		}
3798 	}
3799 
3800 	lock_memory_hotplug();
3801 #ifdef CONFIG_SLUB_DEBUG
3802 	if (flags & SO_ALL) {
3803 		for_each_node_state(node, N_NORMAL_MEMORY) {
3804 			struct kmem_cache_node *n = get_node(s, node);
3805 
3806 		if (flags & SO_TOTAL)
3807 			x = atomic_long_read(&n->total_objects);
3808 		else if (flags & SO_OBJECTS)
3809 			x = atomic_long_read(&n->total_objects) -
3810 				count_partial(n, count_free);
3811 
3812 			else
3813 				x = atomic_long_read(&n->nr_slabs);
3814 			total += x;
3815 			nodes[node] += x;
3816 		}
3817 
3818 	} else
3819 #endif
3820 	if (flags & SO_PARTIAL) {
3821 		for_each_node_state(node, N_NORMAL_MEMORY) {
3822 			struct kmem_cache_node *n = get_node(s, node);
3823 
3824 			if (flags & SO_TOTAL)
3825 				x = count_partial(n, count_total);
3826 			else if (flags & SO_OBJECTS)
3827 				x = count_partial(n, count_inuse);
3828 			else
3829 				x = n->nr_partial;
3830 			total += x;
3831 			nodes[node] += x;
3832 		}
3833 	}
3834 	x = sprintf(buf, "%lu", total);
3835 #ifdef CONFIG_NUMA
3836 	for_each_node_state(node, N_NORMAL_MEMORY)
3837 		if (nodes[node])
3838 			x += sprintf(buf + x, " N%d=%lu",
3839 					node, nodes[node]);
3840 #endif
3841 	unlock_memory_hotplug();
3842 	kfree(nodes);
3843 	return x + sprintf(buf + x, "\n");
3844 }
3845 
3846 #ifdef CONFIG_SLUB_DEBUG
3847 static int any_slab_objects(struct kmem_cache *s)
3848 {
3849 	int node;
3850 
3851 	for_each_online_node(node) {
3852 		struct kmem_cache_node *n = get_node(s, node);
3853 
3854 		if (!n)
3855 			continue;
3856 
3857 		if (atomic_long_read(&n->total_objects))
3858 			return 1;
3859 	}
3860 	return 0;
3861 }
3862 #endif
3863 
3864 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3865 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3866 
3867 struct slab_attribute {
3868 	struct attribute attr;
3869 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3870 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3871 };
3872 
3873 #define SLAB_ATTR_RO(_name) \
3874 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3875 
3876 #define SLAB_ATTR(_name) \
3877 	static struct slab_attribute _name##_attr =  \
3878 	__ATTR(_name, 0644, _name##_show, _name##_store)
3879 
3880 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3881 {
3882 	return sprintf(buf, "%d\n", s->size);
3883 }
3884 SLAB_ATTR_RO(slab_size);
3885 
3886 static ssize_t align_show(struct kmem_cache *s, char *buf)
3887 {
3888 	return sprintf(buf, "%d\n", s->align);
3889 }
3890 SLAB_ATTR_RO(align);
3891 
3892 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3893 {
3894 	return sprintf(buf, "%d\n", s->objsize);
3895 }
3896 SLAB_ATTR_RO(object_size);
3897 
3898 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3899 {
3900 	return sprintf(buf, "%d\n", oo_objects(s->oo));
3901 }
3902 SLAB_ATTR_RO(objs_per_slab);
3903 
3904 static ssize_t order_store(struct kmem_cache *s,
3905 				const char *buf, size_t length)
3906 {
3907 	unsigned long order;
3908 	int err;
3909 
3910 	err = strict_strtoul(buf, 10, &order);
3911 	if (err)
3912 		return err;
3913 
3914 	if (order > slub_max_order || order < slub_min_order)
3915 		return -EINVAL;
3916 
3917 	calculate_sizes(s, order);
3918 	return length;
3919 }
3920 
3921 static ssize_t order_show(struct kmem_cache *s, char *buf)
3922 {
3923 	return sprintf(buf, "%d\n", oo_order(s->oo));
3924 }
3925 SLAB_ATTR(order);
3926 
3927 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3928 {
3929 	return sprintf(buf, "%lu\n", s->min_partial);
3930 }
3931 
3932 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3933 				 size_t length)
3934 {
3935 	unsigned long min;
3936 	int err;
3937 
3938 	err = strict_strtoul(buf, 10, &min);
3939 	if (err)
3940 		return err;
3941 
3942 	set_min_partial(s, min);
3943 	return length;
3944 }
3945 SLAB_ATTR(min_partial);
3946 
3947 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3948 {
3949 	if (!s->ctor)
3950 		return 0;
3951 	return sprintf(buf, "%pS\n", s->ctor);
3952 }
3953 SLAB_ATTR_RO(ctor);
3954 
3955 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3956 {
3957 	return sprintf(buf, "%d\n", s->refcount - 1);
3958 }
3959 SLAB_ATTR_RO(aliases);
3960 
3961 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3962 {
3963 	return show_slab_objects(s, buf, SO_PARTIAL);
3964 }
3965 SLAB_ATTR_RO(partial);
3966 
3967 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3968 {
3969 	return show_slab_objects(s, buf, SO_CPU);
3970 }
3971 SLAB_ATTR_RO(cpu_slabs);
3972 
3973 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3974 {
3975 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3976 }
3977 SLAB_ATTR_RO(objects);
3978 
3979 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3980 {
3981 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3982 }
3983 SLAB_ATTR_RO(objects_partial);
3984 
3985 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3986 {
3987 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3988 }
3989 
3990 static ssize_t reclaim_account_store(struct kmem_cache *s,
3991 				const char *buf, size_t length)
3992 {
3993 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3994 	if (buf[0] == '1')
3995 		s->flags |= SLAB_RECLAIM_ACCOUNT;
3996 	return length;
3997 }
3998 SLAB_ATTR(reclaim_account);
3999 
4000 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4001 {
4002 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4003 }
4004 SLAB_ATTR_RO(hwcache_align);
4005 
4006 #ifdef CONFIG_ZONE_DMA
4007 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4008 {
4009 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4010 }
4011 SLAB_ATTR_RO(cache_dma);
4012 #endif
4013 
4014 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4015 {
4016 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4017 }
4018 SLAB_ATTR_RO(destroy_by_rcu);
4019 
4020 #ifdef CONFIG_SLUB_DEBUG
4021 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4022 {
4023 	return show_slab_objects(s, buf, SO_ALL);
4024 }
4025 SLAB_ATTR_RO(slabs);
4026 
4027 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4028 {
4029 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4030 }
4031 SLAB_ATTR_RO(total_objects);
4032 
4033 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4034 {
4035 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4036 }
4037 
4038 static ssize_t sanity_checks_store(struct kmem_cache *s,
4039 				const char *buf, size_t length)
4040 {
4041 	s->flags &= ~SLAB_DEBUG_FREE;
4042 	if (buf[0] == '1')
4043 		s->flags |= SLAB_DEBUG_FREE;
4044 	return length;
4045 }
4046 SLAB_ATTR(sanity_checks);
4047 
4048 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4049 {
4050 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4051 }
4052 
4053 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4054 							size_t length)
4055 {
4056 	s->flags &= ~SLAB_TRACE;
4057 	if (buf[0] == '1')
4058 		s->flags |= SLAB_TRACE;
4059 	return length;
4060 }
4061 SLAB_ATTR(trace);
4062 
4063 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4064 {
4065 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4066 }
4067 
4068 static ssize_t red_zone_store(struct kmem_cache *s,
4069 				const char *buf, size_t length)
4070 {
4071 	if (any_slab_objects(s))
4072 		return -EBUSY;
4073 
4074 	s->flags &= ~SLAB_RED_ZONE;
4075 	if (buf[0] == '1')
4076 		s->flags |= SLAB_RED_ZONE;
4077 	calculate_sizes(s, -1);
4078 	return length;
4079 }
4080 SLAB_ATTR(red_zone);
4081 
4082 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4083 {
4084 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4085 }
4086 
4087 static ssize_t poison_store(struct kmem_cache *s,
4088 				const char *buf, size_t length)
4089 {
4090 	if (any_slab_objects(s))
4091 		return -EBUSY;
4092 
4093 	s->flags &= ~SLAB_POISON;
4094 	if (buf[0] == '1')
4095 		s->flags |= SLAB_POISON;
4096 	calculate_sizes(s, -1);
4097 	return length;
4098 }
4099 SLAB_ATTR(poison);
4100 
4101 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4102 {
4103 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4104 }
4105 
4106 static ssize_t store_user_store(struct kmem_cache *s,
4107 				const char *buf, size_t length)
4108 {
4109 	if (any_slab_objects(s))
4110 		return -EBUSY;
4111 
4112 	s->flags &= ~SLAB_STORE_USER;
4113 	if (buf[0] == '1')
4114 		s->flags |= SLAB_STORE_USER;
4115 	calculate_sizes(s, -1);
4116 	return length;
4117 }
4118 SLAB_ATTR(store_user);
4119 
4120 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4121 {
4122 	return 0;
4123 }
4124 
4125 static ssize_t validate_store(struct kmem_cache *s,
4126 			const char *buf, size_t length)
4127 {
4128 	int ret = -EINVAL;
4129 
4130 	if (buf[0] == '1') {
4131 		ret = validate_slab_cache(s);
4132 		if (ret >= 0)
4133 			ret = length;
4134 	}
4135 	return ret;
4136 }
4137 SLAB_ATTR(validate);
4138 
4139 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4140 {
4141 	if (!(s->flags & SLAB_STORE_USER))
4142 		return -ENOSYS;
4143 	return list_locations(s, buf, TRACK_ALLOC);
4144 }
4145 SLAB_ATTR_RO(alloc_calls);
4146 
4147 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4148 {
4149 	if (!(s->flags & SLAB_STORE_USER))
4150 		return -ENOSYS;
4151 	return list_locations(s, buf, TRACK_FREE);
4152 }
4153 SLAB_ATTR_RO(free_calls);
4154 #endif /* CONFIG_SLUB_DEBUG */
4155 
4156 #ifdef CONFIG_FAILSLAB
4157 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4158 {
4159 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4160 }
4161 
4162 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4163 							size_t length)
4164 {
4165 	s->flags &= ~SLAB_FAILSLAB;
4166 	if (buf[0] == '1')
4167 		s->flags |= SLAB_FAILSLAB;
4168 	return length;
4169 }
4170 SLAB_ATTR(failslab);
4171 #endif
4172 
4173 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4174 {
4175 	return 0;
4176 }
4177 
4178 static ssize_t shrink_store(struct kmem_cache *s,
4179 			const char *buf, size_t length)
4180 {
4181 	if (buf[0] == '1') {
4182 		int rc = kmem_cache_shrink(s);
4183 
4184 		if (rc)
4185 			return rc;
4186 	} else
4187 		return -EINVAL;
4188 	return length;
4189 }
4190 SLAB_ATTR(shrink);
4191 
4192 #ifdef CONFIG_NUMA
4193 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4194 {
4195 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4196 }
4197 
4198 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4199 				const char *buf, size_t length)
4200 {
4201 	unsigned long ratio;
4202 	int err;
4203 
4204 	err = strict_strtoul(buf, 10, &ratio);
4205 	if (err)
4206 		return err;
4207 
4208 	if (ratio <= 100)
4209 		s->remote_node_defrag_ratio = ratio * 10;
4210 
4211 	return length;
4212 }
4213 SLAB_ATTR(remote_node_defrag_ratio);
4214 #endif
4215 
4216 #ifdef CONFIG_SLUB_STATS
4217 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4218 {
4219 	unsigned long sum  = 0;
4220 	int cpu;
4221 	int len;
4222 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4223 
4224 	if (!data)
4225 		return -ENOMEM;
4226 
4227 	for_each_online_cpu(cpu) {
4228 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4229 
4230 		data[cpu] = x;
4231 		sum += x;
4232 	}
4233 
4234 	len = sprintf(buf, "%lu", sum);
4235 
4236 #ifdef CONFIG_SMP
4237 	for_each_online_cpu(cpu) {
4238 		if (data[cpu] && len < PAGE_SIZE - 20)
4239 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4240 	}
4241 #endif
4242 	kfree(data);
4243 	return len + sprintf(buf + len, "\n");
4244 }
4245 
4246 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4247 {
4248 	int cpu;
4249 
4250 	for_each_online_cpu(cpu)
4251 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4252 }
4253 
4254 #define STAT_ATTR(si, text) 					\
4255 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4256 {								\
4257 	return show_stat(s, buf, si);				\
4258 }								\
4259 static ssize_t text##_store(struct kmem_cache *s,		\
4260 				const char *buf, size_t length)	\
4261 {								\
4262 	if (buf[0] != '0')					\
4263 		return -EINVAL;					\
4264 	clear_stat(s, si);					\
4265 	return length;						\
4266 }								\
4267 SLAB_ATTR(text);						\
4268 
4269 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4270 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4271 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4272 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4273 STAT_ATTR(FREE_FROZEN, free_frozen);
4274 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4275 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4276 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4277 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4278 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4279 STAT_ATTR(FREE_SLAB, free_slab);
4280 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4281 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4282 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4283 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4284 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4285 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4286 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4287 #endif
4288 
4289 static struct attribute *slab_attrs[] = {
4290 	&slab_size_attr.attr,
4291 	&object_size_attr.attr,
4292 	&objs_per_slab_attr.attr,
4293 	&order_attr.attr,
4294 	&min_partial_attr.attr,
4295 	&objects_attr.attr,
4296 	&objects_partial_attr.attr,
4297 	&partial_attr.attr,
4298 	&cpu_slabs_attr.attr,
4299 	&ctor_attr.attr,
4300 	&aliases_attr.attr,
4301 	&align_attr.attr,
4302 	&hwcache_align_attr.attr,
4303 	&reclaim_account_attr.attr,
4304 	&destroy_by_rcu_attr.attr,
4305 	&shrink_attr.attr,
4306 #ifdef CONFIG_SLUB_DEBUG
4307 	&total_objects_attr.attr,
4308 	&slabs_attr.attr,
4309 	&sanity_checks_attr.attr,
4310 	&trace_attr.attr,
4311 	&red_zone_attr.attr,
4312 	&poison_attr.attr,
4313 	&store_user_attr.attr,
4314 	&validate_attr.attr,
4315 	&alloc_calls_attr.attr,
4316 	&free_calls_attr.attr,
4317 #endif
4318 #ifdef CONFIG_ZONE_DMA
4319 	&cache_dma_attr.attr,
4320 #endif
4321 #ifdef CONFIG_NUMA
4322 	&remote_node_defrag_ratio_attr.attr,
4323 #endif
4324 #ifdef CONFIG_SLUB_STATS
4325 	&alloc_fastpath_attr.attr,
4326 	&alloc_slowpath_attr.attr,
4327 	&free_fastpath_attr.attr,
4328 	&free_slowpath_attr.attr,
4329 	&free_frozen_attr.attr,
4330 	&free_add_partial_attr.attr,
4331 	&free_remove_partial_attr.attr,
4332 	&alloc_from_partial_attr.attr,
4333 	&alloc_slab_attr.attr,
4334 	&alloc_refill_attr.attr,
4335 	&free_slab_attr.attr,
4336 	&cpuslab_flush_attr.attr,
4337 	&deactivate_full_attr.attr,
4338 	&deactivate_empty_attr.attr,
4339 	&deactivate_to_head_attr.attr,
4340 	&deactivate_to_tail_attr.attr,
4341 	&deactivate_remote_frees_attr.attr,
4342 	&order_fallback_attr.attr,
4343 #endif
4344 #ifdef CONFIG_FAILSLAB
4345 	&failslab_attr.attr,
4346 #endif
4347 
4348 	NULL
4349 };
4350 
4351 static struct attribute_group slab_attr_group = {
4352 	.attrs = slab_attrs,
4353 };
4354 
4355 static ssize_t slab_attr_show(struct kobject *kobj,
4356 				struct attribute *attr,
4357 				char *buf)
4358 {
4359 	struct slab_attribute *attribute;
4360 	struct kmem_cache *s;
4361 	int err;
4362 
4363 	attribute = to_slab_attr(attr);
4364 	s = to_slab(kobj);
4365 
4366 	if (!attribute->show)
4367 		return -EIO;
4368 
4369 	err = attribute->show(s, buf);
4370 
4371 	return err;
4372 }
4373 
4374 static ssize_t slab_attr_store(struct kobject *kobj,
4375 				struct attribute *attr,
4376 				const char *buf, size_t len)
4377 {
4378 	struct slab_attribute *attribute;
4379 	struct kmem_cache *s;
4380 	int err;
4381 
4382 	attribute = to_slab_attr(attr);
4383 	s = to_slab(kobj);
4384 
4385 	if (!attribute->store)
4386 		return -EIO;
4387 
4388 	err = attribute->store(s, buf, len);
4389 
4390 	return err;
4391 }
4392 
4393 static void kmem_cache_release(struct kobject *kobj)
4394 {
4395 	struct kmem_cache *s = to_slab(kobj);
4396 
4397 	kfree(s->name);
4398 	kfree(s);
4399 }
4400 
4401 static const struct sysfs_ops slab_sysfs_ops = {
4402 	.show = slab_attr_show,
4403 	.store = slab_attr_store,
4404 };
4405 
4406 static struct kobj_type slab_ktype = {
4407 	.sysfs_ops = &slab_sysfs_ops,
4408 	.release = kmem_cache_release
4409 };
4410 
4411 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4412 {
4413 	struct kobj_type *ktype = get_ktype(kobj);
4414 
4415 	if (ktype == &slab_ktype)
4416 		return 1;
4417 	return 0;
4418 }
4419 
4420 static const struct kset_uevent_ops slab_uevent_ops = {
4421 	.filter = uevent_filter,
4422 };
4423 
4424 static struct kset *slab_kset;
4425 
4426 #define ID_STR_LENGTH 64
4427 
4428 /* Create a unique string id for a slab cache:
4429  *
4430  * Format	:[flags-]size
4431  */
4432 static char *create_unique_id(struct kmem_cache *s)
4433 {
4434 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4435 	char *p = name;
4436 
4437 	BUG_ON(!name);
4438 
4439 	*p++ = ':';
4440 	/*
4441 	 * First flags affecting slabcache operations. We will only
4442 	 * get here for aliasable slabs so we do not need to support
4443 	 * too many flags. The flags here must cover all flags that
4444 	 * are matched during merging to guarantee that the id is
4445 	 * unique.
4446 	 */
4447 	if (s->flags & SLAB_CACHE_DMA)
4448 		*p++ = 'd';
4449 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4450 		*p++ = 'a';
4451 	if (s->flags & SLAB_DEBUG_FREE)
4452 		*p++ = 'F';
4453 	if (!(s->flags & SLAB_NOTRACK))
4454 		*p++ = 't';
4455 	if (p != name + 1)
4456 		*p++ = '-';
4457 	p += sprintf(p, "%07d", s->size);
4458 	BUG_ON(p > name + ID_STR_LENGTH - 1);
4459 	return name;
4460 }
4461 
4462 static int sysfs_slab_add(struct kmem_cache *s)
4463 {
4464 	int err;
4465 	const char *name;
4466 	int unmergeable;
4467 
4468 	if (slab_state < SYSFS)
4469 		/* Defer until later */
4470 		return 0;
4471 
4472 	unmergeable = slab_unmergeable(s);
4473 	if (unmergeable) {
4474 		/*
4475 		 * Slabcache can never be merged so we can use the name proper.
4476 		 * This is typically the case for debug situations. In that
4477 		 * case we can catch duplicate names easily.
4478 		 */
4479 		sysfs_remove_link(&slab_kset->kobj, s->name);
4480 		name = s->name;
4481 	} else {
4482 		/*
4483 		 * Create a unique name for the slab as a target
4484 		 * for the symlinks.
4485 		 */
4486 		name = create_unique_id(s);
4487 	}
4488 
4489 	s->kobj.kset = slab_kset;
4490 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4491 	if (err) {
4492 		kobject_put(&s->kobj);
4493 		return err;
4494 	}
4495 
4496 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4497 	if (err) {
4498 		kobject_del(&s->kobj);
4499 		kobject_put(&s->kobj);
4500 		return err;
4501 	}
4502 	kobject_uevent(&s->kobj, KOBJ_ADD);
4503 	if (!unmergeable) {
4504 		/* Setup first alias */
4505 		sysfs_slab_alias(s, s->name);
4506 		kfree(name);
4507 	}
4508 	return 0;
4509 }
4510 
4511 static void sysfs_slab_remove(struct kmem_cache *s)
4512 {
4513 	if (slab_state < SYSFS)
4514 		/*
4515 		 * Sysfs has not been setup yet so no need to remove the
4516 		 * cache from sysfs.
4517 		 */
4518 		return;
4519 
4520 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4521 	kobject_del(&s->kobj);
4522 	kobject_put(&s->kobj);
4523 }
4524 
4525 /*
4526  * Need to buffer aliases during bootup until sysfs becomes
4527  * available lest we lose that information.
4528  */
4529 struct saved_alias {
4530 	struct kmem_cache *s;
4531 	const char *name;
4532 	struct saved_alias *next;
4533 };
4534 
4535 static struct saved_alias *alias_list;
4536 
4537 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4538 {
4539 	struct saved_alias *al;
4540 
4541 	if (slab_state == SYSFS) {
4542 		/*
4543 		 * If we have a leftover link then remove it.
4544 		 */
4545 		sysfs_remove_link(&slab_kset->kobj, name);
4546 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4547 	}
4548 
4549 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4550 	if (!al)
4551 		return -ENOMEM;
4552 
4553 	al->s = s;
4554 	al->name = name;
4555 	al->next = alias_list;
4556 	alias_list = al;
4557 	return 0;
4558 }
4559 
4560 static int __init slab_sysfs_init(void)
4561 {
4562 	struct kmem_cache *s;
4563 	int err;
4564 
4565 	down_write(&slub_lock);
4566 
4567 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4568 	if (!slab_kset) {
4569 		up_write(&slub_lock);
4570 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4571 		return -ENOSYS;
4572 	}
4573 
4574 	slab_state = SYSFS;
4575 
4576 	list_for_each_entry(s, &slab_caches, list) {
4577 		err = sysfs_slab_add(s);
4578 		if (err)
4579 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4580 						" to sysfs\n", s->name);
4581 	}
4582 
4583 	while (alias_list) {
4584 		struct saved_alias *al = alias_list;
4585 
4586 		alias_list = alias_list->next;
4587 		err = sysfs_slab_alias(al->s, al->name);
4588 		if (err)
4589 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4590 					" %s to sysfs\n", s->name);
4591 		kfree(al);
4592 	}
4593 
4594 	up_write(&slub_lock);
4595 	resiliency_test();
4596 	return 0;
4597 }
4598 
4599 __initcall(slab_sysfs_init);
4600 #endif /* CONFIG_SYSFS */
4601 
4602 /*
4603  * The /proc/slabinfo ABI
4604  */
4605 #ifdef CONFIG_SLABINFO
4606 static void print_slabinfo_header(struct seq_file *m)
4607 {
4608 	seq_puts(m, "slabinfo - version: 2.1\n");
4609 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4610 		 "<objperslab> <pagesperslab>");
4611 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4612 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4613 	seq_putc(m, '\n');
4614 }
4615 
4616 static void *s_start(struct seq_file *m, loff_t *pos)
4617 {
4618 	loff_t n = *pos;
4619 
4620 	down_read(&slub_lock);
4621 	if (!n)
4622 		print_slabinfo_header(m);
4623 
4624 	return seq_list_start(&slab_caches, *pos);
4625 }
4626 
4627 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4628 {
4629 	return seq_list_next(p, &slab_caches, pos);
4630 }
4631 
4632 static void s_stop(struct seq_file *m, void *p)
4633 {
4634 	up_read(&slub_lock);
4635 }
4636 
4637 static int s_show(struct seq_file *m, void *p)
4638 {
4639 	unsigned long nr_partials = 0;
4640 	unsigned long nr_slabs = 0;
4641 	unsigned long nr_inuse = 0;
4642 	unsigned long nr_objs = 0;
4643 	unsigned long nr_free = 0;
4644 	struct kmem_cache *s;
4645 	int node;
4646 
4647 	s = list_entry(p, struct kmem_cache, list);
4648 
4649 	for_each_online_node(node) {
4650 		struct kmem_cache_node *n = get_node(s, node);
4651 
4652 		if (!n)
4653 			continue;
4654 
4655 		nr_partials += n->nr_partial;
4656 		nr_slabs += atomic_long_read(&n->nr_slabs);
4657 		nr_objs += atomic_long_read(&n->total_objects);
4658 		nr_free += count_partial(n, count_free);
4659 	}
4660 
4661 	nr_inuse = nr_objs - nr_free;
4662 
4663 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4664 		   nr_objs, s->size, oo_objects(s->oo),
4665 		   (1 << oo_order(s->oo)));
4666 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4667 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4668 		   0UL);
4669 	seq_putc(m, '\n');
4670 	return 0;
4671 }
4672 
4673 static const struct seq_operations slabinfo_op = {
4674 	.start = s_start,
4675 	.next = s_next,
4676 	.stop = s_stop,
4677 	.show = s_show,
4678 };
4679 
4680 static int slabinfo_open(struct inode *inode, struct file *file)
4681 {
4682 	return seq_open(file, &slabinfo_op);
4683 }
4684 
4685 static const struct file_operations proc_slabinfo_operations = {
4686 	.open		= slabinfo_open,
4687 	.read		= seq_read,
4688 	.llseek		= seq_lseek,
4689 	.release	= seq_release,
4690 };
4691 
4692 static int __init slab_proc_init(void)
4693 {
4694 	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4695 	return 0;
4696 }
4697 module_init(slab_proc_init);
4698 #endif /* CONFIG_SLABINFO */
4699