xref: /openbmc/linux/mm/slub.c (revision 11976fe2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/stacktrace.h>
38 #include <linux/prefetch.h>
39 #include <linux/memcontrol.h>
40 #include <linux/random.h>
41 #include <kunit/test.h>
42 #include <kunit/test-bug.h>
43 #include <linux/sort.h>
44 
45 #include <linux/debugfs.h>
46 #include <trace/events/kmem.h>
47 
48 #include "internal.h"
49 
50 /*
51  * Lock order:
52  *   1. slab_mutex (Global Mutex)
53  *   2. node->list_lock (Spinlock)
54  *   3. kmem_cache->cpu_slab->lock (Local lock)
55  *   4. slab_lock(slab) (Only on some arches)
56  *   5. object_map_lock (Only for debugging)
57  *
58  *   slab_mutex
59  *
60  *   The role of the slab_mutex is to protect the list of all the slabs
61  *   and to synchronize major metadata changes to slab cache structures.
62  *   Also synchronizes memory hotplug callbacks.
63  *
64  *   slab_lock
65  *
66  *   The slab_lock is a wrapper around the page lock, thus it is a bit
67  *   spinlock.
68  *
69  *   The slab_lock is only used on arches that do not have the ability
70  *   to do a cmpxchg_double. It only protects:
71  *
72  *	A. slab->freelist	-> List of free objects in a slab
73  *	B. slab->inuse		-> Number of objects in use
74  *	C. slab->objects	-> Number of objects in slab
75  *	D. slab->frozen		-> frozen state
76  *
77  *   Frozen slabs
78  *
79  *   If a slab is frozen then it is exempt from list management. It is not
80  *   on any list except per cpu partial list. The processor that froze the
81  *   slab is the one who can perform list operations on the slab. Other
82  *   processors may put objects onto the freelist but the processor that
83  *   froze the slab is the only one that can retrieve the objects from the
84  *   slab's freelist.
85  *
86  *   list_lock
87  *
88  *   The list_lock protects the partial and full list on each node and
89  *   the partial slab counter. If taken then no new slabs may be added or
90  *   removed from the lists nor make the number of partial slabs be modified.
91  *   (Note that the total number of slabs is an atomic value that may be
92  *   modified without taking the list lock).
93  *
94  *   The list_lock is a centralized lock and thus we avoid taking it as
95  *   much as possible. As long as SLUB does not have to handle partial
96  *   slabs, operations can continue without any centralized lock. F.e.
97  *   allocating a long series of objects that fill up slabs does not require
98  *   the list lock.
99  *
100  *   For debug caches, all allocations are forced to go through a list_lock
101  *   protected region to serialize against concurrent validation.
102  *
103  *   cpu_slab->lock local lock
104  *
105  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
106  *   except the stat counters. This is a percpu structure manipulated only by
107  *   the local cpu, so the lock protects against being preempted or interrupted
108  *   by an irq. Fast path operations rely on lockless operations instead.
109  *
110  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111  *   which means the lockless fastpath cannot be used as it might interfere with
112  *   an in-progress slow path operations. In this case the local lock is always
113  *   taken but it still utilizes the freelist for the common operations.
114  *
115  *   lockless fastpaths
116  *
117  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118  *   are fully lockless when satisfied from the percpu slab (and when
119  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
120  *   They also don't disable preemption or migration or irqs. They rely on
121  *   the transaction id (tid) field to detect being preempted or moved to
122  *   another cpu.
123  *
124  *   irq, preemption, migration considerations
125  *
126  *   Interrupts are disabled as part of list_lock or local_lock operations, or
127  *   around the slab_lock operation, in order to make the slab allocator safe
128  *   to use in the context of an irq.
129  *
130  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133  *   doesn't have to be revalidated in each section protected by the local lock.
134  *
135  * SLUB assigns one slab for allocation to each processor.
136  * Allocations only occur from these slabs called cpu slabs.
137  *
138  * Slabs with free elements are kept on a partial list and during regular
139  * operations no list for full slabs is used. If an object in a full slab is
140  * freed then the slab will show up again on the partial lists.
141  * We track full slabs for debugging purposes though because otherwise we
142  * cannot scan all objects.
143  *
144  * Slabs are freed when they become empty. Teardown and setup is
145  * minimal so we rely on the page allocators per cpu caches for
146  * fast frees and allocs.
147  *
148  * slab->frozen		The slab is frozen and exempt from list processing.
149  * 			This means that the slab is dedicated to a purpose
150  * 			such as satisfying allocations for a specific
151  * 			processor. Objects may be freed in the slab while
152  * 			it is frozen but slab_free will then skip the usual
153  * 			list operations. It is up to the processor holding
154  * 			the slab to integrate the slab into the slab lists
155  * 			when the slab is no longer needed.
156  *
157  * 			One use of this flag is to mark slabs that are
158  * 			used for allocations. Then such a slab becomes a cpu
159  * 			slab. The cpu slab may be equipped with an additional
160  * 			freelist that allows lockless access to
161  * 			free objects in addition to the regular freelist
162  * 			that requires the slab lock.
163  *
164  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
165  * 			options set. This moves	slab handling out of
166  * 			the fast path and disables lockless freelists.
167  */
168 
169 /*
170  * We could simply use migrate_disable()/enable() but as long as it's a
171  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
172  */
173 #ifndef CONFIG_PREEMPT_RT
174 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
175 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
176 #define USE_LOCKLESS_FAST_PATH()	(true)
177 #else
178 #define slub_get_cpu_ptr(var)		\
179 ({					\
180 	migrate_disable();		\
181 	this_cpu_ptr(var);		\
182 })
183 #define slub_put_cpu_ptr(var)		\
184 do {					\
185 	(void)(var);			\
186 	migrate_enable();		\
187 } while (0)
188 #define USE_LOCKLESS_FAST_PATH()	(false)
189 #endif
190 
191 #ifndef CONFIG_SLUB_TINY
192 #define __fastpath_inline __always_inline
193 #else
194 #define __fastpath_inline
195 #endif
196 
197 #ifdef CONFIG_SLUB_DEBUG
198 #ifdef CONFIG_SLUB_DEBUG_ON
199 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
200 #else
201 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
202 #endif
203 #endif		/* CONFIG_SLUB_DEBUG */
204 
205 /* Structure holding parameters for get_partial() call chain */
206 struct partial_context {
207 	struct slab **slab;
208 	gfp_t flags;
209 	unsigned int orig_size;
210 };
211 
212 static inline bool kmem_cache_debug(struct kmem_cache *s)
213 {
214 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
215 }
216 
217 static inline bool slub_debug_orig_size(struct kmem_cache *s)
218 {
219 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
220 			(s->flags & SLAB_KMALLOC));
221 }
222 
223 void *fixup_red_left(struct kmem_cache *s, void *p)
224 {
225 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
226 		p += s->red_left_pad;
227 
228 	return p;
229 }
230 
231 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
232 {
233 #ifdef CONFIG_SLUB_CPU_PARTIAL
234 	return !kmem_cache_debug(s);
235 #else
236 	return false;
237 #endif
238 }
239 
240 /*
241  * Issues still to be resolved:
242  *
243  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
244  *
245  * - Variable sizing of the per node arrays
246  */
247 
248 /* Enable to log cmpxchg failures */
249 #undef SLUB_DEBUG_CMPXCHG
250 
251 #ifndef CONFIG_SLUB_TINY
252 /*
253  * Minimum number of partial slabs. These will be left on the partial
254  * lists even if they are empty. kmem_cache_shrink may reclaim them.
255  */
256 #define MIN_PARTIAL 5
257 
258 /*
259  * Maximum number of desirable partial slabs.
260  * The existence of more partial slabs makes kmem_cache_shrink
261  * sort the partial list by the number of objects in use.
262  */
263 #define MAX_PARTIAL 10
264 #else
265 #define MIN_PARTIAL 0
266 #define MAX_PARTIAL 0
267 #endif
268 
269 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
270 				SLAB_POISON | SLAB_STORE_USER)
271 
272 /*
273  * These debug flags cannot use CMPXCHG because there might be consistency
274  * issues when checking or reading debug information
275  */
276 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
277 				SLAB_TRACE)
278 
279 
280 /*
281  * Debugging flags that require metadata to be stored in the slab.  These get
282  * disabled when slub_debug=O is used and a cache's min order increases with
283  * metadata.
284  */
285 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
286 
287 #define OO_SHIFT	16
288 #define OO_MASK		((1 << OO_SHIFT) - 1)
289 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
290 
291 /* Internal SLUB flags */
292 /* Poison object */
293 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
294 /* Use cmpxchg_double */
295 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
296 
297 /*
298  * Tracking user of a slab.
299  */
300 #define TRACK_ADDRS_COUNT 16
301 struct track {
302 	unsigned long addr;	/* Called from address */
303 #ifdef CONFIG_STACKDEPOT
304 	depot_stack_handle_t handle;
305 #endif
306 	int cpu;		/* Was running on cpu */
307 	int pid;		/* Pid context */
308 	unsigned long when;	/* When did the operation occur */
309 };
310 
311 enum track_item { TRACK_ALLOC, TRACK_FREE };
312 
313 #ifdef SLAB_SUPPORTS_SYSFS
314 static int sysfs_slab_add(struct kmem_cache *);
315 static int sysfs_slab_alias(struct kmem_cache *, const char *);
316 #else
317 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
318 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
319 							{ return 0; }
320 #endif
321 
322 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
323 static void debugfs_slab_add(struct kmem_cache *);
324 #else
325 static inline void debugfs_slab_add(struct kmem_cache *s) { }
326 #endif
327 
328 static inline void stat(const struct kmem_cache *s, enum stat_item si)
329 {
330 #ifdef CONFIG_SLUB_STATS
331 	/*
332 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
333 	 * avoid this_cpu_add()'s irq-disable overhead.
334 	 */
335 	raw_cpu_inc(s->cpu_slab->stat[si]);
336 #endif
337 }
338 
339 /*
340  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
341  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
342  * differ during memory hotplug/hotremove operations.
343  * Protected by slab_mutex.
344  */
345 static nodemask_t slab_nodes;
346 
347 #ifndef CONFIG_SLUB_TINY
348 /*
349  * Workqueue used for flush_cpu_slab().
350  */
351 static struct workqueue_struct *flushwq;
352 #endif
353 
354 /********************************************************************
355  * 			Core slab cache functions
356  *******************************************************************/
357 
358 /*
359  * Returns freelist pointer (ptr). With hardening, this is obfuscated
360  * with an XOR of the address where the pointer is held and a per-cache
361  * random number.
362  */
363 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
364 				 unsigned long ptr_addr)
365 {
366 #ifdef CONFIG_SLAB_FREELIST_HARDENED
367 	/*
368 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
369 	 * Normally, this doesn't cause any issues, as both set_freepointer()
370 	 * and get_freepointer() are called with a pointer with the same tag.
371 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
372 	 * example, when __free_slub() iterates over objects in a cache, it
373 	 * passes untagged pointers to check_object(). check_object() in turns
374 	 * calls get_freepointer() with an untagged pointer, which causes the
375 	 * freepointer to be restored incorrectly.
376 	 */
377 	return (void *)((unsigned long)ptr ^ s->random ^
378 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
379 #else
380 	return ptr;
381 #endif
382 }
383 
384 /* Returns the freelist pointer recorded at location ptr_addr. */
385 static inline void *freelist_dereference(const struct kmem_cache *s,
386 					 void *ptr_addr)
387 {
388 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
389 			    (unsigned long)ptr_addr);
390 }
391 
392 static inline void *get_freepointer(struct kmem_cache *s, void *object)
393 {
394 	object = kasan_reset_tag(object);
395 	return freelist_dereference(s, object + s->offset);
396 }
397 
398 #ifndef CONFIG_SLUB_TINY
399 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
400 {
401 	prefetchw(object + s->offset);
402 }
403 #endif
404 
405 /*
406  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
407  * pointer value in the case the current thread loses the race for the next
408  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
409  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
410  * KMSAN will still check all arguments of cmpxchg because of imperfect
411  * handling of inline assembly.
412  * To work around this problem, we apply __no_kmsan_checks to ensure that
413  * get_freepointer_safe() returns initialized memory.
414  */
415 __no_kmsan_checks
416 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
417 {
418 	unsigned long freepointer_addr;
419 	void *p;
420 
421 	if (!debug_pagealloc_enabled_static())
422 		return get_freepointer(s, object);
423 
424 	object = kasan_reset_tag(object);
425 	freepointer_addr = (unsigned long)object + s->offset;
426 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
427 	return freelist_ptr(s, p, freepointer_addr);
428 }
429 
430 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
431 {
432 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
433 
434 #ifdef CONFIG_SLAB_FREELIST_HARDENED
435 	BUG_ON(object == fp); /* naive detection of double free or corruption */
436 #endif
437 
438 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
439 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
440 }
441 
442 /* Loop over all objects in a slab */
443 #define for_each_object(__p, __s, __addr, __objects) \
444 	for (__p = fixup_red_left(__s, __addr); \
445 		__p < (__addr) + (__objects) * (__s)->size; \
446 		__p += (__s)->size)
447 
448 static inline unsigned int order_objects(unsigned int order, unsigned int size)
449 {
450 	return ((unsigned int)PAGE_SIZE << order) / size;
451 }
452 
453 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
454 		unsigned int size)
455 {
456 	struct kmem_cache_order_objects x = {
457 		(order << OO_SHIFT) + order_objects(order, size)
458 	};
459 
460 	return x;
461 }
462 
463 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
464 {
465 	return x.x >> OO_SHIFT;
466 }
467 
468 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
469 {
470 	return x.x & OO_MASK;
471 }
472 
473 #ifdef CONFIG_SLUB_CPU_PARTIAL
474 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
475 {
476 	unsigned int nr_slabs;
477 
478 	s->cpu_partial = nr_objects;
479 
480 	/*
481 	 * We take the number of objects but actually limit the number of
482 	 * slabs on the per cpu partial list, in order to limit excessive
483 	 * growth of the list. For simplicity we assume that the slabs will
484 	 * be half-full.
485 	 */
486 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
487 	s->cpu_partial_slabs = nr_slabs;
488 }
489 #else
490 static inline void
491 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
492 {
493 }
494 #endif /* CONFIG_SLUB_CPU_PARTIAL */
495 
496 /*
497  * Per slab locking using the pagelock
498  */
499 static __always_inline void slab_lock(struct slab *slab)
500 {
501 	struct page *page = slab_page(slab);
502 
503 	VM_BUG_ON_PAGE(PageTail(page), page);
504 	bit_spin_lock(PG_locked, &page->flags);
505 }
506 
507 static __always_inline void slab_unlock(struct slab *slab)
508 {
509 	struct page *page = slab_page(slab);
510 
511 	VM_BUG_ON_PAGE(PageTail(page), page);
512 	__bit_spin_unlock(PG_locked, &page->flags);
513 }
514 
515 /*
516  * Interrupts must be disabled (for the fallback code to work right), typically
517  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
518  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
519  * allocation/ free operation in hardirq context. Therefore nothing can
520  * interrupt the operation.
521  */
522 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
523 		void *freelist_old, unsigned long counters_old,
524 		void *freelist_new, unsigned long counters_new,
525 		const char *n)
526 {
527 	if (USE_LOCKLESS_FAST_PATH())
528 		lockdep_assert_irqs_disabled();
529 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
530     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
531 	if (s->flags & __CMPXCHG_DOUBLE) {
532 		if (cmpxchg_double(&slab->freelist, &slab->counters,
533 				   freelist_old, counters_old,
534 				   freelist_new, counters_new))
535 			return true;
536 	} else
537 #endif
538 	{
539 		slab_lock(slab);
540 		if (slab->freelist == freelist_old &&
541 					slab->counters == counters_old) {
542 			slab->freelist = freelist_new;
543 			slab->counters = counters_new;
544 			slab_unlock(slab);
545 			return true;
546 		}
547 		slab_unlock(slab);
548 	}
549 
550 	cpu_relax();
551 	stat(s, CMPXCHG_DOUBLE_FAIL);
552 
553 #ifdef SLUB_DEBUG_CMPXCHG
554 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
555 #endif
556 
557 	return false;
558 }
559 
560 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
561 		void *freelist_old, unsigned long counters_old,
562 		void *freelist_new, unsigned long counters_new,
563 		const char *n)
564 {
565 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
566     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
567 	if (s->flags & __CMPXCHG_DOUBLE) {
568 		if (cmpxchg_double(&slab->freelist, &slab->counters,
569 				   freelist_old, counters_old,
570 				   freelist_new, counters_new))
571 			return true;
572 	} else
573 #endif
574 	{
575 		unsigned long flags;
576 
577 		local_irq_save(flags);
578 		slab_lock(slab);
579 		if (slab->freelist == freelist_old &&
580 					slab->counters == counters_old) {
581 			slab->freelist = freelist_new;
582 			slab->counters = counters_new;
583 			slab_unlock(slab);
584 			local_irq_restore(flags);
585 			return true;
586 		}
587 		slab_unlock(slab);
588 		local_irq_restore(flags);
589 	}
590 
591 	cpu_relax();
592 	stat(s, CMPXCHG_DOUBLE_FAIL);
593 
594 #ifdef SLUB_DEBUG_CMPXCHG
595 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
596 #endif
597 
598 	return false;
599 }
600 
601 #ifdef CONFIG_SLUB_DEBUG
602 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
603 static DEFINE_SPINLOCK(object_map_lock);
604 
605 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
606 		       struct slab *slab)
607 {
608 	void *addr = slab_address(slab);
609 	void *p;
610 
611 	bitmap_zero(obj_map, slab->objects);
612 
613 	for (p = slab->freelist; p; p = get_freepointer(s, p))
614 		set_bit(__obj_to_index(s, addr, p), obj_map);
615 }
616 
617 #if IS_ENABLED(CONFIG_KUNIT)
618 static bool slab_add_kunit_errors(void)
619 {
620 	struct kunit_resource *resource;
621 
622 	if (!kunit_get_current_test())
623 		return false;
624 
625 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
626 	if (!resource)
627 		return false;
628 
629 	(*(int *)resource->data)++;
630 	kunit_put_resource(resource);
631 	return true;
632 }
633 #else
634 static inline bool slab_add_kunit_errors(void) { return false; }
635 #endif
636 
637 static inline unsigned int size_from_object(struct kmem_cache *s)
638 {
639 	if (s->flags & SLAB_RED_ZONE)
640 		return s->size - s->red_left_pad;
641 
642 	return s->size;
643 }
644 
645 static inline void *restore_red_left(struct kmem_cache *s, void *p)
646 {
647 	if (s->flags & SLAB_RED_ZONE)
648 		p -= s->red_left_pad;
649 
650 	return p;
651 }
652 
653 /*
654  * Debug settings:
655  */
656 #if defined(CONFIG_SLUB_DEBUG_ON)
657 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
658 #else
659 static slab_flags_t slub_debug;
660 #endif
661 
662 static char *slub_debug_string;
663 static int disable_higher_order_debug;
664 
665 /*
666  * slub is about to manipulate internal object metadata.  This memory lies
667  * outside the range of the allocated object, so accessing it would normally
668  * be reported by kasan as a bounds error.  metadata_access_enable() is used
669  * to tell kasan that these accesses are OK.
670  */
671 static inline void metadata_access_enable(void)
672 {
673 	kasan_disable_current();
674 }
675 
676 static inline void metadata_access_disable(void)
677 {
678 	kasan_enable_current();
679 }
680 
681 /*
682  * Object debugging
683  */
684 
685 /* Verify that a pointer has an address that is valid within a slab page */
686 static inline int check_valid_pointer(struct kmem_cache *s,
687 				struct slab *slab, void *object)
688 {
689 	void *base;
690 
691 	if (!object)
692 		return 1;
693 
694 	base = slab_address(slab);
695 	object = kasan_reset_tag(object);
696 	object = restore_red_left(s, object);
697 	if (object < base || object >= base + slab->objects * s->size ||
698 		(object - base) % s->size) {
699 		return 0;
700 	}
701 
702 	return 1;
703 }
704 
705 static void print_section(char *level, char *text, u8 *addr,
706 			  unsigned int length)
707 {
708 	metadata_access_enable();
709 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
710 			16, 1, kasan_reset_tag((void *)addr), length, 1);
711 	metadata_access_disable();
712 }
713 
714 /*
715  * See comment in calculate_sizes().
716  */
717 static inline bool freeptr_outside_object(struct kmem_cache *s)
718 {
719 	return s->offset >= s->inuse;
720 }
721 
722 /*
723  * Return offset of the end of info block which is inuse + free pointer if
724  * not overlapping with object.
725  */
726 static inline unsigned int get_info_end(struct kmem_cache *s)
727 {
728 	if (freeptr_outside_object(s))
729 		return s->inuse + sizeof(void *);
730 	else
731 		return s->inuse;
732 }
733 
734 static struct track *get_track(struct kmem_cache *s, void *object,
735 	enum track_item alloc)
736 {
737 	struct track *p;
738 
739 	p = object + get_info_end(s);
740 
741 	return kasan_reset_tag(p + alloc);
742 }
743 
744 #ifdef CONFIG_STACKDEPOT
745 static noinline depot_stack_handle_t set_track_prepare(void)
746 {
747 	depot_stack_handle_t handle;
748 	unsigned long entries[TRACK_ADDRS_COUNT];
749 	unsigned int nr_entries;
750 
751 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
752 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
753 
754 	return handle;
755 }
756 #else
757 static inline depot_stack_handle_t set_track_prepare(void)
758 {
759 	return 0;
760 }
761 #endif
762 
763 static void set_track_update(struct kmem_cache *s, void *object,
764 			     enum track_item alloc, unsigned long addr,
765 			     depot_stack_handle_t handle)
766 {
767 	struct track *p = get_track(s, object, alloc);
768 
769 #ifdef CONFIG_STACKDEPOT
770 	p->handle = handle;
771 #endif
772 	p->addr = addr;
773 	p->cpu = smp_processor_id();
774 	p->pid = current->pid;
775 	p->when = jiffies;
776 }
777 
778 static __always_inline void set_track(struct kmem_cache *s, void *object,
779 				      enum track_item alloc, unsigned long addr)
780 {
781 	depot_stack_handle_t handle = set_track_prepare();
782 
783 	set_track_update(s, object, alloc, addr, handle);
784 }
785 
786 static void init_tracking(struct kmem_cache *s, void *object)
787 {
788 	struct track *p;
789 
790 	if (!(s->flags & SLAB_STORE_USER))
791 		return;
792 
793 	p = get_track(s, object, TRACK_ALLOC);
794 	memset(p, 0, 2*sizeof(struct track));
795 }
796 
797 static void print_track(const char *s, struct track *t, unsigned long pr_time)
798 {
799 	depot_stack_handle_t handle __maybe_unused;
800 
801 	if (!t->addr)
802 		return;
803 
804 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
805 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
806 #ifdef CONFIG_STACKDEPOT
807 	handle = READ_ONCE(t->handle);
808 	if (handle)
809 		stack_depot_print(handle);
810 	else
811 		pr_err("object allocation/free stack trace missing\n");
812 #endif
813 }
814 
815 void print_tracking(struct kmem_cache *s, void *object)
816 {
817 	unsigned long pr_time = jiffies;
818 	if (!(s->flags & SLAB_STORE_USER))
819 		return;
820 
821 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
822 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
823 }
824 
825 static void print_slab_info(const struct slab *slab)
826 {
827 	struct folio *folio = (struct folio *)slab_folio(slab);
828 
829 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
830 	       slab, slab->objects, slab->inuse, slab->freelist,
831 	       folio_flags(folio, 0));
832 }
833 
834 /*
835  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
836  * family will round up the real request size to these fixed ones, so
837  * there could be an extra area than what is requested. Save the original
838  * request size in the meta data area, for better debug and sanity check.
839  */
840 static inline void set_orig_size(struct kmem_cache *s,
841 				void *object, unsigned int orig_size)
842 {
843 	void *p = kasan_reset_tag(object);
844 
845 	if (!slub_debug_orig_size(s))
846 		return;
847 
848 #ifdef CONFIG_KASAN_GENERIC
849 	/*
850 	 * KASAN could save its free meta data in object's data area at
851 	 * offset 0, if the size is larger than 'orig_size', it will
852 	 * overlap the data redzone in [orig_size+1, object_size], and
853 	 * the check should be skipped.
854 	 */
855 	if (kasan_metadata_size(s, true) > orig_size)
856 		orig_size = s->object_size;
857 #endif
858 
859 	p += get_info_end(s);
860 	p += sizeof(struct track) * 2;
861 
862 	*(unsigned int *)p = orig_size;
863 }
864 
865 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
866 {
867 	void *p = kasan_reset_tag(object);
868 
869 	if (!slub_debug_orig_size(s))
870 		return s->object_size;
871 
872 	p += get_info_end(s);
873 	p += sizeof(struct track) * 2;
874 
875 	return *(unsigned int *)p;
876 }
877 
878 void skip_orig_size_check(struct kmem_cache *s, const void *object)
879 {
880 	set_orig_size(s, (void *)object, s->object_size);
881 }
882 
883 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
884 {
885 	struct va_format vaf;
886 	va_list args;
887 
888 	va_start(args, fmt);
889 	vaf.fmt = fmt;
890 	vaf.va = &args;
891 	pr_err("=============================================================================\n");
892 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
893 	pr_err("-----------------------------------------------------------------------------\n\n");
894 	va_end(args);
895 }
896 
897 __printf(2, 3)
898 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
899 {
900 	struct va_format vaf;
901 	va_list args;
902 
903 	if (slab_add_kunit_errors())
904 		return;
905 
906 	va_start(args, fmt);
907 	vaf.fmt = fmt;
908 	vaf.va = &args;
909 	pr_err("FIX %s: %pV\n", s->name, &vaf);
910 	va_end(args);
911 }
912 
913 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
914 {
915 	unsigned int off;	/* Offset of last byte */
916 	u8 *addr = slab_address(slab);
917 
918 	print_tracking(s, p);
919 
920 	print_slab_info(slab);
921 
922 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
923 	       p, p - addr, get_freepointer(s, p));
924 
925 	if (s->flags & SLAB_RED_ZONE)
926 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
927 			      s->red_left_pad);
928 	else if (p > addr + 16)
929 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
930 
931 	print_section(KERN_ERR,         "Object   ", p,
932 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
933 	if (s->flags & SLAB_RED_ZONE)
934 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
935 			s->inuse - s->object_size);
936 
937 	off = get_info_end(s);
938 
939 	if (s->flags & SLAB_STORE_USER)
940 		off += 2 * sizeof(struct track);
941 
942 	if (slub_debug_orig_size(s))
943 		off += sizeof(unsigned int);
944 
945 	off += kasan_metadata_size(s, false);
946 
947 	if (off != size_from_object(s))
948 		/* Beginning of the filler is the free pointer */
949 		print_section(KERN_ERR, "Padding  ", p + off,
950 			      size_from_object(s) - off);
951 
952 	dump_stack();
953 }
954 
955 static void object_err(struct kmem_cache *s, struct slab *slab,
956 			u8 *object, char *reason)
957 {
958 	if (slab_add_kunit_errors())
959 		return;
960 
961 	slab_bug(s, "%s", reason);
962 	print_trailer(s, slab, object);
963 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
964 }
965 
966 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
967 			       void **freelist, void *nextfree)
968 {
969 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
970 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
971 		object_err(s, slab, *freelist, "Freechain corrupt");
972 		*freelist = NULL;
973 		slab_fix(s, "Isolate corrupted freechain");
974 		return true;
975 	}
976 
977 	return false;
978 }
979 
980 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
981 			const char *fmt, ...)
982 {
983 	va_list args;
984 	char buf[100];
985 
986 	if (slab_add_kunit_errors())
987 		return;
988 
989 	va_start(args, fmt);
990 	vsnprintf(buf, sizeof(buf), fmt, args);
991 	va_end(args);
992 	slab_bug(s, "%s", buf);
993 	print_slab_info(slab);
994 	dump_stack();
995 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
996 }
997 
998 static void init_object(struct kmem_cache *s, void *object, u8 val)
999 {
1000 	u8 *p = kasan_reset_tag(object);
1001 	unsigned int poison_size = s->object_size;
1002 
1003 	if (s->flags & SLAB_RED_ZONE) {
1004 		memset(p - s->red_left_pad, val, s->red_left_pad);
1005 
1006 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1007 			/*
1008 			 * Redzone the extra allocated space by kmalloc than
1009 			 * requested, and the poison size will be limited to
1010 			 * the original request size accordingly.
1011 			 */
1012 			poison_size = get_orig_size(s, object);
1013 		}
1014 	}
1015 
1016 	if (s->flags & __OBJECT_POISON) {
1017 		memset(p, POISON_FREE, poison_size - 1);
1018 		p[poison_size - 1] = POISON_END;
1019 	}
1020 
1021 	if (s->flags & SLAB_RED_ZONE)
1022 		memset(p + poison_size, val, s->inuse - poison_size);
1023 }
1024 
1025 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1026 						void *from, void *to)
1027 {
1028 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1029 	memset(from, data, to - from);
1030 }
1031 
1032 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1033 			u8 *object, char *what,
1034 			u8 *start, unsigned int value, unsigned int bytes)
1035 {
1036 	u8 *fault;
1037 	u8 *end;
1038 	u8 *addr = slab_address(slab);
1039 
1040 	metadata_access_enable();
1041 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1042 	metadata_access_disable();
1043 	if (!fault)
1044 		return 1;
1045 
1046 	end = start + bytes;
1047 	while (end > fault && end[-1] == value)
1048 		end--;
1049 
1050 	if (slab_add_kunit_errors())
1051 		goto skip_bug_print;
1052 
1053 	slab_bug(s, "%s overwritten", what);
1054 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1055 					fault, end - 1, fault - addr,
1056 					fault[0], value);
1057 	print_trailer(s, slab, object);
1058 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1059 
1060 skip_bug_print:
1061 	restore_bytes(s, what, value, fault, end);
1062 	return 0;
1063 }
1064 
1065 /*
1066  * Object layout:
1067  *
1068  * object address
1069  * 	Bytes of the object to be managed.
1070  * 	If the freepointer may overlay the object then the free
1071  *	pointer is at the middle of the object.
1072  *
1073  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1074  * 	0xa5 (POISON_END)
1075  *
1076  * object + s->object_size
1077  * 	Padding to reach word boundary. This is also used for Redzoning.
1078  * 	Padding is extended by another word if Redzoning is enabled and
1079  * 	object_size == inuse.
1080  *
1081  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1082  * 	0xcc (RED_ACTIVE) for objects in use.
1083  *
1084  * object + s->inuse
1085  * 	Meta data starts here.
1086  *
1087  * 	A. Free pointer (if we cannot overwrite object on free)
1088  * 	B. Tracking data for SLAB_STORE_USER
1089  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1090  *	D. Padding to reach required alignment boundary or at minimum
1091  * 		one word if debugging is on to be able to detect writes
1092  * 		before the word boundary.
1093  *
1094  *	Padding is done using 0x5a (POISON_INUSE)
1095  *
1096  * object + s->size
1097  * 	Nothing is used beyond s->size.
1098  *
1099  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1100  * ignored. And therefore no slab options that rely on these boundaries
1101  * may be used with merged slabcaches.
1102  */
1103 
1104 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1105 {
1106 	unsigned long off = get_info_end(s);	/* The end of info */
1107 
1108 	if (s->flags & SLAB_STORE_USER) {
1109 		/* We also have user information there */
1110 		off += 2 * sizeof(struct track);
1111 
1112 		if (s->flags & SLAB_KMALLOC)
1113 			off += sizeof(unsigned int);
1114 	}
1115 
1116 	off += kasan_metadata_size(s, false);
1117 
1118 	if (size_from_object(s) == off)
1119 		return 1;
1120 
1121 	return check_bytes_and_report(s, slab, p, "Object padding",
1122 			p + off, POISON_INUSE, size_from_object(s) - off);
1123 }
1124 
1125 /* Check the pad bytes at the end of a slab page */
1126 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1127 {
1128 	u8 *start;
1129 	u8 *fault;
1130 	u8 *end;
1131 	u8 *pad;
1132 	int length;
1133 	int remainder;
1134 
1135 	if (!(s->flags & SLAB_POISON))
1136 		return;
1137 
1138 	start = slab_address(slab);
1139 	length = slab_size(slab);
1140 	end = start + length;
1141 	remainder = length % s->size;
1142 	if (!remainder)
1143 		return;
1144 
1145 	pad = end - remainder;
1146 	metadata_access_enable();
1147 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1148 	metadata_access_disable();
1149 	if (!fault)
1150 		return;
1151 	while (end > fault && end[-1] == POISON_INUSE)
1152 		end--;
1153 
1154 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1155 			fault, end - 1, fault - start);
1156 	print_section(KERN_ERR, "Padding ", pad, remainder);
1157 
1158 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1159 }
1160 
1161 static int check_object(struct kmem_cache *s, struct slab *slab,
1162 					void *object, u8 val)
1163 {
1164 	u8 *p = object;
1165 	u8 *endobject = object + s->object_size;
1166 	unsigned int orig_size;
1167 
1168 	if (s->flags & SLAB_RED_ZONE) {
1169 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1170 			object - s->red_left_pad, val, s->red_left_pad))
1171 			return 0;
1172 
1173 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1174 			endobject, val, s->inuse - s->object_size))
1175 			return 0;
1176 
1177 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1178 			orig_size = get_orig_size(s, object);
1179 
1180 			if (s->object_size > orig_size  &&
1181 				!check_bytes_and_report(s, slab, object,
1182 					"kmalloc Redzone", p + orig_size,
1183 					val, s->object_size - orig_size)) {
1184 				return 0;
1185 			}
1186 		}
1187 	} else {
1188 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1189 			check_bytes_and_report(s, slab, p, "Alignment padding",
1190 				endobject, POISON_INUSE,
1191 				s->inuse - s->object_size);
1192 		}
1193 	}
1194 
1195 	if (s->flags & SLAB_POISON) {
1196 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1197 			(!check_bytes_and_report(s, slab, p, "Poison", p,
1198 					POISON_FREE, s->object_size - 1) ||
1199 			 !check_bytes_and_report(s, slab, p, "End Poison",
1200 				p + s->object_size - 1, POISON_END, 1)))
1201 			return 0;
1202 		/*
1203 		 * check_pad_bytes cleans up on its own.
1204 		 */
1205 		check_pad_bytes(s, slab, p);
1206 	}
1207 
1208 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1209 		/*
1210 		 * Object and freepointer overlap. Cannot check
1211 		 * freepointer while object is allocated.
1212 		 */
1213 		return 1;
1214 
1215 	/* Check free pointer validity */
1216 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1217 		object_err(s, slab, p, "Freepointer corrupt");
1218 		/*
1219 		 * No choice but to zap it and thus lose the remainder
1220 		 * of the free objects in this slab. May cause
1221 		 * another error because the object count is now wrong.
1222 		 */
1223 		set_freepointer(s, p, NULL);
1224 		return 0;
1225 	}
1226 	return 1;
1227 }
1228 
1229 static int check_slab(struct kmem_cache *s, struct slab *slab)
1230 {
1231 	int maxobj;
1232 
1233 	if (!folio_test_slab(slab_folio(slab))) {
1234 		slab_err(s, slab, "Not a valid slab page");
1235 		return 0;
1236 	}
1237 
1238 	maxobj = order_objects(slab_order(slab), s->size);
1239 	if (slab->objects > maxobj) {
1240 		slab_err(s, slab, "objects %u > max %u",
1241 			slab->objects, maxobj);
1242 		return 0;
1243 	}
1244 	if (slab->inuse > slab->objects) {
1245 		slab_err(s, slab, "inuse %u > max %u",
1246 			slab->inuse, slab->objects);
1247 		return 0;
1248 	}
1249 	/* Slab_pad_check fixes things up after itself */
1250 	slab_pad_check(s, slab);
1251 	return 1;
1252 }
1253 
1254 /*
1255  * Determine if a certain object in a slab is on the freelist. Must hold the
1256  * slab lock to guarantee that the chains are in a consistent state.
1257  */
1258 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1259 {
1260 	int nr = 0;
1261 	void *fp;
1262 	void *object = NULL;
1263 	int max_objects;
1264 
1265 	fp = slab->freelist;
1266 	while (fp && nr <= slab->objects) {
1267 		if (fp == search)
1268 			return 1;
1269 		if (!check_valid_pointer(s, slab, fp)) {
1270 			if (object) {
1271 				object_err(s, slab, object,
1272 					"Freechain corrupt");
1273 				set_freepointer(s, object, NULL);
1274 			} else {
1275 				slab_err(s, slab, "Freepointer corrupt");
1276 				slab->freelist = NULL;
1277 				slab->inuse = slab->objects;
1278 				slab_fix(s, "Freelist cleared");
1279 				return 0;
1280 			}
1281 			break;
1282 		}
1283 		object = fp;
1284 		fp = get_freepointer(s, object);
1285 		nr++;
1286 	}
1287 
1288 	max_objects = order_objects(slab_order(slab), s->size);
1289 	if (max_objects > MAX_OBJS_PER_PAGE)
1290 		max_objects = MAX_OBJS_PER_PAGE;
1291 
1292 	if (slab->objects != max_objects) {
1293 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1294 			 slab->objects, max_objects);
1295 		slab->objects = max_objects;
1296 		slab_fix(s, "Number of objects adjusted");
1297 	}
1298 	if (slab->inuse != slab->objects - nr) {
1299 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1300 			 slab->inuse, slab->objects - nr);
1301 		slab->inuse = slab->objects - nr;
1302 		slab_fix(s, "Object count adjusted");
1303 	}
1304 	return search == NULL;
1305 }
1306 
1307 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1308 								int alloc)
1309 {
1310 	if (s->flags & SLAB_TRACE) {
1311 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1312 			s->name,
1313 			alloc ? "alloc" : "free",
1314 			object, slab->inuse,
1315 			slab->freelist);
1316 
1317 		if (!alloc)
1318 			print_section(KERN_INFO, "Object ", (void *)object,
1319 					s->object_size);
1320 
1321 		dump_stack();
1322 	}
1323 }
1324 
1325 /*
1326  * Tracking of fully allocated slabs for debugging purposes.
1327  */
1328 static void add_full(struct kmem_cache *s,
1329 	struct kmem_cache_node *n, struct slab *slab)
1330 {
1331 	if (!(s->flags & SLAB_STORE_USER))
1332 		return;
1333 
1334 	lockdep_assert_held(&n->list_lock);
1335 	list_add(&slab->slab_list, &n->full);
1336 }
1337 
1338 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1339 {
1340 	if (!(s->flags & SLAB_STORE_USER))
1341 		return;
1342 
1343 	lockdep_assert_held(&n->list_lock);
1344 	list_del(&slab->slab_list);
1345 }
1346 
1347 /* Tracking of the number of slabs for debugging purposes */
1348 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1349 {
1350 	struct kmem_cache_node *n = get_node(s, node);
1351 
1352 	return atomic_long_read(&n->nr_slabs);
1353 }
1354 
1355 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1356 {
1357 	return atomic_long_read(&n->nr_slabs);
1358 }
1359 
1360 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1361 {
1362 	struct kmem_cache_node *n = get_node(s, node);
1363 
1364 	/*
1365 	 * May be called early in order to allocate a slab for the
1366 	 * kmem_cache_node structure. Solve the chicken-egg
1367 	 * dilemma by deferring the increment of the count during
1368 	 * bootstrap (see early_kmem_cache_node_alloc).
1369 	 */
1370 	if (likely(n)) {
1371 		atomic_long_inc(&n->nr_slabs);
1372 		atomic_long_add(objects, &n->total_objects);
1373 	}
1374 }
1375 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1376 {
1377 	struct kmem_cache_node *n = get_node(s, node);
1378 
1379 	atomic_long_dec(&n->nr_slabs);
1380 	atomic_long_sub(objects, &n->total_objects);
1381 }
1382 
1383 /* Object debug checks for alloc/free paths */
1384 static void setup_object_debug(struct kmem_cache *s, void *object)
1385 {
1386 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1387 		return;
1388 
1389 	init_object(s, object, SLUB_RED_INACTIVE);
1390 	init_tracking(s, object);
1391 }
1392 
1393 static
1394 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1395 {
1396 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1397 		return;
1398 
1399 	metadata_access_enable();
1400 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1401 	metadata_access_disable();
1402 }
1403 
1404 static inline int alloc_consistency_checks(struct kmem_cache *s,
1405 					struct slab *slab, void *object)
1406 {
1407 	if (!check_slab(s, slab))
1408 		return 0;
1409 
1410 	if (!check_valid_pointer(s, slab, object)) {
1411 		object_err(s, slab, object, "Freelist Pointer check fails");
1412 		return 0;
1413 	}
1414 
1415 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1416 		return 0;
1417 
1418 	return 1;
1419 }
1420 
1421 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1422 			struct slab *slab, void *object, int orig_size)
1423 {
1424 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1425 		if (!alloc_consistency_checks(s, slab, object))
1426 			goto bad;
1427 	}
1428 
1429 	/* Success. Perform special debug activities for allocs */
1430 	trace(s, slab, object, 1);
1431 	set_orig_size(s, object, orig_size);
1432 	init_object(s, object, SLUB_RED_ACTIVE);
1433 	return true;
1434 
1435 bad:
1436 	if (folio_test_slab(slab_folio(slab))) {
1437 		/*
1438 		 * If this is a slab page then lets do the best we can
1439 		 * to avoid issues in the future. Marking all objects
1440 		 * as used avoids touching the remaining objects.
1441 		 */
1442 		slab_fix(s, "Marking all objects used");
1443 		slab->inuse = slab->objects;
1444 		slab->freelist = NULL;
1445 	}
1446 	return false;
1447 }
1448 
1449 static inline int free_consistency_checks(struct kmem_cache *s,
1450 		struct slab *slab, void *object, unsigned long addr)
1451 {
1452 	if (!check_valid_pointer(s, slab, object)) {
1453 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1454 		return 0;
1455 	}
1456 
1457 	if (on_freelist(s, slab, object)) {
1458 		object_err(s, slab, object, "Object already free");
1459 		return 0;
1460 	}
1461 
1462 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1463 		return 0;
1464 
1465 	if (unlikely(s != slab->slab_cache)) {
1466 		if (!folio_test_slab(slab_folio(slab))) {
1467 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1468 				 object);
1469 		} else if (!slab->slab_cache) {
1470 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1471 			       object);
1472 			dump_stack();
1473 		} else
1474 			object_err(s, slab, object,
1475 					"page slab pointer corrupt.");
1476 		return 0;
1477 	}
1478 	return 1;
1479 }
1480 
1481 /*
1482  * Parse a block of slub_debug options. Blocks are delimited by ';'
1483  *
1484  * @str:    start of block
1485  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1486  * @slabs:  return start of list of slabs, or NULL when there's no list
1487  * @init:   assume this is initial parsing and not per-kmem-create parsing
1488  *
1489  * returns the start of next block if there's any, or NULL
1490  */
1491 static char *
1492 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1493 {
1494 	bool higher_order_disable = false;
1495 
1496 	/* Skip any completely empty blocks */
1497 	while (*str && *str == ';')
1498 		str++;
1499 
1500 	if (*str == ',') {
1501 		/*
1502 		 * No options but restriction on slabs. This means full
1503 		 * debugging for slabs matching a pattern.
1504 		 */
1505 		*flags = DEBUG_DEFAULT_FLAGS;
1506 		goto check_slabs;
1507 	}
1508 	*flags = 0;
1509 
1510 	/* Determine which debug features should be switched on */
1511 	for (; *str && *str != ',' && *str != ';'; str++) {
1512 		switch (tolower(*str)) {
1513 		case '-':
1514 			*flags = 0;
1515 			break;
1516 		case 'f':
1517 			*flags |= SLAB_CONSISTENCY_CHECKS;
1518 			break;
1519 		case 'z':
1520 			*flags |= SLAB_RED_ZONE;
1521 			break;
1522 		case 'p':
1523 			*flags |= SLAB_POISON;
1524 			break;
1525 		case 'u':
1526 			*flags |= SLAB_STORE_USER;
1527 			break;
1528 		case 't':
1529 			*flags |= SLAB_TRACE;
1530 			break;
1531 		case 'a':
1532 			*flags |= SLAB_FAILSLAB;
1533 			break;
1534 		case 'o':
1535 			/*
1536 			 * Avoid enabling debugging on caches if its minimum
1537 			 * order would increase as a result.
1538 			 */
1539 			higher_order_disable = true;
1540 			break;
1541 		default:
1542 			if (init)
1543 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1544 		}
1545 	}
1546 check_slabs:
1547 	if (*str == ',')
1548 		*slabs = ++str;
1549 	else
1550 		*slabs = NULL;
1551 
1552 	/* Skip over the slab list */
1553 	while (*str && *str != ';')
1554 		str++;
1555 
1556 	/* Skip any completely empty blocks */
1557 	while (*str && *str == ';')
1558 		str++;
1559 
1560 	if (init && higher_order_disable)
1561 		disable_higher_order_debug = 1;
1562 
1563 	if (*str)
1564 		return str;
1565 	else
1566 		return NULL;
1567 }
1568 
1569 static int __init setup_slub_debug(char *str)
1570 {
1571 	slab_flags_t flags;
1572 	slab_flags_t global_flags;
1573 	char *saved_str;
1574 	char *slab_list;
1575 	bool global_slub_debug_changed = false;
1576 	bool slab_list_specified = false;
1577 
1578 	global_flags = DEBUG_DEFAULT_FLAGS;
1579 	if (*str++ != '=' || !*str)
1580 		/*
1581 		 * No options specified. Switch on full debugging.
1582 		 */
1583 		goto out;
1584 
1585 	saved_str = str;
1586 	while (str) {
1587 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1588 
1589 		if (!slab_list) {
1590 			global_flags = flags;
1591 			global_slub_debug_changed = true;
1592 		} else {
1593 			slab_list_specified = true;
1594 			if (flags & SLAB_STORE_USER)
1595 				stack_depot_request_early_init();
1596 		}
1597 	}
1598 
1599 	/*
1600 	 * For backwards compatibility, a single list of flags with list of
1601 	 * slabs means debugging is only changed for those slabs, so the global
1602 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1603 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1604 	 * long as there is no option specifying flags without a slab list.
1605 	 */
1606 	if (slab_list_specified) {
1607 		if (!global_slub_debug_changed)
1608 			global_flags = slub_debug;
1609 		slub_debug_string = saved_str;
1610 	}
1611 out:
1612 	slub_debug = global_flags;
1613 	if (slub_debug & SLAB_STORE_USER)
1614 		stack_depot_request_early_init();
1615 	if (slub_debug != 0 || slub_debug_string)
1616 		static_branch_enable(&slub_debug_enabled);
1617 	else
1618 		static_branch_disable(&slub_debug_enabled);
1619 	if ((static_branch_unlikely(&init_on_alloc) ||
1620 	     static_branch_unlikely(&init_on_free)) &&
1621 	    (slub_debug & SLAB_POISON))
1622 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1623 	return 1;
1624 }
1625 
1626 __setup("slub_debug", setup_slub_debug);
1627 
1628 /*
1629  * kmem_cache_flags - apply debugging options to the cache
1630  * @object_size:	the size of an object without meta data
1631  * @flags:		flags to set
1632  * @name:		name of the cache
1633  *
1634  * Debug option(s) are applied to @flags. In addition to the debug
1635  * option(s), if a slab name (or multiple) is specified i.e.
1636  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1637  * then only the select slabs will receive the debug option(s).
1638  */
1639 slab_flags_t kmem_cache_flags(unsigned int object_size,
1640 	slab_flags_t flags, const char *name)
1641 {
1642 	char *iter;
1643 	size_t len;
1644 	char *next_block;
1645 	slab_flags_t block_flags;
1646 	slab_flags_t slub_debug_local = slub_debug;
1647 
1648 	if (flags & SLAB_NO_USER_FLAGS)
1649 		return flags;
1650 
1651 	/*
1652 	 * If the slab cache is for debugging (e.g. kmemleak) then
1653 	 * don't store user (stack trace) information by default,
1654 	 * but let the user enable it via the command line below.
1655 	 */
1656 	if (flags & SLAB_NOLEAKTRACE)
1657 		slub_debug_local &= ~SLAB_STORE_USER;
1658 
1659 	len = strlen(name);
1660 	next_block = slub_debug_string;
1661 	/* Go through all blocks of debug options, see if any matches our slab's name */
1662 	while (next_block) {
1663 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1664 		if (!iter)
1665 			continue;
1666 		/* Found a block that has a slab list, search it */
1667 		while (*iter) {
1668 			char *end, *glob;
1669 			size_t cmplen;
1670 
1671 			end = strchrnul(iter, ',');
1672 			if (next_block && next_block < end)
1673 				end = next_block - 1;
1674 
1675 			glob = strnchr(iter, end - iter, '*');
1676 			if (glob)
1677 				cmplen = glob - iter;
1678 			else
1679 				cmplen = max_t(size_t, len, (end - iter));
1680 
1681 			if (!strncmp(name, iter, cmplen)) {
1682 				flags |= block_flags;
1683 				return flags;
1684 			}
1685 
1686 			if (!*end || *end == ';')
1687 				break;
1688 			iter = end + 1;
1689 		}
1690 	}
1691 
1692 	return flags | slub_debug_local;
1693 }
1694 #else /* !CONFIG_SLUB_DEBUG */
1695 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1696 static inline
1697 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1698 
1699 static inline bool alloc_debug_processing(struct kmem_cache *s,
1700 	struct slab *slab, void *object, int orig_size) { return true; }
1701 
1702 static inline bool free_debug_processing(struct kmem_cache *s,
1703 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1704 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1705 
1706 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1707 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1708 			void *object, u8 val) { return 1; }
1709 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1710 static inline void set_track(struct kmem_cache *s, void *object,
1711 			     enum track_item alloc, unsigned long addr) {}
1712 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1713 					struct slab *slab) {}
1714 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1715 					struct slab *slab) {}
1716 slab_flags_t kmem_cache_flags(unsigned int object_size,
1717 	slab_flags_t flags, const char *name)
1718 {
1719 	return flags;
1720 }
1721 #define slub_debug 0
1722 
1723 #define disable_higher_order_debug 0
1724 
1725 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1726 							{ return 0; }
1727 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1728 							{ return 0; }
1729 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1730 							int objects) {}
1731 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1732 							int objects) {}
1733 
1734 #ifndef CONFIG_SLUB_TINY
1735 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1736 			       void **freelist, void *nextfree)
1737 {
1738 	return false;
1739 }
1740 #endif
1741 #endif /* CONFIG_SLUB_DEBUG */
1742 
1743 /*
1744  * Hooks for other subsystems that check memory allocations. In a typical
1745  * production configuration these hooks all should produce no code at all.
1746  */
1747 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1748 						void *x, bool init)
1749 {
1750 	kmemleak_free_recursive(x, s->flags);
1751 	kmsan_slab_free(s, x);
1752 
1753 	debug_check_no_locks_freed(x, s->object_size);
1754 
1755 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1756 		debug_check_no_obj_freed(x, s->object_size);
1757 
1758 	/* Use KCSAN to help debug racy use-after-free. */
1759 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1760 		__kcsan_check_access(x, s->object_size,
1761 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1762 
1763 	/*
1764 	 * As memory initialization might be integrated into KASAN,
1765 	 * kasan_slab_free and initialization memset's must be
1766 	 * kept together to avoid discrepancies in behavior.
1767 	 *
1768 	 * The initialization memset's clear the object and the metadata,
1769 	 * but don't touch the SLAB redzone.
1770 	 */
1771 	if (init) {
1772 		int rsize;
1773 
1774 		if (!kasan_has_integrated_init())
1775 			memset(kasan_reset_tag(x), 0, s->object_size);
1776 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1777 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1778 		       s->size - s->inuse - rsize);
1779 	}
1780 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1781 	return kasan_slab_free(s, x, init);
1782 }
1783 
1784 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1785 					   void **head, void **tail,
1786 					   int *cnt)
1787 {
1788 
1789 	void *object;
1790 	void *next = *head;
1791 	void *old_tail = *tail ? *tail : *head;
1792 
1793 	if (is_kfence_address(next)) {
1794 		slab_free_hook(s, next, false);
1795 		return true;
1796 	}
1797 
1798 	/* Head and tail of the reconstructed freelist */
1799 	*head = NULL;
1800 	*tail = NULL;
1801 
1802 	do {
1803 		object = next;
1804 		next = get_freepointer(s, object);
1805 
1806 		/* If object's reuse doesn't have to be delayed */
1807 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1808 			/* Move object to the new freelist */
1809 			set_freepointer(s, object, *head);
1810 			*head = object;
1811 			if (!*tail)
1812 				*tail = object;
1813 		} else {
1814 			/*
1815 			 * Adjust the reconstructed freelist depth
1816 			 * accordingly if object's reuse is delayed.
1817 			 */
1818 			--(*cnt);
1819 		}
1820 	} while (object != old_tail);
1821 
1822 	if (*head == *tail)
1823 		*tail = NULL;
1824 
1825 	return *head != NULL;
1826 }
1827 
1828 static void *setup_object(struct kmem_cache *s, void *object)
1829 {
1830 	setup_object_debug(s, object);
1831 	object = kasan_init_slab_obj(s, object);
1832 	if (unlikely(s->ctor)) {
1833 		kasan_unpoison_object_data(s, object);
1834 		s->ctor(object);
1835 		kasan_poison_object_data(s, object);
1836 	}
1837 	return object;
1838 }
1839 
1840 /*
1841  * Slab allocation and freeing
1842  */
1843 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1844 		struct kmem_cache_order_objects oo)
1845 {
1846 	struct folio *folio;
1847 	struct slab *slab;
1848 	unsigned int order = oo_order(oo);
1849 
1850 	if (node == NUMA_NO_NODE)
1851 		folio = (struct folio *)alloc_pages(flags, order);
1852 	else
1853 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
1854 
1855 	if (!folio)
1856 		return NULL;
1857 
1858 	slab = folio_slab(folio);
1859 	__folio_set_slab(folio);
1860 	/* Make the flag visible before any changes to folio->mapping */
1861 	smp_wmb();
1862 	if (folio_is_pfmemalloc(folio))
1863 		slab_set_pfmemalloc(slab);
1864 
1865 	return slab;
1866 }
1867 
1868 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1869 /* Pre-initialize the random sequence cache */
1870 static int init_cache_random_seq(struct kmem_cache *s)
1871 {
1872 	unsigned int count = oo_objects(s->oo);
1873 	int err;
1874 
1875 	/* Bailout if already initialised */
1876 	if (s->random_seq)
1877 		return 0;
1878 
1879 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1880 	if (err) {
1881 		pr_err("SLUB: Unable to initialize free list for %s\n",
1882 			s->name);
1883 		return err;
1884 	}
1885 
1886 	/* Transform to an offset on the set of pages */
1887 	if (s->random_seq) {
1888 		unsigned int i;
1889 
1890 		for (i = 0; i < count; i++)
1891 			s->random_seq[i] *= s->size;
1892 	}
1893 	return 0;
1894 }
1895 
1896 /* Initialize each random sequence freelist per cache */
1897 static void __init init_freelist_randomization(void)
1898 {
1899 	struct kmem_cache *s;
1900 
1901 	mutex_lock(&slab_mutex);
1902 
1903 	list_for_each_entry(s, &slab_caches, list)
1904 		init_cache_random_seq(s);
1905 
1906 	mutex_unlock(&slab_mutex);
1907 }
1908 
1909 /* Get the next entry on the pre-computed freelist randomized */
1910 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1911 				unsigned long *pos, void *start,
1912 				unsigned long page_limit,
1913 				unsigned long freelist_count)
1914 {
1915 	unsigned int idx;
1916 
1917 	/*
1918 	 * If the target page allocation failed, the number of objects on the
1919 	 * page might be smaller than the usual size defined by the cache.
1920 	 */
1921 	do {
1922 		idx = s->random_seq[*pos];
1923 		*pos += 1;
1924 		if (*pos >= freelist_count)
1925 			*pos = 0;
1926 	} while (unlikely(idx >= page_limit));
1927 
1928 	return (char *)start + idx;
1929 }
1930 
1931 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1932 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1933 {
1934 	void *start;
1935 	void *cur;
1936 	void *next;
1937 	unsigned long idx, pos, page_limit, freelist_count;
1938 
1939 	if (slab->objects < 2 || !s->random_seq)
1940 		return false;
1941 
1942 	freelist_count = oo_objects(s->oo);
1943 	pos = get_random_u32_below(freelist_count);
1944 
1945 	page_limit = slab->objects * s->size;
1946 	start = fixup_red_left(s, slab_address(slab));
1947 
1948 	/* First entry is used as the base of the freelist */
1949 	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1950 				freelist_count);
1951 	cur = setup_object(s, cur);
1952 	slab->freelist = cur;
1953 
1954 	for (idx = 1; idx < slab->objects; idx++) {
1955 		next = next_freelist_entry(s, slab, &pos, start, page_limit,
1956 			freelist_count);
1957 		next = setup_object(s, next);
1958 		set_freepointer(s, cur, next);
1959 		cur = next;
1960 	}
1961 	set_freepointer(s, cur, NULL);
1962 
1963 	return true;
1964 }
1965 #else
1966 static inline int init_cache_random_seq(struct kmem_cache *s)
1967 {
1968 	return 0;
1969 }
1970 static inline void init_freelist_randomization(void) { }
1971 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1972 {
1973 	return false;
1974 }
1975 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1976 
1977 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1978 {
1979 	struct slab *slab;
1980 	struct kmem_cache_order_objects oo = s->oo;
1981 	gfp_t alloc_gfp;
1982 	void *start, *p, *next;
1983 	int idx;
1984 	bool shuffle;
1985 
1986 	flags &= gfp_allowed_mask;
1987 
1988 	flags |= s->allocflags;
1989 
1990 	/*
1991 	 * Let the initial higher-order allocation fail under memory pressure
1992 	 * so we fall-back to the minimum order allocation.
1993 	 */
1994 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1995 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1996 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
1997 
1998 	slab = alloc_slab_page(alloc_gfp, node, oo);
1999 	if (unlikely(!slab)) {
2000 		oo = s->min;
2001 		alloc_gfp = flags;
2002 		/*
2003 		 * Allocation may have failed due to fragmentation.
2004 		 * Try a lower order alloc if possible
2005 		 */
2006 		slab = alloc_slab_page(alloc_gfp, node, oo);
2007 		if (unlikely(!slab))
2008 			return NULL;
2009 		stat(s, ORDER_FALLBACK);
2010 	}
2011 
2012 	slab->objects = oo_objects(oo);
2013 	slab->inuse = 0;
2014 	slab->frozen = 0;
2015 
2016 	account_slab(slab, oo_order(oo), s, flags);
2017 
2018 	slab->slab_cache = s;
2019 
2020 	kasan_poison_slab(slab);
2021 
2022 	start = slab_address(slab);
2023 
2024 	setup_slab_debug(s, slab, start);
2025 
2026 	shuffle = shuffle_freelist(s, slab);
2027 
2028 	if (!shuffle) {
2029 		start = fixup_red_left(s, start);
2030 		start = setup_object(s, start);
2031 		slab->freelist = start;
2032 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2033 			next = p + s->size;
2034 			next = setup_object(s, next);
2035 			set_freepointer(s, p, next);
2036 			p = next;
2037 		}
2038 		set_freepointer(s, p, NULL);
2039 	}
2040 
2041 	return slab;
2042 }
2043 
2044 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2045 {
2046 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2047 		flags = kmalloc_fix_flags(flags);
2048 
2049 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2050 
2051 	return allocate_slab(s,
2052 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2053 }
2054 
2055 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2056 {
2057 	struct folio *folio = slab_folio(slab);
2058 	int order = folio_order(folio);
2059 	int pages = 1 << order;
2060 
2061 	__slab_clear_pfmemalloc(slab);
2062 	folio->mapping = NULL;
2063 	/* Make the mapping reset visible before clearing the flag */
2064 	smp_wmb();
2065 	__folio_clear_slab(folio);
2066 	mm_account_reclaimed_pages(pages);
2067 	unaccount_slab(slab, order, s);
2068 	__free_pages(&folio->page, order);
2069 }
2070 
2071 static void rcu_free_slab(struct rcu_head *h)
2072 {
2073 	struct slab *slab = container_of(h, struct slab, rcu_head);
2074 
2075 	__free_slab(slab->slab_cache, slab);
2076 }
2077 
2078 static void free_slab(struct kmem_cache *s, struct slab *slab)
2079 {
2080 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2081 		void *p;
2082 
2083 		slab_pad_check(s, slab);
2084 		for_each_object(p, s, slab_address(slab), slab->objects)
2085 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2086 	}
2087 
2088 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2089 		call_rcu(&slab->rcu_head, rcu_free_slab);
2090 	else
2091 		__free_slab(s, slab);
2092 }
2093 
2094 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2095 {
2096 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2097 	free_slab(s, slab);
2098 }
2099 
2100 /*
2101  * Management of partially allocated slabs.
2102  */
2103 static inline void
2104 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2105 {
2106 	n->nr_partial++;
2107 	if (tail == DEACTIVATE_TO_TAIL)
2108 		list_add_tail(&slab->slab_list, &n->partial);
2109 	else
2110 		list_add(&slab->slab_list, &n->partial);
2111 }
2112 
2113 static inline void add_partial(struct kmem_cache_node *n,
2114 				struct slab *slab, int tail)
2115 {
2116 	lockdep_assert_held(&n->list_lock);
2117 	__add_partial(n, slab, tail);
2118 }
2119 
2120 static inline void remove_partial(struct kmem_cache_node *n,
2121 					struct slab *slab)
2122 {
2123 	lockdep_assert_held(&n->list_lock);
2124 	list_del(&slab->slab_list);
2125 	n->nr_partial--;
2126 }
2127 
2128 /*
2129  * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2130  * slab from the n->partial list. Remove only a single object from the slab, do
2131  * the alloc_debug_processing() checks and leave the slab on the list, or move
2132  * it to full list if it was the last free object.
2133  */
2134 static void *alloc_single_from_partial(struct kmem_cache *s,
2135 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2136 {
2137 	void *object;
2138 
2139 	lockdep_assert_held(&n->list_lock);
2140 
2141 	object = slab->freelist;
2142 	slab->freelist = get_freepointer(s, object);
2143 	slab->inuse++;
2144 
2145 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2146 		remove_partial(n, slab);
2147 		return NULL;
2148 	}
2149 
2150 	if (slab->inuse == slab->objects) {
2151 		remove_partial(n, slab);
2152 		add_full(s, n, slab);
2153 	}
2154 
2155 	return object;
2156 }
2157 
2158 /*
2159  * Called only for kmem_cache_debug() caches to allocate from a freshly
2160  * allocated slab. Allocate a single object instead of whole freelist
2161  * and put the slab to the partial (or full) list.
2162  */
2163 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2164 					struct slab *slab, int orig_size)
2165 {
2166 	int nid = slab_nid(slab);
2167 	struct kmem_cache_node *n = get_node(s, nid);
2168 	unsigned long flags;
2169 	void *object;
2170 
2171 
2172 	object = slab->freelist;
2173 	slab->freelist = get_freepointer(s, object);
2174 	slab->inuse = 1;
2175 
2176 	if (!alloc_debug_processing(s, slab, object, orig_size))
2177 		/*
2178 		 * It's not really expected that this would fail on a
2179 		 * freshly allocated slab, but a concurrent memory
2180 		 * corruption in theory could cause that.
2181 		 */
2182 		return NULL;
2183 
2184 	spin_lock_irqsave(&n->list_lock, flags);
2185 
2186 	if (slab->inuse == slab->objects)
2187 		add_full(s, n, slab);
2188 	else
2189 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2190 
2191 	inc_slabs_node(s, nid, slab->objects);
2192 	spin_unlock_irqrestore(&n->list_lock, flags);
2193 
2194 	return object;
2195 }
2196 
2197 /*
2198  * Remove slab from the partial list, freeze it and
2199  * return the pointer to the freelist.
2200  *
2201  * Returns a list of objects or NULL if it fails.
2202  */
2203 static inline void *acquire_slab(struct kmem_cache *s,
2204 		struct kmem_cache_node *n, struct slab *slab,
2205 		int mode)
2206 {
2207 	void *freelist;
2208 	unsigned long counters;
2209 	struct slab new;
2210 
2211 	lockdep_assert_held(&n->list_lock);
2212 
2213 	/*
2214 	 * Zap the freelist and set the frozen bit.
2215 	 * The old freelist is the list of objects for the
2216 	 * per cpu allocation list.
2217 	 */
2218 	freelist = slab->freelist;
2219 	counters = slab->counters;
2220 	new.counters = counters;
2221 	if (mode) {
2222 		new.inuse = slab->objects;
2223 		new.freelist = NULL;
2224 	} else {
2225 		new.freelist = freelist;
2226 	}
2227 
2228 	VM_BUG_ON(new.frozen);
2229 	new.frozen = 1;
2230 
2231 	if (!__cmpxchg_double_slab(s, slab,
2232 			freelist, counters,
2233 			new.freelist, new.counters,
2234 			"acquire_slab"))
2235 		return NULL;
2236 
2237 	remove_partial(n, slab);
2238 	WARN_ON(!freelist);
2239 	return freelist;
2240 }
2241 
2242 #ifdef CONFIG_SLUB_CPU_PARTIAL
2243 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2244 #else
2245 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2246 				   int drain) { }
2247 #endif
2248 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2249 
2250 /*
2251  * Try to allocate a partial slab from a specific node.
2252  */
2253 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2254 			      struct partial_context *pc)
2255 {
2256 	struct slab *slab, *slab2;
2257 	void *object = NULL;
2258 	unsigned long flags;
2259 	unsigned int partial_slabs = 0;
2260 
2261 	/*
2262 	 * Racy check. If we mistakenly see no partial slabs then we
2263 	 * just allocate an empty slab. If we mistakenly try to get a
2264 	 * partial slab and there is none available then get_partial()
2265 	 * will return NULL.
2266 	 */
2267 	if (!n || !n->nr_partial)
2268 		return NULL;
2269 
2270 	spin_lock_irqsave(&n->list_lock, flags);
2271 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2272 		void *t;
2273 
2274 		if (!pfmemalloc_match(slab, pc->flags))
2275 			continue;
2276 
2277 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2278 			object = alloc_single_from_partial(s, n, slab,
2279 							pc->orig_size);
2280 			if (object)
2281 				break;
2282 			continue;
2283 		}
2284 
2285 		t = acquire_slab(s, n, slab, object == NULL);
2286 		if (!t)
2287 			break;
2288 
2289 		if (!object) {
2290 			*pc->slab = slab;
2291 			stat(s, ALLOC_FROM_PARTIAL);
2292 			object = t;
2293 		} else {
2294 			put_cpu_partial(s, slab, 0);
2295 			stat(s, CPU_PARTIAL_NODE);
2296 			partial_slabs++;
2297 		}
2298 #ifdef CONFIG_SLUB_CPU_PARTIAL
2299 		if (!kmem_cache_has_cpu_partial(s)
2300 			|| partial_slabs > s->cpu_partial_slabs / 2)
2301 			break;
2302 #else
2303 		break;
2304 #endif
2305 
2306 	}
2307 	spin_unlock_irqrestore(&n->list_lock, flags);
2308 	return object;
2309 }
2310 
2311 /*
2312  * Get a slab from somewhere. Search in increasing NUMA distances.
2313  */
2314 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2315 {
2316 #ifdef CONFIG_NUMA
2317 	struct zonelist *zonelist;
2318 	struct zoneref *z;
2319 	struct zone *zone;
2320 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2321 	void *object;
2322 	unsigned int cpuset_mems_cookie;
2323 
2324 	/*
2325 	 * The defrag ratio allows a configuration of the tradeoffs between
2326 	 * inter node defragmentation and node local allocations. A lower
2327 	 * defrag_ratio increases the tendency to do local allocations
2328 	 * instead of attempting to obtain partial slabs from other nodes.
2329 	 *
2330 	 * If the defrag_ratio is set to 0 then kmalloc() always
2331 	 * returns node local objects. If the ratio is higher then kmalloc()
2332 	 * may return off node objects because partial slabs are obtained
2333 	 * from other nodes and filled up.
2334 	 *
2335 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2336 	 * (which makes defrag_ratio = 1000) then every (well almost)
2337 	 * allocation will first attempt to defrag slab caches on other nodes.
2338 	 * This means scanning over all nodes to look for partial slabs which
2339 	 * may be expensive if we do it every time we are trying to find a slab
2340 	 * with available objects.
2341 	 */
2342 	if (!s->remote_node_defrag_ratio ||
2343 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2344 		return NULL;
2345 
2346 	do {
2347 		cpuset_mems_cookie = read_mems_allowed_begin();
2348 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2349 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2350 			struct kmem_cache_node *n;
2351 
2352 			n = get_node(s, zone_to_nid(zone));
2353 
2354 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2355 					n->nr_partial > s->min_partial) {
2356 				object = get_partial_node(s, n, pc);
2357 				if (object) {
2358 					/*
2359 					 * Don't check read_mems_allowed_retry()
2360 					 * here - if mems_allowed was updated in
2361 					 * parallel, that was a harmless race
2362 					 * between allocation and the cpuset
2363 					 * update
2364 					 */
2365 					return object;
2366 				}
2367 			}
2368 		}
2369 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2370 #endif	/* CONFIG_NUMA */
2371 	return NULL;
2372 }
2373 
2374 /*
2375  * Get a partial slab, lock it and return it.
2376  */
2377 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2378 {
2379 	void *object;
2380 	int searchnode = node;
2381 
2382 	if (node == NUMA_NO_NODE)
2383 		searchnode = numa_mem_id();
2384 
2385 	object = get_partial_node(s, get_node(s, searchnode), pc);
2386 	if (object || node != NUMA_NO_NODE)
2387 		return object;
2388 
2389 	return get_any_partial(s, pc);
2390 }
2391 
2392 #ifndef CONFIG_SLUB_TINY
2393 
2394 #ifdef CONFIG_PREEMPTION
2395 /*
2396  * Calculate the next globally unique transaction for disambiguation
2397  * during cmpxchg. The transactions start with the cpu number and are then
2398  * incremented by CONFIG_NR_CPUS.
2399  */
2400 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2401 #else
2402 /*
2403  * No preemption supported therefore also no need to check for
2404  * different cpus.
2405  */
2406 #define TID_STEP 1
2407 #endif /* CONFIG_PREEMPTION */
2408 
2409 static inline unsigned long next_tid(unsigned long tid)
2410 {
2411 	return tid + TID_STEP;
2412 }
2413 
2414 #ifdef SLUB_DEBUG_CMPXCHG
2415 static inline unsigned int tid_to_cpu(unsigned long tid)
2416 {
2417 	return tid % TID_STEP;
2418 }
2419 
2420 static inline unsigned long tid_to_event(unsigned long tid)
2421 {
2422 	return tid / TID_STEP;
2423 }
2424 #endif
2425 
2426 static inline unsigned int init_tid(int cpu)
2427 {
2428 	return cpu;
2429 }
2430 
2431 static inline void note_cmpxchg_failure(const char *n,
2432 		const struct kmem_cache *s, unsigned long tid)
2433 {
2434 #ifdef SLUB_DEBUG_CMPXCHG
2435 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2436 
2437 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2438 
2439 #ifdef CONFIG_PREEMPTION
2440 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2441 		pr_warn("due to cpu change %d -> %d\n",
2442 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2443 	else
2444 #endif
2445 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2446 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2447 			tid_to_event(tid), tid_to_event(actual_tid));
2448 	else
2449 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2450 			actual_tid, tid, next_tid(tid));
2451 #endif
2452 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2453 }
2454 
2455 static void init_kmem_cache_cpus(struct kmem_cache *s)
2456 {
2457 	int cpu;
2458 	struct kmem_cache_cpu *c;
2459 
2460 	for_each_possible_cpu(cpu) {
2461 		c = per_cpu_ptr(s->cpu_slab, cpu);
2462 		local_lock_init(&c->lock);
2463 		c->tid = init_tid(cpu);
2464 	}
2465 }
2466 
2467 /*
2468  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2469  * unfreezes the slabs and puts it on the proper list.
2470  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2471  * by the caller.
2472  */
2473 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2474 			    void *freelist)
2475 {
2476 	enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
2477 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2478 	int free_delta = 0;
2479 	enum slab_modes mode = M_NONE;
2480 	void *nextfree, *freelist_iter, *freelist_tail;
2481 	int tail = DEACTIVATE_TO_HEAD;
2482 	unsigned long flags = 0;
2483 	struct slab new;
2484 	struct slab old;
2485 
2486 	if (slab->freelist) {
2487 		stat(s, DEACTIVATE_REMOTE_FREES);
2488 		tail = DEACTIVATE_TO_TAIL;
2489 	}
2490 
2491 	/*
2492 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2493 	 * remember the last object in freelist_tail for later splicing.
2494 	 */
2495 	freelist_tail = NULL;
2496 	freelist_iter = freelist;
2497 	while (freelist_iter) {
2498 		nextfree = get_freepointer(s, freelist_iter);
2499 
2500 		/*
2501 		 * If 'nextfree' is invalid, it is possible that the object at
2502 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2503 		 * starting at 'freelist_iter' by skipping them.
2504 		 */
2505 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2506 			break;
2507 
2508 		freelist_tail = freelist_iter;
2509 		free_delta++;
2510 
2511 		freelist_iter = nextfree;
2512 	}
2513 
2514 	/*
2515 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2516 	 * freelist to the head of slab's freelist.
2517 	 *
2518 	 * Ensure that the slab is unfrozen while the list presence
2519 	 * reflects the actual number of objects during unfreeze.
2520 	 *
2521 	 * We first perform cmpxchg holding lock and insert to list
2522 	 * when it succeed. If there is mismatch then the slab is not
2523 	 * unfrozen and number of objects in the slab may have changed.
2524 	 * Then release lock and retry cmpxchg again.
2525 	 */
2526 redo:
2527 
2528 	old.freelist = READ_ONCE(slab->freelist);
2529 	old.counters = READ_ONCE(slab->counters);
2530 	VM_BUG_ON(!old.frozen);
2531 
2532 	/* Determine target state of the slab */
2533 	new.counters = old.counters;
2534 	if (freelist_tail) {
2535 		new.inuse -= free_delta;
2536 		set_freepointer(s, freelist_tail, old.freelist);
2537 		new.freelist = freelist;
2538 	} else
2539 		new.freelist = old.freelist;
2540 
2541 	new.frozen = 0;
2542 
2543 	if (!new.inuse && n->nr_partial >= s->min_partial) {
2544 		mode = M_FREE;
2545 	} else if (new.freelist) {
2546 		mode = M_PARTIAL;
2547 		/*
2548 		 * Taking the spinlock removes the possibility that
2549 		 * acquire_slab() will see a slab that is frozen
2550 		 */
2551 		spin_lock_irqsave(&n->list_lock, flags);
2552 	} else {
2553 		mode = M_FULL_NOLIST;
2554 	}
2555 
2556 
2557 	if (!cmpxchg_double_slab(s, slab,
2558 				old.freelist, old.counters,
2559 				new.freelist, new.counters,
2560 				"unfreezing slab")) {
2561 		if (mode == M_PARTIAL)
2562 			spin_unlock_irqrestore(&n->list_lock, flags);
2563 		goto redo;
2564 	}
2565 
2566 
2567 	if (mode == M_PARTIAL) {
2568 		add_partial(n, slab, tail);
2569 		spin_unlock_irqrestore(&n->list_lock, flags);
2570 		stat(s, tail);
2571 	} else if (mode == M_FREE) {
2572 		stat(s, DEACTIVATE_EMPTY);
2573 		discard_slab(s, slab);
2574 		stat(s, FREE_SLAB);
2575 	} else if (mode == M_FULL_NOLIST) {
2576 		stat(s, DEACTIVATE_FULL);
2577 	}
2578 }
2579 
2580 #ifdef CONFIG_SLUB_CPU_PARTIAL
2581 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2582 {
2583 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2584 	struct slab *slab, *slab_to_discard = NULL;
2585 	unsigned long flags = 0;
2586 
2587 	while (partial_slab) {
2588 		struct slab new;
2589 		struct slab old;
2590 
2591 		slab = partial_slab;
2592 		partial_slab = slab->next;
2593 
2594 		n2 = get_node(s, slab_nid(slab));
2595 		if (n != n2) {
2596 			if (n)
2597 				spin_unlock_irqrestore(&n->list_lock, flags);
2598 
2599 			n = n2;
2600 			spin_lock_irqsave(&n->list_lock, flags);
2601 		}
2602 
2603 		do {
2604 
2605 			old.freelist = slab->freelist;
2606 			old.counters = slab->counters;
2607 			VM_BUG_ON(!old.frozen);
2608 
2609 			new.counters = old.counters;
2610 			new.freelist = old.freelist;
2611 
2612 			new.frozen = 0;
2613 
2614 		} while (!__cmpxchg_double_slab(s, slab,
2615 				old.freelist, old.counters,
2616 				new.freelist, new.counters,
2617 				"unfreezing slab"));
2618 
2619 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2620 			slab->next = slab_to_discard;
2621 			slab_to_discard = slab;
2622 		} else {
2623 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2624 			stat(s, FREE_ADD_PARTIAL);
2625 		}
2626 	}
2627 
2628 	if (n)
2629 		spin_unlock_irqrestore(&n->list_lock, flags);
2630 
2631 	while (slab_to_discard) {
2632 		slab = slab_to_discard;
2633 		slab_to_discard = slab_to_discard->next;
2634 
2635 		stat(s, DEACTIVATE_EMPTY);
2636 		discard_slab(s, slab);
2637 		stat(s, FREE_SLAB);
2638 	}
2639 }
2640 
2641 /*
2642  * Unfreeze all the cpu partial slabs.
2643  */
2644 static void unfreeze_partials(struct kmem_cache *s)
2645 {
2646 	struct slab *partial_slab;
2647 	unsigned long flags;
2648 
2649 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2650 	partial_slab = this_cpu_read(s->cpu_slab->partial);
2651 	this_cpu_write(s->cpu_slab->partial, NULL);
2652 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2653 
2654 	if (partial_slab)
2655 		__unfreeze_partials(s, partial_slab);
2656 }
2657 
2658 static void unfreeze_partials_cpu(struct kmem_cache *s,
2659 				  struct kmem_cache_cpu *c)
2660 {
2661 	struct slab *partial_slab;
2662 
2663 	partial_slab = slub_percpu_partial(c);
2664 	c->partial = NULL;
2665 
2666 	if (partial_slab)
2667 		__unfreeze_partials(s, partial_slab);
2668 }
2669 
2670 /*
2671  * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2672  * partial slab slot if available.
2673  *
2674  * If we did not find a slot then simply move all the partials to the
2675  * per node partial list.
2676  */
2677 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2678 {
2679 	struct slab *oldslab;
2680 	struct slab *slab_to_unfreeze = NULL;
2681 	unsigned long flags;
2682 	int slabs = 0;
2683 
2684 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2685 
2686 	oldslab = this_cpu_read(s->cpu_slab->partial);
2687 
2688 	if (oldslab) {
2689 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2690 			/*
2691 			 * Partial array is full. Move the existing set to the
2692 			 * per node partial list. Postpone the actual unfreezing
2693 			 * outside of the critical section.
2694 			 */
2695 			slab_to_unfreeze = oldslab;
2696 			oldslab = NULL;
2697 		} else {
2698 			slabs = oldslab->slabs;
2699 		}
2700 	}
2701 
2702 	slabs++;
2703 
2704 	slab->slabs = slabs;
2705 	slab->next = oldslab;
2706 
2707 	this_cpu_write(s->cpu_slab->partial, slab);
2708 
2709 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2710 
2711 	if (slab_to_unfreeze) {
2712 		__unfreeze_partials(s, slab_to_unfreeze);
2713 		stat(s, CPU_PARTIAL_DRAIN);
2714 	}
2715 }
2716 
2717 #else	/* CONFIG_SLUB_CPU_PARTIAL */
2718 
2719 static inline void unfreeze_partials(struct kmem_cache *s) { }
2720 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2721 				  struct kmem_cache_cpu *c) { }
2722 
2723 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2724 
2725 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2726 {
2727 	unsigned long flags;
2728 	struct slab *slab;
2729 	void *freelist;
2730 
2731 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2732 
2733 	slab = c->slab;
2734 	freelist = c->freelist;
2735 
2736 	c->slab = NULL;
2737 	c->freelist = NULL;
2738 	c->tid = next_tid(c->tid);
2739 
2740 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2741 
2742 	if (slab) {
2743 		deactivate_slab(s, slab, freelist);
2744 		stat(s, CPUSLAB_FLUSH);
2745 	}
2746 }
2747 
2748 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2749 {
2750 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2751 	void *freelist = c->freelist;
2752 	struct slab *slab = c->slab;
2753 
2754 	c->slab = NULL;
2755 	c->freelist = NULL;
2756 	c->tid = next_tid(c->tid);
2757 
2758 	if (slab) {
2759 		deactivate_slab(s, slab, freelist);
2760 		stat(s, CPUSLAB_FLUSH);
2761 	}
2762 
2763 	unfreeze_partials_cpu(s, c);
2764 }
2765 
2766 struct slub_flush_work {
2767 	struct work_struct work;
2768 	struct kmem_cache *s;
2769 	bool skip;
2770 };
2771 
2772 /*
2773  * Flush cpu slab.
2774  *
2775  * Called from CPU work handler with migration disabled.
2776  */
2777 static void flush_cpu_slab(struct work_struct *w)
2778 {
2779 	struct kmem_cache *s;
2780 	struct kmem_cache_cpu *c;
2781 	struct slub_flush_work *sfw;
2782 
2783 	sfw = container_of(w, struct slub_flush_work, work);
2784 
2785 	s = sfw->s;
2786 	c = this_cpu_ptr(s->cpu_slab);
2787 
2788 	if (c->slab)
2789 		flush_slab(s, c);
2790 
2791 	unfreeze_partials(s);
2792 }
2793 
2794 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2795 {
2796 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2797 
2798 	return c->slab || slub_percpu_partial(c);
2799 }
2800 
2801 static DEFINE_MUTEX(flush_lock);
2802 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2803 
2804 static void flush_all_cpus_locked(struct kmem_cache *s)
2805 {
2806 	struct slub_flush_work *sfw;
2807 	unsigned int cpu;
2808 
2809 	lockdep_assert_cpus_held();
2810 	mutex_lock(&flush_lock);
2811 
2812 	for_each_online_cpu(cpu) {
2813 		sfw = &per_cpu(slub_flush, cpu);
2814 		if (!has_cpu_slab(cpu, s)) {
2815 			sfw->skip = true;
2816 			continue;
2817 		}
2818 		INIT_WORK(&sfw->work, flush_cpu_slab);
2819 		sfw->skip = false;
2820 		sfw->s = s;
2821 		queue_work_on(cpu, flushwq, &sfw->work);
2822 	}
2823 
2824 	for_each_online_cpu(cpu) {
2825 		sfw = &per_cpu(slub_flush, cpu);
2826 		if (sfw->skip)
2827 			continue;
2828 		flush_work(&sfw->work);
2829 	}
2830 
2831 	mutex_unlock(&flush_lock);
2832 }
2833 
2834 static void flush_all(struct kmem_cache *s)
2835 {
2836 	cpus_read_lock();
2837 	flush_all_cpus_locked(s);
2838 	cpus_read_unlock();
2839 }
2840 
2841 /*
2842  * Use the cpu notifier to insure that the cpu slabs are flushed when
2843  * necessary.
2844  */
2845 static int slub_cpu_dead(unsigned int cpu)
2846 {
2847 	struct kmem_cache *s;
2848 
2849 	mutex_lock(&slab_mutex);
2850 	list_for_each_entry(s, &slab_caches, list)
2851 		__flush_cpu_slab(s, cpu);
2852 	mutex_unlock(&slab_mutex);
2853 	return 0;
2854 }
2855 
2856 #else /* CONFIG_SLUB_TINY */
2857 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
2858 static inline void flush_all(struct kmem_cache *s) { }
2859 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
2860 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2861 #endif /* CONFIG_SLUB_TINY */
2862 
2863 /*
2864  * Check if the objects in a per cpu structure fit numa
2865  * locality expectations.
2866  */
2867 static inline int node_match(struct slab *slab, int node)
2868 {
2869 #ifdef CONFIG_NUMA
2870 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2871 		return 0;
2872 #endif
2873 	return 1;
2874 }
2875 
2876 #ifdef CONFIG_SLUB_DEBUG
2877 static int count_free(struct slab *slab)
2878 {
2879 	return slab->objects - slab->inuse;
2880 }
2881 
2882 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2883 {
2884 	return atomic_long_read(&n->total_objects);
2885 }
2886 
2887 /* Supports checking bulk free of a constructed freelist */
2888 static inline bool free_debug_processing(struct kmem_cache *s,
2889 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
2890 	unsigned long addr, depot_stack_handle_t handle)
2891 {
2892 	bool checks_ok = false;
2893 	void *object = head;
2894 	int cnt = 0;
2895 
2896 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2897 		if (!check_slab(s, slab))
2898 			goto out;
2899 	}
2900 
2901 	if (slab->inuse < *bulk_cnt) {
2902 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2903 			 slab->inuse, *bulk_cnt);
2904 		goto out;
2905 	}
2906 
2907 next_object:
2908 
2909 	if (++cnt > *bulk_cnt)
2910 		goto out_cnt;
2911 
2912 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2913 		if (!free_consistency_checks(s, slab, object, addr))
2914 			goto out;
2915 	}
2916 
2917 	if (s->flags & SLAB_STORE_USER)
2918 		set_track_update(s, object, TRACK_FREE, addr, handle);
2919 	trace(s, slab, object, 0);
2920 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2921 	init_object(s, object, SLUB_RED_INACTIVE);
2922 
2923 	/* Reached end of constructed freelist yet? */
2924 	if (object != tail) {
2925 		object = get_freepointer(s, object);
2926 		goto next_object;
2927 	}
2928 	checks_ok = true;
2929 
2930 out_cnt:
2931 	if (cnt != *bulk_cnt) {
2932 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2933 			 *bulk_cnt, cnt);
2934 		*bulk_cnt = cnt;
2935 	}
2936 
2937 out:
2938 
2939 	if (!checks_ok)
2940 		slab_fix(s, "Object at 0x%p not freed", object);
2941 
2942 	return checks_ok;
2943 }
2944 #endif /* CONFIG_SLUB_DEBUG */
2945 
2946 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
2947 static unsigned long count_partial(struct kmem_cache_node *n,
2948 					int (*get_count)(struct slab *))
2949 {
2950 	unsigned long flags;
2951 	unsigned long x = 0;
2952 	struct slab *slab;
2953 
2954 	spin_lock_irqsave(&n->list_lock, flags);
2955 	list_for_each_entry(slab, &n->partial, slab_list)
2956 		x += get_count(slab);
2957 	spin_unlock_irqrestore(&n->list_lock, flags);
2958 	return x;
2959 }
2960 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
2961 
2962 #ifdef CONFIG_SLUB_DEBUG
2963 static noinline void
2964 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2965 {
2966 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2967 				      DEFAULT_RATELIMIT_BURST);
2968 	int node;
2969 	struct kmem_cache_node *n;
2970 
2971 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2972 		return;
2973 
2974 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2975 		nid, gfpflags, &gfpflags);
2976 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2977 		s->name, s->object_size, s->size, oo_order(s->oo),
2978 		oo_order(s->min));
2979 
2980 	if (oo_order(s->min) > get_order(s->object_size))
2981 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2982 			s->name);
2983 
2984 	for_each_kmem_cache_node(s, node, n) {
2985 		unsigned long nr_slabs;
2986 		unsigned long nr_objs;
2987 		unsigned long nr_free;
2988 
2989 		nr_free  = count_partial(n, count_free);
2990 		nr_slabs = node_nr_slabs(n);
2991 		nr_objs  = node_nr_objs(n);
2992 
2993 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2994 			node, nr_slabs, nr_objs, nr_free);
2995 	}
2996 }
2997 #else /* CONFIG_SLUB_DEBUG */
2998 static inline void
2999 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3000 #endif
3001 
3002 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3003 {
3004 	if (unlikely(slab_test_pfmemalloc(slab)))
3005 		return gfp_pfmemalloc_allowed(gfpflags);
3006 
3007 	return true;
3008 }
3009 
3010 #ifndef CONFIG_SLUB_TINY
3011 /*
3012  * Check the slab->freelist and either transfer the freelist to the
3013  * per cpu freelist or deactivate the slab.
3014  *
3015  * The slab is still frozen if the return value is not NULL.
3016  *
3017  * If this function returns NULL then the slab has been unfrozen.
3018  */
3019 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3020 {
3021 	struct slab new;
3022 	unsigned long counters;
3023 	void *freelist;
3024 
3025 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3026 
3027 	do {
3028 		freelist = slab->freelist;
3029 		counters = slab->counters;
3030 
3031 		new.counters = counters;
3032 		VM_BUG_ON(!new.frozen);
3033 
3034 		new.inuse = slab->objects;
3035 		new.frozen = freelist != NULL;
3036 
3037 	} while (!__cmpxchg_double_slab(s, slab,
3038 		freelist, counters,
3039 		NULL, new.counters,
3040 		"get_freelist"));
3041 
3042 	return freelist;
3043 }
3044 
3045 /*
3046  * Slow path. The lockless freelist is empty or we need to perform
3047  * debugging duties.
3048  *
3049  * Processing is still very fast if new objects have been freed to the
3050  * regular freelist. In that case we simply take over the regular freelist
3051  * as the lockless freelist and zap the regular freelist.
3052  *
3053  * If that is not working then we fall back to the partial lists. We take the
3054  * first element of the freelist as the object to allocate now and move the
3055  * rest of the freelist to the lockless freelist.
3056  *
3057  * And if we were unable to get a new slab from the partial slab lists then
3058  * we need to allocate a new slab. This is the slowest path since it involves
3059  * a call to the page allocator and the setup of a new slab.
3060  *
3061  * Version of __slab_alloc to use when we know that preemption is
3062  * already disabled (which is the case for bulk allocation).
3063  */
3064 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3065 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3066 {
3067 	void *freelist;
3068 	struct slab *slab;
3069 	unsigned long flags;
3070 	struct partial_context pc;
3071 
3072 	stat(s, ALLOC_SLOWPATH);
3073 
3074 reread_slab:
3075 
3076 	slab = READ_ONCE(c->slab);
3077 	if (!slab) {
3078 		/*
3079 		 * if the node is not online or has no normal memory, just
3080 		 * ignore the node constraint
3081 		 */
3082 		if (unlikely(node != NUMA_NO_NODE &&
3083 			     !node_isset(node, slab_nodes)))
3084 			node = NUMA_NO_NODE;
3085 		goto new_slab;
3086 	}
3087 redo:
3088 
3089 	if (unlikely(!node_match(slab, node))) {
3090 		/*
3091 		 * same as above but node_match() being false already
3092 		 * implies node != NUMA_NO_NODE
3093 		 */
3094 		if (!node_isset(node, slab_nodes)) {
3095 			node = NUMA_NO_NODE;
3096 		} else {
3097 			stat(s, ALLOC_NODE_MISMATCH);
3098 			goto deactivate_slab;
3099 		}
3100 	}
3101 
3102 	/*
3103 	 * By rights, we should be searching for a slab page that was
3104 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3105 	 * information when the page leaves the per-cpu allocator
3106 	 */
3107 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3108 		goto deactivate_slab;
3109 
3110 	/* must check again c->slab in case we got preempted and it changed */
3111 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3112 	if (unlikely(slab != c->slab)) {
3113 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3114 		goto reread_slab;
3115 	}
3116 	freelist = c->freelist;
3117 	if (freelist)
3118 		goto load_freelist;
3119 
3120 	freelist = get_freelist(s, slab);
3121 
3122 	if (!freelist) {
3123 		c->slab = NULL;
3124 		c->tid = next_tid(c->tid);
3125 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3126 		stat(s, DEACTIVATE_BYPASS);
3127 		goto new_slab;
3128 	}
3129 
3130 	stat(s, ALLOC_REFILL);
3131 
3132 load_freelist:
3133 
3134 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3135 
3136 	/*
3137 	 * freelist is pointing to the list of objects to be used.
3138 	 * slab is pointing to the slab from which the objects are obtained.
3139 	 * That slab must be frozen for per cpu allocations to work.
3140 	 */
3141 	VM_BUG_ON(!c->slab->frozen);
3142 	c->freelist = get_freepointer(s, freelist);
3143 	c->tid = next_tid(c->tid);
3144 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3145 	return freelist;
3146 
3147 deactivate_slab:
3148 
3149 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3150 	if (slab != c->slab) {
3151 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3152 		goto reread_slab;
3153 	}
3154 	freelist = c->freelist;
3155 	c->slab = NULL;
3156 	c->freelist = NULL;
3157 	c->tid = next_tid(c->tid);
3158 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3159 	deactivate_slab(s, slab, freelist);
3160 
3161 new_slab:
3162 
3163 	if (slub_percpu_partial(c)) {
3164 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3165 		if (unlikely(c->slab)) {
3166 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3167 			goto reread_slab;
3168 		}
3169 		if (unlikely(!slub_percpu_partial(c))) {
3170 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3171 			/* we were preempted and partial list got empty */
3172 			goto new_objects;
3173 		}
3174 
3175 		slab = c->slab = slub_percpu_partial(c);
3176 		slub_set_percpu_partial(c, slab);
3177 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3178 		stat(s, CPU_PARTIAL_ALLOC);
3179 		goto redo;
3180 	}
3181 
3182 new_objects:
3183 
3184 	pc.flags = gfpflags;
3185 	pc.slab = &slab;
3186 	pc.orig_size = orig_size;
3187 	freelist = get_partial(s, node, &pc);
3188 	if (freelist)
3189 		goto check_new_slab;
3190 
3191 	slub_put_cpu_ptr(s->cpu_slab);
3192 	slab = new_slab(s, gfpflags, node);
3193 	c = slub_get_cpu_ptr(s->cpu_slab);
3194 
3195 	if (unlikely(!slab)) {
3196 		slab_out_of_memory(s, gfpflags, node);
3197 		return NULL;
3198 	}
3199 
3200 	stat(s, ALLOC_SLAB);
3201 
3202 	if (kmem_cache_debug(s)) {
3203 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3204 
3205 		if (unlikely(!freelist))
3206 			goto new_objects;
3207 
3208 		if (s->flags & SLAB_STORE_USER)
3209 			set_track(s, freelist, TRACK_ALLOC, addr);
3210 
3211 		return freelist;
3212 	}
3213 
3214 	/*
3215 	 * No other reference to the slab yet so we can
3216 	 * muck around with it freely without cmpxchg
3217 	 */
3218 	freelist = slab->freelist;
3219 	slab->freelist = NULL;
3220 	slab->inuse = slab->objects;
3221 	slab->frozen = 1;
3222 
3223 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3224 
3225 check_new_slab:
3226 
3227 	if (kmem_cache_debug(s)) {
3228 		/*
3229 		 * For debug caches here we had to go through
3230 		 * alloc_single_from_partial() so just store the tracking info
3231 		 * and return the object
3232 		 */
3233 		if (s->flags & SLAB_STORE_USER)
3234 			set_track(s, freelist, TRACK_ALLOC, addr);
3235 
3236 		return freelist;
3237 	}
3238 
3239 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3240 		/*
3241 		 * For !pfmemalloc_match() case we don't load freelist so that
3242 		 * we don't make further mismatched allocations easier.
3243 		 */
3244 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3245 		return freelist;
3246 	}
3247 
3248 retry_load_slab:
3249 
3250 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3251 	if (unlikely(c->slab)) {
3252 		void *flush_freelist = c->freelist;
3253 		struct slab *flush_slab = c->slab;
3254 
3255 		c->slab = NULL;
3256 		c->freelist = NULL;
3257 		c->tid = next_tid(c->tid);
3258 
3259 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3260 
3261 		deactivate_slab(s, flush_slab, flush_freelist);
3262 
3263 		stat(s, CPUSLAB_FLUSH);
3264 
3265 		goto retry_load_slab;
3266 	}
3267 	c->slab = slab;
3268 
3269 	goto load_freelist;
3270 }
3271 
3272 /*
3273  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3274  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3275  * pointer.
3276  */
3277 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3278 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3279 {
3280 	void *p;
3281 
3282 #ifdef CONFIG_PREEMPT_COUNT
3283 	/*
3284 	 * We may have been preempted and rescheduled on a different
3285 	 * cpu before disabling preemption. Need to reload cpu area
3286 	 * pointer.
3287 	 */
3288 	c = slub_get_cpu_ptr(s->cpu_slab);
3289 #endif
3290 
3291 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3292 #ifdef CONFIG_PREEMPT_COUNT
3293 	slub_put_cpu_ptr(s->cpu_slab);
3294 #endif
3295 	return p;
3296 }
3297 
3298 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3299 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3300 {
3301 	struct kmem_cache_cpu *c;
3302 	struct slab *slab;
3303 	unsigned long tid;
3304 	void *object;
3305 
3306 redo:
3307 	/*
3308 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3309 	 * enabled. We may switch back and forth between cpus while
3310 	 * reading from one cpu area. That does not matter as long
3311 	 * as we end up on the original cpu again when doing the cmpxchg.
3312 	 *
3313 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3314 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3315 	 * the tid. If we are preempted and switched to another cpu between the
3316 	 * two reads, it's OK as the two are still associated with the same cpu
3317 	 * and cmpxchg later will validate the cpu.
3318 	 */
3319 	c = raw_cpu_ptr(s->cpu_slab);
3320 	tid = READ_ONCE(c->tid);
3321 
3322 	/*
3323 	 * Irqless object alloc/free algorithm used here depends on sequence
3324 	 * of fetching cpu_slab's data. tid should be fetched before anything
3325 	 * on c to guarantee that object and slab associated with previous tid
3326 	 * won't be used with current tid. If we fetch tid first, object and
3327 	 * slab could be one associated with next tid and our alloc/free
3328 	 * request will be failed. In this case, we will retry. So, no problem.
3329 	 */
3330 	barrier();
3331 
3332 	/*
3333 	 * The transaction ids are globally unique per cpu and per operation on
3334 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3335 	 * occurs on the right processor and that there was no operation on the
3336 	 * linked list in between.
3337 	 */
3338 
3339 	object = c->freelist;
3340 	slab = c->slab;
3341 
3342 	if (!USE_LOCKLESS_FAST_PATH() ||
3343 	    unlikely(!object || !slab || !node_match(slab, node))) {
3344 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3345 	} else {
3346 		void *next_object = get_freepointer_safe(s, object);
3347 
3348 		/*
3349 		 * The cmpxchg will only match if there was no additional
3350 		 * operation and if we are on the right processor.
3351 		 *
3352 		 * The cmpxchg does the following atomically (without lock
3353 		 * semantics!)
3354 		 * 1. Relocate first pointer to the current per cpu area.
3355 		 * 2. Verify that tid and freelist have not been changed
3356 		 * 3. If they were not changed replace tid and freelist
3357 		 *
3358 		 * Since this is without lock semantics the protection is only
3359 		 * against code executing on this cpu *not* from access by
3360 		 * other cpus.
3361 		 */
3362 		if (unlikely(!this_cpu_cmpxchg_double(
3363 				s->cpu_slab->freelist, s->cpu_slab->tid,
3364 				object, tid,
3365 				next_object, next_tid(tid)))) {
3366 
3367 			note_cmpxchg_failure("slab_alloc", s, tid);
3368 			goto redo;
3369 		}
3370 		prefetch_freepointer(s, next_object);
3371 		stat(s, ALLOC_FASTPATH);
3372 	}
3373 
3374 	return object;
3375 }
3376 #else /* CONFIG_SLUB_TINY */
3377 static void *__slab_alloc_node(struct kmem_cache *s,
3378 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3379 {
3380 	struct partial_context pc;
3381 	struct slab *slab;
3382 	void *object;
3383 
3384 	pc.flags = gfpflags;
3385 	pc.slab = &slab;
3386 	pc.orig_size = orig_size;
3387 	object = get_partial(s, node, &pc);
3388 
3389 	if (object)
3390 		return object;
3391 
3392 	slab = new_slab(s, gfpflags, node);
3393 	if (unlikely(!slab)) {
3394 		slab_out_of_memory(s, gfpflags, node);
3395 		return NULL;
3396 	}
3397 
3398 	object = alloc_single_from_new_slab(s, slab, orig_size);
3399 
3400 	return object;
3401 }
3402 #endif /* CONFIG_SLUB_TINY */
3403 
3404 /*
3405  * If the object has been wiped upon free, make sure it's fully initialized by
3406  * zeroing out freelist pointer.
3407  */
3408 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3409 						   void *obj)
3410 {
3411 	if (unlikely(slab_want_init_on_free(s)) && obj)
3412 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3413 			0, sizeof(void *));
3414 }
3415 
3416 /*
3417  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3418  * have the fastpath folded into their functions. So no function call
3419  * overhead for requests that can be satisfied on the fastpath.
3420  *
3421  * The fastpath works by first checking if the lockless freelist can be used.
3422  * If not then __slab_alloc is called for slow processing.
3423  *
3424  * Otherwise we can simply pick the next object from the lockless free list.
3425  */
3426 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3427 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3428 {
3429 	void *object;
3430 	struct obj_cgroup *objcg = NULL;
3431 	bool init = false;
3432 
3433 	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3434 	if (!s)
3435 		return NULL;
3436 
3437 	object = kfence_alloc(s, orig_size, gfpflags);
3438 	if (unlikely(object))
3439 		goto out;
3440 
3441 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3442 
3443 	maybe_wipe_obj_freeptr(s, object);
3444 	init = slab_want_init_on_alloc(gfpflags, s);
3445 
3446 out:
3447 	/*
3448 	 * When init equals 'true', like for kzalloc() family, only
3449 	 * @orig_size bytes might be zeroed instead of s->object_size
3450 	 */
3451 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3452 
3453 	return object;
3454 }
3455 
3456 static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3457 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3458 {
3459 	return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3460 }
3461 
3462 static __fastpath_inline
3463 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3464 			     gfp_t gfpflags)
3465 {
3466 	void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3467 
3468 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3469 
3470 	return ret;
3471 }
3472 
3473 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3474 {
3475 	return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3476 }
3477 EXPORT_SYMBOL(kmem_cache_alloc);
3478 
3479 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3480 			   gfp_t gfpflags)
3481 {
3482 	return __kmem_cache_alloc_lru(s, lru, gfpflags);
3483 }
3484 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3485 
3486 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3487 			      int node, size_t orig_size,
3488 			      unsigned long caller)
3489 {
3490 	return slab_alloc_node(s, NULL, gfpflags, node,
3491 			       caller, orig_size);
3492 }
3493 
3494 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3495 {
3496 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3497 
3498 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3499 
3500 	return ret;
3501 }
3502 EXPORT_SYMBOL(kmem_cache_alloc_node);
3503 
3504 static noinline void free_to_partial_list(
3505 	struct kmem_cache *s, struct slab *slab,
3506 	void *head, void *tail, int bulk_cnt,
3507 	unsigned long addr)
3508 {
3509 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3510 	struct slab *slab_free = NULL;
3511 	int cnt = bulk_cnt;
3512 	unsigned long flags;
3513 	depot_stack_handle_t handle = 0;
3514 
3515 	if (s->flags & SLAB_STORE_USER)
3516 		handle = set_track_prepare();
3517 
3518 	spin_lock_irqsave(&n->list_lock, flags);
3519 
3520 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3521 		void *prior = slab->freelist;
3522 
3523 		/* Perform the actual freeing while we still hold the locks */
3524 		slab->inuse -= cnt;
3525 		set_freepointer(s, tail, prior);
3526 		slab->freelist = head;
3527 
3528 		/*
3529 		 * If the slab is empty, and node's partial list is full,
3530 		 * it should be discarded anyway no matter it's on full or
3531 		 * partial list.
3532 		 */
3533 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3534 			slab_free = slab;
3535 
3536 		if (!prior) {
3537 			/* was on full list */
3538 			remove_full(s, n, slab);
3539 			if (!slab_free) {
3540 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
3541 				stat(s, FREE_ADD_PARTIAL);
3542 			}
3543 		} else if (slab_free) {
3544 			remove_partial(n, slab);
3545 			stat(s, FREE_REMOVE_PARTIAL);
3546 		}
3547 	}
3548 
3549 	if (slab_free) {
3550 		/*
3551 		 * Update the counters while still holding n->list_lock to
3552 		 * prevent spurious validation warnings
3553 		 */
3554 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3555 	}
3556 
3557 	spin_unlock_irqrestore(&n->list_lock, flags);
3558 
3559 	if (slab_free) {
3560 		stat(s, FREE_SLAB);
3561 		free_slab(s, slab_free);
3562 	}
3563 }
3564 
3565 /*
3566  * Slow path handling. This may still be called frequently since objects
3567  * have a longer lifetime than the cpu slabs in most processing loads.
3568  *
3569  * So we still attempt to reduce cache line usage. Just take the slab
3570  * lock and free the item. If there is no additional partial slab
3571  * handling required then we can return immediately.
3572  */
3573 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3574 			void *head, void *tail, int cnt,
3575 			unsigned long addr)
3576 
3577 {
3578 	void *prior;
3579 	int was_frozen;
3580 	struct slab new;
3581 	unsigned long counters;
3582 	struct kmem_cache_node *n = NULL;
3583 	unsigned long flags;
3584 
3585 	stat(s, FREE_SLOWPATH);
3586 
3587 	if (kfence_free(head))
3588 		return;
3589 
3590 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3591 		free_to_partial_list(s, slab, head, tail, cnt, addr);
3592 		return;
3593 	}
3594 
3595 	do {
3596 		if (unlikely(n)) {
3597 			spin_unlock_irqrestore(&n->list_lock, flags);
3598 			n = NULL;
3599 		}
3600 		prior = slab->freelist;
3601 		counters = slab->counters;
3602 		set_freepointer(s, tail, prior);
3603 		new.counters = counters;
3604 		was_frozen = new.frozen;
3605 		new.inuse -= cnt;
3606 		if ((!new.inuse || !prior) && !was_frozen) {
3607 
3608 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3609 
3610 				/*
3611 				 * Slab was on no list before and will be
3612 				 * partially empty
3613 				 * We can defer the list move and instead
3614 				 * freeze it.
3615 				 */
3616 				new.frozen = 1;
3617 
3618 			} else { /* Needs to be taken off a list */
3619 
3620 				n = get_node(s, slab_nid(slab));
3621 				/*
3622 				 * Speculatively acquire the list_lock.
3623 				 * If the cmpxchg does not succeed then we may
3624 				 * drop the list_lock without any processing.
3625 				 *
3626 				 * Otherwise the list_lock will synchronize with
3627 				 * other processors updating the list of slabs.
3628 				 */
3629 				spin_lock_irqsave(&n->list_lock, flags);
3630 
3631 			}
3632 		}
3633 
3634 	} while (!cmpxchg_double_slab(s, slab,
3635 		prior, counters,
3636 		head, new.counters,
3637 		"__slab_free"));
3638 
3639 	if (likely(!n)) {
3640 
3641 		if (likely(was_frozen)) {
3642 			/*
3643 			 * The list lock was not taken therefore no list
3644 			 * activity can be necessary.
3645 			 */
3646 			stat(s, FREE_FROZEN);
3647 		} else if (new.frozen) {
3648 			/*
3649 			 * If we just froze the slab then put it onto the
3650 			 * per cpu partial list.
3651 			 */
3652 			put_cpu_partial(s, slab, 1);
3653 			stat(s, CPU_PARTIAL_FREE);
3654 		}
3655 
3656 		return;
3657 	}
3658 
3659 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3660 		goto slab_empty;
3661 
3662 	/*
3663 	 * Objects left in the slab. If it was not on the partial list before
3664 	 * then add it.
3665 	 */
3666 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3667 		remove_full(s, n, slab);
3668 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
3669 		stat(s, FREE_ADD_PARTIAL);
3670 	}
3671 	spin_unlock_irqrestore(&n->list_lock, flags);
3672 	return;
3673 
3674 slab_empty:
3675 	if (prior) {
3676 		/*
3677 		 * Slab on the partial list.
3678 		 */
3679 		remove_partial(n, slab);
3680 		stat(s, FREE_REMOVE_PARTIAL);
3681 	} else {
3682 		/* Slab must be on the full list */
3683 		remove_full(s, n, slab);
3684 	}
3685 
3686 	spin_unlock_irqrestore(&n->list_lock, flags);
3687 	stat(s, FREE_SLAB);
3688 	discard_slab(s, slab);
3689 }
3690 
3691 #ifndef CONFIG_SLUB_TINY
3692 /*
3693  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3694  * can perform fastpath freeing without additional function calls.
3695  *
3696  * The fastpath is only possible if we are freeing to the current cpu slab
3697  * of this processor. This typically the case if we have just allocated
3698  * the item before.
3699  *
3700  * If fastpath is not possible then fall back to __slab_free where we deal
3701  * with all sorts of special processing.
3702  *
3703  * Bulk free of a freelist with several objects (all pointing to the
3704  * same slab) possible by specifying head and tail ptr, plus objects
3705  * count (cnt). Bulk free indicated by tail pointer being set.
3706  */
3707 static __always_inline void do_slab_free(struct kmem_cache *s,
3708 				struct slab *slab, void *head, void *tail,
3709 				int cnt, unsigned long addr)
3710 {
3711 	void *tail_obj = tail ? : head;
3712 	struct kmem_cache_cpu *c;
3713 	unsigned long tid;
3714 	void **freelist;
3715 
3716 redo:
3717 	/*
3718 	 * Determine the currently cpus per cpu slab.
3719 	 * The cpu may change afterward. However that does not matter since
3720 	 * data is retrieved via this pointer. If we are on the same cpu
3721 	 * during the cmpxchg then the free will succeed.
3722 	 */
3723 	c = raw_cpu_ptr(s->cpu_slab);
3724 	tid = READ_ONCE(c->tid);
3725 
3726 	/* Same with comment on barrier() in slab_alloc_node() */
3727 	barrier();
3728 
3729 	if (unlikely(slab != c->slab)) {
3730 		__slab_free(s, slab, head, tail_obj, cnt, addr);
3731 		return;
3732 	}
3733 
3734 	if (USE_LOCKLESS_FAST_PATH()) {
3735 		freelist = READ_ONCE(c->freelist);
3736 
3737 		set_freepointer(s, tail_obj, freelist);
3738 
3739 		if (unlikely(!this_cpu_cmpxchg_double(
3740 				s->cpu_slab->freelist, s->cpu_slab->tid,
3741 				freelist, tid,
3742 				head, next_tid(tid)))) {
3743 
3744 			note_cmpxchg_failure("slab_free", s, tid);
3745 			goto redo;
3746 		}
3747 	} else {
3748 		/* Update the free list under the local lock */
3749 		local_lock(&s->cpu_slab->lock);
3750 		c = this_cpu_ptr(s->cpu_slab);
3751 		if (unlikely(slab != c->slab)) {
3752 			local_unlock(&s->cpu_slab->lock);
3753 			goto redo;
3754 		}
3755 		tid = c->tid;
3756 		freelist = c->freelist;
3757 
3758 		set_freepointer(s, tail_obj, freelist);
3759 		c->freelist = head;
3760 		c->tid = next_tid(tid);
3761 
3762 		local_unlock(&s->cpu_slab->lock);
3763 	}
3764 	stat(s, FREE_FASTPATH);
3765 }
3766 #else /* CONFIG_SLUB_TINY */
3767 static void do_slab_free(struct kmem_cache *s,
3768 				struct slab *slab, void *head, void *tail,
3769 				int cnt, unsigned long addr)
3770 {
3771 	void *tail_obj = tail ? : head;
3772 
3773 	__slab_free(s, slab, head, tail_obj, cnt, addr);
3774 }
3775 #endif /* CONFIG_SLUB_TINY */
3776 
3777 static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3778 				      void *head, void *tail, void **p, int cnt,
3779 				      unsigned long addr)
3780 {
3781 	memcg_slab_free_hook(s, slab, p, cnt);
3782 	/*
3783 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3784 	 * to remove objects, whose reuse must be delayed.
3785 	 */
3786 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3787 		do_slab_free(s, slab, head, tail, cnt, addr);
3788 }
3789 
3790 #ifdef CONFIG_KASAN_GENERIC
3791 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3792 {
3793 	do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3794 }
3795 #endif
3796 
3797 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3798 {
3799 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3800 }
3801 
3802 void kmem_cache_free(struct kmem_cache *s, void *x)
3803 {
3804 	s = cache_from_obj(s, x);
3805 	if (!s)
3806 		return;
3807 	trace_kmem_cache_free(_RET_IP_, x, s);
3808 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3809 }
3810 EXPORT_SYMBOL(kmem_cache_free);
3811 
3812 struct detached_freelist {
3813 	struct slab *slab;
3814 	void *tail;
3815 	void *freelist;
3816 	int cnt;
3817 	struct kmem_cache *s;
3818 };
3819 
3820 /*
3821  * This function progressively scans the array with free objects (with
3822  * a limited look ahead) and extract objects belonging to the same
3823  * slab.  It builds a detached freelist directly within the given
3824  * slab/objects.  This can happen without any need for
3825  * synchronization, because the objects are owned by running process.
3826  * The freelist is build up as a single linked list in the objects.
3827  * The idea is, that this detached freelist can then be bulk
3828  * transferred to the real freelist(s), but only requiring a single
3829  * synchronization primitive.  Look ahead in the array is limited due
3830  * to performance reasons.
3831  */
3832 static inline
3833 int build_detached_freelist(struct kmem_cache *s, size_t size,
3834 			    void **p, struct detached_freelist *df)
3835 {
3836 	int lookahead = 3;
3837 	void *object;
3838 	struct folio *folio;
3839 	size_t same;
3840 
3841 	object = p[--size];
3842 	folio = virt_to_folio(object);
3843 	if (!s) {
3844 		/* Handle kalloc'ed objects */
3845 		if (unlikely(!folio_test_slab(folio))) {
3846 			free_large_kmalloc(folio, object);
3847 			df->slab = NULL;
3848 			return size;
3849 		}
3850 		/* Derive kmem_cache from object */
3851 		df->slab = folio_slab(folio);
3852 		df->s = df->slab->slab_cache;
3853 	} else {
3854 		df->slab = folio_slab(folio);
3855 		df->s = cache_from_obj(s, object); /* Support for memcg */
3856 	}
3857 
3858 	/* Start new detached freelist */
3859 	df->tail = object;
3860 	df->freelist = object;
3861 	df->cnt = 1;
3862 
3863 	if (is_kfence_address(object))
3864 		return size;
3865 
3866 	set_freepointer(df->s, object, NULL);
3867 
3868 	same = size;
3869 	while (size) {
3870 		object = p[--size];
3871 		/* df->slab is always set at this point */
3872 		if (df->slab == virt_to_slab(object)) {
3873 			/* Opportunity build freelist */
3874 			set_freepointer(df->s, object, df->freelist);
3875 			df->freelist = object;
3876 			df->cnt++;
3877 			same--;
3878 			if (size != same)
3879 				swap(p[size], p[same]);
3880 			continue;
3881 		}
3882 
3883 		/* Limit look ahead search */
3884 		if (!--lookahead)
3885 			break;
3886 	}
3887 
3888 	return same;
3889 }
3890 
3891 /* Note that interrupts must be enabled when calling this function. */
3892 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3893 {
3894 	if (!size)
3895 		return;
3896 
3897 	do {
3898 		struct detached_freelist df;
3899 
3900 		size = build_detached_freelist(s, size, p, &df);
3901 		if (!df.slab)
3902 			continue;
3903 
3904 		slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3905 			  _RET_IP_);
3906 	} while (likely(size));
3907 }
3908 EXPORT_SYMBOL(kmem_cache_free_bulk);
3909 
3910 #ifndef CONFIG_SLUB_TINY
3911 static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3912 			size_t size, void **p, struct obj_cgroup *objcg)
3913 {
3914 	struct kmem_cache_cpu *c;
3915 	unsigned long irqflags;
3916 	int i;
3917 
3918 	/*
3919 	 * Drain objects in the per cpu slab, while disabling local
3920 	 * IRQs, which protects against PREEMPT and interrupts
3921 	 * handlers invoking normal fastpath.
3922 	 */
3923 	c = slub_get_cpu_ptr(s->cpu_slab);
3924 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3925 
3926 	for (i = 0; i < size; i++) {
3927 		void *object = kfence_alloc(s, s->object_size, flags);
3928 
3929 		if (unlikely(object)) {
3930 			p[i] = object;
3931 			continue;
3932 		}
3933 
3934 		object = c->freelist;
3935 		if (unlikely(!object)) {
3936 			/*
3937 			 * We may have removed an object from c->freelist using
3938 			 * the fastpath in the previous iteration; in that case,
3939 			 * c->tid has not been bumped yet.
3940 			 * Since ___slab_alloc() may reenable interrupts while
3941 			 * allocating memory, we should bump c->tid now.
3942 			 */
3943 			c->tid = next_tid(c->tid);
3944 
3945 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3946 
3947 			/*
3948 			 * Invoking slow path likely have side-effect
3949 			 * of re-populating per CPU c->freelist
3950 			 */
3951 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3952 					    _RET_IP_, c, s->object_size);
3953 			if (unlikely(!p[i]))
3954 				goto error;
3955 
3956 			c = this_cpu_ptr(s->cpu_slab);
3957 			maybe_wipe_obj_freeptr(s, p[i]);
3958 
3959 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3960 
3961 			continue; /* goto for-loop */
3962 		}
3963 		c->freelist = get_freepointer(s, object);
3964 		p[i] = object;
3965 		maybe_wipe_obj_freeptr(s, p[i]);
3966 	}
3967 	c->tid = next_tid(c->tid);
3968 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3969 	slub_put_cpu_ptr(s->cpu_slab);
3970 
3971 	return i;
3972 
3973 error:
3974 	slub_put_cpu_ptr(s->cpu_slab);
3975 	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3976 	kmem_cache_free_bulk(s, i, p);
3977 	return 0;
3978 
3979 }
3980 #else /* CONFIG_SLUB_TINY */
3981 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3982 			size_t size, void **p, struct obj_cgroup *objcg)
3983 {
3984 	int i;
3985 
3986 	for (i = 0; i < size; i++) {
3987 		void *object = kfence_alloc(s, s->object_size, flags);
3988 
3989 		if (unlikely(object)) {
3990 			p[i] = object;
3991 			continue;
3992 		}
3993 
3994 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
3995 					 _RET_IP_, s->object_size);
3996 		if (unlikely(!p[i]))
3997 			goto error;
3998 
3999 		maybe_wipe_obj_freeptr(s, p[i]);
4000 	}
4001 
4002 	return i;
4003 
4004 error:
4005 	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4006 	kmem_cache_free_bulk(s, i, p);
4007 	return 0;
4008 }
4009 #endif /* CONFIG_SLUB_TINY */
4010 
4011 /* Note that interrupts must be enabled when calling this function. */
4012 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4013 			  void **p)
4014 {
4015 	int i;
4016 	struct obj_cgroup *objcg = NULL;
4017 
4018 	if (!size)
4019 		return 0;
4020 
4021 	/* memcg and kmem_cache debug support */
4022 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4023 	if (unlikely(!s))
4024 		return 0;
4025 
4026 	i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4027 
4028 	/*
4029 	 * memcg and kmem_cache debug support and memory initialization.
4030 	 * Done outside of the IRQ disabled fastpath loop.
4031 	 */
4032 	if (i != 0)
4033 		slab_post_alloc_hook(s, objcg, flags, size, p,
4034 			slab_want_init_on_alloc(flags, s), s->object_size);
4035 	return i;
4036 }
4037 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4038 
4039 
4040 /*
4041  * Object placement in a slab is made very easy because we always start at
4042  * offset 0. If we tune the size of the object to the alignment then we can
4043  * get the required alignment by putting one properly sized object after
4044  * another.
4045  *
4046  * Notice that the allocation order determines the sizes of the per cpu
4047  * caches. Each processor has always one slab available for allocations.
4048  * Increasing the allocation order reduces the number of times that slabs
4049  * must be moved on and off the partial lists and is therefore a factor in
4050  * locking overhead.
4051  */
4052 
4053 /*
4054  * Minimum / Maximum order of slab pages. This influences locking overhead
4055  * and slab fragmentation. A higher order reduces the number of partial slabs
4056  * and increases the number of allocations possible without having to
4057  * take the list_lock.
4058  */
4059 static unsigned int slub_min_order;
4060 static unsigned int slub_max_order =
4061 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4062 static unsigned int slub_min_objects;
4063 
4064 /*
4065  * Calculate the order of allocation given an slab object size.
4066  *
4067  * The order of allocation has significant impact on performance and other
4068  * system components. Generally order 0 allocations should be preferred since
4069  * order 0 does not cause fragmentation in the page allocator. Larger objects
4070  * be problematic to put into order 0 slabs because there may be too much
4071  * unused space left. We go to a higher order if more than 1/16th of the slab
4072  * would be wasted.
4073  *
4074  * In order to reach satisfactory performance we must ensure that a minimum
4075  * number of objects is in one slab. Otherwise we may generate too much
4076  * activity on the partial lists which requires taking the list_lock. This is
4077  * less a concern for large slabs though which are rarely used.
4078  *
4079  * slub_max_order specifies the order where we begin to stop considering the
4080  * number of objects in a slab as critical. If we reach slub_max_order then
4081  * we try to keep the page order as low as possible. So we accept more waste
4082  * of space in favor of a small page order.
4083  *
4084  * Higher order allocations also allow the placement of more objects in a
4085  * slab and thereby reduce object handling overhead. If the user has
4086  * requested a higher minimum order then we start with that one instead of
4087  * the smallest order which will fit the object.
4088  */
4089 static inline unsigned int calc_slab_order(unsigned int size,
4090 		unsigned int min_objects, unsigned int max_order,
4091 		unsigned int fract_leftover)
4092 {
4093 	unsigned int min_order = slub_min_order;
4094 	unsigned int order;
4095 
4096 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4097 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4098 
4099 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
4100 			order <= max_order; order++) {
4101 
4102 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4103 		unsigned int rem;
4104 
4105 		rem = slab_size % size;
4106 
4107 		if (rem <= slab_size / fract_leftover)
4108 			break;
4109 	}
4110 
4111 	return order;
4112 }
4113 
4114 static inline int calculate_order(unsigned int size)
4115 {
4116 	unsigned int order;
4117 	unsigned int min_objects;
4118 	unsigned int max_objects;
4119 	unsigned int nr_cpus;
4120 
4121 	/*
4122 	 * Attempt to find best configuration for a slab. This
4123 	 * works by first attempting to generate a layout with
4124 	 * the best configuration and backing off gradually.
4125 	 *
4126 	 * First we increase the acceptable waste in a slab. Then
4127 	 * we reduce the minimum objects required in a slab.
4128 	 */
4129 	min_objects = slub_min_objects;
4130 	if (!min_objects) {
4131 		/*
4132 		 * Some architectures will only update present cpus when
4133 		 * onlining them, so don't trust the number if it's just 1. But
4134 		 * we also don't want to use nr_cpu_ids always, as on some other
4135 		 * architectures, there can be many possible cpus, but never
4136 		 * onlined. Here we compromise between trying to avoid too high
4137 		 * order on systems that appear larger than they are, and too
4138 		 * low order on systems that appear smaller than they are.
4139 		 */
4140 		nr_cpus = num_present_cpus();
4141 		if (nr_cpus <= 1)
4142 			nr_cpus = nr_cpu_ids;
4143 		min_objects = 4 * (fls(nr_cpus) + 1);
4144 	}
4145 	max_objects = order_objects(slub_max_order, size);
4146 	min_objects = min(min_objects, max_objects);
4147 
4148 	while (min_objects > 1) {
4149 		unsigned int fraction;
4150 
4151 		fraction = 16;
4152 		while (fraction >= 4) {
4153 			order = calc_slab_order(size, min_objects,
4154 					slub_max_order, fraction);
4155 			if (order <= slub_max_order)
4156 				return order;
4157 			fraction /= 2;
4158 		}
4159 		min_objects--;
4160 	}
4161 
4162 	/*
4163 	 * We were unable to place multiple objects in a slab. Now
4164 	 * lets see if we can place a single object there.
4165 	 */
4166 	order = calc_slab_order(size, 1, slub_max_order, 1);
4167 	if (order <= slub_max_order)
4168 		return order;
4169 
4170 	/*
4171 	 * Doh this slab cannot be placed using slub_max_order.
4172 	 */
4173 	order = calc_slab_order(size, 1, MAX_ORDER, 1);
4174 	if (order <= MAX_ORDER)
4175 		return order;
4176 	return -ENOSYS;
4177 }
4178 
4179 static void
4180 init_kmem_cache_node(struct kmem_cache_node *n)
4181 {
4182 	n->nr_partial = 0;
4183 	spin_lock_init(&n->list_lock);
4184 	INIT_LIST_HEAD(&n->partial);
4185 #ifdef CONFIG_SLUB_DEBUG
4186 	atomic_long_set(&n->nr_slabs, 0);
4187 	atomic_long_set(&n->total_objects, 0);
4188 	INIT_LIST_HEAD(&n->full);
4189 #endif
4190 }
4191 
4192 #ifndef CONFIG_SLUB_TINY
4193 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4194 {
4195 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4196 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4197 			sizeof(struct kmem_cache_cpu));
4198 
4199 	/*
4200 	 * Must align to double word boundary for the double cmpxchg
4201 	 * instructions to work; see __pcpu_double_call_return_bool().
4202 	 */
4203 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4204 				     2 * sizeof(void *));
4205 
4206 	if (!s->cpu_slab)
4207 		return 0;
4208 
4209 	init_kmem_cache_cpus(s);
4210 
4211 	return 1;
4212 }
4213 #else
4214 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4215 {
4216 	return 1;
4217 }
4218 #endif /* CONFIG_SLUB_TINY */
4219 
4220 static struct kmem_cache *kmem_cache_node;
4221 
4222 /*
4223  * No kmalloc_node yet so do it by hand. We know that this is the first
4224  * slab on the node for this slabcache. There are no concurrent accesses
4225  * possible.
4226  *
4227  * Note that this function only works on the kmem_cache_node
4228  * when allocating for the kmem_cache_node. This is used for bootstrapping
4229  * memory on a fresh node that has no slab structures yet.
4230  */
4231 static void early_kmem_cache_node_alloc(int node)
4232 {
4233 	struct slab *slab;
4234 	struct kmem_cache_node *n;
4235 
4236 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4237 
4238 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4239 
4240 	BUG_ON(!slab);
4241 	inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4242 	if (slab_nid(slab) != node) {
4243 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4244 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4245 	}
4246 
4247 	n = slab->freelist;
4248 	BUG_ON(!n);
4249 #ifdef CONFIG_SLUB_DEBUG
4250 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4251 	init_tracking(kmem_cache_node, n);
4252 #endif
4253 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4254 	slab->freelist = get_freepointer(kmem_cache_node, n);
4255 	slab->inuse = 1;
4256 	kmem_cache_node->node[node] = n;
4257 	init_kmem_cache_node(n);
4258 	inc_slabs_node(kmem_cache_node, node, slab->objects);
4259 
4260 	/*
4261 	 * No locks need to be taken here as it has just been
4262 	 * initialized and there is no concurrent access.
4263 	 */
4264 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
4265 }
4266 
4267 static void free_kmem_cache_nodes(struct kmem_cache *s)
4268 {
4269 	int node;
4270 	struct kmem_cache_node *n;
4271 
4272 	for_each_kmem_cache_node(s, node, n) {
4273 		s->node[node] = NULL;
4274 		kmem_cache_free(kmem_cache_node, n);
4275 	}
4276 }
4277 
4278 void __kmem_cache_release(struct kmem_cache *s)
4279 {
4280 	cache_random_seq_destroy(s);
4281 #ifndef CONFIG_SLUB_TINY
4282 	free_percpu(s->cpu_slab);
4283 #endif
4284 	free_kmem_cache_nodes(s);
4285 }
4286 
4287 static int init_kmem_cache_nodes(struct kmem_cache *s)
4288 {
4289 	int node;
4290 
4291 	for_each_node_mask(node, slab_nodes) {
4292 		struct kmem_cache_node *n;
4293 
4294 		if (slab_state == DOWN) {
4295 			early_kmem_cache_node_alloc(node);
4296 			continue;
4297 		}
4298 		n = kmem_cache_alloc_node(kmem_cache_node,
4299 						GFP_KERNEL, node);
4300 
4301 		if (!n) {
4302 			free_kmem_cache_nodes(s);
4303 			return 0;
4304 		}
4305 
4306 		init_kmem_cache_node(n);
4307 		s->node[node] = n;
4308 	}
4309 	return 1;
4310 }
4311 
4312 static void set_cpu_partial(struct kmem_cache *s)
4313 {
4314 #ifdef CONFIG_SLUB_CPU_PARTIAL
4315 	unsigned int nr_objects;
4316 
4317 	/*
4318 	 * cpu_partial determined the maximum number of objects kept in the
4319 	 * per cpu partial lists of a processor.
4320 	 *
4321 	 * Per cpu partial lists mainly contain slabs that just have one
4322 	 * object freed. If they are used for allocation then they can be
4323 	 * filled up again with minimal effort. The slab will never hit the
4324 	 * per node partial lists and therefore no locking will be required.
4325 	 *
4326 	 * For backwards compatibility reasons, this is determined as number
4327 	 * of objects, even though we now limit maximum number of pages, see
4328 	 * slub_set_cpu_partial()
4329 	 */
4330 	if (!kmem_cache_has_cpu_partial(s))
4331 		nr_objects = 0;
4332 	else if (s->size >= PAGE_SIZE)
4333 		nr_objects = 6;
4334 	else if (s->size >= 1024)
4335 		nr_objects = 24;
4336 	else if (s->size >= 256)
4337 		nr_objects = 52;
4338 	else
4339 		nr_objects = 120;
4340 
4341 	slub_set_cpu_partial(s, nr_objects);
4342 #endif
4343 }
4344 
4345 /*
4346  * calculate_sizes() determines the order and the distribution of data within
4347  * a slab object.
4348  */
4349 static int calculate_sizes(struct kmem_cache *s)
4350 {
4351 	slab_flags_t flags = s->flags;
4352 	unsigned int size = s->object_size;
4353 	unsigned int order;
4354 
4355 	/*
4356 	 * Round up object size to the next word boundary. We can only
4357 	 * place the free pointer at word boundaries and this determines
4358 	 * the possible location of the free pointer.
4359 	 */
4360 	size = ALIGN(size, sizeof(void *));
4361 
4362 #ifdef CONFIG_SLUB_DEBUG
4363 	/*
4364 	 * Determine if we can poison the object itself. If the user of
4365 	 * the slab may touch the object after free or before allocation
4366 	 * then we should never poison the object itself.
4367 	 */
4368 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4369 			!s->ctor)
4370 		s->flags |= __OBJECT_POISON;
4371 	else
4372 		s->flags &= ~__OBJECT_POISON;
4373 
4374 
4375 	/*
4376 	 * If we are Redzoning then check if there is some space between the
4377 	 * end of the object and the free pointer. If not then add an
4378 	 * additional word to have some bytes to store Redzone information.
4379 	 */
4380 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4381 		size += sizeof(void *);
4382 #endif
4383 
4384 	/*
4385 	 * With that we have determined the number of bytes in actual use
4386 	 * by the object and redzoning.
4387 	 */
4388 	s->inuse = size;
4389 
4390 	if (slub_debug_orig_size(s) ||
4391 	    (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4392 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4393 	    s->ctor) {
4394 		/*
4395 		 * Relocate free pointer after the object if it is not
4396 		 * permitted to overwrite the first word of the object on
4397 		 * kmem_cache_free.
4398 		 *
4399 		 * This is the case if we do RCU, have a constructor or
4400 		 * destructor, are poisoning the objects, or are
4401 		 * redzoning an object smaller than sizeof(void *).
4402 		 *
4403 		 * The assumption that s->offset >= s->inuse means free
4404 		 * pointer is outside of the object is used in the
4405 		 * freeptr_outside_object() function. If that is no
4406 		 * longer true, the function needs to be modified.
4407 		 */
4408 		s->offset = size;
4409 		size += sizeof(void *);
4410 	} else {
4411 		/*
4412 		 * Store freelist pointer near middle of object to keep
4413 		 * it away from the edges of the object to avoid small
4414 		 * sized over/underflows from neighboring allocations.
4415 		 */
4416 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4417 	}
4418 
4419 #ifdef CONFIG_SLUB_DEBUG
4420 	if (flags & SLAB_STORE_USER) {
4421 		/*
4422 		 * Need to store information about allocs and frees after
4423 		 * the object.
4424 		 */
4425 		size += 2 * sizeof(struct track);
4426 
4427 		/* Save the original kmalloc request size */
4428 		if (flags & SLAB_KMALLOC)
4429 			size += sizeof(unsigned int);
4430 	}
4431 #endif
4432 
4433 	kasan_cache_create(s, &size, &s->flags);
4434 #ifdef CONFIG_SLUB_DEBUG
4435 	if (flags & SLAB_RED_ZONE) {
4436 		/*
4437 		 * Add some empty padding so that we can catch
4438 		 * overwrites from earlier objects rather than let
4439 		 * tracking information or the free pointer be
4440 		 * corrupted if a user writes before the start
4441 		 * of the object.
4442 		 */
4443 		size += sizeof(void *);
4444 
4445 		s->red_left_pad = sizeof(void *);
4446 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4447 		size += s->red_left_pad;
4448 	}
4449 #endif
4450 
4451 	/*
4452 	 * SLUB stores one object immediately after another beginning from
4453 	 * offset 0. In order to align the objects we have to simply size
4454 	 * each object to conform to the alignment.
4455 	 */
4456 	size = ALIGN(size, s->align);
4457 	s->size = size;
4458 	s->reciprocal_size = reciprocal_value(size);
4459 	order = calculate_order(size);
4460 
4461 	if ((int)order < 0)
4462 		return 0;
4463 
4464 	s->allocflags = 0;
4465 	if (order)
4466 		s->allocflags |= __GFP_COMP;
4467 
4468 	if (s->flags & SLAB_CACHE_DMA)
4469 		s->allocflags |= GFP_DMA;
4470 
4471 	if (s->flags & SLAB_CACHE_DMA32)
4472 		s->allocflags |= GFP_DMA32;
4473 
4474 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4475 		s->allocflags |= __GFP_RECLAIMABLE;
4476 
4477 	/*
4478 	 * Determine the number of objects per slab
4479 	 */
4480 	s->oo = oo_make(order, size);
4481 	s->min = oo_make(get_order(size), size);
4482 
4483 	return !!oo_objects(s->oo);
4484 }
4485 
4486 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4487 {
4488 	s->flags = kmem_cache_flags(s->size, flags, s->name);
4489 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4490 	s->random = get_random_long();
4491 #endif
4492 
4493 	if (!calculate_sizes(s))
4494 		goto error;
4495 	if (disable_higher_order_debug) {
4496 		/*
4497 		 * Disable debugging flags that store metadata if the min slab
4498 		 * order increased.
4499 		 */
4500 		if (get_order(s->size) > get_order(s->object_size)) {
4501 			s->flags &= ~DEBUG_METADATA_FLAGS;
4502 			s->offset = 0;
4503 			if (!calculate_sizes(s))
4504 				goto error;
4505 		}
4506 	}
4507 
4508 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4509     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4510 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4511 		/* Enable fast mode */
4512 		s->flags |= __CMPXCHG_DOUBLE;
4513 #endif
4514 
4515 	/*
4516 	 * The larger the object size is, the more slabs we want on the partial
4517 	 * list to avoid pounding the page allocator excessively.
4518 	 */
4519 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4520 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4521 
4522 	set_cpu_partial(s);
4523 
4524 #ifdef CONFIG_NUMA
4525 	s->remote_node_defrag_ratio = 1000;
4526 #endif
4527 
4528 	/* Initialize the pre-computed randomized freelist if slab is up */
4529 	if (slab_state >= UP) {
4530 		if (init_cache_random_seq(s))
4531 			goto error;
4532 	}
4533 
4534 	if (!init_kmem_cache_nodes(s))
4535 		goto error;
4536 
4537 	if (alloc_kmem_cache_cpus(s))
4538 		return 0;
4539 
4540 error:
4541 	__kmem_cache_release(s);
4542 	return -EINVAL;
4543 }
4544 
4545 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4546 			      const char *text)
4547 {
4548 #ifdef CONFIG_SLUB_DEBUG
4549 	void *addr = slab_address(slab);
4550 	void *p;
4551 
4552 	slab_err(s, slab, text, s->name);
4553 
4554 	spin_lock(&object_map_lock);
4555 	__fill_map(object_map, s, slab);
4556 
4557 	for_each_object(p, s, addr, slab->objects) {
4558 
4559 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4560 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4561 			print_tracking(s, p);
4562 		}
4563 	}
4564 	spin_unlock(&object_map_lock);
4565 #endif
4566 }
4567 
4568 /*
4569  * Attempt to free all partial slabs on a node.
4570  * This is called from __kmem_cache_shutdown(). We must take list_lock
4571  * because sysfs file might still access partial list after the shutdowning.
4572  */
4573 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4574 {
4575 	LIST_HEAD(discard);
4576 	struct slab *slab, *h;
4577 
4578 	BUG_ON(irqs_disabled());
4579 	spin_lock_irq(&n->list_lock);
4580 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4581 		if (!slab->inuse) {
4582 			remove_partial(n, slab);
4583 			list_add(&slab->slab_list, &discard);
4584 		} else {
4585 			list_slab_objects(s, slab,
4586 			  "Objects remaining in %s on __kmem_cache_shutdown()");
4587 		}
4588 	}
4589 	spin_unlock_irq(&n->list_lock);
4590 
4591 	list_for_each_entry_safe(slab, h, &discard, slab_list)
4592 		discard_slab(s, slab);
4593 }
4594 
4595 bool __kmem_cache_empty(struct kmem_cache *s)
4596 {
4597 	int node;
4598 	struct kmem_cache_node *n;
4599 
4600 	for_each_kmem_cache_node(s, node, n)
4601 		if (n->nr_partial || slabs_node(s, node))
4602 			return false;
4603 	return true;
4604 }
4605 
4606 /*
4607  * Release all resources used by a slab cache.
4608  */
4609 int __kmem_cache_shutdown(struct kmem_cache *s)
4610 {
4611 	int node;
4612 	struct kmem_cache_node *n;
4613 
4614 	flush_all_cpus_locked(s);
4615 	/* Attempt to free all objects */
4616 	for_each_kmem_cache_node(s, node, n) {
4617 		free_partial(s, n);
4618 		if (n->nr_partial || slabs_node(s, node))
4619 			return 1;
4620 	}
4621 	return 0;
4622 }
4623 
4624 #ifdef CONFIG_PRINTK
4625 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4626 {
4627 	void *base;
4628 	int __maybe_unused i;
4629 	unsigned int objnr;
4630 	void *objp;
4631 	void *objp0;
4632 	struct kmem_cache *s = slab->slab_cache;
4633 	struct track __maybe_unused *trackp;
4634 
4635 	kpp->kp_ptr = object;
4636 	kpp->kp_slab = slab;
4637 	kpp->kp_slab_cache = s;
4638 	base = slab_address(slab);
4639 	objp0 = kasan_reset_tag(object);
4640 #ifdef CONFIG_SLUB_DEBUG
4641 	objp = restore_red_left(s, objp0);
4642 #else
4643 	objp = objp0;
4644 #endif
4645 	objnr = obj_to_index(s, slab, objp);
4646 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4647 	objp = base + s->size * objnr;
4648 	kpp->kp_objp = objp;
4649 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4650 			 || (objp - base) % s->size) ||
4651 	    !(s->flags & SLAB_STORE_USER))
4652 		return;
4653 #ifdef CONFIG_SLUB_DEBUG
4654 	objp = fixup_red_left(s, objp);
4655 	trackp = get_track(s, objp, TRACK_ALLOC);
4656 	kpp->kp_ret = (void *)trackp->addr;
4657 #ifdef CONFIG_STACKDEPOT
4658 	{
4659 		depot_stack_handle_t handle;
4660 		unsigned long *entries;
4661 		unsigned int nr_entries;
4662 
4663 		handle = READ_ONCE(trackp->handle);
4664 		if (handle) {
4665 			nr_entries = stack_depot_fetch(handle, &entries);
4666 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4667 				kpp->kp_stack[i] = (void *)entries[i];
4668 		}
4669 
4670 		trackp = get_track(s, objp, TRACK_FREE);
4671 		handle = READ_ONCE(trackp->handle);
4672 		if (handle) {
4673 			nr_entries = stack_depot_fetch(handle, &entries);
4674 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4675 				kpp->kp_free_stack[i] = (void *)entries[i];
4676 		}
4677 	}
4678 #endif
4679 #endif
4680 }
4681 #endif
4682 
4683 /********************************************************************
4684  *		Kmalloc subsystem
4685  *******************************************************************/
4686 
4687 static int __init setup_slub_min_order(char *str)
4688 {
4689 	get_option(&str, (int *)&slub_min_order);
4690 
4691 	return 1;
4692 }
4693 
4694 __setup("slub_min_order=", setup_slub_min_order);
4695 
4696 static int __init setup_slub_max_order(char *str)
4697 {
4698 	get_option(&str, (int *)&slub_max_order);
4699 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER);
4700 
4701 	return 1;
4702 }
4703 
4704 __setup("slub_max_order=", setup_slub_max_order);
4705 
4706 static int __init setup_slub_min_objects(char *str)
4707 {
4708 	get_option(&str, (int *)&slub_min_objects);
4709 
4710 	return 1;
4711 }
4712 
4713 __setup("slub_min_objects=", setup_slub_min_objects);
4714 
4715 #ifdef CONFIG_HARDENED_USERCOPY
4716 /*
4717  * Rejects incorrectly sized objects and objects that are to be copied
4718  * to/from userspace but do not fall entirely within the containing slab
4719  * cache's usercopy region.
4720  *
4721  * Returns NULL if check passes, otherwise const char * to name of cache
4722  * to indicate an error.
4723  */
4724 void __check_heap_object(const void *ptr, unsigned long n,
4725 			 const struct slab *slab, bool to_user)
4726 {
4727 	struct kmem_cache *s;
4728 	unsigned int offset;
4729 	bool is_kfence = is_kfence_address(ptr);
4730 
4731 	ptr = kasan_reset_tag(ptr);
4732 
4733 	/* Find object and usable object size. */
4734 	s = slab->slab_cache;
4735 
4736 	/* Reject impossible pointers. */
4737 	if (ptr < slab_address(slab))
4738 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4739 			       to_user, 0, n);
4740 
4741 	/* Find offset within object. */
4742 	if (is_kfence)
4743 		offset = ptr - kfence_object_start(ptr);
4744 	else
4745 		offset = (ptr - slab_address(slab)) % s->size;
4746 
4747 	/* Adjust for redzone and reject if within the redzone. */
4748 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4749 		if (offset < s->red_left_pad)
4750 			usercopy_abort("SLUB object in left red zone",
4751 				       s->name, to_user, offset, n);
4752 		offset -= s->red_left_pad;
4753 	}
4754 
4755 	/* Allow address range falling entirely within usercopy region. */
4756 	if (offset >= s->useroffset &&
4757 	    offset - s->useroffset <= s->usersize &&
4758 	    n <= s->useroffset - offset + s->usersize)
4759 		return;
4760 
4761 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4762 }
4763 #endif /* CONFIG_HARDENED_USERCOPY */
4764 
4765 #define SHRINK_PROMOTE_MAX 32
4766 
4767 /*
4768  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4769  * up most to the head of the partial lists. New allocations will then
4770  * fill those up and thus they can be removed from the partial lists.
4771  *
4772  * The slabs with the least items are placed last. This results in them
4773  * being allocated from last increasing the chance that the last objects
4774  * are freed in them.
4775  */
4776 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4777 {
4778 	int node;
4779 	int i;
4780 	struct kmem_cache_node *n;
4781 	struct slab *slab;
4782 	struct slab *t;
4783 	struct list_head discard;
4784 	struct list_head promote[SHRINK_PROMOTE_MAX];
4785 	unsigned long flags;
4786 	int ret = 0;
4787 
4788 	for_each_kmem_cache_node(s, node, n) {
4789 		INIT_LIST_HEAD(&discard);
4790 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4791 			INIT_LIST_HEAD(promote + i);
4792 
4793 		spin_lock_irqsave(&n->list_lock, flags);
4794 
4795 		/*
4796 		 * Build lists of slabs to discard or promote.
4797 		 *
4798 		 * Note that concurrent frees may occur while we hold the
4799 		 * list_lock. slab->inuse here is the upper limit.
4800 		 */
4801 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4802 			int free = slab->objects - slab->inuse;
4803 
4804 			/* Do not reread slab->inuse */
4805 			barrier();
4806 
4807 			/* We do not keep full slabs on the list */
4808 			BUG_ON(free <= 0);
4809 
4810 			if (free == slab->objects) {
4811 				list_move(&slab->slab_list, &discard);
4812 				n->nr_partial--;
4813 				dec_slabs_node(s, node, slab->objects);
4814 			} else if (free <= SHRINK_PROMOTE_MAX)
4815 				list_move(&slab->slab_list, promote + free - 1);
4816 		}
4817 
4818 		/*
4819 		 * Promote the slabs filled up most to the head of the
4820 		 * partial list.
4821 		 */
4822 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4823 			list_splice(promote + i, &n->partial);
4824 
4825 		spin_unlock_irqrestore(&n->list_lock, flags);
4826 
4827 		/* Release empty slabs */
4828 		list_for_each_entry_safe(slab, t, &discard, slab_list)
4829 			free_slab(s, slab);
4830 
4831 		if (slabs_node(s, node))
4832 			ret = 1;
4833 	}
4834 
4835 	return ret;
4836 }
4837 
4838 int __kmem_cache_shrink(struct kmem_cache *s)
4839 {
4840 	flush_all(s);
4841 	return __kmem_cache_do_shrink(s);
4842 }
4843 
4844 static int slab_mem_going_offline_callback(void *arg)
4845 {
4846 	struct kmem_cache *s;
4847 
4848 	mutex_lock(&slab_mutex);
4849 	list_for_each_entry(s, &slab_caches, list) {
4850 		flush_all_cpus_locked(s);
4851 		__kmem_cache_do_shrink(s);
4852 	}
4853 	mutex_unlock(&slab_mutex);
4854 
4855 	return 0;
4856 }
4857 
4858 static void slab_mem_offline_callback(void *arg)
4859 {
4860 	struct memory_notify *marg = arg;
4861 	int offline_node;
4862 
4863 	offline_node = marg->status_change_nid_normal;
4864 
4865 	/*
4866 	 * If the node still has available memory. we need kmem_cache_node
4867 	 * for it yet.
4868 	 */
4869 	if (offline_node < 0)
4870 		return;
4871 
4872 	mutex_lock(&slab_mutex);
4873 	node_clear(offline_node, slab_nodes);
4874 	/*
4875 	 * We no longer free kmem_cache_node structures here, as it would be
4876 	 * racy with all get_node() users, and infeasible to protect them with
4877 	 * slab_mutex.
4878 	 */
4879 	mutex_unlock(&slab_mutex);
4880 }
4881 
4882 static int slab_mem_going_online_callback(void *arg)
4883 {
4884 	struct kmem_cache_node *n;
4885 	struct kmem_cache *s;
4886 	struct memory_notify *marg = arg;
4887 	int nid = marg->status_change_nid_normal;
4888 	int ret = 0;
4889 
4890 	/*
4891 	 * If the node's memory is already available, then kmem_cache_node is
4892 	 * already created. Nothing to do.
4893 	 */
4894 	if (nid < 0)
4895 		return 0;
4896 
4897 	/*
4898 	 * We are bringing a node online. No memory is available yet. We must
4899 	 * allocate a kmem_cache_node structure in order to bring the node
4900 	 * online.
4901 	 */
4902 	mutex_lock(&slab_mutex);
4903 	list_for_each_entry(s, &slab_caches, list) {
4904 		/*
4905 		 * The structure may already exist if the node was previously
4906 		 * onlined and offlined.
4907 		 */
4908 		if (get_node(s, nid))
4909 			continue;
4910 		/*
4911 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4912 		 *      since memory is not yet available from the node that
4913 		 *      is brought up.
4914 		 */
4915 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4916 		if (!n) {
4917 			ret = -ENOMEM;
4918 			goto out;
4919 		}
4920 		init_kmem_cache_node(n);
4921 		s->node[nid] = n;
4922 	}
4923 	/*
4924 	 * Any cache created after this point will also have kmem_cache_node
4925 	 * initialized for the new node.
4926 	 */
4927 	node_set(nid, slab_nodes);
4928 out:
4929 	mutex_unlock(&slab_mutex);
4930 	return ret;
4931 }
4932 
4933 static int slab_memory_callback(struct notifier_block *self,
4934 				unsigned long action, void *arg)
4935 {
4936 	int ret = 0;
4937 
4938 	switch (action) {
4939 	case MEM_GOING_ONLINE:
4940 		ret = slab_mem_going_online_callback(arg);
4941 		break;
4942 	case MEM_GOING_OFFLINE:
4943 		ret = slab_mem_going_offline_callback(arg);
4944 		break;
4945 	case MEM_OFFLINE:
4946 	case MEM_CANCEL_ONLINE:
4947 		slab_mem_offline_callback(arg);
4948 		break;
4949 	case MEM_ONLINE:
4950 	case MEM_CANCEL_OFFLINE:
4951 		break;
4952 	}
4953 	if (ret)
4954 		ret = notifier_from_errno(ret);
4955 	else
4956 		ret = NOTIFY_OK;
4957 	return ret;
4958 }
4959 
4960 /********************************************************************
4961  *			Basic setup of slabs
4962  *******************************************************************/
4963 
4964 /*
4965  * Used for early kmem_cache structures that were allocated using
4966  * the page allocator. Allocate them properly then fix up the pointers
4967  * that may be pointing to the wrong kmem_cache structure.
4968  */
4969 
4970 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4971 {
4972 	int node;
4973 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4974 	struct kmem_cache_node *n;
4975 
4976 	memcpy(s, static_cache, kmem_cache->object_size);
4977 
4978 	/*
4979 	 * This runs very early, and only the boot processor is supposed to be
4980 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4981 	 * IPIs around.
4982 	 */
4983 	__flush_cpu_slab(s, smp_processor_id());
4984 	for_each_kmem_cache_node(s, node, n) {
4985 		struct slab *p;
4986 
4987 		list_for_each_entry(p, &n->partial, slab_list)
4988 			p->slab_cache = s;
4989 
4990 #ifdef CONFIG_SLUB_DEBUG
4991 		list_for_each_entry(p, &n->full, slab_list)
4992 			p->slab_cache = s;
4993 #endif
4994 	}
4995 	list_add(&s->list, &slab_caches);
4996 	return s;
4997 }
4998 
4999 void __init kmem_cache_init(void)
5000 {
5001 	static __initdata struct kmem_cache boot_kmem_cache,
5002 		boot_kmem_cache_node;
5003 	int node;
5004 
5005 	if (debug_guardpage_minorder())
5006 		slub_max_order = 0;
5007 
5008 	/* Print slub debugging pointers without hashing */
5009 	if (__slub_debug_enabled())
5010 		no_hash_pointers_enable(NULL);
5011 
5012 	kmem_cache_node = &boot_kmem_cache_node;
5013 	kmem_cache = &boot_kmem_cache;
5014 
5015 	/*
5016 	 * Initialize the nodemask for which we will allocate per node
5017 	 * structures. Here we don't need taking slab_mutex yet.
5018 	 */
5019 	for_each_node_state(node, N_NORMAL_MEMORY)
5020 		node_set(node, slab_nodes);
5021 
5022 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5023 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5024 
5025 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5026 
5027 	/* Able to allocate the per node structures */
5028 	slab_state = PARTIAL;
5029 
5030 	create_boot_cache(kmem_cache, "kmem_cache",
5031 			offsetof(struct kmem_cache, node) +
5032 				nr_node_ids * sizeof(struct kmem_cache_node *),
5033 		       SLAB_HWCACHE_ALIGN, 0, 0);
5034 
5035 	kmem_cache = bootstrap(&boot_kmem_cache);
5036 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5037 
5038 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5039 	setup_kmalloc_cache_index_table();
5040 	create_kmalloc_caches(0);
5041 
5042 	/* Setup random freelists for each cache */
5043 	init_freelist_randomization();
5044 
5045 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5046 				  slub_cpu_dead);
5047 
5048 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5049 		cache_line_size(),
5050 		slub_min_order, slub_max_order, slub_min_objects,
5051 		nr_cpu_ids, nr_node_ids);
5052 }
5053 
5054 void __init kmem_cache_init_late(void)
5055 {
5056 #ifndef CONFIG_SLUB_TINY
5057 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5058 	WARN_ON(!flushwq);
5059 #endif
5060 }
5061 
5062 struct kmem_cache *
5063 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5064 		   slab_flags_t flags, void (*ctor)(void *))
5065 {
5066 	struct kmem_cache *s;
5067 
5068 	s = find_mergeable(size, align, flags, name, ctor);
5069 	if (s) {
5070 		if (sysfs_slab_alias(s, name))
5071 			return NULL;
5072 
5073 		s->refcount++;
5074 
5075 		/*
5076 		 * Adjust the object sizes so that we clear
5077 		 * the complete object on kzalloc.
5078 		 */
5079 		s->object_size = max(s->object_size, size);
5080 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5081 	}
5082 
5083 	return s;
5084 }
5085 
5086 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5087 {
5088 	int err;
5089 
5090 	err = kmem_cache_open(s, flags);
5091 	if (err)
5092 		return err;
5093 
5094 	/* Mutex is not taken during early boot */
5095 	if (slab_state <= UP)
5096 		return 0;
5097 
5098 	err = sysfs_slab_add(s);
5099 	if (err) {
5100 		__kmem_cache_release(s);
5101 		return err;
5102 	}
5103 
5104 	if (s->flags & SLAB_STORE_USER)
5105 		debugfs_slab_add(s);
5106 
5107 	return 0;
5108 }
5109 
5110 #ifdef SLAB_SUPPORTS_SYSFS
5111 static int count_inuse(struct slab *slab)
5112 {
5113 	return slab->inuse;
5114 }
5115 
5116 static int count_total(struct slab *slab)
5117 {
5118 	return slab->objects;
5119 }
5120 #endif
5121 
5122 #ifdef CONFIG_SLUB_DEBUG
5123 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5124 			  unsigned long *obj_map)
5125 {
5126 	void *p;
5127 	void *addr = slab_address(slab);
5128 
5129 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5130 		return;
5131 
5132 	/* Now we know that a valid freelist exists */
5133 	__fill_map(obj_map, s, slab);
5134 	for_each_object(p, s, addr, slab->objects) {
5135 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5136 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5137 
5138 		if (!check_object(s, slab, p, val))
5139 			break;
5140 	}
5141 }
5142 
5143 static int validate_slab_node(struct kmem_cache *s,
5144 		struct kmem_cache_node *n, unsigned long *obj_map)
5145 {
5146 	unsigned long count = 0;
5147 	struct slab *slab;
5148 	unsigned long flags;
5149 
5150 	spin_lock_irqsave(&n->list_lock, flags);
5151 
5152 	list_for_each_entry(slab, &n->partial, slab_list) {
5153 		validate_slab(s, slab, obj_map);
5154 		count++;
5155 	}
5156 	if (count != n->nr_partial) {
5157 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5158 		       s->name, count, n->nr_partial);
5159 		slab_add_kunit_errors();
5160 	}
5161 
5162 	if (!(s->flags & SLAB_STORE_USER))
5163 		goto out;
5164 
5165 	list_for_each_entry(slab, &n->full, slab_list) {
5166 		validate_slab(s, slab, obj_map);
5167 		count++;
5168 	}
5169 	if (count != atomic_long_read(&n->nr_slabs)) {
5170 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5171 		       s->name, count, atomic_long_read(&n->nr_slabs));
5172 		slab_add_kunit_errors();
5173 	}
5174 
5175 out:
5176 	spin_unlock_irqrestore(&n->list_lock, flags);
5177 	return count;
5178 }
5179 
5180 long validate_slab_cache(struct kmem_cache *s)
5181 {
5182 	int node;
5183 	unsigned long count = 0;
5184 	struct kmem_cache_node *n;
5185 	unsigned long *obj_map;
5186 
5187 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5188 	if (!obj_map)
5189 		return -ENOMEM;
5190 
5191 	flush_all(s);
5192 	for_each_kmem_cache_node(s, node, n)
5193 		count += validate_slab_node(s, n, obj_map);
5194 
5195 	bitmap_free(obj_map);
5196 
5197 	return count;
5198 }
5199 EXPORT_SYMBOL(validate_slab_cache);
5200 
5201 #ifdef CONFIG_DEBUG_FS
5202 /*
5203  * Generate lists of code addresses where slabcache objects are allocated
5204  * and freed.
5205  */
5206 
5207 struct location {
5208 	depot_stack_handle_t handle;
5209 	unsigned long count;
5210 	unsigned long addr;
5211 	unsigned long waste;
5212 	long long sum_time;
5213 	long min_time;
5214 	long max_time;
5215 	long min_pid;
5216 	long max_pid;
5217 	DECLARE_BITMAP(cpus, NR_CPUS);
5218 	nodemask_t nodes;
5219 };
5220 
5221 struct loc_track {
5222 	unsigned long max;
5223 	unsigned long count;
5224 	struct location *loc;
5225 	loff_t idx;
5226 };
5227 
5228 static struct dentry *slab_debugfs_root;
5229 
5230 static void free_loc_track(struct loc_track *t)
5231 {
5232 	if (t->max)
5233 		free_pages((unsigned long)t->loc,
5234 			get_order(sizeof(struct location) * t->max));
5235 }
5236 
5237 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5238 {
5239 	struct location *l;
5240 	int order;
5241 
5242 	order = get_order(sizeof(struct location) * max);
5243 
5244 	l = (void *)__get_free_pages(flags, order);
5245 	if (!l)
5246 		return 0;
5247 
5248 	if (t->count) {
5249 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5250 		free_loc_track(t);
5251 	}
5252 	t->max = max;
5253 	t->loc = l;
5254 	return 1;
5255 }
5256 
5257 static int add_location(struct loc_track *t, struct kmem_cache *s,
5258 				const struct track *track,
5259 				unsigned int orig_size)
5260 {
5261 	long start, end, pos;
5262 	struct location *l;
5263 	unsigned long caddr, chandle, cwaste;
5264 	unsigned long age = jiffies - track->when;
5265 	depot_stack_handle_t handle = 0;
5266 	unsigned int waste = s->object_size - orig_size;
5267 
5268 #ifdef CONFIG_STACKDEPOT
5269 	handle = READ_ONCE(track->handle);
5270 #endif
5271 	start = -1;
5272 	end = t->count;
5273 
5274 	for ( ; ; ) {
5275 		pos = start + (end - start + 1) / 2;
5276 
5277 		/*
5278 		 * There is nothing at "end". If we end up there
5279 		 * we need to add something to before end.
5280 		 */
5281 		if (pos == end)
5282 			break;
5283 
5284 		l = &t->loc[pos];
5285 		caddr = l->addr;
5286 		chandle = l->handle;
5287 		cwaste = l->waste;
5288 		if ((track->addr == caddr) && (handle == chandle) &&
5289 			(waste == cwaste)) {
5290 
5291 			l->count++;
5292 			if (track->when) {
5293 				l->sum_time += age;
5294 				if (age < l->min_time)
5295 					l->min_time = age;
5296 				if (age > l->max_time)
5297 					l->max_time = age;
5298 
5299 				if (track->pid < l->min_pid)
5300 					l->min_pid = track->pid;
5301 				if (track->pid > l->max_pid)
5302 					l->max_pid = track->pid;
5303 
5304 				cpumask_set_cpu(track->cpu,
5305 						to_cpumask(l->cpus));
5306 			}
5307 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5308 			return 1;
5309 		}
5310 
5311 		if (track->addr < caddr)
5312 			end = pos;
5313 		else if (track->addr == caddr && handle < chandle)
5314 			end = pos;
5315 		else if (track->addr == caddr && handle == chandle &&
5316 				waste < cwaste)
5317 			end = pos;
5318 		else
5319 			start = pos;
5320 	}
5321 
5322 	/*
5323 	 * Not found. Insert new tracking element.
5324 	 */
5325 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5326 		return 0;
5327 
5328 	l = t->loc + pos;
5329 	if (pos < t->count)
5330 		memmove(l + 1, l,
5331 			(t->count - pos) * sizeof(struct location));
5332 	t->count++;
5333 	l->count = 1;
5334 	l->addr = track->addr;
5335 	l->sum_time = age;
5336 	l->min_time = age;
5337 	l->max_time = age;
5338 	l->min_pid = track->pid;
5339 	l->max_pid = track->pid;
5340 	l->handle = handle;
5341 	l->waste = waste;
5342 	cpumask_clear(to_cpumask(l->cpus));
5343 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5344 	nodes_clear(l->nodes);
5345 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5346 	return 1;
5347 }
5348 
5349 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5350 		struct slab *slab, enum track_item alloc,
5351 		unsigned long *obj_map)
5352 {
5353 	void *addr = slab_address(slab);
5354 	bool is_alloc = (alloc == TRACK_ALLOC);
5355 	void *p;
5356 
5357 	__fill_map(obj_map, s, slab);
5358 
5359 	for_each_object(p, s, addr, slab->objects)
5360 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5361 			add_location(t, s, get_track(s, p, alloc),
5362 				     is_alloc ? get_orig_size(s, p) :
5363 						s->object_size);
5364 }
5365 #endif  /* CONFIG_DEBUG_FS   */
5366 #endif	/* CONFIG_SLUB_DEBUG */
5367 
5368 #ifdef SLAB_SUPPORTS_SYSFS
5369 enum slab_stat_type {
5370 	SL_ALL,			/* All slabs */
5371 	SL_PARTIAL,		/* Only partially allocated slabs */
5372 	SL_CPU,			/* Only slabs used for cpu caches */
5373 	SL_OBJECTS,		/* Determine allocated objects not slabs */
5374 	SL_TOTAL		/* Determine object capacity not slabs */
5375 };
5376 
5377 #define SO_ALL		(1 << SL_ALL)
5378 #define SO_PARTIAL	(1 << SL_PARTIAL)
5379 #define SO_CPU		(1 << SL_CPU)
5380 #define SO_OBJECTS	(1 << SL_OBJECTS)
5381 #define SO_TOTAL	(1 << SL_TOTAL)
5382 
5383 static ssize_t show_slab_objects(struct kmem_cache *s,
5384 				 char *buf, unsigned long flags)
5385 {
5386 	unsigned long total = 0;
5387 	int node;
5388 	int x;
5389 	unsigned long *nodes;
5390 	int len = 0;
5391 
5392 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5393 	if (!nodes)
5394 		return -ENOMEM;
5395 
5396 	if (flags & SO_CPU) {
5397 		int cpu;
5398 
5399 		for_each_possible_cpu(cpu) {
5400 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5401 							       cpu);
5402 			int node;
5403 			struct slab *slab;
5404 
5405 			slab = READ_ONCE(c->slab);
5406 			if (!slab)
5407 				continue;
5408 
5409 			node = slab_nid(slab);
5410 			if (flags & SO_TOTAL)
5411 				x = slab->objects;
5412 			else if (flags & SO_OBJECTS)
5413 				x = slab->inuse;
5414 			else
5415 				x = 1;
5416 
5417 			total += x;
5418 			nodes[node] += x;
5419 
5420 #ifdef CONFIG_SLUB_CPU_PARTIAL
5421 			slab = slub_percpu_partial_read_once(c);
5422 			if (slab) {
5423 				node = slab_nid(slab);
5424 				if (flags & SO_TOTAL)
5425 					WARN_ON_ONCE(1);
5426 				else if (flags & SO_OBJECTS)
5427 					WARN_ON_ONCE(1);
5428 				else
5429 					x = slab->slabs;
5430 				total += x;
5431 				nodes[node] += x;
5432 			}
5433 #endif
5434 		}
5435 	}
5436 
5437 	/*
5438 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5439 	 * already held which will conflict with an existing lock order:
5440 	 *
5441 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5442 	 *
5443 	 * We don't really need mem_hotplug_lock (to hold off
5444 	 * slab_mem_going_offline_callback) here because slab's memory hot
5445 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5446 	 */
5447 
5448 #ifdef CONFIG_SLUB_DEBUG
5449 	if (flags & SO_ALL) {
5450 		struct kmem_cache_node *n;
5451 
5452 		for_each_kmem_cache_node(s, node, n) {
5453 
5454 			if (flags & SO_TOTAL)
5455 				x = atomic_long_read(&n->total_objects);
5456 			else if (flags & SO_OBJECTS)
5457 				x = atomic_long_read(&n->total_objects) -
5458 					count_partial(n, count_free);
5459 			else
5460 				x = atomic_long_read(&n->nr_slabs);
5461 			total += x;
5462 			nodes[node] += x;
5463 		}
5464 
5465 	} else
5466 #endif
5467 	if (flags & SO_PARTIAL) {
5468 		struct kmem_cache_node *n;
5469 
5470 		for_each_kmem_cache_node(s, node, n) {
5471 			if (flags & SO_TOTAL)
5472 				x = count_partial(n, count_total);
5473 			else if (flags & SO_OBJECTS)
5474 				x = count_partial(n, count_inuse);
5475 			else
5476 				x = n->nr_partial;
5477 			total += x;
5478 			nodes[node] += x;
5479 		}
5480 	}
5481 
5482 	len += sysfs_emit_at(buf, len, "%lu", total);
5483 #ifdef CONFIG_NUMA
5484 	for (node = 0; node < nr_node_ids; node++) {
5485 		if (nodes[node])
5486 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5487 					     node, nodes[node]);
5488 	}
5489 #endif
5490 	len += sysfs_emit_at(buf, len, "\n");
5491 	kfree(nodes);
5492 
5493 	return len;
5494 }
5495 
5496 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5497 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5498 
5499 struct slab_attribute {
5500 	struct attribute attr;
5501 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5502 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5503 };
5504 
5505 #define SLAB_ATTR_RO(_name) \
5506 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5507 
5508 #define SLAB_ATTR(_name) \
5509 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5510 
5511 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5512 {
5513 	return sysfs_emit(buf, "%u\n", s->size);
5514 }
5515 SLAB_ATTR_RO(slab_size);
5516 
5517 static ssize_t align_show(struct kmem_cache *s, char *buf)
5518 {
5519 	return sysfs_emit(buf, "%u\n", s->align);
5520 }
5521 SLAB_ATTR_RO(align);
5522 
5523 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5524 {
5525 	return sysfs_emit(buf, "%u\n", s->object_size);
5526 }
5527 SLAB_ATTR_RO(object_size);
5528 
5529 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5530 {
5531 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5532 }
5533 SLAB_ATTR_RO(objs_per_slab);
5534 
5535 static ssize_t order_show(struct kmem_cache *s, char *buf)
5536 {
5537 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5538 }
5539 SLAB_ATTR_RO(order);
5540 
5541 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5542 {
5543 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5544 }
5545 
5546 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5547 				 size_t length)
5548 {
5549 	unsigned long min;
5550 	int err;
5551 
5552 	err = kstrtoul(buf, 10, &min);
5553 	if (err)
5554 		return err;
5555 
5556 	s->min_partial = min;
5557 	return length;
5558 }
5559 SLAB_ATTR(min_partial);
5560 
5561 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5562 {
5563 	unsigned int nr_partial = 0;
5564 #ifdef CONFIG_SLUB_CPU_PARTIAL
5565 	nr_partial = s->cpu_partial;
5566 #endif
5567 
5568 	return sysfs_emit(buf, "%u\n", nr_partial);
5569 }
5570 
5571 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5572 				 size_t length)
5573 {
5574 	unsigned int objects;
5575 	int err;
5576 
5577 	err = kstrtouint(buf, 10, &objects);
5578 	if (err)
5579 		return err;
5580 	if (objects && !kmem_cache_has_cpu_partial(s))
5581 		return -EINVAL;
5582 
5583 	slub_set_cpu_partial(s, objects);
5584 	flush_all(s);
5585 	return length;
5586 }
5587 SLAB_ATTR(cpu_partial);
5588 
5589 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5590 {
5591 	if (!s->ctor)
5592 		return 0;
5593 	return sysfs_emit(buf, "%pS\n", s->ctor);
5594 }
5595 SLAB_ATTR_RO(ctor);
5596 
5597 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5598 {
5599 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5600 }
5601 SLAB_ATTR_RO(aliases);
5602 
5603 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5604 {
5605 	return show_slab_objects(s, buf, SO_PARTIAL);
5606 }
5607 SLAB_ATTR_RO(partial);
5608 
5609 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5610 {
5611 	return show_slab_objects(s, buf, SO_CPU);
5612 }
5613 SLAB_ATTR_RO(cpu_slabs);
5614 
5615 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5616 {
5617 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5618 }
5619 SLAB_ATTR_RO(objects);
5620 
5621 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5622 {
5623 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5624 }
5625 SLAB_ATTR_RO(objects_partial);
5626 
5627 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5628 {
5629 	int objects = 0;
5630 	int slabs = 0;
5631 	int cpu __maybe_unused;
5632 	int len = 0;
5633 
5634 #ifdef CONFIG_SLUB_CPU_PARTIAL
5635 	for_each_online_cpu(cpu) {
5636 		struct slab *slab;
5637 
5638 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5639 
5640 		if (slab)
5641 			slabs += slab->slabs;
5642 	}
5643 #endif
5644 
5645 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
5646 	objects = (slabs * oo_objects(s->oo)) / 2;
5647 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5648 
5649 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
5650 	for_each_online_cpu(cpu) {
5651 		struct slab *slab;
5652 
5653 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5654 		if (slab) {
5655 			slabs = READ_ONCE(slab->slabs);
5656 			objects = (slabs * oo_objects(s->oo)) / 2;
5657 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5658 					     cpu, objects, slabs);
5659 		}
5660 	}
5661 #endif
5662 	len += sysfs_emit_at(buf, len, "\n");
5663 
5664 	return len;
5665 }
5666 SLAB_ATTR_RO(slabs_cpu_partial);
5667 
5668 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5669 {
5670 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5671 }
5672 SLAB_ATTR_RO(reclaim_account);
5673 
5674 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5675 {
5676 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5677 }
5678 SLAB_ATTR_RO(hwcache_align);
5679 
5680 #ifdef CONFIG_ZONE_DMA
5681 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5682 {
5683 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5684 }
5685 SLAB_ATTR_RO(cache_dma);
5686 #endif
5687 
5688 #ifdef CONFIG_HARDENED_USERCOPY
5689 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5690 {
5691 	return sysfs_emit(buf, "%u\n", s->usersize);
5692 }
5693 SLAB_ATTR_RO(usersize);
5694 #endif
5695 
5696 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5697 {
5698 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5699 }
5700 SLAB_ATTR_RO(destroy_by_rcu);
5701 
5702 #ifdef CONFIG_SLUB_DEBUG
5703 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5704 {
5705 	return show_slab_objects(s, buf, SO_ALL);
5706 }
5707 SLAB_ATTR_RO(slabs);
5708 
5709 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5710 {
5711 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5712 }
5713 SLAB_ATTR_RO(total_objects);
5714 
5715 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5716 {
5717 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5718 }
5719 SLAB_ATTR_RO(sanity_checks);
5720 
5721 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5722 {
5723 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5724 }
5725 SLAB_ATTR_RO(trace);
5726 
5727 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5728 {
5729 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5730 }
5731 
5732 SLAB_ATTR_RO(red_zone);
5733 
5734 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5735 {
5736 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5737 }
5738 
5739 SLAB_ATTR_RO(poison);
5740 
5741 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5742 {
5743 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5744 }
5745 
5746 SLAB_ATTR_RO(store_user);
5747 
5748 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5749 {
5750 	return 0;
5751 }
5752 
5753 static ssize_t validate_store(struct kmem_cache *s,
5754 			const char *buf, size_t length)
5755 {
5756 	int ret = -EINVAL;
5757 
5758 	if (buf[0] == '1' && kmem_cache_debug(s)) {
5759 		ret = validate_slab_cache(s);
5760 		if (ret >= 0)
5761 			ret = length;
5762 	}
5763 	return ret;
5764 }
5765 SLAB_ATTR(validate);
5766 
5767 #endif /* CONFIG_SLUB_DEBUG */
5768 
5769 #ifdef CONFIG_FAILSLAB
5770 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5771 {
5772 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5773 }
5774 
5775 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5776 				size_t length)
5777 {
5778 	if (s->refcount > 1)
5779 		return -EINVAL;
5780 
5781 	if (buf[0] == '1')
5782 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5783 	else
5784 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5785 
5786 	return length;
5787 }
5788 SLAB_ATTR(failslab);
5789 #endif
5790 
5791 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5792 {
5793 	return 0;
5794 }
5795 
5796 static ssize_t shrink_store(struct kmem_cache *s,
5797 			const char *buf, size_t length)
5798 {
5799 	if (buf[0] == '1')
5800 		kmem_cache_shrink(s);
5801 	else
5802 		return -EINVAL;
5803 	return length;
5804 }
5805 SLAB_ATTR(shrink);
5806 
5807 #ifdef CONFIG_NUMA
5808 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5809 {
5810 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5811 }
5812 
5813 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5814 				const char *buf, size_t length)
5815 {
5816 	unsigned int ratio;
5817 	int err;
5818 
5819 	err = kstrtouint(buf, 10, &ratio);
5820 	if (err)
5821 		return err;
5822 	if (ratio > 100)
5823 		return -ERANGE;
5824 
5825 	s->remote_node_defrag_ratio = ratio * 10;
5826 
5827 	return length;
5828 }
5829 SLAB_ATTR(remote_node_defrag_ratio);
5830 #endif
5831 
5832 #ifdef CONFIG_SLUB_STATS
5833 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5834 {
5835 	unsigned long sum  = 0;
5836 	int cpu;
5837 	int len = 0;
5838 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5839 
5840 	if (!data)
5841 		return -ENOMEM;
5842 
5843 	for_each_online_cpu(cpu) {
5844 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5845 
5846 		data[cpu] = x;
5847 		sum += x;
5848 	}
5849 
5850 	len += sysfs_emit_at(buf, len, "%lu", sum);
5851 
5852 #ifdef CONFIG_SMP
5853 	for_each_online_cpu(cpu) {
5854 		if (data[cpu])
5855 			len += sysfs_emit_at(buf, len, " C%d=%u",
5856 					     cpu, data[cpu]);
5857 	}
5858 #endif
5859 	kfree(data);
5860 	len += sysfs_emit_at(buf, len, "\n");
5861 
5862 	return len;
5863 }
5864 
5865 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5866 {
5867 	int cpu;
5868 
5869 	for_each_online_cpu(cpu)
5870 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5871 }
5872 
5873 #define STAT_ATTR(si, text) 					\
5874 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5875 {								\
5876 	return show_stat(s, buf, si);				\
5877 }								\
5878 static ssize_t text##_store(struct kmem_cache *s,		\
5879 				const char *buf, size_t length)	\
5880 {								\
5881 	if (buf[0] != '0')					\
5882 		return -EINVAL;					\
5883 	clear_stat(s, si);					\
5884 	return length;						\
5885 }								\
5886 SLAB_ATTR(text);						\
5887 
5888 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5889 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5890 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5891 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5892 STAT_ATTR(FREE_FROZEN, free_frozen);
5893 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5894 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5895 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5896 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5897 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5898 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5899 STAT_ATTR(FREE_SLAB, free_slab);
5900 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5901 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5902 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5903 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5904 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5905 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5906 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5907 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5908 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5909 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5910 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5911 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5912 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5913 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5914 #endif	/* CONFIG_SLUB_STATS */
5915 
5916 #ifdef CONFIG_KFENCE
5917 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5918 {
5919 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5920 }
5921 
5922 static ssize_t skip_kfence_store(struct kmem_cache *s,
5923 			const char *buf, size_t length)
5924 {
5925 	int ret = length;
5926 
5927 	if (buf[0] == '0')
5928 		s->flags &= ~SLAB_SKIP_KFENCE;
5929 	else if (buf[0] == '1')
5930 		s->flags |= SLAB_SKIP_KFENCE;
5931 	else
5932 		ret = -EINVAL;
5933 
5934 	return ret;
5935 }
5936 SLAB_ATTR(skip_kfence);
5937 #endif
5938 
5939 static struct attribute *slab_attrs[] = {
5940 	&slab_size_attr.attr,
5941 	&object_size_attr.attr,
5942 	&objs_per_slab_attr.attr,
5943 	&order_attr.attr,
5944 	&min_partial_attr.attr,
5945 	&cpu_partial_attr.attr,
5946 	&objects_attr.attr,
5947 	&objects_partial_attr.attr,
5948 	&partial_attr.attr,
5949 	&cpu_slabs_attr.attr,
5950 	&ctor_attr.attr,
5951 	&aliases_attr.attr,
5952 	&align_attr.attr,
5953 	&hwcache_align_attr.attr,
5954 	&reclaim_account_attr.attr,
5955 	&destroy_by_rcu_attr.attr,
5956 	&shrink_attr.attr,
5957 	&slabs_cpu_partial_attr.attr,
5958 #ifdef CONFIG_SLUB_DEBUG
5959 	&total_objects_attr.attr,
5960 	&slabs_attr.attr,
5961 	&sanity_checks_attr.attr,
5962 	&trace_attr.attr,
5963 	&red_zone_attr.attr,
5964 	&poison_attr.attr,
5965 	&store_user_attr.attr,
5966 	&validate_attr.attr,
5967 #endif
5968 #ifdef CONFIG_ZONE_DMA
5969 	&cache_dma_attr.attr,
5970 #endif
5971 #ifdef CONFIG_NUMA
5972 	&remote_node_defrag_ratio_attr.attr,
5973 #endif
5974 #ifdef CONFIG_SLUB_STATS
5975 	&alloc_fastpath_attr.attr,
5976 	&alloc_slowpath_attr.attr,
5977 	&free_fastpath_attr.attr,
5978 	&free_slowpath_attr.attr,
5979 	&free_frozen_attr.attr,
5980 	&free_add_partial_attr.attr,
5981 	&free_remove_partial_attr.attr,
5982 	&alloc_from_partial_attr.attr,
5983 	&alloc_slab_attr.attr,
5984 	&alloc_refill_attr.attr,
5985 	&alloc_node_mismatch_attr.attr,
5986 	&free_slab_attr.attr,
5987 	&cpuslab_flush_attr.attr,
5988 	&deactivate_full_attr.attr,
5989 	&deactivate_empty_attr.attr,
5990 	&deactivate_to_head_attr.attr,
5991 	&deactivate_to_tail_attr.attr,
5992 	&deactivate_remote_frees_attr.attr,
5993 	&deactivate_bypass_attr.attr,
5994 	&order_fallback_attr.attr,
5995 	&cmpxchg_double_fail_attr.attr,
5996 	&cmpxchg_double_cpu_fail_attr.attr,
5997 	&cpu_partial_alloc_attr.attr,
5998 	&cpu_partial_free_attr.attr,
5999 	&cpu_partial_node_attr.attr,
6000 	&cpu_partial_drain_attr.attr,
6001 #endif
6002 #ifdef CONFIG_FAILSLAB
6003 	&failslab_attr.attr,
6004 #endif
6005 #ifdef CONFIG_HARDENED_USERCOPY
6006 	&usersize_attr.attr,
6007 #endif
6008 #ifdef CONFIG_KFENCE
6009 	&skip_kfence_attr.attr,
6010 #endif
6011 
6012 	NULL
6013 };
6014 
6015 static const struct attribute_group slab_attr_group = {
6016 	.attrs = slab_attrs,
6017 };
6018 
6019 static ssize_t slab_attr_show(struct kobject *kobj,
6020 				struct attribute *attr,
6021 				char *buf)
6022 {
6023 	struct slab_attribute *attribute;
6024 	struct kmem_cache *s;
6025 
6026 	attribute = to_slab_attr(attr);
6027 	s = to_slab(kobj);
6028 
6029 	if (!attribute->show)
6030 		return -EIO;
6031 
6032 	return attribute->show(s, buf);
6033 }
6034 
6035 static ssize_t slab_attr_store(struct kobject *kobj,
6036 				struct attribute *attr,
6037 				const char *buf, size_t len)
6038 {
6039 	struct slab_attribute *attribute;
6040 	struct kmem_cache *s;
6041 
6042 	attribute = to_slab_attr(attr);
6043 	s = to_slab(kobj);
6044 
6045 	if (!attribute->store)
6046 		return -EIO;
6047 
6048 	return attribute->store(s, buf, len);
6049 }
6050 
6051 static void kmem_cache_release(struct kobject *k)
6052 {
6053 	slab_kmem_cache_release(to_slab(k));
6054 }
6055 
6056 static const struct sysfs_ops slab_sysfs_ops = {
6057 	.show = slab_attr_show,
6058 	.store = slab_attr_store,
6059 };
6060 
6061 static const struct kobj_type slab_ktype = {
6062 	.sysfs_ops = &slab_sysfs_ops,
6063 	.release = kmem_cache_release,
6064 };
6065 
6066 static struct kset *slab_kset;
6067 
6068 static inline struct kset *cache_kset(struct kmem_cache *s)
6069 {
6070 	return slab_kset;
6071 }
6072 
6073 #define ID_STR_LENGTH 32
6074 
6075 /* Create a unique string id for a slab cache:
6076  *
6077  * Format	:[flags-]size
6078  */
6079 static char *create_unique_id(struct kmem_cache *s)
6080 {
6081 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6082 	char *p = name;
6083 
6084 	if (!name)
6085 		return ERR_PTR(-ENOMEM);
6086 
6087 	*p++ = ':';
6088 	/*
6089 	 * First flags affecting slabcache operations. We will only
6090 	 * get here for aliasable slabs so we do not need to support
6091 	 * too many flags. The flags here must cover all flags that
6092 	 * are matched during merging to guarantee that the id is
6093 	 * unique.
6094 	 */
6095 	if (s->flags & SLAB_CACHE_DMA)
6096 		*p++ = 'd';
6097 	if (s->flags & SLAB_CACHE_DMA32)
6098 		*p++ = 'D';
6099 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6100 		*p++ = 'a';
6101 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6102 		*p++ = 'F';
6103 	if (s->flags & SLAB_ACCOUNT)
6104 		*p++ = 'A';
6105 	if (p != name + 1)
6106 		*p++ = '-';
6107 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6108 
6109 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6110 		kfree(name);
6111 		return ERR_PTR(-EINVAL);
6112 	}
6113 	kmsan_unpoison_memory(name, p - name);
6114 	return name;
6115 }
6116 
6117 static int sysfs_slab_add(struct kmem_cache *s)
6118 {
6119 	int err;
6120 	const char *name;
6121 	struct kset *kset = cache_kset(s);
6122 	int unmergeable = slab_unmergeable(s);
6123 
6124 	if (!unmergeable && disable_higher_order_debug &&
6125 			(slub_debug & DEBUG_METADATA_FLAGS))
6126 		unmergeable = 1;
6127 
6128 	if (unmergeable) {
6129 		/*
6130 		 * Slabcache can never be merged so we can use the name proper.
6131 		 * This is typically the case for debug situations. In that
6132 		 * case we can catch duplicate names easily.
6133 		 */
6134 		sysfs_remove_link(&slab_kset->kobj, s->name);
6135 		name = s->name;
6136 	} else {
6137 		/*
6138 		 * Create a unique name for the slab as a target
6139 		 * for the symlinks.
6140 		 */
6141 		name = create_unique_id(s);
6142 		if (IS_ERR(name))
6143 			return PTR_ERR(name);
6144 	}
6145 
6146 	s->kobj.kset = kset;
6147 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6148 	if (err)
6149 		goto out;
6150 
6151 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6152 	if (err)
6153 		goto out_del_kobj;
6154 
6155 	if (!unmergeable) {
6156 		/* Setup first alias */
6157 		sysfs_slab_alias(s, s->name);
6158 	}
6159 out:
6160 	if (!unmergeable)
6161 		kfree(name);
6162 	return err;
6163 out_del_kobj:
6164 	kobject_del(&s->kobj);
6165 	goto out;
6166 }
6167 
6168 void sysfs_slab_unlink(struct kmem_cache *s)
6169 {
6170 	if (slab_state >= FULL)
6171 		kobject_del(&s->kobj);
6172 }
6173 
6174 void sysfs_slab_release(struct kmem_cache *s)
6175 {
6176 	if (slab_state >= FULL)
6177 		kobject_put(&s->kobj);
6178 }
6179 
6180 /*
6181  * Need to buffer aliases during bootup until sysfs becomes
6182  * available lest we lose that information.
6183  */
6184 struct saved_alias {
6185 	struct kmem_cache *s;
6186 	const char *name;
6187 	struct saved_alias *next;
6188 };
6189 
6190 static struct saved_alias *alias_list;
6191 
6192 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6193 {
6194 	struct saved_alias *al;
6195 
6196 	if (slab_state == FULL) {
6197 		/*
6198 		 * If we have a leftover link then remove it.
6199 		 */
6200 		sysfs_remove_link(&slab_kset->kobj, name);
6201 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6202 	}
6203 
6204 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6205 	if (!al)
6206 		return -ENOMEM;
6207 
6208 	al->s = s;
6209 	al->name = name;
6210 	al->next = alias_list;
6211 	alias_list = al;
6212 	kmsan_unpoison_memory(al, sizeof(*al));
6213 	return 0;
6214 }
6215 
6216 static int __init slab_sysfs_init(void)
6217 {
6218 	struct kmem_cache *s;
6219 	int err;
6220 
6221 	mutex_lock(&slab_mutex);
6222 
6223 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6224 	if (!slab_kset) {
6225 		mutex_unlock(&slab_mutex);
6226 		pr_err("Cannot register slab subsystem.\n");
6227 		return -ENOSYS;
6228 	}
6229 
6230 	slab_state = FULL;
6231 
6232 	list_for_each_entry(s, &slab_caches, list) {
6233 		err = sysfs_slab_add(s);
6234 		if (err)
6235 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6236 			       s->name);
6237 	}
6238 
6239 	while (alias_list) {
6240 		struct saved_alias *al = alias_list;
6241 
6242 		alias_list = alias_list->next;
6243 		err = sysfs_slab_alias(al->s, al->name);
6244 		if (err)
6245 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6246 			       al->name);
6247 		kfree(al);
6248 	}
6249 
6250 	mutex_unlock(&slab_mutex);
6251 	return 0;
6252 }
6253 late_initcall(slab_sysfs_init);
6254 #endif /* SLAB_SUPPORTS_SYSFS */
6255 
6256 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6257 static int slab_debugfs_show(struct seq_file *seq, void *v)
6258 {
6259 	struct loc_track *t = seq->private;
6260 	struct location *l;
6261 	unsigned long idx;
6262 
6263 	idx = (unsigned long) t->idx;
6264 	if (idx < t->count) {
6265 		l = &t->loc[idx];
6266 
6267 		seq_printf(seq, "%7ld ", l->count);
6268 
6269 		if (l->addr)
6270 			seq_printf(seq, "%pS", (void *)l->addr);
6271 		else
6272 			seq_puts(seq, "<not-available>");
6273 
6274 		if (l->waste)
6275 			seq_printf(seq, " waste=%lu/%lu",
6276 				l->count * l->waste, l->waste);
6277 
6278 		if (l->sum_time != l->min_time) {
6279 			seq_printf(seq, " age=%ld/%llu/%ld",
6280 				l->min_time, div_u64(l->sum_time, l->count),
6281 				l->max_time);
6282 		} else
6283 			seq_printf(seq, " age=%ld", l->min_time);
6284 
6285 		if (l->min_pid != l->max_pid)
6286 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6287 		else
6288 			seq_printf(seq, " pid=%ld",
6289 				l->min_pid);
6290 
6291 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6292 			seq_printf(seq, " cpus=%*pbl",
6293 				 cpumask_pr_args(to_cpumask(l->cpus)));
6294 
6295 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6296 			seq_printf(seq, " nodes=%*pbl",
6297 				 nodemask_pr_args(&l->nodes));
6298 
6299 #ifdef CONFIG_STACKDEPOT
6300 		{
6301 			depot_stack_handle_t handle;
6302 			unsigned long *entries;
6303 			unsigned int nr_entries, j;
6304 
6305 			handle = READ_ONCE(l->handle);
6306 			if (handle) {
6307 				nr_entries = stack_depot_fetch(handle, &entries);
6308 				seq_puts(seq, "\n");
6309 				for (j = 0; j < nr_entries; j++)
6310 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6311 			}
6312 		}
6313 #endif
6314 		seq_puts(seq, "\n");
6315 	}
6316 
6317 	if (!idx && !t->count)
6318 		seq_puts(seq, "No data\n");
6319 
6320 	return 0;
6321 }
6322 
6323 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6324 {
6325 }
6326 
6327 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6328 {
6329 	struct loc_track *t = seq->private;
6330 
6331 	t->idx = ++(*ppos);
6332 	if (*ppos <= t->count)
6333 		return ppos;
6334 
6335 	return NULL;
6336 }
6337 
6338 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6339 {
6340 	struct location *loc1 = (struct location *)a;
6341 	struct location *loc2 = (struct location *)b;
6342 
6343 	if (loc1->count > loc2->count)
6344 		return -1;
6345 	else
6346 		return 1;
6347 }
6348 
6349 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6350 {
6351 	struct loc_track *t = seq->private;
6352 
6353 	t->idx = *ppos;
6354 	return ppos;
6355 }
6356 
6357 static const struct seq_operations slab_debugfs_sops = {
6358 	.start  = slab_debugfs_start,
6359 	.next   = slab_debugfs_next,
6360 	.stop   = slab_debugfs_stop,
6361 	.show   = slab_debugfs_show,
6362 };
6363 
6364 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6365 {
6366 
6367 	struct kmem_cache_node *n;
6368 	enum track_item alloc;
6369 	int node;
6370 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6371 						sizeof(struct loc_track));
6372 	struct kmem_cache *s = file_inode(filep)->i_private;
6373 	unsigned long *obj_map;
6374 
6375 	if (!t)
6376 		return -ENOMEM;
6377 
6378 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6379 	if (!obj_map) {
6380 		seq_release_private(inode, filep);
6381 		return -ENOMEM;
6382 	}
6383 
6384 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6385 		alloc = TRACK_ALLOC;
6386 	else
6387 		alloc = TRACK_FREE;
6388 
6389 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6390 		bitmap_free(obj_map);
6391 		seq_release_private(inode, filep);
6392 		return -ENOMEM;
6393 	}
6394 
6395 	for_each_kmem_cache_node(s, node, n) {
6396 		unsigned long flags;
6397 		struct slab *slab;
6398 
6399 		if (!atomic_long_read(&n->nr_slabs))
6400 			continue;
6401 
6402 		spin_lock_irqsave(&n->list_lock, flags);
6403 		list_for_each_entry(slab, &n->partial, slab_list)
6404 			process_slab(t, s, slab, alloc, obj_map);
6405 		list_for_each_entry(slab, &n->full, slab_list)
6406 			process_slab(t, s, slab, alloc, obj_map);
6407 		spin_unlock_irqrestore(&n->list_lock, flags);
6408 	}
6409 
6410 	/* Sort locations by count */
6411 	sort_r(t->loc, t->count, sizeof(struct location),
6412 		cmp_loc_by_count, NULL, NULL);
6413 
6414 	bitmap_free(obj_map);
6415 	return 0;
6416 }
6417 
6418 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6419 {
6420 	struct seq_file *seq = file->private_data;
6421 	struct loc_track *t = seq->private;
6422 
6423 	free_loc_track(t);
6424 	return seq_release_private(inode, file);
6425 }
6426 
6427 static const struct file_operations slab_debugfs_fops = {
6428 	.open    = slab_debug_trace_open,
6429 	.read    = seq_read,
6430 	.llseek  = seq_lseek,
6431 	.release = slab_debug_trace_release,
6432 };
6433 
6434 static void debugfs_slab_add(struct kmem_cache *s)
6435 {
6436 	struct dentry *slab_cache_dir;
6437 
6438 	if (unlikely(!slab_debugfs_root))
6439 		return;
6440 
6441 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6442 
6443 	debugfs_create_file("alloc_traces", 0400,
6444 		slab_cache_dir, s, &slab_debugfs_fops);
6445 
6446 	debugfs_create_file("free_traces", 0400,
6447 		slab_cache_dir, s, &slab_debugfs_fops);
6448 }
6449 
6450 void debugfs_slab_release(struct kmem_cache *s)
6451 {
6452 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
6453 }
6454 
6455 static int __init slab_debugfs_init(void)
6456 {
6457 	struct kmem_cache *s;
6458 
6459 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6460 
6461 	list_for_each_entry(s, &slab_caches, list)
6462 		if (s->flags & SLAB_STORE_USER)
6463 			debugfs_slab_add(s);
6464 
6465 	return 0;
6466 
6467 }
6468 __initcall(slab_debugfs_init);
6469 #endif
6470 /*
6471  * The /proc/slabinfo ABI
6472  */
6473 #ifdef CONFIG_SLUB_DEBUG
6474 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6475 {
6476 	unsigned long nr_slabs = 0;
6477 	unsigned long nr_objs = 0;
6478 	unsigned long nr_free = 0;
6479 	int node;
6480 	struct kmem_cache_node *n;
6481 
6482 	for_each_kmem_cache_node(s, node, n) {
6483 		nr_slabs += node_nr_slabs(n);
6484 		nr_objs += node_nr_objs(n);
6485 		nr_free += count_partial(n, count_free);
6486 	}
6487 
6488 	sinfo->active_objs = nr_objs - nr_free;
6489 	sinfo->num_objs = nr_objs;
6490 	sinfo->active_slabs = nr_slabs;
6491 	sinfo->num_slabs = nr_slabs;
6492 	sinfo->objects_per_slab = oo_objects(s->oo);
6493 	sinfo->cache_order = oo_order(s->oo);
6494 }
6495 
6496 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6497 {
6498 }
6499 
6500 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6501 		       size_t count, loff_t *ppos)
6502 {
6503 	return -EIO;
6504 }
6505 #endif /* CONFIG_SLUB_DEBUG */
6506