1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/stackdepot.h> 30 #include <linux/debugobjects.h> 31 #include <linux/kallsyms.h> 32 #include <linux/kfence.h> 33 #include <linux/memory.h> 34 #include <linux/math64.h> 35 #include <linux/fault-inject.h> 36 #include <linux/stacktrace.h> 37 #include <linux/prefetch.h> 38 #include <linux/memcontrol.h> 39 #include <linux/random.h> 40 #include <kunit/test.h> 41 #include <linux/sort.h> 42 43 #include <linux/debugfs.h> 44 #include <trace/events/kmem.h> 45 46 #include "internal.h" 47 48 /* 49 * Lock order: 50 * 1. slab_mutex (Global Mutex) 51 * 2. node->list_lock (Spinlock) 52 * 3. kmem_cache->cpu_slab->lock (Local lock) 53 * 4. slab_lock(slab) (Only on some arches or for debugging) 54 * 5. object_map_lock (Only for debugging) 55 * 56 * slab_mutex 57 * 58 * The role of the slab_mutex is to protect the list of all the slabs 59 * and to synchronize major metadata changes to slab cache structures. 60 * Also synchronizes memory hotplug callbacks. 61 * 62 * slab_lock 63 * 64 * The slab_lock is a wrapper around the page lock, thus it is a bit 65 * spinlock. 66 * 67 * The slab_lock is only used for debugging and on arches that do not 68 * have the ability to do a cmpxchg_double. It only protects: 69 * A. slab->freelist -> List of free objects in a slab 70 * B. slab->inuse -> Number of objects in use 71 * C. slab->objects -> Number of objects in slab 72 * D. slab->frozen -> frozen state 73 * 74 * Frozen slabs 75 * 76 * If a slab is frozen then it is exempt from list management. It is not 77 * on any list except per cpu partial list. The processor that froze the 78 * slab is the one who can perform list operations on the slab. Other 79 * processors may put objects onto the freelist but the processor that 80 * froze the slab is the only one that can retrieve the objects from the 81 * slab's freelist. 82 * 83 * list_lock 84 * 85 * The list_lock protects the partial and full list on each node and 86 * the partial slab counter. If taken then no new slabs may be added or 87 * removed from the lists nor make the number of partial slabs be modified. 88 * (Note that the total number of slabs is an atomic value that may be 89 * modified without taking the list lock). 90 * 91 * The list_lock is a centralized lock and thus we avoid taking it as 92 * much as possible. As long as SLUB does not have to handle partial 93 * slabs, operations can continue without any centralized lock. F.e. 94 * allocating a long series of objects that fill up slabs does not require 95 * the list lock. 96 * 97 * cpu_slab->lock local lock 98 * 99 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 100 * except the stat counters. This is a percpu structure manipulated only by 101 * the local cpu, so the lock protects against being preempted or interrupted 102 * by an irq. Fast path operations rely on lockless operations instead. 103 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus 104 * prevent the lockless operations), so fastpath operations also need to take 105 * the lock and are no longer lockless. 106 * 107 * lockless fastpaths 108 * 109 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 110 * are fully lockless when satisfied from the percpu slab (and when 111 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 112 * They also don't disable preemption or migration or irqs. They rely on 113 * the transaction id (tid) field to detect being preempted or moved to 114 * another cpu. 115 * 116 * irq, preemption, migration considerations 117 * 118 * Interrupts are disabled as part of list_lock or local_lock operations, or 119 * around the slab_lock operation, in order to make the slab allocator safe 120 * to use in the context of an irq. 121 * 122 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 123 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 124 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 125 * doesn't have to be revalidated in each section protected by the local lock. 126 * 127 * SLUB assigns one slab for allocation to each processor. 128 * Allocations only occur from these slabs called cpu slabs. 129 * 130 * Slabs with free elements are kept on a partial list and during regular 131 * operations no list for full slabs is used. If an object in a full slab is 132 * freed then the slab will show up again on the partial lists. 133 * We track full slabs for debugging purposes though because otherwise we 134 * cannot scan all objects. 135 * 136 * Slabs are freed when they become empty. Teardown and setup is 137 * minimal so we rely on the page allocators per cpu caches for 138 * fast frees and allocs. 139 * 140 * slab->frozen The slab is frozen and exempt from list processing. 141 * This means that the slab is dedicated to a purpose 142 * such as satisfying allocations for a specific 143 * processor. Objects may be freed in the slab while 144 * it is frozen but slab_free will then skip the usual 145 * list operations. It is up to the processor holding 146 * the slab to integrate the slab into the slab lists 147 * when the slab is no longer needed. 148 * 149 * One use of this flag is to mark slabs that are 150 * used for allocations. Then such a slab becomes a cpu 151 * slab. The cpu slab may be equipped with an additional 152 * freelist that allows lockless access to 153 * free objects in addition to the regular freelist 154 * that requires the slab lock. 155 * 156 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 157 * options set. This moves slab handling out of 158 * the fast path and disables lockless freelists. 159 */ 160 161 /* 162 * We could simply use migrate_disable()/enable() but as long as it's a 163 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 164 */ 165 #ifndef CONFIG_PREEMPT_RT 166 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 167 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 168 #else 169 #define slub_get_cpu_ptr(var) \ 170 ({ \ 171 migrate_disable(); \ 172 this_cpu_ptr(var); \ 173 }) 174 #define slub_put_cpu_ptr(var) \ 175 do { \ 176 (void)(var); \ 177 migrate_enable(); \ 178 } while (0) 179 #endif 180 181 #ifdef CONFIG_SLUB_DEBUG 182 #ifdef CONFIG_SLUB_DEBUG_ON 183 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 184 #else 185 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 186 #endif 187 #endif /* CONFIG_SLUB_DEBUG */ 188 189 static inline bool kmem_cache_debug(struct kmem_cache *s) 190 { 191 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 192 } 193 194 void *fixup_red_left(struct kmem_cache *s, void *p) 195 { 196 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 197 p += s->red_left_pad; 198 199 return p; 200 } 201 202 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 203 { 204 #ifdef CONFIG_SLUB_CPU_PARTIAL 205 return !kmem_cache_debug(s); 206 #else 207 return false; 208 #endif 209 } 210 211 /* 212 * Issues still to be resolved: 213 * 214 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 215 * 216 * - Variable sizing of the per node arrays 217 */ 218 219 /* Enable to log cmpxchg failures */ 220 #undef SLUB_DEBUG_CMPXCHG 221 222 /* 223 * Minimum number of partial slabs. These will be left on the partial 224 * lists even if they are empty. kmem_cache_shrink may reclaim them. 225 */ 226 #define MIN_PARTIAL 5 227 228 /* 229 * Maximum number of desirable partial slabs. 230 * The existence of more partial slabs makes kmem_cache_shrink 231 * sort the partial list by the number of objects in use. 232 */ 233 #define MAX_PARTIAL 10 234 235 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 236 SLAB_POISON | SLAB_STORE_USER) 237 238 /* 239 * These debug flags cannot use CMPXCHG because there might be consistency 240 * issues when checking or reading debug information 241 */ 242 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 243 SLAB_TRACE) 244 245 246 /* 247 * Debugging flags that require metadata to be stored in the slab. These get 248 * disabled when slub_debug=O is used and a cache's min order increases with 249 * metadata. 250 */ 251 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 252 253 #define OO_SHIFT 16 254 #define OO_MASK ((1 << OO_SHIFT) - 1) 255 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 256 257 /* Internal SLUB flags */ 258 /* Poison object */ 259 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 260 /* Use cmpxchg_double */ 261 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 262 263 /* 264 * Tracking user of a slab. 265 */ 266 #define TRACK_ADDRS_COUNT 16 267 struct track { 268 unsigned long addr; /* Called from address */ 269 #ifdef CONFIG_STACKDEPOT 270 depot_stack_handle_t handle; 271 #endif 272 int cpu; /* Was running on cpu */ 273 int pid; /* Pid context */ 274 unsigned long when; /* When did the operation occur */ 275 }; 276 277 enum track_item { TRACK_ALLOC, TRACK_FREE }; 278 279 #ifdef CONFIG_SYSFS 280 static int sysfs_slab_add(struct kmem_cache *); 281 static int sysfs_slab_alias(struct kmem_cache *, const char *); 282 #else 283 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 284 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 285 { return 0; } 286 #endif 287 288 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 289 static void debugfs_slab_add(struct kmem_cache *); 290 #else 291 static inline void debugfs_slab_add(struct kmem_cache *s) { } 292 #endif 293 294 static inline void stat(const struct kmem_cache *s, enum stat_item si) 295 { 296 #ifdef CONFIG_SLUB_STATS 297 /* 298 * The rmw is racy on a preemptible kernel but this is acceptable, so 299 * avoid this_cpu_add()'s irq-disable overhead. 300 */ 301 raw_cpu_inc(s->cpu_slab->stat[si]); 302 #endif 303 } 304 305 /* 306 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 307 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 308 * differ during memory hotplug/hotremove operations. 309 * Protected by slab_mutex. 310 */ 311 static nodemask_t slab_nodes; 312 313 /* 314 * Workqueue used for flush_cpu_slab(). 315 */ 316 static struct workqueue_struct *flushwq; 317 318 /******************************************************************** 319 * Core slab cache functions 320 *******************************************************************/ 321 322 /* 323 * Returns freelist pointer (ptr). With hardening, this is obfuscated 324 * with an XOR of the address where the pointer is held and a per-cache 325 * random number. 326 */ 327 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 328 unsigned long ptr_addr) 329 { 330 #ifdef CONFIG_SLAB_FREELIST_HARDENED 331 /* 332 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. 333 * Normally, this doesn't cause any issues, as both set_freepointer() 334 * and get_freepointer() are called with a pointer with the same tag. 335 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 336 * example, when __free_slub() iterates over objects in a cache, it 337 * passes untagged pointers to check_object(). check_object() in turns 338 * calls get_freepointer() with an untagged pointer, which causes the 339 * freepointer to be restored incorrectly. 340 */ 341 return (void *)((unsigned long)ptr ^ s->random ^ 342 swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); 343 #else 344 return ptr; 345 #endif 346 } 347 348 /* Returns the freelist pointer recorded at location ptr_addr. */ 349 static inline void *freelist_dereference(const struct kmem_cache *s, 350 void *ptr_addr) 351 { 352 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 353 (unsigned long)ptr_addr); 354 } 355 356 static inline void *get_freepointer(struct kmem_cache *s, void *object) 357 { 358 object = kasan_reset_tag(object); 359 return freelist_dereference(s, object + s->offset); 360 } 361 362 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 363 { 364 prefetchw(object + s->offset); 365 } 366 367 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 368 { 369 unsigned long freepointer_addr; 370 void *p; 371 372 if (!debug_pagealloc_enabled_static()) 373 return get_freepointer(s, object); 374 375 object = kasan_reset_tag(object); 376 freepointer_addr = (unsigned long)object + s->offset; 377 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); 378 return freelist_ptr(s, p, freepointer_addr); 379 } 380 381 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 382 { 383 unsigned long freeptr_addr = (unsigned long)object + s->offset; 384 385 #ifdef CONFIG_SLAB_FREELIST_HARDENED 386 BUG_ON(object == fp); /* naive detection of double free or corruption */ 387 #endif 388 389 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 390 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 391 } 392 393 /* Loop over all objects in a slab */ 394 #define for_each_object(__p, __s, __addr, __objects) \ 395 for (__p = fixup_red_left(__s, __addr); \ 396 __p < (__addr) + (__objects) * (__s)->size; \ 397 __p += (__s)->size) 398 399 static inline unsigned int order_objects(unsigned int order, unsigned int size) 400 { 401 return ((unsigned int)PAGE_SIZE << order) / size; 402 } 403 404 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 405 unsigned int size) 406 { 407 struct kmem_cache_order_objects x = { 408 (order << OO_SHIFT) + order_objects(order, size) 409 }; 410 411 return x; 412 } 413 414 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 415 { 416 return x.x >> OO_SHIFT; 417 } 418 419 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 420 { 421 return x.x & OO_MASK; 422 } 423 424 #ifdef CONFIG_SLUB_CPU_PARTIAL 425 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 426 { 427 unsigned int nr_slabs; 428 429 s->cpu_partial = nr_objects; 430 431 /* 432 * We take the number of objects but actually limit the number of 433 * slabs on the per cpu partial list, in order to limit excessive 434 * growth of the list. For simplicity we assume that the slabs will 435 * be half-full. 436 */ 437 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 438 s->cpu_partial_slabs = nr_slabs; 439 } 440 #else 441 static inline void 442 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 443 { 444 } 445 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 446 447 /* 448 * Per slab locking using the pagelock 449 */ 450 static __always_inline void __slab_lock(struct slab *slab) 451 { 452 struct page *page = slab_page(slab); 453 454 VM_BUG_ON_PAGE(PageTail(page), page); 455 bit_spin_lock(PG_locked, &page->flags); 456 } 457 458 static __always_inline void __slab_unlock(struct slab *slab) 459 { 460 struct page *page = slab_page(slab); 461 462 VM_BUG_ON_PAGE(PageTail(page), page); 463 __bit_spin_unlock(PG_locked, &page->flags); 464 } 465 466 static __always_inline void slab_lock(struct slab *slab, unsigned long *flags) 467 { 468 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 469 local_irq_save(*flags); 470 __slab_lock(slab); 471 } 472 473 static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags) 474 { 475 __slab_unlock(slab); 476 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 477 local_irq_restore(*flags); 478 } 479 480 /* 481 * Interrupts must be disabled (for the fallback code to work right), typically 482 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different 483 * so we disable interrupts as part of slab_[un]lock(). 484 */ 485 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, 486 void *freelist_old, unsigned long counters_old, 487 void *freelist_new, unsigned long counters_new, 488 const char *n) 489 { 490 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 491 lockdep_assert_irqs_disabled(); 492 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 493 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 494 if (s->flags & __CMPXCHG_DOUBLE) { 495 if (cmpxchg_double(&slab->freelist, &slab->counters, 496 freelist_old, counters_old, 497 freelist_new, counters_new)) 498 return true; 499 } else 500 #endif 501 { 502 /* init to 0 to prevent spurious warnings */ 503 unsigned long flags = 0; 504 505 slab_lock(slab, &flags); 506 if (slab->freelist == freelist_old && 507 slab->counters == counters_old) { 508 slab->freelist = freelist_new; 509 slab->counters = counters_new; 510 slab_unlock(slab, &flags); 511 return true; 512 } 513 slab_unlock(slab, &flags); 514 } 515 516 cpu_relax(); 517 stat(s, CMPXCHG_DOUBLE_FAIL); 518 519 #ifdef SLUB_DEBUG_CMPXCHG 520 pr_info("%s %s: cmpxchg double redo ", n, s->name); 521 #endif 522 523 return false; 524 } 525 526 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, 527 void *freelist_old, unsigned long counters_old, 528 void *freelist_new, unsigned long counters_new, 529 const char *n) 530 { 531 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 532 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 533 if (s->flags & __CMPXCHG_DOUBLE) { 534 if (cmpxchg_double(&slab->freelist, &slab->counters, 535 freelist_old, counters_old, 536 freelist_new, counters_new)) 537 return true; 538 } else 539 #endif 540 { 541 unsigned long flags; 542 543 local_irq_save(flags); 544 __slab_lock(slab); 545 if (slab->freelist == freelist_old && 546 slab->counters == counters_old) { 547 slab->freelist = freelist_new; 548 slab->counters = counters_new; 549 __slab_unlock(slab); 550 local_irq_restore(flags); 551 return true; 552 } 553 __slab_unlock(slab); 554 local_irq_restore(flags); 555 } 556 557 cpu_relax(); 558 stat(s, CMPXCHG_DOUBLE_FAIL); 559 560 #ifdef SLUB_DEBUG_CMPXCHG 561 pr_info("%s %s: cmpxchg double redo ", n, s->name); 562 #endif 563 564 return false; 565 } 566 567 #ifdef CONFIG_SLUB_DEBUG 568 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 569 static DEFINE_RAW_SPINLOCK(object_map_lock); 570 571 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 572 struct slab *slab) 573 { 574 void *addr = slab_address(slab); 575 void *p; 576 577 bitmap_zero(obj_map, slab->objects); 578 579 for (p = slab->freelist; p; p = get_freepointer(s, p)) 580 set_bit(__obj_to_index(s, addr, p), obj_map); 581 } 582 583 #if IS_ENABLED(CONFIG_KUNIT) 584 static bool slab_add_kunit_errors(void) 585 { 586 struct kunit_resource *resource; 587 588 if (likely(!current->kunit_test)) 589 return false; 590 591 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 592 if (!resource) 593 return false; 594 595 (*(int *)resource->data)++; 596 kunit_put_resource(resource); 597 return true; 598 } 599 #else 600 static inline bool slab_add_kunit_errors(void) { return false; } 601 #endif 602 603 /* 604 * Determine a map of objects in use in a slab. 605 * 606 * Node listlock must be held to guarantee that the slab does 607 * not vanish from under us. 608 */ 609 static unsigned long *get_map(struct kmem_cache *s, struct slab *slab) 610 __acquires(&object_map_lock) 611 { 612 VM_BUG_ON(!irqs_disabled()); 613 614 raw_spin_lock(&object_map_lock); 615 616 __fill_map(object_map, s, slab); 617 618 return object_map; 619 } 620 621 static void put_map(unsigned long *map) __releases(&object_map_lock) 622 { 623 VM_BUG_ON(map != object_map); 624 raw_spin_unlock(&object_map_lock); 625 } 626 627 static inline unsigned int size_from_object(struct kmem_cache *s) 628 { 629 if (s->flags & SLAB_RED_ZONE) 630 return s->size - s->red_left_pad; 631 632 return s->size; 633 } 634 635 static inline void *restore_red_left(struct kmem_cache *s, void *p) 636 { 637 if (s->flags & SLAB_RED_ZONE) 638 p -= s->red_left_pad; 639 640 return p; 641 } 642 643 /* 644 * Debug settings: 645 */ 646 #if defined(CONFIG_SLUB_DEBUG_ON) 647 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 648 #else 649 static slab_flags_t slub_debug; 650 #endif 651 652 static char *slub_debug_string; 653 static int disable_higher_order_debug; 654 655 /* 656 * slub is about to manipulate internal object metadata. This memory lies 657 * outside the range of the allocated object, so accessing it would normally 658 * be reported by kasan as a bounds error. metadata_access_enable() is used 659 * to tell kasan that these accesses are OK. 660 */ 661 static inline void metadata_access_enable(void) 662 { 663 kasan_disable_current(); 664 } 665 666 static inline void metadata_access_disable(void) 667 { 668 kasan_enable_current(); 669 } 670 671 /* 672 * Object debugging 673 */ 674 675 /* Verify that a pointer has an address that is valid within a slab page */ 676 static inline int check_valid_pointer(struct kmem_cache *s, 677 struct slab *slab, void *object) 678 { 679 void *base; 680 681 if (!object) 682 return 1; 683 684 base = slab_address(slab); 685 object = kasan_reset_tag(object); 686 object = restore_red_left(s, object); 687 if (object < base || object >= base + slab->objects * s->size || 688 (object - base) % s->size) { 689 return 0; 690 } 691 692 return 1; 693 } 694 695 static void print_section(char *level, char *text, u8 *addr, 696 unsigned int length) 697 { 698 metadata_access_enable(); 699 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 700 16, 1, kasan_reset_tag((void *)addr), length, 1); 701 metadata_access_disable(); 702 } 703 704 /* 705 * See comment in calculate_sizes(). 706 */ 707 static inline bool freeptr_outside_object(struct kmem_cache *s) 708 { 709 return s->offset >= s->inuse; 710 } 711 712 /* 713 * Return offset of the end of info block which is inuse + free pointer if 714 * not overlapping with object. 715 */ 716 static inline unsigned int get_info_end(struct kmem_cache *s) 717 { 718 if (freeptr_outside_object(s)) 719 return s->inuse + sizeof(void *); 720 else 721 return s->inuse; 722 } 723 724 static struct track *get_track(struct kmem_cache *s, void *object, 725 enum track_item alloc) 726 { 727 struct track *p; 728 729 p = object + get_info_end(s); 730 731 return kasan_reset_tag(p + alloc); 732 } 733 734 #ifdef CONFIG_STACKDEPOT 735 static noinline depot_stack_handle_t set_track_prepare(void) 736 { 737 depot_stack_handle_t handle; 738 unsigned long entries[TRACK_ADDRS_COUNT]; 739 unsigned int nr_entries; 740 741 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 742 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 743 744 return handle; 745 } 746 #else 747 static inline depot_stack_handle_t set_track_prepare(void) 748 { 749 return 0; 750 } 751 #endif 752 753 static void set_track_update(struct kmem_cache *s, void *object, 754 enum track_item alloc, unsigned long addr, 755 depot_stack_handle_t handle) 756 { 757 struct track *p = get_track(s, object, alloc); 758 759 #ifdef CONFIG_STACKDEPOT 760 p->handle = handle; 761 #endif 762 p->addr = addr; 763 p->cpu = smp_processor_id(); 764 p->pid = current->pid; 765 p->when = jiffies; 766 } 767 768 static __always_inline void set_track(struct kmem_cache *s, void *object, 769 enum track_item alloc, unsigned long addr) 770 { 771 depot_stack_handle_t handle = set_track_prepare(); 772 773 set_track_update(s, object, alloc, addr, handle); 774 } 775 776 static void init_tracking(struct kmem_cache *s, void *object) 777 { 778 struct track *p; 779 780 if (!(s->flags & SLAB_STORE_USER)) 781 return; 782 783 p = get_track(s, object, TRACK_ALLOC); 784 memset(p, 0, 2*sizeof(struct track)); 785 } 786 787 static void print_track(const char *s, struct track *t, unsigned long pr_time) 788 { 789 depot_stack_handle_t handle __maybe_unused; 790 791 if (!t->addr) 792 return; 793 794 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 795 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 796 #ifdef CONFIG_STACKDEPOT 797 handle = READ_ONCE(t->handle); 798 if (handle) 799 stack_depot_print(handle); 800 else 801 pr_err("object allocation/free stack trace missing\n"); 802 #endif 803 } 804 805 void print_tracking(struct kmem_cache *s, void *object) 806 { 807 unsigned long pr_time = jiffies; 808 if (!(s->flags & SLAB_STORE_USER)) 809 return; 810 811 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 812 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 813 } 814 815 static void print_slab_info(const struct slab *slab) 816 { 817 struct folio *folio = (struct folio *)slab_folio(slab); 818 819 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 820 slab, slab->objects, slab->inuse, slab->freelist, 821 folio_flags(folio, 0)); 822 } 823 824 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 825 { 826 struct va_format vaf; 827 va_list args; 828 829 va_start(args, fmt); 830 vaf.fmt = fmt; 831 vaf.va = &args; 832 pr_err("=============================================================================\n"); 833 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 834 pr_err("-----------------------------------------------------------------------------\n\n"); 835 va_end(args); 836 } 837 838 __printf(2, 3) 839 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 840 { 841 struct va_format vaf; 842 va_list args; 843 844 if (slab_add_kunit_errors()) 845 return; 846 847 va_start(args, fmt); 848 vaf.fmt = fmt; 849 vaf.va = &args; 850 pr_err("FIX %s: %pV\n", s->name, &vaf); 851 va_end(args); 852 } 853 854 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 855 { 856 unsigned int off; /* Offset of last byte */ 857 u8 *addr = slab_address(slab); 858 859 print_tracking(s, p); 860 861 print_slab_info(slab); 862 863 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 864 p, p - addr, get_freepointer(s, p)); 865 866 if (s->flags & SLAB_RED_ZONE) 867 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 868 s->red_left_pad); 869 else if (p > addr + 16) 870 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 871 872 print_section(KERN_ERR, "Object ", p, 873 min_t(unsigned int, s->object_size, PAGE_SIZE)); 874 if (s->flags & SLAB_RED_ZONE) 875 print_section(KERN_ERR, "Redzone ", p + s->object_size, 876 s->inuse - s->object_size); 877 878 off = get_info_end(s); 879 880 if (s->flags & SLAB_STORE_USER) 881 off += 2 * sizeof(struct track); 882 883 off += kasan_metadata_size(s); 884 885 if (off != size_from_object(s)) 886 /* Beginning of the filler is the free pointer */ 887 print_section(KERN_ERR, "Padding ", p + off, 888 size_from_object(s) - off); 889 890 dump_stack(); 891 } 892 893 static void object_err(struct kmem_cache *s, struct slab *slab, 894 u8 *object, char *reason) 895 { 896 if (slab_add_kunit_errors()) 897 return; 898 899 slab_bug(s, "%s", reason); 900 print_trailer(s, slab, object); 901 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 902 } 903 904 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 905 void **freelist, void *nextfree) 906 { 907 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 908 !check_valid_pointer(s, slab, nextfree) && freelist) { 909 object_err(s, slab, *freelist, "Freechain corrupt"); 910 *freelist = NULL; 911 slab_fix(s, "Isolate corrupted freechain"); 912 return true; 913 } 914 915 return false; 916 } 917 918 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 919 const char *fmt, ...) 920 { 921 va_list args; 922 char buf[100]; 923 924 if (slab_add_kunit_errors()) 925 return; 926 927 va_start(args, fmt); 928 vsnprintf(buf, sizeof(buf), fmt, args); 929 va_end(args); 930 slab_bug(s, "%s", buf); 931 print_slab_info(slab); 932 dump_stack(); 933 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 934 } 935 936 static void init_object(struct kmem_cache *s, void *object, u8 val) 937 { 938 u8 *p = kasan_reset_tag(object); 939 940 if (s->flags & SLAB_RED_ZONE) 941 memset(p - s->red_left_pad, val, s->red_left_pad); 942 943 if (s->flags & __OBJECT_POISON) { 944 memset(p, POISON_FREE, s->object_size - 1); 945 p[s->object_size - 1] = POISON_END; 946 } 947 948 if (s->flags & SLAB_RED_ZONE) 949 memset(p + s->object_size, val, s->inuse - s->object_size); 950 } 951 952 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 953 void *from, void *to) 954 { 955 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 956 memset(from, data, to - from); 957 } 958 959 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 960 u8 *object, char *what, 961 u8 *start, unsigned int value, unsigned int bytes) 962 { 963 u8 *fault; 964 u8 *end; 965 u8 *addr = slab_address(slab); 966 967 metadata_access_enable(); 968 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 969 metadata_access_disable(); 970 if (!fault) 971 return 1; 972 973 end = start + bytes; 974 while (end > fault && end[-1] == value) 975 end--; 976 977 if (slab_add_kunit_errors()) 978 goto skip_bug_print; 979 980 slab_bug(s, "%s overwritten", what); 981 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 982 fault, end - 1, fault - addr, 983 fault[0], value); 984 print_trailer(s, slab, object); 985 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 986 987 skip_bug_print: 988 restore_bytes(s, what, value, fault, end); 989 return 0; 990 } 991 992 /* 993 * Object layout: 994 * 995 * object address 996 * Bytes of the object to be managed. 997 * If the freepointer may overlay the object then the free 998 * pointer is at the middle of the object. 999 * 1000 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1001 * 0xa5 (POISON_END) 1002 * 1003 * object + s->object_size 1004 * Padding to reach word boundary. This is also used for Redzoning. 1005 * Padding is extended by another word if Redzoning is enabled and 1006 * object_size == inuse. 1007 * 1008 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 1009 * 0xcc (RED_ACTIVE) for objects in use. 1010 * 1011 * object + s->inuse 1012 * Meta data starts here. 1013 * 1014 * A. Free pointer (if we cannot overwrite object on free) 1015 * B. Tracking data for SLAB_STORE_USER 1016 * C. Padding to reach required alignment boundary or at minimum 1017 * one word if debugging is on to be able to detect writes 1018 * before the word boundary. 1019 * 1020 * Padding is done using 0x5a (POISON_INUSE) 1021 * 1022 * object + s->size 1023 * Nothing is used beyond s->size. 1024 * 1025 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1026 * ignored. And therefore no slab options that rely on these boundaries 1027 * may be used with merged slabcaches. 1028 */ 1029 1030 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1031 { 1032 unsigned long off = get_info_end(s); /* The end of info */ 1033 1034 if (s->flags & SLAB_STORE_USER) 1035 /* We also have user information there */ 1036 off += 2 * sizeof(struct track); 1037 1038 off += kasan_metadata_size(s); 1039 1040 if (size_from_object(s) == off) 1041 return 1; 1042 1043 return check_bytes_and_report(s, slab, p, "Object padding", 1044 p + off, POISON_INUSE, size_from_object(s) - off); 1045 } 1046 1047 /* Check the pad bytes at the end of a slab page */ 1048 static void slab_pad_check(struct kmem_cache *s, struct slab *slab) 1049 { 1050 u8 *start; 1051 u8 *fault; 1052 u8 *end; 1053 u8 *pad; 1054 int length; 1055 int remainder; 1056 1057 if (!(s->flags & SLAB_POISON)) 1058 return; 1059 1060 start = slab_address(slab); 1061 length = slab_size(slab); 1062 end = start + length; 1063 remainder = length % s->size; 1064 if (!remainder) 1065 return; 1066 1067 pad = end - remainder; 1068 metadata_access_enable(); 1069 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1070 metadata_access_disable(); 1071 if (!fault) 1072 return; 1073 while (end > fault && end[-1] == POISON_INUSE) 1074 end--; 1075 1076 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1077 fault, end - 1, fault - start); 1078 print_section(KERN_ERR, "Padding ", pad, remainder); 1079 1080 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1081 } 1082 1083 static int check_object(struct kmem_cache *s, struct slab *slab, 1084 void *object, u8 val) 1085 { 1086 u8 *p = object; 1087 u8 *endobject = object + s->object_size; 1088 1089 if (s->flags & SLAB_RED_ZONE) { 1090 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1091 object - s->red_left_pad, val, s->red_left_pad)) 1092 return 0; 1093 1094 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1095 endobject, val, s->inuse - s->object_size)) 1096 return 0; 1097 } else { 1098 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1099 check_bytes_and_report(s, slab, p, "Alignment padding", 1100 endobject, POISON_INUSE, 1101 s->inuse - s->object_size); 1102 } 1103 } 1104 1105 if (s->flags & SLAB_POISON) { 1106 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 1107 (!check_bytes_and_report(s, slab, p, "Poison", p, 1108 POISON_FREE, s->object_size - 1) || 1109 !check_bytes_and_report(s, slab, p, "End Poison", 1110 p + s->object_size - 1, POISON_END, 1))) 1111 return 0; 1112 /* 1113 * check_pad_bytes cleans up on its own. 1114 */ 1115 check_pad_bytes(s, slab, p); 1116 } 1117 1118 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 1119 /* 1120 * Object and freepointer overlap. Cannot check 1121 * freepointer while object is allocated. 1122 */ 1123 return 1; 1124 1125 /* Check free pointer validity */ 1126 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { 1127 object_err(s, slab, p, "Freepointer corrupt"); 1128 /* 1129 * No choice but to zap it and thus lose the remainder 1130 * of the free objects in this slab. May cause 1131 * another error because the object count is now wrong. 1132 */ 1133 set_freepointer(s, p, NULL); 1134 return 0; 1135 } 1136 return 1; 1137 } 1138 1139 static int check_slab(struct kmem_cache *s, struct slab *slab) 1140 { 1141 int maxobj; 1142 1143 if (!folio_test_slab(slab_folio(slab))) { 1144 slab_err(s, slab, "Not a valid slab page"); 1145 return 0; 1146 } 1147 1148 maxobj = order_objects(slab_order(slab), s->size); 1149 if (slab->objects > maxobj) { 1150 slab_err(s, slab, "objects %u > max %u", 1151 slab->objects, maxobj); 1152 return 0; 1153 } 1154 if (slab->inuse > slab->objects) { 1155 slab_err(s, slab, "inuse %u > max %u", 1156 slab->inuse, slab->objects); 1157 return 0; 1158 } 1159 /* Slab_pad_check fixes things up after itself */ 1160 slab_pad_check(s, slab); 1161 return 1; 1162 } 1163 1164 /* 1165 * Determine if a certain object in a slab is on the freelist. Must hold the 1166 * slab lock to guarantee that the chains are in a consistent state. 1167 */ 1168 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1169 { 1170 int nr = 0; 1171 void *fp; 1172 void *object = NULL; 1173 int max_objects; 1174 1175 fp = slab->freelist; 1176 while (fp && nr <= slab->objects) { 1177 if (fp == search) 1178 return 1; 1179 if (!check_valid_pointer(s, slab, fp)) { 1180 if (object) { 1181 object_err(s, slab, object, 1182 "Freechain corrupt"); 1183 set_freepointer(s, object, NULL); 1184 } else { 1185 slab_err(s, slab, "Freepointer corrupt"); 1186 slab->freelist = NULL; 1187 slab->inuse = slab->objects; 1188 slab_fix(s, "Freelist cleared"); 1189 return 0; 1190 } 1191 break; 1192 } 1193 object = fp; 1194 fp = get_freepointer(s, object); 1195 nr++; 1196 } 1197 1198 max_objects = order_objects(slab_order(slab), s->size); 1199 if (max_objects > MAX_OBJS_PER_PAGE) 1200 max_objects = MAX_OBJS_PER_PAGE; 1201 1202 if (slab->objects != max_objects) { 1203 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1204 slab->objects, max_objects); 1205 slab->objects = max_objects; 1206 slab_fix(s, "Number of objects adjusted"); 1207 } 1208 if (slab->inuse != slab->objects - nr) { 1209 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1210 slab->inuse, slab->objects - nr); 1211 slab->inuse = slab->objects - nr; 1212 slab_fix(s, "Object count adjusted"); 1213 } 1214 return search == NULL; 1215 } 1216 1217 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1218 int alloc) 1219 { 1220 if (s->flags & SLAB_TRACE) { 1221 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1222 s->name, 1223 alloc ? "alloc" : "free", 1224 object, slab->inuse, 1225 slab->freelist); 1226 1227 if (!alloc) 1228 print_section(KERN_INFO, "Object ", (void *)object, 1229 s->object_size); 1230 1231 dump_stack(); 1232 } 1233 } 1234 1235 /* 1236 * Tracking of fully allocated slabs for debugging purposes. 1237 */ 1238 static void add_full(struct kmem_cache *s, 1239 struct kmem_cache_node *n, struct slab *slab) 1240 { 1241 if (!(s->flags & SLAB_STORE_USER)) 1242 return; 1243 1244 lockdep_assert_held(&n->list_lock); 1245 list_add(&slab->slab_list, &n->full); 1246 } 1247 1248 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1249 { 1250 if (!(s->flags & SLAB_STORE_USER)) 1251 return; 1252 1253 lockdep_assert_held(&n->list_lock); 1254 list_del(&slab->slab_list); 1255 } 1256 1257 /* Tracking of the number of slabs for debugging purposes */ 1258 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1259 { 1260 struct kmem_cache_node *n = get_node(s, node); 1261 1262 return atomic_long_read(&n->nr_slabs); 1263 } 1264 1265 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1266 { 1267 return atomic_long_read(&n->nr_slabs); 1268 } 1269 1270 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1271 { 1272 struct kmem_cache_node *n = get_node(s, node); 1273 1274 /* 1275 * May be called early in order to allocate a slab for the 1276 * kmem_cache_node structure. Solve the chicken-egg 1277 * dilemma by deferring the increment of the count during 1278 * bootstrap (see early_kmem_cache_node_alloc). 1279 */ 1280 if (likely(n)) { 1281 atomic_long_inc(&n->nr_slabs); 1282 atomic_long_add(objects, &n->total_objects); 1283 } 1284 } 1285 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1286 { 1287 struct kmem_cache_node *n = get_node(s, node); 1288 1289 atomic_long_dec(&n->nr_slabs); 1290 atomic_long_sub(objects, &n->total_objects); 1291 } 1292 1293 /* Object debug checks for alloc/free paths */ 1294 static void setup_object_debug(struct kmem_cache *s, void *object) 1295 { 1296 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1297 return; 1298 1299 init_object(s, object, SLUB_RED_INACTIVE); 1300 init_tracking(s, object); 1301 } 1302 1303 static 1304 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1305 { 1306 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1307 return; 1308 1309 metadata_access_enable(); 1310 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1311 metadata_access_disable(); 1312 } 1313 1314 static inline int alloc_consistency_checks(struct kmem_cache *s, 1315 struct slab *slab, void *object) 1316 { 1317 if (!check_slab(s, slab)) 1318 return 0; 1319 1320 if (!check_valid_pointer(s, slab, object)) { 1321 object_err(s, slab, object, "Freelist Pointer check fails"); 1322 return 0; 1323 } 1324 1325 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1326 return 0; 1327 1328 return 1; 1329 } 1330 1331 static noinline int alloc_debug_processing(struct kmem_cache *s, 1332 struct slab *slab, 1333 void *object, unsigned long addr) 1334 { 1335 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1336 if (!alloc_consistency_checks(s, slab, object)) 1337 goto bad; 1338 } 1339 1340 /* Success perform special debug activities for allocs */ 1341 if (s->flags & SLAB_STORE_USER) 1342 set_track(s, object, TRACK_ALLOC, addr); 1343 trace(s, slab, object, 1); 1344 init_object(s, object, SLUB_RED_ACTIVE); 1345 return 1; 1346 1347 bad: 1348 if (folio_test_slab(slab_folio(slab))) { 1349 /* 1350 * If this is a slab page then lets do the best we can 1351 * to avoid issues in the future. Marking all objects 1352 * as used avoids touching the remaining objects. 1353 */ 1354 slab_fix(s, "Marking all objects used"); 1355 slab->inuse = slab->objects; 1356 slab->freelist = NULL; 1357 } 1358 return 0; 1359 } 1360 1361 static inline int free_consistency_checks(struct kmem_cache *s, 1362 struct slab *slab, void *object, unsigned long addr) 1363 { 1364 if (!check_valid_pointer(s, slab, object)) { 1365 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1366 return 0; 1367 } 1368 1369 if (on_freelist(s, slab, object)) { 1370 object_err(s, slab, object, "Object already free"); 1371 return 0; 1372 } 1373 1374 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1375 return 0; 1376 1377 if (unlikely(s != slab->slab_cache)) { 1378 if (!folio_test_slab(slab_folio(slab))) { 1379 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1380 object); 1381 } else if (!slab->slab_cache) { 1382 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1383 object); 1384 dump_stack(); 1385 } else 1386 object_err(s, slab, object, 1387 "page slab pointer corrupt."); 1388 return 0; 1389 } 1390 return 1; 1391 } 1392 1393 /* Supports checking bulk free of a constructed freelist */ 1394 static noinline int free_debug_processing( 1395 struct kmem_cache *s, struct slab *slab, 1396 void *head, void *tail, int bulk_cnt, 1397 unsigned long addr) 1398 { 1399 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 1400 void *object = head; 1401 int cnt = 0; 1402 unsigned long flags, flags2; 1403 int ret = 0; 1404 depot_stack_handle_t handle = 0; 1405 1406 if (s->flags & SLAB_STORE_USER) 1407 handle = set_track_prepare(); 1408 1409 spin_lock_irqsave(&n->list_lock, flags); 1410 slab_lock(slab, &flags2); 1411 1412 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1413 if (!check_slab(s, slab)) 1414 goto out; 1415 } 1416 1417 next_object: 1418 cnt++; 1419 1420 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1421 if (!free_consistency_checks(s, slab, object, addr)) 1422 goto out; 1423 } 1424 1425 if (s->flags & SLAB_STORE_USER) 1426 set_track_update(s, object, TRACK_FREE, addr, handle); 1427 trace(s, slab, object, 0); 1428 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1429 init_object(s, object, SLUB_RED_INACTIVE); 1430 1431 /* Reached end of constructed freelist yet? */ 1432 if (object != tail) { 1433 object = get_freepointer(s, object); 1434 goto next_object; 1435 } 1436 ret = 1; 1437 1438 out: 1439 if (cnt != bulk_cnt) 1440 slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n", 1441 bulk_cnt, cnt); 1442 1443 slab_unlock(slab, &flags2); 1444 spin_unlock_irqrestore(&n->list_lock, flags); 1445 if (!ret) 1446 slab_fix(s, "Object at 0x%p not freed", object); 1447 return ret; 1448 } 1449 1450 /* 1451 * Parse a block of slub_debug options. Blocks are delimited by ';' 1452 * 1453 * @str: start of block 1454 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1455 * @slabs: return start of list of slabs, or NULL when there's no list 1456 * @init: assume this is initial parsing and not per-kmem-create parsing 1457 * 1458 * returns the start of next block if there's any, or NULL 1459 */ 1460 static char * 1461 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1462 { 1463 bool higher_order_disable = false; 1464 1465 /* Skip any completely empty blocks */ 1466 while (*str && *str == ';') 1467 str++; 1468 1469 if (*str == ',') { 1470 /* 1471 * No options but restriction on slabs. This means full 1472 * debugging for slabs matching a pattern. 1473 */ 1474 *flags = DEBUG_DEFAULT_FLAGS; 1475 goto check_slabs; 1476 } 1477 *flags = 0; 1478 1479 /* Determine which debug features should be switched on */ 1480 for (; *str && *str != ',' && *str != ';'; str++) { 1481 switch (tolower(*str)) { 1482 case '-': 1483 *flags = 0; 1484 break; 1485 case 'f': 1486 *flags |= SLAB_CONSISTENCY_CHECKS; 1487 break; 1488 case 'z': 1489 *flags |= SLAB_RED_ZONE; 1490 break; 1491 case 'p': 1492 *flags |= SLAB_POISON; 1493 break; 1494 case 'u': 1495 *flags |= SLAB_STORE_USER; 1496 break; 1497 case 't': 1498 *flags |= SLAB_TRACE; 1499 break; 1500 case 'a': 1501 *flags |= SLAB_FAILSLAB; 1502 break; 1503 case 'o': 1504 /* 1505 * Avoid enabling debugging on caches if its minimum 1506 * order would increase as a result. 1507 */ 1508 higher_order_disable = true; 1509 break; 1510 default: 1511 if (init) 1512 pr_err("slub_debug option '%c' unknown. skipped\n", *str); 1513 } 1514 } 1515 check_slabs: 1516 if (*str == ',') 1517 *slabs = ++str; 1518 else 1519 *slabs = NULL; 1520 1521 /* Skip over the slab list */ 1522 while (*str && *str != ';') 1523 str++; 1524 1525 /* Skip any completely empty blocks */ 1526 while (*str && *str == ';') 1527 str++; 1528 1529 if (init && higher_order_disable) 1530 disable_higher_order_debug = 1; 1531 1532 if (*str) 1533 return str; 1534 else 1535 return NULL; 1536 } 1537 1538 static int __init setup_slub_debug(char *str) 1539 { 1540 slab_flags_t flags; 1541 slab_flags_t global_flags; 1542 char *saved_str; 1543 char *slab_list; 1544 bool global_slub_debug_changed = false; 1545 bool slab_list_specified = false; 1546 1547 global_flags = DEBUG_DEFAULT_FLAGS; 1548 if (*str++ != '=' || !*str) 1549 /* 1550 * No options specified. Switch on full debugging. 1551 */ 1552 goto out; 1553 1554 saved_str = str; 1555 while (str) { 1556 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1557 1558 if (!slab_list) { 1559 global_flags = flags; 1560 global_slub_debug_changed = true; 1561 } else { 1562 slab_list_specified = true; 1563 if (flags & SLAB_STORE_USER) 1564 stack_depot_want_early_init(); 1565 } 1566 } 1567 1568 /* 1569 * For backwards compatibility, a single list of flags with list of 1570 * slabs means debugging is only changed for those slabs, so the global 1571 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1572 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1573 * long as there is no option specifying flags without a slab list. 1574 */ 1575 if (slab_list_specified) { 1576 if (!global_slub_debug_changed) 1577 global_flags = slub_debug; 1578 slub_debug_string = saved_str; 1579 } 1580 out: 1581 slub_debug = global_flags; 1582 if (slub_debug & SLAB_STORE_USER) 1583 stack_depot_want_early_init(); 1584 if (slub_debug != 0 || slub_debug_string) 1585 static_branch_enable(&slub_debug_enabled); 1586 else 1587 static_branch_disable(&slub_debug_enabled); 1588 if ((static_branch_unlikely(&init_on_alloc) || 1589 static_branch_unlikely(&init_on_free)) && 1590 (slub_debug & SLAB_POISON)) 1591 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1592 return 1; 1593 } 1594 1595 __setup("slub_debug", setup_slub_debug); 1596 1597 /* 1598 * kmem_cache_flags - apply debugging options to the cache 1599 * @object_size: the size of an object without meta data 1600 * @flags: flags to set 1601 * @name: name of the cache 1602 * 1603 * Debug option(s) are applied to @flags. In addition to the debug 1604 * option(s), if a slab name (or multiple) is specified i.e. 1605 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1606 * then only the select slabs will receive the debug option(s). 1607 */ 1608 slab_flags_t kmem_cache_flags(unsigned int object_size, 1609 slab_flags_t flags, const char *name) 1610 { 1611 char *iter; 1612 size_t len; 1613 char *next_block; 1614 slab_flags_t block_flags; 1615 slab_flags_t slub_debug_local = slub_debug; 1616 1617 if (flags & SLAB_NO_USER_FLAGS) 1618 return flags; 1619 1620 /* 1621 * If the slab cache is for debugging (e.g. kmemleak) then 1622 * don't store user (stack trace) information by default, 1623 * but let the user enable it via the command line below. 1624 */ 1625 if (flags & SLAB_NOLEAKTRACE) 1626 slub_debug_local &= ~SLAB_STORE_USER; 1627 1628 len = strlen(name); 1629 next_block = slub_debug_string; 1630 /* Go through all blocks of debug options, see if any matches our slab's name */ 1631 while (next_block) { 1632 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1633 if (!iter) 1634 continue; 1635 /* Found a block that has a slab list, search it */ 1636 while (*iter) { 1637 char *end, *glob; 1638 size_t cmplen; 1639 1640 end = strchrnul(iter, ','); 1641 if (next_block && next_block < end) 1642 end = next_block - 1; 1643 1644 glob = strnchr(iter, end - iter, '*'); 1645 if (glob) 1646 cmplen = glob - iter; 1647 else 1648 cmplen = max_t(size_t, len, (end - iter)); 1649 1650 if (!strncmp(name, iter, cmplen)) { 1651 flags |= block_flags; 1652 return flags; 1653 } 1654 1655 if (!*end || *end == ';') 1656 break; 1657 iter = end + 1; 1658 } 1659 } 1660 1661 return flags | slub_debug_local; 1662 } 1663 #else /* !CONFIG_SLUB_DEBUG */ 1664 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1665 static inline 1666 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1667 1668 static inline int alloc_debug_processing(struct kmem_cache *s, 1669 struct slab *slab, void *object, unsigned long addr) { return 0; } 1670 1671 static inline int free_debug_processing( 1672 struct kmem_cache *s, struct slab *slab, 1673 void *head, void *tail, int bulk_cnt, 1674 unsigned long addr) { return 0; } 1675 1676 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1677 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1678 void *object, u8 val) { return 1; } 1679 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1680 struct slab *slab) {} 1681 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1682 struct slab *slab) {} 1683 slab_flags_t kmem_cache_flags(unsigned int object_size, 1684 slab_flags_t flags, const char *name) 1685 { 1686 return flags; 1687 } 1688 #define slub_debug 0 1689 1690 #define disable_higher_order_debug 0 1691 1692 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1693 { return 0; } 1694 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1695 { return 0; } 1696 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1697 int objects) {} 1698 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1699 int objects) {} 1700 1701 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1702 void **freelist, void *nextfree) 1703 { 1704 return false; 1705 } 1706 #endif /* CONFIG_SLUB_DEBUG */ 1707 1708 /* 1709 * Hooks for other subsystems that check memory allocations. In a typical 1710 * production configuration these hooks all should produce no code at all. 1711 */ 1712 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1713 { 1714 ptr = kasan_kmalloc_large(ptr, size, flags); 1715 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1716 kmemleak_alloc(ptr, size, 1, flags); 1717 return ptr; 1718 } 1719 1720 static __always_inline void kfree_hook(void *x) 1721 { 1722 kmemleak_free(x); 1723 kasan_kfree_large(x); 1724 } 1725 1726 static __always_inline bool slab_free_hook(struct kmem_cache *s, 1727 void *x, bool init) 1728 { 1729 kmemleak_free_recursive(x, s->flags); 1730 1731 debug_check_no_locks_freed(x, s->object_size); 1732 1733 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1734 debug_check_no_obj_freed(x, s->object_size); 1735 1736 /* Use KCSAN to help debug racy use-after-free. */ 1737 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 1738 __kcsan_check_access(x, s->object_size, 1739 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 1740 1741 /* 1742 * As memory initialization might be integrated into KASAN, 1743 * kasan_slab_free and initialization memset's must be 1744 * kept together to avoid discrepancies in behavior. 1745 * 1746 * The initialization memset's clear the object and the metadata, 1747 * but don't touch the SLAB redzone. 1748 */ 1749 if (init) { 1750 int rsize; 1751 1752 if (!kasan_has_integrated_init()) 1753 memset(kasan_reset_tag(x), 0, s->object_size); 1754 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 1755 memset((char *)kasan_reset_tag(x) + s->inuse, 0, 1756 s->size - s->inuse - rsize); 1757 } 1758 /* KASAN might put x into memory quarantine, delaying its reuse. */ 1759 return kasan_slab_free(s, x, init); 1760 } 1761 1762 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1763 void **head, void **tail, 1764 int *cnt) 1765 { 1766 1767 void *object; 1768 void *next = *head; 1769 void *old_tail = *tail ? *tail : *head; 1770 1771 if (is_kfence_address(next)) { 1772 slab_free_hook(s, next, false); 1773 return true; 1774 } 1775 1776 /* Head and tail of the reconstructed freelist */ 1777 *head = NULL; 1778 *tail = NULL; 1779 1780 do { 1781 object = next; 1782 next = get_freepointer(s, object); 1783 1784 /* If object's reuse doesn't have to be delayed */ 1785 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { 1786 /* Move object to the new freelist */ 1787 set_freepointer(s, object, *head); 1788 *head = object; 1789 if (!*tail) 1790 *tail = object; 1791 } else { 1792 /* 1793 * Adjust the reconstructed freelist depth 1794 * accordingly if object's reuse is delayed. 1795 */ 1796 --(*cnt); 1797 } 1798 } while (object != old_tail); 1799 1800 if (*head == *tail) 1801 *tail = NULL; 1802 1803 return *head != NULL; 1804 } 1805 1806 static void *setup_object(struct kmem_cache *s, void *object) 1807 { 1808 setup_object_debug(s, object); 1809 object = kasan_init_slab_obj(s, object); 1810 if (unlikely(s->ctor)) { 1811 kasan_unpoison_object_data(s, object); 1812 s->ctor(object); 1813 kasan_poison_object_data(s, object); 1814 } 1815 return object; 1816 } 1817 1818 /* 1819 * Slab allocation and freeing 1820 */ 1821 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 1822 struct kmem_cache_order_objects oo) 1823 { 1824 struct folio *folio; 1825 struct slab *slab; 1826 unsigned int order = oo_order(oo); 1827 1828 if (node == NUMA_NO_NODE) 1829 folio = (struct folio *)alloc_pages(flags, order); 1830 else 1831 folio = (struct folio *)__alloc_pages_node(node, flags, order); 1832 1833 if (!folio) 1834 return NULL; 1835 1836 slab = folio_slab(folio); 1837 __folio_set_slab(folio); 1838 if (page_is_pfmemalloc(folio_page(folio, 0))) 1839 slab_set_pfmemalloc(slab); 1840 1841 return slab; 1842 } 1843 1844 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1845 /* Pre-initialize the random sequence cache */ 1846 static int init_cache_random_seq(struct kmem_cache *s) 1847 { 1848 unsigned int count = oo_objects(s->oo); 1849 int err; 1850 1851 /* Bailout if already initialised */ 1852 if (s->random_seq) 1853 return 0; 1854 1855 err = cache_random_seq_create(s, count, GFP_KERNEL); 1856 if (err) { 1857 pr_err("SLUB: Unable to initialize free list for %s\n", 1858 s->name); 1859 return err; 1860 } 1861 1862 /* Transform to an offset on the set of pages */ 1863 if (s->random_seq) { 1864 unsigned int i; 1865 1866 for (i = 0; i < count; i++) 1867 s->random_seq[i] *= s->size; 1868 } 1869 return 0; 1870 } 1871 1872 /* Initialize each random sequence freelist per cache */ 1873 static void __init init_freelist_randomization(void) 1874 { 1875 struct kmem_cache *s; 1876 1877 mutex_lock(&slab_mutex); 1878 1879 list_for_each_entry(s, &slab_caches, list) 1880 init_cache_random_seq(s); 1881 1882 mutex_unlock(&slab_mutex); 1883 } 1884 1885 /* Get the next entry on the pre-computed freelist randomized */ 1886 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab, 1887 unsigned long *pos, void *start, 1888 unsigned long page_limit, 1889 unsigned long freelist_count) 1890 { 1891 unsigned int idx; 1892 1893 /* 1894 * If the target page allocation failed, the number of objects on the 1895 * page might be smaller than the usual size defined by the cache. 1896 */ 1897 do { 1898 idx = s->random_seq[*pos]; 1899 *pos += 1; 1900 if (*pos >= freelist_count) 1901 *pos = 0; 1902 } while (unlikely(idx >= page_limit)); 1903 1904 return (char *)start + idx; 1905 } 1906 1907 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1908 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1909 { 1910 void *start; 1911 void *cur; 1912 void *next; 1913 unsigned long idx, pos, page_limit, freelist_count; 1914 1915 if (slab->objects < 2 || !s->random_seq) 1916 return false; 1917 1918 freelist_count = oo_objects(s->oo); 1919 pos = get_random_int() % freelist_count; 1920 1921 page_limit = slab->objects * s->size; 1922 start = fixup_red_left(s, slab_address(slab)); 1923 1924 /* First entry is used as the base of the freelist */ 1925 cur = next_freelist_entry(s, slab, &pos, start, page_limit, 1926 freelist_count); 1927 cur = setup_object(s, cur); 1928 slab->freelist = cur; 1929 1930 for (idx = 1; idx < slab->objects; idx++) { 1931 next = next_freelist_entry(s, slab, &pos, start, page_limit, 1932 freelist_count); 1933 next = setup_object(s, next); 1934 set_freepointer(s, cur, next); 1935 cur = next; 1936 } 1937 set_freepointer(s, cur, NULL); 1938 1939 return true; 1940 } 1941 #else 1942 static inline int init_cache_random_seq(struct kmem_cache *s) 1943 { 1944 return 0; 1945 } 1946 static inline void init_freelist_randomization(void) { } 1947 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1948 { 1949 return false; 1950 } 1951 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1952 1953 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1954 { 1955 struct slab *slab; 1956 struct kmem_cache_order_objects oo = s->oo; 1957 gfp_t alloc_gfp; 1958 void *start, *p, *next; 1959 int idx; 1960 bool shuffle; 1961 1962 flags &= gfp_allowed_mask; 1963 1964 flags |= s->allocflags; 1965 1966 /* 1967 * Let the initial higher-order allocation fail under memory pressure 1968 * so we fall-back to the minimum order allocation. 1969 */ 1970 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1971 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1972 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 1973 1974 slab = alloc_slab_page(alloc_gfp, node, oo); 1975 if (unlikely(!slab)) { 1976 oo = s->min; 1977 alloc_gfp = flags; 1978 /* 1979 * Allocation may have failed due to fragmentation. 1980 * Try a lower order alloc if possible 1981 */ 1982 slab = alloc_slab_page(alloc_gfp, node, oo); 1983 if (unlikely(!slab)) 1984 goto out; 1985 stat(s, ORDER_FALLBACK); 1986 } 1987 1988 slab->objects = oo_objects(oo); 1989 1990 account_slab(slab, oo_order(oo), s, flags); 1991 1992 slab->slab_cache = s; 1993 1994 kasan_poison_slab(slab); 1995 1996 start = slab_address(slab); 1997 1998 setup_slab_debug(s, slab, start); 1999 2000 shuffle = shuffle_freelist(s, slab); 2001 2002 if (!shuffle) { 2003 start = fixup_red_left(s, start); 2004 start = setup_object(s, start); 2005 slab->freelist = start; 2006 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2007 next = p + s->size; 2008 next = setup_object(s, next); 2009 set_freepointer(s, p, next); 2010 p = next; 2011 } 2012 set_freepointer(s, p, NULL); 2013 } 2014 2015 slab->inuse = slab->objects; 2016 slab->frozen = 1; 2017 2018 out: 2019 if (!slab) 2020 return NULL; 2021 2022 inc_slabs_node(s, slab_nid(slab), slab->objects); 2023 2024 return slab; 2025 } 2026 2027 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2028 { 2029 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2030 flags = kmalloc_fix_flags(flags); 2031 2032 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2033 2034 return allocate_slab(s, 2035 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2036 } 2037 2038 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2039 { 2040 struct folio *folio = slab_folio(slab); 2041 int order = folio_order(folio); 2042 int pages = 1 << order; 2043 2044 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2045 void *p; 2046 2047 slab_pad_check(s, slab); 2048 for_each_object(p, s, slab_address(slab), slab->objects) 2049 check_object(s, slab, p, SLUB_RED_INACTIVE); 2050 } 2051 2052 __slab_clear_pfmemalloc(slab); 2053 __folio_clear_slab(folio); 2054 folio->mapping = NULL; 2055 if (current->reclaim_state) 2056 current->reclaim_state->reclaimed_slab += pages; 2057 unaccount_slab(slab, order, s); 2058 __free_pages(folio_page(folio, 0), order); 2059 } 2060 2061 static void rcu_free_slab(struct rcu_head *h) 2062 { 2063 struct slab *slab = container_of(h, struct slab, rcu_head); 2064 2065 __free_slab(slab->slab_cache, slab); 2066 } 2067 2068 static void free_slab(struct kmem_cache *s, struct slab *slab) 2069 { 2070 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 2071 call_rcu(&slab->rcu_head, rcu_free_slab); 2072 } else 2073 __free_slab(s, slab); 2074 } 2075 2076 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2077 { 2078 dec_slabs_node(s, slab_nid(slab), slab->objects); 2079 free_slab(s, slab); 2080 } 2081 2082 /* 2083 * Management of partially allocated slabs. 2084 */ 2085 static inline void 2086 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2087 { 2088 n->nr_partial++; 2089 if (tail == DEACTIVATE_TO_TAIL) 2090 list_add_tail(&slab->slab_list, &n->partial); 2091 else 2092 list_add(&slab->slab_list, &n->partial); 2093 } 2094 2095 static inline void add_partial(struct kmem_cache_node *n, 2096 struct slab *slab, int tail) 2097 { 2098 lockdep_assert_held(&n->list_lock); 2099 __add_partial(n, slab, tail); 2100 } 2101 2102 static inline void remove_partial(struct kmem_cache_node *n, 2103 struct slab *slab) 2104 { 2105 lockdep_assert_held(&n->list_lock); 2106 list_del(&slab->slab_list); 2107 n->nr_partial--; 2108 } 2109 2110 /* 2111 * Remove slab from the partial list, freeze it and 2112 * return the pointer to the freelist. 2113 * 2114 * Returns a list of objects or NULL if it fails. 2115 */ 2116 static inline void *acquire_slab(struct kmem_cache *s, 2117 struct kmem_cache_node *n, struct slab *slab, 2118 int mode) 2119 { 2120 void *freelist; 2121 unsigned long counters; 2122 struct slab new; 2123 2124 lockdep_assert_held(&n->list_lock); 2125 2126 /* 2127 * Zap the freelist and set the frozen bit. 2128 * The old freelist is the list of objects for the 2129 * per cpu allocation list. 2130 */ 2131 freelist = slab->freelist; 2132 counters = slab->counters; 2133 new.counters = counters; 2134 if (mode) { 2135 new.inuse = slab->objects; 2136 new.freelist = NULL; 2137 } else { 2138 new.freelist = freelist; 2139 } 2140 2141 VM_BUG_ON(new.frozen); 2142 new.frozen = 1; 2143 2144 if (!__cmpxchg_double_slab(s, slab, 2145 freelist, counters, 2146 new.freelist, new.counters, 2147 "acquire_slab")) 2148 return NULL; 2149 2150 remove_partial(n, slab); 2151 WARN_ON(!freelist); 2152 return freelist; 2153 } 2154 2155 #ifdef CONFIG_SLUB_CPU_PARTIAL 2156 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2157 #else 2158 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2159 int drain) { } 2160 #endif 2161 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2162 2163 /* 2164 * Try to allocate a partial slab from a specific node. 2165 */ 2166 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 2167 struct slab **ret_slab, gfp_t gfpflags) 2168 { 2169 struct slab *slab, *slab2; 2170 void *object = NULL; 2171 unsigned long flags; 2172 unsigned int partial_slabs = 0; 2173 2174 /* 2175 * Racy check. If we mistakenly see no partial slabs then we 2176 * just allocate an empty slab. If we mistakenly try to get a 2177 * partial slab and there is none available then get_partial() 2178 * will return NULL. 2179 */ 2180 if (!n || !n->nr_partial) 2181 return NULL; 2182 2183 spin_lock_irqsave(&n->list_lock, flags); 2184 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2185 void *t; 2186 2187 if (!pfmemalloc_match(slab, gfpflags)) 2188 continue; 2189 2190 t = acquire_slab(s, n, slab, object == NULL); 2191 if (!t) 2192 break; 2193 2194 if (!object) { 2195 *ret_slab = slab; 2196 stat(s, ALLOC_FROM_PARTIAL); 2197 object = t; 2198 } else { 2199 put_cpu_partial(s, slab, 0); 2200 stat(s, CPU_PARTIAL_NODE); 2201 partial_slabs++; 2202 } 2203 #ifdef CONFIG_SLUB_CPU_PARTIAL 2204 if (!kmem_cache_has_cpu_partial(s) 2205 || partial_slabs > s->cpu_partial_slabs / 2) 2206 break; 2207 #else 2208 break; 2209 #endif 2210 2211 } 2212 spin_unlock_irqrestore(&n->list_lock, flags); 2213 return object; 2214 } 2215 2216 /* 2217 * Get a slab from somewhere. Search in increasing NUMA distances. 2218 */ 2219 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 2220 struct slab **ret_slab) 2221 { 2222 #ifdef CONFIG_NUMA 2223 struct zonelist *zonelist; 2224 struct zoneref *z; 2225 struct zone *zone; 2226 enum zone_type highest_zoneidx = gfp_zone(flags); 2227 void *object; 2228 unsigned int cpuset_mems_cookie; 2229 2230 /* 2231 * The defrag ratio allows a configuration of the tradeoffs between 2232 * inter node defragmentation and node local allocations. A lower 2233 * defrag_ratio increases the tendency to do local allocations 2234 * instead of attempting to obtain partial slabs from other nodes. 2235 * 2236 * If the defrag_ratio is set to 0 then kmalloc() always 2237 * returns node local objects. If the ratio is higher then kmalloc() 2238 * may return off node objects because partial slabs are obtained 2239 * from other nodes and filled up. 2240 * 2241 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2242 * (which makes defrag_ratio = 1000) then every (well almost) 2243 * allocation will first attempt to defrag slab caches on other nodes. 2244 * This means scanning over all nodes to look for partial slabs which 2245 * may be expensive if we do it every time we are trying to find a slab 2246 * with available objects. 2247 */ 2248 if (!s->remote_node_defrag_ratio || 2249 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2250 return NULL; 2251 2252 do { 2253 cpuset_mems_cookie = read_mems_allowed_begin(); 2254 zonelist = node_zonelist(mempolicy_slab_node(), flags); 2255 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2256 struct kmem_cache_node *n; 2257 2258 n = get_node(s, zone_to_nid(zone)); 2259 2260 if (n && cpuset_zone_allowed(zone, flags) && 2261 n->nr_partial > s->min_partial) { 2262 object = get_partial_node(s, n, ret_slab, flags); 2263 if (object) { 2264 /* 2265 * Don't check read_mems_allowed_retry() 2266 * here - if mems_allowed was updated in 2267 * parallel, that was a harmless race 2268 * between allocation and the cpuset 2269 * update 2270 */ 2271 return object; 2272 } 2273 } 2274 } 2275 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2276 #endif /* CONFIG_NUMA */ 2277 return NULL; 2278 } 2279 2280 /* 2281 * Get a partial slab, lock it and return it. 2282 */ 2283 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 2284 struct slab **ret_slab) 2285 { 2286 void *object; 2287 int searchnode = node; 2288 2289 if (node == NUMA_NO_NODE) 2290 searchnode = numa_mem_id(); 2291 2292 object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags); 2293 if (object || node != NUMA_NO_NODE) 2294 return object; 2295 2296 return get_any_partial(s, flags, ret_slab); 2297 } 2298 2299 #ifdef CONFIG_PREEMPTION 2300 /* 2301 * Calculate the next globally unique transaction for disambiguation 2302 * during cmpxchg. The transactions start with the cpu number and are then 2303 * incremented by CONFIG_NR_CPUS. 2304 */ 2305 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2306 #else 2307 /* 2308 * No preemption supported therefore also no need to check for 2309 * different cpus. 2310 */ 2311 #define TID_STEP 1 2312 #endif 2313 2314 static inline unsigned long next_tid(unsigned long tid) 2315 { 2316 return tid + TID_STEP; 2317 } 2318 2319 #ifdef SLUB_DEBUG_CMPXCHG 2320 static inline unsigned int tid_to_cpu(unsigned long tid) 2321 { 2322 return tid % TID_STEP; 2323 } 2324 2325 static inline unsigned long tid_to_event(unsigned long tid) 2326 { 2327 return tid / TID_STEP; 2328 } 2329 #endif 2330 2331 static inline unsigned int init_tid(int cpu) 2332 { 2333 return cpu; 2334 } 2335 2336 static inline void note_cmpxchg_failure(const char *n, 2337 const struct kmem_cache *s, unsigned long tid) 2338 { 2339 #ifdef SLUB_DEBUG_CMPXCHG 2340 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2341 2342 pr_info("%s %s: cmpxchg redo ", n, s->name); 2343 2344 #ifdef CONFIG_PREEMPTION 2345 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2346 pr_warn("due to cpu change %d -> %d\n", 2347 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2348 else 2349 #endif 2350 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2351 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2352 tid_to_event(tid), tid_to_event(actual_tid)); 2353 else 2354 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2355 actual_tid, tid, next_tid(tid)); 2356 #endif 2357 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2358 } 2359 2360 static void init_kmem_cache_cpus(struct kmem_cache *s) 2361 { 2362 int cpu; 2363 struct kmem_cache_cpu *c; 2364 2365 for_each_possible_cpu(cpu) { 2366 c = per_cpu_ptr(s->cpu_slab, cpu); 2367 local_lock_init(&c->lock); 2368 c->tid = init_tid(cpu); 2369 } 2370 } 2371 2372 /* 2373 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2374 * unfreezes the slabs and puts it on the proper list. 2375 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2376 * by the caller. 2377 */ 2378 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2379 void *freelist) 2380 { 2381 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST }; 2382 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2383 int free_delta = 0; 2384 enum slab_modes mode = M_NONE; 2385 void *nextfree, *freelist_iter, *freelist_tail; 2386 int tail = DEACTIVATE_TO_HEAD; 2387 unsigned long flags = 0; 2388 struct slab new; 2389 struct slab old; 2390 2391 if (slab->freelist) { 2392 stat(s, DEACTIVATE_REMOTE_FREES); 2393 tail = DEACTIVATE_TO_TAIL; 2394 } 2395 2396 /* 2397 * Stage one: Count the objects on cpu's freelist as free_delta and 2398 * remember the last object in freelist_tail for later splicing. 2399 */ 2400 freelist_tail = NULL; 2401 freelist_iter = freelist; 2402 while (freelist_iter) { 2403 nextfree = get_freepointer(s, freelist_iter); 2404 2405 /* 2406 * If 'nextfree' is invalid, it is possible that the object at 2407 * 'freelist_iter' is already corrupted. So isolate all objects 2408 * starting at 'freelist_iter' by skipping them. 2409 */ 2410 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2411 break; 2412 2413 freelist_tail = freelist_iter; 2414 free_delta++; 2415 2416 freelist_iter = nextfree; 2417 } 2418 2419 /* 2420 * Stage two: Unfreeze the slab while splicing the per-cpu 2421 * freelist to the head of slab's freelist. 2422 * 2423 * Ensure that the slab is unfrozen while the list presence 2424 * reflects the actual number of objects during unfreeze. 2425 * 2426 * We first perform cmpxchg holding lock and insert to list 2427 * when it succeed. If there is mismatch then the slab is not 2428 * unfrozen and number of objects in the slab may have changed. 2429 * Then release lock and retry cmpxchg again. 2430 */ 2431 redo: 2432 2433 old.freelist = READ_ONCE(slab->freelist); 2434 old.counters = READ_ONCE(slab->counters); 2435 VM_BUG_ON(!old.frozen); 2436 2437 /* Determine target state of the slab */ 2438 new.counters = old.counters; 2439 if (freelist_tail) { 2440 new.inuse -= free_delta; 2441 set_freepointer(s, freelist_tail, old.freelist); 2442 new.freelist = freelist; 2443 } else 2444 new.freelist = old.freelist; 2445 2446 new.frozen = 0; 2447 2448 if (!new.inuse && n->nr_partial >= s->min_partial) { 2449 mode = M_FREE; 2450 } else if (new.freelist) { 2451 mode = M_PARTIAL; 2452 /* 2453 * Taking the spinlock removes the possibility that 2454 * acquire_slab() will see a slab that is frozen 2455 */ 2456 spin_lock_irqsave(&n->list_lock, flags); 2457 } else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) { 2458 mode = M_FULL; 2459 /* 2460 * This also ensures that the scanning of full 2461 * slabs from diagnostic functions will not see 2462 * any frozen slabs. 2463 */ 2464 spin_lock_irqsave(&n->list_lock, flags); 2465 } else { 2466 mode = M_FULL_NOLIST; 2467 } 2468 2469 2470 if (!cmpxchg_double_slab(s, slab, 2471 old.freelist, old.counters, 2472 new.freelist, new.counters, 2473 "unfreezing slab")) { 2474 if (mode == M_PARTIAL || mode == M_FULL) 2475 spin_unlock_irqrestore(&n->list_lock, flags); 2476 goto redo; 2477 } 2478 2479 2480 if (mode == M_PARTIAL) { 2481 add_partial(n, slab, tail); 2482 spin_unlock_irqrestore(&n->list_lock, flags); 2483 stat(s, tail); 2484 } else if (mode == M_FREE) { 2485 stat(s, DEACTIVATE_EMPTY); 2486 discard_slab(s, slab); 2487 stat(s, FREE_SLAB); 2488 } else if (mode == M_FULL) { 2489 add_full(s, n, slab); 2490 spin_unlock_irqrestore(&n->list_lock, flags); 2491 stat(s, DEACTIVATE_FULL); 2492 } else if (mode == M_FULL_NOLIST) { 2493 stat(s, DEACTIVATE_FULL); 2494 } 2495 } 2496 2497 #ifdef CONFIG_SLUB_CPU_PARTIAL 2498 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab) 2499 { 2500 struct kmem_cache_node *n = NULL, *n2 = NULL; 2501 struct slab *slab, *slab_to_discard = NULL; 2502 unsigned long flags = 0; 2503 2504 while (partial_slab) { 2505 struct slab new; 2506 struct slab old; 2507 2508 slab = partial_slab; 2509 partial_slab = slab->next; 2510 2511 n2 = get_node(s, slab_nid(slab)); 2512 if (n != n2) { 2513 if (n) 2514 spin_unlock_irqrestore(&n->list_lock, flags); 2515 2516 n = n2; 2517 spin_lock_irqsave(&n->list_lock, flags); 2518 } 2519 2520 do { 2521 2522 old.freelist = slab->freelist; 2523 old.counters = slab->counters; 2524 VM_BUG_ON(!old.frozen); 2525 2526 new.counters = old.counters; 2527 new.freelist = old.freelist; 2528 2529 new.frozen = 0; 2530 2531 } while (!__cmpxchg_double_slab(s, slab, 2532 old.freelist, old.counters, 2533 new.freelist, new.counters, 2534 "unfreezing slab")); 2535 2536 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2537 slab->next = slab_to_discard; 2538 slab_to_discard = slab; 2539 } else { 2540 add_partial(n, slab, DEACTIVATE_TO_TAIL); 2541 stat(s, FREE_ADD_PARTIAL); 2542 } 2543 } 2544 2545 if (n) 2546 spin_unlock_irqrestore(&n->list_lock, flags); 2547 2548 while (slab_to_discard) { 2549 slab = slab_to_discard; 2550 slab_to_discard = slab_to_discard->next; 2551 2552 stat(s, DEACTIVATE_EMPTY); 2553 discard_slab(s, slab); 2554 stat(s, FREE_SLAB); 2555 } 2556 } 2557 2558 /* 2559 * Unfreeze all the cpu partial slabs. 2560 */ 2561 static void unfreeze_partials(struct kmem_cache *s) 2562 { 2563 struct slab *partial_slab; 2564 unsigned long flags; 2565 2566 local_lock_irqsave(&s->cpu_slab->lock, flags); 2567 partial_slab = this_cpu_read(s->cpu_slab->partial); 2568 this_cpu_write(s->cpu_slab->partial, NULL); 2569 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2570 2571 if (partial_slab) 2572 __unfreeze_partials(s, partial_slab); 2573 } 2574 2575 static void unfreeze_partials_cpu(struct kmem_cache *s, 2576 struct kmem_cache_cpu *c) 2577 { 2578 struct slab *partial_slab; 2579 2580 partial_slab = slub_percpu_partial(c); 2581 c->partial = NULL; 2582 2583 if (partial_slab) 2584 __unfreeze_partials(s, partial_slab); 2585 } 2586 2587 /* 2588 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a 2589 * partial slab slot if available. 2590 * 2591 * If we did not find a slot then simply move all the partials to the 2592 * per node partial list. 2593 */ 2594 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 2595 { 2596 struct slab *oldslab; 2597 struct slab *slab_to_unfreeze = NULL; 2598 unsigned long flags; 2599 int slabs = 0; 2600 2601 local_lock_irqsave(&s->cpu_slab->lock, flags); 2602 2603 oldslab = this_cpu_read(s->cpu_slab->partial); 2604 2605 if (oldslab) { 2606 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 2607 /* 2608 * Partial array is full. Move the existing set to the 2609 * per node partial list. Postpone the actual unfreezing 2610 * outside of the critical section. 2611 */ 2612 slab_to_unfreeze = oldslab; 2613 oldslab = NULL; 2614 } else { 2615 slabs = oldslab->slabs; 2616 } 2617 } 2618 2619 slabs++; 2620 2621 slab->slabs = slabs; 2622 slab->next = oldslab; 2623 2624 this_cpu_write(s->cpu_slab->partial, slab); 2625 2626 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2627 2628 if (slab_to_unfreeze) { 2629 __unfreeze_partials(s, slab_to_unfreeze); 2630 stat(s, CPU_PARTIAL_DRAIN); 2631 } 2632 } 2633 2634 #else /* CONFIG_SLUB_CPU_PARTIAL */ 2635 2636 static inline void unfreeze_partials(struct kmem_cache *s) { } 2637 static inline void unfreeze_partials_cpu(struct kmem_cache *s, 2638 struct kmem_cache_cpu *c) { } 2639 2640 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2641 2642 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2643 { 2644 unsigned long flags; 2645 struct slab *slab; 2646 void *freelist; 2647 2648 local_lock_irqsave(&s->cpu_slab->lock, flags); 2649 2650 slab = c->slab; 2651 freelist = c->freelist; 2652 2653 c->slab = NULL; 2654 c->freelist = NULL; 2655 c->tid = next_tid(c->tid); 2656 2657 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2658 2659 if (slab) { 2660 deactivate_slab(s, slab, freelist); 2661 stat(s, CPUSLAB_FLUSH); 2662 } 2663 } 2664 2665 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2666 { 2667 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2668 void *freelist = c->freelist; 2669 struct slab *slab = c->slab; 2670 2671 c->slab = NULL; 2672 c->freelist = NULL; 2673 c->tid = next_tid(c->tid); 2674 2675 if (slab) { 2676 deactivate_slab(s, slab, freelist); 2677 stat(s, CPUSLAB_FLUSH); 2678 } 2679 2680 unfreeze_partials_cpu(s, c); 2681 } 2682 2683 struct slub_flush_work { 2684 struct work_struct work; 2685 struct kmem_cache *s; 2686 bool skip; 2687 }; 2688 2689 /* 2690 * Flush cpu slab. 2691 * 2692 * Called from CPU work handler with migration disabled. 2693 */ 2694 static void flush_cpu_slab(struct work_struct *w) 2695 { 2696 struct kmem_cache *s; 2697 struct kmem_cache_cpu *c; 2698 struct slub_flush_work *sfw; 2699 2700 sfw = container_of(w, struct slub_flush_work, work); 2701 2702 s = sfw->s; 2703 c = this_cpu_ptr(s->cpu_slab); 2704 2705 if (c->slab) 2706 flush_slab(s, c); 2707 2708 unfreeze_partials(s); 2709 } 2710 2711 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 2712 { 2713 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2714 2715 return c->slab || slub_percpu_partial(c); 2716 } 2717 2718 static DEFINE_MUTEX(flush_lock); 2719 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 2720 2721 static void flush_all_cpus_locked(struct kmem_cache *s) 2722 { 2723 struct slub_flush_work *sfw; 2724 unsigned int cpu; 2725 2726 lockdep_assert_cpus_held(); 2727 mutex_lock(&flush_lock); 2728 2729 for_each_online_cpu(cpu) { 2730 sfw = &per_cpu(slub_flush, cpu); 2731 if (!has_cpu_slab(cpu, s)) { 2732 sfw->skip = true; 2733 continue; 2734 } 2735 INIT_WORK(&sfw->work, flush_cpu_slab); 2736 sfw->skip = false; 2737 sfw->s = s; 2738 queue_work_on(cpu, flushwq, &sfw->work); 2739 } 2740 2741 for_each_online_cpu(cpu) { 2742 sfw = &per_cpu(slub_flush, cpu); 2743 if (sfw->skip) 2744 continue; 2745 flush_work(&sfw->work); 2746 } 2747 2748 mutex_unlock(&flush_lock); 2749 } 2750 2751 static void flush_all(struct kmem_cache *s) 2752 { 2753 cpus_read_lock(); 2754 flush_all_cpus_locked(s); 2755 cpus_read_unlock(); 2756 } 2757 2758 /* 2759 * Use the cpu notifier to insure that the cpu slabs are flushed when 2760 * necessary. 2761 */ 2762 static int slub_cpu_dead(unsigned int cpu) 2763 { 2764 struct kmem_cache *s; 2765 2766 mutex_lock(&slab_mutex); 2767 list_for_each_entry(s, &slab_caches, list) 2768 __flush_cpu_slab(s, cpu); 2769 mutex_unlock(&slab_mutex); 2770 return 0; 2771 } 2772 2773 /* 2774 * Check if the objects in a per cpu structure fit numa 2775 * locality expectations. 2776 */ 2777 static inline int node_match(struct slab *slab, int node) 2778 { 2779 #ifdef CONFIG_NUMA 2780 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 2781 return 0; 2782 #endif 2783 return 1; 2784 } 2785 2786 #ifdef CONFIG_SLUB_DEBUG 2787 static int count_free(struct slab *slab) 2788 { 2789 return slab->objects - slab->inuse; 2790 } 2791 2792 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2793 { 2794 return atomic_long_read(&n->total_objects); 2795 } 2796 #endif /* CONFIG_SLUB_DEBUG */ 2797 2798 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2799 static unsigned long count_partial(struct kmem_cache_node *n, 2800 int (*get_count)(struct slab *)) 2801 { 2802 unsigned long flags; 2803 unsigned long x = 0; 2804 struct slab *slab; 2805 2806 spin_lock_irqsave(&n->list_lock, flags); 2807 list_for_each_entry(slab, &n->partial, slab_list) 2808 x += get_count(slab); 2809 spin_unlock_irqrestore(&n->list_lock, flags); 2810 return x; 2811 } 2812 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2813 2814 static noinline void 2815 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2816 { 2817 #ifdef CONFIG_SLUB_DEBUG 2818 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2819 DEFAULT_RATELIMIT_BURST); 2820 int node; 2821 struct kmem_cache_node *n; 2822 2823 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2824 return; 2825 2826 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2827 nid, gfpflags, &gfpflags); 2828 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2829 s->name, s->object_size, s->size, oo_order(s->oo), 2830 oo_order(s->min)); 2831 2832 if (oo_order(s->min) > get_order(s->object_size)) 2833 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2834 s->name); 2835 2836 for_each_kmem_cache_node(s, node, n) { 2837 unsigned long nr_slabs; 2838 unsigned long nr_objs; 2839 unsigned long nr_free; 2840 2841 nr_free = count_partial(n, count_free); 2842 nr_slabs = node_nr_slabs(n); 2843 nr_objs = node_nr_objs(n); 2844 2845 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2846 node, nr_slabs, nr_objs, nr_free); 2847 } 2848 #endif 2849 } 2850 2851 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 2852 { 2853 if (unlikely(slab_test_pfmemalloc(slab))) 2854 return gfp_pfmemalloc_allowed(gfpflags); 2855 2856 return true; 2857 } 2858 2859 /* 2860 * Check the slab->freelist and either transfer the freelist to the 2861 * per cpu freelist or deactivate the slab. 2862 * 2863 * The slab is still frozen if the return value is not NULL. 2864 * 2865 * If this function returns NULL then the slab has been unfrozen. 2866 */ 2867 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 2868 { 2869 struct slab new; 2870 unsigned long counters; 2871 void *freelist; 2872 2873 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 2874 2875 do { 2876 freelist = slab->freelist; 2877 counters = slab->counters; 2878 2879 new.counters = counters; 2880 VM_BUG_ON(!new.frozen); 2881 2882 new.inuse = slab->objects; 2883 new.frozen = freelist != NULL; 2884 2885 } while (!__cmpxchg_double_slab(s, slab, 2886 freelist, counters, 2887 NULL, new.counters, 2888 "get_freelist")); 2889 2890 return freelist; 2891 } 2892 2893 /* 2894 * Slow path. The lockless freelist is empty or we need to perform 2895 * debugging duties. 2896 * 2897 * Processing is still very fast if new objects have been freed to the 2898 * regular freelist. In that case we simply take over the regular freelist 2899 * as the lockless freelist and zap the regular freelist. 2900 * 2901 * If that is not working then we fall back to the partial lists. We take the 2902 * first element of the freelist as the object to allocate now and move the 2903 * rest of the freelist to the lockless freelist. 2904 * 2905 * And if we were unable to get a new slab from the partial slab lists then 2906 * we need to allocate a new slab. This is the slowest path since it involves 2907 * a call to the page allocator and the setup of a new slab. 2908 * 2909 * Version of __slab_alloc to use when we know that preemption is 2910 * already disabled (which is the case for bulk allocation). 2911 */ 2912 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2913 unsigned long addr, struct kmem_cache_cpu *c) 2914 { 2915 void *freelist; 2916 struct slab *slab; 2917 unsigned long flags; 2918 2919 stat(s, ALLOC_SLOWPATH); 2920 2921 reread_slab: 2922 2923 slab = READ_ONCE(c->slab); 2924 if (!slab) { 2925 /* 2926 * if the node is not online or has no normal memory, just 2927 * ignore the node constraint 2928 */ 2929 if (unlikely(node != NUMA_NO_NODE && 2930 !node_isset(node, slab_nodes))) 2931 node = NUMA_NO_NODE; 2932 goto new_slab; 2933 } 2934 redo: 2935 2936 if (unlikely(!node_match(slab, node))) { 2937 /* 2938 * same as above but node_match() being false already 2939 * implies node != NUMA_NO_NODE 2940 */ 2941 if (!node_isset(node, slab_nodes)) { 2942 node = NUMA_NO_NODE; 2943 } else { 2944 stat(s, ALLOC_NODE_MISMATCH); 2945 goto deactivate_slab; 2946 } 2947 } 2948 2949 /* 2950 * By rights, we should be searching for a slab page that was 2951 * PFMEMALLOC but right now, we are losing the pfmemalloc 2952 * information when the page leaves the per-cpu allocator 2953 */ 2954 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 2955 goto deactivate_slab; 2956 2957 /* must check again c->slab in case we got preempted and it changed */ 2958 local_lock_irqsave(&s->cpu_slab->lock, flags); 2959 if (unlikely(slab != c->slab)) { 2960 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2961 goto reread_slab; 2962 } 2963 freelist = c->freelist; 2964 if (freelist) 2965 goto load_freelist; 2966 2967 freelist = get_freelist(s, slab); 2968 2969 if (!freelist) { 2970 c->slab = NULL; 2971 c->tid = next_tid(c->tid); 2972 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2973 stat(s, DEACTIVATE_BYPASS); 2974 goto new_slab; 2975 } 2976 2977 stat(s, ALLOC_REFILL); 2978 2979 load_freelist: 2980 2981 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 2982 2983 /* 2984 * freelist is pointing to the list of objects to be used. 2985 * slab is pointing to the slab from which the objects are obtained. 2986 * That slab must be frozen for per cpu allocations to work. 2987 */ 2988 VM_BUG_ON(!c->slab->frozen); 2989 c->freelist = get_freepointer(s, freelist); 2990 c->tid = next_tid(c->tid); 2991 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2992 return freelist; 2993 2994 deactivate_slab: 2995 2996 local_lock_irqsave(&s->cpu_slab->lock, flags); 2997 if (slab != c->slab) { 2998 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2999 goto reread_slab; 3000 } 3001 freelist = c->freelist; 3002 c->slab = NULL; 3003 c->freelist = NULL; 3004 c->tid = next_tid(c->tid); 3005 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3006 deactivate_slab(s, slab, freelist); 3007 3008 new_slab: 3009 3010 if (slub_percpu_partial(c)) { 3011 local_lock_irqsave(&s->cpu_slab->lock, flags); 3012 if (unlikely(c->slab)) { 3013 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3014 goto reread_slab; 3015 } 3016 if (unlikely(!slub_percpu_partial(c))) { 3017 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3018 /* we were preempted and partial list got empty */ 3019 goto new_objects; 3020 } 3021 3022 slab = c->slab = slub_percpu_partial(c); 3023 slub_set_percpu_partial(c, slab); 3024 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3025 stat(s, CPU_PARTIAL_ALLOC); 3026 goto redo; 3027 } 3028 3029 new_objects: 3030 3031 freelist = get_partial(s, gfpflags, node, &slab); 3032 if (freelist) 3033 goto check_new_slab; 3034 3035 slub_put_cpu_ptr(s->cpu_slab); 3036 slab = new_slab(s, gfpflags, node); 3037 c = slub_get_cpu_ptr(s->cpu_slab); 3038 3039 if (unlikely(!slab)) { 3040 slab_out_of_memory(s, gfpflags, node); 3041 return NULL; 3042 } 3043 3044 /* 3045 * No other reference to the slab yet so we can 3046 * muck around with it freely without cmpxchg 3047 */ 3048 freelist = slab->freelist; 3049 slab->freelist = NULL; 3050 3051 stat(s, ALLOC_SLAB); 3052 3053 check_new_slab: 3054 3055 if (kmem_cache_debug(s)) { 3056 if (!alloc_debug_processing(s, slab, freelist, addr)) { 3057 /* Slab failed checks. Next slab needed */ 3058 goto new_slab; 3059 } else { 3060 /* 3061 * For debug case, we don't load freelist so that all 3062 * allocations go through alloc_debug_processing() 3063 */ 3064 goto return_single; 3065 } 3066 } 3067 3068 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3069 /* 3070 * For !pfmemalloc_match() case we don't load freelist so that 3071 * we don't make further mismatched allocations easier. 3072 */ 3073 goto return_single; 3074 3075 retry_load_slab: 3076 3077 local_lock_irqsave(&s->cpu_slab->lock, flags); 3078 if (unlikely(c->slab)) { 3079 void *flush_freelist = c->freelist; 3080 struct slab *flush_slab = c->slab; 3081 3082 c->slab = NULL; 3083 c->freelist = NULL; 3084 c->tid = next_tid(c->tid); 3085 3086 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3087 3088 deactivate_slab(s, flush_slab, flush_freelist); 3089 3090 stat(s, CPUSLAB_FLUSH); 3091 3092 goto retry_load_slab; 3093 } 3094 c->slab = slab; 3095 3096 goto load_freelist; 3097 3098 return_single: 3099 3100 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3101 return freelist; 3102 } 3103 3104 /* 3105 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3106 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3107 * pointer. 3108 */ 3109 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3110 unsigned long addr, struct kmem_cache_cpu *c) 3111 { 3112 void *p; 3113 3114 #ifdef CONFIG_PREEMPT_COUNT 3115 /* 3116 * We may have been preempted and rescheduled on a different 3117 * cpu before disabling preemption. Need to reload cpu area 3118 * pointer. 3119 */ 3120 c = slub_get_cpu_ptr(s->cpu_slab); 3121 #endif 3122 3123 p = ___slab_alloc(s, gfpflags, node, addr, c); 3124 #ifdef CONFIG_PREEMPT_COUNT 3125 slub_put_cpu_ptr(s->cpu_slab); 3126 #endif 3127 return p; 3128 } 3129 3130 /* 3131 * If the object has been wiped upon free, make sure it's fully initialized by 3132 * zeroing out freelist pointer. 3133 */ 3134 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3135 void *obj) 3136 { 3137 if (unlikely(slab_want_init_on_free(s)) && obj) 3138 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3139 0, sizeof(void *)); 3140 } 3141 3142 /* 3143 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 3144 * have the fastpath folded into their functions. So no function call 3145 * overhead for requests that can be satisfied on the fastpath. 3146 * 3147 * The fastpath works by first checking if the lockless freelist can be used. 3148 * If not then __slab_alloc is called for slow processing. 3149 * 3150 * Otherwise we can simply pick the next object from the lockless free list. 3151 */ 3152 static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 3153 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3154 { 3155 void *object; 3156 struct kmem_cache_cpu *c; 3157 struct slab *slab; 3158 unsigned long tid; 3159 struct obj_cgroup *objcg = NULL; 3160 bool init = false; 3161 3162 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags); 3163 if (!s) 3164 return NULL; 3165 3166 object = kfence_alloc(s, orig_size, gfpflags); 3167 if (unlikely(object)) 3168 goto out; 3169 3170 redo: 3171 /* 3172 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3173 * enabled. We may switch back and forth between cpus while 3174 * reading from one cpu area. That does not matter as long 3175 * as we end up on the original cpu again when doing the cmpxchg. 3176 * 3177 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3178 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3179 * the tid. If we are preempted and switched to another cpu between the 3180 * two reads, it's OK as the two are still associated with the same cpu 3181 * and cmpxchg later will validate the cpu. 3182 */ 3183 c = raw_cpu_ptr(s->cpu_slab); 3184 tid = READ_ONCE(c->tid); 3185 3186 /* 3187 * Irqless object alloc/free algorithm used here depends on sequence 3188 * of fetching cpu_slab's data. tid should be fetched before anything 3189 * on c to guarantee that object and slab associated with previous tid 3190 * won't be used with current tid. If we fetch tid first, object and 3191 * slab could be one associated with next tid and our alloc/free 3192 * request will be failed. In this case, we will retry. So, no problem. 3193 */ 3194 barrier(); 3195 3196 /* 3197 * The transaction ids are globally unique per cpu and per operation on 3198 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3199 * occurs on the right processor and that there was no operation on the 3200 * linked list in between. 3201 */ 3202 3203 object = c->freelist; 3204 slab = c->slab; 3205 /* 3206 * We cannot use the lockless fastpath on PREEMPT_RT because if a 3207 * slowpath has taken the local_lock_irqsave(), it is not protected 3208 * against a fast path operation in an irq handler. So we need to take 3209 * the slow path which uses local_lock. It is still relatively fast if 3210 * there is a suitable cpu freelist. 3211 */ 3212 if (IS_ENABLED(CONFIG_PREEMPT_RT) || 3213 unlikely(!object || !slab || !node_match(slab, node))) { 3214 object = __slab_alloc(s, gfpflags, node, addr, c); 3215 } else { 3216 void *next_object = get_freepointer_safe(s, object); 3217 3218 /* 3219 * The cmpxchg will only match if there was no additional 3220 * operation and if we are on the right processor. 3221 * 3222 * The cmpxchg does the following atomically (without lock 3223 * semantics!) 3224 * 1. Relocate first pointer to the current per cpu area. 3225 * 2. Verify that tid and freelist have not been changed 3226 * 3. If they were not changed replace tid and freelist 3227 * 3228 * Since this is without lock semantics the protection is only 3229 * against code executing on this cpu *not* from access by 3230 * other cpus. 3231 */ 3232 if (unlikely(!this_cpu_cmpxchg_double( 3233 s->cpu_slab->freelist, s->cpu_slab->tid, 3234 object, tid, 3235 next_object, next_tid(tid)))) { 3236 3237 note_cmpxchg_failure("slab_alloc", s, tid); 3238 goto redo; 3239 } 3240 prefetch_freepointer(s, next_object); 3241 stat(s, ALLOC_FASTPATH); 3242 } 3243 3244 maybe_wipe_obj_freeptr(s, object); 3245 init = slab_want_init_on_alloc(gfpflags, s); 3246 3247 out: 3248 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init); 3249 3250 return object; 3251 } 3252 3253 static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru, 3254 gfp_t gfpflags, unsigned long addr, size_t orig_size) 3255 { 3256 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size); 3257 } 3258 3259 static __always_inline 3260 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3261 gfp_t gfpflags) 3262 { 3263 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size); 3264 3265 trace_kmem_cache_alloc(_RET_IP_, ret, s, s->object_size, 3266 s->size, gfpflags); 3267 3268 return ret; 3269 } 3270 3271 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 3272 { 3273 return __kmem_cache_alloc_lru(s, NULL, gfpflags); 3274 } 3275 EXPORT_SYMBOL(kmem_cache_alloc); 3276 3277 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3278 gfp_t gfpflags) 3279 { 3280 return __kmem_cache_alloc_lru(s, lru, gfpflags); 3281 } 3282 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3283 3284 #ifdef CONFIG_TRACING 3285 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 3286 { 3287 void *ret = slab_alloc(s, NULL, gfpflags, _RET_IP_, size); 3288 trace_kmalloc(_RET_IP_, ret, s, size, s->size, gfpflags); 3289 ret = kasan_kmalloc(s, ret, size, gfpflags); 3290 return ret; 3291 } 3292 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3293 #endif 3294 3295 #ifdef CONFIG_NUMA 3296 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 3297 { 3298 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 3299 3300 trace_kmem_cache_alloc_node(_RET_IP_, ret, s, 3301 s->object_size, s->size, gfpflags, node); 3302 3303 return ret; 3304 } 3305 EXPORT_SYMBOL(kmem_cache_alloc_node); 3306 3307 #ifdef CONFIG_TRACING 3308 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 3309 gfp_t gfpflags, 3310 int node, size_t size) 3311 { 3312 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 3313 3314 trace_kmalloc_node(_RET_IP_, ret, s, 3315 size, s->size, gfpflags, node); 3316 3317 ret = kasan_kmalloc(s, ret, size, gfpflags); 3318 return ret; 3319 } 3320 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3321 #endif 3322 #endif /* CONFIG_NUMA */ 3323 3324 /* 3325 * Slow path handling. This may still be called frequently since objects 3326 * have a longer lifetime than the cpu slabs in most processing loads. 3327 * 3328 * So we still attempt to reduce cache line usage. Just take the slab 3329 * lock and free the item. If there is no additional partial slab 3330 * handling required then we can return immediately. 3331 */ 3332 static void __slab_free(struct kmem_cache *s, struct slab *slab, 3333 void *head, void *tail, int cnt, 3334 unsigned long addr) 3335 3336 { 3337 void *prior; 3338 int was_frozen; 3339 struct slab new; 3340 unsigned long counters; 3341 struct kmem_cache_node *n = NULL; 3342 unsigned long flags; 3343 3344 stat(s, FREE_SLOWPATH); 3345 3346 if (kfence_free(head)) 3347 return; 3348 3349 if (kmem_cache_debug(s) && 3350 !free_debug_processing(s, slab, head, tail, cnt, addr)) 3351 return; 3352 3353 do { 3354 if (unlikely(n)) { 3355 spin_unlock_irqrestore(&n->list_lock, flags); 3356 n = NULL; 3357 } 3358 prior = slab->freelist; 3359 counters = slab->counters; 3360 set_freepointer(s, tail, prior); 3361 new.counters = counters; 3362 was_frozen = new.frozen; 3363 new.inuse -= cnt; 3364 if ((!new.inuse || !prior) && !was_frozen) { 3365 3366 if (kmem_cache_has_cpu_partial(s) && !prior) { 3367 3368 /* 3369 * Slab was on no list before and will be 3370 * partially empty 3371 * We can defer the list move and instead 3372 * freeze it. 3373 */ 3374 new.frozen = 1; 3375 3376 } else { /* Needs to be taken off a list */ 3377 3378 n = get_node(s, slab_nid(slab)); 3379 /* 3380 * Speculatively acquire the list_lock. 3381 * If the cmpxchg does not succeed then we may 3382 * drop the list_lock without any processing. 3383 * 3384 * Otherwise the list_lock will synchronize with 3385 * other processors updating the list of slabs. 3386 */ 3387 spin_lock_irqsave(&n->list_lock, flags); 3388 3389 } 3390 } 3391 3392 } while (!cmpxchg_double_slab(s, slab, 3393 prior, counters, 3394 head, new.counters, 3395 "__slab_free")); 3396 3397 if (likely(!n)) { 3398 3399 if (likely(was_frozen)) { 3400 /* 3401 * The list lock was not taken therefore no list 3402 * activity can be necessary. 3403 */ 3404 stat(s, FREE_FROZEN); 3405 } else if (new.frozen) { 3406 /* 3407 * If we just froze the slab then put it onto the 3408 * per cpu partial list. 3409 */ 3410 put_cpu_partial(s, slab, 1); 3411 stat(s, CPU_PARTIAL_FREE); 3412 } 3413 3414 return; 3415 } 3416 3417 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 3418 goto slab_empty; 3419 3420 /* 3421 * Objects left in the slab. If it was not on the partial list before 3422 * then add it. 3423 */ 3424 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 3425 remove_full(s, n, slab); 3426 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3427 stat(s, FREE_ADD_PARTIAL); 3428 } 3429 spin_unlock_irqrestore(&n->list_lock, flags); 3430 return; 3431 3432 slab_empty: 3433 if (prior) { 3434 /* 3435 * Slab on the partial list. 3436 */ 3437 remove_partial(n, slab); 3438 stat(s, FREE_REMOVE_PARTIAL); 3439 } else { 3440 /* Slab must be on the full list */ 3441 remove_full(s, n, slab); 3442 } 3443 3444 spin_unlock_irqrestore(&n->list_lock, flags); 3445 stat(s, FREE_SLAB); 3446 discard_slab(s, slab); 3447 } 3448 3449 /* 3450 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3451 * can perform fastpath freeing without additional function calls. 3452 * 3453 * The fastpath is only possible if we are freeing to the current cpu slab 3454 * of this processor. This typically the case if we have just allocated 3455 * the item before. 3456 * 3457 * If fastpath is not possible then fall back to __slab_free where we deal 3458 * with all sorts of special processing. 3459 * 3460 * Bulk free of a freelist with several objects (all pointing to the 3461 * same slab) possible by specifying head and tail ptr, plus objects 3462 * count (cnt). Bulk free indicated by tail pointer being set. 3463 */ 3464 static __always_inline void do_slab_free(struct kmem_cache *s, 3465 struct slab *slab, void *head, void *tail, 3466 int cnt, unsigned long addr) 3467 { 3468 void *tail_obj = tail ? : head; 3469 struct kmem_cache_cpu *c; 3470 unsigned long tid; 3471 3472 redo: 3473 /* 3474 * Determine the currently cpus per cpu slab. 3475 * The cpu may change afterward. However that does not matter since 3476 * data is retrieved via this pointer. If we are on the same cpu 3477 * during the cmpxchg then the free will succeed. 3478 */ 3479 c = raw_cpu_ptr(s->cpu_slab); 3480 tid = READ_ONCE(c->tid); 3481 3482 /* Same with comment on barrier() in slab_alloc_node() */ 3483 barrier(); 3484 3485 if (likely(slab == c->slab)) { 3486 #ifndef CONFIG_PREEMPT_RT 3487 void **freelist = READ_ONCE(c->freelist); 3488 3489 set_freepointer(s, tail_obj, freelist); 3490 3491 if (unlikely(!this_cpu_cmpxchg_double( 3492 s->cpu_slab->freelist, s->cpu_slab->tid, 3493 freelist, tid, 3494 head, next_tid(tid)))) { 3495 3496 note_cmpxchg_failure("slab_free", s, tid); 3497 goto redo; 3498 } 3499 #else /* CONFIG_PREEMPT_RT */ 3500 /* 3501 * We cannot use the lockless fastpath on PREEMPT_RT because if 3502 * a slowpath has taken the local_lock_irqsave(), it is not 3503 * protected against a fast path operation in an irq handler. So 3504 * we need to take the local_lock. We shouldn't simply defer to 3505 * __slab_free() as that wouldn't use the cpu freelist at all. 3506 */ 3507 void **freelist; 3508 3509 local_lock(&s->cpu_slab->lock); 3510 c = this_cpu_ptr(s->cpu_slab); 3511 if (unlikely(slab != c->slab)) { 3512 local_unlock(&s->cpu_slab->lock); 3513 goto redo; 3514 } 3515 tid = c->tid; 3516 freelist = c->freelist; 3517 3518 set_freepointer(s, tail_obj, freelist); 3519 c->freelist = head; 3520 c->tid = next_tid(tid); 3521 3522 local_unlock(&s->cpu_slab->lock); 3523 #endif 3524 stat(s, FREE_FASTPATH); 3525 } else 3526 __slab_free(s, slab, head, tail_obj, cnt, addr); 3527 3528 } 3529 3530 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab, 3531 void *head, void *tail, void **p, int cnt, 3532 unsigned long addr) 3533 { 3534 memcg_slab_free_hook(s, slab, p, cnt); 3535 /* 3536 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3537 * to remove objects, whose reuse must be delayed. 3538 */ 3539 if (slab_free_freelist_hook(s, &head, &tail, &cnt)) 3540 do_slab_free(s, slab, head, tail, cnt, addr); 3541 } 3542 3543 #ifdef CONFIG_KASAN_GENERIC 3544 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3545 { 3546 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr); 3547 } 3548 #endif 3549 3550 void kmem_cache_free(struct kmem_cache *s, void *x) 3551 { 3552 s = cache_from_obj(s, x); 3553 if (!s) 3554 return; 3555 trace_kmem_cache_free(_RET_IP_, x, s->name); 3556 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_); 3557 } 3558 EXPORT_SYMBOL(kmem_cache_free); 3559 3560 struct detached_freelist { 3561 struct slab *slab; 3562 void *tail; 3563 void *freelist; 3564 int cnt; 3565 struct kmem_cache *s; 3566 }; 3567 3568 static inline void free_large_kmalloc(struct folio *folio, void *object) 3569 { 3570 unsigned int order = folio_order(folio); 3571 3572 if (WARN_ON_ONCE(order == 0)) 3573 pr_warn_once("object pointer: 0x%p\n", object); 3574 3575 kfree_hook(object); 3576 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B, 3577 -(PAGE_SIZE << order)); 3578 __free_pages(folio_page(folio, 0), order); 3579 } 3580 3581 /* 3582 * This function progressively scans the array with free objects (with 3583 * a limited look ahead) and extract objects belonging to the same 3584 * slab. It builds a detached freelist directly within the given 3585 * slab/objects. This can happen without any need for 3586 * synchronization, because the objects are owned by running process. 3587 * The freelist is build up as a single linked list in the objects. 3588 * The idea is, that this detached freelist can then be bulk 3589 * transferred to the real freelist(s), but only requiring a single 3590 * synchronization primitive. Look ahead in the array is limited due 3591 * to performance reasons. 3592 */ 3593 static inline 3594 int build_detached_freelist(struct kmem_cache *s, size_t size, 3595 void **p, struct detached_freelist *df) 3596 { 3597 int lookahead = 3; 3598 void *object; 3599 struct folio *folio; 3600 size_t same; 3601 3602 object = p[--size]; 3603 folio = virt_to_folio(object); 3604 if (!s) { 3605 /* Handle kalloc'ed objects */ 3606 if (unlikely(!folio_test_slab(folio))) { 3607 free_large_kmalloc(folio, object); 3608 df->slab = NULL; 3609 return size; 3610 } 3611 /* Derive kmem_cache from object */ 3612 df->slab = folio_slab(folio); 3613 df->s = df->slab->slab_cache; 3614 } else { 3615 df->slab = folio_slab(folio); 3616 df->s = cache_from_obj(s, object); /* Support for memcg */ 3617 } 3618 3619 /* Start new detached freelist */ 3620 df->tail = object; 3621 df->freelist = object; 3622 df->cnt = 1; 3623 3624 if (is_kfence_address(object)) 3625 return size; 3626 3627 set_freepointer(df->s, object, NULL); 3628 3629 same = size; 3630 while (size) { 3631 object = p[--size]; 3632 /* df->slab is always set at this point */ 3633 if (df->slab == virt_to_slab(object)) { 3634 /* Opportunity build freelist */ 3635 set_freepointer(df->s, object, df->freelist); 3636 df->freelist = object; 3637 df->cnt++; 3638 same--; 3639 if (size != same) 3640 swap(p[size], p[same]); 3641 continue; 3642 } 3643 3644 /* Limit look ahead search */ 3645 if (!--lookahead) 3646 break; 3647 } 3648 3649 return same; 3650 } 3651 3652 /* Note that interrupts must be enabled when calling this function. */ 3653 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3654 { 3655 if (!size) 3656 return; 3657 3658 do { 3659 struct detached_freelist df; 3660 3661 size = build_detached_freelist(s, size, p, &df); 3662 if (!df.slab) 3663 continue; 3664 3665 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt, 3666 _RET_IP_); 3667 } while (likely(size)); 3668 } 3669 EXPORT_SYMBOL(kmem_cache_free_bulk); 3670 3671 /* Note that interrupts must be enabled when calling this function. */ 3672 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3673 void **p) 3674 { 3675 struct kmem_cache_cpu *c; 3676 int i; 3677 struct obj_cgroup *objcg = NULL; 3678 3679 /* memcg and kmem_cache debug support */ 3680 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 3681 if (unlikely(!s)) 3682 return false; 3683 /* 3684 * Drain objects in the per cpu slab, while disabling local 3685 * IRQs, which protects against PREEMPT and interrupts 3686 * handlers invoking normal fastpath. 3687 */ 3688 c = slub_get_cpu_ptr(s->cpu_slab); 3689 local_lock_irq(&s->cpu_slab->lock); 3690 3691 for (i = 0; i < size; i++) { 3692 void *object = kfence_alloc(s, s->object_size, flags); 3693 3694 if (unlikely(object)) { 3695 p[i] = object; 3696 continue; 3697 } 3698 3699 object = c->freelist; 3700 if (unlikely(!object)) { 3701 /* 3702 * We may have removed an object from c->freelist using 3703 * the fastpath in the previous iteration; in that case, 3704 * c->tid has not been bumped yet. 3705 * Since ___slab_alloc() may reenable interrupts while 3706 * allocating memory, we should bump c->tid now. 3707 */ 3708 c->tid = next_tid(c->tid); 3709 3710 local_unlock_irq(&s->cpu_slab->lock); 3711 3712 /* 3713 * Invoking slow path likely have side-effect 3714 * of re-populating per CPU c->freelist 3715 */ 3716 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3717 _RET_IP_, c); 3718 if (unlikely(!p[i])) 3719 goto error; 3720 3721 c = this_cpu_ptr(s->cpu_slab); 3722 maybe_wipe_obj_freeptr(s, p[i]); 3723 3724 local_lock_irq(&s->cpu_slab->lock); 3725 3726 continue; /* goto for-loop */ 3727 } 3728 c->freelist = get_freepointer(s, object); 3729 p[i] = object; 3730 maybe_wipe_obj_freeptr(s, p[i]); 3731 } 3732 c->tid = next_tid(c->tid); 3733 local_unlock_irq(&s->cpu_slab->lock); 3734 slub_put_cpu_ptr(s->cpu_slab); 3735 3736 /* 3737 * memcg and kmem_cache debug support and memory initialization. 3738 * Done outside of the IRQ disabled fastpath loop. 3739 */ 3740 slab_post_alloc_hook(s, objcg, flags, size, p, 3741 slab_want_init_on_alloc(flags, s)); 3742 return i; 3743 error: 3744 slub_put_cpu_ptr(s->cpu_slab); 3745 slab_post_alloc_hook(s, objcg, flags, i, p, false); 3746 kmem_cache_free_bulk(s, i, p); 3747 return 0; 3748 } 3749 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3750 3751 3752 /* 3753 * Object placement in a slab is made very easy because we always start at 3754 * offset 0. If we tune the size of the object to the alignment then we can 3755 * get the required alignment by putting one properly sized object after 3756 * another. 3757 * 3758 * Notice that the allocation order determines the sizes of the per cpu 3759 * caches. Each processor has always one slab available for allocations. 3760 * Increasing the allocation order reduces the number of times that slabs 3761 * must be moved on and off the partial lists and is therefore a factor in 3762 * locking overhead. 3763 */ 3764 3765 /* 3766 * Minimum / Maximum order of slab pages. This influences locking overhead 3767 * and slab fragmentation. A higher order reduces the number of partial slabs 3768 * and increases the number of allocations possible without having to 3769 * take the list_lock. 3770 */ 3771 static unsigned int slub_min_order; 3772 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3773 static unsigned int slub_min_objects; 3774 3775 /* 3776 * Calculate the order of allocation given an slab object size. 3777 * 3778 * The order of allocation has significant impact on performance and other 3779 * system components. Generally order 0 allocations should be preferred since 3780 * order 0 does not cause fragmentation in the page allocator. Larger objects 3781 * be problematic to put into order 0 slabs because there may be too much 3782 * unused space left. We go to a higher order if more than 1/16th of the slab 3783 * would be wasted. 3784 * 3785 * In order to reach satisfactory performance we must ensure that a minimum 3786 * number of objects is in one slab. Otherwise we may generate too much 3787 * activity on the partial lists which requires taking the list_lock. This is 3788 * less a concern for large slabs though which are rarely used. 3789 * 3790 * slub_max_order specifies the order where we begin to stop considering the 3791 * number of objects in a slab as critical. If we reach slub_max_order then 3792 * we try to keep the page order as low as possible. So we accept more waste 3793 * of space in favor of a small page order. 3794 * 3795 * Higher order allocations also allow the placement of more objects in a 3796 * slab and thereby reduce object handling overhead. If the user has 3797 * requested a higher minimum order then we start with that one instead of 3798 * the smallest order which will fit the object. 3799 */ 3800 static inline unsigned int calc_slab_order(unsigned int size, 3801 unsigned int min_objects, unsigned int max_order, 3802 unsigned int fract_leftover) 3803 { 3804 unsigned int min_order = slub_min_order; 3805 unsigned int order; 3806 3807 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3808 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3809 3810 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3811 order <= max_order; order++) { 3812 3813 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3814 unsigned int rem; 3815 3816 rem = slab_size % size; 3817 3818 if (rem <= slab_size / fract_leftover) 3819 break; 3820 } 3821 3822 return order; 3823 } 3824 3825 static inline int calculate_order(unsigned int size) 3826 { 3827 unsigned int order; 3828 unsigned int min_objects; 3829 unsigned int max_objects; 3830 unsigned int nr_cpus; 3831 3832 /* 3833 * Attempt to find best configuration for a slab. This 3834 * works by first attempting to generate a layout with 3835 * the best configuration and backing off gradually. 3836 * 3837 * First we increase the acceptable waste in a slab. Then 3838 * we reduce the minimum objects required in a slab. 3839 */ 3840 min_objects = slub_min_objects; 3841 if (!min_objects) { 3842 /* 3843 * Some architectures will only update present cpus when 3844 * onlining them, so don't trust the number if it's just 1. But 3845 * we also don't want to use nr_cpu_ids always, as on some other 3846 * architectures, there can be many possible cpus, but never 3847 * onlined. Here we compromise between trying to avoid too high 3848 * order on systems that appear larger than they are, and too 3849 * low order on systems that appear smaller than they are. 3850 */ 3851 nr_cpus = num_present_cpus(); 3852 if (nr_cpus <= 1) 3853 nr_cpus = nr_cpu_ids; 3854 min_objects = 4 * (fls(nr_cpus) + 1); 3855 } 3856 max_objects = order_objects(slub_max_order, size); 3857 min_objects = min(min_objects, max_objects); 3858 3859 while (min_objects > 1) { 3860 unsigned int fraction; 3861 3862 fraction = 16; 3863 while (fraction >= 4) { 3864 order = calc_slab_order(size, min_objects, 3865 slub_max_order, fraction); 3866 if (order <= slub_max_order) 3867 return order; 3868 fraction /= 2; 3869 } 3870 min_objects--; 3871 } 3872 3873 /* 3874 * We were unable to place multiple objects in a slab. Now 3875 * lets see if we can place a single object there. 3876 */ 3877 order = calc_slab_order(size, 1, slub_max_order, 1); 3878 if (order <= slub_max_order) 3879 return order; 3880 3881 /* 3882 * Doh this slab cannot be placed using slub_max_order. 3883 */ 3884 order = calc_slab_order(size, 1, MAX_ORDER, 1); 3885 if (order < MAX_ORDER) 3886 return order; 3887 return -ENOSYS; 3888 } 3889 3890 static void 3891 init_kmem_cache_node(struct kmem_cache_node *n) 3892 { 3893 n->nr_partial = 0; 3894 spin_lock_init(&n->list_lock); 3895 INIT_LIST_HEAD(&n->partial); 3896 #ifdef CONFIG_SLUB_DEBUG 3897 atomic_long_set(&n->nr_slabs, 0); 3898 atomic_long_set(&n->total_objects, 0); 3899 INIT_LIST_HEAD(&n->full); 3900 #endif 3901 } 3902 3903 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3904 { 3905 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3906 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3907 3908 /* 3909 * Must align to double word boundary for the double cmpxchg 3910 * instructions to work; see __pcpu_double_call_return_bool(). 3911 */ 3912 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3913 2 * sizeof(void *)); 3914 3915 if (!s->cpu_slab) 3916 return 0; 3917 3918 init_kmem_cache_cpus(s); 3919 3920 return 1; 3921 } 3922 3923 static struct kmem_cache *kmem_cache_node; 3924 3925 /* 3926 * No kmalloc_node yet so do it by hand. We know that this is the first 3927 * slab on the node for this slabcache. There are no concurrent accesses 3928 * possible. 3929 * 3930 * Note that this function only works on the kmem_cache_node 3931 * when allocating for the kmem_cache_node. This is used for bootstrapping 3932 * memory on a fresh node that has no slab structures yet. 3933 */ 3934 static void early_kmem_cache_node_alloc(int node) 3935 { 3936 struct slab *slab; 3937 struct kmem_cache_node *n; 3938 3939 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3940 3941 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3942 3943 BUG_ON(!slab); 3944 if (slab_nid(slab) != node) { 3945 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3946 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3947 } 3948 3949 n = slab->freelist; 3950 BUG_ON(!n); 3951 #ifdef CONFIG_SLUB_DEBUG 3952 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3953 init_tracking(kmem_cache_node, n); 3954 #endif 3955 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 3956 slab->freelist = get_freepointer(kmem_cache_node, n); 3957 slab->inuse = 1; 3958 slab->frozen = 0; 3959 kmem_cache_node->node[node] = n; 3960 init_kmem_cache_node(n); 3961 inc_slabs_node(kmem_cache_node, node, slab->objects); 3962 3963 /* 3964 * No locks need to be taken here as it has just been 3965 * initialized and there is no concurrent access. 3966 */ 3967 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 3968 } 3969 3970 static void free_kmem_cache_nodes(struct kmem_cache *s) 3971 { 3972 int node; 3973 struct kmem_cache_node *n; 3974 3975 for_each_kmem_cache_node(s, node, n) { 3976 s->node[node] = NULL; 3977 kmem_cache_free(kmem_cache_node, n); 3978 } 3979 } 3980 3981 void __kmem_cache_release(struct kmem_cache *s) 3982 { 3983 cache_random_seq_destroy(s); 3984 free_percpu(s->cpu_slab); 3985 free_kmem_cache_nodes(s); 3986 } 3987 3988 static int init_kmem_cache_nodes(struct kmem_cache *s) 3989 { 3990 int node; 3991 3992 for_each_node_mask(node, slab_nodes) { 3993 struct kmem_cache_node *n; 3994 3995 if (slab_state == DOWN) { 3996 early_kmem_cache_node_alloc(node); 3997 continue; 3998 } 3999 n = kmem_cache_alloc_node(kmem_cache_node, 4000 GFP_KERNEL, node); 4001 4002 if (!n) { 4003 free_kmem_cache_nodes(s); 4004 return 0; 4005 } 4006 4007 init_kmem_cache_node(n); 4008 s->node[node] = n; 4009 } 4010 return 1; 4011 } 4012 4013 static void set_cpu_partial(struct kmem_cache *s) 4014 { 4015 #ifdef CONFIG_SLUB_CPU_PARTIAL 4016 unsigned int nr_objects; 4017 4018 /* 4019 * cpu_partial determined the maximum number of objects kept in the 4020 * per cpu partial lists of a processor. 4021 * 4022 * Per cpu partial lists mainly contain slabs that just have one 4023 * object freed. If they are used for allocation then they can be 4024 * filled up again with minimal effort. The slab will never hit the 4025 * per node partial lists and therefore no locking will be required. 4026 * 4027 * For backwards compatibility reasons, this is determined as number 4028 * of objects, even though we now limit maximum number of pages, see 4029 * slub_set_cpu_partial() 4030 */ 4031 if (!kmem_cache_has_cpu_partial(s)) 4032 nr_objects = 0; 4033 else if (s->size >= PAGE_SIZE) 4034 nr_objects = 6; 4035 else if (s->size >= 1024) 4036 nr_objects = 24; 4037 else if (s->size >= 256) 4038 nr_objects = 52; 4039 else 4040 nr_objects = 120; 4041 4042 slub_set_cpu_partial(s, nr_objects); 4043 #endif 4044 } 4045 4046 /* 4047 * calculate_sizes() determines the order and the distribution of data within 4048 * a slab object. 4049 */ 4050 static int calculate_sizes(struct kmem_cache *s) 4051 { 4052 slab_flags_t flags = s->flags; 4053 unsigned int size = s->object_size; 4054 unsigned int order; 4055 4056 /* 4057 * Round up object size to the next word boundary. We can only 4058 * place the free pointer at word boundaries and this determines 4059 * the possible location of the free pointer. 4060 */ 4061 size = ALIGN(size, sizeof(void *)); 4062 4063 #ifdef CONFIG_SLUB_DEBUG 4064 /* 4065 * Determine if we can poison the object itself. If the user of 4066 * the slab may touch the object after free or before allocation 4067 * then we should never poison the object itself. 4068 */ 4069 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 4070 !s->ctor) 4071 s->flags |= __OBJECT_POISON; 4072 else 4073 s->flags &= ~__OBJECT_POISON; 4074 4075 4076 /* 4077 * If we are Redzoning then check if there is some space between the 4078 * end of the object and the free pointer. If not then add an 4079 * additional word to have some bytes to store Redzone information. 4080 */ 4081 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 4082 size += sizeof(void *); 4083 #endif 4084 4085 /* 4086 * With that we have determined the number of bytes in actual use 4087 * by the object and redzoning. 4088 */ 4089 s->inuse = size; 4090 4091 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 4092 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || 4093 s->ctor) { 4094 /* 4095 * Relocate free pointer after the object if it is not 4096 * permitted to overwrite the first word of the object on 4097 * kmem_cache_free. 4098 * 4099 * This is the case if we do RCU, have a constructor or 4100 * destructor, are poisoning the objects, or are 4101 * redzoning an object smaller than sizeof(void *). 4102 * 4103 * The assumption that s->offset >= s->inuse means free 4104 * pointer is outside of the object is used in the 4105 * freeptr_outside_object() function. If that is no 4106 * longer true, the function needs to be modified. 4107 */ 4108 s->offset = size; 4109 size += sizeof(void *); 4110 } else { 4111 /* 4112 * Store freelist pointer near middle of object to keep 4113 * it away from the edges of the object to avoid small 4114 * sized over/underflows from neighboring allocations. 4115 */ 4116 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 4117 } 4118 4119 #ifdef CONFIG_SLUB_DEBUG 4120 if (flags & SLAB_STORE_USER) 4121 /* 4122 * Need to store information about allocs and frees after 4123 * the object. 4124 */ 4125 size += 2 * sizeof(struct track); 4126 #endif 4127 4128 kasan_cache_create(s, &size, &s->flags); 4129 #ifdef CONFIG_SLUB_DEBUG 4130 if (flags & SLAB_RED_ZONE) { 4131 /* 4132 * Add some empty padding so that we can catch 4133 * overwrites from earlier objects rather than let 4134 * tracking information or the free pointer be 4135 * corrupted if a user writes before the start 4136 * of the object. 4137 */ 4138 size += sizeof(void *); 4139 4140 s->red_left_pad = sizeof(void *); 4141 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 4142 size += s->red_left_pad; 4143 } 4144 #endif 4145 4146 /* 4147 * SLUB stores one object immediately after another beginning from 4148 * offset 0. In order to align the objects we have to simply size 4149 * each object to conform to the alignment. 4150 */ 4151 size = ALIGN(size, s->align); 4152 s->size = size; 4153 s->reciprocal_size = reciprocal_value(size); 4154 order = calculate_order(size); 4155 4156 if ((int)order < 0) 4157 return 0; 4158 4159 s->allocflags = 0; 4160 if (order) 4161 s->allocflags |= __GFP_COMP; 4162 4163 if (s->flags & SLAB_CACHE_DMA) 4164 s->allocflags |= GFP_DMA; 4165 4166 if (s->flags & SLAB_CACHE_DMA32) 4167 s->allocflags |= GFP_DMA32; 4168 4169 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4170 s->allocflags |= __GFP_RECLAIMABLE; 4171 4172 /* 4173 * Determine the number of objects per slab 4174 */ 4175 s->oo = oo_make(order, size); 4176 s->min = oo_make(get_order(size), size); 4177 4178 return !!oo_objects(s->oo); 4179 } 4180 4181 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 4182 { 4183 s->flags = kmem_cache_flags(s->size, flags, s->name); 4184 #ifdef CONFIG_SLAB_FREELIST_HARDENED 4185 s->random = get_random_long(); 4186 #endif 4187 4188 if (!calculate_sizes(s)) 4189 goto error; 4190 if (disable_higher_order_debug) { 4191 /* 4192 * Disable debugging flags that store metadata if the min slab 4193 * order increased. 4194 */ 4195 if (get_order(s->size) > get_order(s->object_size)) { 4196 s->flags &= ~DEBUG_METADATA_FLAGS; 4197 s->offset = 0; 4198 if (!calculate_sizes(s)) 4199 goto error; 4200 } 4201 } 4202 4203 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 4204 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 4205 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 4206 /* Enable fast mode */ 4207 s->flags |= __CMPXCHG_DOUBLE; 4208 #endif 4209 4210 /* 4211 * The larger the object size is, the more slabs we want on the partial 4212 * list to avoid pounding the page allocator excessively. 4213 */ 4214 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 4215 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 4216 4217 set_cpu_partial(s); 4218 4219 #ifdef CONFIG_NUMA 4220 s->remote_node_defrag_ratio = 1000; 4221 #endif 4222 4223 /* Initialize the pre-computed randomized freelist if slab is up */ 4224 if (slab_state >= UP) { 4225 if (init_cache_random_seq(s)) 4226 goto error; 4227 } 4228 4229 if (!init_kmem_cache_nodes(s)) 4230 goto error; 4231 4232 if (alloc_kmem_cache_cpus(s)) 4233 return 0; 4234 4235 error: 4236 __kmem_cache_release(s); 4237 return -EINVAL; 4238 } 4239 4240 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 4241 const char *text) 4242 { 4243 #ifdef CONFIG_SLUB_DEBUG 4244 void *addr = slab_address(slab); 4245 unsigned long flags; 4246 unsigned long *map; 4247 void *p; 4248 4249 slab_err(s, slab, text, s->name); 4250 slab_lock(slab, &flags); 4251 4252 map = get_map(s, slab); 4253 for_each_object(p, s, addr, slab->objects) { 4254 4255 if (!test_bit(__obj_to_index(s, addr, p), map)) { 4256 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 4257 print_tracking(s, p); 4258 } 4259 } 4260 put_map(map); 4261 slab_unlock(slab, &flags); 4262 #endif 4263 } 4264 4265 /* 4266 * Attempt to free all partial slabs on a node. 4267 * This is called from __kmem_cache_shutdown(). We must take list_lock 4268 * because sysfs file might still access partial list after the shutdowning. 4269 */ 4270 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 4271 { 4272 LIST_HEAD(discard); 4273 struct slab *slab, *h; 4274 4275 BUG_ON(irqs_disabled()); 4276 spin_lock_irq(&n->list_lock); 4277 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 4278 if (!slab->inuse) { 4279 remove_partial(n, slab); 4280 list_add(&slab->slab_list, &discard); 4281 } else { 4282 list_slab_objects(s, slab, 4283 "Objects remaining in %s on __kmem_cache_shutdown()"); 4284 } 4285 } 4286 spin_unlock_irq(&n->list_lock); 4287 4288 list_for_each_entry_safe(slab, h, &discard, slab_list) 4289 discard_slab(s, slab); 4290 } 4291 4292 bool __kmem_cache_empty(struct kmem_cache *s) 4293 { 4294 int node; 4295 struct kmem_cache_node *n; 4296 4297 for_each_kmem_cache_node(s, node, n) 4298 if (n->nr_partial || slabs_node(s, node)) 4299 return false; 4300 return true; 4301 } 4302 4303 /* 4304 * Release all resources used by a slab cache. 4305 */ 4306 int __kmem_cache_shutdown(struct kmem_cache *s) 4307 { 4308 int node; 4309 struct kmem_cache_node *n; 4310 4311 flush_all_cpus_locked(s); 4312 /* Attempt to free all objects */ 4313 for_each_kmem_cache_node(s, node, n) { 4314 free_partial(s, n); 4315 if (n->nr_partial || slabs_node(s, node)) 4316 return 1; 4317 } 4318 return 0; 4319 } 4320 4321 #ifdef CONFIG_PRINTK 4322 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 4323 { 4324 void *base; 4325 int __maybe_unused i; 4326 unsigned int objnr; 4327 void *objp; 4328 void *objp0; 4329 struct kmem_cache *s = slab->slab_cache; 4330 struct track __maybe_unused *trackp; 4331 4332 kpp->kp_ptr = object; 4333 kpp->kp_slab = slab; 4334 kpp->kp_slab_cache = s; 4335 base = slab_address(slab); 4336 objp0 = kasan_reset_tag(object); 4337 #ifdef CONFIG_SLUB_DEBUG 4338 objp = restore_red_left(s, objp0); 4339 #else 4340 objp = objp0; 4341 #endif 4342 objnr = obj_to_index(s, slab, objp); 4343 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 4344 objp = base + s->size * objnr; 4345 kpp->kp_objp = objp; 4346 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 4347 || (objp - base) % s->size) || 4348 !(s->flags & SLAB_STORE_USER)) 4349 return; 4350 #ifdef CONFIG_SLUB_DEBUG 4351 objp = fixup_red_left(s, objp); 4352 trackp = get_track(s, objp, TRACK_ALLOC); 4353 kpp->kp_ret = (void *)trackp->addr; 4354 #ifdef CONFIG_STACKDEPOT 4355 { 4356 depot_stack_handle_t handle; 4357 unsigned long *entries; 4358 unsigned int nr_entries; 4359 4360 handle = READ_ONCE(trackp->handle); 4361 if (handle) { 4362 nr_entries = stack_depot_fetch(handle, &entries); 4363 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4364 kpp->kp_stack[i] = (void *)entries[i]; 4365 } 4366 4367 trackp = get_track(s, objp, TRACK_FREE); 4368 handle = READ_ONCE(trackp->handle); 4369 if (handle) { 4370 nr_entries = stack_depot_fetch(handle, &entries); 4371 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4372 kpp->kp_free_stack[i] = (void *)entries[i]; 4373 } 4374 } 4375 #endif 4376 #endif 4377 } 4378 #endif 4379 4380 /******************************************************************** 4381 * Kmalloc subsystem 4382 *******************************************************************/ 4383 4384 static int __init setup_slub_min_order(char *str) 4385 { 4386 get_option(&str, (int *)&slub_min_order); 4387 4388 return 1; 4389 } 4390 4391 __setup("slub_min_order=", setup_slub_min_order); 4392 4393 static int __init setup_slub_max_order(char *str) 4394 { 4395 get_option(&str, (int *)&slub_max_order); 4396 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 4397 4398 return 1; 4399 } 4400 4401 __setup("slub_max_order=", setup_slub_max_order); 4402 4403 static int __init setup_slub_min_objects(char *str) 4404 { 4405 get_option(&str, (int *)&slub_min_objects); 4406 4407 return 1; 4408 } 4409 4410 __setup("slub_min_objects=", setup_slub_min_objects); 4411 4412 void *__kmalloc(size_t size, gfp_t flags) 4413 { 4414 struct kmem_cache *s; 4415 void *ret; 4416 4417 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4418 return kmalloc_large(size, flags); 4419 4420 s = kmalloc_slab(size, flags); 4421 4422 if (unlikely(ZERO_OR_NULL_PTR(s))) 4423 return s; 4424 4425 ret = slab_alloc(s, NULL, flags, _RET_IP_, size); 4426 4427 trace_kmalloc(_RET_IP_, ret, s, size, s->size, flags); 4428 4429 ret = kasan_kmalloc(s, ret, size, flags); 4430 4431 return ret; 4432 } 4433 EXPORT_SYMBOL(__kmalloc); 4434 4435 #ifdef CONFIG_NUMA 4436 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 4437 { 4438 struct page *page; 4439 void *ptr = NULL; 4440 unsigned int order = get_order(size); 4441 4442 flags |= __GFP_COMP; 4443 page = alloc_pages_node(node, flags, order); 4444 if (page) { 4445 ptr = page_address(page); 4446 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, 4447 PAGE_SIZE << order); 4448 } 4449 4450 return kmalloc_large_node_hook(ptr, size, flags); 4451 } 4452 4453 void *__kmalloc_node(size_t size, gfp_t flags, int node) 4454 { 4455 struct kmem_cache *s; 4456 void *ret; 4457 4458 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4459 ret = kmalloc_large_node(size, flags, node); 4460 4461 trace_kmalloc_node(_RET_IP_, ret, NULL, 4462 size, PAGE_SIZE << get_order(size), 4463 flags, node); 4464 4465 return ret; 4466 } 4467 4468 s = kmalloc_slab(size, flags); 4469 4470 if (unlikely(ZERO_OR_NULL_PTR(s))) 4471 return s; 4472 4473 ret = slab_alloc_node(s, NULL, flags, node, _RET_IP_, size); 4474 4475 trace_kmalloc_node(_RET_IP_, ret, s, size, s->size, flags, node); 4476 4477 ret = kasan_kmalloc(s, ret, size, flags); 4478 4479 return ret; 4480 } 4481 EXPORT_SYMBOL(__kmalloc_node); 4482 #endif /* CONFIG_NUMA */ 4483 4484 #ifdef CONFIG_HARDENED_USERCOPY 4485 /* 4486 * Rejects incorrectly sized objects and objects that are to be copied 4487 * to/from userspace but do not fall entirely within the containing slab 4488 * cache's usercopy region. 4489 * 4490 * Returns NULL if check passes, otherwise const char * to name of cache 4491 * to indicate an error. 4492 */ 4493 void __check_heap_object(const void *ptr, unsigned long n, 4494 const struct slab *slab, bool to_user) 4495 { 4496 struct kmem_cache *s; 4497 unsigned int offset; 4498 bool is_kfence = is_kfence_address(ptr); 4499 4500 ptr = kasan_reset_tag(ptr); 4501 4502 /* Find object and usable object size. */ 4503 s = slab->slab_cache; 4504 4505 /* Reject impossible pointers. */ 4506 if (ptr < slab_address(slab)) 4507 usercopy_abort("SLUB object not in SLUB page?!", NULL, 4508 to_user, 0, n); 4509 4510 /* Find offset within object. */ 4511 if (is_kfence) 4512 offset = ptr - kfence_object_start(ptr); 4513 else 4514 offset = (ptr - slab_address(slab)) % s->size; 4515 4516 /* Adjust for redzone and reject if within the redzone. */ 4517 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 4518 if (offset < s->red_left_pad) 4519 usercopy_abort("SLUB object in left red zone", 4520 s->name, to_user, offset, n); 4521 offset -= s->red_left_pad; 4522 } 4523 4524 /* Allow address range falling entirely within usercopy region. */ 4525 if (offset >= s->useroffset && 4526 offset - s->useroffset <= s->usersize && 4527 n <= s->useroffset - offset + s->usersize) 4528 return; 4529 4530 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4531 } 4532 #endif /* CONFIG_HARDENED_USERCOPY */ 4533 4534 size_t __ksize(const void *object) 4535 { 4536 struct folio *folio; 4537 4538 if (unlikely(object == ZERO_SIZE_PTR)) 4539 return 0; 4540 4541 folio = virt_to_folio(object); 4542 4543 if (unlikely(!folio_test_slab(folio))) 4544 return folio_size(folio); 4545 4546 return slab_ksize(folio_slab(folio)->slab_cache); 4547 } 4548 EXPORT_SYMBOL(__ksize); 4549 4550 void kfree(const void *x) 4551 { 4552 struct folio *folio; 4553 struct slab *slab; 4554 void *object = (void *)x; 4555 4556 trace_kfree(_RET_IP_, x); 4557 4558 if (unlikely(ZERO_OR_NULL_PTR(x))) 4559 return; 4560 4561 folio = virt_to_folio(x); 4562 if (unlikely(!folio_test_slab(folio))) { 4563 free_large_kmalloc(folio, object); 4564 return; 4565 } 4566 slab = folio_slab(folio); 4567 slab_free(slab->slab_cache, slab, object, NULL, &object, 1, _RET_IP_); 4568 } 4569 EXPORT_SYMBOL(kfree); 4570 4571 #define SHRINK_PROMOTE_MAX 32 4572 4573 /* 4574 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4575 * up most to the head of the partial lists. New allocations will then 4576 * fill those up and thus they can be removed from the partial lists. 4577 * 4578 * The slabs with the least items are placed last. This results in them 4579 * being allocated from last increasing the chance that the last objects 4580 * are freed in them. 4581 */ 4582 static int __kmem_cache_do_shrink(struct kmem_cache *s) 4583 { 4584 int node; 4585 int i; 4586 struct kmem_cache_node *n; 4587 struct slab *slab; 4588 struct slab *t; 4589 struct list_head discard; 4590 struct list_head promote[SHRINK_PROMOTE_MAX]; 4591 unsigned long flags; 4592 int ret = 0; 4593 4594 for_each_kmem_cache_node(s, node, n) { 4595 INIT_LIST_HEAD(&discard); 4596 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4597 INIT_LIST_HEAD(promote + i); 4598 4599 spin_lock_irqsave(&n->list_lock, flags); 4600 4601 /* 4602 * Build lists of slabs to discard or promote. 4603 * 4604 * Note that concurrent frees may occur while we hold the 4605 * list_lock. slab->inuse here is the upper limit. 4606 */ 4607 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 4608 int free = slab->objects - slab->inuse; 4609 4610 /* Do not reread slab->inuse */ 4611 barrier(); 4612 4613 /* We do not keep full slabs on the list */ 4614 BUG_ON(free <= 0); 4615 4616 if (free == slab->objects) { 4617 list_move(&slab->slab_list, &discard); 4618 n->nr_partial--; 4619 } else if (free <= SHRINK_PROMOTE_MAX) 4620 list_move(&slab->slab_list, promote + free - 1); 4621 } 4622 4623 /* 4624 * Promote the slabs filled up most to the head of the 4625 * partial list. 4626 */ 4627 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4628 list_splice(promote + i, &n->partial); 4629 4630 spin_unlock_irqrestore(&n->list_lock, flags); 4631 4632 /* Release empty slabs */ 4633 list_for_each_entry_safe(slab, t, &discard, slab_list) 4634 discard_slab(s, slab); 4635 4636 if (slabs_node(s, node)) 4637 ret = 1; 4638 } 4639 4640 return ret; 4641 } 4642 4643 int __kmem_cache_shrink(struct kmem_cache *s) 4644 { 4645 flush_all(s); 4646 return __kmem_cache_do_shrink(s); 4647 } 4648 4649 static int slab_mem_going_offline_callback(void *arg) 4650 { 4651 struct kmem_cache *s; 4652 4653 mutex_lock(&slab_mutex); 4654 list_for_each_entry(s, &slab_caches, list) { 4655 flush_all_cpus_locked(s); 4656 __kmem_cache_do_shrink(s); 4657 } 4658 mutex_unlock(&slab_mutex); 4659 4660 return 0; 4661 } 4662 4663 static void slab_mem_offline_callback(void *arg) 4664 { 4665 struct memory_notify *marg = arg; 4666 int offline_node; 4667 4668 offline_node = marg->status_change_nid_normal; 4669 4670 /* 4671 * If the node still has available memory. we need kmem_cache_node 4672 * for it yet. 4673 */ 4674 if (offline_node < 0) 4675 return; 4676 4677 mutex_lock(&slab_mutex); 4678 node_clear(offline_node, slab_nodes); 4679 /* 4680 * We no longer free kmem_cache_node structures here, as it would be 4681 * racy with all get_node() users, and infeasible to protect them with 4682 * slab_mutex. 4683 */ 4684 mutex_unlock(&slab_mutex); 4685 } 4686 4687 static int slab_mem_going_online_callback(void *arg) 4688 { 4689 struct kmem_cache_node *n; 4690 struct kmem_cache *s; 4691 struct memory_notify *marg = arg; 4692 int nid = marg->status_change_nid_normal; 4693 int ret = 0; 4694 4695 /* 4696 * If the node's memory is already available, then kmem_cache_node is 4697 * already created. Nothing to do. 4698 */ 4699 if (nid < 0) 4700 return 0; 4701 4702 /* 4703 * We are bringing a node online. No memory is available yet. We must 4704 * allocate a kmem_cache_node structure in order to bring the node 4705 * online. 4706 */ 4707 mutex_lock(&slab_mutex); 4708 list_for_each_entry(s, &slab_caches, list) { 4709 /* 4710 * The structure may already exist if the node was previously 4711 * onlined and offlined. 4712 */ 4713 if (get_node(s, nid)) 4714 continue; 4715 /* 4716 * XXX: kmem_cache_alloc_node will fallback to other nodes 4717 * since memory is not yet available from the node that 4718 * is brought up. 4719 */ 4720 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4721 if (!n) { 4722 ret = -ENOMEM; 4723 goto out; 4724 } 4725 init_kmem_cache_node(n); 4726 s->node[nid] = n; 4727 } 4728 /* 4729 * Any cache created after this point will also have kmem_cache_node 4730 * initialized for the new node. 4731 */ 4732 node_set(nid, slab_nodes); 4733 out: 4734 mutex_unlock(&slab_mutex); 4735 return ret; 4736 } 4737 4738 static int slab_memory_callback(struct notifier_block *self, 4739 unsigned long action, void *arg) 4740 { 4741 int ret = 0; 4742 4743 switch (action) { 4744 case MEM_GOING_ONLINE: 4745 ret = slab_mem_going_online_callback(arg); 4746 break; 4747 case MEM_GOING_OFFLINE: 4748 ret = slab_mem_going_offline_callback(arg); 4749 break; 4750 case MEM_OFFLINE: 4751 case MEM_CANCEL_ONLINE: 4752 slab_mem_offline_callback(arg); 4753 break; 4754 case MEM_ONLINE: 4755 case MEM_CANCEL_OFFLINE: 4756 break; 4757 } 4758 if (ret) 4759 ret = notifier_from_errno(ret); 4760 else 4761 ret = NOTIFY_OK; 4762 return ret; 4763 } 4764 4765 static struct notifier_block slab_memory_callback_nb = { 4766 .notifier_call = slab_memory_callback, 4767 .priority = SLAB_CALLBACK_PRI, 4768 }; 4769 4770 /******************************************************************** 4771 * Basic setup of slabs 4772 *******************************************************************/ 4773 4774 /* 4775 * Used for early kmem_cache structures that were allocated using 4776 * the page allocator. Allocate them properly then fix up the pointers 4777 * that may be pointing to the wrong kmem_cache structure. 4778 */ 4779 4780 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4781 { 4782 int node; 4783 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4784 struct kmem_cache_node *n; 4785 4786 memcpy(s, static_cache, kmem_cache->object_size); 4787 4788 /* 4789 * This runs very early, and only the boot processor is supposed to be 4790 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4791 * IPIs around. 4792 */ 4793 __flush_cpu_slab(s, smp_processor_id()); 4794 for_each_kmem_cache_node(s, node, n) { 4795 struct slab *p; 4796 4797 list_for_each_entry(p, &n->partial, slab_list) 4798 p->slab_cache = s; 4799 4800 #ifdef CONFIG_SLUB_DEBUG 4801 list_for_each_entry(p, &n->full, slab_list) 4802 p->slab_cache = s; 4803 #endif 4804 } 4805 list_add(&s->list, &slab_caches); 4806 return s; 4807 } 4808 4809 void __init kmem_cache_init(void) 4810 { 4811 static __initdata struct kmem_cache boot_kmem_cache, 4812 boot_kmem_cache_node; 4813 int node; 4814 4815 if (debug_guardpage_minorder()) 4816 slub_max_order = 0; 4817 4818 /* Print slub debugging pointers without hashing */ 4819 if (__slub_debug_enabled()) 4820 no_hash_pointers_enable(NULL); 4821 4822 kmem_cache_node = &boot_kmem_cache_node; 4823 kmem_cache = &boot_kmem_cache; 4824 4825 /* 4826 * Initialize the nodemask for which we will allocate per node 4827 * structures. Here we don't need taking slab_mutex yet. 4828 */ 4829 for_each_node_state(node, N_NORMAL_MEMORY) 4830 node_set(node, slab_nodes); 4831 4832 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4833 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4834 4835 register_hotmemory_notifier(&slab_memory_callback_nb); 4836 4837 /* Able to allocate the per node structures */ 4838 slab_state = PARTIAL; 4839 4840 create_boot_cache(kmem_cache, "kmem_cache", 4841 offsetof(struct kmem_cache, node) + 4842 nr_node_ids * sizeof(struct kmem_cache_node *), 4843 SLAB_HWCACHE_ALIGN, 0, 0); 4844 4845 kmem_cache = bootstrap(&boot_kmem_cache); 4846 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4847 4848 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4849 setup_kmalloc_cache_index_table(); 4850 create_kmalloc_caches(0); 4851 4852 /* Setup random freelists for each cache */ 4853 init_freelist_randomization(); 4854 4855 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4856 slub_cpu_dead); 4857 4858 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4859 cache_line_size(), 4860 slub_min_order, slub_max_order, slub_min_objects, 4861 nr_cpu_ids, nr_node_ids); 4862 } 4863 4864 void __init kmem_cache_init_late(void) 4865 { 4866 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 4867 WARN_ON(!flushwq); 4868 } 4869 4870 struct kmem_cache * 4871 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4872 slab_flags_t flags, void (*ctor)(void *)) 4873 { 4874 struct kmem_cache *s; 4875 4876 s = find_mergeable(size, align, flags, name, ctor); 4877 if (s) { 4878 if (sysfs_slab_alias(s, name)) 4879 return NULL; 4880 4881 s->refcount++; 4882 4883 /* 4884 * Adjust the object sizes so that we clear 4885 * the complete object on kzalloc. 4886 */ 4887 s->object_size = max(s->object_size, size); 4888 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4889 } 4890 4891 return s; 4892 } 4893 4894 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4895 { 4896 int err; 4897 4898 err = kmem_cache_open(s, flags); 4899 if (err) 4900 return err; 4901 4902 /* Mutex is not taken during early boot */ 4903 if (slab_state <= UP) 4904 return 0; 4905 4906 err = sysfs_slab_add(s); 4907 if (err) { 4908 __kmem_cache_release(s); 4909 return err; 4910 } 4911 4912 if (s->flags & SLAB_STORE_USER) 4913 debugfs_slab_add(s); 4914 4915 return 0; 4916 } 4917 4918 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4919 { 4920 struct kmem_cache *s; 4921 void *ret; 4922 4923 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4924 return kmalloc_large(size, gfpflags); 4925 4926 s = kmalloc_slab(size, gfpflags); 4927 4928 if (unlikely(ZERO_OR_NULL_PTR(s))) 4929 return s; 4930 4931 ret = slab_alloc(s, NULL, gfpflags, caller, size); 4932 4933 /* Honor the call site pointer we received. */ 4934 trace_kmalloc(caller, ret, s, size, s->size, gfpflags); 4935 4936 ret = kasan_kmalloc(s, ret, size, gfpflags); 4937 4938 return ret; 4939 } 4940 EXPORT_SYMBOL(__kmalloc_track_caller); 4941 4942 #ifdef CONFIG_NUMA 4943 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4944 int node, unsigned long caller) 4945 { 4946 struct kmem_cache *s; 4947 void *ret; 4948 4949 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4950 ret = kmalloc_large_node(size, gfpflags, node); 4951 4952 trace_kmalloc_node(caller, ret, NULL, 4953 size, PAGE_SIZE << get_order(size), 4954 gfpflags, node); 4955 4956 return ret; 4957 } 4958 4959 s = kmalloc_slab(size, gfpflags); 4960 4961 if (unlikely(ZERO_OR_NULL_PTR(s))) 4962 return s; 4963 4964 ret = slab_alloc_node(s, NULL, gfpflags, node, caller, size); 4965 4966 /* Honor the call site pointer we received. */ 4967 trace_kmalloc_node(caller, ret, s, size, s->size, gfpflags, node); 4968 4969 ret = kasan_kmalloc(s, ret, size, gfpflags); 4970 4971 return ret; 4972 } 4973 EXPORT_SYMBOL(__kmalloc_node_track_caller); 4974 #endif 4975 4976 #ifdef CONFIG_SYSFS 4977 static int count_inuse(struct slab *slab) 4978 { 4979 return slab->inuse; 4980 } 4981 4982 static int count_total(struct slab *slab) 4983 { 4984 return slab->objects; 4985 } 4986 #endif 4987 4988 #ifdef CONFIG_SLUB_DEBUG 4989 static void validate_slab(struct kmem_cache *s, struct slab *slab, 4990 unsigned long *obj_map) 4991 { 4992 void *p; 4993 void *addr = slab_address(slab); 4994 unsigned long flags; 4995 4996 slab_lock(slab, &flags); 4997 4998 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 4999 goto unlock; 5000 5001 /* Now we know that a valid freelist exists */ 5002 __fill_map(obj_map, s, slab); 5003 for_each_object(p, s, addr, slab->objects) { 5004 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 5005 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 5006 5007 if (!check_object(s, slab, p, val)) 5008 break; 5009 } 5010 unlock: 5011 slab_unlock(slab, &flags); 5012 } 5013 5014 static int validate_slab_node(struct kmem_cache *s, 5015 struct kmem_cache_node *n, unsigned long *obj_map) 5016 { 5017 unsigned long count = 0; 5018 struct slab *slab; 5019 unsigned long flags; 5020 5021 spin_lock_irqsave(&n->list_lock, flags); 5022 5023 list_for_each_entry(slab, &n->partial, slab_list) { 5024 validate_slab(s, slab, obj_map); 5025 count++; 5026 } 5027 if (count != n->nr_partial) { 5028 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 5029 s->name, count, n->nr_partial); 5030 slab_add_kunit_errors(); 5031 } 5032 5033 if (!(s->flags & SLAB_STORE_USER)) 5034 goto out; 5035 5036 list_for_each_entry(slab, &n->full, slab_list) { 5037 validate_slab(s, slab, obj_map); 5038 count++; 5039 } 5040 if (count != atomic_long_read(&n->nr_slabs)) { 5041 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 5042 s->name, count, atomic_long_read(&n->nr_slabs)); 5043 slab_add_kunit_errors(); 5044 } 5045 5046 out: 5047 spin_unlock_irqrestore(&n->list_lock, flags); 5048 return count; 5049 } 5050 5051 long validate_slab_cache(struct kmem_cache *s) 5052 { 5053 int node; 5054 unsigned long count = 0; 5055 struct kmem_cache_node *n; 5056 unsigned long *obj_map; 5057 5058 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 5059 if (!obj_map) 5060 return -ENOMEM; 5061 5062 flush_all(s); 5063 for_each_kmem_cache_node(s, node, n) 5064 count += validate_slab_node(s, n, obj_map); 5065 5066 bitmap_free(obj_map); 5067 5068 return count; 5069 } 5070 EXPORT_SYMBOL(validate_slab_cache); 5071 5072 #ifdef CONFIG_DEBUG_FS 5073 /* 5074 * Generate lists of code addresses where slabcache objects are allocated 5075 * and freed. 5076 */ 5077 5078 struct location { 5079 depot_stack_handle_t handle; 5080 unsigned long count; 5081 unsigned long addr; 5082 long long sum_time; 5083 long min_time; 5084 long max_time; 5085 long min_pid; 5086 long max_pid; 5087 DECLARE_BITMAP(cpus, NR_CPUS); 5088 nodemask_t nodes; 5089 }; 5090 5091 struct loc_track { 5092 unsigned long max; 5093 unsigned long count; 5094 struct location *loc; 5095 loff_t idx; 5096 }; 5097 5098 static struct dentry *slab_debugfs_root; 5099 5100 static void free_loc_track(struct loc_track *t) 5101 { 5102 if (t->max) 5103 free_pages((unsigned long)t->loc, 5104 get_order(sizeof(struct location) * t->max)); 5105 } 5106 5107 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 5108 { 5109 struct location *l; 5110 int order; 5111 5112 order = get_order(sizeof(struct location) * max); 5113 5114 l = (void *)__get_free_pages(flags, order); 5115 if (!l) 5116 return 0; 5117 5118 if (t->count) { 5119 memcpy(l, t->loc, sizeof(struct location) * t->count); 5120 free_loc_track(t); 5121 } 5122 t->max = max; 5123 t->loc = l; 5124 return 1; 5125 } 5126 5127 static int add_location(struct loc_track *t, struct kmem_cache *s, 5128 const struct track *track) 5129 { 5130 long start, end, pos; 5131 struct location *l; 5132 unsigned long caddr, chandle; 5133 unsigned long age = jiffies - track->when; 5134 depot_stack_handle_t handle = 0; 5135 5136 #ifdef CONFIG_STACKDEPOT 5137 handle = READ_ONCE(track->handle); 5138 #endif 5139 start = -1; 5140 end = t->count; 5141 5142 for ( ; ; ) { 5143 pos = start + (end - start + 1) / 2; 5144 5145 /* 5146 * There is nothing at "end". If we end up there 5147 * we need to add something to before end. 5148 */ 5149 if (pos == end) 5150 break; 5151 5152 caddr = t->loc[pos].addr; 5153 chandle = t->loc[pos].handle; 5154 if ((track->addr == caddr) && (handle == chandle)) { 5155 5156 l = &t->loc[pos]; 5157 l->count++; 5158 if (track->when) { 5159 l->sum_time += age; 5160 if (age < l->min_time) 5161 l->min_time = age; 5162 if (age > l->max_time) 5163 l->max_time = age; 5164 5165 if (track->pid < l->min_pid) 5166 l->min_pid = track->pid; 5167 if (track->pid > l->max_pid) 5168 l->max_pid = track->pid; 5169 5170 cpumask_set_cpu(track->cpu, 5171 to_cpumask(l->cpus)); 5172 } 5173 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5174 return 1; 5175 } 5176 5177 if (track->addr < caddr) 5178 end = pos; 5179 else if (track->addr == caddr && handle < chandle) 5180 end = pos; 5181 else 5182 start = pos; 5183 } 5184 5185 /* 5186 * Not found. Insert new tracking element. 5187 */ 5188 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 5189 return 0; 5190 5191 l = t->loc + pos; 5192 if (pos < t->count) 5193 memmove(l + 1, l, 5194 (t->count - pos) * sizeof(struct location)); 5195 t->count++; 5196 l->count = 1; 5197 l->addr = track->addr; 5198 l->sum_time = age; 5199 l->min_time = age; 5200 l->max_time = age; 5201 l->min_pid = track->pid; 5202 l->max_pid = track->pid; 5203 l->handle = handle; 5204 cpumask_clear(to_cpumask(l->cpus)); 5205 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 5206 nodes_clear(l->nodes); 5207 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5208 return 1; 5209 } 5210 5211 static void process_slab(struct loc_track *t, struct kmem_cache *s, 5212 struct slab *slab, enum track_item alloc, 5213 unsigned long *obj_map) 5214 { 5215 void *addr = slab_address(slab); 5216 void *p; 5217 5218 __fill_map(obj_map, s, slab); 5219 5220 for_each_object(p, s, addr, slab->objects) 5221 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 5222 add_location(t, s, get_track(s, p, alloc)); 5223 } 5224 #endif /* CONFIG_DEBUG_FS */ 5225 #endif /* CONFIG_SLUB_DEBUG */ 5226 5227 #ifdef CONFIG_SYSFS 5228 enum slab_stat_type { 5229 SL_ALL, /* All slabs */ 5230 SL_PARTIAL, /* Only partially allocated slabs */ 5231 SL_CPU, /* Only slabs used for cpu caches */ 5232 SL_OBJECTS, /* Determine allocated objects not slabs */ 5233 SL_TOTAL /* Determine object capacity not slabs */ 5234 }; 5235 5236 #define SO_ALL (1 << SL_ALL) 5237 #define SO_PARTIAL (1 << SL_PARTIAL) 5238 #define SO_CPU (1 << SL_CPU) 5239 #define SO_OBJECTS (1 << SL_OBJECTS) 5240 #define SO_TOTAL (1 << SL_TOTAL) 5241 5242 static ssize_t show_slab_objects(struct kmem_cache *s, 5243 char *buf, unsigned long flags) 5244 { 5245 unsigned long total = 0; 5246 int node; 5247 int x; 5248 unsigned long *nodes; 5249 int len = 0; 5250 5251 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 5252 if (!nodes) 5253 return -ENOMEM; 5254 5255 if (flags & SO_CPU) { 5256 int cpu; 5257 5258 for_each_possible_cpu(cpu) { 5259 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 5260 cpu); 5261 int node; 5262 struct slab *slab; 5263 5264 slab = READ_ONCE(c->slab); 5265 if (!slab) 5266 continue; 5267 5268 node = slab_nid(slab); 5269 if (flags & SO_TOTAL) 5270 x = slab->objects; 5271 else if (flags & SO_OBJECTS) 5272 x = slab->inuse; 5273 else 5274 x = 1; 5275 5276 total += x; 5277 nodes[node] += x; 5278 5279 #ifdef CONFIG_SLUB_CPU_PARTIAL 5280 slab = slub_percpu_partial_read_once(c); 5281 if (slab) { 5282 node = slab_nid(slab); 5283 if (flags & SO_TOTAL) 5284 WARN_ON_ONCE(1); 5285 else if (flags & SO_OBJECTS) 5286 WARN_ON_ONCE(1); 5287 else 5288 x = slab->slabs; 5289 total += x; 5290 nodes[node] += x; 5291 } 5292 #endif 5293 } 5294 } 5295 5296 /* 5297 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 5298 * already held which will conflict with an existing lock order: 5299 * 5300 * mem_hotplug_lock->slab_mutex->kernfs_mutex 5301 * 5302 * We don't really need mem_hotplug_lock (to hold off 5303 * slab_mem_going_offline_callback) here because slab's memory hot 5304 * unplug code doesn't destroy the kmem_cache->node[] data. 5305 */ 5306 5307 #ifdef CONFIG_SLUB_DEBUG 5308 if (flags & SO_ALL) { 5309 struct kmem_cache_node *n; 5310 5311 for_each_kmem_cache_node(s, node, n) { 5312 5313 if (flags & SO_TOTAL) 5314 x = atomic_long_read(&n->total_objects); 5315 else if (flags & SO_OBJECTS) 5316 x = atomic_long_read(&n->total_objects) - 5317 count_partial(n, count_free); 5318 else 5319 x = atomic_long_read(&n->nr_slabs); 5320 total += x; 5321 nodes[node] += x; 5322 } 5323 5324 } else 5325 #endif 5326 if (flags & SO_PARTIAL) { 5327 struct kmem_cache_node *n; 5328 5329 for_each_kmem_cache_node(s, node, n) { 5330 if (flags & SO_TOTAL) 5331 x = count_partial(n, count_total); 5332 else if (flags & SO_OBJECTS) 5333 x = count_partial(n, count_inuse); 5334 else 5335 x = n->nr_partial; 5336 total += x; 5337 nodes[node] += x; 5338 } 5339 } 5340 5341 len += sysfs_emit_at(buf, len, "%lu", total); 5342 #ifdef CONFIG_NUMA 5343 for (node = 0; node < nr_node_ids; node++) { 5344 if (nodes[node]) 5345 len += sysfs_emit_at(buf, len, " N%d=%lu", 5346 node, nodes[node]); 5347 } 5348 #endif 5349 len += sysfs_emit_at(buf, len, "\n"); 5350 kfree(nodes); 5351 5352 return len; 5353 } 5354 5355 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 5356 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5357 5358 struct slab_attribute { 5359 struct attribute attr; 5360 ssize_t (*show)(struct kmem_cache *s, char *buf); 5361 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5362 }; 5363 5364 #define SLAB_ATTR_RO(_name) \ 5365 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 5366 5367 #define SLAB_ATTR(_name) \ 5368 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 5369 5370 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5371 { 5372 return sysfs_emit(buf, "%u\n", s->size); 5373 } 5374 SLAB_ATTR_RO(slab_size); 5375 5376 static ssize_t align_show(struct kmem_cache *s, char *buf) 5377 { 5378 return sysfs_emit(buf, "%u\n", s->align); 5379 } 5380 SLAB_ATTR_RO(align); 5381 5382 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5383 { 5384 return sysfs_emit(buf, "%u\n", s->object_size); 5385 } 5386 SLAB_ATTR_RO(object_size); 5387 5388 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5389 { 5390 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 5391 } 5392 SLAB_ATTR_RO(objs_per_slab); 5393 5394 static ssize_t order_show(struct kmem_cache *s, char *buf) 5395 { 5396 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 5397 } 5398 SLAB_ATTR_RO(order); 5399 5400 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5401 { 5402 return sysfs_emit(buf, "%lu\n", s->min_partial); 5403 } 5404 5405 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5406 size_t length) 5407 { 5408 unsigned long min; 5409 int err; 5410 5411 err = kstrtoul(buf, 10, &min); 5412 if (err) 5413 return err; 5414 5415 s->min_partial = min; 5416 return length; 5417 } 5418 SLAB_ATTR(min_partial); 5419 5420 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5421 { 5422 unsigned int nr_partial = 0; 5423 #ifdef CONFIG_SLUB_CPU_PARTIAL 5424 nr_partial = s->cpu_partial; 5425 #endif 5426 5427 return sysfs_emit(buf, "%u\n", nr_partial); 5428 } 5429 5430 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5431 size_t length) 5432 { 5433 unsigned int objects; 5434 int err; 5435 5436 err = kstrtouint(buf, 10, &objects); 5437 if (err) 5438 return err; 5439 if (objects && !kmem_cache_has_cpu_partial(s)) 5440 return -EINVAL; 5441 5442 slub_set_cpu_partial(s, objects); 5443 flush_all(s); 5444 return length; 5445 } 5446 SLAB_ATTR(cpu_partial); 5447 5448 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5449 { 5450 if (!s->ctor) 5451 return 0; 5452 return sysfs_emit(buf, "%pS\n", s->ctor); 5453 } 5454 SLAB_ATTR_RO(ctor); 5455 5456 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5457 { 5458 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5459 } 5460 SLAB_ATTR_RO(aliases); 5461 5462 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5463 { 5464 return show_slab_objects(s, buf, SO_PARTIAL); 5465 } 5466 SLAB_ATTR_RO(partial); 5467 5468 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5469 { 5470 return show_slab_objects(s, buf, SO_CPU); 5471 } 5472 SLAB_ATTR_RO(cpu_slabs); 5473 5474 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5475 { 5476 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5477 } 5478 SLAB_ATTR_RO(objects); 5479 5480 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5481 { 5482 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5483 } 5484 SLAB_ATTR_RO(objects_partial); 5485 5486 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5487 { 5488 int objects = 0; 5489 int slabs = 0; 5490 int cpu __maybe_unused; 5491 int len = 0; 5492 5493 #ifdef CONFIG_SLUB_CPU_PARTIAL 5494 for_each_online_cpu(cpu) { 5495 struct slab *slab; 5496 5497 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5498 5499 if (slab) 5500 slabs += slab->slabs; 5501 } 5502 #endif 5503 5504 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 5505 objects = (slabs * oo_objects(s->oo)) / 2; 5506 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 5507 5508 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP) 5509 for_each_online_cpu(cpu) { 5510 struct slab *slab; 5511 5512 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5513 if (slab) { 5514 slabs = READ_ONCE(slab->slabs); 5515 objects = (slabs * oo_objects(s->oo)) / 2; 5516 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 5517 cpu, objects, slabs); 5518 } 5519 } 5520 #endif 5521 len += sysfs_emit_at(buf, len, "\n"); 5522 5523 return len; 5524 } 5525 SLAB_ATTR_RO(slabs_cpu_partial); 5526 5527 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5528 { 5529 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5530 } 5531 SLAB_ATTR_RO(reclaim_account); 5532 5533 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5534 { 5535 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5536 } 5537 SLAB_ATTR_RO(hwcache_align); 5538 5539 #ifdef CONFIG_ZONE_DMA 5540 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5541 { 5542 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5543 } 5544 SLAB_ATTR_RO(cache_dma); 5545 #endif 5546 5547 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5548 { 5549 return sysfs_emit(buf, "%u\n", s->usersize); 5550 } 5551 SLAB_ATTR_RO(usersize); 5552 5553 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5554 { 5555 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5556 } 5557 SLAB_ATTR_RO(destroy_by_rcu); 5558 5559 #ifdef CONFIG_SLUB_DEBUG 5560 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5561 { 5562 return show_slab_objects(s, buf, SO_ALL); 5563 } 5564 SLAB_ATTR_RO(slabs); 5565 5566 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5567 { 5568 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5569 } 5570 SLAB_ATTR_RO(total_objects); 5571 5572 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5573 { 5574 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5575 } 5576 SLAB_ATTR_RO(sanity_checks); 5577 5578 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5579 { 5580 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5581 } 5582 SLAB_ATTR_RO(trace); 5583 5584 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5585 { 5586 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5587 } 5588 5589 SLAB_ATTR_RO(red_zone); 5590 5591 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5592 { 5593 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5594 } 5595 5596 SLAB_ATTR_RO(poison); 5597 5598 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5599 { 5600 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5601 } 5602 5603 SLAB_ATTR_RO(store_user); 5604 5605 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5606 { 5607 return 0; 5608 } 5609 5610 static ssize_t validate_store(struct kmem_cache *s, 5611 const char *buf, size_t length) 5612 { 5613 int ret = -EINVAL; 5614 5615 if (buf[0] == '1') { 5616 ret = validate_slab_cache(s); 5617 if (ret >= 0) 5618 ret = length; 5619 } 5620 return ret; 5621 } 5622 SLAB_ATTR(validate); 5623 5624 #endif /* CONFIG_SLUB_DEBUG */ 5625 5626 #ifdef CONFIG_FAILSLAB 5627 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5628 { 5629 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5630 } 5631 SLAB_ATTR_RO(failslab); 5632 #endif 5633 5634 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5635 { 5636 return 0; 5637 } 5638 5639 static ssize_t shrink_store(struct kmem_cache *s, 5640 const char *buf, size_t length) 5641 { 5642 if (buf[0] == '1') 5643 kmem_cache_shrink(s); 5644 else 5645 return -EINVAL; 5646 return length; 5647 } 5648 SLAB_ATTR(shrink); 5649 5650 #ifdef CONFIG_NUMA 5651 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5652 { 5653 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5654 } 5655 5656 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5657 const char *buf, size_t length) 5658 { 5659 unsigned int ratio; 5660 int err; 5661 5662 err = kstrtouint(buf, 10, &ratio); 5663 if (err) 5664 return err; 5665 if (ratio > 100) 5666 return -ERANGE; 5667 5668 s->remote_node_defrag_ratio = ratio * 10; 5669 5670 return length; 5671 } 5672 SLAB_ATTR(remote_node_defrag_ratio); 5673 #endif 5674 5675 #ifdef CONFIG_SLUB_STATS 5676 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5677 { 5678 unsigned long sum = 0; 5679 int cpu; 5680 int len = 0; 5681 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5682 5683 if (!data) 5684 return -ENOMEM; 5685 5686 for_each_online_cpu(cpu) { 5687 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5688 5689 data[cpu] = x; 5690 sum += x; 5691 } 5692 5693 len += sysfs_emit_at(buf, len, "%lu", sum); 5694 5695 #ifdef CONFIG_SMP 5696 for_each_online_cpu(cpu) { 5697 if (data[cpu]) 5698 len += sysfs_emit_at(buf, len, " C%d=%u", 5699 cpu, data[cpu]); 5700 } 5701 #endif 5702 kfree(data); 5703 len += sysfs_emit_at(buf, len, "\n"); 5704 5705 return len; 5706 } 5707 5708 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5709 { 5710 int cpu; 5711 5712 for_each_online_cpu(cpu) 5713 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5714 } 5715 5716 #define STAT_ATTR(si, text) \ 5717 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5718 { \ 5719 return show_stat(s, buf, si); \ 5720 } \ 5721 static ssize_t text##_store(struct kmem_cache *s, \ 5722 const char *buf, size_t length) \ 5723 { \ 5724 if (buf[0] != '0') \ 5725 return -EINVAL; \ 5726 clear_stat(s, si); \ 5727 return length; \ 5728 } \ 5729 SLAB_ATTR(text); \ 5730 5731 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5732 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5733 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5734 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5735 STAT_ATTR(FREE_FROZEN, free_frozen); 5736 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5737 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5738 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5739 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5740 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5741 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5742 STAT_ATTR(FREE_SLAB, free_slab); 5743 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5744 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5745 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5746 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5747 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5748 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5749 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5750 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5751 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5752 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5753 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5754 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5755 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5756 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5757 #endif /* CONFIG_SLUB_STATS */ 5758 5759 static struct attribute *slab_attrs[] = { 5760 &slab_size_attr.attr, 5761 &object_size_attr.attr, 5762 &objs_per_slab_attr.attr, 5763 &order_attr.attr, 5764 &min_partial_attr.attr, 5765 &cpu_partial_attr.attr, 5766 &objects_attr.attr, 5767 &objects_partial_attr.attr, 5768 &partial_attr.attr, 5769 &cpu_slabs_attr.attr, 5770 &ctor_attr.attr, 5771 &aliases_attr.attr, 5772 &align_attr.attr, 5773 &hwcache_align_attr.attr, 5774 &reclaim_account_attr.attr, 5775 &destroy_by_rcu_attr.attr, 5776 &shrink_attr.attr, 5777 &slabs_cpu_partial_attr.attr, 5778 #ifdef CONFIG_SLUB_DEBUG 5779 &total_objects_attr.attr, 5780 &slabs_attr.attr, 5781 &sanity_checks_attr.attr, 5782 &trace_attr.attr, 5783 &red_zone_attr.attr, 5784 &poison_attr.attr, 5785 &store_user_attr.attr, 5786 &validate_attr.attr, 5787 #endif 5788 #ifdef CONFIG_ZONE_DMA 5789 &cache_dma_attr.attr, 5790 #endif 5791 #ifdef CONFIG_NUMA 5792 &remote_node_defrag_ratio_attr.attr, 5793 #endif 5794 #ifdef CONFIG_SLUB_STATS 5795 &alloc_fastpath_attr.attr, 5796 &alloc_slowpath_attr.attr, 5797 &free_fastpath_attr.attr, 5798 &free_slowpath_attr.attr, 5799 &free_frozen_attr.attr, 5800 &free_add_partial_attr.attr, 5801 &free_remove_partial_attr.attr, 5802 &alloc_from_partial_attr.attr, 5803 &alloc_slab_attr.attr, 5804 &alloc_refill_attr.attr, 5805 &alloc_node_mismatch_attr.attr, 5806 &free_slab_attr.attr, 5807 &cpuslab_flush_attr.attr, 5808 &deactivate_full_attr.attr, 5809 &deactivate_empty_attr.attr, 5810 &deactivate_to_head_attr.attr, 5811 &deactivate_to_tail_attr.attr, 5812 &deactivate_remote_frees_attr.attr, 5813 &deactivate_bypass_attr.attr, 5814 &order_fallback_attr.attr, 5815 &cmpxchg_double_fail_attr.attr, 5816 &cmpxchg_double_cpu_fail_attr.attr, 5817 &cpu_partial_alloc_attr.attr, 5818 &cpu_partial_free_attr.attr, 5819 &cpu_partial_node_attr.attr, 5820 &cpu_partial_drain_attr.attr, 5821 #endif 5822 #ifdef CONFIG_FAILSLAB 5823 &failslab_attr.attr, 5824 #endif 5825 &usersize_attr.attr, 5826 5827 NULL 5828 }; 5829 5830 static const struct attribute_group slab_attr_group = { 5831 .attrs = slab_attrs, 5832 }; 5833 5834 static ssize_t slab_attr_show(struct kobject *kobj, 5835 struct attribute *attr, 5836 char *buf) 5837 { 5838 struct slab_attribute *attribute; 5839 struct kmem_cache *s; 5840 int err; 5841 5842 attribute = to_slab_attr(attr); 5843 s = to_slab(kobj); 5844 5845 if (!attribute->show) 5846 return -EIO; 5847 5848 err = attribute->show(s, buf); 5849 5850 return err; 5851 } 5852 5853 static ssize_t slab_attr_store(struct kobject *kobj, 5854 struct attribute *attr, 5855 const char *buf, size_t len) 5856 { 5857 struct slab_attribute *attribute; 5858 struct kmem_cache *s; 5859 int err; 5860 5861 attribute = to_slab_attr(attr); 5862 s = to_slab(kobj); 5863 5864 if (!attribute->store) 5865 return -EIO; 5866 5867 err = attribute->store(s, buf, len); 5868 return err; 5869 } 5870 5871 static void kmem_cache_release(struct kobject *k) 5872 { 5873 slab_kmem_cache_release(to_slab(k)); 5874 } 5875 5876 static const struct sysfs_ops slab_sysfs_ops = { 5877 .show = slab_attr_show, 5878 .store = slab_attr_store, 5879 }; 5880 5881 static struct kobj_type slab_ktype = { 5882 .sysfs_ops = &slab_sysfs_ops, 5883 .release = kmem_cache_release, 5884 }; 5885 5886 static struct kset *slab_kset; 5887 5888 static inline struct kset *cache_kset(struct kmem_cache *s) 5889 { 5890 return slab_kset; 5891 } 5892 5893 #define ID_STR_LENGTH 64 5894 5895 /* Create a unique string id for a slab cache: 5896 * 5897 * Format :[flags-]size 5898 */ 5899 static char *create_unique_id(struct kmem_cache *s) 5900 { 5901 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5902 char *p = name; 5903 5904 if (!name) 5905 return ERR_PTR(-ENOMEM); 5906 5907 *p++ = ':'; 5908 /* 5909 * First flags affecting slabcache operations. We will only 5910 * get here for aliasable slabs so we do not need to support 5911 * too many flags. The flags here must cover all flags that 5912 * are matched during merging to guarantee that the id is 5913 * unique. 5914 */ 5915 if (s->flags & SLAB_CACHE_DMA) 5916 *p++ = 'd'; 5917 if (s->flags & SLAB_CACHE_DMA32) 5918 *p++ = 'D'; 5919 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5920 *p++ = 'a'; 5921 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5922 *p++ = 'F'; 5923 if (s->flags & SLAB_ACCOUNT) 5924 *p++ = 'A'; 5925 if (p != name + 1) 5926 *p++ = '-'; 5927 p += sprintf(p, "%07u", s->size); 5928 5929 BUG_ON(p > name + ID_STR_LENGTH - 1); 5930 return name; 5931 } 5932 5933 static int sysfs_slab_add(struct kmem_cache *s) 5934 { 5935 int err; 5936 const char *name; 5937 struct kset *kset = cache_kset(s); 5938 int unmergeable = slab_unmergeable(s); 5939 5940 if (!kset) { 5941 kobject_init(&s->kobj, &slab_ktype); 5942 return 0; 5943 } 5944 5945 if (!unmergeable && disable_higher_order_debug && 5946 (slub_debug & DEBUG_METADATA_FLAGS)) 5947 unmergeable = 1; 5948 5949 if (unmergeable) { 5950 /* 5951 * Slabcache can never be merged so we can use the name proper. 5952 * This is typically the case for debug situations. In that 5953 * case we can catch duplicate names easily. 5954 */ 5955 sysfs_remove_link(&slab_kset->kobj, s->name); 5956 name = s->name; 5957 } else { 5958 /* 5959 * Create a unique name for the slab as a target 5960 * for the symlinks. 5961 */ 5962 name = create_unique_id(s); 5963 if (IS_ERR(name)) 5964 return PTR_ERR(name); 5965 } 5966 5967 s->kobj.kset = kset; 5968 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5969 if (err) 5970 goto out; 5971 5972 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5973 if (err) 5974 goto out_del_kobj; 5975 5976 if (!unmergeable) { 5977 /* Setup first alias */ 5978 sysfs_slab_alias(s, s->name); 5979 } 5980 out: 5981 if (!unmergeable) 5982 kfree(name); 5983 return err; 5984 out_del_kobj: 5985 kobject_del(&s->kobj); 5986 goto out; 5987 } 5988 5989 void sysfs_slab_unlink(struct kmem_cache *s) 5990 { 5991 if (slab_state >= FULL) 5992 kobject_del(&s->kobj); 5993 } 5994 5995 void sysfs_slab_release(struct kmem_cache *s) 5996 { 5997 if (slab_state >= FULL) 5998 kobject_put(&s->kobj); 5999 } 6000 6001 /* 6002 * Need to buffer aliases during bootup until sysfs becomes 6003 * available lest we lose that information. 6004 */ 6005 struct saved_alias { 6006 struct kmem_cache *s; 6007 const char *name; 6008 struct saved_alias *next; 6009 }; 6010 6011 static struct saved_alias *alias_list; 6012 6013 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 6014 { 6015 struct saved_alias *al; 6016 6017 if (slab_state == FULL) { 6018 /* 6019 * If we have a leftover link then remove it. 6020 */ 6021 sysfs_remove_link(&slab_kset->kobj, name); 6022 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 6023 } 6024 6025 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 6026 if (!al) 6027 return -ENOMEM; 6028 6029 al->s = s; 6030 al->name = name; 6031 al->next = alias_list; 6032 alias_list = al; 6033 return 0; 6034 } 6035 6036 static int __init slab_sysfs_init(void) 6037 { 6038 struct kmem_cache *s; 6039 int err; 6040 6041 mutex_lock(&slab_mutex); 6042 6043 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 6044 if (!slab_kset) { 6045 mutex_unlock(&slab_mutex); 6046 pr_err("Cannot register slab subsystem.\n"); 6047 return -ENOSYS; 6048 } 6049 6050 slab_state = FULL; 6051 6052 list_for_each_entry(s, &slab_caches, list) { 6053 err = sysfs_slab_add(s); 6054 if (err) 6055 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 6056 s->name); 6057 } 6058 6059 while (alias_list) { 6060 struct saved_alias *al = alias_list; 6061 6062 alias_list = alias_list->next; 6063 err = sysfs_slab_alias(al->s, al->name); 6064 if (err) 6065 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 6066 al->name); 6067 kfree(al); 6068 } 6069 6070 mutex_unlock(&slab_mutex); 6071 return 0; 6072 } 6073 6074 __initcall(slab_sysfs_init); 6075 #endif /* CONFIG_SYSFS */ 6076 6077 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 6078 static int slab_debugfs_show(struct seq_file *seq, void *v) 6079 { 6080 struct loc_track *t = seq->private; 6081 struct location *l; 6082 unsigned long idx; 6083 6084 idx = (unsigned long) t->idx; 6085 if (idx < t->count) { 6086 l = &t->loc[idx]; 6087 6088 seq_printf(seq, "%7ld ", l->count); 6089 6090 if (l->addr) 6091 seq_printf(seq, "%pS", (void *)l->addr); 6092 else 6093 seq_puts(seq, "<not-available>"); 6094 6095 if (l->sum_time != l->min_time) { 6096 seq_printf(seq, " age=%ld/%llu/%ld", 6097 l->min_time, div_u64(l->sum_time, l->count), 6098 l->max_time); 6099 } else 6100 seq_printf(seq, " age=%ld", l->min_time); 6101 6102 if (l->min_pid != l->max_pid) 6103 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 6104 else 6105 seq_printf(seq, " pid=%ld", 6106 l->min_pid); 6107 6108 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 6109 seq_printf(seq, " cpus=%*pbl", 6110 cpumask_pr_args(to_cpumask(l->cpus))); 6111 6112 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 6113 seq_printf(seq, " nodes=%*pbl", 6114 nodemask_pr_args(&l->nodes)); 6115 6116 #ifdef CONFIG_STACKDEPOT 6117 { 6118 depot_stack_handle_t handle; 6119 unsigned long *entries; 6120 unsigned int nr_entries, j; 6121 6122 handle = READ_ONCE(l->handle); 6123 if (handle) { 6124 nr_entries = stack_depot_fetch(handle, &entries); 6125 seq_puts(seq, "\n"); 6126 for (j = 0; j < nr_entries; j++) 6127 seq_printf(seq, " %pS\n", (void *)entries[j]); 6128 } 6129 } 6130 #endif 6131 seq_puts(seq, "\n"); 6132 } 6133 6134 if (!idx && !t->count) 6135 seq_puts(seq, "No data\n"); 6136 6137 return 0; 6138 } 6139 6140 static void slab_debugfs_stop(struct seq_file *seq, void *v) 6141 { 6142 } 6143 6144 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 6145 { 6146 struct loc_track *t = seq->private; 6147 6148 t->idx = ++(*ppos); 6149 if (*ppos <= t->count) 6150 return ppos; 6151 6152 return NULL; 6153 } 6154 6155 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 6156 { 6157 struct location *loc1 = (struct location *)a; 6158 struct location *loc2 = (struct location *)b; 6159 6160 if (loc1->count > loc2->count) 6161 return -1; 6162 else 6163 return 1; 6164 } 6165 6166 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 6167 { 6168 struct loc_track *t = seq->private; 6169 6170 t->idx = *ppos; 6171 return ppos; 6172 } 6173 6174 static const struct seq_operations slab_debugfs_sops = { 6175 .start = slab_debugfs_start, 6176 .next = slab_debugfs_next, 6177 .stop = slab_debugfs_stop, 6178 .show = slab_debugfs_show, 6179 }; 6180 6181 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 6182 { 6183 6184 struct kmem_cache_node *n; 6185 enum track_item alloc; 6186 int node; 6187 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 6188 sizeof(struct loc_track)); 6189 struct kmem_cache *s = file_inode(filep)->i_private; 6190 unsigned long *obj_map; 6191 6192 if (!t) 6193 return -ENOMEM; 6194 6195 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6196 if (!obj_map) { 6197 seq_release_private(inode, filep); 6198 return -ENOMEM; 6199 } 6200 6201 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 6202 alloc = TRACK_ALLOC; 6203 else 6204 alloc = TRACK_FREE; 6205 6206 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 6207 bitmap_free(obj_map); 6208 seq_release_private(inode, filep); 6209 return -ENOMEM; 6210 } 6211 6212 for_each_kmem_cache_node(s, node, n) { 6213 unsigned long flags; 6214 struct slab *slab; 6215 6216 if (!atomic_long_read(&n->nr_slabs)) 6217 continue; 6218 6219 spin_lock_irqsave(&n->list_lock, flags); 6220 list_for_each_entry(slab, &n->partial, slab_list) 6221 process_slab(t, s, slab, alloc, obj_map); 6222 list_for_each_entry(slab, &n->full, slab_list) 6223 process_slab(t, s, slab, alloc, obj_map); 6224 spin_unlock_irqrestore(&n->list_lock, flags); 6225 } 6226 6227 /* Sort locations by count */ 6228 sort_r(t->loc, t->count, sizeof(struct location), 6229 cmp_loc_by_count, NULL, NULL); 6230 6231 bitmap_free(obj_map); 6232 return 0; 6233 } 6234 6235 static int slab_debug_trace_release(struct inode *inode, struct file *file) 6236 { 6237 struct seq_file *seq = file->private_data; 6238 struct loc_track *t = seq->private; 6239 6240 free_loc_track(t); 6241 return seq_release_private(inode, file); 6242 } 6243 6244 static const struct file_operations slab_debugfs_fops = { 6245 .open = slab_debug_trace_open, 6246 .read = seq_read, 6247 .llseek = seq_lseek, 6248 .release = slab_debug_trace_release, 6249 }; 6250 6251 static void debugfs_slab_add(struct kmem_cache *s) 6252 { 6253 struct dentry *slab_cache_dir; 6254 6255 if (unlikely(!slab_debugfs_root)) 6256 return; 6257 6258 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 6259 6260 debugfs_create_file("alloc_traces", 0400, 6261 slab_cache_dir, s, &slab_debugfs_fops); 6262 6263 debugfs_create_file("free_traces", 0400, 6264 slab_cache_dir, s, &slab_debugfs_fops); 6265 } 6266 6267 void debugfs_slab_release(struct kmem_cache *s) 6268 { 6269 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root)); 6270 } 6271 6272 static int __init slab_debugfs_init(void) 6273 { 6274 struct kmem_cache *s; 6275 6276 slab_debugfs_root = debugfs_create_dir("slab", NULL); 6277 6278 list_for_each_entry(s, &slab_caches, list) 6279 if (s->flags & SLAB_STORE_USER) 6280 debugfs_slab_add(s); 6281 6282 return 0; 6283 6284 } 6285 __initcall(slab_debugfs_init); 6286 #endif 6287 /* 6288 * The /proc/slabinfo ABI 6289 */ 6290 #ifdef CONFIG_SLUB_DEBUG 6291 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 6292 { 6293 unsigned long nr_slabs = 0; 6294 unsigned long nr_objs = 0; 6295 unsigned long nr_free = 0; 6296 int node; 6297 struct kmem_cache_node *n; 6298 6299 for_each_kmem_cache_node(s, node, n) { 6300 nr_slabs += node_nr_slabs(n); 6301 nr_objs += node_nr_objs(n); 6302 nr_free += count_partial(n, count_free); 6303 } 6304 6305 sinfo->active_objs = nr_objs - nr_free; 6306 sinfo->num_objs = nr_objs; 6307 sinfo->active_slabs = nr_slabs; 6308 sinfo->num_slabs = nr_slabs; 6309 sinfo->objects_per_slab = oo_objects(s->oo); 6310 sinfo->cache_order = oo_order(s->oo); 6311 } 6312 6313 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 6314 { 6315 } 6316 6317 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 6318 size_t count, loff_t *ppos) 6319 { 6320 return -EIO; 6321 } 6322 #endif /* CONFIG_SLUB_DEBUG */ 6323