1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/kfence.h> 32 #include <linux/memory.h> 33 #include <linux/math64.h> 34 #include <linux/fault-inject.h> 35 #include <linux/stacktrace.h> 36 #include <linux/prefetch.h> 37 #include <linux/memcontrol.h> 38 #include <linux/random.h> 39 #include <kunit/test.h> 40 41 #include <linux/debugfs.h> 42 #include <trace/events/kmem.h> 43 44 #include "internal.h" 45 46 /* 47 * Lock order: 48 * 1. slab_mutex (Global Mutex) 49 * 2. node->list_lock (Spinlock) 50 * 3. kmem_cache->cpu_slab->lock (Local lock) 51 * 4. slab_lock(slab) (Only on some arches or for debugging) 52 * 5. object_map_lock (Only for debugging) 53 * 54 * slab_mutex 55 * 56 * The role of the slab_mutex is to protect the list of all the slabs 57 * and to synchronize major metadata changes to slab cache structures. 58 * Also synchronizes memory hotplug callbacks. 59 * 60 * slab_lock 61 * 62 * The slab_lock is a wrapper around the page lock, thus it is a bit 63 * spinlock. 64 * 65 * The slab_lock is only used for debugging and on arches that do not 66 * have the ability to do a cmpxchg_double. It only protects: 67 * A. slab->freelist -> List of free objects in a slab 68 * B. slab->inuse -> Number of objects in use 69 * C. slab->objects -> Number of objects in slab 70 * D. slab->frozen -> frozen state 71 * 72 * Frozen slabs 73 * 74 * If a slab is frozen then it is exempt from list management. It is not 75 * on any list except per cpu partial list. The processor that froze the 76 * slab is the one who can perform list operations on the slab. Other 77 * processors may put objects onto the freelist but the processor that 78 * froze the slab is the only one that can retrieve the objects from the 79 * slab's freelist. 80 * 81 * list_lock 82 * 83 * The list_lock protects the partial and full list on each node and 84 * the partial slab counter. If taken then no new slabs may be added or 85 * removed from the lists nor make the number of partial slabs be modified. 86 * (Note that the total number of slabs is an atomic value that may be 87 * modified without taking the list lock). 88 * 89 * The list_lock is a centralized lock and thus we avoid taking it as 90 * much as possible. As long as SLUB does not have to handle partial 91 * slabs, operations can continue without any centralized lock. F.e. 92 * allocating a long series of objects that fill up slabs does not require 93 * the list lock. 94 * 95 * cpu_slab->lock local lock 96 * 97 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 98 * except the stat counters. This is a percpu structure manipulated only by 99 * the local cpu, so the lock protects against being preempted or interrupted 100 * by an irq. Fast path operations rely on lockless operations instead. 101 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus 102 * prevent the lockless operations), so fastpath operations also need to take 103 * the lock and are no longer lockless. 104 * 105 * lockless fastpaths 106 * 107 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 108 * are fully lockless when satisfied from the percpu slab (and when 109 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 110 * They also don't disable preemption or migration or irqs. They rely on 111 * the transaction id (tid) field to detect being preempted or moved to 112 * another cpu. 113 * 114 * irq, preemption, migration considerations 115 * 116 * Interrupts are disabled as part of list_lock or local_lock operations, or 117 * around the slab_lock operation, in order to make the slab allocator safe 118 * to use in the context of an irq. 119 * 120 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 121 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 122 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 123 * doesn't have to be revalidated in each section protected by the local lock. 124 * 125 * SLUB assigns one slab for allocation to each processor. 126 * Allocations only occur from these slabs called cpu slabs. 127 * 128 * Slabs with free elements are kept on a partial list and during regular 129 * operations no list for full slabs is used. If an object in a full slab is 130 * freed then the slab will show up again on the partial lists. 131 * We track full slabs for debugging purposes though because otherwise we 132 * cannot scan all objects. 133 * 134 * Slabs are freed when they become empty. Teardown and setup is 135 * minimal so we rely on the page allocators per cpu caches for 136 * fast frees and allocs. 137 * 138 * slab->frozen The slab is frozen and exempt from list processing. 139 * This means that the slab is dedicated to a purpose 140 * such as satisfying allocations for a specific 141 * processor. Objects may be freed in the slab while 142 * it is frozen but slab_free will then skip the usual 143 * list operations. It is up to the processor holding 144 * the slab to integrate the slab into the slab lists 145 * when the slab is no longer needed. 146 * 147 * One use of this flag is to mark slabs that are 148 * used for allocations. Then such a slab becomes a cpu 149 * slab. The cpu slab may be equipped with an additional 150 * freelist that allows lockless access to 151 * free objects in addition to the regular freelist 152 * that requires the slab lock. 153 * 154 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 155 * options set. This moves slab handling out of 156 * the fast path and disables lockless freelists. 157 */ 158 159 /* 160 * We could simply use migrate_disable()/enable() but as long as it's a 161 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 162 */ 163 #ifndef CONFIG_PREEMPT_RT 164 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 165 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 166 #else 167 #define slub_get_cpu_ptr(var) \ 168 ({ \ 169 migrate_disable(); \ 170 this_cpu_ptr(var); \ 171 }) 172 #define slub_put_cpu_ptr(var) \ 173 do { \ 174 (void)(var); \ 175 migrate_enable(); \ 176 } while (0) 177 #endif 178 179 #ifdef CONFIG_SLUB_DEBUG 180 #ifdef CONFIG_SLUB_DEBUG_ON 181 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 182 #else 183 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 184 #endif 185 #endif /* CONFIG_SLUB_DEBUG */ 186 187 static inline bool kmem_cache_debug(struct kmem_cache *s) 188 { 189 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 190 } 191 192 void *fixup_red_left(struct kmem_cache *s, void *p) 193 { 194 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 195 p += s->red_left_pad; 196 197 return p; 198 } 199 200 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 201 { 202 #ifdef CONFIG_SLUB_CPU_PARTIAL 203 return !kmem_cache_debug(s); 204 #else 205 return false; 206 #endif 207 } 208 209 /* 210 * Issues still to be resolved: 211 * 212 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 213 * 214 * - Variable sizing of the per node arrays 215 */ 216 217 /* Enable to log cmpxchg failures */ 218 #undef SLUB_DEBUG_CMPXCHG 219 220 /* 221 * Minimum number of partial slabs. These will be left on the partial 222 * lists even if they are empty. kmem_cache_shrink may reclaim them. 223 */ 224 #define MIN_PARTIAL 5 225 226 /* 227 * Maximum number of desirable partial slabs. 228 * The existence of more partial slabs makes kmem_cache_shrink 229 * sort the partial list by the number of objects in use. 230 */ 231 #define MAX_PARTIAL 10 232 233 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 234 SLAB_POISON | SLAB_STORE_USER) 235 236 /* 237 * These debug flags cannot use CMPXCHG because there might be consistency 238 * issues when checking or reading debug information 239 */ 240 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 241 SLAB_TRACE) 242 243 244 /* 245 * Debugging flags that require metadata to be stored in the slab. These get 246 * disabled when slub_debug=O is used and a cache's min order increases with 247 * metadata. 248 */ 249 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 250 251 #define OO_SHIFT 16 252 #define OO_MASK ((1 << OO_SHIFT) - 1) 253 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 254 255 /* Internal SLUB flags */ 256 /* Poison object */ 257 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 258 /* Use cmpxchg_double */ 259 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 260 261 /* 262 * Tracking user of a slab. 263 */ 264 #define TRACK_ADDRS_COUNT 16 265 struct track { 266 unsigned long addr; /* Called from address */ 267 #ifdef CONFIG_STACKTRACE 268 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 269 #endif 270 int cpu; /* Was running on cpu */ 271 int pid; /* Pid context */ 272 unsigned long when; /* When did the operation occur */ 273 }; 274 275 enum track_item { TRACK_ALLOC, TRACK_FREE }; 276 277 #ifdef CONFIG_SYSFS 278 static int sysfs_slab_add(struct kmem_cache *); 279 static int sysfs_slab_alias(struct kmem_cache *, const char *); 280 #else 281 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 282 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 283 { return 0; } 284 #endif 285 286 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 287 static void debugfs_slab_add(struct kmem_cache *); 288 #else 289 static inline void debugfs_slab_add(struct kmem_cache *s) { } 290 #endif 291 292 static inline void stat(const struct kmem_cache *s, enum stat_item si) 293 { 294 #ifdef CONFIG_SLUB_STATS 295 /* 296 * The rmw is racy on a preemptible kernel but this is acceptable, so 297 * avoid this_cpu_add()'s irq-disable overhead. 298 */ 299 raw_cpu_inc(s->cpu_slab->stat[si]); 300 #endif 301 } 302 303 /* 304 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 305 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 306 * differ during memory hotplug/hotremove operations. 307 * Protected by slab_mutex. 308 */ 309 static nodemask_t slab_nodes; 310 311 /******************************************************************** 312 * Core slab cache functions 313 *******************************************************************/ 314 315 /* 316 * Returns freelist pointer (ptr). With hardening, this is obfuscated 317 * with an XOR of the address where the pointer is held and a per-cache 318 * random number. 319 */ 320 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 321 unsigned long ptr_addr) 322 { 323 #ifdef CONFIG_SLAB_FREELIST_HARDENED 324 /* 325 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. 326 * Normally, this doesn't cause any issues, as both set_freepointer() 327 * and get_freepointer() are called with a pointer with the same tag. 328 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 329 * example, when __free_slub() iterates over objects in a cache, it 330 * passes untagged pointers to check_object(). check_object() in turns 331 * calls get_freepointer() with an untagged pointer, which causes the 332 * freepointer to be restored incorrectly. 333 */ 334 return (void *)((unsigned long)ptr ^ s->random ^ 335 swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); 336 #else 337 return ptr; 338 #endif 339 } 340 341 /* Returns the freelist pointer recorded at location ptr_addr. */ 342 static inline void *freelist_dereference(const struct kmem_cache *s, 343 void *ptr_addr) 344 { 345 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 346 (unsigned long)ptr_addr); 347 } 348 349 static inline void *get_freepointer(struct kmem_cache *s, void *object) 350 { 351 object = kasan_reset_tag(object); 352 return freelist_dereference(s, object + s->offset); 353 } 354 355 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 356 { 357 prefetchw(object + s->offset); 358 } 359 360 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 361 { 362 unsigned long freepointer_addr; 363 void *p; 364 365 if (!debug_pagealloc_enabled_static()) 366 return get_freepointer(s, object); 367 368 object = kasan_reset_tag(object); 369 freepointer_addr = (unsigned long)object + s->offset; 370 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); 371 return freelist_ptr(s, p, freepointer_addr); 372 } 373 374 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 375 { 376 unsigned long freeptr_addr = (unsigned long)object + s->offset; 377 378 #ifdef CONFIG_SLAB_FREELIST_HARDENED 379 BUG_ON(object == fp); /* naive detection of double free or corruption */ 380 #endif 381 382 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 383 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 384 } 385 386 /* Loop over all objects in a slab */ 387 #define for_each_object(__p, __s, __addr, __objects) \ 388 for (__p = fixup_red_left(__s, __addr); \ 389 __p < (__addr) + (__objects) * (__s)->size; \ 390 __p += (__s)->size) 391 392 static inline unsigned int order_objects(unsigned int order, unsigned int size) 393 { 394 return ((unsigned int)PAGE_SIZE << order) / size; 395 } 396 397 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 398 unsigned int size) 399 { 400 struct kmem_cache_order_objects x = { 401 (order << OO_SHIFT) + order_objects(order, size) 402 }; 403 404 return x; 405 } 406 407 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 408 { 409 return x.x >> OO_SHIFT; 410 } 411 412 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 413 { 414 return x.x & OO_MASK; 415 } 416 417 #ifdef CONFIG_SLUB_CPU_PARTIAL 418 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 419 { 420 unsigned int nr_slabs; 421 422 s->cpu_partial = nr_objects; 423 424 /* 425 * We take the number of objects but actually limit the number of 426 * slabs on the per cpu partial list, in order to limit excessive 427 * growth of the list. For simplicity we assume that the slabs will 428 * be half-full. 429 */ 430 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 431 s->cpu_partial_slabs = nr_slabs; 432 } 433 #else 434 static inline void 435 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 436 { 437 } 438 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 439 440 /* 441 * Per slab locking using the pagelock 442 */ 443 static __always_inline void __slab_lock(struct slab *slab) 444 { 445 struct page *page = slab_page(slab); 446 447 VM_BUG_ON_PAGE(PageTail(page), page); 448 bit_spin_lock(PG_locked, &page->flags); 449 } 450 451 static __always_inline void __slab_unlock(struct slab *slab) 452 { 453 struct page *page = slab_page(slab); 454 455 VM_BUG_ON_PAGE(PageTail(page), page); 456 __bit_spin_unlock(PG_locked, &page->flags); 457 } 458 459 static __always_inline void slab_lock(struct slab *slab, unsigned long *flags) 460 { 461 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 462 local_irq_save(*flags); 463 __slab_lock(slab); 464 } 465 466 static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags) 467 { 468 __slab_unlock(slab); 469 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 470 local_irq_restore(*flags); 471 } 472 473 /* 474 * Interrupts must be disabled (for the fallback code to work right), typically 475 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different 476 * so we disable interrupts as part of slab_[un]lock(). 477 */ 478 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, 479 void *freelist_old, unsigned long counters_old, 480 void *freelist_new, unsigned long counters_new, 481 const char *n) 482 { 483 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 484 lockdep_assert_irqs_disabled(); 485 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 486 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 487 if (s->flags & __CMPXCHG_DOUBLE) { 488 if (cmpxchg_double(&slab->freelist, &slab->counters, 489 freelist_old, counters_old, 490 freelist_new, counters_new)) 491 return true; 492 } else 493 #endif 494 { 495 /* init to 0 to prevent spurious warnings */ 496 unsigned long flags = 0; 497 498 slab_lock(slab, &flags); 499 if (slab->freelist == freelist_old && 500 slab->counters == counters_old) { 501 slab->freelist = freelist_new; 502 slab->counters = counters_new; 503 slab_unlock(slab, &flags); 504 return true; 505 } 506 slab_unlock(slab, &flags); 507 } 508 509 cpu_relax(); 510 stat(s, CMPXCHG_DOUBLE_FAIL); 511 512 #ifdef SLUB_DEBUG_CMPXCHG 513 pr_info("%s %s: cmpxchg double redo ", n, s->name); 514 #endif 515 516 return false; 517 } 518 519 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, 520 void *freelist_old, unsigned long counters_old, 521 void *freelist_new, unsigned long counters_new, 522 const char *n) 523 { 524 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 525 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 526 if (s->flags & __CMPXCHG_DOUBLE) { 527 if (cmpxchg_double(&slab->freelist, &slab->counters, 528 freelist_old, counters_old, 529 freelist_new, counters_new)) 530 return true; 531 } else 532 #endif 533 { 534 unsigned long flags; 535 536 local_irq_save(flags); 537 __slab_lock(slab); 538 if (slab->freelist == freelist_old && 539 slab->counters == counters_old) { 540 slab->freelist = freelist_new; 541 slab->counters = counters_new; 542 __slab_unlock(slab); 543 local_irq_restore(flags); 544 return true; 545 } 546 __slab_unlock(slab); 547 local_irq_restore(flags); 548 } 549 550 cpu_relax(); 551 stat(s, CMPXCHG_DOUBLE_FAIL); 552 553 #ifdef SLUB_DEBUG_CMPXCHG 554 pr_info("%s %s: cmpxchg double redo ", n, s->name); 555 #endif 556 557 return false; 558 } 559 560 #ifdef CONFIG_SLUB_DEBUG 561 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 562 static DEFINE_RAW_SPINLOCK(object_map_lock); 563 564 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 565 struct slab *slab) 566 { 567 void *addr = slab_address(slab); 568 void *p; 569 570 bitmap_zero(obj_map, slab->objects); 571 572 for (p = slab->freelist; p; p = get_freepointer(s, p)) 573 set_bit(__obj_to_index(s, addr, p), obj_map); 574 } 575 576 #if IS_ENABLED(CONFIG_KUNIT) 577 static bool slab_add_kunit_errors(void) 578 { 579 struct kunit_resource *resource; 580 581 if (likely(!current->kunit_test)) 582 return false; 583 584 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 585 if (!resource) 586 return false; 587 588 (*(int *)resource->data)++; 589 kunit_put_resource(resource); 590 return true; 591 } 592 #else 593 static inline bool slab_add_kunit_errors(void) { return false; } 594 #endif 595 596 /* 597 * Determine a map of objects in use in a slab. 598 * 599 * Node listlock must be held to guarantee that the slab does 600 * not vanish from under us. 601 */ 602 static unsigned long *get_map(struct kmem_cache *s, struct slab *slab) 603 __acquires(&object_map_lock) 604 { 605 VM_BUG_ON(!irqs_disabled()); 606 607 raw_spin_lock(&object_map_lock); 608 609 __fill_map(object_map, s, slab); 610 611 return object_map; 612 } 613 614 static void put_map(unsigned long *map) __releases(&object_map_lock) 615 { 616 VM_BUG_ON(map != object_map); 617 raw_spin_unlock(&object_map_lock); 618 } 619 620 static inline unsigned int size_from_object(struct kmem_cache *s) 621 { 622 if (s->flags & SLAB_RED_ZONE) 623 return s->size - s->red_left_pad; 624 625 return s->size; 626 } 627 628 static inline void *restore_red_left(struct kmem_cache *s, void *p) 629 { 630 if (s->flags & SLAB_RED_ZONE) 631 p -= s->red_left_pad; 632 633 return p; 634 } 635 636 /* 637 * Debug settings: 638 */ 639 #if defined(CONFIG_SLUB_DEBUG_ON) 640 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 641 #else 642 static slab_flags_t slub_debug; 643 #endif 644 645 static char *slub_debug_string; 646 static int disable_higher_order_debug; 647 648 /* 649 * slub is about to manipulate internal object metadata. This memory lies 650 * outside the range of the allocated object, so accessing it would normally 651 * be reported by kasan as a bounds error. metadata_access_enable() is used 652 * to tell kasan that these accesses are OK. 653 */ 654 static inline void metadata_access_enable(void) 655 { 656 kasan_disable_current(); 657 } 658 659 static inline void metadata_access_disable(void) 660 { 661 kasan_enable_current(); 662 } 663 664 /* 665 * Object debugging 666 */ 667 668 /* Verify that a pointer has an address that is valid within a slab page */ 669 static inline int check_valid_pointer(struct kmem_cache *s, 670 struct slab *slab, void *object) 671 { 672 void *base; 673 674 if (!object) 675 return 1; 676 677 base = slab_address(slab); 678 object = kasan_reset_tag(object); 679 object = restore_red_left(s, object); 680 if (object < base || object >= base + slab->objects * s->size || 681 (object - base) % s->size) { 682 return 0; 683 } 684 685 return 1; 686 } 687 688 static void print_section(char *level, char *text, u8 *addr, 689 unsigned int length) 690 { 691 metadata_access_enable(); 692 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 693 16, 1, kasan_reset_tag((void *)addr), length, 1); 694 metadata_access_disable(); 695 } 696 697 /* 698 * See comment in calculate_sizes(). 699 */ 700 static inline bool freeptr_outside_object(struct kmem_cache *s) 701 { 702 return s->offset >= s->inuse; 703 } 704 705 /* 706 * Return offset of the end of info block which is inuse + free pointer if 707 * not overlapping with object. 708 */ 709 static inline unsigned int get_info_end(struct kmem_cache *s) 710 { 711 if (freeptr_outside_object(s)) 712 return s->inuse + sizeof(void *); 713 else 714 return s->inuse; 715 } 716 717 static struct track *get_track(struct kmem_cache *s, void *object, 718 enum track_item alloc) 719 { 720 struct track *p; 721 722 p = object + get_info_end(s); 723 724 return kasan_reset_tag(p + alloc); 725 } 726 727 static void set_track(struct kmem_cache *s, void *object, 728 enum track_item alloc, unsigned long addr) 729 { 730 struct track *p = get_track(s, object, alloc); 731 732 if (addr) { 733 #ifdef CONFIG_STACKTRACE 734 unsigned int nr_entries; 735 736 metadata_access_enable(); 737 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs), 738 TRACK_ADDRS_COUNT, 3); 739 metadata_access_disable(); 740 741 if (nr_entries < TRACK_ADDRS_COUNT) 742 p->addrs[nr_entries] = 0; 743 #endif 744 p->addr = addr; 745 p->cpu = smp_processor_id(); 746 p->pid = current->pid; 747 p->when = jiffies; 748 } else { 749 memset(p, 0, sizeof(struct track)); 750 } 751 } 752 753 static void init_tracking(struct kmem_cache *s, void *object) 754 { 755 if (!(s->flags & SLAB_STORE_USER)) 756 return; 757 758 set_track(s, object, TRACK_FREE, 0UL); 759 set_track(s, object, TRACK_ALLOC, 0UL); 760 } 761 762 static void print_track(const char *s, struct track *t, unsigned long pr_time) 763 { 764 if (!t->addr) 765 return; 766 767 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 768 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 769 #ifdef CONFIG_STACKTRACE 770 { 771 int i; 772 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 773 if (t->addrs[i]) 774 pr_err("\t%pS\n", (void *)t->addrs[i]); 775 else 776 break; 777 } 778 #endif 779 } 780 781 void print_tracking(struct kmem_cache *s, void *object) 782 { 783 unsigned long pr_time = jiffies; 784 if (!(s->flags & SLAB_STORE_USER)) 785 return; 786 787 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 788 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 789 } 790 791 static void print_slab_info(const struct slab *slab) 792 { 793 struct folio *folio = (struct folio *)slab_folio(slab); 794 795 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 796 slab, slab->objects, slab->inuse, slab->freelist, 797 folio_flags(folio, 0)); 798 } 799 800 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 801 { 802 struct va_format vaf; 803 va_list args; 804 805 va_start(args, fmt); 806 vaf.fmt = fmt; 807 vaf.va = &args; 808 pr_err("=============================================================================\n"); 809 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 810 pr_err("-----------------------------------------------------------------------------\n\n"); 811 va_end(args); 812 } 813 814 __printf(2, 3) 815 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 816 { 817 struct va_format vaf; 818 va_list args; 819 820 if (slab_add_kunit_errors()) 821 return; 822 823 va_start(args, fmt); 824 vaf.fmt = fmt; 825 vaf.va = &args; 826 pr_err("FIX %s: %pV\n", s->name, &vaf); 827 va_end(args); 828 } 829 830 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 831 { 832 unsigned int off; /* Offset of last byte */ 833 u8 *addr = slab_address(slab); 834 835 print_tracking(s, p); 836 837 print_slab_info(slab); 838 839 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 840 p, p - addr, get_freepointer(s, p)); 841 842 if (s->flags & SLAB_RED_ZONE) 843 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 844 s->red_left_pad); 845 else if (p > addr + 16) 846 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 847 848 print_section(KERN_ERR, "Object ", p, 849 min_t(unsigned int, s->object_size, PAGE_SIZE)); 850 if (s->flags & SLAB_RED_ZONE) 851 print_section(KERN_ERR, "Redzone ", p + s->object_size, 852 s->inuse - s->object_size); 853 854 off = get_info_end(s); 855 856 if (s->flags & SLAB_STORE_USER) 857 off += 2 * sizeof(struct track); 858 859 off += kasan_metadata_size(s); 860 861 if (off != size_from_object(s)) 862 /* Beginning of the filler is the free pointer */ 863 print_section(KERN_ERR, "Padding ", p + off, 864 size_from_object(s) - off); 865 866 dump_stack(); 867 } 868 869 static void object_err(struct kmem_cache *s, struct slab *slab, 870 u8 *object, char *reason) 871 { 872 if (slab_add_kunit_errors()) 873 return; 874 875 slab_bug(s, "%s", reason); 876 print_trailer(s, slab, object); 877 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 878 } 879 880 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 881 void **freelist, void *nextfree) 882 { 883 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 884 !check_valid_pointer(s, slab, nextfree) && freelist) { 885 object_err(s, slab, *freelist, "Freechain corrupt"); 886 *freelist = NULL; 887 slab_fix(s, "Isolate corrupted freechain"); 888 return true; 889 } 890 891 return false; 892 } 893 894 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 895 const char *fmt, ...) 896 { 897 va_list args; 898 char buf[100]; 899 900 if (slab_add_kunit_errors()) 901 return; 902 903 va_start(args, fmt); 904 vsnprintf(buf, sizeof(buf), fmt, args); 905 va_end(args); 906 slab_bug(s, "%s", buf); 907 print_slab_info(slab); 908 dump_stack(); 909 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 910 } 911 912 static void init_object(struct kmem_cache *s, void *object, u8 val) 913 { 914 u8 *p = kasan_reset_tag(object); 915 916 if (s->flags & SLAB_RED_ZONE) 917 memset(p - s->red_left_pad, val, s->red_left_pad); 918 919 if (s->flags & __OBJECT_POISON) { 920 memset(p, POISON_FREE, s->object_size - 1); 921 p[s->object_size - 1] = POISON_END; 922 } 923 924 if (s->flags & SLAB_RED_ZONE) 925 memset(p + s->object_size, val, s->inuse - s->object_size); 926 } 927 928 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 929 void *from, void *to) 930 { 931 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 932 memset(from, data, to - from); 933 } 934 935 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 936 u8 *object, char *what, 937 u8 *start, unsigned int value, unsigned int bytes) 938 { 939 u8 *fault; 940 u8 *end; 941 u8 *addr = slab_address(slab); 942 943 metadata_access_enable(); 944 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 945 metadata_access_disable(); 946 if (!fault) 947 return 1; 948 949 end = start + bytes; 950 while (end > fault && end[-1] == value) 951 end--; 952 953 if (slab_add_kunit_errors()) 954 goto skip_bug_print; 955 956 slab_bug(s, "%s overwritten", what); 957 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 958 fault, end - 1, fault - addr, 959 fault[0], value); 960 print_trailer(s, slab, object); 961 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 962 963 skip_bug_print: 964 restore_bytes(s, what, value, fault, end); 965 return 0; 966 } 967 968 /* 969 * Object layout: 970 * 971 * object address 972 * Bytes of the object to be managed. 973 * If the freepointer may overlay the object then the free 974 * pointer is at the middle of the object. 975 * 976 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 977 * 0xa5 (POISON_END) 978 * 979 * object + s->object_size 980 * Padding to reach word boundary. This is also used for Redzoning. 981 * Padding is extended by another word if Redzoning is enabled and 982 * object_size == inuse. 983 * 984 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 985 * 0xcc (RED_ACTIVE) for objects in use. 986 * 987 * object + s->inuse 988 * Meta data starts here. 989 * 990 * A. Free pointer (if we cannot overwrite object on free) 991 * B. Tracking data for SLAB_STORE_USER 992 * C. Padding to reach required alignment boundary or at minimum 993 * one word if debugging is on to be able to detect writes 994 * before the word boundary. 995 * 996 * Padding is done using 0x5a (POISON_INUSE) 997 * 998 * object + s->size 999 * Nothing is used beyond s->size. 1000 * 1001 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1002 * ignored. And therefore no slab options that rely on these boundaries 1003 * may be used with merged slabcaches. 1004 */ 1005 1006 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1007 { 1008 unsigned long off = get_info_end(s); /* The end of info */ 1009 1010 if (s->flags & SLAB_STORE_USER) 1011 /* We also have user information there */ 1012 off += 2 * sizeof(struct track); 1013 1014 off += kasan_metadata_size(s); 1015 1016 if (size_from_object(s) == off) 1017 return 1; 1018 1019 return check_bytes_and_report(s, slab, p, "Object padding", 1020 p + off, POISON_INUSE, size_from_object(s) - off); 1021 } 1022 1023 /* Check the pad bytes at the end of a slab page */ 1024 static int slab_pad_check(struct kmem_cache *s, struct slab *slab) 1025 { 1026 u8 *start; 1027 u8 *fault; 1028 u8 *end; 1029 u8 *pad; 1030 int length; 1031 int remainder; 1032 1033 if (!(s->flags & SLAB_POISON)) 1034 return 1; 1035 1036 start = slab_address(slab); 1037 length = slab_size(slab); 1038 end = start + length; 1039 remainder = length % s->size; 1040 if (!remainder) 1041 return 1; 1042 1043 pad = end - remainder; 1044 metadata_access_enable(); 1045 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1046 metadata_access_disable(); 1047 if (!fault) 1048 return 1; 1049 while (end > fault && end[-1] == POISON_INUSE) 1050 end--; 1051 1052 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1053 fault, end - 1, fault - start); 1054 print_section(KERN_ERR, "Padding ", pad, remainder); 1055 1056 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1057 return 0; 1058 } 1059 1060 static int check_object(struct kmem_cache *s, struct slab *slab, 1061 void *object, u8 val) 1062 { 1063 u8 *p = object; 1064 u8 *endobject = object + s->object_size; 1065 1066 if (s->flags & SLAB_RED_ZONE) { 1067 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1068 object - s->red_left_pad, val, s->red_left_pad)) 1069 return 0; 1070 1071 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1072 endobject, val, s->inuse - s->object_size)) 1073 return 0; 1074 } else { 1075 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1076 check_bytes_and_report(s, slab, p, "Alignment padding", 1077 endobject, POISON_INUSE, 1078 s->inuse - s->object_size); 1079 } 1080 } 1081 1082 if (s->flags & SLAB_POISON) { 1083 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 1084 (!check_bytes_and_report(s, slab, p, "Poison", p, 1085 POISON_FREE, s->object_size - 1) || 1086 !check_bytes_and_report(s, slab, p, "End Poison", 1087 p + s->object_size - 1, POISON_END, 1))) 1088 return 0; 1089 /* 1090 * check_pad_bytes cleans up on its own. 1091 */ 1092 check_pad_bytes(s, slab, p); 1093 } 1094 1095 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 1096 /* 1097 * Object and freepointer overlap. Cannot check 1098 * freepointer while object is allocated. 1099 */ 1100 return 1; 1101 1102 /* Check free pointer validity */ 1103 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { 1104 object_err(s, slab, p, "Freepointer corrupt"); 1105 /* 1106 * No choice but to zap it and thus lose the remainder 1107 * of the free objects in this slab. May cause 1108 * another error because the object count is now wrong. 1109 */ 1110 set_freepointer(s, p, NULL); 1111 return 0; 1112 } 1113 return 1; 1114 } 1115 1116 static int check_slab(struct kmem_cache *s, struct slab *slab) 1117 { 1118 int maxobj; 1119 1120 if (!folio_test_slab(slab_folio(slab))) { 1121 slab_err(s, slab, "Not a valid slab page"); 1122 return 0; 1123 } 1124 1125 maxobj = order_objects(slab_order(slab), s->size); 1126 if (slab->objects > maxobj) { 1127 slab_err(s, slab, "objects %u > max %u", 1128 slab->objects, maxobj); 1129 return 0; 1130 } 1131 if (slab->inuse > slab->objects) { 1132 slab_err(s, slab, "inuse %u > max %u", 1133 slab->inuse, slab->objects); 1134 return 0; 1135 } 1136 /* Slab_pad_check fixes things up after itself */ 1137 slab_pad_check(s, slab); 1138 return 1; 1139 } 1140 1141 /* 1142 * Determine if a certain object in a slab is on the freelist. Must hold the 1143 * slab lock to guarantee that the chains are in a consistent state. 1144 */ 1145 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1146 { 1147 int nr = 0; 1148 void *fp; 1149 void *object = NULL; 1150 int max_objects; 1151 1152 fp = slab->freelist; 1153 while (fp && nr <= slab->objects) { 1154 if (fp == search) 1155 return 1; 1156 if (!check_valid_pointer(s, slab, fp)) { 1157 if (object) { 1158 object_err(s, slab, object, 1159 "Freechain corrupt"); 1160 set_freepointer(s, object, NULL); 1161 } else { 1162 slab_err(s, slab, "Freepointer corrupt"); 1163 slab->freelist = NULL; 1164 slab->inuse = slab->objects; 1165 slab_fix(s, "Freelist cleared"); 1166 return 0; 1167 } 1168 break; 1169 } 1170 object = fp; 1171 fp = get_freepointer(s, object); 1172 nr++; 1173 } 1174 1175 max_objects = order_objects(slab_order(slab), s->size); 1176 if (max_objects > MAX_OBJS_PER_PAGE) 1177 max_objects = MAX_OBJS_PER_PAGE; 1178 1179 if (slab->objects != max_objects) { 1180 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1181 slab->objects, max_objects); 1182 slab->objects = max_objects; 1183 slab_fix(s, "Number of objects adjusted"); 1184 } 1185 if (slab->inuse != slab->objects - nr) { 1186 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1187 slab->inuse, slab->objects - nr); 1188 slab->inuse = slab->objects - nr; 1189 slab_fix(s, "Object count adjusted"); 1190 } 1191 return search == NULL; 1192 } 1193 1194 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1195 int alloc) 1196 { 1197 if (s->flags & SLAB_TRACE) { 1198 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1199 s->name, 1200 alloc ? "alloc" : "free", 1201 object, slab->inuse, 1202 slab->freelist); 1203 1204 if (!alloc) 1205 print_section(KERN_INFO, "Object ", (void *)object, 1206 s->object_size); 1207 1208 dump_stack(); 1209 } 1210 } 1211 1212 /* 1213 * Tracking of fully allocated slabs for debugging purposes. 1214 */ 1215 static void add_full(struct kmem_cache *s, 1216 struct kmem_cache_node *n, struct slab *slab) 1217 { 1218 if (!(s->flags & SLAB_STORE_USER)) 1219 return; 1220 1221 lockdep_assert_held(&n->list_lock); 1222 list_add(&slab->slab_list, &n->full); 1223 } 1224 1225 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1226 { 1227 if (!(s->flags & SLAB_STORE_USER)) 1228 return; 1229 1230 lockdep_assert_held(&n->list_lock); 1231 list_del(&slab->slab_list); 1232 } 1233 1234 /* Tracking of the number of slabs for debugging purposes */ 1235 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1236 { 1237 struct kmem_cache_node *n = get_node(s, node); 1238 1239 return atomic_long_read(&n->nr_slabs); 1240 } 1241 1242 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1243 { 1244 return atomic_long_read(&n->nr_slabs); 1245 } 1246 1247 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1248 { 1249 struct kmem_cache_node *n = get_node(s, node); 1250 1251 /* 1252 * May be called early in order to allocate a slab for the 1253 * kmem_cache_node structure. Solve the chicken-egg 1254 * dilemma by deferring the increment of the count during 1255 * bootstrap (see early_kmem_cache_node_alloc). 1256 */ 1257 if (likely(n)) { 1258 atomic_long_inc(&n->nr_slabs); 1259 atomic_long_add(objects, &n->total_objects); 1260 } 1261 } 1262 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1263 { 1264 struct kmem_cache_node *n = get_node(s, node); 1265 1266 atomic_long_dec(&n->nr_slabs); 1267 atomic_long_sub(objects, &n->total_objects); 1268 } 1269 1270 /* Object debug checks for alloc/free paths */ 1271 static void setup_object_debug(struct kmem_cache *s, struct slab *slab, 1272 void *object) 1273 { 1274 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1275 return; 1276 1277 init_object(s, object, SLUB_RED_INACTIVE); 1278 init_tracking(s, object); 1279 } 1280 1281 static 1282 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1283 { 1284 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1285 return; 1286 1287 metadata_access_enable(); 1288 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1289 metadata_access_disable(); 1290 } 1291 1292 static inline int alloc_consistency_checks(struct kmem_cache *s, 1293 struct slab *slab, void *object) 1294 { 1295 if (!check_slab(s, slab)) 1296 return 0; 1297 1298 if (!check_valid_pointer(s, slab, object)) { 1299 object_err(s, slab, object, "Freelist Pointer check fails"); 1300 return 0; 1301 } 1302 1303 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1304 return 0; 1305 1306 return 1; 1307 } 1308 1309 static noinline int alloc_debug_processing(struct kmem_cache *s, 1310 struct slab *slab, 1311 void *object, unsigned long addr) 1312 { 1313 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1314 if (!alloc_consistency_checks(s, slab, object)) 1315 goto bad; 1316 } 1317 1318 /* Success perform special debug activities for allocs */ 1319 if (s->flags & SLAB_STORE_USER) 1320 set_track(s, object, TRACK_ALLOC, addr); 1321 trace(s, slab, object, 1); 1322 init_object(s, object, SLUB_RED_ACTIVE); 1323 return 1; 1324 1325 bad: 1326 if (folio_test_slab(slab_folio(slab))) { 1327 /* 1328 * If this is a slab page then lets do the best we can 1329 * to avoid issues in the future. Marking all objects 1330 * as used avoids touching the remaining objects. 1331 */ 1332 slab_fix(s, "Marking all objects used"); 1333 slab->inuse = slab->objects; 1334 slab->freelist = NULL; 1335 } 1336 return 0; 1337 } 1338 1339 static inline int free_consistency_checks(struct kmem_cache *s, 1340 struct slab *slab, void *object, unsigned long addr) 1341 { 1342 if (!check_valid_pointer(s, slab, object)) { 1343 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1344 return 0; 1345 } 1346 1347 if (on_freelist(s, slab, object)) { 1348 object_err(s, slab, object, "Object already free"); 1349 return 0; 1350 } 1351 1352 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1353 return 0; 1354 1355 if (unlikely(s != slab->slab_cache)) { 1356 if (!folio_test_slab(slab_folio(slab))) { 1357 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1358 object); 1359 } else if (!slab->slab_cache) { 1360 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1361 object); 1362 dump_stack(); 1363 } else 1364 object_err(s, slab, object, 1365 "page slab pointer corrupt."); 1366 return 0; 1367 } 1368 return 1; 1369 } 1370 1371 /* Supports checking bulk free of a constructed freelist */ 1372 static noinline int free_debug_processing( 1373 struct kmem_cache *s, struct slab *slab, 1374 void *head, void *tail, int bulk_cnt, 1375 unsigned long addr) 1376 { 1377 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 1378 void *object = head; 1379 int cnt = 0; 1380 unsigned long flags, flags2; 1381 int ret = 0; 1382 1383 spin_lock_irqsave(&n->list_lock, flags); 1384 slab_lock(slab, &flags2); 1385 1386 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1387 if (!check_slab(s, slab)) 1388 goto out; 1389 } 1390 1391 next_object: 1392 cnt++; 1393 1394 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1395 if (!free_consistency_checks(s, slab, object, addr)) 1396 goto out; 1397 } 1398 1399 if (s->flags & SLAB_STORE_USER) 1400 set_track(s, object, TRACK_FREE, addr); 1401 trace(s, slab, object, 0); 1402 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1403 init_object(s, object, SLUB_RED_INACTIVE); 1404 1405 /* Reached end of constructed freelist yet? */ 1406 if (object != tail) { 1407 object = get_freepointer(s, object); 1408 goto next_object; 1409 } 1410 ret = 1; 1411 1412 out: 1413 if (cnt != bulk_cnt) 1414 slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n", 1415 bulk_cnt, cnt); 1416 1417 slab_unlock(slab, &flags2); 1418 spin_unlock_irqrestore(&n->list_lock, flags); 1419 if (!ret) 1420 slab_fix(s, "Object at 0x%p not freed", object); 1421 return ret; 1422 } 1423 1424 /* 1425 * Parse a block of slub_debug options. Blocks are delimited by ';' 1426 * 1427 * @str: start of block 1428 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1429 * @slabs: return start of list of slabs, or NULL when there's no list 1430 * @init: assume this is initial parsing and not per-kmem-create parsing 1431 * 1432 * returns the start of next block if there's any, or NULL 1433 */ 1434 static char * 1435 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1436 { 1437 bool higher_order_disable = false; 1438 1439 /* Skip any completely empty blocks */ 1440 while (*str && *str == ';') 1441 str++; 1442 1443 if (*str == ',') { 1444 /* 1445 * No options but restriction on slabs. This means full 1446 * debugging for slabs matching a pattern. 1447 */ 1448 *flags = DEBUG_DEFAULT_FLAGS; 1449 goto check_slabs; 1450 } 1451 *flags = 0; 1452 1453 /* Determine which debug features should be switched on */ 1454 for (; *str && *str != ',' && *str != ';'; str++) { 1455 switch (tolower(*str)) { 1456 case '-': 1457 *flags = 0; 1458 break; 1459 case 'f': 1460 *flags |= SLAB_CONSISTENCY_CHECKS; 1461 break; 1462 case 'z': 1463 *flags |= SLAB_RED_ZONE; 1464 break; 1465 case 'p': 1466 *flags |= SLAB_POISON; 1467 break; 1468 case 'u': 1469 *flags |= SLAB_STORE_USER; 1470 break; 1471 case 't': 1472 *flags |= SLAB_TRACE; 1473 break; 1474 case 'a': 1475 *flags |= SLAB_FAILSLAB; 1476 break; 1477 case 'o': 1478 /* 1479 * Avoid enabling debugging on caches if its minimum 1480 * order would increase as a result. 1481 */ 1482 higher_order_disable = true; 1483 break; 1484 default: 1485 if (init) 1486 pr_err("slub_debug option '%c' unknown. skipped\n", *str); 1487 } 1488 } 1489 check_slabs: 1490 if (*str == ',') 1491 *slabs = ++str; 1492 else 1493 *slabs = NULL; 1494 1495 /* Skip over the slab list */ 1496 while (*str && *str != ';') 1497 str++; 1498 1499 /* Skip any completely empty blocks */ 1500 while (*str && *str == ';') 1501 str++; 1502 1503 if (init && higher_order_disable) 1504 disable_higher_order_debug = 1; 1505 1506 if (*str) 1507 return str; 1508 else 1509 return NULL; 1510 } 1511 1512 static int __init setup_slub_debug(char *str) 1513 { 1514 slab_flags_t flags; 1515 slab_flags_t global_flags; 1516 char *saved_str; 1517 char *slab_list; 1518 bool global_slub_debug_changed = false; 1519 bool slab_list_specified = false; 1520 1521 global_flags = DEBUG_DEFAULT_FLAGS; 1522 if (*str++ != '=' || !*str) 1523 /* 1524 * No options specified. Switch on full debugging. 1525 */ 1526 goto out; 1527 1528 saved_str = str; 1529 while (str) { 1530 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1531 1532 if (!slab_list) { 1533 global_flags = flags; 1534 global_slub_debug_changed = true; 1535 } else { 1536 slab_list_specified = true; 1537 } 1538 } 1539 1540 /* 1541 * For backwards compatibility, a single list of flags with list of 1542 * slabs means debugging is only changed for those slabs, so the global 1543 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1544 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1545 * long as there is no option specifying flags without a slab list. 1546 */ 1547 if (slab_list_specified) { 1548 if (!global_slub_debug_changed) 1549 global_flags = slub_debug; 1550 slub_debug_string = saved_str; 1551 } 1552 out: 1553 slub_debug = global_flags; 1554 if (slub_debug != 0 || slub_debug_string) 1555 static_branch_enable(&slub_debug_enabled); 1556 else 1557 static_branch_disable(&slub_debug_enabled); 1558 if ((static_branch_unlikely(&init_on_alloc) || 1559 static_branch_unlikely(&init_on_free)) && 1560 (slub_debug & SLAB_POISON)) 1561 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1562 return 1; 1563 } 1564 1565 __setup("slub_debug", setup_slub_debug); 1566 1567 /* 1568 * kmem_cache_flags - apply debugging options to the cache 1569 * @object_size: the size of an object without meta data 1570 * @flags: flags to set 1571 * @name: name of the cache 1572 * 1573 * Debug option(s) are applied to @flags. In addition to the debug 1574 * option(s), if a slab name (or multiple) is specified i.e. 1575 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1576 * then only the select slabs will receive the debug option(s). 1577 */ 1578 slab_flags_t kmem_cache_flags(unsigned int object_size, 1579 slab_flags_t flags, const char *name) 1580 { 1581 char *iter; 1582 size_t len; 1583 char *next_block; 1584 slab_flags_t block_flags; 1585 slab_flags_t slub_debug_local = slub_debug; 1586 1587 /* 1588 * If the slab cache is for debugging (e.g. kmemleak) then 1589 * don't store user (stack trace) information by default, 1590 * but let the user enable it via the command line below. 1591 */ 1592 if (flags & SLAB_NOLEAKTRACE) 1593 slub_debug_local &= ~SLAB_STORE_USER; 1594 1595 len = strlen(name); 1596 next_block = slub_debug_string; 1597 /* Go through all blocks of debug options, see if any matches our slab's name */ 1598 while (next_block) { 1599 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1600 if (!iter) 1601 continue; 1602 /* Found a block that has a slab list, search it */ 1603 while (*iter) { 1604 char *end, *glob; 1605 size_t cmplen; 1606 1607 end = strchrnul(iter, ','); 1608 if (next_block && next_block < end) 1609 end = next_block - 1; 1610 1611 glob = strnchr(iter, end - iter, '*'); 1612 if (glob) 1613 cmplen = glob - iter; 1614 else 1615 cmplen = max_t(size_t, len, (end - iter)); 1616 1617 if (!strncmp(name, iter, cmplen)) { 1618 flags |= block_flags; 1619 return flags; 1620 } 1621 1622 if (!*end || *end == ';') 1623 break; 1624 iter = end + 1; 1625 } 1626 } 1627 1628 return flags | slub_debug_local; 1629 } 1630 #else /* !CONFIG_SLUB_DEBUG */ 1631 static inline void setup_object_debug(struct kmem_cache *s, 1632 struct slab *slab, void *object) {} 1633 static inline 1634 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1635 1636 static inline int alloc_debug_processing(struct kmem_cache *s, 1637 struct slab *slab, void *object, unsigned long addr) { return 0; } 1638 1639 static inline int free_debug_processing( 1640 struct kmem_cache *s, struct slab *slab, 1641 void *head, void *tail, int bulk_cnt, 1642 unsigned long addr) { return 0; } 1643 1644 static inline int slab_pad_check(struct kmem_cache *s, struct slab *slab) 1645 { return 1; } 1646 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1647 void *object, u8 val) { return 1; } 1648 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1649 struct slab *slab) {} 1650 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1651 struct slab *slab) {} 1652 slab_flags_t kmem_cache_flags(unsigned int object_size, 1653 slab_flags_t flags, const char *name) 1654 { 1655 return flags; 1656 } 1657 #define slub_debug 0 1658 1659 #define disable_higher_order_debug 0 1660 1661 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1662 { return 0; } 1663 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1664 { return 0; } 1665 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1666 int objects) {} 1667 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1668 int objects) {} 1669 1670 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1671 void **freelist, void *nextfree) 1672 { 1673 return false; 1674 } 1675 #endif /* CONFIG_SLUB_DEBUG */ 1676 1677 /* 1678 * Hooks for other subsystems that check memory allocations. In a typical 1679 * production configuration these hooks all should produce no code at all. 1680 */ 1681 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1682 { 1683 ptr = kasan_kmalloc_large(ptr, size, flags); 1684 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1685 kmemleak_alloc(ptr, size, 1, flags); 1686 return ptr; 1687 } 1688 1689 static __always_inline void kfree_hook(void *x) 1690 { 1691 kmemleak_free(x); 1692 kasan_kfree_large(x); 1693 } 1694 1695 static __always_inline bool slab_free_hook(struct kmem_cache *s, 1696 void *x, bool init) 1697 { 1698 kmemleak_free_recursive(x, s->flags); 1699 1700 debug_check_no_locks_freed(x, s->object_size); 1701 1702 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1703 debug_check_no_obj_freed(x, s->object_size); 1704 1705 /* Use KCSAN to help debug racy use-after-free. */ 1706 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 1707 __kcsan_check_access(x, s->object_size, 1708 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 1709 1710 /* 1711 * As memory initialization might be integrated into KASAN, 1712 * kasan_slab_free and initialization memset's must be 1713 * kept together to avoid discrepancies in behavior. 1714 * 1715 * The initialization memset's clear the object and the metadata, 1716 * but don't touch the SLAB redzone. 1717 */ 1718 if (init) { 1719 int rsize; 1720 1721 if (!kasan_has_integrated_init()) 1722 memset(kasan_reset_tag(x), 0, s->object_size); 1723 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 1724 memset((char *)kasan_reset_tag(x) + s->inuse, 0, 1725 s->size - s->inuse - rsize); 1726 } 1727 /* KASAN might put x into memory quarantine, delaying its reuse. */ 1728 return kasan_slab_free(s, x, init); 1729 } 1730 1731 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1732 void **head, void **tail, 1733 int *cnt) 1734 { 1735 1736 void *object; 1737 void *next = *head; 1738 void *old_tail = *tail ? *tail : *head; 1739 1740 if (is_kfence_address(next)) { 1741 slab_free_hook(s, next, false); 1742 return true; 1743 } 1744 1745 /* Head and tail of the reconstructed freelist */ 1746 *head = NULL; 1747 *tail = NULL; 1748 1749 do { 1750 object = next; 1751 next = get_freepointer(s, object); 1752 1753 /* If object's reuse doesn't have to be delayed */ 1754 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { 1755 /* Move object to the new freelist */ 1756 set_freepointer(s, object, *head); 1757 *head = object; 1758 if (!*tail) 1759 *tail = object; 1760 } else { 1761 /* 1762 * Adjust the reconstructed freelist depth 1763 * accordingly if object's reuse is delayed. 1764 */ 1765 --(*cnt); 1766 } 1767 } while (object != old_tail); 1768 1769 if (*head == *tail) 1770 *tail = NULL; 1771 1772 return *head != NULL; 1773 } 1774 1775 static void *setup_object(struct kmem_cache *s, struct slab *slab, 1776 void *object) 1777 { 1778 setup_object_debug(s, slab, object); 1779 object = kasan_init_slab_obj(s, object); 1780 if (unlikely(s->ctor)) { 1781 kasan_unpoison_object_data(s, object); 1782 s->ctor(object); 1783 kasan_poison_object_data(s, object); 1784 } 1785 return object; 1786 } 1787 1788 /* 1789 * Slab allocation and freeing 1790 */ 1791 static inline struct slab *alloc_slab_page(struct kmem_cache *s, 1792 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1793 { 1794 struct folio *folio; 1795 struct slab *slab; 1796 unsigned int order = oo_order(oo); 1797 1798 if (node == NUMA_NO_NODE) 1799 folio = (struct folio *)alloc_pages(flags, order); 1800 else 1801 folio = (struct folio *)__alloc_pages_node(node, flags, order); 1802 1803 if (!folio) 1804 return NULL; 1805 1806 slab = folio_slab(folio); 1807 __folio_set_slab(folio); 1808 if (page_is_pfmemalloc(folio_page(folio, 0))) 1809 slab_set_pfmemalloc(slab); 1810 1811 return slab; 1812 } 1813 1814 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1815 /* Pre-initialize the random sequence cache */ 1816 static int init_cache_random_seq(struct kmem_cache *s) 1817 { 1818 unsigned int count = oo_objects(s->oo); 1819 int err; 1820 1821 /* Bailout if already initialised */ 1822 if (s->random_seq) 1823 return 0; 1824 1825 err = cache_random_seq_create(s, count, GFP_KERNEL); 1826 if (err) { 1827 pr_err("SLUB: Unable to initialize free list for %s\n", 1828 s->name); 1829 return err; 1830 } 1831 1832 /* Transform to an offset on the set of pages */ 1833 if (s->random_seq) { 1834 unsigned int i; 1835 1836 for (i = 0; i < count; i++) 1837 s->random_seq[i] *= s->size; 1838 } 1839 return 0; 1840 } 1841 1842 /* Initialize each random sequence freelist per cache */ 1843 static void __init init_freelist_randomization(void) 1844 { 1845 struct kmem_cache *s; 1846 1847 mutex_lock(&slab_mutex); 1848 1849 list_for_each_entry(s, &slab_caches, list) 1850 init_cache_random_seq(s); 1851 1852 mutex_unlock(&slab_mutex); 1853 } 1854 1855 /* Get the next entry on the pre-computed freelist randomized */ 1856 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab, 1857 unsigned long *pos, void *start, 1858 unsigned long page_limit, 1859 unsigned long freelist_count) 1860 { 1861 unsigned int idx; 1862 1863 /* 1864 * If the target page allocation failed, the number of objects on the 1865 * page might be smaller than the usual size defined by the cache. 1866 */ 1867 do { 1868 idx = s->random_seq[*pos]; 1869 *pos += 1; 1870 if (*pos >= freelist_count) 1871 *pos = 0; 1872 } while (unlikely(idx >= page_limit)); 1873 1874 return (char *)start + idx; 1875 } 1876 1877 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1878 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1879 { 1880 void *start; 1881 void *cur; 1882 void *next; 1883 unsigned long idx, pos, page_limit, freelist_count; 1884 1885 if (slab->objects < 2 || !s->random_seq) 1886 return false; 1887 1888 freelist_count = oo_objects(s->oo); 1889 pos = get_random_int() % freelist_count; 1890 1891 page_limit = slab->objects * s->size; 1892 start = fixup_red_left(s, slab_address(slab)); 1893 1894 /* First entry is used as the base of the freelist */ 1895 cur = next_freelist_entry(s, slab, &pos, start, page_limit, 1896 freelist_count); 1897 cur = setup_object(s, slab, cur); 1898 slab->freelist = cur; 1899 1900 for (idx = 1; idx < slab->objects; idx++) { 1901 next = next_freelist_entry(s, slab, &pos, start, page_limit, 1902 freelist_count); 1903 next = setup_object(s, slab, next); 1904 set_freepointer(s, cur, next); 1905 cur = next; 1906 } 1907 set_freepointer(s, cur, NULL); 1908 1909 return true; 1910 } 1911 #else 1912 static inline int init_cache_random_seq(struct kmem_cache *s) 1913 { 1914 return 0; 1915 } 1916 static inline void init_freelist_randomization(void) { } 1917 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1918 { 1919 return false; 1920 } 1921 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1922 1923 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1924 { 1925 struct slab *slab; 1926 struct kmem_cache_order_objects oo = s->oo; 1927 gfp_t alloc_gfp; 1928 void *start, *p, *next; 1929 int idx; 1930 bool shuffle; 1931 1932 flags &= gfp_allowed_mask; 1933 1934 flags |= s->allocflags; 1935 1936 /* 1937 * Let the initial higher-order allocation fail under memory pressure 1938 * so we fall-back to the minimum order allocation. 1939 */ 1940 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1941 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1942 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1943 1944 slab = alloc_slab_page(s, alloc_gfp, node, oo); 1945 if (unlikely(!slab)) { 1946 oo = s->min; 1947 alloc_gfp = flags; 1948 /* 1949 * Allocation may have failed due to fragmentation. 1950 * Try a lower order alloc if possible 1951 */ 1952 slab = alloc_slab_page(s, alloc_gfp, node, oo); 1953 if (unlikely(!slab)) 1954 goto out; 1955 stat(s, ORDER_FALLBACK); 1956 } 1957 1958 slab->objects = oo_objects(oo); 1959 1960 account_slab(slab, oo_order(oo), s, flags); 1961 1962 slab->slab_cache = s; 1963 1964 kasan_poison_slab(slab); 1965 1966 start = slab_address(slab); 1967 1968 setup_slab_debug(s, slab, start); 1969 1970 shuffle = shuffle_freelist(s, slab); 1971 1972 if (!shuffle) { 1973 start = fixup_red_left(s, start); 1974 start = setup_object(s, slab, start); 1975 slab->freelist = start; 1976 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 1977 next = p + s->size; 1978 next = setup_object(s, slab, next); 1979 set_freepointer(s, p, next); 1980 p = next; 1981 } 1982 set_freepointer(s, p, NULL); 1983 } 1984 1985 slab->inuse = slab->objects; 1986 slab->frozen = 1; 1987 1988 out: 1989 if (!slab) 1990 return NULL; 1991 1992 inc_slabs_node(s, slab_nid(slab), slab->objects); 1993 1994 return slab; 1995 } 1996 1997 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1998 { 1999 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2000 flags = kmalloc_fix_flags(flags); 2001 2002 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2003 2004 return allocate_slab(s, 2005 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2006 } 2007 2008 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2009 { 2010 struct folio *folio = slab_folio(slab); 2011 int order = folio_order(folio); 2012 int pages = 1 << order; 2013 2014 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2015 void *p; 2016 2017 slab_pad_check(s, slab); 2018 for_each_object(p, s, slab_address(slab), slab->objects) 2019 check_object(s, slab, p, SLUB_RED_INACTIVE); 2020 } 2021 2022 __slab_clear_pfmemalloc(slab); 2023 __folio_clear_slab(folio); 2024 folio->mapping = NULL; 2025 if (current->reclaim_state) 2026 current->reclaim_state->reclaimed_slab += pages; 2027 unaccount_slab(slab, order, s); 2028 __free_pages(folio_page(folio, 0), order); 2029 } 2030 2031 static void rcu_free_slab(struct rcu_head *h) 2032 { 2033 struct slab *slab = container_of(h, struct slab, rcu_head); 2034 2035 __free_slab(slab->slab_cache, slab); 2036 } 2037 2038 static void free_slab(struct kmem_cache *s, struct slab *slab) 2039 { 2040 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 2041 call_rcu(&slab->rcu_head, rcu_free_slab); 2042 } else 2043 __free_slab(s, slab); 2044 } 2045 2046 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2047 { 2048 dec_slabs_node(s, slab_nid(slab), slab->objects); 2049 free_slab(s, slab); 2050 } 2051 2052 /* 2053 * Management of partially allocated slabs. 2054 */ 2055 static inline void 2056 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2057 { 2058 n->nr_partial++; 2059 if (tail == DEACTIVATE_TO_TAIL) 2060 list_add_tail(&slab->slab_list, &n->partial); 2061 else 2062 list_add(&slab->slab_list, &n->partial); 2063 } 2064 2065 static inline void add_partial(struct kmem_cache_node *n, 2066 struct slab *slab, int tail) 2067 { 2068 lockdep_assert_held(&n->list_lock); 2069 __add_partial(n, slab, tail); 2070 } 2071 2072 static inline void remove_partial(struct kmem_cache_node *n, 2073 struct slab *slab) 2074 { 2075 lockdep_assert_held(&n->list_lock); 2076 list_del(&slab->slab_list); 2077 n->nr_partial--; 2078 } 2079 2080 /* 2081 * Remove slab from the partial list, freeze it and 2082 * return the pointer to the freelist. 2083 * 2084 * Returns a list of objects or NULL if it fails. 2085 */ 2086 static inline void *acquire_slab(struct kmem_cache *s, 2087 struct kmem_cache_node *n, struct slab *slab, 2088 int mode) 2089 { 2090 void *freelist; 2091 unsigned long counters; 2092 struct slab new; 2093 2094 lockdep_assert_held(&n->list_lock); 2095 2096 /* 2097 * Zap the freelist and set the frozen bit. 2098 * The old freelist is the list of objects for the 2099 * per cpu allocation list. 2100 */ 2101 freelist = slab->freelist; 2102 counters = slab->counters; 2103 new.counters = counters; 2104 if (mode) { 2105 new.inuse = slab->objects; 2106 new.freelist = NULL; 2107 } else { 2108 new.freelist = freelist; 2109 } 2110 2111 VM_BUG_ON(new.frozen); 2112 new.frozen = 1; 2113 2114 if (!__cmpxchg_double_slab(s, slab, 2115 freelist, counters, 2116 new.freelist, new.counters, 2117 "acquire_slab")) 2118 return NULL; 2119 2120 remove_partial(n, slab); 2121 WARN_ON(!freelist); 2122 return freelist; 2123 } 2124 2125 #ifdef CONFIG_SLUB_CPU_PARTIAL 2126 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2127 #else 2128 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2129 int drain) { } 2130 #endif 2131 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2132 2133 /* 2134 * Try to allocate a partial slab from a specific node. 2135 */ 2136 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 2137 struct slab **ret_slab, gfp_t gfpflags) 2138 { 2139 struct slab *slab, *slab2; 2140 void *object = NULL; 2141 unsigned long flags; 2142 unsigned int partial_slabs = 0; 2143 2144 /* 2145 * Racy check. If we mistakenly see no partial slabs then we 2146 * just allocate an empty slab. If we mistakenly try to get a 2147 * partial slab and there is none available then get_partial() 2148 * will return NULL. 2149 */ 2150 if (!n || !n->nr_partial) 2151 return NULL; 2152 2153 spin_lock_irqsave(&n->list_lock, flags); 2154 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2155 void *t; 2156 2157 if (!pfmemalloc_match(slab, gfpflags)) 2158 continue; 2159 2160 t = acquire_slab(s, n, slab, object == NULL); 2161 if (!t) 2162 break; 2163 2164 if (!object) { 2165 *ret_slab = slab; 2166 stat(s, ALLOC_FROM_PARTIAL); 2167 object = t; 2168 } else { 2169 put_cpu_partial(s, slab, 0); 2170 stat(s, CPU_PARTIAL_NODE); 2171 partial_slabs++; 2172 } 2173 #ifdef CONFIG_SLUB_CPU_PARTIAL 2174 if (!kmem_cache_has_cpu_partial(s) 2175 || partial_slabs > s->cpu_partial_slabs / 2) 2176 break; 2177 #else 2178 break; 2179 #endif 2180 2181 } 2182 spin_unlock_irqrestore(&n->list_lock, flags); 2183 return object; 2184 } 2185 2186 /* 2187 * Get a slab from somewhere. Search in increasing NUMA distances. 2188 */ 2189 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 2190 struct slab **ret_slab) 2191 { 2192 #ifdef CONFIG_NUMA 2193 struct zonelist *zonelist; 2194 struct zoneref *z; 2195 struct zone *zone; 2196 enum zone_type highest_zoneidx = gfp_zone(flags); 2197 void *object; 2198 unsigned int cpuset_mems_cookie; 2199 2200 /* 2201 * The defrag ratio allows a configuration of the tradeoffs between 2202 * inter node defragmentation and node local allocations. A lower 2203 * defrag_ratio increases the tendency to do local allocations 2204 * instead of attempting to obtain partial slabs from other nodes. 2205 * 2206 * If the defrag_ratio is set to 0 then kmalloc() always 2207 * returns node local objects. If the ratio is higher then kmalloc() 2208 * may return off node objects because partial slabs are obtained 2209 * from other nodes and filled up. 2210 * 2211 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2212 * (which makes defrag_ratio = 1000) then every (well almost) 2213 * allocation will first attempt to defrag slab caches on other nodes. 2214 * This means scanning over all nodes to look for partial slabs which 2215 * may be expensive if we do it every time we are trying to find a slab 2216 * with available objects. 2217 */ 2218 if (!s->remote_node_defrag_ratio || 2219 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2220 return NULL; 2221 2222 do { 2223 cpuset_mems_cookie = read_mems_allowed_begin(); 2224 zonelist = node_zonelist(mempolicy_slab_node(), flags); 2225 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2226 struct kmem_cache_node *n; 2227 2228 n = get_node(s, zone_to_nid(zone)); 2229 2230 if (n && cpuset_zone_allowed(zone, flags) && 2231 n->nr_partial > s->min_partial) { 2232 object = get_partial_node(s, n, ret_slab, flags); 2233 if (object) { 2234 /* 2235 * Don't check read_mems_allowed_retry() 2236 * here - if mems_allowed was updated in 2237 * parallel, that was a harmless race 2238 * between allocation and the cpuset 2239 * update 2240 */ 2241 return object; 2242 } 2243 } 2244 } 2245 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2246 #endif /* CONFIG_NUMA */ 2247 return NULL; 2248 } 2249 2250 /* 2251 * Get a partial slab, lock it and return it. 2252 */ 2253 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 2254 struct slab **ret_slab) 2255 { 2256 void *object; 2257 int searchnode = node; 2258 2259 if (node == NUMA_NO_NODE) 2260 searchnode = numa_mem_id(); 2261 2262 object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags); 2263 if (object || node != NUMA_NO_NODE) 2264 return object; 2265 2266 return get_any_partial(s, flags, ret_slab); 2267 } 2268 2269 #ifdef CONFIG_PREEMPTION 2270 /* 2271 * Calculate the next globally unique transaction for disambiguation 2272 * during cmpxchg. The transactions start with the cpu number and are then 2273 * incremented by CONFIG_NR_CPUS. 2274 */ 2275 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2276 #else 2277 /* 2278 * No preemption supported therefore also no need to check for 2279 * different cpus. 2280 */ 2281 #define TID_STEP 1 2282 #endif 2283 2284 static inline unsigned long next_tid(unsigned long tid) 2285 { 2286 return tid + TID_STEP; 2287 } 2288 2289 #ifdef SLUB_DEBUG_CMPXCHG 2290 static inline unsigned int tid_to_cpu(unsigned long tid) 2291 { 2292 return tid % TID_STEP; 2293 } 2294 2295 static inline unsigned long tid_to_event(unsigned long tid) 2296 { 2297 return tid / TID_STEP; 2298 } 2299 #endif 2300 2301 static inline unsigned int init_tid(int cpu) 2302 { 2303 return cpu; 2304 } 2305 2306 static inline void note_cmpxchg_failure(const char *n, 2307 const struct kmem_cache *s, unsigned long tid) 2308 { 2309 #ifdef SLUB_DEBUG_CMPXCHG 2310 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2311 2312 pr_info("%s %s: cmpxchg redo ", n, s->name); 2313 2314 #ifdef CONFIG_PREEMPTION 2315 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2316 pr_warn("due to cpu change %d -> %d\n", 2317 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2318 else 2319 #endif 2320 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2321 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2322 tid_to_event(tid), tid_to_event(actual_tid)); 2323 else 2324 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2325 actual_tid, tid, next_tid(tid)); 2326 #endif 2327 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2328 } 2329 2330 static void init_kmem_cache_cpus(struct kmem_cache *s) 2331 { 2332 int cpu; 2333 struct kmem_cache_cpu *c; 2334 2335 for_each_possible_cpu(cpu) { 2336 c = per_cpu_ptr(s->cpu_slab, cpu); 2337 local_lock_init(&c->lock); 2338 c->tid = init_tid(cpu); 2339 } 2340 } 2341 2342 /* 2343 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2344 * unfreezes the slabs and puts it on the proper list. 2345 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2346 * by the caller. 2347 */ 2348 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2349 void *freelist) 2350 { 2351 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2352 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2353 int lock = 0, free_delta = 0; 2354 enum slab_modes l = M_NONE, m = M_NONE; 2355 void *nextfree, *freelist_iter, *freelist_tail; 2356 int tail = DEACTIVATE_TO_HEAD; 2357 unsigned long flags = 0; 2358 struct slab new; 2359 struct slab old; 2360 2361 if (slab->freelist) { 2362 stat(s, DEACTIVATE_REMOTE_FREES); 2363 tail = DEACTIVATE_TO_TAIL; 2364 } 2365 2366 /* 2367 * Stage one: Count the objects on cpu's freelist as free_delta and 2368 * remember the last object in freelist_tail for later splicing. 2369 */ 2370 freelist_tail = NULL; 2371 freelist_iter = freelist; 2372 while (freelist_iter) { 2373 nextfree = get_freepointer(s, freelist_iter); 2374 2375 /* 2376 * If 'nextfree' is invalid, it is possible that the object at 2377 * 'freelist_iter' is already corrupted. So isolate all objects 2378 * starting at 'freelist_iter' by skipping them. 2379 */ 2380 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2381 break; 2382 2383 freelist_tail = freelist_iter; 2384 free_delta++; 2385 2386 freelist_iter = nextfree; 2387 } 2388 2389 /* 2390 * Stage two: Unfreeze the slab while splicing the per-cpu 2391 * freelist to the head of slab's freelist. 2392 * 2393 * Ensure that the slab is unfrozen while the list presence 2394 * reflects the actual number of objects during unfreeze. 2395 * 2396 * We setup the list membership and then perform a cmpxchg 2397 * with the count. If there is a mismatch then the slab 2398 * is not unfrozen but the slab is on the wrong list. 2399 * 2400 * Then we restart the process which may have to remove 2401 * the slab from the list that we just put it on again 2402 * because the number of objects in the slab may have 2403 * changed. 2404 */ 2405 redo: 2406 2407 old.freelist = READ_ONCE(slab->freelist); 2408 old.counters = READ_ONCE(slab->counters); 2409 VM_BUG_ON(!old.frozen); 2410 2411 /* Determine target state of the slab */ 2412 new.counters = old.counters; 2413 if (freelist_tail) { 2414 new.inuse -= free_delta; 2415 set_freepointer(s, freelist_tail, old.freelist); 2416 new.freelist = freelist; 2417 } else 2418 new.freelist = old.freelist; 2419 2420 new.frozen = 0; 2421 2422 if (!new.inuse && n->nr_partial >= s->min_partial) 2423 m = M_FREE; 2424 else if (new.freelist) { 2425 m = M_PARTIAL; 2426 if (!lock) { 2427 lock = 1; 2428 /* 2429 * Taking the spinlock removes the possibility that 2430 * acquire_slab() will see a slab that is frozen 2431 */ 2432 spin_lock_irqsave(&n->list_lock, flags); 2433 } 2434 } else { 2435 m = M_FULL; 2436 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) { 2437 lock = 1; 2438 /* 2439 * This also ensures that the scanning of full 2440 * slabs from diagnostic functions will not see 2441 * any frozen slabs. 2442 */ 2443 spin_lock_irqsave(&n->list_lock, flags); 2444 } 2445 } 2446 2447 if (l != m) { 2448 if (l == M_PARTIAL) 2449 remove_partial(n, slab); 2450 else if (l == M_FULL) 2451 remove_full(s, n, slab); 2452 2453 if (m == M_PARTIAL) 2454 add_partial(n, slab, tail); 2455 else if (m == M_FULL) 2456 add_full(s, n, slab); 2457 } 2458 2459 l = m; 2460 if (!cmpxchg_double_slab(s, slab, 2461 old.freelist, old.counters, 2462 new.freelist, new.counters, 2463 "unfreezing slab")) 2464 goto redo; 2465 2466 if (lock) 2467 spin_unlock_irqrestore(&n->list_lock, flags); 2468 2469 if (m == M_PARTIAL) 2470 stat(s, tail); 2471 else if (m == M_FULL) 2472 stat(s, DEACTIVATE_FULL); 2473 else if (m == M_FREE) { 2474 stat(s, DEACTIVATE_EMPTY); 2475 discard_slab(s, slab); 2476 stat(s, FREE_SLAB); 2477 } 2478 } 2479 2480 #ifdef CONFIG_SLUB_CPU_PARTIAL 2481 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab) 2482 { 2483 struct kmem_cache_node *n = NULL, *n2 = NULL; 2484 struct slab *slab, *slab_to_discard = NULL; 2485 unsigned long flags = 0; 2486 2487 while (partial_slab) { 2488 struct slab new; 2489 struct slab old; 2490 2491 slab = partial_slab; 2492 partial_slab = slab->next; 2493 2494 n2 = get_node(s, slab_nid(slab)); 2495 if (n != n2) { 2496 if (n) 2497 spin_unlock_irqrestore(&n->list_lock, flags); 2498 2499 n = n2; 2500 spin_lock_irqsave(&n->list_lock, flags); 2501 } 2502 2503 do { 2504 2505 old.freelist = slab->freelist; 2506 old.counters = slab->counters; 2507 VM_BUG_ON(!old.frozen); 2508 2509 new.counters = old.counters; 2510 new.freelist = old.freelist; 2511 2512 new.frozen = 0; 2513 2514 } while (!__cmpxchg_double_slab(s, slab, 2515 old.freelist, old.counters, 2516 new.freelist, new.counters, 2517 "unfreezing slab")); 2518 2519 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2520 slab->next = slab_to_discard; 2521 slab_to_discard = slab; 2522 } else { 2523 add_partial(n, slab, DEACTIVATE_TO_TAIL); 2524 stat(s, FREE_ADD_PARTIAL); 2525 } 2526 } 2527 2528 if (n) 2529 spin_unlock_irqrestore(&n->list_lock, flags); 2530 2531 while (slab_to_discard) { 2532 slab = slab_to_discard; 2533 slab_to_discard = slab_to_discard->next; 2534 2535 stat(s, DEACTIVATE_EMPTY); 2536 discard_slab(s, slab); 2537 stat(s, FREE_SLAB); 2538 } 2539 } 2540 2541 /* 2542 * Unfreeze all the cpu partial slabs. 2543 */ 2544 static void unfreeze_partials(struct kmem_cache *s) 2545 { 2546 struct slab *partial_slab; 2547 unsigned long flags; 2548 2549 local_lock_irqsave(&s->cpu_slab->lock, flags); 2550 partial_slab = this_cpu_read(s->cpu_slab->partial); 2551 this_cpu_write(s->cpu_slab->partial, NULL); 2552 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2553 2554 if (partial_slab) 2555 __unfreeze_partials(s, partial_slab); 2556 } 2557 2558 static void unfreeze_partials_cpu(struct kmem_cache *s, 2559 struct kmem_cache_cpu *c) 2560 { 2561 struct slab *partial_slab; 2562 2563 partial_slab = slub_percpu_partial(c); 2564 c->partial = NULL; 2565 2566 if (partial_slab) 2567 __unfreeze_partials(s, partial_slab); 2568 } 2569 2570 /* 2571 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a 2572 * partial slab slot if available. 2573 * 2574 * If we did not find a slot then simply move all the partials to the 2575 * per node partial list. 2576 */ 2577 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 2578 { 2579 struct slab *oldslab; 2580 struct slab *slab_to_unfreeze = NULL; 2581 unsigned long flags; 2582 int slabs = 0; 2583 2584 local_lock_irqsave(&s->cpu_slab->lock, flags); 2585 2586 oldslab = this_cpu_read(s->cpu_slab->partial); 2587 2588 if (oldslab) { 2589 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 2590 /* 2591 * Partial array is full. Move the existing set to the 2592 * per node partial list. Postpone the actual unfreezing 2593 * outside of the critical section. 2594 */ 2595 slab_to_unfreeze = oldslab; 2596 oldslab = NULL; 2597 } else { 2598 slabs = oldslab->slabs; 2599 } 2600 } 2601 2602 slabs++; 2603 2604 slab->slabs = slabs; 2605 slab->next = oldslab; 2606 2607 this_cpu_write(s->cpu_slab->partial, slab); 2608 2609 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2610 2611 if (slab_to_unfreeze) { 2612 __unfreeze_partials(s, slab_to_unfreeze); 2613 stat(s, CPU_PARTIAL_DRAIN); 2614 } 2615 } 2616 2617 #else /* CONFIG_SLUB_CPU_PARTIAL */ 2618 2619 static inline void unfreeze_partials(struct kmem_cache *s) { } 2620 static inline void unfreeze_partials_cpu(struct kmem_cache *s, 2621 struct kmem_cache_cpu *c) { } 2622 2623 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2624 2625 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2626 { 2627 unsigned long flags; 2628 struct slab *slab; 2629 void *freelist; 2630 2631 local_lock_irqsave(&s->cpu_slab->lock, flags); 2632 2633 slab = c->slab; 2634 freelist = c->freelist; 2635 2636 c->slab = NULL; 2637 c->freelist = NULL; 2638 c->tid = next_tid(c->tid); 2639 2640 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2641 2642 if (slab) { 2643 deactivate_slab(s, slab, freelist); 2644 stat(s, CPUSLAB_FLUSH); 2645 } 2646 } 2647 2648 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2649 { 2650 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2651 void *freelist = c->freelist; 2652 struct slab *slab = c->slab; 2653 2654 c->slab = NULL; 2655 c->freelist = NULL; 2656 c->tid = next_tid(c->tid); 2657 2658 if (slab) { 2659 deactivate_slab(s, slab, freelist); 2660 stat(s, CPUSLAB_FLUSH); 2661 } 2662 2663 unfreeze_partials_cpu(s, c); 2664 } 2665 2666 struct slub_flush_work { 2667 struct work_struct work; 2668 struct kmem_cache *s; 2669 bool skip; 2670 }; 2671 2672 /* 2673 * Flush cpu slab. 2674 * 2675 * Called from CPU work handler with migration disabled. 2676 */ 2677 static void flush_cpu_slab(struct work_struct *w) 2678 { 2679 struct kmem_cache *s; 2680 struct kmem_cache_cpu *c; 2681 struct slub_flush_work *sfw; 2682 2683 sfw = container_of(w, struct slub_flush_work, work); 2684 2685 s = sfw->s; 2686 c = this_cpu_ptr(s->cpu_slab); 2687 2688 if (c->slab) 2689 flush_slab(s, c); 2690 2691 unfreeze_partials(s); 2692 } 2693 2694 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 2695 { 2696 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2697 2698 return c->slab || slub_percpu_partial(c); 2699 } 2700 2701 static DEFINE_MUTEX(flush_lock); 2702 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 2703 2704 static void flush_all_cpus_locked(struct kmem_cache *s) 2705 { 2706 struct slub_flush_work *sfw; 2707 unsigned int cpu; 2708 2709 lockdep_assert_cpus_held(); 2710 mutex_lock(&flush_lock); 2711 2712 for_each_online_cpu(cpu) { 2713 sfw = &per_cpu(slub_flush, cpu); 2714 if (!has_cpu_slab(cpu, s)) { 2715 sfw->skip = true; 2716 continue; 2717 } 2718 INIT_WORK(&sfw->work, flush_cpu_slab); 2719 sfw->skip = false; 2720 sfw->s = s; 2721 schedule_work_on(cpu, &sfw->work); 2722 } 2723 2724 for_each_online_cpu(cpu) { 2725 sfw = &per_cpu(slub_flush, cpu); 2726 if (sfw->skip) 2727 continue; 2728 flush_work(&sfw->work); 2729 } 2730 2731 mutex_unlock(&flush_lock); 2732 } 2733 2734 static void flush_all(struct kmem_cache *s) 2735 { 2736 cpus_read_lock(); 2737 flush_all_cpus_locked(s); 2738 cpus_read_unlock(); 2739 } 2740 2741 /* 2742 * Use the cpu notifier to insure that the cpu slabs are flushed when 2743 * necessary. 2744 */ 2745 static int slub_cpu_dead(unsigned int cpu) 2746 { 2747 struct kmem_cache *s; 2748 2749 mutex_lock(&slab_mutex); 2750 list_for_each_entry(s, &slab_caches, list) 2751 __flush_cpu_slab(s, cpu); 2752 mutex_unlock(&slab_mutex); 2753 return 0; 2754 } 2755 2756 /* 2757 * Check if the objects in a per cpu structure fit numa 2758 * locality expectations. 2759 */ 2760 static inline int node_match(struct slab *slab, int node) 2761 { 2762 #ifdef CONFIG_NUMA 2763 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 2764 return 0; 2765 #endif 2766 return 1; 2767 } 2768 2769 #ifdef CONFIG_SLUB_DEBUG 2770 static int count_free(struct slab *slab) 2771 { 2772 return slab->objects - slab->inuse; 2773 } 2774 2775 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2776 { 2777 return atomic_long_read(&n->total_objects); 2778 } 2779 #endif /* CONFIG_SLUB_DEBUG */ 2780 2781 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2782 static unsigned long count_partial(struct kmem_cache_node *n, 2783 int (*get_count)(struct slab *)) 2784 { 2785 unsigned long flags; 2786 unsigned long x = 0; 2787 struct slab *slab; 2788 2789 spin_lock_irqsave(&n->list_lock, flags); 2790 list_for_each_entry(slab, &n->partial, slab_list) 2791 x += get_count(slab); 2792 spin_unlock_irqrestore(&n->list_lock, flags); 2793 return x; 2794 } 2795 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2796 2797 static noinline void 2798 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2799 { 2800 #ifdef CONFIG_SLUB_DEBUG 2801 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2802 DEFAULT_RATELIMIT_BURST); 2803 int node; 2804 struct kmem_cache_node *n; 2805 2806 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2807 return; 2808 2809 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2810 nid, gfpflags, &gfpflags); 2811 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2812 s->name, s->object_size, s->size, oo_order(s->oo), 2813 oo_order(s->min)); 2814 2815 if (oo_order(s->min) > get_order(s->object_size)) 2816 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2817 s->name); 2818 2819 for_each_kmem_cache_node(s, node, n) { 2820 unsigned long nr_slabs; 2821 unsigned long nr_objs; 2822 unsigned long nr_free; 2823 2824 nr_free = count_partial(n, count_free); 2825 nr_slabs = node_nr_slabs(n); 2826 nr_objs = node_nr_objs(n); 2827 2828 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2829 node, nr_slabs, nr_objs, nr_free); 2830 } 2831 #endif 2832 } 2833 2834 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 2835 { 2836 if (unlikely(slab_test_pfmemalloc(slab))) 2837 return gfp_pfmemalloc_allowed(gfpflags); 2838 2839 return true; 2840 } 2841 2842 /* 2843 * Check the slab->freelist and either transfer the freelist to the 2844 * per cpu freelist or deactivate the slab. 2845 * 2846 * The slab is still frozen if the return value is not NULL. 2847 * 2848 * If this function returns NULL then the slab has been unfrozen. 2849 */ 2850 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 2851 { 2852 struct slab new; 2853 unsigned long counters; 2854 void *freelist; 2855 2856 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 2857 2858 do { 2859 freelist = slab->freelist; 2860 counters = slab->counters; 2861 2862 new.counters = counters; 2863 VM_BUG_ON(!new.frozen); 2864 2865 new.inuse = slab->objects; 2866 new.frozen = freelist != NULL; 2867 2868 } while (!__cmpxchg_double_slab(s, slab, 2869 freelist, counters, 2870 NULL, new.counters, 2871 "get_freelist")); 2872 2873 return freelist; 2874 } 2875 2876 /* 2877 * Slow path. The lockless freelist is empty or we need to perform 2878 * debugging duties. 2879 * 2880 * Processing is still very fast if new objects have been freed to the 2881 * regular freelist. In that case we simply take over the regular freelist 2882 * as the lockless freelist and zap the regular freelist. 2883 * 2884 * If that is not working then we fall back to the partial lists. We take the 2885 * first element of the freelist as the object to allocate now and move the 2886 * rest of the freelist to the lockless freelist. 2887 * 2888 * And if we were unable to get a new slab from the partial slab lists then 2889 * we need to allocate a new slab. This is the slowest path since it involves 2890 * a call to the page allocator and the setup of a new slab. 2891 * 2892 * Version of __slab_alloc to use when we know that preemption is 2893 * already disabled (which is the case for bulk allocation). 2894 */ 2895 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2896 unsigned long addr, struct kmem_cache_cpu *c) 2897 { 2898 void *freelist; 2899 struct slab *slab; 2900 unsigned long flags; 2901 2902 stat(s, ALLOC_SLOWPATH); 2903 2904 reread_slab: 2905 2906 slab = READ_ONCE(c->slab); 2907 if (!slab) { 2908 /* 2909 * if the node is not online or has no normal memory, just 2910 * ignore the node constraint 2911 */ 2912 if (unlikely(node != NUMA_NO_NODE && 2913 !node_isset(node, slab_nodes))) 2914 node = NUMA_NO_NODE; 2915 goto new_slab; 2916 } 2917 redo: 2918 2919 if (unlikely(!node_match(slab, node))) { 2920 /* 2921 * same as above but node_match() being false already 2922 * implies node != NUMA_NO_NODE 2923 */ 2924 if (!node_isset(node, slab_nodes)) { 2925 node = NUMA_NO_NODE; 2926 goto redo; 2927 } else { 2928 stat(s, ALLOC_NODE_MISMATCH); 2929 goto deactivate_slab; 2930 } 2931 } 2932 2933 /* 2934 * By rights, we should be searching for a slab page that was 2935 * PFMEMALLOC but right now, we are losing the pfmemalloc 2936 * information when the page leaves the per-cpu allocator 2937 */ 2938 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 2939 goto deactivate_slab; 2940 2941 /* must check again c->slab in case we got preempted and it changed */ 2942 local_lock_irqsave(&s->cpu_slab->lock, flags); 2943 if (unlikely(slab != c->slab)) { 2944 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2945 goto reread_slab; 2946 } 2947 freelist = c->freelist; 2948 if (freelist) 2949 goto load_freelist; 2950 2951 freelist = get_freelist(s, slab); 2952 2953 if (!freelist) { 2954 c->slab = NULL; 2955 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2956 stat(s, DEACTIVATE_BYPASS); 2957 goto new_slab; 2958 } 2959 2960 stat(s, ALLOC_REFILL); 2961 2962 load_freelist: 2963 2964 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 2965 2966 /* 2967 * freelist is pointing to the list of objects to be used. 2968 * slab is pointing to the slab from which the objects are obtained. 2969 * That slab must be frozen for per cpu allocations to work. 2970 */ 2971 VM_BUG_ON(!c->slab->frozen); 2972 c->freelist = get_freepointer(s, freelist); 2973 c->tid = next_tid(c->tid); 2974 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2975 return freelist; 2976 2977 deactivate_slab: 2978 2979 local_lock_irqsave(&s->cpu_slab->lock, flags); 2980 if (slab != c->slab) { 2981 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2982 goto reread_slab; 2983 } 2984 freelist = c->freelist; 2985 c->slab = NULL; 2986 c->freelist = NULL; 2987 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2988 deactivate_slab(s, slab, freelist); 2989 2990 new_slab: 2991 2992 if (slub_percpu_partial(c)) { 2993 local_lock_irqsave(&s->cpu_slab->lock, flags); 2994 if (unlikely(c->slab)) { 2995 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2996 goto reread_slab; 2997 } 2998 if (unlikely(!slub_percpu_partial(c))) { 2999 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3000 /* we were preempted and partial list got empty */ 3001 goto new_objects; 3002 } 3003 3004 slab = c->slab = slub_percpu_partial(c); 3005 slub_set_percpu_partial(c, slab); 3006 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3007 stat(s, CPU_PARTIAL_ALLOC); 3008 goto redo; 3009 } 3010 3011 new_objects: 3012 3013 freelist = get_partial(s, gfpflags, node, &slab); 3014 if (freelist) 3015 goto check_new_slab; 3016 3017 slub_put_cpu_ptr(s->cpu_slab); 3018 slab = new_slab(s, gfpflags, node); 3019 c = slub_get_cpu_ptr(s->cpu_slab); 3020 3021 if (unlikely(!slab)) { 3022 slab_out_of_memory(s, gfpflags, node); 3023 return NULL; 3024 } 3025 3026 /* 3027 * No other reference to the slab yet so we can 3028 * muck around with it freely without cmpxchg 3029 */ 3030 freelist = slab->freelist; 3031 slab->freelist = NULL; 3032 3033 stat(s, ALLOC_SLAB); 3034 3035 check_new_slab: 3036 3037 if (kmem_cache_debug(s)) { 3038 if (!alloc_debug_processing(s, slab, freelist, addr)) { 3039 /* Slab failed checks. Next slab needed */ 3040 goto new_slab; 3041 } else { 3042 /* 3043 * For debug case, we don't load freelist so that all 3044 * allocations go through alloc_debug_processing() 3045 */ 3046 goto return_single; 3047 } 3048 } 3049 3050 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3051 /* 3052 * For !pfmemalloc_match() case we don't load freelist so that 3053 * we don't make further mismatched allocations easier. 3054 */ 3055 goto return_single; 3056 3057 retry_load_slab: 3058 3059 local_lock_irqsave(&s->cpu_slab->lock, flags); 3060 if (unlikely(c->slab)) { 3061 void *flush_freelist = c->freelist; 3062 struct slab *flush_slab = c->slab; 3063 3064 c->slab = NULL; 3065 c->freelist = NULL; 3066 c->tid = next_tid(c->tid); 3067 3068 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3069 3070 deactivate_slab(s, flush_slab, flush_freelist); 3071 3072 stat(s, CPUSLAB_FLUSH); 3073 3074 goto retry_load_slab; 3075 } 3076 c->slab = slab; 3077 3078 goto load_freelist; 3079 3080 return_single: 3081 3082 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3083 return freelist; 3084 } 3085 3086 /* 3087 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3088 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3089 * pointer. 3090 */ 3091 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3092 unsigned long addr, struct kmem_cache_cpu *c) 3093 { 3094 void *p; 3095 3096 #ifdef CONFIG_PREEMPT_COUNT 3097 /* 3098 * We may have been preempted and rescheduled on a different 3099 * cpu before disabling preemption. Need to reload cpu area 3100 * pointer. 3101 */ 3102 c = slub_get_cpu_ptr(s->cpu_slab); 3103 #endif 3104 3105 p = ___slab_alloc(s, gfpflags, node, addr, c); 3106 #ifdef CONFIG_PREEMPT_COUNT 3107 slub_put_cpu_ptr(s->cpu_slab); 3108 #endif 3109 return p; 3110 } 3111 3112 /* 3113 * If the object has been wiped upon free, make sure it's fully initialized by 3114 * zeroing out freelist pointer. 3115 */ 3116 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3117 void *obj) 3118 { 3119 if (unlikely(slab_want_init_on_free(s)) && obj) 3120 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3121 0, sizeof(void *)); 3122 } 3123 3124 /* 3125 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 3126 * have the fastpath folded into their functions. So no function call 3127 * overhead for requests that can be satisfied on the fastpath. 3128 * 3129 * The fastpath works by first checking if the lockless freelist can be used. 3130 * If not then __slab_alloc is called for slow processing. 3131 * 3132 * Otherwise we can simply pick the next object from the lockless free list. 3133 */ 3134 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 3135 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3136 { 3137 void *object; 3138 struct kmem_cache_cpu *c; 3139 struct slab *slab; 3140 unsigned long tid; 3141 struct obj_cgroup *objcg = NULL; 3142 bool init = false; 3143 3144 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags); 3145 if (!s) 3146 return NULL; 3147 3148 object = kfence_alloc(s, orig_size, gfpflags); 3149 if (unlikely(object)) 3150 goto out; 3151 3152 redo: 3153 /* 3154 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3155 * enabled. We may switch back and forth between cpus while 3156 * reading from one cpu area. That does not matter as long 3157 * as we end up on the original cpu again when doing the cmpxchg. 3158 * 3159 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3160 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3161 * the tid. If we are preempted and switched to another cpu between the 3162 * two reads, it's OK as the two are still associated with the same cpu 3163 * and cmpxchg later will validate the cpu. 3164 */ 3165 c = raw_cpu_ptr(s->cpu_slab); 3166 tid = READ_ONCE(c->tid); 3167 3168 /* 3169 * Irqless object alloc/free algorithm used here depends on sequence 3170 * of fetching cpu_slab's data. tid should be fetched before anything 3171 * on c to guarantee that object and slab associated with previous tid 3172 * won't be used with current tid. If we fetch tid first, object and 3173 * slab could be one associated with next tid and our alloc/free 3174 * request will be failed. In this case, we will retry. So, no problem. 3175 */ 3176 barrier(); 3177 3178 /* 3179 * The transaction ids are globally unique per cpu and per operation on 3180 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3181 * occurs on the right processor and that there was no operation on the 3182 * linked list in between. 3183 */ 3184 3185 object = c->freelist; 3186 slab = c->slab; 3187 /* 3188 * We cannot use the lockless fastpath on PREEMPT_RT because if a 3189 * slowpath has taken the local_lock_irqsave(), it is not protected 3190 * against a fast path operation in an irq handler. So we need to take 3191 * the slow path which uses local_lock. It is still relatively fast if 3192 * there is a suitable cpu freelist. 3193 */ 3194 if (IS_ENABLED(CONFIG_PREEMPT_RT) || 3195 unlikely(!object || !slab || !node_match(slab, node))) { 3196 object = __slab_alloc(s, gfpflags, node, addr, c); 3197 } else { 3198 void *next_object = get_freepointer_safe(s, object); 3199 3200 /* 3201 * The cmpxchg will only match if there was no additional 3202 * operation and if we are on the right processor. 3203 * 3204 * The cmpxchg does the following atomically (without lock 3205 * semantics!) 3206 * 1. Relocate first pointer to the current per cpu area. 3207 * 2. Verify that tid and freelist have not been changed 3208 * 3. If they were not changed replace tid and freelist 3209 * 3210 * Since this is without lock semantics the protection is only 3211 * against code executing on this cpu *not* from access by 3212 * other cpus. 3213 */ 3214 if (unlikely(!this_cpu_cmpxchg_double( 3215 s->cpu_slab->freelist, s->cpu_slab->tid, 3216 object, tid, 3217 next_object, next_tid(tid)))) { 3218 3219 note_cmpxchg_failure("slab_alloc", s, tid); 3220 goto redo; 3221 } 3222 prefetch_freepointer(s, next_object); 3223 stat(s, ALLOC_FASTPATH); 3224 } 3225 3226 maybe_wipe_obj_freeptr(s, object); 3227 init = slab_want_init_on_alloc(gfpflags, s); 3228 3229 out: 3230 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init); 3231 3232 return object; 3233 } 3234 3235 static __always_inline void *slab_alloc(struct kmem_cache *s, 3236 gfp_t gfpflags, unsigned long addr, size_t orig_size) 3237 { 3238 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size); 3239 } 3240 3241 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 3242 { 3243 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size); 3244 3245 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 3246 s->size, gfpflags); 3247 3248 return ret; 3249 } 3250 EXPORT_SYMBOL(kmem_cache_alloc); 3251 3252 #ifdef CONFIG_TRACING 3253 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 3254 { 3255 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size); 3256 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 3257 ret = kasan_kmalloc(s, ret, size, gfpflags); 3258 return ret; 3259 } 3260 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3261 #endif 3262 3263 #ifdef CONFIG_NUMA 3264 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 3265 { 3266 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size); 3267 3268 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3269 s->object_size, s->size, gfpflags, node); 3270 3271 return ret; 3272 } 3273 EXPORT_SYMBOL(kmem_cache_alloc_node); 3274 3275 #ifdef CONFIG_TRACING 3276 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 3277 gfp_t gfpflags, 3278 int node, size_t size) 3279 { 3280 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size); 3281 3282 trace_kmalloc_node(_RET_IP_, ret, 3283 size, s->size, gfpflags, node); 3284 3285 ret = kasan_kmalloc(s, ret, size, gfpflags); 3286 return ret; 3287 } 3288 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3289 #endif 3290 #endif /* CONFIG_NUMA */ 3291 3292 /* 3293 * Slow path handling. This may still be called frequently since objects 3294 * have a longer lifetime than the cpu slabs in most processing loads. 3295 * 3296 * So we still attempt to reduce cache line usage. Just take the slab 3297 * lock and free the item. If there is no additional partial slab 3298 * handling required then we can return immediately. 3299 */ 3300 static void __slab_free(struct kmem_cache *s, struct slab *slab, 3301 void *head, void *tail, int cnt, 3302 unsigned long addr) 3303 3304 { 3305 void *prior; 3306 int was_frozen; 3307 struct slab new; 3308 unsigned long counters; 3309 struct kmem_cache_node *n = NULL; 3310 unsigned long flags; 3311 3312 stat(s, FREE_SLOWPATH); 3313 3314 if (kfence_free(head)) 3315 return; 3316 3317 if (kmem_cache_debug(s) && 3318 !free_debug_processing(s, slab, head, tail, cnt, addr)) 3319 return; 3320 3321 do { 3322 if (unlikely(n)) { 3323 spin_unlock_irqrestore(&n->list_lock, flags); 3324 n = NULL; 3325 } 3326 prior = slab->freelist; 3327 counters = slab->counters; 3328 set_freepointer(s, tail, prior); 3329 new.counters = counters; 3330 was_frozen = new.frozen; 3331 new.inuse -= cnt; 3332 if ((!new.inuse || !prior) && !was_frozen) { 3333 3334 if (kmem_cache_has_cpu_partial(s) && !prior) { 3335 3336 /* 3337 * Slab was on no list before and will be 3338 * partially empty 3339 * We can defer the list move and instead 3340 * freeze it. 3341 */ 3342 new.frozen = 1; 3343 3344 } else { /* Needs to be taken off a list */ 3345 3346 n = get_node(s, slab_nid(slab)); 3347 /* 3348 * Speculatively acquire the list_lock. 3349 * If the cmpxchg does not succeed then we may 3350 * drop the list_lock without any processing. 3351 * 3352 * Otherwise the list_lock will synchronize with 3353 * other processors updating the list of slabs. 3354 */ 3355 spin_lock_irqsave(&n->list_lock, flags); 3356 3357 } 3358 } 3359 3360 } while (!cmpxchg_double_slab(s, slab, 3361 prior, counters, 3362 head, new.counters, 3363 "__slab_free")); 3364 3365 if (likely(!n)) { 3366 3367 if (likely(was_frozen)) { 3368 /* 3369 * The list lock was not taken therefore no list 3370 * activity can be necessary. 3371 */ 3372 stat(s, FREE_FROZEN); 3373 } else if (new.frozen) { 3374 /* 3375 * If we just froze the slab then put it onto the 3376 * per cpu partial list. 3377 */ 3378 put_cpu_partial(s, slab, 1); 3379 stat(s, CPU_PARTIAL_FREE); 3380 } 3381 3382 return; 3383 } 3384 3385 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 3386 goto slab_empty; 3387 3388 /* 3389 * Objects left in the slab. If it was not on the partial list before 3390 * then add it. 3391 */ 3392 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 3393 remove_full(s, n, slab); 3394 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3395 stat(s, FREE_ADD_PARTIAL); 3396 } 3397 spin_unlock_irqrestore(&n->list_lock, flags); 3398 return; 3399 3400 slab_empty: 3401 if (prior) { 3402 /* 3403 * Slab on the partial list. 3404 */ 3405 remove_partial(n, slab); 3406 stat(s, FREE_REMOVE_PARTIAL); 3407 } else { 3408 /* Slab must be on the full list */ 3409 remove_full(s, n, slab); 3410 } 3411 3412 spin_unlock_irqrestore(&n->list_lock, flags); 3413 stat(s, FREE_SLAB); 3414 discard_slab(s, slab); 3415 } 3416 3417 /* 3418 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3419 * can perform fastpath freeing without additional function calls. 3420 * 3421 * The fastpath is only possible if we are freeing to the current cpu slab 3422 * of this processor. This typically the case if we have just allocated 3423 * the item before. 3424 * 3425 * If fastpath is not possible then fall back to __slab_free where we deal 3426 * with all sorts of special processing. 3427 * 3428 * Bulk free of a freelist with several objects (all pointing to the 3429 * same slab) possible by specifying head and tail ptr, plus objects 3430 * count (cnt). Bulk free indicated by tail pointer being set. 3431 */ 3432 static __always_inline void do_slab_free(struct kmem_cache *s, 3433 struct slab *slab, void *head, void *tail, 3434 int cnt, unsigned long addr) 3435 { 3436 void *tail_obj = tail ? : head; 3437 struct kmem_cache_cpu *c; 3438 unsigned long tid; 3439 3440 /* memcg_slab_free_hook() is already called for bulk free. */ 3441 if (!tail) 3442 memcg_slab_free_hook(s, &head, 1); 3443 redo: 3444 /* 3445 * Determine the currently cpus per cpu slab. 3446 * The cpu may change afterward. However that does not matter since 3447 * data is retrieved via this pointer. If we are on the same cpu 3448 * during the cmpxchg then the free will succeed. 3449 */ 3450 c = raw_cpu_ptr(s->cpu_slab); 3451 tid = READ_ONCE(c->tid); 3452 3453 /* Same with comment on barrier() in slab_alloc_node() */ 3454 barrier(); 3455 3456 if (likely(slab == c->slab)) { 3457 #ifndef CONFIG_PREEMPT_RT 3458 void **freelist = READ_ONCE(c->freelist); 3459 3460 set_freepointer(s, tail_obj, freelist); 3461 3462 if (unlikely(!this_cpu_cmpxchg_double( 3463 s->cpu_slab->freelist, s->cpu_slab->tid, 3464 freelist, tid, 3465 head, next_tid(tid)))) { 3466 3467 note_cmpxchg_failure("slab_free", s, tid); 3468 goto redo; 3469 } 3470 #else /* CONFIG_PREEMPT_RT */ 3471 /* 3472 * We cannot use the lockless fastpath on PREEMPT_RT because if 3473 * a slowpath has taken the local_lock_irqsave(), it is not 3474 * protected against a fast path operation in an irq handler. So 3475 * we need to take the local_lock. We shouldn't simply defer to 3476 * __slab_free() as that wouldn't use the cpu freelist at all. 3477 */ 3478 void **freelist; 3479 3480 local_lock(&s->cpu_slab->lock); 3481 c = this_cpu_ptr(s->cpu_slab); 3482 if (unlikely(slab != c->slab)) { 3483 local_unlock(&s->cpu_slab->lock); 3484 goto redo; 3485 } 3486 tid = c->tid; 3487 freelist = c->freelist; 3488 3489 set_freepointer(s, tail_obj, freelist); 3490 c->freelist = head; 3491 c->tid = next_tid(tid); 3492 3493 local_unlock(&s->cpu_slab->lock); 3494 #endif 3495 stat(s, FREE_FASTPATH); 3496 } else 3497 __slab_free(s, slab, head, tail_obj, cnt, addr); 3498 3499 } 3500 3501 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab, 3502 void *head, void *tail, int cnt, 3503 unsigned long addr) 3504 { 3505 /* 3506 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3507 * to remove objects, whose reuse must be delayed. 3508 */ 3509 if (slab_free_freelist_hook(s, &head, &tail, &cnt)) 3510 do_slab_free(s, slab, head, tail, cnt, addr); 3511 } 3512 3513 #ifdef CONFIG_KASAN_GENERIC 3514 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3515 { 3516 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr); 3517 } 3518 #endif 3519 3520 void kmem_cache_free(struct kmem_cache *s, void *x) 3521 { 3522 s = cache_from_obj(s, x); 3523 if (!s) 3524 return; 3525 trace_kmem_cache_free(_RET_IP_, x, s->name); 3526 slab_free(s, virt_to_slab(x), x, NULL, 1, _RET_IP_); 3527 } 3528 EXPORT_SYMBOL(kmem_cache_free); 3529 3530 struct detached_freelist { 3531 struct slab *slab; 3532 void *tail; 3533 void *freelist; 3534 int cnt; 3535 struct kmem_cache *s; 3536 }; 3537 3538 static inline void free_large_kmalloc(struct folio *folio, void *object) 3539 { 3540 unsigned int order = folio_order(folio); 3541 3542 if (WARN_ON_ONCE(order == 0)) 3543 pr_warn_once("object pointer: 0x%p\n", object); 3544 3545 kfree_hook(object); 3546 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B, 3547 -(PAGE_SIZE << order)); 3548 __free_pages(folio_page(folio, 0), order); 3549 } 3550 3551 /* 3552 * This function progressively scans the array with free objects (with 3553 * a limited look ahead) and extract objects belonging to the same 3554 * slab. It builds a detached freelist directly within the given 3555 * slab/objects. This can happen without any need for 3556 * synchronization, because the objects are owned by running process. 3557 * The freelist is build up as a single linked list in the objects. 3558 * The idea is, that this detached freelist can then be bulk 3559 * transferred to the real freelist(s), but only requiring a single 3560 * synchronization primitive. Look ahead in the array is limited due 3561 * to performance reasons. 3562 */ 3563 static inline 3564 int build_detached_freelist(struct kmem_cache *s, size_t size, 3565 void **p, struct detached_freelist *df) 3566 { 3567 size_t first_skipped_index = 0; 3568 int lookahead = 3; 3569 void *object; 3570 struct folio *folio; 3571 struct slab *slab; 3572 3573 /* Always re-init detached_freelist */ 3574 df->slab = NULL; 3575 3576 do { 3577 object = p[--size]; 3578 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3579 } while (!object && size); 3580 3581 if (!object) 3582 return 0; 3583 3584 folio = virt_to_folio(object); 3585 if (!s) { 3586 /* Handle kalloc'ed objects */ 3587 if (unlikely(!folio_test_slab(folio))) { 3588 free_large_kmalloc(folio, object); 3589 p[size] = NULL; /* mark object processed */ 3590 return size; 3591 } 3592 /* Derive kmem_cache from object */ 3593 slab = folio_slab(folio); 3594 df->s = slab->slab_cache; 3595 } else { 3596 slab = folio_slab(folio); 3597 df->s = cache_from_obj(s, object); /* Support for memcg */ 3598 } 3599 3600 if (is_kfence_address(object)) { 3601 slab_free_hook(df->s, object, false); 3602 __kfence_free(object); 3603 p[size] = NULL; /* mark object processed */ 3604 return size; 3605 } 3606 3607 /* Start new detached freelist */ 3608 df->slab = slab; 3609 set_freepointer(df->s, object, NULL); 3610 df->tail = object; 3611 df->freelist = object; 3612 p[size] = NULL; /* mark object processed */ 3613 df->cnt = 1; 3614 3615 while (size) { 3616 object = p[--size]; 3617 if (!object) 3618 continue; /* Skip processed objects */ 3619 3620 /* df->slab is always set at this point */ 3621 if (df->slab == virt_to_slab(object)) { 3622 /* Opportunity build freelist */ 3623 set_freepointer(df->s, object, df->freelist); 3624 df->freelist = object; 3625 df->cnt++; 3626 p[size] = NULL; /* mark object processed */ 3627 3628 continue; 3629 } 3630 3631 /* Limit look ahead search */ 3632 if (!--lookahead) 3633 break; 3634 3635 if (!first_skipped_index) 3636 first_skipped_index = size + 1; 3637 } 3638 3639 return first_skipped_index; 3640 } 3641 3642 /* Note that interrupts must be enabled when calling this function. */ 3643 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3644 { 3645 if (WARN_ON(!size)) 3646 return; 3647 3648 memcg_slab_free_hook(s, p, size); 3649 do { 3650 struct detached_freelist df; 3651 3652 size = build_detached_freelist(s, size, p, &df); 3653 if (!df.slab) 3654 continue; 3655 3656 slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, _RET_IP_); 3657 } while (likely(size)); 3658 } 3659 EXPORT_SYMBOL(kmem_cache_free_bulk); 3660 3661 /* Note that interrupts must be enabled when calling this function. */ 3662 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3663 void **p) 3664 { 3665 struct kmem_cache_cpu *c; 3666 int i; 3667 struct obj_cgroup *objcg = NULL; 3668 3669 /* memcg and kmem_cache debug support */ 3670 s = slab_pre_alloc_hook(s, &objcg, size, flags); 3671 if (unlikely(!s)) 3672 return false; 3673 /* 3674 * Drain objects in the per cpu slab, while disabling local 3675 * IRQs, which protects against PREEMPT and interrupts 3676 * handlers invoking normal fastpath. 3677 */ 3678 c = slub_get_cpu_ptr(s->cpu_slab); 3679 local_lock_irq(&s->cpu_slab->lock); 3680 3681 for (i = 0; i < size; i++) { 3682 void *object = kfence_alloc(s, s->object_size, flags); 3683 3684 if (unlikely(object)) { 3685 p[i] = object; 3686 continue; 3687 } 3688 3689 object = c->freelist; 3690 if (unlikely(!object)) { 3691 /* 3692 * We may have removed an object from c->freelist using 3693 * the fastpath in the previous iteration; in that case, 3694 * c->tid has not been bumped yet. 3695 * Since ___slab_alloc() may reenable interrupts while 3696 * allocating memory, we should bump c->tid now. 3697 */ 3698 c->tid = next_tid(c->tid); 3699 3700 local_unlock_irq(&s->cpu_slab->lock); 3701 3702 /* 3703 * Invoking slow path likely have side-effect 3704 * of re-populating per CPU c->freelist 3705 */ 3706 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3707 _RET_IP_, c); 3708 if (unlikely(!p[i])) 3709 goto error; 3710 3711 c = this_cpu_ptr(s->cpu_slab); 3712 maybe_wipe_obj_freeptr(s, p[i]); 3713 3714 local_lock_irq(&s->cpu_slab->lock); 3715 3716 continue; /* goto for-loop */ 3717 } 3718 c->freelist = get_freepointer(s, object); 3719 p[i] = object; 3720 maybe_wipe_obj_freeptr(s, p[i]); 3721 } 3722 c->tid = next_tid(c->tid); 3723 local_unlock_irq(&s->cpu_slab->lock); 3724 slub_put_cpu_ptr(s->cpu_slab); 3725 3726 /* 3727 * memcg and kmem_cache debug support and memory initialization. 3728 * Done outside of the IRQ disabled fastpath loop. 3729 */ 3730 slab_post_alloc_hook(s, objcg, flags, size, p, 3731 slab_want_init_on_alloc(flags, s)); 3732 return i; 3733 error: 3734 slub_put_cpu_ptr(s->cpu_slab); 3735 slab_post_alloc_hook(s, objcg, flags, i, p, false); 3736 __kmem_cache_free_bulk(s, i, p); 3737 return 0; 3738 } 3739 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3740 3741 3742 /* 3743 * Object placement in a slab is made very easy because we always start at 3744 * offset 0. If we tune the size of the object to the alignment then we can 3745 * get the required alignment by putting one properly sized object after 3746 * another. 3747 * 3748 * Notice that the allocation order determines the sizes of the per cpu 3749 * caches. Each processor has always one slab available for allocations. 3750 * Increasing the allocation order reduces the number of times that slabs 3751 * must be moved on and off the partial lists and is therefore a factor in 3752 * locking overhead. 3753 */ 3754 3755 /* 3756 * Minimum / Maximum order of slab pages. This influences locking overhead 3757 * and slab fragmentation. A higher order reduces the number of partial slabs 3758 * and increases the number of allocations possible without having to 3759 * take the list_lock. 3760 */ 3761 static unsigned int slub_min_order; 3762 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3763 static unsigned int slub_min_objects; 3764 3765 /* 3766 * Calculate the order of allocation given an slab object size. 3767 * 3768 * The order of allocation has significant impact on performance and other 3769 * system components. Generally order 0 allocations should be preferred since 3770 * order 0 does not cause fragmentation in the page allocator. Larger objects 3771 * be problematic to put into order 0 slabs because there may be too much 3772 * unused space left. We go to a higher order if more than 1/16th of the slab 3773 * would be wasted. 3774 * 3775 * In order to reach satisfactory performance we must ensure that a minimum 3776 * number of objects is in one slab. Otherwise we may generate too much 3777 * activity on the partial lists which requires taking the list_lock. This is 3778 * less a concern for large slabs though which are rarely used. 3779 * 3780 * slub_max_order specifies the order where we begin to stop considering the 3781 * number of objects in a slab as critical. If we reach slub_max_order then 3782 * we try to keep the page order as low as possible. So we accept more waste 3783 * of space in favor of a small page order. 3784 * 3785 * Higher order allocations also allow the placement of more objects in a 3786 * slab and thereby reduce object handling overhead. If the user has 3787 * requested a higher minimum order then we start with that one instead of 3788 * the smallest order which will fit the object. 3789 */ 3790 static inline unsigned int calc_slab_order(unsigned int size, 3791 unsigned int min_objects, unsigned int max_order, 3792 unsigned int fract_leftover) 3793 { 3794 unsigned int min_order = slub_min_order; 3795 unsigned int order; 3796 3797 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3798 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3799 3800 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3801 order <= max_order; order++) { 3802 3803 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3804 unsigned int rem; 3805 3806 rem = slab_size % size; 3807 3808 if (rem <= slab_size / fract_leftover) 3809 break; 3810 } 3811 3812 return order; 3813 } 3814 3815 static inline int calculate_order(unsigned int size) 3816 { 3817 unsigned int order; 3818 unsigned int min_objects; 3819 unsigned int max_objects; 3820 unsigned int nr_cpus; 3821 3822 /* 3823 * Attempt to find best configuration for a slab. This 3824 * works by first attempting to generate a layout with 3825 * the best configuration and backing off gradually. 3826 * 3827 * First we increase the acceptable waste in a slab. Then 3828 * we reduce the minimum objects required in a slab. 3829 */ 3830 min_objects = slub_min_objects; 3831 if (!min_objects) { 3832 /* 3833 * Some architectures will only update present cpus when 3834 * onlining them, so don't trust the number if it's just 1. But 3835 * we also don't want to use nr_cpu_ids always, as on some other 3836 * architectures, there can be many possible cpus, but never 3837 * onlined. Here we compromise between trying to avoid too high 3838 * order on systems that appear larger than they are, and too 3839 * low order on systems that appear smaller than they are. 3840 */ 3841 nr_cpus = num_present_cpus(); 3842 if (nr_cpus <= 1) 3843 nr_cpus = nr_cpu_ids; 3844 min_objects = 4 * (fls(nr_cpus) + 1); 3845 } 3846 max_objects = order_objects(slub_max_order, size); 3847 min_objects = min(min_objects, max_objects); 3848 3849 while (min_objects > 1) { 3850 unsigned int fraction; 3851 3852 fraction = 16; 3853 while (fraction >= 4) { 3854 order = calc_slab_order(size, min_objects, 3855 slub_max_order, fraction); 3856 if (order <= slub_max_order) 3857 return order; 3858 fraction /= 2; 3859 } 3860 min_objects--; 3861 } 3862 3863 /* 3864 * We were unable to place multiple objects in a slab. Now 3865 * lets see if we can place a single object there. 3866 */ 3867 order = calc_slab_order(size, 1, slub_max_order, 1); 3868 if (order <= slub_max_order) 3869 return order; 3870 3871 /* 3872 * Doh this slab cannot be placed using slub_max_order. 3873 */ 3874 order = calc_slab_order(size, 1, MAX_ORDER, 1); 3875 if (order < MAX_ORDER) 3876 return order; 3877 return -ENOSYS; 3878 } 3879 3880 static void 3881 init_kmem_cache_node(struct kmem_cache_node *n) 3882 { 3883 n->nr_partial = 0; 3884 spin_lock_init(&n->list_lock); 3885 INIT_LIST_HEAD(&n->partial); 3886 #ifdef CONFIG_SLUB_DEBUG 3887 atomic_long_set(&n->nr_slabs, 0); 3888 atomic_long_set(&n->total_objects, 0); 3889 INIT_LIST_HEAD(&n->full); 3890 #endif 3891 } 3892 3893 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3894 { 3895 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3896 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3897 3898 /* 3899 * Must align to double word boundary for the double cmpxchg 3900 * instructions to work; see __pcpu_double_call_return_bool(). 3901 */ 3902 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3903 2 * sizeof(void *)); 3904 3905 if (!s->cpu_slab) 3906 return 0; 3907 3908 init_kmem_cache_cpus(s); 3909 3910 return 1; 3911 } 3912 3913 static struct kmem_cache *kmem_cache_node; 3914 3915 /* 3916 * No kmalloc_node yet so do it by hand. We know that this is the first 3917 * slab on the node for this slabcache. There are no concurrent accesses 3918 * possible. 3919 * 3920 * Note that this function only works on the kmem_cache_node 3921 * when allocating for the kmem_cache_node. This is used for bootstrapping 3922 * memory on a fresh node that has no slab structures yet. 3923 */ 3924 static void early_kmem_cache_node_alloc(int node) 3925 { 3926 struct slab *slab; 3927 struct kmem_cache_node *n; 3928 3929 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3930 3931 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3932 3933 BUG_ON(!slab); 3934 if (slab_nid(slab) != node) { 3935 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3936 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3937 } 3938 3939 n = slab->freelist; 3940 BUG_ON(!n); 3941 #ifdef CONFIG_SLUB_DEBUG 3942 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3943 init_tracking(kmem_cache_node, n); 3944 #endif 3945 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 3946 slab->freelist = get_freepointer(kmem_cache_node, n); 3947 slab->inuse = 1; 3948 slab->frozen = 0; 3949 kmem_cache_node->node[node] = n; 3950 init_kmem_cache_node(n); 3951 inc_slabs_node(kmem_cache_node, node, slab->objects); 3952 3953 /* 3954 * No locks need to be taken here as it has just been 3955 * initialized and there is no concurrent access. 3956 */ 3957 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 3958 } 3959 3960 static void free_kmem_cache_nodes(struct kmem_cache *s) 3961 { 3962 int node; 3963 struct kmem_cache_node *n; 3964 3965 for_each_kmem_cache_node(s, node, n) { 3966 s->node[node] = NULL; 3967 kmem_cache_free(kmem_cache_node, n); 3968 } 3969 } 3970 3971 void __kmem_cache_release(struct kmem_cache *s) 3972 { 3973 cache_random_seq_destroy(s); 3974 free_percpu(s->cpu_slab); 3975 free_kmem_cache_nodes(s); 3976 } 3977 3978 static int init_kmem_cache_nodes(struct kmem_cache *s) 3979 { 3980 int node; 3981 3982 for_each_node_mask(node, slab_nodes) { 3983 struct kmem_cache_node *n; 3984 3985 if (slab_state == DOWN) { 3986 early_kmem_cache_node_alloc(node); 3987 continue; 3988 } 3989 n = kmem_cache_alloc_node(kmem_cache_node, 3990 GFP_KERNEL, node); 3991 3992 if (!n) { 3993 free_kmem_cache_nodes(s); 3994 return 0; 3995 } 3996 3997 init_kmem_cache_node(n); 3998 s->node[node] = n; 3999 } 4000 return 1; 4001 } 4002 4003 static void set_min_partial(struct kmem_cache *s, unsigned long min) 4004 { 4005 if (min < MIN_PARTIAL) 4006 min = MIN_PARTIAL; 4007 else if (min > MAX_PARTIAL) 4008 min = MAX_PARTIAL; 4009 s->min_partial = min; 4010 } 4011 4012 static void set_cpu_partial(struct kmem_cache *s) 4013 { 4014 #ifdef CONFIG_SLUB_CPU_PARTIAL 4015 unsigned int nr_objects; 4016 4017 /* 4018 * cpu_partial determined the maximum number of objects kept in the 4019 * per cpu partial lists of a processor. 4020 * 4021 * Per cpu partial lists mainly contain slabs that just have one 4022 * object freed. If they are used for allocation then they can be 4023 * filled up again with minimal effort. The slab will never hit the 4024 * per node partial lists and therefore no locking will be required. 4025 * 4026 * For backwards compatibility reasons, this is determined as number 4027 * of objects, even though we now limit maximum number of pages, see 4028 * slub_set_cpu_partial() 4029 */ 4030 if (!kmem_cache_has_cpu_partial(s)) 4031 nr_objects = 0; 4032 else if (s->size >= PAGE_SIZE) 4033 nr_objects = 6; 4034 else if (s->size >= 1024) 4035 nr_objects = 24; 4036 else if (s->size >= 256) 4037 nr_objects = 52; 4038 else 4039 nr_objects = 120; 4040 4041 slub_set_cpu_partial(s, nr_objects); 4042 #endif 4043 } 4044 4045 /* 4046 * calculate_sizes() determines the order and the distribution of data within 4047 * a slab object. 4048 */ 4049 static int calculate_sizes(struct kmem_cache *s, int forced_order) 4050 { 4051 slab_flags_t flags = s->flags; 4052 unsigned int size = s->object_size; 4053 unsigned int order; 4054 4055 /* 4056 * Round up object size to the next word boundary. We can only 4057 * place the free pointer at word boundaries and this determines 4058 * the possible location of the free pointer. 4059 */ 4060 size = ALIGN(size, sizeof(void *)); 4061 4062 #ifdef CONFIG_SLUB_DEBUG 4063 /* 4064 * Determine if we can poison the object itself. If the user of 4065 * the slab may touch the object after free or before allocation 4066 * then we should never poison the object itself. 4067 */ 4068 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 4069 !s->ctor) 4070 s->flags |= __OBJECT_POISON; 4071 else 4072 s->flags &= ~__OBJECT_POISON; 4073 4074 4075 /* 4076 * If we are Redzoning then check if there is some space between the 4077 * end of the object and the free pointer. If not then add an 4078 * additional word to have some bytes to store Redzone information. 4079 */ 4080 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 4081 size += sizeof(void *); 4082 #endif 4083 4084 /* 4085 * With that we have determined the number of bytes in actual use 4086 * by the object and redzoning. 4087 */ 4088 s->inuse = size; 4089 4090 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 4091 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || 4092 s->ctor) { 4093 /* 4094 * Relocate free pointer after the object if it is not 4095 * permitted to overwrite the first word of the object on 4096 * kmem_cache_free. 4097 * 4098 * This is the case if we do RCU, have a constructor or 4099 * destructor, are poisoning the objects, or are 4100 * redzoning an object smaller than sizeof(void *). 4101 * 4102 * The assumption that s->offset >= s->inuse means free 4103 * pointer is outside of the object is used in the 4104 * freeptr_outside_object() function. If that is no 4105 * longer true, the function needs to be modified. 4106 */ 4107 s->offset = size; 4108 size += sizeof(void *); 4109 } else { 4110 /* 4111 * Store freelist pointer near middle of object to keep 4112 * it away from the edges of the object to avoid small 4113 * sized over/underflows from neighboring allocations. 4114 */ 4115 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 4116 } 4117 4118 #ifdef CONFIG_SLUB_DEBUG 4119 if (flags & SLAB_STORE_USER) 4120 /* 4121 * Need to store information about allocs and frees after 4122 * the object. 4123 */ 4124 size += 2 * sizeof(struct track); 4125 #endif 4126 4127 kasan_cache_create(s, &size, &s->flags); 4128 #ifdef CONFIG_SLUB_DEBUG 4129 if (flags & SLAB_RED_ZONE) { 4130 /* 4131 * Add some empty padding so that we can catch 4132 * overwrites from earlier objects rather than let 4133 * tracking information or the free pointer be 4134 * corrupted if a user writes before the start 4135 * of the object. 4136 */ 4137 size += sizeof(void *); 4138 4139 s->red_left_pad = sizeof(void *); 4140 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 4141 size += s->red_left_pad; 4142 } 4143 #endif 4144 4145 /* 4146 * SLUB stores one object immediately after another beginning from 4147 * offset 0. In order to align the objects we have to simply size 4148 * each object to conform to the alignment. 4149 */ 4150 size = ALIGN(size, s->align); 4151 s->size = size; 4152 s->reciprocal_size = reciprocal_value(size); 4153 if (forced_order >= 0) 4154 order = forced_order; 4155 else 4156 order = calculate_order(size); 4157 4158 if ((int)order < 0) 4159 return 0; 4160 4161 s->allocflags = 0; 4162 if (order) 4163 s->allocflags |= __GFP_COMP; 4164 4165 if (s->flags & SLAB_CACHE_DMA) 4166 s->allocflags |= GFP_DMA; 4167 4168 if (s->flags & SLAB_CACHE_DMA32) 4169 s->allocflags |= GFP_DMA32; 4170 4171 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4172 s->allocflags |= __GFP_RECLAIMABLE; 4173 4174 /* 4175 * Determine the number of objects per slab 4176 */ 4177 s->oo = oo_make(order, size); 4178 s->min = oo_make(get_order(size), size); 4179 if (oo_objects(s->oo) > oo_objects(s->max)) 4180 s->max = s->oo; 4181 4182 return !!oo_objects(s->oo); 4183 } 4184 4185 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 4186 { 4187 s->flags = kmem_cache_flags(s->size, flags, s->name); 4188 #ifdef CONFIG_SLAB_FREELIST_HARDENED 4189 s->random = get_random_long(); 4190 #endif 4191 4192 if (!calculate_sizes(s, -1)) 4193 goto error; 4194 if (disable_higher_order_debug) { 4195 /* 4196 * Disable debugging flags that store metadata if the min slab 4197 * order increased. 4198 */ 4199 if (get_order(s->size) > get_order(s->object_size)) { 4200 s->flags &= ~DEBUG_METADATA_FLAGS; 4201 s->offset = 0; 4202 if (!calculate_sizes(s, -1)) 4203 goto error; 4204 } 4205 } 4206 4207 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 4208 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 4209 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 4210 /* Enable fast mode */ 4211 s->flags |= __CMPXCHG_DOUBLE; 4212 #endif 4213 4214 /* 4215 * The larger the object size is, the more slabs we want on the partial 4216 * list to avoid pounding the page allocator excessively. 4217 */ 4218 set_min_partial(s, ilog2(s->size) / 2); 4219 4220 set_cpu_partial(s); 4221 4222 #ifdef CONFIG_NUMA 4223 s->remote_node_defrag_ratio = 1000; 4224 #endif 4225 4226 /* Initialize the pre-computed randomized freelist if slab is up */ 4227 if (slab_state >= UP) { 4228 if (init_cache_random_seq(s)) 4229 goto error; 4230 } 4231 4232 if (!init_kmem_cache_nodes(s)) 4233 goto error; 4234 4235 if (alloc_kmem_cache_cpus(s)) 4236 return 0; 4237 4238 error: 4239 __kmem_cache_release(s); 4240 return -EINVAL; 4241 } 4242 4243 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 4244 const char *text) 4245 { 4246 #ifdef CONFIG_SLUB_DEBUG 4247 void *addr = slab_address(slab); 4248 unsigned long flags; 4249 unsigned long *map; 4250 void *p; 4251 4252 slab_err(s, slab, text, s->name); 4253 slab_lock(slab, &flags); 4254 4255 map = get_map(s, slab); 4256 for_each_object(p, s, addr, slab->objects) { 4257 4258 if (!test_bit(__obj_to_index(s, addr, p), map)) { 4259 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 4260 print_tracking(s, p); 4261 } 4262 } 4263 put_map(map); 4264 slab_unlock(slab, &flags); 4265 #endif 4266 } 4267 4268 /* 4269 * Attempt to free all partial slabs on a node. 4270 * This is called from __kmem_cache_shutdown(). We must take list_lock 4271 * because sysfs file might still access partial list after the shutdowning. 4272 */ 4273 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 4274 { 4275 LIST_HEAD(discard); 4276 struct slab *slab, *h; 4277 4278 BUG_ON(irqs_disabled()); 4279 spin_lock_irq(&n->list_lock); 4280 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 4281 if (!slab->inuse) { 4282 remove_partial(n, slab); 4283 list_add(&slab->slab_list, &discard); 4284 } else { 4285 list_slab_objects(s, slab, 4286 "Objects remaining in %s on __kmem_cache_shutdown()"); 4287 } 4288 } 4289 spin_unlock_irq(&n->list_lock); 4290 4291 list_for_each_entry_safe(slab, h, &discard, slab_list) 4292 discard_slab(s, slab); 4293 } 4294 4295 bool __kmem_cache_empty(struct kmem_cache *s) 4296 { 4297 int node; 4298 struct kmem_cache_node *n; 4299 4300 for_each_kmem_cache_node(s, node, n) 4301 if (n->nr_partial || slabs_node(s, node)) 4302 return false; 4303 return true; 4304 } 4305 4306 /* 4307 * Release all resources used by a slab cache. 4308 */ 4309 int __kmem_cache_shutdown(struct kmem_cache *s) 4310 { 4311 int node; 4312 struct kmem_cache_node *n; 4313 4314 flush_all_cpus_locked(s); 4315 /* Attempt to free all objects */ 4316 for_each_kmem_cache_node(s, node, n) { 4317 free_partial(s, n); 4318 if (n->nr_partial || slabs_node(s, node)) 4319 return 1; 4320 } 4321 return 0; 4322 } 4323 4324 #ifdef CONFIG_PRINTK 4325 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 4326 { 4327 void *base; 4328 int __maybe_unused i; 4329 unsigned int objnr; 4330 void *objp; 4331 void *objp0; 4332 struct kmem_cache *s = slab->slab_cache; 4333 struct track __maybe_unused *trackp; 4334 4335 kpp->kp_ptr = object; 4336 kpp->kp_slab = slab; 4337 kpp->kp_slab_cache = s; 4338 base = slab_address(slab); 4339 objp0 = kasan_reset_tag(object); 4340 #ifdef CONFIG_SLUB_DEBUG 4341 objp = restore_red_left(s, objp0); 4342 #else 4343 objp = objp0; 4344 #endif 4345 objnr = obj_to_index(s, slab, objp); 4346 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 4347 objp = base + s->size * objnr; 4348 kpp->kp_objp = objp; 4349 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 4350 || (objp - base) % s->size) || 4351 !(s->flags & SLAB_STORE_USER)) 4352 return; 4353 #ifdef CONFIG_SLUB_DEBUG 4354 objp = fixup_red_left(s, objp); 4355 trackp = get_track(s, objp, TRACK_ALLOC); 4356 kpp->kp_ret = (void *)trackp->addr; 4357 #ifdef CONFIG_STACKTRACE 4358 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) { 4359 kpp->kp_stack[i] = (void *)trackp->addrs[i]; 4360 if (!kpp->kp_stack[i]) 4361 break; 4362 } 4363 4364 trackp = get_track(s, objp, TRACK_FREE); 4365 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) { 4366 kpp->kp_free_stack[i] = (void *)trackp->addrs[i]; 4367 if (!kpp->kp_free_stack[i]) 4368 break; 4369 } 4370 #endif 4371 #endif 4372 } 4373 #endif 4374 4375 /******************************************************************** 4376 * Kmalloc subsystem 4377 *******************************************************************/ 4378 4379 static int __init setup_slub_min_order(char *str) 4380 { 4381 get_option(&str, (int *)&slub_min_order); 4382 4383 return 1; 4384 } 4385 4386 __setup("slub_min_order=", setup_slub_min_order); 4387 4388 static int __init setup_slub_max_order(char *str) 4389 { 4390 get_option(&str, (int *)&slub_max_order); 4391 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 4392 4393 return 1; 4394 } 4395 4396 __setup("slub_max_order=", setup_slub_max_order); 4397 4398 static int __init setup_slub_min_objects(char *str) 4399 { 4400 get_option(&str, (int *)&slub_min_objects); 4401 4402 return 1; 4403 } 4404 4405 __setup("slub_min_objects=", setup_slub_min_objects); 4406 4407 void *__kmalloc(size_t size, gfp_t flags) 4408 { 4409 struct kmem_cache *s; 4410 void *ret; 4411 4412 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4413 return kmalloc_large(size, flags); 4414 4415 s = kmalloc_slab(size, flags); 4416 4417 if (unlikely(ZERO_OR_NULL_PTR(s))) 4418 return s; 4419 4420 ret = slab_alloc(s, flags, _RET_IP_, size); 4421 4422 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 4423 4424 ret = kasan_kmalloc(s, ret, size, flags); 4425 4426 return ret; 4427 } 4428 EXPORT_SYMBOL(__kmalloc); 4429 4430 #ifdef CONFIG_NUMA 4431 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 4432 { 4433 struct page *page; 4434 void *ptr = NULL; 4435 unsigned int order = get_order(size); 4436 4437 flags |= __GFP_COMP; 4438 page = alloc_pages_node(node, flags, order); 4439 if (page) { 4440 ptr = page_address(page); 4441 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, 4442 PAGE_SIZE << order); 4443 } 4444 4445 return kmalloc_large_node_hook(ptr, size, flags); 4446 } 4447 4448 void *__kmalloc_node(size_t size, gfp_t flags, int node) 4449 { 4450 struct kmem_cache *s; 4451 void *ret; 4452 4453 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4454 ret = kmalloc_large_node(size, flags, node); 4455 4456 trace_kmalloc_node(_RET_IP_, ret, 4457 size, PAGE_SIZE << get_order(size), 4458 flags, node); 4459 4460 return ret; 4461 } 4462 4463 s = kmalloc_slab(size, flags); 4464 4465 if (unlikely(ZERO_OR_NULL_PTR(s))) 4466 return s; 4467 4468 ret = slab_alloc_node(s, flags, node, _RET_IP_, size); 4469 4470 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 4471 4472 ret = kasan_kmalloc(s, ret, size, flags); 4473 4474 return ret; 4475 } 4476 EXPORT_SYMBOL(__kmalloc_node); 4477 #endif /* CONFIG_NUMA */ 4478 4479 #ifdef CONFIG_HARDENED_USERCOPY 4480 /* 4481 * Rejects incorrectly sized objects and objects that are to be copied 4482 * to/from userspace but do not fall entirely within the containing slab 4483 * cache's usercopy region. 4484 * 4485 * Returns NULL if check passes, otherwise const char * to name of cache 4486 * to indicate an error. 4487 */ 4488 void __check_heap_object(const void *ptr, unsigned long n, 4489 const struct slab *slab, bool to_user) 4490 { 4491 struct kmem_cache *s; 4492 unsigned int offset; 4493 bool is_kfence = is_kfence_address(ptr); 4494 4495 ptr = kasan_reset_tag(ptr); 4496 4497 /* Find object and usable object size. */ 4498 s = slab->slab_cache; 4499 4500 /* Reject impossible pointers. */ 4501 if (ptr < slab_address(slab)) 4502 usercopy_abort("SLUB object not in SLUB page?!", NULL, 4503 to_user, 0, n); 4504 4505 /* Find offset within object. */ 4506 if (is_kfence) 4507 offset = ptr - kfence_object_start(ptr); 4508 else 4509 offset = (ptr - slab_address(slab)) % s->size; 4510 4511 /* Adjust for redzone and reject if within the redzone. */ 4512 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 4513 if (offset < s->red_left_pad) 4514 usercopy_abort("SLUB object in left red zone", 4515 s->name, to_user, offset, n); 4516 offset -= s->red_left_pad; 4517 } 4518 4519 /* Allow address range falling entirely within usercopy region. */ 4520 if (offset >= s->useroffset && 4521 offset - s->useroffset <= s->usersize && 4522 n <= s->useroffset - offset + s->usersize) 4523 return; 4524 4525 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4526 } 4527 #endif /* CONFIG_HARDENED_USERCOPY */ 4528 4529 size_t __ksize(const void *object) 4530 { 4531 struct folio *folio; 4532 4533 if (unlikely(object == ZERO_SIZE_PTR)) 4534 return 0; 4535 4536 folio = virt_to_folio(object); 4537 4538 if (unlikely(!folio_test_slab(folio))) 4539 return folio_size(folio); 4540 4541 return slab_ksize(folio_slab(folio)->slab_cache); 4542 } 4543 EXPORT_SYMBOL(__ksize); 4544 4545 void kfree(const void *x) 4546 { 4547 struct folio *folio; 4548 struct slab *slab; 4549 void *object = (void *)x; 4550 4551 trace_kfree(_RET_IP_, x); 4552 4553 if (unlikely(ZERO_OR_NULL_PTR(x))) 4554 return; 4555 4556 folio = virt_to_folio(x); 4557 if (unlikely(!folio_test_slab(folio))) { 4558 free_large_kmalloc(folio, object); 4559 return; 4560 } 4561 slab = folio_slab(folio); 4562 slab_free(slab->slab_cache, slab, object, NULL, 1, _RET_IP_); 4563 } 4564 EXPORT_SYMBOL(kfree); 4565 4566 #define SHRINK_PROMOTE_MAX 32 4567 4568 /* 4569 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4570 * up most to the head of the partial lists. New allocations will then 4571 * fill those up and thus they can be removed from the partial lists. 4572 * 4573 * The slabs with the least items are placed last. This results in them 4574 * being allocated from last increasing the chance that the last objects 4575 * are freed in them. 4576 */ 4577 static int __kmem_cache_do_shrink(struct kmem_cache *s) 4578 { 4579 int node; 4580 int i; 4581 struct kmem_cache_node *n; 4582 struct slab *slab; 4583 struct slab *t; 4584 struct list_head discard; 4585 struct list_head promote[SHRINK_PROMOTE_MAX]; 4586 unsigned long flags; 4587 int ret = 0; 4588 4589 for_each_kmem_cache_node(s, node, n) { 4590 INIT_LIST_HEAD(&discard); 4591 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4592 INIT_LIST_HEAD(promote + i); 4593 4594 spin_lock_irqsave(&n->list_lock, flags); 4595 4596 /* 4597 * Build lists of slabs to discard or promote. 4598 * 4599 * Note that concurrent frees may occur while we hold the 4600 * list_lock. slab->inuse here is the upper limit. 4601 */ 4602 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 4603 int free = slab->objects - slab->inuse; 4604 4605 /* Do not reread slab->inuse */ 4606 barrier(); 4607 4608 /* We do not keep full slabs on the list */ 4609 BUG_ON(free <= 0); 4610 4611 if (free == slab->objects) { 4612 list_move(&slab->slab_list, &discard); 4613 n->nr_partial--; 4614 } else if (free <= SHRINK_PROMOTE_MAX) 4615 list_move(&slab->slab_list, promote + free - 1); 4616 } 4617 4618 /* 4619 * Promote the slabs filled up most to the head of the 4620 * partial list. 4621 */ 4622 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4623 list_splice(promote + i, &n->partial); 4624 4625 spin_unlock_irqrestore(&n->list_lock, flags); 4626 4627 /* Release empty slabs */ 4628 list_for_each_entry_safe(slab, t, &discard, slab_list) 4629 discard_slab(s, slab); 4630 4631 if (slabs_node(s, node)) 4632 ret = 1; 4633 } 4634 4635 return ret; 4636 } 4637 4638 int __kmem_cache_shrink(struct kmem_cache *s) 4639 { 4640 flush_all(s); 4641 return __kmem_cache_do_shrink(s); 4642 } 4643 4644 static int slab_mem_going_offline_callback(void *arg) 4645 { 4646 struct kmem_cache *s; 4647 4648 mutex_lock(&slab_mutex); 4649 list_for_each_entry(s, &slab_caches, list) { 4650 flush_all_cpus_locked(s); 4651 __kmem_cache_do_shrink(s); 4652 } 4653 mutex_unlock(&slab_mutex); 4654 4655 return 0; 4656 } 4657 4658 static void slab_mem_offline_callback(void *arg) 4659 { 4660 struct memory_notify *marg = arg; 4661 int offline_node; 4662 4663 offline_node = marg->status_change_nid_normal; 4664 4665 /* 4666 * If the node still has available memory. we need kmem_cache_node 4667 * for it yet. 4668 */ 4669 if (offline_node < 0) 4670 return; 4671 4672 mutex_lock(&slab_mutex); 4673 node_clear(offline_node, slab_nodes); 4674 /* 4675 * We no longer free kmem_cache_node structures here, as it would be 4676 * racy with all get_node() users, and infeasible to protect them with 4677 * slab_mutex. 4678 */ 4679 mutex_unlock(&slab_mutex); 4680 } 4681 4682 static int slab_mem_going_online_callback(void *arg) 4683 { 4684 struct kmem_cache_node *n; 4685 struct kmem_cache *s; 4686 struct memory_notify *marg = arg; 4687 int nid = marg->status_change_nid_normal; 4688 int ret = 0; 4689 4690 /* 4691 * If the node's memory is already available, then kmem_cache_node is 4692 * already created. Nothing to do. 4693 */ 4694 if (nid < 0) 4695 return 0; 4696 4697 /* 4698 * We are bringing a node online. No memory is available yet. We must 4699 * allocate a kmem_cache_node structure in order to bring the node 4700 * online. 4701 */ 4702 mutex_lock(&slab_mutex); 4703 list_for_each_entry(s, &slab_caches, list) { 4704 /* 4705 * The structure may already exist if the node was previously 4706 * onlined and offlined. 4707 */ 4708 if (get_node(s, nid)) 4709 continue; 4710 /* 4711 * XXX: kmem_cache_alloc_node will fallback to other nodes 4712 * since memory is not yet available from the node that 4713 * is brought up. 4714 */ 4715 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4716 if (!n) { 4717 ret = -ENOMEM; 4718 goto out; 4719 } 4720 init_kmem_cache_node(n); 4721 s->node[nid] = n; 4722 } 4723 /* 4724 * Any cache created after this point will also have kmem_cache_node 4725 * initialized for the new node. 4726 */ 4727 node_set(nid, slab_nodes); 4728 out: 4729 mutex_unlock(&slab_mutex); 4730 return ret; 4731 } 4732 4733 static int slab_memory_callback(struct notifier_block *self, 4734 unsigned long action, void *arg) 4735 { 4736 int ret = 0; 4737 4738 switch (action) { 4739 case MEM_GOING_ONLINE: 4740 ret = slab_mem_going_online_callback(arg); 4741 break; 4742 case MEM_GOING_OFFLINE: 4743 ret = slab_mem_going_offline_callback(arg); 4744 break; 4745 case MEM_OFFLINE: 4746 case MEM_CANCEL_ONLINE: 4747 slab_mem_offline_callback(arg); 4748 break; 4749 case MEM_ONLINE: 4750 case MEM_CANCEL_OFFLINE: 4751 break; 4752 } 4753 if (ret) 4754 ret = notifier_from_errno(ret); 4755 else 4756 ret = NOTIFY_OK; 4757 return ret; 4758 } 4759 4760 static struct notifier_block slab_memory_callback_nb = { 4761 .notifier_call = slab_memory_callback, 4762 .priority = SLAB_CALLBACK_PRI, 4763 }; 4764 4765 /******************************************************************** 4766 * Basic setup of slabs 4767 *******************************************************************/ 4768 4769 /* 4770 * Used for early kmem_cache structures that were allocated using 4771 * the page allocator. Allocate them properly then fix up the pointers 4772 * that may be pointing to the wrong kmem_cache structure. 4773 */ 4774 4775 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4776 { 4777 int node; 4778 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4779 struct kmem_cache_node *n; 4780 4781 memcpy(s, static_cache, kmem_cache->object_size); 4782 4783 /* 4784 * This runs very early, and only the boot processor is supposed to be 4785 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4786 * IPIs around. 4787 */ 4788 __flush_cpu_slab(s, smp_processor_id()); 4789 for_each_kmem_cache_node(s, node, n) { 4790 struct slab *p; 4791 4792 list_for_each_entry(p, &n->partial, slab_list) 4793 p->slab_cache = s; 4794 4795 #ifdef CONFIG_SLUB_DEBUG 4796 list_for_each_entry(p, &n->full, slab_list) 4797 p->slab_cache = s; 4798 #endif 4799 } 4800 list_add(&s->list, &slab_caches); 4801 return s; 4802 } 4803 4804 void __init kmem_cache_init(void) 4805 { 4806 static __initdata struct kmem_cache boot_kmem_cache, 4807 boot_kmem_cache_node; 4808 int node; 4809 4810 if (debug_guardpage_minorder()) 4811 slub_max_order = 0; 4812 4813 /* Print slub debugging pointers without hashing */ 4814 if (__slub_debug_enabled()) 4815 no_hash_pointers_enable(NULL); 4816 4817 kmem_cache_node = &boot_kmem_cache_node; 4818 kmem_cache = &boot_kmem_cache; 4819 4820 /* 4821 * Initialize the nodemask for which we will allocate per node 4822 * structures. Here we don't need taking slab_mutex yet. 4823 */ 4824 for_each_node_state(node, N_NORMAL_MEMORY) 4825 node_set(node, slab_nodes); 4826 4827 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4828 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4829 4830 register_hotmemory_notifier(&slab_memory_callback_nb); 4831 4832 /* Able to allocate the per node structures */ 4833 slab_state = PARTIAL; 4834 4835 create_boot_cache(kmem_cache, "kmem_cache", 4836 offsetof(struct kmem_cache, node) + 4837 nr_node_ids * sizeof(struct kmem_cache_node *), 4838 SLAB_HWCACHE_ALIGN, 0, 0); 4839 4840 kmem_cache = bootstrap(&boot_kmem_cache); 4841 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4842 4843 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4844 setup_kmalloc_cache_index_table(); 4845 create_kmalloc_caches(0); 4846 4847 /* Setup random freelists for each cache */ 4848 init_freelist_randomization(); 4849 4850 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4851 slub_cpu_dead); 4852 4853 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4854 cache_line_size(), 4855 slub_min_order, slub_max_order, slub_min_objects, 4856 nr_cpu_ids, nr_node_ids); 4857 } 4858 4859 void __init kmem_cache_init_late(void) 4860 { 4861 } 4862 4863 struct kmem_cache * 4864 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4865 slab_flags_t flags, void (*ctor)(void *)) 4866 { 4867 struct kmem_cache *s; 4868 4869 s = find_mergeable(size, align, flags, name, ctor); 4870 if (s) { 4871 s->refcount++; 4872 4873 /* 4874 * Adjust the object sizes so that we clear 4875 * the complete object on kzalloc. 4876 */ 4877 s->object_size = max(s->object_size, size); 4878 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4879 4880 if (sysfs_slab_alias(s, name)) { 4881 s->refcount--; 4882 s = NULL; 4883 } 4884 } 4885 4886 return s; 4887 } 4888 4889 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4890 { 4891 int err; 4892 4893 err = kmem_cache_open(s, flags); 4894 if (err) 4895 return err; 4896 4897 /* Mutex is not taken during early boot */ 4898 if (slab_state <= UP) 4899 return 0; 4900 4901 err = sysfs_slab_add(s); 4902 if (err) { 4903 __kmem_cache_release(s); 4904 return err; 4905 } 4906 4907 if (s->flags & SLAB_STORE_USER) 4908 debugfs_slab_add(s); 4909 4910 return 0; 4911 } 4912 4913 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4914 { 4915 struct kmem_cache *s; 4916 void *ret; 4917 4918 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4919 return kmalloc_large(size, gfpflags); 4920 4921 s = kmalloc_slab(size, gfpflags); 4922 4923 if (unlikely(ZERO_OR_NULL_PTR(s))) 4924 return s; 4925 4926 ret = slab_alloc(s, gfpflags, caller, size); 4927 4928 /* Honor the call site pointer we received. */ 4929 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4930 4931 return ret; 4932 } 4933 EXPORT_SYMBOL(__kmalloc_track_caller); 4934 4935 #ifdef CONFIG_NUMA 4936 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4937 int node, unsigned long caller) 4938 { 4939 struct kmem_cache *s; 4940 void *ret; 4941 4942 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4943 ret = kmalloc_large_node(size, gfpflags, node); 4944 4945 trace_kmalloc_node(caller, ret, 4946 size, PAGE_SIZE << get_order(size), 4947 gfpflags, node); 4948 4949 return ret; 4950 } 4951 4952 s = kmalloc_slab(size, gfpflags); 4953 4954 if (unlikely(ZERO_OR_NULL_PTR(s))) 4955 return s; 4956 4957 ret = slab_alloc_node(s, gfpflags, node, caller, size); 4958 4959 /* Honor the call site pointer we received. */ 4960 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4961 4962 return ret; 4963 } 4964 EXPORT_SYMBOL(__kmalloc_node_track_caller); 4965 #endif 4966 4967 #ifdef CONFIG_SYSFS 4968 static int count_inuse(struct slab *slab) 4969 { 4970 return slab->inuse; 4971 } 4972 4973 static int count_total(struct slab *slab) 4974 { 4975 return slab->objects; 4976 } 4977 #endif 4978 4979 #ifdef CONFIG_SLUB_DEBUG 4980 static void validate_slab(struct kmem_cache *s, struct slab *slab, 4981 unsigned long *obj_map) 4982 { 4983 void *p; 4984 void *addr = slab_address(slab); 4985 unsigned long flags; 4986 4987 slab_lock(slab, &flags); 4988 4989 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 4990 goto unlock; 4991 4992 /* Now we know that a valid freelist exists */ 4993 __fill_map(obj_map, s, slab); 4994 for_each_object(p, s, addr, slab->objects) { 4995 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 4996 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 4997 4998 if (!check_object(s, slab, p, val)) 4999 break; 5000 } 5001 unlock: 5002 slab_unlock(slab, &flags); 5003 } 5004 5005 static int validate_slab_node(struct kmem_cache *s, 5006 struct kmem_cache_node *n, unsigned long *obj_map) 5007 { 5008 unsigned long count = 0; 5009 struct slab *slab; 5010 unsigned long flags; 5011 5012 spin_lock_irqsave(&n->list_lock, flags); 5013 5014 list_for_each_entry(slab, &n->partial, slab_list) { 5015 validate_slab(s, slab, obj_map); 5016 count++; 5017 } 5018 if (count != n->nr_partial) { 5019 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 5020 s->name, count, n->nr_partial); 5021 slab_add_kunit_errors(); 5022 } 5023 5024 if (!(s->flags & SLAB_STORE_USER)) 5025 goto out; 5026 5027 list_for_each_entry(slab, &n->full, slab_list) { 5028 validate_slab(s, slab, obj_map); 5029 count++; 5030 } 5031 if (count != atomic_long_read(&n->nr_slabs)) { 5032 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 5033 s->name, count, atomic_long_read(&n->nr_slabs)); 5034 slab_add_kunit_errors(); 5035 } 5036 5037 out: 5038 spin_unlock_irqrestore(&n->list_lock, flags); 5039 return count; 5040 } 5041 5042 long validate_slab_cache(struct kmem_cache *s) 5043 { 5044 int node; 5045 unsigned long count = 0; 5046 struct kmem_cache_node *n; 5047 unsigned long *obj_map; 5048 5049 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 5050 if (!obj_map) 5051 return -ENOMEM; 5052 5053 flush_all(s); 5054 for_each_kmem_cache_node(s, node, n) 5055 count += validate_slab_node(s, n, obj_map); 5056 5057 bitmap_free(obj_map); 5058 5059 return count; 5060 } 5061 EXPORT_SYMBOL(validate_slab_cache); 5062 5063 #ifdef CONFIG_DEBUG_FS 5064 /* 5065 * Generate lists of code addresses where slabcache objects are allocated 5066 * and freed. 5067 */ 5068 5069 struct location { 5070 unsigned long count; 5071 unsigned long addr; 5072 long long sum_time; 5073 long min_time; 5074 long max_time; 5075 long min_pid; 5076 long max_pid; 5077 DECLARE_BITMAP(cpus, NR_CPUS); 5078 nodemask_t nodes; 5079 }; 5080 5081 struct loc_track { 5082 unsigned long max; 5083 unsigned long count; 5084 struct location *loc; 5085 loff_t idx; 5086 }; 5087 5088 static struct dentry *slab_debugfs_root; 5089 5090 static void free_loc_track(struct loc_track *t) 5091 { 5092 if (t->max) 5093 free_pages((unsigned long)t->loc, 5094 get_order(sizeof(struct location) * t->max)); 5095 } 5096 5097 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 5098 { 5099 struct location *l; 5100 int order; 5101 5102 order = get_order(sizeof(struct location) * max); 5103 5104 l = (void *)__get_free_pages(flags, order); 5105 if (!l) 5106 return 0; 5107 5108 if (t->count) { 5109 memcpy(l, t->loc, sizeof(struct location) * t->count); 5110 free_loc_track(t); 5111 } 5112 t->max = max; 5113 t->loc = l; 5114 return 1; 5115 } 5116 5117 static int add_location(struct loc_track *t, struct kmem_cache *s, 5118 const struct track *track) 5119 { 5120 long start, end, pos; 5121 struct location *l; 5122 unsigned long caddr; 5123 unsigned long age = jiffies - track->when; 5124 5125 start = -1; 5126 end = t->count; 5127 5128 for ( ; ; ) { 5129 pos = start + (end - start + 1) / 2; 5130 5131 /* 5132 * There is nothing at "end". If we end up there 5133 * we need to add something to before end. 5134 */ 5135 if (pos == end) 5136 break; 5137 5138 caddr = t->loc[pos].addr; 5139 if (track->addr == caddr) { 5140 5141 l = &t->loc[pos]; 5142 l->count++; 5143 if (track->when) { 5144 l->sum_time += age; 5145 if (age < l->min_time) 5146 l->min_time = age; 5147 if (age > l->max_time) 5148 l->max_time = age; 5149 5150 if (track->pid < l->min_pid) 5151 l->min_pid = track->pid; 5152 if (track->pid > l->max_pid) 5153 l->max_pid = track->pid; 5154 5155 cpumask_set_cpu(track->cpu, 5156 to_cpumask(l->cpus)); 5157 } 5158 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5159 return 1; 5160 } 5161 5162 if (track->addr < caddr) 5163 end = pos; 5164 else 5165 start = pos; 5166 } 5167 5168 /* 5169 * Not found. Insert new tracking element. 5170 */ 5171 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 5172 return 0; 5173 5174 l = t->loc + pos; 5175 if (pos < t->count) 5176 memmove(l + 1, l, 5177 (t->count - pos) * sizeof(struct location)); 5178 t->count++; 5179 l->count = 1; 5180 l->addr = track->addr; 5181 l->sum_time = age; 5182 l->min_time = age; 5183 l->max_time = age; 5184 l->min_pid = track->pid; 5185 l->max_pid = track->pid; 5186 cpumask_clear(to_cpumask(l->cpus)); 5187 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 5188 nodes_clear(l->nodes); 5189 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5190 return 1; 5191 } 5192 5193 static void process_slab(struct loc_track *t, struct kmem_cache *s, 5194 struct slab *slab, enum track_item alloc, 5195 unsigned long *obj_map) 5196 { 5197 void *addr = slab_address(slab); 5198 void *p; 5199 5200 __fill_map(obj_map, s, slab); 5201 5202 for_each_object(p, s, addr, slab->objects) 5203 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 5204 add_location(t, s, get_track(s, p, alloc)); 5205 } 5206 #endif /* CONFIG_DEBUG_FS */ 5207 #endif /* CONFIG_SLUB_DEBUG */ 5208 5209 #ifdef CONFIG_SYSFS 5210 enum slab_stat_type { 5211 SL_ALL, /* All slabs */ 5212 SL_PARTIAL, /* Only partially allocated slabs */ 5213 SL_CPU, /* Only slabs used for cpu caches */ 5214 SL_OBJECTS, /* Determine allocated objects not slabs */ 5215 SL_TOTAL /* Determine object capacity not slabs */ 5216 }; 5217 5218 #define SO_ALL (1 << SL_ALL) 5219 #define SO_PARTIAL (1 << SL_PARTIAL) 5220 #define SO_CPU (1 << SL_CPU) 5221 #define SO_OBJECTS (1 << SL_OBJECTS) 5222 #define SO_TOTAL (1 << SL_TOTAL) 5223 5224 static ssize_t show_slab_objects(struct kmem_cache *s, 5225 char *buf, unsigned long flags) 5226 { 5227 unsigned long total = 0; 5228 int node; 5229 int x; 5230 unsigned long *nodes; 5231 int len = 0; 5232 5233 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 5234 if (!nodes) 5235 return -ENOMEM; 5236 5237 if (flags & SO_CPU) { 5238 int cpu; 5239 5240 for_each_possible_cpu(cpu) { 5241 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 5242 cpu); 5243 int node; 5244 struct slab *slab; 5245 5246 slab = READ_ONCE(c->slab); 5247 if (!slab) 5248 continue; 5249 5250 node = slab_nid(slab); 5251 if (flags & SO_TOTAL) 5252 x = slab->objects; 5253 else if (flags & SO_OBJECTS) 5254 x = slab->inuse; 5255 else 5256 x = 1; 5257 5258 total += x; 5259 nodes[node] += x; 5260 5261 #ifdef CONFIG_SLUB_CPU_PARTIAL 5262 slab = slub_percpu_partial_read_once(c); 5263 if (slab) { 5264 node = slab_nid(slab); 5265 if (flags & SO_TOTAL) 5266 WARN_ON_ONCE(1); 5267 else if (flags & SO_OBJECTS) 5268 WARN_ON_ONCE(1); 5269 else 5270 x = slab->slabs; 5271 total += x; 5272 nodes[node] += x; 5273 } 5274 #endif 5275 } 5276 } 5277 5278 /* 5279 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 5280 * already held which will conflict with an existing lock order: 5281 * 5282 * mem_hotplug_lock->slab_mutex->kernfs_mutex 5283 * 5284 * We don't really need mem_hotplug_lock (to hold off 5285 * slab_mem_going_offline_callback) here because slab's memory hot 5286 * unplug code doesn't destroy the kmem_cache->node[] data. 5287 */ 5288 5289 #ifdef CONFIG_SLUB_DEBUG 5290 if (flags & SO_ALL) { 5291 struct kmem_cache_node *n; 5292 5293 for_each_kmem_cache_node(s, node, n) { 5294 5295 if (flags & SO_TOTAL) 5296 x = atomic_long_read(&n->total_objects); 5297 else if (flags & SO_OBJECTS) 5298 x = atomic_long_read(&n->total_objects) - 5299 count_partial(n, count_free); 5300 else 5301 x = atomic_long_read(&n->nr_slabs); 5302 total += x; 5303 nodes[node] += x; 5304 } 5305 5306 } else 5307 #endif 5308 if (flags & SO_PARTIAL) { 5309 struct kmem_cache_node *n; 5310 5311 for_each_kmem_cache_node(s, node, n) { 5312 if (flags & SO_TOTAL) 5313 x = count_partial(n, count_total); 5314 else if (flags & SO_OBJECTS) 5315 x = count_partial(n, count_inuse); 5316 else 5317 x = n->nr_partial; 5318 total += x; 5319 nodes[node] += x; 5320 } 5321 } 5322 5323 len += sysfs_emit_at(buf, len, "%lu", total); 5324 #ifdef CONFIG_NUMA 5325 for (node = 0; node < nr_node_ids; node++) { 5326 if (nodes[node]) 5327 len += sysfs_emit_at(buf, len, " N%d=%lu", 5328 node, nodes[node]); 5329 } 5330 #endif 5331 len += sysfs_emit_at(buf, len, "\n"); 5332 kfree(nodes); 5333 5334 return len; 5335 } 5336 5337 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 5338 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5339 5340 struct slab_attribute { 5341 struct attribute attr; 5342 ssize_t (*show)(struct kmem_cache *s, char *buf); 5343 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5344 }; 5345 5346 #define SLAB_ATTR_RO(_name) \ 5347 static struct slab_attribute _name##_attr = \ 5348 __ATTR(_name, 0400, _name##_show, NULL) 5349 5350 #define SLAB_ATTR(_name) \ 5351 static struct slab_attribute _name##_attr = \ 5352 __ATTR(_name, 0600, _name##_show, _name##_store) 5353 5354 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5355 { 5356 return sysfs_emit(buf, "%u\n", s->size); 5357 } 5358 SLAB_ATTR_RO(slab_size); 5359 5360 static ssize_t align_show(struct kmem_cache *s, char *buf) 5361 { 5362 return sysfs_emit(buf, "%u\n", s->align); 5363 } 5364 SLAB_ATTR_RO(align); 5365 5366 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5367 { 5368 return sysfs_emit(buf, "%u\n", s->object_size); 5369 } 5370 SLAB_ATTR_RO(object_size); 5371 5372 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5373 { 5374 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 5375 } 5376 SLAB_ATTR_RO(objs_per_slab); 5377 5378 static ssize_t order_show(struct kmem_cache *s, char *buf) 5379 { 5380 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 5381 } 5382 SLAB_ATTR_RO(order); 5383 5384 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5385 { 5386 return sysfs_emit(buf, "%lu\n", s->min_partial); 5387 } 5388 5389 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5390 size_t length) 5391 { 5392 unsigned long min; 5393 int err; 5394 5395 err = kstrtoul(buf, 10, &min); 5396 if (err) 5397 return err; 5398 5399 set_min_partial(s, min); 5400 return length; 5401 } 5402 SLAB_ATTR(min_partial); 5403 5404 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5405 { 5406 unsigned int nr_partial = 0; 5407 #ifdef CONFIG_SLUB_CPU_PARTIAL 5408 nr_partial = s->cpu_partial; 5409 #endif 5410 5411 return sysfs_emit(buf, "%u\n", nr_partial); 5412 } 5413 5414 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5415 size_t length) 5416 { 5417 unsigned int objects; 5418 int err; 5419 5420 err = kstrtouint(buf, 10, &objects); 5421 if (err) 5422 return err; 5423 if (objects && !kmem_cache_has_cpu_partial(s)) 5424 return -EINVAL; 5425 5426 slub_set_cpu_partial(s, objects); 5427 flush_all(s); 5428 return length; 5429 } 5430 SLAB_ATTR(cpu_partial); 5431 5432 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5433 { 5434 if (!s->ctor) 5435 return 0; 5436 return sysfs_emit(buf, "%pS\n", s->ctor); 5437 } 5438 SLAB_ATTR_RO(ctor); 5439 5440 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5441 { 5442 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5443 } 5444 SLAB_ATTR_RO(aliases); 5445 5446 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5447 { 5448 return show_slab_objects(s, buf, SO_PARTIAL); 5449 } 5450 SLAB_ATTR_RO(partial); 5451 5452 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5453 { 5454 return show_slab_objects(s, buf, SO_CPU); 5455 } 5456 SLAB_ATTR_RO(cpu_slabs); 5457 5458 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5459 { 5460 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5461 } 5462 SLAB_ATTR_RO(objects); 5463 5464 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5465 { 5466 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5467 } 5468 SLAB_ATTR_RO(objects_partial); 5469 5470 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5471 { 5472 int objects = 0; 5473 int slabs = 0; 5474 int cpu __maybe_unused; 5475 int len = 0; 5476 5477 #ifdef CONFIG_SLUB_CPU_PARTIAL 5478 for_each_online_cpu(cpu) { 5479 struct slab *slab; 5480 5481 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5482 5483 if (slab) 5484 slabs += slab->slabs; 5485 } 5486 #endif 5487 5488 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 5489 objects = (slabs * oo_objects(s->oo)) / 2; 5490 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 5491 5492 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP) 5493 for_each_online_cpu(cpu) { 5494 struct slab *slab; 5495 5496 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5497 if (slab) { 5498 slabs = READ_ONCE(slab->slabs); 5499 objects = (slabs * oo_objects(s->oo)) / 2; 5500 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 5501 cpu, objects, slabs); 5502 } 5503 } 5504 #endif 5505 len += sysfs_emit_at(buf, len, "\n"); 5506 5507 return len; 5508 } 5509 SLAB_ATTR_RO(slabs_cpu_partial); 5510 5511 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5512 { 5513 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5514 } 5515 SLAB_ATTR_RO(reclaim_account); 5516 5517 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5518 { 5519 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5520 } 5521 SLAB_ATTR_RO(hwcache_align); 5522 5523 #ifdef CONFIG_ZONE_DMA 5524 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5525 { 5526 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5527 } 5528 SLAB_ATTR_RO(cache_dma); 5529 #endif 5530 5531 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5532 { 5533 return sysfs_emit(buf, "%u\n", s->usersize); 5534 } 5535 SLAB_ATTR_RO(usersize); 5536 5537 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5538 { 5539 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5540 } 5541 SLAB_ATTR_RO(destroy_by_rcu); 5542 5543 #ifdef CONFIG_SLUB_DEBUG 5544 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5545 { 5546 return show_slab_objects(s, buf, SO_ALL); 5547 } 5548 SLAB_ATTR_RO(slabs); 5549 5550 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5551 { 5552 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5553 } 5554 SLAB_ATTR_RO(total_objects); 5555 5556 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5557 { 5558 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5559 } 5560 SLAB_ATTR_RO(sanity_checks); 5561 5562 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5563 { 5564 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5565 } 5566 SLAB_ATTR_RO(trace); 5567 5568 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5569 { 5570 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5571 } 5572 5573 SLAB_ATTR_RO(red_zone); 5574 5575 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5576 { 5577 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5578 } 5579 5580 SLAB_ATTR_RO(poison); 5581 5582 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5583 { 5584 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5585 } 5586 5587 SLAB_ATTR_RO(store_user); 5588 5589 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5590 { 5591 return 0; 5592 } 5593 5594 static ssize_t validate_store(struct kmem_cache *s, 5595 const char *buf, size_t length) 5596 { 5597 int ret = -EINVAL; 5598 5599 if (buf[0] == '1') { 5600 ret = validate_slab_cache(s); 5601 if (ret >= 0) 5602 ret = length; 5603 } 5604 return ret; 5605 } 5606 SLAB_ATTR(validate); 5607 5608 #endif /* CONFIG_SLUB_DEBUG */ 5609 5610 #ifdef CONFIG_FAILSLAB 5611 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5612 { 5613 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5614 } 5615 SLAB_ATTR_RO(failslab); 5616 #endif 5617 5618 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5619 { 5620 return 0; 5621 } 5622 5623 static ssize_t shrink_store(struct kmem_cache *s, 5624 const char *buf, size_t length) 5625 { 5626 if (buf[0] == '1') 5627 kmem_cache_shrink(s); 5628 else 5629 return -EINVAL; 5630 return length; 5631 } 5632 SLAB_ATTR(shrink); 5633 5634 #ifdef CONFIG_NUMA 5635 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5636 { 5637 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5638 } 5639 5640 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5641 const char *buf, size_t length) 5642 { 5643 unsigned int ratio; 5644 int err; 5645 5646 err = kstrtouint(buf, 10, &ratio); 5647 if (err) 5648 return err; 5649 if (ratio > 100) 5650 return -ERANGE; 5651 5652 s->remote_node_defrag_ratio = ratio * 10; 5653 5654 return length; 5655 } 5656 SLAB_ATTR(remote_node_defrag_ratio); 5657 #endif 5658 5659 #ifdef CONFIG_SLUB_STATS 5660 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5661 { 5662 unsigned long sum = 0; 5663 int cpu; 5664 int len = 0; 5665 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5666 5667 if (!data) 5668 return -ENOMEM; 5669 5670 for_each_online_cpu(cpu) { 5671 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5672 5673 data[cpu] = x; 5674 sum += x; 5675 } 5676 5677 len += sysfs_emit_at(buf, len, "%lu", sum); 5678 5679 #ifdef CONFIG_SMP 5680 for_each_online_cpu(cpu) { 5681 if (data[cpu]) 5682 len += sysfs_emit_at(buf, len, " C%d=%u", 5683 cpu, data[cpu]); 5684 } 5685 #endif 5686 kfree(data); 5687 len += sysfs_emit_at(buf, len, "\n"); 5688 5689 return len; 5690 } 5691 5692 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5693 { 5694 int cpu; 5695 5696 for_each_online_cpu(cpu) 5697 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5698 } 5699 5700 #define STAT_ATTR(si, text) \ 5701 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5702 { \ 5703 return show_stat(s, buf, si); \ 5704 } \ 5705 static ssize_t text##_store(struct kmem_cache *s, \ 5706 const char *buf, size_t length) \ 5707 { \ 5708 if (buf[0] != '0') \ 5709 return -EINVAL; \ 5710 clear_stat(s, si); \ 5711 return length; \ 5712 } \ 5713 SLAB_ATTR(text); \ 5714 5715 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5716 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5717 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5718 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5719 STAT_ATTR(FREE_FROZEN, free_frozen); 5720 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5721 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5722 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5723 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5724 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5725 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5726 STAT_ATTR(FREE_SLAB, free_slab); 5727 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5728 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5729 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5730 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5731 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5732 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5733 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5734 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5735 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5736 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5737 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5738 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5739 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5740 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5741 #endif /* CONFIG_SLUB_STATS */ 5742 5743 static struct attribute *slab_attrs[] = { 5744 &slab_size_attr.attr, 5745 &object_size_attr.attr, 5746 &objs_per_slab_attr.attr, 5747 &order_attr.attr, 5748 &min_partial_attr.attr, 5749 &cpu_partial_attr.attr, 5750 &objects_attr.attr, 5751 &objects_partial_attr.attr, 5752 &partial_attr.attr, 5753 &cpu_slabs_attr.attr, 5754 &ctor_attr.attr, 5755 &aliases_attr.attr, 5756 &align_attr.attr, 5757 &hwcache_align_attr.attr, 5758 &reclaim_account_attr.attr, 5759 &destroy_by_rcu_attr.attr, 5760 &shrink_attr.attr, 5761 &slabs_cpu_partial_attr.attr, 5762 #ifdef CONFIG_SLUB_DEBUG 5763 &total_objects_attr.attr, 5764 &slabs_attr.attr, 5765 &sanity_checks_attr.attr, 5766 &trace_attr.attr, 5767 &red_zone_attr.attr, 5768 &poison_attr.attr, 5769 &store_user_attr.attr, 5770 &validate_attr.attr, 5771 #endif 5772 #ifdef CONFIG_ZONE_DMA 5773 &cache_dma_attr.attr, 5774 #endif 5775 #ifdef CONFIG_NUMA 5776 &remote_node_defrag_ratio_attr.attr, 5777 #endif 5778 #ifdef CONFIG_SLUB_STATS 5779 &alloc_fastpath_attr.attr, 5780 &alloc_slowpath_attr.attr, 5781 &free_fastpath_attr.attr, 5782 &free_slowpath_attr.attr, 5783 &free_frozen_attr.attr, 5784 &free_add_partial_attr.attr, 5785 &free_remove_partial_attr.attr, 5786 &alloc_from_partial_attr.attr, 5787 &alloc_slab_attr.attr, 5788 &alloc_refill_attr.attr, 5789 &alloc_node_mismatch_attr.attr, 5790 &free_slab_attr.attr, 5791 &cpuslab_flush_attr.attr, 5792 &deactivate_full_attr.attr, 5793 &deactivate_empty_attr.attr, 5794 &deactivate_to_head_attr.attr, 5795 &deactivate_to_tail_attr.attr, 5796 &deactivate_remote_frees_attr.attr, 5797 &deactivate_bypass_attr.attr, 5798 &order_fallback_attr.attr, 5799 &cmpxchg_double_fail_attr.attr, 5800 &cmpxchg_double_cpu_fail_attr.attr, 5801 &cpu_partial_alloc_attr.attr, 5802 &cpu_partial_free_attr.attr, 5803 &cpu_partial_node_attr.attr, 5804 &cpu_partial_drain_attr.attr, 5805 #endif 5806 #ifdef CONFIG_FAILSLAB 5807 &failslab_attr.attr, 5808 #endif 5809 &usersize_attr.attr, 5810 5811 NULL 5812 }; 5813 5814 static const struct attribute_group slab_attr_group = { 5815 .attrs = slab_attrs, 5816 }; 5817 5818 static ssize_t slab_attr_show(struct kobject *kobj, 5819 struct attribute *attr, 5820 char *buf) 5821 { 5822 struct slab_attribute *attribute; 5823 struct kmem_cache *s; 5824 int err; 5825 5826 attribute = to_slab_attr(attr); 5827 s = to_slab(kobj); 5828 5829 if (!attribute->show) 5830 return -EIO; 5831 5832 err = attribute->show(s, buf); 5833 5834 return err; 5835 } 5836 5837 static ssize_t slab_attr_store(struct kobject *kobj, 5838 struct attribute *attr, 5839 const char *buf, size_t len) 5840 { 5841 struct slab_attribute *attribute; 5842 struct kmem_cache *s; 5843 int err; 5844 5845 attribute = to_slab_attr(attr); 5846 s = to_slab(kobj); 5847 5848 if (!attribute->store) 5849 return -EIO; 5850 5851 err = attribute->store(s, buf, len); 5852 return err; 5853 } 5854 5855 static void kmem_cache_release(struct kobject *k) 5856 { 5857 slab_kmem_cache_release(to_slab(k)); 5858 } 5859 5860 static const struct sysfs_ops slab_sysfs_ops = { 5861 .show = slab_attr_show, 5862 .store = slab_attr_store, 5863 }; 5864 5865 static struct kobj_type slab_ktype = { 5866 .sysfs_ops = &slab_sysfs_ops, 5867 .release = kmem_cache_release, 5868 }; 5869 5870 static struct kset *slab_kset; 5871 5872 static inline struct kset *cache_kset(struct kmem_cache *s) 5873 { 5874 return slab_kset; 5875 } 5876 5877 #define ID_STR_LENGTH 64 5878 5879 /* Create a unique string id for a slab cache: 5880 * 5881 * Format :[flags-]size 5882 */ 5883 static char *create_unique_id(struct kmem_cache *s) 5884 { 5885 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5886 char *p = name; 5887 5888 BUG_ON(!name); 5889 5890 *p++ = ':'; 5891 /* 5892 * First flags affecting slabcache operations. We will only 5893 * get here for aliasable slabs so we do not need to support 5894 * too many flags. The flags here must cover all flags that 5895 * are matched during merging to guarantee that the id is 5896 * unique. 5897 */ 5898 if (s->flags & SLAB_CACHE_DMA) 5899 *p++ = 'd'; 5900 if (s->flags & SLAB_CACHE_DMA32) 5901 *p++ = 'D'; 5902 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5903 *p++ = 'a'; 5904 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5905 *p++ = 'F'; 5906 if (s->flags & SLAB_ACCOUNT) 5907 *p++ = 'A'; 5908 if (p != name + 1) 5909 *p++ = '-'; 5910 p += sprintf(p, "%07u", s->size); 5911 5912 BUG_ON(p > name + ID_STR_LENGTH - 1); 5913 return name; 5914 } 5915 5916 static int sysfs_slab_add(struct kmem_cache *s) 5917 { 5918 int err; 5919 const char *name; 5920 struct kset *kset = cache_kset(s); 5921 int unmergeable = slab_unmergeable(s); 5922 5923 if (!kset) { 5924 kobject_init(&s->kobj, &slab_ktype); 5925 return 0; 5926 } 5927 5928 if (!unmergeable && disable_higher_order_debug && 5929 (slub_debug & DEBUG_METADATA_FLAGS)) 5930 unmergeable = 1; 5931 5932 if (unmergeable) { 5933 /* 5934 * Slabcache can never be merged so we can use the name proper. 5935 * This is typically the case for debug situations. In that 5936 * case we can catch duplicate names easily. 5937 */ 5938 sysfs_remove_link(&slab_kset->kobj, s->name); 5939 name = s->name; 5940 } else { 5941 /* 5942 * Create a unique name for the slab as a target 5943 * for the symlinks. 5944 */ 5945 name = create_unique_id(s); 5946 } 5947 5948 s->kobj.kset = kset; 5949 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5950 if (err) 5951 goto out; 5952 5953 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5954 if (err) 5955 goto out_del_kobj; 5956 5957 if (!unmergeable) { 5958 /* Setup first alias */ 5959 sysfs_slab_alias(s, s->name); 5960 } 5961 out: 5962 if (!unmergeable) 5963 kfree(name); 5964 return err; 5965 out_del_kobj: 5966 kobject_del(&s->kobj); 5967 goto out; 5968 } 5969 5970 void sysfs_slab_unlink(struct kmem_cache *s) 5971 { 5972 if (slab_state >= FULL) 5973 kobject_del(&s->kobj); 5974 } 5975 5976 void sysfs_slab_release(struct kmem_cache *s) 5977 { 5978 if (slab_state >= FULL) 5979 kobject_put(&s->kobj); 5980 } 5981 5982 /* 5983 * Need to buffer aliases during bootup until sysfs becomes 5984 * available lest we lose that information. 5985 */ 5986 struct saved_alias { 5987 struct kmem_cache *s; 5988 const char *name; 5989 struct saved_alias *next; 5990 }; 5991 5992 static struct saved_alias *alias_list; 5993 5994 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5995 { 5996 struct saved_alias *al; 5997 5998 if (slab_state == FULL) { 5999 /* 6000 * If we have a leftover link then remove it. 6001 */ 6002 sysfs_remove_link(&slab_kset->kobj, name); 6003 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 6004 } 6005 6006 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 6007 if (!al) 6008 return -ENOMEM; 6009 6010 al->s = s; 6011 al->name = name; 6012 al->next = alias_list; 6013 alias_list = al; 6014 return 0; 6015 } 6016 6017 static int __init slab_sysfs_init(void) 6018 { 6019 struct kmem_cache *s; 6020 int err; 6021 6022 mutex_lock(&slab_mutex); 6023 6024 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 6025 if (!slab_kset) { 6026 mutex_unlock(&slab_mutex); 6027 pr_err("Cannot register slab subsystem.\n"); 6028 return -ENOSYS; 6029 } 6030 6031 slab_state = FULL; 6032 6033 list_for_each_entry(s, &slab_caches, list) { 6034 err = sysfs_slab_add(s); 6035 if (err) 6036 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 6037 s->name); 6038 } 6039 6040 while (alias_list) { 6041 struct saved_alias *al = alias_list; 6042 6043 alias_list = alias_list->next; 6044 err = sysfs_slab_alias(al->s, al->name); 6045 if (err) 6046 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 6047 al->name); 6048 kfree(al); 6049 } 6050 6051 mutex_unlock(&slab_mutex); 6052 return 0; 6053 } 6054 6055 __initcall(slab_sysfs_init); 6056 #endif /* CONFIG_SYSFS */ 6057 6058 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 6059 static int slab_debugfs_show(struct seq_file *seq, void *v) 6060 { 6061 struct loc_track *t = seq->private; 6062 struct location *l; 6063 unsigned long idx; 6064 6065 idx = (unsigned long) t->idx; 6066 if (idx < t->count) { 6067 l = &t->loc[idx]; 6068 6069 seq_printf(seq, "%7ld ", l->count); 6070 6071 if (l->addr) 6072 seq_printf(seq, "%pS", (void *)l->addr); 6073 else 6074 seq_puts(seq, "<not-available>"); 6075 6076 if (l->sum_time != l->min_time) { 6077 seq_printf(seq, " age=%ld/%llu/%ld", 6078 l->min_time, div_u64(l->sum_time, l->count), 6079 l->max_time); 6080 } else 6081 seq_printf(seq, " age=%ld", l->min_time); 6082 6083 if (l->min_pid != l->max_pid) 6084 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 6085 else 6086 seq_printf(seq, " pid=%ld", 6087 l->min_pid); 6088 6089 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 6090 seq_printf(seq, " cpus=%*pbl", 6091 cpumask_pr_args(to_cpumask(l->cpus))); 6092 6093 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 6094 seq_printf(seq, " nodes=%*pbl", 6095 nodemask_pr_args(&l->nodes)); 6096 6097 seq_puts(seq, "\n"); 6098 } 6099 6100 if (!idx && !t->count) 6101 seq_puts(seq, "No data\n"); 6102 6103 return 0; 6104 } 6105 6106 static void slab_debugfs_stop(struct seq_file *seq, void *v) 6107 { 6108 } 6109 6110 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 6111 { 6112 struct loc_track *t = seq->private; 6113 6114 t->idx = ++(*ppos); 6115 if (*ppos <= t->count) 6116 return ppos; 6117 6118 return NULL; 6119 } 6120 6121 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 6122 { 6123 struct loc_track *t = seq->private; 6124 6125 t->idx = *ppos; 6126 return ppos; 6127 } 6128 6129 static const struct seq_operations slab_debugfs_sops = { 6130 .start = slab_debugfs_start, 6131 .next = slab_debugfs_next, 6132 .stop = slab_debugfs_stop, 6133 .show = slab_debugfs_show, 6134 }; 6135 6136 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 6137 { 6138 6139 struct kmem_cache_node *n; 6140 enum track_item alloc; 6141 int node; 6142 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 6143 sizeof(struct loc_track)); 6144 struct kmem_cache *s = file_inode(filep)->i_private; 6145 unsigned long *obj_map; 6146 6147 if (!t) 6148 return -ENOMEM; 6149 6150 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6151 if (!obj_map) { 6152 seq_release_private(inode, filep); 6153 return -ENOMEM; 6154 } 6155 6156 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 6157 alloc = TRACK_ALLOC; 6158 else 6159 alloc = TRACK_FREE; 6160 6161 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 6162 bitmap_free(obj_map); 6163 seq_release_private(inode, filep); 6164 return -ENOMEM; 6165 } 6166 6167 for_each_kmem_cache_node(s, node, n) { 6168 unsigned long flags; 6169 struct slab *slab; 6170 6171 if (!atomic_long_read(&n->nr_slabs)) 6172 continue; 6173 6174 spin_lock_irqsave(&n->list_lock, flags); 6175 list_for_each_entry(slab, &n->partial, slab_list) 6176 process_slab(t, s, slab, alloc, obj_map); 6177 list_for_each_entry(slab, &n->full, slab_list) 6178 process_slab(t, s, slab, alloc, obj_map); 6179 spin_unlock_irqrestore(&n->list_lock, flags); 6180 } 6181 6182 bitmap_free(obj_map); 6183 return 0; 6184 } 6185 6186 static int slab_debug_trace_release(struct inode *inode, struct file *file) 6187 { 6188 struct seq_file *seq = file->private_data; 6189 struct loc_track *t = seq->private; 6190 6191 free_loc_track(t); 6192 return seq_release_private(inode, file); 6193 } 6194 6195 static const struct file_operations slab_debugfs_fops = { 6196 .open = slab_debug_trace_open, 6197 .read = seq_read, 6198 .llseek = seq_lseek, 6199 .release = slab_debug_trace_release, 6200 }; 6201 6202 static void debugfs_slab_add(struct kmem_cache *s) 6203 { 6204 struct dentry *slab_cache_dir; 6205 6206 if (unlikely(!slab_debugfs_root)) 6207 return; 6208 6209 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 6210 6211 debugfs_create_file("alloc_traces", 0400, 6212 slab_cache_dir, s, &slab_debugfs_fops); 6213 6214 debugfs_create_file("free_traces", 0400, 6215 slab_cache_dir, s, &slab_debugfs_fops); 6216 } 6217 6218 void debugfs_slab_release(struct kmem_cache *s) 6219 { 6220 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root)); 6221 } 6222 6223 static int __init slab_debugfs_init(void) 6224 { 6225 struct kmem_cache *s; 6226 6227 slab_debugfs_root = debugfs_create_dir("slab", NULL); 6228 6229 list_for_each_entry(s, &slab_caches, list) 6230 if (s->flags & SLAB_STORE_USER) 6231 debugfs_slab_add(s); 6232 6233 return 0; 6234 6235 } 6236 __initcall(slab_debugfs_init); 6237 #endif 6238 /* 6239 * The /proc/slabinfo ABI 6240 */ 6241 #ifdef CONFIG_SLUB_DEBUG 6242 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 6243 { 6244 unsigned long nr_slabs = 0; 6245 unsigned long nr_objs = 0; 6246 unsigned long nr_free = 0; 6247 int node; 6248 struct kmem_cache_node *n; 6249 6250 for_each_kmem_cache_node(s, node, n) { 6251 nr_slabs += node_nr_slabs(n); 6252 nr_objs += node_nr_objs(n); 6253 nr_free += count_partial(n, count_free); 6254 } 6255 6256 sinfo->active_objs = nr_objs - nr_free; 6257 sinfo->num_objs = nr_objs; 6258 sinfo->active_slabs = nr_slabs; 6259 sinfo->num_slabs = nr_slabs; 6260 sinfo->objects_per_slab = oo_objects(s->oo); 6261 sinfo->cache_order = oo_order(s->oo); 6262 } 6263 6264 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 6265 { 6266 } 6267 6268 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 6269 size_t count, loff_t *ppos) 6270 { 6271 return -EIO; 6272 } 6273 #endif /* CONFIG_SLUB_DEBUG */ 6274