1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 #include <linux/random.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects: 55 * A. page->freelist -> List of object free in a page 56 * B. page->inuse -> Number of objects in use 57 * C. page->objects -> Number of objects in page 58 * D. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list except per cpu partial list. The processor that froze the 62 * slab is the one who can perform list operations on the page. Other 63 * processors may put objects onto the freelist but the processor that 64 * froze the slab is the only one that can retrieve the objects from the 65 * page's freelist. 66 * 67 * The list_lock protects the partial and full list on each node and 68 * the partial slab counter. If taken then no new slabs may be added or 69 * removed from the lists nor make the number of partial slabs be modified. 70 * (Note that the total number of slabs is an atomic value that may be 71 * modified without taking the list lock). 72 * 73 * The list_lock is a centralized lock and thus we avoid taking it as 74 * much as possible. As long as SLUB does not have to handle partial 75 * slabs, operations can continue without any centralized lock. F.e. 76 * allocating a long series of objects that fill up slabs does not require 77 * the list lock. 78 * Interrupts are disabled during allocation and deallocation in order to 79 * make the slab allocator safe to use in the context of an irq. In addition 80 * interrupts are disabled to ensure that the processor does not change 81 * while handling per_cpu slabs, due to kernel preemption. 82 * 83 * SLUB assigns one slab for allocation to each processor. 84 * Allocations only occur from these slabs called cpu slabs. 85 * 86 * Slabs with free elements are kept on a partial list and during regular 87 * operations no list for full slabs is used. If an object in a full slab is 88 * freed then the slab will show up again on the partial lists. 89 * We track full slabs for debugging purposes though because otherwise we 90 * cannot scan all objects. 91 * 92 * Slabs are freed when they become empty. Teardown and setup is 93 * minimal so we rely on the page allocators per cpu caches for 94 * fast frees and allocs. 95 * 96 * Overloading of page flags that are otherwise used for LRU management. 97 * 98 * PageActive The slab is frozen and exempt from list processing. 99 * This means that the slab is dedicated to a purpose 100 * such as satisfying allocations for a specific 101 * processor. Objects may be freed in the slab while 102 * it is frozen but slab_free will then skip the usual 103 * list operations. It is up to the processor holding 104 * the slab to integrate the slab into the slab lists 105 * when the slab is no longer needed. 106 * 107 * One use of this flag is to mark slabs that are 108 * used for allocations. Then such a slab becomes a cpu 109 * slab. The cpu slab may be equipped with an additional 110 * freelist that allows lockless access to 111 * free objects in addition to the regular freelist 112 * that requires the slab lock. 113 * 114 * PageError Slab requires special handling due to debug 115 * options set. This moves slab handling out of 116 * the fast path and disables lockless freelists. 117 */ 118 119 static inline int kmem_cache_debug(struct kmem_cache *s) 120 { 121 #ifdef CONFIG_SLUB_DEBUG 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 123 #else 124 return 0; 125 #endif 126 } 127 128 void *fixup_red_left(struct kmem_cache *s, void *p) 129 { 130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 131 p += s->red_left_pad; 132 133 return p; 134 } 135 136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 137 { 138 #ifdef CONFIG_SLUB_CPU_PARTIAL 139 return !kmem_cache_debug(s); 140 #else 141 return false; 142 #endif 143 } 144 145 /* 146 * Issues still to be resolved: 147 * 148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 149 * 150 * - Variable sizing of the per node arrays 151 */ 152 153 /* Enable to test recovery from slab corruption on boot */ 154 #undef SLUB_RESILIENCY_TEST 155 156 /* Enable to log cmpxchg failures */ 157 #undef SLUB_DEBUG_CMPXCHG 158 159 /* 160 * Mininum number of partial slabs. These will be left on the partial 161 * lists even if they are empty. kmem_cache_shrink may reclaim them. 162 */ 163 #define MIN_PARTIAL 5 164 165 /* 166 * Maximum number of desirable partial slabs. 167 * The existence of more partial slabs makes kmem_cache_shrink 168 * sort the partial list by the number of objects in use. 169 */ 170 #define MAX_PARTIAL 10 171 172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 173 SLAB_POISON | SLAB_STORE_USER) 174 175 /* 176 * These debug flags cannot use CMPXCHG because there might be consistency 177 * issues when checking or reading debug information 178 */ 179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 180 SLAB_TRACE) 181 182 183 /* 184 * Debugging flags that require metadata to be stored in the slab. These get 185 * disabled when slub_debug=O is used and a cache's min order increases with 186 * metadata. 187 */ 188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 189 190 #define OO_SHIFT 16 191 #define OO_MASK ((1 << OO_SHIFT) - 1) 192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 193 194 /* Internal SLUB flags */ 195 /* Poison object */ 196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 197 /* Use cmpxchg_double */ 198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 199 200 /* 201 * Tracking user of a slab. 202 */ 203 #define TRACK_ADDRS_COUNT 16 204 struct track { 205 unsigned long addr; /* Called from address */ 206 #ifdef CONFIG_STACKTRACE 207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 208 #endif 209 int cpu; /* Was running on cpu */ 210 int pid; /* Pid context */ 211 unsigned long when; /* When did the operation occur */ 212 }; 213 214 enum track_item { TRACK_ALLOC, TRACK_FREE }; 215 216 #ifdef CONFIG_SYSFS 217 static int sysfs_slab_add(struct kmem_cache *); 218 static int sysfs_slab_alias(struct kmem_cache *, const char *); 219 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 220 static void sysfs_slab_remove(struct kmem_cache *s); 221 #else 222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 224 { return 0; } 225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 226 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 227 #endif 228 229 static inline void stat(const struct kmem_cache *s, enum stat_item si) 230 { 231 #ifdef CONFIG_SLUB_STATS 232 /* 233 * The rmw is racy on a preemptible kernel but this is acceptable, so 234 * avoid this_cpu_add()'s irq-disable overhead. 235 */ 236 raw_cpu_inc(s->cpu_slab->stat[si]); 237 #endif 238 } 239 240 /******************************************************************** 241 * Core slab cache functions 242 *******************************************************************/ 243 244 /* 245 * Returns freelist pointer (ptr). With hardening, this is obfuscated 246 * with an XOR of the address where the pointer is held and a per-cache 247 * random number. 248 */ 249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 250 unsigned long ptr_addr) 251 { 252 #ifdef CONFIG_SLAB_FREELIST_HARDENED 253 /* 254 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. 255 * Normally, this doesn't cause any issues, as both set_freepointer() 256 * and get_freepointer() are called with a pointer with the same tag. 257 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 258 * example, when __free_slub() iterates over objects in a cache, it 259 * passes untagged pointers to check_object(). check_object() in turns 260 * calls get_freepointer() with an untagged pointer, which causes the 261 * freepointer to be restored incorrectly. 262 */ 263 return (void *)((unsigned long)ptr ^ s->random ^ 264 (unsigned long)kasan_reset_tag((void *)ptr_addr)); 265 #else 266 return ptr; 267 #endif 268 } 269 270 /* Returns the freelist pointer recorded at location ptr_addr. */ 271 static inline void *freelist_dereference(const struct kmem_cache *s, 272 void *ptr_addr) 273 { 274 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 275 (unsigned long)ptr_addr); 276 } 277 278 static inline void *get_freepointer(struct kmem_cache *s, void *object) 279 { 280 return freelist_dereference(s, object + s->offset); 281 } 282 283 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 284 { 285 prefetch(object + s->offset); 286 } 287 288 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 289 { 290 unsigned long freepointer_addr; 291 void *p; 292 293 if (!debug_pagealloc_enabled()) 294 return get_freepointer(s, object); 295 296 freepointer_addr = (unsigned long)object + s->offset; 297 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 298 return freelist_ptr(s, p, freepointer_addr); 299 } 300 301 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 302 { 303 unsigned long freeptr_addr = (unsigned long)object + s->offset; 304 305 #ifdef CONFIG_SLAB_FREELIST_HARDENED 306 BUG_ON(object == fp); /* naive detection of double free or corruption */ 307 #endif 308 309 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 310 } 311 312 /* Loop over all objects in a slab */ 313 #define for_each_object(__p, __s, __addr, __objects) \ 314 for (__p = fixup_red_left(__s, __addr); \ 315 __p < (__addr) + (__objects) * (__s)->size; \ 316 __p += (__s)->size) 317 318 /* Determine object index from a given position */ 319 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) 320 { 321 return (kasan_reset_tag(p) - addr) / s->size; 322 } 323 324 static inline unsigned int order_objects(unsigned int order, unsigned int size) 325 { 326 return ((unsigned int)PAGE_SIZE << order) / size; 327 } 328 329 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 330 unsigned int size) 331 { 332 struct kmem_cache_order_objects x = { 333 (order << OO_SHIFT) + order_objects(order, size) 334 }; 335 336 return x; 337 } 338 339 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 340 { 341 return x.x >> OO_SHIFT; 342 } 343 344 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 345 { 346 return x.x & OO_MASK; 347 } 348 349 /* 350 * Per slab locking using the pagelock 351 */ 352 static __always_inline void slab_lock(struct page *page) 353 { 354 VM_BUG_ON_PAGE(PageTail(page), page); 355 bit_spin_lock(PG_locked, &page->flags); 356 } 357 358 static __always_inline void slab_unlock(struct page *page) 359 { 360 VM_BUG_ON_PAGE(PageTail(page), page); 361 __bit_spin_unlock(PG_locked, &page->flags); 362 } 363 364 /* Interrupts must be disabled (for the fallback code to work right) */ 365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 366 void *freelist_old, unsigned long counters_old, 367 void *freelist_new, unsigned long counters_new, 368 const char *n) 369 { 370 VM_BUG_ON(!irqs_disabled()); 371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 373 if (s->flags & __CMPXCHG_DOUBLE) { 374 if (cmpxchg_double(&page->freelist, &page->counters, 375 freelist_old, counters_old, 376 freelist_new, counters_new)) 377 return true; 378 } else 379 #endif 380 { 381 slab_lock(page); 382 if (page->freelist == freelist_old && 383 page->counters == counters_old) { 384 page->freelist = freelist_new; 385 page->counters = counters_new; 386 slab_unlock(page); 387 return true; 388 } 389 slab_unlock(page); 390 } 391 392 cpu_relax(); 393 stat(s, CMPXCHG_DOUBLE_FAIL); 394 395 #ifdef SLUB_DEBUG_CMPXCHG 396 pr_info("%s %s: cmpxchg double redo ", n, s->name); 397 #endif 398 399 return false; 400 } 401 402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 403 void *freelist_old, unsigned long counters_old, 404 void *freelist_new, unsigned long counters_new, 405 const char *n) 406 { 407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 409 if (s->flags & __CMPXCHG_DOUBLE) { 410 if (cmpxchg_double(&page->freelist, &page->counters, 411 freelist_old, counters_old, 412 freelist_new, counters_new)) 413 return true; 414 } else 415 #endif 416 { 417 unsigned long flags; 418 419 local_irq_save(flags); 420 slab_lock(page); 421 if (page->freelist == freelist_old && 422 page->counters == counters_old) { 423 page->freelist = freelist_new; 424 page->counters = counters_new; 425 slab_unlock(page); 426 local_irq_restore(flags); 427 return true; 428 } 429 slab_unlock(page); 430 local_irq_restore(flags); 431 } 432 433 cpu_relax(); 434 stat(s, CMPXCHG_DOUBLE_FAIL); 435 436 #ifdef SLUB_DEBUG_CMPXCHG 437 pr_info("%s %s: cmpxchg double redo ", n, s->name); 438 #endif 439 440 return false; 441 } 442 443 #ifdef CONFIG_SLUB_DEBUG 444 /* 445 * Determine a map of object in use on a page. 446 * 447 * Node listlock must be held to guarantee that the page does 448 * not vanish from under us. 449 */ 450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 451 { 452 void *p; 453 void *addr = page_address(page); 454 455 for (p = page->freelist; p; p = get_freepointer(s, p)) 456 set_bit(slab_index(p, s, addr), map); 457 } 458 459 static inline unsigned int size_from_object(struct kmem_cache *s) 460 { 461 if (s->flags & SLAB_RED_ZONE) 462 return s->size - s->red_left_pad; 463 464 return s->size; 465 } 466 467 static inline void *restore_red_left(struct kmem_cache *s, void *p) 468 { 469 if (s->flags & SLAB_RED_ZONE) 470 p -= s->red_left_pad; 471 472 return p; 473 } 474 475 /* 476 * Debug settings: 477 */ 478 #if defined(CONFIG_SLUB_DEBUG_ON) 479 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 480 #else 481 static slab_flags_t slub_debug; 482 #endif 483 484 static char *slub_debug_slabs; 485 static int disable_higher_order_debug; 486 487 /* 488 * slub is about to manipulate internal object metadata. This memory lies 489 * outside the range of the allocated object, so accessing it would normally 490 * be reported by kasan as a bounds error. metadata_access_enable() is used 491 * to tell kasan that these accesses are OK. 492 */ 493 static inline void metadata_access_enable(void) 494 { 495 kasan_disable_current(); 496 } 497 498 static inline void metadata_access_disable(void) 499 { 500 kasan_enable_current(); 501 } 502 503 /* 504 * Object debugging 505 */ 506 507 /* Verify that a pointer has an address that is valid within a slab page */ 508 static inline int check_valid_pointer(struct kmem_cache *s, 509 struct page *page, void *object) 510 { 511 void *base; 512 513 if (!object) 514 return 1; 515 516 base = page_address(page); 517 object = kasan_reset_tag(object); 518 object = restore_red_left(s, object); 519 if (object < base || object >= base + page->objects * s->size || 520 (object - base) % s->size) { 521 return 0; 522 } 523 524 return 1; 525 } 526 527 static void print_section(char *level, char *text, u8 *addr, 528 unsigned int length) 529 { 530 metadata_access_enable(); 531 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 532 length, 1); 533 metadata_access_disable(); 534 } 535 536 static struct track *get_track(struct kmem_cache *s, void *object, 537 enum track_item alloc) 538 { 539 struct track *p; 540 541 if (s->offset) 542 p = object + s->offset + sizeof(void *); 543 else 544 p = object + s->inuse; 545 546 return p + alloc; 547 } 548 549 static void set_track(struct kmem_cache *s, void *object, 550 enum track_item alloc, unsigned long addr) 551 { 552 struct track *p = get_track(s, object, alloc); 553 554 if (addr) { 555 #ifdef CONFIG_STACKTRACE 556 unsigned int nr_entries; 557 558 metadata_access_enable(); 559 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3); 560 metadata_access_disable(); 561 562 if (nr_entries < TRACK_ADDRS_COUNT) 563 p->addrs[nr_entries] = 0; 564 #endif 565 p->addr = addr; 566 p->cpu = smp_processor_id(); 567 p->pid = current->pid; 568 p->when = jiffies; 569 } else { 570 memset(p, 0, sizeof(struct track)); 571 } 572 } 573 574 static void init_tracking(struct kmem_cache *s, void *object) 575 { 576 if (!(s->flags & SLAB_STORE_USER)) 577 return; 578 579 set_track(s, object, TRACK_FREE, 0UL); 580 set_track(s, object, TRACK_ALLOC, 0UL); 581 } 582 583 static void print_track(const char *s, struct track *t, unsigned long pr_time) 584 { 585 if (!t->addr) 586 return; 587 588 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 589 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 590 #ifdef CONFIG_STACKTRACE 591 { 592 int i; 593 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 594 if (t->addrs[i]) 595 pr_err("\t%pS\n", (void *)t->addrs[i]); 596 else 597 break; 598 } 599 #endif 600 } 601 602 static void print_tracking(struct kmem_cache *s, void *object) 603 { 604 unsigned long pr_time = jiffies; 605 if (!(s->flags & SLAB_STORE_USER)) 606 return; 607 608 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 609 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 610 } 611 612 static void print_page_info(struct page *page) 613 { 614 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 615 page, page->objects, page->inuse, page->freelist, page->flags); 616 617 } 618 619 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 620 { 621 struct va_format vaf; 622 va_list args; 623 624 va_start(args, fmt); 625 vaf.fmt = fmt; 626 vaf.va = &args; 627 pr_err("=============================================================================\n"); 628 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 629 pr_err("-----------------------------------------------------------------------------\n\n"); 630 631 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 632 va_end(args); 633 } 634 635 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 636 { 637 struct va_format vaf; 638 va_list args; 639 640 va_start(args, fmt); 641 vaf.fmt = fmt; 642 vaf.va = &args; 643 pr_err("FIX %s: %pV\n", s->name, &vaf); 644 va_end(args); 645 } 646 647 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 648 { 649 unsigned int off; /* Offset of last byte */ 650 u8 *addr = page_address(page); 651 652 print_tracking(s, p); 653 654 print_page_info(page); 655 656 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 657 p, p - addr, get_freepointer(s, p)); 658 659 if (s->flags & SLAB_RED_ZONE) 660 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 661 s->red_left_pad); 662 else if (p > addr + 16) 663 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 664 665 print_section(KERN_ERR, "Object ", p, 666 min_t(unsigned int, s->object_size, PAGE_SIZE)); 667 if (s->flags & SLAB_RED_ZONE) 668 print_section(KERN_ERR, "Redzone ", p + s->object_size, 669 s->inuse - s->object_size); 670 671 if (s->offset) 672 off = s->offset + sizeof(void *); 673 else 674 off = s->inuse; 675 676 if (s->flags & SLAB_STORE_USER) 677 off += 2 * sizeof(struct track); 678 679 off += kasan_metadata_size(s); 680 681 if (off != size_from_object(s)) 682 /* Beginning of the filler is the free pointer */ 683 print_section(KERN_ERR, "Padding ", p + off, 684 size_from_object(s) - off); 685 686 dump_stack(); 687 } 688 689 void object_err(struct kmem_cache *s, struct page *page, 690 u8 *object, char *reason) 691 { 692 slab_bug(s, "%s", reason); 693 print_trailer(s, page, object); 694 } 695 696 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 697 const char *fmt, ...) 698 { 699 va_list args; 700 char buf[100]; 701 702 va_start(args, fmt); 703 vsnprintf(buf, sizeof(buf), fmt, args); 704 va_end(args); 705 slab_bug(s, "%s", buf); 706 print_page_info(page); 707 dump_stack(); 708 } 709 710 static void init_object(struct kmem_cache *s, void *object, u8 val) 711 { 712 u8 *p = object; 713 714 if (s->flags & SLAB_RED_ZONE) 715 memset(p - s->red_left_pad, val, s->red_left_pad); 716 717 if (s->flags & __OBJECT_POISON) { 718 memset(p, POISON_FREE, s->object_size - 1); 719 p[s->object_size - 1] = POISON_END; 720 } 721 722 if (s->flags & SLAB_RED_ZONE) 723 memset(p + s->object_size, val, s->inuse - s->object_size); 724 } 725 726 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 727 void *from, void *to) 728 { 729 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 730 memset(from, data, to - from); 731 } 732 733 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 734 u8 *object, char *what, 735 u8 *start, unsigned int value, unsigned int bytes) 736 { 737 u8 *fault; 738 u8 *end; 739 740 metadata_access_enable(); 741 fault = memchr_inv(start, value, bytes); 742 metadata_access_disable(); 743 if (!fault) 744 return 1; 745 746 end = start + bytes; 747 while (end > fault && end[-1] == value) 748 end--; 749 750 slab_bug(s, "%s overwritten", what); 751 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 752 fault, end - 1, fault[0], value); 753 print_trailer(s, page, object); 754 755 restore_bytes(s, what, value, fault, end); 756 return 0; 757 } 758 759 /* 760 * Object layout: 761 * 762 * object address 763 * Bytes of the object to be managed. 764 * If the freepointer may overlay the object then the free 765 * pointer is the first word of the object. 766 * 767 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 768 * 0xa5 (POISON_END) 769 * 770 * object + s->object_size 771 * Padding to reach word boundary. This is also used for Redzoning. 772 * Padding is extended by another word if Redzoning is enabled and 773 * object_size == inuse. 774 * 775 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 776 * 0xcc (RED_ACTIVE) for objects in use. 777 * 778 * object + s->inuse 779 * Meta data starts here. 780 * 781 * A. Free pointer (if we cannot overwrite object on free) 782 * B. Tracking data for SLAB_STORE_USER 783 * C. Padding to reach required alignment boundary or at mininum 784 * one word if debugging is on to be able to detect writes 785 * before the word boundary. 786 * 787 * Padding is done using 0x5a (POISON_INUSE) 788 * 789 * object + s->size 790 * Nothing is used beyond s->size. 791 * 792 * If slabcaches are merged then the object_size and inuse boundaries are mostly 793 * ignored. And therefore no slab options that rely on these boundaries 794 * may be used with merged slabcaches. 795 */ 796 797 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 798 { 799 unsigned long off = s->inuse; /* The end of info */ 800 801 if (s->offset) 802 /* Freepointer is placed after the object. */ 803 off += sizeof(void *); 804 805 if (s->flags & SLAB_STORE_USER) 806 /* We also have user information there */ 807 off += 2 * sizeof(struct track); 808 809 off += kasan_metadata_size(s); 810 811 if (size_from_object(s) == off) 812 return 1; 813 814 return check_bytes_and_report(s, page, p, "Object padding", 815 p + off, POISON_INUSE, size_from_object(s) - off); 816 } 817 818 /* Check the pad bytes at the end of a slab page */ 819 static int slab_pad_check(struct kmem_cache *s, struct page *page) 820 { 821 u8 *start; 822 u8 *fault; 823 u8 *end; 824 u8 *pad; 825 int length; 826 int remainder; 827 828 if (!(s->flags & SLAB_POISON)) 829 return 1; 830 831 start = page_address(page); 832 length = PAGE_SIZE << compound_order(page); 833 end = start + length; 834 remainder = length % s->size; 835 if (!remainder) 836 return 1; 837 838 pad = end - remainder; 839 metadata_access_enable(); 840 fault = memchr_inv(pad, POISON_INUSE, remainder); 841 metadata_access_disable(); 842 if (!fault) 843 return 1; 844 while (end > fault && end[-1] == POISON_INUSE) 845 end--; 846 847 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 848 print_section(KERN_ERR, "Padding ", pad, remainder); 849 850 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 851 return 0; 852 } 853 854 static int check_object(struct kmem_cache *s, struct page *page, 855 void *object, u8 val) 856 { 857 u8 *p = object; 858 u8 *endobject = object + s->object_size; 859 860 if (s->flags & SLAB_RED_ZONE) { 861 if (!check_bytes_and_report(s, page, object, "Redzone", 862 object - s->red_left_pad, val, s->red_left_pad)) 863 return 0; 864 865 if (!check_bytes_and_report(s, page, object, "Redzone", 866 endobject, val, s->inuse - s->object_size)) 867 return 0; 868 } else { 869 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 870 check_bytes_and_report(s, page, p, "Alignment padding", 871 endobject, POISON_INUSE, 872 s->inuse - s->object_size); 873 } 874 } 875 876 if (s->flags & SLAB_POISON) { 877 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 878 (!check_bytes_and_report(s, page, p, "Poison", p, 879 POISON_FREE, s->object_size - 1) || 880 !check_bytes_and_report(s, page, p, "Poison", 881 p + s->object_size - 1, POISON_END, 1))) 882 return 0; 883 /* 884 * check_pad_bytes cleans up on its own. 885 */ 886 check_pad_bytes(s, page, p); 887 } 888 889 if (!s->offset && val == SLUB_RED_ACTIVE) 890 /* 891 * Object and freepointer overlap. Cannot check 892 * freepointer while object is allocated. 893 */ 894 return 1; 895 896 /* Check free pointer validity */ 897 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 898 object_err(s, page, p, "Freepointer corrupt"); 899 /* 900 * No choice but to zap it and thus lose the remainder 901 * of the free objects in this slab. May cause 902 * another error because the object count is now wrong. 903 */ 904 set_freepointer(s, p, NULL); 905 return 0; 906 } 907 return 1; 908 } 909 910 static int check_slab(struct kmem_cache *s, struct page *page) 911 { 912 int maxobj; 913 914 VM_BUG_ON(!irqs_disabled()); 915 916 if (!PageSlab(page)) { 917 slab_err(s, page, "Not a valid slab page"); 918 return 0; 919 } 920 921 maxobj = order_objects(compound_order(page), s->size); 922 if (page->objects > maxobj) { 923 slab_err(s, page, "objects %u > max %u", 924 page->objects, maxobj); 925 return 0; 926 } 927 if (page->inuse > page->objects) { 928 slab_err(s, page, "inuse %u > max %u", 929 page->inuse, page->objects); 930 return 0; 931 } 932 /* Slab_pad_check fixes things up after itself */ 933 slab_pad_check(s, page); 934 return 1; 935 } 936 937 /* 938 * Determine if a certain object on a page is on the freelist. Must hold the 939 * slab lock to guarantee that the chains are in a consistent state. 940 */ 941 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 942 { 943 int nr = 0; 944 void *fp; 945 void *object = NULL; 946 int max_objects; 947 948 fp = page->freelist; 949 while (fp && nr <= page->objects) { 950 if (fp == search) 951 return 1; 952 if (!check_valid_pointer(s, page, fp)) { 953 if (object) { 954 object_err(s, page, object, 955 "Freechain corrupt"); 956 set_freepointer(s, object, NULL); 957 } else { 958 slab_err(s, page, "Freepointer corrupt"); 959 page->freelist = NULL; 960 page->inuse = page->objects; 961 slab_fix(s, "Freelist cleared"); 962 return 0; 963 } 964 break; 965 } 966 object = fp; 967 fp = get_freepointer(s, object); 968 nr++; 969 } 970 971 max_objects = order_objects(compound_order(page), s->size); 972 if (max_objects > MAX_OBJS_PER_PAGE) 973 max_objects = MAX_OBJS_PER_PAGE; 974 975 if (page->objects != max_objects) { 976 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 977 page->objects, max_objects); 978 page->objects = max_objects; 979 slab_fix(s, "Number of objects adjusted."); 980 } 981 if (page->inuse != page->objects - nr) { 982 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 983 page->inuse, page->objects - nr); 984 page->inuse = page->objects - nr; 985 slab_fix(s, "Object count adjusted."); 986 } 987 return search == NULL; 988 } 989 990 static void trace(struct kmem_cache *s, struct page *page, void *object, 991 int alloc) 992 { 993 if (s->flags & SLAB_TRACE) { 994 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 995 s->name, 996 alloc ? "alloc" : "free", 997 object, page->inuse, 998 page->freelist); 999 1000 if (!alloc) 1001 print_section(KERN_INFO, "Object ", (void *)object, 1002 s->object_size); 1003 1004 dump_stack(); 1005 } 1006 } 1007 1008 /* 1009 * Tracking of fully allocated slabs for debugging purposes. 1010 */ 1011 static void add_full(struct kmem_cache *s, 1012 struct kmem_cache_node *n, struct page *page) 1013 { 1014 if (!(s->flags & SLAB_STORE_USER)) 1015 return; 1016 1017 lockdep_assert_held(&n->list_lock); 1018 list_add(&page->slab_list, &n->full); 1019 } 1020 1021 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1022 { 1023 if (!(s->flags & SLAB_STORE_USER)) 1024 return; 1025 1026 lockdep_assert_held(&n->list_lock); 1027 list_del(&page->slab_list); 1028 } 1029 1030 /* Tracking of the number of slabs for debugging purposes */ 1031 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1032 { 1033 struct kmem_cache_node *n = get_node(s, node); 1034 1035 return atomic_long_read(&n->nr_slabs); 1036 } 1037 1038 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1039 { 1040 return atomic_long_read(&n->nr_slabs); 1041 } 1042 1043 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1044 { 1045 struct kmem_cache_node *n = get_node(s, node); 1046 1047 /* 1048 * May be called early in order to allocate a slab for the 1049 * kmem_cache_node structure. Solve the chicken-egg 1050 * dilemma by deferring the increment of the count during 1051 * bootstrap (see early_kmem_cache_node_alloc). 1052 */ 1053 if (likely(n)) { 1054 atomic_long_inc(&n->nr_slabs); 1055 atomic_long_add(objects, &n->total_objects); 1056 } 1057 } 1058 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1059 { 1060 struct kmem_cache_node *n = get_node(s, node); 1061 1062 atomic_long_dec(&n->nr_slabs); 1063 atomic_long_sub(objects, &n->total_objects); 1064 } 1065 1066 /* Object debug checks for alloc/free paths */ 1067 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1068 void *object) 1069 { 1070 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1071 return; 1072 1073 init_object(s, object, SLUB_RED_INACTIVE); 1074 init_tracking(s, object); 1075 } 1076 1077 static void setup_page_debug(struct kmem_cache *s, void *addr, int order) 1078 { 1079 if (!(s->flags & SLAB_POISON)) 1080 return; 1081 1082 metadata_access_enable(); 1083 memset(addr, POISON_INUSE, PAGE_SIZE << order); 1084 metadata_access_disable(); 1085 } 1086 1087 static inline int alloc_consistency_checks(struct kmem_cache *s, 1088 struct page *page, void *object) 1089 { 1090 if (!check_slab(s, page)) 1091 return 0; 1092 1093 if (!check_valid_pointer(s, page, object)) { 1094 object_err(s, page, object, "Freelist Pointer check fails"); 1095 return 0; 1096 } 1097 1098 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1099 return 0; 1100 1101 return 1; 1102 } 1103 1104 static noinline int alloc_debug_processing(struct kmem_cache *s, 1105 struct page *page, 1106 void *object, unsigned long addr) 1107 { 1108 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1109 if (!alloc_consistency_checks(s, page, object)) 1110 goto bad; 1111 } 1112 1113 /* Success perform special debug activities for allocs */ 1114 if (s->flags & SLAB_STORE_USER) 1115 set_track(s, object, TRACK_ALLOC, addr); 1116 trace(s, page, object, 1); 1117 init_object(s, object, SLUB_RED_ACTIVE); 1118 return 1; 1119 1120 bad: 1121 if (PageSlab(page)) { 1122 /* 1123 * If this is a slab page then lets do the best we can 1124 * to avoid issues in the future. Marking all objects 1125 * as used avoids touching the remaining objects. 1126 */ 1127 slab_fix(s, "Marking all objects used"); 1128 page->inuse = page->objects; 1129 page->freelist = NULL; 1130 } 1131 return 0; 1132 } 1133 1134 static inline int free_consistency_checks(struct kmem_cache *s, 1135 struct page *page, void *object, unsigned long addr) 1136 { 1137 if (!check_valid_pointer(s, page, object)) { 1138 slab_err(s, page, "Invalid object pointer 0x%p", object); 1139 return 0; 1140 } 1141 1142 if (on_freelist(s, page, object)) { 1143 object_err(s, page, object, "Object already free"); 1144 return 0; 1145 } 1146 1147 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1148 return 0; 1149 1150 if (unlikely(s != page->slab_cache)) { 1151 if (!PageSlab(page)) { 1152 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1153 object); 1154 } else if (!page->slab_cache) { 1155 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1156 object); 1157 dump_stack(); 1158 } else 1159 object_err(s, page, object, 1160 "page slab pointer corrupt."); 1161 return 0; 1162 } 1163 return 1; 1164 } 1165 1166 /* Supports checking bulk free of a constructed freelist */ 1167 static noinline int free_debug_processing( 1168 struct kmem_cache *s, struct page *page, 1169 void *head, void *tail, int bulk_cnt, 1170 unsigned long addr) 1171 { 1172 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1173 void *object = head; 1174 int cnt = 0; 1175 unsigned long uninitialized_var(flags); 1176 int ret = 0; 1177 1178 spin_lock_irqsave(&n->list_lock, flags); 1179 slab_lock(page); 1180 1181 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1182 if (!check_slab(s, page)) 1183 goto out; 1184 } 1185 1186 next_object: 1187 cnt++; 1188 1189 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1190 if (!free_consistency_checks(s, page, object, addr)) 1191 goto out; 1192 } 1193 1194 if (s->flags & SLAB_STORE_USER) 1195 set_track(s, object, TRACK_FREE, addr); 1196 trace(s, page, object, 0); 1197 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1198 init_object(s, object, SLUB_RED_INACTIVE); 1199 1200 /* Reached end of constructed freelist yet? */ 1201 if (object != tail) { 1202 object = get_freepointer(s, object); 1203 goto next_object; 1204 } 1205 ret = 1; 1206 1207 out: 1208 if (cnt != bulk_cnt) 1209 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1210 bulk_cnt, cnt); 1211 1212 slab_unlock(page); 1213 spin_unlock_irqrestore(&n->list_lock, flags); 1214 if (!ret) 1215 slab_fix(s, "Object at 0x%p not freed", object); 1216 return ret; 1217 } 1218 1219 static int __init setup_slub_debug(char *str) 1220 { 1221 slub_debug = DEBUG_DEFAULT_FLAGS; 1222 if (*str++ != '=' || !*str) 1223 /* 1224 * No options specified. Switch on full debugging. 1225 */ 1226 goto out; 1227 1228 if (*str == ',') 1229 /* 1230 * No options but restriction on slabs. This means full 1231 * debugging for slabs matching a pattern. 1232 */ 1233 goto check_slabs; 1234 1235 slub_debug = 0; 1236 if (*str == '-') 1237 /* 1238 * Switch off all debugging measures. 1239 */ 1240 goto out; 1241 1242 /* 1243 * Determine which debug features should be switched on 1244 */ 1245 for (; *str && *str != ','; str++) { 1246 switch (tolower(*str)) { 1247 case 'f': 1248 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1249 break; 1250 case 'z': 1251 slub_debug |= SLAB_RED_ZONE; 1252 break; 1253 case 'p': 1254 slub_debug |= SLAB_POISON; 1255 break; 1256 case 'u': 1257 slub_debug |= SLAB_STORE_USER; 1258 break; 1259 case 't': 1260 slub_debug |= SLAB_TRACE; 1261 break; 1262 case 'a': 1263 slub_debug |= SLAB_FAILSLAB; 1264 break; 1265 case 'o': 1266 /* 1267 * Avoid enabling debugging on caches if its minimum 1268 * order would increase as a result. 1269 */ 1270 disable_higher_order_debug = 1; 1271 break; 1272 default: 1273 pr_err("slub_debug option '%c' unknown. skipped\n", 1274 *str); 1275 } 1276 } 1277 1278 check_slabs: 1279 if (*str == ',') 1280 slub_debug_slabs = str + 1; 1281 out: 1282 if ((static_branch_unlikely(&init_on_alloc) || 1283 static_branch_unlikely(&init_on_free)) && 1284 (slub_debug & SLAB_POISON)) 1285 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1286 return 1; 1287 } 1288 1289 __setup("slub_debug", setup_slub_debug); 1290 1291 /* 1292 * kmem_cache_flags - apply debugging options to the cache 1293 * @object_size: the size of an object without meta data 1294 * @flags: flags to set 1295 * @name: name of the cache 1296 * @ctor: constructor function 1297 * 1298 * Debug option(s) are applied to @flags. In addition to the debug 1299 * option(s), if a slab name (or multiple) is specified i.e. 1300 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1301 * then only the select slabs will receive the debug option(s). 1302 */ 1303 slab_flags_t kmem_cache_flags(unsigned int object_size, 1304 slab_flags_t flags, const char *name, 1305 void (*ctor)(void *)) 1306 { 1307 char *iter; 1308 size_t len; 1309 1310 /* If slub_debug = 0, it folds into the if conditional. */ 1311 if (!slub_debug_slabs) 1312 return flags | slub_debug; 1313 1314 len = strlen(name); 1315 iter = slub_debug_slabs; 1316 while (*iter) { 1317 char *end, *glob; 1318 size_t cmplen; 1319 1320 end = strchrnul(iter, ','); 1321 1322 glob = strnchr(iter, end - iter, '*'); 1323 if (glob) 1324 cmplen = glob - iter; 1325 else 1326 cmplen = max_t(size_t, len, (end - iter)); 1327 1328 if (!strncmp(name, iter, cmplen)) { 1329 flags |= slub_debug; 1330 break; 1331 } 1332 1333 if (!*end) 1334 break; 1335 iter = end + 1; 1336 } 1337 1338 return flags; 1339 } 1340 #else /* !CONFIG_SLUB_DEBUG */ 1341 static inline void setup_object_debug(struct kmem_cache *s, 1342 struct page *page, void *object) {} 1343 static inline void setup_page_debug(struct kmem_cache *s, 1344 void *addr, int order) {} 1345 1346 static inline int alloc_debug_processing(struct kmem_cache *s, 1347 struct page *page, void *object, unsigned long addr) { return 0; } 1348 1349 static inline int free_debug_processing( 1350 struct kmem_cache *s, struct page *page, 1351 void *head, void *tail, int bulk_cnt, 1352 unsigned long addr) { return 0; } 1353 1354 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1355 { return 1; } 1356 static inline int check_object(struct kmem_cache *s, struct page *page, 1357 void *object, u8 val) { return 1; } 1358 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1359 struct page *page) {} 1360 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1361 struct page *page) {} 1362 slab_flags_t kmem_cache_flags(unsigned int object_size, 1363 slab_flags_t flags, const char *name, 1364 void (*ctor)(void *)) 1365 { 1366 return flags; 1367 } 1368 #define slub_debug 0 1369 1370 #define disable_higher_order_debug 0 1371 1372 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1373 { return 0; } 1374 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1375 { return 0; } 1376 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1377 int objects) {} 1378 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1379 int objects) {} 1380 1381 #endif /* CONFIG_SLUB_DEBUG */ 1382 1383 /* 1384 * Hooks for other subsystems that check memory allocations. In a typical 1385 * production configuration these hooks all should produce no code at all. 1386 */ 1387 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1388 { 1389 ptr = kasan_kmalloc_large(ptr, size, flags); 1390 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1391 kmemleak_alloc(ptr, size, 1, flags); 1392 return ptr; 1393 } 1394 1395 static __always_inline void kfree_hook(void *x) 1396 { 1397 kmemleak_free(x); 1398 kasan_kfree_large(x, _RET_IP_); 1399 } 1400 1401 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1402 { 1403 kmemleak_free_recursive(x, s->flags); 1404 1405 /* 1406 * Trouble is that we may no longer disable interrupts in the fast path 1407 * So in order to make the debug calls that expect irqs to be 1408 * disabled we need to disable interrupts temporarily. 1409 */ 1410 #ifdef CONFIG_LOCKDEP 1411 { 1412 unsigned long flags; 1413 1414 local_irq_save(flags); 1415 debug_check_no_locks_freed(x, s->object_size); 1416 local_irq_restore(flags); 1417 } 1418 #endif 1419 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1420 debug_check_no_obj_freed(x, s->object_size); 1421 1422 /* KASAN might put x into memory quarantine, delaying its reuse */ 1423 return kasan_slab_free(s, x, _RET_IP_); 1424 } 1425 1426 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1427 void **head, void **tail) 1428 { 1429 1430 void *object; 1431 void *next = *head; 1432 void *old_tail = *tail ? *tail : *head; 1433 int rsize; 1434 1435 if (slab_want_init_on_free(s)) 1436 do { 1437 object = next; 1438 next = get_freepointer(s, object); 1439 /* 1440 * Clear the object and the metadata, but don't touch 1441 * the redzone. 1442 */ 1443 memset(object, 0, s->object_size); 1444 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad 1445 : 0; 1446 memset((char *)object + s->inuse, 0, 1447 s->size - s->inuse - rsize); 1448 set_freepointer(s, object, next); 1449 } while (object != old_tail); 1450 1451 /* 1452 * Compiler cannot detect this function can be removed if slab_free_hook() 1453 * evaluates to nothing. Thus, catch all relevant config debug options here. 1454 */ 1455 #if defined(CONFIG_LOCKDEP) || \ 1456 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1457 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1458 defined(CONFIG_KASAN) 1459 1460 next = *head; 1461 1462 /* Head and tail of the reconstructed freelist */ 1463 *head = NULL; 1464 *tail = NULL; 1465 1466 do { 1467 object = next; 1468 next = get_freepointer(s, object); 1469 /* If object's reuse doesn't have to be delayed */ 1470 if (!slab_free_hook(s, object)) { 1471 /* Move object to the new freelist */ 1472 set_freepointer(s, object, *head); 1473 *head = object; 1474 if (!*tail) 1475 *tail = object; 1476 } 1477 } while (object != old_tail); 1478 1479 if (*head == *tail) 1480 *tail = NULL; 1481 1482 return *head != NULL; 1483 #else 1484 return true; 1485 #endif 1486 } 1487 1488 static void *setup_object(struct kmem_cache *s, struct page *page, 1489 void *object) 1490 { 1491 setup_object_debug(s, page, object); 1492 object = kasan_init_slab_obj(s, object); 1493 if (unlikely(s->ctor)) { 1494 kasan_unpoison_object_data(s, object); 1495 s->ctor(object); 1496 kasan_poison_object_data(s, object); 1497 } 1498 return object; 1499 } 1500 1501 /* 1502 * Slab allocation and freeing 1503 */ 1504 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1505 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1506 { 1507 struct page *page; 1508 unsigned int order = oo_order(oo); 1509 1510 if (node == NUMA_NO_NODE) 1511 page = alloc_pages(flags, order); 1512 else 1513 page = __alloc_pages_node(node, flags, order); 1514 1515 if (page && charge_slab_page(page, flags, order, s)) { 1516 __free_pages(page, order); 1517 page = NULL; 1518 } 1519 1520 return page; 1521 } 1522 1523 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1524 /* Pre-initialize the random sequence cache */ 1525 static int init_cache_random_seq(struct kmem_cache *s) 1526 { 1527 unsigned int count = oo_objects(s->oo); 1528 int err; 1529 1530 /* Bailout if already initialised */ 1531 if (s->random_seq) 1532 return 0; 1533 1534 err = cache_random_seq_create(s, count, GFP_KERNEL); 1535 if (err) { 1536 pr_err("SLUB: Unable to initialize free list for %s\n", 1537 s->name); 1538 return err; 1539 } 1540 1541 /* Transform to an offset on the set of pages */ 1542 if (s->random_seq) { 1543 unsigned int i; 1544 1545 for (i = 0; i < count; i++) 1546 s->random_seq[i] *= s->size; 1547 } 1548 return 0; 1549 } 1550 1551 /* Initialize each random sequence freelist per cache */ 1552 static void __init init_freelist_randomization(void) 1553 { 1554 struct kmem_cache *s; 1555 1556 mutex_lock(&slab_mutex); 1557 1558 list_for_each_entry(s, &slab_caches, list) 1559 init_cache_random_seq(s); 1560 1561 mutex_unlock(&slab_mutex); 1562 } 1563 1564 /* Get the next entry on the pre-computed freelist randomized */ 1565 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1566 unsigned long *pos, void *start, 1567 unsigned long page_limit, 1568 unsigned long freelist_count) 1569 { 1570 unsigned int idx; 1571 1572 /* 1573 * If the target page allocation failed, the number of objects on the 1574 * page might be smaller than the usual size defined by the cache. 1575 */ 1576 do { 1577 idx = s->random_seq[*pos]; 1578 *pos += 1; 1579 if (*pos >= freelist_count) 1580 *pos = 0; 1581 } while (unlikely(idx >= page_limit)); 1582 1583 return (char *)start + idx; 1584 } 1585 1586 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1587 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1588 { 1589 void *start; 1590 void *cur; 1591 void *next; 1592 unsigned long idx, pos, page_limit, freelist_count; 1593 1594 if (page->objects < 2 || !s->random_seq) 1595 return false; 1596 1597 freelist_count = oo_objects(s->oo); 1598 pos = get_random_int() % freelist_count; 1599 1600 page_limit = page->objects * s->size; 1601 start = fixup_red_left(s, page_address(page)); 1602 1603 /* First entry is used as the base of the freelist */ 1604 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1605 freelist_count); 1606 cur = setup_object(s, page, cur); 1607 page->freelist = cur; 1608 1609 for (idx = 1; idx < page->objects; idx++) { 1610 next = next_freelist_entry(s, page, &pos, start, page_limit, 1611 freelist_count); 1612 next = setup_object(s, page, next); 1613 set_freepointer(s, cur, next); 1614 cur = next; 1615 } 1616 set_freepointer(s, cur, NULL); 1617 1618 return true; 1619 } 1620 #else 1621 static inline int init_cache_random_seq(struct kmem_cache *s) 1622 { 1623 return 0; 1624 } 1625 static inline void init_freelist_randomization(void) { } 1626 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1627 { 1628 return false; 1629 } 1630 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1631 1632 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1633 { 1634 struct page *page; 1635 struct kmem_cache_order_objects oo = s->oo; 1636 gfp_t alloc_gfp; 1637 void *start, *p, *next; 1638 int idx, order; 1639 bool shuffle; 1640 1641 flags &= gfp_allowed_mask; 1642 1643 if (gfpflags_allow_blocking(flags)) 1644 local_irq_enable(); 1645 1646 flags |= s->allocflags; 1647 1648 /* 1649 * Let the initial higher-order allocation fail under memory pressure 1650 * so we fall-back to the minimum order allocation. 1651 */ 1652 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1653 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1654 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1655 1656 page = alloc_slab_page(s, alloc_gfp, node, oo); 1657 if (unlikely(!page)) { 1658 oo = s->min; 1659 alloc_gfp = flags; 1660 /* 1661 * Allocation may have failed due to fragmentation. 1662 * Try a lower order alloc if possible 1663 */ 1664 page = alloc_slab_page(s, alloc_gfp, node, oo); 1665 if (unlikely(!page)) 1666 goto out; 1667 stat(s, ORDER_FALLBACK); 1668 } 1669 1670 page->objects = oo_objects(oo); 1671 1672 order = compound_order(page); 1673 page->slab_cache = s; 1674 __SetPageSlab(page); 1675 if (page_is_pfmemalloc(page)) 1676 SetPageSlabPfmemalloc(page); 1677 1678 kasan_poison_slab(page); 1679 1680 start = page_address(page); 1681 1682 setup_page_debug(s, start, order); 1683 1684 shuffle = shuffle_freelist(s, page); 1685 1686 if (!shuffle) { 1687 start = fixup_red_left(s, start); 1688 start = setup_object(s, page, start); 1689 page->freelist = start; 1690 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1691 next = p + s->size; 1692 next = setup_object(s, page, next); 1693 set_freepointer(s, p, next); 1694 p = next; 1695 } 1696 set_freepointer(s, p, NULL); 1697 } 1698 1699 page->inuse = page->objects; 1700 page->frozen = 1; 1701 1702 out: 1703 if (gfpflags_allow_blocking(flags)) 1704 local_irq_disable(); 1705 if (!page) 1706 return NULL; 1707 1708 inc_slabs_node(s, page_to_nid(page), page->objects); 1709 1710 return page; 1711 } 1712 1713 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1714 { 1715 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1716 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1717 flags &= ~GFP_SLAB_BUG_MASK; 1718 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1719 invalid_mask, &invalid_mask, flags, &flags); 1720 dump_stack(); 1721 } 1722 1723 return allocate_slab(s, 1724 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1725 } 1726 1727 static void __free_slab(struct kmem_cache *s, struct page *page) 1728 { 1729 int order = compound_order(page); 1730 int pages = 1 << order; 1731 1732 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1733 void *p; 1734 1735 slab_pad_check(s, page); 1736 for_each_object(p, s, page_address(page), 1737 page->objects) 1738 check_object(s, page, p, SLUB_RED_INACTIVE); 1739 } 1740 1741 __ClearPageSlabPfmemalloc(page); 1742 __ClearPageSlab(page); 1743 1744 page->mapping = NULL; 1745 if (current->reclaim_state) 1746 current->reclaim_state->reclaimed_slab += pages; 1747 uncharge_slab_page(page, order, s); 1748 __free_pages(page, order); 1749 } 1750 1751 static void rcu_free_slab(struct rcu_head *h) 1752 { 1753 struct page *page = container_of(h, struct page, rcu_head); 1754 1755 __free_slab(page->slab_cache, page); 1756 } 1757 1758 static void free_slab(struct kmem_cache *s, struct page *page) 1759 { 1760 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1761 call_rcu(&page->rcu_head, rcu_free_slab); 1762 } else 1763 __free_slab(s, page); 1764 } 1765 1766 static void discard_slab(struct kmem_cache *s, struct page *page) 1767 { 1768 dec_slabs_node(s, page_to_nid(page), page->objects); 1769 free_slab(s, page); 1770 } 1771 1772 /* 1773 * Management of partially allocated slabs. 1774 */ 1775 static inline void 1776 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1777 { 1778 n->nr_partial++; 1779 if (tail == DEACTIVATE_TO_TAIL) 1780 list_add_tail(&page->slab_list, &n->partial); 1781 else 1782 list_add(&page->slab_list, &n->partial); 1783 } 1784 1785 static inline void add_partial(struct kmem_cache_node *n, 1786 struct page *page, int tail) 1787 { 1788 lockdep_assert_held(&n->list_lock); 1789 __add_partial(n, page, tail); 1790 } 1791 1792 static inline void remove_partial(struct kmem_cache_node *n, 1793 struct page *page) 1794 { 1795 lockdep_assert_held(&n->list_lock); 1796 list_del(&page->slab_list); 1797 n->nr_partial--; 1798 } 1799 1800 /* 1801 * Remove slab from the partial list, freeze it and 1802 * return the pointer to the freelist. 1803 * 1804 * Returns a list of objects or NULL if it fails. 1805 */ 1806 static inline void *acquire_slab(struct kmem_cache *s, 1807 struct kmem_cache_node *n, struct page *page, 1808 int mode, int *objects) 1809 { 1810 void *freelist; 1811 unsigned long counters; 1812 struct page new; 1813 1814 lockdep_assert_held(&n->list_lock); 1815 1816 /* 1817 * Zap the freelist and set the frozen bit. 1818 * The old freelist is the list of objects for the 1819 * per cpu allocation list. 1820 */ 1821 freelist = page->freelist; 1822 counters = page->counters; 1823 new.counters = counters; 1824 *objects = new.objects - new.inuse; 1825 if (mode) { 1826 new.inuse = page->objects; 1827 new.freelist = NULL; 1828 } else { 1829 new.freelist = freelist; 1830 } 1831 1832 VM_BUG_ON(new.frozen); 1833 new.frozen = 1; 1834 1835 if (!__cmpxchg_double_slab(s, page, 1836 freelist, counters, 1837 new.freelist, new.counters, 1838 "acquire_slab")) 1839 return NULL; 1840 1841 remove_partial(n, page); 1842 WARN_ON(!freelist); 1843 return freelist; 1844 } 1845 1846 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1847 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1848 1849 /* 1850 * Try to allocate a partial slab from a specific node. 1851 */ 1852 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1853 struct kmem_cache_cpu *c, gfp_t flags) 1854 { 1855 struct page *page, *page2; 1856 void *object = NULL; 1857 unsigned int available = 0; 1858 int objects; 1859 1860 /* 1861 * Racy check. If we mistakenly see no partial slabs then we 1862 * just allocate an empty slab. If we mistakenly try to get a 1863 * partial slab and there is none available then get_partials() 1864 * will return NULL. 1865 */ 1866 if (!n || !n->nr_partial) 1867 return NULL; 1868 1869 spin_lock(&n->list_lock); 1870 list_for_each_entry_safe(page, page2, &n->partial, slab_list) { 1871 void *t; 1872 1873 if (!pfmemalloc_match(page, flags)) 1874 continue; 1875 1876 t = acquire_slab(s, n, page, object == NULL, &objects); 1877 if (!t) 1878 break; 1879 1880 available += objects; 1881 if (!object) { 1882 c->page = page; 1883 stat(s, ALLOC_FROM_PARTIAL); 1884 object = t; 1885 } else { 1886 put_cpu_partial(s, page, 0); 1887 stat(s, CPU_PARTIAL_NODE); 1888 } 1889 if (!kmem_cache_has_cpu_partial(s) 1890 || available > slub_cpu_partial(s) / 2) 1891 break; 1892 1893 } 1894 spin_unlock(&n->list_lock); 1895 return object; 1896 } 1897 1898 /* 1899 * Get a page from somewhere. Search in increasing NUMA distances. 1900 */ 1901 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1902 struct kmem_cache_cpu *c) 1903 { 1904 #ifdef CONFIG_NUMA 1905 struct zonelist *zonelist; 1906 struct zoneref *z; 1907 struct zone *zone; 1908 enum zone_type high_zoneidx = gfp_zone(flags); 1909 void *object; 1910 unsigned int cpuset_mems_cookie; 1911 1912 /* 1913 * The defrag ratio allows a configuration of the tradeoffs between 1914 * inter node defragmentation and node local allocations. A lower 1915 * defrag_ratio increases the tendency to do local allocations 1916 * instead of attempting to obtain partial slabs from other nodes. 1917 * 1918 * If the defrag_ratio is set to 0 then kmalloc() always 1919 * returns node local objects. If the ratio is higher then kmalloc() 1920 * may return off node objects because partial slabs are obtained 1921 * from other nodes and filled up. 1922 * 1923 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1924 * (which makes defrag_ratio = 1000) then every (well almost) 1925 * allocation will first attempt to defrag slab caches on other nodes. 1926 * This means scanning over all nodes to look for partial slabs which 1927 * may be expensive if we do it every time we are trying to find a slab 1928 * with available objects. 1929 */ 1930 if (!s->remote_node_defrag_ratio || 1931 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1932 return NULL; 1933 1934 do { 1935 cpuset_mems_cookie = read_mems_allowed_begin(); 1936 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1937 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1938 struct kmem_cache_node *n; 1939 1940 n = get_node(s, zone_to_nid(zone)); 1941 1942 if (n && cpuset_zone_allowed(zone, flags) && 1943 n->nr_partial > s->min_partial) { 1944 object = get_partial_node(s, n, c, flags); 1945 if (object) { 1946 /* 1947 * Don't check read_mems_allowed_retry() 1948 * here - if mems_allowed was updated in 1949 * parallel, that was a harmless race 1950 * between allocation and the cpuset 1951 * update 1952 */ 1953 return object; 1954 } 1955 } 1956 } 1957 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1958 #endif /* CONFIG_NUMA */ 1959 return NULL; 1960 } 1961 1962 /* 1963 * Get a partial page, lock it and return it. 1964 */ 1965 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1966 struct kmem_cache_cpu *c) 1967 { 1968 void *object; 1969 int searchnode = node; 1970 1971 if (node == NUMA_NO_NODE) 1972 searchnode = numa_mem_id(); 1973 else if (!node_present_pages(node)) 1974 searchnode = node_to_mem_node(node); 1975 1976 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1977 if (object || node != NUMA_NO_NODE) 1978 return object; 1979 1980 return get_any_partial(s, flags, c); 1981 } 1982 1983 #ifdef CONFIG_PREEMPT 1984 /* 1985 * Calculate the next globally unique transaction for disambiguiation 1986 * during cmpxchg. The transactions start with the cpu number and are then 1987 * incremented by CONFIG_NR_CPUS. 1988 */ 1989 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1990 #else 1991 /* 1992 * No preemption supported therefore also no need to check for 1993 * different cpus. 1994 */ 1995 #define TID_STEP 1 1996 #endif 1997 1998 static inline unsigned long next_tid(unsigned long tid) 1999 { 2000 return tid + TID_STEP; 2001 } 2002 2003 static inline unsigned int tid_to_cpu(unsigned long tid) 2004 { 2005 return tid % TID_STEP; 2006 } 2007 2008 static inline unsigned long tid_to_event(unsigned long tid) 2009 { 2010 return tid / TID_STEP; 2011 } 2012 2013 static inline unsigned int init_tid(int cpu) 2014 { 2015 return cpu; 2016 } 2017 2018 static inline void note_cmpxchg_failure(const char *n, 2019 const struct kmem_cache *s, unsigned long tid) 2020 { 2021 #ifdef SLUB_DEBUG_CMPXCHG 2022 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2023 2024 pr_info("%s %s: cmpxchg redo ", n, s->name); 2025 2026 #ifdef CONFIG_PREEMPT 2027 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2028 pr_warn("due to cpu change %d -> %d\n", 2029 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2030 else 2031 #endif 2032 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2033 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2034 tid_to_event(tid), tid_to_event(actual_tid)); 2035 else 2036 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2037 actual_tid, tid, next_tid(tid)); 2038 #endif 2039 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2040 } 2041 2042 static void init_kmem_cache_cpus(struct kmem_cache *s) 2043 { 2044 int cpu; 2045 2046 for_each_possible_cpu(cpu) 2047 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2048 } 2049 2050 /* 2051 * Remove the cpu slab 2052 */ 2053 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2054 void *freelist, struct kmem_cache_cpu *c) 2055 { 2056 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2057 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2058 int lock = 0; 2059 enum slab_modes l = M_NONE, m = M_NONE; 2060 void *nextfree; 2061 int tail = DEACTIVATE_TO_HEAD; 2062 struct page new; 2063 struct page old; 2064 2065 if (page->freelist) { 2066 stat(s, DEACTIVATE_REMOTE_FREES); 2067 tail = DEACTIVATE_TO_TAIL; 2068 } 2069 2070 /* 2071 * Stage one: Free all available per cpu objects back 2072 * to the page freelist while it is still frozen. Leave the 2073 * last one. 2074 * 2075 * There is no need to take the list->lock because the page 2076 * is still frozen. 2077 */ 2078 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2079 void *prior; 2080 unsigned long counters; 2081 2082 do { 2083 prior = page->freelist; 2084 counters = page->counters; 2085 set_freepointer(s, freelist, prior); 2086 new.counters = counters; 2087 new.inuse--; 2088 VM_BUG_ON(!new.frozen); 2089 2090 } while (!__cmpxchg_double_slab(s, page, 2091 prior, counters, 2092 freelist, new.counters, 2093 "drain percpu freelist")); 2094 2095 freelist = nextfree; 2096 } 2097 2098 /* 2099 * Stage two: Ensure that the page is unfrozen while the 2100 * list presence reflects the actual number of objects 2101 * during unfreeze. 2102 * 2103 * We setup the list membership and then perform a cmpxchg 2104 * with the count. If there is a mismatch then the page 2105 * is not unfrozen but the page is on the wrong list. 2106 * 2107 * Then we restart the process which may have to remove 2108 * the page from the list that we just put it on again 2109 * because the number of objects in the slab may have 2110 * changed. 2111 */ 2112 redo: 2113 2114 old.freelist = page->freelist; 2115 old.counters = page->counters; 2116 VM_BUG_ON(!old.frozen); 2117 2118 /* Determine target state of the slab */ 2119 new.counters = old.counters; 2120 if (freelist) { 2121 new.inuse--; 2122 set_freepointer(s, freelist, old.freelist); 2123 new.freelist = freelist; 2124 } else 2125 new.freelist = old.freelist; 2126 2127 new.frozen = 0; 2128 2129 if (!new.inuse && n->nr_partial >= s->min_partial) 2130 m = M_FREE; 2131 else if (new.freelist) { 2132 m = M_PARTIAL; 2133 if (!lock) { 2134 lock = 1; 2135 /* 2136 * Taking the spinlock removes the possibility 2137 * that acquire_slab() will see a slab page that 2138 * is frozen 2139 */ 2140 spin_lock(&n->list_lock); 2141 } 2142 } else { 2143 m = M_FULL; 2144 if (kmem_cache_debug(s) && !lock) { 2145 lock = 1; 2146 /* 2147 * This also ensures that the scanning of full 2148 * slabs from diagnostic functions will not see 2149 * any frozen slabs. 2150 */ 2151 spin_lock(&n->list_lock); 2152 } 2153 } 2154 2155 if (l != m) { 2156 if (l == M_PARTIAL) 2157 remove_partial(n, page); 2158 else if (l == M_FULL) 2159 remove_full(s, n, page); 2160 2161 if (m == M_PARTIAL) 2162 add_partial(n, page, tail); 2163 else if (m == M_FULL) 2164 add_full(s, n, page); 2165 } 2166 2167 l = m; 2168 if (!__cmpxchg_double_slab(s, page, 2169 old.freelist, old.counters, 2170 new.freelist, new.counters, 2171 "unfreezing slab")) 2172 goto redo; 2173 2174 if (lock) 2175 spin_unlock(&n->list_lock); 2176 2177 if (m == M_PARTIAL) 2178 stat(s, tail); 2179 else if (m == M_FULL) 2180 stat(s, DEACTIVATE_FULL); 2181 else if (m == M_FREE) { 2182 stat(s, DEACTIVATE_EMPTY); 2183 discard_slab(s, page); 2184 stat(s, FREE_SLAB); 2185 } 2186 2187 c->page = NULL; 2188 c->freelist = NULL; 2189 } 2190 2191 /* 2192 * Unfreeze all the cpu partial slabs. 2193 * 2194 * This function must be called with interrupts disabled 2195 * for the cpu using c (or some other guarantee must be there 2196 * to guarantee no concurrent accesses). 2197 */ 2198 static void unfreeze_partials(struct kmem_cache *s, 2199 struct kmem_cache_cpu *c) 2200 { 2201 #ifdef CONFIG_SLUB_CPU_PARTIAL 2202 struct kmem_cache_node *n = NULL, *n2 = NULL; 2203 struct page *page, *discard_page = NULL; 2204 2205 while ((page = c->partial)) { 2206 struct page new; 2207 struct page old; 2208 2209 c->partial = page->next; 2210 2211 n2 = get_node(s, page_to_nid(page)); 2212 if (n != n2) { 2213 if (n) 2214 spin_unlock(&n->list_lock); 2215 2216 n = n2; 2217 spin_lock(&n->list_lock); 2218 } 2219 2220 do { 2221 2222 old.freelist = page->freelist; 2223 old.counters = page->counters; 2224 VM_BUG_ON(!old.frozen); 2225 2226 new.counters = old.counters; 2227 new.freelist = old.freelist; 2228 2229 new.frozen = 0; 2230 2231 } while (!__cmpxchg_double_slab(s, page, 2232 old.freelist, old.counters, 2233 new.freelist, new.counters, 2234 "unfreezing slab")); 2235 2236 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2237 page->next = discard_page; 2238 discard_page = page; 2239 } else { 2240 add_partial(n, page, DEACTIVATE_TO_TAIL); 2241 stat(s, FREE_ADD_PARTIAL); 2242 } 2243 } 2244 2245 if (n) 2246 spin_unlock(&n->list_lock); 2247 2248 while (discard_page) { 2249 page = discard_page; 2250 discard_page = discard_page->next; 2251 2252 stat(s, DEACTIVATE_EMPTY); 2253 discard_slab(s, page); 2254 stat(s, FREE_SLAB); 2255 } 2256 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2257 } 2258 2259 /* 2260 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2261 * partial page slot if available. 2262 * 2263 * If we did not find a slot then simply move all the partials to the 2264 * per node partial list. 2265 */ 2266 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2267 { 2268 #ifdef CONFIG_SLUB_CPU_PARTIAL 2269 struct page *oldpage; 2270 int pages; 2271 int pobjects; 2272 2273 preempt_disable(); 2274 do { 2275 pages = 0; 2276 pobjects = 0; 2277 oldpage = this_cpu_read(s->cpu_slab->partial); 2278 2279 if (oldpage) { 2280 pobjects = oldpage->pobjects; 2281 pages = oldpage->pages; 2282 if (drain && pobjects > s->cpu_partial) { 2283 unsigned long flags; 2284 /* 2285 * partial array is full. Move the existing 2286 * set to the per node partial list. 2287 */ 2288 local_irq_save(flags); 2289 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2290 local_irq_restore(flags); 2291 oldpage = NULL; 2292 pobjects = 0; 2293 pages = 0; 2294 stat(s, CPU_PARTIAL_DRAIN); 2295 } 2296 } 2297 2298 pages++; 2299 pobjects += page->objects - page->inuse; 2300 2301 page->pages = pages; 2302 page->pobjects = pobjects; 2303 page->next = oldpage; 2304 2305 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2306 != oldpage); 2307 if (unlikely(!s->cpu_partial)) { 2308 unsigned long flags; 2309 2310 local_irq_save(flags); 2311 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2312 local_irq_restore(flags); 2313 } 2314 preempt_enable(); 2315 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2316 } 2317 2318 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2319 { 2320 stat(s, CPUSLAB_FLUSH); 2321 deactivate_slab(s, c->page, c->freelist, c); 2322 2323 c->tid = next_tid(c->tid); 2324 } 2325 2326 /* 2327 * Flush cpu slab. 2328 * 2329 * Called from IPI handler with interrupts disabled. 2330 */ 2331 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2332 { 2333 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2334 2335 if (c->page) 2336 flush_slab(s, c); 2337 2338 unfreeze_partials(s, c); 2339 } 2340 2341 static void flush_cpu_slab(void *d) 2342 { 2343 struct kmem_cache *s = d; 2344 2345 __flush_cpu_slab(s, smp_processor_id()); 2346 } 2347 2348 static bool has_cpu_slab(int cpu, void *info) 2349 { 2350 struct kmem_cache *s = info; 2351 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2352 2353 return c->page || slub_percpu_partial(c); 2354 } 2355 2356 static void flush_all(struct kmem_cache *s) 2357 { 2358 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2359 } 2360 2361 /* 2362 * Use the cpu notifier to insure that the cpu slabs are flushed when 2363 * necessary. 2364 */ 2365 static int slub_cpu_dead(unsigned int cpu) 2366 { 2367 struct kmem_cache *s; 2368 unsigned long flags; 2369 2370 mutex_lock(&slab_mutex); 2371 list_for_each_entry(s, &slab_caches, list) { 2372 local_irq_save(flags); 2373 __flush_cpu_slab(s, cpu); 2374 local_irq_restore(flags); 2375 } 2376 mutex_unlock(&slab_mutex); 2377 return 0; 2378 } 2379 2380 /* 2381 * Check if the objects in a per cpu structure fit numa 2382 * locality expectations. 2383 */ 2384 static inline int node_match(struct page *page, int node) 2385 { 2386 #ifdef CONFIG_NUMA 2387 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2388 return 0; 2389 #endif 2390 return 1; 2391 } 2392 2393 #ifdef CONFIG_SLUB_DEBUG 2394 static int count_free(struct page *page) 2395 { 2396 return page->objects - page->inuse; 2397 } 2398 2399 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2400 { 2401 return atomic_long_read(&n->total_objects); 2402 } 2403 #endif /* CONFIG_SLUB_DEBUG */ 2404 2405 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2406 static unsigned long count_partial(struct kmem_cache_node *n, 2407 int (*get_count)(struct page *)) 2408 { 2409 unsigned long flags; 2410 unsigned long x = 0; 2411 struct page *page; 2412 2413 spin_lock_irqsave(&n->list_lock, flags); 2414 list_for_each_entry(page, &n->partial, slab_list) 2415 x += get_count(page); 2416 spin_unlock_irqrestore(&n->list_lock, flags); 2417 return x; 2418 } 2419 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2420 2421 static noinline void 2422 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2423 { 2424 #ifdef CONFIG_SLUB_DEBUG 2425 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2426 DEFAULT_RATELIMIT_BURST); 2427 int node; 2428 struct kmem_cache_node *n; 2429 2430 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2431 return; 2432 2433 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2434 nid, gfpflags, &gfpflags); 2435 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2436 s->name, s->object_size, s->size, oo_order(s->oo), 2437 oo_order(s->min)); 2438 2439 if (oo_order(s->min) > get_order(s->object_size)) 2440 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2441 s->name); 2442 2443 for_each_kmem_cache_node(s, node, n) { 2444 unsigned long nr_slabs; 2445 unsigned long nr_objs; 2446 unsigned long nr_free; 2447 2448 nr_free = count_partial(n, count_free); 2449 nr_slabs = node_nr_slabs(n); 2450 nr_objs = node_nr_objs(n); 2451 2452 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2453 node, nr_slabs, nr_objs, nr_free); 2454 } 2455 #endif 2456 } 2457 2458 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2459 int node, struct kmem_cache_cpu **pc) 2460 { 2461 void *freelist; 2462 struct kmem_cache_cpu *c = *pc; 2463 struct page *page; 2464 2465 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2466 2467 freelist = get_partial(s, flags, node, c); 2468 2469 if (freelist) 2470 return freelist; 2471 2472 page = new_slab(s, flags, node); 2473 if (page) { 2474 c = raw_cpu_ptr(s->cpu_slab); 2475 if (c->page) 2476 flush_slab(s, c); 2477 2478 /* 2479 * No other reference to the page yet so we can 2480 * muck around with it freely without cmpxchg 2481 */ 2482 freelist = page->freelist; 2483 page->freelist = NULL; 2484 2485 stat(s, ALLOC_SLAB); 2486 c->page = page; 2487 *pc = c; 2488 } 2489 2490 return freelist; 2491 } 2492 2493 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2494 { 2495 if (unlikely(PageSlabPfmemalloc(page))) 2496 return gfp_pfmemalloc_allowed(gfpflags); 2497 2498 return true; 2499 } 2500 2501 /* 2502 * Check the page->freelist of a page and either transfer the freelist to the 2503 * per cpu freelist or deactivate the page. 2504 * 2505 * The page is still frozen if the return value is not NULL. 2506 * 2507 * If this function returns NULL then the page has been unfrozen. 2508 * 2509 * This function must be called with interrupt disabled. 2510 */ 2511 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2512 { 2513 struct page new; 2514 unsigned long counters; 2515 void *freelist; 2516 2517 do { 2518 freelist = page->freelist; 2519 counters = page->counters; 2520 2521 new.counters = counters; 2522 VM_BUG_ON(!new.frozen); 2523 2524 new.inuse = page->objects; 2525 new.frozen = freelist != NULL; 2526 2527 } while (!__cmpxchg_double_slab(s, page, 2528 freelist, counters, 2529 NULL, new.counters, 2530 "get_freelist")); 2531 2532 return freelist; 2533 } 2534 2535 /* 2536 * Slow path. The lockless freelist is empty or we need to perform 2537 * debugging duties. 2538 * 2539 * Processing is still very fast if new objects have been freed to the 2540 * regular freelist. In that case we simply take over the regular freelist 2541 * as the lockless freelist and zap the regular freelist. 2542 * 2543 * If that is not working then we fall back to the partial lists. We take the 2544 * first element of the freelist as the object to allocate now and move the 2545 * rest of the freelist to the lockless freelist. 2546 * 2547 * And if we were unable to get a new slab from the partial slab lists then 2548 * we need to allocate a new slab. This is the slowest path since it involves 2549 * a call to the page allocator and the setup of a new slab. 2550 * 2551 * Version of __slab_alloc to use when we know that interrupts are 2552 * already disabled (which is the case for bulk allocation). 2553 */ 2554 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2555 unsigned long addr, struct kmem_cache_cpu *c) 2556 { 2557 void *freelist; 2558 struct page *page; 2559 2560 page = c->page; 2561 if (!page) 2562 goto new_slab; 2563 redo: 2564 2565 if (unlikely(!node_match(page, node))) { 2566 int searchnode = node; 2567 2568 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2569 searchnode = node_to_mem_node(node); 2570 2571 if (unlikely(!node_match(page, searchnode))) { 2572 stat(s, ALLOC_NODE_MISMATCH); 2573 deactivate_slab(s, page, c->freelist, c); 2574 goto new_slab; 2575 } 2576 } 2577 2578 /* 2579 * By rights, we should be searching for a slab page that was 2580 * PFMEMALLOC but right now, we are losing the pfmemalloc 2581 * information when the page leaves the per-cpu allocator 2582 */ 2583 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2584 deactivate_slab(s, page, c->freelist, c); 2585 goto new_slab; 2586 } 2587 2588 /* must check again c->freelist in case of cpu migration or IRQ */ 2589 freelist = c->freelist; 2590 if (freelist) 2591 goto load_freelist; 2592 2593 freelist = get_freelist(s, page); 2594 2595 if (!freelist) { 2596 c->page = NULL; 2597 stat(s, DEACTIVATE_BYPASS); 2598 goto new_slab; 2599 } 2600 2601 stat(s, ALLOC_REFILL); 2602 2603 load_freelist: 2604 /* 2605 * freelist is pointing to the list of objects to be used. 2606 * page is pointing to the page from which the objects are obtained. 2607 * That page must be frozen for per cpu allocations to work. 2608 */ 2609 VM_BUG_ON(!c->page->frozen); 2610 c->freelist = get_freepointer(s, freelist); 2611 c->tid = next_tid(c->tid); 2612 return freelist; 2613 2614 new_slab: 2615 2616 if (slub_percpu_partial(c)) { 2617 page = c->page = slub_percpu_partial(c); 2618 slub_set_percpu_partial(c, page); 2619 stat(s, CPU_PARTIAL_ALLOC); 2620 goto redo; 2621 } 2622 2623 freelist = new_slab_objects(s, gfpflags, node, &c); 2624 2625 if (unlikely(!freelist)) { 2626 slab_out_of_memory(s, gfpflags, node); 2627 return NULL; 2628 } 2629 2630 page = c->page; 2631 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2632 goto load_freelist; 2633 2634 /* Only entered in the debug case */ 2635 if (kmem_cache_debug(s) && 2636 !alloc_debug_processing(s, page, freelist, addr)) 2637 goto new_slab; /* Slab failed checks. Next slab needed */ 2638 2639 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2640 return freelist; 2641 } 2642 2643 /* 2644 * Another one that disabled interrupt and compensates for possible 2645 * cpu changes by refetching the per cpu area pointer. 2646 */ 2647 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2648 unsigned long addr, struct kmem_cache_cpu *c) 2649 { 2650 void *p; 2651 unsigned long flags; 2652 2653 local_irq_save(flags); 2654 #ifdef CONFIG_PREEMPT 2655 /* 2656 * We may have been preempted and rescheduled on a different 2657 * cpu before disabling interrupts. Need to reload cpu area 2658 * pointer. 2659 */ 2660 c = this_cpu_ptr(s->cpu_slab); 2661 #endif 2662 2663 p = ___slab_alloc(s, gfpflags, node, addr, c); 2664 local_irq_restore(flags); 2665 return p; 2666 } 2667 2668 /* 2669 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2670 * have the fastpath folded into their functions. So no function call 2671 * overhead for requests that can be satisfied on the fastpath. 2672 * 2673 * The fastpath works by first checking if the lockless freelist can be used. 2674 * If not then __slab_alloc is called for slow processing. 2675 * 2676 * Otherwise we can simply pick the next object from the lockless free list. 2677 */ 2678 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2679 gfp_t gfpflags, int node, unsigned long addr) 2680 { 2681 void *object; 2682 struct kmem_cache_cpu *c; 2683 struct page *page; 2684 unsigned long tid; 2685 2686 s = slab_pre_alloc_hook(s, gfpflags); 2687 if (!s) 2688 return NULL; 2689 redo: 2690 /* 2691 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2692 * enabled. We may switch back and forth between cpus while 2693 * reading from one cpu area. That does not matter as long 2694 * as we end up on the original cpu again when doing the cmpxchg. 2695 * 2696 * We should guarantee that tid and kmem_cache are retrieved on 2697 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2698 * to check if it is matched or not. 2699 */ 2700 do { 2701 tid = this_cpu_read(s->cpu_slab->tid); 2702 c = raw_cpu_ptr(s->cpu_slab); 2703 } while (IS_ENABLED(CONFIG_PREEMPT) && 2704 unlikely(tid != READ_ONCE(c->tid))); 2705 2706 /* 2707 * Irqless object alloc/free algorithm used here depends on sequence 2708 * of fetching cpu_slab's data. tid should be fetched before anything 2709 * on c to guarantee that object and page associated with previous tid 2710 * won't be used with current tid. If we fetch tid first, object and 2711 * page could be one associated with next tid and our alloc/free 2712 * request will be failed. In this case, we will retry. So, no problem. 2713 */ 2714 barrier(); 2715 2716 /* 2717 * The transaction ids are globally unique per cpu and per operation on 2718 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2719 * occurs on the right processor and that there was no operation on the 2720 * linked list in between. 2721 */ 2722 2723 object = c->freelist; 2724 page = c->page; 2725 if (unlikely(!object || !node_match(page, node))) { 2726 object = __slab_alloc(s, gfpflags, node, addr, c); 2727 stat(s, ALLOC_SLOWPATH); 2728 } else { 2729 void *next_object = get_freepointer_safe(s, object); 2730 2731 /* 2732 * The cmpxchg will only match if there was no additional 2733 * operation and if we are on the right processor. 2734 * 2735 * The cmpxchg does the following atomically (without lock 2736 * semantics!) 2737 * 1. Relocate first pointer to the current per cpu area. 2738 * 2. Verify that tid and freelist have not been changed 2739 * 3. If they were not changed replace tid and freelist 2740 * 2741 * Since this is without lock semantics the protection is only 2742 * against code executing on this cpu *not* from access by 2743 * other cpus. 2744 */ 2745 if (unlikely(!this_cpu_cmpxchg_double( 2746 s->cpu_slab->freelist, s->cpu_slab->tid, 2747 object, tid, 2748 next_object, next_tid(tid)))) { 2749 2750 note_cmpxchg_failure("slab_alloc", s, tid); 2751 goto redo; 2752 } 2753 prefetch_freepointer(s, next_object); 2754 stat(s, ALLOC_FASTPATH); 2755 } 2756 /* 2757 * If the object has been wiped upon free, make sure it's fully 2758 * initialized by zeroing out freelist pointer. 2759 */ 2760 if (unlikely(slab_want_init_on_free(s)) && object) 2761 memset(object + s->offset, 0, sizeof(void *)); 2762 2763 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) 2764 memset(object, 0, s->object_size); 2765 2766 slab_post_alloc_hook(s, gfpflags, 1, &object); 2767 2768 return object; 2769 } 2770 2771 static __always_inline void *slab_alloc(struct kmem_cache *s, 2772 gfp_t gfpflags, unsigned long addr) 2773 { 2774 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2775 } 2776 2777 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2778 { 2779 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2780 2781 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2782 s->size, gfpflags); 2783 2784 return ret; 2785 } 2786 EXPORT_SYMBOL(kmem_cache_alloc); 2787 2788 #ifdef CONFIG_TRACING 2789 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2790 { 2791 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2792 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2793 ret = kasan_kmalloc(s, ret, size, gfpflags); 2794 return ret; 2795 } 2796 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2797 #endif 2798 2799 #ifdef CONFIG_NUMA 2800 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2801 { 2802 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2803 2804 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2805 s->object_size, s->size, gfpflags, node); 2806 2807 return ret; 2808 } 2809 EXPORT_SYMBOL(kmem_cache_alloc_node); 2810 2811 #ifdef CONFIG_TRACING 2812 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2813 gfp_t gfpflags, 2814 int node, size_t size) 2815 { 2816 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2817 2818 trace_kmalloc_node(_RET_IP_, ret, 2819 size, s->size, gfpflags, node); 2820 2821 ret = kasan_kmalloc(s, ret, size, gfpflags); 2822 return ret; 2823 } 2824 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2825 #endif 2826 #endif /* CONFIG_NUMA */ 2827 2828 /* 2829 * Slow path handling. This may still be called frequently since objects 2830 * have a longer lifetime than the cpu slabs in most processing loads. 2831 * 2832 * So we still attempt to reduce cache line usage. Just take the slab 2833 * lock and free the item. If there is no additional partial page 2834 * handling required then we can return immediately. 2835 */ 2836 static void __slab_free(struct kmem_cache *s, struct page *page, 2837 void *head, void *tail, int cnt, 2838 unsigned long addr) 2839 2840 { 2841 void *prior; 2842 int was_frozen; 2843 struct page new; 2844 unsigned long counters; 2845 struct kmem_cache_node *n = NULL; 2846 unsigned long uninitialized_var(flags); 2847 2848 stat(s, FREE_SLOWPATH); 2849 2850 if (kmem_cache_debug(s) && 2851 !free_debug_processing(s, page, head, tail, cnt, addr)) 2852 return; 2853 2854 do { 2855 if (unlikely(n)) { 2856 spin_unlock_irqrestore(&n->list_lock, flags); 2857 n = NULL; 2858 } 2859 prior = page->freelist; 2860 counters = page->counters; 2861 set_freepointer(s, tail, prior); 2862 new.counters = counters; 2863 was_frozen = new.frozen; 2864 new.inuse -= cnt; 2865 if ((!new.inuse || !prior) && !was_frozen) { 2866 2867 if (kmem_cache_has_cpu_partial(s) && !prior) { 2868 2869 /* 2870 * Slab was on no list before and will be 2871 * partially empty 2872 * We can defer the list move and instead 2873 * freeze it. 2874 */ 2875 new.frozen = 1; 2876 2877 } else { /* Needs to be taken off a list */ 2878 2879 n = get_node(s, page_to_nid(page)); 2880 /* 2881 * Speculatively acquire the list_lock. 2882 * If the cmpxchg does not succeed then we may 2883 * drop the list_lock without any processing. 2884 * 2885 * Otherwise the list_lock will synchronize with 2886 * other processors updating the list of slabs. 2887 */ 2888 spin_lock_irqsave(&n->list_lock, flags); 2889 2890 } 2891 } 2892 2893 } while (!cmpxchg_double_slab(s, page, 2894 prior, counters, 2895 head, new.counters, 2896 "__slab_free")); 2897 2898 if (likely(!n)) { 2899 2900 /* 2901 * If we just froze the page then put it onto the 2902 * per cpu partial list. 2903 */ 2904 if (new.frozen && !was_frozen) { 2905 put_cpu_partial(s, page, 1); 2906 stat(s, CPU_PARTIAL_FREE); 2907 } 2908 /* 2909 * The list lock was not taken therefore no list 2910 * activity can be necessary. 2911 */ 2912 if (was_frozen) 2913 stat(s, FREE_FROZEN); 2914 return; 2915 } 2916 2917 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2918 goto slab_empty; 2919 2920 /* 2921 * Objects left in the slab. If it was not on the partial list before 2922 * then add it. 2923 */ 2924 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2925 remove_full(s, n, page); 2926 add_partial(n, page, DEACTIVATE_TO_TAIL); 2927 stat(s, FREE_ADD_PARTIAL); 2928 } 2929 spin_unlock_irqrestore(&n->list_lock, flags); 2930 return; 2931 2932 slab_empty: 2933 if (prior) { 2934 /* 2935 * Slab on the partial list. 2936 */ 2937 remove_partial(n, page); 2938 stat(s, FREE_REMOVE_PARTIAL); 2939 } else { 2940 /* Slab must be on the full list */ 2941 remove_full(s, n, page); 2942 } 2943 2944 spin_unlock_irqrestore(&n->list_lock, flags); 2945 stat(s, FREE_SLAB); 2946 discard_slab(s, page); 2947 } 2948 2949 /* 2950 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2951 * can perform fastpath freeing without additional function calls. 2952 * 2953 * The fastpath is only possible if we are freeing to the current cpu slab 2954 * of this processor. This typically the case if we have just allocated 2955 * the item before. 2956 * 2957 * If fastpath is not possible then fall back to __slab_free where we deal 2958 * with all sorts of special processing. 2959 * 2960 * Bulk free of a freelist with several objects (all pointing to the 2961 * same page) possible by specifying head and tail ptr, plus objects 2962 * count (cnt). Bulk free indicated by tail pointer being set. 2963 */ 2964 static __always_inline void do_slab_free(struct kmem_cache *s, 2965 struct page *page, void *head, void *tail, 2966 int cnt, unsigned long addr) 2967 { 2968 void *tail_obj = tail ? : head; 2969 struct kmem_cache_cpu *c; 2970 unsigned long tid; 2971 redo: 2972 /* 2973 * Determine the currently cpus per cpu slab. 2974 * The cpu may change afterward. However that does not matter since 2975 * data is retrieved via this pointer. If we are on the same cpu 2976 * during the cmpxchg then the free will succeed. 2977 */ 2978 do { 2979 tid = this_cpu_read(s->cpu_slab->tid); 2980 c = raw_cpu_ptr(s->cpu_slab); 2981 } while (IS_ENABLED(CONFIG_PREEMPT) && 2982 unlikely(tid != READ_ONCE(c->tid))); 2983 2984 /* Same with comment on barrier() in slab_alloc_node() */ 2985 barrier(); 2986 2987 if (likely(page == c->page)) { 2988 set_freepointer(s, tail_obj, c->freelist); 2989 2990 if (unlikely(!this_cpu_cmpxchg_double( 2991 s->cpu_slab->freelist, s->cpu_slab->tid, 2992 c->freelist, tid, 2993 head, next_tid(tid)))) { 2994 2995 note_cmpxchg_failure("slab_free", s, tid); 2996 goto redo; 2997 } 2998 stat(s, FREE_FASTPATH); 2999 } else 3000 __slab_free(s, page, head, tail_obj, cnt, addr); 3001 3002 } 3003 3004 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 3005 void *head, void *tail, int cnt, 3006 unsigned long addr) 3007 { 3008 /* 3009 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3010 * to remove objects, whose reuse must be delayed. 3011 */ 3012 if (slab_free_freelist_hook(s, &head, &tail)) 3013 do_slab_free(s, page, head, tail, cnt, addr); 3014 } 3015 3016 #ifdef CONFIG_KASAN_GENERIC 3017 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3018 { 3019 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3020 } 3021 #endif 3022 3023 void kmem_cache_free(struct kmem_cache *s, void *x) 3024 { 3025 s = cache_from_obj(s, x); 3026 if (!s) 3027 return; 3028 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3029 trace_kmem_cache_free(_RET_IP_, x); 3030 } 3031 EXPORT_SYMBOL(kmem_cache_free); 3032 3033 struct detached_freelist { 3034 struct page *page; 3035 void *tail; 3036 void *freelist; 3037 int cnt; 3038 struct kmem_cache *s; 3039 }; 3040 3041 /* 3042 * This function progressively scans the array with free objects (with 3043 * a limited look ahead) and extract objects belonging to the same 3044 * page. It builds a detached freelist directly within the given 3045 * page/objects. This can happen without any need for 3046 * synchronization, because the objects are owned by running process. 3047 * The freelist is build up as a single linked list in the objects. 3048 * The idea is, that this detached freelist can then be bulk 3049 * transferred to the real freelist(s), but only requiring a single 3050 * synchronization primitive. Look ahead in the array is limited due 3051 * to performance reasons. 3052 */ 3053 static inline 3054 int build_detached_freelist(struct kmem_cache *s, size_t size, 3055 void **p, struct detached_freelist *df) 3056 { 3057 size_t first_skipped_index = 0; 3058 int lookahead = 3; 3059 void *object; 3060 struct page *page; 3061 3062 /* Always re-init detached_freelist */ 3063 df->page = NULL; 3064 3065 do { 3066 object = p[--size]; 3067 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3068 } while (!object && size); 3069 3070 if (!object) 3071 return 0; 3072 3073 page = virt_to_head_page(object); 3074 if (!s) { 3075 /* Handle kalloc'ed objects */ 3076 if (unlikely(!PageSlab(page))) { 3077 BUG_ON(!PageCompound(page)); 3078 kfree_hook(object); 3079 __free_pages(page, compound_order(page)); 3080 p[size] = NULL; /* mark object processed */ 3081 return size; 3082 } 3083 /* Derive kmem_cache from object */ 3084 df->s = page->slab_cache; 3085 } else { 3086 df->s = cache_from_obj(s, object); /* Support for memcg */ 3087 } 3088 3089 /* Start new detached freelist */ 3090 df->page = page; 3091 set_freepointer(df->s, object, NULL); 3092 df->tail = object; 3093 df->freelist = object; 3094 p[size] = NULL; /* mark object processed */ 3095 df->cnt = 1; 3096 3097 while (size) { 3098 object = p[--size]; 3099 if (!object) 3100 continue; /* Skip processed objects */ 3101 3102 /* df->page is always set at this point */ 3103 if (df->page == virt_to_head_page(object)) { 3104 /* Opportunity build freelist */ 3105 set_freepointer(df->s, object, df->freelist); 3106 df->freelist = object; 3107 df->cnt++; 3108 p[size] = NULL; /* mark object processed */ 3109 3110 continue; 3111 } 3112 3113 /* Limit look ahead search */ 3114 if (!--lookahead) 3115 break; 3116 3117 if (!first_skipped_index) 3118 first_skipped_index = size + 1; 3119 } 3120 3121 return first_skipped_index; 3122 } 3123 3124 /* Note that interrupts must be enabled when calling this function. */ 3125 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3126 { 3127 if (WARN_ON(!size)) 3128 return; 3129 3130 do { 3131 struct detached_freelist df; 3132 3133 size = build_detached_freelist(s, size, p, &df); 3134 if (!df.page) 3135 continue; 3136 3137 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3138 } while (likely(size)); 3139 } 3140 EXPORT_SYMBOL(kmem_cache_free_bulk); 3141 3142 /* Note that interrupts must be enabled when calling this function. */ 3143 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3144 void **p) 3145 { 3146 struct kmem_cache_cpu *c; 3147 int i; 3148 3149 /* memcg and kmem_cache debug support */ 3150 s = slab_pre_alloc_hook(s, flags); 3151 if (unlikely(!s)) 3152 return false; 3153 /* 3154 * Drain objects in the per cpu slab, while disabling local 3155 * IRQs, which protects against PREEMPT and interrupts 3156 * handlers invoking normal fastpath. 3157 */ 3158 local_irq_disable(); 3159 c = this_cpu_ptr(s->cpu_slab); 3160 3161 for (i = 0; i < size; i++) { 3162 void *object = c->freelist; 3163 3164 if (unlikely(!object)) { 3165 /* 3166 * Invoking slow path likely have side-effect 3167 * of re-populating per CPU c->freelist 3168 */ 3169 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3170 _RET_IP_, c); 3171 if (unlikely(!p[i])) 3172 goto error; 3173 3174 c = this_cpu_ptr(s->cpu_slab); 3175 continue; /* goto for-loop */ 3176 } 3177 c->freelist = get_freepointer(s, object); 3178 p[i] = object; 3179 } 3180 c->tid = next_tid(c->tid); 3181 local_irq_enable(); 3182 3183 /* Clear memory outside IRQ disabled fastpath loop */ 3184 if (unlikely(slab_want_init_on_alloc(flags, s))) { 3185 int j; 3186 3187 for (j = 0; j < i; j++) 3188 memset(p[j], 0, s->object_size); 3189 } 3190 3191 /* memcg and kmem_cache debug support */ 3192 slab_post_alloc_hook(s, flags, size, p); 3193 return i; 3194 error: 3195 local_irq_enable(); 3196 slab_post_alloc_hook(s, flags, i, p); 3197 __kmem_cache_free_bulk(s, i, p); 3198 return 0; 3199 } 3200 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3201 3202 3203 /* 3204 * Object placement in a slab is made very easy because we always start at 3205 * offset 0. If we tune the size of the object to the alignment then we can 3206 * get the required alignment by putting one properly sized object after 3207 * another. 3208 * 3209 * Notice that the allocation order determines the sizes of the per cpu 3210 * caches. Each processor has always one slab available for allocations. 3211 * Increasing the allocation order reduces the number of times that slabs 3212 * must be moved on and off the partial lists and is therefore a factor in 3213 * locking overhead. 3214 */ 3215 3216 /* 3217 * Mininum / Maximum order of slab pages. This influences locking overhead 3218 * and slab fragmentation. A higher order reduces the number of partial slabs 3219 * and increases the number of allocations possible without having to 3220 * take the list_lock. 3221 */ 3222 static unsigned int slub_min_order; 3223 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3224 static unsigned int slub_min_objects; 3225 3226 /* 3227 * Calculate the order of allocation given an slab object size. 3228 * 3229 * The order of allocation has significant impact on performance and other 3230 * system components. Generally order 0 allocations should be preferred since 3231 * order 0 does not cause fragmentation in the page allocator. Larger objects 3232 * be problematic to put into order 0 slabs because there may be too much 3233 * unused space left. We go to a higher order if more than 1/16th of the slab 3234 * would be wasted. 3235 * 3236 * In order to reach satisfactory performance we must ensure that a minimum 3237 * number of objects is in one slab. Otherwise we may generate too much 3238 * activity on the partial lists which requires taking the list_lock. This is 3239 * less a concern for large slabs though which are rarely used. 3240 * 3241 * slub_max_order specifies the order where we begin to stop considering the 3242 * number of objects in a slab as critical. If we reach slub_max_order then 3243 * we try to keep the page order as low as possible. So we accept more waste 3244 * of space in favor of a small page order. 3245 * 3246 * Higher order allocations also allow the placement of more objects in a 3247 * slab and thereby reduce object handling overhead. If the user has 3248 * requested a higher mininum order then we start with that one instead of 3249 * the smallest order which will fit the object. 3250 */ 3251 static inline unsigned int slab_order(unsigned int size, 3252 unsigned int min_objects, unsigned int max_order, 3253 unsigned int fract_leftover) 3254 { 3255 unsigned int min_order = slub_min_order; 3256 unsigned int order; 3257 3258 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3259 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3260 3261 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3262 order <= max_order; order++) { 3263 3264 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3265 unsigned int rem; 3266 3267 rem = slab_size % size; 3268 3269 if (rem <= slab_size / fract_leftover) 3270 break; 3271 } 3272 3273 return order; 3274 } 3275 3276 static inline int calculate_order(unsigned int size) 3277 { 3278 unsigned int order; 3279 unsigned int min_objects; 3280 unsigned int max_objects; 3281 3282 /* 3283 * Attempt to find best configuration for a slab. This 3284 * works by first attempting to generate a layout with 3285 * the best configuration and backing off gradually. 3286 * 3287 * First we increase the acceptable waste in a slab. Then 3288 * we reduce the minimum objects required in a slab. 3289 */ 3290 min_objects = slub_min_objects; 3291 if (!min_objects) 3292 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3293 max_objects = order_objects(slub_max_order, size); 3294 min_objects = min(min_objects, max_objects); 3295 3296 while (min_objects > 1) { 3297 unsigned int fraction; 3298 3299 fraction = 16; 3300 while (fraction >= 4) { 3301 order = slab_order(size, min_objects, 3302 slub_max_order, fraction); 3303 if (order <= slub_max_order) 3304 return order; 3305 fraction /= 2; 3306 } 3307 min_objects--; 3308 } 3309 3310 /* 3311 * We were unable to place multiple objects in a slab. Now 3312 * lets see if we can place a single object there. 3313 */ 3314 order = slab_order(size, 1, slub_max_order, 1); 3315 if (order <= slub_max_order) 3316 return order; 3317 3318 /* 3319 * Doh this slab cannot be placed using slub_max_order. 3320 */ 3321 order = slab_order(size, 1, MAX_ORDER, 1); 3322 if (order < MAX_ORDER) 3323 return order; 3324 return -ENOSYS; 3325 } 3326 3327 static void 3328 init_kmem_cache_node(struct kmem_cache_node *n) 3329 { 3330 n->nr_partial = 0; 3331 spin_lock_init(&n->list_lock); 3332 INIT_LIST_HEAD(&n->partial); 3333 #ifdef CONFIG_SLUB_DEBUG 3334 atomic_long_set(&n->nr_slabs, 0); 3335 atomic_long_set(&n->total_objects, 0); 3336 INIT_LIST_HEAD(&n->full); 3337 #endif 3338 } 3339 3340 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3341 { 3342 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3343 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3344 3345 /* 3346 * Must align to double word boundary for the double cmpxchg 3347 * instructions to work; see __pcpu_double_call_return_bool(). 3348 */ 3349 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3350 2 * sizeof(void *)); 3351 3352 if (!s->cpu_slab) 3353 return 0; 3354 3355 init_kmem_cache_cpus(s); 3356 3357 return 1; 3358 } 3359 3360 static struct kmem_cache *kmem_cache_node; 3361 3362 /* 3363 * No kmalloc_node yet so do it by hand. We know that this is the first 3364 * slab on the node for this slabcache. There are no concurrent accesses 3365 * possible. 3366 * 3367 * Note that this function only works on the kmem_cache_node 3368 * when allocating for the kmem_cache_node. This is used for bootstrapping 3369 * memory on a fresh node that has no slab structures yet. 3370 */ 3371 static void early_kmem_cache_node_alloc(int node) 3372 { 3373 struct page *page; 3374 struct kmem_cache_node *n; 3375 3376 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3377 3378 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3379 3380 BUG_ON(!page); 3381 if (page_to_nid(page) != node) { 3382 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3383 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3384 } 3385 3386 n = page->freelist; 3387 BUG_ON(!n); 3388 #ifdef CONFIG_SLUB_DEBUG 3389 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3390 init_tracking(kmem_cache_node, n); 3391 #endif 3392 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3393 GFP_KERNEL); 3394 page->freelist = get_freepointer(kmem_cache_node, n); 3395 page->inuse = 1; 3396 page->frozen = 0; 3397 kmem_cache_node->node[node] = n; 3398 init_kmem_cache_node(n); 3399 inc_slabs_node(kmem_cache_node, node, page->objects); 3400 3401 /* 3402 * No locks need to be taken here as it has just been 3403 * initialized and there is no concurrent access. 3404 */ 3405 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3406 } 3407 3408 static void free_kmem_cache_nodes(struct kmem_cache *s) 3409 { 3410 int node; 3411 struct kmem_cache_node *n; 3412 3413 for_each_kmem_cache_node(s, node, n) { 3414 s->node[node] = NULL; 3415 kmem_cache_free(kmem_cache_node, n); 3416 } 3417 } 3418 3419 void __kmem_cache_release(struct kmem_cache *s) 3420 { 3421 cache_random_seq_destroy(s); 3422 free_percpu(s->cpu_slab); 3423 free_kmem_cache_nodes(s); 3424 } 3425 3426 static int init_kmem_cache_nodes(struct kmem_cache *s) 3427 { 3428 int node; 3429 3430 for_each_node_state(node, N_NORMAL_MEMORY) { 3431 struct kmem_cache_node *n; 3432 3433 if (slab_state == DOWN) { 3434 early_kmem_cache_node_alloc(node); 3435 continue; 3436 } 3437 n = kmem_cache_alloc_node(kmem_cache_node, 3438 GFP_KERNEL, node); 3439 3440 if (!n) { 3441 free_kmem_cache_nodes(s); 3442 return 0; 3443 } 3444 3445 init_kmem_cache_node(n); 3446 s->node[node] = n; 3447 } 3448 return 1; 3449 } 3450 3451 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3452 { 3453 if (min < MIN_PARTIAL) 3454 min = MIN_PARTIAL; 3455 else if (min > MAX_PARTIAL) 3456 min = MAX_PARTIAL; 3457 s->min_partial = min; 3458 } 3459 3460 static void set_cpu_partial(struct kmem_cache *s) 3461 { 3462 #ifdef CONFIG_SLUB_CPU_PARTIAL 3463 /* 3464 * cpu_partial determined the maximum number of objects kept in the 3465 * per cpu partial lists of a processor. 3466 * 3467 * Per cpu partial lists mainly contain slabs that just have one 3468 * object freed. If they are used for allocation then they can be 3469 * filled up again with minimal effort. The slab will never hit the 3470 * per node partial lists and therefore no locking will be required. 3471 * 3472 * This setting also determines 3473 * 3474 * A) The number of objects from per cpu partial slabs dumped to the 3475 * per node list when we reach the limit. 3476 * B) The number of objects in cpu partial slabs to extract from the 3477 * per node list when we run out of per cpu objects. We only fetch 3478 * 50% to keep some capacity around for frees. 3479 */ 3480 if (!kmem_cache_has_cpu_partial(s)) 3481 s->cpu_partial = 0; 3482 else if (s->size >= PAGE_SIZE) 3483 s->cpu_partial = 2; 3484 else if (s->size >= 1024) 3485 s->cpu_partial = 6; 3486 else if (s->size >= 256) 3487 s->cpu_partial = 13; 3488 else 3489 s->cpu_partial = 30; 3490 #endif 3491 } 3492 3493 /* 3494 * calculate_sizes() determines the order and the distribution of data within 3495 * a slab object. 3496 */ 3497 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3498 { 3499 slab_flags_t flags = s->flags; 3500 unsigned int size = s->object_size; 3501 unsigned int order; 3502 3503 /* 3504 * Round up object size to the next word boundary. We can only 3505 * place the free pointer at word boundaries and this determines 3506 * the possible location of the free pointer. 3507 */ 3508 size = ALIGN(size, sizeof(void *)); 3509 3510 #ifdef CONFIG_SLUB_DEBUG 3511 /* 3512 * Determine if we can poison the object itself. If the user of 3513 * the slab may touch the object after free or before allocation 3514 * then we should never poison the object itself. 3515 */ 3516 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3517 !s->ctor) 3518 s->flags |= __OBJECT_POISON; 3519 else 3520 s->flags &= ~__OBJECT_POISON; 3521 3522 3523 /* 3524 * If we are Redzoning then check if there is some space between the 3525 * end of the object and the free pointer. If not then add an 3526 * additional word to have some bytes to store Redzone information. 3527 */ 3528 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3529 size += sizeof(void *); 3530 #endif 3531 3532 /* 3533 * With that we have determined the number of bytes in actual use 3534 * by the object. This is the potential offset to the free pointer. 3535 */ 3536 s->inuse = size; 3537 3538 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3539 s->ctor)) { 3540 /* 3541 * Relocate free pointer after the object if it is not 3542 * permitted to overwrite the first word of the object on 3543 * kmem_cache_free. 3544 * 3545 * This is the case if we do RCU, have a constructor or 3546 * destructor or are poisoning the objects. 3547 */ 3548 s->offset = size; 3549 size += sizeof(void *); 3550 } 3551 3552 #ifdef CONFIG_SLUB_DEBUG 3553 if (flags & SLAB_STORE_USER) 3554 /* 3555 * Need to store information about allocs and frees after 3556 * the object. 3557 */ 3558 size += 2 * sizeof(struct track); 3559 #endif 3560 3561 kasan_cache_create(s, &size, &s->flags); 3562 #ifdef CONFIG_SLUB_DEBUG 3563 if (flags & SLAB_RED_ZONE) { 3564 /* 3565 * Add some empty padding so that we can catch 3566 * overwrites from earlier objects rather than let 3567 * tracking information or the free pointer be 3568 * corrupted if a user writes before the start 3569 * of the object. 3570 */ 3571 size += sizeof(void *); 3572 3573 s->red_left_pad = sizeof(void *); 3574 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3575 size += s->red_left_pad; 3576 } 3577 #endif 3578 3579 /* 3580 * SLUB stores one object immediately after another beginning from 3581 * offset 0. In order to align the objects we have to simply size 3582 * each object to conform to the alignment. 3583 */ 3584 size = ALIGN(size, s->align); 3585 s->size = size; 3586 if (forced_order >= 0) 3587 order = forced_order; 3588 else 3589 order = calculate_order(size); 3590 3591 if ((int)order < 0) 3592 return 0; 3593 3594 s->allocflags = 0; 3595 if (order) 3596 s->allocflags |= __GFP_COMP; 3597 3598 if (s->flags & SLAB_CACHE_DMA) 3599 s->allocflags |= GFP_DMA; 3600 3601 if (s->flags & SLAB_CACHE_DMA32) 3602 s->allocflags |= GFP_DMA32; 3603 3604 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3605 s->allocflags |= __GFP_RECLAIMABLE; 3606 3607 /* 3608 * Determine the number of objects per slab 3609 */ 3610 s->oo = oo_make(order, size); 3611 s->min = oo_make(get_order(size), size); 3612 if (oo_objects(s->oo) > oo_objects(s->max)) 3613 s->max = s->oo; 3614 3615 return !!oo_objects(s->oo); 3616 } 3617 3618 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3619 { 3620 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3621 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3622 s->random = get_random_long(); 3623 #endif 3624 3625 if (!calculate_sizes(s, -1)) 3626 goto error; 3627 if (disable_higher_order_debug) { 3628 /* 3629 * Disable debugging flags that store metadata if the min slab 3630 * order increased. 3631 */ 3632 if (get_order(s->size) > get_order(s->object_size)) { 3633 s->flags &= ~DEBUG_METADATA_FLAGS; 3634 s->offset = 0; 3635 if (!calculate_sizes(s, -1)) 3636 goto error; 3637 } 3638 } 3639 3640 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3641 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3642 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3643 /* Enable fast mode */ 3644 s->flags |= __CMPXCHG_DOUBLE; 3645 #endif 3646 3647 /* 3648 * The larger the object size is, the more pages we want on the partial 3649 * list to avoid pounding the page allocator excessively. 3650 */ 3651 set_min_partial(s, ilog2(s->size) / 2); 3652 3653 set_cpu_partial(s); 3654 3655 #ifdef CONFIG_NUMA 3656 s->remote_node_defrag_ratio = 1000; 3657 #endif 3658 3659 /* Initialize the pre-computed randomized freelist if slab is up */ 3660 if (slab_state >= UP) { 3661 if (init_cache_random_seq(s)) 3662 goto error; 3663 } 3664 3665 if (!init_kmem_cache_nodes(s)) 3666 goto error; 3667 3668 if (alloc_kmem_cache_cpus(s)) 3669 return 0; 3670 3671 free_kmem_cache_nodes(s); 3672 error: 3673 return -EINVAL; 3674 } 3675 3676 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3677 const char *text) 3678 { 3679 #ifdef CONFIG_SLUB_DEBUG 3680 void *addr = page_address(page); 3681 void *p; 3682 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC); 3683 if (!map) 3684 return; 3685 slab_err(s, page, text, s->name); 3686 slab_lock(page); 3687 3688 get_map(s, page, map); 3689 for_each_object(p, s, addr, page->objects) { 3690 3691 if (!test_bit(slab_index(p, s, addr), map)) { 3692 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3693 print_tracking(s, p); 3694 } 3695 } 3696 slab_unlock(page); 3697 bitmap_free(map); 3698 #endif 3699 } 3700 3701 /* 3702 * Attempt to free all partial slabs on a node. 3703 * This is called from __kmem_cache_shutdown(). We must take list_lock 3704 * because sysfs file might still access partial list after the shutdowning. 3705 */ 3706 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3707 { 3708 LIST_HEAD(discard); 3709 struct page *page, *h; 3710 3711 BUG_ON(irqs_disabled()); 3712 spin_lock_irq(&n->list_lock); 3713 list_for_each_entry_safe(page, h, &n->partial, slab_list) { 3714 if (!page->inuse) { 3715 remove_partial(n, page); 3716 list_add(&page->slab_list, &discard); 3717 } else { 3718 list_slab_objects(s, page, 3719 "Objects remaining in %s on __kmem_cache_shutdown()"); 3720 } 3721 } 3722 spin_unlock_irq(&n->list_lock); 3723 3724 list_for_each_entry_safe(page, h, &discard, slab_list) 3725 discard_slab(s, page); 3726 } 3727 3728 bool __kmem_cache_empty(struct kmem_cache *s) 3729 { 3730 int node; 3731 struct kmem_cache_node *n; 3732 3733 for_each_kmem_cache_node(s, node, n) 3734 if (n->nr_partial || slabs_node(s, node)) 3735 return false; 3736 return true; 3737 } 3738 3739 /* 3740 * Release all resources used by a slab cache. 3741 */ 3742 int __kmem_cache_shutdown(struct kmem_cache *s) 3743 { 3744 int node; 3745 struct kmem_cache_node *n; 3746 3747 flush_all(s); 3748 /* Attempt to free all objects */ 3749 for_each_kmem_cache_node(s, node, n) { 3750 free_partial(s, n); 3751 if (n->nr_partial || slabs_node(s, node)) 3752 return 1; 3753 } 3754 sysfs_slab_remove(s); 3755 return 0; 3756 } 3757 3758 /******************************************************************** 3759 * Kmalloc subsystem 3760 *******************************************************************/ 3761 3762 static int __init setup_slub_min_order(char *str) 3763 { 3764 get_option(&str, (int *)&slub_min_order); 3765 3766 return 1; 3767 } 3768 3769 __setup("slub_min_order=", setup_slub_min_order); 3770 3771 static int __init setup_slub_max_order(char *str) 3772 { 3773 get_option(&str, (int *)&slub_max_order); 3774 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3775 3776 return 1; 3777 } 3778 3779 __setup("slub_max_order=", setup_slub_max_order); 3780 3781 static int __init setup_slub_min_objects(char *str) 3782 { 3783 get_option(&str, (int *)&slub_min_objects); 3784 3785 return 1; 3786 } 3787 3788 __setup("slub_min_objects=", setup_slub_min_objects); 3789 3790 void *__kmalloc(size_t size, gfp_t flags) 3791 { 3792 struct kmem_cache *s; 3793 void *ret; 3794 3795 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3796 return kmalloc_large(size, flags); 3797 3798 s = kmalloc_slab(size, flags); 3799 3800 if (unlikely(ZERO_OR_NULL_PTR(s))) 3801 return s; 3802 3803 ret = slab_alloc(s, flags, _RET_IP_); 3804 3805 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3806 3807 ret = kasan_kmalloc(s, ret, size, flags); 3808 3809 return ret; 3810 } 3811 EXPORT_SYMBOL(__kmalloc); 3812 3813 #ifdef CONFIG_NUMA 3814 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3815 { 3816 struct page *page; 3817 void *ptr = NULL; 3818 3819 flags |= __GFP_COMP; 3820 page = alloc_pages_node(node, flags, get_order(size)); 3821 if (page) 3822 ptr = page_address(page); 3823 3824 return kmalloc_large_node_hook(ptr, size, flags); 3825 } 3826 3827 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3828 { 3829 struct kmem_cache *s; 3830 void *ret; 3831 3832 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3833 ret = kmalloc_large_node(size, flags, node); 3834 3835 trace_kmalloc_node(_RET_IP_, ret, 3836 size, PAGE_SIZE << get_order(size), 3837 flags, node); 3838 3839 return ret; 3840 } 3841 3842 s = kmalloc_slab(size, flags); 3843 3844 if (unlikely(ZERO_OR_NULL_PTR(s))) 3845 return s; 3846 3847 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3848 3849 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3850 3851 ret = kasan_kmalloc(s, ret, size, flags); 3852 3853 return ret; 3854 } 3855 EXPORT_SYMBOL(__kmalloc_node); 3856 #endif /* CONFIG_NUMA */ 3857 3858 #ifdef CONFIG_HARDENED_USERCOPY 3859 /* 3860 * Rejects incorrectly sized objects and objects that are to be copied 3861 * to/from userspace but do not fall entirely within the containing slab 3862 * cache's usercopy region. 3863 * 3864 * Returns NULL if check passes, otherwise const char * to name of cache 3865 * to indicate an error. 3866 */ 3867 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 3868 bool to_user) 3869 { 3870 struct kmem_cache *s; 3871 unsigned int offset; 3872 size_t object_size; 3873 3874 ptr = kasan_reset_tag(ptr); 3875 3876 /* Find object and usable object size. */ 3877 s = page->slab_cache; 3878 3879 /* Reject impossible pointers. */ 3880 if (ptr < page_address(page)) 3881 usercopy_abort("SLUB object not in SLUB page?!", NULL, 3882 to_user, 0, n); 3883 3884 /* Find offset within object. */ 3885 offset = (ptr - page_address(page)) % s->size; 3886 3887 /* Adjust for redzone and reject if within the redzone. */ 3888 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3889 if (offset < s->red_left_pad) 3890 usercopy_abort("SLUB object in left red zone", 3891 s->name, to_user, offset, n); 3892 offset -= s->red_left_pad; 3893 } 3894 3895 /* Allow address range falling entirely within usercopy region. */ 3896 if (offset >= s->useroffset && 3897 offset - s->useroffset <= s->usersize && 3898 n <= s->useroffset - offset + s->usersize) 3899 return; 3900 3901 /* 3902 * If the copy is still within the allocated object, produce 3903 * a warning instead of rejecting the copy. This is intended 3904 * to be a temporary method to find any missing usercopy 3905 * whitelists. 3906 */ 3907 object_size = slab_ksize(s); 3908 if (usercopy_fallback && 3909 offset <= object_size && n <= object_size - offset) { 3910 usercopy_warn("SLUB object", s->name, to_user, offset, n); 3911 return; 3912 } 3913 3914 usercopy_abort("SLUB object", s->name, to_user, offset, n); 3915 } 3916 #endif /* CONFIG_HARDENED_USERCOPY */ 3917 3918 size_t __ksize(const void *object) 3919 { 3920 struct page *page; 3921 3922 if (unlikely(object == ZERO_SIZE_PTR)) 3923 return 0; 3924 3925 page = virt_to_head_page(object); 3926 3927 if (unlikely(!PageSlab(page))) { 3928 WARN_ON(!PageCompound(page)); 3929 return PAGE_SIZE << compound_order(page); 3930 } 3931 3932 return slab_ksize(page->slab_cache); 3933 } 3934 EXPORT_SYMBOL(__ksize); 3935 3936 void kfree(const void *x) 3937 { 3938 struct page *page; 3939 void *object = (void *)x; 3940 3941 trace_kfree(_RET_IP_, x); 3942 3943 if (unlikely(ZERO_OR_NULL_PTR(x))) 3944 return; 3945 3946 page = virt_to_head_page(x); 3947 if (unlikely(!PageSlab(page))) { 3948 BUG_ON(!PageCompound(page)); 3949 kfree_hook(object); 3950 __free_pages(page, compound_order(page)); 3951 return; 3952 } 3953 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3954 } 3955 EXPORT_SYMBOL(kfree); 3956 3957 #define SHRINK_PROMOTE_MAX 32 3958 3959 /* 3960 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3961 * up most to the head of the partial lists. New allocations will then 3962 * fill those up and thus they can be removed from the partial lists. 3963 * 3964 * The slabs with the least items are placed last. This results in them 3965 * being allocated from last increasing the chance that the last objects 3966 * are freed in them. 3967 */ 3968 int __kmem_cache_shrink(struct kmem_cache *s) 3969 { 3970 int node; 3971 int i; 3972 struct kmem_cache_node *n; 3973 struct page *page; 3974 struct page *t; 3975 struct list_head discard; 3976 struct list_head promote[SHRINK_PROMOTE_MAX]; 3977 unsigned long flags; 3978 int ret = 0; 3979 3980 flush_all(s); 3981 for_each_kmem_cache_node(s, node, n) { 3982 INIT_LIST_HEAD(&discard); 3983 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3984 INIT_LIST_HEAD(promote + i); 3985 3986 spin_lock_irqsave(&n->list_lock, flags); 3987 3988 /* 3989 * Build lists of slabs to discard or promote. 3990 * 3991 * Note that concurrent frees may occur while we hold the 3992 * list_lock. page->inuse here is the upper limit. 3993 */ 3994 list_for_each_entry_safe(page, t, &n->partial, slab_list) { 3995 int free = page->objects - page->inuse; 3996 3997 /* Do not reread page->inuse */ 3998 barrier(); 3999 4000 /* We do not keep full slabs on the list */ 4001 BUG_ON(free <= 0); 4002 4003 if (free == page->objects) { 4004 list_move(&page->slab_list, &discard); 4005 n->nr_partial--; 4006 } else if (free <= SHRINK_PROMOTE_MAX) 4007 list_move(&page->slab_list, promote + free - 1); 4008 } 4009 4010 /* 4011 * Promote the slabs filled up most to the head of the 4012 * partial list. 4013 */ 4014 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4015 list_splice(promote + i, &n->partial); 4016 4017 spin_unlock_irqrestore(&n->list_lock, flags); 4018 4019 /* Release empty slabs */ 4020 list_for_each_entry_safe(page, t, &discard, slab_list) 4021 discard_slab(s, page); 4022 4023 if (slabs_node(s, node)) 4024 ret = 1; 4025 } 4026 4027 return ret; 4028 } 4029 4030 #ifdef CONFIG_MEMCG 4031 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) 4032 { 4033 /* 4034 * Called with all the locks held after a sched RCU grace period. 4035 * Even if @s becomes empty after shrinking, we can't know that @s 4036 * doesn't have allocations already in-flight and thus can't 4037 * destroy @s until the associated memcg is released. 4038 * 4039 * However, let's remove the sysfs files for empty caches here. 4040 * Each cache has a lot of interface files which aren't 4041 * particularly useful for empty draining caches; otherwise, we can 4042 * easily end up with millions of unnecessary sysfs files on 4043 * systems which have a lot of memory and transient cgroups. 4044 */ 4045 if (!__kmem_cache_shrink(s)) 4046 sysfs_slab_remove(s); 4047 } 4048 4049 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4050 { 4051 /* 4052 * Disable empty slabs caching. Used to avoid pinning offline 4053 * memory cgroups by kmem pages that can be freed. 4054 */ 4055 slub_set_cpu_partial(s, 0); 4056 s->min_partial = 0; 4057 } 4058 #endif /* CONFIG_MEMCG */ 4059 4060 static int slab_mem_going_offline_callback(void *arg) 4061 { 4062 struct kmem_cache *s; 4063 4064 mutex_lock(&slab_mutex); 4065 list_for_each_entry(s, &slab_caches, list) 4066 __kmem_cache_shrink(s); 4067 mutex_unlock(&slab_mutex); 4068 4069 return 0; 4070 } 4071 4072 static void slab_mem_offline_callback(void *arg) 4073 { 4074 struct kmem_cache_node *n; 4075 struct kmem_cache *s; 4076 struct memory_notify *marg = arg; 4077 int offline_node; 4078 4079 offline_node = marg->status_change_nid_normal; 4080 4081 /* 4082 * If the node still has available memory. we need kmem_cache_node 4083 * for it yet. 4084 */ 4085 if (offline_node < 0) 4086 return; 4087 4088 mutex_lock(&slab_mutex); 4089 list_for_each_entry(s, &slab_caches, list) { 4090 n = get_node(s, offline_node); 4091 if (n) { 4092 /* 4093 * if n->nr_slabs > 0, slabs still exist on the node 4094 * that is going down. We were unable to free them, 4095 * and offline_pages() function shouldn't call this 4096 * callback. So, we must fail. 4097 */ 4098 BUG_ON(slabs_node(s, offline_node)); 4099 4100 s->node[offline_node] = NULL; 4101 kmem_cache_free(kmem_cache_node, n); 4102 } 4103 } 4104 mutex_unlock(&slab_mutex); 4105 } 4106 4107 static int slab_mem_going_online_callback(void *arg) 4108 { 4109 struct kmem_cache_node *n; 4110 struct kmem_cache *s; 4111 struct memory_notify *marg = arg; 4112 int nid = marg->status_change_nid_normal; 4113 int ret = 0; 4114 4115 /* 4116 * If the node's memory is already available, then kmem_cache_node is 4117 * already created. Nothing to do. 4118 */ 4119 if (nid < 0) 4120 return 0; 4121 4122 /* 4123 * We are bringing a node online. No memory is available yet. We must 4124 * allocate a kmem_cache_node structure in order to bring the node 4125 * online. 4126 */ 4127 mutex_lock(&slab_mutex); 4128 list_for_each_entry(s, &slab_caches, list) { 4129 /* 4130 * XXX: kmem_cache_alloc_node will fallback to other nodes 4131 * since memory is not yet available from the node that 4132 * is brought up. 4133 */ 4134 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4135 if (!n) { 4136 ret = -ENOMEM; 4137 goto out; 4138 } 4139 init_kmem_cache_node(n); 4140 s->node[nid] = n; 4141 } 4142 out: 4143 mutex_unlock(&slab_mutex); 4144 return ret; 4145 } 4146 4147 static int slab_memory_callback(struct notifier_block *self, 4148 unsigned long action, void *arg) 4149 { 4150 int ret = 0; 4151 4152 switch (action) { 4153 case MEM_GOING_ONLINE: 4154 ret = slab_mem_going_online_callback(arg); 4155 break; 4156 case MEM_GOING_OFFLINE: 4157 ret = slab_mem_going_offline_callback(arg); 4158 break; 4159 case MEM_OFFLINE: 4160 case MEM_CANCEL_ONLINE: 4161 slab_mem_offline_callback(arg); 4162 break; 4163 case MEM_ONLINE: 4164 case MEM_CANCEL_OFFLINE: 4165 break; 4166 } 4167 if (ret) 4168 ret = notifier_from_errno(ret); 4169 else 4170 ret = NOTIFY_OK; 4171 return ret; 4172 } 4173 4174 static struct notifier_block slab_memory_callback_nb = { 4175 .notifier_call = slab_memory_callback, 4176 .priority = SLAB_CALLBACK_PRI, 4177 }; 4178 4179 /******************************************************************** 4180 * Basic setup of slabs 4181 *******************************************************************/ 4182 4183 /* 4184 * Used for early kmem_cache structures that were allocated using 4185 * the page allocator. Allocate them properly then fix up the pointers 4186 * that may be pointing to the wrong kmem_cache structure. 4187 */ 4188 4189 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4190 { 4191 int node; 4192 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4193 struct kmem_cache_node *n; 4194 4195 memcpy(s, static_cache, kmem_cache->object_size); 4196 4197 /* 4198 * This runs very early, and only the boot processor is supposed to be 4199 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4200 * IPIs around. 4201 */ 4202 __flush_cpu_slab(s, smp_processor_id()); 4203 for_each_kmem_cache_node(s, node, n) { 4204 struct page *p; 4205 4206 list_for_each_entry(p, &n->partial, slab_list) 4207 p->slab_cache = s; 4208 4209 #ifdef CONFIG_SLUB_DEBUG 4210 list_for_each_entry(p, &n->full, slab_list) 4211 p->slab_cache = s; 4212 #endif 4213 } 4214 slab_init_memcg_params(s); 4215 list_add(&s->list, &slab_caches); 4216 memcg_link_cache(s, NULL); 4217 return s; 4218 } 4219 4220 void __init kmem_cache_init(void) 4221 { 4222 static __initdata struct kmem_cache boot_kmem_cache, 4223 boot_kmem_cache_node; 4224 4225 if (debug_guardpage_minorder()) 4226 slub_max_order = 0; 4227 4228 kmem_cache_node = &boot_kmem_cache_node; 4229 kmem_cache = &boot_kmem_cache; 4230 4231 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4232 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4233 4234 register_hotmemory_notifier(&slab_memory_callback_nb); 4235 4236 /* Able to allocate the per node structures */ 4237 slab_state = PARTIAL; 4238 4239 create_boot_cache(kmem_cache, "kmem_cache", 4240 offsetof(struct kmem_cache, node) + 4241 nr_node_ids * sizeof(struct kmem_cache_node *), 4242 SLAB_HWCACHE_ALIGN, 0, 0); 4243 4244 kmem_cache = bootstrap(&boot_kmem_cache); 4245 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4246 4247 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4248 setup_kmalloc_cache_index_table(); 4249 create_kmalloc_caches(0); 4250 4251 /* Setup random freelists for each cache */ 4252 init_freelist_randomization(); 4253 4254 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4255 slub_cpu_dead); 4256 4257 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4258 cache_line_size(), 4259 slub_min_order, slub_max_order, slub_min_objects, 4260 nr_cpu_ids, nr_node_ids); 4261 } 4262 4263 void __init kmem_cache_init_late(void) 4264 { 4265 } 4266 4267 struct kmem_cache * 4268 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4269 slab_flags_t flags, void (*ctor)(void *)) 4270 { 4271 struct kmem_cache *s, *c; 4272 4273 s = find_mergeable(size, align, flags, name, ctor); 4274 if (s) { 4275 s->refcount++; 4276 4277 /* 4278 * Adjust the object sizes so that we clear 4279 * the complete object on kzalloc. 4280 */ 4281 s->object_size = max(s->object_size, size); 4282 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4283 4284 for_each_memcg_cache(c, s) { 4285 c->object_size = s->object_size; 4286 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); 4287 } 4288 4289 if (sysfs_slab_alias(s, name)) { 4290 s->refcount--; 4291 s = NULL; 4292 } 4293 } 4294 4295 return s; 4296 } 4297 4298 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4299 { 4300 int err; 4301 4302 err = kmem_cache_open(s, flags); 4303 if (err) 4304 return err; 4305 4306 /* Mutex is not taken during early boot */ 4307 if (slab_state <= UP) 4308 return 0; 4309 4310 memcg_propagate_slab_attrs(s); 4311 err = sysfs_slab_add(s); 4312 if (err) 4313 __kmem_cache_release(s); 4314 4315 return err; 4316 } 4317 4318 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4319 { 4320 struct kmem_cache *s; 4321 void *ret; 4322 4323 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4324 return kmalloc_large(size, gfpflags); 4325 4326 s = kmalloc_slab(size, gfpflags); 4327 4328 if (unlikely(ZERO_OR_NULL_PTR(s))) 4329 return s; 4330 4331 ret = slab_alloc(s, gfpflags, caller); 4332 4333 /* Honor the call site pointer we received. */ 4334 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4335 4336 return ret; 4337 } 4338 4339 #ifdef CONFIG_NUMA 4340 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4341 int node, unsigned long caller) 4342 { 4343 struct kmem_cache *s; 4344 void *ret; 4345 4346 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4347 ret = kmalloc_large_node(size, gfpflags, node); 4348 4349 trace_kmalloc_node(caller, ret, 4350 size, PAGE_SIZE << get_order(size), 4351 gfpflags, node); 4352 4353 return ret; 4354 } 4355 4356 s = kmalloc_slab(size, gfpflags); 4357 4358 if (unlikely(ZERO_OR_NULL_PTR(s))) 4359 return s; 4360 4361 ret = slab_alloc_node(s, gfpflags, node, caller); 4362 4363 /* Honor the call site pointer we received. */ 4364 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4365 4366 return ret; 4367 } 4368 #endif 4369 4370 #ifdef CONFIG_SYSFS 4371 static int count_inuse(struct page *page) 4372 { 4373 return page->inuse; 4374 } 4375 4376 static int count_total(struct page *page) 4377 { 4378 return page->objects; 4379 } 4380 #endif 4381 4382 #ifdef CONFIG_SLUB_DEBUG 4383 static int validate_slab(struct kmem_cache *s, struct page *page, 4384 unsigned long *map) 4385 { 4386 void *p; 4387 void *addr = page_address(page); 4388 4389 if (!check_slab(s, page) || 4390 !on_freelist(s, page, NULL)) 4391 return 0; 4392 4393 /* Now we know that a valid freelist exists */ 4394 bitmap_zero(map, page->objects); 4395 4396 get_map(s, page, map); 4397 for_each_object(p, s, addr, page->objects) { 4398 if (test_bit(slab_index(p, s, addr), map)) 4399 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4400 return 0; 4401 } 4402 4403 for_each_object(p, s, addr, page->objects) 4404 if (!test_bit(slab_index(p, s, addr), map)) 4405 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4406 return 0; 4407 return 1; 4408 } 4409 4410 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4411 unsigned long *map) 4412 { 4413 slab_lock(page); 4414 validate_slab(s, page, map); 4415 slab_unlock(page); 4416 } 4417 4418 static int validate_slab_node(struct kmem_cache *s, 4419 struct kmem_cache_node *n, unsigned long *map) 4420 { 4421 unsigned long count = 0; 4422 struct page *page; 4423 unsigned long flags; 4424 4425 spin_lock_irqsave(&n->list_lock, flags); 4426 4427 list_for_each_entry(page, &n->partial, slab_list) { 4428 validate_slab_slab(s, page, map); 4429 count++; 4430 } 4431 if (count != n->nr_partial) 4432 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4433 s->name, count, n->nr_partial); 4434 4435 if (!(s->flags & SLAB_STORE_USER)) 4436 goto out; 4437 4438 list_for_each_entry(page, &n->full, slab_list) { 4439 validate_slab_slab(s, page, map); 4440 count++; 4441 } 4442 if (count != atomic_long_read(&n->nr_slabs)) 4443 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4444 s->name, count, atomic_long_read(&n->nr_slabs)); 4445 4446 out: 4447 spin_unlock_irqrestore(&n->list_lock, flags); 4448 return count; 4449 } 4450 4451 static long validate_slab_cache(struct kmem_cache *s) 4452 { 4453 int node; 4454 unsigned long count = 0; 4455 struct kmem_cache_node *n; 4456 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4457 4458 if (!map) 4459 return -ENOMEM; 4460 4461 flush_all(s); 4462 for_each_kmem_cache_node(s, node, n) 4463 count += validate_slab_node(s, n, map); 4464 bitmap_free(map); 4465 return count; 4466 } 4467 /* 4468 * Generate lists of code addresses where slabcache objects are allocated 4469 * and freed. 4470 */ 4471 4472 struct location { 4473 unsigned long count; 4474 unsigned long addr; 4475 long long sum_time; 4476 long min_time; 4477 long max_time; 4478 long min_pid; 4479 long max_pid; 4480 DECLARE_BITMAP(cpus, NR_CPUS); 4481 nodemask_t nodes; 4482 }; 4483 4484 struct loc_track { 4485 unsigned long max; 4486 unsigned long count; 4487 struct location *loc; 4488 }; 4489 4490 static void free_loc_track(struct loc_track *t) 4491 { 4492 if (t->max) 4493 free_pages((unsigned long)t->loc, 4494 get_order(sizeof(struct location) * t->max)); 4495 } 4496 4497 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4498 { 4499 struct location *l; 4500 int order; 4501 4502 order = get_order(sizeof(struct location) * max); 4503 4504 l = (void *)__get_free_pages(flags, order); 4505 if (!l) 4506 return 0; 4507 4508 if (t->count) { 4509 memcpy(l, t->loc, sizeof(struct location) * t->count); 4510 free_loc_track(t); 4511 } 4512 t->max = max; 4513 t->loc = l; 4514 return 1; 4515 } 4516 4517 static int add_location(struct loc_track *t, struct kmem_cache *s, 4518 const struct track *track) 4519 { 4520 long start, end, pos; 4521 struct location *l; 4522 unsigned long caddr; 4523 unsigned long age = jiffies - track->when; 4524 4525 start = -1; 4526 end = t->count; 4527 4528 for ( ; ; ) { 4529 pos = start + (end - start + 1) / 2; 4530 4531 /* 4532 * There is nothing at "end". If we end up there 4533 * we need to add something to before end. 4534 */ 4535 if (pos == end) 4536 break; 4537 4538 caddr = t->loc[pos].addr; 4539 if (track->addr == caddr) { 4540 4541 l = &t->loc[pos]; 4542 l->count++; 4543 if (track->when) { 4544 l->sum_time += age; 4545 if (age < l->min_time) 4546 l->min_time = age; 4547 if (age > l->max_time) 4548 l->max_time = age; 4549 4550 if (track->pid < l->min_pid) 4551 l->min_pid = track->pid; 4552 if (track->pid > l->max_pid) 4553 l->max_pid = track->pid; 4554 4555 cpumask_set_cpu(track->cpu, 4556 to_cpumask(l->cpus)); 4557 } 4558 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4559 return 1; 4560 } 4561 4562 if (track->addr < caddr) 4563 end = pos; 4564 else 4565 start = pos; 4566 } 4567 4568 /* 4569 * Not found. Insert new tracking element. 4570 */ 4571 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4572 return 0; 4573 4574 l = t->loc + pos; 4575 if (pos < t->count) 4576 memmove(l + 1, l, 4577 (t->count - pos) * sizeof(struct location)); 4578 t->count++; 4579 l->count = 1; 4580 l->addr = track->addr; 4581 l->sum_time = age; 4582 l->min_time = age; 4583 l->max_time = age; 4584 l->min_pid = track->pid; 4585 l->max_pid = track->pid; 4586 cpumask_clear(to_cpumask(l->cpus)); 4587 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4588 nodes_clear(l->nodes); 4589 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4590 return 1; 4591 } 4592 4593 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4594 struct page *page, enum track_item alloc, 4595 unsigned long *map) 4596 { 4597 void *addr = page_address(page); 4598 void *p; 4599 4600 bitmap_zero(map, page->objects); 4601 get_map(s, page, map); 4602 4603 for_each_object(p, s, addr, page->objects) 4604 if (!test_bit(slab_index(p, s, addr), map)) 4605 add_location(t, s, get_track(s, p, alloc)); 4606 } 4607 4608 static int list_locations(struct kmem_cache *s, char *buf, 4609 enum track_item alloc) 4610 { 4611 int len = 0; 4612 unsigned long i; 4613 struct loc_track t = { 0, 0, NULL }; 4614 int node; 4615 struct kmem_cache_node *n; 4616 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4617 4618 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4619 GFP_KERNEL)) { 4620 bitmap_free(map); 4621 return sprintf(buf, "Out of memory\n"); 4622 } 4623 /* Push back cpu slabs */ 4624 flush_all(s); 4625 4626 for_each_kmem_cache_node(s, node, n) { 4627 unsigned long flags; 4628 struct page *page; 4629 4630 if (!atomic_long_read(&n->nr_slabs)) 4631 continue; 4632 4633 spin_lock_irqsave(&n->list_lock, flags); 4634 list_for_each_entry(page, &n->partial, slab_list) 4635 process_slab(&t, s, page, alloc, map); 4636 list_for_each_entry(page, &n->full, slab_list) 4637 process_slab(&t, s, page, alloc, map); 4638 spin_unlock_irqrestore(&n->list_lock, flags); 4639 } 4640 4641 for (i = 0; i < t.count; i++) { 4642 struct location *l = &t.loc[i]; 4643 4644 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4645 break; 4646 len += sprintf(buf + len, "%7ld ", l->count); 4647 4648 if (l->addr) 4649 len += sprintf(buf + len, "%pS", (void *)l->addr); 4650 else 4651 len += sprintf(buf + len, "<not-available>"); 4652 4653 if (l->sum_time != l->min_time) { 4654 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4655 l->min_time, 4656 (long)div_u64(l->sum_time, l->count), 4657 l->max_time); 4658 } else 4659 len += sprintf(buf + len, " age=%ld", 4660 l->min_time); 4661 4662 if (l->min_pid != l->max_pid) 4663 len += sprintf(buf + len, " pid=%ld-%ld", 4664 l->min_pid, l->max_pid); 4665 else 4666 len += sprintf(buf + len, " pid=%ld", 4667 l->min_pid); 4668 4669 if (num_online_cpus() > 1 && 4670 !cpumask_empty(to_cpumask(l->cpus)) && 4671 len < PAGE_SIZE - 60) 4672 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4673 " cpus=%*pbl", 4674 cpumask_pr_args(to_cpumask(l->cpus))); 4675 4676 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4677 len < PAGE_SIZE - 60) 4678 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4679 " nodes=%*pbl", 4680 nodemask_pr_args(&l->nodes)); 4681 4682 len += sprintf(buf + len, "\n"); 4683 } 4684 4685 free_loc_track(&t); 4686 bitmap_free(map); 4687 if (!t.count) 4688 len += sprintf(buf, "No data\n"); 4689 return len; 4690 } 4691 #endif /* CONFIG_SLUB_DEBUG */ 4692 4693 #ifdef SLUB_RESILIENCY_TEST 4694 static void __init resiliency_test(void) 4695 { 4696 u8 *p; 4697 int type = KMALLOC_NORMAL; 4698 4699 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4700 4701 pr_err("SLUB resiliency testing\n"); 4702 pr_err("-----------------------\n"); 4703 pr_err("A. Corruption after allocation\n"); 4704 4705 p = kzalloc(16, GFP_KERNEL); 4706 p[16] = 0x12; 4707 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4708 p + 16); 4709 4710 validate_slab_cache(kmalloc_caches[type][4]); 4711 4712 /* Hmmm... The next two are dangerous */ 4713 p = kzalloc(32, GFP_KERNEL); 4714 p[32 + sizeof(void *)] = 0x34; 4715 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4716 p); 4717 pr_err("If allocated object is overwritten then not detectable\n\n"); 4718 4719 validate_slab_cache(kmalloc_caches[type][5]); 4720 p = kzalloc(64, GFP_KERNEL); 4721 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4722 *p = 0x56; 4723 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4724 p); 4725 pr_err("If allocated object is overwritten then not detectable\n\n"); 4726 validate_slab_cache(kmalloc_caches[type][6]); 4727 4728 pr_err("\nB. Corruption after free\n"); 4729 p = kzalloc(128, GFP_KERNEL); 4730 kfree(p); 4731 *p = 0x78; 4732 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4733 validate_slab_cache(kmalloc_caches[type][7]); 4734 4735 p = kzalloc(256, GFP_KERNEL); 4736 kfree(p); 4737 p[50] = 0x9a; 4738 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4739 validate_slab_cache(kmalloc_caches[type][8]); 4740 4741 p = kzalloc(512, GFP_KERNEL); 4742 kfree(p); 4743 p[512] = 0xab; 4744 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4745 validate_slab_cache(kmalloc_caches[type][9]); 4746 } 4747 #else 4748 #ifdef CONFIG_SYSFS 4749 static void resiliency_test(void) {}; 4750 #endif 4751 #endif /* SLUB_RESILIENCY_TEST */ 4752 4753 #ifdef CONFIG_SYSFS 4754 enum slab_stat_type { 4755 SL_ALL, /* All slabs */ 4756 SL_PARTIAL, /* Only partially allocated slabs */ 4757 SL_CPU, /* Only slabs used for cpu caches */ 4758 SL_OBJECTS, /* Determine allocated objects not slabs */ 4759 SL_TOTAL /* Determine object capacity not slabs */ 4760 }; 4761 4762 #define SO_ALL (1 << SL_ALL) 4763 #define SO_PARTIAL (1 << SL_PARTIAL) 4764 #define SO_CPU (1 << SL_CPU) 4765 #define SO_OBJECTS (1 << SL_OBJECTS) 4766 #define SO_TOTAL (1 << SL_TOTAL) 4767 4768 #ifdef CONFIG_MEMCG 4769 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4770 4771 static int __init setup_slub_memcg_sysfs(char *str) 4772 { 4773 int v; 4774 4775 if (get_option(&str, &v) > 0) 4776 memcg_sysfs_enabled = v; 4777 4778 return 1; 4779 } 4780 4781 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4782 #endif 4783 4784 static ssize_t show_slab_objects(struct kmem_cache *s, 4785 char *buf, unsigned long flags) 4786 { 4787 unsigned long total = 0; 4788 int node; 4789 int x; 4790 unsigned long *nodes; 4791 4792 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4793 if (!nodes) 4794 return -ENOMEM; 4795 4796 if (flags & SO_CPU) { 4797 int cpu; 4798 4799 for_each_possible_cpu(cpu) { 4800 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4801 cpu); 4802 int node; 4803 struct page *page; 4804 4805 page = READ_ONCE(c->page); 4806 if (!page) 4807 continue; 4808 4809 node = page_to_nid(page); 4810 if (flags & SO_TOTAL) 4811 x = page->objects; 4812 else if (flags & SO_OBJECTS) 4813 x = page->inuse; 4814 else 4815 x = 1; 4816 4817 total += x; 4818 nodes[node] += x; 4819 4820 page = slub_percpu_partial_read_once(c); 4821 if (page) { 4822 node = page_to_nid(page); 4823 if (flags & SO_TOTAL) 4824 WARN_ON_ONCE(1); 4825 else if (flags & SO_OBJECTS) 4826 WARN_ON_ONCE(1); 4827 else 4828 x = page->pages; 4829 total += x; 4830 nodes[node] += x; 4831 } 4832 } 4833 } 4834 4835 get_online_mems(); 4836 #ifdef CONFIG_SLUB_DEBUG 4837 if (flags & SO_ALL) { 4838 struct kmem_cache_node *n; 4839 4840 for_each_kmem_cache_node(s, node, n) { 4841 4842 if (flags & SO_TOTAL) 4843 x = atomic_long_read(&n->total_objects); 4844 else if (flags & SO_OBJECTS) 4845 x = atomic_long_read(&n->total_objects) - 4846 count_partial(n, count_free); 4847 else 4848 x = atomic_long_read(&n->nr_slabs); 4849 total += x; 4850 nodes[node] += x; 4851 } 4852 4853 } else 4854 #endif 4855 if (flags & SO_PARTIAL) { 4856 struct kmem_cache_node *n; 4857 4858 for_each_kmem_cache_node(s, node, n) { 4859 if (flags & SO_TOTAL) 4860 x = count_partial(n, count_total); 4861 else if (flags & SO_OBJECTS) 4862 x = count_partial(n, count_inuse); 4863 else 4864 x = n->nr_partial; 4865 total += x; 4866 nodes[node] += x; 4867 } 4868 } 4869 x = sprintf(buf, "%lu", total); 4870 #ifdef CONFIG_NUMA 4871 for (node = 0; node < nr_node_ids; node++) 4872 if (nodes[node]) 4873 x += sprintf(buf + x, " N%d=%lu", 4874 node, nodes[node]); 4875 #endif 4876 put_online_mems(); 4877 kfree(nodes); 4878 return x + sprintf(buf + x, "\n"); 4879 } 4880 4881 #ifdef CONFIG_SLUB_DEBUG 4882 static int any_slab_objects(struct kmem_cache *s) 4883 { 4884 int node; 4885 struct kmem_cache_node *n; 4886 4887 for_each_kmem_cache_node(s, node, n) 4888 if (atomic_long_read(&n->total_objects)) 4889 return 1; 4890 4891 return 0; 4892 } 4893 #endif 4894 4895 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4896 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4897 4898 struct slab_attribute { 4899 struct attribute attr; 4900 ssize_t (*show)(struct kmem_cache *s, char *buf); 4901 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4902 }; 4903 4904 #define SLAB_ATTR_RO(_name) \ 4905 static struct slab_attribute _name##_attr = \ 4906 __ATTR(_name, 0400, _name##_show, NULL) 4907 4908 #define SLAB_ATTR(_name) \ 4909 static struct slab_attribute _name##_attr = \ 4910 __ATTR(_name, 0600, _name##_show, _name##_store) 4911 4912 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4913 { 4914 return sprintf(buf, "%u\n", s->size); 4915 } 4916 SLAB_ATTR_RO(slab_size); 4917 4918 static ssize_t align_show(struct kmem_cache *s, char *buf) 4919 { 4920 return sprintf(buf, "%u\n", s->align); 4921 } 4922 SLAB_ATTR_RO(align); 4923 4924 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4925 { 4926 return sprintf(buf, "%u\n", s->object_size); 4927 } 4928 SLAB_ATTR_RO(object_size); 4929 4930 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4931 { 4932 return sprintf(buf, "%u\n", oo_objects(s->oo)); 4933 } 4934 SLAB_ATTR_RO(objs_per_slab); 4935 4936 static ssize_t order_store(struct kmem_cache *s, 4937 const char *buf, size_t length) 4938 { 4939 unsigned int order; 4940 int err; 4941 4942 err = kstrtouint(buf, 10, &order); 4943 if (err) 4944 return err; 4945 4946 if (order > slub_max_order || order < slub_min_order) 4947 return -EINVAL; 4948 4949 calculate_sizes(s, order); 4950 return length; 4951 } 4952 4953 static ssize_t order_show(struct kmem_cache *s, char *buf) 4954 { 4955 return sprintf(buf, "%u\n", oo_order(s->oo)); 4956 } 4957 SLAB_ATTR(order); 4958 4959 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4960 { 4961 return sprintf(buf, "%lu\n", s->min_partial); 4962 } 4963 4964 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4965 size_t length) 4966 { 4967 unsigned long min; 4968 int err; 4969 4970 err = kstrtoul(buf, 10, &min); 4971 if (err) 4972 return err; 4973 4974 set_min_partial(s, min); 4975 return length; 4976 } 4977 SLAB_ATTR(min_partial); 4978 4979 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4980 { 4981 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 4982 } 4983 4984 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4985 size_t length) 4986 { 4987 unsigned int objects; 4988 int err; 4989 4990 err = kstrtouint(buf, 10, &objects); 4991 if (err) 4992 return err; 4993 if (objects && !kmem_cache_has_cpu_partial(s)) 4994 return -EINVAL; 4995 4996 slub_set_cpu_partial(s, objects); 4997 flush_all(s); 4998 return length; 4999 } 5000 SLAB_ATTR(cpu_partial); 5001 5002 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5003 { 5004 if (!s->ctor) 5005 return 0; 5006 return sprintf(buf, "%pS\n", s->ctor); 5007 } 5008 SLAB_ATTR_RO(ctor); 5009 5010 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5011 { 5012 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5013 } 5014 SLAB_ATTR_RO(aliases); 5015 5016 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5017 { 5018 return show_slab_objects(s, buf, SO_PARTIAL); 5019 } 5020 SLAB_ATTR_RO(partial); 5021 5022 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5023 { 5024 return show_slab_objects(s, buf, SO_CPU); 5025 } 5026 SLAB_ATTR_RO(cpu_slabs); 5027 5028 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5029 { 5030 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5031 } 5032 SLAB_ATTR_RO(objects); 5033 5034 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5035 { 5036 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5037 } 5038 SLAB_ATTR_RO(objects_partial); 5039 5040 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5041 { 5042 int objects = 0; 5043 int pages = 0; 5044 int cpu; 5045 int len; 5046 5047 for_each_online_cpu(cpu) { 5048 struct page *page; 5049 5050 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5051 5052 if (page) { 5053 pages += page->pages; 5054 objects += page->pobjects; 5055 } 5056 } 5057 5058 len = sprintf(buf, "%d(%d)", objects, pages); 5059 5060 #ifdef CONFIG_SMP 5061 for_each_online_cpu(cpu) { 5062 struct page *page; 5063 5064 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5065 5066 if (page && len < PAGE_SIZE - 20) 5067 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5068 page->pobjects, page->pages); 5069 } 5070 #endif 5071 return len + sprintf(buf + len, "\n"); 5072 } 5073 SLAB_ATTR_RO(slabs_cpu_partial); 5074 5075 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5076 { 5077 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5078 } 5079 5080 static ssize_t reclaim_account_store(struct kmem_cache *s, 5081 const char *buf, size_t length) 5082 { 5083 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5084 if (buf[0] == '1') 5085 s->flags |= SLAB_RECLAIM_ACCOUNT; 5086 return length; 5087 } 5088 SLAB_ATTR(reclaim_account); 5089 5090 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5091 { 5092 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5093 } 5094 SLAB_ATTR_RO(hwcache_align); 5095 5096 #ifdef CONFIG_ZONE_DMA 5097 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5098 { 5099 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5100 } 5101 SLAB_ATTR_RO(cache_dma); 5102 #endif 5103 5104 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5105 { 5106 return sprintf(buf, "%u\n", s->usersize); 5107 } 5108 SLAB_ATTR_RO(usersize); 5109 5110 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5111 { 5112 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5113 } 5114 SLAB_ATTR_RO(destroy_by_rcu); 5115 5116 #ifdef CONFIG_SLUB_DEBUG 5117 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5118 { 5119 return show_slab_objects(s, buf, SO_ALL); 5120 } 5121 SLAB_ATTR_RO(slabs); 5122 5123 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5124 { 5125 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5126 } 5127 SLAB_ATTR_RO(total_objects); 5128 5129 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5130 { 5131 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5132 } 5133 5134 static ssize_t sanity_checks_store(struct kmem_cache *s, 5135 const char *buf, size_t length) 5136 { 5137 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5138 if (buf[0] == '1') { 5139 s->flags &= ~__CMPXCHG_DOUBLE; 5140 s->flags |= SLAB_CONSISTENCY_CHECKS; 5141 } 5142 return length; 5143 } 5144 SLAB_ATTR(sanity_checks); 5145 5146 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5147 { 5148 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5149 } 5150 5151 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5152 size_t length) 5153 { 5154 /* 5155 * Tracing a merged cache is going to give confusing results 5156 * as well as cause other issues like converting a mergeable 5157 * cache into an umergeable one. 5158 */ 5159 if (s->refcount > 1) 5160 return -EINVAL; 5161 5162 s->flags &= ~SLAB_TRACE; 5163 if (buf[0] == '1') { 5164 s->flags &= ~__CMPXCHG_DOUBLE; 5165 s->flags |= SLAB_TRACE; 5166 } 5167 return length; 5168 } 5169 SLAB_ATTR(trace); 5170 5171 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5172 { 5173 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5174 } 5175 5176 static ssize_t red_zone_store(struct kmem_cache *s, 5177 const char *buf, size_t length) 5178 { 5179 if (any_slab_objects(s)) 5180 return -EBUSY; 5181 5182 s->flags &= ~SLAB_RED_ZONE; 5183 if (buf[0] == '1') { 5184 s->flags |= SLAB_RED_ZONE; 5185 } 5186 calculate_sizes(s, -1); 5187 return length; 5188 } 5189 SLAB_ATTR(red_zone); 5190 5191 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5192 { 5193 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5194 } 5195 5196 static ssize_t poison_store(struct kmem_cache *s, 5197 const char *buf, size_t length) 5198 { 5199 if (any_slab_objects(s)) 5200 return -EBUSY; 5201 5202 s->flags &= ~SLAB_POISON; 5203 if (buf[0] == '1') { 5204 s->flags |= SLAB_POISON; 5205 } 5206 calculate_sizes(s, -1); 5207 return length; 5208 } 5209 SLAB_ATTR(poison); 5210 5211 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5212 { 5213 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5214 } 5215 5216 static ssize_t store_user_store(struct kmem_cache *s, 5217 const char *buf, size_t length) 5218 { 5219 if (any_slab_objects(s)) 5220 return -EBUSY; 5221 5222 s->flags &= ~SLAB_STORE_USER; 5223 if (buf[0] == '1') { 5224 s->flags &= ~__CMPXCHG_DOUBLE; 5225 s->flags |= SLAB_STORE_USER; 5226 } 5227 calculate_sizes(s, -1); 5228 return length; 5229 } 5230 SLAB_ATTR(store_user); 5231 5232 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5233 { 5234 return 0; 5235 } 5236 5237 static ssize_t validate_store(struct kmem_cache *s, 5238 const char *buf, size_t length) 5239 { 5240 int ret = -EINVAL; 5241 5242 if (buf[0] == '1') { 5243 ret = validate_slab_cache(s); 5244 if (ret >= 0) 5245 ret = length; 5246 } 5247 return ret; 5248 } 5249 SLAB_ATTR(validate); 5250 5251 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5252 { 5253 if (!(s->flags & SLAB_STORE_USER)) 5254 return -ENOSYS; 5255 return list_locations(s, buf, TRACK_ALLOC); 5256 } 5257 SLAB_ATTR_RO(alloc_calls); 5258 5259 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5260 { 5261 if (!(s->flags & SLAB_STORE_USER)) 5262 return -ENOSYS; 5263 return list_locations(s, buf, TRACK_FREE); 5264 } 5265 SLAB_ATTR_RO(free_calls); 5266 #endif /* CONFIG_SLUB_DEBUG */ 5267 5268 #ifdef CONFIG_FAILSLAB 5269 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5270 { 5271 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5272 } 5273 5274 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5275 size_t length) 5276 { 5277 if (s->refcount > 1) 5278 return -EINVAL; 5279 5280 s->flags &= ~SLAB_FAILSLAB; 5281 if (buf[0] == '1') 5282 s->flags |= SLAB_FAILSLAB; 5283 return length; 5284 } 5285 SLAB_ATTR(failslab); 5286 #endif 5287 5288 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5289 { 5290 return 0; 5291 } 5292 5293 static ssize_t shrink_store(struct kmem_cache *s, 5294 const char *buf, size_t length) 5295 { 5296 if (buf[0] == '1') 5297 kmem_cache_shrink(s); 5298 else 5299 return -EINVAL; 5300 return length; 5301 } 5302 SLAB_ATTR(shrink); 5303 5304 #ifdef CONFIG_NUMA 5305 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5306 { 5307 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5308 } 5309 5310 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5311 const char *buf, size_t length) 5312 { 5313 unsigned int ratio; 5314 int err; 5315 5316 err = kstrtouint(buf, 10, &ratio); 5317 if (err) 5318 return err; 5319 if (ratio > 100) 5320 return -ERANGE; 5321 5322 s->remote_node_defrag_ratio = ratio * 10; 5323 5324 return length; 5325 } 5326 SLAB_ATTR(remote_node_defrag_ratio); 5327 #endif 5328 5329 #ifdef CONFIG_SLUB_STATS 5330 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5331 { 5332 unsigned long sum = 0; 5333 int cpu; 5334 int len; 5335 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5336 5337 if (!data) 5338 return -ENOMEM; 5339 5340 for_each_online_cpu(cpu) { 5341 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5342 5343 data[cpu] = x; 5344 sum += x; 5345 } 5346 5347 len = sprintf(buf, "%lu", sum); 5348 5349 #ifdef CONFIG_SMP 5350 for_each_online_cpu(cpu) { 5351 if (data[cpu] && len < PAGE_SIZE - 20) 5352 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5353 } 5354 #endif 5355 kfree(data); 5356 return len + sprintf(buf + len, "\n"); 5357 } 5358 5359 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5360 { 5361 int cpu; 5362 5363 for_each_online_cpu(cpu) 5364 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5365 } 5366 5367 #define STAT_ATTR(si, text) \ 5368 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5369 { \ 5370 return show_stat(s, buf, si); \ 5371 } \ 5372 static ssize_t text##_store(struct kmem_cache *s, \ 5373 const char *buf, size_t length) \ 5374 { \ 5375 if (buf[0] != '0') \ 5376 return -EINVAL; \ 5377 clear_stat(s, si); \ 5378 return length; \ 5379 } \ 5380 SLAB_ATTR(text); \ 5381 5382 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5383 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5384 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5385 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5386 STAT_ATTR(FREE_FROZEN, free_frozen); 5387 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5388 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5389 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5390 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5391 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5392 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5393 STAT_ATTR(FREE_SLAB, free_slab); 5394 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5395 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5396 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5397 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5398 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5399 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5400 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5401 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5402 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5403 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5404 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5405 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5406 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5407 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5408 #endif /* CONFIG_SLUB_STATS */ 5409 5410 static struct attribute *slab_attrs[] = { 5411 &slab_size_attr.attr, 5412 &object_size_attr.attr, 5413 &objs_per_slab_attr.attr, 5414 &order_attr.attr, 5415 &min_partial_attr.attr, 5416 &cpu_partial_attr.attr, 5417 &objects_attr.attr, 5418 &objects_partial_attr.attr, 5419 &partial_attr.attr, 5420 &cpu_slabs_attr.attr, 5421 &ctor_attr.attr, 5422 &aliases_attr.attr, 5423 &align_attr.attr, 5424 &hwcache_align_attr.attr, 5425 &reclaim_account_attr.attr, 5426 &destroy_by_rcu_attr.attr, 5427 &shrink_attr.attr, 5428 &slabs_cpu_partial_attr.attr, 5429 #ifdef CONFIG_SLUB_DEBUG 5430 &total_objects_attr.attr, 5431 &slabs_attr.attr, 5432 &sanity_checks_attr.attr, 5433 &trace_attr.attr, 5434 &red_zone_attr.attr, 5435 &poison_attr.attr, 5436 &store_user_attr.attr, 5437 &validate_attr.attr, 5438 &alloc_calls_attr.attr, 5439 &free_calls_attr.attr, 5440 #endif 5441 #ifdef CONFIG_ZONE_DMA 5442 &cache_dma_attr.attr, 5443 #endif 5444 #ifdef CONFIG_NUMA 5445 &remote_node_defrag_ratio_attr.attr, 5446 #endif 5447 #ifdef CONFIG_SLUB_STATS 5448 &alloc_fastpath_attr.attr, 5449 &alloc_slowpath_attr.attr, 5450 &free_fastpath_attr.attr, 5451 &free_slowpath_attr.attr, 5452 &free_frozen_attr.attr, 5453 &free_add_partial_attr.attr, 5454 &free_remove_partial_attr.attr, 5455 &alloc_from_partial_attr.attr, 5456 &alloc_slab_attr.attr, 5457 &alloc_refill_attr.attr, 5458 &alloc_node_mismatch_attr.attr, 5459 &free_slab_attr.attr, 5460 &cpuslab_flush_attr.attr, 5461 &deactivate_full_attr.attr, 5462 &deactivate_empty_attr.attr, 5463 &deactivate_to_head_attr.attr, 5464 &deactivate_to_tail_attr.attr, 5465 &deactivate_remote_frees_attr.attr, 5466 &deactivate_bypass_attr.attr, 5467 &order_fallback_attr.attr, 5468 &cmpxchg_double_fail_attr.attr, 5469 &cmpxchg_double_cpu_fail_attr.attr, 5470 &cpu_partial_alloc_attr.attr, 5471 &cpu_partial_free_attr.attr, 5472 &cpu_partial_node_attr.attr, 5473 &cpu_partial_drain_attr.attr, 5474 #endif 5475 #ifdef CONFIG_FAILSLAB 5476 &failslab_attr.attr, 5477 #endif 5478 &usersize_attr.attr, 5479 5480 NULL 5481 }; 5482 5483 static const struct attribute_group slab_attr_group = { 5484 .attrs = slab_attrs, 5485 }; 5486 5487 static ssize_t slab_attr_show(struct kobject *kobj, 5488 struct attribute *attr, 5489 char *buf) 5490 { 5491 struct slab_attribute *attribute; 5492 struct kmem_cache *s; 5493 int err; 5494 5495 attribute = to_slab_attr(attr); 5496 s = to_slab(kobj); 5497 5498 if (!attribute->show) 5499 return -EIO; 5500 5501 err = attribute->show(s, buf); 5502 5503 return err; 5504 } 5505 5506 static ssize_t slab_attr_store(struct kobject *kobj, 5507 struct attribute *attr, 5508 const char *buf, size_t len) 5509 { 5510 struct slab_attribute *attribute; 5511 struct kmem_cache *s; 5512 int err; 5513 5514 attribute = to_slab_attr(attr); 5515 s = to_slab(kobj); 5516 5517 if (!attribute->store) 5518 return -EIO; 5519 5520 err = attribute->store(s, buf, len); 5521 #ifdef CONFIG_MEMCG 5522 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5523 struct kmem_cache *c; 5524 5525 mutex_lock(&slab_mutex); 5526 if (s->max_attr_size < len) 5527 s->max_attr_size = len; 5528 5529 /* 5530 * This is a best effort propagation, so this function's return 5531 * value will be determined by the parent cache only. This is 5532 * basically because not all attributes will have a well 5533 * defined semantics for rollbacks - most of the actions will 5534 * have permanent effects. 5535 * 5536 * Returning the error value of any of the children that fail 5537 * is not 100 % defined, in the sense that users seeing the 5538 * error code won't be able to know anything about the state of 5539 * the cache. 5540 * 5541 * Only returning the error code for the parent cache at least 5542 * has well defined semantics. The cache being written to 5543 * directly either failed or succeeded, in which case we loop 5544 * through the descendants with best-effort propagation. 5545 */ 5546 for_each_memcg_cache(c, s) 5547 attribute->store(c, buf, len); 5548 mutex_unlock(&slab_mutex); 5549 } 5550 #endif 5551 return err; 5552 } 5553 5554 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5555 { 5556 #ifdef CONFIG_MEMCG 5557 int i; 5558 char *buffer = NULL; 5559 struct kmem_cache *root_cache; 5560 5561 if (is_root_cache(s)) 5562 return; 5563 5564 root_cache = s->memcg_params.root_cache; 5565 5566 /* 5567 * This mean this cache had no attribute written. Therefore, no point 5568 * in copying default values around 5569 */ 5570 if (!root_cache->max_attr_size) 5571 return; 5572 5573 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5574 char mbuf[64]; 5575 char *buf; 5576 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5577 ssize_t len; 5578 5579 if (!attr || !attr->store || !attr->show) 5580 continue; 5581 5582 /* 5583 * It is really bad that we have to allocate here, so we will 5584 * do it only as a fallback. If we actually allocate, though, 5585 * we can just use the allocated buffer until the end. 5586 * 5587 * Most of the slub attributes will tend to be very small in 5588 * size, but sysfs allows buffers up to a page, so they can 5589 * theoretically happen. 5590 */ 5591 if (buffer) 5592 buf = buffer; 5593 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5594 buf = mbuf; 5595 else { 5596 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5597 if (WARN_ON(!buffer)) 5598 continue; 5599 buf = buffer; 5600 } 5601 5602 len = attr->show(root_cache, buf); 5603 if (len > 0) 5604 attr->store(s, buf, len); 5605 } 5606 5607 if (buffer) 5608 free_page((unsigned long)buffer); 5609 #endif /* CONFIG_MEMCG */ 5610 } 5611 5612 static void kmem_cache_release(struct kobject *k) 5613 { 5614 slab_kmem_cache_release(to_slab(k)); 5615 } 5616 5617 static const struct sysfs_ops slab_sysfs_ops = { 5618 .show = slab_attr_show, 5619 .store = slab_attr_store, 5620 }; 5621 5622 static struct kobj_type slab_ktype = { 5623 .sysfs_ops = &slab_sysfs_ops, 5624 .release = kmem_cache_release, 5625 }; 5626 5627 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5628 { 5629 struct kobj_type *ktype = get_ktype(kobj); 5630 5631 if (ktype == &slab_ktype) 5632 return 1; 5633 return 0; 5634 } 5635 5636 static const struct kset_uevent_ops slab_uevent_ops = { 5637 .filter = uevent_filter, 5638 }; 5639 5640 static struct kset *slab_kset; 5641 5642 static inline struct kset *cache_kset(struct kmem_cache *s) 5643 { 5644 #ifdef CONFIG_MEMCG 5645 if (!is_root_cache(s)) 5646 return s->memcg_params.root_cache->memcg_kset; 5647 #endif 5648 return slab_kset; 5649 } 5650 5651 #define ID_STR_LENGTH 64 5652 5653 /* Create a unique string id for a slab cache: 5654 * 5655 * Format :[flags-]size 5656 */ 5657 static char *create_unique_id(struct kmem_cache *s) 5658 { 5659 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5660 char *p = name; 5661 5662 BUG_ON(!name); 5663 5664 *p++ = ':'; 5665 /* 5666 * First flags affecting slabcache operations. We will only 5667 * get here for aliasable slabs so we do not need to support 5668 * too many flags. The flags here must cover all flags that 5669 * are matched during merging to guarantee that the id is 5670 * unique. 5671 */ 5672 if (s->flags & SLAB_CACHE_DMA) 5673 *p++ = 'd'; 5674 if (s->flags & SLAB_CACHE_DMA32) 5675 *p++ = 'D'; 5676 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5677 *p++ = 'a'; 5678 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5679 *p++ = 'F'; 5680 if (s->flags & SLAB_ACCOUNT) 5681 *p++ = 'A'; 5682 if (p != name + 1) 5683 *p++ = '-'; 5684 p += sprintf(p, "%07u", s->size); 5685 5686 BUG_ON(p > name + ID_STR_LENGTH - 1); 5687 return name; 5688 } 5689 5690 static void sysfs_slab_remove_workfn(struct work_struct *work) 5691 { 5692 struct kmem_cache *s = 5693 container_of(work, struct kmem_cache, kobj_remove_work); 5694 5695 if (!s->kobj.state_in_sysfs) 5696 /* 5697 * For a memcg cache, this may be called during 5698 * deactivation and again on shutdown. Remove only once. 5699 * A cache is never shut down before deactivation is 5700 * complete, so no need to worry about synchronization. 5701 */ 5702 goto out; 5703 5704 #ifdef CONFIG_MEMCG 5705 kset_unregister(s->memcg_kset); 5706 #endif 5707 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5708 out: 5709 kobject_put(&s->kobj); 5710 } 5711 5712 static int sysfs_slab_add(struct kmem_cache *s) 5713 { 5714 int err; 5715 const char *name; 5716 struct kset *kset = cache_kset(s); 5717 int unmergeable = slab_unmergeable(s); 5718 5719 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5720 5721 if (!kset) { 5722 kobject_init(&s->kobj, &slab_ktype); 5723 return 0; 5724 } 5725 5726 if (!unmergeable && disable_higher_order_debug && 5727 (slub_debug & DEBUG_METADATA_FLAGS)) 5728 unmergeable = 1; 5729 5730 if (unmergeable) { 5731 /* 5732 * Slabcache can never be merged so we can use the name proper. 5733 * This is typically the case for debug situations. In that 5734 * case we can catch duplicate names easily. 5735 */ 5736 sysfs_remove_link(&slab_kset->kobj, s->name); 5737 name = s->name; 5738 } else { 5739 /* 5740 * Create a unique name for the slab as a target 5741 * for the symlinks. 5742 */ 5743 name = create_unique_id(s); 5744 } 5745 5746 s->kobj.kset = kset; 5747 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5748 if (err) 5749 goto out; 5750 5751 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5752 if (err) 5753 goto out_del_kobj; 5754 5755 #ifdef CONFIG_MEMCG 5756 if (is_root_cache(s) && memcg_sysfs_enabled) { 5757 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5758 if (!s->memcg_kset) { 5759 err = -ENOMEM; 5760 goto out_del_kobj; 5761 } 5762 } 5763 #endif 5764 5765 kobject_uevent(&s->kobj, KOBJ_ADD); 5766 if (!unmergeable) { 5767 /* Setup first alias */ 5768 sysfs_slab_alias(s, s->name); 5769 } 5770 out: 5771 if (!unmergeable) 5772 kfree(name); 5773 return err; 5774 out_del_kobj: 5775 kobject_del(&s->kobj); 5776 goto out; 5777 } 5778 5779 static void sysfs_slab_remove(struct kmem_cache *s) 5780 { 5781 if (slab_state < FULL) 5782 /* 5783 * Sysfs has not been setup yet so no need to remove the 5784 * cache from sysfs. 5785 */ 5786 return; 5787 5788 kobject_get(&s->kobj); 5789 schedule_work(&s->kobj_remove_work); 5790 } 5791 5792 void sysfs_slab_unlink(struct kmem_cache *s) 5793 { 5794 if (slab_state >= FULL) 5795 kobject_del(&s->kobj); 5796 } 5797 5798 void sysfs_slab_release(struct kmem_cache *s) 5799 { 5800 if (slab_state >= FULL) 5801 kobject_put(&s->kobj); 5802 } 5803 5804 /* 5805 * Need to buffer aliases during bootup until sysfs becomes 5806 * available lest we lose that information. 5807 */ 5808 struct saved_alias { 5809 struct kmem_cache *s; 5810 const char *name; 5811 struct saved_alias *next; 5812 }; 5813 5814 static struct saved_alias *alias_list; 5815 5816 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5817 { 5818 struct saved_alias *al; 5819 5820 if (slab_state == FULL) { 5821 /* 5822 * If we have a leftover link then remove it. 5823 */ 5824 sysfs_remove_link(&slab_kset->kobj, name); 5825 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5826 } 5827 5828 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5829 if (!al) 5830 return -ENOMEM; 5831 5832 al->s = s; 5833 al->name = name; 5834 al->next = alias_list; 5835 alias_list = al; 5836 return 0; 5837 } 5838 5839 static int __init slab_sysfs_init(void) 5840 { 5841 struct kmem_cache *s; 5842 int err; 5843 5844 mutex_lock(&slab_mutex); 5845 5846 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5847 if (!slab_kset) { 5848 mutex_unlock(&slab_mutex); 5849 pr_err("Cannot register slab subsystem.\n"); 5850 return -ENOSYS; 5851 } 5852 5853 slab_state = FULL; 5854 5855 list_for_each_entry(s, &slab_caches, list) { 5856 err = sysfs_slab_add(s); 5857 if (err) 5858 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5859 s->name); 5860 } 5861 5862 while (alias_list) { 5863 struct saved_alias *al = alias_list; 5864 5865 alias_list = alias_list->next; 5866 err = sysfs_slab_alias(al->s, al->name); 5867 if (err) 5868 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5869 al->name); 5870 kfree(al); 5871 } 5872 5873 mutex_unlock(&slab_mutex); 5874 resiliency_test(); 5875 return 0; 5876 } 5877 5878 __initcall(slab_sysfs_init); 5879 #endif /* CONFIG_SYSFS */ 5880 5881 /* 5882 * The /proc/slabinfo ABI 5883 */ 5884 #ifdef CONFIG_SLUB_DEBUG 5885 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5886 { 5887 unsigned long nr_slabs = 0; 5888 unsigned long nr_objs = 0; 5889 unsigned long nr_free = 0; 5890 int node; 5891 struct kmem_cache_node *n; 5892 5893 for_each_kmem_cache_node(s, node, n) { 5894 nr_slabs += node_nr_slabs(n); 5895 nr_objs += node_nr_objs(n); 5896 nr_free += count_partial(n, count_free); 5897 } 5898 5899 sinfo->active_objs = nr_objs - nr_free; 5900 sinfo->num_objs = nr_objs; 5901 sinfo->active_slabs = nr_slabs; 5902 sinfo->num_slabs = nr_slabs; 5903 sinfo->objects_per_slab = oo_objects(s->oo); 5904 sinfo->cache_order = oo_order(s->oo); 5905 } 5906 5907 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5908 { 5909 } 5910 5911 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5912 size_t count, loff_t *ppos) 5913 { 5914 return -EIO; 5915 } 5916 #endif /* CONFIG_SLUB_DEBUG */ 5917