xref: /openbmc/linux/mm/slub.c (revision 22246614)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/memory.h>
25 #include <linux/math64.h>
26 
27 /*
28  * Lock order:
29  *   1. slab_lock(page)
30  *   2. slab->list_lock
31  *
32  *   The slab_lock protects operations on the object of a particular
33  *   slab and its metadata in the page struct. If the slab lock
34  *   has been taken then no allocations nor frees can be performed
35  *   on the objects in the slab nor can the slab be added or removed
36  *   from the partial or full lists since this would mean modifying
37  *   the page_struct of the slab.
38  *
39  *   The list_lock protects the partial and full list on each node and
40  *   the partial slab counter. If taken then no new slabs may be added or
41  *   removed from the lists nor make the number of partial slabs be modified.
42  *   (Note that the total number of slabs is an atomic value that may be
43  *   modified without taking the list lock).
44  *
45  *   The list_lock is a centralized lock and thus we avoid taking it as
46  *   much as possible. As long as SLUB does not have to handle partial
47  *   slabs, operations can continue without any centralized lock. F.e.
48  *   allocating a long series of objects that fill up slabs does not require
49  *   the list lock.
50  *
51  *   The lock order is sometimes inverted when we are trying to get a slab
52  *   off a list. We take the list_lock and then look for a page on the list
53  *   to use. While we do that objects in the slabs may be freed. We can
54  *   only operate on the slab if we have also taken the slab_lock. So we use
55  *   a slab_trylock() on the slab. If trylock was successful then no frees
56  *   can occur anymore and we can use the slab for allocations etc. If the
57  *   slab_trylock() does not succeed then frees are in progress in the slab and
58  *   we must stay away from it for a while since we may cause a bouncing
59  *   cacheline if we try to acquire the lock. So go onto the next slab.
60  *   If all pages are busy then we may allocate a new slab instead of reusing
61  *   a partial slab. A new slab has noone operating on it and thus there is
62  *   no danger of cacheline contention.
63  *
64  *   Interrupts are disabled during allocation and deallocation in order to
65  *   make the slab allocator safe to use in the context of an irq. In addition
66  *   interrupts are disabled to ensure that the processor does not change
67  *   while handling per_cpu slabs, due to kernel preemption.
68  *
69  * SLUB assigns one slab for allocation to each processor.
70  * Allocations only occur from these slabs called cpu slabs.
71  *
72  * Slabs with free elements are kept on a partial list and during regular
73  * operations no list for full slabs is used. If an object in a full slab is
74  * freed then the slab will show up again on the partial lists.
75  * We track full slabs for debugging purposes though because otherwise we
76  * cannot scan all objects.
77  *
78  * Slabs are freed when they become empty. Teardown and setup is
79  * minimal so we rely on the page allocators per cpu caches for
80  * fast frees and allocs.
81  *
82  * Overloading of page flags that are otherwise used for LRU management.
83  *
84  * PageActive 		The slab is frozen and exempt from list processing.
85  * 			This means that the slab is dedicated to a purpose
86  * 			such as satisfying allocations for a specific
87  * 			processor. Objects may be freed in the slab while
88  * 			it is frozen but slab_free will then skip the usual
89  * 			list operations. It is up to the processor holding
90  * 			the slab to integrate the slab into the slab lists
91  * 			when the slab is no longer needed.
92  *
93  * 			One use of this flag is to mark slabs that are
94  * 			used for allocations. Then such a slab becomes a cpu
95  * 			slab. The cpu slab may be equipped with an additional
96  * 			freelist that allows lockless access to
97  * 			free objects in addition to the regular freelist
98  * 			that requires the slab lock.
99  *
100  * PageError		Slab requires special handling due to debug
101  * 			options set. This moves	slab handling out of
102  * 			the fast path and disables lockless freelists.
103  */
104 
105 #define FROZEN (1 << PG_active)
106 
107 #ifdef CONFIG_SLUB_DEBUG
108 #define SLABDEBUG (1 << PG_error)
109 #else
110 #define SLABDEBUG 0
111 #endif
112 
113 static inline int SlabFrozen(struct page *page)
114 {
115 	return page->flags & FROZEN;
116 }
117 
118 static inline void SetSlabFrozen(struct page *page)
119 {
120 	page->flags |= FROZEN;
121 }
122 
123 static inline void ClearSlabFrozen(struct page *page)
124 {
125 	page->flags &= ~FROZEN;
126 }
127 
128 static inline int SlabDebug(struct page *page)
129 {
130 	return page->flags & SLABDEBUG;
131 }
132 
133 static inline void SetSlabDebug(struct page *page)
134 {
135 	page->flags |= SLABDEBUG;
136 }
137 
138 static inline void ClearSlabDebug(struct page *page)
139 {
140 	page->flags &= ~SLABDEBUG;
141 }
142 
143 /*
144  * Issues still to be resolved:
145  *
146  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147  *
148  * - Variable sizing of the per node arrays
149  */
150 
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
153 
154 /*
155  * Mininum number of partial slabs. These will be left on the partial
156  * lists even if they are empty. kmem_cache_shrink may reclaim them.
157  */
158 #define MIN_PARTIAL 5
159 
160 /*
161  * Maximum number of desirable partial slabs.
162  * The existence of more partial slabs makes kmem_cache_shrink
163  * sort the partial list by the number of objects in the.
164  */
165 #define MAX_PARTIAL 10
166 
167 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
168 				SLAB_POISON | SLAB_STORE_USER)
169 
170 /*
171  * Set of flags that will prevent slab merging
172  */
173 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
174 		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
175 
176 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
177 		SLAB_CACHE_DMA)
178 
179 #ifndef ARCH_KMALLOC_MINALIGN
180 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
181 #endif
182 
183 #ifndef ARCH_SLAB_MINALIGN
184 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
185 #endif
186 
187 /* Internal SLUB flags */
188 #define __OBJECT_POISON		0x80000000 /* Poison object */
189 #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
190 
191 static int kmem_size = sizeof(struct kmem_cache);
192 
193 #ifdef CONFIG_SMP
194 static struct notifier_block slab_notifier;
195 #endif
196 
197 static enum {
198 	DOWN,		/* No slab functionality available */
199 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
200 	UP,		/* Everything works but does not show up in sysfs */
201 	SYSFS		/* Sysfs up */
202 } slab_state = DOWN;
203 
204 /* A list of all slab caches on the system */
205 static DECLARE_RWSEM(slub_lock);
206 static LIST_HEAD(slab_caches);
207 
208 /*
209  * Tracking user of a slab.
210  */
211 struct track {
212 	void *addr;		/* Called from address */
213 	int cpu;		/* Was running on cpu */
214 	int pid;		/* Pid context */
215 	unsigned long when;	/* When did the operation occur */
216 };
217 
218 enum track_item { TRACK_ALLOC, TRACK_FREE };
219 
220 #ifdef CONFIG_SLUB_DEBUG
221 static int sysfs_slab_add(struct kmem_cache *);
222 static int sysfs_slab_alias(struct kmem_cache *, const char *);
223 static void sysfs_slab_remove(struct kmem_cache *);
224 
225 #else
226 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
227 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
228 							{ return 0; }
229 static inline void sysfs_slab_remove(struct kmem_cache *s)
230 {
231 	kfree(s);
232 }
233 
234 #endif
235 
236 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
237 {
238 #ifdef CONFIG_SLUB_STATS
239 	c->stat[si]++;
240 #endif
241 }
242 
243 /********************************************************************
244  * 			Core slab cache functions
245  *******************************************************************/
246 
247 int slab_is_available(void)
248 {
249 	return slab_state >= UP;
250 }
251 
252 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
253 {
254 #ifdef CONFIG_NUMA
255 	return s->node[node];
256 #else
257 	return &s->local_node;
258 #endif
259 }
260 
261 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
262 {
263 #ifdef CONFIG_SMP
264 	return s->cpu_slab[cpu];
265 #else
266 	return &s->cpu_slab;
267 #endif
268 }
269 
270 /* Verify that a pointer has an address that is valid within a slab page */
271 static inline int check_valid_pointer(struct kmem_cache *s,
272 				struct page *page, const void *object)
273 {
274 	void *base;
275 
276 	if (!object)
277 		return 1;
278 
279 	base = page_address(page);
280 	if (object < base || object >= base + page->objects * s->size ||
281 		(object - base) % s->size) {
282 		return 0;
283 	}
284 
285 	return 1;
286 }
287 
288 /*
289  * Slow version of get and set free pointer.
290  *
291  * This version requires touching the cache lines of kmem_cache which
292  * we avoid to do in the fast alloc free paths. There we obtain the offset
293  * from the page struct.
294  */
295 static inline void *get_freepointer(struct kmem_cache *s, void *object)
296 {
297 	return *(void **)(object + s->offset);
298 }
299 
300 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301 {
302 	*(void **)(object + s->offset) = fp;
303 }
304 
305 /* Loop over all objects in a slab */
306 #define for_each_object(__p, __s, __addr, __objects) \
307 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
308 			__p += (__s)->size)
309 
310 /* Scan freelist */
311 #define for_each_free_object(__p, __s, __free) \
312 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
313 
314 /* Determine object index from a given position */
315 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
316 {
317 	return (p - addr) / s->size;
318 }
319 
320 static inline struct kmem_cache_order_objects oo_make(int order,
321 						unsigned long size)
322 {
323 	struct kmem_cache_order_objects x = {
324 		(order << 16) + (PAGE_SIZE << order) / size
325 	};
326 
327 	return x;
328 }
329 
330 static inline int oo_order(struct kmem_cache_order_objects x)
331 {
332 	return x.x >> 16;
333 }
334 
335 static inline int oo_objects(struct kmem_cache_order_objects x)
336 {
337 	return x.x & ((1 << 16) - 1);
338 }
339 
340 #ifdef CONFIG_SLUB_DEBUG
341 /*
342  * Debug settings:
343  */
344 #ifdef CONFIG_SLUB_DEBUG_ON
345 static int slub_debug = DEBUG_DEFAULT_FLAGS;
346 #else
347 static int slub_debug;
348 #endif
349 
350 static char *slub_debug_slabs;
351 
352 /*
353  * Object debugging
354  */
355 static void print_section(char *text, u8 *addr, unsigned int length)
356 {
357 	int i, offset;
358 	int newline = 1;
359 	char ascii[17];
360 
361 	ascii[16] = 0;
362 
363 	for (i = 0; i < length; i++) {
364 		if (newline) {
365 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
366 			newline = 0;
367 		}
368 		printk(KERN_CONT " %02x", addr[i]);
369 		offset = i % 16;
370 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
371 		if (offset == 15) {
372 			printk(KERN_CONT " %s\n", ascii);
373 			newline = 1;
374 		}
375 	}
376 	if (!newline) {
377 		i %= 16;
378 		while (i < 16) {
379 			printk(KERN_CONT "   ");
380 			ascii[i] = ' ';
381 			i++;
382 		}
383 		printk(KERN_CONT " %s\n", ascii);
384 	}
385 }
386 
387 static struct track *get_track(struct kmem_cache *s, void *object,
388 	enum track_item alloc)
389 {
390 	struct track *p;
391 
392 	if (s->offset)
393 		p = object + s->offset + sizeof(void *);
394 	else
395 		p = object + s->inuse;
396 
397 	return p + alloc;
398 }
399 
400 static void set_track(struct kmem_cache *s, void *object,
401 				enum track_item alloc, void *addr)
402 {
403 	struct track *p;
404 
405 	if (s->offset)
406 		p = object + s->offset + sizeof(void *);
407 	else
408 		p = object + s->inuse;
409 
410 	p += alloc;
411 	if (addr) {
412 		p->addr = addr;
413 		p->cpu = smp_processor_id();
414 		p->pid = current ? current->pid : -1;
415 		p->when = jiffies;
416 	} else
417 		memset(p, 0, sizeof(struct track));
418 }
419 
420 static void init_tracking(struct kmem_cache *s, void *object)
421 {
422 	if (!(s->flags & SLAB_STORE_USER))
423 		return;
424 
425 	set_track(s, object, TRACK_FREE, NULL);
426 	set_track(s, object, TRACK_ALLOC, NULL);
427 }
428 
429 static void print_track(const char *s, struct track *t)
430 {
431 	if (!t->addr)
432 		return;
433 
434 	printk(KERN_ERR "INFO: %s in ", s);
435 	__print_symbol("%s", (unsigned long)t->addr);
436 	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
437 }
438 
439 static void print_tracking(struct kmem_cache *s, void *object)
440 {
441 	if (!(s->flags & SLAB_STORE_USER))
442 		return;
443 
444 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
445 	print_track("Freed", get_track(s, object, TRACK_FREE));
446 }
447 
448 static void print_page_info(struct page *page)
449 {
450 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
451 		page, page->objects, page->inuse, page->freelist, page->flags);
452 
453 }
454 
455 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
456 {
457 	va_list args;
458 	char buf[100];
459 
460 	va_start(args, fmt);
461 	vsnprintf(buf, sizeof(buf), fmt, args);
462 	va_end(args);
463 	printk(KERN_ERR "========================================"
464 			"=====================================\n");
465 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
466 	printk(KERN_ERR "----------------------------------------"
467 			"-------------------------------------\n\n");
468 }
469 
470 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
471 {
472 	va_list args;
473 	char buf[100];
474 
475 	va_start(args, fmt);
476 	vsnprintf(buf, sizeof(buf), fmt, args);
477 	va_end(args);
478 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
479 }
480 
481 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
482 {
483 	unsigned int off;	/* Offset of last byte */
484 	u8 *addr = page_address(page);
485 
486 	print_tracking(s, p);
487 
488 	print_page_info(page);
489 
490 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
491 			p, p - addr, get_freepointer(s, p));
492 
493 	if (p > addr + 16)
494 		print_section("Bytes b4", p - 16, 16);
495 
496 	print_section("Object", p, min(s->objsize, 128));
497 
498 	if (s->flags & SLAB_RED_ZONE)
499 		print_section("Redzone", p + s->objsize,
500 			s->inuse - s->objsize);
501 
502 	if (s->offset)
503 		off = s->offset + sizeof(void *);
504 	else
505 		off = s->inuse;
506 
507 	if (s->flags & SLAB_STORE_USER)
508 		off += 2 * sizeof(struct track);
509 
510 	if (off != s->size)
511 		/* Beginning of the filler is the free pointer */
512 		print_section("Padding", p + off, s->size - off);
513 
514 	dump_stack();
515 }
516 
517 static void object_err(struct kmem_cache *s, struct page *page,
518 			u8 *object, char *reason)
519 {
520 	slab_bug(s, "%s", reason);
521 	print_trailer(s, page, object);
522 }
523 
524 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
525 {
526 	va_list args;
527 	char buf[100];
528 
529 	va_start(args, fmt);
530 	vsnprintf(buf, sizeof(buf), fmt, args);
531 	va_end(args);
532 	slab_bug(s, "%s", buf);
533 	print_page_info(page);
534 	dump_stack();
535 }
536 
537 static void init_object(struct kmem_cache *s, void *object, int active)
538 {
539 	u8 *p = object;
540 
541 	if (s->flags & __OBJECT_POISON) {
542 		memset(p, POISON_FREE, s->objsize - 1);
543 		p[s->objsize - 1] = POISON_END;
544 	}
545 
546 	if (s->flags & SLAB_RED_ZONE)
547 		memset(p + s->objsize,
548 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
549 			s->inuse - s->objsize);
550 }
551 
552 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
553 {
554 	while (bytes) {
555 		if (*start != (u8)value)
556 			return start;
557 		start++;
558 		bytes--;
559 	}
560 	return NULL;
561 }
562 
563 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
564 						void *from, void *to)
565 {
566 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
567 	memset(from, data, to - from);
568 }
569 
570 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
571 			u8 *object, char *what,
572 			u8 *start, unsigned int value, unsigned int bytes)
573 {
574 	u8 *fault;
575 	u8 *end;
576 
577 	fault = check_bytes(start, value, bytes);
578 	if (!fault)
579 		return 1;
580 
581 	end = start + bytes;
582 	while (end > fault && end[-1] == value)
583 		end--;
584 
585 	slab_bug(s, "%s overwritten", what);
586 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
587 					fault, end - 1, fault[0], value);
588 	print_trailer(s, page, object);
589 
590 	restore_bytes(s, what, value, fault, end);
591 	return 0;
592 }
593 
594 /*
595  * Object layout:
596  *
597  * object address
598  * 	Bytes of the object to be managed.
599  * 	If the freepointer may overlay the object then the free
600  * 	pointer is the first word of the object.
601  *
602  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
603  * 	0xa5 (POISON_END)
604  *
605  * object + s->objsize
606  * 	Padding to reach word boundary. This is also used for Redzoning.
607  * 	Padding is extended by another word if Redzoning is enabled and
608  * 	objsize == inuse.
609  *
610  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
611  * 	0xcc (RED_ACTIVE) for objects in use.
612  *
613  * object + s->inuse
614  * 	Meta data starts here.
615  *
616  * 	A. Free pointer (if we cannot overwrite object on free)
617  * 	B. Tracking data for SLAB_STORE_USER
618  * 	C. Padding to reach required alignment boundary or at mininum
619  * 		one word if debugging is on to be able to detect writes
620  * 		before the word boundary.
621  *
622  *	Padding is done using 0x5a (POISON_INUSE)
623  *
624  * object + s->size
625  * 	Nothing is used beyond s->size.
626  *
627  * If slabcaches are merged then the objsize and inuse boundaries are mostly
628  * ignored. And therefore no slab options that rely on these boundaries
629  * may be used with merged slabcaches.
630  */
631 
632 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
633 {
634 	unsigned long off = s->inuse;	/* The end of info */
635 
636 	if (s->offset)
637 		/* Freepointer is placed after the object. */
638 		off += sizeof(void *);
639 
640 	if (s->flags & SLAB_STORE_USER)
641 		/* We also have user information there */
642 		off += 2 * sizeof(struct track);
643 
644 	if (s->size == off)
645 		return 1;
646 
647 	return check_bytes_and_report(s, page, p, "Object padding",
648 				p + off, POISON_INUSE, s->size - off);
649 }
650 
651 /* Check the pad bytes at the end of a slab page */
652 static int slab_pad_check(struct kmem_cache *s, struct page *page)
653 {
654 	u8 *start;
655 	u8 *fault;
656 	u8 *end;
657 	int length;
658 	int remainder;
659 
660 	if (!(s->flags & SLAB_POISON))
661 		return 1;
662 
663 	start = page_address(page);
664 	length = (PAGE_SIZE << compound_order(page));
665 	end = start + length;
666 	remainder = length % s->size;
667 	if (!remainder)
668 		return 1;
669 
670 	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
671 	if (!fault)
672 		return 1;
673 	while (end > fault && end[-1] == POISON_INUSE)
674 		end--;
675 
676 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
677 	print_section("Padding", end - remainder, remainder);
678 
679 	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
680 	return 0;
681 }
682 
683 static int check_object(struct kmem_cache *s, struct page *page,
684 					void *object, int active)
685 {
686 	u8 *p = object;
687 	u8 *endobject = object + s->objsize;
688 
689 	if (s->flags & SLAB_RED_ZONE) {
690 		unsigned int red =
691 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
692 
693 		if (!check_bytes_and_report(s, page, object, "Redzone",
694 			endobject, red, s->inuse - s->objsize))
695 			return 0;
696 	} else {
697 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
698 			check_bytes_and_report(s, page, p, "Alignment padding",
699 				endobject, POISON_INUSE, s->inuse - s->objsize);
700 		}
701 	}
702 
703 	if (s->flags & SLAB_POISON) {
704 		if (!active && (s->flags & __OBJECT_POISON) &&
705 			(!check_bytes_and_report(s, page, p, "Poison", p,
706 					POISON_FREE, s->objsize - 1) ||
707 			 !check_bytes_and_report(s, page, p, "Poison",
708 				p + s->objsize - 1, POISON_END, 1)))
709 			return 0;
710 		/*
711 		 * check_pad_bytes cleans up on its own.
712 		 */
713 		check_pad_bytes(s, page, p);
714 	}
715 
716 	if (!s->offset && active)
717 		/*
718 		 * Object and freepointer overlap. Cannot check
719 		 * freepointer while object is allocated.
720 		 */
721 		return 1;
722 
723 	/* Check free pointer validity */
724 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
725 		object_err(s, page, p, "Freepointer corrupt");
726 		/*
727 		 * No choice but to zap it and thus loose the remainder
728 		 * of the free objects in this slab. May cause
729 		 * another error because the object count is now wrong.
730 		 */
731 		set_freepointer(s, p, NULL);
732 		return 0;
733 	}
734 	return 1;
735 }
736 
737 static int check_slab(struct kmem_cache *s, struct page *page)
738 {
739 	int maxobj;
740 
741 	VM_BUG_ON(!irqs_disabled());
742 
743 	if (!PageSlab(page)) {
744 		slab_err(s, page, "Not a valid slab page");
745 		return 0;
746 	}
747 
748 	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
749 	if (page->objects > maxobj) {
750 		slab_err(s, page, "objects %u > max %u",
751 			s->name, page->objects, maxobj);
752 		return 0;
753 	}
754 	if (page->inuse > page->objects) {
755 		slab_err(s, page, "inuse %u > max %u",
756 			s->name, page->inuse, page->objects);
757 		return 0;
758 	}
759 	/* Slab_pad_check fixes things up after itself */
760 	slab_pad_check(s, page);
761 	return 1;
762 }
763 
764 /*
765  * Determine if a certain object on a page is on the freelist. Must hold the
766  * slab lock to guarantee that the chains are in a consistent state.
767  */
768 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
769 {
770 	int nr = 0;
771 	void *fp = page->freelist;
772 	void *object = NULL;
773 	unsigned long max_objects;
774 
775 	while (fp && nr <= page->objects) {
776 		if (fp == search)
777 			return 1;
778 		if (!check_valid_pointer(s, page, fp)) {
779 			if (object) {
780 				object_err(s, page, object,
781 					"Freechain corrupt");
782 				set_freepointer(s, object, NULL);
783 				break;
784 			} else {
785 				slab_err(s, page, "Freepointer corrupt");
786 				page->freelist = NULL;
787 				page->inuse = page->objects;
788 				slab_fix(s, "Freelist cleared");
789 				return 0;
790 			}
791 			break;
792 		}
793 		object = fp;
794 		fp = get_freepointer(s, object);
795 		nr++;
796 	}
797 
798 	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
799 	if (max_objects > 65535)
800 		max_objects = 65535;
801 
802 	if (page->objects != max_objects) {
803 		slab_err(s, page, "Wrong number of objects. Found %d but "
804 			"should be %d", page->objects, max_objects);
805 		page->objects = max_objects;
806 		slab_fix(s, "Number of objects adjusted.");
807 	}
808 	if (page->inuse != page->objects - nr) {
809 		slab_err(s, page, "Wrong object count. Counter is %d but "
810 			"counted were %d", page->inuse, page->objects - nr);
811 		page->inuse = page->objects - nr;
812 		slab_fix(s, "Object count adjusted.");
813 	}
814 	return search == NULL;
815 }
816 
817 static void trace(struct kmem_cache *s, struct page *page, void *object,
818 								int alloc)
819 {
820 	if (s->flags & SLAB_TRACE) {
821 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
822 			s->name,
823 			alloc ? "alloc" : "free",
824 			object, page->inuse,
825 			page->freelist);
826 
827 		if (!alloc)
828 			print_section("Object", (void *)object, s->objsize);
829 
830 		dump_stack();
831 	}
832 }
833 
834 /*
835  * Tracking of fully allocated slabs for debugging purposes.
836  */
837 static void add_full(struct kmem_cache_node *n, struct page *page)
838 {
839 	spin_lock(&n->list_lock);
840 	list_add(&page->lru, &n->full);
841 	spin_unlock(&n->list_lock);
842 }
843 
844 static void remove_full(struct kmem_cache *s, struct page *page)
845 {
846 	struct kmem_cache_node *n;
847 
848 	if (!(s->flags & SLAB_STORE_USER))
849 		return;
850 
851 	n = get_node(s, page_to_nid(page));
852 
853 	spin_lock(&n->list_lock);
854 	list_del(&page->lru);
855 	spin_unlock(&n->list_lock);
856 }
857 
858 /* Tracking of the number of slabs for debugging purposes */
859 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
860 {
861 	struct kmem_cache_node *n = get_node(s, node);
862 
863 	return atomic_long_read(&n->nr_slabs);
864 }
865 
866 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
867 {
868 	struct kmem_cache_node *n = get_node(s, node);
869 
870 	/*
871 	 * May be called early in order to allocate a slab for the
872 	 * kmem_cache_node structure. Solve the chicken-egg
873 	 * dilemma by deferring the increment of the count during
874 	 * bootstrap (see early_kmem_cache_node_alloc).
875 	 */
876 	if (!NUMA_BUILD || n) {
877 		atomic_long_inc(&n->nr_slabs);
878 		atomic_long_add(objects, &n->total_objects);
879 	}
880 }
881 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
882 {
883 	struct kmem_cache_node *n = get_node(s, node);
884 
885 	atomic_long_dec(&n->nr_slabs);
886 	atomic_long_sub(objects, &n->total_objects);
887 }
888 
889 /* Object debug checks for alloc/free paths */
890 static void setup_object_debug(struct kmem_cache *s, struct page *page,
891 								void *object)
892 {
893 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
894 		return;
895 
896 	init_object(s, object, 0);
897 	init_tracking(s, object);
898 }
899 
900 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
901 						void *object, void *addr)
902 {
903 	if (!check_slab(s, page))
904 		goto bad;
905 
906 	if (!on_freelist(s, page, object)) {
907 		object_err(s, page, object, "Object already allocated");
908 		goto bad;
909 	}
910 
911 	if (!check_valid_pointer(s, page, object)) {
912 		object_err(s, page, object, "Freelist Pointer check fails");
913 		goto bad;
914 	}
915 
916 	if (!check_object(s, page, object, 0))
917 		goto bad;
918 
919 	/* Success perform special debug activities for allocs */
920 	if (s->flags & SLAB_STORE_USER)
921 		set_track(s, object, TRACK_ALLOC, addr);
922 	trace(s, page, object, 1);
923 	init_object(s, object, 1);
924 	return 1;
925 
926 bad:
927 	if (PageSlab(page)) {
928 		/*
929 		 * If this is a slab page then lets do the best we can
930 		 * to avoid issues in the future. Marking all objects
931 		 * as used avoids touching the remaining objects.
932 		 */
933 		slab_fix(s, "Marking all objects used");
934 		page->inuse = page->objects;
935 		page->freelist = NULL;
936 	}
937 	return 0;
938 }
939 
940 static int free_debug_processing(struct kmem_cache *s, struct page *page,
941 						void *object, void *addr)
942 {
943 	if (!check_slab(s, page))
944 		goto fail;
945 
946 	if (!check_valid_pointer(s, page, object)) {
947 		slab_err(s, page, "Invalid object pointer 0x%p", object);
948 		goto fail;
949 	}
950 
951 	if (on_freelist(s, page, object)) {
952 		object_err(s, page, object, "Object already free");
953 		goto fail;
954 	}
955 
956 	if (!check_object(s, page, object, 1))
957 		return 0;
958 
959 	if (unlikely(s != page->slab)) {
960 		if (!PageSlab(page)) {
961 			slab_err(s, page, "Attempt to free object(0x%p) "
962 				"outside of slab", object);
963 		} else if (!page->slab) {
964 			printk(KERN_ERR
965 				"SLUB <none>: no slab for object 0x%p.\n",
966 						object);
967 			dump_stack();
968 		} else
969 			object_err(s, page, object,
970 					"page slab pointer corrupt.");
971 		goto fail;
972 	}
973 
974 	/* Special debug activities for freeing objects */
975 	if (!SlabFrozen(page) && !page->freelist)
976 		remove_full(s, page);
977 	if (s->flags & SLAB_STORE_USER)
978 		set_track(s, object, TRACK_FREE, addr);
979 	trace(s, page, object, 0);
980 	init_object(s, object, 0);
981 	return 1;
982 
983 fail:
984 	slab_fix(s, "Object at 0x%p not freed", object);
985 	return 0;
986 }
987 
988 static int __init setup_slub_debug(char *str)
989 {
990 	slub_debug = DEBUG_DEFAULT_FLAGS;
991 	if (*str++ != '=' || !*str)
992 		/*
993 		 * No options specified. Switch on full debugging.
994 		 */
995 		goto out;
996 
997 	if (*str == ',')
998 		/*
999 		 * No options but restriction on slabs. This means full
1000 		 * debugging for slabs matching a pattern.
1001 		 */
1002 		goto check_slabs;
1003 
1004 	slub_debug = 0;
1005 	if (*str == '-')
1006 		/*
1007 		 * Switch off all debugging measures.
1008 		 */
1009 		goto out;
1010 
1011 	/*
1012 	 * Determine which debug features should be switched on
1013 	 */
1014 	for (; *str && *str != ','; str++) {
1015 		switch (tolower(*str)) {
1016 		case 'f':
1017 			slub_debug |= SLAB_DEBUG_FREE;
1018 			break;
1019 		case 'z':
1020 			slub_debug |= SLAB_RED_ZONE;
1021 			break;
1022 		case 'p':
1023 			slub_debug |= SLAB_POISON;
1024 			break;
1025 		case 'u':
1026 			slub_debug |= SLAB_STORE_USER;
1027 			break;
1028 		case 't':
1029 			slub_debug |= SLAB_TRACE;
1030 			break;
1031 		default:
1032 			printk(KERN_ERR "slub_debug option '%c' "
1033 				"unknown. skipped\n", *str);
1034 		}
1035 	}
1036 
1037 check_slabs:
1038 	if (*str == ',')
1039 		slub_debug_slabs = str + 1;
1040 out:
1041 	return 1;
1042 }
1043 
1044 __setup("slub_debug", setup_slub_debug);
1045 
1046 static unsigned long kmem_cache_flags(unsigned long objsize,
1047 	unsigned long flags, const char *name,
1048 	void (*ctor)(struct kmem_cache *, void *))
1049 {
1050 	/*
1051 	 * Enable debugging if selected on the kernel commandline.
1052 	 */
1053 	if (slub_debug && (!slub_debug_slabs ||
1054 	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1055 			flags |= slub_debug;
1056 
1057 	return flags;
1058 }
1059 #else
1060 static inline void setup_object_debug(struct kmem_cache *s,
1061 			struct page *page, void *object) {}
1062 
1063 static inline int alloc_debug_processing(struct kmem_cache *s,
1064 	struct page *page, void *object, void *addr) { return 0; }
1065 
1066 static inline int free_debug_processing(struct kmem_cache *s,
1067 	struct page *page, void *object, void *addr) { return 0; }
1068 
1069 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1070 			{ return 1; }
1071 static inline int check_object(struct kmem_cache *s, struct page *page,
1072 			void *object, int active) { return 1; }
1073 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1074 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1075 	unsigned long flags, const char *name,
1076 	void (*ctor)(struct kmem_cache *, void *))
1077 {
1078 	return flags;
1079 }
1080 #define slub_debug 0
1081 
1082 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1083 							{ return 0; }
1084 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1085 							int objects) {}
1086 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1087 							int objects) {}
1088 #endif
1089 
1090 /*
1091  * Slab allocation and freeing
1092  */
1093 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1094 					struct kmem_cache_order_objects oo)
1095 {
1096 	int order = oo_order(oo);
1097 
1098 	if (node == -1)
1099 		return alloc_pages(flags, order);
1100 	else
1101 		return alloc_pages_node(node, flags, order);
1102 }
1103 
1104 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1105 {
1106 	struct page *page;
1107 	struct kmem_cache_order_objects oo = s->oo;
1108 
1109 	flags |= s->allocflags;
1110 
1111 	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1112 									oo);
1113 	if (unlikely(!page)) {
1114 		oo = s->min;
1115 		/*
1116 		 * Allocation may have failed due to fragmentation.
1117 		 * Try a lower order alloc if possible
1118 		 */
1119 		page = alloc_slab_page(flags, node, oo);
1120 		if (!page)
1121 			return NULL;
1122 
1123 		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1124 	}
1125 	page->objects = oo_objects(oo);
1126 	mod_zone_page_state(page_zone(page),
1127 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1128 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1129 		1 << oo_order(oo));
1130 
1131 	return page;
1132 }
1133 
1134 static void setup_object(struct kmem_cache *s, struct page *page,
1135 				void *object)
1136 {
1137 	setup_object_debug(s, page, object);
1138 	if (unlikely(s->ctor))
1139 		s->ctor(s, object);
1140 }
1141 
1142 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1143 {
1144 	struct page *page;
1145 	void *start;
1146 	void *last;
1147 	void *p;
1148 
1149 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1150 
1151 	page = allocate_slab(s,
1152 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1153 	if (!page)
1154 		goto out;
1155 
1156 	inc_slabs_node(s, page_to_nid(page), page->objects);
1157 	page->slab = s;
1158 	page->flags |= 1 << PG_slab;
1159 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1160 			SLAB_STORE_USER | SLAB_TRACE))
1161 		SetSlabDebug(page);
1162 
1163 	start = page_address(page);
1164 
1165 	if (unlikely(s->flags & SLAB_POISON))
1166 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1167 
1168 	last = start;
1169 	for_each_object(p, s, start, page->objects) {
1170 		setup_object(s, page, last);
1171 		set_freepointer(s, last, p);
1172 		last = p;
1173 	}
1174 	setup_object(s, page, last);
1175 	set_freepointer(s, last, NULL);
1176 
1177 	page->freelist = start;
1178 	page->inuse = 0;
1179 out:
1180 	return page;
1181 }
1182 
1183 static void __free_slab(struct kmem_cache *s, struct page *page)
1184 {
1185 	int order = compound_order(page);
1186 	int pages = 1 << order;
1187 
1188 	if (unlikely(SlabDebug(page))) {
1189 		void *p;
1190 
1191 		slab_pad_check(s, page);
1192 		for_each_object(p, s, page_address(page),
1193 						page->objects)
1194 			check_object(s, page, p, 0);
1195 		ClearSlabDebug(page);
1196 	}
1197 
1198 	mod_zone_page_state(page_zone(page),
1199 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1200 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1201 		-pages);
1202 
1203 	__ClearPageSlab(page);
1204 	reset_page_mapcount(page);
1205 	__free_pages(page, order);
1206 }
1207 
1208 static void rcu_free_slab(struct rcu_head *h)
1209 {
1210 	struct page *page;
1211 
1212 	page = container_of((struct list_head *)h, struct page, lru);
1213 	__free_slab(page->slab, page);
1214 }
1215 
1216 static void free_slab(struct kmem_cache *s, struct page *page)
1217 {
1218 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1219 		/*
1220 		 * RCU free overloads the RCU head over the LRU
1221 		 */
1222 		struct rcu_head *head = (void *)&page->lru;
1223 
1224 		call_rcu(head, rcu_free_slab);
1225 	} else
1226 		__free_slab(s, page);
1227 }
1228 
1229 static void discard_slab(struct kmem_cache *s, struct page *page)
1230 {
1231 	dec_slabs_node(s, page_to_nid(page), page->objects);
1232 	free_slab(s, page);
1233 }
1234 
1235 /*
1236  * Per slab locking using the pagelock
1237  */
1238 static __always_inline void slab_lock(struct page *page)
1239 {
1240 	bit_spin_lock(PG_locked, &page->flags);
1241 }
1242 
1243 static __always_inline void slab_unlock(struct page *page)
1244 {
1245 	__bit_spin_unlock(PG_locked, &page->flags);
1246 }
1247 
1248 static __always_inline int slab_trylock(struct page *page)
1249 {
1250 	int rc = 1;
1251 
1252 	rc = bit_spin_trylock(PG_locked, &page->flags);
1253 	return rc;
1254 }
1255 
1256 /*
1257  * Management of partially allocated slabs
1258  */
1259 static void add_partial(struct kmem_cache_node *n,
1260 				struct page *page, int tail)
1261 {
1262 	spin_lock(&n->list_lock);
1263 	n->nr_partial++;
1264 	if (tail)
1265 		list_add_tail(&page->lru, &n->partial);
1266 	else
1267 		list_add(&page->lru, &n->partial);
1268 	spin_unlock(&n->list_lock);
1269 }
1270 
1271 static void remove_partial(struct kmem_cache *s, struct page *page)
1272 {
1273 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1274 
1275 	spin_lock(&n->list_lock);
1276 	list_del(&page->lru);
1277 	n->nr_partial--;
1278 	spin_unlock(&n->list_lock);
1279 }
1280 
1281 /*
1282  * Lock slab and remove from the partial list.
1283  *
1284  * Must hold list_lock.
1285  */
1286 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1287 							struct page *page)
1288 {
1289 	if (slab_trylock(page)) {
1290 		list_del(&page->lru);
1291 		n->nr_partial--;
1292 		SetSlabFrozen(page);
1293 		return 1;
1294 	}
1295 	return 0;
1296 }
1297 
1298 /*
1299  * Try to allocate a partial slab from a specific node.
1300  */
1301 static struct page *get_partial_node(struct kmem_cache_node *n)
1302 {
1303 	struct page *page;
1304 
1305 	/*
1306 	 * Racy check. If we mistakenly see no partial slabs then we
1307 	 * just allocate an empty slab. If we mistakenly try to get a
1308 	 * partial slab and there is none available then get_partials()
1309 	 * will return NULL.
1310 	 */
1311 	if (!n || !n->nr_partial)
1312 		return NULL;
1313 
1314 	spin_lock(&n->list_lock);
1315 	list_for_each_entry(page, &n->partial, lru)
1316 		if (lock_and_freeze_slab(n, page))
1317 			goto out;
1318 	page = NULL;
1319 out:
1320 	spin_unlock(&n->list_lock);
1321 	return page;
1322 }
1323 
1324 /*
1325  * Get a page from somewhere. Search in increasing NUMA distances.
1326  */
1327 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1328 {
1329 #ifdef CONFIG_NUMA
1330 	struct zonelist *zonelist;
1331 	struct zoneref *z;
1332 	struct zone *zone;
1333 	enum zone_type high_zoneidx = gfp_zone(flags);
1334 	struct page *page;
1335 
1336 	/*
1337 	 * The defrag ratio allows a configuration of the tradeoffs between
1338 	 * inter node defragmentation and node local allocations. A lower
1339 	 * defrag_ratio increases the tendency to do local allocations
1340 	 * instead of attempting to obtain partial slabs from other nodes.
1341 	 *
1342 	 * If the defrag_ratio is set to 0 then kmalloc() always
1343 	 * returns node local objects. If the ratio is higher then kmalloc()
1344 	 * may return off node objects because partial slabs are obtained
1345 	 * from other nodes and filled up.
1346 	 *
1347 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1348 	 * defrag_ratio = 1000) then every (well almost) allocation will
1349 	 * first attempt to defrag slab caches on other nodes. This means
1350 	 * scanning over all nodes to look for partial slabs which may be
1351 	 * expensive if we do it every time we are trying to find a slab
1352 	 * with available objects.
1353 	 */
1354 	if (!s->remote_node_defrag_ratio ||
1355 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1356 		return NULL;
1357 
1358 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1359 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1360 		struct kmem_cache_node *n;
1361 
1362 		n = get_node(s, zone_to_nid(zone));
1363 
1364 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1365 				n->nr_partial > MIN_PARTIAL) {
1366 			page = get_partial_node(n);
1367 			if (page)
1368 				return page;
1369 		}
1370 	}
1371 #endif
1372 	return NULL;
1373 }
1374 
1375 /*
1376  * Get a partial page, lock it and return it.
1377  */
1378 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1379 {
1380 	struct page *page;
1381 	int searchnode = (node == -1) ? numa_node_id() : node;
1382 
1383 	page = get_partial_node(get_node(s, searchnode));
1384 	if (page || (flags & __GFP_THISNODE))
1385 		return page;
1386 
1387 	return get_any_partial(s, flags);
1388 }
1389 
1390 /*
1391  * Move a page back to the lists.
1392  *
1393  * Must be called with the slab lock held.
1394  *
1395  * On exit the slab lock will have been dropped.
1396  */
1397 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1398 {
1399 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1400 	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1401 
1402 	ClearSlabFrozen(page);
1403 	if (page->inuse) {
1404 
1405 		if (page->freelist) {
1406 			add_partial(n, page, tail);
1407 			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1408 		} else {
1409 			stat(c, DEACTIVATE_FULL);
1410 			if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1411 				add_full(n, page);
1412 		}
1413 		slab_unlock(page);
1414 	} else {
1415 		stat(c, DEACTIVATE_EMPTY);
1416 		if (n->nr_partial < MIN_PARTIAL) {
1417 			/*
1418 			 * Adding an empty slab to the partial slabs in order
1419 			 * to avoid page allocator overhead. This slab needs
1420 			 * to come after the other slabs with objects in
1421 			 * so that the others get filled first. That way the
1422 			 * size of the partial list stays small.
1423 			 *
1424 			 * kmem_cache_shrink can reclaim any empty slabs from
1425 			 * the partial list.
1426 			 */
1427 			add_partial(n, page, 1);
1428 			slab_unlock(page);
1429 		} else {
1430 			slab_unlock(page);
1431 			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1432 			discard_slab(s, page);
1433 		}
1434 	}
1435 }
1436 
1437 /*
1438  * Remove the cpu slab
1439  */
1440 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1441 {
1442 	struct page *page = c->page;
1443 	int tail = 1;
1444 
1445 	if (page->freelist)
1446 		stat(c, DEACTIVATE_REMOTE_FREES);
1447 	/*
1448 	 * Merge cpu freelist into slab freelist. Typically we get here
1449 	 * because both freelists are empty. So this is unlikely
1450 	 * to occur.
1451 	 */
1452 	while (unlikely(c->freelist)) {
1453 		void **object;
1454 
1455 		tail = 0;	/* Hot objects. Put the slab first */
1456 
1457 		/* Retrieve object from cpu_freelist */
1458 		object = c->freelist;
1459 		c->freelist = c->freelist[c->offset];
1460 
1461 		/* And put onto the regular freelist */
1462 		object[c->offset] = page->freelist;
1463 		page->freelist = object;
1464 		page->inuse--;
1465 	}
1466 	c->page = NULL;
1467 	unfreeze_slab(s, page, tail);
1468 }
1469 
1470 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1471 {
1472 	stat(c, CPUSLAB_FLUSH);
1473 	slab_lock(c->page);
1474 	deactivate_slab(s, c);
1475 }
1476 
1477 /*
1478  * Flush cpu slab.
1479  *
1480  * Called from IPI handler with interrupts disabled.
1481  */
1482 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1483 {
1484 	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1485 
1486 	if (likely(c && c->page))
1487 		flush_slab(s, c);
1488 }
1489 
1490 static void flush_cpu_slab(void *d)
1491 {
1492 	struct kmem_cache *s = d;
1493 
1494 	__flush_cpu_slab(s, smp_processor_id());
1495 }
1496 
1497 static void flush_all(struct kmem_cache *s)
1498 {
1499 #ifdef CONFIG_SMP
1500 	on_each_cpu(flush_cpu_slab, s, 1, 1);
1501 #else
1502 	unsigned long flags;
1503 
1504 	local_irq_save(flags);
1505 	flush_cpu_slab(s);
1506 	local_irq_restore(flags);
1507 #endif
1508 }
1509 
1510 /*
1511  * Check if the objects in a per cpu structure fit numa
1512  * locality expectations.
1513  */
1514 static inline int node_match(struct kmem_cache_cpu *c, int node)
1515 {
1516 #ifdef CONFIG_NUMA
1517 	if (node != -1 && c->node != node)
1518 		return 0;
1519 #endif
1520 	return 1;
1521 }
1522 
1523 /*
1524  * Slow path. The lockless freelist is empty or we need to perform
1525  * debugging duties.
1526  *
1527  * Interrupts are disabled.
1528  *
1529  * Processing is still very fast if new objects have been freed to the
1530  * regular freelist. In that case we simply take over the regular freelist
1531  * as the lockless freelist and zap the regular freelist.
1532  *
1533  * If that is not working then we fall back to the partial lists. We take the
1534  * first element of the freelist as the object to allocate now and move the
1535  * rest of the freelist to the lockless freelist.
1536  *
1537  * And if we were unable to get a new slab from the partial slab lists then
1538  * we need to allocate a new slab. This is the slowest path since it involves
1539  * a call to the page allocator and the setup of a new slab.
1540  */
1541 static void *__slab_alloc(struct kmem_cache *s,
1542 		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1543 {
1544 	void **object;
1545 	struct page *new;
1546 
1547 	/* We handle __GFP_ZERO in the caller */
1548 	gfpflags &= ~__GFP_ZERO;
1549 
1550 	if (!c->page)
1551 		goto new_slab;
1552 
1553 	slab_lock(c->page);
1554 	if (unlikely(!node_match(c, node)))
1555 		goto another_slab;
1556 
1557 	stat(c, ALLOC_REFILL);
1558 
1559 load_freelist:
1560 	object = c->page->freelist;
1561 	if (unlikely(!object))
1562 		goto another_slab;
1563 	if (unlikely(SlabDebug(c->page)))
1564 		goto debug;
1565 
1566 	c->freelist = object[c->offset];
1567 	c->page->inuse = c->page->objects;
1568 	c->page->freelist = NULL;
1569 	c->node = page_to_nid(c->page);
1570 unlock_out:
1571 	slab_unlock(c->page);
1572 	stat(c, ALLOC_SLOWPATH);
1573 	return object;
1574 
1575 another_slab:
1576 	deactivate_slab(s, c);
1577 
1578 new_slab:
1579 	new = get_partial(s, gfpflags, node);
1580 	if (new) {
1581 		c->page = new;
1582 		stat(c, ALLOC_FROM_PARTIAL);
1583 		goto load_freelist;
1584 	}
1585 
1586 	if (gfpflags & __GFP_WAIT)
1587 		local_irq_enable();
1588 
1589 	new = new_slab(s, gfpflags, node);
1590 
1591 	if (gfpflags & __GFP_WAIT)
1592 		local_irq_disable();
1593 
1594 	if (new) {
1595 		c = get_cpu_slab(s, smp_processor_id());
1596 		stat(c, ALLOC_SLAB);
1597 		if (c->page)
1598 			flush_slab(s, c);
1599 		slab_lock(new);
1600 		SetSlabFrozen(new);
1601 		c->page = new;
1602 		goto load_freelist;
1603 	}
1604 	return NULL;
1605 debug:
1606 	if (!alloc_debug_processing(s, c->page, object, addr))
1607 		goto another_slab;
1608 
1609 	c->page->inuse++;
1610 	c->page->freelist = object[c->offset];
1611 	c->node = -1;
1612 	goto unlock_out;
1613 }
1614 
1615 /*
1616  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1617  * have the fastpath folded into their functions. So no function call
1618  * overhead for requests that can be satisfied on the fastpath.
1619  *
1620  * The fastpath works by first checking if the lockless freelist can be used.
1621  * If not then __slab_alloc is called for slow processing.
1622  *
1623  * Otherwise we can simply pick the next object from the lockless free list.
1624  */
1625 static __always_inline void *slab_alloc(struct kmem_cache *s,
1626 		gfp_t gfpflags, int node, void *addr)
1627 {
1628 	void **object;
1629 	struct kmem_cache_cpu *c;
1630 	unsigned long flags;
1631 
1632 	local_irq_save(flags);
1633 	c = get_cpu_slab(s, smp_processor_id());
1634 	if (unlikely(!c->freelist || !node_match(c, node)))
1635 
1636 		object = __slab_alloc(s, gfpflags, node, addr, c);
1637 
1638 	else {
1639 		object = c->freelist;
1640 		c->freelist = object[c->offset];
1641 		stat(c, ALLOC_FASTPATH);
1642 	}
1643 	local_irq_restore(flags);
1644 
1645 	if (unlikely((gfpflags & __GFP_ZERO) && object))
1646 		memset(object, 0, c->objsize);
1647 
1648 	return object;
1649 }
1650 
1651 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1652 {
1653 	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1654 }
1655 EXPORT_SYMBOL(kmem_cache_alloc);
1656 
1657 #ifdef CONFIG_NUMA
1658 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1659 {
1660 	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1661 }
1662 EXPORT_SYMBOL(kmem_cache_alloc_node);
1663 #endif
1664 
1665 /*
1666  * Slow patch handling. This may still be called frequently since objects
1667  * have a longer lifetime than the cpu slabs in most processing loads.
1668  *
1669  * So we still attempt to reduce cache line usage. Just take the slab
1670  * lock and free the item. If there is no additional partial page
1671  * handling required then we can return immediately.
1672  */
1673 static void __slab_free(struct kmem_cache *s, struct page *page,
1674 				void *x, void *addr, unsigned int offset)
1675 {
1676 	void *prior;
1677 	void **object = (void *)x;
1678 	struct kmem_cache_cpu *c;
1679 
1680 	c = get_cpu_slab(s, raw_smp_processor_id());
1681 	stat(c, FREE_SLOWPATH);
1682 	slab_lock(page);
1683 
1684 	if (unlikely(SlabDebug(page)))
1685 		goto debug;
1686 
1687 checks_ok:
1688 	prior = object[offset] = page->freelist;
1689 	page->freelist = object;
1690 	page->inuse--;
1691 
1692 	if (unlikely(SlabFrozen(page))) {
1693 		stat(c, FREE_FROZEN);
1694 		goto out_unlock;
1695 	}
1696 
1697 	if (unlikely(!page->inuse))
1698 		goto slab_empty;
1699 
1700 	/*
1701 	 * Objects left in the slab. If it was not on the partial list before
1702 	 * then add it.
1703 	 */
1704 	if (unlikely(!prior)) {
1705 		add_partial(get_node(s, page_to_nid(page)), page, 1);
1706 		stat(c, FREE_ADD_PARTIAL);
1707 	}
1708 
1709 out_unlock:
1710 	slab_unlock(page);
1711 	return;
1712 
1713 slab_empty:
1714 	if (prior) {
1715 		/*
1716 		 * Slab still on the partial list.
1717 		 */
1718 		remove_partial(s, page);
1719 		stat(c, FREE_REMOVE_PARTIAL);
1720 	}
1721 	slab_unlock(page);
1722 	stat(c, FREE_SLAB);
1723 	discard_slab(s, page);
1724 	return;
1725 
1726 debug:
1727 	if (!free_debug_processing(s, page, x, addr))
1728 		goto out_unlock;
1729 	goto checks_ok;
1730 }
1731 
1732 /*
1733  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1734  * can perform fastpath freeing without additional function calls.
1735  *
1736  * The fastpath is only possible if we are freeing to the current cpu slab
1737  * of this processor. This typically the case if we have just allocated
1738  * the item before.
1739  *
1740  * If fastpath is not possible then fall back to __slab_free where we deal
1741  * with all sorts of special processing.
1742  */
1743 static __always_inline void slab_free(struct kmem_cache *s,
1744 			struct page *page, void *x, void *addr)
1745 {
1746 	void **object = (void *)x;
1747 	struct kmem_cache_cpu *c;
1748 	unsigned long flags;
1749 
1750 	local_irq_save(flags);
1751 	c = get_cpu_slab(s, smp_processor_id());
1752 	debug_check_no_locks_freed(object, c->objsize);
1753 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1754 		debug_check_no_obj_freed(object, s->objsize);
1755 	if (likely(page == c->page && c->node >= 0)) {
1756 		object[c->offset] = c->freelist;
1757 		c->freelist = object;
1758 		stat(c, FREE_FASTPATH);
1759 	} else
1760 		__slab_free(s, page, x, addr, c->offset);
1761 
1762 	local_irq_restore(flags);
1763 }
1764 
1765 void kmem_cache_free(struct kmem_cache *s, void *x)
1766 {
1767 	struct page *page;
1768 
1769 	page = virt_to_head_page(x);
1770 
1771 	slab_free(s, page, x, __builtin_return_address(0));
1772 }
1773 EXPORT_SYMBOL(kmem_cache_free);
1774 
1775 /* Figure out on which slab object the object resides */
1776 static struct page *get_object_page(const void *x)
1777 {
1778 	struct page *page = virt_to_head_page(x);
1779 
1780 	if (!PageSlab(page))
1781 		return NULL;
1782 
1783 	return page;
1784 }
1785 
1786 /*
1787  * Object placement in a slab is made very easy because we always start at
1788  * offset 0. If we tune the size of the object to the alignment then we can
1789  * get the required alignment by putting one properly sized object after
1790  * another.
1791  *
1792  * Notice that the allocation order determines the sizes of the per cpu
1793  * caches. Each processor has always one slab available for allocations.
1794  * Increasing the allocation order reduces the number of times that slabs
1795  * must be moved on and off the partial lists and is therefore a factor in
1796  * locking overhead.
1797  */
1798 
1799 /*
1800  * Mininum / Maximum order of slab pages. This influences locking overhead
1801  * and slab fragmentation. A higher order reduces the number of partial slabs
1802  * and increases the number of allocations possible without having to
1803  * take the list_lock.
1804  */
1805 static int slub_min_order;
1806 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1807 static int slub_min_objects;
1808 
1809 /*
1810  * Merge control. If this is set then no merging of slab caches will occur.
1811  * (Could be removed. This was introduced to pacify the merge skeptics.)
1812  */
1813 static int slub_nomerge;
1814 
1815 /*
1816  * Calculate the order of allocation given an slab object size.
1817  *
1818  * The order of allocation has significant impact on performance and other
1819  * system components. Generally order 0 allocations should be preferred since
1820  * order 0 does not cause fragmentation in the page allocator. Larger objects
1821  * be problematic to put into order 0 slabs because there may be too much
1822  * unused space left. We go to a higher order if more than 1/16th of the slab
1823  * would be wasted.
1824  *
1825  * In order to reach satisfactory performance we must ensure that a minimum
1826  * number of objects is in one slab. Otherwise we may generate too much
1827  * activity on the partial lists which requires taking the list_lock. This is
1828  * less a concern for large slabs though which are rarely used.
1829  *
1830  * slub_max_order specifies the order where we begin to stop considering the
1831  * number of objects in a slab as critical. If we reach slub_max_order then
1832  * we try to keep the page order as low as possible. So we accept more waste
1833  * of space in favor of a small page order.
1834  *
1835  * Higher order allocations also allow the placement of more objects in a
1836  * slab and thereby reduce object handling overhead. If the user has
1837  * requested a higher mininum order then we start with that one instead of
1838  * the smallest order which will fit the object.
1839  */
1840 static inline int slab_order(int size, int min_objects,
1841 				int max_order, int fract_leftover)
1842 {
1843 	int order;
1844 	int rem;
1845 	int min_order = slub_min_order;
1846 
1847 	if ((PAGE_SIZE << min_order) / size > 65535)
1848 		return get_order(size * 65535) - 1;
1849 
1850 	for (order = max(min_order,
1851 				fls(min_objects * size - 1) - PAGE_SHIFT);
1852 			order <= max_order; order++) {
1853 
1854 		unsigned long slab_size = PAGE_SIZE << order;
1855 
1856 		if (slab_size < min_objects * size)
1857 			continue;
1858 
1859 		rem = slab_size % size;
1860 
1861 		if (rem <= slab_size / fract_leftover)
1862 			break;
1863 
1864 	}
1865 
1866 	return order;
1867 }
1868 
1869 static inline int calculate_order(int size)
1870 {
1871 	int order;
1872 	int min_objects;
1873 	int fraction;
1874 
1875 	/*
1876 	 * Attempt to find best configuration for a slab. This
1877 	 * works by first attempting to generate a layout with
1878 	 * the best configuration and backing off gradually.
1879 	 *
1880 	 * First we reduce the acceptable waste in a slab. Then
1881 	 * we reduce the minimum objects required in a slab.
1882 	 */
1883 	min_objects = slub_min_objects;
1884 	if (!min_objects)
1885 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1886 	while (min_objects > 1) {
1887 		fraction = 16;
1888 		while (fraction >= 4) {
1889 			order = slab_order(size, min_objects,
1890 						slub_max_order, fraction);
1891 			if (order <= slub_max_order)
1892 				return order;
1893 			fraction /= 2;
1894 		}
1895 		min_objects /= 2;
1896 	}
1897 
1898 	/*
1899 	 * We were unable to place multiple objects in a slab. Now
1900 	 * lets see if we can place a single object there.
1901 	 */
1902 	order = slab_order(size, 1, slub_max_order, 1);
1903 	if (order <= slub_max_order)
1904 		return order;
1905 
1906 	/*
1907 	 * Doh this slab cannot be placed using slub_max_order.
1908 	 */
1909 	order = slab_order(size, 1, MAX_ORDER, 1);
1910 	if (order <= MAX_ORDER)
1911 		return order;
1912 	return -ENOSYS;
1913 }
1914 
1915 /*
1916  * Figure out what the alignment of the objects will be.
1917  */
1918 static unsigned long calculate_alignment(unsigned long flags,
1919 		unsigned long align, unsigned long size)
1920 {
1921 	/*
1922 	 * If the user wants hardware cache aligned objects then follow that
1923 	 * suggestion if the object is sufficiently large.
1924 	 *
1925 	 * The hardware cache alignment cannot override the specified
1926 	 * alignment though. If that is greater then use it.
1927 	 */
1928 	if (flags & SLAB_HWCACHE_ALIGN) {
1929 		unsigned long ralign = cache_line_size();
1930 		while (size <= ralign / 2)
1931 			ralign /= 2;
1932 		align = max(align, ralign);
1933 	}
1934 
1935 	if (align < ARCH_SLAB_MINALIGN)
1936 		align = ARCH_SLAB_MINALIGN;
1937 
1938 	return ALIGN(align, sizeof(void *));
1939 }
1940 
1941 static void init_kmem_cache_cpu(struct kmem_cache *s,
1942 			struct kmem_cache_cpu *c)
1943 {
1944 	c->page = NULL;
1945 	c->freelist = NULL;
1946 	c->node = 0;
1947 	c->offset = s->offset / sizeof(void *);
1948 	c->objsize = s->objsize;
1949 #ifdef CONFIG_SLUB_STATS
1950 	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1951 #endif
1952 }
1953 
1954 static void init_kmem_cache_node(struct kmem_cache_node *n)
1955 {
1956 	n->nr_partial = 0;
1957 	spin_lock_init(&n->list_lock);
1958 	INIT_LIST_HEAD(&n->partial);
1959 #ifdef CONFIG_SLUB_DEBUG
1960 	atomic_long_set(&n->nr_slabs, 0);
1961 	INIT_LIST_HEAD(&n->full);
1962 #endif
1963 }
1964 
1965 #ifdef CONFIG_SMP
1966 /*
1967  * Per cpu array for per cpu structures.
1968  *
1969  * The per cpu array places all kmem_cache_cpu structures from one processor
1970  * close together meaning that it becomes possible that multiple per cpu
1971  * structures are contained in one cacheline. This may be particularly
1972  * beneficial for the kmalloc caches.
1973  *
1974  * A desktop system typically has around 60-80 slabs. With 100 here we are
1975  * likely able to get per cpu structures for all caches from the array defined
1976  * here. We must be able to cover all kmalloc caches during bootstrap.
1977  *
1978  * If the per cpu array is exhausted then fall back to kmalloc
1979  * of individual cachelines. No sharing is possible then.
1980  */
1981 #define NR_KMEM_CACHE_CPU 100
1982 
1983 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1984 				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1985 
1986 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1987 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1988 
1989 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1990 							int cpu, gfp_t flags)
1991 {
1992 	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1993 
1994 	if (c)
1995 		per_cpu(kmem_cache_cpu_free, cpu) =
1996 				(void *)c->freelist;
1997 	else {
1998 		/* Table overflow: So allocate ourselves */
1999 		c = kmalloc_node(
2000 			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2001 			flags, cpu_to_node(cpu));
2002 		if (!c)
2003 			return NULL;
2004 	}
2005 
2006 	init_kmem_cache_cpu(s, c);
2007 	return c;
2008 }
2009 
2010 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2011 {
2012 	if (c < per_cpu(kmem_cache_cpu, cpu) ||
2013 			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2014 		kfree(c);
2015 		return;
2016 	}
2017 	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2018 	per_cpu(kmem_cache_cpu_free, cpu) = c;
2019 }
2020 
2021 static void free_kmem_cache_cpus(struct kmem_cache *s)
2022 {
2023 	int cpu;
2024 
2025 	for_each_online_cpu(cpu) {
2026 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2027 
2028 		if (c) {
2029 			s->cpu_slab[cpu] = NULL;
2030 			free_kmem_cache_cpu(c, cpu);
2031 		}
2032 	}
2033 }
2034 
2035 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2036 {
2037 	int cpu;
2038 
2039 	for_each_online_cpu(cpu) {
2040 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2041 
2042 		if (c)
2043 			continue;
2044 
2045 		c = alloc_kmem_cache_cpu(s, cpu, flags);
2046 		if (!c) {
2047 			free_kmem_cache_cpus(s);
2048 			return 0;
2049 		}
2050 		s->cpu_slab[cpu] = c;
2051 	}
2052 	return 1;
2053 }
2054 
2055 /*
2056  * Initialize the per cpu array.
2057  */
2058 static void init_alloc_cpu_cpu(int cpu)
2059 {
2060 	int i;
2061 
2062 	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2063 		return;
2064 
2065 	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2066 		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2067 
2068 	cpu_set(cpu, kmem_cach_cpu_free_init_once);
2069 }
2070 
2071 static void __init init_alloc_cpu(void)
2072 {
2073 	int cpu;
2074 
2075 	for_each_online_cpu(cpu)
2076 		init_alloc_cpu_cpu(cpu);
2077   }
2078 
2079 #else
2080 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2081 static inline void init_alloc_cpu(void) {}
2082 
2083 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2084 {
2085 	init_kmem_cache_cpu(s, &s->cpu_slab);
2086 	return 1;
2087 }
2088 #endif
2089 
2090 #ifdef CONFIG_NUMA
2091 /*
2092  * No kmalloc_node yet so do it by hand. We know that this is the first
2093  * slab on the node for this slabcache. There are no concurrent accesses
2094  * possible.
2095  *
2096  * Note that this function only works on the kmalloc_node_cache
2097  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2098  * memory on a fresh node that has no slab structures yet.
2099  */
2100 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2101 							   int node)
2102 {
2103 	struct page *page;
2104 	struct kmem_cache_node *n;
2105 	unsigned long flags;
2106 
2107 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2108 
2109 	page = new_slab(kmalloc_caches, gfpflags, node);
2110 
2111 	BUG_ON(!page);
2112 	if (page_to_nid(page) != node) {
2113 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2114 				"node %d\n", node);
2115 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2116 				"in order to be able to continue\n");
2117 	}
2118 
2119 	n = page->freelist;
2120 	BUG_ON(!n);
2121 	page->freelist = get_freepointer(kmalloc_caches, n);
2122 	page->inuse++;
2123 	kmalloc_caches->node[node] = n;
2124 #ifdef CONFIG_SLUB_DEBUG
2125 	init_object(kmalloc_caches, n, 1);
2126 	init_tracking(kmalloc_caches, n);
2127 #endif
2128 	init_kmem_cache_node(n);
2129 	inc_slabs_node(kmalloc_caches, node, page->objects);
2130 
2131 	/*
2132 	 * lockdep requires consistent irq usage for each lock
2133 	 * so even though there cannot be a race this early in
2134 	 * the boot sequence, we still disable irqs.
2135 	 */
2136 	local_irq_save(flags);
2137 	add_partial(n, page, 0);
2138 	local_irq_restore(flags);
2139 	return n;
2140 }
2141 
2142 static void free_kmem_cache_nodes(struct kmem_cache *s)
2143 {
2144 	int node;
2145 
2146 	for_each_node_state(node, N_NORMAL_MEMORY) {
2147 		struct kmem_cache_node *n = s->node[node];
2148 		if (n && n != &s->local_node)
2149 			kmem_cache_free(kmalloc_caches, n);
2150 		s->node[node] = NULL;
2151 	}
2152 }
2153 
2154 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2155 {
2156 	int node;
2157 	int local_node;
2158 
2159 	if (slab_state >= UP)
2160 		local_node = page_to_nid(virt_to_page(s));
2161 	else
2162 		local_node = 0;
2163 
2164 	for_each_node_state(node, N_NORMAL_MEMORY) {
2165 		struct kmem_cache_node *n;
2166 
2167 		if (local_node == node)
2168 			n = &s->local_node;
2169 		else {
2170 			if (slab_state == DOWN) {
2171 				n = early_kmem_cache_node_alloc(gfpflags,
2172 								node);
2173 				continue;
2174 			}
2175 			n = kmem_cache_alloc_node(kmalloc_caches,
2176 							gfpflags, node);
2177 
2178 			if (!n) {
2179 				free_kmem_cache_nodes(s);
2180 				return 0;
2181 			}
2182 
2183 		}
2184 		s->node[node] = n;
2185 		init_kmem_cache_node(n);
2186 	}
2187 	return 1;
2188 }
2189 #else
2190 static void free_kmem_cache_nodes(struct kmem_cache *s)
2191 {
2192 }
2193 
2194 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2195 {
2196 	init_kmem_cache_node(&s->local_node);
2197 	return 1;
2198 }
2199 #endif
2200 
2201 /*
2202  * calculate_sizes() determines the order and the distribution of data within
2203  * a slab object.
2204  */
2205 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2206 {
2207 	unsigned long flags = s->flags;
2208 	unsigned long size = s->objsize;
2209 	unsigned long align = s->align;
2210 	int order;
2211 
2212 	/*
2213 	 * Round up object size to the next word boundary. We can only
2214 	 * place the free pointer at word boundaries and this determines
2215 	 * the possible location of the free pointer.
2216 	 */
2217 	size = ALIGN(size, sizeof(void *));
2218 
2219 #ifdef CONFIG_SLUB_DEBUG
2220 	/*
2221 	 * Determine if we can poison the object itself. If the user of
2222 	 * the slab may touch the object after free or before allocation
2223 	 * then we should never poison the object itself.
2224 	 */
2225 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2226 			!s->ctor)
2227 		s->flags |= __OBJECT_POISON;
2228 	else
2229 		s->flags &= ~__OBJECT_POISON;
2230 
2231 
2232 	/*
2233 	 * If we are Redzoning then check if there is some space between the
2234 	 * end of the object and the free pointer. If not then add an
2235 	 * additional word to have some bytes to store Redzone information.
2236 	 */
2237 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2238 		size += sizeof(void *);
2239 #endif
2240 
2241 	/*
2242 	 * With that we have determined the number of bytes in actual use
2243 	 * by the object. This is the potential offset to the free pointer.
2244 	 */
2245 	s->inuse = size;
2246 
2247 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2248 		s->ctor)) {
2249 		/*
2250 		 * Relocate free pointer after the object if it is not
2251 		 * permitted to overwrite the first word of the object on
2252 		 * kmem_cache_free.
2253 		 *
2254 		 * This is the case if we do RCU, have a constructor or
2255 		 * destructor or are poisoning the objects.
2256 		 */
2257 		s->offset = size;
2258 		size += sizeof(void *);
2259 	}
2260 
2261 #ifdef CONFIG_SLUB_DEBUG
2262 	if (flags & SLAB_STORE_USER)
2263 		/*
2264 		 * Need to store information about allocs and frees after
2265 		 * the object.
2266 		 */
2267 		size += 2 * sizeof(struct track);
2268 
2269 	if (flags & SLAB_RED_ZONE)
2270 		/*
2271 		 * Add some empty padding so that we can catch
2272 		 * overwrites from earlier objects rather than let
2273 		 * tracking information or the free pointer be
2274 		 * corrupted if an user writes before the start
2275 		 * of the object.
2276 		 */
2277 		size += sizeof(void *);
2278 #endif
2279 
2280 	/*
2281 	 * Determine the alignment based on various parameters that the
2282 	 * user specified and the dynamic determination of cache line size
2283 	 * on bootup.
2284 	 */
2285 	align = calculate_alignment(flags, align, s->objsize);
2286 
2287 	/*
2288 	 * SLUB stores one object immediately after another beginning from
2289 	 * offset 0. In order to align the objects we have to simply size
2290 	 * each object to conform to the alignment.
2291 	 */
2292 	size = ALIGN(size, align);
2293 	s->size = size;
2294 	if (forced_order >= 0)
2295 		order = forced_order;
2296 	else
2297 		order = calculate_order(size);
2298 
2299 	if (order < 0)
2300 		return 0;
2301 
2302 	s->allocflags = 0;
2303 	if (order)
2304 		s->allocflags |= __GFP_COMP;
2305 
2306 	if (s->flags & SLAB_CACHE_DMA)
2307 		s->allocflags |= SLUB_DMA;
2308 
2309 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2310 		s->allocflags |= __GFP_RECLAIMABLE;
2311 
2312 	/*
2313 	 * Determine the number of objects per slab
2314 	 */
2315 	s->oo = oo_make(order, size);
2316 	s->min = oo_make(get_order(size), size);
2317 	if (oo_objects(s->oo) > oo_objects(s->max))
2318 		s->max = s->oo;
2319 
2320 	return !!oo_objects(s->oo);
2321 
2322 }
2323 
2324 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2325 		const char *name, size_t size,
2326 		size_t align, unsigned long flags,
2327 		void (*ctor)(struct kmem_cache *, void *))
2328 {
2329 	memset(s, 0, kmem_size);
2330 	s->name = name;
2331 	s->ctor = ctor;
2332 	s->objsize = size;
2333 	s->align = align;
2334 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2335 
2336 	if (!calculate_sizes(s, -1))
2337 		goto error;
2338 
2339 	s->refcount = 1;
2340 #ifdef CONFIG_NUMA
2341 	s->remote_node_defrag_ratio = 100;
2342 #endif
2343 	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2344 		goto error;
2345 
2346 	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2347 		return 1;
2348 	free_kmem_cache_nodes(s);
2349 error:
2350 	if (flags & SLAB_PANIC)
2351 		panic("Cannot create slab %s size=%lu realsize=%u "
2352 			"order=%u offset=%u flags=%lx\n",
2353 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2354 			s->offset, flags);
2355 	return 0;
2356 }
2357 
2358 /*
2359  * Check if a given pointer is valid
2360  */
2361 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2362 {
2363 	struct page *page;
2364 
2365 	page = get_object_page(object);
2366 
2367 	if (!page || s != page->slab)
2368 		/* No slab or wrong slab */
2369 		return 0;
2370 
2371 	if (!check_valid_pointer(s, page, object))
2372 		return 0;
2373 
2374 	/*
2375 	 * We could also check if the object is on the slabs freelist.
2376 	 * But this would be too expensive and it seems that the main
2377 	 * purpose of kmem_ptr_valid() is to check if the object belongs
2378 	 * to a certain slab.
2379 	 */
2380 	return 1;
2381 }
2382 EXPORT_SYMBOL(kmem_ptr_validate);
2383 
2384 /*
2385  * Determine the size of a slab object
2386  */
2387 unsigned int kmem_cache_size(struct kmem_cache *s)
2388 {
2389 	return s->objsize;
2390 }
2391 EXPORT_SYMBOL(kmem_cache_size);
2392 
2393 const char *kmem_cache_name(struct kmem_cache *s)
2394 {
2395 	return s->name;
2396 }
2397 EXPORT_SYMBOL(kmem_cache_name);
2398 
2399 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2400 							const char *text)
2401 {
2402 #ifdef CONFIG_SLUB_DEBUG
2403 	void *addr = page_address(page);
2404 	void *p;
2405 	DECLARE_BITMAP(map, page->objects);
2406 
2407 	bitmap_zero(map, page->objects);
2408 	slab_err(s, page, "%s", text);
2409 	slab_lock(page);
2410 	for_each_free_object(p, s, page->freelist)
2411 		set_bit(slab_index(p, s, addr), map);
2412 
2413 	for_each_object(p, s, addr, page->objects) {
2414 
2415 		if (!test_bit(slab_index(p, s, addr), map)) {
2416 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2417 							p, p - addr);
2418 			print_tracking(s, p);
2419 		}
2420 	}
2421 	slab_unlock(page);
2422 #endif
2423 }
2424 
2425 /*
2426  * Attempt to free all partial slabs on a node.
2427  */
2428 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2429 {
2430 	unsigned long flags;
2431 	struct page *page, *h;
2432 
2433 	spin_lock_irqsave(&n->list_lock, flags);
2434 	list_for_each_entry_safe(page, h, &n->partial, lru) {
2435 		if (!page->inuse) {
2436 			list_del(&page->lru);
2437 			discard_slab(s, page);
2438 			n->nr_partial--;
2439 		} else {
2440 			list_slab_objects(s, page,
2441 				"Objects remaining on kmem_cache_close()");
2442 		}
2443 	}
2444 	spin_unlock_irqrestore(&n->list_lock, flags);
2445 }
2446 
2447 /*
2448  * Release all resources used by a slab cache.
2449  */
2450 static inline int kmem_cache_close(struct kmem_cache *s)
2451 {
2452 	int node;
2453 
2454 	flush_all(s);
2455 
2456 	/* Attempt to free all objects */
2457 	free_kmem_cache_cpus(s);
2458 	for_each_node_state(node, N_NORMAL_MEMORY) {
2459 		struct kmem_cache_node *n = get_node(s, node);
2460 
2461 		free_partial(s, n);
2462 		if (n->nr_partial || slabs_node(s, node))
2463 			return 1;
2464 	}
2465 	free_kmem_cache_nodes(s);
2466 	return 0;
2467 }
2468 
2469 /*
2470  * Close a cache and release the kmem_cache structure
2471  * (must be used for caches created using kmem_cache_create)
2472  */
2473 void kmem_cache_destroy(struct kmem_cache *s)
2474 {
2475 	down_write(&slub_lock);
2476 	s->refcount--;
2477 	if (!s->refcount) {
2478 		list_del(&s->list);
2479 		up_write(&slub_lock);
2480 		if (kmem_cache_close(s)) {
2481 			printk(KERN_ERR "SLUB %s: %s called for cache that "
2482 				"still has objects.\n", s->name, __func__);
2483 			dump_stack();
2484 		}
2485 		sysfs_slab_remove(s);
2486 	} else
2487 		up_write(&slub_lock);
2488 }
2489 EXPORT_SYMBOL(kmem_cache_destroy);
2490 
2491 /********************************************************************
2492  *		Kmalloc subsystem
2493  *******************************************************************/
2494 
2495 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2496 EXPORT_SYMBOL(kmalloc_caches);
2497 
2498 static int __init setup_slub_min_order(char *str)
2499 {
2500 	get_option(&str, &slub_min_order);
2501 
2502 	return 1;
2503 }
2504 
2505 __setup("slub_min_order=", setup_slub_min_order);
2506 
2507 static int __init setup_slub_max_order(char *str)
2508 {
2509 	get_option(&str, &slub_max_order);
2510 
2511 	return 1;
2512 }
2513 
2514 __setup("slub_max_order=", setup_slub_max_order);
2515 
2516 static int __init setup_slub_min_objects(char *str)
2517 {
2518 	get_option(&str, &slub_min_objects);
2519 
2520 	return 1;
2521 }
2522 
2523 __setup("slub_min_objects=", setup_slub_min_objects);
2524 
2525 static int __init setup_slub_nomerge(char *str)
2526 {
2527 	slub_nomerge = 1;
2528 	return 1;
2529 }
2530 
2531 __setup("slub_nomerge", setup_slub_nomerge);
2532 
2533 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2534 		const char *name, int size, gfp_t gfp_flags)
2535 {
2536 	unsigned int flags = 0;
2537 
2538 	if (gfp_flags & SLUB_DMA)
2539 		flags = SLAB_CACHE_DMA;
2540 
2541 	down_write(&slub_lock);
2542 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2543 								flags, NULL))
2544 		goto panic;
2545 
2546 	list_add(&s->list, &slab_caches);
2547 	up_write(&slub_lock);
2548 	if (sysfs_slab_add(s))
2549 		goto panic;
2550 	return s;
2551 
2552 panic:
2553 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2554 }
2555 
2556 #ifdef CONFIG_ZONE_DMA
2557 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2558 
2559 static void sysfs_add_func(struct work_struct *w)
2560 {
2561 	struct kmem_cache *s;
2562 
2563 	down_write(&slub_lock);
2564 	list_for_each_entry(s, &slab_caches, list) {
2565 		if (s->flags & __SYSFS_ADD_DEFERRED) {
2566 			s->flags &= ~__SYSFS_ADD_DEFERRED;
2567 			sysfs_slab_add(s);
2568 		}
2569 	}
2570 	up_write(&slub_lock);
2571 }
2572 
2573 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2574 
2575 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2576 {
2577 	struct kmem_cache *s;
2578 	char *text;
2579 	size_t realsize;
2580 
2581 	s = kmalloc_caches_dma[index];
2582 	if (s)
2583 		return s;
2584 
2585 	/* Dynamically create dma cache */
2586 	if (flags & __GFP_WAIT)
2587 		down_write(&slub_lock);
2588 	else {
2589 		if (!down_write_trylock(&slub_lock))
2590 			goto out;
2591 	}
2592 
2593 	if (kmalloc_caches_dma[index])
2594 		goto unlock_out;
2595 
2596 	realsize = kmalloc_caches[index].objsize;
2597 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2598 			 (unsigned int)realsize);
2599 	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2600 
2601 	if (!s || !text || !kmem_cache_open(s, flags, text,
2602 			realsize, ARCH_KMALLOC_MINALIGN,
2603 			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2604 		kfree(s);
2605 		kfree(text);
2606 		goto unlock_out;
2607 	}
2608 
2609 	list_add(&s->list, &slab_caches);
2610 	kmalloc_caches_dma[index] = s;
2611 
2612 	schedule_work(&sysfs_add_work);
2613 
2614 unlock_out:
2615 	up_write(&slub_lock);
2616 out:
2617 	return kmalloc_caches_dma[index];
2618 }
2619 #endif
2620 
2621 /*
2622  * Conversion table for small slabs sizes / 8 to the index in the
2623  * kmalloc array. This is necessary for slabs < 192 since we have non power
2624  * of two cache sizes there. The size of larger slabs can be determined using
2625  * fls.
2626  */
2627 static s8 size_index[24] = {
2628 	3,	/* 8 */
2629 	4,	/* 16 */
2630 	5,	/* 24 */
2631 	5,	/* 32 */
2632 	6,	/* 40 */
2633 	6,	/* 48 */
2634 	6,	/* 56 */
2635 	6,	/* 64 */
2636 	1,	/* 72 */
2637 	1,	/* 80 */
2638 	1,	/* 88 */
2639 	1,	/* 96 */
2640 	7,	/* 104 */
2641 	7,	/* 112 */
2642 	7,	/* 120 */
2643 	7,	/* 128 */
2644 	2,	/* 136 */
2645 	2,	/* 144 */
2646 	2,	/* 152 */
2647 	2,	/* 160 */
2648 	2,	/* 168 */
2649 	2,	/* 176 */
2650 	2,	/* 184 */
2651 	2	/* 192 */
2652 };
2653 
2654 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2655 {
2656 	int index;
2657 
2658 	if (size <= 192) {
2659 		if (!size)
2660 			return ZERO_SIZE_PTR;
2661 
2662 		index = size_index[(size - 1) / 8];
2663 	} else
2664 		index = fls(size - 1);
2665 
2666 #ifdef CONFIG_ZONE_DMA
2667 	if (unlikely((flags & SLUB_DMA)))
2668 		return dma_kmalloc_cache(index, flags);
2669 
2670 #endif
2671 	return &kmalloc_caches[index];
2672 }
2673 
2674 void *__kmalloc(size_t size, gfp_t flags)
2675 {
2676 	struct kmem_cache *s;
2677 
2678 	if (unlikely(size > PAGE_SIZE))
2679 		return kmalloc_large(size, flags);
2680 
2681 	s = get_slab(size, flags);
2682 
2683 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2684 		return s;
2685 
2686 	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2687 }
2688 EXPORT_SYMBOL(__kmalloc);
2689 
2690 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2691 {
2692 	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2693 						get_order(size));
2694 
2695 	if (page)
2696 		return page_address(page);
2697 	else
2698 		return NULL;
2699 }
2700 
2701 #ifdef CONFIG_NUMA
2702 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2703 {
2704 	struct kmem_cache *s;
2705 
2706 	if (unlikely(size > PAGE_SIZE))
2707 		return kmalloc_large_node(size, flags, node);
2708 
2709 	s = get_slab(size, flags);
2710 
2711 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2712 		return s;
2713 
2714 	return slab_alloc(s, flags, node, __builtin_return_address(0));
2715 }
2716 EXPORT_SYMBOL(__kmalloc_node);
2717 #endif
2718 
2719 size_t ksize(const void *object)
2720 {
2721 	struct page *page;
2722 	struct kmem_cache *s;
2723 
2724 	if (unlikely(object == ZERO_SIZE_PTR))
2725 		return 0;
2726 
2727 	page = virt_to_head_page(object);
2728 
2729 	if (unlikely(!PageSlab(page)))
2730 		return PAGE_SIZE << compound_order(page);
2731 
2732 	s = page->slab;
2733 
2734 #ifdef CONFIG_SLUB_DEBUG
2735 	/*
2736 	 * Debugging requires use of the padding between object
2737 	 * and whatever may come after it.
2738 	 */
2739 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2740 		return s->objsize;
2741 
2742 #endif
2743 	/*
2744 	 * If we have the need to store the freelist pointer
2745 	 * back there or track user information then we can
2746 	 * only use the space before that information.
2747 	 */
2748 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2749 		return s->inuse;
2750 	/*
2751 	 * Else we can use all the padding etc for the allocation
2752 	 */
2753 	return s->size;
2754 }
2755 EXPORT_SYMBOL(ksize);
2756 
2757 void kfree(const void *x)
2758 {
2759 	struct page *page;
2760 	void *object = (void *)x;
2761 
2762 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2763 		return;
2764 
2765 	page = virt_to_head_page(x);
2766 	if (unlikely(!PageSlab(page))) {
2767 		put_page(page);
2768 		return;
2769 	}
2770 	slab_free(page->slab, page, object, __builtin_return_address(0));
2771 }
2772 EXPORT_SYMBOL(kfree);
2773 
2774 /*
2775  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2776  * the remaining slabs by the number of items in use. The slabs with the
2777  * most items in use come first. New allocations will then fill those up
2778  * and thus they can be removed from the partial lists.
2779  *
2780  * The slabs with the least items are placed last. This results in them
2781  * being allocated from last increasing the chance that the last objects
2782  * are freed in them.
2783  */
2784 int kmem_cache_shrink(struct kmem_cache *s)
2785 {
2786 	int node;
2787 	int i;
2788 	struct kmem_cache_node *n;
2789 	struct page *page;
2790 	struct page *t;
2791 	int objects = oo_objects(s->max);
2792 	struct list_head *slabs_by_inuse =
2793 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2794 	unsigned long flags;
2795 
2796 	if (!slabs_by_inuse)
2797 		return -ENOMEM;
2798 
2799 	flush_all(s);
2800 	for_each_node_state(node, N_NORMAL_MEMORY) {
2801 		n = get_node(s, node);
2802 
2803 		if (!n->nr_partial)
2804 			continue;
2805 
2806 		for (i = 0; i < objects; i++)
2807 			INIT_LIST_HEAD(slabs_by_inuse + i);
2808 
2809 		spin_lock_irqsave(&n->list_lock, flags);
2810 
2811 		/*
2812 		 * Build lists indexed by the items in use in each slab.
2813 		 *
2814 		 * Note that concurrent frees may occur while we hold the
2815 		 * list_lock. page->inuse here is the upper limit.
2816 		 */
2817 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2818 			if (!page->inuse && slab_trylock(page)) {
2819 				/*
2820 				 * Must hold slab lock here because slab_free
2821 				 * may have freed the last object and be
2822 				 * waiting to release the slab.
2823 				 */
2824 				list_del(&page->lru);
2825 				n->nr_partial--;
2826 				slab_unlock(page);
2827 				discard_slab(s, page);
2828 			} else {
2829 				list_move(&page->lru,
2830 				slabs_by_inuse + page->inuse);
2831 			}
2832 		}
2833 
2834 		/*
2835 		 * Rebuild the partial list with the slabs filled up most
2836 		 * first and the least used slabs at the end.
2837 		 */
2838 		for (i = objects - 1; i >= 0; i--)
2839 			list_splice(slabs_by_inuse + i, n->partial.prev);
2840 
2841 		spin_unlock_irqrestore(&n->list_lock, flags);
2842 	}
2843 
2844 	kfree(slabs_by_inuse);
2845 	return 0;
2846 }
2847 EXPORT_SYMBOL(kmem_cache_shrink);
2848 
2849 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2850 static int slab_mem_going_offline_callback(void *arg)
2851 {
2852 	struct kmem_cache *s;
2853 
2854 	down_read(&slub_lock);
2855 	list_for_each_entry(s, &slab_caches, list)
2856 		kmem_cache_shrink(s);
2857 	up_read(&slub_lock);
2858 
2859 	return 0;
2860 }
2861 
2862 static void slab_mem_offline_callback(void *arg)
2863 {
2864 	struct kmem_cache_node *n;
2865 	struct kmem_cache *s;
2866 	struct memory_notify *marg = arg;
2867 	int offline_node;
2868 
2869 	offline_node = marg->status_change_nid;
2870 
2871 	/*
2872 	 * If the node still has available memory. we need kmem_cache_node
2873 	 * for it yet.
2874 	 */
2875 	if (offline_node < 0)
2876 		return;
2877 
2878 	down_read(&slub_lock);
2879 	list_for_each_entry(s, &slab_caches, list) {
2880 		n = get_node(s, offline_node);
2881 		if (n) {
2882 			/*
2883 			 * if n->nr_slabs > 0, slabs still exist on the node
2884 			 * that is going down. We were unable to free them,
2885 			 * and offline_pages() function shoudn't call this
2886 			 * callback. So, we must fail.
2887 			 */
2888 			BUG_ON(slabs_node(s, offline_node));
2889 
2890 			s->node[offline_node] = NULL;
2891 			kmem_cache_free(kmalloc_caches, n);
2892 		}
2893 	}
2894 	up_read(&slub_lock);
2895 }
2896 
2897 static int slab_mem_going_online_callback(void *arg)
2898 {
2899 	struct kmem_cache_node *n;
2900 	struct kmem_cache *s;
2901 	struct memory_notify *marg = arg;
2902 	int nid = marg->status_change_nid;
2903 	int ret = 0;
2904 
2905 	/*
2906 	 * If the node's memory is already available, then kmem_cache_node is
2907 	 * already created. Nothing to do.
2908 	 */
2909 	if (nid < 0)
2910 		return 0;
2911 
2912 	/*
2913 	 * We are bringing a node online. No memory is available yet. We must
2914 	 * allocate a kmem_cache_node structure in order to bring the node
2915 	 * online.
2916 	 */
2917 	down_read(&slub_lock);
2918 	list_for_each_entry(s, &slab_caches, list) {
2919 		/*
2920 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2921 		 *      since memory is not yet available from the node that
2922 		 *      is brought up.
2923 		 */
2924 		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2925 		if (!n) {
2926 			ret = -ENOMEM;
2927 			goto out;
2928 		}
2929 		init_kmem_cache_node(n);
2930 		s->node[nid] = n;
2931 	}
2932 out:
2933 	up_read(&slub_lock);
2934 	return ret;
2935 }
2936 
2937 static int slab_memory_callback(struct notifier_block *self,
2938 				unsigned long action, void *arg)
2939 {
2940 	int ret = 0;
2941 
2942 	switch (action) {
2943 	case MEM_GOING_ONLINE:
2944 		ret = slab_mem_going_online_callback(arg);
2945 		break;
2946 	case MEM_GOING_OFFLINE:
2947 		ret = slab_mem_going_offline_callback(arg);
2948 		break;
2949 	case MEM_OFFLINE:
2950 	case MEM_CANCEL_ONLINE:
2951 		slab_mem_offline_callback(arg);
2952 		break;
2953 	case MEM_ONLINE:
2954 	case MEM_CANCEL_OFFLINE:
2955 		break;
2956 	}
2957 
2958 	ret = notifier_from_errno(ret);
2959 	return ret;
2960 }
2961 
2962 #endif /* CONFIG_MEMORY_HOTPLUG */
2963 
2964 /********************************************************************
2965  *			Basic setup of slabs
2966  *******************************************************************/
2967 
2968 void __init kmem_cache_init(void)
2969 {
2970 	int i;
2971 	int caches = 0;
2972 
2973 	init_alloc_cpu();
2974 
2975 #ifdef CONFIG_NUMA
2976 	/*
2977 	 * Must first have the slab cache available for the allocations of the
2978 	 * struct kmem_cache_node's. There is special bootstrap code in
2979 	 * kmem_cache_open for slab_state == DOWN.
2980 	 */
2981 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2982 		sizeof(struct kmem_cache_node), GFP_KERNEL);
2983 	kmalloc_caches[0].refcount = -1;
2984 	caches++;
2985 
2986 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2987 #endif
2988 
2989 	/* Able to allocate the per node structures */
2990 	slab_state = PARTIAL;
2991 
2992 	/* Caches that are not of the two-to-the-power-of size */
2993 	if (KMALLOC_MIN_SIZE <= 64) {
2994 		create_kmalloc_cache(&kmalloc_caches[1],
2995 				"kmalloc-96", 96, GFP_KERNEL);
2996 		caches++;
2997 	}
2998 	if (KMALLOC_MIN_SIZE <= 128) {
2999 		create_kmalloc_cache(&kmalloc_caches[2],
3000 				"kmalloc-192", 192, GFP_KERNEL);
3001 		caches++;
3002 	}
3003 
3004 	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
3005 		create_kmalloc_cache(&kmalloc_caches[i],
3006 			"kmalloc", 1 << i, GFP_KERNEL);
3007 		caches++;
3008 	}
3009 
3010 
3011 	/*
3012 	 * Patch up the size_index table if we have strange large alignment
3013 	 * requirements for the kmalloc array. This is only the case for
3014 	 * MIPS it seems. The standard arches will not generate any code here.
3015 	 *
3016 	 * Largest permitted alignment is 256 bytes due to the way we
3017 	 * handle the index determination for the smaller caches.
3018 	 *
3019 	 * Make sure that nothing crazy happens if someone starts tinkering
3020 	 * around with ARCH_KMALLOC_MINALIGN
3021 	 */
3022 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3023 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3024 
3025 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3026 		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3027 
3028 	slab_state = UP;
3029 
3030 	/* Provide the correct kmalloc names now that the caches are up */
3031 	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3032 		kmalloc_caches[i]. name =
3033 			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3034 
3035 #ifdef CONFIG_SMP
3036 	register_cpu_notifier(&slab_notifier);
3037 	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3038 				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3039 #else
3040 	kmem_size = sizeof(struct kmem_cache);
3041 #endif
3042 
3043 	printk(KERN_INFO
3044 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3045 		" CPUs=%d, Nodes=%d\n",
3046 		caches, cache_line_size(),
3047 		slub_min_order, slub_max_order, slub_min_objects,
3048 		nr_cpu_ids, nr_node_ids);
3049 }
3050 
3051 /*
3052  * Find a mergeable slab cache
3053  */
3054 static int slab_unmergeable(struct kmem_cache *s)
3055 {
3056 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3057 		return 1;
3058 
3059 	if (s->ctor)
3060 		return 1;
3061 
3062 	/*
3063 	 * We may have set a slab to be unmergeable during bootstrap.
3064 	 */
3065 	if (s->refcount < 0)
3066 		return 1;
3067 
3068 	return 0;
3069 }
3070 
3071 static struct kmem_cache *find_mergeable(size_t size,
3072 		size_t align, unsigned long flags, const char *name,
3073 		void (*ctor)(struct kmem_cache *, void *))
3074 {
3075 	struct kmem_cache *s;
3076 
3077 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3078 		return NULL;
3079 
3080 	if (ctor)
3081 		return NULL;
3082 
3083 	size = ALIGN(size, sizeof(void *));
3084 	align = calculate_alignment(flags, align, size);
3085 	size = ALIGN(size, align);
3086 	flags = kmem_cache_flags(size, flags, name, NULL);
3087 
3088 	list_for_each_entry(s, &slab_caches, list) {
3089 		if (slab_unmergeable(s))
3090 			continue;
3091 
3092 		if (size > s->size)
3093 			continue;
3094 
3095 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3096 				continue;
3097 		/*
3098 		 * Check if alignment is compatible.
3099 		 * Courtesy of Adrian Drzewiecki
3100 		 */
3101 		if ((s->size & ~(align - 1)) != s->size)
3102 			continue;
3103 
3104 		if (s->size - size >= sizeof(void *))
3105 			continue;
3106 
3107 		return s;
3108 	}
3109 	return NULL;
3110 }
3111 
3112 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3113 		size_t align, unsigned long flags,
3114 		void (*ctor)(struct kmem_cache *, void *))
3115 {
3116 	struct kmem_cache *s;
3117 
3118 	down_write(&slub_lock);
3119 	s = find_mergeable(size, align, flags, name, ctor);
3120 	if (s) {
3121 		int cpu;
3122 
3123 		s->refcount++;
3124 		/*
3125 		 * Adjust the object sizes so that we clear
3126 		 * the complete object on kzalloc.
3127 		 */
3128 		s->objsize = max(s->objsize, (int)size);
3129 
3130 		/*
3131 		 * And then we need to update the object size in the
3132 		 * per cpu structures
3133 		 */
3134 		for_each_online_cpu(cpu)
3135 			get_cpu_slab(s, cpu)->objsize = s->objsize;
3136 
3137 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3138 		up_write(&slub_lock);
3139 
3140 		if (sysfs_slab_alias(s, name))
3141 			goto err;
3142 		return s;
3143 	}
3144 
3145 	s = kmalloc(kmem_size, GFP_KERNEL);
3146 	if (s) {
3147 		if (kmem_cache_open(s, GFP_KERNEL, name,
3148 				size, align, flags, ctor)) {
3149 			list_add(&s->list, &slab_caches);
3150 			up_write(&slub_lock);
3151 			if (sysfs_slab_add(s))
3152 				goto err;
3153 			return s;
3154 		}
3155 		kfree(s);
3156 	}
3157 	up_write(&slub_lock);
3158 
3159 err:
3160 	if (flags & SLAB_PANIC)
3161 		panic("Cannot create slabcache %s\n", name);
3162 	else
3163 		s = NULL;
3164 	return s;
3165 }
3166 EXPORT_SYMBOL(kmem_cache_create);
3167 
3168 #ifdef CONFIG_SMP
3169 /*
3170  * Use the cpu notifier to insure that the cpu slabs are flushed when
3171  * necessary.
3172  */
3173 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3174 		unsigned long action, void *hcpu)
3175 {
3176 	long cpu = (long)hcpu;
3177 	struct kmem_cache *s;
3178 	unsigned long flags;
3179 
3180 	switch (action) {
3181 	case CPU_UP_PREPARE:
3182 	case CPU_UP_PREPARE_FROZEN:
3183 		init_alloc_cpu_cpu(cpu);
3184 		down_read(&slub_lock);
3185 		list_for_each_entry(s, &slab_caches, list)
3186 			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3187 							GFP_KERNEL);
3188 		up_read(&slub_lock);
3189 		break;
3190 
3191 	case CPU_UP_CANCELED:
3192 	case CPU_UP_CANCELED_FROZEN:
3193 	case CPU_DEAD:
3194 	case CPU_DEAD_FROZEN:
3195 		down_read(&slub_lock);
3196 		list_for_each_entry(s, &slab_caches, list) {
3197 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3198 
3199 			local_irq_save(flags);
3200 			__flush_cpu_slab(s, cpu);
3201 			local_irq_restore(flags);
3202 			free_kmem_cache_cpu(c, cpu);
3203 			s->cpu_slab[cpu] = NULL;
3204 		}
3205 		up_read(&slub_lock);
3206 		break;
3207 	default:
3208 		break;
3209 	}
3210 	return NOTIFY_OK;
3211 }
3212 
3213 static struct notifier_block __cpuinitdata slab_notifier = {
3214 	.notifier_call = slab_cpuup_callback
3215 };
3216 
3217 #endif
3218 
3219 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3220 {
3221 	struct kmem_cache *s;
3222 
3223 	if (unlikely(size > PAGE_SIZE))
3224 		return kmalloc_large(size, gfpflags);
3225 
3226 	s = get_slab(size, gfpflags);
3227 
3228 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3229 		return s;
3230 
3231 	return slab_alloc(s, gfpflags, -1, caller);
3232 }
3233 
3234 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3235 					int node, void *caller)
3236 {
3237 	struct kmem_cache *s;
3238 
3239 	if (unlikely(size > PAGE_SIZE))
3240 		return kmalloc_large_node(size, gfpflags, node);
3241 
3242 	s = get_slab(size, gfpflags);
3243 
3244 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3245 		return s;
3246 
3247 	return slab_alloc(s, gfpflags, node, caller);
3248 }
3249 
3250 #ifdef CONFIG_SLUB_DEBUG
3251 static unsigned long count_partial(struct kmem_cache_node *n,
3252 					int (*get_count)(struct page *))
3253 {
3254 	unsigned long flags;
3255 	unsigned long x = 0;
3256 	struct page *page;
3257 
3258 	spin_lock_irqsave(&n->list_lock, flags);
3259 	list_for_each_entry(page, &n->partial, lru)
3260 		x += get_count(page);
3261 	spin_unlock_irqrestore(&n->list_lock, flags);
3262 	return x;
3263 }
3264 
3265 static int count_inuse(struct page *page)
3266 {
3267 	return page->inuse;
3268 }
3269 
3270 static int count_total(struct page *page)
3271 {
3272 	return page->objects;
3273 }
3274 
3275 static int count_free(struct page *page)
3276 {
3277 	return page->objects - page->inuse;
3278 }
3279 
3280 static int validate_slab(struct kmem_cache *s, struct page *page,
3281 						unsigned long *map)
3282 {
3283 	void *p;
3284 	void *addr = page_address(page);
3285 
3286 	if (!check_slab(s, page) ||
3287 			!on_freelist(s, page, NULL))
3288 		return 0;
3289 
3290 	/* Now we know that a valid freelist exists */
3291 	bitmap_zero(map, page->objects);
3292 
3293 	for_each_free_object(p, s, page->freelist) {
3294 		set_bit(slab_index(p, s, addr), map);
3295 		if (!check_object(s, page, p, 0))
3296 			return 0;
3297 	}
3298 
3299 	for_each_object(p, s, addr, page->objects)
3300 		if (!test_bit(slab_index(p, s, addr), map))
3301 			if (!check_object(s, page, p, 1))
3302 				return 0;
3303 	return 1;
3304 }
3305 
3306 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3307 						unsigned long *map)
3308 {
3309 	if (slab_trylock(page)) {
3310 		validate_slab(s, page, map);
3311 		slab_unlock(page);
3312 	} else
3313 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3314 			s->name, page);
3315 
3316 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3317 		if (!SlabDebug(page))
3318 			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3319 				"on slab 0x%p\n", s->name, page);
3320 	} else {
3321 		if (SlabDebug(page))
3322 			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3323 				"slab 0x%p\n", s->name, page);
3324 	}
3325 }
3326 
3327 static int validate_slab_node(struct kmem_cache *s,
3328 		struct kmem_cache_node *n, unsigned long *map)
3329 {
3330 	unsigned long count = 0;
3331 	struct page *page;
3332 	unsigned long flags;
3333 
3334 	spin_lock_irqsave(&n->list_lock, flags);
3335 
3336 	list_for_each_entry(page, &n->partial, lru) {
3337 		validate_slab_slab(s, page, map);
3338 		count++;
3339 	}
3340 	if (count != n->nr_partial)
3341 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3342 			"counter=%ld\n", s->name, count, n->nr_partial);
3343 
3344 	if (!(s->flags & SLAB_STORE_USER))
3345 		goto out;
3346 
3347 	list_for_each_entry(page, &n->full, lru) {
3348 		validate_slab_slab(s, page, map);
3349 		count++;
3350 	}
3351 	if (count != atomic_long_read(&n->nr_slabs))
3352 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3353 			"counter=%ld\n", s->name, count,
3354 			atomic_long_read(&n->nr_slabs));
3355 
3356 out:
3357 	spin_unlock_irqrestore(&n->list_lock, flags);
3358 	return count;
3359 }
3360 
3361 static long validate_slab_cache(struct kmem_cache *s)
3362 {
3363 	int node;
3364 	unsigned long count = 0;
3365 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3366 				sizeof(unsigned long), GFP_KERNEL);
3367 
3368 	if (!map)
3369 		return -ENOMEM;
3370 
3371 	flush_all(s);
3372 	for_each_node_state(node, N_NORMAL_MEMORY) {
3373 		struct kmem_cache_node *n = get_node(s, node);
3374 
3375 		count += validate_slab_node(s, n, map);
3376 	}
3377 	kfree(map);
3378 	return count;
3379 }
3380 
3381 #ifdef SLUB_RESILIENCY_TEST
3382 static void resiliency_test(void)
3383 {
3384 	u8 *p;
3385 
3386 	printk(KERN_ERR "SLUB resiliency testing\n");
3387 	printk(KERN_ERR "-----------------------\n");
3388 	printk(KERN_ERR "A. Corruption after allocation\n");
3389 
3390 	p = kzalloc(16, GFP_KERNEL);
3391 	p[16] = 0x12;
3392 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3393 			" 0x12->0x%p\n\n", p + 16);
3394 
3395 	validate_slab_cache(kmalloc_caches + 4);
3396 
3397 	/* Hmmm... The next two are dangerous */
3398 	p = kzalloc(32, GFP_KERNEL);
3399 	p[32 + sizeof(void *)] = 0x34;
3400 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3401 			" 0x34 -> -0x%p\n", p);
3402 	printk(KERN_ERR
3403 		"If allocated object is overwritten then not detectable\n\n");
3404 
3405 	validate_slab_cache(kmalloc_caches + 5);
3406 	p = kzalloc(64, GFP_KERNEL);
3407 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3408 	*p = 0x56;
3409 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3410 									p);
3411 	printk(KERN_ERR
3412 		"If allocated object is overwritten then not detectable\n\n");
3413 	validate_slab_cache(kmalloc_caches + 6);
3414 
3415 	printk(KERN_ERR "\nB. Corruption after free\n");
3416 	p = kzalloc(128, GFP_KERNEL);
3417 	kfree(p);
3418 	*p = 0x78;
3419 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3420 	validate_slab_cache(kmalloc_caches + 7);
3421 
3422 	p = kzalloc(256, GFP_KERNEL);
3423 	kfree(p);
3424 	p[50] = 0x9a;
3425 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3426 			p);
3427 	validate_slab_cache(kmalloc_caches + 8);
3428 
3429 	p = kzalloc(512, GFP_KERNEL);
3430 	kfree(p);
3431 	p[512] = 0xab;
3432 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3433 	validate_slab_cache(kmalloc_caches + 9);
3434 }
3435 #else
3436 static void resiliency_test(void) {};
3437 #endif
3438 
3439 /*
3440  * Generate lists of code addresses where slabcache objects are allocated
3441  * and freed.
3442  */
3443 
3444 struct location {
3445 	unsigned long count;
3446 	void *addr;
3447 	long long sum_time;
3448 	long min_time;
3449 	long max_time;
3450 	long min_pid;
3451 	long max_pid;
3452 	cpumask_t cpus;
3453 	nodemask_t nodes;
3454 };
3455 
3456 struct loc_track {
3457 	unsigned long max;
3458 	unsigned long count;
3459 	struct location *loc;
3460 };
3461 
3462 static void free_loc_track(struct loc_track *t)
3463 {
3464 	if (t->max)
3465 		free_pages((unsigned long)t->loc,
3466 			get_order(sizeof(struct location) * t->max));
3467 }
3468 
3469 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3470 {
3471 	struct location *l;
3472 	int order;
3473 
3474 	order = get_order(sizeof(struct location) * max);
3475 
3476 	l = (void *)__get_free_pages(flags, order);
3477 	if (!l)
3478 		return 0;
3479 
3480 	if (t->count) {
3481 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3482 		free_loc_track(t);
3483 	}
3484 	t->max = max;
3485 	t->loc = l;
3486 	return 1;
3487 }
3488 
3489 static int add_location(struct loc_track *t, struct kmem_cache *s,
3490 				const struct track *track)
3491 {
3492 	long start, end, pos;
3493 	struct location *l;
3494 	void *caddr;
3495 	unsigned long age = jiffies - track->when;
3496 
3497 	start = -1;
3498 	end = t->count;
3499 
3500 	for ( ; ; ) {
3501 		pos = start + (end - start + 1) / 2;
3502 
3503 		/*
3504 		 * There is nothing at "end". If we end up there
3505 		 * we need to add something to before end.
3506 		 */
3507 		if (pos == end)
3508 			break;
3509 
3510 		caddr = t->loc[pos].addr;
3511 		if (track->addr == caddr) {
3512 
3513 			l = &t->loc[pos];
3514 			l->count++;
3515 			if (track->when) {
3516 				l->sum_time += age;
3517 				if (age < l->min_time)
3518 					l->min_time = age;
3519 				if (age > l->max_time)
3520 					l->max_time = age;
3521 
3522 				if (track->pid < l->min_pid)
3523 					l->min_pid = track->pid;
3524 				if (track->pid > l->max_pid)
3525 					l->max_pid = track->pid;
3526 
3527 				cpu_set(track->cpu, l->cpus);
3528 			}
3529 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3530 			return 1;
3531 		}
3532 
3533 		if (track->addr < caddr)
3534 			end = pos;
3535 		else
3536 			start = pos;
3537 	}
3538 
3539 	/*
3540 	 * Not found. Insert new tracking element.
3541 	 */
3542 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3543 		return 0;
3544 
3545 	l = t->loc + pos;
3546 	if (pos < t->count)
3547 		memmove(l + 1, l,
3548 			(t->count - pos) * sizeof(struct location));
3549 	t->count++;
3550 	l->count = 1;
3551 	l->addr = track->addr;
3552 	l->sum_time = age;
3553 	l->min_time = age;
3554 	l->max_time = age;
3555 	l->min_pid = track->pid;
3556 	l->max_pid = track->pid;
3557 	cpus_clear(l->cpus);
3558 	cpu_set(track->cpu, l->cpus);
3559 	nodes_clear(l->nodes);
3560 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3561 	return 1;
3562 }
3563 
3564 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3565 		struct page *page, enum track_item alloc)
3566 {
3567 	void *addr = page_address(page);
3568 	DECLARE_BITMAP(map, page->objects);
3569 	void *p;
3570 
3571 	bitmap_zero(map, page->objects);
3572 	for_each_free_object(p, s, page->freelist)
3573 		set_bit(slab_index(p, s, addr), map);
3574 
3575 	for_each_object(p, s, addr, page->objects)
3576 		if (!test_bit(slab_index(p, s, addr), map))
3577 			add_location(t, s, get_track(s, p, alloc));
3578 }
3579 
3580 static int list_locations(struct kmem_cache *s, char *buf,
3581 					enum track_item alloc)
3582 {
3583 	int len = 0;
3584 	unsigned long i;
3585 	struct loc_track t = { 0, 0, NULL };
3586 	int node;
3587 
3588 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3589 			GFP_TEMPORARY))
3590 		return sprintf(buf, "Out of memory\n");
3591 
3592 	/* Push back cpu slabs */
3593 	flush_all(s);
3594 
3595 	for_each_node_state(node, N_NORMAL_MEMORY) {
3596 		struct kmem_cache_node *n = get_node(s, node);
3597 		unsigned long flags;
3598 		struct page *page;
3599 
3600 		if (!atomic_long_read(&n->nr_slabs))
3601 			continue;
3602 
3603 		spin_lock_irqsave(&n->list_lock, flags);
3604 		list_for_each_entry(page, &n->partial, lru)
3605 			process_slab(&t, s, page, alloc);
3606 		list_for_each_entry(page, &n->full, lru)
3607 			process_slab(&t, s, page, alloc);
3608 		spin_unlock_irqrestore(&n->list_lock, flags);
3609 	}
3610 
3611 	for (i = 0; i < t.count; i++) {
3612 		struct location *l = &t.loc[i];
3613 
3614 		if (len > PAGE_SIZE - 100)
3615 			break;
3616 		len += sprintf(buf + len, "%7ld ", l->count);
3617 
3618 		if (l->addr)
3619 			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3620 		else
3621 			len += sprintf(buf + len, "<not-available>");
3622 
3623 		if (l->sum_time != l->min_time) {
3624 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3625 				l->min_time,
3626 				(long)div_u64(l->sum_time, l->count),
3627 				l->max_time);
3628 		} else
3629 			len += sprintf(buf + len, " age=%ld",
3630 				l->min_time);
3631 
3632 		if (l->min_pid != l->max_pid)
3633 			len += sprintf(buf + len, " pid=%ld-%ld",
3634 				l->min_pid, l->max_pid);
3635 		else
3636 			len += sprintf(buf + len, " pid=%ld",
3637 				l->min_pid);
3638 
3639 		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3640 				len < PAGE_SIZE - 60) {
3641 			len += sprintf(buf + len, " cpus=");
3642 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3643 					l->cpus);
3644 		}
3645 
3646 		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3647 				len < PAGE_SIZE - 60) {
3648 			len += sprintf(buf + len, " nodes=");
3649 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3650 					l->nodes);
3651 		}
3652 
3653 		len += sprintf(buf + len, "\n");
3654 	}
3655 
3656 	free_loc_track(&t);
3657 	if (!t.count)
3658 		len += sprintf(buf, "No data\n");
3659 	return len;
3660 }
3661 
3662 enum slab_stat_type {
3663 	SL_ALL,			/* All slabs */
3664 	SL_PARTIAL,		/* Only partially allocated slabs */
3665 	SL_CPU,			/* Only slabs used for cpu caches */
3666 	SL_OBJECTS,		/* Determine allocated objects not slabs */
3667 	SL_TOTAL		/* Determine object capacity not slabs */
3668 };
3669 
3670 #define SO_ALL		(1 << SL_ALL)
3671 #define SO_PARTIAL	(1 << SL_PARTIAL)
3672 #define SO_CPU		(1 << SL_CPU)
3673 #define SO_OBJECTS	(1 << SL_OBJECTS)
3674 #define SO_TOTAL	(1 << SL_TOTAL)
3675 
3676 static ssize_t show_slab_objects(struct kmem_cache *s,
3677 			    char *buf, unsigned long flags)
3678 {
3679 	unsigned long total = 0;
3680 	int node;
3681 	int x;
3682 	unsigned long *nodes;
3683 	unsigned long *per_cpu;
3684 
3685 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3686 	if (!nodes)
3687 		return -ENOMEM;
3688 	per_cpu = nodes + nr_node_ids;
3689 
3690 	if (flags & SO_CPU) {
3691 		int cpu;
3692 
3693 		for_each_possible_cpu(cpu) {
3694 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3695 
3696 			if (!c || c->node < 0)
3697 				continue;
3698 
3699 			if (c->page) {
3700 					if (flags & SO_TOTAL)
3701 						x = c->page->objects;
3702 				else if (flags & SO_OBJECTS)
3703 					x = c->page->inuse;
3704 				else
3705 					x = 1;
3706 
3707 				total += x;
3708 				nodes[c->node] += x;
3709 			}
3710 			per_cpu[c->node]++;
3711 		}
3712 	}
3713 
3714 	if (flags & SO_ALL) {
3715 		for_each_node_state(node, N_NORMAL_MEMORY) {
3716 			struct kmem_cache_node *n = get_node(s, node);
3717 
3718 		if (flags & SO_TOTAL)
3719 			x = atomic_long_read(&n->total_objects);
3720 		else if (flags & SO_OBJECTS)
3721 			x = atomic_long_read(&n->total_objects) -
3722 				count_partial(n, count_free);
3723 
3724 			else
3725 				x = atomic_long_read(&n->nr_slabs);
3726 			total += x;
3727 			nodes[node] += x;
3728 		}
3729 
3730 	} else if (flags & SO_PARTIAL) {
3731 		for_each_node_state(node, N_NORMAL_MEMORY) {
3732 			struct kmem_cache_node *n = get_node(s, node);
3733 
3734 			if (flags & SO_TOTAL)
3735 				x = count_partial(n, count_total);
3736 			else if (flags & SO_OBJECTS)
3737 				x = count_partial(n, count_inuse);
3738 			else
3739 				x = n->nr_partial;
3740 			total += x;
3741 			nodes[node] += x;
3742 		}
3743 	}
3744 	x = sprintf(buf, "%lu", total);
3745 #ifdef CONFIG_NUMA
3746 	for_each_node_state(node, N_NORMAL_MEMORY)
3747 		if (nodes[node])
3748 			x += sprintf(buf + x, " N%d=%lu",
3749 					node, nodes[node]);
3750 #endif
3751 	kfree(nodes);
3752 	return x + sprintf(buf + x, "\n");
3753 }
3754 
3755 static int any_slab_objects(struct kmem_cache *s)
3756 {
3757 	int node;
3758 
3759 	for_each_online_node(node) {
3760 		struct kmem_cache_node *n = get_node(s, node);
3761 
3762 		if (!n)
3763 			continue;
3764 
3765 		if (atomic_long_read(&n->total_objects))
3766 			return 1;
3767 	}
3768 	return 0;
3769 }
3770 
3771 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3772 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3773 
3774 struct slab_attribute {
3775 	struct attribute attr;
3776 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3777 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3778 };
3779 
3780 #define SLAB_ATTR_RO(_name) \
3781 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3782 
3783 #define SLAB_ATTR(_name) \
3784 	static struct slab_attribute _name##_attr =  \
3785 	__ATTR(_name, 0644, _name##_show, _name##_store)
3786 
3787 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3788 {
3789 	return sprintf(buf, "%d\n", s->size);
3790 }
3791 SLAB_ATTR_RO(slab_size);
3792 
3793 static ssize_t align_show(struct kmem_cache *s, char *buf)
3794 {
3795 	return sprintf(buf, "%d\n", s->align);
3796 }
3797 SLAB_ATTR_RO(align);
3798 
3799 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3800 {
3801 	return sprintf(buf, "%d\n", s->objsize);
3802 }
3803 SLAB_ATTR_RO(object_size);
3804 
3805 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3806 {
3807 	return sprintf(buf, "%d\n", oo_objects(s->oo));
3808 }
3809 SLAB_ATTR_RO(objs_per_slab);
3810 
3811 static ssize_t order_store(struct kmem_cache *s,
3812 				const char *buf, size_t length)
3813 {
3814 	unsigned long order;
3815 	int err;
3816 
3817 	err = strict_strtoul(buf, 10, &order);
3818 	if (err)
3819 		return err;
3820 
3821 	if (order > slub_max_order || order < slub_min_order)
3822 		return -EINVAL;
3823 
3824 	calculate_sizes(s, order);
3825 	return length;
3826 }
3827 
3828 static ssize_t order_show(struct kmem_cache *s, char *buf)
3829 {
3830 	return sprintf(buf, "%d\n", oo_order(s->oo));
3831 }
3832 SLAB_ATTR(order);
3833 
3834 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3835 {
3836 	if (s->ctor) {
3837 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3838 
3839 		return n + sprintf(buf + n, "\n");
3840 	}
3841 	return 0;
3842 }
3843 SLAB_ATTR_RO(ctor);
3844 
3845 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3846 {
3847 	return sprintf(buf, "%d\n", s->refcount - 1);
3848 }
3849 SLAB_ATTR_RO(aliases);
3850 
3851 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3852 {
3853 	return show_slab_objects(s, buf, SO_ALL);
3854 }
3855 SLAB_ATTR_RO(slabs);
3856 
3857 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3858 {
3859 	return show_slab_objects(s, buf, SO_PARTIAL);
3860 }
3861 SLAB_ATTR_RO(partial);
3862 
3863 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3864 {
3865 	return show_slab_objects(s, buf, SO_CPU);
3866 }
3867 SLAB_ATTR_RO(cpu_slabs);
3868 
3869 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3870 {
3871 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3872 }
3873 SLAB_ATTR_RO(objects);
3874 
3875 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3876 {
3877 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3878 }
3879 SLAB_ATTR_RO(objects_partial);
3880 
3881 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3882 {
3883 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3884 }
3885 SLAB_ATTR_RO(total_objects);
3886 
3887 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3888 {
3889 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3890 }
3891 
3892 static ssize_t sanity_checks_store(struct kmem_cache *s,
3893 				const char *buf, size_t length)
3894 {
3895 	s->flags &= ~SLAB_DEBUG_FREE;
3896 	if (buf[0] == '1')
3897 		s->flags |= SLAB_DEBUG_FREE;
3898 	return length;
3899 }
3900 SLAB_ATTR(sanity_checks);
3901 
3902 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3903 {
3904 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3905 }
3906 
3907 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3908 							size_t length)
3909 {
3910 	s->flags &= ~SLAB_TRACE;
3911 	if (buf[0] == '1')
3912 		s->flags |= SLAB_TRACE;
3913 	return length;
3914 }
3915 SLAB_ATTR(trace);
3916 
3917 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3918 {
3919 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3920 }
3921 
3922 static ssize_t reclaim_account_store(struct kmem_cache *s,
3923 				const char *buf, size_t length)
3924 {
3925 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3926 	if (buf[0] == '1')
3927 		s->flags |= SLAB_RECLAIM_ACCOUNT;
3928 	return length;
3929 }
3930 SLAB_ATTR(reclaim_account);
3931 
3932 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3933 {
3934 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3935 }
3936 SLAB_ATTR_RO(hwcache_align);
3937 
3938 #ifdef CONFIG_ZONE_DMA
3939 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3940 {
3941 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3942 }
3943 SLAB_ATTR_RO(cache_dma);
3944 #endif
3945 
3946 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3947 {
3948 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3949 }
3950 SLAB_ATTR_RO(destroy_by_rcu);
3951 
3952 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3953 {
3954 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3955 }
3956 
3957 static ssize_t red_zone_store(struct kmem_cache *s,
3958 				const char *buf, size_t length)
3959 {
3960 	if (any_slab_objects(s))
3961 		return -EBUSY;
3962 
3963 	s->flags &= ~SLAB_RED_ZONE;
3964 	if (buf[0] == '1')
3965 		s->flags |= SLAB_RED_ZONE;
3966 	calculate_sizes(s, -1);
3967 	return length;
3968 }
3969 SLAB_ATTR(red_zone);
3970 
3971 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3972 {
3973 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3974 }
3975 
3976 static ssize_t poison_store(struct kmem_cache *s,
3977 				const char *buf, size_t length)
3978 {
3979 	if (any_slab_objects(s))
3980 		return -EBUSY;
3981 
3982 	s->flags &= ~SLAB_POISON;
3983 	if (buf[0] == '1')
3984 		s->flags |= SLAB_POISON;
3985 	calculate_sizes(s, -1);
3986 	return length;
3987 }
3988 SLAB_ATTR(poison);
3989 
3990 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3991 {
3992 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3993 }
3994 
3995 static ssize_t store_user_store(struct kmem_cache *s,
3996 				const char *buf, size_t length)
3997 {
3998 	if (any_slab_objects(s))
3999 		return -EBUSY;
4000 
4001 	s->flags &= ~SLAB_STORE_USER;
4002 	if (buf[0] == '1')
4003 		s->flags |= SLAB_STORE_USER;
4004 	calculate_sizes(s, -1);
4005 	return length;
4006 }
4007 SLAB_ATTR(store_user);
4008 
4009 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4010 {
4011 	return 0;
4012 }
4013 
4014 static ssize_t validate_store(struct kmem_cache *s,
4015 			const char *buf, size_t length)
4016 {
4017 	int ret = -EINVAL;
4018 
4019 	if (buf[0] == '1') {
4020 		ret = validate_slab_cache(s);
4021 		if (ret >= 0)
4022 			ret = length;
4023 	}
4024 	return ret;
4025 }
4026 SLAB_ATTR(validate);
4027 
4028 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4029 {
4030 	return 0;
4031 }
4032 
4033 static ssize_t shrink_store(struct kmem_cache *s,
4034 			const char *buf, size_t length)
4035 {
4036 	if (buf[0] == '1') {
4037 		int rc = kmem_cache_shrink(s);
4038 
4039 		if (rc)
4040 			return rc;
4041 	} else
4042 		return -EINVAL;
4043 	return length;
4044 }
4045 SLAB_ATTR(shrink);
4046 
4047 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4048 {
4049 	if (!(s->flags & SLAB_STORE_USER))
4050 		return -ENOSYS;
4051 	return list_locations(s, buf, TRACK_ALLOC);
4052 }
4053 SLAB_ATTR_RO(alloc_calls);
4054 
4055 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4056 {
4057 	if (!(s->flags & SLAB_STORE_USER))
4058 		return -ENOSYS;
4059 	return list_locations(s, buf, TRACK_FREE);
4060 }
4061 SLAB_ATTR_RO(free_calls);
4062 
4063 #ifdef CONFIG_NUMA
4064 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4065 {
4066 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4067 }
4068 
4069 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4070 				const char *buf, size_t length)
4071 {
4072 	unsigned long ratio;
4073 	int err;
4074 
4075 	err = strict_strtoul(buf, 10, &ratio);
4076 	if (err)
4077 		return err;
4078 
4079 	if (ratio < 100)
4080 		s->remote_node_defrag_ratio = ratio * 10;
4081 
4082 	return length;
4083 }
4084 SLAB_ATTR(remote_node_defrag_ratio);
4085 #endif
4086 
4087 #ifdef CONFIG_SLUB_STATS
4088 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4089 {
4090 	unsigned long sum  = 0;
4091 	int cpu;
4092 	int len;
4093 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4094 
4095 	if (!data)
4096 		return -ENOMEM;
4097 
4098 	for_each_online_cpu(cpu) {
4099 		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4100 
4101 		data[cpu] = x;
4102 		sum += x;
4103 	}
4104 
4105 	len = sprintf(buf, "%lu", sum);
4106 
4107 #ifdef CONFIG_SMP
4108 	for_each_online_cpu(cpu) {
4109 		if (data[cpu] && len < PAGE_SIZE - 20)
4110 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4111 	}
4112 #endif
4113 	kfree(data);
4114 	return len + sprintf(buf + len, "\n");
4115 }
4116 
4117 #define STAT_ATTR(si, text) 					\
4118 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4119 {								\
4120 	return show_stat(s, buf, si);				\
4121 }								\
4122 SLAB_ATTR_RO(text);						\
4123 
4124 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4125 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4126 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4127 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4128 STAT_ATTR(FREE_FROZEN, free_frozen);
4129 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4130 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4131 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4132 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4133 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4134 STAT_ATTR(FREE_SLAB, free_slab);
4135 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4136 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4137 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4138 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4139 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4140 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4141 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4142 #endif
4143 
4144 static struct attribute *slab_attrs[] = {
4145 	&slab_size_attr.attr,
4146 	&object_size_attr.attr,
4147 	&objs_per_slab_attr.attr,
4148 	&order_attr.attr,
4149 	&objects_attr.attr,
4150 	&objects_partial_attr.attr,
4151 	&total_objects_attr.attr,
4152 	&slabs_attr.attr,
4153 	&partial_attr.attr,
4154 	&cpu_slabs_attr.attr,
4155 	&ctor_attr.attr,
4156 	&aliases_attr.attr,
4157 	&align_attr.attr,
4158 	&sanity_checks_attr.attr,
4159 	&trace_attr.attr,
4160 	&hwcache_align_attr.attr,
4161 	&reclaim_account_attr.attr,
4162 	&destroy_by_rcu_attr.attr,
4163 	&red_zone_attr.attr,
4164 	&poison_attr.attr,
4165 	&store_user_attr.attr,
4166 	&validate_attr.attr,
4167 	&shrink_attr.attr,
4168 	&alloc_calls_attr.attr,
4169 	&free_calls_attr.attr,
4170 #ifdef CONFIG_ZONE_DMA
4171 	&cache_dma_attr.attr,
4172 #endif
4173 #ifdef CONFIG_NUMA
4174 	&remote_node_defrag_ratio_attr.attr,
4175 #endif
4176 #ifdef CONFIG_SLUB_STATS
4177 	&alloc_fastpath_attr.attr,
4178 	&alloc_slowpath_attr.attr,
4179 	&free_fastpath_attr.attr,
4180 	&free_slowpath_attr.attr,
4181 	&free_frozen_attr.attr,
4182 	&free_add_partial_attr.attr,
4183 	&free_remove_partial_attr.attr,
4184 	&alloc_from_partial_attr.attr,
4185 	&alloc_slab_attr.attr,
4186 	&alloc_refill_attr.attr,
4187 	&free_slab_attr.attr,
4188 	&cpuslab_flush_attr.attr,
4189 	&deactivate_full_attr.attr,
4190 	&deactivate_empty_attr.attr,
4191 	&deactivate_to_head_attr.attr,
4192 	&deactivate_to_tail_attr.attr,
4193 	&deactivate_remote_frees_attr.attr,
4194 	&order_fallback_attr.attr,
4195 #endif
4196 	NULL
4197 };
4198 
4199 static struct attribute_group slab_attr_group = {
4200 	.attrs = slab_attrs,
4201 };
4202 
4203 static ssize_t slab_attr_show(struct kobject *kobj,
4204 				struct attribute *attr,
4205 				char *buf)
4206 {
4207 	struct slab_attribute *attribute;
4208 	struct kmem_cache *s;
4209 	int err;
4210 
4211 	attribute = to_slab_attr(attr);
4212 	s = to_slab(kobj);
4213 
4214 	if (!attribute->show)
4215 		return -EIO;
4216 
4217 	err = attribute->show(s, buf);
4218 
4219 	return err;
4220 }
4221 
4222 static ssize_t slab_attr_store(struct kobject *kobj,
4223 				struct attribute *attr,
4224 				const char *buf, size_t len)
4225 {
4226 	struct slab_attribute *attribute;
4227 	struct kmem_cache *s;
4228 	int err;
4229 
4230 	attribute = to_slab_attr(attr);
4231 	s = to_slab(kobj);
4232 
4233 	if (!attribute->store)
4234 		return -EIO;
4235 
4236 	err = attribute->store(s, buf, len);
4237 
4238 	return err;
4239 }
4240 
4241 static void kmem_cache_release(struct kobject *kobj)
4242 {
4243 	struct kmem_cache *s = to_slab(kobj);
4244 
4245 	kfree(s);
4246 }
4247 
4248 static struct sysfs_ops slab_sysfs_ops = {
4249 	.show = slab_attr_show,
4250 	.store = slab_attr_store,
4251 };
4252 
4253 static struct kobj_type slab_ktype = {
4254 	.sysfs_ops = &slab_sysfs_ops,
4255 	.release = kmem_cache_release
4256 };
4257 
4258 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4259 {
4260 	struct kobj_type *ktype = get_ktype(kobj);
4261 
4262 	if (ktype == &slab_ktype)
4263 		return 1;
4264 	return 0;
4265 }
4266 
4267 static struct kset_uevent_ops slab_uevent_ops = {
4268 	.filter = uevent_filter,
4269 };
4270 
4271 static struct kset *slab_kset;
4272 
4273 #define ID_STR_LENGTH 64
4274 
4275 /* Create a unique string id for a slab cache:
4276  *
4277  * Format	:[flags-]size
4278  */
4279 static char *create_unique_id(struct kmem_cache *s)
4280 {
4281 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4282 	char *p = name;
4283 
4284 	BUG_ON(!name);
4285 
4286 	*p++ = ':';
4287 	/*
4288 	 * First flags affecting slabcache operations. We will only
4289 	 * get here for aliasable slabs so we do not need to support
4290 	 * too many flags. The flags here must cover all flags that
4291 	 * are matched during merging to guarantee that the id is
4292 	 * unique.
4293 	 */
4294 	if (s->flags & SLAB_CACHE_DMA)
4295 		*p++ = 'd';
4296 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4297 		*p++ = 'a';
4298 	if (s->flags & SLAB_DEBUG_FREE)
4299 		*p++ = 'F';
4300 	if (p != name + 1)
4301 		*p++ = '-';
4302 	p += sprintf(p, "%07d", s->size);
4303 	BUG_ON(p > name + ID_STR_LENGTH - 1);
4304 	return name;
4305 }
4306 
4307 static int sysfs_slab_add(struct kmem_cache *s)
4308 {
4309 	int err;
4310 	const char *name;
4311 	int unmergeable;
4312 
4313 	if (slab_state < SYSFS)
4314 		/* Defer until later */
4315 		return 0;
4316 
4317 	unmergeable = slab_unmergeable(s);
4318 	if (unmergeable) {
4319 		/*
4320 		 * Slabcache can never be merged so we can use the name proper.
4321 		 * This is typically the case for debug situations. In that
4322 		 * case we can catch duplicate names easily.
4323 		 */
4324 		sysfs_remove_link(&slab_kset->kobj, s->name);
4325 		name = s->name;
4326 	} else {
4327 		/*
4328 		 * Create a unique name for the slab as a target
4329 		 * for the symlinks.
4330 		 */
4331 		name = create_unique_id(s);
4332 	}
4333 
4334 	s->kobj.kset = slab_kset;
4335 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4336 	if (err) {
4337 		kobject_put(&s->kobj);
4338 		return err;
4339 	}
4340 
4341 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4342 	if (err)
4343 		return err;
4344 	kobject_uevent(&s->kobj, KOBJ_ADD);
4345 	if (!unmergeable) {
4346 		/* Setup first alias */
4347 		sysfs_slab_alias(s, s->name);
4348 		kfree(name);
4349 	}
4350 	return 0;
4351 }
4352 
4353 static void sysfs_slab_remove(struct kmem_cache *s)
4354 {
4355 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4356 	kobject_del(&s->kobj);
4357 	kobject_put(&s->kobj);
4358 }
4359 
4360 /*
4361  * Need to buffer aliases during bootup until sysfs becomes
4362  * available lest we loose that information.
4363  */
4364 struct saved_alias {
4365 	struct kmem_cache *s;
4366 	const char *name;
4367 	struct saved_alias *next;
4368 };
4369 
4370 static struct saved_alias *alias_list;
4371 
4372 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4373 {
4374 	struct saved_alias *al;
4375 
4376 	if (slab_state == SYSFS) {
4377 		/*
4378 		 * If we have a leftover link then remove it.
4379 		 */
4380 		sysfs_remove_link(&slab_kset->kobj, name);
4381 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4382 	}
4383 
4384 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4385 	if (!al)
4386 		return -ENOMEM;
4387 
4388 	al->s = s;
4389 	al->name = name;
4390 	al->next = alias_list;
4391 	alias_list = al;
4392 	return 0;
4393 }
4394 
4395 static int __init slab_sysfs_init(void)
4396 {
4397 	struct kmem_cache *s;
4398 	int err;
4399 
4400 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4401 	if (!slab_kset) {
4402 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4403 		return -ENOSYS;
4404 	}
4405 
4406 	slab_state = SYSFS;
4407 
4408 	list_for_each_entry(s, &slab_caches, list) {
4409 		err = sysfs_slab_add(s);
4410 		if (err)
4411 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4412 						" to sysfs\n", s->name);
4413 	}
4414 
4415 	while (alias_list) {
4416 		struct saved_alias *al = alias_list;
4417 
4418 		alias_list = alias_list->next;
4419 		err = sysfs_slab_alias(al->s, al->name);
4420 		if (err)
4421 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4422 					" %s to sysfs\n", s->name);
4423 		kfree(al);
4424 	}
4425 
4426 	resiliency_test();
4427 	return 0;
4428 }
4429 
4430 __initcall(slab_sysfs_init);
4431 #endif
4432 
4433 /*
4434  * The /proc/slabinfo ABI
4435  */
4436 #ifdef CONFIG_SLABINFO
4437 
4438 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4439 		       size_t count, loff_t *ppos)
4440 {
4441 	return -EINVAL;
4442 }
4443 
4444 
4445 static void print_slabinfo_header(struct seq_file *m)
4446 {
4447 	seq_puts(m, "slabinfo - version: 2.1\n");
4448 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4449 		 "<objperslab> <pagesperslab>");
4450 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4451 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4452 	seq_putc(m, '\n');
4453 }
4454 
4455 static void *s_start(struct seq_file *m, loff_t *pos)
4456 {
4457 	loff_t n = *pos;
4458 
4459 	down_read(&slub_lock);
4460 	if (!n)
4461 		print_slabinfo_header(m);
4462 
4463 	return seq_list_start(&slab_caches, *pos);
4464 }
4465 
4466 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4467 {
4468 	return seq_list_next(p, &slab_caches, pos);
4469 }
4470 
4471 static void s_stop(struct seq_file *m, void *p)
4472 {
4473 	up_read(&slub_lock);
4474 }
4475 
4476 static int s_show(struct seq_file *m, void *p)
4477 {
4478 	unsigned long nr_partials = 0;
4479 	unsigned long nr_slabs = 0;
4480 	unsigned long nr_inuse = 0;
4481 	unsigned long nr_objs = 0;
4482 	unsigned long nr_free = 0;
4483 	struct kmem_cache *s;
4484 	int node;
4485 
4486 	s = list_entry(p, struct kmem_cache, list);
4487 
4488 	for_each_online_node(node) {
4489 		struct kmem_cache_node *n = get_node(s, node);
4490 
4491 		if (!n)
4492 			continue;
4493 
4494 		nr_partials += n->nr_partial;
4495 		nr_slabs += atomic_long_read(&n->nr_slabs);
4496 		nr_objs += atomic_long_read(&n->total_objects);
4497 		nr_free += count_partial(n, count_free);
4498 	}
4499 
4500 	nr_inuse = nr_objs - nr_free;
4501 
4502 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4503 		   nr_objs, s->size, oo_objects(s->oo),
4504 		   (1 << oo_order(s->oo)));
4505 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4506 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4507 		   0UL);
4508 	seq_putc(m, '\n');
4509 	return 0;
4510 }
4511 
4512 const struct seq_operations slabinfo_op = {
4513 	.start = s_start,
4514 	.next = s_next,
4515 	.stop = s_stop,
4516 	.show = s_show,
4517 };
4518 
4519 #endif /* CONFIG_SLABINFO */
4520