1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/kmemcheck.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/memory.h> 32 #include <linux/math64.h> 33 #include <linux/fault-inject.h> 34 #include <linux/stacktrace.h> 35 #include <linux/prefetch.h> 36 #include <linux/memcontrol.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects the second 55 * double word in the page struct. Meaning 56 * A. page->freelist -> List of object free in a page 57 * B. page->counters -> Counters of objects 58 * C. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list. The processor that froze the slab is the one who can 62 * perform list operations on the page. Other processors may put objects 63 * onto the freelist but the processor that froze the slab is the only 64 * one that can retrieve the objects from the page's freelist. 65 * 66 * The list_lock protects the partial and full list on each node and 67 * the partial slab counter. If taken then no new slabs may be added or 68 * removed from the lists nor make the number of partial slabs be modified. 69 * (Note that the total number of slabs is an atomic value that may be 70 * modified without taking the list lock). 71 * 72 * The list_lock is a centralized lock and thus we avoid taking it as 73 * much as possible. As long as SLUB does not have to handle partial 74 * slabs, operations can continue without any centralized lock. F.e. 75 * allocating a long series of objects that fill up slabs does not require 76 * the list lock. 77 * Interrupts are disabled during allocation and deallocation in order to 78 * make the slab allocator safe to use in the context of an irq. In addition 79 * interrupts are disabled to ensure that the processor does not change 80 * while handling per_cpu slabs, due to kernel preemption. 81 * 82 * SLUB assigns one slab for allocation to each processor. 83 * Allocations only occur from these slabs called cpu slabs. 84 * 85 * Slabs with free elements are kept on a partial list and during regular 86 * operations no list for full slabs is used. If an object in a full slab is 87 * freed then the slab will show up again on the partial lists. 88 * We track full slabs for debugging purposes though because otherwise we 89 * cannot scan all objects. 90 * 91 * Slabs are freed when they become empty. Teardown and setup is 92 * minimal so we rely on the page allocators per cpu caches for 93 * fast frees and allocs. 94 * 95 * Overloading of page flags that are otherwise used for LRU management. 96 * 97 * PageActive The slab is frozen and exempt from list processing. 98 * This means that the slab is dedicated to a purpose 99 * such as satisfying allocations for a specific 100 * processor. Objects may be freed in the slab while 101 * it is frozen but slab_free will then skip the usual 102 * list operations. It is up to the processor holding 103 * the slab to integrate the slab into the slab lists 104 * when the slab is no longer needed. 105 * 106 * One use of this flag is to mark slabs that are 107 * used for allocations. Then such a slab becomes a cpu 108 * slab. The cpu slab may be equipped with an additional 109 * freelist that allows lockless access to 110 * free objects in addition to the regular freelist 111 * that requires the slab lock. 112 * 113 * PageError Slab requires special handling due to debug 114 * options set. This moves slab handling out of 115 * the fast path and disables lockless freelists. 116 */ 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 128 { 129 #ifdef CONFIG_SLUB_CPU_PARTIAL 130 return !kmem_cache_debug(s); 131 #else 132 return false; 133 #endif 134 } 135 136 /* 137 * Issues still to be resolved: 138 * 139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 140 * 141 * - Variable sizing of the per node arrays 142 */ 143 144 /* Enable to test recovery from slab corruption on boot */ 145 #undef SLUB_RESILIENCY_TEST 146 147 /* Enable to log cmpxchg failures */ 148 #undef SLUB_DEBUG_CMPXCHG 149 150 /* 151 * Mininum number of partial slabs. These will be left on the partial 152 * lists even if they are empty. kmem_cache_shrink may reclaim them. 153 */ 154 #define MIN_PARTIAL 5 155 156 /* 157 * Maximum number of desirable partial slabs. 158 * The existence of more partial slabs makes kmem_cache_shrink 159 * sort the partial list by the number of objects in use. 160 */ 161 #define MAX_PARTIAL 10 162 163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 164 SLAB_POISON | SLAB_STORE_USER) 165 166 /* 167 * Debugging flags that require metadata to be stored in the slab. These get 168 * disabled when slub_debug=O is used and a cache's min order increases with 169 * metadata. 170 */ 171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 172 173 #define OO_SHIFT 16 174 #define OO_MASK ((1 << OO_SHIFT) - 1) 175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 176 177 /* Internal SLUB flags */ 178 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 180 181 #ifdef CONFIG_SMP 182 static struct notifier_block slab_notifier; 183 #endif 184 185 /* 186 * Tracking user of a slab. 187 */ 188 #define TRACK_ADDRS_COUNT 16 189 struct track { 190 unsigned long addr; /* Called from address */ 191 #ifdef CONFIG_STACKTRACE 192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 193 #endif 194 int cpu; /* Was running on cpu */ 195 int pid; /* Pid context */ 196 unsigned long when; /* When did the operation occur */ 197 }; 198 199 enum track_item { TRACK_ALLOC, TRACK_FREE }; 200 201 #ifdef CONFIG_SYSFS 202 static int sysfs_slab_add(struct kmem_cache *); 203 static int sysfs_slab_alias(struct kmem_cache *, const char *); 204 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 205 #else 206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 208 { return 0; } 209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 210 #endif 211 212 static inline void stat(const struct kmem_cache *s, enum stat_item si) 213 { 214 #ifdef CONFIG_SLUB_STATS 215 /* 216 * The rmw is racy on a preemptible kernel but this is acceptable, so 217 * avoid this_cpu_add()'s irq-disable overhead. 218 */ 219 raw_cpu_inc(s->cpu_slab->stat[si]); 220 #endif 221 } 222 223 /******************************************************************** 224 * Core slab cache functions 225 *******************************************************************/ 226 227 /* Verify that a pointer has an address that is valid within a slab page */ 228 static inline int check_valid_pointer(struct kmem_cache *s, 229 struct page *page, const void *object) 230 { 231 void *base; 232 233 if (!object) 234 return 1; 235 236 base = page_address(page); 237 if (object < base || object >= base + page->objects * s->size || 238 (object - base) % s->size) { 239 return 0; 240 } 241 242 return 1; 243 } 244 245 static inline void *get_freepointer(struct kmem_cache *s, void *object) 246 { 247 return *(void **)(object + s->offset); 248 } 249 250 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 251 { 252 prefetch(object + s->offset); 253 } 254 255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 256 { 257 void *p; 258 259 #ifdef CONFIG_DEBUG_PAGEALLOC 260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 261 #else 262 p = get_freepointer(s, object); 263 #endif 264 return p; 265 } 266 267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 268 { 269 *(void **)(object + s->offset) = fp; 270 } 271 272 /* Loop over all objects in a slab */ 273 #define for_each_object(__p, __s, __addr, __objects) \ 274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 275 __p += (__s)->size) 276 277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 278 for (__p = (__addr), __idx = 1; __idx <= __objects;\ 279 __p += (__s)->size, __idx++) 280 281 /* Determine object index from a given position */ 282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 283 { 284 return (p - addr) / s->size; 285 } 286 287 static inline size_t slab_ksize(const struct kmem_cache *s) 288 { 289 #ifdef CONFIG_SLUB_DEBUG 290 /* 291 * Debugging requires use of the padding between object 292 * and whatever may come after it. 293 */ 294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 295 return s->object_size; 296 297 #endif 298 /* 299 * If we have the need to store the freelist pointer 300 * back there or track user information then we can 301 * only use the space before that information. 302 */ 303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 304 return s->inuse; 305 /* 306 * Else we can use all the padding etc for the allocation 307 */ 308 return s->size; 309 } 310 311 static inline int order_objects(int order, unsigned long size, int reserved) 312 { 313 return ((PAGE_SIZE << order) - reserved) / size; 314 } 315 316 static inline struct kmem_cache_order_objects oo_make(int order, 317 unsigned long size, int reserved) 318 { 319 struct kmem_cache_order_objects x = { 320 (order << OO_SHIFT) + order_objects(order, size, reserved) 321 }; 322 323 return x; 324 } 325 326 static inline int oo_order(struct kmem_cache_order_objects x) 327 { 328 return x.x >> OO_SHIFT; 329 } 330 331 static inline int oo_objects(struct kmem_cache_order_objects x) 332 { 333 return x.x & OO_MASK; 334 } 335 336 /* 337 * Per slab locking using the pagelock 338 */ 339 static __always_inline void slab_lock(struct page *page) 340 { 341 bit_spin_lock(PG_locked, &page->flags); 342 } 343 344 static __always_inline void slab_unlock(struct page *page) 345 { 346 __bit_spin_unlock(PG_locked, &page->flags); 347 } 348 349 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 350 { 351 struct page tmp; 352 tmp.counters = counters_new; 353 /* 354 * page->counters can cover frozen/inuse/objects as well 355 * as page->_count. If we assign to ->counters directly 356 * we run the risk of losing updates to page->_count, so 357 * be careful and only assign to the fields we need. 358 */ 359 page->frozen = tmp.frozen; 360 page->inuse = tmp.inuse; 361 page->objects = tmp.objects; 362 } 363 364 /* Interrupts must be disabled (for the fallback code to work right) */ 365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 366 void *freelist_old, unsigned long counters_old, 367 void *freelist_new, unsigned long counters_new, 368 const char *n) 369 { 370 VM_BUG_ON(!irqs_disabled()); 371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 373 if (s->flags & __CMPXCHG_DOUBLE) { 374 if (cmpxchg_double(&page->freelist, &page->counters, 375 freelist_old, counters_old, 376 freelist_new, counters_new)) 377 return true; 378 } else 379 #endif 380 { 381 slab_lock(page); 382 if (page->freelist == freelist_old && 383 page->counters == counters_old) { 384 page->freelist = freelist_new; 385 set_page_slub_counters(page, counters_new); 386 slab_unlock(page); 387 return true; 388 } 389 slab_unlock(page); 390 } 391 392 cpu_relax(); 393 stat(s, CMPXCHG_DOUBLE_FAIL); 394 395 #ifdef SLUB_DEBUG_CMPXCHG 396 pr_info("%s %s: cmpxchg double redo ", n, s->name); 397 #endif 398 399 return false; 400 } 401 402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 403 void *freelist_old, unsigned long counters_old, 404 void *freelist_new, unsigned long counters_new, 405 const char *n) 406 { 407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 409 if (s->flags & __CMPXCHG_DOUBLE) { 410 if (cmpxchg_double(&page->freelist, &page->counters, 411 freelist_old, counters_old, 412 freelist_new, counters_new)) 413 return true; 414 } else 415 #endif 416 { 417 unsigned long flags; 418 419 local_irq_save(flags); 420 slab_lock(page); 421 if (page->freelist == freelist_old && 422 page->counters == counters_old) { 423 page->freelist = freelist_new; 424 set_page_slub_counters(page, counters_new); 425 slab_unlock(page); 426 local_irq_restore(flags); 427 return true; 428 } 429 slab_unlock(page); 430 local_irq_restore(flags); 431 } 432 433 cpu_relax(); 434 stat(s, CMPXCHG_DOUBLE_FAIL); 435 436 #ifdef SLUB_DEBUG_CMPXCHG 437 pr_info("%s %s: cmpxchg double redo ", n, s->name); 438 #endif 439 440 return false; 441 } 442 443 #ifdef CONFIG_SLUB_DEBUG 444 /* 445 * Determine a map of object in use on a page. 446 * 447 * Node listlock must be held to guarantee that the page does 448 * not vanish from under us. 449 */ 450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 451 { 452 void *p; 453 void *addr = page_address(page); 454 455 for (p = page->freelist; p; p = get_freepointer(s, p)) 456 set_bit(slab_index(p, s, addr), map); 457 } 458 459 /* 460 * Debug settings: 461 */ 462 #if defined(CONFIG_SLUB_DEBUG_ON) 463 static int slub_debug = DEBUG_DEFAULT_FLAGS; 464 #elif defined(CONFIG_KASAN) 465 static int slub_debug = SLAB_STORE_USER; 466 #else 467 static int slub_debug; 468 #endif 469 470 static char *slub_debug_slabs; 471 static int disable_higher_order_debug; 472 473 /* 474 * slub is about to manipulate internal object metadata. This memory lies 475 * outside the range of the allocated object, so accessing it would normally 476 * be reported by kasan as a bounds error. metadata_access_enable() is used 477 * to tell kasan that these accesses are OK. 478 */ 479 static inline void metadata_access_enable(void) 480 { 481 kasan_disable_current(); 482 } 483 484 static inline void metadata_access_disable(void) 485 { 486 kasan_enable_current(); 487 } 488 489 /* 490 * Object debugging 491 */ 492 static void print_section(char *text, u8 *addr, unsigned int length) 493 { 494 metadata_access_enable(); 495 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 496 length, 1); 497 metadata_access_disable(); 498 } 499 500 static struct track *get_track(struct kmem_cache *s, void *object, 501 enum track_item alloc) 502 { 503 struct track *p; 504 505 if (s->offset) 506 p = object + s->offset + sizeof(void *); 507 else 508 p = object + s->inuse; 509 510 return p + alloc; 511 } 512 513 static void set_track(struct kmem_cache *s, void *object, 514 enum track_item alloc, unsigned long addr) 515 { 516 struct track *p = get_track(s, object, alloc); 517 518 if (addr) { 519 #ifdef CONFIG_STACKTRACE 520 struct stack_trace trace; 521 int i; 522 523 trace.nr_entries = 0; 524 trace.max_entries = TRACK_ADDRS_COUNT; 525 trace.entries = p->addrs; 526 trace.skip = 3; 527 metadata_access_enable(); 528 save_stack_trace(&trace); 529 metadata_access_disable(); 530 531 /* See rant in lockdep.c */ 532 if (trace.nr_entries != 0 && 533 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 534 trace.nr_entries--; 535 536 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 537 p->addrs[i] = 0; 538 #endif 539 p->addr = addr; 540 p->cpu = smp_processor_id(); 541 p->pid = current->pid; 542 p->when = jiffies; 543 } else 544 memset(p, 0, sizeof(struct track)); 545 } 546 547 static void init_tracking(struct kmem_cache *s, void *object) 548 { 549 if (!(s->flags & SLAB_STORE_USER)) 550 return; 551 552 set_track(s, object, TRACK_FREE, 0UL); 553 set_track(s, object, TRACK_ALLOC, 0UL); 554 } 555 556 static void print_track(const char *s, struct track *t) 557 { 558 if (!t->addr) 559 return; 560 561 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 562 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 563 #ifdef CONFIG_STACKTRACE 564 { 565 int i; 566 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 567 if (t->addrs[i]) 568 pr_err("\t%pS\n", (void *)t->addrs[i]); 569 else 570 break; 571 } 572 #endif 573 } 574 575 static void print_tracking(struct kmem_cache *s, void *object) 576 { 577 if (!(s->flags & SLAB_STORE_USER)) 578 return; 579 580 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 581 print_track("Freed", get_track(s, object, TRACK_FREE)); 582 } 583 584 static void print_page_info(struct page *page) 585 { 586 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 587 page, page->objects, page->inuse, page->freelist, page->flags); 588 589 } 590 591 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 592 { 593 struct va_format vaf; 594 va_list args; 595 596 va_start(args, fmt); 597 vaf.fmt = fmt; 598 vaf.va = &args; 599 pr_err("=============================================================================\n"); 600 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 601 pr_err("-----------------------------------------------------------------------------\n\n"); 602 603 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 604 va_end(args); 605 } 606 607 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 608 { 609 struct va_format vaf; 610 va_list args; 611 612 va_start(args, fmt); 613 vaf.fmt = fmt; 614 vaf.va = &args; 615 pr_err("FIX %s: %pV\n", s->name, &vaf); 616 va_end(args); 617 } 618 619 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 620 { 621 unsigned int off; /* Offset of last byte */ 622 u8 *addr = page_address(page); 623 624 print_tracking(s, p); 625 626 print_page_info(page); 627 628 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 629 p, p - addr, get_freepointer(s, p)); 630 631 if (p > addr + 16) 632 print_section("Bytes b4 ", p - 16, 16); 633 634 print_section("Object ", p, min_t(unsigned long, s->object_size, 635 PAGE_SIZE)); 636 if (s->flags & SLAB_RED_ZONE) 637 print_section("Redzone ", p + s->object_size, 638 s->inuse - s->object_size); 639 640 if (s->offset) 641 off = s->offset + sizeof(void *); 642 else 643 off = s->inuse; 644 645 if (s->flags & SLAB_STORE_USER) 646 off += 2 * sizeof(struct track); 647 648 if (off != s->size) 649 /* Beginning of the filler is the free pointer */ 650 print_section("Padding ", p + off, s->size - off); 651 652 dump_stack(); 653 } 654 655 void object_err(struct kmem_cache *s, struct page *page, 656 u8 *object, char *reason) 657 { 658 slab_bug(s, "%s", reason); 659 print_trailer(s, page, object); 660 } 661 662 static void slab_err(struct kmem_cache *s, struct page *page, 663 const char *fmt, ...) 664 { 665 va_list args; 666 char buf[100]; 667 668 va_start(args, fmt); 669 vsnprintf(buf, sizeof(buf), fmt, args); 670 va_end(args); 671 slab_bug(s, "%s", buf); 672 print_page_info(page); 673 dump_stack(); 674 } 675 676 static void init_object(struct kmem_cache *s, void *object, u8 val) 677 { 678 u8 *p = object; 679 680 if (s->flags & __OBJECT_POISON) { 681 memset(p, POISON_FREE, s->object_size - 1); 682 p[s->object_size - 1] = POISON_END; 683 } 684 685 if (s->flags & SLAB_RED_ZONE) 686 memset(p + s->object_size, val, s->inuse - s->object_size); 687 } 688 689 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 690 void *from, void *to) 691 { 692 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 693 memset(from, data, to - from); 694 } 695 696 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 697 u8 *object, char *what, 698 u8 *start, unsigned int value, unsigned int bytes) 699 { 700 u8 *fault; 701 u8 *end; 702 703 metadata_access_enable(); 704 fault = memchr_inv(start, value, bytes); 705 metadata_access_disable(); 706 if (!fault) 707 return 1; 708 709 end = start + bytes; 710 while (end > fault && end[-1] == value) 711 end--; 712 713 slab_bug(s, "%s overwritten", what); 714 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 715 fault, end - 1, fault[0], value); 716 print_trailer(s, page, object); 717 718 restore_bytes(s, what, value, fault, end); 719 return 0; 720 } 721 722 /* 723 * Object layout: 724 * 725 * object address 726 * Bytes of the object to be managed. 727 * If the freepointer may overlay the object then the free 728 * pointer is the first word of the object. 729 * 730 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 731 * 0xa5 (POISON_END) 732 * 733 * object + s->object_size 734 * Padding to reach word boundary. This is also used for Redzoning. 735 * Padding is extended by another word if Redzoning is enabled and 736 * object_size == inuse. 737 * 738 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 739 * 0xcc (RED_ACTIVE) for objects in use. 740 * 741 * object + s->inuse 742 * Meta data starts here. 743 * 744 * A. Free pointer (if we cannot overwrite object on free) 745 * B. Tracking data for SLAB_STORE_USER 746 * C. Padding to reach required alignment boundary or at mininum 747 * one word if debugging is on to be able to detect writes 748 * before the word boundary. 749 * 750 * Padding is done using 0x5a (POISON_INUSE) 751 * 752 * object + s->size 753 * Nothing is used beyond s->size. 754 * 755 * If slabcaches are merged then the object_size and inuse boundaries are mostly 756 * ignored. And therefore no slab options that rely on these boundaries 757 * may be used with merged slabcaches. 758 */ 759 760 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 761 { 762 unsigned long off = s->inuse; /* The end of info */ 763 764 if (s->offset) 765 /* Freepointer is placed after the object. */ 766 off += sizeof(void *); 767 768 if (s->flags & SLAB_STORE_USER) 769 /* We also have user information there */ 770 off += 2 * sizeof(struct track); 771 772 if (s->size == off) 773 return 1; 774 775 return check_bytes_and_report(s, page, p, "Object padding", 776 p + off, POISON_INUSE, s->size - off); 777 } 778 779 /* Check the pad bytes at the end of a slab page */ 780 static int slab_pad_check(struct kmem_cache *s, struct page *page) 781 { 782 u8 *start; 783 u8 *fault; 784 u8 *end; 785 int length; 786 int remainder; 787 788 if (!(s->flags & SLAB_POISON)) 789 return 1; 790 791 start = page_address(page); 792 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 793 end = start + length; 794 remainder = length % s->size; 795 if (!remainder) 796 return 1; 797 798 metadata_access_enable(); 799 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 800 metadata_access_disable(); 801 if (!fault) 802 return 1; 803 while (end > fault && end[-1] == POISON_INUSE) 804 end--; 805 806 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 807 print_section("Padding ", end - remainder, remainder); 808 809 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 810 return 0; 811 } 812 813 static int check_object(struct kmem_cache *s, struct page *page, 814 void *object, u8 val) 815 { 816 u8 *p = object; 817 u8 *endobject = object + s->object_size; 818 819 if (s->flags & SLAB_RED_ZONE) { 820 if (!check_bytes_and_report(s, page, object, "Redzone", 821 endobject, val, s->inuse - s->object_size)) 822 return 0; 823 } else { 824 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 825 check_bytes_and_report(s, page, p, "Alignment padding", 826 endobject, POISON_INUSE, 827 s->inuse - s->object_size); 828 } 829 } 830 831 if (s->flags & SLAB_POISON) { 832 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 833 (!check_bytes_and_report(s, page, p, "Poison", p, 834 POISON_FREE, s->object_size - 1) || 835 !check_bytes_and_report(s, page, p, "Poison", 836 p + s->object_size - 1, POISON_END, 1))) 837 return 0; 838 /* 839 * check_pad_bytes cleans up on its own. 840 */ 841 check_pad_bytes(s, page, p); 842 } 843 844 if (!s->offset && val == SLUB_RED_ACTIVE) 845 /* 846 * Object and freepointer overlap. Cannot check 847 * freepointer while object is allocated. 848 */ 849 return 1; 850 851 /* Check free pointer validity */ 852 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 853 object_err(s, page, p, "Freepointer corrupt"); 854 /* 855 * No choice but to zap it and thus lose the remainder 856 * of the free objects in this slab. May cause 857 * another error because the object count is now wrong. 858 */ 859 set_freepointer(s, p, NULL); 860 return 0; 861 } 862 return 1; 863 } 864 865 static int check_slab(struct kmem_cache *s, struct page *page) 866 { 867 int maxobj; 868 869 VM_BUG_ON(!irqs_disabled()); 870 871 if (!PageSlab(page)) { 872 slab_err(s, page, "Not a valid slab page"); 873 return 0; 874 } 875 876 maxobj = order_objects(compound_order(page), s->size, s->reserved); 877 if (page->objects > maxobj) { 878 slab_err(s, page, "objects %u > max %u", 879 page->objects, maxobj); 880 return 0; 881 } 882 if (page->inuse > page->objects) { 883 slab_err(s, page, "inuse %u > max %u", 884 page->inuse, page->objects); 885 return 0; 886 } 887 /* Slab_pad_check fixes things up after itself */ 888 slab_pad_check(s, page); 889 return 1; 890 } 891 892 /* 893 * Determine if a certain object on a page is on the freelist. Must hold the 894 * slab lock to guarantee that the chains are in a consistent state. 895 */ 896 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 897 { 898 int nr = 0; 899 void *fp; 900 void *object = NULL; 901 int max_objects; 902 903 fp = page->freelist; 904 while (fp && nr <= page->objects) { 905 if (fp == search) 906 return 1; 907 if (!check_valid_pointer(s, page, fp)) { 908 if (object) { 909 object_err(s, page, object, 910 "Freechain corrupt"); 911 set_freepointer(s, object, NULL); 912 } else { 913 slab_err(s, page, "Freepointer corrupt"); 914 page->freelist = NULL; 915 page->inuse = page->objects; 916 slab_fix(s, "Freelist cleared"); 917 return 0; 918 } 919 break; 920 } 921 object = fp; 922 fp = get_freepointer(s, object); 923 nr++; 924 } 925 926 max_objects = order_objects(compound_order(page), s->size, s->reserved); 927 if (max_objects > MAX_OBJS_PER_PAGE) 928 max_objects = MAX_OBJS_PER_PAGE; 929 930 if (page->objects != max_objects) { 931 slab_err(s, page, "Wrong number of objects. Found %d but " 932 "should be %d", page->objects, max_objects); 933 page->objects = max_objects; 934 slab_fix(s, "Number of objects adjusted."); 935 } 936 if (page->inuse != page->objects - nr) { 937 slab_err(s, page, "Wrong object count. Counter is %d but " 938 "counted were %d", page->inuse, page->objects - nr); 939 page->inuse = page->objects - nr; 940 slab_fix(s, "Object count adjusted."); 941 } 942 return search == NULL; 943 } 944 945 static void trace(struct kmem_cache *s, struct page *page, void *object, 946 int alloc) 947 { 948 if (s->flags & SLAB_TRACE) { 949 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 950 s->name, 951 alloc ? "alloc" : "free", 952 object, page->inuse, 953 page->freelist); 954 955 if (!alloc) 956 print_section("Object ", (void *)object, 957 s->object_size); 958 959 dump_stack(); 960 } 961 } 962 963 /* 964 * Tracking of fully allocated slabs for debugging purposes. 965 */ 966 static void add_full(struct kmem_cache *s, 967 struct kmem_cache_node *n, struct page *page) 968 { 969 if (!(s->flags & SLAB_STORE_USER)) 970 return; 971 972 lockdep_assert_held(&n->list_lock); 973 list_add(&page->lru, &n->full); 974 } 975 976 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 977 { 978 if (!(s->flags & SLAB_STORE_USER)) 979 return; 980 981 lockdep_assert_held(&n->list_lock); 982 list_del(&page->lru); 983 } 984 985 /* Tracking of the number of slabs for debugging purposes */ 986 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 987 { 988 struct kmem_cache_node *n = get_node(s, node); 989 990 return atomic_long_read(&n->nr_slabs); 991 } 992 993 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 994 { 995 return atomic_long_read(&n->nr_slabs); 996 } 997 998 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 999 { 1000 struct kmem_cache_node *n = get_node(s, node); 1001 1002 /* 1003 * May be called early in order to allocate a slab for the 1004 * kmem_cache_node structure. Solve the chicken-egg 1005 * dilemma by deferring the increment of the count during 1006 * bootstrap (see early_kmem_cache_node_alloc). 1007 */ 1008 if (likely(n)) { 1009 atomic_long_inc(&n->nr_slabs); 1010 atomic_long_add(objects, &n->total_objects); 1011 } 1012 } 1013 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1014 { 1015 struct kmem_cache_node *n = get_node(s, node); 1016 1017 atomic_long_dec(&n->nr_slabs); 1018 atomic_long_sub(objects, &n->total_objects); 1019 } 1020 1021 /* Object debug checks for alloc/free paths */ 1022 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1023 void *object) 1024 { 1025 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1026 return; 1027 1028 init_object(s, object, SLUB_RED_INACTIVE); 1029 init_tracking(s, object); 1030 } 1031 1032 static noinline int alloc_debug_processing(struct kmem_cache *s, 1033 struct page *page, 1034 void *object, unsigned long addr) 1035 { 1036 if (!check_slab(s, page)) 1037 goto bad; 1038 1039 if (!check_valid_pointer(s, page, object)) { 1040 object_err(s, page, object, "Freelist Pointer check fails"); 1041 goto bad; 1042 } 1043 1044 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1045 goto bad; 1046 1047 /* Success perform special debug activities for allocs */ 1048 if (s->flags & SLAB_STORE_USER) 1049 set_track(s, object, TRACK_ALLOC, addr); 1050 trace(s, page, object, 1); 1051 init_object(s, object, SLUB_RED_ACTIVE); 1052 return 1; 1053 1054 bad: 1055 if (PageSlab(page)) { 1056 /* 1057 * If this is a slab page then lets do the best we can 1058 * to avoid issues in the future. Marking all objects 1059 * as used avoids touching the remaining objects. 1060 */ 1061 slab_fix(s, "Marking all objects used"); 1062 page->inuse = page->objects; 1063 page->freelist = NULL; 1064 } 1065 return 0; 1066 } 1067 1068 /* Supports checking bulk free of a constructed freelist */ 1069 static noinline struct kmem_cache_node *free_debug_processing( 1070 struct kmem_cache *s, struct page *page, 1071 void *head, void *tail, int bulk_cnt, 1072 unsigned long addr, unsigned long *flags) 1073 { 1074 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1075 void *object = head; 1076 int cnt = 0; 1077 1078 spin_lock_irqsave(&n->list_lock, *flags); 1079 slab_lock(page); 1080 1081 if (!check_slab(s, page)) 1082 goto fail; 1083 1084 next_object: 1085 cnt++; 1086 1087 if (!check_valid_pointer(s, page, object)) { 1088 slab_err(s, page, "Invalid object pointer 0x%p", object); 1089 goto fail; 1090 } 1091 1092 if (on_freelist(s, page, object)) { 1093 object_err(s, page, object, "Object already free"); 1094 goto fail; 1095 } 1096 1097 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1098 goto out; 1099 1100 if (unlikely(s != page->slab_cache)) { 1101 if (!PageSlab(page)) { 1102 slab_err(s, page, "Attempt to free object(0x%p) " 1103 "outside of slab", object); 1104 } else if (!page->slab_cache) { 1105 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1106 object); 1107 dump_stack(); 1108 } else 1109 object_err(s, page, object, 1110 "page slab pointer corrupt."); 1111 goto fail; 1112 } 1113 1114 if (s->flags & SLAB_STORE_USER) 1115 set_track(s, object, TRACK_FREE, addr); 1116 trace(s, page, object, 0); 1117 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1118 init_object(s, object, SLUB_RED_INACTIVE); 1119 1120 /* Reached end of constructed freelist yet? */ 1121 if (object != tail) { 1122 object = get_freepointer(s, object); 1123 goto next_object; 1124 } 1125 out: 1126 if (cnt != bulk_cnt) 1127 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1128 bulk_cnt, cnt); 1129 1130 slab_unlock(page); 1131 /* 1132 * Keep node_lock to preserve integrity 1133 * until the object is actually freed 1134 */ 1135 return n; 1136 1137 fail: 1138 slab_unlock(page); 1139 spin_unlock_irqrestore(&n->list_lock, *flags); 1140 slab_fix(s, "Object at 0x%p not freed", object); 1141 return NULL; 1142 } 1143 1144 static int __init setup_slub_debug(char *str) 1145 { 1146 slub_debug = DEBUG_DEFAULT_FLAGS; 1147 if (*str++ != '=' || !*str) 1148 /* 1149 * No options specified. Switch on full debugging. 1150 */ 1151 goto out; 1152 1153 if (*str == ',') 1154 /* 1155 * No options but restriction on slabs. This means full 1156 * debugging for slabs matching a pattern. 1157 */ 1158 goto check_slabs; 1159 1160 slub_debug = 0; 1161 if (*str == '-') 1162 /* 1163 * Switch off all debugging measures. 1164 */ 1165 goto out; 1166 1167 /* 1168 * Determine which debug features should be switched on 1169 */ 1170 for (; *str && *str != ','; str++) { 1171 switch (tolower(*str)) { 1172 case 'f': 1173 slub_debug |= SLAB_DEBUG_FREE; 1174 break; 1175 case 'z': 1176 slub_debug |= SLAB_RED_ZONE; 1177 break; 1178 case 'p': 1179 slub_debug |= SLAB_POISON; 1180 break; 1181 case 'u': 1182 slub_debug |= SLAB_STORE_USER; 1183 break; 1184 case 't': 1185 slub_debug |= SLAB_TRACE; 1186 break; 1187 case 'a': 1188 slub_debug |= SLAB_FAILSLAB; 1189 break; 1190 case 'o': 1191 /* 1192 * Avoid enabling debugging on caches if its minimum 1193 * order would increase as a result. 1194 */ 1195 disable_higher_order_debug = 1; 1196 break; 1197 default: 1198 pr_err("slub_debug option '%c' unknown. skipped\n", 1199 *str); 1200 } 1201 } 1202 1203 check_slabs: 1204 if (*str == ',') 1205 slub_debug_slabs = str + 1; 1206 out: 1207 return 1; 1208 } 1209 1210 __setup("slub_debug", setup_slub_debug); 1211 1212 unsigned long kmem_cache_flags(unsigned long object_size, 1213 unsigned long flags, const char *name, 1214 void (*ctor)(void *)) 1215 { 1216 /* 1217 * Enable debugging if selected on the kernel commandline. 1218 */ 1219 if (slub_debug && (!slub_debug_slabs || (name && 1220 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1221 flags |= slub_debug; 1222 1223 return flags; 1224 } 1225 #else /* !CONFIG_SLUB_DEBUG */ 1226 static inline void setup_object_debug(struct kmem_cache *s, 1227 struct page *page, void *object) {} 1228 1229 static inline int alloc_debug_processing(struct kmem_cache *s, 1230 struct page *page, void *object, unsigned long addr) { return 0; } 1231 1232 static inline struct kmem_cache_node *free_debug_processing( 1233 struct kmem_cache *s, struct page *page, 1234 void *head, void *tail, int bulk_cnt, 1235 unsigned long addr, unsigned long *flags) { return NULL; } 1236 1237 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1238 { return 1; } 1239 static inline int check_object(struct kmem_cache *s, struct page *page, 1240 void *object, u8 val) { return 1; } 1241 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1242 struct page *page) {} 1243 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1244 struct page *page) {} 1245 unsigned long kmem_cache_flags(unsigned long object_size, 1246 unsigned long flags, const char *name, 1247 void (*ctor)(void *)) 1248 { 1249 return flags; 1250 } 1251 #define slub_debug 0 1252 1253 #define disable_higher_order_debug 0 1254 1255 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1256 { return 0; } 1257 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1258 { return 0; } 1259 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1260 int objects) {} 1261 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1262 int objects) {} 1263 1264 #endif /* CONFIG_SLUB_DEBUG */ 1265 1266 /* 1267 * Hooks for other subsystems that check memory allocations. In a typical 1268 * production configuration these hooks all should produce no code at all. 1269 */ 1270 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1271 { 1272 kmemleak_alloc(ptr, size, 1, flags); 1273 kasan_kmalloc_large(ptr, size); 1274 } 1275 1276 static inline void kfree_hook(const void *x) 1277 { 1278 kmemleak_free(x); 1279 kasan_kfree_large(x); 1280 } 1281 1282 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, 1283 gfp_t flags) 1284 { 1285 flags &= gfp_allowed_mask; 1286 lockdep_trace_alloc(flags); 1287 might_sleep_if(gfpflags_allow_blocking(flags)); 1288 1289 if (should_failslab(s->object_size, flags, s->flags)) 1290 return NULL; 1291 1292 return memcg_kmem_get_cache(s, flags); 1293 } 1294 1295 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 1296 size_t size, void **p) 1297 { 1298 size_t i; 1299 1300 flags &= gfp_allowed_mask; 1301 for (i = 0; i < size; i++) { 1302 void *object = p[i]; 1303 1304 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 1305 kmemleak_alloc_recursive(object, s->object_size, 1, 1306 s->flags, flags); 1307 kasan_slab_alloc(s, object); 1308 } 1309 memcg_kmem_put_cache(s); 1310 } 1311 1312 static inline void slab_free_hook(struct kmem_cache *s, void *x) 1313 { 1314 kmemleak_free_recursive(x, s->flags); 1315 1316 /* 1317 * Trouble is that we may no longer disable interrupts in the fast path 1318 * So in order to make the debug calls that expect irqs to be 1319 * disabled we need to disable interrupts temporarily. 1320 */ 1321 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 1322 { 1323 unsigned long flags; 1324 1325 local_irq_save(flags); 1326 kmemcheck_slab_free(s, x, s->object_size); 1327 debug_check_no_locks_freed(x, s->object_size); 1328 local_irq_restore(flags); 1329 } 1330 #endif 1331 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1332 debug_check_no_obj_freed(x, s->object_size); 1333 1334 kasan_slab_free(s, x); 1335 } 1336 1337 static inline void slab_free_freelist_hook(struct kmem_cache *s, 1338 void *head, void *tail) 1339 { 1340 /* 1341 * Compiler cannot detect this function can be removed if slab_free_hook() 1342 * evaluates to nothing. Thus, catch all relevant config debug options here. 1343 */ 1344 #if defined(CONFIG_KMEMCHECK) || \ 1345 defined(CONFIG_LOCKDEP) || \ 1346 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1347 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1348 defined(CONFIG_KASAN) 1349 1350 void *object = head; 1351 void *tail_obj = tail ? : head; 1352 1353 do { 1354 slab_free_hook(s, object); 1355 } while ((object != tail_obj) && 1356 (object = get_freepointer(s, object))); 1357 #endif 1358 } 1359 1360 static void setup_object(struct kmem_cache *s, struct page *page, 1361 void *object) 1362 { 1363 setup_object_debug(s, page, object); 1364 if (unlikely(s->ctor)) { 1365 kasan_unpoison_object_data(s, object); 1366 s->ctor(object); 1367 kasan_poison_object_data(s, object); 1368 } 1369 } 1370 1371 /* 1372 * Slab allocation and freeing 1373 */ 1374 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1375 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1376 { 1377 struct page *page; 1378 int order = oo_order(oo); 1379 1380 flags |= __GFP_NOTRACK; 1381 1382 if (node == NUMA_NO_NODE) 1383 page = alloc_pages(flags, order); 1384 else 1385 page = __alloc_pages_node(node, flags, order); 1386 1387 if (page && memcg_charge_slab(page, flags, order, s)) { 1388 __free_pages(page, order); 1389 page = NULL; 1390 } 1391 1392 return page; 1393 } 1394 1395 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1396 { 1397 struct page *page; 1398 struct kmem_cache_order_objects oo = s->oo; 1399 gfp_t alloc_gfp; 1400 void *start, *p; 1401 int idx, order; 1402 1403 flags &= gfp_allowed_mask; 1404 1405 if (gfpflags_allow_blocking(flags)) 1406 local_irq_enable(); 1407 1408 flags |= s->allocflags; 1409 1410 /* 1411 * Let the initial higher-order allocation fail under memory pressure 1412 * so we fall-back to the minimum order allocation. 1413 */ 1414 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1415 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1416 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM; 1417 1418 page = alloc_slab_page(s, alloc_gfp, node, oo); 1419 if (unlikely(!page)) { 1420 oo = s->min; 1421 alloc_gfp = flags; 1422 /* 1423 * Allocation may have failed due to fragmentation. 1424 * Try a lower order alloc if possible 1425 */ 1426 page = alloc_slab_page(s, alloc_gfp, node, oo); 1427 if (unlikely(!page)) 1428 goto out; 1429 stat(s, ORDER_FALLBACK); 1430 } 1431 1432 if (kmemcheck_enabled && 1433 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1434 int pages = 1 << oo_order(oo); 1435 1436 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1437 1438 /* 1439 * Objects from caches that have a constructor don't get 1440 * cleared when they're allocated, so we need to do it here. 1441 */ 1442 if (s->ctor) 1443 kmemcheck_mark_uninitialized_pages(page, pages); 1444 else 1445 kmemcheck_mark_unallocated_pages(page, pages); 1446 } 1447 1448 page->objects = oo_objects(oo); 1449 1450 order = compound_order(page); 1451 page->slab_cache = s; 1452 __SetPageSlab(page); 1453 if (page_is_pfmemalloc(page)) 1454 SetPageSlabPfmemalloc(page); 1455 1456 start = page_address(page); 1457 1458 if (unlikely(s->flags & SLAB_POISON)) 1459 memset(start, POISON_INUSE, PAGE_SIZE << order); 1460 1461 kasan_poison_slab(page); 1462 1463 for_each_object_idx(p, idx, s, start, page->objects) { 1464 setup_object(s, page, p); 1465 if (likely(idx < page->objects)) 1466 set_freepointer(s, p, p + s->size); 1467 else 1468 set_freepointer(s, p, NULL); 1469 } 1470 1471 page->freelist = start; 1472 page->inuse = page->objects; 1473 page->frozen = 1; 1474 1475 out: 1476 if (gfpflags_allow_blocking(flags)) 1477 local_irq_disable(); 1478 if (!page) 1479 return NULL; 1480 1481 mod_zone_page_state(page_zone(page), 1482 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1483 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1484 1 << oo_order(oo)); 1485 1486 inc_slabs_node(s, page_to_nid(page), page->objects); 1487 1488 return page; 1489 } 1490 1491 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1492 { 1493 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1494 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); 1495 BUG(); 1496 } 1497 1498 return allocate_slab(s, 1499 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1500 } 1501 1502 static void __free_slab(struct kmem_cache *s, struct page *page) 1503 { 1504 int order = compound_order(page); 1505 int pages = 1 << order; 1506 1507 if (kmem_cache_debug(s)) { 1508 void *p; 1509 1510 slab_pad_check(s, page); 1511 for_each_object(p, s, page_address(page), 1512 page->objects) 1513 check_object(s, page, p, SLUB_RED_INACTIVE); 1514 } 1515 1516 kmemcheck_free_shadow(page, compound_order(page)); 1517 1518 mod_zone_page_state(page_zone(page), 1519 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1520 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1521 -pages); 1522 1523 __ClearPageSlabPfmemalloc(page); 1524 __ClearPageSlab(page); 1525 1526 page_mapcount_reset(page); 1527 if (current->reclaim_state) 1528 current->reclaim_state->reclaimed_slab += pages; 1529 __free_kmem_pages(page, order); 1530 } 1531 1532 #define need_reserve_slab_rcu \ 1533 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1534 1535 static void rcu_free_slab(struct rcu_head *h) 1536 { 1537 struct page *page; 1538 1539 if (need_reserve_slab_rcu) 1540 page = virt_to_head_page(h); 1541 else 1542 page = container_of((struct list_head *)h, struct page, lru); 1543 1544 __free_slab(page->slab_cache, page); 1545 } 1546 1547 static void free_slab(struct kmem_cache *s, struct page *page) 1548 { 1549 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1550 struct rcu_head *head; 1551 1552 if (need_reserve_slab_rcu) { 1553 int order = compound_order(page); 1554 int offset = (PAGE_SIZE << order) - s->reserved; 1555 1556 VM_BUG_ON(s->reserved != sizeof(*head)); 1557 head = page_address(page) + offset; 1558 } else { 1559 head = &page->rcu_head; 1560 } 1561 1562 call_rcu(head, rcu_free_slab); 1563 } else 1564 __free_slab(s, page); 1565 } 1566 1567 static void discard_slab(struct kmem_cache *s, struct page *page) 1568 { 1569 dec_slabs_node(s, page_to_nid(page), page->objects); 1570 free_slab(s, page); 1571 } 1572 1573 /* 1574 * Management of partially allocated slabs. 1575 */ 1576 static inline void 1577 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1578 { 1579 n->nr_partial++; 1580 if (tail == DEACTIVATE_TO_TAIL) 1581 list_add_tail(&page->lru, &n->partial); 1582 else 1583 list_add(&page->lru, &n->partial); 1584 } 1585 1586 static inline void add_partial(struct kmem_cache_node *n, 1587 struct page *page, int tail) 1588 { 1589 lockdep_assert_held(&n->list_lock); 1590 __add_partial(n, page, tail); 1591 } 1592 1593 static inline void 1594 __remove_partial(struct kmem_cache_node *n, struct page *page) 1595 { 1596 list_del(&page->lru); 1597 n->nr_partial--; 1598 } 1599 1600 static inline void remove_partial(struct kmem_cache_node *n, 1601 struct page *page) 1602 { 1603 lockdep_assert_held(&n->list_lock); 1604 __remove_partial(n, page); 1605 } 1606 1607 /* 1608 * Remove slab from the partial list, freeze it and 1609 * return the pointer to the freelist. 1610 * 1611 * Returns a list of objects or NULL if it fails. 1612 */ 1613 static inline void *acquire_slab(struct kmem_cache *s, 1614 struct kmem_cache_node *n, struct page *page, 1615 int mode, int *objects) 1616 { 1617 void *freelist; 1618 unsigned long counters; 1619 struct page new; 1620 1621 lockdep_assert_held(&n->list_lock); 1622 1623 /* 1624 * Zap the freelist and set the frozen bit. 1625 * The old freelist is the list of objects for the 1626 * per cpu allocation list. 1627 */ 1628 freelist = page->freelist; 1629 counters = page->counters; 1630 new.counters = counters; 1631 *objects = new.objects - new.inuse; 1632 if (mode) { 1633 new.inuse = page->objects; 1634 new.freelist = NULL; 1635 } else { 1636 new.freelist = freelist; 1637 } 1638 1639 VM_BUG_ON(new.frozen); 1640 new.frozen = 1; 1641 1642 if (!__cmpxchg_double_slab(s, page, 1643 freelist, counters, 1644 new.freelist, new.counters, 1645 "acquire_slab")) 1646 return NULL; 1647 1648 remove_partial(n, page); 1649 WARN_ON(!freelist); 1650 return freelist; 1651 } 1652 1653 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1654 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1655 1656 /* 1657 * Try to allocate a partial slab from a specific node. 1658 */ 1659 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1660 struct kmem_cache_cpu *c, gfp_t flags) 1661 { 1662 struct page *page, *page2; 1663 void *object = NULL; 1664 int available = 0; 1665 int objects; 1666 1667 /* 1668 * Racy check. If we mistakenly see no partial slabs then we 1669 * just allocate an empty slab. If we mistakenly try to get a 1670 * partial slab and there is none available then get_partials() 1671 * will return NULL. 1672 */ 1673 if (!n || !n->nr_partial) 1674 return NULL; 1675 1676 spin_lock(&n->list_lock); 1677 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1678 void *t; 1679 1680 if (!pfmemalloc_match(page, flags)) 1681 continue; 1682 1683 t = acquire_slab(s, n, page, object == NULL, &objects); 1684 if (!t) 1685 break; 1686 1687 available += objects; 1688 if (!object) { 1689 c->page = page; 1690 stat(s, ALLOC_FROM_PARTIAL); 1691 object = t; 1692 } else { 1693 put_cpu_partial(s, page, 0); 1694 stat(s, CPU_PARTIAL_NODE); 1695 } 1696 if (!kmem_cache_has_cpu_partial(s) 1697 || available > s->cpu_partial / 2) 1698 break; 1699 1700 } 1701 spin_unlock(&n->list_lock); 1702 return object; 1703 } 1704 1705 /* 1706 * Get a page from somewhere. Search in increasing NUMA distances. 1707 */ 1708 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1709 struct kmem_cache_cpu *c) 1710 { 1711 #ifdef CONFIG_NUMA 1712 struct zonelist *zonelist; 1713 struct zoneref *z; 1714 struct zone *zone; 1715 enum zone_type high_zoneidx = gfp_zone(flags); 1716 void *object; 1717 unsigned int cpuset_mems_cookie; 1718 1719 /* 1720 * The defrag ratio allows a configuration of the tradeoffs between 1721 * inter node defragmentation and node local allocations. A lower 1722 * defrag_ratio increases the tendency to do local allocations 1723 * instead of attempting to obtain partial slabs from other nodes. 1724 * 1725 * If the defrag_ratio is set to 0 then kmalloc() always 1726 * returns node local objects. If the ratio is higher then kmalloc() 1727 * may return off node objects because partial slabs are obtained 1728 * from other nodes and filled up. 1729 * 1730 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1731 * defrag_ratio = 1000) then every (well almost) allocation will 1732 * first attempt to defrag slab caches on other nodes. This means 1733 * scanning over all nodes to look for partial slabs which may be 1734 * expensive if we do it every time we are trying to find a slab 1735 * with available objects. 1736 */ 1737 if (!s->remote_node_defrag_ratio || 1738 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1739 return NULL; 1740 1741 do { 1742 cpuset_mems_cookie = read_mems_allowed_begin(); 1743 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1744 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1745 struct kmem_cache_node *n; 1746 1747 n = get_node(s, zone_to_nid(zone)); 1748 1749 if (n && cpuset_zone_allowed(zone, flags) && 1750 n->nr_partial > s->min_partial) { 1751 object = get_partial_node(s, n, c, flags); 1752 if (object) { 1753 /* 1754 * Don't check read_mems_allowed_retry() 1755 * here - if mems_allowed was updated in 1756 * parallel, that was a harmless race 1757 * between allocation and the cpuset 1758 * update 1759 */ 1760 return object; 1761 } 1762 } 1763 } 1764 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1765 #endif 1766 return NULL; 1767 } 1768 1769 /* 1770 * Get a partial page, lock it and return it. 1771 */ 1772 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1773 struct kmem_cache_cpu *c) 1774 { 1775 void *object; 1776 int searchnode = node; 1777 1778 if (node == NUMA_NO_NODE) 1779 searchnode = numa_mem_id(); 1780 else if (!node_present_pages(node)) 1781 searchnode = node_to_mem_node(node); 1782 1783 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1784 if (object || node != NUMA_NO_NODE) 1785 return object; 1786 1787 return get_any_partial(s, flags, c); 1788 } 1789 1790 #ifdef CONFIG_PREEMPT 1791 /* 1792 * Calculate the next globally unique transaction for disambiguiation 1793 * during cmpxchg. The transactions start with the cpu number and are then 1794 * incremented by CONFIG_NR_CPUS. 1795 */ 1796 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1797 #else 1798 /* 1799 * No preemption supported therefore also no need to check for 1800 * different cpus. 1801 */ 1802 #define TID_STEP 1 1803 #endif 1804 1805 static inline unsigned long next_tid(unsigned long tid) 1806 { 1807 return tid + TID_STEP; 1808 } 1809 1810 static inline unsigned int tid_to_cpu(unsigned long tid) 1811 { 1812 return tid % TID_STEP; 1813 } 1814 1815 static inline unsigned long tid_to_event(unsigned long tid) 1816 { 1817 return tid / TID_STEP; 1818 } 1819 1820 static inline unsigned int init_tid(int cpu) 1821 { 1822 return cpu; 1823 } 1824 1825 static inline void note_cmpxchg_failure(const char *n, 1826 const struct kmem_cache *s, unsigned long tid) 1827 { 1828 #ifdef SLUB_DEBUG_CMPXCHG 1829 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1830 1831 pr_info("%s %s: cmpxchg redo ", n, s->name); 1832 1833 #ifdef CONFIG_PREEMPT 1834 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1835 pr_warn("due to cpu change %d -> %d\n", 1836 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1837 else 1838 #endif 1839 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1840 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1841 tid_to_event(tid), tid_to_event(actual_tid)); 1842 else 1843 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1844 actual_tid, tid, next_tid(tid)); 1845 #endif 1846 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1847 } 1848 1849 static void init_kmem_cache_cpus(struct kmem_cache *s) 1850 { 1851 int cpu; 1852 1853 for_each_possible_cpu(cpu) 1854 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1855 } 1856 1857 /* 1858 * Remove the cpu slab 1859 */ 1860 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1861 void *freelist) 1862 { 1863 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1864 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1865 int lock = 0; 1866 enum slab_modes l = M_NONE, m = M_NONE; 1867 void *nextfree; 1868 int tail = DEACTIVATE_TO_HEAD; 1869 struct page new; 1870 struct page old; 1871 1872 if (page->freelist) { 1873 stat(s, DEACTIVATE_REMOTE_FREES); 1874 tail = DEACTIVATE_TO_TAIL; 1875 } 1876 1877 /* 1878 * Stage one: Free all available per cpu objects back 1879 * to the page freelist while it is still frozen. Leave the 1880 * last one. 1881 * 1882 * There is no need to take the list->lock because the page 1883 * is still frozen. 1884 */ 1885 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1886 void *prior; 1887 unsigned long counters; 1888 1889 do { 1890 prior = page->freelist; 1891 counters = page->counters; 1892 set_freepointer(s, freelist, prior); 1893 new.counters = counters; 1894 new.inuse--; 1895 VM_BUG_ON(!new.frozen); 1896 1897 } while (!__cmpxchg_double_slab(s, page, 1898 prior, counters, 1899 freelist, new.counters, 1900 "drain percpu freelist")); 1901 1902 freelist = nextfree; 1903 } 1904 1905 /* 1906 * Stage two: Ensure that the page is unfrozen while the 1907 * list presence reflects the actual number of objects 1908 * during unfreeze. 1909 * 1910 * We setup the list membership and then perform a cmpxchg 1911 * with the count. If there is a mismatch then the page 1912 * is not unfrozen but the page is on the wrong list. 1913 * 1914 * Then we restart the process which may have to remove 1915 * the page from the list that we just put it on again 1916 * because the number of objects in the slab may have 1917 * changed. 1918 */ 1919 redo: 1920 1921 old.freelist = page->freelist; 1922 old.counters = page->counters; 1923 VM_BUG_ON(!old.frozen); 1924 1925 /* Determine target state of the slab */ 1926 new.counters = old.counters; 1927 if (freelist) { 1928 new.inuse--; 1929 set_freepointer(s, freelist, old.freelist); 1930 new.freelist = freelist; 1931 } else 1932 new.freelist = old.freelist; 1933 1934 new.frozen = 0; 1935 1936 if (!new.inuse && n->nr_partial >= s->min_partial) 1937 m = M_FREE; 1938 else if (new.freelist) { 1939 m = M_PARTIAL; 1940 if (!lock) { 1941 lock = 1; 1942 /* 1943 * Taking the spinlock removes the possiblity 1944 * that acquire_slab() will see a slab page that 1945 * is frozen 1946 */ 1947 spin_lock(&n->list_lock); 1948 } 1949 } else { 1950 m = M_FULL; 1951 if (kmem_cache_debug(s) && !lock) { 1952 lock = 1; 1953 /* 1954 * This also ensures that the scanning of full 1955 * slabs from diagnostic functions will not see 1956 * any frozen slabs. 1957 */ 1958 spin_lock(&n->list_lock); 1959 } 1960 } 1961 1962 if (l != m) { 1963 1964 if (l == M_PARTIAL) 1965 1966 remove_partial(n, page); 1967 1968 else if (l == M_FULL) 1969 1970 remove_full(s, n, page); 1971 1972 if (m == M_PARTIAL) { 1973 1974 add_partial(n, page, tail); 1975 stat(s, tail); 1976 1977 } else if (m == M_FULL) { 1978 1979 stat(s, DEACTIVATE_FULL); 1980 add_full(s, n, page); 1981 1982 } 1983 } 1984 1985 l = m; 1986 if (!__cmpxchg_double_slab(s, page, 1987 old.freelist, old.counters, 1988 new.freelist, new.counters, 1989 "unfreezing slab")) 1990 goto redo; 1991 1992 if (lock) 1993 spin_unlock(&n->list_lock); 1994 1995 if (m == M_FREE) { 1996 stat(s, DEACTIVATE_EMPTY); 1997 discard_slab(s, page); 1998 stat(s, FREE_SLAB); 1999 } 2000 } 2001 2002 /* 2003 * Unfreeze all the cpu partial slabs. 2004 * 2005 * This function must be called with interrupts disabled 2006 * for the cpu using c (or some other guarantee must be there 2007 * to guarantee no concurrent accesses). 2008 */ 2009 static void unfreeze_partials(struct kmem_cache *s, 2010 struct kmem_cache_cpu *c) 2011 { 2012 #ifdef CONFIG_SLUB_CPU_PARTIAL 2013 struct kmem_cache_node *n = NULL, *n2 = NULL; 2014 struct page *page, *discard_page = NULL; 2015 2016 while ((page = c->partial)) { 2017 struct page new; 2018 struct page old; 2019 2020 c->partial = page->next; 2021 2022 n2 = get_node(s, page_to_nid(page)); 2023 if (n != n2) { 2024 if (n) 2025 spin_unlock(&n->list_lock); 2026 2027 n = n2; 2028 spin_lock(&n->list_lock); 2029 } 2030 2031 do { 2032 2033 old.freelist = page->freelist; 2034 old.counters = page->counters; 2035 VM_BUG_ON(!old.frozen); 2036 2037 new.counters = old.counters; 2038 new.freelist = old.freelist; 2039 2040 new.frozen = 0; 2041 2042 } while (!__cmpxchg_double_slab(s, page, 2043 old.freelist, old.counters, 2044 new.freelist, new.counters, 2045 "unfreezing slab")); 2046 2047 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2048 page->next = discard_page; 2049 discard_page = page; 2050 } else { 2051 add_partial(n, page, DEACTIVATE_TO_TAIL); 2052 stat(s, FREE_ADD_PARTIAL); 2053 } 2054 } 2055 2056 if (n) 2057 spin_unlock(&n->list_lock); 2058 2059 while (discard_page) { 2060 page = discard_page; 2061 discard_page = discard_page->next; 2062 2063 stat(s, DEACTIVATE_EMPTY); 2064 discard_slab(s, page); 2065 stat(s, FREE_SLAB); 2066 } 2067 #endif 2068 } 2069 2070 /* 2071 * Put a page that was just frozen (in __slab_free) into a partial page 2072 * slot if available. This is done without interrupts disabled and without 2073 * preemption disabled. The cmpxchg is racy and may put the partial page 2074 * onto a random cpus partial slot. 2075 * 2076 * If we did not find a slot then simply move all the partials to the 2077 * per node partial list. 2078 */ 2079 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2080 { 2081 #ifdef CONFIG_SLUB_CPU_PARTIAL 2082 struct page *oldpage; 2083 int pages; 2084 int pobjects; 2085 2086 preempt_disable(); 2087 do { 2088 pages = 0; 2089 pobjects = 0; 2090 oldpage = this_cpu_read(s->cpu_slab->partial); 2091 2092 if (oldpage) { 2093 pobjects = oldpage->pobjects; 2094 pages = oldpage->pages; 2095 if (drain && pobjects > s->cpu_partial) { 2096 unsigned long flags; 2097 /* 2098 * partial array is full. Move the existing 2099 * set to the per node partial list. 2100 */ 2101 local_irq_save(flags); 2102 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2103 local_irq_restore(flags); 2104 oldpage = NULL; 2105 pobjects = 0; 2106 pages = 0; 2107 stat(s, CPU_PARTIAL_DRAIN); 2108 } 2109 } 2110 2111 pages++; 2112 pobjects += page->objects - page->inuse; 2113 2114 page->pages = pages; 2115 page->pobjects = pobjects; 2116 page->next = oldpage; 2117 2118 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2119 != oldpage); 2120 if (unlikely(!s->cpu_partial)) { 2121 unsigned long flags; 2122 2123 local_irq_save(flags); 2124 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2125 local_irq_restore(flags); 2126 } 2127 preempt_enable(); 2128 #endif 2129 } 2130 2131 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2132 { 2133 stat(s, CPUSLAB_FLUSH); 2134 deactivate_slab(s, c->page, c->freelist); 2135 2136 c->tid = next_tid(c->tid); 2137 c->page = NULL; 2138 c->freelist = NULL; 2139 } 2140 2141 /* 2142 * Flush cpu slab. 2143 * 2144 * Called from IPI handler with interrupts disabled. 2145 */ 2146 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2147 { 2148 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2149 2150 if (likely(c)) { 2151 if (c->page) 2152 flush_slab(s, c); 2153 2154 unfreeze_partials(s, c); 2155 } 2156 } 2157 2158 static void flush_cpu_slab(void *d) 2159 { 2160 struct kmem_cache *s = d; 2161 2162 __flush_cpu_slab(s, smp_processor_id()); 2163 } 2164 2165 static bool has_cpu_slab(int cpu, void *info) 2166 { 2167 struct kmem_cache *s = info; 2168 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2169 2170 return c->page || c->partial; 2171 } 2172 2173 static void flush_all(struct kmem_cache *s) 2174 { 2175 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2176 } 2177 2178 /* 2179 * Check if the objects in a per cpu structure fit numa 2180 * locality expectations. 2181 */ 2182 static inline int node_match(struct page *page, int node) 2183 { 2184 #ifdef CONFIG_NUMA 2185 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2186 return 0; 2187 #endif 2188 return 1; 2189 } 2190 2191 #ifdef CONFIG_SLUB_DEBUG 2192 static int count_free(struct page *page) 2193 { 2194 return page->objects - page->inuse; 2195 } 2196 2197 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2198 { 2199 return atomic_long_read(&n->total_objects); 2200 } 2201 #endif /* CONFIG_SLUB_DEBUG */ 2202 2203 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2204 static unsigned long count_partial(struct kmem_cache_node *n, 2205 int (*get_count)(struct page *)) 2206 { 2207 unsigned long flags; 2208 unsigned long x = 0; 2209 struct page *page; 2210 2211 spin_lock_irqsave(&n->list_lock, flags); 2212 list_for_each_entry(page, &n->partial, lru) 2213 x += get_count(page); 2214 spin_unlock_irqrestore(&n->list_lock, flags); 2215 return x; 2216 } 2217 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2218 2219 static noinline void 2220 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2221 { 2222 #ifdef CONFIG_SLUB_DEBUG 2223 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2224 DEFAULT_RATELIMIT_BURST); 2225 int node; 2226 struct kmem_cache_node *n; 2227 2228 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2229 return; 2230 2231 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2232 nid, gfpflags); 2233 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2234 s->name, s->object_size, s->size, oo_order(s->oo), 2235 oo_order(s->min)); 2236 2237 if (oo_order(s->min) > get_order(s->object_size)) 2238 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2239 s->name); 2240 2241 for_each_kmem_cache_node(s, node, n) { 2242 unsigned long nr_slabs; 2243 unsigned long nr_objs; 2244 unsigned long nr_free; 2245 2246 nr_free = count_partial(n, count_free); 2247 nr_slabs = node_nr_slabs(n); 2248 nr_objs = node_nr_objs(n); 2249 2250 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2251 node, nr_slabs, nr_objs, nr_free); 2252 } 2253 #endif 2254 } 2255 2256 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2257 int node, struct kmem_cache_cpu **pc) 2258 { 2259 void *freelist; 2260 struct kmem_cache_cpu *c = *pc; 2261 struct page *page; 2262 2263 freelist = get_partial(s, flags, node, c); 2264 2265 if (freelist) 2266 return freelist; 2267 2268 page = new_slab(s, flags, node); 2269 if (page) { 2270 c = raw_cpu_ptr(s->cpu_slab); 2271 if (c->page) 2272 flush_slab(s, c); 2273 2274 /* 2275 * No other reference to the page yet so we can 2276 * muck around with it freely without cmpxchg 2277 */ 2278 freelist = page->freelist; 2279 page->freelist = NULL; 2280 2281 stat(s, ALLOC_SLAB); 2282 c->page = page; 2283 *pc = c; 2284 } else 2285 freelist = NULL; 2286 2287 return freelist; 2288 } 2289 2290 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2291 { 2292 if (unlikely(PageSlabPfmemalloc(page))) 2293 return gfp_pfmemalloc_allowed(gfpflags); 2294 2295 return true; 2296 } 2297 2298 /* 2299 * Check the page->freelist of a page and either transfer the freelist to the 2300 * per cpu freelist or deactivate the page. 2301 * 2302 * The page is still frozen if the return value is not NULL. 2303 * 2304 * If this function returns NULL then the page has been unfrozen. 2305 * 2306 * This function must be called with interrupt disabled. 2307 */ 2308 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2309 { 2310 struct page new; 2311 unsigned long counters; 2312 void *freelist; 2313 2314 do { 2315 freelist = page->freelist; 2316 counters = page->counters; 2317 2318 new.counters = counters; 2319 VM_BUG_ON(!new.frozen); 2320 2321 new.inuse = page->objects; 2322 new.frozen = freelist != NULL; 2323 2324 } while (!__cmpxchg_double_slab(s, page, 2325 freelist, counters, 2326 NULL, new.counters, 2327 "get_freelist")); 2328 2329 return freelist; 2330 } 2331 2332 /* 2333 * Slow path. The lockless freelist is empty or we need to perform 2334 * debugging duties. 2335 * 2336 * Processing is still very fast if new objects have been freed to the 2337 * regular freelist. In that case we simply take over the regular freelist 2338 * as the lockless freelist and zap the regular freelist. 2339 * 2340 * If that is not working then we fall back to the partial lists. We take the 2341 * first element of the freelist as the object to allocate now and move the 2342 * rest of the freelist to the lockless freelist. 2343 * 2344 * And if we were unable to get a new slab from the partial slab lists then 2345 * we need to allocate a new slab. This is the slowest path since it involves 2346 * a call to the page allocator and the setup of a new slab. 2347 * 2348 * Version of __slab_alloc to use when we know that interrupts are 2349 * already disabled (which is the case for bulk allocation). 2350 */ 2351 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2352 unsigned long addr, struct kmem_cache_cpu *c) 2353 { 2354 void *freelist; 2355 struct page *page; 2356 2357 page = c->page; 2358 if (!page) 2359 goto new_slab; 2360 redo: 2361 2362 if (unlikely(!node_match(page, node))) { 2363 int searchnode = node; 2364 2365 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2366 searchnode = node_to_mem_node(node); 2367 2368 if (unlikely(!node_match(page, searchnode))) { 2369 stat(s, ALLOC_NODE_MISMATCH); 2370 deactivate_slab(s, page, c->freelist); 2371 c->page = NULL; 2372 c->freelist = NULL; 2373 goto new_slab; 2374 } 2375 } 2376 2377 /* 2378 * By rights, we should be searching for a slab page that was 2379 * PFMEMALLOC but right now, we are losing the pfmemalloc 2380 * information when the page leaves the per-cpu allocator 2381 */ 2382 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2383 deactivate_slab(s, page, c->freelist); 2384 c->page = NULL; 2385 c->freelist = NULL; 2386 goto new_slab; 2387 } 2388 2389 /* must check again c->freelist in case of cpu migration or IRQ */ 2390 freelist = c->freelist; 2391 if (freelist) 2392 goto load_freelist; 2393 2394 freelist = get_freelist(s, page); 2395 2396 if (!freelist) { 2397 c->page = NULL; 2398 stat(s, DEACTIVATE_BYPASS); 2399 goto new_slab; 2400 } 2401 2402 stat(s, ALLOC_REFILL); 2403 2404 load_freelist: 2405 /* 2406 * freelist is pointing to the list of objects to be used. 2407 * page is pointing to the page from which the objects are obtained. 2408 * That page must be frozen for per cpu allocations to work. 2409 */ 2410 VM_BUG_ON(!c->page->frozen); 2411 c->freelist = get_freepointer(s, freelist); 2412 c->tid = next_tid(c->tid); 2413 return freelist; 2414 2415 new_slab: 2416 2417 if (c->partial) { 2418 page = c->page = c->partial; 2419 c->partial = page->next; 2420 stat(s, CPU_PARTIAL_ALLOC); 2421 c->freelist = NULL; 2422 goto redo; 2423 } 2424 2425 freelist = new_slab_objects(s, gfpflags, node, &c); 2426 2427 if (unlikely(!freelist)) { 2428 slab_out_of_memory(s, gfpflags, node); 2429 return NULL; 2430 } 2431 2432 page = c->page; 2433 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2434 goto load_freelist; 2435 2436 /* Only entered in the debug case */ 2437 if (kmem_cache_debug(s) && 2438 !alloc_debug_processing(s, page, freelist, addr)) 2439 goto new_slab; /* Slab failed checks. Next slab needed */ 2440 2441 deactivate_slab(s, page, get_freepointer(s, freelist)); 2442 c->page = NULL; 2443 c->freelist = NULL; 2444 return freelist; 2445 } 2446 2447 /* 2448 * Another one that disabled interrupt and compensates for possible 2449 * cpu changes by refetching the per cpu area pointer. 2450 */ 2451 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2452 unsigned long addr, struct kmem_cache_cpu *c) 2453 { 2454 void *p; 2455 unsigned long flags; 2456 2457 local_irq_save(flags); 2458 #ifdef CONFIG_PREEMPT 2459 /* 2460 * We may have been preempted and rescheduled on a different 2461 * cpu before disabling interrupts. Need to reload cpu area 2462 * pointer. 2463 */ 2464 c = this_cpu_ptr(s->cpu_slab); 2465 #endif 2466 2467 p = ___slab_alloc(s, gfpflags, node, addr, c); 2468 local_irq_restore(flags); 2469 return p; 2470 } 2471 2472 /* 2473 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2474 * have the fastpath folded into their functions. So no function call 2475 * overhead for requests that can be satisfied on the fastpath. 2476 * 2477 * The fastpath works by first checking if the lockless freelist can be used. 2478 * If not then __slab_alloc is called for slow processing. 2479 * 2480 * Otherwise we can simply pick the next object from the lockless free list. 2481 */ 2482 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2483 gfp_t gfpflags, int node, unsigned long addr) 2484 { 2485 void *object; 2486 struct kmem_cache_cpu *c; 2487 struct page *page; 2488 unsigned long tid; 2489 2490 s = slab_pre_alloc_hook(s, gfpflags); 2491 if (!s) 2492 return NULL; 2493 redo: 2494 /* 2495 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2496 * enabled. We may switch back and forth between cpus while 2497 * reading from one cpu area. That does not matter as long 2498 * as we end up on the original cpu again when doing the cmpxchg. 2499 * 2500 * We should guarantee that tid and kmem_cache are retrieved on 2501 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2502 * to check if it is matched or not. 2503 */ 2504 do { 2505 tid = this_cpu_read(s->cpu_slab->tid); 2506 c = raw_cpu_ptr(s->cpu_slab); 2507 } while (IS_ENABLED(CONFIG_PREEMPT) && 2508 unlikely(tid != READ_ONCE(c->tid))); 2509 2510 /* 2511 * Irqless object alloc/free algorithm used here depends on sequence 2512 * of fetching cpu_slab's data. tid should be fetched before anything 2513 * on c to guarantee that object and page associated with previous tid 2514 * won't be used with current tid. If we fetch tid first, object and 2515 * page could be one associated with next tid and our alloc/free 2516 * request will be failed. In this case, we will retry. So, no problem. 2517 */ 2518 barrier(); 2519 2520 /* 2521 * The transaction ids are globally unique per cpu and per operation on 2522 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2523 * occurs on the right processor and that there was no operation on the 2524 * linked list in between. 2525 */ 2526 2527 object = c->freelist; 2528 page = c->page; 2529 if (unlikely(!object || !node_match(page, node))) { 2530 object = __slab_alloc(s, gfpflags, node, addr, c); 2531 stat(s, ALLOC_SLOWPATH); 2532 } else { 2533 void *next_object = get_freepointer_safe(s, object); 2534 2535 /* 2536 * The cmpxchg will only match if there was no additional 2537 * operation and if we are on the right processor. 2538 * 2539 * The cmpxchg does the following atomically (without lock 2540 * semantics!) 2541 * 1. Relocate first pointer to the current per cpu area. 2542 * 2. Verify that tid and freelist have not been changed 2543 * 3. If they were not changed replace tid and freelist 2544 * 2545 * Since this is without lock semantics the protection is only 2546 * against code executing on this cpu *not* from access by 2547 * other cpus. 2548 */ 2549 if (unlikely(!this_cpu_cmpxchg_double( 2550 s->cpu_slab->freelist, s->cpu_slab->tid, 2551 object, tid, 2552 next_object, next_tid(tid)))) { 2553 2554 note_cmpxchg_failure("slab_alloc", s, tid); 2555 goto redo; 2556 } 2557 prefetch_freepointer(s, next_object); 2558 stat(s, ALLOC_FASTPATH); 2559 } 2560 2561 if (unlikely(gfpflags & __GFP_ZERO) && object) 2562 memset(object, 0, s->object_size); 2563 2564 slab_post_alloc_hook(s, gfpflags, 1, &object); 2565 2566 return object; 2567 } 2568 2569 static __always_inline void *slab_alloc(struct kmem_cache *s, 2570 gfp_t gfpflags, unsigned long addr) 2571 { 2572 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2573 } 2574 2575 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2576 { 2577 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2578 2579 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2580 s->size, gfpflags); 2581 2582 return ret; 2583 } 2584 EXPORT_SYMBOL(kmem_cache_alloc); 2585 2586 #ifdef CONFIG_TRACING 2587 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2588 { 2589 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2590 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2591 kasan_kmalloc(s, ret, size); 2592 return ret; 2593 } 2594 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2595 #endif 2596 2597 #ifdef CONFIG_NUMA 2598 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2599 { 2600 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2601 2602 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2603 s->object_size, s->size, gfpflags, node); 2604 2605 return ret; 2606 } 2607 EXPORT_SYMBOL(kmem_cache_alloc_node); 2608 2609 #ifdef CONFIG_TRACING 2610 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2611 gfp_t gfpflags, 2612 int node, size_t size) 2613 { 2614 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2615 2616 trace_kmalloc_node(_RET_IP_, ret, 2617 size, s->size, gfpflags, node); 2618 2619 kasan_kmalloc(s, ret, size); 2620 return ret; 2621 } 2622 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2623 #endif 2624 #endif 2625 2626 /* 2627 * Slow path handling. This may still be called frequently since objects 2628 * have a longer lifetime than the cpu slabs in most processing loads. 2629 * 2630 * So we still attempt to reduce cache line usage. Just take the slab 2631 * lock and free the item. If there is no additional partial page 2632 * handling required then we can return immediately. 2633 */ 2634 static void __slab_free(struct kmem_cache *s, struct page *page, 2635 void *head, void *tail, int cnt, 2636 unsigned long addr) 2637 2638 { 2639 void *prior; 2640 int was_frozen; 2641 struct page new; 2642 unsigned long counters; 2643 struct kmem_cache_node *n = NULL; 2644 unsigned long uninitialized_var(flags); 2645 2646 stat(s, FREE_SLOWPATH); 2647 2648 if (kmem_cache_debug(s) && 2649 !(n = free_debug_processing(s, page, head, tail, cnt, 2650 addr, &flags))) 2651 return; 2652 2653 do { 2654 if (unlikely(n)) { 2655 spin_unlock_irqrestore(&n->list_lock, flags); 2656 n = NULL; 2657 } 2658 prior = page->freelist; 2659 counters = page->counters; 2660 set_freepointer(s, tail, prior); 2661 new.counters = counters; 2662 was_frozen = new.frozen; 2663 new.inuse -= cnt; 2664 if ((!new.inuse || !prior) && !was_frozen) { 2665 2666 if (kmem_cache_has_cpu_partial(s) && !prior) { 2667 2668 /* 2669 * Slab was on no list before and will be 2670 * partially empty 2671 * We can defer the list move and instead 2672 * freeze it. 2673 */ 2674 new.frozen = 1; 2675 2676 } else { /* Needs to be taken off a list */ 2677 2678 n = get_node(s, page_to_nid(page)); 2679 /* 2680 * Speculatively acquire the list_lock. 2681 * If the cmpxchg does not succeed then we may 2682 * drop the list_lock without any processing. 2683 * 2684 * Otherwise the list_lock will synchronize with 2685 * other processors updating the list of slabs. 2686 */ 2687 spin_lock_irqsave(&n->list_lock, flags); 2688 2689 } 2690 } 2691 2692 } while (!cmpxchg_double_slab(s, page, 2693 prior, counters, 2694 head, new.counters, 2695 "__slab_free")); 2696 2697 if (likely(!n)) { 2698 2699 /* 2700 * If we just froze the page then put it onto the 2701 * per cpu partial list. 2702 */ 2703 if (new.frozen && !was_frozen) { 2704 put_cpu_partial(s, page, 1); 2705 stat(s, CPU_PARTIAL_FREE); 2706 } 2707 /* 2708 * The list lock was not taken therefore no list 2709 * activity can be necessary. 2710 */ 2711 if (was_frozen) 2712 stat(s, FREE_FROZEN); 2713 return; 2714 } 2715 2716 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2717 goto slab_empty; 2718 2719 /* 2720 * Objects left in the slab. If it was not on the partial list before 2721 * then add it. 2722 */ 2723 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2724 if (kmem_cache_debug(s)) 2725 remove_full(s, n, page); 2726 add_partial(n, page, DEACTIVATE_TO_TAIL); 2727 stat(s, FREE_ADD_PARTIAL); 2728 } 2729 spin_unlock_irqrestore(&n->list_lock, flags); 2730 return; 2731 2732 slab_empty: 2733 if (prior) { 2734 /* 2735 * Slab on the partial list. 2736 */ 2737 remove_partial(n, page); 2738 stat(s, FREE_REMOVE_PARTIAL); 2739 } else { 2740 /* Slab must be on the full list */ 2741 remove_full(s, n, page); 2742 } 2743 2744 spin_unlock_irqrestore(&n->list_lock, flags); 2745 stat(s, FREE_SLAB); 2746 discard_slab(s, page); 2747 } 2748 2749 /* 2750 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2751 * can perform fastpath freeing without additional function calls. 2752 * 2753 * The fastpath is only possible if we are freeing to the current cpu slab 2754 * of this processor. This typically the case if we have just allocated 2755 * the item before. 2756 * 2757 * If fastpath is not possible then fall back to __slab_free where we deal 2758 * with all sorts of special processing. 2759 * 2760 * Bulk free of a freelist with several objects (all pointing to the 2761 * same page) possible by specifying head and tail ptr, plus objects 2762 * count (cnt). Bulk free indicated by tail pointer being set. 2763 */ 2764 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2765 void *head, void *tail, int cnt, 2766 unsigned long addr) 2767 { 2768 void *tail_obj = tail ? : head; 2769 struct kmem_cache_cpu *c; 2770 unsigned long tid; 2771 2772 slab_free_freelist_hook(s, head, tail); 2773 2774 redo: 2775 /* 2776 * Determine the currently cpus per cpu slab. 2777 * The cpu may change afterward. However that does not matter since 2778 * data is retrieved via this pointer. If we are on the same cpu 2779 * during the cmpxchg then the free will succeed. 2780 */ 2781 do { 2782 tid = this_cpu_read(s->cpu_slab->tid); 2783 c = raw_cpu_ptr(s->cpu_slab); 2784 } while (IS_ENABLED(CONFIG_PREEMPT) && 2785 unlikely(tid != READ_ONCE(c->tid))); 2786 2787 /* Same with comment on barrier() in slab_alloc_node() */ 2788 barrier(); 2789 2790 if (likely(page == c->page)) { 2791 set_freepointer(s, tail_obj, c->freelist); 2792 2793 if (unlikely(!this_cpu_cmpxchg_double( 2794 s->cpu_slab->freelist, s->cpu_slab->tid, 2795 c->freelist, tid, 2796 head, next_tid(tid)))) { 2797 2798 note_cmpxchg_failure("slab_free", s, tid); 2799 goto redo; 2800 } 2801 stat(s, FREE_FASTPATH); 2802 } else 2803 __slab_free(s, page, head, tail_obj, cnt, addr); 2804 2805 } 2806 2807 void kmem_cache_free(struct kmem_cache *s, void *x) 2808 { 2809 s = cache_from_obj(s, x); 2810 if (!s) 2811 return; 2812 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 2813 trace_kmem_cache_free(_RET_IP_, x); 2814 } 2815 EXPORT_SYMBOL(kmem_cache_free); 2816 2817 struct detached_freelist { 2818 struct page *page; 2819 void *tail; 2820 void *freelist; 2821 int cnt; 2822 }; 2823 2824 /* 2825 * This function progressively scans the array with free objects (with 2826 * a limited look ahead) and extract objects belonging to the same 2827 * page. It builds a detached freelist directly within the given 2828 * page/objects. This can happen without any need for 2829 * synchronization, because the objects are owned by running process. 2830 * The freelist is build up as a single linked list in the objects. 2831 * The idea is, that this detached freelist can then be bulk 2832 * transferred to the real freelist(s), but only requiring a single 2833 * synchronization primitive. Look ahead in the array is limited due 2834 * to performance reasons. 2835 */ 2836 static int build_detached_freelist(struct kmem_cache *s, size_t size, 2837 void **p, struct detached_freelist *df) 2838 { 2839 size_t first_skipped_index = 0; 2840 int lookahead = 3; 2841 void *object; 2842 2843 /* Always re-init detached_freelist */ 2844 df->page = NULL; 2845 2846 do { 2847 object = p[--size]; 2848 } while (!object && size); 2849 2850 if (!object) 2851 return 0; 2852 2853 /* Start new detached freelist */ 2854 set_freepointer(s, object, NULL); 2855 df->page = virt_to_head_page(object); 2856 df->tail = object; 2857 df->freelist = object; 2858 p[size] = NULL; /* mark object processed */ 2859 df->cnt = 1; 2860 2861 while (size) { 2862 object = p[--size]; 2863 if (!object) 2864 continue; /* Skip processed objects */ 2865 2866 /* df->page is always set at this point */ 2867 if (df->page == virt_to_head_page(object)) { 2868 /* Opportunity build freelist */ 2869 set_freepointer(s, object, df->freelist); 2870 df->freelist = object; 2871 df->cnt++; 2872 p[size] = NULL; /* mark object processed */ 2873 2874 continue; 2875 } 2876 2877 /* Limit look ahead search */ 2878 if (!--lookahead) 2879 break; 2880 2881 if (!first_skipped_index) 2882 first_skipped_index = size + 1; 2883 } 2884 2885 return first_skipped_index; 2886 } 2887 2888 2889 /* Note that interrupts must be enabled when calling this function. */ 2890 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) 2891 { 2892 if (WARN_ON(!size)) 2893 return; 2894 2895 do { 2896 struct detached_freelist df; 2897 struct kmem_cache *s; 2898 2899 /* Support for memcg */ 2900 s = cache_from_obj(orig_s, p[size - 1]); 2901 2902 size = build_detached_freelist(s, size, p, &df); 2903 if (unlikely(!df.page)) 2904 continue; 2905 2906 slab_free(s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_); 2907 } while (likely(size)); 2908 } 2909 EXPORT_SYMBOL(kmem_cache_free_bulk); 2910 2911 /* Note that interrupts must be enabled when calling this function. */ 2912 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 2913 void **p) 2914 { 2915 struct kmem_cache_cpu *c; 2916 int i; 2917 2918 /* memcg and kmem_cache debug support */ 2919 s = slab_pre_alloc_hook(s, flags); 2920 if (unlikely(!s)) 2921 return false; 2922 /* 2923 * Drain objects in the per cpu slab, while disabling local 2924 * IRQs, which protects against PREEMPT and interrupts 2925 * handlers invoking normal fastpath. 2926 */ 2927 local_irq_disable(); 2928 c = this_cpu_ptr(s->cpu_slab); 2929 2930 for (i = 0; i < size; i++) { 2931 void *object = c->freelist; 2932 2933 if (unlikely(!object)) { 2934 /* 2935 * Invoking slow path likely have side-effect 2936 * of re-populating per CPU c->freelist 2937 */ 2938 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 2939 _RET_IP_, c); 2940 if (unlikely(!p[i])) 2941 goto error; 2942 2943 c = this_cpu_ptr(s->cpu_slab); 2944 continue; /* goto for-loop */ 2945 } 2946 c->freelist = get_freepointer(s, object); 2947 p[i] = object; 2948 } 2949 c->tid = next_tid(c->tid); 2950 local_irq_enable(); 2951 2952 /* Clear memory outside IRQ disabled fastpath loop */ 2953 if (unlikely(flags & __GFP_ZERO)) { 2954 int j; 2955 2956 for (j = 0; j < i; j++) 2957 memset(p[j], 0, s->object_size); 2958 } 2959 2960 /* memcg and kmem_cache debug support */ 2961 slab_post_alloc_hook(s, flags, size, p); 2962 return i; 2963 error: 2964 local_irq_enable(); 2965 slab_post_alloc_hook(s, flags, i, p); 2966 __kmem_cache_free_bulk(s, i, p); 2967 return 0; 2968 } 2969 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 2970 2971 2972 /* 2973 * Object placement in a slab is made very easy because we always start at 2974 * offset 0. If we tune the size of the object to the alignment then we can 2975 * get the required alignment by putting one properly sized object after 2976 * another. 2977 * 2978 * Notice that the allocation order determines the sizes of the per cpu 2979 * caches. Each processor has always one slab available for allocations. 2980 * Increasing the allocation order reduces the number of times that slabs 2981 * must be moved on and off the partial lists and is therefore a factor in 2982 * locking overhead. 2983 */ 2984 2985 /* 2986 * Mininum / Maximum order of slab pages. This influences locking overhead 2987 * and slab fragmentation. A higher order reduces the number of partial slabs 2988 * and increases the number of allocations possible without having to 2989 * take the list_lock. 2990 */ 2991 static int slub_min_order; 2992 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2993 static int slub_min_objects; 2994 2995 /* 2996 * Calculate the order of allocation given an slab object size. 2997 * 2998 * The order of allocation has significant impact on performance and other 2999 * system components. Generally order 0 allocations should be preferred since 3000 * order 0 does not cause fragmentation in the page allocator. Larger objects 3001 * be problematic to put into order 0 slabs because there may be too much 3002 * unused space left. We go to a higher order if more than 1/16th of the slab 3003 * would be wasted. 3004 * 3005 * In order to reach satisfactory performance we must ensure that a minimum 3006 * number of objects is in one slab. Otherwise we may generate too much 3007 * activity on the partial lists which requires taking the list_lock. This is 3008 * less a concern for large slabs though which are rarely used. 3009 * 3010 * slub_max_order specifies the order where we begin to stop considering the 3011 * number of objects in a slab as critical. If we reach slub_max_order then 3012 * we try to keep the page order as low as possible. So we accept more waste 3013 * of space in favor of a small page order. 3014 * 3015 * Higher order allocations also allow the placement of more objects in a 3016 * slab and thereby reduce object handling overhead. If the user has 3017 * requested a higher mininum order then we start with that one instead of 3018 * the smallest order which will fit the object. 3019 */ 3020 static inline int slab_order(int size, int min_objects, 3021 int max_order, int fract_leftover, int reserved) 3022 { 3023 int order; 3024 int rem; 3025 int min_order = slub_min_order; 3026 3027 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 3028 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3029 3030 for (order = max(min_order, get_order(min_objects * size + reserved)); 3031 order <= max_order; order++) { 3032 3033 unsigned long slab_size = PAGE_SIZE << order; 3034 3035 rem = (slab_size - reserved) % size; 3036 3037 if (rem <= slab_size / fract_leftover) 3038 break; 3039 } 3040 3041 return order; 3042 } 3043 3044 static inline int calculate_order(int size, int reserved) 3045 { 3046 int order; 3047 int min_objects; 3048 int fraction; 3049 int max_objects; 3050 3051 /* 3052 * Attempt to find best configuration for a slab. This 3053 * works by first attempting to generate a layout with 3054 * the best configuration and backing off gradually. 3055 * 3056 * First we increase the acceptable waste in a slab. Then 3057 * we reduce the minimum objects required in a slab. 3058 */ 3059 min_objects = slub_min_objects; 3060 if (!min_objects) 3061 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3062 max_objects = order_objects(slub_max_order, size, reserved); 3063 min_objects = min(min_objects, max_objects); 3064 3065 while (min_objects > 1) { 3066 fraction = 16; 3067 while (fraction >= 4) { 3068 order = slab_order(size, min_objects, 3069 slub_max_order, fraction, reserved); 3070 if (order <= slub_max_order) 3071 return order; 3072 fraction /= 2; 3073 } 3074 min_objects--; 3075 } 3076 3077 /* 3078 * We were unable to place multiple objects in a slab. Now 3079 * lets see if we can place a single object there. 3080 */ 3081 order = slab_order(size, 1, slub_max_order, 1, reserved); 3082 if (order <= slub_max_order) 3083 return order; 3084 3085 /* 3086 * Doh this slab cannot be placed using slub_max_order. 3087 */ 3088 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 3089 if (order < MAX_ORDER) 3090 return order; 3091 return -ENOSYS; 3092 } 3093 3094 static void 3095 init_kmem_cache_node(struct kmem_cache_node *n) 3096 { 3097 n->nr_partial = 0; 3098 spin_lock_init(&n->list_lock); 3099 INIT_LIST_HEAD(&n->partial); 3100 #ifdef CONFIG_SLUB_DEBUG 3101 atomic_long_set(&n->nr_slabs, 0); 3102 atomic_long_set(&n->total_objects, 0); 3103 INIT_LIST_HEAD(&n->full); 3104 #endif 3105 } 3106 3107 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3108 { 3109 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3110 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3111 3112 /* 3113 * Must align to double word boundary for the double cmpxchg 3114 * instructions to work; see __pcpu_double_call_return_bool(). 3115 */ 3116 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3117 2 * sizeof(void *)); 3118 3119 if (!s->cpu_slab) 3120 return 0; 3121 3122 init_kmem_cache_cpus(s); 3123 3124 return 1; 3125 } 3126 3127 static struct kmem_cache *kmem_cache_node; 3128 3129 /* 3130 * No kmalloc_node yet so do it by hand. We know that this is the first 3131 * slab on the node for this slabcache. There are no concurrent accesses 3132 * possible. 3133 * 3134 * Note that this function only works on the kmem_cache_node 3135 * when allocating for the kmem_cache_node. This is used for bootstrapping 3136 * memory on a fresh node that has no slab structures yet. 3137 */ 3138 static void early_kmem_cache_node_alloc(int node) 3139 { 3140 struct page *page; 3141 struct kmem_cache_node *n; 3142 3143 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3144 3145 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3146 3147 BUG_ON(!page); 3148 if (page_to_nid(page) != node) { 3149 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3150 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3151 } 3152 3153 n = page->freelist; 3154 BUG_ON(!n); 3155 page->freelist = get_freepointer(kmem_cache_node, n); 3156 page->inuse = 1; 3157 page->frozen = 0; 3158 kmem_cache_node->node[node] = n; 3159 #ifdef CONFIG_SLUB_DEBUG 3160 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3161 init_tracking(kmem_cache_node, n); 3162 #endif 3163 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node)); 3164 init_kmem_cache_node(n); 3165 inc_slabs_node(kmem_cache_node, node, page->objects); 3166 3167 /* 3168 * No locks need to be taken here as it has just been 3169 * initialized and there is no concurrent access. 3170 */ 3171 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3172 } 3173 3174 static void free_kmem_cache_nodes(struct kmem_cache *s) 3175 { 3176 int node; 3177 struct kmem_cache_node *n; 3178 3179 for_each_kmem_cache_node(s, node, n) { 3180 kmem_cache_free(kmem_cache_node, n); 3181 s->node[node] = NULL; 3182 } 3183 } 3184 3185 static int init_kmem_cache_nodes(struct kmem_cache *s) 3186 { 3187 int node; 3188 3189 for_each_node_state(node, N_NORMAL_MEMORY) { 3190 struct kmem_cache_node *n; 3191 3192 if (slab_state == DOWN) { 3193 early_kmem_cache_node_alloc(node); 3194 continue; 3195 } 3196 n = kmem_cache_alloc_node(kmem_cache_node, 3197 GFP_KERNEL, node); 3198 3199 if (!n) { 3200 free_kmem_cache_nodes(s); 3201 return 0; 3202 } 3203 3204 s->node[node] = n; 3205 init_kmem_cache_node(n); 3206 } 3207 return 1; 3208 } 3209 3210 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3211 { 3212 if (min < MIN_PARTIAL) 3213 min = MIN_PARTIAL; 3214 else if (min > MAX_PARTIAL) 3215 min = MAX_PARTIAL; 3216 s->min_partial = min; 3217 } 3218 3219 /* 3220 * calculate_sizes() determines the order and the distribution of data within 3221 * a slab object. 3222 */ 3223 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3224 { 3225 unsigned long flags = s->flags; 3226 unsigned long size = s->object_size; 3227 int order; 3228 3229 /* 3230 * Round up object size to the next word boundary. We can only 3231 * place the free pointer at word boundaries and this determines 3232 * the possible location of the free pointer. 3233 */ 3234 size = ALIGN(size, sizeof(void *)); 3235 3236 #ifdef CONFIG_SLUB_DEBUG 3237 /* 3238 * Determine if we can poison the object itself. If the user of 3239 * the slab may touch the object after free or before allocation 3240 * then we should never poison the object itself. 3241 */ 3242 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 3243 !s->ctor) 3244 s->flags |= __OBJECT_POISON; 3245 else 3246 s->flags &= ~__OBJECT_POISON; 3247 3248 3249 /* 3250 * If we are Redzoning then check if there is some space between the 3251 * end of the object and the free pointer. If not then add an 3252 * additional word to have some bytes to store Redzone information. 3253 */ 3254 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3255 size += sizeof(void *); 3256 #endif 3257 3258 /* 3259 * With that we have determined the number of bytes in actual use 3260 * by the object. This is the potential offset to the free pointer. 3261 */ 3262 s->inuse = size; 3263 3264 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 3265 s->ctor)) { 3266 /* 3267 * Relocate free pointer after the object if it is not 3268 * permitted to overwrite the first word of the object on 3269 * kmem_cache_free. 3270 * 3271 * This is the case if we do RCU, have a constructor or 3272 * destructor or are poisoning the objects. 3273 */ 3274 s->offset = size; 3275 size += sizeof(void *); 3276 } 3277 3278 #ifdef CONFIG_SLUB_DEBUG 3279 if (flags & SLAB_STORE_USER) 3280 /* 3281 * Need to store information about allocs and frees after 3282 * the object. 3283 */ 3284 size += 2 * sizeof(struct track); 3285 3286 if (flags & SLAB_RED_ZONE) 3287 /* 3288 * Add some empty padding so that we can catch 3289 * overwrites from earlier objects rather than let 3290 * tracking information or the free pointer be 3291 * corrupted if a user writes before the start 3292 * of the object. 3293 */ 3294 size += sizeof(void *); 3295 #endif 3296 3297 /* 3298 * SLUB stores one object immediately after another beginning from 3299 * offset 0. In order to align the objects we have to simply size 3300 * each object to conform to the alignment. 3301 */ 3302 size = ALIGN(size, s->align); 3303 s->size = size; 3304 if (forced_order >= 0) 3305 order = forced_order; 3306 else 3307 order = calculate_order(size, s->reserved); 3308 3309 if (order < 0) 3310 return 0; 3311 3312 s->allocflags = 0; 3313 if (order) 3314 s->allocflags |= __GFP_COMP; 3315 3316 if (s->flags & SLAB_CACHE_DMA) 3317 s->allocflags |= GFP_DMA; 3318 3319 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3320 s->allocflags |= __GFP_RECLAIMABLE; 3321 3322 /* 3323 * Determine the number of objects per slab 3324 */ 3325 s->oo = oo_make(order, size, s->reserved); 3326 s->min = oo_make(get_order(size), size, s->reserved); 3327 if (oo_objects(s->oo) > oo_objects(s->max)) 3328 s->max = s->oo; 3329 3330 return !!oo_objects(s->oo); 3331 } 3332 3333 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3334 { 3335 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3336 s->reserved = 0; 3337 3338 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3339 s->reserved = sizeof(struct rcu_head); 3340 3341 if (!calculate_sizes(s, -1)) 3342 goto error; 3343 if (disable_higher_order_debug) { 3344 /* 3345 * Disable debugging flags that store metadata if the min slab 3346 * order increased. 3347 */ 3348 if (get_order(s->size) > get_order(s->object_size)) { 3349 s->flags &= ~DEBUG_METADATA_FLAGS; 3350 s->offset = 0; 3351 if (!calculate_sizes(s, -1)) 3352 goto error; 3353 } 3354 } 3355 3356 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3357 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3358 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3359 /* Enable fast mode */ 3360 s->flags |= __CMPXCHG_DOUBLE; 3361 #endif 3362 3363 /* 3364 * The larger the object size is, the more pages we want on the partial 3365 * list to avoid pounding the page allocator excessively. 3366 */ 3367 set_min_partial(s, ilog2(s->size) / 2); 3368 3369 /* 3370 * cpu_partial determined the maximum number of objects kept in the 3371 * per cpu partial lists of a processor. 3372 * 3373 * Per cpu partial lists mainly contain slabs that just have one 3374 * object freed. If they are used for allocation then they can be 3375 * filled up again with minimal effort. The slab will never hit the 3376 * per node partial lists and therefore no locking will be required. 3377 * 3378 * This setting also determines 3379 * 3380 * A) The number of objects from per cpu partial slabs dumped to the 3381 * per node list when we reach the limit. 3382 * B) The number of objects in cpu partial slabs to extract from the 3383 * per node list when we run out of per cpu objects. We only fetch 3384 * 50% to keep some capacity around for frees. 3385 */ 3386 if (!kmem_cache_has_cpu_partial(s)) 3387 s->cpu_partial = 0; 3388 else if (s->size >= PAGE_SIZE) 3389 s->cpu_partial = 2; 3390 else if (s->size >= 1024) 3391 s->cpu_partial = 6; 3392 else if (s->size >= 256) 3393 s->cpu_partial = 13; 3394 else 3395 s->cpu_partial = 30; 3396 3397 #ifdef CONFIG_NUMA 3398 s->remote_node_defrag_ratio = 1000; 3399 #endif 3400 if (!init_kmem_cache_nodes(s)) 3401 goto error; 3402 3403 if (alloc_kmem_cache_cpus(s)) 3404 return 0; 3405 3406 free_kmem_cache_nodes(s); 3407 error: 3408 if (flags & SLAB_PANIC) 3409 panic("Cannot create slab %s size=%lu realsize=%u " 3410 "order=%u offset=%u flags=%lx\n", 3411 s->name, (unsigned long)s->size, s->size, 3412 oo_order(s->oo), s->offset, flags); 3413 return -EINVAL; 3414 } 3415 3416 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3417 const char *text) 3418 { 3419 #ifdef CONFIG_SLUB_DEBUG 3420 void *addr = page_address(page); 3421 void *p; 3422 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3423 sizeof(long), GFP_ATOMIC); 3424 if (!map) 3425 return; 3426 slab_err(s, page, text, s->name); 3427 slab_lock(page); 3428 3429 get_map(s, page, map); 3430 for_each_object(p, s, addr, page->objects) { 3431 3432 if (!test_bit(slab_index(p, s, addr), map)) { 3433 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3434 print_tracking(s, p); 3435 } 3436 } 3437 slab_unlock(page); 3438 kfree(map); 3439 #endif 3440 } 3441 3442 /* 3443 * Attempt to free all partial slabs on a node. 3444 * This is called from kmem_cache_close(). We must be the last thread 3445 * using the cache and therefore we do not need to lock anymore. 3446 */ 3447 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3448 { 3449 struct page *page, *h; 3450 3451 list_for_each_entry_safe(page, h, &n->partial, lru) { 3452 if (!page->inuse) { 3453 __remove_partial(n, page); 3454 discard_slab(s, page); 3455 } else { 3456 list_slab_objects(s, page, 3457 "Objects remaining in %s on kmem_cache_close()"); 3458 } 3459 } 3460 } 3461 3462 /* 3463 * Release all resources used by a slab cache. 3464 */ 3465 static inline int kmem_cache_close(struct kmem_cache *s) 3466 { 3467 int node; 3468 struct kmem_cache_node *n; 3469 3470 flush_all(s); 3471 /* Attempt to free all objects */ 3472 for_each_kmem_cache_node(s, node, n) { 3473 free_partial(s, n); 3474 if (n->nr_partial || slabs_node(s, node)) 3475 return 1; 3476 } 3477 free_percpu(s->cpu_slab); 3478 free_kmem_cache_nodes(s); 3479 return 0; 3480 } 3481 3482 int __kmem_cache_shutdown(struct kmem_cache *s) 3483 { 3484 return kmem_cache_close(s); 3485 } 3486 3487 /******************************************************************** 3488 * Kmalloc subsystem 3489 *******************************************************************/ 3490 3491 static int __init setup_slub_min_order(char *str) 3492 { 3493 get_option(&str, &slub_min_order); 3494 3495 return 1; 3496 } 3497 3498 __setup("slub_min_order=", setup_slub_min_order); 3499 3500 static int __init setup_slub_max_order(char *str) 3501 { 3502 get_option(&str, &slub_max_order); 3503 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3504 3505 return 1; 3506 } 3507 3508 __setup("slub_max_order=", setup_slub_max_order); 3509 3510 static int __init setup_slub_min_objects(char *str) 3511 { 3512 get_option(&str, &slub_min_objects); 3513 3514 return 1; 3515 } 3516 3517 __setup("slub_min_objects=", setup_slub_min_objects); 3518 3519 void *__kmalloc(size_t size, gfp_t flags) 3520 { 3521 struct kmem_cache *s; 3522 void *ret; 3523 3524 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3525 return kmalloc_large(size, flags); 3526 3527 s = kmalloc_slab(size, flags); 3528 3529 if (unlikely(ZERO_OR_NULL_PTR(s))) 3530 return s; 3531 3532 ret = slab_alloc(s, flags, _RET_IP_); 3533 3534 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3535 3536 kasan_kmalloc(s, ret, size); 3537 3538 return ret; 3539 } 3540 EXPORT_SYMBOL(__kmalloc); 3541 3542 #ifdef CONFIG_NUMA 3543 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3544 { 3545 struct page *page; 3546 void *ptr = NULL; 3547 3548 flags |= __GFP_COMP | __GFP_NOTRACK; 3549 page = alloc_kmem_pages_node(node, flags, get_order(size)); 3550 if (page) 3551 ptr = page_address(page); 3552 3553 kmalloc_large_node_hook(ptr, size, flags); 3554 return ptr; 3555 } 3556 3557 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3558 { 3559 struct kmem_cache *s; 3560 void *ret; 3561 3562 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3563 ret = kmalloc_large_node(size, flags, node); 3564 3565 trace_kmalloc_node(_RET_IP_, ret, 3566 size, PAGE_SIZE << get_order(size), 3567 flags, node); 3568 3569 return ret; 3570 } 3571 3572 s = kmalloc_slab(size, flags); 3573 3574 if (unlikely(ZERO_OR_NULL_PTR(s))) 3575 return s; 3576 3577 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3578 3579 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3580 3581 kasan_kmalloc(s, ret, size); 3582 3583 return ret; 3584 } 3585 EXPORT_SYMBOL(__kmalloc_node); 3586 #endif 3587 3588 static size_t __ksize(const void *object) 3589 { 3590 struct page *page; 3591 3592 if (unlikely(object == ZERO_SIZE_PTR)) 3593 return 0; 3594 3595 page = virt_to_head_page(object); 3596 3597 if (unlikely(!PageSlab(page))) { 3598 WARN_ON(!PageCompound(page)); 3599 return PAGE_SIZE << compound_order(page); 3600 } 3601 3602 return slab_ksize(page->slab_cache); 3603 } 3604 3605 size_t ksize(const void *object) 3606 { 3607 size_t size = __ksize(object); 3608 /* We assume that ksize callers could use whole allocated area, 3609 so we need unpoison this area. */ 3610 kasan_krealloc(object, size); 3611 return size; 3612 } 3613 EXPORT_SYMBOL(ksize); 3614 3615 void kfree(const void *x) 3616 { 3617 struct page *page; 3618 void *object = (void *)x; 3619 3620 trace_kfree(_RET_IP_, x); 3621 3622 if (unlikely(ZERO_OR_NULL_PTR(x))) 3623 return; 3624 3625 page = virt_to_head_page(x); 3626 if (unlikely(!PageSlab(page))) { 3627 BUG_ON(!PageCompound(page)); 3628 kfree_hook(x); 3629 __free_kmem_pages(page, compound_order(page)); 3630 return; 3631 } 3632 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3633 } 3634 EXPORT_SYMBOL(kfree); 3635 3636 #define SHRINK_PROMOTE_MAX 32 3637 3638 /* 3639 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3640 * up most to the head of the partial lists. New allocations will then 3641 * fill those up and thus they can be removed from the partial lists. 3642 * 3643 * The slabs with the least items are placed last. This results in them 3644 * being allocated from last increasing the chance that the last objects 3645 * are freed in them. 3646 */ 3647 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate) 3648 { 3649 int node; 3650 int i; 3651 struct kmem_cache_node *n; 3652 struct page *page; 3653 struct page *t; 3654 struct list_head discard; 3655 struct list_head promote[SHRINK_PROMOTE_MAX]; 3656 unsigned long flags; 3657 int ret = 0; 3658 3659 if (deactivate) { 3660 /* 3661 * Disable empty slabs caching. Used to avoid pinning offline 3662 * memory cgroups by kmem pages that can be freed. 3663 */ 3664 s->cpu_partial = 0; 3665 s->min_partial = 0; 3666 3667 /* 3668 * s->cpu_partial is checked locklessly (see put_cpu_partial), 3669 * so we have to make sure the change is visible. 3670 */ 3671 kick_all_cpus_sync(); 3672 } 3673 3674 flush_all(s); 3675 for_each_kmem_cache_node(s, node, n) { 3676 INIT_LIST_HEAD(&discard); 3677 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3678 INIT_LIST_HEAD(promote + i); 3679 3680 spin_lock_irqsave(&n->list_lock, flags); 3681 3682 /* 3683 * Build lists of slabs to discard or promote. 3684 * 3685 * Note that concurrent frees may occur while we hold the 3686 * list_lock. page->inuse here is the upper limit. 3687 */ 3688 list_for_each_entry_safe(page, t, &n->partial, lru) { 3689 int free = page->objects - page->inuse; 3690 3691 /* Do not reread page->inuse */ 3692 barrier(); 3693 3694 /* We do not keep full slabs on the list */ 3695 BUG_ON(free <= 0); 3696 3697 if (free == page->objects) { 3698 list_move(&page->lru, &discard); 3699 n->nr_partial--; 3700 } else if (free <= SHRINK_PROMOTE_MAX) 3701 list_move(&page->lru, promote + free - 1); 3702 } 3703 3704 /* 3705 * Promote the slabs filled up most to the head of the 3706 * partial list. 3707 */ 3708 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 3709 list_splice(promote + i, &n->partial); 3710 3711 spin_unlock_irqrestore(&n->list_lock, flags); 3712 3713 /* Release empty slabs */ 3714 list_for_each_entry_safe(page, t, &discard, lru) 3715 discard_slab(s, page); 3716 3717 if (slabs_node(s, node)) 3718 ret = 1; 3719 } 3720 3721 return ret; 3722 } 3723 3724 static int slab_mem_going_offline_callback(void *arg) 3725 { 3726 struct kmem_cache *s; 3727 3728 mutex_lock(&slab_mutex); 3729 list_for_each_entry(s, &slab_caches, list) 3730 __kmem_cache_shrink(s, false); 3731 mutex_unlock(&slab_mutex); 3732 3733 return 0; 3734 } 3735 3736 static void slab_mem_offline_callback(void *arg) 3737 { 3738 struct kmem_cache_node *n; 3739 struct kmem_cache *s; 3740 struct memory_notify *marg = arg; 3741 int offline_node; 3742 3743 offline_node = marg->status_change_nid_normal; 3744 3745 /* 3746 * If the node still has available memory. we need kmem_cache_node 3747 * for it yet. 3748 */ 3749 if (offline_node < 0) 3750 return; 3751 3752 mutex_lock(&slab_mutex); 3753 list_for_each_entry(s, &slab_caches, list) { 3754 n = get_node(s, offline_node); 3755 if (n) { 3756 /* 3757 * if n->nr_slabs > 0, slabs still exist on the node 3758 * that is going down. We were unable to free them, 3759 * and offline_pages() function shouldn't call this 3760 * callback. So, we must fail. 3761 */ 3762 BUG_ON(slabs_node(s, offline_node)); 3763 3764 s->node[offline_node] = NULL; 3765 kmem_cache_free(kmem_cache_node, n); 3766 } 3767 } 3768 mutex_unlock(&slab_mutex); 3769 } 3770 3771 static int slab_mem_going_online_callback(void *arg) 3772 { 3773 struct kmem_cache_node *n; 3774 struct kmem_cache *s; 3775 struct memory_notify *marg = arg; 3776 int nid = marg->status_change_nid_normal; 3777 int ret = 0; 3778 3779 /* 3780 * If the node's memory is already available, then kmem_cache_node is 3781 * already created. Nothing to do. 3782 */ 3783 if (nid < 0) 3784 return 0; 3785 3786 /* 3787 * We are bringing a node online. No memory is available yet. We must 3788 * allocate a kmem_cache_node structure in order to bring the node 3789 * online. 3790 */ 3791 mutex_lock(&slab_mutex); 3792 list_for_each_entry(s, &slab_caches, list) { 3793 /* 3794 * XXX: kmem_cache_alloc_node will fallback to other nodes 3795 * since memory is not yet available from the node that 3796 * is brought up. 3797 */ 3798 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3799 if (!n) { 3800 ret = -ENOMEM; 3801 goto out; 3802 } 3803 init_kmem_cache_node(n); 3804 s->node[nid] = n; 3805 } 3806 out: 3807 mutex_unlock(&slab_mutex); 3808 return ret; 3809 } 3810 3811 static int slab_memory_callback(struct notifier_block *self, 3812 unsigned long action, void *arg) 3813 { 3814 int ret = 0; 3815 3816 switch (action) { 3817 case MEM_GOING_ONLINE: 3818 ret = slab_mem_going_online_callback(arg); 3819 break; 3820 case MEM_GOING_OFFLINE: 3821 ret = slab_mem_going_offline_callback(arg); 3822 break; 3823 case MEM_OFFLINE: 3824 case MEM_CANCEL_ONLINE: 3825 slab_mem_offline_callback(arg); 3826 break; 3827 case MEM_ONLINE: 3828 case MEM_CANCEL_OFFLINE: 3829 break; 3830 } 3831 if (ret) 3832 ret = notifier_from_errno(ret); 3833 else 3834 ret = NOTIFY_OK; 3835 return ret; 3836 } 3837 3838 static struct notifier_block slab_memory_callback_nb = { 3839 .notifier_call = slab_memory_callback, 3840 .priority = SLAB_CALLBACK_PRI, 3841 }; 3842 3843 /******************************************************************** 3844 * Basic setup of slabs 3845 *******************************************************************/ 3846 3847 /* 3848 * Used for early kmem_cache structures that were allocated using 3849 * the page allocator. Allocate them properly then fix up the pointers 3850 * that may be pointing to the wrong kmem_cache structure. 3851 */ 3852 3853 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 3854 { 3855 int node; 3856 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 3857 struct kmem_cache_node *n; 3858 3859 memcpy(s, static_cache, kmem_cache->object_size); 3860 3861 /* 3862 * This runs very early, and only the boot processor is supposed to be 3863 * up. Even if it weren't true, IRQs are not up so we couldn't fire 3864 * IPIs around. 3865 */ 3866 __flush_cpu_slab(s, smp_processor_id()); 3867 for_each_kmem_cache_node(s, node, n) { 3868 struct page *p; 3869 3870 list_for_each_entry(p, &n->partial, lru) 3871 p->slab_cache = s; 3872 3873 #ifdef CONFIG_SLUB_DEBUG 3874 list_for_each_entry(p, &n->full, lru) 3875 p->slab_cache = s; 3876 #endif 3877 } 3878 slab_init_memcg_params(s); 3879 list_add(&s->list, &slab_caches); 3880 return s; 3881 } 3882 3883 void __init kmem_cache_init(void) 3884 { 3885 static __initdata struct kmem_cache boot_kmem_cache, 3886 boot_kmem_cache_node; 3887 3888 if (debug_guardpage_minorder()) 3889 slub_max_order = 0; 3890 3891 kmem_cache_node = &boot_kmem_cache_node; 3892 kmem_cache = &boot_kmem_cache; 3893 3894 create_boot_cache(kmem_cache_node, "kmem_cache_node", 3895 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 3896 3897 register_hotmemory_notifier(&slab_memory_callback_nb); 3898 3899 /* Able to allocate the per node structures */ 3900 slab_state = PARTIAL; 3901 3902 create_boot_cache(kmem_cache, "kmem_cache", 3903 offsetof(struct kmem_cache, node) + 3904 nr_node_ids * sizeof(struct kmem_cache_node *), 3905 SLAB_HWCACHE_ALIGN); 3906 3907 kmem_cache = bootstrap(&boot_kmem_cache); 3908 3909 /* 3910 * Allocate kmem_cache_node properly from the kmem_cache slab. 3911 * kmem_cache_node is separately allocated so no need to 3912 * update any list pointers. 3913 */ 3914 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 3915 3916 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3917 setup_kmalloc_cache_index_table(); 3918 create_kmalloc_caches(0); 3919 3920 #ifdef CONFIG_SMP 3921 register_cpu_notifier(&slab_notifier); 3922 #endif 3923 3924 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n", 3925 cache_line_size(), 3926 slub_min_order, slub_max_order, slub_min_objects, 3927 nr_cpu_ids, nr_node_ids); 3928 } 3929 3930 void __init kmem_cache_init_late(void) 3931 { 3932 } 3933 3934 struct kmem_cache * 3935 __kmem_cache_alias(const char *name, size_t size, size_t align, 3936 unsigned long flags, void (*ctor)(void *)) 3937 { 3938 struct kmem_cache *s, *c; 3939 3940 s = find_mergeable(size, align, flags, name, ctor); 3941 if (s) { 3942 s->refcount++; 3943 3944 /* 3945 * Adjust the object sizes so that we clear 3946 * the complete object on kzalloc. 3947 */ 3948 s->object_size = max(s->object_size, (int)size); 3949 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3950 3951 for_each_memcg_cache(c, s) { 3952 c->object_size = s->object_size; 3953 c->inuse = max_t(int, c->inuse, 3954 ALIGN(size, sizeof(void *))); 3955 } 3956 3957 if (sysfs_slab_alias(s, name)) { 3958 s->refcount--; 3959 s = NULL; 3960 } 3961 } 3962 3963 return s; 3964 } 3965 3966 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 3967 { 3968 int err; 3969 3970 err = kmem_cache_open(s, flags); 3971 if (err) 3972 return err; 3973 3974 /* Mutex is not taken during early boot */ 3975 if (slab_state <= UP) 3976 return 0; 3977 3978 memcg_propagate_slab_attrs(s); 3979 err = sysfs_slab_add(s); 3980 if (err) 3981 kmem_cache_close(s); 3982 3983 return err; 3984 } 3985 3986 #ifdef CONFIG_SMP 3987 /* 3988 * Use the cpu notifier to insure that the cpu slabs are flushed when 3989 * necessary. 3990 */ 3991 static int slab_cpuup_callback(struct notifier_block *nfb, 3992 unsigned long action, void *hcpu) 3993 { 3994 long cpu = (long)hcpu; 3995 struct kmem_cache *s; 3996 unsigned long flags; 3997 3998 switch (action) { 3999 case CPU_UP_CANCELED: 4000 case CPU_UP_CANCELED_FROZEN: 4001 case CPU_DEAD: 4002 case CPU_DEAD_FROZEN: 4003 mutex_lock(&slab_mutex); 4004 list_for_each_entry(s, &slab_caches, list) { 4005 local_irq_save(flags); 4006 __flush_cpu_slab(s, cpu); 4007 local_irq_restore(flags); 4008 } 4009 mutex_unlock(&slab_mutex); 4010 break; 4011 default: 4012 break; 4013 } 4014 return NOTIFY_OK; 4015 } 4016 4017 static struct notifier_block slab_notifier = { 4018 .notifier_call = slab_cpuup_callback 4019 }; 4020 4021 #endif 4022 4023 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4024 { 4025 struct kmem_cache *s; 4026 void *ret; 4027 4028 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4029 return kmalloc_large(size, gfpflags); 4030 4031 s = kmalloc_slab(size, gfpflags); 4032 4033 if (unlikely(ZERO_OR_NULL_PTR(s))) 4034 return s; 4035 4036 ret = slab_alloc(s, gfpflags, caller); 4037 4038 /* Honor the call site pointer we received. */ 4039 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4040 4041 return ret; 4042 } 4043 4044 #ifdef CONFIG_NUMA 4045 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4046 int node, unsigned long caller) 4047 { 4048 struct kmem_cache *s; 4049 void *ret; 4050 4051 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4052 ret = kmalloc_large_node(size, gfpflags, node); 4053 4054 trace_kmalloc_node(caller, ret, 4055 size, PAGE_SIZE << get_order(size), 4056 gfpflags, node); 4057 4058 return ret; 4059 } 4060 4061 s = kmalloc_slab(size, gfpflags); 4062 4063 if (unlikely(ZERO_OR_NULL_PTR(s))) 4064 return s; 4065 4066 ret = slab_alloc_node(s, gfpflags, node, caller); 4067 4068 /* Honor the call site pointer we received. */ 4069 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4070 4071 return ret; 4072 } 4073 #endif 4074 4075 #ifdef CONFIG_SYSFS 4076 static int count_inuse(struct page *page) 4077 { 4078 return page->inuse; 4079 } 4080 4081 static int count_total(struct page *page) 4082 { 4083 return page->objects; 4084 } 4085 #endif 4086 4087 #ifdef CONFIG_SLUB_DEBUG 4088 static int validate_slab(struct kmem_cache *s, struct page *page, 4089 unsigned long *map) 4090 { 4091 void *p; 4092 void *addr = page_address(page); 4093 4094 if (!check_slab(s, page) || 4095 !on_freelist(s, page, NULL)) 4096 return 0; 4097 4098 /* Now we know that a valid freelist exists */ 4099 bitmap_zero(map, page->objects); 4100 4101 get_map(s, page, map); 4102 for_each_object(p, s, addr, page->objects) { 4103 if (test_bit(slab_index(p, s, addr), map)) 4104 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4105 return 0; 4106 } 4107 4108 for_each_object(p, s, addr, page->objects) 4109 if (!test_bit(slab_index(p, s, addr), map)) 4110 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4111 return 0; 4112 return 1; 4113 } 4114 4115 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4116 unsigned long *map) 4117 { 4118 slab_lock(page); 4119 validate_slab(s, page, map); 4120 slab_unlock(page); 4121 } 4122 4123 static int validate_slab_node(struct kmem_cache *s, 4124 struct kmem_cache_node *n, unsigned long *map) 4125 { 4126 unsigned long count = 0; 4127 struct page *page; 4128 unsigned long flags; 4129 4130 spin_lock_irqsave(&n->list_lock, flags); 4131 4132 list_for_each_entry(page, &n->partial, lru) { 4133 validate_slab_slab(s, page, map); 4134 count++; 4135 } 4136 if (count != n->nr_partial) 4137 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4138 s->name, count, n->nr_partial); 4139 4140 if (!(s->flags & SLAB_STORE_USER)) 4141 goto out; 4142 4143 list_for_each_entry(page, &n->full, lru) { 4144 validate_slab_slab(s, page, map); 4145 count++; 4146 } 4147 if (count != atomic_long_read(&n->nr_slabs)) 4148 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4149 s->name, count, atomic_long_read(&n->nr_slabs)); 4150 4151 out: 4152 spin_unlock_irqrestore(&n->list_lock, flags); 4153 return count; 4154 } 4155 4156 static long validate_slab_cache(struct kmem_cache *s) 4157 { 4158 int node; 4159 unsigned long count = 0; 4160 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4161 sizeof(unsigned long), GFP_KERNEL); 4162 struct kmem_cache_node *n; 4163 4164 if (!map) 4165 return -ENOMEM; 4166 4167 flush_all(s); 4168 for_each_kmem_cache_node(s, node, n) 4169 count += validate_slab_node(s, n, map); 4170 kfree(map); 4171 return count; 4172 } 4173 /* 4174 * Generate lists of code addresses where slabcache objects are allocated 4175 * and freed. 4176 */ 4177 4178 struct location { 4179 unsigned long count; 4180 unsigned long addr; 4181 long long sum_time; 4182 long min_time; 4183 long max_time; 4184 long min_pid; 4185 long max_pid; 4186 DECLARE_BITMAP(cpus, NR_CPUS); 4187 nodemask_t nodes; 4188 }; 4189 4190 struct loc_track { 4191 unsigned long max; 4192 unsigned long count; 4193 struct location *loc; 4194 }; 4195 4196 static void free_loc_track(struct loc_track *t) 4197 { 4198 if (t->max) 4199 free_pages((unsigned long)t->loc, 4200 get_order(sizeof(struct location) * t->max)); 4201 } 4202 4203 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4204 { 4205 struct location *l; 4206 int order; 4207 4208 order = get_order(sizeof(struct location) * max); 4209 4210 l = (void *)__get_free_pages(flags, order); 4211 if (!l) 4212 return 0; 4213 4214 if (t->count) { 4215 memcpy(l, t->loc, sizeof(struct location) * t->count); 4216 free_loc_track(t); 4217 } 4218 t->max = max; 4219 t->loc = l; 4220 return 1; 4221 } 4222 4223 static int add_location(struct loc_track *t, struct kmem_cache *s, 4224 const struct track *track) 4225 { 4226 long start, end, pos; 4227 struct location *l; 4228 unsigned long caddr; 4229 unsigned long age = jiffies - track->when; 4230 4231 start = -1; 4232 end = t->count; 4233 4234 for ( ; ; ) { 4235 pos = start + (end - start + 1) / 2; 4236 4237 /* 4238 * There is nothing at "end". If we end up there 4239 * we need to add something to before end. 4240 */ 4241 if (pos == end) 4242 break; 4243 4244 caddr = t->loc[pos].addr; 4245 if (track->addr == caddr) { 4246 4247 l = &t->loc[pos]; 4248 l->count++; 4249 if (track->when) { 4250 l->sum_time += age; 4251 if (age < l->min_time) 4252 l->min_time = age; 4253 if (age > l->max_time) 4254 l->max_time = age; 4255 4256 if (track->pid < l->min_pid) 4257 l->min_pid = track->pid; 4258 if (track->pid > l->max_pid) 4259 l->max_pid = track->pid; 4260 4261 cpumask_set_cpu(track->cpu, 4262 to_cpumask(l->cpus)); 4263 } 4264 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4265 return 1; 4266 } 4267 4268 if (track->addr < caddr) 4269 end = pos; 4270 else 4271 start = pos; 4272 } 4273 4274 /* 4275 * Not found. Insert new tracking element. 4276 */ 4277 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4278 return 0; 4279 4280 l = t->loc + pos; 4281 if (pos < t->count) 4282 memmove(l + 1, l, 4283 (t->count - pos) * sizeof(struct location)); 4284 t->count++; 4285 l->count = 1; 4286 l->addr = track->addr; 4287 l->sum_time = age; 4288 l->min_time = age; 4289 l->max_time = age; 4290 l->min_pid = track->pid; 4291 l->max_pid = track->pid; 4292 cpumask_clear(to_cpumask(l->cpus)); 4293 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4294 nodes_clear(l->nodes); 4295 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4296 return 1; 4297 } 4298 4299 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4300 struct page *page, enum track_item alloc, 4301 unsigned long *map) 4302 { 4303 void *addr = page_address(page); 4304 void *p; 4305 4306 bitmap_zero(map, page->objects); 4307 get_map(s, page, map); 4308 4309 for_each_object(p, s, addr, page->objects) 4310 if (!test_bit(slab_index(p, s, addr), map)) 4311 add_location(t, s, get_track(s, p, alloc)); 4312 } 4313 4314 static int list_locations(struct kmem_cache *s, char *buf, 4315 enum track_item alloc) 4316 { 4317 int len = 0; 4318 unsigned long i; 4319 struct loc_track t = { 0, 0, NULL }; 4320 int node; 4321 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4322 sizeof(unsigned long), GFP_KERNEL); 4323 struct kmem_cache_node *n; 4324 4325 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4326 GFP_TEMPORARY)) { 4327 kfree(map); 4328 return sprintf(buf, "Out of memory\n"); 4329 } 4330 /* Push back cpu slabs */ 4331 flush_all(s); 4332 4333 for_each_kmem_cache_node(s, node, n) { 4334 unsigned long flags; 4335 struct page *page; 4336 4337 if (!atomic_long_read(&n->nr_slabs)) 4338 continue; 4339 4340 spin_lock_irqsave(&n->list_lock, flags); 4341 list_for_each_entry(page, &n->partial, lru) 4342 process_slab(&t, s, page, alloc, map); 4343 list_for_each_entry(page, &n->full, lru) 4344 process_slab(&t, s, page, alloc, map); 4345 spin_unlock_irqrestore(&n->list_lock, flags); 4346 } 4347 4348 for (i = 0; i < t.count; i++) { 4349 struct location *l = &t.loc[i]; 4350 4351 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4352 break; 4353 len += sprintf(buf + len, "%7ld ", l->count); 4354 4355 if (l->addr) 4356 len += sprintf(buf + len, "%pS", (void *)l->addr); 4357 else 4358 len += sprintf(buf + len, "<not-available>"); 4359 4360 if (l->sum_time != l->min_time) { 4361 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4362 l->min_time, 4363 (long)div_u64(l->sum_time, l->count), 4364 l->max_time); 4365 } else 4366 len += sprintf(buf + len, " age=%ld", 4367 l->min_time); 4368 4369 if (l->min_pid != l->max_pid) 4370 len += sprintf(buf + len, " pid=%ld-%ld", 4371 l->min_pid, l->max_pid); 4372 else 4373 len += sprintf(buf + len, " pid=%ld", 4374 l->min_pid); 4375 4376 if (num_online_cpus() > 1 && 4377 !cpumask_empty(to_cpumask(l->cpus)) && 4378 len < PAGE_SIZE - 60) 4379 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4380 " cpus=%*pbl", 4381 cpumask_pr_args(to_cpumask(l->cpus))); 4382 4383 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4384 len < PAGE_SIZE - 60) 4385 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4386 " nodes=%*pbl", 4387 nodemask_pr_args(&l->nodes)); 4388 4389 len += sprintf(buf + len, "\n"); 4390 } 4391 4392 free_loc_track(&t); 4393 kfree(map); 4394 if (!t.count) 4395 len += sprintf(buf, "No data\n"); 4396 return len; 4397 } 4398 #endif 4399 4400 #ifdef SLUB_RESILIENCY_TEST 4401 static void __init resiliency_test(void) 4402 { 4403 u8 *p; 4404 4405 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4406 4407 pr_err("SLUB resiliency testing\n"); 4408 pr_err("-----------------------\n"); 4409 pr_err("A. Corruption after allocation\n"); 4410 4411 p = kzalloc(16, GFP_KERNEL); 4412 p[16] = 0x12; 4413 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4414 p + 16); 4415 4416 validate_slab_cache(kmalloc_caches[4]); 4417 4418 /* Hmmm... The next two are dangerous */ 4419 p = kzalloc(32, GFP_KERNEL); 4420 p[32 + sizeof(void *)] = 0x34; 4421 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4422 p); 4423 pr_err("If allocated object is overwritten then not detectable\n\n"); 4424 4425 validate_slab_cache(kmalloc_caches[5]); 4426 p = kzalloc(64, GFP_KERNEL); 4427 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4428 *p = 0x56; 4429 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4430 p); 4431 pr_err("If allocated object is overwritten then not detectable\n\n"); 4432 validate_slab_cache(kmalloc_caches[6]); 4433 4434 pr_err("\nB. Corruption after free\n"); 4435 p = kzalloc(128, GFP_KERNEL); 4436 kfree(p); 4437 *p = 0x78; 4438 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4439 validate_slab_cache(kmalloc_caches[7]); 4440 4441 p = kzalloc(256, GFP_KERNEL); 4442 kfree(p); 4443 p[50] = 0x9a; 4444 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4445 validate_slab_cache(kmalloc_caches[8]); 4446 4447 p = kzalloc(512, GFP_KERNEL); 4448 kfree(p); 4449 p[512] = 0xab; 4450 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4451 validate_slab_cache(kmalloc_caches[9]); 4452 } 4453 #else 4454 #ifdef CONFIG_SYSFS 4455 static void resiliency_test(void) {}; 4456 #endif 4457 #endif 4458 4459 #ifdef CONFIG_SYSFS 4460 enum slab_stat_type { 4461 SL_ALL, /* All slabs */ 4462 SL_PARTIAL, /* Only partially allocated slabs */ 4463 SL_CPU, /* Only slabs used for cpu caches */ 4464 SL_OBJECTS, /* Determine allocated objects not slabs */ 4465 SL_TOTAL /* Determine object capacity not slabs */ 4466 }; 4467 4468 #define SO_ALL (1 << SL_ALL) 4469 #define SO_PARTIAL (1 << SL_PARTIAL) 4470 #define SO_CPU (1 << SL_CPU) 4471 #define SO_OBJECTS (1 << SL_OBJECTS) 4472 #define SO_TOTAL (1 << SL_TOTAL) 4473 4474 static ssize_t show_slab_objects(struct kmem_cache *s, 4475 char *buf, unsigned long flags) 4476 { 4477 unsigned long total = 0; 4478 int node; 4479 int x; 4480 unsigned long *nodes; 4481 4482 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4483 if (!nodes) 4484 return -ENOMEM; 4485 4486 if (flags & SO_CPU) { 4487 int cpu; 4488 4489 for_each_possible_cpu(cpu) { 4490 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4491 cpu); 4492 int node; 4493 struct page *page; 4494 4495 page = READ_ONCE(c->page); 4496 if (!page) 4497 continue; 4498 4499 node = page_to_nid(page); 4500 if (flags & SO_TOTAL) 4501 x = page->objects; 4502 else if (flags & SO_OBJECTS) 4503 x = page->inuse; 4504 else 4505 x = 1; 4506 4507 total += x; 4508 nodes[node] += x; 4509 4510 page = READ_ONCE(c->partial); 4511 if (page) { 4512 node = page_to_nid(page); 4513 if (flags & SO_TOTAL) 4514 WARN_ON_ONCE(1); 4515 else if (flags & SO_OBJECTS) 4516 WARN_ON_ONCE(1); 4517 else 4518 x = page->pages; 4519 total += x; 4520 nodes[node] += x; 4521 } 4522 } 4523 } 4524 4525 get_online_mems(); 4526 #ifdef CONFIG_SLUB_DEBUG 4527 if (flags & SO_ALL) { 4528 struct kmem_cache_node *n; 4529 4530 for_each_kmem_cache_node(s, node, n) { 4531 4532 if (flags & SO_TOTAL) 4533 x = atomic_long_read(&n->total_objects); 4534 else if (flags & SO_OBJECTS) 4535 x = atomic_long_read(&n->total_objects) - 4536 count_partial(n, count_free); 4537 else 4538 x = atomic_long_read(&n->nr_slabs); 4539 total += x; 4540 nodes[node] += x; 4541 } 4542 4543 } else 4544 #endif 4545 if (flags & SO_PARTIAL) { 4546 struct kmem_cache_node *n; 4547 4548 for_each_kmem_cache_node(s, node, n) { 4549 if (flags & SO_TOTAL) 4550 x = count_partial(n, count_total); 4551 else if (flags & SO_OBJECTS) 4552 x = count_partial(n, count_inuse); 4553 else 4554 x = n->nr_partial; 4555 total += x; 4556 nodes[node] += x; 4557 } 4558 } 4559 x = sprintf(buf, "%lu", total); 4560 #ifdef CONFIG_NUMA 4561 for (node = 0; node < nr_node_ids; node++) 4562 if (nodes[node]) 4563 x += sprintf(buf + x, " N%d=%lu", 4564 node, nodes[node]); 4565 #endif 4566 put_online_mems(); 4567 kfree(nodes); 4568 return x + sprintf(buf + x, "\n"); 4569 } 4570 4571 #ifdef CONFIG_SLUB_DEBUG 4572 static int any_slab_objects(struct kmem_cache *s) 4573 { 4574 int node; 4575 struct kmem_cache_node *n; 4576 4577 for_each_kmem_cache_node(s, node, n) 4578 if (atomic_long_read(&n->total_objects)) 4579 return 1; 4580 4581 return 0; 4582 } 4583 #endif 4584 4585 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4586 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4587 4588 struct slab_attribute { 4589 struct attribute attr; 4590 ssize_t (*show)(struct kmem_cache *s, char *buf); 4591 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4592 }; 4593 4594 #define SLAB_ATTR_RO(_name) \ 4595 static struct slab_attribute _name##_attr = \ 4596 __ATTR(_name, 0400, _name##_show, NULL) 4597 4598 #define SLAB_ATTR(_name) \ 4599 static struct slab_attribute _name##_attr = \ 4600 __ATTR(_name, 0600, _name##_show, _name##_store) 4601 4602 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4603 { 4604 return sprintf(buf, "%d\n", s->size); 4605 } 4606 SLAB_ATTR_RO(slab_size); 4607 4608 static ssize_t align_show(struct kmem_cache *s, char *buf) 4609 { 4610 return sprintf(buf, "%d\n", s->align); 4611 } 4612 SLAB_ATTR_RO(align); 4613 4614 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4615 { 4616 return sprintf(buf, "%d\n", s->object_size); 4617 } 4618 SLAB_ATTR_RO(object_size); 4619 4620 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4621 { 4622 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4623 } 4624 SLAB_ATTR_RO(objs_per_slab); 4625 4626 static ssize_t order_store(struct kmem_cache *s, 4627 const char *buf, size_t length) 4628 { 4629 unsigned long order; 4630 int err; 4631 4632 err = kstrtoul(buf, 10, &order); 4633 if (err) 4634 return err; 4635 4636 if (order > slub_max_order || order < slub_min_order) 4637 return -EINVAL; 4638 4639 calculate_sizes(s, order); 4640 return length; 4641 } 4642 4643 static ssize_t order_show(struct kmem_cache *s, char *buf) 4644 { 4645 return sprintf(buf, "%d\n", oo_order(s->oo)); 4646 } 4647 SLAB_ATTR(order); 4648 4649 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4650 { 4651 return sprintf(buf, "%lu\n", s->min_partial); 4652 } 4653 4654 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4655 size_t length) 4656 { 4657 unsigned long min; 4658 int err; 4659 4660 err = kstrtoul(buf, 10, &min); 4661 if (err) 4662 return err; 4663 4664 set_min_partial(s, min); 4665 return length; 4666 } 4667 SLAB_ATTR(min_partial); 4668 4669 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4670 { 4671 return sprintf(buf, "%u\n", s->cpu_partial); 4672 } 4673 4674 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4675 size_t length) 4676 { 4677 unsigned long objects; 4678 int err; 4679 4680 err = kstrtoul(buf, 10, &objects); 4681 if (err) 4682 return err; 4683 if (objects && !kmem_cache_has_cpu_partial(s)) 4684 return -EINVAL; 4685 4686 s->cpu_partial = objects; 4687 flush_all(s); 4688 return length; 4689 } 4690 SLAB_ATTR(cpu_partial); 4691 4692 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4693 { 4694 if (!s->ctor) 4695 return 0; 4696 return sprintf(buf, "%pS\n", s->ctor); 4697 } 4698 SLAB_ATTR_RO(ctor); 4699 4700 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4701 { 4702 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4703 } 4704 SLAB_ATTR_RO(aliases); 4705 4706 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4707 { 4708 return show_slab_objects(s, buf, SO_PARTIAL); 4709 } 4710 SLAB_ATTR_RO(partial); 4711 4712 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4713 { 4714 return show_slab_objects(s, buf, SO_CPU); 4715 } 4716 SLAB_ATTR_RO(cpu_slabs); 4717 4718 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4719 { 4720 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4721 } 4722 SLAB_ATTR_RO(objects); 4723 4724 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4725 { 4726 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4727 } 4728 SLAB_ATTR_RO(objects_partial); 4729 4730 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4731 { 4732 int objects = 0; 4733 int pages = 0; 4734 int cpu; 4735 int len; 4736 4737 for_each_online_cpu(cpu) { 4738 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4739 4740 if (page) { 4741 pages += page->pages; 4742 objects += page->pobjects; 4743 } 4744 } 4745 4746 len = sprintf(buf, "%d(%d)", objects, pages); 4747 4748 #ifdef CONFIG_SMP 4749 for_each_online_cpu(cpu) { 4750 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4751 4752 if (page && len < PAGE_SIZE - 20) 4753 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4754 page->pobjects, page->pages); 4755 } 4756 #endif 4757 return len + sprintf(buf + len, "\n"); 4758 } 4759 SLAB_ATTR_RO(slabs_cpu_partial); 4760 4761 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4762 { 4763 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4764 } 4765 4766 static ssize_t reclaim_account_store(struct kmem_cache *s, 4767 const char *buf, size_t length) 4768 { 4769 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4770 if (buf[0] == '1') 4771 s->flags |= SLAB_RECLAIM_ACCOUNT; 4772 return length; 4773 } 4774 SLAB_ATTR(reclaim_account); 4775 4776 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4777 { 4778 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4779 } 4780 SLAB_ATTR_RO(hwcache_align); 4781 4782 #ifdef CONFIG_ZONE_DMA 4783 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4784 { 4785 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4786 } 4787 SLAB_ATTR_RO(cache_dma); 4788 #endif 4789 4790 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4791 { 4792 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4793 } 4794 SLAB_ATTR_RO(destroy_by_rcu); 4795 4796 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4797 { 4798 return sprintf(buf, "%d\n", s->reserved); 4799 } 4800 SLAB_ATTR_RO(reserved); 4801 4802 #ifdef CONFIG_SLUB_DEBUG 4803 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4804 { 4805 return show_slab_objects(s, buf, SO_ALL); 4806 } 4807 SLAB_ATTR_RO(slabs); 4808 4809 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4810 { 4811 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4812 } 4813 SLAB_ATTR_RO(total_objects); 4814 4815 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4816 { 4817 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4818 } 4819 4820 static ssize_t sanity_checks_store(struct kmem_cache *s, 4821 const char *buf, size_t length) 4822 { 4823 s->flags &= ~SLAB_DEBUG_FREE; 4824 if (buf[0] == '1') { 4825 s->flags &= ~__CMPXCHG_DOUBLE; 4826 s->flags |= SLAB_DEBUG_FREE; 4827 } 4828 return length; 4829 } 4830 SLAB_ATTR(sanity_checks); 4831 4832 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4833 { 4834 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4835 } 4836 4837 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4838 size_t length) 4839 { 4840 /* 4841 * Tracing a merged cache is going to give confusing results 4842 * as well as cause other issues like converting a mergeable 4843 * cache into an umergeable one. 4844 */ 4845 if (s->refcount > 1) 4846 return -EINVAL; 4847 4848 s->flags &= ~SLAB_TRACE; 4849 if (buf[0] == '1') { 4850 s->flags &= ~__CMPXCHG_DOUBLE; 4851 s->flags |= SLAB_TRACE; 4852 } 4853 return length; 4854 } 4855 SLAB_ATTR(trace); 4856 4857 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4858 { 4859 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4860 } 4861 4862 static ssize_t red_zone_store(struct kmem_cache *s, 4863 const char *buf, size_t length) 4864 { 4865 if (any_slab_objects(s)) 4866 return -EBUSY; 4867 4868 s->flags &= ~SLAB_RED_ZONE; 4869 if (buf[0] == '1') { 4870 s->flags &= ~__CMPXCHG_DOUBLE; 4871 s->flags |= SLAB_RED_ZONE; 4872 } 4873 calculate_sizes(s, -1); 4874 return length; 4875 } 4876 SLAB_ATTR(red_zone); 4877 4878 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4879 { 4880 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4881 } 4882 4883 static ssize_t poison_store(struct kmem_cache *s, 4884 const char *buf, size_t length) 4885 { 4886 if (any_slab_objects(s)) 4887 return -EBUSY; 4888 4889 s->flags &= ~SLAB_POISON; 4890 if (buf[0] == '1') { 4891 s->flags &= ~__CMPXCHG_DOUBLE; 4892 s->flags |= SLAB_POISON; 4893 } 4894 calculate_sizes(s, -1); 4895 return length; 4896 } 4897 SLAB_ATTR(poison); 4898 4899 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4900 { 4901 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4902 } 4903 4904 static ssize_t store_user_store(struct kmem_cache *s, 4905 const char *buf, size_t length) 4906 { 4907 if (any_slab_objects(s)) 4908 return -EBUSY; 4909 4910 s->flags &= ~SLAB_STORE_USER; 4911 if (buf[0] == '1') { 4912 s->flags &= ~__CMPXCHG_DOUBLE; 4913 s->flags |= SLAB_STORE_USER; 4914 } 4915 calculate_sizes(s, -1); 4916 return length; 4917 } 4918 SLAB_ATTR(store_user); 4919 4920 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4921 { 4922 return 0; 4923 } 4924 4925 static ssize_t validate_store(struct kmem_cache *s, 4926 const char *buf, size_t length) 4927 { 4928 int ret = -EINVAL; 4929 4930 if (buf[0] == '1') { 4931 ret = validate_slab_cache(s); 4932 if (ret >= 0) 4933 ret = length; 4934 } 4935 return ret; 4936 } 4937 SLAB_ATTR(validate); 4938 4939 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4940 { 4941 if (!(s->flags & SLAB_STORE_USER)) 4942 return -ENOSYS; 4943 return list_locations(s, buf, TRACK_ALLOC); 4944 } 4945 SLAB_ATTR_RO(alloc_calls); 4946 4947 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4948 { 4949 if (!(s->flags & SLAB_STORE_USER)) 4950 return -ENOSYS; 4951 return list_locations(s, buf, TRACK_FREE); 4952 } 4953 SLAB_ATTR_RO(free_calls); 4954 #endif /* CONFIG_SLUB_DEBUG */ 4955 4956 #ifdef CONFIG_FAILSLAB 4957 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4958 { 4959 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4960 } 4961 4962 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4963 size_t length) 4964 { 4965 if (s->refcount > 1) 4966 return -EINVAL; 4967 4968 s->flags &= ~SLAB_FAILSLAB; 4969 if (buf[0] == '1') 4970 s->flags |= SLAB_FAILSLAB; 4971 return length; 4972 } 4973 SLAB_ATTR(failslab); 4974 #endif 4975 4976 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4977 { 4978 return 0; 4979 } 4980 4981 static ssize_t shrink_store(struct kmem_cache *s, 4982 const char *buf, size_t length) 4983 { 4984 if (buf[0] == '1') 4985 kmem_cache_shrink(s); 4986 else 4987 return -EINVAL; 4988 return length; 4989 } 4990 SLAB_ATTR(shrink); 4991 4992 #ifdef CONFIG_NUMA 4993 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4994 { 4995 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4996 } 4997 4998 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4999 const char *buf, size_t length) 5000 { 5001 unsigned long ratio; 5002 int err; 5003 5004 err = kstrtoul(buf, 10, &ratio); 5005 if (err) 5006 return err; 5007 5008 if (ratio <= 100) 5009 s->remote_node_defrag_ratio = ratio * 10; 5010 5011 return length; 5012 } 5013 SLAB_ATTR(remote_node_defrag_ratio); 5014 #endif 5015 5016 #ifdef CONFIG_SLUB_STATS 5017 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5018 { 5019 unsigned long sum = 0; 5020 int cpu; 5021 int len; 5022 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 5023 5024 if (!data) 5025 return -ENOMEM; 5026 5027 for_each_online_cpu(cpu) { 5028 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5029 5030 data[cpu] = x; 5031 sum += x; 5032 } 5033 5034 len = sprintf(buf, "%lu", sum); 5035 5036 #ifdef CONFIG_SMP 5037 for_each_online_cpu(cpu) { 5038 if (data[cpu] && len < PAGE_SIZE - 20) 5039 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5040 } 5041 #endif 5042 kfree(data); 5043 return len + sprintf(buf + len, "\n"); 5044 } 5045 5046 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5047 { 5048 int cpu; 5049 5050 for_each_online_cpu(cpu) 5051 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5052 } 5053 5054 #define STAT_ATTR(si, text) \ 5055 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5056 { \ 5057 return show_stat(s, buf, si); \ 5058 } \ 5059 static ssize_t text##_store(struct kmem_cache *s, \ 5060 const char *buf, size_t length) \ 5061 { \ 5062 if (buf[0] != '0') \ 5063 return -EINVAL; \ 5064 clear_stat(s, si); \ 5065 return length; \ 5066 } \ 5067 SLAB_ATTR(text); \ 5068 5069 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5070 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5071 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5072 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5073 STAT_ATTR(FREE_FROZEN, free_frozen); 5074 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5075 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5076 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5077 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5078 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5079 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5080 STAT_ATTR(FREE_SLAB, free_slab); 5081 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5082 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5083 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5084 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5085 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5086 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5087 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5088 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5089 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5090 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5091 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5092 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5093 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5094 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5095 #endif 5096 5097 static struct attribute *slab_attrs[] = { 5098 &slab_size_attr.attr, 5099 &object_size_attr.attr, 5100 &objs_per_slab_attr.attr, 5101 &order_attr.attr, 5102 &min_partial_attr.attr, 5103 &cpu_partial_attr.attr, 5104 &objects_attr.attr, 5105 &objects_partial_attr.attr, 5106 &partial_attr.attr, 5107 &cpu_slabs_attr.attr, 5108 &ctor_attr.attr, 5109 &aliases_attr.attr, 5110 &align_attr.attr, 5111 &hwcache_align_attr.attr, 5112 &reclaim_account_attr.attr, 5113 &destroy_by_rcu_attr.attr, 5114 &shrink_attr.attr, 5115 &reserved_attr.attr, 5116 &slabs_cpu_partial_attr.attr, 5117 #ifdef CONFIG_SLUB_DEBUG 5118 &total_objects_attr.attr, 5119 &slabs_attr.attr, 5120 &sanity_checks_attr.attr, 5121 &trace_attr.attr, 5122 &red_zone_attr.attr, 5123 &poison_attr.attr, 5124 &store_user_attr.attr, 5125 &validate_attr.attr, 5126 &alloc_calls_attr.attr, 5127 &free_calls_attr.attr, 5128 #endif 5129 #ifdef CONFIG_ZONE_DMA 5130 &cache_dma_attr.attr, 5131 #endif 5132 #ifdef CONFIG_NUMA 5133 &remote_node_defrag_ratio_attr.attr, 5134 #endif 5135 #ifdef CONFIG_SLUB_STATS 5136 &alloc_fastpath_attr.attr, 5137 &alloc_slowpath_attr.attr, 5138 &free_fastpath_attr.attr, 5139 &free_slowpath_attr.attr, 5140 &free_frozen_attr.attr, 5141 &free_add_partial_attr.attr, 5142 &free_remove_partial_attr.attr, 5143 &alloc_from_partial_attr.attr, 5144 &alloc_slab_attr.attr, 5145 &alloc_refill_attr.attr, 5146 &alloc_node_mismatch_attr.attr, 5147 &free_slab_attr.attr, 5148 &cpuslab_flush_attr.attr, 5149 &deactivate_full_attr.attr, 5150 &deactivate_empty_attr.attr, 5151 &deactivate_to_head_attr.attr, 5152 &deactivate_to_tail_attr.attr, 5153 &deactivate_remote_frees_attr.attr, 5154 &deactivate_bypass_attr.attr, 5155 &order_fallback_attr.attr, 5156 &cmpxchg_double_fail_attr.attr, 5157 &cmpxchg_double_cpu_fail_attr.attr, 5158 &cpu_partial_alloc_attr.attr, 5159 &cpu_partial_free_attr.attr, 5160 &cpu_partial_node_attr.attr, 5161 &cpu_partial_drain_attr.attr, 5162 #endif 5163 #ifdef CONFIG_FAILSLAB 5164 &failslab_attr.attr, 5165 #endif 5166 5167 NULL 5168 }; 5169 5170 static struct attribute_group slab_attr_group = { 5171 .attrs = slab_attrs, 5172 }; 5173 5174 static ssize_t slab_attr_show(struct kobject *kobj, 5175 struct attribute *attr, 5176 char *buf) 5177 { 5178 struct slab_attribute *attribute; 5179 struct kmem_cache *s; 5180 int err; 5181 5182 attribute = to_slab_attr(attr); 5183 s = to_slab(kobj); 5184 5185 if (!attribute->show) 5186 return -EIO; 5187 5188 err = attribute->show(s, buf); 5189 5190 return err; 5191 } 5192 5193 static ssize_t slab_attr_store(struct kobject *kobj, 5194 struct attribute *attr, 5195 const char *buf, size_t len) 5196 { 5197 struct slab_attribute *attribute; 5198 struct kmem_cache *s; 5199 int err; 5200 5201 attribute = to_slab_attr(attr); 5202 s = to_slab(kobj); 5203 5204 if (!attribute->store) 5205 return -EIO; 5206 5207 err = attribute->store(s, buf, len); 5208 #ifdef CONFIG_MEMCG_KMEM 5209 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5210 struct kmem_cache *c; 5211 5212 mutex_lock(&slab_mutex); 5213 if (s->max_attr_size < len) 5214 s->max_attr_size = len; 5215 5216 /* 5217 * This is a best effort propagation, so this function's return 5218 * value will be determined by the parent cache only. This is 5219 * basically because not all attributes will have a well 5220 * defined semantics for rollbacks - most of the actions will 5221 * have permanent effects. 5222 * 5223 * Returning the error value of any of the children that fail 5224 * is not 100 % defined, in the sense that users seeing the 5225 * error code won't be able to know anything about the state of 5226 * the cache. 5227 * 5228 * Only returning the error code for the parent cache at least 5229 * has well defined semantics. The cache being written to 5230 * directly either failed or succeeded, in which case we loop 5231 * through the descendants with best-effort propagation. 5232 */ 5233 for_each_memcg_cache(c, s) 5234 attribute->store(c, buf, len); 5235 mutex_unlock(&slab_mutex); 5236 } 5237 #endif 5238 return err; 5239 } 5240 5241 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5242 { 5243 #ifdef CONFIG_MEMCG_KMEM 5244 int i; 5245 char *buffer = NULL; 5246 struct kmem_cache *root_cache; 5247 5248 if (is_root_cache(s)) 5249 return; 5250 5251 root_cache = s->memcg_params.root_cache; 5252 5253 /* 5254 * This mean this cache had no attribute written. Therefore, no point 5255 * in copying default values around 5256 */ 5257 if (!root_cache->max_attr_size) 5258 return; 5259 5260 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5261 char mbuf[64]; 5262 char *buf; 5263 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5264 5265 if (!attr || !attr->store || !attr->show) 5266 continue; 5267 5268 /* 5269 * It is really bad that we have to allocate here, so we will 5270 * do it only as a fallback. If we actually allocate, though, 5271 * we can just use the allocated buffer until the end. 5272 * 5273 * Most of the slub attributes will tend to be very small in 5274 * size, but sysfs allows buffers up to a page, so they can 5275 * theoretically happen. 5276 */ 5277 if (buffer) 5278 buf = buffer; 5279 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5280 buf = mbuf; 5281 else { 5282 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5283 if (WARN_ON(!buffer)) 5284 continue; 5285 buf = buffer; 5286 } 5287 5288 attr->show(root_cache, buf); 5289 attr->store(s, buf, strlen(buf)); 5290 } 5291 5292 if (buffer) 5293 free_page((unsigned long)buffer); 5294 #endif 5295 } 5296 5297 static void kmem_cache_release(struct kobject *k) 5298 { 5299 slab_kmem_cache_release(to_slab(k)); 5300 } 5301 5302 static const struct sysfs_ops slab_sysfs_ops = { 5303 .show = slab_attr_show, 5304 .store = slab_attr_store, 5305 }; 5306 5307 static struct kobj_type slab_ktype = { 5308 .sysfs_ops = &slab_sysfs_ops, 5309 .release = kmem_cache_release, 5310 }; 5311 5312 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5313 { 5314 struct kobj_type *ktype = get_ktype(kobj); 5315 5316 if (ktype == &slab_ktype) 5317 return 1; 5318 return 0; 5319 } 5320 5321 static const struct kset_uevent_ops slab_uevent_ops = { 5322 .filter = uevent_filter, 5323 }; 5324 5325 static struct kset *slab_kset; 5326 5327 static inline struct kset *cache_kset(struct kmem_cache *s) 5328 { 5329 #ifdef CONFIG_MEMCG_KMEM 5330 if (!is_root_cache(s)) 5331 return s->memcg_params.root_cache->memcg_kset; 5332 #endif 5333 return slab_kset; 5334 } 5335 5336 #define ID_STR_LENGTH 64 5337 5338 /* Create a unique string id for a slab cache: 5339 * 5340 * Format :[flags-]size 5341 */ 5342 static char *create_unique_id(struct kmem_cache *s) 5343 { 5344 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5345 char *p = name; 5346 5347 BUG_ON(!name); 5348 5349 *p++ = ':'; 5350 /* 5351 * First flags affecting slabcache operations. We will only 5352 * get here for aliasable slabs so we do not need to support 5353 * too many flags. The flags here must cover all flags that 5354 * are matched during merging to guarantee that the id is 5355 * unique. 5356 */ 5357 if (s->flags & SLAB_CACHE_DMA) 5358 *p++ = 'd'; 5359 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5360 *p++ = 'a'; 5361 if (s->flags & SLAB_DEBUG_FREE) 5362 *p++ = 'F'; 5363 if (!(s->flags & SLAB_NOTRACK)) 5364 *p++ = 't'; 5365 if (p != name + 1) 5366 *p++ = '-'; 5367 p += sprintf(p, "%07d", s->size); 5368 5369 BUG_ON(p > name + ID_STR_LENGTH - 1); 5370 return name; 5371 } 5372 5373 static int sysfs_slab_add(struct kmem_cache *s) 5374 { 5375 int err; 5376 const char *name; 5377 int unmergeable = slab_unmergeable(s); 5378 5379 if (unmergeable) { 5380 /* 5381 * Slabcache can never be merged so we can use the name proper. 5382 * This is typically the case for debug situations. In that 5383 * case we can catch duplicate names easily. 5384 */ 5385 sysfs_remove_link(&slab_kset->kobj, s->name); 5386 name = s->name; 5387 } else { 5388 /* 5389 * Create a unique name for the slab as a target 5390 * for the symlinks. 5391 */ 5392 name = create_unique_id(s); 5393 } 5394 5395 s->kobj.kset = cache_kset(s); 5396 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5397 if (err) 5398 goto out; 5399 5400 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5401 if (err) 5402 goto out_del_kobj; 5403 5404 #ifdef CONFIG_MEMCG_KMEM 5405 if (is_root_cache(s)) { 5406 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5407 if (!s->memcg_kset) { 5408 err = -ENOMEM; 5409 goto out_del_kobj; 5410 } 5411 } 5412 #endif 5413 5414 kobject_uevent(&s->kobj, KOBJ_ADD); 5415 if (!unmergeable) { 5416 /* Setup first alias */ 5417 sysfs_slab_alias(s, s->name); 5418 } 5419 out: 5420 if (!unmergeable) 5421 kfree(name); 5422 return err; 5423 out_del_kobj: 5424 kobject_del(&s->kobj); 5425 goto out; 5426 } 5427 5428 void sysfs_slab_remove(struct kmem_cache *s) 5429 { 5430 if (slab_state < FULL) 5431 /* 5432 * Sysfs has not been setup yet so no need to remove the 5433 * cache from sysfs. 5434 */ 5435 return; 5436 5437 #ifdef CONFIG_MEMCG_KMEM 5438 kset_unregister(s->memcg_kset); 5439 #endif 5440 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5441 kobject_del(&s->kobj); 5442 kobject_put(&s->kobj); 5443 } 5444 5445 /* 5446 * Need to buffer aliases during bootup until sysfs becomes 5447 * available lest we lose that information. 5448 */ 5449 struct saved_alias { 5450 struct kmem_cache *s; 5451 const char *name; 5452 struct saved_alias *next; 5453 }; 5454 5455 static struct saved_alias *alias_list; 5456 5457 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5458 { 5459 struct saved_alias *al; 5460 5461 if (slab_state == FULL) { 5462 /* 5463 * If we have a leftover link then remove it. 5464 */ 5465 sysfs_remove_link(&slab_kset->kobj, name); 5466 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5467 } 5468 5469 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5470 if (!al) 5471 return -ENOMEM; 5472 5473 al->s = s; 5474 al->name = name; 5475 al->next = alias_list; 5476 alias_list = al; 5477 return 0; 5478 } 5479 5480 static int __init slab_sysfs_init(void) 5481 { 5482 struct kmem_cache *s; 5483 int err; 5484 5485 mutex_lock(&slab_mutex); 5486 5487 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5488 if (!slab_kset) { 5489 mutex_unlock(&slab_mutex); 5490 pr_err("Cannot register slab subsystem.\n"); 5491 return -ENOSYS; 5492 } 5493 5494 slab_state = FULL; 5495 5496 list_for_each_entry(s, &slab_caches, list) { 5497 err = sysfs_slab_add(s); 5498 if (err) 5499 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5500 s->name); 5501 } 5502 5503 while (alias_list) { 5504 struct saved_alias *al = alias_list; 5505 5506 alias_list = alias_list->next; 5507 err = sysfs_slab_alias(al->s, al->name); 5508 if (err) 5509 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5510 al->name); 5511 kfree(al); 5512 } 5513 5514 mutex_unlock(&slab_mutex); 5515 resiliency_test(); 5516 return 0; 5517 } 5518 5519 __initcall(slab_sysfs_init); 5520 #endif /* CONFIG_SYSFS */ 5521 5522 /* 5523 * The /proc/slabinfo ABI 5524 */ 5525 #ifdef CONFIG_SLABINFO 5526 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5527 { 5528 unsigned long nr_slabs = 0; 5529 unsigned long nr_objs = 0; 5530 unsigned long nr_free = 0; 5531 int node; 5532 struct kmem_cache_node *n; 5533 5534 for_each_kmem_cache_node(s, node, n) { 5535 nr_slabs += node_nr_slabs(n); 5536 nr_objs += node_nr_objs(n); 5537 nr_free += count_partial(n, count_free); 5538 } 5539 5540 sinfo->active_objs = nr_objs - nr_free; 5541 sinfo->num_objs = nr_objs; 5542 sinfo->active_slabs = nr_slabs; 5543 sinfo->num_slabs = nr_slabs; 5544 sinfo->objects_per_slab = oo_objects(s->oo); 5545 sinfo->cache_order = oo_order(s->oo); 5546 } 5547 5548 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5549 { 5550 } 5551 5552 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5553 size_t count, loff_t *ppos) 5554 { 5555 return -EIO; 5556 } 5557 #endif /* CONFIG_SLABINFO */ 5558